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Abstract. Voxel-based analysis of neuroimagery provides a promising
source of information for early diagnosis of Alzheimer’s disease. However,
neuroimaging procedures usually generate high-dimensional data. This
complicates statistical analysis and modeling, resulting in high compu-
tational complexity and typically more complicated models. This study
uses the features extracted from Positron Emission Tomography imagery
by 3D Stereotactic Surface Projection. Using a taxonomy of features that
complies with Talairach-Tourneau atlas, we investigate composite kernel
functions for predictive modeling of Alzheimer’s disease. The composite
kernels, compared with standard kernel functions (i.e. a simple Gaussian-
shaped function), better capture the characteristic patterns of the dis-
ease. As a result, we can automatically determine the anatomical regions
of relevance for diagnosis. This improves the interpretability of models
in terms of known neural correlates of the disease. Furthermore, the
composite kernels significantly improve the discrimination of MCI from
Normal, which is encouraging for early diagnosis.

Keywords: Statistical learning, Classification, Bayesian methods, Gaus-
sian processes, Positron emission tomography.

1 Introduction

Alzheimer’s disease (AD) is one major cause of dementia. It is progressive, de-
generative and fatal. Various fairly accurate diagnostic tests are available; how-
ever, a conclusive diagnosis is only possible through an autopsy. Mild Cognitive
Impairment (MCI) is a transitional state between normal aging and AD. MCI
shares features with AD and it is likely to progress to AD at an accelerated
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rate [1]. However, an MCI case may lead to other disorders, as well. Thus, MCI
patients form a heterogeneous group with subcategories [1].

One promising source of information for the early diagnosis of AD is Positron
Emission Tomography (PET) scans. In [2], the utility of 3D Stereotactic Surface
Projection (3D-SSP) in AD diagnosis was demonstrated. The metabolic activity
scores based on the PET-scans were shown to enable the localization of corti-
cal regions with abnormalities. 3D-SSP provides both statistical analysis and
standardization of PET imagery so that an objective, data-driven analysis is
accomplished [3].

In [4], the accuracy of dementia diagnosis provided by radiologists has been
compared to that of computer-based diagnostic methods. Utilizing Support Vec-
tor Machines (SVMs), they concluded that the accuracy of computerized di-
agnosis is equal to or better than that of radiologists. A general adoption of
computerized methods for visual image interpretation for dementia diagnosis is
recommended by [4,5].

In [6], two well-known classification algorithms, Näıve Bayes (NB) and SVMs,
have been benchmarked for automated diagnosis of AD. An analysis of features
extracted from PET imagery via 3D-SSP revealed strong dependencies between
the predictiveness of features and their corresponding cortical regions’ cognitive
and physiological characteristics. For instance, the posterior cingulate cortex is
greatly involved in memory and is deemed to characterize early-to-moderate AD
[5]. The features obtained from this region, which constitutes a very small portion
of the brain, are highly predictive of the disease [6]. On the other hand, visual
cortex is usually spared until very late stages of AD [7]. As a result, features from
this region are not as predictive [6]. In addition, the most of features obtained
via 3D-SSP are highly correlated due to their spatial properties. In [8], to cope
with feature correlations, certain regions of the brain containing characteristic
patterns of AD were handpicked based on the domain-knowledge.

SVMs and Gaussian Processes (GPs) are two examples of kernel machines.
Given the characteristic patterns of AD, simple kernel functions, such as a
Gaussian-shaped one (eq.3), may fail to capture the input structure. To rem-
edy this situation, in this paper, we propose a composite kernel strategy to
automatically determine the anatomical regions of relevance for diagnosis.

In this study, we mine the brain imaging data supplied by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) 1. The data collection is composed of
3D-PET scans of human brains. However, such neuroimaging procedures usually
end up generating high-dimensional data. This complicates statistical analysis
and modeling, resulting in high computational complexity and typically more
complicated models. Furthermore, the cost of labeled data is high since the data
gathering process involves expensive imaging procedures and domain-experts.
As a result, sample sizes are small and this is a well-recognized problem in
statistical machine-learning. By using composite kernel functions, we aim to
discover relevant subspaces given the high-dimensional data.

1 http://adni.loni.ucla.edu/

http://adni.loni.ucla.edu/
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2 Gaussian Processes for Regression

For regression problems, we aim to predict the output of a real-valued function
y = f(x) where x = (x1, x2, ..., xD) and D is the number of dimensions. Thus,
we seek to learn an appropriate function that maps inputs to outputs, and GPs
enable us to do inference in the function-space (eq.1).

“A GP is a collection of random variables, any finite number of which
have a joint Gaussian distribution.” [9, p.13].

f(x) ∼ GP(m(x), k(x,x′)), where
m(x) = E[f(x)]

k(x,x′) = E[(f(x) −m(x))(f(x′)−m(x′))].
(1)

Accordingly, f(x) and f(x′) are jointly Gaussian. Thus, given a data set D =
{(xi, yi)} where i = 1...N , we obtain an N -dimensional random vector f .

f ∼ N (0,K) (2)

A GP-prior (eq.2) specifies the prior distribution over the latent variables. Once
combined with the likelihood of data, it gives rise to a GP-posterior in function
space. This Bayesian treatment promotes the smoothness of predictive functions
[12] and the prior has an effect analogous to the quadratic penalty term used in
maximum-likelihood procedures [9].

In GPs terminology, a kernel is a covariance function that estimates the co-
variance of two latent variables f(x) and f(x′) in terms of input vectors x and
x′. The choice of the covariance function k(x,x′) in eq.1 is important because it
dictates the covariance matrix K in eq.2 and eq.6. A typical covariance function,
known as squared-exponential (SE) covariance function, is

kSE(x,x
′) = σ2

fexp

(
−‖x− x′‖2

2�2

)
, (3)

where � and σf are the bandwidth (length-scale) and scale parameters, respec-
tively. Furthermore, the idea of length-scale parameter � can be specialized for
individual dimensions (eq.4) so that irrelevant features are effectively turned off
by large length-scales during model selection:

kARD(x,x′) = σ2
fexp

(
−

D∑
i=1

(xi − x′
i)

2

2�2i

)
. (4)

This process is known as Automatic Relevance Determination (ARD) [10,11],
which determines good features while training. However, ARD is computationally-
expensive for high-dimensional data; the cost is O(N2) per hyperparameter [9].

Neural network (NN) covariance function is another interesting example:

kNN (x,x′) = σ2
f sin

−1

⎛
⎝ 2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

⎞
⎠ , (5)
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where x̃ = (1,x)T is an augmented input vector and Σ is a covariance matrix2

for input-to-hidden weights w [9,12]. A GP with NN covariance function (eq.5)
can be viewed as emulating a NN with a single hidden layer.

GPs framework supports many covariance functions. Moreover, one can build
up a covariance function as the sum of several covariance functions, each of which
processes certain parts of inputs [12]. Clearly, information processing capabilities
of GPs are mostly determined by the choice of covariance function. The impact
of the covariance function is larger for small to medium-sized datasets [13].

2.1 Learning of Hyperparameters

Many covariance functions have adjustable parameters, such as � and σf in eq.3.
In this regard, learning in GPs is equivalent to finding suitable parameters for
the covariance function. Given the target vector y and the matrix X that con-
sists of training instances, this is accomplished by maximizing the log marginal
likelihood function:

log p(y|X) = −1

2
yT (K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
N

2
log 2π, (6)

where σn is due to the Gaussian noise model, yi = fi + ε and ε ∼ N (0, σ2
n).

2.2 Predictions

GP regression yields a predictive Gaussian distribution (eq.7):

f∗|X,y,x∗ ∼ N (f̄∗,V[f∗]), where (7)

f̄∗ = kT
∗ (K + σ2

nI)
−1y (8)

V[f∗] = k(x∗,x∗)− kT
∗ (K + σ2

nI)
−1y (9)

and k∗ is a vector of covariances between the test input x∗ and the training in-
stances. Eq.8 gives the mean prediction f̄∗, which is the empirical risk minimizer
for any symmetric loss function [9]. Eq.9 yields the predictive variance.

3 Gaussian Processes for Classification

GP classification is a generalization of logistic regression. For binary (0/1) clas-
sification, a sigmoid function (eq.10) assigns the class probability:

p(y∗ = 1|f∗) = λ(f∗) =
1

1 + exp(−f∗)
. (10)

Compared to the regression case, GP models for classification require a more
sophisticated treatment due to discrete target variables, such that y∗ ∼
Bernoulli(λ(f∗)). Thus, we resort to approximation methods. Expectation Prop-
agation (EP) [14] is heavily used for GP learning. It delivers accurate marginals,
reliable class probabilities and faithful model selection [15].

2 w ∼ N (0, Σ)
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4 GPs versus SVMs

Both GPs and SVMs exploit kernels. However, their objectives are quite different.
SVMs are large margin classifiers and their goal is to maximize distances from
decision boundaries. On the other hand, GPs are Bayesian and they are designed
for likelihood maximization.

Training a typical SVM with a Radial Basis Function (RBF)3 [16] involves a
grid search for model parameters, such as C (penalty parameter) and γ. However,
for a large number of parameters, the grid search becomes prohibitively expen-
sive. Furthermore, SVMs require a validation set for the search, which results in
a smaller training set.

Thanks to Bayesian model selection for GPs, a large number of hyperparam-
eters can be approximated by maximizing marginal likelihood (eq.6). Also note
that GP models do not require a validation set to be used for the optimization
of model parameters. As a result, more of data can be used for training, which
is desirable when the sample size is small.

5 Data and Processing

Table 1 describes the demographics of the patients in our data collection, which
is composed of 391 PET scans and is broken into three groups: Normal, MCI
and AD. The images covered a period between October 25, 2005 and August
16, 2007. The metabolic activity of the cerebral cortex is extracted with respect
to the 3D-SSP using a GE proprietary application known as Cortex ID. As a
result, an ordered list of 15964 predefined points is obtained (Fig. 1, Fig. 2 and
Table 2). Each voxel is assigned a z-score, which measures how many standard
deviations the metabolic activity departs from its expected mean. The mean is
estimated from a healthy control group [2]. Voxels are also grouped according to
Talairach-Tourneau atlas (Fig. 2 and Table 2).

Table 1. Demographic data on ADNI scans (extended from [8])

Gender Ethnicity Race

Avg. Age M F Hispanic Not Hispanic Unknown African Asian Caucasian
or Latino

Normal 76.1 64 37 0 97 4 1 0 100
MCI 75.6 163 67 6 219 5 4 0 226
AD 77.4 35 25 0 56 4 0 1 59

3 kRBF (x,x
′) = exp

(−γ‖x− x′‖2)
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Fig. 1. Cortex extracted via 3D Stereotactic Surface Projection (reprint from [8])

Fig. 2. Taxonomy of cortical regions (reprint from [8])

6 Composite Kernels

A composite kernel consists of many kernels. We introduce two composite ker-
nels: i) SE (eq.11) and ii) NN composite kernels.

kSEcomposite(x,x
′) = σ2

f0exp

(
−‖x0 − x′

0‖2
2�0

2

)
+ ...+

σ2
f14exp

(
−‖x14 − x′

14‖2
2�14

2

)
,

(11)

where each region (denoted by a subvector xi, i ∈ {0, 1, 2, ..., 14}) is assigned
a local kernel function. The scale parameters (σfi) indicate the relevance of
regions. This can also be seen as L2-regularization by which irrelevant regions
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Table 2. Region mapping table (reprint from [8])

Region ID Anatomical Region Size (# of voxels) Region Ratio

0 Other 5456 0.3418
1 Parietal Association Cortex 572 0.0358
2 Temporal Association Cortex 1296 0.0812
3 Frontal Association Cortex 2148 0.1346
4 Occipital Association Cortex 810 0.0507
5 Posterior Cingulate Cortex 368 0.0231
6 Anterior Cingulate Cortex 626 0.0392
7 Medial Frontal Cortex 1636 0.1025
8 Medial Parietal Cortex 412 0.0258
9 Primary Sensorimotor Cortex 390 0.0244
10 Visual Cortex 410 0.0257
11 Caudate Nucleus 34 0.0021
12 Cerebellum 1064 0.0666
13 Vermis 442 0.0277
14 Pons 300 0.0188

are turned off entirely, instead of dealing with individual voxels. This achieves
an efficient ARD at the region level. By replacing the simple SE covariance
functions with the simple NN covariance functions (eq.5), we derive the NN
composite kernel. On the other hand, a grid search with such parameter-rich
kernels would be prohibitive. For composite kernels, we utilize GPML toolbox4,
since GP learning has computational advantages in this respect.

7 Experiments

In order to estimate generalization performances of the specified algorithms, we
applied 10-fold cross-validation (CV). For SVMs [16], we used a single RBF
kernel and a grid search. For GPs, we used BFGS5 for 100 iterations. Our per-
formance metrics are classification accuracy, precision (eq.12) and recall (eq.13).
Table 3, Table 4 and Table 5 present averages of 10 classification tasks. Fig. 3,
Fig. 4 and Fig. 5 show the average (mean) accuracies and comparison intervals.
The confidence level is 95% and according to Tukey–Kramer method, two means
are significantly different if their comparison intervals do not overlap.

Precision =
# of True positives

# of (True positives + False positives)
(12)

Recall =
# of True positives

# of (True positives + False negatives)
(13)

4 http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
5 A quasi-Newton method for solving unconstrained optimization problems.

http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
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Table 3. Normal vs. AD: Classification performance

SVM RBF GP SE GP NN GP SE GP NN
Composite Composite

Accuracy 92.50 62.50 94.38 92.50 94.38

Precision 1.00 0.00 0.98 0.92 0.97

Recall 0.80 0.00 0.87 0.88 0.88

55 60 65 70 75 80 85 90 95 100

GP NN Comp.

GP SE Comp.

GP NN

GP SE

SVM RBF

Classification Accuracy

Fig. 3. Normal vs. AD: Performance comparison

65 70 75 80 85 90

GP NN Comp.

GP SE Comp.

GP NN

GP SE

SVM RBF

Classification Accuracy

Fig. 4. Normal vs. MCI: Performance comparison
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Table 4. Normal vs. MCI: Classification performance

SVM RBF GP SE GP NN GP SE GP NN
Composite Composite

Accuracy 73.94 69.70 84.55 79.09 81.82

Precision 0.73 0.70 0.87 0.84 0.86

Recall 0.98 1.00 0.93 0.87 0.89

Table 5. MCI vs. AD: Classification performance

SVM RBF GP SE GP NN GP SE GP NN
Composite Composite

Accuracy 79.31 79.31 84.14 81.38 82.76

Precision 0.00 0.00 0.72 0.59 0.69

Recall 0.00 0.00 0.40 0.25 0.35

77 78 79 80 81 82 83 84 85 86 87

GP NN Comp.

GP SE Comp.

GP NN

GP SE

SVM RBF

Classification Accuracy

Fig. 5. MCI vs. AD: Performance comparison

Table 3 shows that an SVMwith a standard configuration can be farily accurate.
However, its recall measure indicates that it has failed to identify some AD cases.
Table 4 shows that it is highly biased towards MCI class when utilized to separate
MCI from Normal. This leads to high recall, but low precision. For GPs, the use of
a simple SE covariance function leads to majority predictors. For instance, despite
the classification accuracy of 62.50% in Table 3, precision and recall measures in-
dicate that the diagnosis attempts have always failed6, whichmay be attributed to

6 Number of true positives (AD predictions) is zero.
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the presence of a large number of correlated features. Due to the quadratic form in
the exponent of the covariance function, even the slightest change in feature values
easily causes the covariance between fi and fj to tend to zero, which is undesir-
able. In Table 4 andTable 5, GPs with SE covariance function always predictMCI,
which is not the case. In Table 5, SVM also induces a majority predictor. Based on
these results, we, therefore, conclude that a simple Gaussian-shaped (SE or RBF)
kernel is inappropriate for our problem.

A single NN kernel gives rise to the most accurate classifier in each task (Table
3, Table 4, Table 5). However, composite kernels are competitive with the NN
kernel (Fig. 3, Fig. 4, Fig. 5) and when utilized for GP learning, they significantly
outperform the simple Gaussian-shaped kernel in the discrimination of AD and
MCI from Normal (Fig. 3 and Fig. 4).

Table 5 shows that all the classifiers have difficulties in discriminating AD
from MCI (Fig. 5). Recall that MCI is a transitional state and it shares features
with AD. As a result, a good separation is difficult. Nevertheless, a GP-classifier
with NN covariance function significantly outperforms the SVM and GPs with
SE covariance function.

Fig. 6 and Fig. 7 show the normalized mean scale parameters (σf ) assigned
to anatomical regions in cases of SE and NN composite kernels, respectively.
Posterior cingulate cortex is shown to be the most crucial region for the discrim-
ination of Normal and AD cases. It is also important for the discrimination of
MCI and AD cases. This is quite sensible because the posterior cingulate cor-
tex is deemed to characterize early-to-moderate AD [5]. Primary sensorimotor
cortex was utilized as a reference region for calculating z-scores in [2]. It plays a
major role for MCI-AD separation here, as well. In regards to the discrimination
of MCI from Normal, ARD resorts to more regions in order to account for the
heterogeneity of MCI group. In short, all anatomical regions are weighted with
respect to their relevance to the classification task.
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Fig. 6. Normalized relevance scores via SE composite kernel
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Fig. 7. Normalized relevance scores via NN composite kernel

8 Conclusion

Voxel-based analysis of neuroimagery provides an objective and reliable exami-
nation of cortical abnormalities. However, from a machine learning perspective,
we need to confront major challenges when modeling neural correlates of demen-
tia. One is the high-dimensionality of data resulting from neuroimaging. Also,
sample sizes are small, which aggravates the situation.

In this study, we utilized GPs for predictive modeling of AD via composite
kernels. The composite kernels respond to characteristic patterns of the disease.
As a result, we automatically determine the anatomical regions of relevance for
diagnosis. This improves the interpretability of models in terms of neural corre-
lates of the disease. In terms of classification accuracy, the composite kernels are
competitive with or better than simple kernels. Moreover, composite kernels sig-
nificantly improve the discrimination of MCI from Normal, which is encouraging
for early diagnosis of AD. Last but not the least, we shift the ARD from voxel
level to region level. This allows us to significantly reduce the computational
burden.
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