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Preface

Distributed control and embedded systems (DCESs) incorporating real-time con-
trol and communication functions implemented on some appropriate distributed
Hardwareare/Software dedicated architecture are ubiquitous in areas of avionics,
automotive, production of energy, space exploration and many others. It would be
impossible to run the existing nuclear plants with the current level of safety require-
ments without their presence. Furthermore, DCESs appear to be essential to send
robots exploring space, shuttles and satellites orbiting the earth. Our cars are more
fun to drive, safer and cleaner, thanks to small embedded computers that perform
functions such as cruise control, navigation system, ABS, ESP, airbag, optimal con-
trol of injection and many others and which exchange information between them in
real-time. The quality of their design is directly related to the quality, performance
and security of the final products (planes, cars, . . . ) and they directly influence the
results of the related companies. This can be explained by the fact that the strong
constraints of mass production imply a greater sensitivity on the prices of embed-
ded computers and communication components. Requirements in terms of quality
and performance of new products not only involve new methodologies and tools
for designing of DCESs, but also imply a better use of resources they offer. Finally,
the competition in which companies are involved forces engineers to design more
efficient products that are, more and more complex, less expensive and with shorter
design and production times than the competing firms.

To address these scientific and technical challenges, methodologies and design
tools for DCESs are proposed by different teams of researchers and engineers ac-
cording to their own scientific cultures. The proposed methods as well as the mod-
eling and implementation tools are mainly based on the model of computation,
discrete or continuous, and often involve computer science or control systems re-
searchers and engineers. The results obtained so far have justified this scientific
dichotomy which is nothing more than a view on the same object with discrete and
continuous dynamics, commonly known as Hybrid Dynamic Systems (HDS). In the
1990s, several projects offering modeling, design and verification tools of HDS have
emerged (HyTech [230], Ptolemy [229], UPPAAL [239], KRONOS [127], HYSDEL
[228] . . . ). Experiments on these tools showed that the way to handle the model
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complexity is essential in the design and verification of DCESs. The pragmatic ap-
proach involving a thorough knowledge of the model is essential in managing the
complexity and therefore in the design and verification of DCESs.

Other tools for DCESs design, specially related to calculation models, have been
developed up to now. In the field of real-time systems, modeling and code genera-
tion tools such as SCADE [128], SynDEx [129] . . . continue to be developed. They
are used to model the temporal aspect of control tasks according to the dynamical
characteristics of the objects to check, to generate real-time code on various targets
and to elaborate the verification of different properties. This diversity of tools is ex-
plained not only by the existing competition but also by the importance that each
particular view of a HDS has in the design. It does not only highlight a problem
of training and scientific culture of our engineers and designers but also the impor-
tance that a particular view has in the life cycle of an HDS. At the same time, this
fact reveals that current paradigm of computer science does not necessarily apply
to embedded systems, as underlined by Henzinger and Sifakis in [116], and even
more to DCESs design which has to be completed by a control system and signal
processing view. In our opinion, a holistic approach and methodology for the design
of DCESs which integrates consistently the essential paradigm from control theory,
computer science and signal processing is of great actuality operating a necessary
convergence toward the study of DCESs.

From the system control point of view, a fundamental question that determines
the balance is whether the DCESs can be more efficient than their counterparts based
on a centralized architecture and if this is the case, the price to be paid needs to be
evaluated. There are at least three criteria which help answering to such a question.
The first criterion relates to the nature of time-delays generated by each architecture.
Surprisingly, the delay, can be more problematic in the case of centralized architec-
ture. The second criterion concerns the existence of appropriate design tools. Con-
cerning the existing design tools, in our opinion, we are at the beginning of a long
road. Finally, the third criterion is related to the reliability and scalability. Naturally,
distributed architectures are more reliable and scalable due to the distribution of
their computing resources. Increasing or modifying the number of networks nodes
and the number of real-time tasks to be executed on each of them may be done also
dynamically. Moreover, if we observe the deployment of real-time networks oper-
ated since the arrival of the Control Area Networks (CAN) buses (in its standard
version, by the middle of 1986) in various products such as cars, aircrafts, trains,
. . . and combined it with the actual scientific and technology development in the
field allows thinking that we are at the beginning of a movement towards a gener-
alization of distributed Hardware/Software (HW/SW) architecture in which differ-
ent network nodes share their information and computing resources. Naturally, this
requires a thorough understanding of real-time communication and computing phe-
nomena in order to construct relevant and reduced complexity/order models. These
models should represent accurately the temporal properties of states and control
signals to enable their integration in the design of control laws and thus ensure the
desired performance of DCESs.

In this monograph, several results on joint design of control laws and scheduling
algorithms as well as stability analysis of some special cases of DCESs including,



Preface ix

among others, the study of the effects induced by the delays are presented. This
study is addressed by considering different aspects of the limitations imposed by
the use of communication channels as well as embedded node processors composing
the HW/SW architecture of DCESs. We specially focused on limitations in terms of
network communication bandwidth and processor calculation power inducing sam-
pling and period jitter, communication delay and signal quantization limitation. In
our opinion, this approach of DCESs control allows to better emphasize on optimal
use of its computing and communication resources. The algorithms used to solve the
joint design of optimal control laws and message communication and/or real-time
task scheduling have NP-complete complexity1 [37, 93]. Reducing their complex-
ity requests a deeper study of their models and their stability with respect to the
delays induced by both signal communication between nodes and those induced
by the real-time task scheduler at each node. We observed two interesting results
in the stability study of DCESs. First, their stability, in some special cases, repre-
sents some unexpected behaviors with respect to the standard intuition. An increase
in the input/output delay does not necessarily imply a potential destabilization of
the system. This is in line with the design goal of reducing the computational and
communication resources by guaranteeing the same level of DCESs performance.
Second, it is not necessary to satisfy the stability conditions for each sampling pe-
riod. Thus, we can handle and control the temporal expression of input/output delays
allowing the design and implementation of optimal controllers for DCESs satisfying
communication and calculation constraints.

The objectives and the structure of this monograph are different with respect to
those proposed in two excellent books [124] and [17]. We try to construct a unified
approach of the analysis and design of DCESs. The approach of the networked con-
trol systems design presented in [100] appears to be quite close to our methodology
of design of DCESs. However, the major difference lies in the modeling and the
switch control design to handle the induced delay and especially in the way it is tak-
ing into account concurrent calculation of control signals and their time scheduling.

As mentioned before, we focus on the optimal design of DCESs with respect to
the communication and calculation resources constraints as well as the design of
special control algorithms based on the analysis of induced time-delay system. In
this context, a particular emphasis is put on the optimal control signals scheduling
based on the systems state. In order to render this complex optimization problem
feasible in real-time, a time decomposition is operated based on periodicity induced
by the static scheduling. It is natural that our approach in the design and analysis
of DCESs can not cover all the classes of DCESs which appear to be extremely
rich and various. We do not claim either to give the best methods and tools in the
optimal design and analysis of DCESs whose solution depends on the particular
nature of each of them. We believe that the co-design approaches which consist in
the synthesis of the optimal control laws and the generation of an optimal scheduling
of control signals on the real-time network based on a thorough analysis of the

1NP-complete is the set of all decision problems whose solutions can be verified in polynomial
time.
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induced time-delay system have the best chances to render this problem feasible
and to find optimal or some sub-optimal solution.

Book Outline and Content

This book is organized in three parts. In Part I, composed of the first three chap-
ters, a general overview, the state of art as well as the description of an abstract
model of DCESs are given. In Part II, the problem of optimal co-design of DCESs
is addressed under calculation and communication constraints focusing more on the
scheduling of control signals on the networks as well as on the scheduling of control
tasks on the DCES nodes. Finally, in Part III composed of four chapters, a particular
attention is paid to various control configuration strategies as well as to the effects
induced by delays (constant or time-varying) on the overall system’s stability.

The main contributions are summarized as follows:

• Optimal integrated control and scheduling of resource-constrained systems: We
start by adopting a model introduced by [122], where control and communication
resource allocation aspects are strongly dependent. By interpreting such a model
as a hybrid dynamical system HDS [21] with two types of inputs: control inputs
and scheduling inputs, we formalize and solve the problem of the joint optimiza-
tion of control and scheduling, by using an appropriate quadratic cost function
as a performance criterion. The study of the properties of the optimal schedule,
through some selected illustrative examples, shows that it is strongly dependent
on the DCES state and dynamics. This dependence offers some ideas for improv-
ing DCESs performances using on-line scheduling algorithms based on their state
information. However, this dependence shows that it is necessary to find appro-
priate performance metrics for the synthesis of optimal off-line schedules.

• Optimal integrated control and off-line scheduling in the sense of the H2 norm:
In the context above, we motivate the use of the H2 norm [14] as a design cri-
terion for obtaining optimal off-line schedules that only depend on the intrinsic
characteristics of the system. We propose a method for the joint control and off-
line scheduling in the sense of the H2 criterion. We show that this problem can
be decomposed into two sub-problems, that can be solved separately. The first
sub-problem aims at determining the optimal off-line scheduling in the sense of
the H2 criterion and can be solved by applying the so-called branch and bound
method [85, 86, 146]. The second sub-problem aims at computing the optimal
control gains and can be solved by adopting tools from optimal control theory of
periodic systems [45].

• The use of the model predictive control as a means for the joint optimal control
and on-line scheduling: We propose an approach that allows on-line calculation
of the optimal values of both control signals and scheduling decisions, in the
sense defined by an appropriate quadratic cost function. This approach relies on
the use of the model predictive control (MPC) technique [50], which was applied
successfully in the past for the control of HDS [21]. We illustrate the performance
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improvements, in terms of quality of control, which are brought by this approach,
compared to static approaches, where the used scheduling is pre-computed off-
line. We also state some appropriate stability conditions of the corresponding
predictive controller.

• Optimal integrated control and on-line scheduling of resource-constrained sys-
tems: The major drawback of the model predictive control technique is that it
requires solving an optimization problem which is of NP-complete [37] type. For
that reason, an on-line sub-optimal scheduling algorithm, called OPP for optimal
pointer placement is proposed. While being based on an off-line pre-computed
optimal schedule, OPP makes possible to allocate on-line the communication re-
sources, by taking into account the state of the controlled dynamical systems. It
is shown that, under mild conditions, OPP ensures the asymptotic stability of the
controlled systems and enables in all the situations the improvement of the con-
trol performance compared to the basic static scheduling. Furthermore, OPP is
applied to two typical examples of a distributed control and embedded systems:
the car active suspension controller [27] and the control of a quadrotor.

• Optimal relation between quantization precision and sampling rates: We extend
the model that was first considered in order to take into account quantization re-
lated aspects [72]. Consequently, the communication constrains are modeled at
the bit level, in bits per second. In general, increasing the sampling frequency
improves the disturbance rejection abilities whereas increasing the quantization
precision improves the steady state precision. However, when the bandwidth is
limited, increasing the sampling frequency involves the reduction of the quanti-
zation precision. As the opposite, augmenting the quantization precision requires
the lowering of the sampling frequency. Based on these observations, we propose
an approach allowing the dynamical on-line assignment of sampling frequencies
and control inputs quantization [24]. This approach based on the model predictive
control technique enables to choose the sampling frequency and the quantization
levels of control signals from a predefined set, in order to optimize the control
performance.

• Optimal state-feedback resource allocation: A new approach for the co-design
of control and real-time scheduling is proposed. This approach decomposes the
problem into two sub-problems solved separately. The first sub-problem amounts
to find the optimal non-preemptive off-line schedule, and can be solved by using
the branch and bound method [85, 86, 146]. The second sub-problem resolution
makes use of the lifting technique [45] to determine the optimal control gains,
based on the solution of the first sub-problem. In the second part, a plant state
feedback scheduling algorithm, called reactive pointer placement (RPP) schedul-
ing algorithm is proposed. Its objective is to improve the control performance by
reacting fastly to unexpected disturbances. Performance improvements as well as
stability guarantees using the RPP algorithm are formally proven and then illus-
trated on a comprehensive implementation model, which was simulated using the
tool TRUETIME [5]. Finally, the RPP algorithm is implemented on an embedded
processor in order to achieve the concurrent real-time speed regulation of two DC
motors.
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• Insight in delay system modeling of DCESs: The DCESs stability and perfor-
mance robustness depend on the model of communication and calculation ap-
plied to the associated Hardware/Software application architecture and related
scheduling policy of state/control communication messages as well as of con-
trol tasks based on system state. The scheduling policy organizes the distribution
of communication and calculation resources between competing nodes and tasks
and handles contention situation. As it will be seen throughout this document, the
sampling period of sensor and actuation signals update as well as execution of re-
lated control task will vary with time. This phenomenon induces variable delays
in the DCES whose time characteristics, strongly conditions their performance.
In this context, we propose and briefly discuss various delay models that can be
used for representing DCESs.

• Stability analysis of DCESs subject to induced delays: We analyze some possible
scenarios or time-delay models based on the off-line periodic and on-line aperi-
odic scheduling. We have to point out the fact that the control signal scheduling
on the network as well as control tasks scheduling on each DCES node are non
preemptive ones. The objectives of this analysis are twofold: first, to obtain less
conservative stability domain with respect to the network delay and sampling pe-
riod variation, and second, to shed some light on the interplay between resource
allocation and system stability and performances. In some special cases, we ob-
serve a contradiction with the generally accepted intuition which consists in the
fact that more computation or communication resources will easily stabilize a
given DCES.

• Design of the hyper-sampling sequence of DCESs: Optimal scheduling of a num-
ber of control tasks on a processor or sensors and actuators signals on a real-time
communication network depends mainly on the relative dynamics of the related
subsystems composing a DCES. More a given subsystem dynamics is important,
more it needs calculation and/or communication resources. As it will be seen in
Chap. 2, the scheduling chronograms are periodic and their period depends on
relative dynamics of the sub-systems sharing the given resource. Generally, such
a period is called hyperperiod or hyper-sampling period. In Chap. 11, we pro-
pose a new method to optimally design the hyper-sampling period (including the
standard single-sampling period as a special case) for DCESs. Furthermore, we
will develop an analytic relation between the dynamic performance index and the
hyper-sampling period. Thus, given an average sampling frequency, we will be
able to design optimally the hyper-sampling period corresponding to the mini-
mum value of dynamic performance index.

• An optimal control strategy for distributed control and embedded systems: En-
hancing the stability as well as dynamic performances of some special class of
DCESs using switched sampled-data (SD) control strategy is also studied. Re-
garding the stability issue, we will show that the use of the switched SD control
strategy allows to enlarge the stability bound on the sampling period. In order
to take into account the inter-sample behavior, we choose a continuous-time cost
function to evaluate the system performances. It will be seen that the performance
index can be explicitly calculated as a function of the switching time-parameter
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and the optimal value of the performance index can be analytically found. An-
other advantage of the applied approach consists in analyzing standard control
systems problems and more specifically in the definition of their optimal sam-
pling period. The results obtained clearly show that increasing the sampling pe-
riod does not necessarily reduce the system’s performances. This phenomenon
is quite interesting since it allows us, in some cases, increasing the sampling pe-
riod or reducing the computational resources and achieving simultaneously better
system’s performances.

• Optimal design of switched hold-zero compensation strategy for DCESs subject
to control missing: The admissible control input missing rate (ACMR) of some
sampled-data DCESs is an important index which reflects the stability robust-
ness with respect to control input missing induced by packets dropout or induced
delays. We propose a simple switched hold-zero (HZ) control law as a control-
missing compensator. More precisely, the switched HZ control has two control
modes: the hold-control and the zero-control, respectively. The switching be-
tween two control modes is determined by an appropriate switching parameter. To
obtain an ACMR as large as possible, we present a method to optimally design the
corresponding switching parameter. It will be seen that the switched HZ control
leads to better results than both the zero-control and the hold-control strategies
acting separately and independently. In addition, the ACMR index can be used to
calculate an hyper-period of messages scheduling optimizing the network band-
width.

This book is mainly addressed to post-graduated students willing to operate re-
search studies on DCESs and especially on the optimization of their performances
with respect to communication and calculation resources. In our opinion, the model-
ing and analysis tools given in this monograph may be useful for research engineers
in modeling and analyzing of DCESs for industrial applications purposes. Finally,
the design methodology combined with complexity reduction objectives may help
them to consistently formulate the corresponding DCESs design problem. The prin-
cipal concepts and the methods are introduced and explained via some concrete
illustrations and examples borrowed from robotics, automotive application and un-
manned aerial vehicle (UAV).

How to Read the Book?

This monograph can be read in different ways depending on the proximity of the
reader with the subject. The first part is necessary if the associated calculation and
communication model of DCESs are, in large part, unknown to them. The proposed
models are simple and general enough allowing to integrate them easily in the de-
sign of control and scheduling algorithms of DCESs. A structural reading of the
second part allows to understand the general idea of the proposed approaches. Natu-
rally, a more informative reading where the methodological aspect is complemented
by implementation of concrete examples is also possible, and even recommended,
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paving the way for real-world and/or industrial applications. Concerning the third
part of this document, except the ninth chapter, where we give a number of induced
input delayed models of DCESs, the other chapters can be read independently.
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Chapter 1
Introduction to Distributed Control
and Embedded Systems (DCES)

A Distributed Control and Embedded System (DCES) is a control system having one
or more control loops that are closed via a communication network associated to a
Hardware/Software (HW/SW) architecture responsible for calculation and commu-
nication tasks scheduling and execution. In this class of systems, the sensors and the
actuators are situated at distant locations. This distribution is primarily related to the
physical location of the system’s components, which may be either sources of infor-
mation (sensors) or means of action (actuators). In order to control such systems, the
information that is provided by the sensors is transmitted to the controllers. Based
on the received information, the controllers determine the corrective actions and the
control commands thus computed are sent to the actuators.

Nowadays, we observe a substantial increase in the use of networks in DCES.
Several factors explain such a choice. The price of the hardware components (net-
work nodes and cables) has continuously decreased over last last years to make them
more affordable. Consequently, the use of networks has become an economically
conceivable solution in many application fields. Furthermore, the use of networks
offers many technological advantages, such as the reduction of the obstruction (com-
pared to the point-to-point wires), better flexibility and modularity, easier diagnosis
and maintenance and finally, an improved reliability. As a consequence, networks
are largely used in DCES that belong to many application fields such as automotive
industry, aeronautics, robotics or manufacturing. An example of the distributed ar-
chitecture of a DCES is given in Fig. 1.1. In this figure, abbreviations S, C and A
denote sensor, controller and actuator nodes, respectively.

Roughly speaking, networks are generally classified into two main categories:
control networks and data networks. The first category was developed in order to
be employed in DCES. The networks belonging to this category were designed to
support frequent and regular exchanges of small-size data (measurements or control
commands for example) that must satisfy some strict temporal constraints. The net-
work must guarantee an upper bound on the transmission delay of a given message.
Various architectures are supported but the bus topology remains the most used one.
Flex-Ray, CAN, TTP/C, or Profinet-DP are typical examples of control networks.
The second category was designed in order to support an infrequent and bursty
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Fig. 1.1 Architecture of a distributed control systems

transfer of a large quantity of data, encapsulated in packets, and without any criti-
cality. Due to these design constraints, the data-rate that is offered by data networks
is much more important than the one supported by control networks. In general, data
networks, like Ethernet can cover a wider geographical area than control networks.

The fast development of Internet and wireless networks, which have become
inexpensive, ubiquitous and pervasive means of communication, represents an op-
portunity for the development of new distributed control applications. By allowing
the number of theoretically assignable IP addresses to be equal to 3.4 × 1038 ad-
dresses (which makes approximately 6.5× 1023 addresses per square meter of the
earth surface, including the oceans), the designers of version 6 of the IP protocol,
have probably anticipated this development.

However, the introduction of networks throws down new challenges. In fact, de-
pending on the nature of the employed network, problems like bandwidth limita-
tions, delays or information loss may appear and need to be taken into account.
The controllers may be implemented on limited CPU and memory target platforms,
which may be shared between several concurrent tasks. In these situations, the ba-
sic assumption, consisting on separating control, communication and computation
problems, deserves a careful reexamination. In fact, the presence of the network con-
siderably affects the behavior of the controlled system. The control system perfor-
mance becomes strongly dependent on the network and computer nodes behaviors.
For that reason, the comprehensive study of the distributed control system requires
the integrated study of the control, the communication and the computation prob-
lems.

As a first example, consider pursuit evasion games given by Sinopoli et al.
in [213], where a team of pursuing robots must take the control of a team of evaded
robots, and minimize a given criterion, for example the evasion time. The commu-
nication between the different robots is a fundamental aspect of the operation of the
system. Any disturbance affecting the communication deteriorates the global behav-
ior of the system and degrades the performances expressed by the criterion. Taking
into account the communication constraints becomes crucial in understanding the
global operation of the system.

The second example refers to the problem of the distributed control of the au-
tomobile suspension described by Chalasani in [60]. The objective is to maximize
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passengers’ comfort as well as road handling. This amounts to minimize the ac-
celerations of the car body, and to maximize the tire-ground contact effort. The
correct operation of this system requires the coordinated operation of the four actu-
ators, which are located at the four corners of the vehicle. It is clear that without the
communication between these distributed components, the achievement of control
objectives such as the minimization the roll acceleration is not possible any more.
For that reason, the anti-roll bars are maintained when local control strategies are
employed.

1.1 Motivations

With the new prospects offered by the diffusion of the communication means on
the one hand, and the abilities of the control engineering and science to model and
handle different categories of systems belonging to a broad range of application
fields on the other hand, in our opinion, it appears easy to predict the development
of new applications in the future, where the dynamics and the information will be
strongly dependent. For that reason, the integrated study of control, communication
and computation has involved many research teams and people all round the world,
defining it as a major research direction challenge [130, 181].

Furthermore, as underlined by Årzèn et al. in [13], such a research area (inter-
play between control, communication and computation) becomes more important
when the communication bandwidth or the processing power is limited. Communi-
cation and computing resource limitations are generally presented as being a com-
mon characteristic to an important range of embedded systems. The term embedded
system refers to an electronic system, which is in close relationship to a physical
one. Embedded systems, as defined by Buttazzo in [48], are reactive system: they
must correctly respond to the stimuli of their physical environment. They are char-
acterized by a given degree of autonomy, which often appears in the autonomy of the
computational resources, and less frequently in the autonomy of the energy supply.

1.1.1 Communication Resources Limitations

Communication resources limitations may have several reasons. For instance, these
limitations may be caused by the signal’s propagation medium. As clearly explained
by Sozer et al. in [218], the underwater medium represents an example of sig-
nal’s propagation limitation. In this communication medium, as given by Stojanovic
in [220], the acoustic communications, which are preferred to the electromagnetic
communications (for more details, please see the paper of Quazi and Konrad [195]),
offer data-rates varying between a few kbps for long-range communications (over
several tens of kilometers), to a few hundred kbps for short-range communications
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(over several tens of meters). Some other wireless networks present bandwidth lim-
itations. In the Bluetooth networks, for example, only one node can have access to
the network every 1.25 ms.

In other situations, network nodes may be autonomous and battery-powered. The
transmission of the control information through the network interface requires an
important energetic power, particularly in wireless networks. In order to satisfy the
lifetime requirements of the batteries, the power consumption that is due to the
transmissions, must be limited. Consequently, the data-rate is limited.

To guarantee of a deterministic data transmission introduces technological con-
straints limiting the maximal possible data-rate. For example, consider the character-
istics of CAN networks as given by Rachid and Collet in [196]. In these networks,
the maximal available data-rate depends on the length of the network cable. This
data-rate is equal to 1 Mbps for cables whose length is less than 40 m. It goes down
to 125 kbps when the cable length becomes equal to 130 m. This limitation is due to
the relationship between the bit length on the network and the data-rate on the one
hand, and to the used collision resolution mechanisms on the other hand (which re-
quire that all the nodes observe the same information during a predefined amount of
time). In fact, collision resolution mechanisms require that the length of a bit must
be greater than twice the distance between the two most distant network stations. Let
R be the data rate, Dx the distance between the two most distant stations, tbit the
duration of a bit on the bus, cbit its propagation velocity and lbit its length. Knowing
that tbit = 1

R
, lbit = cbittbit, lbit must verify lbit > 2Dx , which imposes that R < cbit

2Dx
.

Bandwidth limitations affect many areas such as embedded systems (see Arzén and
Cervin [12]), formations control (Belanger et al. [20]), underwater robotics (see
Speranzon et al. [219]), haptics (see Kuschel et al. [143]) or large arrays of micro-
electro-mechanical systems (MEMS) (see Berlin and Gabriel [33]).

1.1.2 Computational Resources Limitations

Embedded systems are generally found in products that are designed for mass pro-
duction. Their cost may represent a significant part of the cost of these products. Due
to market requirements, and to a strong competition between the different manufac-
turers, their cost is subject to very strict constraints. This may be easily understood
since economizing a few centimes in the cost of a hardware component that will
be produced in around one million copies represents a very significant economy.
Nowadays, a modern car contains more than 80 embedded microcomputers [183],
called Electronic Control Units (ECUs). Control laws are still being computed us-
ing fixed point operations, on limited CPU power and memory micro-controllers.
It is just recently that some automotive suppliers have begun to implement the en-
gine controller, which represents the “most” complex controller of a modern car, on
floating point micro-controllers.
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1.2 Goals and Contributions

When computation or communication resources are limited, they have to be used
as efficiently as possible. In (DCES), the scheduler is the entity that is responsible
for the allocation of communication or/and computation resources. Consequently,
the efficient use of these resources amounts to the design of appropriate scheduling
algorithms. The induced delays may deteriorate the system performances or, even
worst, make them unstable.

The objective of this book is to propose appropriate methods and algorithms al-
lowing a more effective exploitation of communication or computation resources
in DCES as well as the analysis, in some cases, of the induced delays influences
on their stability and performances. The proposed approach relies on three com-
plementary ideas: first, to refine the dynamical model of the plant by taking into
account the available communication and computation resources; second, to use
performance criteria of controlled system for the joint synthesis of the control and
scheduling, and finally, to analyze the induced delays influence on the stability and
reallocate the communication and computation resources based on this analysis as
well as propose new ad hoc control algorithms to enhance the DCES performances.

1.3 Methodology

The DCES control approaches, which consists in emphasizing the need for optimal
use of computing and communication resources, is adopted by more and more re-
searchers. One of the first question can be asked is related to the means we have
to influence on DCES performances. For a control engineer is natural to think on
the design of new control laws based on model refinement which imply to take into
account patterns of communication between computation nodes with sensor and ac-
tuator nodes.1 These communication patterns are highly dependent on the type of
networks used and the priorities, if any, assigned to HW/SW nodes and messages.
Their influence in the control loop performances is, first, related to the messages
order and, second, to the induce delay in uplink and downlink channels and to the
sensibility of DCES to them. Finally, it is related to the given state of DCES. In
short, the DCES performances are closely related to time pattern of messages in
uplink and downlink channels and the given state of DCES.

In order to obtain a relevant model of network, we can not ignore the constraints
on bandwidth otherwise say quantization, in a broad sense, of measurement and
control signals. These constraints imply a quantization and coding of transmitted
signals and necessarily induce a delay, bounded from below, between two succes-
sive samples of the same signal. So, in general, we have to deal with time variable
quantized and delayed signals. We can rephrase the above question as follows: “Can

1These two communication links are commonly called by uplink and downlink communication
channels.
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we control the induced delays by a real-time communication network and if so what
are the means at our disposal?”. In order to answer correctly to this question, we
have to look particularly at two techniques that we thought are natural: the first one
is to use system dynamical model to predict the evolution of its state and the sec-
ond one is based on analysis of networks messages induced delays. With respect to
this last idea, the contribution of Lian et al. [153] showed that messages schedul-
ing makes networks deterministic and minimize their induced delays. Based on this
study and the need to master the delays, we are particularly concerned by the fol-
lowing question: What should be the physical basis on which we should rely in order
to achieve an optimal ordering of messages based on the DCES application, that is,
between different control systems sharing the same communication network? Nat-
urally, the most relevant information that we have to take into account in handling
such problem is the dynamics of systems sharing the same network, node calcu-
lation and network bandwidth availability and the systems current state. Then we
focus on the methodology allowing us to define a scientific framework reflecting
our physical insights.

We set two goals: First, the obtained tasks and messages scheduling must be opti-
mal with respect to the dynamical systems sharing the real-time network and second,
it must be real-time relative to the varying states of dynamical systems composing
DCES. Proceeding in such a temporal decomposition, we can handle the induced
NP-complete complexity2 [93] of mixed optimization problem involving continuous
and discrete variables and solve it in real-time.

In the sequel, the basic concepts of the real-time scheduling theory are first re-
viewed in the forthcoming Chap. 2. Next, an overview of the state of the art of the
integrated approaches for control and resource allocation in distributed embedded
control systems is given. Chapter 3 describes the abstract model of a distributed em-
bedded control system, with communication resources constraints that was adopted
throughout the book. The main theoretical results, established previously in the lit-
erature, are reviewed and discussed.

2NP-complete is the set of all decision problems whose solutions can be verified in polynomial
time.



Chapter 2
Resource Allocation in Distributed Control
and Embedded Systems

Traditionally, control design problems are decoupled from software design and im-
plementation considerations. Such a separation allowed the control and computer
science communities to focus on specific problems independently, and led to the
development that we are familiar with nowadays. However, as explained in Årzèn
et al. [13], this separation relies on the fact that these two fields use very simplified
models of their interface with each other. In fact, control designers disregard the
characteristics of the implementation and the available computational and commu-
nication resources. On the other hand, real-time designers see the control loop as a
periodic task with a hard deadline, that have sometimes to fulfill data dependency
constraints (especially when the sensing and actuation are distant). Recently, re-
searchers from these two communities have shown that if more elaborate models are
used, significant improvements in terms of implementation efficiency and quality of
control may be achieved. This integrative co-design approach is central to this book.

This chapter is organized into two parts. The first part presents the state of the
art of the real-time scheduling theory, focusing on the most used results in dis-
tributed control and embedded system (DCES) applications. We start by present-
ing real-time single-processor scheduling problems. Next, we focus on the problem
of ensuring real-time networked communications. We emphasize different methods
for managing the access concurrency having a determinant impact on the guarantee
of deterministic real-time communications. Finally, an overview of the problem of
guaranteeing end-to-end real-time constraints in distributed systems is given. In the
second part, we present a state of the art of the new approaches, that are based on
more elaborate models, and that take into account both the dynamic nature of the
controlled systems as well as some characteristics of their implementation. Various
problems and models were discussed in the literature. We propose a classification
of these different approaches and illustrate the different problems and models that
were addressed.

2.1 Real-Time Scheduling Theory
As mentioned above, the objectives of this section concern different tools and mech-
anisms which handle the concurrency in real-time systems at the processor level as

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
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well as at the distributed communication architecture. We focus on the models and
tools related to control applications without claiming to be exhaustive. Throughout
this section, we give some references that may help for a deeper and better under-
standing of the models to be used in the particular applications we may be faced
with.

2.1.1 Real-Time Single-Processor Scheduling

This subsection is devoted to real-time scheduling of multiple task on a single pro-
cessor. The objective is to obtain a calculation model related to concurrent execution
of a given number of tasks. For more details, please refer to two excellent books of
Buttazzo [48] and Cottet [67]. In real-time processing systems [48, 67], the proces-
sor is a resource that is shared between various concurrent tasks. A task represents a
sequence of instructions that are intended to be executed by the processor. The ser-
vice that is delivered by a task may be performed several times during the lifetime of
the application. For such reasons, a task may be “instantiated” several times in the
form of jobs or task instances. Jobs or task instances represent the execution flow
that corresponds to the effective execution of the task code.

2.1.1.1 Events Characterizing the Lifetime of a Job

A job or task instance is characterized by the following temporal parameters:

• release time: the time instant at which the scheduler is requested to execute the
job, which have just become ready to run;

• start time: the time instant at which the job starts its execution;
• preemption times: time instants when the scheduler suspends the execution of the

job on behalf of other jobs having a more important priority;
• resumption times: time instants at which the execution of the job is resumed after

a preceding preemption;
• completion time: time instant at which the job finishes its execution;
• its absolute deadline: time instant before which the job should have terminated.

Figure 2.1 illustrates the single processor scheduling of three jobs j1, j2 and j3.
More precisely, in this figure:

• instants t1, t2 and t3 represent the respective release time instants (depicted by up
arrows) of jobs j1, j2 and j3,

• instants t1, t2 and t6 represent the respective start times of jobs j1, j2 and j3,
• instants t2 and t4 represent respectively preemption and resumption times of

job j1,
• instants t6, t4 and t7 represent the respective completion time instants of jobs j1,
j2 and j3,

• instants t5 and t8 represent the respective absolute deadlines (depicted by down
arrows) of jobs j1 and of j2 and j3.
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Fig. 2.1 Single-processor scheduling of three tasks

2.1.1.2 Task Model

A real-time task τ (i) is characterized by:

• worst case execution time (WCET) c(i);
• activation law of its jobs: the jobs of a given task may be activated periodically

with a period T (i), sporadically with a minimum inter-arrival time or aperiodi-
cally if no temporal constraints are imposed on the activation of its jobs;

• relative deadline D(i): the time interval between the release time of the job and
its absolute deadline.

A real-time task is called periodic, sporadic or aperiodic according to the activation
law of its jobs [48, 67].

2.1.1.3 Scheduling Algorithms Classification

This paragraph describes the commonly used terminology for classifying the exist-
ing scheduling algorithms [48, 67].

• Preemptive/non-preemptive: A scheduler is called preemptive if it is able to sus-
pend a running task on behalf of other tasks that have more important priorities. It
is called non-preemptive in the opposite case. Preemption is supported by the ma-
jority of real-time operating systems. In the opposite, the scheduling of packets
in networks is always non-preemptive.

• Off-line/on-line: In off-line scheduling algorithms, the sequencing of the tasks to
be executed is described at design time, as a schedule or execution plan. Con-
sequently, the scheduler is simply a sequencer, that executes the different tasks
according to the schedule that was pre-computed off-line. The execution order
of the different tasks is then identical to that specified in the execution plan. In
practice, the schedule is executed in a repetitive way. The period of repetition
is called major cycle or hyperperiod. In general, the schedule describes the start
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time instants of the different tasks instances, and possibly, their preemption and
resumption time instants, which are expressed as a function of an elementary time
unit, called minor cycle of the schedule. In the opposite, in on-line scheduling al-
gorithms, the choice of what task to execute is determined at run-time by the
scheduler. When activated, the scheduler performs a given processing in order to
determine the next tasks to execute. In most cases, this processing amounts to
the comparison of the priorities of the ready tasks. These priorities may be fixed
in the case of fixed-priority scheduling algorithms or dynamic (i.e., adjustable at
run-time) in the case of dynamic scheduling algorithms.

2.1.1.4 Schedulability Analysis

Real-time scheduling theory [48, 67] aims at providing the sufficient conditions
(and preferably the necessary and sufficient conditions) guaranteeing that a task set
(which is defined by a given model) will respect its real-time constraints (which are
defined by the assigned deadlines). An important theoretical tool that it provides is
the schedulability analysis. Schedulability analysis is performed off-line, in order
to ensure that the scheduling of a task set (which satisfies a given model), using a
given scheduling algorithm, ensures the respect of the tasks deadlines. In the se-
quel, we present the fundamental results that are related to the preemptive real-time
scheduling of periodic tasks whose relative deadlines are equal to their periods, by
fixed-priority and dynamic-priority scheduling algorithms.

Consider a task set containing N independent tasks τ = (τ (1), . . . , τ (N )). Each
task τ (i) is characterized by its worst-case execution time (WCET) c(i), its period
T (i) and its relative deadline D(i) = T (i). The task set τ is said to be schedulable
by a given scheduling algorithm if all the jobs of all the tasks forming τ finish their
execution before their absolute deadlines.

• Fixed-priority scheduling: In this scheduling policy, a fixed priority p(i) is as-
signed to each task τ (i). At each instant, the scheduler executes the ready task
whose priority is the most important. Since preemption is authorized, if during
the execution of a given task τ (i), another task τ (j) that has a more important
priority becomes ready, then task τ (i) is preempted and the processor is allocated
to task τ (j). In 1973, Liu and Layland [156] have shown that the optimal priority
assignment is given by the rate monotonic (RM) rule (i.e., the smaller the pe-
riod is, the higher is the assigned priority). Thus, the rate monotonic scheduling
algorithm is a fixed-priority scheduling algorithm where priorities are assigned
according to the rate monotonic rule. The optimality of a real-time scheduling al-
gorithm was defined by Liu and Layland by its ability to schedule a given task set,
which verifies a given task model, such that the predefined real-time constraints
are met. A fixed-priority (resp. dynamic-priority) scheduling algorithm is optimal
(for a given task model) in the sense that any task set (satisfying the task model)
that is not schedulable under this algorithm will not be schedulable under any
other fixed-priority (resp. dynamic-priority) scheduling algorithm. A sufficient
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schedulability condition using RM is

U =
N∑
i=1

c(i)

T (i)
≤N

(
21/N − 1

)
.

The necessary and sufficient schedulability condition by RM requires the analysis
of the maximum response time R(i) of each task (i.e., the maximum among the
response times of its jobs) (see, for instance, Joseph and Pandya [135]). The
response time of a job is defined by the duration between its release time and its
completion time. R(i) is given by:

R(i) = c(i) +
∑
j∈hp(i)

⌈
R(i)

T (j)

⌉
c(j).

where hp(i) is the set of tasks which have priority over τ (i). The task set τ is
schedulable by RM if and only if R(i) ≤D(i), for all i ∈ {1, . . . ,N }.

• Dynamic-priority scheduling: In this scheduling policy, the priority p(i) that is as-
signed to the task τ (i) may vary over time. Liu and Layland [156] proved that the
optimal dynamic priority assignment policy consists in assigning the most impor-
tant priority to the task that is the closest to its deadline. This priority assignment
rule is called Earliest Deadline First (EDF). The necessary and sufficient schedu-
lability condition under EDF is simpler than that established for RM and is given
by:

U =
N∑
i=1

c(i)

T (i)
≤ 1.

Real-time scheduling theory progressed substantially since the fundamental article
of Liu and Layland [156], to take into account the problems involving the scheduling
of sporadic and aperiodic tasks, the scheduling of tasks whose deadlines are lower
or higher than their periods, the protected access to shared resources, the precedence
constraints and the non-preemptive scheduling. A detailed description of some fun-
damental results concerning these problems can be found in Shin [142], Buttazzo
[48], Liu [157], Burns [46] and Decotigny [71].

2.1.2 Real-Time Medium Access Control in Communication
Networks

Ensuring real-time communications is the responsibility of the entire communica-
tion stack. Nevertheless, as explained by Zimmermann in [267], the crucial role falls
on the MAC (medium access control) sub-layer of the layer 2 of the open systems
interconnection (OSI) model. The MAC sub-layer has the responsibility of manag-
ing the access to the communication medium, which may be shared between several
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Fig. 2.2 Bandwidth sharing using the TDMA protocol and used terminology

nodes of the network. In real-time networks, there are several access protocols. The
most deployed ones are described in the sequel:

2.1.2.1 Time Division Multiple Accesses (TDMA)

The TDMA [153, 183] protocol makes it possible to statically divide, the available
bandwidth, in the temporal domain, between several competing nodes. In this pro-
tocol, each node knows exactly the moments when it is allowed to transmit over the
network. As a consequence, each node has to transmit during the time slot which is
allocated to it, called TDMA slot. In this way, collisions are avoided. The time slots
are predetermined off-line. Their sequencing has a periodic structure. The minimal
sequence of time slots allowing to describe the sequencing of the time slots of the
various nodes is called TDMA round (Fig. 2.2).

The TDMA protocol may be implemented in a centralized or a distributed way. In
centralized implementations, a master node has the responsibility of triggering the
communications of the other slave nodes by transmitting a synchronization signal.
The major inconvenient of this approach is that a breakdown of the master node
leads to a total breakdown of the network. The distributed implementations require
the establishment of a sufficiently precise global time in all the nodes of the net-
work, requiring thus the use of some appropriate clock synchronization algorithms.
The TDMA protocol is the cornerstone of the mobile communications GSM proto-
col. The TTP/C communication protocol [238] manages the concurrent access to
the communication medium using a distributed implementation of the TDMA ac-
cess protocol. In order to ensure a global clock, the FTA (Fault-Tolerant Average)
algorithm proposed by Kopetz and Ochsenreiter in [141] is used to ensure the clock
synchronization of the different network nodes.

2.1.2.2 Token-Bus

The Token-Bus access protocol was specified by the IEEE (IEEE standard 802.4)
and by the ISO (ISO standard 8802.4). It represents the cornerstone of many
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communications protocols that are employed in industrial field busses [231], like
Profibus [18], ControlNet [66], MAP [164] and ProfiNet [39].

In this protocol, the network nodes are logically organized in a ring topology:
each node knows its logical predecessor and its logical successor. The access arbi-
tration is performed by the circulation of the token between the nodes. At any given
moment, only one node has the token. The possession of the token gives to the pos-
sessing node the right to transmit over the network. The node that takes possession
of the token can start transmitting over the network. It must pass the token to its
successor if the time it has held the token reaches a limit or if it finishes transmit-
ting before the expiry of this duration. If a node that does not have any information
to transmit, receives the token, then it transmits it directly to its successor node.
Concerning the real-time properties of this protocol, the analysis of the worst-case
response times of Profibus and ControlNet messages are respectively given by To-
var and Vasques in [236] and by Lian et al. in [153]. The worst-case response time
of a message is defined as the duration between the moment the transmission is
requested and the moment when the message is received by the destination process.

2.1.2.3 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

The carrier sense multiple access with collision avoidance access protocol (CSMA/
CA is used in many networks such as CAN, DeviceNet or IEEE 802.11 wireless
networks. In this access model, each message is characterized by a unique priority.
Since the shared communication medium can transmit only one message at a time,
each node that wishes to transmit a message must initially check whether the net-
work is free (by sensing the network to find whether or not a carrier signal is being
transmitted). If the network is free, then the node can start transmitting. However,
it is possible that other nodes start transmitting at the same time, because they have
detected at the same time that the communication medium has become free. In this
situation, the transmission of the highest priority message is continued; the other
messages with lowest priorities are discarded. By this way, collisions are explicitly
avoided.

CAN networks [132, 196] use the CSMA/CA protocol in order to manage the
concurrent access to the shared bus. Their implementation of CSMA/CA relies on a
bit synchronization mechanism at the bus level. In CAN networks, each message is
characterized by a unique identifier. Furthermore, no node is particularly addressed:
all the sent messages are broadcasted to all the other network nodes. When several
nodes are emitting and if at least one node sends one a ‘0’ (called dominant level
in CAN terminology), then all listening network nodes will detect a ‘0’ at the same
time, even if there are other nodes which have transmitted a ‘1’. Reciprocally, when
all the transmitting nodes send a ‘1’ (called recessive level), all the listening nodes
will detect a ‘1’. The CAN bus behaves like a logical AND gate. Since the identifier
field is located at the beginning of the frame (the most significant bit is first coded,
the highest priority is 0), and the binary synchronization is implemented on the
bus, when a collision occurs, the different nodes directly compare the identifiers of
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Fig. 2.3 Illustration of the bus arbitration mechanism in CAN networks

their messages to the resulting logical level at the bus. A node that detects that the
resulting level is dominant (‘0’) whereas it has sent a ‘1’, knows that it has tried to
send a message whose priority is lower than another message and must consequently
stop transmitting. Figure 2.3 describes a collision between two messages, which
were sent at the same moment by node 1 and node 2. Node 2 stops transmitting
when it detects that it has a lower priority than node 1 (because it has sent a ‘1’ and
the resulting level on the bus was a ‘0’).

CAN protocol is a deterministic protocol. Consequently, it is possible to com-
pute an upper bound over messages response times. A CAN bus may be seen as
a non-preemptive scheduler. The computation of the worst-case response time of
fixed-priority messages have been tackled in Tindell and Burns et al. [232, 233].
The evaluation of a RM priority assignment policy was also addressed in these ref-
erences. The use of EDF scheduling in CAN networks was studied by Di Natale
in [74].

The binary synchronization over the bus, which is necessary to collisions arbi-
tration, introduces a relationship between the maximum data-rate and the length of
the network cable. In fact, to use a data-rate of 1 Mbps, the maximum length of the
cable must be less than 40 m. If it is necessary to use a cable whose length is greater
than 620 m, then the maximum data-rate falls down to 100 kbps.

Note that in data networks, like Ethernet or the Internet, the CSMA/CD (carrier
sense multiple access with collision detection) protocol is the most used medium
access protocol. The fundamental difference between CSMA/CD and CSMA/CA re-
sides in the collision arbitration mechanism. In fact, in the CSMA/CD protocol, the
nodes that generate a collision are able to detect this collision and to stop their
transmission during a random duration. For that reason, it is impossible to bound
messages response times in networks employing the CSMA/CD access protocol. In
wireless networks, such as IEEE 802.11 networks, the CSMA/CA protocol is em-
ployed because it is not possible to detect the collisions (and thus to deploy the
CSMA/CD protocol).
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2.1.3 Real-Time Scheduling of Distributed Systems

Real-time multiprocessor scheduling problems are still not as well understood as
real-time single-processor scheduling problems; the most obscure points, as under-
lined by Sha et al. in [211], are related to the schedulability analysis. In this field,
the impact of the Dhall and Liu’s paper [73] on real-time multiprocessor scheduling
theory was equivalent to the impact of the Liu and Layland’s paper on real-time
single-processor scheduling theory [156].

Multiprocessor scheduling algorithms may be classified into two categories [211]:

• partitioned scheduling, where each task is assigned to only one processor,
• global scheduling, where all the tasks compete for the use of all the processors.

The problem of the optimal partitioning of tasks among processors, as underlined
by Garey and Johnson [93], is NP-complete complexity.1 For that reason, simulated
annealing or branch and bound-based heuristics were proposed to tackle this prob-
lem. The use of these heuristics relies on the modeling the scheduling problem as an
optimization problem. A detailed presentation of these approaches is given in [16].
An outline of the most important results concerning multiprocessor schedulability
analysis may be found in Sha et al. [211].

The tasks, that may be located on the different processors, may have data-
dependencies and thus exchange messages via a communication medium. The com-
munication medium may be seen as “a processor” that only supports the non-
preemptive scheduling. Among the tools for off-line partitioned scheduling genera-
tion for tasks with precedence, on distributed architectures, one may cite [139, 217],
which is based on the so-called Adéquation Algorithme Architecture (for efficient
matching of the algorithm on the architecture) approach [102]. In Syndex, the ar-
chitecture and the algorithm are described by two graphs. The algorithm graph is
a direct acyclic graph, where the vertices represent the operations to be performed
and where the edges represent the data-dependencies between the operations. The
architecture graph describes the available parallelism as well as the communica-
tion possibilities between the various processors. Based on these two graphs, and
possibly on placement constraints which may be specified by the user, Syndex uses
the greedy list scheduling algorithm given by Yang and Gerasoulis and Kwok and
Ahmad [144, 257] to synthesize the scheduling of the operations on the different
architecture elements.

2.2 Integrated Approaches for Control and Resource Allocation

In the previous subsection, we have described some important results of the real-
time scheduling theory. Disregarding the nature of the considered applications, these

1NP-complete is the set of all decision problems whose solutions can be verified in polynomial
time.
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results mainly addressed the problem of communication or computation resource al-
location, in order to respect strict temporal constraints. In this subsection, we outline
other approaches, which jointly consider the problems of control and communica-
tion or computation resources allocation. First, we review some problems and meth-
ods for the adaptive sampling. Second, we give an outline of the methods allowing
to jointly considering the problems of control and communication resource alloca-
tion. Finally, we review the state of the art of the methods for the joint control and
computational resource allocation in embedded systems.

2.2.1 Adaptive Sampling of Control Systems

The analysis of asynchronously sampled systems was undertaken at the end of the
fifties. The research works, which were performed during the sixties and at the be-
ginning of the seventies mainly focused on single-input single-output (SISO) sys-
tems. To the best of our knowledge, the first adaptive sampling method was pro-
posed by Dorf et al. [77]. The proposed adaptive sampler changes the sampling
frequency according to the absolute value of the first derivative of the error signal.
Using analog simulations, the authors have shown that this method reduces between
25 % and 50 % of the number of required samples, with respect to the periodic
sampling, given the same response characteristics.

Other approaches were proposed thereafter, in particular those of Gupta [108,
109], Tomovic and Bekey [234, 235] and Mitchell and McDaniel [176]. The evalu-
ation of these approaches and their comparison to the periodic sampling was per-
formed by Smith in [216]. Simulations have shown that these adaptive sampling
methods are not always better than periodic sampling, especially where the input is
subject to unknown disturbances. Remarking that the methods of Dorf et al. [77]
and [176] are closely related to [125], Hsia proposed a generic approach allowing
to derive adaptive sampling laws [126].

More recently, an important direction of research on the DCES performance en-
hancement through adaptive sampling is that of Event Driven Controllers (EDC).
The aim of this class of controller is to reduce the calculation and communication
resource utilization in order to provide in priority those tasks which need more.
This results in a non periodic sampling depending on the state of all the subsystems
composing a DCES and the “policy” implemented to handle their resources. Natu-
rally, the hight level system specification such as stability needs to be assured which
means that each new control signal has to be calculated, at least, with a minimum
sampling frequency. In Årzèn [11], the EDC adapts its task period with respect to
required system performances expressed as an event condition on the system state.
These events are usually generated when the system state crosses an hyper-surface
in state space. It is clear that the difficulties reside in the detection of this crossing
and the event generator structure.

A second class of event based approaches called self-triggered one, consists in
emulating event-triggered control by computing for each sampling instants a lower
bound of the next sampling interval or the next candidate sampling instant.
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Fig. 2.4 General model of the information flow in a control system whose control loop is closed
through finite bandwidth communication channels

As stated in Årzèn [11], event-driven control is closer in nature to the way a
human behaves as a controller. Indeed, when a human performs manual control his
behavior is event-driven rather than time-driven. This fact conjugated with the need
to optimally handle calculation and communication resources partially explains the
rationale behind the important research activity in designing event-based controllers.

The EDC controller are triggered by external events or they are self-triggered.
The works of Heemels et al. [110], Åström and Bernhardsson [15], Tabuada and
Wang [226], Suh et al. [223], Heemels et al. [111], Henningsson et al. [113], Lunze
[163], Wang et al. [246], Marchand et al. [165], and many others, fall in the event-
triggered class whereas the works of Velasco et al. [242], Anta and Tabuada [6–9],
Wang and Lemmon [247–250], Mazo and Tabbuada [170, 172], Araujo [10] are
some of the contributions in the latter class of self-triggered controllers.

In a general distributed control architecture related to DCES, reduction of sam-
pling frequency is not always sufficient to enhance system performances. It is also
needed to synchronize the decisions between subsystems sharing given calculation
or communication resources. The recent works of Tabuada [225], Seyboth [210],
Donkers and Heemels [75], Mazo and Cao [171]. Wang and Lemmon [251], de Per-
sis [70] go in this direction with the objective to coordinate the subsystems’ local
decision.

2.2.2 Allocation of Communication Resources: The “Per Symbol”
Paradigm

In this paradigm, the information exchange is modeled at the symbol level. The
quantization of measurements and control commands is thus implicitly taken into
account. The general model is given in Fig. 2.4.

In this model, the communication channel can transmit at most R bits per time
unit. Because of these resource limitations, measurements and control commands
must be encoded (as a flow of symbols) before their transmission and decoded at
their reception. Various coding techniques may be employed. A fundamental ques-
tion is to determine the necessary and/or sufficient data-rate allowing the existence
of a coder, a decoder and a controller that achieve the stabilization of the system.
Many contributions have tried to bring more insight into this fundamental question,
by treating various models of resource limitations.
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For instance, in [72], Delchamps has shown that it is impossible to asymptoti-
cally stabilize a discrete-time unstable linear time invariant (LTI) system, whose
output passes through a quantizer having a finite number of quantization levels. In
this setting, it is necessary to introduce and use other stability concepts, like, for
example, practical stability.

The problem of state estimation, in the presence of state and measurement noise,
was studied in Wong and Brockett [253]. In the considered model, the state observer
is situated at the same location as the plant. However, the controller is located at a
distant place. Consequently, the observations must be sent to the controller through
a finite bandwidth communication channel. It was shown that this problem is quite
different from the classic estimation and vector quantization problems. The concept
of finitely recursive coder-estimator sequence was then introduced. Necessary con-
ditions as well as sufficient conditions, which are related to the stability and the
convergence of various coding and estimation algorithms, were stated. These con-
ditions relate the network data-rate to the dynamical characteristics of the plant.

Next, in [254], Wong and Brockett introduced the concept of containability, as a
weaker stability condition, to tackle the problem of the stabilization of networked
systems through limited capacity communication networks, where the values of the
measurements (which are received by the controller) and the controls (which are sent
to the plant) belong to a finite set of values J (because of the quantization which is
induced by the limited data-rate communication channel). Considering continuous-
time LTI systems, which are impulsively controlled, they proved that a necessary

condition to ensure the containability is e
2
R

tr(Ac) ≤ |J | where |J | is the size of
the alphabet, 1

R
is the transmission duration of one bit and Ac is the state matrix.

They also proved that if the initial condition of the system lies in a bounded set, then
a memoryless coding and control is sufficient to ensure the containability, if some
conditions affecting the data-rate are met.

In [182], Nair and Evens considered a class of discrete-time, linear, time-varying
and infinite-dimensional plants. No process or measurement noise affects the con-
sidered plants. The initial state is the realization of a random variable. Communica-
tions constraints only affect the sensors-to-controller link. The controller is directly
connected to the actuators. The considered problem is the synthesis of a coder (on
the sensors-to-controller link) and of a controller that minimize a cost function of
the state over finite and infinite horizons. The cost function over the finite horizon is
themth output moment. A coder/controller scheme was proposed. Under some tech-
nical assumptions, which are related to the probability density function of the initial
state, to some conditions depending on the size of the alphabet, to the data-rate and
to the plant dynamics, a necessary and sufficient optimality condition of the pro-
posed coder/controller was established. A necessary and sufficient condition for the
existence of a coder/controller that asymptotically stabilizes the system (in the sense
that the mth output moment converges to zero over an infinite horizon) was stated.
In the special case where the plant is invariant, unstable and finite-dimensional, this
last condition simplifies to R > log2 |λ| where λ is the unstable open-loop pole with
the largest magnitude.
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Next, in [42], Brockett and Liberzon proposed the idea of “zooming” as a means
for ensuring the asymptotic stability of continuous-time and discrete time system
whose control loops are closed through a finite bandwidth communication network.
The zooming technique consists on changing the sensitivity of the quantizer over
the time, based on the available quantized measurements. The relationship between
performance and complexity of the quantized stabilization using the zooming tech-
nique was further studied by Fagnani in [82].

In [80], Elia and Mitter addressed the problem of the stabilization of single-
input linear systems whose measurements and control commands are quantized. By
first considering quantizers with a countable number of levels, and supposing the
exact knowledge of the state, they proved that the coarsest quantizer allowing the
quadratic stabilization of a discrete-time single-input LTI system, is logarithmic,
and may be computed by solving a special linear quadratic regulator (LQR) prob-
lem. The state-feedback control problem as well as the state observation problem
were solved within this theoretical framework. These results were thereafter ex-
tended to the continuous-time single-input and periodically sampled linear systems.
The expression of the optimal sampling period (for the suggested quantizers) was
established. It only depends on the sum of the unstable eigenvalues of the continu-
ous system. This approach was finally extended to address quantizers with a finite
number of levels.

Next, in [227], Tatikonda and Mitter considered discrete-time LTI systems. The
control loop is closed through a limited capacity communication channel. Conse-
quently, before their transmission, the measurements are quantized and encoded in
symbols by a coder. At their reception, a decoder reconstructs a state estimate that
will be used by the controller, which is directly connected to the plant. Two types of
coders were studied:

• class 1 coders, which know past measurements, past controls and past transmitted
symbols that were sent over the channel,

• class 2 coders, which only know past measurements.

Stabilization and asymptotic observability properties were particularly studied.
It was shown that a necessary conditions for the existence of coders and de-
coders making it possible to guarantee these two properties is given by R >∑
λ(A)max{0, log |λ(A)|}, the sum is over the eigenvalues of the state matrix A.

This necessary condition is independent from coder classes and becomes sufficient
if the whole state is measured and if class 1 coders are used.

2.2.3 Allocation of Communication Resources:
The “Per Message” Paradigm

The different approaches that may be related to the “per message” paradigm are
motivated by the fact that in all communication networks, protocol frames contain
fields with fixed and incompressible length. These fields include, for example, the
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identifier field, the CRC (Cyclic Redundancy Check) field, which is used by error
detection algorithms. For example, in CAN networks, the minimal length of the
fixed protocol fields is 47 bits (the length can be more important because of the
bit-stuffing mechanism as given in Rachid and Collet [196]). A measure that is
encoded in 12 bits and sent in a CAN message only represents 20 % of the size of
the message. In Bluetooth networks, the minimal size of the data field is 368 bits. If
an information whose size is less than 368 bits is to be transmitted, then padding by
‘0’ bits must be carried out.

The various approaches, which are related to the “per message” paradigm, may
be classified into two categories:

• The decentralized minimization of the network bandwidth usage. The basic idea
is that each node tries to locally minimize its bandwidth consumption.

• The scheduling of the concurrent access to the network. In these approaches,
a more global view of the application, of its distribution and of the network ac-
cess mechanism is considered. The information transmission over the network is
managed by taking into account static characteristics (the model) or instantaneous
information (the state) of the controlled dynamic system.

2.2.3.1 Minimization of the Network Bandwidth Usage

A research direction related to the “per message” paradigm is the model based con-
trol, which was studied in Yook et al. [259], Montestruque and Antsaklis [177, 178],
Hespanha and Xu [117, 118], Li et al. in [149, 150]. The basic idea of this approach
is to use local open-loop observers in order to reduce the required communications
between the sensors and the controller.

In [259], a method allowing the minimization of the required communications
in some particular distributed control applications was proposed. This method ad-
dresses multivariable discrete-time LTI systems that are implemented according to a
specific distributed architecture and controlled by using output-feedback. The global
distributed system has n states,m inputs andm outputs, such that the ith input ui(k)
and the ith output yi(k) are co-located at the same network node, which is also
equipped with a computer (Fig. 2.5). The measurements, which are provided by the
m sensors, are corrupted by a measurement noise ν(k). The m nodes are connected
through a perfect network (without delays, nor losses of information). Each node
contains an estimator that estimates at the same time its own output as well as the
outputs of the other nodes. The estimated outputs ŷj (k), j �= i are then used by the
ith node, for the computation of the control ui(k), instead of the measured outputs
yj (k)+νj (k), j �= i, whose use would require a transmission of their values over the
network. By this way, an important communication saving is achieved, at the price
of a more important computational load at the computer nodes. This approach relies
on the fact that all the estimators compute identical values of the estimated outputs
ŷj (k). If the estimator of the ith node realizes that |yi(k) + νi(k) − ŷi (k)| ≥ gi ,
where gi is a fixed threshold, then it broadcasts to the other nodes the value of its
measurement yi(k) + νi(k), enabling them to update the state of their estimators.



2.2 Integrated Approaches for Control and Resource Allocation 23

Fig. 2.5 Global architecture and model of the ith node according to the approach of [259]

By this way, |y(k)+ ν(k)− ŷ(k)| is limited by g = [g1, . . . , gm]T . Finally, a result
allowing the choice of H to guarantee a maximum degradation of ε % compared to
the ideal system (without networked communication) was stated. The experimental
validation of the method was carried out on a two axis contouring system. The ex-
perimental results have shown that only 12 % of the communication is necessary in
order to guarantee a maximum degradation of 1 %, assuming a model uncertainty
of 20 %.

A similar approach was studied in Montestruque and Antsaklis [177]. In the con-
sidered architecture, the controller is directly connected to the plant. A perfect net-
work connects the sensors to the controller. The sensors periodically transmit (each
Ts time instants) the measurements to the controller, which is provided with an
open-loop state-observer. The estimated state is then used for the computation of
the control commands. At the reception of a message from the sensors, the state of
the open-loop observer is updated. The necessary and sufficient stability conditions
of this particular model of networked control systems were stated, and generalized
to take into account output feedback. Sufficient stability conditions when the sam-
pling period, Ts , is time-varying but bounded were presented in Montestruque and
Antsaklis [178] and Li et al. in [149, 150].

Next, in Hespanha and Xu [117], a similar architecture was studied. In the con-
sidered model, the plant is disturbed by a zero-mean Gaussian white noise. Instead
of sending the measurements (of the full state) when the prediction error exceeds
a threshold [259] or periodically [177], the transmission of measurements is per-
formed using predefined communication logics. The study and the evaluation of
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different communications logics (stochastic and deterministic) was also performed.
By modeling the problem as an appropriate jump-diffusion process, sufficient con-
ditions for the boundedness of the finite moments of the estimation error were estab-
lished for the considered logics. Considering a long term average cost, penalizing at
the same time the estimation error and the transmission rate, the expression of the
optimal communication logics was explicitly given in Hespanha and Xu [118].

In Gommans et al. [97, 98] the main rationale behind the novel dropout compen-
sators remains the same. They act as model-based, closed-loop observers if infor-
mation is received and as open-loop predictors if a dropout occurs. These compen-
sators were considered for two dropout models, using either worst-case bounds on
the number of subsequent dropouts or stochastic information on the dropout prob-
abilities. For the worst-case bound dropout model, sufficient conditions for global
asymptotic stability of the closed-loop networked control systems (NCS) with the
compensation based strategy are derived. For the stochastic dropout models, neces-
sary and sufficient conditions for (exponential) mean square stability of the closed-
loop NCS are given. In addition, for both dropout models they developed linear ma-
trix inequality (LMI) based conditions for the synthesis of the compensator gains.

In Chap. 12 of this book, we propose a design methodology combining zero and
hold strategies in order to optimize the system performance as well as to increase its
stability domain in presence of packets dropouts. This static switching strategy may
be adapted to operate state dependent one.

2.2.3.2 Medium Access Scheduling

The experimental study of communication networks characteristics was performed
in Nilsson [187] and Lian in [153]. Studying the main characteristic of ControlNet,
DeviceNet and EtherNet networks, Lian et al. [153] have shown that the transmis-
sion time of a message (i.e., the time the message spends on the physical link from
the source to the destination) in the most used networks may be neglected. The de-
lays occurring in networked control loops are mainly due to the contention between
the different messages which are sent by the nodes of the network. The most effi-
cient way of reduction of these delays is the design and use of appropriate message
scheduling strategies.

These results show the practical importance of the study of the medium access
control as well as scheduling algorithms. The problems of the concurrent access to
shared communication resources were studied these last years within various theo-
retical frameworks and with various modeling assumptions. We present thereafter a
brief summary of the approaches taking into account explicitly the concurrent access
to the communication network. These contributions were classified into three cate-
gories, according to the class of the used scheduling algorithms: off-line scheduling,
on-line scheduling of the sensors-to-controller link and the on-line scheduling of the
controller-to-actuators link.

• Off-line scheduling: The problem of optimal control and off-line scheduling of
the controller-to-actuators link was studied in Rehbinder and Sanfridson [200].
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In the proposed model, the control commands are sent to the actuators through a
shared TDMA bus. At each slot, only one control command can be sent, the re-
maining commands for the other actuators are held constant. The choice of which
actuator to update at each slot was handled using the notion of communication
sequence introduced by Brockett [43]. Only periodic communication sequences
were considered. A quadratic cost function is associated to each communication
sequence, corresponding to the worst-case initial condition and worst-case se-
quence permutation. Control commands and periodic communication sequences
are obtained through the solving of a complex combinatorial optimization prob-
lem. The problem of the optimal control and scheduling in the sense of LQG
was introduced and developed in Lincoln and Bernhardsson [155]. The relaxed
dynamic programming method was applied for its resolution leading to a more
efficient search heuristics. A heuristic approach for the problem of the optimal
control and off-line scheduling of the sensors-to-controller link in the sense of
the H∞ performance index was proposed in Lu [161]. The application of branch
and bound algorithm to this problem was performed in Ben Gaid et al. in [22].
The application of genetic algorithms and particle swarm optimization to this
problem was undertaken by Longo et al. in [159]. A generalization of this ap-
proach to tackle uncertainties of the plant model was undertaken by Al-Areqi et
al. in [2], and to cope with nonlinearities in Su et al. [221].

• On-line scheduling of the sensors-to-controller link: The scheduling of sensor
measures was studied in Walsh and Ye [244]. The addressed configuration con-
sists in a continuous-time plant where the controller is directly connected to the
actuators. The network only connects the sensors to the controller. The notion of
MATI (maximum allowable transfer interval) was introduced, and represents the
upper bound on the time between two consecutive sensor messages transmissions
that guaranties the stability of the plant. The MATI is defined for a given schedul-
ing algorithm. A new on-line scheduling algorithm, called MEF-TOD (maximum
error first—try once discard), was introduced. In this dynamic priority on-line
scheduling algorithm, the priority of a sensor message depends on the error of the
measure that it carries; smaller the error is, lower is the assigned priority. The er-
ror is defined as the weighted absolute value of the difference between the value
of the current measure and the value of the last transmitted measure. If a node
fails to send a message, then this message is discarded (dropped from the queue).
The authors stated sufficient stability conditions, involving the value of the MATI,
which ensure the stability of the system, when the MEF-TOD algorithm and a
round robin like static scheduling algorithm are used. These results are based on
the perturbation theory and are very conservative. This approach was generalized
to nonlinear systems in Walsh et al. [245]. The practical implementation of the
MEF-TOD algorithm was considered in [243]. This implementation, which was
performed on CAN networks, is mainly based on the nondestructive bitwise ar-
bitration of CAN technology to dynamically encode the dynamic priorities. The
effects of the quantization of priorities were experimentally studied. Sufficient
input/output Lp-stability results for a class of network scheduling protocols, in-
cluding MEF-TOD and static scheduling algorithms were stated and illustrated
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in Nesic and Teel [185]. These results considerably reduces the conservativeness
of the results that were initially stated in Walsh et al. [244]. The application of
the Rate Monotonic scheduling algorithm to the networked control systems was
investigated in Branicky et al. [41].

• On-line scheduling of the controller-to-actuators link: On-line scheduling of con-
trol commands to the actuators was studied in Palopoli et al. [191]. In the pro-
posed model, it is assumed that every slot, only one command vector can be sent
to an actuator group, the other control vectors are set to zero. The stabilization
is achieved using a model predictive controller, which calculates on-line the ap-
propriate control law and the allocation of the shared bus. The cost function used
by the Model Predictive Control (MPC) calculates a weighted sum of the infin-
ity norms of the states and the control commands over a specified horizon. The
optimization problem solved at each step by the MPC algorithm was proven to
be equivalent to the generalized linear complementarity problem (GLCP) [258].
The same architecture is considered in Goodwin et al. [99]. The considered model
assumes that it is possible to send only one message during one sampling period.
The actuators, which do not receive their control inputs, maintain constant the last
received ones. The control commands are quantized with a fixed precision. The
expression of the optimal model predictive controller, in the sense of a quadratic
cost function, was established. The optimal solution as well as computationally
efficient approach (OPP) to the problem of joint control and network scheduling
was proposed in Ben Gaid et al. [27]. A solution expressed as piecewise linear
feedback law was proposed in Görges et al. [101]. Robustness issues were inves-
tigated in Al-Areqi et al. [2], using the OPP algorithm for complexity reduction.
The impact of network induced delays and packet dropouts to this problem were
investigated in Guo and Jin [107].

2.2.4 Allocation of Computational Resources

2.2.4.1 Optimal Control and Mono-Processor Scheduling

The problem of the optimal selection of control tasks periods subject to schedula-
bility constraints was addressed in Seto et al. [208]. Assuming that the discrete-time
control laws are designed in the continuous-time domain and then discretized, the
notion of performance index was introduced. The performance index quantifies the
performance of the digitalized control law at a given sampling frequency. In most
control applications, the performance index is minimal when the continuous-time
control law is used and increases (i.e., degrades) as the sampling frequency is de-
creased (note that for some control systems this relationship is more complicated,
as illustrated in Eker [79]). Considering this important class of control applications,
the problem of the optimal sampling frequency assignment for a set of control tasks
consists on minimizing a weighted sum of the performance indices of the consid-
ered control tasks subject to schedulability constraints. In Rehbinder et al. [199],
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Fig. 2.6 General model of a feedback scheduler

the optimal off-line scheduling of control tasks in the sense of LQG was consid-
ered, assuming that all the control tasks have the same constant execution time.
The resolution of this problem was performed using the exhaustive search method,
which limits the application of this approach to applications with a limited number
of tasks. Similarly, the problem of the optimal mono processor scheduling of control
tasks in order to optimize a robustness metric (i.e., the stability radius) was treated
in Palopoli et al. [192, 193].

2.2.4.2 Scheduling of Control Tasks in Environments with Variable
Computing Workload

It is well known that worst-case analysis techniques given in Sha et al. [211] may be
used in order to guarantee the deadlines of tasks with variable but bounded execution
times. However, when the average execution time is smaller than the worst-case
execution time (WCET), these techniques lead to an oversized design. Recently, new
approaches were proposed in order to handle variations in tasks execution times
and system overload more efficiently than worst-case analysis techniques, among
them the feedback scheduling given in Lu et al. [160], Cervin et al. [55], Robert et
al. [203], Xia and Sun [255] and the elastic task model given in Buttazzo et al. [49].

Feedback scheduling (FSB) is a control theoretical approach to real-time schedul-
ing of systems with variable workload. The feedback scheduler whose general
model is schematically given in Fig. 2.6, may be seen as a “scheduling controller”
that receives filtered measures of tasks execution times and acts on tasks periods in
order to minimize deadline misses. The application of feedback scheduling to robot
control was experimentally evaluated in Simon [212].

In the elastic task model given in Buttazzo et al. [49], a periodic task set con-
taining N tasks may be seen as a sequence of N linear springs. In this model, the
utilization factor of a task is analogous to the spring’s length. Tasks may change
their utilization rate in order to handle overload conditions, which may occur, for
example, if a new task is admitted to the computing system. In order to ensure
the schedulability of the task set, tasks are compressed or decompressed. In Liu
et al. [158], the elastic task model was applied to the scheduling of control tasks
with variable execution times. The use of this method allows the application of the
approach of Seto et al. [208] in order to find the optimal tasks periods based on
tasks average execution times (instead of their worst-case execution times), lead-
ing to an improvement of the control performance. Buttazzo et al. [47] generalized
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this approach to take into account the degradations that may occur to the control
system if its control task that was designed to work at a given rate runs at another
rate. The analytical expressions of the performance degradations were given and a
compensation method was proposed. This method allows to trade-off the perfor-
mance degradations and the required memory space (which is needed to store the
parameters of the pre-computed control laws that will be used by the compensation
algorithm).

However, all these described approaches are mainly based on the assumption
that control performance is a convex function of the sampling period. In reality, as
illustrated in Martì [167] (and further in the forthcoming Chap. 4), the quality of
control is also dependent on the dynamical state of the controlled system.

The work of Bini and Cervin [34], Samii et al. [205, 206], although different
in the formulation of the optimization problem in terms of objective functions and
constraints, can be included in a subset of works that share in common an off-line
approach where sampling periods are derived before run-time and kept constant
during execution.

Inside the class of FBS methods, in our opinion, there are two main trends. The
first one concerns those methods relaying on the instantaneous plant state informa-
tion and metric in order to adapt the sampling period. In this class, we may classify
the work of Martì et al. [169]. The second class includes those methods calculating
the future sampling periods based on finite or infinite horizon metric as, for example,
the methods developed in Henriksson and Cervin [114], Castane et al. [52], Cervin
et al. [57]. This type of approach was also adopted in Ben Gaid et al. [28, 29] where
the sampling period is calculated as a function of the states of the controlled plants,
a given static scheduling and a quadratic metric over an periodic infinite horizon.

2.3 Notes and Comments

This chapter introduced the basic concepts, the terminology as well as the state of
the art of communication and computation resource allocation approaches in Dis-
tributed Control and Embedded Systems (DCES). To this end, the basic concepts
of the real-time scheduling theory are outlined, focusing primarily on the hard real-
time scheduling of tasks on processors and messages on deterministic networks. An
outline of the state of the art of the approaches for the integrated control and com-
munication/computation resource allocation was given, providing an overview of
the tackled problems and the provided solutions.

This particular interest on the hard real-time systems is motivated by their indus-
trial realism and utility. Proposing simple and relevant integrated model of DCESs
are of prime importance for their design as well as for their wide spread in indus-
trial applications. We have clearly seen that different problems posed and treated in
literature are related to their stability and performance robustness which are, practi-
cally, of different nature. The stability analysis of DCES is related to methods and
tools used in the field of control and information sciences (Mitter et al. [80, 227])
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whereas their performance optimization calls for methods and approaches related
traditionally to control system domain and in parallel to those of computer science.
The necessity of double-breasted view of the DCES design problem not only facili-
tates its analysis but allows optimizing its performances. Application of simple and
consistent scheduling policy given respectively in Yook et al. [259], Hristu [123],
Longo et al. [159], Ben Gaid et al. [27, 28] allows reducing their model complexity
by inducing structure properties such as periodicity of control and/or sensing sig-
nals/messages. This fact, as it will be seen in the forthcoming chapters of Part II,
simplify substantially the design of DCESs projecting it in a class of well-known
problems in the area of control systems.

Naturally, the DCES area encompasses a larger class of applications including
those for which a predefined or fixed scheduling policy is impossible. This is mainly
due to non-determinism induced by the computation model related to the network
nodes as well as to the model of communication related to the network. In this case,
we observe variable induced delays on signals/messages sending and reception as
well as modification of their reception order. This fact faced us with the problem
of system information reduction in general and particularly the way to handle re-
lated variable induced delays. As it will be seen in the forthcoming Chaps. 10, 11,
12, 13 and from the literature review done in Sect. 2.2.1, two main trends are ob-
served. The first one concerns the techniques related to system state information
enhancement based on the system model as a complementary information source.
The second one proposes methods and approaches whose objectives are to use the
communication and calculation resources offered by DCES with respect to the sys-
tem state or system performances. These two main trends have the same objective
that is injecting complementary information in the system in order to overcome the
lack of resources and/or to reduce the resources reserving them in priority to sub-
systems needing more. The topological structure and the size of DCES are different
and function of the considered application. The decisions taken at the level of each
subsystem composing it are effective if they are coordinated between them. The
different approaches and techniques originally borrowed from the computer science
such as synchronization help to increase the system performances. In the same time,
they induce new models of communication between sub-systems that have to be
considered and merged with the dynamic model of DCES. In fine, the main problem
to handle is related to the structure and the quantity of information communicated
between sub-systems in order to reduce the information delay of the critical system.
Mastering this delay represents one of the main challenges in the design of DCES.



Chapter 3
Modeling and Analysis of Resource-Constrained
Systems

In this chapter, we present our abstract view of a distributed control and embedded
systems (DCES) operating under communication constraints. This abstract view is
described by the class of computer-controlled systems, which was introduced by
Hristu in [122]. This class allows modeling, in a finely-grained and abstract way,
the impact of the resource limitations on the behavior of the controlled system. In
this book, we will rather use the term of resource-constrained systems to refer to
this class of systems. After the introduction of the notation we are using, we present
the framework of the mixed logical dynamical (MLD) systems, which represents
a modeling framework for hybrid systems. Such a framework was introduced by
Bemporad and Morari in [21]. We show that resource-constrained systems may be
modeled in the MLD framework. Furthermore, we propose a systematic approach
allowing establishing the MLD model of a resource-constrained system. Finally, we
review the main theoretical results that are related to resource-constrained systems,
and encountered in the literature. These results include the problems of stabilization,
tracking, reachability and observability.

3.1 Mixed-Logical Dynamical (MLD) Systems

Mixed logical dynamical (MLD) systems, represent a class of hybrid systems, that
was introduced by Bemporad and Morari in [21]. This framework was proposed in
order to allow the modeling and the control of a class of systems where dynamics
interact in tightly coupled way with logic and heuristic rules. The MLD framework
provides a general model generalizing various existing models such as linear hybrid
systems, linear constrained systems, finite-state machines . . . The logical aspects
may be formulated in the propositional logic. The fundamental idea of the MLD
framework is to represent these propositional formulas by equivalent linear con-
straints, involving continuous and/or Boolean variables. In this way, it is possible to
represent many hybrid systems by linear dynamic equations whose variables, which
may be continuous and/or Boolean, are subjected to linear inequality constraints.
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Note that the idea of representing propositional formulas by equivalent linear in-
equalities was developed in the past in the field of artificial intelligence, and more
specifically for inference engines. Using this correspondence, the proof of a theo-
rem is reduced to the search of the existence of a feasible solution of an appropriate
optimization problem. In fact, by associating a Boolean variable to a propositional
formula, such that the truth-value of the formula is equal to the value of the variable,
the propositional calculus operations like conjunction, disjunction, negation, impli-
cation or equivalence may be translated into equivalent linear programs. Let X1
and X2 be two propositional formulas and α1, α2 two associated Boolean variables
verifying

X1 (resp. X2) is True if and only if α1 = 1 (resp. α2 = 1),

and equivalently

X1 (resp. X2) is False if and only if α1 = 0 (resp. α2 = 0).

It is easy to verify the correspondence between the propositional formulas and the
conjunction of linear inequalities that are described below.

X1 ∨X2 is equivalent to α1 + α2 ≥ 1,

X1 ∧X2 is equivalent to α1 = 1, α2 = 1,

¬X1 is equivalent to α1 = 0,

X1 =⇒ X2 is equivalent to α1 − α2 ≤ 0,

X1 ⇐⇒ X2 is equivalent to α1 − α2 = 0.

Following the same reasoning, it is also possible to translate terms involving at
the same time continuous and Boolean variables into linear inequalities. Let f :
R
m −→R be a linear function. Let X be a bounded set. Assume that

U = max
x∈X

f (x),

and

L= min
x∈X

f (x).

Morari and Bemporad have shown that the product αf (x), for x ∈X , where α is
a Boolean, may be replaced by a conjunction of linear constraints, if the auxiliary
variable y = αf (x) is introduced. It is easy to verify that the equality y = αf (x) is
equivalent to

y ≤Uα,
y ≥ Lα,
y ≤ f (x)−L(1− α),
y ≥ f (x)−U(1− α).
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This translation will be of great importance when dealing with the problem of the
joint optimization of control and scheduling.

In [21], many other useful translations are reviewed. Using these transformations,
many hybrid systems may be handled in the MLD framework.

The general state-model of a MLD system is given by the following equations

x(k + 1) = Akx(k)+B1ku(k)+B2kα(k)+B3k ξ(k), (3.1a)

y(k) = Ckx(k)+D1ku(k)+D2kα(k)+B3k ξ(k), (3.1b)

E2kα(k)+E3k ξ(k) ≤ E1ku(k)+E4k x(k)+E5k , (3.1c)

where

x =
[
xc
xl

]
, xc ∈R

nc , xl ∈ {0,1}nl , n= nc + nl
is the state, which contains nc real-valued components and nl Boolean-valued com-
ponents,

y =
[
yc
yl

]
, yc ∈R

pc , yl ∈ {0,1}pl , p = pc + pl,

and

u=
[
uc
ul

]
, uc ∈R

mc, ul ∈ {0,1}ml , m=mc +ml
are respectively, the output and the command input of the system, also containing
both continuous and Boolean components. Here, α ∈ R

ql and ξ ∈ R
qc are respec-

tively continuous and Boolean auxiliary variables.
It may be remarked that the inequality (3.1c) might be satisfied for many values

of α(k) and ξ(k). For that reason, the determination of x(k + 1) and y(k) may
be non-unique. A condition that is generally imposed on MLD systems is to be well
posed. This condition guarantees that once x(k) and u(k) are assigned, then x(k+1)
and y(k) are uniquely determined authorizing thus the definition of trajectories in
the state or output spaces. In general, MLD models that are obtained from a real
physical system are well posed. The formal definition of a well posed MLD system
may be found in [21].

3.2 MLD Modeling of Resource-Constrained Systems

Consider the continuous-time LTI plant described by

ẋc(t) = Acxc(t)+Bcuc(t)+Wcwc(t), (3.2a)

yc(t) = Ccxc(t) (3.2b)

where xc(t) ∈ R
n, uc(t) ∈ R

m, yc(t) ∈ R
p and wc(t) ∈ R

r represent respectively,
the state, the command input, the output and the disturbance input. The plant is



34 3 Modeling and Analysis of Resource-Constrained Systems

controlled by a discrete-time controller, with sampling period Ts . The plant (3.2a),
(3.2b) and the controller are connected through a limited bandwidth communication
bus. At each sampling instant t = kTs (k ∈ N), the bus can carry at most br mea-
sures and bw control commands, with br ≤ p and bw ≤ m. The input to the plant
is preceded by a zero-order holder, which maintains the last received control com-
mands constant until new control values are received. Let u(k) be the input of the
zero-order holder at instant kTs , then its output is given by

uc(t)= u(k) if kTs ≤ t < (k + 1)Ts. (3.3)

First, we assume thatWc = 0. Let x(k)= xc(kTs) and y(k)= yc(kTs) be respec-
tively, the sampled values of the state and the output. A discrete-time representation
of the plant (3.2a), (3.2b) at the sampling period Ts is given by

x(k + 1) = Ax(k)+Bu(k), (3.4a)

y(k) = Cx(k) (3.4b)

where A= eAcTs , B = ∫ Ts
0 eAcτBc dτ and C = Cc.

We will assume, throughout this monograph, that the pairs (A,B) and (A,C)
are respectively reachable and observable. These assumptions are systematically
satisfied if the pair (Ac,Bc) is reachable, the pair (Ac,Cc) is observable and the
sampling period Ts is non-pathological. A sampling period is said pathological if
it causes the loss, for the sampled-data model, of the reachability and observability
properties, which were verified by the continuous model before its discretization.
In [136], Kalman et al. have proved that the set of pathological sampling periods is
countable, and uniquely depends on the eigenvalues of the state matrix Ac. Conse-
quently, in order to avoid the loss of reachability and observability, which may be
caused by the sampling, it is sufficient to choose Ts outside this set.

Communication constraints may be formally described by introducing two vec-
tors of Booleans σ(k) ∈ {0,1}br and δ(k) ∈ {0,1}bw , defined for each sampling in-
stant k.

Definition 3.1 The vector σ(k) defined by
{
σi(k)= 1 if yi(k) is read by the controller at instant k,

σi(k)= 0 otherwise

is called sensors-to-controller scheduling vector at instant k.

Definition 3.2 The vector δ(k) defined by
{
δi(k)= 1 is ui(k) updated at instant k,

δi(k)= 0 otherwise

is called controller-to-actuators scheduling vector at instant k.
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Fig. 3.1 Schematic representation of a resource-constrained system

The vector σ(k) indicates the measures that the controller may read at instant k.
In a similar way, the δ(k) indicates the control inputs to the plant that the controller
may update at instant k. The introduction of the scheduling vectors allows model-
ing in a simple way the communication constraints. The limitations that affect the
transmission of the measures to the controller may be described by the following
inequality:

p∑
i=1

σi(k)≤ br . (3.5)

In a similar way, the limitations concerning the sending of the control commands to
the actuators may be modeled by

m∑
i=1

δi(k)≤ bw. (3.6)

The last received control inputs (through the communication bus) are kept con-
stant. Consequently, if a control input is not updated at the kth sampling period, then
it is maintained constant. This assertion may be modeled by the logic formula:

δi(k)= 0 =⇒ ui(k)= ui(k − 1). (3.7)

The plant, the analog-to-digital and digital-to-analog converters, the communi-
cation bus and the controller are schematically depicted in Fig. 3.1. In this figure,
η(k) ∈R

br represents the vector of partial measurements that the controller receives
(through the communication bus) at the sampling period k. In a similar way, vec-
tor v(k) ∈R

bw represents the vector of partial control commands that the controller
may send to the actuators (through the limited bandwidth communication bus) at the
sampling period k. Blocks D/A and A/D respectively represent the digital-to-analog
and analog-to-digital converters. The controller may also assign the values of the
sensors-to-controller scheduling vector (σ(k)) as well as the controller-to-actuators
scheduling vector (δ(k)).
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Knowing v(k) and the relation (3.7), u(k) is given by

⎧⎪⎪⎨
⎪⎪⎩
ui(k)= vj (k) if δi(k)= 1 and

i∑
l=1

δl(k)= j,

ui(k)= ui(k − 1) otherwise.

(3.8)

It may be easily verified that if vj1 and vj2 are mapped to respectively ui1 and ui2 ,
than (j1 < j2) implies that (i1 < i2).

The mapping (3.8) may be written in an appropriate matrix form. Let
[Dδ(k)]1≤i≤m,1≤j≤bw the matrix defined by

⎧⎪⎪⎨
⎪⎪⎩

[
Dδ(k)

]
ij
= 1 if δi(k)= 1 and

i∑
l=1

δl(k)= j,
[
Dδ(k)

]
ij
= 0 otherwise,

and

Eδ(k)=
⎡
⎢⎣

1− δ1(k)
. . .

1− δm(k)

⎤
⎥⎦ ,

then

u(k)=Dδ(k)v(k)+Eδ(k)u(k − 1).

Conversely, knowing the control input u(k) and the scheduling decision δ(k), the
vector of control commands v(k) that were sent through the bus may be determined.

Let [Mδ(k)]1≤i≤bw,1≤j≤m the matrix defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Mδ(k)

]
ij
= 1 if δj (k)= 1 and

j∑
l=1

δl(k)= i,
[
Mδ(k)

]
ij
= 0 otherwise,

then

v(k)=Mδ(k)u(k). (3.9)

A schematic representation illustrating this mapping is given in Fig. 3.2.
In the same way, the input η(k) to the controller is defined by

⎧⎪⎪⎨
⎪⎪⎩
ηi(k)= yj (k) if σj (k)= 1 and

j∑
l=1

σl(k)= i,

ηi(k)= 0 otherwise.

(3.10)
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Fig. 3.2 Schematic
representation of the mapping
of v(k) ∈R

3 to u(k) ∈R
5

corresponding to the
scheduling vector δ(k)
verifying δ1(k)= 0,
δ2(k)= 1, δ3(k)= 1,
δ4(k)= 1 and δ5(k)= 0

This mapping may be also written in an appropriate matrix form. Let
[Mσ(k)]1≤i≤br ,1≤j≤p the matrix defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Mσ(k)

]
ij
= 1 if σj (k)= 1 and

j∑
l=1

σl(k)= i,
[
Mσ(k)

]
ij
= 0 otherwise,

then we have the relation

η(k)=Mσ(k)y(k). (3.11)

Equations (3.4a), (3.4b), (3.5), (3.6), (3.8) and (3.10) describe a model where dy-
namics and plant performance are tightly coupled with the assignment of com-
munication resources. In the particular case where br = p, bw = m, σ(k) = 1p,1
and δ(k) = 1m,1, for all k ∈ N, this model coincides with the classical model of a
sampled-data system. The presence of the communication bus moves the classical
frontier between “the plant” and “the controller”. In fact, for sampled-data systems,
this frontier lies at the digital-to-analog and analog-to-digital converters. In the con-
sidered model, this frontier moves to the communication bus interface. We will call
resource-constrained system the entity constituted by the sampled-data model of the
plant and the communication bus. The formal definition of a resource-constrained
system is given thereafter.

Definition 3.3 A resource-constrained system is a mixed logical dynamical system
having three inputs: the command input v(k), the scheduling vector of the sensors-
to-controller link σ(k) and the scheduling vector of the controller-to-actuators link
δ(k). It has one output denoted η(k). Its mathematical model is defined by:

• recurrent equations (3.4a), (3.4b) describing the sampled dynamics of the plant,
• inequality constraints (3.5) and (3.6) expressing the limitations of the communi-

cation medium,
• logic formulas (3.8) describing the mapping of the computed controller outputs
v(k) to plant inputs u(k), knowing the scheduling decisions δ(k),

• logic formulas (3.10) describing the mapping of the sampled plant outputs y(k)
to the controller’s inputs η(k), knowing the scheduling decisions σ(k).

The particularity of a resource-constrained system, compared to a sampled-data
system, is that at each sampling period, it is important to determine:
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• the measures that should be acquired (it is only possible to acquire at most br
measures, defined by the scheduling function σ(k)),

• the control commands that should be applied (it is only possible to apply at most
bw control commands, defined by the scheduling function δ(k)),

• the value of the applied control commands.

3.3 Notion of Communication Sequence

The notion of communication sequence was introduced by Brokett [43] and general-
ized by Hristu [122] in order to quantify the notion of attention [44]. It characterizes
the “allocation” of the bus resources to the different inputs and outputs of the sys-
tem, that is, the attention that must be given to each input and output. There are two
types of communication sequences: finite communication sequences and periodic
infinite communication sequences.

Definition 3.4 [122] A finite communication sequence ρN−1 of lengthN and width
l is a finite sequence ρN−1 = (ρ(0), . . . , ρ(N − 1)) of elements of {0,1}l .

Definition 3.5 [122] A periodic communication ρT−1 sequence of period T and
width l is an infinite sequence ρT−1 = (ρ(0), . . . , ρ(T − 1)) of elements of {0,1}l
verifying ρ(k + iT )= ρ(k) ∀i ∈N.

In resource-constrained system, a communication sequence is a sequence of
scheduling vectors. We may distinguish between two types of communication se-
quences:

• sequences of sensors-to-controller scheduling vectors, which will be called mea-
surements communication sequence,

• sequences of controller-to-actuator scheduling vectors, which will be called com-
mands communication sequence.

Naturally, each element of a finite or periodic communication sequence must respect
the communication and fairness constraints.

Definition 3.6 [122] Let S be a resource-constrained system, characterized by its
resource limitations br and bw . The measurements communication sequence σN−1

(resp. the commands communication sequence δN−1) is called admissible if

• ∀k ∈ N, 0 < ‖σ(k)‖2
2 ≤ br (resp. 0 < ‖δ(k)‖2

2 ≤ bw) (non-surpassing of the bus
capacity),

• Span{σ(0), . . . , σ (N − 1)} =R
p (resp. Span{δ(0), . . . , δ(N − 1)} =R

m) (during
any period N , each controller input (resp. plant input) is updated at least one
time).
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We introduce the notion of maximal communication sequence, in order to char-
acterize the communication sequences that use all the available communication re-
sources. This notion will be helpful to simplify the definition, formulation as well
as to find solutions to the problems that will be tackled thereafter.

Definition 3.7 Let S be a resource-constrained system characterized by its re-
source limitations br and bw . The measurements communication sequence σN−1

(resp. the control communication sequence δN−1) is called maximal if

• ∀k ∈ N, 0 < ‖σ(k)‖2
2 = br (resp. 0 < ‖δ(k)‖2

2 = bw) (usage of all the available
communication resources).

3.4 State Representation of Resource-Constrained Systems

For predefined scheduling vectors σ and δ, a resource constrained system S may be
viewed, between its input v(k) and its output η(k), as a linear time-varying system.
Based on the previous definitions, and denoting

χ(k)= u(k − 1)

and

x̃(k)=
[
x(k)

χ(k)

]
,

the linear sampled-data and time-varying model of system S is given by

x̃(k + 1) = Ã(k)x̃(k)+ B̃(k)v(k), (3.12a)

η(k) = C̃(k)x̃(k), (3.12b)

where

Ã(k) =
[
A BEδ(k)

0m,n Eδ(k)

]
,

B̃(k) =
[
BDδ(k)

Dδ(k)

]
,

and

C̃(k)=Mσ(k)
[
C 0p,m

]
.

3.5 Stabilization with Limited Resources

Given a resource-constrained system and a fixed periodic scheduling defined by
two periodic admissible communication sequences δT−1 = (δ(0), . . . , δ(T − 1))
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(commands communication sequence) and σT−1 = (σ (0), . . . , σ (T −1)) (measure-
ments communication sequence), an interesting question is to determine whether
it is possible of stabilize the discrete-time system (3.4a), (3.4b), subject to the
communication constraints (3.5), (3.6), (3.8) and (3.10), using a constant output
feedback gain Σ ∈ R

bw×p such that v(k) = Σȳ(k), where ȳ(k) ∈ R
p verifies

ȳ(k)=Dσ (k)η(k)+Eσ (k)ȳ(k − 1).

Problem 3.1 [122] Given a resource-constrained system S , two admissible
T -periodic communication sequences σT−1 and δT−1, find a constant output feed-
back gainΣ ∈R

bw×p that stabilizes system (3.4a), (3.4b), under the communication
constraints (3.5), (3.6), (3.8) and (3.10).

In [122], Hristu proves that this problem is equivalent to the following NP-hard
problem:

Problem 3.2 [122] Given a collection of matrices Mi ∈ R
β×β , 0 ≤ i ≤ imax and

scalars θ1, . . . , θimax , find a stable element of the affine subspace:

M =M0 +
imax∑
i=1

θiMi , (3.13)

where β = (2T 2 − T )n and imax =mp.

The proof essentially exploits the periodicity of the communication sequences in
order to represent the periodic discrete-time model by an equivalent discrete-time
invariant model of higher dimension (β = (2T 2 − T )n). The procedure allowing
to obtain this higher dimension invariant model (and to prove the equivalence) was
called “extensification”. Using this equivalence, the output-feedback stabilization of
the resource-constrained system, based on two fixed T -periodic communication se-
quences σT−1 and δT−1, amounts to find the scalars θi for which the spectral radius
of the extensive form lies in the unit circle. A simulated annealing-based heuristic,
aiming at minimizing the spectral radius of the extensive form, was proposed.

3.6 Trajectory Tracking with Limited Resources

The N -steps output tracking problem was also studied in [122]. The considered
problem is a feed-forward control problem. All communication resources are allo-
cated to the transmission of the control commands (b= bw and br = 0).

Problem 3.3 [122] Given a resource constrained system S with m ≤ p, an inte-
ger N , an admissible finite commands communication sequence δN−1 of length N
and width m, and a desired output yd ∈L

p

2 ([0,NTs]), find the optimal sequence of
control commands uN−1∗ = (u∗(0), . . . , u∗(N − 1)) that minimizes ‖y − yd‖2.
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An analytic solution was proposed in [122]. Let Υ be the operator defined by

Υ : lm2
({0, . . . ,N − 1}) −→L

p

2 [0, T ],
u �−→ y(t)= Υ u

such that

Υ u=
N−1∑
k=0

ΘTs (t − kTs)u(k),

with

ΘTs (t)=
{∫ min(t,Ts)

0 Cce
Ac(t−τ)Bc dτ t ≥ 0,

0 t < 0.

Let Υ ∗ be the adjoint operator of Υ in the sense of the Euclidian dot or inner prod-
uct. Υ ∗ is defined by

Υ ∗ :L p

2 [0, T ] −→ lm2
({0, . . . ,N − 1}),

y �−→ Υ ∗y

such that

(
Υ ∗y

)
(j)=

∫ NTs

0
ΘTTs (t − jTs)y(t) dt, j = 0, . . . ,N − 1.

For the finite admissible communication sequence δN−1, let Ω(δ)1≤i≤mN,1≤j≤bwN
the matrix defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Ω(δ)

]
ij
= 1 if

⌊
i − 1

m

⌋
≥
⌊
j − 1

bw

⌋
, δ

(⌊
j − 1

bw

⌋)

i−� i
m+1 �m

= 1 and

i−� i
m+1 �m∑
q=1

δ

(⌊
j − 1

bw

⌋)

q

= j −
⌊

j

bw + 1

⌋
bw,

[
Ω(δ)

]
ij
= 0 otherwise,

then we have the following result.

Theorem 3.1 [122] The optimal solution u∗ of Problem 3.3 is

u∗ = (
Ω(δ)T Υ ∗ΥΩ(δ)

)−1
Ω(δ)T Υ ∗(yd − yic),

where

yic(t)= CceActx(0)+
∫ t

0
Cce

Ac(t−τ)Bcuic dτ

and uic is the initial conditions of the elements of u(0) that are not updated at t = 0.
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3.7 Reachability and Observability with Limited Resources

Reachability and observability are structural properties of systems that are first im-
posed in control practice. Given a resource-constrained system S , we may ask the
following questions:

• If the discrete-time model (3.4a), (3.4b) without communication constraints is
reachable (resp. observable), what are the conditions allowing the resource-
constrained system to keep these properties?

• Is it possible to construct periodic communication sequences guaranteeing these
properties? If the answer is positive, under what conditions?

These questions were raised and answered by Zhang and Hristu in [262] for a par-
ticular model of resource-constrained systems. In the considered model, if a con-
trol command is not received, then the corresponding actuator applies zero value,
instead of maintaining constant the last received control command. The general-
ization of these results to resource-constrained systems, using zero-order holders
(corresponding to the model that was considered in this document), was performed
by Ionete and Cela in [131]. The resource-constrained system S , viewed between
its input v(k) and its output η(k) (as represented by Eqs. (3.12a), (3.12b)) being
linear time-varying, it is necessary to use reachability and observability notions that
are suitable for linear time-varying systems.

Definition 3.8 [204] A linear discrete-time system is called l-step reachable (resp.
l-step observable) if l is a positive integer such that the system is reachable (resp.
observable) on [i, i + l], for any i.

Theorem 3.2 [131] If A is invertible and the pair (A,B) is reachable, then for any
integer bw such that 1 ≤ bw ≤ m, there exist integers l, T > 0 and a maximal T -
periodic communication sequence of width m such that system (3.12a), (3.12b) is
l-step reachable.

In practice, the matrix A is obtained by digitalization of matrix Ac, which is
generally invertible. The proof of this theorem is obtained by construction. Con-
sequently, it is possible to employ it in order to construct periodic communication
sequences guaranteeing the reachability. A similar result is obtained for the observ-
ability.

Theorem 3.3 [131] If A is invertible and the pair (A,C) is observable. Then for
any br such that 1≤ br ≤ p, there exist integers l, T > 0 and a maximal T -periodic
communication sequence of width p such that system (3.12a), (3.12b) is l-step ob-
servable.
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3.8 Notes and Comments

In this chapter, we have presented an abstract model of a distributed control and
embedded system operating under communication constraints. We have proposed
a systematic approach allowing to formally describing it in the MLD framework.
The originality of the considered model comes from the fact that communication
resources allocation is viewed as an input. The interaction between control and
scheduling is thus explicitly taken into account. We then reviewed the various the-
oretical results established in the literature on this model and which include the
problems of stabilization, of trajectory tracking, reachability and observability.

Thereafter, we will focus on the possibility that is offered by this model to assign
at the same time the control and scheduling. In the next chapter, we will consider
the problem of optimal integrated control and scheduling, disregarding practical im-
plementation constraints. The resource-constrained systems being an extension of
sampled-data systems, the problem of the joint optimization of control and schedul-
ing may be seen like a natural extension of classical optimal control problems.
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Optimal Co-design of Distributed Control

and Embedded Systems



Chapter 4
Optimal Integrated Control and Scheduling
of Resource-Constrained Systems

The general model of resource-constrained systems allows the on-line assignment
of the sensors-to-controller and the controller-to-actuators scheduling vectors. This
assignment may be based on a pre-computed off-line schedule or on an on-line
scheduling algorithm. The problem of the optimal integrated control and off-line
scheduling of the sensors-to-controller link is the dual problem of the optimal in-
tegrated control and off-line scheduling of the controller-to-actuators link, and may
be solved in a similar way. However, the problem of the optimal integrated con-
trol and on-line scheduling of the sensors-to-controller link is different from the
problem of the optimal integrated control and on-line scheduling of the controller-
to-actuators link, and its formulation and solving are extremely dependant on the
used technology (possibility of on-line arbitration based on the comparison of mes-
sages identifiers like in CAN networks for example). Furthermore, it is not clear
whether an on-line scheduling algorithm of the sensors-to-controller link will be
better (from a control performance point of view) than a predefined off-line schedul-
ing algorithm, especially, because the sensors are physically distributed whereas the
optimal on-line assignment of the sensors-to-controller link requires the knowledge
of all sensors values, which may not be possible due to the communication con-
straints. To the best of the authors knowledge, this last question remains an open
problem.

For that reason, in this chapter, as well as in the forthcoming Chaps. 5 and 6, we
will assume that the state of the plant is available to the controller at each sampling
period. This assumption will allow us to mainly focus on the problem of the opti-
mal integrated control and scheduling of the controller-to-actuators link. Note that
assuming that the state of the plant is available to the controller at each sampling pe-
riod does not necessarily mean that we are restricted to a particular architecture, but
rather that “state of the art methods”, such as an off-line scheduling, are deployed to
obtain a satisfactory estimate of the state at the controller, using an adequate part of
the bandwidth. Let S be a resource-constrained system verifying this assumption.
Furthermore, S verifies p = n= br , σ(k)= 1n,1,∀k ∈N and 0< bw ≤m. To sim-
plify the notation, let b = bw . In the model considered in the sequel, the resource-
constrained system S has two types of inputs: control inputs and scheduling inputs

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
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of the controller-to-actuators link. The fundamental problem that will be addressed
is the problem of the joint optimization of control and scheduling. This problem may
be viewed as the generalization of optimal control problems for linear sampled-data
system. It naturally appears as having a hybrid character, since continuous aspects
(system dynamics) as well as logical aspects (scheduling) interact.

Using the basic results of optimal control theory, we first describe the solution of
the optimal control problem given a fixed communication sequence, over finite and
infinite horizons. Then the problem of the optimal integrated control and schedul-
ing of resource-constrained systems is formulated and solved. The formulation and
solving of this problem are based on the existing theoretical tools from hybrid sys-
tems theory and especially the MLD framework [21], where this problem may be
perfectly modeled. Finally, based on a numerical example, the solutions of this prob-
lem are studied.

4.1 Performance Index Definition

In order to introduce an appropriate measure of the “quality” of the control and
scheduling, inspired by optimal control metrics [14], a quadratic cost function
is associated to the system (3.2) (and implicitly to the resource-constrained sys-
tem S ).

Jc(xc, uc,0, Tf )=
∫ Tf

0

(
xTc (t)Qcxc(t)+ uTc (t)Rcuc(t)

)
dt + xTc (Tf )Scxc(Tf )

(4.1)
where Tf = NTs and Qc , Rc and Sc are positive definite matrices. These matri-
ces define the design specifications of the ideal continuous-time controller. The
sampled-data representation of the cost function Jc(xc, uc,0, Tf ) at the sampling
period Ts is

J (x,u,0,N)=
N−1∑
k=0

[
x(k)

u(k)

]T [ Q1 Q12

QT12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N). (4.2)

The expressions of Q1, Q2, Q12 and Q0 may be found in ([14], pp. 411–412).
In the following, it is assumed that Q, Q2 and Q0 are positive definite matrices,
where

Q=
[
Q1 Q12

QT12 Q2

]
.

Note that this representation does not involve any approximation and it is exact.
Using this representation, the inter-sample behavior is taken into account.
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4.2 Optimal Control over a Finite Horizon for a Fixed
Communication Sequence

The problem of the optimal control, over a finite-time N , for a fixed admissible and
maximal communication sequence δN−1, may be formulated as follows:

Problem 4.1 Given an initial state x(0) and a final time N , find the optimal control
sequence vN−1 = (v(0), . . . , v(N − 1)) that minimizes the cost function:

J (x,u,0,N)=
N−1∑
k=0

[
x(k)

u(k)

]T [ Q1 Q12

QT12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N),

subject to

x(k + 1)=Ax(k)+Bu(k),

ui(k)= vj (k), if δi(k)= 1 and
i∑
l=1

δl(k)= j,

ui(k)= ui(k − 1), otherwise.

In order to solve this problem, we reconsider the state representation (3.12) of
system S , which was established in Sect. 3.4 of Chap. 3. For a given maxi-
mal controller-to-actuators scheduling δ, system S is described by the state equa-
tion (3.12a). The cost function J (x,u,0,N) may be rewritten in the form

J (x,u,0,N)= J (x̃, v,0,N)=
N−1∑
k=0

[
x̃(k)

v(k)

]T
Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N),

where

Q̃(k)=
⎡
⎢⎣

Q1 Q12Eδ(k) Q12Dδ(k)

ETδ (k)Q
T
12 ETδ (k)Q2Eδ(k) ETδ (k)Q2Dδ(k)

DTδ (k)Q
T
12 DTδ (k)Q2Eδ(k) DTδ (k)Q2Dδ(k)

⎤
⎥⎦ ,

and

Q̃0 =
[
Q0 0n,m

0m,n 0m,m

]
.

Problem 4.1 is equivalent to the optimal control problem of a discrete linear time-
varying system, given as follows:
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Problem 4.2 Given an initial state x(0) and a final time N , find the optimal control
sequence vN−1 = (v(0), . . . , v(N − 1)) that minimizes the cost function

J (x̃, v,0,N)=
N−1∑
k=0

[
x̃(k)

v(k)

]T
Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N),

subject to

x̃(k + 1)= Ã(k)x̃(k)+ B̃(k)v(k). (4.3)

Problem 4.2 is a classical optimal control problem of a discrete linear time-
varying system. Different methods for its resolution were developed in control text-
books (see, for instance, [14]). Let:

Q̃1(k) =
[

Q1 Q12Eδ(k)

ETδ (k)Q
T
12 ETδ (k)Q2Eδ(k)

]
,

Q̃12(k) =
[

Q12Dδ(k)

ETδ (k)Q2Dδ(k)

]
,

and

Q̃2(k)=DTδ (k)Q2Dδ(k).

The solution of this problem closely depends on the solution of an algebraic equa-
tion, involving the variable S̃(k) and described by

S̃(k)= ÃT (k)S̃(k + 1)Ã(k)+ Q̃1(k)−
(
ÃT (k)S̃(k + 1)B̃(k)+ Q̃12(k)

)

× (
B̃T (k)S̃(k + 1)B̃(k)+ Q̃2(k)

)−1(
B̃T (k)S̃(k + 1)Ã(k)+ Q̃T12(k)

)
(4.4)

under the terminal condition

S̃(N)= Q̃0. (4.5)

Equation (4.4) is the discrete algebraic Riccati equation associated to the Prob-
lem 4.2. Knowing that Q̃0 is semi-definite positive and Q̃2(k) is definite positive
(because Dδ(k) is injective when δ is a maximal admissible communication se-
quence), than this equation admits a unique positive semi-definite solution. Conse-
quently, Problem 4.2 admits a unique solution [14] defined by

v(k)=−K̃(k)x̃(k), (4.6)

with

K̃(k)= (
Q̃2(k)+ B̃T (k)S̃(k + 1)B̃(k)

)−1(
B̃T (k)S̃(k + 1)Ã(k)+ Q̃T12(k)

)
. (4.7)
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4.3 Optimal Control over an Infinite Horizon for a Fixed
Communication Sequence

Consider a T -periodic maximal communication sequence δT−1 defined by

δT−1 = (
δ(0), . . . , δ(T − 1)

)

and verifying δ(k + T )= δ(k). Assume furthermore that δ ∈S c, where S c is the
set of communication sequences that guarantee the reachability of system (3.12).
The periodicity of the communication sequence induces the periodicity of the
resource-constrained system S . As a result, matrices Ã(k), B̃(k) and Q̃(k) satisfy
Ã(k + T )= Ã(k), B̃(k + T )= B̃(k) and Q̃(k)= Q̃(k + T ).

Let ι be a discrete time instant andH a positive integer, assume that N = ι+HT
and consider the optimal control problem:

⎧⎪⎪⎨
⎪⎪⎩

min
v

J (x̃, v, ι,N)=
N−1∑
k=ι

[
x̃(k)

v(k)

]T
Q̃(k)

[
x̃(k)

v(k)

]
+ x̃T (N)Q̃0x̃(N)

subject to x̃(k + 1)= Ã(k)x̃(k)+ B̃(k)v(k).
(4.8)

As illustrated in [35], a time invariant reformulation of the optimal control prob-
lem (4.8) may be obtained by using the lifting technique. The time invariant re-
formulation may be seen as a down sampled representation of system (3.12) with
periodicity T , having an augmented input vector. In the following, the formulation
of the time invariant representation is described.

Let Φ be the transition matrix associated with the state matrix Ã defined by:
{
Φ(l, s)= Ã(l − 1)Ã(l − 2) · · · Ã(s) if l > s,

Φ(l, l)= In+m.
Let Γ the matrix defined for s < l < s + T by

Γ (l, s)=
⎡
⎢⎣Φ(l, s + 1)B̃(s) Φ(l, s + 2)B̃(s + 1) · · · Φ(l, l)B̃(l − 1) 0n+m,b · · · 0n+m,b︸ ︷︷ ︸

T−l−s

⎤
⎥⎦

and for s = l by

Γ (s, s)= [0n+m,b · · · 0n+m,b].
Let

x̄ι(q)= x̃(ι+ qT ),
and

v̄ι(q)=
⎡
⎢⎣

v(ι+ qT )
...

v(ι+ (q + 1)T − 1)

⎤
⎥⎦ ,
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then for 0≤ i ≤ T :

x̃(ι+ qT + i)=Φ(ι+ i, ι)x̄ι(q)+ Γ (ι+ i, ι)v̄ι(q).
In particular, let

Āι =Φ(ι+ T , ι),
and

B̄ι = Γ (ι+ T , ι),
then the following relation is obtained:

x̄ι(q + 1)= Āιx̄ι(q)+ B̄ιv̄ι(q).
Let Λ(i) the matrix defined for 0≤ i < T by

Λ(i)=
⎡
⎢⎣0b,b · · · 0b,b︸ ︷︷ ︸

i

Ib 0b,b · · · 0b,b︸ ︷︷ ︸
T−i−1

⎤
⎥⎦ ,

then the cost function may be written

J (x̃, v, ι,N)= J (x̄ι, v̄ι,0,H)=
H−1∑
q=0

[
x̄ι(q)

v̄ι(q)

]T
Q̄ι

[
x̄ι(q)

v̄ι(q)

]
+ x̄Tι (H)(Q̄ι)0x̄ι(H)

where

Q̄ι =
T−1∑
i=0

FT (i)Q̃(ι+ i)F (i),

F (i) =
[
Φ(ι+ i, ι) Γ (ι+ i, ι)

0b,n+m Λ(i)

]

and (Q̄ι)0 = Q̃0. Finally, the following optimal control problem is obtained
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
v̄ι

J (x̄ι, v̄ι,0,H)= x̄Tι (H)(Q̄ι)0x̄ι(H)+
H−1∑
q=0

[
x̄ι(q)

v̄ι(q)

]T
Q̄ι

[
x̄ι(q)

v̄ι(q)

]

subject to x̄ι(q + 1)= Āιx̄ι(q)+ B̄ιv̄ι(q).
(4.9)

The corresponding discrete algebraic Riccati equation is given by:

S̄ι(q)= ĀTι S̄ι(q + 1)Āι + Q̄ι1 −
(
ĀTι S̄ι(q + 1)B̄ι + Q̄ι12

)

× (
B̄Tι S̄ι(q + 1)B̄ι + Q̄ι2(q)

)−1(
B̄Tι S̄ι(q + 1)Āι + Q̄Tι12

)
, (4.10)
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with the terminal condition

S̄ι(H)= (Q̄ι)0, (4.11)

where

Q̄ι =
[
Q̄ι1 Q̄ι12

Q̄Tι12
Q̄ι2

]
.

The relationship between the solutions of Riccati equations (4.4) and (4.10), which
are respectively, associated to the optimal control problems (4.8) and (4.9), is for-
malized by the following result.

Lemma 4.1 [35] If S̄ι(H) = S̃(ι + NT ) = Q̃0, then S̄ι(q) = S̃(ι + qT ) for all
q ≤H .

This result follows from the fact that optimal control problems (4.8) and (4.9)
are similar. By imposing the terminal condition S̄ι(H) = S̃(ι+ NT ) = Q̃0, called
periodic generator, the optimal costs must be identical, which implies that the so-
lutions of the Riccati equations (4.4) and (4.10) must be the same. As a result,
when H → +∞, S̄ι(q) converges to a constant solution S̄ι. Consequently, S̃(k)
converges to a periodic solution, defined by S̃(k) = S̄(k mod T ). This periodic so-
lution may be obtained by solving the algebraic Riccati equation associated with
problem (4.9) when H →+∞ and for ι ∈ {1, . . . , T }. The optimal control gains
may then be deduced from the relation (4.7) and are described by the sequence
(K̃(0), . . . , K̃(T − 1)).

This formulation will be of practical importance at the next chapters when the
problems of the optimal integrated control and scheduling of resource-constrained
systems will be tackled.

4.4 Finite-Time Optimal Integrated Control and Scheduling

In this paragraph, the problem of the finite-time optimal control and scheduling is
formulated and translated into the mixed-integer quadratic programming (MIQP)
formulation. We assume in the following that u(k)= 0 and v(k)= 0 for k < 0, and
that control commands u(k) and v(k) are subject to saturation constraints

{
Li ≤ ui(k)≤Ui,
Li ≤ vi(k)≤Ui

(4.12)

where Li < 0 and Ui > 0.
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4.4.1 Problem Formulation

The finite-time optimal control and scheduling problem may be formalized as fol-
lows:

Problem 4.3 Given an initial state x(0) and a final time N , find the optimal con-
trol sequence vN−1 = (v(0), . . . , v(N − 1)) as well as the optimal communication
sequence δN−1 = (δ(0), . . . , δ(N − 1)) which minimizes the performance index:

J (x,u,0,N)=
N−1∑
k=0

[
x(k)

u(k)

]T [ Q1 Q12

QT12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N)

subject to:

x(k + 1)=Ax(k)+Bu(k),
m∑
i=1

δi(k)= b,

ui(k)= vj (k), if δi(k)= 1 and
i∑
l=1

δl(k)= j,

ui(k)= ui(k − 1), otherwise,

Li ≤ vi(k)≤Ui.

The problem of finding the optimal control sequence vN−1 for a given fixed com-
munication sequence δN−1 is a quadratic programming (QP) problem. The number
of possible communication sequences is finite. The resolution of Problem 4.3 may
be reduced to the exploration of all the feasible maximal communication sequences
and the solving of a QP problem for each fixed communication sequence. However,
in practice, the number of feasible communication sequences grows exponentially
with N , which means that exhaustive search may not be applied to problems with
large values of N .

The solution of the Problem 4.3 may be obtained by solving a simpler opti-
mization problem, which may be seen as a constrained control problem, where
the variables vN−1 are eliminated and the constraint (3.8) is replaced by (3.7). Let
uN−1 = (u(0), . . . , u(N − 1)), this problem may be stated as follows:

Problem 4.4 Given an initial state x(0) and a final time N , find the optimal control
sequence uN−1 as well as the optimal scheduling sequence δN−1 that minimizes the
performance index:

J (x,u,0,N)=
N−1∑
k=0

[
x(k)

u(k)

]T [ Q1 Q12

QT12 Q2

][
x(k)

u(k)

]
+ xT (N)Q0x(N),
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subject to

x(k + 1)=Ax(k)+Bu(k),
m∑
i=1

δi(k)= b,

δi(k)= 0 =⇒ ui(k)= ui(k − 1),

Li ≤ vi(k)≤Ui.

We observe that the constraints of optimal scheduling problem are composed of
a set of linear equalities and inequalities as well as of the following logical formula:

δi(k)= 0 =⇒ ui(k)= ui(k − 1). (4.13)

In order to solve this problem, it is necessary to translate the logical formula (4.13)
into linear inequalities. The connective “=⇒” may be eliminated if (4.13) is rewrit-
ten in the following equivalent form

ui(k)− ui(k − 1)= δi(k)ui(k)− δi(k)ui(k − 1). (4.14)

However, Eq. (4.14) contains terms which are the product of logical variables and
continuous variables. Using the procedure described in [21], this product is trans-
lated into an equivalent conjunction of linear inequalities. For example, let

ξi(k)= δi(k)ui(k). (4.15)

Then (4.14) may be rewritten in the equivalent form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξi(k)≤Uiδi(k),
ξi(k)≥ Liδi(k),
ξi(k)≤ ui(k)−Li

(
1− δi(k)

)
,

ξi(k)≥ ui(k)−Ui
(
1− δi(k)

)
.

(4.16)

Note that the same procedure may be applied to

oi(k)= δi(k)ui(k − 1). (4.17)

Let

Δ̌ =
⎡
⎢⎣

δ(0)
...

δ(N − 1)

⎤
⎥⎦ ; Ǔ =

⎡
⎢⎣

u(0)
...

u(N − 1)

⎤
⎥⎦ ,
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X̌ =
⎡
⎢⎣
x(0)
...

x(N)

⎤
⎥⎦ ; Ξ̌ =

⎡
⎢⎣

ξ(0)
...

ξ(N − 1)

⎤
⎥⎦ ,

and

Ǒ =
⎡
⎢⎣

o(0)
...

o(N − 1)

⎤
⎥⎦ ; V =

⎡
⎢⎢⎢⎢⎢⎣

Δ̌

Ǔ

X̌

Ξ̌

Ǒ

⎤
⎥⎥⎥⎥⎥⎦
,

then Problem 4.4 may be written in the form
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
V

1

2
V TFV + G T V

A V ≤B,

Vi ∈ {0,1}, ∀i ∈ {1, . . . ,mN},

(4.18)

where the expressions F , G , A and B are defined in the sequel.
Matrices A and B include both the equality and the inequality constraints of the

problem, and may be written in the form:

A =
⎡
⎢⎣

Aeq

−Aeq

Ain

⎤
⎥⎦ ,

B =
⎡
⎢⎣

Beq

−Beq

Bin

⎤
⎥⎦ .

It easy to see that the relation

AeqV =Beq

is equivalent to

(AeqV ≤Beq)∧ (−AeqV ≤−Beq).

Matrices Aeq and Beq describe equalities (3.4a), (4.14) and impose to the schedul-
ing sequence of the controller-to-actuators link to be maximal. Matrix Aeq is defined
by

Aeq =
⎡
⎢⎣

SC 0N,n(N+1) 0N,mN 0N,mN 0N,mN
0n(N+1),mN ST 0n(N+1),mN 0n(N+1),mN

0mN,mN 0mN,n(N+1) UU −ImN ImN

⎤
⎥⎦
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where

• SC is a N ×mN matrix described by

SC=

⎡
⎢⎢⎢⎣

11,m 01,m · · · 01,m
01,m 11,m · · · 01,m

. . .

01,m 01,m · · · 11,m

⎤
⎥⎥⎥⎦ .

• ST is a n(N+1)×(n(N+1)+mN)matrix that is used to represent the constraint
(3.4a):

ST =

⎡
⎢⎢⎢⎢⎢⎣

In 0n,n 0n,n · · · 0n,n 0n,m 0n,m · · · 0n,m
−A In 0n,n · · · 0n,n −B 0n,m · · · 0n,m
0n,n −A In · · · 0n,n 0n,m −B · · · 0n,m

. . .
. . .

. . .

0n,n 0n,n −A In 0n,m 0n,m · · · −B

⎤
⎥⎥⎥⎥⎥⎦
.

• UU is a mN ×mN matrix described by

UU =

⎡
⎢⎢⎢⎢⎢⎣

Im 0m,m 0m,m · · · 0m,m
−Im Im 0m,m · · · 0m,m
0m,m −Im Im · · · 0m,m

. . .
. . .

0m,m 0m,m −Im Im

⎤
⎥⎥⎥⎥⎥⎦
.

Matrix Beq is defined by

Beq =

⎡
⎢⎢⎣
b× 1N,1
x(0)
0nN,1
0mN,1

⎤
⎥⎥⎦ .

Let U and L the vectors defined by

U =
⎡
⎢⎣
U1
...

Um

⎤
⎥⎦ ; L=

⎡
⎢⎣
L1
...

Lm

⎤
⎥⎦ .
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Matrices Ain and Bin describe the constraints defining the variables ξ(k) and o(k)
((4.15) and (4.17)). Matrix Ain is defined by

Ain =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Diag(U) 0mN,n(N+1) 0mN,mN ImN 0mN,mN
Diag(L) 0mN,n(N+1) 0mN,mN −ImN 0mN,mN
−Diag(L) 0mN,n(N+1) −ImN ImN 0mN,mN
Diag(U) 0mN,n(N+1) ImN −ImN 0mN,mN
−Diag(U) 0mN,n(N+1) 0mN,mN 0mN,mN ImN

Diag(L) 0mN,n(N+1) 0mN,mN 0mN,mN −ImN
−Diag(L) 0mN,n(N+1) −UM 0mN,mN ImN
Diag(U) 0mN,n(N+1) UM 0mN,mN −ImN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

UM =−(UU − ImN).
Next, the matrix Bin is defined by

Bin =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m,1
0m,1
−L
U

0m,1
0m,1
−L
U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, matrices F and G are defined by

F =
⎡
⎣

0mN,mN 0mN,n(N+1)+mN 0mN,2mN
0n(N+1)+mN,mN Q̌ 0n(N+1)+mN,2mN

02mN,mN 02mN,n(N+1)+mN 02mN,2mN

⎤
⎦

and respectively,

G = 0(4m+(n+1))N,1

where

Q̌ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1 0n,n · · · 0n,n 0n,n Q12 0n,m · · · 0n,m
0n,n Q1 · · · 0n,n 0n,n 0n,m Q12 · · · 0n,m

. . .
. . .

0n,n 0n,n · · · Q1 0n,n 0n,m 0n,m · · · Q12
0n,n 0n,n · · · 0n,n Q0 0n,m 0n,m · · · 0n,m
QT12 0m,n · · · 0m,n 0m,n Q2 0m,m · · · 0m,m
0m,n QT12 · · · 0m,n 0m,n 0m,m Q2 · · · 0m,m

. . .
. . .

0m,n 0m,n · · · QT12 0m,n 0m,m 0m,m · · · Q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The Problem 4.3 is identical to Problem 4.4 augmented with the additional con-
straint

v(k)= uf (k)
where the vector uf (k) ∈ R

b containing the b “free” elements of u(k) (i.e., the
elements of u(k) whose indices i satisfy δi(k) = 1) is arranged according to the
increasing order of their indices. As a consequence, the optimal solutions of Prob-
lem 4.3 may be deduced from the optimal solutions of Problem 4.4 using the map-
ping (3.9).

The problem (4.18) is a mixed-integer quadratic program. It may be solved using
many efficient academic and commercial solvers. In this monograph, this problem
was solved using the solver CPLEX, whose MIP solver is based on the branch and
bound method.

4.4.2 The Branch and Bound Method

The branch and bound method is a general search method for finding optimal so-
lutions of discrete and combinatorial optimization problems. It was introduced in
1960 by Land and Doig [145] for the solving of the traveling salesman problem.
This method aims at exploring, in an intelligent way, the space of feasible solutions
of the problem. That’s why it may be classified among the implicit enumeration
methods. In the following, the principles of this algorithm will be described in the
case of a minimization. In order to simplify our explanation, we will suppose that
considered problem admits at least one optimal solution. Of course, the other cases
may be easily taken into account.

4.4.2.1 General Concepts

As its name indicates it, this method is based on two complementary mechanisms:
branching and bounding.

• Branching makes it possible to decompose a given problem into subproblems (by
adding additional constraints), such that the union of the feasible solutions of
these subproblems forms a partition (in the worst case a covering) of the feasible
solutions of the original problem. In this manner, the resolution of the original
problem is reduced to the resolution of the subproblems obtained by its branch-
ing. Branching induces a hierarchical relation between the different subproblems.
This relation may be described and represented using concepts from the graph
theory. In fact, in the branch and bound method, branching is applied in a re-
cursive way to the subproblems where it may be possible (at a given stage of
the execution of the algorithm), to find an optimal solution of the initial prob-
lem. As a result, the subproblems obtained by branching may be seen as the
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Fig. 4.1 Search tree of
problem P

child nodes of the problem to which branching was applied, which is called par-
ent node. Thus, all these nodes form a rooted tree, whose root node represents
the initial problem to solve. This tree is usually called search tree or decision
tree.

• Bounding consists in computing an upper and a lower bound of the optimal so-
lution of a given node. The bounding stage allows the branch and bound to avoid
exploring the nodes where it is possible to certify that they do not contain any
optimal solution. In fact, if the upper bound of a subproblem A is larger than the
lower bound of another subproblem B, then the optimal solution cannot lie in the
feasible set of solutions of subproblem A. For that reason, it becomes useless to
branch node A. Node A is then pruned.

A node is called solved if an optimal solution of the associated subproblem was
obtained. This may occur, for example, when the constraints defining it (and which
were added progressively along the different branching steps), reduce its set of feasi-
ble solutions to a singleton. In other situations, branching may make the subproblem
sufficiently simple to be solved by polynomial algorithms. The solved nodes are the
final nodes or leave nodes of the decision tree. The algorithm finishes when all the
nodes were either solved or pruned.

Example 4.1 Figure 4.1 describes the search tree of problem P defined by

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x

4x2
1 − 3x2

2

x1 = 0,

x1, x2 ∈ {0,1}.

The branch and bound algorithm may be parameterized using the following four
rules:

• branching rules, describing how to divide a given problem into subproblems,
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• bounding rules, defining how to compute the upper and lower bounds of a given
subproblem,

• selection rules, stating how to select the next problem to consider,
• elimination rules, describing how to recognize the subproblems that do not con-

tain optimal solutions and that should be eliminated.

4.4.2.2 Application to Mixed-Integer Programming

To the best of the authors’ knowledge, the application of the branch and bound
method to solve mixed-integer nonlinear programs was proposed for the first time
by Dakin [68]. The resolution of mixed-integer quadratic programs was stud-
ied by many authors, for example, [85, 86, 146]. In the paper by Fletcher and
Leyffer [85], the branch and bound method was applied to solve mixed-integer
quadratic programs, allowing to obtain better experimental results than the other
methods.

In this paragraph, we consider programs in the form:

P

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
V

f (V )= 1

2
V TFV + G T V

A V ≤B,

Vi ∈ {0,1}, ∀i ∈ I

where f is a positive semi-definite function and I is a set of indices indexing the
Boolean components of V . A basic branch and bound algorithm for solving program
P is given in the following listing (Algorithm 4.1).

In Algorithm 4.1, U represents the cost of the best feasible solution of problem
P at a given stage of the execution of the algorithm and L a lower bound of the
optimal cost of P . The set M , used for the computation of L, represents the set
of nodes that have been already evaluated (i.e., bounded) and that may contain the
optimal solution. Problem P ′ denotes the problem obtained from P by relaxing
the integrality constraints that are imposed on the variables indexed by I , that is,
replacing the constraints

Vi ∈ {0,1}, ∀i ∈ I
by the constraints

Vi ∈ [0,1], ∀i ∈ I.
These variables are thus considered as continuous variables in [0,1]. Thus, P ′ is a
quadratic program, and may be solved efficiently. Its solving is the most important
part of the bounding or evaluation phase. In fact, the optimal cost of P ′ represents
a lower bound of the optimal cost of P .
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Algorithm 4.1: Basic branch and bound algorithm

L := {P};
M := {P};
U := +∞;
L := −∞;
while L �= ∅ or U −L> ε do

select a node Q from list L ;
remove the selected node Q from L ;
solve the relaxed program Q′ (bounding or evaluation of Q);
if Q′ admits an optimal solution x∗(Q′) of cost J ∗(Q′) and J ∗(Q′) < U
then

lowerbound(Q) := J ∗(Q′);
if x∗(Q′) is integer-feasible then
U := J ∗(Q′);
x∗(P) := x∗(Q′);
J ∗(P) := J ∗(Q′);

else
branch node Q and update list L with its child nodes;

end if
if all the brother nodes of Q were evaluated then

remove the father node of Q from M ;
put Q and its brother nodes in M ;
L=min{lowerbound(Q),Q ∈M };

end if
else

lowerbound(Q) := +∞ (pruning of Q);
end if

end while

The algorithm begins by solving P ′ and giving its solution x∗(P ′). If this so-
lution respects the integrality constraints, then it is also an optimal solution for P
and the algorithm ends. Otherwise, there exists at least one non Boolean variable
Vj , j ∈ I in x∗(P ′). The algorithm proceeds by branching problem P into two
subproblems

Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
V

1

2
V TFV + G T V

A V ≤B,

Vj = 0,

Vi ∈ {0,1}, ∀i ∈ I1 = I − {j}
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and

Q2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
V

1

2
V TFV + G T V

A V ≤B,

Vj = 1,

Vi ∈ {0,1}, ∀i ∈ I2 = I − {j}
that are added to the list L . The procedure is reiterated by the selection of a sub-
problem Q from L , based on the predefined selection rules. It may be possible that
the relaxed subproblem Q′ does not have any feasible solution. In this situation, it
is pruned from the list L without being branched. The algorithm finishes when the
list L becomes empty or when a suboptimal solution with a predefined absolute
tolerance (defined by ε) is found.

4.4.3 An Illustrative Numerical Example

Consider the collection of three continuous-time linear time invariant (LTI) subsys-
tems defined by

A(1)c =
[

0 130
−800 10

]
, B(1)c =

[
0

224

]
, S(1)

A(2)c =
[

0 14
−250 −200

]
, B(2)c =

[
0

620

]
, S(2),

A(3)c =

⎡
⎢⎢⎣

0 0 0 100
0 0 100 0
0 0 −10 0

11.6 0 1.184 0

⎤
⎥⎥⎦ , B(3)c =

⎡
⎢⎢⎣

0
0

10
10.18

⎤
⎥⎥⎦ , S(3)

where the subsystems S(1) and S(3) are open-loop unstable in opposition to the
subsystem S(2) which is open-loop stable. The global system S composed by S(1),
S(2) and S(3) may be described by the state matrix Ac and the input matrix Bc
defined by

Ac =Diag
(
A(1)c ,A

(2)
c ,A

(3)
c

)

and

Bc =Diag
(
B(1)c ,B

(2)
c ,B

(3)
c

)
.

Assume that the global system S is controlled by a discrete-time controller exe-
cuted at the sampling period Ts = 2 ms. The control commands are sent to the
actuators through a bus that can carry at most one control command every 2 ms
(b = bw = 1). Assume now that the design criteria of the optimal continuous
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time controller for each subsystem are defined by matrices Q(1)c = Diag(100,10),
R
(1)
c = 1, Q(2)c = Diag(1000,10), R(2)c = 1, Q(3)c = Diag(1000,1000,1,1) and
R
(3)
c = 1 and the desired closed-loop specifications for the global system are de-

scribed by the closed-loop weighting matrices:

Qc = Diag
(
μ1Q

(1)
c ,μ2Q

(2)
c ,μ3Q

(3)
c

)
,

Rc = Diag
(
μ1R

(1)
c ,μ2R

(2)
c ,μ3R

(3)
c

)

and

Sc =Qc,
where μ1, μ2 and μ3 are the weighting coefficients. In this example, μ1, μ2 and μ3

were chosen equal to the inverse of steady state performance index of each separate
subsystem controlled through a bus having an infinite bandwidth (μ1 = 2.9, μ2 =
0.13 and μ3 = 0.016).

Remark 4.1 The use of a resource-limited shared communication medium for the
transmission of the control commands to the distributed actuators introduces a
coupling between the three subsystems, which requires the weighting of relative
importance of each subsystem using coefficients μ1, μ2 and μ3. This contrasts
with the optimal control problem without communication constraints, where these
constants have no impact on the optimal control of the three independent subsys-
tems.

The length of the optimal control and communication sequences is N = 100.
An optimal solution with an error bound of 1 × 10−5 was required. The global
system is started from the initial state x(0) = [1 0 1 0 1 0 0 0]T . Its responses
are depicted in Figs. 4.2 and 4.3. The optimal schedule is depicted in Fig. 4.4. In
this schedule, δi = 1 means that the bus is dedicated to the transmission of control
signal ui .

The first network slots are mainly dedicated to subsystem S(1) until it is stabi-
lized. It may be observed that subsystem S(2), which is open-loop stable and whose
response time is larger than S(1), needs only three time slots to be stabilized. Af-
ter the stabilization of subsystems S(1) and S(2), the network resources are entirely
dedicated to the stabilization of subsystem S(3). When the subsystem S(3) is close
to the equilibrium state (from t = 0.13 s), then its control signals changes are mi-
nor. Consequently, the scheduling has no significant impact on control since the
control signals of the three subsystems are relatively constant explaining thus the
shape of the scheduling diagram, after t = 0.13 s. However, this optimal schedule
is dependent on the initial conditions. If the initial condition x(0) is modified, then
the optimal control and schedule would be different. It is clear that such an open-
loop schedule, which is generated off-line, cannot be applied at runtime as static
schedule. In fact, assume that subsystem S(1) is disturbed at t = 0.024 s. Observing
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Fig. 4.2 Global system response—states x1, x2 (subsystem S(1)) and x3, x4 (subsystem S(2)) from
t = 0 s to t = 0.1 s

Fig. 4.3 Global system response—states x5, x6, x7 and x8 (subsystem S(3))

the schedule, no slots are allocated to the transmission of the messages of subsys-
tem S(1) between t = 0.024 s and t = 0.128 s, which would induce performance
degradations.

These observations show that in the same way as the optimal control, the optimal
scheduling depends on the current state of the system. Consequently, fixed sched-
ules may not be optimal if the system is started from another initial state or if it is
disturbed at runtime.
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Fig. 4.4 Optimal scheduling of the controller-to-actuators link

4.5 Notes and Comments

In this chapter, we have started by studying the problem of optimal control for a
given fixed finite communication sequence. Then, we have formulated and solved
the problem of the joint optimization of control and scheduling, for a given initial
state. The numerical examples illustrating this method have shown that the obtained
optimal schedule depends on the chosen initial state x(0). In other words, similarly
to the standard optimal control case, the optimal scheduling depends on the cur-
rent state of the system. However, from a computer science point of view, off-line
scheduling has many advantages, essentially because it consumes a few comput-
ing resources and does not induce execution overheads. In order to obtain off-line
schedules that are optimal from a certain point of view, it is necessary to use per-
formance criteria that depend on the intrinsic characteristics of the system, not on a
particular initial state. This will be the objective of the next chapter.

Nevertheless, this dependency between the optimal schedule and the plant state
may be seen as a promising way for improving the quality of control by means
of plant state-based scheduling algorithms. The design of such algorithms will be
studied in Chap. 6.



Chapter 5
Optimal Integrated Control and Off-line
Scheduling of Resource-Constrained Systems

5.1 Preliminaries

In order to formulate the joint problem of the optimal control and off-line schedul-
ing, in addition to the modeling of the resource limitations and the representation
of the system’s dynamics, it is necessary to choose an adequate criterion of perfor-
mance. The previous studies (illustrated in Chap. 4), which were carried out on the
joint problem of the optimal control and scheduling, starting from a given initial
condition, have shown that the optimal schedule depends on the chosen initial state
of the controlled dynamical system. This dependence may be exploited by the on-
line scheduling algorithms in order to improve the control performance. But when
only a fixed schedule is desired, it is necessary to use performance criteria that de-
pend on the intrinsic characteristics of the system, not on a particular evolution or
initial state. The use of the well-known H2 norm provides a solution to meet these
objectives. In fact, using this performance index, the obtained off-line schedules
will be independent from any initial condition. Moreover, the results may be easily
transposed to an LQG context [78]. Intuitively, a H2 optimal off-line schedule may
be seen as a “mean square schedule”, obtained when all the system’s components
are uniformly disturbed by a zero mean unit intensity Gaussian white noise. Off-
line schedules are generally periodic. For that reason, we will focus on T -periodic
resource constrained systems. A T -periodic resource constrained system represents
a resource-constrained system whose scheduling is performed according to a T -
periodic communication sequence and whose control is ensured by a T -periodic
linear discrete-time controller.

In this chapter, we start by defining the H2 norm of T -periodic resource-
constrained systems. Based on this definition, we propose a method for the joint
control and off-line scheduling in the sense of the H2 criterion. We show that this
problem may be decomposed into two sub-problems, that can be solved separately.
The first sub-problem aims in determining the optimal off-line scheduling in the
sense of the H2 criterion and can be solved by using the branch and bound method.
The second sub-problem aims in determining the optimal control gains and can be
solved by using existing results for deriving an appropriate optimal periodic control.

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_5,
© Springer International Publishing Switzerland 2014
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The proposed approach is illustrated by a numerical example and methods for the
improvement of its computational complexity are proposed and discussed.

5.2 On Characterizing H2 Norm of Resource-Constrained
Systems

In this section, we describe the different steps allowing the definition and the com-
putation of the H2 norm of a T -periodic resource-constrained system. Taking into
account the communication constraints, a T -periodic resource-constrained system
may be viewed as a sampled-data model of a continuous-time LTI system con-
trolled by a T -periodic linear discrete-time controller. In order to compute its H2
norm, a sampled-data model of system (3.2) is first derived. The particularity of this
sampled-data model is that its H2 norm (computed in the discrete-time domain) is
identical to the H2 norm of the continuous-time LTI system (3.2) (computed in the
continuous-time domain), when they are both controlled by a discrete-time LTI con-
troller. Based on this sampled-data model, and on the periodicity of the scheduling
and control, the H2 norm of a T -periodic resource-constrained system is appro-
priately defined. Before presenting the definition of the H2 norm of a T -periodic
resource-constrained system, the basic definitions of the H2 norm of a continuous-
time LTI, discrete-time LTI and sampled-data systems are presented.

5.2.1 Standard Extended Model Definition

Consider the continuous-time LTI plant defined by Eqs. (3.2) (Chap. 3) and the
performance criterion (4.1) that was assigned to it in Sect. 4.1 of Chap. 4. The per-
formances of the controlled plant may be expressed as the power of continuous-time
signal zc(t). In fact, let Q̆c and R̆c be the matrices obtained by the Cholesky decom-
position ofQc and Rc (defined in Eq. (4.1) in Chap. 4). Then the following relation
is obtained

Q̆Tc Q̆c =Qc
and

R̆Tc R̆c =Rc.
Let C1c and D12c be the matrices defined by

C1c =
[
Q̆c

0m,n

]

and

D12c =
[

0n,m

R̆c

]
,
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Fig. 5.1 Standard
representation

then the signal zc may be written as

zc(t)= C1cxc(t)+D12cuc(t).

Consequently
∫ Tf

0

(
xTc (t)Qcxc(t)+ uTc (t)Rcuc(t)

)
dt =

∫ Tf

0
zTc (t)zc(t) dt.

An extended model that takes into account both the state and output equations (3.2)
as well as the quality output zc is given by:

ẋc(t) = Acxc(t)+Bcuc(t)+Wcwc(t), (5.1a)

yc(t) = Ccxc(t) (5.1b)

zc(t) = C1cxc(t)+D12cuc(t). (5.1c)

The representation (5.1a)–(5.1c) may be seen as a linear operator Gc:

Gc :L r
2 (R)×L m

2 (R) −→L n+m
2 (R)×L

p

2 (R),

(wc,uc) �−→ (zc, yc).

First, assume that Gc is controlled by a continuous-time LTI controller Kc . The
controller may also be seen as a linear operator Kc defined by

Kc :L p

2 (R) −→L m
2 (R),

yc �−→ uc.

In H2 optimal control problems, the control system is described following the stan-
dard representation from Fig. 5.1. In this representation,

• wc represents the exogenous inputs,
• uc represents the control inputs,
• zc represents the controlled outputs,
• yc represents the measured outputs.

Naturally, as Gc is linear and possesses two types of inputs (wc,uc) and two
types of outputs (zc, yc), it may be partitioned as follows:

zc =G11cwc +G12cuc, (5.2a)

yc =G21cwc +G22cuc. (5.2b)
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If we denote by Ĥ (s) the transfer function (in the Laplace domain) corresponding
to the linear operatorH , then the expressions of the transfer matrices ofG11c ,G12c ,
G21c and G22c are given by

Ĝ11c (s) = Cc(sI −Ac)−1Bc,

Ĝ12c (s) = Cc(sI −Ac)−1Wc,

Ĝ21c (s) = C1c (sI −Ac)−1Bc +D12c ,

Ĝ22c (s) = C1c (sI −Ac)−1Wc.

5.2.2 Standard H2 Norm of a Continuous/Discrete-Time Linear
Time Invariant (LTI) System

Let Tzcwc be the transfer operator between the exogenous inputs wc and the con-
trolled outputs zc of the closed-loop system. Then, the signals wc and zc are linked
by the relation

zc = Tzcwcwc.
The transfer matrix T̂zcwc (s) of Tzcwc is given by:

T̂zcwc (s)= Ĝ11c (s)+ Ĝ12c (s)
(
Is − K̂c(s)Ĝ22c (s)

)−1
K̂c(s)Ĝ21c (s).

Let (ei)1≤i≤r be the canonical basis vectors in R
r and δc the continuous-time Dirac

impulse. A Dirac impulse applied to the ith exogenous input of system Gc is ob-
tained by applying an input wc(t) = δc(t)ei . The produced output, assuming zero
initial conditions, is zc(t)= Tzcwcδcei(t).

Definition 5.1 The H2 norm of a continuous-time LTI system Gc is defined over
all stabilizing continuous-time LTI controllers Kc by

‖Gc‖H2 =
(

r∑
i=1

∥∥Tzcwcδcei
∥∥2

L2

)1/2

. (5.3)

The H2 norm of system Gc is the quadratic mean of the L2 norms of the responses
to r Dirac impulses, each impulse affecting only one exogenous input i, 1≤ i ≤ r .
In a similar way to the continuous-time case, consider now the discrete-time LTI
plant G controlled by a discrete-time LTI controller K . Let δd be the discrete-time
Dirac impulse. A Dirac impulse applied to the ith exogenous input of system G

is obtained by applying the input w(k) = δdei(k). The produced output, under the
assumption of zero initial conditions, is z(k)= Tzwδdei(k).
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Fig. 5.2 Standard
representation of a
sampled-data system

Definition 5.2 The H2 norm of a discrete-time LTI system G is defined over all
stabilizing discrete-time LTI controllers K by

‖G‖H2 =
(
r∑
i=1

∥∥Tzcwcδdei
∥∥2

L2

)1/2

. (5.4)

5.2.3 Computing H2 Norm of a Sampled-Data System

Figure 5.2 represents a continuous-time LTI plant Gc controlled by a discrete-time
LTI controller K , the discrete controller being preceded by a sampler SPL and fol-
lowed by a zero-order holder ZOH. In this setting, the previous definition of the
H2 norm of a continuous-time LTI system does not make sense since the transfer
operator Tzcwc is no longer invariant but periodically time-varying with the period
Ts (imposed by the sampler SPL). In fact, the response of this sampled-data system
to a Dirac impulse δc applied at instant t = 0 will not be necessarily identical to
the response to a Dirac impulse δcτ applied at instant 0 < τ < Ts (i.e., defined by
δcτ (t)= δc(t − τ)). This problem was pointed out and tackled in [19, 62, 137].

Definition 5.3 The generalized H2 norm of a sampled-data system is defined over
all the stabilizing discrete-time LTI controllers K by:

‖Gc‖H2 =
(

1

Ts

∫ Ts

0

(
r∑
i=1

∥∥Tzcwcδcτ ei
∥∥2

L2

)
dτ

)1/2

. (5.5)

This generalization is based on the observation that the periodicity implies that Tzcwc
is completely determined by its responses to Dirac impulses δcτ (t)= δc(t − τ), ap-
plied at instants τ verifying 0 ≤ τ ≤ Ts . The H2 norm of sampled-data systems
may be seen as the quadratic mean (in the continuous-time domain) of the previ-
ously defined H2 of continuous-time LTI systems corresponding to Dirac impulses
applied from instant τ = 0 to instant τ = Ts . The computation of the H2 norm of
a sampled-data system may be reduced to the computation of the H2 norm of a
discrete-time LTI system. In the sequel, we present the method proposed in [137],
allowing the computation of the H2 norm of a sampled-data system from the H2
norm of an equivalent discrete-time LTI system. We will describe thereafter the dif-
ferent steps allowing to build the corresponding state-space model of this equivalent
discrete-time system.
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Let S1 and S2 the n× s1 and r × s2 matrices such that

S1S
T
1 =

1

Ts

∫ Ts

0
eAcτWcW

T
c e
ATc τ dτ

and

S2S
T
2 =

1

Ts

∫ Ts

0

∫ t

0
C1c e

AcτWcW
T
c e
ATc τCT1c dτ dt.

Let W the s3 × (n+m) matrix verifying

W TW =
∫ Ts

0

[
C1c e

Act C1c (
∫ t

0 e
Acτ dτ)Bc +D12c

]T

× [
C1c e

Act C1c (
∫ t

0 e
Acτ dτ)Bc +D12c

]
dt.

Consider the partition of W such that

W = [
S3 S4

]

where S3 and S4 are the matrices of size s3×n and s3×m. The equivalent discrete-
time system may be described by the following state-space model

x(k + 1) = Ax(k)+B1w(k)+B2u(k), (5.6a)

y(k) = Cx(k), (5.6b)

z(k) = C1x(k)+D11w(k)+D12u(k) (5.6c)

where

A = eAcTs ,
B1 =

[
S1 0n,s2

]
,

B2 =
∫ Ts

0
eAcτ dτBc,

C1 =
[
S3

0r,n

]
,

D11 =
[

0s3,s1 0s3,s2
0r,s1 S2

]
,

D12 =
[
S4

0r,m

]
.
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5.2.4 Introducing the H2 Norm of Periodically Scheduled
Resource-Constrained Systems

Taking into account the communication constraints, and assuming that the full state
vector is available to the controller at each sampling period and that the scheduling
of the controller-to-actuators link is performed by a maximal T -periodic communi-
cation sequence, the open-loop model of a T -periodic resource-constrained system
can be described by the following extended model:

x(k + 1) = Ax(k)+B1w(k)+B2u(k), (5.7a)

z(k) = C1x(k)+D12u(k)+D22w(k), (5.7b)

δi(k) = 0 ⇒ ui(k)= ui(k − 1). (5.7c)

Here, the matrices A, B1, B2, C1, D12 and D22 are computed by using the dis-
cretization approach mentioned in the previous paragraph. We will assume, in this
chapter, that there exists a maximal T -periodic communication sequence ensuring
the reachability of system (5.7a)–(5.7c). Since the system (5.7a)–(5.7c) being T -
periodic, it becomes then natural to control it by using a T -periodic controller. Con-
sequently, the global system obtained by the interconnection of the plant and the
controller will be also T -periodic. In order to evaluate its H2 norm, the definition
H2 norm of discrete-time periodic system proposed by [256, 266] was adopted. This
definition generalizes the well-known definition of the H2 norm for the discrete LTI
systems, previously introduced.

Let δdk be the discrete-time Dirac impulse applied at instant k, 0 ≤ k ≤ T − 1.
Based on these notations, δdk ei represents the Dirac impulse applied to the ith ex-
ogenous input at instant k, 1 ≤ i ≤ s1 + s2. To simplify the notation, introduce
r̄ = s1 + s2. Let zik the resulting controlled output under the assumption of zero
initial conditions.

Definition 5.4 The H2 norm of discrete-time linear T -periodic systemG is defined
over all the stabilizing discrete-time linear T -periodic controllers by:

‖G‖2 =
√√√√ 1

T

T−1∑
k=0

r̄∑
i=1

∥∥zik∥∥2
l2
. (5.8)

This definition will be used in the sequel in order to compute the H2 norm of
the T -periodic resource-constrained system (5.7a)–(5.7c). This involves the compu-
tation of ‖zik‖l2 , which requires the observation of the system’s response over an
infinite time horizon. In this work, a very close approximation of ‖zik‖l2 is obtained
through a finite horizon H from the instant when the impulse is applied. For that
reason, it is necessary to choose H greater than the response time of the system.
In the practical implementation of the algorithm, it is possible to visualize the re-
sponses to the different Dirac impulses, and to evaluate how much these responses,
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which correspond to exponentially stable trajectories, are close to zero. The H2

norm of the system is the square root of the sum of the squares of the l2 norms
corresponding to these responses. Consequently, the “finite-horizon computed H2

norm” ‖G‖(H) converges asymptotically to the true H2 norm ‖G‖(∞) computed
over an infinite horizon, when H −→+∞. Consequently, for a desired precision,
specified by the maximal absolute error εH2 between the true H2 norm ‖G‖(∞)
computed over an infinite horizon and the “finite-horizon computed H2 norm”
‖G‖(H), there exists an appropriate horizon, Hmin, such that, for all H ≥ Hmin,
|‖G‖(∞)− ‖G‖(H)| ≤ εH2 . Based on this remark, and on the visualization tools
which were implemented, the horizon Hmin may be determined iteratively.

5.3 Introducing the H2 Optimal Integrated Control and Off-line
Scheduling Problem

5.3.1 Solving the Optimal Scheduling Subproblem

In this paragraph, the optimal scheduling subproblem in the sense of the H2 per-
formance index is considered. The formulation of this problem requires first the
definition of its constraints, which may be classified into two groups:

• the first group includes the constraints that appear in the computation of all the
impulsive responses zik , 0≤ k ≤ T − 1 and 1≤ i ≤ r̄ ,

• the second group contains the constraints that are specific to a given impulsive
response zik .

The first group includes the resource constraints (3.6)

m∑
i=1

δi(k)= b

as well as the communication sequence periodicity constraints

δ(k)= δ(k + T ), for 0≤ k ≤H − T − 1. (5.9)

As a consequence, the constraints belonging to the first category may be written as:

AsΔ̌≤Bs (5.10)

where Δ̌ is the vector

Δ̌=
⎡
⎢⎣

δ(0)
...

δ(H − 1)

⎤
⎥⎦ .
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The second group is related to the computation of the impulsive responses zik , for
0≤ k ≤ T − 1 and 1≤ i ≤ r̄ , over the horizon H , knowing the communication con-
straints previously defined. Let uik , xik , zik , ξ ik and oik be respectively the values
of the control input, the state, the controlled output and the auxiliary variables (in-
troduced in the Sect. 4.4.1 of Chap. 4) corresponding to a Dirac impulse applied at
instant k to the ith exogenous input of system (5.7a)–(5.7c). Let Sik be the set of the
involved constraints, for a given response zik (excepting the constraints belonging
to the first group). Then Sik includes:

• the constraints defined by the model (5.7a)–(5.7c) and whose translation into
mixed integer quadratic programs was addressed in the previous chapter,

• the constraints defining the Dirac impulses, which have to satisfy

wiki (k)= 1 (5.11)

and

wikj (l)= 0 for j �= i or l �= k, (5.12)

• the constraints that have to be added to the problem to ensure the causality of the
response

uik(l)= 0 for l < k. (5.13)

Let

Ǔ ik =
⎡
⎢⎣

uik(0)
...

uik(H − 1)

⎤
⎥⎦ ,

X̌ik =
⎡
⎢⎣

xik(0)
...

xik(H − 1)

⎤
⎥⎦ ,

Žik =
⎡
⎢⎣

zik(0)
...

zik(H − 1)

⎤
⎥⎦ ,

Ξ̌ ik =
⎡
⎢⎣

ξ ik(0)
...

ξ ik(H − 1)

⎤
⎥⎦ ,

Ǒik =
⎡
⎢⎣

oik(0)
...

oik(H − 1)

⎤
⎥⎦
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and

V ik =

⎡
⎢⎢⎢⎢⎢⎣

Ǔ ik

X̌ik

Žik

Ξ̌ ik

Ǒik

⎤
⎥⎥⎥⎥⎥⎦
.

Then the set of constraints Sik may be described by

A ik

[
Δ̌

V ik

]
≤Bik. (5.14)

Consequently, the subproblem of the optimal scheduling in the sense of the H2

performance index may be written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
Δ̌,(V ik)1≤i≤r̄ ,0≤k≤T−1

T−1∑
k=0

r̄∑
i=1

zik
T

zik

AsΔ̌≤Bs ,

A ik

[
Δ̌

V ik

]
≤Bik, for 1≤ i ≤ r̄ , 0≤ k ≤ T − 1.

(5.15)

The problem (5.15) is a mixed integer quadratic program and may be solved using
the branch and bound method, which was described in the previous chapter. Its
resolution provides the optimal T -periodic off-line communication sequence δT−1∗ .

5.3.2 Solving the Optimal Control Subproblem

When the controller has full access to the state, and when the disturbances cannot
be measured, the optimal H2 controller becomes identical to the optimal LQR con-
troller [63]. Thus, by knowing the optimal off-line communication sequence δT−1∗ ,
finding the optimal control boils down to solve the optimal control problem over an
infinite horizon for a fixed communication sequence. The general solution to this
problem was described in the Sect. 4.3 of Chap. 4. Solving this problem leads to the
optimal sequence of control gains K̃T−1 = (K̃(0), . . . , K̃(T − 1)).

5.3.3 An Illustrative Numerical Example

Consider the collection of 2 open-loop unstable continuous-time LTI subsystems
defined by
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A(1)c =
[

0 26.6
−250 2

]
, W(1)

c =
[

1.5811
37.9473

]
, B(1)c =

[
0

1000

]
, S(1),

A(2) =

⎡
⎢⎢⎣

0 0 0 532.3
0 0 243.3 0
0 0 −272.67 0

434.86 0 10.184 0

⎤
⎥⎥⎦ , W(2)

c =

⎡
⎢⎢⎣

0
0

0.0632
0.4743

⎤
⎥⎥⎦ ,

B(2)c =

⎡
⎢⎢⎣

0
0

10
10.184

⎤
⎥⎥⎦ , S(2).

The global system S composed by S(1) and S(2) may be described by the state
matrix Ac, the exogenous input matrix Wc and the control input matrix Bc defined
by

Ac = Diag
(
A(1)c ,A

(2)
c

)
,

Wc = Diag
(
W(1)
c ,W

(2)
c

)

and

Bc =Diag
(
B(1)c ,B

(2)
c

)
.

Assume that the global system S is controlled by a discrete-time controller exe-
cuted at the sampling period Ts = 1 ms. The control commands are sent to the
actuators through a bus with that can carry at most one control command every 1 ms
(b= bw = 1). Assume further that the design criteria of the optimal continuous-time
controller for each subsystem are defined by the matrices Q(1)c = Diag(8000,10),
R
(1)
c = 1, Q(2)c = Diag(100,1000,1,1) and R(2)c = 1, and the desired closed-loop

specifications for the global system are described by the following closed-loop
weighting matrices:

Qc =Diag
(
Q(1)c ,Q

(2)
c

)

and

Rc =Diag
(
R(1)c ,R

(2)
c

)
.

By using the approach proposed in Sect. 5.2.1, the equivalent sampled-data model
at the sampling period Ts = 1 ms can be derived. This equivalent model is explicitly
used in the H2 optimization.

The optimal solutions, corresponding to different choices of the period T are
illustrated in Table 5.1. The relative optimality gap of the used branch and bound
algorithm is equal to 10−5, which means that the best-obtained solution will be
considered as an optimal solution if the difference between its cost and the lower
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Table 5.1 Optimal H2
norm as a function of
the period T—
exact discretization

Period T H H2 norm Optimal schedule CPU time (s)

2 28 10.3271 12. . . 20

3 30 9.0312 112. . . 144

4 28 9.7701 1112. . . 206

5 30 9.4861 11212. . . 343

6 30 9.0312 112112. . . 541

7 28 9.3481 1121121. . . 696

8 32 9.3176 11211212. . . 1746

9 27 9.0312 112112112. . . 1102

10 30 9.2538 1121121112. . . 3191

bound of the true optimal cost is less than 0.01 %. The computations were performed
on a PC equipped with a 3.6 GHz Intel Pentium processor and 1 GB of RAM. The
optimization problem was solved by using the solver CPLEX (Release 9.1.0) from
ILOG. In this particular implementation of the optimization algorithm, H must be
a multiple of T . It is sufficient to choose H greater than 27 in order to guarantee a
maximal absolute error εH2 = 10−4.

In Table 5.1, the column CPU Time indicates the time needed by the optimization
algorithm to end. The algorithm stops when it proves that the best obtained solution
is close enough to the lower bound of the true optimal solution (i.e., the relative dif-
ference between the best obtained solution and the true optimal one is less than the
specified relative optimality gap). Theses results indicate that the minimal optimal
schedule is of length T = 3. The length of the optimal schedules which gives the
best H2 norm (H2 = 9.0312) is a multiple of 3. The resource allocation depends
on the dynamics of the subsystems and on their sensitivity to the Dirac impulse
disturbance of the H2 performance evaluation. It is clear from the used definition
of the H2 norm that a circular permutation of an optimal schedule remains opti-
mal.

When the required the CPU time in the last column of Table 5.1 is analyzed, it is
easy to see that the contribution of the time needed to solve the relaxed root prob-
lem is very important. For example, the continuous relaxation of the root problem
in the case T = 2 takes 13 s, whereas the total CPU time is 20 s. For T = 3, it takes
139 s whereas the total CPU time is 144 s. Since our objective is to find primarily
an optimal off-line schedule, it is worth questioning if such an extreme precision
in the discretization is necessary for our objective. In fact, the exact discretization
causes the loss of the sparsity of the original problem. This loss of sparsity increases
the time needed to perform the continuous relaxation of the obtained subproblems,
which constitutes the major part of the bounding phase of the branch and bound
algorithm. For example, the exact discretization of the continuous-time cost func-
tion (4.1) leads to the matrices C1 and D12 such that
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Table 5.2 Optimal H2 norm
as a function of the
period T—approximate
discretization

Period T H H2 norm Optimal schedule CPU time (s)

2 28 11.2703 12. . . 6

3 30 9.7650 112. . . 11

4 28 10.2593 1112. . . 18

5 30 10.3372 11212. . . 38

6 30 9.7650 112112. . . 65

7 28 9.9447 1121121. . . 86

8 32 10.1259 11211212. . . 182

9 27 9.7650 112112112. . . 299

10 30 9.8908 1121121112. . . 400

Q =
[
CT1

DT12

][
C1 D12

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.9825 0.1050 0 0 0 0 0.0346 0
0.1050 0.0119 0 0 0 0 0.0057 0

0 0 0.1081 0 0.0001 0.0290 0 0.0001
0 0 0 1.0000 0.1113 0 0 0.0004
0 0 0.0001 0.1113 0.0169 0.0000 0 0.0001
0 0 0.0290 0 0.0000 0.0110 0 0.0000

0.0346 0.0057 0 0 0 0 0.0046 0
0 0 0.0001 0.0004 0.0001 0.0000 0 0.001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whereas the original continuous-time cost matrix is the diagonal matrix

Diag(Qc,Rc)=Diag(8000,10,100,1000,1,1,1,1).

We may remark that these matrices contain new elements with very low magnitude.
The original matrix Wc is 6× 2 whereas the discretized matrix B1 is 6× 6. In the
sequel, the optimization procedure is performed by considering the approximation
Q̂ of Q such that:

Q̂= Ts Diag(Qc,Rc).

The optimization results are illustrated in Table 5.2. The obtained optimal sched-
ules are identical to the results of the optimization by using the exact discretization.
The column CPU Time indicates the required CPU time using the default parame-
ters of the solver. The computation time is essentially spent in order to prove that
the obtained solution is optimal. In comparison to the exact discretization case, the
relaxation of the root problem takes 0.25 s for T = 2 and 0.47 s for T = 3 when
the approximate discretization is employed. The improvements in computation time
that are due to the use of the approximate discretization are very significant and vary
from 70 % to 92 %. In general, further improvements may be obtained if a feasible
initial solution is used to prune the tree. This will be illustrated in Chap. 6. In this
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particular example, since the optimal solution is found quickly by the algorithm, the
use of these initial solutions does not contribute to a significant improvement of the
computation time.

5.4 Notes and Comments

In this chapter, we have motivated the use of the H2 performance index as an ap-
propriate criterion allowing the optimal integrated control and off-line scheduling
of resource-constrained systems. The H2 norm of a periodically off-line scheduled
resource-constrained system was defined. Based on this definition, a new method
for solving this problem was proposed. This method relies on the decomposition of
the optimal control and off-line scheduling problem into two independent subprob-
lems. The first subproblem aims in finding the optimal cyclic schedule and is solved
by using the branch and bound method. The second sub-problem makes use of the
result of the first sub-problem to determine the optimal control gains by applying
the lifting technique. This method was evaluated through a numerical example and
various techniques allowing to improve its efficiency were proposed.

The problem of optimal control and off-line scheduling of the controller-to-
actuators link was studied in Rehbinder and Sanfridson [200]. In the proposed
model, the control commands are sent to the actuators through a shared TDMA
bus. At each slot, only one control command can be sent, the remaining commands
for the other actuators are held constant. The choice of which actuator to update
at each slot was handled by using the notion of communication sequence intro-
duced by Brockett [43]. Only periodic communication sequences were considered.
A quadratic cost function is associated to each communication sequence, corre-
sponding to the worst-case initial condition and worst-case sequence permutation.
Control commands and periodic communication sequences are obtained by solving
a complex combinatorial optimization problem. The problem of the optimal con-
trol and scheduling in the sense of LQG was introduced and developed in Lincoln
and Bernhardsson [155]. The relaxed dynamic programming method was applied
for its resolution leading to a more efficient search heuristics. It is worth mention-
ing that an heuristic approach for the problem of the optimal control and off-line
scheduling of the sensors-to-controller link in the sense of the H∞ performance
index was proposed in Lu [161]. The application of branch and bound algorithm
to this problem was performed in Ben Gaid et al. [22]. Finally, the application of
genetic algorithms and particle swarm optimization to this problem was undertaken
by Longo et al. in [159]. A generalization of this approach to tackle uncertainties
of the plant model was undertaken by Al-Areqi et al. in [2], and to cope with non
linearities in Su et al. [221].



Chapter 6
Optimal Integrated Control and On-line
Scheduling of Resource-Constrained Systems

Numerical results of the optimal integrated control and scheduling problem show
that the optimal scheduling is closely dependent on the dynamical state of the con-
trolled systems. This dependence confirms the intuition that the most disturbed
plants have always more important “needs” in terms of communication resources
than the plants that are near to the equilibrium. By using on-line scheduling algo-
rithms, it is possible to exploit this dependency to achieve a better control perfor-
mance, thanks to a more efficient use of the available resources.

In this chapter, we consider a resource-constrained system S where the full state
vector x(k) is available to the controller at each sampling period. We first propose
the use of the model predictive control approach as an algorithmic solution allow-
ing to compute on-line, at the same time, the optimal values of the control signals
and the communication scheduling of resource-constrained systems. In opposition
to [191], control signals that could not be updated are held constant (and not set
to zero). Furthermore, a quadratic cost function (and not linear function) is used
in order to evaluate the control performance as well as the ability of the adap-
tive scheduling to improve the performance of sampled-data systems (instead of
discrete-time systems) is demonstrated. However, the on-line solving of the opti-
mization algorithm, which is required by the MPC approach, is very costly. For that
reason, an on-line scheduling algorithm, called optimal pointer placement (OPP)
is proposed. While being based on a pre-computed optimal off-line schedule, OPP
makes possible to allocate on-line the communication resources, based on the state
of the controlled dynamical systems. It is shown that, under mild conditions, OPP
ensures the asymptotic stability of the controlled systems and enables in all the
situations to improve the control performance compared to the basic static schedul-
ing. Furthermore, under these conditions, the determination of OPP control and
scheduling amounts by comparing a limited number of quadratic functions of the
state. Finally, OPP is applied to two typical examples of distributed control and em-
bedded systems: the active suspension of car and the attitude control of a quadro-
tor.

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_6,
© Springer International Publishing Switzerland 2014

81

http://dx.doi.org/10.1007/978-3-319-02729-6_6


82 6 Optimal Integrated Control and On-line Scheduling

6.1 Model Predictive Control (MPC) of Resource-Constrained
Systems

6.1.1 Problem Formulation

Open-loop optimization problems, similar to the ones described in Chap. 4, con-
stitute the cornerstone of a successful control method: the model predictive control
(MPC). MPC has strong theoretical foundations, and many interesting properties
that make it suitable for addressing constrained control problems. However, its main
drawback is that, unfortunately, it requires very expensive computational resources,
which make it only applicable to slow systems, as, for example, chemical processes.
To the best of the authors’ knowledge, model predictive control is the standard ap-
proach to control MLD systems [21]. Among others, its application to this particular
problem was motivated by:

• The need to optimize simultaneously control actions and network scheduling, in
order to achieve a better quality of control with respect to the one obtained in the
case of static network allocation schemes.

• The need for a control law that changes on-line the “actuation period” in order to
improve the quality of control. This requires that these variations are taken into
account by the control law [168].

When using MPC, an optimal control problem is solved on-line at each
sampling period Ts . It aims in finding the optimal control values sequence
ûN−1∗ = (û∗(0), . . . , û∗(N−1)) and the optimal communication sequence δ̂N−1∗ =
(δ̂∗(0), . . . , δ̂∗(N − 1)), which are solutions of the following optimization problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ûN−1,δ̂N−1

N−1∑
h=0

[
x̂(h)

û(h)

]T
Q

[
x̂(h)

û(h)

]
+ x̂T (N)Q0x̂(N)

subject to

x̂(0)= x(k),
x̂(h+ 1)=Ax̂(h)+Bû(h), h ∈ {0, . . . ,N − 1},
m∑
i=1

δ̂i (h)= b, h ∈ {0, . . . ,N − 1},

δ̂i (0)= 0 =⇒ ûi (0)= ui(k − 1),

δ̂i(h)= 0 =⇒ ûi (h)= ûi (h− 1), h ∈ {1, . . . ,N − 1}.

(6.1)

The solution of this problem is based on the prediction of the future evolution of
the system over an appropriate horizon of N sampling periods. This predicted evo-
lution is calculated according to the model of the plant, knowing the current state
x(k) of the system. The variables x̂(h), h ∈ {0, . . . ,N} represent the predicted val-
ues of system states x(k + h). The sequences (û(0), . . . , û(N − 1)) (virtual control
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sequence) and (δ̂(0), . . . , δ̂(N − 1)) (virtual communication sequence) are called
virtual sequences, since they are based on the predicted evolution of the system.
The resolution of this problem aims in finding the optimal virtual control sequence
(û∗(0), . . . , û∗(N − 1)) as well as the optimal virtual communication sequence
(δ̂∗(0), . . . , δ̂∗(N − 1)) that minimize a quadratic cost function over a finite hori-
zon of N sampling periods. Assuming that the optimal virtual sequences exist, the
actual control commands are obtained by setting:

v(k)=M
δ̂∗(0)û

∗(0) (6.2)

and

δ(k)= δ̂∗(0) (6.3)

and disregarding the remaining elements (û∗(1), . . . , û∗(N − 1)) and (δ̂∗(1), . . . ,
δ̂∗(N − 1)). At the next sampling period (step k + 1), the whole optimization pro-
cedure is repeated, based on x(k + 1).

An important issue concerns the stability of the proposed model predictive con-
troller. If the following constraint is added to problem (6.1):

x̂(N)= 0, (6.4)

the following result is obtained.

Theorem 6.1 [27] If at k = 0, a feasible solution exists for the problem (6.1) aug-
mented with the additional constraint (6.4), then ∀Q=QT > 0, the MPC law (6.1),
(6.4) stabilizes the system S such that

lim
k→+∞x(k) = xe = 0,

lim
k→+∞u(k) = ue = 0.

Proof The proof may be easily performed by following the same ideas as in the
proof of the sufficient stability conditions for the model predictive control of MLD
systems stated and discussed in [21]. �

6.1.2 Optimality

The optimality of the model predictive controller may be proved if an infinite hori-
zon cost function J (x̃, v, δ,0,+∞) = J (x,u,0,+∞) is used and if the predic-
tion horizon N is chosen infinite. More precisely, at each time step k, and for
any extended state x̃(k), the model predictive controller over an infinite horizon
computes the optimal solutions v∗(k) and δ∗(k) that minimizes the cost function
J (x̃, v, δ, k,+∞), subject to the communication constraints. Its optimality directly
results from the Bellman optimality principle, which states: “An optimal policy has
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the property that whatever the initial state and the initial decision are, the remaining
decisions must constitute an optimal policy with respect to the state resulting from
the first decision.”

In many practical situations, it is sufficient to choose the prediction horizon N
large enough with respect to the response time of the system in order to get a per-
formance that is close to the optimality. This is possible when the virtual sequences
of the optimal control commands, which are computed at each sampling period,
converge exponentially to zero as the horizon increases. The obtained finite horizon
solution will then approximate the optimal infinite horizon solution.

6.1.3 An Illustrative Numerical Example

In order to illustrate the proposed approach and to study the interdependency of
control and scheduling, especially the relationship between the state space vector of
the plant and the optimal network bandwidth allocation, consider the continuous-
time LTI system described by the state matrix:

Ac =
[
A
(1)
c 0
0 A

(2)
c

]

and the input matrix:

Bc =
[
B
(1)
c 0
0 B

(2)
c

]

with

A(1)c =A(2)c =
[

0 130
−800 10

]

and

B(1)c = B(2)c =
[

0
230

]
.

The global system consists in two identical and independent subsystems, S(1) and
S(2), which are open-loop unstable. The two control inputs u1 (corresponding to
subsystem S(1)) and u2 (corresponding to subsystem S(2)) are sent to the corre-
sponding actuators through a shared communication bus. Assume now that the
bus bandwidth is such that only a control command may be transmitted at each
sampling period Ts = 2 ms, thus b = 1. Furthermore, assume that the specifi-
cations of the optimal continuous-time controller are described by the matrices
Qc = Sc =Diag(100,10,100,10) and Rc =Diag(1,1).

In order to take into account the bandwidth limitations, a simple strategy by send-
ing “alternately” control commands u1 and u2 over the bus may be considered. This
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Fig. 6.1 Subsystems S(1) and S(2) responses

strategy consists in applying an off-line schedule, defined by the periodic commu-
nication sequence

([
1
0

]
,

[
0
1

])
.

Since the subsystems S(1) and S(2) are identical, an optimal off-line schedule should
fairly share the available resources between them. In order to apply this strategy,
optimal sampled-data controllers (at the sampling period of 4 ms) are considered.

This static scheduling strategy is compared to an adaptive scheduling strategy
based on the model predictive control algorithm. The MPC relies on a plant discrete-
time model at the period of 2 ms. The prediction horizon N is equal to 14 (and is
greater than the global system response time). A sub-optimal solution with a relative
error bound of 1×10−5 was required for the branch and bound solver, which is used
by the MPC.

Figure 6.1 compares the evolution of the state variables of subsystem S(1)

(x1 and x2) and those of subsystem S(2) (x3 and x4), corresponding respectively,
to the application of the static strategy (StS), and to the use of the model predictive
controller (MPC). The accumulated cost functions corresponding to these responses
are depicted in Fig. 6.2. The considered initial state is [1 0 −0.2 0]T . At instant
t = 20 ms, subsystem S(1) is severely disturbed.

These results show that significant improvements in control performance are
achieved by the adaptive scheduling scheme, compared to the static fair network
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Fig. 6.2 Accumulated continuous-time cost functions

Fig. 6.3 Adaptive schedule (MPC)

allocation. In order to understand the reasons behind these improvements, it is nec-
essary to analyze the operation of the model predictive controller. For that, consider
the controller-to-actuators schedule corresponding the use of the MPC algorithm (in
Fig. 6.3). Figure 6.4 describes the static off-line schedule. At t = 0 s, the subsystem
S(1) has the greatest deviation from the equilibrium position. In order to optimize
the cost function, the MPC allocates the two first slots to the transmission of the
control signal u1, which contrasts with the static strategy, where resources are pre-
allocated independently on the dynamical state of the controlled plants. Next, when
the two subsystems reach approximately the same “distance” from the equilibrium,
the network bandwidth is allocated fairly. At t = 20 ms, when the subsystem S(1) is
disturbed (subsystem S(2) being at the equilibrium), the model predictive controller
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Fig. 6.4 Static schedule (StS)

reacts “extremely” fast by allocating 11 consecutive slots to the transmission of the
control command u1. This contrasts with the operation of the static strategy, where
half of the bandwidth is allocated to subsystem S(2), which is at the equilibrium.
This aptitude of the model predictive controller to change the “actuation period”
comes from its capacity to compensate the control commands for these changes.
This dynamic allocation of the resources (as well as the automatic compensation of
the control commands) makes possible to reject disturbances in a much more pow-
erful way, contributing thus to the significant improvement of the quality of control
(as illustrated to the Fig. 6.2).

These results illustrate the ability of the model predictive controller to play the
role of an adaptive controller-scheduler, as well as its aptitudes to improve the qual-
ity of control compared to any off-line scheduling strategy. These improvements
manifest themselves by better disturbance rejection capabilities, which are due to
the ability of the adaptive scheduling scheme to react earlier and faster to the dis-
turbances, compared to any off-line scheduling strategy. These results are in accor-
dance with those of [167], where the empirical study of the relationship between
resource allocation and control performance was undertaken.

6.2 Optimal Pointer Placement (OPP) Scheduling

6.2.1 Problem Formulation

The motivation behind the optimal pointer placement (OPP) scheduling algorithm
presented in this section is to be a “trade-off” between the advantages of the on-
line scheduling (control performance) and those of the off-line scheduling (a very
limited usage of computing resources).
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Fig. 6.5 Illustration of the
notion of pointer

Consider now a static off-line control and scheduling strategy, which is based on:

• a T -periodic controller defined by a sequence of state-feedback control gains
K̃T−1 = (K̃(0), . . . , K̃(T − 1)),

• a static off-line schedule defined by a T -periodic communication sequence
γ T−1 = (γ (0), . . . , γ (T − 1)).

Note that the optimal off-line selection of K̃T−1 and γ T−1 was described and dis-
cussed in the previous chapter.

At runtime, the execution of the periodic off-line controller and scheduler may
be described by using the notion of pointer. The pointer may be seen as a variable
that contains the index of the control gain to use and the scheduling to apply. The
pointer is incremented at each sampling period. If it reaches the end of the sequence,
its position is reset. More formally, if the pointer is started at position p (0≤ p < T ),
its expression Ip(k) at the kth sampling period is given by

Ip(k)= (k + p) mod T . (6.5)

According to the off-line strategy, the control commands that are transmitted as well
as the scheduling decisions are chosen such that:

v(k)= K̃(Ip(k)
)
x̃(k) (6.6)

and

δ(k)= γ (Ip(k)
)
. (6.7)

Example 6.1 Consider the periodic communication sequence γ 5 defined by

γ 5 =
⎛
⎝
⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
1
0

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
1
0

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
0
1

⎤
⎦
⎞
⎠

and the associated control gains sequence

K̃5 = (
K̃(0), K̃(1), K̃(2), K̃(3), K̃(4), K̃(5)

)
.

Figure 6.5 graphically illustrates the notion of pointer. The communication sequence
γ 5 as well as the pointer (located at position p = 3) are depicted.
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The idea behind the OPP scheduling heuristic is that instead of finding an optimal
solution to problem (6.1), the search is restricted to find a sub-optimal solution,
based on an optimal off-line schedule, over a horizon N (which is assumed to be a
multiple of T ), according to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
p

N−1∑
h=0

[
x̂(h)

û(h)

]T
Q

[
x̂(h)

û(h)

]
+ x̂T (N)Q0x̂(N)

subject to

x̂(0)= x(k),
û(−1)= u(k − 1), and for all h ∈ {0, . . . ,N − 1},

v̂(h)= K̃(Ip(h)
)[ x̂(h)

û(h− 1)

]
,

û(h)=Dγ
(
Ip(h)

)
v̂(h)+Eγ

(
Ip(h)

)
û(h− 1),

x̂(h+ 1)=Ax̂(h)+Bû(h).

(6.8)

The cost function is computed according to a prediction of the future evolution
of the system (described by x̂(h)). This evolution is calculated by assuming that the
sequences K̃T−1 and γ T−1 are started from position p. For example, if the pointer
is located at position p = 3, as in Fig. 6.5, the evolution of the system is predicted
based on the communication sequence

(
γ (3), γ (4), γ (5), γ (0), γ (1), γ (2), γ (3), . . .

)

and the control gains sequence
(
K̃(3), K̃(4), K̃(5), K̃(0), K̃(1), K̃(2), K̃(3), . . .

)
.

The solution of problem (6.8) is the pointer’s position p∗ that minimizes the cost
function Ĵ (x̃(k),p), subject to the constraints expressed above, where

Ĵ
(
x̃(k),p

)=
N−1∑
h=0

[
x̂(h)

û(h)

]T
Q

[
x̂(h)

û(h)

]
+ x̂T (N)Q0x̂(N).

The control command v(k)= K̃(p∗)x̃(k) is sent according to the scheduling vector
δ(k)= γ (p∗). At the next sampling period, this procedure is reiterated in a receding
horizon manner.

6.2.2 An Illustrative Numerical Example

In order to illustrate the effectiveness of the OPP scheduling algorithm, the exam-
ple proposed in Sect. 4.4.3 of Chap. 4 is reconsidered. The control performances
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Fig. 6.6 Global system responses—states x1 and x3

corresponding to the use of a static scheduling (StS) algorithm, OPP and MPC are
compared. Static scheduling and OPP algorithms use the communication sequence

γ 5 =
⎛
⎝
⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
1
0

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
1
0

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
0
1

⎤
⎦
⎞
⎠

that together with the control gains sequence K̃5 = (K̃1, K̃2, K̃1, K̃2, K̃1, K̃3) guar-
antee the asymptotic stability of the global system, where

K̃1 = [−1.14 −1.04 0 0 0 0 0 0 0 0 0],
K̃2 = [0 0 4.12 0.36 0 0 0 0 0 0 0],
K̃3 = [0 0 0 0 17.80 −6.28 −33.28 48.91 0 0 0].

The period T of the schedule is equal to 6 and the horizon N of the OPP and MPC
algorithms is equal to 60. A sub-optimal solution with a relative error of 1× 10−5

was required for the MPC algorithm. Global system responses corresponding to the
state variables x1, x3, x5 and x6 (positions) are depicted in Fig. 6.6. The accumulated
continuous-time cost functions corresponding to these responses are illustrated in
Fig. 6.7.

It is assumed that the global system starts from the initial state [1 0 1 0 1 0 0 0]T .
The three subsystems S(1), S(2) and S(3) converge progressively to the steady state.
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Fig. 6.7 Accumulated continuous-time cost functions

Next, we also assume that, at t = 0.14 s, the subsystem S(1) is disturbed. This devi-
ation is fast corrected. The best response is achieved by the MPC. However, this
algorithm cannot be implemented in practice, because the required computation
time is too long (in this case, a few seconds at each step on a PC equipped with
an Intel Celeron processor cadenced at 2.2 GHz). For N = 60, the number of ad-
missible maximal communication sequences is 360 = 4.23 × 1028. The fact that
the used branch and bound algorithm stops in a few seconds shows its efficiency
to address this particular problem. The OPP algorithm significantly improves the
control performance with respect to the static scheduling algorithm, requiring fewer
computing resources than the MPC. In fact, when using the OPP scheduling al-
gorithm, the maximum number of possible communication sequences is equal to
T = 6.

The schedule obtained by the OPP and MPC algorithms are respectively de-
picted in Figs. 6.8 and 6.9. At t = 0 s, the OPP scheduling algorithm chooses to
reserve the first slot to subsystem S(3). This choice contributes to the improve-
ment of its performance as well as the performance of the global system (shown
in Fig. 6.6). It is important to point out that both MPC and OPP have the abil-
ity to change on-line the “actuation period” of each subsystem. Consequently, the
scheduling pattern is irregular. Network slots are allocated in order to improve
the control performance. When a subsystem is closer to the equilibrium, then its
control commands remain constant and they may be sent less frequently over the
network. This explains the reason why the MPC algorithm does not allocate net-
work slots to subsystems in the equilibrium, when other subsystems are “far” form
the steady state. At t = 0.14 s, when the subsystem S(1) is disturbed, OPP and
MPC algorithms allocate the network slots mainly for the transmission of the con-
trol command of subsystem S(1), allowing to react earlier and faster to the dis-
turbance. This contrasts with the static scheduling algorithm, where the allocation
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Fig. 6.8 OPP schedule

Fig. 6.9 MPC schedule

of the network resources is independent from the dynamical state of the subsys-
tems.

Finally, assume now that the three subsystems are disturbed with a band limited
white noise characterized by a noise power of 0.1 and a correlation time of 1×10−5.
Simulation results are depicted in Fig. 6.10. The performance improvements using
the OPP and the MPC algorithms are similar to those observed in the previous
simulations.
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Fig. 6.10 Accumulated continuous-time cost functions resulting from a band limited white noise
disturbance

6.2.3 Optimal Pointer Placement over Infinite Horizon

If the horizon N is infinite, the OPP scheduling algorithm presents some interesting
properties: its implementation becomes simpler and a formal proof of its stability
may be given. Moreover, it may also be proven that the quality of control obtained
when using OPP is always better or similar (in the worst-case) compared to the
quality of control obtained by using its basic static scheduling algorithm.

The simplification of OPP comes from the relation between the expression of
the cost function over an infinite horizon (corresponding to the use of a T -periodic
communication sequence) and the solution of the discrete algebraic periodic Riccati
equation over an infinite horizon described in Sect. 4.3 of Chap. 4. This relation is
formalized by

Ĵ
(
x̃(k),p

)= x̃T (k)S̃(p)x̃(k).
Based on this relation, the implementation of OPP becomes simpler and may be
described by the following algorithm:

Find p∗ = argmin
p

x̃T (k)S̃(p)x̃(k),

v(k)= K̃(p∗)x̃(k) and δ(k)= γ (p∗).
For N = +∞, the stability of the OPP scheduling algorithm is stated in the

following:

Theorem 6.2 [27] If the asymptotic stability of the resource-constrained system S
is guarantied by the off-line control and scheduling using the control gains sequence
K̃T−1 and the network scheduling sequence γ T−1, then it is also ensured by the OPP
scheduling algorithm.
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Proof The proof is based on the comparison of the trajectory of the system sched-
uled by the static scheduling algorithm (denoted by x̃sts) and that of the system
scheduled by the OPP algorithm (denoted by x̃opp), starting from the same arbitrary
initial condition x̃sts(0)= x̃opp(0)= x̃(0).

Let J sts(x̃(i), i, f,p) be the cost function corresponding to an evolution from
instant k = i to instant k = f starting from the state x̃(i) where the static scheduling
algorithm is applied and where the pointer at instant i is placed at position p:

J sts(x̃(i), i, f,p)=
f∑
k=i

[
xsts(k)

usts(k)

]T
Q

[
xsts(k)

usts(k)

]
.

Let J opp(x̃(i), i, f ) be the cost function corresponding to an evolution from instant
k = i to instant k = f starting from the state x̃(i) where the OPP algorithm is
applied:

J opp(x̃(i), i, f )=
f∑
k=i

[
xopp(k)

uopp(k)

]T
Q

[
xopp(k)

uopp(k)

]
.

In order to prove the stability of the system scheduled by using the OPP algorithm,
we must prove that for all p0 ∈ {0, . . . , T − 1}

J opp(x̃(0),0,+∞)≤ J sts(x̃(0),0,+∞,p0
)
. (6.9)

In fact, Q is definite positive. As a consequence, J sts(x̃(0),0,+∞,p0) (resp.
J opp(x̃(0),0,+∞)) is finite if and only if the system scheduled using the static
scheduling algorithm (resp. the OPP algorithm) is asymptotically stable.

Let J opp−sts(x̃(0), l) be the cost function corresponding to an evolution start-
ing from the initial state x̃(0) where OPP is applied form k = 0 to k = l and then
followed by the static scheduling algorithm (which is applied from k = l + 1 to
k =+∞). Then it is easy to see that

J opp(x̃(0),0,+∞)= lim
l→+∞J

opp−sts(x̃(0), l). (6.10)

Consequently, in order to prove (6.9), it is sufficient to verify that, for all p0 ∈
{0, . . . , T − 1} and for all l ∈ [0,+∞)

J opp−sts(x̃(0), l)≤ J sts(x̃(0),0,+∞,p0
)
. (6.11)

This proof may be done by recurrence on l. Let p0 ∈ {0, . . . , T − 1} an arbitrary
start position of the static scheduling algorithm.

At the stage l = 0, the OPP scheduling algorithm will choose the pointer position
such that

p∗(0)= argmin
p

J sts(x̃(0),0,+∞,p). (6.12)

By knowing that

J sts(x̃(0),0,+∞,p∗(0))= J opp−sts(x̃(0),0)
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it follows that

J opp−sts(x̃(0),0)≤ J sts(x̃(0),0,+∞,p0
)
.

Thus, the property is then valid at stage 0.
Assume now that (6.11) is valid at stage l − 1 with l > 0. We have to prove

that (6.11) is also valid at stage l.
At stage l, according to the OPP strategy, the pointer position p∗(l) will be cho-

sen such that

p∗(l)= argmin
p

J sts(x̃opp(l), l,+∞,p). (6.13)

Consequently

J sts(x̃opp(l), l,+∞,p∗(l))≤ J sts(x̃opp(l), l,+∞, Ip∗(l−1)(1)
)
, (6.14)

where p∗(l − 1) is the optimal pointer position at instant l − 1. Adding J opp(x̃(0),
0, l − 1) to both left and right terms of the previous inequality, we get

J opp−sts(x̃(0), l)≤ J opp−sts(x̃(0), l − 1
)
. (6.15)

Using the recurrence assumption

J opp−sts(x̃(0), l − 1
)≤ J sts(x̃(0),0,+∞,p0

)
, (6.16)

and the inequality (6.15), the theorem is proved. �

6.3 Real-Time Implementation Aspects of the OPP over Infinite
Horizon Algorithm

The OPP over infinite horizon algorithm requires the on-line evaluation of T
quadratic functions of the extended state vector x̃(k). The computational complex-
ity is linear with respect to the period of the sequence, quadratic with respect to
the extended state (like a classical state-feedback control law) and independent of
the size of the horizon. In the case of the suspension example, the additional com-
putational requirements of OPP are approximately 4.3 times those required by the
state feedback operation v(k)= K̃(p)x̃(k). Using OPP follows the idea of trading
additional computations for a more efficient use of network resources [259]. Fur-
ther reducing the computational requirements is a both a difficult and interesting
research issue. The application of multi-parametric programming techniques to the
optimal control of hybrid systems have been recently considered [38]. In [134], an
approximate solution to the model predictive control of linear systems with input
and state constraints was proposed. This method is based on the partitioning the
state space onto hypercubes which may be further partitioned in order to meet on
the cost function approximation error bounds and constraints violations bounds. By
imposing an orthogonal search tree on the partition, the on-line computational re-
quirements are significantly reduced with respect to the true optimal explicit MPC
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law. The search method is logarithmic with respect to the number of regions, but
this number may augment exponentially with respect to the state vector size. The
memory requirements, needed to the storage of this partitioning information and of
the state-feedback control law parameters, are also tightly dependent on this number
of regions. This problem is tractable for low dimensional systems but it may become
larger more complicated for problems similar to the ones treated in this chapter. The
difference between this approach and that of [134] resides in the fact that we explore
the set of pointer positions, which is in general, and particularly in this application,
“less” complex than the state space. This considerably reduces the computational
complexity.

6.4 Optimal Pointer Placement Scheduling: Application to a Car
Suspension System

In this section, the OPP scheduling algorithm is applied to a distributed active sus-
pension controller. The considered controller is based on a full-vehicle model and
is implemented on a central processor. The controller sends the control commands
to four hydraulic actuators located on the vehicle’s corners through a bus subject to
bandwidth limitations. In the sequel, the considered active suspension model is de-
scribed, the control design methodology is illustrated and finally the OPP schedul-
ing strategy is evaluated and compared to a fair static scheduling strategy.

6.4.1 The Suspension Control System

The simulated model (Fig. 6.11) was adopted from [60]. It consists in a seven
degree-of-freedom system. In this model, the car body, or sprung mass, is free to
heave, roll and pitch. In order to obtain a linear model, roll and pitch angles are
assumed to be small. The suspension system connects the sprung mass to the four
unsprung masses (front–left, front–right, rear–left and rear–right wheels), which are
free to bounce vertically with respect to the sprung mass. The suspension system
consists in a spring, a shock absorber and a hydraulic actuator at each corner. The
shock absorbers are modeled as linear viscous dampers, and the tires are modeled
as linear springs in parallel to linear dampers.

In order to describe this system, fifteen variables need to be considered:

xc1 : heave velocity of the center of gravity of the sprung mass
xc2 : pitch angular velocity of the sprung mass
xc3 : roll angular velocity of the sprung mass
xc4 : front–left suspension deflection
xc5 : rear–left suspension deflection
xc6 : rear–right suspension deflection
xc7 : front–right suspension deflection
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Fig. 6.11 Full vehicle model

xc8 : front–left unsprung mass velocity
xc9 : rear–left unsprung mass velocity
xc10 : rear–right unsprung mass velocity
xc11 : front–right unsprung mass velocity
x′c12

: front–left tire deflection
x′c13

: rear–left tire deflection
x′c14

: rear–right tire deflection
x′c15

: front–right tire deflection

Road disturbances acting on the four vehicle wheels consist of height displace-
ment inputs (xξ1, xξ2 , xξ3, xξ4 ) and height velocity inputs (Vξ1,Vξ2 ,Vξ3 ,Vξ4 ) defined
with respect to an inertial reference frame.

As mentioned earlier, the suspension model has seven degrees of freedom. Con-
sequently, only fourteen state variables are needed to describe it. The extra variable
may be eliminated if the wheel deflections are expressed as a function of three state
variables xc12 , xc13 and xc14 and of the road disturbances xξ1 , xξ4 , xξ3 , xξ4 as illus-
trated in [60].

Applying a force-balance analysis to the model in Fig. 6.11, the state equation
may be derived from the equations of motion and is given by

ẋc(t)=Acxc(t)+Bcuc(t)+Wcwc(t) (6.17)

where

xc(t) is the state vector (14 variables),
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uc(t) is the control vector: uc(t)= [uc1(t) uc2(t) uc3(t) uc4(t)]T , uc1 , uc2 , uc3 and
uc4 represent the control forces applied respectively by the front-left, rear-left,
rear-right and front-right hydraulic actuators,

wc(t) is the vector of road disturbances (displacements and velocities): wc(t) =
[xξ1(t) xξ2(t) xξ3(t) xξ4(t) Vξ1(t) Vξ2(t) Vξ3(t) Vξ4(t)]T .

6.4.2 Active Suspension Control Law

The control design for a vehicle’s active suspension aims to maximize the driving
comfort (as measured by sprung mass accelerations) and the safety (as measured
by tire load variations) under packaging constraints (as measured by suspension de-
flections). However, comfort and safety are two conflicting criteria [201]. We adopt
the control design methodology of [60], approach that divides the control design
problem for a vehicle’s active suspension into two sub-problems:

• The design of the ride controller, whose role is to improve ride comfort by iso-
lating the sprung mass from road disturbances. The ride controller has also to
maintain a sufficient contact force between the tires and the road to insure conve-
nient road holding.

• The design of the attitude controller, responsible of maintaining load-leveling,
performing convenient load distribution and controlling roll and pitch angles dur-
ing vehicle maneuvers (roll during cornering and pitch during breaking and ac-
celeration).

In this section, the ride controller part of the suspension controller is considered.
The used ride controller is a linear quadratic regulator that aims at minimizing the
following cost function:

Jc =
∫ +∞

0

{
12∑
i=0

μiy
2
i (t)+

4∑
j=0

aju
2
cj
(t)

}
dt, (6.18)

where μi and aj are weighting factors and

y1: vertical acceleration of the sprung mass
y2: pitch angular acceleration of the sprung mass
y3: roll angular acceleration of the sprung mass
y4: sum of the suspension deflections at the four corners
y5: difference between the suspension deflections at the right- and left-hand sides
y6: difference between the suspension deflections at the front and rear of the vehi-

cle
y7: difference between the suspension deflections at the diagonally opposite cor-

ners
y8: sum of the velocities of the unsprung masses
y9: difference between the velocities of the unsprung masses on the left- and right-

hand sides
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Fig. 6.12 “Chuck hole” road disturbance

y10: difference between the velocities of the unsprung masses at the front and rear
of the vehicle

y11: difference between the velocities of the unsprung masses at the diagonally op-
posite corners

y12: wrap torque acting on the sprung mass

6.4.3 Simulation Setup and Results

Assume that the communication network connecting the controller to the actuators
is subject to communication constraints: only a control command can be sent to
an actuator every 10 ms. A simple approach to handle this problem is to send the
control commands alternately according to the periodic communication sequence

γ 3 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

By using this communication sequence, the discretized model of the controlled
car suspension system becomes periodic. Applying the methodology described in
Sect. 4.3 of Chap. 4, the optimal periodic control gains (K̃(0), K̃(1), K̃(2), K̃(3))
may be derived.

The suspension system is evaluated by subjecting the left-hand side of the ve-
hicle to a “chuck hole” discrete road disturbance [60] (Fig. 6.12). The vehicle
speed is equal to 40 km/h. First, the performance of the designed active sus-
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Fig. 6.13 Heave velocity of the passive and active suspension (controlled with the static schedul-
ing and the OPP algorithms)

Fig. 6.14 Roll and pitch velocities of the passive and active suspension (controlled with the static
scheduling and the OPP algorithms)

pension controller is evaluated and compared to the passive suspension. Then,
the performance of the OPP algorithm is compared to that obtained when the
static scheduling (StS) algorithm is applied. OPP and the static scheduling al-
gorithm are both based on the communication sequence and control gains de-
scribed above. Heave, roll and pitch velocity responses are illustrated in Figs. 6.13
and 6.14.

From these simulation results, it may be seen that the active suspension in-
duces an important improvement of the ride performance compared to the pas-
sive suspension (smaller and better damped velocities and thus accelerations).
Furthermore, the responses when using the OPP algorithm show a slight im-
provement with respect to the static scheduling (StS) algorithm. The improve-
ments in ride comfort shown by the active suspension are obtained with sus-
pension and tire deflection levels that are close to those obtained with the pas-
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Fig. 6.15 Suspension and tire deflections of the passive and active suspension (controlled with the
static scheduling and the OPP algorithms)

Fig. 6.16 Quadratic cost functions corresponding to the active suspension (controlled with the
static scheduling, with the OPP algorithm and using an ideal implementation)

sive suspension (the rear–right suspension and tire deflections are depicted in
Fig. 6.15).

Finally, the quadratic cost functions corresponding to the ideal continuous time
LQR controller, the static scheduling algorithm and the OPP scheduling algorithm
are compared in Fig. 6.16. The steady state cost function values corresponding to
the static scheduling, OPP and to the ideal implementation are respectively equal
to 4459, 4122 and 3290. Consequently, the improvements in terms of quality of
control achieved by the OPP algorithm are equal to 28.8 %. These improvements
are significant, but not as “spectacular” as those observed in the previous exam-
ple since the different components of the suspension system are tightly coupled:
a disturbance affecting a single wheel influences all the state variables of the sys-
tem.
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6.4.4 Embedded Computing Implementation Aspects
of the Distributed Suspension Model

The study of the practical implementation of the considered distributed active sus-
pension model, based on state of the art methods, was undertaken in [25, 30, 138].
The Controller Area Network bus was deployed to ensure the information exchange
between the distributed components. In [25, 30], the tool TRUETIME [5, 56] was
used to simulate these implementations. The impact of messages priorities on con-
trol performance was studied in [30]. It was shown that the assignment of some mes-
sages priorities, which may be chosen arbitrarily from a real-time scheduling point
of view, may have a considerable impact on the robustness of system. In [138], the
control performance resulting from different implementation choices of the suspen-
sion system were studied. It was shown that synchronous implementations achieve
the best control performance. In [25], the impact of the traffic that is generated by
the other unrelated network nodes on the control performance of the suspension
system was studied, as a function of the available bandwidth resources.

6.5 Optimal Pointer Placement Scheduling: Application
to a Quadrotor

Consider now the problem of the attitude control of a quadrotor. A quadrotor is a
rotor-craft that is lifted and propelled by four rotors. Appendix B provides a detailed
description of the used quadrotor model, adopted from [17], as well as a review of
the mathematical concepts used to derive it. The attitude (i.e., orientation) of the
quadrotor is completely described using a unitary quaternion q = [q0 qT ]T , with
‖q‖2 = 1, where q0 and q= [q1 q2 q3]T are respectively, the scalar and vector parts
of the quaternion. The unit quaternion represents the rotation from an inertial frame
to the body frame attached to the quadrotor. The dynamic evolution of the attitude
quaternion is given by:

(
q̇0
q̇

)
= 1

2

( −qT

I3q0 + [q×]
)
ω, (6.19)

where ω ∈R
3 is the angular velocity of the quadrotor in the body frame and [q×] is

the skew symmetric tensor associated to q

[
q×
]=

⎛
⎝

0 −q3 q2
q3 0 −q1
−q2 q1 0

⎞
⎠ .

The rotational motion of the quadrotor (under the assumption of neglected gyro-
scopic torques) is given by:

If ω̇=−
[
ω×

]
If ω+ τa + τdist, (6.20)
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where If ∈ R
3×3 is the inertia matrix of the quadrotor with respect to the body

frame. If is constant. Here, τa ∈R
3 represents the torques resulting from the differ-

ences of the relative speeds of the four rotors, and can be written as:

τa =
⎡
⎣
τroll
τpitch
τyaw

⎤
⎦ ,

and τdist ∈R
3 describes the aerodynamic disturbances acting on the quadrotor.

The objective of the attitude controller is to drive the quadrotor attitude to a de-
sired value, which is specified by a unitary quaternion. In practice, this attitude may
also be specified by Euler angles (φ, θ,ψ), which are more intuitive than quater-
nions.

To design the attitude controller, consider the linearized model of Eqs. (6.19)
and (6.20), and where Euler angles are used instead of quaternions for the descrip-
tion of the attitude. This linearized model is described by

ẋc(t)=Acxc(t)+Bcuc(t)+Bcτdist(t), (6.21)

with

Ac =
[

03 I3
03 03

]
, Bc =

[
03

I−1
f

]
, xc =

[
e

w

]
,

e =
⎡
⎣
φ

θ

ψ

⎤
⎦ and uc = τa.

The attitude controller acts on τa , based on e and ω. It is assumed that e and ω
are measured by an Inertial Measurement Unit (IMU).

The OPP algorithm is evaluated by applying it to this non-linear model. Simula-
tion results are depicted in Fig. 6.17.

In this particular case study, OPP impact on disturbance rejection abilities is
studied. Figure 6.17 illustrates this point, and compares the controlled attitude of
quadrotor, described by Euler angles (φ, θ,ψ), in two different situations:

• using the static scheduling algorithm,
• using the OPP algorithm.

The aerodynamic disturbances τdist(t) are modeled by band-limited white noises,
with noise power 10−3 and period 10−1, and which are produced by using differ-
ent seeds. Figure 6.17 shows that significant improvements in control performance
result from OPP, with respect to the static schedule. The band-limited white noise
disturbances are better rejected. Finally, Fig. 6.18 depicts the cumulative cost func-
tions that are associated to the previous simulations. It is worth mentioning that,
although the design was performed on the linearized model, these significant im-
provements are observed on the nonlinear system. This suggests some degree of
robustness of the proposed OPP design methodology.
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Fig. 6.17 Quadrotor roll φ, pitch θ and yaw ψ with OPP and StS
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Fig. 6.18 Cumulative costs with OPP and StS

6.6 Notes and Comments

In this chapter, we have presented an algorithm, based on the model predictive con-
trol approach, allowing to assign on-line the optimal values of the control inputs
and the scheduling inputs of resource-constrained systems. Focusing on its practical
implementation aspects, such as its computational requirements, we have proposed
a more efficient heuristic, called OPP. By using a pre-computed off-line schedule,
OPP is able to assign on-line the values of the control inputs and the scheduling
inputs based on the plant state information. The computational requirements of this
heuristic are considerably reduced in comparison to those of the model predictive
control approach. We have also proved that, if some mild conditions are satisfied,
then OPP guaranties the stability of the system and performance improvements
compared to its basic off-line schedule. We have shown that the design of the control
gains based on periodic optimal control theory and used by OPP leads to a signif-
icant simplification of its implementations, which boils down to the comparison of
T quadratic cost functions, T being the period of the basic off-line schedule. The
OPP scheduling algorithm was finally applied to two distributed control system: the
active suspension controller of car and the quadrotor attitude control.

These results show the practical importance of the study of the medium access
control as well as scheduling algorithms. The problems of the concurrent access to
shared communication resources were studied during the last period within various
theoretical frameworks and with various modeling assumptions. We present there-
after a brief summary of the approaches taking into account explicitly the concurrent
on-line access to the communication network. These contributions were classified
into two categories, according to the class of scheduling algorithms to be considered:
the on-line scheduling of the sensors-to-controller link and the on-line scheduling
of the controller-to-actuators link.

• On-line scheduling of the sensors-to-controller link: The scheduling of sensor
measures was studied in Walsh and Ye [244]. The addressed configuration con-
sists in a continuous-time plant where the controller is directly connected to the
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actuators. The network only connects the sensors to the controller. The notion of
MATI (maximum allowable transfer interval) was introduced, and represents the
upper bound on the time between two consecutive sensor messages transmissions
that guarantees the stability of the plant. The MATI is defined for a given schedul-
ing algorithm. A new on-line scheduling algorithm, called MEF-TOD (maximum
error first—try once discard), was introduced. In this dynamic priority on-line
scheduling algorithm, the priority of a sensor message depends on the error of the
measure that it carries; smaller the error is, lower is the assigned priority. The er-
ror is defined as the weighted absolute value of the difference between the value
of the current measure and the value of the last transmitted measure. If a node
fails to send a message, then this message is discarded (dropped from the queue).
The authors stated sufficient stability conditions, involving the value of the MATI,
which ensure the stability of the system, when the MEF-TOD algorithm and a
round robin like static scheduling algorithm are used. These results are based on
the perturbation theory and are very conservative. This approach was generalized
to nonlinear systems in Walsh et al. [245]. The practical implementation of the
MEF-TOD algorithm was considered in [243]. This implementation, which was
performed on CAN networks, is mainly based on the nondestructive bitwise arbi-
tration of CAN technology to (dynamically) encode the dynamic priorities. The
effects of the quantization of priorities were experimentally studied. Sufficient
input/output Lp-stability results for a class of network scheduling protocols, in-
cluding MEF-TOD and static scheduling algorithms were stated and illustrated
in Nesic and Teel [185]. These results considerably reduces the conservativeness
of the results that were initially stated in Walsh et al. [244]. The application of
the Rate Monotonic scheduling algorithm to the networked control systems was
investigated in Branicky et al. [41].

• On-line scheduling of the controller-to-actuators link: On-line scheduling of con-
trol commands to the actuators was studied in Palopoli et al. [191]. In the pro-
posed model, it is assumed that at every slot, only one command vector can be
sent to an actuator group, the other control vectors are set to zero. The stabiliza-
tion is achieved by using a model predictive controller, which calculates on-line
the appropriate control law and the allocation of the shared bus. The cost function
used by the MPC calculates a weighted sum of the infinity norms of the states and
the control commands over a specified horizon. The optimization problem solved
at each step by the MPC algorithm was proven to be equivalent to the generalized
linear complementarity problem (GLCP) [258]. The same architecture is consid-
ered in Goodwin et al. [99]. The considered model assumes that it is possible to
send only one message during one sampling period. The actuators, which do not
receive their control inputs, maintain constant the last received ones. The control
commands are quantized with a fixed precision. The expression of the optimal
model predictive controller, in the sense of a quadratic cost function, was estab-
lished. The optimal solution as well as computationally efficient approach (OPP)
to the problem of joint control and network scheduling was proposed in Ben Gaid
et al. [27].

The optimal control and scheduling of networked control systems (NCS)
where controllers and actuators are connected via a shared communication
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medium is proposed in Görges et al. [101]. The NCS is modeled as a discrete-time
switched linear system and a receding-horizon control and scheduling (RHCS)
problem with a quadratic performance criterion is formulated and solved by (re-
laxed) dynamic programming. A solution expressed as piecewise linear feedback
law is proposed and an a posteriori stability criterion based on piecewise quadratic
Lyapunov functions is given. A further refinement of the NCS model and robust-
ness issues are considered in Al-Areqi et al. [2]. A periodic control and on-line
scheduling strategy with uncertain but bounded time-varying computation and
transmission induced delays is presented. The NCS is modeled as a discrete-time
switched linear system and a quadratic cost function with infinite time horizon is
considered as a performance criterion. The solution of the control and schedul-
ing problem is based on the periodicity assumption and an infinite horizon as
given in Ben Gaid et al. [27]. The online scheduling subproblem is solved. Its
solution is based on some exhaustive search. Furthermore, a method for reducing
this inherent complexity is also given. The continuous Linear Quadratic Regu-
lator (LQR)-based design problem of a sampled-data periodic controller taking
into account the limited communication medium and inter-sampling behavior in
given in Longo et al. [159]. Two stochastic algorithms are proposed to find some
optimal or sub-optimal communication sequence. The associated optimal con-
troller is obtained from a discrete algebraic Riccati equation for the given optimal
sequence.



Chapter 7
Optimal Relation Between Quantization
Precision and Sampling Rates

In this chapter, we refine the model of resource-constrained systems to take into
account quantization aspects and mainly focus on performance considerations in
presence of information limitations. The communication constrains are modeled at
the bit level, in bits per second. By using this modeling, we have to determine the
control inputs that have to be updated as well as their quantization precision. In
order to limit the inherent complexity of the proposed protocol, we suppose that
the quantization precision choices of the input control signals belong to a reduced
finite set. At each sampling period, quantization possibilities may be chosen from
this set. In the case of allocation of communication resources based on the “per
symbol” paradigm, the information exchange is modeled at the symbol level. The
quantization of measurements and control commands is thus implicitly taken into
account. The general model is given in Fig. 7.1.

In this model, the communication channel can transmit at most R bits per time
unit. Because of these resource limitations, measurements and control commands
must be encoded (as a flow of symbols) before their transmission and decoded at
their reception. Various coding techniques may be employed. A fundamental ques-
tion is to determine the necessary and/or sufficient data-rate allowing the existence
of a coder, a decoder and a controller that achieve the stabilization of the system.

In general, increasing the sampling frequency improves the disturbance rejection
abilities whereas increasing the quantization precision improves the steady state pre-
cision. However, when the bandwidth is limited, increasing the sampling frequency
necessitates the reduction of the quantization precision. In the opposite, augmenting
the quantization precision requires the lowering of the sampling frequency.

Motivated by these observations, an approach for the dynamical on-line assign-
ment of sampling frequencies and control inputs quantization is proposed. This ap-
proach, which is based on the model predictive control (MPC) philosophy, enables
to choose the sampling frequency and the quantization levels of control signals from
a predefined set, in order to optimize the control performance. Naturally, handling
dynamically the quantization precision requires some communication resources and
some extra computational resources. Consequently, we have to jointly handle the
computational complexity, the protocol bandwidth consumption and performance

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_7,
© Springer International Publishing Switzerland 2014

109

http://dx.doi.org/10.1007/978-3-319-02729-6_7


110 7 Optimal Relation Between Quantization Precision and Sampling Rates

Fig. 7.1 General model of the information flow in a control system whose control loop is closed
through finite bandwidth communication channels

improvements. In order to limit the inherent complexity of the proposed protocol,
we suppose that the quantization choices of the input control signals belong to a re-
duced finite set, which may be chosen by the designer in order to ensure the stability
and to comply with the computational requirements. At each sampling period, quan-
tization possibilities may be chosen from this set. This contrasts with the approach
of [99], where the quantization precision of control signals is fixed. The proposed
approach aims to capture the intuitive notion that high sampling rates improve the
disturbance rejection and the transient behavior whereas the fine quantization im-
proves the static precision near the origin [80]. The proposed method allows to dy-
namically choosing the pertinent control information to send, knowing the plant
state and subject to the communication constraints.

7.1 Modeling and Computation Issues

Consider the discrete-time LTI system described by the state equation

x(k + 1)=Ax(k)+Bu(k), (7.1)

where x(k) ∈ R
n and u(k) ∈ R

m. We assume that the pair (A,B) is reachable and
that the full state vector x(k) is available to the controller at each sampling period.

The controller is connected to the actuators of the plant through a lim-
itedbandwidth communication channel. At each sampling period, at most R bits
can be sent to the actuators through the communication channel. The considered
communication scheme is described in Fig. 7.2. The control inputs, which are com-
puted by the controller, need to be properly encoded before their transmission over
the network. This function is performed by the encoder, which converts these con-
trol inputs into a sequence of binary symbols. The transmitted information is then
decoded by the decoder and applied to the inputs of the plant. We assume that the
inputs of the plant are subject to saturation constraints at the actuators, which are
defined by:

−Ui ≤ ui(k)≤Ui, where Ui > 0 and i = 1, . . . ,m. (7.2)

Here, ‖.‖ denotes a given matrix norm, 0n,m represents the n × m matrix whose
elements are equal to zero and In the n× n identity matrix.
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Fig. 7.2 Information pattern

Remark 7.1 (Down-link resources limitations) The literature addressing the prob-
lem of control under communication constraints mainly consider the down-link re-
sources limitations, rather than the up-link. For that reason, our contribution may
be seen as a complementary approach. For its practical implementation on systems
with both down-link and up-link limitations, the previously proposed methods in the
literature may be used in order to obtain a state estimation at the controller, which
could be subsequently used in our approach.

7.1.1 Quantization Aspects

Quantization is the process of approximating a continuous range of values into a fi-
nite set of discrete values, called reconstruction levels (or quantization levels). The
quantization is performed using mid-tread uniform quantizers, which are character-
ized by an odd number of reconstruction levels (which include the value of zero).
Let u be a bounded continuous scalar signal verifying

|u| ≤U, U ∈R
∗+. (7.3)

The set of reconstruction levels of the mid-tread uniform quantizer which may be
encoded using M bits (M > 1), given the lower and upper bounds −U and +U , is
defined by the set-valued function:

U(M,U)= {−U + lL(M,U), l = 0, . . . ,2M − 2
}
, (7.4)

where l is the quantization index and L(M,U) defined by

L(M,U)= U

2M−1 − 1
(7.5)

is the quantization step size.

Remark 7.2 (Odd number of quantization levels) In the definition of the set valued
function U(M,U), we have intentionally chosen to obtain an odd number of recon-
struction levels 0, . . . ,2M − 2 instead of having an even number of reconstruction
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levels 0, . . . ,2M − 1. This choice was motivated by the need of integrating the zero
reconstruction level, which has a particular signification, from the control point of
view.

GivenM ∈N
∗ such thatM > 1 and U ∈R

∗+, the quantizer Q(M,U) is defined by

Q(M,U) :R −→ U(M,U),

u �−→ c,

such that

c=Q(M,U)(u)=

⎧⎪⎨
⎪⎩

+U if u > U,

−U if u≤−U,
−U + � u+U

L(M,U)
+ 1

2�L(M,U) if −U < u≤U.

The quantizer Q(M,U) uniquely associates to a real scalar u ∈R a nearest neighbor
c ∈U(M,U).

Remark 7.3 (Quantization when M = 1) When M = 1, the expression (7.5) is not
defined. For the sake of simplicity in the following discussions, we will assume that
whenM = 1, for all u ∈R, Q(1,U)(u)= 0.

7.1.2 Information Pattern

The number of reconstruction levels of the components of a given control input may
vary over the time according to an optimization policy (which will be developed in
Sect. 7.3). Consequently, it is necessary for the decoder to identify how to recon-
struct the different components of the control input of the plant from the received
binary symbols. To this end, the precision vectorp(k) ∈ N

m is introduced. The ith
component pi(k) of the precision vector p(k) describes the number of bits that are
required to encode all the reconstruction levels of the quantized control signal ui(k)
(using the quantizer Q(pi (k),Ui)). A compact representation of the precision vector
has to be sent to the decoder, together with the control information. To minimize
the necessary decoding information (which is described by p(k)), and to be able
to produce compact representations of p(k), the set P of possible values of p(k)
should contain a limited number of elements.

Let RI and RD be the number of bits which are used to encode respectively the
control information and the decoding information. The communication constraints
impose:

RI +RD =R. (7.6)
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Then P must verify

P ⊆
{
p ∈N

m such that
m∑
i=1

pi =RI
}
, (7.7)

and

|P| ≤ 2RD, (7.8)

where |P| denotes the cardinality of P .

7.1.3 Notion of Quantization Sequence

The notion of communication sequence was introduced by Brockett [43] and gener-
alized by Hristu [122] in order to quantify the notion of attention [44]. A commu-
nication sequence describes, at each sampling period, which control inputs of the
system are updated, assuming an infinite quantization precision, which represents
an idealized situation.

Definition 7.1 (Periodic communication sequence [122]) A periodic communica-
tion δT−1 sequence of period T and widthm is an infinite sequence (δ(0), . . . , δ(T −
1), . . .) of elements of {0,1}m verifying ∀i ∈ N, δ(k + iT ) = δ(k). A peri-
odic communication sequence is fully characterized by the sequence δT−1 =
(δ(0), . . . , δ(T − 1)) corresponding to the first period.

The notion of communication sequence is well suited to model the problems of
medium access arbitration, when quantization aspects are disregarded. Since quan-
tization is a main concern, we propose a generalization of the notion of communi-
cation sequence, to take into account quantization aspects. This leads to the notion
of quantization sequence.

Definition 7.2 (Periodic quantization sequence) A periodic quantization sequence
sT−1 of period T , width m and maximal precision M is an infinite sequence
(s(0), . . . , s(T − 1), . . .) of elements of {0, . . . ,M}m verifying ∀i ∈N, s(k+ iT )=
s(k). A periodic quantization sequence is fully characterized by the sequence
sT−1 = (s(0), . . . , s(T − 1)) corresponding to the first period.

Example 7.1 The sequence

s2 =
⎛
⎝
⎡
⎣

2
1
4

⎤
⎦ ,

⎡
⎣

1
4
3

⎤
⎦ ,

⎡
⎣

0
4
2

⎤
⎦ ,

⎡
⎣

2
1
4

⎤
⎦ ,

⎡
⎣

1
4
3

⎤
⎦ ,

⎡
⎣

0
4
2

⎤
⎦ , . . .

⎞
⎠

is a periodic quantization sequence of period T = 3, width m = 3 and maximal
precisionM = 4.
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The precision vectors are restricted to belong to the set P . For that reason, we
will only consider quantization sequences whose components are precision vectors
in P . These particular periodic quantization sequences are called admissible peri-
odic quantization sequences. Since P contains only precision vectors that respect
the communication constraints, an admissible periodic quantization sequence im-
plicitly respects the required communication constraints.

Remark 7.4 (Packet-dropouts issues) The proposed approach could be easily ex-
tended to take into account packet-dropouts which are known in advance (and which
may be easily modeled using the notion of quantization sequence).

7.1.4 Performance Index Definition

The performance of the controlled system (7.1) is evaluated using a quadratic cost
function, which may be seen as the design specification of its ideal controller

J (x,u,0,N)=
N−1∑
k=0

�
(
x(k), u(k)

)
, (7.9)

where N is the final time, and

�
(
x(k), u(k)

)=
[
x(k)

u(k)

]T [
Q1 Q12

QT12 Q2

][
x(k)

u(k)

]
,

and Q1, Q2 and Q12 are respectively, n× n, m×m and n×m matrices. Let

Q=
[
Q1 Q12

QT12 Q2

]
.

In the sequel, we assume that Q is positive definite.

7.2 Static Strategy

7.2.1 Algorithm Description

Let sT−1 be an admissible T -periodic quantization sequence. Let Λ be the function
defined by

Λ : {0, . . . ,M}m −→ {0,1}m,
s �−→ δ,
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such that {
δi = 1 if si �= 0,

δi = 0 if si = 0.

Let LT−1
s = (Ls(0), . . . ,Ls(T − 1)) be the periodic sequence of control gains

characterizing the optimal T -periodic controller of system (7.1) if the communi-
cation constraints are described by the periodic communication sequence δT−1 =
(δ(0), . . . , δ(T − 1)) = (Λ(s(0)), . . . ,Λ(s(T − 1))). In this situation, the optimal
controller, taking into account the medium access constraints modeled by δT−1, is
the state feedback control law:

u(k)= Ls(k)x̃(k), (7.10)

where

x̃(k)=
[
x(k)

u(k − 1)

]
.

The control gains sequence LT−1
s may be derived by using the approach described

in [27].

Remark 7.5 (Control gains and communication constraints) The control gains
Ls(k) are designed to take into account the communication constraints δi(k) =
0 =⇒ ui(k) = ui(k − 1) (i.e., if δi(k) = 0, then the ith line of Ls(k) verifies
Lsi,n+i (k)= 1 and Lsi,j (k)= 0 for j �= n+ i).

To each admissible T -periodic quantization sequence sT−1, a periodic control gains
sequence LT−1

s , derived as mentioned previously, may be associated. A simple ap-
proach for controlling the system (7.1) is to use the following control algorithm:

p(k) = s(k),
v(k) = Ls(k)x̃(k),
ui(k) =Q(pi (k),Ui)

(
vi(k)

)
if pi(k) �= 0,

ui(k) = ui(k − 1) if pi(k)= 0.

(7.11)

This algorithm is called static strategy, because it is based on a fixed periodic quan-
tization sequence, in opposition to the adaptive strategy, that will be described in the
Sect. 7.3.

7.2.2 Practical Stabilization Using the Static Strategy

In this subsection, we are interested in the practical stability properties of the static
strategy. Since the control inputs can only take a finite number of values, achieving
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the asymptotic stability is practically impossible. In fact, in its seminal paper [72],
Delchamps has proved that when the input of the system passes through a quantizer
having a finite number of quantization levels, then the set of trajectories that corre-
spond to the asymptotic stability has Lebesgue measure zero. This fundamental re-
sult motivates the use of practical stability for the studied problem. In the following,
the main definitions that are related to the stability notions that will be considered
are reviewed.

Definition 7.3 ((W,V )-stability [82]) Let V and W be two compact sets of Rn+m
containing the origin in their interiors and such that V ⊆ W . System (7.1), (7.2),
(7.11) is called (W,V )-stable if

• W is positively invariant for system (7.1), (7.2), (7.11),
• for all x̃(0) ∈W , there exists k0 (function of x̃(0)) such that any state trajectory

of (7.1), (7.2), (7.11) with initial condition x̃(0) satisfies x̃(k) ∈ V for all k ≥ k0.

Furthermore, system (7.1), (7.2), (7.11) is called (W,V )-stable in N -steps if
k0 ≤N .

Assume that system (7.1), is uniformly exponentially stable using the control
law (7.10). Let η > 0 and Bη the ball defined by

Bη =
{
x̃ ∈R

n+m, such that ‖x̃‖ ≤ η}. (7.12)

When system (7.1), (7.10) is uniformly exponentially stable, a question that arises
is whether it is possible to guarantee the ultimate boundedness of the trajectories
of system (7.1), (7.2), (7.11) to any desired final set Bη , if its inputs are quantized
with a sufficiently high precision. However, due to the possibility of saturation of the
control inputs, this ultimate boundedness property may not be verified if the initial
extended state is situated in some regions of Rn+m, where even the non-quantized
system (7.1), (7.2), (7.10) subject to control inputs saturations may not be stabiliz-
able. For that reason, and due to these saturation constraints that are considered in
the proposed problem formulation, the latter question is reformulated in terms of
(W,V )-stability. Consider the following perturbed system

x(k + 1)=Ax(k)+Bu(k)+Bw(k). (7.13)

Assume that the disturbance w(k) belongs to a convex and compact set W . The
disturbance w(k) may be seen as a model of the quantization error and its effect on
the system.

Several methods have been proposed in the literature for computing robustly pos-
itively invariant sets, for example, [36, 140, 197]. Let F be the set of states that do
not lead to the saturation of the control commands using the control law (7.10). The
set F is defined by

F =
{
x̃ ∈R

n+m such that ∀k ∈ {0, . . . , T − 1}, Ls(k)x̃ ∈
m∏
i=1

[−Ui,Ui]
}
. (7.14)
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Let Gγ the greatest convex and compact set in F that is robustly positively invariant
for the perturbed system (7.13), (7.2), (7.10) and for bounded disturbances w(k)
belonging to Wγ defined by

Wγ =
{
w(k) ∈R

m such that for all k ∈N,
∥∥w(k)∥∥≤ γ }. (7.15)

Under these assumptions, the set Gγ is positively invariant for system (7.1), (7.2),
(7.11) if the “quantization error” is less than or equal to γ . The (Gγ ,Bη)-stability
of system (7.1), (7.2), (7.11) is addressed in the following theorem.

Theorem 7.1 ((W,V )-stability of the static strategy [24]) For all ε > 0, if sys-
tem (7.1), (7.10) is uniformly exponentially stable, and the set G ε

ϕ
(as previously

defined) is robustly positively invariant for the system (7.13), (7.2), (7.10), where ϕ
is a constant that depends on the plant model (7.1), the controller (7.10) and ε, then
there exists p0 ∈N such that system (7.1), (7.2), controlled by the control law (7.11)
that is based on the periodic quantization sequence p0 × sT−1 and the periodic
control gains sequence LT−1

s is (G ε
ϕ
,Bε)-stable.

Proof Let γ > 0. Let x̃(0) ∈ Gγ be the initial condition of system (7.1), (7.2), (7.11)
and x̃(k) its extended state at instant k. Assume first that Gγ is robustly positively
invariant for the system (7.13), (7.2), (7.10). Let p ∈ N and v(k)= Ls(k)x̃(k). The
quantization error e(p)(k) is defined for i ∈ {1, . . . ,m} by

e
(p)
i (k)=

{
Q(p×si (k),Ui)(vi(k))− vi(k) if si(k) �= 0,

0 if si(k)= 0.

Let

Ā(k)=
[
A 0n,m

0m,n 0m,m

]
+
[
BLs(k)

Ls(k)

]
.

At a given discrete instant k, the extended state x̃(k) of system (7.1), (7.11) verifies

x̃(k)=Φ(k,0)x̃(0)+
k−1∑
i=0

Γ (k, i)e(p)(i), (7.16)

where

Φ(k, i)=
{∏k−i

j=1 Ā(k − j) if k > i,

In+m if k = i, (7.17)

and

Γ (k, i)=

⎧⎪⎨
⎪⎩

(
∏k−i−1
j=1 Ā(k − j))B if i < k− 1,

B if i = k− 1,

0n,m if i = k.
(7.18)
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The norm ‖.‖ being a matrix norm, we may write

∥∥x̃(k)∥∥≤ ∥∥Φ(k,0)∥∥∥∥x̃(0)∥∥+
k−1∑
i=0

∥∥Γ (k, i)∥∥∥∥e(p)(i)∥∥. (7.19)

Since Gγ ⊆F and Gγ is positively invariant for system (7.1), (7.2), (7.11), then the
control inputs corresponding to any state trajectory starting from x̃(0) ∈ Gγ never
saturate. Consequently, the quantization error converges to zero as p tends to infin-
ity. Hence, for any desired worst-case quantization error γ , there exists p0 ∈N such
that

∀p ≥ p0, ∀k ∈N,
∥∥e(p)(k)∥∥≤ γ.

For p ≥ p0,

∥∥x̃(k)∥∥≤ ∥∥Φ(k,0)∥∥∥∥x̃(0)∥∥+
k−1∑
i=0

∥∥Γ (k, i)∥∥γ. (7.20)

Let ε′ sufficiently small and verifying 0 < ε′ < ε. Let M = maxx̃∈F ‖x̃‖. Since
the system (7.1), (7.10) is uniformly exponentially stable, then Φ(k,0) converges
exponentially to zero as k tends to infinity. Consequently, there exists k′0 ∈ N such

that ∀k ≥ k′0, ‖Φ(k,0)‖ ≤ ε′
2M . Furthermore, we have

k∑
i=0

∥∥Γ (k, i)∥∥ = ∥∥Φ(k,1)B∥∥+ ∥∥Φ(k,2)B∥∥+ · · · + ∥∥Φ(k, k)B∥∥+ ‖B‖

≤ (∥∥Φ(k,1)∥∥+ ∥∥Φ(k,2)∥∥+ · · · + ∥∥Φ(k, k)∥∥+ 1
)‖B‖. (7.21)

The uniform exponential stability of system (7.1), (7.10) implies that there exists
two positive constants c and β < 1 such that for all i

∥∥Φ(k, i)∥∥≤ cβk−i , for k ≥ i.
Consequently,

k∑
i=0

∥∥Γ (k, i)∥∥ ≤ ‖B‖
(

1+ c
k∑
i=0

βk−i
)
= ‖B‖

(
1+ c

k∑
i=0

βi

)

= ‖B‖
(

1+ c1− βk+1

1− β
)
.

Since the sequence dk =∑k
i=0 ‖Γ (k, i)‖ is increasing and upper bounded by the

convergent sequence ‖B‖(1+ c 1−βk+1

1−β ), then it is convergent too. Let

ϕ′ = lim
k→+∞

k∑
i=0

∥∥Γ (k, i)∥∥.
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It follows that there exists k′′0 ∈ N such that ∀k ≥ k′′0 , |
∑k
i=0 ‖Γ (k, i)‖ − ϕ′| ≤ ε′

2γ .
Let k0 =max(k′0, k′′0 ). Consequently,

∀k ≥ k0,
∥∥x̃(k)∥∥≤ ε′

2M

∥∥x̃(0)∥∥+
(
ε′

2γ
+ ϕ′

)
γ ≤ ε′ + ϕ′γ. (7.22)

Choosing ϕ = ϕ′ε
ε−ε′ and γ = ε

ϕ
, the theorem is proved. �

Theorem 7.1 states appropriate conditions guaranteeing the positive invariance of
the extended state as well its the ultimate boundedness to a given ball including the
origin, using the static strategy. The next Corollary is a direct consequence, which
shows that it is possible to refine this neighborhood of the origin if the quantization
precision is increased.

Corollary 7.1 (Quantization precision and ultimate boundedness near the origin)
Under the same hypothesis of Theorem 7.1, if the quantization errors are upper
bounded by two constants γ1 and γ2 such that γ1 ≥ γ2, then Bε1 ⊇ Bε2 , where
ε1 = γ1ϕ and ε2 = γ2ϕ.

Proof Since the constants M and ϕ are positive, then the function f (γ )= γM +
(γ + ϕ)γ is monotonically increasing. Consequently, if γ1 ≥ γ2, then ε1 ≥ ε2. �

7.3 Model Predictive Control MPC

7.3.1 Algorithm Description

Assume that a set C of admissible periodic quantization sequences is defined
(a method for the construction of this sequence will be presented in Sect. 7.3.2.
Then, the problem of the integrated control and communication may be solved on-
line by using the model predictive control algorithm. The model predictive control
is an elegant solution to handle the hybrid aspect of the considered model, where
both the control inputs and the quantization frequency decisions need to be deter-
mined at each sampling period. Model predictive control was successfully applied
to the control of hybrid systems [21] and to the problems of integrated control and
medium access allocation [27].

By using the MPC approach, an optimization problem is solved at each sampling
period, in order to determine both the control inputs of the plant u(k) and their
quantization precision p(k). This problem is formulated as described in the set of
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Eqs. (7.23) below.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
sT−1∈C

N−1∑
h=0

�
(
x̂(k + h|k), û(k + h|k))

subject to

x̂(k|k)= x(k),
û(k − 1|k)= u(k − 1),

and for all h ∈ {0, . . . ,N − 1}, for all i ∈ {1, . . . ,m},
p̂(k + h|k)= s(h),
v̂(k + h|k)= LsT−1(h)

[
x̂T (k + h|k)ûT (k + h− 1|k)]T ,

ûi(k + h|k)=Q(p̂i (k+h|k),Ui)
(
v̂i (k + h|k)

)
if p̂i(k + h|k) �= 0,

ûi (k + h|k)= ûi (k + h− 1|k) if p̂i(k + h|k)= 0,

x̂(k + h+ 1|k)=Ax̂(k + h|k)+Bû(k + h|k).

(7.23)

In this context, the control performance J (x̂, û, k,N + k) over a horizon of N
(which is assumed to be a multiple of T ) is predicted, for the |C | communica-
tion sequences of C . Here, x̂(k + h|k) and û(k + h|k) constitute the predicted val-
ues of x(k + h) and u(k + h), for a given quantization sequence sT−1 and asso-
ciated control gains sequence LT−1

sT−1 . Notice that p̂(k + h|k) represents the quan-
tization precision of the predicted inputs û(k + h|k). If p̂i(k + h|k) = 0, then the
predicted control input û(k + h|k) cannot be updated. Consequently, its previous
value û(k + h− 1|k) will be maintained. Control inputs ui(k + h|k) which have to
be updated (i.e., whose precision vectors satisfy p̂i(k + h|k) �= 0) are computed by
the application of the quantization map Q to the ith element of the result of the state
feedback operation v̂(k+ h|k)= LsT−1(h)[x̂T (k+ h|k)ûT (k+ h− 1|k)]T . The so-
lution of this optimization problem is the admissible periodic quantization sequence
sT−1∗ = (s∗(0), . . . , s∗(T − 1)) that minimizes the cost function J (x̂, û, k, k +N)
subject to the communication constraints. According to the MPC philosophy, the
precision vector and control inputs at instant k are respectively, given by:

p(k)= p̂∗(k|k)= s∗(0), (7.24)

and
{
ui(k)= û∗i (k|k)=Q(pi(k),Ui)

(
v̂∗i (k|k)

)
if pi(k) �= 0,

ui(k)= ui(k − 1) if pi(k)= 0,
(7.25)

where

v̂∗(k|k)= LsT−1∗ (0)x̃(k). (7.26)
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In the sequel, we will represent the model predictive control law (7.23), (7.24),
(7.26), (7.25), when based on a given set of admissible periodic quantization se-
quences C , by the function κC (x̃(k)) of the extended state x̃(k).

The choice of the set C plays an important role in ensuring the practical stability
and performance improvements. In the following, a heuristic method for choosing
the elements of the set C is proposed. To simplify the notation, the cost function
J (x̂, û, k, k + N) will be simply denoted by J (x̃, s), where s is the quantization
sequence that is used (as well as its associated control gains sequence) to evalu-
ate the predicted values x̂ and û. It may be also denoted as J (x̃(k),U (k)), where
U (k)= (û(k|k), . . . , û(k+N −1|k)) is a sequence of control inputs that determine
the evolution of the system from state x̃(k) and the associated cost.

7.3.2 A Heuristic Approach for the Choice of Quantization
Sequences

7.3.2.1 Action Domains

In order to simplify the presentation, and without loss of generality, we assume that

RI = bM, (7.27)

whereM represents the maximal precision of the digital-to-analog converters, gen-
erally considered as the “infinite precision”, and b is the maximal number of control
inputs that may be sent with the maximal precision M , during the sampling period.
Let a1,Q = (a1, . . . , aQ) be a sequence of increasing integers such that a1 = 1 and
∀i ∈ {1, . . . ,Q}, ai divides M . Let S (m,M) be the set of periodic quantization
sequences of width m and maximal precision M . Based on the sequence a1,Q, it is
possible to characterize Q remarkable sub-sets of S (m,M). These particular sub-
sets are called action domains. Formally, the lth action domain Al , l ∈ {1, . . . ,Q}
is the set of all quantization sequences sTl−1 = (s(o), . . . , s(Tl − 1)) such that
∀i ∈ {1, . . . ,m}, ∀k ∈ {0, . . . , Tl − 1}, si(k) ∈ {Mal ,0}. This means that in the lth

action domain, alb inputs may be updated with the precision M
al

. The first action do-
main A1 represents the quantization sequences that update the minimal number of
plant inputs with the maximal precision M . The last action domain AQ represents
the set of quantization sequences that update the maximal number of plant inputs
with the minimal precision M

aQ
.

7.3.2.2 Basic Sequences

Let Γ ∗(r) be an optimal off-line periodic communication sequence that minimizes
the H2 norm of the system assuming that at most r control inputs may be up-
dated during the sampling period with an infinite quantization precision. An effi-
cient method for obtaining optimal and suboptimal solutions (with a guaranteed
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error bounds) to this optimization problem and by making use of the branch and
bound algorithm, was proposed in [29]. In this case, the generated optimal off-line
communication sequences, are only dependent on the intrinsic characteristics of the
system. In order to further reduce the computational requirements of the algorithm,
the search is restricted to the most relevant quantization sequences. To this end, to
each action domain, a particular quantization sequence, called basic sequence, is
assigned. More formally, to action domain Al , a basic sequence slB is associated
according to the following relation:

slB =
M

al
Γ ∗(bal). (7.28)

Although this assignment is suboptimal since the optimization is performed by as-
suming an infinite precision of the control inputs; it allows assigning the update rate
of the different control signals according to the systems’s dynamics. In fact, solving
off-line the problem to find the optimal quantization sequence in the sense of the H2
performance index is very complex, since it suffers from the curse of dimensional-
ity. The assumption of an infinite quantization precision considerably reduces this
complexity, since convex optimization problems may be used inside the optimiza-
tion algorithm (i.e., bounding phase of the branch and bound algorithm), instead of
searching over all the possible discrete values of the control inputs, which, unfortu-
nately, increase exponentially with the quantization precision. In the following, we
will denote by Cl the set of admissible periodic quantization sequences that are ob-
tained by the circular permutation of the basic sequence slB . Unless stated otherwise,
the set C that will be used by the proposed MPC algorithm is defined by

C =
Q⋃
l=1

Cl .

7.3.3 Attraction Properties of the MPC

Theorem 7.1 states the conditions allowing to guarantee the ultimate boundedness
to a given ball including the origin by using the static strategy. Corollary 7.1 shows
that it is possible to refine this neighborhood of the origin if the quantization pre-
cision is increased. When the MPC algorithm is used, an interesting question is to
determine the conditions under which the MPC will allow to perform the trade-off
between quantization precision and update rates and to “attract” the system to the
smallest ball around the origin in steady state, while improving the convergence rate
by changing action domains in transient states. The notion of attraction is formalized
in the following definition:

Definition 7.4 ((W,V )-attraction) Let W a compact set and V a set containing the
origin in its interior and verifying W ∩ V = ∅. System (7.1), (7.2) controlled by a
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control law κ(x̃(k)) is called (W,V)-attractive if for all trajectory starting inW (i.e.,
verifying x̃(0) ∈W ), there exists a time instant k0 such that x̃(k0) ∈ V .

A system is called (W,V )-attractive when any trajectory starting in W is driven in
a finite time to V . A (W,V )-stable system is (W,V )-attractive, but the reciprocal is
not necessarily true. In the sequel, sufficient conditions under which these attraction
properties are verified, are stated. But before stating these results, the following
technical lemma is necessary:

Lemma 7.1 (Characterization of the (W,V )-attraction [24]) Assume that there
exists a control law κ(x̃(k)), a positive definite function P(x̃) of the extended
state of the closed-loop system (7.1), (7.2) (controlled by κ), and a compact set
W that does not contain the origin and such that for all x̃(k) ∈ W ,  P(x̃(k)) =
P(x̃(k + 1)) − P(x̃(k)) < 0. Let V = {x̃ ∈ R

n+m − W for which there exists
ỹ ∈W such that P(x̃) < P (ỹ)}. If x̃(0) ∈W , then there exists an instant k0 such
that x̃(k0) ∈ V .

Proof The proof is performed by contradiction. Let x̃(0) a given initial state
in W . Assume that for all k ∈ N, x̃(k) ∈ W . Since W is compact (and conse-
quently closed) and does not contain the origin, then there exists δ < 0 such that
maxx̃∈W  P(x̃)= δ. Therefore, at any instant k,

P
(
x̃(k)

)= P (x̃(0))+
k∑
i=1

(
P
(
x̃(i)

)− P (x̃(i − 1)
))≤ P (x̃(0))+ δk.

Consequently, when k −→+∞, P(x̃(k))−→−∞, which contradicts the fact that
P(x̃(k)) is a positive definite. For that reason, we conclude that there exists a time
instant k0 such that x̃(k0) /∈W . Since P(x̃(k)) is strictly decreasing for k ≤ k0, then
necessarily P(x̃(k0)) < P (x̃(0)). Thus, x̃(k0) ∈ V . �

Lemma 7.1 simply shows that when a positive definite function of the state is
strictly decreasing along the trajectories of the system in a region W that does not
contain the origin; the state cannot stay indefinitely in this region and must approach
the origin. This lemma will be the basis for proving the attraction properties of the
MPC algorithm.

Let P(x̃(k))= J (x̃(k),U ∗(k)). The function P(x̃(k)) represents the cost func-
tion that is minimized by the MPC algorithm and will play the role of a “Lyapunov
function”. By construction, P is a positive definite function. We have the following
result.

Theorem 7.2 ((W,V )-attraction of the MPC law κCl [24]) Let ξ > 0. Let

W = {
x̃ ∈R

n+m such that P(x̃)≤ ξ}
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and V two compact sets of Rn+m containing the origin in their interiors and such
that V ⊆W . Let ε be a small positive number, W̄ = {x̃ ∈W such that �(x, κCl (x̃))≥
maxx̃v∈V �(xv, κCl (x̃v))+ ε} and V̄ =W − W̄ . If the (W, V̄ )-stability in N -steps
of the system (7.1), (7.2) is ensured by the static strategy based on any quantization
sequence sl ∈ Cl , and if the horizon N of the MPC algorithm is chosen such that
N >N , then the MPC algorithm κCl is (W̄ , V̄ )-attractive.

Proof Let η̄ = maxx̃v∈V �(xv, κCl (x̃v)). At time step k = 0, the solutions of the
open-loop optimal control and communication problem are U ∗(0)= (û∗(0|0), . . . ,
û∗(N − 1|0)) and s∗. The control input that will be applied to the plant, according
to the receding horizon philosophy will be u(0)= û∗(0|0). At time step k = 1, the
sequence Ǔ (1)= (û∗(1|0), . . . , û∗(N |0)) is a feasible sequence, where û∗(N |0) is
defined for i ∈ {1, . . . ,m} by

û∗i (N |0)=
{

Q(s∗i (N),Ui)(v̂
∗
i (N |0)) if s∗i (N) �= 0,

û∗i (N − 1|0) if s∗i (N)= 0,

and

v̂(N |0)= Ls∗(N)
[
x̂∗(N |0) û∗(N − 1|0)]T .

The associated cost is

J
(
x̃(1), Ǔ (1)

)= J (x̃(0),U ∗(0)
)−�(x(0), u(0))+�(x̂∗(N |0), û∗(N |0)). (7.29)

Since the static strategy based on the quantization sequence s∗ ∈ Cl ensures
(W, V̄ )-stability in N -steps of the system (7.1), (7.2), and knowing that N >N ,
then x̂∗(N |0) ∈ V̄ . Consequently, by taking into account the construction of V̄ ,
�(x̂∗(N |0), û∗(N |0)) < η̄. We may write

P
(
x̃(1)

)− P (x̃(0)) = J (x̃(1),U ∗(1)
)− J (x̃(0),U ∗(0)

)

≤ J (x̃(1), Ǔ (1))− J (x̃(0),U ∗(0)
)

< −�(x(0), κCl
(
x̃(0)

))+ η̄. (7.30)

This reasoning remains true for all other instants k > 0. The positive-definite
function P associated to the MPC control law is then strictly decreasing when
x̃(0) ∈ W̄ ⊆ {x̃ ∈ R

n+m such that �(x, κCl (x̃)) > η̄}. By construction, W̄ is com-
pact, does not contain the origin and verifies W̄ ∩ V̄ = ∅. Consequently, by ap-
plying the previous lemma, there exists an instant k0 such that x̃(k0) /∈ W̄ and
P(x̃(k0)) < P (x̃(0))≤ ξ , thus, x̃(k0) ∈ V̄ . �

Theorem 7.2 states the conditions under which any trajectory starting in W̄ is
driven in finite time to V̄ , using the MPC law κCl . Let G the set of extended states
that can be practically stabilized by at least one static strategy (as defined by the
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previous heuristic approach). More precisely, G is formally defined by

G =
Q⋃
i=1

GM
ai

.

In the sequel, to simplify the notion, let J (x̃, li) = mins∈Ci J (x̃, s). Let Ri be the
region defined by

Ri =
{
x̃ ∈ G such that for all j > i, J (x̃, li) < J (x̃, lj )

}
.

It is easy to see that the regions Ri (i ∈ {1, . . . ,Q}) form a partition of G . An inter-
esting question is to see if the MPC algorithm κC is able to guarantee the attraction
of any trajectory starting in G to a desired ball Xf . Theorem 7.3 provides sufficient
conditions to ensure this property. To simplify the notation, let R0 =Xf .

Theorem 7.3 (Convergent switching between action domains in the MPC law
κC [24]) If R1 ⊂ R2 ⊂ · · · ⊂ RQ and if the MPC algorithm κCl ensures
(Rl ,Rl−1)-attraction of system (7.1), (7.2) for 1≤ l ≤Q, then system (7.1), (7.2),
controlled by the MPC control law κC is (G ,Xf )-attractive.

Proof As mentioned earlier, (R1, . . . ,RQ) form a partition of G . For that reason,
there exists l ∈ {1, . . . ,Q} such that the extended state x̃ belongs to the region Rl .
Consequently, by the construction of the MPC algorithm κC , as long as the ex-
tended state x̃ belongs to Rl , the MPC algorithm κCl will be applied, until the ex-
tended state reaches a region Rj with j �= l. The (Rl ,Rl−1)-attraction implies that
this region is necessarily included in Rl−1. Consequently, j < l. Next, by applying
recursively the same argument to the region Rj , the theorem is proved. �

In simulation, it is observed that when the prediction horizon is sufficiently large,
adding more elements to C leads to a better control performance. However, if the
set C is reduced to C = {s1

B, . . . , s
Q
B }, proving the (W,V )-stability becomes easy,

as stated in the following:

Corollary 7.2 (Convergent switching between action domains in κC for C =
{s1
B, . . . , s

Q
B }) If R1 ⊂ R2 ⊂ · · · ⊂ RQ and if the static strategy slB ensures

(Rl ,Rl−1)-stability of system (7.1), (7.2) for 1≤ l ≤Q, then the system (7.1), (7.2),
controlled by the MPC control law κC for C = {s1

B, . . . , s
Q
B } is (G ,Xf )-stable.

The proof may be easily established following the same lines as to the one pro-
posed for Corollary 7.1.
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7.4 Simulation Results

Consider the continuous-time LTI system defined by the state and input matrices:

Ac =

⎡
⎢⎢⎣
Acs 0 0 0
0 Acs 0 0
0 0 Acs 0
0 0 0 Acs

⎤
⎥⎥⎦ and Bc =

⎡
⎢⎢⎣
Bcs 0 0 0
0 Bcs 0 0
0 0 Bcs 0
0 0 0 Bcs

⎤
⎥⎥⎦ ,

where

Acs =
[

0 110
−900 10

]
and Bcs =

[
0

210

]
.

The system is composed of four independent and identical second-order open-loop
unstable subsystems, with eigenvalues 5± 314.6j . The design criteria of the ideal
controller for the closed-loop of each subsystem are defined by the matrices Qcs =
Diag(30,10) and Rcs = 0.01. Assume now that the communication channel linking
the controller to the four distant actuators has a bandwidth of 10 kbps, which means
that every 2 ms, at most 20 bits of information can be sent to the actuators.

Based on these bandwidth constraints, choosing M = 20, and using the heuris-
tic approach discussed in the previous section, three action domains A1, A2 and
A3 are associated to the global system, and correspond to the sequence a1,3 =
(a1, a2, a3)= (1,2,4). Since the four subsystems are identical, the basic sequences
that are associated to each action domain are defined by

s1
B =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

20
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
20
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
20
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
20

⎤
⎥⎥⎦ , . . .

⎞
⎟⎟⎠ ,

s2
B =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
10
0
10

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

10
0

10
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
10
0
10

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

10
0
10
0

⎤
⎥⎥⎦ , . . .

⎞
⎟⎟⎠ ,

and

s3
B =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

5
5
5
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
5
5
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
5
5
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
5
5
5

⎤
⎥⎥⎦ , . . .

⎞
⎟⎟⎠ .

The static strategy is first evaluated. In the simulation results (depicted in Figs. 7.3,
7.4 and 7.5), the control performance corresponding to the application of the ba-
sic sequences s1

B , s2
B and s3

B (of action domains A1 A2 and A3) is evaluated and
compared. In these simulations, it is assumed that the global system is started from
the initial condition [0.4 0 0.4 0 0.4 0 0.4 0]T and disturbed at t = 59 ms. It can be
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Fig. 7.3 Global system responses obtained for the basic sequence of action domain A1

Fig. 7.4 Global system responses obtained for the basic sequence of action domain A2

Fig. 7.5 Global system responses obtained for the basic sequence of action domain A3
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observed that the response corresponding to the basic sequence s1
B presents an oscil-

latory behavior, resulting from the effect of the long effective update period (which
is equal to 8 ms). These oscillations disappear when the basic sequence s2

B is used.
Now, the use of the basic sequence s3

B further improves the disturbance rejection
capabilities as well as the response time of the systems, but, unfortunately, leads
to a degradation of the steady state performance (chaotic behavior near the origin).
The main observation from this example can be resumed as follows: the use of a
high action domain improves the transient behavior whereas the use of a low action
domain improves the steady state precision. Performing a switching between these
actions domains in an automatic and clairvoyant way will allow to take advantage
of the benefits of each action domain and to improve the control performance by
trading quantization precision for update rates.

The MPC algorithm is next evaluated. The proposed MPC algorithm was de-
signed by using the heuristic approach discussed in the previous section. According
to this approach, the set C will contain the basic sequences s1

B × RI
M

, s2
B × RI

M
and

s3
B × RI

M
as well as their circular permutations. The cardinality of C (i.e. the num-

ber of used quantization sequences) is equal to 7. For that reason, 3 bits must be
reserved to the encoding of the decoding key. Consequently, the parameters RI and
RD are chosen such that

RI = 16 and RD = 3.

Next, the set P containing the possible precision vectors (corresponding to this
choice of C ) is defined by

P =

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

16
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
16
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
16
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
16

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
8
0
8

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

8
0
8
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
4
4
4

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭
.

The control gains that are associated to each quantization sequence are derived in
the same way as for the static strategy.

The responses of the global system corresponding to the use of the MPC algo-
rithm are depicted in Fig. 7.6 (top). It may be observed that when using the MPC
approach, some tradeoff between precision and system reaction rapidity is oper-
ated. After the system disturbance, the quantization sequence of control signals is
changed and switch from that of action domain 1 (one control signal is coded with
maximal precision) to that of action domain 3 (four control signals are coded with
the same precision). The advantages resulting from the use of each basic sequence
are achieved. The oscillations caused by the long update period as well as the chaotic
behavior near the practical stability region are eliminated and the response to the
unpredictable disturbances improved. These improvements are due to a more “in-
telligent” choice of the number of quantization levels of the control signals, which
are allocated according to the state value of the system. The time evolution of the
used action domains is depicted in Fig. 7.6 (right). It may be observed that when the
four systems are disturbed at the same time, the MPC algorithm chooses to send at
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Fig. 7.6 Global system responses obtained for the MPC algorithm (top) and used action domains
(bottom)

the same time the control inputs to the four systems, using a precision vector from
the first action domain. As long as the systems are stabilized, precision vectors from
the second and finally from the third action domain are chosen. The corresponding
quantization precision of the different control signals is depicted in Fig. 7.7.

7.5 Notes and Comments

In this chapter, the problem of the control over limited bandwidth communication
channels was studied. A finely grained model was adopted, ensuring the respect
of the bandwidth constraints and allowing the influence characterization of update
frequency and quantization precision on the control performance. A simple static
strategy was first proposed, and its (W,V )-stability properties studied. An efficient
approach for the improvement of disturbance rejection capabilities and steady state
precision was then proposed. This approach dynamically assigns the quantization
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Fig. 7.7 Quantization precision of control signals

precision of the control signals in order to improve the control performance, and
takes into account the communication and computation requirements of the intro-
duced dynamic protocol. It naturally allows handling LTI systems with multiple in-
puts. Sufficient conditions for ensuring the practical stability of this approach were
stated and proved. The proposed approach was evaluated and illustrated through a
numerical example.

Allocation of communication resources: the “per symbol” paradigm,1 the infor-
mation exchange is modeled at the symbol level. The quantization of measurements
and control commands is thus implicitly taken into account. The general model is
given in Fig. 2.4. In this model, the communication channel can transmit at most
R bits per time unit. Due to these resource limitations, measurements and control
commands must be encoded (as a flow of symbols) before their transmission and
decoded at their reception. Various coding techniques may be employed. A funda-
mental question is to determine the necessary and/or sufficient data-rate allowing
the existence of a coder, a decoder as well as a controller able to achieve the stabi-
lization of the system. Many contributions have tried to bring more insight into this
fundamental question, by treating various models of resource limitations.

In [72], Delchamps has shown that it is impossible to asymptotically stabilize a
discrete-time unstable LTI system, whose output passes through a quantizer having
a finite number of quantization levels. In this setting, it is necessary to introduce and
use other stability concepts, like practical stability.

The problem of state estimation, in the presence of state and measurement noise,
was studied in [253]. In the considered model, the state observer is situated at the

1For more details please refer to Chap. 2, Sect. 2.2.2.
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same location as the plant. However, the controller is located at a distant place.
Consequently, the observations must be sent to the controller through a finite band-
width communication channel. This problem was shown to be different from the
classic estimation and vector quantization problems. The concept of finitely recur-
sive coder-estimator sequence was then introduced. Necessary conditions as well as
sufficient conditions, which are related to the stability and the convergence of var-
ious coding-estimation algorithms, have been proposed. These conditions connect
the network data-rate to the dynamical characteristics of the plant.

In [254], Wong and Brockett introduced the concept of containability, as a weaker
stability condition, to tackle the problem of the stabilization of networked systems
through limited capacity communication networks, where the values of the mea-
surements (which are received by the controller) and the controls (which are sent to
the plant) belong to a finite set of values J (because of the quantization which is
induced by the limited data-rate communication channel). In the case of continuous-
time LTI systems, which are impulsively controlled, they proved that a necessary

condition to ensure the containability is e
2
R

tr(Ac) ≤ |J | where |J | is the size of
the alphabet, 1

R
is the transmission duration of one bit and Ac is the state matrix.

They also proved that if the initial condition of the system lies in a bounded set, then
a memoryless coding and control is sufficient to ensure the containability, if some
conditions affecting the data-rate are met.

In [182], Nair and Evens considered a class of discrete-time, linear and time-
varying plants. The initial state is the realization of a random variable. Communica-
tions constraints only affect the sensors-to-controller link. The controller is directly
connected to the actuators. The considered problem is the explicit synthesis of a
coder (on the sensors-to-controller link) and of a controller that minimize a cost
function of the state over finite and infinite horizons. The cost function over the
finite horizon is the mth output moment. A coder/controller scheme was proposed.
Under some technical assumptions, which are related to the probability density func-
tion of the initial state, to some conditions depending on the size of the alphabet, to
the data-rate and to the plant dynamics, a necessary and sufficient optimality con-
dition of the proposed coder/controller was established. A necessary and sufficient
condition for the existence of a coder/controller that asymptotically stabilizes the
system (in the sense that the mth output moment converges to zero over an infinite
horizon) has been proposed. In the special case when the plant is invariant, unstable
and finite-dimensional, this last condition simplifies to R > log2 |λ| where λ is the
unstable open-loop pole with the largest magnitude.

In [42], Brockett and Liberzon proposed the idea of “zooming” as a means for en-
suring the asymptotic stability of continuous-time and discrete time system whose
control loops are closed through a finite bandwidth communication network. The
zooming technique consists in changing the sensitivity of the quantizer over the
time, based on the available quantized measurements. The relationship between per-
formance and complexity of the quantized stabilization using the zooming technique
has been studied in [82].

In [80], Elia and Mitter addressed the problem of the stabilization of single-input
linear systems whose measurements and control commands are quantized. By first
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considering quantizers with a countable number of levels, and supposing the ex-
act knowledge of the state, they proved that the coarsest quantizer that allows the
quadratic stabilization of a discrete-time single-input LTI system, is logarithmic, and
may be computed by solving an appropriate LQR problem. The state-feedback con-
trol problem as well as the state observation problem have been solved within this
theoretical framework. Furthermore, these results have been thereafter extended to
the continuous-time single-input and periodically sampled linear systems. Next, the
expression of the optimal sampling period (for the suggested quantizers) has been
explicitly established. It only depends on the sum of the unstable eigenvalues of the
continuous system. This approach has been finally extended to address quantizers
with a finite number of levels.

In [227], Tatikonda and Mitter considered discrete-time LTI systems. The control
loop is closed through a limited capacity communication channel. Consequently,
before their transmission, the measurements are quantized and encoded in symbols
by a coder. At their reception, a decoder reconstructs a state estimate that will be
used by the controller, which is directly connected to the plant. Two types of coders
have been studied:

• class 1 coders, which know past measurements, past controls and past transmitted
symbols that were sent over the channel,

• class 2 coders, which only know past measurements.

Stabilization and asymptotic observability properties have been addressed. It
was shown that a necessary conditions for the existence of coders and de-
coders making it possible to guarantee these two properties is given by R >∑
λ(A)max{0, log |λ(A)|}, the sum is over the eigenvalues of the state matrix A.

This necessary condition is independent from coder classes and becomes sufficient
if the whole state is measured and if class 1 coders are used.

More recently, many researchers have extended the model of networked con-
trol systems in order to include other aspects of constrained bandwidth such as
packet drop-out, distributed nature of calculation and communication nodes, com-
munication protocols as well as delay induced models. In Tsumura et al. [237],
the stabilization problem of a linear system via quantized feedback with stochastic
packet losses is considered. It is shown that this upper bound of the coarseness is
strictly given by the packet loss probability and the unstable poles of the plants. In
Chaillet and Bicchi [59], the problem of stabilizing sufficiently smooth nonlinear
time-invariant plants over a network with limited bandwidth is addressed. Reliable
packet switching networks are explicitly considered, for which both the time be-
tween consecutive accesses to each node and the delay by which each data packet is
received, processed, and fed back to the plant are unknown but bounded. In order to
compensate the unpredictably varying delays, a model-based strategy is proposed
and a bound on the tolerable delays and access frequency is explicitly provided.
Next, Franci and Chaillet [87] propose a dynamic quantization strategy, able to cope
with time-varying model uncertainties. Nesiç and Liberzon [184] propose a unified
design framework for networked and quantized control systems (NQCS). The de-
signed quantization/time-scheduling protocols are proved to be stable and a detailed
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methodology explaining how this can be done for several representative protocols
is given. In [69], De Persis and Mazenc used appropriate Lyapunov–Krasowskii
functionals to design quantized control laws for nonlinear continuous-time systems
in the presence of input constant delays. The resulting quantized feedback is pa-
rameterized with respect to the quantization density and maximal allowable delay
tolerated by the system is characterized as a function of the quantization density.



Chapter 8
Optimal State-Feedback Resource Allocation

In computer systems, the scheduler is the entity that is responsible of the alloca-
tion of the computational resources. Consequently, using efficiently these resources
amounts to design appropriate scheduling algorithms. The need for an efficient use
of the computational resources comes from cost pressure, which requires the re-
alization of system functionalities with minimum resources. Traditionally, control
design and real-time scheduling design have been decoupled in the design pro-
cesses of embedded control applications. This separation of concerns allowed each
community to focus on specific problems, and led to the spectacular development
we are familiar with today [12]. However, this separation of concerns relies on the
fact that these two domains use very simplified models of their interface with each
other. In fact, as pointed out in [53], control designers assume that the implemen-
tation is able to provide an equidistant sampling and actuation, and to ensure a
fixed input output latency as well as an infinite quantization precision. Real-time
designers on the other hand see the control loop as a periodic task with a hard dead-
line.

In both control and real-time scheduling theories, the notion of “instantaneous
computational needs” of a control application is not defined. Computation and
communication resources are consequently allocated according to the “worst case
needs” of these applications. This corresponds to the use of periodic sampling,
which on one hand simplifies the control design problem, but on the other hand
leads to an unnecessary usage of some computational resources. In fact, a con-
trol task that is close to the equilibrium needs less computing resources than
another one which is severely disturbed [23, 26, 167]. Similarly, the real-time
scheduling design of control tasks is based on their worst-case execution time.
As illustrated in [55], a resource saving may be obtained if these hard real-time
constraints are “conveniently” relaxed, since control systems may be situated in
between hard and soft real-time systems. Our opinion is that a significant sav-
ing in computing resources may be performed if more elaborate models are used
by the two communities, which amounts to the co-design and the scheduling
[12, 55, 212, 255].

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
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In this chapter, a new approach for the co-design of control and real-time schedul-
ing is proposed. In the first part, we motivate the use of the H2 performance
index for the problem of the optimal integrated control and non-preemptive off-
line scheduling of control tasks. A new approach for solving this problem is pro-
posed. This approach decomposes the problem into two sub-problems, which may
be solved separately. The first sub-problem amounts in finding the optimal non-
preemptive off-line schedule, and may be solved by using the branch and bound
method. The second sub-problem resolution uses the lifting technique to determine
the optimal control gains, based on the solution of the first sub-problem. We il-
lustrate how the existing knowledge from the considered control systems models
may be used to considerably reduce the time needed to find the optimal solution,
taking full advantage of the use of the branch and bound method. In the second
part, a plant state feedback scheduling algorithm, called reactive pointer placement
(RPP) scheduling algorithm is proposed. Its objective is to improve the control per-
formance by reacting as fast as possible to unexpected disturbances. Performance
improvements as well as stability guarantees using the RPP algorithm are formally
proven and then illustrated on a comprehensive implementation model, which was
simulated using the tool TRUETIME [5]. Finally, the RPP algorithm is implemented
on an embedded processor in order to achieve the concurrent real-time speed regu-
lation of two DC motors.

The rest of this chapter is organized as follows. After a brief overview of the re-
lated work in the second section, the formulation and solving of the optimal control
and non-preemptive off-line scheduling according to the H2 performance criterion
is addressed in the third section. The RPP scheduling algorithm is introduced, de-
scribed and evaluated using simulation in the fourth section. Finally, some remarks
on the experimental evaluation of the proposed approach are presented in the fifth
section. Some notes and comments end the chapter.

8.1 Optimal Off-line Scheduling

8.1.1 Problem Formulation

Consider a collection of N continuous-time linear time-invariant (LTI) systems
(S(j))1≤j≤N . Assume that each system S(j) is controlled by a task τ (j), which is
characterized by its worst-case execution time d(j). Since we are interested in deriv-
ing an optimal off-line schedule, the scheduling decisions (i.e., releasing and starting
of control tasks) must be made periodically (i.e., at instants that are multiple of an
elementary tick period), rather than at arbitrary time instants, as illustrated in ([157],
Chap. “Clock-Driven Scheduling”). Let Tp be this elementary tick period. The time
line is then partitioned into intervals of length Tp called time slots. Control tasks
may be started only at the beginning of the time slots. In some cases, the control
task may need more than one time slot to execute. In the proposed model, we as-
sume that the control tasks are executed non-preemptively. This assumption has two
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Fig. 8.1 An example of an off-line scheduling of control and non-control tasks

essential benefits. First, it simplifies the problem formulation as well as its solution.
Second, non-preemptive scheduling ensures a minimal and constant input/output
latency for control tasks. In fact, if the input and output operations are performed
respectively at the beginning and at the end of a control task, preemption causes
variations in the input/output latency, which may degrade the control performance,
as illustrated in [56, 166].

Usually, control tasks share the processor with other sporadic or aperiodic tasks,
which do not perform the computations of the control laws, and called non-control
tasks. Examples of such tasks include signal processing, monitoring or communica-
tion tasks. The total computational load that these tasks induce may be described by
their processor utilization rate, noted R. If these non-control tasks do not have any
real-time constraints, then they may be scheduled in background, after the comple-
tion of the control tasks jobs (i.e., in the slices of the time slots where control tasks
do not execute), as shown in ([157], Chap. “Clock-Driven Scheduling”). Otherwise,
their schedulability and real-time constraints have to be checked by using some
standard methods from real-time system theory. This issue is particularly tackled in
the previously cited reference. By using off-line scheduling, the scheduling pattern
(starting time instants of control tasks or non-control tasks reserved slots) is repeated
identically every major cycle, or hyperperiod. In the following, we will denote by
T × Tp the hyperperiod of the static schedule. The hyperperiod is equal to T when
expressed in terms of numbers of elementary time slots Tp .

Example 8.1 An example of an off-line schedule of two control tasks τ (1) and τ (2)

and a set of sporadic tasks using at most 44 % of the CPU (i.e., whose utilization
rate R = 0.44) is given in Fig. 8.1.

Task scheduling may be described by associating Boolean scheduling functions
γ (j) to control tasks τ (j) such that
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γ (j)(k)=

⎧⎪⎨
⎪⎩

1 if the execution of task τ (j) finishes in the interval

[(k − 1)Tp, kTp),

0 otherwise.

(8.1)

We call γ (j)(k) the execution end indicator of the jobs of task τ (j). Due to the use

of non-preemptive scheduling, the � d(j)
Tp
� slots containing or preceding the end of a

job of task τ (j) are allocated to its execution. Using this observation, the processor
time slots utilization by a given control task τ (j) may be described by

e(j)(k)=
k+� d(j)

Tp
�−1∑

l=k
γ (j)(l). (8.2)

The variable e(j)(k) ∈ {0,1} is the task!execution indicator corresponding to the
jobs of task τ (j) and verifies

e(j)(k)= 1 ⇐⇒ the processor is allocated to task τ (j) during a sub-interval
of [(k − 1)Tp, kTp).

(8.3)
During the interval [(k− 1)Tp, kTp), the processor can execute only one control

task. This constraint may be modeled by the following inequality

N∑
j=1

e(j)(k)≤ 1. (8.4)

In order to guarantee the computational needs of non-control tasks, described by
their processor utilization rate R, the scheduling decisions of control tasks must
satisfy

R + 1

T Tp

T−1∑
k=0

N∑
j=1

d(j)γ (j)(k)≤ 1. (8.5)

Each system S(j) is characterized by its sampled-data model, derived at the sam-
pling period Tp according to the approach of [137], and described by

x(j)(k + 1) = A(j)x(j)(k)+B(j)1 w(j)(k)+B(j)2 u(j)(k), (8.6a)

z(j)(k) = C(j)1 x(j)(k)+D(j)11 w
(j)(k)+D(j)12 u

(j)(k), (8.6b)

where x(j)(k) ∈ R
nj is the state vector, w(j)(k) ∈ R

qj is the disturbance input,
u(j)(k) ∈R

mj is the control input and z(j)(k) ∈R
pj is the controlled output.

In the sequel, we will assume that for all j ∈ {1, . . . ,N}:
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1. the pair (A(j),B(j)2 ) is controllable,

2. Q(j) = [ (C(j)1 )T

(D
(j)
12 )

T

][C(j)1 D
(j)

12 ] =
[ Q

(j)
xx Q

(j)
xu

(Q
(j)
xu )

T Q
(j)
uu

]≥ 0, with Q(j)uu > 0.

Let S be the global system composed by the systems (S(j))1≤j≤N . Assumption 1
[131, 262] is a necessary condition for the existence of a hyperperiod T ×Tp and an
off-line schedule (with hyperperiod T × Tp) ensuring the reachability of the global
system S . When the scheduling of system S is performed according to a given
off-line schedule ensuring its reachability, Assumption 2 [62, 78] guarantees the
existence of a stabilizing controller (and also an optimal controller) and is usually
made in optimal control problems.

Straightforward algebraic manipulations lead to the following extended state
model representation of the global system S :

x(k + 1) = Ax(k)+B1w(k)+B2u(k), (8.7a)

z(k) = C1x(k)+D11w(k)+D12u(k). (8.7b)

Let n=∑N
j=1 nj , m=∑N

j=1mj , q =∑N
j=1 qj and Q the matrix defined by

Q=
[
CT1

DT12

][
C1 D12

]
. (8.8)

In the considered modeling, when a control task finishes its execution, then it
immediately updates the plant, which means that

u(j)(k) is updated during interval [(k − 1)Tp, kTp) ⇐⇒ γ (j)(k)= 1. (8.9)

The digital-to-analog converters use zero-order-holders to maintain the last received
control commands constant until new control values are updated. Consequently, if
a control command is not updated during the time slot [(k − 1)Tp, kTp), then it is
held constant. This assertion may be modeled by

γ (j)(k)= 0 =⇒ u(j)(k)= u(j)(k − 1). (8.10)

Remark 8.1 The introduction of the scheduling variables allows modeling the com-
putational delays in some abstract way. The computational delay of a given task is
thus approximated in terms of numbers of elementary time slots.

In order to formulate the joint problem of optimal control and scheduling, in ad-
dition to the modeling of the tasks and the representation of the system’s dynamics,
it is necessary to chose an adequate criterion of performance. The previous studies
that were carried out on the joint problem of the optimal control and scheduling,
starting from a given initial condition, have shown that the optimal schedule is de-
pendent on the chosen initial states of the systems [26, 27]. This dependence may
be exploited by the on-line scheduling algorithms in order to improve the control
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performance. But when only a fixed schedule is desired, it is necessary to use per-
formance criteria that depend on the intrinsic characteristics of the system, not on
a particular evolution or initial state. The use of the well-known H2 performance
criterion provides a solution to meet these objectives. In fact, by using this per-
formance index, the obtained off-line schedules will be independent of any initial
conditions and disturbances. Moreover, the results may be easily transposed to a
linear quadratic Gaussian (LQG)context, as illustrated in ([215], pp. 365–366).

8.1.2 Decomposability of the Optimal Integrated Control
and Off-line Scheduling Problem

An off-line schedule is called admissible if it satisfies the constraints (8.2), (8.4)
and (8.5). In theory, for a fixed T , the number of feasible off-line schedules with
hyperperiod T × Tp is finite. Consequently, finding an optimal off-line schedule
with hyperperiod T ×Tp that minimizes the H2 norm of the global system amounts
to the exploration of the set of feasible off-line schedules (with hyperperiod T ×Tp)
and to the computation of the H2 norm of each feasible off-line schedule, in order
to find an optimal one. However, in practice, explicit search methods like exhaustive
search will rapidly suffer from the curse of dimensionality when used for solving
problems with relatively large values of H , T or N . That’s why we propose the use
of the branch and bound method, which is an implicit search method, allowing a
more intelligent exploration of the set of admissible off-line schedules.

When the scheduling of the control tasks is performed according to an admissible
fixed off-line schedule with hyperperiod T × Tp , the scheduling functions γ (j)(k)
and e(j)(k) that are associated to this off-line schedule will be both periodic with
period T (i.e., γ (j)(k) = γ (j)(k + T ) and e(j)(k) = e(j)(k + T )). It may be easily
shown [29] that the model of the global system S may be described by a T -periodic
discrete-time state representation. This remains true when the tasks are scheduled
using the optimal off-line schedule that was previously determined. Consequently,
using the well-known results of the optimal periodic control theory, we know that
the optimal control of each system S(j) is a state-feedback control law. Since H2
optimal control problems are solved over an infinite horizon, the optimal controller
of the global system will be T -periodic.

These observations show that the optimal integrated control and off-line schedul-
ing problem may be decomposed into two sub-problems, which may be solved suc-
cessively: the optimal scheduling sub-problem (which has to be solved first) and the
optimal control sub-problem (whose solution requires the knowledge of the used
scheduling).

8.1.3 Formal Definition of the H2 Norm

Assume now that the control tasks are scheduled according to an admissible off-line
schedule with hyperperiod T × Tp and that ensure the reachability of system S .
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As previously mentioned, the off-line schedule as well as the optimal controller are
T -periodic. For those reasons, the system S will be T -periodic. Consequently, in
order to determine the H2 norm of the global system S , we adopt a definition
of this norm which is based on the impulse response of linear discrete-time peri-
odic systems [256]. This definition generalizes the well-known definition of the H2
norm of discrete-time LTI systems. Let (ei)1≤i≤q be the canonical basis vectors in
R
q and δk the Dirac impulse applied at instant k. With these notations, δkei is a

Dirac impulse applied to the ith disturbance input at instant k. Let gik be the re-
sulting controlled output of the global system S (in closed-loop) by assuming zero
initial conditions and that the control input u to the global system S satisfies the
constraints (8.10). More formally, the response gik to the Dirac impulse δkei as-
suming that the global system is controlled by the stabilizing control input u that
satisfies the constraints (8.10), is completely defined by the following equations:

x(0)= 0,

w(k)= ei,
and for all l ∈N,

w(l)= 0 if l �= k,
γ (j)(k)= 0 =⇒ u(j)(k)= u(j)(k − 1) for all j ∈ {1, . . . ,N},
x(l + 1)=Ax(l)+B1w(l)+B2u(l),

z(l)= C1x(l)+D11w(l)+D12u(l),

gik(l)= z(l).

(8.11)

The H2 norm of the periodic system S is defined as

‖S ‖2 =
√√√√ 1

T

T−1∑
k=0

q∑
i=1

‖gik‖2
l2
. (8.12)

The use of this definition to compute the H2 norm involves the computation of
‖gik‖l2 , which requires the observation of the system’s response over an infinite time
horizon. In this work, a very close approximation of ‖gik‖l2 is obtained through a
finite horizon H from the instant where the impulse is applied. For that reason, it is
necessary to chooseH greater than the response time of the global system S . In the
practical implementation of the algorithm, it is possible to visualize the responses
to the different Dirac impulses, and to evaluate how much these responses (which
correspond to exponentially stable trajectories) are close to zero. The H2 norm of
the system is proportional to the square root of the sum of the squares of the l2
norms corresponding to these responses. As a result, the “finite-horizon computed
H2 norm” ‖S ‖2(H) converges asymptotically to the true H2 norm ‖S ‖2(∞)
computed over an infinite horizon, when H −→+∞. Consequently, for a desired
precision, specified by the maximal absolute error εH2 between the true H2 norm
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‖S ‖2(∞) computed over an infinite horizon and the “finite-horizon computed H2
norm” ‖S ‖2(H), there will exist a horizon Hmin, such that, for all H ≥ Hmin,
|‖S ‖2(∞)−‖S ‖2(H)| ≤ εH2 . Based on this remark, and on the visualization tools
which were implemented, the horizon Hmin may be determined iteratively.

8.1.4 Solving of the Optimal Scheduling Sub-problem

In this section, the translation of the optimal scheduling sub-problem in the sense
of H2 into the mixed integer quadratic formulation is described. This translation
requires the transformation of the involved constraints into linear equalities and/or
inequalities. The constraints (8.10) may be translated into an equivalent conjunction
of linear inequalities and equalities if extra variables are introduced, as illustrated
in [21]. Since (8.10) is equivalent to

u(j)(k)− u(j)(k − 1)= γ (j)(k)u(j)(k)− γ (j)(k)u(j)(k − 1), (8.13)

then, by introducing the extra variables

v(j)(k)= γ (j)(k)u(j)(k), (8.14)

the constraints (8.10) may be rewritten in the equivalent form

v(j)(k) ≤ U(j)γ (j)(k),
v(j)(k) ≥ L(j)γ (j)(k),
v(j)(k) ≤ u(j)(k)−L(j)(1− γ (j)(k)),
v(j)(k) ≥ u(j)(k)−U(j)(1− γ (j)(k)),

(8.15)

where U(j) and L(j) are respectively the upper and the lower bounds of the con-
trol commands u(j) of the system S(j). In practice, these bounds correspond to the
saturation thresholds of the actuators. If such a saturation does not occur, then U(j)

(respectively L(j)) may be set large enough (respectively, small enough) with re-
spect to the values that the control signals may take during the evolution of the
system. Note that the product o(j)(k)= γ (j)(k)u(j)(k− 1) can be also translated by
using the same procedure.

Thus, the constraints involved in this problem may be classified into two groups.
The first group is related to the scheduling constraints (8.2), (8.4) and (8.5). Let

Γ̄ (j) =
⎡
⎢⎣

γ (j)(0)
...

γ (j)(H − 1)

⎤
⎥⎦ and Γ̄ =

⎡
⎢⎣
Γ̄ (1)

...

Γ̄ (N)

⎤
⎥⎦ .

Then the constraints belonging to this group may be described by

As Γ̄ ≤Bs (8.16)
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where As and Bs are respectively, a Boolean matrix and a Boolean vector of appro-
priate dimensions. For more details, please refer to Chap. 4.

The second group is related to the computation of the impulsive responses gik ,
for 0 ≤ k ≤ T − 1 and 1 ≤ i ≤ q , over the horizon H . Let uik , xik , zik , vik and
oik be respectively the values of the control, the state, the controlled output and the
auxiliary variables corresponding to a Dirac impulse applied at instant k to the ith
disturbance input of the global system. Let Sik be the set of the involved constraints,
for a given response gik . Here, Sik includes the state model (8.7a), (8.7b), control
updates constraints (8.10), the Dirac impulse verifying wiki (k) = 1 and wikr (l) = 0
for r �= i and l �= k, in addition to the constraints that must be added to the problem
to ensure the causality of the response (i.e., uik(l)= 0 for l < k).

Let

Ū ik =
⎡
⎢⎣

uik(0)
...

uik(H − 1)

⎤
⎥⎦ , X̄ik =

⎡
⎢⎣

xik(0)
...

xik(H − 1)

⎤
⎥⎦ , Z̄ik =

⎡
⎢⎣

zik(0)
...

zik(H − 1)

⎤
⎥⎦ ,

V̄ ik =
⎡
⎢⎣

vik(0)
...

vik(H − 1)

⎤
⎥⎦ , Ōik =

⎡
⎢⎣

oik(0)
...

oik(H − 1)

⎤
⎥⎦ and V ik =

⎡
⎢⎢⎢⎢⎣

Ū ik

X̄ik

Z̄ik

V̄ ik

Ōik

⎤
⎥⎥⎥⎥⎦
.

Then the set of constraints Sik may be described by

A ik

[
Γ̄

V ik

]
≤Bik, (8.17)

where A ik and Bik are matrices of appropriate dimensions. Consequently, the op-
timal scheduling sub-problem in the sense of the H2 norm may be written in the
form ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
Γ̄ ,
(
V ik

)
1≤i≤q,0≤k≤T−1

T−1∑
k=0

q∑
i=1

(
V ik

)T
H V ik

As Γ̄ ≤Bs ,

A ik

[
Γ̄

V ik

]
≤Bik, for 1≤ i ≤ q,0≤ k ≤ T − 1,

(8.18)

where H is a matrix of appropriate dimensions, whose elements are functions of
C1, D11, D12 and T . For more details please refer to Chap. 4.

The problem (8.18) is a mixed integer quadratic problem (MIQP), and its resolu-
tion leads to an optimal off-line schedule (computed over the horizon H ) Γ̄ ∗. This
resolution may be performed using the branch and bound algorithm.

Remark 8.2 In operation research literature, the branch and bound method is con-
sidered among the most efficient methods for solving MIQP problems. As its name
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indicates, this method is based on two complementary mechanisms: branching and
bounding.

• Branching makes possible decomposing a given problem into subproblems (by
adding additional constraints), such that the union of the feasible solutions of
these subproblems forms a partition (in the worst case a covering) of the feasible
solutions of the original problem. In this manner, the resolution of the original
problem is reduced to the resolution of the subproblems obtained by its branching.

• Bounding consists on computing an upper and a lower bound of the optimal so-
lution of a given node. The bounding stage allows the branch and bound to avoid
exploring the nodes where it is possible to certify that they do not contain any
optimal solution. In fact, if the upper bound of a subproblem A is larger than the
lower bound of another subproblem B, then the optimal solution cannot lie in the
feasible set of solutions of subproblem A. For that reason, it becomes useless to
branch subproblem A. In this way, the subproblem A is then pruned.

An intrinsic advantage of this method is that it allows finding sub-optimal solutions
with a guaranteed distance to the true optimal solutions. The optimality distance is
the difference between the cost of the best obtained solution and the lower bound on
the optimal cost. The fact that the branch and bound algorithm allows finding sub-
optimal solutions with a guaranteed distance to the true optimal ones comes from
the fact that at each stage, this algorithm is able to compute a lower bound on the
cost of the true optimal solutions (using continuous relaxation, i.e., replacing inte-
ger variables in {0,1} by continuous ones in [0,1] and solving an efficient quadratic
program). For a description of the application of the branch and bound method for
solving MIQP problems, the reader may consult [22] (Chap. 4, pp. 49–52) and ref-
erences therein.

8.1.5 Solving the Optimal Control Sub-problem

Given an admissible off-line schedule, the ordered execution of control tasks dur-
ing the major cycle [0, T × Tp) may be described by the sequence (s(0), . . . ,
s(T − 1)), where T is the number of control task executions during the hyper-
period [0, T × Tp). For example, the sequence (s(0), s(1), s(2), s(3))= (1,2,2,3)
indicates that, during the hyperperiod, the processor begins by executing task τ (1),
followed by two consecutive executions of task τ (2), which are followed by the
execution of task τ (3). The total number of control task executions during the hy-
perperiod is T = 4. Knowing the optimal off-line schedule Γ̄ ∗, which is a solution
of the optimization problem (8.18), it is then possible to derive the optimal control
gains, according to the H2 performance criterion. In opposition to problem (8.18),
the determination of the optimal control gains can be performed on each system
separately.

In the practical implementation of the control tasks, it is impossible to directly
measure the disturbances acting on the system. It is only possible to detect their
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effects on the state. When the controller has only access to the plant state, the opti-
mal H2 controller becomes identical to the optimal LQR controller (for a complete
proof, see [63], p. 143). For that reason, in the sequel, we will consider thatD11 = 0.
The expression of z(j)(k) reduces to

z(j)(k)= C(j)1 (k)x(j)(k)+D(j)12 (k)u
(j)(k).

Let k(j)q be the index of the time slot corresponding to the (q + 1)th update of

the control commands of task τ (j). More formally, k(j)q are the discrete instants
verifying

∃k ∈ {1, . . . , T },∃i ∈N such that k(j)q = k+ iT and γ (j)
∗
(k)= 1.

Based on this definition, the optimal control sub-problem can be stated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u(j)

+∞∑
k=0

z(j)
T

(k)z(j)(k)

subject to

x(j)(k + 1)=A(j)x(j)(k)+B(j)2 u(j)(k),

u(j)(k) may be updated if and only if ∃q ∈N such that k(j)q = k,
u(j)(k)= u(j)(k − 1) if and only if ∀q ∈N, k

(j)
q �= k.

(8.19)
Since zero order holders are used to maintain the last received control inputs con-
stant, an equivalent down-sampled discrete-time representation of system S(j) can
be deduced. Let

x(j)(q) = x(j)(k(j)q
)
,

u(j)(q) = u(j)(k(j)q
)
.

Then the following relation is obtained:

x(j)(q + 1)=A(j)(q)x(j)(q)+B(j)2 (q)u
(j)(q) (8.20)

with

A(j)(q) = A(j)k
(j)
q+1−k

(j)
q

,

B(j)2 (q) =
k
(j)
q+1−k(j)q −1∑
i=0

A(j)
i

B
(j)

2 .

Equation (8.20) describes the evolution of the state of the system S(j) at the time
slots where its control inputs are updated. With the remark that for k such that
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k
(j)
q ≤ k < k(j)q+1,

[
x(j)(k)

u(j)(k)

]
=
[
A(j)

k−k(j)q ∑k−k(j)q −1
i=0 A(j)

i
B
(j)

2
0mj ,nj Imj

][
x(j)(q)
u(j)(q)

]
,

it follows that

k
(j)
q+1−1∑

k=k(j)q
z(j)

T

(k)z(j)(k)=
[

x(j)(q)
u(j)(q)

]T
Q(j)(q)

[
x(j)(q)
u(j)(q)

]
,

where

Q(j)(q) =
k
(j)
q+1−1∑

k=k(j)q

[
A(j)

k−k(j)q ∑k−k(j)q −1
i=0 A(j)

i
B
(j)

2
0mj ,nj Imj

]T

×Q(j)
[
A(j)

k−k(j)q ∑k−k(j)q −1
i=0 A(j)

i
B
(j)

2
0mj ,nj Imj

]

=
[

Q(j)1 (q) Q(j)12 (q)

Q(j)
T

12 (q) Q(j)2 (q)

]
.

Let T (j) be the number of executions of task τ (j) during the hyperperiod. Since
the optimal schedule is periodic, then the matrices A(j)(q), B(j)(q) and Q(j)(q) are
T (j)-periodic. Based on these notations, it is easy to see that the problem (8.19) is
equivalent to the following periodic optimal control problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
u(j)

∞∑
q=0

[
x(j)(q)
u(j)(q)

]T
Q(j)(q)

[
x(j)(q)
u(j)(q)

]

subject to

x(j)(q + 1)=A(j)(q)x(j)(q)+B(j)2 (q)u
(j)(q).

(8.21)

It is worth mentioning that the problem (8.21) is a periodic optimal control problem
over an infinite horizon. Let S(j)(q) be the solution of the Riccati equation associ-
ated to the optimal control problem (8.21), which is described by

S(j)(q) = A(j)
T

(q)S(j)(q + 1)A(j)(q)+Q(j)1 (q)

− (
A(j)

T

(q)S(j)(q + 1)B(j)(q)+Q(j)12 (q)
)

× (
B(j)

T

(q)S(j)(q + 1)B(j)(q)+Q(j)2 (q)
)−1

× (
B(j)

T

(q)S(j)(q + 1)A(j)(q)+Q(j)
T

12 (q)
)
. (8.22)
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Furthermore, the problem above (8.21) admits a unique solution u(j)
∗
(q) defined by

u(j)
∗
(q)=−K(j)(q)x(j)(q)

with

K(j)(q) = (
Q(j)2 (q)+B(j)

T

(q)S(j)(q + 1)B(j)(q)
)−1

× (
B(j)

T

(q)S(j)(q + 1)A(j)(q)+Q(j)
T

12 (q)
)
. (8.23)

By using the lifting approach described in [27], it may be proved that the matrices
S(j)(q) and K(j)(q) are both T (j)-periodic. The optimal cost corresponding to an
evolution of system S(j) from the instant k(j)ι to +∞ is given by

+∞∑

k=k(j)ι
z(j)

T

(k)z(j)(k)= x(j)
T

(ι)S(j)(ι)x(j)(ι). (8.24)

Remark 8.3 Note that the optimal control gains K(j)(q), which are T (j)-periodic,
are independent of ι, which represents the initial time of the optimal control prob-
lem. This considerably simplifies the implementation of the controller, and justifies
their use in the on-line scheduling approach, which will be described in the next
section.

Remark 8.4 In equation (8.24), the cost corresponding to an evolution of the system
S(j) from the instant k(j)ι to +∞ is expressed as a quadratic function of the state
x(j)(ι) = x(j)(k(j)ι ). However, Eq. (8.24) may only be used at instants where the
control inputs of system S(j) are updated (i.e., belonging to the set {k(j)q , q ∈N}). In
the following, we prove how the cost corresponding to an evolution of system S(j)

from an arbitrary time instant k to +∞ may be written as an appropriate quadratic
function of an extended state x̃(j)(k) such that

x̃(j)(k)=
[
x(j)(k)

u(j)(k − 1)

]
.

Let Y (j) = [0mj ,nj Imj ], Ȳ (j) = [Inj 0nj ,mj ] and Ψ̃ (j) the matrix defined by:

Ψ̃ (j) =
[
[A(j) 0nj ,mj ] +B(j)Y (j)

Y (j)

]
.

Consider now an appropriate integer k such that k(j)q−1 < k < k
(j)
q . Since for the

(positive) integer l such that k ≤ l < k(j)q , u(j)(l) = u(j)(k) = u(j)(k(j)q−1), then for

k ≤ l ≤ k(j)q
x̃(j)(l)= Ψ̃ (j)l−k x̃(j)(k).
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Consequently, the cost corresponding to an evolution of the system S(j) from an
arbitrary time instant k to +∞ is given by

+∞∑
l=k
z(j)

T

(l)z(j)(l)= x̃(j)T (k)S̃(j)(k)x̃(j)(k),

where

S̃(j)(k)=

⎧⎪⎪⎨
⎪⎪⎩

[Ψ̃ (j)k
(j)
q −k ]T Š(j)(q)Ψ̃ (j)k

(j)
q −k +∑k

(j)
q −1
l=k [Ψ̃ (j)l−k ]T Q(j)Ψ̃ (j)l−k

if k(j)q−1 < k < k
(j)
q ,

S(j)(q) if k = k(j)q
(8.25)

and

Š(j)(q)= Ȳ (j)T S(j)(q)Ȳ (j).

8.1.6 An Illustrative Numerical Example

In order to allow the evaluation of the systems dynamic characteristics influence on
the obtained optimal off-line schedules, we consider a collection of 3 sampled-data
LTI systems S(1), S(2) and S(3). Assume further that S(1) and S(2) are two second-
order systems such that the first one is open-loop unstable whereas the second is
open-loop stable. Assume also that the system S(3) is a fourth-order open-loop un-
stable system and corresponds to a linearized model of a fast inverted pendulum.
This benchmark was obtained through the discretization of three continuous-time
systems having different response times and stability properties. These three sys-
tems are given by:

x(1)(k + 1) =
[

0.9967 0.0266
−0.2500 0.9987

]
x(1)(k)+

[
0.0132
0.9998

]
w
(1)
1 (k)

+
[

0.0133
0.9999

]
u(1)(k),

z(1)(k) =

⎡
⎢⎢⎢⎢⎣

[ 89.4427 0
0 3.1623

]
x(1)(k)

10−3
[ 0 15.9630 14.7321

0 14.7321 69.1671

]
w(1)(k)

u(1)(k)

⎤
⎥⎥⎥⎥⎦
,

x(2)(k + 1) =
[

0.9937 0.3458
−0.0250 1.0007

]
x(2)(k)+

[
0.1243
0.7911

]
w
(2)
1 (k)

+
[

0.1384
0.8008

]
u(2)(k),
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z(2)(k) =

⎡
⎢⎢⎢⎣

[ 2.2361 0
0 1

]
x(2)(k)

10−3
[ 0 4.1674 3.8133

0 3.8133 17.4947

]
w(2)(k)

3.1623 u(2)(k)

⎤
⎥⎥⎥⎦ ,

x(3)(k + 1) =

⎡
⎢⎢⎣

1.1180 0 0.0025 0.5531
0 1 0.2129 0
0 0 0.7613 0

0.4518 0 0.0093 1.1180

⎤
⎥⎥⎦x(3)(k)+ 10−4

⎡
⎢⎢⎣

23
9

75
81

⎤
⎥⎥⎦w(3)1 (k)

+ 10−4

⎡
⎢⎢⎣

28
11
88

106

⎤
⎥⎥⎦u(3)(k),

z(3)(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣

10 0 0 0
0 31.62 0 0
0 0 1 0
0 0 0 1

⎤
⎦x(3)(k)

10−3

⎡
⎣

0 0.3088 0.3809 0.0712 0.0922
0 0.3809 0.4984 0.1031 0.1278
0 0.0712 0.1031 0.1118 0.1176
0 0.0922 0.1278 0.1176 0.1249

⎤
⎦w(3)(k)

u(3)(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Assume also that each system S(j) is controlled by an independent control
task τ (j), j ∈ {1,2,3}, and that the task τ (3) is followed by some communication
task τ c. Thus, a data dependency between tasks τ (3) and τ c exists. Consequently,
the task τ c has to be executed immediately after the task τ (3).

We assume that the execution platform is an Allen-Bradley CompactLogix 5320
programmable logic controller (PLC) [3] from Rockwell Automation. This execu-
tion platform is characterized by the execution times of its basic assembler instruc-
tions. The complete list of the execution times of all the instructions can be found
in [3]. Based on this assembler language, a handwritten assembler code of the con-
trol tasks was derived. The estimated worst-case execution times (WCET) of the
different tasks are given in Table 8.1. We also assume that a set of sporadic and
aperiodic tasks may need to be executed on the same processor. Based on this re-
quirement as well as on the WCET of the tasks, the elementary time slot duration
Tp was chosen equal to 1 ms.

The execution of the tasks τ (1) and τ (2) require only one time slot. The con-
secutive execution of the tasks τ (3) and τ c requires two time slots. Sporadic and
aperiodic tasks require at most 40 % of the CPU power.

The optimal solutions, corresponding to different choices of T , are illustrated
in Table 8.2. The relative optimality gap of the used branch and bound algorithm
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Table 8.1 Worst-case
execution times of the control
tasks

Task WCET (μs)

τ (1) 282.94

τ (2) 282.94

τ (3) + τ c 779.82+ 240.19

is equal to 10−5, which means that the best-obtained solution will be considered
as an optimal solution if the difference between its cost and the lower bound of
the true optimal cost is less than 0.01 %. The computations were performed on
a PC equipped with a 3.6 GHz Intel Pentium IV processor and 1 GB of RAM.
The optimization problem was solved using the solver CPLEX (Release 9.1.0) from
ILOG. In this particular implementation of the optimization algorithm, H must be
a multiple of T . It is sufficient to choose H larger than 27 to guarantee a maximal
absolute error εH2 = 10−4.

The optimization results are given in Table 8.2. In this table, the two columns
CPU Time indicate the time needed by the optimization algorithm to end. The al-
gorithm stops when it proves that the best obtained solution is close enough to the
lower bound of the optimal solution (i.e., the relative difference between the best
obtained solution and the true optimal one is less than the specified relative optimal-
ity gap). The optimization results indicate that the minimal optimal schedule is of
length T = 5. In this schedule, the task τ (2) is first executed, followed by the exe-
cution of the task τ (1), which is followed by the execution of the task τ (3), which is
finally followed by the execution of the task τ (1). The length of the optimal sched-
ules leading to the best H2 norm (H2 = 9.7463) is a multiple of 5. The resource
allocation depends on the dynamics of the systems as well as on their sensitivity to
the Dirac impulse disturbance of the H2 performance evaluation. It may be proved
(using the formal definition of the H2 norm of the system S ) that a circular per-
mutation of an optimal schedule still remains optimal.

The column CPU Time Default indicates the required CPU time in the case we
use the default parameters of the solver. The column CPU time with initial solu-

Table 8.2 Optimal H2 norm as a function of T

T H H2 norm Optimal schedule CPU time
default (s)

CPU time with
initial solution (s)

4 28 13.2472 321. . . 86 13

5 30 9.7463 2131. . . 58 40

6 30 11.7966 11213. . . 243 185

7 28 13.0122 13213. . . 533 482

8 32 12.1146 312131. . . 1482 1151

9 27 10.6545 1312312. . . 1796 1244

10 30 9.7463 21312131. . . 4288 2062
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tion indicates the required CPU time when the cost of a feasible initial solution
is taken into account by the algorithm. In fact, it is always possible for the de-
signer to derive a feasible schedule ad-hoc, by employing rules of thumb like those
described in [14] (for example, choosing the sampling period Ts of a first-order
system such that Tr

Ts
≈ 4 · · ·10, where Tr is the rising time of the system). The

advantage of the branch and bound method is that it is able to use these feasi-
ble solutions to considerably reduce the search space by pruning the regions that
are proved to be worst than those given by the initial solutions. This approach
allows reducing the number of regions to be explored by the algorithm. Finally,
note that the required time to find the optimal solution is lower than the time
needed to prove that it is optimal. For example, for T = 6, the optimal solution
was found after 69 seconds but 185 seconds were necessary to prove that it is opti-
mal.

Remark 8.5 When the number of systems (and the corresponding control tasks) in-
creases, the potential for improving the global performance is more important but
the complexity of the decision increases also, due to the “curse of dimensionality”.
In such a case, finding the true optimal off-line schedule becomes difficult. The
advantage of the proposed approach lies in its ability to provide sub-optimal solu-
tions with an upper-bounded distance from the optimality, along the execution of the
branch and bound algorithm. For problems including a large number of tasks, the
algorithm has to be run during a predetermined amount of time by starting from a
feasible off-line schedule that the designer might determine ad-hoc using appropri-
ate methods, in order to find solutions that are better than the given initial schedule,
which was derived by the designer.

Remark 8.6 In the obtained off-line schedule, the task τ (1) was executed twice in
the hyperperiod. Consequently, the optimal control gains for its two instances may
be different. For that reason, a subscript will be added to distinguish two instances
of the same task that may use different control gains. Thus, the two instances of task
τ (1) will be noted τ (1)1 and τ (1)2 .

8.2 On-line Scheduling of Control Tasks

Assume that an off-line schedule, specifying how the different control and non-
control tasks should be executed, was designed. This off-line schedule, which may
be stored in some table, describes when each control task should be started and
possibly the starting time instants of the time slots that are pre-allocated to the non-
control tasks.

At runtime, the execution of the periodic off-line schedule may be described by
using the notion of pointer. The pointer may be seen as a variable p, which contains
the index of the control task to execute. The pointer is incremented after each control
task execution. If it reaches the end of the sequence, its position is reset. After each
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Fig. 8.2 Absolute positions of the pointer

Table 8.3 The map t
Pointer position p Absolute position t (p)

0 0

1 2

2 3

3 5

task execution, the position of the pointer is updated according to the rule

p := (p+ 1) mod T . (8.26)

By knowing the pointer position p, the control task to execute is s(p). It is con-
venient to define the map t , which associates to the pointer position its absolute po-
sition (expressed as multiples of Tp in the schedule). The map t linking the different
pointer positions to their absolute positions in the example of Fig. 8.2 is defined in
Table 8.3.

Since the non-control tasks are sporadic or aperiodic, they do not necessarily use
all the pre-allocated time slots for their execution. Consequently, it appears useful
and perspicacious to employ this unused CPU power for improving the quality of
control. Such improvements may be possible by executing more frequently the con-
trol tasks of the systems that have more need for additional computing resources.
This requires specific scheduling algorithms, because the control tasks are used to
control dynamical systems, where the timing of the input and output operations
is capital for guaranteeing appropriately the stability and the performance require-
ments.

The idea behind the proposed scheduling strategy is to use the free available
computing resources (i.e., where there are no sporadic nor aperiodic tasks to exe-
cute for example) in order to execute a feedback scheduler, which is responsible of
determining the best scheduling of the control tasks in the future. In the sequel, the
issues that are related to the execution of the feedback scheduler are discussed as
well as the optimal pointer placement scheduling strategy, which represents the cor-
nerstone of the used adaptive scheduling strategy. Finally, the method for reduction
of the computational complexity of the feedback scheduler is described.
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8.2.1 Execution of the Feedback Scheduler

As previously mentioned, the feedback scheduler is executed in the non-control
tasks reserved time frames, when they are “free”. Depending on the possibilities
of the execution platform (whether it supports preemption or not), the feedback
scheduler can be executed as:

• A preemptive task, with a given priority and deadline, and which will be discarded
by the scheduler if it misses its deadline (in this case, the schedule execution is
not modified).

• A non-preemptive task which is executed on predefined sub-slots of the non-
control tasks slots.

In both cases, the possible real-time constraints of the sporadic or aperiodic tasks
should be taken into account, when the feedback scheduler task is added.

Remark 8.7 In real-time scheduling theory, static scheduling is mostly used in
safety critical systems, in order to ensure a strong temporal determinism. The first
motivation behind the use of a basic static schedule in the on-line scheduling heuris-
tic is the need for predictability. In fact, the adaptive feedback scheduler, which will
be described thereafter, needs to compute a predicted cost function in order to deter-
mine the scheduling decision. When employing the basic sequence, the computation
of the predicted cost is considerably reduced since it boils down to the computation
of a reduced number of quadratic functions. Furthermore, the use of the basic static
schedule simplifies also the computations of the feedback gains. Finally, the imple-
mentation of the feedback scheduler as an extension of the basic sequencer may be
easier than handling dynamic priorities in priority-based schedulers. In fact, only a
few real-time operating systems support the run-time change of priorities.

8.2.2 Adaptive Scheduling of Control Tasks

Choosing the pointer replacement as an on-line decision allows exploiting more ef-
ficiently the available computational resources in order to improve the control per-
formance. These resources are thus allocated according to the “instantaneous needs”
of the controlled systems. In the proposed adaptive scheduling strategy, instead of
a systematic use of (8.26), the position of the pointer is placed according to the
knowledge of the controlled plants states, in order to ensure the improvement of
the control performance as measured by a quadratic cost function. This strategy re-
lies on computing T predicted cost functions corresponding to an evolution of the
global system for T different positions of the pointer. Let

x̃(k)=
⎡
⎢⎣
x̃(1)(k)
...

x̃(N)(k)

⎤
⎥⎦ .
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If the pointer is placed at position p at instant k, then the cost function corresponding
to an evolution of system S(j) over an infinite horizon starting from the state x̃(j)(k)
at instant k and using the static scheduling algorithm is

J (j)(k,p)=
∞∑
i=0

z(j)
T

(k + i)z(j)(k + i)= x̃(j)(k)T S̃(j)(t (p))x̃(j)(k). (8.27)

If the pointer is placed at position p at instant k, then the cost function corresponding
to an evolution of the global system S over an infinite horizon starting from the
state x̃(k) at instant k and using the static scheduling algorithm is

J (k,p)= J sts(x̃(k), k,+∞,p)=
N∑
j=1

J (j)(k,p). (8.28)

This strategy (called optimal pointer placement scheduling) was employed in [26]
in the context of networked control systems in order to reduce the considerable
computational complexity, which is required to find the true optimal control and
scheduling decisions (this latter problem was investigated in [23]).

In the sequel, we describe how this concept may be deployed for monoprocessor
scheduling. As mentioned previously, the feedback scheduler is triggered in some
non-control task reserved time frame, if this time frame is free (i.e., there are no
sporadic nor aperiodic tasks to execute, for example). It first acquires the state of all
the controlled plants at instant ka (the instant where the feedback scheduler begins
its execution), and then computes T predicted cost functions corresponding to an
evolution over an infinite horizon, starting at instant kx (the instant where the next
control task will begin its execution) for the T possible pointer positions. The task
that will be executed at instant kx is the one corresponding to the pointer position
that gives the minimal predicted cost. Figure 8.3 illustrates the method (in the case
of the adaptive scheduling of the numerical example of Sect. 8.1.6).

Note that the feedback scheduler makes use of the knowledge of the state
at instant ka to compute the predicted cost functions J (kx,p), for p ∈ {0, . . . ,
T − 1}, corresponding to an evolution starting at kx . If the plant model is employed
to predict the state at instant kx when knowing the state at instant ka , then it is easy
to establish that

J (kx,p)= x̃T (kx)S̃
(
t (p)

)
x̃(kx)= x̃T (ka)Ŝ

(
t (p)

)
x̃(ka).

Thus, the expression of Ŝ(t (p)) can be easily deduced from the plant model, the
expression of S̃(t (p)) and the control gains.

8.2.3 Reduction of the Feedback Scheduler Overhead

In the following, a method of reduction of the computational complexity of the
feedback scheduler is proposed. This method relies on some intuitive observations,
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Fig. 8.3 Optimal pointer placement scheduling of tasks τ (1), τ (2) and τ (3). FBS is the abbreviation
of feedback scheduler

which may be related to the concept of practical stability. The method is motivated
by the fact that when a system S(j) is at the equilibrium (i.e., x(j) = 0), its compu-
tational resources can be used to perform other tasks. If the system S(j) is close to
the equilibrium, it may be less frequently updated than other systems that experience
severe disturbances. This “proximity” to the equilibrium can be formalized by defin-
ing a practical equilibrium region R(i) for each system S(i). To define how much a
system S(i) is close to the equilibrium, positive constants ε(i)x are introduced. Here,
ε
(i)
x have to be chosen small enough such that when ‖x̃(i)(k)‖∞ ≤ ε(i)x , the system
S(i) is considered to be “practically” at the equilibrium. Each practical equilibrium
region can be formally defined by

R(i) = {
x̃(i)(k) such that

∥∥x̃(i)(k)∥∥∞ ≤ ε(i)x
}
.

In other words, systems (located) “in” the practical equilibrium region are systems
whose affected computational resources may be released for the profit of other tasks.
In order to ensure stability and performance improvements, this dynamic resource
allocation has to be done by using a well-defined methodology, which will be de-
veloped in the sequel.

The basic ideas behind the proposed method for the reduction of the computa-
tional complexity of the feedback scheduler relies on changing the adaptive schedul-
ing paradigm from

find the best pointer position

to

find a pointer position that is better than the cyclic schedule.
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The answer to the latter problem requires less computational resources than the
answer to the first one, and can take advantage from the knowledge that a given
system is practically stable. For a given system S(j), let

J̄
(j)

min(p)= min
x̃(j)(k)∈R(j)

(
J (j)(k,p)

)

and

J̄
(j)
max(p)= max

x̃(j)(k)∈R(j)
(
J (j)(k,p)

)
,

then we have the following proposition.

Proposition 8.1 Let p1 and p2 be two pointer positions and I a subset of
{1, . . . ,N}. If

∀i ∈ I, ∥∥x̃(i)(k)∥∥∞ ≤ ε(i)x
and

∑
j∈{1,...,N}−I

J (j)(k,p2)+
∑
j∈I
J̄
(j)
max(p2) <

∑
j∈{1,...,N}−I

J (j)(k,p1)+
∑
j∈I
J̄
(j)

min(p1)

then

J (k,p2) < J (k,p1).

Proof This result follows straightforwardly from the fact that

J (k,p1) =
∑

j∈{1,...,N}−I
J (j)(k,p1)+

∑
j∈I
J (j)(k,p1)

≥
∑

j∈{1,...,N}−I
J (j)(k,p1)+

∑
j∈I
J̄
(j)

min(p1)

and

J (k,p2) =
∑

j∈{1,...,N}−I
J (j)(k,p2)+

∑
j∈I
J (j)(k,p2)

≤
∑

j∈{1,...,N}−I
J (j)(k,p2)+

∑
j∈I
J̄
(j)
max(p2).

�

The constants J̄ (j)min(p) and J̄ (j)max(p) above may be easily pre-computed off-line
by using a standard QP solver.

Example 8.2 In order to illustrate the gains in terms of computational complex-
ity, we reconsider the example proposed in the Sect. 8.1.6. The computation of
the true pointer position requires T (n+m− 1)(n+m+ 1) = 480 additions and
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Algorithm 8.1: Pseudocode of the feedback scheduling algorithm, called Re-
active Pointer Placement (RPP) scheduling algorithm

Read x(k);
p := p+ 1 mod T ;

if ∀i ∈ Ip, ‖x̃(i)(k)‖∞ ≤ ε(i)x or Ip = ∅ then
if ∃π ∈Pp/

∑
j∈Īp J

(j)(k,π)+∑
j∈Ip J̄

(j)
max(π) <∑

j∈Īp J
(j)(k,p)+∑

j∈Ip J̄
(j)

min(p) then
p := π ;

end if
end if
execute task s(p);

T (n+m)(n+m+1)= 528 multiplications. If the systems S(2) and S(3) are practi-
cally stable, searching for a pointer position that may be better than the next pointer
position require, in the worst case, T (n1 +m1 − 1)(n1 +m1 + 1)= 32 additions
and T (n1+m1)(n1+m1+ 1)= 48 multiplications, thus a substantial reduction of
respectively 95 % and 90 % of the computational complexity.

In the case when input operations are performed by independent hardware de-
vices and that their computational overhead may be neglected, a possible pseu-
docode of the feedback scheduler can be used, and its description is given in the
listing below. This feedback scheduling algorithm is called, reactive pointer place-
ment (RPP) scheduling algorithm. In this listing, for a given p ∈ {0, . . . ,T − 1},
Ip is a set of plant indices and Īp = {1, . . . ,N}−Ip . For a given p ∈ {0, . . . ,T −1},
Pp is a set of pointer positions that does not contain p. Typically, Ip is chosen
such that Īp = {s(π),π ∈Pp}. When this choice is performed, Ip contains s(p).
Note that Ip may also be chosen such that Ip = ∅ (when more computational re-
sources are available to the feedback scheduler). The choice of the elements of P
and Ip depends on the available computing resources that may be dedicated to the
feedback-scheduler. More resources are available, more potential pointer positions
may be tested. It is important to point out that the computational resources needed
are time-varying and are in the worst-case proportional to the cardinality of the
sets Īp (which is the complementary of the set Ip in {1, . . . ,N}) and Pp . In fact,
these resources are essentially needed for the on-line computation of the functions
J (j)(k,π)− J (j)(k,p), for j ∈ Īp , as illustrated in the RPP algorithm listing (see
Algorithm 8.1).

Remark 8.8 When using the proposed complexity reduction methodology, it is pos-
sible to bound the computational requirements of the feedback scheduler even if the
number of control tasks increases. In general, the situations where all the indepen-
dent systems are severely disturbed at the same time appear less frequently than the
situations where some systems are disturbed and some others are in normal opera-
tion. The RPP algorithm allocates the available resources according to the needs of
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the controlled systems. Therefore, intuitively, when the number of tasks increases,
the potential to improve the control performance may be more important because
the quantity of unneeded resources that may be allocated to the disturbed systems
will also increase.

8.2.4 Stability and Performance Improvements

Let J rpp(x̃(i), i, f ) be the cost function corresponding to an evolution from instant
k = i to instant k = f starting from the extended state x̃(i) where the RPP schedul-
ing algorithm is applied. The performance improvements of the RPP scheduling
algorithm are stated in the following theorem.

Theorem 8.1 [28] Let x̃(0) be a given initial extended state of the global system
S (composed of the systems (S(j))1≤j≤N ) and p0 an initial pointer position of the
static scheduling algorithm. Then

J rpp(x̃(0),0,+∞)≤ J sts(x̃(0),0,+∞,p0
)
.

Proof Let x̃rpp be the extended state trajectory of the system S when scheduled by
using RPP, p(l) the pointer position at the (l + 1)th execution of RPP and kl the
index of the time slot corresponding to the end of this (l + 1)th execution. With-
out any loss of generality, assume that k0 = 0. Let J rpp-sts(l) be the cost function
corresponding to an evolution starting from the initial state x̃(0) where RPP is ap-
plied from the instant k0 = 0 to the instant kl and then followed by the application
of the static scheduling algorithm (which is applied from instant kl+1 to +∞). By
construction of the RPP scheduling strategy (as described in listing Algorithm 8.1),
and by an appropriate use of Proposition 8.1, the pointer position at the (l + 1)th
execution is set to position p(l) such that

J sts(x̃rpp(k0), k0,+∞,p(0)
)

≤ J sts(x̃(0),0,+∞,p0
)
, if l = 0, (8.29a)

J sts(x̃rpp(kl), kl,+∞,p(l)
)

≤ J sts(x̃rpp(kl), kl,+∞,
(
p(l − 1)+ 1

)
mod T

)
, if l > 0, (8.29b)

where J sts(x̃rpp(kl), kl,+∞,p(l)) (respectively, J sts(x̃rpp(kl), kl,+∞, (p(l − 1)+
1) modT )) represents the predicted cost corresponding to an evolution over an
infinite horizon of the global system from the state x̃rpp(kl) where the pointer at
instant kl is placed at position p(l) (respectively (p(l − 1) + 1) modT ). In fact,
as previously mentioned, the scheduling decisions preformed by the RPP algorithm
are based on an appropriate prediction of the evolution of the system, for selected
pointer positions, and under the assumption that the static scheduling algorithm is
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used during these predicted evolutions. Note that (p(l − 1) + 1) mod T ) repre-
sents the pointer position obtained by incrementing the pointer according to rela-
tion (8.26) (i.e open-loop static scheduling).

Adding J rpp(x̃(0),0, kl−1) to both left and right terms of inequality (8.29b), for
l > 0, and by taking into account the fact that

J rpp-sts(l)= J rpp(x̃(0),0, kl−1
)+ J sts(x̃rpp(kl), kl,+∞,p(l)

)
,

and

J rpp-sts(l−1)= J rpp(x̃(0),0, kl−1
)+J sts(x̃rpp(kl), kl,+∞,

(
p(l−1)+1

)
mod T

)
,

we get

J rpp-sts(l)≤ J rpp-sts(l − 1), for l > 0. (8.30)

Recall that

J sts(x̃rpp(k0), k0,+∞,p(0)
)= J rpp-sts(0).

Thus, it is ease to see that

lim
l→+∞J

rpp-sts(l)= J rpp(x̃(0),0,+∞)
.

Finally, the use of the inequalities (8.29a) and (8.30) leads to

J rpp(x̃(0),0,+∞)≤ J sts(x̃(0),0,+∞,p0
)
. (8.31)

�

Theorem 8.1 simply indicates that the RPP strategy guarantees the performance
improvements with respect to the static scheduling algorithm. It is worth mentioning
that the stability of the RPP scheduling algorithm follows straightforwardly from
Theorem 8.1 as stated in the following corollary.

Corollary 8.1 [28] If Q is positive definite and if the asymptotic stability of the
global system S (composed of systems (S(j))1≤j≤N ) is guaranteed by the static
scheduling algorithm, then it is also ensured by the RPP scheduling algorithm.

Proof When Q is positive definite, then J sts(x̃(0),0,∞,p0) (resp. J rpp(x̃(0),
0,∞)) is finite if and only if system S is asymptotically stable. Now, by knowing
the asymptotic stability of the system scheduled when the static scheduling algo-
rithm is employed, the use of the relation (8.31) allows to conclude. �

Remark 8.9 When the RPP strategy is used, the effective frequency with which the
control tasks are executed is not necessarily constant. In particular, some tasks may
be executed more frequently during some periods of time. Based on Theorem 8.1,
we proved that this irregular execution performed according to some well defined
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methodology (on-line scheduling that minimizes an infinite horizon cost) provides
a better (and in the worst-case situation a similar) control performance than (to) the
basic static schedule. The performance improvements may be seen as a direct ap-
plication of the Bellman optimality principle. In fact, the RPP algorithm has more
degrees of freedom than the static scheduling algorithm. Its worst-case performance
corresponds to the static scheduling strategy. The control coefficients (gains) that
will be used by each control task are taken into account when the infinite horizon
cost is computed. For that reason, there is no need to recompute the control coef-
ficients of the tasks that will be executed at some irregular rate. This considerably
reduces the complexity of the on-line scheduling algorithm.

8.2.5 Reduction of Input Readings Overhead

In some situations, the input operations are performed directly by the processor.
The control application may be also networked: the control inputs from the plant
and outputs to the plant are transmitted over the network. Consequently, reading
the inputs from the plant at each execution of the feedback scheduler may result
in a computational or bandwidth overhead. In order to reduce this overhead, the
feedback scheduler has to read at most ns inputs, such that ns < n. The most efficient
way is to read these inputs according to the optimal off-line sampling periods of the
controlled systems. In the following, a heuristic approach for selecting the inputs
that are read by the feedback scheduler is proposed. Since the feedback scheduler
is executed in the non-control slots which follow the execution of the control tasks,
we may associate to each pointer position of set of ns control inputs that will be
read. Let Π be the set of all the permutations of the T -tuple (0,1, . . . ,T − 1). Let
π ∈Π a given permutation and ζπ the sequence defined by

ζπ =
(
ζπ (0), ζπ (1), . . . , ζπ (T − 1)

)= (
s
(
π(0)

)
, s
(
π(1)

)
, . . . , s

(
π(T − 1)

))
.

(8.32)
Assume that a ns -tuple of permutations π = (π1, . . . , πns ) is defined. If the pointer
is at position p, then the inputs {ζπ1(p), . . . , ζπns (p)} are read. The binary detection
indicators associated to each system S(j) are defined by:

⎧⎨
⎩

Z
(j)
π (p)= 1 if ∃k ∈ {1, . . . , ns} such that ζπk (p)= j,

Z
(j)
π (p)= 0 otherwise.

(8.33)

The binary detection indicators simply show whether or not the outputs of system
S(j) are read, for a given position p of the sequence pointer. Let Z̄

(j)
π (k)=Z

(j)
π (k

mod T ). The inputs that are read at position p are given by the detection sequence

ζ = ({
ζπ∗1 (0), . . . , ζπ∗ns (0)

}
, . . . ,

{
ζπ∗1 (T − 1), . . . , ζπ∗ns (T − 1)

})
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that is determined by the solution (π∗1 , . . . , π∗ns ) of the following optimization prob-
lem
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(π∗1 , . . . , π∗ns )

= min
(π1,...,πns )∈Πns

N∑
j=1

max
k1,k2,k1≤k2

{
k2 − k1, such that: Z̄ (j)

π (k1)= 1, Z̄ (j)
π (k2)= 1

and for all k1 < k < k2, Z̄
(j)
π (k)= 0

}
.

(8.34)
This optimization problems aims in minimizing the sum over j of the “maximal
distances” between two successive output reading of system S(j).

8.2.6 A Numerical Example

In order to evaluate the proposed approach, consider the real-time implementation
of the example already presented in the Sect. 8.1.6. Based on the assembler lan-
guage of the CompactLogix 5320 PLC, a handwritten assembler code of the feed-
back scheduler was written. The tasks execution was simulated using the toolbox
TRUETIME [5, 56], which allows the co-simulation of distributed real-time con-
trol systems by appropriately taking into account the effects of the execution of the
control tasks and the data transmission on the controlled systems dynamics.

Based on Table 8.1, the processor utilization of the control tasks, when scheduled
by using a basic sequencer, is equal to 32.57 %. This means that aperiodic tasks as
well as the feedback scheduler may have at most a utilization rate of 67.43 %. Note
that this implementation assumes that input operations are performed by indepen-
dent hardware devices. An important issue concerns the execution overhead of the
feedback scheduler. In order to be able to implement the proposed feedback schedul-
ing algorithm, the worst case execution time of the feedback scheduler must be less
or equal to 717.06 μs or 980.08 μs, depending on the non-control tasks slots lengths.
To solve this problem, an implementation of the feedback scheduler (as described in
Sect. 8.2.3) was performed. When the pointer is at position p, the feedback sched-
uler tries to answer to the question:

Is position π∗(p) better than position p?

where π∗ = (π∗(0),π∗(1),π∗(2),π∗(3)) = (1,0,3,2). The parameters ε(1)x =
ε
(2)
x = ε(3)x = 0.001, I0 = {2,3}, I1 = {1,3}, I2 = {2,3}, I3 = {1,2} and Pp =
{π∗(p)}, for p ∈ {0, . . . ,3} were chosen. These parameters are simply a conse-
quence of the available computational resources to execute the feedback scheduler.
In order to improve the responsiveness of the feedback scheduler, π∗(p) was com-
puted using the optimization heuristic (8.34). Based on these choices, the worst-case
execution times of the feedback scheduler (for a given pointer position) are given
in Table 8.4. Note that, in this example, testing over all the pointer positions based
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Table 8.4 Worst-case
execution time of the
feedback scheduler (for each
pointer position)

Pointer position WCET (μs)

0 455.27

1 455.27

2 968.60

3 455.27

on the global system model (which corresponds to the use of the OPP algorithm)
requires an execution time of 3393.8 μs.

The global system responses corresponding to the states x1, x3, x5 and x6 of
the global system (i.e., states x(1)1 , x(2)1 , x(3)1 and x(3)2 ) as well as the associated
accumulated global cost are depicted in Fig. 8.4. It is assumed that the global system
is started from the initial state [1 0 1 0 1 0 0 0]T . The three systems S(1), S(2)

and S(3) reach the practical stability region at t = 0.019 s, t = 0.026 s and t =
0.057 s, respectively. Assume now that at t = 0.0663 s, the system S(1) is severely
disturbed. The conditions of the “reactive pointer change” are fulfilled. The RPP
algorithm reacts then at the instant t = 0.0665 s to execute the task τ (1)2 instead of
the task τ (3) (as illustrated in Fig. 8.5). These changes allowed to better react to
this disturbance and to improve the quality of control (as illustrated in Fig. 8.4). It
may be seen that when these disturbances occur, the execution time of the feedback
scheduler increases (as illustrated in Fig. 8.5). This increase is due to the additional

Fig. 8.4 Global system responses and accumulated cost using the static scheduling (StS) and the
RPP scheduling algorithms
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Fig. 8.5 RPP schedule (top) and zoom on the RPP schedule between instants 60 ms and 80 ms
(bottom)

test which is needed to guarantee that the “reactive pointer change” will improve the
performances while maintaining the stability.

Finally, the RPP scheduling algorithm is tested in the case when all the systems
are in the practical equilibrium region, except one, which is perpetually disturbed.
In the simulations depicted in Fig. 8.6 correspond to the following situation: the
systems S(1) and S(2) remain in the equilibrium region whereas the system S(3) is
continuously disturbed with a band limited white noise characterized by a noise
power of 0.1 and a correlation time of 1× 10−4. The simulation results indicate sig-
nificant improvements in control performance (Fig. 8.6, left). These improvements
are due to the fact that the unused computing resources are allocated by the feedback
scheduler to the control of the system S(3), as illustrated in (Fig. 8.6, right).

Remark 8.10 In all the situations, the RPP scheduling algorithm is able to maintain
the stability of all the plants and to provide a performance that is better (and in the
worst-case similar) to the one obtained by the static scheduling algorithm, even in
the case when all the plants are disturbed at the same time. In this example, the
restriction concerning the fact that RPP is able to react to only one disturbance is
only due to the limitations of the computational resources that are allocated to its
execution. If more resources are available to the execution of the feedback scheduler,
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Fig. 8.6 Accumulated cost functions (top) and tasks schedules (bottom) when the systems S(1)

and S(2) are in the equilibrium regions whereas the system S(3) is continuously disturbed

then the parameter Ip may be set to ∅. In this situation, the reactive pointer change
may be performed even when all the plants are disturbed at the same time. This
situation will be illustrated in the experimental study proposed in the next section.

8.3 Application to a DC Motor Associated to an Embedded
Processor

In order to evaluate the extent of the considered theoretical assumptions, to study
experimentally the robustness of the proposed on-line scheduling algorithm and to
compare its performance to state of the art methods (i.e fixed priority preemptive
scheduling), the proposed methodology is applied to a real world application. The
considered application is the concurrent speed control of two DC motors when
using an embedded processor. The control objective is to impose desired some
appropriate angular velocities to each DC motor. The considered motors present
some non-linearities at zero crossing velocities (dry friction). However, they may
be approximated by first-order LTI models. The control tasks are executed on an
aJile aJ-PC104 board, equipped with a JEM2 processor, clocked at 40 MHz. A PC
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Fig. 8.7 Experimental setup

Table 8.5 Measured execution times of the segments of a motor control task and of the RPP
algorithm

Motor control task RPP algorithm

Segment Execution time (μs) Segment Execution time (μs)

Inputs reading 363 Inputs reading 371

Control computation 58 Scheduling computation 230

Output application 322

Total 743 Total 601

with a Matlab/RTW (Real-Time Workshop) board generates the desired set points
(R1 and R2) and measures the voltages that are the image of the motors speed (i.e.
proportional to the motors angular velocities). The experimental setup is described
in Fig. 8.7. The model of each DC motor (viewed between the input of the ampli-
fier and the output of the speed sensor) may be respectively approximated by the
following first-order models:

Ω1(s)= 0.94

1+ 6.2s
U1(s),

and

Ω2(s)= 1.17

1+ 2.9s
U2(s),

where Ωi and Ui are respectively, the image of the angular velocity (output of the
speed sensor) and the control voltage (input to the amplifier) of the ith DC mo-
tor, i ∈ {1,2}. Using the standard LQR method, two proportional-integral (PI) con-
trollers were derived in order to impose similar closed-loop characteristics for the
two motors.

Each DC motor is controlled by a control task τ (i), i ∈ {1,2}. The processor
is shared with other periodic and sporadic tasks. Assume that, during the experi-
ments, a set of periodic tasks, with respective periods 4 ms, 40 ms and 200 ms,
are executed in parallel (with the highest priorities, assigned according to the rate
monotonic rule). Their CPU utilization load is equal to 60 %. The measured exe-
cution times of the different segments (i.e., parts) of the motors control tasks and
the feedback scheduler are given in Table 8.5. The segments Inputs reading and
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Output application represent the computations that are necessary for the acquisition
of the controller inputs and the application of the control outputs, respectively. The
segment Control computation represents the computation of the state feedback con-
trol, whereas the segment Scheduling computation represents the code of the RPP
algorithm, as illustrated in the listing Algorithm 8.1 (evaluation and comparison of
the quadratic cost functions and pointer placement decision).

The objective of the experiments is to compare the control performance when the
two control tasks τ (1) and τ (2) are scheduled using:

• The rate monotonic scheduling algorithm (RM), where the preemption is autho-
rized, and where each DC motor is controlled by an independent control task
running at the period of 1 s.

• The RPP scheduling algorithm with the parameters Tp = 0.5 s, a basic optimal
off-line schedule 12. . . (obtained by using the H2 optimization), I1 = ∅, I2 = ∅,
P0 = {1} and P1 = {0}.

Based on these parameters, the controllers that are used in both cases are identical
(both derived at the sampling period of 1 s).

The experimentation scenario is the following: Initially, the two DC motors are
stopped (i.e., their angular velocity is zero). The higher priority tasks use 60 % of
the CPU. Assume that at the instant t = 3 s, the set point of the first motor is set
to 40 rd/s, and, next, at the instant t = 12 s, the set point of the second motor is set
to −30 rd/s. Assume further that at the instant t = 23 s, the set points of the two
motors are respectively changed to 30 rd/s and −50 rd/s. Next, assume that at the
instant t = 30 s, a set of sporadic tasks, using more than 40 % of the CPU, begin
their execution. The priority of these tasks is lower than the priority of the motors
control tasks but higher than the priority of the feedback scheduler, and at the instant
t = 35 s, the set point of the second motor is set to −30 rd/s. Finally, at the instant
t = 43 s, the set point of the first motor is set to 50 rd/s.

The experimental results (i.e., the measured angular velocities of DC motors 1
and 2 using the RMand the RPP scheduling algorithms) are depicted in Fig. 8.8.
They show that a significant improvement in the control performance is achieved
by the RPP scheduling algorithm with respect to the rate monotonic scheduling al-
gorithm. These improvements consist in a considerable reduction of the overshoot
and an improvement of the response time, manifesting themselves after set point
changes. These improvements are due to a more efficient use of the available com-
puting resources by the RPP algorithm. It is worth mentioning that the steady state
behavior using the two algorithms is similar. At the instant t = 23 s, the set points
are applied at the same time. The RPP algorithm chooses to allow the resources
to the control task of the second motor, which experiences the largest deviations,
in order to optimize the global cost. From the instant t = 30 s, the admitted spo-
radic tasks induce a situation of processor overload. The feedback scheduler cannot
be executed. In fact, as previously indicated, the feedback scheduler has the lowest
priority in the system. Consequently, in this situation of overload, motors control
tasks are executed according to the optimal static H2 schedule. For that reason, the
obtained control performance (obtained from instant t = 30 s) is similar to that ob-
tained with the rate monotonic algorithm (i.e., very similar responses are observed).
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Fig. 8.8 Speed responses corresponding to the RPP and RM scheduling algorithms

8.4 Notes and Comments

In this chapter, an approach for control tasks scheduling is proposed. This ap-
proach aims to improve the control performance through a more efficient use of
the available computational resources. First, an optimal integrated control and non-
preemptive off-line scheduling problem is formulated. This problem is based on the
H2 performance criterion (which is closely approximated over a sufficiently large
finite horizon) to statically allocate the computing resources according to the in-
trinsic characteristics of the controlled systems. When using such an approach, the
sampling periods of the control tasks are optimally chosen. The proposed method
is based on the decomposition of the optimal control and off-line scheduling prob-
lem into two independent sub-problems. The first sub-problem aims at finding the
optimal cyclic schedule and is solved by using the branch and bound method. The
second sub-problem takes into account the result of the first sub-problem to deter-
mine the optimal control gains by applying the lifting technique. A plant state-based
feedback scheduling mechanism is then proposed, enabling to enhance the control
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performance with respect to the optimal off-line scheduling algorithm. This algo-
rithm combines a more frequent “reading” of the systems’ inputs with a state feed-
back based resource allocation in order to improve the control performance. The
underlined ideas of the proposed approach opens interesting perspectives. and some
of them have received a lot of attention in the open literature. We classified the
related works and contribution in four categories, as follows:

• Optimal control and monoprocessor scheduling: The problem of the optimal se-
lection of the control tasks periods subject to schedulability constraints was dis-
cussed in Seto et al. [208]. In Rehbinder et al. [199], the optimal off-line schedul-
ing of control tasks in the sense of LQG was addressed in the case when all the
control tasks have the same constant execution time. Its solution was performed
by using an appropriate exhaustive search method. As a consequence the, appli-
cation of this approach is limited to the systems having a limited number of tasks.
Similarly, the problem of the optimal mono processor scheduling of control tasks
in order to optimize an appropriate robustness metric (i.e., the stability radius)
was treated in Palopoli et al. [192, 193]. The problem of the optimal control and
scheduling in the sense of LQG was introduced and discussed in [155]. The pro-
posed method allows pruning the search tree in order to reduce the combinatoric
explosion.

• Scheduling of control tasks in environments with variable computing workload: It
is well known that the worst-case analysis techniques proposed by Sha et al. [211]
may be used in order to guarantee the deadlines of the tasks with variable but
bounded execution times. However, when the average execution time is smaller
than the worst-case execution time (WCET), these techniques lead, in general,
to an oversized design. Recently, in order to handle variations in tasks execution
times and system overload more efficiently, new approaches have been proposed.
Among them, we may cite the feedback scheduling algorithms discussed in Lu
et al. [160], Cervin et al. [55], Robert et al. [203], Xia and Sun [255] as well as
the elastic task model given in Buttazzo et al. [49].

In the elastic task model proposed by Buttazzo et al. [49], a periodic task set
containing N tasks may be seen as a sequence of N linear springs. In this model,
the utilization factor of a task is analogous to the spring’s length. The tasks may
change their utilization rate in order to handle overload conditions, which may
occur, for example, if a new task is admitted to the computing system. In order
to ensure the schedulability of the task set, the tasks are compressed or decom-
pressed. For instance, in Liu et al. [158], the elastic task model was applied to
the scheduling of control tasks with variable execution times. The use of this
method allows the application of the approach of Seto et al. [208] in order to
find the optimal tasks periods based on tasks average execution times (instead
of their worst-case execution times), leading to an improvement of the control
performance. Next, Buttazzo et al. [47] generalized this approach to take into ac-
count the degradations that may occur to the control system if its control task
designed to work at a given rate runs at another one. The analytical expressions
of the performance degradations were explicitly given. Furthermore, a compen-
sation method was proposed. This method allows to trade-off the performance
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degradations and the required memory space (needed to store the parameters of
the pre-computed control laws to be used by the compensation algorithm).

The work of Bini and Cervin [34] tackled the control/scheduling co-design
problem of the optimal period assignment for multi-loop control systems. The
key improvement consists in the derivation of closed-form formulae for opti-
mal sampling periods based on approximate control delay enabling delay-aware
period assignment under fixed-priority scheduling. In Samii et al. [205], a con-
trol/scheduling co-design method for distributed control systems integrating con-
troller design is proposed. Both static and priority-based scheduling of the tasks
and messages optimizing the overall control performance are obtained. Next, in
Samii et al. [206], the control-performance optimization for embedded multi-
mode control systems is addressed. The complexity reduction problem is solved
by an appropriate selection of the system’s modes to be implemented and an ap-
propriate synthesis approach producing schedules and controllers for an efficient
deployment of embedded multi-mode control systems is proposed.

Inside the class of on-line FBS methods there are two main trends. The first
one mainly concerns the methods relaying on the instantaneous plant state infor-
mation and metric in order to adapt the sampling period. In this class, one can find
the works of Martì et al. [169] and Ben Gaid et al. [32], where quadratic approxi-
mation of the relation between task periods and control costs allowed to explicitly
formulate the optimal state-based sampling period problem as a convex optimiza-
tion problem. The second class includes the methods calculating the future sam-
pling periods based on finite or infinite horizon metric. In this sense, one can cite
the results proposed in Henriksson and Cervin [114], Castane et al. [52], Cervin
et al. [57]. This type of approach was also adopted by Ben Gaid et al. [28, 29]
where the sampling period is calculated as a function of the states of the con-
trolled plants, a given static scheduling and a quadratic metric over an periodic
infinite horizon.

• Adaptive sampling: As pointed out by [125], the methods of Dorf et al. [77] and
[176] are closely related. In this context, Hsia proposed a generic approach al-
lowing to derive adaptive sampling laws [126].

More recently, an important direction of research on the DCES performance
enhancement through adaptive sampling is offered by the use of the so-called
Event Driven Controllers (EDC). The aim of such a controller is to reduce the
calculation and the communication resource utilization in order to provide in pri-
ority those tasks which need more.

As stated in Årzèn [11], event-driven control (EDC) appears to be closer
in nature to the way a human behaves as a controller. The EDC controller
are triggered by some external events or they are self-triggered. The works of
Heemels et al. [110], Åström and Bernhardsson [15], Tabuada and Wang [226],
Suh et al. [223], Heemels et al. [111], Henningsson et al. [113], Lunze [163],
Wang et al. [246], Marchand et al. [165], and many others fall in the event-
triggered class whereas the works of Velasco et al. [242], Anta and Tabuada
[6–9], Wang and Lemmon [247–250],Mazo and Tabbuada [170, 172], Araujo
[10] represent some of the contribution in the class of self triggered con-
troller.
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In a general distributed control architecture related to DCES, the reduction of
sampling frequency is not always sufficient to enhance system performances. It
is also needed to synchronize the decisions between subsystems sharing a given
calculation or communication resources. The recent works of Tabuada [225],
Seyboth [210], Donkers and Heemels [75], Mazo and Cao [171], Wang and Lem-
mon [251], de Persis [70] go in this direction with the objective to coordinate the
subsystems’ local decision.



Part III
Insight on Stability and Optimization

of Distributed Control and Embedded
Systems



Chapter 9
Insight in Delay System Modeling of DCESs

In the Part II of this document, the object of our study is the DCES analysis and
design with a special emphasis on the scheduling of control signals and their real
time update depending on the system state. This simply means that the systems
resources are allocated with respect to the system’s performance enhancement and
robustness. Such a state dependent scheduling may be classified in the set of event
driven scheduling algorithms which have attracted recently the attention of many
researchers in control domain.

Another characteristic of the class of applications treated there, which is more
related to the technology of communication, concerns the communication and cal-
culation model. The network was supposed to posses real-time characteristics and
the transfer time of messages packets from a node processor to another node pro-
cessor of the Hardware/Software application architecture was considered as being
negligible. The calculation as well as the communication models were supposed
to be synchronous. Thus, such an assumption simply means that the delay induced
model is uniquely given by the static scheduling hyperperiod. Meanwhile, for the
class of this type of applications, in our opinion, it is impossible to neglect the delay
induced by scheduling of messages on the network as well as of control and other
tasks (actuation, sampling, . . .) running on the node processors.

The object of our study in Chap. 10 will be the influence of the induced delay on
the stability and on the performance of some special class of DCESs corresponding
to those studied and discussed in Chap. 7. The stability analysis will allow us defin-
ing appropriate stability domain for task period variation and for DCES-induced
delay. Such a study, done generally off-line, will help us to better understand their
influence on the system’s stability and performance as well as to propose new con-
trol switching algorithms in order to handle network or processor over-load state and
control messages packets dropping. As it will be seen in the Chaps. 12 and 13, the
knowledge of the induced delay influence will also allow slowing down the system’s
performance deterioration by switching from a given control law to the zero-control
one.

In our opinion, it is important to operate this analysis for the case where the
induced delay is inferior to a sampling period as well when it is composed by a se-
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quence of sampling period. The objective is double. First, it concerns the choice of
sampling periods. We will see that we can increase it without degrading the system’s
performances. This means that, for the same level of service or performances, we
use less communication and calculation resources. During this analysis, we observe
that the generally accepted intuition consisting in the fact that more communication
and calculation resources allow to better control a given system is not always ver-
ified. Second, it is helpful for proposing new control and/or recovery strategies in
the case of messages dropouts and control task preemption. Based on this analysis,
in Chap. 11, we also propose scheduling algorithms able to handle resources and/or
performance optimization of DCESs.

Our main objective is to be as realistic as possible with respect to the represen-
tation of communication and calculation model in the presence of induced delays.
We will see that this representation is sufficiently informative to address stability
analysis as well as the performance optimization of DCESs.

In the sequel, we briefly introduce the existing delay models of DCESs, the cor-
responding technical background, different related problems, as well as appropriate
methodologies and approaches adopted in handling them. We absolutely do not have
the pretentiousness to cover the whole field of DCESs or to provide all the solutions
proposed so far in the literature. Meanwhile, in Sect. 9.6, we give a very brief pre-
sentation of some of them which seems to be in close relation or complementary the
ones proposed in the book.

9.1 Preliminaries

The objective of this section is to scan some communication and calculation model
of DCESs in order to derive their related induced delay models. As in the previous
chapters, the formalism adopted is the state-space representation and the control law
structure is the standard state feedback. So, if we ignore the distributed aspects of
DCESs, its open-loop LTI continuous model can be written in the following simple
form:

ẋ(t)=Ax(t)+Bu(t), (9.1)

where x(t) and u(t) represent the system state and control input, respectively, and
A, B are the corresponding state and the input matrices. An equivalent view of
the continuous-time state space model (9.1) is that of an infinite-resource DCES
application.1

For the clarity and consistency of the presentation, we suppose that the open-loop
system is not stable, that is its state matrix A is not Hurwitz. By focusing on the case
of open-loop unstable systems, it allows operating a more detailed analysis of the
communication and calculation model. Furthermore, it also helps to better under-
standing how the resource allocation influences the system’s stability and system
performances.

1In other words, calculation speed and communication bandwidth are assumed to be infinite.
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Practically, the state x(t) is sampled by the sensors at discrete time instants com-
monly called sampling instants. We denote these sampling instants by sk, k ∈ N.

The corresponding variable sampling period is denoted by T (k)
Δ= sk+1 − sk . Once

a sampled-data state, x(sk), is obtained from the controller node, it will be used to
calculate the control signal and to send it to the actuator in order to generate a new
control input for the system (9.1) at time ak (k ∈ N), called the actuation instants.
In the case of a general architecture of DCESs, this process typically includes state
sampling by the sensor node, its transition from the sensor node to the controller
node, calculation of a new control value by the controller, its transition from the
controller node to the actuator node, and, finally, the corresponding updating of the
control input of the controlled plant. Thus, in general, ak ≥ sk and we call the in-

put/output time-latency ak−sk the DCES-induced delay, denoted by τ(k)
Δ= ak−sk .

It is important to point out the fact that, in a normal situation, the induced delay may
be produced from the data packets scheduling on the network as well as from the
scheduling of different calculation tasks on the controller, sensor and actuator node
processors.

At the actuator node, we generally use a zero-order-hold (ZOH) device in or-
der to reconstruct the control signal between two actuation instants, leading to the
following continuous-time control input:

u(t)= u(sk), ak ≤ t < ak+1, (9.2)

where u(sk) is the control input derived from the system’s state, x(sk), and updated
by the actuator at instant ak .

It is clear that the input/output latency depends on the type of communication
network, scheduling algorithm, as well as on the communication and calculation
model assigned to each node processor. For more details on some special cases, we
may refer to the analysis operated in Lian et al. [153] and in Ben Gaid et al. [31]. We
can not neglect the influence of network and processor load which generally induce
jitter or variation in the value of induced delay.

Combining the expression of the control signal (9.2) with the continuous
model (9.1), we obtain the sampled-data model of a linear time invariant (LTI)
DCES: {

ẋ(t)=Ax(t)+Bu(t),
u(t)=Kx(sk), ∀t ∈ [ak, ak+1), k ∈N. (9.3)

This general sampled-data LTI model of DCES has some interesting properties that
will be particularly exploited in order to handle the related analysis and design prob-
lems. In this sense, we recall the following result:

Theorem 9.1 [90] For a given sampled-data LTI system (9.3) with bounded sam-
pling intervals and a given initial state x(0), the following conditions are equiva-
lent:

1. limt→∞ x(t)= 0,
2. limk→∞ x(sk)= 0.
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To complete the result above, some further analysis proposed by Hetel et al. [121]
pointed out a stronger connection between these classes of systems (continuous-time
and its corresponding discrete-time ones) in terms of stability. In other words, the
above theorem simplifies the study of such sampled-data systems by suggesting to
use a discrete-time approach in studying the stability of DCESs. For more details on
the subject, we refer the reader to the recent PhD thesis of Fiter [84].

This general model encompassing the influence of all the components compos-
ing DCESs may be simplified with respect to real applications. If the communication
and calculation delay are negligible (infinite communication and calculation capac-
ity), we may neglect the input/output latency or the induced delay. In this case,
we use tk to denote the sampling instants (instead of sk), and so the corresponding
sampled-data control is given by:

u(t)= u(tk), tk ≤ t < tk+1. (9.4)

Such a case corresponds to sk = ak , i.e., τ(k) = 0. The corresponding sampling

period is hence denoted by T (k)
Δ= tk+1− tk . In particular, when the sampling period

is constant T , (9.4) can be further simplified as:

u(t)= u(kT ), kT ≤ t < (k + 1)T . (9.5)

The expressions (9.2), (9.4), and (9.5) represent three types of sampled-data control
temporal model which allow concluding on the DCES stability.

When we adopt the commonly-used state feedback control, the expressions of
control signals given by (9.2), (9.4), and (9.5) can be written as:

u(t)=Kx(sk), ak ≤ t < ak+1, k ∈N, (9.6)

u(t)=Kx(tk), tk ≤ t < tk+1, k ∈N, (9.7)

u(t)=Kx(kT ), kT ≤ t < (k + 1)T , k ∈N, (9.8)

where K is the feedback gain matrix.
The DCES given by the combination of plan model (9.1) and the sample con-

troller model (9.6) has the following discrete-time expression:

z(k + 1)=Φ(τ(k), T (k))z(k), (9.9)

where z(k) = (
x(sk)

u(ak−1)

)
and the two-variable transition matrix function Φ(α,β) is

given by

Φ(α,β)=
(
eAβ + ∫ β

α
eAθ dθ BK

∫ α
0 e

Aθ dθB

K 0

)
. (9.10)

Similarly, from (9.1) and (9.7), we obtain the following discrete-time model of the
corresponding DCES:

x(tk+1)=Φ
(
T (k)

)
x(tk) (9.11)
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where the one-variable transition matrix Φ(β) is given by:

Φ(β)= eAβ +
∫ β

0
eAθ dθ BK. (9.12)

Finally, the third considered model of a DCES derived by (9.1) and (9.8) has the
following discrete-time expression:

x
(
(k + 1)T

)=Φ(T )x(kT ). (9.13)

For the sake of simplicity and with a little abuse of notation, we define by Φ the
transition matrix function of a DCES. When it has two arguments, the induced delay
and the sampling period, its definition refers to (9.10). Finally, in the case when it
has only one argument corresponding to the sampling period, its definition refers
to (9.12).

9.2 Hyper-Sampling Period and Induced Mathematical Model

As presented in the forgoing section, the induced delays depend mainly on the
scheduling policy of the network, that of calculation tasks on each node proces-
sors, as well as on their respective resources capacities. If we look more closely to
the calculation model of the node processor, we may easily see that the induced de-
lay depends on the priorities assigned to each task running on the processor as well
as on the scheduling policy. In Chap. 8, we derived a scheduling policy for a given
set of tasks called RPP which falls in the class of synchronous scheduling policy.2

This scheduling policy defines the instants of the task executions, their duration,
as well as the number of its instances in a given hyper-period. The task execution
model may be seen as a number of execution or task instances in each hyper-period
which gives, in some sense, a macroscopic view. On the other hand, the number of
executions of a task in a hyper-period reflects the relative importance of this task.
Another macroscopic view of the task execution model may be given by the finite
and ordered set of sampling periods. So, we may construct a relevant DCES model
based on the model of calculation and communication implemented on a DCES, that
can be modeled as delay systems. It is worth mentioning that, for the stability analy-
sis as well as for the performance optimization of DCESs, it is extremely important
to have a precise variation bounds time characteristics of the delay.

In order to illustrate our purposes, we will treat a simple and reduced model of
a DCES given in Fig. 9.1 where the Hardware/Software architecture is composed
of p tasks and q processors. Suppose that the tasks υ1, υ2, and υ3 are executed on
processor 1. As stated before, some of control tasks may be executed multiple times
during each hyper-period.

In this sense, an example of tasks execution by a hyper-sampling period is given
in Fig. 9.2. We may easily observe that task υ1 is executed twice within each hyper-
period. It is supposed that a control task includes state signal sampling, control

2Synchronous scheduling policy gives a fixed order of task executions.
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Fig. 9.1 A general
Hardware/Software
architecture of a DCES
composed of q processors
and p real time tasks
executed on these processors

Fig. 9.2 A hyper-period of
three tasks executed by
processor 1

signal computation, and control input actuation. As shown in Fig. 9.3, the task υ1,
has two sub-sampling periods, T1 and T2 for each hyper-period and its timing is
depicted in Fig. 9.4, where sk and ak (k are non negative integers) denote sampling
instants and actuation instants, respectively.

As stated before, communications between tasks induce also delays which are
also dependent on the scheduling policy and messages priority handling. In more
general terms, communication delays depend on the communication model between
the DCES nodes. Without any loss of generality, we denote the induced delay by τ1
(τ2) if it corresponds to the sub-sampling period T1 (T2) as given in Fig. 9.4. It is
assumed that τ1, τ2 <min{T1, T2}.

Fig. 9.3 Two samplings of control task 1 executed by processor 1 each hyper-period

Fig. 9.4 Timing diagram of control task 1 representing sampling, calculation, and actuation
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Fig. 9.5 A hyper-sampling period of a controlled task consisting of n sub-sampling periods

Fig. 9.6 Sampling instants under the hyper-sampling mode

If we refer to the plant controlled by task υ1, its state feedback model includes
necessarily the plant model, task calculation model and task communication model
and is given by (9.3).

Define z(k)= [x′(sk) u′(ak−1)]′. Then it follows that:

z(k + 2)= Ψ (τ1, τ2, T1, T2)z(k) (9.14)

where

Ψ (τ1, τ2, T1, T2)=
{
Φ(τ1, T1)Φ(τ2, T2), k is odd,

Φ(τ2, T2)Φ(τ1, T1), k is even,

where Φ(τi, Ti), i ∈ 1,2 are defined in (9.10).
From above, it is easy to generalize the plant state feedback model in the case of

a hyper-sampling period as given in Fig. 9.5.
Without any loss of generality, we suppose that a hyper-sampling period is com-

posed of n ∈ N+ sub-sampling periods Ti ∈ R+, i = 1, . . . , n. A general hyper-
sampling period is depicted in Fig. 9.5. In particular, when n = 1, the hyper-
sampling mode reduces to the well-known standard single-sampling mode. Thus,
we may treat the standard single-sampling mode as a special case of the hyper-
sampling mode.

Remark 9.1 A larger n allows a more flexible design and hence in general the corre-
sponding hyper-sampling period leads to better stability and dynamic performance.
Meanwhile, the analysis and optimization problems will become more involved as
n increases.

Under the hyper-sampling mode, the sampling instants will take place as shown
in Fig. 9.6. It follows that s1 − s0 = T1 (s0 = 0), s2 − s1 = T2, . . . , sn − sn−1 = Tn,
sn+1 − sn = T1, sn+2 − sn+1 = T2, . . . . Once the hyper-sampling period is set (i.e.,
the n sub-samplings T1, . . . , Tk are determined), the sampling instants will occur
periodically.

It is easy to see that a general rule of the sampling periods under the hyper-
sampling mode can be described as follows:
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Fig. 9.7 The artificial time
delay τ(t)

T (k)= sk − sk−1 =
{
Tk mod n, k mod n �= 0, k ∈N+,
Tn, k mod n= 0, k ∈N+.

(9.15)

Once a hyper-sampling sequence is designed (via an appropriate setting of the
sub-sampling periods T1, . . . , Tn), the sampling instants can be triggered periodi-
cally by means of (9.15).

Remark 9.2 In order to avoid confusion or misleading, we remember the use of
sk to denote the sampling instants in order to take into account the DCES-induced
delays and the use of tk to denote the sampling instants when the induced delays are
neglected.

9.3 Macroscopic Time-Delay Model of DCESs

As we have already mentioned in the previous paragraphs, different delay model-
ing levels may be applied to DCESs in relation to its Hardware/Software architec-
ture. In the precedent section, a delay modeling is applied in the case of static peri-
odic scheduling. The input/output latency may be considered as an input time delay
which represents a macroscopic time-delay model. In this case, the sampled-data
state feedback model can be considered as a system with an input delay allowing to
study a DCES in some appropriate time-delay system setting. For the simple case of
control task single-sampling period, the sampled data controlled task model is given
by associating the plant model (9.1) with the sampled-data control model (9.8). Such
a simple DCES can by transformed into the following time-delay system

ẋ(t)=Ax(t)+BKx(t − τ(t)), kT ≤ t < (k + 1)T , (9.16)

where τ(t)= t − kT for kT ≤ t < (k + 1)T is the (artificial) input delay, with the
sawtooth structure as shown in Fig. 9.7.

Thus, instead of the original model, we may study (9.16) by adopting the existing
methods in the area of time-delay systems. Such an approach is called the input-
delay approach which has some advantages when dealing with model uncertainties
and/or external disturbance. However, to the best the authors knowledge, the input-
delay approach appears to be more conservative than the discrete-time approach.

In Sect. 9.2, we show that the induced delay model of a DCES can be represented
by the augmented model (9.9). In Chap. 10, the stability conditions will be studied
based on some appropriate augmented model which includes the effect of induced
delays.
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9.4 Control Input Missings

As introduced previously, the sampled-data control input (9.7) is generated by the
following steps: (1) at a sampling instant tk , the state x(tk) is sampled by the sensor,
(2) a data packet containing the information of x(tk) is sent to the controller, (3) the
controller computes a new control value Kx(tk), (4) a data packet containing the
information of control signal Kx(tk) is sent to the actuator, and (5) the actuator
updates the control input to the controlled plant with the value of Kx(tk).

However, any failure among the steps mentioned above will make the control
law (9.7) invalid. Such a case is known as the control input missing, as defined
in Zhang and Yu [265]. The factors causing a control input missing include data-
dropout, failures of sensor and/or controller and/or actuator nodes, scheduling pre-
emption, and communication network congestion.

Since in the presence of a control input missing, the control input (9.7) can not
be implemented, we have to define a control-input-missing compensator such that
the DCES has an effective control signal when such a control input missing takes
place. In the literature, two types of compensation strategies are mainly used: the
hold-control and the zero-control ones. In Chap. 13, we will propose a new control-
input-missing compensation strategy, a switched hold-zero compensation strategy.
Such a new compensation strategy is a combination of the hold-control and the
zero-control strategies and, in our opinion, it works better than both two strategies
working independently. A detailed analysis in this sense will be given in Chap. 13.

9.5 Some Specific Problems of DCESs and Related Approaches

In this part of the book, four problems will be treated and discussed in detail in the
corresponding chapters. We will give very brief presentation of the subjects treated
and the study objectives.

• Asymptotic stability of DCESs under the hyper-sampling mode: To the best of
the authors’ knowledge, the stability of a DCES under the hyper-sampling mode
was first studied in Li et al. [151]. In Chap. 10, we will introduce the related
results. More precisely, we will give the ranges of the sub-sampling periods or
the network-induced delays guaranteeing the asymptotic stability of the corre-
sponding system. The approach we are proposing makes use of an appropriate
parameter-sweeping method.

• Optimal design of the hyper-sampling period: To the best of the authors’ knowl-
edge, the analytical relation between the system’s dynamic performance and the
hyper-sampling period has not been reported in the open literature. If such a rela-
tion is known, we may use it to design a hyper-sampling period such that the opti-
mal performance index can be achieved. This issue will be addressed in Chap. 11.

• Improving system stability and dynamic properties by using a switched sampled-
data control: For a DCES under the standard single-sampling mode, we consider
how to improve the system dynamics and/or performances. Through studying the
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intersample dynamics of a DCES by taking into account the interpretation of the
corresponding system as a time-delay system, we propose an easily-implemented
switched sampled-data control approach. We will consider the related issues in
Chap. 12.

• Compensation strategy in the case of control input missings: A new compensation
strategy will be proposed and studied in Chap. 13. Our objective is to obtain a
greater admissible control input missing rate (ACIMR) index for the DCES in
order to enhance its stability robustness with respect to control input missings.

In the sequel, the mathematical models and tools used in Part III of the book are
briefly discussed:

• Discrete-time approach: The DCESs considered in Chaps. 10 and 13 are non-
nominal systems. More precisely, the systems considered in Chap. 10 are sub-
ject to time-varying hyper-sampling periods or DCES-induced delays, and the
systems in Chap. 13 are subject to time-varying sampling periods and uncertain
control input missings. We adopt the discrete-time approach and the discretiza-
tion technique in deriving the Lyapunov-based stability conditions. We will see
in Chaps. 10 and 13 that the discrete-time approach may lead to less conser-
vative conditions than the ones derived by using some specific approaches in
continuous-time framework.

• Switched control approach: When a DCES is sampled under the hyper-sampling
mode or when it is subject to control input missings, we can treat the DCES as
a switched control system consisting in several sub-systems. It is known that a
switched system is asymptotically stable if all its sub-systems have a common
Lyapunov function, which decreases with respect to time. However, when the
considered system is nominal, we study the DCES by adopting the discrete-time
model which involves no conservatism. For instance, in Chap. 10, we directly
address the nominal case through analyzing the transition matrix of the corre-
sponding DCES; in Chaps. 12 and 13, we obtain the analytic function of the
performance index with respect to the hyper-sampling sequence or the switching
parameter.

• Analytical and numerical results: If the considered DCES is nominal (i.e., the
system’s matrices, the DCES-induced delays, and the hyper-sampling sequence
are all constant, and no control inputs missings happen), we can derive some
appropriate necessary and sufficient stability conditions (see, for instance, the
results proposed in Sect. 10.3.1 of Chap. 10). In addition, for a nominal DCES, the
analytic relation between the performance index and the system parameters are
derived in Chaps. 12 and 13. If the DCES under consideration is not nominal (e.g.,
the case with time-varying sampling periods or induced delays, and the case with
control input missings), only numerical results can be derived. For a non-nominal
DCES, we will study the stability by using the Lyapunov-based method in the
time-domain framework. The resulting conditions are generally sufficient though
not necessary and are expressed in terms of linear matrix inequalities (LMIs).
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9.6 Notes and Comments

There exists an abundant literature devoted to the stability analysis as well as on the
performance optimization of sample-data systems especially in the case of constant
sampling periods. However, as explained in the introduction of this chapter, a DCES
may be subject to sampling time variation due to limited computation and com-
munication resources. This fact is underlined also by Zhang and Branicky [264],
by Bushnell et al. [245], and by Mounier [179]. The sampling time variation has a
destabilizing effect if it is not properly taken into account as clearly discussed by
Wittenmark [252], Zhang and Branicky [264], and Li et al. [151]. Next, the char-
acterization of all the delay values allowing the closed-loop stability of some SISO
networked control systems as well as a further finer analysis of the existing links
among the controller gain, the induced delay and the sampling period was proposed
by [173]. The corresponding results have been derived by using an eigenvalue-based
approach (see, also [58, 174] for further details). As it will be detailed in Chap. 10,
the sampling time fluctuation increases the difficulty in analyzing the corresponding
systems and the standard eigenvalue analysis is no more valid to conclude on the
stability. To overcome these difficulties, the Lyapunov-based approaches have to be
taken into account. The rationale behind is to consider the system dynamics induced
by a piecewise continuous or an irregular sawtooth type delay as given in Richard
et al. [202] and in Mounier [180]. Among them, one may cite the ones inspired
by two distinct interpretations of the state notion specific to time-delays systems:
Lyapunov–Razumikhin and Lyapunov–Krasovskii methods [104, 186]. Alternative
approaches treating this problem are those based on small gain approaches. This
class of methods consider the system delay variation as a perturbation with respect
to some continuous control law u(t) = Kx(sk) and rewrite the continuous system
as an appropriate interconnected one. For more detail we can refer to Mirkin [175]
and to Fujioka [90].

Next, another class of methods devoted to the stability of sampled-data systems
under variable delays is based on the so-called convex-embedding approaches, see,
for instance, the contributions of Hetel et al. [120], Fujioka [89], Cloosterman [64],
Gielen et al. [95]. In the case of a sampled-data LTI system with time-varying sam-
pling intervals or delays, the stability conditions may be given by an infinite number
of parameter dependent LMI conditions. They depend quadratically on the transi-
tion matrix which is continuous on the variable induced delay. The objective of
this class of methods is the complexity reduction by transforming the infinite num-
ber of LMIs to a finite ones through an appropriate computation of some polytopic
transition matrix over-approximation. Several over-approximation methods can be
found in the literature such as those based on gridding and norm bounding given
in Donkers et al. [76], Fujioka [89], Skaf and Boyd [214]. Other approximation
methods are based on Taylor series expansion given in Hetel et al. [120, 121], on
real Jordan form decomposition given in Olaru et al. [189], Goebel et al. [96],
Van de Wouw et al. [240], Cloosterman [64], as well as those based on the
Cayley–Hamilton theorem given in Gielen et al. [95], Goebel [96]. In Heemels
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et al. [112], a short comparison of these different approaches with numerical ex-
amples can be found. The simple intuitive approach of this class of methods is
faced with complexity problems which may be, in some cases, numerically pro-
hibitive.



Chapter 10
Stability of DCESs Under the Hyper-Sampling
Mode

10.1 Introduction

The main objective of this chapter is to understand the way the periodic schedul-
ing or the hyper-sampling periods and DCES-induced delays, interpreted as param-
eters of the system, affect the stability of the controlled plant. Several scenarios
are considered and discussed, leading to three stability problems detailed in the
Sect. 10.2. First, a delay-sweeping method is given in the case of constant parame-
ters (hyper-sampling periods and DCES-induced delays). In this case, as expected,
the necessary and sufficient stability conditions are given by the Schur stability of
the transition matrix. Next, a special attention is paid to the cases when at least one
of the uncertain parameters is assumed to be time-varying. In such a situation, we
will first derive an appropriate sufficient stability condition expressed in terms of the
existence of an appropriate Lyapunov matrix. Next, we will focus on two particular
problems: the stability of a system including a constant hyper-sampling period, but
time-varying uncertain DCES-induced delays and the stability of a system free of
DCES-induced delays but including two time-varying uncertain hyper-sampling pe-
riods. In the case of time-varying uncertain DCES-induced delays, sufficient condi-
tions expressed in terms of the feasibility of some appropriate linear matrix inequal-
ities (LMIs) are presented. We will first check if there exists a Lyapunov matrix for
some chosen parameter regions by an appropriate verification of the feasibility of
the corresponding LMI conditions. If such a Lyapunov matrix exists, we can further
compute and refine the whole stability region for this Lyapunov matrix by using an
appropriate parameter-sweeping method. Finally, the last problem concerns the case
without DCES-induced delay but subject to time-varying uncertain hyper-sampling
periods. In this sense, in order to simplify the problem, a lemma is first derived al-
lowing to connect the single-sampling and hyper-sampling cases. More precisely,
the underlying idea is to appropriately generalize the single-sampling case in or-
der to treat the general case. Finally, similar to the previous case, an appropriate
parameter-sweeping method is employed to detect the whole stability region.

It is worth mentioning that the stability assessment of a DCES subject to periodic
scheduling or hyper-sampling periods is generally much more complicated than the
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case of DCES including a single-sampling period (classical equidistant case). The
rationale behind is that a hyper-sampling period with two sub-sampling periods T1
and T2 induces dynamics complexity due to the switching between the correspond-
ing subsystem models: the first subsystem corresponding to the sub-sampling period
T1 and the second one to the sub-sampling period T2, respectively. An interesting
phenomenon observed concerns the relation between the stability of the individual
subsystems and the stability of the overall system. This is not necessarily an equiv-
alence relation. More precisely, the stability of each subsystem does not necessarily
imply the stability of the overall system and vice-versa. Therefore, our approach
mainly concerns the study of the overall system instead of finding a common stabil-
ity condition for all subsystems.

Different examples are given to illustrate this point of view as well as the derived
results. As it will be shown, it is advantageous to treat the overall system instead of
each subsystem separately. The derived stability regions include sub-regions where
some subsystems are unstable. It is also shown that the proposed stability regions are
very close to the real ones. In addition, to further illustrate our approach, we address
an example involving two inverted pendulums where each of them has two sub-
sampling periods. A common DCES-induced delay bound guaranteeing the asymp-
totic stability for each inverted pendulum is explicitly derived.

10.2 Problem Formulation

As stated in the introduction, we address the stability of a DCES under periodic
scheduling or hyper-sampling mode. We consider the generic DCES model (9.3)
with the associated discrete-time model given by (9.14). Assume that the hyper-
sampling period of this system includes two sub-sampling periods T1 and T2. Al-
though this case appears quite simplistic, it depicts a lot of interesting properties that
need a better understanding in order to further exploit them in various applications.
It is worth mentioning that the underlying ideas proposed here for handling such a
simple case may be appropriately extended to a more general situation (for instance,
the case of a hyper-sampling period including more than two sub-sampling periods)
without any difficulty.

Throughout this chapter, for numerical illustration, we choose the following ma-
trices for the (second-order) controlled plant given by (9.1):

A=
(

0 1
0 −0.1

)
, B =

(
0

0.1

)
, K = (−3.75 −11.5). (10.1)

According to the properties (time-invariant or time-variant) of the parameters
(hyper-sampling periods or DCES-induced delays), we consider the following three
problems:

Problem 10.1 (Delay-parameter space: stability intervals) Assume that the sub-
sampling periods T1 and T2 are known constant and the DCES-induced delay τ
(τ1 = τ2 = τ ) is constant, but uncertain. Find the stability interval Sτ for τ .
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Problem 10.2 (Delay-parameter space: uncertain and time-varying delays) As-
sume that the sub-sampling periods T1 and T2 are known constant while the DCES-
induced delays τ1 and τ2 are uncertain and time-varying. Find the stability region
Sτ1,τ2 in the τ1–τ2 parameter plane.

Problem 10.3 (Hyper-sampling parameter space: time-varying hyper-sampling pe-
riods) Assume that the sub-sampling periods T1 and T2 are uncertain and time-
varying and the system is free of DCES-induced delays. Find the stability region
ST1,T2 in the T1–T2 parameter plane.

Remark 10.1 (Insights in computing stability regions in the delay-parameter space)
Inspired by the existing works in computing the stability regions of continuous time-
delay systems in the delay-parameter space, the first problem corresponds to the so-
called τ -decomposition method introduced by Lee and Hsu [147], where the delay
is interpreted as a free parameter and the other parameters of the system are assumed
to be fixed and known (see also [174] for further details on the existing approaches).
In the case of a system involving two delays, an extension of the τ -decomposition
method can be found in [105], where the analysis was performed by using a geo-
metric argument combined with some appropriate frequency-sweeping tests. In the
case of DCESs, the frequency-sweeping method was appropriately adapted to the
considered class (delay-sweeping method). A further refinement will be proposed
in order to take into account the fact that the delays are assumed to be time-varying.
Finally, the third problem is similar to the second one, but with the difference that
the parameter-space to be considered is defined by the hyper-sampling periods.

As discussed in the previous section, the system (9.14) can be viewed as a
switched system consisting in two subsystems, corresponding to the sampled-data
control system with sampling periods T1 and T2, respectively.

Example 10.1 The stability region depends on the hyper-sampling periods and the
DCES-induced delays. In the following, we give some indications and results on
this dependence:

(a) Problem 10.1: Let T1 = 0.8 and T2 = 1.8. Subsystem 1 is stable if τ ∈
[0,0.763); subsystem 2 is stable if τ ∈ (0.045,0.769) (these two results can
be obtained by the method for single-sampling analysis, see, for instance, Li et
al. [148]); the overall system is stable for τ ∈ [0,0.292). One can see that if
τ ∈ [0,0.045], the subsystem 2 is unstable but the overall system is stable.

(b) Problem 10.2: Let T1 = 0.8 and T2 = 1.8. If τ2 ∈ [0,0.045], then the subsys-
tem 2 is unstable, see Fig. 10.1. However, we can obtain the stability region
shown in Fig. 10.3 for the overall system. The system initial state is chosen
as (1 1)′.

(c) Problem 10.3: Each subsystem is stable if T1, T2 ∈ (0,1.72]. Interestingly, we
find that for some parameters outside the corresponding rectangle where either
T1 or T2 is greater than 1.72, the system is still stable. For example, we make
a simulation for T1 ∈ [1.3,1.4] and T2 ∈ [2.1,2.2], as later shown in Figs. 10.5
and 10.6.
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Fig. 10.1 Simulation of subsystem 2 with the DCES-induced delay τ2 ∈ [0,0.045] (unstable case)

10.3 Insights in Computing Stability Regions

Let us study in more details the above stability problems separately.

10.3.1 Constant Delay Case

Static scheduling of communication messages and calculation tasks for a given
DCES may guarantee constant DCES-induced delays (see, e.g., Controller Area
Network by Lian [152]). In addition, if the DCES-induced delay is not constant,
one can make it constant by adding an appropriate buffer (see, for instance, Luck
and Ray [162]). When the parameters (sampling periods and DCES-induced de-
lays) are time-invariant, an eigenvalue-based method can be applied to obtain non-
conservative stability bounds. For Problem 10.1, we have

z(k + 2)= Ψ (τ, τ, T1, T2)z(k), (10.2)

where

Ψ (τ, τ, T1, T2)=
{
Φ(τ,T1)Φ(τ,T2), k is odd,
Φ(τ,T2)Φ(τ,T1), k is even,

Φ(τ,Ti)=
(
eATi + ∫ Ti

τ
eAθ dθ BK

∫ τ
0 e

Aθ dθ B

K 0

)
, i = 1,2.

We first introduce the following property which will be helpful in computing the
stability region Sτ :
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Property 10.1 For square matrices Q1,Q2, . . . ,Q�, the matrices Q1Q2 · · ·Q�,
Q2 · · ·Q�Q1, . . . ,Q�Q1 · · ·Q�−1 have the same eigenvalues.

Proof It is well known that: σ(Q1Q2) = σ(Q2Q1) (see, e.g., Poznyak [194]),
where σ(·) denotes the spectrum of the argument. Next, σ(Q1Q2Q3) =
σ(Q1(Q2Q3)) = σ((Q1Q2)Q3) = σ(Q2Q3Q1) = σ(Q3Q1Q2). In this manner,
the result for more matrices follows straightforwardly. �

In the sequel, we demonstrate the following theorem which gives the stability
conditions for the Problem 10.1 and helps in finding the stability region Sτ .

Theorem 10.1 System (10.2) is asymptotically stable for the constant DCES-
induced delay satisfying τ ∈ Sτ if and only if Φ(τ,T1)Φ(τ,T2) (or equivalently
Φ(τ,T2)Φ(τ,T1)) is Schur for τ ∈ Sτ .

Proof The necessary and sufficient stability condition for system (10.2) is that the
matrix Ψ (τ, τ, T1, T2) is Schur. Further, Φ(τ,T1)Φ(τ,T2) is Schur for τ ∈ Sτ if
and only if Φ(τ,T2)Φ(τ,T1) is Schur for τ ∈ Sτ because these two terms always
have the same eigenvalues according to the Property 10.1. Thus, the proof is com-
plete. �

Remark 10.2 In order to find the stability interval, we can check the Schurness of
either Φ(τ,T1)Φ(τ,T2) or Φ(τ,T2)Φ(τ,T1) according to Theorem 10.1.

Remark 10.3 Theorem 10.1 can be extended to systems with multiple sub-sampling
periods by using the Property 10.1: n sub-sampling periods lead to n forms of tran-
sition matrices. We only need to check the Schurness of any one of them simplifying
thus the stability analysis.

The method used to find the stability region Sτ is the delay-sweeping one. It
consists in sweeping the values of τ and testing the spectral radius of the matrix
Ψ (τ, τ, T1, T2). The interval with the spectral radius less than 1 (i.e., Ψ (τ, τ, T1, T2)

is a Schur matrix) defines the corresponding stability interval. It is worth to mention
that this sweeping method can cover also the cases with single sampling period.
When the single sampling period T is 0.8, 1.5, and 1.8, the stability interval for
delay τ is [0,0.763), [0,0.761), and (0.045,0.769), respectively.

Consider now an illustrative example for the Problem 10.1.

Example 10.2 Let T1 = 0.8 and T2 = 1.8. By employing the above delay-sweeping
method, we can obtain the relationship between the spectral radius and the delay, as
depicted in Fig. 10.2. It is seen that the system is stable for τ ∈ [0,0.292).

In the sequel, we focus on the systems with time-varying uncertain parameters.
Unlike the case with constant parameters, the eigenvalue-based method is no longer
valid. A DCES with time-variant transition matrix is not necessarily stable, even if
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Fig. 10.2 Spectral radius vs delay for Example 10.2

the transition matrix is Schur at every sampling instant. Counterexamples can be
found in Zhang and Branicky [263] as well as in Cloosterman et al. [65].

10.3.2 Time-Varying Delay Case

As explained in Chap. 9 the DCES-induced delays are caused by many factors which
are directly related to their calculation and communication model, overload condi-
tions as well as to resources allocation optimization strategy. The analysis of the
simple communication and calculation model given in Ben Gaid et al. [31] leads to
the conclusion that the DCES-induced delays are more likely to be uncertain and
time-varying than constant. This fact completely justifies the study of Problem 10.2
and we give in the following the related stability condition.

Theorem 10.2 For given T1 and T2, the system (9.3) is asymptotically sta-
ble for (τ1, τ2) ∈ Sτ1,τ2 , if there exists a positive-definite matrix P , such that
Ω(τ1, τ2, T1, T2,P ) < 0 for (τ1, τ2) ∈ Sτ1,τ2 , where Ω(τ1, τ2, T1, T2,P ) can be
chosen as:

Ω(τ1, τ2, T1, T2,P )
Δ= (
Φ(τ2, T2)Φ(τ1, T1)

)′
PΦ(τ2, T2)Φ(τ1, T1)− P, (10.3)

or

Ω(τ1, τ2, T1, T2,P )
Δ= (
Φ(τ1, T1)Φ(τ2, T2)

)′
PΦ(τ1, T1)Φ(τ2, T2)− P, (10.4)



10.3 Insights in Computing Stability Regions 191

with

Φ(τi, Ti)=
(
eATi + ∫ Ti

τi
eAθ dθ BK

∫ τi
0 e

Aθ dθ B

K 0

)
, i = 1,2.

Proof The result is obtained by constructing an appropriate Lyapunov function can-
didate V (k) : k �→ z′(k)P z(k). The asymptotic stability can be ensured if for any
even k1 and z(0) �= 0

V (k + 2)− V (k) < 0.

If the corresponding sampling periods are T (1)
Δ= s1 − s0 = T1, T (2)

Δ=
s2 − s1 = T2, T (3)

Δ= s3 − s2 = T1, . . . , for an even k, it follows that

V (k + 2)= z′(k)(Φ(τ2, T2)Φ(τ1, T1)
)′
PΦ(τ2, T2)Φ(τ1, T1)z(k).

Thus, under this sampling sequence,

V (k + 2)− V (k)= z′(k)Ω(τ1, τ2, T1, T2,P )z(k), (10.5)

where the corresponding Ω(τ1, τ2, T1, T2,P ) is given by (10.3).

If the corresponding sampling periods are T (1)
Δ= s1 − s0 = T2, T (2)

Δ=
s2 − s1 = T1, T (3)

Δ= s3 − s2 = T2, . . . , for an even k, it follows that

V (k + 2)= z′(k)(Φ(τ1, T1)Φ(τ2, T2)
)′
PΦ(τ1, T1)Φ(τ2, T2)z(k).

Therefore, under this sampling sequence, we have the relation (10.5) where the
corresponding Ω(τ1, τ2, T1, T2,P ) is given by (10.4).

No matter which sampling sequence is adopted, the system is asymptotically
stable if

Ω(τ1, τ2, T1, T2,P ) < 0,

in the light of (10.5). �

Remark 10.4 In the sequel, we will derive the stability condition in terms of
LMIs. The conservatism of the stability conditions derived depends on the cho-
sen form of Ω(τ1, τ2, T1, T2,P ). Thus, unlike Problem 10.1, different forms of
Ω(τ1, τ2, T1, T2,P ) may lead to different stability regions. In the sequel of this
chapter, we choose the expression of Ω(τ1, τ2, T1, T2,P ) given by (10.3).

In general, it is not easy to directly check if there exists a Lyapunov matrix P
for a given region in the τ1–τ2 plane. In the sequel, some computation-oriented
conditions are presented. The basic idea is similar to the one proposed by Li et

1We have multiple lines to derive the stability condition. We may also consider “The asymptotic
stability can be ensured if for any odd k and z(0) �= 0 such that V (k + 2)− V (k) < 0”.
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al. [148], where the robust stability (with respect to time-varying uncertain sampling
period and delay) for single-sampling system is studied.

Theorem 10.3 Define a rectangular region Sτ1,τ2 : τ1 = τ10+Δτ1, τ2 = τ20+Δτ2
(τ10 and τ20 are known constants; Δτ1 and Δτ2 are uncertain scalars whose lower
and upper bounds are available).

Then the system (9.3) is asymptotically stable for (τ1, τ2) ∈ Sτ1,τ2 , if there ex-
ist a positive-definite matrix P and positive scalars εr (r = 1,2,3) satisfying the
following linear matrix inequality

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L11 ∗ ∗ ∗ ∗
PΦ(τ20, T2)Φ(τ10, T1) −P ∗ ∗ ∗

0
(
eAτ10 0

0 0

)′
Φ ′(τ20, T2)P − ε1

β2
1
I ∗ ∗

0
(
eAτ20 0

0 0

)′
P 0 − ε2

β2
2
I ∗

0
(
eAτ20 0

0 0

)′
P 0 0 − ε3

β2
3
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (10.6)

with

L11 =−P + (ε1 + ε3)

(
K ′B ′BK ∗
−B ′BK 0

)

+ ε2Φ
′(τ10, T1)

(
K ′B ′BK ∗
−B ′BK 0

)
Φ(τ10, T1),

∥∥J (Δτ1)
∥∥≤ β1,∥∥J (Δτ2)
∥∥≤ β2,

β3 = β1β2

∥∥∥∥
(−BK B

0 0

)(
eAτ10 0

0 0

)∥∥∥∥,

J (·) Δ=
∫ ·

0
eAθ dθ.

Proof The transition matrix Φ(τ1, T1) can be expressed as:

Φ(τ1, T1)=Φ(τ10, T1)+ΔΦ(τ1),
with

ΔΦ(τ1)=
(
eAτ10 0

0 0

)(
J (Δτ1) 0

0 0

)(−BK B

0 0

)
.

By similarity,

Φ(τ2, T2)=Φ(τ20, T2)+ΔΦ(τ2),
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with

ΔΦ(τ2)=
(
eAτ20 0

0 0

)(
J (Δτ2) 0

0 0

)(−BK B

0 0

)
.

The stability of the system can be ensured if z′(k+2)P z(k+2)−z′(k)P z(k) < 0 for
any k. Noting that z(k+ 2)=Φ(τ2, T2)Φ(τ1, T1)z(k), we have a sufficient stability
condition that (Φ(τ2, T2)Φ(τ1, T1))

′PΦ(τ2, T2)Φ(τ1, T1) − P < 0, which, by the
Schur complement properties (see Boyd et al. [40]), can be equivalently transformed
into the following matrix inequality:

( −P ∗
PΦ(τ2, T2)Φ(τ1, T1) −P

)
< 0,

where

PΦ(τ2, T2)Φ(τ1, T1) = PΦ(τ20, T2)Φ(τ10, T1)+ PΦ(τ20, T2)ΔΦ(τ1)

+ PΔΦ(τ2)Φ(τ10, T1)+ PΔΦ(τ2)ΔΦ(τ1),

PΔΦ(τ2)ΔΦ(τ1) = P
(
eAτ20 0

0 0

)
Δ21

(−BK B

0 0

)
,

Δ21 =
(
J (Δτ2) 0

0 0

)(−BK B

0 0

)(
eAτ10 0

0 0

)(
J (Δτ1) 0

0 0

)
.

The norm of Δ21 is upper bounded by:

‖Δ21‖ ≤
∥∥∥∥
(
J (Δτ2) 0

0 0

)∥∥∥∥
∥∥∥∥
(−BK B

0 0

)(
eAτ10 0

0 0

)∥∥∥∥
∥∥∥∥
(
J (Δτ1) 0

0 0

)∥∥∥∥

≤ β1β2

∥∥∥∥
(−BK B

0 0

)(
eAτ10 0

0 0

)∥∥∥∥.

Note that
( −P ∗
PΦ(τ2, T2)Φ(τ1, T1) −P

)

=
( −P ∗
PΦ(τ20, T2)Φ(τ10, T1) −P

)
+

3∑
q=1

(
DqFqEq +E′qF ′qD′q

)
,

where

D′1 = D′3 =
((−BK B

0 0

)
0
)
,

E1 =
(

0
(
eAτ10 0

0 0

)′
Φ ′(τ20, T2)P

)
,
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F1 =
(
J (Δτ1) 0

0 0

)′
,

D′2 =
((−BK B

0 0

)
Φ(τ10, T1) 0

)
,

E2 =
(

0
(
eAτ20 0

0 0

)′
P

)
,

F2 =
(
J (Δτ2) 0

0 0

)′
,

E3 =
(

0
(
eAτ20 0

0 0

)′
P

)
,

F3 =
(
Δ21 0

0 0

)′
.

For any positive scalars ε1, ε2, and ε3, the following inequalities always hold

D1F1E1 +E′1F ′1D′1 ≤ ε1D1D
′
1 +

β2
1

ε1
E′1E1,

D2F2E2 +E′2F ′2D′2 ≤ ε2D2D
′
2 +

β2
2

ε2
E′2E2,

D3F3E3 +E′3F ′3D′3 ≤ ε3D3D
′
3 +

β2
3

ε3
E′3E3.

The condition (10.6) is thus obtained by using an appropriate Schur complement
argument. �

By the above theorem, we can check if there exists a Lyapunov matrix for some
parameter region Sτ1,τ2 : τ1 = τ10 + Δτ1, τ2 = τ20 + Δτ2. If it does, Sτ1,τ2 repre-
sents a stability region. If a larger stability region is desired, we can first choose
some small independent parameter regions and then check if there exists a common
Lyapunov matrix for these (parameter) regions. If a common Lyapunov matrix ex-
ists, the combination of these small parameter regions defines a stability parameter
region. We are now ready to propose the following theorem which formalizes this
idea:

Theorem 10.4 Define N rectangular regions Sτj1,τj2 : τj1 = τj10 + Δτj1, τj2 =
τj20 +Δτj2, j = 1, . . . ,N (τj10 and τj20 are known constants; Δτj1 and Δτj2 are
uncertain scalars whose lower and upper bounds are available).

Then the system (9.3) is asymptotically stable for (τ1, τ2) ∈ ⋃N
j=1 Sτj1,τj2 , if

there exist a positive-definite matrix P and positive scalars εjm (m = 1,2,3,j =
1, . . . ,N ) satisfying the following linear matrix inequalities
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lj11 ∗ ∗ ∗ ∗
PΦ(τj20, T2)Φ(τj10, T1) −P ∗ ∗ ∗

0
(
e
Aτj10 0

0 0

)′
Φ ′(τj20, T2)P − εj1

β2
j1
I ∗ ∗

0
(
e
Aτj20 0

0 0

)′
P 0 − εj2

β2
j2
I ∗

0
(
e
Aτj20 0

0 0

)T
P 0 0 − εj3

β2
j3
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, j = 1, . . . ,N, (10.7)

with

Lj11 =−P + (εj1 + εj3)

(
K ′B ′BK ∗
−B ′BK 0

)

+ εj2Φ
′(τj10, T1)

(
K ′B ′BK ∗
−B ′BK 0

)
Φ(τj10, T1),

∥∥J (Δτj1)
∥∥≤ βj1,∥∥J (Δτj2)
∥∥≤ βj2,

βj3 = βj1βj2

∥∥∥∥
(−BK B

0 0

)(
eAτj10 0

0 0

)∥∥∥∥.

The result is an extension of Theorem 10.3, and the proof is omitted.
The procedure to find a stability region for Problem 10.2 can be summarized as

follows:

Algorithm 10.1 (Computing stability regions)

• Step 1: Choose some regions Sτj1,τj2 (j = 1, . . . ,N ), and find a P such that (10.7)

holds for (τ1, τ2) ∈⋃N
j=1 Sτj1,τj2 by using Theorem 10.4.

• Step 2: By using the Lyapunov matrix P obtained from Step 1, detect the
whole stability region (corresponding to this Lyapunov matrix P ) by using the
parameter-sweeping method.

Remark 10.5 Theorems 10.3 and 10.4 allow finding an appropriate Lyapunov ma-
trix (if any) for one or some corresponding parameter region(s). It is clear that in-
creasing the value of N , the derived stability region is closer and closer to the real
one. This method can also be used to address Problem 10.3 or similar ones with
multiple uncertain parameters. However, it is worth mentioning that its complexity
increases with the number of parameters to be considered.

Remark 10.6 One method to compute the upper bounds of ‖J (Δτ1)‖ and
‖J (Δτ2)‖ is represented by the analytical approximation, as studied by Suh [222].
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Fig. 10.3 Stability region on the τ1–τ2 plane for Example 10.3

An alternative method is the parameter-sweeping approach. It is worth mention-
ing that such bounds are actually not necessarily important when using the Algo-
rithm 10.1 above. Indeed, we can choose some bounds βj1, βj2 (j = 1, . . . ,N ),
without knowing the accurate range ofΔτj1 ,Δτj2 . After finding a Lyapunov matrix,
the whole stability region corresponding to this Lyapunov matrix will be found by
explicitly applying the parameter-sweeping approach. Therefore, this bound is not
strictly required when computing the stability region.

Example 10.3 Assume that the system (9.3) with matrices (10.1) has two constant
sub-sampling periods (T1 = 0.8, T2 = 1.8) and two time-varying DCES-induced
delays τ1 and τ2.

Choose N = 3, τ110 = 0.01, τ120 = 0.01, τ210 = 0.05, τ220 = 0.07, τ310 = 0.28,
τ320 = 0.28, βj1 = βj2 = 0.001 (j = 1,2,3). In this case, the use of Theorem 10.4
leads to the Lyapunov matrix

P = 107 ×
⎛
⎝

1.3536 −0.1006 0.0315
−0.1006 0.1945 −0.0068
0.0315 −0.0068 0.0017

⎞
⎠

and the corresponding stability region, derived via the parameter-sweeping method,
as depicted in Fig. 10.3. To show that this stability region is reliable and very close
to the real one, we choose two small regions near the boundary of the computed
stability region, one inside and the other outside. If the system is stable for the
inner parameter region meanwhile unstable for the outer parameter region, the de-
rived stability region can be considered sufficiently good. We choose an inner region
τ1, τ2 ∈ [0.28,0.29] and an outer region τ1, τ2 ∈ [0.29,0.30], both closely near the
stability boundary. The simulations for two cases are shown in Fig. 10.4.
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Fig. 10.4 Simulations when τ1, τ2 ∈ [0.28,0.29] and τ1, τ2 ∈ [0.29,0.30], showing that the sys-
tem is stable with the inner parameter region while unstable with the outer parameter region

10.3.3 Time-Varying Hyper-Sampling Periods

In a DCES, the task executions may be preempted by some other tasks with higher
priorities. In this situation, the sampling periods are in general uncertain. For a
delay-free system with single uncertain sampling period T , some methods are pro-
posed to find the stability conditions. A Lyapunov–Krasovskii approach was pro-
posed by Fridman et al. [88]; Mirkin [175] studied the problem by using the small
gain theorem; next, Zhang and Branicky [263] and Fujioka [89] focused on find-
ing a common Lyapunov function in a discrete-time framework. To the best of our
knowledge, the result of Fujioka [89] appears to be the least conservative one. As
stated before, Problem 10.3 is more complicated than the single-sampling case. For
Example 10.1, although the system is stable if both T1 and T2 belong to (01.72] (see,
e.g., Zhang and Branicky [263] and Fujioka [89]), this result is rather conservative,
as indicated earlier.

The stability region ST1,T2 is crucial not only for theoretical analysis but also for
practical applications. Indeed, a larger stability region provides us more flexibility
in the DCES design. In addition, if we apply larger sampling periods (for which
the stability is guaranteed by theoretical analysis), more system resources can be
reserved for other tasks without upgrading its communication bandwidth and cal-
culation power. Consequently, a DCES can handle more tasks, fact that, in turn,
reduces the costs. Thus, we are always interested to have a stability region ST1,T2 as
large as possible. In the sequel, we give a stability condition as well as an appro-
priate algorithm for the Problem 10.3, which are in line with the objectives stated
above.
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Theorem 10.5 A delay-free system described by (9.1) and (9.7) with sub-sampling
periods T1 and T2 is asymptotically stable for (T1, T2) ∈ ST1,T2 , if there exists a
positive-definite matrix P , such that Υ (T1, T2,P ) < 0 for (T1, T2) ∈ ST1,T2 , where
Υ (T1, T2,P ) can be chosen as

Υ (T1, T2,P )
Δ= (
Φ(T2)Φ(T1)

)′
PΦ(T2)Φ(T1)− P, (10.8)

or

Υ (T1, T2,P )
Δ= (
Φ(T1)Φ(T2)

)′
PΦ(T1)Φ(T2)− P. (10.9)

This result is similar to the one proposed in Theorem 10.2 for handling the Prob-
lem 10.2.

Remark 10.7 As in the case of the Problem 10.2, different forms of Υ (T1, T2,P )

may lead to different stability regions for Problem 10.3. In this chapter, we choose
the former form (10.8).

Remark 10.8 It is worth mentioning that in solving Problem 10.3, it is not so simple
to find directly a Lyapunov matrix P and the associated stability region, because it
depends on two parameters (T1, T2), and both are assumed to be time-varying.

We now give a helpful lemma, by which a Lyapunov matrix and a stability region
can be guaranteed:

Lemma 10.1 If there is a P satisfying Φ ′(T )PΦ(T )−P < 0 for T ∈ [T ,T ], then
Υ (T1, T2,P ) < 0 for T1, T2 ∈ [T ,T ].

Proof If Φ ′(T2)PΦ(T2) − P < 0 for T2 ∈ [T ,T ], Φ ′(T1)Φ
′(T2)PΦ(T2)Φ(T1) −

Φ ′(T1)PΦ(T1) < 0 for any non-negative T1 and T2 ∈ [T ,T ]. If T1 ∈ [T ,T ], it fol-
lows that Φ ′(T1)PΦ(T1) < P . We now have that (Φ(T2)Φ(T1))

′PΦ(T2)Φ(T1)−
P < (Φ(T2)Φ(T1))

′PΦ(T2)Φ(T1) − Φ ′(T1)PΦ(T1) < 0. The proof is com-
plete. �

Remark 10.9 Lemma 10.1 can be extended to the case with more sub-sampling
periods. More precisely, in the case of l sub-sampling period, it holds that

(
Φ(Tl) · · ·Φ(T1)

)′
PΦ(Tl) · · ·Φ(T1)− P < 0

for T1, . . . , Tl ∈ [T ,T ] if Φ ′(T )PΦ(T )− P < 0 for T ∈ [T ,T ].

Remark 10.10 If we find a matrix P satisfying Φ ′(T )PΦ(T ) − P < 0 for T ∈
[T ,T ], then, in handling the Problem 10.3 and according to Lemma 10.1, we find a
first estimation of the stability region in the parameter-space (T1, T2): the rectangle
defined by T1, T2 ∈ [T ,T ]. A Lyapunov matrix P associated with the stability in-
terval [T ,T ] for a single-sampling system can be found in Fujioka [89] and Zhang
and Branicky [263].
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Remark 10.11 In the proof of Lemma 10.1, we replaceΦ ′(T1)PΦ(T1) with P , fact
that unfortunately introduces some further degree of conservatism. Hence, for some
parameters outside the region T1, T2 ∈ [T ,T ], the inequality Υ (T1, T2,P ) < 0 may
still hold. Thus, in order to detect the whole stability region corresponding to the
Lyapunov matrix P described by the inequality, Υ (T1, T2,P ) < 0, the parameter-
sweeping method appears as an appropriate approach.

A parameter-sweeping method is given in order to detect the whole stability
region.

Algorithm 10.2

• Step 1: Find a matrix P satisfying the matrix inequality Φ ′(T )PΦ(T )− P < 0
for T ∈ [T ,T ] with the interval [T ,T ] as large as possible, by using the existing
result for the single-sampling systems, e.g., Fujioka [89].

• Step 2: Sweep parameters T1 and T2 to check if Υ (T1, T2,P ) < 0, and mark the
region where Υ (T1, T2,P ) < 0 in the corresponding T1–T2 plane.

The obtained region represents an appropriate stability region. In general, a larger
interval [T ,T ] (obtained via Step 1) leads to a larger stability region, since the
square stability region T1, T2 ∈ [T ,T ] is included according to Lemma 10.1.

Example 10.4 In the context of the Problem 10.3, the delay-free system has two
time-varying uncertain sub-sampling periods T1 and T2. According to Fujioka [89],
we choose

P =
(

4.0300 5.0900
5.0900 13.4900

)
.

Algorithm 10.2 leads to the stability region depicted in Fig. 10.5. With the choice of
the rectangle region T1 ∈ [1.3,1.4] and T2 ∈ [2.1,2.2] as the inner one and the rect-
angle region T1 ∈ [1.4,1.5] and T2 ∈ [2.2,2.3] as the outer one, the corresponding
simulations covering both cases are shown in Fig. 10.6.

Remark 10.12 An appropriate combination of some of the cases mentioned in Ex-
ample 10.1 leads to the following interesting observation: the overall system can be
stable even if some subsystems are unstable.

In our opinion, the method applied to solve the Problem 10.3 appears to be sat-
isfactory (as shown in the simulation) with an essential advantage in terms of sim-
plicity because we can directly use the existing result for single-sampling system
according to Lemma 10.1. An alternative solution for handling the Problem 10.3 is
to use the method given for solving the Problem 10.2, which is derived by using ap-
propriate robust stability arguments. Such conditions (in terms of LMIs developed
by using the discretization technique) developed for solving the Problem 10.3 are
similar to the ones stated in Theorems 10.3, 10.4, and hence are not specially given.
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Fig. 10.5 Stability region on the T1–T2 plane for Example 10.4

Fig. 10.6 Simulations for the regions (T1 ∈ [1.3,1.4], T2 ∈ [2.1,2.2]) and (T1 ∈ [1.4,1.5],
T2 ∈ [2.2,2.3]), showing that the system is stable with the inner parameter region while unsta-
ble with the outer parameter region

10.4 An Illustrative Application

We now consider an inverted pendulum example to illustrate the methods proposed
in this chapter. An inverted pendulum model borrowed from Gao and Chen [91] is
considered. We study the case when two inverted pendulum systems (see Fig. 10.7)
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Fig. 10.7 Two inverted
pendulums (Σ1 and Σ2)

are controlled in the DCES framework, and each inverted pendulum has two sub-
sampling periods.

By linearizing the inverted pendulum model at the equilibrium point, we obtain
the corresponding systems (Σ1 and Σ2) described as follows:

Σ1 : ż1(t) =
(

0 1
3(M1+m1)g
l1(4M1+m1)

0

)
z1(t)+

(
0
−3

l1(4M1+m1)

)
u1(t), (10.10)

Σ2 : ż2(t) =
(

0 1
3(M2+m2)g
l2(4M2+m2)

0

)
z2(t)+

(
0
−3

l2(4M2+m2)

)
u2(t). (10.11)

For the system Σ1, the parameters are selected as M1 = 8.0 kg, m1 = 2.0 kg, l1 =
0.5 m, and g = 9.8 m/s2. Suppose that the feedback gain is K1 = (102.91 80.7916)
and two sub-sampling periods are T11 = 0.1 s and T12 = 0.15 s. Assume now that,
for the system Σ2, the parameters are selected as M2 = 8.0 kg, m2 = 4.0 kg, l2 =
1.0 m, and g = 9.8 m/s2. Suppose also that the feedback gain is K2 = (127.2 21.6)
and two sub-sampling periods are respectively T21 = 0.12 s and T22 = 0.17 s.

The DCES-induced delays τ11, τ12, τ21 and τ22 (corresponding to T11, T12,
T21, and T21, respectively) are time-varying and uncertain. Our objective is to
find a common upper bound τ such that systems Σ1 and Σ2 are stable if 0 ≤
τ11, τ12, τ21, τ22 < τ .

With the choice of N = 3, τ1110 = 0.0001, τ1120 = 0.0001, τ2110 = 0.01, τ2120 =
0.01, τ3110 = 0.05, τ3120 = 0.05, βj1 = βj2 = 0.001 (j = 1,2,3), Theorem 10.4
leads to the following Lyapunov matrix:

P1 = 107 ×
⎛
⎝

2.4918 −0.2397 −0.0091
−0.2397 0.4103 0.0038
−0.0091 0.0038 0.0001

⎞
⎠ ,

and the corresponding stability region is shown in Fig. 10.8 for the system Σ1.
Inside the stability region, we can find a square region 0 ≤ τ11, τ12 ≤ 0.05, hence
the system Σ1 is stable if 0≤ τ11, τ12 ≤ 0.05.

Now, with the choice of N = 3, τ1210 = 0.0001, τ1220 = 0.0001, τ2210 = 0.01,
τ2220 = 0.01, τ3210 = 0.04, τ3220 = 0.04, βj1 = βj2 = 0.001 (j = 1,2,3), Theo-
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Fig. 10.8 Stability region on the τ11–τ12 plane for the inverted pendulum Σ1

Fig. 10.9 Stability region on the τ21–τ22 plane for the inverted pendulum Σ2

rem 10.4 leads to the following Lyapunov matrix:

P2 = 108 ×
⎛
⎝

2.9642 0.1012 −0.0192
0.1012 0.1969 −0.0001
−0.0192 −0.0001 0.0001

⎞
⎠ ,

and its associated stability region for the systemΣ2 is shown in Fig. 10.9. Inside the
stability region, we can find a square region 0 ≤ τ21, τ22 ≤ 0.04, hence the system
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Fig. 10.10 Simulations of two inverted pendulums when 0.039≤ τ11, τ12, τ21, τ22 ≤ 0.040, show-
ing the asymptotic stability of two inverted pendulums

Σ2 is stable if 0≤ τ21, τ22 ≤ 0.04. Thus, we know that system Σ1 andΣ2 are stable
if 0≤ τ11, τ12, τ21, τ22 ≤ 0.04.

Assume now that the initial conditions for the inverted pendulums (described by
Σ1 and Σ2) are (0.3 0)′ and (0.2 0)′, respectively. The simulations when 0.039 ≤
τ11, τ12, τ21, τ22 ≤ 0.040 are shown in Fig. 10.10.

Through the above results, we see that the inverted pendulum systems can be
stabilized if the DCES-induced delays can be appropriately upper bounded. The ob-
jective of this example belongs to Problem 10.2, as we assume that the sub-sampling
periods are given and that the DCES-delays are time-varying and uncertain. We may
also verify the methods proposed for Problems 10.1 and 10.3 in this widely used ex-
perimental platform.

10.5 Notes and Comments

In this chapter, we addressed some stability problems specific to a DCES with
the hyper-sampling periods and DCES-induced delays. Constant and time-varying
DCES-induced delays and/or sub-sampling periods have been considered. It is well
known that the main stability analysis difficulties are related to the uncertain vari-
ation of the sampling periods and the DCES-induced delays, and there exists an
abundant literature devoted to such problems. Among the existing contributions,
one may cite the papers Hespanha et al. [119], Hristu-Varsakelis and Levine [124],
Zampieri [261], and Zhang et al. [264].

As a simple case of the hyper-sampling mode, the single-sampling mode has been
largely used and treated in the literature and an important number of results have
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been reported on the corresponding stability issues. To mention a few, Lyapunov-
based methods have been considered by Gao et al. [92], Jian et al. [133], Seuret
and Richard [209], and Yue et al. [260]; next, Estrada and Antsaklis [81] and Mon-
testruque and Antsaklis [178] have used the model-based method to stabilize the
system; next, Mirkin [175] adopted the input-output method to develop the stabil-
ity condition. Compared with the single-sampling mode, only a few studies have
been reported in the control literature for handling the hyper-sampling mode (see,
for instance, optimal scheduling and control approaches considered by Ben Gaid et
al. [28] and Cervin and Alriksson [54]). To the best of the authors’ knowledge, the
influence induced by these parameters (DCES-induced delays and hyper-sampling
periods) on the corresponding stability was not sufficiently addressed and no explicit
stability conditions have been reported on how to find the ranges of DCES-induced
delays and hyper-sampling periods guaranteeing the stability of the corresponding
DCES under the hyper-sampling mode. Especially, when taking the effects induced
by the use of networks into consideration, the DCES-induced delays and/or hyper-
sampling periods may be uncertain, time-varying, and consequently, the analysis
becomes significantly more complicated. In our opinion, such stability results are
of paramount importance with which scientists and engineers will be faced more
and more in the future. One of the main reason is related to the production cost. If a
controlled task can stabilize a given plant with greater sampling periods (guaranteed
by the theoretical analysis), less system resources are necessary. This fact implies
that more tasks can be processed and share the network at the same time without
upgrading the Hardware/Software architecture of DCES.

The approach proposed here is similar to the one proposed by Li et al. [148],
where the problem of robust stability for single-sampling DCES with time-varying
uncertain sampling periods and DCES-induced delays is investigated. The basic idea
of Li et al. [148] is to model a DCES with time-varying uncertain sampling period
and DCES-induced delay as a discrete-time model with norm-bounded uncertain-
ties and then employ an appropriate robust control method to derive the correspond-
ing stability condition. The modeling method used here represents an extension of
the one proposed by Suh [222]. An alternative approach is to model a DCES as a
discrete-time model with polytopic uncertainties, see, for example, Hetel et al. [120]
and Gielen et al. [94].

As seen above, the common feature of the methods we are proposing is the
parameter-sweeping method. Such parameter-sweeping methods have been widely
used in the stability analysis of continuous time-delay systems, see, for example,
Chen and Latchman [61], Fazelinia et al. [83], Gu et al. [105], and Olgac and
Sipahi [190], and they are particularly adapted to our problems.

Finally, it is important to mention that under a switched-system angle, we can
treat the system with sub-sampling period T1 (T2) as subsystem 1 (2). As discussed
in this chapter, the system is stable even if one of the subsystem is not necessarily
stable. Thus, estimating only a common stability bound for both subsystems appears
to be conservative. Although such switched-type approaches are appealing for han-
dling the stability of DCESs (see, e.g., Sun et al. [224] and the references therein),
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to the best of the authors’ knowledge, the existing results on switched systems do
not lead to less conservative results. Finally, the simulation results obtained for dif-
ferent types of problems confirm the theoretical results and give some credit to the
previous statement.



Chapter 11
Optimization of the Hyper-Sampling Sequence
for DCESs

11.1 Introduction

In Chap. 10, we have addressed the stability conditions of DCESs under the hyper-
sampling mode or periodic scheduling, and we have proposed appropriate ranges of
the sub-sampling periods guaranteeing the system stability. From the study of the
stability regions and the stability properties of the subsystems composing the DCES,
interesting stability characteristics have been derived. In particular, one concerns
the close relation between stability and hyper-sampling mode. We have observed
also that, in some special cases, stability domain can be enlarged by an appropriate
choice of sub-sampling periods. Naturally, these observations, absolutely necessary
and important to handle the overload state of node processors, can constitute a base
to calculate a hyper-sampling sequence consisting in an ordered number of control
task executions in the hyper-sampling period. Even if the stability is the most im-
portant property for a controlled system, we always require dynamic performance
enhancement. The interplay between system dynamic performances and the hyper-
sampling sequence is the main object of the study proposed in this chapter.

Such an interplay has also been discussed in Chaps. 4, 5, and 6, but the formalism
and the model used are different. The objective is to address once more the close re-
lation between the state of the system and the hyper-sampling sequence. A different
point of view is adopted here in order to shed light on the relation between sys-
tem’s dynamic characteristics and node processor computation constraints given by
an average value of the system sampling frequency. More precisely, we will derive
an analytical relation between the hyper-sampling sequence and the system perfor-
mance index in order to optimally design the hyper-sampling sequence.

The problem formulation is given in Sect. 11.2, where we choose a continuous-
time cost function. Next, we first address the standard single-sampling case in
Sect. 11.3. Even if this case seems relatively simple and well understood, we address
this problem by using a different angle. Intuitively, increasing the sampling period,
which in turn saves system resources, leads to some decrease of the dynamic perfor-
mance. It is worth mentioning that this claim is not necessarily valid. In Sect. 11.3,
we will see that, for some systems, increasing the sampling period may lead to

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_11,
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some improvement concerning the system performance. This fact is very useful in
practical applications implying that with less system resources we can achieve bet-
ter performance. In Sect. 11.4, we extend the results proposed in Sect. 11.3 to the
hyper-sampling sequence design. We will obtain the analytical function of the per-
formance index with respect to the hyper-sampling periods, based on which we can
optimally design the hyper-sampling sequence. As expected, we will see that, for the
same average value of calculation resources consumption, a hyper-sampling mode
can improve the dynamic performance over the standard single-sampling mode.

In order to verify the proposed approach, we built an appropriate experimental
platform. In this experimental platform, we control the angular velocity of a direct
current (DC) motor. The hyper-sampling period for the DC motor has two sub-
sampling periods and an average sampling frequency (ASF) is given. The objective
is to optimally set the hyper-sampling periods under the fixed ASF. Detailed de-
scription of the applications as well as the results obtained are given in Sect. 11.5.
Finally, some notes and comments complete this chapter.

11.2 Problem Formulation

Consider a simple DCES with the controlled plant (9.1)

ẋ(t)=Ax(t)+Bu(t),
and the sampled-data controller (9.7)

u(t)=Kx(tk), tk ≤ t < tk+1, k ∈N.

The closed-loop model of such a simple DCES is as follows

ẋ(t)=Ax(t)+BKx(tk), tk ≤ t < tk+1. (11.1)

As mentioned in the Introduction, we focus our study on the hyper-sampling
mode execution of the related control task, for which the corresponding stability
issue has been studied in Chap. 10. The mathematical expression of the hyper-
sampling mode is given by (9.15) in Chap. 9:

T (k)= tk − tk−1 =
{
Tk mod n, k mod n �= 0, k ∈N+,
Tn, k mod n= 0, k ∈N+.

Since we ignore the sub-sampling periods variation as well as the DCES-induced
delays, we denote the sampling instants by tk rather than sk . For brevity, we adopt
the following notations: the hyper-sampling period with n sub-sampling periods

T1, . . . , Tn can be expressed as an n-tuple, Sn = {T1, . . . , Tn}; TΣ Δ=∑n
i=1 Ti repre-

sents the length of the hyper-sampling period.
As stated earlier, we design the hyper-sampling period under a given average

sampling frequency (ASF) constraint, as defined below, such that the system perfor-
mance is optimized.
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The concept of the ASF is easy to understand. Suppose a hyper-sampling se-
quence is allowed to have n sub-sampling periods T1, . . . , Tn. Then, the ASF is
defined as follows

ASF = n

TΣ
. (11.2)

That is, for every TΣ seconds, the system is sampled n times.
We may also introduce the concept of average sampling period (ASP) as

ASP= 1

ASF
, (11.3)

which implies that the system is sampled once every ASP seconds on average.
To compare the system dynamic performance with respect to the choice of sub-

sampling periods, we adopt the performance index η given by:

η
Δ= sup

{
J

x′(0)x(0)
: ∀x(0) �= 0

}
, (11.4)

J =
∫ ∞

0
x′(t)P x(t) dt, (11.5)

where P is a positive semi-definite matrix and x(0) is the initial state of the system.

Remark 11.1 It is known that a system under the sampled-data control can be rewrit-
ten as a discrete-time system and hence one can also use a discrete-time cost func-
tion J of the form

∑
x′(kT )Px(kT ). We choose the continuous-time cost func-

tion (11.5) instead of a discrete-time one since the former considers the intersample
behavior while the latter only considers the system state at the sampling instants. It
was pointed out by Åström and Wittenmark [14] that the system’s continuous-time
state may have oscillations that are not seen at the sampling points. These are called
hidden oscillations or intersample ripple.

Now, we can formulate our problem: given the number of sub-sampling periods n
and the average sampling frequency ASF, design the hyper-sampling period Sn sub-
ject to the condition TΣ = n

ASF such that the corresponding performance index η,
defined in (11.4), is optimized.

We can see that the above optimization problem is not only of theoretical but
also of practical importance. In practice, with the same consumption of the system
resources (i.e., the same ASF), we always search for optimal system performance.

In the sequel, we give the following lemma, which will be used in the remaining
part of this book:

Lemma 11.1 Given matrices M and N where M is Schur and N is positive semi-
definite,

∑∞
k=0 (M

k)
′
NMk is the unique solution of the Lyapunov equation

M ′XM −X =−N,
where X is the variable to be determined.

The proof of this lemma can be found in Anderson and Moore [4], pp. 64–65.
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11.3 Design of the Standard Single-Sampling Period

In this section, we study the optimization of the standard single-sampling period
with respect to system performance. With this setup, the DCES is described by (9.1)
and (9.8). More precisely, the control signal expression is given by:

u(t)=Kx(kT ), kT ≤ t < (k + 1)T , k ∈N.

As the cost function J defined in (11.5) is an integration over the unbounded
interval [0,∞), we first need to find the closed form of its expression. Between two
consecutive sampling instants, the system state is given by:

x(t)=Φ(t − tk)x(tk), tk ≤ t < tk+1,

where the one-argument operator Φ(·) is defined in (9.12)

Φ(β)= eAβ +
∫ β

0
eAθ dθ BK.

We recall that throughout this section we consider the single-sampling mode and
consequently the sampling period is denoted by T . For a given T , Φ(T ) represents
the corresponding transition matrix.

It is well known that a system under the single-sampling mode is asymptotically
stable if and only if Φ(T ) is Schur. Thus, T has to be assigned in the interval where
Φ(T ) is Schur. Otherwise, the performance index η goes to ∞.

A closed form of the cost function J is given by the following:

Lemma 11.2 Assume that the single-sampling mode is adopted. If Φ(T ) is Schur,
the cost function J defined in (11.5) for the system described by (9.1) and (9.8) can
be expressed as

J = x′(0)F (T )x(0), (11.6)

where F(T ) is the unique solution of the Lyapunov equation

Φ ′(T )XΦ(T )−X =−Ω(T ), (11.7)

where

Ω(T )=
∫ T

0
Φ ′(s)PΦ(s) ds.

Proof The cost function J can be rewritten as

J =
∞∑
k=0

(∫ (k+1)T

kT

x′(t)P x(t) dt
)
.

Furthermore,

J =
∞∑
k=0

(∫ T

0

(
Φ(s)Φk(T )x(0)

)′
P
(
Φ(s)Φk(T )x(0)

)
ds

)
.
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Therefore, we have (11.6) with

F(T )=
∞∑
k=0

(
Φk(T )

)′
Ω(T )Φk(T ).

It is easy to see that F(T ) and Ω(T ) are symmetric and positive semi-definite.
If Φ(T ) is Schur, F(T ) is the unique solution of the Lyapunov equation (11.7),
according to Lemma 11.1. The proof is now complete. �

Remark 11.2 The cost function J can not be directly handled in the form (11.5)
since it is an integration over an unbounded interval. By Lemma 11.2, we equiva-
lently transform it into the expression (11.6), which amounts to compute the solu-
tion matrix F(T ) of the Lyapunov equation (11.7), based on effective algorithms
and software, for example, MATLAB.

We are now in a position to present the main result of this section.

Theorem 11.1 Assume that the single-sampling mode is adopted. The performance
index η, defined in (11.4), for the system described by (9.1) and (9.8) is

η= λmax
(
F(T )

)
,

if Φ(T ) is Schur.

Proof By the definition (11.4), it is equivalent to find the minimum η such that

J − ηx′(0)x(0)≤ 0, ∀x(0) �= 0.

Furthermore, in the light of Lemma 11.2, it is equivalent to

x′(0)
(
F(T )− ηI)x(0)≤ 0, ∀x(0) �= 0,

if Φ(T ) is Schur. Therefore, η can be precisely expressed as

η= inf
{
η : F(T )− ηI ≤ 0

}
.

It is true that η= λmax(F (T )), and thus, the proof is completed. �

Remark 11.3 For a given sampling period T , we may use the symbolic manipula-
tion toolbox in MATLAB to obtain the expression of η as a function of T .

The sampling period assigned to a control task is closely related to the sys-
tem (computation and communication) resources consumed by this task. A smaller
(larger) sampling period implies more (less) system resources used. Intuitively, the
performance index should be in direct proportion to the sampling period (i.e., if we
demand smaller performance index η, smaller sampling period T should be chosen
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Fig. 11.1 The performance index η vs sampling period T for Example 11.1

and, consequently, the required system resources should increase). In the following
illustrative example, we will observe that this intuition does not always hold.

Example 11.1 Consider the DCES described by (9.1) and (9.8) under the single-
sampling mode, with matrices A, B , and K given in (10.1)

A=
(

0 1
0 −0.1

)
, B =

(
0

0.1

)
, K = (−3.75 − 11.5).

We choose the cost function J (11.5) with P = I . It can be analytically calcu-
lated that the system is asymptotically stable if and only if T ∈ (0,1.72], see Li
et al. [151]. Since a real sampling period can not be zero, assume the starting point
of sampling period at T = 0.1. The use of Theorem 11.1 leads to the relation be-
tween sampling period and the performance index as depicted in Fig. 11.1.

It is interesting to see that for T ≤ 1.44, the performance index η monotonously
decreases (increasing the sampling period may improve the system performance).
This means that we can obtain better performance and consume less system re-
sources at the same time.

To illustrate the results above, we compare the intersample behavior when sam-
pled with T = 0.1 and T = 0.6. Intuitively, the system’s dynamic behavior when
sampled with T = 0.1 should be better than when sampled with T = 0.6, as the for-
mer sampling frequency is 5 times higher than the latter. From the simulation shown
in Fig. 11.2, we see that this intuition is not necessarily true. The fact is that the sys-
tem dynamic behavior when sampled with T = 0.6 is “better” than when sampled
with T = 0.1. In this simulation, the initial state was assumed as: x(0) = (1 1)′.
By Lemma 11.2, we have that J = 2.2115 when T = 0.6 while J = 2.5392 when
T = 0.1.
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Fig. 11.2 x′(t)P x(t) vs t for Example 11.1: a larger sampling period may lead to better dynamics

11.4 Design of the Hyper-Sampling Sequence

In this section, we study the optimization of the hyper-sampling sequence Sn. We
first study the stability condition of the DCESs under the hyper-sampling mode.
Given a hyper-sampling sequence Sn, the state at sampling instant tk is given by the
following expression

x(tk)=Φ
(
T (k)

) · · ·Φ(T (2))Φ(T (1))x(t0),
where t0 = 0 and T (1), . . . , T (k) are generated according to (9.15).

For z ∈N , it follows that:

x(t(z+1)n)= Φ̃(Sn)x(tzn),
where

Φ̃(Sn)=Φ(Tn) · · ·Φ(T2)Φ(T1).

The stability condition of a DCES under the hyper-sampling mode is given by
the following theorem.

Theorem 11.2 Under a hyper-sampling period Sn, the system described by (9.1)
and (9.7) is asymptotically stable if and only if Φ̃(sn) is Schur.

Proof It follows that

x(t)=R(θ)Φ̃p(Sn)x(0),
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with

p =
⌊
t

TΣ

⌋
,

θ = t − pTΣ, θ ∈ [0, TΣ),

R(θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0(θ), 0≤ θ < T1,

R1(θ), T1 ≤ θ < T1 + T2,

R2(θ), T1 + T2 ≤ θ < T1 + T2 + T3,

...

Rn−1(θ), TΣ − Tn ≤ θ < TΣ,
R0(θ)=Φ(θ),
R1(θ)=Φ(θ − T1)Φ(T1),

R2(θ)=Φ(θ − T1 − T2)Φ(T2)Φ(T1),

...

Rn−1(θ)=Φ(θ − TΣ + Tn)Φ(Tn−1) · · ·Φ(T1).

As t →+∞, p→+∞, while R(θ)x(0) is always bounded for any x(0) �= 0.
One can see that limt→∞ x(t)= 0 if and only if Φ̃(Sn) is Schur. �

Similar to Lemma 11.2 for the single-sampling mode, we have the following
lemma for the hyper-sampling mode.

Lemma 11.3 Assume that the hyper-sampling sequence is composed of n sub-
sampling periods T1, . . . , Tn. If Φ̃(Sn) is Schur, the cost function J defined in (11.5)
for the system described by (9.1) and (9.7) can be expressed as

J = x′(0)F (Sn)x(0), (11.8)

where F(Sn) is the unique solution of the Lyapunov equation

Φ̃ ′(Sn)XΦ̃(Sn)−X =−Ω(Sn), (11.9)

where

Ω(Sn)=
n∑
j=1

W ′(j − 1)
∫ Tj

0
Φ ′(s)PΦ(s) ds W(j − 1),

W(j)=
{
Φ(Tj ) · · ·Φ(T2)Φ(T1), j = 1, . . . , n,

I, j = 0.

Proof The cost function J can be rewritten as

J =
∞∑
k=0

(∫ (k+1)TΣ

kTΣ

x′(t)P x(t) dt
)
.
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Furthermore,

J =
∞∑
k=0

(∫ T1

0

(
Φ(s)Wk(n)x(0)

)′
P
(
Φ(s)Wk(n)x(0)

)
ds

+
∫ T2

0

(
Φ(s)W(1)Wk(n)x(0)

)′
P
(
Φ(s)W(1)Wk(n)x(0)

)
ds + · · ·

+
∫ Tn

0

(
Φ(s)W(n− 1)Wk(n)x(0)

)′
P
(
Φ(s)W(n− 1)Wk(n)x(0)

)
ds

)
.

Equivalently,

J =
∞∑
k=0

(
n∑
j=1

∫ Tj

0

(
Φ(s)W(j − 1)Wk(n)x(0)

)′
P
(
Φ(s)W(j − 1)Wk(n)x(0)

)
ds

)
.

Therefore, we have (11.8) with

F(Sn)=
∞∑
k=0

(
Wk(n)

)′
Ω(Sn)W

k(n).

It is easy to see that F(Sn) and Ω(Sn) are symmetric and positive semi-definite.
If Φ̃(Sn) (note that Φ̃(Sn) =W(n)) is Schur, F(Sn) is the unique solution of the
Lyapunov equation (11.9), by Lemma 11.1. The proof is now complete. �

We are now in a position to present the main result of this chapter.

Theorem 11.3 Assume that the hyper-sampling sequence is composed of n sub-
sampling periods T1, . . ., Tn. The performance index η, defined in (11.4) for the
system described by (9.1) and (9.7) is

η= λmax
(
F(Sn)

)
,

if Φ̃(Sn) is Schur.

The proof is in the same line of that for Theorem 11.1, and hence is omitted here.
We now give a numerical example to illustrate the proposed design method:

Example 11.2 Consider the DCES described by (9.1) and (9.7) under the hyper-
sampling mode, with matrices A, B , and K given in (10.1). The matrix P in (11.5)
is given by

P =
(

4.03 5.09
5.09 13.49

)
.

Suppose the average sampling frequency is 1
1.5 . We will design the hyper-sampling

period or sequence when n= 2 and n= 3, respectively.
For the case n = 2, two sub-sampling periods, T1 and T2, satisfy T1 + T2 = 3.

One can see that, in this case, in fact only one parameter has to be determined. If
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Fig. 11.3 η vs T1 for Example 11.2

Fig. 11.4 η vs T1, T2 for Example 11.2

we consider T1 such a parameter, then T2 = 3− T1. By Theorem 11.3, the relation
between η and Sn is given by a 2-D plot, as shown in Fig. 11.3.

Now, in the case n= 3, three sub-sampling periods, T1, T2, and T3, satisfy T1 +
T2 + T3 = 4.5, and there are two parameters to be determined. If we consider T1

and T2 such parameters, then T3 = 4.5 − T1 − T2. By Theorem 11.3, the relation
between η and Sn is given by a 3-D plot, as shown in Fig. 11.4.

To illustrate the result, we observe the system dynamics, under the single-
sampling mode (namely n= 1), the hyper-sampling mode with n= 2 and the hyper-
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Fig. 11.5 Dynamic simulation for Example 11.2

sampling mode with n= 3, respectively. The simulation is given in Fig. 11.5, where
we choose the initial state as x(0)= (1 1 )′. It is clearly seen that as n increases, the
system dynamics can be improved.

In this example, it is easy to see that the cases T1 = T2 = 1.5 when n = 2 and
T1 = T2 = T3 = 1.5 when n= 3 correspond to the standard single-sampling mode.
One can see that under the same average sampling frequency the hyper-sampling
mode can enhance the system dynamics.

In Example 11.1, we observed that the performance index η is not directly pro-
portional to the sampling period. Here, we observe how the optimal performance
index, denoted by η∗, varies with respect to the average sampling period (ASP).

Consider the hyper-sampling mode with n= 2. The relation between η∗ and ASP
is shown in Fig. 11.6. Through the relation, we see that, the optimal performance
index is neither directly proportional to the ASP under the hyper-sampling mode.

Remark 11.4 The approach proposed in this chapter covers the stability analysis. If
Φ̃(Sn) is not Schur (i.e., the system is not asymptotically stable), no proper solution
of λmax(F (Sn)) will be obtained. Thus, the plots in Figs. 11.3 and 11.4 also indicate
the stability ranges of the sub-sampling periods.

11.5 An Experimental Platform

In the sequel, we will illustrate the approach proposed by an experiment. The exper-
imental platform, shown in Fig. 11.7, consists in four primary components: (1) a di-
rect current (DC) brushed motor (from Maxon, model A-116105), driven by an ana-
log power amplifier, (2) a data acquisition (DAQ) card (from National Instrument,
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Fig. 11.6 η∗ vs ASP for Example 11.2

Fig. 11.7 An experimental platform

model USB X-6343), (3) a DC tachogenerator, and (4) a laptop. Our objective is to
control the angular velocity of the DC motor with respect to a given reference.

The communication is implemented by the DAQ card: (1) the output voltage of
the DC tachogenerator, serving as the measurement of the angular velocity of the
DC motor, is connected to the DAQ card, (2) the control input to the DC motor is
generated by the DAQ card and the power amplifier, (3) the DAQ card can commu-
nicate bidirectionally with the laptop, on which the Matlab/Simulink-based control
algorithms run. In this way, the closed-loop DCES architecture is established and
the control parameters (the feedback gain and the hyper-sampling periods) can be
set by the control algorithms.
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The dynamics of a DC motor can be approximately described as the following
linear1 differential equation (see Ramirez et al. [198]):

ω̇(t)=Aω(t)+Bu(t), (11.10)

where ω(t) and u(t) denote respectively, the angular velocity and the control input
voltage and the parameters A and B are estimated as A=−0.66 and B = 1000.

We choose the reference angular velocity (denoted by ωr ) as ωr = 2000 r/min.
Let e(t)= ω(t)−ωr . Then, we have that

ė(t)=Ae(t)+Bũ(t),
where

ũ(t)= u(t)+ A
B
ωr.

We adopt the state-feedback sampled-data control

ũ(t)=Ke(tk), tk ≤ t < tk+1,

and we set K =−0.0033. Let us define the performance index η as in (11.4) with
the cost function J = ∫∞

0 e2(t) dt .
We first use the single-sampling mode with the sampling period T = 0.3 s. By

Theorem 11.1, the corresponding optimal performance index is η= 8.78.
We next use the hyper-sampling mode with n= 2. We let T1+T2 = 0.6 s (where

T1 and T2 are the two sub-sampling periods) in order to make the average sampling
frequency equal to that of the single-sampling mode.

Finally, by using Theorem 11.3, we obtain the relation between the hyper-
sampling period and the performance index, see, for instance, Fig. 11.8. We find the
optimal hyper-sampling period with T1 = 0.28 s, T2 = 0.32 s and the corresponding
η= 8.70. The simulations for two cases with ω(0)= 0 are shown in Fig. 11.9.

11.6 Notes and Comments

In this chapter, we proposed a systematic method to design the hyper-sampling se-
quence or period (including the standard single-sampling period as a special case)
for a DCES. We obtained the analytic relation between the performance index and
the hyper-sampling period. Thus, we may obtain the optimal hyper-sampling pe-
riod for a given average sampling frequency (ASF). That is, with the same system
resources utilization, the DCES dynamic performance are optimized.

For the single-sampling mode, an interesting phenomenon was observed: the per-
formance index is not necessarily in direct proportion to the sampling frequency.
A similar phenomenon was also noticed in the hyper-sampling mode: the perfor-
mance index may be not in direct proportion to the average sampling frequency

1If a strict linear model is demanded, we may adopt a friction compensation strategy, see, e.g.,
Canudas et al. [51].
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Fig. 11.8 η vs T1 for Sect. 11.5

Fig. 11.9 ω(t) vs t : The hyper-sampling mode leads to better dynamics

(ASP). Consequently, in some situations, we may spend less system resources and
obtain better system dynamics at the same time. Such an observation is important
for both theoretical studies and practical applications.

Our idea to solve the optimal problem was as follows: first, deriving the ana-
lytical relation between the performance index and the design parameter (i.e., the
hyper-sampling period in this chapter) and next, applying the parameter-sweeping
technique based on the derived analytical function to find the optimal parameter
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(i.e., the optimal hyper-sampling period in this case). Such a framework used in this
chapter may be also adopted to other nominal cases, see, for example, the DCES
with switched sampled-data control (to be investigated in the next chapter). How-
ever, if the system under consideration is non-nominal, the analysis becomes more
complicated, and only some sufficient though not necessary conditions can be ob-
tained, see, for example, the study for non-nominal sampled-data control systems
by Skaf and Boyd [214].

In this chapter, we have deliberately made the choice to focus on the effect of the
hyper-sampling period on the DCES’ dynamics. We have treated the sub-sampling
periods as the design parameters while the feedback gain matrix was fixed. One
may predict a further performance improvement if the hyper-sampling period and
the feedback gain matrix are designed simultaneously. Such a co-design problem,
more complicated and challenging, is not considered in this book.



Chapter 12
A Switched Sampled-Data Control Strategy
for DCESs

In Chaps. 10 and 11, we addressed the stability and dynamic performance of
distributed control and embedded systems (DCESs) under the periodic schedul-
ing or hyper-sampling mode. We have considered the stability of DCESs under
the hyper-sampling mode as well as the scheduling design in order to enhance
the performance. The stability analysis of this class of systems is motivated
by their increasing practical importance and the necessity to handle faulty and
overload situations. The results obtained prove the usefulness of their stabil-
ity analysis by reducing the conservatism and so increasing their stability do-
main as well as pointing out some contradiction with the generally accepted
intuition. It is worth noting that reducing the system communication and calcu-
lation resources does not necessarily mean the reduction of the dynamic perfor-
mance.

In this chapter, we will follow the same line by further focusing our study “in-
side” the sampling period. The rationale behind it is the system stability together
with the system performance enhancement. We will propose an easily-implemented
switched sampled-data (SD) control strategy which may enhance the stability as
well as dynamic properties. Regarding the stability issue, we will show that the
use of the switched SD control strategy allows to enlarge the stability bound on
the sampling period. As a consequence, a controlled task can be stabilized with
less system resources by using the switched SD controller. We will also study
the dynamic performance of a DCES with the switched SD control. An optimiza-
tion method is proposed to optimally set the switching parameter of the switched
SD controller. Thus, given a sampling period, we may obtain the optimal perfor-
mance index through an appropriate setting of the switching parameter. We will
show that the switched SD control may lead to a much better performance index
than the standard single-sampling control. In other words, with the same utiliza-
tion of computation and communication resources, the dynamic performance of
a controlled task may be considerably enhanced by using the switched SD con-
trol.

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_12,
© Springer International Publishing Switzerland 2014
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12.1 Introduction

A DCES with the controlled plant (9.1)

ẋ(t)=Ax(t)+Bu(t),
and the standard sampled-data controller (9.8)

u(t)=Kx(kT ), kT ≤ t < (k + 1)T , k ∈N,

represents both the continuous-time and discrete-time dynamics. The controlled
plant (9.1) is a continuous-time system, while its control input u(t) is updated
only at discrete sampling instants. Between two sampling instants kT and (k+ 1)T
(where T is the constant sampling period), the control input u(t) is fixed asKx(kT ).

Since a DCES described by (9.1) and (9.8) can be modeled by a discrete-time
system (9.13)

x
(
(k + 1)T

)=Φ(T )x(kT ),
its dynamics at the sampling instants can be easily studied. In Sect. 12.2 of this
chapter, we will address the “intersample” dynamics (i.e., the dynamic behavior
within a sampling interval) of the DCESs, through modeling it as a continuous-time
system with an input delay.

Let us first give the following motivating example in order to observe the in-
tersample dynamics of the system under consideration, without giving a detailed
mathematical expression.

Example 12.1 Consider system (9.1) with matrices given in (10.1)

A=
(

0 1
0 −0.1

)
, B =

(
0

0.1

)
, K = (−3.75 −11.5).

Let us adopt the standard sampled-data controller (9.8)1 and assume a sampling
period T = 1.7. Let us choose also the following Lyapunov function V (t) =
x′(t)P x(t) where

P =
(

4.03 5.09
5.09 13.49

)
.

The evolution of V (t) under the standard sampled-data control and for the initial
state x(0)= (1 1)′ is shown in Fig. 12.1. It can be easily seen that at the sampling
instants, marked with ∗ in the figure, V (t) monotonously decreases. However, V (t)
does not monotonously decrease between sampling instants. More precisely, we

1In this chapter, we will propose a new sampled-data controller, a switched sampled-data (SD)
controller. Throughout this chapter, in order to distinguish it from the switched SD controller, we
call the sampled-data controller (9.8) the standard sampled-data controller.
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Fig. 12.1 V (t) vs t for Example 12.1

observe that the sampling interval for the system considered in this example is com-
posed of two parts depicting distinct behaviors: in the first part of it V (t) decreases
whereas in the second part it increases.

Based on such an observation, we may divide each sampling interval into two
parts: the so-called “convergence part” (the first interval where V (t) decreases)
and the “divergence part” (the second interval where V (t) increases), respectively.
In the divergence part within a sampling interval, the state feedback control signal,
in fact, loses its stabilizing effect. This motivates us to ask the following question:
Could the dynamics be improved if we “turn off” the control input u(t) (i.e., let the
system be open-loop) in the latter part within a sampling interval?

Let us see what happens with the system performance if we switch from control
signal produced by the feedback control law, u(t) = Kx(kT ), to the zero control
signal at instant KT + a inside each sampling interval. For the chosen switching
time parameter a = 0.94, the evolution of V (t) under the switched control is also
given (by bold curve) in Fig. 12.1. It is interesting to see that the switched control
law provides better performance than the standard one.

From the above motivating example, the following questions may naturally arise:

1. How to explain the fact that the standard sampled-data control loses its stabiliz-
ing effect in the second part of the sampling interval?

2. How to identify the first part and the second part of the sampling interval? In
other words, how to set the switching time parameter a?

In the remaining part of this chapter, we will study the above questions in detail
and we will give a systematic approach to design the proposed switched sampled-
data (SD) controller. Concerning the first question, we will address it from a delay-
system perspective in Sect. 12.2. Next in Sect. 12.3, we will propose a new control
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Fig. 12.2 The standard
sampled-data control

strategy: a switched sampled-data (SD) control law. In Sect. 12.4, we will analyze
the stability under the switched SD control strategy. Next, in Sect. 12.5, we will op-
timize the dynamic performance through setting the switching time parameter of the
switched SD controller. In Sect. 12.6, an illustrative application will be presented.
Finally, some notes and comments complete this chapter.

12.2 Intersample Dynamics: A Delay-System Perspective

The scheme of the standard sampled-data control is given in Fig. 12.2. As we already
know, in such a configuration, the state of the controlled plant x(t) may be sampled
only at discrete sampling instants. In this chapter, we consider the standard single-
sampling case with a constant sampling-period T and thus the sampling instants
are denoted by kT , k ∈ N. Further, we adopt the state-feedback control (9.8) with
feedback gain K .

As proposed by Fridman et al. [88], the closed-loop form of a sampled-data
system can be rewritten as the input-delayed system (9.16)

ẋ(t)=Ax(t)+BKx(t − τ(t)), kT ≤ t < (k + 1)T ,

with delay τ(t)= t − kT , kT ≤ t < (k+ 1)T . Such a delay (also called the artificial
delay in Part III of the book) is illustrated in Fig. 9.7.

Let us focus now on the intersample dynamics by observing ẋ(kT + θ),
0≤ θ < T . When θ is small, ẋ(kT + θ) may be approximated by (A+BK)x(kT )
as the artificial delay τ(t) is small, see Fig. 9.7. Since A+ BK is designed to be
Hurwitz, the system state converges for small θ (as the closed-loop system is close
to the continuous-time system ẋ(t) = (A + BK)x(t)). As θ increases, the artifi-
cial delay τ(t) increases accordingly (see Fig. 9.7) and its effect can no longer be
neglected. Thus, for a large θ , the system dynamics diverge from the continuous-
time system dynamics given by ẋ(t) = (A+ BK)x(t) and hence we may observe
performance deterioration.
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By the above analysis from a delay-system angle, an explicit answer to the ques-
tion concerning the “strange” behavior of the Lyapunov function V (t) for the DCES
considered in Example 12.12 can be given.

12.3 A Switched Sampled-Data (SD) Control Approach

According to the arguments in Sect. 12.2, it appears potentially possible that, at
the second (divergent) part of the sampling interval, the open-loop dynamics ẋ(t)=
Ax(t)may give “less divergent” state evolution than the feedback system dynamics.
If such an argument may hold, from an appropriate instant kT + a, we can set the
control input to 0 (which is easy to implement in practice) and the resulting system
dynamics may be enhanced. This motivates us to propose the following switched
sampled-data (SD) controller:

u(t)=
{
Kx(kT ), kT ≤ t < kT + a,
0, kT + a ≤ t < (k + 1)T ,

(12.1)

where a is the switching time parameter (STP), satisfying 0≤ a ≤ T . It is important
to see that the switched SD controller (12.1) has two modes:

• for kT ≤ t < kT + a, its mathematical expression, given by Kx(kT ), is same as
the “standard” feedback controller,

• for kT + a ≤ t < (k + 1)T , its value is set to 0.

Thus, the system (9.1) together with the controller (12.1) can be expressed by the
following switched system:

ẋ(t)=
{
Ax(t)+BKx(kT ), kT ≤ t < kT + a,
Ax(t), kT + a ≤ t < (k + 1)T .

(12.2)

In order to clarify the structure of the switched SD control (12.1) we give it schemat-
ically in Fig. 12.3.

12.4 Stability Analysis

In this section, we will study the stability condition for a controlled plant (9.1) under
the switched SD control (12.1). In this case, the corresponding closed-loop system
is described by (12.2).

The discrete-time expression of the system is given by:

x
(
(k + 1)T

)=Φs(a,T )x(kT ), (12.3)

2First decreases and then increases inside a sampling interval.
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Fig. 12.3 The switched
sampled-data control

where the transition matrix function Φs(α,β) is given by

Φs(α,β)= eA(β−α)
(
eAα +

∫ α

0
eAθ dθ BK

)
.

For an initial state x(0), the system has the following response:

x(t)=
{
Φs(t − kT , t − kT )Φks (a,T )x(0), kT ≤ t < kT + a,
Φs(a, t − kT )Φks (a,T )x(0), kT + a ≤ t < (k + 1)T .

(12.4)

It is easy to see that when a = T , the switched SD control law (12.1) reduces
to the “standard” one. Now, for the system (12.3), which is the discrete-time model
of a DCES with the switched SD control (12.1), we can formulate the following
stability condition:

Theorem 12.1 System (9.1) under the switched sampled-data controller (12.1) is
asymptotically stable if and only if Φs(a,T ) is Schur.

By using Theorem 12.1 and the parameter-sweeping technique, we may find the
stability ranges for the parameters a and T . Let us illustrate this result through a
numerical example.

Example 12.2 Consider the system (9.1) with the following state-space model ma-
trices:

A=
⎛
⎝
−1 −1 0
1 −1 0
0 0 1

⎞
⎠ , B =

⎛
⎝

0
0
1

⎞
⎠ , K = (−2 −2 −2

)
.

If we use the standard sampled-data control law (9.8), the stability interval for the
sampling period T is: T ∈ [0,1.09). When applying the switched SD control (12.1),
the stability region is shown in Fig. 12.4. The largest sampling period guarantee-
ing the stability is T ∗ = 5.75, associated to the STP a∗ = 0.69. More precisely,
if the parameter a is chosen as a = 0.69, the corresponding stability interval is
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Fig. 12.4 Stability region of Example 12.2

Fig. 12.5 Simulation for Example 12.2

T ∈ [0.69,5.75]. Now, with the choice a = 0.69 and T = 5.75, the system response
with an initial condition x(0)= (10 − 10)′ is shown in Fig. 12.5. From the results
obtained we can easily see the system performance enhancement by the switched
SD control strategy.

For some special class of systems, an interesting phenomenon is observed when
the switched SD control (12.1) is used: this class of systems may be stabilized by an
infinitely large sampling period T . That is, there may exist a switching parameter
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a such that Φs(a,T ) is Schur for all T ≥ a. It is not easy to fully investigate such
a phenomenon and the relevant properties. However, a sufficient condition for char-
acterizing this phenomenon and the related analysis can be found in Li et al. [149].
Here, we only give an example with an analytical illustration.

Example 12.3 Consider the system (9.1) with the following matrices

A=
(−λ 0

0 0

)
, B =

(
0
1

)
, K = (−k1 −k2

)
,

where λ is a positive number. This system is asymptotically stable under the stan-
dard sampled-data control if T < 2

k2
and k2 > 0. If the switched SD control (12.1)

is applied, the corresponding transition matrix becomes

Φs(a,T )=
(
e−λT 0
−ak1 1− ak2

)
.

Due to the specific structure of the above transition matrixΦs(a,T ), it is easy to see
that the system is asymptotically stable if and only if

T > 0, 0< a <
2

k2
, k2 > 0.

Therefore, the system can be stabilized with an infinitely large sampling period T
by introducing the switched SD control (12.1).

One may notice that the system considered in this example has an appropriate
structure: the matrix A has only one eigenvalue on the imaginary axis, while the
other (remaining) one is in the left-half plane. Thus, this system is not divergent
(marginally stable) even when it is in open-loop.

12.5 Optimization of the Dynamic Performance

In this section, we will study the dynamic performance of a DCES under the
switched SD control (12.1). In particular, the problem is described as follows: For
a controlled plant (9.1) with a given sampling period T , the switched SD control
(12.1) is adopted, and the performance index η as defined in (11.4)

η� sup

{
J

x′(0)x(0)
: ∀x(0) �= 0

}
,

is considered with the corresponding cost function J defined in (11.5)

J =
∫ ∞

0
x′(t)P x(t) dt,
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to measure the system dynamics. Our objective is to design the switching time pa-
rameter (STP) a so as to achieve the minimum η.

Since η is a function of a and T , for the rest of this chapter, we will use the no-
tation η(a,T ). In addition, the optimal STP is denoted by a∗ and the corresponding
minimum η is denoted by η(a∗, T ). Obviously, if a∗ �= T , the switched SD control
can lead to better performance than the standard sampled-data controller.

Let us first give the following technical lemma, which allows to express the cor-
responding cost function J in a closed form.

Lemma 12.1 If Φs(a,T ) is Schur, the cost function J defined in (11.5) for the
DCES described by (9.1) and (12.1) can be rewritten as

J = x′(0)Fs(a,T )x(0),
where Fs(a,T ) is the unique solution of the Lyapunov equation

Φ ′s(a, T )XΦs(a,T )−X =−Ωs(a,T ), (12.5)

with

Ωs(a,T ) =
∫ a

0

(
eAθ +

∫ θ

0
eAϑ dϑ BK

)′
P

(
eAθ +

∫ θ

0
eAϑ dϑ BK

)
dθ

+
(
eAa +

∫ a

0
eAϑ dϑ BK

)′

×
∫ T−a

0

(
eAθ

)′
PeAθ dθ

(
eAa +

∫ a

0
eAϑ dϑ BK

)
.

Proof The cost function J can be rewritten as

J =
∞∑
k=0

∫ (k+1)T

kT

x′(t)P x(t) dt.

In the light of (12.4), we have:

J =
∞∑
k=0

(∫ a

0

(
Φs(t, t)Φ

k
s (a, T )x(0)

)′
PΦs(t, t)Φ

k
s (a, T )x(0) dt

+
∫ T

a

(
Φs(a, t)Φ

k
s (a, T )x(0)

)′
PΦs(a, t)Φ

k
s (a, T )x(0) dt

)
.

Thus,

J = x′(0)Fs(a,T )x(0),
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Fs(a,T )=
∞∑
k=0

(
Φks (a,T )

)′
Ωs(a,T )Φ

k
s (a, T ).

Let Ωs(a,T )=Ωs1(a, T )+Ωs2(a, T ) with

Ωs1(a, T )=
∫ a

0

(
eAθ +

∫ θ

0
eAϑ dϑ BK

)′
P

(
eAθ +

∫ θ

0
eAϑ dϑ BK

)
dθ,

Ωs2(a, T )=
(
eAa +

∫ a

0
eAϑ dϑ BK

)′

×
∫ T−a

0

(
eAθ

)′
PeAθ dθ

(
eAa +

∫ a

0
eAϑ dϑ BK

)
.

For any θ , (eAθ + ∫ θ
0 e

Aϑ dϑ BK)
′
P(eAθ + ∫ θ

0 e
Aϑ dϑ BK) is positive semi-

definite since P is positive semi-definite. Thus, the integration Ωs1(a, T ) must
be also positive semi-definite. Similarly, it follows that Ωs2(a, T ) is necessarily
positive semi-definite. Therefore, Ωs(a,T ) is positive semi-definite.

If Φs(a,T ) is Schur, Fs(a,T ) is the unique solution of the Lyapunov equation
(12.5) according to Lemma 11.1. The proof is completed. �

In the sequel, we give an important result which helps us to design the switching
time parameter.

Theorem 12.2 For a sampling period T and a switching time parameter a, the
corresponding performance index η(a,T ) for the system described by (9.1) and
(12.1) is

η(a,T )= λmax
(
Fs(a,T )

)
,

if Φs(a,T ) is Schur.

The proof is similar to that of Theorem 11.1, and hence is omitted.

Example 12.4 Consider the controlled plant (9.1), with matrices A, B , andK given
in (10.1). Assume now that the sampling period T = 1.7. For each STP a, η can be
analytically calculated by Theorem 12.2. The variation of η with respect to a is
plotted in Fig. 12.6.

It is explicitly found that the minimum η is reached at a∗ = 1.409 with η∗ =
1.871. For a = T = 1.7, η= 16.15, which means that the performance index under
the standard sampled-data control law is η = 16.15. The switched SD control law
(12.1) can improve significantly the system performance. To illustrate the result, let
us see the simulation obtained with the initial state x(0)= (0.5 2)′ given in Fig. 12.7.
The corresponding control signals are shown in Fig. 12.8. By Lemma 12.1, we have
that J = 7.4828 when a = 1.409 while J = 65.2610 when a = T = 1.7.
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Fig. 12.6 η vs a for Example 12.4

Fig. 12.7 x′(t)P x(t) vs t for Example 12.4: the switched sampled-data control leads to better
system dynamics over the standard sampled-data control

12.6 An Illustrative Application

In this section, we choose three Miabots (Miabot is a miniature mobile robot, see
[1]) as the controlled plants. According to the parameter identification of the Mi-
abot, when the speed is no more than 2 m/sec, the dynamics of the Miabots can be
approximately expressed as

ẍi (t)=−10ẋi (t)+ ui(t), i = 1,2,3,
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Fig. 12.8 u(t) vs t for Example 12.4

Fig. 12.9 The distance control of 3 Miabots

where xi(t) and ui(t) denote the position and control signal of Miabot i, respec-
tively.

Our objective, as shown in Fig. 12.9, is to control the distance between Mi-
abot 1 and Miabot 2, d12(t) = x2(t) − x1(t) and the distance between Miabot 2
and Miabot 3, d23(t) = x3(t)− x2(t) to be r12 and r23 (r12 and r23 are given con-
stants), respectively. In other words, our objective is to design the control laws
of u1(t), u2(t), and u3(t) such that limt→∞ e12(t) = 0 and limt→∞ e23(t) = 0
(e12(t)= x2(t)− x1(t)− r12, e23(t)= x3(t)− x2(t)− r23).

Defining the state and the control variables by

Z(t)=

⎛
⎜⎜⎝
e12(t)

e23(t)

ė12(t)

ė23(t)

⎞
⎟⎟⎠ , U(t)=

⎛
⎝
u1(t)

u2(t)

u3(t)

⎞
⎠ ,
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we obtain the following state-space equation

Ż(t)=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 −10 0
0 0 0 −10

⎞
⎟⎟⎠Z(t)+

⎛
⎜⎜⎝

0 0 0
0 0 0
−1 1 0
0 −1 1

⎞
⎟⎟⎠U(t).

In order to control the three Miabots we adopt, as expected, the following
switched sampled-data control

U(t)=
{
KZ(kT ), kT ≤ t < kT + a,
0, kT + a ≤ t < (k + 1)T ,

where T is the constant sampling period and the feedback gain K is chosen as

K =
⎛
⎝

4.1656 0 −0.6151 0
−2.7181 1.0915 4.2536 1.3561

0 −4.4518 0 4.9218

⎞
⎠ .

This form of K ensures that Miabot 1 only needs to communicate with Miabot 2
and that Miabot 3 only needs to communicate with Miabot 2. From the practical
point of view, each Miabot has a position sensor and a velocity sensor and hence
each Miabot knows its own position and velocity. At each sampling instant kT ,
Miabot 1 and Miabot 3 send their position and velocity information to Miabot 2
and meanwhile Miabot 2 sends its position and velocity information to Miabot 1
and Miabot 3. In this way, Miabot 1 knows e12(kT ) and ė12(kT ); Miabot 3 knows
e23(kT ) and ė23(kT ); and Miabot 2 knows Z(kT ) and therefore the control signal
U(kT ) can be implemented.

With T = 1.5, the relationship between the STP a and the performance index
η is given in Fig. 12.10. The optimal STP is a∗ = 1.005 with η∗ = 1.9471. When
a = T = 1.5, η= 7.7316. One can see clearly the performance improvement of the
switched SD control with respect to the standard sampled-data control.

To illustrate the result above, we let x1(0) = 0, x2(0) = 6, x3(0) = 9, ẋ1(0) =
ẋ2(0) = ẋ3(0) = 0, and r12 = r23 = 2 and we operate a system simulation. In or-
der to compare the results obtained for the standard and the switched SD control
laws, the system state evolution or dynamics under two control laws are given in
Fig. 12.11. The control signals of two controllers are shown in Figs. 12.12 and 12.13.

If we use the standard sampled-data control to achieve the performance index
η = 1.9471 (the one when using the switched sampled-data control), we should set
the sampling period as T = 0.1186.3 It is seen that, if we require the same perfor-
mance index, the switched sampled-data control occupies much less computation
and communication resources than the standard sampled-data control. Notice that,
the used computation and communication resources of a sampled-data system are
proportional to the sampling frequency.

3This result can be computed by using the approach proposed in Chap. 10.
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Fig. 12.10 η vs a for Sect. 12.6

Fig. 12.11 Z′(t)PZ(t) vs t : the switched sampled-data control leads to better system dynamics
over the standard sampled-data control

12.7 Notes and Comments

In this chapter, we proposed a switched sampled-data (SD) control strategy for a
simple and particular configuration of DCESs, which can be easily implemented in
practice. Through studying its intersample dynamics, we argue that for some time
interval between sampling instants the open-loop dynamics can have better dynamic
properties than the closed-loop ones, due to the effect of the induced delay. Thus,
switching the control signal value to zero at a proper switching instant within each
sampling interval may improve the system performance.
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Fig. 12.12 U(t) of the standard sampled-data control

Fig. 12.13 U(t) of the switched sampled-data control

We first study the stability condition when it is controlled by the proposed
switched SD controller. It is shown that the switched SD control may lead to greater
upper bound on the sampling period guaranteeing the stability than the standard
sampled-data controller.

In Example 12.3, we have observed an interesting phenomenon that a particular
class of DCES can be stabilized with an infinitely large sampling period when using
the switched SD control. It is worth mentioning that the system considered in Exam-
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ple 12.3 is very specific, since we may directly calculate the two eigenvalues with
respect to the switching time parameter (STP) and the sampling period. For general
systems, the analysis may become much more complicated. In Li et al. [149], some
disjoint necessary and sufficient conditions are proposed for the analysis of such a
phenomenon.

The stability conditions studied here concern only the nominal case, which means
that the sampling period is constant. When the sampling period is time-varying and
uncertain, no analytical results can be obtained in general. One may refer to Li
et al. [149], where the discretization technique is used to deal with the time-varying
sampling period. The resulting stability condition is however sufficient though not
necessary.

Next, the optimization of the STP of the switched SD controller is addressed. We
derived the analytical relation between the STP and the index of the system dynamic
performance. Based on this analytical relation, we may set the STP optimally. From
the numerical simulations, we see that the switched SD control strategy can lead to
better dynamic properties than the standard sampled-data one.

From the optimization perspective, there is still much room to further improve
the derived results. We let the STP be the only design parameter, while fixing the
sampling period and the state-feedback gain matrix. It is natural to predict that both
the stability and dynamic properties may be improved if we co-design the STP,
sampling period and the state-feedback gain matrix at the same time. However, the
related optimization problem will be much more complicated and will be faced with
calculation complexity problems.

Various optimization problems have been investigated in the literature related to
the problem treated here. The optimal state-feedback gain for the standard sampled-
data control can be found in Åström and Wittenmark [14] and Chen and Fran-
cis [63]. The co-design of optimal real-time scheduling and optimal feedback gains
for DCESs has been studied by Ben Gaid et al. [27]. In our opinion, integrating the
optimal calculation of STP under this formalism can enhance the dynamic perfor-
mance as well as the stability robustness.

Though a DCES controlled by the proposed switched SD controller is a switched
system, we did not apply the theory of switched systems (see, e.g., Liberzon [154])
to its analysis and design. For the stability issue, we simply used the discrete-time
model as proposed in Sect. 12.4. In this way, the stability can be investigated by
studying the corresponding transition matrix, without conservatism. For the opti-
mization issue, we obtain the analytical function in Sect. 12.5. The resulting ap-
proach involves no conservatism either.



Chapter 13
A Switched Hold-Zero Compensation Strategy
for DCESs Subject to Control Input Missings

As studied in the previous chapters, a DCES may be subject to some undesired fac-
tors like DCES-induced delays and sampling period jitters. These factors, in general,
deteriorate the dynamic performance, but it is well known that a controlled system
has inherent stability robustness. Thus, a DCES with a proper sampled-data con-
troller may tolerate induced delays and sampling jitters to a certain degree, without
losing its stability.

However, some factors like data dropout, overload of calculation nodes and con-
trol tasks preemptions may cause standard sample-and-control execution failures
at some sampling instants. Such a phenomenon of controller failure is called the
control input missing which has recently attracted a special attention. With the gen-
eralization of DCESs Hardware/Software control input missings are likely to happen
more frequently implying thus the necessity to use an appropriate adapted controller
design methodology.

In the literature, there are two commonly used compensation strategies called
the zero-control strategy and the hold-control strategy. If a control input missing
occurs, the zero-control strategy sets the control input to zero as given in Zhang and
Yu [265]. In the case of hold-control strategy, if a control input missing occurs, the
previous control input is held as given in Schenato [207]. In Zhang and Yu [265], the
stability of sampled-data control systems under the zero-control strategy is studied
and the admissible control input missing rate (ACIMR)1 is computed.

In this chapter, we will propose a novel compensation strategy: a switched hold-
zero (HZ) control approach. The idea is to combine the benefits of hold-control law
with the zero-control law. If a control input missing occurs, the actuator node of
a DCES has two optional natural strategies: the hold-control and the zero-control
ones. In this context, a natural question may arise: what are the appropriate control
strategies guaranteeing larger ACIMRs? To the best of our knowledge, no answer has
been given to this question. This motivates our study on the control input missing
phenomenon and consequently, we propose to use both of them in an ordered and

1The definition of the ACIMR will be given later in this chapter.
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precise temporal switched manner defined according to the structural properties of
the DCES under study.

This chapter starts with the study of system dynamics under the zero-control
and the hold-control strategies, respectively. The system dynamics under the two
strategies present different characteristics. The variation rate of the Lyapunov func-
tion2 under the zero control is independent of the distribution of the control input
missings. While, under the hold control, such a quantity varies with respect to the
distribution of the control input missings. From the delay-system point of view, the
input delay is proportional to the number of consecutive control input missings.
Thus, when a small number of consecutive control input missings happen, the hold
control may lead to a smaller variation rate of the Lyapunov function than the zero
control. As the number of consecutive control input missings increases, the variation
rate of Lyapunov function of the hold control tends to increase.

The above observation inspires us to present the switched hold-zero control: first,
we apply the hold control, and then, we switch to the zero control. The switching
instant will be considered as a design parameter and it will be computed based on
the system structural properties.

13.1 Modeling and Problem Formulation

13.1.1 Mathematical Expressions of Control Input Missings

As in the precedent chapters of Part III, we represent a DCES by the controlled
plant (9.1)

ẋ(t)=Ax(t)+Bu(t),
and the standard single-sampling sampled-data controller (9.7)

u(t)=Kx(tk), tk ≤ t < tk+1.

Without any loss of generality, the sampling periods T (k) (T (k) = tk+1 − tk) are
time-variant due to sampling jitters. In the sequel, we will adopt the following model
borrowed from Skaf and Boyd [214]:

Tnom −Δ≤ T (k)≤ Tnom +Δ, (13.1)

where Tnom and Δ are two positive constants with Tnom >Δ.
We use a binary variable υk ∈ {0,1} to describe whether or not a control input

missing occurs at a sampling instant tk : υk = 1 if a control input missing occurs at tk ,

2For some chosen Lyapunov function V : Rn �→ R, V (tk) = x′(tk)P x(tk), where tk denote the
sampling instants, if V (tk+1) ≤ ρV (tk), ρ > 0, the scalar ρ is called a variation rate of the Lya-
punov function.
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and υk = 0 otherwise. A sampling (instant) at tk is called an ineffective sampling
(instant) if υk = 1. While, a sampling (instant) at tk is called an effective sampling
(instant) if υk = 0.

With the notations above, the zero-control strategy is formally given described
by

u(tk)= 0, if υk = 1, (13.2)

which means that if a control input missing occurs, the control signal is simply set
to zero.

Whereas, the hold-control strategy is given by

u(tk)= u(tk−1), if υk = 1. (13.3)

Namely, when a control input missing occurs, the current control signal is held.
In order to measure the occurrence frequency of control input missings, we define

the control input missing rate (CIMR) as:

CIMR= lim
k→∞

M(k)

k + 1
, (13.4)

where M(k) =∑k
j=0 υj represents the number of control input missing over the

total k+1 sampling instants. Clearly, CIMR ∈ [0,1]. The definition of CIMR (13.4)
refers to the definition of data dropout rate used in Guan et al. [106].

We are interested in maximizing the value of CIMR tolerated by the DCES under
study without losing its stability. As a measure of this tolerance we introduce the
concept of admissible control input missing rate (ACIMR), which implies that a
DCES is asymptotically stable if CIMR is upper-bounded by ACIMR (i.e., CIMR<
ACIMR).

In fact, to further analyze the dynamic behavior of a DCES subject to control
input missings, we need to consider also the distribution of control input missings.
Later in this chapter, we will see that such an information affects considerably the
dynamic behavior. Under the same value of CIMR, a given DCES may exhibit dif-
ferent ACIMR due to different distribution of control input missings.

Assume tk is an ineffective sampling instant. In order to denote how many in-
effective samplings happen between the last effective sampling instant and tk , we
introduce the following notation:

θk =
{

0, υk = 0,
k− ςk, υk = 1,

(13.5)

where ςk = max{j < k : υj = 0} denotes the last effective sampling instant be-
fore tk . For an ineffective sampling instant tk , θk means that tk is the θk th ineffective
sampling after ςk .

Introduce now the following quantitiesM1(k),M2(k), . . . , as

M1(k)=
k∑
j=0

ϑj (1), M2(k)=
k∑
j=0

ϑj (2), . . . ,
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ϑj (i)=
{

1, θj = i,
0, θj �= i.

Here,M1(k),M2(k), . . . , denote, respectively, the number of one control input miss-
ing after an effective control, the number of two consecutive control input missings
after an effective control, . . . , in the total k + 1 sampling instants. It is not difficult
to see thatM1(k)≥M2(k)≥ · · · .

Let us define R1 = limk→∞ M1(k)
M(k)

,R2 = limk→∞ M2(k)
M(k)

, . . . , denoting respec-
tively, the ratio of M1(k),M2(k), . . . , as the distribution indices. It holds that
R1 + R2 + · · · = 1. It is clear that the distribution indices make sense when
M(k) �= 0, which will be supposed in the sequel. It is important to point out that
such indices play an important role due to the fact that the system dynamics depend
not only on CIMR but also on the related distribution indices.

13.1.2 A Switched Hold-Zero (HZ) Compensation Strategy

When controlled by the zero control (13.2) from an ineffective sampling instant tk ,
the DCES, in fact, simply represents the open-loop system. Before a new effec-
tive sampling instant, the state x(t) satisfies that x(t)= eA(t−tk)x(tk) (independent
on the “old” control input). In addition, since the matrix A is assumed not to be
Hurwitz, the zero control (13.2) has no stabilizing effect. If from an ineffective sam-
pling instant tk , the DCES is controlled by the hold control (13.3), the system can be
viewed as a time-delay system as detailed in the discussion given in Chap. 9. More
precisely, before a new effective sampling instant, ẋ(t) = Ax(t)+ BKx(t − τ(t))
with the (artificial) input delay τ(t)= t − tk .

When the input delay τ(t) is sufficiently small, the hold control (13.3) necessarily
has a stabilizing effect (as the system dynamics are close to those of the closed-loop
system ẋ(t)= (A+BK)x(t)) and hence it works better than the zero control (13.2).
On the other hand, if the input delay τ(t) increases, from a delay-system perspective,
the hold control (13.3) generally tends to lose its stabilizing effect. Moreover, as the
input delay τ(t) becomes sufficiently large, it is likely that the dynamics under the
hold control (13.3) are worse than the open-loop counterpart (i.e., when controlled
by the zero control (13.2)).

Based on the above remarks, we propose the following switched hold-zero (HZ)
control as a new compensation strategy:

u(tk)=
{
u(tk−1), if υk = 1, and θk ≤ σ,
0, if υk = 1, and θk > σ,

(13.6)

or equivalently,

u(tk)=
{
u(tςk ), if υk = 1, and θk ≤ σ,
0, if υk = 1, and θk > σ,

where σ ∈N+ is the switching parameter to be designed.
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We will explain in more details how the switched HZ controller (13.6) works,
taking the case σ = 2 as an example. Assume that tk−1 is an effective sampling
instant and a control input missing occurs at tk . For tk , θk = 1. As θk < σ , the con-
trol input to the controlled plant keeps the last effective control value, i.e., u(tk)=
u(tςk )= u(tk−1). If tk+1 is also an ineffective sampling instant (in this case, tk+1 is
the second consecutive ineffective sampling), θk+1 = 2. As θk+1 = σ , the control
input still keeps the last effective control value, i.e., u(tk+1) = u(tςk+1) = u(tk−1).
Further, if tk+2 is also an ineffective sampling instant (i.e., tk+2 is the third consec-
utive ineffective sampling), θk+1 = 3. As θk+2 > σ , the control input is set to zero
until an effective sampling instant.

We can summarize our idea of the switched HZ control (13.6) strategy: After
an ineffective sampling instant, we try to first use the hold-control strategy, as this
strategy may still stabilize the system. Next, if consecutive ineffective sampling
instants follow, the hold-control strategy may gradually lose its stabilizing effect or
even renders the system more divergent than the zero-control strategy. Thus, starting
with an appropriate time, we shall apply the zero-control strategy instead of the
hold-control strategy. One may see that the idea of the switched HZ control (13.6)
is similar to that of the switched control given in Chap. 12.

Remark 13.1 The switched HZ controller is simple to implement: basically it is a
hold-control one whose output may be turned off at the switching instant.

One of our objectives in the next section is the design of the switching parameter
σ in order to make the ACIMR as large as possible.

Remark 13.2 In practice, a DCES is composed of multiple controlled tasks sharing
the limited calculation and communication resources. Notice that, in some situa-
tions, control input missings may be positively generated by the processor to han-
dle the overload situation. This positive control input missing may lead to a hyper-
sampling periods scheduling, see, for example, Li et al. [151]. Therefore, a larger
ACIMR allows more positive control input missings and consequently a less re-
source consumption. This point will be illustrated through some numerical exam-
ples.

13.2 Problem Analysis and Solution

This section is composed of three subsections. In the first one, we will compute the
ACIMR under the zero-control strategy. In the second subsection, we will discuss
the dynamics under the hold-control strategy. Finally, in the third subsection, we
will give a method to optimally set the switching parameter σ of the switched HZ
control strategy. Independently of the adopted control strategy, ACIMR always ex-
ists. However, its real ACIMR is generally not available. As discussed in Chap. 9,
we may only obtain sufficient though not necessary stability conditions for DCESs
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subject to control input missings. It is known that a sufficient though not neces-
sary condition involves conservatism. Thus, we can not analytically calculate the
ACIMR. Our objective is to render the numerical results as close as possible to the
corresponding real ACIMR bounds.

13.2.1 ACIMR Under the Zero-Control Strategy

A method to calculate the ACIMR under the zero-control strategy was recently pre-
sented in Zhang and Yu [265], in a continuous-time framework whereas in this sub-
section we will present a method in the discrete-time framework. Let us recall here
the one-argument transition matrix defined in (9.12)

Φ(β)= eAβ +
∫ β

0
eAθ dθ BK.

It will be seen that the method proposed in the sequel provides results which are
less conservative than those proposed in the literature. Let us begin our analysis with
the following result:

Proposition 13.1 If there exist a positive-definite matrix P , positive scalars as and
au satisfying the following conditions:

Φ ′(T )PΦ(T ) < asP, T ∈ [Tnom −Δ,Tnom +Δ], (13.7)
(
eAT

)′
PeAT < auP, T ∈ [Tnom −Δ,Tnom +Δ], (13.8)

then the system (9.1), under the zero-control strategy, has the following ACIMR

ACIMR= D

D+ 1
, (13.9)

where

D =− logau(as).

Proof Define a Lyapunov function

V (tk)= x′(tk)P x(tk). (13.10)

In the case of υk = 0, V (tk+1) < asV (tk), if (13.7) holds. Similarly, in the case of
υk = 1, V (tk+1) < auV (tk), if (13.8) holds. It follows that

V (tk) < a
k−M(k−1)
s aM(k−1)

u V (t0),

and

V (tk) <
(
aDu as

)k−M(k−1)
V (t0),
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where

D = M(k − 1)

k−M(k − 1)
.

Thus, the system is asymptotically stable if aDu as ≤ 1. The proof is completed. �

Proposition 13.1 defines a set of conditions where the parameter T lies in an in-
terval [Tnom−Δ,Tnom+Δ]. It is worth mentioning that such conditions are infinite-
dimensional, as we need to check (13.7) and (13.8) for each value of T lying in the
interval [Tnom −Δ,Tnom +Δ]. Since a real interval does not represent a countable
set (of points), Proposition 13.1 can not be directly used. To overcome such a prob-
lem, we will employ the discretization technique, which has been used in Chap. 10,
such that the obtained conditions are finite-dimensional. As a result, we can es-
tablish the conditions in terms of linear matrix inequalities, which are numerically
tractable.

Divide the interval [Tnom − Δ,Tnom + Δ] into N sub-intervals [Tnom,j − Δ
N
,

Tnom,j + Δ
N
] with Tnom,j = Tnom −Δ+ (2j−1)Δ

N
, j = 1, . . . ,N .

Further, for T ∈ [Tnom,j − Δ
N
,Tnom,j + Δ

N
], it follows (similar to Lemma 2 in Suh

[222]) that

Φ(T ) = Φ(Tnom,j )+Δ(υ)(A B )F(Tnom,j )( I K )′,

eAT = eATnom,j +Δ(υ)AeATnom,j ,

with

F(Tnom,j ) = exp
((
A B
0 0

)
Tnom,j

)
,

Δ(υ) =
∫ υ

0
eAθ dθ, υ ∈

[
−Δ
N
,
Δ

N

]
.

For the discretization above, it is easy to see that there exists a positive real num-
ber β , such that ‖Δ(υ)‖ ≤ β .

Let us give the following theorem which states the condition to obtain the ACIMR
in the case of zero-control strategy.

Theorem 13.1 If there exist a positive-definite matrix P , positive scalars ε1,j , ε2,j

(j = 1, . . . ,N ), as and au satisfying the following matrix inequalities

⎛
⎜⎜⎝
−asP + ε1,j (AΦ(Tnom,j )+BK)′(AΦ(Tnom,j )+BK) ∗ ∗

PΦ(Tnom,j ) −P ∗
0 P − ε1,j

β2 I

⎞
⎟⎟⎠< 0,

j = 1, . . . ,N, (13.11)
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⎛
⎜⎝
−auP + ε2,j (Ae

ATnom,j )′(AeATnom,j ) ∗ ∗
PeATnom,j −P ∗

0 P − ε2,j

β2 I

⎞
⎟⎠< 0,

j = 1, . . . ,N, (13.12)

system (9.1) under the zero-control strategy has the ACIMR (13.9).

Proof We need to prove that (13.7) and (13.8) can be ensured by (13.11) and
(13.12), respectively. Thus, it is easy to see that (13.7) holds if and only if the fol-
lowing conditions hold simultaneously

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Φ ′(T )PΦ(T ) < asP, T ∈
[
Tnom,1 − Δ

N
,Tnom,1 + Δ

N

]
,

...

Φ ′(T )PΦ(T ) < asP, T ∈
[
Tnom,N − Δ

N
,Tnom,N + Δ

N

]
.

The inequality condition for each sub-interval

Φ ′(T )PΦ(T ) < asP, T ∈
[
Tnom,j − Δ

N
,Tnom,j + Δ

N

]
,

still has an infinite-dimensional character. Let us demonstrate how it can be trans-
formed into the form of (13.11). By Schur Complements (Boyd et al. [40]), the
condition Φ ′(T )PΦ(T ) < asP is equivalent to

( −asP ∗
PΦ(T ) −P

)
< 0. (13.13)

For T ∈ [Tnom,j − Δ
N
,Tnom,j + Δ

N
], the left-hand side of (13.13) is

( −asP ∗
PΦ(Tnom,j ) −P

)
+
(

0 ∗
PΔ(υ)(A B)F(Tnom,j )

(
I
K

)
0

)
.

Next, for any positive scalar ε1,j , it is true that

(
0 ∗

PΔ(υ)(A B)F(Tnom,j )
(
I
K

)
0

)

≤ ε1,j
(
(A B)F(Tnom,j )

(
I
K

)
0
)′ (
(A B)F(Tnom,j )

(
I
K

)
0
)

+ β2

ε1,j

(
0
P

)
(0 P ).
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Notice that

(
(A B)F(Tnom,j )

(
I
K

)
0
)′ (
(A B)F(Tnom,j )

(
I
K

)
0
)

=
(
(AΦ(Tnom,j )+BK)′(AΦ(Tnom,j )+BK) 0

0 0

)
.

By applying the Schur complement property, for T ∈ [Tnom,j − Δ
N
,Tnom,j + Δ

N
],

(13.13) holds if there exists a positive scalar ε1,j such that (13.11) holds.
Similarly, for T ∈ [Tnom,j − Δ

N
,Tnom,j + Δ

N
], (13.8) holds if there exist pos-

itive scalars ε2,j such that (13.12) holds, and thus, the proof is now com-
pleted. �

In the case of a constant sampling period, i.e., T (K)≡ Tnom, we have the follow-
ing corollary:

Corollary 13.1 Suppose the constant sampling period of system (9.1) is Tnom. If
there exist a positive-definite matrix P , positive scalars as and au satisfying the
following matrix inequalities

( −asP ∗
PΦ(Tnom) −P

)
< 0, (13.14)

( −auP ∗
PeATnom −P

)
< 0, (13.15)

then system (9.1) under the zero-control strategy has the ACIMR (13.9).

Both Theorem 13.1 and Corollary 13.1 are expressed in terms of nonlinear
matrix inequalities, which can not be directly solved. For instance, a straightfor-
ward procedure to apply Corollary 13.1 is as follows: First fix as and au and then
(13.14) and (13.15) are linear matrix inequalities (LMIs). If the LMIs (13.14) and
(13.15) are feasible, we have an ACIMR. To find the optimal ACIMR, denoted
by ACIMR∗, we have to repeat this procedure and manually set as and au each
time. This is a two-variable optimization problem, which is computation demand-
ing.

The optimization problem when using Corollary 13.1 can be transformed into
a standard semi-definite program (SDP) problem. In order to reduce the space, we
only transform the problem when using Corollary 13.1. Similar transformation can
be proposed in the case of Theorem 13.1.
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Algorithm 13.1 3

Step 1: Solve the following generalized eigenvalue minimization problem

min as( −Q ∗
PΦ(Tnom) −P

)
< 0,

Q≤ asP,
and find the minimum value of as , denoted as as .

Step 2: Choose a small step length δ. For as = as : δ : 1 − δ, solve the following
generalized eigenvalue minimization problem

min au( −asP ∗
PΦ(Tnom) −P

)
< 0,

( −R ∗
PeATnom −P

)
< 0,

R ≤ auP .
For each as , and the solution, denoted as a∗u(as), compute D =− loga∗u(as )(as).

Step 3: Select the maximumD, denoted asD∗ from Step 2. The maximum ACIMR,
ACIMR∗, is D∗

D∗+1 .

Let us give an example to show the effectiveness of the proposed method.

Example 13.1 Consider system (9.1) with matrices A, B , and K given in (10.1)

A=
(

0 1
0 −0.1

)
, B =

(
0

0.1

)
, K = (−3.75 −11.5).

Assume the sampling period is not constant. We first compute the ACIMR for the
following four cases, using Theorem 13.1 withN = 5. See the results in Table 13.1.

Case 1: Tnom = 0.1, Δ= 0.01.
Case 2: Tnom = 0.5, Δ= 0.01.
Case 3: Tnom = 1.0, Δ= 0.01.
Case 4: Tnom = 1.7, Δ= 0.01.

For this particular example, we observe an interesting property: if the sampling
period is approaching 1.7, the ACIMR is approximately 1. In other words, the system
appears to be stable even if almost all the samplings are ineffective.

3Algorithm 13.1 is a one-dimensional problem, which can be easily solved by the LMI toolbox in
MATLAB.
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Table 13.1 ACIMR
calculated by using
Theorem 13.1

D∗ ACIMR∗

Case 1 0.3891 0.2801

Case 2 0.532 0.3473

Case 3 0.844 0.4577

Case 4 7.2571× 106 ≈1

Using Theorem 1 in Zhang and Yu [265], the ACIMR under the constant sampling
period can be computed.

Let us compare the two methods:

– If Tnom = 0.1, the calculated ACIMR by Theorem 1 in Zhang and Yu [265] are: in-
feasible, 0.1782, 0.2837, when the average dwell time are Tnom, 1.5Tnom, 2Tnom,
respectively. By Corollary 13.1 given here, the ACIMR is 0.5968.

– If Tnom = 0.5, the calculated ACIMR by Theorem 1 in Zhang and Yu [265] are:
0.1001, 0.2756, 0.3634, when the average dwell time are Tnom, 1.5Tnom, 2Tnom,
respectively. From the calculation done based on Corollary 13.1, the ACIMR is
0.5903.

– If Tnom = 0.7, the calculated ACIMR by Theorem 1 in Zhang and Yu [265] are:
0.0371, 0.2104, 0.2971, when the average dwell time are Tnom, 1.5Tnom, 2Tnom,
respectively. Corollary 13.1 allows to calculate the value of ACIMR equal to
0.5861.

– If Tnom = 1.0, Theorem 1 in Zhang and Yu [265] is not feasible. From Corol-
lary 13.1, the ACIMR calculated value is 0.5790.

Based on the computations above, it is easy to see that our approach leads to less
conservative results. In addition, Theorem 1 in Zhang and Yu [265] requires an ad-
ditional condition on the average dwell time.

In the sequel, we will give a useful application of the ACIMR concept: design of
a hyper-sampling sequence or period based on the ACIMR. Assume that a DCES is
running under the standard single-sampling mode. In order to save system resources,
the processor may “positively” discard some sample-and-control actuation and at
the “discarded” sampling instants the control signal is generated by a compensation
strategy.

For this example, we use the zero-control strategy. We may design a hyper-
sampling period composed of h (h is a positive integer) sub-sampling periods. The
hyper-sampling period should satisfy that E(h)

h
≤ ACIMR, whereE(h) is the number

of discarded samplings in a hyper-sampling period. It is clear that a longer hyper-
sampling period (i.e., a larger h) may lead to a more flexible design.

For case 1, if the hyper-sampling period is composed of 10 sub-sampling periods
(h= 10), the hyper-sampling period allows to “discard” up to 2 samplings in every
hyper-sampling period. Compared with the standard single-sampling mode, 2

10 sam-
pling frequency can be reduced. A possible form of the resultant hyper-sampling pe-
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Fig. 13.1 A hyper-sampling period for Example 13.1

riod4 is shown in Fig. 13.1, where the white dots stand for the discarded samplings.
From the processor side, this hyper-sampling period produces a new sampling se-
quence: T1, T2, . . . , T8, where T1 and T2 are twice of the original sampling period.

If h= 100, the hyper-sampling period should satisfy the condition that in every
100 samplings the system may “discard” up to 28 samplings. Compared with the
single-sampling mode, 28

100 sampling frequency can be reduced. One can see that a
longer hyper-sampling period in general may save more calculation resources.

Using the same idea, we can design a hyper-sampling period for cases 2 and 3. If
h= 10, 3

10 and 4
10 sampling frequency can be saved, respectively, for cases 2 and 3.

For case 4, we prefer to design a hyper-sampling period with a very large h: in
every h samplings, the system only samples once. The resultant sampling frequency
is near zero. Under the single-sampling mode, this system is asymptotically stable
with the minimum allowable sampling frequency 0.58, see, for instance, Oishi and
Fujioka [188]. Using the hyper-sampling mode, the minimum allowable sampling
frequency is near 0. One can see that much system calculation resources may be
saved.

13.2.2 Dynamics Under the Hold-Control Strategy

To the best of our knowledge, no results have been reported on computing the
ACIMR under the hold-control strategy. In the sequel, we will point out that it is
in fact impossible to compute the ACIMR under the hold-control strategy.

Denoting the effective sampling instants by te1 , t
e
2 , . . . , we have the following

discrete-time model of a DCES with the hold-control strategy

x
(
tek+1

)=Φ(tek+1 − tek
)
x
(
tek
)
. (13.16)

The transition matrix function Φ(tek+1 − tek ) is time-varying and uncertain. We con-
sider here a simple scenario with tk+1 − tk ≡ Tnom. We will see that, even for this
simple case, it is impossible to compute the ACIMR under the hold-control strategy.

4In fact, we have 45 (computed as the number of 2-combinations from a set of 10 elements) possi-
ble forms of the hyper-sampling period if we “discard” 2 samplings in every 10 samplings.
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It is natural to treat (13.16) from a switched-system perspective. Formula (13.16)
corresponds to a switched system consisting of possible sub-systems: x(tek+1) =
Φ(Tnom)x(t

e
k ), x(t

e
k+1)=Φ(2Tnom)x(t

e
k ), x(t

e
k+1)=Φ(3Tnom)x(t

e
k ), . . . Since it in-

volves an infinite number of sub-systems, it is impossible to analyze its stability.
Thus, no ACIMR exits for the DCES with the hold-control strategy.

In order to analyze the dynamics under the hold-control strategy, we need to set
an upper bound on the execution time of a hold control. It is important to point
out that such an upper bound is not needed when computing the ACIMR under the
zero-control strategy. Introduce now the following:

Assumption 13.1 We will assume that the hold-control (13.3) can be used for at
most λ consecutive ineffective sampling instants.

The existence of such an upper bound (as stated in the assumption above) makes
the analysis tractable. In fact, such an hypothesis is reasonable since tek+1 − tek can
not be unbounded in practice.

13.2.3 Optimization of the Switched Hold-Zero (HZ) Control

Assume the largest ACIMR under the zero control, denoted by ACIMR∗, is obtained
by Proposition 13.1 when as = a∗s and au = a∗u . In this subsection, we will study
how to optimally set the switching parameter σ of the switched HZ controller. In ad-
dition, due to Assumption 13.1, the choice of σ is restrained in the set {0,1, . . . , λ}.

Our optimization problem can be formulated as follows: Given as = a∗s and
au = a∗u , set the switching parameter σ , within the set {0,1, . . . , λ}, such that we
can obtain the largest ACIMR. If the obtained σ is neither 0 nor λ, we conclude
that the switched HZ control strategy is superior to both the zero-control and the
hold-control strategies.

Before presenting the main results, we need to revisit the property of the dis-
tribution information of control input missings. Since an ineffective sampling in-
stant tk with θk = 1 must come after an effective sampling, it is true that M1(k) ≤
k+ 1−M(k). Thus, we have the following constraint on the distribution indices:

DR1 ≤ 1, (13.17)

where D = M(k−1)
k−M(k−1) .

Similarly, it follows that Ma+1(k) ≤ Ma(k) (a is a positive integer) since an
ineffective sampling with θk = a + 1 must take place after an ineffective sampling
with θk−1 = a. Thus, it follows that R1 ≥R2 ≥ · · · .

Let us first present the following proposition.

Proposition 13.2 For given a∗s and a∗u , there exist a positive-definite matrix P ,
positive scalars o1, o2, . . . , oλ, satisfying the following conditions

Φ ′(T )PΦ(T ) < a∗s P , T ∈ [Tnom −Δ,Tnom +Δ], (13.18)
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(
eAT

)′
PeAT < a∗uP, T ∈ [Tnom −Δ,Tnom +Δ], (13.19)

Φ ′(T )PΦ(T ) < oiP, T ∈ [(i + 1)(Tnom −Δ), (i + 1)(Tnom +Δ)
]
, 1≤ i ≤ λ.

(13.20)

Let θ1 = o1
a∗s

and θi = oi
oi−1
, i = 2, . . . , λ. If there exists a positive integer l such that

max{θ1, . . . , θl}< a∗u and min{θl+1, . . . , θλ}> a∗u , we have that ACIMRσ=λ ≤ · · · ≤
ACIMRσ=l+1 ≤ ACIMRσ=l ≥ ACIMRσ=l−1 ≥ · · · ≥ ACIMRσ=1 ≥ ACIMRσ=0.

(Here ACIMRσ=κ (κ = 0, . . . , λ) denotes the ACIMR under the switched HZ con-
trol with switching parameter σ = κ .)

Proof We first need to prove the existence of P , o1, o2, . . . , oλ, satisfying (13.18),
(13.19), and (13.20). As a∗s and a∗u are the optimal solution for the zero-control strat-
egy, for a∗s and a∗u there exists a positive-definite P satisfying (13.18) and (13.19).
For this P , (13.20) must hold for sufficiently large o1, o2, . . . , oλ. Thus, for given a∗s
and a∗u , the conditions (13.18), (13.19), and (13.20) are necessarily feasible. Here,
we denote the D under the switched HZ control with switching parameter σ = κ by
Dσ=κ (κ = 0, . . . , λ). Recall that Dσ=0 =−loga∗ua

∗
s . Let us compute Dσ=1. When

σ = 1,

V (tk) <

((
a∗u
)D(1−R1)

(
o1

a∗s

)DR1

a∗s
)k−M(k−1)

V (t0),

D = M(k − 1)

k −M(k − 1)
.

We have that

Dσ=1 =
⎧⎨
⎩
−log

(a
∗(1−R1)
u (

o1
a∗s )

R1 )
a∗s , if a∗(1−R1)

u ( o1
a∗s
)R1 > 1 and Dσ=1 ≤ 1

R1
,

1
R1
, otherwise.

It follows that if o1
a∗s
< a∗u , ACIMRσ=1 ≥ ACIMRσ=0.

We proceed to consider the case when σ = 2. If σ = 2, it follows that

V (tk) <

((
a∗u
)D(1−R1−R2)

(
o2

o1

)DR2
(
o1

a∗s

)DR1

a∗s
)k−M(k−1)

V (t0).

We have that

Dσ=2 =

⎧⎪⎪⎨
⎪⎪⎩

−log
(a
∗(1−R1−R2)
u (

o2
o1
)
R2 (

o1
a∗s )

R1 )
a∗s ,

if a∗(1−R1−R2)
u ( o2

o1
)R2( o1

a∗s
)R1 > 1 and Dσ=2 ≤ 1

R1
,

1
R1
, otherwise.

It is true that if o2
o1
< a∗u , ACIMRσ=2 ≥ ACIMRσ=1. Following this way, we can

prove that ACIMRσ=l ≥ ACIMRσ=l−1 ≥ · · · ≥ ACIMRσ=1 ≥ ACIMRσ=0 under the
condition of the proposition.
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For λ≥ σ > l, we have that

V (tk) <

((
a∗u
)D(1−R1−···−Rσ )

(
oσ

oσ−1

)DRσ
· · ·

(
o1

a∗s

)DR1

a∗s
)k−M(k−1)

V (t0).

Thus, we conclude that ACIMRσ=λ ≤ · · · ≤ ACIMRσ=l+1 ≤ ACIMRσ=l , and the
proof is complete. �

We will set the optimal switching parameter as σ = l obtained by Proposi-
tion 13.2 and the corresponding ACIMR is given by:

ACIMRσ=l =
⎧⎨
⎩

1− 1
1−logΥl a

∗
s
, if Υl > 1 and −logΥl a

∗
s ≤ 1

R1
,

1− 1
1+ 1

R1

, otherwise, (13.21)

where

Υl =
(
a∗u
)(1−∑l

i=1Ri)
(
ol

ol−1

)Rl
· · ·

(
o1

a∗s

)R1

.

Similar to Proposition 13.1, Proposition 13.2 has also an infinite-dimensional
character. We give the following numerically tractable condition, based on the dis-
cretization technique as we used it in Sect. 13.2.1.

Divide intervals [Tnom −Δ,Tnom +Δ], [2(Tnom −Δ),2(Tnom +Δ)], [3(Tnom −
Δ),3(Tnom+Δ)], . . . , intoN1,N2,N3, . . . , sub-intervals, [Tnom,1,j− Δ

N1
, Tnom,1,j+

Δ
N1
] (Tnom,1,j = Tnom−Δ+ (2j−1)Δ

N1
, j = 1, . . . ,N1), [Tnom,2,j − 2Δ

N2
, Tnom,2,j + 2Δ

N2
]

(Tnom,2,j = 2(Tnom−Δ)+ (2j−1)2Δ
N2

, j = 1, . . . ,N2), [Tnom,3,j − 3Δ
N3
, Tnom,3,j + 3Δ

N3
]

( Tnom,3,j = 3(Tnom −Δ)+ (2j−1)3Δ
N3

, j = 1, . . . ,N3), . . .

Further, for T ∈ [Tnom,i,j − iΔ
Ni
, Tnom,i,j + iΔ

Ni
] (i = 1,2,3, . . .),

Φ(T ) = Φ(Tnom,i,j )+Δi(υ)(A B)F(Tnom,i,j )(I K)′,

eAT = eATnom,i,j +Δi(υ)AeATnom,i,j ,

with

F(Tnom,i,j ) = exp
((
A B
0 0

)
Tnom,i,j

)
,

Δi(υ) =
∫ υ

0
eAθ dθ, υ ∈

[
− iΔ
Ni
,
iΔ

Ni

]
.

Through the discretization above, there exist βi such that ‖Δi(υ)‖ ≤ βi (i =
1, . . . , λ+ 1). We have the following theorem.
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Theorem 13.2 For given a∗s and a∗u , there exist a positive-definite matrix P , posi-
tive scalars ε1,j , . . . , ελ+2,j , satisfying the following matrix inequalities

⎛
⎜⎜⎝
−a∗s P + ε1,j (AΦ(Tnom,1,j )+BK)′(AΦ(Tnom,1,j )+BK) ∗ ∗

PΦ(Tnom,1,j ) −P ∗
0 P − ε1,j

β2
1
I

⎞
⎟⎟⎠

< 0, j = 1, . . . ,N1,⎛
⎜⎜⎝
−a∗uP + ε2,j (Ae

ATnom,1,j )′(AeATnom,1,j ) ∗ ∗
PeATnom,1,j −P ∗

0 P − ε2,j

β2
1
I

⎞
⎟⎟⎠< 0,

j = 1, . . . ,N1,⎛
⎜⎜⎝
−o1P + ε3,j (AΦ(Tnom,2,j )+BK)′(AΦ(Tnom,2,j )+BK) ∗ ∗

PΦ(Tnom,2,j ) −P ∗
0 P − ε3,j

β2
2
I

⎞
⎟⎟⎠

< 0, j = 1, . . . ,N2,⎛
⎜⎜⎝
−o2P + ε4,j (AΦ(Tnom,3,j )+BK)′(AΦ(Tnom,3,j )+BK) ∗ ∗

PΦ(Tnom,3,j ) −P ∗
0 P − ε4,j

β2
3
I

⎞
⎟⎟⎠

< 0, j = 1, . . . ,N3,

...
⎛
⎜⎝
−oλP + ελ+2,j (AΦ(Tnom,λ+1,j )+BK)′(AΦ(Tnom,λ+1,j )+BK) ∗ ∗

PΦ(Tnom,λ+1,j ) −P ∗
0 P − ελ+2,j

β2
λ+1
I

⎞
⎟⎠

< 0, j = 1, . . . ,Nλ+1.

If there exists a positive integer l satisfying the conditions max{θ1, . . . , θl} < a∗u
and min{θl+1, . . . , θλ}> a∗u , then we have that ACIMRσ=λ ≤ · · · ≤ ACIMRσ=l+1 ≤
ACIMRσ=l ≥ ACIMRσ=l−1 ≥ · · · ≥ ACIMRσ=1 ≥ ACIMRσ=0. The ACIMR is given
by (13.21).

The proof follows the same ideas to the ones proposed for Theorem 13.1, and hence
it is omitted.

If the sampling period is constant, we can also derive a condition similar to Corol-
lary 13.1. Suppose that the constant sampling period of system (9.1) is Tnom and
that the largest ACIMR under the zero control, denoted by ACIMR∗, is obtained by
Corollary 13.1, when as = a∗s and au = a∗u .
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Corollary 13.2 With the hypothesis proposed above, for given a∗s and a∗u , there ex-
ist a positive-definite matrix P , positive scalars o1, . . . , oλ, satisfying the following
conditions

( −a∗s P ∗
PΦ(Tnom) −P

)
< 0, (13.22)

( −a∗uP ∗
PeATnom −P

)
< 0, (13.23)

( −oiP ∗
PΦ((i + 1)Tnom) −P

)
< 0, i = 1, . . . , λ. (13.24)

If there exists a positive integer l satisfying the conditions max{θ1, . . . , θl} < a∗u
and min{θl+1, . . . , θλ}> a∗u , then we have that ACIMRσ=λ ≤ · · · ≤ ACIMRσ=l+1 ≤
ACIMRσ=l ≥ ACIMRσ=l−1 ≥ · · · ≥ ACIMRσ=1 ≥ ACIMRσ=0.

Remark 13.3 The system under consideration is fundamentally a time-varying sys-
tem. For a time-variant system, unlike for a time-invariant one, it is very difficult to
obtain a necessary and sufficient stability condition. The method used in this chapter
is a Lyapunov-based one in the time-domain framework, which leads to sufficient
though not necessary conditions.

Remark 13.4 We refer to the maximum ACIMR under the zero-control strategy
when designing the switched HZ control. Thus, we set as = a∗s and au = a∗u . This
manipulation considerably simplifies our optimization problem. If as and au are also
free parameters, the computation workload may increase as this is an NP-complete
problem. As a perspective for research direction, we may consider how to optimize
these two parameters, which probably further enhances the ACIMR.

In the following, we will give two examples to illustrate the approach given by
Theorem 13.2.

Example 13.2 Consider system (9.1) with the following matrices

A=
(

0.1 1
0 1

)
, B =

(
0
1

)
, K = (−2.31 −4.1 ).

Let us suppose that λ= 5 and we choose Ni = 2 (i = 1, . . . ,5).

Case 1: T (k) ∈ [0.25− 0.001,0.25+ 0.001].
Under the zero-control strategy, from the Theorem 13.1, we have that a∗s =
0.67, a∗u = 2.75,ACIMR∗ = 0.2836. Let us compute the ACIMR under the
switched HZ strategy. Using Theorem 13.2, we have that o1 = 1.00, o2 = 8.57,
o3 = 33.51, o4 = 97.41, o5 = 241.47. As o1

a∗s
< a∗u and min{ o2

o1
,
o3
o2
, o4
o3
,
o5
o4
} > a∗u ,

we set σ = 1. The relation between the ACIMR and R1 is shown in Fig. 13.2. When
σ = 1, the switched HZ control is superior to both the zero control and the hold
control.
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Fig. 13.2 R1 vs ACIMR for Example 13.2

Fig. 13.3 R1,R2 vs ACIMR for Example 13.2

Case 2: T (k) ∈ [0.15− 0.001,0.15+ 0.001].
Under the zero-control strategy, we have that a∗s = 0.79, a∗u = 1.86,ACIMR∗ =
0.2753 by using Theorem 13.1. Let us compute also the ACIMR under the switched
HZ strategy. Using Theorem 13.2, we have that o1 = 0.62, o2 = 0.50, o3 =
2.80, o4 = 8.50, o5 = 20.10. As max{ o1

a∗s
, o2
o1
} < a∗u and min{ o3

o2
, o4
o3
,
o5
o4
} > a∗u , we

set σ = 2. The relation among ACIMR, R1, and R2 is shown in Fig. 13.3. It is seen
that a much larger ACIMR is obtained.
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Fig. 13.4 A hyper-sampling period for Example 13.2

Through this example, we see that the ACIMR depends on the distribution indices
R1,R2,R3, . . . , if hold control is used.

We can use the obtained ACIMR in order to design a hyper-sampling sequence.
For this example, we use the switched HZ control strategy. Assume we allocate a
sampling period with Tnom = 0.15. In order to save system resources in situations of
processor overload (e.g., when new aperiodic tasks are released), we may positively
discard some sample-and-control executions, as we did in Example 13.1. According
to the obtained ACIMR, we could define a new sampling sequence: sample once,
discard three samplings, sample once and discard two samplings. This is a simple
hyper-period case, with two sub-samplings: T1 (three times of the original sampling
period) and T2 (twice of the original sampling period), as shown in Fig. 13.4. As a
consequence, the average sampling frequency under the hyper-sampling mode is 2

7
times of that under the simple sampling mode.

Example 13.3 We now apply the proposed method to a benchmark example. We
consider a batch reactor system, which is controlled by a sampled state-feedback
control, see, for instance, Gommans et al. in [97].

A linearized model of the batch reactor process can be found in Green and Lime-
beer [103] and is given by:

ẋ(t)=

⎛
⎜⎜⎝

1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎞
⎟⎟⎠x(t)

+

⎛
⎜⎜⎝

0 0
5.679 0
1.136 −3.146
1.136 0

⎞
⎟⎟⎠u(t).

Similar to Gommans et al. [97], we assume that the sampling period is constant
and employ the sampled-data control (9.8)

u(t)=Kx(kT ), kT ≤ t < (k + 1)T , k ∈N.

Let us choose the sampling period as T = 0.1 and the feedback gain as

K =
(

0.3262 −0.6890 0.2002 −0.6832
2.0250 −0.1612 1.5572 −1.0585

)
.
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Fig. 13.5 R1 vs ACIMR for Example 13.3

We first use the results of Corollary 13.1 in order to compute the ACIMR un-
der the zero-control strategy. We have that ACIMR∗ = 0.51 with the associated
a∗s = 0.65, a∗u = 1.51. We next use Corollary 13.2 to calculate the ACIMR under
the switched HZ control strategy. Suppose λ = 5. We have that o1 = 0.40, o2 =
1.06, o3 = 3.27, o4 = 7.32, o5 = 16.59. As o1

a∗s
< a∗u and min{ o2

o1
,
o3
o2
, o4
o3
,
o5
o4
} > a∗u ,

we set σ = 1.
The ACIMR under the switched HZ control is illustrated in Fig. 13.5, where we

see that the switched HZ control leads to a larger ACIMR. From the figure, we see
that ACIMR first increases with respect to R1; then after reaching its maximum
point, ACIMR reduces with respect to R1. This reducing curve is due to the distri-
bution constraint (13.17). For example, as R1 = 1, it means that all the ineffective
samplings are with θk = 1. That is, the system samples once and then a control in-
put missing must follow. Such a process repeats. One can see that the corresponding
control input missing rate is 0.5 and, we can see from the figure, that the related
ACIMR is also 0.5.

Remark 13.5 For simplicity, we have chosen the value of λ= 5 (a small value) in all
the examples of this chapter. When λ increases, we have a larger range of choices,
but the computation time increases accordingly. As this computation is done “off-
line”, we are allowed to make such a choice (choose a large λ) in practice.

13.3 Notes and Comments

In this chapter, we proposed a new switched hold-zero (HZ) control strategy. When
a control input missing occurs, the switched HZ control strategy has two candidate
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control laws: the hold control and the zero control. We study how to make the opti-
mal switching between the two control laws, by setting a switching parameter, such
that the switched HZ control admits the maximum admissible control input missing
rate (ACIMR). With the optimal switching parameter, the switched HZ control strat-
egy is shown to work better than both the zero-control and the hold-control ones.
In addition, we proposed an application of the ACIMR: designing a hyper-sampling
period based on the obtained ACIMR. According to the obtained hyper-sampling pe-
riod, the system may positively discard some sample-and-control executions during
the run-time. In this way, we may reduce the system resource utilization.

In the literature, there are two commonly used compensation strategies for con-
trol input missings: the zero-control and the hold-control ones. These two strategies
as well as the one we are proposing are simple to implement in practice, as basically
they do not require extra dedicated hardware. The actuators in the DCES archi-
tecture typically work in the event-driven fashion. Thus, if a control input missing
takes place (i.e., the actuator is not triggered to update its control input to the con-
trolled plant), the actuator generally holds its current control signal. That is, the
hold-control appears as a default compensation strategy for an event-driven actua-
tor. The zero-control is also very simple to implement since the actuator only needs
to set its control signal to zero. There are other classes of compensation strate-
gies reported in the literature for the control input missings. To name only a few,
a model-based compensator was studied in Gommans et al. [97] and a predictive
compensation was investigated in Henriksson et al. [115]. A common feature of the
above mentioned compensation strategies is that they require an extra observer or
predictor. The effectiveness and advantages are seen in the above papers. When a
control input missing takes place, the actuator will use the estimated state from the
observer or predictor to generate the control input to the controlled plant. When a
DCES is controlled with the hold-control strategy, the dynamics can be analyzed
from a delay-system point of view (see also Chaps. 9 and 12). If consecutive control
input missings happen, the (artificial) input delay is time-varying and uncertain. To
the best of our knowledge, there exists no analytical approach giving a complete
characterization of the such time-varying delay systems.

In comparison with the previous mentioned methods, our approach leads to (suf-
ficient though not necessary) conditions relatively simple and natural to apply for
DCESs but, unfortunately, still conservative. We believe that there exists much room
for further reduction of the conservatism. For instance, we find through simula-
tions that the ACIMR index, in fact, approaches 1 for all the cases studied in Ex-
ample 13.1. Finally, throughout this chapter, we have adopted a simple common
Lyapunov function to develop the stability conditions. A potential way to further
reduce the conservatism is to use multiple Lyapunov functions.



Resumé

Distributed control and embedded systems (DCESs) incorporating real-time con-
trol and communication functions implemented on a distributed Hardware/Software
dedicated architectures are ubiquitous in various engineering fields. Their major in-
dustrial challenge is the increasing systems complexity. In all the fields, customer
needs are translated to “functions” that all require control and information. For that
reason, connectivity is increasing. There is a need from system engineers to under-
stand and master the behavior of the global system.

What we propose in this monograph is a natural extension of control theory to-
wards this direction. Classical control modeling and design models are refined with
computing and networking aspects, towards this goal. Several results on joint de-
sign of control laws and scheduling algorithms as well as stability analysis of some
special cases of DCESs with respect to induced delays are presented. This study
is addressed by considering different aspects of the limitations imposed by the use
of communication channels as well as embedded node processors composing the
HW/SW architecture of DCESs. We specially focused on limitations in terms of
network communication bandwidth and processor calculation power inducing sam-
pling and period jitter, communication delay and signal quantization limitation.

This monograph will be of great interest to advanced students and researchers
in cyber-physical systems, as well as to engineers that need to design and develop
DCESs with computing power or bandwidth limitations or delays.
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Appendix A
Four-Wheels Active Suspension System Model

A.1 Model Description

The active suspension model (Fig. A.1) considered in this book was adopted
from [60]. It consists of a seven degree-of-freedom system. In this model, the car
body, or sprung mass, is free to heave, roll and pitch. In order to obtain a linear
model, roll and pitch angles are assumed to be small. The suspension system con-
nects the sprung mass to the four unsprung masses (front–left, front–right, rear–left
and rear–right wheels), which are free to bounce vertically with respect to the sprung
mass. The suspension element consists of a spring, a shock absorber and a hydraulic
actuator at each corner. The shock absorbers are modeled as linear viscous dampers,
and the tires are modeled as linear springs in parallel to linear dampers.

In order to describe this system, fifteen main variables need to be considered:

z heave position of the center of gravity of the sprung mass
ϕ pitch angular position of the sprung mass
θ roll angular position of the sprung mass
dfl front–left suspension deflection
drl rear–left suspension deflection
drr rear–right suspension deflection
dfr front–right suspension deflection
Vfl front–left unsprung mass velocity
Vrl rear–left unsprung mass velocity
Vrr rear–right unsprung mass velocity
Vfr front–right unsprung mass velocity
d ′fl front–left tire deflection
d ′rl rear–left tire deflection
d ′rr rear–right tire deflection
d ′fr front–right tire deflection

Road disturbances acting on the four vehicle wheels consist of height displace-
ment inputs (dξfl , dξrl , dξrr , dξfr ) and height velocity inputs (Vξfl ,Vξrl ,Vξrr ,Vξfr ) de-
fined with respect to an inertial reference frame.

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6,
© Springer International Publishing Switzerland 2014
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Fig. A.1 Full vehicle model

Table A.1 Sprung and unsprung mass

Notation Description Value Unit

MS Sprung mass 1460 kg

Mufl ,Mufr Front–left and front–right unsprung mass 40 kg

Murl ,Murr Rear–left and rear–right unsprung mass 35.5 kg

Ixx Roll moment of inertia 460 kg m2

Iyy Pitch moment of inertia 2460 kg m2

The suspension model has seven degrees of freedom. Consequently, only four-
teen state variables are needed to describe it. The extra variable may be eliminated
if the tire deflections are expressed as a function of three state variables d ′fl, d ′rl and
d ′rr and of the road disturbances dξfl , dξrl , dξrr , dξfr as illustrated in [60].

A.2 Vehicle Parameters

The following tables, adopted from [60], summarizes the involved vehicle parame-
ters and their values. Table A.1 is related to the sprung and unsprung masses.

Table A.2 summarizes suspension elements characteristics. Tire stifness Kufl ,
Kufr , Kurl and Kurr are equal to 175500 N/m. Front track tf and rear track tr are re-
spectively, equal to 1.522 m and 1.510 m. Finally, longitudinal distance from sprung
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Table A.2 Suspension elements characteristics

Notation Description Value Unit

KSfl , KSfr Front–left and front–right suspension stiffness 19960 N/m

KSrl , KSrr Rear–left and rear–right suspension stiffness 17500 N/m

CSfl , CSfr Front–left and front–right suspension damping 17500 N/m

CSrl , CSrr Rear–left and rear–right suspension damping 17500 N/m

mass center of gravity to front axle is lf = 1.011 m whereas longitudinal distance
from rear axle to sprung mass center of gravity is lr = 1.803 m.

A.3 State Equations

Applying a force-balance analysis to the model in Fig. A.1, the state equations may
be derived from the following equations of motion.

First, the equations of motion, along the vertical direction, of the sprung mass:

MSz̈+KSfldfl +KSrldrl +KSrrdrr +KSfrdrr

+CSfl ḋfl +CSrl ḋrl +CSrr ḋrr +CSfr ḋfr

+ ufl + url + urr + ufr = 0. (A.1)

The pitch dynamics of the sprung mass:

Iyyϕ̈ + lr (KSrldrl +KSrrdrr)− lf (KSfldfl +KSfrdfr)

+ lr (CSrl ḋrl +CSrr ḋrr)− lf (KSfl ḋfl +KSfr ḋfr)

+ lr (url + urr)− lf (ufl + ufr)= 0. (A.2)

The roll dynamics of the sprung mass:

Ixx θ̈ + tf
2
KSfrdfr + tr

2
KSrrdrr − tf

2
KSfldfl − tr

2
KSrldrl

+ tf
2
CSfr ḋfr + tr

2
CSrr ḋrr − tf

2
CSfl ḋfl − tr

2
CSrl ḋrl

− Kr
tr
(drl − drr)− Kf

tf
(dfl − dfr)

+ (urr − url)
tr

2
+ (ufr − ufl)

tf

2
= 0. (A.3)
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Then, equations of motion of sprung masses can be written. The Vertical dynam-
ics of the front–left sprung mass:

Mufl V̇fl +Kufld
′
fl −KSfldfl −CSfl ḋfl − Kf

t2f

(dfl − dfr)

− tf
4

(dξfl − dξfr )
tf

− (dξrl − dξrr )

tr
+Cufl(Vfl − Vξfl)− ufl = 0. (A.4)

The vertical dynamics of the rear–left sprung mass:

Murl V̇rl +Kurld
′
rl −KSrldrl −CSrl ḋrl − Kr

t2r
(drl − drr)

− tr
4

(dξfl − dξfr )
tf

− (dξrl − dξrr )

tr
+Curl(Vrl − Vξrl)− url = 0. (A.5)

The vertical dynamics of the rear–right sprung mass:

Murr V̇rr +Kurrd
′
rr −KSrrdrr −CSrr ḋrr − Kr

t2r
(drl − drr)

− tr
4

(dξfl − dξfr )
tf

− (dξrl − dξrr )

tr
+Curr (Vrr − Vξrr )− urr = 0. (A.6)

The vertical dynamics of the front–right sprung mass, based on the geometric
considerations described previously:

Mufr V̇fr +Kufr

(
dfl + d ′fl − dfr

)− (
drl + d ′rl

)− tf
tr

(
drr + d ′rr

)

−KSfrdfr −CSfr ḋfr − Kf
t2f

(dfl − dfr)

+ tf
4

(dξfl − dξfr )
tf

− (dξrl − dξrr )

tr
+Cufr (Vfr − Vξfr )− ufr = 0. (A.7)

The state equations are completed by the following kinematic relations.
Front–left suspension defection derivatives:

ḋfl = ż− lf ϕ̇ − tf
2
θ̇ − Vfl. (A.8)

Rear–left suspension defection derivatives:

ḋrl = ż+ lr ϕ̇ − tr
2
θ̇ − Vrl. (A.9)

Rear–right suspension defection derivatives:

ḋrr = ż+ lr ϕ̇ + tr
2
θ̇ − Vrr. (A.10)
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Front–right suspension defection derivatives:

ḋfr = ż− lf ϕ̇ + tf
2
θ̇ − Vfr. (A.11)

Front–left tire defection derivatives:

ḋ ′fl = Vfl − 1

4
3Vξfl + Vξfr +

(Vξrl − Vξrr )tf

tf
. (A.12)

Rear–left tire defection derivatives:

ḋ ′rl = Vrl − 1

4
3Vξrl + Vξrr +

(Vξfl − Vξfr )tf
tf

. (A.13)

Rear–right tire defection derivatives:

ḋ ′rr = Vrr − 1

4
3Vξrr + Vξrl −

(Vξfl − Vξfr )tf
tr

. (A.14)



Appendix B
Quadrotor

B.1 Introduction to Quaternions

Euler’s rotation theorem states that, in three-dimensional space, any displacement
of a rigid body such that a point on the rigid body remains fixed, is equivalent to
a single rotation about some axis e that runs through the fixed point. Therefore,
a rotation of a rigid body can be represented by a unit vector, e, known as the Euler
axis, and a rotation angle β around this axis.

The quaternion q is then defined as

q =
(

cos β2
e sin β2

)
=
(
q0
q

)
∈H, (B.1)

where

H= {
q such that q = [q0 q]T , q0 ∈R, q ∈R

3 and q2
0 + qT q= 1

}
. (B.2)

q= [q1 q2 q3]T and q0 are respectively, known as the vector and scalar parts of the
quaternion.

In attitude modeling, the unitary quaternion can be used to represent the rotation
from an inertial coordinate frame R located at some point in the space (for instance,
the earth North–East–Down frame, NED), to the body coordinate frame B attached
to the quadrotor body. A coordinate change from r ∈ R

3 in the reference frame to
b ∈R

3 in the body frame is expressed with the rotation matrix C(q) by

b= C(q)r, (B.3)

where

C(q) = (
q2

0 − qT q
)
I3 + 2

(
qqT − q0

[
q×
])
,

C(q) =
⎛
⎝

2(q2
0 + q2

1 )− 1 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) 2(q2
0 + q2

2 )− 1 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) 2(q2
0 + q2

3 )− 1

⎞
⎠
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where

[
q×
]=

⎡
⎢⎣

0 −q3 q2

q3 0 −q1

−q2 q1 0

⎤
⎥⎦ (B.4)

is the skew symmetric tensor associated to q.
q is an efficient attitude representation from a computational point of view, which

allows avoiding singularity problems that can occur with other methods like Eu-
ler angles or Cardan angles. However, quaternions are more difficult to be phys-
ically interpreted. Changing q into the angles is a simple nonlinear transforma-
tion

ψ = arctan

(
2(q0q3 + q1q2)

1− 2(q2
2 + q2

3 )

)
, (B.5)

θ = arcsin
(
2(q0q2 − q1q3)

)
, (B.6)

φ = arctan

(
2(q0q1 + q2q3)

1− 2(q2
1 + q2

2 )

)
. (B.7)

B.2 Quadrotor Attidue Modeling

The movement of the quadrotor Fig. B.1 allows for six degrees of freedom. Two
frames are considered: the inertial frame R and the body frame B, which is attached
to the quadrotor with its origin at the quadrotor’s center of mass. The quadrotor’s
orientation (also named attitude) is represented by three angles: yaw ψ , pitch θ , and
roll φ. Given that the front and rear motors rotate counter-clockwise while the other
ones rotate clockwise, gyroscopic effects and aerodynamic torques tend to be can-
celed. The throttle input is the sum of the thrusts of each rotor (F1+F2+F3+F4).
The pitch movement θ is obtained by increasing (or reducing) the velocity of the
rear motor while reducing (or increasing) the velocity of the front motor. The roll
movement φ is obtained similarly using the lateral motors. The yaw movement ψ
is obtained by increasing (or decreasing) the velocity of the front and rear motors
while decreasing (or increasing) the velocity of the lateral motors. This can be done
while keeping the total thrust T constant, which must satisfy T ≥mg, with g rep-
resenting the earth’s gravity.

The attitude of the quadrotor is completely described using a unitary quater-
nion q . The unit quaternion represents the rotation from an inertial frame to the
body frame attached to the quadrotor. The dynamic evolution of the attitude quater-
nion is given by

(
q̇0
q̇

)
= 1

2

( −qT

I3q0 + [q×]
)
ω, (B.8)
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Fig. B.1 Quadrotor AscTec Pelican and its body frame

where ω ∈R
3 is the angular velocity of the quadrotor in the body frame and [q×] is

the skew symmetric tensor associated to q as defined in (B.4). The rotational motion
of the quadrotor, neglecting the gyroscopic torques, is given by

If ω̇=−
[
ω×

]
If ω+ τa + τdist, (B.9)

where If ∈ R
3×3 is the inertia matrix of the quadrotor with respect to the body

frame. If is constant. τa ∈ R
3 represents the torques resulting from the differences

of the relative speeds of the four rotors, and may be written as

τa =
⎡
⎢⎣
τroll

τpitch

τyaw

⎤
⎥⎦ ,

and τdist ∈R
3 describe the aerodynamic disturbances acting on the quadrotor.

The gyroscopic torques have been neglected. ωMi (i = 1, . . . ,4) are the four
motors’ velocities. The components of the torque τa ∈ R

3 generated by the four
rotors, can be approximated by

τroll = d · b ·
(
ω2
M2 −ω2

M4

)
,

τpitch = d · b ·
(
ω2
M1 −ω2

M3

)
,

τyaw = k ·
(
ω2
M1 +ω2

M3 −ω2
M2 −ω2

M4

)
(B.10)

where d is the distance from the rotors to the quadrotor’s center of mass, b and k
are two parameters depending on the air density, the radius, the shape, the pitch of
the blade and other factors.
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Table B.1 Quadrotor parameter values

d Distance between a rotor and the center of gravity 0.225 m

b Parameter for the torque computation 29.1× 10−5

k Parameter for the torque computation 1.14× 10−6

If Quadrotor inertia matrix diag{8.28,8.28,5.7} × 10−3 kg m2

m Quadrotor mass 0.520 kg

Finally, the quadrotor parameter values, adopted from [17], are given in Ta-
ble B.1.
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