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in the Galapagos Islands of Ecuador

Laura Brewington, Brian G. Frizzelle, Stephen J. Walsh, Carlos F. Mena,

and Carolina Sampedro

Abstract Analysis of marine and coastal systems is of fundamental importance to

environmental scientists, engineers, and managers. Since the 1960s, remote sensing

has played an important role in characterizing the marine environment, with

particular emphasis on sea surface features, temperature, and salinity; mapping of

shorelines, wetlands, and coral reefs; local fisheries and species movements; track-

ing hurricanes, earthquakes, and coastal flooding; and changes in coastal upwelling

and marine productivity. This chapter reviews marine applications of remote

sensing worldwide, exploring contemporary satellite systems, research themes,

and analytical methods. In the Galapagos Islands of Ecuador, marine remote

sensing has been limited to the use of large-scale daily image-gathering systems,

such as CZCS, MODIS, SeaWiFS, and AVHRR, due to persistent cloud cover and

constrained research budgets. Recent advances in satellite technology and avail-

ability, however, offer new opportunities for remote sensing in the Galapagos

archipelago and beyond. Moderate-resolution sensors like SPOT and Landsat

continue to be relevant for regional-scale evaluations of marine and coastal envi-

ronments, identifying hotspots or focal areas for the use of more fine-grained

imagery like QuickBird, WorldView-2, and aerial photographs. Radar systems

like Aquarius and SAR show promise in new lines of oceanographic research,

including sea surface salinity and the differentiation of mangrove subspecies. The

use of ancillary or in situ data for calibration and validation of remotely-sensed

image analysis can overcome the limitations of sensors used in bathymetric

applications, while advances in cellular and GPS technology facilitate real-time
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reporting from citizen scientists for integrated monitoring of environmental and

social change.

Introduction

Marine remote sensing is a broad field of study with a rich and expanding agenda.

Applications include marine ecosystem characterizations, habitat mapping, and

assessment of marine biodiversity, natural hazards management, oceanographic

conditions, and cross-scale process models of seasonal and annual ocean circulation

patterns. A diversity of satellite-based, remote sensing assets is available to gener-

ate views of ocean conditions around the globe. Remote observations and measure-

ments of coastal margins, shallow seas, and deep oceans are generated at local,

regional, and global scales and for historical and contemporary periods. Corrected

spectral information and derived data products offer users considerable options to

customize the selection and fusion of satellite remote sensing systems according to

desired space-time scales. While historically the challenge was to match research

questions to limited availability and iteratively negotiate the questions, data needs,

and system availabilities, the challenge now is to select the most appropriate remote

sensing systems that provide the optimum combination of spatial, temporal, spec-

tral, and radiometric resolutions to address the defined problem. With these four

resolutions, satellite remote sensing systems and associated data types can generate

a more nuanced, scaled perspective of marine and coastal environments.

Some early optical systems have been the mainstay of marine, as well as

terrestrial remote sensing, buoyed by their broad area reconnaissance capacities,

spectral sensitivities, and spatial resolutions. Examples include the Coastal Zone

Color Scanner (CZCS) that operated in the visible, near-infrared, and thermal

infrared channels; and NOAA’s Advanced Very High Resolution Radiometer

(AVHRR) that extends the visible and infrared spectral regions into thermal

infrared wavelengths of twice-daily imagery, used to assess sea surface temperature

on a regional-global scale.

More contemporary systems have a broader range of applications for mapping

and monitoring marine environments at a variety of resolutions: the Moderate-

Resolution Imaging Spectrometer (MODIS) captures daily images around the globe

for assessing ocean color in visible and near-infrared spectral regions at a 1,000 m

spatial resolution. Hyperion and the Advanced Land Imager (ALI) have a 30 m

spatial resolution and an extensive spectral range, finely sliced into over 200 spectral

channels. WorldView-2 is a relatively new system for land and water remote

sensing, with very high spatial resolution. TOPEX/Poseidon and Aquarius are

altimeters and microwave radiometers, used for characterizing oceanographic

parameters, such as sea surface height and salinity. These active systems emit

pulses of energy that interact with earth surface features, whereas passive systems

simply measure the spectral reflectivity of solar energy. Spectral regions are often
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associated with key surface properties, strongly influencing response patterns. For

instance, the recently launched Landsat 8 is sensitive to plant pigmentation in the

visible wavelengths, chlorophyll-a (Chl-a) in the near-infrared wavelengths, and

moisture content in the middle-infrared wavelengths. WorldView-2 includes a

spectral channel for characterizing bathymetry of marine environments, particu-

larly the nearshore.

In short, marine remote sensing addresses a diverse range of oceanographic

parameters, ecosystem conditions, and surface and near-surface features. Chal-

lenges imposed by ocean dynamics, the extensive geographic scale of marine

settings, and the complex interactions of local, regional, and global processes

continue to motivate new applications in marine remote sensing. This chapter is

concerned with the following: (1) commonly used derived data products, research

themes, and analytical techniques in marine remote sensing; (2) early and contem-

porary applications of marine remote sensing in the Galapagos Islands of Ecuador;

and (3) ancillary data, especially bathymetric measures and local knowledge, and

future opportunities for marine remote sensing in Galapagos and beyond, empha-

sizing data fusion and linking across terrestrial, marine, economic, and social

systems.

Key Variables in Marine Remote Sensing

Some of the methodologies used in remote sensing of the marine environment are

similar to those applied in terrestrial remote sensing (e.g., classification). However,

many studies that utilize marine remote sensing resources rely on a set of variables

that have specific application to marine environments. Robinson (2004) notes five

primary observable quantities of the ocean environment, discussed below.

Sea Surface Temperature

Sea surface temperature (SST) is the water temperature near the surface of the

ocean and plays a critical role in the transfer of heat between the atmosphere and the

oceans (Maurer 2002; Emery 2003). It is also tied to atmospheric and ocean

circulation patterns, making it an important parameter in global climate models.

Since the late 1960s, scientists have used satellite data for deriving regional or

global SST measurements. Today there are several active satellites that have the

ability to measure SST across a variety of spatial scales and resolutions, using both

thermal infrared channels and passive microwave radiometry. Government sources

often provide websites for searching and downloading raw and processed satellite

data, while other organizations, such as the Group for High-Resolution Sea Surface

Temperature (GHRSST), provide fused or value-added SST products. Data fusion

is becoming popular as researchers attempt to leverage the benefits of each type of
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SST sensor and diminish their weaknesses (Maurer 2002). These products are

central to an understanding of oceanographic topics, such as the effects of upwell-

ing on SST (Askari 2001), the relationship of SST and primary productivity (Kahru

et al. 2012a), and the role that SST plays in algal blooms (Siegel and Gerth 2000).

Ocean Color and Derived Variables

Ocean color is a characteristic of seawater properties that are composed of phyto-

plankton, dissolved organic matter, suspended sediments, and, in certain areas,

shallow seabeds (Robinson 2004). Many derived variables can be calculated from

satellite-based ocean color measurements, including the concentration of Chl-a,

which is a direct indicator of phytoplankton presence. Sensor-dependent empirical

algorithms, such as those that require log-10 transformations of remote sensing

radiance and transformed in situ measurements as inputs, are the basis for deriving

Chl-a concentrations from raw images across multiple spatial and temporal scales

(Kahru et al. 2012b). Such monitoring allows researchers to understand how

physical processes affect biological distributions (Yoder 2000; Tang et al. 2009),

such as the distribution of atmospheric aerosols, SST dynamics, inland flooding,

and seasonal variances (Nezlin 2000; Siegel and Gerth 2000; Stegmann 2000).

Dissolved organic matter (DOM), like Chl-a, absorbs light in the blue part of the

electromagnetic spectrum. It therefore competes with phytoplankton for light

resources, and as the concentration of DOM increases, photosynthesis in the

surrounding waters decreases. The presence of DOM makes it more difficult to

accurately measure Chl-a concentrations via remotely sensed imagery, so much

work has gone into developing algorithms that can separate out Chl-a concentra-

tions from DOM and suspended sediments (e.g., Siswanto et al. 2011). DOM

algorithms tend to be empirically based, as DOM concentration is seasonal and

highly localized, most commonly found in coastal areas (Kowalczuk et al. 2005;

Para et al. 2010). DOM has also been related to dissolved carbon from freshwater

runoff, allowing for large-scale monitoring of this important indicator of climate

change in nearshore environments (Matsuoka et al. 2012).

Suspended sediments and particulates, or total suspended matter (TSM), have

similar effects as DOM in that they also inhibit light transmission and reduce

phytoplankton growth. TSM is inorganic and has different spectral characteristics

than Chl-a and DOM, and measuring the concentration of these elements can give

researchers an indicator of water quality. TSM concentrations can be calculated

with empirical, physical, or semi-analytical model algorithms, all of which require

some level of in situ measurements for calibration of radiance values from passive

multispectral sensors such as MODIS (Wang et al. 2012). Similar to DOM, TSM is

more commonly found in coastal areas (Li et al. 2003; Binding et al. 2005;

Surendran et al. 2006).
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Ocean color can also play an important part in the classification of marine

vegetation and seabed forms in coastal waters, as well as the creation of bathymetry

layers. The reflectance of the sea bottom allows researchers to utilize similar

methodologies to those in terrestrial remote sensing, where the water is shallow

and transparent and contains little particulate matter (Robinson 2004). Reflectance

can provide sufficient data for bathymetric mapping, typically to 20 m, although

WorldView-2 imagery has shown the potential to register depths to 30 m (Tøttrup

and Sørenson 2011), and various techniques have been developed for producing

these maps (Philpot 1989; Stumpf et al. 2003; Haibin et al. 2008; Lyons et al. 2011).

Surface Roughness and Waves

Turbulence in the atmosphere is translated into increased wave activity, and as

winds create waves, momentum and energy are transferred from the air to the ocean

surface (Janssen 1996; Ly and Benilov 2003). Understanding this transfer of energy

is important in properly parameterizing global climate models (Heimbach and

Hasselmann 2000), and surface roughness can be directly observed using satellite

imagery via both passive microwave radiometers and active microwave sensors

(Robinson 2004). The magnitude of surface roughness has a direct effect on

momentum transfer between the sea and the atmosphere, which itself influences

other broad-scale processes such as atmospheric circulation, wave growth, and

storm surges (Johnson et al. 1998; Taylor and Yelland 2001).

Wave spectra, or the combination of wave height and direction, can be derived

from roughness variables. Satellite-based measurements of wave height using

synthetic aperture radar (SAR) began in 1978 with the launch of Seasat (Heimbach

and Hasselmann 2000). A number of current or recently decommissioned platform

boast radar altimeters designed for capturing roughness and wave height, including

TOPEX/Poseidon, ERS-2, Geosat-FO, Jason-1 and Jason-2, and Envisat. Data on

wave heights provides critical information to industries involving shipping, oil

exploration, fisheries management, and environmental protection of coastal

resources.

Currents and General Circulation

Currents have a direct impact on climate, biodiversity of the oceans, and ocean-

related industries. While there are many different means of understanding currents

at the local scale, satellite imagery allows us to gather this data along entire

coastlines and across oceans. Satellite imaging of currents is calibrated with in

situ measurements of moored and floating buoys and ocean drifters. Thermal

infrared sensors are one source of data on currents as they provide measurements

on SST, which can define current boundaries and be tracked to determine the path
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and velocity of the current. Ocean color sensors can additionally allow scientists to

track the movement of visible features, such as Chl-a plumes, along a current. SAR

is used to identify spatiotemporal variations in oceanfronts, allowing for the

creation of current tracks, and satellite altimetry has been used to derive ocean

height dynamics, improving tidal charts and increasing scientific knowledge of

tides and circulation variability (Garzoli and Goni 2000; Klemas 2012).

El Niño-Southern Oscillation (ENSO) events lead to altered currents, rises in sea

level, increases in sea surface temperature and salinity, and changes in the thermo-

cline. The Tropical Ocean-Global Atmosphere (TOGA) program, a component of

the World Climate Research Programme that ran from 1985 to 1994, facilitated a

richer understanding of ENSO events, and since then the use of remote sensing in

ENSO research has gradually increased (McPhaden et al. 1998). Numerous studies

link ENSO to fisheries (Carr and Broad 2000), surface circulation (Cai and He

2010), SST (Ballabrera-Poy et al. 2002), physical and biogeochemical processes

(Hong et al. 2011), seasonal upwelling (Hong et al. 2009), sardine recruitment

(Gomez et al. 2012), eastern Pacific leatherback turtle foraging (Saba et al. 2008),

Chl-a concentration (Sasaoka et al. 2002; Yamada et al. 2004), and coral bleaching

(Carriquiry et al. 2001).

Sea Surface Salinity

Sea surface salinity has strong effects on circulation in coastal zones, and it impacts

energy exchange in the air-sea interface (Le Vine et al. 2000). Measurements of

salinity can also be used to better understand the impacts of freshwater runoff, ice

melt, and large-scale meteorological events such as hurricanes and monsoons

(Lagerloef 2000). As recently as 2000, the ability to map salinity with satellite

imagery was still beyond the capabilities of current technology. Some L-band

microwave systems have been used over the past decade to derive measurements

of salinity, though those instruments were not designed with this goal in mind (e.g.,

Burrage et al. 2008; Martin et al. 2012; Yueh and Chaubell 2012). Promising early

results have been derived from NASA’s 2011 Aquarius satellite mission, the first

designed to specifically measure salinity from space (Le Vine et al. 2013).

Table 6.1 summarizes the specifications for some of the key satellite systems

from the 1970s on that have been widely used in marine applications. Even for

systems no longer acquiring information, historical archives remain a valuable

informational asset.
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Table 6.1 Summary of satellite systems, sensors, and data products commonly used in marine

remote sensing

Satellite system Sensors Country From To

Sensor

type Designed for

GOES-1 to

GOES-7

VISSR USA 1975 Mid-1990s P SST

Meteosat (1–7) VISSR Europe 1977 Current P SST

Seasat SMMR, Scat,

SAR, RA

USA 1978 1978 A SSH, WS,

SST

TIROS-N AVHRR USA 1978 1981 P SST

Nimbus-7 CZCS USA 1978 1986 P and O OC

NOAA (6–17) AVHRR/2,

AVHRR/3

USA 1978 Current P SST

Geosat RA USA 1985 1990 A SSH

MOS-1A/1B MESSR, MSR,

VTIR

Japan 1987 1992 A and P SST

ERS (1 and 2) ATSR, ATSR-2,

AMI, RA

Europe 1991 2011 A WH, WS,

OC

TOPEX/

Poseidon

POSEIDON-1,

TOPEX

USA/

France

1992 2006 A SSH

GOES-8 to

GOES-15

GOES-IM

Imager

USA 1995 Current P SST

ADEOS 1 OCTS, NSCAT Japan 1996 1997 A and P OC, WS

IRS-P3 MOS India 1996 2006 P OC

SeaStar SeaWiFS USA 1997 2010 P and O OC

TRMM TMI USA/Japan 1997 Current A SST

QuikSCAT SeaWinds USA 1999 2009 A WS

IRS-P4/

OceanSat-1

OCM, MSMR India 1999 2010 A and P OC, SST,

WS

KOMPSAT-1/2 OSMI S. Korea 1999 Current P OC

Aqua MODIS,

AMSR-E

USA 2000 Current A, O, and

M

SST, OC

Jason-1 Poseidon-2 USA/

France

2001 Current A SSH, WH,

WS

ADEOS II AMSR, GLI,

SeaWinds

Japan 2002 2003 A and P OC, WS,

SST

Envisat ASAR, AATSR,

MERIS

Europe 2002 2012 A and P SST, OC,

WS

Jason-2 Poseidon-3 USA/

France

2009 Current A SSH

SAC-D Aquarius USA 2011 Current A and P

L-band

SSS

A active, M microwave, O optical, P passive, OC ocean color, SSH sea surface height, SSS sea

surface salinity, SST sea surface temperature, WH wave height, WS wind speed
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Key Themes in Marine Remote Sensing

Technologies and analytical methods for marine remote sensing have improved

greatly in just the last decade, with greater abilities to detect oceanic and nearshore

properties at a variety of scales. The growing number of sensors combined with

advances in data telemetry and processing algorithms makes the marine application

of remotely sensed data virtually limitless. The following sections describe key

themes and analytical techniques in marine remote sensing that have emerged in

tropical and island settings worldwide, presenting opportunities for more compre-

hensive and interdisciplinary research in the Galapagos.

Habitat and Migration

Ocean color and temperature remote sensing have been widely used in studies to

characterize large-scale ENSO events in the tropical Pacific, employing passive

optical sensors for detecting SST and Chl-a concentrations (Vialard et al. 2002;

Baker et al. 2008; Lo-Yat et al. 2011; Boyce et al. 2012) and active altimeters for

calculating surface winds and ocean topographic anomalies (Quilfen et al. 2000;

Contreras 2002; Karnauskas et al. 2008). Some studies in the tropics linking

migrating species with satellite-derived habitat variables are largely qualitative,

simply overlaying track data on maps of oceanographic characteristics, without

considering how physical parameters might influence migration routes (Hays

et al. 2001; Lander et al. 2013). More recent maritime habitat research has applied

remotely-sensed parameters to the study of tropical storm impacts and eddy for-

mation (Dong et al. 2009; Han et al. 2012), global current systems as maritime

navigation aids (Cervone 2013), coral bleaching (Baker et al. 2008; Krug

et al. 2012), changes in submerged aquatic vegetation in sea grass-dominated

settings using a Landsat-TM and Landsat-ETM image time series and change

detection approaches (Gullstrom et al. 2006; Ferwerda et al. 2007), and the hydro-

logic impacts of volcanic eruptions within oceanic archipelagos (Mantas

et al. 2011). Such analyses can span the full breadth of available spatial, spectral,

temporal, and radiometric scales.

The availability of very fine spatial resolution imagery has also led to straight-

forward, nonanalytical applications in remote locations: a small number of studies

have used aerial photography and QuickBird and Worldview panchromatic scenes,

combined with simple visual analysis or object-based classifications to detect the

presence and abundance of individuals or species colonies in glacial and aquatic

environments (Barber-Meyer et al. 2007; LaRue et al. 2011; Lynch et al. 2012;

Groom et al. 2011).
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Fisheries

Closely linked to species migration research, fisheries science frequently applies a

fusion of quantitative and qualitative data, remote sensing platforms, and analytical

techniques (Mellin et al. 2009; Stuart et al. 2011). Numerous studies have linked

remotely sensed variables such as sea surface height, salinity, SST, and wind speeds

to the presence of pelagic species in tropical and subtropical marine environments

(Maul et al. 1984; Klimley and Butler 1988; Herron et al. 1989; Zainuddin

et al. 2008). Shipboard surveys, where feasible, more accurately predict species

presence and abundance, but in the absence of in situ biotic information and

particularly across large spatial and temporal scales, remotely sensed data have

been instrumental in marine research (Murphy and Jenkins 2010; Chassot

et al. 2011).

Vulnerability and Hazards

Vulnerability assessments for coastal regions apply remotely-sensed data to derive

indices or generate risk scenarios based on geomorphological or biophysical

parameters. Typically these studies are concerned with populated areas located

along coastlines, and their vulnerability to climate change impacts (Cazenave and

Llovel 2010; Rankey 2011; Scopelitis et al. 2011; AlRashidi et al. 2012) hurricanes

and tsunamis (Dall’Osso et al. 2009; Eckert et al. 2012; Kumar and Kunte 2012;

Romer et al. 2012), drifting contaminants such as oil spills (Helzel et al. 2011;

Leifer et al. 2012), shoreline changes due to coastal sediment dynamics and ENSO

events (Shaghude et al. 2003), or a set of the above factors commonly faced by

island states or territories (Narayana 2011; Farhan and Lim 2012). A much smaller

subset of the hazards literature focuses on man-made impacts to marine systems,

such as land use change, runoff, and pollution (Nicholls et al. 2008; Ceia

et al. 2010).

Hazards research draws on a wide range of resolutions within the optical sensors,

finding that daily coverage satellites like MODIS, SeaWiFS, and MERIS support

rapid response to disasters or susceptibility at regional scales, while fine-resolution

and hyperspectral imagery prove useful in post-disaster interpretation and adaptive

planning (Maina et al. 2008; Leifer et al. 2012). Trebossen et al. (2005) demon-

strated that in tropical regions characterized by high cloud cover, continuous

collection of radar imagery from satellites like ERS-1, ERS-2, and Envisat can

provide frequent updates on shoreline evolution and response to sedimentation and

erosion events.
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Mangroves

Because mangroves provide shelter from tsunamis and storm events to inland

ecosystems (Alongi 2002) and function as nurseries and feeding grounds for fish

(Mumby et al. 2004; Nagelkerken et al. 2008), they are frequently described in the

hazards and fisheries remote sensing literature (Omo-Irabor et al. 2011; Liu

et al. 2013). The proximity of mangroves to human settlements and their availabil-

ity as an economic resource have prompted some research to apply traditional land

use/land cover change scenarios to link livelihood decisions with mangrove use and

change in a sustainability framework (Walters et al. 2008; Conchedda et al. 2011).

Medium resolution sensors are typically applied to mangrove monitoring at

regional to large scales, including SPOT, Landsat, and SAR (Gang and Agatsiva

1992; Aschbacher et al. 1995; Green et al. 1998; Conchedda et al. 2008; Bhattarai

and Giri 2011). These studies typically focus on characterizing the spatial extent of

mangroves or their increase/decrease over time with respect to climate change

impacts, disasters, and anthropogenic processes. Aerial photography has been

utilized in mangrove research since the 1990s, particularly before the more wide-

spread availability of high spatial resolution sensors (Chauvaud et al. 1998; Manson

et al. 2001). More recently, fine- and very fine-resolution imagery like QuickBird,

Worldview-2, GeoEye-1, and IKONOS has been exploited for evaluating man-

grove habitat complexity at the smallest scales (Kovacs et al. 2005; Proisy

et al. 2007; Heumann 2011a; Satyanarayana et al. 2011; Liu et al. 2013).

Beaches

Aside from particular ecosystems and habitats such as mangroves and coral reefs,

marine management relies on having accurate habitat maps across coastal regions

to identify areas for zoning and protection (Mumby et al. 1999). Shoreline moni-

toring via remotely sensed imagery may encompass very small areas, such as

individual beaches and dunes, to entire coastlines or islands (Gould and Arnone

1997; Stockdon et al. 2002; Kelle et al. 2007; Fonseca et al. 2010). Historically, the

most common shoreline detection technique was subjective visual interpretation

(Boak and Turner 2005). At the very local level, Argus video imaging has been used

for long-term optical shoreline observation of storm response, seasonal cycling,

bathymetric surveys, and anthropogenic processes at individual sites where cam-

eras can be located (Turner et al. 2006; Kroon et al. 2007; Holman and Stanley

2007).
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Image Analysis

Classification

There is a broad literature on marine remote sensing classification, the process of

categorizing distinct shoreline and seascape features through spectral response

patterns. With few exceptions, optical sensors have been the predominant data

source in classification studies. Analytical techniques applied to multispectral

imagery in mangrove research range from supervised/unsupervised classification,

object-based classification, and more sophisticated methods like support machine

vectors and fuzzy classifications (Bhattarai and Giri 2011; Long and Giri 2011;

Heumann 2011b). The classification of coral reefs is fairly common, with studies

using a combination of medium-resolution public imagery and high-resolution

commercial imagery to compare and contrast the benefits of each product

(Mumby and Edwards 2002; Andréfouët et al. 2003) and hyperspectral airborne

imagery to study the effects of scaling up from species-level data to community-

level classifications (Andréfouët et al. 2004).

Other classification studies include automated (Steimle and Finkl 2011) and

manual (Chauvaud et al. 1998) mapping of marine environments, identification of

biological hot spots (Palacios et al. 2006), and habitat mapping for tracking fin

whales and striped dolphins (Panigada et al. 2008). Recent work has focused on

improving feature classification accuracy and process assessments at the land-water

boundary, using fine-resolution sensors to compare and contrast analytical tech-

niques (Fonseca et al. 2010; Collin and Hench 2012). As a cost-effective alternative

to Light Detection and Ranging (LiDAR) data, Knudby et al. (2011) verified the

utility of optical, object-based models for classifying reef benthos and geomorphol-

ogy from fine-resolution satellite images. Spatially explicit modeling scenarios

utilize both fine- and coarse-grained imagery, but the high costs of QuickBird,

IKONOS, WorldView-2, and other sources frequently preclude analysis at the

habitat level (Andréfouët et al. 2005; Hamel and Andréfouët 2010).

Indices and Derivatives

There have been few tropical marine studies in which the derivation of indices from

remotely sensed imagery was a major component. The multivariate ENSO index

was used along with derived net primary productivity to aid in leatherback turtle

conservation management (Saba et al. 2008), while the creation of a temperature

index was used to better understand the migration patterns of sei whales (Kimura

et al. 2005). Improvements in tagging and geo-location technologies have facili-

tated rigorous statistical analyses of physical characteristics, from bootstrapping

techniques (Tremblay et al. 2009), to generalized additive mixed models (Gremillet

et al. 2008; Panigada et al. 2008; Peery et al. 2009; Shillinger et al. 2011), and
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randomization testing (Kobayashi et al. 2011). Complex two-dimensional modeling

scenarios have been developed to predict marine habitat use and movement typi-

cally at large (1 km pixel resolution or more) spatial scales; while at smaller scales,

contemporary research using three-dimensional models that integrate remotely

sensed bathymetry and vertical temperature stratification finds that seafloor char-

acteristics explain more variability in habitat use decisions and hot spot formation

(Nur et al. 2011; Palamara et al. 2012).

Change Detection

The mapping and change detection of landforms, beach deposition, and erosion at

regional scales have been widely achieved using low-cost Landsat and SPOT

imagery (Siddiqui and Maajid 2004; Kelle et al. 2007). Photogrammetry and

topographic data collection have provided additional opportunities for geomorpho-

logical and bathymetric shoreline analysis. For bathymetry at fine resolutions,

stereo aerial photography provides a higher resolution complement to optical and

LiDAR sensors (Boak and Turner 2005), where over large areas NASA’s Airborne

Topographic Mapper (ATM) facilitates three-dimensional shoreline characteriza-

tion and change detection (Stockdon et al. 2002; Sallenger et al. 2003). Two studies

used Landsat imagery to map spatial and temporal changes in sea grass distribution

(Gullstrom et al. 2006; Ferwerda et al. 2007), while Shaghude et al. (2003) man-

ually identified sediment dynamics in Zanzibar. Tang et al. (2009) used low- to

moderate-resolution marine remote sensing platforms to investigate changes in

Chl-a distribution and other biophysical variables following the 2005 tsunami.

The temporal extent of aerial photography has also proven useful in change

detection studies: Fromard et al. (2004) traced 50 years of mangrove habitat

transitions using a combination of historic aerial photographs and SPOT imagery,

but the spectral limitations of aerial photography preclude complex analyses of

environmental characteristics.

Data Fusion

Sensor fusion has gained widespread acceptance for the study of terrestrial and

marine environments by integrating data acquired from remote sensing systems of

varying spatial, spectral, temporal, and radiometric resolutions. With the vast array

of space-based systems, the challenge is to select the most optimum systems to

characterize key features of the phenomena under consideration. Underwater

topography for coastal areas was mapped through a combination of TerraSAR-X

data to characterize ocean waves and QuickBird optical data to map bathymetry in

shallow, coastal settings (Pleskachevsky et al. 2011). Askari (2001) developed

indicators of upwelling identification caused by eddy interactions with bottom

120 L. Brewington et al.



topography by fusing AVHRR, ERS-1, TOPEX/Poseidon/ERS-2, and OrbView/

SeaWiFS imagery to integrate measures of SST, ocean color, sea height anomalies,

and the appearance of striations that formed along the boundaries of the eddy.

MODIS and SeaWiFS have also been integrated to examine changed in the pattern

of Chl-a content and sea surface temperature related to the 2004 South Asian

tsunami.

The vulnerability and hazards literature currently offers the most comprehensive

synthesis of social, marine, and terrestrial data sources, because of the proximity of

human communities to vulnerable coastal zones. Coastal inundation presents par-

ticular risk to communities, and integrated observation strategies are needed to

monitor associated processes such as erosion, flooding, tidal anomalies, and

changes in nearshore geomorphology by combining radar and moderate-resolution

imagery with data sources on terrestrial rainfall, ocean surface winds, and cloud

cover (Morris et al. 2005; Tralli et al. 2005; Brock and Purkis 2009).

Marine Remote Sensing in Galapagos

In the Galapagos Islands, with their unique geographic and geologic configurations

in the tropical Pacific, the application of remote sensing in the terrestrial and marine

environments has been relatively sparse. Part of the reason for this is the persistent

cloud cover and masking effects on data sets acquired by optical sensors. Often,

multi-temporal composites are constructed that cover a 10- to 14-day period to

reduce the aerial effects of clouds over land and water. Data acquired by radar

systems reduce the impact of clouds and water vapor on spectral response patterns.

The fact that the Galapagos archipelago is composed of numerous small islands and

rocky outcrops has also minimized the relevance of coarse-grained systems,

although several islands, including the populated islands, are sufficiently sizeable

for the application of data from AVHRR and MODIS.

The earliest remote sensing applications in the Galapagos archipelago began in

the 1980s, with the use of the CZCS and AVHRR satellite data for evaluating

oceanographic trends in primary productivity, ocean color, and SST during the

severe 1982–1983 ENSO event that affected nearly every aspect of plant, animal,

and marine life in the islands (Feldman et al. 1984; Legeckis 1986). Subsequent

work linked longer-term, larger-scale data sets from sensors like SeaWiFS and

MODIS to describe the unique and seasonal oceanographic characteristics of the

Galapagos (Palacios 2002; Sweet et al. 2007) and their relationships to corals

(Wellington et al. 1996), phytoplankton blooms and biological hot spot formation

(Palacios et al. 2006; Pennington et al. 2006; Dasgupta et al. 2009), and ENSO

events of varying severity (Leonard and McClain 1996; Wellington et al. 2001;

Ryan et al. 2002; Wolff et al. 2012). Calibration of oceanographic and atmospheric

models has been facilitated by the use of satellite data records and augmented by in

situ data collected within the tropical Pacific (McClain et al. 2002; Sweet

et al. 2009; Montes et al. 2011; Karnauskas and Cohen 2012). The fusion of remote
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data sources enabled Schaeffer et al. (2008) to identify key hotspots for diversity

within the archipelago.

There have been two maritime applications of remotely sensed data to link

species migrations and habitat use within and around the Galapagos archipelago

(Awkerman et al. 2005; Seminoff et al. 2008), and one study employed SeaWiFS

data to link productivity to regions affected by the 2001 Jessica oil spill, as a

measure of toxicity (Banks 2003). Contemporary utilization of imagery from

hyperspectral/hyperspatial remote sensing platforms like QuickBird and

WorldView-2 to analyze coastal vegetation has yielded promising results for

identifying key habitats in Galapagos intertidal ecosystems, such as mangrove

forests (Song et al. 2011; Heumann 2011a, b).

Ancillary Data to Calibrate/Validate Marine Remote

Sensing

Bathymetry

The generation of accurate oceanographic, hydrographic, biological, and ecological

data models is of extreme importance to conservation efforts and the sustainability

of marine resources. Detailed bathymetric information is a key variable for coastal

and marine modeling, but mapping the seafloor is difficult because it usually

represents areas of nonstationarity and complex structures, such as small channels

with varying orientations, coastal heterogeneity, and deep canyons within regions

of gentle slopes (Magneron et al. 2010). Figure 6.1 shows three-dimensional

seafloor and terrestrial surfaces for the Galapagos Islands, based on surveys

conducted by the Ecuadorian Oceanographic Institute of the Army (INOCAR)

and Geographic Military Institute (IGM).

Traditional bathymetric calculation involves the measurement of ocean depths

using shipboard echo sounding (SONAR). Novel techniques include the use of

airborne LiDAR and optical data, including spectral and hyperspectral imagery and

pixel and/or object-based image processing approaches. With the support of geo-

graphic information systems (GIS), SONAR and LiDAR systems allow the gener-

ation of digital terrain models (DTM). LiDAR-derived seafloor topography also

proves to be a particularly strong predictor for fish and coral richness when utilized

in machine learning algorithms like maximum entropy modeling (MaxEnt) and

Boosted Regression Tree methods (Pittman et al. 2009; Pittman and Brown 2011).

Unfortunately, the use of boat-mounted SONAR and airborne LIDAR systems is

limited by their very high cost and the constraints imposed by geographic

accessibility.

Compared to traditional shipboard echo sounding, optical remote sensing

methods offer more flexibility, efficiency, and cost-effective means of mapping

bathymetry (Gao 2009). Newer optical systems like WorldView-2 and the
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Hyperspectral Imager for the Coastal Ocean (HICO) have been used to characterize

the seafloor, opening a new frontier in the generation of bathymetric models for

coastal areas (Lee et al. 2011; Lucke et al. 2011). Optical and nonoptical remote

sensors can detect submerged terrain conditions down to 30 m (Gao 2009), but

environmental factors affect the ability of sensors to accurately assess ocean depth,

including atmospheric conditions, water turbidity, bottom material, and waves.

Because of these uncertainties, the validation of remote sensing data with oceano-

graphic surveys has been deployed with good success. Deidda and Sanna (2012)

used the coastal channels in a stereoscopic pair of WorldView-2 images to generate

a basic model of depth that was calibrated using a traditional bathymetric survey.

Ohlendorf et al. (2011) and Cerdeira-Estrada et al. (2012) used all eight multispec-

tral channels of WorldView-2 to map bathymetry and benthic seafloor, validated

with traditional bathymetry data. For the Galapagos Islands, the use of remote

sensing for benthic habitats and detailed bathymetry mapping has great potential.

Bathymetric surveys can be used to calibrate models that are applied to other areas,

where there are gaps in the information needed to characterize coastal features

(Fig. 6.2).

Local Knowledge and Citizen Science

Finally, the use of community knowledge and citizen science is now being linked to

marine remote sensing data as a complementary source of information about key

species. Jaine et al. (2012) integrate data collected by dive operators off the Great

Barrier Reef into complex additive, spatially explicit models to successfully predict

seasonal manta ray use of a coral reef. In terms of management applications and

marine spatial planning, spatial analytical approaches can also integrate fishery

demands and local knowledge sources. Howell et al. (2008) report that Hawaii’s

Turtle Watch program features input from fishers, loggerhead turtle tracking data,

and remotely-sensed parameters in three dimensions to maintain a sustainable

Fig. 6.1 Digital terrain

model of the bathymetry

and topography of the

Galapagos archipelago
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swordfish fishery, while “ground truth” data using habitat knowledge from resource

users can aid in the interpretation of remotely-sensed data (Kloser et al. 2001). One

innovative study involved the use of indigenous ecological knowledge to aid a

supervised classification of a marine lagoon (Lauer and Aswani 2008). Given the

large number of tourism and fishing boats operating in the relatively small

Galapagos Marine Reserve, there is great potential for online and real-time

Fig. 6.2 Bathymetric characterizations of Wreck Bay, San Cristobal Island: (a) traditional

bathymetric survey generated by INOCAR; (b) a continuous surface created by interpolating

depths of the bathymetric survey, where darker shading represents greater depths; (c) a

WorldView-2 scene that shows the combination of the coastal, green, and yellow channels,

indicating landscape features; and (d) an unsupervised classification of the WorldView-2 scene

to show different types of conditions at different depths
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mechanisms that support continuous and spatially explicit reporting from tour

guides, boat captains, and tourists alike.

Summary and Conclusions

Large area applicability, multi-resolution capacity, repetitive orbits, archival col-

lections, and digital representations for fusion with other satellite assets and dispa-

rate spatial data are among the many benefits afforded by remote sensing of marine

and coastal environments. The limited remote sensing analyses that have been

conducted over the Galapagos marine environment typically employ coarse-

grained satellite systems for the study of archipelago-wide attributes (e.g., ENSO

events and oil spills). Nevertheless, borrowing from preliminary work in Galapagos

and contemporary marine remote sensing literature around the world, marine

science and management can benefit from incorporating the following:

Taking advantage of higher resolutions and increasing satellite system options.
Marine remote sensing has traditionally utilized active and passive sensors across a

wide range of spatial resolutions to capture and analyze data related to biophysical

aspects of the oceanic and nearshore environments, as well as climatological

phenomena. New systems now provide an opportunity to push the limits of what

we can discover from space as sensors with finer spatial resolution, larger spectral

resolutions, and shorter temporal resolutions are being launched every year,

enabling researchers to interpret marine and coastal environments at scales previ-

ously unimaginable. In 2014, for example, WorldView-3 will be launched with

improved resolution across all scales. Additionally, there is a growing trend of

satellite constellations that work towards a single purpose. In 2016, NASA will

launch their Cyclone Global Navigation Satellite System (CYGNSS) that will

consist of eight microsatellites that monitor oceanic and meteorological dynamics

related to cyclone development. As satellites continue to be launched by govern-

ment agencies and private companies around the world, researchers can anticipate

more affordable, accessible imagery and derived data products.

System fusion (e.g., optical and nonoptical data systems, fine- and coarse-
grained resolutions, contemporary and historical periods) and the assembly of
data products operating at the pixel and object levels. Operationally, the fusion

of multiple systems into single analyses is now the rule rather than the exception as

satellite assets are pooled or integrated to more effectively represent space-time

scales, with the local being nested within the regional and an assembled image or

time series contextualized through annual and/or decadal observations. Field data

collection campaigns need to be coordinated to calibrate and validate remote

sensing products, using tools and techniques for geo-locating observations.

Advanced field electronics and specialized devices, such as data loggers, can also

be employed to assess marine variables, such as salinity, temperature, and sediment

deposition.
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Prioritization of process over pattern. Increasingly, the goal is not only to assess
marine patterns but a more complete process understanding that involves spatial

organization and variable responses. The movement away from pattern to a richer

understanding of marine processes has involved the upscaling of observations and

measurements from fine-grained imagery and downscaling from coarse-grained

imagery, as well as the extension in time through image time series and the

compression in time of short-term marine processes. In coastal areas, satellite

assessment of linked terrestrial and marine subsystems acknowledges the integra-

tion of, for instance, sedimentation due to deforestation and urban development,

beach degradation, and habitat alteration caused by the destruction of fringing

mangroves and coral reefs.

Linking to the human dimension. Populated island and coastal environments are

increasingly being viewed as coupled human-natural systems, necessitating the

union of terrestrial, marine, and social sciences in research. Linking remote sensing

systems to the human dimension is vital to discerning the human imprint across the

landscape (Crews and Walsh 2009) as well as the importance of human agents and

actions. In Galapagos as in other similar settings, residents in coastal and highland

communities rely upon a complex household strategy of livelihood diversification

in agriculture, tourism, and fisheries to manage economic and environmental

uncertainty. They are tied to the onset of ENSO events that comparatively advan-

tage terrestrial systems at the expense of marine conditions, global economic crises,

and public policy that impacts the service sector. Changes in ocean temperature and

primary productivity create feedbacks from the marine to the social systems

through threats to livelihoods and community sustainability.

Remote sensing assets are expanding in number and capacity, and spatial

patterns are increasingly being explicitly linked to social and ecological processes.

Marine remote sensing will continue to be of pronounced interest and should be

implemented as an approach for monitoring high priority variables, processes, and

environments. In the Galapagos archipelago and beyond, the integration of increas-

ingly available data derived from fixed-point sensors, floating instruments, aerial

photography, local knowledge, and satellite systems will facilitate both discrete and

continuous assessments in support of scientific research and management efforts.
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Andréfouët S, Payri C, Hochberg EJ, Hu CM, Atkinson MJ, Muller-Karger FE (2004) Use of in

situ and airborne reflectance for scaling-up spectral discrimination of coral reef macroalgae

from species to communities. Mar Ecol Prog Ser 283:161–177

Andréfouët S, Gilbert A, Yan L, Remoissenet G, Payri C, Chancerelle Y (2005) The remarkable

population size of the endangered clam Tridacna maxima assessed in Fangatau Atoll (Eastern

Tuamotu, French Polynesia) using in situ and remote sensing data. ICES J Mar Sci 62

(6):1037–1048

Aschbacher J, Ofren R, Delsol JP, Suselo TB, Vibulsresth S, Charrupat T (1995) An integrated

comparative approach to mangrove vegetation mapping using advanced remote-sensing and

GIS technologies – preliminary results. Hydrobiologia 295(1–3):285–294

Askari F (2001) Multi-sensor remote sensing of eddy-induced upwelling in the southern coastal

region of Sicily. Int J Remote Sens 22(15):2899–2910

Awkerman JA, Fukuda A, Higuchi H, Anderson DJ (2005) Foraging activity and submesoscale

habitat use of waved albatrosses Phoebastria irrorata during chick-brooding period. Mar Ecol

Prog Ser 291:289–300

Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological

assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80

(4):435–471

Ballabrera-Poy J, Murtugudde R, Busalacchi AJ (2002) On the potential impact of sea surface

salinity observations on ENSO predictions. J Geophys Res Oceans 107(C12):1–11

Banks S (2003) SeaWiFS satellite monitoring of oil spill impact on primary production in the

Galapagos Marine Reserve. Mar Pollut Bull 47(7–8):325–330

Barber-Meyer SM, Kooyman GL, Ponganis PJ (2007) Estimating the relative abundance of

emperor penguins at inaccessible colonies using satellite imagery. Polar Biol 30

(12):1565–1570

Bhattarai B, Giri C (2011) Assessment of mangrove forests in the Pacific region using Landsat

imagery. J Appl Remote Sens 5(1):1–11

Binding CE, Bowers DG, Mitchelson-Jacob EG (2005) Estimating suspended sediment concen-

trations from ocean colour measurements in moderately turbid waters; the impact of variable

particle scattering properties. Remote Sens Environ 94(3):373–383

Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21

(4):688–703

Boyce DG, Lewis M, Worm B (2012) Integrating global chlorophyll data from 1890 to 2010.

Limnol Oceanogr Meth 10:840–852

Brock JC, Purkis SJ (2009) The emerging role of LiDAR remote sensing in coastal research and

resource management. J Coast Res 25(6):1–5

Burrage D, Wesson J, Miller J (2008) Deriving sea surface salinity and density variations from

satellite and aircraft microwave radiometer measurements: application to coastal plumes using

STARRS. IEEE Trans Geosci Remote Sens 46(3):765–785

Cai SQ, He YH (2010) Association of the Sulu Sea surface circulation with the South China Sea. J

Mar Syst 81(4):335–340

Carr ME, Broad K (2000) Satellites, society, and the Peruvian fisheries during the 1997–1998 El

Niño. In: Halpern D (ed) Elsevier oceanography series, vol 63. Elsevier, Amsterdam, pp

171–191

Carriquiry JD, Cupul-Magana AL, Rodriguez-Zaragoza F, Medina-Rosas P (2001) Coral

bleaching and mortality in the Mexican Pacific during the 1997–98 El Niño and prediction

from a remote sensing approach. Bull Mar Sci 69(1):237–249

Cazenave A, Llovel W (2010) Contemporary sea level rise. In: Annual review of marine science,

vol 2. Annual Reviews, Palo Alto, pp 145–173

Ceia FR, Patricio J, Marques JC, Dias JA (2010) Coastal vulnerability in barrier islands: the high

risk areas of the Ria Formosa (Portugal) system. Ocean Coast Manag 53(8):478–486

Cerdeira-Estrada S, Heege T, Kolb M, Ohlendorf S, Uribe A, Muller A, Garza R, Ressl R,

Aguirre R, Marino I, Silva R, Martell R (2012) Benthic habitat and bathymetry mapping of

6 Remote Sensing of the Marine Environment: Challenges and Opportunities in. . . 127



shallow waters in Puerto Morelos reefs using remote sensing with a physics based data

processing. In: 2012 I.E. International Geoscience and Remote Sensing Symposium

(IGARSS), Munich, pp 4383–4386

Cervone G (2013) Combined remote-sensing, model, and in situ measurements of sea surface

temperature as an aid to recreational navigation: crossing the Gulf Stream. Int J Remote Sens

34(2):434–450

Chassot E, Bonhommeau S, Reygondeau G, Nieto K, Polovina JJ, Huret M, Dulvy NK, Demarcq

H (2011) Satellite remote sensing for an ecosystem approach to fisheries management. ICES J

Mar Sci 68(4):651–666

Chauvaud S, Bouchon C, Maniere R (1998) Remote sensing techniques adapted to high resolution

mapping of tropical coastal marine ecosystems (coral reefs, seagrass beds and mangrove). Int J

Remote Sens 19(18):3625–3639

Collin A, Hench JL (2012) Towards deeper measurements of tropical reefscape structure using the

WorldView-2 spaceborne sensor. Remote Sens 4(5):1425–1447

Conchedda G, Durieux L, Mayaux P (2008) An object-based method for mapping and change

analysis in mangrove ecosystems. ISPRS J Photogramm Remote Sens 63(5):578–589

Conchedda G, Lambin EF, Mayaux P (2011) Between land and sea: livelihoods and environmental

changes in mangrove ecosystems of Senegal. Ann Assoc Am Geogr 101(6):1259–1284

Contreras RF (2002) Long-term observations of tropical instability waves. J Phys Oceanogr 32

(9):2715–2722

Crews KA, Walsh SJ (2009) Remote sensing links to the social sciences. In: Warner TA, Nellis

MD, Foody GM (eds) Handbook of remote sensing. Sage, London, pp 437–445

Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) Assessing the

vulnerability of buildings to tsunami in Sydney. Nat Hazards Earth Syst Sci 9(6):2015–2026

Dasgupta S, Singh RP, Kafatos M (2009) Comparison of global chlorophyll concentrations using

MODIS data. Adv Space Res 43(7):1090–1100

Deidda M, Sanna G (2012) Pre-processing of high resolution satellite images for sea bottom

classification. Int J Remote Sens 44(1):83–95

Dong CM, Mavor T, Nencioli F, Jiang SNA, Uchiyama Y, McWilliams JC, Dickey T,

Ondrusek M, Zhang HC, Clark DK (2009) An oceanic cyclonic eddy on the lee side of

Lanai Island, Hawaii. J Geophys Res Oceans 114(C10):1–13

Eckert S, Jelinek R, Zeug G, Krausrnann E (2012) Remote sensing-based assessment of tsunami

vulnerability and risk in Alexandria, Egypt. Appl Geogr 32(2):714–723

Emery WJ (2003) Air-sea interaction: sea surface temperature. In: James RH (ed) Encyclopedia of

atmospheric sciences. Academic, Oxford, pp 100–109

Farhan AR, Lim S (2012) Vulnerability assessment of ecological conditions in Seribu Islands,

Indonesia. Ocean Coast Manage 65:1–14

Feldman G, Clark D, Halpern D (1984) Satellite color observations of the phytoplankton distri-

bution in the eastern equatorial Pacific during the 1982–1983 El Niño. Science 226

(4678):1069–1071

Ferwerda JG, de Leeuw J, Atzberger C, Vekerdy Z (2007) Satellite-based monitoring of tropical

seagrass vegetation: current techniques and future developments. Hydrobiologia 591:59–71

Fonseca AC, Guzman HM, Cortes J, Soto C (2010) Marine habitats map of “Isla del Cano”, Costa

Rica, comparing Quickbird and Hymap images classification results. Rev Biol Trop 58

(1):373–381

Fromard F, Vega C, Proisy C (2004) Half a century of dynamic coastal change affecting mangrove

shorelines of French Guiana. A case study based on remote sensing data analyses and field

surveys. Mar Geol 208(2–4):265–280

Gang PO, Agatsiva JL (1992) The current status of mangroves along the Kenyan coast – a case-

study of Mida Creek mangroves based on remote-sensing. Hydrobiologia 247(1–3):29–36

Gao J (2009) Bathymetric mapping by means of remote sensing: methods, accuracy and limita-

tions. Prog Phys Geogr 33(1):103–116

128 L. Brewington et al.



Garzoli SL, Goni GJ (2000) Combining altimeter observations and oceanographic data for ocean

circulation and climate studies. In: Halpern D (ed) Elsevier oceanography series, vol 63.

Elsevier, Amsterdam, pp 79–97

Gomez F, Montecinos A, Hormazabal S, Cubillos LA, Correa-Ramirez M, Chavez FP (2012)

Impact of spring upwelling variability off southern-central Chile on common sardine

(Strangomera bentincki) recruitment. Fish Oceanogr 21(6):405–414

Gould RW, Arnone RA (1997) Remote sensing estimates of inherent optical properties in a coastal

environment. Remote Sens Environ 61(2):290–301

Green EP, Clark CD, Mumby PJ, Edwards AJ, Ellis AC (1998) Remote sensing techniques for

mangrove mapping. Int J Remote Sens 19(5):935–956

Gremillet D, Lewis S, Drapeau L, van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM,

Daunt F, Wanless S, Ryan PG (2008) Spatial match-mismatch in the Benguela upwelling zone:

should we expect chlorophyll and sea-surface temperature to predict marine predator distribu-

tions? J Appl Ecol 45(2):610–621

Groom G, Petersen IK, Anderson MD, Fox AD (2011) Using object-based analysis of image data

to count birds: mapping of Lesser Flamingos at Kamfers Dam, Northern Cape, South Africa.

Int J Remote Sens 32(16):4611–4639

Gullstrom M, Lunden B, Bodin M, Kangwe J, Ohman MC, Mtolera MSP, Bjork M (2006)

Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka

Bay (Zanzibar) using satellite remote sensing. Estuar Coast Shelf Sci 67(3):399–408

Haibin S, Hongxing L, Heyman WD (2008) Automated derivation of bathymetric information

from multi-spectral satellite imagery using a non-linear inversion model. Mar Geod 31

(4):281–298
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