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Abstract. This study investigates role of defeasible reasoning and argumenta-
tion theory for decision-support in the health-care sector. The main objective is to
support clinicians with a tool for taking plausible and rational medical decisions
that can be better justified and explained. The basic principles of argumentation
theory are described and demonstrated in a well known health scenario: the breast
cancer recurrence problem. It is shown how to translate clinical evidence in the
form of arguments, how to define defeat relations among them and how to cre-
ate a formal argumentation framework. Acceptability semantics are then applied
over this framework to compute arguments justification status. It is demonstrated
how this process can enhance clinician decision-making. A well-known dataset
has been used to evaluate our argument-based approach. An encouraging 74%
predictive accuracy is compared against the accuracy of well-established machine-
learning classifiers that performed equally or worse than our argument-based ap-
proach. This result is extremely promising because not only demonstrates how a
knowledge-base paradigm can perform as well as state-of-the-art learning-based
paradigms, but also because it appears to have a better explanatory capacity and
a higher degree of intuitiveness that might be appealing to clinicians.

1 Introduction

The amount of evidence produced in clinical environments has been rapidly increasing
thanks to the adoption of new technologies, such as Electronic Health Records, for as-
sisting clinicians in their daily activities. Although this shift is good for the advance of
science and knowledge, it introduces difficulties for practitioners/researchers in terms
of degree of efficiency and accuracy in assimilating, acquiring and aggregating clinical
evidence. In the health-care sector, knowledge and new evidence are often heteroge-
neous and complex, inconsistent and incomplete. These factors play an important role
in many clinical decision-making processes, most of the time made under conditions of
uncertainty and with partial information. Current clinical decision support systems have
become more complex because plausible conclusions need to be extracted from a set of
heterogeneous pieces of evidence, sometimes contradictory, and from different points
of view and interpretations. They are mainly based on case-base or probability-based
reasoning, and they adopt techniques borrowed from Artificial Intelligence such as ma-
chine learning or Fuzzy Logic. However, the majority of them require well structured
evidence, not partial and are based on learning from previous data or cases. In addi-
tion, the amount of evidence required for the learning process must be high in order to
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significantly infer recommendations for clinical decisions. These systems manipulate
knowledge and evidence in a numerical, usually complex way, not using familiar terms,
thus being not attractive to clinicians. Health-care practitioners tend to follow a defea-
sible reasoning process for taking plausible decisions. Defeasible reasoning is a kind
of analysis and interpretation that is based on reasons that are defeasible: a conclusion
can be retracted in the light of new evidence. Indeed decisions are based on evidence-
based knowledge, but the aggregation of pieces of evidence tends to be close to the way
humans reason. This kind of reasoning process can be formalised using Argumentation
Theory, an emerging paradigm, based on arguments, aimed at investigating their consis-
tency and reducing uncertainty. According to the limitations of current state-of-the-art
approaches, clinicians and health practitioners, in general, prefer decision-making sup-
port systems that deliver more explanations than numerical aids. In other words, they
would adopt qualitative systems rather than quantitative tools. Indeed, numerical out-
comes are more accurate than linguistic outcomes, but most of the time they are difficult
to interpret. Furthermore, the inference process that leads to a recommendation, can be
hard to be understood by clinical experts, in the case it is only based on a numerical
manipulation of evidence and knowledge.

This study follows another recent study [8] and it is aimed at investigating the role
of defeasible reasoning and argumentation theory for supporting decision-making pro-
cesses under uncertainty in the health-care sector. The objective is to support clinicians
with a tool for taking plausible and rational medical decisions that can be better justi-
fied and explained. The remainder of this paper is organised as follows. Section 2 in-
troduces Argumentation theory and the building blocks of abstract argumentation. This
theory is extended in section 3 by incorporating the notion of degree of truth. This new
argument-based approach is applied and evaluated in 4, comparing its predictive accu-
racy against the accuracy of few machine-learning classifier, using a well-known Breast
Cancer dataset. Section 5 discusses findings, emphasising advantages and drawbacks
of the new approach. Related similar work in the health-care sector follows. Section 6
highlights the contribution of this study individuating potential areas of improvements
and future work.

2 Argumentation Theory

Argumentation theory has evolved from its original primary context as a sub-discipline
in philosophical logic, to emerge, in the last decade, as an important area of logic-based
AI [11]. The theory gained importance with the introduction of formal models, inspired
by human-like reasoning. These extended classical reasoning models based on deduc-
tive logic that appeared increasingly inadequate for problems requiring non-monotonic
reasoning [1], commonly used by humans, and explanatory reasoning, not available
in standard non-monotonic logics such as default logic. In non-monotonic reasoning a
conclusion can be retracted in the light of new evidence whereas in deductive reasoning
the set of conclusions always grows. The modularity and intuitiveness of argumentation
lends to explanatory reasoning, avoiding the monolithic approach of many traditional
non-monotonic reasoning logics. The reasoning required in many practical decision-
making processes, especially in health-care, is both non-monotonic and explanatory.
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Argumentation theory and in particular abstract argumentation frameworks have been
proved to be fruitful in modelling and studying defeasible reasoning processes [1] [7]
[12] [14] [10]. The argumentation process starts by formalising arguments considering a
knowledge base. The second step requires the explication of defeat relations among ar-
guments. Arguments and defeat relations are then organised in an argumentation frame-
work for evaluation. The subsequent step is the application of acceptability semantics
for computing arguments’ justification status and rationally accepting some of them
in an extension (set of arguments) [6]. Eventually, aggregation of these arguments is
needed is a rational decision has to be taken. This step is the last of a chain of inference
steps for non-monotonic entailment. The underlying idea behind argumentation theory
is that, given a set of arguments, where some of them defeat (attack) others, a decision
is to be taken to determine which arguments can ultimately be accepted.

A B C

Fig. 1. Argument reinstatement

Merely looking at an argument’s defeaters to determine the acceptability status of
an argument is not enough: it is also important to determine whether the defeaters are
defeated themselves. We say that an argument B defeats argument A iff B is a reason
against A. If the internal structure of arguments and the reasons why they defeat each
other, are not considered, what remains is called an argumentation framework (AF) [6].
An abstract argumentation framework AAF is a pair < Arg, attacks > where:

– Arg is a finite set of element referred to as (abstract) arguments, and
– attacks ⊆ Arg ×Arg is binary relation over Arg

Given sets X,Y ⊆ Arg of arguments, X attacks Y if and only if there exists x ∈ X
and y ∈ Y such that (x, y) ∈ attacks.

The question is which arguments should ultimately be accepted. In fig. 1, A is de-
feated by B, and apparently A should not be accepted since it has a counterargument.
However, B is itself defeated by C that is not defeated by anything, thus C should be
accepted. But if C is accepted, then B is ultimately rejected and does not form a rea-
son against A anymore. Therefore A should be accepted as well. In this situation we say
that C reinstates A. Due to this issue of reinstatement, a formal criterion that determines
which of the arguments of an AAF can be accepted, is needed. In the literature, this cri-
terion is known as semantic: given an AAF, it specifies zero or more sets of acceptable
arguments, called extensions. Various argument-based semantics have been proposed
but here we focus on the following semantics [6]: a set X ⊆ Arg of argument is

– admissible if and only if X does not attack itself and X attacks every set of argu-
ments Y such that Y attacks X ;

– complete if and only if X is admissible and X contains all arguments it defends,
where X defends x if and only if X attacks all attacks agains x;

– grounded if and only if X is minimally complete (with respect to ⊆);
– preferred if and only if X is maximally admissible (with respect to ⊆);
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Example 1. In the AF of fig. 1 there is just one complete extension, {A,C}, which is conflict-
free and defends exactly itself. It can be seen as a subjective but internally coherent point of
view: someone can disagree, but can not point out an internal inconsistency [13]. The grounded
extension is {A,C}. The admissible sets are {C}, {A, C}. {B} and {A} are not admissible as they
do not defend themselves respectively against C and B. One preferred extension exits: {A,C}.

3 Design of a Defeasible Model

Abstract argumentation theory ([6]) can be extended for supporting decision-making
processes in practical scenarios. The following formal definitions are clarified by illus-
trative examples concerning a health-care problem: breast cancer recurrence prediction.
Predicting recurrence is important for assisting the identification of patients with critical
prognosis and minimising unnecessary therapies. We have chosen this domain because
real data from a public dataset 1 is available and repeatedly used in the machine learn-
ing literature from 1986 up to 2011 ([12] [4]). It includes 286 instances of real patients
who went through a breast cancer operation (9 records contains incomplete values).
Each instance is described by 9 possible predictive attributes and a binary outcome,
‘recurrence’ or ‘no recurrence’ (table 1 column 1). The dataset consists of attributes
with value ranges as in table 1 (column 2). For 81 patients, the illness reappeared after
5 years while 196 did not have recurrence. In this context, the aims of our proposal
are: a) to translate a knowledge-base into a set of structured defeasible arguments and
defeat relationships among them; b) to run acceptability semantics for extracting sets of
consistent arguments; c) to recommend a set for decision-making support. We propose
to implement a) adopting membership functions and degree of truth; to execute b) using
grounded and preferred semantics from abstract argumentation; to implement c) recom-
mending the set that maximises the degree of truth of its arguments. This approach can
handle two types of uncertainty: vagueness in defining attributes of a knowledge-base;
ambiguity in defining arguments as defeasible inference rules. The rationale behind
adopting membership functions is their usefulness for modelling vaguely defined sets
and human reasoning that is approximate rather than fixed and exact. They map an
attribute’s value to the relative set with a degree of truth.

Definition 1 (Membership function). For any set X , a membership function on X is any
function f : X → [0, 1] ∈ �. Membership functions on X represent fuzzy subsets of X. For an
element x of X , the value f(x) is called the membership degree of x in the fuzzy set and quantifies
the grade of membership of x to the fuzzy set X . We indicate MFX = {f |f : X → [0, 1] ∈ � }
as the set of membership functions defined over X.

3.1 Translating Knowledge-Bases into Arguments and Attack Relations

Informally, an argument is a defeasible rule (open to defeats) composed by a set of
premises and a claim. In other words, from the premises a claim can be inferred. This
process is intrinsically uncertain, because the inference rules are defeasible in nature,
and not strict and totally certain. This is coherent with human reasoning that is un-
certain rather than exact. In our illustrative scenario, a claim is a possible conclusion

1 University Medical Center, institute of Oncology, Ljubljana M. Zwitter and M. Soklic)
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Table 1. Dataset attributes and a possible vague expert’s knowledge-base description

Attribute Dataset Range Agent’s Knowledge-base - Description
Age 10-19, 20-29, .. , 90-

99
The strongest risk factor for breast cancer is age: the older the woman, the higher the
risk of cancer (and presumably recurrence).

Menopausal lt40, ge40, premeno Pre-menopausal status is a reason to believe recurrence is not likely.
Tumor size 0-4, 5-9, ... , 55-59 The greatest diameter of the excised tumor, the greater chance of recurrence.
Node involve-
ment

0-2, 3-5, ..., 36-39 Since the axillary lymph nodes act as a primary site of drainage for the breast, they
represent common site of early metastasis. The more lymph nodes involved are, the
more likely recurrence is. This is probably the most influential factor for recurrence.

Node capsular
invasion

yes, no If the cancer does metastasis to a lymph node, even if outside the original tumor
site, it can remain ‘contained’ by the lymph node’s capsule. However, the tumor may
replace the lymph node penetrating the capsule, invading the surrounding tissues. If
capsular invasion, recurrence is more likely.

Degree of ma-
lignancy

1, 2, 3 The tumor’s histological grade affects recurrence. If 1 (tumors consist of cells that,
while neoplastic, retain many of their usual characteristics), recurrence is less likely.
If it is 2 or 3 (tumors consists of highly abnormal cells, with marked variation in cell
size, or a high index of mitotic activity in the cells) recurrence is more likely.

Breast left, right Although cancer can occur in either breast, there is no difference in incidence be-
tween breasts. A slightly higher (but unexplained) recurrence risk, on left side, exists.

Breast quad-
rant

left-up/low, right-
up/low, central

The breast may be divided in 4 quadrants, using the nipple as a central point. Breast
cancer often occurs in the upper outer quadrant increasing the chance of recurrence.

Irradiation yes, no Radiotherapy for breast cancer reduces recurrence

Outcome
(class)

Recurrence (R),
no-Recurrence (NR)

Reappearance of cancer after 5 years
No Reappearance of cancer after 5 years

available to a clinician (Recurrence, no-Recurrence) to support decisions. In argumen-
tation theory, arguments might be considered forecast when they are in favour or against
a certain claim (but justification is not infallible), and mitigating arguments, when they
defeat (undermine justification for) forecast or other mitigation arguments [9].

Definition 2 (Argument - Forecast). A forecast argument β is defined over a membership
function fα for attribute α and a claim c. ARGF : MFATTR ×C and “β : fα → c” can be
read as ‘there is a reason to believe c from fα’ or ‘c is what reasonably follows from fα.’

Definition 3 (Argument - Mitigating). A mitigation argument β is defined over a mem-
bership function fα for the attribute α and another argument δ (either forecast or mitigation).
ARGM : MFATTR × ARGF ∪ ARGM and ‘β : fα → ¬δ’ can be read as ‘there is a reason
to believe ¬δ from fα’ or ‘the justification of δ is undermined by fα.’

Example 2. · A forecast argument: (ar : ‘old age → R′), with ‘Old’ the fuzzy subset of the
attribute ‘age’ defined with the membership function fOld

Age , R (‘recurrence’) the claim that rea-
sonably follows the premise. · A mitigating argument: [ar : high tumor size → ¬(low age →
NR)] with ‘high’ and ‘low’ respectively the membership functions for attributes ‘tumor size and
‘age’, NR (‘no recurrence’) is the claim that follows ‘low age’ undermined by ‘high tumor size’.
The fact that a low age is a reason to believe no recurrence is undermined by the high tumor size.

A knowledge-base might contain contradicting and inconsistent evidence. In argu-
mentation theory, this notion is expressed by defeating relations that might be rebuttal
or undercutting. The former occurs between two forecast arguments contradicting each
other because supporting mutually exclusive claims (bi-directional). The latter occurs
when a mitigating argument challenges the inference that links premises to claim of a
forecast or another mitigating argument (uni-directional).

Definition 4 (Attack - rebutting). Given two forecast arguments a, b with a : fα → c1,
b : fβ → c2 we say that a attacks b and we indicate (a, b), iff c1 �= c2 and c1 and c2 are
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mutually exclusive. ATTR : ARGF × ARGF . As a rebuttal attack is symmetrical it holds that
iff (a, b) then also (b, a).

Definition 5 (Attack - undercutting). A mitigating argument A attacks a forecast or an-
other mitigating argument B, (indicated as (a,b)), if in the agent’s knowledge base there is evi-
dence suggesting that B is no longer justified because of A. ATTU : ARGM×ARGF ∪ARGM

From the translation of a knowledge-base a contextual argumentation framework
CAF containing the pool of designed arguments (forecast and mitigation) and the pool
of designed attack relations (rebutting and undercutting) emerges:

• ARGpool : {a | a ∈ ARGF ∪ ARGM}.
• ATTpool = {(a, b) | (a, b) ∈ ATTR ∪ATTU and a, b ∈ ARGpool}.

We have interviewed an expert in the domain of breast cancer and the CAF that re-
sulted from the translation of her knowledge-base includes the attributes (fuzzy sets) of
table 1, the corresponding membership functions (fuzzy subset) of figure 2 and argu-
ments of table 2 (left side). Bibliography references of designed arguments are skipped
and only those attributes accounted in the Ljubljana dataset (dated 1986) were used.
Indeed, nowadays, new arguments can be designed considering recent discoveries.

Example 3. Arguments and undercutting attacks of table 2 form the following CAF:

– ARGF ={a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o, p}

– ARGM = {q, r, s, t, u, v, w, x, y, z}
– ARGpool = ARGF ∪ARGM

– ATTR = {(α, β) | (α, β) ∀α, β ∈
ARGF and fα → c1

′, ‘β : fβ →
c2

′, c1 �= c2}
– ATTU ={(q, d),(r, o),(s, p),(t, a),(u, a),(v,

o), (w, p), (x, o),(y, p), (z, p) }
– ATTpool = ATTR ∪ATTU

– CAF = (ARGpool, ATTpool)

a

b

d

e

g

i

l

m

o

c

f

h

j

k

n

p

q

r

t

v

x

u

s

w

yz

Plain white nodes are forecast arguments, with symmetrical straight black arrows indicating
rebuttal attack. Double-circled nodes are mitigating arguments, with asymmetrical curvy black
arrows representing undercutting attack. Arguments t, u, q, r, v, x (left side) challenge forecast
arguments; s, w, y, z (right side) indicate a preference over forecast arguments.

Once a knowledge-base has been fully translated into arguments and attacks rela-
tions (CAF), the next step is to individuate which arguments and attacks are objectively
activated in a given practical scenario. A forecast argument is activated if the member-
ship function contained in its premises returns a non-zero value. Similarly, not all the
mitigating arguments are activated. A mitigating argument a is activated if and only if
the membership function contained in its premises returns a non-zero value and if and
only if the argument defeated by a is in the set of the activated forecast arguments. In
other words, if the mitigating attacker (premise) is not activated, or if the defeated ar-
gument is not activated (claim of the mitigating argument), the existence of the whole
mitigating argument does not make sense, thus it is not activated.
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Table 2. Pool of arguments and undercutting attacks for the illustrative scenario

Attribute: Age, Evid.: 1 Attribute: Menopause, Evid: 2
Arg MFAge Claim Arg MFMenopause Claim

a low no rec. d pre no rec.
b medium no rec. e post-lt40 no rec.
c high rec. f post-gt40 rec.

Attribute: Tumor size, Evid: 3 Attribute: Node invas., Evid: 4
Arg MFTumorS Claim Arg MFNodeInv Claim

g low no rec. i low no rec.
h high rec. j high rec.

Attribute: Node Caps, Evid: 5 Attribute: Deg. Malig., Evid: 6
Arg MFNodeC Claim Arg MFDegMalig Claim

k true rec. m low no rec.
l false no rec. n high rec.

Attribute: Breast, Evid: 7 Attribute: Breast quad, Evid: 8
Available evidence suggests that Arg MFBreastQ Claim

the attribute breast is not influential o lower no rec.
thus no argument is built p upper rec.

q: High Age → ¬ (Menop Pre→NR)

r: High Age → ¬ (Lower BreastQ→NR)

s: High Age → ¬ (Upper BreastQ→R)

t: High NodeInv → ¬ (Low age→NR)

u: High TumorSize →¬ (Low age→NR)

v: High NodeInv → ¬ (Lower BreastQ→NR)

w: High NodeInv → ¬ (Upper BreastQ→R)

x: high Tumorsize → ¬ (Lower BreastQ→NR)

y: High Age → ¬ (Upper BreastQ→R)

z: High TumorSize → ¬ (Upper BreastQ→R)

x

fLow
Age (x)

0 39 100
0

0.5
1

x

fMedium
Age (x)

0 20 5069 100
0

0.6
1

x

fHigh
Age (x)

0 50 100
0

0.5
1

x

fPre
Menop

0

1

pre ¬pre

x

fPost<40
Menop

0

1

lt ≤ 40 ¬lt ≤ 40
x

fPost>40
Menop

0

1

lt ≥ 40 ¬lt ≥ 40
x

fLow
TumorSize(x)

0 29 59
0

0.4
1

x

fHigh
TumorSize(x)

0 25 59
0

0.5
1

x

fLow
NodeInv(x)

0 17 39
0

0.5
1

x

fHigh
NodeInv(x)

0 15 39
0

0.3

1

x

f true
NodeC

0

1

true ¬true
x

ffalse
NodeC

0

1

false ¬false

x

fLow
DegMal(x)

0
0.6

1

1 2 3
x

fHigh
DegMal(x)

0
0.5

1

1 2 3
x

fLower
BreastQ

0

1

lower ¬lower
x

fUpper
BreastQ

0

1

upper ¬upper

Fig. 2. Membership functions of attributes for the illustrative scenario

Definition 6 (Activated arguments). The set of activated forecast arguments is a subset of
the pool of arguments: ARGAct

F ⊆ ARGpool. For a given argument A defined over the attribute
α, a membership function fα, and a objective value αval, A ∈ ARGAct

F iff fα(α
val) > 0.

The set of activated mitigating arguments is a subset of the pool of arguments: ARGAct
M ⊆

ARGpool. For a given mitigating argument B : fα → ¬δ, defined over the attribute α, a
membership function fα, and a objective value αval, B ∈ ARGAct

M iff δ ∈ ARGAct
F and

iff fα(α
val) > 0

The same principle is applied to rebutting and undercutting attacks. A rebutting at-
tack is activated if and only if both the attacker and the attacked are in the set of
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activated forecast arguments. An undercutting attack (a, b) is activated if and only if
the undercutting argument a is in the set of the activated mitigating arguments.

Definition 7 (Activated attacks). The set of activated rebutting attacks is a subset of the
pool of attacks: ATTACT

R ⊆ ATTPool, (a, b) ∈ ATTACT
R iff a, b ∈ ARGAct

F .
The set of activated mitigating attacks is a subset of the pool of attacks: ATTACT

U ⊆ ATTPool

and (a, b) ∈ ATTACT
U iff a ∈ ARGAct

M .

At this stage, the instantiated argumentation framework (IAF) emerges, which is a
sub-CAF. IAF = (ARGAct

M ∪ ARGAct
F , ATTAct

R ∪ ATTAct
U )

Example 4. Let us consider a record of the Ljubljana dataset related to a patient as follows:
age (40-49), menopause (premeno), Tumor-size (30-34), Inv-nodes (0-2), Node-caps (no), Deg-
malign (2), breast (right), Breast-quad (right low), Irradiation (no). For age, Tumor-size, Inv-
nodes, we take respectively the centre of each interval, thus 44.5, 32, 1. The membership functions
that return degrees of truth greater than zero are: fmedium

age , fPre
Menop, fHigh

TumorSize, fLow
NodeInv ,

fFalse
NodeC , fLow

DegMalig , fHigh
DegMalig , fLower

BreastQ. The activated arguments and attack relationships,
and the final AAF are:

– ARGAct
F = {b, d, h, i, l,m, n, o}

– ARGAct
M = {x}

– ATTAct
R = {(b,h),(h,b),(b,n),(n,b),(d,h),

(h,d),(d,n),(n,d),(i,h),(h,i),(i,n),(n,i),(l,h),
(h,l),(l,n),(n,l) (m,h),(h,m),(m,n),(n,m),
(o,h),(h,o), (o,n), (n,o)}

– ATTAct
U = {(x, o)}

– IAF = (ARGAct
F ∪ARGAct

M ,
ATTAct

R ∪ATTAct
U )

b d i l m o

h n x

Note 1. Arguments m and n, despite dealing with the same attribute (Degree of malignancy),
are both activated but with different degrees of truth. u is not activated: although its premise
fHigh
TumorSize is activated, its claim (the attacked argument) is not a : LowAge → NR as not

present in ARGF . Similarly, q is not activated because, even if the attacked argument d is in
ARGF , its premise (High Age) is not activated.

3.2 Running Acceptability Semantics and Recommending an Extension

Abstract Argumentation semantics can now be executed on the IAF to obtain extensions
of arguments and to decide which of them can be accepted. Grounded and the preferred
semantics (as described in section 2) are applied. The former always returns one exten-
sion of arguments: if not empty, it contains all the arguments in the IAF that support
the same claim. The latter may return multiple extensions thus an heuristic for selecting
the winning extension and extracting the winning claim, is needed. We argue that the
cardinality of an extension is important: it indicates how many arguments support the
same claim. However, this might be reductive when one bigger extension has an overall
degree of truth lower than a smaller extension. Thus we also propose to consider the
degree of truth of an entire extension. This can be intuitively computed averaging the
degrees of truth of the premise of each argument, in the same extension. However, we
propose to use the fuzzy algebraic product (fuzzy intersection) because we want to fol-
low a pessimistic approach, giving more importance to a single low degree of truth of
an argument in an extension rather than arguments with high degrees of truth. This ap-
proach produces a decreasing affect, where the final output is always smaller, or equal,
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than the smallest contributing degree of truth. Such an approach is then applied to every
extension computed by the selected semantic. Eventually, the extension that maximises
both the number of arguments and the fuzzy algebraic product is declared to be the win-
ning extension. This is a consistent conflict-free set of arguments that support the same
claim, the winning claim, that can be used to support decision-making.

Definition 8 (Strength of extension). The strength deg of an extension E is the product
between its cardinality (compared to the cardinality of the pool of arguments), and the algebraic
product of the degrees of truth of each forecast argument in E.

Edeg = card(E)
card(ARGpool)

×∏n
i=1 fαi(xi)

with fαi the membership function associated to the premise of the forecast argument (ai : fα →
c) ∈ ARGAct

F in the extension E, xi the input value for the attribute α that activated the argu-
ment ai and card(ARGpool) the cardinality of the pool of arguments.

Definition 9 (Winning extension and claim). The winning extension WE of a set E of n
preferred extensions, is the strongest extension.

•WE = {A | A ∈ E, and Adeg = max(E1
deg, E

2
deg, ..., E

n
deg)}

The winning claim c is the claim supported by all the arguments of WE.
• ∀a ∈ WE with a : (fα → c) ∈ ARGAct

F , c is the winning claim.

Note 2. Only forecast arguments computing the algebraic product because mitigating argu-
ments do not carry a claim.

Example 5. In example 4, the grounded extension is empty, the 2 preferred extensions are:
p1 = {b, d, i, l,m, x}, p2 = {h, n, x}. The degrees of truth of arguments are:
b: fmedium

age = 0.9, d: fPre
Menop = 1, i: fLow

NodeInv = 0.97, l: fFalse
NodeC = 1, m: fLow

DegMalig = 0.6

h: fHigh
TumorSize = 0.6 n: fHigh

DegMalig = 0.5
Argument x is in both the extensions according to preferred semantics, but as it is a mitigating

argument, it does not have an associated claim, thus it does not contribute to the computation of
the strength of each extension. According to definitions 8 and 9:

• Ex. 1: (b, d, i, l, m); algebraic product: 0.52; % of args: (5/26=0.19) so Ed = 0.1
• Ex. 2: (h, n); algebraic product: 0.3; % of args.:(2/26=0.08) so Ed = 0.024.
• The winning extension is Ex.1 thus the winning claim is ‘no recurrence (NR)’.

4 Evaluation

We evaluated our approach using the Ljubljana Breast Cancer Dataset, adopted in many
machine learning studies [12] [4] [2]. This includes 286 instances of real patients who
went through a breast cancer operation. Each record is described by a set of features
(table 1) whose value was recorded at the time of the operation, when the breast cancer
was removed. 9 of these records are incomplete, due to missing values. For 81 patients,
the breast cancer reappeared within 5 years of surgery (R), and for the remaining 205
cases, the cancer did not occur (NR). The goal was to compare the capacities of pre-
dicting the right prognosis (R or NR) by of the designed argument-based model and a
selection of machine-learning classifiers. The attributes ‘irradiation’ and ‘breast’ were
removed from the dataset because not accounted in the expert knowledge-base, thus
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not used in the design of the contextual argumentation framework (table 2). The at-
tribute ‘irradiation’ has been removed also because irradiation occurred after and not at
the time of surgery. We have used WEKA machine learning software that implements
state-of-the-art machine-learning classifiers. Six experiments were conducted varying
fold cross-validation 2 and percentage of split 3.

To test the designed argument-based model predictive capacity, the winning claim,
as per definition 9 was compared against the outcome class (R or NR) of the Ljubljana
dataset, as in table 1, for each patient (record). Grounded and preferred extension, as
described in 2, have been used as argument acceptability semantics. Results are in table
3. For 8 patients (out of 286) a non-empty grounded extension was computed: this is a
clear coherent unique position. In 7 of these 8 cases, the winning claim coincides with
the observed patient’s recurrence status. In the remaining case, AT failed: the designed
contextual argumentation framework was not enough for predicting the recurrence sta-
tus: further knowledge/evidence is needed. With preferred semantics, 210 recurrence
status (out of 286) were successfully predicted. The winning claim of the strongest
preferred extension can be used for enhancing decision-making.

Table 3. Prediction rates: machine-learning vs. Argumentation theory

Classifier 10-folds 28-folds 40-fold 70& split 50% split 30% split

decision tables 73.42 75.52 73.42 73.25 74.12 74.00
bayesian network 72.37 73.07 73.07 68.60 72.70 73.00
best-first decision tree 66.78 70.62 73.07 62.79 74.12 72.00
regression 70.62 73.07 71.67 66.26 72.72 72.00
multilayer perceptron 65.38 68.88 65.73 58.13 65.03 65.00
alternating decision tree 74.47 75.17 74.82 65.11 69.93 72.50

Preferred semantic (AT ) 73.42 73.42 73.42 73.42 73.42 73.42

5 Discussion and Related Work

Table 3 clearly emphasises the the high prediction rate of our model against machine-
learning (ML) classifiers. Our approach does not require any training/learning and the
output is always the same (unlike ML classifiers)4. Each case is evaluated independently
by this CAF and the size of the dataset is negligible. An interesting property is that the 9
incomplete records of the Ljubljana dataset can still be considered using the CAF . With
ML, an explicit algorithm to fill in the missing features of a record is required, if that
record is accounted by the learning algorithm. Another interesting property of AT is its
explanatory power. Firstly, the translation of knowledge-bases into a set of interactive
argument is more intuitive, following a modular process based upon natural language

2 x-fold cross-validation: the dataset was randomly reordered and split into x folds of equal size.
For each iteration (total x iterations), one fold is used for testing the model while the remaining
(x-1) folds are used for training the classifier. Results are then averaged over all folds giving
the cross-validation estimate of the accuracy.

3 x% split: x% of the records of the dataset is used for training the classifier and the remaining
100-x% is used to test the model and check its predictive capacity.

4 We recall that in the experiments we have only evaluated just one expert’s knowledge, which
is not trained to fit the data, but it is used to build the CAF
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terms familiar to clinicians. Secondly, the outcomes of an acceptability semantic, are
conflict-free sets of the same input arguments, and not just numbers as produced by ML
classifiers. In other words, the clinician not only can consider the strongest extension
and the winning claim, but also s/he can individually take a look at each argument within
this extension, being able to better justify final decisions. Aforementioned advantages
are summarised as follows:

– Inconsistency and Incompleteness: AT provides a methodology for reasoning on
available evidence, even if partial and inconsistent; missing data is simply discarded
and even if an argument cannot be elicited, the argumentative process can still be
executed with remaining data. This is powerful when a dataset is corrupted;

– Expertise and Uncertainty:AT captures expertise in an organised fashion, handling
uncertainty and the vagueness associated to the clinical evidence, usually expressed
with natural language propositions/statements;

– Intuitiveness: AT is not based on statistics/probability being close to the way hu-
mans reason. If the designer is anyway inclined to use statistical evidence, this
can be modelled as an argument included in an argumentation framework; vague
knowledge-bases can be structured as arguments built with familiar linguistic terms;

– Explainability: AT leads to explanatory reasoning thanks to the incremental, mod-
ular way of reasoning with evidence. AT provides semantics for computing argu-
ments’ justification status, letting the final decision be better explained/interpreted;

– Dataset independency:AT does not require a complete dataset and it may be useful
for emerging knowledge where quantity evidence has not yet been gathered;

– Extensibility and Updatability:AT is an a open and extensible paradigm that allows
to retract a decision in the light of new evidence: an argumentation framework can
be updated with new arguments and evidence;

– Knowledge-bases comparability: AT allows comparisons of different subjective
knowledge-bases. Two clinicians might build their own argumentation framework
and identify differences in the definition of their arguments.

The above properties are not shared by ML classifiers, automatic procedures, that
learn from previous examples. However some weaknesses of AT are:

– knowledge-base translation: the initial translation of a knowledge-base into inter-
active arguments may require effort, particularly with several pieces of evidence.
In ML this translation is not required;

– lack of learning:AT is not a learning-based paradigm, thus rules/patterns cannot be
automatically detected as in ML. However, ML relies on big datasets of evidence
sometimes requiring not-negligible time to complete the learning process.

Although argumentation theory (AT) is gaining momentum in AI , the area of re-
lated works within health-care is sparse. In [3] AT was applied for group decision sup-
port among oncologists for discussing treatment therapies for larynx cancer cases. This
approach showed how AT was promising in supporting decision justification. Hunter
et al. investigated the role of AT as a mean for reasoning and comparing treatments
in a typical health-care decision-making situation [12]. In particular, one of their work
has been proved useful for breast cancer prognosis when applied in conjunction with
Bayesian nets [7]. The work of Fox et al. illustrated how AT can be applied in different
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practical medical scenarios. In [5] the application of assumption-based argumentation
is described and applied to decision-making with early-stage breast cancer clinical data.
Our study differs from the aforementioned works because it compares AT against ML.

6 Conclusions and Future Work

New technologies are undoubtedly useful for the advance of knowledge, especially in
health-care and medicine. These facilitate clinicians’ daily activities providing them
with a wider range of tools for managing patients’ information. However, despite the in-
creasing amount of available information, decision-making is getting more complex be-
cause this new information, often incomplete and not coherent needs to be aggregated.
Argumentation theory AT is an new paradigm, recently being considered in health-care
for aggregating clinical evidence intuitively and modularly. It is not learning-based nor
probability-based, but it is a knowledge-based paradigm that can work when evidence is
limited, partial, incoherent and subject to uncertainty. It is built upon the representation
of a knowledge-base into interactive arguments and it is capable of handling contra-
dictions. These properties seem to be appealing for creating decision-support tools that
follow a qualitative rather than a quantitative aggregation of evidence. The main con-
tribution of this study was to show how AT can be practically applied in a real-world
scenario: the breast cancer recurrence prediction. Results of experiments demonstrated
how this knowledge-base approach can perform as well as state-of-the-art machine
learning classifiers that however, are poor in explanatory power. Promising findings
suggest further research can be carried towards a qualitative approach for enhancing
decision-making. Future works will be on how to render the translation of knowledge-
bases an intuitive/easy process with evaluations in different health-care settings.

Acknowledgment. This research is supported by the Science Foundation Ireland (Grant
12/CE/I2267) as part of the Centre for Next Generation Localisation (www.cngl.ie) at
Trinity College Dublin

References

1. Baroni, P., Guida, G., Mussi, S.: Full non-monotonicity: a new perspective in defeasible
reasoning. In: European Symposium on Intelligent Techniques, pp. 58–62 (1997)

2. Cestnik, G., Konenenko, I., Bratko, I.: Assistant-86: A knowledge-elicitation tool for sophis-
ticated users. In: Progress in Machine Learning, pp. 31–45 (1987)

3. Chang, C.F., Ghose, A., Miller, A.: Mixed-initiative argumentation: A framework for justifi-
cation management in clinical group decision support. In: AAAI (November 2009)

4. Clark, P., Niblett, T.: Induction in noisy domains. In: Progress in Machine Learning (from
Proceedings of the 2nd European Working Session on Learning), pp. 11–30 (1987)

5. Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumentation for medical
decision-making. In: KR (2012)

6. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

7. Hunter, A., Williams, M.: Argumentation for aggregating clinical evidence. In: 22nd Inter-
national Conference on Tools with Artificial Intelligence, vol. 1, pp. 361–368 (2010)



180 L. Longo and L. Hederman

8. Longo, L., Kane, B., Hederman, L.: Argumentation theory in health care. In: 25th Interna-
tional Symposium on Computer-Based Medical Systems (2012)

9. Matt, P., Morgem, M., Toni, F.: Combining statistics and arguments to compute trust. In: 9th
International Conference on Autonomous Agents and Multiagent Systems, vol. 1 (2010)

10. Prakken, H.: An abstract framework for argumentation with structured arguments. Argu-
ments and Computations (1), 93–124 (2010)

11. Toni, F.: Argumentative agents. In: Multiconference on Computer Science and Information
Technology, pp. 223–229 (2010)

12. Williams, M., Williamson, J.: Combining argumentation and bayesian nets for breast cancer
prognosis. Journal of Logic, Language and Information 15(1-2), 155–178 (2006)

13. Wu, Y., Caminada, M., Podlaszewski, M.: A labelling based justification status of arguments.
Workshop on Non- Monotonic Reasoning, Studies in Logic 3(4), 12–29 (2010)

14. Wyner, A., Bench-Capon, T., Dunne, P.: Instantiating knowledge bases in abstract argumen-
tation frameworks. Artificial Intelligence 1 (1995)


	Argumentation Theory for Decision Supportin Health-Care: A Comparison with Machine Learning
	1 Introduction
	2 Argumentation Theory
	3 Design of a Defeasible Model
	3.1 Translating Knowledge-Bases into Arguments and Attack Relations
	3.2 Running Acceptability Semantics and Recommending an Extension

	4 Evaluation
	5 Discussion and Related Work
	6 Conclusions and Future Work
	References




