
Enhance Matching Web Service Security
Policies with Semantic

Tuan-Dung Cao and Nguyen-Ban Tran

Abstract. Web service security policy is a way to add some security restrictions to
a web service. Matching web service security policies is hard and important to inte-
grate web services effectively. However, the lack of semantics in WS-SecurityPolicy
(WS-SP) hampers the effectiveness of matching the compatibility between secu-
rity policies of different web services. To enhance matching web service security
policies, we propose a semantic approach for specifying and matching the security
policies. The approach uses the transformation of WS-SP into an OWL-DL ontol-
ogy, the definition of a set of semantic relations that can exist between the provider
and requestor security concepts, and the algorithm to determine the match level of
the provider and requestor security policies. We show how these relations and the
matching algorithm lead to more correct and more flexible matching of security
policies.

1 Introduction

Nowadays, web service becomes a popular standard in information technology in-
dustry. To use the existing web services effectively, we need to integrate them
by some modern technology and architecture like Service Oriented Architecture
(SOA). Discovering a dynamic service and service selection are essential aspects of
SOA. To acquire the business requirement, selecting web service must not only take
the functional aspects, but also non-functional properties of the services. One of the

Tuan-Dung Cao
School of Information and Communication Technology, Hanoi University of Science
and Technology, Vietnam
e-mail: dungct@soict.hut.edu.vn

Nguyen-Ban Tran
Vietnam Joint Stock Commercial Bank for Industry and Trade, Hanoi, Vietnam
e-mail: nguyenbantran@gmail.com

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 1, 213
Advances in Intelligent Systems and Computing 244,
DOI: 10.1007/978-3-319-02741-8_19, © Springer International Publishing Switzerland 2014



214 T.-D. Cao and N.-B. Tran

most important non-functional properties of a web service is security. This paper
focuses on web service security policy, a non-functional property of web service.

In a big company or organization, SOA is an effective way to provide and inte-
grate its information technology services. Web service is the most adopted imple-
mentation of SOA. Message security becomes a major concern when using Web
services. Therefore, message security becomes a major problem when we use SOA.
Message security mainly means the confidentiality and the integrity of data transmit-
ted through the message. Confidentiality and integrity can be assured by applying
security mechanisms such as encryption and digital signature.

WS-SP [1] is widely accepted in the industry and it is currently a popular standard
to be aggregated into the Web service architecture. Then matching WS-SP problem
becomes more and more important while integrating Web services. However, WS-
SP has a big weakness: it only allows syntactic matching of security policies. In fact,
security policy matching depends on the policy intersection mechanism provided by
WS-Policy [2]. The main step in this mechanism is matching the assertions spec-
ified in the service provider and requestor policies. This step only uses syntactic
comparison between the security assertions, and does not use the semantics mes-
sage security. Syntactic matching of security assertions restricts the effectiveness of
checking the compatibility between provider and requestor policies. A simple com-
parison of the syntactic descriptions of security assertions maybe gets fault negative
results. For example, consider syntactically different security assertions with the
same meaning. Syntactic matching of security assertions only has a strict yes/no
matching result. A more flexible matching is needed in order to consider subtle
differences that may exist between security assertions and not bypass a potential
partnership between a service requestor and a service provider. For example, in the
cases when the provider and requestor security assertions have the same type but
have some different proper-ties that make the provider assertion stronger, in secu-
rity concepts, than the requestor assertion.

In the work [6], the authors proposed a semantic way to compare two security
assertions, but they didn’t compare two all security policies. The goal of this paper
is to propose a semantic security approach a matching WS-SP algorithm to compare
two security policies. In our approach, an ontology defined in Web Ontology Lan-
guage (OWL) is used to present Web service security policies. Policy specifications
offer semantic information about the requestor and provider. This information can
be used to determine policy compatibility and to guarantee interoperability among
requestor and provider service, with respect to security aspects

There are some ways to use semantic approach for working with security policy.
You can use semantic to work with web service security configurations [7] or to
man-age web service security [8]. We use semantic to get the matching level of two
web service security policies .

We used a created prototype for the semantic matching of security assertions then
add some relations to extend this completion to get the matching level of WS-SP.
Based on the semantic interpretation of the syntactic heterogeneities that may oc-
cur between a provider assertion and a requestor assertion, our approach doesn’t
produce fault negative results and thus supports more correct matching. Besides, it



Enhance Matching Web Service Security Policies with Semantic 215

allows introducing close match and possible match as intermediary matching de-
grees, which makes security assertion matching more flexible.

The remainder of this paper is organized as follows. Section 2 and 3 introduce
about WS-SP and the problem : matching WS-SP. Section 4 presents the ontology
and relations in this ontology with semantics. Section 5 presents our algorithm of
semantics matching security policies with two cases: a simple case and complex
cases. Section 6 discusses about related work. Section 7 concludes the paper with
some discussion.

2 Web Service Security Policy

WS-SP is a web services specification, which is created by IBM and used to ex-
tend the fundamental security protocols specified by the WS-Security, WS-Trust and
WS-SecureConversation by offering mechanisms to represent the capabilities and
requirements of web services as policies. Security policy assertions are based on the
WS-Policy framework. Policy assertions can be used to require more generic se-
curity attributes like transport layer security ¡TransportBinding¿, message level se-
curity ¡AsymmetricBinding¿ or timestamps, and specific attributes like token types.
Policy assertions can be divided in following categories: Protection assertions iden-
tify the elements of a message that are required to be signed, encrypted or existent;
Token assertions specify allowed token formats (SAML, X509, Username etc.);
Security binding assertions control basic security safeguards like transport and mes-
sage level security, cryptographic algorithm suite and required timestamps; Support-
ing token assertions add functions like user sign-on using a username token.

Policies can be used to drive development tools to generate code with certain
capabilities, or may be used at runtime to negotiate the security aspects of web ser-
vice communication. Policies may be attached to WSDL elements such as service,
port, operation and message, as defined in WS Policy Attachment. WS-SP standard

<sp:IssuedToken>
<sp:RequestSecurityTokenTemplate>
<wst:TokenType>...#SAMLV2.0</wst:TokenType>
</sp:RequestSecurityTokenTemplate>
</sp:IssuedToken>

Fig. 1 An example of WS-SP

defines a set of security policy assertions for use with the WS-Policy framework.
These assertions describe how messages are secured according to the WS-Security
protocol. Typically, the published policies are compliant with the WS-Policy nor-
mal form. WS-SP assertions mainly describe the token types for security tokens, the
cryptographic algorithms, and the scope of protection which means the parts of the
SOAP message that shall be encrypted or signed.



216 T.-D. Cao and N.-B. Tran

3 Matching Web Service Security Policies Problem

When we have many web services and want to integrate them, we have to deal
with the compatibility of their security policies. It leads to a problem: how to know
whether two different security policies match or not.

Syntactic matching of security assertions restricts the effectiveness of checking
the compatibility between them. In order to illustrate this deficiency, suppose that a
requestor is looking for a fund transfer Web service that supports the signature of
the message body with a symmetric key securely transported using an X509 token.
Besides, the necessary cryptographic operations must be performed using Basic256
algorithm suite. This could be formalized, based on the WS-SP standard, by adding
the assertions reqAss1 and reqAss2 to the requestor security policy (SP).

Furthermore, suppose that the requestor finds a Web service that fund transfer
and whose SP includes provAss1 and provAss2 assertions.

Fig. 2 Example of requestor and provider assertions

It is clear that the assertions specified in the provider SP are syntactically differ-
ent than those specified in the requestor SP. Syntactic matching will then produce
a no match result for these assertions. However, using semantic approach, we get
a different matching result. In the above scenario reqAss1 and provAss1 assertions
have the same meaning: sign the body of the message. Therefore, matching these
two assertions must lead to a perfect match rather than no match. Besides, the only
difference between reqAss2 and provAss2 assertions is that the SymmetricBind-
ing assertion specified in the provider SP contains an extra child element which
is sp:IncludeTimestamp. From security perspective, this strengthens the integrity
service ensured by the message signature and makes provAss2 assertion stronger
than reqAss2 assertion. Although it is not a perfect match, it is better than no match
case.

From this analyzing, if the requestor can strengthen his security assertion by the
inclusion of a timestamp, the perfect compatibility between both assertions will be
ensured. We consider that it is more flexible to decide a possible match for this
case in order to not reject a potential partnership between the service requestor and
provider. Therefore, these two policies are possible match.



Enhance Matching Web Service Security Policies with Semantic 217

4 Semantic Matching of Web Service Security Assertions

In this section, we will show how to use semantic approach to transform a web
ser-vice security policy to a form of ontology.

4.1 WS-SP Ontology

The assertions defined in WS-SP must be augmented with semantic information in
order to enable semantic matching. Because this current version of WS-SP doesn’t
have any semantics presentation, the authors of [6] base on WS-SP and redesign an
ontological representation of its assertions in order to obtain a WS-SP-based ontol-
ogy that can be augmented with new semantic relations. A graphical depiction of the
main parts of the ontology is shown in Fig. 3. Because some of these classes aren’t
designed well, we will use this main part of ontology and propose a way to extend
some properties to ensure that this ontology will be used to get the matching level of
two policies, not only two assertions. Web service security assertions are specified
within security policies of the service provider and requestor. Typically, the struc-
ture of these policies is compliant with the WS-Policy normal form. In the normal
form, a policy is a collection of alternatives, and an alternative is a collection of
assertions. It is in the assertion components that a policy is specialized. Fig. 3 shows

Fig. 3 Main classes of WS-SP-based ontology (from [6])

the main classes of the WS-SP-based ontology. This ontology includes the three
main classes: SecurityPolicy, SecurityAlternative and SecurityAssertion in order to
present security assertions within security policies. The SecurityAssertion have 4
subclasses: SecurityBinding, ProtectionScope, SupportingSecurityTokens, Token-
ReferencingAndTrustOptions. The first two classes are detail in reference [6]. We
will add some individuals to SupportingSecurityToken to improve its semantic.



218 T.-D. Cao and N.-B. Tran

Fig. 4 Add individuals into SupportingSeuciryTokens

Fig. 5 Subclasses of TokenRefAndTrustOptions class

Fig.4 shows 7 individuals we added into SupportingSecurityTokens class. These
individuals are used when there is a supporting token in security policy. By using
these individuals, we can compare two SupportingSecurityToken more conrectly.

With TokenRefAndTrustOptions, we move related classes such as TokenRefer-
encingOptions, TrustOptions, to become subclass of it.

4.2 Adding Semantic Relations

We used the WS-SP-based ontology with new semantic relations at the level of
the security assertions and their properties. From the relation between assertions,
we will compare two security policies to get the matching level of them. In this
subsection, we epitomize all relations which are used. After we have the matching
level of all assertions, we can get the matching level of a requestor policy with a
provider policy.

To specify a relation between two assertions, we need to transform it into an
ontology form. Subject to the security concepts, we will get the matching result,
take security concepts of ProtectionScope, SecurityBinding, and AlgorithmSuite, for
example. Next, we present the semantic relations.



Enhance Matching Web Service Security Policies with Semantic 219

isIdenticalTo relation: This relation allows to specify that a security concept spec-
ified by the provider is identical to a security concept specified by the requestor (no
syntactic heterogeneity exists between them). There are two main cases for this re-
lation in Table 1.

Table 1 isIdenticalTo relation
Case isIdenticalTo
Properties of ProtectionScope, Security-
Binding

- If two simple properties point to the same security concept and have equal values.
- Two complex properties point to the same security concept and all their child
properties is identical.

Assertions of ProtectionScope, Security-
Binding

Point to the same security concept and all their properties are identical.

isEquivalentTo relation: This relation allows to specify that a security concept
specified by the provider is equivalent to a security concept specified by the re-
questor. There are two main cases of security connects in Table 2.

Table 2 isEquivalentTo relation

Case isEquivalentTo
Encrypted part and encrypted element or
signed part and a signed element

XPath expression of message part is equivalent to the value of element. Example:
’/S:Enveloppe/S:Body’ and ’Body’.

Two algorithms suites Algorithm suites defined in WS-SP are not disjoint and two algorithm suites can
include many common elements. Example: Basic256 and Basic256Sha256.

isLargerThan relation. This relation only concerns the protection scope concept
in SOAP message (in Table 3). isSmallerThan relation. This relation is to spec-

Table 3 isLargerThan relation

Case isLargerThan
Part of SOAP message or XML elements A part of message or a XML element is larger than any elements that belongs to

it.
Encryption scopes, signature scopes, and
required scopes

If a scope is larger than other scope.

Protection scope If a scope has at least one property that larger than a property of other scope, and
different scopes are identical or equivalent.

ify that the protection scope (in the SOAP messages) specified by the provider is
smaller than the protection scope specified by the requestor. It is the opposite of
isLargerThan relation and occurs in three cases just in an opposite manner to is-
LargerThan relation.

isStrongerThan relation. This relation is to specify that a security concept speci-
fied by the provider is stronger, in the security perspective, than a security concept
specified by the requestor. There are three main cases for this relation (in Table 4).

isWeakerThan relation. This relation is to specify that a security concept speci-
fied by the provider is weaker, in the security perspective, than a security concept
specified by the requestor. It is the opposite of isStrongerThan relation and occurs
in three cases just in an opposite manner to isStrongerThan relation.



220 T.-D. Cao and N.-B. Tran

Table 4 isStrongerThan relation

Case isStrongerThan
Security binding properties Have influence on security strength, then we have isStrongerThan relation at the level of

these properties.
Security binding assertion If they point to the same type of security binding, and A provider assertion has at least one

properties is stronger than the corresponding property of requestor assertion.
Protection scopes If the provider scope has at least one extra scope, and the other scopes are identical, equiva-

lent or have isLarger than relations.

hasTechDiffWith relation. In addition to concepts that allow to specify how a
SOAP message is to be secured (confidentiality, integrity,), WS-SP-based ontol-
ogy also includes concepts to describe technical aspects concerning how adding
and referencing the security features in the message. At the level of these technical
concepts, we define hasTechDiffWith relation to state that any mismatch between the
provider concept properties and the requestor concept properties must be considered
as a technical mismatch rather than a security level mismatch. isMoreSpecificThan
relation. According to WS-SP standard, many security properties are optional to
specify in a SP and WS-SP doesn’t attribute default values for them. Therefore we
define isMoreSpecificThan relation that occurs when a security concept specified by
the provider is more specific (i.e., described in more detail) than a security concept
specified by the requestor.

isMoreGeneralThan relation. This relation occurs when a security concept spec-
ified by the provider is more general (i.e., described in less detail) than a security
concept specified by the requestor. It is the opposite of isMoreSpecificThan relation.

isDifferentFrom relation. This relation occurs when the security concepts speci-
fied by the requestor and the provider are semantically disparate.

5 Algorithm of Semantic Matching Web Service Security
Policies

In this section, we propose an algorithm for matching provider and requestor se-
curity policies in a simple policy case and complex policies cases. This matching
algorithm uses the matching level of assertions [6], which will be compared through
the way mentioned below. After comparing two assertions, we will compare two se-
curity policies. There are four matching level: perfect match, close match, possible
match, and no match in decreasing order of matching

5.1 Compare Two Simple Assertions

Simple assertion is a security assertion which contains only one alternative. To com-
pare two simple assertions, we need to transform them into ontology form which
bases on WS-SP ontology [6]. We will compare two assertions in ontology form,
we will have many relations between them. We consider these relations to get the
matching level between two assertions.



Enhance Matching Web Service Security Policies with Semantic 221

Perfect match. A perfect match occurs when provAss and reqAss are connected
through isIdenticalTo or isEquivalentTo relations.

Close match. A close match occurs when provAss and reqAss are connected
through isMoreSpecificThan relation. Possible match. A possible match is decided
in three main cases:

Case 1. provAss and reqAss are connected through isMoreGeneralThan relation.
This means that the information available cannot ensure that provAss can perfectly
match reqAss. We assume that a potential partnership between the requestor and the
provider can take place if the requestor can obtain additional information or negoti-
ate with the provider.
Case 2. provAss is connected to reqAss through isLargerThan, isStrongerThan, or
hasTechDiffWith relations. This means that the incompatibility between the two as-
sertions doesn’t negatively affect the security services and levels required in reqAss.
We assume that a potential partnership between the requestor and the provider can
take place if the requestor can strengthen his policy assertion or change some tech-
nical properties of his assertion.
Case 3. provAss and reqAss point to the same security concept and have at least one
isMoreGeneralThan, isLargerThan, isStrongerThan, or hasTechDiffWith relation at
the level of their properties, and their remaining properties are linked with semantic
relations of type isIdenticalTo, isEquivalentTo, or isMoreSpecificThan. For exam-
ple, suppose that provAss and reqAss point to the SymmetricBinding concept, but
provAss has a protection token that is more general than the protection token spec-
ified in reqAss. In addition, provAss has an algorithm suite that is identical to the
algorithm suite specified in reqAss. And finally, provAss has a Timestamp property
that is stronger than the Timestamp property of reqAss. The two assertions have two
heterogeneities that don’t rule out the possibility of a match, so it is a possible match
case.

No match. No match is decided in cases: provAss and reqAss are connected
through isDifferentFrom, isSmallerThan, or isWeakerThan relations; provAss and
reqAss point to the same security concept, and they have at least one isDifferent-
From, isSmallerThan, or isWeakerThan relation at the level of their properties.

In this subsection, we present the way to compare two simple assertion, so we
create a function named Compare Simple(A,B) to compare two simple assertion
with the return values are: no match, possible match, close match, and perfect match.
This result is sorted by increasing of value.

5.2 Compare Two Complex Assertions

A complex assertion has more than one alternative. In this subsection, we will pro-
posed an algorithm to compare two complex assertions. We have a requestor A
and provider B; assertions are reqA and provB. The matching level between reqA
and provB is defined as the highest match of any alternative of provB with any
alternative of reqA. For example, reqA includes alternatives: reqA1 and reqA2,
provB includes alternatives: provB1 and provB2, with reqA1, reqA2, provB1,



222 T.-D. Cao and N.-B. Tran

provB2 are simple assertions. We assume that provB1 and reqA1 have relation
isIdenticalTo, and provB2 and reqA2 have relation isDifferentFrom. So, reqA and
provB have the matching level isIdenticalTo.

The algorithm: Let A, B are two complex assertions. Assertion A contains alter-
natives: A1, A2, , An and assertion B contains alternatives: B1, B2, , Bm. Because
A, B are complex assertions, so Ai or Bj maybe a complex assertion.

We present this algorithm in pseudocode:
Compare Assertion(Assertion A, Assertion B) {

If (A is a simple assertion and B is a simple assertion) then return Compare Sim-
ple(A, B).
/* A contains alternatives: A1, A2, , An */
/* B contains alternatives: B1, B2, ., Bm */
Return (Max(Compare Assertion(Ai, Bj) with 0 <i <n+1 and 0 <j <m+1)).
}

This algorithm can compare a complex assertion with a simple assertion. In this
case, a simple assertion X have one alternative is X itself.

5.3 Compare Two Security Policies

In above subsections, we compared two assertions in general case (simple case or
complex case). Now, we will use this matching assertion algorithm to build a match-
ing security policy algorithm. The matching process consists in checking to what
extent each security assertion reqAss specified in the requestor SP is satisfied by a
security assertion provAss specified in the provider SP. The matchmaker has to per-
form three main tasks. Firstly, it must create all possible semantic relations at the
level of each pair of provider and requestor assertions and get matching level of all
assertion pairs. Secondly, based on the created semantic relations, it must decide the
appropriate matching degree for each provAss-reqAss pair. The final matching de-
gree for a requestor assertion is the highest level of matching level against all of the
checked provider assertions. Thirdly, after all requestor assertions have a matching
level, the matching degree of requestor and provider policies is the lowest matching
degree of all assertions in requestor policy.

Fig. 6 Matching security policy algorithm

Matching algorithm: Let X, Y are two security policy. Policy X contains assertion
X1, X2, , Xn and policy Y contains assertion Y1, Y2, , Ym. Because we only need to



Enhance Matching Web Service Security Policies with Semantic 223

know a requestor policy is satisfied or not by a provider policy. Then, this algorithm
compare requestor policy X with provider policy Y. With each assertion Xi, we will
get the highest satisfied matching level of it with all assertion of policy Y. Relation -
Assertion Policy(Xi, B) = max {relation(Bj, Ai)with 0 <j <m+1)}

With this definition, we will get the matching level of two policy is the low-
est matching level of all assertion in requestor policy. Relation policy(A, B) =
min{relation assertion policy(Ai, B)), with 0 <i <n+1)}.

Our above proposed algorithm can help us get the more flexible and correct
matching level of a requestor policy and a provider policy. This algorithm not only
supports in the simple case of security policy, but also the complex case of security
policy.

6 Related Work

WSPL (Web Services Policy Language) [4] is another syntactic policy language
based on XML that can be used to specify a wide range of policies, including autho-
rization, quality of service and reliable messaging etc. WSPL is of particular interest
in several respects, for example, it supports merging two policies and policies can
be based on comparisons other than equality allowing policies to depend on fine-
grained attributes. In essence, a policy of WSPL is a sequence of rules, where each
rule represents an acceptable alternative. A rule contains a number of predicates,
which correspond to policy assertions in WS-Policy. Because WSPL is still based
on syntactical domain models, its shortcomings are similar to WS-Policy. In a differ-
ent work [5], they were interested in the work to conflict resolution semantic naming
type when aligning SP in distributed multi-systems security policies. Their solution
is based on ontology mediation for SP cooperation and understanding. They propose
a helpful process for security experts, this process permit to mask heterogeneity and
resolve conflicts between SP, using different steps.

In another work [10], the author proposed a simple ontology to compare two
security policies, and then build an algorithm to compare security policies. This
algorithm bases on ontology and it uses the semantic reasoner to get the final result.
However, the algorithm is simple, and the comparing algorithm isn’t detail.

In the work [6], the authors proposed a WS-SP-based ontology and some rela-
tions to compare two security assertions. That paper show how to get the matching
level of two simple security assertions, but it lacks the comparing of all two polices
and the processing in the complex security assertions case.

In addition to being compatible to WS-SP and the work [6], our approach is better
than previous approaches: we extend the WS-SP-based ontology with additional
semantic relations that support more correct and more flexible semantic matching
of Web service security policies, not only simple assertions.



224 T.-D. Cao and N.-B. Tran

7 Conclusion and Discussion

In this paper, we used an approach to provide a semantic extension to security asser-
tions of Web services, then from this result we compared two web service security
policies. The approach is based on the transformation of WS-SP into an OWL-DL
ontology, and using the relations in this ontology to get matching level of two secu-
rity policies.

Our semantic approach supports more correct and more flexible security pol-
icy matching compared to syntactic matching of previous works that combined on-
tology and Web service security properties because our approach also compares
complex security policies to get the final matching degree between them, which
contain several alternatives. Besides, we plan to develop a tool that automatically
transforms a WS-SP policy into our ontological representation, and show a security
policy which is compatible with two requestor and provider, or print out no match
result.

References

[1] OASIS: WS-SecurityPolicy 1.3, http://www.oasis-open.org/specs/
[2] W3C: WS-Policy 1.5, http://www.w3.org/TR/ws-policy/
[3] Verma, K., Akkiraju, R., Goodwin, R.: Semantic matching of Web service policies. In:

Proceedings of the Second Workshop on Semantic and Dynamic Web Processes, pp.
79–90 (2005)

[4] Anderson, A.H.: An Introduction to the Web Services Policy Language. In: Fifth IEEE
International Workshop on Policies for Distributed Systems and Networks, POLICY
2004 (2004)

[5] Benammar, O., Elasri, H., Sekkaki, A.: Semantic Matching of Security Policies to Sup-
port Security Experts

[6] Brahim, M.B., Chaari, T., Jemaa, M.B., Jmaiel, M.: Semantic matching of WS-Security
Policy assertions (2011)

[7] Bhargavan, K., Fournet, C., Gordon, A.D., O’Shea, G.: An Advisor for Web Services
Security Policies (2005)

[8] Garcia, D.Z.G., de Toledo, M.B.F.: Web Service Security Management Using Semantic
Web Techniques (2004)

[9] Bhargavan, K., Fournet, C., Gordon, A.D.: Verifying Policy-Based Security for Web Ser-
vices

[10] He, Z.-Q., Wu, L.-F., Zheng, H., Lai, H.-G.: Semantic Security Policy for Web Service.
In: IEEE International Symposium on Parallel and Distributed Processing with Applica-
tions (2009)

http://www.oasis-open.org/specs/
http://www.w3.org/TR/ws-policy/

	Enhance Matching Web Service Security Policies with Semantic
	1 Introduction
	2 Web Service Security Policy
	3 Matching Web Service Security Policies Problem
	4 Semantic Matching ofWeb Service Security Assertions
	4.1 WS-SP Ontology
	4.2 Adding Semantic Relations

	5 Algorithm of Semantic Matching Web Service Security Policies
	5.1 Compare Two Simple Assertions
	5.2 Compare Two Complex Assertions
	5.3 Compare Two Security Policies

	6 Related Work
	7 Conclusion and Discussion
	References




