
Chapter 10
Adaptive Testing in Programming
Courses Based on Educational Data
Mining Techniques

Vladimir Ivančević, Marko Knežević, Bojan Pušić and Ivan Luković

Abstract Designers of student tests, often teachers, primarily rely on their
experience and subjective perception of students when selecting test items, while
devoting little time to analyse factual data about both students and test items. As a
practical solution to this common issue, we propose an approach to automatic test
generation that acknowledges required areas of competence and matches the
overall competence level of target students. The proposed approach, which is
tailored to the testing practice in an introductory university course on program-
ming, is based on the use of educational data mining. Data about students and test
items are first evaluated using the predictive techniques of regression and classi-
fication, respectively, and then used to guide the test creation process. Besides a
genetic algorithm that selects a test most suitable to the aforementioned criteria,
we present a concept map of programming competencies and a method of esti-
mating the test item difficulty.

Keywords Programming competencies � Concept maps � Test creation �
Classification of test items � Genetic algorithms

Abbreviations

ARC Area coverage
C1 Criterion1

V. Ivančević (&) � M. Knežević � B. Pušić � I. Luković
University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21 000
Novi Sad, Serbia
e-mail: dragoman@uns.ac.rs

M. Knežević
e-mail: marko.knezevic@uns.ac.rs

B. Pušić
e-mail: bpusic@uns.ac.rs

I. Luković
e-mail: ivan@uns.ac.rs

A. Peña-Ayala (ed.), Educational Data Mining,
Studies in Computational Intelligence 524, DOI: 10.1007/978-3-319-02738-8_10,
� Springer International Publishing Switzerland 2014

257

C2 Criterion2
CAT Computerized adaptive testing
CBA Computer-based assessment
CR Correct ratio
DF Difficulty
DM Data mining
EDM Educational data mining
FIT Fitness
FTS Faculty of Technical Sciences
GA Genetic algorithm
GC Generation count
IC Item count
IRT Item response theory
M Mean
MAX Maximum
MDF Mean difficulty
MF Mean fitness
MGC Max generation count
MH Math
MIN Minimum
MT Mean completion time
NDF Natural difficulty
NDFC Natural difficulty category
OWL Web ontology language
PAS Past assignment
PLADS Programming languages and data structures
PS Population size
PTS Past test
RA Random approach
RDF Resource description framework
SC Student capacity
SCR Student capacity rank
SD Standard deviation
SDF Standard deviation for fitness
SGC Student group capacity
SK Skewness
SPDF Specified difficulty
SVM Support vector machine
TPS Test pool size
TS Test
TSR Test ratio
WRST Wilcoxon rank sum test

258 V. Ivančević et al.

10.1 Introduction

Computerized testing represents an area that has emerged together with the rising
popularity of personal computers and their increased availability. With their
introduction into schools and universities, a large number of students could be
swiftly evaluated and graded using tests administered in computer classrooms.
Furthermore, the switch to digital tests provides numerous benefits to both teachers
and students.

The teacher’s burden of grading each individual test using a same key is greatly
reduced because the solution and grading process need to be specified only once
while a computer may execute it as many times as necessary. Moreover, computer
tests exist only in digital form, which eliminates the need for official storage space,
as well as the time and costs associated with the copying of test forms. Additional
advantage is that students may retrieve test results immediately after the com-
pletion of the test, thus obtaining timely feedback on their performance. Testing
based on computers is suited primarily to tests with precisely defined structure and
solutions. Multiple choice tests, which are in widespread use across different levels
of education and research, fit this format very well.

Although this rigidity may appear to exclude many other forms of educational
assessment and impose severe restrictions on the testing process, there have been
many studies devoted to ‘‘intelligent’’ approaches to computerized testing that
allow for very complex evaluation of student knowledge. The most important
activity in the testing process, irrespective of the testing format, is the creation of a
test. A test designer is responsible for forming a set of test items that encompass all
relevant areas at the prescribed level of knowledge. This activity is sensitive to
changes, as seemingly minor test modifications may cause noticeable differences
in student performance. The knowledge gap between teachers and students,
together with other distinctions between these two groups, may introduce addi-
tional difficulties into test creation. A teacher may assume that students have
acquired necessary competencies, although the teaching process may not have
been completely successful. For these reasons, we devise an approach that could
overcome some of the aforementioned problems.

Our goal is to create software infrastructure for the computerized testing of
programming knowledge that supports adaptation of tests to the competence of a
target student group in a university course. We focus on the automatic creation of
static tests for introductory university courses on structured programming, par-
ticularly the C language, and data structures. Tests created in this manner could be
used as exercises tailored to a student group or even as finely tuned assessments
determining the final grade. They should provide good separation of students into
different classes according to their level of programming knowledge and be
concise yet thorough in the examination. In this manner, generated tests could
overcome the following problems:

10 Adaptive Testing in Programming Courses 259

• The bias of an examiner during the construction of tests.
• Long testing times, which is especially important in settings with limited

technical facilities and many students.
• Unsatisfactory correspondence between the test results, and actual student

understanding and competencies, which is usually caused by the unadjusted
difficulty of the administered test.

The proposed approach is not necessarily restricted to computerized testing, but
it may be best applied in such setting, since data required for test generation should
be in electronic format. The identified problem is suitable for the application of
educational data mining (EDM) [1] because the testing process may yield large
data sets and the tuning of the test creation algorithm depends on the analysis of
historical data concerning students and test items.

The foundation for the administration of such tests would be the Otisak testing
system [2], which is a web-based software solution extensively used at the Faculty
of Technical Sciences (FTS) in Novi Sad, Serbia. For this reason, the imple-
mentation of the proposed approach is tailored to the testing practice employed in
an introductory programming course and information available at FTS. In the
Otisak system, assessment of student knowledge is primarily conducted using
multiple choice and short answer tests on programming. We intend to utilize
assessment logs generated by this system that include student scores and copies of
individual tests with recorded student answers. In the analysis of these logs, we
may rank and evaluate test items [3] by utilizing classification algorithms.

Moreover, by mapping test items to programming language concepts, we form
a concept-based foundation for the automatic creation of comprehensive pro-
gramming tests. Information about previous student performance on related tests
may be used in the additional refinement of tests, i.e., we mine available records
with the goal of creating a student model [4].

This would allow for explicit acknowledgement of differences between specific
groups of students during the construction of tests. In other words, testing may be
considered adaptive because generated tests are suited to the actual competencies
of the target groups of students. Therefore, the two key requirements that drive test
generation are adequate coverage of the specified areas of competence and spec-
ified difficulty, which may be automatically calculated for a group of students.

In order to acknowledge both requirements, we create a genetic algorithm (GA)
[5] that is designed to discover the best test with respect to the two criteria.
Moreover, we also evaluate the efficacy of the generated tests [6, 7], by comparing
them with those created using a random method generator. The research activities
that lead to the implementation of the approach include:

• Creation of a formal model of programming concepts and competences that is
suitable for a university course on programming (primarily for the C language).

• Mapping of previously used test items to programming concepts and
competencies.

• Classification of test items according to their difficulty.
• Formal definition of the structure of a student profile.

260 V. Ivančević et al.

• Estimation of current student competency.
• Creation of an algorithm for test generation that acknowledges student com-

petencies (or explicitly specified difficulty), test item classes, and test
comprehensiveness.

• Evaluation of tests created in this manner.

The rest of this chapter is organized in the following manner: in Sect. 10.2, an
overview of the related work on computerized testing is given; in Sect. 10.3,
background information about the testing method and the programming course is
provided; in Sect. 10.4, a model of programming concepts and competencies is
presented; in Sect. 10.5, we demonstrate how item difficulty and student compe-
tence may be predicted; in Sect. 10.6, the genetic algorithm for test creation is
presented; in Sect. 10.7, an application of the proposed approach is illustrated; and
in Sect. 10.8, the chapter is closed with concluding remarks and ideas for future
research.

10.2 Related Work

Automated preparation and administration of tests in programming has become a
necessity because competencies related to the computer and programming skills
have become the norm in various disciplines and many professionals need to be
rapidly trained. However, this field also has a relatively long history, as many
custom solutions have been built over the past few decades.

As discussed in [8], computer-based assessment (CBA) brings many benefits to
higher education. Contrary to the popular opinion, CBA allows various types of
assessment, which are beneficial for students. The author illustrates how multiple
choice tests, which are sometimes regarded as suitable for the evaluation of factual
knowledge and too simple for advanced assessment, may be used to give complex
problems to students. Their integration with randomization techniques, despite
high initial costs to set up, could save significant time, especially in environments
that are stable. In the context of the course from which the assessment data are
retrieved for the study presented herein, multiple choice items have also proved to
be a valuable tool when assessing more advanced competencies in programming.
Thus, the proposed approach to generation of multiple choice tests could be
viewed as a beneficial method of test creation, both in terms of the shortened
design time and the reduced possibility of error, but under the condition that the
individual test items are carefully designed.

Another group of valuable programming assessments are laboratory exams,
where students have to write a working program in the computer laboratory, while
being observed by the invigilators [9]. This also represents one of the applied
methods in the course that we analyze. However, the authors also employ a special
web system that is used in the whole assessment process, from the presentation of
program specification, to program testing and storing of the final result.

10 Adaptive Testing in Programming Courses 261

More information about the rich history of automated assessment systems and
techniques in computer sciences may be found in [10]. The authors also identify
some of the problems associated with automated assessment and recognize the
need for a human assessor, while the assessment systems should act as a support in
the education process. A study on more recent advances in automatic assessment
for programming exercises is presented in [11]. According to the authors, one of
the big problems in this area is the lack of open solutions that may be freely
applied by others. This leads to the proliferation of in-house solutions and the need
to implement standard system features from scratch. The creation of a student test,
together with the selection of adequate test items, is a delicate activity that is not so
rarely based on intangible factors guiding the process. An important part of
designing a test typically relies on the experience of a teacher/designer to estimate
the difficulty of items.

Item Response Theory (IRT) [12] provides a powerful framework for test
construction and tuning, in which items have a central role. The probability of a
correct response to an item is modelled by a set of item parameters and depends on
the examinee’s ability. As a result, such approach allows for shorter assessment
times, as well as adaptive testing, which represents assessment tailored to the
individual ability. It has also boosted the development of computerized adaptive
testing (CAT). However, despite the relatively long history and considerable
research effort behind this theory, its strong requirements, difficult interpretation,
and formal background have most likely been the reasons for its slow adoption
among teachers. Owing to the static nature of tests and the lack of a dynamic
assessment system in the analyzed course, we could not fully utilize the main
benefits provided by IRT. This has partially motivated us to adopt a somewhat
different approach to test adaptation that could be more acceptable for some
educational settings.

Moreover, as reported in [3], Proportion Correct, a simple item difficulty
estimate based on the proportion of correct answers, outperformed other more
advanced estimates. By relying on the proportion of correct answers to estimate
item difficulty, we defined an easily understandable set of item difficulty classes
and a process in which items could be categorized. We also supported addition of
new items, which is typical of the analyzed course, and allowed for immediate use
of items without having to conduct experimental difficulty estimation. For this
purpose, among several variables, we also utilized the expert estimate of item
difficulty in the categorization of new items. During the creation of an item dif-
ficulty classifier, we corroborated the finding reported in [3] that the expert esti-
mate is not always one of the best methods, since we found that the number of
different concepts associated with an item correlates better with the proportion of
correct answers as opposed to the expert estimate.

Formalizing the representation of knowledge in some area is another important
element in the test design that allows for an approach which is less subjective and,
most probably, less error-prone. Ontologies are typically used to represent
concepts and their relationships in a domain. An educational ontology for the
programming in the C language is presented in [13]. The authors also provide a

262 V. Ivančević et al.

number of guidelines on creating a ‘‘beautiful ontology’’, i.e., one that should be
clear, symmetrical, and well-organized. The actual ontology is publicly available
in [14].

However, ontologies were originally devised to specify concepts that should be
shared on the Semantic Web and automatically processed by computers. Such
environment implies that a single ontology for some domain should be created,
published, and shared by participants that are not necessarily known in advance.
Unlike the aforementioned knowledge representations, our model of the pro-
gramming knowledge is a particular solution, a concept map specifically created to
match the requirements in a university course on programming and data structures.
The omission of the required concepts would render our map incomplete, while the
inclusion of concepts not discussed in the course would further complicate the map
without any actual benefit for the people involved. Moreover, its primary users,
teachers involved with the course, may not be that familiar with ontologies in
general. Another benefit is that a concept map may be more readily comprehended
and modified, if needed. More information about the ontologies and concept maps
is given in the introductory part of Sect. 10.4.

10.3 Background

The creation of estimations of students and test items requires mining of logs [15]
from the student testing system, which have to be parsed and imported into a
specially designed database. Since the complexity of student models and item
difficulty estimates depends on the richness of the extracted information, the
proposed approach is primarily tailored to the quality of the available data. In order
to implement and evaluate the approach, we relied on the testing logs collected
during the organization of a university course on programming. More information
about the environment from which the data originate, as well as about the data set,
may be found in the following two subsections.

10.3.1 Environment

The data used in this study represent records associated with student tests that were
organized as part of the Programming Languages and Data Structures (PLADS)
course. This course is held at FTS (University of Novi Sad, Serbia), as a first year
introductory course on programming for students of Computing and Control.

All the programming is taught using the C programming language, with the
special attention devoted to the data structures. More information about the
structure of the course may be found in [16].

The final grade in the course is determined by the score in pre-exam assess-
ments, which are conducted in practical classes during the semester; and the score

10 Adaptive Testing in Programming Courses 263

in the written theory exam, which is organized at the end of the semester. How-
ever, we restrict our analysis to the tests conducted during practical classes, which
are held in a computer laboratory. There are two programming assignments, which
require writing a C program, and typically three to four tests on programming.

The laboratory was specially designed for courses in computer science [17]. It
features a computer-based student testing system named Otisak, which supports
multiple choice, multiple response, and fill-in-the-blank test items.

Student activity during testing, together with test items and student answers, is
recorded in the form of electronic logs and database entries. These records rep-
resent the main source of data to implement and test the approach proposed in this
chapter.

10.3.2 Data Set

The data produced by the Otisak system is imported to a separate database that is
used solely in the analysis of data about previous tests, student scores, and indi-
vidual items. The database schema is shown in Fig. 10.1.

The stored data cover the period from 2008 to 2013. They are related to several
computer science courses held at FTS, including the PLADS course.

There is basic information about each conducted test (table Test), assessed
student (table Students), test items (table Question), test item options (table
QuestionAnswer), and the corresponding course (table Course).

For each test, there are records describing which students took the test (table
StudentTakenTest) and which test items (questions) were used (table Question-
Test). For each test item that a student was answering, there are records about the
system events (table AnswerLog).

For test items, there are records about the covered knowledge areas (table
QuestionInfo) and item difficulty (table QuestionDifficulty) with respect to some
course.

There is information about 1,055 tests (including all courses, and many tests for
the debugging and preparatory purposes), while 124 tests are related to the ana-
lysed introductory course on programming.

10.4 Modeling Programming Knowledge

In order to generate comprehensive tests about programming, basic information
about a test item (e.g., for multiple choices items a designer provides a stem and a
set of options) should be extended with the specification of important areas and
competencies covered by that particular item.

The simplest solution would be to create an unordered list of areas and com-
petencies, and to assign to each test item one or more list elements. Although the

264 V. Ivančević et al.

creation of such list would not require a special set of skills except possessing
domain expertise, the final product would be largely impractical as any non-trivial
domain or subdomain typically features at least several hundred concepts.

As a result, navigating a large unordered list in search for an adequate concept
would be very time-consuming and tiring for a domain expert. Furthermore, such
representation of the domain may not adequately transfer domain knowledge to
non-experts, namely students who could only benefit from the access to the
domain model.

Fig. 10.1 The test log database schema

10 Adaptive Testing in Programming Courses 265

On the other hand, ontologies and standards associated to the Semantic Web,
such as Resource Description Framework (RDF) [18], Web Ontology Language
(OWL) [19], and OWL2 [20], could be utilized as a formal basis for the
description of a domain and its concepts with the added benefit of having func-
tional semantic reasoners. Approaches based on the Semantic Web have many
proponents as numerous applications, tools and new versions of standards are
continuously being developed.

The OWL ontology specification language, which actually includes three sub-
languages (Owl Lite, OWL DL, and OWL Full), is a formally defined text-based
language. Although the availability of the three sublanguages was expected to
offer significantly different levels of expressiveness, numerous problems persisted,
which led to the creation of OWL 2 [21]. However, the formality, textual nature,
and web orientation of these languages may be the biggest obstacles that a domain
expert should overcome before successfully using them. The domain expert should
be knowledgeable about classes, properties, and data types, as well as be aware of
semantic implications associated with the concrete ontology design. Moreover, the
textual syntax may be quite cumbersome for human users.

There are many visualization solutions for OWL ontologies [22–24], however,
the OWL languages were not primarily created to be human readable. One pos-
sible solution to the problem of flexible domain description may be the use of
concept maps [25], which are diagrams featuring concepts and relationships be-
tween them. The graphical nature of concept maps represents a benefit when
describing knowledge, as these maps were invented in order to reflect mental
processes and associative relations between concepts.

Some positive effects of directly using concept maps as means of student
assessment in schools have been observed [26], but numerous challenges to their
general adoption in assessments still remain [27]. Moreover, CmapTools [28] is a
software tool that was developed to allow knowledge modeling and sharing using
concept maps. It supports map export to text propositions, CXL format (an XML
representation of the concept map diagram), numerous image formats, etc.

One of the benefits of using concept maps is that they may be freely created to
capture relevant knowledge, unlike OWL ontologies, which are restricted by
numerous rules as they are expected to be interpreted by computers. This freedom to
create arbitrary concepts and relationships without the overhead caused by many
formalisms also facilitates communication between domain experts who are creating
a concept map, as well as between students who are exploring the modeled domain.

The structure of the map diagram is not limited to tree structures but allows for
any graph, i.e., several connections may point to a single concept. In case the map
needs to be programmatically processed, its CXL representation may be parsed.
For these reasons, we have opted for a concept map to express the programming
knowledge. We primarily require that the knowledge representation may be rel-
atively easily created and understood by a layperson, as well as programmatically
accessed and analysed when estimating individual test items. In the remainder of
this section, we propose a model of programming competencies and concepts,
which was created using the CmapTools software.

266 V. Ivančević et al.

10.4.1 Programming Knowledge Overview

In order to simplify the concept map and its parsing, a tree structure of concepts was
created by a teaching assistant from the analyzed course, together with a set of
auxiliary links that are not parent–child links, which are known as cross-links. In the
resulting knowledge model, excluding the cross-links, each concept may have zero
or more child concepts. On the other hand, each concept has exactly one parent
concept, save for the root concept, which does not have a parent. A link between
concepts (typically marked with a noun) includes a linking phrase (marked with a
verb) and a set of connections between the concepts and the linking phrase.

The resulting concept map was created to match the knowledge outcomes of the
PLADS course organized at FTS. It includes 309 concepts, 93 linking phrases, and
401 connections. It has a single root concept labeled Programming in C. All of the
relevant concepts are divided into two groups: one containing concepts related to
general competencies associated with structured programming and the other
containing specificities of the C language. The root concept of the first group is
Programming Competencies, while the second group starts from the concept C
Language Elements. Between the two subtrees starting from the two abovemen-
tioned concepts, there are many crosslinks matching programming competencies
with concrete constructs and keywords of the C language. The first two levels of
the concept map are presented in Fig. 10.2. The concept map represents a solution
that has been created for a concrete university course, as well as the test generation
problem which we are attempting to solve.

This is mainly evident from the structure of the Programming Competencies
subtree, which includes some common programming principles embodied in
Algorithmic Thinking and Code Styling. Although these principles are universal,
the exact structure and level of detail with which they are presented to students
may differ between institutions. Moreover, teachers are expected to design a
course according to the restrictions imposed by a study program, such as class
duration and frequency.

For these reasons, some teachers may find the concept map too detailed or even
limited in scope, depending on the objectives of the programming courses that they
teach. On the other hand, the C Language Elements subtree contains the technical

Fig. 10.2 The two initial
levels of the programming
knowledge model

10 Adaptive Testing in Programming Courses 267

terms from C that are standardized, which makes this portion of the map reusable
in different institutional and educational contexts.

In the following subsection, some of the general concepts from the two subtrees
are presented. In the model, each concept that denotes a subtree corresponding to a
module graded in the practical portion of the programming course has an under-
lined label—there are 19 such concepts in total. In order not to clutter the diagrams
with numerous connections, cross-links are excluded from the provided map
excerpts.

10.4.2 Modeling Programming Competencies

Programming competencies are organized by areas, such as Variable Manipula-
tion, String Manipulation, Flow Control, Command Line Arguments, Numeral
Systems, and Data Structures (see Fig. 10.3). They typically correspond to the
mastery of a basic command (or a set of them) that have similar outcomes in
different programming languages. The presented portion of the concept map
includes skills that are typical of the structured programming paradigm and mostly
transferable between various languages, e.g., C, C++, and Java. The listed con-
cepts are further decomposed. For example, the Data Structures concept encom-
passes 29 other concepts.

The majority of these competencies are graded (13 in total), while student
knowledge in areas Algorithmic Thinking and Code Styling, which are taught and
encouraged throughout the course, is not explicitly assessed during computerized
testing.

Fig. 10.3 The two initial levels of the programming competencies subtree

268 V. Ivančević et al.

10.4.3 Modeling Programming Concepts of the C Language

We organized the key constructs and capabilities of the C language into three
broad categories: Variables, Statements, and Auxiliary Program Elements. Some
of the most prominent members of these categories are presented in Fig. 10.4.

There are in total 6 key areas belonging to the C Language Elements sub tree of
the knowledge model (underlined in Fig. 10.4), which are thoroughly covered in
student assessments: Variables, Expressions, Selection Statements, Iteration
Statements, IO Functions and Memory Functions.

The suggested ‘‘taxonomy’’ should not be viewed as a strict scientific overview
of a generic programming language, but as a model of the features of the C
language, as presented in the educational context of an introductory course on
programming. Many of the directly linked concepts do not conform to the ‘‘is-a’’
relationship. They rather represent arbitrary associations between concepts, in the
way they may be mentally formed by students during classes and individual study.
As a result, a concept may be further linked to other concepts that designate
subclasses, properties, or behaviour of their parent concept. An example of these
relationships may be observed for the Variable concept (see Fig. 10.5).

For instance, program variables may be classified as plain, pointer, array, or
matrix variables. Each variable has several properties: scope, address, value, name,
and type. A variable may be declared or initialized. However, not all information
about variables in C is covered by the Variable subtree of the model.

There may be a cross-link to the Statements subtree, namely the Expressions
concept, whose subtree is the most populous in the model. Expressions in C may
involve variables, thus specifying additional operations applicable to variables.
Due to the complexity of many concepts, information about a single concept

Fig. 10.4 The most important concepts in the C Language elements subtree

10 Adaptive Testing in Programming Courses 269

cannot be contained within a single subtree. In order to create an intuitively
understandable model, the model designer has to choose global demarcation lines
between concept groups, which may be connected using cross-links when needed.

10.5 Estimating Test Difficulty

Student performance in an assessment is primarily influenced by the requirements
level of the assessment (test difficulty) and the competence of the assessed stu-
dents. When creating a new test, both factors should be taken into account. The test
should cover all topics relevant for the particular assessment and have an adequate
level of difficulty, as determined by the difficulty of individual test items. How-
ever, these two requirements are not easy to fulfill in practice. The testing time is
often limited by the available time during regular classes, which restricts the
number of items in the test and, consequently, the test comprehensiveness.

Furthermore, teachers may not always correctly estimate the difficulty of a
single item. They may misjudge the knowledge of students, thus creating a test in
which students perform very bad or very well. An algorithm for automatic test
creation, which attempts to overcome these problems, utilizes available data about
items, students and previous tests, in order to generate a test satisfying the
aforementioned conditions. By performing educational data mining, we estimate
the difficulty of items and future performance of a group of students who need to
be assessed.

Fig. 10.5 The most
important concepts in the
variables subtree

270 V. Ivančević et al.

As a result of the process, the predicted values may be passed to the test
generation algorithm, which further uses them as guidance during the automatic
selection of items for a test. Once the selection of items is finished, the resulting
test may be administered to the target students. In this manner, we obtain a test
with the required number of fixed items that is tailored to the estimated ability of a
student group as a whole and not to the individuals. In the following two sub-
sections, we demonstrate how item difficulty and student performance may be
represented and predicted in the context of the PLADS course at FTS.

10.5.1 Estimating Test Item Difficulty

Tests used in the practical assessment of students in the analyzed course primarily
include multiple choice questions as items. In order to build a test of the required
difficulty, for each possible item there should be a numerical estimate of its dif-
ficulty. With this information, the test difficulty could be calculated as the arith-
metic mean of the difficulty values matching the pertaining items.

The individual item difficulty is neither explicitly modeled nor evaluated dif-
ferently for each student, because, in the analyzed course, a test is always
administered to a student group and each student receives the same set of items
that cannot be modified once the test has started. The simplest solution would be to
calculate item difficulty using the percentage of correct answers for an item in the
past tests. However, there are two problems with such solution.

The first problem is that the proposed solution is possible only when there are
sufficient records in the assessment log about each item. For the analyzed course,
we observed that the percentage of correct answers for an item may increase if that
item is often repeated in different assessments, most probably because assessed
students readily share information about the completed tests with their peers. For
this reason, new items are constantly being added to the item pool. Nonetheless,
these items do not have their own percentage of correct answers and, hence, their
difficulty cannot be estimated. In case that the item’s difficulty is unknown, there is
a non-negligible risk that a new test item might be too difficult (or easy) for
students, which may lead to an unjustified change in scores and overall student
performance. The second problem is related to the meaning of the difficulty
estimate. The percentage of correct answers for an item is an exact value, but for
teachers this value alone may not be sufficient to understand the difference
between items with respect to their difficulty or know exactly for which percentage
of correct answers the item becomes difficult. In other words, there is no suitable
interpretation of these values for the purpose of test creation.

In order to remedy the identified problems, in this subsection, we present how
the difficulty of test items may be represented to offer a more manageable inter-
pretation for teachers. Furthermore, we also demonstrate how the newly defined
difficulty may be estimated for an item in two scenarios: when the item has been
extensively used in past assessments and when the item is previously unknown or

10 Adaptive Testing in Programming Courses 271

rarely used. For the purpose of illustrating the estimation process, as well as the
identification of important variables related to item difficulty, we have selected a
sample of 172 items from the test records database.

All of the items were annotated with the matching programming concepts
defined in the model from Sect. 10.4. As demonstrated in this section, concepts
mapped to an item also provide valuable information about the item’s difficulty.
The individual items were chosen so that they reflect different type of program-
ming questions which typically appear in student assessments. For each item, there
is also the percentage of correct answers (CorrectRatio, CR) recorded during past
assessments, which is the key variable in the estimation of item difficulty.

In order to add the meaning to the difficulty of an item that has been extensively
used, we decided to first simplify the estimation problem, by discretizing the
percentage of correct answers. The percentage range for the analysed sample is
automatically divided into three intervals using the Jenks natural breaks classifi-
cation method [29], whose implementation is available in R environment for
statistics and data analysis [30]. As a result, we obtain the categories for the
difficulty of test items (NaturalDifficultyCategory, NDFC). The generated parti-
tion, including the meaning for each category, is shown in Table 10.1, while the
histogram for CR is presented in Fig. 10.6.

As our aim was to provide a limited number of difficulty levels that are suffi-
ciently separated but enclose a comparable number of items, according to the
distribution of CR values, we defined exactly three readily interpretable categories,
where easy items are denoted by 1, items of moderate difficulty by 2, and difficult
items by 3.

In the automatic calculations involving item difficulty, we are using more
precise (and more informative) values in addition to the three integers. For an item
it with a known value of CR, the exact value of NaturalDifficulty (NDF), which
lies inside the interval [0.5, 3.5], may be calculated using the formula (10.1):

NDFðitÞ ¼ ndc� 0:5þ ðUndc � CRðitÞÞ=ðUndc � LndcÞ; ð10:1Þ

where ndc is the natural difficulty category of the item it, Lndc the lower bound of
the item’s CR for the category ndc, and Undc the upper bound of the item’s CR for
the category ndc. In this manner, if the CR value of an item is the midpoint of the
interval defined by Lndc and Undc, the corresponding NDF is equal to the item’s
NDFC, while the NDF for the other CR values typically falls somewhere between
the integer values matching the three categories.

Table 10.1 Natural segmentation of the percentage of correct answers

Natural difficulty category Correct ratio range Number of items in
the category

Lower bound Upper bound

1 (Many correct answers) 0.76 (exclusive) 1 (inclusive) 50
2 (Majority of correct answers) 0.4688 (exclusive) 0.76 (inclusive) 65
3 (Minority of correct answers) 0.0323 (inclusive) 0.4688 (inclusive) 57

272 V. Ivančević et al.

In the estimation of the difficulty of a new or rarely used item, i.e., when the
item’s CR value is unknown or not representative of the item’s difficulty, we
predict NDFC of an item using other item-related variables. In this scenario, the
exact difficulty (NDF) is not predicted but only the corresponding category (class)
due to the predictive quality of the available variables.

The simplest solution would be to have an expert give a difficulty estimate for
each new test item (ExpertDifficulty). For this purpose, a teaching assistant from
the analysed course rated all available test items on an integer scale from 1 to 3,
where 1 denotes an easy item while 3 denotes a difficult item.

The principal criterion for assigning labels was the complexity of the problem
presented in a test item. An item is considered easy (label 1) if it requires basic
reproduction of some piece of information presented in the course, or an analysis
of a simple statement written in C. A moderate item (label 2) is the one that
typically combines from two to four language constructs (or a combination of
practical and theoretical ideas) and requires an analysis of their interaction or
relationship.

A difficult item (label 3) requires a careful analysis of a program code featuring
a combination of advanced concepts (typically including pointers) with complex
flow controls and strong dependencies between presented code sections.

An overview of the expert classification of test items is given in Table 10.2. For
each difficulty category, we present the label, number of items from the sample
that are assigned to that particular label, and examples of what is typically being
evaluated in that category.

However, the expert estimate of the difficulty of an item has a weak-to-mod-
erate correlation with CR, which is closely related to NDFC, and the items are less
evenly distributed between the categories as opposed to NDFC. Therefore, we
included other item-related variables in the estimation, for which we hypothesized

Fig. 10.6 Histogram for the
ratio of correct item response

10 Adaptive Testing in Programming Courses 273

that there should be a positive relation to item difficulty. For each item in the
analyzed sample, we calculated three additional values:

• AreaCoverageall (ARCall). A number of all 19 relevant areas from the knowl-
edge model (underlined concepts in the model from Sect. 10.4) that are at least
partially covered by the item, i.e., the item is associated to a concept within one
of the 19 relevant subtrees.

• StemLength. A number of characters in the stem, where an occurrence of
multiple consecutive whitespace characters counts as a single character.

• KeywordCount. A number of the reserved words in the C language that appear
in the stem.

In Table 10.3, for the three aforementioned variables and the expert difficulty
estimate, we present mean (M), standard deviation (SD), minimum (MIN), maxi-
mum (MAX), skewness (SK), and Pearson’s correlation coefficients with respect to
CR. With respect to correlation with CR, the best variable is AreaCoverageall,

Table 10.2 Overview of categories associated with expert difficulty estimation

Expert difficulty
category

Number of items in
the category

Examples

1—Easy 42 • Use of terminal
• Basic knowledge of types
• Analysis of simple selection statements
• Analysis of simple iteration statements
• Understanding of memory addresses
• Basic command of memory functions
• Basic operations on arrays
• Basic operations on strings
• Basic operations on files
• Basic understanding of C structures
• Calculation of memory requirements for concrete

data storage
• Understanding of numeral systems (binary, octal,

decimal, and hexadecimal)
2—Moderate 99 • Use of pointers

• Advanced use of expressions (in selection and
iteration statements)

• Advanced string operations
• Bitwise operations (operators and masks)
• Functions (declaration, definition, calling)
• Advanced knowledge on types (duality of certain

types and type conversion)
• Use of command line arguments
• Use of memory functions for custom data structures
• Analysis of moderately complex code

3—Difficulty 31 • Analysis of very complex code featuring
competencies from all categories

274 V. Ivančević et al.

which surpasses even the expert estimate (ExpertDifficulty), the second best
variable.

On the other hand, KeywordCount exhibits weak correlation, while StemLength
appears to be linearly unrelated to CR. As a result, the estimation of the difficulty
of an item without its CR value is performed using a classifier that is created
including the following independent variables:

• ExpertDifficulty.
• AreaCoverageall.

• StemLength.
• KeywordCount.

The only dependent variable is:

• NDFC.

Although the preliminary analysis of variables StemLength and KeywordCount
does not indicate that they have significant predictive quality, they are included in
the classifier because their presence offered small improvements in the prediction
rate, as discovered in the initial experiments with the classifier.

For illustrative purpose, after the data preparation phase on the set of the 172
test items, we tested four different types of classifiers, which are available as part
of the R environment. The classifier performance was evaluated with respect to the
training error, cross-validation error (for 10 folds and 100 experiments), and
Fleiss’ kappa.

The results are presented in Table 10.4. The support vector machine (SVM)
classification using the Crammer-Singer native multi-class method [31] has the
lowest errors overall and the top kappa value. The best results for this algorithm
are obtained using the radial basis function (Gaussian) kernel with parameters
C = 80 (the parameter in the cost function) and sigma = 80 (the kernel function

Table 10.3 Summary statistics and correlation for predictor variables

Variable M SD MIN MAX SK Correlation to CR

ExpertDifficulty 1.936 0.65 1 3 0.063 -0.276
AreaCoverageall 0.142 0.069 0.1 0.26 0.238 -0.392
StemLength 175.878 55.32 74 325 0.464 0.032
KeywordCount 4.395 2.306 0 12 -0.105 -0.150

Table 10.4 Classifier performance on the testing set

Classifier Training error Cross-validation error Kappa

Support vector machine 0.081 0.490 0.877
K-nearest neighbor 0.081 0.515 0.877
Decision tree 0.267 0.531 0.597
Naive Bayes 0.467 0.506 0.277

10 Adaptive Testing in Programming Courses 275

parameter), as indicated by the results of a two-step grid search for good parameter
values.

The first error value, which most probably is lower than it could be expected for
a set of new items, illustrates how much the model is misclassifying the training
data. The second error value, which is calculated when performing the k-fold cross
validation, generally provides a more realistic perspective on the performance of
the classifier on new data. However, this error describes a classifier trained without
using one kth of the potentially valuable data. The kappa value indicates the
agreement with the used data over the one expected by chance.

Given all the aforementioned information, the difficulty estimate (Difficulty,
DF) for any available item may be made in the following manner (10.2):

DFðitÞ ¼

3; valid CRðitÞ ^ NDFðitÞ[3

NDFðitÞ; valid CRðitÞ ^ 1�NDFðitÞ� 3

1; valid CRðitÞ ^ NDFðitÞ\1

NDFCðitÞ; not valid CRðitÞ

8
>>><

>>>:

: ð10:2Þ

When there is a representative CR value for an item, we may calculate a more
precise estimate, while, for all the other cases, the trained SVM classifier is utilized
to estimate the item difficulty by predicting the item’s NDFC.

By using the difficulty estimates of available items, we may evaluate the student
capacity to do well in assessments with respect to item difficulty, as well as
parameterize the test generation algorithm to construct a test matching the capacity
of a group of students.

10.5.2 Estimating Student Capacity

In the proposed approach, the term student capacity denotes the ability of a student
to perform well in a given course, i.e., achieve good scores in the assessments
conducted by course teachers. There are three primary requirements when esti-
mating student capacity for the purpose of test creation. First, there should be a
predictive model for student scores in programming. Second, there should be a
measure of student capacity that is related to student scores and has meaning for
teachers, similarly to the case of item difficulty from the previous subsection.
Third, there should be a clearly defined relationship between the measure of stu-
dent capacity and measure of item difficulty because such relationship would allow
direct comparison between the capacity of a student group and the difficulty of a
test with its pertaining items. In this manner, the quality of an automatically
generated test could be evaluated with respect to the capacity of the target student
group. In the remainder of this subsection, we present our solutions to the three
issues.

It is difficult to predict the exact performance of students in tests that are held
during the PLADS course because the course is organized in the winter semester

276 V. Ivančević et al.

(the first semester) of the first year of study, when there are still almost no data
about the academic achievement of students. For the initial portion of the semester,
the only available information includes student scores from the university entrance
exam. Given the fact that the entrance exam is used to evaluate the proficiency in
mathematics, the resulting student score is not directly related to the score in a
programming test. However, there is moderate positive correlation between the
score in the entrance exam on mathematics and score in the programming tests in
the analyzed course.

The value of the Pearson’s correlation coefficient for the two variables in the
academic year 2011–2012 is 0.477 (0.475 for the Spearman’s correlation coeffi-
cient). Moreover, once the initial programming assessments are completed, it is
possible to improve capacity prediction by utilizing student scores from the
already completed programming tests and assignments.

Owing to the preliminary findings, we opted for the multiple linear regression
as means for estimating student score in some of the na programming tests that are
conducted during a semester. The independent variables include the entrance exam
score in mathematics (Math, MH), the total score in the first i programming
assignments (PastAssignment, PAS), and the total score in the first i programming
tests (PastTest, PTS), while the dependent variable is the total score in the na -

i remaining tests in the programming course (Test, TS). The i value is an integer
from [0, na - 1]. For a student s, the regression model is of the following form
(10.3):

TSðs; iÞ ¼ b3ðiÞ � PTSðs; iÞ þ b2ðiÞ � PASðs; iÞ þ b1ðiÞ �MHðsÞ þ b0ðiÞ; ð10:3Þ

where b3, b2, and b1 are the regression coefficients for the predictors PTS, PAS,
and MH respectively, while b0 is the intercept. The regression coefficients and
intercept depend on the number of already completed tests in a semester, which is
marked by i. Because each test marks a milestone during a semester, a semester
part is defined as a period between two consecutive tests, including the special case
of a period before the first test.

Therefore, an i value also denotes the (i ? 1)th part of the semester. As students
complete programming tests, i.e., progress from one semester part to the next one,
there is more information about students’ programming knowledge. This infor-
mation, which is present in the cumulative test scores, may be used to predict
performance in the remaining tests. However, it also changes throughout the
semester.

As a result, for each part of the semester, we utilize a different regression
formula with its own set of values of the coefficients and intercept. For illustrative
purpose, in Table 10.5, we present information about all regression formulae for
144 students enrolled in the winter semester of the academic year 2011–2012,
when there were three programming tests (na = 3).

The values of the regression coefficients, together with the allowed ranges for
TS, PTS, PAS, and MH, indicate that, as a semester progresses (i increases), the
PTS variable becomes more important and the variables PAS and MH less

10 Adaptive Testing in Programming Courses 277

important in the prediction. This is evident primarily from the more rapid decrease
in the values of b2 and b1 as opposed to b3.

Other regression models were also evaluated with respect to Eq. (10.3): models
excluding the MH predictor, models with the added squared term for PTS and/or
PAS, and models with the added interaction between PTS and PAS. Nonetheless,
when compared to the original model in terms of the residual standard error, the
other models performed worse or, for certain i values, equally well but with the
added burden of unnecessary terms.

In order to link the predicted TS value for a student to the matching difficulty of
test items, we introduce auxiliary variables. For (10.4) a non-empty set of nitems

test items Items, let:

rank : Items! f1; . . .; nitemsg; ð10:4Þ

be a ranking function that assigns to each item a different integer, so that an item it
has a lower rank value when compared to all the other items with a higher CR
value, while the ranks of items with equal CR may be ordered according to items’
identifiers within the database presented in Sect. 10.3.2. The formula (10.5) for
calculating TestRatio (TSR) is:

TSRðs; iÞ ¼ TSðs; iÞ=TSmaxðiÞ; ð10:5Þ

where TSmax(i) is the maximum allowed value for TS(s, i), which is given in
Table 10.5 for different i values.

The formula (10.6) for StudentCapacityRank (SCR) is

SCRðs; iÞ ¼
ceilðnitems � ð1� TSRðs; iÞÞÞ; TSRðs; iÞ 6¼ 1

1; TSRðs; iÞ ¼ 1

�

: ð10:6Þ

For each student, we may estimate the DF value corresponding to the student’s
capacity by using the Eq. (10.2) in the Eq. (10.7) for StudentCapacity (SC):

SCðs; iÞ ¼ DFðrank�1ðSCRðs; iÞÞÞ: ð10:7Þ

For a non-empty set of ns students Students, the StudentGroupCapacity (SGC),
which is the difficulty of a matching test for that student group (10.8), is within the
[1, 3] range and calculated as the arithmetic mean of individual values of SC:

Table 10.5 Details about regression formulae for student programming performance

i Allowed range b3 b2 b1 b0 R2 p-val

TS PTS PAS MH

0 0–40 / / 0–60 / / 0.230 21.253 0.198 \10-7

1 0–30 0–10 0–15 0–60 0.387 0.342 0.087 13.507 0.271 \10-7

2 0–10 0–30 0–15 0–60 0.198 0.090 0.022 -0.147 0.228 \10-7

278 V. Ivančević et al.

SGCðStudents; iÞ ¼ ð1=nsÞ �
X

s2Students

SCðs; iÞ: ð10:8Þ

Equations (10.4–10.8) formally describe a process responsible for matching
student capacity to item difficulty. The predicted student performance is expressed
as a ratio (TSR) between the predicted score and the maximum score in Eq. (10.5).
For a given student performance, there is a matching rank SCR from 1 (best) to
nitems (worst). The process of transforming the student performance ratio to its rank
is started by sorting existing test items in the decreasing level of difficulty, as
expressed by CR, using the rank function from Eq. (10.4). Next, the bottom TSR
percentage of ranked items is removed and the rank of the least difficult item
remaining (or the most difficult item removed) becomes the rank matching the
student capacity, which is expressed in Eq. (10.6).

Finally, the student capacity is mapped to the difficulty of the item with the
same rank in Eq. (10.7). For example, if a student’s predicted score ratio in a test is
0.9 (90 %), then the student is expected to give a correct answer for 90 % of items,
on the average. For this scenario, the student’s capacity equals the difficulty of the
item that separates the top 10 % of items from the rest. In this manner, for each
student, the corresponding capacity is defined as the difficulty of the most difficult
item for which that student is expected to give a correct answer.

10.6 Test Generation Algorithm

The test generation algorithm is designed as a genetic algorithm that searches for a
combination of test items, which, as a group, should cover as many specified areas
as possible, but at the same time be as close to the specified mean difficulty as
possible. As the stated problem belongs to the field of multi-criteria optimization,
in this case exhibited by the need to attain the specified coverage and difficulty,
genetic algorithms are chosen as the method of test construction. Therefore, if a set
of available test items, together with a set of arguments, is passed to the algorithm,
the output is a combination of test items matching the aforementioned criteria and
argument values.

Once the test generation process is finished, we may conduct an assessment, in
which all target students have to give answers for the same items within the
generated test. As with any genetic algorithm, there are several common steps.
First, a random group (population) of solutions (individuals) is generated and set
as the current population. Next, the population evolves through the specified
number of iterations (generations), with the possibility of terminating the process
early if the population becomes homogenous (becomes entirely composed of
similar or same solutions) or a solution of a desired quality is found.

In each generation, some individuals are selected (selection) according to their
Fitness (FIT), which represents the quality of an individual and is calculated using
a custom fitness function. The selected individuals enter the phases of crossover

10 Adaptive Testing in Programming Courses 279

(two or more individuals are combined to generate a new individual) and then
mutation (selected new individuals are randomly modified), thus producing new
individuals, which, as a group, are generally expected to be better than the current
population. The new individuals comprise a new population, which replaces the
current population and enters the next iteration. The concrete elements that have to
be specified in this generic procedure include:

• Algorithm arguments.
• Structure of a solution.
• Selection process.
• Crossover process.
• Mutation process.
• Fitness function for the solution.

The following algorithm arguments are required in the proposed approach:

• Items. The set of potential test items, where each item has an identifier, diffi-
culty, which is calculated using Eq. (10.2) from Sect. 10.5.1, and list of
knowledge areas that it covers.

• ItemCount (IC). The exact number of chromosomes (test items) in individuals,
i.e., the desired number of items in the generated test.

• SpecifiedDifficulty (SPDF). The student group capacity of students who would
take the generated tests, which may be manually set to a value from [1, 3] or
calculated using Eq. (10.8) from Sect. 10.5.2.

• ConceptMap. The concept model containing all knowledge areas (presented in
Sect. 10.4).

• Required. The set containing knowledge areas (presented in Sect. 10.4) that
needs to be covered by the generated test.

• PopulationSize (PS). The size of the population, i.e., the exact number of
individuals within the population (preferably an even number).

• MaxGenerationCount (MGC). The maximum number of generations, after
which the algorithm should terminate.

• FitnessThreshold. The minimum fitness measure that leads to the termination if
observed in an individual (the observed individual is considered the best
solution).

• Convergence. The maximum deviation in mean population fitness over a
specified number of latest generations that leads to the termination.

• CrossoverCount. The number of chromosomes that will be exchanged between
individuals during the crossover phase.

• MutationChance. The chance that a mutation will occur in an individual.
• Elitism. Indicator about whether to allow elitism, which is a process when best

fitted individuals (elites) skip the crossover phase and directly enter the new
population.

• ElitismMutation. The indicator about whether to allow elitism mutations, which
is a case when an elite individual, who directly passes to the new population,
also undergoes the mutation phase.

280 V. Ivančević et al.

Each individual contains an array of different test item identifiers. The length of
the array is equal to the chromosome count specified before algorithm execution.
Before the crossover phase, pairs of individuals are randomly formed, where the
number of pairs is equal to one half of the population size. However, since the
proposed algorithm employs roulette wheel selection, fit individuals, which have a
high fitness value, are more likely to transit to the crossover phase and, conse-
quently, propagate their chromosomes (a set of test items) to the next generation.

During the crossover, the specified number of chromosomes (item identifiers) is
swapped between the individuals who were coupled in the selection process. In the
mutation phase, given the initially specified mutation chance, a randomly selected
value corresponding to a valid test item identifier is set as a new value of a single
chromosome. The target chromosome is either selected randomly or it represents
an item whose difficulty varies the most from SPDF within the individual. The
fitness function is one of the key elements in the algorithm. For a set of test items
encompassed by the individual, the fitness function provides a numerical indicator
of the quality of the test that would contain these items. It takes as input an
individual ind and calculates to which extent the two criteria are satisfied:

• Criterion1 (C1). The required knowledge areas (Required) are covered by the
items within the individual ind.

• Criterion2 (C2). The mean difficulty of the items within the individual ind
matches the specified student group capacity (SPDF).

The first criterion is expressed by the following formula (10.9):

C1ðindÞ ¼ ARCrequiredðindÞ=nrequired; ð10:9Þ

where ind is an individual (a set of items), ARCrequired the number of the required
areas from the Required set (an argument passed to the algorithm) that are covered
by the individual ind, and nrequired the total number of the required areas (the
cardinality of the Required set). The second criterion is expressed by the following
formula (10.10):

C2ðindÞ ¼ ð2� jMDFðindÞ � SPDFjÞ=2: ð10:10Þ

where MeanDifficulty (MDF) is the mean difficulty for the test items enclosed
within the individual ind, and SPDF the desired difficulty of the generated test (an
argument passed to the algorithm). For both criteria, the allowed range is [0, 1],
where 0 denotes the worst fitness and 1 the best fitness of an individual. The fitness
function is of the following form (10.11):

FITðindÞ ¼ 0:5 � C1ðindÞ þ 0:5 � C2ðindÞ: ð10:11Þ

For some typical use scenarios in practice, with the presented fitness formula,
area coverage may have greater influence on the fitness measure of an individual
than the distance between the obtained and specified test difficulty. However, this
may be a case more acceptable than the opposite situation because good knowl-
edge coverage of the test is one of the primary goals in the analyzed course. In case

10 Adaptive Testing in Programming Courses 281

the opposite criterion may need to be encouraged, the constant factors in the two
addends from the fitness formula may be modified.

Moreover, as evidenced in the Sect. 10.5.1, area coverage of a test item is
positively correlated with the difficulty of the items. If a great coverage of all
possible areas is required together with a less demanding test featuring just a few
items, which may be one of the typical scenarios in practice, the proposed
approach is generally expected to discover a solution matching both criteria only
to some extent. However, this tradeoff may be somewhat avoided by increasing the
number of required items or extending the pool of potential items with those that
individually satisfy such requirements.

10.7 Application and Results

For teachers who are primarily interested in obtaining a test for student assess-
ment, there are three especially important algorithm arguments: the exact number
of test items (IC), student group capacity of target students (SPDF), and knowl-
edge areas that need to be covered by the test (Required). For the purpose of
illustrating the use and performance of the algorithm, we formulate three distinct
assessment scenarios:

• S1. The creation of a 5-item test of low difficulty (IC = 5, SPDF = 1.5), which
is an example of a short assessment that may be frequently administered.

• S2. The creation of a more difficult test with 10 items (IC = 10, SPDF = 2.5),
which is an example of an assessment that requires greater concentration and
competence from students.

• S3. The creation of a very difficult test with 20 items (IC = 20, SPDF = 3),
which is an example of an assessment useful for discerning between the best
students.

In all three cases, the target test was created from a set of 172 items and
expected to cover all 19 knowledge areas from the analyzed course. The proposed
approach is compared to the random approach incorporating a random generator
that randomly chooses items to create a specified number of tests (TestPoolSize,
TPS) and then selects the best one as the solution. The random approach represents
a benchmark, as its variant is currently used to generate tests in the analyzed
programming course.

The tests from the two groups were evaluated using the metrics built within the
fitness function of the genetic algorithm. For each scenario, an experiment was
conducted in N = 10 iterations using the two approaches. In each iteration, two
tests were automatically generated, one using the random approach (RA), the other
using the proposed genetic algorithm approach (GA). In all three scenarios, the
most important settings for the GA approach were:

282 V. Ivančević et al.

• FitnessThreshold = 1
• CrossoverCount = 0.4 9 IC
• MutationChance = 20 %
• Elitism = true
• ElitismMutation = false

In order to facilitate the comparison of the two approaches, we chose such a
TPS value for the RA approach so that it leads to the mean completion time which
approximately matches the one of the GA approach. The results of the evaluation
are presented in Table 10.6. For both approaches, there are the mean fitness of the
solution (MF), standard deviation for the fitness of the solution (SDF), and mean
completion time (MT) in seconds. For the GA approach, there are also the argu-
ment PS, and mean generation count (GC). For the RA approach, there is also TPS.
The comparison of solution fitness between the two approaches is done using the
Wilcoxon Rank Sum test (WRST). The obtained results indicate that, for each of
the three scenarios, the GA approach significantly outperforms the RA approach
for similar completion times, as evidenced by the differences in MF values and the
p-values for the significance test. Moreover, in each scenario, the GA approach
always yielded solutions with the same fitness value, i.e., the GA approach pro-
duced consistently good solutions.

The GA convergence, as represented by the change of mean population fitness
across generations, is illustrated in Fig. 10.7. The scenario S1, which required the

Table 10.6 Comparison of the GA and RA approach for N = 10 iterations

S GA RA WRST (N = 10)

PS GC MF SDF MT TPS
(k)

MF SDF MT

S1 100 149.7 0.843 0 4.43 39 0.82 0.008 4.45 W = 95 p � 0.01
S2 400 22.9 1 0 9.58 48 0.895 0.012 9.83 W = 100

p � 0.01
S3 500 73.7 0.95 0 93.5 281 0.842 0.012 93.88 W = 100

p � 0.01

Fig. 10.7 The genetic algorithm convergence for three scenarios

10 Adaptive Testing in Programming Courses 283

most generations and resulted in the suboptimal solution, was the most demanding
most likely because of the insufficient number of test items for the posed
requirements. On the other hand, with the increased number of items in S2, the GA
search ended prematurely after fewer generations due to the discovery of the
perfect solution, which had maximum fitness. However, when the further increased
number of items was coupled with the need for the extreme difficulty, as in the
case of S3, the search could not yield the perfect solution but the population
managed to converge.

These findings suggest that the proposed GA approach may provide solutions
for different assessment scenarios and generate tests in reasonable time. As a
result, it should be considered for use in practice in the analyzed course.

10.8 Conclusion and Future Work

In the application of the proposed approach to generation of computer based tests
on programming, we utilize the EDM techniques to estimate the difficulty of a test.
The difficulty estimate is one of the two important pieces of information that is
used to guide the search for a good test, which is conducted using a genetic
algorithm. Four variables are used to train a multi-class SVM classifier for the
estimation of the difficulty of a new test item, while a regression model is used to
estimate the competency of students that should take the test. With this infor-
mation, the proposed algorithm for test creation attempts to find a test with the
minimum difference between the test difficulty and student competency.

The other important piece of information is the test coverage of important
programming areas. For the purpose of automatic calculation of coverage, an
extensive concept map of the programming competencies and C language ele-
ments was designed. Furthermore, each test item was annotated with the matching
knowledge areas specified in the concept map. As a result, the algorithm also
favors tests that cover more of the required knowledge areas. The benefits of the
proposed approach are demonstrated in an evaluation where the presented algo-
rithm is compared to a solution that randomly searches within the item space to
find an adequate test.

Our primary goal was not to make a contribution to the field of data mining
(DM) but to use existing open implementations of DM algorithms suitable to our
needs. The proposed approach includes student modeling, item difficulty estima-
tion and creation of tests for programming assessments. It is modular as it features
a separate component for each activity, which may be reused or improved without
severely affecting the rest of them. Its primary setting is a university course on
programming that features computerized testing of students, i.e., advanced soft-
ware solution for testing students.

284 V. Ivančević et al.

However, the approach could also be applied in any environment where auto-
matic construction of programming tests may provide benefits, including assess-
ments within distance learning systems, as well as within the primary and
secondary education. On the other hand, the performance of the approach may be
significantly influenced by the quality of the assessment data set. It is required that
previous records feature a comprehensive set of student data and items corre-
sponding to various levels of competence and difficulty, respectively. The proposed
predictive models should be trained and used on such representative data sets.

There are several possible directions for the future research on the presented issue.
The quality of estimates of item difficulty and student competence is also tightly
related to the structure of available data. For the purpose of improving these pre-
dictions, we may deploy additional mechanisms that would record additional vari-
ables related to student performance in programming tests. By merging the
accessibility of the proposed approach with the formality and power of IRT, we could
further enhance the precision in the assessment process and reduce testing times.

Moreover, we may also create an ontology matching the presented concept
map, as a way of providing additional means to its use in different environments.
In some scenarios, it may be needed to generate a similar test for different groups
of students, where each test should have as few common items with other tests as
possible. For this purpose, the algorithm may be extended to generate a set of non-
overlapping tests, while the fitness function would have to be modified to include
this additional criterion.

Acknowledgments The research was supported by the Ministry of Education, Science and
Technological Development of the Republic of Serbia, Grant III-44010, Title: Intelligent Systems
for Software Product Development and Business Support based on Models. The authors are very
grateful to their colleagues from the Chair of Applied Computer Science at the Faculty of
Technical Sciences (University of Novi Sad, Serbia), who have contributed to the Otisak testing
system and participated in the organization of the Programming Language and Data Structures
course, thus making the presented study possible.

References

1. Romero, C., Ventura, S.: Educational data mining: a review of the state of the art. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 40(6), 601–618 (2010)

2. Živanov, Ž., Rakić, P., Stričević, L., Pušić, B., Suvajdžin, Z., Hajduković, M.: Computer
aided student examination. Info M 7(25), 45–53 (2008)

3. Wauters, K., Desmet, P., Noortgate, W.V.D.: Acquiring item difficulty estimates: a
collaborative effort of data and judgment. In: Pechenizkiy, M., Calders, T., Conati, C.,
Ventura, S., Romero, C., Stamper, J. (eds.) 4th International Conference on Educational Data
Mining, pp. 121–127. International Educational Data Mining Society, Eindhoven (2011)

4. Peña-Ayala, A., Sossa-Azuela, H., Cervantes-Pérez, F.: Predictive student model supported
by fuzzy-causal knowledge and inference. Expert Syst. Appl. 39, 4690–4709 (2012)

5. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambrigde (1992)
6. Barla, M., Bieliková, M., Ezzeddinne, A.B., Kramár, T., Šimko, M., Vozár, O.: On the impact

of adaptive test question selection for learning efficiency. Comput. Educ. 55(2), 846–857
(2010)

10 Adaptive Testing in Programming Courses 285

7. Feng, M., Heffernan, N.: Can we get better assessment from a tutoring system compared to
traditional paper testing? Can we have our cake (Better Assessment) and eat it too (Student
Learning During the Test)? In: Alven, V., Kay, J., Mostow, J. (eds.) Intelligent Tutoring
Systems. LNCS, vol. 6095, pp. 309–311. Springer, Heidelberg (2010)

8. Thelwall, M.: Computer-based assessment: a versatile educational tool. Comput. Educ. 34(1),
37–49 (2000)

9. Daly, C., Waldron, J.: Assessing the assessment of programming ability. ACM SIGCSE Bull.
36(1), 210–213 (2004)

10. Douce, C., Livingstone, D., Orwell, J.: Automatic test-based assessment of programing: a
review. J Educ. Resour. Comput. 5(3), 4 (2005)

11. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of recent systems for
automatic assessment of programming assignments. In: 10th Koli Calling International
Conference on Computing Education Research, pp. 86–93. ACM, New York (2010)

12. Baker, F.B.: The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and
Evaluation, Washington (2001)

13. Sosnovsky, S., Gavrilova, T.: Development of educational ontology for C-programming. Int.
J. Inf. Theor. Appl. 13, 303–308 (2006)

14. Sosnovsky, S.: C Programming Language Ontology, http://www.sis.pitt.edu/*paws/ont/
c_programming.rdfs

15. Zhou, M., Xu, Y., Nesbit, J.C., Winne, P.H.: Sequential pattern analysis of learning logs:
methodology and applications. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d.
(eds.). Handbook of Educational Data Mining, Chapman & Hall/CRC Data Mining and
Knowledge Discovery Series, pp. 107–121. CRC Press, Boca Raton (2010)

16. Faculty of Technical Sciences in Novi Sad, Accreditation of the Study Programme;
Computing and Control Engineering, http://www.ftn.uns.ac.rs/_data/planovi/2012/engleski/
osnovne/ftn_e2.pdf

17. Rakić, P., Stričević, L., Živanov, Ž., Suvajdžin, Z., Hajduković, M.: Computer classroom:
deployment and exploitation. Info M 6(21), 9–13 (2007)

18. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): concepts and
abstract syntax. W3C Recommendation 10 (2004)

19. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C
Recommendation 10 (2004)

20. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Smith, M.:
OWL 2 Web ontology language: structural specification and functional-style syntax. W3C
Recommendation 27, 17 (2009)

21. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the
next step for OWL. Web Semant.: Sci., Serv. Agents World Wide Web 6(4), 309–322 (2008)

22. Falconer, S.: OntoGraf, http://protegewiki.stanford.edu/wiki/OntoGraf (2010)
23. TopBraid Composer, http://www.topquadrant.com/products/TB_Composer.html
24. Krivov, S., Williams, R., Villa, F.: GrOWL: a tool for visualization and editing of OWL

ontologies. Web Semant.: Sci., Serv. Agents World Wide Web 5(2), 54–57 (2007)
25. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to construct and use

them. Technical report, Florida Institute for Human and Machine Cognition (2008)
26. Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools

in Schools and Corporations. Taylor & Francis, New York (2010)
27. Ruiz-Primo, M.A., Shavelson, R.J.: Problems and issues in the use of concept maps in science

assessment. J. Res. Sci. Teach. 33(6), 569–600 (1996)
28. Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Eskridge, T., Carvajal, R.: CmapTools: a

knowledge modeling and sharing environment. In: Concept maps: Theory, Methodology,
Technology 1st International Conference on Concept Mapping, vol. 1, pp. 125–133.
Universidad Pública de Navarra, Pamplona (2004)

29. Bivand, R.: ClassInt: Choose Univariate Class Intervals. R package version 0.1-19 (2012),
http://CRAN.R-project.org/package=classInt

286 V. Ivančević et al.

http://www.sis.pitt.edu/~paws/ont/c_programming.rdfs
http://www.sis.pitt.edu/~paws/ont/c_programming.rdfs
http://www.ftn.uns.ac.rs/_data/planovi/2012/engleski/osnovne/ftn_e2.pdf
http://www.ftn.uns.ac.rs/_data/planovi/2012/engleski/osnovne/ftn_e2.pdf
http://protegewiki.stanford.edu/wiki/OntoGraf
http://www.topquadrant.com/products/TB_Composer.html
http://CRAN.R-project.org/package=classInt

30. R Core Team.: R: A Language and Environment for Statistical Computing, Manual.
R Foundation for Statistical Computing (2013)

31. Karatzoglou, A., Smola, A., Hornik, K.: Achim Zeileis, A.: Kernlab—an S4 package for
kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)

10 Adaptive Testing in Programming Courses 287

	10 Adaptive Testing in Programming Courses Based on Educational Data Mining Techniques
	Abstract
	10.1…Introduction
	10.2…Related Work
	10.3…Background
	10.3.1 Environment
	10.3.2 Data Set

	10.4…Modeling Programming Knowledge
	10.4.1 Programming Knowledge Overview
	10.4.2 Modeling Programming Competencies
	10.4.3 Modeling Programming Concepts of the C Language

	10.5…Estimating Test Difficulty
	10.5.1 Estimating Test Item Difficulty
	10.5.2 Estimating Student Capacity

	10.6…Test Generation Algorithm
	10.7…Application and Results
	10.8…Conclusion and Future Work
	Acknowledgments
	References

