
Detecting Malicious Co-resident Virtual

Machines Indulging in Load-Based Attacks

Smitha Sundareswaran and Anna C. Squcciarini

College of Information Sciences and Technology
Pennsylvania State University
University Park, PA 16802

Abstract. Virtualization provides many benefits for Cloud environ-
ments, as it helps users obtain dedicated environments abstracted from
the physical layer. However, it also introduces new vulnerabilities to the
Cloud such as making it possible for malicious VMs to mount cross-VM
attacks through cache based side channels. In this paper, we investigate
load-based measurement attacks born specifically as a result of the vir-
tualization in Cloud systems. We develop a framework to identify these
attacks based on the observation that the events taking place during
the attacks lead to an identifiable sequence of exceptions. We test the
accuracy of our framework using the Microsoft Azure infrastructure.

1 Introduction

Cloud computing provides great benefits to the consumers through effective and
efficient services in the form of infrastructure, platform, and software. These
types of services are offered by all leading Cloud Computing Service Providers
(CSPs), including Microsoft Azure, Amazon EC2, and Rackspace [1, 3, 15]. The
advantages of such a service model are exemplified in the reduced operational
costs, and efficient resource allocation and usage.

To date, security issues have remained the biggest thorns in the full blown
adoption of these services [6,8,19]. Most of the current and recent work on Cloud
computing security focuses on ensuring the privacy of general outsourcing tech-
niques (e.g. [20]). Furthermore, recently there has been a interest in attacks
which particularly target the weaknesses of the Cloud Computing architecture’s
general design [5, 10], particularly due to the use of virtualization [8, 9]. Virtu-
alization of computing resources is a prominent feature of the Cloud providers,
regardless of the type of service being offered (i.e. infrastructure, platform, and
software). However, virtualization also produces unique side-channels for attacks,
which cannot be controlled by usual information flow procedures. The virtual
machines (VMs) may be malicious themselves [22] or the VMs’ image may be
compromised [23]. Precisely, recent work [2,16,25] found that Cloud systems leak
information about location of the Cloud instances, letting attackers collocate an
instance with another specific instance. Thus, if an attacker can cause a victim’s
Cloud instance to leak information covertly, and if covert channels with sufficient
bandwidth exist, unauthorized leakage might be possible.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 113–124, 2013.
c© Springer International Publishing Switzerland 2013



114 S. Sundareswaran and A.C. Squcciarini

In this paper, we focus on load-based measurement attacks, which are covert
side-channel attacks born specifically as a result of the virtualization in Cloud
systems [16]. In general, a covert channel attack is an attack which takes place
when two entities or processes communicate with each other via channels that
are hidden and therefore not subject to the general access control techniques.
These channels can be formed by relying on time-based operations [2], such as
opening and closing a file at a certain time, or can rely on techniques such as
port knocking [24]. In the context of Clouds, these attacks are based on shared
physical resources, such as the physical host’s cache to create a side-channel in
VMs that are otherwise segregated. Attacks based on covert-channels not only
exploit co-residence, but also cover the basic requisites of identifying a particular
VM, instantiating a VM co-resident with the VM of interest, and communicating
data about the VM of interest. Other attacks, such as the VM conflicts arising
due to competitors sharing a physical host described in [17], and the adversarial
VMs presented in [25] are extensions on the same theme.

We design our attack detection framework based on empirical observations on
the attacks patterns and behavior. We observe that by identifying the patterns of
exceptions, and whether the number of exceptions in a given time period crosses
a carefully crafted threshold, one can identify on-going attacks, and with further
analysis, zoom in on the types of attacks being carried out. Our solution therefore
relies on extracting and detecting event-based patterns, where the events are
comprised of exceptions, and on establishing a baseline frequency for the total
number of events occurring in an allotted time.

We test our system’s accuracy using Windows’ Azure architecture, where we
co-host multiple VMs. We show our achieved accuracy even in increasing noise
of busy VMs, which have a large number of active programs and tasks.

The paper is organized as follows. We discuss the related work in Section 2.
Our threat model is discussed in Section 3. Section 4 describes the attacks we
handle. The design of our framework is described in Section 5. Experimental
results are discussed in Section 6. Finally, we conclude in Section 7.

2 Related Work

Since Ristenpart’s seminal work [16], there has been a lot of interest in side-
channel attacks. Accordingly, many have introduced new extensions of the orig-
inal attacks and tackled some of them, or their variations [7, 11–13,17, 25].

Cleemput [7] discusses compiler based mitigations for timing attacks. Simi-
lar to the approach discussed in this paper, the authors solution uses compiler
instructions to look for attacks, in as much that some exceptions are issued by
the compiler. The authors’ proposed solution however does not consider VMs or
co-resident systems, instead it focuses on loss of cryptographic secrets by tim-
ing attacks. A possible solution to load-measurement attacks is offered by Sun
et al. [11], who consider the load sharing between co-resident virtual machines
in a Cloud. They observe that two co-resident VMs may pose a “threat” to
each other due to a need for common resources, which may enable each to learn



Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 115

secrets of the others. Kong et al [12] suggests a combination of hardware and
software approaches to provide a solution to side-channel attacks. While they
do not consider VMs or Clouds in particular, they propose using a special set of
Load instructions that inform the software when the load-misses in the cache. As
we show in the next sections, although all similar to our work in their intention,
existing approaches are vastly different from ours. We are similar to Sun’s work
in terms of objective, but their primary focus is on conflict resolution through
negotiation, rather than on detection. Kong’s proposal also shares some similar-
ities with our work, i.e. it seeks to eliminate cache based interferences, but yet
differs vastly. Our idea is to exploit existing instructions as signals of an attack
as opposed to Kong’s approach, that is based on forming new ones.

A variation on this theme is offered by Choi and colleagues [4]. The authors
discuss an authentication scheme which may be used for Cloud Computing sys-
tems. An authentication scheme of this kind is useful in providing the attacker
with an identity, but it does nothing to prevent such attacks, and is therefore
complementary to the scheme proposed in our work. In addition, side-channel
analysis has been often used to mitigate problems due to co-residency, such as
competitive organizations’ VMs being co-resident or high loads on shared phys-
ical resources [13, 17, 25]. Also related to our methodology is work on software
component thefts [21] from Wang. Wang and colleagues exploit the notion of
dependencies among system calls to detect various attacks. We do not analyze
system calls’ dependencies in our approach, so as to focus on the events which
lead to the system calls.

3 Threat Model

Our architecture is built to identify the attacks launched between tenants of co-
existing VMs. We assume that all the VMs are compatible on a physical level,
and they may run any applications intended by the tenant. The provider and
its infrastructure are assumed to be trusted. That is, we do not consider attacks
that rely on subversion of the Cloud’s administrative functions. This in turn
means that we trust any software that is run on the physical machines or the
VMs that the Cloud hosts. Our threat model considers non-insider adversaries,
who manage to get a VM hosted on the same physical machine as their victim’s
by chance or intentionally [16, 17]. We assume that a malicious party can run
and control many instances in the Cloud, simply by leasing the required storage
space. The targeted victims are tenants who run confidential services in the
Cloud. Any data leakage, including data about the usage of the VMs, can breach
the confidentiality of the victim. From the victims’ point of view, the co-existing
VMs on the physical machine could be benign, or malicious by attempting to
find information about other co-existing VMs through the cache-based side-
channel. Although a tenant can trust that his VM is not willfully malicious, the
attacker can manipulate all shared physical resources at his own gain. Shared
resources include CPU caches, branch target buffers, and network queues. By
properly controlling and observing information gathered from these resources,



116 S. Sundareswaran and A.C. Squcciarini

information may be leaked unwittingly to the attacker. In particular, we focus
on load-based co-residence detection as this type of attack is a common and
well-know example of network probing attacks.

Notice that our model is a generalization of the threats discussed in the sem-
inal works [16, 17], which discussed the load-variation attacks tackled in this
work. In our threat model, however, we do not require an existing VM to have
a conflict with a newly migrated VM, for the existing VM to be malicious (as
in [17]). Further, different from [16], we do not differentiate between attackers
who are interested in simply attacking any known hosted service, and attackers
interested in attacking a particular victim service. Due to these differences, we
no longer can depend on shared services to point out possible conflicts.

4 Covert Attacks

4.1 Attack Description

Load-based attacks require two steps: placement and extraction. Placement
refers to the attacker placing their malicious VMs on the same physical machine
as that of a victim. Extraction refers to extracting confidential information via
a cross-VM attack using side-channels. Cross-VM information leakage is due to
the sharing of physical resources (e.g., the CPU’s data caches). In this work,
we focus on extraction, assuming placement is given. A malicious VM can de-
tect co-residence in many ways [16]. When the attacker has some knowledge of
computational load variation on the target instance, no network-based detection
techniques are needed. The attacker can actively cause load variation due to a
publicly-accessible service running on the target (for example, HTTP, POP3 or
FTP services). Publicly-accessible services are not suspect for an intrusion de-
tection system as they normally are not access restricted. Hence, any accesses or
measurements on these public services often remain unnoticed. In our work, we
consider the existence of such publicly-accessible services as the primary condi-
tion for an attack. The attacker may also be able to detect co-residence without
resorting to actively creating any load variations if he has a priori information
about some relatively unique load variation on the target. For example, knowing
that a certain website experiences heavy traffic from 9 am to 5 pm, and in the
remaining time, no traffic or negligible traffic is experienced on a daily basis can
provide useful a priori information for the attacker. In this case, based on the
time of the day, an attacker can detect the co-residence of a VM by identify-
ing the physical hosts which experience a similar load variation. The difficulty
(or ease) of detection would be based on the comprehensiveness of the apriori
information.

One of the best known ways for accurate measurement of cache usage is based
on three main functions: prime, probe and trigger [16]. Priming consists of
reading a contiguous buffer B of size b. The buffer B is located on the CPU cache
of the physical host. b is large enough that a significant portion of one of the
lower level caches (L1, L2 or L3) on the physical host is filled by the contents of
buffer B. The buffer B is read in s-byte offsets where s is the size of the cache.



Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 117

The next step of load measurement is trigger, which is busy looping. Busy
looping is a technique in which a process repeatedly checks if a condition is true.
The attacking VM busy loops until the CPU counter cycle jumps by a large
value, so that is allows enough time for the processes of the other VMs to run.
Thus, the cache is filled by data accessed by the victims. The final step is probing,
which consists of reading B again at s-byte offsets. When carrying out the probe
by reading b/s memory locations of B, the attacker uses a pseudorandom order,
and the pointer-chasing technique described in [18], as using the pseudorandom
order prevents the CPU’s hardware prefetcher from hiding the access latency.
The time of the final step’s read gives the load sample, where the load sample
is measured in number of CPU cycles.

Identifying whether or not a VM is co-located prepares the ground for the
attacker to mount more intrusive attacks, such as colluding with a rogue program
on the co-resident VM even if other channels of communications are stopped.
Further, knowing that a specific VM is co-resident allows the attacker to find
some meta data about the owner of the VM: an attacker can correlate the service
hosted on the VM with the name of a company running the service. This not
only tells the attacker the victim’s preferred Cloud provider, it also allows her
to identify the regions in which the victim is running certain services.

4.2 Preliminary Evaluation

In order to gauge a better understanding of the attacks’ dynamics, we recreated
the scenario required for co-residence detection. The testbed consisted of 5 Win-
dows Server 2008R2 SP1 based VMs 1, where each of the VMs had their TCP
ports 80 enabled to allow HTTP services. Out of these 5 VMs, 3 of them were
simply bystanders used to create noise. One of the VMs functioned as the at-
tacker VM, while another was the victim VM. The victim additionally hosted an
Apache Tomcat application server, with a single webpage. Because load-based
detection can occur in many ways, we executed the attacks under various set-
tings. First, to detect whether two VMs were co-resident, we created a high load
on one of the VMs (the target VM) using the LoadUI tool [14]. LoadUI is a util-
ity commonly used for load testing, and is being used to to simulate the attacker
VM in a systematic and rigorous fashion. The attacker VM collected 100 load
samples on a public HTML page of size 10KB both during the load variation
and when the load variation was not done. It tracked the variation in size of
the load samples: if the target and the attacker VM were co-resident the load
samples taken during the load induced by the LoadUI tool were larger.

To communicate with a co-resident VM (assuming all other communication
channels are closed), we rely on the simple cache-covert channel attack wherein
the attacker sending the message idles while transmitting “0”, but frantically
access the memory to transmit “1”. The receiver checks the latencies by collecting
a load sample or accessing a memory block of his own. While communicating

1 We ensured that the VMs were co-resident by checking their PhysicalHostName
through their registry keys.



118 S. Sundareswaran and A.C. Squcciarini

with a rogue program can be done simply by using load variations, where a high
load indicates a “1” and a low load indicates a “0”, a noisy channel can reduce
the efficiency of this method of transmission. To overcome the effects of noise,
the rogue program needs to be able to cause a sufficiently high load to be “heard”
over the channel by the colluding attacker. Empirically, we can see that a load
spike above 100000 CPU cycles is necessary for a clear co-residence detection.
Further, a process generally crashes when the process has a utilization of 67%-
70%. Our systems crashed upon reaching 8100000 CPU cycles, when channel
noise was created by loading 3 other VMs. The noise was measured by taking
load samples from the cache at any one of these VMs. So long as the load spike
of over 100000 CPU cycles can be achieved without crashing the loaded process,
the simple method of load variations to transmit a message works well.

In case of a high probability of crash due to noisy channels, the use of the
prime+probe+trigger method is preferable. To test the detection of co-residence
on a noisy channel, we simulated a channel with high noise by having 5 co-
resident VMs, out of which one was the attacker VM, and one was the victim,
while the others were just meant to create noise. We had the co-resident VMs
performing I/O operations, while the attacker VM measured took 100 load sam-
ples on a public HTML pages varying in size from 1Kb to 10 KB over a period of
time varying from 12 seconds (for the 1KB page) to 120 seconds (for the 10KB
pages). The measurements were then paused for a period of 30 sec. after which
they were repeated while simultaneously making numerous HTTP get requests
from a third system to the target. The attack was successful in that the malicious
VM was able to detect the co-residence when the HTTP requests were made.

These initial tests provided us with insights on the scope and effectiveness of
each of these attacks. We observed that there is always a pre-set sequence of
events that yields to an attack. All the events are observable from the physical
host in the form of exceptions.

5 Design of Co-residency Attack Detector

Our initial experiments confirmed that each attack instance incur into a notable
load increase accompanied by a given pattern of system calls and exceptions.
Accordingly, our solution consists of few main steps: (1) collection of system
calls occurring at the physical host, and the exceptions which may be specific to
the attacks, to (a) identify the VM causing the exception, and the process that
spawned the exception, and (b) identify whether conditions sufficient for the
attack exist, and (2) processing of these exceptions to detect the load-variation
attacks discussed in Section 4. Each of the steps is associated with a logic module,
which we refer to as Observer and Defender, in what follows. The Observer
and Defender are implemented as part of a trusted VM.

5.1 Observer

The Observer component is designed to dynamically collect metrics indicative of
suspicious load variations. We specifically focus on tracking network processes,



Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 119

VICTIM 
VM

ATTACKING
VM

VMVM

HTTP Req.

System Calls and Events 

System Calls and Events 

System Calls 
 Events 

 PING 

 PING 

 PING 

 PING 

OBSERVER 

DEFENDER

<syscalls, pids, VMs>

VM

Fig. 1. System Design

their CPU loads and spawned system calls. Hence, the Observer has three main
tasks: (1) extract systems calls and interrupts of monitored processes, (2) map
the identified system calls and interrupts to specific programs from the specific
VMs which generated them, and (3) determine whether the conditions necessary
for an attack to be carried out co-exist. In order to extract and map the system
calls, the Observer spawns multiple tracing threads, instantiated by means of
debugging tools, such as Linux strace and WinGB in Windows.

To quantify the necessary conditions for an attack, the Observer uses some
baseline system metrics on CPU utilization by processes observed in absence of
attacks, as well as the expected number of system calls experienced by any given
process. Specifically, a training phase is performed first, during which processes
are monitored under minimum activity for over 72 hours (or more), such that
each process activity remains lower than 1%. We observe the number of system
calls per second for each process, denoted as SysCPID

t , with PID denoting a
specific process. Obviously, the base number of system calls per second is unique
to each process. Nevertheless, we observed the following pattern. Given a process
PID, let SysCt be the base rate per second, and let CPU UT its percentage of
CPU utilization.

AV GPID
t =

{
SysCt + 0.02 ∗ SysCt if CPU UT < 20%
SysCt + (SysCt ∗ 2(CPU UT−0.2)/5)CPU UT

5 if CPU UT>20%
(1)

The above equation indicates that a general 2% rate increase exists when the
process activity increases up to 20%. Above 20% CPU utilization, the rate starts
exponentially increasing, for each 5% increase in process activity. When the num-
ber of system calls increases exponentially, the monitoring becomes exponentially
difficult too. Based on the above, we determine CPU utilization threshold, de-
noted as τ , which ranges from 10% to 20% for a given process. τ denotes the



120 S. Sundareswaran and A.C. Squcciarini

point to start the monitoring and is chosen so that the attack cannot be hidden
in the explosion of system calls. In addition, the system calls generated by each
process are then averaged over a time interval T according to Equation 1, to
AV GPID

T . The gathered data is stored with the trusted VM where the observer
is hosted.

Upon gathering sufficient training data on all possible network processes trig-
gered by the VMs, the Observer labels as suspicious each process PID if (a) the
CPU activity is above a given threshold τ , and (b) PID is a network process.
Specifically, with respect to (b), upon crossing the τ CPU threshold activity, the
Observer checks the event logs which are downloaded from the monitored VM
to the trusted VM hosting the Observer and Defender, to identify if a particular
external host or a group of hosts has been trying to ping or otherwise activate
the process. If the increase in activity is indeed caused by external systems, the
Observer alerts the Defender to check for possible attack patterns.

5.2 Defender

Once it receives the IDs of the VMs, the corresponding suspected processes
and the exceptions from the Observer, the Defender starts searching for attack-
specific patterns. It specifically starts monitoring for patterns if the network
processes reach a high load due to network events, per the information obtained
from the Observer. Each pattern consists of a particular sequence of exceptions,
wherein both the type of exceptions observed, their order, as well as the frequency
of particular system calls within the sequence matter. Of course, system calls may
be suppressed by a sophisticated attacker at the originating VM. Hence, before
searching for such patterns the Defender completes a sanity check, by verifying
whether the observed AV GPID

T
over a normalized time interval T matches the

correspondingAV GPID
T

stored in the system during training, per each suspicious
PID. If no system calls are suspected suppressed, the pattern search starts.
Otherwise, the process halts and a suspicious activity is detected.

As discussed in Section 4, load-variation attacks can be carried out in mul-
tiple ways, all of which result in different patterns of system calls. Due to this
“polymorphic” nature of load-variation attacks a single approach may not suit
all the possible ways according to which the load-variation is measured. There-
fore, similar to an intrusion detection system, it is possible to implement various
pattern recognition methods or security policies, zeroing-in the different forms
of these attacks. We provide the discussion of two sample patterns that can
be detected. The selected examples are representative of (1) the load-variation
technique which requires the least effort from the attacker end, and (2) the most
well-known load variation, based on prime, probe and trigger.
Load Variations by simple HTTP requests The Defender checks for patterns that
involve socket creation, connection acceptance and socket deletion. These calls
include sys accept (Accepts 3-way TCP handshake), sys poll (waits for http
request), and sys read (reads payload). sys socketcall is often seen during
various stages of a socket based connection as it supports a number of sub-
commands to create, open and close the socket. sys accept and sys poll are



Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 121

0 120

nmap/virtualloc read write

PRIME TRIGGER

rdtsc read

PROBE

Fig. 2. Typical pattern of a Probe, Prime, Trigger Load-based attack

seen early on during the socket creation stage. In case of an attack, these calls
are repeated multiple times in quick succession within a short time period due
to the large number of sockets created for causing a load variation. In particu-
lar, the larger the number of sockets created in a given time unit (roughly 120
seconds), the greater the chance of an attack.
Probe-Prime-Trigger Method The Defender uses the mapping provided by the
Observer to identify the suspicious exceptions generated in the prime, probe
or trigger phases of load measurement. The pattern followed by load-based at-
tacks includes a combination of system calls and interrupts generated during
load measurement. Precisely, mmap for Linux, virtualloc for Windows, read(),
write(), malloc and rdtsc are used. No additional interrupts or system calls
are needed. When load measurement is being carried out, these exceptions occur
continuously over a time period of 90 to 120 seconds depending on the attack
duration: the mmap call or the virtualloc, followed by the read(), and then
the write() occur repeatedly (the sequence occurs over 5 to 10 times due to re-
peated priming) during the first half, followed by a long gap after which another
rdtsc calls occur to signal the trigger. The rdtsc is then followed by repeated
read() to signal the probe phase. This pattern is shown in Fig. 2

Note that the challenge of pattern detection lies in the fact that these system
calls generated in any variant of the attacks occur during normal operations of
the VM also. The detection of some variants, such as the one using prime probe
and trigger is more accurate (see Section 6) because the attacker has to carry out
these steps within a set time and in a given order, generating a more recognizable
pattern, than say just HTTP (or FTP or POP3) requests. While HTTP requests
occur every day, the probability of seeing the steps of prime probe and trigger
in the wild are lesser than seeing a HTTP request.

6 Experimental Evaluation

In this Section we discuss the tests performed to validate our framework’s ac-
curacy, and scalability. The tests were performed on Azure’s infrastructure [3].
The testbed includes 5 Windows Servers, and is described in Section 4.2. One
of server implemented the Observer and Defender, and is assumed trusted. The
main goal of evaluation on Azure was to ascertain the detection accuracy during
an attack in a noisy channel. The channel noise was varied roughly in steps of
about 50000 CPU cycles (it is not possible to accurately control the noise level)



122 S. Sundareswaran and A.C. Squcciarini

from 200000 to 900000 cycles. Channel noise was created by loading 3 out of
the 5 co-hosted VMs. The noise was measured by taking load samples from the
cache at any one of these 3 VMs.

First, we conducted two experiments: The first set of experiments was aimed at
detecting the accuracy of co-residence detection using the simple load-variation
technique. Channel noise was generated by the 3 co-hosted VMs by running
multiple subsequent programs on each VM. In the first 346 ms in CPU time,
the VMs execute in parallel a program which performed route finding algorithm,
so as to cause excessive file reads and writes. In the following 346 ms of CPU
time, in each of the 3 VMs, using LoadUI we simulate 100 users’ activities on
a 10KB Web page. Finally, both the route algorithm and the LOADUI users
activities were executed for the remaining 346 ms/CPU. We varied the thresh-
old of detection τ from 20% to 10%. For each set threshold, we increased the
channel noise as described above. In all of our experiments, we had no false pos-
itives, but rather had a decreasing number of false negatives as we decreased the
threshold. Precisely, with τ set at 20% and 18%, we reported 5 false negatives
when then channel noise was higher than 620000 CPU cycles. Henceforth, the
overall accuracy was low, only 58%. With τ set at 16% and 14% the accuracy
increased to 66.7%. Our best results are obtained when τ = 10%, wherein 83.3%
accuracy was achieved.

The second set of experiments used the prime+probe+trigger to carry out the
load variations. The same experimental settings were used. As for the experiment
above, we tested various detection thresholds, from 20% to 10%. The overall
accuracy is consistently higher than the simple load variation attack, for all
cases. Accuracy ranges from 66.7% for τ = 20% to over 90% (for τ = 10%).
All of the errors were false negative, and reported when the noise was 670000
or above. The only false negative reported with τ = 10% was experienced when
the channel was at its highest, above 880000. The improvement in detection
accuracy occurs due to the unique pattern of system calls that occurs during the
prime, probe and trigger phases (see Figure 2).

We then executed a final experiment wherein we tested how sensitive our
mechanism is to high volume of noise, and whether and to what extent this
can lead to false positives. The final test was conducted on a similar set up
as the other two tests, except this time there was no attacking VM. We had
three executions: in one run the load variations were caused using LoadUI, in
the second run they were caused using the route planning algorithm, and in
the third run either the LoadUI or the route planning algorithm were used.
The load was again varied from 2000000 to 8800000 over an average of 346 ms
in CPU cycles. τ was varied too, between 10% and 20%. Results are reported
in Table 1. We notice that the higher τ , the lower the rate of false positives.
Intuitively, this is explained as one of the VMs causes a load variation, meeting
one of the conditions for a probable attack earlier in case of a low threshold.
Therefore, there is always a tradeoff between the number of false positive and
false negatives, and the percentage above minimum must be decided according
to which is more tolerable.



Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 123

Table 1. Deceptive loads: load variation was divided amongst all the 4 co-resident
VMs. 1 denotes a correct true negative, 0 denotes a false positive.

CPU/Threshold 20% 18% 16% 14 % 12% 10%

200,000 1 1 1 1 1 1

230,000 1 1 1 1 1 1

300,000 1 1 1 1 1 1

340,000 1 1 1 1 1 1

420,000 1 1 1 1 1 1

480,000 1 1 1 1 1 1

520,000 1 1 1 1 1 1

570,000 1 1 1 1 1 1

620,000 1 1 1 1 1 1

670,000 1 1 1 0 0 0

740,000 1 1 0 0 0 0

790,000 0 0 0 0 0 0

840,000 0 0 0 0 0 0

7 Conclusion

In this paper, we studied covert side-channel attacks that arise as a consequence
of virtualization in Cloud systems. We proposed a framework to identify load-
based attacks according to our analysis of system calls generated by the attacker
and the victim. Our evaluation, conducted on a real Cloud testbed, demonstrates
the accuracy of our approach. We plan to extend our architecture to extract more
probing patterns, and additional polymorphic forms of existing attacks.

Acknowledgement. The work from Squicciarini was partly funded under the
auspices of the National Science Foundation Project # 1250319.

References

1. Amazon Web Services, http://aws.amazon.com/

2. Aviram, A., Hu, S., Ford, B., Gummadi, R.: Determinating timing channels in
compute clouds. In: Proceedings of the 2010 ACM Workshop on Cloud Computing
Security Workshop, CCSW 2010, pp. 103–108. ACM (2010)

3. Chappell, D.: Windows Azure (2009),
http://www.microsoft.com/windowsazure/resources/

4. Choi, T., Acharya, H.B., Gouda, M.G.: Is that you? Authentication in a network
without identities. Int. J. Secur. Netw. 6(4), 181–190 (2011)

5. Christodorescu, M., Sailer, R., Schales, D.L., Sgandurra, D., Zamboni, D.: Cloud
security is not (just) virtualization security: a short paper. In: Proceedings of the
2009 ACM Workshop on Cloud Computing Security, pp. 97–102. ACM (2009)

6. Cisco. Cloud Security: Choosing the right email security deployment (2010)

7. Cleemput, J.V., Coppens, B., De Sutter, B.: Compiler mitigations for time attacks
on modern x86 processors. ACM Trans. Archit. Code Optim. 23, 1–23 (2012)

http://aws.amazon.com/
http://www.microsoft.com/windowsazure/resources/


124 S. Sundareswaran and A.C. Squcciarini

8. Cochrane, N.: Security experts ponder the cost of cloud computing (2010),
http://www.itnews.com.au/news/174941,security-experts-ponder-

the-cost-of-cloud-computing.aspx

9. Hay, B., Nance, K., Bishop, M.: Storm clouds rising: Security challenges for iaas
cloud computing. In: Hawaii International Conference on System Sciences, pp. 1–7
(2011)

10. Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud security issues. In: IEEE Inter-
national Conference on Services Computing, pp. 517–520 (2009)

11. Kong, J., Aciicmez, O., Seifert, J.-P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: Proceedings of the 2nd
ACM Workshop on Computer Security Architectures, pp. 25–34. ACM (2008)

12. Kong, J., Aciicmez, O., Seifert, J.-P., Zhou, H.: Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In: High
Performance Computer Architecture, pp. 393–404. IEEE (February 2009)

13. Okamura, K., Oyama, Y.: Load-based covert channels between xen virtual ma-
chines. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
2010, pp. 173–180. ACM (2010)

14. Ole: loadui: A uniquely cool approach to interactive distributed load testing. In:
DevoXX - The Java Community Conference (2010)

15. Rackspace, http://www.rackspace.com/
16. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

17. Sun, P., Shen, Q., Chen, Y., Wu, Z., Zhang, C., Ruan, A., Gu, L.: Poster: LBMS:
load balancing based on multilateral security in cloud. In: Proc. of the 18th ACM
Conference on Computer and Communications Security, pp. 861–864. ACM (2011)

18. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on aes, and counter-
measures. J. Cryptol. 23(2), 37–71 (2010)

19. VanTil, S.: Study on cloud computing security: Managing firewall risks (2011),
http://resource.onlinetech.com/study-on-cloud-computing-security-

managing-firewall-risks/

20. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: ESORICS, pp. 355–370
(2009)

21. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Behavior based software theft detection.
In: Proceedings of the 16th ACM Conference on Computer and Communications
security, CCS 2009, pp. 280–290. ACM (2009)

22. Wang, Y., Wei, J.: Viaf: Verification-based integrity assurance framework for
mapreduce. In: Proc. of the 2011 IEEE 4th International Conference on Cloud
Computing, CLOUD 2011, pp. 300–307. IEEE Computer Society (2011)

23. Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of vir-
tual machine images in a cloud environment. In: Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, CCSW 2009, pp. 91–96. ACM (2009)

24. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermea-
sures in computer network protocols. Commun. Surveys Tuts. 9(3), 44–57 (2007)

25. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection
in the cloud via side-channel analysis. In: Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP 2011, pp. 313–328. IEEE Computer Society (2011)

http://www.itnews.com.au/news/174941,security-experts-ponder-the-cost-of-cloud-computing.aspx
http://www.itnews.com.au/news/174941,security-experts-ponder-the-cost-of-cloud-computing.aspx
http://www.rackspace.com/
http://resource.onlinetech.com/study-on-cloud-computing-security-managing-firewall-risks/
http://resource.onlinetech.com/study-on-cloud-computing-security-managing-firewall-risks/

	Detecting Malicious Co-resident Virtual
Machines Indulging in Load-Based Attacks
	1 Introduction
	2 Related Work
	3 Threat Model
	4 Covert Attacks
	4.1 Attack Description
	4.2 Preliminary Evaluation

	5 Design of Co-residency Attack Detector
	5.1 Observer
	5.2 Defender

	6 Experimental Evaluation
	7 Conclusion
	References




