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Abstract. When combining decisions made by two separate visual cognition 
systems, simple average and weighted average using statistical means are used. 
In this paper, we extend the visual cognition system to become a scoring system 
using Combinatorial Fusion Analysis (CFA) based on each of the statistical 
means M1, M2, and M3 respectively. Eight experiments are conducted, struc-
tured CFA framework. Our main results are: (a) If the two individual systems 
are relatively good, the combined systems perform better, and (b) rank combi-
nation is often better than score combination. A unique way of making better 
joint decisions in visual cognition using Combinatorial Fusion is demonstrated. 

Keywords: Combinatorial Fusion Analysis (CFA), decision-making, visual 
cognition, rank-score characteristics (RSC) function. 

1 Introduction 

In the past few decades, decision-making has been of growing interest for many re-
searchers. Whether it be the combination of some aspects of vision alone [8, 21], or 
visual information joined with other senses [6-8, 15], the role of visual sensory per-
ception is vital to such varied topics as environmental interpretation, decision-making, 
and determinations of human beings.  

Research previously conducted by groups including Bahrami et al [1], Kepecs et al 
[12], and Ernst and Banks [3], have focused on the interactive decision-making of 
people, specifically dealing with visual perception. The data gathered by Bahrami was 
plotted against four predictive models: Coin-Flip (CF), Behavioral Feedback (BF), 
Weighted Confidence Sharing (WCS), and Direct Signal Sharing (DSS). Bahrami 
concludes that of the four models, only the WCS model can be fit over empirical data. 
His findings indicate that the accuracy of the decision-making is aided by communi-
cation between the pairs and can greatly improve the overall performance of the pair.  

Ernst elaborates on the concept of weighted confidence sharing [5]. In his paper, he 
presents a hypothetical scenario in which two referees in a soccer match determine 
whether the ball falls behind a goal line. Both Ernst and Bahrami agree that using the 
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predictive models of Coin-Flip or Behavioral Feedback omit information which could 
lead to the pair’s optimal joint decision. Though Ernst indicates that a beneficial joint 
determination can be found by the WCS model, he concludes that this approach can 
be improved. Bahrami’s WCS model can be applied within Ernst’s scenario as the 
distance of the individual’s decision (di) divided by the spread of the confidence dis-
tribution (σ), or di / σi. A more heavily weighted estimate through joint opinion, 
represented as di / σi2, can be produced through a modified version of WCS (which 
closely resembles DSS) using σ2. It is also noted by Bahrami, and validated by Ernst’s 
study, that joint decision-making is often less accurate when individuals with dissimi-
lar judgments attempt to come to a consensus. Although Bahrami and Ernst utilized 
different experimental methods, their aim is still the same: to devise an algorithm for 
optimal decision-making between two individuals based on their visual sensory input.  

In this work, we use Combinatorial Fusion Analysis (CFA) to expand upon Ernst 
and Bahrami’s studies and to further optimize joint decision-making. The fusion of 
multiple scoring systems (MSS) ([10, 11, 22]) using Combinatorial Fusion Analysis 
has been used successfully in many different research areas ([10, 11], [14, 16, 17, 18, 
20, 22]). Each visual cognition system is treated as a scoring system in our work, and 
then reaches an optimized consensus by implementing CFA framework. Section 2 
reviews the concept of multiple scoring systems via Combinatorial Fusion Analysis. 
A modified version of the soccer goal line decision proposed by Ernst [4, 5] is used as 
the data collection method. In this method, two subjects observe a small target being 
thrown into the field. The subjects are separately asked of their decision on their per-
ceived landing point of the target and their respective confidence measurements in 
their decisions. The experiments, which consist of 8 pairs of human observers, and the 
results after applying Combinatorial Fusion Analysis, are discussed in Section 3. A 
summary of the results and a discussion of future work are found in Section 4. 

2 Combining Visual Cognition Systems 

2.1 Statistical Mean 

When an individual needs to make a decision based on visual input, he or she often 
considers a variety of multiple choices. The consideration of these various choices, or 
candidates, can be viewed as the individual’s scoring system for his decision. Several 
methods have been presented to combine these scoring systems ([1], [3], [5], [12], 
[15]). The method of combination used in this paper is the CFA framework [10-11].  
To determine a joint decision, either an average or a weighted average approach can 
be used to determine a mean. Average mean is defined as: 

   ,                                              (1) 

σ mean is defined as: 

 ,                                                 (2) 

1 2
1 2

d d
M

+
=

1 2

1 2
2

1 2

1 1

d d

M
σ σ

σ σ

+
=

+



74 A. Batallones et al. 

and σ² mean is defined as: 

 ,                                                 (3) 

 

where d1 and d2 are the two decisions and σ1 and σ2 are the confidence measurement 
of the respective systems. 

2.2 Treating Each Visual Cognition System as a Scoring System 

In our experiment, two human subjects provide two separate decisions on where they 
individually perceived a target has landed in a field. The two participants serve as the 
scoring systems, p and q. Each coordinate on the plane can be considered as a candi-
date to be scored by scoring systems p and q. Each participant is asked a radius mea-
surement of confidence about his or her decision, which allows for a weighted evalua-
tion of the visual space. This radius r is used to calculate the spread of the distribution 
around the perceived landing point of the target, calling it σ. In this paper, we use: 

 σ = 0.5r .  (4) 

Set Visual Common Space. The σ values are used to determine the positions of the 
combined means and denoted as Mi, such that mi=d(Mi,A), where A is the actual site.  
P, Q, and A exist in a two dimensional space as x- and y- coordinates.  Three formu-
las are used to calculate the mean of P and Q. These three different combined means 
fall somewhere in between points P and Q and Mi is determined as a coordinate. 

The range of confidence σ extends beyond the scope of line PQ, so the scope of the 
observation area to either side of P and Q is widened. The upper and lower bounds of 
the extension (P’ and Q’) are appended to P and Q respectively using 30% of the 
longer of the two distances, PMi or MiQ. Hence this is the middle point of P’Q’, and 
d(P,Q) is the distance between P and Q  (Fig. 1). 

 
 

Fig. 1. Diagram of the layout of intervals used to organize the data in each experiment 

The length of the line segment P’Q’ is then partitioned into 127 intervals di, i = 1, 
2, …, 127, with each interval length d(P’,Q’)/127. The center interval contains the Mi 
being used. This extended space with P’Q’, and A accounts for points that may fall 
outside of the scope of line PQ. The line P’Q’ that is divided into 127 intervals is 
referred to as the common visual space. 

Treat P and Q as Two Scoring Systems. The confidence radii values, σP and σQ , are 
the variances of P and Q and are used to create normal distribution probability curves 
for each participant. The following formula is used to determine normal distribution: 

 Y = (1/( σ * √ (2π) ) ) * e(-(x - μ)**2)/(2*σ**2) , (5) 
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where x is a normal random variable, μ is the mean, and σ is the standard deviation. 
Theoretically, a normal distribution curve infinitely spans, therefore our two scoring 
systems p and q create overlapping distributions that span the entire visual plane. Each 
of the 127 intervals d1, ..., d127 has a score by p and a score by q. For each respective 
curve P and Q, each interval di is given a score between 0 and 1. This is the score fun-
tion s. Score function s is ranked from highest to lowest to obtain the rank function r. 
The di with the lowest integer as its rank has the highest score (Fig 2). 

2.3 Combining Two Visual Scoring Systems Using Combinatorial Fusion 
Analysis (CFA) 

In Combinatorial Fusion Analysis, we do another iteration of processing on the score 
and rank functions. In CFA, two methods of combination are used for a set of p scor-
ing systems A1, A2, …, AP on the set D of locations. One is score combination (SC): 
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The other is rank combination (RC): 
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where d is in D, and sA and rA are score function and rank function of the scoring sys-
tem A, from D to R and N respectively. For each of the 127 intervals d1, ..., d127, the 
score values and rank values of p and q are combined, respectively. Score combina-
tion of p and q is labeled C, and rank combination of p and q is labeled D. The score 
function sC of the combination by score in our experiment is defined as: 

 sC(di) = [sp(di)+sq(di)] / 2 .                         (8) 

The score function sD of the combination by rank in our experiment is defined as: 

 sD(di) = [rp(di)+rq(di)] / 2 .         (9) 

   Each of the score functions, sC(di) and sD(di), are sorted in descending order to ob-
tain the rank function of the score combination, rC(di), and the rank function of the 
rank combination, rD(di). Each interval di is ranked.  CFA considers the top ranked 
intervals in C and D as the optimal points and these are used for evaluation (Fig 2).  
The performance of the points (P, Q, Mi, C, and D) is determined by each points’ 
distance from target A, the shortest distance being the highest performance (Fig 3). 

3 Experiments 

3.1 Data Sets 

As in our previous paper [2], pairs of participants were chosen from a random selec-
tion of patrons at a public park. The pair was situated 40 feet from a marked plane of 
250 by 250 inches and stood 10 feet apart from each other. The 1.5 by 1.5 inch target 
that the participants observed was constructed of metal washers and was designed to 
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be heavy enough to be thrown far distances, small enough to be hidden once on the 
ground, and of irregular shape to limit travel once in the grass. A measuring tool with 
x- and y- axes of 36 by 36 inches was used to measure participants’ confidences. Five 
experiment coordinators were on site—two coordinators stood with the participants, 
one coordinator stood to the side of the participants, and the fourth and fifth coordina-
tors stood in the field beside the marked plane.  

From next to where the participants stood, the third coordinator threw the target in-
to the plane. The participants independently and simultaneously directed the two pre-
designated coordinators to where they believed the target landed and a small marker 
was placed on the ground at each spot. Independent and simultaneous determination 
of landing site works to minimize the effect of one participant’s decision on the oth-
er’s decision as well as the time taken to mark the participants’ initial decisions. It 
may be intuitive to think that a person who sees a target land knows exactly where the 
target lands—in practice, this is not the case. Although the two participants observe 
the same target, the two participants have different perceptions of where they inde-
pendently think it landed. The confidence tool was then taken to the plane and each 
participant was asked his or her radius of confidence around the spot he or she per-
ceived the target landed. Each participant expressed his or her confidence radius by 
directing the field coordinators to expand or contract the circle about the confidence 
measuring tool. The x- and y- coordinates for the three points (P, Q, and A) were 
recorded. 8 numerical values were obtained for each pair of test subjects: the 2 x-
coordinates of P and Q, the 2 y-coordinates of P and Q, the 2 confidence values for P 
and Q, and the x- and y- coordinates for actual A. The participants were also inter-
viewed for information including gender, height, eyesight, and other factors that may 
influence visual perception. This process was repeated for 8 experiments (Table 1). 

Table 1. Coordinates of P, Q, and A and confidence radius (CR) of P and Q for the 8 
experiments 

  (X, Y) CR 
 

(X, Y) CR  (X, Y) CR  (X, Y) CR 

P 

E
xp

. 1
 

(169, 85) 24 

E
xp

. 2
 

(158.25, 180) 23 

E
xp

. 3
 

(92, 92.75) 12 

E
xp

. 4
 

(18.75, 49.5) 13 

Q (194.5, 142.5) 13.5 (151, 194.5) 12 (84, 138) 11 (29.5, 35.5) 10.5 

A (187.25, 110.75)  (158.75, 207)  (81, 119.5)  (39.25, 21.25)  

P 

E
xp

. 5
 

(231, 17.5) 8.5 

E
xp

. 6
 

(157.5, 64) 13.5

E
xp

. 7
 

(13, 17) 10.5

E
xp

. 8
 

(144.5, -51) 13 

Q (215, 69) 16.5 (174.75, 132.75) 20 (24.25, 84.25) 3.5 (144.5, 0) 11 

A (229.5, 52.75)  (162.25, 78.5)  (19.5, 74.5)  (152, 9)  

3.2 Example of Combining Visual Cognition Systems Using Statistical Mean 

For each experiment, the confidence radius r is used to calculate the spread of the 
distribution around the perceived landing point of the target, σ. The σ values for P and 
Q, σP and σQ respectively, are used to determine Mi. In the following example, we 
will use Mi on Experiment 1 and 6 (Table 2). 

The scope of P and Q is widened by 30% on both sides of P and Q. The extended 
line segment P’Q’ is referred to as the common visual space.  This is divided into 127  
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Fig. 2. Score and rank function for respec-
tive scoring systems P and Q undergo CFA 
to produce Score Combination C and Rank 
Combination D 

 
Fig. 3. Layout of M1, C, and D in relation to 
P, Q, and their distance to A. The distances 
between the 5 estimated points and A are 
noted on each line 

intervals di, i = 1, 2, …, 127 with each interval length d(P’,Q’)/127. The normal dis-
tribution curves for participant P and participant Q are determined, resulting in a score 
for each di (Fig 4). This is score function s. Score function s is ranked from highest 
with rank 1, to lowest with rank 127, to obtain the rank function R. 

Using the CFA framework, score combination C and rank combination D are 
obtained. CFA considers the top ranked intervals in C and D as the optimal points and 
these points are used for evaluation.  The performance of the five points (P, Q, Mi, C, 
and D), for i = 1, 2, and 3 respectively, is determined by each points’ numerical 
distance from the target A, the shortest distance being the highest performing point. 

Table 2. Raw data of experiments 1 and 6 

 X Y r  X Y r 
Exp. 1 Exp. 6 

P 169 85 24 P 157.5 64 13.5 
Q 194.5 142.5 13.5 Q 174.75 132.75 20 
A 187.25 110.75  A 162.25 78.5  

 
a) Experiment 1. 

(a.1) Experiment 1 using statistical mean M1. 

(b) Experiment 6. 

(b.1) Experiment 6 using statistical mean M1. 

(a.2) Experiment 1 using statistical mean M2. (b.2) Experiment 6 using statistical mean M2. 

(a.3) Experiment 1 using statistical mean M3. (b.3) Experiment 6 using statistical mean M3. 

Fig. 4. Score functions of scoring systems P and Q using statistical mean M1, M2, and M3 and 
for (a) Experiment 1, and (b) Experiment 6, respectively 
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3.3 Results and Analysis 

The decision of Participant p, marked as P, and the decision of Participant q, marked 
as Q, are used to obtain line segment PQ. The radii of confidence are used to calculate 
the two σ values to locate the coordinates of points M1, M2, and M3 along the ex-
tended P’Q’. To combine and compare the two visual decision systems of p and q, a 
common plane must be implemented to be evaluated by the different systems. The 
127 intervals along the P’Q’ line serve as the common visual space to be scored. 

When P’Q’ has been partitioned into the 127 intervals mapped according to Mi, the 
intervals are scored according to the normal distribution curves of P and Q using the 
standard deviation σP and σQ, respectively.  Both systems assume the set of common 
interval midpoints d1, d2, d3,…, d127. Each scoring system, p and q, consists of a score 
function. We define score functions sP(di) and sQ(di) that map each interval, di, to a 
score in systems P and Q, respectively.  The rank function of each system maps each 
element di to a positive integer in N, where N = {x | 1 ≤ x ≤ 127}. We obtained the 
rank functions rP(di) and rQ(di) by sorting sP(di) and sQ(di) in descending order and 
assigning a rank value from 1 to 127 to each interval.    

P, Q, Mi, C, and D, for i = 1, 2, and 3, are calculated and the distances to target A 
are computed. The points are ranked by performance from 1 to 7 (Table 3). The point 
with the shortest distance from the target is considered the best. 

Table 3. Performance of (P, Q), confidence radius of (P, Q), performance of Mi, performance 
ranking of P, Q, Mi, C, and D when using Mi, and improvement (impr.) of (C or D) 
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1 31.2, 32.57 24, 13.5 M1 3 5 1 4 2 2.94 3 5 1 2 4 0.99 2 5 1 3 3 -2.97 

2 27.0, 14.71 23, 12 M3 5 1 4 2 3 -0.23 5 1 4 2 2 -0.56 5 1 4 2 2 -0.35 

3 28.9,18.74 12, 11 M3 5 4 1 3 2 25.85 5 4 1 3 2 17.23 5 4 1 3 2 11.32 

4 35.0, 17.27 3, 10.5 M3 5 1 4 2 3 -0.41 5 1 4 2 3 -0.80 5 1 4 2 3 -0.81 

5 35.2, 21.78 8.5, 16.5 M1 5 3 1 4 2 3.36 5 2 1 3 4 -60.73 5 1 2 3 3 -61.85 

6 15.2, 55.67 13.5, 20 M3 3 5 4 2 1 6.93 4 5 1 3 2 9.85 4 5 1 2 2 4.67 

7 6.96, 10.85 10.5, 3.5 M1 2 5 1 4 3 -40.89 1 4 2 3 3 -55.41 1 5 2 3 3 -55.60 

8 60.4,11.72 13, 11 M3 3 1 2 4 4 -1155.23 3 1 2 4 4 -1155.23 3 1 2 4 4 -1155.23 

M1 performed the best of the three midpoints M1, M2, and M3 in 3 trials. M3  
was best in 5 trials, and M2 performed the best in none of the trials (Table 1). For all 8 
experiments, if the better performing individual was more confident, M3 was  
the highest performing Mi (Exp. 2, 3, 4, 6, and 8), while if the worse performing  
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individual was more confident, M1 was the highest performing Mi (1, 5, and 7). In all 
of the trials, rank combination D performed either equally as well or better when the 
better midpoint was used to map intervals than when the alternate midpoint was used. 

Out of the 8 cases, when mapping the intervals by using M1, D performs better 
than both P and Q in 4 cases (1, 3, 5, 6). When mapping intervals using M2, D per-
forms better than both P and Q in 2 cases (3 and 6). When using M3, D is better than 
both P and Q in 2 cases (3 and 6). When using the described M1, M2, or M3, D is bet-
ter than both P and Q in 4 cases (1, 3, 5, 6). In 18 out of 24 cases of experiments ran 
on M1, M2, and M3, C performed worse than D.  

When examining individual systems P, Q, and systems of combination C, D, and 
Mi, Rank combination D gives relatively good results. Additionally, as opposed to 
intervals that are always mapped according to one Mi, mapping intervals around the 
best performing midpoint increases D’s average performance. 

Our recent study takes into consideration the confidence of the individuals when 
analyzing mapping schema. In scenarios where the record of an individual’s perfor-
mance is known, this scheme can possibly serve well. When making visual cognitive 
decisions, if it is known that an individual generally performs well and is confident 
about his decision, mapping intervals utilizing M3 may be the best scheme. However, 
if an individual is confident but is known to perform poorly or if his performance is  
 

(a) Experiment 1. 

(a.1) Experiment 1 using statistical mean M1. 

(b) Experiment 6. 

(b.1) Experiment 6 using statistical mean M1 

 
(a.2) Experiment 1 using statistical mean M2. 

(b.2) Experiment 6 using statistical mean M2 

 

(a.3) Experiment 1 using statistical mean M3. (b.3) Experiment 6 using statistical mean M3. 

 

Fig. 5. Rank Score Characteristics (RSC) Graphs for (a) Experiment 1 and (b) Experiment 6 
using statistical mean M1, M2, and M3 
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unknown, mapping around M1 may be the best scheme.  The dissimilarity and inaccu-
racy of individual decisions is the main factor in determining when two people should 
or should not combine their decisions.  Our current research signifies that D has the 
potential to perform best only if P and Q are relatively good and cognitively diverse. 

According to this data and data from previous experiments, rank combination D 
mapped on M1 appears to be the most consistent. This may indicate that combination 
by rank is particularly sensitive to extraction of the meaningful characteristics of a 
best-performing individual decision. Furthermore, our analysis demonstrates that 
combinatorial fusion is a useful vehicle for driving weighted combination. 

Out of the 8 experiments, five satisfy Koriat’s criterion [13] (Exp. 2, 3, 4, 6, and 8), 
four have positive rank combinations (Exp. 1, 3, 5, and 6), and five have improved Mi 
(Exp. 1, 3, 5, 6, and 7). This demonstrates that combinatorial fusion can be used to 
complement other combination methods. 

4 Conclusion and Future Work 

Though there have been other proposed methods for combining visual cognitive deci-
sion-making, we use Combinatorial Fusion Analysis to refine the process. Our analy-
sis has produced more optimal decisions at a successful rate. This work provides pre-
viously established cognition models with new observations and considerations. As 
with other domains, when the scoring systems both perform well and are diverse, rank 
and score combination of multiple scoring systems are useful ([9], [19], [22]). 

We compute the cognitive diversity [11] between two systems p and q, d(fP, fQ), 
where fp is the rank-score characteristic function with fP(i) = (s ○ r-1)(i) = s(r-1 (i)). For 
example, in Experiment 6, the relatively higher cognitive diversity leads to a better 
rank combination D. This is an important component to the CFA framework. The 
rank-score combination (RSC) graphs (Fig 5) are integral to the computation of the 
cognitive diversity of the two systems, and may help to better predict which cases are 
best suited for CFA. We will also use the CFA framework to analyze how aspects like 
gender or occupation affect decision-making. We continue to add more trials to the 
data pool and look to conduct trials with more people added to each experiment. Our 
research has demonstrated that CFA can serve as a useful tool in understanding how 
to derive the best decision from a pair of individually made decisions. CFA demon-
strates much flexibility in combining multiple visual cognition systems. 
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