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Abstract. The discovery of repeated subsequences, time series motifs, is a problem
which has great utility for several higher-level data mining tasks, including classi-
fication, clustering, forecasting and rule discovery. In recent years there has been
significant research effort spent on efficiently discovering these motifs in static time
series data. However, for many applications, the streaming nature of time series de-
mands a new kind of methods for discovery of time series motifs. In this paper, we
develop a new method for motif discovery in streaming time series. In this method
we use significant extreme points to determine motif candidates and then cluster mo-
tif candidates by BIRCH algorithm. The method is very effective not only for large
time series data but also for streaming environment since it needs only one-pass of
scan through the whole data.

1 Introduction

A time series is a sequence of real numbers measured at equal intervals. Time series
data arise in so many applications of various areas ranging from science, engineer-
ing, business, finance, economic, medicine to government. There are two kinds of
time series data: time series in static environment and time series in high speed data
stream environment. In streaming time series database, the database changes contin-
uously as new data points arrive continuously. Examples of the streaming time series
applications are online stock analysis, computer network monitoring, network traffic
management, earthquake prediction. Streaming time series have their own charac-
teristics, compared to static time series: (1) Data are frequently updated in stream
time series, thus, previous approaches applied to static time series may not work in
the scenario. (2) Owing to the frequent updates, it is impossible to store all the data
in memory, thus, efficient and one-pass algorithms are very important to achieve a
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real time response. Data mining on streaming environment is recently considered as
one of the top ten challenging problems in the data mining research field [15].

Time series motifs are frequently occurring but previously unknown subse-
quences of a longer time series. One major challenge in motif discovery for time
series data is the large volume of the time series data. Since the first formal defini-
tion of time series motif given by Lin et al. in 2002 [6], several algorithms have been
proposed to tackle time series motif discovery. The first algorithm ([6]) defines the
problem of motif discovery in time series regarding two parameters: (1) the motif
length m and (2) a user-defined range parameter r. Some of these algorithms tackle
the motif discovery by first applying some dimensionality reduction transformations
such as PAA, PLA and some discretization techniques such as SAX, iSAX, ([1], [2],
[5], [6], [14], [16]). Some of the algorithms aim to discovering motif with different
lengths or discovering motif with the suitable length determined automatically ([11],
[12]). However, so far surprisingly there have been very few research works on time
series motif discovery in streaming environment.

In 2010, a motif discovery method for streaming time series was proposed by
Mueen and Keogh, which was considered as “the first practical algorithm for find-
ing and maintaining time series motifs on fast moving streams” [8]. However, in
this work, the authors use the new nearest-neighbor motif definition by which time
series motif is defined as a closest pair of subsequences in time series data. This
definition does not take into account the frequency of the subsequences, therefore,
the motif discovery algorithm proposed in [8] is not convenient to be used directly
in practical applications.

In this paper, we propose an efficient method for motif discovery in streaming
time series which adopts the first formal motif definition given in 2002 [6]. Our
proposed method needs only one single pass over the whole data, and can update
the motif results efficiently whenever there have been some new data points arriving.
Our method works directly on the raw data without using any transformation for
dimensionality reduction or discretization. The instances of a motif discovered by
our method may be of different lengths and user does not have to predefine the
length of the motif. The proposed method requires fewer user-predefined parameters
and these parameters are easy to be determined through experiments. The proposed
method is also not sensitive to the changes of these parameters. Our method uses
significant extreme points to determine motif candidates and then clusters motif
candidates to find the most significant motif by using BIRCH algorithm.

The rest of the paper is organized as follows. In Section 2 we explain briefly
some basic backgrounds on time series motif and our previous work on time series
motif discovery in static time series. Section 3 introduces the proposed method.
Section 4 reports experimental results on the proposed method. Section 5 gives some
conclusions and remarks for future work.

2 Background

In this section we introduce some useful definitions and the EP-BIRCH algorithm
that can discover motif in static time series.
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2.1 Time Series Motif

Definition 1. Time Series: A time series T = t1, , tN is an ordered set of N real-values
measured at equal intervals.

Definition 2. Similarity distance: D(s1,s2) is a positive value used to measure
differences between two time series s1, and s2, relies on measure methods. If
D(s1,s2)< r, where r is a real number (called range), then s1 is similar to s2.

Definition 3. Subsequence: Given a time series T of length N, a subsequence C
of T is a sampling of length n < N of contiguous positions from T , that is, C =
tp, ..., tp+n−1 for 1 < p < N− n+ 1.

Definition 4. Time series motif : Given a time series T , a subsequence C is called
the most significant motif (or 1-motif ) of T , if it has the highest count of the subse-
quences that are similar to it. All the subsequences that are similar to the motif are
called instances of the motif.

This definition is also the first formal definition of time series motif given by Lin
et al. in 2002 [6].

Definition 5. The motif count (or frequency) of a motif M is the total number of
instances that M has in time series T .

Time series motifs are typically sorted according to their motif count. The K-
motif is the motif ranked at K-th position regarding number of instances.

2.2 The EP-BIRCH Algorithm

Finding Significant Extreme Points

To extract a temporally ordered sequence of motif candidates, significant extreme
points of a time series have to be found. The definition of significant extreme points,
given by Pratt and Fink, 2002 [10] is as follows.

Fig. 1 Illustration of Significant Extreme Points: (a) Minimum, (b) Maximum

Definition 6. Significant Extreme Points: A univariate time series T = t1, ..., tN
has a significant minimum at position m with 1 < m < N, if (ti, ..., t j) with 1 ≤ i <
j ≤ N in T exists, such that tm is the minimum of all points of this subsequence and
ti ≥ R× tm, t j ≥ R× tm with user-defined R≥ 1.
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Similarly, a significant maximum is existent at position m with 1 < m < N, if a
subsequence (ti, ..., t j) with 1 ≤ i < j ≤ N in T exists, such that tm is the maximum
of all points of this subsequence and ti ≤ tm/R, t j ≤ tm/R with user-defined R ≥ 1.

Notice that in the above definition, the parameter R is called compression rate
which is greater than one and an increase of R leads to selection of fewer signifi-
cant extreme points. Fig. 1. illustrates the definition of significant minima (a) and
maxima (b). Given a time series T , starting at the beginning of the time series, all
significant minima and maxima of the time series are computed by using the algo-
rithm given in [10].

The significant extreme points can be the starting point or ending point of a motif
instances. Basing on the extracted significant points we can extract the motif candi-
dates from a time series and then cluster them using BIRCH algorithm.

BIRCH Clustering

BIRCH is designed for clustering a large amount of numerical data by integration of
hierarchical clustering at the initial stage and other clustering methods, such as iter-
ative partitioning at the later stage [17]. It introduces two main concepts, clustering
feature and clustering feature tree (CF tree), which are used to summarize cluster
representations. These structures help the clustering method achieve good speed and
scalability in large databases. BIRCH is also effective for incremental and dynamic
clustering of incoming objects.

Given N d-dimensional points or objects −→xi in a cluster, we can define the cen-
troid −→x0 , the radius R, and the diameter D of the cluster as follows:

−→x0 =

N
∑

i=1

−→xi

N
(1)

D =

√√√√√
N
∑

i=1

N
∑
j=1

(−→xi −−→x j )2

N(N− 1)
(2)

R =

√√√√√
N
∑

i=1
(−→xi −−→x0 )2

N
(3)

where R is the average distance from member objects to the centroid, and D is the
average pairwise distance within a cluster. Both R and D reflect the tightness of
the cluster around the centroid. A clustering feature (CF) is a triplet summarizing
information about clusters of objects. Given N d-dimensional points or objects in a
subcluster, then the CF of the cluster is defined as

CF = (N,
−→
LS,SS) (4)



An Efficient Method for Discovering Motifs in Streaming Time Series Data 229

where N is the number of points in the subcluster,
−→
LS is the linear sum on N points

and SS is the square sum of data points.

−→
LS =

N

∑
i=1

−→xi (5)

SS =
N

∑
i=1

−→xi
2 (6)

A clustering feature is essentially a summary of the statistics for the given subclus-
ter: the zero-th, first, and second moments of the subcluster from a statistical point
of view. Clustering features are additive. For example, suppose that we have two dis-
joint clusters, C1 and C2, having the clustering features, CF1 and CF2, respectively.
The clustering feature for the cluster that is formed by merging C1 and C2 is simply
CF1+CF2. Clustering features are sufficient for calculating all of the measurements
that are needed for making clustering decisions in BIRCH.

A CF tree is a height-balanced tree that stores the clustering features for a hi-
erarchical clustering. By definition, a nonterminal node in the tree has descendents
or “children”. The nonleaf nodes store sums of the CFs of their children, and thus
summarize clustering information about their children. Each entry in a leaf node is
not a single data objects but a subcluster. A CF tree has two parameters: branch-
ing factor (B for nonleaf node and L for leaf node) and threshold T . The branching
factor specifies the maximum number of children in each nonleaf or leaf node. The
threshold parameter specifies the maximum diameter of the subcluster stored at the
leaf nodes of the tree. The two parameters influence the size of the resulting tree.

BIRCH applies a multiphase clustering technique: a single scan of the data set
yields a basic good clustering, and one or more additional scans can (optionally) be
used to further improve the quality. The BIRCH algorithm consists of four phases
as follows.

Phase 1: (Building CF tree) BIRCH scans the database to build an initial in-
memory CF tree, which can be view as a multilevel compression of the data that
tries to preserve the inherent clustering structure of the data.

Phase 2: [optional] (Condense data) Condense into desirable range by building a
smaller CF tree.

Phase 3: (Global Clustering) BIRCH applies a selected clustering algorithm to
cluster the leaf nodes of the CF tree. The selected algorithm is adapted to work with
a set of subclusters, rather than to work with a set of data points.

Phase 4: [optional] Cluster refining
After the CF tree is built, any clustering algorithm, such as a typical partitioning

algorithm, can be used in Phase 3 with the CF tree built in the previous phase. Phase
4 uses the centroids of the clusters produced by Phase 3 as seeds and redistributes
the data points to its closest seed to obtain a set of new clusters.
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EP-BIRCH Algorithm

The EP-BIRCH (Extreme points and BIRCH clustering) method, introduced in our
previous paper [13], is an improvement of the EP-C algorithm proposed by Gruber
et al. [3] for time series motif discovery. The EP-C algorithm uses hierarchical ag-
glomerative clustering (HAC) algorithm for clustering which is not suitable to large
scale time series datasets. In our EP-BIRCH method, we use BIRCH algorithm to
cluster motif candidates rather than using HAC algorithm. BIRCH is especially suit-
able for clustering very large time series datasets. Besides, in the EP-C algorithm,
each motif candidate is determined by three contiguous extreme points, but in our
proposed method, motif candidate is determined by n contiguous extreme points
where n is selected by user.

EP-BIRCH consists of the following steps:
Step 1: We extract all significant extreme point of the time series T . The result of

this step is a sequence of extreme points EP = (ep1, ...,epl)
Step 2: We compute all the motif candidates iteratively. A motif candidate

MCi(T ), i = 1, ..., l− n+ 1 is the subsequence of T that is bounded by the n ex-
treme points epi and epi+n−1. Motif candidates are the subsequences that may have
different lengths.

Step 3: Motif candidates are the subsequences that may have different lengths. To
enable the computation of distances between them, we can bring them to the same
length using homothetic transformation. The same length here is the average length
of all motif candidates extracted in Step 2.

Step 4: We build the CF tree with parameters B and T . We insert to the CF tree
all the motif candidates found in Step 3. We apply k-Means as Phase 3 of BIRCH to
cluster the leaf nodes of the CF tree where k is equal to the number of the leaf nodes
in the CF tree.

Step 5: Finally we find the subcluster in the CF tree with the largest number of
objects. The 1-motif will be represented by that cluster.

In the Step 3, to improve the effectiveness of our proposed method, we apply
homothety for transforming the motif candidates with different lengths to those of
the same length rather than spline interpolation as suggested in [3]. Spline inter-
polation is not only complicated in computation, but also can modify undesirably
the shapes of the motif candidates. Homothety is a simpler and more effective tech-
nique which also can transform the subsequences with different lengths to those of
the same length. Due to the limit of space, we can not explain the use of homothetic
transformation here, interested readers can refer to [13] for more details.

3 The Proposed Method for Motif Discovery in Streaming Time
Series Data

3.1 From EP-BIRCH to EP-BIRCH-STS

Our method for motif discovery in streaming time series is developed from our pre-
vious work, the EP-BIRCH algorithm for motif discovery in static time series [13].



An Efficient Method for Discovering Motifs in Streaming Time Series Data 231

We call the new method EP-BIRCH-STS (Extreme Points and BIRCH clustering for
discovering motif in Streaming Time Series). Our method works with the features
extracted from the whole time series from the beginning data point to the newest
incoming data point. In our method, we can view the sequence of extracted extreme
points EP = (ep1, ...,epl) as a simple data structure to keep all the features of the
time series. In the proposed method for motif discovery in streaming time series,
EP-BIRCH-STS, we require the following parameters.

• R: compression rate for computing the significant extreme points.
• min Length and max Length: the lower bound and upper bound for the length

of the discovered motif.
• B, T : branching factor and threshold of CF tree.

EP-BIRCH-STS is mainly based on EP-BIRCH with some following modifica-
tions in order to adapt it in the streaming environment

1. In EP-BIRCH algorithm, when finding the significant extreme points, the
algorithm uses two subroutines: FIND-MINIMUM(i) for finding the signif-
icant minimum starting from the i− th point in the time series and FIND-
MAXIMUM(i) for finding the significant minimum starting from the i−th point
in the time series. We can make these two subroutines incremental to accom-
modate the new incoming data points. So, we can make the task of extracting
significant extreme points incremental.

2. We apply a deferred update policy that is described as follows. We delay the
update of the sequence of extreme points EP = (ep1, ...,epl) until we identify
one new significant extreme point from new coming data points and this event
actually yields a new motif candidate. At that moment, we activate the motif
discovery phase in order to get a new possible motif for the current time series
data. When we have the new motif candidate, we apply the homothety to convert
it to a suitable length and then insert it to the CF-tree. Due to the incremental
nature of BIRCH clustering algorithm, the clustering step in EP-BIRCH-STS
can work very efficiently to produce a new possible motif result whenever there
is an incoming motif candidate.

3.2 Post Processing

In the paper [4], Keogh and Lin, 2005 pointed that subsequence clustering in stream-
ing time series is meaningless when we use a sliding window to extract subse-
quences. The task is meaningless since there are several trivial matches (Definition
7) during clustering.

Definition 7. Trivial Match: Given a subsequence C beginning at position p, a
matching subsequence M beginning at q, and a distance R, we say that M is a trivial
match to C of order R, if either p = q or there does not exist a subsequence M
beginning at q such that D(C,M)> R, and either q < q < p or p < q < q.

The subsequence extraction in our EP-BIRCH-STS method which based on sig-
nificant extreme points does not use sliding window and therefore its clustering step
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does not have the problem mentioned in [4]. However to ensure there exists no triv-
ial matches, in EP-BIRCH-STS, we perform a post processing step which excludes
any trivial matches.

In our EP-BIRCH-STS method, trivial matches may arise when the compression
R is too small. When R is too small, the extreme points will be not enough significant
and this make the motif candidates in a subcluster to be overlapped with one another.
When R is large enough, trivial matches can not arise since each extreme point starts
a new change in the time series. Fig. 2. illustrates the possibility of trivial matches
among motif candidates when R is too small.

(a) (b)

Fig. 2 Trivial matches due to the compression ratio R. (a) With too small R, motif candidates
may start with the same position, but belong to the same subcluster. (b) With large R, there is
no trivial match.

To exclude possible trivial matches in the very rare cases, after obtaining the
subclusters by using BIRCH algorithm, we examine in all the subclusters to exclude
any instances which have some overlap in one another. This task takes very low
computation cost. Then we rank the resultant subclusters according to the number
of instances in them in order to determine the top subcluster as 1-motif and the K-th
subcluster as K-motif.

4 Experimental Evaluation

In this experiment, we compare our method, EP-BIRCH-STS to the modified ver-
sion of Online-MK method, the first motif discovery method for streaming time
series ([8]). We implemented the two methods with Microsoft Visual C# and con-
ducted the experiment on a Core i7, Ram 4GB PC.

First, to verify the correctness of EP-BIRCH-STS, we experiment the method
on the datasets which were used in four previous works ([5], [7], [8], [9]). The test
datasets consist of.

1. ECG (electrocardiogram) dataset.1

2. Insect behavior dataset.2

3. World cup dataset.3

1 http://www.cs.ucr.edu/˜eamonn/iSAX/koski_ecg.dat
2 http://www.cs.ucr.edu/˜mueen/txt/insect15.txt
3 http://www.cs.ucr.edu/˜mueen/txt/wc_index.txt

http://www.cs.ucr.edu/~eamonn/iSAX/koski_ecg.dat
http://www.cs.ucr.edu/~mueen/txt/insect15.txt
http://www.cs.ucr.edu/~mueen/txt/wc_index.txt
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Experimental results show that when the appropriate values are selected for the
parameters, the motifs found by EP-BIRCH-STS are exactly the same as those dis-
covered in [5] and [9]. Fig. 3. reports the motifs found by our EP-BIRCH-STS
method in comparison to those discovered in [5] and [9].

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 3 Motifs discovered by the proposed method compared with those found by some pre-
vious methods. (a1), (a2) motif found in ECG dataset by EP-BIRCH-STS and [5]. (b1), (b2)
motif found in insect behavior dataset by EP-BIRCH-STS and [5]. (c1), (c2) motif found in
world cup dataset by EP-BIRCH-STS and [9].

To verify the effectiveness of our EP-BIRCH-STS in streaming time series, we
conduct an experiment which accepts the above-mentioned datasets in stream man-
ner after a fixed time period. Fig. 4. shows the 1-motifs discovered from the ECG
dataset with lengths from 200 to 300 at different time points.

(a) (b) (c)

Fig. 4 Motif in ECG dataset at different time points. (a) At time point 71996 with 80 in-
stances; (b) at time point 79701 with 81 instances; (c) at time point 144404 with 110 in-
stances.

Next, we compare the performance of EP-BIRCH-STS to the modified version of
Online-MK method described in [8]. We use the same datasets that were used in the
experiment reported in [8]. They are EEG trace, EOG trace, insect behavior trace
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and a synthetic random walk (RW). Since Online-MK method aims to find the most
closest pair in a streaming time series while our method aims to find the 1-motif in
the sense of its first formal definition (Definition 4 in Section 2), we have to modify
the Online-MK so that it can discover 1-motif (in its first formal definition). We
have to add to the Online-MK the following modifications:

• We specify the distance range r for the 1-motif discovery algorithm.
• We maintain a linked list, called neighbor list (N− list) for each subsequence as

in Online-MK. But each N-list of a subsequence keeps only the subsequences
whose distances to the subsequence under question are less than or equal to the
range r.

• We select the subsequence which N-list contains the highest count of its neigh-
bors as the 1-motif result.

We named the modified version of Online-MK as Modified-Online-MK. Since
the Modified Online-MK finds 1-motif in the data segment within one sliding win-
dow while our EP-BIRCH-STS method discovers 1-motif in the whole time series,
we carry out the experiment only on the data segments which are of the same length
as the sliding window to ensure the comparison to be fair. In the experiment we use
the compression rate R = 1 in order to extract the largest number of extreme points
in the time series, i.e., even any data point which exhibits a small change in the time
series can be considered as extreme point. Besides, in EP-BIRCH-STS, we apply
homothetic transformation to convert all the motif candidates to the same length of
the motif we desire to discover in Modified-Online-MK.

Table 1 Efficiency ratio of EP-BIRCH-STS vs. Modified-Online-MK

Window length 1000 2000 4000 8000 10000 20000

EEG 1.64% 0.30% 0.14% 0.07% 0.06% 0.03%
EOG 3.09% 0.83% 0.37% 0.25% 0.25% 0.25%
Insect 4.14% 1.23% 0.51% 0.26% 0.23% 0.14%
RW 2.33% 0.78% 0.35% 0.19% 0.15% 0.11%

To compare the efficiency of the two methods, we compute the efficiency ratio of
EP-BIRCH-STS versus Modified-Online-MK which is defined as follows:

Efficiency ratio = the number of Euclidean distance function calls in EP-BIRCH-
STS * 100% / the number of Euclidean distance function calls in Modified-Online-
MK.

Table 1 show the efficiency ratio of EP-BIRCH-STS vs. Modified-Online-MK on
different datasets and with different data lengths. Experimental results show that in
EP-BIRCH-STS the number of Euclidean distance function calls just is about 0.74%
of that in Modified-Online-MK. This remarkable performance of EP-BIRCH-STS
is due to the fact that EP-BIRCH-STS uses the significant extreme points to extract
motif candidates and this brings out a much smaller number of motif candidates in
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comparison to those extracted by Modified-Online-MK. Furthermore, by using CF-
tree to support in clustering, the cost of subsequence matching in EP-BIRCH-STS
is reduced remarkably since each motif candidate has to be matched with a smaller
number of the nodes in CF-tree.

Table 2 show the CPU time (in seconds) of motif discovery in the two methods
EP-BIRCH-STS and Modified-Online-MK respectively on different datasets and
with different motif lengths. We can see that in all cases, the CPU time of motif
discovery in EP-BIRCH-STS is much lower than that of Modified-Online-MK.

Table 2 Run time of EP-BIRCH-STS/run time of Modified-Online-MK on different datasets
and with different motif lengths

Motif length 64 128 256 396 512

EEG 0.38s/58.82s 0.47s/120.41s 0.63s/264.23s 0.75s/430.94s 0.68s/570.58s
EOG 0.75s/11.77s 0.93s/102.95s 1.35s/223.25s 1.63s/380.93s 1.58s/519.39s
Insect 0.84s/76.34s 1.16s/133.55s 1.50s/227.95s 1.63s/351.71s 1.54s/447.03s
RW 0.78s/76.92s 0.98s/133.17s 1.24s/229.64s 1.48s/350.67s 1.57s/482.21s

5 Conclusions

We haved introduced a new method for discovering motifs in streaming time se-
ries. This method, called EP-BIRCH-STS, is based on extracting significant ex-
treme points and clustering the motif candidates by using BIRCH algorithm. This
method needs only one-pass scan through the whole data and can discover 1-motif
with the length in the range of min Length to max Length. The discovered motif
some-whatdepends on the values of the compression rate R specified in the step of
identifying the significant extreme points and the threshold T in the BIRCH cluster-
ing algorithm.

As for future work, we plan to find some technique to determine the two param-
eters R,and T automatically for any given time series dataset.
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