
1Introduction

Permutation statistical methods are a paradox of old and new. While permutation
methods pre-date many traditional parametric statistical methods, only recently
have permutation methods become part of the mainstream discussion regarding
statistical testing. Permutation statistical methods follow a permutation model
whereby a test statistic is computed on the observed data, then (1) the observed
data are permuted over all possible arrangements of the observations—an exact
permutation test, (2) the observed data are used for calculating the exact moments
of the underlying discrete permutation distribution and the moments are fitted
to an associated continuous distribution—a moment-approximation permutation
test, or (3) the observed data are permuted over a random subset of all possible
arrangements of the observations—a resampling-approximation permutation test
[977, pp. 216–218].

1.1 Overview of This Chapter

This first chapter begins with a brief description of the advantages of permu-
tation methods from statisticians who were, or are, advocates of permutation
tests, followed by a description of the methods of permutation tests including
exact, moment-approximation, and resampling-approximation permutation tests.
The chapter continues with an example that contrasts the well-known Student t

test and results from exact, moment-approximation, and resampling-approximation
permutation tests using historical data. The chapter concludes with brief overviews
of the remaining chapters.

Permutation tests are often described as the gold standard against which con-
ventional parametric tests are tested and evaluated. Bakeman, Robinson, and Quera
remarked that “like Read and Cressie (1988), we think permutation tests represent
the standard against which asymptotic tests must be judged” [50, p. 6]. Edgington
and Onghena opined that “randomization tests . . . have come to be recognized
by many in the field of medicine as the ‘gold standard’ of statistical tests for
randomized experiments” [396, p. 9]; Friedman, in comparing tests of significance
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2 1 Introduction

for m rankings, referred to an exact permutation test as “the correct one” [486,
p. 88]; Feinstein remarked that conventional statistical tests “yield reasonably reli-
able approximations of the more exact results provided by permutation procedures”
[421, p. 912]; and Good noted that Fisher himself regarded randomization as a
technique for validating tests of significance, i.e., making sure that conventional
probability values were accurate [521, p. 263].

Early statisticians understood well the value of permutation statistical tests even
during the period in which the computationally-intensive nature of the tests made
them impractical. Notably, in 1955 Kempthorne wrote that “[t]ests of significance
in the randomized experiment have frequently been presented by way of normal law
theory, whereas their validity stems from randomization theory” [719, p. 947] and

[w]hen one considers the whole problem of experimental inference, that is of tests of
significance, estimation of treatment differences and estimation of the errors of estimated
differences, there seems little point in the present state of knowledge in using method of
inference other randomization analysis [719, p. 966].

In 1966 Kempthorne re-emphasized that “the proper way to make tests of
significance in the simple randomized experiments is by way of the randomiza-
tion (or permutation) test” [720, p. 20] and “in the randomized experiment one
should, logically, make tests of significance by way of the randomization test”
[720, p. 21].1 Similarly, in 1959 Scheffé stated that the conventional analysis of
variance F test “can often be regarded as a good approximation to a permutation
[randomization] test, which is an exact test under a less restrictive model” [1232,
p. 313]. In 1968 Bradley indicated that “eminent statisticians have stated that the
randomization test is the truly correct one and that the corresponding parametric
test is valid only to the extent that it results in the same statistical decision” [201,
p. 85].

With the advent of high-speed computing, permutation tests became more
practical and researchers increasingly appreciated the benefits of the randomization
model. In 1998, Ludbrook and Dudley stated that “it is our thesis that the
randomization rather than the population model applies, and that the statistical
procedures best adapted to this model are those based on permutation” [856, p. 127],
concluding that “statistical inferences from the experiments are valid only under the
randomization model of inference” [856, p. 131].

In 2000, Bergmann, Ludbrook, and Dudley, in a cogent analysis of the
Wilcoxon–Mann–Whitney two-sample rank-sum test, observed that “the only
accurate form of the Wilcoxon–Mann–Whitney procedure is one in which the
exact permutation null distribution is compiled for the actual data” [100, p. 72] and
concluded:

[o]n theoretical grounds, it is clear that the only infallible way of executing the
[Wilcoxon–Mann–Whitney] test is to compile the null distribution of the rank-sum statistic
by exact permutation. This was, in effect, Wilcoxon’s (1945) thesis and it provided the
theoretical basis for his [two-sample rank-sum] test [100, p. 76].

1The terms “permutation test” and “randomization test” are often used interchangeably.
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1.2 TwoModels of Statistical Inference

Essentially, two models of statistical inference coexist: the population model
and the permutation model; see for further discussion, articles by Curran-Everett
[307], Hubbard [663], Kempthorne [721], Kennedy [748], Lachin [787], Ludbrook
[849, 850], and Ludbrook and Dudley [854]. The population model, formally
proposed by Jerzy Neyman and Egon Pearson in 1928 [1035, 1036], assumes
random sampling from one or more specified populations. Under the population
model, the level of statistical significance that results from applying a statistical
test to the results of an experiment or a survey corresponds to the frequency with
which the null hypothesis would be rejected in repeated random samplings from the
same specified population(s). Because repeated sampling of the true population(s) is
usually impractical, it is assumed that the sampling distribution of the test statistics
generated under repeated random sampling conforms to an assumed, conjectured,
hypothetical distribution, such as the normal distribution.

The size of a statistical test, e.g., 0.05, is the probability under a specified
null hypothesis that repeated outcomes based on random samples of the same
size are equal to or more extreme than the observed outcome. In the population
model, assignment of treatments to subjects is viewed as fixed with the stochastic
element taking the form of an error that would vary if the experiment was repeated
[748]. Probability values are then calculated based on the potential outcomes of
conceptual repeated draws of these errors. The model is sometimes referred to
as the “conditional-on-assignment” model, as the distribution used for structuring
the test is conditional on the treatment assignment of the observed sample; see for
example, a comprehensive and informative 1995 article by Peter Kennedy in Journal
of Business & Economic Statistics [748].

The permutation model was introduced by R.A. Fisher in 1925 [448] and further
developed by R.C. Geary in 1927 [500], T. Eden and F. Yates in 1933 [379], and
E.J.G. Pitman in 1937 and 1938 [1129–1131]. Permutation tests do not refer to any
particular statistical tests, but to a general method of determining probability values.
In a permutation statistical test the only assumption made is that experimental
variability has caused the observed result. That assumption, or null hypothesis,
is then tested. The smaller the probability, the stronger is the evidence against
the assumption [648]. Under the permutation model, a permutation test statistic
is computed for the observed data, then the observations are permuted over all
possible arrangements of the observations and the test statistic is computed for
each equally-likely arrangement of the observed data [307]. For clarification, an
ordered sequence of n exchangeable objects .!1; : : : ; !n/ yields nŠ equally-likely
arrangements of the n objects, vide infra. The proportion of cases with test statistic
values equal to or more extreme than the observed case yields the probability of
the observed test statistic. In contrast to the population model, the assignment of
errors to subjects is viewed as fixed, with the stochastic element taking the form
of the assignment of treatments to subjects for each arrangement [748]. Probability
values are then calculated according to all outcomes associated with assignments
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of treatments to subjects for each case. This model is sometimes referred to as the
“conditional-on-errors” model, as the distribution used for structuring the test is
conditional on the individual errors drawn for the observed sample; see for example,
a 1995 article by Peter Kennedy [748].

Exchangeability
A sufficient condition for a permutation test is the exchangeability of the
random variables. Sequences that are independent and identically distributed
(i.i.d.) are always exchangeable, but so is sampling without replacement from
a finite population. However, while i.i.d. implies exchangeability, exchange-
ability does not imply i.i.d. [528, 601, 758]. Diaconis and Freedman present a
readable discussion of exchangeability using urns and colored balls [346].

More formally, variables X1; X2; : : : ; Xn are exchangeable if

P

"
n\

iD1

.Xi � xi /

#
D P

"
n\

iD1

.Xi � xci /

#
;

where x1; x2; : : : ; xn are n observed values and fc1; c2; : : : ; cng is any one of
the nŠ equally-likely permutations of f1; 2; : : : ; ng [1215].

1.3 Permutation Tests

Three types of permutation tests are common: exact, moment-approximation, and
resampling-approximation permutation tests. While the three types are methodolog-
ically quite different, all three approaches are based on the same specified null
hypothesis.

1.3.1 Exact Permutation Tests

Exact permutation tests enumerate all equally-likely arrangements of the observed
data. For each arrangement, the desired test statistic is calculated. The obtained
data yield the observed value of the test statistic. The probability of obtaining the
observed value of the test statistic, or a more extreme value, is the proportion of
the enumerated test statistics with values equal to or more extreme than the value
of the observed test statistic. As sample sizes increase, the number of possible
arrangements can become very large and exact methods become impractical. For
example, permuting two small samples of sizes n1 D n2 D 20 yields

M D .n1 C n2/Š

n1Š n2Š
D .20 C 20/Š

.20Š/2
D 137;846;528;820

different arrangements of the observed data.
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1.3.2 Moment-Approximation Permutation Tests

The moment-approximation of a test statistic requires computation of the exact
moments of the test statistic, assuming equally-likely arrangements of the observed
data. The moments are then used to fit a specified distribution. For example,
the first three exact moments may be used to fit a Pearson type III distribution.
Then, the Pearson type III distribution approximates the underlying discrete per-
mutation distribution and provides an approximate probability value. For many
years moment-approximation permutation tests provided an important intermediary
approximation when computers lacked both the speed and the storage for calculating
exact permutation tests. More recently, resampling-approximation permutation tests
have largely replaced moment-approximation permutation tests, except when either
the size of the data set is very large or the probability of the observed test statistic is
very small.

1.3.3 Resampling-Approximation Permutation Tests

Resampling-approximation permutation tests generate and examine a Monte Carlo
random subset of all possible equally-likely arrangements of the observed data.
In the case of a resampling-approximation permutation test, the probability of
obtaining the observed value of the test statistic, or a more extreme value, is the
proportion of the resampled test statistics with values equal to or more extreme than
the value of the observed test statistic [368, 649]. Thus, resampling permutation
probability values are computationally quite similar to exact permutation tests, but
the number of resamplings to be considered is decided upon by the researcher rather
than by considering all possible arrangements of the observed data. With sufficient
resamplings, a researcher can compute a probability value to any accuracy desired.
Read and Cressie [1157], Bakeman, Robinson, and Quera [50], and Edgington and
Onghena [396, p. 9] described permutation methods as the “gold standard” against
which asymptotic methods must be judged. Tukey took it one step further, labeling
resampling permutation methods the “platinum standard” of permutation methods
[216, 1381, 1382].2

1.3.4 Compared with Parametric Tests

Permutation tests differ from traditional parametric tests based on an assumed
population model in several ways.

2In a reversal Tukey could not have predicted, at the time of this writing gold was trading at $1,775
per troy ounce, while platinum was only $1,712 per troy ounce [275].



6 1 Introduction

1. Permutation tests are data dependent, in that all the information required for
analysis is contained within the observed data set; see a 2007 discussion by
Mielke and Berry [965, p. 3].3

2. Permutation tests do not assume an underlying theoretical distribution; see a
1983 article by Gabriel and Hall [489].

3. Permutation tests do not depend on the assumptions associated with traditional
parametric tests, such as normality and homogeneity; see articles by Kennedy
in 1995 [748] and Berry, Mielke, and Mielke in 2002 [162].4

4. Permutation tests provide probability values based on the discrete permutation
distribution of equally-likely test statistic values, rather than an approximate
probability value based on a conjectured theoretical distribution, such as a
normal, chi-squared, or F distribution; see a 2001 article by Berry, Johnston,
and Mielke [117].

5. Whereas permutation tests are suitable when a random sample is obtained from
a designated population, permutation tests are also appropriate for nonrandom
samples, such as are common in biomedical research; see discussions by
Kempthorne in 1977 [721], Gabriel and Hall in 1983 [489], Bear in 1995 [88],
Frick in 1998 [482], Ludbrook and Dudley in 1998 [856], and Edgington and
Onghena in 2007 [396, pp. 6–8].

6. Permutation tests are appropriate when analyzing entire populations, as permu-
tation tests are not predicated on repeated random sampling from a specified
population; see discussions by Ludbrook and Dudley in 1998 [856], Holford in
2003 [638], and Edgington and Onghena in 2007 [396, pp. 1–8].

7. Permutation tests can be defined for any selected test statistic; thus, researchers
have the option of using a wide variety of test statistics, including the
majority of statistics commonly utilized in traditional statistical approaches;
see discussions by Mielke and Berry in 2007 [965].

8. Permutation tests are ideal for very small data sets, when conjectured, hypo-
thetical distribution functions may provide very poor fits; see a 1998 article by
Ludbrook and Dudley [856].

9. Appropriate permutation tests are resistant to extreme values, such as are
common in demographic data, e.g., income, age at first marriage, number of
children, and so on; see a discussion by Mielke and Berry in 2007 [965, pp. 52–
53] and an article by Mielke, Berry, and Johnston in 2011 [978]. Consequently,
the need for any data transformation is mitigated in the permutation context
and in general is not recommended, e.g., square root, logarithmic, the use of

3Echoing Fisher’s argument that inference must be based solely on the data at hand [460], Haber
refers to data dependency as “the data at hand principle” [565, p. 148].
4Barton and David noted that it is desirable to make the minimum of assumptions, since,
witness the oft-cited Bertrand paradox [163], that the assumptions made will often prejudice the
conclusions reached [83, p. 455].
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rank-order statistics,5 and the choice of a distance function, in particular, may
be very misleading [978].

10. Permutation tests provide data-dependent statistical inferences only to the
actual experiment or survey that has been performed, and are not dependent
on a contrived super population; see for example, discussions by Feinstein in
1973 [421] and Edgington and Onghena in 2007 [396, pp. 7–8].

1.3.5 The Bootstrap and the Jackknife

This chronicle is confined to permutation methods, although many researchers
consider that permutation methods, bootstrapping, and the jackknife are closely
related. Traditionally, jackknife (leave-one-out) methods have been used to reduce
bias in small samples, calculate confidence intervals around parameter estimates,
and test hypotheses [789, 876, 1376], while bootstrap methods have been used to
estimate standard errors in cases where the distribution of the data is unknown [789].
In general, permutation methods are considered to be more powerful than either the
bootstrap or (possibly) the jackknife approaches [789].

While permutation methods and bootstrapping both involve computing simula-
tions, and the rejection of the null hypothesis occurs when a common test statistic
is extreme under both bootstrapping and permutation, they are conceptually and
mechanically quite different. On the other hand, they do have some similarities,
including equivalence in an asymptotic sense [358,1189]. The two approaches differ
in their distinct sampling methods. In resampling, a “new” sample is obtained by
drawing the data without replacement, whereas in bootstrapping a “new” sample is
obtained by drawing from the data with replacement [748, 1189]. Thus, bootstrap-
ping and resampling are associated with sampling with and without replacement,
respectively. Philip Good has been reported as saying that the difference between
permutation tests and bootstrap tests is that “[p]ermutations test hypotheses con-
cerning distributions; bootstraps test hypotheses concerning parameters.”

Specifically, resampling is a data-dependent procedure, dealing with all finite
arrangements of the observed data, and based on sampling without replacement.
In contrast, bootstrapping involves repeated sampling from a finite population
that conceptually yields an induced infinite population based on sampling with
replacement. In addition, when bootstrapping is used with small samples it is
necessary to make complex adjustments to control the risk of error; see for example,
discussions by Hall and Wilson in 1991 [577], Efron and Tibshirani in 1993 [402],
and Westfall and Young, also in 1993 [1437]. Finally, the bootstrap distribution
may be viewed as an unconditional approximation to the null distribution of the

5Rank-order statistics were among the earliest permutation tests, transforming the observed data
into ranks, e.g., from smallest to largest. While they were an important step in the history of
permutation tests, modern computing has superseded the need for rank-order tests in the majority
of cases.
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test statistic, while the resampling distribution may be viewed as a conditional
distribution of the test statistic [1189].

In 1991 Donegani argued that it is preferable to compute a permutation test based
on sampling without replacement (i.e., resampling) than with replacement (i.e.,
bootstrap), although, as he noted, the two techniques are asymptotically equivalent
[358]. In a thorough comparison and analysis of the two methods, he demonstrated
that (1) the bootstrap procedure is “bad” for small sample sizes or whenever the
alternative is close to the null hypothesis and (2) resampling tests should be used in
order to take advantage of their flexibility in the choice of a distance criteria [358,
p. 183].

In 1988 Tukey stated that the relationship between permutation procedures, on
the one hand, and bootstrap and jackknife procedures, on the other hand, is “far from
close” [1382]. Specifically, Tukey listed four major differences between bootstrap
and jackknife procedures, which he called “resampling,” and permutation methods,
which he called “rerandomization” [1382].
1. Bootstrap and jackknife procedures need not begin until the data is collected.

Rerandomization requires planning before the data collection is specified.
2. Bootstrap and jackknife procedures play games of omission of units with data

already collected. Rerandomization plays games of exchange of treatments,
while using all numerical results each time.

3. Bootstrap and jackknife procedures apply to experiences as well as experiments.
Rerandomization only applies to randomized experiments.

4. Bootstrap and jackknife procedures give one only a better approximation to a
desired confidence interval. Rerandomization gives one a “platinum standard”
significance test, which can be extended in simple cases—by the usual devices—
to a “platinum standard” confidence interval.
Thus, bootstrapping remains firmly in the conditional-on-assignment tradition,

assuming that the true error distribution can be approximated by a discrete distribu-
tion with equal probability attached to each of the cases [850]. On the other hand,
permutation tests view the errors as fixed in repeated samples [748]. Finally, some
researchers have tacitly conceived of permutation methods in a Bayesian context.
Specifically, this interpretation amounts to a primitive Bayesian analysis where the
prior distribution is the assumption of equally-likely arrangements associated with
the observed data, and the posterior distribution is the resulting data-dependent
distribution of the test statistic induced by the prior distribution.

1.4 Student’s t Test

Student’s pooled t test [1331] for two independent samples is a convenient vehicle
to illustrate permutation tests and to compare a permutation test with its parametric
counterpart. As a historical note, Student’s 1908 publication used z for the test
statistic, and not t. The first mention of t appeared in a letter from William Sealy
Gosset (“Student”) to R.A. Fisher in November of 1922. It appears that the decision
to change from z to t originated with Fisher, but the choice of the letter t was due
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to Student. Eisenhart [408] and Box [196] provide historical commentaries on the
transition from Student’s z test to Student’s t test.

Student’s pooled t test for two independent samples is well-known, familiar
to most researchers, widely used in quantitative analyses, and elegantly simple.
The pooled t test evaluates the mean difference between two independent random
samples. Under the null hypothesis, H0W �1 D �2, Student’s pooled t test statistic
is defined as

t D . Nx1 � Nx2/ � .�1 � �2/

s Nx1�Nx2

;

where the standard error of the sampling distribution of differences between two
independent sample means is given by

s Nx1�Nx2 D
2
4 .n1 � 1/s2

1 C .n2 � 1/s2
2

n1 C n2 � 2

�
n1 C n2

n1 n2

�3
5

1=2

;

�1 and �2 denote the hypothesized population means, Nx1 and Nx2 denote the sample
means, s2

1 and s2
2 denote the sample variances, and t follows Student’s t distribution

with n1Cn2�2 degrees of freedom, assuming the data samples are from independent
normal distributions with equal variances.

1.4.1 An Exact Permutation t Test

Exact permutation tests are based on all possible arrangements of the observed
data. For the two-sample t test, the number of permutations of the observed data
is given by

M D N Š

n1Š n2Š
;

where N D n1 C n2.
Let xij denote the ith observed score in the jth independent sample, j D 1; 2

and i D 1; : : : ; nj , let to denote the Student t statistic computed on the observed
data, and let tk denote the Student t statistic computed on each permutation of the
observed data for k D 1; : : : ; M . For the first permutation of the observed data
set, interchange x13 and x12, compute t1, and compare t1 with to. For the second
permutation, interchange x12 and x22, compute t2, and compare t2 with to. Continue
the process for k D 1; : : : ; M .

To illustrate the exact permutation procedure, consider two independent samples
of n1 D n2 D 3 observations and let fx11; x21; x31g denote the n1 D 3 observations
in Sample 1 and fx12; x22; x32g denote the n2 D 3 observations in Sample 2.
Table 1.1 depicts the
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Table 1.1 Illustrative
M D 20 permutations of
N D 6 observations in two
independent samples with
n1 D n2 D 3

Sample 1 Sample 2

Permutation 1 2 3 1 2 3 t

1 x11 x21 x31 x12 x22 x32 t1
2 x11 x21 x12 x31 x22 x32 t2
3 x11 x21 x22 x31 x12 x32 t3
4 x11 x21 x32 x31 x12 x22 t4
5 x11 x31 x12 x21 x22 x32 t5

6 x11 x31 x22 x21 x12 x32 t6
7 x11 x31 x32 x21 x12 x22 t7
8 x11 x12 x22 x21 x31 x32 t8
9 x11 x12 x32 x21 x31 x22 t9

10 x11 x22 x32 x21 x31 x12 t10

11 x21 x31 x12 x11 x22 x32 t11

12 x21 x31 x22 x11 x12 x32 t12

13 x21 x31 x32 x11 x12 x22 t13

14 x21 x12 x22 x11 x31 x32 t14

15 x21 x12 x32 x11 x31 x22 t15

16 x21 x22 x32 x11 x31 x12 t16

17 x31 x12 x22 x11 x21 x32 t17

18 x31 x12 x32 x11 x21 x22 t18

19 x31 x22 x32 x11 x21 x12 t19

20 x12 x22 x32 x11 x21 x31 t20

M D 6Š

3Š 3Š
D 20

arrangements of n1 D n2 D 3 observations in each of the two independent samples
where to D t1, the subscripts denote the original position of each observation in
either Sample 1 or Sample 2, and the position of the observation in Table 1.1 on
either the left side of the table in Sample 1 or the right side of the table in Sample
2 indicates the placement of the observation after permutation. The exact two-sided
probability (P ) value is then given by

P D number of jtkj values � jtoj
M

for k D 1; : : : ; M :

1.4.2 AMoment-Approximation t Test

Moment-approximation permutation tests filled an important gap in the develop-
ment of permutation statistical methods. Prior to the advent of modern computers,
exact tests were impossible to compute except for extremely small samples, and
even resampling-approximation permutation tests were limited in the number of



1.5 An Example Data Analysis 11

random permutations of the data possible, thus yielding too few places of accuracy
for research purposes.

A moment-approximation permutation test is based, for example, on the first
three exact moments of the underlying discrete permutation distribution, yielding
the exact mean, variance, and skewness, i.e., �x , �2

x , and �x. Computational details
for the exact moments are given in Sect. 4.15 of Chap. 4. An approximate probability
value is obtained by fitting the exact moments to the associated Pearson type III
distribution, which is completely characterized by the first three moments, and
integrating the obtained Pearson type III distribution.

1.4.3 A Resampling-Approximation t Test

When M is very large, exact permutation tests are impractical, even with high-speed
computers, and resampling-approximation permutation tests become an important
alternative. Resampling-approximation tests provide more precise probability
values than moment-approximation tests and are similar in structure to exact tests,
except that only a random sample of size L selected from all possible permutations,
M , is generated, where L is usually a large number to guarantee accuracy to a
specified number of places. For instance, L D 1;000;000 will likely ensure three
places of accuracy [696]. The resampling two-sided approximate probability value
is then given by

OP D number of jtkj values � jtoj
L

for k D 1; : : : ; L :

1.5 An Example Data Analysis

The English poor laws, the relief expenditure act, and a comparison of two
English counties provide vehicles to illustrate exact, moment-approximation, and
resampling-approximation permutation tests.

The English Poor Laws
Up until the Reformation, it was considered a Christian duty in England to
undertake the seven corporal works of mercy. In accordance with Matthew
25:32–46, Christians were to feed the hungry, give drink to the thirsty,
welcome a stranger, clothe the naked, visit the sick, visit the prisoner, and
bury the dead. After the Reformation and the establishment of the Church of
England, many of these precepts were neglected, the poor were left without
adequate assistance, and it became necessary to regulate relief of the poor

(continued)
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by statute. The Poor Laws passed during the reign of Elizabeth I played a
determining role in England’s system of welfare, signaling a progression from
private charity to a welfare state, where care of the poor was embodied in law.
Boyer [198] provides an exhaustive description of the historical development
of the English Poor Laws.

In 1552, Parish registers of the poor were introduced to ensure a well-
documented official record, and in 1563, Justices of the Peace were empow-
ered to raise funds to support the poor. In 1572, it was made compulsory that
all people pay a poor tax, with those funds used to help the deserving poor.
In 1597, Parliament passed a law that each parish appoint an Overseer of
the Poor who calculated how much money was needed for the parish, set the
poor tax accordingly, collected the poor rate from property owners, dispensed
either food or money to the poor, and supervised the parish poor house. In
1601, the Poor Law Act was passed by Parliament, which brought together
all prior measures into one legal document. The act of 1601 endured until the
Poor Law Amendment Act was passed in 1834.

Consider an example data analysis utilizing Student’s pooled two-sample t

test based on historical parish-relief expenditure data from the 1800s [697]. To
investigate factors that contributed to the level of relief expenditures, Boyer [198]
assembled a data set comprised of a sample of 311 parishes in 20 counties in the
south of England in 1831. The relief expenditure data were obtained from Blaug
[172].6 Table 1.2 contains the 1831 per capita relief expenditures, in shillings, for
36 parishes in two counties: Oxford and Hertford. For this example, the data were
rounded to four places.

The relief expenditure data from Oxford and Hertford counties are listed in
Table 1.2. Oxford County consisted of 24 parishes with a sample mean relief of
Nx1 D 20:28 shillings and a sample variance of s2

1 D 58:37 shillings. Hertford
County consisted of 12 parishes with a sample mean relief of Nx2 D 13:47 shillings
and a sample variance of s2

2 D 37:58 shillings. A conventional two-sample t test
yields to D C2:68 and, with 24 C 12 � 2 D 34 degrees of freedom, a two-sided
approximate probability value of OP D :0113. Although there are

M D 36Š

24Š 12Š
D 1;251;677;700

possible arrangements of the observed data and an exact permutation test is therefore
not practical, it is not impossible. For the Oxford and Hertford relief expenditure

6The complete data set is available in several formats at the Cambridge University Press site: http://
uk.cambridge.org/resources/0521806631.

http://uk.cambridge.org/resources/0521806631
http://uk.cambridge.org/resources/0521806631
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Table 1.2 Average per
capita relief expenditures for
Oxford and Hertford counties
in shillings: 1831

Oxford County Hertford County

Parish Expenditure Parish Expenditure Parish Expenditure

1 20.3619 13 25.4683 1 27.9748
2 29.0861 14 12.5632 2 6.4173
3 14.9318 15 13.2780 3 10.4841
4 24.1232 16 27.3030 4 10.0057
5 18.2075 17 29.6055 5 9.7699
6 20.7287 18 13.6132 6 15.8665
7 8.1195 19 11.3714 7 19.3424
8 14.0201 20 21.5248 8 17.1452
9 18.4248 21 20.9408 9 13.1342

10 34.5466 22 11.5952 10 10.0420
11 16.0927 23 18.2355 11 15.0838
12 24.6166 24 37.8809 12 6.3985

data in Table 1.2, an exact permutation analysis yields a two-sided probability value
of P D 10;635;310=1;251;677;700 D 0:0085.

A moment-approximation permutation analysis of the Oxford and Hertford relief
expenditure data in Table 1.2 based on the Pearson type III distribution, yields a two-
sided approximate probability value of OP D 0:0100.

Finally, a resampling analysis of the Oxford and Hertford relief expenditure
data based on L D 1;000;000 random arrangements of the observed data in
Table 1.2, yields 8,478 calculated t values equal to or more extreme than the
observed value of to D C2:68, and a two-sided approximate probability value of
OP D 8;478=1;000;000 D 0:0085.

1.6 Overviews of Chaps. 2–6

Chapters 2–6 describe the birth and development of statistical permutation methods.
Chapter 2 covers the period from 1920 to 1939; Chap. 3, the period from 1940 to
1959; Chap. 4, the period from 1960 to 1979; and Chap. 5, the period from 1980
to 2000. Chapter 6 looks beyond the year 2000, summarizing the development of
permutation methods from 2001 to 2010. Following Chap. 6 is a brief epilogue
summarizing the attributes that distinguish permutation statistical methods from
conventional statistical methods.

Chapter 2: 1920–1939

Chapter 2 chronicles the period from 1920 to 1939 when the earliest discussions of
permutation methods appeared in the literature. In this period J. Spława-Neyman,
R.A. Fisher, R.C. Geary, T. Eden, F. Yates, and E.J.G. Pitman laid the foundations
of permutation methods as we know them today. As is evident in this period,
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permutation methods had their roots in agriculture and, from the beginning, were
widely recognized as the gold standard against which conventional methods could
be verified and confirmed.

In 1923 Spława-Neyman introduced a permutation model for the analysis of field
experiments [1312], and in 1925 Fisher calculated an exact probability using the
binomial distribution [448]. Two years later in 1927, Geary used an exact analysis
to support the use of asymptotic methods for correlation and regression [500], and
in 1933 Eden and Yates used a resampling-approximation permutation approach to
validate the assumption of normality in an agricultural experiment [379].

In 1935, Fisher’s well-known hypothesized experiment involving “the lady
tasting tea” was published in the first edition of The Design of Experiments [451].
In 1936, Fisher used a shuffling technique to demonstrate how a permutation test
works [453], and in the same year Hotelling and Pabst utilized permutation methods
to calculate exact probability values for the analysis of rank data [653].

In 1937 and 1938, Pitman published three seminal articles on permutation
methods. The first article dealt with permutation methods in general, with an
emphasis on the two-sample test; the second article with permutation methods as
applied to bivariate correlation; and the third article with permutation methods as
applied to a randomized blocks analysis of variance [1129–1131].

In addition to laying the foundations for permutation tests, the 1920s and 1930s
were also periods in which tools to ease the computation of permutation tests
were developed. Probability tables provided exact values for small samples, rank
tests simplified the calculations, and desktop calculators became more available.
Importantly, statistical laboratories began to appear in the United States in the
1920s and 1930s, notably at the University of Michigan and Iowa State College of
Agriculture (now, Iowa State University). These statistical centers not only resulted
in setting the foundations for the development of the computing power that would
eventually make permutation tests feasible, they also initiated the formal study of
statistics as a stand-alone discipline.

Chapter 3: 1940–1959

Chapter 3 explores the period between 1940 and 1959 with attention to the continu-
ing development of permutation methods. This period may be considered as a bridge
between the early years where permutation methods were first conceptualized and
the next period, 1960–1979, in which gains in computer technology provided the
necessary tools to successfully employ specific permutation tests.

Between 1940 and 1959, the work on establishing permutation statistical meth-
ods that began in the 1920s continued. In the 1940s, researchers applied known
permutation techniques to create tables of exact probability values for small
samples, among them tables for 2�2 contingency tables; the Spearman and Kendall
rank-order correlation coefficients; the Wilcoxon, Mann–Whitney, and Festinger
two-sample rank-sum tests; and the Mann test for trend.
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Theoretical work, driven primarily by the computational challenges of
calculating exact permutation probability values, was also completed during this
period. Instead of the focus being on new permutation tests, however, attention
turned to developing more simple alternatives to do calculations by converting data
to rank-order statistics. Examples of rank tests that were developed between 1940
and 1959 include non-parametric randomization tests, exact tests for randomness
based on serial correlation, and tests of significance when the underlying probability
distribution is unknown.

While this theoretical undertaking continued, other researchers worked on
developing practical non-parametric rank tests. Key among these tests were the
Kendall rank-order correlation coefficient, the Kruskal–Wallis one-way analysis of
variance rank test, the Wilcoxon and Mann–Whitney two-sample rank-sum tests,
and the Mood median test.

Chapter 4: 1960–1979

Chapter 4 surveys the development of permutation methods in the period between
1960 and 1979 that was witness to dramatic improvements in computer technology,
a process that was integral to the further development of permutation statistical
methods. Prior to 1960, computers were based on vacuum tubes7 and were large,
slow, expensive, and availability was severely limited. Between 1960 and 1979
computers increasingly became based on transistors and were smaller, faster, more
affordable, and more readily available to researchers. As computers became more
accessible to researchers, work on permutation tests continued with much of the
focus of that work driven by computer limitations in speed and storage.

During this period, work on permutation methods fell primarily into three
categories: writing algorithms that efficiently generated permutation sequences;
designing exact permutation analogs for existing parametric statistics; and, for
the first time, developing statistics specifically designed for permutation methods.
Numerous algorithms were published in the 1960s and 1970s with a focus on
increasing the speed and efficiency of the routines for generating permutation
sequences. Other researchers focused on existing statistics, creating permutation
counterparts for well-known conventional statistics, notably the Fisher exact proba-
bility test for 2 � 2 contingency tables, the Pitman test for two independent samples,
the F test for randomized block designs, and the chi-squared test for goodness of fit.
The first procedures designed specifically for permutation methods, multi-response
permutation procedures (MRPP), appeared during this period.

7The diode and triode vacuum tubes were invented in 1906 and 1908, respectively, by Lee de
Forest.
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Chapter 5: 1980–2000

Chapter 5 details the development of permutation methods during the period 1980
to 2000. It is in this period that permutation tests may be said to have arrived.
One measure of this arrival was the expansion in the coverage of permutation
tests, branching out from the traditional coverage areas in computer technology and
statistical journals, and into such diverse subject areas as anthropology, atmospheric
science, biomedical science, psychology, and environmental health. A second
measure of the arrival of permutation statistical methods was the sheer number of
algorithms that continued to be developed in this period, including the development
of a pivotal network algorithm by Mehta and Patel in 1980 [919]. Finally, additional
procedures designed specifically for permutation methods, multivariate randomized
block permutation (MRBP) procedures, were published in 1982 by Mielke and
Iyer [984].

This period was also home to the first books that dealt specifically with permu-
tation tests, including volumes by Edgington in 1980, 1987 and 1995 [392–394],
Hubert in 1987 [666], Noreen in 1989 [1041], Good in 1994 and 1999 [522–524],
Manly in 1991 and 1997 [875, 876], and Simon in 1997 [1277], among others.
Permutation versions of known statistics continued to be developed in the 1980s
and 1990s, and work also continued on developing permutation statistical tests that
did not possess existing parametric analogs.

Chapter 6: Beyond 2000

Chapter 6 describes permutation methods after the year 2000, an era in which
permutation tests have become much more commonplace. Computer memory and
speed issues that hampered early permutation tests are no longer factors and
computers are readily available to virtually all researchers. Software packages for
permutation tests now exist for well-known statistical programs such as StatXact,
SPSS, Stata, and SAS. A number of books on permutation methods have been
published in this period, including works by Chihara and Hesterberg in 2011,
Edgington and Onghena in 2007 [396], Good in 2000 and 2001 [525–527],
Lunneborg in 2000 [858], Manly in 2007 [877], Mielke and Berry in 2001 and 2007
[961, 965], and Pesarin and Salmaso in 2010 [1122].

Among the many permutation methods considered in this period are analysis
of variance, linear regression and correlation, analysis of clinical trials, measures
of agreement and concordance, rank tests, ridit analysis, power, and Bayesian
hierarchical analysis. In addition, permutation methods expanded into new fields
of inquiry, including animal research, bioinformatics, chemistry, clinical trials,
operations research, and veterinary medicine.

The growth in the field of permutations is made palpable by a search of The
Web of Science R� using the key word “permutation.” Between 1915 and 1959, the
key word search reveals 43 journal articles. That number increases to 540 articles
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for the period between 1960 and 1979 and jumps to 3,792 articles for the period
between 1980 and 1999. From 2000 to 2010, the keyword search for permutation
results in 9,259 journal articles.

Epilogue

A brief coda concludes the book. Chapter 2 contains a description of the celebrated
“lady tasting tea” experiment introduced by Fisher in 1935 [451, pp. 11–29], which
is the iconic permutation test. The Epilogue returns full circle to the lady tasting
tea experiment, analyzing the original experiment to summarize the attributes that
distinguish permutation tests from conventional tests in general.

Researchers early on understood the superiority of permutation tests for
calculating exact probability values. These same researchers also well understood
the limitations of trying to calculate exact probability values. While some
researchers turned to developing asymptotic solutions for calculating probability
values, other researchers remained focused on the continued development of
permutation tests. This book chronicles the search for better methods for calculating
permutation tests, the development of permutation counterparts for existing
parametric statistical tests, and the development of separate, unique permutation
tests.
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