
Chapter 4
Optimal Integrated Control and Scheduling
of Resource-Constrained Systems

The general model of resource-constrained systems allows the on-line assignment
of the sensors-to-controller and the controller-to-actuators scheduling vectors. This
assignment may be based on a pre-computed off-line schedule or on an on-line
scheduling algorithm. The problem of the optimal integrated control and off-line
scheduling of the sensors-to-controller link is the dual problem of the optimal in-
tegrated control and off-line scheduling of the controller-to-actuators link, and may
be solved in a similar way. However, the problem of the optimal integrated con-
trol and on-line scheduling of the sensors-to-controller link is different from the
problem of the optimal integrated control and on-line scheduling of the controller-
to-actuators link, and its formulation and solving are extremely dependant on the
used technology (possibility of on-line arbitration based on the comparison of mes-
sages identifiers like in CAN networks for example). Furthermore, it is not clear
whether an on-line scheduling algorithm of the sensors-to-controller link will be
better (from a control performance point of view) than a predefined off-line schedul-
ing algorithm, especially, because the sensors are physically distributed whereas the
optimal on-line assignment of the sensors-to-controller link requires the knowledge
of all sensors values, which may not be possible due to the communication con-
straints. To the best of the authors knowledge, this last question remains an open
problem.

For that reason, in this chapter, as well as in the forthcoming Chaps. 5 and 6, we
will assume that the state of the plant is available to the controller at each sampling
period. This assumption will allow us to mainly focus on the problem of the opti-
mal integrated control and scheduling of the controller-to-actuators link. Note that
assuming that the state of the plant is available to the controller at each sampling pe-
riod does not necessarily mean that we are restricted to a particular architecture, but
rather that “state of the art methods”, such as an off-line scheduling, are deployed to
obtain a satisfactory estimate of the state at the controller, using an adequate part of
the bandwidth. Let S be a resource-constrained system verifying this assumption.
Furthermore, S verifies p = n = br , σ(k) = 1n,1,∀k ∈ N and 0 < bw ≤ m. To sim-
plify the notation, let b = bw . In the model considered in the sequel, the resource-
constrained system S has two types of inputs: control inputs and scheduling inputs
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of the controller-to-actuators link. The fundamental problem that will be addressed
is the problem of the joint optimization of control and scheduling. This problem may
be viewed as the generalization of optimal control problems for linear sampled-data
system. It naturally appears as having a hybrid character, since continuous aspects
(system dynamics) as well as logical aspects (scheduling) interact.

Using the basic results of optimal control theory, we first describe the solution of
the optimal control problem given a fixed communication sequence, over finite and
infinite horizons. Then the problem of the optimal integrated control and schedul-
ing of resource-constrained systems is formulated and solved. The formulation and
solving of this problem are based on the existing theoretical tools from hybrid sys-
tems theory and especially the MLD framework [21], where this problem may be
perfectly modeled. Finally, based on a numerical example, the solutions of this prob-
lem are studied.

4.1 Performance Index Definition

In order to introduce an appropriate measure of the “quality” of the control and
scheduling, inspired by optimal control metrics [14], a quadratic cost function
is associated to the system (3.2) (and implicitly to the resource-constrained sys-
tem S ).

Jc(xc, uc,0, Tf ) =
∫ Tf

0

(
xT
c (t)Qcxc(t) + uT

c (t)Rcuc(t)
)
dt + xT

c (Tf )Scxc(Tf )

(4.1)
where Tf = NTs and Qc , Rc and Sc are positive definite matrices. These matri-
ces define the design specifications of the ideal continuous-time controller. The
sampled-data representation of the cost function Jc(xc, uc,0, Tf ) at the sampling
period Ts is

J (x,u,0,N) =
N−1∑
k=0

[
x(k)

u(k)

]T [
Q1 Q12

QT
12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N). (4.2)

The expressions of Q1, Q2, Q12 and Q0 may be found in ([14], pp. 411–412).
In the following, it is assumed that Q, Q2 and Q0 are positive definite matrices,
where

Q =
[

Q1 Q12

QT
12 Q2

]
.

Note that this representation does not involve any approximation and it is exact.
Using this representation, the inter-sample behavior is taken into account.
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4.2 Optimal Control over a Finite Horizon for a Fixed
Communication Sequence

The problem of the optimal control, over a finite-time N , for a fixed admissible and
maximal communication sequence δN−1, may be formulated as follows:

Problem 4.1 Given an initial state x(0) and a final time N , find the optimal control
sequence vN−1 = (v(0), . . . , v(N − 1)) that minimizes the cost function:

J (x,u,0,N) =
N−1∑
k=0

[
x(k)

u(k)

]T [
Q1 Q12

QT
12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N),

subject to

x(k + 1) = Ax(k) + Bu(k),

ui(k) = vj (k), if δi(k) = 1 and
i∑

l=1

δl(k) = j,

ui(k) = ui(k − 1), otherwise.

In order to solve this problem, we reconsider the state representation (3.12) of
system S , which was established in Sect. 3.4 of Chap. 3. For a given maxi-
mal controller-to-actuators scheduling δ, system S is described by the state equa-
tion (3.12a). The cost function J (x,u,0,N) may be rewritten in the form

J (x,u,0,N) = J (x̃, v,0,N) =
N−1∑
k=0

[
x̃(k)

v(k)

]T

Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N),

where

Q̃(k) =
⎡
⎢⎣

Q1 Q12Eδ(k) Q12Dδ(k)

ET
δ (k)QT

12 ET
δ (k)Q2Eδ(k) ET

δ (k)Q2Dδ(k)

DT
δ (k)QT

12 DT
δ (k)Q2Eδ(k) DT

δ (k)Q2Dδ(k)

⎤
⎥⎦ ,

and

Q̃0 =
[

Q0 0n,m

0m,n 0m,m

]
.

Problem 4.1 is equivalent to the optimal control problem of a discrete linear time-
varying system, given as follows:
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Problem 4.2 Given an initial state x(0) and a final time N , find the optimal control
sequence vN−1 = (v(0), . . . , v(N − 1)) that minimizes the cost function

J (x̃, v,0,N) =
N−1∑
k=0

[
x̃(k)

v(k)

]T

Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N),

subject to

x̃(k + 1) = Ã(k)x̃(k) + B̃(k)v(k). (4.3)

Problem 4.2 is a classical optimal control problem of a discrete linear time-
varying system. Different methods for its resolution were developed in control text-
books (see, for instance, [14]). Let:

Q̃1(k) =
[

Q1 Q12Eδ(k)

ET
δ (k)QT

12 ET
δ (k)Q2Eδ(k)

]
,

Q̃12(k) =
[

Q12Dδ(k)

ET
δ (k)Q2Dδ(k)

]
,

and

Q̃2(k) = DT
δ (k)Q2Dδ(k).

The solution of this problem closely depends on the solution of an algebraic equa-
tion, involving the variable S̃(k) and described by

S̃(k) = ÃT (k)S̃(k + 1)Ã(k) + Q̃1(k) − (
ÃT (k)S̃(k + 1)B̃(k) + Q̃12(k)

)

× (
B̃T (k)S̃(k + 1)B̃(k) + Q̃2(k)

)−1(
B̃T (k)S̃(k + 1)Ã(k) + Q̃T

12(k)
)
(4.4)

under the terminal condition

S̃(N) = Q̃0. (4.5)

Equation (4.4) is the discrete algebraic Riccati equation associated to the Prob-
lem 4.2. Knowing that Q̃0 is semi-definite positive and Q̃2(k) is definite positive
(because Dδ(k) is injective when δ is a maximal admissible communication se-
quence), than this equation admits a unique positive semi-definite solution. Conse-
quently, Problem 4.2 admits a unique solution [14] defined by

v(k) = −K̃(k)x̃(k), (4.6)

with

K̃(k) = (
Q̃2(k) + B̃T (k)S̃(k + 1)B̃(k)

)−1(
B̃T (k)S̃(k + 1)Ã(k) + Q̃T

12(k)
)
. (4.7)
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4.3 Optimal Control over an Infinite Horizon for a Fixed
Communication Sequence

Consider a T -periodic maximal communication sequence δT −1 defined by

δT −1 = (
δ(0), . . . , δ(T − 1)

)

and verifying δ(k + T ) = δ(k). Assume furthermore that δ ∈ S c, where S c is the
set of communication sequences that guarantee the reachability of system (3.12).
The periodicity of the communication sequence induces the periodicity of the
resource-constrained system S . As a result, matrices Ã(k), B̃(k) and Q̃(k) satisfy
Ã(k + T ) = Ã(k), B̃(k + T ) = B̃(k) and Q̃(k) = Q̃(k + T ).

Let ι be a discrete time instant and H a positive integer, assume that N = ι+HT

and consider the optimal control problem:
⎧⎪⎪⎨
⎪⎪⎩

min
v

J (x̃, v, ι,N) =
N−1∑
k=ι

[
x̃(k)

v(k)

]T

Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N)

subject to x̃(k + 1) = Ã(k)x̃(k) + B̃(k)v(k).

(4.8)

As illustrated in [35], a time invariant reformulation of the optimal control prob-
lem (4.8) may be obtained by using the lifting technique. The time invariant re-
formulation may be seen as a down sampled representation of system (3.12) with
periodicity T , having an augmented input vector. In the following, the formulation
of the time invariant representation is described.

Let Φ be the transition matrix associated with the state matrix Ã defined by:
{

Φ(l, s) = Ã(l − 1)Ã(l − 2) · · · Ã(s) if l > s,

Φ(l, l) = In+m.

Let Γ the matrix defined for s < l < s + T by

Γ (l, s) =
⎡
⎢⎣Φ(l, s + 1)B̃(s) Φ(l, s + 2)B̃(s + 1) · · · Φ(l, l)B̃(l − 1) 0n+m,b · · · 0n+m,b︸ ︷︷ ︸

T −l−s

⎤
⎥⎦

and for s = l by

Γ (s, s) = [0n+m,b · · · 0n+m,b].
Let

x̄ι(q) = x̃(ι + qT ),

and

v̄ι(q) =
⎡
⎢⎣

v(ι + qT )
...

v(ι + (q + 1)T − 1)

⎤
⎥⎦ ,
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then for 0 ≤ i ≤ T :

x̃(ι + qT + i) = Φ(ι + i, ι)x̄ι(q) + Γ (ι + i, ι)v̄ι(q).

In particular, let

Āι = Φ(ι + T , ι),

and

B̄ι = Γ (ι + T , ι),

then the following relation is obtained:

x̄ι(q + 1) = Āιx̄ι(q) + B̄ιv̄ι(q).

Let Λ(i) the matrix defined for 0 ≤ i < T by

Λ(i) =
⎡
⎢⎣0b,b · · · 0b,b︸ ︷︷ ︸

i

Ib 0b,b · · · 0b,b︸ ︷︷ ︸
T −i−1

⎤
⎥⎦ ,

then the cost function may be written

J (x̃, v, ι,N) = J (x̄ι, v̄ι,0,H) =
H−1∑
q=0

[
x̄ι(q)

v̄ι(q)

]T

Q̄ι

[
x̄ι(q)

v̄ι(q)

]
+ x̄T

ι (H)(Q̄ι)0x̄ι(H)

where

Q̄ι =
T −1∑
i=0

FT (i)Q̃(ι + i)F (i),

F (i) =
[
Φ(ι + i, ι) Γ (ι + i, ι)

0b,n+m Λ(i)

]

and (Q̄ι)0 = Q̃0. Finally, the following optimal control problem is obtained
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
v̄ι

J (x̄ι, v̄ι,0,H) = x̄T
ι (H)(Q̄ι)0x̄ι(H) +

H−1∑
q=0

[
x̄ι(q)

v̄ι(q)

]T

Q̄ι

[
x̄ι(q)

v̄ι(q)

]

subject to x̄ι(q + 1) = Āιx̄ι(q) + B̄ιv̄ι(q).

(4.9)

The corresponding discrete algebraic Riccati equation is given by:

S̄ι(q) = ĀT
ι S̄ι(q + 1)Āι + Q̄ι1 − (

ĀT
ι S̄ι(q + 1)B̄ι + Q̄ι12

)

× (
B̄T

ι S̄ι(q + 1)B̄ι + Q̄ι2(q)
)−1(

B̄T
ι S̄ι(q + 1)Āι + Q̄T

ι12

)
, (4.10)
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with the terminal condition

S̄ι(H) = (Q̄ι)0, (4.11)

where

Q̄ι =
[

Q̄ι1 Q̄ι12

Q̄T
ι12

Q̄ι2

]
.

The relationship between the solutions of Riccati equations (4.4) and (4.10), which
are respectively, associated to the optimal control problems (4.8) and (4.9), is for-
malized by the following result.

Lemma 4.1 [35] If S̄ι(H) = S̃(ι + NT ) = Q̃0, then S̄ι(q) = S̃(ι + qT ) for all
q ≤ H .

This result follows from the fact that optimal control problems (4.8) and (4.9)
are similar. By imposing the terminal condition S̄ι(H) = S̃(ι + NT ) = Q̃0, called
periodic generator, the optimal costs must be identical, which implies that the so-
lutions of the Riccati equations (4.4) and (4.10) must be the same. As a result,
when H → +∞, S̄ι(q) converges to a constant solution S̄ι. Consequently, S̃(k)

converges to a periodic solution, defined by S̃(k) = S̄(k mod T ). This periodic so-
lution may be obtained by solving the algebraic Riccati equation associated with
problem (4.9) when H → +∞ and for ι ∈ {1, . . . , T }. The optimal control gains
may then be deduced from the relation (4.7) and are described by the sequence
(K̃(0), . . . , K̃(T − 1)).

This formulation will be of practical importance at the next chapters when the
problems of the optimal integrated control and scheduling of resource-constrained
systems will be tackled.

4.4 Finite-Time Optimal Integrated Control and Scheduling

In this paragraph, the problem of the finite-time optimal control and scheduling is
formulated and translated into the mixed-integer quadratic programming (MIQP)
formulation. We assume in the following that u(k) = 0 and v(k) = 0 for k < 0, and
that control commands u(k) and v(k) are subject to saturation constraints

{
Li ≤ ui(k) ≤ Ui,

Li ≤ vi(k) ≤ Ui

(4.12)

where Li < 0 and Ui > 0.
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4.4.1 Problem Formulation

The finite-time optimal control and scheduling problem may be formalized as fol-
lows:

Problem 4.3 Given an initial state x(0) and a final time N , find the optimal con-
trol sequence vN−1 = (v(0), . . . , v(N − 1)) as well as the optimal communication
sequence δN−1 = (δ(0), . . . , δ(N − 1)) which minimizes the performance index:

J (x,u,0,N) =
N−1∑
k=0

[
x(k)

u(k)

]T [
Q1 Q12

QT
12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N)

subject to:

x(k + 1) = Ax(k) + Bu(k),

m∑
i=1

δi(k) = b,

ui(k) = vj (k), if δi(k) = 1 and
i∑

l=1

δl(k) = j,

ui(k) = ui(k − 1), otherwise,

Li ≤ vi(k) ≤ Ui.

The problem of finding the optimal control sequence vN−1 for a given fixed com-
munication sequence δN−1 is a quadratic programming (QP) problem. The number
of possible communication sequences is finite. The resolution of Problem 4.3 may
be reduced to the exploration of all the feasible maximal communication sequences
and the solving of a QP problem for each fixed communication sequence. However,
in practice, the number of feasible communication sequences grows exponentially
with N , which means that exhaustive search may not be applied to problems with
large values of N .

The solution of the Problem 4.3 may be obtained by solving a simpler opti-
mization problem, which may be seen as a constrained control problem, where
the variables vN−1 are eliminated and the constraint (3.8) is replaced by (3.7). Let
uN−1 = (u(0), . . . , u(N − 1)), this problem may be stated as follows:

Problem 4.4 Given an initial state x(0) and a final time N , find the optimal control
sequence uN−1 as well as the optimal scheduling sequence δN−1 that minimizes the
performance index:

J (x,u,0,N) =
N−1∑
k=0

[
x(k)

u(k)

]T [
Q1 Q12

QT
12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N),
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subject to

x(k + 1) = Ax(k) + Bu(k),

m∑
i=1

δi(k) = b,

δi(k) = 0 =⇒ ui(k) = ui(k − 1),

Li ≤ vi(k) ≤ Ui.

We observe that the constraints of optimal scheduling problem are composed of
a set of linear equalities and inequalities as well as of the following logical formula:

δi(k) = 0 =⇒ ui(k) = ui(k − 1). (4.13)

In order to solve this problem, it is necessary to translate the logical formula (4.13)
into linear inequalities. The connective “=⇒” may be eliminated if (4.13) is rewrit-
ten in the following equivalent form

ui(k) − ui(k − 1) = δi(k)ui(k) − δi(k)ui(k − 1). (4.14)

However, Eq. (4.14) contains terms which are the product of logical variables and
continuous variables. Using the procedure described in [21], this product is trans-
lated into an equivalent conjunction of linear inequalities. For example, let

ξi(k) = δi(k)ui(k). (4.15)

Then (4.14) may be rewritten in the equivalent form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξi(k) ≤ Uiδi(k),

ξi(k) ≥ Liδi(k),

ξi(k) ≤ ui(k) − Li

(
1 − δi(k)

)
,

ξi(k) ≥ ui(k) − Ui

(
1 − δi(k)

)
.

(4.16)

Note that the same procedure may be applied to

oi(k) = δi(k)ui(k − 1). (4.17)

Let

Δ̌ =
⎡
⎢⎣

δ(0)
...

δ(N − 1)

⎤
⎥⎦ ; Ǔ =

⎡
⎢⎣

u(0)
...

u(N − 1)

⎤
⎥⎦ ,
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X̌ =
⎡
⎢⎣

x(0)
...

x(N)

⎤
⎥⎦ ; Ξ̌ =

⎡
⎢⎣

ξ(0)
...

ξ(N − 1)

⎤
⎥⎦ ,

and

Ǒ =
⎡
⎢⎣

o(0)
...

o(N − 1)

⎤
⎥⎦ ; V =

⎡
⎢⎢⎢⎢⎢⎣

Δ̌

Ǔ

X̌

Ξ̌

Ǒ

⎤
⎥⎥⎥⎥⎥⎦

,

then Problem 4.4 may be written in the form
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
V

1

2
V T FV + G T V

A V ≤ B,

Vi ∈ {0,1}, ∀i ∈ {1, . . . ,mN},

(4.18)

where the expressions F , G , A and B are defined in the sequel.
Matrices A and B include both the equality and the inequality constraints of the

problem, and may be written in the form:

A =
⎡
⎢⎣

Aeq

−Aeq

Ain

⎤
⎥⎦ ,

B =
⎡
⎢⎣

Beq

−Beq

Bin

⎤
⎥⎦ .

It easy to see that the relation

AeqV = Beq

is equivalent to

(AeqV ≤ Beq) ∧ (−AeqV ≤ −Beq).

Matrices Aeq and Beq describe equalities (3.4a), (4.14) and impose to the schedul-
ing sequence of the controller-to-actuators link to be maximal. Matrix Aeq is defined
by

Aeq =
⎡
⎢⎣

SC 0N,n(N+1) 0N,mN 0N,mN 0N,mN

0n(N+1),mN ST 0n(N+1),mN 0n(N+1),mN

0mN,mN 0mN,n(N+1) UU −ImN ImN

⎤
⎥⎦
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where

• SC is a N × mN matrix described by

SC =

⎡
⎢⎢⎢⎣

11,m 01,m · · · 01,m

01,m 11,m · · · 01,m

. . .

01,m 01,m · · · 11,m

⎤
⎥⎥⎥⎦ .

• ST is a n(N +1)×(n(N +1)+mN) matrix that is used to represent the constraint
(3.4a):

ST =

⎡
⎢⎢⎢⎢⎢⎣

In 0n,n 0n,n · · · 0n,n 0n,m 0n,m · · · 0n,m

−A In 0n,n · · · 0n,n −B 0n,m · · · 0n,m

0n,n −A In · · · 0n,n 0n,m −B · · · 0n,m

. . .
. . .

. . .

0n,n 0n,n −A In 0n,m 0n,m · · · −B

⎤
⎥⎥⎥⎥⎥⎦

.

• UU is a mN × mN matrix described by

UU =

⎡
⎢⎢⎢⎢⎢⎣

Im 0m,m 0m,m · · · 0m,m

−Im Im 0m,m · · · 0m,m

0m,m −Im Im · · · 0m,m

. . .
. . .

0m,m 0m,m −Im Im

⎤
⎥⎥⎥⎥⎥⎦

.

Matrix Beq is defined by

Beq =

⎡
⎢⎢⎣

b × 1N,1
x(0)

0nN,1
0mN,1

⎤
⎥⎥⎦ .

Let U and L the vectors defined by

U =
⎡
⎢⎣

U1
...

Um

⎤
⎥⎦ ; L =

⎡
⎢⎣

L1
...

Lm

⎤
⎥⎦ .
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Matrices Ain and Bin describe the constraints defining the variables ξ(k) and o(k)

((4.15) and (4.17)). Matrix Ain is defined by

Ain =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Diag(U) 0mN,n(N+1) 0mN,mN ImN 0mN,mN

Diag(L) 0mN,n(N+1) 0mN,mN −ImN 0mN,mN

−Diag(L) 0mN,n(N+1) −ImN ImN 0mN,mN

Diag(U) 0mN,n(N+1) ImN −ImN 0mN,mN

−Diag(U) 0mN,n(N+1) 0mN,mN 0mN,mN ImN

Diag(L) 0mN,n(N+1) 0mN,mN 0mN,mN −ImN

−Diag(L) 0mN,n(N+1) −UM 0mN,mN ImN

Diag(U) 0mN,n(N+1) UM 0mN,mN −ImN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

UM = −(UU − ImN).

Next, the matrix Bin is defined by

Bin =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m,1
0m,1
−L

U

0m,1
0m,1
−L

U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, matrices F and G are defined by

F =
⎡
⎣ 0mN,mN 0mN,n(N+1)+mN 0mN,2mN

0n(N+1)+mN,mN Q̌ 0n(N+1)+mN,2mN

02mN,mN 02mN,n(N+1)+mN 02mN,2mN

⎤
⎦

and respectively,

G = 0(4m+(n+1))N,1

where

Q̌ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1 0n,n · · · 0n,n 0n,n Q12 0n,m · · · 0n,m

0n,n Q1 · · · 0n,n 0n,n 0n,m Q12 · · · 0n,m

. . .
. . .

0n,n 0n,n · · · Q1 0n,n 0n,m 0n,m · · · Q12
0n,n 0n,n · · · 0n,n Q0 0n,m 0n,m · · · 0n,m

QT
12 0m,n · · · 0m,n 0m,n Q2 0m,m · · · 0m,m

0m,n QT
12 · · · 0m,n 0m,n 0m,m Q2 · · · 0m,m

. . .
. . .

0m,n 0m,n · · · QT
12 0m,n 0m,m 0m,m · · · Q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The Problem 4.3 is identical to Problem 4.4 augmented with the additional con-
straint

v(k) = uf (k)

where the vector uf (k) ∈ R
b containing the b “free” elements of u(k) (i.e., the

elements of u(k) whose indices i satisfy δi(k) = 1) is arranged according to the
increasing order of their indices. As a consequence, the optimal solutions of Prob-
lem 4.3 may be deduced from the optimal solutions of Problem 4.4 using the map-
ping (3.9).

The problem (4.18) is a mixed-integer quadratic program. It may be solved using
many efficient academic and commercial solvers. In this monograph, this problem
was solved using the solver CPLEX, whose MIP solver is based on the branch and
bound method.

4.4.2 The Branch and Bound Method

The branch and bound method is a general search method for finding optimal so-
lutions of discrete and combinatorial optimization problems. It was introduced in
1960 by Land and Doig [145] for the solving of the traveling salesman problem.
This method aims at exploring, in an intelligent way, the space of feasible solutions
of the problem. That’s why it may be classified among the implicit enumeration
methods. In the following, the principles of this algorithm will be described in the
case of a minimization. In order to simplify our explanation, we will suppose that
considered problem admits at least one optimal solution. Of course, the other cases
may be easily taken into account.

4.4.2.1 General Concepts

As its name indicates it, this method is based on two complementary mechanisms:
branching and bounding.

• Branching makes it possible to decompose a given problem into subproblems (by
adding additional constraints), such that the union of the feasible solutions of
these subproblems forms a partition (in the worst case a covering) of the feasible
solutions of the original problem. In this manner, the resolution of the original
problem is reduced to the resolution of the subproblems obtained by its branch-
ing. Branching induces a hierarchical relation between the different subproblems.
This relation may be described and represented using concepts from the graph
theory. In fact, in the branch and bound method, branching is applied in a re-
cursive way to the subproblems where it may be possible (at a given stage of
the execution of the algorithm), to find an optimal solution of the initial prob-
lem. As a result, the subproblems obtained by branching may be seen as the
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Fig. 4.1 Search tree of
problem P

child nodes of the problem to which branching was applied, which is called par-
ent node. Thus, all these nodes form a rooted tree, whose root node represents
the initial problem to solve. This tree is usually called search tree or decision
tree.

• Bounding consists in computing an upper and a lower bound of the optimal so-
lution of a given node. The bounding stage allows the branch and bound to avoid
exploring the nodes where it is possible to certify that they do not contain any
optimal solution. In fact, if the upper bound of a subproblem A is larger than the
lower bound of another subproblem B, then the optimal solution cannot lie in the
feasible set of solutions of subproblem A. For that reason, it becomes useless to
branch node A. Node A is then pruned.

A node is called solved if an optimal solution of the associated subproblem was
obtained. This may occur, for example, when the constraints defining it (and which
were added progressively along the different branching steps), reduce its set of feasi-
ble solutions to a singleton. In other situations, branching may make the subproblem
sufficiently simple to be solved by polynomial algorithms. The solved nodes are the
final nodes or leave nodes of the decision tree. The algorithm finishes when all the
nodes were either solved or pruned.

Example 4.1 Figure 4.1 describes the search tree of problem P defined by

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x

4x2
1 − 3x2

2

x1 = 0,

x1, x2 ∈ {0,1}.

The branch and bound algorithm may be parameterized using the following four
rules:

• branching rules, describing how to divide a given problem into subproblems,
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• bounding rules, defining how to compute the upper and lower bounds of a given
subproblem,

• selection rules, stating how to select the next problem to consider,
• elimination rules, describing how to recognize the subproblems that do not con-

tain optimal solutions and that should be eliminated.

4.4.2.2 Application to Mixed-Integer Programming

To the best of the authors’ knowledge, the application of the branch and bound
method to solve mixed-integer nonlinear programs was proposed for the first time
by Dakin [68]. The resolution of mixed-integer quadratic programs was stud-
ied by many authors, for example, [85, 86, 146]. In the paper by Fletcher and
Leyffer [85], the branch and bound method was applied to solve mixed-integer
quadratic programs, allowing to obtain better experimental results than the other
methods.

In this paragraph, we consider programs in the form:

P

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
V

f (V ) = 1

2
V T FV + G T V

A V ≤ B,

Vi ∈ {0,1}, ∀i ∈ I

where f is a positive semi-definite function and I is a set of indices indexing the
Boolean components of V . A basic branch and bound algorithm for solving program
P is given in the following listing (Algorithm 4.1).

In Algorithm 4.1, U represents the cost of the best feasible solution of problem
P at a given stage of the execution of the algorithm and L a lower bound of the
optimal cost of P . The set M , used for the computation of L, represents the set
of nodes that have been already evaluated (i.e., bounded) and that may contain the
optimal solution. Problem P ′ denotes the problem obtained from P by relaxing
the integrality constraints that are imposed on the variables indexed by I , that is,
replacing the constraints

Vi ∈ {0,1}, ∀i ∈ I

by the constraints

Vi ∈ [0,1], ∀i ∈ I.

These variables are thus considered as continuous variables in [0,1]. Thus, P ′ is a
quadratic program, and may be solved efficiently. Its solving is the most important
part of the bounding or evaluation phase. In fact, the optimal cost of P ′ represents
a lower bound of the optimal cost of P .
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Algorithm 4.1: Basic branch and bound algorithm

L := {P};
M := {P};
U := +∞;
L := −∞;
while L �= ∅ or U − L > ε do

select a node Q from list L ;
remove the selected node Q from L ;
solve the relaxed program Q′ (bounding or evaluation of Q);
if Q′ admits an optimal solution x∗(Q′) of cost J ∗(Q′) and J ∗(Q′) < U

then
lowerbound(Q) := J ∗(Q′);
if x∗(Q′) is integer-feasible then

U := J ∗(Q′);
x∗(P) := x∗(Q′);
J ∗(P) := J ∗(Q′);

else
branch node Q and update list L with its child nodes;

end if
if all the brother nodes of Q were evaluated then

remove the father node of Q from M ;
put Q and its brother nodes in M ;
L = min{lowerbound(Q),Q ∈ M };

end if
else

lowerbound(Q) := +∞ (pruning of Q);
end if

end while

The algorithm begins by solving P ′ and giving its solution x∗(P ′). If this so-
lution respects the integrality constraints, then it is also an optimal solution for P
and the algorithm ends. Otherwise, there exists at least one non Boolean variable
Vj , j ∈ I in x∗(P ′). The algorithm proceeds by branching problem P into two
subproblems

Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
V

1

2
V T FV + G T V

A V ≤ B,

Vj = 0,

Vi ∈ {0,1}, ∀i ∈ I1 = I − {j}
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and

Q2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
V

1

2
V T FV + G T V

A V ≤ B,

Vj = 1,

Vi ∈ {0,1}, ∀i ∈ I2 = I − {j}
that are added to the list L . The procedure is reiterated by the selection of a sub-
problem Q from L , based on the predefined selection rules. It may be possible that
the relaxed subproblem Q′ does not have any feasible solution. In this situation, it
is pruned from the list L without being branched. The algorithm finishes when the
list L becomes empty or when a suboptimal solution with a predefined absolute
tolerance (defined by ε) is found.

4.4.3 An Illustrative Numerical Example

Consider the collection of three continuous-time linear time invariant (LTI) subsys-
tems defined by

A(1)
c =

[
0 130

−800 10

]
, B(1)

c =
[

0
224

]
, S(1)

A(2)
c =

[
0 14

−250 −200

]
, B(2)

c =
[

0
620

]
, S(2),

A(3)
c =

⎡
⎢⎢⎣

0 0 0 100
0 0 100 0
0 0 −10 0

11.6 0 1.184 0

⎤
⎥⎥⎦ , B(3)

c =

⎡
⎢⎢⎣

0
0

10
10.18

⎤
⎥⎥⎦ , S(3)

where the subsystems S(1) and S(3) are open-loop unstable in opposition to the
subsystem S(2) which is open-loop stable. The global system S composed by S(1),
S(2) and S(3) may be described by the state matrix Ac and the input matrix Bc

defined by

Ac = Diag
(
A(1)

c ,A(2)
c ,A(3)

c

)
and

Bc = Diag
(
B(1)

c ,B(2)
c ,B(3)

c

)
.

Assume that the global system S is controlled by a discrete-time controller exe-
cuted at the sampling period Ts = 2 ms. The control commands are sent to the
actuators through a bus that can carry at most one control command every 2 ms
(b = bw = 1). Assume now that the design criteria of the optimal continuous
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time controller for each subsystem are defined by matrices Q
(1)
c = Diag(100,10),

R
(1)
c = 1, Q

(2)
c = Diag(1000,10), R

(2)
c = 1, Q

(3)
c = Diag(1000,1000,1,1) and

R
(3)
c = 1 and the desired closed-loop specifications for the global system are de-

scribed by the closed-loop weighting matrices:

Qc = Diag
(
μ1Q

(1)
c ,μ2Q

(2)
c ,μ3Q

(3)
c

)
,

Rc = Diag
(
μ1R

(1)
c ,μ2R

(2)
c ,μ3R

(3)
c

)

and

Sc = Qc,

where μ1, μ2 and μ3 are the weighting coefficients. In this example, μ1, μ2 and μ3

were chosen equal to the inverse of steady state performance index of each separate
subsystem controlled through a bus having an infinite bandwidth (μ1 = 2.9, μ2 =
0.13 and μ3 = 0.016).

Remark 4.1 The use of a resource-limited shared communication medium for the
transmission of the control commands to the distributed actuators introduces a
coupling between the three subsystems, which requires the weighting of relative
importance of each subsystem using coefficients μ1, μ2 and μ3. This contrasts
with the optimal control problem without communication constraints, where these
constants have no impact on the optimal control of the three independent subsys-
tems.

The length of the optimal control and communication sequences is N = 100.
An optimal solution with an error bound of 1 × 10−5 was required. The global
system is started from the initial state x(0) = [1 0 1 0 1 0 0 0]T . Its responses
are depicted in Figs. 4.2 and 4.3. The optimal schedule is depicted in Fig. 4.4. In
this schedule, δi = 1 means that the bus is dedicated to the transmission of control
signal ui .

The first network slots are mainly dedicated to subsystem S(1) until it is stabi-
lized. It may be observed that subsystem S(2), which is open-loop stable and whose
response time is larger than S(1), needs only three time slots to be stabilized. Af-
ter the stabilization of subsystems S(1) and S(2), the network resources are entirely
dedicated to the stabilization of subsystem S(3). When the subsystem S(3) is close
to the equilibrium state (from t = 0.13 s), then its control signals changes are mi-
nor. Consequently, the scheduling has no significant impact on control since the
control signals of the three subsystems are relatively constant explaining thus the
shape of the scheduling diagram, after t = 0.13 s. However, this optimal schedule
is dependent on the initial conditions. If the initial condition x(0) is modified, then
the optimal control and schedule would be different. It is clear that such an open-
loop schedule, which is generated off-line, cannot be applied at runtime as static
schedule. In fact, assume that subsystem S(1) is disturbed at t = 0.024 s. Observing
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Fig. 4.2 Global system response—states x1, x2 (subsystem S(1)) and x3, x4 (subsystem S(2)) from
t = 0 s to t = 0.1 s

Fig. 4.3 Global system response—states x5, x6, x7 and x8 (subsystem S(3))

the schedule, no slots are allocated to the transmission of the messages of subsys-
tem S(1) between t = 0.024 s and t = 0.128 s, which would induce performance
degradations.

These observations show that in the same way as the optimal control, the optimal
scheduling depends on the current state of the system. Consequently, fixed sched-
ules may not be optimal if the system is started from another initial state or if it is
disturbed at runtime.
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Fig. 4.4 Optimal scheduling of the controller-to-actuators link

4.5 Notes and Comments

In this chapter, we have started by studying the problem of optimal control for a
given fixed finite communication sequence. Then, we have formulated and solved
the problem of the joint optimization of control and scheduling, for a given initial
state. The numerical examples illustrating this method have shown that the obtained
optimal schedule depends on the chosen initial state x(0). In other words, similarly
to the standard optimal control case, the optimal scheduling depends on the cur-
rent state of the system. However, from a computer science point of view, off-line
scheduling has many advantages, essentially because it consumes a few comput-
ing resources and does not induce execution overheads. In order to obtain off-line
schedules that are optimal from a certain point of view, it is necessary to use per-
formance criteria that depend on the intrinsic characteristics of the system, not on a
particular initial state. This will be the objective of the next chapter.

Nevertheless, this dependency between the optimal schedule and the plant state
may be seen as a promising way for improving the quality of control by means
of plant state-based scheduling algorithms. The design of such algorithms will be
studied in Chap. 6.
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