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The second chapter of A Chronicle of Permutation Statistical Methods is devoted to
describing the earliest permutation tests and the statisticians that developed them.
Examples of these early tests are provided and, in many cases, include the original
data. The chapter begins with a brief overview of the development of permutation
methods in the 1920s and 1930s and is followed by an in-depth treatment of selected
contributions. The chapter concludes with a brief discussion of the early threads in
the permutation literature that proved to be important as the field progressed and
developed from the early 1920s to the present.

2.1 Overview of This Chapter

The 1920s and 1930s ushered in the field of permutation statistical methods.
Several important themes emerged in these early years. First was the use of
permutation methods to evaluate statistics based on normal theory. Second was the
considerable frustration expressed with the difficulty of the computations on which
exact permutation methods were based. Third was the widespread reluctance to
substitute permutation methods for normal-theory methods, regarding permutation
tests as a valuable device, but not as replacements for existing statistical tests. Fourth
was the use of moments to approximate the discrete permutation distribution, as
exact computations were too cumbersome except for the very smallest of samples.
Fifth was the recognition that a permutation distribution could be based on only
the variable portion of the sample statistic, thereby greatly reducing the number of
calculations required. Sixth was an early reliance on recursion methods to generate
successive values of the test statistic. And seventh was a fixation on the use of
levels of significance, such as ˛ D 0:05, even when the exact probability value
was available from the discrete permutation distribution.

The initial contributions to permutation methods were made by J. Spława-
Neyman, R.A. Fisher, and R.C. Geary in the 1920s [448, 500, 1312]. Neyman’s
1923 article foreshadowed the use of permutation methods, which were developed
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by Fisher while at the Rothamsted Experimental Station. In 1927, Geary was the
first to use an exact permutation analysis to evaluate and demonstrate the utility of
asymptotic approaches. In the early 1930s T. Eden and F. Yates utilized permutation
methods to evaluate conventional parametric methods in an agricultural experiment,
using a random sample of all permutations of the observed data comprised of
measurements on heights of Yeoman II wheat shoots [379]. This was perhaps the
first example of the use of resampling techniques in an experiment. The middle
1930s witnessed three articles emphasizing permutation methods to generate exact
probability values for 2 � 2 contingency tables by R.A. Fisher, F. Yates, and
J.O. Irwin [452,674,1472]. In 1926 Fisher published an article on “The arrangement
of field experiments” [449] in which the term “randomization” was apparently used
for the first time [176, 323]. In 1935 Fisher compared the means of randomized
pairs of observations by permutation methods using data from Charles Darwin on
Zea mays plantings [451], and in 1936 Fisher described a card-shuffling procedure
for analyzing data that offered an alternative approach to permutation statistical
tests [453].

In 1936 H. Hotelling and M.R. Pabst utilized permutation methods to circumvent
the assumption of normality and for calculating exact probability values for small
samples of rank data [653], and in 1937 M. Friedman built on the work of
Hotelling and Pabst to investigate the use of rank data in the ordinary analysis
of variance [485]. In 1937 B.L. Welch compared the normal theory of Fisher’s
variance-ratio z test (later, Snedecor’s F test) with permutation-version analyses of
randomized block and Latin square designs [1428], and in 1938 Welch used an
exact permutation test to address tests of homogeneity for the correlation ratio, �2

[1429]. Egon Pearson was highly critical of permutation methods, especially the
permutation methods of Fisher, and in 1937 Pearson published an important critique
of permutation methods with special attention to the works of Fisher on the analysis
of Darwin’s Zea mays data and Fisher’s thinly-veiled criticism of the coefficient of
racial likeness developed by Pearson’s famous father, Karl Pearson [1093].

In 1937 and 1938 E.J.G. Pitman published three seminal articles on permutation
tests in which he examined permutation versions of two-sample tests, bivariate
correlation, and randomized blocks analysis of variance [1129–1131]. Building on
the work of Hotelling and Pabst in 1936, E.G. Olds used permutation methods to
generate exact probability values for Spearman’s rank-order correlation coefficient
in 1938 [1054], and in that same year M.G. Kendall incorporated permutation
methods in the construction of a new measure of rank-order correlation based
on the difference between the sums of concordant and discordant pairs [728].
Finally, in 1939 M.D. McCarthy argued for the use of permutation methods as first
approximations before considering the data by means of an asymptotic distribution.

2.2 Neyman–Fisher–Geary and the Beginning

Although precursors to permutation methods based on discrete probability val-
ues were common prior to 1920 [396, pp. 13–15], it was not until the early
1920s that statistical tests were developed in forms that are recognized today as
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permutation methods. The 1920s and 1930s were critical to the development of
permutation methods because it was during this nascent period that permutation
methods were first conceptualized and began to develop into a legitimate statistical
approach. The beginnings are founded in three farsighted publications in the 1920s
by J. Spława-Neyman, R.A. Fisher, and R.C. Geary.1

2.2.1 Spława-Neyman and Agricultural Experiments

In 1923 Jerzy Spława-Neyman introduced a permutation model for the analysis
of agricultural field experiments. This early paper used permutation methods to
compare and evaluate differences among several crop varieties [1312].

J. Spława-Neyman
Jerzy Spława-Neyman earned an undergraduate degree from the University
of Kharkov (later, Maxim Gorki University2) in mathematics in 1917 and
the following year was a docent at the Institute of Technology, Kharkov.
He took his first job as the only statistician at the National Institute of
Agriculture in Bydgoszcz in northern Poland and went on to receive a Ph.D.
in mathematics from the University of Warsaw in 1924 with a dissertation,
written in Bydgoszcz, on applying the theory of probability to agricultural
experiments [817, p. 161]. It was during this period that he dropped the
“Spława” from his surname, resulting in the more commonly-recognized
Jerzy Neyman. Constance Reid, Spława-Neyman’s biographer, explained that
Neyman published his early papers under the name Spława-Neyman, and that
the word Spława refers to Neyman’s family coat of arms and was a sign of
nobility [1160, p. 45]. Spława-Neyman is used here because the 1923 paper
was published under that name.

After a year of lecturing on statistics at the Central College of Agriculture
in Warsaw and the Universities of Warsaw and Krakow, Neyman was sent
by the Polish government to University College, London, to study statistics
with Karl Pearson [817, p. 161]. Thus it was in 1925 that Neyman moved
to England and, coincidentally, began a decade-long association with Egon
Pearson, the son of Karl Pearson. That collaboration eventually yielded

(continued)

1For an enlightened discussion of the differences and similarities between Neyman and Fisher and
their collective impact on the field of statistics, see a 1966 article by Stephen Fienberg and Judith
Tanur in International Statistical Review [430] and also E.L. Lehmann’s remarkable last book,
published posthumously in 2011, on Fisher, Neyman, and the Creation of Classical Statistics [816].
2Maxim Gorki (Maksim Gorky) is a pseudonym for Aleksei Maksimovich Peshkov (1868–1936),
Russian short-story writer, novelist, and political activist.
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the formal theory of tests of hypotheses and led to Neyman’s subsequent
invention of confidence intervals [431].

Neyman returned to his native Poland in 1927, remaining there until 1934
whereupon he returned to England to join Egon Pearson at University College,
London, as a Senior Lecturer and then Reader. In 1938 Neyman received a
letter from Griffith C. Evans, Chair of the Mathematics Department at the
University of California at Berkeley, offering Neyman a position teaching
probability and statistics in his department. Neyman accepted the offer, moved
to Berkeley, and in 1955 founded the Department of Statistics. Neyman
formally retired from Berkeley at the age of 66 but at the urging of his
colleagues, was permitted to serve as the director of the Statistical Laboratory
as Emeritus Professor, remaining an active member of the Berkeley academic
community for 40 years. In 1979 Neyman was elected Fellow of the Royal
Society.3 As Lehmann and Reid related, Neyman spent the last days of his life
in the hospital with a sign on the door to his room that read, “Family members
only,” and the hospital staff were amazed at the size of Jerzy’s family [817,
p. 192]. Jerzy Spława-Neyman F.R.S. passed away in Oakland, California, on
5 August 1981 at the age of 87 [252, 431, 581, 727, 814, 816, 817, 1241].

A brief story will illustrate a little of Neyman’s personality and his relationship
with his graduate students, of which he had many during his many years at the
University of California at Berkeley.

A Jerzy Neyman Story
In 1939, Jerzy Neyman was teaching in the mathematics department at the
University of California, Berkeley. Famously, one of the first year doctoral
students, George B. Dantzig, arrived late to class, and observing two equations
on the chalk-board, assumed they were homework problems and wrote them
down. He turned in his homework a few days later apologizing for the delay,
noting that these problems had been more difficult than usual. Six weeks later,
Dantzig and his wife were awakened early on a Sunday morning by a knock

(continued)

3The Royal Society is a fellowship of the world’s most eminent scientists and is the oldest scientific
society in continuous existence. The society was founded on 28 November 1660 when a group
of 12 scholars met at Gresham College and decided to found “a Colledge for the Promoting of
Physico-Mathematicall Experimentall Learning” and received a Royal Charter on 5 December
1660 from Charles II. The original members included Christopher Wren, Robert Boyle, John
Wilkins, Sir Robert Moray, and William, Viscount Brouncker, who subsequently became the first
president of the Society [357, 1144, 1351].
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on their front door. Dantzig answered the door to find Neyman holding papers
in his hand and, as the door opened, Neyman began excitedly telling Dantzig
that he “written an introduction to one of [Dantzig’s] papers” [10, p. 301].
Dantzig had no idea as to what Neyman was referring, but Neyman explained.
Rather than being homework, the equations that Dantzig had worked out were
two famous unsolved problems in statistics, and the paper Neyman held was
the solution to the first of those two problems.

A year later, the now-solved equations were formally put together as
Dantzig’s doctoral dissertation. In 1950, Dantzig received a letter from Abra-
ham Wald that included proofs of a paper. Wald had solved the second of the
two equations not knowing about Dantzig’s solutions and when he submitted
it for publication, a reviewer informed Wald about Dantzig’s dissertation.
Wald contacted Dantzig suggesting they publish the paper together. The first
solution was published in 1940, “On the non-existence of tests of ‘Student’s’
hypothesis having power functions independent of �” by Dantzig [315] and
the second solution was published in 1951 “On the fundamental lemma of
Neyman and Pearson” by Dantzig and Wald [316].

G.B. Dantzig
George Bernard Dantzig went on to a distinguished career at Stanford
University in the department of Operations Research, which he founded in
1966. In 1975 President Gerald Ford awarded Dantzig a National Medal of
Science “for inventing Linear Programming and for discovering the Simplex
Algorithm that led to wide-scale scientific and technical applications to
important problems in logistics, scheduling, and network optimization, and
to the use of computers in making efficient use of the mathematical theory”
[287, 824]. George Bernard Dantzig died peacefully on 13 May 2005 at his
home in Stanford, California, at the age of 90.

The earliest discussions of permutation methods appeared in the literature when
Jerzy Spława-Neyman foreshadowed the use of permutation methods in a 1923
article “On the application of probability theory to agricultural experiments”;
however, there is no indication that any of those who worked to establish the field
of permutation methods were aware of the work by Spława-Neyman, which was
not translated from its original Polish-language text until 1990 by D.M. Dabrowska
and T.P. Speed [309]. In this early article, Spława-Neyman introduced a permutation
model for the analysis of field experiments conducted for the purpose of comparing
a number of crop varieties [1312]. The article was part of his doctoral thesis
submitted to the University of Warsaw in 1924 and was based on research that he
had previously carried out at the Agricultural Institute of Bydgoszcz in northern
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Poland [1304]. A brief synopsis of the article by Spława-Neyman can be found in
Scheffé [1231, p. 269, fn. 13]. Additionally, an introduction by Speed to the 1990
translation of “On the application of probability theory to agricultural experiments”
by Dabrowska and Speed also provides a useful summary [1304], and a commentary
on the translated article by D.B. Rubin is especially helpful in understanding the
contribution made to permutation methods by Spława-Neyman in 1923 [1203]. See
also a 1966 article by Stephen Fienberg and Judith Tanur in International Statistical
Review [430].

Spława-Neyman introduced his model for the analysis of field experiments based
on the completely randomized model, a model that Joan Fisher Box, R.A. Fisher’s
daughter, described as “a novel mathematical model for field experiments” [195,
p. 263]. He described an urn model for determining the variety of seed each plot
would receive. For m plots on which v varieties might be applied, there would be
n D m=v plots exposed to each variety. Rubin contended that this article represented
“the first attempt to evaluate . . . the repeated-sampling properties of statistics over
their non-null randomization distributions” [1203, p. 477] and concluded that the
contribution was uniquely and distinctly Spława-Neyman’s [1203, p. 479]. Rubin
contrasted the contributions of Spława-Neyman and Fisher, which he observed, were
completely different [1203, p. 478]. As Rubin summarized, Fisher posited a null
hypothesis under which all values were known, calculated the value of a specified
statistic under the null hypothesis for each possible permutation of the data, located
the observed value in the permutation distribution, and calculated the proportion of
possible values as or more unusual than the observed value to generate a probability
value. In contrast, Spława-Neyman offered a more general plan for evaluating the
proposed procedures [1203]. J.F. Box, commenting on the differences between
Spława-Neyman and Fisher, noted that the conflict between Spława-Neyman and
Fisher was primarily conditioned by their two different approaches: “Fisher was
a research scientist using mathematical skills, Neyman a mathematician applying
mathematical concepts to experimentation” [195, p. 265].4

2.2.2 Fisher and the Binomial Distribution

Ronald Aylmer Fisher was arguably the greatest statistician of any century [576,
738, 1483], although it is well known that his work in genetics was of comparable
status, where geneticists know him for his part in the Wright–Fisher–Haldane theory
of the neo-Darwinian synthesis, the integration of Darwinian natural selection with
Mendelian genetics, and his 1930 publication of The Genetical Theory of Natural

4Fisher and Neyman differed in other ways as well. In general, they differed on the fundamental
approach to statistical testing, with Fisher’s ideas on significance testing and inductive inference
and Neyman’s views on hypothesis testing and inductive behavior; see an excellent summary
in a 2004 article by Hubbard [663] as well as a comprehensive account of the controversy by
Gigerenzer, Swijtink, Porter, and Daston published in 1989 [512, pp. 90–106].
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Selection [80,576]. As L.J. Savage expressed it: “[e]ven today [1976], I occasionally
meet geneticists who ask me whether it is true that the great geneticist R. A. Fisher
was also an important statistician” [401, 1226, p. 445].

R.A. Fisher
Ronald Aylmer Fisher held two chairs in genetics, but was never a professor
of statistics. Fisher was born on 17 February 1890 and even as a youth his
eyesight was very poor; therefore, he was forbidden by his doctors to work by
electric light [1477]. For example, James F. Crow, of the Genetics Department
at the University of Wisconsin, recalled his first meeting with Fisher at North
Carolina State University at Raleigh: “I . . . realized for the first time that in
poor light Fisher was nearly blind” [297, p. 210]. Studying in the dark gave
Fisher exceptional ability to solve mathematical problems entirely in his head,
and also a strong geometrical sense [1477]. Fisher was educated at the Harrow
School and the University of Cambridge [628]. His undergraduate degree
was in mathematics at Gonville & Caius College, University of Cambridge,
(informally known as Cambridge University or, simply, Cambridge), where
he graduated as a Wrangler in 1912.5

After graduation, Fisher spent a post-graduate year studying quantum
theory and statistical mechanics under mathematician and physicist James
Hopwood Jeans and the theory of errors (i.e., the normal distribution) under
astronomer and physicist Frederick John Marrian Stratton. It should be
mentioned that while at the University of Cambridge, Fisher took only a
single course in statistics. After graduating from Cambridge, Fisher taught
mathematics and physics in a series of secondary schools and devoted his
intellectual energies almost exclusively to eugenics. As Stigler reported,
between 1914 and 1920 Fisher published 95 separate pieces; 92 in eugenics,
one in statistical genetics, and two in mathematical statistics [1323, p. 24].

In 1918, almost simultaneously, Fisher received two invitations: one for a
temporary position as a statistical analyst at the Rothamsted Experimental Sta-
tion and the second from Karl Pearson at the Galton Biometric Laboratory at
University College, London. The position at the Galton Biometric Laboratory
came with the condition that Fisher teach and publish only what Pearson
approved [778, p. 1020]; consequently, in 1919 Fisher took the position at
the Rothamsted Experimental Station. As George Box described it:

(continued)

5Those students doing best on the examinations were designated as “Wranglers.” More specifically,
the 40 top-scoring students out of the approximately 100 mathematics graduates each year were
designated as Wranglers, whereas 400–450 students graduated from the University of Cambridge
annually at that time. Wranglers were rank-ordered according to scores on their final mathematics
examination, which was a 44-h test spread over 8 days [713, p. 657].
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Fisher rejected the security and prestige of working under Karl Pearson in the most
distinguished statistical laboratory in Britain and at that time certainly in the world.
Instead, he took up a temporary job as the sole statistician in a small agricultural
station in the country [191, p. 792].

Fisher left Rothamsted in 1933 after 14 years to assume the position of
Galton Professor of Eugenics at University College, London. This was an
uncomfortable arrangement for Fisher, in that the Department of Applied
Statistics at University College, London, founded by Karl Pearson, was split
into two departments upon Karl Pearson’s retirement in 1933: the Department
of Applied Statistics with Karl Pearson’s son Egon as the head, and the
Department of Eugenics with Fisher as the head and Galton Professor of
Eugenics. Consequently, Fisher was barred from teaching statistics [816, p. 2].
When World War II broke out in 1939, Fisher’s Department of Eugenics was
evacuated from London and the faculty dispersed. Fisher did not find another
position until 1943 when he returned to the University of Cambridge as the
Arthur Balfour Chair of Genetics, succeeding the geneticist R.C. Punnett
[1477]. Fisher was elected Fellow of the Royal Society in 1929 and knighted
by Queen Elizabeth II in 1952. Sir Ronald Aylmer Fisher F.R.S. died in
Adelaide, Australia, following complications from surgery on 29 July 1962
at the age of 72 [197, 814, 816, 1497, pp. 420–421].

Although Fisher published a great deal, his writing style sometimes confounded
readers. There are numerous stories about the obscurity of Fisher’s writing. To put
it bluntly, Fisher did not always write with style and clarity. W.S. Gosset was once
quoted as saying:

[w]hen I come to Fisher’s favourite sentence — “It is therefore obvious that . . . ”
— I know I’m in for hard work till the early hours before I get to the next line (Gosset,
quoted in Edwards and Bodmer [398, p. 29]).

Fisher’s classical work on The Genetical Theory of Natural Selection, which has
been described as the deepest book on evolution since Darwin’s On the Origin of
Species [398, p. 27], has come in for both considerable criticism and praise for his
writing style. W.F. Bodmer stated:

[m]any a terse paragraph in his classical work The Genetical Theory of Natural Selection
has been the basis for a whole new field of experimental and theoretical analysis (Bodmer,
quoted in Edwards and Bodmer [398, p. 29],

and Fred Hoyle, the English astronomer, once wrote:

I would like to recommend especially R.A. Fisher’s The Genetical Theory of Natural
Selection for its brilliant obscurity. After two or three months of investigation it will be
found possible to understand some of Fisher’s sentences (Hoyle, quoted in Edwards and
Bodmer [398, p. 29]).
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Fisher’s 1925 textbook Statistical Methods for Research Workers has also come
under fire for its difficulty. M.G. Kendall has been quoted as saying:

[s]omebody once said that no student should attempt to read [Statistical Methods for
Research Workers] unless he had read it before (Kendall, quoted in Edwards and Bodmer
[398, p. 29]).

While chemistry had its Mendeleev, mathematics its Gauss, physics its Einstein,
and biology its Darwin, statistics had its Fisher. None of these scientists did all
the work, but they did the most work, and they did it more eloquently than others.
When simplifying history it is tempting to give each of these scientists too much
credit as they did the important work in building the foundation on which to develop
future works. On the other hand, the contributions of R.A. Fisher to the field of
statistics cannot be overstated. There are few achievements in the history of statistics
to compare—in number, impact, or scope—with Fisher’s output of books and
papers. In fact, Fisher was not trained as a statistician; he was a Cambridge-trained
mathematician, with an extraordinary command of special functions, combinatorics,
and n-dimensional geometry [1226].

In 1952, when presenting Fisher for the Honorary degree of Doctor of Science at
the University of Chicago, W. Allen Wallis described Fisher in these words:

[h]e has made contributions to many areas of science; among them are agronomy, anthro-
pology, astronomy, bacteriology, botany, economics, forestry, meteorology, psychology,
public health, and — above all — genetics, in which he is recognized as one of the leaders.
Out of this varied scientific research and his skill in mathematics, he has evolved systematic
principles for the interpretation of empirical data; and he has founded a science of
experimental design. On the foundations he has laid down, there has been erected a structure
of statistical techniques that are used whenever men attempt to learn about nature from
experiment and observation (Wallis, quoted in Box [191, p. 791]).

In 1922 Fisher published a paper titled “On the mathematical foundations
of theoretical statistics” that Stigler has called “the most influential article
on . . . [theoretical statistics] in the twentieth century,” describing the article as
“an astonishing work” [1322, p. 32]. It is in this paper that the phrase “testing for
significance” appears in print for the first time [816, p. 11]. However, as Bartlett
explained in the first Fisher Memorial Lecture in 1965, while it is customary for
statisticians to concentrate on Fisher’s publications in statistics, his work in genetics
was of comparable status [80, p. 395]. Fisher’s interest in statistics began with a
paper in 1912 [441] and his subsequent contributions can be divided into three main
lines: exact sampling distribution problems, a general set of principles of statistical
inference, and precise techniques of experimental design and analysis [80, p. 396].
In the present context, Fisher’s contributions to permutation methods is the focus,
especially his development of exact probability analysis.6

6The standard biography of R.A. Fisher is that written by his daughter in 1978, Joan Fisher Box
[195], but others have provided more specialized biographies, including those by P.C. Mahalanobis
[868], F. Yates [1474], F. Yates and K. Mather [1477], M.S. Bartlett [80], S.M. Stigler [1322,1323],
C.R. Rao [1155], W.H. Kruskal [778], M.J.R. Healy [607], N.S. Hall [575], E.L. Lehmann [816],
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“Student” and Sampling Distributions
In 1925 R.A. Fisher published his first book, titled Statistical Methods for
Research Workers [448]. It was in this book that Fisher acknowledged that
“[t]he study of the exact distributions of statistics commences in 1908 with
‘Student’s’ paper The Probable Error of a Mean” [448, p. 23]. In neither
of Student’s 1908 papers, “The probable error of a mean” [1331] or “The
probable error of a correlation coefficient” [1330] does Student make any
reference to a previous use of the method and Egon Pearson stated in 1939
that Student’s 1908 paper was the first instance of the use of exact distributions
that was known to him [1094, p. 223].

The story of Student and the problem of finding the distribution of
the standard deviation and the ratio of the mean to the standard deviation
(the t statistic) is common knowledge. “Student” was born, as is well known,
William Sealy Gosset on 13 June 1876 in Canterbury, England. He attended
Winchester College and New College, University of Oxford (informally
known as Oxford University or, simply, Oxford), graduating in 1899 with
degrees in mathematics and chemistry. That same year he joined the Dublin
Brewery of Messrs. Arthur Guinness Son & Company, Ltd. at St. James’ Gate.
In 1906–1907 Student was on leave from Guinness for a year’s specialized
study on probability theory. He spent the greater part of the year working at
or in close contact with Karl Pearson’s Biometric Laboratory at University
College, London, where he first tackled the problem of inference from small
samples empirically through a sampling experiment [177].

Student used as his study population a series of 3,000 pairs of measure-
ments that had been published in an article on criminal anthropometry by
William Robert Macdonell in Biometrika in 1902 [862]. The data consisted
of measurements obtained by Macdonell of the height and length of the left
middle finger of 3,000 criminals over 20 years of age and serving sentences in
the chief prisons of England and Wales [862, p. 216]. (Student [1331, p. 13]
lists page 219 for the Macdonell data, but the data used actually appear on
page 216.) For the sampling experiment, Student recorded the data on 3,000
pieces of cardboard that were constantly shuffled and a card drawn at random,
resulting in the 3,000 paired measurements arranged in random order. Then,
each consecutive set of four measurements was selected as a sample—750 in
all—and the mean, standard deviation, and correlation of each sample was
calculated [see 1344]. He plotted the empirical distributions of the statistics
and compared them to the theoretical ones he had derived. Using chi-squared

(continued)

L.J. Savage [1226], and G.E.P. Box [191]. The collected papers of R.A. Fisher are posted at
http://www.adelaide.edu.au/library/special/digital/fisherj/. In addition, two large volumes of the
selected correspondence of R.A Fisher were published in 1983 and 1990 by J.H. Bennett [96, 97].

http://www.adelaide.edu.au/library/special/digital/fisherj/
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tests for goodness of fit between the empirical and theoretical distributions,
Student deemed the results to be satisfactory, noting “if the distribution
is approximately normal our theory gives us a satisfactory measure of the
certainty to be derived from a small sample” [1331, p. 19].

Egon Pearson had this to say of the 1908 paper of Student on small
samples:

[i]t is probably true to say that this investigation published in 1908 has done more
than any other single paper to bring these subjects within the range of statistical
inquiry; as it stands it has provided an essential tool for the practical worker, while
on the theoretical side it has proved to contain the seed of new ideas which have
since grown and multiplied an hundredfold [1094, p. 224].

During his 30 years of scientific activity, Student published all of his work
under the pseudonym “Student” with only one exception, when reading a
paper before the Industrial and Agricultural Research Section of the Royal
Statistical Society in the Spring of 1936 [1034]. The reason for the pseudonym
was a policy by Guinness against work done for the firm being made public.
Allowing Gosset to publish under a pseudonym was a concession by Guinness
that resulted in the birth of the statistician “Student” [813]. William Sealy
Gosset died on 16 October 1937 at the age of 61 while still employed at
Guinness.

In 1925, 2 years after Spława-Neyman introduced a permutation model for the
analysis of field experiments, Fisher calculated an exact probability value using the
binomial probability distribution in his first book: Statistical Methods for Research
Workers [448, Sect. 18]. Although the use of the binomial distribution to obtain
a probability value is not usually considered to be a permutation test per se,
Scheffé considered it the first application in the literature of a permutation test
[1230, p. 318]. Also, the binomial distribution does yield an exact probability value
and Fisher found it useful in calculating the exact expected values for experimental
data. Fisher wrote that the utility of any statistic depends on the original distribution
and “appropriate and exact methods,” which he noted have been worked out for only
a few cases. He explained that the application is greatly extended as many statistics
tend to the normal distribution as the sample size increases, acknowledging that it is
therefore customary to assume normality and to limit consideration of statistical
variability to calculations of the standard error or probable error.7 That said, in

7Early on, the probable error was an important concept in statistical analysis and was defined as
one-half the interquartile range. In terms of the normal distribution, the probable error is 0.6745
times the standard error. Therefore, as a test of significance a deviation of three times the probable
error is effectively equivalent to one of twice the standard error [292, 448, pp. 47–48]. “Probable
error” instead of “standard error” was still being used in the English-speaking countries in the
1920s and far into the 1930s; however, “probable error” was rarely used in Scandinavia or in the
German-speaking countries [859, p. 214].
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Table 2.1 Weldon’s data on dice cast 26,306 times with a face showing five or six pips considered
a success

Number of dice Observed Expected Difference
with a 5 or a 6 frequency frequency frequency

0 185 202.75 �17.75
1 1,149 1,216.50 �67.50
2 3,265 3,345.37 �80.37
3 5,475 5,575.61 �100.61
4 6,114 6,272.56 �158.56
5 5,194 5,018.05 C175.95
6 3,067 2,927.20 C139.80
7 1,331 1,254.51 C76.49
8 403 392.04 C10.96
9 105 87.12 C17.88

10 14 13.07 C0.93
11 4 1.19 C2.81
12 0 0.05 �0.05
Total 26,306 26,306 �0.02

Chap. III, Sect. 18 of Statistical Methods for Research Workers, Fisher considered
the binomial distribution and provided two examples.

The first example utilized data from the evolutionary biologist Walter Frank
Raphael Weldon. Weldon threw 12 dice 26,306 times for a total of 315,672
observations, recording the number of times a 5 or a 6 occurred. Fisher did not
provide a reference for the Weldon data, but the source was a letter from Weldon
to Francis Galton dated 2 February 1894 in which Weldon enclosed the data for
all 26,306 throws and asked Galton his opinion as to the validity of the data
[717, pp. 216–217]. Fisher used the binomial distribution to obtain the exact
expected value for each of the possible outcomes of 0, 1, . . . ,12. For example, the
binomial probability for six of 12 dice showing either a 5 or a 6 is given as

p.6j12/ D
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D .924/.0:0014/.0:0878/ D 0:1113 :

Multiplying 0.1113 by n D 26;306 gives an expectation of 2,927.20. Table 2.1
summarizes the Weldon dice data; see also Fisher [448, p. 67] and Pearson [1107,
p. 167]. Fisher concluded the dice example by calculating a chi-squared goodness-
of-fit test and a normal approximation to the discrete binomial distribution.

For the second example, Fisher analyzed data from Arthur Geissler on the sex
ratio at birth in German families. Here again, Fisher did not provide a reference to
the Geissler data, but it was taken from the sex-ratio data obtained by Geissler from
hospital records in Saxony and published in Zeitschrift des Königlich Sächsischen
Statistischen Bureaus in 1889 [504]. The data consisted of the number of males in
53,680 families, ranging from 0 to 8 males. Geissler’s estimate of the sex ratio for
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Table 2.2 Geissler’s data on the sex ratio in German families with expected values and differ-
ences, and Fisher’s expected values and differences

Geissler’s data and expected values Fisher’s expected values

Number Observed Expected Difference Expected Difference
of males sibships sibships (Obs – Exp) sibships (Obs – Exp)

8 342 264.64 C77.36 264.30 C77.70
7 2,092 1,995.88 C96.12 1,993.78 C98.22
6 6,678 6,584.71 C93.29 6,580.24 C97.76
5 11,929 12.413.82 �484.82 12,409.87 �480.87
4 14,959 14,626.99 C332.01 14,627.60 C331.40
3 10,649 11,030.22 �381.22 11,034.65 �385.65
2 5,331 5,198.69 C132.31 5,202.65 C128.35
1 1,485 1,400.08 C84.92 1,401.69 C83.31
0 215 164.96 C50.04 165.22 C49.78
Total 53,680 53,679.99 C0.01 53,680.00 0.00

the population in Saxony was obtained by simply calculating the mean proportion
of males in his data. Table 2.2 summarizes the Geissler sex-ratio data [793, p. 154].
In this second example, Fisher never specified a value for p, but H.O. Lancaster,
in a reanalysis of Geissler’s data, gave the value as p D 0:5147676 [793], which
translates to a sex ratio of 1.061.8 Working backwards from Fisher’s analysis, it is
apparent that he used p D 0:5146772. Thus, for example, the binomial probability
for five males is actually given by

p.5j8/ D
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!
.0:5146772/5.0:4853228/8�5 D .56/.0:0361/.0:1143/ D 0:2312 :

Multiplying 0.2312 by n D 53;680 gives an expectation of 12,409.87, which agrees
with Fisher’s expected value.

In both these early examples Fisher demonstrated a preference for exact solu-
tions, eschewing the normal approximation to the discrete binomial distribution even
though the sample sizes were very large. While exact binomial probability values
are perhaps not to be considered as permutation tests, Fisher was to go on to develop
many permutation methods and this early work provides a glimpse into how Fisher
advanced exact solutions for statistical problems.

2.2.3 Geary and Correlation

In 1927, R.C. Geary was the first to use an exact analysis to demonstrate the utility
of asymptotic approaches for data analysis in an investigation of the properties of
correlation and regression in finite populations [500].

8For comparison, the sex ratio at birth in Germany in 2013 was 1.055.
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R.C. Geary
Robert Charles (Roy) Geary was a renowned Irish economist and statistician
who earned his B.Sc. degree from University College, Dublin, in 1916 and
pursued graduate work at the Sorbonne in Paris where he studied under Henri
Lebesgue, Émile Borel, Élie Cartan, and Paul Langevin [1307]. Geary’s early
contributions in statistics were greatly influenced by the work of R.A. Fisher,
although in later years Geary’s attention turned towards more social issues,
e.g., poverty and inequality [1306]. Geary did work on permutation tests early
in his career and was an early critic of reliance on the normal distribution.
In 1947, for example, he considered the problem of statistics and normal
theory, calling for future statistics textbooks to include the phrase, “Normality
is a myth; there never was, and never will be, a normal distribution” [501,
p. 241].

Geary founded the Central Statistics Office of Ireland in 1960 and the Eco-
nomic Research Institute (later, the Economic and Social Research Institute)
in 1949, and was head of the National Accounts Branch of the United Nations
from 1957 to 1960. Interestingly, more than half of Geary’s 127 publications
were written in the 1960s after Geary had reached 65 years of age. Robert
Charles Geary retired in 1966 and passed away on 8 February 1983 at the age
of 86 [1305, 1306].

In 1927 Geary devoted a paper to “an examination of the mathematical principles
underlying a method for indicating the correlation . . . between two variates,” arguing
that “the formal theory of correlation . . . makes too great demands upon the slender
mathematical equipment of even the intelligent public” [500, p. 83]. Geary provided
a number of example analyses noting “[w]e are not dealing with a sample drawn
from a larger universe” [500, p. 87] and addressed the problem of deciding
significance when calculating from a known limited universe. One example that
Geary provided was based on the assertion that cancer may be caused by the over
consumption of “animal food.” Geary investigated the ways that cancer mortality
rates varied with the consumption of potatoes in Ireland, drawing up a contingency
table showing 151 poor-law unions in Ireland arranged according to their percentage
of deaths from cancer during the years 1901–1910 and the acreage of potatoes per
100 total population.9 Table 2.3 summarizes Geary’s data on cancer and potato
consumption [500, p. 94].

In this investigation, Geary considered potato consumption and the incidence
of cancer deaths in Ireland. Geary categorized each of the 151 poor law unions

9The Irish Poor Law of 1838 was an attempt to ameliorate some of the problems arising out of
widespread poverty in the early 1800s in Ireland. Influenced by the Great Reform Act of 1834
in England (q.v. page 11), Ireland was originally divided into 131 poor law unions, each with a
workhouse at its center.
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Table 2.3 Percentage of deaths from cancer to all deaths during the 10 years 1901–1910 cross
classified by acreage of potatoes per 100 total population

Number of poor law unions in which
Cancer deaths as acreage of potatoes per 100 persons
percentage of total in 1911 was

deaths 1901–1910 Under 15.5 15.5–20.5 Over 20.5 Number of unions

Under 3.5 % 12 24 12 48
3.5–4.5 % 18 14 16 48
Over 4.5 % 20 17 18 55
Number of unions 50 55 46 151

as a percentage of cancer deaths to overall deaths in the union; cancer deaths less
than 3.5 % of total deaths (48 poor law unions), cancer deaths 3.5–4.5 % of total
deaths (48 poor law unions) and cancer deaths greater than 4.5 % of total deaths
(55 poor law unions). Table 2.3 illustrates the marginal distribution of 48, 48, and
55 poor law unions. He repeated the experiment holding the marginal frequency
totals constant, and found that cell arrangements greater than those of the actual
experiment occurred in 231 of 1,000 repetitions, concluding that the relationship
between potato consumption and cancer was not statistically significant.

2.3 Fisher and the Variance-Ratio Statistic

Because of its importance, some historical perspective on Fisher’s variance-ratio z
test and the analysis of variance is appropriate. Fisher’s variance-ratio z test statistic
is given by

z D 1

2
loge

�
v1

v0

�
; (2.1)

where v1 D MSBetween D MSTreatment and v0 D MSWithin D MSError in modern
notation, and which Fisher termed, for obvious reasons, the “variance-ratio” statis-
tic. In a 1921 article on grain yields from Broadbalk wheat from the Rothamsted
Experimental Station (q.v. page 57) in The Journal of Agricultural Science,
Fisher partitioned the total sum of squares of deviations from the mean into a
number of independent components and made estimates of the component variances
by associating each sum of squares with its appropriate degrees of freedom [445].
Fisher made the analysis of variance source table explicit in 1923 in a second
article on “Studies in crop variation II,” subtitled “The manurial response of
different potato varieties,” in The Journal of Agricultural Science with his assistant
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Winifred A. Mackenzie [462].10;11 The analysis of variance appears in this article
with Mackenzie for the first time in its entirety, although it is not reflected in the
title [191, p. 795].12 Experimental randomization is also firmly established in this
article.13 After the algebraic identity between the total sum of squares and the
within- and between-treatments sum of squares had been presented, Fisher and
Mackenzie stated:

[i]f all the plots were undifferentiated, as if the numbers had been mixed up and written
down in random order, the average value of each of the two parts is proportional to the
number of degrees of freedom in the variation of which it is compared [462, p. 315], quoted
in [191, p. 795].

However, as Joan Fisher Box explained, the analysis was incorrect because the
trial was actually a split-plot design as it incorporated a third factor: potassium.
At the time of the writing of the article, 1923, Fisher did not fully understand
the rules of the analysis of variance, nor the role of randomization [261]. Fisher
quickly corrected this in the first edition of Statistical Methods for Research Workers
published in 1925 [448, p. 238].

In Statistical Methods for Research Workers Fisher detailed the analysis of
variance in Chap. VII on “Intraclass correlations and the analysis of variance” [448].
An important observation by J.F. Box, is that it tends to be forgotten that prior
to 1920, problems that would later be dealt with by the analysis of variance were
thought of as problems in correlation [195, p. 100]; thus, R.A. Fisher introduced the
subject of analysis of variance in terms of its relation to the intraclass correlation
coefficient. The relationship between the intraclass correlation coefficient, rI , and
Fisher’s z is given by

z D 1

2
loge

��
k

k � 1

��
1 C rI .n � 1/

1 � rI

��
;

where n is the number of observations in each of k treatments.
By way of example, consider two samples of n1 and n2 observations, each sample

drawn from one of two populations consisting of normally distributed variates with

10Mackenzie is sometimes spelled “Mackenzie” [195] and other times “MacKenzie” [191, 576,
720]. In the original article, Mackenzie is all in upper-case letters.
11The experiment on potatoes had been conducted by Thomas Eden at the Rothamsted Experi-
mental Station, wherein each of twelve varieties of potatoes had been treated with six different
combinations of manure [191].
12Previously, in 1918 in an article on Mendelian inheritance in Eugenics Review, Fisher had coined
the term “analysis of variance” [443]; see also a 2012 article by Edwards and Bodmer on this topic
[398, p. 29].
13This 1923 article by Fisher and Mackenzie is often cited as the first randomized trial experiment
[484, 517, 893, 925]. However, the first documented publication of a randomized trial experiment
was by the American philosopher Charles Sanders Peirce and his colleague at Johns Hopkins
University, Joseph Jastrow, in 1885 [1113]; see also, in this regard, discussions by Neuhauser and
Diaz [1030, pp. 192–195], Stigler [1321], and an autobiography by Jastrow [682].
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equal population variances. It can be shown that the distribution of z approaches
normality as min.n1; n2/ ! 1, with mean and variance given by

Nz D 1

2

�
1

n2 � 1
� 1

n1 � 1

�

and

s2
z D 1

2

�
1

n2 � 1
C 1

n1 � 1

�
;

respectively [36, p. 439]. These results stimulated Fisher to prefer the designation
z for the analysis of variance test statistic over the F proposed by Snedecor in
1934 [1289].

2.3.1 Snedecor and the F Distribution

G.W. Snedecor was the director of the Statistical Laboratory at Iowa State College
(technically, Iowa Agricultural College and Model Farm) and was instrumental in
introducing R.A. Fisher and his statistical methods to American researchers.

G.W. Snedecor
George Waddle Snedecor earned his B.S. degree in mathematics and physics
from the University of Alabama in 1905 and his A.M. degree in physics
from the University of Michigan in 1913, whereupon Snedecor accepted
a position as Assistant Professor of mathematics at Iowa State College of
Agriculture (now, Iowa State University). Snedecor’s interest in statistics led
him to offer the first course in statistics in 1915 on the Mathematical Theory of
Statistics at Iowa State College of Agriculture. In 1933, Snedecor became the
Director of the Statistical Laboratory, remaining there until 1947. Snedecor
was responsible for inviting R.A. Fisher to Iowa State College during the
summers of 1931 and 1936 to introduce statistical methods to faculty and
research workers [295].

In 1937, Snedecor published a textbook on Statistical Methods, subtitled
Applied to Experiments in Agriculture and Biology, which was a phenomenal
success selling more than 200,000 copies in eight editions. The first five
editions were authored by Snedecor alone and the next three editions were
co-authored with William Gemmell Cochran. Snedecor’s Statistical Meth-
ods roughly covered the same material as Fisher’s Statistical Methods for
Research Workers, but also included material from Fisher’s book on The
Design of Experiments, such as factorial experiments, randomized blocks,

(continued)
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Latin squares and confounding [816, p. 27]. Joan Fisher Box wrote in her
biography of her father that “[i]t was George W. Snedecor, working with
agricultural applications, who was to act as midwife in delivering the new
statistics in the United States” [195, p. 313]. George Waddle Snedecor died
on 15 February 1974 at the age of 92 [59, 243, 611].

Fisher had, in the first edition of Statistical Methods for Research Workers, pro-
vided a brief tabulation of critical values for z—Table VI in [448]—corresponding
to a 5 % level of significance, noting “I can only beg the reader’s indulgence
for the inadequacy of the present table” [448, p. 24]. In 1934, apparently in an
attempt to eliminate the natural logarithms required for calculating z, Snedecor
[1289] published tabled values in a small monograph for Fisher’s variance-ratio
z statistic and rechristened the statistic, F [1289, p. 15]. Snedecor’s F-ratio statistic
was comprised of

F D MSBetween

MSWithin
D MSTreatment

MSError
;

whereas Fisher had used

z D 1

2
loge

�
v1

v0

�
D 1

2
loge .F / :

In terms of the intraclass correlation coefficient,

F D
�

k

k � 1

�
1 C rI .n � 1/

1 � rI

and, conversely,

rI D .k � 1/F � k

.k � 1/F C .n � 1/k
:

It has often been reported that Fisher was displeased when the variance-ratio
z statistic was renamed the F-ratio by Snedecor, presumably in honor of Fisher;
see also discussions by Box [195, p. 325] and Hall on this topic [575, p. 295].
Fisher recounted in a letter to H.W. Heckstall-Smith in 1956 that “I think it was
only an afterthought that led Snedecor to say that the capital letter F he had used
was intended as a compliment to myself” [97, p. 319].14 In this same letter, Fisher
also wrote that he had added a short historical note in the 12th edition of Statistical

14H.W. Heckstall-Smith, Headmaster, Chippenham Grammar School, had written to Fisher
requesting permission to quote from Fisher in an article he was preparing for a medical journal.
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Methods for Research Workers published in 1954 that he “hoped [would] prevent
expositors from representing the F-test . . . with the z-test” [97, p. 319]. On this topic,
in a 1938 letter to Snedecor, Fisher objected to the assignment of the symbol F to the
variance-ratio z statistic, and used the letter to point out that P.C. Mahalanobis had
previously published tabled values of the variance-ratio z statistic using a different
symbol, although Snedecor apparently produced his F-ratio with no knowledge of
the Mahalanobis tables [195, p. 325].

Indeed, in 1932 Mahalanobis, responding to complaints from field workers who
were not familiar with the use of natural logarithms and had difficulty with Fisher’s
variance-ratio z statistic as given in Eq. (2.1), published six tables in Indian Journal
of Agricultural Science. Two tables were designed for working with ordinary
logarithms (base 10 instead of base e), two tables were designed for working directly
with the ratio of standard deviations instead of variances, and two tables were
designed for the ratio of variances without recourse to natural logarithms, with one
table in each set corresponding to the 5 % level of significance and the other set to
the 1 % level of significance [867]. Fisher avoided using the symbol F in Statistical
Tables for Biological, Agricultural and Medical Research published with Yates in
1938, as Fisher felt that the tabulation of Mahalanobis had priority [195, p. 325].

2.4 Eden–Yates and Non-normal Data

In 1933 Frank Yates succeeded R.A. Fisher as head of the Statistics Department at
the Rothamsted Experimental Station, a post he held for a quarter of a century.

F. Yates
Frank Yates graduated from St. John’s College, University of Cambridge, with
a B.A. degree in mathematics in 1924 and earned his D.Sc. in mathematics
from Cambridge in 1938. His first important job was as research officer and
mathematical advisor to the Geodetic Survey of the Gold Coast (presently,
Ghana). In August 1931, Yates joined Fisher at the Rothamsted Experimental
Station as an Assistant Statistician. Within 2 years, Fisher had left Rothamsted
and Yates became head of the Statistics Department, a post which he held
for 25 years until 1958. From 1958 until his retirement in 1968, Yates was
Deputy Director of Rothamsted [437]. Although retired, Yates maintained an
office at Rothamsted as an “Honorary Scientist” in the Computing Department
and all told, was at Rothamsted for a total of 60 years. Perhaps Frank Yates’
greatest contribution to statistics was his embrace of the use of computing to

(continued)

The article, with M.G. Ellis, was eventually published in the journal Tubercle in December of 1955
under the title “Fun with statistics” [409].
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solve statistical problems [633, p. 4]. In 1948 Yates was elected Fellow of the
Royal Society. Frank Yates F.R.S. passed away on 17 June 1994 at the age of
92 [369, 436, 605, 606, 1028].

T. Eden
Little is known about Thomas Eden, except that he was at the Rothamsted
Experimental Station as a crop ecologist in the Field Experiments Department
from 1921 to 1927 and published several papers with Fisher on experimental
design [377,378]. Upon leaving Rothamsted, Eden was employed as a chemist
at the Tea Research Institute of Ceylon [575, p. 318]. Eden published a
number of books in his lifetime, including Soil Erosion in 1933 [374],
Elements of Tropical Soil Science in 1947 [375], and Tea in 1958 [376].

Like Geary in 1927 [500], Thomas Eden and Frank Yates utilized permutation
methods in 1933 to compare a theoretical distribution to an empirical distribution
[379]. Eden and Yates questioned the use of Fisher’s variance-ratio z test in
applications to non-normal data. Citing articles by Shewhart and Winters [1262]
and Pearson and Adyanthāya [1100] in which small samples from non-normal and
skewed populations had been investigated, Eden and Yates declared the results
“inconclusive” [379, p. 7], despite an affirmation by “Student” that “ ‘Student’s’
distribution will be found to be very little affected by the sort of small departures
from normality which obtain in most biological and experimental work” [1332,
p. 93] and Fisher’s contention that he had “never known difficulty to arise in
biological work from imperfect normality of variation” [440, p. 267]. Eden and
Yates noted that from the perspective of the investigator who is using statistics as
a tool “the theoretical distributions from which the samples were drawn bear no
relationship to those he is likely to encounter” [379, p. 7] and listed three conditions
which must be observed to compare a theoretical distribution with an empirical
distribution:
1. Samples must be taken from one or more actual distribution(s).
2. The experimental procedure must correspond with what would be used on actual

investigational data.
3. The departure of the distribution of the statistical tests from expectation must

itself be tested for significance, and the sampling must be sufficiently extensive
to give reliable evidence of the distribution in the neighborhood of the 0.05 and
0.01 levels of significance.
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Some Historical Perspective
A little historical background will shed some light on the exchange between
Fisher and Eden and Yates. In 1929, in the 8 June issue of Nature, Egon
Pearson reviewed the second edition of Fisher’s Statistical Methods for
Research Workers that had been published in 1928. In that review, Pearson
criticized Fisher’s approach, noting:

[a] large number of the tests developed are based upon the assumption that the
population sampled is of the ‘normal’ form. . . . It does not appear reasonable to lay
stress on the ‘exactness’ of tests, when no means whatever are given of appreci-
ating how rapidly they become inexact as the population diverges from normality
[1099, p. 867].

Fisher was deeply offended and he wrote a blistering reply to Nature that
has not been preserved [816, p. 23]. Eventually, Fisher asked W.S. Gosset to
reply for him, which Gosset did under his pseudonym “Student” in Nature on
20 July 1929, stating:

[p]ersonally, I have always believed . . . that in point of fact ‘Student’s distribution
will be found to be very little affected by the sort of small departures from normality
which obtain in most biological and experimental work, and recent work on small
samples confirms me in this belief. We should all of us, however, be grateful to
Dr. Fisher if he would show us elsewhere on theoretical grounds what sort of
modification of his tables we require to make when the samples with which we are
working are drawn from populations which are neither symmetrical nor mesokurtic
[1332, p. 93].

This was followed by a letter in Nature by Fisher on 17 August 1929, in
which he rejected Gosset’s suggestion that he should give some guidance on
how to modify the t test for data from non-normal populations [440]. How-
ever, he did hint in this letter at the possibility of developing distribution-free
tests. Finally, a rejoinder by E.S. Pearson appeared in Nature on 19 October
1929 [1092].

In hindsight, E.S. Pearson was probably correct in questioning the t

test established by “Student” and proved by Fisher under the assumption
of normality. Interestingly, the same argument also holds for the Neyman–
Pearson statistical approach that requires the use of conjectured theoretical
distributions such as the normal and gamma distributions. On a related note,
Fisher seemed to have eventually accepted Pearson’s normality concern since
he introduced the notion of an exact permutation test a short time later.

In 1933 Eden and Yates observed that if evidence could be adduced showing
that the distribution of z for treatments versus residuals was statistically identical
to that expected from normal data, then the variance-ratio z statistic could be used
with confidence when establishing significance to data of this type. Eden and Yates
went on to examine height measurements of Yeoman II wheat shoots grown in eight
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blocks, each consisting of four sub-blocks of eight plots.15 For the experiment, the
observations were collapsed into four treatments randomly applied to four sub-
blocks in each block. Thus, the experimental data consisted of g D 4 treatment
groups and b D 8 treatment blocks for a total of

.gŠ/b�1 D .4Š/8�1 D 4;586;471;424

possible arrangements of the observed data.16 Eden and Yates chose a sample of
1,000 of these arrangements at random (now termed resampling) and generated a
table listing the simulated probability values generated by the random sample and
the theoretical counterparts to those probability values based on the normality
assumption.17

Eden and Yates were able to reduce the considerable computations of the analysis
by introducing “certain modifications” [379, p. 11]. Specifically, they observed that
the block sum of squares and the total sum of squares would be constant for all 1,000
samples; consequently, the value of z for each sample would be uniquely defined by
the value for the treatment sum of squares. This observation became increasingly
valuable in later decades as researchers developed permutation versions of other
statistical tests and increased the speed of computing by ignoring the components
of equations that are invariant over permutation.

The simulated and theoretical probability values based on the normality assump-
tion were compared by a chi-squared goodness-of-fit test and were found to be in
close agreement, supporting the assumption of normality [379]. Eden and Yates
therefore contended that Fisher’s variance-ratio z statistic could be applied to data
of this type with confidence. Specifically, Eden and Yates concluded:

[t]he results of this investigation, which deals with an actual experimental distribution of a
definitely skew nature and with a population extending over a wide range of values, show
that in actual practice there is little to fear in the employment of the analysis of variance and
the z test to data of a similar type [379, p. 16].

In 1935 Yates had one more opportunity to comment on this experiment,
emphasizing once again reliance on the information contained in the sample
alone. On March 28th, 1935, Neyman presented a paper before the Industrial and
Agricultural Research Section of the Royal Statistical Society, later published in
Supplement to the Journal of the Royal Statistical Society [1033], where Yates

15Yeoman wheat is a hybrid variety that resists wheat rust. It was developed and released in 1916
by Sir Rowland Biffen, Director of the Plant Breeding Institute at the University of Cambridge
School of Agriculture.
16Because it is possible to hold one block constant and to randomize the remaining blocks with
respect to the fixed block, it is only necessary to randomize b�1 blocks, thereby greatly decreasing
the total number of possible arrangements. In this case, .4Š/7 D 4;586;471;424 instead of .4Š/8 D
110;075;314;176 randomizations.
17H.A. David has written that the 1933 Eden–Yates paper “may be regarded as introducing
randomization [permutation] theory” [326, p. 70].
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was a discussant. Referring back to the Yeoman II wheat shoot experiment, Yates
commented:

[w]hat the experiment does show is that the randomisation process effectively generates the
distribution of z, and the need for the postulation of any parent population from which the
thirty-two values are to be regarded as a sample is entirely avoided [1473, p. 165].

2.5 Fisher and 2 � 2 Contingency Tables

On 18 December 1934, R.A. Fisher (q.v. page 25) presented a paper describing the
logic of permutation tests to the Royal Statistical Society, a paper that appeared in
Journal of the Royal Statistical Society the following year [452].18 Fisher did not
expressly discuss permutation tests, but instead used the product of two binomial
distributions to arrive at an exact probability value for a 2 � 2 contingency table.
Here, Fisher described data on criminal same-sex twins from a study originally
conducted by Lange [801, pp. 41–45]. Dr. Johannes Lange was Chief Physician
at the Munich–Schwabing Hospital and Department Director of the German
Experimental Station for Psychiatry (Kaiser Wilhelm Institute) in Munich. Lange
had access to data on 37 pairs of criminal same-sex twins, including 15 monozygotic
(identical) and 22 dizygotic (fraternal) twins, but in two cases of the monozygotic
twins and five of the dizygotic twins, neither twin had been convicted, thus reducing
the overall number of twin pairs to 30.

The data analyzed by Fisher consisted of 13 pairs of monozygotic twins and 17
pairs of dizygotic twins. For each of the 30 pairs of twins, one twin was known to
be a convict. The study considered whether the twin brother of the known convict
was himself “convicted” or “not convicted.” Fisher observed that in 10 of the 13
cases of monozygotic twins, the twin brother was convicted, while in the remaining
three cases, the twin was not convicted. Among the 17 pairs of dizygotic twins,
two of the twins were convicted and 15 of the twins were not convicted. The data
from Lange are summarized in Table 2.4. Fisher considered the many methods
available for the analysis of a 2 � 2 table and suggested a new method based on
the concept of ancillary information [816, p. 48–49]. Fisher explained: [i]f one
blocked out the cell frequencies of Table 2.4 leaving only the marginal frequency
totals, which provide no information by themselves, then the information supplied

18As was customary in scientific societies at the time, these special research papers were printed
in advance and circulated to the membership of the society. Then, only a brief introduction was
made by the author at the meeting and the remaining time was devoted to discussion. By tradition,
the “proposer of the vote of thanks” said what was he thought was good about the paper, and
the seconder said what he thought was not so good. Subsequently, there was a general discussion
by the Fellows of the Society and often a number of prominent statisticians offered comments,
suggestions, or criticisms [192, p. 41]. In this instance the discussants were Arthur Bowley, Leon
Isserlis, Joseph Irwin, Julius Wolf, Egon Pearson, Major Greenwood, Harold Jeffreys, Maurice
Bartlett, and Jerzy Neyman. As might be evident from the list of names, not all comments were
constructive.
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Table 2.4 Convictions of
like-sex twins of criminals

Twin type Convicted Not convicted Total

Monozygotic 10 3 13
Dizygotic 2 15 17
Total 12 18 30

by the marginal frequency totals is “wholly ancillary” [452, p. 48].19 Fisher was
then concerned with the number of different ways the four cell frequencies could be
filled, subject to the fixed marginal frequency totals. For these data, the maximum
value of the convicted dizygotic cell is the minimum of the corresponding marginal
frequency totals, and the minimum value of the convicted dizygotic cell is the
greater of zero and the sum of the corresponding marginal frequency totals minus
the total sample size. Thus, the number of possible configurations of cell frequencies
completely specified by the number of dizygotic convicts is 13, ranging from 0,
given by max.0; 17 C 12 � 30/ D 0, to 12, given by min.12; 17/ D 12.

The approach is clever and deserves consideration. Fisher posited that if the
probability of a twin brother of a convict of monozygotic origin is denoted by p,
then the probability that of 13 monozygotic twins 12�x have been convicted, while
x C 1 monozygotic twins have escaped conviction, is given by the binomial

13Š

.12 � x/Š .1 C x/Š
p12�x.1 � p/1Cx :

The probability of the brother of a criminal known to be dizygotic being convicted
is also p and the probability that 17 of these x have been convicted and (17 � x)
have never been convicted, is given by the binomial

17Š

xŠ .17 � x/Š
px.1 � p/17�x :

The probability of the simultaneous occurrence of the two events, given by the
product of the respective probabilities, is therefore

13Š 17Š

.12 � x/Š .1 C x/Š xŠ .17 � x/Š
p12.1 � p/18 :

Fisher noted that the probability of any value of x occurring is proportional to

1

.12 � x/Š .1 C x/Š xŠ .17 � x/Š
;

19According to Lehmann [816, p. 48, fn. 1], this statement is in fact not completely true, although
very nearly so. See also a 1977 article by Plackett in this regard [1137].



2.6 Yates and the Chi-Squared Test for Small Samples 43

and on summing the series obtained over x, the absolute probability values are found
to be

13Š 17Š 12Š 18Š

30Š
� 1

.12 � x/Š .1 C x/Š xŠ .17 � x/Š

[452, p. 49]. Thus, it is only necessary to compute the probability of one of the
four cells; Fisher chose the dizygotic convicts, the lower-left cell in Table 2.4 with a
frequency of 2. Computing the discrepancies from proportionality as great or greater
than the observed configuration in Table 2.4, subject to the conditions specified
by the ancillary information, yields for 2, 1, and 0 dizygotic convicts, a one-tailed
probability of

P f2j17; 12; 30g C P f1j17; 12; 30g C P f0j17; 12; 30g

D 13Š 17Š 12Š 18Š

30Š 10Š 3Š 2Š 15Š
C 13Š 17Š 12Š 18Š

30Š 11Š 2Š 1Š 16Š
C 13Š 17Š 12Š 18Š

30Š 12Š 1Š 0Š 17Š

D 0:000449699 C 0:000015331 C 0:000000150 ;

which sums to approximately 0.0005.
The point of the twin example—that for small samples exact tests are possible,

thereby eliminating the need for estimation—indicates an early understanding of the
superiority of exact probability values computed from known discrete distributions
over approximations based on assumed theoretical distributions. As Fisher pointed
out, “[t]he test of significance is therefore direct, and exact for small samples. No
process of estimation is involved” [451, p. 50]. In this regard, see also the fifth
edition of Statistical Methods for Research Workers published in 1934 where Fisher
added a small section on “The exact treatment of a 2 � 2 table” [450, Sect. 21.02].
The exact binomial solution proposed by Fisher was not without controversy
[1197]. Indeed, Stephen Senn observed in 2012 that “statisticians have caused the
destruction of whole forests to provide paper to print their disputes regarding the
analysis of 2 � 2 tables” [1251, p. 33].

2.6 Yates and the Chi-Squared Test for Small Samples

In 1934 Frank Yates (q.v. page 37) published an article on contingency tables
involving small frequencies and the chi-squared (�2) test of independence in
Supplement to the Journal of the Royal Statistical Society [1472]. The stated purpose
of the article was twofold: first, to introduce statisticians to Fisher’s exact probability
test, which was very new at the time, and to use Fisher’s exact probability test as
a gold standard against which the small-sample performance of the Pearson chi-
squared test might be judged; and second, present the correction for continuity to
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the chi-squared test of independence, resulting in a better approximation to Fisher’s
exact probability test [633]. Yates motivated the discussion by asserting:

[t]he �2 test is admittedly approximate, for in order to establish the test it is necessary
to regard each cell value as normally distributed with a variance equal to the expected
value, the whole set of values being subject to certain restrictions. The accuracy of this
approximation depends on the numbers in the various cells, and in practice it has been
customary to regard �2 as sufficiently accurate if no cell has an expectancy of less than 5
[1472, p. 217].20

The 1934 article by Yates soon became elevated to a classic as it introduced
Yates’ correction for continuity to chi-squared for 2 � 2 contingency tables.
However, the article contained much more than the continuity correction for 2 � 2

contingency tables. In this 1934 article Yates referred to Fisher’s calculation of the
exact probability of any observed set of values in a 2 � 2 contingency table with
given marginal frequency totals and compared chi-squared probability values, with
and without the correction for continuity, with exact probability values for small
2 � 2 contingency tables. Yates used the exact probability values obtained from
the discrete hypergeometric probability distribution to evaluate the corresponding
probability values obtained from the continuous chi-squared distribution. It is
notable that Yates referred to the exact probability values as the “true” probability
values [1472, p. 222] and the exact probability values were used in this article as
a benchmark against which to compare and validate the approximate probability
values obtained from the chi-squared distribution.21

While there is much of importance in this classic paper, it is the generation of
the exact probability values that is germane to a discussion of permutation methods.
Although Yates only summarized the procedure by which he obtained the exact
permutation values, the process is not difficult to reconstruct. Yates described the
process:

[i]n cases where N is not too large the distribution with any particular numerical values of
the marginal totals can be computed quite quickly, using a table of factorials to determine
some convenient term, and working out the rest of the distribution term by term, by simple
multiplications and divisions. If a table of factorials is not available we may start with any
convenient term as unity, and divide by the sum of the terms so obtained [1472, p. 219].

Note that N denotes the total number of observations. Here, in the last sentence
of the quote, Yates identified a procedure that was to assume great importance
in exact permutation methods; viz., probability values obtained from discrete
distributions using recursion with an arbitrary initial value. The importance of this
approach for the future of permutation methods should not be underestimated.

20As Hitchcock has noted, the variance equals the mean in the archetypical count model of the
Poisson, and the normal approximates the Poisson when the mean is large [633, p. 2].
21It should be mentioned that because Yates was primarily interested in 2 � 2 contingency tables
and, therefore, �2 was distributed as chi-squared with 1 degree of freedom, he obtained the requisite
probability values from tables of the normal distribution since �2

1 D z2.
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Fig. 2.1 Notation for a 2 � 2

contingency table as used by
Yates [1472]

Next, Yates defined a 2 � 2 contingency table using the notation in Fig. 2.1, where
n � n0 � 1

2
N .

Giving due credit to Fisher, Yates showed that the probability value cor-
responding to any set of cell frequencies, a; b; c; d , was the hypergeometric
point-probability value given by

nŠ n0Š .N � n/Š .N � n0/Š
N Š aŠ bŠ cŠ d Š

:

Since the exact probability value of a 2 � 2 contingency table with fixed marginal

frequency totals is equivalent to the probability value of any one cell (because
there is only one degree of freedom in a 2 � 2 contingency table), determining the
probability value of cell a is sufficient. If

P fa C 1jN � n; N � n0; N g D P fajN � n; N � n0; N g � f .a/

then, solving for f .a/ produces

f .a/ D P fa C 1jN � n; N � n0; N g
P fajN � n; N � n0; N g

D aŠ bŠ cŠ d Š

.a C 1/Š .b � 1/Š .c � 1/Š .d C 1/Š

and, after cancelling, yields

f .a/ D .b/.c/

.a C 1/.d C 1/
:

Yates provided an example analysis based on data from Milo Hellman on bottle
feeding and malocclusion that had been published in Dental Cosmos in 1914 [609];
the data are summarized in Table 2.5 and the six exhaustive 2 � 2 contingency
tables from the data in Table 2.5 are listed in Table 2.6. Yates generated the entire
exact probability distribution as follows. The probability of obtaining zero normal
breastfed babies for cell arrangement (1) in Table 2.6 was given by

P fa D 0j20; 5; 42g D 5Š 37Š 20Š 22Š

42Š 0Š 20Š 5Š 17Š
D 0:030957



46 2 1920–1939

Table 2.5 Hellman’s data
on breast feeding and
malocclusion.

Feeding type Normal teeth Malocclusion Total

Breast-fed baby 4 16 20
Bottle-fed baby 1 21 22

Total 5 37 42

Table 2.6 Six possible arrangements of cell frequencies with n D 42 and marginal frequency
totals of 20, 22, 5, and 37

(1) (2) (3) (4) (5) (6)

0 20 1 19 2 18 3 17 4 16 5 15
5 17 4 18 3 19 2 20 1 21 0 22

and calculated utilizing a table of factorials. Then, the probability values for a D
1; 2; 3; 4; and 5 in Table 2.6 were recursively given by

P fa D 1j20; 5; 42g D 0:030957 � .20/.5/

.1/.18/
D 0:171982 ;

P fa D 2j20; 5; 42g D 0:171982 � .19/.4/

.2/.19/
D 0:343965 ;

P fa D 3j20; 5; 42g D 0:343964 � .18/.3/

.3/.20/
D 0:309568 ;

P fa D 4j20; 5; 42g D 0:309568 � .17/.2/

.4/.21/
D 0:125301 ;

and

P fa D 5j20; 5; 42g D 0:125301 � .16/.1/

.5/.22/
D 0:018226 ;

respectively. In this manner, Yates was able to recursively generate the entire dis-
crete permutation distribution from min.a/ D max.0; N �n�n0/ D max.0; �17/ D
0 to max.a/ D min.N � n; N � n0/ D min.20; 5/ D 5.

2.6.1 Calculation with an Arbitrary Initial Value

To illustrate the use of an arbitrary origin in a recursion procedure, consider
arrangement (1) in Table 2.6 and set C fa D 0j20; 5; 42g to some small arbitrarily-
chosen value, say 5.00; thus, C fa D 0j20; 5; 42g D 5:00. Then,
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C fa D 1j20; 5; 42g D 5:000000 � .20/.5/

.1/.18/
D 27:777778 ;

C fa D 2j20; 5; 42g D 27:777778 � .19/.4/

.2/.19/
D 55:555556 ;

C fa D 3j20; 5; 42g D 55:555556 � .18/.3/

.3/.20/
D 50:000000 ;

C fa D 4j20; 5; 42g D 50:000000 � .17/.2/

.4/.21/
D 20:238095 ;

and

C fa D 5j20; 5; 42g D 20:238095 � .16/.1/

.5/.22/
D 2:943723 ;

for a total of C f0; : : : ; 5j20; 5; 42g D 161:515152. The desired probability values
are then obtained by dividing each relative probability value by the recursively-
obtained total 161.515152; e.g.,

P fa D 0j20; 5; 42g D 5:000000

161:515152
D 0:030957 ;

P fa D 1j20; 5; 42g D 27:777778

161:515152
D 0:171982 ;

P fa D 2j20; 5; 42g D 55:555556

161:515152
D 0:343965 ;

P fa D 3j20; 5; 42g D 50:000000

161:515152
D 0:309568 ;

P fa D 4j20; 5; 42g D 20:238095

161:515152
D 0:125301 ;

and

P fa D 5j20; 5; 42g D 2:943723

161:515152
D 0:018226 :

In this manner, the entire analysis could be conducted utilizing an arbitrary initial
value and a recursion procedure, thereby eliminating all factorial expressions. When
max.a/ � min.a/ C 1 is large, the computational savings can be substantial.

The historical significance of Yates’ 1934 article has surely been underrated.
It not only provided one the earliest and clearest explanations of Fisher’s exact
probability test, but also formally proposed the continuity correction to the chi-
squared test for the first time. In addition, Yates’ numerical studies in the paper
were the first in a long and often contentious series of investigations into the best
methods of testing for association in contingency tables [633, p. 17].
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2.7 Irwin and Fourfold Contingency Tables

Fisher’s exact probability test for 2 � 2 contingency tables was independently
developed R.A. Fisher in 1935 [452], Frank Yates in 1934 [1472] and Joseph Irwin
in 1935 [674]. Thus, the test is variously referred to as the Fisher exact probability
test (FEPT), the Fisher–Yates exact probability test, and the Fisher–Irwin exact
probability test.22

J.O. Irwin
It is not uncommon to find Fisher’s exact probability test referred to as the
Fisher–Irwin test, e.g., [33, 239, 281, 897, 1349]. Joseph Oscar Irwin earned
his undergraduate degree from Christ’s College, University of Cambridge,
in 1921, whereupon he was offered a position with Karl Pearson at the
Galton Biometric Laboratory, University College, London, with whom he had
worked prior to entering Cambridge. While at University College, Irwin was
in contact not only with Karl Pearson, but also with Egon Pearson and with
Jerzy Neyman who was at University College, London, from 1925 to 1927
and again from 1934 to 1938. Irwin’s academic degrees continued with a
M.Sc. degree from the University of London in 1923, an M.A. degree from
the University of Cambridge in 1924, a D.Sc. degree from the University of
London in 1929 and the D.Sc. degree from the University of Cambridge in
1937 [31, 32, 550].

In 1928 Irwin joined R.A. Fisher’s Statistical Laboratory at the Rothamsted
Experimental Station, thereby becoming one of the few people to have studied
with both Pearson and Fisher [81]. In 1931 Irwin joined the staff of the
Medical Research Council at the London School of Hygiene & Tropical
Medicine, where he remained for the next 30 years, except for the war years
(1940–1945) when the staff of the London School of Hygiene & Tropical
Medicine was evacuated from London and Irwin was temporarily attached
to the Faculty of Mathematics at Queen’s College, University of Cambridge,
where he taught statistics to mathematicians. In his later years, Irwin was a
visiting professor at the University of North Carolina at Chapel Hill during
the academic years 1958–1959 and 1961–1962, and for one semester in 1965
[31]. Joseph Oscar Irwin retired in 1965 and passed away on 27 July 1982 at
the age of 83 [81].

22Good has argued that the test should more properly be referred to as the Fisher–Yates–Irwin–
Mood test [519, p. 318].
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Table 2.7 Irwin’s data on 2 � 2 contingency tables with equal marginal totals.

Table with 2 marked items Table with r marked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 2 4 6 1 r 6 � r 6
2 6 0 6 2 8 � r r � 2 6

Total 8 4 12 Total 8 4 12

In 1935 Irwin published an exact probability test for 2 � 2 contingency tables
in the Italian journal Metron [674].23 The publication was original and independent
of the results published by Yates in 1934 [1472] and Fisher in 1935 [452] on the
same theme.24 In fact, Irwin noted in this paper that the paper was actually finished
in May of 1933, but publication was “unavoidably delayed” until 1935.25 In a
footnote to this article Irwin acknowledged that a paper dealing with the same
subject, “in some respects more completely” had previously been published by
F. Yates in 1934.26 In this 1935 paper Irwin described the difficulty in analyzing
2 � 2 contingency tables with Pearson’s chi-squared statistic when the expected
frequency in any cell was less than 5. In response to this difficulty, Irwin developed
three approaches to analyze 2 � 2 contingency tables, in addition to the usual chi-
squared analysis. He dismissed the first two approaches as impractical or inaccurate
and advocated the third approach based on fixed marginal frequency totals [674].
An example will serve to illustrate Irwin’s approach.

Consider the 2 � 2 contingency table on the left side of Table 2.7. Irwin observed
that, given the marginal frequency totals, the cell frequency for the Marked items
in Sample 1 could not be smaller than max.0; 6 C 8 � 12/ D 2 nor larger than
min.6; 8/ D 6. He suggested taking samples of size 6 from a universe in which p

is the probability of a Marked item. Then, the chance of getting eight Marked and
four Unmarked items was  

12

4

!
p8.1 � p/12�8

23Although Metron Rivista Internazionale di Statistica was published in Italy, the article by Irwin
was in English.
24For the early history of Fisher, Yates, Irwin, and the exact analysis of 2 � 2 contingency tables,
see articles by Barnard [71] and Good [519–521].
25Irwin suffered from chronic poor health from early childhood and it is possible that was what
delayed publication.
26Irwin joined the Rothamsted Experimental Station in 1928 and remained there until 1931,
which was when Yates joined Rothamsted. Since they were both employed in Fisher’s Statistical
Laboratory at Rothamsted and both overlapped as undergraduates at the University of Cambridge,
it is likely they were well acquainted.
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and he could easily enumerate the 2 � 2 contingency tables which satisfied this
condition by supposing r items in Sample 1 to be Marked, as illustrated on the right
side of Table 2.7. Irwin calculated that the chance of obtaining the 2 � 2 table on the
right side of Table 2.7 was

 
6

r

!
pr.1 � p/6�r �

 
6

8 � r

!
p8�r .1 � p/r�2 D

 
6

r

! 
6

8 � r

!
p8.1 � p/12�8

and he then generated the probability values for all possible tables with r D
2; : : : ; 6; viz.,

 
6

2

! 
6

6

!
p8.1 � p/12�8 D 15p8.1 � p/4 ;

 
6

3

! 
6

5

!
p8.1 � p/12�8 D 120p8.1 � p/4 ;

 
6

4

! 
6

4

!
p8.1 � p/12�8 D 225p8.1 � p/4 ;

 
6

5

! 
6

3

!
p8.1 � p/12�8 D 120p8.1 � p/4 ;

and

 
6

6

! 
6

2

!
p8.1 � p/12�8 D 15p8.1 � p/4 ;

thus yielding a total of

 
12

4

!
p8.1 � p/12�8 D 495p8.1 � p/4 :

Thus, as Irwin illustrated, if r D 2 the exact chance of a contingency table
arising with a number of Marked items as small or smaller than in Sample 1 was
15=495 D 0:0303 and the exact chance of an equally probable or less probable
table arising was 15=495 C 15=495 D 0:0606. Irwin then compared these results
to a conventional chi-squared probability value where �2 D 6:00, � D 2:4495,
and the corresponding probability values, obtained from a N.0; 1/ distribution, were
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Table 2.8 Irwin’s data on 2 � 2 contingency tables with unequal marginal totals.

Table with 3 unmarked items Table with s unmarked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 79 3 82 1 82 � s s 82
2 56 7 63 2 53 C s 10 � s 63

Total 135 10 145 Total 135 10 145

Fig. 2.2 Probability values
for the unmarked items on the
right side of Table 2.8

0.0072 and 0.0143, respectively.27 Irwin concluded that the chi-squared test would
“considerably overestimate the significance” [674, p. 86] and recommended that
when the numbers in all cells were small the exact method should be used, but if
samples were of reasonable size and there were small cell frequencies in only one
or two cells yielding expected frequencies less than five, then the researcher “shall
seldom be misled by applying the usual [chi-squared] test” [674, p. 94].

Irwin concluded the article with a number of examples. In several of the
examples, the row marginal frequency totals were not equal, as they are in Table 2.7
where the marginal row totals for Samples 1 and 2 are both 6. Here Irwin did
something interesting and somewhat controversial, even today. A second example
will illustrate that procedure.

Irwin noted that s Unmarked items in Sample 1 on the right side of Table 2.8
could take on the values 0; 1; : : : ; 10 and he found the corresponding probability
values listed in Fig. 2.2. In calculating the two-tailed probability value, Irwin noted
that the observed cell frequency of 3 with a point-probability value of 0.0594
appeared in the lower tail of the distribution. He therefore accumulated all the
probability values in the lower tail that were equal to or less than the observed
probability value of 0.0594 to get the one-tail cumulative probability value, e.g.,

27To clarify, Irwin took the positive square root of �2, i.e., �, which with one degree of freedom
is a normal deviate, and thus obtained the probability values from a standard unit-normal table of
probability values.



52 2 1920–1939

0:0002C0:0024C0:0156C0:0594 D 0:0776. Then Irwin calculated the upper-tail
probability value as the sum of the probability values in the upper tail that were less
than or equal to the observed probability value of 0.0594, e.g., 0:0224 C 0:0026 D
0:0250. Following that, he combined the two cumulative probability values to
compute 0:0776 C 0:0250 D 0:1026 as the two-tailed probability value, whereas
it was customary at the time to simply double the lower-tail probability value, i.e.,
0:0776C0:0776 D 0:1552. This became known as “Irwin’s rule” and is still referred
to today as such; see for example, Armitage and Berry [33, pp. 131–132] and
Campbell [239].28 Incidentally, Irwin’s rule extends to any r-way contingency table.

2.8 The RothamstedManorial Estate

The Rothamsted Experimental Station began as the Rothamsted manorial estate,
which can be dated from the early 1300s, when it was held by the Cressy family for
about 200 years.

Manorial Estates
The manorial or seignorial system was a social and economic system of
medieval Europe under which serfs and peasants tilled the arable land of
a manorial estate in return for dues in kind, money, or services. A typical
manorial estate was comprised of the manor house of the Lord of the Manor;
the demesne, or land held and controlled by the Lord of the Manor usually
consisting of arable lands, meadows, woodlands, and fish ponds; the serf
holdings that were usually strips of arable land, not necessarily adjacent,
which passed down through generations of serf families; and free peasants
who farmed land on the estate and paid rent to the Lord of the Manor.

The meadows were usually held in common, but the woodlands and fish
ponds belonged to the Lord. Serfs were expected to recompense the Lord for
hunting in the woods, fishing in the ponds, and cutting wood for fuel. The
Lord of the Manor collected payments from the serfs and peasants and in turn
rendered protection, administered justice, and provided for the serfs in times
of poor harvest [1278].

28The controversy as to whether to use the doubling rule or Irwin’s rule to obtain a two-tailed
probability value persisted for many years; see for example, articles by Cormack [279, 280] in
1984 and 1986, Cormack and Mantel in 1991 [281], Healy in 1984 [604], Jagger in 1984 [678],
Mantel in 1984 and 1990 [884, 885], Yates in 1984 [1476], and Neuhäuser in 2004 [1031].
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Like many other English manorial estates, Rothamsted Manor goes back to a
remote antiquity [1209, p. 161].29 Around the first century BC, the Celts occupied
the Rothamsted area, leaving some archaeological evidence consisting of hearths,
pot boilers, and broken pottery (i.e., shards). Under Roman rule, from about 55
BC to AD 450, Rothamsted flourished with a shrine, a flint wall around a square
enclosure, and burial sites; see, for this historical period, a report by Lowther
[848, p. 108–114]. The Romans left in the fifth century and were replaced by the
Saxons, who left no building at the site, but gave the place its name, “Rochamstede,”
meaning “rook-frequented homestead” [860, 1209].

The first recorded mention of Rothamsted was in 1212 when Richard de Merston
held lands there. A house with a chapel and garden are referred to in 1221 when
Henry Gubion granted some land to Richard de Merston. At this time the house
was a simple timber-framed building. At the beginning of the fourteenth century,
Rothamsted was held by the Noels (or Nowells) who passed it to the Cressy
(or Cressey) family in 1355 [542, 1352]. The Cressy family held the estate until
1525, but the male lineage died out. The Cressy’s daughter, Elizabeth, remained
in possession, marrying Edmund Bardolph who improved the manor house and
extended the estate, purchasing the adjoining Hoos manor, among others. By the
end of the sixteenth century, Rothamsted Manor was a substantial dwelling of at
least 16 rooms [1352].

The Wittewronges30 were Flemish Calvinists who, led by Jacques Wittewronge
(1531–1593), emigrated from Ghent in 1564 owing to the religious persecution
of Protestants by Philip II in the Spanish Netherlands at the time [574]. Jacques
Wittewronges had two sons: Abraham and Jacob. Jacob Wittewronge (1558–1622)
was a successful businessman and in 1611 he obtained a mortgage on Rothamsted
Manor by means of a loan to Edmund Bardolph. Jacob Wittewronge married twice;
his second wife was Anne Vanacker, the daughter and co-heiress of another Flemish
refugee, Gerard (or Gerrard) van Acker (or Vanacker) a merchant from Antwerp
who had settled in England. Anne bore Jacob Wittewronge a daughter. Anne, in
1616 and a son, John, in 1618. Jacob Wittewronge died on 22 July 1622. After
Jacob’s death, Anne Wittewronge married Sir Thomas Myddleton,31 Lord Mayor of
London, and in 1623 Dame Anne Myddleton procured the Rothamsted estate for
her son John.

Upon the passing of Dame Anne Myddleton in 1649, John Wittewronge inherited
the estate and made many improvements, especially to the manor house, holding
the estate until his death on 23 June 1693. John had graduated from Trinity College,
Oxford, in 1634 and by the time he was 18 had taken up his duties as Lord of the
Manor [1352]. In 1640 he was knighted by Charles I. The Wittewronge descendants
held the estate until male descendants ceased in 1763 and the estate then passed to

29For this section of the book, the authors are indebted to Sir E. John Russell (q.v. page 57) who,
in 1942, compiled the early history of the Rothamsted Manor.
30Originally, Wittewronghele.
31Sometimes spelled Midleton or Middleton.
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the Bennet family by the marriage of Elizabeth Wittewronge to Thomas Bennet, and
finally to the Lawes family by the marriage of Mary Bennet, great-granddaughter
of James Wittewronge, son of John and Elizabeth Myddleton Wittewronge, to
Thomas Lawes. His son, John Bennet Lawes, was the father of John Bennet Lawes
[1211, 1228, 1415]. John Bennet Lawes was born in 1814 and educated at Eton
and the University of Oxford. Somehow, as a youth, he had acquired a proclivity
for conducting chemical experiments, which he did at home. His early experiments
were with drugs and he grew many medicinal plants on the estate, including poppies,
hemlock, henbane, colchicum, and belladonna. He soon began to apply chemistry
to agriculture and discovered the value of superphosphate of lime as a fertilizer and
established a factory to produce the first mineral fertilizer.32 In the 1830s Lawes
established the Rothamsted Experimental Station on the estate.

Lawes died on 31 August 1900 at the age of 85 and was succeeded by his son,
Charles Bennet Lawes, then aged 57, who assumed the ancestral name of Wit-
tewronge. Unfortunately, Charles died in 1911 after a brief illness and the income
had been sufficiently reduced that the family could no longer live at Rothamsted.
The estate was leased to and carefully tended by Major R.B. Sidebottom and
his wife, the Honorable Mrs. Sidebottom [1209, p. 166]. The Rothamsted estate
was sold by the Wittewronge–Lawes family to the Rothamsted Agricultural Trust
in 1934.

J.B. Lawes
John Bennet Lawes, 1st Baronet, F.R.S., Lord of Rothamsted Manor, was born
on 28 December 1814 and in 1822 at the age of eight inherited his father’s
sixteenth century estate of somewhat more than 1,000 acres (approximately
1.7 square miles). Lawes was educated at Eton and at Brasenose College,
University of Oxford, leaving in 1835 without taking a degree, whereupon
he entered into the personal management of the home farm at Rothamsted of
about 250 acres. In the 1830s Lawes created the Rothamsted Experimental
Station on the family estate to investigate the effects on the soil of different
combinations of bonemeal, burnt bones, and various types of mineral phos-
phate treated with sulphate or muriate of ammonia. Initially, Lawes created
superphosphate from sulphuric acid and ground-up bones, then graduated to
mineral phosphates, such as coprolites, and finally used imported apatite, i.e.,
calcium phosphate. As related by A.D. Hall, the application of sulphuric acid

(continued)

32Today, phosphate-based fertilizers are used throughout the world and there is presently concern
that the world will eventually run out of easily accessible sources of phosphate rock [278, 784].
On the other hand, heavy spring rains generate runoff from farmer’s fields into ponds and lakes,
spawning growth of toxic blue-green algae, such as Microsystis aeurginosa, which are fed by the
phosphorus from the fields [1463].
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to calcium phosphate yields a mixture of monocalcic phosphate, phosphoric
acid, and gypsum. The phosphates in this compound are soluble in water and
produce an efficacious fertilizer [574, p. xxii].

On 23 May 1842 Lawes was granted a patent for the development and
manufacture of superphosphate-bone meal—calcium phosphate treated with
sulfuric acid—as an artificial agricultural fertilizer, and in 1843 Lawes was
joined by the English chemist Sir Joseph Henry Gilbert in what began a
lifelong collaboration on over 100 published articles, including papers on
turnip culture, the amount of water given off by plants, the fattening qualities
of different breeds of sheep, the relative advantages of malted and unmalted
barley as food for stock, the valuations of unexhausted manures, nitrification,
experiments on the mixed herbage of permanent meadow, climate and wheat
crops, composition of rain and drainage waters, nitrogen in soils, the growth
of root crops for many years in succession on the same land, the rotation
of crops, and many other similar agricultural topics [331]. A full account
with detailed descriptions of the major Rothamsted agricultural experiments
is given is The Book of the Rothamsted Experiments by A.D. Hall [574]. In
addition, Hall lists the publications issued from the Rothamsted Experimental
Station between 1843 and 1905 [574, pp. 273–285].

A factory to manufacture superphosphate of lime was established by Lawes
on 1 July 1843 at Deptford Creek, London. Lawes was elected Fellow of the
Royal Society in 1854, in 1877 the University of Edinburgh conferred upon
Lawes the honorary degree of LL.D., in 1882 Lawes was made a baronet, and
in 1894 the University of Cambridge awarded Lawes the degree of D.Sc. Sir
John Bennet Lawes F.R.S. passed away on 31 August 1900 at Rothamsted
Manor at the age of 86 [331].

J.H. Gilbert
Joseph Henry Gilbert was born at Kingston-upon-Hull on 1 August 1817. He
was educated at Glasgow University where he worked in the laboratory of
Professor Thomas Thomson. He moved to University College, London, in the
autumn of 1839 and worked briefly in the laboratory of Professor Anthony
Todd Thomson. It was in Thomson’s laboratory that Gilbert and Lawes first
met. He received his Ph.D. in 1840 from the University of Giessen in Germany
where he studied under the renowned chemist, Professor Justus van Liebig,
who had established the world’s first major school of chemistry. Another
famous student of von Liebig was August Kekulé, the discover of the benzene
ring [1180, pp. 133–135].

(continued)
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Gilbert, at the age of 26, was invited by Lawes on 1 June 1843 to
oversee the Rothamsted experiments. Thus began a partnership in research
that lasted for 58 years. Lawes possessed an originating mind and had a
thorough knowledge of practical agriculture. Gilbert, on the other hand, was
possessed of indomitable perseverance, combined with extreme patience. In
his research he united scrupulous accuracy with attention to detail. In general,
Lawes directed the agricultural operations in the experimental fields and the
execution of the experiments was in the hands of Gilbert [574, pp. xxii–xl].
Gilbert was elected Fellow of the Royal Society in 1860 and knighted by
Queen Victoria in 1893. Sir Joseph Henry Gilbert F.R.S. died at his home
in Harpenden on 23 December 1901 in his 85th year and is buried in the
churchyard of St. Nicholas Church, next to his long-time friend, John Bennet
Lawes [184, 1416].

The Experimental Station
The Rothamsted Experimental Station, now Rothamsted Research, in Harp-
enden, Hertfordshire, England, about 25 miles northeast of London, had its
beginnings in the 1830s, vide supra. Together Lawes and Gilbert established
the Rothamsted Experimental Station on the family estate, the first agricul-
tural research station in the world, and in 1889 Lawes established the Lawes
Agricultural Trust, setting aside £100,000, one-third of the proceeds from the
sale of his fertilizer business in 1872, to ensure the continued existence of the
Rothamsted Experimental Station [184,331,1280] (According to the Rotham-
sted Research website, the equivalent amount today would be approximately
£5,000,000 or $7,800,000 [341].) In 1911 David Lloyd George, Chancellor of
the Exchequer set up the Development Fund for the rehabilitation of British
farming, making £1,000,000 available for research funding. In 1867 Lawes
and Gilbert received the Royal Society’s Royal Medal, also called the Queen’s
medal, awarded for important contributions in the applied biological and
physical sciences.

Expansions beginning in 1902 provided new facilities and added chemists,
bacteriologists, and botanists to the staff at Rothamsted. Researchers at
Rothamsted have made many significant contributions to science over the
years, including the discovery and development of the pyrethroid insecticides,
as well as pioneering contributions in the fields of virology, nematology, soil
science, and pesticide resistance. In 2012 Rothamsted Research supported 350
scientists, 150 administrative staff, and 60 Ph.D. students [341].
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Sir John Russell, who came from Wye Agricultural College33 in 1907 and
assumed the directorship of the Rothamsted Experimental Station in 1912,
appointed R.A. Fisher to the Rothamsted Experimental Station in October, 1919 and
commissioned him to study yield data on 67 years of Broadbalk wheat,34 for which
trials had begun as far back as 1843. Sir Russell initially hired Fisher on a temporary
basis, as he had only £200 appropriated for the appointment, but he soon recognized
the genius of Fisher and set about securing the necessary funds to hire him on a
permanent basis; however, not before Fisher had spent twice the £200 [191, p. 792].
Fisher made Rothamsted into a major center for research in statistics and genetics,
remaining at Rothamsted as the head of the Statistical Laboratory until 1933 when
he left to assume the post of Galton Professor of Eugenics at University College,
London. Fisher was succeeded by Frank Yates who had come to Rothamsted in 1931
as Assistant Statistician. Regular afternoon tea had been instituted at Rothamsted in
1906, 13 years prior to Fisher’s arrival, when Dr. Winifred E. Brenchley joined the
scientific staff as its first woman member [1354].35 Sir John Russell recalled:

[n]o one in those days knew what to do with a woman worker in a laboratory; it was felt,
however, that she must have tea, and so from the day of her arrival a tray of tea and a tin
of Bath Oliver biscuits appeared each afternoon at four o’clock precisely; and the scientific
staff, then numbering five, was invited to partake thereof [1210, p. 235] (Russell, quoted in
Box [195, p. 132]).

This tea service ended up being an important part of the story of Fisher and the
beginnings of permutation methods.

E.J. Russell
Edward John Russell was born on 31 October 1872 and was educated
at Carmarthen Presbyterian College, Aberystwyth University College, and
Owen’s College, Manchester, graduating with a B.Sc. and First Class Honors
in Chemistry in 1896. Russell was awarded the degree of D.Sc. by the
University of London for his researches at Manchester [1195, 1361].

In January 1901 Russell, who preferred the name John Russell, obtained a
Lectureship in Chemistry at Wye Agricultural College, at which the Principal

(continued)

33The College of St. Gregory and St. Martin at Wye, more commonly known as Wye College, was
an educational institution in the small village of Wye, Kent, about 60 miles east of London.
34Broadbalk refers to the fields at Rothamsted on which winter wheat was cultivated, not a strain
of wheat.
35Afternoon tea had been a British tradition since one of Queen Victoria’s (1819–1901) ladies-
in-waiting, Anna Maria Russell (née Stanhope) (1783–1857), the seventh Duchess of Bedford,
introduced it at Belvoir (pronounced Beaver) Castle in the summer of 1840, the idea being a
light repast around 4 p.m. would bridge the lengthy gap between luncheon and dinner, which
in fashionable circles at that time was not taken until 8 p.m.
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was Alfred Daniel Hall. Hall left Wye shortly after Russell joined the staff
to become Director of Rothamsted Experimental Station. Meanwhile, the
Goldsmith’s Company had given a capital grant of £10,000 to endow a
position in soil research at Rothamsted, which allowed Hall and the Lawes
Agricultural Trust to offer Russell a post as the first Goldsmith’s Company
Soil Chemist. Russell accepted the offer and moved from Wye College to
Rothamsted in July of 1907. At that time the scientific staff was comprised of
Hall and Russell and, in addition, Winifred Elsie Brenchley as botanist, Henry
Brougham Hutchinson as bacteriologist, and Norman H.J. Miller as chemist
[1361, 1404].

Hall left Rothamsted in October of 1912 and Russell was appointed
Director of the Rothamsted Experimental Station in 1912 and served as
Director until 1943. He was elected Fellow of the Royal Society in 1917,
received the Order of the British Empire in 1918, and was knighted by King
George V in 1922. In 1943, Russell, now 70, retired from Rothamsted and was
succeeded by William Gammie Ogg. Sir E. John Russell O.B.E. F.R.S. died
on 12 July 1965 at the age of 92. A complete bibliography of his writings and
publications is contained in a biography by Thornton [1361, pp. 474–477].

In The Design of Experiments (familiarly known as DOE), first published in
1935, Fisher (q.v. page 25) again intimated at the utility of a permutation approach
to obtain exact probability values [451, Sect. 11], and it is this formative text that
many researchers refer to as setting the idea of permutation tests into motion,
e.g., Conover [272], Kempthorne [719], Kruskal and Wallis [779], and Wald and
Wolfowitz [1407]. Fisher’s description of the “lady tasting tea” is often referenced
to describe the underlying logic of permutation tests. It appears that the story has
never been told in its entirety in a single place and is worth relating. While several
versions of the story exist, the account here relies primarily on the description by
Joan Fisher Box [195, pp. 131–132].

2.8.1 The Rothamsted Lady Tasting Tea Experiment

The “lady tasting tea” experiment at the Rothamsted Experimental Station in the
early 1920s has become one of the most referenced experiments in the statistical lit-
erature. A search of the Internet in February of 2013 produced 25,600 citations.36

36For a detailed explanation as to why it matters whether the tea or the milk is poured into the
teacup first, see a 2012 article by Stephen Senn in Significance [1251].
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The Lady Tasting Tea
At Rothamsted in the 1920s, afternoon tea was served at 4 o’clock in the
sample house in inclement weather or, otherwise, outside the sample house
on a table set with an urn of tea and cups. One afternoon in the early 1920s,
Fisher drew a cup of tea from the urn, added milk, and proffered it to the lady
beside him, Dr. Blanche Muriel Bristol, an algologist. She declined the cup of
tea offered by Fisher, stating that she preferred a cup into which the milk had
been poured first. Fisher’s quick response was, “[n]onsense, surely it makes
no difference” [195, p. 134].

Dr. William A. Roach, a chemist at the laboratory who was soon to marry
Dr. Bristol, suggested a test, to which Dr. Bristol agreed. Consequently, eight
cups of tea were prepared, four with the tea added after the milk and four
with the milk added after the tea, and presented to Dr. Bristol in random
order [195, p. 134]. Dr. Bristol’s personal triumph was never recorded and
Fisher does not describe the outcome of the experiment; however, H. Fairfield
Smith was present at the experiment and he later reported that Dr. Bristol had
identified all eight cups of tea correctly [1218, p. 8]. William Roach, however,
apparently reported that Dr. Bristol “made nearly every choice correctly”
[191, p. 793]. Incidentally, the probability of correctly dividing the eight cups
into two sets of four by chance alone is only 1 in 70 or 0.0143. It should
be noted that another version of the story has the event taking place at the
University of Cambridge in the late 1920s [1218], but it seems unlikely that
this version of the story is correct. In addition, according to Dr. Roach, Dr.
Bristol was correct on enough of the cups to prove her point [575, 1251].37

For additional descriptions of the tea tasting experiment, see Fisher [451,
pp. 11–29], Fisher [459, Chap. 6], Box [191], Box [195, pp. 134–135],
Gridgeman [555], Salsburg [1218, pp. 1–2], Lehmann [816, pp. 63–64], Hall
[575, p. 315], Okamoto [1053], Senn [1250–1252], and Springate [1313]. For
a decidedly different (Baysian) take on the lady tasting tea experiment, see a
1984 paper on “A Bayesian lady tasting tea” by Dennis Lindley [829] and a
1992 paper on “Further comments concerning the lady tasting tea or beer:
P -values and restricted randomization” by Irving (I.J.) Good [521].

37For a biography of Dr. B. Muriel Bristol and a picture, see a 2012 article by Stephen Senn in
Significance [1251].
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Table 2.9 Five possible arrangements of cell frequencies with n D 8 and identical marginal
frequency totals of 4, 4, 4, and 4

(1) (2) (3) (4) (5)

4 0 3 1 2 2 1 3 0 4
0 4 1 3 2 2 3 1 4 0

2.8.2 Analysis of The Lady Tasting Tea Experiment

A dozen years later, in 1935, Fisher provided a detailed discussion of the tea tasting
experiment [451].38 In what Fisher termed a hypothetical experiment in Chap. II,
Sect. 5 of The Design of Experiments, Fisher described a woman who claimed to be
able to tell the difference between tea with milk added first and tea with milk added
second [451]. He concocted an experiment, without mentioning the Rothamsted
experiment or Dr. Bristol, whereby a woman sampled eight cups of tea, four of each
type, and identified the point at which the milk had been added—before the tea,
or after.39 Fisher then outlined the chances of the woman being correct merely by
guessing, based on the number of trials; in this case, eight cups of tea [646]. The
five possible 2 � 2 tables are listed in Table 2.9.

The null hypothesis in this experiment was that the judgments of the lady were
in no way influenced by the order in which the ingredients were added. Fisher
explained that the probability of correctly classifying all eight cups of tea was one
in 70, i.e., the hypergeometric point-probability value for cell arrangement (1) in
Table 2.9 is given by

P f4j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 4Š 0Š 4Š 0Š
D 24

1;680
D 1

70
:

Fisher went on to note that only if every cup was correctly classified would the
lady be judged successful; a single mistake would reduce her performance below
the level of significance. For example, with one misclassification the one-tailed
probability for cell arrangements (1) and (2) in Table 2.9 is given by

P f3j4; 4; 8g C P f4j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 3Š 1Š 3Š 1Š
C 4Š 4Š 4Š 4Š

8Š 4Š 0Š 4Š 0Š
D 16

70
C 1

70
D 17

70

and 17=70 D 0:2429 is much greater than 0.05, whereas 1=70 D 0:0143 is
considerably less than 0.05.

38In 1956 Fisher published a lengthy discussion of the lady tasting tea experiment titled
“Mathematics of a lady tasting tea” in J.R. Newman’s book titled The World of Mathematics [459,
pp. 1512–1521].
39It should be noted that Francis Galton, after much experimentation, always chose to put the milk
into the teacup first [1251, p. 32].
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Table 2.10 Seven possible arrangements of cell frequencies with n D 36 and identical marginal
frequency totals of 6, 6, 6 and 6

(1) (2) (3) (4) (5) (6) (7)

0 6 1 5 2 4 3 3 4 2 5 1 6 0
6 0 5 1 4 3 3 3 2 4 1 5 0 6

To increase the sensitivity of the experiment, Fisher suggested a new experiment
with 12 cups of tea, six with the milk added first and six with the milk added
second. Table 2.10 lists the seven possible 2 � 2 tables. Here the hypergeometric
probability of correctly classifying all 12 cups of tea as listed in cell arrangement
(1) of Table 2.10 is one in 924 and is given by

P f0j6; 6; 12g D 6Š 6Š 6Š 6Š

12Š 0Š 6Š 6Š 0Š
D 720

665;280
D 1

924
;

and for one misclassification the one-tailed probability for cell arrangements (1) and
(2) in Table 2.10 is given by

P f1j6; 6; 12g C P f0j6; 6; 12g
D 6Š 6Š 6Š 6Š

12Š 1Š 5Š 5Š 1Š
C 6Š 6Š 6Š 6Š

12Š 0Š 6Š 6Š 0Š
D 36

924
C 1

924
D 37

924
:

Fisher determined that since 37=924 D 0:04 was less than 0.05, the experiment
would be considered significant even with one misclassification. This additional
configuration led Fisher to observe that increasing the size of the experiment
rendered it more sensitive and he concluded that the value of an experiment is
increased whenever it permits the null hypothesis to be more readily disproved.
It should be noted that in this example Fisher simply assumed 0.05 as the level of
significance, without explicitly identifying the level of significance.40

2.9 Fisher and the Analysis of Darwin’s ZeamaysData

In 1935 Fisher (q.v. page 25) provided a second hypothetical discussion of
permutation tests in The Design of Experiments, describing a way to compare
the means of randomized pairs of observations by permutation [451, Sect. 21].

40It is generally understood that the conventional use of the 5 % level of significance as the
maximum acceptable probability for determining statistical significance was established by Fisher
when he developed his procedures for the analysis of variance in 1925 [292]. Fisher also
recommended 0.05 as a level of significance in relation to chi-squared in the first edition of
Statistical Methods for Research Workers [448, pp. 79–80]. Today, p D 0:05 is regarded as
sacred by many researchers [1281]. However, Fisher readily acknowledged that other levels of
significance could be used [449, p. 504]. In this regard, see discussions by Cowles and Davis [292]
and Lehmann [816, pp. 51–53].



62 2 1920–1939

Table 2.11 Heights of crossed- and self-fertilized Zea mays plants in inches

Crossed- Self- Difference Difference
Pot fertilized fertilized (inches) (eighths)

I 23 4
8

17 3
8

C6 1
8

C49

12 20 3
8

�8 3
8

�67

21 20 C1 C8

II 22 20 C2 C16

19 1
8

18 3
8

C0 6
8

C6

21 4
8

18 5
8

C2 7
8

C23

III 22 1
8

18 5
8

C3 4
8

C28

20 3
8

15 2
8

C5 1
8

C41

18 2
8

16 4
8

C1 6
8

C14

21 5
8

18 C3 5
8

C29

23 2
8

16 2
8

C7 C56

IV 21 18 C3 C24

22 1
8

12 6
8

C9 3
8

C75

23 15 4
8

C7 4
8

C60

12 18 �6 �48

Total 302 7
8

263 5
8

C39 2
8

C314

In this case Fisher carried the example through for the first time, calculating test
statistics for all possible pairs of the observed data [646]. For this example analysis,
Fisher considered data from Charles Darwin on 15 pairs of planters containing
Zea mays (“maize” in the United States) seeds in similar soils and locations, with
heights to be measured when the plants reached a given age [318]. As Darwin
described the experiment, Zea mays is monoecious and was selected for trial on
this account.41 Some of the plants were raised in a greenhouse and crossed with
pollen taken from a separate plant; and other plants, grown separately in another
part of the greenhouse, were allowed to fertilize spontaneously. The seeds obtained
were placed in damp sand and allowed to germinate. As they developed, plant pairs
of equal age were planted on opposite sides of four very large pots, which were
kept in the greenhouse. The plants were measured to the tips of their leaves when
between 1 and 2 ft in height. The data from the experiment are given in the first two
columns of Table 2.11 and are from Table XCVII in Darwin’s The Effects of Cross
and Self Fertilisation in the Vegetable Kingdom [318, p. 234].

Using the data in the last column of Table 2.11 where the differences between the
heights of the crossed- and self-fertilized plants were recorded in eighths of an inch,

41For a concise summary of the Zea mays experiment, see a discussion by Erich Lehmann in his
posthumously published 2011 book on Fisher, Neyman, and the Creation of Classical Statistics
[816, pp. 65–66].
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Fisher first calculated a matched-pairs t test. He found the mean difference between
the crossed- and self-fertilized Zea mays plants to be

Nd D 1

n

nX
iD1

di D 314

15
D 20:933

and the standard error to be

s Nd D

vuuuut
nX

iD1

d 2
i � Nd

nX
iD1

di

n.n � 1/
D
s

26;518 � .20:933/.314/

15.15 � 1/
D 9:746 :

Then, Student’s matched-pairs t test yielded an observed statistic of

t D
Nd

s Nd
D 20:933

9:746
D 2:148 :

Fisher pointed out that the 5 % t value with 14 degrees of freedom was 2.145 and
concluded since 2.148 just exceeded 2.145, the result was “significant” at the 5 %
level.

Fisher then turned his attention to an exact permutation test, calculating sums of
the differences for the 215 D 32;768 possible arrangements of the data, based on
the null hypothesis of no difference between self-fertilized and cross-fertilized Zea
mays plants. The exact probability value was calculated as the proportion of values
with differences as, or more extreme, than the observed value. Fisher found that in
835 out of 32,768 cases the deviations were greater than the observed value of 314;
in an equal number of cases, less than 314; and in 28 cases, exactly equal to 314.
Fisher explained that in just 835C28 D 863 out of a possible 32,768 cases, the total
deviation would have a positive value as great or greater than the observed value of
314, and in an equal number of cases it would have as great a negative value. The two
groups together constituted 1;726=32;768 D 5:267 % of the possibilities available,
a result very nearly equivalent to that obtained using Student’s t test, where the
two-tailed probability value for t D 2:148 with 14 degrees of freedom is 4.970 %
[461, p. 47]. Fisher additionally noted that the example served to demonstrate that an
“independent check” existed for the “more expeditious methods” that were typically
in use, such as Student’s t test [451, pp. 45–46].

Finally, Fisher argued that, because the t distribution is continuous and the
permutation distribution is discrete, the t distribution was counting only half of
the 28 cases that corresponded exactly with the observed total of 314. He went
on to show that making an adjustment corresponding to a correction for continuity
provided a t probability value more in line with the exact probability value. The
corrected value of t was 2.139, yielding a probability value of 5.054 % which is
closer to the exact value of 5.267 % than the unadjusted value of 4.970 %. For
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excellent synopses of the Zea mays experiment, see discussions by Kempthorne
[719, p. 947], Holschuh [646], Lehmann [816, pp. 65–66], McHugh [914], and E.S.
Pearson [1093].

One of the benefits Fisher attributed to permutation methods was its utility in
validating normal-theory analyses [451, Chaps. 20 and 21]. Here Fisher argued that,
when testing the hypothesis of no treatment effect in an agricultural experiment,
the normal-theory significance level usually approximates the corresponding per-
mutation significance level. As noted by Hooper [647], this tendency for agreement
between normal-theory and permutation tests has also been examined using both
real and simulated data by Eden and Yates [379] and Kempthorne and Doerfler
[725]; moment calculations by Bailey [49], Pitman [1131], and Welch [1428];
Edgeworth expansions by Davis and Speed [329]; and limit theorems by Ho and
Chen [634], Hoeffding [636], and Robinson [1178]. In this regard, Fisher was fond
of referring to a 1931 article by Olof Tedin [1343] in which Tedin demonstrated that
when the assumptions of the classical analysis of variance test are met in practice,
the classical test and the corresponding randomization test yielded essentially the
same probability values [1126].

O. Tedin
Olof Tedin (1898–1966) was a Swedish geneticist who spent most of his
professional career as a plant breeder with the Swedish Seed Association,
Svalöf, where he was in charge of the breeding of barley and fodder roots
in the Weibullsholm Plant Breeding Station, Landskrona. In 1931, with the
help of Fisher, he published a paper on the influence of systematic plot
arrangements on the estimate of error in field experiments [1343]. Fisher
had previously shown that of the numerous possible arrangements of plots
subject to the condition that each treatment should appear once in each row
and once in each column (an Euler Latin Square), it was possible to choose
at random one to be used in the field that would be statistically valid. Tedin
fashioned 12 blocks of 5 � 5 plots with five treatments distributed according
to different plans.

Two of the 12 arrangements were knight’s moves (Knut Vik), Latin
Squares in which all cells containing any one of the treatment values can
be visited by a succession of knight’s moves (as in chess) and where no
two diagonally adjacent cells have the same treatment value; two of the
arrangements were diagonal Latin Squares in which each of the treatment
values appears once in one of the diagonals and the other diagonal is
composed of the same treatment value, e.g., all 1s; seven of the arrangements
were random arrangement Latin Squares, as recommended by Fisher [449];
and one was a specially constructed Latin Square to evaluate “spread,”
wherein arrangements in which adjacent plots never have the same treatment.

(continued)
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Examples of the knight’s move, diagonal, and random Latin Square arrange-
ments used by Tedin are:

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5

4 3 1 5 2

1 5 2 3 4

5 2 4 1 3

2 1 3 4 5

3 4 5 2 1

Knight’s Move Diagonal Random

Tedin found that systematic arrangements introduced bias in the estimate
of the error of the experiment, with the knight’s move arrangements over-
estimating the error and the diagonal arrangements under-estimating the error.
He concluded that “the present study confirms the views of Fisher, not only
in the one special case, but in all other cases of systematic plot arrangements
as well” [1343, p. 207].

2.10 Fisher and the Coefficient of Racial Likeness

Fisher’s 1936 article on “‘The coefficient of racial likeness’ and the future of cran-
iometry” provided an alternative explanation of how permutation tests work [453].
Without explicitly labeling the technique a permutation test, Fisher described a
shuffling procedure for analyzing data. His description began with two hypothetical
groups of n1 D 100 Frenchmen and n2 D 100 Englishmen with a measurement of
stature on each member of the two groups. After recording the differences in height
between the two groups in the observed data, the measurements were recorded on
200 cards, shuffled, and divided at random into two groups of 100 each, a division
that could be repeated in an enormous, but finite and conceptually calculable number
of ways. 42 A consideration of all possible arrangements of the pairs of cards
would provide an answer to the question, “Could these samples have been drawn at
random from the same population?” [453, p. 486]. Fisher explained that a statistician
usually does not carry out this tedious process, but explained that the statistician’s
conclusions “have no justification beyond the fact that they agree with those which
could have been arrived at by this elementary method” [453, p. 58]. Fisher went
on to stress that the test of significance calculates a probability value and does not

42Authors’ note: actually, 90,548,514,656,103,281,165,404,177,077,484,163,874,504,589,675,413,
336,841,320 ways.
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calculate a metrical difference [453, pp. 59–60], anticipating perhaps the current
emphasis on calculating effect sizes as well as tests of significance.

Finally, it should be noted that while Fisher never referenced nor provided a
footnote to Karl Pearson in this article, it is abundantly evident that this article is a
thinly-veiled criticism of Pearson’s coefficient of racial likeness published in 1926
[1110], as the formula for the coefficient of racial likeness on page 60 of Fisher’s
article is taken directly from Pearson’s 1926 article. For a concise description of the
card shuffling experiment and a critical retort to Fisher’s analyses of Darwin’s Zea
mays data and the racial craniometry data see E.S. Pearson [1093], a summary of
which is provided on page 76.

Continuing the theme of shuffling cards to obtain permutations of observed data
sets, in 1938 Fisher and Yates described in considerable detail an algorithm for
generating a random permutation of a finite set, i.e., shuffling the entire set [463,
p. 20]. The basic method proposed by Fisher and Yates consisted of four steps and
resulted in a random permutation of the original numbers [463, p. 20]:
1. Write down all the numbers from 1 to n, where n is the size of the finite set.
2. Pick a number k between 1 and n and cross out that number.
3. Pick a number k between 1 and n � 1, then counting from the low end, cross out

the kth number not yet crossed out.
4. Repeat step 3, reducing n by one each time.43

2.11 Hotelling–Pabst and Simple Bivariate Correlation

While at Columbia University, Harold Hotelling was a charter member of the
Statistical Research Group (q.v. page 69) along with Jacob Wolfowitz and W. Allen
Wallis. This elite membership brought him into contact with a number of talented
and influential statisticians of the day.

H. Hotelling
Harold Hotelling entered the University of Washington in Seattle in 1913 but
his education was interrupted when he was called up for military service in
World War I. Hotelling recalled that he, “having studied mathematics, science
and classics at school and college, was considered by [the] Army authorities
competent to care for mules. The result was [that] a temperamental mule
named Dynamite temporarily broke my leg and thereby saved his life, as

(continued)

43The Fisher–Yates shuffle, with little change, became the basis for more sophisticated computer
shuffling techniques by Richard Durstenfeld in 1964 [367], Donald Knuth in 1969 [762], and
Sandra Sattolo in 1986 [1222]. N. John Castellan [245] and Timothy J. Rolfe [1188] urged caution
in choosing a shuffling routine as many widely-used shuffling algorithms are incorrect.
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the rest of the division was sent to France and [was] wiped out” (Hotelling,
quoted in Darnell [317, p. 57]). Hotelling was discharged from the Army on 4
February 1919, and returned to the University of Washington to continue his
studies.

Hotelling earned his B.A. degree in journalism from the University of
Washington in 1919, his M.S. degree in mathematics from the University of
Washington in 1921, and his Ph.D. in mathematics (topology) from Princeton
University under Oswald Veblen in 1924. The topic of the thesis was “Three-
dimensional Manifolds of States of Motion.” He began his career at Stanford
University, first as a research associate with the Food Research Institute
from 1924 to 1927, and then as an Associate Professor in the Department
of Mathematics from 1927 to 1931. It was during this time that Hotelling
began corresponding with Fisher in England. This correspondence eventually
led to Hotelling traveling to the Rothamsted Experimental Station to study
with Fisher in 1929. In his unsolicited review of Fisher’s Statistical Methods
for Research Workers, first published in 1925, Hotelling wrote:

[m]ost books on statistics consist of pedagogic rehashes of identical material. This
comfortably orthodox subject matter is absent from the volume under review, which
summarizes for the mathematical reader the author’s independent codification of
statistical theory and some of his brilliant contributions to the subject, not all of
which have previously been published [651, p. 412].

Despite the fact that the book did not receive even one other single
positive review [576, p. 219], Hotelling concluded that Fisher’s “work is of
revolutionary importance and should be far better known in this country”
[651, p. 412]. Hotelling was so impressed with Statistical Methods for
Research Workers that he volunteered a review for the second edition in
1928. Hotelling subsequently volunteered a review for the third, fourth, fifth,
sixth, and seventh editions [816, p. 22]. Eventually, 14 editions of Statistical
Methods for Research Workers were published, the last in 1970, and it has
been translated into six languages [192, p. 153].

Hotelling was recruited to Columbia University in 1931 as Professor of
Economics and to initiate a Mathematical Statistics program. Columbia long
had a reputation for incorporating statistical methods into the social sciences,
especially economics under the leadership of Henry Ludwell Moore, but
also in psychology with James McKeen Cattell, anthropology with Franz
Boas, and sociology with Franklin Henry Giddings [238]. While at Columbia,
Hotelling was a charter member of the Statistical Research Group (q.v. page
69). In 1946 Hotelling left Columbia University for the University of North
Carolina at Chapel Hill at the urging of Gertrude Mary Cox to establish what
would become a renowned Department of Mathematical Statistics. Harold
Hotelling retired in 1966 and died on 26 December 1973 at the age of 78

(continued)
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from injuries sustained after falling on a patch of ice outside his home at
Chapel Hill, North Carolina [37, 814, 1058, 1288].

M.R. Pabst
Margaret Hayes Pabst (née Richards) graduated with an A.B. degree from
Vassar College in 1931 [1076, p. 3], received her A.M. degree from the Uni-
versity of Chicago in mathematics in 1932, and earned her Ph.D. in economics
from Columbia University in 1944, where she studied with Hotelling.44 In
1935 Margaret Hayes Richards married William Richard Pabst, Jr., who
was at that time teaching economics at Cornell University [826, p. 752]. In
that same year, Margaret Pabst was hired as an assistant in the College of
Agriculture at Cornell University [826, p. 752]. In the fall of 1936 William
Pabst returned to his alma mater, Amherst College, as an Assistant Professor,
and from 1936 to 1938 Margaret Pabst was employed as a researcher with
the Council of Industrial Studies at Smith College in nearby Northampton,
Massachusetts. Her major work for the Council was a report titled “Agricul-
tural Trends in the Connecticut Valley Region of Massachusetts, 1800–1900,”
which was her dissertation at Columbia University and was later published in
Smith Studies in History [1079]. Margaret Pabst also published a small volume
in 1932 on Properties of Bilinear Transformations in Unimodular Form that
was the title of her Master’s thesis at the University of Chicago [1077],
and another small volume in 1933 on The Public Welfare Administration of
Dutchess County, New York that was the Norris Fellowship Report of 1932–
1933 [1078].

In 1938 William Pabst accepted a position as Associate Professor of
Economics at Tulane University in New Orleans, Louisiana [1080, p. 876]
and in 1941 William and Margaret Pabst moved to Washington, DC, where he
worked for the War Production Board and the Office of Price Administration
until 1944, when he went into the Navy and was stationed at the Bureau of

(continued)

44Authors’ note: special thanks to Nanci A. Young, College Archivist, William A. Neilson
Library at Smith College, Northampton, Massachusetts, for retrieving the information on Margaret
Richards Pabst, and to Nancy Lyons, Program Analyst, United States Department of Agriculture,
Food and Nutrition Service, for contacting Archivist Nanci Young at Smith College on our behalf.
Special thanks also to Sarah Jane Pabst Hogenauer and Dr. Margaret Pabst Battin, Distinguished
Professor of Philosophy and Adjunct Professor of Internal Medicine, Division of Medical Ethics at
the University of Utah, who are the daughters of Margaret Richards Pabst and who graciously
shared details of their mother’s life, including having Muriel Hotelling, Harold Hotelling’s
daughter, as a babysitter and, as girls of 10 or 11, having lunch with R.A. Fisher.
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Ordnance in Washington, DC [1284, p. C4]. In 1946 he left active duty and
became Chief Statistician in the Navy’s Bureau of Ordnance as a civilian.
Margaret Pabst also worked for the United States government during the war,
and after the war, taught piano and published two books on music, co-authored
with Laura Pendleton MacCartney. Margaret Hayes Richards Pabst died on 15
April 1962 in Washington, DC.

While at Columbia University, on 1 July 1942, Harold Hotelling along with
W. Allen Wallis and Jacob Wolfowitz, became charter members of the renowned
Statistical Research Group which was based at Columbia during World War II and
remained in existence until 30 September 1945. The SRG attracted an extraordinary
group of research statisticians to Columbia and brought Hotelling into contact with
many of the foremost mathematical statisticians of the time [1219].

The SRG at Columbia
The Statistical Research Group (SRG) was based at Columbia University
during the Second World War from 1942 to 1945 and was supported by the
Applied Mathematics Panel of the National Defense Research Committee,
which was part of the Office of Scientific Research and Development (OSRD).
In addition to Harold Hotelling, Wilson Allen Wallis, and Jacob Wolfowitz,
the membership of the SRG included Edward Paulson, Julian Bigelow, Milton
Friedman, Abraham Wald, Albert Bowker, Harold Freeman, Rollin Bennett,
Leonard Jimmie Savage, Kenneth Arnold, Millard Hastay, Abraham Meyer
Girshick, Frederick Mosteller, Churchill Eisenhart, Herbert Solomon, and
George Stigler [1412]. For concise histories of the SRG, see articles by
W. Allen Wallis [1412] and Ingram Olkin [1056, pp. 123–125].

In 1936 Hotelling and Pabst used permutation methods for calculating exact
probability values for small samples of rank data in their research on simple
bivariate correlation [653]. Noting that tests of significance are primarily based on
the assumption of a normal distribution in a hypothetical population from which
the observations are assumed to be a random sample, Hotelling and Pabst set out to
develop methods of statistical inference without assuming any particular distribution
of the variates in the population from which the sample had been drawn. Hotelling
and Pabst noted that a false assumption of normality usually does not give rise to
serious error in the interpretation of simple means due to the central limit theorem,
but cautioned that the sampling distribution of second-order statistics are more
seriously disturbed by the lack of normality and pointed to “the grave dangers
in using even those distributions which for normal populations are accurate, in
the absence of definite evidence of normality” [653, p. 30]. Hotelling and Pabst
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also cautioned researchers about the pitfalls of using Pearson’s standard error to
provide probability values, noting that in order to use the standard error it was
necessary to assume that (1) the underlying population must be distributed as
bivariate normal—a more stringent assumption than requiring that each variate be
normally distributed, (2) only the first few terms of Pearson’s infinite series are
sufficient,45 (3) the distribution of Spearman’s rank-order correlation coefficient
is normal, and (4) sample values can be substituted for population values in the
formula for the standard error.

Consider n individuals arranged in two orders with respect to two differ-
ent attributes. If Xi denotes the rank of the ith individual with respect to one
attribute and Yi the rank with respect to the other attribute so that X1; : : : ; Xn

and Y1; : : : ; Yn are two permutations of the n natural integers 1; : : : ; n, then define
xi D Xi � NX and yi D Yi � NY where NX D NY D .n C 1/=2.46 The rank-order
correlation coefficient is then defined as

r 0 D

nX
iD1

xi yi

vuut nX
iD1

x2
i

nX
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i

: (2.2)

Hotelling and Pabst showed that
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ranks for the ith individual, so that di D Xi � Yi D xi � yi , then
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Substituting into Eq. (2.2) and simplifying yields

45In 1907, Pearson derived the standard error of Spearman’s rank-order correlation coefficient.
Assuming normality, Pearson generated the first four terms of an infinite series to provide an
approximate standard error [1109].
46In the early years of statistics it was common to denote raw scores with upper-case letters, e.g.,
X and Y , and deviations from the mean scores with lower-case letters, e.g., x and y.
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r 0 D 1 �
6

nX
iD1

d 2
i

n3 � n
;

which is Spearman’s rank-order correlation coefficient, first published by Charles
Spearman in 1904 in American Journal of Psychology [1300].

The article by Hotelling and Pabst utilized the calculation of a probability value
that incorporated all nŠ permutations of the data, under the null hypothesis that all
permutations were equally-likely (q.v. page 4).47 The probability for any particular
value was calculated as the proportion of the number of permutations equal to or
more extreme than the value obtained from the observed data. Following on the work
of Charles Spearman and Karl Pearson who had provided rough standard deviations
for a measure of rank-order correlation, Hotelling and Pabst provided a thorough
and accurate analysis that allowed for small samples. Although Hotelling and Pabst
did not produce tables for tests of significance, they did provide exact probability
values for small samples of n D 2; 3; and 4 [653, p. 35]. Finally, reflecting the
frustration of many statisticians in the 1930s, Hotelling and Pabst observed that for
large samples the calculation of exact probability values was very laborious, forcing
researchers to use approximations.

It is notable that while earlier works contained the essence of permutation tests,
the article by Hotelling and Pabst included a much more explicit description of
permutation procedures, including notation and specific examples for small data
sets. Thus, this 1936 article may well be the first example that detailed the method
of calculating a permutation test using all possible arrangements of the observed
data. It is interesting to note, however, that the work by Hotelling and Pabst became
important in the discussion of distribution-free procedures involving rank data, but
did not have a noticeable impact in the furthering of permutation tests.

2.12 Friedman and Analysis of Variance for Ranks

Trained as an economist, Milton Friedman became one of the most celebrated
statisticians of his time. In addition to his contributions as an academic at the
University of Chicago, he was also a public servant at the national level.

M. Friedman

(continued)

47This is an area of some controversy. Some researchers hold that, if and only if generalizing from
a sample to a population, permutations are equally likely in controlled experimentation, but may
not be equally likely in non-experimental research; see for example Zieffler, Harring, and Long
[1493, pp. 132–134].
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Milton Friedman graduated from Rutgers University in 1932 with an under-
graduate degree in mathematics and economics, earned his M.A. degree from
the University of Chicago in economics in 1933, and his Ph.D. in economics
from Columbia University in 1946, where he worked with Harold Hotelling.
During World War II, Friedman worked in Columbia’s Statistical Research
Group as a mathematical statistician (q.v. page 69). After the war, Friedman
spent 1 year at the University of Minnesota where his good friend George
Stigler was employed, but then accepted an appointment at the University
of Chicago, where he taught for the next 30 years, while simultaneously
maintaining a position with the National Bureau of Economic Research in
New York City. Friedman was an academic who also spent much of his
life in public service, but considered these part time activities, noting that
his primary interest was his “scientific work” [487]. He was a member
of President Ronald Reagan’s Economic Policy Advisory Board and was
awarded the Nobel Prize in Economic Sciences in 1976. Milton Friedman
passed away on 16 November 2006 at the advanced age of 94 [483, 487].

Noting the contribution by Hotelling and Pabst on using rank data to overcome
the assumption of normality in simple bivariate correlation, in 1937 Friedman
outlined a similar procedure employing rank data in place of the ordinary analysis
of variance [485].48 If p denotes the number of ranks, Friedman utilized known
results such as sums of natural integers, squared natural integers, and cubed natural
integers from 1 to p given by p.p C 1/=2, p.p C 1/.2p C 1/=6, and p2.p � 1/2=4,
respectively.

Friedman went on to show that the sampling distribution of the mean of ranks,
where Nrj denotes the mean rank of the jth of p columns, would have a mean
value � D .p C 1/=2 and a variance of �2 D .p2 � 1/=.12n/, where n is the
number of ranks averaged over the jth column. The hypothesis that the means come
from a single homogeneous normal universe could then be tested by computing a
statistic, �2

r , which Friedman noted tends to be distributed as the usual chi-squared
distribution with p � 1 degrees of freedom when the ranks are, in fact, random, i.e.,
when the factor tested has no influence [485, p. 676]. Friedman defined �2

r as

�2
r D p � 1

p �2

pX
j D1
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	2 D 12n
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�
Nrj � p C 1

2

�2

;

which for calculation purposes reduces to

48A clear and concise explanation of the Friedman analysis of variance for ranks test was given by
Lincoln Moses in a 1952 publication on “Non-parametric statistics for psychological research” in
Psychological Bulletin [1010].
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�2
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� 3n.p C 1/ ;

where rij denotes the rank in the ith of n rows and jth of p columns.
Friedman emphasized that the proposed method of ranks did not utilize all of the

information provided by the observed data, as the method relied solely on the order
of the variate and thus made no use of the quantitative magnitude of the variate.
The consequences of that, he explained, were that (1) the method of ranks makes
no assumption whatsoever as to the similarity of the distribution of the variate for
the different rows, (2) the method of ranks does not provide for interaction because
without quantitative measurements interaction is meaningless, and (3) the method
of ranks is independent of the assumption of normality.

Friedman demonstrated that for n D 2, �2
r tends to normality as p increases,

and when n is large the discrete distribution of �2
r approaches the continuous �2

distribution and the latter approaches normality as the degrees of freedom increases.
For small samples, Friedman presented, in Tables V and VI in [485], the exact
distribution of �2

r in the case of p D 3 for n D 2; : : : ; 9 and in the case of p D 4,
for n D 2; 3; and 4 [485, pp. 688–689]. Finally, returning to the work of Hotelling
and Pabst, Friedman showed that the Spearman rank-order correlation coefficient
investigated by Hotelling and Pabst was related to �2

r when n D 2 as

�2
r D .p � 1/.1 � r 0/ ;

where r 0 denotes the Spearman rank-order correlation coefficient. In 1997 Röhmel
published an algorithm for computing the exact permutation distribution of the
Friedman analysis of variance for ranks test [1186].

2.13 Welch’s Randomized Blocks and Latin Squares

In 1937 B.L. Welch published an article in Biometrika that described permutation
versions of randomized block and Latin square analysis of variance designs [1428].
He then compared the permutation versions of the two designs with the existing
normal-theory versions.

B.L. Welch
Bernard Lewis Welch graduated with a degree in mathematics from Brasenose
College, University of Oxford, in 1933. He then pursued a study of mathe-
matical statistics at University College, London, where Pearson and Fisher
had created a center for studies in statistical inference and biostatistics.
Welch received an appointment to a Readership in Statistics in the University

(continued)
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of Leeds, was appointed to the Chair in Statistics in 1968, and in the same year
was appointed head of the newly created Department of Statistics. Bernard
Lewis Welch suffered a stroke in June 1989 and died on 29 December of that
same year; he was 78 years old [892].

In an article on randomized block and Latin square analysis of variance designs
in Biometrika in 1937, Welch described Fisher’s inference to an exact probability,
referencing The Design of Experiments, and noted that although the calculations
would be lengthy, the result would be a hypothesis test that was free of assumptions
about the data [1428]. In this seminal article, Welch compared the normal-theory
version of Fisher’s variance-ratio z test with a permutation version in analyses of
randomized block and Latin square designs.

Welch found it convenient to consider, instead of z, a monotonically increasing
function of z given by

U D S1

S0 C S1

D
h
.n � 1/ exp.�2z/ C 1

i�1

;

where S1 D SSBetween D SSTreatment and S0 D SSWithin D SSError in modern notation,
although Jerzy Neyman had previously pointed out the advisability of considering
the z-distribution directly [1033]. Like Eden and Yates in 1933 [379] and Pitman in
1937 [1129], Welch was able to reduce the amount of computation by considering
only the variable portions of z. Welch explained that the convenience of U over z
lies in the fact that in the permutation procedure (S0 C S1) is constant, thus only the
variation of S1 D SSBetween need be considered.

Utilizing the first two moments of the distribution of U , Welch analyzed a
number of small published data sets in investigations of randomized block and Latin
square designs. For randomized block designs, Welch found the expectations of
differences and of mean squares based on permutations of the data generally to agree
with those based on normal-theory methods. However, for Latin square designs
Welch found that the permutation variance was considerably smaller than that of the
normal-theory variance. Anticipating a debate that would appear and reappear in the
permutation literature, Welch considered two possibilities for statistical inference.
The first alternative considered a statistical inference about only the particular
experimental data being analyzed; in Welch’s case, a statistical inference only about
the agricultural yields of a particular experimental field [1428, p. 48]. The second
alternative considered the statistical inference drawn from the experimental data to
a defined population, thus regarding the permutation distribution of z as a random
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sample from a set of similar distributions hypothetically obtained from other similar
experiments [1428, p. 48].49

2.14 Egon Pearson on Randomization

E.S. Pearson, the son of Karl Pearson, had a distinguished career as a statistician in
his own right. He collaborated extensively with Neyman and H.O. Hartley, among
others, producing some of the most important and enduring statistical inference
procedures of his time. His partnership with H.O. Hartley led to the two volume
work on Biometrika Tables for Statisticians and his association with Jerzy Neyman
led, of course, to the classical Neyman–Pearson approach to statistical inference,
testing hypotheses, and confidence intervals.

E.S. Pearson
Egon Sharpe Pearson was the only son of Karl Pearson, who also had two
daughters, and the two shared a deep interest in the history of probability and
statistics [76]. E.S. Pearson was educated at Winchester College and Trinity
College, University of Cambridge, but his education was interrupted by World
War I. In 1920, Pearson was awarded a B.A. degree in mathematics after
taking the Military Special Examination, set up by the British Government for
those whose studies were delayed by the onset of the war. Pearson joined the
Department of Applied Statistics, University College, London in 1920, where
he attended lectures given by his father [814]. When Karl Pearson retired in
1933, the Department of Applied Statistics was divided into two departments.
E.S. Pearson was appointed head of the Department of Applied Statistics and
R.A. Fisher was appointed head of the Department of Eugenics.

Egon Pearson collaborated extensively with Jerzy Neyman (q.v. page 21)
researching statistical inference [1035,1036], an account of which is given by
Pearson [1097], Reid [1160], and Lehmann [816, Chap. 3]. Pearson continued
work begun by his father on editing the two volumes of Tables for Statisticians
and Biometricians, collaborating with H.O. Hartley to compile and edit the
tables that were eventually published as Biometrika Tables for Statisticians,
Volume I in 1954 and Biometrika Tables for Statisticians, Volume II in 1972
[1101,1102]. Pearson was elected Fellow of the Royal Society in 1966. Egon
Sharpe Pearson F.R.S. died on 12 June 1980 at the age of 84.

49For a concise summary of the 1937 Welch paper, see a 2008 article by H.A. David on “The
beginnings of randomization tests” in The American Statistician [326].
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H.O. Hartley
Herman Otto Hartley (née Hirschfeld) fled Germany in 1934 shortly after
completing his Ph.D. in mathematics at the University of Berlin to begin post-
graduate work at the University of Cambridge. It was while in England that
Hartley met E.S. Pearson at University College, London. In 1953, Hartley
emigrated from England to the United States, joining the department of
statistics at Iowa State University. In 1969, Hartley accepted a position as
distinguished professor at Texas A&M University, and in 1979 Hartley was
elected the 74th president of the American Statistical Association [321,1287].
Herman Otto Hartley passed away on 30 December 1980 in Durham, North
Carolina, from complications following open heart surgery [321,1286,1287].

In 1937 E.S. Pearson referenced the Fisher text on The Design of Experiments in
his consideration of randomizations in “Some aspects of the problem of randomiza-
tion” [1093]. Pearson discussed the principle of randomization (i.e., permutation)
and noted that most statistical tests used were developed on the assumption that
the variables were normally distributed, but permutation tests, as developed by
Fisher, were claimed to be independent of the assumption of normality. Pearson
then asked “how far can tests be constructed which are completely independent of
any assumption of normality?” [1093, p. 56].

Pearson provided concise summaries of several studies utilizing permutation
methods, questioning whether the studies were truly independent of normality. The
first study examined by Pearson was Fisher’s investigation into Darwin’s data on
the heights of crossed- and self-fertilized Zea mays plants (q.v. page 62). Pearson
noted that Fisher’s study of the Zea mays plants found that 1,722 out of 32,768
possible values of the mean heights of plants were greater than the mean height of
the observed plants, which was 20.933 in. (although the value given by Pearson of
1,722 appears to be a slight misprint) and that this was in no way unique. Pearson
explained that Fisher could have used the geometric mean, for example, instead
of the arithmetic mean and possibly found different results. The point being not
that the geometric mean was a rational choice, but that “if variation is normal, a
criterion based on the observed mean difference in samples [would] be most efficient
in determining a real population difference” [1093, p. 58] and therefore using the
arithmetic mean implied that the researcher believed a priori that the characteristics
measured were likely to be normally distributed.

A second study examined by Pearson was Fisher’s investigation into the coef-
ficient of racial likeness [453]. As noted on page 65, Fisher considered measures
of the statures of a random sample of n D 100 Frenchmen and n D 100

Englishmen to test the hypothesis that the mean heights of the sampled populations
of Frenchmen and Englishmen were identical. Recall that Fisher conjectured writing
the 2n measurements on cards, then shuffling the cards without regard to nationality.
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Thus, it would be possible to divide the cards into two groups, each containing
n cards, in .2n/Š=.nŠ/2 ways. The test statistic suggested was the difference
between the means of the two groups. Again, Pearson questioned whether there
was something fundamental about the form of the test “so it [could] be used as a
standard against which to compare other more expeditious tests, such as Student’s”
[1093, p. 59].

Pearson continued with a hypothetical study based on two samples of seven
observations each. The data for Samples 1 and 2 were: {45, 21, 69, 82, 79, 93,
34} and {120, 122, 107, 127, 124, 41, 37}, respectively. Sample 1 had a mean of
Nx1 D 60:43 and a midpoint, defined as the arithmetic average of the lowest and
highest scores in the sample, of m1 D 57; Sample 2 had a mean of Nx2 D 96:86

and a midpoint of m2 D 82. He showed that after pooling the fourteen numbers,
they could be divided into two groups of seven each in .14Š/=.7Š/2 D 3;432

ways. Pearson found that the differences in means of the two samples had an
equal or greater negative value than the observed mean difference of Nx1 � Nx2 D
60:43 � 96:86 D �36:43 in 126 out of 3,432 possible divisions, or 3.67 %. On
the other hand, he found that the differences in midpoints of the two samples
had an equal or greater negative value than the observed midpoint difference of
m1 � m2 D 57 � 82 D �25 in 45 of the 3,432 divisions or, 1.31 %.

Pearson explained that random assignments of the 14 numbers into two groups
of seven would give numerical values as large or larger than that observed to the
difference in means on 2 � 3:67 D 7:34 % of occasions, and numerical values as
large or larger than that observed to the difference in midpoints on 2�1:31 D 2:62 %
of occasions. Pearson concluded that “applying this form of test to the midpoints, we
would be more likely to suspect a difference in populations sampled than in applying
the test to the means” [1093, p. 60]. Later in the article, Pearson confessed that he
structured the data to favor the midpoints. Specifically, Pearson used Tippett’s tables
of uniform random numbers to draw the two samples from a rectangular distribution
[1362]. Pearson showed that the standard error of the midpoint in samples of size n

from a rectangular population with standard deviation �x was

�m D �x

s
6

.n C 1/.n C 2/
D �x

s
6

.7 C 1/.7 C 2/
D 0:289 �x ;

while for the mean the standard error was considerably larger at

� Nx D �xp
n

D �xp
7

D 0:378 �x :

On this basis, Pearson argued “we should expect on theoretical grounds that
the difference in sample midpoints, rather than in sample means, would be more
efficient in detecting real differences” [1093, p. 61]. Pearson acknowledged that
very few variables actually possess a rectangular distribution, but that he introduced
these examples because they suggested that it is impossible to make a rational choice
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among alternative tests unless some information beyond that contained in the sample
data is introduced. Pearson concluded the article with the acknowledgment that
Fisher’s randomization test was both exceedingly suggestive and often useful, but
should be described as a valuable device rather than a fundamental principle.

As with Fisher, neither Welch nor Pearson fully explained the permutation
technique. It was not until 1937 and 1938 that a series of articles by E.J.G. Pitman
[1129–1131] explicitly discussed the permutation approach for statistical analysis.
These three articles extended permutation methods to include data that were not
amenable to ranking.

2.15 Pitman and Three Seminal Articles

E.J.G. Pitman, trained as a mathematician and isolated by distance from the
centers of statistics in England due to his teaching duties at the University of
Tasmania for 36 years, nonetheless contributed extensively to the early development
of permutation methods. Some insight into Pitman the mathematician/statistician
can be gleaned from a 1982 publication by Pitman titled “Reminiscences of a
mathematician who strayed into statistics” in The Making of Statisticians edited
by Joseph (Joe) Gani [1133].

E.J.G. Pitman
Edwin James George Pitman graduated from the University of Melbourne
with a B.A. degree in mathematics in 1921, a B.Sc. degree in mathematics in
1922, and an M.A. degree in mathematics in 1923 [1458]. In 1926 Pitman was
appointed Professor of Mathematics at the University of Tasmania, a position
he held from 1926 to 1962. Like many contributors to statistical methods of
this era, Pitman had no formal training in statistics, but was intrigued by the
work of R.A. Fisher on statistical inference and randomization.

Pitman produced three formative papers on permutation methods in 1937
and 1938 [814, 1133, 1457]. In the introduction to the first paper on “Signif-
icance tests which may be applied to samples from any populations,” Pitman
first stated the object of the paper was to “devise valid tests of significance
which involve no assumptions about the forms of the population sampled,”
and second, noted that the idea underlying permutation tests “seem[ed] to
be implicit in all of Fisher’s writings” [1129, p. 119]. Eugene Edgington,
however, recounted that in 1986 Pitman expressed dissatisfaction with the
introduction to his paper, writing “I [Pitman] was always dissatisfied with
the sentence I wrote . . . I wanted to say I really was doing something new”
(Pitman, quoted in Edgington [394, p. 18]). Edwin James George Pitman
retired from the University of Tasmania in 1962 and died on 21 July 1993
at the age of 95.
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2.15.1 Permutation Analysis of Two Samples

In the first of three seminal papers, Pitman demonstrated how researchers could
devise valid tests of significance between two independent samples that made no
assumptions about the distributions of the sampled populations. In addition, Pitman
showed how precise limits could be determined for the difference between two inde-
pendent means, again without making any assumptions about the populations from
which the samples were obtained. An example will serve to illustrate Pitman’s two-
sample permutation test of significance. Consider two independent samples with m

and n observations, respectively, and let m � n. Denote the observations in the first
sample as x1; x2; : : : ; xm with mean Nx, and denote the observations in the second
sample as y1; y2; : : : ; yn with mean Ny. Let the grand mean of the mCn observations
be given by

Nz D m Nx C n Ny
m C n

and note that Nz is invariant over all

N D
 

m C n

m

!

permutations of the m C n observations with m and n held constant. Then

Ny D 1

n

h
.m C n/Nz � m Nx

i
and the spread of the separation between Nx and Ny is given by

j Nx � Nyj D
ˇ̌̌

Nx � 1

n

h
.m C n/Nz � m Nx

i ˇ̌̌
D m C n

n

ˇ̌ Nx � Nz ˇ̌
D
ˇ̌̌ mX

iD1

xi � mNz
ˇ̌̌m C n

mn
:

Since m, n, and Nz are invariant over the permutations of the observed data,
each arrangement of the observed data is a simple function of

Pm
iD1 xi for a one-

sided probability value and jPm
iD1 xi � mNz j for a two-sided probability value;

consequently, the computation required for each arrangement of the data is reduced
considerably.

In contrast to contemporary permutation methods that compute the probability
of an observed result as the proportion of simulated results as or more extreme
than the observed result, Pitman devised a test of significance as follows. Let M

be a fixed integer less than N and consider any particular mean difference denoted
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Table 2.12 Eight groups of m D 4 with the largest values of jPm
iD1 xi � 68j

Group Groups of m D 4
Pm

iD1 xi jPm
iD1 xi � 68j

1 0 11 12 16 39 29
2 0 11 12 19 42 26
3 0 11 12 20 43 25
4 0 11 12 22 45 23
5 29 24 22 20 95 27
6 29 24 22 19 94 26
7 29 24 20 19 92 24
8 29 24 22 16 91 23

by R. If there are not more than M arrangements with a mean difference equal to or
greater than that of R, the result is considered significant, and if there are M or more
mean differences greater than that of R, the result is considered non-significant. As
Pitman observed, in practice M is typically chosen to correspond with one of the
usual working values, i.e., 5 or 1 %.

Pitman provided the following example, asking “Are the following samples
significantly different?” {1.2, 2.3, 2.4, 3.2} and {2.8, 3.1, 3.4, 3.6, 4.1}. To
simplify calculation, Pitman subtracted 1.2 from each sample value, multiplied each
difference by 10 to eliminate the decimal points, and re-arranged the nine values
in order of magnitude, yielding {0, 11, 12, 16, 19, 20, 22, 24, 29}. He found the
overall mean value to be Nz D 17, so mNz D 68. Pitman explained that there were
N D .4 C 5/Š=.4Š 5Š/ D 126 of m C n D 9 values divided into samples of m D 4

and n D 5. The eight groups of m D 4 that gave the largest values of jPm
iD1 xi �68j

are listed in Table 2.12. Pitman observed that the third group of {0, 11, 12, 20} gave
the fifth largest value of jPm

iD1 xi � 68j D 25 and was therefore significant at any
level exceeding 5=126 D 0:0397.

Importantly, Pitman noted that while only one test based on differences between
two means was presented in this initial paper, the principle was applicable to all
tests [1129, p. 119]. Pitman went on to mention that other tests of significance
could be developed along the same lines, in particular an analysis of variance test,
and commented that “the author hopes to deal with this in a further paper” [1129,
p. 130].50

2.15.2 Permutation Analysis of Correlation

In the second of the three papers, Pitman began to fulfill his promise in the
first paper and developed the permutation approach for the Pearson product-
moment correlation coefficient “which makes no assumptions about the population

50H.A. David provides a concise summary of the 1937 Pitman paper in his 2008 article in The
American Statistician on “The beginnings of randomization tests” [326].
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sampled” [1130, p. 232]. Consider bivariate observations on n objects consisting
of x1; x2; : : : ; xn and y1; y2; : : : ; yn, with means Nx and Ny, respectively. Pitman
showed that the observations of one set (x) may be paired with the observations
of the other set (y) in nŠ ways. Pitman’s test of significance then paralleled the test
of significance in the first paper. Pitman explained as follows. Let M be a fixed
integer less than N D nŠ and consider any particular pairing R. If there are not
more than M pairings with a correlation coefficient equal to or greater than that of
R in absolute value, then R is considered significant, and if there are M or more
pairings with a correlation coefficient greater in absolute value than R, then R is
considered non-significant.

Pitman summarized the results of his investigation by stating that the proposed
test of significance for the correlation of a sample made no assumptions about
the sampled population and concluded that some modification of the analysis
of variance procedure would free it from its present assumptions, “but further
discussion must be reserved for another paper” [1130, p. 232].

2.15.3 Permutation Analysis of Variance

True to form, Pitman followed up on this second promise in the third of his three
papers, although this paper deviated somewhat from the presentations in the earlier
two papers. In this third paper, Pitman proposed a permutation test for the analysis
of variance “which involves no assumptions of normality” [1131, p. 335]. In this
case, however, Pitman did not calculate a permutation test on actual data. Rather,
Pitman detailed the mechanics and advantages of such a permutation test without
carrying through the actual permutation analysis of experimental data, as he had
in the previous two papers. Instead, Pitman noted that in the form of analysis of
variance test discussed in the paper (randomized blocks) the observed numbers were
not regarded as a sample from a larger population. Pitman went on to describe an
experiment consisting of m batches, each batch composed of n individuals with the
individuals of each batch subjected to n different treatments, and defined

W D SSTreatment

SSTreatment C SSError
;

which is a monotonic increasing function of SSTreatment=SSError.51 Pitman explained
that the problem of testing the null hypothesis that the treatments are equal is
undertaken without making any assumptions. He went on to say that if the null
hypothesis is true, then the observed value of W is the result of the chance allocation
of the treatments to the individuals in the batches. He imagined repetitions of the
same experiment with the same batches and the same individuals, but with different
allocations of the treatments to the individuals in the various batches. Pitman also

51Pitman’s use of SSTreatment and SSError is equivalent to SSBetween and SSWithin, respectively, as used
by others.
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noted that there were N D .nŠ/m�1 ways in which the numbers may be grouped
into n groups, so that W may take on N values, and that all values of W are
equally-likely. However, Pitman stopped short of actually calculating a permutation
test based on W . Instead he focused on deriving the first four moments of W and,
based on the beta distribution, concluded that when both m and n are not too small,
“the usual test may be safely applied” [1131, p. 335].52

2.16 Welch and the Correlation Ratio

In a 1938 article, “On tests for homogeneity,” B.L. Welch (q.v. page 73) addressed
tests of homogeneity for the correlation ratio, �2. Assuming a set of k samples,
Welch questioned whether they could reasonably be regarded as having all been
drawn from the same population [1429]. Welch noted that �2 depends on the
observations having been drawn as random samples from an infinite hypothetical
population and suggested that it may be better to consider the observations as
samples from a limited population. Welch advocated calculating exact values on a
limited population before moving into an examination of the moments of an infinite
population [1429].

Welch explained that if there are N total observations with ni observations in
each treatment, i D 1; : : : ; k, then the N observations may be assigned to the k

treatments in

N Š

n1Š n2Š � � � nkŠ

ways and a discrete distribution of �2 values may be constructed to which the
observed value of �2 may be referred [1429]. Welch continued with an example
of an exact calculation and further concluded that if the variances of different
samples were markedly different, normal-theory methods could badly underestimate
significant differences that might exist. An exact permutation test, however, being
free from the assumptions usually associated with asymptotic statistical tests,
had no such limitation. Welch argued for the limited population approach on the
grounds that it assumes nothing not obtained directly from the observed sample
values.53 However, Welch also noted that a limited population is only a mental
construct. As an example, he pointed to a population of unemployed workers. This
population definitely existed and could be sampled, but a population generated by
shuffling the observed observations “does not correspond to anything concrete”
other than the observed sample [1429, p. 154].

52The method of moments was first proposed by Karl Pearson in 1894 [1105].
53Today, this approach is termed “data-dependent” analysis.
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2.17 Olds and Rank-Order Correlation

E.G. Olds, trained as a mathematician, nonetheless achieved substantial recognition
in the fields of statistical assurance and quality control. In addition, Olds contributed
to the growing literature on rank-order correlation methods begun by Spearman in
1904 [1300] and continued by Hotelling and Pabst in 1936 [653].

E.G. Olds
Edwin Glenn Olds graduated with a B.A. degree from Cornell University in
1918 and, at that point, went to Watkins (New York) High School as vice-
principal and athletic coach, then became principal of Beeman Academy
and the New Haven graded schools at New Haven, Vermont [284]. In 1923,
Olds was appointed as instructor in mathematics at the Carnegie Institute of
Technology [282].54 Olds received his M.A. degree in mathematics from the
University of Pittsburgh in 1925 [283] and his Ph.D. in mathematics from the
University of Pittsburgh in 1931 [285], remaining at the Carnegie Institute of
Technology for nearly 40 years [296]. Olds achieved considerable prominence
in the fields of statistical assurance and quality control. Edwin Glenn Olds
died following a heart attack on 10 October 1961 in his Pittsburgh home at
the age of 61.

In 1938 Olds [1054], following up on the work by Hotelling and Pabst on rank-
order correlation methods [653], calculated probability values up to n D 10 for
Spearman’s rank-order correlation coefficient [1300]. The probability values were
based on the relative frequencies in the nŠ permutations of one ranking against the
other (q.v. page 4). The probability values for n D 2; : : : ; 7 were computed from
exact frequencies, however those for n D 8; 9; and 10 were computed from Pearson
type II curves.55 Commenting on the difficulty of computing exact probability
values, even for ranks, Olds echoed the frustration of many statisticians with the
lack of computing power of the day, lamenting: “[f]or sums greater than 8 the
[asymptotic] method becomes quite inviting” [1054, p. 141], and “[f]or n as small as
8, [an exact test] means the requirement of 42 formulas. It is fairly evident that these
formulas will comprise polynomials ranging in degree from 0 to 41” [1054, p. 141].
Despite this, some 11 years later in 1949 Olds was able to extend the probability
values for n D 11; 12; : : : ; 30, again employing Pearson type II curves [1055].

54In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial
Research to form Carnegie Mellon University, which abuts the campus of the University of
Pittsburgh. The Carnegie Institute of Technology is now the school of engineering at Carnegie
Mellon University.
55There was an error in the denominator of the variance in the 1938 paper. It was first noticed by
Scheffé in 1943 [1230] and corrected by Olds in 1949 [1055].
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2.18 Kendall and Rank Correlation

M.G. Kendall is probably best remembered as the author of seminal books on
rank-order correlation methods, advanced statistical methods, and a dictionary of
statistical terms [729, 731, 734, 742]. However, he was also instrumental in the
development and promotion of permutation statistical methods.

M.G. Kendall
Maurice George Kendall received his B.A. degree in mathematics from St.
John’s College, University of Cambridge, in 1929. In 1930, Kendall joined
the British Civil Service in the Ministry of Agriculture, where he first became
involved in statistical work. In 1949, Kendall accepted the second chair of
statistics at the London School of Economics, which he held until 1961.
Kendall spent the rest of his career in industry and in 1972 became Director of
the World Fertility Study where he remained until 1980 when illness forced
him to step down [1064]. Kendall is perhaps best remembered today for his
revision of George Udny Yule’s textbook An Introduction to the Theory of
Statistics in 1937 [1482], first published in 1911 and continuing through 14
editions; Kendall’s two volume work on The Advanced Theory of Statistics,
with Volume I on “Distribution Theory” appearing in 1943 [729] and Volume
II on “Inference and Relationship” in 1946 [731];56 Kendall’s definitive Rank
Correlation Methods, first published in 1948; and Kendall’s Dictionary of
Statistical Terms with William R. Buckland, published in 1957 [742]. Kendall
was knighted by Queen Elizabeth II in 1974 [73, 1328]. Sir Maurice George
Kendall died on 29 March 1983 at the age of 75.

Kendall incorporated exact probability values utilizing the “entire universe” of
permutations in the construction of � , a new measure of rank-order correlation in
1938 [728].57 The new measure of rank correlation was based on the difference
between the sums of the concordant and discordant pairs of observations. The
actual score for any given ranking of the data was denoted as † by Kendall. For
example, consider the data of two sets (A and B) of ten ranks in Fig. 2.3. There are
n.n � 1/=2 D 10.10 � 1/=2 D 45 possible pairs, divisible into concordant and

56While The Advanced Theory of Statistics began as a two-volume work, in 1966 Alan Stuart
joined with Maurice Kendall and The Advanced Theory was rewritten in three volumes. Keith Ord
joined in the early eighties and a new volume on Bayesian Inference was published in 1994. More
recently, Steven Arnold was invited to join with Keith Ord.
57As Kendall explained in a later publication, the coefficient � was considered earlier by Greiner
[554] and Esscher [414] as a method of estimating correlations in a normal population, and was
rediscovered by Kendall [728] who considered it purely as a measure of rank-order correlation
[734].
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Fig. 2.3 Sets A and B of ten
ranks each

Fig. 2.4 Successive arrays of
† values as delineated by
Kendall [728]

discordant pairs of observations. A concordant pair has the same order and sign and
a discordant pair has a different order and sign. For example, the first pair, starting
from the left, is A D f1; 2g and B D f4; 7g. Since 1 � 2 D �1 and 4 � 7 D �3,
the first pair is concordant as both signs are negative. The second pair is A D f1; 3g
and B D f4; 2g and since 1�3 D �2 and 4�2 D C2, the second pair is discordant
as the signs do not agree, with one being negative and the other positive. The last
pair is A D f9; 10g and B D f5; 9g and since 9 � 10 D �1 and 5 � 9 D �4, the
last pair is concordant as the signs agree. For these data, the number of concordant
pairs is 25 and the number of discordant pairs is 20. Thus, † D 25 � 20 D C5 for
these data.

Kendall considered the entire universe of values of † obtained from the observed
rankings 1; 2; : : : ; n and the nŠ possible permutations of the n ranks (q.v. page 4).
A clever recursive procedure permitted the calculation of the frequency array of †,
yielding a figurate triangle similar to Pascal’s triangle.58

As Kendall explained, the successive arrays of † were constituted by the process
illustrated in Fig. 2.4. For each row, to find the array for .n C 1/, write down the
nth array .n C 1/ times, one under the other and moving one place to the right each

58A recursive process is one in which items are defined in terms of items of similar kind. Using
a recurrence relation, a class of items can be constructed from a few initial values (a base) and a
small number of relationships (rules). For example, given the base, F0 D 0 and F1 D F2 D 1,
the Fibonacci series {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . } can be constructed by the recursive rule Fn D
Fn�1 C Fn�2 for n > 2.
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Fig. 2.5 Figurate triangle for
values of † with
n D 1; : : : ; 5

time, and then sum the .n C 1/ arrays. The process may be condensed by forming
a figurate triangle as in Fig. 2.5. Here, a number in the nth row is the sum of the
number immediately above it and the n�1 (or fewer) numbers to the immediate left
of that number.

Consider row n D 5 in the figurate triangle in Fig. 2.5 where the value of 4 in the
second position from the left in row 5 is the sum of the number above it (3) in row 4
and all the numbers to the left of 3 in row 4 (1), since there are fewer than n�1 D 4

numbers to the left of 3; the value of 9 in the third position from the left in row 5 is
the sum of the number above it (5) in row 4 and all the numbers to the left of 5 in
row 4 (3 and 1), since there are fewer than n � 1 D 4 numbers to the left of 3; the
value of 15 in the fourth position from the left in row 5 is the sum of the number
above it (6) in row 4 and all the numbers to the left of 3 in row 4 (5, 3, and 1), since
there are fewer than n � 1 D 4 numbers to the left of 6; the value of 20 in the fifth
position from the left in row 5 is the sum of the number above it (5) in row 4 and
all the numbers to the left of 5 in row 4 (6, 5, 3, and 1), since there are n � 1 D 4

numbers to the left of 5; and the value of 22 in the sixth position from the left in row
5 is the sum of the number above it (3) in row 4 and the n � 1 D 4 numbers to the
left of 3 in row 4 (5, 6, 5, and 3), since there are more than n � 1 D 4 numbers to
the left of 3. The terms to the right of the last number are filled in from the left, as
each array is symmetrical. A check is provided by the fact that the total in the nth
row is equal to nŠ. Utilizing this technique, Kendall was able to construct a table of
the distribution of † for values of n from 1 to 10 [728, p. 88].

This accomplishment was further extended in a 1939 publication in which
Kendall and Bernard Babington Smith considered “The problem of m rankings,”
developing the well-known coefficient of concordance [739].59;60 Let n and m

denote the number of ranks and the number of judges, respectively, then Kendall
and Babington Smith defined the coefficient of concordance, W , as

W D 12S

m2.n3 � n/
;

59A correction was proffered by J.A. van der Heiden in 1952 for observers who declined to express
a preference between a pair of objects [1390].
60The coefficient of concordance was independently developed by W. Allen Wallis in 1939, which
he termed the “correlation ratio for ranked data” [1411].
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where S is the observed sum of squares of the deviations of sums of ranks from
the mean value m.n C 1/=2. W is simply related to the average of the

�
m
2

	
Spearman rank-order correlation coefficients between pairs of m rankings. Kendall
and Babington Smith showed that the average Spearman rank-order correlation, �av,
is given by

�av D mW � 1

m � 1

and pointed out that �av is simply the intraclass correlation coefficient, rI , for the m

sets of ranks. The coefficient of concordance is also equivalent to the Friedman two-
way analysis of variance for ranks, as noted by I.R. Savage in 1957 [1224, p. 335].

Since m2.n3 � n/ is invariant over permutation of the observed data, Kendall and
Babington Smith showed that to test whether an observed value of S is statistically
significant it is necessary to consider the distribution of S by permuting the n ranks
in all possible ways. Letting one of the m sets of ranks be fixed, then there are
.nŠ/m�1 possible values of S . Based on this permutation procedure, Kendall and
Babington Smith created four tables that provided exact probability values for n D 3

and m D 2; : : : ; 10, n D 4 and m D 2; : : : ; 6, and n D 5 and m D 3.
In the same year, 1939, Kendall, Kendall, and Babington Smith utilized per-

mutation methods in a discussion of the distribution of Spearman’s coefficient of
rank-order correlation, �s , introduced by Spearman in 1904 [1300] and given by

�s D 1 �
6

nX
iD1

d 2
i

n3 � n
;

where di D Xi � Yi and Xi and Yi , i D 1; : : : ; n, are the permutation sequences
of the natural integers from 1 to n [746]. Kendall, Kendall, and Babington Smith
observed that to judge the significance of a value of �s it is necessary to consider the
distribution of values obtained from the observed ranks with all other permutations
of the numbers from 1 to n and further noted that in practice it is generally more
convenient to consider the distribution of

Pn
iD1 d 2

i [746, p. 251]. They remarked that
distributions for small values of n obtained by Hotelling and Pabst [653] deviated
considerably from normality and that Hotelling and Pabst proved that as n ! 1
the distribution of �s tends to normality. They went on to mention that �s is mainly
of service when 10 � n � 30 and stated that “it is the aim of the present paper
to throw some light on this crepuscular territory” [746, p. 252]. Finally, Kendall,
Kendall, and Babington Smith gave explicit values up to and including n D 8 with
some experimental distributions for n D 10 and n D 20. The distributions for n

up to 8 were exact and the distributions for n D 10 and n D 20 were based on a
random sample of 2,000 permutations [746, pp. 261–267].
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2.19 McCarthy and Randomized Blocks

M.D. McCarthy, trained as a statistician, was both an accomplished academic and
an able administrator, ultimately serving for 11 years as president of University
College, Cork, in Ireland. McCarthy urged researchers to first use a permutation test
as an approximation to a normal-theory test, then apply the normal-theory test.

M.D. McCarthy
M. Donal McCarthy received most of his advanced education at University
College, Cork, earning a B.A. degree in mathematics and mathematical
physics in 1928, an M.Sc. degree in mathematical science in 1934, and a Ph.D.
in statistics in 1938. He was an academic until he was appointed Director of
the Central Statistics Office, Ireland, on the resignation of R.C. Geary, serving
from 1957 to 1966. From 1967 to 1978 he served as President of University
College, Cork. M. Donal McCarthy died on 31 January 1980 at the age of
71 [910].

In 1939 McCarthy [911] also argued for the use of a permutation test as a first
approximation before considering the data via an asymptotic distribution, citing
earlier works by Fisher in 1935 [451] and 1936 [453] as well as by Welch in
1938 [1429]. McCarthy explained that in certain experiments, especially those in
the physical and chemical sciences, it is possible for a researcher to repeat an
experiment over and over. The repetition provides a series of observations of the
“true value,” subject only to random errors. However, in the biological and social
sciences it is nearly impossible to repeat an experiment under the same essential
conditions. McCarthy addressed the problem of analyzing data from a randomized
blocks experiment and utilized Fisher’s variance-ratio z statistic (q.v. page 33).
He concluded that the use of the z statistic is theoretically justifiable only when
the variations within each block are negligible, and suggested a permutation test on
the yields from a single block as a first approximation.

2.20 Computing and Calculators

The binary (base 2) system is the foundation of virtually all modern computer archi-
tecture. Although the full documentation of the binary system is usually attributed
to the German philosopher and mathematician Gottfried Leibniz61 in his 1703
article on “Explication de l’arithmétique binaire” (Explanation of binary arithmetic)

61Also spelled Leibnitz.
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[508, pp. 223–227], priority should probably be given to the English mathematician
and astronomer Thomas Harriot62 [357, 1047, 1266].

T. Harriot
Thomas Harriot, born circa 1560 in Oxfordshire, England, was an astronomer,
mathematician, ethnographer, translator, and the founder of the English school
of algebra [1047]. He graduated from St. Mary’s Hall, University of Oxford,
in 1580 and immediately moved to London. In 1583 Harriot entered Sir
Walter Raleigh’s service as a cartographer, navigational instructor to Raleigh’s
seamen, Raleigh’s accountant, and designer of expeditionary ships. He sailed
with Raleigh to Virginia in 1585–1586 and most probably accompanied
Raleigh on his expedition to Roanoke Island off the coast of North Carolina
in 1584. Harriot translated the Carolina Algonquin language from two native
Americans, Wanchese and Manteo, who had been brought back to England
by Raleigh in 1584 [586].

In the 1590s Harriot moved from working with Raleigh to an association
with Henry Percy, the 9th Earl of Northumberland. The Earl introduced him
to a circle of scholars, gave him property in the form of a former Abbey, and
provided him with a handsome pension and a house on Northumberland’s
estate of Syon House, west of London on the Thames River near Kew,
that Harriot used as both a residence and a scientific laboratory. Harriot is
best known for his work on algebra, introducing a simplified notation and
working with equations of higher degrees [1392]. Harriot published only one
book in his lifetime, leaving unpublished some 7,000 pages of hand-written
manuscripts that have slowly come into the mainstream of historical record
over the past three centuries. The book, published in 1588, was an abstract
of his extensive Chronicle (now lost) as A Briefe and True Report of the
New Found Land of Virginia—the first book in English about the New World,
detailing the flora, fauna, and land resources of Virginia [587].

As described on the website of the Thomas Harriot College of Arts and
Sciences, Harriot was a man of both intellect and action, described by a
contemporary as, “[t]he master of all essential and true knowledge.” He played
many roles as an adventurer, anthropologist, astronomer, author, cartogra-
pher, ethnographer, explorer, geographer, historian, linguist, mathematician,
naturalist, navigator, oceanographer, philosopher, planner, scientist, surveyor,
versifier, and teacher [586]. The sweeping breadth of Harriot’s life story is
well told in John W. Shirley’s book Thomas Harriot: A Biography [1267]. In
addition, the Thomas Harriot College of Arts and Sciences at East Carolina
State University in Greenville, North Carolina, maintains a list of Internet

(continued)

62Also spelled Hariot, Harriott, or Heriot.
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web-based sources on Thomas Harriot and his times [1265]. Thomas Harriot
died on 2 July 1621 in London and was buried in St. Christopher le Stocks,
which was destroyed in the Great Fire of London in 1666 and is presently the
site of the Bank of England.

G.W. Leibniz
Gottfried Wilhelm von Leibniz was born on 1 July 1646 in Leipzig, Saxony,
although some sources put the date of birth as 21 June 1646 using the Julian
calendar. In 1661 Liebniz began his university education at the University of
Leipzig. After earning his B.A. from Leipzig in December 1662, he continued
his studies at the University of Altdorf, earning a Doctorate of Law in 1667.
While at Altdorf, Leibniz published his Dissertation de arte combinatoria
(Dissertation on the Art of Combinations) in 1661 at the age of 20. In 1672 the
Elector of Mainz, Johann Philipp von Schönborn, sent Leibniz on a diplomatic
mission to Paris, then the center of learning and science. He remained in Paris
for 4 years, meeting with many of the major figures of the intellectual world.
In addition, he was given access to the unpublished manuscripts of both René
Descartes and Blaise Pascal. It was upon reading these manuscripts that he
began to conceive of the differential calculus and his eventual work on infinite
series [842].

In 1673 Leibniz traveled to London to present a prototype of his Stepped
Reckoner calculating machine to the Royal Society. In 1676 Leibniz was
appointed to the position of Privy Counselor of Justice to the Duke of
Hanover, serving three consecutive rulers of the House of Brunswick in
Hanover as historian, political advisor, and as librarian of the ducal library.
Leibniz is considered by modern scholars as the most important logician
between Aristotle and the year 1847, when George Boole and Augustus
De Morgan published separate books on modern formal logic. In addition,
Leibniz made important discoveries in mathematics, physics, geology, paleon-
tology, psychology, and sociology. Leibniz also wrote extensively on politics,
law, ethics, theology, history, and philosophy [819].

Today. Leibniz is best remembered, along with Sir Isaac Newton, for the
invention of infinitesimal calculus. He introduced many of the notations used
today, including the integral sign,

R
, and the d used for differentials. Gottfried

Wilhelm von Leibniz died in Hanover on 14 November 1716.

While Leibniz invented the Stepped Reckoner, a decimal (non-binary) calculator
that could add (subtract) an 8 digit number to (from) a 16 digit number, multiply
two 8 digit numbers together by repeated addition, or divide a 16 digit number by
an 8 digit divisor by repeated subtraction, computing by machine had its beginnings
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with the work of Charles Babbage, variously referred to as the “Grandfather” or
the “Patron Saint” of computing. Sometime around 1821, Babbage had the idea
to develop mechanical computation. Babbage was frustrated with the many errors
in tables used for calculating complex equations, some of which had persisted for
hundreds of years. The errors were largely due to the fact that the tables were copied
by hand and further transcribed to plates for printing. This led Babbage to develop
a mechanical device to calculate and print new tables; the device was called the
Difference Engine as it was designed for calculating polynomials of higher orders
using the method of differences [1336]. The Difference Engine was never finished
by Babbage, but was finally constructed in 1991 and presently resides in the London
Science Museum.63

C. Babbage
Charles Babbage was born in London on 26 December 1791, the son of a
London banker. He attended Trinity College, University of Cambridge, in
1810 but was disappointed in the level of mathematical instruction available
at the time at Trinity. In 1812 he transferred to Peterhouse College, University
of Cambridge, graduating in 1814. In 1817 Babbage received an M.A. degree
from Cambridge. In his twenties, Babbage worked as a mathematician and
was a founder of the Analytical Society along with George Peacock, John
Herschel, Michael Slegg, Edward Bromhead, Alexander D’Arblay, Edward
Ryan, Frederick Maule, and others. In 1821 Babbage invented the Difference
Engine to compile mathematical tables [106, 1290]. From 1828 to 1839
Babbage occupied the Lucasian Chair of Mathematics64 at the University of
Cambridge—Isaac Newton’s former position and one of the most prestigious
professorships at Cambridge—and played an important role in the establish-
ment of the Astronomical Society with mathematician and astronomer John
Frederick William Herschel, the London Statistical Society in 1834 (later,
in 1887, the Royal Statistical Society) and the British Association for the
Advancement of Science (BAAS) in 1831 [1027]. In 1856 he conceived of
a general symbol manipulator, the Analytical Engine.

As an interesting aside, in 1833, at a meeting of the British Association
for the Advancement of Science (now, the British Science Association) the
poet Samuel Taylor Coleridge raised the question as to what name to give
to professional experts in various scientific disciplines: an umbrella term that

(continued)

63Actually, the model in the London Science Museum is of Difference Engine Number 2, designed
by Babbage between 1846 and 1849 [1290, pp. 290–291].
64In a wonderful little book on the history of British science during the nineteenth century, Laura
Snyder noted that while Lucasian Professor of Mathematics at the University of Cambridge from
1828 to 1839, Charles Babbage never delivered a single lecture [1290, p. 130].
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would include anatomists, astronomers, biologists, chemists, and others. The
word “scientist” was suggested by William Whewell, a mineralogist, historian
of science, and future master of Trinity College, and thus was coined the term
“scientist” [1175, p. 8].

Babbage published some eighty volumes in his lifetime and was elected
Fellow of the Royal Society in 1816. Among other accomplishments, Bab-
bage published a table of logarithms from 1 to 108,000 in 1827 and invented
the cow-catcher, the dynamometer, the standard railroad gauge, and occulting
lights for lighthouses. Charles Babbage F.R.S. passed away at home in
London on 18 October 1871 at the age of 79 [672, 1447].

In a well-known story, the textile industry served as the stimulus for Babbage to
provide instructions to the Difference Engine. On 30 June 1836 Babbage conceived
the idea of using punch cards like those devised by Joseph-Marie Jacquard in 1801
to produce patterns in weaving looms. These were similar in both form and function
to those used by Herman Hollerith in 1884 for his electric punch-card tabulator.
Babbage devised a system using four different types of punch cards, each about the
height and width of a modern-day brick. Operation cards instructed the engine to
add subtract, multiply, or divide; variable cards instructed the engine from where to
retrieve the number and where to store the result; combinatorial cards instructed the
engine to repeat a set of instructions a specified number of times; and number cards
were used to save the results [1290, p. 215].

The Jacquard Loom
The Jacquard loom used a series of cards with tiny holes to dictate the raising
and lowering of the warp threads. The warp threads are the longitudinal
threads and the weft threads are the lateral threads. In the weaving process,
the warp threads are raised and lowered as the weft threads are passed through
to create the textile. Rods were linked to wire hooks, each of which could lift
one of the warp threads. The cards were pressed up against the ends of the
rods. When a rod coincided with a hole in the card, the rod passed through the
hole and no action was taken with the thread. On the other hand, if no hole
coincided with a rod, then the card pressed against the rod and this activated
the wire hook that lifted the warp thread, allowing the shuttle carrying the
weft to pass underneath the warp thread [1290, p. 214–215]. The arrangement
of the holes determined the pattern of the weave. The Jacquard method, for
intricate weaving, could require as many as 20,000 punched cards with 1,000
holes per card.
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Fig. 2.6 Example of
generating successive values
for f .x/ D 3x2 � 2x C 5

using the method of
differences

2.20.1 TheMethod of Differences

The method of differences defines a process for calculating complex polynomial
expressions using only addition—no multiplication or division—thereby making
it highly amenable to machine calculation. To illustrate the method of differences,
consider a second degree polynomial f .x/ D 3x2 �2xC5. Figure 2.6 demonstrates
how the method of differences works. Column 1 in Fig. 2.6 lists possible values of
x from 0 to 4 in Roman typeface, where 4 is the order of the polynomial plus 2.
Column 2 evaluates the polynomial expression f .x/ D 3x2 � 2x C 5. Column
3 lists difference values for �1 D f .x C 1/ � f .x/ obtained from Column 2,
commonly called first-order differences. Column 4 lists the second-order differences
�2 D �1.x C 1/ � �1.x/ that yield a common value of 6. For any polynomial of
order n, Column n C 2 will be a constant.

Once stasis has been reached in Column n C 2, additional values of x can be
evaluated by simple addition by reversing the process. Add an additional value of
the constant 6 to Column 4 (shown in bold typeface); then add that value (6) to the
last value in Column 3 (6C19 D 25); add that value (25) to the last value in Column
2 (25 C 45 D 70); and finally increment Column 1 by 1 (4 C 1 D 5). For the next
step add another value of 6 to Column 4; add that 6 to the last value in Column 3
(6 C 25 D 31); add the 31 to the last value in Column 2 (31 C 70 D 101); and
increment Column 1 by 1 (5 C 1 D 6). The process can be continued indefinitely.

2.20.2 Statistical Computing in the 1920s and 1930s

Permutation methods, by their very nature, incorporate computationally-intensive
procedures and it would be imprudent not to mention the tabulating procedures
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of the 1920s and 1930s. Fisher had purchased a Millionaire calculator soon after
he arrived at the Rothamsted Experimental Station in 1919.65 While addition,
subtraction, and multiplication were easy to implement on the Millionaire, division
was not, and hand-written tables of reciprocals were attached to the lid of the
Millionaire to ease the problem [1027].66 Fisher’s original Millionaire was still
in the office of Frank Yates at Rothamsted in 1974.67 Karl Pearson relied on his
beloved Brunsviga calculators at the Galton Biometric Laboratory, which were
noisy, limited, but very robust machines. Division was done by repeated subtraction
until a bell rang to indicate passage through zero [1027]. Toward the end of his
life in 1936, Pearson was still using a vintage Brunsviga that dated from the turn
of the century and Maurice Kendall was using a Brunsviga in 1965 that he had
inherited from Udny Yule [1164, p. 18]. Commenting on the use of mechanical
desk calculators between 1945 and 1969, M.G. Kendall wrote:

[p]ractical statistics was conditioned by what such a machine — or in a few favored cases, a
battery of such machines — could accomplish. In consequence theoretical advance was held
back, not so much by the shortage of ideas or even of capable men to explore them as by
the technological impossibility of performing the necessary calculations. The Golden Age
of theoretical statistics was also the age of the desk computer. Perhaps this was not a net
disadvantage. It generated, like all situations of scarcity, some very resourceful shortcuts,
economies, and what are known unkindly and unfairly as quick and dirty methods. But it
was undoubtedly still a barrier [738, p. 204].

Statistical computing in the United States in the 1920s was concentrated in
modest statistical laboratories scattered around the country and employed small
mechanical desk calculators such as those manufactured by the Burroughs, Victor,
Monroe, Marchant, or Sundstrand companies [557]. Grier provides an excellent
historical summary of the development of statistical laboratories in the United
States in the 1920s and 1930s [557] and Redin provides a brief but comprehensive
history of the development of mechanical calculators in this period [1158]. Most
of these research laboratories were small ad hoc university organizations and many
were nothing more than a single faculty member arranging to use the university
tabulating machines during off hours [557]. The largest of these laboratories were
substantial organizations funded by small foundations or by private individuals. One
of the first of these statistical computing laboratories was founded at the University
of Michigan by James Glover, a professor of mathematics, under whom George
Snedecor studied. Interest in statistical computing became a popular field of study

65The Millionaire calculator was the first commercial calculator that could perform direct
multiplication. It was in production from 1893 to 1935.
66For Fisher’s first major publication in 1921 on “Studies in crop variation, I,” Fisher produced 15
tables [445]. At approximately 1 min for each large multiplication or division problem, it has been
estimated that Fisher spent 185 h using the Millionaire to produce each of the 15 tables [618, p. 4].
67For pictures of the Millionaire calculator and Frank Yates using the Millionaire, see a 2012 article
by Gavin Ross in Significance [1196]. Also, there is a YouTube video of a Millionaire calculator
calculating the surface of a circle with diameter 3.18311 at http://www.youtube.com/watch?v=
r9Nnl-u-Xf8.

http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
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during the 1930s, as research laboratories acquired the early punch-card tabulator,
first developed by Herman Hollerith for the 1890 census [557]. A picture of the
Hollerith 1890 census tabulator can be viewed at a website on computing history
constructed by Frank da Cruz [308].

H. Hollerith
Herman Hollerith, often called “the father of automatic computation,” grad-
uated from Columbia University with an Engineer of Mines (EM) degree in
1879 and then worked for the U.S. Bureau of the Census on the 1880 census.
Hollerith quickly determined that if numbers could be punched as holes into
specific locations on cards, such as used to produce patterns in a Jacquard
weaving loom, then the punched cards could be sorted and counted electro-
mechanically. The punched cards were especially designed by Hollerith,
having one corner cut off diagonally to protect against the possibility of
upside-down or backwards cards and each punched card was constructed to
be exactly 3.25 in. wide by 7.375 in. long, designed to be the same size as
the 1887 U.S. paper currency because Hollerith used Treasury Department
containers as card boxes. The actual size of the United States currency in 1887
was approximately 3.125 in. wide by 7.4218 in. long (79 mm�189 mm), with
modern currency introduced in 1929 measuring 2.61 in. wide by 6.14 in. long
(66:3 mm � 156 mm).

Hollerith submitted a description of this system, An Electric Tabulating
System [640, 641], to Columbia University as his doctoral thesis and was
awarded a Ph.D. from Columbia University in 1890. There has always been a
suspicion that this was an honorary degree, but it has recently been definitively
established that the degree was not an honorary degree and was awarded by
the Board of Trustees granting Hollerith “the degree of Doctor of Philosophy
upon the work which he has performed” [308].

Hollerith went on to invent a sorter and tabulating machine for the punched
cards, as well as the first automatic card-feed mechanism and the first key
punch. On 8 January 1889 Hollerith was issued U.S. Patent 395,782 for
automation of the census. It should be noted that the 1880 census with 50
million people to be counted took over 7 years to tabulate, while the 1890
census with over 62 million people took less than a year using the tabulating
equipment of Hollerith (different sources give different numbers for the 1890
census, ranging from 6 weeks to 3 years) [308].

In 1896 Hollerith started his own business, founding the Tabulating
Machine Company. Most of the major census bureaus in Russia, Austria,
Canada, France Norway, Puerto Rico, Cuba, and the Philippines leased
his tabulating equipment and purchased his cards, as did many insurance
companies. In 1911 financier Charles R. Flint arranged the merger of the

(continued)
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Tabulating Machine Company, the International Time Recording Company,
and the Computing Scale Company to form the Computing Tabulating
Recording Corporation (CTR). In 1914 Flint recruited Thomas J. Watson from
the National Cash Register (NCR) Company to lead the new company. In 1924
CTR was renamed the International Business Machines Corporation (IBM).
Herman Hollerith passed away on 17 November 1929 in Washington, DC.

In the absence at that time of government granting agencies such as the National
Science Foundation (NSF) and the National Institutes of Health (NIH), it fell to
the United States Department of Agriculture (USDA) to establish the largest of the
early statistical laboratories: the Statistical Laboratory at Iowa State College (now,
Iowa State University) under the direction of George W. Snedecor in 1933 (q.v.
page 35).68 Snedecor previously had been trained by James Glover in the Statistical
Laboratory at the University of Michigan.

The Graduate College of Iowa State College was always alert for opportunities
to invite outstanding scientists to visit and give lectures on their recent work. This
helped keep the local staff abreast of promising developments at other research
centers. Largely due to Dean R.E. Buchanan of the Graduate College and Professor
E.W. Lindstrom of the Department of Genetics, it was the regular custom through
the 1930s and 1940s to invite an outstanding scientist as a Visiting Professor for 6
weeks each summer. The Graduate College provided the expenses and honorarium
of the visiting scientist [859]. In 1931 and 1936 Snedecor invited R.A. Fisher to visit
the Department of Statistics at Iowa State College for the summer. Fisher’s lodging
was a room on the second floor of the Kappa Sigma (K†) fraternity house several
blocks from the Iowa State campus. To combat the summer heat in Iowa, Fisher
would put the sheets from his bed into the refrigerator for the day, then remake his
bed every evening [576].69

While Fisher was at Iowa State College in 1936, the college awarded him an
honorary D.Sc. degree, his first of many.70 Over the two summers, Fisher met and
worked with about 50 researchers eager to learn his methods of analysis. One of
these researchers was Henry Agard Wallace, who later left Iowa State College to
become Secretary of Agriculture.71 As Secretary, Wallace devised and prepared

68Iowa Agricultural College and Model Farm was established in 1858 and changed its name to
Iowa State University of Science and Technology in 1959, although it is commonly known as Iowa
State University.
69For more interesting stories about Fisher, see a 2012 article in Significance by A.E.W. Edwards
and W.F. Bodmer [401].
70Interestingly, the Statistical Laboratory at Iowa State College initiated four o’clock afternoon tea
while Fisher was there in the summer of 1936 [57, 576].
71Henry A. Wallace served as Secretary of Agriculture from 1933 to 1940. When John Nance
Garner broke with then President Franklin Delano Roosevelt in 1940, Roosevelt designated
Wallace to run as his Vice-President. Wallace served as Vice President from 1941 to 1945 when
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the Agricultural Adjustment Act, which required the Department of Agriculture to
undertake large studies of major farm products. Thus, the Agricultural Adjustment
Act of 1933 was a boon to the Statistical Laboratory at Iowa State College.72 Coin-
cidentally, the first statistical computing laboratory to use a punched-card tabulator
was not a university laboratory, but the computing laboratory of the Bureau of
Agricultural Economics, a division of the Department of Agriculture, which started
using punched cards in 1900 [557].

2.21 Looking Ahead

A number of notable threads of inquiry were established during the period 1920
to 1939 that were destined to become important in the later development of
permutation methods.
1. There was widespread recognition of the computational difficulties inherent in

constructing permutation tests by hand, with several researchers bemoaning the
restriction of permutation methods to small samples. For example, Hotelling and
Pabst were forced to limit construction of their exact tables for Spearman’s rank-
order correlation coefficient to small samples of n D 2; 3; and 4, noting that
for larger samples the calculation of exact probability values would be very
laborious [653, p. 35]. Like Hotelling and Pabst, Olds calculated probability
values up to n D 10 for Spearman’s rank-order correlation coefficient, but
only the probability values for n D 2; : : : ; 7 were calculated exactly; those
for n D 8; 9; and 10 were approximated by Pearson type II curves [1054]. In
like manner, Kendall, utilizing a recursion procedure, was able to provide exact
probability values for the � measure of rank-order correlation, but only up to
n D 10 [728].

2. Throughout the period 1920–1939 there was general acceptance that permu-
tation tests were data-dependent, relying solely on the information contained
in the observed sample without any reference to the population from which
the sample had been drawn. Thus, permutation tests were considered to be
distribution-free and not restricted by any assumptions about a population, such
as normality. For example Frank Yates, commenting on the experiment on
Yeoman II wheat shoots conducted by Thomas Eden and himself, concluded that
the need for the postulation of any parent population from which the observed

Roosevelt jettisoned Wallace in favor of Harry S. Truman, who succeeded Roosevelt upon his death
on 12 April 1945 [597]. Finally, Wallace served as Secretary of Commerce from 1945 to 1946.
72The best accounts of the origins and development of the Iowa State College Statistical Laboratory
are Statistics: An Appraisal, edited by H.A. David and H.T. David [327], “Statistics in U.S.
universities in 1933 and the establishment of the Statistical Laboratory at Iowa State” by H.A.
David [324], “Highlights of some expansion years of the Iowa State Statistical Laboratory, 1947–
72” by T.A. Bancroft [58], “Revisiting the past and anticipating the future” by O. Kempthorne
[724], “The Iowa State Statistical Laboratory: Antecedents and early years” by H.A. David [322],
and “Early statistics at Iowa State University” by J.L. Lush [859].
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values are to be regarded as a sample is entirely avoided [1473, p. 165], and
the ground-breaking work by Harold Hotelling and Margaret Pabst on rank
data was designated to be completely distribution-free [653]. Bernard Welch,
commenting on Fisher’s The Design of Experiments in 1937, concluded that
while the calculations required by exact inference would be lengthy, the result
would be a test of hypothesis that was free of any assumptions [1428], and in
1938 Welch noted that an exact test of significance assumed nothing not obtained
directly from the observed sample values [1429, p. 154].

E.J.G. Pitman, in his first of three papers, emphasized that the difference
between two independent means could be determined without making any
assumptions about the populations from which the samples were obtained; in the
second paper on correlation, Pitman summarized the results of his investigation
by stating that the test of significance made no assumptions about the sampled
population; and in the third paper on analysis of variance, Pitman proposed a
permutation test that involved no assumptions of normality, explaining that the
observations were not to be regarded as a sample from a larger population [1129–
1131]. Finally in 1938, Fisher in a little-known book published by the University
of Calcutta Press, Statistical Theory of Estimation, was quoted as saying “it
should be possible to draw valid conclusions from the data alone, and without
a priori assumptions” [455, p. 23].

3. Associated with data-dependency and distribution-free alternatives to conven-
tional tests, it was widely recognized that when utilizing permutation methods,
samples need not be random samples from a specified population. Yates,
discussing the Yeoman II wheat experiment, completely dismissed the notion that
a sample of observations be drawn from a parent population [1473]. Also, Pitman
noted in his discussion of the permutation version of the analysis of variance, that
observations were not to be regarded as a sample from a larger population [1131].
Finally, Welch in his analysis of the correlation ratio, explained that he preferred
to consider samples as drawn from a well-defined limited population rather than
a hypothetical infinite population [1429].

4. It was generally accepted by many researchers that it was not necessary to
calculate an entire statistic, such as a t or a z (later, F ) when undertaking
a permutation test. In fact, only that portion of the statistic that varied under
permutation was required and the invariant portion could therefore be ignored,
for permutation purposes. This recognition greatly reduced the computations
necessary to perform an exact permutation test and allowed for more arrange-
ments of the observed data to be considered in resampling permutation tests.

For example, Eden and Yates substantially reduced calculations by recog-
nizing that the block and total sums of squares would be constant for all of
their 1,000 samples and, consequently, the value of z for each sample would
be uniquely defined by the treatment sum of squares, i.e., the treatment sum of
squares was sufficient for a permutation analysis of variance test [379]. Welch,
in his permutation analysis of randomized blocks, considered a monotonically
increasing function of z that contained only the portion of z that varied under
permutation. In this case, like Eden and Yates, Welch considered only the
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treatment sum of squares [1428]. Pitman, in his permutation analysis of two
samples, observed that since the sample sizes (m and n) and grand mean (Nz) were
invariant over permutation of the observed data, each arrangement was a simple
function of the sum of one sample for a one-sided probability value [1129].

Kendall and Babington Smith, in their discussion of the problem of m

rankings, substantially reduced their calculations by recognizing that the number
of rankings (m) and number of ranks (n) were invariant over permutation of
the observed data and, therefore, calculated only the sum of squared deviations
from the mean of the ranks in their permutation analysis of m rankings [739].
Likewise, Kendall, Kendall, and Babington Smith in their permutation analysis
of Spearman’s rank-order correlation coefficient, considered only the sum of the
squared differences between ranks, which reduced computation considerably for
each of the nŠ arrangements of the observed rank-order statistics [746].

5. Yates developed a recursion process to generate hypergeometric probability
values [1472] and Kendall utilized a recursion technique to generate successive
frequency arrays of sums of concordant and discordant pairs for n D 1; : : : ; 10

[728]. Recursion methods were not new at this time, having been utilized
historically by Blaise Pascal, Christiaan Huygens, James Bernoulli, Willem
’sGravesande, Pierre Rémond de Montmort, and Adolphe Quetelet, among others
[571, 572]. Recursion methods were destined to become powerful tools for the
production of exact probability values in the 1980s and 1990s when computers
were finally able to generate complete discrete probability distributions with con-
siderable speed and efficiency. It is important to mention recursion methods here
as precursors to the algorithmic procedures employed by computer programmers
in later decades.

6. Many of the permutation methods utilized by researchers in the 1920s and 1930s
produced exact probability values based on all possible arrangements of the
observed data values. For example, Fisher in his investigation of monozygotic
and dizygotic twins calculated exact probability values based on all possible
arrangements of Johannes Lange’s data on twins and criminal activity [451].
Fisher also conducted an exact permutation analysis of the lady tasting tea
experiment and an exact permutation analysis of Darwin’s Zea mays data
[451]. Hotelling and Pabst calculated exact probability values based on all nŠ

arrangements of the observed rank data, albeit for very small samples [653], and
Friedman presented the exact distribution of �2

r for a variety of values of p and n

[485]. Pitman calculated exact probability values for his analysis of two-sample
tests [1129]; Olds provided exact probability values for Spearman’s rank-order
correlation coefficient for values of n D 2; : : : ; 7 based on the nŠ possible
arrangements of one ranking against the other [1054]; Kendall constructed exact
values of the differences between concordant and discordant pairs (†) for values
of n from 1 to 10 [728]; and Kendall and Babington Smith created four tables of
exact values for statistic W [739].

On the other hand, some researchers relied on a random sample of all pos-
sible arrangements of the observed data values, i.e., resampling-approximation
probability values. While credit is usually given to Dwass in 1957 for the idea of



100 2 1920–1939

resampling probability values [368], it is readily apparent that resampling was in
use in the 1920s and 1930s, although in a rudimentary way. For example, Geary
utilized a random sample of 1,000 arrangements of cell frequencies to establish
the approximate probability of a correlation between potato consumption and the
incidence of cancer [500], and Eden and Yates examined 1,000 out of a possible
4,586,471,424 arrangements of Yeoman II wheat shoots grown in eight blocks to
generate an approximate probability value [379].

Something that was not emphasized in this chapter was the use of the method
of moments to fit a continuous distribution to the discrete permutation distri-
bution to obtain approximate probability values. The method of moments was
typically used to generate probability values based on permutation distributions
to compare with probability values obtained from asymptotic distributions, such
as the normal or chi-squared distributions. For example, Pitman utilized a method
of moments approach to obtain approximate probability values in all three of
his seminal papers [1129–1131]. There, moments based on the observed data
were equated to the moments of the beta distribution to obtain the correspondence
between the probabilities of the observed statistic and probabilities from the
associated beta distribution. Others who utilized moments of the permutation
distribution to compare results to asymptotic distributions were Welch [1428]
and Friedman [485] in 1937; Olds [1054] and Kendall [728] in 1938; and Kendall
and Babington Smith [739], Kendall, Kendall, and Babington Smith [746], and
McCarthy [911] in 1939.

7. Finally, the profusion of research on permutation methods for small samples by
Hotelling and Pabst; Olds; Kendall and Babington Smith; and Kendall, Kendall,
and Babington Smith ushered in the 1940s when tables of exact probability
values were published for a number of statistics with small sample sizes. These
early works constituted a harbinger of much of the work on permutation methods
during the 1940s: a focus on creating tables for small samples that employed
permutations for the calculations of exact probability values, primarily for
rank tests.
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