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Abstract. We consider a strategic game in which a defender wants to
maintain control over a resource that is subject to both targeted and non-
targeted covert attacks. Because the attacks are covert, the defender must
choose to secure the resource in real time without knowing who controls
it. Each move by the defender to secure the resource has a one-time cost
and these defending moves are not covert, so that a targeted attacker may
time her attacks based on the defender’s moves. The time between when
a targeted attack starts and when it succeeds is given by an exponentially
distributed random variable with a known rate. Non-targeted attackers
are modeled together as a single attacker whose attacks arrive following a
Poisson process. We find that in this regime, the optimal moving strategy
for the defender is a periodic strategy, so that the time intervals between
consecutive moves are constant.

Keywords: Game Theory, Computer Security, Games of Timing, Covert
Compromise, Targeted Attacks, Non-Targeted Attacks.

1 Introduction

A growing trend in computer security is the prevalence of continuous covert at-
tacks on networked resources. In contrast to one-time attacks with immediate
benefit, such as initiating a wire transfer from a compromised bank account, a
covert attack seeks to maintain control of a resource while keeping the compro-
mise a secret. This type of attack is ubiquitous in the formation of botnets, as
individual computer owners rarely know that their computer is a botnet member.
Routers that are used to conduct man-in-the-middle attacks are also typically
covertly compromised; and when web servers are used to compromise client’s
computers, the initial infection is typically covert.

In light of the prevalence of covert attacks, it behooves the user to consider
what mitigation strategies can be taken to minimize the losses resulting from
such attacks. Mitigation strategies include resetting passwords, changing private
keys, re-installing servers, or re-instantiating virtual servers. Such strategies have
notable characteristics in that they are often effective at securing the resource,
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but they reveal little about past attacks or compromises. For example, if a server
is re-installed, knowledge of when the server was compromised may be lost. Sim-
ilarly, resetting a password does not reveal any information about the integrity
of the previous password.

A second dimension of the attack space is the extent to which an attack is
targeted or customized for a particular user [4,2]. DoS attacks and incidents
of cyber-espionage are examples of targeted attacks. Typical examples of non-
targeted attacks include spam and phishing. The dichotomy between targeted
and non-targeted attacks is explained by Cormac Herley as a consequence of eco-
nomic considerations of the attacker [4]. In that framework, an outsized number
of users are both susceptible to and subject to scalable attacks which compro-
mise their computer systems, but most are never targeted simply because they
cannot be distinguished from low value targets. See Table 1 for a comparison
between targeted and non-targeted attacks.

Table 1. Comparison of Targeted and Non-Targeted Attacks

Targeted Non-Targeted

Number of attackers low high

Number of targets low high

Effort required for each attack high low

Success probability of each attack high low

Whether or not an attack is targeted is also important for the defender, be-
cause targeted and non-targeted attacks do different types of damage. For exam-
ple, targeted attackers might read all of an organization’s secret e-mails, causing
economic damages of one type, while a non-targeted attacker might use the same
compromised machine to send out spam, causing reputation loss, or machine
blacklisting, or another separate type of damage. This dichotomy suggests that
damages resulting from targeted and non-targeted attacks should be modeled
additively.

The presence of both targeted and non-targeted covert attacks presents an
interesting dilemma for a common user to choose a mitigation strategy against
covert attacks. Strategies which are optimal against non-targeted covert attacks
may not be the best choice against targeted attacks. At the same time, mitigation
strategies against targeted attacks may not be economically cost-effective against
only non-targeted attackers.

This paper fills the research gap induced by the aforementioned dichotomy, by
considering the strategy spaces of users who may be subject to both targeted and
non-targeted attacks. In our game, a defender must vie for a contested resource
that is subject to the risk of compromise from both targeted and non-targeted
covert attacks. We explore the strategy space to find good mitigation strategies
against this combination.
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2 Related Work

2.1 Games of Timing

Cybersecurity economics has been concerned with how to reduce the impact of
the actions of financially or politically motivated adversaries who threaten com-
puting resources and their users. Previous research in this domain has primarily
focused on the choice between different canonical actions to prevent, deter or
otherwise mitigate harm (e.g., [3,5,6]).

However, being successful in dynamic environments shifts the focus from se-
lecting the most suitable option from a pool of alternatives to a decision problem
of when to act to get an advantage over an opponent. For example, in tactical
security scenarios it is important to jump to action at the right time to avoid
a loss of money or even human life (see, for example, timing of interventions in
international conflicts). To understand these scenarios, so-called games of timing
have been studied with the tools of non-cooperative game theory since the cold
war era (see, for example, [11,14]). For a detailed survey and summary of the
theoretical contributions in this area, we refer the interested reader to [10].

2.2 FlipIt: Modeling Targeted Attacks

In response to recent high-profile stealthy attacks, researchers at RSA proposed
the FlipItmodel [13] to study such scenarios. In the originalmodel, there are two
players, a defender and an attacker, and a resource that they are both interested
in maintaining control of. For each unit of time that a player is controlling the
resource, she gains a fixed amount of benefit. Conversely, when a player is not in
control, she gains no benefit from the resource. At any time instance, either player
may “flip” the resource to gain control of it for some cost. Flipping while in control
does not give the opponent control of the resource, therefore the players have to
be careful not to make too many unnecessary flips to keep their costs low. This
game can model, for example, the case of a password-protected account. Benefit
is derived from using the account, and flipping the resource is analogous to the
defender resetting the password or the attacker compromising it.

In the original FlipIt paper, dominant strategies and equilibria are studied
for some simple cases [13]. Other researchers have worked on extensions [9,7].
For example, Laszka et al. extended the FlipIt game to the case of multiple
resources. In addition, the usefulness of the FlipIt game has been investigated
for various application scenarios [1,13].

In comparison to previous work, the FlipIt game is of interest because it com-
bines a number of important decision-making factors [8]. First, it covers aspects
of uncertainty about the game status by assuming that moves by the players
are “stealthy”. Second, the game is played in continuous time and asynchronous
fashion. Hence, ex-post the game appears to be divided in multiple periods of
uneven length. Similarly, the number of actions that can be taken by the players
is quasi-unlimited (if agents have an unrestricted budget). Third, action have a
cost. That is, players do not only value the time in which they have possession of
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the board, but they also have to balance these benefits with the cost of gaining
possession of the board.

The original FlipIt game has also been studied in an experiment with human
subjects [8]. In that paper, the experimenters matched human participants with
computerized opponents in several fast-paced rounds of the FlipIt game. The
results indicate that participant performance improves over time; but that it is
dependent on age, gender, and a number of individual difference variables. The
researchers also show that human participants generally perform better when
they have more information about the strategy of the computerized player; i.e.,
they are able to make use of such game-relevant information. This experimental
work was extended to also include different visual presentation modalities for
the available feedback during the experiment [12].

3 Model Definition

We model the covert compromise scenario as a non-zero-sum game. The player
who is the rightful owner of the resource is called the defender, while the other
players are called the attackers. The game starts at time t = 0 with the defender
in control of the resource, and it is played indefinitely as t → ∞. We assume
that time is continuous.

We let D, A, and N denote the defender, the targeted attacker, and the non-
targeted attackers respectively. At any time instance, player i may make a move,
which costs her Ci. When the defender makes a move, the resource immediately
becomes uncompromised for every attacker. When the targeted attacker makes
a move, she starts her attack, which takes some random amount of time. If
the defender makes a move while an attack is in progress, the attack fails. We
assume that the time required by the attack follows an exponential distribution.
Formally, the probability that the attack has successfully finished in a amount
of time is 1 − e−λAa, where λA is the rate parameter of the targeted attacker’s
attack time.

The attackers’ moves are stealthy; i.e., the defender does not know when the
resource got compromised or if it is compromised at all. On the other hand, the
defender’s moves are non-stealthy. In other words, the attackers learn immedi-
ately when the defender has made a move.

The cost rate for player i up to time t, denoted by ci(t), is the number of
moves per unit of time, made by player i up to time t, multiplied by the cost
per move Ci for player i.

For attacker i ∈ {A,N}, the benefit rate bi(t) up to time t is the fraction of
time up to t that the resource has been compromised by i, multiplied by Bi.
Note that if multiple attackers have compromised the resource, they all receive
benefit until the defender’s next move. For the defender D, the benefit rate bD(t)
up to time t is defined to be −

∑
i∈{A,N} bi(t) (i.e., what has been lost to the

attackers). The relation between the defender’s and attackers’ benefits implies
that the game would be zero-sum if we only considered the players’ benefits.
Because our players’ payoffs also consider move costs, our game is not zero-sum.
Player i’s payoff is defined as
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lim inf
t→∞ bi(t)− ci(t) . (1)

Table 2. List of Symbols

CD move cost for the defender

CA move cost for the targeted attacker

BA benefit received per unit of time for the targeted attacker

BN benefit received per unit of time for the non-targeted attackers

λA rate of the targeted attacker’s attack time

λN rate of the non-targeted attacks’ arrival

3.1 Types of Strategies for the Defender and the Targeted Attacker

Adaptive Strategies for Attackers. Let T (n) = {T0, T1, . . . , Tn} denote the
move times of the defender up to her nth move (or in the case of T0 = 0, the start
of the game). The attacker uses an adaptive strategy if she waits for W (T (n))
time until making a move after the defender’s nth move (or after the start of
the game), where W is a non-deterministic function. If the defender makes her
n + 1st move before the chosen wait time is up, the attacker chooses a new
wait time W (T (n + 1)), which also considers the new information that is the
defender’s n + 1st move time. This class is a simple representation of all the
rational strategies available to an attacker, since the function W depends on all
the information that the attacker has, and we don’t have any constraints on W .

Renewal Strategies. Player i uses a renewal strategy if the time intervals be-
tween consecutive moves are identically distributed independent random vari-
ables, whose distribution is given by the cumulative function FRi . Renewal
strategies are well-motivated by the fact that the defender is playing blindly;
thus, she has the same information available after each move. So it makes sense
to use a strategy which always chooses the time until her next flip according to
the same distribution Note that every renewal strategy is a special case of an
adaptive strategy.

Periodic Strategies. Player i uses a periodic strategy if the time intervals
between her consecutive moves are identical. This period is denoted by δi. Every
periodic strategy is a special case of a renewal strategy.

3.2 Non-targeted Attacks

Suppose that there areN non-targeted attackers. In practice,N is very large, but
the expected number of successful compromises is finite. AsN goes to infinity, the
probability that a given non-targeted attacker targets the defender approaches
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zero. Since the non-targeted attackers operate independently, successful non-
targeted attacks arrive following a Poisson process. Furthermore, as the economic
decisions of the non-targeted attackers depend on a very large pool of possible
targets, the defender’s effect on the decisions is negligible. Thus, the non-targeted
attackers’ strategies (that is, the attack rate) can be considered exogenously
given. We let λN denote the expected number of arrivals that occur per unit of
time; and we model all the non-targeted attackers together as a single attacker
whose benefit per unit of time is BN .

3.3 Comparison to FlipIt

Even though our game-theoretic model is in many ways similar to FlipIt, it
differs in three key assumptions. First, we assume that the defender’s moves are
not stealthy. The motivation for this is that an attacker must know whether she is
in control of a resource if she receives benefits from it continuously. For example,
if the attacker uses the compromised password of an account to regularly spy
on its e-mails, she will learn of a password reset immediately the next time she
tries to log in. Second, we assume that the targeted attacker’s moves are not
instantaneous, but take some time. The motivation for this is that an attack
requires some time and effort to be carried out in practice. Furthermore, the
time required for a successful attack may vary, which we model using a random
variable for the attack time. Third, we assume that the defender faces multiple
attackers, not only a single one.

Moreover, to the authors’ best knowledge, papers published on FlipIt so far
give analytical results only on a very restricted set of strategies. In contrast, we
completely describe our game’s equilibria and give optimal defender strategies
based on very mild assumptions, which effectively do not limit the power of
players (see the introduction of Section 4).

4 Analytical Results

In this section, we give analytical results on the game. We first consider the
special case of a targeted attacker only (i.e., λN = 0), and then the general case
of both targeted and non-targeted attackers.

We start with a discussion on the players’ strategies. First, recall that the
defender has to play blindly, which means that she has the same information
available after each one of her moves. Consequently, it makes sense for her to
choose the time until her next flip according to the same distribution each time.
In other words, a rational defender can use a renewal strategy.

Now, if the defender uses a renewal strategy, the time of her next move depends
only on the time elapsed since her last move Tn, and the times of previous moves
(including Tn) are irrelevant to the future of the game. Therefore, it is reasonable
to assume that the attacker’s response strategy to a renewal strategy also does
not depend on T0, T1, . . . , Tn. For the remainder of the paper, when the defender
plays a renewal strategy, the attacker uses a fixed probability distribution – given
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by the density function fW – over her wait times for when to begin her attack.
Note that it is clear that there always exists a best response strategy for the
attacker of this form against a renewal strategy.

Since the attacker always waits an amount of time that is chosen according
to a fixed probability distribution after the defender’s each move, the amount of
time until the resource would be successfully compromised after the defender’s
move also follows a fixed probability distribution. Let S be the random variable
measuring the time after the defender has moved until the attacker’s attack
would finish. The probability density function fS of S can be computed as

fS(s) =

∫ s

w=0

fW (w)

∫ (s−w)

a=0

λAe
−λAa da dw . (2)

We let FS denote the cumulative distribution function of S. Since λAe
−λAa > 0

for every a ∈ R≥0, if there exists an s for which FS(s) > 0, then FS is strictly
increasing on [s,∞).

4.1 Nash Equilibrium for Targeted Attacker and Renewal Defender

Defender’s Best Response. We begin our analysis with finding the defender’s
best response strategy.

Lemma 1. Suppose that the attacker uses an adaptive strategy with a fixed prob-
ability distribution for choosing the time to wait until starting the attack. Then,

– not moving is the only best response if

CD

BA
= lFS(l)−

∫ l

s=0

FS(s) ds (3)

has no solution for l;

– a periodic strategy whose period is the unique solution of Equation (3) is the
only best response otherwise.

Even though we cannot express the solution of Equation (3) in closed form, it
can be easily found using numerical methods, as the right hand side is continuous
and increasing.1 Note that the equations presented in the subsequent lemmas
and theorems of this paper can also be solved using numerical methods.

Proof. When playing a renewal strategy, the defender randomly selects the in-
tervals between her consecutive moves according to the distribution generating
the renewal strategy. In a best response, her strategy and, hence, every interval
length in the support of the strategy’s distribution has to minimize the defender’s

1 We show that the right hand side is continuous and increasing in the proof of the
lemma.
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loss per unit of time. The defender’s expected loss per unit of time for an interval
of length l is

1

l

(

BA

∫ l

s=0

fS(s)(l − s) ds+ CD

)

(4)

=
1

l

(

BA

(

[FS(s)(l − s)]
l
s=0 −

∫ l

s=0

FS(s) · (−1) ds

)

+ CD

)

(5)

=
1

l

(

BA

(

0 +

∫ l

s=0

FS(s) ds

)

+ CD

)

(6)

=
1

l

(

BA

∫ l

s=0

FS(s) ds+ CD

)

. (7)

To find the minimizing interval lengths (if there exists any), we take the
derivative of (7) and solve it for equality with 0 as follows:

0 =
d

dl

[
1

l

(

BA

∫ l

s=0

FS(s) ds+ CD

)]

(8)

0 =− 1

l2

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+
1

l
BAFS(l) (9)

∫ l

s=0

FS(s) ds+
CD

BA
=lFS(l) (10)

CD

BA
=lFS(l)−

∫ l

s=0

FS(s) ds . (11)

Suppose that l∗ is the least number for which this equation is satisfied. Then
l∗ > 0, and also F (l∗) > 0. This in turn implies that FS is strictly increasing
on [l∗,∞); and thus also the right hand side of the above equation is strictly
increasing as a function of l on [l∗,∞). Therefore, if there is any solution to the
above equation, then it is unique. Furthermore, this value of l is a minimizing
value for the expected loss per unit of time as the second derivative at this
minimizing l∗ is greater than zero:

d

dl

[

− 1

l2

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+
1

l
BAFS(l)

]

(12)

=
2

l3

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+

(

− 1

l2

)

BAFS(l)

+

(

− 1

l2

)

BAFS(l) +
1

l
BAfS(l) (13)

=
2

l3

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+

(

− 2

l2

)

BAFS(l) +
1

l
BAfS(l) . (14)
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We care about the value of this expression when the first derivative is zero.
Using this constraint, we obtain

2

l3

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+

(

− 2

l2

)

BAFS(l) +
1

l
BAfS(l) (15)

=− 2

l

(

− 1

l2

(

BA

∫ l

s=0

FS(s) ds+ CD

)

+
1

l
BAFS(l)

)

+
1

l
BAfS(l) (16)

=− 2

l
(0) +

1

l
BAfS(l) > 0 . (17)

Consequently, the only best response is the periodic strategy with the minimizing
l∗ as the period.

On the other hand, if Equation (11) is not satisfiable for l, then the only best
response for the defender is to never move. When l → ∞, the defender’s expected
loss per unit of time approaches BA, which is equal to her loss for never moving.
When l → 0, her expected loss per unit of time goes to infinity due to the ever
increasing costs. Consequently, if the expected loss per unit of time does not
have a minimizing l, then it is always greater than BA. ��

Attacker’s Best Response. We continue our analysis with finding the at-
tacker’s best response strategy.

Lemma 2. Against a defender who uses a periodic strategy with period δD,

– never attacking is the only best response if

CA

BA
>

e−δDλA − 1

λA
+ δD ; (18)

– attacking immediately after the defender moved is the only best response if

CA

BA
<

e−δDλA − 1

λA
+ δD ; (19)

– both not attacking and attacking immediately are best responses otherwise.

The lemma shows that the attacker should either attack immediately or not
attack at all, but she should never wait to attack. Consequently, if the attacker
uses her best response strategy, the defender can determine the optimal period
of her strategy solely based on the distribution of A, which is an exponential
distribution with parameter λA. This observation will be of key importance for
characterizing the game’s equilibria.

Proof. First, assume that the attacker does attack. Given that the attacker waits
w < δD time before making her move, the expected amount of time she has the
resource compromised until the defender’s next move is

∫ δD−w

a=0

λAe
−λAa(δD − w − a)da . (20)
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It is easy to see that the maximum of this equation is attained for w = 0.
Therefore, if the attacker does attack, she attacks immediately. The expected
amount of time she has the resource compromised until the defender’s next
move is

∫ δD

a=0

λAe
−λAa(δD − a)da (21)

=
[(
1− e−λAa

)
(δD − a)

]δD
a=0

−
∫ δD

a=0

(
1− e−λAa

)
(−1)da (22)

=
(
1− e−λAδD

)
(δD − δD)
︸ ︷︷ ︸

0

−
(
1− e−λA0

)

︸ ︷︷ ︸
0

(δD − 0) +

∫ δD

a=0

1− e−λAa da (23)

=

∫ δD

a=0

1− e−λAa da = δD −
[

−e−λAa

λA

]δD

a=0

=
e−δDλA − 1

λA
+ δD . (24)

Therefore, if the attacker does attack, her asymptotic benefit rate is

BA

e−δDλA−1
λA

+ δD

δD
, (25)

and her payoff is

BA

e−δDλA−1
λA

+ δD

δD
− CA

δD
. (26)

Thus, when the above value is less than or equal to zero, never attacking is a
best-response strategy; when the above value is greater than or equal to zero,
always attacking immediately is a best-response strategy. When the above value
is equal to zero, the attacker can decide whether to attack immediately or to not
attack at all after each move of the defender. ��

Equilibrium. Based on the above lemmas, we can describe all the equilibria of
the game (if there are any) as follows.

Theorem 1. Suppose that the defender uses a renewal strategy and the attacker
uses an adaptive strategy. Then the game’s equilibria can be described as follows.

1. If CD

BA
= −le−λAl + 1−e−λAl

λA
does not have a solution for l, then there is a

unique equilibrium in which the defender does not move and in which the
attacker attacks exactly once at the beginning of the game.

2. If CD

BA
= −le−λAl + 1−e−λAl

λA
does have a solution δD for l, then

(a) if CA

BA
≤ e−δDλA−1

λA
+ δD, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δD, and the attacker
attacks immediately after the defender’s each move;

(b) if CA

BA
> e−δDλA−1

λA
+ δD, then there is no equilibrium.
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In the first case, the attacker is at an overwhelming advantage, as the relative
cost of defending the resource is prohibitively high. Consequently, the defender
simply “gives up” the game since any effort to gain control of the resource is not
profitable for her, and the attacker will have control of the resource all the time.
In the second case, no player is at an overwhelming advantage. Both the defender
and the attacker are actively trying to gain control of the resource, and both
succeed from time to time. In the third case, the defender is at an overwhelming
advantage. However, this does not lead to an equilibrium. If the defender moves
with a sufficiently high rate, she makes moving unprofitable for the attacker. But
if the attacker decides not to move, the defender is also better off not moving,
as this decreases her cost. However, once the defender stops moving, it is again
profitable for the attacker to move, which in turn triggers the defender to start
moving.

Proof. First, we have from Lemma 1 that in any equilibrium, the defender either
never moves or uses a periodic strategy. If the defender never moves, then the
best strategy for the attacker is to attack immediately after the game starts.
Now, if the defender moves using a periodic strategy, we have from Lemma 2
that the attacker either never attacks or attacks immediately. This leaves us
with two strategies for defender and two strategies for attacker from which all
equilibria must be composed.

Second, we show that there is no equilibrium in which the attacker never
attacks. To see this, suppose that the attacker never attacks. Then the defender’s
best response is to never move, because this preserves control of the resource
while minimizing the defender’s cost. But if the defender never moves, then it
is advantageous for the attacker to compromise the resource immediately after
the start of the game. So this situation is not an equilibrium.

Next, we analyze the situation where a defender never moves. In this circum-
stance, the attacker attacks once and controls the resource for the duration of
the game. From Lemma 1, we see that this is indeed a unique equilibrium if

CD

BA
= lFS(l)−

∫ l

s=0

FS(s) ds (27)

= l
(
1− e−λAl

)
−
∫ l

s=0

1− e−λAs ds (28)

= l − le−λAl − e−λAl − 1

λA
− l (29)

= −le−λAl +
1− e−λAl

λA
(30)

does not have a solution in R≥0 for l.
Finally, we consider the scenario where the defender plays a periodic strategy

with period δD. In this case, Lemma 2 gives conditions for the best response of the
attacker. Either the attacker never moves or the attacker attacks immediately.
Since we know that there is no equilibrium in which an attacker never moves,
we concern ourselves in the theorem only with the circumstances under which
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the attacker has a reason to attack immediately. From Lemma 2, the condition

for this is CA

BA
≤ e−δDλA−1

λA
+ δD. ��

4.2 Equilibrium for Both Targeted and Non-targeted Attackers

Defender’s Best Response. Again, we begin our analysis by finding the de-
fender’s best response strategy.

Lemma 3. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeted attacker uses an adaptive strategy with a
fixed wait time distribution given by the cumulative function FS . Then,

– not moving is the only best response if

CD = BA

(

lFS(l)−
∫ l

s=0

FS(s) ds

)

+ BN

(

−le−λN l +
1− e−λN l

λN

)

(31)

has no solution for l;
– a periodic strategy whose period is the solution to Equation (31) is the only

best response otherwise.

Proof. The outline of the proof is similar to that of Lemma 1.
The defender’s expected loss per unit of time for an interval of length l is

1

l

(

BA

∫ l

s=0

fS(s)(l − s) ds+BN

∫ l

a=0

(l − a)λNe−λNada+ CD

)

(32)

=
1

l

(

BA

(

[FS(s)(l − s)]
l
s=0

∫ l

s=0

FS(s) ds

)

+BN

(
e−λN l − 1

λN
+ l

)

+ CD

)

(33)

=
1

l

(

BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)

+ CD

)

. (34)

To find the minimizing interval lengths (if there exists any), we take the
derivative of (34) and solve it for equality with 0 as follows:

0 =
d

dl

[
1

l

(

BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)

+ CD

)]

(35)

0 =− 1

l2

(

BA

(∫ l

s=0

FS(s) ds− lFS(l)

)

+BN
e−λN l(λN l− eλN l + 1)

λN
+ CD

)

(36)

CD =BA

(

lFS(l)−
∫ l

s=0

FS(s) ds

)

+BN

(

−le−λN l +
1− e−λN l

λN

)

. (37)
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From the proof of Lemma 1, we have that the first term of the right hand side
is monotonically increasing. Furthermore, the second term is strictly increasing,
as its derivate is λN le−λN l > 0. Thus, the right hand side is strictly increasing,
which implies that if there is an l∗ for which the equality holds, it has to be
unique. Furthermore, this l∗ is a minimizing value as the second derivative is
greater than zero:

d

dl

[

− 1

l2

(

BA

(∫ l

s=0

FS(s) ds− lFS(l)

)

+BN
e−λN l(λN l− eλN l + 1)

λN
+ CD

)]

(38)

=
1

l3

(

BA

(

2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
eλN l(λ2

N l2 + 2λN l− 2eλN l + 2)

λN
+ 2CD

)

. (39)

We care about the value of this expression when the first derivative is zero.
Using this constraint, we obtain

1

l3

(

BA

(

2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
eλN l(λ2

N l2 + 2λN l − 2eλN l + 2)

λN
+ 2CD

)

(40)

= −2

l

(

BA

(∫ l

s=0

FS(s) ds− lFS(l)

)

+BN
e−λN l(λN l− eλN l + 1)

λN
+ CD

)

+
1

l

(

BAfS(l) +BNe−λN lλN

)

(41)

= −2

l

(
0
)
+

1

l

(
BAfS(l) +BNe−λN lλN

)
> 0 . (42)

Consequently, the only best response is the periodic strategy with the minimizing
l∗ as the period.

On the other hand, if Equation (11) is not satisfiable for l, then the only
best response for the defender is to never move. When l → ∞, the defender’s
expected loss per unit of time approaches BA + BN , which is equal to her loss
for never moving. When l → 0, her expected loss per unit of time goes to infinity
due to the ever increasing costs. Therefore, if there is no minimizing l, then the
expected loss per unit of time is always greater than BA +BN . ��

Equilibrium. Since the targeted attacker’s payoff and, consequently, best re-
sponse are not directly affected by the presence of non-targeted attackers, we
can use Lemma 2 and the above lemma to describe the equilibria of the game.
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Theorem 2. Suppose that the defender uses a renewal strategy, the targeted
attacker uses an adaptive strategy, and the non-targeted attacks arrive according
to a Poisson process with rate λN . Then the game’s equilibria can be described
as follows.

1. If CD = BA

(
−le−λAl + 1−e−λAl

λA

)
+BN

(
−le−λN l + 1−e−λNl

λN

)
does not have

a solution for l, then there is a unique equilibrium in which the defender does
not move and in which the attacker attacks exactly once at the beginning of
the game.

2. If CD = BA

(
−le−λAl + 1−e−λAl

λA

)
+ BN

(
−le−λN l + 1−e−λN l

λN

)
does have a

solution δD for l, then:

(a) If CA

BA
≤ e−δDλA−1

λA
+ δD, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δD, and the targeted
attacker moves immediately after the defender’s each move.

(b) If CA

BA
> e−δDλA−1

λA
+ δD, then

– if CD = BN

(
−le−λN l + 1−e−λN l

λN

)
has a solution δ′D for l, and

CA

BA
≥ e−δ′DλA−1

λA
+ δ′D, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δ′D and the targeted
attacker never moves;

– otherwise, there is no equilibrium.

By comparing the equation determining the defender’s strategy in the theorem
above to the equation in Theorem 1, we see that the parameter valuesBA and CD

for which there is a solution is larger in the theorem above. Thus, the defender is
more likely to move instead of giving it up when there is a threat of non-targeted
attacks.

Proof. Cases 1. and 2. (a) follow from Lemma 2 and Lemma 3 using the argument
as the proof of Theorem 1.

In Case 2. (b), there could be no equilibrium when the defender faced only a
targeted attacker (Theorem 1), since the defender had no incentives to move if
the targeted attacker did not move. However, when there are non-targeted at-
tacker present as well, the defender moving periodically and the targeted attacker
never moving can be an equilibrium. The necessary and sufficient conditions for
this are that moving periodically is a best response for the defender against
non-targeted attackers only (the existence of δ′D) and that never attacking is a
best-response for the targeted attacker against this period δ′D. ��

5 Numerical Illustrations

In this section, we present numerical results on our game.
First, in Figure 1, we study the effects of varying the value of the resource,

that is, the unit benefit BA received by the targeted attacker. Figure 1a shows
both players’ payoffs for various values of BA (the defender’s periods for the
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BA

0.25 31
0

8

(b) The defender’s optimal period as a
function of BA.

Fig. 1. The effects of varying the unit benefit BA received by the targeted attacker
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(a) The defender’s and the targeted at-
tacker’s payoffs (solid and dashed lines, re-
spectively) as a function of CD.
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(b) The defender’s optimal period as a
function of CD.

Fig. 2. The effects of varying the defender’s move cost CD

same setup are shown by Figure 1b). The figure shows that the defender’s payoff
is strictly decreasing, which is not surprising: the more valuable the resource is,
the higher the cost of security is for the defender. The attacker’s payoff, on the
other hand, starts growing linearly, but then suffers a sharp drop, and finally
converges to a finite positive value.

For lower values (BA < 1), the defender does not protect the resource, as it
is not valuable enough to defend. Accordingly, Figure 1b shows no period for
this region. In this case, the attacker’s payoff is equal to simply the value of the
resource. However, once the value of the resource reaches 1, the defender starts
protecting it. At this point, the attacker’s payoff drops as she no longer has
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the resource compromised all the time. For higher values, the defender balances
between losses due to compromise and moving costs, which means that the time
the resource is compromised decreases steadily as its value increases.

In Figure 2, we study the effects of varying the defender’s move cost CD.
Figure 2a shows both players’ payoffs for various values of CD (the defender’s
periods for the same setup are shown by Figure 2b). The figure shows that the
defender’s payoff is decreasing, while the attacker’s payoff is increasing, which
is again not surprising: the more costly it is to defend the resource, the greater
the attacker’s advantage is.

For lower costs, no player is at an overwhelming advantage, as both players try
to control the resource and succeed from time to time. As the cost increases, the
defender’s payoff steadily decreases, while the attacker’s payoff steadily increases.
For higher costs, the attacker is at an overwhelming advantage. In this case, the
defender never moves, while the attacker moves once. Hence, their payoffs are
−1 and 1, respectively.

6 Conclusions

Targeted and non-targeted attacks are born of different motivations and have
different types of consequences. In this paper, we modeled a regime in which
a defender must vie for a contested resource against both targeted and non-
targeted covert attacks.

As a principal result, we found that the most effective strategy against both
types of attacks (and also against their combination) is the periodic strategy.
This result can be surprising considering the simplicity of this strategy, but it also
serves as a theoretical justification of the periodic password and cryptographic
key renewal practices. Furthermore, this contradicts the lesson learned from the
FlipIt model [13], which suggests that a defender playing against an adaptive
attacker should use an unpredictable strategy.

We also found that a defender is more likely to stay in play and bear the costs
of periodic risk mitigation if she is threatened by non-targeted attacks. While
this result seems very intuitive, it is not obvious, as we also demonstrated that a
very high level of either threat type can force the defender to abandon all hope
and stop moving.

Our work can be extended in multiple directions. First, even though the expo-
nential attack time distribution can be well-motivated for a number of resources,
it would be worthwhile to extend our model to general distributions with some
mild assumptions only. Second, our model focuses on medium-profile targets that
are susceptible to both targeted and non-targeted attacks, but it could be easily
extended to a broader range by having a susceptibility probability for each type.
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