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Preface

Security is a multifaceted problem area that requires a careful appreciation of
many complexities regarding the underlying technical infrastructure as well as of
human, economic, and social factors. Securing resources involves decision mak-
ing on multiple levels of abstraction while considering variable planning horizons.
At the same time, the selection of security measures needs to account for lim-
ited resources available to both malicious attackers and administrators defending
networked systems. Various degrees of uncertainty and incomplete information
about the intentions and capabilities of miscreants further exacerbate the strug-
gle to select appropriate mechanisms and policies.

The GameSec conference aims to bring together researchers working on the
theoretical foundations and behavioral aspects of enhancing security capabil-
ities in a principled manner. The successful editions of the conference series
in the past three years took place in Berlin, Germany (2010), College Park,
Maryland, USA (2011), and Budapest, Hungary (2012). Contributions to these
meetings included analytic models based on game, information, communication,
optimization, decision, and control theories that were applied to diverse security
topics. In addition, researchers contributed papers that highlighted the connec-
tion between economic incentives and real-world security, reputation, trust, and
privacy problems. We believe that such contributions will play an important role
in defining and developing the science of cyber security.

The 4th International Conference on Decision and Game Theory for Security
(GameSec 2013) took place in Fort Worth, Texas, USA, on November 11–12,
2013. In response to the general call for papers, many papers were received
covering various economic aspects of security and privacy. The international
Program Committee evaluated the submitted papers based on their significance,
originality, technical quality, and exposition.

This edited volume of the conference proceedings contains five full papers,
three short papers, and seven invited papers that constituted the conference pro-
gram divided into several sessions held over two days. In addition, the conference
program had two exciting keynote talks delivered by Prof. Andrew Odlyzko (Uni-
versity of Minnesota) and another from Dr. Cliff Wang (Army Research Office).
We sincerely thank all the organizing members (listed here) for their hard work.

November 2013 Sajal K. Das
Cristina Nita-Rotaru
Murat Kantarcioglu
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On Communication over Gaussian

Sensor Networks with Adversaries:
Further Results

Emrah Akyol1, Kenneth Rose1, and Tamer Başar2

1 University of California, Santa Barbara
{eakyol,rose}@ece.ucsb.edu

2 University of Illinois, Urbana-Champaign
basar1@illinois.edu

Abstract. This paper presents new results on the game theoretical anal-
ysis of optimal communications strategies over a sensor network model.
Our model involves one single Gaussian source observed by many sen-
sors, subject to additive independent Gaussian observation noise. Sensors
communicate with the receiver over an additive Gaussian multiple access
channel. The aim of the receiver is to reconstruct the underlying source
with minimum mean squared error. The scenario of interest here is one
where some of the sensors act as adversary (jammer): they aim to maxi-
mize distortion. While our recent prior work solved the case where either
all or none of the sensors coordinate (use randomized strategies), the
focus of this work is the setting where only a subset of the transmitter
and/or jammer sensors can coordinate. We show that the solution cru-
cially depends on the ratio of the number of transmitter sensors that can
coordinate to the ones that cannot. If this ratio is larger than a fixed
threshold determined by the network settings (transmit and jamming
power, channel noise and sensor observation noise), then the problem is
a zero-sum game and admits a saddle point solution where transmitters
with coordination capabilities use randomized linear encoding while the
rest of the transmitter sensors is not used at all. Adversarial sensors that
can coordinate generate identical Gaussian noise while other adversaries
generate independent Gaussian noise. Otherwise (if that ratio is smaller
than the threshold), the problem becomes a Stackelberg game where the
leader (all transmitter sensors) uses fixed (non-randomized) linear encod-
ing while the follower (all adversarial sensors) uses fixed linear encoding
with the opposite sign.

Keywords: Game theory, sensor networks, source-channel coding,
coordination.

1 Introduction

Communications over sensors networks is an active research area offering a rich
set of problems of theoretical and practical significance, see e.g., [8] and the

S.K. Das, C. Nita-Rotaru, and M. Kantarcioglu (Eds.): GameSec 2013, LNCS 8252, pp. 1–9, 2013.
c© Springer International Publishing Switzerland 2013



2 E. Akyol, K. Rose, and T. Başar

references therein. Game theoretic considerations, i.e., the presence of adversary
and its impact on the design of optimal communication strategies have been
studied for a long time [9,10]. In this paper, we extend our prior work on the game
theoretic analysis of Gaussian sensor networks, on a particular model introduced
in [7], by utilizing the results on the game theoretic analysis of the Gaussian test
channel in [3–6].

In this paper, we consider the sensor network model illustrated in Figure 1 and
explained in detail in Section 2. The first M sensors (i.e., the transmitters) and
the receiver constitute Player 1 (minimizer) and the remaining K sensors (i.e.,
the adversaries) constitute Player 2 (maximizer). This zero-sum game does not
admit a saddle-point in pure strategies (fixed encoding functions), but admits
one in mixed strategies (randomized functions).

Our prior work considered two extremal settings [2], depending on the “co-
ordination” capabilities of the sensors. Coordination here refers to the ability of
using randomized encoders, i.e., all transmitter sensors and the receiver; and also
the adversaries among themselves agree on some (pseudo)random sequence, de-
noted as {γ} (for transmitters and the receiver) and {θ} ( for adversaries) in the
paper. The main message of our prior work is that “coordination” plays a pivotal
role in the analysis and the implementation of optimal strategies for both the
transmitter and adversarial sensors. Depending on the coordination capabilities
of the the transmitters and the adversaries, we considered two extreme settings.
In the first setting, we considered the more general case of mixed strategies and
present the saddle-point solution in Theorem 1. In the second setting, encoding
functions of transmitters are limited to the fixed mappings. This setting can be
viewed as a Stackelberg game where Player 1 is the leader, restricted to pure
strategies, and Player 2 is the follower, who observes Player 1’s choice of pure
strategies and plays accordingly.

In this paper, we consider a more practical setting where only a given subset of
the transmitters and also the adversarial sensors can coordinate. Our main result
is: if the number of transmitter sensors that can coordinate is large enough com-
pared to ones that cannot, then the problem becomes a zero-sum game with a
saddle point, where the coordination capable transmitters use randomized linear
strategy and incapable transmitters are not used at all. Discarding these trans-
mitter sensors is rather surprising but the gain from coordination compansates
for this loss. Coordination is also important for the adversarial sensors. When
transmitters coordinate, adversaries must also coordinate to generate identical
realizations of Gaussian jamming noise. In contrast with transmitters, the ad-
versarial sensors which cannot coordinate is of use: they generate independent
copies of the identically distributed Gaussian jamming noise. Otherwise, i.e.,
the number of coordinating transmitters are not large enough, transmitters use
deterministic (pure strategies) linear encoding, i.e., gT (X) = αTX and optimal
adversarial strategy is also uncoded communications in the opposite direction of
the transmitters, i.e., gA(X) = αAX for some αT , αA ∈ R+. For both settings,
uncoded communication is optimal and separate source and channel coding is
strictly suboptimal.
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This paper is organized as follows. In Section 2, we present the problem defini-
tion. We review prior work, particularly [2] in Section 3. In Section 4, we present
our main result and finally we provide conclusions in Section 5.

2 Problem Definition

In general, lowercase letters (e.g., x) denote scalars, boldface lowercase (e.g.,
x) vectors, uppercase (e.g., U,X) matrices and random variables, and boldface
uppercase (e.g., X) random vectors. E(·), P(·) and R denote the expectation and
probability operators, and the set of real numbers respectively. Bern(p) denotes
the Bernoulli random variable, taking values 1 with probability p and −1 with
1−p. Gaussian distribution with mean μ and covariance matrix R is denoted as
N (μ, R).

The sensor network model is illustrated in Figure 1. The underlying source
{S(i)} is a sequence of i.i.d. real valued Gaussian random variables with zero
mean and variance σ2

S . Sensor m ∈ [1 : M +K] observes a sequence {Um(i)}
defined as

Um(i) = S(i) +Wm(i), (1)

where {Wm(i)} is a sequence of i.i.d. Gaussian random variables with zero mean
and variance σ2

Wm
, independent of {S(i)}. Sensor m ∈ [1 : M +K] can apply

arbitrary Borel measurable function gNm : RN → R to the observation sequence
of length N , Um so as to generate sequence of channel inputs Xm(i) = gNm(Um)
under power constraint:

lim
N→∞

1

N

N∑
i=1

E{X2
m(i)} ≤ Pm (2)

The channel output is then given as

Y (i) = Z(i) +

M+K∑
j=1

Xj(i) (3)

where {Z(i)} is a sequence of i.i.d. Gaussian random variables of zero mean
and variance σ2

Z , independent of {S(i)} and {Wm(i)}. The receiver applies a
Borel measurable function hN : RN → R to the received sequence {Y (i)} to
minimize the cost, which is measured as mean squared error (MSE) between the
underlying source S and the estimate at the receiver Ŝ as

J(gNm(·), hN (·)) = lim
N→∞

1

N

N∑
i=1

E{(S(i)− Ŝ(i))2} (4)

for m = 1, 2, . . . ,M +K.
The transmitters gNm(·) for m ∈ [1 :M ] and the receiver hN (·) seek to minimize

the cost (4) while the adversaries aim to maximize (4) by properly choosing gNk (·)
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for k ∈ [M+1:M+K]. We focus on the symmetric sensor and symmetric source
where Pm = PT and σ2

Wm = σ2
WT , ∀m ∈ [1 :M ] and σ2

Wk
= σ2

WT
and Pk = PA,

∀k ∈ [M + 1:M+K].
A transmitter-receiver-adversarial policy (gN∗

m , gN∗
k , hN∗) constitutes a saddle-

point solution if it satisfies the pair of inequalities

J(gN∗
m , gNk , hN ) ≤ J(gN∗

m , gN∗
k , hN∗) ≤ J(gNm , gN∗

k , hN ) (5)

⊕

⊕
⊕

⊕

⊕
SENSOR M+1

SENSOR M+K

SENSOR M

SENSOR 1

...

...

S Ŝ

W1

WM

WM+1

WM+K

Z

...

...

U1

UM

UM+K

UM+1 XM+1

XM+K

XM

X1

Y
REC.

(TRANSMITTER)

(TRANSMITTER)

(ADVERSARY)

(ADVERSARY)

Fig. 1. The sensor network model

3 Review of Prior Work

3.1 Full Coordination

First scenario is concerned with the setting where ”all” transmitter sensors have
the ability to coordinate, i.e., all transmitters and the receiver can agree on
an i.i.d. sequence of random variables {γ(i)} generated, for example, by a side
channel, the output of which is, however, not available to the adversarial sen-
sors1. The ability of coordination allows transmitters and the receiver to agree
on randomized encoding mappings. Surprisingly, in this setting, the adversarial
sensors also need to coordinate, i.e., agree on an i.i.d. random sequence, denoted
as {θ(i)}, to generate the optimal jamming strategy. The saddle point solution
of this problem is presented in the following theorem.

1 An alternative practical method to coordinate is to generate the identical pseudo-
random numbers at each sensor, based on pre-determined seed.
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Theorem 1 ( [2]). The optimal encoding function for the transmitters is ran-
domized uncoded transmission:

Xm(i) = γ(i)αTUm(i), M ≥ m ≥ 1 (6)

where γ(i) is i.i.d. Bernoulli (12) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
). (7)

The optimal jamming function (for adversarial sensors) is to generate i.i.d.
Gaussian output

Xk(i) = θ(i), M +K ≥ k ≥ M + 1 (8)

where
θ(i) ∼ N (0, PA), (9)

and is independent of the adversarial sensor input Uk(i). The optimal receiver
is the Bayesian estimator of S given Y , i.e.,

h(Y (i)) =
MαTσ

2
S

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

Y (i). (10)

Cost at this saddle point as a function of the number of transmitter and adver-
sarial sensors is:

JC(M,K) = σ2
S

M2α2
Tσ

2
WT

+K2PA + σ2
Z

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

(11)

where αT =
√

PT

σ2
S+σ2

WT

.

The proof follows from verification of the fact that the mappings in this the-
orem satisfy the saddle point criteria given in (5).

Remark 1. Coordination is essential for adversarial sensors in the case of coor-
dinating transmitters and receiver, in the sense that lack of adversarial coordi-
nation strictly decreases the overall cost.

3.2 No Coordination

In this section, we focus on the problem, where the transmitters do not have the
ability to secretly agree on a random variable, i.e., “coordination” to generate
their transmission function Xk. In this case, our analysis yields that the optimal
transmitter strategy, which is almost surely unique, is uncoded transmission
with linear mappings, while the adversarial optimal strategy for the (jamming)
sensors is uncoded, linear mappings with the opposite sign of the transmitter
functions. The following theorem presents our mail results associated with “no
coordination” setting. A rather surprising observation is that the adversarial
coordination is useless for this setting, i.e., even if the adversarial sensors can
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cooperate, the optimal mappings and hence the resulting cost at the saddle
point does not change. Note however that, as we will show later, coordination
capability of adversarial sensors is essential in the second extremal setting where
transmitters are allowed to coordinate their choices.

Theorem 2 ( [2]). The optimal encoding function for the transmitters is un-
coded transmission, i.e.,

Xm(i) = αTUm(i), M ≥ m ≥ 1 (12)

The optimal jamming function (for adversarial sensors) is uncoded transmis-
sion with the opposite sign of the transmitters, i.e.,

Xk(i) = αAUk(i), M +K ≥ k ≥ M + 1 (13)

The optimal decoding function is the Bayesian estimator of S given Y , i.e.,

h(Y (i))=

[
(MαT +KαA)σ

2
S

]
Y (i)

(MαT +KαA)σ2
S+M2α2

Tσ
2
WT

+K2α2
Aσ

2
WA

+σ2
Z

. (14)

Cost as a function of M and K is

JNC(M,K) = σ2
S

M2α2
Tσ

2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(MαT +KαA)σ2
S +M2α2

Tσ
2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(15)

where αT =
√

PT

σ2
S+σ2

WT

and αA = −
√

PA

σ2
S+σ2

WA

.

The proof of theorem, can be found in [2], involves detailed information the-
oretic analysis and is omitted here for brevity. This problem setting implies a
Stackelberg game where transmitters and the receiver play first as the Player 1,
as they select their encoding functions. Then, Player 2 (the adversarial sensors),
knowing the choice of Player 1, chooses its strategy.

Remark 2. Note that in this setting, the coordination capability for the adver-
saries do not help, in sharp contrast to the previous setting where, both trans-
mitters and adversaries coordinate.

4 Main Result

The focus of this paper is the setting between the two extreme scenarios of
coordination, namely full or no coordination. We assume that Mε transmitter
sensors can coordinate with the receiver while M(1− ε) of them cannot coordi-
nate. Similar to transmitters, only Kη of the adversarial sensors can coordinate
while K(1 − η) adversarial sensors cannot coordinate. Let us assume, without
loss of generality, that first Mε transmitters and Kη adversaries can coordinate.
Let us also define the quantity ε0 as the solution to:

JC(Mε0,
√
K2η2 +K(1− η)) = JNC(M,K) (16)

The following theorem captures our main result.
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Theorem 3. If ε > ε0, Mε capable transmitters use randomized linear encoding,
while remaining M(1− ε) transmitters are not used.

Xm(i) = γ(i)αTUm(i), Mε ≥ m ≥ 1 (17)

Xm(i) = 0 M ≥ m ≥ Mε (18)

where γ(i) is i.i.d. Bernoulli (12) over the alphabet {−1, 1}

γ(i) ∼ Bern(
1

2
). (19)

The optimal jamming policy (for the capable adversarial sensors) is to generate
the identical Gaussian noise

Xk(i) = θ(i), M +Kη ≥ k ≥ M + 1 (20)

while remaining adversaries will generate independent Gaussian noise

Xk(i) = θk(i), M +K ≥ k ≥ M + kη (21)

where
θk(i) ∼ θ(i) ∼ N (0, PA), ∀k (22)

are independent of the adversarial sensor input Uk(i).
If ε < ε0, then the optimal encoding function for all transmitters is determin-

istic linear encoding, i.e.,

Xm(i) = αTUm(i), M ≥ m ≥ 1 (23)

The optimal jamming function (for adversarial sensors) is uncoded transmis-
sion with the opposite sign of the transmitters, i.e.,

Xk(i) = αAUk(i), M +K ≥ k ≥ M + 1 (24)

where αT =
√

PT

σ2
S+σ2

WT

and αA = −
√

PA

σ2
S+σ2

WA

.

Proof. The transmitters have two choices: i) All transmitters will choose not
to use randomization. Then, the adversarial sensors do not need to use ran-
domization since the optimal strategy is deterministic, linear coding with the
opposite sign, as illustrated in Theorem 2. Hence, cost associate with this op-
tion is JNC(M,K). ii) Capable transmitters will use randomized encoding. This
choice implies that remaining transmitters do not send information as they
do not have access to randomization sequence {γ}, hence they are not used.
The adversarial sensors which can coordinate generate identical realization of
the Gaussian noise while, remaining adversaries generate independent realiza-
tions. The total effective noise adversarial power will be ((Kη)2 + (1− η)K)PA,
and the cost associated with this setting is JC(Mε,

√
K2η2 +K(1− η)). Hence,

the transmitter will choose between two options depending on their costs,
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JC(Mε,
√
K2η2 +K(1− η)) and JNC(M,K). Since, JC is a decreasing func-

tion in M and hence in ε, whenever ε > ε0, transmitters use randomization (and
hence so do the adversaries), otherwise problem setting becomes identical to ”no
coordination”. The rest of the proof simply follows from the proofs of Theorem
1 and 2 and is omitted here for brevity.

Remark 3. Note that in the first regime (ε > ε0), we have a zero-sum game with
saddle point. In the second regime (ε < ε0), we have a Stackelberg game where
all transmitters and receiver constitute the leader and adversaries constitute the
follower.

5 Conclusion

In this paper, we presented new results on the game theoretical analysis of opti-
mal communication strategies over a sensor network. Our recent prior [2] work
had solved two extreme coordination cases where either all or none of the sensors
coordinate. In this work, we focused on the setting where only a subset of the
transmitter and/or jammer sensors can coordinate. We showed that the solution
crucially depends on the number of transmitters and adversaries that can coor-
dinate. In one regime, then the problem is a zero-sum game and admits a saddle
point solution where transmitters with coordination capabilities use randomized
linear encoding while the remaining the transmitter sensors are not used at all.
Adversarial sensors that can coordinate generate identical Gaussian noise while
other adversaries generate independent Gaussian noise. In the other regime, the
problem becomes a Stackelberg game where the leader (all transmitter sensors)
uses fixed (non-randomized) linear encoding while the follower (all adversarial
sensors) uses fixed linear encoding with the opposite sign.

Our analysis has uncovered an interesting result regarding the mixed setting
considered in this paper. The optimal strategy for transmitters sensors can be
to discard the ones that cannot coordinate. Note that the coordination aspect
of the problem is entirely due to game-theoretic considerations, which are also
highlighted in this surprising result.

Several questions are currently under investigation, including extensions of the
analysis to vector sources and channels, the asymptotic (in the number of sensors
M and K) analysis of the results presented here; and extension of our analysis
to asymmetric and/or non-Gaussian settings. An initial attempt to extend the
results associated with the Gaussian test channel to non-Gaussian setting can
be fond in [1].
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Abstract. True Randomness Generators (TRG) use the output of an
entropy source to generate a sequence of symbols that is sufficiently close
to a uniformly random sequence, and so can be securely used in appli-
cations that require unpredictability of each symbol. A TRG algorithm
generally consists of (i) an entropy source and (ii) an extractor algorithm
that uses a random seed to extract the randomness of the entropy source.
We propose a TRG that uses the user input in a game played between
the user and the computer both as the output of an entropy source, and
the random seed required for the extractor. An important property of
this TRG is that the (randomness) quality of its output can be flexibly
adjusted. We describe the theoretical foundation of the approach and
design and implement a game that instantiates the approach. We give
the results of our experiments with users playing the game, and analysis
of the resulting output strings. Our results support effectiveness of the
approach in generating high quality randomness. We discuss our results
and propose directions for future work.

1 Introduction

Many security systems and in particular crypto-algorithms use random values
as an input to the system. Cryptosystems need randomness for purposes such
as key generation, data padding or challenge in challenge-response protocols.
In nearly all cases unpredictability of random values is critical to the security
of the whole systems. Generating true randomness however is not an easy task
and needs a physical entropy source. Operating systems such as Windows and
Linux use special sub-systems that combine randomness from different parts of
the hardware and software system to collect entropy [Mic,GPR06]. Poor choices
of randomness has lead to breakdown of numerous security systems. Impor-
tant examples of such failures are, attack on Netscape implementation of the
SSL protocol [GD] and weakness of entropy collection in Linux and Windows
Pseudo-Random Generator [GPR06,DGP09]. A recent example of the need for
careful treatment of randomness in cryptographic systems was highlighted in
[HDWH12,LHA+12] where the same public and private keys were generated by
key generation modules and this was partly attributed to randomness that was
poorly generated in Linux kernel randomness generation subsystem.

An entropy source uses physical processes such as noise in electronic circuits,
or software processes that are“unpredictable”, to output a sequence over an

S.K. Das, C. Nita-Rotaru, and M. Kantarcioglu (Eds.): GameSec 2013, LNCS 8252, pp. 10–28, 2013.
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alphabet that is highly “unpredictable”, where unpredictability is measured by
min-entropy (See Definition 3). Although the output of an entropy sequence
can have high level of randomness, but the underlying distribution may be far
from uniform. To make the output of an entropy source to follow a uniform
distribution, a post processing step is usually used. Randomness extractors are
deterministic or probabilistic functions that transform the output of an entropy
source to uniform distribution using a mapping from n tom bits (usuallym ≤ n),
extracting the entropy of the source.

To guarantee randomness of their output, randomness extractors need guar-
antee on the randomness property of (e.g. the min-entropy) their input entropy
source. Extractors that can extract randomness from sources that satisfy a lower
bound on their min-entropy, are probabilistic [Sha11]. A probabilistic extractor
has two inputs: an entropy source together with a second input that is called
seed. Good probabilistic extractors use a short seed (logarithmic in the input size)
to extract all the randomness (close to the min-entropy) of the input entropy
source. A True Randomness Generator (TRG) thus consists of two modules: (i)
an entropy source that generates a sequence of symbols with a lower bound on
its min-entropy, followed by, (ii) a randomness extractor. In practice one needs
to estimate the min-entropy of the entropy source to be able to choose appro-
priate parameters for the extractor. The distribution of the entropy source and
its min-entropy may fluctuate over time and so a TRG needs to use an extractor
that provides sufficient tolerance for these fluctuations.

Human as Entropy Source: In [HN09], Halprin et al. proposed an innovative
approach to construct an entropy source using human game play. Their work
built on the results in experimental psychology. It is known that humans, if
asked to choose numbers randomly, will do a poor job and their choices will be
biased. Wagenaar [Wag72] used experiments in which participants were asked
to produce random sequences and noted that in all experiments human choices
deviated from uniform distribution. In [RB92], Rapport et al. through a series
of experiments showed that if human plays a competitive zero-sum game with
uniform choices as the best strategy, their choices will be close to uniform. In
their experiment they used matching pennies game in which each player makes
a choice between head or tail using an unbiased coin, and the first player wins if
both players choose the same side and the second, if they choose different side.
In this game the optimal strategy of users is random selection between head and
tail. Their result showed that users almost followed uniform random strategy
confirming that human can be a good source of entropy if they are engaged in a
strategic game and entropy generation is an indirect result of their actions.

Human Game Play for Generating Randomness. Halprin et al. used these studies
to propose an entropy source using human game play against a computer. In
their work human plays a zero-sum game with uniform optimal strategy against
the computer. The game is an extended matching pennies game (user has more
than two choices) and is played many times. The sequence resulting from human
choices is considered as the output of an entropy source, and is used as the input
to a randomness extractor. The result is a TRG with an output that is a random
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sequence “close” to uniform. In addition to the human input sequence, the TRG
uses a second source of perfect randomness to provide seed for the randomness
extractor.

In this paper we propose an integrated approach where the game play between
a human and the computer is used to implement the two phases of a TRG
including randomness source and randomness extraction phase. That is the user’s
input provides the required randomness for the entropy source and the extractor
both.

1.1 Our Contribution

We propose a TRG that uses human game play against a computer, as the only
source of randomness. The game consists of a sequence of sub-games. Each sub-
game is a simple two player zero-sum game between the user and the computer
which can be seen as an extended matching pennies game. In each sub-game
the human makes a choice among a number of alternatives, each with the same
probability of winning, resulting in the user’s best strategy to be random se-
lection among their possible choices. The first game corresponds to the entropy
generation step in TRG and subsequent sub-games correspond to steps of an
extractor algorithm.

The TRG algorithm is based on a seeded extractor that is constructed us-
ing an expander graph. Expander graphs are highly connected d-regular graphs
where each vertex is connected to d neighbours. This notion is captured by a
measure called spectral expansion. It has been proved that random walks on these
graphs can be used to extract randomness [AB09]. Assuming an initial proba-
bility distribution p on the set of vertices of the graph, it is proved [AB09] that
by taking a random walk of � steps from any vertex in the graph that is chosen
according to p, one ends up at a vertex that represents a distribution over the
vertices that is ε-close to the uniform distribution. In other words starting from
any distribution, each step of the random walk results in a new distribution over
the vertices that is closer to uniform and so by taking sufficiently long walk, one
can obtain a distribution that is ε-close to the uniform distribution.

We use human input to provide the required randomness in the framework
above: that is for the initial distribution p as well as the randomness for each
step of the walk. To obtain randomness from human, a sequence of games is
presented to the user and the human input in the game is used in the TRG
algorithm. In the first sub-game, the graph is presented to the user who will be
asked to randomly choose a vertex. This choice represents a source symbol that
is generated according to some unknown distribution p; that is human choice is
effectively a symbol of an entropy source. Human choices however, although have
some entropy but cannot be assumed to be uniformly distributed. A subsequent
random walk of length � over the graph will be used to obtain an output symbol
for TRG with close to uniform randomness guarantee.

To use human input for the generation of the random walk, on each ver-
tex of the graph the user is presented with a simple game which effectively
requires them to choose among the set of the neighbouring vertices. The game is
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zero-sum with uniform optimal strategy and so the human input would corre-
spond to uniform selection, and consequently one random step on the graph. For
a given ε and an estimate for the min-entropy of the initial vertex selection, one
can determine the number of required random steps so that the output of the
TRG has the required randomness.

In the above we effectively assume human input in a uniform optimal strategy
zero-sum game is close to uniform. This assumption is reasonable when human
is presented with a few choices, (based on the experiments in [RB92]). In practice
however the human input will be close to uniform and so the proposed extraction
process can be seen as approximating the random walk by a high min-entropy
walk. Obtaining theoretical results on the quality of output in an expander graph
extractor when the random walk is replaced with a walk with high min-entropy
is an interesting theoretical question. We however demonstrate feasibility of this
approach experimentally.

We designed and implemented a TRG that is based on a game on a 3-regular
expander graph with 10 vertices. The game consists of a sequence of sub-games.
A number of screen shots of the game are shown in Figure 1. In each sub-
game the human and the computer make a choice from a set of vertices. If the
choices coincide, computer wins and if they do not coincide, human wins. In our
implementation the human first make a choice and then the computer’s choice
is shown. In the first sub-game user makes a choice among the 10 vertices of the
graph, and in all subsequent sub-games, among the 3 neighbours of the current
vertex. We perform a number of experiments to validate our assumptions.

Experiments. We implemented the above game and experimented with nine hu-
man users playing the games. We measured min-entropy of human input in the
first sub-game, that is when human is an entropy source, and also subsequent
sub-games when human input is used to emulate the random walk. For the for-
mer, that is to estimate the initial distribution p, we designed a one round game
which requires the user to choose a vertex of the graph and they win if their
choice is not predictable by the computer. We used NIST [BK12] tests for es-
timating the min-entropy of both distributions. The details of experiments are
given in Section 4. Our results once again shows that humans, once engaged in
a two-party zero sum game with uniform optimal strategy, are good sources of
randomness. The min-entropy of human choices in the first sub-game is 2.1 bits
per symbol (10 symbol) in average and in the subsequent sub-games is 1.38 bits
per symbol (3 symbols) in average. These compared to the maximum available
entropy of the source on corresponding number of symbols, i.e. log2 10 = 3.32
and log2 3 = 1.58, indicate that indeed the human choices are close to uniformly
random and the final output of TRG is expected to be close to random.

Applications. TRGs are an essential component of computing systems. User
based TRG add an extra level of assurance about the randomness source: users
know that their input has been used to generate randomness. An example ap-
plication of this approach is generating good random keys using user’s input.
Asking a user to generate a 64 bit key that is random will certainly result in a
biased string. Using the approach presented in this paper, the user can select an
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element of the space (say a password with 13 characters) randomly. The user
choice will be used as the initial entropy source, and then subsequent games
will ensure that the final 64 bits is close to uniform. Assuming a 3-regular ex-
pander graph with 10 vertices, one needs 3 steps in the expander graph to reach
a 1/4-close to uniform. Section 4.1 further discusses how longer sequences can
be generated.

1.2 Related Work

The idea of using a game to motivate human to generate unbiased random-
ness was proposed in [HN09]. Authors used the experimental results in psychol-
ogy [Wag72,RB92] along with game theoretic approach to show humans playing
matching pennies game generate a sequence which is close to uniform. Halprin et
al. argued that this game when played between a computer and a human can be
used as an entropy source. To increase the amount of randomness generated by
human with each choice, Halprin et al. used an extension of this game that uses
n choices to the player: the user is presented by an n×n matrix displayed on the
computer screen and is asked to choose a matrix location. The user wins if their
choice is the same as the square chosen by the computer. They noted that the
visual representation of the game resulted in the user input to be biased as users
avoided corner points and limiting squares. The sequence generated by human
was used as the input to a seeded extractor (Definition5) to generate a sequence
that is ε-close to uniform (Definition1). They provided visual representations
of human choices that indicates a good spread of points. However statical and
min-entropy evaluation of the system is restricted to using statistical tests on
the output of the seeded extractor.

Extraction can use a general seeded extractor that will guarantee randomness
of the output for any distribution with min-entropy (Definition 3) k, or an ap-
proach proposed in [BST03] in which the set of possible input sources is limited
to a set of 2t possible ones all with min-entropy k. The former approach requires
a fresh random seed for each extraction but has the advantage that the input
source can have any distribution with the required min-entropy. This latter ap-
proach however requires the input sequence to be one of the set of 2t possible
sources, but has the advantage that one can choose a function from a class of
available extractors and hard code that in the systems. This means in practice
no randomness is required. However no guarantee can be given about the output
if the input sequence is not one of the 2t that has been used for the design of
the system and this property cannot be tested for an input sequence. Halprin et
al. used the latter approach, using a t-universal hash function as the extractor.
The randomness guarantee of the final result requires the assumption that the
human input is one of the 2t sources. In practice, t can not be arbitrarily large
and must be small to guarantee a minimum output rate for randomness. This
can pose a security risk that the actual distribution is not one of the 2t distribu-
tions. Halprin et al. did not perform quantitative analysis of user sequences and
used visual representation of the human choices to conclude the choices were
random.
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We note that simpler extractors such as the Von Neumann extractor [vN51]
put strong requirements on their input sequence. For example Von Neumann
extractor requires the input string to be a Bernoulli sequence with parameter p
which is not satisfied by the sequence of human choices where successive choices
may be dependent with unknown and changing distribution. The expander graph
extractor works for all distributions whose min-entropy is lower bounded by a
given value, and does not put extra requirements on the input sequence.

Using human input as entropy source has also been used in a different form.
In computer systems, users’ usage of input devices such as mouse and keyboard
can be used for background entropy collection. This process is used for example
in Linux based systems [GPR06]. [ZLwW+09] uses mouse movement and applies
hash functions.

Paper Organization. Section 2 provides the background. Section 3 outlines our
approach and Section 4 gives the results of our experiments. Section 5 provides
concluding remarks.

2 Preliminaries

We will use the following notations. Random variables are denoted by capital
letters, such as X . A random variable X is defined over a set X with a proba-
bility distribution PrX , meaning that X takes the value x ∈ X with probability
PrX(x) = Pr[X = x]. Uniform distribution over a set X is denoted by UX or Un

if X = {0, 1}n. The logarithms will be in base 2 throughout the paper.

Definition 1. Consider two random variables X and Y taking values in X .
Statistical distance of the two variables is given by,

Δ(X ;Y ) =
1

2

∑
x∈X

∣∣∣Pr
X
(x) − Pr

Y
(x)

∣∣∣
We say that X and Y are ε-close if Δ(X ;Y ) ≤ ε.

A source on {0, 1}n is a random variable X that takes values in {0, 1}n with
a given distribution PrX .

Definition 2. Let C be a class of sources on {0, 1}n. A deterministic ε-extractor
for C is a function ext : {0, 1}n → {0, 1}m such that for every X ∈ C, ext(X) is
“ε-close” to Um.

Deterministic extractors exist for a limited classes of sources [Sha11]. A small
random seed is used in extractors to allow for more general classes of sources to
be used as input to the extractor. The more general classes of sources are the
sources with a guaranteed amount of randomness. To quantify the amount of
randomness in a random variable min-entropy is used.

Definition 3. The min entropy of a random variable X is : H∞(X) =

minx

{
log 1

PrX (x)

}
.
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Definition 4. A random variable X is a k−source if H∞(X) ≥ k, i.e., if
PrX(x) ≤ 2−k. The min-entropy rate is denoted by δ and is defined as k = δn,
where n is the number of source output bits.

Using probabilistic method, it is proved [Sha11] that there exists probabilistic
extractors that can extract at least k bits of randomness from a k-source.

Definition 5. A function ext : {0, 1}n × {0, 1}d → {0, 1}m is a seeded (k, ε)-
extractor if for every k-source X on {0, 1}n, Ext(X,Ud) is ε-close to Um, where
Um is the random variable associated with the uniform distribution on m bits.

A relevant result on seeded extractors is the following.

Theorem 1. [Sha11] For every n ∈ N, k ∈ [0, n] and ε > 0, there exists a (k, ε)-
extractor ext : {0, 1}n × {0, 1}d → {0, 1}m with m = k + d− 2 log(1ε ) +O(1).

2.1 Expander Graphs

Expander graphs are well connected graphs in the sense that to make the graph
disconnected one needs to remove relatively large number of edges. Connectivity
of a graph can be quantified using measures such as the minimum number of
neighbouring vertices for all sub-graphs or minimum number of edges that leave
all sub-graphs (minimums are taken over all subgraphs of certain size) [HLW06].
For a d-regular graph the second eigenvalues of the adjacency matrix captures
the connectivity of the graph. This measure is referred to as spectral expansion.

Normalized adjacency matrix of a d-regular graph with n vertices is an n× n
binary matrix with Ai,j =

1
d if vertex i and j are connected by an edge, and zero

otherwise.

Expander Graphs as Extractors. Given a graph and a starting vertexX , one
can make a random walk of length �, by randomly choosing one of the neighbours
of X , say X1, move to X1, then randomly choose one of the neighbours of X1,
say X2, and repeat this � times.

Let G denote an expander graph with normalized adjacency matrix A, and
let p denote an initial distribution on the vertices of G. After one random step
from each vertex, the distribution on the vertices is given by Ap and becomes
closer to uniform. That is, the statistical distance between the distribution on
the graph vertices and the uniform distribution reduces. Continuing the random
walk on the graph for � steps, the distribution on the vertices becomes Alp
and gets closer to the uniform distribution. The rate of convergence to uniform
distribution for d-regular expander graphs is determined by the second eigenvalue
of the normalized adjacency matrix of the graph which is denoted by λ from now
on.

Lemma 1. [AB09, lemma 21.3] Let G be a regular graph over n vertices and p
be an initial distribution over G’s vertices. Then we have:∥∥Alp− Un

∥∥
2
≤ λl.
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where ‖.‖2 is the l2 norm defined as ‖X‖2 =
√∑n

i=1 x
2
i , considering X to be the

vector (x1, x2, . . . , xn). Note that Un and Alp are considered as vectors in above.

The random walk on an expander graph explained above gives the following
extractor construction.

Lemma 2. [AB09, lemma 21.27] Let ε > 0. For every n and k ≤ n, there
exists an explicit (k, ε)-extractor ext : {0, 1}n × {0, 1}t → {0, 1}n where t =
O(n− k + log 1/ε).

The above lemma assumes an expander graph with λ = 1/2, but in general for
an arbitrary λ and min-entropy k, we can derive the following theorem from the
above lemmas:

Theorem 2. Let Un be the uniform distribution and X be a k-source with prob-
ability distribution p over {0, 1}n. Let G be a d-regular expander graph over 2n

vertices with normalized adjacency matrix A. For a random-walk of length l over
the graph starting from a vertex selected according to distribution p, we have

Δ(Alp;Un) ≤
1

2
λl√n(2−k/2 + 2−n/2)

The proof of the above theorem follows from the proof of Lemmas 1 and 2.

Δ(Alp;Un) =
1

2

∑
a∈{0,1}n

∣∣Pr[Alp = a]− Pr[Un = a]
∣∣ (1)

≤ 1

2

√
n
∥∥Alp− Un

∥∥
2

(2)

≤ 1

2

√
nλl ‖p− Un‖2 (3)

=
1

2

√
nλl(2−k/2 + 2−n/2) (4)

where equation (1) follows from the definition of statistical distance, equation
(2) is followed from the relation between l2 and l1 norms, i.e. |V | ≤

√
n ‖V ‖2,

equation (3) comes from the proof of lemmas 1 and 2, and equation (4) follows

from linear algebra facts (‖p− Un‖2 ≤
√
‖p‖22 + ‖Un‖22) and that min-entropy

of p is k, which gives ‖p‖22 ≤ 2−k.

�

For an expander graph G, given ε and k as the min-entropy of the initial
distribution on vertices, we can compute the number of required steps of the
random-walk on the expander graph so that the distribution on the graph ver-
tices becomes ε-close to uniform distribution. Note that min-entropy of the initial
vertex distribution results in closeness to uniform distribution, but the random
walk will amplify this closeness.
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Let λ = 2−α and ε = 2−β. To be ε-close to uniform, we must have
1
2

√
nλl(2−k/2 + 2−n/2) ≤ ε. This gives us the following lower bound on l:

l ≥ 1

α
[β + log(

√
n) + log(2−k/2 + 2−n/2)] (5)

The above bound requires the value λ for the graph. Equation 5 shows that
for a given ε and min-entropy, smaller λ correspond to shorter random walk. So
one needs to find graphs with smaller λ.
The following theorem shows that regular graphs have small λ.

Theorem 3. [AB09, section 21.2.1] For a constant d ∈ N, any d-regular, N -
vertex graph G satisfies λ ≥ 2

√
d− 1/d(1 − o(1)) where the o(1) term vanishes

as N → ∞.

Ramanujan graphs are d-regular graphs that achieve λ ≥ 2
√
d− 1/d and

so are excellent as spectral expanders. For a fixed d and large N , the d-regular
N -vertex Ramanujan graph minimizes the λ. There are several explicit construc-
tions of Ramanujan graphs. Here we explain one of the simpler constructions.

2.2 A Simple Explicit Construction for Expander Graphs

There are explicit constructions of expander graphs that can be efficiently gen-
erated. That is vertices are indexed by i ∈ I and there is an algorithm that
for any i, generates the index of its neighbours. For example the p-cycle with
inverse chords construction gives us a 3-regular expander graph with p vertices,
p is prime, in which a vertex X is labelled by x ∈ {0, p− 1} and the neighbour
vertices have indexes x − 1, x + 1 and x−1. Here all arithmetic are mod p and
0−1 is defined to be 0. The spectral expansion of this graph is very close to the
above-mentioned bound. The construction is due to Lubotzky-Phillips-Sarnak
[LPS86] and the proof that the construction is a Ramanujan graph, uses deep
mathematical results. The λ for this graph is upper bounded by 0.94. Other
explicit constructions of expander graphs use graph product techniques such as
Zig-Zag product and replacement product [RVW00].

2.3 Game Theoretic Definitions

A game consists of a set of players, each with a set of available actions and
a specification of payoffs for each pair of actions. An action profile is a tuple
of all players’ actions. An assumption in game theory is that players play ra-
tionally; that is they aim to maximize their payoff, given some belief about the
other players’ actions. Thus, each player has preferences about the action profile.
For describing players’ preferences we use utility function. An strategic game is
defined as follow.
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Definition 6. A strategic game with ordinal preferences consists of,

– A finite set of players, N = {1, ..., N};
– A set of actions for player i denoted by Ai;

Action profile: a = (a1, ..., an) ∈ A = A1 × ...×An;
– Preferences over the set of action profiles based on the Utility Function that

captures payoffs.
Utility function for player i: ui : A → R , which R is the set of real numbers.
We say that player i prefers a to b iff ui(a) > ui(b)

A pure strategy specifies the actions of a player in all possible situations that
he will be in.

Mixed strategy of a player in a strategic game means more than one action is
played with a positive probability by the player. The set of actions with non-zero
probability form the support of mixed strategy. Mixed strategy is specified by a
set of probability distributions. The following theorem shows the importance of
mixed strategies [Osb04].

Theorem 4. Every strategic game in which each player has finitely many ac-
tions has a mixed strategy Nash equilibrium.

A finite two-player strategic game can be represented by a table. In such a
representation “Row” player is player 1 and “column” player is player 2. That is,
rows correspond to actions a1 ∈ A1 and columns correspond to actions a2 ∈ A2.
Each cell in the table includes a pair of payoffs, starting with the row player
followed by the column player. For a two-party game, each player action is a
pure strategy and a mixed strategy is a probability distribution on the set of
actions available to them.

Halprin et al. used an extended form of “matching pennies” using a two di-
mensional array defining the choices of the players. In basic matching pennies
game with Head and Tail as possible actions for each player the payoff table is
as follow:

- Head Tail
Head (1,-1) (-1,1)
Tail (-1,1) (1,-1)

Matching pennies game is a zero-sum game and for any action profile a we have
u1(a) + u2(a) = 0. From the table it can be seen that there is no pure strategy
Nash equilibrium for matching pennies. It is easy however to show that the
best strategy for both players in the game is uniform distribution on the set of
possible actions. This is easy to see intuitively and also show formally using a
distribution p and 1 − p to denote the probability that the first player chooses
Head or Tail, respectively, and then requiring p to be chosen such that the
player 2 remains completely indifference about the choice of player 1. That is,
u2(Head) = u2(Tail) which gives −p + 1(1 − p) = p − (1 − p) and p = 1/2. A
similar argument shows that the best strategy of player 2 is uniform also.
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In our work we use extended matching pennies game where each player has
a set of m possible actions. Using a similar approach one can show that the
best strategy for players is uniform random selection among the n alternatives.
Extended matching pennies game was also used in [HN09] to increase the amount
of randomness from each user input. Traditional matching pennies game provides
at most 1 bit randomness for each user’s input. Using extended matching pennies,
this can be increased to log2 m bits per action. This however is an upper bound
and depending on the set up and the actual value of m, the min-entropy of
user input can be different. Our experimental results for m = 10 and m = 3
corresponding to the size and degree of the expander graph used in our work,
showed 2.1 and 1.32 bits per input, respectively.

3 TRG Using Human Input in Games

We propose an integrated approach to construct TRGs using human input in
games. Important properties of this approach are, (i) the only source of random-
ness for the TRG is the human input, and (ii) the final results have guaranteed
and adjustable level of randomness. This latter property means that the user can
improve the quality of the output randomness at any time and to any level of
closeness to uniform randomness, simply by adjusting the length of the random
walk. In comparison, in the construction of Halprin et al. (i) the entropy source
is based on human input and a second external source of perfect randomness is
required to provide seed for the extractor, and (ii) the size and quality of the
final output depends on the extractor that is used after obtaining the output
of the entropy source. Here changing the quality of the final output, requires
replacing the extractor and performing the calculations from scratch.

The outline of the approach is given in Section 1.1 and includes, (i) choosing an
expander graph with appropriate parameters, and (ii) designing an appropriate
game that is “attractive” to play and has the required property (uniform optimal
strategy for each sub-game).

Choosing the Expander Graph. The starting point is choosing a d-regular ex-
pander graph with an appropriate number of vertices 2n, each vertex labelled
with a binary string of length n. The two parameters n and d will be directly
related to the computational efficiency of the system in generating random bits:
larger n means longer output string and more random bits, and larger d means
faster convergence to the uniform distribution and so shorter walk to reach the
same level of closeness to the uniform distribution (See Theorem 3). In practice
however, because the graph is the basis of the game visual presentation to the
user, one needs to consider usability of the system and so the choice of n and d
will take this factor into account. Another important requirement is that steps of
the random walk must correspond to an independent and uniformly distributed
random variable. Experiments in human psychology [RB92] shows that bias will
increase in human choices for larger sets of possible choices. and thus the ran-
dom walk generated by human input will be farther from uniformly random. In
Section 4.1 we discuss issues that arise in choosing the graph and extending the
approach when longer sequences of random bits are required.
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The Game. The TRG algorithm uses a game between human and computer. The
game consists of a sequence of sub-games. In all sub-games the human makes a
choice and wins if their choice is not correctly guessed by the computer. Each
sub-game is an extended matching pennies game which is known to have uniform
optimal strategy for both players. The main difference between the initial and
subsequent sub-games is the number of choices available to the user, and the
way these choices are used. The computer choices are made by a pseudorandom
number generator.

– Initial Sub-game. In the initial sub-game the user chooses a vertex from the
set of 2n possible vertices in the graph, and wins if the computer cannot
“guess” their choice.

– Walk Sub-games. Each subsequent sub-game correspond to a single step of
the random walk. At vertex V , the player can choose any of the vertices
that are adjacent to V . Using a d-regular graph ensures that the number of
choices at every vertex is the same.

The game proceeds in � steps where � is determined by the required quality of
the final output randomness and the min-entropy of the input. In practice one
needs an estimate of user min-entropy of the initial game, when choosing among
2n vertices, to be used with d the degree of the graph, in the equation 5 to obtain
an estimate for the number of steps on the graph for a chosen value of ε.

To estimate min-entropy of user in the initial game, we developed a second
game that simply asks user to choose a vertex and win if their choice is not
correctly guessed by the computer. In our experiments the suggested min-entropy
for a graph of 10 vertices is 2.32 bits which is although lower than the min-entropy
of uniform distribution (log2 10 ≈ 3.58) , but shows a high level of min-entropy.

Although human play differently but assuming they behave “similarly”, one
can obtain an average value for the min-entropy of the initial choice for a graph
of size n, over a large population of users and use that for estimating the number
of steps.

4 Experiments

We designed a game between human and computer and asked each player to
play the game for at least 1000 rounds. This is sufficient to run the required
min-entropy and statistical tests.
Our objectives in the experiments are the following:

1. Estimate the min-entropy of human choices in sub-game 1, which is re-
quired for the extraction component of the TRNG. As noted earlier, ex-
pander graphs can be used for extracting randomness if the min-entropy of
the input is bounded below.

2. Examine the statistical properties (e.g. min-entropy) of the walk to verify if
the walk by human is a good approximation of a random walk.

3. Examine the statistical properties of the final output,

We run the above three tests for all participants and will present the results.
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4.1 The Game

Our basic game is a combination of hide and seek and the Roshambo (Rock-
paper-scissors) games. The hide and seek game corresponds to the initial sub-
game where human should choose from a number of vertices to start the game.
The Roshambo game corresponds to the second sub-game (i.e. random walk).
For the choice of expander graph, we used Peterson graph which is a 3-regular
graph with 10 vertices.

In the first sub-game, the human player starts the game by selecting a vertex
from the graph G. This will place a sheep on the vertex (Figure 1-b). The
computer responds by placing a wolf on a random vertex. This is similar to the
hide and seek game. The player loses if the wolf and sheep are on the same vertex.
If the player wins, then the game will highlight the vertices that are adjacent
to the selected vertex by the player (marked by a star in Figures). The same
sequence of steps (user’s choice (Figure 1-c), followed by the computer choice
(Figure 1-d)) is now played using the highlighted vertices instead of all vertices
in the graph, and the human will win (Figure 1-c) if the choices are different
and lose otherwise. The winner is the player with higher final score.

(a) Game start (b) Initial vertex selection

(c) First step of random walk (d) Computer wins

Fig. 1. The game

The Game Design. We implemented the game using HTML 5 technology so
that it can be run and played on any system having an Internet browser and
even on touch screen devices such as tablets or smart phones. The game is simple
to learn and intuitive and can be accessed online [Ali13].
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Game Design for Generating Random Keys. The graph has 10 vertices
and so can generate at most log2 3 bits of entropy. In a real world design, a
large 3-regular expander graph (e.g. with roughly 264 vertices) can be easily
constructed using the construction in section 2.2. To construct such a graph, the
largest prime number smaller than 264 is chosen for the number of vertices. For
such a graph, λ is estimated to be 2

√
3− 1/3 = 0.94. The choice of 3-regular

graphs is based on the psychological experiments [RB92] showing that too many
choices would increase the bias of human selection. To prevent this, we only
recommend using 3-regular graphs for the construction of the expander graph.

Now let ε = 2−15, and considering the min-entropy of the initial selection be
32 (i.e. 0.5 per bit), then we need 12 steps of random walk on the graph to get
2−15-close to uniform distribution:

l ≥ 1

α
β + log(

√
n) + log(2−k/2 + 2−n/2) ≈ 11.23.

where α ≈ 0.089, β = 15, k = 32, n = 64.
Note that although we cannot find the exact value of the min-entropy of the

initial selection, it is possible to find a good estimate experimentally. This is
by considering many samples from different human players and using statistical
models to estimate average min-entropy. Equation 5 can be used to find the
minimum number of steps that is required for the final distribution to be ε-close
to uniform distribution.

The graph will appear as a continuous circle. For the first sub-game, the
human chooses a random vertex from the graph, or equivalently a random point
on the circle. Using a circular representation of the graph has the advantage
that all vertices appear with the same value (importance) and no end points will
be left out because of its location and this will avoid human tendency to avoid
corners, as observed in [Wag72,HN09].

After the initial vertex selection, the graph will be displayed locally (vertices
adjacent to the current selected vertex of the user) and then the user is asked to
play the second sub-game.

4.2 Measuring Min-Entropy

To measure the min-entropy (or Shannon entropy) of a source ones needs to
assume certain structure in the source distribution. For a list of n samples {si}ni=1

from a source S over the finite set S, if we assume that the source S is i.i.d., that
is samples are independently and identically distributed, then having enough
samples from the source allows us to estimate the probability distribution of the
source with high confidence and find, the entropy as in [BK12] (Section 9.2).

NIST draft [BK12] gives the requirements of entropy sources and also proposes
a number of tests to estimate the min-entropy of the source in i.i.d. and non-i.i.d.
cases, both. The testing method first checks whether the source can be considered
i.i.d. NIST suggests the following set of tests for i.i.d. sources (Section 9.1 of
[BK12]): 6 shuffling tests, Chi-square test, test for independence and goodness
of fit. If all of the test are passed, the source is assumed to be i.i.d. and then
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a conservative method is used to estimate the entropy of i.i.d. source. If any of
the tests are not passed however, the source is considered to be non-i.i.d., and
a number of tests are used to estimate the min-entropy. These second group of
tests are collision test, partial collection test, Markov test, Compression test and
the Frequency test, each outputting a value as the estimation of the min-entropy.
The final min-entropy will be the minimum over all these estimated values. While
i.i.d. and non-i.i.d. tests provide an estimation of the entropy, they may fail to
detect anomalies in the source. Therefore, NIST defines a set of sanity checks
that will make sure this does not happen. The sanity checks contain two tests:
Compression test and collision test. If the sanity checks fail, no estimation will
be given.

For our experiments, we obtained an unofficial version of the code (the code
is not released yet) and used it to estimate the min-entropy of our source. We
ran tests to verify whether our estimations are meaningful (our sanity checks),
and also check consistency in the min-entropy estimation for a data set from
/dev/random in Linux. Our analysis showed that the estimation from NIST
set of tests are sound, but are very conservative (admitted in Section 9.3.1 of
[BK12]). For example, we expect to have roughly the same approximation of
min-entropy for the data in /dev/random. But the approximation from the NIST
tests is very dependent on the number of samples given to the tests (which is
quite intuitive and acceptable). This caused very low estimates for a subset of
our users with smaller sample size and in general, min-entropy estimation in our
experiments were conservative.

4.3 Measuring Statistical Property of a Source

To examine statistical properties of a sequence, we use the statistical tests in
a battery of tests called Rabbit [LS07b]. Rabbit set of tests includes tests from
NIST [ea10] and DIEHARD [Mar98] with modified parameters tuned for smaller
sequences and hardware generators. We used an implementation of these test in
[LS07a].

4.4 Measures of Randomness for Our Game

In our first experiment, we measured the min-entropy of the player’s initial se-
lection of a vertex on the graph. To measure min-entropy, we used the method
in Section 4.2, and the results is as follows: The table summarizes the data we
collected from 9 users. For each user, the first row is the number of total plays,
the second row is the number of times the human choice collided with the com-
puter’s choice (the wolf was placed on the sheep), the third row is the probability
that a collision occurred in game plays (the number of collisions divided by the
total number of plays) and the last row is the min-entropy of the player’s choices
per bit. We then counted the number of times each vertex is selected by human.
The expected behaviour is that the number of times each vertex is selected must
be roughly the same.
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Table 1. Min-entropy of users in first sub-game

User 1 2 3 4 5 6 7 8 9

Total Shots 1770 2141 3980 3439 2021 652 1685 905 983

Collisions 150 322 365 348 149 70 167 45 112

Probability 0.08 0.14 0.09 0.1 0.07 0.1 0.1 0.05 0.11

Min-entropy 0.45 0.49 0.61 0.65 0.52 0.49 0.47 0.55 0.51

In conclusion for the first sub-game,the lowest min-entropy is 0.45 per bit,
and on average we expect the min-entropy of 0.52 per bit.

Random walk game:
In the second experiment, we collected data from game play of participants

over a long sequence of game play. We expect the choice of neighbours to be
uniformly random selection over the set of adjacent vertices. We map the set of
adjacent vertices to the set {1, 2, 3} based on an ordering on the vertices (e.g.
an ordering on their labels which are numbers) To examine this in practice, we
applied the statistical tests in section 4.3 to measure the statistical properties of
this sequence. The results are summarized in table 2. The table gives a summary
of a subset of tests and their corresponding p-value for the output. The data to
generate this table is from a sample player. We also examined the data from
other players with all statistical tests being passed with p-values far from 0 or 1.

We also calculated the min-entropy of the random walk (human choices for
each step) to further confirm the random properties of this sequence. The table
3 summarizes the results:

The results show that the min-entropy of players is more when the choices are
less (here 3). The min-entropy of the initial selection of vertices can be measured
- assume it is k. Using the results in lemma 2, the final output of the game would
be ε-close to uniform if the walk is uniformly random. Using the above results,
we note that the walk is close to a random walk that is uniformly distributed.

Table 2. Result of statistical test

Statistical Test result

LinearComplexity 0.87
LempelZiv 0.59
SpectralFourier 0.63
Kolmogorov-Smirnov 0.47
PeriodsInString 0.51
HammingWeight 0.85
HammingCorrelation 0.23
HammingIndependence 0.78
RunTest 0.13
RandomWalk 0.29
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Table 3. Min-entropy of users in second sub-game

User 1 2 3 4 5 6 7 8 9

Total Shots 370 369 1009 1786 560 1071 4821 1190 1065

Collisions 118 118 237 595 140 373 1624 379 334

Probability 0.31 0.29 0.23 0.33 0.25 0.34 0.33 0.31 0.31

Min-entropy 0.49 0.51 0.64 0.75 0.78 0.72 0.83 0.61 0.79

Table 4. Result of statistical test

Statistical Test result

LinearComplexity 0.51
LempelZiv 0.73
SpectralFourier 0.34
Kolmogorov-Smirnov 0.23
PeriodsInString 0.13
HammingWeight 0.55
HammingCorrelation 0.69
HammingIndependence 0.29
RunTest 0.60
RandomWalk 0.67

To examine the effect of this discrepancy, we ran the set of statistical tests on
the final output and the results is summarized in the following table:

The numbers in table 4 are the p-values of each test. The test is passed if
these values are far from 0 or 1. A margin of 0.001 is usually accepted for the
test to be passed.

Overall the experiments shows viability of the approach in practice.

5 Concluding Remarks

TRGs are an essential component of security systems. Using human as an en-
tropy source is particularly attractive in shared environments such as cloud ser-
vices where traditional sources of entropy (computing hardware and software)
are shared among users and extra caution must be used to ensure randomness
extracted from the entropy sources do not result in correlated randomness for
users that are sharing the services. There are a number of extensions and di-
rections for future work. On theoretical side, analysis of randomness extractors
that are based on expander graphs when the random walk is replaced by a walk
with a guaranteed min-entropy is an interesting open question. On the imple-
mentation and experimental side, we noted that for generating larger strings,
for example a 64 or 80 bit strings, the full graph cannot be presented to the
user. Here one needs to find ways of enabling the user to make the initial se-
lection of the string with “good” initial min-entropy and then use portions of
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the graph corresponding to the neighbours of the vertex, to receive the user’s
input for the random step at that vertex. The choice of the graph and creating
an “interesting” game and interface to encourage random selection will improve
effectiveness of the approach and usability of the system. We analysed strings
generated by nine users. Wider user studies are required to measure min-entropy
and statistical properties of strings at different stages (entropy source, random
walk and final output) as well as usability of the system. Using human input
also improves trustworthiness of the generated randomness. Hardware faults or
malicious tampering with entropy sources may result in biases in the random-
ness that are not detectable. Our approach is protected against such faults or
malicious tampering.

Our work is the first construction of a full TRG that uses only human game
play. Using human users to construct TRGs with higher rate is an interesting
direction for future work.

References

AB09. Arora, S., Barak, B.: Computational complexity: a modern approach,
vol. 1. Cambridge University Press, Cambridge (2009)

Ali13. Alimomeni, M.: Sheep-wolf game to generate true random numbers by
human (2013), http://pages.cpsc.ucalgary.ca/~malimome/expander/

BK12. Barker, E., Kelsey, J.: Recommendation for the entropy sources used for
random bit generation (August 2012),
http://csrc.nist.gov/publications/drafts/800-90/

draft-sp800-90b.pdf

BST03. Barak, B., Shaltiel, R., Tromer, E.: True random number generators secure
in a changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
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Abstract. Peer production projects such as Wikipedia or open-source
software development allow volunteers to collectively create knowledge-
based products. The inclusive nature of such projects poses difficult
challenges for ensuring trustworthiness and combating vandalism. Prior
studies in the area deal with descriptive aspects of peer production, fail-
ing to capture the idea that while contributors collaborate, they also
compete for status in the community and for imposing their views on
the product. In this paper, we investigate collaborative authoring in
Wikipedia, where contributors append and overwrite previous contribu-
tions to a page. We assume that a contributor’s goal is to maximize own-
ership of content sections, such that content owned (i.e. originated) by
her survived the most recent revision of the page. We model contributors’
interactions to increase their content ownership as a non-cooperative
game, where a player’s utility is associated with content owned and cost is
a function of effort expended. Our results capture several real-life aspects
of contributors interactions within peer-production projects. Namely, we
show that at the Nash equilibrium there is an inverse relationship be-
tween the effort required to make a contribution and the survival of a
contributor’s content. In other words, majority of the content that sur-
vives is necessarily contributed by experts who expend relatively less
effort than non-experts. An empirical analysis of Wikipedia articles pro-
vides support for our model’s predictions. Implications for research and
practice are discussed in the context of trustworthy collaboration as well
as vandalism.

Keywords: Peer production, Wikipedia, collaboration, non-cooperative
game, trustworthy collaboration, vandalism.

1 Introduction

Recent years have seen the emergence of a web-based peer-production model for
collaborative work, whereby large numbers of individuals co-create knowledge-
based goods, such as Wikipedia, and open source software [30], [12], [23], [14],
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[18], [24], [19]. Increasingly, individuals, companies, government agencies and
other organizations rely on peer-produced products, stressing on the need to
ensure trust worthiness of collaboration (e.g., deter vandalism) as well as the
quality of end products.

Our focus in this study is Wikipedia, probably the most prominent example
of peer-production. Wikipedia has become one of the most popular information
sources on the web, and the quality of Wikipedia articles has been the topic of
recent public debates. Wikipedia is based on wiki technology. Wiki is a web-based
collaborative authoring tool that allows contributors to add new content, append
existing content, or delete and overwrite prior contributions. Wikis track the his-
tory of revisions similarly to version control systems used in software development
allowing users to revert a wiki page to an earlier revision [25], [36], [15].

Peer production projects face a key tension between inclusiveness and quality
assurance. While such projects need to draw in a large group of contributors in
order to leverage “the wisdom of the crowd,” there is also requirement for ac-
countability, security, and quality control [17], [20], [35]. Quality assurance mea-
sures are necessary not only in cases of vandalism; conflicts between contributors
could also result from competition. For example, contributors to Wikipedia may
wrestle to impose their own viewpoints on an article especially for controversial
topics or attempt to dominate subsets of the peer-produced product. Another
example is when contributors seeking status within the community compete to
make the largest contribution, and in the process overwrite others’ previous con-
tributions. The result of such competitions is often “edit wars” where articles
are changed back-and-forth between the same contributors.

Prior studies investigating an individual’s motivation for contributing content
to Wikipedia have identified a large number of motives driving participation
[12], [22], including motives that are competitive in nature, such as ego, reputa-
tion enhancement, and the expression of one’s opinions [22], [26]. However, stud-
ies investigating individuals did not consider the competitive dynamics emerging
from motives such as reputation. Research into group interactions at Wikipedia,
have tended to emphasize the collaborative (rather than competitive nature of
interactions) [12]. Other studies investigated threats to security and trustworthi-
ness resulting from malicious attacks (i.e. vandalism) [22] and the organizational
mechanisms used by Wikipedia to combat such attacks [26]; yet these stud-
ies do not consider threats resulting from benevolent contributors. A relevant
strand of the literature has looked at conflicts of opinions between contributors
[13], [12]. However, the focus is on the result of these conflicts on content qual-
ity rather than the competitive mechanisms driving them. In summary, while
peer-production projects, and in particular Wikipedia, have attracted signifi-
cant attention within the research community, to the best of our knowledge, the
competitive dynamics have not been investigated.

In order to better understand collaboration in Wikipedia and capture the
competitive nature of interactions, we turn to game theory. Our underlying as-
sumption is that a contributor’s goal is to maximize ownership of content sec-
tions, such that content “owned” (i.e. originated) by that user survived the most
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recent revision of the page. We model contributors’ interactions to increase their
content ownership, as a non-cooperative game. A contributor’s motivation for
trying to maximize her ownership within a certain topical page could be based
on the need to express one’s views or to increase her status in the community;
and competition could be the result of battles between opposing viewpoints (e.g.
vandals and those seeking to ensure trustworthiness of content) or consequences
of power struggles. The utility of each contributor in the non-cooperative game
is the ownership in the page, defined as the fraction of content owned by the
contributor in the page. Each contributor suffers a cost of contribution which is
the effort expended towards making the contribution. The objective is then to
determine the optimal strategies, i. e., the optimal number of contributions made
by each contributor, so that her net utility is maximized. Here, the net utility
is the difference between the utility (a measure of the ownership) and the cost
(a measure of the effort expended). The optimal strategies are determined by
determining the Nash equilibrium of the non-cooperative game that models the
interactions between the contributors. We determine the conditions under which
the Nash equilibrium of the game can be achieved and find its implications on
the contributors’ expertise levels on the topic. We report of an empirical analy-
sis of Wikipedia that validates the model’s predictions. The key results brought
forth by our analysis include

– The ownership of contributors increases with the decreasing levels of effort
expended by the contributor on the topic.

– Contributors expending equal amount of effort end up with equal ownership.

The rest of the paper is organized as follows. The non-cooperative game that
models the interactions between contributors is described in Section 2. We then
use Wikipedia data to validate the modeling in Section 3. We then discuss in
Section 4 the relevance of our analysis and modeling to trust worthy collaboration
and vandalism. Conclusions are drawn in Section 5 along with pointers to future
directions.

2 User Contribution as a Non-cooperative Game

We model the interactions of the N content contributors to a page (i.e., users)
as a non-cooperative game. The strategy set for each contributor is the amount
and type of contribution she makes. Table 1 describes the notations used in our
analysis. and their descriptions.

Let xi represent the content owned by the ith user in the current version of
the page. We define the utility, ui, as the fraction of content owned by the ith

contributor, and is given by

ui =
xi∑N
j=1 xj

. (1)

The objective of contributor i is to determine the optimal xi so that ui is
maximum.
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Table 1. Variables used in the analysis in this paper

Notation/Variable Description

N Number of users or content contributors

xi The amount of content owned by the ith user
βi Effort expended by user i to make unit contribution

ui The fractional ownership held by the ith user
ni Net utility of contributor i
1 The all-one vector
I The identity matrix

It is observed from (1) that the optimal xi that maximizes ui is xi = ∞.
This is because the utility function is an increasing function of xi. Intuitively,
this result occurs because every time the ith user makes a contribution, his/her
ownership increases. However this results in reduction in the ownership of other
contributors, to counter which, they attempt to make additional contributions
(by increasing their respective xk’s). This, in turn, reduces the ownership of con-
tributor i, thereby causing him/her to further increase xi to increase ownership.
This process continues ad infinitum resulting in xi → ∞, ∀ i. This degenerate
scenario can be mitigated as follows.

Suppose the ith contributor expends an effort, βi, to make a unit contribu-
tion. For instance, βi can be the cost incurred by the ith user, in terms of time
and effort spent in learning the topic and in posting content on a Wiki page.
Therefore, the ith contributor expends a total effort βixi, to achieve xi amount
of content ownership in the page. The net utility experienced by the ith contrib-
utor, ni, can be written as the difference between utility of contributor i, given
by (1) and the total effort expended by contributor i, i. e.,

ni = ui − βixi =
xi∑N
j=1 xj

− βixi. (2)

It is observed that the net utility obtained by the ith contributor not only de-
pends on the strategy of the ith contributor (i.e., xi), but also on the strategies
of all the other contributors (i.e., xj , j �= i). This results in the non-cooperative
game of complete information [29] between the contributors. The optimal xi,
∀ i (termed as x∗

i ), which is determined by maximizing ni in (2), is then the
Nash equilibrium of the non-cooperative game where no contributor can make
a unilateral change.

Applying the first order necessary condition to (2), x∗
i is obtained as the

solution to

∂ni

∂xi

∣∣∣
xi=x∗

i

=

∑N
k=1
k �=i

x∗
k

(
∑

N
j=1 x∗

j)
2 − βi = 0, ∀i (3)

subject to the constraints x∗
i ≥ 0, ∀ i. From (3), we obtain ∂2ni

∂x2
i
= −

2
∑N

k=1
k �=i

xk

(
∑

N
j=1 xj)

3 <

0, ∀ i, when xi ≥ 0. Thus, ni is a concave function of xi and x∗
i , which solves
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(3) subject to x∗
i ≥ 0, ∀ i, is a local as well as a global maximum point. In

other words, according to [28], the non-cooperative game has a unique Nash

equilibrium, x∗ =
[
x∗
1 x∗

2 · · · x∗
N

]T
, obtained by numerically solving the system

of N non-linear equations specified by (3). However, to study the effect of the
effort levels (βi’s) on the strategies of the contributors, it is desirable to obtain
an expression that relates the vectors, x∗, x = [xi]1≤i≤N and β = [βi]1≤i≤N .

Re-writing (3), (∑N
j=1 x

∗
j

)2

− αi

∑N
j=1
j �=i

x∗
j = 0, ∀N, (4)

where αi
�
= 1/βi. Eqn. (4 ) can be written as

(x∗)
T
11Tx∗1−Dα

(
11T − I

)
x∗ = 0, (5)

where (.)T represents the transpose of a vector or a matrix, Dα is the diagonal
matrix diag (α1, α2, · · · , αN ), 1 is the column vector in which all entries are one,
0 is the column vector in which all entries are zero and I is the identity matrix.

It can be easily verified the vectors, y1 =
[

1√
N

1√
N

1√
N

1√
N

· · · 1√
N

]T
and

for j = 2, 3, · · ·, N , yj =
[
y1j y2j y3j · · · y(N−1)j yNj

]T
, where

ykj =

⎧⎪⎨⎪⎩
1√

j(j−1)
k < j

− j−1√
j(j−1)

k = j

0 k > j,

(6)

form a set of orthonormal eigen vectors to the matrix, 11T . The eigen value
corresponding to y1 is N and those corresponding to y2, · · · ,yN are 0s. Let
P = [y1|y2| · · · |yN ]. Then, P is an orthogonal matrix and by orthogonality
transformation,

PT11TP = D = diag (N, 0, 0, · · · , 0) . (7)

Let z =
[
z1 z2 z3 · · · zN−1 zN

]T
. Since the eigen vectors of a matrix form a

basis for the N−dimensional sub-space [27], the vector, x∗, can be written as
x∗ = Pz. A similar expression has been solved in [10] in the context of pricing in
wireless networks and we outline here the key steps to determine the optimal x∗.

– Using x∗ = Pz in (5) and (7), we obtain

zTDz1−Dα

(
11T − I

)
Pz = 0. (8)

– The above is a set of non-linear equations in z, in which the kth equation
depends on z1 and zj , k ≤ j ≤ N . Solving the non-linear equations by
backward substitution [27], zk, 2 ≤ k ≤ N can be written in terms of z1 as

zk√
k(k − 1)

=
Nz21

k(k − 1)

⎡⎣ k

αk
+

N∑
j=k+1

1

αj

⎤⎦− z1√
N

N(N − 1)

k(k − 1)
. (9)
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– Using (9) to replace all zk’s in terms of z1 in the set of non-linear equations
in (8), z1 can be obtained as

z1 =
N − 1√

N

1

G
, (10)

where

G
�
=

N∑
j=1

1

αj
. (11)

– Combining (9) and (10),

zk√
k(k−1)

= (N−1)2

k(k−1) G
−1

[
G−1

(
k
αk

+
∑N

j=k+1
1
αj

)
− 1

]
2 ≤ k ≤ N. (12)

– Using the facts x∗ = Pz, and αi = 1
βi

in (10) and (12), the unique Nash
equilibrium of the non-cooperative game can be obtained as

x∗
i =

∑N
j=1 βj − (N − 1)βi(∑N

j=1 βj

)2 . (13)

Note that the unique Nash equilibrium x∗, is feasible, i.e., x∗
i > 0, ∀ i if and

only if

(N − 1)βi <

N∑
j=1

βj . (14)

The utility (ownership) of contributor i at the Nash equilibrium, u∗
i , can then

be obtained from (1) and (13) as,

u∗
i =

[
1−

(
(N − 1)βi∑N

j=1 βj

)]+

, (15)

where x+ = max(x, 0). It is observed that the ownership u∗
i is non-zero if and

only if (14) is satisfied, i.e., if the Nash equilibrium is feasible. The condition in
(14) and the expression in (15) have the following interesting implications.

– From (15), the ownership of contributors depend on the βj of all the contrib-
utors. This is intuitively correct in a peer production project like Wikipedia
because contributions are made by multiple users and the ownership held
by a user will depend on the effort of all the users that worked together in
making contributions to the page.

– The expression in (15) indicates that contributors who expend smaller effort
have larger ownership and those who expend larger effort have low ownership,
i.e., the fractional content ownership is a decreasing function of the effort
expended.
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– Asymptotically, i.e., as the number of contributors, N , becomes large, the
ownership, u∗

i in (15), can be written as

ui∗ =

(
1− βi

E[β]

)+

, (16)

where E[β]
�
= 1

N

∑N
j=1 βj , is the average effort of all the users that make

contributions to the page. From (16), only those contributors for whom βi <
E[β], i.e., only those contributors whose effort is below the average effort
expended in posting content to a page, end up with non-zero ownership. In
other words, given the effort involved in making a contribution, and the ease
in which others can overwrite one’s contributions, only those who expend
less effort in making their contributions than the average effort required,
end up with non-zero ownership.

3 Empirical Validation with Data

While the non-cooperative game theoretic models developed in Section 2 are
based on intuitive notions of ownership and effort, it is necessary to validate
these with real data from contributions to Wikipedia articles. We require a set
of Wikipedia articles with data on: (a) the content “owned” by contributors
at each revision (which can be analogous to the utility, u∗

i in (15) and (b) the
cumulative effort exerted by each contributor (including all of his/her contri-
butions) up to each revision, which can represent the effort, βi, used in the
expressions in (12) and (15). We use the data set from Arazy et al [13], who
explored automated techniques for estimated Wikipedia contributors’ relative
contributions. The data set in [13] includes nine articles randomly selected from
English Wikipedia. Each article was created over an average period of 3.5 years.
Section 3.1 presents the details of the data set in [13] and Section 3.2 provides
a validation of the same against the models developed in Section 2.

3.1 Extracting Data from Wikipedia Articles

The content “owned” by contributors at the end date of each article period
was calculated using the method described in [13]. A sentence was employed
as the unit of analysis, and each full sentence was initially owned by the con-
tributor who added it. As content on a wiki page evolves, a contributor may
lose a sentence when more than 50% of that sentence was deleted or revised. A
contributor making a major revision to a sentence can take ownership of that
sentence. The algorithm tracks the evolution of content, recording the number of
sentences owned by each contributor at each revision, until the study’s end date.
The effort exerted by each contributor was, too, based on the method and data
set described in [13]. Two research assistants worked independently to analyze
every “edit” made to the 9 articles in the sample set and record: contributor’s
ID; the type of each “edit” to the wiki page (the categories used included: add
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Table 2. The list of articles for the data set in [13] and their attributes

Article title Start Date End Date Duration Edits Unique
(MM/DD/YYYY) (MM/DD/YYYY) (years) Editors

Aikodo [1] 11/29/2001 06/13/2004 2.5 72 62

Angel [2] 11/30/2001 12/09/2005 4.0 341 277

Baryon [3] 02/25/2002 08/25/2005 3.5 73 62

Board Game [4] 11/04/2001 12/30/2004 3.2 220 155

Buckminster Fuller [5] 12/13/2001 07/14/2004 2.6 65 55

Center for Disease 10/16/2001 03/05/2006 4.4 65 58
Control and Prevention [6]

Classical Mechanics [7] 06/06/2002 08/13/2006 4.2 202 165

Dartmouth College [8] 10/01/2001 08/26/2004 2.9 70 55

Erin Borockowich [9] 09/24/2001 02/02/2006 4.4 59 54

Total 31.7 1167 943

Average 3.5 129.7 104.8

new content, improve navigation, delete content, proofread, and add hyperlink);
the scope of each edit (on a 5-point scale, from minor to major). For example, a
particular edit might be categorized as major addition of new content. The two
assessors reviewed the “History” section of articles (where Wikipedia keeps a
log of all changes to a page), comparing subsequent versions. Once the assessors
completed their independent work, and inter-rater agreement levels were calcu-
lated (yielding very high levels of agreement), the average of the two assessors
was used in the analysis. Finally, the above data set was used to obtain the
following parameters on each Wikipedia article listed in Table 2:

– The number of exclusive contributors/users (N)
– The total effort expended by the ith user (1 ≤ i ≤ N), si
– The number of edits made by the ith user (1 ≤ i ≤ N), ei
– The number of sentences owned by the ith user (1 ≤ i ≤ N), pi.

The following subsection provides a detailed explanation on how we use these
parameters to verify the game theoretic analysis described in Section 2.

3.2 Numerical Verification of the Analysis

Using the set of parameters obtained from the pages in Table 2, listed in Section
3.1, we compute the effort expended by user i for unit contribution, βi, as

βi =
si
ei
. (17)

Using the βi’s thus obtained, we use the expression in (15) to determine the
estimated fractional ownership on the Wikipedia page, that will be held by each
contributor. We compare this with the fraction pi∑N

j=1 pj
Figs. 1, 2 and 3 show

the comparison between the ownership obtained according to the game theo-
retic analysis described in Section 2 and that given by the data set in [13] for
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Fig. 1. Ownership of contributors obtained by the game theoretic analysis presented in
Section 2 (described by the legend, “Analysis”) and the data obtained from Wikipedia
pages according to the algorithm in [13] (described by the legend, “JASIST data”),
for the page, “Aikido”. Contributors/Authors are indexed according to the decreasing
order of effort, βi’s.
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Fig. 2. Ownership of contributors obtained by the game theoretic analysis presented in
Section 2 (described by the legend, “Analysis”) and the data obtained from Wikipedia
pages according to the algorithm in [13] (described by the legend, “JASIST data”), for
the page, “Board Game”. Contributors/Authors are indexed according to the decreas-
ing order of effort, βi’s.
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Fig. 3. Ownership of contributors obtained by the game theoretic analysis presented in
Section 2 (described by the legend, “Analysis”) and the data obtained from Wikipedia
pages according to the algorithm in [13] (described by the legend, “JASIST data”), for
the page, “Erin Borockowich”. Contributors are indexed according to the decreasing
order of effort, βi’s.

the Wikipedia pages, “Aikido”, “Board Game” and “Erin Borockowich”, respec-
tively. For this first analysis, we anonymized the data set, indexing the users in
the decreasing order of βis. We find that the patterns in the empirical data and
that of the game-theoretic model closely match one another. In particular, the
empirical data validates the following predictions made by the game theoretic
model in Section 21.

1. Equivalence Classes:
(a) Let the users be classified into equivalence classes according to their frac-

tional ownership, i.e., all users having equal fractional ownership in the
Wikipedia page belongs to the same equivalence class. It is observed that
each page has five to six equivalence classes. For instance, Aikido, has five
equivalence classes (Fig. 1) and Board game (Fig. 2) and Erin Borock-
owich (Fig. 3), have six equivalence classes each. Note that the number of
equivalence classes obtained from the data is the same as that predicted
by the game theoretic analysis described in Section 2.

(b) From (15), u∗
i = u∗

j if and only if β∗
i = β∗

j . This indicates that the
distribution of the data into number of equivalence classes applies not
only to fractional ownership, but also to the effort expended by users. In
other words each Wiki page is expected to have five to six categories of
contributors/users. A more detailed analysis of the distribution suggests

1 These trends were observed not only for the three articles shown in Figs. 1-3 but
also for all the nine articles listed in Table 2. We show results for three articles here
due to lack of space.
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that the majority of users fall into the equivalence middle classes, while
the classes on the extreme representing very low and very high levels of
effort (and content ownership) comprise of relatively few users. While the
above can be inferred from the data alone, the game theoretic analysis
provides a mathematical framework that validates this observation.

2. Non-zero Ownership: It is observed from (15) that u∗
i = 0 if and only if

the condition in (14) is violated. The number of users in our sample data with
zero ownership matches the number predicted by the game-theoretic model
thus providing validation for the condition (14) (at least for the Wikipedia
pages included in our analysis). Again, it is observed that the relation between
the number of users with zero ownership and their corresponding βi’s could
have been inferred from the data alone, the game theoretic analysis presented
in Section 2 provides a mathematical framework to model this phenomenon.

After establishing that the general trend (i.e. anonymized data) for the em-
pirical data and the model’s predictions match one another, we perform a more
detailed analysis where we pay attention to users’ identities. That is, we organize
both data sets, namely the fractional ownership data taken directly from [13]
and the ownership values our model in Section 2 predicted, for each user. We
then calculate the correlation between the two data sets, using the Pearson’s
correlation coefficient [23]. The result of the analysis for the nine articles in our
data set is presented in Fig. 4. As could be seen from the figure, correlation co-
efficients range between 0.47 and 0.88, representing moderate-high correlation.
When combining the entire data from the nine articles into a single data set,
the Pearson correlation was 0.65 (with a p−value, p ≈ 0.04). Therefore, we now
proceed to verify if the discrepancies in the values of the ownership obtained by
the game theoretic analysis and that obtained from the data can be offset by
establishing a linear fit that maps the set of values obtained by analysis to the
ones obtained from the data.

Let a
�
=

[
a1 a2 a3 · · · aN

]
represent the ownership of the contributors ob-

tained by the game theoretic analysis and let d
�
=

[
d1 d2 d3 · · · dN

]
represent

the ownership of the contributors obtained from the data as described in [13].
For each page, we fit a function

d̂i = ρai + δ 1 ≤ i ≤ N, (18)

where the parameters ρ and δ are obtained by the method of least squares [27].
We use the values for the pages “Aikido”, “Angel”, “Baryon” and “Board Game”
as the training data to obtain ρ and δ. We then use the values of ρ and δ thus
obtained to determine d̂i for the other five pages. We then compare d̂i and di
and compute the estimation error for each page. Fig. 5 shows the estimation
error for the remaining five pages. It is observed that the error is between 7-9%.
The error for the training set of data was found to be around 5%. This indicates
that the game theoretic analysis presented in Section 2 models the contributor
interactions in peer production projects like Wikipedia accurately upto a linear
scaling factor.
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Fig. 4. Pearson correlation co-efficient between the values of the fractional ownership,
u∗
i , obtained from the data in [13] and that obtained by the analysis in Section 2
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Fig. 5. Estimation error for the linear fit by the method of least squares. The values
of the fractional ownership, u∗

i , obtained for the pages, “Aikido”, “Angel”, “Baryon”
and “Board Game” are used as training data for the linear fit.

4 Trustworthy Collaboration and Vandalism

An important insight provided by our non-cooperative game model (and vali-
dated by our empirical analysis) is that only contributors with below-average
effort levels are able to maintain fractional ownership on wiki pages. That is, by
and large only the edits made by contributors who exert little effort survive the
collaborative authoring process. In Section 1, we referred to two key concerns
that are associated with trustworthy collaboration in peer-production projects:
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(a) a risk that non-experts will contribute content of low quality, and (b) a threat
that malicious participants would vandalize Wikipedia pages. In spite of these
serious concerns, the content on Wikipedia articles is generally of high quality
and Wikipedia maintains the status as one of the most reliable sources of infor-
mation on the web [20]. How then, does Wikipedia maintain high-quality content
in the face of threats of low-quality or malicious contributions? Our results can
have important implications for investigation of trustworthy collaboration on
Wikipedia (and more broadly, in peer-production projects). In the sections that
follow, we provide two interpretations of our results that help explain how the
threats highlighted above are mitigated.

1. Trustworthiness/Quality of Wikipedia pages: The first interpretation
of the model and its empirical validation involves the concern of non-expert,
low quality contributions eroding the trustworthiness of peer-produced prod-
uct. This interpretation suggests that low effort is associated with greater
likelihood of content survival due to a skill advantage: contributors who are
experts in their field of contribution expend less effort, and their contribu-
tions are of higher quality [11]. Thus, the effort associated with contribution
is inversely related with its quality and consequently with its likelihood of
survival of subsequent editing.

2. Vandalism: The second interpretation concerns the danger of vandalism ac-
tivities reducing the trustworthiness of the peer-produced products. Since
the underlying Wiki mechanisms allow any editor to easily revert the edits of
other contributors, the effort involved in vandalistic edits is higher than the
effort of reverting such edits. Thus, high effort is associated with vandalism
and relatively lower effort is linked to correction of vandalism. The game the-
oretic analysis presented in Section 2 predicts that the contributions made
by users expending large effort do not survive the edit process and end up
with zero ownership. Therefore, most vandalistic edits would not survive over
time, as also observed in [21], [33], [32].

In summary, following on the intuition observed in [21], [33], [32], we mod-
eled competition between players as a non-cooperative game, where a player’s
utility is associated with surviving fractional content owned, and cost is a func-
tion of effort exerted. Broader design implications emerging from this interpre-
tation include the need to make version control mechanisms not only highly
usable, but also highly open and egalitarian, and accessible to participants in a
peer-production process. In addition, these insights suggest the importance of
concurrent use of other quality control mechanisms, including user-designated
alerts (where users are notified when changes are made to an article, or other
part of the collaboratively-created product); watch lists (where users can track
certain articles); and IP or user blocking in cases where repeated attacks from
the same source are deemed to be acts of vandalism. The combination of these
mechanisms make three important contributions to the trustworthiness of peer-
production projects: first, their existence deter potential vandals; second, they
reduce the costs of identifying and responding quickly to attacks; and third, they
enable users to easily revert the consequences of vandalism .
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5 Conclusion

To better understand the success of peer production, we developed a
non-cooperative game theoretic model of the creation of Wikipedia articles. The
utility of a contributor was her relative ownership of the peer-produced product
that survived a large number of iterations of collaborative editing. The work pre-
sented here contributes to better understanding of the trustworthiness of
peer-production by

– Solving the game and demonstrating the conditions under which a Nash equi-
librium exists, showing that asymptotically only users with below average
effort would maintain ownership

– Empirically validating the model, demonstrating that only users with be-
low average effort would maintain ownership, as well as showing editors’
equivalence classes

– Offering interpretations and implications for research on trustworthy peer-
production (in terms of expertise and vandalism).

To the best of our knowledge, this is the first modeling of user interactions on
Wikipedia as a non-cooperative game. Our analysis points to the benefits of
deploying multiple mechanisms which afford the combination of large-scale and
low-effort quality control as way to ensure the trustworthiness of products cre-
ated through web-based peer-production. Further research is needed to analyze
the effectiveness of each of these mechanisms, and to address other aspects of
peer production through game theoretic analysis.
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Abstract. We study controllability and stability properties of dynami-
cal systems when actuator or sensor signals are under attack. We formu-
late a detailed adversary model that considers different levels of privilege
for the attacker such as read and write access to information flows. We
then study the impact of these attacks and propose reactive countermea-
sures based on game theory. In one case-study we use a basic differential
game, and in the other case study we introduce a heuristic game for
stability.

1 Introduction

The security of cyber-physical control systems has received significant attention
in the last couple of years [1,2,3,4,5,6]. In this document we focus on controlla-
bility and stability properties of dynamical systems and discuss the theoretical
background to analyze how these properties behave under attacks.

The first part of the paper focuses on defining a threat model and risk-
assessment analysis based in the theory of linear state space systems and is
general enough to be applicable to a wide-range of cyber-physical systems.

The second part of the paper covers reactive security—when the control signal
of the defender changes in response to attacks—as a game between a controller
and an attacker.

2 System Model

Probably the most general and widely used framework in control systems is the
theory of Linear Time Invariant (LTI) state space systems. In this setting we
consider a forced (i.e., non-homogeneous) system of linear differential equations:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (1)

where x(t) ∈ Rn is a vector of physical quantities representing the state of the
system at time t, u(t) ∈ Rp is the control input at time t, y(t) ∈ Rq is a vector
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of sensor measurements at time t, and A,B,C and D are matrices representing
the dynamics of the system.

Even when the system under control exhibits non-linear dynamics, non-linear
systems can usually be approximated by linear systems to study their properties
near their region of operation (we will show an example of this linearization in
one of the case studies in the paper).

3 Control/Security Properties

Similar to security properties such as confidentiality, integrity, and availability,
there are several control properties that a system designer or plant operator
would like to maintain, even under attack.

In the theory of linear state space systems, two fundamental (and dual) prop-
erties are controllability and observability. In this paper we focus on controlla-
bility properties.

Controllability means that the state of the system can be driven to any
arbitrary place by using the manipulated variables (i.e., the control input). An
LTI system is controllable iff

rank([B AB · · · An−1B]) = n (2)

Another important property of a control system is stability. There are several
notions of stability (asymptotic stability, Lyapunov stability, BIBO stability,
etc.); however, they all intuitively describe the notion that the state x(t) of the
system will converge (or remain relatively close) to a desired set point x∗ after
disturbances.

Stabilizability is a weaker notion of controllability, and it is satisfied if the
uncontrollable modes of the system are stable.

4 Attack Model

In this section we define an attack model for control systems containing three
part: goals of the attacker, offline information, and online information.

4.1 Goals of an Attacker

While in a general setting an attacker can have many different objectives, in
this paper we focus on attackers that try to manipulate the controllability or
stability of the system.

Obtain Control: One goal can be to obtain controllabilty of the system with
the minimal attack effort: find the smallest set of controller compromises ua such
that the system becomes fully controllable by the attacker.

Disrupt Control: A weaker objective can be to simply make the system un-
controllable to the defender (even if the system is also uncontrollable by the
attacker).

Make the System Unstable: If the control strategy of the defender is fixed,
a different objective available to the attacker is to make the system unstable.
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4.2 Offline Information Available to the Attacker

Well-informed attackers can create more precise attacks and can determine with
confidence the effect of their actions. In this paper we assume the attacker has
access to the following information:

System Parameters: Matrices A,B,C,D. Without knowledge of these matri-
ces, attacks will have random effects and the consequences will be unpredictable
by the attacker.

Control Algorithm: The attacker knows the output u(t) the controller will
give to any sensor values y(t). One simple example is when y(t) = x(t) and
u(t) = Kx(t). In this example, if the attacker knows the control algorithm, it
means the attacker has knowledge of the matrix K.

4.3 Online Information (and Access) Available to the Attacker

Table 1. Online Capabilities of the Attacker

Impact Explanation

Read-
Only
y(t)

The attacker can get information on state
of the system. It can estimate the state if
the system is observable or partially esti-
mate some modes.

The attacker can eavesdrop on y(t)
but cannot send fake ya(t) values
(i.e., it cannot impersonate itself as
the controller to the actuator).

Write-
Only
y(t)

The attacker can launch deception (also
known as false data injection) attacks to
the controller, but without having knowl-
edge of the state of the system.

The attacker can impersonate itself
to the controller, but cannot eaves-
drop on legitimate sensor readings
y(t).

Read-
Write
y(t)

The attacker can try to estimate the state
of the system and use that information to
launch deception attacks.

The attacker can eavesdrop on u(t)
and send false sensor readings ya(t)
to the controller.

Read-
Only
u(t)

If the attacker knows the initial state x0

and has access to u(t) since time t0, it can
estimate the state of the system.

Attacker can eavesdrop on u(t) but
cannot send fake ua(t) values (i.e.,
it cannot impersonate itself as the
controller to the actuator).

Write-
Only
u(t)

The attacker can manipulate the output of
the actuator.

The attacker can impersonate itself
to the actuator, but cannot eaves-
drop on legitimate u(t) commands.

Read-
Write
u(t)

The attacker can manipulate the output
of the actuator and has information of the
original intended control signal.

The attacker can eavesdrop on u(t)
and send false ua(t) commands to
the actuator.

In this section we propose two tables describing a new attacker model that
considers the information attackers have online, and the privilege access they
have over the regulatory control loop–in this paper we leave out of the scope
supervisory, hierarchical, and human-machine interface attacker models.
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Table 2. Examples of Attacks. Empty blocks can be considered as combinations of
attacks described in the first row and the first column. In practice, an attacker that
compromises a PLC can potentially change (depending on the architecture of the PLC)
the sensor readings and send them to other PLCs or Human Machine Interfaces. We
do not consider this case here as our focus is regulatory control.

No Acces to u(t) Read-Only u(t) Write-Only u(t) Read-Write u(t)

No Ac-
cess to
y(t)

No Attacks. The attacker has
physical access to
the actuator and
can read the analog
signals it receives.

The attacker installs
its own actuators.

Man-in-the-Middle
between PLC and
actuator.

Read-
Only
y(t)

The attacker installs
its own sensors.

The attacker com-
promises a PLC.

Write-
Only
y(t)

Attacker uses physi-
cal attack (e.g., move
a temperature sensor
to a refrigerator).

Attacker changes
configuration param-
eters of PLC.

Read-
Write
y(t)

The attacker obtains
the secret keys of the
sensors.

We assume attackers can control a subset of sensors or actuators, but they will
have different level of access depending on the model assumed. For example an
attacker might be able to get read access to the sensors but not write access; or it
can get write-only access to the actuators but not read-access. We think this level
of granularity is very important to model precisely what the attackers can do to
the system and we argue that this level of granularity has been missing in a lot of
the previous work for the security of control systems. The proposed information
and privilege-level of attackers during run-time can be seen in Table 1. Examples
of when do these assumptions make sense are given in Table 2

5 Attacking Controllability

Using the attacker model defined in the last section, we now turn to the problem
of how controllability and stability can be attacked. This analysis can be used
for risk assessment by identifying the resiliency of the system to attacks or to
identify the actuators and sensors that are most valuable to the system.

5.1 Attacking Controllability with u(t)

When an attacker has Write-Only or Read-Write access to a subset of control
signals ua (it does not matter which), because the ordering of the vector x is
arbitrary, we can always partition the system in the following form:
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ẋ = Ax+

[
B11 B12

B21 B22

] [
us

ua

]
ẋ = Ax+

[
B11

B21

]
us +

[
B12

B22

]
ua

ẋ = Ax+Bsus +Baua (3)

where Bs = [B11 B21]
T , Ba = [B12 B22], us represents the first s rows of the

vector u and ua the remaining rows (which we assume are under the control of
the adversary).

Table 3. Assuming the original system is controllable, we can study the impact to the
system when the attacker obtains write-access to the subset of actuators ua(t). For the
third and last rows, the attacker needs to change the parameter of the controller Ka

or needs to get access to sensor readings to estimate x(t).

Defender
us(t)

Attacker
ua(t)

Attacker Goal Result

Kx(t) arbitrary Obtains controllability iff: rank([Ba AsBa · · · An−1
s Ba]) = n

arbitrary 0 (DoS) Disrupts controllability iff: rank([Bs ABs · · · An−1Bs]) < n

arbitrary Kax(t) Disrupts controllability iff: rank([Bs AaBs · · · An−1
a Bs]) < n

arbitrary arbitrary Maximize cost for defender
at minimum effort

Differential game. Section 6

Ksx(t) Kax(t) Destabilize the system Heuristic stability game. Section 8

With this model we can now ask questions regarding the vulnerability of the
system under attack. We study three cases as described in Table 3. These cases
are just a few examples of the type of questions we can ask about the system
under attack and are not exhaustive. In the next paragraphs we explain how we
obtained the results of Table 3.

Attacker Goal: Obtain Control with Integrity Attacks. A common con-
trol strategy is to use state-feedback, where the original control signal (the con-
trol signal without attack) looks like u = Kx.

If the system is under attack (as described in Eq. (3)), only a portion of these
control signals will maintain their integrity, thus:

u =

[
us

ua

]
=

[
Ksx
ua

]
(4)

where Ks are the first s rows of the original matrix K.
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With state feedback, the dynamical system under attack becomes:

ẋ = Ax+BsKsx+Baua

ẋ = (A+BsKs)x+Baua

ẋ = Asx+Baua (5)

where As = (A + BsKs). Therefore an attacker can obtain complete state con-
trollability of the system iff

rank([Ba AsBa · · · An−1
s Ba]) = n (6)

Attacker’s Goal: Disrupt Control with Denial-of-Service Attacks. Be-
cause this is a set of forced differential equations, a denial-of-service means the
forcing function would not be available. Therefore, if the attacker performs a
denial-of-service attack on the system defined by Eq. (3), we get ua(t) = 0 and
thus the resulting dynamical system is:

ẋ = Ax+Bsus (7)

In this setting, an attacker can disrupt complete state controllability of the
system via DoS attacks iff

rank([Bs ABs · · · An−1Bs]) < n (8)

Attacker’s Goal: Disrupt Control with a State Feedback Integrity
Attack. In some cases the attacker can disrupt controllabilty of the system
via simple state feedback attacks with an appropriate attack gain matrix Ka.
Replacing this state feedback attack in Eq. (3), we get:

ẋ = Ax+BsKax+Bsus

ẋ = (A+BaKa)x+Bsus

ẋ = Aax+Bsus. (9)

In this setting, an attacker can disrupt complete state controllability of the
system via state-feedback integrity attacks iff

rank([Bs AaBs · · · An−1
a Bs]) < n (10)

5.2 Attacking Controllability with y(t)

In this section we show that when the defender uses state feedback control, the
adversary can use sensor measurements to reduce the problem to that of Eq. (3),
and therefore, we can reproduce all the results we summarized in Table 3.

In a general LTI setting, the sensor measurements y(t) are a function of the
state and the inputs, and to deal with attackers that compromise the integrity of
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sensors we would need to consider observability and the design of state estima-
tors. In this paper we make the assumption that y(t) = x(t) (a valid assumption
in many practical cases) and we leave the more general problem of attacks to
the observability of the system for future work.

As in the previous section, we assume that the defender is using a state-
feedback control law, i.e., u(t) = Kx(t). Therefore, if the sensors are not com-
promised, the evolution of the system will follow the equation:

ẋ = (A+BK)x (11)

However, if some of the sensors are compromised with Write-Only or Read-
Write access to a subset of sensor signals ya(t) = xa(t), then the evolution of
the dynamical system will change to the following equation:

ẋ = Ax+

[
B11K11 B12K12

B21K21 B22K22

] [
xs

xa

]
ẋ = Ax +

[
B11K11 0
B21K21 0

]
x+

[
B12K12

B22K22

]
xa

ẋ = Ax+ (BK)sx+ (BK)axa

ẋ = (A+ (BK)s)x+ (BK)axa

ẋ = Asx+Baua (12)

Note that Eq. (12) has the same form as Eq. (3), however, in this case

As = A+

[
B11K11 0
B21K21 0

]
, Ba =

[
B12K12

B22K22

]
, and ua = xa (13)

where the fake sensor measurement xa(t) becomes in practice, the control signal
of the attacker ua(t).

Thus, any controllability question we can make with Eq. (3)—in particular the
ones summarized in Table 3—can be reproduced in this new setting by analyzing
Eq. (12) with the appropriate matrices.

6 Reactive Security: Differential Games

The primary line of defense for any system are its proactive security mechanisms.
Therefore, in practice we must use the threat model to identify the most valuable
targets for an adversary and invest in protecting them. In this paper, however,
we focus on reactive security mechanisms; that is, we focus on algorithms for
responding to attacks.

If an attack is detected, the defender can respond with different actions. Some
of the possible responses include reconfiguration of the system, attack isolation,
or even a system shutdown (for safety reasons). In this work we are interested
in defenses that respond to attacks by changes in their control actions; thus
creating a game-theory problem where the actions of the players are the control
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signals each of them has access to. In particular, we assume that if the system
is not under attack, the system will operate with a vanilla control signal u(t);
however, when the system detects an attack, it changes to a reactive control
signal us(t) to maintain the system under the best possible conditions. This
creates a differential game between the defender and the attacker.

The theory of noncooperative differential games considers a general dynamical
system

ẋ(t) = f(t, x, ud, ua), x(0) = x0 (14)

with two (or more in some cases) control signals ud(t) and ua(t), each of them
controlled by a player in the game, and where each player has a utility function
it wants to minimize.

Solutions for a Nash equilibrium in differential games usually consider two
types of solutions, (1) open-loop solutions, and (2) closed-loop solutions.

In open-loop solutions the control signals ui(t) (i = d, a) are independent
of the current state of the system x(t). Open-loop solutions can be computed
by using Pontryagin maximum principle, which results in a system of ordinary
differential equations with two-point boundary value problems.

In closed-loop solutions the control signals ui(t, x) depend on time, and also on
the state of the system x(t). Closed-loop solutions are derived by using the prin-
ciple of dynamic programming, which results in a system of nonlinear Hamilton-
Jacobi partial differential equations. These equations can be ill-posed in general
and thus closed-loop solutions are usually considered under Linear-Quadratic
(LQ) differential games.

An LQ differential game has linear-dynamics and quadratic utility functions.
The dynamical system considered in 2-player LQ games matches Eq. (3):

ẋ(t) = Ax(t) +Bsus(t) +Baua(t)

(15)

while the utility function (for the finite-time case) has the form:

Ji(ud, ua)=

∫ T

0

[
xT (t)Qi(t)x(t) + uT

i (t)Riiui(t) + uT
j (t)Rijuj(t)

]
dt+ xT (T )QT,iX(T )

where i = d, a and j �= i. This utility function is a natural extension to the
traditional optimal control problem.

6.1 Threat Model and Differential Games Solutions

In this section we use our threat model to analyze solutions to differential games.
In particular, we note that open-loop strategies make sense only if an attacker has
Write-Only u(t) and Write-Only y(t). The write-only access to the sensors
(and actuators) will prevent an attacker from estimating the state of the system,
while allowing the attacker to use its control signal to affect the state of the
system. From the defender point of view, since the attacker has write access to
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y(t), the defender cannot trust the sensor readings and will turn to open-loop
control policies as well.

Now we turn our attention to closed-loop strategies. Recall that for closed-
loop control strategies we assume that both players have access to the state of
the system and use it for deciding their next control actions. Therefore these
strategies make sense for an attacker that has Read-only y(t), Write-only
u(t): If the system is observable, or in particular, if y(t) = x(t), then read-only
y(t) allows the attacker to get access to x(t) but does not allow the attacker to
modify the sensor readings. This ensures the defender that the sensor readings
are trustworthy and can be used to obtain x(t) accurately.

7 Differential Game Example

We use a recent model for data integrity attacks in demand-response programs
for the smart grid [7]. The model considers actuator attacks as an aggregate
effect for multi-agent systems that all receive the same input control signal.

The system can be modeled as a scalar differential equation where p denotes
the percentage of agents receiving the real pricing signal, and 1− p denotes the
percentage of compromised agents that receive a fake ua the attack signal.

ẋ = ax+ pbud + (1− p)bua, x(0) = x0 (16)

As discussed before, we consider a game between a defender that wants to
minimize a utility penalizing the deviation of x from the steady state 0 and the
amount of control (the additional price of electricity ud).

Jd(x, ud) =
1

2

∫ T

0

[αx2 + β(ud)
2]dt (17)

And an attacker that wants to maximize the state trajectory deviation from the
target subject with the minimum amount of effort:

Ja(x, ua) =
1

2

∫ T

0

[−αx2 + β(ua)
2]dt (18)

In general, parameters α and β for the objectives of the attacker and the defender
can be different, but we assume they are the same to simplify notation.

We consider open-loop solutions. To find the necessary conditions for opti-
mality of the game (a Nash equilibrium between the two players) we need to use
Pontryagin’s minimum principle.

First we start by defining the Hamiltonian for the defender:

Hd(x, ud, ua, λd) =
1

2
(αx2 + β(ud)

2) + λd(ax+ pbud + (1− p)bua) (19)

and the Hamiltonian for the attacker

Ha(x, ud, ua, λa) =
1

2
(−αx2 + β(ua)

2) + λa(ax+ pbud + (1 − p)bua) (20)
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The necessary conditions for an optimal solution need to satisfy several con-
straints. First we find the partial derivative of the Hamiltonian with respect to
the control inputs:

βu∗
d + λ∗

dpb = 0

βu∗
a + λ∗

a(1− p)b = 0

Therefore, the optimal control action by the defender is:

u∗
d(t) = −λ∗

d(t)pb

β
(21)

(22)

and the optimal control action by the attacker is

u∗
a(t) = −λ∗

a(t)(1 − p)b

β
(23)

To find the evolution of λ∗
a(t) and λ∗

d(t) we find the costate equations:

− λ̇∗
d = αx∗ + aλ∗

d, λ∗
d(T ) = 0

=⇒ − λ̇∗
d

α
= x∗ + a

λ∗
d

α
, λ∗

d(T ) = 0 (24)

and

−λ̇∗
a = −αx∗ + aλ∗

a, λ∗
a(T ) = 0

=⇒ −
(
− λ̇∗

a

α

)
= x∗ + a

(
−λ∗

a

α

)
, λ∗

a(T ) = 0 (25)

We can simplify the analysis by noting that Eq. (24) and Eq. (25) can be
modeled by the following differential equation:

− q̇ = ax∗ + aq, q(T ) = 0. (26)

Once we solve for q(t) w eknow that λ∗
d(t) = αq(t) and λ∗

a(t) = −αq(t).
As shown by Bensoussan [8], Eq. (16) and Eq. (26) can be solved explicitly

by a decoupling argument, resulting in:

x∗(t) = x0
s(es(T−t) + e−s(T−t))− a(es(T−t) − e−s(T−t))

s(esT + e−sT )− a(esT − e−sT )
(27)

where

s =

√
a2 +

α(pb)2 − α((1 − p)b)2

β
(28)

(as long as s is not a complex number)

q(t) = H(t)x∗(t) (29)
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and

1

H(t)
= −a+ s

e2s(T−t) + 1

e2s(T−t) − 1
(30)

7.1 Simulation Results

In this section we illustrate the behavior of the open loop differential game
described by Eq. (16). Let us consider the system parameters a = −4, b = 1,
α = 10, beta = 1, x(0) = 2. Note that the solution x∗(t) of the system is real for
any time t ∈ [0, T ] if x(0) ∈ � and the parameter s (see Eq. (28)) is real for any
p ∈ [0, 1].

The behavior of the system state x, as well as the control actions of each player
for different values of p are depicted in Fig. 1. Although the system converges
to zero for any value of p, the time of convergence is affected by the value of
p. Specifically, when the attacker has control over the majority of the system
inputs, i.e., when 1−p > 0.5, it is able to delay the convergence of the system to
the equilibrium. However, the attacker tends to make more effort in its control

signal as 1− p is increased, i.e.,
∫ T

0 |ua(t)|dt increases as 1− p increases.
The defender experiences a similar behavior. Particularly, if the participation

of the defender p is increased, then the system approaches the stable state faster,

but with a higher cost in resources for the defender, represented by
∫ T

0 |ud(t)|dt.
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Fig. 1. Evolution of the differential game in Eq. (16) considering different values of p

While it is clear that in most practical cases, the defender control action has a
cost associated with it, in practice, the attacker action should not have these cost
constraints. When an attacker compromises a control signal, the player paying
for this control action is the defender, not the attacker. However, if we remove
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the β(ua)
2 from the utility function of the attacker we get an ill-posed problem,

where ua does not have any constraints and cannot be find with the maximum
principle.

8 Heuristic Stability Game

One of the problems with differential games is that the utility functions of the
players usually need to satisfy very specific properties in order to have well-
defined solutions. These properties usually limit the general applicability of these
games, in particular by placing artificial limitations on what the attacker signal
ua(t) can do.

In this section we discuss a stability game where the goal of the defender is
to make the system stable while the goal of the attacker is to make the system
unstable. This binary utility function does not allow this system to be formally
analyzed for equilibrium strategies; however, our goal is to start exploring the
design space to allow more realistic settings that do not impose artificial limita-
tions on what the attack control signal ua(t) needs to satisfy.

A bioreactor is a system designed to provide some environmental conditions
required to carry out a biochemical process. For example, a bioreactor might be
used for processing some pharmaceuticals or food that involve the use of micro-
organisms or substances derived from them. Particularly, processes focused on
the growth of organisms (also called biomass) should provide a batch of organ-
isms with food in order to promote the population growth. In such cases, the
process is regulated by means of the substrate feed (or food income) and the out-
put mass flow (composed by both biomass and substrate), namely the dilution
rate. In this sense, the state of the system can be described by means of the pro-
portion of both biomass and substrate in the bioreactor, denoted by x1 and x2,
respectively. The substrate feed and the dilution rate are control variables of the
bioreactor that can be used to regulate the biomass production. In this case, the
substrate feed and the dilution rate are denoted by x2f and D, respectively. A
dynamical model that describes the behavior of the aforementioned bioreactor is

ẋ1(t) = (μ−D)x1(t),
ẋ2(t) = D(x2f − x2(t)) − μ

Y x1(t),
(31)

where μ is the average growth rate of the organisms, and Y is the substrate
consumption rate. The growth rate of the population is influenced by the amount
of food available in the environment; however, the population growth might not
increase indefinitely with the substrate concentration. On the contrary, excess
of food would induce inhibitory effects on the population growth. This behavior
is modeled by means of the growth rate

μ = μmax

(
x2

km + x2 + k1x2
2

)
, (32)

where km and k1 are constants. On the other hand, the substrate consumption
rate is defined as ratio of the change in the population mass and the change in
the substrate mass inside the bioreactor, that is Y := − ẋ1

ẋ2
.
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Table 4. Rest points of the system in Eq. (31)

x∗
1 x∗

2

0 4 Stable
0.95103 1.512243 Unstable
1.530163 0.174593 Stable

Now, let us consider a process with the following parameters [9]: μmax =
0.53hr−1, km = 0.12 g/liter, k1 = 0.4545 liter/g, Y = 0.4. If we use constant
inputs D = 0.3 and x2f = 4, then the system in Eq. (31) is characterized by
three rest points shown in Table 4. In this case, we assume that the system
designer wants to stabilize the system at the unstable equilibrium point x∗ =
[0.95103, 1.512243]
. In particular, the control law is designed by means of state
feedback. Accordingly, the design procedure involves 1) the linearization of the
system around the desired equilibrium point, and 2) the design of the control
law that stabilizes the system. Later, the vulnerabilities of the system are going
to be analyzed.

8.1 Linearization and Control Design

The linear model of the system in Eq. (31) at the unstable equilibrium point is

ż = Az +Bu, (33)

where z = x− x∗, u = [u1, u2]

 = [D, x2f ]


 − [0.3, 4]
, and

A =

[
0 −0.068

−0.75 −0.13

]
, B =

[
−0.994 0
2.488 0.3

]
.

Now, using a state feedback control of the form u = −Fz, where F = [F1, F2]



is a matrix in �2×2 and F1 and F2 are vectors in �2×1, we have

ż = (A−BF )z. (34)

The previous expression can be rewritten in terms of each control input as

ż = (A−B1F


1 −B2F



2 )z, (35)

where B1 and B2 are the columns of B that determine the influence that each
input has in the system and F


i is the feedback control law at the ith input, for
i ∈ {1, 2}. In this case, the pair (A,B) is controllable, as well as (A,B1) and
(A,B2).

In particular, we consider a situation in which the designer fixes the jth input:
uj to a constant value, while it controls the ith input, denoted by ui: i.e., the
designer only controls ui = −F


i z, resulting

ż = (A−BiF


i )z +Bjuj . (36)
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The selection of Fi should guarantee that the system is stable. According to the
theorem of pole shifting, when the system is controllable, it is possible to find a
matrix Fi such that the system in Eq. (36) is globally asymptotically stable [10].
This is achieved if the eigenvalues λh of A−BiFi have negative real part.

Particularly, the design of the feedback control law can be designed by apply-
ing a coordinate transformation of the form z̃ = Piz. This linear transformation
let us express the system in Eq. (36) in terms of the matrices in canonical form

A† =

[
0 −α0

1 −α1

]
, B†

i =

[
1
0

]
, F †

i = [f1, f0],

where A† = P−1
i APi, B

†
i = P−1

i Bi, F
†
i = FiPi. On the other hand, α0 and

α1 are the coefficients of the characteristic polynomial of A, i.e., det(sI −A) =
s2 + α1s + α0 [10]. Particularly, in linear systems with one input, Pi is the
controllability matrix of (A,Bi). Without loss of generality, we assume that the
feedback Fi is designed to obtain poles λ1 and λ2 with negative real part , i.e.,
Re(λh) < 0, for h ∈ {1, 2}. Therefore, a valid feedback law Fi must satisfy

det
(
sI − (A−BiFi)

)
= s2 + (α1 + f1)s+ (α0 + f0)

= (s− λ1)(s− λ2). (37)

Note that the coefficients α0 and α1 are positive, since λ1 and λ2 have negative
real part.

Under these conditions, the designer is able to stabilize the system through the
feedback law Fi. The design of the feedback vector Fi can be made minimizing a
cost criteria, by means of the Linear Quadratic Regulator (LQR) problem (which
has a cost-function similar to the one considered in LQ differential games). Since
the feedback control is only applied in one of the inputs, we have that F =
[Fi,0]


, where 0 is a vector of zeros.

8.2 Attacker Perspective

Now, let us consider a situation in which an attacker obtains control over the jth

input uj. In this case, we assume that the attacker is able to implement a control
law uj = −Fjz that seeks to destabilize the system. Note that the attacker might
succeed on its purpose, since (A,Bj) is controllable, for j ∈ {1, 2}.

It is important to note that if the attacker is able to observe the state of the
system, then it would design the feedback vector Fj , such that the system in
Eq. (35) is unstable. Since the defender trusts x(t), we assume the attacker has
read-only access to the sensors y(t) = x(t).

In this sense, applying the similarity matrix Pj , we obain that the matrices
in canonical form A‡ = P−1

j (A − BiFi)Pj , B
‡ = P−1

j Bj , and F = F ‡P−1
j that

satisfy

A‡ =

[
0 −α0 − f0
1 −α1 − f1

]
, B‡

j =

[
1
0

]
,
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where Pj is the controllability matrix of (A − BiFi, Bj). In this case, the char-
acteristic polynomial of (A −BiFi) is given by Eq. (37). Now, the attacker can
break the system by modifying the coefficients of the characteristic polynomial
through Fj . In particular, if we consider Fj = F ‡P−1

j , where F ‡ = [g1, g0], then
the characteristic polynomial is transformed into

det
(
sI − (A−BiFi −BjFj)

)
= s2 + (α1 + f1 + g1)s

+ (α0 + f0 + g0). (38)

For example, let us fix g1 = 0 and set g0 = −(α0 + f1 + δ), with δ > 0.
Consequently, the characteristic polynomial of Eq. (38) becomes

det
(
sI − (A−BiFi −BjFj)

)
= s2 + (α1 + f1)s+−δ.

Since there is a change of sign in the coefficients of the characteristic polynomial,
the system in unstable under the attacker feedback law

Fj = [0,−(α0 + δ)]P−1
j . (39)

In particular, the system has one unstable equilibrium point. Note that if the
attacker knows the eigenvalues of the system, then it can calculate the value of
α0 + f0 by meas of

α0 + f0 =

n∏
i=1

λh. (40)

This relation can be extracted from the expanded characteristic polynomial in
terms of the eigenvalues λh, for h ∈ {1, . . . , n}.

8.3 System Defense

We are interested in analyzing the actions that the system designer can take
in order to stabilize the system when an attacker influences uj . Intuitively, the

designer would want to implement a feedback F̂i that cancels the feedback law
of the attacker Fj . Therefore, F̂i must satisfy

(A−B[F̂i, Fj ]

)x = (A−B[Fi,0]


)x.

This can be rewritten as

B([F̂i,0]

 + [0, Fj ]


) = B[Fi,0]

.

However, if Fj �= 0, then it is not possible to find a feedback law F̂i that satisfies

the previous equality. This happens because the columns of [F̂i,0]

 are linear

independent from the columns of [0, Fj ]

.

Therefore, the designer must take actions that compensate, rather cancel, the
attacks. In this sense, the designer would implement the feedback law F̂1 that
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shifts the poles of the attacked system to the negative imaginary semi plane.
This can be done by repeating the feedback design procedure exposed above,
having into account a system of the form

ż = (Â−BiF̂i)z,

where Â = A−BjFj is the observed system by the defender. Â can be considered
by the designer as a given of the control design problem. Note that the response
of the designer is subject to 1) the knowledge that the system is attacked and
2) the knowledge of the effects of the attack on the system.

8.4 Simulations

In this section we analyze the defense and attack actions of two agents that seek
to stabilize and destabilize a system.

We consider the case in which both defender and attacker update their feed-
back gains according to the actions the opponent. This can be seen as a repeated
game, in which the players are the defender and the attacker. We assume that
each player requires some constant time to update its action as a response to
the move by the other player. Therefore, the game is repeated after a period
T . Furthermore, the speed of response of the defender to attacks is measured in
terms a time fraction of T , namely DC ∈ [0, 1] (for duty-cycle). In this sense,
DC indicates that in each period T , the defender makes the system stable during
the interval [0, DCT ] and the attacker disrupt the system during (DCT, T ).

Simulations are made assuming that agents have knowledge about the actions
of each other. In particular, the defender designs the feedback law Fi using a
Linear-quadratic (LQ) state-feedback regulator that minimizes the cost function

J =

∫ ∞

0

(
x
Qx+ u
Ru

)
dt,

where

Q =

[
1 0
0 0.1

]
R =

[
1 0
0 1

]
.

Ontheother hand, the attacker actions are calculatedaccording toEq. (39) and (40).

Control of the Dilution Rate. First, consider the situation in which the
defender manipulates the dilution rate D and the attacker controls the substrate
feed x2f . In this case, the natural behavior of the system under the influence of
the defender’s control signal is to reach the origin and remain there. However,
the system becomes unstable if the attacker manipulates the substrate feed input
and there is no response by the system designer. It can be seen that the system
become unstable after the attack, that takes place at t = 10s.

Fig. 2 and 3 show the evolution of the game for DC = 0.8 and DC = 0.1,
respectively. Note that although the attacker actions tend to affect the system,
the defender is able to stabilize the system, even with a slow reaction to the
attacker actions, i.e., the case with DC = 0.1.
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(b) Evolution of the system states

Fig. 2. Evolution of the system when both attacker and defender compete by turns.
DC = 0.8.

Control of the Substrate Feed. Here we consider the evolution of the system
states when both defender and attacker play a game of control by manipulating
the substrate feed and the dilution rate, respectively. It can be seen that an
attack on the dilution rate is able to make unstable the system, with a notable
effect on the biomass level x1, with respect to the previous scenario.

Fig. 4 and 5 show the evolution of the game for DC = 0.8 and DC = 0.5,
respectively. It can be seen that the defender is able to stabilize the system for
DC = 0.8. However, the defender requires a lower reaction time to control the
system, in contrast to the case when it controls the dilution rate. Specifically,
when the defender controls the dilution rate (scenario 1), it is able to stabilize
the system with a DC of 0.1 (see Fig. 3). Now, when the defender controls the
substrate feed, it is not able to stabilize the system with a DC of 0.5.

Stability Experiments. Now we analyze the system behavior as a function of
the parameter DC for a particular period T . We present numerical experiments
to observe properties of the system.

Since the control law has jumps each time a player updates its strategy, ob-
taining explicit stability solutions is difficult (although in future work we plan to
use the theory of hybrid systems to better characterize the stability of these sys-
tems). We are interested in the stability of the output variable defined as y = x1,
i.e., the stability of the biomass concentration. Specifically, our analysis is made
by approximating an exponential function of the form h(t) = eσt to the output
y(t). If the parameter σ is positive, then we conclude the system is unstable for
a particular DC. On the other hand, if the system is stable, the variable y(t)
would be approximated by means of a decreasing exponential function.

In particular, scenario 1, in which the defender and the attacker control the
dilution rate and the substrate feed, with T = 100 is stable for any DC in the
interval [0.0120, 1]. On the other hand, in scenario 2 the attacker can destabilize
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(b) Evolution of the system states

Fig. 3. Evolution of the system when both attacker and defender compete by turns.
DC = 0.1.
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(b) Evolution of the system states

Fig. 4. Evolution of the system when both attacker and defender compete by turns.
DC = 0.8.

the system with a DC in the interval [0.1, 0.32] and T = 10. The dependence of
the stability of y(t) with respect to DC for the scenario 2 is shown in the Fig. 6.

Note that in scenario 1, the defender is able to stabilize the system for very
low reaction times, with respect to the scenario 2. This implies that in scenario
1 the attacks have to be effective for a larger period of time to destabilize the
system. Hence, the control using the dilution rate is more robust to attacks than
the control using the substrate feed. In this case, the measurement of the reaction
time is relative to the period T .
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(b) Evolution of the system states

Fig. 5. Evolution of the system when both attacker and defender compete by turns.
DC = 0.5.
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Fig. 6. Stability of the repeated game as a function of DC for scenario 2

9 Future Work

In this paper we have formulated new threat models for controllability and sta-
bility of dynamical systems and discussed some ideas on how to model reactive
security games between a defender and an attacker. There are many open prob-
lems and several directions for future research.

As mentioned in the last section, one particular improvement that can be
done to our analysis of the heuristic game is to leverage the theory of hybrid
systems to analyze the stability of the game. Hybrid systems can also be used
for the study of reachability, which is analogous to the problem of controllability
in LTI systems. Computational reachability analysis of systems might be a good
tool for analyzing more realistic control problems with bounded states or control
actions.
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Similarly the concept of proactive security needs further study. An intuitive
idea for selecting the most valuable actuators is to consider the following prob-
lem: let B = [b1 b2 · · · bm], then for every input ui there is a column vector
bi ∈ Rn that uniquely defines how the actuator will affect the physical state of
the system. To find the actuator that has the ability to control more states (and
thus the most valuable target for the attacker) we can perform the following
analysis: argmaxi rank

[
bi Abi ... A

n−1bi

]
. The defender can then invest more

in protecting the information flow of the actuators depending on the ranking of
each actuator.
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Abstract Organizations that collect and use large volumes of personal inform-
ation often use security audits to protect data subjects from inappropriate uses
of this information by authorized insiders. In face of unknown incentives of em-
ployees, a reasonable audit strategy for the organization is one that minimizes its
regret. While regret minimization has been extensively studied in repeated games,
the standard notion of regret for repeated games cannot capture the complexity
of the interaction between the organization (defender) and an adversary, which
arises from dependence of rewards and actions on history. To account for this
generality, we introduce a richer class of games called bounded-memory games,
which can provide a more accurate model of the audit process. We introduce
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actions prescribed by the algorithm against a hypothetical k-adaptive adversary
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1 Introduction

Online learning algorithms that minimize regret provide strong guarantees in situations
that involve repeatedly making decisions in an uncertain environment. There is a well
developed theory for regret minimization in repeated games [1]. The goal of this paper is
to study regret minimization for a richer class of settings. As a motivating example con-
sider a hospital (defender) where a series of temporary employees or business affiliates
(adversary) access patient records for legitimate purposes (e.g., treatment or payment)
or inappropriately (e.g., out of curiosity about a family member or for financial gain).
The hospital conducts audits to catch the violators, which involves expending resources
in the form of time spent in human investigation. On the other hand, violations that
are missed internally and caught externally (by government audits, patient complaints,
etc.) also result in various losses such as reputation loss, loss due to litigation, etc. The
hospital wants to minimize its overall loss by balancing the cost of audits with the risk
of externally detected violations. In these settings with unknown adversary incentives,
a reasonable strategy for the defender is one that minimizes her regret.

Modeling this interaction as a repeated game of imperfect information is challenging
because this game has two additional characteristics that are not captured by a repeated
game model: (1) History-dependent rewards: The payoff function depends not only
on the current outcome but also on previous outcomes. For example, when a violation
occurs the hospital might experience a greater loss if other violations have occurred in
recent history. (2) History-dependent actions: Both players may adapt their strategies
based on history. For example, if many violations have been detected and punished in
recent history then a rational employee might choose to lay low rather than committing
another violation.

Instead, we capture this form of history dependence by introducing bounded-memory
games, a subclass of stochastic games.1. In each round of a two-player bounded-
memory-m game, both players simultaneously play an action, observe an outcome and
receive a reward. In contrast to a repeated game, the payoffs may depend on the state of
the game. In contrast to a general stochastic game, the rewards may only depend on the
outcomes from the last m rounds (e.g., violations that were caught in the last m rounds)
as well as the actions of the players in the current round.

In a bounded-memory game, the standard notion of regret for a repeated game is not
suitable because the adversary may adapt her actions based on the history of play. To
account for this generality, we introduce (in Section 4) the notion of k-adaptive regret,
which compares the reward obtained by playing actions prescribed by the algorithm
against a hypothetical k-adaptive adversary with the reward obtained by the best expert
in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary
is constructed by taking snapshots of the real adversary’s strategy every k rounds. This
means that the hypothetical k-adaptive adversary adapts her strategy to the defender’s
actions exactly as the real adversary would during each window of k rounds in the real
game.

1 Stochastic games [2] are expressive enough to model history dependence. However, one can
prove that there is no regret minimization algorithm for the general class of stochastic games
While we do not view this result as surprising or novel, we include it in the full version [3] of
this paper for completeness.
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When k = 0, this definition coincides with the standard definition of an oblivious
adversary considered in defining regret for repeated games. When k = ∞ we get a fully
adaptive adversary. A k-adaptive adversary is a natural model for temporary employ-
ees (e.g., residents, contractors) who stay for a certain number of audit cycles and are
then replaced by a different person. Our definition is parameterized by a set of experts,
which can include both fixed and adaptive defender strategies. In Section 5 we use the
examples of a police chief enforcing the speed limit at a popular tourist destination,
and of a hospital auditing accesses to patient records made by hospital employees, to
illustrate the power of k-adaptive regret minimization when the defender plays against
a series of temporary adversaries.

Next, we investigate the inherent complexity of and design algorithms for adaptive
regret minimization in bounded-memory games of perfect and imperfect information.
Our results are summarized in Table 1. We prove a hardness result (Section 6; The-
orem 1) showing that, with imperfect information, any k-adaptive regret minimizing
algorithm (with fixed strategies as experts) must be inefficient unless NP = RP even
when the real adversary is oblivious, and even if we use the notion of 0-adaptive re-
gret. In fact, the result is even stronger and applies to any γ-approximate k-adaptive
regret minimizing algorithm (ensuring that the regret bound converges to γ rather than
0 as the number of rounds T → ∞) for γ < 1

8nβ where n is the number of states in
the game and β > 0. Our hardness reduction from MAX3SAT uses the state of the
bounded-memory game and the history-dependence of rewards in a critical way.

We present an inefficient k-adaptive regret minimizing algorithm by reducing the
bounded-memory game to a repeated game. The algorithm is inefficient for bounded-
memory games when the number of experts is exponential in the number of states of
the game (e.g., if all fixed strategies are experts). In contrast, for bounded-memory
games of perfect information, we present an efficient nO(1/γ) time γ-approximate 0-
adaptive regret minimization algorithm against an oblivious adversary for any constant
γ > 0 (Section 7; Theorem 4). We also show how this algorithm can be adapted to
get an efficient γ-approximate 0-adaptive regret minimization algorithm for bounded-
memory games of imperfect information (Section 7; Theorem 5). The main novelty in
these algorithms is an implicit weight representation for an exponentially large set of
adaptive experts, which includes all fixed strategies.

Table 1. Regret Minimization in Bounded Memory Games

Imperfect Information Perfect Information

Oblivious Regret (k = 0) Hard (Theorem 1) APX (Theorem 4)
APX (Theorem 5)

k-Adaptive Regret (k ≥ 1) Hard (Theorem 1) Hard (Full Version [3] )
Fully Adaptive Regret (k = ∞) X (Full Version [3] ) X (Full Version [3] )

X - no regret minimization algorithm exists
Hard - unless NP = RP no regret minimization algorithm is efficiently computable
APX - efficient approximate regret minimization algorithms exist.
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2 Related Work

A closely related work is the Regret Minimizing Audit (RMA) mechanism of Blocki
et al. [4], which uses a repeated game model for the audit process. RMA deals with
history-dependent rewards under certain assumptions about the defender’s payoff func-
tion, but it does not consider history-dependent actions. While RMA provides strong
performance guarantees for the defender against a byzantine adversary, the performance
of RMA may be far from optimal when the adversary is rational (or nearly rational).
In subsequent work, the same authors [5] introduced a model of a nearly rational ad-
versary who behaves in a rational manner most of the time. A nearly rational adversary
can usually be deterred from committing policy violations by high inspection and pun-
ishment levels. They suggested that the defender commit to his strategy before each
audit round (e.g., by publicly releasing its inspection and punishment levels) as in a
Stackelberg game [6]. However, the paper gives no efficient algorithm for computing
the Stackelberg equilibrium.

More recent work by Blocki et al. introduced the notion of audit games [7] – a
simplified game theoretic model of the audit process in which the adversary is purely
rational (unlike the nearly rational adversary of [5]). Audit games generalize the model
of security games [8] by including punishment level as part of the defenders action
space. The punishment parameter introduces quadratic constraints into the optimization
problem that must be solved to compute the Stackelberg equilibria, making it difficult to
find the Stackelberg equilibria. The primary technical contribution of [5] is an efficient
algorithm for computing the Stackelberg equilibrium of audit games. There are two
potential advantages of the k-adaptive regret framework compared with the Stackelberg
equilibria approach: (1) The k-adaptive regret minimization algorithm can be used even
if the adversary’s incentives are unknown, and (2) a k-adaptive adversary is a better
model for a short term adversary (e.g., contractors, tourists) who may not informed
about the defender’s policy; and therefore may not even know what the “rational” best
response is in a Stackelberg game. See section 5 for additional discussion.

Stochastic games were defined by Shapley [2]. Much of the work on stochastic games
has focused on finding and computing equilibria for these games [2, 9]. There has
been lot of work in regret minimization for repeated games [1]. Regret minimization
in stochastic games has not been the subject of much research. Papadimitriou and Yan-
nakakis showed that many natural optimization problems relating to stochastic games
are hard [10]. These results do not apply to bounded-memory games. Golovin and
Krause recently showed that a simple greedy algorithm can be used when a stochastic
optimization problem satisfies a property called adaptive submodularity [11]. In gen-
eral, bounded-memory games do not satisfy this property. Even-Dar et al., show that
regret minimization is possible for a class of stochastic games (Markov Decision Pro-
cesses) in which the adversary chooses the reward function at each state but does not
influence the transitions [12]. They also prove that if the adversary controls the re-
ward function and the transitions, then it is NP-Hard to even approximate the best
fixed strategy. Mannor and Shimkin [13] show that if the adversary completely controls
the transition model (a Controlled Markov Process) then it is possible to separate the
stochastic game into a series of matrix games and efficiently minimize regret in each
matrix game. Bounded-memory games are a different subset of stochastic games where
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the transitions and rewards are influenced by both players. While our hardness proof
shares techniques with Even-Dar et al., [12], there are significant differences that arise
from the bounded-memory nature of the game. We provide a detailed comparison in
Section 6.

In a more /recent paper, Even-Dar et al., [14] handle a few specific global cost func-
tions related to load balancing. These cost functions depend on history. In their setting,
the adversary obliviously plays actions from a joint distribution. In contrast, we consider
arbitrary cost functions with bounded dependence on history and adaptive adversaries.

Takimoto and Warmuth [15] developed an efficient online shortest path algorithm.
In their setting the experts consists of all fixed paths from the source to the destination.
Because there may be exponentially many paths their algorithm must use an implicit
weight representation. Awerbuch and Kleinberg later provided a general framework for
online linear optimization [16]. In our settings, an additional challenge arises because
experts adapt to adversary actions. See Section 7 for a more detailed comparison.

Farias et al., [17] introduce a special class of adversaries that they call “flexible”
adversaries. A defender playing against a flexible adversary can minimize regret by
learning the average expected reward of every expert. Our work differs from theirs in
two ways. First, we work with a stochastic game as opposed to a repeated game. Second,
our algorithms can handle a sequence of different k-adaptive adversaries instead of
learning a single flexible adversary strategy. A single k-adaptive strategy is flexible, but
a sequence of k-adaptive adversaries is not.

3 Preliminaries

Bounded-memory games are a sub-class of stochastic games, in which outcomes and
states satisfy certain properties. Formally, a two-player stochastic game between an at-
tacker A and a defenderD is given by (XD,XA, Σ, P, τ), where XA and XD are the ac-
tions spaces for playersA and D, respectively,Σ is the state space, P : Σ×XD×XA →
[0, 1] is the payoff function and τ : Σ × XD × XA × {0, 1}∗ → Σ is the randomized
transition function linking the different states. Thus, the payoff during round t depends
on the current state (denoted σt) in addition to the actions of the defender (dt) and the
adversary (at). We use n = |Σ| to denote the number of states.

A bounded-memory game with memory m (m ∈ N) is a stochastic game with the
following properties: (1) The game satisfies independent outcomes, and (2) The states
Σ = Om encode the last m outcomes, i.e., σi =

(
Oi−1, . . . , Oi−m

)
. An outcome

of a given round of play is a signal observed by both players (called “public signal” in
games [18]). Outcomes depend probabilistically on the actions taken by the players. We
use O to denote the outcome space and Ot ∈ O to denote the outcome during round t.
We say that a game satisfies independent outcomes if Ot is conditionally independent
of

(
O1, ..., Ot−1

)
given dt and at. Notice that the defender and the adversary in a game

with independent outcomes may still select their actions based on history. However,
once those actions have been selected, the outcome is independent of the game history.
Note that a repeated game is a bounded-memory-0 game (a bounded-memory game
with memory m = 0).
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A game in which players only observe the outcome Ot after round t but not the
actions taken during a round is called an imperfect information game. If both players
also observe the actions then the game is a perfect information game.

The history of a game H =
(
O1, O2, . . . , Oi, . . . , Ot

)
, is the sequence of out-

comes. We use Hk to denote the k most recent outcomes in the game (i.e., Hk =(
Ot−k+1; . . . ;Ot

)
), and t = |H | to denote the total number of rounds played. We use

Hi to denote the first i outcomes in a history (i.e., Hi =
(
O1, . . . , Oi

)
), and H ;H ′ to

denote concatenation of histories H and H ′.
A fixed strategy for the defender in a stochastic game is a function f : Σ → XD

mapping each state to a fixed action. F denotes the set of all fixed strategies.

4 Definition of Regret

As discussed earlier, regret minimization in repeated games has received a lot of atten-
tion [19]. Unfortunately, the standard definition of regret in repeated games does not
directly apply to stochastic games. In a repeated game, regret is computed by com-
paring the performance of the defender strategy D with the performance of a fixed
strategy f . However, in a stochastic game, the actions of the defender and the adversary
in round i influence payoffs in each round for the rest of the game. Thus, it is unclear
how to choose a meaningful fixed strategy f as a reference. We solve this conundrum
by introducing an adversary-based definition of regret.

4.1 Adversary Model

We define a parameterized class of adversaries called k-adaptive adversaries, where the
parameter k denotes the level of adaptivity of the adversary. Formally, we say that an
agent is k-adaptive if its strategy A(H) is defined by a function f : O∗ × N → XA

such that A(H) = f (Hi, t), where i = t mod (k + 1). Recall that Hi is the i most
recent outcomes, and t = |H |.

As special cases we define an oblivious adversary (k = 0) and a fully adaptive ad-
versary (k = ∞). Oblivious adversaries essentially play without any memory of the
previous outcomes. Fully adaptive adversaries, on the other hand, choose their actions
based on the entire outcome history since the start of the game. k-adaptive adversaries
lie somewhere in between. At the start of the game, they act as fully adaptive adversar-
ies, playing with the entire outcome history in mind. But, different from fully adaptive
adversaries, every k rounds, they “forget” about the entire history of the game and act as
if the whole game was starting afresh. As discussed earlier, there are numerous practical
instances where k-adaptive adversaries are an appropriate model; for instance, in games
in which one player (e.g., a firm) has a much longer length of play than the adversary
(e.g., a temporary employee), it may be judicious to model the adversary as k-adaptive.
In particular, k-adaptive adversaries are similar to the notion of “patient” players in
long-run games discussed by [20]. Their notion of “fully patient” players correspond to
fully adaptive adversaries, “myopic” players correspond to oblivious adversaries, and
“not myopic but less patient” players correspond to k-adaptive adversaries.
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Another possible adversary definition could be to consider a sliding window of size
k as the adversary memory. But, because such an adversary can play actions to remind
herself of events in the arbitrary past, her memory is not actually bounded by k, and
regret minimization is not possible. See the full version [3] of this paper for details.

AK
D andAK

A denote all possibleK-adaptive strategies for the defender and adversary,
respectively.

4.2 k-adaptive Regret

Suppose that the defender D and the adversary A have produced history H in a game G
lasting T rounds. Let a1, ..., aT denote the sequence of actions played by the adversary.
In hindsight we can construct a hypothetical k-adaptive adversary Ak as follows:

Ak (H
′) = A

(
Ht−i;H ′

i

)
,

where t = |H ′| and i = t mod (k + 1). In other words, the hypothetical k-adaptive
adversary replicates the plays the real adversary made in the actual game regardless
of the strategy of the defender he is playing against, except for the last i rounds under
consideration where he adapts his strategy to the defender’s actions in the same manner
the real adversary would.

Abusing notation slightly, we write P (f,A,G, σ0, T ) to denote the expected payoff
the defender would receive over T rounds of G given that the defender plays strategy
f , the adversary uses strategy A and the initial state of the bounded-memory game G
is σ0. We use P̄ (f,A,G, T ) = P (f,A,G, σ0, T ) /T to denote the average per-round
payoff. We use

R̄k (D,A,G, T, S) = max
f∈S

P̄ (f,Ak, G, T )− P̄ (D,Ak, G, T ) ,

to denote the k-adaptive regret of the defender strategy D using a fixed set S of experts
against an adversary strategy A for T rounds of the game G.

Definition 1. A defender strategy D using a fixed set S of experts is a γ-approximate
k-adaptive regret minimization algorithm for the class of games G if and only if for
every adversary strategy A, every ε > 0 and every game G ∈ G there exists T ′ > 0
such that ∀T > T ′

R̄k (D,A,G, T, S) < ε+ γ .

If γ = 0 then we simply refer to D as a k-adaptive regret minimization algorithm. If D
runs in time poly (n, 1/ε) we call D efficient.

k-adaptive regret considers a k-adaptive hypothetical adversary who can adapt within
each window of size (at most) k + 1. Intuitively, as k increases this measure of regret
is more meaningful (as the hypothetical adversary increasingly resembles the real ad-
versary), albeit harder to minimize.

There are two important special cases to consider: k = 0 (oblivious regret) and
k = ∞ (adaptive regret). Adaptive regret is the strongest measure of regret. Observe
that if the actual adversary is k-adaptive then the hypothetical adversary A∞ is same as
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Table 2. Speeding game utilities

Actions S DS
HI .19 0.7
LI 0.2 1

(a) Defender utility P

Actions S DS
HI 0 0.8
LI 1 0.8

(b) Adversary utility

the hypothetical adversary Ak, and hence R̄∞ = R̄k. Also, if the actual adversary is
oblivious then R̄∞ = R̄0 = R̄k.

In this paper G will typically denote the class of perfect/imperfect information
bounded-memory games with memory m. We are interested in expert sets S which
contain all of the fixed strategies F ⊆ S.

5 Audit Examples

As an example, consider the interaction between a police chief (defender) and drivers
(adversary) at a popular tourist destination. The police chief is given the task of enfor-
cing speed limits on local roads. Each day the police chief may deploy resources (e.g.,
radar, policemen) to monitor local roads, and drivers decide whether or not to speed or
not.

Repeated Game. We first model the interaction above using a repeated game. We will
consider a simple version of this interaction in which the defender has two actions

XD = {HI,LI} ,

and the adversary has two actions

XA = {S,DS} .

Here, HI/LI stands for high/low inspection and S/DS stands for speed and don’t speed.
We consider the defender utilities in Table 2(a).

In this example, the costs of a higher inspection outweigh the benefits of enforcing
the policy. In any Nash Equilibria the defender will play his dominant strategy – “al-
ways play LI.” Similarly, any algorithm that minimizes regret in the standard sense
(0-adaptive) – like the regret minimizing audit mechanism from [4] – must eventually
converge to the dominant defender strategy LI. While this is the best that the defender
can do against a byzantine adversary, this may not always be the best result for the
defender when playing against a rational adversary. Consider the adversary’s utility
defined in Table 2(b).

If the defender plays his dominant strategy then the adversary will always play the
action S, speed. This action profile results in average utility 0.2 for the defender and
1 for the adversary. However, if the defender can commit to his strategy in advance
then he can play his Stackelberg equilibrium [6] strategy “play HI with probability
0.2 and LI with probability 0.8.” A rational adversary will respond by playing her best
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response – the action that maximizes her utility given the defenders commitment. In this
case the adversary’s best response is to play DS. The resulting utility for the defender
is now 0.94.

There are two practical challenges with adopting this approach: (1) If the utility of the
adversary is unknown then the defender cannot compute the Stackelberg equilibrium.
(2) Even if the defender commits to playing a Stackelberg equilibrium it is unlikely that
many drivers will respond in purely rational manner for the simple reason that they are
uniformed (e.g., a tourist may not know whether or not speed limits are aggressively
enforce in an unfamiliar area). If the adversary can learn the Stackelberg Equilibrium
from a history of the defender’s actions, then she might adapt her play to the best re-
sponse strategy over time. However, each tourist has a limited time window in which
she can make these observations and adjust her behavior (e.g., the tourist leaves after at
most k days).

Bounded-memory Game Model with k-adaptive Regret. We model the interaction above
using bounded-memory games with k-adaptive adversary model. In each round of our
bounded-memory game the defender and the adversary play an action profile, and ob-
serve an outcome – a public signal. The action space in our bounded-memory game is
identical to the repeated game, and the outcome O = {HI,LI} is simply the defender’s
action. That is we assume that our tourist driver can observe the defender’s inspection
level in each round (e.g., by counting the number of police cars by the side of the road).
The defender’s payoff function is identical to Table 2(a) – the defender’s payoff is in-
dependent of the current state (e.g., rewards in this particular bounded-memory game
are not history-dependent). A k-adaptive regret minimization algorithm could be run
without a priori knowledge of the adversary’s utility, and will converge to the optimal
fixed strategy against any k-adaptive adversary (e.g., any sequence of k-adaptive tourist
strategies).

It is reasonable to use a k-adaptive strategy to model the behavior of our tourist
drivers. Each tourist initially has no history of the defender’s actions – during the first
day of her visit a tourist must make the decision about whether or not to speed without
any history of the defender’s actions. After the first day the tourist may adapt his be-
havior based on previous outcomes. For example, a tourist might adopt the following
k-adaptive strategy: A1 = “Play DS on the first day, and on the remaining (k − 1)
days play S if the defender has never played HI previously, otherwise play DS.” After k
days the tourist leaves and a new tourist arrives. This new tourist may adopt a different
k-adaptive strategy (e.g., A2 = “Play S on the first day, and on the remaining (k − 1)
days play S if the defender has never played HI previously, otherwise play DS.”).

We set the memory of our bounded-memory game to be m = k. Now the fixed
defender strategies F in our bounded-memory game include strategies like f = “play
HI every k’th round”. Suppose for example that k = 7 and the defender plays f . In this
case the sequence of rewards that the defender would see against the first k-adaptive
adversary A1 would be (0.7, 1, 1, 1, 1, 1, 1). The sequence of rewards that the defender
would see against the second k-adaptive adversary A2 would be (0.19, 1, 1, 1, 1, 1, 1).
It is easy to verify that this is the optimal result for the defender – if the defender does
not play HI on the first day then the 7-adaptive adversary will speed on day 2. A k-
adaptive regret minimization algorithm could be run without a priori knowledge of the
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adversary’s utility, and will converge to the optimal fixed strategy against any k-adaptive
adversary (e.g., any sequence of k-adaptive tourist strategies).

Another Example: Hospital Employees. A k-adaptive adversary is also an appropriate
model for employees working in organizations. Indeed, most organizations are gener-
ally active for much longer than any employee’s duration of employment. This is for
instance true in the case of hospitals, where employees could be tempted to violate pri-
vacy policies supposed to protect patients’ sensitive data, for convenience, out of curi-
osity, or even in the worst case, for financial gain. In this example, we would consider
the interaction between the hospital, playing the role of the defender, and the employee
playing the role of the adversary. We could naturally transpose the example discussed
above by simply replacing the actions S and DS (e.g., “speed” and “don’t speed”) by
the corresponding actions B and V (e.g., “behave” and “violate”).

Unfortunately, we are able to prove that there is no efficient k-adaptive regret min-
imization algorithm for general bounded-memory games. However, our results do not
rule out the possibility of an efficient γ-approximate k-adaptive regret minimization al-
gorithm. Finding an efficient γ-approximate k-adaptive regret minimization algorithms
is an important open problem.

6 Hardness Results

In this section, we show that unless NP = RP no oblivious regret minimization al-
gorithm which uses the fixed strategies F as experts can be efficient in the imperfect
information setting. In the full version [3] of this paper we explain how our hardness re-
duction can be adapted to prove that there is no efficient k-adaptive regret minimization
algorithm in the perfect information setting for k ≥ 1.

Specifically, we consider the subclass of bounded-memory games G with the follow-
ing properties: |O| = O(1), m = O (logn), |XA| = O(1), |XD| = O(1) and imperfect
information. Any G ∈ G is a game of imperfect information (on round t the defender
observes Ot, but not at) with O(n) states. Our goal is to prove the following theorem:

Theorem 1. For any β > 0 and γ < 1/8nβ there is no efficient γ-approximate oblivi-
ous regret minimization algorithm which uses the fixed strategies F as experts against
oblivious adversaries for the class of imperfect information bounded-memory-m games
unless NP = RP.

Given a slightly stronger complexity-theoretic assumption called the randomized ex-
ponential time hypothesis [21] we can prove a slightly stronger hardness result. The
randomized exponential time hypothesis says that no randomized algorithm running in
time 2o(n) can solve SAT.

Theorem 2. Assume that the randomized exponential time hypothesis is true. Then for
any γ < 1/

(
8 log2 n

)
there is no efficient γ-approximate oblivious regret minimization

algorithm which uses the fixed strategies F as experts against oblivious adversaries for
the class of imperfect information bounded-memory-m games.



Adaptive Regret Minimization in Bounded-Memory Games 75

The proofs of Theorems 1 and 2 use the fact that it is hard to approximate MAX3SAT
within any factor better than 7

8 [22]. This means that unless NP = RP then for every
constant β > 0 and every randomized algorithm S in RP , there exists a MAX3SAT
instance φ such that the expected number of clauses in φ unsatisfied by S(φ) is ≥ 1

8 −β
even though there exists an assignment satisfying (1− β) fraction of the clauses in φ.

We reduce a MAX3SAT formula φ with variables x1, ..., xn and clauses C1, ..., C�

to a bounded-memory game G described formally below. We provide a high level over-
view of the game G before describing the details. The main idea is to construct G so
that the rewards in G are related to the fraction of clauses of φ that are satisfied.

In G, for each variable x there is a state σx associated with that variable. The ob-
livious adversary controls the transitions between variables. This allows the oblivious
adversary AR to partition the game into stages of length n, such that during each stage
the adversary causes the game to visit each variable exactly once (each state is associ-
ated with a variable). During each stage the adversary picks a clause C at random. In G
we have 0, 1 ∈ XD . Intuitively, the defender chooses assignment x = 1 by playing the
action 1 while visiting the variable x. The defender receives a reward if and only if he
succeeds in satisfying the clause C.

The game G is defined as follows:
Defender actions: XD = {0, 1, 2}
Adversary actions: XA = {0, 1} × {0, 1, 2, 3}
Outcomes and states: Each round i produces two outcomes

Õi = �ai[1] and Ôi =

{
1 if di = 2 or di = ai[2];

0 otherwise.

Observe that these outcomes satisfy the independent outcomes requirement for
bounded-memory games. There are n = 2m+1 states, where σi is the state at round
i, where

σi =
(
〈Õi−1, . . . , Õi−m〉, Ôi−1

)
.

Observe that each state encodes the last m outcomes Õ and the last outcome Ôi. Intu-
itively, the last m outcomes Õi are used to denote the variable xi, while Ôi is 1 if the
defender has already received a reward during the current phase.

The defender actions 0, 1 correspond to the truth assignments 0, 1. The defender
receives a reward for the correct assignment. The defender is punished if he attempts to
obtain a reward in any phase after he has already received a reward in that phase. Once
the defender has already received a reward he can play the special action 2 to avoid
getting punished. The intuitive meaning of the adversary’s actions is explained below.

If we ignore the outcome Ô then the states form a De Bruijn graph [23] where each
node corresponds to a variable of φ. Notice that the adversary completely controls the
outcomes Õ with the first component of his action �a[1]. By playing a De Bruijn se-
quence S = s1...sn the adversary can guarantee that we repeatedly take a Hamiltonian
cycle over states(for an example see Figure 1).
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Figure 1. De Bruijn example

Rewards:2

P
(
σi, di, ai

)
=

⎧⎪⎨⎪⎩
−1 if Ôi−1 = 1 and di �= 2 and �ai[2] �= 3;

1 if di �= 2 and di = �ai[2] and Ôi−1 = 0;

0 otherwise.

An intuitive interpretation of the reward function is presented in parallel with the ad-
versary strategy.

Adversary Strategy: The first component of the adversary’s action (�a[1]) controls
the transitions between variables. The adversary will play the action �ai[2] = 1 (resp.
�ai[2] = 0) whenever the corresponding variable assignment xi = 1 (resp. xi = 0)
satisfies the clause that the adversary chose for the current phase.

If neither variable assignment satisfies the clause (if xi /∈ C and x̄i /∈ C) then the
adversary plays �ai[2] = 2. This ensures that a defender can only be rewarded during a
round if he satisfies the clause C, which happens when di = �ai[2] = 0 or 1.

Notice that whenever Ô = 1 there is no way to receive a positive reward. The de-
fender may want the game G to return to a state where Ô = 0, but unless the adversary
plays the special action �ai[2] = 3 he is penalized when this happens. The adversary
action �ai[2] = 3 is a special ‘reset phase’ action. By playing �ai[2] = 3 once at the end
of each phase the adversary can ensure that the maximum payoff the defender receives
during any phase is 1. See Figure 1 for a formal description of the adversary strategy.

Analysis. At a high level, our hardness argument proceeds as follows:

1. If there is an assignment that satisfies (1−β) fraction of the clauses in φ, then there
is a fixed strategy that performs well in expectation (see Claim 1).

2. If there a fixed strategy that performs well in expectation, then any γ-approximate
oblivious regret minimization algorithm will perform well in expectation (see
Claim 2).

2 We use payoffs in the range [−1, 1] for ease of presentation. These payoffs can easily be re-
scaled to lie in [0, 1].
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• Input: MAX3SAT instance φ, with variables x1, . . . , xn−1 , and clauses C1, . . . , C�. Random
string R ∈ {0, 1}∗
• De Bruijn sequence: s0, ..., sn−1

• Round t: Set i ← t mod n.
1. Select clause: If i = 0 then select a clause C uniformly at random from C1, ..., C� using R.
2. Select move:

ai =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(si, 3) if i = 0;

(si, 1) if xi ∈ C;

(si, 0) if x̄i ∈ C;

(si, 2) otherwise.

Figure 2. Oblivious adversary: AR

3. If an efficiently computable strategy D performs well in expectation, then there is
an efficiently computable randomized algorithm S to approximate MAX3SAT (see
Claim 3). This would imply that NP = RP.

Claim 1. Suppose that there is a variable assignment that satisfies (1− β) · � of
the clauses in φ. Then there is a fixed strategy f such that ER

[
P̄ (f,AR, G, n)

]
≥

(1− β) /n , where R is used to denote the random coin tosses of the oblivious
adversary.

Claim 2. Suppose that D is an
(

1
8n − 3β

n

)
-approximate oblivious regret minimization

algorithm against the class of oblivious adversaries and there is a variable assignment
that satisfies (1 − β) fraction of the clauses in φ. Then for T = poly(n)

ER

[
P̄ (D,AR, G, T )

]
≥ 7

8n
+

β

n
,

where R is used to denote the random coin tosses of the oblivious adversary.

Claim 3. Fix a polynomial p(·) and let α = n · ER

[
P̄ (D,AR, G, T )

]
, where T =

p(n) and D is any polynomial time computable strategy. There is a polynomial time
randomized algorithm S which satisfies α fraction of the clauses from φ in expectation.

The proofs of these claims can be found in the full version [3] of this paper.
Proof of Theorem 1. The key point is that if an algorithm S runs in time O (p(n)) on
instances of size nβ for some polynomial p(n) then on instances of size n S runs in
time O

(
p
(
n1/β

))
which is still polynomial time. Unless NP = RP ∀ε, β > 0 and

every algorithm S running in time poly(n), there exists an integer n and a MAX3SAT
formula φ with nβ variables such that

1. There is an assignment satisfying at least (1− ε) of the clauses in φ.
2. The expected fraction of clauses in φ satisfied by S is ≤ 7

8 + ε.

If we reduce from a MAX3SAT instance with nβ variables we can construct a game
with O(n) states (n1−β copies of each variable). One Hamiltonian cycle would now
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corresponds to n1−β phases of the game. This means that the expected average reward
of the optimal fixed strategy is at least

max
f∈F

ER

[
P̄ (f,AR, G, T )

]
≥ n1−β (1− ε)

n
,

while the expected average reward of an efficient defender strategy D is at most

ER

[
P̄ (D,AR, G, T )

]
≤

n1−β
(
7
8 + ε

)
n

.

Therefore, the expected average regret is at least

R̄0 (D,AR, G, T, F ) ≥
(
1

8
− 2ε

)
n−β .

�
The proof of theorem 2 is similar to the proof of theorem 1. It can be found in the

full version [3] of this paper.
Our hardness reduction is similar to a result from Even-Dar et al., [12]. They con-

sider regret minimization in a Markov Decision Process where the adversary controls
the transition model. Their game is not a bounded-memory game; in particular it does
not satisfy our independent outcomes condition. The current state in their game can
depend on the last n actions. In contrast, we consider bounded-memory games with
m = O (logn), so that the current state only depends on the last m actions. This makes
it much more challenging to enforce guarantees such as “the defender can only receive
a reward once in each window of n rounds”—a property that is used in the hardness
proof. The adversary is oblivious so she will not remember this fact, and the game itself
cannot record whether a reward was given m + 1 rounds ago. We circumvented this
problem by designing a payoff function in which the defender is penalized for allow-
ing the game to “forget” when the last reward was given, thus effectively enforcing the
desired property.

7 Regret Minimization Algorithms

In section 7.1 we present a reduction from bounded-memory games to repeated games.
This reduction can be used to create a k-adaptive regret minimizing algorithm (Theorem
3). This is significant because there is no k-adaptive regret minimization algorithm for
the general class of stochastic games. A consequence of Theorem 1 is that when the ex-
pert set includes all fixed strategies F we cannot hope for an efficient algorithm unless
NP = RP. In section 7.2 we present an efficient approximate 0-adaptive regret min-
imization algorithm for bounded-memory games of perfect information. The algorithm
uses an implicit weight representation to efficiently sample the experts and update their
weights. Finally, we show how this algorithm can be adapted to obtain an efficient
approximate 0-adaptive regret minimization algorithm for bounded-memory games of
imperfect information.
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7.1 Reduction to Repeated Games

All of our regret minimization algorithms work by first reducing the bounded-memory
game G to a repeated game ρ (G,K). One round of the repeated game ρ (G,K) cor-
responds to K rounds of G. Before each round of ρ (G,K) both players commit to an
adaptive strategy. In ρ (G,K) the reward that the defender gets for playing a strategy
f ∈ AK

D is the reward that the defender would have received for using the strategy f for
the next K rounds of the actual game G if the initial state were σ0: P (f, g, ρ (G,K)) =
P (f, g,G, σ0,K).

The rewards in ρ (G,K) may be different from the actual rewards in G because
the initial state before each K rounds might not be σ0. Claim 4 bounds the differ-
ence between the hypothetical losses from ρ (G,K) and actual losses in G using the
bounded-memory property. The proof of Claim 4 is in the full version of this paper [3].

Claim 4. For any adaptive defender strategy f ∈ AK
D and any ad-

aptive adversary strategy g ∈ AK
A and any state σ of G we have

|P (f, g,G, σ,K)− P (f, g,G, σ0,K)| ≤ m .

The key idea behind our k-adaptive regret minimization algorithm BW is to reduce
the original bounded-memory game to a repeated game ρ (G,K) of imperfect inform-
ation (K ≡ 0 mod k). In particular we obtain the regret bound in Theorem 3. Details
and proofs can be found in the full version of this paper [3].

Theorem 3. Let G be any bounded-memory-m game with n states and let A be any
adversary strategy. After playing T rounds of G against A, BW (G,K) achieves regret
bound

R̄k (BW, A,G, T, S) <
m

T 1/4
+ 4

√
N logN

T 1/4
,

where N = |S| is the number of experts, A is the adversary strategy and K has been
chosen so that K = T 1/4 and K ≡ 0 mod k.

Intuitively, the m/T 1/4 = m/K term is due to modeling loss from Claim 4 and the
other term comes from the standard regret bound of [24].

7.2 Efficient Approximate Regret Minimization Algorithms

In this section we present EXBW (Efficient approXimate Bounded Memory Weighted
Majority), an efficient algorithm to approximately minimize regret against an oblivi-
ous adversary in bounded-memory games with perfect information. The set of experts
E used by our algorithms contains the fixed strategies F as well as all K-adaptive
strategies AK

D (K = m/γ). We prove the following theorem

Theorem 4. Let G be any bounded-memory-m game of perfect information with n
states and let A be any adversary strategy. Playing T rounds of G against A, EXBW
runs in total time TnO(1/γ) and achieves regret bound
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R̄0 (EXBW, A,G, T, E) ≤ γ +O

⎛⎝m

γ

√
m
γ n log (N)

T

⎞⎠ ,

where K has been set to m/γ and N =
∣∣AK

D

∣∣ = (|XD|)n
1/γ

is the number of K-
adaptive strategies.

In particular, for any constant γ there is an efficient γ-approximate 0-adaptive regret
minimization algorithm for bounded-memory games of perfect information. We can
adapt this algorithm to get EXBWII (Efficient approXimate Bounded Memory Weighted
Majority for Imperfect Information Games), an efficient approximate 0-adaptive regret
minimization algorithm for games of imperfect information using a sampling strategy
described in the full version of this paper [3].

Theorem 5. Let G be any bounded-memory-m game of imperfect information with n
states and let A be any adversary strategy. There is an algorithm EXBWII that runs in
total time TnO(1/γ) playing T rounds of G against A, and achieves regret bound

R̄0 (EXBWII, A,G, T, E) ≤ 2γ +O

⎛⎝mn1/γ

γ2

√
mn1/γ

γ n log (N)

T

⎞⎠ .

where K has been set to m/γ and N =
∣∣AK

D

∣∣ = (|XD|)n
1/γ

is the number of K-
adaptive strategies.

The regret bound of Theorem 4 is simply the regret bound achieved by the standard
weighted majority algorithm [25] plus the modeling loss term from Claim 4. The main
challenge is to provide an efficient simulation of the weighted majority algorithm. There
are an exponential number of experts so no efficient algorithm can explicitly maintain
weights for each of these experts. To simulate the weighted majority algorithm EXBW
implicitly maintains the weight of each expert.

To simulate the weighted majority algorithm we must be able to efficiently sample
from our weighted set of experts (see Sample (E)) and efficiently update the weights of
each expert in the set after each round of ρ (G,K) (see update weight stage of EXBW).

Meet the Experts. Instead of using F as the set of experts, EXBW uses a larger set
of experts E (F ⊂ E). Recall that a K-adaptive strategy is a function f mapping the
K most recent outcomes HK to actions. We use a set of K-adaptive strategies E =
{fσ : σ ∈ Σ} ⊂ AK

D to define an expert E in ρ (G,K): if the current state of the
real bounded-memory game G is σ then E uses the K-adaptive strategy fσ in the next
round of ρ (G,K) (i.e., the next K rounds of G). E denotes the set of all such experts.

Maintaining Weights for Experts Implicitly. To implicitly maintain the weights of each
expert E ∈ E we use the concept of a game trace. We say that a game trace p =
σ, d1, O1, ..., di−1, Oi−1, di is consistent with an expert E if fσ

(
O1, ..., Oj−1

)
= dj

for each j. We define the set C (E) to be the set of all such consistent traces of maximum
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length K and C =
⋃

E∈E C (E) denotes the set of all traces consistent with some expert
E ∈ E . EXBW maintains a weight wp on each trace p ∈ C. The weight of an expert E
is then defined to be WE =

∏
p∈C(E) wp.

Given adversary actions �a = a1, ..., aK and a trace p = σ, d1, O1, ..., di−1, Oi−1, di

we define R (�a, σ′, p):

R (�a, σ′, p) =

{
0 if σ �= σ′;∏

j<i Pr
[
Oj aj, dj

]
otherwise;

Intuitively, R (�a, σ′, p) is the probability that each outcome of p would have occurred
given the adversary actions were �a and the initial state was σ′. We use � (p,�a, σ′) to
denote the payment that the defender received for playing di (the last action in p).
Formally � (p,�a, σ′) = P

(
σf
p , d

i, ai
)
R (�a, σ′, p), where σf

p denotes the state reached
following the trace p (after observing outcomes O1, ..., Oi−1 starting from σ0) and di is
the final defender action in the trace. Notice that in the imperfect information setting the
defender could not compute � because he would not observe the adversary’s actions �a.

Updating Weights Efficiently. While updating weights EXBW maintains the invariant

that wp = β
∑T/K

j=1 �(p,	aj ,σjK), where σjK is the state of G after jK rounds and �at is the
actions the adversary played during the j’th round of ρ (G,K). The standard weighted

majority algorithm maintains the invariant that WE = β
∑T/K

j=1 P(E,	at,ρ(G,K)). Claim 5
implies that EXBW also maintains this invariant with its implicit weight representation;
the proof of Claim 5 is in the full version of this paper [3].

Claim 5 ∏
p∈C(E)

β
∑T/K

j=1 �(p,	aj ,σjK) = β
∑T/K

j=1 P(E,	aj,ρ(G,K)) .

Sampling Experts Efficiently. We can also efficiently sample from E using dynamic
programming (see Sample (E)). Using the notation p � p′ for p′ extends p we can
define ŵp:

ŵp =
∑

E:p∈C(E)

∏
p′∈C(E)∧p�p′

wp′

Intuitively, ŵp;O;d represents the weight of the action d from history p;O.
Using dynamic programming we can efficiently compute ŵp for each trace p because

there are only nO(1/γ) such traces. Using the weights ŵp we can efficiently sample from
E . We use p;O; d to denote a new game trace which contains all of the outcomes/actions
in p appended with O and d.
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Algorithm: EXBW (γ,G)
• Initialize: K = m/γ
• Construct: ρ (G,K)
• Each Round:
1. σ ← G.CurrentState
2. E ← Sample (E)
3. Play E
4. Observe adversary actions

�a = a1, ..., aK .

5. Update Weights: For each p ∈ C
A. Compute � (p,�a, σ)
B. Set wp ← wp × β�(p,	a,σ).

Algorithm: Sample (E)
• For each trace p ∈ C recursively compute
ŵp using the formula:

ŵp =
∑
O∈O

∑
d∈XD

β
∑T

t=1 �(p;O;d,	at,σKt)ŵp;O;d .

• Build Strategy E: For each p ∈ C and O ∈
O, randomly select d ∈ XD

Pr [d p, O] =
ŵp;O;d∑

d′∈XD
ŵp;O;d′

.

• E play d any time it observes history p;O.

Claim 6 says that Sample (E) outputs each expert E with probability proportional
to WE .

Claim 6. For each expert E ∈ E , Algorithm Sample (E) outputs E with probability

Pr [E] ∝ WE .

Given Sample (E) it is straightforward to simulate the standard weighted majority
algorithm. To update weights EXBW simply loops through all traces p ∈ C applying

the update rule wp = wp × β�(p,	at,σtK), where β is a learning parameter we tune later.
The formal proof of Theorem 4 can be found in the full version along with the proof of
claim 6.

At a high level our algorithm is similar to the online shortest path algorithm de-
veloped by Takimoto and Warmuth [15]. In their work, they consider the set of all
source-destination paths in a graph as experts. Since there are exponentially many paths
they also maintain the weights of the experts implicitly. In their setting, the defender
completely controls the chosen path. In contrast, our experts adapt to adversary actions.
The challenge was constructing a new implicit weight representation which works for
K-adaptive strategies.

Using this implicit weight representation we could have also used the general bary-
centric spanner approach to online linear optimization developed by Awerbuch and
Kleinberg [16] to design a γ-approximate 0-adaptive regret minimization algorithm run-
ning in time nO(1/γ). However, we are able to achieve better regret bounds in theorem 4
by simulating the weighted majority algorithm. Awerbuch and Kleinberg [16, Theorem
2.8] achieve the average regret bound O

(
Md5/3/T 1/3

)
, where d is the dimension of

the problem space and M is a bound on the cost vectors. By comparison our regret
bounds in Theorems 4 and 5 tend to 0 with 1/

√
T . In our setting, the dimension of

the problem space is d = O
(
n(1/γ)

)
(the number of nodes in the decision tree), and

M = K = m/γ is the upper bound on the cost vector in each round of ρ (G,K). The

average regret bound would be O
(

m
γ n

5/(3γ)/T 1/3
)

. the regret bound is proportional

to
√
n1/γ/T . By comparison Theorem 4 has a

√
n1/γ in the numerator.
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The standard regret minimization trick for dealing with imperfect information in a
repeated game is to break the game up into phases and perform random sampling in
each round to estimate the cost of each expert and update weights. The challenge in
adapting EXBW is that there are exponentially many experts in E . Our key idea was
to estimate � (p,�a, σ) for each p ∈ C so there are only nO(1/γ) samples to take in each
phase. We can then update the implicit weight representation using the estimated values
� (p,�a, σ).

8 Open Questions

In this paper, we defined a new class of games called bounded-memory games, intro-
duced several new notions of regret, and presented hardness results and algorithms for
regret minimization in this subclass of stochastic games. Because both the games and
the notions of regret we study in this paper rely on novel definitions, they raise a number
of interesting open problems: (1) To what extent can the hardness results of Theorems
1 and 2 be further improved? (γ = 1/logn?) Could similar hardness results apply to
games with perfect information? (2) Is there an efficient non-approximate oblivious
regret minimization algorithm for bounded-memory games with perfect information?
(3) Is there a γ-approximate oblivious regret minimization algorithm with running time
no(1/γ)? For example, could one design a γ-approximate oblivious regret minimization
algorithm with running time n− log γ? (4) For repeated games (m = 0) is there an effi-
cient γ-approximate k-adaptive regret minimization algorithm if we use AK

D as our set
of experts (K = log n)?

References

1. Blum, A., Mansour, Y.: Learning, regret minimization, and equilibria. Algorithmic Game
Theory, 79–102 (2007)

2. Shapley, L.: Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America 39(10), 1095 (1953)

3. Blocki, J., Christin, N., Datta, A., Sinha, A.: Adaptive regret minimization in bounded-
memory games. CoRR abs/1111.2888 (2011)

4. Blocki, J., Christin, N., Datta, A., Sinha, A.: Regret minimizing audits: A learning-theoretic
basis for privacy protection. In: 24th IEEE Computer Security Foundations Symposium, CSF
2011, pp. 312–327. IEEE (2011)

5. Blocki, J., Christin, N., Datta, A., Sinha, A.: Audit mechanisms for provable risk manage-
ment and accountable data governance. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012.
LNCS, vol. 7638, pp. 38–59. Springer, Heidelberg (2012)

6. Von Stackelberg, H.: Market structure and equilibrium. Springer (2011)
7. Blocki, J., Christin, N., Datta, A., Procaccia, A.D., Sinha, A.: Audit games. In: IJCAI (2013)
8. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.

Cambridge University Press (2011)
9. Mertens, J., Neyman, A.: Stochastic games. International Journal of Game Theory 10(2),

53–66 (1981)
10. Papadimitriou, C., Tsitsiklis, J.: The complexity of optimal queueing network control (1999)
11. Golovin, D., Krause, A.: Adaptive submodularity: A new approach to active learning and

stochastic optimization. CoRR abs/1003.3967 (2010)



84 J. Blocki et al.

12. Even-Dar, E., Kakade, S., Mansour, Y.: Experts in a Markov decision process. In: Advances
in Neural Information Processing Systems 17: Proceedings of the 2004 Conference, p. 401.
The MIT Press (2005)

13. Mannor, S., Shimkin, N.: The empirical bayes envelope and regret minimization in compet-
itive markov decision processes. Mathematics of Operations Research, 327–345 (2003)

14. Even-Dar, E., Mannor, S., Mansour, Y.: Learning with global cost in stochastic environments.
In: COLT: Proceedings of the Workshop on Computational Learning Theory (2010)

15. Takimoto, E., Warmuth, M.: Path kernels and multiplicative updates. The Journal of Machine
Learning Research 4, 773–818 (2003)

16. Awerbuch, B., Kleinberg, R.: Online linear optimization and adaptive routing. Journal of
Computer and System Sciences 74(1), 97–114 (2008)

17. Farias, D.P.D., Megiddo, N.: Combining expert advice in reactive environments. J. ACM 53,
762–799 (2006)

18. Fudenberg, D., Tirole, J.: Game theory. MIT Press (1991)
19. Blum, A., Mansour, Y.: From external to internal regret. Learning Theory, 621–636 (2005)
20. Celentani, M., Fudenberg, D., Levine, D., Pesendorfer, W.: Maintaining a reputation against

a patient opponent. Econometrica 64, 691–704 (1996)
21. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. Journal of Computer and System

Sciences 62(2), 367–375 (2001)
22. Hastad, J.: Some optimal inapproximability results. Journal of the ACM (JACM) 48(4), 798–

859 (2001)
23. Good, I.J.: Normal recurring decimals. Journal of the London Mathematical Society 1(3),

167 (1946)
24. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: Gambling in a rigged casino: The ad-

versarial multi-armed bandit problem. In: FOCS, p. 322. IEEE Computer Society (1995)
25. Littlestone, N., Warmuth, M.: The weighted majority algorithm. In: Proceedings of FOCS,

pp. 256–261 (1989)



The Cooperative Ballistic Missile Defence Game

Lanah Evers1,2,3, Ana Isabel Barros1,2, and Herman Monsuur2,�

1 TNO - Defense, Safety and Security
2 Netherlands Defence Academy

3 Econometric Institute, Erasmus University Rotterdam
H.Monsuur@nlda.nl

Abstract. The increasing proliferation of ballistic missiles and weapons
of mass destruction poses new risks worldwide. For a threatened nation
and given the characteristics of this threat a layered ballistic missile de-
fence system strategy appears to be the preferred solution. However, such
a strategy involves negotiations with other nations concerning the use of
their defence systems as part of the layered defence system. This paper
introduces the Cooperative Ballistic Missile Defense Game, CBMDG,
to support the strategic negotiations between a threatened nation and
the possible coalition nations. The model determines the assignment of
ballistic missile interceptors to the coalition nations that minimizes the
expected number of interceptors required to achieve the desired defence
level in case of an attack. Simultaneously, it identifies the bargaining
strength of each coalition of nations, in order to determine the com-
pensation for participating in the layered defence system to protect the
threatened nation.

1 Introduction

As stated by the US Missile Defence Agency and the Intelligence Community, one
of the greatest threats facing the world today remains the increasing proliferation
of ballistic missiles and weapons of mass destruction [6]. Ballistic Missiles (BMs)
follow a ballistic trajectory, see Fig. 1, and can have long range (above 5500km).
Moreover, they can carry explosive, nuclear, biological or chemical warheads,
see [13]. BMs provide therefore the capability to launch an attack from a large
distance (even inter-continental) and enable the projection of power both in a re-
gional and strategic context. Currently, sophisticated ballistic missile technology
is available on a wider scale to rogue nations. Therefore, developing an effective
and efficient Ballistic Missile Defense strategy has become more relevant.

As shown in Fig. 1 the ballistic trajectory of a BM begins with an ascent phase
till the apogee, followed by a descent phase. The ascent phase starts with the
boost phase. The boost phase itself ends with the burn-out. During the boost
phase detection and tracking of the BM is possible if the Ballistic Missile De-
fence (BMD) sensors are in close proximity to the BM launch location. After the
boost phase, the BM starts with the mid-course phase in space towards its tar-
get, following a ballistic trajectory that is determined by the angle and velocity
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S.K. Das, C. Nita-Rotaru, and M. Kantarcioglu (Eds.): GameSec 2013, LNCS 8252, pp. 85–98, 2013.
c© Springer International Publishing Switzerland 2013
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Fig. 1. BM trajectory

at burnout and gravity. Since the mid-course phase is the longest phase (about
75 %), several opportunities to destroy the incoming BM outside the Earth’s
atmosphere are possible. The last phase, the terminal phase is very short and
begins once the missile reenters the atmosphere. It is the last opportunity to
make an intercept before the BM reaches its target. An intercept during this
phase is difficult due to the short intercept window which should have a little
margin for error. Given the nature of the ballistic threat, a ballistic missile de-
fence should not rely on a single defence barrier but on multiple defence layers
placed at different sites forming a layered defence system. Such a layered defence
system allows for more engagement opportunities and as such increases the prob-
ability that incoming BMs are intercepted. Moreover, as we will show, such a
strategy yields a reduction on the average number of interceptors required to en-
sure the desired defence level. Therefore, for a threatened nation, it is important
to identify among the nations that have ballistic missile defence capabilities, the
coalition of nations that guarantees the desired defence level and at the same
time requires the smallest average number of interceptors. In this setting, it is
logical to assume that the threatened nation will make the required interceptors
available to the coalition nations. On the other hand, from a coalition nation
point a view, the fact that they are willing to counter attacks to the threatened
nation might pose political and strategic risks for these nations. As such they
might require some compensation during the negotiation phase. Such compensa-
tion can be, for instance, based on a fair share of the interceptor cost savings for
the threatened nation. In order to support the negotiation process, this paper
presents a game theoretical model consisting of two phases.

The first phase is an optimization phase used to determine the allocation of
interceptor stockpiles to the different candidate cooperating nations. In this op-
timization phase we assume that the threatened nation has set a desired defence
level. Since interceptors are costly munitions, when the intercept window allows
for it, a shoot-look-shoot engagement option is usually preferred. A shoot-look-
shoot consists of first engaging an incoming BM by an interceptor, followed by
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an assessment whether or not the BM has been successfully destroyed, and fi-
nally followed by a subsequent engagement only if the first engagement failed to
destroy the incoming BM. Obviously such an engagement option yields a smaller
expected number of interceptors usage then a salvo option where interceptors are
simultaneously or sequentially fired in order to ensure kill or BM destruction,
compare Washburn and Kress [14]. At the same time this engagement option
may satisfy the desired defence level. However, for a single nation, the engage-
ment time-window often does not allow to execute a shoot-look-shoot option
on its own. Therefore, the threatened nation has to put in place a cooperative
shoot-look-shoot strategy, allowing for more engagement opportunities. Next,
the resulting optimal allocation of interceptors is input to the second phase of
the model. The second phase is focused on the negotiation problem faced by the
nation under threat of attack: finding the compensation to be provided to the
cooperating nations given the increase in risk that they will face for supporting
the layered defence of the threatened nation. The model computes the bargain-
ing strength of each coalition of nations, in order to determine the compensation
for joining the layered defence for the nation that is threatened by an attack
with BM. The model falls in the class of OR games, see Borm et al. [2]. Related
problems are addressed, among others, by Bloemen et al [1] that present an ap-
proach to determine a robust defence strategy for the location of BMD systems
against ballistic missile threat, and Nguyen and Redding [9] who analyze the
effectiveness of layered defense systems. In Menq et al [7] a multi-layered BMD
system is modelled as a discrete Markov model, while in the area of air defence,
Karasakal [4] addresses the problem of allocating air defense missiles to incom-
ing air targets in order to maximize the air defense effectiveness of a naval task
group.

The remainder of this paper is structured as follows. The optimization phase of
the CBMDG is defined and illustrated in Sect. 2. Next, in Sect. 3, the cooperative
phase of the CBMDG is defined as well as the modeling issues concerning how
the nations could be compensated for their cooperation. In Sect. 4 some final
remarks are drawn.

2 The Optimization Phase

2.1 Problem Setting

Consider a nation that is defining its ballistic defence strategy. The scale of the
long range BM launchers provides an advantage in identifying the possible attack
strategies of rogue nations using intelligence sources. Each of these different
attack strategies, scenarios, define a specific shot line from a given launch location
to a particular High Value Asset (HVA) of this nation. In order to counter
this threat, the nation aims at achieving a predefined defence level L, which
represents the overall probability of successfully intercepting a BM. Without
loss of generality we will assume that nation 1 is the threatened nation. Without
cooperation, nation 1 has to deal alone with these threat scenarios. On the
other hand, by cooperating with other nations with similar defence capabilities,
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N \ {1} = {n, n− 1, . . . , 2}, a layered defence can be set in place. In this case,
nation 1 will provide its coalition partners the required interceptors to be used
in case of an attack. Of course, this layered defence concept relies on a network
architecture to combine the different nations sensors and launchers into one
missile defence system. This also makes possible the timely detection of incoming
BM attacks.

The nations are indexed from n down to 1 to represent the order in which
they are able to engage the BM, if necessary. In a cooperative shoot-look-shoot
option, after the engagement of nation i, an assessment will be performed in or-
der to determine if the next nation, i−1, needs to take over and perform another
engagement, i = n, n− 1, . . . , 2. The probability of successfully intercepting the
incoming BM, the so-called Probabilities of Interception (PIs), can be estimated
for each cooperating nation and are based on several geographical and physical
factors, like the maximum operational range of the BMD system and the tra-
jectory, speed and altitude of the BM. A feasible solution to the optimization
phase of the CBMDG consists of an assignment of M interceptors to the nations
in N , π = (mn,mn−1, . . . ,m1) with mn +mn−1 + . . . +m1 = M , that ensures
that the defence level L is achieved.

2.2 Formal Description

The problem of the optimization phase of the CBMDG contains the following
elements:

– A set N of nations including nation 1, |N | ≥ 2. These are the nations that
are able to engage a BM attacking nation 1.

– A set of PIs pi, the probability that an interceptor launched from nation i
will successfully intercept a BM attacking nation 1.

– The required minimum defence level L (set by nation 1) to be achieved.

Nations N \ {1} = {n, n − 1, . . . , 2} consider assisting nation 1 in its defence.
A feasible solution to the optimization phase of the CBMDG consists of an
assignment of interceptors to the nations in N , π = (mn,mn−1, . . . ,m1) that
ensures the fulfillment of the required defence level L. In order to increase the
probability of intercept and due to the trajectory characteristics of a BM, such
an assignment will obey the following: nation n first launches a salvo of mn

interceptors. Only if this engagement appears to be unsuccessful, nation n − 1
launches a salvo of mn−1 interceptors, followed by nation n − 2 launching its
salvo of mn−2 interceptors in case the engagement of nation n− 1 also appears
to be unsuccessful, etc.

For the sake of simplicity we will consider the situation with one attack sce-
nario. Denote the probability of one interceptor launched from nation i not being
successful in intercepting the BM by qi = 1 − pi. The incoming BM attacking
nation 1 will penetrate the layered defence if each of the nations intercept salvos
mn,mn−1, . . . ,m1 fail to intercept the BM. Since the probabilities are indepen-
dent, the success of the assignment π = (mn,mn−1, . . . ,m1) therefore is given
by:
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L(π) = 1−
∏
i∈N

(qi)
mi . (1)

In order for the assignment to be feasible, it has to satisfy the predefined defence
level:

L(π) ≥ L. (2)

The expected number of interceptors that will be launched to intercept a BM
attacking nation 1, using an assignment π = (mn,mn−1, . . . ,m1), with mi ≥ 0,
is given by:

d(π) = mn+(qn)
mnmn−1 +(qn)

mn(qn−1)
mn−1mn−2 + . . .+

⎧⎨⎩ ∏
n≥i>1

(qi)
mi

⎫⎬⎭m1.

(3)
Since nation 1 has provided interceptors to its coalition nations, n, . . . , 2, these
nations are authorized (by nation 1) to launch the mn,mn−1, . . . ,m2 intercep-
tors, if necessary. In this way, nation 1 ensures that its defence level is satisfied
while the average number of interceptors used to intercept the incoming BM will
be smaller than what would be needed if nation 1 would act alone (one defence
layer).

For example, consider scenario 1 in Fig. 2, where the estimated PIs are given in
Table 1. For scenario 1, we have N = {3, 2, 1}, for scenario 2 we have N = {2, 1}.
For scenario 1, the assignment (1, 1, 1) results in a defence level of L(1, 1, 1) =
1 − 0.5 · 0.4 · 0.3 = 0.94 while the expected number of interceptors launched in
case of an attack is d(1, 1, 1) = 1 + 0.5 · 1 + 0.5 · 0.4 · 1 = 1.7. The assignment
(0, 0, 3) has a defence level of L(0, 0, 3) = 1 − 0.33 = 0.973 but requires the use
of 3 interceptors missiles: d(0, 0, 3) = 3. If the defence level would be set at 0.94,
obviously the assignment (1, 1, 1) requires in expectation less interceptors than
would be needed if nation 1 is not assisted by the other nations.

Table 1. PIs per scenario

nation PI scenario 1 PI scenario 2

3 0.5 0
2 0.6 0.75
1 0.7 0.8

2.3 The Cost Function and Constraints

The optimization phase of the CBMDG consists of determining the interceptor
assignment π that minimizes the number of expected interceptors used, such
that the required defence level L is satisfied:
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Fig. 2. Example of problem situation

min d(π), (4)

s.t. L(π) ≥ L (5)

where mn,mn−1, . . . ,m1 ∈ N (6)

The optimal assignment π∗ = (mn,mn−1, . . . ,m1) must be interpreted as fol-
lows: nation 1 provides mi interceptors to nation i and authorizes to launch, if
necessary, a salvo ofmi interceptors by nation i to intercept the BM, i = n, . . . , 1.
Whenever cooperation would not be possible, nation 1 would have to launch in-
terceptors on its own in order to try to achieve the required defence level. Note
that, in some cases, it might be too risky or even impossible to timely intercept
the incoming BM in the last stage of the trajectory. In order to fulfill the required
defence level with only one defence layer, the required number of interceptors
ML is such that:

1− (q1)
ML ≥ L (7)

where d(0, . . . , 0,ML) = ML. So, for the optimal assignment π∗, we have d(π∗) ≤
ML. Depending on the relative values of the interception probabilities, the sum
of the assignments in π∗ can be larger or smaller than ML.

As an aside, we mention that the cost function just described, but with fixed
M and no defence level to be satisfied, is also known in the literature as the
salvo size problem [3]. There it is proved that, in case the success probabilities
of consecutive salvos are non-decreasing, the policy that minimizes the expected
number of shots expended has a non-decreasing sequence of salvos. In our case,
this means that for π = (mn,mn−1, . . . ,m1) with mi ≤ mi+1 for i = 1, . . . , n−1,
it holds that d(π) ≤ d(τ) for any permutation τ of π. In other words, most of
the interceptors are located near nation 1.
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2.4 Computing the Optimal Assignment

Let πN be an assignment for any set of cooperating nations N and let c(N,L)
be defined by

c(N,L) = min d(πN ) (8)

s.t. L(πN ) ≥ L. (9)

The resulting optimal assignment π∗ minimizes the expected number of inter-
ceptors used to successfully intercept an incoming BM, while at the same time it
satisfies the desired defence level. It is now possible to relate the optimal layered
defence if all nation in N do cooperate, to the optimal layered defence in case
nation n, the first nation that is able to engage the BM attacking nation 1, does
not cooperate:

Theorem 1. c(N,L) = minx∈{0,1,...,ML}{x+ qxnc(N \ n, 1− 1−L
qxn

)}.

Proof. (≥) Let π∗
N = (mn,mn−1, . . . ,m1) with L(π∗

N ) ≥ L minimize c(N,L).
Let π∗

N\n = (mn−1, . . . ,m1). Then L(π∗
N\n) ≥ 1 − 1−L

qxn
. So, clearly, d(π∗

N\n) ≥
c(N \ n, 1 − 1−L

qxn
). This implies that c(N,L) = d(π∗

N ) = mn + qmn
n d(π∗

N\n) ≥
mn + qmn

n c(N \ n, 1 − 1−L
qmn
n

). (≤) Take some x. Then c(N \ n, 1 − 1−L
qxn

) =

d(0,mn−1, . . . ,m1) with mn−1, . . . ,m1 such that L(0,mn−1, . . . ,m1) ≥ 1− 1−L
qxn

.

As L(x,mn−1, . . . ,m1) ≥ L, we have that c(N,L) ≤ x+ qxnd(0,mn−1, . . . ,m1) =
x+ qxnc(N \ n, 1− 1−L

qxn
). 
�

In case all interception probabilities are equal, this result may be used as an
efficient dynamic programming approach: one has to keep record of c(S, L

qk
) for

k = 0, 1, . . . ,M and S = {1}, {2, 1}, {3, 2, 1, }, . . . , {n−1, n−2, . . . , 1}, N . Unfor-
tunately, it also indicates that for distinct interception probabilities a dynamic
programming approach will not work: for example, if all probabilities differ, one
has to compute c({1}, L) for as many defence levels L as there are assignments.
In that case we will have to use a suitable heuristic, or, in case |N | is not large,
complete enumeration. A good starting solution for a heuristic can be found
using the following function e(N,M) that does not take the defence level into
account, but fixes the number of interceptors used:

Let e(N,M) be defined by

e(N,M) = min d(πN ) (10)

s.t.
∑

i∈N mi = M. (11)

We then have the following result, the proof of which is similar to that of Th. 1:

Theorem 2. e(N,M) = minx∈{0,1,...,M}{x+ qxne(N \ n,M − x)}.
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Th. 2 can be used to fill a table T with triple-entries TN,M = (e(N,M) / as-
signment π / realized defence level), row by row, starting with row 1, for N =
{1}, {2, 1}, {3, 2, 1}, . . .{n, n− 1, . . . , 1} and M = 1, 2, . . .. Regarding the entries
e(N,M) in T , we note that this value decreases when more nations join the coali-
tion, and increases with increasing M . The first assertion follows directly from
Th. 2 (take x = 0); for the second one, we note that e(N,M) = mn+qmn

n mn−1+

. . .+
{∏

n≥i>1(qi)
mi

}
m1 > mn+ qmn

n mn−1+ . . .+
{∏

n≥i>1(qi)
mi

}
(m1− 1) ≥

e(N,M − 1), where we assume (w.l.o.g.) that m1 > 0.
Using Th. 2 we compute Table 2. Then take the assignment π that satisfies

the defence level and has the lowest value of d(π). In case there are multiple
optima, we choose the one with the highest defence level. This assignment then
may serve as a starting solution for a heuristic. For example, if L is set at 0.95,
the starting assignment would be π = (0, 1, 2), needing M = 3 interceptors,
while for L = 0.97, the starting assignment is π = (1, 1, 2) with M = 4. Note
that in both cases ML = 3.

Table 2. Computation of (e(N,M) / assignment π / realized defence level) for Scenario
1 of Figure 2, using the PIs from Table 1

M = 1 M = 2 M = 3 M = 4

N = {1} 1/(0, 0, 1)/0.70 2.0/(0, 0, 2)/0.91 3.0/(0, 0, 3)/0.97 4.0/(0, 0, 4)/0.99
N = {2, 1} 1/(0, 0, 1)/0.70 1.4/(0, 1, 1)/0.88 1.8/(0, 1, 2)/0.96 2.2/(0, 1, 3)/0.99
N = {3, 2, 1} 1/(0, 0, 1)/0.70 1.4/(0, 1, 1)/0.88 1.7/(1, 1, 1)/0.94 1.9/(1, 1, 2)/0.98

As a heuristic, we propose a simple local improvement procedure. First of all,
we start with a feasible assignment. At each step, construct 3 possible neighbors
for the current assignment π = (mn,mn−1, . . . ,m1): (1) Choose i, j with i �= j
and mj > 0. Define m′

i = mi+1,m′
j = mj−1; (2) Choose i. Define m′

i = mi+1;
(3) Choose j with mj > 0. Define m′

j = mj − 1. From the set of neighbors and
the current assignment, choose the assignment π that satisfies the defence level
and has lowest value of d(π). In our example, the starting assignments already
are optimal assignments. So, if we consider the case L = 0.97, the expected total
number of interceptors required to intercept an incoming BM, decreases from 3
in a non-cooperative setting to 1.9 in the optimal cooperative strategy. In the
next section we will show how to derive a fair compensation for the coalition
nations.

3 The Cooperative Phase

In the previous section we presented an approach for the threatened nation to
determine the best interceptor assignment strategies. Given a defence level L,
it shows how to reduce the expected number of interceptors needed in case of
an attack. Clearly, the threatened nation profits from this cooperation. As this
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nation provides the interceptors to its partners, it may even decide not to share
this profit (intercept cost savings) with them. Other nations may reason that
the threatened nation needs their cooperation to implement the layered defence.
During the negotiations, these nations may therefore claim a fair share of the
profit, which is the interceptor cost savings. By comparing the different coali-
tions in terms of interceptor cost savings, we are able to derive a fair allocation
of the total savings of the threatened nation. For this, we will use the notion
of a transferable utility (TU) game: A transferable utility (TU) game is a pair
(N, v), where v : 2N → R with v(∅) = 0. The function v is called the charac-
teristic function: for S ⊂ N , v(S) is the value of the coalition S. For detailed
information regarding the various game theoretic concepts that we will use, we
refer to Maschler et al. [5].

3.1 The Interceptor Savings Game

We showed how, given a defence level L, cooperation between nations in missile
defence reduces the expected number of interceptors needed in case of an attack.
To obtain the optimal solution to this OR-problem, all nations i ∈ N that were
able to engage the BM were taken into consideration. In order to define the
cooperative phase of the CBMDG, the minimum expected number of interceptors
needed has to be defined for every coalition S ⊆ N that contains nation 1. For
this, we can use the results of the previous section. In Fig. 2 we may, for example,
consider S = {3, 1}. We may derive that (with L = 0.97) we have two optimal
assignments (1, 3) and (2, 2), both with expected value (or costs in terms of
interceptors) of 2.5. As the defence level of the first assignment is higher, we
take π∗ = (1, 3). For coalition {3, 1}, we therefore define c({3, 1}, 0.97) = 2.5.
This may be done for any coalition S, where the optimal assignment will be
denoted by π∗

S . This gives the following definition of c(S,L), generalizing the
definition of c(N,L) of the previous section:

c(S,L) =

{
d(π∗

S) if S � 1,
0 elsewhere.

(12)

Since we assume only nation 1 to be subjected to a BM attack, we have strictly
positive costs if and only if nation 1 is in the coalition. This gives rise to the
cooperative phase of the CBMDG, which is stated in terms of, what we will call,
an interceptor savings game.

The interceptor savings game is defined by

vLMD(S) =
∑
i∈S

c({i}, L)− c(S,L), for each ∅ �= S ⊂ N (13)

and
vLMD(∅) = 0. (14)

This equation shows that the savings by coalition S is the difference between the
sum of savings each member of the coalition S can achieve on its own, minus the
savings the coalition S, acting as one, can achieve. As without nation 1 involved
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in the coalition, no interceptor savings can be established, the savings boil down
to vLMD(S) = ML − c(S,L), for each ∅ �= S ⊂ N .

For the example described in the previous section we thus have the following
game:

Table 3. Cooperative game of CBMDG, with |N | = 3, L = 0.97 (ML = 3)

S {1} {2} {3} {2,1} {3,1} {3,2} {3,2,1}
π∗
S (0,0,3) N.A. N.A. (0,1,3) (1,0,3) N.A. (1,1,2)

c(S,L) 3 0 0 2.2 2.5 0 1.9
vLMD(S) 0 0 0 0.8 0.5 0 1.1

This game has some interesting properties; it is monotone and super additive:
An arbitrary game v is monotone if v(S) ≤ v(T ) if S ⊂ T . For our interceptor
savings game with S ⊂ T we clearly haveminπ∈πSd(π) ≥ minπ∈πT d(π). We thus
have vLMD(S) = M − c(S) ≤ M − c(T ) = vLMD(T ), which proves monotonicity
of vLMD. A game v is super additive if v(S ∪ T ) ≥ v(S) + v(T ) if S ∩ T = ∅.
In the CBMDG game with S ∩ T = ∅ at least one of the coalitions S or T
does not contain player 1. By definition a coalition without player 1 has no
interceptor savings. Because of that, and because of monotonicity, the game vLMD

is super additive. A game v is convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )
if S ⊂ T ⊂ N \ {i}. Our game is not convex. To see this we refer to the
example game given in Table 3. For S = {1}, T = {2, 1} and i = 3 we have
vLMD(S ∪{i})− vLMD(S) = v(LMD{3, 1})− vLMD({1}) = 0.5− 0 > vLMD(T ∪{i})−
vLMD(T ) = vLMD({3, 2, 1})− vLMD({2, 1}) = 1.1− 0.8.

3.2 Allocating the Savings

During the negotiation phase, the risk incurred by the nations assisting nation
1 plays a role. Here, a compensation scheme might be used to mitigate these
risks. This compensation can be based on a fair share of the value vLBM (N), the
reduction in the expected number of interceptors required to defend nation 1
established by the grand coalition N . Such an allocation, x = (x)i with

∑
i xi =

vLBM (N), will have to take into account the intercept savings vLBM (S) of all
possible coalitions S that are able to assist nation 1 in its defence against a
BM attack: Each vLBM (S) can be seen as the claim of coalition S on part of the
total value vLMD(N). As each interceptor is equivalent to a monetary value, say
K, in order to compensate the nations for cooperating in the layered defence,
a fair compensation would be that nation 1 would provide xiK to nation i,
i = n, n− 1, . . . , 2.
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Basic Requirements. Two generally accepted requirements for an allocation
x = (x)i for an arbitrary game v are

– Efficiency:
∑

i∈N xi = v(N);
– Individual rationality: xi ≥ v({i}) for all i ∈ N .

An additional requirement, if possible, is that x is element of the so-called core
of the game. The core of a game v is defined as

C(v) =

{
x ∈ RN |

∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for all S ⊆ N

}
. (15)

These allocations are stable with respect to coalitional deviations. This means
that no coalition S can rightfully object to x, as the total value allocated to S,∑

i∈S xi is at least what it can obtain by splitting off, v(S). In general, we have
the important result that the core of the game vLMD is non-empty:

Theorem 3. The core of the interceptor savings game vLMD is non-empty.

Proof. A possible imputation is (xn, xn−1, . . . , x1) = (0, . . . , 0, vLMD(N)). For
any coalition S that includes nation 1, we have

∑
i∈S xi = vLMD(N), which is, by

monotonicity of vLMD, at least vLMD(S). Moreover, if S does not include nation
1, vLMD(S) = 0, which concludes the proof. 
�

To illustrate how this property applies to the CBMDP game, we will describe the
core of the game given in Table 3. For the example we have a core consisting of
all x ∈ R3 that satisfy {x1 + x2 + x3 = 1.1, x1 + x2 ≥ 0.8, x1 + x3 ≥ 0.5}, which
implies x3 ≤ 0.30 and x2 ≤ 0.60. The core can also be written as the convex hull
of the vectors (x3, x2, x1) = (0, 0, 1.1), (x3, x2, x1) = (0, 0.6, 0.5), (x3, x2, x1) =
(0.3, 0.6, 0.2) and (x3, x2, x1) = (0.3, 0, 0.8). The center of this set is the alloca-
tion (0.15, 0.30, 0.65) for nations 3, 2 and 1. This allocation means that nation
1 has to give nations 2 and 3 a share 0.45 of the total savings 1.1.

The Shapley Value. Instead of presenting a set of allocations from which to
choose, one may also apply solutions of cooperative game theory to find a point
solution, hopefully in the core of the game. A well-known, classic and often used
allocation mechanisms is the Shapley value. The Shapley value of a game v is

defined by φi(v) =
∑

S⊆N\{i}
|S|!(|N |−|S|−1)!

|N |! (v(S∪{i})−v(S)). For our example,

this results in the following Shapley value: φ(vLMD) = (0.183, 0.333, 0.583) for
nations 3,2 and 1. This allocation is in the core of vLMD. Unfortunately, in general
the Shapley value φ(vLMD) is not always in the core of vLMD. Take, for example,
three nations with all interception probabilities equal to 0.7 with L = 0.99.

The τ -value. The τ -value, introduced by Tijs [12], is defined for so-called
compromise admissible games: Define for a game
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– Mi(v) = v(N)− v(N \ {i}), and
– mi(v) = maxS:S�i{v(S)−

∑
j∈S\{i} Mj(v)}.

The value Mi(v) indicates an upper bound a player reasonable can demand
within negotiations regarding the allocation of v(N). Likewise, mi(v) indicates
a kind of minimal value nation i can achieve by satisfying all other nations in a
coalition by giving them their utopia demands Mj(v).

A game v is called compromise admissible if

m(v) ≤ M(v) and
∑
i∈N

mi(v) ≤ v(N) ≤
∑
i∈N

Mi(v). (16)

For our game, one may easily verify that M1(v
L
MD) = vLMD(N). Because of

monotonicity, we have Mi(v
L
MD) ≥ 0 for i �= 1 and also m1(v

L
MD) ≤ vLMD(N),

while mi(v
L
MD) = 0 for i �= 1. So our game is compromise admissible, and we

may define the following allocation rule:
The τ -value is defined by

τ(vLMD) = αM(vLMD) + (1− α)m(vLMD), (17)

with α such that
∑

i∈N τi(v) = vLMD(N). It balances between the minimal rights
and the (utopia) vector M(vLMD). For our example, this results in α = 0.5 and
a τ -value of α(0.3, 0.6, 1, 1) + (1 − α)(0, 0, 0.2) = (0.15, 0.30, 0.65) for nations 3,
2 and 1. It is at the center of the core of our game.

The Nucleolus. As a final allocation mechanism, we consider an allocation rule
that is defined for games for which there exists allocations that are individual
rational and efficient, as is the case for our game vLMD. The rationale behind this
allocation rule is based on the excess E(S, x) of a coalition with respect to x:
E(S, x) = vLMD(S)−

∑
i∈S xi. The excess is a measure for the dissatisfaction of

the coalition S with respect to the proposed allocation x. Then θ(x) is the excess
vector, in (weakly) decreasing order, of all possible coalitions. The nucleolus
n(vLMD), introduced by Schmeidler [11], is the unique allocation, element of the
core, that minimizes the maximum dissatisfaction, meaning that the nucleolus
is the lexicographic minimum of the set θ(x).

For example, take x = (0.15, 0.30, 0.65) for the game of Table 3, we obtain as
excess vector θ(x) = (0.0, 0.0,−0.15,−0.15,−0.30,−0.30,−0.45,−0.65). In our
case, n(vLMD) = τ(vLMD) = (0.15, 0.30, 0.65) for the nations 3, 2 and 1, again the
allocation at the center of the core. This shows that both the τ -value and the
nucleolus are suitable allocation mechanisms for our problem.

3.3 Big Boss Game

An arbitrary monotonic game v is called a big boss game if there is one player,
denoted by i∗, satisfying the following two conditions (see Muto et al. [8]):
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– A : v(S) = 0 if i∗ /∈ S
– B : v(N)− v(S) ≥

∑
i∈N\S Mi(v) if i

∗ ∈ S.

A implies that one player i∗ is very powerful, i.e., coalitions not containing i∗

cannot get anything. Condition B implies that for every coalition N \ S not
containing i∗, its contribution to the grand coalition (which is v(N) − v(S)) is
at least as large as the sum of the individual utopia demands. Hence, the weak
players may increase their influence by forming coalitions. Economic applications
of big boss games include indivisible good market with one seller and many
buyers, and bankruptcy problems with one big claimant.

In big boss games the core of the game is equal to

C(v) =

{
x ∈ RN |

∑
i∈N

xi = v(N),mi(v) ≤ xi ≤ Mi(v) for all i ∈ N

}
. (18)

We note that for any game with |N | ≤ 3 and non-empty core, this same expres-
sion holds, Quant et al. [10]. For general big boss games, the τ -value coincides
with the nucleolus and both are at the center of the core, while the Shapley value
differs from the τ -value and nucleolus in case the game is not convex.

For an arbitrary game v, coalition S, j ∈ S and utopia values Mi(v, S) =
v(S)− v(S \ {i}), we have:

Theorem 4. Suppose that for each coalition S � i∗ and each i ∈ S we have that
Mi(v, S) ≥ Mi(v, S ∪ j). Then, if also condition A holds, v is a big boss game.

Proof. Note that v(N) − v(S) = (v(N) − v(N \ jn)) + (v(N \ jn) − v(N \
{jn, jn−1})) + . . .+ (v(S ∪ jn−s)− v(S)), for {jn, jn−1, . . . jn−s} = N \ S. Each
term in this sum is equal to Mj(v, T ) for some j ∈ N \ S and S ⊂ T ⊂ N . By
assumption, Mj(v, T ) ≥ Mj(v,N) = Mj(v), proving our claim. 
�

For our game vLMD, the condition in Theorem 4 seems very plausible: the effect
of nation i leaving the grand coalition N can more easily be compensated by the
remaining nations than if nation i leaves a smaller coalition S of nations. We
therefore conjecture that the game vLMD of CBMDG belongs to the class of big
boss games. For the CBMDP game, player 1 fulfills the role of i∗ used in this
definition.

4 Conclusions

The Cooperative Ballistic Missile Defense Game (CBMDG) aims at identifies
the bargaining strength of each coalition of nations, based on the optimal as-
signment of interceptors to the coalition nations. This is used to determine the
compensation for each coalition nation for supporting the layered defence sys-
tem that ensures the required defence level in case of an attack. As such, first
the model determines the optimal assignment of the interceptor stocks to na-
tions that minimizes the expected number of interceptors required to achieve a



98 L. Evers, A.I. Barros, and H. Monsuur

predetermined defense level in case of an attack. Next, the model identifies the
benefits of all possible coalitions in a cooperative game and provides possible
divisions of the benefits among the cooperating nations. Our approach can eas-
ily be adapted to the situation where we have more than one threat scenario
and more than just one nation facing the possibility of a BM attack. We believe
that the approach presented in this paper provides insights for strategic negoti-
ations when considering a layered defence system, as it identifies the bargaining
strengths of each of the participating nations.
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Abstract. While cloud computing provides many advantages in accessibility, 
scalability and cost efficiency, it also introduces a number of new security risks. 
This paper concentrates on the co-resident attack, where malicious users aim to 
co-locate their virtual machines (VMs) with target VMs on the same physical 
server, and then exploit side channels to extract private information from the 
victim. Most of the previous work has discussed how to eliminate or mitigate 
the threat of side channels. However, the presented solutions are impractical for 
the current commercial cloud platforms. We approach the problem from a dif-
ferent perspective, and study how to minimise the attacker’s possibility of co-
locating their VMs with the targets, while maintaining a satisfactory workload 
balance and low power consumption for the system. Specifically, we introduce 
a security game model to compare different VM allocation policies. Our analy-
sis shows that rather than deploying one single policy, the cloud provider de-
creases the attacker’s possibility of achieving co-location by having a policy 
pool, where each policy is selected with a certain probability. Our solution does 
not require any changes to the underlying infrastructure. Hence, it can be easily 
implemented in existing cloud computing platforms.  

Keywords: Cloud computing, co-resident attack, game theory, virtual machine 
allocation policy.  

1 Introduction 

In cloud computing environments, when a user requests to start a new machine, in 
most cases the allocated machine is not an entire physical server, but only a virtual 
machine (VM) running on a specific host. This is enabled by hardware virtualisation 
technologies [1] such as Hyper-V, VMWare, and Xen, so that multiple VMs of differ-
ent users can run on the same physical server and share the same underlying hardware 
resources. While this increases the utilisation rate of hardware platforms, it also intro-
duces a new threat: although in theory, VMs running on the same server (i.e., co-
resident VMs) should be logically isolated from each other, malicious users can still 
circumvent the logical isolation, and obtain sensitive information from co-resident 
VMs [2]. 
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It has been shown that this new co-resident attack (also known as a co-residence at-
tack, or co-location attack) is indeed feasible in real cloud platforms. By building 
different kinds of side channels, the attacker can extract a range of private statistics, 
from the coarse-grained [2], like the victim’s workload and traffic rate, to the fine-
grained [3], such as cryptographic keys. 

Most of the previous work has focused on the side channels, and proposed to solve 
the problem either by mitigating the threat of side channels [4-7], or designing a new 
architecture for the cloud system to eliminate side channels [8, 9]. However, few of 
these are practical for current commercial cloud platforms as they require significant 
changes to be made. In this paper, we address this issue with a novel decision and 
game-theoretic approach. 

The co-resident attack that we are discussing comprises two steps. Before the at-
tacker can extract any useful information from the victim, they first need to co-locate 
their own VMs with the target VM. Experiments in [2] show that the attacker can 
achieve a surprisingly high efficiency rate of 40% (i.e., 4 out of 10 malicious VMs 
launched by the attacker will be co-resident with the target(s)). This observation mo-
tivates us to study practical methods for decreasing this efficiency rate of co-resident 
attacks. For cloud providers, one important factor they can control that will influence 
the efficiency rate is the VM allocation policy. Hence, we compare different VM 
allocation policies in cloud computing, and investigate the impact of these policies on 
the efficiency of achieving co-residence. 

When cloud providers decide on their VM allocation policies, workload balance 
and power consumption are used as additional important criteria. Therefore, we carry 
out a comparative study of four basic VM allocation policies using a game theoretic 
approach, namely: choosing the server (1) with the least number of VMs, (2) with the 
most number of VMs, (3) randomly, and (4) on a round robin basis. These policies 
form the basis of most policies used in real cloud systems. Specifically, we model this 
as a two-player security game, where the attacker’s goal is to maximize the attack 
efficiency, while the defender (cloud provider) aims to minimize it on the premise of 
balancing the workload and maintaining low power consumption. 

 

Power 
consumption

Load balance Security

 

Fig. 1. Different focuses of VM allocation policies 
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Our contributions in this paper include: (1) we introduce a novel game theoretic 
approach to the problem of defending against co-resident attacks; (2) we model dif-
ferent VM allocation policies using zero- and non-zero-sum security games; (3) we 
perform extensive numerical simulations to develop and evaluate a practical solution 
for mitigating the threat of co-resident attacks; and (4) we show that in terms of 
minimising attack efficiency, the deterministic VM allocation policy behaves the 
worst, while a mixed policy outperforms any single policy. 

The rest of the paper is organized as follows. In Section 2, we further introduce the 
focus of our study – the co-resident attack, and give our problem statement. In Section 
3, we propose our game model. A detailed analysis and comparison of the different 
VM allocation policies is presented in Section 4, while Section 5 concludes the paper 
and gives directions for our future work. 

2 Background and Problem Statement 

In this section, we first introduce the co-resident attack in detail. We discuss how to 
achieve co-residence, the security risks, and potential countermeasures. We then  
define the problem that we aim to solve in this paper. 

2.1 Methods to Achieve Co-residence 

In order to achieve co-residence, i.e., locate their own VM and the victim on the same 
host, the attackers have several options.  

1. The most straightforward approach is to use a brute-force strategy: start as many 
VMs as possible until co-residence is achieved.  

2. Experiments in [2] show that in the popular Amazon EC2 cloud, there is strong se-
quential and parallel locality in VM placement, which means if one VM is termi-
nated right before another one is started, or if two VMs are launched almost at the 
same time, then these two VMs are often assigned to the same server. As a result, 
the attacker can increase the possibility of co-locating their VM with the targets if 
they are able to trigger the victim to start new VMs, and then launch their own 
VMs after that. 

2.2 Potential Security Risks 

After co-residence is achieved, there are a number of potential security risks: 

1. VM workload estimation – In [2], the authors adopt the Prime+Probe technique 
[10, 11] to measure cache utilisation. The basic idea is that the execution time of 
the cache read operation is heavily influenced by the cache utilisation. Hence, by 
performing intensive read operations and then measuring the execution time, the 
attacker can infer the cache usage, which also indicates the target VM’s workload. 

2. Web traffic rate estimation – Similarly, the attacker performs cache load measure-
ments on the co-resident VM, and at the same time, they send HTTP requests from 
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non-co-resident VM(s) to the victim. Experimental results show that there is a 
strong correlation between the execution time of the cache operation and the HTTP 
traffic rate. In other words, the attacker is able to obtain information about the web 
traffic rate on the co-resident VM. This can be useful information if the victim is a 
corporate competitor.  

3. Private key extraction – In [3], the authors demonstrate that it is possible to extract 
cryptographic keys by using cross-VM side channels. In particular, they show how 
to overcome the following challenges: regaining the control of the physical CPU 
with sufficient frequency to monitor the instruction cache, filtering out hardware 
and software noise, and determining if an observation is from the target virtual 
CPU or not due to the core migration. 

In addition, there are a number of papers discussing how to build side channels be-
tween co-resident VMs in cloud computing environments [12-17]. 

Note that there are other types of denial-of-service attacks where the attacker does 
not care who the victim is, and only aims to obtain an unfair share of resources from 
the physical server, so that co-resident VMs will experience a degradation of quality 
of service [18-21]. This type of attack is outside the scope of our research. 

2.3 Possible Countermeasures 

Previous studies have proposed a number of possible defence methods, which can be 
broadly classified into the following three categories:  

1. Preventing the attacker from verifying co-residence – In current cloud computing 
platforms, it is relatively easy to check if two VMs are on the same host. For ex-
ample, by performing a TCP traceroute the attacker can obtain a VM’s Dom0 IP 
address (where Dom0 is a privileged VM that manages other VMs on the host). If 
two Dom0 IP addresses are the same, the corresponding VMs are on the same 
server. If we can prevent the attacker from verifying whether their own VM and 
the target victim’s VM are on the same physical machine, then they will not be 
able to launch further attacks. However, there are a number of alternative methods 
to verify co-residence that do not rely on network measurement [2], even though 
they are more time-consuming. Therefore, it is difficult, if not impossible, to pre-
vent all these methods. 

2. Securing the system to prevent sensitive information of a VM from being leaked to 
co-resident VMs – Countermeasures against side channels have already been  
extensively studied, including (1) mitigating the threat of timing channels by 
eliminating high resolution clocks [5], or adding latency to potentially malicious 
operations [6], and (2) redesigning the architecture for cloud computing systems 
[8, 9]. Nevertheless, these methods are usually impractical for current commercial 
cloud platforms due to the substantial changes required. 

3. Periodically migrating VMs – The authors in [22, 23] propose to solve the problem 
by periodically migrating VMs. The number of chosen VMs and hosts are decided 
based on game theory. In addition, they also discuss how to place VMs in order to 
minimize the security risk. However, frequently migrating VMs may increase 
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power usage and lead to load imbalances, which are undesirable from the cloud 
provider’s perspective. 

2.4 Problem Statement 

In this paper, we aim to find a solution for defending against the co-resident attack. In 
order to make our proposed method practical, we assume that the cloud providers (1) 
do not have any prior knowledge of the attacker; (2) will not apply any additional 
security patches, and (3) will not have access to an effective detection mechanism. 
Therefore, the question is under these assumptions, how can they mitigate the threat 
of co-resident attacks, while maintaining a reasonably high workload balance and low 
power consumption for the system? 

3 Proposed Game Model 

We consider this problem as a static game between the attacker and the defender 
(cloud provider). In this section, we first define the attack and defence scenarios, and 
then propose our game model.  

3.1 Attack Scenarios and Metrics 

Before giving the formal description of the game model, we first define the attack 
scenario: in a system of N servers, there are k (separate) attackers {A1, A2, …, Ak}, 
each controlling one single account. No limit on the number of VMs is enforced for 
an account, which means the attackers can start as many VMs as frequently as they 
want (in practice, the attackers maybe restricted by costs and other factors). The target 
for attacker Ai is the set of VMs started by legitimate user Li, i.e., Target(Ai) = 
∑tVM(Li,t) = {VMi1, VMi2, …, iiTVM }, where VM(Li,t) is the set of VMs started by Li 
at time t. During one attack started at time t, Ai will launch a number of VMs, 
VM(Ai,t). Let SuccVM(Ai,t) denote the VMs of attacker Ai that co-locate with at least 
one of the targets, i.e., SuccVM(Ai,t) = {v | v ∈  VM(Ai,t), Servers({v}) ⊆  Serv-
ers(Target(Ai))}, where Servers({a set of VMs}) is the set of servers that host the set 
of VMs. Similarly, let SuccTarget(Ai,t) denote the VMs of the target user Li that are 
co-located with at least one VM of the attacker Ai, i.e., SuccTarget(Ai,t) = { u | u ∈  
Target(Ai), Servers({u}) ⊆  Servers(VM(Ai,t))}. Then an attack is considered as 
successful if SuccVM(Ai,t) and SuccTarget(Ai,t) are non-empty, i.e., at least one of the 
attacker’s VMs is co-located with at least one of the target VMs. 

In order to further measure the success for one attack, two definitions are  
introduced:  

(1) Efficiency, which is defined as the number of malicious VMs that are success-
fully co-located with at least one of the Ti targets, divided by the total number of VMs 
launched during this attack, i.e.,  
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(2) Coverage, which is defined as the number of target VMs co-located with mali-
cious VMs started in this attack, divided by the number of targets Ti, i.e.,  
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Table 1. Definitions of symbols used 

Name Definition 

Target(Ai) The target set of VMs that Ai intends to co-locate with. |Target(Ai)| = Ti 

VM(Li,t)  The set of VMs started by user Li at time t 

SuccTarget(Ai,t) A subset of Target(Ai) that co-locates with at least one VM from VM(Ai,t) 

SuccVM(Ai,t) A subset of VM(Ai,t) that co-locates with at least one of the Ti targets 

Servers({a set of VMs}) Servers that host the set of VMs 

3.2 Defence Policies 

Recall that the attack we consider comprises two steps. First, the attacker has a clear 
set of targets, and they will try different methods to co-locate their own VMs with the 
targets. Second, after co-residence is achieved, the attacker will use various  
techniques to obtain sensitive information from the victim.  

Because of the assumptions we made in Section 2.4, any solution that focuses on 
the second step, and any attempt to identify the attacker or their VM requests are in-
feasible. Therefore, one of the remaining options for the defender is to find an alloca-
tion policy that minimizes the overall possibility of achieving co-residence. 

For simplicity reasons, we only consider four policies, namely: choosing the server 
(1) with the least number of VMs (“Least VM”), (2) with the most number of VMs 
(“Most VM”), (3) randomly (“Random”), and (4) on a round robin basis (“Round 
Robin”). The reason why we choose these policies is that the first two are two ex-
tremes in the policy spectrum, with one spreading the workload and the other one 
concentrating the workload, while the other two are the most straightforward policies. 
In addition, most real cloud VM allocation policies are based on these four policies. 

We can classify these policies into two main categories: deterministic (Policy 4), 
and stochastic (Policies 1, 2, 3). 

Deterministic VM Allocation Policies 
Round Robin: suppose that all the servers form a queue. When a new VM request 
arrives, all the servers in the queue will be checked sequentially from the beginning, 
until a server Sr is found with enough remaining resources. Server Sr will be selected 
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to host the new VM, and all the servers that have been checked will be moved to the 
end of the queue, keeping the original order. 

We classify the Round Robin policy as deterministic because the servers will be 
chosen with the same order, if the cloud system and the workload are the same. 

Stochastic VM Allocation Policies 
1. Least VM/Most VM: for every new VM request, the policy will select the server 

that hosts the least/most number of VMs, among those with enough resources left 
(n.b., if multiple servers meet the criterion, the policy will choose one randomly). 
This kind of policy spreads/concentrates the workload within the system for better 
workload balance/lower energy consumption. 

2. Random: for every new VM request, the policy will randomly select one server 
from those having enough resources. 

We classify these three policies as stochastic because in contrast to the determinis-
tic policy, even if the same workload is submitted to the system, the order in which 
the servers are selected may still be different. 

3.3 Game Model 

Given the attack and defence scenarios, we define the two-player security game 
model [24] as follows. 

Players 
In this strategic game, there are two players, the attacker A, and the defender  
D: P = {A, D}.  

Action Set 
According to our earlier analysis, the defender treats every customer’s request in the 
same way, and their action set is to choose a specific VM allocation policy:  
ASD = {Least VM, Most VM, Random, Round Robin}. On the other hand, from the 
attacker’s point of view, they can decide when to start the VMs, and how many VMs 
to start. In order to simplify the problem, we only consider one single attack (in real-
ity, the attacker may launch the attack periodically). Hence, the action set of the  
attacker is: ASA = {VM(A,t)}. 

Utility Functions 
The attacker’s goal is to maximise the efficiency/coverage rate, and their utility  
function is: 

 
( )

( )
( , ), ( ( , ), )

1 ( ( , ), )

A
A

A

U VM A t Policy w Efficiency VM A t Policy

w Coverage VM A t Policy

= ⋅ +

                                     − ⋅
 (3) 

where wA is a weight that specifies the relative importance of efficiency vs. coverage, 
and 0 ≤ wA ≤ 1. 

Note that compared with (2), the efficiency/coverage rate in (3) takes another pa-
rameter into consideration – Policy – since these two rates are different under the four 



106 Y. Han et al. 

 

allocation policies. In addition, the attacker’s cost is also implicitly included, because 
the efficiency rate will be low if the attacker starts a large number of VMs. 

In contrast, the defender’s goal is to find a policy that achieves an optimal balance 
between minimising the attacker’s efficiency/coverage rate, decreasing the overall 
power consumption, and balancing the workload. Suppose that Pi and Bi, i = 1, 2, 3, 4, 
represent the system’s normalised power consumption and workload balance under 
the four policies respectively, then the defender’s utility function is: 

 ( ) ( )1 2 1 21D A
D i D i D D iU Policy w U w P w w B= − ⋅ − ⋅ + − − ⋅  (4) 

where A
iU is the attacker’s utility under policy i, i = 1, 2, 3, 4, and 1Dw  and 2Dw are 

weights such that 0 ≤ 1Dw , 2Dw , 1 2D Dw w+ ≤ 1. 
Therefore, the security game G is written as G = {P, ASi, Ui, i ∈{A, D}}. In the 

next section, we discuss Efficiency(A,VM(A,t),Policy), Coverage(A,VM(A,t), Policy), 
Pi and Bi in detail. 

4 Analysis of VM Allocation Policies Using the Game Model 

In this section, we present a simulation-based analysis of the different VM allocation 
policies. First, we introduce the simulation platform for our experiments. Then we 
give the detailed results of the efficiency rate, coverage rate, power consumption and 
workload balance under the four policies, which will help us develop the appropriate 
parameters in the game model. Finally, we calculate the numerical solution for the 
game, and discuss the implications of our findings. 

4.1 Simulation Environment 

We conducted our experiments on the platform CloudSim [25], which has been 
widely used in previous studies [26, 27]. The settings for our experiments are as  
follows.  

Physical Servers and Virtual Machines 
All the configurations of servers and VMs used in our simulations are similar to those 
of certain real-world models. Note that in CloudSim the CPU speed is measured in 
MIPS instead of MHz (a higher value of MIPS indicates faster processing speed).  

Table 2. Configurations of servers and VMs 

 Type Quantity CPU speed (MIPS) No. of CPU cores RAM (MB) 

Servers 1 150 2600 16 24576 

VMs 

1 random* 2500 1 870 

2 random* 2000 1 1740 

3 random* 1000 1 1740 

4 random* 500 1 613 

* Each VM request randomly decides the type of VM it requires. 
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Background Workload 
Our earlier study [28] shows that the VM request arrival and departure processes in 
cloud computing follow a power law distribution, and exhibit self-similarity. In order 
to make the background workload more realistic in our simulation, we implement this 
finding using the program developed in [29]. More specifically, we use this program 
to generate two self-similar time series, indicating the number of VM requests that 
arrive/departure in each minute. In addition, we assume that every new request needs 
only one VM, whose type and CPU utilization for each minute are both randomly 
selected. 

Experimental Settings 
In each experiment, a legal user L starts 20 VMs at the 18000th second (note that the 
system reaches the steady state in terms of the number of started VMs around the 
4800th second, so our results are very unlikely to be affected by simulation boot-up 
behaviours), and a certain time later (we call this time difference the lag) at the tth  
(t = 18000 + lag) second, an attacker A starts VM(A,t) VMs. The simulation stops a 
few minutes after that. Both the lag and VM(A,t) range from 1 to 100 (note that we use 
“lag” and “t” interchangeably in the rest of this paper).  

For every VM allocation policy/lag combination, we carry out the above experi-
ment 50 times, and the final results presented below are the average values. 

4.2 Attack Efficiency under Different VM Allocation Policies 

In this subsection, we summarise the attack efficiency under the four policies. 

Least VM Allocation Policy 
Fig. 2 shows the impact on the efficiency rate of varying the lag and the number of 
VMs started by the attacker (VM(A,t)) under the Least VM policy. The following 
observations can be made from the experiment: 

(1) The number of started VMs, VM(A,t), has little impact on the attack efficiency.  
(2) When the lag is small, it is difficult to achieve co-residence. This is consistent 

with the aim of balancing the workload, which means it is unlikely that a server will 
be chosen twice within a short period of time. 

(3) After the lag reaches 10 minutes, the efficiency rate remains stable. The only 
exception is when VM(A,t) equals one: the efficiency rate is volatile, but the average 
value in this case is still similar to the overall average value. 

(4) It can be seen from Fig. 2(b) that when the lag is longer than 10 minutes and 
VM(A,t) is larger than 5, the attack efficiency stays at approximately the same value. 

Most VM Allocation Policy 
Under the Most VM policy, our simulation shows that: 

(1) In most cases, the efficiency rate first grows with VM(A,t), but then the trend 
reverses. A closer inspection of the trace files shows that only the first m(t) of the 
VM(A,t) VMs are assigned to different servers, while the rest are all allocated to-
gether. m(t) is the number of servers that are already turned on, and have sufficient 
remaining resources at time t.   
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(a) 1 ≤ VM(A,t), lag ≤ 100 

 

(b) 5 ≤ VM(A,t) ≤ 100, 10 ≤ lag ≤ 100 

Fig. 2. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Least VM policy. Fig. 2(a): the overall case, where 1 ≤ VM(A,t), lag ≤ 100. 
Fig. 2(b): the stable region, where 5 ≤ VM(A,t) ≤ 100, 10 ≤ lag ≤ 100. 

(2) The Most VM policy allocates new VMs to the same server until its remaining 
resources are less than required. Hence, the efficiency rate is relatively high with 
small lags, and decreases as the lag increases. However, similar to the situation with 
the Least VM policy, once the lag is larger than a certain value, the efficiency remains 
approximately the same. 

A clever attacker would learn from the first observation that in order to achieve a 
higher efficiency with a large VM(A,t), instead of starting all the VMs at the same 
time, they should start S VMs (0 < S < VM(A,t)) at a time, and repeat that VM(A,t)/S 
times at certain intervals. 

We re-ran the experiment with S set to five, and the interval set to one minute. As 
can be seen from Fig. 3(b), when VM(A,t) is large, the efficiency rate is much higher 
if the attacker starts their VMs using the staggered approach described above. We use 
this set of results as the input to our game model. 
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(a) Starting VM(A,t) VMs at once 

 

(b) Starting VM(A,t) VMs in a staggered way 

Fig. 3. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Most VM policy. Fig. 3(a): starting all VM(A,t) at once. Fig. 3(b): starting 
VM(A,t) in a staggered way (in batches of S). 

Random Allocation Policy 
The attack efficiency under the Random policy is similar to that of Least VM. It stays 
at almost the same value regardless of the lag and VM(A,t).  

Round Robin Allocation Policy 
Under the Round Robin policy, the servers are selected sequentially. As a result, the 
attacker can only achieve a high efficiency rate if the time when they launch their 
VMs happens to be close to the time when the target server is chosen. As we can see 
from Fig. 4(b), there are only a few spikes along the Lag-axis.  

However, this is not difficult to implement: because the servers are selected in a 
fixed order, the attacker can keep starting one VM every a few minutes, and tracking 
the chosen servers. When they find the target server will be selected again, they can 
then start their own VMs.  
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(a) Random 

 

(b) Round Robin 

Fig. 4. The impact of the lag and the number of VMs started by the attacker (VM(A,t)) on attack 
efficiency under the Random and Round Robin VM allocation policies 

In other words, due to its deterministic behaviour, the Round Robin policy is the 
least secure. Therefore, in our game model, we set the attack efficiency under the 
Round Robin policy to 100%. 

4.3 Coverage Rate under Different VM Allocation Policies 

Under the three stochastic policies, the general trend of the coverage rate is similar: it 
increases almost linearly with VM(A,t), and the lag has little impact after it reaches 
10-20 minutes. The only difference is that when the lag is small, the coverage rate 
under the Most VM policy is much higher than under the Least VM policy. 

As for the Round Robin policy, the situation is similar to that of the attack effi-
ciency, where the attacker can achieve a high rate periodically. Hence, we also set the 
coverage to 100% for the Round Robin policy in our game model. 
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(a) Least VM 

 
(b) Most VM 

 
(c) Random 

 
(d) Round Robin 

Fig. 5. The impact of lag and the number of VMs started by the attacker (VM(A,t)) on  the 
coverage rate under the four VM allocation policies 
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4.4 Power Consumption under Different VM Allocation Policies 

When comparing the power consumption under the four policies, we ignore the influ-
ence of VM(A,t), because it only contributes a tiny portion of all the VMs in the sys-
tem. Fig. 6(a) shows the normalised results, with the consumption under the Least 
VM policy set to 1. We can see that except for the Most VM policy where the value is 
around 0.5, the power consumption of other policies are essentially the same. 
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            (a) Power consumption                          (b) Workload balance 

Fig. 6. Normalised power consumption and workload balance under the four VM allocation 
policies 

4.5 Workload Balance under Different VM Allocation Policies 

We count the number of times that each server is selected during one experiment, and 
then calculate the standard deviation (Std) to quantify the workload balance under the 
four policies. Finally, the function f(Std) = e-Std/10 is applied to normalise the standard 
deviation (we acknowledge that there are many other ways for normalisation, and we 
choose this function as a starting point because it generally reflects the degree of bal-
ance under the four policies). As can be seen from Fig. 6(b), the Round Robin policy 
achieves the best workload balance, while the Most VM policy performs the worst. 

4.6 Other Criteria 

When comparing the four VM allocation policies, we also considered SLA (service 
level agreement) related criteria. Here, we use the definition of a SLA violation in 
[30]: “SLA violation occurs when a VM cannot get amount of MIPS that are re-
quested”. The three SLA related criteria below are measured in our experiment: SLA 
violation time per host, overall SLA violation, and average SLA violation. Our results 
show that there is no major difference in terms of these criteria between the four  
policies. Therefore, they are not included in our game model.  
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Table 3. Definitions of SLA related criteria 

Name Definition 

SLA violation time per host (%) ∑ SLA violation time of each host / ∑ Active time of each host 

Overall SLA violation (%) (∑ Requested MIPS - ∑ Allocated MIPS) / ∑ Requested MIPS 

Average SLA violation (%) 
Only consider the SLA violation incidents, (∑ Requested MIPS - 

∑ Allocated MIPS) / ∑ Requested MIPS 

4.7 Numerical Solutions and Discussion 

In the previous subsections, we have presented the attack efficiency, coverage, power 
consumption and workload balance under the four VM allocation policies. These are 
used to build the game matrices for the attacker and the defender. In this subsection, 
we compute the numerical solution of the game using Gambit [31], a tool for con-
structing and analysing finite, non-cooperative games, and interpret the results. 

Zero-Sum Game 
We begin with the simplest scenario where 1Dw = 2Dw  = 0, which becomes a zero-
sum game. We consider the following two situations: (1) wA = 1, UA = Effi-
ciency(VM(A,t),Policy), UD = −UA; (2) wA = 0, UA = Coverage(VM(A,t),Policy),  
UD = −UA.   

As can be seen from the following figures, both the solutions are mixed strategies. 
For the attacker, the solution is straightforward: they should start a small number of 
VMs each time if they aim to maximise the efficiency, but if the goal is to co-locate 
with as many target VMs as possible, they should start a large number of VMs at a 
time. For the defender, the result indicates that instead of deploying a single VM allo-
cation policy, it is better to use a set of policies, and when a VM request arrives, each 
policy will be selected with a pre-set probability. 

The following points should be noted. (1) As stated in our previous analysis, the 
Round Robin policy is the least secure, and is selected in neither case. (2) Even 
though, generally speaking, the attack efficiency under the Most VM policy is the 
lowest (especially when the lag is larger than five minutes), the peak value in this case 
is higher than that under the other two policies. This is the reason why the percentage 
of choosing Most VM is the smallest, if the defender intends to minimise the attack 
efficiency. However, if we only consider the situation where VM(A,t) > 1 and lag > 1 
minute (which is closer to the real case), then the Most VM policy contributes a much 
larger percentage of the solution. (3) Under the Least VM policy, if the attacker starts 
multiple VMs at the same time, it is very likely that all of these VMs will be allocated 
to different servers. In contrast, under the other two policies there is a greater chance 
that some of these VMs will be located on the same server, which has a negative in-
fluence on the coverage rate. As a result, if the defender aims to minimise the  
coverage rate, they should only use the Most VM and Random policies.  
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               (a) wA = 1, 1 ≤ VM(A,t), lag ≤ 100                 (b) wA = 1, 5 ≤ VM(A,t), lag ≤ 100  
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            (c) wA = 0, 1 ≤ VM(A,t), lag ≤ 100  

Fig. 7. Nash equilibrium in zero-sum game. Fig. 7(a): in the case where wA = 1, 1 ≤ VM(A,t), 
lag ≤ 100, the best strategy for the attacker is to start 1 VM when the lag is 50 minutes,  
i.e., VM(A,50)=1, with a probability of 10%, start 1 VM when the lag is 100 minutes, i.e., 
VM(A,100)=1, with a probability of 16%, and start 20 VMs when the lag is 20 minutes, i.e., 
VM(A,20)=20, with a probability of 74%. The best strategy for the attacker is to choose the 
Least VM, Most VM, and Random policies with a probability of 59%, 5%, 36%, respectively. 
The definitions of the symbols in the other two figures are the same. 

We re-ran the experiment with the following two sets of configurations: (1) for the 
attacker, VM(A,t) = 20, and the lag ranges from 5 to 100 minutes, while the defender 
uses the second mixed policy (Least VM, 24%, Most VM, 25%, and Random, 51%); 
(2) for the attacker, VM(A,t) = 100, 1 ≤ t ≤ 100, and the defender uses the third mixed 
policy (Most VM, 19%, and Random, 81%). The result shows that in overall terms, 
the average efficiency/coverage rate is the lowest under the mixed policies. 
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(a) Mixed policy 2: minimising the efficiency     (b) Mixed policy 3: minimising the coverage 

Fig. 8. Comparison between the mixed policies and the stochastic policies in terms of the  
efficiency/coverage rate 
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Non-zero-sum Game 
Different policies have their own advantages/disadvantages. For instance, the power 
consumption under the Most VM policy is the lowest, while the other policies achieve 
better workload balance. In practice, the defender can adjust the weights of security, 
power consumption, and workload balance, according to their different requirements. 

Here we consider the situation where the three aspects are considered as equally 
important, i.e., 1Dw = 2Dw = 1/3. From Fig. 9, we can see that the results are similar to 
those shown in Fig. 7, which further demonstrates that a mixed policy may outper-
form any single policy.  
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Fig. 9. Nash equilibrium in non-zero-sum game (all the definitions of symbols are the same as 
those in Fig. 7) 

Similarly, we re-ran the experiment with the following configurations to compare 
the mixed policy with the four pure policies: (1) for the attacker, VM(A,t) = 1, and 1 ≤ 
t ≤ 100, while the defender uses the first mixed policy (Least VM, 59%, Most VM, 
5%, and Random, 36%); (2) for the attacker, VM(A,t) = 90, 1 ≤ t ≤ 100, and the de-
fender uses the second mixed policy (Least VM, 21%, and Most VM, 79%). 

However, in this case, the defender cannot simply mix the policies with the speci-
fied percentages. Otherwise, on the one hand, an excessive number of servers will be 
turned on because the mixed policy contains Least VM and Random policies. On the 
other hand, the workload will not be balanced due to the Most VM policy. In other 
words, the mixed policy integrates the disadvantages instead of the advantages of 
each policy. 

Therefore, we make the following changes and the allocation process comprises 
two rounds. In the first round, only the servers that are already being used and have 
sufficient remaining resources will be considered. If such a kind of server does not 
exist, then in the second round all servers are taken into consideration. In both rounds, 
each policy is still selected with the specified probability. As we can see from Fig. 10, 
the defender’s utility is highest under mixed policies in both cases. 
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              (a) First mixed policy                         (b) Second mixed policy 

Fig. 10. Comparison between the mixed policies and the pure policies in terms of the de-
fender’s utility. Fig. 10(a): first mixed policy (Least VM, 59%, Most VM, 5%, and Random, 
36%). Fig 10(b): second mixed policy (Least VM, 21%, and Most VM, 79%). 

5 Conclusion and Future Work 

In this paper, we introduce a game theoretic approach to compare four basic VM allo-
cation policies for cloud computing systems, and propose a practical method for miti-
gating the threat of the co-resident attack. Our results show that in order to minimise 
the efficiency and coverage rates for the attacker, the cloud provider should use a 
policy pool, such that for each VM request, a policy is chosen at random from the 
pool according to their predefined probabilities. 

In the future, we intend to test our findings in larger scale systems. In addition, we 
will also study what the differences are between the behaviours of the attacker and 
normal users under the mixed policy, and how to identify them. 
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Abstract. There has been recent interest in applying Stackelberg games to in-
frastructure security, in which a defender must protect targets from attack by an
adaptive adversary. In real-world security settings the adversaries are humans
and are thus boundedly rational. Most existing approaches for computing de-
fender strategies against boundedly rational adversaries try to optimize against
specific behavioral models of adversaries, and provide no quality guarantee when
the estimated model is inaccurate. We propose a new solution concept, mono-
tonic maximin, which provides guarantees against all adversary behavior models
satisfying monotonicity, including all in the family of Regular Quantal Response
functions. We propose a mixed-integer linear program formulation for computing
monotonic maximin. We also consider top-monotonic maximin, a related solution
concept that is more conservative, and propose a polynomial-time algorithm for
top-monotonic maximin.

1 Introduction

Stackelberg games have been used to model resource allocation problems in infrastruc-
ture security, in which a defender must allocate limited security resources to protect
targets from attack by an adversary [1, 2, 10, 16]. Due to surveillance by the adversary,
any pure strategy by the defender can be exploited. The defender thus should commit to
a mixed strategy as the leader in this Stackelberg game, taking into account the response
by the adversary who is the follower. Classical solution concepts such as Strong Stackel-
berg Equilibrium assume that the follower is perfectly rational. However, in real-world
security settings the adversaries are humans and thus this perfect rationality assumption
is problematic. There has been much recent progress on optimal defender strategies for
Stackelberg security games against boundedly rational adversaries, for various behav-
ior models including epsilon-best response, anchoring bias, prospect theory and logit
quantal response models [14, 18].

The quantal response (QR) model is well-supported by the social and behavioral
science literature [11–13] and has performed well in laboratory experiments for the
Stackelberg game setting [18]. Within the QR framework, there is some freedom in
the choice of functional families (logit, probit, etc.) and parameter values, e.g., the pa-
rameter λ in the logit QR model which measures the adversary’s level of rationality.
Once the function form is selected and parameter estimated (e.g., from real-world data
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or lab experiments), optimal defender strategies can be computed using optimization
algorithms such as BRQR and PASAQ [18, 19].

However, there is some uncertainty about the best modeling parameters to use in
real-world settings. In particular, real-world data on terrorist attacks are difficult to ob-
tain. One can try to overcome this by running laboratory experiments, but models and
parameters that give good fits in laboratory settings might not perform as well in actual
security settings, due to factors such as different populations and different environ-
ments. And when the parameter estimate is inaccurate, current algorithms provide no
worst-case guarantee with respect to the solution quality.

At the other extreme, there is the maximin solution: a leader strategy that maximizes
leader expected utility when the follower is playing the worst-case strategy, i.e., play as
if the follower is trying to minimize the leader’s utility, even though the game is gener-
ally not zero-sum. The maximin solution provides utility guarantee without making any
assumption on the attackers’ behavior model. The maximin solution is computationally
tractable: it can be solved by linear programming. However, the solution concept may
be too conservative; in particular, the leader is disregarding any knowledge she may
have about the follower’s utilities in the game.

Are there robust solutions that do make use of recent advances in behavioral sciences,
but are less sensitive to the choice of modeling parameters? In this paper we propose an
approach that, instead of optimizing against a particular QR model, aims to guarantee
good defender utility against all “reasonable” QR attackers. We note that QR in its most
general form [13] covers all possible player behavior [6], so restriction to some notion
of “reasonableness” is necessary. Goeree, Holt and Palfrey [5] proposed four properties
that all reasonable QR models should satisfy, and called models satisfying all four prop-
erties Regular Quantal Response. In this paper, we impose constraints on attacker strate-
gies that correspond to a relaxed version of Regular QR. Specifically, we assume that
the attacker’s strategies satisfy one of the four Regular QR properties, namely mono-
tonicity, which is the property that actions with lower expected utility are played with
smaller probability. (We further discuss the choice of monotonicity in Section 3.2.) We
propose the following “monotonic maximin” solution concept to Stackelberg games: a
defender plays a mixed strategy that maximizes defender expected utility, against the
worst-case monotonic attacker mixed strategy. Since all Regular QR attackers satisfy
monotonicity, monotonic maximin provides utility guarantees against all Regular QR
attackers. Monotonic maximin is a robust alternative to the optimal Stackelberg strat-
egy against specific QR models: it provides utility guarantees against all “reasonably
rational” attackers (as defined by Regular QR) without making assumptions about pa-
rameters. This can be thought of as a “model-free” or “non-parametric” approach to
Stackelberg games with boundedly rational followers.

The resulting computational problem might appear similar to a standard maximin
problem, but is more challenging because the constraints for attacker’s monotonicity
now depend on the defender strategy. In this paper we propose an algorithm for this
problem, based on LP duality and mixed-integer programming.

It is also interesting to consider attackers satisfying relaxations of the monotonicity
constraint: the resulting defender strategies are more robust, as we are considering a
larger set of possible attacker strategies. Specifically, we consider top monotonicity, the
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property that the follower’s probability of playing each best response action is no less
that that of any other action. We propose a polynomial-time algorithm for computing
the resulting top-monotonic maximin solution concept.

We ran computational experiments to compare monotonic maximin and top-
monotonic maximin against previously-proposed solution concepts including strong
Stackelberg equilibrium [4], maximin, MATCH [15], as well as logit QR models with
various parameter settings. Overall monotonic maximin is significantly more robust
against monotonic adversaries compared to the previously-proposed solution concepts.

1.1 Related Work

There has been some recent work on designing defender strategies in security games
that are robust against uncertainties, including uncertainties about the opponent as well
as about the environment. One line of work is based on probabilistic models of uncer-
tainties, and aims for security strategies that maximize the defender’s expected utility
under such probabilistic models. These include approaches based on specific models
of bounded rationality, such as logit quantal response, prospect theory, and anchoring
bias [14, 18]. A drawback of such approaches is the requirement on the availability and
accuracy of probabilistic models; if an inaccurate probabilistic model is chosen, there
is no quality guarantee with respect to the resulting security solution.

Another line of work, which includes our approach in this paper, adopts the robust
optimization framework [3, 17] from Operations Research: define an uncertainty set
that represents the space of likely models, and compute a security strategy that max-
imizes defender’s utility under the worst case choice of models from that uncertainty
set. For example, the BRASS algorithm [14] was designed to be robust against all ad-
versaries playing epsilon-best response. An algorithm that is related to our approach is
MATCH [15], which aims to provide a robust approach to Stackelberg security games
against human attackers. MATCH is based on a similar intuition as our approach, that
places less importance on attacker’s actions with worse expected utilities. Specifically,
MATCH bounds the defender’s potential loss due to attacker’s irrational behavior by
a β-multiple of the attacker’s loss due to his irrational behavior. Thus the robustness
guarantee provided by MATCH is relative to the amount of the attacker’s loss due to
irrational behavior, and gets worse against less rational attackers. In contrast, our ap-
proach provides guarantees on defender utility against all Regular QR attackers.

At a high level, one drawback of these previous robust approaches is that they are
still dependent on their parameter settings to define the sizes of their uncertainty sets. If
the parameters are set so that the uncertainty sets are too small, the resulting solutions
will be insufficiently robust. If the parameters are set so that the uncertainty sets are too
large, the resulting solutions approach the maximin solution and are thus too conser-
vative. While for certain cases it may be possible to come up with suitable parameters,
our monotonic maximin approach avoids the requirement for parameters altogether. On
the other hand, one could ask the same question about the uncertainty set defined by
monotonic maximin: does the uncertainty set have the “right” shape and size? In par-
ticular, one potential criticism against monotonic maximin would be that it may be too
conservative, because it uses only one of the four Regular QR conditions. In Section
3.2 we show that the uncertainty set for monotonic maximin is tight for Regular QR
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attackers, that is, any point in the uncertainty set could be arbitrarily approached by the
behavior of a Regular QR attacker.

Finally, we mention work on modeling the game’s uncertainties in aspects other than
the adversary’s behavior. Bayesian games were proposed to model players’ probabilistic
uncertainty about payoffs of the game [7]. There is also work that uses Bayesian games
to model probabilistic uncertainties about defender’s ability to execute the strategies as
well as attacker’s observation of defender strategies [22]. Within the robust optimization
framework, The RECON algorithm [20] was designed to be robust against observation
and execution uncertainties within a certain (hyperrectangular) error bound. Kiekintveld
et al. [8] proposed robust solutions for security games against interval payoff uncertain-
ties. While our paper’s focus is on the behavior of the adversary, in Section 3.3 we
briefly mention how our approach can be applied to achieve robustness against certain
types of payoff uncertainty.

2 Preliminaries

Let 1 be a vector of 1’s, the dimension of which will be clear from context. Let ei be
the i-th basis vector. Denote by [n] the set {1, . . . , n}.

We consider a two-player Stackelberg game between a leader and a follower. Leader’s
mixed strategy is denoted by x ∈ X ⊂ Rm where X = {x ∈ Rm|Cx ≤ d} is a poly-
tope. This includes the standard case where x is the distribution over m leader actions,
when X is the simplex {x ∈ Rm|x ≥ 0,1Tx = 1}; it also includes cases where x
is a compact representation of mixed strategy as marginal probabilities (e.g., marginal
coverage on targets [9], or marginal flow on a network [21]). Follower has n actions,
labeled from 1 to n; i.e., his set of actions is [n]. Follower’s mixed strategy is denoted
by y ∈ Y , where Y = {y ∈ Rn|y ≥ 0,1Ty = 1} is the standard simplex. The game’s
payoff matrices are A,B ∈ Rm×n. Expected utilities for the leader and the follower
are xTAy and xTBy respectively. The game is general-sum: the sum of the players’
utilities is not necessarily a constant.

Stackelberg Security Games. Although the solution concepts proposed in this paper
apply to two-player Stackelberg games in general, we will frequently consider Stackel-
berg Security Games (SSGs) [9], a class of games with utility structure corresponding
to the real-world problem of infrastructure security. Specifically, an SSG is a two-player
Stackberg game between a defender (the leader) and an an adversary/attacker (the fol-
lower). There is a set of n targets T = [n]. The defender can deploy resources to cover
some of the targets. Let Z ⊂ {0, 1}n be the set of feasible allocations of defender re-
sources to targets, where for each allocation z ∈ Z and target j ∈ T = [n], zj = 1
means the target is covered by the defender, and zj = 0 means the target is not covered.
Defender’s set of mixed strategies X can then be represented by the convex hull of fea-
sible allocations Z: X = conv(Z) ⊂ Rn. The attacker chooses one target to attack,
i.e., his set of mixed strategies Y is the standard simplex {y ∈ Rn|y ≥ 0,1Ty = 1}.

The payoffs to the players depend only on which target is attacked, and whether that
target is covered by the defender. In other words, whether the defender covers an un-
attacked target does not affect the payoffs. Specifically, for each target t ∈ T , we denote
by Uu

d (t) the defender’s utility for an uncovered attack on t, and U c
d(t) for a covered
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attack. Similarly, Uu
a (t) and U c

a(t) are the attacker’s payoffs for uncovered and covered
attacks on t, respectively. In terms of the payoff matrices A,B ∈ Rn×n, this means
that Aij is equal to U c

d(j) if i = j, and Uu
d (j) otherwise; while Bij is equal to U c

a(j) if
i = j and Uu

a (j) otherwise. We further assume that U c
d(t) > Uu

d (t) and U c
a(t) < Uu

a (t)
for all t ∈ T .

In this paper we will focus on SSGs in which the set of feasible defender alloca-
tions Z has a simple structure: the defender has r resources, and each resource can
protect any single target. Thus any allocation that uses r resources is feasible. The
corresponding convex hull X can be described using a small number of constraints:
X = {x ∈ Rn|0 ≤ x ≤ 1,1Tx = r}. We call such a game an SSG with r resources.

Table 1. An example 3-target Stackelberg security game

Target 1 Target 2 Target 3
Uc

d 7 10 2
Uu

d -10 -8 -10
Uu

a 3 10 4
Uc

a -10 -4 -10

Example 1. Table 1 shows the payoffs of an example Stackelberg security game with
3 targets. Specifically, the columns represent the targets and for each column the de-
fender’s utilities for covered attack (U c

d) and uncovered attack (Uu
d ), and the attacker’s

utilities for uncovered attack (Uu
a ) and covered attack (U c

a) are given.

Strong Stackelberg Equilibrium (SSE) is one of the standard solution concepts of
Stackelberg games. In an SSE, the leader is maximizing her expected utility, assuming
that the follower plays a best response. When the follower has multiple best responses,
he is assumed to break ties in favor the leader. Formally, the SSE strategy for the leader
is argmaxx∈X,y∈BR(x) x

TAy, where BR(x) = argmaxy∈Y xTBy is the set of best
responses of the follower given leader strategy x.

Quantal Response is in general defined by a function P : Rn → Y from the
vector of expected payoffs of an agent’s actions to a probability distribution over the
actions. Denote by Pj(u) the probability of playing action j given the vector u ∈ Rn

of expected payoffs. For example, the logit quantal response function has the form
Pj(u) = eλuj∑

j′ e
λu

j′ where λ ≥ 0 is a parameter. Other examples of P include probit,

and the constant mapping to the uniform distribution.
Quantal Response Equilibrium (QRE) [13] is a solution concept for simultaneous

games in which all players are playing quantal response strategies. In security domains,
the adversary is human (and therefore not perfectly rational) while the defender can be
assumed to be a rational decision maker aided by computers. This “Stackelberg against
Quantal Response” model has been studied by Yang et al [18], who assumed that the
adversary’s quantal response function is known to the defender. In this paper we con-
sider the case where the defender knows that the adversary behaves according to some
quantal response model but does not know the specific quantal response function P .



124 A.X. Jiang et al.

Regular QRE. Goeree, Holt and Palfrey [5] proposed constraints that all reasonable
QRE models should satisfy. Formally, P is a regular quantal response function if it
satisfies the following:

1. Interiority: Pj(u) > 0 for all j.
2. Continuity: Pj(u) is continuously differentiable.
3. Responsiveness: ∂Pj(u)

∂uj
> 0 for all j.

4. Monotonicity: uj > uk ⇒ Pj(u) > Pk(u) for all j, k.

They also point out that Continuity and Monotonicity imply uj = uk ⇒ Pj(u) =
Pk(u). The logit and the probit distributions are examples of regular quantal response
functions. On the other hand, choosing a best response is not a regular quantal response
function because it does not satisfy Interiority and Continuity.

The maximin solution is the optimal defender strategy assuming that the attacker
is choosing the strategy that is worst for the defender: argmaxx∈X miny∈Y xTAy.
This solution concept is extremely conservative: the defender has to take into account
an attacker that does completely arbitrary things, and as a result is disregarding his
knowledge about the attacker payoff matrix B and treating the game as a zero-sum
game.

3 Monotonic Maximin

Our overall approach is to modify maximin by imposing constraints on the attacker
strategy. Specifically, we assume that the attacker strategy satisfies monotonicity. Since
all Regular QR attackers satisfy monotonicity, our approach is able to provide guaran-
tee against all Regular QR attackers. For computational convenience we will use the
following form of monotonicity.

Definition 1. Given x ∈ X,y ∈ Y , we say y satisfies closed monotonicity if for all
i, j ∈ [n], xTBei ≥ xTBej ⇒ yi ≥ yj .

Recall that xTBei is the follower’s expected utility of choosing action i, given that the
leader plays x. There are strategies that are closedly monotonic but not monotonic, for
example the uniformly random strategy. It is straightforward to show the following:

Proposition 1. If attacker is acting according to a regular quantal response function,
then his mixed strategy y satisfies closed monotonicity.

Proof. We need to show that for all i, j, xTBei ≥ xTBej ⇒ yi ≥ yj . Given i, j,
suppose xTBei > xTBej . Then by the assumption of Monotonicity we have yi > yj
which implies yi ≥ yj . Now suppose xTBei = xTBej . Then by Continuity and
Monotonicity, yi = yj which implies yi ≥ yj .

Observe that closed monotonicity is not necessarily a weaker version of Monotonicity;
nevertheless it is a consequence of Continuity and Monotonicity.

Let Q(x) ⊆ Y be the set of follower mixed strategies that satisfy closed monotonic-
ity given x. Then Q(x) = {y ∈ Y |∀(i, j) ∈ E(x), yi ≥ yj}, where E(x) = {(i, j) ∈
[n]|xTBei ≥ xTBej}.
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Definition 2. The monotonic maximin solution is

argmax
x∈X

min
y∈Q(x)

xTAy. (1)

Let the monotonic maximin value be the corresponding objective value:
maxx∈X miny∈Q(x) x

TAy. By definition, the monotonic maximin solution pro-
vides guaranteed expected utility of at least the monotonic maximin value against all
attacker strategies satisfying the monotonicity property.

Example 2. Consider the 3-target Stackelberg security game from Example 1. Suppose
the defender has one resource. The defender’s strategies generated by monotonic max-
imin, maximin, and SSE are shown in Table 2. For example, the second row indicates
the defender’s strategy generated by monotonic maximin, i.e., target 1 will be covered
by the defender 37% of the time while there are 53% and 10% that target 2 and 3 will
be covered by the defender, respectively.

When the strategy of the defender is generated by monotonic maximin, the defender’s
expected utility is -3.65 given a worst-case monotonic attacker strategy. Multiple mono-
tonic attacker strategies tied for the worst case, including (12 , 0,

1
2 ) and (13 ,

1
3 ,

1
3 ). On

the other hand, when maximin is used, the defender’s expected utility is -4.38 for any
actions of the monotonic attacker. Finally, when SSE is used, the attacker’s expected
utilities for all targets are the same and equal to 1.05. Thus the only feasible action for
the monotonic attacker is (13 ,

1
3 ,

1
3 ). The defender’s expected utility in this case is -3.8.

Table 2. Defender’s strategy

Target 1 Target 2 Target 3
Monotonic maximin 0.3732 0.5277 0.0991

Maximin 0.3306 0.2011 0.4683
SSE 0.15 0.6393 0.2107

The following proposition shows that the monotonic maximin concept is of most
interest when the game is not zero sum.

Proposition 2. For zero-sum games, the monotonic maximin solution coincides with
maximin solution.

Intuitively, if we consider e.g., a logit QR follower with λ → ∞, then his behavior
approaches that of a perfectly rational player and the leader can do no better than the
maximin solution in a zero-sum game.

3.1 Existence of Monotonic Maximin Solutions

The standard Extreme Value Theorem states that a continuous function on a compact
domain has a maximum. Since the set of monotonic follower strategies Q(x) is not
continuous in x, the value of the inner minimization miny∈Q(x) x

TAy is not neces-
sarily continuous in x. A natural question arises: does the monotonic maximin solution
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always exist? Of course if the maximum does not exist we could take the supremum
instead, but the corresponding defender strategy would no longer be guaranteed to be
robust.

Proposition 3. The monotonic maximin solution exists in all Stackelberg games.

This will be a direct consequence of Proposition 6 in Section 4, which provides an
algorithm for monotonic maximin.

3.2 Optimality against Interiority, Continuity and Responsiveness

One potential criticism is that by focusing on monotonicity (and not the other condi-
tions of Regular QR), monotonic maximin may be too conservative as it does not take
advantage of all information about the follower behavior provided by the Regular QR
model.

Proposition 4. The monotonic maximin solution is arbitrarily close to optimal against
an attacker who chooses the worst (for the defender) strategy satisfying both closed
monotonicity and interiority.

Proof (sketch). It is sufficient to show that given any x, miny∈Q(x) x
TAy =

infy∈Q(x)∩Int x
TAy where Int is the set of strategies satisfying interiority. Given an

attacker strategy y that does not satisfy interiority (say a solution of the LHS), we can
construct another strategy y′ that satisfies interiority by re-assigning a small amount of
probability mass to actions with zero probability in y. It is also straightforward to show
that this can be done in a way that preserves closed monotonicity. y and y′ achieve
almost the same expected payoffs for both players.

Let us now consider continuity and responsiveness. Unlike monotonicity and interi-
ority, which can be expressed as “local constraints” on y, continuity and responsiveness
are properties of the response functionP (u) and correspond to constraints on the values
of P given multiple inputs.

Consider the inner minimization problem of monotonic maximin: q(x) =
argminy∈Q(x) x

TAy. This defines a response function P (u) for the attacker,1 which
likely violates continuity and responsiveness. But is that necessarily the response func-
tion of the attacker we face? In particular does the attacker’s response function have to
be the same regardless of the defender’s mixed strategy? Instead, we allow the attacker
to “pick a response function” after observing defender’s mixed strategy x, which is con-
sistent with our overall robust optimization approach. It turns out that it is possible to
pick the response function in a way that satisfies all conditions of regular quantal re-
sponse, at the same time outputting the worst-case closedly monotonic strategy given x.
This shows that monotonic maximin remains the optimal solution concept even when
we consider attackers that satisfy all conditions of regular quantal response.

1 Actually for P to be well-defined, it requires that q(x) = q(x′) whenever xTB = x′TB. This
holds for Stackelberg security games, in which the players’ utilities depend on the coverage
on targets.
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Proposition 5. Given x ∈ X , there exists a regular quantal response function P :
Rn → Y such that P (xTB) is arbitrarily close to argminy∈Q(x) x

TAy.

We give a proof in Section 5.2.

3.3 Capturing Other Behavioral and Uncertainty Models

In this section we show that monotonic maximin provides guarantees not only against
regular quantal response attackers, but also other models of attacker behavior. Further-
more, if uncertainties in the game model (e.g., in the game’s payoffs, attacker’s capabil-
ities, defender’s execution, etc.) result in attacker behavior that is monotonic, then we
can use monotonic maximin as a robust solution concept against such uncertainties.

Behavioral Models. A mixture (i.e., convex combination) of regular quantal response
models is also a regular quantal response model, and therefore satisfies closed mono-
tonicity. For example, one can have some probabilistic prior belief over the values of
parameter λ in logit QR models, resulting in a mixture of logit QR models. As an-
other example, consider a mixture of a regular QR model with the model that attacker
plays a uniformly random mixed strategy. This is also a mixture of Regular QR mod-
els because the uniformly random strategy is a special case of Regular QR. Monotonic
maximin provides utility guarantees against all such models.

Such guarantees are also applicable to behavior models that are not Regular QR
but satisfy closed monotonicity. For example, consider the following “uniform best re-
sponse” model: the attacker chooses a best response; if there are multiple pure-strategy
best responses the attacker uniformly randomizes among those best responses. This is
not a Regular QR function since it is not continuously differentiable; but it satisfies
closed monotonicity. More generally, consider the uniform top-K strategy, in which the
top K actions in terms of expected utilities are played, each with equal probability of
1/K . These are not Regular QR but are nevertheless closedly monotonic. We will see
later that these strategies have importance in monotonic maximin solutions.

Payoff Uncertainty. A simple consequence of [13] is that if we add i.i.d. noise with a
smooth distribution of zero mean to the entries of the follower’s payoff matrix B, and
assuming that the follower plays a best response, then the resulting average follower
strategy is monotonic. However this kind of noise does not preserve the structure of
Stackelberg security games. For Stackelberg security games, consider the following
type of payoff noise: i.i.d. with a smooth distribution of zero mean, added for each
target to the payoffs of covered and uncovered attacks. For each instantiation of this
noise the resulting game is still a Stackelberg security game. Given a defender mixed
strategy, this would result in zero-mean i.i.d. noise over the expected attacker utilities
of attacking each target. By the same argument as in [13], if the follower plays a best
response, then the resulting average follower strategy is monotonic.

However, if the follower has a monotonic response function (not just a best re-
sponse), the resulting average strategy under i.i.d. payoff noise is not guaranteed to be
monotonic. Indeed, our numerical experiments show that when the follower plays the
worst-case monotonic strategy with respect to perturbed utilities, the resulting average
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strategy is not always monotonic. It is possible to show that monotonicity is preserved
under such noise if we assume the follower’s response function is symmetric with re-
spect to actions; we leave the detailed discussion to a future extended version of the
paper.

3.4 Top-Monotonic Maximin

We define top monotonicity to be the property that for each best response action of the
attacker, the probability of that action is no less than that of any other action. Formally,
y satisfies top monotonicity given x if for all i ∈ [n],

xTBei ≥ xTBej ∀j ⇒ yi ≥ yj ∀j.

We denote by Q̂(x) ⊂ Y the set of top-monotonic follower strategies given x.
Top-monotonicity is a relaxation of closed monotonicity: the inequality yi ≥ yj only

needs to hold between the best response action i and each of the other actions j. In other
words, the corresponding top-monotonic maximin solution

argmax
x∈X

min
y∈Q̂(x)

xTAy

is more conservative than monotonic maximin.
Top-monotonic maximin is interesting partially because there have been extensive

studies on various solution concepts that focus on pairwise comparisons between the
best-response action against possible deviations.2 Furthermore, we will show later that
top-monotonic maximin can be computed in polynomial time.

4 Computation of Monotonic Maximin

4.1 Multiple-LP Formulation

Unlike the Maximin problem, we cannot directly use linear programming to solve (1).
This is because the feasible set Q(x) for y now depends on x. Fortunately, Q(x) de-
pends only on E(x), which is essentially the ordering of attacker actions in terms of
attacker utilities. So in theory we could solve an LP for each possible ordering, and
return the one with best defender utility.

Since the attacker utilities are real numbers, the binary relation E(x) ⊂ [n]× [n] sat-
isfies the constraints of a total order, i.e., transitivity: (i, j), (j, k) ∈ E(x) ⇒ (i, k) ∈
E(x) and totality: (i, j) ∈ E(x) ∨ (j, i) ∈ E(x). Given a total order E ⊂ [n]× [n], let
E−1(E) = {x ∈ X : E = E(x)}, i.e., the set of leader strategies inducing the order E
on follower expected utilities.

2 For example, in a Strong Stackelberg Equilibrium, any non-best response of the follower re-
ceives zero probability; for the epsilon-best responses considered in the BRASS algorithm
[14], any follower action that is more than ε worse than the best response receives zero prob-
ability; In a MATCH solution [15], if an adversary action j is ε worse than the best response,
the defender’s potential loss if the adversary chooses j instead of the best response is bounded
by βε, where β > 0 is a parameter of the solution concept.
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Thus, for each E that corresponds to a total order, we solve

max
x∈E−1(E)

min
y∈Q(x)

xTAy, (2)

and output the solution that achieves the best objective value. However, the set

E−1(E) = {x : ∀(i, j) ∈ E , (i, j) ∈ E(x); ∀(i, j) �∈ E , (i, j) �∈ E(x)}
= {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej ; ∀(i, j) �∈ E ,xTBei < xTBej}

is not closed in general, since it involves strict inequalities for pairs not in E . This
presents problems such as potential nonexistence of solutions of (2). We instead use the
closure of E−1(E), which is

clE−1(E) = {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej ; ∀(i, j) �∈ E ,xTBei ≤ xTBej}.

Since E is a total order, (i, j) �∈ E implies that (j, i) ∈ E , so the above can be simplified
to {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej}. Given E , define the matrix F ∈ Rn×n(n−1)

such that its (i, j)-th column F(i,j) is ei − ej if (i, j) ∈ E and the 0 vector otherwise.
Then clE−1(E) can be written as {x : xTBF ≥ 0}. We will show below that replacing
E−1(E) with clE−1(E) will not introduce incorrect solutions.

The inner minimization problem of (2) can then be written as

min xTAy (3)

FTy ≥ 0 (4)

1Ty = 1 (5)

y ≥ 0 (6)

where FTy ≥ 0 is the matrix form for constraints yi ≥ yj ∀(i, j) ∈ E .
Given x, the above is an LP. By LP duality, its optimal solution is equal to that of its

dual LP

max t (7)

Fλ+ t1 ≤ ATx (8)

λ ≥ 0. (9)

Now that the inner min becomes an max, max-min becomes a max-max problem. Recall
that x ∈ X can be expressed as the linear constraints Cx ≤ d, and x ∈ clE−1(E) can
be expressed as the linear constraints xTBF ≥ 0. Then (2) can be written as

VF =max
x,λ,t

t (10)

Cx ≤ d (11)

xTBF ≥ 0 (12)

Fλ+ t1 ≤ ATx (13)

λ ≥ 0 (14)

which is an LP.
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Proposition 6. Consider the following Multiple-LP algorithm: given a two-player gen-
eral sum game, solve the LP (10) for each F corresponding to a total order over the
set of attacker actions. For the LP achieving the highest objective value VF , output its
solution x. Then x is a monotonic maximin solution of the game.

Proof (sketch). By construction, {E−1(E) : E is a total order} partitions X ; however
each of the E−1(E) is not necessarily closed. Instead, the feasible sets for x in the LP
instances (10) are closures of E−1(E), and thus cover X . These feasible sets have over-
laps: consider total orders E and E ′, corresponding to matrices F and F ′ respectively,
such that E ′ ⊂ E . Then clE−1(E) ⊆ clE−1(E ′). Such overlap presents potential prob-
lems if the LP for F ′ has a solution x′ ∈ clE−1(E), with an objective value greater
than VF , the optimal objective of the LP for F ; this is because such a solution would
mask the correct solution for the region clE−1(E). We claim that this masking will
never happen. Take this x′, which is feasible for the LPs for F and F ′, and compare the
objective values achieved by x′ in the two LPs. Given x′, the objective for the LP for
F will be higher, intuitively because E ′ ⊂ E and closed monotonicity implies that the
follower is subject to more constraints in the case of E , which makes the leader better
off. Therefore the objective value of x′ can never be higher than VF , and the output of
the Multiple-LP algorithm will be the monotonic maximin solution.

A direct consequence of this result is the existence of monotonic maximin solutions in
all Stackelberg games (Proposition 3).

However, we would need to solve one LP for each total order on [n]. The following
proposition shows that we only need to consider the strict orderings on [n], i.e., those E
in which for each pair of actions i, j, exactly one of (i, j) and (j, i) is in E .

Proposition 7. Consider a “non-strict” total order Et, with corresponding matrix F t,
i.e., there exists (i, j) such that (i, j), (j, i) ∈ Et. We say total order Ec (with corre-
sponding matrix F c) is a sharpening of Et if Ec ⊂ Et and Ec is a strict order; i.e., for ev-
ery pair (i, j), (j, i) ∈ Et, either (i, j) or (j, i) belongs to Ec, not both. Let F(Et) be the
set of matrices corresponding to sharpenings of Et. Then VF t ≤ maxF c∈F(Et){VF c}.

The proof is given in an online appendix available at http://teamcore.usc.
edu/people/jiangx/papers/MMappendix.pdf.

This reduces the number of orderings we need to consider, but there are still n! strict
orderings to consider, corresponding to permutations of [n]. One approach to overcome
this is to formulate the problem as a mixed-integer linear program (MILP).

4.2 MILP Formulation

The main idea is to have a binary integer variable zij that indicates whether (i, j) ∈ E.
Then F(i,j) = zij(ei − ej). To ensure that E corresponds to a total order, we can have
constraints zij + zji ≥ 1 and (1 − zij) + (1 − zjk) + zik ≥ 1. Then xTBF ≥ 0 can
be expressed as

xTBei +M(1− zij) ≥ xTBej , ∀i, j (15)

where M is a sufficiently large positive constant that upper bounds |xTB(ei − ej)|,
e.g. M = (maxi∈[m],j∈[n]Bij −mini∈[m],j∈[n]Bij)maxx∈X ‖x‖1.

http://teamcore.usc.edu/people/jiangx/papers/MMappendix.pdf
http://teamcore.usc.edu/people/jiangx/papers/MMappendix.pdf
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One issue is that Fλ =
∑

i,j λijF(i,j) =
∑

i,j λijzij(ei − ej), which now involves
quadratic terms. We can transform this quadratic expression into MILP constraints us-
ing standard techniques, by replacing λijzij with a new variable wij satisfying the
following constraints:

wij ≥ 0 (16)

wij ≥ λij − (1− zij)N (17)

wij ≤ λij (18)

wij ≤ zijN (19)

where N is a large positive constant. In fact we can eliminate λ since it is not used
elsewhere, i.e., we do not need to include the constraints (17) and (18). Taking these
together, we have a polynomial-sized MILP

max
x,w,t,z

t (20)

Cx ≤ d (21)

xTBei +M(1− zij) ≥ xTBej , ∀i, j (22)∑
i,j

wij(ei − ej) + t1 ≤ ATx (23)

0 ≤ wij ≤ zijN (24)

zij ∈ {0, 1} (25)

zij + zji ≥ 1 (26)

(1 − zij) + (1 − zjk) + zik ≥ 1. (27)

4.3 Computing Top-Monotonic Maximin

Top-monotonic maximin can be efficiently computed by solving a small number of LPs.
There are n possible best response actions of the attacker corresponding to n LPs: for
each i ∈ [n], let E = {(i, j)|j ∈ [n], j �= i} and solve (10). These correspond to
partial orders as opposed to the total orders used previously. What about the cases with
multiple best responses? The same argument as in Proposition 7 shows that we only
need to consider the case with a single best response.

Proposition 8. Top-monotonic maximin can be computed in time polynomial in n, m,
and the number of constraints that define X .

We can define similar relaxations of closed monotonicity, that focus on the best L
actions: y is top-L monotonic for positive integer L ≥ 2 if the closed monotonicity
condition holds for any pair of actions (i, j) in which at least one of i and j is among
the top L actions.3 Top-L monotonic maximin is defined analogously. For the corre-
sponding computational problem, we only need to solve n!

(n−L)! LPs, one for each way
of selecting an ordered L-tuple from n actions as the top L actions. This number of LPs
is polynomial when L is fixed to be a constant.

3 The notion of top L actions is well-defined: we do not need to consider the case of ties, by the
same argument as in Proposition 7.
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Proposition 9. For constant L, top-L monotonic maximin can be computed in time
polynomial in n, m, and the number of constraints that define X .

5 Structure of Monotonic Maximin Solutions

5.1 Extreme Points of the Set of Monotonic Follower Strategies

Givenx, the attacker’s feasible regionQ(x) is a polytope. Consider the inner minimiza-
tion problem miny∈Q(x)x

TAy. Since the objective is linear, it is sufficient to consider
only vertices of the polytope Q(x). These vertices correspond to points y for which a
sufficient number of inequalities of Q(x) become tight. The inequalities of Q(x) are of
the form yi ≥ 0 and yi ≥ yj . Therefore, we have the following:

Lemma 1. Let y be a vertex of the polytope Q(x). Then each action that is played with
positive probability in y is played with equal probability.

Thus a vertex is specified by a support set R ⊆ [n], which is the set of attacker actions
played with positive probability. Given R, the vertex yR has yRi = 0 for all i �∈ R, and
yRi = 1/|R| for i ∈ R.

The support set R of a vertex of Q(x) has the following properties:

1. All best responses of the follower are required to be in R.
2. If i ∈ R then all pure strategies that are better for the follower than i are also in R.
3. Since x induces a total ordering on [n] of the follower expected utilities, there exists

an action j ∈ [n] such that i ∈ R iff xTBi ≥ xTBj . We call such an action j a
threshold action.

In other words, given x, threshold action determines the support set. Since there
are at most n possible threshold actions, we have the following characterization of the
polytope Q(x):

Proposition 10. Q(x) has at most n vertices, each of which is specified by a threshold
action.

These vertices correspond to uniform top K strategies for various K (recall that these
are strategies in which the top K actions in terms of expected utilities are played, each
with equal probability of 1/K). This ranges from the “rational” uniform best response
strategy, to the completely mixed uniform random strategy.

5.2 Proof of Proposition 5

In this section, we give a proof of Proposition 5, making use of the structure of Q(x)
that we showed in Section 5.1.

Proof (of Proposition 5). Recall that given x ∈ X , Proposition 5 asks for a
regular quantal response function P such that P (xTB) is arbitrarily close to
argminy∈Q(x) x

TAy. Given x, we know that at least one attacker strategy in
argminy∈Q(x) x

TAy is a vertex of Q(x), and is therefore a uniform top-K strategy
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for some K . Now fix this K , and consider an attacker who plays the uniform top-K
strategy against any x. Since the top K actions depends only on the attacker utilities
xTB, this defines a response function P ′. However, P ′ does not satisfy interiority and
continuity. We instead consider Pλ, a smooth version of P ′, defined as follows: given a
vector of expected utilities u ∈ Rn, Pλ first selects a subset S of K actions according
to the probability distribution

Pr(S) =
eλ

∑
j∈S uj∑

S′⊂[n]:|S′|=K eλ
∑

j′∈S′ uj′
,

then randomize uniformly over the K selected actions. For any λ > 0, Pλ is a response
function satisfying monotonicity, interiority, continuity and responsiveness. As we take
λ → ∞, Pλ becomes arbitrarily close to P .

6 Evaluation

We ran computational experiments to compare the performance of monotonic maximin
and its variants (top-L monotonic maximin) against other previously-proposed solution
concepts, including Strong Stackelberg Equilibrium (SSE), MATCH [15], maximin,
and logit Quantal Response. Both the solution quality and the runtime performance are
examined, on instances of Stackelberg security games across a wide range of number
of targets and number of defender resources.

6.1 Payoff Structures

The performances of solution concepts are affected by payoffs of the game. In partic-
ular, it is known that for zero-sum games, SSE, MATCH and maximin solutions coin-
cide [15]; indeed monotonic maximin also coincides with maximin for zero-sum games
(Proposition 2). We generated payoff structures for Stackelberg security games with
different covariance values, by adapting the covariance game generator of the GAMUT
package. The covariance value r, which is chosen within the range [−1.0, 0.0], mea-
sures the correlation between the defender’s payoff and the adversary’s payoff. For
example, when r = −1.0, the game becomes zero-sum whereas there will be no corre-
lation between the defender and the adversary’s payoffs when r = 0.0. The rewards for
success of both the defender and the adversary are positive integers which lie within the
range [1, 10]. On the other hand, the penalties for failure are negative integers within
the range [−10,−1].

6.2 Solution Quality against Worst-Case Monotonic Attackers

In the first set of experiments, we compared the solution quality (i.e., defender expected
utility) of the different solution concepts against the worst-case closedly monotonic
attacker. That is, given a defender strategy x provided by one of the solution concepts,
the attacker chooses y ∈ argminy∈Q(x) x

TAy. We would expect monotonic maximin
to achieve the best performance, since it is by definition the optimal solution in this
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(a) 6 Targets, 3 Defender Resources (b) 8 Targets, 3 Defender Resources

Fig. 1. The defender expected utility against the monotonic adversary, exact payoff structures

measure. The purpose of these experiments is to observe the magnitudes of differences
in performance between monotonic maximin and others, and to check whether our top-
L monotonic maximin algorithms provide good approximations to monotonic maximin.
Specifically, we compared the performances among monotonic maximin, top-3, top-2,
top-1 monotonic maximin, Maximin, MATCH, SSE, and logit Quantal Response. For
logit Quantal Response, we tried a number of different values for λ, ranging from 1/32
to 8, but will only present the results for the best-performing value, which is λ = 0.5.
The results for 6-target and 8-target games with 3 defender resources are shown in
Figure 1. The x-axis represents the covariance value ranging from 0 to -0.8 with the step
size of 0.4 while the y-axis shows the average of the defender expected utility when the
adversary chooses the worst monotonic strategy. These computed values are averaged
across 200 generated payoff structures for each covariance value, and error bars indicate
standard deviations. As shown in Figure 1, monotonic maximin obtains a much higher
defender’s expected utility than Maximin, MATCH, SSE, and logit Quantal Response.
In particular, for logit Quantal Response, even though the key parameter λ is carefully
selected, it still performs poorly in comparison with monotonic maximin, implying its
non-robustness against a monotonic adversary. For example, in the case of 6 targets
and 3 resources (Figure 1a), when the covariance r = 0, while the defender achieves
an average of expected utility of 0.37 using monotonic maximin, her expected utility
is only -0.026, 0.007, 0.029, and 0.099 when using Maximin, MATCH, SSE, and logit
Quantal Response, respectively. Furthermore, Figure 1 shows that top-1, top-2, and top-
3 also significantly outperform Maximin, MATCH, SSE, and Quantal Response while
their performance is in turn closer to monotonic maximin when the number of targets
in the top set increases.

As predicted, when the games are zero-sum games (i.e., r = −1.0), the defender
strategies generated by all algorithms excepts for Quantal Response turn out to be the
same. In addition, as shown in Figure 1, when the covariance value r is closer to -1, the
differences in defender expected utilities obtained by the compared algorithms tend to
be smaller. Indeed, we observed that when the games are close to zero-sum games, the
defender strategies generated by the algorithms are similar, thus the difference in their
performances becomes small.

The promising performance of our algorithms in the case of small games motivated
us to investigate their performance in larger games. In the next experiment, we evaluated
the performance of top-1, top-2, and top-3 as well as Maximin, MATCH, SSE, and
Quantal Response in 12-target and 14-target games with 6 defender resources. In this
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(a) 12 Targets, 6 Defender Resources (b) 14 Targets, 6 Defender Resources

Fig. 2. The defender expected utility against the monotonic adversary, large games

(a) 12 Targets, 6 Defender Resources (b) 14 Targets, 6 Defender Resources

Fig. 3. Comparison results between the monotonic adversary and the expected adversary

experiment, we did not examine monotonic maximin due to its runtime limitation which
we will describe in detail later. The results are shown in Figure 2. For each covariance
value, 50 payoff structures are generated.

Figure 2 clearly shows that our top-L monotonic maximin algorithms with L = 1, 2,
3 outperform Maximin, MATCH, SSE, and logit Quantal Response in terms of the ob-
tained defender expected utility. For example, in Figure 2b, when the covariance value
r = 0, the defender expected utility obtained by top-3, top-2, and top-1 are in turn -0.48,
-0.51, and -0.54 while the defender expected utility obtained by Maximin, MATCH,
SSE, and logit Quantal Response are -0.61, -0.65, -0.69, and -0.58, respectively. This
result demonstrates that our algorithms still perform much better than the other com-
pared algorithms in large game scenarios. It also suggests that our top-L algorithm is a
promising approach for handling monotonic adversaries in large games.

In this paper we have argued that previous algorithms such as SSE and logit Quantal
Response are not robust because such algorithms only attempt to address a specific type
of adversary which could lead to deterioration in their performance when their assump-
tions are inaccurate. To check whether this is confirmed by our experiments, for both
SSE and logit Quantal Response we compared the defender’s expected utility of the
expected objective (assuming correct model) and the expected utility against the worst
case monotonic adversary. As shown in Figure 3, these two algorithms’ performance
against the monotonic adversary is significantly worse than the performance that they
expected. For example, in Figure 3a, when the covariance r = 0, Quantal Response
obtains the defender expected utility of only 0.05 against the worst case monotonic ad-
versary while its expected objective value is 0.67. Also, SSE obtains only -0.05 against
the worst case monotonic adversary while its expected value is 4.09.
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6.3 Solution Quality against Non-monotonic Attackers

In the second set of experiments, we compared the solution concepts when the attacker
is playing a non-monotonic strategy. The motivation for such experiments is that unlike
the setting of our previous experiment, in practice our estimates about the payoffs of the
adversary may be inaccurate. Recall from Section 3.3 that monotonicity is generally not
preserved under payoff uncertainty, even if the payoff noise is zero-mean and i.i.d.

We added i.i.d. zero-mean noise to the reward and penalty of the adversary at ev-
ery target, and calculated defender expected utilities given that the adversary responds
with the worst-case monotonic strategy in each of the perturbed games. The defender
computes her strategy with respect to the non-perturbed game. Specifically, the noise
distribution we used is a uniform mixture of 10 Gaussians with zero mean and standard
deviation values from 0.01 to 0.10 with a step size of 0.01. We used 6-target and 8-
target games with 3 defender resources for evaluating the performance of the compared
algorithms, and showed the results according to different covariance values r. For each
covariance value, 50 payoff structures are generated; for each payoff structure, for each
of the 10 standard deviation values, 100 samples of the adversary’s payoff noise are
drawn from a zero-mean Gaussian distribution with the corresponding standard devia-
tion. That is, 50 x 10 x 100 = 50000 samples are generated for each covariance value.
The result is shown in Figure 4, in which we plot the average defender expected utility
across all noisy samples. As shown in Figure 4, monotonic maximin still outperforms
the other compared algorithms although the differences are smaller than in the previous
experiment with exact payoffs for the adversary. In addition, the top-L monotonic max-
imin algorithms with L = 1, 2, and 3 also obtained higher defender expected utilities
than Maximin, MATCH, and SSE. This result indicates that our algorithms are robust
to some amount of noise in the adversary’s payoffs, even when such noise induces non-
monotonic behavior from the adversary.

On the other hand, as we increase the magnitude (i.e., standard deviation) of noise,
monotonic maximin no longer has a significant advantage over the previous solution
concepts. Intuitively, as the noise becomes larger, the resulting average strategy of the
attacker becomes farther away from the set of monotonic strategies, which are the strate-
gies that monotonic maximin is designed to be robust against.

(a) 6 Targets, 3 Defender Resources (b) 8 Targets, 3 Defender Resources

Fig. 4. The defender expected utility against the monotonic adversary, uncertainty in the adver-
sary’s payoffs



Monotonic Maximin: A Robust Stackelberg Solution 137

6.4 Runtime Performance

Finally, we tested the runtime scaling behavior of the algorithms. The results are shown
in Figure 5. Figure 5a shows the runtime comparison between monotonic maximin,
top-3, top-2, top-1, Maximin, MATCH, and SSE (as implemented by the ERASER
algorithm [9]) in small games, i.e., 5-10 target games with 3 defender resources. The
x-axis indicates the number of targets and the y-axis shows the average runtime in
seconds for each algorithm to compute the defender’s strategy given a payoff structure.
The runtime is averaged over 300 different payoff structures. As shown in this figure,
monotonic maximin’s runtime grows very quickly with regard to the number of targets
compared to other algorithms. When the number of targets increases to 10, its runtime
reaches 446 seconds while top-3, top-2, and top-1 require only 11.91 seconds, 1.53
seconds, and 0.19 seconds, respectively. In this case, it takes Maximin, MATCH, and
SSE only 0.02 seconds, 0.1 seconds, and 0.1 seconds, respectively.

In figure 5b, the runtime of top-3, top-2, top-1, Maximin, MATCH, and SSE in large
game scenarios (i.e., 10-70 targets and 6 defender resources) are illustrated. This figure
shows that when the number of targets is up to 20 targets, the runtime of top-3 increases
to 146.49 seconds. In the case of 70 targets, top-2’s runtime reaches 99.68 seconds while
the runtime of top-1 is about 1.83 seconds, and the runtime of Maximin, MATCH, and
SSE are all less than 1 second.

Overall, monotonic maximin and its variants have been shown to outperform
Maximin, MATCH, logit QR and SSE in various game settings, i.e., different number
of targets and different number of defender resources, and different groups of payoff
structures with corresponding covariance values. In terms of scalability, even though
our algorithms are not as fast as algorithms for these existing solution concepts, we
have shown that our approach (especially top-L monotonic maximin) is feasible for
large game scenarios. Among different variants of monotonic maximin, there is a trade-
off between solution quality and runtime performance.

(a) 5-10 Targets, 3 Defender Resources (b) 10-70 Targets, 6 Defender Resources

Fig. 5. Runtime comparison

7 Conclusion and Future Work

We proposed monotonic maximin, a novel robust solution concept for Stackelberg
games with boundedly rational followers. We showed both theoretically and through
numerical experiments on security games that monotonic maximin provides defender
strategies that are robust against all regular quantal response attackers.
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Our work points the way to a variety of new research challenges and potential fu-
ture directions, including extending our robust optimization approach to other behavior
models such as risk averseness, as well as applying the solution concept to games with
multiple followers.

Acknowledgments. This research was supported by MURI Grant W911NF-11-1-0332.
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Abstract. Crowdsourcing has emerged as a useful learning paradigm
which allows us to instantly recruit workers on the web to solve large
scale problems, such as quick annotation of image, web page, or document
databases. Automated inference engines that fuse the answers or opinions
from the crowd to make critical decisions are susceptible to unreliable,
low-skilled and malicious workers who tend to mislead the system to-
wards inaccurate inferences. We present a probabilistic generative frame-
work to model worker responses for multicategory crowdsourcing tasks
based on two novel paradigms. First, we decompose worker reliability
into skill level and intention. Second, we introduce a stochastic model for
answer generation that plausibly captures the interplay between worker
skills, intentions, and task difficulties. This framework allows us to model
and estimate a broad range of worker “types”. A generalized Expectation
Maximization algorithm is presented to jointly estimate the unknown
ground truth answers along with worker and task parameters. As sup-
ported experimentally, the proposed scheme de-emphasizes answers from
low skilled workers and leverages malicious workers to, in fact, improve
crowd aggregation. Moreover, our approach is especially advantageous
when there is an (a priori unknown) majority of low-skilled and/or ma-
licious workers in the crowd.

Keywords: crowd aggregation, information fusion, malicious workers,
probabilistic modeling.

1 Introduction

Crowdsourcing systems leverage the diverse skill sets of a large number of Inter-
net workers to solve problems and execute projects. In fact, the Linux project
and Wikipedia can be considered products of crowdsourcing. These systems have
recently gained much popularity with web services such as Amazon MTurk [1]
and Crowd Flower [2], which provide a systematic, convenient and templatized
way for requestors to post problems to a large pool of online workers and get
them solved quickly. The success of crowdsourcing has been demonstrated for
annotating and labeling images and documents [22], writing and reviewing soft-
ware code [4], designing products [21], and also raising funds [3]. Here, we focus
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on crowdsourcing tasks where workers make a choice from a categorical answer
space.

Although the crowd expedites annotation, its anonymity allows noisy or even
malicious labeling to occur. Due to this, the application of crowdsourcing in mis-
sion and life critical tasks (such as identifying a plane crash in one of thousands
of satellite images [5] or identifying malicious activity in a collection of video
snippets) has been limited. Online reputation systems can help reduce the effect
of noisy labels, but are susceptible to Sybil [10] or whitewashing [11] attacks.
A second mitigation strategy is to assign each task to multiple workers and ag-
gregate their answers in some way to estimate the ground truth answer. The
estimation may use simple voting or more sophisticated aggregation methods.
In this work, we present a stochastic model for answer generation that plausibly
captures the interplay between worker skills, intentions, and task difficulties. To
the best of our knowledge, this is the first model that incorporates the difference
between worker skill and task difficulty (measured on the real line) in modeling
the accuracy of workers on individual tasks. We also make a clear distinction
between worker intention and skill level. Inferring intention allows us to identify
malicious workers and to exploit their anticipated behavior to actually improve
the accuracy of crowd aggregation. From the parameters of our model, we can
infer the presence of several “types” of workers in the crowd, including adver-
sarial workers. We formalize the notion of an adversarial worker and discuss and
model different types of adversaries. A simple adversary gives incorrect answers
“to the best of his skill level”. More “crafty” adversaries can attempt to evade
detection by only giving incorrect answers on the more difficult tasks solvable at
their skill level. The detection of adversaries and the estimation of both worker
skills and task difficulties can be assisted by knowledge of ground-truth answers
for some (probe) tasks. Accordingly, we first propose a semisupervised approach1

, invoking a generalized EM algorithm to maximize the joint log likelihood over
the (known) true labels for the “probe” tasks and the answers of the crowd for
all tasks. Interestingly, our crowd aggregation rule comes precisely from the E-
step, since the ground-truth answers are treated as the hidden data [9] in our
EM approach. We emphasize that, unlike some approaches, which assume all
tasks are drawn from the same classification domain, e.g., [17], our approach is
applicable even when the batch of tasks is heterogeneous, i.e., not necessarily
drawn from the same domain.

Our experimental evaluation of the proposed scheme consisted of three levels.
First, we evaluated the robustness of our EM algorithm using synthetic data. We
observed that our scheme was especially effective when there is large variation in
worker skills and task difficulties. Moreover, the algorithm was able to accurately
identify adversarial workers with a high level of accuracy. Second, we evaluated
performance using a crowd of “simulated” workers that do not generate answers
in a fashion closely matched to our model. Specifically, each worker was a strong
learner, formed from an ensemble of weak learners. Each weak learner was a

1 When probe tasks are unavoidable, this method simply specializes to an unsupervised
algorithm.
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decision tree, with the ensemble (and thus, a strong learner) obtained by multi-
class boosting. A strong worker’s skill was controlled by varying the number of
boosting stages used. We performed experiments on UC Irvine data sets [6] and
observed that our method outperforms a (semisupervised) weighted plurality
voting method. Our final experiment involved a crowdsourcing task we posted
using Amazon Mturk [1]. Our conclusion is that the proposed scheme achieves
strong performance and is able to overcome “tyranny of the masses”, i.e., when
there is a minority of highly skilled workers among a pool of mostly low skilled
workers. Such scenarios can occur when the tasks require specialized expertise
rarely found in the crowd.

2 Modeling Paradigm

We separately model worker intention and skill. A worker’s intention is a binary
parameter indicating if he is adversarial or not. An honest worker provides ac-
curate answers to the best of his skill level whereas an adversarial worker may
provide incorrect answers to the best of his skill level. In the case of binary
crowdsourcing tasks, adversarial workers can be identified by a negative weight
[14] given to their answers. Here we extend malicious/adversarial worker models
to multicategory tasks and hypothesize both “simple” and “crafty” adversaries.

Our approach incorporates task difficulty and worker skill explicitly and, un-
like previous approaches [23] [22] [14], characterizes the interplay between them.
Task difficulty and worker skill are both represented on the real line, with our
generative model for a worker’s answer based on their difference. If the task
difficulty exceeds a worker’s skill level, the worker answers randomly (whether
honest or adversarial). For an adversary, if the task difficulty is less than his
skill level, he chooses randomly from the set of incorrect answers. We also ac-
knowledge another category of worker type known as “spammers”. These are
lazy workers who simply answer randomly for all tasks. In our model, they are
represented with large negative skill levels.

3 Framework

3.1 Notation

Suppose a crowd of N workers is presented with a set of Tu unlabeled tasks for
which the ground truth answers are unknown. There are also Tl probe tasks with
known ground truth answers. We assume the crowd is unaware which tasks are
probes. Accordingly, a malicious worker cannot alter his answering strategy in a
customized way for the probe tasks to “fool” the system. Let {1, 2, ..., Tl} be the
index set of the probe tasks and {Tl + 1, Tl + 2, ..., Tl + Tu} be the index set for
non-probe tasks. We assume without loss of generality that each worker is asked
to solve all the tasks2. The answers are chosen from a set C := {1, 2, ...,K}. Let
2 We only make this assumption for notational simplicity. Our methodology in fact
applies generally to the setting where each worker solves only a subset of the tasks.
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zi ∈ C be the ground truth answer and let d̃i ∈ (−∞,∞) represent the difficulty
level of task i. The intention of worker j is indicated by vj ∈ {0, 1}, where vj = 1
denotes an honest worker and vj = 0 an adversary. dj ∈ (−∞,∞) represents the
jth worker’s skill level. Finally the response provided by the jth worker to the
ith task is denoted rij ∈ C.

3.2 Stochastic Generation Model

We define our model’s parameter set Λ = {{(vj, dj , aj) ∀ j}, {d̃i ∀ i}}. We
hypothesize the generation of the answers for non-probe tasks in two steps.
Independently for each non-probe task i ∈ {Tl + 1, ..., Tl + Tu}:
1. Randomly choose the ground truth answer (zi) from C according to a uniform

pmf3 1
K .

2. For each worker j ∈ {1, ..., N}, generate rij ∈ C for task i based on the

parameter-conditional pmf β(rij |Λij , zi), where Λij := {vj, dj , aj , d̃i}4.
Also, independently for each probe task i ∈ {1, ..., Tl} and each worker j, gener-
ate the answer rij ∈ C based on the parameter-conditional pmf β(rij |Λij , zi).

3.3 Worker Types

We model the ability of a worker to solve the task correctly using a sigmoid func-
tion based on the difference between the task difficulty and the worker’s skill5,
i.e., the probability that worker j can solve task i correctly is 1

1+e−aj(dj−d̃i)
. Note

we have included a degree of freedom aj which attempts to capture the individu-
ality of workers. It is also possible to tie this parameter, i.e., set aj = a, ∀j.

Honest Workers. For an honest worker (vj = 1), the pmf β is defined as:

β(rij = l|Λij , vj = 1, zi) =

⎧⎨⎩
1

1+e−aj (dj−d̃i)
+
(

1
K

)(
e−aj(dj−d̃i)

1+e−aj(dj−d̃i)

)
for l = zi(

1
K

)(
e−aj(dj−d̃i)

1+e−aj(dj−d̃i)

)
otherwise

(1)

Here, the worker essentially answers correctly with high probability if dj > d̃i,
and with probability 1

K otherwise. Next, we discuss two models for adversarial
workers.

Simple Adversarial Workers. For the simple adversarial model, β is given
by

β(rij = l|Λij , vj = 0, zi) =

⎧⎪⎪⎨
⎪⎪⎩

(
1
K

)(
e
−aj(dj−d̃i)

1+e
−aj(dj−d̃i)

)
for l = zi

(
1
K

)(
e
−aj(dj−d̃i)

1+e
−aj(dj−d̃i)

)
+

(
1

K−1

)(
1

1+e
−aj(dj−d̃i)

)
otherwise

(2)

3 One can always randomize the indexing of the answers for every task to ensure that
the index of the true answer is uniformly distributed across all possible indices.

4 The specific parametric dependence of β on Λij will be introduced shortly.
5 Alternative (soft) generalized step functions could also in principle be used here.



144 A. Kurve, D.J. Miller, and G. Kesidis

Here, essentially, the worker only chooses the correct answer (randomly) if the
task difficulty defeats his skill level; otherwise he excludes the correct answer.

Complex Adversarial Workers. In this case, the adversarial worker is more
evasive. He answers correctly for simpler tasks with difficulty level below a certain
value. Assume θj < dj to be such a threshold for worker j. The pmf β for this
(complex) adversarial worker is given by:

β(rij = l|Λij, vj = 0, zi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
K

)(
e
−aj(dj−d̃i)

1+e
−aj(dj−d̃i)

)
+

(
1

1+e
−bj(θj−d̃i)

)(
1

1+e
−aj(dj−d̃i)

)

if l = zi(
1
K

)(
e
−aj(dj−d̃i)

1+e
−aj(dj−d̃i)

)
+

(
1

K−1

)(
e
−bj (θj−d̃i)

1+e
−bj(θj−d̃i)

)(
1

1+e
−aj(dj−d̃i)

)

otherwise

(3)

Here, essentially, the worker answers correctly with high probability for easy
tasks (θj > d̃i), he excludes the correct answer for more difficult tasks below his

skill level, and for even more difficult tasks that defeat his skill level (dj < d̃i),
he answers correctly at random ( 1

K ). In this work we will only investigate the
simple model of adversarial workers.

3.4 Incomplete, Complete and Expected Complete Data Log
Likelihood

The observed data X = R ∪ ZL consists of the set R of answers given by the
workers to all the tasks, i.e., rij ∀ i, j and the set Z of ground truth answers
to the probe tasks, i.e., zi, i ∈ {1, 2, ..., Tl}. We express R = RL ∪RU , i.e., the
union of answers to probe tasks and non-probe tasks. We choose the hidden
data [9] H to be the ground truth answers to the non-probe tasks, i.e., Zi,
i ∈ {Tl + 1, ..., Tl + Tu}. The incomplete data log-likelihood that we seek to
maximize in estimating Λ is given by

log Linc = log P(R,ZL|Λ) = log P(RL,RU,ZL|Λ) = log P(RL,ZL|Λ) + log P(RU|Λ)(4)

=

Tl∑
i=1

N∑
j=1

log
1

K
β(rij|Λij, zi) +

Tl+Tu∑
i=Tl+1

N∑
j=1

log
1

K

K∑
k=1

β(rij|Λij, zi = k)

∝
Tl∑
i=1

N∑
j=1

log β(rij |Λij , zi) +

Tl+Tu∑
i=Tl+1

N∑
j=1

log

K∑
k=1

β(rij|Λij, zi = k).

The expected complete data log-likelihood, where the expectation is with respect
to the pmf P(Zi = k|X ,Λ), can be written as:
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E[log Lc|X, Λ] ∝
Tl∑
i=1

N∑
j=1

log β(rij|Λij, zi) +

Tu∑
i=Tl+1

N∑
j=1

K∑
k=1

[
P(zi = k|X,Λ)log β(rij|Λij, zi = k)

]

=

Tl∑
i=1

∑
j:rij=zi

[
vj log

(
β(rij|Λij, vj = 1, zi = rij)

)
+ (1 − vj) log

(
β(rij|Λij, vj = 0, zi = rij)

)]

+

Tl∑
i=1

∑
j:rij �=zi

[
vj log

(
β(rij|Λij, vj = 1, zi �= rij)

)
+ (1 − vj) log

(
β(rij|Λij, vj = 0, zi �= rij)

)]
(5)

+

Tl+Tu∑
i=Tl+1

K∑
k=1

∑
j:rij=k

P(zi = k)
[
vj log

(
β(rij|Λij, vj = 1, zi = k)

)
+ (1 − vj) log

(
β(rij|Λij, vj = 0, zi = k)

)]

+

Tl+Tu∑
i=Tl+1

K∑
k=1

∑
j:rij �=k

P(zi = k)
[
vj log

(
β(rij|Λij, vj = 1, zi �= k)

)
+ (1 − vj) log

(
β(rij|Λij, vj = 0, zi �= k)

)]

4 The Generalized EM (GEM) Algorithm

We formulate our algorithm using the above defined expected complete data
log-likelihood. The EM algorithm ascends monotonically in log Linc with each
iteration of the E and M steps [9]. In the expectation step, we calculate the pmf
P(Zi = k|X ,Λt) using the current parameter values Λt, and in the maximization
step, we compute Λt+1 = argmaxΛ E[log Lc|X ,Λt].

E step: In the E-step we compute the expected value of Zu given the observed
data X and the current parameter estimates Λt. Based on our assumed stochastic
model (section 3.2), P(Zu|X ,Λt) =

∏Tl+Tu

i=Tl+1 P(Zi = zi|X ,Λt). Moreover, again
based on the assumed stochastic model and applying Bayes’ rule, we can derive
the closed form expression for the pmf in the E-step as:

Pi(Zi = k|X ,Λt) =

∏N
j=1 β(rij|Λt

ij,Zi = k)∑K
l=1

∏N
j=1 β(rij|Λt

ij,Zi = l)
, i ∈ {Tl + 1, ...,Tu +Tl}. (6)

Generalized M step: In the M-step of EM, one maximizes the expected com-
plete data log-likelihood with respect to the model parameters:

Λt+1 = argmax
Λ

E[log Lc|X ,Λt]. (7)

Since Λ consists of mixed (both continuous and discrete) parameters, with a
particular parametric dependence and with 2N (honest, adversarial) crowd con-
figurations, it is not practically feasible to find a closed form solution to (7) for
our model. Instead, we use a generalized M-step approach [16][12] to iteratively
maximize over the parameters {vj ∀ j}, and {{(dj, aj) ∀ j}, {d̃i ∀ i}}.

M1 Substep: We can find a closed form solution for vj ∀ j keeping all other
parameters fixed:

vj = arg max
{0,1}

E(logLc|Xj , Λ\{vj}), (8)
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where Xj is the set of answers provided by the jth worker and the ground truth
answers for the probe tasks that he answered.

M2 Substep: We maximize E[log Lc|X ,Λt] with respect to Λ\{vj : ∀j} given
{vj : ∀j} fixed. For this, we use a gradient ascent algorithm which ensures mono-
tonic increase in log Linc, but which may only find a local maximum, rather than
a global maximum of E[log Lc|X ,Λt].

Inference: Note that the E-step (6) estimates the a posteriori probabilities of
ground-truth answers. Thus, after our GEM learning has converged, a maximum
a posteriori decision rule applied to (6) gives our crowd-aggregated estimates of
the true answers for the non-probe tasks.

4.1 Unsupervised GEM

Note that when probe tasks are not included in the batch of tasks, an unsuper-
vised specialization of the above GEM algorithm is obtained. In particular, we
have Tl = 0, with the first term in (4) and the first two terms in (5) not present.
Our above GEM algorithm is accordingly specialized for this case. In Section
5, we will evaluate the unsupervised GEM based scheme along with all other
methods.

5 Experiments

Experiments were performed using synthetic data as well as data generated by a
crowdsourced multicategory labeling task on Amazon MTurk [1]. Additionally,
for a number of UC Irvine domains, we generated a collection of heterogeneous
classifiers to be used as a “simulated” crowd. We generated adversaries of the
simple type in all our experiments. We compared our scheme (both with and
without probe tasks) with simple (multicategory) plurality voting and weighted
plurality voting, which exploits the probe tasks6.

5.1 Experiments with Synthetic Data

The synthetic data was produced according to the stochastic generation de-
scribed in section 3.2. The goal here was to evaluate the GEM algorithm by
comparing the estimated parameters and the estimated hidden ground truth
answers with their actual values used in generation of the synthetic data. We
generated a crowd of 100 workers with dj ∼ N (1, 400), aj ∼ N (0.3, 0.2) ; 10% of

workers were adversarial. The tasks were generated with d̃i ∼ N (8, σ2), where
σ2 was varied. The ground truth answer for each task was chosen randomly from
{0, 1, ..., 4}. We observed that in this regime of high variance in worker skill and

6 The answer from each worker was weighted by the fraction of probe tasks that he
answered accurately.
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task difficulty, there is a definite advantage in using the proposed scheme over
other benchmark schemes, as shown in Table 1. Table 2 shows performance as a
function of the number of workers assigned to each task. In each case, a random
regular bipartite graph of workers and tasks was generated. We also see in Figure
1 the high level of correlation between the estimated and actual values of worker
skills and task difficulties.

5.2 Simulating a Crowd Using an Ensemble of Classifiers

We also leveraged ensemble classification to generate a set of automated workers
(each an ensemble classifier) using boosting [19]. Each such classifier (worker)
is a strong learner obtained by applying multiclass boosting to boost decision
tree-based weak learners. The strength (accuracy) of each worker was varied
by controlling the number of boosting stages. Each weak learner was trained
using a random subset of the training data to add more heterogeneity across the
workers’ hypotheses. Note that unlike Section 5.1, this approach to simulated
generation of a crowd is not matched to our stochastic data generation model
in Sections 3.2 and 3.3. Thus, this more complex simulation setting provides a
more realistic challenge for our model and learning.

Table 1. Synthetic data: different values of task difficulty variance

Task Variance Average erroneous tasks
Simple Plu-
rality

Weighted
Plurality

Proposed
With Probes

Proposed
Without
Probes

4000 23.4 22.1 16.9 19.8

2000 21.2 20 14.6 15.2

1000 19.1 16.2 9.6 9.8

500 11.1 8.1 3.14 4.1

250 5.8 5.8 2.1 2.5

Table 2. Synthetic data: different values of worker assignments

Assignment
degree

Average erroneous tasks

Simple Plu-
rality

Weighted
Plurality

Proposed
With Probes

Proposed
Without
Probes

20 31.2 31.6 27 28

40 22.85 21.2 18.4 18.8

60 19.4 18.6 14.2 15.4

80 16.5 16 13.1 13.4
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Fig. 1. Comparison of actual and estimated parameters

Fig. 2. Histogram of worker accuracies for Dermatology dataset

We ran Multiboost [7] 100 times to create a crowd of 100 workers for four do-
mains that are realistic as crowdsourcing domains: Pen Digits7, Vowel, Derma-
tology, and Nominal8. For each experimental trial, 100 crowd tasks were created
by randomly choosing 100 data samples from a given domain; 10 of them were
randomly chosen to be probe. The rest of the data samples from the domain
were used for training the strong (ensemble) classifiers/workers. The average of
the number of crowd-aggregated erroneous tasks was computed across 5 trials,
where each trial consisted of a freshly generated crowd of workers and set of

7 We resampled the dataset to have only odd digits.
8 Hungarian named entity dataset [20]. Identifying and classifying proper nouns into
four categories: not a proper noun, person, place, and organization.
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tasks. In Table 3, we give performance evaluation for different worker accuracy
means and variances. We did not directly control these values since they were
an outcome of the boosting mechanism. However we could control the number
of boosting stages used by each worker. We also show the performance when
10% of the workers were replaced by adversarial workers. These synthetic adver-
saries retained the estimated skill level of the (replaced) workers and generated
their answers using the stochastic model described in section 3.2. In Table 3, the
worker accuracy mean and variance across all workers is based on the number of
correctly answered tasks (both probe and non-probe) for each worker. We can see
in Table 3 the gains in performance of our method over the other methods, espe-
cially in the presence of adversarial workers. Note also that our method exploits
simple adversaries, achieving improved crowd aggregation accuracy compared
with the case when no adversaries are present, in almost all cases in Table 3. We
observed a clear improvement when the mean worker accuracy is low, especially
when only a few workers in the crowd are skilled enough to answer most tasks
accurately. To illustrate this, we plot the histogram of worker accuracies for a
sample run of the Dermatology dataset in Figure 2 (corresponding to the lowest
mean accuracy in Table 3). From the results in Table 3, for low mean accura-
cies, we can see that our proposed scheme is able to identify and leverage the
expertise of a small subset of highly skilled workers, thus defeating “tyranny of
the masses”.

5.3 MTurk Experiment

Fig. 3. The MTurk experiment: a few of the sample images

We designed an image labeling task where workers had to provide the country
of origin, choosing from Afghanistan, India, Iran, Pakistan, Tajikistan. Some
of the regions in these countries look very similar in their culture, geography,
and demography and hence only people with domain experience and a deep
understanding of the region will likely know the true answer. For instance, the
blue rickshaws are typical to Pakistan and the yellow taxis are more common
in Kabul. One can also guess e.g. from the car models on the street or from
the script on street banners. We posted a task consisting of 50 such images on
Amazon MTurk [1] and asked all workers to upload a file with their answers
on all tasks. We received responses from 62 workers. In order to evaluate under
the scenario where workers answer only a subset of the tasks, for each task, we
used answers from a sampled set of workers using a randomly generated degree
regular bipartite graph consisting of worker and task nodes. A worker’s answer
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Table 3. Experiments using UC Irvine datasets

Number of erroneous non-probe tasks for Pen Digits dataset

Worker
accuracy
mean

Worker
accuracy
variance

Task accu-
racy vari-
ance

Without adversarial workers With 10% adversarial workers

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
Without
Probes

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
without
Probes

24.1 262.8 24.2 23.8 11 8.4 9.4 45.2 13.8 5.2 5.2

26.2 294.2 32.5 22 10.4 8.6 8.6 29 13.8 5.3 5.4

29.5 465.5.3 42.9 17.6 11.8 9.2 9.5 21.4 14.4 5.8 6.4

33.9 485.5.6 88.8 14 7.6 7.8 8.2 16.4 7.8 8 8.2

Number of erroneous non-probe tasks for Dermatology dataset

Worker
accuracy
mean

Worker
accuracy
variance

Task accu-
racy vari-
ance

Without adversarial workers With 10% adversarial workers

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
Without
Probes

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
without
Probes

19.7 215.1 44.1 48 23.2 8.6 24.2 62.4 23 7.4 32.4

22.6 399.8 66.3 40.2 12.2 8.2 20.4 50.4 11.2 7 17.4

26.9 480.3 76.6 22.4 8.6 6.8 7 30 8.4 4 4.6

27.6 563.1 88.9 26.8 9.6 5.4 5.6 36.6 9 2.2 2.8

31.7 632.2 110.3 14.4 4 4 4 19 5 3.6 3.8

Number of erroneous non-probe tasks for Nominal dataset

Worker
accuracy
mean

Worker
accuracy
variance

Task accu-
racy vari-
ance

Without adversarial workers With 10% adversarial workers

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
Without
Probes

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
without
Probes

45.4 575.4 339.1 19 18.8 18.2 18.4 22.6 18.8 18.1 18.1

49.1 599.2 328.6 10.4 8.4 6.1 7.7 11.6 8.2 5.9 7

51.3 649.9 325.1 9.8 7.8 5.6 7.7 12.2 6.6 5.4 6.1

52.6 678.5 298.5 9.6 6.2 4.7 5.1 11 4.8 2.9 3.2

54.3 878.1 233.1 4.2 3.2 2.6 2.9 5.2 3 2.3 2.4

Number of erroneous non-probe tasks for Vowel dataset

Worker
accuracy
mean

Worker
accuracy
variance

Task accu-
racy vari-
ance

Without adversarial workers With 10% adversarial workers

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
Without
Probes

Simple
Plurality

Weighted
Plurality

Proposed
with
Probes

Proposed
without
Probes

24.2 390.1 35.6 25.6 15.8 15.6 16.2 26.2 15.6 10 11.8

26.8 412.4 42.3 23.1 14.2 15.7 15.9 26 14.7 9.4 10.4

29 445.8 57.4 22.5 13.8 15.2 15.6 42.4 14.4 5.2 9.6

32.2 624.6 81.8 17.8 12.2 13.6 13.6 25 13 7.6 7.8

35.9 716.2 118.9 16.4 13.6 15.6 16.4 20 13.4 9.2 12.2
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to a task was used only when a link existed in the bipartite graph between
the two corresponding nodes. Table 4 shows the average number of erroneous
crowd-aggregated answers for the methods under study as we varied the number
of tasks assigned to each worker. The average was computed over 5 trials, each
time generating a new instance of a random bipartite graph and using 5 randomly
chosen probe tasks.

Table 4. MTurk Experiment: Average number of erroneous tasks

Assignment
Degree

Simple Plurality
Voting

Weighted Plural-
ity Voting

Proposed Scheme
with Probes

Proposed Scheme
without Probes

10 15.4 18.2 13.4 13.9

20 14.2 13.6 7.2 7.2

30 14.2 11.2 5.2 5.2

40 12.2 7.6 4 4.2

50 13.4 8 3.4 3.4

6 Related Work

This paper develops novel approaches for inference in multicategory crowdsourc-
ing tasks by explicitly modeling worker skill and intention and task difficulty.
Our approach is specifically designed to overcome “tyranny of the masses” by
de-emphasizing low-skilled workers and identifying malicious workers to improve
crowd aggregation. Stochastic models for the generation of workers’ answers have
been previously considered in [8], [18], [23], [22]. In [8] the parameters of the
model are the per-worker confusion matrices that are jointly estimated with the
ground truth answers. This method was extended in [24], where a distinct proba-
bility distribution was given over the answers for every task-worker pair. But [24]
does not consider a per-task parameter representing task difficulty. In our model,
the distribution over answers for a task explicitly depends on the task difficulty
that is essentially “perceived” by workers attempting to solve it. More specifi-
cally, we explicitly model the interplay between worker skill and task difficulty.
In [23] and [22], task difficulty was considered explicitly, but only for the binary
case. [15] considered task difficulty for ordinal data, wherein a higher difficulty
level adds more variance to the distribution of workers’ elicited answers without
affecting the mean (which equals the ground truth value). Our method of in-
corporating task difficulties is novel, as we use them in a comparative paradigm
with worker skill in our soft threshold-based model. Unlike [22], which assumes
all tasks are drawn from the same classification domain, our approach is ap-
plicable even when the batch of tasks is heterogeneous, i.e., not necessarily all
drawn from the same (classification) domain. Adversarial workers in the binary
case were accounted for in [23] and [14]. In this work, we characterize adversarial
behavior for a more generalized (multicategory) setting. Moreover, we propose
several malicious worker models and our approach exploits responses from (sim-
ple) adversaries to actually improve overall performance. [14] and [13] consider
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other statistical methods, such as correlation-based rules. In those works, the
worker accuracies and task difficulties are computed as messages over the bipar-
tite graph of worker-to-task assignments in an unsupervised way. These methods
have been studied for binary classification tasks and their extension to multiclass
problems does not seem very straightforward.

7 Conclusion

In this paper we studied a crowd aggregation method which is robust to the
presence of a large number of low skilled and malicious workers in the crowd. In
our approach, we proposed a stochastic generative model of workers’ responses
along with an inference mechanism based on a generalized EM algorithm. We
chose our model in order to succinctly represent different worker types such
as spammers, low-skilled and malicious workers. We also proposed a complex
adversary which is a more evasive variant of a simple adversary. In future, we
would like to evaluate the more complex adversarial models experimentally. We
would also like to explore the possibility of alternative attacks on crowdsourcing
systems, for instance collusion attacks, where a group of adversarial workers
collude and submit the same (but incorrect) answer for a task.
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Abstract. Recently, network blocking game (NBG) models have been
introduced and utilized to quantify the vulnerability of network topolo-
gies in adversarial environments. In NBG models, the payoff matrix of
the game is only “implicitly” given. As a consequence, computing a Nash
equilibrium in these games is expected to be harder than in more con-
ventional models, where the payoff matrix is “explicitly” given.

In this paper, we first show that computing a Nash equilibrium of a
NBG is in general NP-hard. Surprisingly, however, there are particular
interesting cases for which the game can be solved in polynomial time.
We revisit these cases in a framework where the network is to be operated
under budget constraints, which previous models did not consider. We
generalize previous blocking games by introducing a budget limit on the
operator and consider two constraint formulations: the maximum and
the expected cost constraints.

For practical applications, the greatest challenge posed by blocking
games is their computational complexity. Therefore, we show that the
maximum cost constraint leads to NP-hard problems, even for games
that were shown to be efficiently solvable in the unconstrained case. On
the other hand, we show that the expected cost constraint formulation
leads to games that can be solved efficiently.

Keywords: network topology robustness, robustness metrics, game
theory, blocking games, computational complexity.

1 Introduction

Designing network topologies that are robust and resilient to attacks has been
and continues to be an important and challenging topic in the area of communi-
cation networks. One of the main difficulties resides in quantifying the robustness
of a network in the presence of an intelligent attacker, who might exploit the
structure of the network topology to design harmful attacks. Quantifying the
robustness or, equivalently, the vulnerability of topologies has been extensively
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studied [1–5]; however, the simultaneous and strategic decision making of the
defender and the adversary, which is key to the security of information systems,
has received only little attention.

To capture the strategic nature of the interactions between a defender and
an adversary, game-theoretic models have been gaining a lot of interest in the
study of the security of communication networks. In a recent line of research
[6–10], network blocking games (NBGs) have been introduced and applied to
the analysis of the robustness of network topologies. An NBG takes as input
the communication model and the topology of a network, and casts the strategic
interactions between an adversary and the defender, called the network operator,
as a two-player game. The Nash equilibrium strategies are then used to predict
the attacker’s most likely actions; and the attacker’s equilibrium payoff1 serves
as a quantification of the vulnerability (i.e., inverse robustness) of the network.

A particularity of NBG models is that the payoff matrix of the game is not
given as an input. In other words, the strategy set of (at least) one player (and
hence the payoff matrix) is only implicitly defined, and the actual strategy sets
need to be computed from the input of the game (here, the communication
model and the network topology). Furthermore, in most NBG models, checking
whether a given action is a feasible strategy can be done efficiently; however,
computing the complete strategy set is inherently difficult. For instance, in the
game described in [6], the operator’s strategy space is the set of feasible net-
work flows. In general, checking whether a given flow is feasible can be done
efficiently. However, computing the set of all feasible network flows (which is re-
quired for computing the payoff matrix) is difficult: the number of feasible flows
is exponential in the number of nodes and links in the graph, so they cannot be
enumerated in polynomial time.

Hence, with respect to the complexity of computing a Nash equilibrium, NBG
models present two challenges: first, the game is only implicitly defined; second,
the payoff matrix is potentially exponential in size. Thus, solving network block-
ing games can be expected to be harder than solving games for which the payoff
matrix is “explicitly given”. Recall that computing a NE for “explicit” two-player
games has been shown to be PPAD-complete (Polynomial Parity Arguments on
Directed graphs), a class of problems that are believed to be hard, but not neces-
sarily NP-hard [11]. In this paper, we show that computing a Nash equilibrium
of a network blocking game is NP-hard in general.

Interestingly though, in the series of NBG papers cited above, new algorithms
have been developed to efficiently compute a Nash equilibrium in a number of
communication models: All-to-All (e.g., Ethernet) networks with constant [7] and
linear loss [9], All-to-One (e.g., access and sensor) networks [10], and Supply-
Demand networks [6]. These algorithms are mostly based on the theory of net-
work flows and, for some models, on the minimization of submodular functions.
More precisely, the problem of finding a Nash equilibrium is cast as a network

1 It has been shown that the attacker’s payoff is the same in every equilibrium of
a network blocking game; thus, it suffices to find a single equilibrium in order to
characterize the robustness of a network.
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flow problem (or a submodular function minimization problem), which enables
bypassing the computation of the payoff matrix. In this paper, we revisit some
of these models and discuss the complexity of computing their NE in scenarios
where the network operator has access to only a limited budget to operate the
network.

Such budget constraints were not considered in previous NBG models, which
implicitly assume that the operator can use the network elements at zero cost.
However, this assumption is not realistic: indeed, links in a network have positive
usage costs (e.g., operation/maintenance costs, protection costs) and these costs
might be non-uniform. Since network operators do not have an unlimited budget,
they cannot use any combination of network element. In [6], a usage cost model
as well as a budget constraint have been introduced for the particular case of
Supply-Demand (S-D) networks. This budget constraint means that the network
operator can use a set of network elements (links) only if its associated cost does
not exceed a given budget.

In the present paper, we extend the budget constraint idea to network blocking
games in general, and provide a number of complexity results with regard to
the computation of the equilibrium payoff. Recall that the aim of solving these
models is to derive a quantification of the network’s robustness in the presence of
a strategic adversary, and that the equilibrium payoff is used as the vulnerability
metric. Thus, computational complexity is of central importance in these models,
and analyzing it is the primary goal of this paper.

This paper builds upon the studies in [6] and [12], but considers a more
general setting and presents many additional results compared to those papers.
[6] is the first study to introduce the idea of a budget limit and usage costs in the
context of a NBG. However, it considers only the special case of Supply-Demand
networks and (what we call here) the maximum cost constraint. Furthermore,
it does not provide a complexity analysis. [12] presents a complexity analysis
and introduces a new constraint formulation (the expected cost constraint), but
limits the discussion to the special case of the All-to-One communication model
with zero attack costs. In the present paper, we consider a unifying framework
and provide a thorough complexity analysis for NBGs in general. The main
contributions of this paper are the following:

– In Section 3, we show that solving a blocking game is generally NP-hard
(Theorem 1).

– In Section 4, we generalize the network blocking game model by introducing
a budget limit for the operator. We consider two constraint formulations: the
maximum cost constraint (MCC) and the expected cost constraint (ECC).

– In Section 5, we show that the problem of determining the equilibrium payoff
is NP-hard under the MCC in the previously proposed models, which can
be solved efficiently in the unconstrained game (Theorem 2).

– In Section 6, we show how to solve the game under the ECC in polynomial
time given a linear characterization of the operator’s mixed strategy space
(Theorem 3).
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Notational Conventions. We use lower case bold letters (e.g., α) and upper
case bold letters (e.g., S) to denote column vectors and matrices, respectively.
We use the prime sign (′) to denote transpose, and subindices (e.g., αT ) to refer
to elements of vectors.

2 Unconstrained Network Blocking Games

In this section, we summarize the previous work on network blocking games.
Since these models do not consider a budget constraint, we will refer to them as
unconstrained network blocking games when the distinction is important.

As it was stated earlier, network blocking games are defined by the commu-
nication model and the topology of the network. The topology of the network is
represented by a connected simple graph G = (V,E), where V is the set of nodes
and E is the set of links. The edges can be undirected or directed depending on
the communication models (as we will see later). The network operator wants
to guarantee “some” connectivity between the nodes of the network. For this,
she selects a collection T ⊆ E of the links as the communication infrastructure.
The type of connectivity and the set of feasible collections (denoted by T ) are
determined by the communication model (see the next subsection for examples
of communication models).

Assume that the operator chooses collection T for her communication and
that a given link e in the network fails. In this paper, we only consider failures
that are due to the actions of a malicious and strategic adversary. If e /∈ T , then
the communication is not affected at all. If, on the other hand, e ∈ T , then e
can longer be used: the operator incurs some usage loss, which is how much she
would transmit on the link if it were intact. For a given T and e, we let λ(T, e)
denote this usage loss (or zero if e �∈ T ). Notice that all results presented in this
paper also hold if the attacker is allowed to attack nodes as well2, but we restrict
our analysis to link attacks only due to the lack of space.

2.1 Communication Models

The communication model defines the type of “connectivity” that the network
operator is trying to achieve, the set of feasible collections which she can use for
that, and the usage losses λ(T, e) for the network elements. Next, we introduce
the three communication models that are of interest in this paper.

All-to-One Model. In an All-to-One network [10], the primary goal of the
network operator is to enable all nodes to communicate with a designated node
r. This models sensor and access networks, where all nodes are trying to reach a
gateway or data collection node (or, alternatively, a set of nodes, which can be
modeled by a designated super-node).

To get all nodes connected to r, the network operator chooses a collection of
links T that forms a spanning tree. Hence, the set of feasible collections T is the

2 The results for both node and edge attacks can be derived using vertex splitting.
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set of all spanning trees. In practice, a spanning tree can be implemented, for
example, as the next-hop forwarding table entries for r, which are stored at the
individual nodes of the network.

Let the network be connected using a spanning tree T . Then, if a given link
e ∈ E fails, some nodes might no longer be able to communicate with r and
can be considered lost for the network operator. Thus, we define the usage (loss)
λ(T, e) as the number of those nodes that are disconnected from r.

All-to-All Model. In an All-to-All network [7, 9], the goal of the network
operator is to enable each node to communicate with every other node, using
the minimum number of links. For example, this is the case for bridged Eth-
ernet LANs, where every node should be able to “logically” communicate with
every other node, but the topology has to be loop-free. Assuming that links are
undirected, spanning trees are the subgraph structures that (looplessly) connect
all nodes with the minimum number of links. Hence, the network operator se-
lects a spanning tree as communication infrastructure. Thus, the set of feasible
collections T corresponds to the set of all spanning trees.

Let the network be connected using a spanning tree T and assume that link
e fails. If link e does not belong to T , then the network remains connected and
the operator does not lose any connectivity. If, on the other hand, e ∈ T , the
network is cut into two separate components that are unable to communicate.
Now, if e is a link connecting a leaf to the rest of the spanning tree, only that leaf
gets disconnected and all the other nodes can still reach each other. In this case,
the operator loses some connectivity, but the loss can be considered minor. If, on
the other hand, the removal of link e cuts the network into two components of
comparable size, then connections between many pairs of nodes are now missing,
and the loss to the operator is considerably larger. In general, the more fractured
the network is, the more severe the loss is. To capture this phenomenon, the
usage (loss) λ(T, e) is defined as the size of the smaller connected component of
G(V, T \ e), where G(V, T \ e) is the subgraph containing only the links in T \ e.

Supply-Demand Model. In a Supply-Demand (S-D) network [6], the operator
wants to carry a fixed amount of goods from a nonempty set S ⊆ V of “source”
nodes to a nonempty set D ⊆ V of “destination” nodes using the network links.
We assume that S ∩D = ∅ and that network links are directed. With each node
u ∈ S, we associate a nonnegative number s(u), the “supply” at u, and with each
node u ∈ D, we associate a nonnegative number d(u), the “demand” at u. We
consider uncapacitated networks, where each link can carry an unlimited amount
of goods3. We also assume that links carry only integer amounts of goods and
that the total amount of goods to be carried from S to D is also a given positive
integer.

3 The analysis of capacitated network follows from the study in this paper, but it is
not considered in this paper due to space limitation.
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To transport the goods, the network operator chooses a collection of links that
forms a feasible (integer) flow. A feasible flow T ∈ T is a function that assigns to
each link e the amount of goods T (e) (≥ 0) it carries, such that the conservation
of flow property is satisfied at each node. Hence, the set of collections T is equal
to the set of all feasible flows.

The usage (loss) λ(T, e) is defined to be the amount of goods T (e) that flow
T assigns to link e. This is how much the operator will lose if she uses a feasible
flow T ∈ T and link e fails.

2.2 Game-Theoretic Measure of Robustness

Given the communication model and the topology of the network, a two-player
game is defined between the network operator and a strategic attacker. The net-
work operator wants to guarantee “some” connectivity by choosing a feasible
collection of links in the network (i.e., her strategy space is the set T of feasible
collections). The type of connectivity and the set of feasible collections are de-
fined by the communication model, as previously discussed. At the same time,
a strategic and malicious adversary is trying to disrupt the communication by
attacking a link (i.e., her strategy space is the set E of links in the network).
We assume that to successfully attack a link e, the adversary has to spend some
effort which is quantified by μe. The players’ payoffs are defined as follows: when
the operator picks collection T and the attacker targets link e, the operator loses
λ(T, e) (as defined above), and the attacker gets a net reward of λ(T, e) − μe.
The attacker also has the option not to launch an attack, which results in zero
loss for the operator and zero gain for the attacker.

We consider mixed strategy Nash equilibria, where the network operator
chooses a distribution (denoted by α) over the set T , and the attacker chooses
a distribution (denoted by β) over the set E or the option of not attacking. We
assume that the operator tries to minimize her expected loss, while the attacker
tries to maximize her expected net reward. Formally, the operator chooses α to
minimize L(α,β) defined as

L(α,β) =
∑
T∈T

∑
e∈E

αTβeλ(T, e) , (1)

while the attacker chooses β to maximize R(α,β) defined as

R(α,β) = L(α,β)−
∑
e∈E

βeμe (2)

or not attacking if the maximum is negative.
Since the attacker has the option not to attack and get a payoff of zero, it is

not hard to show that there does not exist an equilibrium in which the attacker
receives a negative expected payoff. We let θ∗ be the attacker’s equilibrium pay-
off, which has been shown [13] to be the same in all equilibria. As a consequence,
θ∗ is uniquely defined. The next subsection gives a characterization of θ∗ using
the theory of blocking pairs of polyhedra.
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2.3 Equilibrium Characterization Based on Blocking Pairs of
Polyhedra

Here, we recall the notions of polyhedra and blockers, and discuss how they can
be used to characterize the Nash equilibria of the game (see [13, Chap. 4] for
more details).

Let Λ be the operator’s payoff matrix, whose rows are (λT , T ∈ T ), where

the entries of the vector λT ∈ R
|E|
≥0 are given by λ(T, e), e ∈ E. We define its

associated polyhedron PΛ as the vector sum of the convex hull of the row vectors
(λT , T ∈ T ) and the nonnegative orthant. This polyhedron can be represented
as

PΛ =
{
x ∈ R

|E|
≥0

∣∣∣ ∃α ∈ R
|T |
≥0

(
Λ′α ≤ x ∧ α′1 ≥ 1

)}
. (3)

The blocker of PΛ is the polyhedron defined as

bl(PΛ) :=
{
y ∈ R

|E|
≥0

∣∣∣ y′x ≥ 1 ∀x ∈ PΛ

}
. (4)

For each vertex ω = (ωe, e ∈ E) of the blocker, define the quantity

θ(ω) :=
1∑

e∈E ωe

(
1−

∑
e∈E

ωeμe

)
. (5)

A vertex of the blocker is called critical if it maximizes the quantity θ(ω), i.e.,
θ(ω) = maxω̃ θ(ω̃). Finally, let θ̃ denote the maximum quantity.

In [13], it has been shown that every Nash equilibrium strategy for the attacker
is a critical vertex or a convex combination of critical vertices, and that the
attacker’s equilibrium payoff is θ∗ = max(0, θ̃). As a consequence, if this blocker
can be “efficiently” characterized, then an efficient algorithm can be derived to
solve the maximization problem and, hence, the game.

2.4 Vulnerability/Robustness Metric

In the analysis of the general NBG [13, Chap. 4], it has been shown that θ∗ is
a property of (i.e., solely determined by) the topology of the network, the com-
munication model, and the attack costs μ. Furthermore, this unique equilibrium
payoff reflects both the network operator’s expected loss due to attack as well
as the attacker’s willingness to attack. For a given μ, a low θ∗ indicates that
operating the network has low expected loss due to attack, that is, the network
is robust against attacks. If, on the other hand, θ∗ is high, then the expected
loss is also high, and the network can be considered vulnerable. As such, θ∗ has
been proposed [7] as a measure of network topology vulnerability (i.e., inverse
robustness) in an adversarial environment. Another property of θ∗ is that, when
μ = 0 (the case of the most powerful attacker), it can be related to well-known
graph-theory notions. For instance, in the All-to-One model, θ∗ was shown to
be the inverse of the persistence of the graph of the network [10], a metric that
has previously been proposed in [14] to quantify graph robustness (although in a
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non-game theoretic framework). In the All-to-All model with constant loss [7], θ∗

can be related the spanning tree packing number of the graph [15]. In the All-to-
All model with linear loss [9], θ∗ is closely bounded by the Cheeger constant [16]
(also called the edge-expansion) of the graph. In the Supply-Demand model [6],
the metric is equal to the maximum average flow traversing an edge-cut, where
the average is obtained by dividing the total flow by the size of the edge-cut.

As a metric for robustness, understanding the computational complexity of
calculating θ∗ is of primal importance. In the next section, we discuss the com-
plexity of computing a Nash equilibrium in the unconstrained NBG model.

3 Computational Complexity of the Unconstrained Game

In this section, we show that solving a NBG is NP-hard in general. Recall that
computing a Nash equilibrium in general two-player games has been shown to
be PPAD-complete. Zero-sum, two-player games, on the other hand, can be cast
as linear programs and, hence, can be solved in polynomial time using linear
programming tools. In all these cases, the input of the computational problem
is assumed to be the payoff matrix. For NBG models however, only an implicit
description of the payoff matrix is available. In addition, the payoff matrix is
potentially exponential in size, which makes NBG models even more challenging
to deal with. The following theorem shows that, indeed, computing a NE for a
general blocking game is NP-hard. We prove this by reducing a well-known NP-
hard problem, the Knapsack Problem (KP), to the problem of computing the
attacker’s equilibrium payoff, which we formalize as the Equilibrium Problem
(EP). The KP and the EP are formally defined as follows.

Definition 1 (Knapsack Problem [KP]). Given N items, where item i has
weight ci and value vi, a capacity C, and a value V , is there a subset S whose
sum weight is at most C, i.e.,

∑
i∈S ci ≤ C, and whose sum value is at least V ,

i.e.,
∑

i∈S vi ≥ V ?

Definition 2 (Equilibrium Problem [EP]). Given a set of elements E, a
polynomial-time function IT∈T for testing T ∈ T , a polynomial-time function

λ(T, e), a vector of attack costs μ ∈ R
|E|
≥0 , and a payoff value p, is the adversary’s

equilibrium payoff less than or equal to p?

The above formulation of EP allows us to easily show the computational com-
plexity of all the problems relevant to NBGs. First, if the adversary’s equilibrium
payoff can be efficiently computed, then EP can also be solved efficiently. Con-
versely, if EP is NP-hard, then computing the adversary’s equilibrium payoff is
also necessarily NP-hard. Second, for similar reasons, we also have that comput-
ing the equilibrium strategies of the game is also at least as hard as EP.

The following theorem shows that EP is NP-hard.

Theorem 1. The Knapsack Problem is polynomial-time reducible to the
Equilibrium Problem.
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The proof of the theorem can be found in Appendix A.
Thus, solving a NBG is NP-hard in general. Interestingly, however, efficient

algorithms have been derived to compute a NE for the models discussed in
Subsection 2.1. In the following sections, we introduce a budget constraint and
revisit the complexity of computing a NE of the constrained game in those
models.

4 Budget Contraints

In the unconstrained NBG model, the operator is only interested in minimizing
her expected loss due to attacks, without taking her operating costs into account.
In practice, however, network operators also have to take economic goals and
constraints into consideration when choosing their strategies. These economic
decisions are affected by the topology of the network as links and, hence, feasible
collections of links can have varying usage costs.

4.1 Unit Usage / Protection Cost

In [6], a (per unit) usage cost model was introduced and discussed for the partic-
ular case of the S-D communication model. Here, we extend this cost model to
the general NBG. Recall that λ(T, e) quantifies the usage (loss) associated with
collection T and link e. We assume that each link e has some unit usage cost
we, so that using the link costs weλ(T, e) to the operator. With this definition,
the total cost of using a collection T is

w(T ) :=
∑
e∈E

λ(T, e)we ; (6)

and the network operator’s expected usage cost of a mixed strategy α is

w(α) :=
∑
T∈T

αTw(T ) =
∑
e∈E

we

∑
T∈T

αTλ(T, e) . (7)

We assume that, to run the network, the operator has a fixed budget b ∈ R≥0

to spend. Therefore, her objective is to minimize the expected loss (see Equation
(1)) by choosing an optimal strategy that satisfies her budget constraint. This
budget constraint can be formulated in multiple ways. In the following sections,
we introduce and study two straightforward formulations, the maximum and the
expected (or average) cost budget constraints.

4.2 Maximum Cost Budget Constraint

In the first budget constraint formulation, which we refer to as the maximum
cost constraint (MCC), we require that for a given budget b, the operator only
uses collections whose total costs (see Equation (6)) are less than or equal to b.
Formally, the pure strategy set of the operator is restricted to

T (b) = {T ∈ T | w(T ) ≤ b} . (8)
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The maximum cost constraint is best-suited for budget limits that are deter-
mined by the amount of preallocated resources available. In this case, the cost
of a link can be the amount of resources needed (e.g., energy consumption) to
operate the link and the budget limit can be the amount of resources available
(e.g., amount of power available).

4.3 Expected Cost Budget Constraint

The maximum cost constraint misses to capture certain situations. For instance,
when the amount of allocated resources can be modified during operation, e.g.,
resources can be leased, the budget limit should apply to the average or, equiv-
alently, the expected cost of a strategy during continuous periods of operation.
Thus, in our second budget constraint formulation, which we will refer to as the
expected cost constraint (ECC), we only require the expected (or average) cost
of the operator to not exceed the budget limit.

Under the expected cost constraint with a budget limit b, the operator can
employ a mixed strategy only if its expected cost (see Equation (7)) is less than
or equal to b. Formally, the set of mixed strategies available to the operator is

A(b) =
{
α ∈ R|T |

∣∣∣w(α) ≤ b
}

. (9)

Note that the above formulation generalizes the classic notion of mixed strate-
gies in game-theory, where the set of mixed strategies is always the set of all
distributions over the set of pure strategies. Here, a mixed strategy is chosen
from a predefined subset of distributions.

4.4 Constrained Game

Having defined the set of available strategies (pure for MCC and mixed for ECC),
we can now setup the constrained game in a similar way to the unconstrained
game presented in Subsection 2.2. We are interested in mixed strategy Nash
equilibria, where the operator picks a distribution α over T (b) (for MCC) or
from the set A(b) (for ECC), while the attacker chooses a distribution β over the
set of links. The attacker’s Nash equilibrium payoff is denoted θ∗(b) for a game
with budget limit b.

Using the same interpretation as in Subsection 2.2, the attacker’s NE payoff
θ∗(b) can be used to quantify the vulnerability (i.e., inverse robustness) of the
network when the operator’s budget is b. By varying b, one can draw the Pareto
frontier between the region of achievable vulnerability/budget points and the
region of unachievable ones, as was done in [6] for the particular case of S-D
networks with the maximum cost constraint.

Remark. In the next two sections, we discuss the complexity of solving the
constrained blocking game. However, since the unconstrained NBG is in general
NP-hard (see Theorem 1), we readily have that solving a NBG under a budget
constraint4 is also NP-hard in general. Therefore, we focus our discussion on

4 The unconstrained game is the special case of b → ∞.
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the communication models introduced in Subsection 2.1, for which there exist
efficient algorithms to compute the NE payoff in the unconstrained game.

5 NP-Hardness of the Maximum Cost Constraint

In this section, we show that computing the equilibrium payoff of the network
blocking game with a maximum cost budget constraint is NP-hard for the mod-
els that were previously shown to be efficiently computable without a budget
constraint.

Theorem 2. Computing the NE payoff with a maximum cost budget constraint
is NP-hard for the (a) S-D communication model, the (b) All-to-All communi-
cation model, and the (c) All-to-One communication model.

Proof. We show NP-hardness by reducing a well-known NP-hard problem, the
Partition Problem (PP) [17], to the problem of deciding whether the equilibrium
payoff in a given network model with a maximum cost constraint is at most a
certain value. We refer to the latter problem as the Equilibrium Problem with
Maximum Cost Constraint (EPMAX).

Definition 3 (Partition Problem [PP]). Given a multiset of positive integers
{x1, . . . , xn}, is there a partitioning of the multiset into two disjoint subsets A
and B such that

∑
x∈A x =

∑
x∈B x ?

Definition 4 (Equilibrium Problem with Maximum Cost Constraint
[EPMAX]). Given a communication model, a network G, a budget limit b, and
a payoff value p, is the adversary’s equilibrium payoff less than or equal to p?

For each communication model, we show how an instance of EPMAX (i.e., a
network, a budget limit and a payoff value) can be constructed in polynomial
time from an instance of PP. Since the proof techniques follow the same lines for
all models, we only give a full proof for the S-D model. For the All-to-All model,
we describe the main points of the proof in Appendix B without providing the
details. For the All-to-One model, the proof can be found in [12].

To simplify the notations in our proofs, we also define the expected loss of an
edge e ∈ E in a given operator strategy α as

L(e) =
∑
T∈T

αTλ(T, e) . (10)

Proof of Theorem 2 for the S-D Communication Model

Given an instance of PP, we build an instance of EPMAX as follows.
– Let the topology of the network be the following (see Figure 1): There is one

source node, denoted by s, one sink node, denoted by d, and 3n − 1 other
nodes, which are denoted by 1a, 1b, 1, 2a, 2b, 2, . . ., na, and nb.
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Fig. 1. Illustration for the proof of Theorem 2 for the S-D model. Numbers along the
edges indicate unit costs.

Node s is connected to nodes 1a and 1b with edges having unit costs of x1

and 0, respectively. Nodes ia and ib, i < n, are connected to node i with
edges having zero unit cost. Node i is connected to nodes (i+1)a and (i+1)b
with edges having unit costs of xi+1 and 0, respectively. Finally, nodes na

and nb are connected to node d with edges having zero unit cost.
– Let the capacity of the links and the amount of goods to be moved from s

to d be 1.
– Let the operator’s budget be b = 1

2

∑n
i=1 xi.

– Let the equilibrium payoff value be p = 1
2 .

We claim that the equilibrium payoff in the above network is greater than p
iff PP does not have a solution.

First, we assume that the set can be partitioned into two subsets A and B
of equal sum, that is, PP has a solution. In this case, we have to show that
the equilibrium payoff is at most 1

2 . First, notice that since the total amount of
goods to be moved from s to d is 1, the set of feasible integer flows is equal to
the set of s-d paths as the amount of flow on each edge is either 0 or 1. Now,
we show that there exist two disjoint paths (or flows) that satisfy the budget
constraint. The first path (i.e., set of links with positive flow values) consists
of the edges (i − 1, ia) and (ia, i) for each xi ∈ A and (i − 1, ib) and (ib, i) for
each xi �∈ A. The second path consists of the remaining edges. In other words,
the first flow takes the “path above” whenever xi ∈ A and the “path below”
whenever xi �∈ A, while the second flow does the contrary. It is easy to see that
the cost of both flows is

∑
xi∈A xi =

∑
xi∈B xi =

1
2

∑
i xi; thus, they satisfy the

maximum budget constraint. By assigning 1
2 probability to each flow, we obtain

an operator strategy in which the expected loss of every edge is at most 1
2 . If

the operator employs this strategy, the payoff of every pure and, consequently,
every mixed adversarial strategy is at most 1

2 . Therefore, the equilibrium payoff
has to be at most 1

2 .
Second, we assume that the set cannot be partitioned into two subsets of

equal sum, that is, PP does not have a solution. If the equilibrium payoff of the
game were at most 1

2 , then there would exist an operator strategy α in which
the expected loss of every edge is at most 1

2 . We show that no such strategy can
exist.

Because of the maximum cost budget constraint, the cost of every pure strat-
egy is less than or equal to b = 1

2

∑
i xi. Moreover, this inequality is strict as every

pure strategy is an s-d path and, if its cost is equal to b, there must exist a subset
of links I � {1, 2, . . . , n} such that

∑
i∈I xi = b. By letting A = {xi | i ∈ I} and

B = {xi | i /∈ I} we get a solution for PP, which would contradict the assump-
tion that the set cannot be partitioned. Thus, the cost of every pure strategy
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is strictly less than b and, as a consequence, the expected cost of every mixed
strategy is also strictly less than b; formally,

∑
e∈E

L(e)we < b =
1

2

n∑
i=1

xi =
∑
e∈E

1

2
we . (11)

Now, recall that the expected loss L(e) of an edge e in the S-D model is equal to
the expected amount of flow on that edge. Since the total amount of goods to be
moved is equal to 1 and since each pair of “above” and “below” edges (e.g., ea and
eb) is an s-d cut, the sum of the flows on any pair of “above” and “below” edges
is at least 1. Thus, for every pair of edges ea and eb, L(ea) +L(eb) ≥ 1 = 1

2 +
1
2 .

Combined with our initial assumption that the expected loss of each edge is at
most 1

2 , we have that

∀e ∈ E : L(e) =
1

2
(12)

and ∑
e∈E

L(e)we =
∑
e∈E

1

2
we . (13)

But this leads to a contradiction with Equation 11, showing that if PP does not
have a solution, then the equilibrium payoff is greater than 1

2 , which concludes
our proof. 
�

6 Efficient Algorithms for the Expected Cost Constraint

In this section, we show how the expected cost constrained game can be solved
efficiently for the models introduced in Subsection 2.1. In Subsection 2.3, we gave
a derivation of the attacker’s Nash equilibrium payoff in the unconstrained game
model using the theory of blocking pairs of polyhedra. In this section, we use
a similar derivation to show how polynomial-time algorithms can be derived to
solve the game with the expected cost constraint. The same detailed analytical
steps presented in [13, Chap. 4] (for the unconstrained game) can be followed to
show the same results for the constrained game. In this case, the definition of the
polyhedron PΛ in Equation (3) includes an additional linear inequality (given by
Equation (9)) that corresponds the budget constraint. Since the expected cost
w(α) in Equation (9) can also be formulated as w(α) = w′Λ′α, the constrained
polyhedron can be written as

PΛ :=
{
x ∈ R

|E|
≥0

∣∣∣ ∃α ∈ R
|T |
≥0

(
Λ′α ≤ x ∧ α′1 ≥ 1 ∧ w′Λ′α ≤ b

)}
. (14)

Notice that the definition of PΛ above involves the matrix Λ, which is generally
exponential in size. As a consequence, this definition of PΛ cannot be directly
used to efficiently solve the game.

To derive a polynomial-time solution for the ECC model, we first characterize
the blocker bl(PΛ) of PΛ using a set of linear equations whose cardinality is poly-
nomial in the size of the network. We do so by showing that if a polynomial-size
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characterization exists for the unconstrained polyhedron, then there also exists
one for the blocker of the constrained game. We then show how one can use
linear programming tools to efficiently compute the equilibrium payoff based on
a polynomial-size characterization of the blocker. Finally, we provide a charac-
terization for each of the models discussed in Section 2.1.

Let the polynomial-size linear characterization of the polyhedron PΛ be

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d)} (15)

for the unconstrained game, where f ∈ Rk
≥0 is a vector of polynomial length

(i.e., k is a polynomial function of the network size), S is a mapping to the
mixed strategy space, and C, d are linear constraints. Then, the expected cost
constrained polyhedron is characterized by

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} . (16)

The following theorem gives a polynomial-size characterization of the blocker
in the expected cost constrained game.

Theorem 3. The blocker of the polyhedron defined as

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} (17)

is

bl(PΛ) =
{
y | ∃K, g,h

(
g ≤ y ∧C ′h ≤ S′wK + S′g ∧ d′h− bK ≥ 1

)}
, (18)

where K ∈ R≥0, g ∈ R
|E|
≥0 , and h ∈ Rl

≥0 (l is the length d).

Proof. We prove Equation (18) in two steps:

– RHS of Equation (18) ⊆ bl(PΛ): We have to show that, for any ỹ that
satisfies the constraints of the RHS with some g̃, h̃ and K̃, it holds that
ỹ′x ≥ 1 for every x ∈ PΛ. We can formulate this as a linear programming
problem as follows:

Minimize ỹ′x (19)

subject to

w′Sf ≤ b (20)

Sf ≤ x (21)

Cf ≥ d , (22)

where f ∈ Rk
≥0.

Observe that the constraints of the above LP correspond to the characteriza-
tion of PΛ; consequently, the above linear program’s set of feasible solutions
projected to x is PΛ. Thus, we have to show that the value of the above
linear program is at least 1. To see this, consider the dual linear program:

Maximize d′h− bK (23)
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subject to

g ≤ ỹ (24)

C ′h ≤ S′wK + S′g , (25)

where K ∈ R≥0, g ∈ R
|E|
≥0 , and h ∈ Rl

≥0.

Since ỹ satisfies the constraints of the RHS of Equation (18) with K̃, g̃, h̃,
we have that (K̃, g̃, h̃) is a feasible solution. Furthermore, we also have that
the objective function for this solution is at least 1. Thus, the value of the
linear program has to be at least 1.

– bl(PΛ) ⊆ RHS of Equation (18): We have to show that every ỹ ∈ bl(PΛ)
satisfies the constraints of the RHS. To see this, first consider the linear
program from the first part of the proof. Since ỹ blocks every x ∈ PΛ, we
have that the value of the linear program is at least 1. Now, consider an
optimal solution K̃, g̃, h̃ of the dual linear program. Since the value of the
linear program is at least 1, we have that 1 ≤ d′h̃ − bK̃. We also have
g̃ ≤ ỹ and C′h̃ ≤ S′wK̃ + S′g̃ from the constraints. Thus, ỹ satisfies the
constraints of the RHS of Equation (18) with K̃, g̃, h̃. 
�

Recall that our goal is to compute θ∗ = max{θ̃, 0} in polynomial time. The
most straightforward solution is to formulate this as an optimization problem
subject to the set of linear constraints given by the above characterization. Un-
fortunately, the objective function θ cannot be expressed as a linear function
because of the division with 1′y. Thus, to formulate the problem as a linear
program, we introduce a variable φ which measures 1

1′y and scale the original
variables. The resulting linear program is

Maximize φ− μ′β (26)

subject to

1′β = 1 (27)

g ≤ β (28)

C′h ≤ S′wK + S′g (29)

d′h− bK ≥ φ , (30)

where K,φ ∈ R≥0, β, g ∈ R
|E|
≥0 , and h ∈ Rl

≥0.

All-to-All Communication Model. In [9], it was shown that the mixed strat-
egy space of the operator in the All-to-All model be characterized using multi-
commodity flows. In this characterization, there exists a commodity for each
node. For each commodity, the corresponding node is a sink, while all the other
nodes are a sources with a uniform supply. It was shown that, if the total amount
of flow transported is at least 1, the vector representing the sum flows on each
edge is an element of the polyhedron, and vice versa.
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This can formulated as a set of linear constraints with |V |+ |V | · |E| variables
(the uniform supply value for each commodity and the flow along each edge for
each commodity) and |V | · |V |+1 constraints (flow conservation at each node for
each commodity and the constraint on the total amount of flow transported).
Then, by applying Theorem 3, we have a polynomial-size characterization of the
constrained blocker:

bl(PΛ) =

{
y ∈R|E|

≥0

∣∣∣∣ ∃π : V × V  → R≥0,K ∈ R≥0

(
∀r ∈ V :

∑
v∈V

πr(v)− bK ≥ 1 ∧

∀r ∈ V, e = (u, v) ∈ E : |πr(u)− πr(v)| ≤ ye +weK

)}
, (31)

where πr(r) ≡ 0 by definition to simplify the notation.

S-D Communication Model. Based on [6], we can characterize the polyhe-
dron for the S-D model using network flows. Then, from Theorem 3, we have
that the constrained blocker has the following polynomial-size characterization:

bl(PΛ) =

{
y ∈ R

|E|
≥0

∣∣∣∣ ∃π : V \ {r}  → R,K ∈ R≥0

(
∑
v∈V

π(v)(s(v) − d(v))− bK ≥ 1 ∧

∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye +weK

)}
. (32)

All-to-One Communication Model. In [10], it was shown that the mixed
strategy space of the operator in the All-to-One model can be characterized using
special multi-source flows. By combining this result with Theorem 3, we can show
that the constrained blocker has the following polynomial-size characterization:

bl(PΛ) =

{
y ∈ R

|E|
≥0

∣∣∣∣ ∃π : V \ {r}  → R≥0,K ∈ R≥0

(
∑
v∈V

π(v) − bK ≥ 1 ∧

∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye +weK

)}
, (33)

where π(r) ≡ 0 by definition to simplify the notation.
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Fig. 2. All-to-All network
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Fig. 3. Vulnerability/budget tradeoff

7 Application Example: Vulnerability/Budget Tradeoff

As it was mentioned earlier, by varying the budget limit b, one can draw the
Pareto frontier between the region of achievable vulnerability/budget points and
the region of unachievable ones. Here, we illustrate this using the All-to-All
communication model on the topology depicted in Figure 2. The link costswe are
randomly chosen between 0 and 0.6, which makes the average cost of a spanning
tree equal to 2.1. For each value of b, a game is played with the defender’s
strategy set given by Equation (8) for the maximum cost constraint (MCC)
and by Equation (9) for the expected (or average) cost constraint (ECC). In all
games, the attacker’s strategy set is the set of all links and the cost of attack is
μ = 0. Figure 3 shows the vulnerability θ∗(b) as a function of the budget b for
both the MCC and the ECC. Observe that the two curves are very close to each
other, but vulnerability for the MCC is always at least as high as for the ECC.

8 Conclusions and Future Work

In this paper, we have generalized network blocking games by introducing budget
constraints on the operator. This generalization allows the application of network
blocking games in scenarios where the budget of the network operator is limited.
We have studied two budget constraint formulations: the maximum cost and the
expected (or average) cost constraints.

Network blocking games are used to quantify the robustness of topologies in
the presence of a strategic adversary, and the equilibrium payoffs of the games
are used as such quantifications. As the greatest challenge to computing the equi-
librium in practice is the exponential size of the implicitly given payoff matrix,
we have focused our work on computational complexity: we have shown that the
maximum cost formulation leads to NP-hard problems, and proposed efficient
solutions for the expected cost formulation.

Proving that the maximum cost formulation leads to NP-hard problems was a
very important first step. Since we now know that no polynomial-time algorithm
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can solve the game under the MCC (for the discussed models), an interesting
future work is finding polynomial-time approximation algorithms or efficient
heuristics. Another interesting future direction is the study of the cost-security
tradeoff problem, where the operator has to maximize security and minimize
budget at the same time.

Acknowledgement. This paper has been supported by HSN Lab, Bu-
dapest University of Technology and Economics 5, NIST-ARRA Program award
70NANB10H026, and NIST grant award 70NANB13H012, through the Univ. of
Maryland, College Park.

A Proof of Theorem 1

Proof. Given an instance (c,v, C, V ) of the Knapsack Problem, we construct an
instance (E, IT∈T ,λ(T, e), p) of the Equilibrium Problem as follows:
– Let E = {1, . . . , N},

– IT∈T =

{
true if

∑
i∈T ci ≤ C

false otherwise,

– λ(T, e) = 1∑
i∈T vi

,

– μ = 0,
– p = 1

V .
Observe that we define λ(T, e) such that its value does not depend on e. Conse-
quently, the payoff of the game does not depend on the adversary’s strategy, it
only depends on the operator’s strategy. To simplify our proof, we will let λ(T )
denote λ(T, e) for any e.

It is easy to see that both IT∈T and λ(T ) can be computed in polynomial
time as they only require summing over a given set (and comparing the sum
with a constant or computing a reciprocal). Furthermore, every step of the re-
duction can be carried out in time and space that is polynomial in the size of
the Knapsack Problem instance.

We claim that there exists a subset S ⊆ {1, . . . , N} whose sum weight is
at most W and whose sum value is at least V if and only if the adversary’s
equilibrium payoff is less than or equal to p (since μ = 0).

First, assume that there exists a subset S satisfying the constraints of the
Knapsack Problem. Then, consider the operator strategy α∗

S = 1 (i.e., the strat-
egy that uses only subset S). If the operator uses this strategy, her loss is

λ(S) =
1∑

i∈S vi
=

1

V
= p . (34)

Therefore, the operator’s equilibrium loss and, hence, the adversary’s equilibrium
payoff is at most p.

5 http://www.hsnlab.hu

http://www.hsnlab.hu
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Second, assume that there does not exist a subset satisfying the constraints
of the Knapsack Problem. This implies that, for every T ∈ T ,

λ(T ) =
1∑

i∈T vi
>

1

V
= p . (35)

Consequently, the expected loss for any operator strategy α∗ is∑
T∈T

α∗
T λ(T )︸ ︷︷ ︸

>p

> p . (36)

Thus, the adversary’s equilibrium payoff has to be greater than p. 
�

B Proof of Theorem 2 for the All-to-All model
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Fig. 4. Illustration for the proof of Theorem 2 for the All-to-All model.

For the All-to-All communication model, we construct an instance of EPMAX
from an instance of PP as follows:
– Let the network topology be the following (see Figure 4): There is a large

clique that consists of 2n nodes, and there are n “outer” nodes, to which we
refer as node 1, node 2, . . ., node n. Each node i, i = 1, . . . , n, is connected
to two distinct nodes of the clique with edges having unit costs of xi and 0,
such that every node in the clique is connected to exactly one outer node.
Finally, edges between two nodes in the clique have zero unit cost.

– Let the operator’s budget be b = 1
2

∑n
i=1 xi.

– Let the equilibrium payoff value be p = 1
2 .

We claim that the equilibrium payoff in the above network is greater than 1
2 iff

PP does not have a solution.
As in the previous proof, we first assume that PP has a solution (A,B) and

use it to derive an operator strategy in which the expected loss of every edge is
at most 1

2 . According to this strategy, the operator chooses a spanning tree as
follows. First, she chooses either A or B with equal probability ( 12 ,

1
2 ). Second,

she connects each outer node i to the clique with exactly one edge: if xi belongs
to the chosen set, she uses the edge that has cost xi; otherwise, she uses the
other edge. Third, she completes the spanning tree by choosing a star subgraph
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of the clique uniformly at random. We show that the expected loss of every link
is at most 1

2 : First, each outer edge e is used with probability 1
2 and its removal

cuts off at most 1 node; thus, L(e) ≤ 1
2 . Second, each link e inside the clique is

used with probability 1
n and its removal cuts off at most 2 nodes; thus, L(e) ≤ 2

n .
Next, we assume that PP does not have a solution and use the same argument

as before to show that the cost of every pure strategy and, hence, the expected
cost of every mixed strategy is strictly less than b, i.e.,∑

e∈Eouter

weL(e) < b =
1

2

∑
i

xi =
∑

e∈Eouter

1

2
we , (37)

where Eouter is the set of outer links. Now, consider an arbitrary pair of edges ea
and eb that connect an outer node to the clique. It can be shown that L(ea) +
L(eb) ≥ 1. If there were an operator strategy in which the expected loss of every
edge is at most 1

2 , then it would follow that ∀e ∈ Eouter : L(e) = 1
2 . This would

lead to a contradiction with Equation 37; thus, no such strategy can exist. 
�

References

1. Holme, P., Kim, B., Yoon, C., Han, S.: Attack vulnerability of complex networks.
Physical Review E 65(5), 056109 (2002)

2. Schneider, C., Moreira, A., Andrade Jr., J., Havlin, S., Herrmann, H.: Mitiga-
tion of malicious attacks on networks. Proceedings of the National Academy of
Sciences 108(10), 3838–3841 (2011)

3. Grubesic, T., Matisziw, T., Murray, A., Snediker, D.: Comparative approaches
for assessing network vulnerability. International Regional Science Review 31(1),
88–112 (2008)

4. Estrada, E.: Network robustness to targeted attacks. the interplay of expansibility
and degree distribution. Eur. Phys. Journal B 52(4), 563–574 (2006)
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Covert Attacks as a Timing Game
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Abstract. We consider a strategic game in which a defender wants to
maintain control over a resource that is subject to both targeted and non-
targeted covert attacks. Because the attacks are covert, the defender must
choose to secure the resource in real time without knowing who controls
it. Each move by the defender to secure the resource has a one-time cost
and these defending moves are not covert, so that a targeted attacker may
time her attacks based on the defender’s moves. The time between when
a targeted attack starts and when it succeeds is given by an exponentially
distributed random variable with a known rate. Non-targeted attackers
are modeled together as a single attacker whose attacks arrive following a
Poisson process. We find that in this regime, the optimal moving strategy
for the defender is a periodic strategy, so that the time intervals between
consecutive moves are constant.

Keywords: Game Theory, Computer Security, Games of Timing, Covert
Compromise, Targeted Attacks, Non-Targeted Attacks.

1 Introduction

A growing trend in computer security is the prevalence of continuous covert at-
tacks on networked resources. In contrast to one-time attacks with immediate
benefit, such as initiating a wire transfer from a compromised bank account, a
covert attack seeks to maintain control of a resource while keeping the compro-
mise a secret. This type of attack is ubiquitous in the formation of botnets, as
individual computer owners rarely know that their computer is a botnet member.
Routers that are used to conduct man-in-the-middle attacks are also typically
covertly compromised; and when web servers are used to compromise client’s
computers, the initial infection is typically covert.

In light of the prevalence of covert attacks, it behooves the user to consider
what mitigation strategies can be taken to minimize the losses resulting from
such attacks. Mitigation strategies include resetting passwords, changing private
keys, re-installing servers, or re-instantiating virtual servers. Such strategies have
notable characteristics in that they are often effective at securing the resource,

S.K. Das, C. Nita-Rotaru, andM.Kantarcioglu (Eds.): GameSec 2013, LNCS 8252, pp. 175–191, 2013.
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but they reveal little about past attacks or compromises. For example, if a server
is re-installed, knowledge of when the server was compromised may be lost. Sim-
ilarly, resetting a password does not reveal any information about the integrity
of the previous password.

A second dimension of the attack space is the extent to which an attack is
targeted or customized for a particular user [4,2]. DoS attacks and incidents
of cyber-espionage are examples of targeted attacks. Typical examples of non-
targeted attacks include spam and phishing. The dichotomy between targeted
and non-targeted attacks is explained by Cormac Herley as a consequence of eco-
nomic considerations of the attacker [4]. In that framework, an outsized number
of users are both susceptible to and subject to scalable attacks which compro-
mise their computer systems, but most are never targeted simply because they
cannot be distinguished from low value targets. See Table 1 for a comparison
between targeted and non-targeted attacks.

Table 1. Comparison of Targeted and Non-Targeted Attacks

Targeted Non-Targeted

Number of attackers low high

Number of targets low high

Effort required for each attack high low

Success probability of each attack high low

Whether or not an attack is targeted is also important for the defender, be-
cause targeted and non-targeted attacks do different types of damage. For exam-
ple, targeted attackers might read all of an organization’s secret e-mails, causing
economic damages of one type, while a non-targeted attacker might use the same
compromised machine to send out spam, causing reputation loss, or machine
blacklisting, or another separate type of damage. This dichotomy suggests that
damages resulting from targeted and non-targeted attacks should be modeled
additively.

The presence of both targeted and non-targeted covert attacks presents an
interesting dilemma for a common user to choose a mitigation strategy against
covert attacks. Strategies which are optimal against non-targeted covert attacks
may not be the best choice against targeted attacks. At the same time, mitigation
strategies against targeted attacks may not be economically cost-effective against
only non-targeted attackers.

This paper fills the research gap induced by the aforementioned dichotomy, by
considering the strategy spaces of users who may be subject to both targeted and
non-targeted attacks. In our game, a defender must vie for a contested resource
that is subject to the risk of compromise from both targeted and non-targeted
covert attacks. We explore the strategy space to find good mitigation strategies
against this combination.
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2 Related Work

2.1 Games of Timing

Cybersecurity economics has been concerned with how to reduce the impact of
the actions of financially or politically motivated adversaries who threaten com-
puting resources and their users. Previous research in this domain has primarily
focused on the choice between different canonical actions to prevent, deter or
otherwise mitigate harm (e.g., [3,5,6]).

However, being successful in dynamic environments shifts the focus from se-
lecting the most suitable option from a pool of alternatives to a decision problem
of when to act to get an advantage over an opponent. For example, in tactical
security scenarios it is important to jump to action at the right time to avoid
a loss of money or even human life (see, for example, timing of interventions in
international conflicts). To understand these scenarios, so-called games of timing
have been studied with the tools of non-cooperative game theory since the cold
war era (see, for example, [11,14]). For a detailed survey and summary of the
theoretical contributions in this area, we refer the interested reader to [10].

2.2 FlipIt: Modeling Targeted Attacks

In response to recent high-profile stealthy attacks, researchers at RSA proposed
the FlipItmodel [13] to study such scenarios. In the originalmodel, there are two
players, a defender and an attacker, and a resource that they are both interested
in maintaining control of. For each unit of time that a player is controlling the
resource, she gains a fixed amount of benefit. Conversely, when a player is not in
control, she gains no benefit from the resource. At any time instance, either player
may “flip” the resource to gain control of it for some cost. Flipping while in control
does not give the opponent control of the resource, therefore the players have to
be careful not to make too many unnecessary flips to keep their costs low. This
game can model, for example, the case of a password-protected account. Benefit
is derived from using the account, and flipping the resource is analogous to the
defender resetting the password or the attacker compromising it.

In the original FlipIt paper, dominant strategies and equilibria are studied
for some simple cases [13]. Other researchers have worked on extensions [9,7].
For example, Laszka et al. extended the FlipIt game to the case of multiple
resources. In addition, the usefulness of the FlipIt game has been investigated
for various application scenarios [1,13].

In comparison to previous work, the FlipIt game is of interest because it com-
bines a number of important decision-making factors [8]. First, it covers aspects
of uncertainty about the game status by assuming that moves by the players
are “stealthy”. Second, the game is played in continuous time and asynchronous
fashion. Hence, ex-post the game appears to be divided in multiple periods of
uneven length. Similarly, the number of actions that can be taken by the players
is quasi-unlimited (if agents have an unrestricted budget). Third, action have a
cost. That is, players do not only value the time in which they have possession of
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the board, but they also have to balance these benefits with the cost of gaining
possession of the board.

The original FlipIt game has also been studied in an experiment with human
subjects [8]. In that paper, the experimenters matched human participants with
computerized opponents in several fast-paced rounds of the FlipIt game. The
results indicate that participant performance improves over time; but that it is
dependent on age, gender, and a number of individual difference variables. The
researchers also show that human participants generally perform better when
they have more information about the strategy of the computerized player; i.e.,
they are able to make use of such game-relevant information. This experimental
work was extended to also include different visual presentation modalities for
the available feedback during the experiment [12].

3 Model Definition

We model the covert compromise scenario as a non-zero-sum game. The player
who is the rightful owner of the resource is called the defender, while the other
players are called the attackers. The game starts at time t = 0 with the defender
in control of the resource, and it is played indefinitely as t → ∞. We assume
that time is continuous.

We let D, A, and N denote the defender, the targeted attacker, and the non-
targeted attackers respectively. At any time instance, player i may make a move,
which costs her Ci. When the defender makes a move, the resource immediately
becomes uncompromised for every attacker. When the targeted attacker makes
a move, she starts her attack, which takes some random amount of time. If
the defender makes a move while an attack is in progress, the attack fails. We
assume that the time required by the attack follows an exponential distribution.
Formally, the probability that the attack has successfully finished in a amount
of time is 1 − e−λAa, where λA is the rate parameter of the targeted attacker’s
attack time.

The attackers’ moves are stealthy; i.e., the defender does not know when the
resource got compromised or if it is compromised at all. On the other hand, the
defender’s moves are non-stealthy. In other words, the attackers learn immedi-
ately when the defender has made a move.

The cost rate for player i up to time t, denoted by ci(t), is the number of
moves per unit of time, made by player i up to time t, multiplied by the cost
per move Ci for player i.

For attacker i ∈ {A,N}, the benefit rate bi(t) up to time t is the fraction of
time up to t that the resource has been compromised by i, multiplied by Bi.
Note that if multiple attackers have compromised the resource, they all receive
benefit until the defender’s next move. For the defender D, the benefit rate bD(t)
up to time t is defined to be −

∑
i∈{A,N} bi(t) (i.e., what has been lost to the

attackers). The relation between the defender’s and attackers’ benefits implies
that the game would be zero-sum if we only considered the players’ benefits.
Because our players’ payoffs also consider move costs, our game is not zero-sum.
Player i’s payoff is defined as
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lim inf
t→∞

bi(t)− ci(t) . (1)

Table 2. List of Symbols

CD move cost for the defender

CA move cost for the targeted attacker

BA benefit received per unit of time for the targeted attacker

BN benefit received per unit of time for the non-targeted attackers

λA rate of the targeted attacker’s attack time

λN rate of the non-targeted attacks’ arrival

3.1 Types of Strategies for the Defender and the Targeted Attacker

Adaptive Strategies for Attackers. Let T (n) = {T0, T1, . . . , Tn} denote the
move times of the defender up to her nth move (or in the case of T0 = 0, the start
of the game). The attacker uses an adaptive strategy if she waits for W (T (n))
time until making a move after the defender’s nth move (or after the start of
the game), where W is a non-deterministic function. If the defender makes her
n + 1st move before the chosen wait time is up, the attacker chooses a new
wait time W (T (n + 1)), which also considers the new information that is the
defender’s n + 1st move time. This class is a simple representation of all the
rational strategies available to an attacker, since the function W depends on all
the information that the attacker has, and we don’t have any constraints on W .

Renewal Strategies. Player i uses a renewal strategy if the time intervals be-
tween consecutive moves are identically distributed independent random vari-
ables, whose distribution is given by the cumulative function FRi . Renewal
strategies are well-motivated by the fact that the defender is playing blindly;
thus, she has the same information available after each move. So it makes sense
to use a strategy which always chooses the time until her next flip according to
the same distribution Note that every renewal strategy is a special case of an
adaptive strategy.

Periodic Strategies. Player i uses a periodic strategy if the time intervals
between her consecutive moves are identical. This period is denoted by δi. Every
periodic strategy is a special case of a renewal strategy.

3.2 Non-targeted Attacks

Suppose that there areN non-targeted attackers. In practice,N is very large, but
the expected number of successful compromises is finite. AsN goes to infinity, the
probability that a given non-targeted attacker targets the defender approaches
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zero. Since the non-targeted attackers operate independently, successful non-
targeted attacks arrive following a Poisson process. Furthermore, as the economic
decisions of the non-targeted attackers depend on a very large pool of possible
targets, the defender’s effect on the decisions is negligible. Thus, the non-targeted
attackers’ strategies (that is, the attack rate) can be considered exogenously
given. We let λN denote the expected number of arrivals that occur per unit of
time; and we model all the non-targeted attackers together as a single attacker
whose benefit per unit of time is BN .

3.3 Comparison to FlipIt

Even though our game-theoretic model is in many ways similar to FlipIt, it
differs in three key assumptions. First, we assume that the defender’s moves are
not stealthy. The motivation for this is that an attacker must know whether she is
in control of a resource if she receives benefits from it continuously. For example,
if the attacker uses the compromised password of an account to regularly spy
on its e-mails, she will learn of a password reset immediately the next time she
tries to log in. Second, we assume that the targeted attacker’s moves are not
instantaneous, but take some time. The motivation for this is that an attack
requires some time and effort to be carried out in practice. Furthermore, the
time required for a successful attack may vary, which we model using a random
variable for the attack time. Third, we assume that the defender faces multiple
attackers, not only a single one.

Moreover, to the authors’ best knowledge, papers published on FlipIt so far
give analytical results only on a very restricted set of strategies. In contrast, we
completely describe our game’s equilibria and give optimal defender strategies
based on very mild assumptions, which effectively do not limit the power of
players (see the introduction of Section 4).

4 Analytical Results

In this section, we give analytical results on the game. We first consider the
special case of a targeted attacker only (i.e., λN = 0), and then the general case
of both targeted and non-targeted attackers.

We start with a discussion on the players’ strategies. First, recall that the
defender has to play blindly, which means that she has the same information
available after each one of her moves. Consequently, it makes sense for her to
choose the time until her next flip according to the same distribution each time.
In other words, a rational defender can use a renewal strategy.

Now, if the defender uses a renewal strategy, the time of her next move depends
only on the time elapsed since her last move Tn, and the times of previous moves
(including Tn) are irrelevant to the future of the game. Therefore, it is reasonable
to assume that the attacker’s response strategy to a renewal strategy also does
not depend on T0, T1, . . . , Tn. For the remainder of the paper, when the defender
plays a renewal strategy, the attacker uses a fixed probability distribution – given
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by the density function fW – over her wait times for when to begin her attack.
Note that it is clear that there always exists a best response strategy for the
attacker of this form against a renewal strategy.

Since the attacker always waits an amount of time that is chosen according
to a fixed probability distribution after the defender’s each move, the amount of
time until the resource would be successfully compromised after the defender’s
move also follows a fixed probability distribution. Let S be the random variable
measuring the time after the defender has moved until the attacker’s attack
would finish. The probability density function fS of S can be computed as

fS(s) =

∫ s

w=0

fW (w)

∫ (s−w)

a=0

λAe
−λAa da dw . (2)

We let FS denote the cumulative distribution function of S. Since λAe
−λAa > 0

for every a ∈ R≥0, if there exists an s for which FS(s) > 0, then FS is strictly
increasing on [s,∞).

4.1 Nash Equilibrium for Targeted Attacker and Renewal Defender

Defender’s Best Response. We begin our analysis with finding the defender’s
best response strategy.

Lemma 1. Suppose that the attacker uses an adaptive strategy with a fixed prob-
ability distribution for choosing the time to wait until starting the attack. Then,

– not moving is the only best response if

CD

BA
= lFS(l)−

∫ l

s=0

FS(s) ds (3)

has no solution for l;

– a periodic strategy whose period is the unique solution of Equation (3) is the
only best response otherwise.

Even though we cannot express the solution of Equation (3) in closed form, it
can be easily found using numerical methods, as the right hand side is continuous
and increasing.1 Note that the equations presented in the subsequent lemmas
and theorems of this paper can also be solved using numerical methods.

Proof. When playing a renewal strategy, the defender randomly selects the in-
tervals between her consecutive moves according to the distribution generating
the renewal strategy. In a best response, her strategy and, hence, every interval
length in the support of the strategy’s distribution has to minimize the defender’s

1 We show that the right hand side is continuous and increasing in the proof of the
lemma.
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loss per unit of time. The defender’s expected loss per unit of time for an interval
of length l is

1

l

(
BA

∫ l

s=0

fS(s)(l − s) ds+ CD

)
(4)

=
1

l

(
BA

(
[FS(s)(l − s)]

l
s=0 −

∫ l

s=0

FS(s) · (−1) ds

)
+ CD

)
(5)

=
1

l

(
BA

(
0 +

∫ l

s=0

FS(s) ds

)
+ CD

)
(6)

=
1

l

(
BA

∫ l

s=0

FS(s) ds+ CD

)
. (7)

To find the minimizing interval lengths (if there exists any), we take the
derivative of (7) and solve it for equality with 0 as follows:

0 =
d

dl

[
1

l

(
BA

∫ l

s=0

FS(s) ds+ CD

)]
(8)

0 =− 1

l2

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

1

l
BAFS(l) (9)

∫ l

s=0

FS(s) ds+
CD

BA
=lFS(l) (10)

CD

BA
=lFS(l)−

∫ l

s=0

FS(s) ds . (11)

Suppose that l∗ is the least number for which this equation is satisfied. Then
l∗ > 0, and also F (l∗) > 0. This in turn implies that FS is strictly increasing
on [l∗,∞); and thus also the right hand side of the above equation is strictly
increasing as a function of l on [l∗,∞). Therefore, if there is any solution to the
above equation, then it is unique. Furthermore, this value of l is a minimizing
value for the expected loss per unit of time as the second derivative at this
minimizing l∗ is greater than zero:

d

dl

[
− 1

l2

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

1

l
BAFS(l)

]
(12)

=
2

l3

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

(
− 1

l2

)
BAFS(l)

+

(
− 1

l2

)
BAFS(l) +

1

l
BAfS(l) (13)

=
2

l3

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

(
− 2

l2

)
BAFS(l) +

1

l
BAfS(l) . (14)



Mitigation of Targeted and Non-targeted Covert Attacks 183

We care about the value of this expression when the first derivative is zero.
Using this constraint, we obtain

2

l3

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

(
− 2

l2

)
BAFS(l) +

1

l
BAfS(l) (15)

=− 2

l

(
− 1

l2

(
BA

∫ l

s=0

FS(s) ds+ CD

)
+

1

l
BAFS(l)

)
+

1

l
BAfS(l) (16)

=− 2

l
(0) +

1

l
BAfS(l) > 0 . (17)

Consequently, the only best response is the periodic strategy with the minimizing
l∗ as the period.

On the other hand, if Equation (11) is not satisfiable for l, then the only best
response for the defender is to never move. When l → ∞, the defender’s expected
loss per unit of time approaches BA, which is equal to her loss for never moving.
When l → 0, her expected loss per unit of time goes to infinity due to the ever
increasing costs. Consequently, if the expected loss per unit of time does not
have a minimizing l, then it is always greater than BA. 
�

Attacker’s Best Response. We continue our analysis with finding the at-
tacker’s best response strategy.

Lemma 2. Against a defender who uses a periodic strategy with period δD,

– never attacking is the only best response if

CA

BA
>

e−δDλA − 1

λA
+ δD ; (18)

– attacking immediately after the defender moved is the only best response if

CA

BA
<

e−δDλA − 1

λA
+ δD ; (19)

– both not attacking and attacking immediately are best responses otherwise.

The lemma shows that the attacker should either attack immediately or not
attack at all, but she should never wait to attack. Consequently, if the attacker
uses her best response strategy, the defender can determine the optimal period
of her strategy solely based on the distribution of A, which is an exponential
distribution with parameter λA. This observation will be of key importance for
characterizing the game’s equilibria.

Proof. First, assume that the attacker does attack. Given that the attacker waits
w < δD time before making her move, the expected amount of time she has the
resource compromised until the defender’s next move is∫ δD−w

a=0

λAe
−λAa(δD − w − a)da . (20)
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It is easy to see that the maximum of this equation is attained for w = 0.
Therefore, if the attacker does attack, she attacks immediately. The expected
amount of time she has the resource compromised until the defender’s next
move is∫ δD

a=0

λAe
−λAa(δD − a)da (21)

=
[(
1− e−λAa

)
(δD − a)

]δD
a=0

−
∫ δD

a=0

(
1− e−λAa

)
(−1)da (22)

=
(
1− e−λAδD

)
(δD − δD)︸ ︷︷ ︸

0

−
(
1− e−λA0

)︸ ︷︷ ︸
0

(δD − 0) +

∫ δD

a=0

1− e−λAa da (23)

=

∫ δD

a=0

1− e−λAa da = δD −
[
−e−λAa

λA

]δD
a=0

=
e−δDλA − 1

λA
+ δD . (24)

Therefore, if the attacker does attack, her asymptotic benefit rate is

BA

e−δDλA−1
λA

+ δD

δD
, (25)

and her payoff is

BA

e−δDλA−1
λA

+ δD

δD
− CA

δD
. (26)

Thus, when the above value is less than or equal to zero, never attacking is a
best-response strategy; when the above value is greater than or equal to zero,
always attacking immediately is a best-response strategy. When the above value
is equal to zero, the attacker can decide whether to attack immediately or to not
attack at all after each move of the defender. 
�

Equilibrium. Based on the above lemmas, we can describe all the equilibria of
the game (if there are any) as follows.

Theorem 1. Suppose that the defender uses a renewal strategy and the attacker
uses an adaptive strategy. Then the game’s equilibria can be described as follows.

1. If CD

BA
= −le−λAl + 1−e−λAl

λA
does not have a solution for l, then there is a

unique equilibrium in which the defender does not move and in which the
attacker attacks exactly once at the beginning of the game.

2. If CD

BA
= −le−λAl + 1−e−λAl

λA
does have a solution δD for l, then

(a) if CA

BA
≤ e−δDλA−1

λA
+ δD, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δD, and the attacker
attacks immediately after the defender’s each move;

(b) if CA

BA
> e−δDλA−1

λA
+ δD, then there is no equilibrium.
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In the first case, the attacker is at an overwhelming advantage, as the relative
cost of defending the resource is prohibitively high. Consequently, the defender
simply “gives up” the game since any effort to gain control of the resource is not
profitable for her, and the attacker will have control of the resource all the time.
In the second case, no player is at an overwhelming advantage. Both the defender
and the attacker are actively trying to gain control of the resource, and both
succeed from time to time. In the third case, the defender is at an overwhelming
advantage. However, this does not lead to an equilibrium. If the defender moves
with a sufficiently high rate, she makes moving unprofitable for the attacker. But
if the attacker decides not to move, the defender is also better off not moving,
as this decreases her cost. However, once the defender stops moving, it is again
profitable for the attacker to move, which in turn triggers the defender to start
moving.

Proof. First, we have from Lemma 1 that in any equilibrium, the defender either
never moves or uses a periodic strategy. If the defender never moves, then the
best strategy for the attacker is to attack immediately after the game starts.
Now, if the defender moves using a periodic strategy, we have from Lemma 2
that the attacker either never attacks or attacks immediately. This leaves us
with two strategies for defender and two strategies for attacker from which all
equilibria must be composed.

Second, we show that there is no equilibrium in which the attacker never
attacks. To see this, suppose that the attacker never attacks. Then the defender’s
best response is to never move, because this preserves control of the resource
while minimizing the defender’s cost. But if the defender never moves, then it
is advantageous for the attacker to compromise the resource immediately after
the start of the game. So this situation is not an equilibrium.

Next, we analyze the situation where a defender never moves. In this circum-
stance, the attacker attacks once and controls the resource for the duration of
the game. From Lemma 1, we see that this is indeed a unique equilibrium if

CD

BA
= lFS(l)−

∫ l

s=0

FS(s) ds (27)

= l
(
1− e−λAl

)
−
∫ l

s=0

1− e−λAs ds (28)

= l − le−λAl − e−λAl − 1

λA
− l (29)

= −le−λAl +
1− e−λAl

λA
(30)

does not have a solution in R≥0 for l.
Finally, we consider the scenario where the defender plays a periodic strategy

with period δD. In this case, Lemma 2 gives conditions for the best response of the
attacker. Either the attacker never moves or the attacker attacks immediately.
Since we know that there is no equilibrium in which an attacker never moves,
we concern ourselves in the theorem only with the circumstances under which
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the attacker has a reason to attack immediately. From Lemma 2, the condition

for this is CA

BA
≤ e−δDλA−1

λA
+ δD. 
�

4.2 Equilibrium for Both Targeted and Non-targeted Attackers

Defender’s Best Response. Again, we begin our analysis by finding the de-
fender’s best response strategy.

Lemma 3. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeted attacker uses an adaptive strategy with a
fixed wait time distribution given by the cumulative function FS . Then,

– not moving is the only best response if

CD = BA

(
lFS(l)−

∫ l

s=0

FS(s) ds

)
+ BN

(
−le−λN l +

1− e−λN l

λN

)
(31)

has no solution for l;
– a periodic strategy whose period is the solution to Equation (31) is the only

best response otherwise.

Proof. The outline of the proof is similar to that of Lemma 1.
The defender’s expected loss per unit of time for an interval of length l is

1

l

(
BA

∫ l

s=0

fS(s)(l − s) ds+BN

∫ l

a=0

(l − a)λNe−λNada+ CD

)
(32)

=
1

l

(
BA

(
[FS(s)(l − s)]

l
s=0

∫ l

s=0

FS(s) ds

)
+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)
(33)

=
1

l

(
BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)
. (34)

To find the minimizing interval lengths (if there exists any), we take the
derivative of (34) and solve it for equality with 0 as follows:

0 =
d

dl

[
1

l

(
BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)]
(35)

0 =− 1

l2

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)

+BN
e−λN l(λN l− eλN l + 1)

λN
+ CD

)
(36)

CD =BA

(
lFS(l)−

∫ l

s=0

FS(s) ds

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
. (37)
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From the proof of Lemma 1, we have that the first term of the right hand side
is monotonically increasing. Furthermore, the second term is strictly increasing,
as its derivate is λN le−λN l > 0. Thus, the right hand side is strictly increasing,
which implies that if there is an l∗ for which the equality holds, it has to be
unique. Furthermore, this l∗ is a minimizing value as the second derivative is
greater than zero:

d

dl

[
− 1

l2

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)

+BN
e−λN l(λN l− eλN l + 1)

λN
+ CD

)]
(38)

=
1

l3

(
BA

(
2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
eλN l(λ2

N l2 + 2λN l− 2eλN l + 2)

λN
+ 2CD

)
. (39)

We care about the value of this expression when the first derivative is zero.
Using this constraint, we obtain

1

l3

(
BA

(
2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
eλN l(λ2

N l2 + 2λN l − 2eλN l + 2)

λN
+ 2CD

)
(40)

= −2

l

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)
+BN

e−λN l(λN l− eλN l + 1)

λN
+ CD

)

+
1

l

(
BAfS(l) +BNe−λN lλN

)
(41)

= −2

l

(
0
)
+

1

l

(
BAfS(l) +BNe−λN lλN

)
> 0 . (42)

Consequently, the only best response is the periodic strategy with the minimizing
l∗ as the period.

On the other hand, if Equation (11) is not satisfiable for l, then the only
best response for the defender is to never move. When l → ∞, the defender’s
expected loss per unit of time approaches BA + BN , which is equal to her loss
for never moving. When l → 0, her expected loss per unit of time goes to infinity
due to the ever increasing costs. Therefore, if there is no minimizing l, then the
expected loss per unit of time is always greater than BA +BN . 
�

Equilibrium. Since the targeted attacker’s payoff and, consequently, best re-
sponse are not directly affected by the presence of non-targeted attackers, we
can use Lemma 2 and the above lemma to describe the equilibria of the game.
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Theorem 2. Suppose that the defender uses a renewal strategy, the targeted
attacker uses an adaptive strategy, and the non-targeted attacks arrive according
to a Poisson process with rate λN . Then the game’s equilibria can be described
as follows.

1. If CD = BA

(
−le−λAl + 1−e−λAl

λA

)
+BN

(
−le−λN l + 1−e−λNl

λN

)
does not have

a solution for l, then there is a unique equilibrium in which the defender does
not move and in which the attacker attacks exactly once at the beginning of
the game.

2. If CD = BA

(
−le−λAl + 1−e−λAl

λA

)
+ BN

(
−le−λN l + 1−e−λN l

λN

)
does have a

solution δD for l, then:

(a) If CA

BA
≤ e−δDλA−1

λA
+ δD, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δD, and the targeted
attacker moves immediately after the defender’s each move.

(b) If CA

BA
> e−δDλA−1

λA
+ δD, then

– if CD = BN

(
−le−λN l + 1−e−λN l

λN

)
has a solution δ′D for l, and

CA

BA
≥ e−δ′DλA−1

λA
+ δ′D, then there is a unique equilibrium in which

the defender plays a periodic strategy with period δ′D and the targeted
attacker never moves;

– otherwise, there is no equilibrium.

By comparing the equation determining the defender’s strategy in the theorem
above to the equation in Theorem 1, we see that the parameter valuesBA and CD

for which there is a solution is larger in the theorem above. Thus, the defender is
more likely to move instead of giving it up when there is a threat of non-targeted
attacks.

Proof. Cases 1. and 2. (a) follow from Lemma 2 and Lemma 3 using the argument
as the proof of Theorem 1.

In Case 2. (b), there could be no equilibrium when the defender faced only a
targeted attacker (Theorem 1), since the defender had no incentives to move if
the targeted attacker did not move. However, when there are non-targeted at-
tacker present as well, the defender moving periodically and the targeted attacker
never moving can be an equilibrium. The necessary and sufficient conditions for
this are that moving periodically is a best response for the defender against
non-targeted attackers only (the existence of δ′D) and that never attacking is a
best-response for the targeted attacker against this period δ′D. 
�

5 Numerical Illustrations

In this section, we present numerical results on our game.
First, in Figure 1, we study the effects of varying the value of the resource,

that is, the unit benefit BA received by the targeted attacker. Figure 1a shows
both players’ payoffs for various values of BA (the defender’s periods for the
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(a) The defender’s and the targeted at-
tacker’s payoffs (solid and dashed lines, re-
spectively) as a function of BA.
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(b) The defender’s optimal period as a
function of BA.

Fig. 1. The effects of varying the unit benefit BA received by the targeted attacker
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(a) The defender’s and the targeted at-
tacker’s payoffs (solid and dashed lines, re-
spectively) as a function of CD.
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(b) The defender’s optimal period as a
function of CD.

Fig. 2. The effects of varying the defender’s move cost CD

same setup are shown by Figure 1b). The figure shows that the defender’s payoff
is strictly decreasing, which is not surprising: the more valuable the resource is,
the higher the cost of security is for the defender. The attacker’s payoff, on the
other hand, starts growing linearly, but then suffers a sharp drop, and finally
converges to a finite positive value.

For lower values (BA < 1), the defender does not protect the resource, as it
is not valuable enough to defend. Accordingly, Figure 1b shows no period for
this region. In this case, the attacker’s payoff is equal to simply the value of the
resource. However, once the value of the resource reaches 1, the defender starts
protecting it. At this point, the attacker’s payoff drops as she no longer has
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the resource compromised all the time. For higher values, the defender balances
between losses due to compromise and moving costs, which means that the time
the resource is compromised decreases steadily as its value increases.

In Figure 2, we study the effects of varying the defender’s move cost CD.
Figure 2a shows both players’ payoffs for various values of CD (the defender’s
periods for the same setup are shown by Figure 2b). The figure shows that the
defender’s payoff is decreasing, while the attacker’s payoff is increasing, which
is again not surprising: the more costly it is to defend the resource, the greater
the attacker’s advantage is.

For lower costs, no player is at an overwhelming advantage, as both players try
to control the resource and succeed from time to time. As the cost increases, the
defender’s payoff steadily decreases, while the attacker’s payoff steadily increases.
For higher costs, the attacker is at an overwhelming advantage. In this case, the
defender never moves, while the attacker moves once. Hence, their payoffs are
−1 and 1, respectively.

6 Conclusions

Targeted and non-targeted attacks are born of different motivations and have
different types of consequences. In this paper, we modeled a regime in which
a defender must vie for a contested resource against both targeted and non-
targeted covert attacks.

As a principal result, we found that the most effective strategy against both
types of attacks (and also against their combination) is the periodic strategy.
This result can be surprising considering the simplicity of this strategy, but it also
serves as a theoretical justification of the periodic password and cryptographic
key renewal practices. Furthermore, this contradicts the lesson learned from the
FlipIt model [13], which suggests that a defender playing against an adaptive
attacker should use an unpredictable strategy.

We also found that a defender is more likely to stay in play and bear the costs
of periodic risk mitigation if she is threatened by non-targeted attacks. While
this result seems very intuitive, it is not obvious, as we also demonstrated that a
very high level of either threat type can force the defender to abandon all hope
and stop moving.

Our work can be extended in multiple directions. First, even though the expo-
nential attack time distribution can be well-motivated for a number of resources,
it would be worthwhile to extend our model to general distributions with some
mild assumptions only. Second, our model focuses on medium-profile targets that
are susceptible to both targeted and non-targeted attacks, but it could be easily
extended to a broader range by having a susceptibility probability for each type.

Acknowledgements. We gratefully acknowledge the support of the Penn State
Institute for CyberScience. We also thank the reviewers for their comments on
an earlier draft of the paper.
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Abstract. We present a new fully adaptive computational model for at-
tack trees that allows attackers to repeat atomic attacks if they fail and
to play on if they are caught and have to pay penalties. The new model
allows safer conclusions about the security of real-life systems and is
somewhat (computationally) easier to analyze. We show that in the new
model optimal strategies always exist and finding the optimal strategy
is (just) an np-complete problem. We also present methods to compute
adversarial utility estimation and utility upper bound approximated es-
timation using a bottom-up approach.

1 Introduction

Protection of information systems becomes an integral part in the deployment
of technologies that operate sensitive information, the leakage of which may
cause irreversible damage to affected parties. In new technology deployment, its
protection and security are the concerns in the first place. It is impossible to
achieve 100% level of protection. By applying various security measures one can
just approach this limit. Various methods of risk assessment have been suggested,
and each of them has its advantages and disadvantages. Quantitative security
analysis based on attack trees has become a subject of extensive research [8, 1–
6, 9].

Attack trees may be used for visualization purposes only, but also for comput-
ing adversarial utility, i.e. attacking the system can be modeled as an economic
single-player game played by the attacker. It is assumed that the attacker be-
haves rationally—attacks only if the attack game is beneficial for him. Such a
rational attacker paradigm was first introduced by Buldas et al. [1]. In order to
estimate the adversarial utility, their model used computational rules for and
and or nodes to compute a list of parameters for every node based on the
parameters of its successor nodes. Buldas and Stepanenko [3] introduced the
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so-called fully adaptive model where adversaries are allowed to try atomic at-
tacks in an arbitrary order, depending on the results of the previous trials. They
also introduced the upper bound ideology by pointing out that in order to verify
the security of the system, it is not necessary to compute the exact adversarial
utility but only upper bounds—if adversarial utility has a negative upper bound
in the fully adaptive model, it is safe to conclude that there are no beneficial
ways of attacking the system, assuming that all reasonable atomic attacks are
captured in the attack tree. A similar approach is used in civil engineering—it
is more practical to know an upper bound of the stress value that will definitely
not break a construction than the precise stress value at which the construc-
tion breaks. In [3] two ways were introduced to compute the upper bounds: (1)
simplified computational rules (for and and or nodes); and (2) assuming more
powerful adversaries in a way that simplifies the computational model, for ex-
ample, in their infinite repetition model the attacker is allowed to repeat atomic
attacks (any number of times) if they fail.

Motivation of This Work: Even the fully adaptive model of Buldas and Stepa-
nenko [3] does not completely follow their upper bound ideology. Mostly the
atomic attacks are associated with criminal behavior and hence in the attack
tree models [1, 4, 5, 9, 3] atomic attacks are associated with penalties that the
attacker has to pay if he is caught. In the model [3] an additional restriction
is introduced—the attacker is not able to play on after getting caught. As this
seems not to be true in all real-life cases, either the penalties in their model
contain the potential future profits of attackers (and hence be larger than they
are in real life) or the model does not give reliable upper bounds. Moreover,
it seems that such a game over assumption actually makes the computational
model more complex.

The Aim of This Work: We present a new fully adaptive computational model
for attack trees that allows the adversary to repeat atomic attacks if they fail and
to play on if he is caught. We show that such a model will be somewhat easier
to analyze. For example, in the case of conjunctive composition X1 ∧ . . .∧Xn of
atomic attacks the order in which they are tried by the adversary is unimportant.

Summary of Results: We show (Sec. 3) that in the new model optimal strate-
gies always exist and they are in the form of directed single-branched bdds with
self-loops. We introduce methods to compute a precise estimation of the adver-
sarial utility and an approximated estimation of the utility upper bound using
a bottom-up utility propagation approach. We also show (Sec. 4) that solving
the attack game in the new model is an np-complete problem. We also present
efficient methods to compute the lower bound for expenses (Sec. 5).

2 Definitions and Related Work

In this section we will formally define some common terms and definitions within
the current model which will be used further throughout the paper.
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2.1 Definitions

Definition 1 (Derived function). If F (x1, . . . , xm) is a Boolean function and
v ∈ {0, 1}, then by the derived Boolean function F|xj=v we mean the function
F(x1, . . . , xj−1, v, xj+1, . . . , xm) derived from F by the assignment xj := v.

Definition 2 (Constant functions). By 1 we mean a Boolean function that
is identically true and by 0 we mean a Boolean function that is identically false.

Definition 3 (Min-term). By a min-term of a Boolean function F(x1, . . . , xm)
we mean a conjunction of variables xi1 ∧xi2 ∧ . . .∧xik such that xi1 ∧xi2 ∧ . . .∧
xik ⇒ F (x1, . . . , xm) is a tautology.

Definition 4 (Critical min-term). A min-term x1 ∧ . . . ∧ xk of F is critical
if none of the sub-terms x1, . . . , xj−1, xj+1, . . . , xm is a min-term of F .

Definition 5 (Satisfiability game). By a satisfiability game we mean a single-
player game in which the player’s goal is to satisfy a monotone Boolean function
F (x1, x2, . . . , xk) by picking variables xi one at a time and assigning xi = 1.
Each time the player picks the variable xi he pays some amount of expenses Ei,
which is modeled as a random variable. With a certain probability pi the move
xi succeeds. Function F representing the current game instance is transformed
to its derived form F|xi=1 and the next game iteration starts. The game ends
when the condition F ≡ 1 is satisfied and the player wins the prize P ∈ R, or
when the condition F ≡ 0 is satisfied, meaning the loss of the game, or when the
player stops playing. With a probability 1− pi the move xi fails. The player may
end up in a different game instance represented by the derived Boolean function
F|xi≡0 in the case of a game without move repetitions, and may end up in the
very same instance of the game F in the case of a game with repetitions. Under
certain conditions with a certain probability the game may end up in a forced
failure state, i.e. if the player is caught and this implies that he cannot continue
playing, i.e. according to the Buldas-Stepanenko model [3]. The rules of the game
are model-specific and may vary from model to model. Thus we can define three
common types of games:

1. SAT Game Without Repetitions - the type of a game where an adversary can
perform a move only once.

2. SAT Game With Repetitions - the type of a game where an adversary can
re-run failed moves again an arbitrary number of times.

3. Failure-Free SAT Game - the type of a game in which all success probabilities
are equal to 1. It can be shown that any game with repetitions is equivalent
to a failure-free game (Thm. 5).

Definition 6 (Line of a game). By a line of a satisfiability game we mean
a sequence of assignments λ = 〈xj1 = v1, . . . , xjk = vk〉 (where vj ∈ {0, 1}) that
represent the player’s moves, and possibly some auxiliary information. We say
that λ is a winning line if the Boolean formula xi1 ∧ . . .∧xik ⇒ F (x1, . . . , xn)
is a tautology, where F is a Boolean function of the satisfiability game.



New Efficient Utility Upper Bounds for the Adaptive Model of Attack Trees 195

Definition 7 (Strategy). By a strategy S for a game G we mean a rule that
for any line λ of G either suggests the next move xjk+1

or decides to give up.

Strategies can be represented graphically as binary decision diagrams (bdds).

Definition 8 (Line of a strategy). A line of a strategy S for a game G is the
smallest set L of lines of G such that (1) 〈〉 ∈ L and (2) if λ ∈ L, and S suggests
xj as the next move to try, then 〈λ, xj = 0〉 ∈ L and 〈λ, xj = 1〉 ∈ L.

Definition 9 (Branch). A branch β of a strategy S for a game G is a line λ
of S for which S does not suggest the next move. By BS we denote the set of all
branches of S.

For example, all winning lines of S are branches.

Definition 10 (Expenses of a branch). If β = 〈xi1=v1 , . . . , xik=vk〉 is a
branch of a strategy S for G, then by expenses εG (S, β) of β we mean the sum
E i1 + . . .+ E ik where by E ij we mean the mathematical expectation of Eij .

Definition 11 (Prize of a branch). The prize PG (S, β) of a branch β of a
strategy S is P if β is a winning branch, and 0 otherwise.

Definition 12 (Utility of a strategy). By the utility of a strategy S in a
game G we mean the sum: U (G,S) =

∑
β∈BS

Pr (β) · [PG (S, β) − εG (S, β)]. For

the empty strategy U (G, ∅) = 0.

Definition 13 (Prize and Expenses of a strategy). By the expenses E (G,S)
of a strategy S we mean the sum

∑
β∈BS

Pr (β) · εG (S, β). The prize P (G,S) of S

is
∑

β∈BS
Pr (β) · PG (S, β).

It is easy to see that U (G,S) = P (G,S) − E (G,S).

Definition 14 (Utility of a satisfiability game). The utility of a SAT game
G is the limit U (G) = sup

S
U (G,S) that exists due to the bound U (G,S) � P.

Definition 15 (Optimal strategy). By an optimal strategy for a game G we
mean a strategy S for which U (G) = U (G,S).

It can be shown that for satisfiability games optimal strategies always exist.

2.2 Related Work

In the fully-adaptive model introduced by Buldas and Stepanenko [3] the attacker
does not use a specific attack suite or a specific ordering, but picks the next
atomic attack arbitrarily based on the results of the previously tried atomic
attacks. Their so-called infinite repetition model assumes that the adversary
has a possibility to re-run failed attacks again immediately or later after trying
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some other atomic attacks. The so-called failure-free model [3] assumes all success
probabilities are equal to 1, meaning that the player will achieve his goal anyway,
but with either positive or negative utility. Due to the failure-free model concept
a strategy can be represented as a set of moves {X1, . . . ,Xk} and the order in
which those moves will be launched is not a concern.

The model [3] assumes that the adversary stops playing immediately upon
attack detection that is an unnatural restriction placed on the adversarial ac-
tions since in reality countermeasures cannot be applied immediately and usually
the adversary has some time within which he may continue attacking and may
achieve his goal. Therefore it would be natural to expect that the attacker does
not stop his actions if his attack is detected by the defensive security measures
deployed on the analyzed system. Apart from that, Buldas-Stepanenko model
is arithmetically more complex due to the force-failure states and an optimal
strategy depends on the order of atomic attacks.

3 The New Model

In the new model the adversary does not stop when launched attacks are detected
and continues attacking until he achieves his goal. The new model is similar to
the parallel model by Jürgenson and Willemson [4–6], except that it applies the
infinite repetition model concept and introduces new methods that allow us to
compute the adversarial utility upper bounds. Due to the slightly simplified rules
of the game the new model became more simple and manageable than Jürgenson-
Willemson and Buldas-Stepanenko models, thus easier to use and analyze. The
new model allowed us to elaborate efficient upper bound computation methods
that run in time linear in the size of the attack tree.

Lemma 1. For every repeatable satisfiability game G with U(G) > 0 there is xj

such that sup
S∈Sxj

U(G,S) = U(G), where Sxj is the set of all non-empty strategies

with xj as the first move.

Proof. As every S �= ∅ has the first move xi, we have U(G) = sup
S

U(G,S) =

maxi sup
S∈Sxi

U(G,S), and hence there is xj such that U(G) = sup
S∈Sxj

U(G,S). 
�

Lemma 2. For every repeatable satisfiability game G and for every atomic vari-
able xj: sup

S∈Sxj

U(G,S) = −Ej + pj U(G|xj=1) + (1− pj)U(G).

Proof. This is because the part S ′ of S for playing G|xj=1 and the part S ′′ of S
for playing G after an unsuccessful trial of xj can be chosen independently. 
�

Theorem 1. Repeatable satisfiability games have optimal strategies.

Proof. If U(G) = 0, then S = ∅ is optimal. For the case U(G) > 0 we use
induction on the number m of atomic variables. If m = 0, there are no moves
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and ∅ is the only possible strategy and is optimal by definition. In casem > 0 and
supposing that every repeatable satisfiability game with m− 1 atomic variables
has an optimal strategy, by Lemma 1, there is xj such that U(G) = sup

S∈Sxj

U(G,S).

Let S0 be the strategy that repeats xj until xj succeeds and then behaves like
an optimal strategy for G|xj=1 (a game with m − 1 atomic variables). Utility

of S0 is U(G,S0) = −Ej

pj
+ U(G|xj=1). On the other hand, by Lemma 2 we

have U(G) = sup
S∈Sxj

U(G,S) = −Ej + pj U(G|xj=1) + (1 − pj)U(G), that implies

U(G) = −Ej

pj
+ U(G|xj=1) = U(G,S0) and hence S0 is optimal. 
�

Corollary 1. In every repeatable satisfiability game there exist optimal strate-
gies in the form of directed single-branched BDDs with self-loops.

Proof. Let S be an optimal strategy for G and Xj1 be the first move suggested
by S. In case of a failure, Xj1 remains the best move and hence S has a self-loop
at Xj1 . In case of success, the Boolean function of the game reduces to F|Xj1=1.
Let Xj2 be the next move suggested by S. Similarly, we conclude that there is a
self-loop at Xj2 in case of a failure, and so on. This leads to the bdd in Fig. 1. 
�

Xj1 Xj2
. . . Xjk

Xj1 = 1 Xj2 = 1 Xjk−1 = 1

Xj1 = 0 Xj2 = 0 Xji = 0 Xjk = 0

Fig. 1. A strategy in the form of a directed single-branched bdd with self-loops

Theorem 2. If S is a strategy in the form of a self-looped BDD (Fig. 1), then

E(G,S) = Ej1

pj1
+ . . .+

Ejk

pjk
.

Proof. The probability that a move succeeds at the n-th try is p(1− p)n−1 and
the average expenses are E(1 − p)n−1 and hence the total success probability is

p ·
∞∑
n=1

(1− p)n−1 = 1 and the average expenses are E ·
∞∑

n=1
(1 − p)n−1 = E

p . 
�

It is obvious that in the new model P(G,S) ∈ {0,P}.

Definition 16 (Winning strategy). A strategy S is winning if P(G,S) = P.

Definition 17 (Expenses of a game). By the average expenses of a game G
we mean E (G) = inf

S
E (G,S), where S varies over all winning strategies.
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Theorem 3. For any satisfiability game G: U(G) = max{0,P − E (G)} .

Proof. Let S be an optimal strategy for G. If S is not winning, U(G,S) =
−E(G,S) � 0 and hence ∅ is optimal and hence U(G) = 0. If S is winning
then U (G) = sup

S
U (G,S) = P − inf

S
E (G,S) = P − E (G). 
�

Due to the features of the new model, in order to compute the utility it is
sufficient to compute the expenses, that allows us use the expenses propagation
technique introduced below. Moreover, we will show that solving a satisfiability
game in the new model is equivalent to solving a weighted monotone satisfiability
problem.

3.1 Precise Utility Computation

The algorithm described in [3] is good because it is independent of the Boolean
circuit structure and only depends on the Boolean function of the game. It is
described formally as the following recursive relation:

U (G) = max

{
0, −E i

pi
+ U (G|xi=1) , U (G|xi=0)

}
, (1)

with initial conditions U(1) = P and U(0) = 0, and where xi is any variable that
G contains. The algorithm allows us to compute the precise adversarial utility
value in time exponential in the size of the game. The computational complexity
of the algorithm is O(2n).

3.2 Utility Upper Bound Estimation Using Utility Propagation

The model of [3] uses attack tree representation of the Boolean formula for utility
propagation using the following inequalities:

U (G1 ∧ . . . ∧ Gk) � min {U (G1) , . . . ,U (Gk)} ,

U (G1 ∨ . . . ∨ Gk) � U (G1) + . . .+ U (Gk) .

Firstly, we can show that even in the model of [3] we can actually use more
precise folmula (2). Secondly, in the new model we can use expenses propagation
approach that turns out to be even more precise.

Theorem 4. In the model of [3] and in the new model:

U (G1 ∨ . . . ∨ Gk) = max {U (G1) , . . . ,U (Gk)} . (2)

The proof is based on the fact that optimal strategies can be represented by
critical min-terms of F .
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Proof. Let S be the optimal strategy for the game G = G1 ∨ . . .∨ Gk. According
to Thm. 8 in [3], S can be represented as a critical min-term Xj1 ∧ . . . ∧ Xjm

of the Boolean function of G = G1 ∨ . . . ∨ Gk, this means that there exists such
j that Xj1 ∧ . . . ∧ Xjm is a min-term of Gj . Hence Xj1 ∧ . . . ∧ Xjm ⇒ Gj is a
tautology. This means that

U (G1 ∨ . . . ∨ Gk) = U (G1 ∨ . . . ∨ Gk ,S) � U (Gj) � max {U (G1) , . . . ,U (Gk)} .

On the other hand, for any j let Sj be the optimal strategy of Gj . As Gj ⇒
G1 ∨ . . . ∨ Gk is a tautology, U (Gj) = U (Gj ,Sj) � U (G1 ∨ . . . ∨ Gk). As j was
arbitrary, this implies max {U (G1) , . . . ,U (Gk)} � U (G1 ∨ . . . ∨ Gk). Combining
these two inequalities we reach equation (2). 
�

Algorithm 3.1 utilizes the conjunctive and disjunctive bottom-up adversarial
utility propagation rules in every game instance starting from the atomic moves
and ending up in the root instance of the game. The algorithm allows us to
compute the adversarial utility upper bound in time linear in the size of the
game, thus complexity is O (n).

Algorithm 3.1. Iterated utility propagation in conjunctive/disjunctive
game instances

Input: Satisfiability game instance G
Output: Utility upper bound (real number)

1 Procedure ComputeUtilityUpperBound (G)
2 if m is an instance of a conjunctive game then
3 /* G1, . . . ,Gk are the sub-games of game m */

4 return min { U (G1) , . . . ,U (Gk) }
5 else if m is an instance of a disjunctive game then
6 /* G1, . . . ,Gk are the sub-games of game m */

7 return max { U (G1) , . . . ,U (Gk) }
8 else m is leaf
9 return U (m)

4 Computational Complexity of the New Model

Definition 18 (Weighted Monotone Satisfiability /WMSAT/). Given a
threshold value P and a monotone Boolean function F(x1, . . . , xm) with corre-
sponding weights w(xi) = wi decide whether there is a satisfying assignment A
with a total weight w(A) < P.

Theorem 5. In the new model, the problem of deciding whether U(G) > 0 is
equivalent to the weighted monotone satisfiability problem with the same Boolean

function as in G and with weights of the input variables xi defined by wi =
Ei

pi

with threshold value P.
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Proof. If S is an optimal strategy in the infinite repetition model and is a single-
branched bdd with self-loops with nodes Xi1 , . . . ,Xik , then the assignment A =
〈xi1 = . . . = xik = 1〉 satisfies the Boolean function of the game and its total

weight is w(A) =
Ei1

pi1
+ . . .+

Eik

pik
. If U (G) > 0, then

0 < U (G) = U (G,S) = P − E i1

pi1
− . . .− E ik

pik
= P − w (A) .

Thus, w (A) < P . If there is an assignment A = 〈xi1 = . . . = xik = 1〉 in the

wmsat model with a total weight w(A) =
Ei1

pi1
+ . . .+

Eik

pik

< P , then the strategy

depicted in Fig. 1 has the utility

U(G,S) = P − E i1

pi1
− . . .− E ik

pik
> 0 ,

and hence U(G) � U(G,S) > 0. 
�

The parameter Ei

pi
, the cost-success ratio, is similar to the time-success ra-

tio parameter used in cryptography [7]. This parameter can be estimated more
precisely and is measurable in monetary units, as opposed to the respective
probability and expenses parameters in the existing models.

Theorem 6. The Weighted Monotone Satisfiability Problem is NP-complete.

Proof. We will show that the Vertex Cover problem can be polynomially reduced
to the wmsat problem. Let G be the graph with a vertex set {v1, . . . , vm}. We
define a Boolean function F (x1, . . . , xm) as follows. For each edge (vi, vj) of G
we define the clause Cij = xi∨xj . The Boolean function F (x1, . . . , xm) is defined
as the conjunction of all Cij such that (vi, vj) is an edge of G. Let the weight wi

of each xi be equal to 1.
It is obvious that G has a vertex cover S of size |S| < P iff the monotone

Boolean function F (x1, . . . , xm) has a satisfying assignment with a total weight
less than P . 
�

5 Efficient Computation of Expenses Lower Bounds

This section presents some examples of computing the adversarial expenses lower
bound using expenses propagation.

5.1 Expenses Propagation

Let G = G1∨ . . .∨Gk be a disjunctive game. For the disjunctive game to succeed
at least one of its sub-games needs to be tried and successfully completed. We
need to choose one single sub-game which is the cheapest one. Therefore, the
utility upper bound of the game G may be computed using the method that for
each sub-game computes utility estimation U (Gi):
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1. Find the cheapest sub-game (the sub-game Gi having minimal E (Gi) value).
2. For this sub-game compute the utility upper bound as: U (G) = P −E (Gi) .

It can be shown that in the new model

E (G1 ∨ . . . ∨ Gk) = min {E (G1) , . . . , E (Gk)} ,

max{E (G1) , . . . , E (Gk)} � E (G1 ∧ . . . ∧ Gk) � E (G1) + . . .+ E (Gk) .

The last inequality turns into an equation if the games G1, . . . ,Gk have no com-
mon moves.

5.2 Expenses Reduction

In the following section we will discuss the problem associated with the games
that have common moves and suggest a solution to it.

Let G1 and G2 be sub-games of game G. Those sub-games may in turn contain
the conjunctive as well as disjunctive sub-games alternately with no evidence if
those sub-games contain no common moves. We assume that some of the sub-
games may contain common moves and that the optimal strategy might utilize
them. Thus some of the atomic attacks may be referenced more than once and
multiply their corresponding investments into the expenses parameter that these
nodes propagate.

In order to get the correct utility for the intermediate sub-games G1,G2 and,
eventually, G we artificially reduce the expenses E (Xi) for the common moves
and produce the modified move parameter Ẽ (Xi) that will here and further
be referenced as reduced expenses. It is reasonable to reduce expenses by the
amount of occurrences of the same move in a sub-game. In graph representation
we reduce the expenses by the amount of references (incoming edges) to the
atomic move. Let us denote the number of occurrences of the atomic move Xi

as eXi
. Thus Ẽ (Xi) =

E(Xi)
eXi

.

Although by reducing the expenses of the common moves we make them easier
to play, the idea behind this is that if the system can be proven to be secure
even if some of the atomic attacks are artificially made easier than they really
are, this implies that the attacks against the real system are infeasible.

We present an Algorithm 5.1 for expenses lower bound computation using
expenses propagation which runs in time linear in the size of the game, thus
complexity is O (n). The utility upper bound can be computed as U(G) = P −
E(G), where E(G) is the expenses lower bound of the game. The local optimum
decisions that are made in the disjunctive games are not subject to the problem
discovered by Jürgenson and Willemson in [6], as the optimal strategy, according
to Thm. 8 in [3], is a critical min-term of the Boolean function representing the
game instance, and a critical min-term is not redundant. Thus local optimum
decisions are global optimum decisions in the new model and allow us to use the
expenses propagation approach and the recursive algorithm 5.1.
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Algorithm 5.1. Iterated Expenses propagation
Input: The game G
Output: The expenses of the game E (G) (a real number)

1 Procedure ComputeExpenses (G)
2 if m is a conjunctive game instance then

3 expenses := 0

4 forall the sub-games i of m do

5 expenses += ComputeExpenses (i)

6 else if m is a disjunctive game instance then

7 cheapest := FindCheapestSubGame (m)

8 return cheapest

9 else m is an atomic move

10 return E (m)

6 Interpretation of Results

The new model allows us to compute the adversarial utility upper bound. In
case it is positive the analyzed system lacks security at some point and profitable
attack vectors, that can result in a positive outcome for an attacker, are likely
to exist. If the utility upper bound is 0, we may conclude that the system is
potentially secure against rational gain-oriented attackers. The presented model
still relies on the ability of analysts to construct an attack tree precisely enough
to capture all feasible attack vectors and reflect the real system being modeled.
Security has to be a continuous cyclic process where the list of threats and
vulnerabilities is being continuously revised.

7 Open Questions and Future Research

The research on the presented model is still unfinished. Future research will focus
on the unsolved problems and open questions.

As mentioned earlier, attack tree models including the new one, depend on
the metrics assigned to the atomic attacks. Unfortunately, efficient frameworks
for metrics estimation do not exist yet. Should one be developed, it would be
a valuable addition not only to this model, but to all the models that utilize
attack trees.

Secondly, current attack tree models using the game-theoretic approach have
one single node—the root node that is assigned the prize parameter—the revenue
for an attacker. However, in reality some intermediate nodes may have their own
value for an attacker and in the model may be assigned with their own prize.
These nodes can represent the secondary goals of an attacker and affect the
strategy in certain cases.

Finally, it would be useful to extend the model capabilities to take possible
defensive measures into account and to extend the notion of attack trees to the
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notion of attack-defense trees. Those defensive measures, if applied, can affect
the parameters the respective nodes propagate.

Although quantified security analysis is an area that has been thoroughly
studied, we cannot say that the results meet the requirements of real life. Further
research in this area is required to ensure the reliability and trustworthiness of
the developed models.
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A Computational Example

Example 1. In order to demonstrate the application of the proposed model, an
example is presented. Consider the attack tree shown in Fig. 2. Attack tree
leaves parameters are shown in Table 1 and the computed expenses and utilities
in Table 2.

The Expenses parameter present in the model is represented as a function
of attack preparation costs C, attack detection probability r and the penalty
Π such that E (Xi) = CXi + rXi

ΠXi . Firstly, each of the atomic attacks Xi

parameters success probability pXi
and expenses E (Xi) are transformed to the

form applicable for the failure-free Model: pXi
→ 1 ; E (Xi) → Einf (Xi) =

E(Xi)
p .
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Fig. 2. A sample attack tree for a software developing company. The conjunctive game
instances are depicted with red background and with ∧ label above the node, the
disjunctive game instances are depicted with blue background and with ∨ label above
the node and atomic moves are depicted with green background.

Table 1. Estimated and calculated values of atomic attacks

Threat Description p r C Π Expenses
FFM
Expenses

RED
Expenses

Utility

B Stolen code is used
in products

0.9 0.9 106 106 190000 2111111.1 2111111.1 -1010111.1

A1.1 Bribe a developer 0.1 0.2 106 103 1000200 10002000 10002000 -8901000

A1.2
Developer obtains
code

0.9 0.005 0 105 500 555.5 555.5 1100444.4

A2.1.1
Hacker exploits a
bug

0.5 0.5 103 1 1000.5 2001 2001 1098999

A2.1.2
An exploitable bug
exists

0.006 0.005 0 0 0 0 0 1101000

A2.2.1 Exploit the bug 0.5 0.1 0 1 0.1 0.2 0.2 1100999.8
A3.1 Employ a robber 0.9 0.001 105 104 100010 111122.222 111122.222 989877.778

A3.2
Robber obtains the
code

0.5 0.9 103 105 91000 182000 182000 919000

Afterwords the expenses reduction technique is applied producing the reduced
expenses Ẽ (Xi) of each of the atomic attacks. In this particular case the expenses
parameters of the nodes remain the same, except for the A2.1.2 node which is ref-

erenced twice and thus its reference count e = 2, thus Einf (A2.1.2) =
E(A2.1.2)

2 =



New Efficient Utility Upper Bounds for the Adaptive Model of Attack Trees 205

0
2 = 0. Secondly, the adversarial utility is calculated using two methodologies,
the expenses propagation approach as well as the utility propagation approach.

Calculated parameters of intermediate nodes properties are introduced below.
The root node FR prize P = 1,101,000.

Table 2. Attack Tree Expenses and Utility

Node Description Type Expenses Utility1 Utility2

R Forestalling release AND 2111111.311 -1010111.311 -1010111.111
A Steal the code OR 0.2 - 1100999.8
A1 Insider attack AND 10002555.556 - -8901000
A2 Network attack OR 0.2 - 1100999.8
A2.1 Employ a hacker AND 2001 - 1098999
A2.2 Buy an exploit AND 0.2 - 1100999.8
A3 Physical robbery AND 293122.222 - 919000
1 Expenses propagation
2 Utility propagation
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Abstract. Active cyber defense is one important defensive method for
combating cyber attacks. Unlike traditional defensive methods such as
firewall-based filtering and anti-malware tools, active cyber defense is
based on spreading “white” or “benign” worms to combat against the
attackers’ malwares (i.e., malicious worms) that also spread over the
network. In this paper, we initiate the study of optimal active cyber
defense in the setting of strategic attackers and/or strategic defenders.
Specifically, we investigate infinite-time horizon optimal control and fast
optimal control for strategic defenders (who want to minimize their cost)
against non-strategic attackers (who do not consider the issue of cost).
We also investigate the Nash equilibria for strategic defenders and attack-
ers. We discuss the cyber security meanings/implications of the theoretic
results. Our study brings interesting open problems for future research.

Keywords: cyber security model, active cyber defense, optimization,
epidemic model.

1 Introduction

The importance of cyber security is well recognized now. However, our under-
standing of cyber security is still at its infant stage. In general, the attackers are
constantly escalating their attack power and sophistication, while the defenders
largely lag behind. To be specific, we mention the following asymmetry between
cyber attack and cyber defense: The effect of malware-like attacks is automati-
cally amplified by the network connectivity, while the defense effect is not. This
phenomenon had been implied by many previous results (e.g., [28,9,6,26,34]),
but was not explicitly pointed out until very recently [35]. The asymmetry is
fundamentally caused by that the defense is reactive, including intrusion detec-
tion systems, firewalls and anti-malware tools. The asymmetry can be eliminated
by the idea of active cyber defense [35], where the defender also aims to take
advantage of the network connectivity. The concept of active cyber defense is
not completely new because researchers have proposed for years the idea of using
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the defender’s “white” or “benign” worms to combat against the attackers’ mal-
wares [5,1,29,23,16,18,13,30]. In a sense, active cyber defense already happened
in practice; for example, the Welchia worm attempted to “kill” the Blaster
worm in compromised computers [23,20]. It appears that full-fledged active cy-
ber defense is perhaps inevitable in the near future according to some recent
reports [18,24,31]. It is therefore more imperative than ever to systematically
characterize the effectiveness of active cyber defense. This motivates the present
study.

1.1 Our Contributions

This paper is inspired by the recent mathematical model of active cyber de-
fense dynamics [35], which characterizes the effect of various model parameters
(including the underlying complex network structures) in the setting where nei-
ther the attacker nor the defender is strategic (i.e., both the attacker and the
defender do not consider the issue of cost). Here we study a new perspective of
active cyber defense, namely the strategic interaction between the attacker and
the defender. On one hand, our study moves a step beyond [35] because we in-
corporate control-theoretic and game-theoretic models to accommodate strategic
interactions. On the other hand, our study assumes away the underlying complex
network structures that are explicitly investigated in [35]. This means that our
study is essentially based on the homogeneous (or well-mixed) assumption that
each compromised computer can attack the same portion of computers. Tackling
the problem of strategic attack-defense interactions with explicit complex net-
work structures is left for future research. Therefore, we deem the present paper
as a significant first step toward ultimately understanding the effectiveness of
strategic active cyber defense. Specifically, we make the following contributions.

First, we investigate two flavors of optimal control for strategic defenders
against non-strategic attackers: infinite-time horizon optimal control and fast
optimal control. In the setting of infinite-time horizon optimal control for the
defender, we characterize the conditions under which the defender should adjust
its active cyber defense power in a certain quantitative fashion. For example, we
identify a condition under which the defender should give up using active cyber
defense alone, and instead should resort to other defense methods as well (e.g.,
proactive defense). In the setting of fast optimal control, where the defender
wants to occupy a certain portion of the network as soon as possible and at the
minimal cost, there is a significant difference between the case that the active
defense cost is linear and the case that the active defense cost is quadratic.

Second, we identify the Nash equilibrium strategies when both the defender
and the attacker are strategic. The findings are interesting. For example, when
the defender (or attacker) is reluctant to use/expose its advanced active cyber
defense tools (or zero-day exploits), it will give up escalating its active defense
(or attack) power; otherwise, there are three scenarios: (i) If the defender (or
attacker) initially occupies only a certain small portion of the network, it will
give up escalating its active defense (or attack). (ii) If the defender (or attacker)
initially occupies a certain significant portion of the network, it will escalate its
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active defense (or attack) as much as possible. (iii) If the defender (or attacker)
initially occupies a certain large portion of the network, it will not escalate its
active defense (or attack) — a sort of diminishing returns.

The rest of the paper is structured as follows. Section 2 briefly reviews the
related prior work. Section 3 describes the basic active cyber defense model under
the homogeneous assumption. Section 4 investigates optimal control for strategic
defenders against non-strategic attackers. Section 5 studies Nash equilibria for
strategic defenders and attackers. Section 6 concludes the paper with some open
problems. Lengthy proofs are deferred to the Appendix. The main notations
used in the paper are listed below:

αB , αR defender B’s defense power αB and attacker R’s attack power αR

iB(t), iR(t) portions of the nodes occupied respectively by the defender and the
attacker at time t, where iB(t) + iR(t) = 1

πB, πB(t) πB is control variable and πB(t) is control function
π̂B solution in the infinite-time horizon optimal control case

π∗
B , π

∗∗
B solutions in the case of fast optimal control with linear and

quadratic cost functions, respectively
z discount rate

kB normalization ratio between the defender’s detection cost and re-
covery cost

λ normalization ratio between the unit of time and the defender’s
active defense cost

kR normalization ratio between the attacker’s maintenance cost and
penetration cost

2 Related Work

Our investigation is built on recent studies in mathematical computer malware
models. These models originated in the mathematical biological epidemic models
introduced in the 1920’s [19,12], which were first adapted to study the spreading
of computer virus in the 1990’s [10,11]. All these models made the homoge-
neous assumption that each individual (e.g., computer) in the population has
equally infection effect on the other individuals in the population, and the as-
sumption that the infected individuals recover because of reactive defense (e.g.,
anti-malware tools). In the past decade, there were many studies that aim to
eliminate the aforementioned homogeneous assumption, by explicitly incorpo-
rating the heterogeneous network structures [28,9,6,26,34,32]. The mathematical
tools used for these studies are Dynamical Systems in nature. These
studies demonstrated that the attack effect of malware spreading against reac-
tive defense is automatically amplified by the largest eigenvalue of the adjacency
matrix, which represents the underlying complex network structure. This is the
attack-defense asymmetry phenomenon mentioned above.

The attack-defense asymmetry phenomenon motivated the study of mathe-
matical models of active cyber defense [35], which is a relatively new sub-field
in cyber security [18,24,31] as previous explorations were mainly geared toward
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legal and policy issues [5,1,29,23,16,18,13,30]. One real-life incident of the fla-
vor of active cyber defense is that the Welchia worm attempted to “kick out”
another kind of worms (e.g., the Blaster worm) [23,20]. In the first mathemat-
ical characterization of active cyber defense [35], neither the attacker nor the
defender is strategic (i.e., they do not consider the issue of cost), albeit the
model accommodates the underlying complex network structure. In the present
paper, we move a step toward ultimately understanding optimal active cyber
defense, where the attacker and/or the defender are/is strategic (i.e., they want
to minimize their cost). Finally, we note that automatic patching [27] is not ac-
tive cyber defense because automatic patching aims to prevent attacks, whereas
active cyber defense aims to identify and possibly clean up infected computers.

There have been many studies (e.g., [33,21,8,4,14,22,15,25]) on applying Con-
trol Theory and Game Theory to understand various issues related to computer
malware spreading. Our study is somewhat inspired by the botnet-defense model
investigated in [4]. All the studies mentioned above only considered reactive de-
fense; whereas we investigate how to optimize active cyber defense. For general
information about the applications of Control Theory and Game Theory to cyber
security, we refer to [2,17] and the references therein.

3 The Basic Active Cyber Defense Model

Consider a population of nodes, which can abstract computers in a cyber system.
At any point in time, a node is either occupied by defender B (i.e., the node is
secure), or occupied by attacker R (i.e., the node is compromised). Denote by
iB(t) the portion of nodes that are occupied by the defender at time t, and by
iR(t) the portion of nodes that are occupied by the attacker at time t, where
iB(t)+iR(t) = 1 for any t ≥ 0. In the interaction between cyber attack and active
cyber defense, the defender and the attacker can “grab” nodes from each other
in the same fashion. Let αB abstract defender B’s power in grabbing attacker-
occupied nodes using active cyber defense, and αR abstract attackerR’s power in
compromising defender-occupied nodes using malware-like cyber attacks. Under
the homogeneous assumption that (i) each secure node has the same power in
“grabbing” the attacker-occupied nodes and (ii) each compromised node has
the same power in compromising the defender-occupied nodes, we obtain the
following Dynamical System model:{

diB(t)
dt = αBiB(t)iR(t)− αRiR(t)iB(t)

diR(t)
dt = αRiR(t)iB(t)− αBiB(t)iR(t),

where iB(t) + iR(t) = 1, iB(t) ≥ 0, and iR(t) ≥ 0 for all t ≥ 0. Due to the
symmetry, we only need to consider

diB(t)

dt
= αBiB(t)(1 − iB(t))− αRiB(t)(1 − iB(t)). (1)

If neither the attacker nor the defender is strategic (i.e., they do not consider
the issue of cost), the dynamics of system (1) can be characterized as follows.
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– If the attacker is more powerful than the defender, namely αR > αB , the
attacker will occupy the entire network in the fashion of the Logistic equation
(i.e., when iR is small, iR increases slowly; when iR is around a threshold
value, iR increases exponentially; when iR is large, iR increases slowly).

– If the defender is more powerful than the attacker, namely αB > αR, the
defender will occupy the network in the same fashion as in the above case.

– If the attacker and the defender are equally powerful, namely αR = αB, the
system state is in equilibrium. In other words, iB(t) = iB(0) and iR(t) =
iR(0) = 1− iB(0) for any t > 0.

The above model accommodates non-strategic attackers and non-strategic de-
fenders, and is the starting point for our study of optimal active cyber defense.

4 Optimal Control for Strategic Defender against
Non-strategic Attacker

4.1 Infinite-Time Horizon Optimal Control

In this setting, the non-strategic attacker R maintains a fixed degree of attack
power αR, while the defender B is strategic. That is, the strategic defender aims
to minimize its cost (specified below) by adjusting its defense power αB via

αB = b+ πB(a− b),

while obeying the dynamics of (1), where πB ∈ [0, 1] is the control variable and
αB ∈ [b, a] is the defender’s defense power with 1 ≥ a > b ≥ 0. The cost to the
defender consists of two parts.

– The recovery cost for recovering the compromised nodes to secure states
(e.g., re-installing the operating systems and updating the backup data files,
interference with the computers’ routine functions). We represent this cost by
fB(iB(t)) for some real-valued function fB(·). We assume f ′

B(·) < 0 because
the more nodes the defender occupies, the lower the cost for the defender to
recover the compromised nodes.

– The detection cost for detecting (or recognizing) compromised nodes via
active cyber defense, which partly depends on the attack’s evasiveness. We
represent this cost by kB ·πB(·), where kB is the normalization ratio between
the detection cost and the recovery cost, and πB(·) is the control function
that specifies the adjustable degree of active cyber defense power. This is
plausible because using more powerful active defense mechanisms (e.g., more
sophisticated/advanced “white” worms) causes a higher cost but allows the
defender to fight against the attacks more effectively.

The above definition of cost accommodates at least the following family of ac-
tive cyber defense: The defender uses “white” worms to detect the compromised
nodes, then possibly manually recovers the compromised nodes. This is perhaps
the most probable scenario because for example, the attacker’s malware may
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have corrupted or deleted some data files in the compromised computers. Note
that the detection cost highlights the difference between (i) active-cyber-defense
based detection, where the defender’s detection tools (i.e., “white” worms) do
not reside on the compromised computers, and (ii) reactive-cyber-defense based
detection such as the current generation of anti-virus software, where the detec-
tion tools do not spread over the network.

Assuming that the attacker maintains a fixed degree of attack power αR,
the defender’s optimization goal is to minimize the total cost with a constant
discount rate z over an infinite-time horizon, namely

inf
0≤πB(·)≤1

{
JB(πB(·)) =

∫ ∞

0

e−zt(fB(iB(t)) + kB · πB(t))dt

}
, (2)

where f ′
B(·) < 0, πB(·) ∈ [0, 1], and the attacker’s fixed degree of attack power αR

is treated as a constant. Now the optimization problem reduces to identifying
the optimal defense strategy π̂B. To solve the minimization problem, we use
Pontryagin’s Minimum Principle to find the Hamiltonian associated to (2):

HB(iB, πB , p)

= fB(iB) + kBπB + p[αBiB(1− iB)− αRiB(1− iB)]

= (kB + piB(1− iB)(a− b))πB + fB(iB) + pbiB(1 − iB)− pαRiB(1− iB),(3)

where p is the adjoint equation

{
ṗ = −∂HB

∂iB
+ zp = −f ′

B(iB) + p[z − (αB − αR)(1 − 2iB)]

p1(∞) = 0.
(4)

The optimal strategy π̂B is obtained by minimizing the Hamiltonian HB(iB,
πB, p). Since HB(iB, πB, p) is linear in πB, the optimal control strategy π̂B takes
the following bang-bang control form:

π̂B =

⎧⎪⎪⎨⎪⎪⎩
1 if ∂HB

∂πB
< 0

uB (0 < uB < 1, to be determined) if ∂HB

∂πB
= 0

0 if ∂HB

∂πB
> 0

(5)

where ∂HB

∂πB
= kB + piB(1 − iB)(a− b). In the singular form ∂HB

∂πB
= 0 and for a

period of time, we have

p =
−kB

iB(1− iB)(a− b)
. (6)
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Further differentiating ∂HB

∂πB
with respect to t, we have

d

dt

(
∂HB

∂πB

)
= ṗiB(1− iB)(a− b) + p(1− 2iB)i̇B(a− b)

= iB(1− iB)(a− b)

{
− f ′

B(iB) + p[z − (αB − αR)(1 − 2iB)]

}
+p(1− 2iB)(a− b)

{
αBiB(1− iB)− αRiB(1− iB)

}
= −iB(1 − iB)(a− b)f ′

B(iB)− kBz

Define FB(iB) = −iB(1 − iB)(a − b)f ′
B(iB) − kBz. Then we need to study the

roots of FB(·) = 0.
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Fig. 1. Illustration of the roots of FB(iB) = 0 with fB(iB) = 1−iB , a−b = 1 and kBz =
1/8, where the x-axis represents iB and the y-axis represents y(iB) = iB(1− iB)(a−b).
The arrows indicate the directions the outcome under optimal control will head for.

Before presenting the results, we discuss the ideas behind them. In this paper,
we focus on case fB(iB) = 1 − iB, which can be easily extended to any linear
recovery-cost function. If kBz < 1

4 (a− b), then FB(iB) = 0 has two roots:

i1 =
1−

√
1− 4kBz

a−b

2
and i2 =

1 +
√
1− 4kBz

a−b

2

with 0 < i1 < i2 < 1. As illustrated in Figure 1, this implies⎧⎨⎩
FB(iB) < 0 if iB < i1
FB(iB) > 0 if i1 < iB < i2
FB(iB) < 0 if iB > i2.

Then, the optimal strategy π̂B of the singular form can be obtained by solving
i̇B |iB=i1 or iB=i2= 0.
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Theorem 1. Suppose the non-strategic attacker maintains a fixed degree of at-
tack power αR, fB(iB) = 1− iB and kBz < 1

4 (a− b). Let i1 < i2 be the roots of

FB(iB) = 0. Let uB = αR−b
a−b . The optimal control strategy for defender B is:

π̂B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if iB < i1
uB if iB = i1
1 if i1 < iB < i2
uB if iB = i2
0 if iB > i2

. (7)

Proof of Theorem 1 is deferred to Appendix A. In practice, i1 and i2 can
be obtained numerically. Theorem 1 (also as illustrated in Figure 1) shows that
the outcome of the infinite-time horizon optimal control, namely limt→∞ iB(t),
depends on the initial system state iB(0) as follows:

– If 1 > iB(0) > i2, the defender should use the least powerful/costly active
defense mechanisms (i.e., αB = b) because π̂B = 0. Moreover, the outcome
of the optimal defense is that the defender will occupy i2 portion of the
network, namely limt→∞ iB(t) = i2. This suggests a sort of diminishing
returns in active cyber defense: It is more cost-effective to pursue “good
enough” security (i.e., limt→∞ iB(t) = i2 < 1) than to pursue “perfect”
security (i.e., limt→∞ iB(t) = 1) even if it is possible.

– If 0 = iB(0) < i1, the defender should use the least powerful/costly active
defense mechanisms (i.e., αB = b) because π̂B = 0. Moreover, the outcome
of the optimal defense is that the defender should give up (using active cyber
defense as the only defense methods), as the attacker will occupy the entire
network, namely limt→∞ iB(t) = 0. In other words, the defender should
resort to other defense methods as well (e.g., proactive defense).

– If iB(0) ∈ (i1, i2), the defender should use the most powerful/costly active
defense mechanisms (i.e., αB = a) because π̂B = 1. Moreover, the outcome
of the optimal defense is that the defender will occupy i2 portion of the
network, namely limt→∞ iB(t) = i2. This also suggests a sort of diminishing
returns mentioned above.

– If iB(0) = i1 or iB(0) = i2, the defender should adjust its deployment
of active cyber defense mechanisms according to uB = αR−b

a−b , which means
αB = αR. Moreover, the outcome of the optimal defense is that iB(t) = iB(0)
for all t > 0.

Now we consider the degenerated scenarios of kBz ≥ 1/4(a− b). The proof is
similar to, but much simpler than, the proof of Theorem 1, and thus omitted.

Theorem 2. Suppose the non-strategic attacker maintains a fixed degree of at-
tack power αR and fB(iB) = 1− iB.

– If kBz = 1/4(a− b), then FB(iB) = 0 has only one root, i1 = i2 = 1
2 . The

optimal control strategy is

π̂B =

⎧⎨⎩
0 if iB < i1
uB = αR−b

a−b if iB = i1
0 if iB > i1.

(8)
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– If kBz > 1/4(a − b), then FB(iB) = 0 has no root. The optimal control
strategy is π̂B = 0.

The cyber security implications of Theorem 2 are the following. In the case
kBz = 1

4 (a − b), the outcome under the optimal control depends on the initial
system state as follows:

– If 1 > iB(0) > i1, the defender should use the least powerful/costly active
cyber defense mechanisms because π̂B = 0. The outcome is that the defender
will occupy i1 portion of the network, namely limt→∞ iB(t) = i1.

– If 0 = iB(0) < i1, the defender should use the least powerful/costly active
cyber defense mechanisms because π̂B = 0. The outcome is that the defender
will give up using active cyber defense alone, as the attacker will occupy the
entire the network, namely limt→∞ iB(t) = 0. In other words, the defender
should resort to other defense methods as well (e.g., proactive defense).

– If iB(0) = i1, the defender will adjust its degree of active cyber defense power
according to π̂B = uB = αR−b

a−b , which means αB = αR. The outcome is that
iB(t) = iB(0) for all t > 0.

In the case kBz > 1/4(a− b), the defender should use the least powerful/costly
active cyber defense mechanisms because π̂B = 0. The outcome is that limt→∞ iB
(t) = 0, meaning that the defender should give up using active cyber defense
alone and resort to other defense methods as well (e.g., proactive defense).

By considering Theorems 1 and 2 together, we draw some deeper insights.
Specifically, for a given z, different kB’s suggest different optimal active defense
strategies. More specifically, if kB > 1

4z (a− b), meaning that the cost of optimal
control is dominating, then defender B should use the least powerful/costly
active cyber defense mechanisms because π̂B(t) = 0 for all t and the outcome is
limt→∞ iB = 0. In other words, the defender should give up using active cyber
defense alone, and resort to other kinds of defense methods as well (e.g., proactive
defense). If kB < 1

4z (a− b), meaning that the cost of control is not dominating,
the defender should enforce optimal control according to the initial state iB(0).
In particular, if kB = 0, meaning that the special case that the cost of control
is not counted, defender B should use the most powerful/costly active defense
mechanisms as π̂B(t) = 1 for all t, and the outcome is that limt→∞ iB = 1,
namely that the defender will occupy the entire network.

4.2 Fast Optimal Control for Strategic Defenders against
Non-strategic Attackers

Now we consider fast optimal control for strategic defenders against non-strategic
attackers, as motivated by the following question: Suppose the attacker maintains
a fixed degree of attack power αR and the defender initially occupies iB(0) =
i0 < ie portions of the nodes, how can the defender use optimal control to
occupy the desired ie portions of the nodes as soon as possible? More precisely,
the optimization is to minimize the sum of active defense cost and time (after
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appropriate normalization), which can be described by the following functional:

JF (πB(·)) = T + λ

∫ T

0

h(πB(t))dt

where h(·) is the cost function with respect to the control function πB(·). We
consider two scenarios of cost functions: linear and quadratic. In both scenarios,
we need to identify defender B’s optimal strategy with respect to the dynamics
of (1) and a given objective ie > i0 for some hitting time T that is to be identified.

Scenario I: Fast optimal control with linear cost functions. In this sce-
nario, we have h(πB) = πB . The optimization task is to minimize the active
defense cost plus the time T :

inf
0≤πB(·)≤1

{
JF (πB(·)) = T + λ

∫ T

0

πB(t)dt

}
(9)

subject to

⎧⎨⎩
diB(t)

dt = αBiB(t)(1 − iB(t))− αRiB(t)(1 − iB(t))
iB(0) = i0
iB(T ) = ie

where λ > 0 is the normalization ratio between the unit of time and the active
defense cost

∫ T

0
πB(t)dt, and i0 < ie. That is, λ, i0 and ie are given, but T is

free. Note that the active defense cost
∫ T

0
πB(t)dt includes both detection and

recovery cost, where πB(t) is the control function.

Theorem 3. The solution to the fast optimal control problem (9) is

(π∗
B , T

∗) = (1, T1), (10)

where T1 = 1
a−αR

ln
(

ie
1−ie

1−i0
i0

)
.

Proof of Theorem 3 is deferred to Appendix B. The cyber security implication
of Theorem 3 is the following. In order to achieve fast optimal control, the
defender should use the most powerful/costly active cyber defense mechanisms,
namely πB(t) = 1 for t < T ∗, until the system state becomes iB(T

∗) = ie at time
T ∗. After time T ∗, if the defender continues enforcing πB(t) = 1 for t > T ∗, then
limt→∞ iB(t) = 1, meaning that the defender will occupy the entire network.

Scenario II: Fast optimal control with quadratic cost functions. In this
scenario, we have h(πB) = π2

B . The optimization task is to minimize the following
sum of active defense cost and time, which differs from the linear cost (9) in that
the cost function πB is replaced with cost function π2

B:

inf
0≤πB(·)≤1

{
JF (πB(·)) = T + λ

∫ T

0

π2
B(t)dt

}
(11)

subject to

⎧⎨⎩
diB(t)

dt = αBiB(t)(1 − iB(t))− αRiB(t)(1 − iB(t))
iB(0) = i0
iB(T ) = ie
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where λ > 0 is the ratio between the unit of time and the active defense cost∫ T

0
π2
B(t)dt (including both recovery cost and detection cost), and i0 < ie. That

is, λ, i0 and ie are given, but T is free.

Theorem 4. The solution to the fast optimal control problem (11) is

(π∗∗
B , T ∗∗) =

{
(u∗, T2), if λ ≥ a−b

a+b−2αR
and a− b > 2(αR − b),

(1, T3), otherwise
(12)

where

u∗ =
αR − b

a− b
+

√(b− αR

a− b

)2

+
1

λ
,

T2 =
1

b+ (a− b)u∗ − αR
ln

(
ie

1− ie

1− i0
i0

)
,

T3 =
1

a− αR
ln

(
ie

1− ie

1− i0
i0

)
.

Proof of Theorem 4 is deferred to Appendix C. It cyber security implication is:
Unlike in the setting of linear cost function (Theorem 3), the defender should not
necessarily enforce the most powerful/costly active cyber defense mechanisms as
π∗∗
B is not always equal to 1. If the defender continues enforcing πB(t) = 1 for

t > T ∗∗ after the system reaches state iB(T
∗∗) = ie at time T ∗∗, the defender

will occupy the entire network, namely limt→∞ iB(t) = 1.

5 Nash Equilibria for Strategic Attacker and Defender

Now we ask the question: What if the attacker is also strategic? Analogous to the
way of modeling strategic defenders, we assume αR ∈ [b, a]. (It is straightforward
to extend the current setting αB , αR ∈ [b, a] to the setting αB ∈ [bB, aB] and
αR ∈ [bR, aR].) A strategic attacker can adjust its attack power

αR = b+ πR(a− b),

via control variable πR(·) ∈ [0, 1]. That is, the attacker can launch more sophis-
ticated attacks (i.e., greater πR leading to greater αR), which however incurs
higher cost (e.g., the investment for obtaining more powerful attack tools).

Since both the defender and the attacker are strategic, we naturally consider
a game-theoretic model. Specifically, the defender B’s optimization task is

φB(iB) = inf
0≤πB(·)≤1

{
JB(πB(·), πR(·)) =

∫ ∞

0

e−zt(fB(iB(t)) + kB · πB(iB(t)))dt

}
,

and the attacker R’s optimization task is

φR(iB) = inf
0≤πR(·)≤1

{
JR(πB(·), πR(·)) =

∫ ∞

0

e−zt(fR(iB(t)) + kR · πR(iB(t)))dt

}
,



Optimizing Active Cyber Defense 217

where πB(·), πR(·) ∈ [0, 1], f ′
B(·) < 0 (as in the infinite-time horizon optimal

control case investigated above), f ′
R(·) > 0 because fR(iB(t)) represents the

maintenance cost to the attacker, kR is the normalization ratio between the at-
tacker’s maintenance cost and penetration cost (which depends on the capability
of the attack tools), and kR · πR(·) is the penetration cost. Note that f ′

R(·) > 0
is relevant because the attacker may need to conduct some costly (or risky)
activities after “grabbing” a node from the defender (e.g., downloading attack
payloads from some remote server, while this downloading operation may in-
crease the chance that the compromised node is detected by active defense).
Since f ′

R(·) > 0 implies dfR/diR < 0, the attacker’s optimization task for πR is
in parallel to the optimization for πB. The Hamiltonians associated to defender
B’s and attacker R’s optimization problems are:

HB(iB, πB(iB), πR(iB), p1)

= fB(iB) + kBπB + p1[αBiB(1− iB)− αRiB(1− iB)]

= (kB + p1iB(1− iB)(a− b))πB + fB(iB) + p1biB(1− iB)− p1αRiB(1− iB);

HR(iB, πB(iB), πR(iB), p2)

= fR(iB) + kRπR + p2[αBiB(1− iB)− αRiB(1− iB)]

= (kR − p2iB(1− iB)(a− b))πR + fR(iB) + p2αBiB(1− iB)− p2biB(1 − iB).

The adjoint equation is⎧⎪⎪⎨⎪⎪⎩
ṗ1 = −∂HB

∂iB
+ zp1 = −f ′

B(iB) + p1[z − (αB − αR)(1 − 2iB)]

p1(∞) = 0

ṗ2 = −∂HR

∂iB
+ zp2 = −f ′

R(iB) + p2[z − (αB − αR)(1− 2iB)]

p2(∞) = 0.

Theorem 5. Suppose fB(iB) = 1− iB, fR(iB) = iB. Then, the Nash equilibria
under various scenarios are listed in Table 1, where FB(iB) = −iB(1 − iB)(a−
b)f ′

B(iB)− kBz and FR(iB) = iB(1− iB)(a− b)f ′
R(iB)− kRz.

Proof of Theorem 5 is similar to the proof of Theorem 1 and omitted due
to space limitation. Its cyber security implication is: The outcome of playing
the Nash equilibrium strategies also depends on the initial system state and
the relationship between kB and kR. As illustrated in Figure 2, if kB < kR with
kRz < 1

4 (a−b), meaning that the attacker is more concerned with its control cost
(e.g., reluctant to use/expose its advanced attack tools such as zero-day exploits)
than the defender, then FB(iB) = 0 has two roots i1, i2 and FR(iB) = 0 has two
roots i3, i4. Then, we have i1 < i3 < i4 < i2 (the only possibility under the given
conditions). Therefore, the outcomes under the Nash equilibrium strategies are
summarized as follows:

– If iB(0) < i1, then iB(t) = iB(0) and iR(t) = iR(0) for all t > 0 because
π̂B = π̂R = 0 are the Nash equilibrium strategies.

– If i3 > iB(0) > i1, then π̂B = 1 and π̂R = 0 until iB = i3, which implies that
iB(t) strictly increases until iB = i3. When iB(t) = i3 at some point in time
t = t1, π̂B = π̂R = 1 implies iB(t) = i3 for t > t1.
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Table 1. Nash equilibrium strategies for defender and attacker in various cases

kB kR Roots of FB(iB) = 0 Roots of FR(iB) = 0 Nash equilibria

kBz < 1
4 (a − b) kRz < 1

4 (a − b) 0 < i1 < i2 < 1 0 < i3 < i4 < 1

π̂B =

⎧⎨
⎩

0 if iB(0) ≤ i1
1 if i1 < iB(0) < i2
0 if iB(0) ≥ i2

π̂R =

⎧⎨
⎩

0 if iB(0) < i3
1 if i3 ≤ iB(0) ≤ i4
0 if iB(0) > i4

kBz < 1
4 (a − b) kRz = 1

4 (a − b) 0 < i1 < i2 < 1 i3 = i4 = 1
2

π̂B =

⎧⎨
⎩

0 if iB(0) ≤ i1
1 if i1 < iB(0) < i2
0 if iB(0) ≥ i2

π̂R =

⎧⎨
⎩

0 if iB(0) < i3
1 if iB(0) = i3
0 if iB(0) > i3

kBz < 1
4 (a − b) kRz > 1

4 (a − b) 0 < i1 < i2 < 1 No real-valued roots
π̂B =

⎧⎨
⎩

0 if iB(0) ≤ i1
1 if i1 < iB(0) < i2
0 if iB(0) ≥ i2

π̂R = 0

kBz = 1
4 (a − b) kRz < 1

4 (a − b) 0 < i1 = i2 = 1
2 0 < i3 < i4 < 1

π̂B =

⎧⎨
⎩

0 if iB(0) < i1
1 if iB(0) = i1
0 if iB(0) > i2

π̂R =

⎧⎨
⎩

0 if iB(0) ≤ i3
1 if i3 < iB(0) < i4
0 if iB(0) ≥ i4

kBz = 1
4 (a − b) kRz = 1

4 (a − b) 0 < i1 = i2 = 1
2 i3 = i4 = 1

2

π̂B =

⎧⎨
⎩

0 if iB(0) < i1
πR if iB(0) = i1
0 if iB(0) > i2

π̂R =

⎧⎨
⎩

0 if iB(0) < i3
πB if iB(0) = i3
0 if iB(0) > i3

kBz = 1
4 (a − b) kRz > 1

4 (a − b) 0 < i1 = i2 = 1
2 No real-valued roots π̂B = 0, π̂R = 0

kBz > 1
4 (a − b) kRz < 1

4 (a − b) No real-valued roots 0 < i3 < i4 < 1

π̂B = 0

π̂R =

⎧⎨
⎩

0 if iB(0) ≤ i3
1 if i3 < iB(0) < i4
0 if iB(0) ≥ i4

kBz > 1
4 (a − b) kRz = 1

4 (a − b) No real-valued roots i3 = i4 = 1
2

π̂B = 0, π̂R = 0

kBz > 1
4 (a − b) kRz > 1

4 (a − b) No real-valued roots No real-valued roots π̂B = 0, π̂R = 0
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Fig. 2. Illustration of the roots of FB(iB) = 0 with fB(iB) = 1− iB , and the roots of
FR(iB) = 0 with fR(iB) = iB , where a− b = 1, kBz = 1/8 and kRz = 1/6. The x-axis
represents iB and the y-axis represents y(iB) = iB(1 − iB)(a − b). Arrows indicate
the directions the outcome under the Nash equilibrium heads for. Black-colored bars
indicate that the trajectory under the Nash equilibrium stays static.
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– If i4 > iB(0) > i3, then iB(t) = iB(0) and iR(t) = iR(0) for all t > 0 because
π̂B = π̂R = 1.

– If i2 > iB(0) > i4, then π̂B = 1 and π̂R = 0 until iB = i2, which implies that
iB(t) strictly increases until iB = i2. When iB(t) = i2 at some point in time
t = t2, π̂B = π̂R = 1 implies iB(t) = i3 for t > t2.

– If iB(0) > i2, then iB(t) = iB(0) and iR(t) = iR(0) for all t > 0 because
π̂B = π̂R = 1.

If kR > 1
4 (a − b) > kB, meaning that the attacker is extremely concerned

with its control cost (e.g., not willing to easily use/expose its advanced attack
tools such as zero-day exploits) but the defender is not, then it always holds
that π̂R = 0 because FR(iB) = 0 has no root but FB(iB) = 0 has two roots
i1 < i2. From Table 1, we see that limt→∞ iB(t) = 1 always holds, namely that
the attacker gives up using its advanced attack tools.

If both kB > 1
4 (a− b) and kR > 1

4 (a− b), meaning that both the defender and
the attacker are extremely concerned with their control costs (i.e., neither the
defender wants to easily use/expose its advanced active defense tools, nor the
attacker wants to use/expose its advanced attack tools such as zero-day exploits),
then it always holds that π̂B = π̂R = 0 because FB(iB) = 0 and FR(iB) = 0
have no real-valued roots. As a result, iB(t) = iB(0) for any t > 0.

The scenarios that one or both FB(iB) = 0 and FR(iB) = 0 have one root can
be regarded as degenerated cases of the above. Moreover, the cases of kB > kR
(i.e., the defender is more concerned about its control cost, such as not willing
to easily use/expose its advanced active defense tools), the outcomes under the
Nash equilibria can be derived analogously.

6 Conclusion

We have investigated how to optimize active cyber defense, by presenting opti-
mal control solutions for strategic defenders against non-strategic attackers, and
identifying Nash equilibrium strategies for strategic defenders and attackers. We
have discussed the cyber security implications of the theoretic results.

This paper brings interesting problems for future research. First, it is inter-
esting to extend the models to accommodate nonlinear fB(·) and fR(·). Second,
the models are geared toward active cyber defense. A comprehensive defense
solution, as hinted in our analysis, should require the optimal integration of re-
active, active, and proactive cyber defense. Therefore, we need to extend the
models to accommodate reactive defense and proactive cyber defense. Moreover,
it is interesting to investigate how to extend the models to accommodate moving
target defense, which has not be systematically evaluated yet [7]. Third, how to
extend the models to accommodate the underlying network structures?
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A Proof of Theorem 1

Proof. By the Dynamic Programming (DP) argument [3], we know that defender
B’s value function of the optimal solution can be defined as:

φ(iB) = inf
0≤πB(·)≤1

{
JB(πB(·)) =

∫ ∞

0

e−zt(fB(iB(t)) + kB · πB(t))dt

}
. (13)

This leads to the following Bellman equation:

zφ(iB) = inf
0≤πB(·)≤1

{
fB(iB) + kBπB(t) + φ′(iB)[αBiB(1− iB)− αRiB(1− iB)]

}
= inf

0≤πB(·)≤1
HB(iB, πB(t), φ

′(iB))

= inf
0≤πB(·)≤1

HB(iB, πB(t), p), where p = φ′(iB). (14)

From (5), we know that the optimal strategy π̂B takes the form:

π̂B = 1kB+piB(1−iB)(a−b)<0 + uB1kB+piB(1−iB)(a−b)=0, (15)

where 1 is the indicator function. The infimum of Hamiltonian (3) is:

inf
0≤πB(·)≤1

HB(iB , πB, p)

= fB(iB) + [kB + piB(1− iB)(a− b)]1kB+piB(1−iB)(a−b)<0 + p(b− αR)iB(1− iB).

Hence, we have

zφ(iB)

= fB(iB) + [kB + piB(1− iB)(a− b)]1kB+piB(1−iB)(a−b)<0 + p(b− αR)iB(1− iB)

= fB(iB) + [kB + φ′(iB)iB(1− iB)(a− b)]1kB+φ′(iB)iB(1−iB)(a−b)<0 +

φ′(iB)(b− αR)iB(1− iB). (16)

Let y(iB) = kB +φ′(iB)iB(1− iB)(a− b). In what follows, we are to verify that
(7) satisfies (15) with φ(iB) defined by (16), which means that (7) minimizes the
Hamiltonian in the term of (13). This completes the proof.

In order to verify that (7) satisfies (15) with φ(iB) defined by (16), we differ-
entiate (16) with respect to iB to obtain

[(b− αR) + (a− b)1y<0]iB(1− iB)y
′ − zy − FB(iB) = 0, (17)

which can be rewritten as

y′ − z

[(b− αR) + (a− b)1y<0]iB(1− iB)
y − FB(iB)

[(b− αR) + (a− b)1y<0]iB(1− iB)
= 0.

(18)

If kB + φ′(iB)iB(1− iB)(a− b) < 0 namely y(iB) < 0, (18) should be

d

dx

[
y(x)e

−
∫

x
0

z
(a−αR)ξ(1−ξ)

dξ

]
− FB(x)

(a− αR)x(1 − x)
e
−

∫
x
0

z
(a−αR)ξ(1−ξ)

dξ
= 0. (19)
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If kB + φ′(iB)iB(1− iB)(a− b) > 0 namely y(iB) > 0, (18) should be:

d

dx

[
y(x)e

∫
1
x

z
(b−αR)ξ(1−ξ)

dξ

]
− FB(x)

(b − αR)x(1 − x)
e
∫

1
x

z
(b−αR)ξ(1−ξ)

dξ
= 0. (20)

Therefore, we only need to prove that the optimal defense strategy (7) satisfies
(17), namely (19) or (20). The proof is split into cases, depending on x residing
in interval (i2, 1) or (0, i1) or (i1, i2), or x = i1, or x = i2.
Case 1: i2 < x < 1. By (20), we have

y(x)e
∫ 1
x

z
(b−αR)ξ(1−ξ)dξ −

∫ x

i2

FB(ζ)

(b − αR)ζ(1 − ζ)
e
∫ 1
ζ

z
(b−αR)ξ(1−ξ)dξdζ = 0.

Hence, we have

y(x) =

∫ x

i2

FB(ζ)

(b− αR)ζ(1 − ζ)
e
∫ x
ζ

z
(b−αR)ξ(1−ξ)dξdζ. (21)

Since iB > i2, we have y(x) > 0. Therefore, we have π̂B = 0 for iB ∈ (i2, 1).
Case 2: 0 < x < i1. By (20), we have

y(x)e
−

∫
x
0

z
(b−αR)ξ(1−ξ)

dξ −
∫ x

i1

FB(ζ)

(b− αR)ζ(1 − ζ)
e
−

∫
ζ
0

z
(b−αR)ξ(1−ξ)

dξ
dζ = 0.

Hence,

y(x) =

∫ x

0

FB(ζ)

(b − αR)ζ(1 − ζ)
e
∫

x
ζ

z
(b−αR)ξ(1−ξ)

dξ
dζ + kBe

∫
x
0

z
(b−αR)ξ(1−ξ)

dξ

=kB −
∫ x

0

a− b

b− αR
f ′
B(ζ)e

∫ x
ζ

z
(b−αR)ξ(1−ξ)

dξ
dζ (22)

Since iB < i1, we have y(x) > 0. Therefore we have π̂B = 0 for iB ∈ (0, i1).
Case 3: i1 < x < i2. By (19), we have

y(x)e
∫

1
x

z
(a−αR)ξ(1−ξ)

dξ −
∫ x

i2

FB(ζ)

(a− αR)ζ(1− ζ)
e
∫

1
ζ

z
(a−αR)ξ(1−ξ)

dξ
dζ = 0.

Hence

y(x) =

∫ x

i2

FB(ζ)

(a− αR)ζ(1 − ζ)
e
∫

x
ζ

z
(a−αR)ξ(1−ξ)

dξ
dζ. (23)

Since iB ∈ (i1, i2), we have y(x) < 0. This implies π̂B = 1.
Cases 4 & 5: x = i1 or x = i2. By (21,22,23), we have y(x) = 0. If x = i1 or

x = i2, we can derive φ′(iB) =
−kB

i∗(1−i∗)(a−b) from the definition of y(·). According

to (16), we have: zφ(i∗) = fB(i
∗) + kB

αR−b
a−b . Differentiating with respect to i∗,

we have −i∗(1 − i∗)(a − b)f ′
B(i

∗) − kBz = FB(i
∗) = 0. Consider the singular

form iB(t) = i∗ for a period of time. We obtain that i̇B |iB=i∗= 0 and thus
π̂B = uB = αR−b

a−b , where i∗ = i1 or i∗ = i2. 
�
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B Proof of Theorem 3

Proof. To solve the minimization problem, we formulate the current value Hamil-
tonian associated with (9):

HF (iB, πB, q) = λπB + q(αB − αR)iB(1− iB)

= [λ+ q(a− b)iB(1− iB)]πB + q(b − αR)iB(1 − iB).

The adjoint equation is q̇ = −∂HF

∂iB
= −q(αB −αR)(1− 2iB), with the boundary

condition

HF (i
∗
B(T

∗), π∗
B(T

∗), q(T ∗)) + 1 = 0, (24)

where T ∗ denotes the optimal hitting time that iB(T
∗) = ie, π

∗
B(·) denotes the

optimal feedback control, and i∗B(·) denotes the corresponding trajectory.
The optimal control π∗

B is obtained by minimizing Hamiltonian HF (iB, πB, q).
Since HF (iB, πB , q) is linear in πB , the optimal control π∗

B takes the following
bang-bang form:

π∗
B =

⎧⎪⎪⎨⎪⎪⎩
1 if ∂HF

∂πB
< 0

u∗
B (0 < u∗

B < 1, to be determined) if ∂HF

∂πF
= 0

0 if ∂HF

∂πB
> 0

where ∂HF

∂πB
= λ+ q(a− b)iB(1− iB). From (24), there are two possibilities: (i).

If ∂HF

∂πB
≥ 0, then 0 = b−αR

a−b (∂HF

∂πB
− λ) + 1, which implies ∂HF

∂πB
= a−b

αR−b + λ is a

positive constant. (ii). If ∂HF

∂πB
< 0, then 0 = ∂HF

∂πB
+ b−αR

a−b (∂HF

∂πB
− λ) + 1, which

implies ∂HF

∂πB
= a−b

a−αR

[
b−αR

a−b λ − 1
]
is a negative constant. It can be seen that

only under the above (ii), the constraint iB(T ) = ie can be obtained for some T .
Then, the solution to the optimal fast control should be πB(t) = 1 for all time.
So (π∗

B , T
∗) = (1, T1), where T1 satisfies

iB(T1) =
i0

1−i0
e(a−αR)T1

1 + i0
1−i0

e(a−αR)T1
= ie,

that is, T1 = 1
a−αR

ln
(

ie
1−ie

1−i0
i0

)
. This completes the proof. 
�

C Proof of Theorem 4

Proof. To solve the optimization problem, we formulate the current value Hamil-
tonian associated with (11):

HF (iB, πB, q) = λπ2
B + q(αB − αR)iB(1− iB)

= λπ2
B + q(a− b)iB(1 − iB)πB + q(b− αR)iB(1− iB).
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The adjoint equation is q̇ = −∂HF

∂iB
= −q(αB − αR)(1− 2iB), and the boundary

condition is
HF (iB(T

∗∗), π∗∗
B (T ∗∗), q(T ∗∗)) + 1 = 0, (25)

where T ∗∗ denotes the optimal final time, π∗∗
B (·) denotes the optimal feedback

control, iB(·) denotes the corresponding trajectory, and iB(T
∗∗) = ie. Let D =

q(a− b)iB(T
∗∗)(1− iB(T

∗∗)). From (25) we have

HF (iB(T
∗∗), π∗∗

B (T ∗∗), q(T ∗∗)) + 1 = λ(π∗∗
B )2 +Dπ∗∗

B +
b− αR

a− b
D+1 = 0. (26)

The optimal control, π∗∗
B , is obtained by minimizing the Hamiltonian HF (iB,

πB, q). Because the Hamiltonian HF (iB, πB , q) is quadratic in πB , the optimal
control, π∗∗

B , takes the following form:

π∗∗
B =

⎧⎪⎪⎨⎪⎪⎩
1 if − D

2λ > 1

− D
2λ (0 < u∗

B < 1, to be determined) if 0 ≤ − D
2λ ≤ 1

0 if − D
2λ < 0.

From (26), we know there are three possibilities. (i). If − D
2λ < 0, then 0 =

b−αR

a−b D + 1, namely that D = a−b
αR−b is a positive constant. (ii) If − D

2λ > 1, then

0 = b−αR

a−b D + 1, namely that D = − a−b
a−αR

(λ + 1) is also a constant. Note that

D < −2λ if and only if a − b ≤ 2(αR − b), or if and only if λ < a−b
a+b−2αR

and

a− b > 2(αR − b). (iii). If 0 ≤ − D
2λ ≤ 1, then

0 = λ

(
−D

2λ

)2

− 2λ

(
−D

2λ

)2

− b − αR

a− b
2λ

(
−D

2λ

)
+ 1,

namely that

D = 2
b− αR

a− b
λ−

√
4
(b− αR

a− b
λ
)2

+ 4λ

is a constant. Note that − D
2λ ∈ (0, 1) if and only if λ ≥ a−b

a+b−2αR
and a − b >

2(αR − b).
In term of minimizing the Hamiltonian HF under the above case (i), we have

π∗∗
B = 0 for all time, which is impossible to obtain iB(T ) = ie; under the above

case (ii), we have π∗∗
B = 1 for all time; under the above case (iii), we have

π∗∗
B = D

−2λ for all time. To sum up, we have

(π∗∗
B , T ∗∗) =

{
(u∗, T2) if λ ≥ a−b

a+b−2αR
and a− b > 2(αR − b)

(1, T3) otherwise
(27)

where u∗ = D
−2λ = αR−b

a−b +

√(
b−αR

a−b

)2

+ 1
λ , and T2 and T3 satisfy

iB(T2) =
i0

1−i0
e(b+(a−b)u∗−αR)T2

1 + i0
1−i0

e(b+(a−b)u∗−αR)T2
= ie, iB(T3) =

i0
1−i0

e(a−αR)T3

1 + i0
1−i0

e(a−αR)T3
= ie,

respectively. This completes the proof. 
�
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Abstract. In this work, we build upon previous results to strengthen
the equilibrium concept for rational multiparty computation. We con-
sider only rational players, acting to maximize their utility functions.
We consider extensive form dynamic games of imperfect information,
using a computational variant of perfect Bayesian equilibrium as the so-
lution concept. We argue that the perfect Bayesian equilibrium is a more
appropriate solution concept for multiparty computation, as in crypto-
graphic protocols information is often imperfect by design. Further, the
perfect Bayesian equilibrium concept is able to address dynamic games,
where players move sequentially rather than simultaneously. By consider-
ing players that move sequentially, we are able to remove the assumption
of a broadcast channel. Finally, we give novel definitions of privacy, cor-
rectness and fairness solely in terms of game theoretic constructs.

Keywords: Rational Multiparty Computation, Rational Secret Shar-
ing, Perfect Bayesian Equilibrium, Non-Cooperative Computation.

1 Introduction

A recent focus of the cryptographic literature has been to formulate a frame-
work for analyzing the security of protocols from a game theoretic perspective.
The notion of rational multi-party computation considers only a single class of
players: those that are rational, seeking to maximize their utility functions. A
survey of the intersection of cryptography and game theory is given by Katz [1].

Most previous work towards a general game theoretic framework for reason-
ing about security in rational multiparty computation has been limited to those
functions that are non-cooperatively computable (NCC), as defined by Shoham
et al. [2]. In addition to being restricted to NCC, most existing work uses com-
putational variants of Nash, Correlated or Bayesian equilibrium [3–6] as the
solution concept for games. The exception is work by Gradwohl et al. [7] where
the authors consider a relaxed version of computational sequential rationality
that removes non-credible threats, called threat-free Nash equilibrium. Halpern
[8] discusses many of the problems inherent to the equilibrium concepts that
have been proposed for rational multiparty computation, such as the necessity
of providing a model for the computational costs imposed on players and the
fact that cryptographic protocols typically are not simultaneous interactions.

S.K. Das, C. Nita-Rotaru, andM.Kantarcioglu (Eds.): GameSec 2013, LNCS 8252, pp. 226–245, 2013.
c© Springer International Publishing Switzerland 2013
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We argue that the notion of perfect Bayesian equilibrium (PBE), a solution con-
cept for extensive form dynamic games of imperfect information, is preferable
for modeling cryptographic protocols. As players commonly cannot observe the
moves made by others in cryptographic protocols, PBE offers a natural method
for modeling this uncertainty. Further, it formally models observable actions and
auxiliary information available to players that affects their strategy selection.

The goal of a rational multiparty computation framework is to relax the re-
quirements of the malicious and semi-honest models in secure multiparty com-
putation. The malicious model must protect against all deviations from the
protocol specification, including actions that do not give an adversary an advan-
tage. Protocols secure in the semi-honest model achieve greater efficiency, but
suffer from the strong assumption that parties will not deviate from the protocol
even if they benefit from doing so. As we describe in Section 5, our framework
requires only that parties follow the protocol if such action constitutes rational
behavior. We argue that the assumption of rationality is more plausible than the
blind obedience required in the semi-honest model, and the resulting protocols
will be more efficient than their malicious model counterparts at the expense
of preventing arbitrary (i.e., non-rational) actions. Perhaps most critically, even
protocols secure under the malicious model do not prevent a party from lying
about their input. Rational behavior provides a means to incorporate this into
the discussion, ensuring that results reflect the true data.

Our goal in this work is to give a framework for rational multiparty compu-
tation that models the asymmetry of information available to players in cryp-
tographic protocols, as well as how players update their strategies dynamically
throughout the interaction. We will first review existing work applying game the-
ory to cryptographic protocols. Section 3 discusses limitations with prior work,
using the rational secret sharing problem to illustrate that existing approaches
do not fully model information asymmetry or how players update their beliefs
in response to new information. We argue that modeling imperfect information,
beliefs about the game state, and non-credible threats are desirable qualities of
a candidate equilibrium concept for rational multiparty computation. Section
4 illustrates the deficiencies in equilibrium concepts employed in existing work,
and motivates our choice of perfect Bayesian equilibrium as the solution concept
for our framework. We finally present our new game theoretic framework for
analyzing cryptographic protocol in Section 5, which models both the asymme-
try of information available to players, as well as allowing players’ strategies to
be updated dynamically throughout the protocol. We give novel definitions cap-
turing the cryptographic concepts of privacy, correctness and fairness in terms
of game theoretic constructs and prove the necessary and sufficient conditions
under which they hold.

2 Related Work

The impetus for this work is largely due to a recent survey by Katz describing
ongoing research into potential links between cryptographic and game theoretic
notions [1]. Halpern and Teague study rational multiparty computation under
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the assumptions of correctness and exclusivity [5]. They show the impossibility of
secret sharing and general multiparty computation for any deterministic mech-
anism under these assumptions. However, they give randomized algorithms that
terminate in expected constant time for both problems, and show that they sat-
isfy their framework. Kol and Naor expand on the work of Halpern and Teague
to give protocols that are not susceptible to backward induction, even in the pres-
ence of exponentially many iterations [9]. These solutions assume the existence
of a broadcast channel, and they give solutions for both the non-simultaneous
and simultaneous cases. The authors choose the notion of a computational Nash
equilibrium, and leave extensions to subgame perfection open. We argue that
even the extension to subgame perfection is inadequate, as it assumes players
are aware of the moves made by others. Limiting the information players gain
through a cryptographic protocol is of critical importance, so the equilibrium
concept should not require that players’ moves are always observed. Instead, we
consider extensive form dynamic games of imperfect information, where players’
information sets are not guaranteed to be singleton nodes (e.g., not all moves are
observed) and players move sequentially rather than simultaneously, removing
reliance on a broadcast channel. In this setting, we can model both the inher-
ent asymmetry of information available to players, as well as model dynamic
strategies that change throughout the game, rather than being fixed prior to the
interaction. Nojoumian et al. [10] introduced socio-rational secret sharing, where
rational and malicious players engage in the same protocol more than once. A
public trust network is assumed, which stores a player’s believed honesty based
on past protocol interactions. We go beyond this model by modeling all players
as rational, rather than creating a separate class of malicious players. Further,
we do not assume the existence of a public trust network, nor do we assume that
players necessarily value future interaction.

The most complete game theoretic framework to date was given by Halpern
et al. [11]. They consider how agents play games when computation has an as-
sociated cost and affects agents’ utility functions directly. The authors formalize
the notion of a computational Nash equilibrium, and demonstrate that mixed
computational Nash equilibria are guaranteed to exist for the set of computa-
tional games where randomization is free. However, the framework considers only
Bayesian games of perfect information. Bayesian Nash equilibrium can result in
implausible equilibria, as it does not exclude non-credible threats. In the setting
of cryptography, threatening to break the underlying cryptosystem would con-
stitute a non-credible threat for a player bound to probabilistic polynomial time
(PPT), despite the action’s optimality for an unbounded player. We build on
their framework to provide a computational model of extensive form dynamic
games of imperfect information, and consider an equilibrium concept designed
to handle non-credible threats.

The most complete framework from a cryptographic perspective that inte-
grates game theoretic concepts was given by Groce et al. [12], which builds
on the framework by Asharov et al. [3]. Asharov et al. demonstrate how stan-
dard cryptographic notions of security can be framed in a game theoretic view
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when considering malicious fail-stop adversaries. The authors demonstrate that
privacy, correctness and fairness can be met using a game theoretic simulation-
based framework. However, the framework only considers computational Nash
equilibrium in extensive-form games of perfect information. We argue that a
computational variant of PBE is preferable for constructing cryptographic pro-
tocols in a game theoretic framework, where players may not know the actions
of other players when their computational abilities are bounded. The authors
limit a player’s strategy set to {σcontinue, σabort}, where at each node to follow
σcontinue requires following the protocol specified by the mechanism designer pre-
cisely. From this the authors argue that non-credible threats in fail-stop games
are meaningless, as a party that aborts cannot be punished. The work of Groce
et al. [12] demonstrates that fairness can be achieved for a much broader class
of utility functions than those specified by Asharov et al. [3]. Further, Groce
et al. consider the byzantine case, where deviations are not limited to the fail-
stop model. However, the equilibrium concept considered by Groce et al., namely
Bayesian strict Nash equilibrium, does not explicitly model players’ beliefs about
the game state. Rather, this concept captures only uncertainty about the types
of the other players. However, the players’ beliefs about the current game state
are modeled exogenously in Groce et al.’s setting. In cryptographic settings, a
player’s uncertainty about the current state is of critical importance, and we
demonstrate the shortcomings of other equilibria concepts in Section 3. Our
framework builds directly on Asharov et al.’s work, and as in Groce et al.’s set-
ting, we allow for arbitrary deviation from the protocol beyond simple aborts.

3 Motivation

We motivate our approach by demonstrating cryptographic interactions where
players’ information is imperfect, and their beliefs must be formally modeled.
Specifically, at the end of this section we show that a simple change to the
rational secret sharing protocol of Groce et al. [12] results in a protocol where
a rational player would cheat, but existing work incorrectly predicts the player
behaves honestly. We first introduce the necessary background and notation from
game theory1.

Cryptographic protocols proceed in a series of rounds, where at each round
some subset of the parties select and play an action. Game theory models such
interactions as extensive form dynamic games, where players move sequentially
through a series of rounds, rather than normal form strategic games that model
a single simultaneous interaction.

Imperfect Information. The information available to a player in a crypto-
graphic protocol is of critical importance. The notion of computational security

1 For a proper introduction to the subject, Katz [1] describes the current effort to
combine game theoretic and cryptographic concepts, while Osborne et al. [13] and
Fudenberg et al. [14] give a complete introduction to game theory.
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relies on the fact that players can be modeled as asymptotically bounded algo-
rithms, and are only able to gain certain information with negligible probability.
Consider for instance the ciphertext indistinguishability (IND-CPA) game [15].
In this game, an adversary A bound to probabilistic polynomial time (PPT) has
two plaintext messages {m0,m1 : |m0| = |m1|}, and the challenger C has an
asymmetric key pair {EC , DC} from a public key cryptosystem. C publicizes EC ,
and A performs up to polynomially many encryptions before sending {m0,m1}
to C. C selects a bit b ∈ {0, 1} uniformly at random, and returns EC(mb) to
A. After performing at most polynomially many operations, A outputs a guess
b′ ∈ {0, 1}, and succeeds when b′ = b. The cryptosystem is said to be IND-CPA
secure if, for all PPT adversaries A

|Pr[A(EC(mb)) = 1]− Pr[A(EC(m1−b)) = 1]| ≤ ε(λ)

where ε(·) is a negligible function and λ is the security parameter. Clearly this
property reflects the inability of a computationally bounded adversary to distin-
guish between two cases. From a game theoretic perspective, we argue that this
lack of knowledge is properly modeled as an extensive form dynamic game of
imperfect2 information. When some player p0 does not observe a previous action
by another player p1, we say that the game has imperfect information and p0’s
information set is non-singleton. That is, p0 only knows that p1 has moved, and
does not know which action was played.

In the IND-CPA ciphertext indistinguishability game, A has imperfect infor-
mation as it does not observe C’s action b  → {0, 1}. Thus, C’s information set
contains both the left (b  → 0) and right (b  → 1) nodes of the game tree Γ under
the assumption that C is bound to PPT. Current rational multiparty computa-
tion frameworks consider solution concepts that require perfect information, and
do not formally model players’ information and beliefs. For instance, if A had
some auxiliary information (e.g., C’s random seed), it may be able to predict C’s
choice for b with probability non-negligibly greater than 1

2 . Thus, any solution
concept must explicitly model the fact that moves in cryptographic interactions
are frequently unobserved, and also that players may have auxiliary information
or beliefs that influence their strategy selection.

Updating Beliefs. Players typically update their beliefs throughout crypto-
graphic protocols based on observed events. Consider the case of interactive
zero-knowledge proof systems [17]. This game is an interaction between a prover
P in possession of a secret, and a verifier V that is to learn only whether or not
P does, in fact, know the secret. In each round, a prover not in possession of
the secret succeeds with probability 0 < p < 1. Thus, V must interact with P
through k rounds until 1−pk is acceptably close to 1. If at any round P fails the
test, then V knows with certainty that P does not possess the secret. However,
the likelihood that P does know the secret approaches 1 as k → ∞. Thus, V is
consistently updating a belief about P throughout the protocol.

2 The well-known Harsanyi transformation [16] allows any game of incomplete infor-
mation to be transformed into a game of complete and imperfect information by
introducing an initial move by Nature that assigns a type to each player.
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Dynamic Games. In game theory, games may be either strategic or dynamic.
In the former, actions are played simultaneously, while in the latter actions may
be played sequentially. This is equivalent to deciding between whether or not
to assume the existence of a broadcast channel. As broadcast channels are a
relaxation of real world interactions, removing this assumption is desirable as
it allows players to act in a specified order. This introduces non-trivial issues
into protocols that may be very basic in the semi-honest model, such as the
recovery protocol for secret sharing. This protocol was modeled as an extensive
form dynamic game by Groce et al. [12], who give a solution when players must
move sequentially in a known order.

Non-credible Threats. Recently, Halpern et al. [11] showed that a Nash equi-
librium is guaranteed to exist for all finite machine games under the assumption
that randomization is free. However, their framework considers only Bayesian
Nash equilibrium: an equilibrium concept susceptible to implausible equilibria
through non-credible threats. A threat is not considered credible if it is “off the
equilibrium path” for a player. That is, action a is not credible if player i receives
a greater expected utility by playing action a′ �= a. We consider a computational
non-credible threat to be any action a where that there exists another action a′

that yields negligibly less utility and is computable subject to the player’s com-
plexity bound C . Our definition assumes that a player will choose the optimal
strategy whenever their complexity C allows such action to be performed.

Rational Secret Sharing. The necessity of modeling imperfect information,
and the difficulty imposed when broadcast channels cannot be assumed, is easily
illustrated using the most common example of rational cryptographic protocols:
rational secret sharing [18–21, 12, 22]. The goal of threshold secret sharing is to
split a secret among n parties such that any k shares are sufficient to recover
the secret value, using a scheme such as the polynomial interpolation approach
proposed by Shamir [23]. Rational secret sharing, introduced by Halpern and
Teague [5], is particularly concerned with the process of recovering the secret
from the shares. As noted by Halpern et al. [5], rational players’ utility func-
tions are assumed to value exclusivity, where preference is given to learning the
output of the function while preventing other players from doing so. Under this
assumption, no party has any incentive to distribute their share to the other
parties. Rather, the equilibrium is to wait for other players to distribute their
shares, as this is the only action that increases a player’s utility function. The
authors demonstrate that this implies no deterministic protocol exists where ra-
tional parties are willing to disseminate their shares to other players. However,
their randomized protocol relies on the fact that parties are unaware whether the
current state is terminal (allowing the secret to be recovered), or merely a “test”
state (where the secret cannot be recovered, but players who do not distribute
shares are caught as cheaters). This fundamental lack of information constitutes
an extensive form game of imperfect information, for which the Nash equilibrium
(and computational variants thereof) are insufficient equilibria concepts.
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Fig. 1. Imperfect Information Sets in the Rational Secret Sharing Game

Figure 1 illustrates the two-party rational secret sharing game Γ , which pro-
ceeds in a series of rounds. At round i, player p0’s share x

i
0 may be a legitimate

share, such that combined with p1’s share the secret may be recovered. How-
ever, p0’s share may also be illegitimate, such that the shares combine to a
pre-determined test value that is not the original secret. Players are not aware
whether the given round i is the terminal round i∗ where the secret may be
recovered, or a test round i �= i∗ where no information may be learned from the
shares. Assume that a player’s strategy set σ is limited to σ ∈ {H,⊥}, where
H denotes the honest strategy of revealing the player’s share, and ⊥ denotes
the action of not revealing the share. By choosing i∗ from a geometric distribu-
tion, as in Groce et al. [12], cheating players that choose strategy σ =⊥ when
i �= i∗ are caught and the game may be terminated. Thus, players now have an
incentive to distribute their share, as playing ⊥ only yields μ+ when i = i∗.

The difference between the Bayesian strict Nash equilibrium (BNE), used in
the rational secret sharing setting of Groce et al. [12], and the perfect Bayesian
equilibrium (PBE) concept we consider in our setting, requires clarification. If
all moves were simultaneous, BNE and PBE would yield the same equilibria.
However, in extensive form games of imperfect information, a player may not
be able to observe all moves by other players. This results in non-singleton
information sets, which BNE is unable to model, as it only considers uncertainty
about players’ types. Consequently, this uncertainty about the game state should
be explicitly modeled into their expected utility. The PBE concept is able to
“cut through” the non-singleton information sets present in the rational secret
sharing game, as it considers players’ beliefs about the type of other players
as well as beliefs about the current game state. Thus, PBE avoids implausible
equilibria that result from the presence of non-singleton information sets. The
critical issue with the Groce et al. [12] approach is that the expectation for

utility exogenously considers the probability that i
?
= i∗, rather than making

this belief explicit in the equilibrium concept. Thus, they restrict a player to
fix their strategy at the start of the game for consistency with BNE, even as a
mediator introduces auxiliary information.

Consider a game where p0 is given auxiliary information about whether i
?
= i∗

after the game has started. Suppose the share generator reveals to p0 that the



Equilibrium Concepts for Rational Multiparty Computation 233

current round i is, in fact, the terminal round i∗. This information crucially
affects p0’s expected utility function under PBE, as p0’s beliefs about i∗ have
changed from the start of the game. This information should be explicitly fac-
tored into the calculation of expected utility, but the definition of Bayesian Nash
equilibria ignores this, focusing on uncertainty only about the player’s types.
Thus, even in the case where p0 knows the correct value of i∗ at some round
k, the BNE for the above game predicts that the player will play honestly and
reveal their share. However, PBE allows p0 to update their belief about i∗ as
the game progresses, and requires that all subsequent play be optimal with re-
spect to their beliefs. Thus, PBE predicts that p0 should not reveal their share,
and instead collect p1’s share to recover the secret. Given p0’s beliefs about the
game state, this clearly maximizes p0’s expected utility. The equilibrium pre-
dicted by BNE, namely for p0 to distribute their share, is implausible given the
auxiliary information provided to p0 and the fact that p0 values exclusivity. This
implausible equilibrium is avoided when the PBE concept is used.

4 Equilibrium Concepts

We now review the equilibrium concepts and game settings considered by exist-
ing work. Our goal is to demonstrate the shortcomings of equilibrium concepts
considered by existing work, and to motivate our choice of perfect Bayesian
equilibrium as the solution concept for our framework.

4.1 Normal Form Games

We begin by introducing normal form, or strategic, games. Normal form repre-
sentation of games is ideal for modeling simultaneous interaction, rather than
sequential moves, as strategies are fixed prior to playing the game. We review
the formal definition from Osborne [13]:

Definition 1. A normal form game Γ consists of:

1. A finite set N of players.
2. A nonempty set Ai of actions available for each player i ∈ N .
3. A preference relation �i on A = ×j∈NAj for each player i.

Frequently, the preference relation �i is represented by a utility function μi :
A → R, such that μi(a) ≥ μi(b) when b �i a. The normal form game is then
denoted by Γ = 〈N, (Ai), (μi)〉.

Normal form games are well-suited to modeling one-shot protocols where play-
ers move simultaneously3. In a computational setting, this requires the existence
of a broadcast channel. However, it is desirable to remove the assumption of si-
multaneous moves (and, thus, the assumption of a broadcast channel) so that

3 Technically, the notion of simultaneity only requires that players commit to their
strategies before moving. However, this is still an assumption we would like to
remove.
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players may move sequentially. More importantly, modeling interactions in nor-
mal form fixes players’ strategies prior to starting the game. Ideally, a player’s
strategy should be dependent on their beliefs about the current game state. We
return to this goal when we consider extensive-form dynamic games.

Nash Equilibrium. The computational Nash equilibrium is the most widely
used solution concept for rational cryptography [3, 4, 24–26]. The intuition is to
account for strategies that, although optimal, occur with only negligible prob-
ability. In a cryptographic setting, an optimal strategy may be to break the
underlying cryptosystem. However, for players bound to PPT, this strategy suc-
ceeds with only negligible probability. Consequently, Nash equilibrium has been
refined into a computational variant that states players only switch strategies if
the gain is not negligible with respect to the security parameter λ. The original
definition of a computational Nash equilibrium was given by Dodis et al. [4]:

Definition 2. A computational Nash equilibrium of a two-party extensive-
form game Γ is an independent strategy profile (σ∗

1 , σ
∗
2), such that

1. both σ∗
1 , σ

∗
2 are PPT computable.

2. for any other PPT computable strategies σ′
1, σ

′
2, we have μ1(σ

′
1, σ

∗
2) ≤

μ1(σ
∗
1 , σ

∗
2) + negl(λ) and μ2(σ

∗
1 , σ

′
2) ≤ μ2(σ

∗
1 , σ

∗
2) + negl(λ).

Nash equilibria are well-suited to normal form games, where players move
simultaneously and have full knowledge of the game state and payoffs. However,
in the computational setting we must consider extensive form dynamic games of
imperfect information, where players move sequentially and may be unaware of
the game state or the payoffs of other players.

Correlated Equilibrium. A strong case for the use of correlated equilibrium
can be made from the fact that a mediator is able to “recommend” a set of ac-
tions to the players. Thus, the action set follows a joint probability distribution,
where each player learns the conditional distribution over the actions of other
players. By recommending actions to players, greater utility may be achieved
when players follow the mediator’s advice. Further, correlated equilibria are com-
putationally less expensive (in strategic games) to compute than general Nash
equilibrium. That is, computing Nash equilibria is NP-Hard, while computing
correlated equilibria can be done in polynomial time by solving a linear program
[27]. Correlated equilibria were considered in a computational setting by Urbano
et al. [28], and specifically in the context of rational cryptography by Dodis et
al. [4] and later Gradwohl et al. [7]. Our objection to correlated equilibria is that
they are defined only for strategic form games, rather than the more expressive
extensive form games. The extension of correlated equilibria to extensive form
games was considered by von Stengel et al. [29], but they demonstrated finding
the optimal equilibria is NP-Hard.

Bayesian Nash Equilibrium. Bayesian Nash equilibria (BNE) consider un-
certainty with respect to a player’s type, chosen by the fictitious player nature.
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Thus, the optimal strategy for a player is conditioned on the probability of
the other players’ types. Bayesian Nash equilibria result in implausible equilib-
ria in extensive dynamic games as non-credible threats are not accounted for.
The rational secret sharing problem was considered by Groce et al. [12] with-
out assuming broadcast channels, using BNE as the solution concept. As BNE
requires players fix their strategies before the game, they are unable to update
their strategies based on information observed throughout the game. Bayesian
Nash equilibria are sufficient for strategic games, but lack the notion of sequen-
tial rationality necessary for application in extensive form games. We introduce
the refinement of Bayesian Nash equilibria, namely perfect Bayesian equilibria,
in Section 4.2.

4.2 Extensive Form Games

We now leave the setting of normal form games, and consider extensive form dy-
namic games where players move sequentially. Extensive form games are defined
by Osborne et al. [13] as follows:

Definition 3. An extensive form game Γ consists of:

1. A finite set N of players.

2. A (finite) set of sequences H. The empty sequence ∅ is a member of H. We
let k denote the current decision node. If (ak)k=1,...,K ∈ H and L < K then
(ak)k=1,...,L ∈ H. If an infinite sequence (ak)∞k=1 satisfies (ak)k=1,...,L ∈ H
for every positive integer L then (ak)∞k=1 ∈ H. A history (ak)k=1,...,K ∈
H is a terminal history if it is infinite or if there is no aK+1 such that
(ak)k=1,...,K+1 ∈ H. The set of actions available after the nonterminal his-
tory h is denoted A(h) = {a : (h, a) ∈ H} and the set of terminal histories
is denoted Z. We let Hk denote the history through round k.

3. A player function P that assigns to each nonterminal history (each member
of H/Z) a member of N ∪ {nature}. When P (h) = nature, then nature
determines the action taken after history h.

4. For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the
property that A(h) = A(h′) whenever h and h′ are in the same member of
the partition. For Ii ∈ Ii we denote by A(Ii) the set A(h) and by P (Ii) the
player P (h) for any h ∈ Ii. Thus, Ii is the information partition of player
i, while the set Ii ∈ Ii is an information set of player i.

5. For each player i ∈ N a preference relation �i on lotteries4 over Z that can
be represented as the expected value of a payoff function defined on Z.

Throughout, we replace the preference relation �i by a utility function μi :
A → R, such that μi(a) ≥ μi(b) when b �i a.

4 Even if all actions are deterministic, moves by nature can induce a probability dis-
tribution over the set of terminal histories.
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Perfect Bayesian Equilibrium. Formal definitions of perfect Bayesian equi-
libria (PBE) are usually not generalizable to general extensive form games, and
contain the vague requirement that beliefs be updated according to Bayes’ rule
“whenever possible”. Bonanno [30] gives a definition of PBE that is applicable
for general extensive form games, but we will use the definition by Diaz et al.
[31], as they go further by extending to general extensive form games as well as
clarifying the ambiguous “whenever possible” updating requirement.

We first require that, for player i ∈ N , their assessment (σi, βi) consisting of
a strategy σi and a belief βi about the game state, be sequentially rational:

Definition 4. An assessment (σi, βi) is (computationally) sequentially ratio-
nal if, for every player i ∈ N and every information set Ii ∈ Ii, there holds:

μi(σi, βi|Ii) + ε(λ) ≥ μi((σ−i, σ
′
i), βi|Ii) (1)

for every strategy σ′
i, a probability distribution over actions, of player i, where

(σ−i, σ
′
i) is a strategy profiles that all players stick to the strategy σ except that

player i turns to the strategy σ′
i, and μi((σ−i, σ

′
i), βi|Ii) denotes player i’s utility

induced by this strategy profile and the belief system βi, a probability distribution
over game states, conditional on Ii being reached. The term ε(λ) denotes a negli-
gible utility gain with respect to the security parameter λ, and σi is an efficiently
computable strategy for player i with complexity C .

Next, we give the definition of a weak perfect Bayesian equilibrium, which
we build on to construct the final equilibrium concept that applies to general
extensive form games:

Definition 5. Let Γ be an extensive form game. An assessment (σ, β) is a weak
perfect Bayesian equilibrium if it is sequentially rational and, on the path of
σ, β is derived from σ from Bayes’ rule.

With this, we reach the definition of a C -simple perfect Bayesian equilibrium:

Definition 6. Let Γ be an extensive form game. An assessment (σ, β) is a C -
simple perfect Bayesian equilibrium if, for each regular information set Iki ,
the restriction of (σ, β) to ΓIk

i
(σ, β) is sequentially rational and β is obtained by

conditional updating from σ (i.e., the restriction of (σ, β) to ΓIk
i
(σ, β) is a weak

perfect Bayesian equilibrium), where σ is efficiently computable by an interactive
Turing machine (ITM) with complexity C .

5 Framework

In order to show the application of game theoretic models to cryptography, a
proper security model must be introduced. Thus, we consider appropriate game
theoretic definitions of privacy, correctness and fairness.

Our framework is an extension of Asharov et al.’s [3] model of security under
fail-stop games. The original work considered two players with action sets lim-
ited to {σabort, σcontinue}, where σabort implied that the ITM output a special
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signal ⊥ observed by all players and stopped playing the game, and σcontinue

is the strategy of following the game specification without deviation. Thus, the
only deviating strategy is to abort the protocol, which is similar to the standard
semi-honest security model. We extend this model to assume that σcontinue is pre-
cisely the vector of strategies of not aborting, regardless of whether or not the
chosen action is the honest choice. Similarly, σdeviate = {σU/{σhonest, σabort}}
is the set of all possible strategies that are dishonest, taking σU to be the uni-
verse of strategies. That is, σdeviate corresponds to choosing a strategy σ that
deviates from the prescribed protocol. Without loss of generality, we assume
that σcontinue = {σhonest, σdeviate}, where σhonest is equivalent to following the
prescribed protocol. As multiparty computation players are assumed to be mu-
tually distrustful in the cryptographic literature, we assume they are risk-averse
in the game theoretic sense. Thus, when an honest player cannot distinguish be-
tween the probability of A selecting σdeviate

A or σhonest
A , the honest party assumes

that σdeviate
A was selected. We consider only the two-party case, as the extension

to multiple parties requires modeling player collusion. Throughout, we let μ+

represents positive utility gain, μ− represent negative utility, and μ0 represents
neutral utility. We now give novel definitions of privacy, correctness and fair-
ness in purely game theoretic terms, considering a more expressive model where
players may deviate arbitrarily from the protocol beyond simply aborting.

5.1 Privacy

We follow Asharov et al.’s [3] intuition and require that parties’ utility functions
reflect the loss of privacy with negative utility. This requires no assumptions
about other players’ utility functions with respect to the gain of information;
the burden is player specific and known, as we assume players are aware of their
own utility functions. Thus, players may choose to require that any subset of
privacy, correctness and fairness are satisfied by the protocol.

We first introduce a new notion of indistinguishability defined in terms of a
C -bounded distinguisher D’s ability to differentiate between information sets.
We first introduce notation for an ITM’s local history:

Definition 7. Let π = (M0,M1) be a two-party protocol between a pair of ITMs
(M0,M1). Then we write

Hk
π,i(x0, x1, λ) = (xi,MR,m

i
1, . . . ,m

i
k)

to denote the local history of Mi at round k, with input xi, random tape MR,
security parameter λ and mi

j represents the jth message.

We consider the set of infinitely many input tuples (x0, x
0
1, x

1
1, λ) where we

have that |x0| = |x0
1| = |x1

1| = λ, and party p0’s input is fixed at x0 while p1’s
input is in the set {x0

1, x
1
1}.
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Definition 8. We say that a finite extensive form computational game Γ λ has
indistinguishable initial information sets in the presence of C -bounded
adversaries if:

|Pr[(H0
π,D(x0, x

0
1, λ) ∈ I0) = 1]− Pr[(H0

π,D(x0, x
1
1, λ) ∈ I0) = 1]| ≤ ε(λ)

for some negligible function ε(·).

That is, no C -bounded distinguisher D can distinguish the type (i.e., private
input) of party p1 with probability non-negligibly greater than 1

2 . With this
notion formally defined, we now give a definition for players’ utility functions
with respect to privacy:

Definition 9. Let π be a two-party protocol and f be a two-party function. Then,
for every x0

0, x
1
0, x1 such that f(x0

0, x1) = f(x1
0, x1), and for every C -bounded

distinguisher D, the utility function for privacy μp for party pi, on input
x0 ∈ {x0

0, x
1
0}, is defined by

– μp
0(H∅

π,i) = 0 when p0 aborts immediately

– μp
0(Hk

π,0(x
b
0, x1, λ))  →

{
μ− : guessπ((Hk

π,D(x
b
0, x1, λ) ∈ ID)) = b′, xb

0 = xb′
0

μ+ : otherwise

where guess : H → Ti is a function from histories to player types.

Initially π is run, then D is given as input the local state of π w.r.t. pi and
two auxiliary values (x0

0, x
1
0). D outputs a guess b′ ∈ {0, 1}, where D succeeds

whenever xb
0 = xb′

0 .
For all rational players with utility functions μ ∈ μp, we have that

μ(σcontinue) > μ(σabort) iff :

Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 1] =

1

2
+ ε(λ)

That is, a rational party with a utility function preferring privacy (μ ∈ μp)
only continues participating in the protocol (i.e., by selecting a strategy in
σcontinue) if for all C -bounded adversaries, the probability of success is at most
negligibly greater than 1

2 . We let σdeviate imply that

Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 1] >

1

2
+ ε(λ) (2)

That is, by playing σdeviate the adversary has an advantage at breaking the
privacy of the protocol with probability non-negligibly greater than 1

2 . Any other
strategy σ �∈ σdeviate will not affect privacy under this assumption, although it
may affect correctness or fairness. We restrict our attention to privacy at the
moment.

Definition 10. Let f and π be as above. Then, π is C -Game-Theoretic Pri-
vate for party pi if μi(σ

honest
0 , σhonest

1 ) is a C -PBE with respect to μp
i,i∈{0,1},

βi,i∈{0,1} and all C -bounded distinguishers D.
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We now prove a theorem defining how protocol π may satisfy Definition 10:

Theorem 1. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly. Then, π is C -Game-Theoretic Pri-
vate w.r.t. p0 (resp. p1) iff π has indistinguishable initial information sets in
the presence of C -bounded adversaries.

Proof (Theorem 1). We first demonstrate that if π is C -Game-Theoretic Private
w.r.t. p0, then π has indistinguishable initial information sets w.r.t. p0 in the
presence of C -bounded adversaries.

If π is C -Game-Theoretic Private w.r.t. p0, then by definition we have that:

μ0(σ
honest
0 |β0,H0) + ε(λ) ≥ μ0(σ

′
0, σ

¬honest
0 |β0,H0)

That is, if π is C -Game-Theoretic Private, then players receive more utility by
playing strategy σhonest than any other strategy σ¬honest = {σU/σhonest}. As-
sume by contradiction that π does not have indistinguishable initial information
sets w.r.t. p0. Without loss of generality, we assume A corrupts p1. Then a
C -bounded adversary A is able to choose a strategy in the set σdeviate

1 , where
A invokes a C -bounded distinguisher D which succeeds in differentiating p0’s
information set with probability

Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 1] >

1

2
+ ε(λ)

as given by Equation 2, which is a non-negligible advantage. Thus, we have that:

μ0(σ
honest
0 , σdeviate

1 ) = Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 1] · μ−

+ Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 0] · μ+

< μ0 < μ0(σ
abort
0 , σdeviate

1 ) = μ0

thus contradicting the assumption that σhonest
0 is a C -PBE w.r.t. p0, and that π

is C -Game-Theoretic Private by Definition 10, as σabort yields more utility for
p0 than σhonest.

Next, we show that if π has indistinguishable initial information sets w.r.t.
p0, then π is C -Game-Theoretic Private. By definition, if π has indistinguishable
initial information sets w.r.t. p0, then there does not exist a strategy in the set
σdeviate
A such that, for any C -bounded distinguisher D invoked by A

Pr[guessπ((Hk
π,D(x

b
0, x1, λ) ∈ ID)) = 1] >

1

2
+ ε(λ)

Assume by contradiction that σhonest
0 is not a C -PBE w.r.t. p0. Then, we must

have that:
μ0(σ

abort
0 , σ¬deviate

1 ) > μ0(σ
honest
0 , σ¬deviate

1 )

Clearly we have that A’s strategies are limited to σ¬deviate
1 = {σhonest

1 , σabort
1 },

as by assumption π has indistinguishable initial information sets w.r.t. p0, so no
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strategy in the set σdeviate
1 exists by Equation 2. Consider first the strategy pair

(σabort
0 , σabort

1 ):

μ0(σ
abort
0 , σabort

1 ) = μ0 = μ0(σ
honest
0 , σabort

1 )

Thus, σhonest
0 is a C -PBE w.r.t. p0, contradicting the assumption. Similarly,

consider the strategy pair (σabort
0 , σhonest

1 ):

μ0(σ
abort
0 , σhonest

1 ) = μ0 < μ0(σ
honest
0 , σhonest

1 ) = μ+

Thus, σhonest
0 is a C -PBE w.r.t. p0, contradicting the assumption.

5.2 Correctness

Asharov et al.’s [3] notion of correctness is similar to their notion of privacy:
party pi prefers to learn the correct output of the function f to learning an
incorrect output. We modify their definition with respect to the utility gained
from aborting before the protocol starts. Rather than specify this utility as
μc
i (H∅

π,i) = μ+, we say that a party that does not participate in the protocol

receives μc
i(H∅

π,i) = μ0, so that parties prefer to participate in the protocol. As
defined in the original work, players receive the same utility for not participat-
ing as they do for receiving the correct output of the function. As we assume
computation is costly, it seems more natural to assign greater utility to receiving
the correct output of the function.

As previously specified when considering privacy, we consider the set of in-
finitely many input tuples (x0, x

0
1, x

1
1, λ) where we have that |x0| = |x0

1| = |x1
1| =

λ, and party p0’s input is fixed at x0 while p1’s input is in the set {x0
1, x

1
1}.

Definition 11. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly. Then, for every x0, x1 as above the
utility function for correctness for party pi, denoted μc

i , is defined as:

– μc
i (H∅

π,i) = μ0

– μc
i (outputπ,i, x0, x1)  →

{
μ+ : outputπ,i = f(x0, x1)
μ− : otherwise

We consider σhonest to represent the strategy that follows the protocol spec-
ification of π, which by definition computes f correctly. Similarly, any other
strategy σ ∈ {σdeviate, σabort} is assumed to compute f incorrectly. That is, we
limit σdeviate to those strategies that yield an incorrect output. Other strategies
certainly exist in σdeviate that will not alter the result, but these are handled
when privacy and fairness are required. To satisfy the correctness condition, we
need only consider those strategies in σdeviate that yield incorrect outputs of f .

Definition 12. Let f and π be as above. Then, π is C -Game-Theoretic Cor-
rect for party pi if μc

i (σ
honest
0 , σhonest

1 ) is a C -PBE with respect to μc
i,i∈{0,1},

βi,i∈{0,1} and all C -bounded adversaries A.
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We now prove a theorem defining how protocol π may satisfy Definition 12:

Theorem 2. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly. Then, π is C -Game-Theoretic Cor-
rect w.r.t. p0 (resp. p1) if

∀β0, σ
deviate
1 ∈ I0(Hk) =⇒ I0(Hk) = {σdeviate

1 }
That is, all information sets containing strategy σdeviate

1 are singleton nodes,
distinguishable by any distinguisher D of bounded complexity C .

Proof (Theorem 2). We demonstrate that if π is C -Game-Theoretic Correct
w.r.t. p0, then ∀β0, σ

deviate
1 ∈ I0(Hk) =⇒ I0(Hk) = {σdeviate

1 }. Intuitively, this
means that if π satisfies Definition 12, then p0 must be able to differentiate p1
selecting σdeviate rather than σ¬deviate.

If π is C -Game-Theoretic Correct w.r.t. p0, then by definition we have that:

μc
0(σ

honest
0 |β0,H0) + ε(λ) ≥ μc

0(σ
′
0, σ

¬honest
0 |β0,H0)

That is, if π is C -Game-Theoretic Correct, then players receive greater utility
by playing strategy σhonest than any other strategy σ¬honest = {σU/σhonest}.
Assume by contradiction that

∀β0, σ
deviate
1 ∈ I0(Hk) �⇒ I0(Hk) = {σdeviate

1 } : ∃I0(Hk) = {σabort
1 , σhonest

1 , σdeviate
1 }

That is, σdeviate
1 exists in non-singleton information sets for p0. Thus, for some

previous history Hj
0, j < k, we have that p0 cannot distinguish between Hj =

{σdeviate
1 } and Hj = {σhonest

1 }, where we do not consider Hj = {σabort
1 } as p1

would output ⊥, and p0 would know with probability 1 that this strategy was
used. Recall that risk-averse participants assume σdeviate when information sets
are non-singletons. We have that

μc
0(σ

honest
0 , σdeviate

1 ) = μ− < μc
0(σ

abort
0 , σdeviate

1 ) = μ0

which contradicts the assumption that σhonest
0 is a C -PBE, as aborting yields

more utility than engaging in the protocol, and that π is C -Game-Theoretic
Correct w.r.t. p0 by Definition 12.

5.3 Fairness

In Asharov et al.’s [3] original definitions for fairness, players are implicitly as-
sumed to abide by the exclusivity property: a player prefers to be the only party
to learn the output over a fair distribution of the function result. We argue that
this assumption does not always hold.

Any framework constructed under the assumption of exclusivity is limited
to the set of non-cooperatively computable (NCC) [2] functions. Let f(·, ·) be a
two-party function, with party pi holding input xi, i ∈ {0, 1}. If party pi pro-
vides an alternate input x′

i �= xi to f , a fair protocol outputs f(x′
i, x1−i) to all
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parties. However, if pi can compute g(f(x′
i, x1−i), xi) = f(xi, x1−i), then pi has

no rational incentive to provide their true input xi as pi alone can now deduce
the correct output of the function f(xi, x1−i) from the output f(x′

i, x1−i). Thus,
any framework requiring the exclusivity requirement is limited to functions for
which the correct output cannot be produced given knowledge of the function
and its output on a different input.

As an example, consider auction scenarios. Clearly, any adversary requires
that all parties learn the output of the protocol even if it is not the correct
output, as the result induces others to perform the actual goal of the protocol:
distributing goods or services to the winner. If an adversary was the only party
to receive the output, no distribution occurs and the effort was pointless.

We modify Asharov et al.’s [3] original utility function for fairness to reflect
the fact that the exclusivity assumption does not always hold. Let E denote the
set of players whose utility functions for fairness μf value exclusivity:

Definition 13. Let π be a two-party protocol and f be a two-party function.
Then, for every x0, x1 as above the utility function for fairness for party pi,
denoted μf

i , is defined as:

μf
0 (σ0, σ1)  →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ+ : outputπ,0 = f(x0, x1) ∧ outputπ,1 �= f(x0, x1) ∧ p0 ∈ E
μ+ : outputπ,0 = f(x0, x1) ∧ outputπ,1 = f(x0, x1) ∧ p0 �∈ E
μ− : outputπ,0 = f(x0, x1) ∧ outputπ,1 �= f(x0, x1) ∧ p0 �∈ E
μ− : outputπ,0 �= f(x0, x1) ∧ outputπ,1 = f(x0, x1)
μ0 : otherwise

We consider σhonest to represent the strategy that follows the protocol speci-
fication of π. Similarly, fairness is only compromised when a party selects σabort,
which deprives other players of information necessary to compute the output.

Definition 14. Let f and π be as above. Then, π is C -Game-Theoretic Fair
for party pi if μ

f
i (σ

honest
0 , σhonest

1 ) is a C -PBE with respect to μf
i,i∈{0,1}, βi,i∈{0,1}

and all C -bounded adversaries A.

We now prove a theorem defining how protocol π may satisfy Definition 14:

Theorem 3. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly. Then, π is C -Game-Theoretic Fair
w.r.t. p0 (resp. p1) iff ∀Hk

|Pr[outputπ,0(Hk) = f(x0, x1)]− Pr[outputπ,1(Hk) = f(x0, x1)]| ≤ ε(λ)

That is, at any round k, the strategy σabort yields a player at most a neg-
ligible advantage over other players at determining the correct function output
f(x0, x1).
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Proof (Theorem 3). We first demonstrate that if π is C -Game-Theoretic Fair
w.r.t. p0, then p1 has a negligible advantage over p0 at determining the correct
function output f(x0, x1) when playing strategy σabort

1 .
If π is C -Game-Theoretic Fair w.r.t. p0, then by definition we have that:

μ0(σ
honest
0 |β0,H0) + ε(λ) ≥ μ0(σ

′
0, σ

abort
0 |β0,H0)

That is, if π is C -Game-Theoretic Fair, then players receive more utility by
playing strategy σhonest than aborting and attempting to recover f(x0, x1) on
their own. Assume by contradiction that p1 has a non-negligible advantage over
p0 at determining the correct function output f(x0, x1) when playing strategy
σabort
1 . Without loss of generality, we assume A corrupts p1. Then we have that

Pr[outputπ,1(Hk) = f(x0, x1)] >
1

2
+ ε(λ)

which is a non-negligible advantage. Thus, we have that:

μ0(σ
honest
0 , σabort

1 ) = Pr[outputπ,1(Hk) = f(x0, x1)] · μ−

+ Pr[outputπ,0(Hk) = f(x0, x1)] · μ+

< μ0 < μ0(σ
abort
0 , σabort

1 ) = μ0

thus contradicting the assumption that σhonest
0 is a C -PBE w.r.t. p0, and that π

is C -Game-Theoretic Fair by Definition 14, as σabort yields more utility for p0
than σhonest.

Next, we show that if p1 has at most a negligible advantage over p0 at deter-
mining the correct function output f(x0, x1) when playing strategy σabort

1 , then
π is C -Game-Theoretic Fair. By definition, we have that

|Pr[outputπ,0(Hk) = f(x0, x1)]− Pr[outputπ,1(Hk) = f(x0, x1)]| ≤ ε(λ)

Assume by contradiction that σhonest
0 is not a C -PBE w.r.t. p0. Then, we must

have that:

μ0(σ
abort
0 , σabort

1 ) > μ0(σ
honest
0 , σabort

1 )

Consider first the strategy pair (σabort
0 , σabort

1 ):

μ0(σ
abort
0 , σabort

1 ) = μ0 = μ0(σ
honest
0 , σabort

1 )

Thus, σhonest
0 is a C -PBE w.r.t. p0, contradicting the assumption. Similarly,

consider the strategy pair (σabort
0 , σhonest

1 ):

μ0(σ
abort
0 , σhonest

1 ) = μ0 < μ0(σ
honest
0 , σhonest

1 ) = μ+

Thus, σhonest
0 is a C -PBE w.r.t. p0, contradicting the assumption.
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6 Conclusion

We have presented an expressive framework for reasoning about the security
of cryptographic protocols in game theoretic terms, where all players are only
assumed to be rational. We have demonstrated the ability of the perfect Bayesian
equilibrium concept to model the inherent uncertainty and auxiliary information
in cryptographic protocols, and translated this into the computational domain.
Finally, we have provided novel definitions of privacy, correctness and fairness in
game theoretic terms, and demonstrated the conditions under which they hold.
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Abstract. The static nature of computer networks allows malicious at-
tackers to easily gather useful information about the network using net-
work scanning and packet sniffing. The employment of secure perimeter
firewalls and intrusion detection systems cannot fully protect the net-
work from sophisticated attacks. As an alternative to the expensive and
imperfect detection of attacks, it is possible to improve network security
by manipulating the attack surface of the network in order to create a
moving target defense. In this paper, we introduce a proactive defense
scheme that dynamically alters the attack surface of the network to make
it difficult for attackers to gather system information by increasing com-
plexity and reducing its signatures. We use concepts from systems and
control literature to design an optimal and efficient multi-stage defense
mechanism based on a feedback information structure. The change of
attack surface involves a reconfiguration cost and a utility gain result-
ing from risk reduction. We use information- and control-theoretic tools
to provide closed-form optimal randomization strategies. The results are
corroborated by a case study and several numerical examples.

1 Introduction

The static nature of computing systems facilitates an attacker’s capability of
gathering information and executing attacks. Given sufficient amount of time, an
attacker can map out the system, gain access to a node and spread to other hosts
and services within the system [1]. Although heavily secured perimeter firewalls
and intrusion detection systems are deployed to protect the network from outside
attackers, in practice they are not effective for zero-day vulnerabilities or virus,
and can be avoided by skilled attackers. In addition, while the attackers have only
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to exploit one vulnerability to be successful, a firewall has to process millions of
packets every minute and perform a sophisticated and timely analysis in order
to detect software that exploits a previously unknown attack vector. Clearly,
an attacker has an advantage over the defender, and the sole reliance on these
technologies is not sufficient for assuring security.

As an alternative to the insufficient and expensive detection of attackers, the
network security can be improved by changing the appearance of the system and
creating a moving target. The availability of services will be time-varying under
different system configurations, and the system can block dangerous network
behaviors if an attacker does not follow the network dynamics. In addition, in
order for an attack to succeed, an attacker has to spend a significant amount of
resources to carefully guide his attacks.

In this paper, we introduce stochastic dynamics into multiple layers of comput-
ing systems for securing the system by shifting its attack surface. One challenge
of achieving moving target defense is to understand the tradeoff between security
and usability. A complete security could be achieved by frequently changing the
network and thus making it completely unusable. Hence it is essential to take
into account the reconfiguration cost of shifting the surface, and the attacker’s
cost for learning and changing its attack vector. Moreover, the interactions be-
tween an attacker and a defender can be seen as a game [14, 19] in which the
system creates a moving target for minimizing its risk and maintaining its us-
ability, while an attacker dynamically explores and exploits a vulnerability for
causing maximum damage on the system.

With this motivation, we formulate a two-person zero-sum game to model
the conflict of goals, and develop a feedback learning framework to implement
a moving target defense based on real-time data and observations made by the
system. To achieve this goal, we first decompose the system into multiple layers
as it is often composed of multiple network zones, such as those in enterprise
IT network [2] and cyber-physical networks [3]. An attacker has to launch a
multi-stage attack starting from network scanning and packet sniffing to illegit-
imate authentication and service interruption. The infamous Stuxnet virus, for
example, follows a sequence of attacks depicted in Fig. 1 before compromising
the supervisory control and data acquisition (SCADA) system that controls and
monitors uranium enrichment infrastructure [4, 5]. We build a multi-layer game
model to capture the fact that the attack is carried out through multiple stages,
and the defense mechanism is developed at each layer of the system. Built into
the game model, the notion of attack surface is defined as the set of vulnerabil-
ities exhibited by the system that can potentially be exploited by the attacker.
The essential goal of moving target strategies is to find an optimal configuration
policy for the defender to shift the attack surface that minimizes its risk and the
damage inflicted by an attacker.

A natural solution for the zero-sum game is mixed strategy saddle-point equi-
librium (SPE), i.e., the system defender randomizes its configuration and the
associated attack surface, while an attacker randomizes over the set of vulner-
abilities that he can exploit. The SPE mixed-strategy pair naturally leads to a
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Fig. 1. Illustration of a sequence of attacks of Stuxnet: It is spread first using in-
fected USB drive passed onto the employee. The virus exploits vulnerabilities of printer
servers, WinCC database, service servers, and Siemens S7 project files at multiple
stages, and propagates from employee workstation to the control system network
through intermediate networks.

way of implementing moving target defense. However, it is an equilibrium so-
lution concept which describes the steady-state outcome of a game of complete
information after a sufficiently large number of repeated plays. Due to the un-
certainties in the environment and limited knowledge of the players’ own risk
functions, it is pivotal for the system to implement a dynamic real-time defense
mechanism driven by the data observed by the players. Hence we develop a feed-
back multi-stage defense strategy that enables the system to update its mixed
strategy based on the risk it estimates online. In this case, the moving target
defense is adaptive to the exogenous environment and less vulnerable than a
static equilibrium strategy, which could be known to a resourceful attacker.

The contribution of this work can be summarized as follows.

(i) We formally develop a metric for quantifying attack surface, and establish
a game-theoretic model for providing formal analysis of security strategies
and guiding the design of moving target defense.

(ii) We develop a feedback system framework for strategically shifting attack
surface based on observation.

(iii) We introduce reconfiguration and learning cost for the defender and at-
tacker, respectively, and analyze the joint dynamics of strategy update and
risk estimation.
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The paper is organized as follows. Section 2 presents related works. Section 3
describes the two-person zero-sum game model and Section 4 provides a system
framework for moving target defense based on learning mechanism of the game.
In Section 5, we analyze the learning dynamics presented in Section 5. Section
6 illustrates the defense mechanism using numerical examples, and we conclude
in Section 7.

2 Related Work

Moving target defense (MTD) is a broad class of proactive defense mechanisms,
in which the defending system creates security strategies that change over time
to limit the exposure of vulnerabilities and increase complexity and costs for
attacks [7] and [8]. Many techniques have recently been developed for achieving
MTD, including instruction set, and address space layout randomization [12],
deceptive routing [23], and software diversity [13]. However, very few work has
studied quantitative tradeoffs of MTD for guiding the design and analysis of the
defense mechanism. In this work, we develop a feedback learning mechanism for
designing MTD based on a game-theoretic framework.

Our work is related to the following existing literature. In [6], formal methods
have been used to provide an attack surface metric as an indicator of the system’s
security. It develops an approach to reduce attack surface, which complements
the software industry’s traditional code quality improvement approach for secu-
rity risk mitigation. Motivated by the concept, we define the notion of attack
surface based on the set of existing vulnerabilities, which can be conveniently
incorporated into the MTD game-theoretic model.

As depicted in Fig. 1, attackers often launch a sequence of attacks which
exploits vulnerabilities at multiple stages of the system. The goal of dividing
the system into multiple layers is to capture this fact. In addition, this ap-
proach is well-aligned with the research on attack graphs for assessing the cause-
consequence relationships between various network states [9,10]. Based on attack
graphs and trees, the system can be divided into logical layers, which correspond
to a set of nodes of the same depth on a tree.

Game theory provides an appropriate theoretical framework for modeling the
win-lose situation between a defender and an attacker [14]. The notion of mixed-
strategy equilibrium is a natural solution concept for many applications of MTD.
Our work is related to some recent works that apply game theory to MTD.
In [21], a game-theoretic framework has been used to study a defense mechanism
that strategically randomizes over a set of cryptographic keys that authenticate
the commands from a system operator to PLC of a power system network.
In [22], deceptive routing game is used to design defense strategies that mislead
a jammer from attacking legitimate routes by deploying fake routes in wireless
communication networks.

The feedback MTD defense mechanism is related to learning algorithms for
games. In particular, the joint learning dynamics are related to the distributed
learning algorithm described in [15–17], which have studied a class of distributed
payoff and strategy learning for games of incomplete information. Different from
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best response dynamics and fictitious play algorithms [11], the strategy updates
do not require players’ knowledge of their own payoff functions and the observa-
tions of actions played by others. Strategy update in the MTD defense is related
to a class of imitative learning dynamics in which a player imitates the strategy
of other players [24,25]. Here, we develop imitative strategies for MTD through
a cost on shifting attack surface for the defender and a cost for learning system
vulnerabilities and changing attack vectors for the attacker.

3 System Model

In this section, we introduce a game-theoretic framework for moving target de-
fense between an attacker and a system defender. Many networked computing
systems nowadays can be decomposed into hierarchical layers, and there are de-
fense mechanisms residing on each of these layers. An attacker has to launch a
multi-stage attack, which exploits vulnerabilities of the system at different lay-
ers, in order to compromise its final target. Hence we partition the system to be
defended into a finite number of layers, and let l = 1, 2, · · · , N be the index of
system layers, and Vl := {vl,1, vl,2, · · · , vl,nl

} be the set of nl existing system vul-
nerabilities at layer l. We assume that Vl is common knowledge to the attacker
and the system. A vulnerability vl,i is a weakness of the system that an adver-
sary can exploit and launch an attack to compromise the system. The system
at layer l can be configured in different ways, and each configuration exhibits
its own set of vulnerabilities. Let Cl : {cl,1, cl,2, · · · , cl,ml

} be the set of feasible
configurations of the system at layer l, and πl : Ci → 2Vl be the vulnerability
map which associates with each configuration a subset of vulnerabilities. We call
πl(cl,j) the attack surface at stage l when the system is configured to cl,j .

At each stage l, an attacker chooses a vulnerability in the set Vl to exploit
and launch an attack al,j . Let Al := {al,1, al,2, · · · , al,nl

} be the set of nl attacks
at stage l, and γl : Vl → Al be the attack map which associates vulnerability
vl,j ∈ Vl with attack al,j ∈ Al. The corresponding inverse map is denoted by
γ−1
l : Al → Vl. Here, without the loss of generality, we assume that there is a

one-to-one correspondence between Al and Vl. An attack al,j can successfully
cause damage on the system at layer l if the exploited vulnerability vl,j resides
in the configuration cl,i, i.e., vl,j ∈ πl(cl,i).

Denote by rl : Al × Cl → R+ the damage or cost caused by the attacker at
stage l, given by

rl(al,j , cl,i) =

{
Dij , γ−1

l (al,j) ∈ πl(cl,j)
0, otherwise

, (1)

whereDij ∈ R+ is the (bounded) damage or risk quantified in terms of monetary
values.

The goal of the attacker is to penetrate and compromise the system while the
system aims to choose configurations that minimize the damage or risk. Hence
we use a two-person zero-sum game to model this conflict between an attacker
A and a defender S. Let Ξl be the game at stage l described by the triplet
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〈{A,S}, {Al, Cl}, {rl}〉. Since vulnerabilities are inevitable in modern comput-
ing systems, one approach for the system is to adopt moving target defense
which randomizes between different system configurations, making it difficult
for the attacker to learn and locate the system vulnerabilities to exploit. This
naturally leads to the mixed strategy equilibrium solution concept of the game,
where the defender chooses a randomized strategy fl := (fl,1, fl,2, · · · , fl,ml

)
over the set Cl, and the attacker at layer l chooses a randomized strategy
gl := (gl,1, gl,2, · · · , gl,nl

) over the set Al, i.e.,

fl ∈ Fl :=

{
fl ∈ Rml

+ :

ml∑
h=1

fl,h = 1

}
, gl ∈ Gl :=

{
gl ∈ Rnl

+ :

nl∑
h=1

gl,h = 1

}
.

The game Ξl is a finite zero-sum matrix game with a bounded cost function.
Hence there exists a mixed strategy saddle-point equilibrium (SPE) (f∗l ,g

∗
l ),

which satisfies the following inequality for all fl ∈ Fl and gl ∈ Gl,

�l(f
∗
l ,gl) ≤ �l(f

∗
l ,g

∗
l ) ≤ �l(fl,g

∗
l ), (2)

where �l is the expected cost given by

�l(fl,gl) := �fl,gl
rl =

nl∑
k=1

ml∑
h=1

fl,hgl,krl(al,k, cl,h).

The expect cost �l at SPE (f∗l ,g
∗
l ) is the value of the game Ξl, denoted as

val(Ξl) = r̂l(f
∗
l ,g

∗
l ) and it is unique for zero-sum games under mixed strategies.

The static analysis of the game provides an insight into the system performance
(value of the game) and its strategy against an attacker if the zero-sum game is
played repeatedly.

Solving the game using (2) requires that each player have complete infor-
mation of the game, including the knowledge of the cost function (1) and the
strategy spaces of the players. In practice, the information available to the sys-
tem can be limited and sometimes uncertain. Hence the players need to learn
information online and adapt their defense strategies.

Example 1. In Fig. 2, we illustrate the multi-stage moving target defense game.
At each layer l, the system has a set of vulnerabilities: Vl = {vl,1, vl,2, vl,3},
l = 1, 2, 3, 4. At layer 1, two configurations are feasible, i.e., C1 = {c1,1, c1,2}.
A configuration c1,1 is chosen in Fig. 2 and it has an attack surface π1(c1,1) =
{v1,1, v1,2}. In Fig. 3, a configuration c1,2 is chosen and it has a correspond-
ing attack surface π1(c1,2) = {v1,2, v1,3}. Likewise, in both Fig. 2 and Fig. 3,
π2(c2,1) = {v2,1, v2,2}, π3(c3,1) = {v3,1, v3,2}, and π4(c4,2) = {v4,2, v4,3}. The
static system configuration {c1,1, c2,1, c3,1, c4,2} depicted in Fig. 2 allows an at-
tacker to launch a sequence of attacks which exploit v1,1 → v2,2 → v2,3 → v4,3
if sufficient amount of time and resources are given to the attacker. Mixed
strategies provide a mechanism for the system defender to randomize between
different configurations so that the attack surface shifts at each layer of the sys-
tem. Fig. 3 depicts a scenario where the system changes its configuration to
{c1,2, c2,1, c3,1, c4,2}. Then, the original attack sequence will not succeed.
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Fig. 2. A static configuration of attack surface that leads to a sequence of attacks on
the physical system: An attacker can succeed in targeting the resources at the last
layer by exploiting vulnerabilities v1,1 → v2,2,→ v3,2 → v4,2. Solid curves describe an
attack surface containing existing vulnerabilities; dotted curves describe vulnerabilities
circumvented by the current configuration; solid arrows refer to successful attacks.

Fig. 3. Randomized configuration of attack surface that protects the system from at-
tack exploitations at the first step. The attack is thwarted at layer 1. Solid curves
describe an attack surface containing existing vulnerabilities; dotted curves describe
vulnerabilities circumvented by the current configuration; dotted arrows refer to un-
successful attacks.

Remark 1. The attack surface at stage l for a given configuration cl,h is mea-
sured by πl(cl,h). We can further measure the level of vulnerability given fl,gl.
Denote by ηl = (ηl,1, ηl,2, · · · , ηl,nl

) ∈ Hl the mixed strategies for defending the
set of vulnerabilities Vl, where

Hl :=

{
ηl ∈ Rnl

+ :

nl∑
h=1

ηl,h = 1

}
.

Suppose that vulnerabilities on the attack surface are defended with equal proba-
bilities. Then the mixed strategy fl on Cl leads to the following mixed strategy ηl
on Vl:

ηl,h =
∑
k∈Nh

fl,k
|πl(cl,k)|

, h = 1, 2, · · · , nl, (3)
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where Nh = {h′ ∈ Z+ : vl,h ∈ πl(cl,h′), cl,h′ ∈ Cl}. The level of vulnerability ψ at
layer l can be quantified by the Kullback-Leibler (K-L) divergence between two
distributions ηl, gl, i.e.,

ψl(fl,gl) := dKL(ηl||gl) =

nl∑
h=1

ηl,h ln

(
ηl,h
gl,h

)
. (4)

where dKL is the K-L divergence, and ηl,h can be obtained from f using (3).
Following Example 1, we let g1 = (13 ,

1
3 ,

1
3 ) and f1 = (12 ,

1
2 ), which randomizes

between two configurations c1,1 and c1,2. We obtain η1 = (14 ,
1
2 ,

1
4 ), which leads to

ψ = ln
(

3
√
2

4

)
. It is clear that the system is less vulnerable under moving target

defense when ψ is large.

4 Moving Target Defense

Section 3 describes an ideal game model of complete information. It is common
to see that the payoff function rl can be subject to noise and disturbance, and
the system/attacker cannot know each other’s action spaces. This information
needs to be learned over time and often there will be a cost associated with
learning and adaptation. In this section, we introduce an adaptive moving tar-
get defense framework based on the system model in Section 3 in which the
system dynamically updates its defense strategy through learning in an uncer-
tain environment and without complete information. We use subscript t here
to denote the strategy or cost at time t. At time t, each player independently
chooses actions �l,t ∈ Cl and �l,t ∈ Al according to strategies fl,t and gl,t, re-
spectively. The players cannot observe the action played by the other player but
can observe the cost rl,t as an outcome of action pair (�l,t,�l,t) at time t. Based
on the observed cost, the system and the attacker can estimate the average risk
of the system r̂Sl,t : Cl → R+ and r̂Al,t : Vl → R+, respectively, as follows:

r̂Sl,t+1(cl,h) = r̂Sl,t(cl,h) + μS
t �{�l,t=cl,h}(rl,t − r̂Sl,t(cl,h)), (5)

r̂Al,t+1(al,h) = r̂Al,t(al,h) + μA
t �{�l,t=al,h}(rl,t − r̂Al,t(al,h)). (6)

In (5) and (6), μS
t and μA

t are payoff learning rates for the system and the
attacker. Note that in the learning schemes above, the players do not know the
actions played by the other players and each one estimates the average cost based
on choices made in the past. The two updates are made in a distributed fashion;
however, they are coupled through the fact that the observed cost depends on
actions played by both players at time t.

The players can make use of the cost function learned online for updating the
moving target defense strategies. The change of defense strategies from fl,t to
fl,t+1 involves a cost for the system to reconfigure by maneuvering its defense
resources and altering its attack surface from πl(�l,t) to πl(�l,t+1), where �l,t
and �l,t+1 are selected according to distributions fl,t and fl,t+1, respectively.
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Hence we introduce the following switching cost for the system as the relative
entropy between two strategies:

RS
l,t = εSl,t

ml∑
h=1

fl,h,t+1 ln

(
fl,h,t+1

fl,h,t

)
, (7)

where εSl,t > 0. This cost is added onto the expected cost given by 〈fl,t+1, r̂
S
l,t〉,

where 〈·, ·〉 denotes the inner product between two vectors of appropriate di-
mensions, and r̂Sl,t = [r̂Sl,t(cl,1), r̂

S
l,t(cl,2), · · · , r̂Sl,t(cl,ml

)]′. Hence at time t, with

the learned cost vector r̂Sl,t, the system solves the following system problem

(SP) sup
fl,t+1∈Fl

〈fl,t+1,−r̂Sl,t〉 − εSl,t

ml∑
h=1

fl,h,t+1 ln

(
fl,h,t+1

fl,h,t

)
. (8)

Likewise, it takes an attacker resources (in terms of time and energy) to explore
new vulnerabilities and exploit them. Hence we introduce a similar cost that
capture the learning cost for the attacker

RA
l,t = εAl,t

nl∑
h=1

gl,h,t+1 ln

(
gl,h,t+1

gl,h,t

)
, (9)

where εAl,t > 0. A similar problem for the attacker is

(AP) sup
gl,t+1∈Gl

〈gl,t+1, r̂
A
l,t〉 − εAl,t

nl∑
h=1

gl,h,t+1 ln

(
gl,h,t+1

gl,h,t

)
. (10)

Theorem 1. The following statements hold for (SP) and (AP):

(i) The following strategies fl,h,t+1 and gl,h,t+1 are optimal for (SP) and (AP),
respectively.

fl,h,t+1 =
fl,h,te

−
r̂l,t(cl,h)

εS
l,t

ml∑
h′=1

fl,h′,te
−

r̂l,t(cl,h′ )
εS
l,t

, (11)

gl,h,t+1 =
gl,h,te

r̂l,t(al,h)

εA
l,t

nl∑
h′=1

gl,h′,te

r̂l,t(al,h′ )
εA
l,t

. (12)

(ii) The optimal values achieved at (11) and (12) for (SP) and (AP) are given
by

WS
l,t = εSl,t ln

(
ml∑
h=1

fl,h,te

−r̂l,h,t

εS
l,t

)
, (13)

WA
l,t = εAl,t ln

(
nl∑
h=1

gl,h,te

r̂l,h,t

εA
l,t

)
. (14)
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Sketch of Proof. The results are obtained by directly solving two concave con-
strained optimization problems. A complete proof can be found in [26]. �

The parameters εSl,t and εAl,t model the switching and learning costs for the sys-
tem and the attacker respectively. The parameter values are also related to the
degree of rationality of the players associated with the zero-sum game Ξl. When
εSl,t, ε

A
l,t are close to zero, the players tend to be highly rational, whereas they are

irrational when the parameters go to infinity. This observation is summarized in
the following theorem.

Theorem 2. The following statements hold for (SP) and (AP):

(i) The players are of high rationality when εSl,t and εAl,t approach 0, i.e.,

lim
εSl,t→0

WS
l,t = min

cl,h∈Nl

r̂Sl,h,t (15)

lim
εAl,t→0

WA
l,t = max

al,h∈Al

r̂Al,h,t (16)

(ii) The players are of low rationality when when εSl,t and εAl,t approach +∞, i.e.,

lim
εSl,t→∞

WS
l,t = 〈fl,t,−r̂Sl,t〉 (17)

lim
εA
l,t

→∞
WA

l,t = 〈gl,t, r̂
A
l,t〉 (18)

Sketch of Proof. The results follow directly from taking limits of the closed
form solution of WS

l,t and WA
l,t in Theorem 1(ii). A complete proof can be found

in [26]. �

The optimization problems (SP) and (AP) provide a mechanism for players to
update their mixed strategies at time t+ 1 based on the information learned at
time t. The defender will choose a new configuration l,t+1 according to fl,t+1 to
alter the attack surface from πl(�l,t) to πl(�l,t+1).

Fig. 4 summarizes the feedback-driven moving target defense from the de-
fender’s perspective. The system updates the mixed strategies for moving target
defense by solving (SP) based on the risked learned online using (5). The de-
fender reconfigures the system according to (11) and shifts the attack surface
to minimize the damage and risk of the system. An intelligent attacker on the
other hand can also follow the same procedure to explore and exploit existing
vulnerabilities of the system.

Remark 2. Note that there is a clear relation between the defense mechanism
depicted in Fig. 4 and feedback control systems. The risk learning can be seen as
a sensor which measures outputs of the system and estimates the system state.
The “Shift Attack Surface” block in the diagram can be regarded as an actuator
which sends input to command and control the system. The design of moving
target defense is analogous to a feedback controller design. Acknowledging this
connection allows to apply control-theoretic tools to analyze the system.
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Fig. 4. System framework of the moving target defense: The defender learns online
the risk of the system and updates the mixed strategy for moving target defense. The
system shifts its attack surface according to the updated defense strategy.

Remark 3. Compared to existing moving target defense which adopts a static
distribution to randomize the attack surface, the defense mechanism described
in Fig. 4 provides another layer of defense by changing the mixed strategy (or
distribution) over time according to the environment. In this way, it creates more
complexity and higher cost for an attacker to learn and gain system information.

5 Learning Dynamics

In this section, we analyze the feedback moving target defense mechanism de-
scribed in Section 4. The dynamics for mixed strategy update using (11) and
(12) can be generalized by taking a convex combination of (11), (12) and the
previous mixed strategy. They are described by

fl,h,t+1 = (1− λS
l,t)fl,h,t + λS

l,t

⎛⎜⎜⎜⎜⎜⎝
fl,h,te

−
r̂l,t(cl,h)

εS
l,t

ml∑
h′=1

fl,h′,te
−

r̂l,t(cl,h′ )
εS
l,t

⎞⎟⎟⎟⎟⎟⎠ , (19)

gl,h,t+1 = (1− λA
l,t)fl,h,t + λA

l,t

⎛⎜⎜⎜⎜⎜⎝
gl,h,te

r̂l,t(al,h)

εA
l,t

nl∑
h′=1

gl,h′,te

r̂l,t(al,h′ )
εA
l,t

⎞⎟⎟⎟⎟⎟⎠ , (20)
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where λS
l,t, λ

A
l,t ∈ [0, 1] are learning rates. If λS

l,t = λA
l,t = 1, the dynamics corre-

spond to the update procedure in Section 4. Note that the dynamics (19) and
(20) are coupled with cost learning in (5) and (6).

The convergence of the coupled dynamics can be studied by its correspond-
ing continuous-time dynamics. Let ecl,h ∈ Fl, eal,h

∈ Gl be a vector of proper
dimension with h−th entry being 1 and others being 0, and all the variables
as a continuous function of time. We let the learning rates satisfy the following
conditions:∑

t≥1

λS
l,t = +∞,

∑
t≥1

(λS
l,t)

2 < +∞,
∑
t≥1

λA
l,t = +∞,

∑
t≥1

(λA
l,t)

2 < +∞;

∑
t≥1

μS
l,t = +∞,

∑
t≥1

(μS
l,t)

2 < +∞,
∑
t≥1

μA
l,t = +∞,

∑
t≥1

(μA
l,t)

2 < +∞.

Theorem 3. The joint cost and strategy learning algorithms (5) and (19), (6)
and (20) converge to the following set of ordinary differential equations (ODEs).

(i) System defender’s dynamics⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
d
dtfl,h,t = fl,h,t

⎛⎜⎜⎜⎜⎝ e

r̂l,t(cl,h)

εS
l,t

ml∑
h′=1

fl,h′,te

r̂l,t(cl,h′ )
εS
l,t

− 1

⎞⎟⎟⎟⎟⎠ , h = 1, 2, · · · ,ml,

d
dt r̂

S
l,t(cl,h) = −�l,t(ecl,h ,gl,t)− r̂Sl,t+1(cl,h), cl,h ∈ Cl

(21)

(ii) Attacker’s dynamics⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
d
dtgl,h,t = gl,h,t

⎛⎜⎜⎜⎜⎝ e

r̂l,t(al,h)

εA
l,t

nl∑
h′=1

gl,h′,te

r̂l,t(al,h′ )
εA
l,t

− 1

⎞⎟⎟⎟⎟⎠ , h = 1, 2, · · · , nl,

d
dt r̂

A
l,t(al,h) = �l,t(fl,t, eal,h

)− r̂Al,t+1(al,h), al,h ∈ Al

(22)

Sketch of Proof. Under the assumptions of the learning rates, the results can
be shown using stochastic approximation techniques, [27]. �

Theorem 4. Let εSl,t = εAl,t = εl for all t. The following statements hold.

(i) SPE of the game Ξl are steady states of the dynamics (21) and (22).
(ii) The interior stationary points of the dynamics are SPE of the game Ξl.

Sketch of Proof. The results follow from the properties of imitative Boltzmann-
Gibbs dynamics ( [25] and the references therein). A complete proof can be found
in [26]. �
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Remark 4. The adaptive moving target defense illustrated in Fig. 4 can be em-
ployed at each layer of the system independently. This is reasonable if attackers
can explore and exploit vulnerability at each layer of the system simultaneously.
For the case where the attacker has to launch a stage-by-stage attack, the game-
theoretic model in Section 3 can be extended to a stochastic dynamic game frame-
work to capture the fact that the outcome of the game at layer l leads to the game
at layer l + 1. In the stochastic game model, the transition probabilities can be
taken to be attacker’s success probabilities at each stage, and the systematic risk
can be taken to be the aggregate potential damage on the system across all the
layers.

6 Numerical Example

In this section, we illustrate the feedback-driven moving target defense within
the context of Example 1. We let V1 = {v1,1, v1,2, v1,3} be the set of three
vulnerabilities at layer 1. They lead to a low (L), medium (M), and high (H)
level of damage on the system, respectively, if it is compromised. The attacker
can choose to exploit each of these vulnerabilities and launch an attack. The
set of attacks is given by A1 = {a1,1, a1,2, a1,3} with attack al,h corresponding
to vulnerability vl,h, h = 1, 2, 3. The success of an attack a1,h will result costs
of 1p.u., 2p.u., 3p.u. of damage, respectively. Hence the game matrix can be
written as follows:

Ξ1 :

a1,1 a1,2 a1,3
c1,1 1 2 0
c1,2 0 2 3

The column player is the attacker (minimizer) and the row player is the defender
(maximizer). The game has a pure Nash equilibrium where the attacker chooses
a1,2 while the defender chooses c1,2, which results in the value 2 for the game.
We set εSl,t = εAl,t =

1
30 . Fig. 5 and Fig. 6 illustrate the strategy and cost update

dynamics (21) for the system defender. Fig. 7 and Fig. 8 illustrate the strat-
egy and cost update dynamics (22) for an intelligent attacker. We see that the
dynamics converge to a Nash equilibrium of the matrix game Ξ1.

The numerical examples above have illustrated the convergence properties of
the learning algorithm when the system and the attacker both adopt the same
learning mechanism. In practice, two players can follow different dynamics, and
the observations made by the system are noisy. Hence, the equilibrium of the
game may not be attained as in Figs. 5 and 7. The distributed nature of the
feedback system in Section 4 provides nevertheless a convenient framework for
a defender to respond to its own observations. We let the mixed strategy of
the attacker gt be an i.i.d. random process, where gt is uniformly chosen from
G1. Assume that the payoff matrix Ξ1 is subject to an additive noise v1, which
is uniformly distributed on [0, 1/2]. In Fig. 9, we show for different values of
ε, the evolution of mixed strategy generated by (19) of the system when the
attacker behaves randomly, while the system optimally switches between two
configurations. When ε is the large, it is more costly for the system to change its
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Fig. 5. System’s strategy learning:
Continuous-time evolution of defender’s
mixed-strategies f1,1,t and f1,2,t

Fig. 6. System’s payoff learning:
Continuous-time evolution of defender’s
estimated cost r̂S1,1,t and r̂S1,2,t

Fig. 7. Attacker’s payoff learning:
Continuous-time evolution of attacker’s
mixed strategies g1,1,t, g1,2,t, and g1,3,t

Fig. 8. Attacker’s payoff learning:
Continuous-time evolution of attacker’s
estimated payoff r̂A1,1,t, r̂

A
1,2,t, and r̂S1,3,t

attack surface regularly. Hence, the evolution of mixed strategy f1,1,t is smoother
than the one with smaller ε.

In Fig. 10, we show the risk measured by the defender, which depends on
attacker’s action and defender’s attack surface. From t = 99 to t = 115, the
system sees an unusual peak of risk under c1,2. This exogenous input is used
to model unexpected malicious events or alerts that have been detected by or
alerted to the system due to the potential risk imposed by v1,1. In Fig. 9, we can
see that the randomized strategy f1,1 reacts to the surge of risk at t = 99 and the
probability of choosing c1,1 starts to increase until the alert is over. The mixed
strategy at steady state is found to be f1 = (0.61, 0.39). The feedback mechanism
allows the defense system to adapt to unanticipated events and enable emergency
response that enhances the resiliency of the system.
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Fig. 9. Mixed strategy of the defending system for different values of ε: f1,1,t is the
probability of choosing configuration c1,1, and f1,2,t = 1 − f1,1,t is the probability of
choosing c1,2

Fig. 10. Risk estimated by the defender for employing configurations c1,1 and c1,2,
respectively. An unexpected event is detected during the period from t = 99 to t = 115.

In Fig. 11, the vulnerability metric ψ is computed at each time instant. We
observe that the moving target defense outperforms a static randomized strategy
(1/3, 1/3, 1/3) as its ψ value is constantly higher than the one under the static
strategy. The feedback mechanism provides a way to misalign the vulnerability
the attack intend to exploit and the vulnerabilities on system’s attack surface.
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Fig. 11. System vulnerability metric ψ measures the level of vulnerability when the
system uses f1 to defend against an attacker who adopts g1. A higher value of ψ
indicates a lower level of vulnerability. In comparison to a static randomized strategy
f1 = (1/3, 1/3, 1/3), the moving target defense yields a better performance.

7 Conclusions

Moving target defense is an alternative solution to the current expensive and
imperfect detection of an intelligent attacker. It is a defense mechanism that
dynamically varies the attack surface of the system being defended, and provides
probabilistic protections despite exposed vulnerabilities. In this paper, we have
developed a game-theoretic framework for guiding the quantitative design of
moving target defense as a tradeoff between security and usability. Based on
the model, we have proposed a feedback mechanism that allows the system
to monitor its current system state and update its randomized strategy based
on its observation. We have analyzed the equilibrium stochastic joint strategy
and payoff dynamics by studying its associated continuous-time dynamics. As
discussed in Remark 4, this work could be further extended to a stochastic
game framework where transition probabilities between games capture strategy
interdependencies across the layers. Instead of finding equilibrium for games at
each layer, we would be interested in a security policy that minimizes the overall
risk of the multi-layer system.
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18. Zhu, Q., Clark, A., Poovendran, R., Başar, T.: Deceptive routing games. In: Proc.
51st IEEE Conference on Decision and Control (CDC 2012), Maui, Hawaii, Dec-
cember 10-13 (2012)
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Stuxnet. In: Proc. 2013 American Control Conference (ACC 2013), Washington,
DC, June 17-19, pp. 4146–4153 (2013)

22. Zhu, Q., Clark, A., Poovendran, R., Başar, T.: Deceptive routing games. In: Proc.
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