
Chapter 11
Plan Recognition and Visualization
in Exploratory Learning Environments

Ofra Amir, Kobi Gal, David Yaron, Michael Karabinos
and Robert Belford

Abstract Exploratory Learning Environments (ELEs) are open-ended software in
which students build scientific models and examine properties of the models by
running them and analyzing the results (Amershi and Conati, Intelligent tutoring
systems. LNCS. Springer, Heidelberg, 463–472, 2006); Chen (Instr Sci,
23(1–3):183–220, 1995); (Cocea et al., 2008). ELEs are generally used in classes
too large for teachers to monitor all students and provide assistance when needed
(Gal et al., 2008). They are also becoming increasingly prevalent in developing
countries where access to teachers and other educational resources is limited
(Pawar et al., 2007). Thus, there is a need to develop tools of support for teachers’
understanding of students’ activities. This chapter presents methods for addressing
these needs. It presents an efficient algorithm for intelligently recognizing stu-
dents’ activities, and novel visualization methods for presenting these activities to
teachers. Our empirical analysis is based on an ELE for teaching chemistry that is

O. Amir (&)
Harvard University, School of Engineering and Applied Sciences, 29 Oxford Street,
Cambridge, MA 02138, USA
e-mail: oamir@seas.harvard.edu

K. Gal
Department of Information Systems Engineering Ben-Gurion Boulevard, Ben-Gurion
University, Building 93, Beer Sheva 84105, Israel
e-mail: kobig@bgu.ac.il

D. Yaron � M. Karabinos
Department of Chemistry, Carnegie-Melon University, 4400 Fifth Avenue, Pittsburgh, PA
15213, USA
e-mail: yaron@cmu.edu

M. Karabinos
e-mail: mk7@cmu.edu

R. Belford
Department of Chemistry and Biochemistry, University of Arkansas, A 119 Chemistry
Building, Fayetteville, AR 72701, USA
e-mail: rebelford@ualr.edu

A. Peña-Ayala (ed.), Educational Data Mining,
Studies in Computational Intelligence 524, DOI: 10.1007/978-3-319-02738-8_11,
� Springer International Publishing Switzerland 2014

289

used by thousands of students in colleges and high schools in several countries
(Yaron et al., Science, 328(5978), 584–585, 2010).

Keywords Plan recognition � Visualization � Exploratory learning environments �
Recognition algorithm � Virtual labs

Abbreviations

AI Artificial intelligence
CCD Create correct device action
ELEs Exploratory learning environments
ITS Intelligent tutoring systems
MS Mix solution
MSC Mixing solution components
MSI Mixing the solution using an intermediate flask
SDP Solving the dilution problem

11.1 Introduction

There are several aspects to students’ interactions that make plan recognition in
ELEs particularly challenging. First, students can engage in exploratory activities
involving trial-and-error, such as searching for the right pair of chemicals to
combine in order to achieve a desired reaction. Second, students can repeat
activities indefinitely in pursuit of a goal or sub-goal, such as adding varying
amounts of an active compound to a solution until a desired molarity is achieved.

Third, students can interleave between activities, such as preparing a solution
for a new experiment while waiting for the results of a current experiment.
Explicitly representing all possible combinations of these activities is computa-
tionally infeasible.

The recognition algorithm presented in this paper addresses these challenges by
using a recursive grammar to generate plan fragments for describing key chemical
processes in the lab. The algorithm receives as input students’ complete interaction
sequence with the software, as well as a grammar describing possible activities. It
expands activities from the grammar using a heuristic that chooses (possibly non-
contiguous) actions from students’ interaction and outputs a hierarchical plan that
explains how the software was used by the student. The algorithm was evaluated
using real data obtained from students using the ELE to solve six representative
problems from introductory chemistry courses. Despite its incompleteness, the
algorithm was able to correctly infer students’ plans in all of the instances given
that appropriate grammar rules were available. It was able to identify partial
solutions in cases where students failed to solve the complete problem, as well as
capture interleaving plans.

290 O. Amir et al.

We used two novel visualization methods to present students’ activities to
teachers. One of the methods visualized the plans that were inferred by the rec-
ognition algorithm. The second method visualized students’ actions over a time-
line. A user study with chemistry teachers was conducted that compared these
visualization methods with a baseline technique consisting of movies showing the
students’ application window during their work. The results showed that teachers
preferred the temporal- and plan-based methods over the movie visualization,
despite the fact that the movie was easier to learn. Both the plan- and temporal-
based visualization methods were found useful by teachers, and improved teach-
ers’ understanding of student performance. These visualization methods will be
incorporated into a separate application that will be available for use by teacher
and student users of Virtual Labs.

These results demonstrate the efficacy of combining computational methods for
recognizing users’ interactions with intelligent interfaces that visualize how they
use flexible, open-ended software. It is a first step in creating systems that provide
the right machine-generated support for their users. For teachers, this support
consists of presenting students’ performance both after and during class. For
students, this support will guide their problem-solving in a way that maximizes
their learning experience while minimizing interruption.

This chapter integrates and extends a past study for recognizing students’
activities in ELEs Amir and Gal [7] in several aspects. First, it introduces novel
visualization methods of students’ work with exploratory learning environments,
one of which is informed by the recognition algorithm. Second, it demonstrates the
efficacy of these visualization methods in the real world by showing they support
teachers in the analysis of student performance in ELEs. Lastly, it evaluates the
recognition algorithm on a significantly larger scale.

The rest of this chatper is organized as follows. Section 11.2 presents related
work in two different areas: plan recognition and student assessment. Section 11.3
presents the ELE domain which is the focus of our empirical methodology.
Section 11.4 presents the plan recognition algorithm and demonstrates its per-
formance on student data.

Section 11.5 describes a user study for comparing different visualization
methods of students’ activities to teachers. Section 11.6 concludes this work and
discusses its significance for the goal of creating collaborative systems in
exploratory domains.

11.2 Related Work

The work reported in this book chapter relates to two different areas of prior work
and a range of approaches within each: plan recognition and assessment of stu-
dents’ activities with software. The subsections below discuss related work in
these two areas respectively.

11 Plan Recognition and Visualization 291

11.2.1 Plan Recognition

Plan recognition is a cornerstone problem in artificial intelligence (AI) which aims
to infer an agent’s goals and plans given observations of its actions. Applications
of plan recognition can be found in a wide range of fields, such as natural language
dialog Carberry [8]; Grosz and Sidner [9], software help systems Baueret al. [10];
Mayfield [11], story understanding Wilensky [12]; Charniak and Goldman [13]
and human–computer collaboration Lesh et al. [14].

Past works have used plan recognition to infer students’ plans from their
interactions an ELE for teaching statistics Gal et al. [4]; Reddy et al. [15]; Gal
et al. [16]. Specifically, Reddy et al. [15] proposed a complete algorithm which
modeled the plan recognition task as a Constraint Satisfaction Problem (CSP). Gal
et al. [4] devised a heuristic algorithm that matched actions from students’ logs
with the recipes for the given problem. These approaches do not support recursive
grammars, which are essential for capturing the type of exploratory activities that
characterize the ELE in our setting, such as indefinite repetition. We further extend
these works by visualizing students’ activities to teachers.

Other works have implemented plan recognition techniques to model students’
activities in Intelligent Tutoring Systems (ITS) VanLehn et al. [17]; Conati et al.
[18, 19]; Anderson et al. [20]; Corbett et al. [21]; Vee et al. [22]. In these systems,
the tutor takes an active role in students’ interactions, providing feedback and
hints. Plan recognition has also been used to recognize users’ activities when
programming in UNIX Blaylock and Allen [23], or interacting with medical
diagnosis and email notification systems Bauer [24]; Horvitz [25]; Lesh [26]. All
of the above settings are significantly more constrained than ELEs, severely
limiting the amount of exploration that students can perform. Thus these
approaches are not suitable for recognizing students’ activities in ELEs. Our work
also extends the plan recognition literature more generally. Traditional approaches
to plan recognition Kautz [27]; Lochbaum [28] did not consider incomplete
information of the agent, mistakes, extraneous actions, interleaving and multiple
plans, which are endemic feature of ELEs.

More recently, Geib and Goldman [29] proposed a probabilistic model of plan
recognition that recognized interleaving actions and output a disjunction of
plans—rather than a single hierarchy—to explain an action sequence.

It also accounted for missing observations (e.g., not seeing an expected action
in a candidate plan makes another candidate plan more likely). Our work is distinct
from this approach in several ways. First, the settings studied by Geib and
Goldman do not account for agents’ extraneous actions, which are common to
students’ interactions in ELEs. Second, we show the efficacy of our approach on
real-world data obtained from students using pedagogical software, whilst Geib
and Goldman use synthetic data.

292 O. Amir et al.

11.2.2 Assessment of Students’ Activities

The visualization methods in this paper relate to several strands of research for
analyzing and assessing students’ interactions with pedagogical software. Some
systems work on-line, visualizing predefined features of students’ interactions to
teachers. The following describe notable examples. The student tracking tool
Pearce-Lazard et al. [30]; Gutierrez-Santos et al. [31] is part of the MiGen project
for improving 11–14 year-old students’ learning of algebraic generalization. This
tool monitors students’ activities during their sessions with an ELE for teaching
algebra. The tracking tool visualizes ‘‘land-marks’’ which occur when the system
detects specific actions or repetitive patterns carried out by the student.

The FORMID-Observer Gueraud et al. [32] monitors students’ activities in
simulation-based work sessions with the FORMID-Learner. A teacher can specify
specific situations to be monitored representing certain system states, possible
student mistakes, and tests that can be triggered by the student. These activities are
visualized in the teacher interface which shows the situations and results of val-
idation requests of each student, using a coloring scheme of green for correct
activities and red for incorrect activities.

Other systems work post hoc, and generate reports to teachers based on stu-
dents’ complete interaction histories. These systems do not display the students’
activities but rather summarize performance measures such as the number of hints
requested and success rates in problems. Relevant examples include the AS-
SISTment system Feng and Heffernan [33] and Student Inspector Scheuer and
Zinn [34].

Lastly, data mining techniques have been used to analyze students’ perfor-
mance with pedagogical software. The DataShop Koedinger et al. [35] system
generates learning curves reports for students, error reports and general perfor-
mance reports of students. The Tool for Advanced Data Analysis in Education
(TADA-Ed) Merceron and Yacef [36] system discovers correlations between
students’ mistakes in different problems. Sao Pedro et al. [37] and Montalvo et al.
[38] trained decision tree detectors to identify two types of students’ planning
approaches in microworlds, a simulation based educational software. Their mod-
elling is based on features such as action frequencies and latency between actions.
Amershi and Conati [39] have used data mining techniques to cluster and classify
students’ interaction behaviors in ELEs as either effective or ineffective for
learning. Kardan and Conati [40] extended this work to extract association rules of
each cluster and use these rules for both online classification of new learners as
well as for post analysis of the behaviors that were effective for learning.

Our work differs from these data mining approaches in that it provides an
individual analysis of students’ problem-solving behavior. For example, while the
approach described in Kardan and Conati [40] will classify a student as belonging
to either a high-learning gain group or a low-learning gain group, our approach
provides a temporal and hierarchical visualization of the student’s interaction.

11 Plan Recognition and Visualization 293

11.3 The Virtual Labs Domain

In this section we describe the ELE that provides the empirical setting for this
paper. Virtual Labs simulates a real chemistry lab and used in the instruction of
college and high school chemistry courses worldwide. It allows students to design
and carry out experiments which connect theoretical chemistry concepts to real
world applications Yaron et al. [6]. We will use the ‘‘dilution problem’’, posed to
students that use VirtualLabs in an introductory chemistry course, as a running
example to demonstrate our approach.

Your objective is to prepare a solution containing 800 milliliters (ml) or more of
HNO3 with a desired concentration of 7 M1 You are allowed a maximal deviation
of 0.005 M in either direction.

To solve this problem in VirtualLabs, students are required to pour the correct
amounts of HNO3 and H2O to an empty flask which will contain the diluted
solution. Despite the simplicity of this problem, students solve it in different ways.
A possible solution for this problem is to repeatedly mix varying quantities of
HNO3 with H2O until achieving the required concentration. We describe a stu-
dent’s interaction adapted from our empirical analysis which follows this para-
digm. The student began by pouring 100 ml of an HNO3 solution with a
concentration of 15.4 M to a 100 ml intermediate flask, and transferred the content
of the intermediate flask to an empty destination flask.2

This activity was repeated four times, resulting in 400 ml of HNO3 in the des-
tination flask. The student proceeded to dilute this solution by mixing it with 510 ml
of H2O. This activity was carried out in two steps, one adding 10 ml of H2O (using
an intermediate flask of 10 ml) and another adding 500 ml of H2O (using an
intermediate flask of 500 ml). At this point the molarity of HNO3 in the destination
flask was too low (6.666 M), indicating that too much H2O had been poured. To
raise the concentration to the desired level, the student began to pour small amounts
of HNO3 to the destination flask using an intermediate 10 ml flask, while checking
the concentration level of the resulting compound. The student first poured 10 ml of
HNO3, then poured another 10 ml of HNO3, and finally added 5 ml of HNO3 to the
destination flask, which achieved the desired concentration of 7 M.

Figure 11.1 shows a snapshot of Virtual Labs taken right after the student added
510 ml of H2O to the destination flask. The panel on the left shows a stockroom of
chemicals which can be customized for different activities.

One of the flasks, labeled ‘‘15.4 M HNO3’’ (outlined in red in the figure)
contains an HNO3 solution with a concentration of 15.4 M. The middle panel
shows the ‘‘workbench’’ of the student, used to carry out activities in the

1 In chemistry, ‘M’ denotes the measure of Molar concentration of a substance.
2 Intermediate flasks are commonly used in Virtual Labs to help measure solutions accurately, as
in a physical laboratory.

294 O. Amir et al.

laboratory. This panel shows the flask containing HNO3 with a concentration of
15.4 M, the H2O flask, and the destination flask (a 1,000 ml volumetric flask).
It also shows one of the intermediate flasks used by the student (a 500 ml volu-
metric flask). The ‘‘Solution Information’’ panel on the right shows the volume and
concentration of selected compounds. It shows that the concentration level of
HNO3 in the destination flask is 6.77 M (outlined in red in the figure).

The student’s interaction described above highlights several aspects endemic to
scientific inquiry that are supported by the Virtual Labs software. First, the concept
of titration, which repeatedly adding a measured compound to a solution until a
desired result, is achieved. This is apparent in the student repeatedly adding small
quantities of HNO3 to the destination flask. Second, the interleaving of actions that
relate to different activities. This is apparent in the student beginning to pour
HNO3 to the destination flask, then switching to pour H2O, and then returning to
pour more HNO3. Lastly, performing exploratory actions and mistakes. This is
apparent in the student adding too much H2O to the destination flask, and pro-
ceeding to increase the concentration of the compound by adding more HNO3.

Whereas the student in the example interaction described above used a trial-
and-error approach to solve the dilution problem, there are other possible solution
strategies. For example, students can pre-calculate the exact amounts of H2O and
HNO3 that should be mixed to achieve the desired molarity. After calculating these
quantities students can proceed to immediately mix them in Virtual Labs and
achieve the desired concentration.

Fig. 11.1 Snapshot of interaction in virtual labs

11 Plan Recognition and Visualization 295

11.4 Plan Recognition in Virtual Laboratories

This section describes the devised grammar and plan recognition algorithm. We
define the plan recognition problem in Virtual Labs, the formalisms used by our
approach, and the proposed recognition algorithm. Finally, we present the results
of an empirical evaluation performed on real data taken from students’ interactions
with VirtualLabs.

11.4.1 Actions, Recipes, and Plans

Our plan recognition algorithm is based on a generative grammar that captures the
experimental nature of students’ activities in ELEs. We use the term basic actions
Pollack [41] to define rudimentary operations that cannot be decomposed. Com-
plex actions describe higher-level, more abstract activities that can be decomposed
into sub-actions, which can be basic actions or complex actions themselves. In our
example, basic actions may be ‘‘taking out a solution from the stockroom’’ or
‘‘pouring 10 ml of H2O to an intermediate flask’’, while complex actions may
consist of ‘‘solving the dilution problem’’, or ‘‘mixing together H2O and HNO3

four times’’.
A recipe for a complex action specifies the sequence of operations required for

fulfilling the complex action, called sub-actions. Formally, a recipe is a set of
sub-actions and constraints such that performing those sub-actions under those
constraints constitutes completing the action. The set of constraints is used to
(1) specify required values for action parameters; (2) enforce relationships among
parameters of (sub-) actions, such as chronological order; and (3) bind the

SDP[s_id1, vol1, s_id2, vol2, d_id1]

MSC[s_id1, d_id1, sc1 = H2O, vol1],

MSC[s_id2, d_id2, sc2 = HNO3, vol2]

 d_id1 = d_id2

MSC[s_id1, d_id1, sc1, vol = vol1 + vol2]

MSC[s_id1, d_id1, sc1, vol1],

MSC[s_id2, d_id2, sc2, vol2]

s_id1 = s_id2, d_id1 = d_id2, sc1 = sc2

MSC[s_id, d_id, sc, vol] MS[s_id, d_id, sc, vol]

MSC[s_id, d_id, sc, vol] MSI[s_id, d_id, sc, vol]

(a)

(b)

(c)

Fig. 11.2 Recipes for
a solving the dilution
problem; b repetition of
activities; c using
intermediate flasks

296 O. Amir et al.

parameter values of a complex action to the value of the parameters in its con-
stituent sub-actions.

Figure 11.2a presents a recipe for the complex action of Solving the Dilution
Problem (SDP) composed of two complex sub-actions for Mixing Solution
Components (MSC), namely H2O and HNO3. In our notation, complex actions are
underlined, while basic actions are not. Actions in VirtualLabs are associated with
identifiers that bind to recipe parameters. For example, the parameters of the action
MSC[s_id1; d_id1; sc1 = H2O; vol1] of pouring = H2O in Fig. 11.2a identify the
source flask (s_id) from which a source chemical (sc) is poured, the destination
flask (d_id), and the volume of the solution that was poured (vol). The constraints
for this recipe require that the destination flask identifier for both MSC actions is
the same (d_id1 = d_id2) in addition to specifying the type of chemicals in the mix
(sc1 = H2O and sc2 = HNO3).

Recipes may be recursive, capturing activities that can repeat indefinitely, as in
titration. This is exemplified in the recipe shown in Fig. 11.2b for the complex
action (MSC) of adding a solution component of volume vol from flask s_id1 to
flask d_id1. The constituent actions of this recipe decompose the MSC action into
two separate MSC actions for adding vol1 and vol2 of the solution using the same
source and destination flask. This recipe effectively clusters together repetitive
activities. Also shown is the ‘‘base-case’’ recipe for MSC that includes a Mix
Solution (MS) basic action.

Figure 11.2c presents another recipe for an MSC complex action which
decomposes into a constituent sub-action for Mixing the Solution using an
Intermediate flask (MSI).3 We say that a recipe for a complex action is fulfilled by
a set of sub-actions if there is a one-to-one correspondence from each of the sub-
actions to one of the recipe’s constituents that meets the recipe constraints. For
example, in the student’s interaction described in Sect. 11.3, the complex sub-
actions for mixing H2O with HNO3 fulfill the recipe for the complex action SDP of
solving the dilution problem. These actions are labeled ‘‘1, 2’’ and ‘‘14’’ in
Fig. 11.3a.

A plan is a set of complex and basic actions such that each complex action is
decomposed into sub-actions that fulfill a recipe for the complex action. A hier-
archical presentation of a (partial) plan used by the student to solve the dilution
problem is shown in Fig. 11.3a. Time is represented in the Figure from top to
bottom, thus crossing edges signify interleaving between actions.

The hierarchy emanating from the root node SDP (the action labeled ‘‘1’’)
shows that the student was able to solve the dilution problem by mixing together
425 ml of HNO3 from flask ID 1 (the action labeled ‘‘2’’) with 510 ml of H2O
from flask ID 4 (the action labeled ‘‘14’’) in destination flask ID 2. These actions
further decompose to their respective constituent actions. For example, the path in
bold, from left to right, shows part of the plan for the complex action of pouring

3 For brevity, we omit the recipes for the MSI action. The complete recipe library for the dilution
problem can be found in Sect. 11.8.

11 Plan Recognition and Visualization 297

F
ig

.
11

.3
a

A
pa

rt
ia

lp
la

n
fo

r
th

e
di

lu
ti

on
pr

ob
le

m
co

rr
es

po
nd

in
g

to
th

e
st

ud
en

t’
s

in
te

ra
ct

io
n

de
sc

ri
be

d
in

S
ec

t.
3;

b
a

pl
an

fo
r

th
e

M
S

C
co

m
pl

ex
ac

ti
on

(l
ab

el
ed

‘‘
5’

’,
da

sh
ed

ou
tl

in
e)

298 O. Amir et al.

425 ml of HNO3 from flask ID 1 to flask ID 2 (the action labeled ‘‘2’’). Here, the
student poured 25 ml of HNO3 from flask ID 1 to flask ID 2 (the action labeled
‘‘3’’) using intermediate flask ID 3 (the action labeled ‘‘4’’). The action labeled
‘‘4’’ is decomposed to the two subactions for pouring the solution from flask ID 1
to intermediate flask ID 3, and pouring from flask ID 3 to the destination flask ID 2
(actions labeled ‘‘5’’and ‘‘6’’). For brevity, we do not expand the complex actions
in Fig. 11.3a down to the leaves.

Figure 11.3b describes the student’s use of titration. This plan expands the
action of pouring 25 ml from flask ID 1 to flask ID 3 (action labeled ‘‘5’’) down to
the basic-level actions corresponding to the student’s interaction with the software
(the three MS actions at the leaves). The constituents of this action consisted of
two separate pours from flask ID 1 to flask ID 3, one pouring 20 ml (action labeled
‘‘7’’) and the other pouring 5 ml (action labeled ‘‘10’’). The action labeled ‘‘10’’
was further decomposed to the basic action of adding 5 ml of HNO3 to flask ID 3
(action labeled ‘‘13’’).

11.4.2 The Plan Recognition Algorithm

As described in Sect. 11.3, students take diverse approaches to solving the dilution
problem. They perform an indefinite number of mixing actions, choose whether to
use intermediate flasks and interleave activities. For example, Fig. 11.3a shows the
constituent sub-actions of the action labeled ‘‘14’’ occurred in between the con-
stituent sub-actions of the action labeled ‘‘2’’. This reflects that the student
interleaved the actions for adding HNO3 and H2O. A brute-force approach
involves non-deterministically finding all ways in which a complex action may be
implemented in students’ interaction sequences. Such an approach was used by
Reddy et al. [15] in an ELE for teaching statistic. Due to the exploratory and
repetitive nature of students’ actions in Virtual Labs, naively considering each of
these possibilities is not possible.

The proposed algorithm shown in the program code for Bottom-up plan rec-
ognition method, incrementally builds a plan which describes students’ activities
with Virtual Labs. The algorithm BUILDPLAN(R,X) receives as input a finite
action sequence representing a student’s interaction, denoted X, and the set of
recipes for the given problem, denoted R. At each step t, the algorithm maintains
an ordered sequence of actions, denoted Pt and an open list OL. The action
sequence P0 is initialized with the original action sequence, X. During each step,
the algorithm attempts to replace subsets of actions from Pt with the complex
actions they represent. Each of the complex actions in Pt is a partial plan that
explains some activity in the user’s interaction. The algorithm iterates over the
recipes in R (step 3) according to the following (partial) ordering criteria: if the
complex action C2 is a constituent sub-action for a recipe for a complex action C1,
then recipes for action C2 are considered before the recipes for action C1.

11 Plan Recognition and Visualization 299

Note that the recipe language allows for cycles, but in practice recipes cannot
be applied indefinitely in Virtual Labs, because interaction sequences are finite. An
ordering over recipes can always be created (possibly by duplicating or renaming
actions), such that it meets the sorting constraint. The algorithm repeatedly sear-
ches for a match for each recipe RC for action C in the open list by calling the
function FindMatch(RC,OL) (step 5), which is described later in this section.
FindMatch(RC,OL) returns a set of actions MC 2 OL such that MC fulfills RC.

For each match MC that fulfills RC, BUILDPLAN performs the following: First,
the values of the parameters in C are set based on the values of the parameters of
the actions in MC and the restrictions specified in the recipe RC (step 7). This
incorporates into C the effects arising from carrying out the constituent actions in
RC. Second, the action C is added to the action sequences in Pt+1 and OL, in the
position held by the latest action in MC (step 8). This is done to preserve the
temporal ordering of the actions in the open list, which facilitates checking tem-
poral constraints when matching recipes to actions in the open list. Adding the
action to OL supports recursive recipes, in that it allows the action C itself to be
part of the action set that fulfills RC in the next iteration. Third, the action C in Pt+1

is made a parent of all of the actions in RC in Pt (step 10). This creates the
hierarchy between a complex action in Pt+1 and its constituent actions in Pt.
Finally, the actions in MC are removed from both the open list OL and Pt+1 (step
11). Removing the actions in MC from the open list prevents the same actions from
fulfilling more than one recipe. Once no more matches for RC can be found, (i.e.,
FindMatch(RC, OL) returns Ø), the BUILDPLAN algorithm proceeds to consider a
new recipe, and terminates once all recipes have been considered.

FINDMATCH, shown in the program code for the algorithm for finding a
match using depth-first search, iterates over the actions in the open list OL per-
forming a complete depth-first search for actions that together fulfill the complex
action C, as defined by the recipe. The algorithm maintains an action set denoted
MC, which at each step of the algorithm contains a subset of actions from the open
list that match the sub-actions in the recipe. At each step, the algorithm removes
the next action aP from the open list (step 8), and attempts to add it to the current
match MC. The procedure makes use of the EXTENDS function, a Boolean
function that takes as input an action aP, a partial match MC, and recipe RC (step 9).
The function EXTENDS returns true if aP can be added to MC, such that (1) aP

corresponds to one of the constituent sub-actions of RC and is not already in MC

and (2) the addition of aP to MC will not violate any of the recipe constraints in RC.
For example, given MC = Ø, the action MSC[sid : 1; did : 3, sc : H2O; vol_1 :
100] extends the recipe for SDP shown in Fig. 11.2a. If the action aP extends the
recipe, it is added to the match MC, and a recursive call to FINDMATCH is
performed, with the updated open list and match.

Each time FINDMATCH is called, it performs a call to the Boolean function
FULFILLS(MC, RC) (step 12), which returns true if MC is a complete match for the
recipe RC. We then say that MC fulfills RC. For example, the actions MSC[sid : 1,
did : 3, sc : H2O, vol_1 : 100] and MSC[sid : 2, did : 3, sc : HNO3, vol_1 : 200]

300 O. Amir et al.

fulfill the recipe for SDP shown in Fig. 11.2a. Note that MC can include both basic
and complex actions.

1: procedure BUILDPLAN (R,X).
2: P0 / X
3: for RC2 SORTRECIPES (R) do
4: Pt+1, OL / Pt
5: MC = FINDMATCH (RC,OL)
6: while MC = Ø do
7: BINDPARAMS (C, MC, RC)
8: Add C to OL and Pt+1 positioned after last a 2 MC
9: for all a 2 MC do

10: Create a branch from C in Pt+1 to a in Pt
11: Remove MC from OL and Pt+1
12: MC = FINDMATCH (RC, OL)

[Bottom-up plan recognition method]
The algorithm backtracks when it does not succeed in finding a match, by

removing aP from MC and searching for another action to add to the match. It is
therefore complete and guaranties to find a match for RC, given that there is a
subset of actions in the open list which fulfill the given recipe. Note that a match
can contain non-continuous actions, as long as the constraints defined in the recipe
hold, thus allowing for interleaving plans to be found.

We demonstrate this process using the plan in Fig. 11.3b describing the stu-
dent’s use of titration. At step P1, the MS basic action (labeled ‘‘11’’) was chosen
to match the recipe for the complex MSC action (labeled ‘‘8’’) using the second
recipe in Fig. 11.2(b). At step P2, the MSC actions labeled ‘‘8, 9’’ were chosen to
match the recipe for the MSC action labeled ‘‘7’’.

1: procedure FINDMATCH(RC,OL) .RC: a recipe, OL: open list
2: return FINDMATCH (RC, OL, null)
3: procedure FINDMATCH (RC, OL, MC) .MC: a partial match
4: if FULFILLS (MC, RC) then
5: return (MC, OL)
6: OL0 / OL
7: for aP 2OL do . aP: an action
8: remove aP from OL’
9: if EXTENDS (aP, MC, RC) then

10: Add aP to MC

11: (MC,OL) = FINDMATCH (RC, OL’, MC)
12: if FULFILLS (MC; RC) then
13: return (MC, OL)
14: remove aP from MC
15: return (null, OL)

[Algorithm for finding a match using depth-first search]

11 Plan Recognition and Visualization 301

We note that BUILDPLAN is capable of inferring multiple hierarchies, rep-
resenting students’ failed attempts to solve a problem, or exploratory activities that
are exogenous to the actual solution path. Such behavior occurred in our empirical
evaluation that is described in the next section.

Although FINDMATCH is complete, BUILDPLAN is a greedy algorithm.
Once an action set MC matches a recipe RC, it does not backtrack and consider any
of the actions in MC for alternative recipes. Thus, it may fail to recognize a
student’s plan.

The complexity of BUILDPLAN is dominated by the complexity of the
FINDMATCH algorithm, denoted CFM. Let |R| and |X| be the number of recipes in
R and the number of actions in the action sequence X, respectively. Then,
BUILDPLAN calls FINDMATCH at most |X| times per recipe, yielding an overall
complexity of O(|R| � |X| � CFM). Since FINDMATCH was implemented as a depth
first search, its complexity is exponential in the size of the action sequence X,
which dominates the complexity of the overall approach.

11.4.3 Empirical Methodology

We evaluated the algorithm on real data consisting of 20 students’ interactions
with VirtualLabs. These interactions were sampled from a depository of log files
describing homework assignments of over 100 students from an R1 private uni-
versity in a second semester general chemistry course (the sessions with Virtu-
alLabs were not controlled in any way). The sampled interactions included
students’ solutions to six problems intended to teach different types of experi-
mental and analytical techniques in chemistry, taken from the curriculum of
introductory chemistry course using VirtualLabs (students were not repeated
across problems). One of these was the dilution problem that was described in
Sect. 11.3. A detailed description of all of the problems is given in Sect. 11.7. For
diversity, the chosen students’ logs varied greatly in size, ranging from 20 actions
to 187 actions.

The recipes were created by transforming written descriptions of students’
possible solution processes for each problem. These written descriptions were
obtained from a domain expert who is a chemistry researcher and one of the
developers of VirtualLabs. In addition, we also randomly sampled 5–6 of the
students’ logs for each problem from the depository of homework assignments
described above and added recipes if they were not already given by the domain
expert. The log files used in process of creating recipes were not used in the
evaluation of the algorithm.

We ran the algorithm on each of the 20 log files using the recipe library of the
corresponding VirtualLabs problem. The outputted plans ranged in depth from 3 to
21 levels. The algorithm was evaluated by the domain expert. For each problem
instance, the domain expert was given the plan(s) outputted by BUILDPLAN, as
well as the student’s log. We consider the inferred plan(s) to be ‘‘correct’’ if the

302 O. Amir et al.

domain expert agrees with the complex and basic actions at each level of the plan
hierarchy that is outputted by the algorithm. If the student was able to complete the
problem, the outputted plan(s) represent the student’s solution process. Otherwise,
the outputted plan(s) represent the students’ failed attempts to solve the problem.

The results revealed that BUILDPLAN correctly inferred students’ plans for 19
out of the 20 problem instances. Specifically, the algorithm was able to capture
trial-and-error approaches as well as explorations and mistakes. For instance, one
of the students performed three separate attempts to solve the dilution problem.
The first two attempts resulted in a wrong molarity of the solution, and after each
of these unsuccessful attempts the student started over using different flasks. The
algorithm represented each of these three attempts in a separate plan hierarchy.
This is an important capability, as it allows teachers to gain important insights
regarding students’ problem solving processes by reviewing their plans. We
demonstrate this capability in the user study described in Sect. 11.5.

The reason for the sole incorrect plan was revealed to be a recipe that was
lacking a temporal constraint for enforcing an ordering between its constituent
actions. It is important to note that this incorrect inference was not caused by the
greediness of the BUILDPLAN algorithm, but by an incomplete recipe data base.
This does not impede on the algorithms correctness, as it was always able to infer
students’ plans given that recipes were available.

Table 11.1 summarizes the performance of the algorithm according to several
measures: N, representing the number of instances for each problem; log size,
representing the size of the interaction history that serves as input to the algorithm;
plan size, representing the number of nodes in the plan(s) outputted by the algo-
rithm; plan depth, representing the length of the longest path in the inferred
plan(s); run time of the algorithm (in seconds) on a commodity quad-core com-
puter. All of the reported results were averaged over the different instances in each
problem. As shown in the table, the overall average time for inferring students’
plans was 0.68 s, with a relatively high variance (std. 0.79), due to the diversity of
the students’ interactions and the experimental processes required to solve each of
the problems. The longest time to infer students’ plans occurred for interactions
relating to the ‘‘oracle’’ problem (1.06 s.) and ‘‘coffee 2’’ problem (1.0), which
also resulted in the largest plans (57.75 and 62 nodes respectively). The key

Table 11.1 Performance measures for the recognition algorithm

N Log size Plan size Plan depth Run-time (s)

Coffee 4 33.25 41.75 12 0.28
Oracle 4 92.75 57.75 6.25 1.06
Dilution 4 63 39.75 8 0.54
Unknown

acid
4 54.25 56.25 12 0.8

Camping 2 76 31.5 5 0.4
Coffee 2 2 67.5 62 12 1.0
Overall 20 63 48.45 9.35 0.68

11 Plan Recognition and Visualization 303

determinant of the algorithm’s runtime was the size of the log that described the
student’s interaction. These results show the feasibility of using the proposed
algorithm in practice, as students’ interactions are finite and limited.

11.4.4 Complete Algorithms

In this section we present two plan recognition algorithms that are complete. Both
algorithms work by converting the plan recognition problem into one or more
constraint satisfaction problems and using standard techniques for their solution.
A limitation of this approach is that it is constrained to non-recursive grammars, in
which actions cannot be repeated indefinitely. To this end we employed a different
exploratory learning environment called TinkerPlots, used world-wide to teach
students in grades 4–8 about statistics and probability Konold and Miller [42].

TinkerPlots is an educational software system used world-wide to teach stu-
dents in grades 4 through 8 about statistics and mathematics [42]. It provides
students with a toolkit to actively model stochastic events, and to create and
investigate a large number of statistical models [43]. As such, it is an extremely
flexible application, allowing for data to be modeled, generated, and analyzed in
many ways using an open-ended interface.

To demonstrate our approach towards recognizing activities in TinkerPlots we
will use the following running example, called: The probability of rain on any
given day is 75 %. Use TinkerPlots to compute the probability that it will rain on
each of the next four consecutive days. This problem is a simple example drawn
from a set of problems posed to students using TinkerPlots in schools and to
subjects during our data collection procedure.

One of the possible approaches towards modeling this problem in Tinker Plots
are shown in Fig. 11.4. The top part of the figure shows a sampler object con-
taining ‘‘spinner’’ devices used to model distributions. The spinner device in the
left-hand model contains two possible events, ‘‘rain’’ and ‘‘sun’’. The likelihood of
‘‘rain’’ is three times that of ‘‘sun’’, as determined by the surface area of these
events within the spinner. Each draw of this sampler will sample the weather for a
given day. The number of draws is set to four, making the sampler a stochastic
model of the weather on four consecutive days.

The basis of the complete approaches make use of a structure called a plan tree
for representing and reasoning about recipes in the database, essentially a search
tree for capturing the set of possible plans consistent with the recipe database.
A plan tree has two types of nodes: AND nodes, whose children represent actions
that must be carried out to complete a recipe, and or nodes, whose children
represent a choice of recipes for completing an action. The root, action C, is an OR
node. For each recipe for C, a child AND node is added to the root and labeled
with the sub-actions of that recipe. The children of this AND node are the plan
trees of each sub-action. A branch terminates when a basic action is reached, as a
basic action has no recipe by definition.

304 O. Amir et al.

Fig. 11.4 Snapshots of tinkerplots interaction when solving the problem. a Using four spinners.
b Plotted results

Fig. 11.5 A partial plan tree for the CCD complex action

11 Plan Recognition and Visualization 305

An example of a plan tree for an activity in TinkerPlots called Create Correct
Device Action (CCD) is shown in Fig. 11.5. The AND nodes contain set brackets,
while OR nodes do not. Triangles denote unfinished subtrees which were omitted
for expository convenience.

The basis of the complete approach is the EXPAND function, shown in the
program code for the algorithm for generating expanded recipes, to convert plans
to flat representations containing solely basic actions, called expanded recipes. An
expanded recipe is a series of basic actions (with associated restrictions) that the
user may perform to realize a potential plan. To create an expanded recipe, a path
is traversed through the plan tree, beginning at the root and ending with basic
actions at the leaves. This path provides a trace of the plan corresponding to the
expanded recipe. For example, one expanded recipe can be achieved by traversing
the plan tree in Fig. 11.5 and choosing the left-most recipe at each OR node.
Notice that the path taken matches the plan in Fig. 11.3. In this expanded recipe,
each complex AED action and its restrictions are replaced with two basic actions,
ALE and CEL, and corresponding restrictions.

The method EXPAND(TA) takes as input a plan tree TA for complex action
A and returns a set of expanded recipes for A. Each AND node represents a
possible recipe for its parent node, a complex action. For each AND node, The
EXPAND recursively generates all expanded recipes for each sub-action of the
recipe. This algorithm alternates between two sub-procedures, DIRECTSUM and
UNION. Given a recipe, the DIRECTSUM procedure computes all possible
replacements of complex sub-actions with basic actions. Each time a complex
action is replaced, DIRECTSUM ensures that all restrictions involving the com-
plex action are propagated to its sub-actions. Lastly, the UNION sub-procedure
takes the union over the expanded recipes generated for each recipe of A.

The complexity of EXPAND is costly in the worst case. Let S be the maximum
number of complex sub-actions for each recipe, N be the maximum number of
recipes for a single complex action, and C be the number of distinct complex
actions. A plan tree has depth of at most C ? 1, as we do not allow for recursive
recipes. At the lowest depth of the plan tree, all actions are basic and do not have
recipes. At the second lowest depth, complex actions have at most N expanded
recipes, as none of the N recipes contain any complex sub-actions. At the third
lowest depth, each recipe for a complex action may contain at most S complex
sub-actions, and each sub-action may have at most N recipes. The DIRECTSUM
procedure then creates at most NS expanded recipes per recipe.

1: procedure Expand (TC) . TC: the plan tree for action C
2: ERs[C] / Ø . ERs [C]: the expanded recipes for C
3: for all rj, a child of C do . rj: a recipe
4: ERs [rj] / Ø
5: for all ai, a child of rj do .ai: an action
6: ERs [rj] / DIRECTSUM (EXPAND (Tai), ERs [rj])
7: ERs [a] / UNION(ERs [a], ERs [rj])
8: if ERs [a] = Ø then

306 O. Amir et al.

9: ERs [a] / {a}
10: return ERs [a]

[Algorithm for generating expanded recipes]
The UNION procedure collects the expanded recipes resulting from each recipe

for that action, resulting in a maximum of N(N)S, or NS+1, recipes. At the fourth
lowest depth, each complex action can again have at most N recipes with at most
S complex sub-actions in each. Each of these S sub-actions can contain at most
N(N)S expanded recipes. So, the DIRECTSUM and UNION procedures create at

most N(N(N)S)S, or NS2þSþ1, expanded recipes per recipe. Continuing this rea-
soning, the top level action can have at most (11.1) recipes, yielding an overall

complexity of N0ðSCÞ.

N

PC�1

i¼0

Si

ð11:1Þ

Constraint Satisfaction Algorithm. In this subsection we explain how to
combine an expanded recipe and action sequence to create a constraint satisfaction
problem (CSP). A solution to the resulting CSP is the plan representing the users’
activities. Formally, a CSP is a triple (X, Dom, C), where X = {x1,…, xn} is a finite
set of variables with respective domains Dom = {D1,.., Dn}, each a set of possible
values for the corresponding variable, Di ¼ vi

1; v
i
k

� �
, and a set of constraints

C = {c1,…,cm} that limit the values that can be assigned to any set of variables.
The algorithm CONVERTTOCSP, shown in the program code for converting

an expanded recipe and action sequence to a CSP, receives as input an expanded
recipe EA and an action sequence X and returns a CSP. If a solution exists for this
CSP, a subset of the actions in X realize the expanded recipe EA. We first show
how to create variables in the CSP, and we use as a reference Fig. 11.6, which
provides a graphical representation of the CSP resulting from some action
sequence and expanded recipe. We used a graphical layout suggested by Dechter
[44]. Note that parameters belonging to actions are not pictured unless they par-
ticipate in some constraint.

Let S = {s1,…, sn} and R be the set of sub-actions and restrictions in the
expanded recipe, respectively. Each action in S becomes a unique variable in the
CSP by calling the subroutine ADDVARIABLEANDDOMAIN(s, X). Based on

Fig. 11.6 CSP resulting from an action sequence and an expanded recipe

11 Plan Recognition and Visualization 307

the expanded recipe, six variables are added at this time: ADS, ALE1, CEL1,
ALE2, CEL2, and CPD. These variables appear, outlined, in the graph of Fig. 11.6.

1: procedure CONVERTTOCSP(EA = (S,R), X) . EA: an expanded
recipe S and restrictions R for complex action A, X: an
action sequence

2: for all s 2 S do . S: a set of sub-actions
3: ADDVARIABLEANDDOMAIN (s, X)
4: for all r 2 R do . R: a set of restrictions
5: ADDRESTRICTIONCONSTRAINT (r)
6: for all s 2S do
7: ADDREDUNDANCYCONSTRAINT (S)

[Converting an expanded recipe and action sequence to a CSP]
Each variable’s domain is then derived from the actions in the action sequence.

For each occurrence of action s in the action sequence, a value is added to the
domain of s in the CSP. The right-hand box of Fig. 11.6 gives the resulting domain
for each variable based on the action sequence.

Lastly, we add restrictions to our CSP. For each restriction r in R over actions
{s1,…, sm} in S, a constraint over the corresponding CSP variables is added to the
CSP using the ADDRESTRICTIONCONSTRAINT(r) subroutine. Directed edges
in the Fig. 11.6 represent temporal constraints between two variables. Undirected
edges represent other parametric constraints. The edge from ADS to ALE1

expresses the constraint ADS � ALE1 as well as the constraint ADS[is, id] =

ALE1[is, id].
For variables corresponding to the same action, additional redundancy con-

straints are added using the ADDREDUNDANCYCONSTRAINT subroutine.
These constraints ensure that such variables are assigned distinct values, as these
variables share the same domain. An example is the constraint connecting the
ALE1 and ALE2 variables, which requires that these variable assignments have
distinct pos parameters.

A solution for a CSP provides a match between an expanded recipe and an
action sequence. In this section we present two algorithms that use CSPs to output
a plan from an action sequined X for a desired complex action C given a set of
recipes R.

The algorithm shown in the program code for brute force algorithm takes a
brute force approach, calling EXPAND to generate each expanded recipe for C,
converting it to a CSP and solving the CSP. This algorithm returns the first
solution found to the CSP or Ø if no solution is found.

1: procedure CSPBRUTE (TC,X) . TC: the plan tree for action
C, X: an action sequence

2: E / EXPAND(TC) . E: a set of expanded recipes
3: for all e 2 E do
4: C / CONVERTTOCSP (e, X) . C: a CSP
5: solution / SOLVE(C)

308 O. Amir et al.

6: if solution = Ø then
7: return solution
8: return Ø

[Brute force algorithm]
The complexity of CSPBRUTE can be analyzed in terms of the FINDMATCH2

and EXPAND procedures. Recall that calling EXPAND results in at most NOðSCÞ

expanded recipes, where N is the maximum number of recipes for a single com-
plex action. In the worst case, all expanded recipes are considered, and for each
expanded recipe a CSP solver must be run. The complexity of this CSP solver can
be bounded by the complexity of a complete backtracking search, which we have
seen to be jXj!=S!. So, an overall worst-case complexity of CSPBRUTE is (11.2).

NOðSCÞO
jXj!
S!

� �

ð11:2Þ

To evaluate the complete approach, we collected interaction sequences of
people’s interaction with TinkerPlots. Each subject received an identical 30 min
tutorial about TinkerPlots and was then asked to complete four problems in suc-
cession; these problems are detailed in Sect. 11.7. TinkerPlots is equipped with a
logging facility that records the basic actions that make up users’ action sequences.
As in the VirtualLabs domain, we noted whether each problem was solved, and we
constructed the (possibly multiple) plans used to solve the problem. The analyzed
user logs range in length from 14 to 80 actions. The average length of an inter-
action sequence for problems collected from adult subjects was 35 actions. Adults
solved the assigned problems 70 % of the time. In contrast, the average length of
an interaction sequence for problems collected from students was 68 actions.
Students solved the assigned problems 60 % of the time. Also, people engaged in
exploratory behavior using the software. For example, there were on average 15
exogenous actions in each problem that was obtained from adults. As expected, the
complete approaches were able to achieve perfect performance on all of the logs.
They also took reasonable time, measuring from 2 to 4 s on the logs.

11.5 Visualizing Students’ Activities

This Section presents visualization methods that were designed for the purpose of
presenting students’ activities to teachers. It then describes a user study that
evaluated these different methods with chemistry teachers.

4 We used the Prefuse package to implement this application Heer et al. [45].

11 Plan Recognition and Visualization 309

F
ig

.
11

.7
A

te
m

po
ra

l
vi

su
al

iz
at

io
n

of
a

st
ud

en
t’

s
so

lu
ti

on
to

th
e

di
lu

ti
on

pr
ob

le
m

310 O. Amir et al.

11.5.1 Visualization Methods

We hypothesized that showing students’ plans to teachers would facilitate their
understanding of students’ work. In addition, we wished to evaluate an alternative
visualization method that emphasizes the temporal aspects of students’ interac-
tions, which is lacking in the plan visualization. We therefore used the following
three visualization methods that differ in the type of data they present as well as the
way in which this data is presented.

The plan visualization method presents students’ plans as they are inferred by
the recognition algorithm. The plan is presented using an interactive interface that
enables to explore the plan tree.4 An example of this visualization on a student’s
plan for solving the dilution problem is shown in Fig. 11.7. The plan is presented
as a tree. Each of the nodes in the tree represents a student’s activity. The leaves of
the plan represent the basic actions of the student that constitute students’ inter-
actions with VirtualLabs. The other nodes represent higher level activities that
were inferred by the algorithm. As shown by the nodes ‘‘solve dilution problem
attempt 1’’ and ‘‘solve dilution problem attempt 2’’, the student made two attempts
at solving the dilution problem. The descendants of these nodes decompose the
activities that constitute each of the attempts. When clicking on a node in the plan,
the parameters of the action that corresponds to this node are displayed in the
information panel shown at the bottom of the Fig. 11.7. As can be seen, the
complex action ‘‘dilute with H2O’’ consisted of pouring a total of 210.23 ml of
H2O to dilute the acid. The ‘‘resulting flask contents’’ shows the solution consis-
tency in the flask after this dilution activity. The child node of the ‘‘dilute with
H2O’’ action is ‘‘repeated pour’’. Clicking on this node will show the two separate
pours from the H2O bottle that comprises the dilution activity.

The Temporal visualization presents students’ interactions over a time line. The
vertical axis displays the objects used by the student, while the horizontal axis
displays students’ actions in the order in which they were created. An example of a
temporal visualization of a student’s interaction with VirtualLabs when solving the
dilution problem is shown in Fig. 11.8. This student’s interaction consisted of
mixing solutions in flasks, and each arrow in the figure represents one of these
mixing actions. The base of the arrow represents the source flask, while the head of
the arrow indicates the recipient flask. Thicker arrows correspond to larger vol-
umes of solution being mixed. The information panel at the bottom of the figure
describes the parameters of the mixing action represented by the boxed arrow in
Fig. 11.8. It shows that the student poured 743.8 mL of H2O, to a 1,000 ml
Volumetric Flask. Also shown is the resulting consistency of the solution in the
recipient flask.

The Movie visualization describes students’ actions exactly as they occurred
during their interactions with VirtualLabs, and is analogous to a teacher that is
looking over the shoulder of a student. This is the only type of support that is
currently available to teachers. This visualization replays the actions from the log
in the order they were created by the student, but does not reflect the actual

11 Plan Recognition and Visualization 311

F
ig

.
11

.8
A

pl
an

vi
su

al
iz

at
io

n
of

a
st

ud
en

t’
s

so
lu

ti
on

to
th

e
di

lu
ti

on
pr

ob
le

m

312 O. Amir et al.

passage of time between students’ actions. The movie can be stopped, rewound
and fast-forwarded to focus on the students’ display at particular points in their
interaction. A snapshot of this visualization for one of the students solving the
dilution problem is shown in Fig. 11.9. In the snapshot the student is pouring NH3

to a 500 ml Erlenmeyer flask. On the right side of the figure, the current contents
of the selected flask are shown (in the ‘‘Solution Info’’ panel).

These three visualizations differ widely in the way they present information to
teachers. First, both the movie and the temporal visualization methods render
students’ activities directly from the log. The plan visualization supersedes these
visualizations in that it also visualizes higher level activities as inferred by the
recognition algorithm. Second, the movie presents snapshots of the user’s appli-
cation window, while the temporal and the plan visualizations present a more
expansive account of the student’s work-flow. In particular, the temporal and plan
visualization specify the amount of solution being poured from flask to flask, while
this information is not directly shown in the movie.

To illustrate these differences, we describe how teachers and researchers may
use each visualization method to identify that a student made several attempts to
solve the dilution problem. Using the movie visualization, teachers need to keep
track of which flasks the student used to mix acid with H2O, and pause the movie
after each mixing action to observe the resulting concentration of the solution in
the flask in the ‘‘Solution Info’’ panel. Because the movie visualization presents a
single action at each time-frame, it can be difficult to distinguish whether a mixing
action using a new flask represents the commencement of a new attempt to solve
the problem or an exploratory action (or a mistake). Using the temporal visuali-
zation, teachers can observe the set of flasks used by the student to dilute the acid,
and the pouring actions that are associated with each flask.

To characterize the activities making up each of the student’s attempts, teachers
need to identify the relevant actions over the time line, starting from the action that
poured acid to a new flask and terminating in the pouring action that resulted in the
diluted solution. The temporal aspect of this presentation makes it easy to identify
such sets of pouring actions when they occur close together in time. This is
illustrated in Fig. 11.8, in which the three contiguous actions pouring solutions
into Flask ID 1 and the 3 contiguous actions pouring solutions into Flask ID 3
represent two distinct attempts (and the next 4 pours represent additional two
distinct attempts). However, this procedure may be difficult to do when students’
interactions are long, or when students interleave activities, as any two adjacent
actions may belong to different attempts.

Lastly, the plan visualization separates each of the students’ dilution attempts
into a separate branch, and the nodes in each branch comprise those pouring
actions that characterize each attempt. This is illustrated in Fig. 11.7, in which
each attempt aimed at solving the problem is a sub-plan that emanates from the
‘‘Solve_Dilution_Problem_Attempt1’’ and ‘‘Solve_Dilution_Problem_Attempt2’’
nodes. However, the plan does not order students’ actions along a time line, and
thus it is difficult to recognize the order in which actions were performed.

11 Plan Recognition and Visualization 313

11.5.2 Empirical Methodology

A user study with chemistry educators was conducted to evaluate these three
visualization methods. The goals of this study were to determine how each of these
visualizations contributes to teachers’ analysis of students’ work in VirtualLabs
and which visualization methods teachers found helpful.

The interactions in the study were taken from the log files of students solving
two problems (out of the six problems for which we collected data). These log files
were also used in the evaluation of the plan recognition algorithm, such that the
plans were validated as correct by a domain expert prior to the user study.

One of the two problems was the dilution problem described in Sect. 11.3. The
other problem (called ‘‘coffee’’) required students to add the right amount of milk
to cool a cup of coffee down to a desired temperature. These problems differed in
the type of reasoning they demanded from students. The dilution problem was
characterized with longer, more complex student solutions. For example, students
solving the dilution problem used more intermediate flasks and more attempts to
solve the problem. To illustrate, the average log size of solutions to the dilution
problem was 51 actions, whereas the average log size of solutions to the coffee
problem was 29.67 actions. Thus, we were able to evaluate the visualization
methods on two problems with significantly different solution processes.

Fig. 11.9 A movie visualization of a student’s solution to the dilution problem

314 O. Amir et al.

Seventeen participants took part in the study. Fifteen of the participants were
graduate students of chemistry and chemistry engineering serving as teaching
assistants (14 students from Ben-Gurion University, and one student from the
Weizmann Institute). Two of the participants were a professor of chemistry from
the University of British Columbia who uses VirtualLabs in the classroom and a
professor of education and technology at Haifa University with a master degree in
chemistry.

All participants received an online survey that included all of the materials used
in the study (tutorials of VirtualLabs and the visualization methods, and ques-
tionnaires for the evaluation of the visualizations). The participants first watched
an identical video tutorial of VirtualLabs and were asked to perform several tasks
using the software to demonstrate their understanding. Participants were also
provided with an identical tutorial about each of the three visualization methods.
Each subject was presented with three student interactions solving the same
problem. Each of these interactions was shown using one of the three visualization
methods, and the order in which the visualizations were presented varied across
participants. To avoid biasing the participants, each interaction that was visualized
was chosen from a different student. For each problem, participants were presented
with interactions that were similar in length and complexity of the student’s
solution.

Each participant was asked to comment on the visualization methods by
answering the following questions: (1) Based on the presentation can you tell
whether the student solved the problem?; (2) Based on the presentation can you
tell how the student solved the problem?; (3) Assuming you were using Virtu-
alLabs in your class, would you be likely to use this presentation style to under-
stand students’ work after a classroom session?5 After seeing all of the
visualizations, participants were asked to quantitatively compare between the
different methods according to the same set of criteria, and were also asked to
compare how easy it was to learn how to use the different methods. For this
comparison participants were requested to rate each visualization method using a
Likert scale of 1–7 (where 1 stands for ‘‘strongly disagree’’, 7 stands for ‘‘strongly
agree’’, and 4 being a neutral answer of ‘‘neither’’). Finally, participants were
asked whether they preferred one visualization to the others, and how they would
combine some or all of the visualizations. One of the researchers was present
throughout each of the sessions, answered any questions participants had about the
visualization methods, and validated that teachers’ conclusions about students’
work was correct not.6 That is, when participants reported that they could infer
whether or how a student solved the problem, the researcher validated that their

5 We also asked participants to explain each of their answers. The full questionnaire can be
found in Sect. 11.9.
6 The researcher was physically present in the laboratory with all of the graduate students from
Ben-Gurion University, and used VoIP technology (Skype) to connect with the other three
participants.

11 Plan Recognition and Visualization 315

inference was correct. In all cases participants that reported to have understood
students’ solutions, did so correctly.

11.5.3 Results

In this section we present the analysis of the responses we received from the
participants in the user study. First, we describe a qualitative analysis of partici-
pants’ responses with regards to the visualizations, followed by a quantitative
analysis of their comparisons of the different visualization methods.

Qualitative Analysis of the Visualization Methods. We first describe par-
ticipants’ responses with regards to the movie visualization. When asked if the
movie visualization demonstrated whether the student had solved the problem,
participants’ responses depended on the type of problem they were shown. Most of
the participants (7 out of 9) who viewed solutions to the coffee problem claimed
that they were able to tell whether the student had solved the problem, while the
other two participants reported that this information was not apparent to them.
Those participants that inferred how the students solved the problem did so by
observing the final contents of the flasks used by the student. A typical response
was ‘‘Yes, by following the temperature and volume meters on the right side and
watching the actions the student took.’’

Half of the participants (4 out of 8) who viewed solutions to the dilution
problem could not infer whether the student had solved the problem. These par-
ticipants reported that the movie was too fast and difficult to follow. A typical
response was ‘‘No, I can not. The added amounts are not clear and the appearance
and disappearance of elements on the screen are confusing.’’ Only 2 of 8 partic-
ipants reported that the movie clearly demonstrated whether the problem was
solved by the student, in contrast to 7 out of 9 participants who could infer this
information from the coffee problem. A possible explanation for this discrepancy
is the length of students’ interactions. The average length of students’ interactions
for the dilution problem was significantly longer than the average length of stu-
dents’ interactions for the coffee problem. This made it more difficult for partic-
ipants to keep track of students’ actions using the movie visualization.

The participants expressed a more homogeneous opinion when asked whether
they understood how the student had solved the problem, and these responses were
not dependent on the problem shown. Ten of the participants reported that the
movie enabled them to determine how the student solved the problem. A typical
response explained, ‘‘It is easy to see the steps the student used to solve the
problem.’’ Three of the participants stated that they were not able to determine
how the student solved the problem. One of them stated ‘‘The presentation
[visualization] created a confusion. Irrelevant steps, such as moving flasks were
shown, which created a confusion and made it difficult for me to distinguish
important actions.’’ Four participants claimed they could determine how the
problem was solved in general terms, but were missing the exact quantities mixed

316 O. Amir et al.

by the students. Lastly, only four of the participants reported they would be likely
to use the movie visualization in their class. The other participants found it to be
too slow to be useful. A typical response was ‘‘This method seems to be much
slower that could be a problem when checking 30 students or so…’’.

When evaluating the temporal visualization, all participants but one answered
that this visualization method clearly demonstrated whether and how the student
had solved the problem, and would be likely to use this method in their class.
However, two participants were concerned that if a problem solution would
require many steps, the method may not be useful. One of them explained: ‘‘[…] If
an exercise requires moving many solutions from beaker to beaker, and lots of
mixing, this method might not be as clear and become a bit messy.’’

In their evaluation of the plan visualization, all but one of the participants
reported that the visualization demonstrated whether the student had solved the
problem, and 14 out of the participants found that the plan visualization demon-
strated how the students solved problems. Several of the participants specifically
commented on the higher level activities that were represented in this visualiza-
tion: ‘‘The presentation [visualization] focuses on the important actions and
summarizes the student’s activities.’’, or ‘‘I can read the final concentration in an
easy way at each stage and the [different] attempts of the student are very clear.’’

Three of the participants commented that they have found the plan visualization
difficult to understand. One of them explained: ‘‘This presentation [visualization]
was more complicated. I had to click the nodes and observe the volumes and
students actions at each step.’’ In all, 14 out of 17 participants reported they would
be likely to use the plan visualization in their classroom.

After observing and evaluating all of the visualization methods, we asked
participants which visualization method they preferred. Six participants expressed
a strict preference for the plan visualization and six participants preferred the
temporal visualization. Only one participant strictly preferred the movie visuali-
zation over the other two proposed visualizations. Another participant stated an
equal preference for the movie and temporal visualizations, while one participant
claimed that he would prefer using the temporal visualization for simple problems,
and the plan visualization for complex problems. Table 11.2 summarizes the
qualitative responses described in this section. The table only includes the number
of participants who expressed a non-ambiguous positive answer to each of the
questions discussed above.

Finally, we were interested to see whether teachers would want to use a
combination of some or all of the visualizations, given their distinct differences.
Seven participants suggested combining the temporal visualization with the plan
visualization. Three participants suggested combining the temporal visualization
with the movie visualizations, while two participants suggested combining the
plan visualization with the movie, and one participant said he would want to
combine all visualizations. Several participants indicated in their response that
they believe teachers may have different preferences, and therefore suggested to
provide all visualizations and let the teacher choose which of them to use. They
further envisioned using different visualizations for different purposes, for example

11 Plan Recognition and Visualization 317

using the plan visualization to get a one-image quick view of the solution structure,
and then use the temporal visualization for a more in depth exploration of solutions
they found more interesting.

Analysis of Quantitative Responses. After observing and separately evaluat-
ing each of the visualizations, participants were asked to make a quantitative
comparison of the different methods. Fig. 11.10 shows the average score given by
participants to each of the visualization methods when using a Likert scale of 1–7.
N = 17 for each of the questions as all participants responded to all questions. As
shown in the Fig. 11.10, the movie had a higher average score than the other
methods with respect to ease of learning (Mean = 6.23, STD. = 1.35). The plan
visualization was the hardest to learn (Mean = 4.17, STD. = 2.19), and also
exhibited the highest variance in scores.

The plan visualization scored highest with respect to demonstrating whether the
student solved the problem (Mean = 5.94, STD. = 1.89), closely followed by the
temporal visualization (Mean = 5.53, STD. = 1.94). The movie was ranked last
(Mean = 4.18, STD. = 2.27). The temporal and plan visualization methods
scored highest with respect to demonstrating how the student solved the problem
(Mean = 5.88, STD. = 1.65), followed by the plan visualization (Mean = 5.53,
STD. = 1.56). Again, the movie visualization was ranked last (Mean = 4.65,
STD. = 2.06). The plan (Mean = 5.88, STD. = 1.54) and temporal
(Mean = 5.88, STD. = 1.54) visualizations scored highest with respect to being
used in the classroom. The movie was ranked last (Mean = 3.41, STD. = 2.2).

We used the Friedman non-parametric test for analysis of variance to distin-
guish between participants’ quantitative responses and found a significant effect of
visualization type in all of the questions (X2 [6.3, P \ 0.05). Post-hoc analysis
with Wilcoxon Signed-Rank Test was conducted with a Bonferroni correction
applied.

Median scores for ease of learning were 7 (3 to 7), 6 (1 to 7) and 4 (1 to 7) for
the movie, temporal and plan visualizations respectfully. Both the movie and
temporal visualizations were significantly easier to learn than the plan visualiza-
tion (Z \ -2.55, P \ 0.011). The plan, with median score 7 (1 to 7), was sig-
nificantly more helpful than the movie, with median score 5 (1 to 7), when
inferring whether the student solved the problems (Z = –2.61, P = 0.003).

No significant difference was found between the temporal visualization with
median 6 (1 to 7) and the other visualizations (Z [–2.1, P [0.031). The temporal

Table 11.2 Summary of qualitative responses

Demonstrates whether the
student solved the problem

Demonstrates how the
student solved the problem

Likely to
be used

Strictly
preferred

Movie 9/17 10/17 4/17 1/17
Temporal 16/17 16/17 16/17 6/17
Plan 16/17 14/17 14/17 6/17

For each visualization the table shows the number of participants who expressed a clear positive
response to each of the questions

318 O. Amir et al.

visualization was found to be significantly more helpful than the movie when
inferring how the student solved the problem (Z = -2.23, P = 0.011) with
medians 6 (1 to 7) and 5 (1 to 7) respectfully. There was no significant difference
between the plan with median 6 (1 to 7) and the other visualizations (Z [-1.51,
-P [0.075). Lastly, the temporal visualization with median 6 (1 to 7) was found
significantly more likely to be used than the movie visualization with median 3 (1
to 7) (Z = -3.05, P = 0.001). The differences between the plan visualization with
median 5 (1 to 7) and both temporal and movie visualizations were not significant
(Z [-1.96, P [0.027).

11.5.4 Discussion

A challenge to performing this user study was the relatively large overhead
involved in teaching participants about the three visualization methods, and the
requirement that participants have prior teaching experience in chemistry. The fact
that many of our conclusions reported above were found to be statistically sig-
nificant is striking given these limitations.

The study revealed, unsurprisingly, that the movie was the most intuitive
visualization style and the easiest to learn. However, it was also ranked the least
useful for understanding students’ work, as can be attested by one of the partici-
pants: ‘‘Even though the movie style is the easiest to learn it is the hardest to use.’’
The movie was a ‘‘playback’’ of students’ work in the lab, and presented both

Fig. 11.10 Average scores for the quantitative questions

11 Plan Recognition and Visualization 319

significant actions and irrelevant steps without distinction. All subjects used the
added functionality provided by the movie visualization (pausing, rewinding, fast-
forwarding). However, fewer participants were able to infer students’ solutions
using the movie than the other visualizations. This was due to the inherent con-
tinuous nature of the movie, in which the system state constantly changes, making
it difficult for teachers to identify those actions that are salient to the students’
solution.

In contrast to the movie visualization, both the temporal and plan visualization
methods provided a higher level and more comprehensive description of students’
activities. They were preferred by most of the participants in all of the criteria. The
results comparing between the plan and the temporal visualizations were more
mixed. On the one hand, most participants preferred the plan visualization to the
temporal visualization for inferring whether the student solved the problem.

On the other hand, the temporal visualization was rated higher for inferring how
students used VirtualLabs to solve problems. Also, most participants consistently
rated the temporal visualization highly in all criteria while exhibiting a signifi-
cantly higher variance when ranking the plan visualization.

To explain this discrepancy, we note that it was easy for participants to discern
whether the student solved the problem by looking at the root of the plan hier-
archy, while this information was not explicitly represented in the temporal
visualization. We hypothesize that the hierarchical nature of the plan visualization
was harder for participants to learn than the temporal visualization. This may
explain why they preferred the temporal visualization to the plan visualization
when inferring how students solve problems.

We found a 0.7 correlation between the likelihood of using the plan visuali-
zation and its ease of learning, and a 0.56 correlation between determining how the
student solved the problem and its ease of learning. There was limited time in our
lab study for participants to practice the plan visualization method, which was
harder to understand than the other methods. However, this result suggests that
teachers who understand the plan visualization are likely to adopt it, and that the
plan visualization may be very useful to teachers in practice.

Lastly, the diversity of participants’ suggestions for combining the various
visualizations methods and the possible uses of the visualizations emphasizes the
need to adjust to different educators preferences. There is no ‘‘silver bullet’’
visualization that is most useful in all cases and to all users. This was supported by
participants’ responses which suggested different uses of the visualization meth-
ods, and their suggestions for combining the different methods.

11.6 Conclusion and Future Work

This chapter presented novel methods and algorithms for augmenting existing
pedagogical software for science education. It addressed two main problems:
automatic recognition of students’ activities in open-ended pedagogical software

320 O. Amir et al.

and the visualization of these activities to teachers in a way that supports their
analysis of students’ interactions with such software. To address the first problem,
the chapter presented a general plan recognition algorithm for exploratory learning
environments. The algorithm was successfully able to recognize students’ plans
when solving six separate problems in VirtualLabs, as verified by a domain expert.
To address the second problem, the paper presented novel methods for visualizing
students’ interactions with VirtualLabs. Both of these methods were preferred by
participants in a user study to a movie of students’ interactions with the software.

Our long term goal is the design of collaborative systems for supporting the
interaction of students and teachers in a variety of pedagogical domains. These
tools embody the principals of collaborative decision-making, in that the system
provides the best possible support for its users while minimizing the amount of
intervention.

Our future work will extend the methods and algorithms proposed in this
chapter in order to build such collaborative systems. To do so we intend to extend
our work on both the plan recognition and visualization methods. One limitation of
the plan recognition approach is the reliance on domain experts to construct
appropriate recipes in a formal way.

In future work we will design novel methods for automatically extracting
recipes and allowing teachers to design recipes in a straightforward way. We also
intend to design new plan recognition algorithms that recognize students’ activities
in real time, during their interaction with the software. We will construct computer
agents that use these recognition algorithms to generate interventions with the
student while minimizing the amount of intrusion.

We will extend the work on visualization methods to study how other types of
state-based visualizations affect teachers’ understanding of students’ activities,
such as showing selected snapshots of students’ interactions. Also we intend to
develop aggregate visualization methods for describing groups of students.

Although our techniques were demonstrated on one software system their
applicability has been shown to other open-ended pedagogical software Gal et al.
[16]. We also plan to apply our approach to other types of domains in which users
engage in exploration, such as Integrated Development Environments (IDEs).

11.7 Experimental Problems

We detail the six VirtualLabs problems used in our empirical evaluation.
DILUTION: You are a work study for the chemistry department. Your super-

visor has just asked you to prepare 500 ml of 3 M HNO3 for tomorrow’s under-
graduate experiment. In the stockroom explorer, you will find a cabinet called
‘‘Stock Solutions’’. Open this cabinet to find a 2.5 L bottle labeled ‘‘11.6 M
HNO3’’. The concentration of the HNO3 is 15.4 M. Please prepare a flask con-
taining 500 ml of a 3 M (±0.005 M) solution and relabel it with its precise
molarity. Note that you must use realistic transfer mode, a buret, and a volumetric

11 Plan Recognition and Visualization 321

flask for this problem. Please do any relevant calculations on the paper supplied.
As a reminder, to calculate the volume needed to make a solution of a given
molarity, you may use the following formula: C1V1 = C2V2

ORACLE: Given four substances A, B, C, and D that are known to react in
some weird and mysterious way (an oracle relayed this information to you within a
dream), design and perform virtual lab experiments to determine the reaction
between these substances, including the stoichiometric coefficients. You will find
1.00 M solutions of each of these chemical reagents in the stockroom.

COFFEE: During the summer after your first year at Carnegie Mellon, you are
lucky enough to get a job making coffee at Starbucks, but you tell your parents and
friends that you have secured a lucrative position as a ‘‘Java engineer’’. An
eccentric chemistry professor (not mentioning any names) stops in every day and
orders 250 ml of house coffee at precisely 95 �C. He then adds enough milk at
10 �C to drop the temperature of the coffee to 90 �C. (a) Calculate the amount of
milk (in ml) the professor must add to reach this temperature. Show all your work,
and circle the answer. (b) Use the Virtual Lab to make the coffee/milk solution and
verify the answer you calculated in (a). Hint: the coffee is in an insulated travel
mug, so no heat escapes. To insulate a piece of glassware in Virtual Lab, Mac-
users should hold down the command key while clicking on the beaker or flask;
Windows users should right click on the beaker or flask. From the menu that
appears choose ‘‘Thermal Properties’’. Check the box labeled ‘‘insulated from
surroundings’’. The temperature of the solution in that beaker or flask will remain
constant.

COFFEE 2: During the summer after your first year at Carnegie Mellon, you are
lucky enough to get a job making coffee at Starbucks, but you tell your parents and
friends that you have secured a lucrative position as a ‘‘java engineer.’’ An
eccentric chemistry professor (not mentioning any names) stops in every day and
orders 250 ml of Sumatran coffee. The coffee, initially at 85 �C. is way to hot for
the professor, who prefers his coffee served at a more reasonable 65.0 �C. You
need to add enough milk at 5.00 �C, to drop the temperature of the coffee.

How much milk do you add? Calculate the amount of milk (in ml) you must add
to reach this temperature. In the previous part of the problem, you solved it
assuming that both coffee and milk have the same specific heat capacities and
densities as water. Since milk is a mixture of water, fat and proteins, its specific
heat capacity is likely to be different than the one assumed. Solve again the same
problem determining the specific heat of milk and considering it in your calcu-
lations. Assume the density is 1.000 g/ml for milk and coffee and the specific heat
capacity is 4.184 J/(g �C) for coffee.

CAMPING: You and a friend are hiking the Appalachian Trail when a storm
comes through. You stop to eat, but find that all available firewood is too wet to
start a fire. From your Chem 106 class you remember that heat is given off by some
chemical reactions; if you could mix two solutions together to produce an exo-
thermic reaction, you might be able to cook the food you brought along for the
hike. Luckily, being the dedicated chemist that you are, you never go anywhere
without taking along a couple chemical solutions, just for times like this. The

322 O. Amir et al.

Virtual Lab contains aqueous solutions of compounds X and Y of various con-
centrations. These compounds react to produces a new compound, Z, according to
the reaction: x ? y ? z. The following activities will guide you in using this
reaction to produce the heat needed to warm up your food. Use the virtual lab to
measure the enthalpy of the reaction shown above.

UNKNOWN ACID: The ‘‘Homework Solutions’’ cabinet contains a solution
labeled ‘‘Unknown Acid’’, which is a weak mono-protic acid with an unknown Ka
and with an unknown concentration. Your job is to determine the concentration
and Ka to two significant figures.

11.8 The Recipe Library for the Dilution Problem

This section lists the complete recipe library for the dilution problem. Table 11.3
provides a key to the action abbreviations used in the recipes.

11.8.1 Dilution Problem Recipes

1. MSC[sc, dt; sid, did, vol, scd, dcd, rcd] ? MS[sc, dt; sid, did, vol, scd, dcd,
rcd]

2. MSC[sc, dt, sid, did, vol = vol1 ? vol2, scd2, dcd2, rcd2] ? MSC[sc, dt, sid,
did, vol1, scd1, dcd1, rcd1], MSC[sc, dt, sid, did, vol2, scd2, dcd2, rcd2]
sid1 = sid2, did1 = did2, scd1 = scd2

3. MSI[sc, dt, sid, did, vol, scd, dcd, rcd] ? MSC[sc : H2O, dt, sid; did; vol; scd,
dcd, rcd]

4. MSI[sc, dt, sid, did, vol, scd, dcd, rcd] ? MSC[sc : 15:4 M HNO3, dt, sid, did,
vol, scd, dcd, rcd]

5. MSI[sc1, dt2, sid1, did2, vol1] ? MSI[sc1 : H2O, dt1, sid1, did1, vol1, scd1, dcd1,
rcd1], MSC[sc2, dt2, sid2, did2, vol2, scd2, dcd2, rcd2][0] did1 = sid2,
rcd1 = scd2

Table 11.3 Abbreviation key for complex actions used in recipes

Abbreviation Action Meaning

MS Mixing solution Basic solution mix operation as observed directly
from log files

MSC Mixing solution
component 2

A complex action representing repeated mixing of a
solution to the same destination

MSI Mixing solution through
intermediate flask

A complex action representing the use of
intermediate flasks when mixing solution

SDP Solve dilution problem The root of the plan(s), composed of mixing H2O and
the solution to be diluted

11 Plan Recognition and Visualization 323

6. MSI[sc1, dt2, sid1, did2, vol1] ? MSI[sc1 : 15:4 M HNO3, dt1, sid1, did1, vol1,
scd1, dcd1, rcd1], MSC[sc2, dt2, sid2, did2, vol2, scd2, dcd2, rcd2][0] did1 = sid2,
rcd1 = scd2

7. MSC[sc, dt, sid, did, vol, scd, dcd, rcd] ? MSI[sc, dt, sid, did, vol, scd, dcd,
rcd]

8. MSC[sc, dt, sid, did, vol = vol1 ? vol2, scd2, dcd2, rcd2] ? MSC[sc, dt, sid,
did, vol1, scd1, dcd1, rcd1], MSC[sc, dt, sid, did, vol2, scd2, dcd2, rcd2]
sid1 = sid2, did1 = did2, scd1 = scd2

9. SDP[sc, dt, sid, did, vol = vol1 ? vol2, scd2, dcd2, rcd2] ? MSC[sc : H2O, dt,
vol1, did1], MSC[sc : 15:4 M HNO3, dt, vol2, did2]

11.8.2 Recipes Explanation

Recipes Explanation: Recipes 1 and 2 capture repeated pouring activities, where
users pour the same solution from the same source flask to the same destination
flask (1 is the base of the recursion). Recipes 3 and 4 capture the activity of using
an intermediate flask when pouring H2O (i.e. pouring from flask 1 to flask 2 and
then from flask 2 to flask 3). Recipes 5 and 6 are the same as 3 and 4, only for
HNO3. Recipes 7 and 8 are the same as 1 and 2, only now they can capture higher
level activities which served the same overall goal (for example pouring from flask
1 to flask 2 through intermediate flask 3, and pouring from flask 1 to flask 2
through intermediate flask 4, both serve the same goal of pouring from flask 1 to
flask 2). Recipe 9 forms the root of a plan, as it is composed of the pouring actions
that involved H2O and those of pouring HNO3.

11.9 User Study Questionnaire

After observing each of the visualization methods, the participants responded to
the following questions:

• Based on the presentation, can you tell WHETHER the student solved the
problem? Please describe how you can tell whether the student solved the
problem, or why you can’t.

• Based on the presentation, can you tell HOW the student solved the problem?
Please describe how the presentation helps you understand the student solution,
or what information is missing.

• Assuming you were using VirtualLabs in your class, would you be likely to use
this presentation style to understand a student’s work after a classroom Virtu-
alLabs session? Why?

• Additional comments. For example: What are the problems of this presentation
style? How would you improve it? What information did you find helpful? What
information was missing?

324 O. Amir et al.

In the second part of the questionnaire participants stated their level of
agreement (on a scale of 1–7) with the following statements with regards to each
of the visualization methods:

• This presentation style was easy for me to learn.
• This presentation style demonstrates WHETHER the student solved then

problem.
• This presentation style demonstrates HOW the student solved the problem.
• Assuming I would be using VirtualLabs in my class, I am likely to use this

presentation style to understand a student’s work after a classroom VirtualLabs
session.

There was also space for additional comments after each of these statements.
Finally, participants responded to the following two open questions:

• Did you prefer one style to all of the others? If so, which? Would you use one or
some of the styles rather than the other/s to visualize students’ work?

• Would you combine some or all of these presentation styles together? If so, can
you list, for each presentation style, which aspects of a students’ interaction are
best visualized by that style?

References

1. Amershi, S., Conati, C.: Automatic Recognition of Learner Groups in Exploratory Learning
Environments. In: Ikeda, M., Ashley, K.D., Chan, T.W. (eds.) Intelligent Tutoring Systems.
LNCS, vol. 4053, pp. 463–472. Springer, Heidelberg (2006)

2. Chen, M.: A methodology for characterizing computer-based learning environments. Instr.
Sci. 23(1–3), 183–220 (1995)

3. Cocea, M., Gutierrez-Santos, S., Magoulas, G.D.: The Challenge of Intelligent Support in
Exploratory Learning Environments: A Study of the Scenarios. In: Gutierrez-Santos, S.,
Mavrikis, M. (eds.) 1st International Workshop in Intelligent Support for Exploratory
Environments (ISEE-2008), vol. 381, CEUR-WS, Maastricht (2008)

4. Gal, Y., Yamangil, E., Rubin, A., Shieber, S.M., Grosz, B.J.: Towards Collaborative
Intelligent Tutors: Automated Recognition of Users’ Strategies. In: Woolf, B.P., Aïmeur, E.,
Nkambou, R., Lajoie, S. (eds.) Ninth International Conference on Intelligent Tutoring
Systems (ITS 2008), LNCS, vol. 5091, pp. 162–172. Springer, Heidelberg (2008)

5. Pawar, U. S., Pal, J., Toyama, K.: Multiple mice for computers in education in developing
countries. In: Conference on Information and Communication Technologies and
Development, pp. 64–71. University of California, Berkeley (2007)

6. Yaron, D., Karabinos, M., Lange, D., Greeno, J.G., Leinhardt, G.: The chemcollective-virtual
labs for introductory chemistry courses. Science 328(5978), 584–585 (2010)

7. Amir, O., Gal, Y.: Plan Recognition in Virtual Laboratories. In: Walsh, T. (ed.) 22nd
International Joint Conference on Artificial Intelligence (IJCAI), pp. 2392–2397. AAAI
Press, Menlo Park (2011)

8. Carberry, S.: Plan Recognition in Natural Language Dialogue. MIT Press, Cambridge (1990)
9. Grosz, B.J., Sidner, C.L.: Plans for Discourse. In: Morgan, J.L., Pollack, M.E., Cohen, P.R.

(eds.) Intentions in Communication, pp. 417–444. The MIT Press, Cambridge (1990)

11 Plan Recognition and Visualization 325

10. Bauer, M., Biundo, S., Dengler, D., Koehler, J., Paul, G.: PHI—Logic-based Tool for
Intelligent Help Systems. In: Bajcsi, R. (ed.) 13th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 460–466. Morgan Kaufmann, San Francisco (1993)

11. Mayfield, J.: Controlling inference in plan recognition. User Model. User-Adap. Inter. 2(1),
55–82 (1992)

12. Wilensky, R.: Why John married Mary: understanding stories involving recurring goals.
Cogn. Sci. 2(3), 235–266 (1978)

13. Charniak, E., Goldman, R.P.: A Bayesian model of plan recognition. Artif. Intell. 64(1),
53–79 (1993)

14. Lesh, N., Rich, C., Sidner, C.L.: Using Plan Recognition in Human-Computer Collaboration.
In: Kay, J. (ed.) Seventh International Conference on User Modeling, pp. 23–32. Springer,
New York (1999)

15. Reddy, S., Gal, Y., Shieber, S.M.: Recognition of Users’ Activities Using Constraint
Satisfaction. In: Houben, G.J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) User Modeling,
Adaptation, and Personalization, LNCS, vol. 5535, pp. 415–421. Springer, Heidelberg (2009)

16. Gal, Y., Reddy, S., Shieber, S., Rubin, A., Grosz, B.: Plan recognition in exploratory
domains. Artif. Intell. 176(1), 2270–2290 (2012)

17. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R.H., Taylor, L., Treacy, D.J.:
Weinstein, A, Wintersgill, M.C.: The Andes physics tutoring system: lessons learned. Int.
J. Artif. Intell. Educ. 15(3), 147–204 (2005)

18. Conati, C., Gertner, A.S., VanLehn, K., Druzdzel, M.J.: On-line Student Modeling for
Coached Problem Solving Using Bayesian Networks. In: Jameson, A., Paris, C., Tasso, C.
(eds.) Sixth International Conference on User Modeling, pp. 231–242. Springer Wien, New
York (1997)

19. Conati, C., Gertner, A.S., VanLehn, K.: Using Bayesian networks to manage uncertainty in
student modeling. User Model. User-Adap. Inter. 12(4), 371–417 (2002)

20. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: lessons
learned. J. Learn. Sci. 4(2), 167–207 (1995)

21. Corbett, A., McLaughlin, M., Scarpinatto, K.C.: Modeling student knowledge: cognitive
tutors in high school and college. User Model. User-Adap. Inter. 10(2–3), 81–108 (2000)

22. Vee, M.H.N.C., Meyer, B., Mannock, K.L.: Understanding novice errors and error paths in
object-oriented programming through log analysis. In: Workshop on Educational Data
Mining at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006),
pp. 13–20. Jhongli (2006)

23. Blaylock, N., Allen, J.: Recognizing Instantiated Goals Using Statistical Methods. In:
Kaminka (ed.) Workshop on Modeling Others from Observations, pp. 79–86, Edinburgh
(2005)

24. Bauer, M.: Acquisition of user preferences for plan recognition. In: Fifth International
Conference on User Modeling, pp. 105–112. User Modeling Incorporated, Kailua-Kona
(1996)

25. Horvitz, E.: Principles of mixed-initiative user interfaces. In: ACM SIGCHI Conference on
Human Factors in Computing Systems, pp. 159–166. ACM, New York (1999)

26. Lesh, N.: Adaptive goal recognition. In: 15th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1208–1214. Morgan Kaufmann, San Francisco (1997)

27. Kautz, H. A.: A formal theory of plan recognition. Ph. D Thesis, University of Rochester
(1987)

28. Lochbaum, K.E.: A collaborative planning model of intentional structure. J. Comput.
Linguist. 24(4), 525–572 (1998)

29. Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree
grammars. Artif. Intell. 173(11), 1101–1132 (2009)

30. Pearce-Lazard, D., Poulovassilis, A., Geraniou, E.: The Design of Teacher Assistance Tools
in an Exploratory Learning Environment for Mathematics Generalisation. In: Wolpers, M.,
Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.) Sustaining TEL: From

326 O. Amir et al.

Innovation to Learning and Practice, LNCS, vol. 6383, pp. 260–275. Springer, Heidelberg
(2010)

31. Gutierrez-Santos, S., Geraniou, E., Pearce-Lazard, D., Poulovassilis, A.: Design of teacher
assistance tools in an exploratory learning environment for algebraic generalisation. IEEE
Trans. Learn. Technol. 5(4), 366–376 (2012)

32. Gueraud, V., Adam, J.M., Lejeune, A., Dubois, M., Mandran, N.: Teachers need support too:
Formid-observer, a flexible environment for supervising simulation-based learning situations.
In: 2nd International Workshop on Intelligent Support for Exploratory Environments,
pp. 19–28. Brighton (2009)

33. Feng, M., Heffernan, N.T.: Towards live informing and automatic analyzing of student
learning: reporting in assistment system. J. Interact. Learn. Res. 18(2), 207–230 (2007)

34. Scheuer, O., Zinn, C.: How did the e-learning session go? The student inspector. In: 2007
Conference on Artificial Intelligence in Education, pp. 487–494. IOS Press, Amsterdam
(2007)

35. Koedinger, K.R., Baker, R.S.J.D., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A
Data Repository for the EDM community: The PSLC DataShop. In: Romero, C., Ventura, S.,
Pechenizkiy, M., Baker, R.S.J.D. (eds.). Handbook of Educational Data Mining, Chapman
and Hall/CRC Data Mining and Knowledge Discovery Series Boca Raton, pp. 43–55. CRC
Press, Boca Raton (2010)

36. Merceron, A., Yacef, K.: Tada-ed for educational data mining. Interact. Multimedia Electron.
J. Comput. Enhanced Learn. 7(1), 267–287 (2005)

37. Sao Pedro, M.A., Baker, R.S.J., Montalvo, O., Nakama, A., Gubert, J.D.: Using Text Replay
Tagging to Produce Detectors of Systematic Experimentation Behavior Patterns. In: Baker,
R.S.J.D., Merceron, A., Pavlik Jr., P.I. (eds.) 3rd International Conference on Educational
Data Mining, pp. 181–190. International Educational Data Mining Society, Pittsburgh (2010)

38. Montalvo, O., Baker, R.S.J., Sao Pedro, M.A., Nakama, A., Gobert, J.D.: Identifying Students
Inquiry Planning Using Machine Learning. In: Baker, R.S.J.D., Merceron, A., Pavlik Jr., P.I.
(eds.) 3rd International Conference on Educational Data Mining, pp. 141–150. International
Educational Data Mining Society, Pittsburgh (2010)

39. Amershi, S., Conati, C.: Combining unsupervised and supervised classification to build user
models for exploratory learning environments. J. Educ. Data Min. 1(1), 18–71 (2009)

40. Kardan, S., Conati, C.: A Framework for Capturing Distinguishing User Interaction
Behaviours in Novel Interfaces. In: Pechenizkiy, M., Calders, T., Conati, C., Ventura, S.,
Romero, C., Stamper, J. (eds.) 4th International Conference on Educational Data Mining,
pp. 159–168. International Educational Data Mining Society, Eindhoven (2011)

41. Pollack, M.E.: Plans as complex Mental Attitudes. In: Morgan, J.L., Pollack, M.E., Cohen,
P.R. (eds.) Intentions in Communication, pp. 77–103. The MIT Press, Cambridge (1990)

42. Konold, C., Miller, C.: TinkerPlots Dynamic Data Exploration 1.0. Key Curriculum Press.
URL http://www.keypress.com/x5715.xml (2004)

43. Hammerman, J.K., Rubin, A.: Strategies for managing statistical complexity with new
software tools. Stat. Educ. Res. J. 3(2), 17–41 (2004)

44. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
45. Heer, J., Card, S.K., Landay, J.A.: Prefuse: A toolkit for interactive information visualization.

In: SIGCHI conference on human factors in computing systems, pp. 421–430. ACM, New
York (2005)

11 Plan Recognition and Visualization 327

http://www.keypress.com/x5715.xml

	11 Plan Recognition and Visualization in Exploratory Learning Environments
	Abstract
	11.1…Introduction
	11.2…Related Work
	11.2.1 Plan Recognition
	11.2.2 Assessment of Students’ Activities

	11.3…The Virtual Labs Domain
	11.4…Plan Recognition in Virtual Laboratories
	11.4.1 Actions, Recipes, and Plans
	11.4.2 The Plan Recognition Algorithm
	11.4.3 Empirical Methodology
	11.4.4 Complete Algorithms

	11.5…Visualizing Students’ Activities
	11.5.1 Visualization Methods
	11.5.2 Empirical Methodology
	11.5.3 Results
	11.5.4 Discussion

	11.6…Conclusion and Future Work
	11.7…Experimental Problems
	11.8…The Recipe Library for the Dilution Problem
	11.8.1 Dilution Problem Recipes
	11.8.2 Recipes Explanation

	11.9…User Study Questionnaire
	References

