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Abstract. While cloud computing provides many advantages in accessibility, 
scalability and cost efficiency, it also introduces a number of new security risks. 
This paper concentrates on the co-resident attack, where malicious users aim to 
co-locate their virtual machines (VMs) with target VMs on the same physical 
server, and then exploit side channels to extract private information from the 
victim. Most of the previous work has discussed how to eliminate or mitigate 
the threat of side channels. However, the presented solutions are impractical for 
the current commercial cloud platforms. We approach the problem from a dif-
ferent perspective, and study how to minimise the attacker’s possibility of co-
locating their VMs with the targets, while maintaining a satisfactory workload 
balance and low power consumption for the system. Specifically, we introduce 
a security game model to compare different VM allocation policies. Our analy-
sis shows that rather than deploying one single policy, the cloud provider de-
creases the attacker’s possibility of achieving co-location by having a policy 
pool, where each policy is selected with a certain probability. Our solution does 
not require any changes to the underlying infrastructure. Hence, it can be easily 
implemented in existing cloud computing platforms.  

Keywords: Cloud computing, co-resident attack, game theory, virtual machine 
allocation policy.  

1 Introduction 

In cloud computing environments, when a user requests to start a new machine, in 
most cases the allocated machine is not an entire physical server, but only a virtual 
machine (VM) running on a specific host. This is enabled by hardware virtualisation 
technologies [1] such as Hyper-V, VMWare, and Xen, so that multiple VMs of differ-
ent users can run on the same physical server and share the same underlying hardware 
resources. While this increases the utilisation rate of hardware platforms, it also intro-
duces a new threat: although in theory, VMs running on the same server (i.e., co-
resident VMs) should be logically isolated from each other, malicious users can still 
circumvent the logical isolation, and obtain sensitive information from co-resident 
VMs [2]. 
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It has been shown that this new co-resident attack (also known as a co-residence at-
tack, or co-location attack) is indeed feasible in real cloud platforms. By building 
different kinds of side channels, the attacker can extract a range of private statistics, 
from the coarse-grained [2], like the victim’s workload and traffic rate, to the fine-
grained [3], such as cryptographic keys. 

Most of the previous work has focused on the side channels, and proposed to solve 
the problem either by mitigating the threat of side channels [4-7], or designing a new 
architecture for the cloud system to eliminate side channels [8, 9]. However, few of 
these are practical for current commercial cloud platforms as they require significant 
changes to be made. In this paper, we address this issue with a novel decision and 
game-theoretic approach. 

The co-resident attack that we are discussing comprises two steps. Before the at-
tacker can extract any useful information from the victim, they first need to co-locate 
their own VMs with the target VM. Experiments in [2] show that the attacker can 
achieve a surprisingly high efficiency rate of 40% (i.e., 4 out of 10 malicious VMs 
launched by the attacker will be co-resident with the target(s)). This observation mo-
tivates us to study practical methods for decreasing this efficiency rate of co-resident 
attacks. For cloud providers, one important factor they can control that will influence 
the efficiency rate is the VM allocation policy. Hence, we compare different VM 
allocation policies in cloud computing, and investigate the impact of these policies on 
the efficiency of achieving co-residence. 

When cloud providers decide on their VM allocation policies, workload balance 
and power consumption are used as additional important criteria. Therefore, we carry 
out a comparative study of four basic VM allocation policies using a game theoretic 
approach, namely: choosing the server (1) with the least number of VMs, (2) with the 
most number of VMs, (3) randomly, and (4) on a round robin basis. These policies 
form the basis of most policies used in real cloud systems. Specifically, we model this 
as a two-player security game, where the attacker’s goal is to maximize the attack 
efficiency, while the defender (cloud provider) aims to minimize it on the premise of 
balancing the workload and maintaining low power consumption. 
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Fig. 1. Different focuses of VM allocation policies 
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Our contributions in this paper include: (1) we introduce a novel game theoretic 
approach to the problem of defending against co-resident attacks; (2) we model dif-
ferent VM allocation policies using zero- and non-zero-sum security games; (3) we 
perform extensive numerical simulations to develop and evaluate a practical solution 
for mitigating the threat of co-resident attacks; and (4) we show that in terms of 
minimising attack efficiency, the deterministic VM allocation policy behaves the 
worst, while a mixed policy outperforms any single policy. 

The rest of the paper is organized as follows. In Section 2, we further introduce the 
focus of our study – the co-resident attack, and give our problem statement. In Section 
3, we propose our game model. A detailed analysis and comparison of the different 
VM allocation policies is presented in Section 4, while Section 5 concludes the paper 
and gives directions for our future work. 

2 Background and Problem Statement 

In this section, we first introduce the co-resident attack in detail. We discuss how to 
achieve co-residence, the security risks, and potential countermeasures. We then  
define the problem that we aim to solve in this paper. 

2.1 Methods to Achieve Co-residence 

In order to achieve co-residence, i.e., locate their own VM and the victim on the same 
host, the attackers have several options.  

1. The most straightforward approach is to use a brute-force strategy: start as many 
VMs as possible until co-residence is achieved.  

2. Experiments in [2] show that in the popular Amazon EC2 cloud, there is strong se-
quential and parallel locality in VM placement, which means if one VM is termi-
nated right before another one is started, or if two VMs are launched almost at the 
same time, then these two VMs are often assigned to the same server. As a result, 
the attacker can increase the possibility of co-locating their VM with the targets if 
they are able to trigger the victim to start new VMs, and then launch their own 
VMs after that. 

2.2 Potential Security Risks 

After co-residence is achieved, there are a number of potential security risks: 

1. VM workload estimation – In [2], the authors adopt the Prime+Probe technique 
[10, 11] to measure cache utilisation. The basic idea is that the execution time of 
the cache read operation is heavily influenced by the cache utilisation. Hence, by 
performing intensive read operations and then measuring the execution time, the 
attacker can infer the cache usage, which also indicates the target VM’s workload. 

2. Web traffic rate estimation – Similarly, the attacker performs cache load measure-
ments on the co-resident VM, and at the same time, they send HTTP requests from 
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non-co-resident VM(s) to the victim. Experimental results show that there is a 
strong correlation between the execution time of the cache operation and the HTTP 
traffic rate. In other words, the attacker is able to obtain information about the web 
traffic rate on the co-resident VM. This can be useful information if the victim is a 
corporate competitor.  

3. Private key extraction – In [3], the authors demonstrate that it is possible to extract 
cryptographic keys by using cross-VM side channels. In particular, they show how 
to overcome the following challenges: regaining the control of the physical CPU 
with sufficient frequency to monitor the instruction cache, filtering out hardware 
and software noise, and determining if an observation is from the target virtual 
CPU or not due to the core migration. 

In addition, there are a number of papers discussing how to build side channels be-
tween co-resident VMs in cloud computing environments [12-17]. 

Note that there are other types of denial-of-service attacks where the attacker does 
not care who the victim is, and only aims to obtain an unfair share of resources from 
the physical server, so that co-resident VMs will experience a degradation of quality 
of service [18-21]. This type of attack is outside the scope of our research. 

2.3 Possible Countermeasures 

Previous studies have proposed a number of possible defence methods, which can be 
broadly classified into the following three categories:  

1. Preventing the attacker from verifying co-residence – In current cloud computing 
platforms, it is relatively easy to check if two VMs are on the same host. For ex-
ample, by performing a TCP traceroute the attacker can obtain a VM’s Dom0 IP 
address (where Dom0 is a privileged VM that manages other VMs on the host). If 
two Dom0 IP addresses are the same, the corresponding VMs are on the same 
server. If we can prevent the attacker from verifying whether their own VM and 
the target victim’s VM are on the same physical machine, then they will not be 
able to launch further attacks. However, there are a number of alternative methods 
to verify co-residence that do not rely on network measurement [2], even though 
they are more time-consuming. Therefore, it is difficult, if not impossible, to pre-
vent all these methods. 

2. Securing the system to prevent sensitive information of a VM from being leaked to 
co-resident VMs – Countermeasures against side channels have already been  
extensively studied, including (1) mitigating the threat of timing channels by 
eliminating high resolution clocks [5], or adding latency to potentially malicious 
operations [6], and (2) redesigning the architecture for cloud computing systems 
[8, 9]. Nevertheless, these methods are usually impractical for current commercial 
cloud platforms due to the substantial changes required. 

3. Periodically migrating VMs – The authors in [22, 23] propose to solve the problem 
by periodically migrating VMs. The number of chosen VMs and hosts are decided 
based on game theory. In addition, they also discuss how to place VMs in order to 
minimize the security risk. However, frequently migrating VMs may increase 
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power usage and lead to load imbalances, which are undesirable from the cloud 
provider’s perspective. 

2.4 Problem Statement 

In this paper, we aim to find a solution for defending against the co-resident attack. In 
order to make our proposed method practical, we assume that the cloud providers (1) 
do not have any prior knowledge of the attacker; (2) will not apply any additional 
security patches, and (3) will not have access to an effective detection mechanism. 
Therefore, the question is under these assumptions, how can they mitigate the threat 
of co-resident attacks, while maintaining a reasonably high workload balance and low 
power consumption for the system? 

3 Proposed Game Model 

We consider this problem as a static game between the attacker and the defender 
(cloud provider). In this section, we first define the attack and defence scenarios, and 
then propose our game model.  

3.1 Attack Scenarios and Metrics 

Before giving the formal description of the game model, we first define the attack 
scenario: in a system of N servers, there are k (separate) attackers {A1, A2, …, Ak}, 
each controlling one single account. No limit on the number of VMs is enforced for 
an account, which means the attackers can start as many VMs as frequently as they 
want (in practice, the attackers maybe restricted by costs and other factors). The target 
for attacker Ai is the set of VMs started by legitimate user Li, i.e., Target(Ai) = 
∑tVM(Li,t) = {VMi1, VMi2, …, iiTVM }, where VM(Li,t) is the set of VMs started by Li 
at time t. During one attack started at time t, Ai will launch a number of VMs, 
VM(Ai,t). Let SuccVM(Ai,t) denote the VMs of attacker Ai that co-locate with at least 
one of the targets, i.e., SuccVM(Ai,t) = {v | v ∈  VM(Ai,t), Servers({v}) ⊆  Serv-
ers(Target(Ai))}, where Servers({a set of VMs}) is the set of servers that host the set 
of VMs. Similarly, let SuccTarget(Ai,t) denote the VMs of the target user Li that are 
co-located with at least one VM of the attacker Ai, i.e., SuccTarget(Ai,t) = { u | u ∈  
Target(Ai), Servers({u}) ⊆  Servers(VM(Ai,t))}. Then an attack is considered as 
successful if SuccVM(Ai,t) and SuccTarget(Ai,t) are non-empty, i.e., at least one of the 
attacker’s VMs is co-located with at least one of the target VMs. 

In order to further measure the success for one attack, two definitions are  
introduced:  

(1) Efficiency, which is defined as the number of malicious VMs that are success-
fully co-located with at least one of the Ti targets, divided by the total number of VMs 
launched during this attack, i.e.,  
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(2) Coverage, which is defined as the number of target VMs co-located with mali-
cious VMs started in this attack, divided by the number of targets Ti, i.e.,  
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Table 1. Definitions of symbols used 

Name Definition 

Target(Ai) The target set of VMs that Ai intends to co-locate with. |Target(Ai)| = Ti 

VM(Li,t)  The set of VMs started by user Li at time t 

SuccTarget(Ai,t) A subset of Target(Ai) that co-locates with at least one VM from VM(Ai,t) 

SuccVM(Ai,t) A subset of VM(Ai,t) that co-locates with at least one of the Ti targets 

Servers({a set of VMs}) Servers that host the set of VMs 

3.2 Defence Policies 

Recall that the attack we consider comprises two steps. First, the attacker has a clear 
set of targets, and they will try different methods to co-locate their own VMs with the 
targets. Second, after co-residence is achieved, the attacker will use various  
techniques to obtain sensitive information from the victim.  

Because of the assumptions we made in Section 2.4, any solution that focuses on 
the second step, and any attempt to identify the attacker or their VM requests are in-
feasible. Therefore, one of the remaining options for the defender is to find an alloca-
tion policy that minimizes the overall possibility of achieving co-residence. 

For simplicity reasons, we only consider four policies, namely: choosing the server 
(1) with the least number of VMs (“Least VM”), (2) with the most number of VMs 
(“Most VM”), (3) randomly (“Random”), and (4) on a round robin basis (“Round 
Robin”). The reason why we choose these policies is that the first two are two ex-
tremes in the policy spectrum, with one spreading the workload and the other one 
concentrating the workload, while the other two are the most straightforward policies. 
In addition, most real cloud VM allocation policies are based on these four policies. 

We can classify these policies into two main categories: deterministic (Policy 4), 
and stochastic (Policies 1, 2, 3). 

Deterministic VM Allocation Policies 
Round Robin: suppose that all the servers form a queue. When a new VM request 
arrives, all the servers in the queue will be checked sequentially from the beginning, 
until a server Sr is found with enough remaining resources. Server Sr will be selected 
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to host the new VM, and all the servers that have been checked will be moved to the 
end of the queue, keeping the original order. 

We classify the Round Robin policy as deterministic because the servers will be 
chosen with the same order, if the cloud system and the workload are the same. 

Stochastic VM Allocation Policies 
1. Least VM/Most VM: for every new VM request, the policy will select the server 

that hosts the least/most number of VMs, among those with enough resources left 
(n.b., if multiple servers meet the criterion, the policy will choose one randomly). 
This kind of policy spreads/concentrates the workload within the system for better 
workload balance/lower energy consumption. 

2. Random: for every new VM request, the policy will randomly select one server 
from those having enough resources. 

We classify these three policies as stochastic because in contrast to the determinis-
tic policy, even if the same workload is submitted to the system, the order in which 
the servers are selected may still be different. 

3.3 Game Model 

Given the attack and defence scenarios, we define the two-player security game 
model [24] as follows. 

Players 
In this strategic game, there are two players, the attacker A, and the defender  
D: P = {A, D}.  

Action Set 
According to our earlier analysis, the defender treats every customer’s request in the 
same way, and their action set is to choose a specific VM allocation policy:  
ASD = {Least VM, Most VM, Random, Round Robin}. On the other hand, from the 
attacker’s point of view, they can decide when to start the VMs, and how many VMs 
to start. In order to simplify the problem, we only consider one single attack (in real-
ity, the attacker may launch the attack periodically). Hence, the action set of the  
attacker is: ASA = {VM(A,t)}. 

Utility Functions 
The attacker’s goal is to maximise the efficiency/coverage rate, and their utility  
function is: 

 
( )

( )
( , ), ( ( , ), )

1 ( ( , ), )

A
A

A

U VM A t Policy w Efficiency VM A t Policy

w Coverage VM A t Policy

= ⋅ +

                                     − ⋅
 (3) 

where wA is a weight that specifies the relative importance of efficiency vs. coverage, 
and 0 ≤ wA ≤ 1. 

Note that compared with (2), the efficiency/coverage rate in (3) takes another pa-
rameter into consideration – Policy – since these two rates are different under the four 
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allocation policies. In addition, the attacker’s cost is also implicitly included, because 
the efficiency rate will be low if the attacker starts a large number of VMs. 

In contrast, the defender’s goal is to find a policy that achieves an optimal balance 
between minimising the attacker’s efficiency/coverage rate, decreasing the overall 
power consumption, and balancing the workload. Suppose that Pi and Bi, i = 1, 2, 3, 4, 
represent the system’s normalised power consumption and workload balance under 
the four policies respectively, then the defender’s utility function is: 

 ( ) ( )1 2 1 21D A
D i D i D D iU Policy w U w P w w B= − ⋅ − ⋅ + − − ⋅  (4) 

where A
iU is the attacker’s utility under policy i, i = 1, 2, 3, 4, and 1Dw  and 2Dw are 

weights such that 0 ≤ 1Dw , 2Dw , 1 2D Dw w+ ≤ 1. 
Therefore, the security game G is written as G = {P, ASi, Ui, i ∈{A, D}}. In the 

next section, we discuss Efficiency(A,VM(A,t),Policy), Coverage(A,VM(A,t), Policy), 
Pi and Bi in detail. 

4 Analysis of VM Allocation Policies Using the Game Model 

In this section, we present a simulation-based analysis of the different VM allocation 
policies. First, we introduce the simulation platform for our experiments. Then we 
give the detailed results of the efficiency rate, coverage rate, power consumption and 
workload balance under the four policies, which will help us develop the appropriate 
parameters in the game model. Finally, we calculate the numerical solution for the 
game, and discuss the implications of our findings. 

4.1 Simulation Environment 

We conducted our experiments on the platform CloudSim [25], which has been 
widely used in previous studies [26, 27]. The settings for our experiments are as  
follows.  

Physical Servers and Virtual Machines 
All the configurations of servers and VMs used in our simulations are similar to those 
of certain real-world models. Note that in CloudSim the CPU speed is measured in 
MIPS instead of MHz (a higher value of MIPS indicates faster processing speed).  

Table 2. Configurations of servers and VMs 

 Type Quantity CPU speed (MIPS) No. of CPU cores RAM (MB) 

Servers 1 150 2600 16 24576 

VMs 

1 random* 2500 1 870 

2 random* 2000 1 1740 

3 random* 1000 1 1740 

4 random* 500 1 613 

* Each VM request randomly decides the type of VM it requires. 
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Background Workload 
Our earlier study [28] shows that the VM request arrival and departure processes in 
cloud computing follow a power law distribution, and exhibit self-similarity. In order 
to make the background workload more realistic in our simulation, we implement this 
finding using the program developed in [29]. More specifically, we use this program 
to generate two self-similar time series, indicating the number of VM requests that 
arrive/departure in each minute. In addition, we assume that every new request needs 
only one VM, whose type and CPU utilization for each minute are both randomly 
selected. 

Experimental Settings 
In each experiment, a legal user L starts 20 VMs at the 18000th second (note that the 
system reaches the steady state in terms of the number of started VMs around the 
4800th second, so our results are very unlikely to be affected by simulation boot-up 
behaviours), and a certain time later (we call this time difference the lag) at the tth  
(t = 18000 + lag) second, an attacker A starts VM(A,t) VMs. The simulation stops a 
few minutes after that. Both the lag and VM(A,t) range from 1 to 100 (note that we use 
“lag” and “t” interchangeably in the rest of this paper).  

For every VM allocation policy/lag combination, we carry out the above experi-
ment 50 times, and the final results presented below are the average values. 

4.2 Attack Efficiency under Different VM Allocation Policies 

In this subsection, we summarise the attack efficiency under the four policies. 

Least VM Allocation Policy 
Fig. 2 shows the impact on the efficiency rate of varying the lag and the number of 
VMs started by the attacker (VM(A,t)) under the Least VM policy. The following 
observations can be made from the experiment: 

(1) The number of started VMs, VM(A,t), has little impact on the attack efficiency.  
(2) When the lag is small, it is difficult to achieve co-residence. This is consistent 

with the aim of balancing the workload, which means it is unlikely that a server will 
be chosen twice within a short period of time. 

(3) After the lag reaches 10 minutes, the efficiency rate remains stable. The only 
exception is when VM(A,t) equals one: the efficiency rate is volatile, but the average 
value in this case is still similar to the overall average value. 

(4) It can be seen from Fig. 2(b) that when the lag is longer than 10 minutes and 
VM(A,t) is larger than 5, the attack efficiency stays at approximately the same value. 

Most VM Allocation Policy 
Under the Most VM policy, our simulation shows that: 

(1) In most cases, the efficiency rate first grows with VM(A,t), but then the trend 
reverses. A closer inspection of the trace files shows that only the first m(t) of the 
VM(A,t) VMs are assigned to different servers, while the rest are all allocated to-
gether. m(t) is the number of servers that are already turned on, and have sufficient 
remaining resources at time t.   
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(a) 1 ≤ VM(A,t), lag ≤ 100 

 

(b) 5 ≤ VM(A,t) ≤ 100, 10 ≤ lag ≤ 100 

Fig. 2. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Least VM policy. Fig. 2(a): the overall case, where 1 ≤ VM(A,t), lag ≤ 100. 
Fig. 2(b): the stable region, where 5 ≤ VM(A,t) ≤ 100, 10 ≤ lag ≤ 100. 

(2) The Most VM policy allocates new VMs to the same server until its remaining 
resources are less than required. Hence, the efficiency rate is relatively high with 
small lags, and decreases as the lag increases. However, similar to the situation with 
the Least VM policy, once the lag is larger than a certain value, the efficiency remains 
approximately the same. 

A clever attacker would learn from the first observation that in order to achieve a 
higher efficiency with a large VM(A,t), instead of starting all the VMs at the same 
time, they should start S VMs (0 < S < VM(A,t)) at a time, and repeat that VM(A,t)/S 
times at certain intervals. 

We re-ran the experiment with S set to five, and the interval set to one minute. As 
can be seen from Fig. 3(b), when VM(A,t) is large, the efficiency rate is much higher 
if the attacker starts their VMs using the staggered approach described above. We use 
this set of results as the input to our game model. 
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(a) Starting VM(A,t) VMs at once 

 

(b) Starting VM(A,t) VMs in a staggered way 

Fig. 3. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Most VM policy. Fig. 3(a): starting all VM(A,t) at once. Fig. 3(b): starting 
VM(A,t) in a staggered way (in batches of S). 

Random Allocation Policy 
The attack efficiency under the Random policy is similar to that of Least VM. It stays 
at almost the same value regardless of the lag and VM(A,t).  

Round Robin Allocation Policy 
Under the Round Robin policy, the servers are selected sequentially. As a result, the 
attacker can only achieve a high efficiency rate if the time when they launch their 
VMs happens to be close to the time when the target server is chosen. As we can see 
from Fig. 4(b), there are only a few spikes along the Lag-axis.  

However, this is not difficult to implement: because the servers are selected in a 
fixed order, the attacker can keep starting one VM every a few minutes, and tracking 
the chosen servers. When they find the target server will be selected again, they can 
then start their own VMs.  
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(a) Random 

 

(b) Round Robin 

Fig. 4. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Random and Round Robin VM allocation policies 

In other words, due to its deterministic behaviour, the Round Robin policy is the 
least secure. Therefore, in our game model, we set the attack efficiency under the 
Round Robin policy to 100%. 

4.3 Coverage Rate under Different VM Allocation Policies 

Under the three stochastic policies, the general trend of the coverage rate is similar: it 
increases almost linearly with VM(A,t), and the lag has little impact after it reaches 
10-20 minutes. The only difference is that when the lag is small, the coverage rate 
under the Most VM policy is much higher than under the Least VM policy. 

As for the Round Robin policy, the situation is similar to that of the attack effi-
ciency, where the attacker can achieve a high rate periodically. Hence, we also set the 
coverage to 100% for the Round Robin policy in our game model. 
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(a) Least VM 

 
(b) Most VM 

 
(c) Random 

 
(d) Round Robin 

Fig. 5. The impact of lag and the number of VMs started by the attacker (VM(A,t)) on  the 
coverage rate under the four VM allocation policies 
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4.4 Power Consumption under Different VM Allocation Policies 

When comparing the power consumption under the four policies, we ignore the influ-
ence of VM(A,t), because it only contributes a tiny portion of all the VMs in the sys-
tem. Fig. 6(a) shows the normalised results, with the consumption under the Least 
VM policy set to 1. We can see that except for the Most VM policy where the value is 
around 0.5, the power consumption of other policies are essentially the same. 
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            (a) Power consumption                          (b) Workload balance 

Fig. 6. Normalised power consumption and workload balance under the four VM allocation 
policies 

4.5 Workload Balance under Different VM Allocation Policies 

We count the number of times that each server is selected during one experiment, and 
then calculate the standard deviation (Std) to quantify the workload balance under the 
four policies. Finally, the function f(Std) = e-Std/10 is applied to normalise the standard 
deviation (we acknowledge that there are many other ways for normalisation, and we 
choose this function as a starting point because it generally reflects the degree of bal-
ance under the four policies). As can be seen from Fig. 6(b), the Round Robin policy 
achieves the best workload balance, while the Most VM policy performs the worst. 

4.6 Other Criteria 

When comparing the four VM allocation policies, we also considered SLA (service 
level agreement) related criteria. Here, we use the definition of a SLA violation in 
[30]: “SLA violation occurs when a VM cannot get amount of MIPS that are re-
quested”. The three SLA related criteria below are measured in our experiment: SLA 
violation time per host, overall SLA violation, and average SLA violation. Our results 
show that there is no major difference in terms of these criteria between the four  
policies. Therefore, they are not included in our game model.  
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Table 3. Definitions of SLA related criteria 

Name Definition 

SLA violation time per host (%) ∑ SLA violation time of each host / ∑ Active time of each host 

Overall SLA violation (%) (∑ Requested MIPS - ∑ Allocated MIPS) / ∑ Requested MIPS 

Average SLA violation (%) 
Only consider the SLA violation incidents, (∑ Requested MIPS - 

∑ Allocated MIPS) / ∑ Requested MIPS 

4.7 Numerical Solutions and Discussion 

In the previous subsections, we have presented the attack efficiency, coverage, power 
consumption and workload balance under the four VM allocation policies. These are 
used to build the game matrices for the attacker and the defender. In this subsection, 
we compute the numerical solution of the game using Gambit [31], a tool for con-
structing and analysing finite, non-cooperative games, and interpret the results. 

Zero-Sum Game 
We begin with the simplest scenario where 1Dw = 2Dw  = 0, which becomes a zero-
sum game. We consider the following two situations: (1) wA = 1, UA = Effi-
ciency(VM(A,t),Policy), UD = −UA; (2) wA = 0, UA = Coverage(VM(A,t),Policy),  
UD = −UA.   

As can be seen from the following figures, both the solutions are mixed strategies. 
For the attacker, the solution is straightforward: they should start a small number of 
VMs each time if they aim to maximise the efficiency, but if the goal is to co-locate 
with as many target VMs as possible, they should start a large number of VMs at a 
time. For the defender, the result indicates that instead of deploying a single VM allo-
cation policy, it is better to use a set of policies, and when a VM request arrives, each 
policy will be selected with a pre-set probability. 

The following points should be noted. (1) As stated in our previous analysis, the 
Round Robin policy is the least secure, and is selected in neither case. (2) Even 
though, generally speaking, the attack efficiency under the Most VM policy is the 
lowest (especially when the lag is larger than five minutes), the peak value in this case 
is higher than that under the other two policies. This is the reason why the percentage 
of choosing Most VM is the smallest, if the defender intends to minimise the attack 
efficiency. However, if we only consider the situation where VM(A,t) > 1 and lag > 1 
minute (which is closer to the real case), then the Most VM policy contributes a much 
larger percentage of the solution. (3) Under the Least VM policy, if the attacker starts 
multiple VMs at the same time, it is very likely that all of these VMs will be allocated 
to different servers. In contrast, under the other two policies there is a greater chance 
that some of these VMs will be located on the same server, which has a negative in-
fluence on the coverage rate. As a result, if the defender aims to minimise the  
coverage rate, they should only use the Most VM and Random policies.  
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               (a) wA = 1, 1 ≤ VM(A,t), lag ≤ 100                 (b) wA = 1, 5 ≤ VM(A,t), lag ≤ 100  
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            (c) wA = 0, 1 ≤ VM(A,t), lag ≤ 100  

Fig. 7. Nash equilibrium in zero-sum game. Fig. 7(a): in the case where wA = 1, 1 ≤ VM(A,t), 
lag ≤ 100, the best strategy for the attacker is to start 1 VM when the lag is 50 minutes,  
i.e., VM(A,50)=1, with a probability of 10%, start 1 VM when the lag is 100 minutes, i.e., 
VM(A,100)=1, with a probability of 16%, and start 20 VMs when the lag is 20 minutes, i.e., 
VM(A,20)=20, with a probability of 74%. The best strategy for the attacker is to choose the 
Least VM, Most VM, and Random policies with a probability of 59%, 5%, 36%, respectively. 
The definitions of the symbols in the other two figures are the same. 

We re-ran the experiment with the following two sets of configurations: (1) for the 
attacker, VM(A,t) = 20, and the lag ranges from 5 to 100 minutes, while the defender 
uses the second mixed policy (Least VM, 24%, Most VM, 25%, and Random, 51%); 
(2) for the attacker, VM(A,t) = 100, 1 ≤ t ≤ 100, and the defender uses the third mixed 
policy (Most VM, 19%, and Random, 81%). The result shows that in overall terms, 
the average efficiency/coverage rate is the lowest under the mixed policies. 
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(a) Mixed policy 2: minimising the efficiency     (b) Mixed policy 3: minimising the coverage 

Fig. 8. Comparison between the mixed policies and the stochastic policies in terms of the  
efficiency/coverage rate 
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Non-zero-sum Game 
Different policies have their own advantages/disadvantages. For instance, the power 
consumption under the Most VM policy is the lowest, while the other policies achieve 
better workload balance. In practice, the defender can adjust the weights of security, 
power consumption, and workload balance, according to their different requirements. 

Here we consider the situation where the three aspects are considered as equally 
important, i.e., 1Dw = 2Dw = 1/3. From Fig. 9, we can see that the results are similar to 
those shown in Fig. 7, which further demonstrates that a mixed policy may outper-
form any single policy.  
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Fig. 9. Nash equilibrium in non-zero-sum game (all the definitions of symbols are the same as 
those in Fig. 7) 

Similarly, we re-ran the experiment with the following configurations to compare 
the mixed policy with the four pure policies: (1) for the attacker, VM(A,t) = 1, and 1 ≤ 
t ≤ 100, while the defender uses the first mixed policy (Least VM, 59%, Most VM, 
5%, and Random, 36%); (2) for the attacker, VM(A,t) = 90, 1 ≤ t ≤ 100, and the de-
fender uses the second mixed policy (Least VM, 21%, and Most VM, 79%). 

However, in this case, the defender cannot simply mix the policies with the speci-
fied percentages. Otherwise, on the one hand, an excessive number of servers will be 
turned on because the mixed policy contains Least VM and Random policies. On the 
other hand, the workload will not be balanced due to the Most VM policy. In other 
words, the mixed policy integrates the disadvantages instead of the advantages of 
each policy. 

Therefore, we make the following changes and the allocation process comprises 
two rounds. In the first round, only the servers that are already being used and have 
sufficient remaining resources will be considered. If such a kind of server does not 
exist, then in the second round all servers are taken into consideration. In both rounds, 
each policy is still selected with the specified probability. As we can see from Fig. 10, 
the defender’s utility is highest under mixed policies in both cases. 
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              (a) First mixed policy                         (b) Second mixed policy 

Fig. 10. Comparison between the mixed policies and the pure policies in terms of the de-
fender’s utility. Fig. 10(a): first mixed policy (Least VM, 59%, Most VM, 5%, and Random, 
36%). Fig 10(b): second mixed policy (Least VM, 21%, and Most VM, 79%). 

5 Conclusion and Future Work 

In this paper, we introduce a game theoretic approach to compare four basic VM allo-
cation policies for cloud computing systems, and propose a practical method for miti-
gating the threat of the co-resident attack. Our results show that in order to minimise 
the efficiency and coverage rates for the attacker, the cloud provider should use a 
policy pool, such that for each VM request, a policy is chosen at random from the 
pool according to their predefined probabilities. 

In the future, we intend to test our findings in larger scale systems. In addition, we 
will also study what the differences are between the behaviours of the attacker and 
normal users under the mixed policy, and how to identify them. 
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