
Sihan Qing
Jianying Zhou
Dongmei Liu (Eds.)

 123

LN
CS

 8
23

3

15th International Conference, ICICS 2013
Beijing, China, November 2013
Proceedings

Information and
Communications
Security

Lecture Notes in Computer Science 8233
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sihan Qing Jianying Zhou
Dongmei Liu (Eds.)

Information and
Communications
Security
15th International Conference, ICICS 2013
Beijing, China, November 20-22, 2013
Proceedings

13

Volume Editors

Sihan Qing
Dongmei Liu
Chinese Academy of Sciences, Institute of Software, Beijing 100190, China
E-mail: qsihan@mail.ss.pku.edu.cn; dongmeiliu77@gmail.com

Jianying Zhou
Institute for Infocomm Research, Infocomm Security Department
1 Fusionopolis Way, #21-01 Connexis, South Tower, Singapore 138632, Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-02725-8 e-ISBN 978-3-319-02726-5
DOI 10.1007/978-3-319-02726-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950171

CR Subject Classification (1998): E.3, D.4.6, K.6.5, K.4.4, F.2, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 15th International Conference on Information and Communications Security
(ICICS 2013) was held in Beijing, China, during November 20–22, 2013. The
ICICS conference series is an established forum that brings together people from
universities, research institutes, industry, and government institutions, who work
in a range of fields within information and communications security. The ICICS
conferences give attendees the opportunity to exchange new ideas and investigate
developments in the state of the art. In previous years, ICICS has taken place
in Australia (1999), China (2011, 2009, 2007, 2005, 2003, 2001 and 1997), Hong
Kong (2012), Singapore (2002), Spain (2010, 2004), the UK (2008), and USA
(2006). On each occasion, as on this one, the proceedings have been published
in the Springer’s LNCS series.

In total, 113 manuscripts from 19 countries were submitted to ICICS 2013,
among which 23 regular and six short papers from 12 countries were accepted.
The accepted papers cover a wide range of disciplines within information secu-
rity and applied cryptography. Each submission to ICICS 2013 was anonymously
reviewed by three reviewers. We are very grateful to members of the Program
Committee, which was composed of 66 members from 16 countries; we would
like to thank them, as well as all the external reviewers, for their valuable con-
tributions to the tough and time-consuming reviewing process.

ICICS 2013 was organized and hosted by the Institute of Software, Chi-
nese Academy of Sciences (CAS), the Institute of Software and Microelectronics,
Peking University and the State Key Laboratory of Information Security of the
Institute of Information Engineering, Chinese Academy of Sciences (CAS). The
conference was sponsored by the National Natural Science Foundation of China
under Grant No. 60970135 and No. 61170282.

We would like to thank the authors who submitted their papers to ICICS
2013, and the attendees from all around the world. Finally, we would also like to
thank Ying Qiu for managing the conference website and the EasyChair system,
Publicity Chair Xinyi Huang for making the wide distribution of the call for
papers, and other local Organizing Committee members for providing logistical
support.

August 2013 Sihan Qing
Jianying Zhou

ICICS 2013

15th International Conference
on Information and Communications Security

Beijing, China
November 20–22, 2013

Organized by

Institute of Software, Chinese Academy of Sciences (CAS)
Institute of Software and Microelectronics, Peking University, China

SKLOIS, Institute of Information Engineering, CAS

Sponsored by

National Natural Science Foundation of China (NNSFC)

General Chair

Dongdai Lin Institute of Information Engineering, CAS,
China

Program Chairs

Sihan Qing Chinese Academy of Sciences and Peking
University, China

Jianying Zhou Institute for Infocomm Research, Singapore

Program Committee

Michel Abdalla ENS and CNRS, France
Endre Bangerter Bern University of Applied Sciences, Germany
Zinaida Benenson University of Erlangen-Nuremberg, Germany
Marina Blanton University of Notre Dame, USA
Ioana Boureanu EPFL, Switzerland
Bogdan Carbunar Florida International University, USA
Aldar Chan Institute for Infocomm Research, Singapore
Ee-Chien Chang National University of Singapore, Singapore
Liqun Chen Hewlett-Packard Laboratories, UK
Songqing Chen George Mason University, USA

VIII ICICS 2013

Xiaofeng Chen Xidian University, China
Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Andreas Dewald University of Erlangen-Nuremberg, Germany
Thomas Eisenbarth Worcester Polytechnic Institute, USA
Josep Ferrer-Gomila Universitat de les Illes Balears, Spain
Sara Foresti Università degli Studi di Milano, Italy
Debin Gao Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Dawu Gu Shanghai Jiao Tong University, China
Jin Han Institute for Infocomm Research, Singapore
Matt Henricksen Institute for Infocomm Research, Singapore
Xinyi Huang Fujian Normal University, China
Lucas Hui The University of Hong Kong, China
Xuxian Jiang North Carolina State University, USA
Sokratis Katsikas University of Piraeus, Greece
Steve Kremer Inria Nancy - Grand Est, France
Xuejia Lai Shanghai Jiao Tong University, China
Jiguo Li Hohai University, China
Tieyan Li Huawei, Singapore
Yingjiu Li Singapore Management University, Singapore
Javier Lopez University of Malaga, Spain
Wenjing Luo Virginia Tech, USA
Mark Manulis University of Surrey, UK
Keith Martin Royal Holloway, University of London, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Chris Mitchell Royal Holloway, University of London, UK
Atsuko Miyaji JAIST, Japan
Payman Mohassel University of Calgary, Canada
David Naccache ENS, France
Raphael Phan Multimedia University, Malaysia
David Pointcheval CNRS/ENS/Inria, France
Vincent Rijmen KU Leuven, Belgium
Ahmad-Reza Sadeghi Technische Universität Darmstadt, Germany
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati Università degli Studi di Milano, Italy
Miguel Soriano Universitat Politècnica de Catalunya, Spain
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Vrizlynn Thing Institute for Infocomm Research, Singapore
Claire Vishik Intel, UK
Guilin Wang University of Wollongong, Australia
Haining Wang The College of William and Mary, USA
Lina Wang Wuhan University, China

ICICS 2013 IX

Weiping Wen Peking University, China
Duncan Wong City University of Hong Kong, China
Wenling Wu Institute of Software, China
Yongdong Wu Institute for Infocomm Research, Singapore
Li Xu Fujian Normal University, China
Shouhuai Xu University of Texas at San Antonio, USA
Fangguo Zhang Sun Yat-sen University, China
Futai Zhang Nanjing Normal University, China
Jie Zhang Nanyang Technological University, Singapore
Wentao Zhang Institute of Information Engineering, CAS,

China
Yuliang Zheng UNCC, USA
Yongbin Zhou Institute of Information Engineering, China

Publicity Chair

Xinyi Huang Fujian Normal University, China

Publication Chair

Dongmei Liu Chinese Academy of Sciences, China

External Reviewers

Zeeshan Bilal
Shaoying Cai
Hua Chen
Jiageng Chen
Xihui Chen
Chen-Mou Cheng
Cheng-Kang Chu
Su Chunhua
Xingmin Cui
Sabrina De Capitani Di
Vimercati
Prokopios Drogkaris
Changlai Du
Junbin Fang
Carol Fung
Yuichi Futa
Wei Gao
Jinguang Han

Takuya Hayashi
Stephan Heuser
Shuhui Hou
Georgios Kambourakis
Divyan Konidala
Barbara Kordy
Nan Li
Wei Li
Zhengqi Li
Junrong Liu
Yang Liu
Yang Lu
Weiliang Luo
Takashi Nishide
Kazumasa Omote
Jun Pang
Panagiotis Rizomiliotis
Rodrigo Roman

Patrick Schweitzer
Jie Shi
Masaaki Shirase
Ben Stock
Benjamin Stritter
Wenhai Sun
Ying-Kai Tang
Haibo Tian
Aggeliki Tsohou
Christian Wachsmann
Bing Wang
Jianfeng Wang
Wei Wu
Hong Xu
Jia Xu
Zhiqian Xu
Weijia Xue
Qiben Yan

X ICICS 2013

Yanjiang Yang
Rehana Yasmin
Xin Ye
Tsz Hon Yuen

Hui Zhang
Lei Zhang
Shaojun Zhang
Tao Zhang
Yinghui Zhang

Yunlei Zhao
Qingji Zheng
Yao Zheng
Bo Zhu

Table of Contents

System Security

Defending against Heap Overflow by Using Randomization in Nested
Virtual Clusters . 1

Chee Meng Tey and Debin Gao

VTOS: Research on Methodology of “Light-Weight” Formal Design
and Verification for Microkernel OS . 17

Zhenjiang Qian, Hao Huang, and Fangmin Song

Web Security and Worm Detection

Defeat Information Leakage from Browser Extensions via Data
Obfuscation . 33

Wentao Chang and Songqing Chen

Rating Web Pages Using Page-Transition Evidence 49
Jian Mao, Xinshu Dong, Pei Li, Tao Wei, and Zhenkai Liang

OSNGuard: Detecting Worms with User Interaction Traces in Online
Social Networks . 59

Liang He, Dengguo Feng, Purui Su, Lingyun Ying, Yi Yang,
Huafeng Huang, and Huipeng Fang

Cloud Storage Security

A Secure and Efficient Scheme for Cloud Storage against
Eavesdropper . 75

Jian Liu, Huimei Wang, Ming Xian, and Kun Huang

Secure and Private Outsourcing of Shape-Based Feature Extraction 90
Shumiao Wang, Mohamed Nassar, Mikhail Atallah, and
Qutaibah Malluhi

Virtualization for Cloud Computing

Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its
Countermeasures . 100

Hong Rong, Ming Xian, Huimei Wang, and Jiangyong Shi

Detecting Malicious Co-resident Virtual Machines Indulging in
Load-Based Attacks . 113

Smitha Sundareswaran and Anna C. Squcciarini

XII Table of Contents

A Covert Channel Using Event Channel State on Xen Hypervisor 125
Qingni Shen, Mian Wan, Zhuangzhuang Zhang, Zhi Zhang,
Sihan Qing, and Zhonghai Wu

Trusted and Trustworthy Computing

Type-Based Analysis of Protected Storage in the TPM 135
Jianxiong Shao, Dengguo Feng, and Yu Qin

Remote Attestation Mechanism for User Centric Smart Cards Using
Pseudorandom Number Generators . 151

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Authentication and Security Protocols

Direct Construction of Signcryption Tag-KEM from Standard
Assumptions in the Standard Model . 167

Xiangxue Li, Haifeng Qian, Yu Yu, Jian Weng, and Yuan Zhou

Efficient eCK-Secure Authenticated Key Exchange Protocols in the
Standard Model . 185

Zheng Yang

Intrusion Detection and Recovery

XLRF: A Cross-Layer Intrusion Recovery Framework for Damage
Assessment and Recovery Plan Generation . 194

Eunjung Yoon and Peng Liu

PRIDE: Practical Intrusion Detection in Resource Constrained Wireless
Mesh Networks . 213

Amin Hassanzadeh, Zhaoyan Xu, Radu Stoleru, Guofei Gu, and
Michalis Polychronakis

Fingerprint Embedding: A Proactive Strategy of Detecting Timing
Channels . 229

Jing Wang, Peng Liu, Limin Liu, Le Guan, and Jiwu Jing

Side Channel Attacks and Defense

Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel
Countermeasure . 245

Amir Moradi and Oliver Mischke

EMD-Based Denoising for Side-Channel Attacks and Relationships
between the Noises Extracted with Different Denoising Methods 259

Mingliang Feng, Yongbin Zhou, and Zhenmei Yu

Table of Contents XIII

Engineering Issues of Crypto

Accelerating AES in JavaScript with WebGL . 275
Yang Yang, Zhi Guan, Jiawei Zhu, Qiuxiang Dong, and Zhong Chen

Analysis of Multiple Checkpoints in Non-perfect and Perfect Rainbow
Tradeoff Revisited . 288

Wenhao Wang and Dongdai Lin

Efficient Implementation of NIST-Compliant Elliptic Curve
Cryptography for Sensor Nodes . 302

Zhe Liu, Hwajeong Seo, Johann Großschädl, and Howon Kim

Cryptanalysis

Attacking and Fixing the CS Mode . 318
Han Sui, Wenling Wu, Liting Zhang, and Peng Wang

Integral Attacks on Reduced-Round PRESENT . 331
Shengbao Wu and Mingsheng Wang

Attribute-Based Encryption

Computationally Efficient Expressive Key-Policy Attribute Based
Encryption Schemes with Constant-Size Ciphertext 346

Y. Sreenivasa Rao and Ratna Dutta

Privacy-Preserving Decentralized Ciphertext-Policy Attribute-Based
Encryption with Fully Hidden Access Structure . 363

Huiling Qian, Jiguo Li, and Yichen Zhang

Cryptographic Primitives and Applications

Toward Generic Method for Server-Aided Cryptography 373
Sébastien Canard, Iwen Coisel, Julien Devigne, Cécilia Gallais,
Thomas Peters, and Olivier Sanders

Generation and Tate Pairing Computation of Ordinary Elliptic Curves
with Embedding Degree One . 393

Zhi Hu, Lin Wang, Maozhi Xu, and Guoliang Zhang

Threshold Secret Image Sharing . 404
Teng Guo, Feng Liu, ChuanKun Wu, ChingNung Yang,
Wen Wang, and YaWei Ren

Author Index . 413

Defending against Heap Overflow by Using
Randomization in Nested Virtual Clusters

Chee Meng Tey and Debin Gao

Singapore Management University, Singapore
{cmtey.2008,dbgao}@smu.edu.sg

Heap based buffer overflows are a dangerous class of vulnerability. One counter-
measure is randomizing the location of heap memory blocks. Existing techniques
segregate the address space into clusters, each of which is used exclusively for one
block size. This approach requires a large amount of address space reservation,
and results in lower location randomization for larger blocks.

In this paper, we explore the possibility of using a cluster for 2 or more block
sizes. We show that a naive implementation fails because attackers can easily
predict the relative location of 2 blocks with 50% probability. To overcome this
problem, we design a novel allocator algorithm based on virtual clusters. When
the cluster size is large, the randomization of larger blocks improves by 25%
compared to existing techniques while the size of the reserved area required
decreases by 37.5%.

1 Introduction

Randomization of heap memory location belongs to a larger class of anti-malware
techniques collectively known as address space layout randomization (ASLR).
These techniques attempt to defeat attackers by limiting their knowledge of
the absolute or relative location of particular memory objects, and have gained
widespread acceptance among mainstream OS [1–4]. There are also standalone
allocator projects [5–7] that provide ASLR for various OS.

One of the ways in which heap memory is randomized involves the location of
memory blocks returned by the C library function malloc. Existing techniques
segregate the address space into clusters, each of which is divided into equally
sized slots. Both the alignment and size of slots are power of 2 multiples of
the minimum (typically 16 bytes). To handle a memory allocation, the allocator
rounds up the requested block size to the next power of 2 multiple of the min-
imum, determines the cluster to use, randomly chooses an unused slot in that
cluster and returns its location.

An example of the memory layout of such an allocator is shown in Figure 1.
There are 2 salient features of such a method of allocation. Firstly, due to align-
ment restrictions, the larger the block size, the fewer the number of choices to
place the block. The relative and absolute location of large blocks are therefore
easier to guess. Secondly, a large area of the address space needs to be reserved.

In this paper, we study an alternative allocation algorithm where blocks of
different sizes can be allocated from the same cluster by first structuring such a

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 1–16, 2013.
c© Springer International Publishing Switzerland 2013

2 C.M. Tey and D. Gao

Fig. 1. A heap memory snapshot for an application using a randomizing heap allocator.
Shaded blocks are allocated. In this snapshot, the application has allocated 5 blocks
of size 1, 3 blocks of size 2 and 1 block of size 4. In practice, allocators do not allocate
blocks of 1 byte. Instead, a minimum block size of 16 bytes is common. The block sizes
in this paper can be interpreted as either bytes or multiples of the minimum.

cluster as a set of nested virtual clusters. We name this ‘Virtual Cluster Alloca-
tion’ (VCA). VCA improves both the randomness and space utilization. When
the number of block sizes allocated from each cluster is increased to 2, the ran-
domization of larger blocks improves by 25% compared to existing techniques
while the size of the reserved area required decreases by 37.5%.

In the rest of this paper, we first show why a naive implementation of mixed
block size allocations results in poor randomization. Next, we describe the in-
tuition and the algorithm for VCA. We derive and prove the reserved space
requirement for VCA. Finally, we describe the limitations and conclusions.

Related Works. Randomization is one of the major countermeasures against
buffer overflow attacks. Our paper focuses on the randomization of memory
blocks returned by the libc malloc function. Project similar in scope include
the OpenBSD [8] allocator and the Diehard series of randomized allocators [5, 6].
Randomization may also involve other parts of the memory structure such as
the location of stack or shared libraries [1–4, 7, 9], the instruction set encoding
[10–13], and even the data [14].

2 Naive Implementation

In a naive implementation, when a block needs to be allocated, the corresponding
cluster is first identified. Next, all available slots meeting the alignment and size
constraints are identified. A slot is then chosen randomly to fulfil the allocation
request. We demonstrate in this section, through an example, the techniques
that an attacker can use to place blocks to ensure a high probability of achieving
a particular relative ordering. This attack requires an attacker who is able to
control the heap evolution. Scenarios where this is possible include Javascript
based malware [15].

For our example, there is a cluster of size 16 which is initially free. The
allocator handles requests for blocks of size 1, 2 and 4. The attacker is able

Nested Virtual Clusters Based Allocator 3

to request allocation for 3 types of blocks: type A, type B and type C, each of
size 1, 2 and 4 respectively. The steps used by the attacker are: (a) allocate three
type C objects: C1, C2, C3, (b) allocate one type B objects: B1, and (c) allocate
two type A objects: A1 and A2. Figure 2 illustrates a possible memory layout.

Fig. 2. Example showing how an attacker can control the sequence of allocations to
ensure a high probability of achieving a desired placement order

Fig. 3. Possible permutations in the placement of B1, A1 and A2

In step (a), there are 4 available slots to place C1, C2 and C3, given the
alignment restrictions. The allocator picks 3 of the slots randomly, leaving a
single free slot of size 4. A single size 4 free slot can be divided into 2 size 2 free
slots, each of which can in turn be divided into 2 size 1 free slots. To allocate
a block for B1, since there are only 2 availble size 2 slots, the allocator picks
1 of the 2 slots randomly, leaving only a single slot of size 2. In step (c), the
allocator places the objects A1 and A2 randomly into the remaining free area of
the cluster.

To calculate the probability that A1 will be followed by A2, we refer to
Figure 3. There are 4 possible permutations, each equiprobable. In 2 of the
4 permutations, A1 is followed by A2. The probability of this occurring is there-
fore 2/4 = 50%. Similarly, in 1 of the 4 permutations, B1 is followed by A2. The
probability of this occurring is therefore 1/4 = 25%. A naive implementation
of randomization where more than 1 block size can be allocated from a single
cluster therefore does not guarantee high entropy.

3 Intuition

In Figure 1, so long as the attacker’s total allocation size is limited to a maxi-
mum quota of 16, all possible permutations of block locations are equally likely.

4 C.M. Tey and D. Gao

This equiprobable property holds regardless of the order of allocation and deal-
location made by the attacker. Intuitively, the problem with the naive imple-
mentation of Section 2 is that by varying the order of his allocation, an attacker
can violate the equiprobable property.

We illustrate our solution to this problem using a simple example which in-
volves only type A blocks (of size 1) and type B blocks (of size 2). To allocate a
type B block, the allocator picks a free type B slot randomly (similar to the naive
implementation). To handle allocations of type A blocks, the allocator chooses
available type B slots randomly and uses them to form a virtual cluster. A free
type A slot is then chosen randomly from the virtual cluster. Figure 4 shows the
formation of a virtual cluster (of size 16) from an empty cluster (of size 20) and
the allocation of a type A block from this virtual cluster.

(a) Empty cluster of size 20.

(b) Choose 8 type B slots randomly.

(c) Form a virtual cluster with the chosen slots.

(d) Choose one type A slot randomly.

(e) Locate the corresponding slot in the parent cluster.

Fig. 4. Allocating type A blocks using a virtual cluster

Note that a new virtual cluster is formed for every allocation. When there are
prior allocations of either type A or type B blocks, dummy type B slots may
be added to the virtual cluster. A cluster can therefore contain up to 5 different
types of type B slots (see Figure 5):

1. Dummy slots.
2. Type B slots from which 1 type B block has been allocated. We name them

type BB slots. The number of such slots is denoted by sB .
3. Type B slots from which 2 type A blocks has been allocated. We name them

type B2 slots. The number of such slots is denoted by s2.

Nested Virtual Clusters Based Allocator 5

Fig. 5. Different types of type B slots. In this example, s0 = 4, s1 = 2, s2 = 1, sB = 3.

4. Type B slots from which exactly 1 type A block has been allocated. We name
them type B1 slots. The number of such slots is denoted by s1.

5. Free (unused) type B slots. We name them type B0 slots. The number of
such slots is denoted by s0.

Figure 6 shows the allocation process when there are prior allocations. From
the virtual cluster, one type A slot is chosen randomly from among the dummy
and available slots. If a dummy slot is chosen, the selection process is repeated.
However, the repeated selection can only be made from the B0 slots in the virtual
cluster and not from the B1 slots. The rest of the process is similar to that of
Figure 4.

The use of a virtual cluster within a cluster ensures that all possible permuta-
tions of block locations are equiprobable, because the randomization within each
cluster is similar in principle to that of Figure 1. The random formation of the
virtual cluster from the slots of the parent cluster ensures that there is no correla-
tion between the location of slots of different sizes. The concept of nesting a virtual
cluster within a parent cluster can be extended to more than 2 block sizes.

4 Computation of Cluster Size

In this section, we show how the cluster size c can be chosen when the total
amount of allocated memory is constrained by a quota q. The choice of c pri-
marily involves a space-randomness tradeoff. The smaller the reserved space, the
better the virtual and physical address space utilization efficiency; but it is also
easier for an attacker to guess the absolute and relative location of each block.
However, even if small space is desired, the reserved space cannot be as small as
q. That is because fragmentation may result in available space that cannot be
used. Figure 7 shows an example where c and q are 20 and 16 respectively. Even
though the total allocation is only 14, this cluster can not handle any further
request for type B blocks (type A blocks can still be allocated). A lower bound
therefore exists for c.

For VCA, the theoretical lower bound depends on how the size of the virtual
cluster, v, is chosen. Note that v must be even because the virtual cluster contains
type B slots which are of size 2. For simplicity, we also assume q is even. If v ≥ 2q,
c, in theory, must be at least 2q. Otherwise, there is at least 1 fragmentation
pattern which the allocator cannot handle. If v = q, c must be at least 1.5q.
The reason is because, in a problem involving only 2 block sizes, the worst
fragmentation occurs with B1 blocks. If v ≥ 2q, the worst fragmentation occurs

6 C.M. Tey and D. Gao

(a) A cluster of size 20 with prior allocations.

(b) Include all B1 and B2 slots in the virtual cluster. B2 slots
cannot be used for allocation. However, their inclusion affects the
selection probabilities.

(c) Include all B0 slots. If there are more slots than available space,
a subset of B0 slots is chosen randomly for inclusion.

(d) If there are more space than B0 slots, dummy slots are added.

(e) Choose a new type A slot randomly from the free slots and
dummy slots.

(f) Locate the corresponding slot in the parent cluster.

Fig. 6. Allocating type A blocks when there are prior allocations

when the cluster consists entirely of B1 blocks, resulting in a cluster size of 2q.
If v = q, the worst fragmentation occurs when the cluster contains a mix of B1

and BB blocks. Let a be the number of type A blocks that has been allocated.
Let b be the number of type B blocks that has been allocated. Figure 8 shows
the maximum number of B1, B2 and BB slots that can be created as a varies.
The maximum of 1.5q occurs when a = 0.5q and b = 0.25q.

When q is large, some fragmentation patterns are so rare that they are virtu-
ally impossible. This suggests that a probabilistic bound for c exists and can be
lower than 1.5q. In such a case, the tradeoff involves not just space and random-
ness, but also the chance of failure. If c is chosen carefully, the chance of failure
may be low enough that it is inconsequential. In the remainder of this section,
we show that this intuition is correct.

Let s be the total number of type B1 and B2 slots (that is, s = s1 + s2). For
ease of implementation, the procedure in Figure 6 can be simplified as follows:

1. Compute the ratio ra,s = (2s− a)/(v − a).
2. Compute a random number r′ between 0 and 1.

Nested Virtual Clusters Based Allocator 7

Fig. 7. Fragmentation reduces usable space. For ease of analysis, VCA has a constraint
that adjacent free type A slots in neighbouring type B slots (such as A1 and A2) cannot
be merged and used for allocating type B blocks.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 p
os

si
bl

e
sp

ac
e

(a
s

a
ra

tio
 to

 q
)

a/q

B1, B2 slots
BB slots

B1, B2 and BB slots

Fig. 8. Maximum space usage due to fragmentation when v = q

3. If r′ < ra,s choose a type A slot from among the B1 slots randomly.
4. If r′ >= ras choose a B0 slot from the parent cluster randomly and choose

one of the two available type A slots (within the chosen B0 slot) randomly.

We now prove some allocator properties. Let pa,s be the probability that when
a type A blocks has been allocated, the total number of type B1 and B2 slots is
s. Figure 9 shows an example of the distribution of pa,s when v = q = 10. Note
that pa,s does not depend on b, the number of type B blocks allocated.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

s

a

1.000 0.111

0.889 0.333

0.667

0.048

0.571

0.381

0.238

0.635

0.127

0.048

0.571

0.381

0.333

0.667

0.111

0.889 1.000

1/9
8/9 8/8

2/8
6/8

1/7
6/7
3/7
4/7

6/6
2/6
4/6
4/6
2/6

1/5
4/5
3/5
2/5
5/5

4/4
2/4
2/4
4/4

1/3
2/3
3/3

2/2
2/2

Fig. 9. The value of pa,s (in shaded boxes) as a function of s and a when v = q = 10

8 C.M. Tey and D. Gao

In Figure 9, the labels on the horizontal arrows equal ra,s and indicate the
probability that s remains unchanged when a is incremented by 1 (because a B1

slot was used, resulting in a B2 slot). The labels on the diagonal arrows equal
1− ra,s and indicate the probability that s increases by 1 when a is incremented
by 1 (because a B0 slot was used, resulting in a B1 slot).

Let the most likely value of s be denoted by smax. We will show that the
probability density function of s is unimodal and the further s is from smax,
the lower the probabililty. Next, we show that the larger the quota q, the larger
the probability Pr[smax(1 − ε) < s < smax(1 + ε)] where ε is a small constant.
In other words, the larger q is, the less likely s differs significantly from smax.
Figure 10 illustrates this property. The lower probabilistic bound of c is then
given by the solution of an optimization problem.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

smax / v

p.
d.

f

s / v

larger q
smaller q

Fig. 10. The larger q is, the more likely s is close to smax. Note that unlike a normal
distribution, the probability density function of s is asymmetrical about the mode. The
asymmetry generally diminishes as q becomes larger.

4.1 Computation of smax

Theorem 1. If pa,s �= 0 and pa,s+1 �= 0, then the ratio between them is
given by:

ha,s =
pa,s+1

pa,s
=

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)
(1)

Proof. The proof is by induction. The base case can be shown to be true for p2,1
and p2,2. In the inductive step, it can be shown that Equation 1 holds for pa+1,s

and pa+1,s+1 whenever any of the following conditions are true:

Nested Virtual Clusters Based Allocator 9

1. pa,s−1 = 0, pa,s �= 0, pa,s+1 �= 0 and Equation 1 holds for pa,s and pa,s+1.

2. pa,s−1 �= 0, pa,s �= 0, pa,s+1 = 0 and Equation 1 holds for pa,s−1 and pa,s.

3. pa,s−1 �= 0, pa,s �= 0, pa,s+1 �= 0 and Equation 1 holds for pa,s−1 and pa,s as
well as for pa,s and pa,s+1.

Conditions 1 and 2 are corner cases while condition 3 is the general case. Con-
dition 1 occurs when a is odd, 1 < a < v − 1 and s = (a + 1)/2. Condition 2
occurs when 1 < a < v/2 and a = s. Due to brevity of space, we only provide
the proof for the general case:

pa+1,s = pa,s−1(1− ra,s−1) + pa,sra,s

= pa,s−1

v − 2s+ 2

v − a
+ pa,s

2s− a

v − a

= pa,s
(2s− a− 1)(2s− a)

2(v − 2s+ 2)(a− s+ 1)

v − 2s+ 2

v − a
+ pa,s

2s− a

v − a

= pa,s
2s− a

v − a

(
2s− a− 1

2(a− s+ 1)
+ 1

)
= pa,s

2s− a

v − a

(
a+ 1

2(a− s+ 1)

)
(2)

pa+1,s+1 = pa,s(1− ra,s) + pa,s+1ra,s+1

= pa,s
v − 2s

v − a
+ pa,s+1

2s− a+ 2

v − a

= pa,s
v − 2s

v − a
+ pa,s

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)

2s− a+ 2

v − a

= pa,s
v − 2s

v − a

(
1 +

2(a− s)

2s− a+ 1

)
= pa,s

v − 2s

v − a

(
a+ 1

2s− a+ 1

)
(3)

Dividing (3) by (2) yields the desired result for ha+1,s. ��

Theorem 2. There is exactly 1 turning point for the probability density function
of s within the problem domain.

Proof. A turning point occurs when the gradient equals 0. Since s is discrete,
the turning point occurs when pa,s equals pa,s+1, or equivalently, when ha,s = 1.
From (1), we have

10 C.M. Tey and D. Gao

2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)
= 1

2(v − 2s)(a− s) = (2s− a+ 1)(2s− a+ 2)

2(va− vs− 2sa+ 2s2) = 4s2 − 2sa+ 4s− 2sa+ a2 − 2a+ 2s− a+ 2

2va− 2vs = 6s+ a2 − 3a+ 2

−6s− 2vs = −2va+ a2 − 3a+ 2

s =
−2va+ a2 − 3a+ 2

−6− 2v

=
2a− a2

v + 3a
v −

2
v

6
v + 2

(4)

Theorem 3. The turning point for the probability density function of s is a
maximum turning point.

Proof. We only need to show that ha,s+1 < ha,s for all s. Since ha,smax = 1,
ha,s+1 < ha,s implies that when s < smax, ha,s > 1. Similarly, when s > smax,
ha,s < 1. In other words, the gradient is positive before the turning point and
negative after the turning point, implying a maximum turning point. From 1:

ha,s+1 =
2(v − 2s− 2)(a− s− 1)

(2s− a+ 3)(2s− a+ 4)

<
2(v − 2s)(a− s)

(2s− a+ 3)(2s− a+ 4)

<
2(v − 2s)(a− s)

(2s− a+ 1)(2s− a+ 2)

= ha,s��

The probability density function therefore has the shape of Figure 10.

Theorem 4. When q is large,

smax = a− a2

2v
(5)

Proof. When q is large, v is also large. (5) is obtained from (4) by eliminating
the insignificant terms when v is large. ��

4.2 Lower bound for c

The lower bound for the cluster size c depends on the worst case value of s1+s2+
sB for all possible attacker allocation1 strategies. We have shown that for large
1 We need only consider the set of allocation only strategies because due to VCA’s

equiprobable property (see Section 3), each strategy that involves allocation and
deallocation can be mapped to an equivalent strategy involving only allocation.

Nested Virtual Clusters Based Allocator 11

q (and therefore v), smax is a good approximation for s, which equals s1 + s2.
Also, since one BB slot is created whenever one type B block is allocated, b = sB.
The lower bound of c therefore corresponds to the upper bound of smax+ b. For
a 2 block size problem, this can be obtained from the following optimization
problem:

Determine a, the number of type A blocks, and b, the number of
type B blocks, so as to maximize smax+b, subject to the constraints:

1. a ≥ 0
2. b ≥ 0
3. a+ b ≤ q

The solution to this problem is:

a =
v

2
(6)

b =
2q − v

4
(7)

Substituting (6) and (7) into (5), the lower probabilistic bound for c is
given by:

cmin = smax + sB

= a− a2

2v
+ b

=
v

2
−

(v
2
)2

2v
+

2q − v

4

=
v

2
− v

8
+

2q − v

4

=
3v

8
+

2q − v

4
(8)

If v is chosen to be the minimum possible (i.e. q), then (8) simplifies to:

cmin =
3q

8
+

2q − q

4
=

5q

8
(9)

Note that (9) is expressed in units of type B slots. Each type B slot has a size of
2. So the minimum size is 5q/4. Compared to existing techniques, which reserve
1 cluster of size q each for type A and B blocks respectively, the randomization
of type B blocks improves by 25% (from q to 5q/4) while the size of the reserved
area required decreases by 37.5% (from 2q to 5q/4).

It should be noted that, in practice, a probabilistic allowance ε is needed to
ensure VCA has a low chance of failure even when the worst case allocation
strategy is used (see Equations 6 and 7). In such a case, the larger ε is, the less
likely s > cmin + ε. As q becomes larger, the required allowance increases in

12 C.M. Tey and D. Gao

absolute terms, but decreases relative to q. If the cluster size c is set at exactly
cmin, then approximately 50% of the time, s will exceed c when the worst case
strategy is used.

In dynamic storage allocation parlance, the lower bound of c is also known as
the worst case external fragmentation (WCEF). Robson proved that, when only
2 block sizes are involved and without randomization, the WCEF will never
be better (lower) than 1.5q [16]. Our work in this section adds 2 interesting
contributions to the analysis of WCEF. Firstly, to the best of our knowledge,
we are the first to show that it is possible to have a probabilistic bound through
the use of randomness. Secondly, we show that, for problems involving large q,
the probabilistic bound (1.25q) is lower than Robson’s limit (1.5q).

4.3 Computation of pa,s

Generally, pa,s can be computed by applying the following formula recursively:

pa,s = pa−1,s−1(1 − ra−1,s−1) + pa−1,sra−1,s (10)

Referring to Figure 9, it can be seen that calculating pa,s using this method
involves summing the probabilities along all possible paths starting from p1,1 and
ending with the desired pa,s. There are 2 observations which help in simplifying
the computation. Firstly, it can be observed in Figure 9, that there exists a
symmetry about the line a = v/2 = 5. Secondly, there is a repetitive structure
such that certain common numerator and denominator terms appear in all paths.
All numerator and denominator terms on the diagonal arrows are common, while
the denominator terms on the horizontal arrows are common. As an example,
for all paths leading to p4,3 in Figure 9, the common denominator terms are 9,
8 and 7, while the common numerator terms are 8 and 6.

In general, the common denominator terms on the paths to pa,s depend only
on a and v (but not s). They are:

v − 1, v − 2, . . . , v − a+ 1

On the other hand, the common numerators terms on the paths to pa,s depend
only on s and v (but not a). They are:

v − 2, v − 4, . . . , v − 2(s− 1)

As an example, if all common terms are removed from Figure 9, the remain-
ing numerator terms are shown in Figure 11. The product of the remaining
numerator terms along each path can be characterised using a sequence T (x, y),
where:

1. Each term of T is formed from the multiplication of x sub-terms
2. All sub-terms are positive integers
3. The first sub-term never exceeds y and
4. Each sub-term never exceeds the preceding sub-term by more than 1.

Nested Virtual Clusters Based Allocator 13

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

s

a

1.000 0.111

0.889 0.333

0.667

0.048

0.571

0.381

0.238

0.635

0.127

0.048

0.571

0.381

0.333

0.667

0.111

0.889 1.000

1

2 1

3 2

4

1

3

5

2

4

1

3 2

Fig. 11. Figure 9 with the common terms removed

For example,

T2,4 =1·1, 1·2,
2·1, 2·2, 2·3,
3·1, 3·2, 3·3, 3·4,
4·1, 4·2, 4·3, 4·4, 4·5

=1, 2, 2, 4, 6, 3, 6, 9, 12, 4, 8, 12, 16, 20

T3,2 =1·1·1, 1·1·2,
1·2·1, 1·2·2, 1·2·3,
2·1·1, 2·1·2,
2·2·1, 2·2·2, 2·2·3,
2·3·1, 2·3·2, 2·3·3, 2·3·4

=1, 2, 2, 4, 6, 2, 4, 4, 8, 12, 6, 12, 18, 24

These sequence are unique and not found in the OEIS database of integer se-
quences [17]. Note that T0,y = 1, by definition. Let Sx,y be the summation of all
terms in Tx,y. Then pa,s can be computed from the product of Sa−s,2s−a+1 and
the common numerators divided by the common denominators:

pa,s = Sa−s,2s−a+1

(
[v − 2][v − 4][. . .][v − 2(s− 1)]

[v − 1][v − 2][. . .][v − a+ 1]

)
(11)

4.4 Alternative Method for Computing pa,s

There exists an alternative way to compute pa,s. From Equation 2, we have a
relation between pa+1,s and pa,s. We can rewrite this equation as:

pa,s = pa−1,s

(
2s− a+ 1

v − a+ 1

)(
a

2(a− s)

)
(12)

Similarly from Equation 3, we have a relation between pa+1,s+1 and pa,s. We
can rewrite this equation as:

pa,s = pa−1,s−1

(
v − 2s+ 2

v − a+ 1

)(
a

2s− a

)
(13)

14 C.M. Tey and D. Gao

We also know that p1,1 = 1 for all v. To compute pa,s, we can choose any
path from p1,1 to the desired pa,s and apply Equations 12 and 13. If a = s, there
is only 1 path:

p1,1, p2,2, p3,3, . . . , ps,s (14)

The formulas for this path are:

p2,2 = p1,1

(
v − 2

v − 1

)(
2

2

)
=

(
v − 2

v − 1

)
p3,3 = p2,2

(
v − 4

v − 2

)(
3

3

)
=

(
v − 2

v − 1

)(
v − 4

v − 2

)
p4,4 = p3,3

(
v − 6

v − 3

)(
4

4

)
=

(
v − 2

v − 1

)(
v − 4

v − 2

)(
v − 6

v − 3

)
. . .

pn,n =

(
v − 2

v − 1

)(
v − 4

v − 2

)(
v − 6

v − 3

)
. . .

(
v − 2(n− 1)

v − (n− 1)

)
(15)

If a > s, for simplicity, we choose (14) for the first part of the path, then
continue with

ps+1,s, ps+2,s, . . . , pa,s (16)

We have:

pa,s = pa−1,s

(
2s− a+ 1

v − a+ 1

)(
a

2(a− s)

)
pa−1,s = pa−2,s

(
2s− a+ 2

v − a+ 2

)(
a− 1

2(a− s− 1)

)
pa−2,s = pa−3,s

(
2s− a+ 3

v − a+ 3

)(
a− 2

2(a− s− 2)

)
ps+1,s = ps,s

(
s

v − s

)(
s+ 1

2(1)

)
(17)

Together, Equations 15 and 17 provide an alternative method of computing
pa,s. Interestingly, Equations 15, 17 and 11 also allow us to derive an expression
for Sx,y. Substituting Equations 15 and 17 into 11 and simplifying, we get:

Sa−s,2s−a+1 =
(2s− a+ 1)(2s− a+ 2)(. . .)(a)

2a−s(a− s)!
(18)

Nested Virtual Clusters Based Allocator 15

Substituting x = a− s and y = 2s− a+ 1, we get:

Sx,y =
(y)(y + 1)(. . .)(2x+ y − 1)

2xx!
(19)

5 Limitations

Randomly allocating blocks from a large cluster results in poor spatial local-
ity, which depending on the size of the cache and the application usage may
affect cache performance. This problem affects all randomized allocators includ-
ing VCA. This tradeoff however results in improved security against heap based
buffer overflow attacks.

In practice, a probabilistic allowance, ε needs to be added to the cluster size.
For a 2 block size problem, this increases the cluster size beyond the probabilistic
bound of 1.25q (but never beyond the theoretical bound of 1.5q). For a fixed
probability of failure, the lower q is, the greater the magnitude of this allowance
(relative to q).

To extend VCA to more than 2 block sizes, one way is to use multiple clusters
with power of 2 block sizes. For example, on a platform with a page size of 4096
bytes, VCA would use 4 types of clusters, each handling block sizes of (i) 16
bytes and 32 bytes, (ii) 64 bytes and 128 bytes, (iii) 256 bytes and 512 bytes
(iv) 1024 bytes and 2048 bytes. Requests greater than or equal to the page size
can be allocated from the system directly (e.g. using the mmap system call).
The rounding of allocation sizes to power of 2 may lead to wastage of storage
known as internal fragmentation. This weakness is however shared by existing
randomized allocators as well as the binary buddy allocator.

A second way of extending VCA to more than 2 block sizes is by nesting virtual
clusters recursively. This results in a multi-variable optimization problem. It can
be shown that a unique solution exists for the extended problem. The analysis
of this problem is however omitted due to brevity of space.

Yet another possible way of extending VCA is to consider nesting more than
1 virtual cluster within a single parent cluster. For example, if the size of the
parent cluster is a multiple of 6, then the cluster may support allocations of
block size 6 directly, and allocations of block sizes 1, 2 and 3 using 3 virtual
clusters. We have not analysed the feasibility of this approach and leave it as
future work.

6 Conclusions

In this paper, we show that it is possible to improve the randomization while
reducing the space requirement of randomized heap allocators by allocating more
than 1 block size from a single cluster. With 2 block sizes, compared to existing
randomized allocators, the randomization of larger blocks improves by 25% while
the size of the reserved area required decreases by 37.5%.

16 C.M. Tey and D. Gao

References

1. The PaX Team: Homepage of the PaX Team, http://pax.grsecurity.net
2. Android community: Android security overview,

http://source.android.com/tech/security/index.html
3. Otto Moerbeek: A new malloc(3) for OpenBSD,

http://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
4. Ollie Whitehouse: An Analysis of Address Space Layout Randomization on Win-

dows Vista, http://www.symantec.com/avcenter/reference/Address_Space_
Layout_Randomization.pdf.

5. Berger, E.D., Zorn, B.G.: Diehard: probabilistic memory safety for unsafe lan-
guages. In: Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2006, pp. 158–168. ACM, New York
(2006)

6. Novark, G., Berger, E.D.: Dieharder: securing the heap. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
pp. 573–584. ACM, New York (2010)

7. Li, L., Just, J.E., Sekar, R.: Address-space randomization for windows systems.
In: Proceedings of the 22nd Annual Computer Security Applications Conference,
pp. 329–338 (2006)

8. OpenBSD: The OpenBSD project, http://www.openbsd.org
9. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach

to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX Security Symposium, Washington, DC, vol. 120 (2003)

10. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
pp. 281–289. ACM (2003)

11. Barrantes, E.G., Ackley, D.H., Forrest, S., Stefanović, D.: Randomized instruc-
tion set emulation. ACM Transactions on Information and System Security
(TISSEC) 8(1), 3–40 (2005)

12. Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D., Prevelakis, V.: On the
general applicability of instruction-set randomization. IEEE Transactions on De-
pendable and Secure Computing 7(3), 255–270 (2010)

13. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272–280. ACM (2003)

14. Cadar, C., Akritidis, P., Costa, M., Martin, J.P., Castro, M.: Data randomization.
Technical report, Microsoft Research (2008) Technical Report MSR-TR-2008-120

15. Daniel, M., Honoroff, J., Miller, C.: Engineering heap overflow exploits with
javascript. In: Proceedings of the 2nd Conference on USENIX Workshop on Offen-
sive Technologies, WOOT 2008, pp. 1:1–1:6. USENIX Association, Berkeley (2008)

16. Robson, J.M.: An estimate of the store size necessary for dynamic storage alloca-
tion. J. ACM 18(3), 416–423 (1971)

17. OEIS: The On-Line Encyclopedia of Integer Sequences (August 2013),
http://oeis.org/

http://pax.grsecurity.net
http://source.android.com/tech/security/index.html
http://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
http://www.openbsd.org
http://oeis.org/

VTOS: Research on Methodology

of “Light-Weight” Formal Design
and Verification for Microkernel OS

Zhenjiang Qian1,2,3,�, Hao Huang1,2, and Fangmin Song1,2

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210046, China

2 Department of Computer Science and Technology,
Nanjing University, Nanjing 210046, China

3 Department of Informatics, King’s College London,
London WC2R 2LS, United Kingdom

zhenjiang.qian@gmail.com, {hhuang,fmsong}@nju.edu.cn

Abstract. The correctness of the operating systems is difficult to be de-
scribed with the quantitative methods, because of the complexity. Using
the rigorous formal methods to verify the correctness of the operating
systems is a recognized method. The existing projects of formal design
and verification focus on the validation of code level. In this paper, we
present a “light-weight” formal method of design and verification for OS.
We propose an OS state automaton model (OSSA) as a link between the
system design and verification, and describe the correctness specifications
of the system based on this model. We implement the trusted operat-
ing system (verified trusted operating system, VTOS) as a prototype,
to illustrate the method of consistency verification of system design and
safety requirements with formalized theorem prover Isabelle/HOL. The
result shows that this approach is feasible.

Keywords: Microkernel OS, Formal Design, Formal Verification,
System Correctness.

1 Introduction

Operating system (OS), as a significant system software or platform, provides
services and security protection for a variety of other applications. The correct-
ness of OS is the core issue of information security, and how to elaborate or
ensure the correctness of OS is the direction of industry and academia efforts.
Because of the enormous size and complexity of OS, the accuracy is not easy

� This work is supported by the National High Technology Research and Development
Program (863 Program) of China under grant No. 2011AA01A202, the National
Science Foundation of China under grant No. 61021062, the “Six Talents Peak”
High-Level Personnel Project of Jiangsu Province under grant No. 2011-DZXX-035,
University Natural Science Research Program of Jiangsu Province under grant No.
12KJB520001.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 17–32, 2013.
c© Springer International Publishing Switzerland 2013

18 Z. Qian, H. Huang, and F. Song

to be described and illustrated. Despite intensive testing, the bugs in OS do
occur over time, which can be seen from the fact that the current mainstream
commercial OSs continually release the update patches.

For low-assurance application environment, using test to ensure the correct-
ness of underlying OS can be considered sufficient. The situation is quite different
for high-assurance application environment, in which even as complete as possi-
ble coverage of test cases cannot guarantee that OS is correctly implemented.

An apparently better approach is to use a more rigorous mathematical ap-
proach to do formal description and verification, e.g. code analysis, model check-
ing [1] and theorem proving. Formal methods can guarantee the correctness of
the software program. But in the actual application process, the developers often
shun it due to the division of abstraction levels, and the complexity and scale of
the program, as well as the difference between programming and formal logic.
Therefore, many scholars try the “light-weight” [2-4] tools to do formal descrip-
tion and design, which have powerful expressiveness ability and can be applied
easily. At present, many scholars do verification in the code level for the imple-
mented OS. The OS codes (usually written with C language) are transformed
into the input syntax for interactive mechanized verification using the theorem
prove tools, e.g. Isabelle [5] or Coq [6]. There are two problems for the work: the
investment of time and persons is great, such as seL4 [7] and Verisoft XT [31]
projects, and for system maintenance and upgrade work, the updated OS codes
still need to be transformed and verified with the existing OS modules merged.

In this paper, we argue that in order to design and implement the OS with
formal methods, and illustrate the correctness of the system and ensure the
system’s security, we need to verify whether the design of OS meets the require-
ments of system security, and thereby verify whether the implementation meets
the requirements of design. We propose that not only the verification for system
implementation (code level) needs the formal methods, but also the system de-
sign (design level) requires the use of formal logic to ensure the correctness of
the design, to the greatest extent of the correctness of system.

In this paper, we present a “light-weight” formal method for the design and
verification of OS. We propose an OS state automaton model (OSSA) as a link
between the system design and verification, and describe the correctness condi-
tions of the system based on this model. We implement the trusted operating
system (verified trusted operating system, VTOS) as a prototype, to illustrate
the method of consistency verification of the system design and safety require-
ments with formalized theorem prover Isabelle/HOL.

The rest of this paper is organized as follows. Section 2 reviews the related
work of formal design and verification for OS. Section 3 describes the state
automaton model (OSSA). Section 4 illustrates the method of formal verification
for VTOS in Isabelle/HOL. Section 5 explains the concrete verification of VTOS
in Isabelle/HOL. Section 6 concludes this paper and makes prospect for the
future work.

VTOS: Research on Methodology of “Light-Weight” Formal Design 19

2 Related Work

In 1978, UCLA developed UCLA Secure UNIX [8] for PDP-11 machine. In
this system, developers gave multi-layer specification. Top-level specification de-
scribed permission access control model of the kernel. The specification of the
abstraction layer included abstract data structures. The low-level specification
contained all the variables and objects used in the kernel call interface. The low-
est level is the Pascal codes of the kernel. The authors verified the consistency of
specifications inside several parts of the abstraction levels, but did not prove the
consistency between all the kernel levels, and consistency of implementation.

Provably Secure Operating System (PSOS) was developed by SRI interna-
tional during 1973-1980, aiming at providing a generic OS with provable secu-
rity. PSOS proposed multi-level hierarchical abstraction, and used a specification
language (SPECIAL) [9] for precisely defining modules of all levels as well as
abstraction mapping between layers. PSOS provided only some simple examples
to illustrate the consistency of its implementation and specification, and did not
process the formal design and verification from strict sense.

In 1995, Charlie Landau led the EROS [10] project, which focused its formal
verification mainly on the correctness of the address translation and the security
of usage of kernel memory. The Coyotos project, led by Hopkins in 2006, as the
successor of the EROS, proposed a low-level programming language (BitC) [11]
and defined the corresponding formal semantics.

VFiasco project [12] organized by the Technical University of Dresden, veri-
fied the microkernel compatible with L4. VFiasco used the SPIN model checker
to verify the IPC mechanism, and used the PVS [13] verification system as an
assistive theorem prover to build system model and verify the correctness of the
code. VFiasco modified the C++ language to enhance security of the program-
ming language. In 2008, they reported the Nova Hypervisor project [14] as the
continuation of VFiasco, proposed formal models for IA32 processor and mem-
ory, and implemented a tool directly converts C++ code to corresponding PVS
semantic code.

The seL4 project [7] was initiated by the Laboratory of National ICT Aus-
tralia (NICTA) during 2004-2006. The project mainly focused on verifying L4
microkernel of the ARM architecture with Isabelle/HOL prover [5]. In the re-
port [15] Klein illustrated the validation work. The objective of formalization was
to verify that the implementation was consistent with the expected definition
of the abstract model. They are dedicated to the reliability [16] and integrity
[17] of OS with the formal methods and improving the efficiency of the real
systems [18].

From beginning of the 1990s to the present, the Flint team led by Profes-
sor Shao at Yale University has done significant work on formal verification
[19][20]. In safe language, they designed a new programming language (Ver-
iML) [21], which introduces the inductive definition of data types in the logic
system λHOLind based on λHOL logic [22], and provides strong formal descrip-
tion capacity as well as features of type security. The open logical framework
OCAP [23] developed by Feng et al successfully combined the validation logics of

20 Z. Qian, H. Huang, and F. Song

different modules in OS, to form a complete verification system, and to ensure
the scalability of the verification model. Meanwhile, the Flint team also studies
the methodology of verifying the concurrent management [24] and uses the hi-
erarchical abstraction method to validate the various functional modules in the
OS [25]. The Flint team cooperates with the group led by Professor Chen in
University of Science and Technology of China. They are committed to program
verification technology in high trusted software, and studies how to effectively
integrate the form of program verification, proof-carry-code (PCC) and domain-
specific language, in order to form new methods for improving productivity of
writing robust software, correctness and security [26-30].

Verisoft is a project of large computer system design from 2003 to 2007, to
provide formal verifications for the entire computer system from hardware to
application layer, i.e., from bottom up (Pervasive Formal Verification) [31][32].
In 2007, its successor Verisoft XT project was officially launched. In Verisoft XT
project, pervasive formalization means that the entire project focuses on not only
the compiler, or the correctness of the model of machine instructions, but that
the design of the entire system must undergo the rigorous formal verification,
and form a complete verification chain of software and hardware [33-36].

3 State Automaton Model of VTOS (OSSA)

In this section, we illustrate the functionality of our self-implemented secure mi-
crokernel OS (VTOS), and analyse the elements of the state automaton model,
i.e., software/hardware computing entities, system object states, and events.
Based on these elements, we explain the state automaton model of VTOS
(OSSA).

3.1 Architecture and Functionality of VTOS

VTOS is our self-implemented secure and trusted OS. The kernel of VTOS
provides the most general services, e.g., process/thread schedule, interrupt han-
dling, message service and simple I/O service, etc. Other functionality services
including file management (FM), process management (PM), and memory man-
agement (MM), etc, are implemented as user mode processes. The architecture
VTOS is shown in the Figure 1.

VTOS adopts the microkernel architecture, in which the inter-process com-
munication (IPC) is realized with message mechanism. From the aspect of func-
tionality, the message processing copies the messages in the message buffer of
sender to the one of receiver. The message processing needs to check the legality
of the target process, and look up message buffers. Meanwhile, the microker-
nel converts the hardware and software interrupts into messages. The hardware
interrupts are generated by hardware, and the software interrupts are the only
way for the user-level applications to request system services delivered to the
kernel.

The microkernel handles the process scheduling, responsible for state transi-
tions of the processes in ready, running, and blocking.

VTOS: Research on Methodology of “Light-Weight” Formal Design 21

User User User User User

PM FS RS Others

TTY Disk Net Others

Interrupt Schedule Message Systask

User-
Level

Kernel-
Level

Fig. 1. The architecture of VTOS

Due to isolation, the processes outside the microkernel are prohibited to per-
form the actual I/O operations, manipulate kernel tables or complete the func-
tionality as in monolithic-kernel OS. The microkernel works in the sealed con-
dition, and modules outside the microkernel execute as independent processes
and their codes are kept unchanged. Because of these limitations, the microker-
nel should provide a set of services for system drivers and functionality servers.
These special services are handled by the system task, which is scheduled as a
separate process, and is responsible for receiving all of request messages from
system drivers and functionality servers, and forwarding these messages to the
microkernel.

For interrupt handling, microkernel stores the process context, e.g. informa-
tion of registers, and do procedure of interrupt handling, and restore the inter-
rupted processes.

The principal reason for us to choose the microkernel architecture is that the
microkernel is the only execution object running in highest privileged level and it
is isolated. The device drivers are all implemented as user mode programs. The
new OS service modules, if needed, are added in user mode. Therefore the user
mode programs can not damage the microkernel directly. And the microkernel
OS is adequate for multi-cores or many-cores platforms [37].

3.2 Hardware and Software Computing Entities

Modern computer system consists of memory, arithmetic units, and control units,
etc. The memory includes registers in the CPUs, caches, main memory, registers
in the device controllers, and exchange area in hard disks. The required instruc-
tion sequence and data for each arithmetic unit, and the results calculated are
all stored in the memory. There is little trivial difference between these con-
cepts and normal ones in computer organization, and these concepts are more
convenient for introducing the following abstract model of OS.

The objects that can affect the data in the memory include arithmetic units
in the CPU cores, and device controllers with DMA mechanism. All of these
objects read and write the data in memory in parallel, and we call these objects
as hardware computing entities.

22 Z. Qian, H. Huang, and F. Song

The control units in the CPU control the running of arithmetic unit according
to the values of the data in the memory. For example, in the Intel CPU, if
CPL bit in the EFLAG register is not equal to 0, the arithmetic unit may not
execute the SETGDT instruction. Because data in the memory (as EFLAGS
in Intel CPU) contains the mask bits of interrupt, it also affects the selection of
interrupt events to be handled in the next step. The number of clock cycles for
different instructions vary. At the end of each clock cycle, some instructions may
happen to complete exactly, while others need to continue in the next clock cycle.
Meanwhile, at the end of each clock cycle, there may be a number of events to
arrive. According to the current value of each memory location and the hardware
computing entities that have just finished an instruction, the control units select
a number of events to be handled in these hardware computing entities from the
beginning of the next clock cycle. Therefore, the value of each memory location
is the key part of the system state. We call the object that consists of a sequence
of instructions and can independently run in a hardware computing entity, as a
software computing entity, e.g., processes, threads, and function objects.

We suppose U is a software computing entity. The read-only data object set
of U is denoted by R(U). And the modified data object set of U is denoted
by W (U). We call the object set R(U) ∪ W (U) as a working object set of
U , which is denote by RW (U). Because of interrupt mechanism, the software
computing entity U may be interrupted during execution, and it may wait in the
waiting queue. During the waiting period of U , any other software computing
entity do not access its working object set. We can divide all the current software
computing entities in the system into two categories. One is the set of running
software computing entities denoted by Ar, in which all the entities are run-
ning on respective hardware computing entities. The other is the set of waiting
software computing entities denoted by Aw, in which all the entities do not
possess the hardware computing entities, thus in the waiting queue. The set of
all the software computing entities is denoted as A, i.e., A = Ar ∪Aw.

3.3 System Object State

In this subsection, we use the notation in [38] to describe the system state.
Suppose Ar = {a1, a2, · · · , at}, Aw = {at+1, at+2, · · · , an}, and the working

object set of ai is RW (ai) = {xij | j = 1, 2, · · · , ni; i = 1, 2, · · · , n}. We denote
the value range of object xij by Vij . The initial value of the object xij is s0ij . We
suppose that ai has mi instructions, and after running k instructions, the value
of the object xij in RW (ai) will be skij , k = 1, 2, · · · ,mi. The value space of the
working object set RW (ai) is

ni∏
j=1

Vij (1)

which we denote as V RW (ai). The semantics of the software computing entity
ai may be expressed as the mapping:

∏ni

j=1 Vij →
∏ni

j=1 Vij .

VTOS: Research on Methodology of “Light-Weight” Formal Design 23

We call the Cartesian product

n∏
i=1

ni∏
j=1

Vij (2)

as the system object state set denoted by SD.
Sometimes, the software computing entity ai may create or release objects

during its execution process. In this case, its working object set RW (ai) may
vary and so is its value space

∏ni

j=1 Vij .
In the system memory, in addition to the objects in the equation (2), there

are a lot of fragments of free storage space. The positions and number of these
fragments vary constantly. In order to analyze the system object state, we make
unified numbering for all the data storage units including register, cache, mem-
ory, etc. These numbers as whole is a subset of the natural number set N , and
we denote this subset as N , N ⊂ N .

3.4 Events

During each clock cycle, one device may generate hardware interrupt, that pos-
sible changes the set Ar. The process may generate the software interrupt and
change Ar. And the exceptions of CPU may also change set Ar. We call the hard
interrupt, software interrupt, and exceptions generated during the clock cycle as
current arrival events denoted by Ea. The events that arrive before or are
waiting to be handled are called as waiting events denoted by Ew. And the
events being handled are called as running events denoted by Er. Obviously,
the system object state SD, the current arrival events Ea, the waiting events Ew,
the running software computing entities Ar, and the waiting software computing
entities Aw, determine the next Er, Ew, Ar and Aw.

3.5 State Model of VTOS

Base on the above analysis, the running of modern computer system can be
described as the progress in which several computing entities manipulate a series
of data objects in the memory in parallel.

From the point of view of the software, the factors affecting the system running
are the data and instruction sequences in the memory and the arrival events. So
the computer system can be described as a state automaton (OSSA) as follows.

1. The set of the accepted events corresponds to the alphabet of OSSA.
2. The events handled during the period from power on to system halt corre-

spond to a sentence accepted by OSSA.
3. At the end of a clock cycle, the values of each memory location and the

arrival events correspond to the current state of OSSA.
4. The modification actions to the memory units by hardware computing enti-

ties correspond to the state transitions of OSSA.

24 Z. Qian, H. Huang, and F. Song

5. The state in which the CPU executes the halt instruction corresponds to the
termination state of OSSA.

We build the OSSA model of VTOS as follows.

Definition 1 (VTOS OSSA Model). VTOS OSSA model is a state automaton,

AOS = (S,Σ, δ, s0, Γ) (3)

and the definitions of S,Σ, δ, s0, Γ are as follows:

1. The system state: S = (SD, Ar, Aw, Er, Ew)
(a) The object state SD: the system object state.
(b) The running software computing entities Ar: the software computing

entities that are running in hardware computing entities;
(c) The waiting software computing entities Aw: the software computing

entities that are waiting for running;
(d) The running events Er: the events that are chosen to be handled;
(e) The waiting events Ew: the events that wait to be handled;

2. Σ is the set of all kind of events that the OS accepts.
3. The set of state transfer functions denoted δ : δ(s, Ea) = s′.
4. s0 is the initial state of VTOS.
5. Γ is the termination state set, Γ ⊆ S. Whenever the system reaches a state

in Γ , the system terminates.

The architecture of VTOS OSSA model is shown as in Figure 2.

Ar

Ea SD

Er

Ew

Aw

Σ

S=(SD, Ar, Aw, Er, Ew)

δ(S, Ea)

Fig. 2. OSSA model of VTOS

4 Method of Formal Verification for VTOS in
Isabelle/HOL

In section 3, we explain how to use the OSSA model to describe the design of
VTOS. Based on the OSSA model, in this section, we illustrate the method of
how to use Isabelle/HOL theorem proving tools to verify the consistency of the
design and implementation of VTOS.

VTOS: Research on Methodology of “Light-Weight” Formal Design 25

4.1 Introduction of Isabelle/HOL Theorem Proving

Isabelle [5] is a theorem prover tool for validation of the abstract problems
described by the logic systems. Isabelle can rigorously verify the program logics in
the computer system. Isabelle/HOL supports for Higher-Order Logic in Isabelle,
and provide the interactive verification platform with the form of functional
programming.

Isabelle/HOL is a type system, and has predefined series of basic types, e.g.,
nat, int and list. Users can also define new types by keywords record and
datatype, data objects by keyword definition, functions by keywords primrec
and fun, and formulae by lemma and theorem. The special domain is estab-
lished by building the theory in Isabelle/HOL. In general, each theory is a col-
lection of types, definitions, functions, theorems and proofs.

Isabelle/HOL provides many rules for proving theorems. Meanwhile, we can
quote existing theories that contain one or more proven theorems.

4.2 Domain of VTOS in Isabelle/HOL

As described in section 3 above, it is obvious that the system object state can be
represented as the elements of the special domain[38][39], that is a mathematical
system. The system states, the operations of the hardware and software comput-
ing entities, and the properties of the system shown in the form of propositions
constitute the domain of VTOS, denoted by MComputer. Relatively, the domain
of VTOS in Isabelle/HOL is denoted by MIsabelle/HOL. According to the design
and implementation of VTOS, we construct the domain MIsabelle/HOL. There
is the isomorphism[39] relation between MComputer and MIsabelle/HOL , i.e., the
proposition in Mcomputer is true if and only if the corresponding proposition is
true in the MIsabelle/HOL .

According to the above described, we establish the relationship between VTOS
and Isabelle/HOL logic reasoning system. First, we construct the OSSA model,
and based on this model, we design and implement VTOS. With the imple-
mentation of VTOS, we describe the domains Mcomputer, and MIsabelle/HOL in
Isabelle/HOL that is isomorphic to the Mcomputer. Thereafter, the properties
about the functionality or security of VTOS can be mapped to logic formulae
in MIsabelle/HOL . On this basis, we verify the consistency of design and imple-
mentation of VTOS through reasoning in the Isabelle/HOL logic system.

4.3 OSSA Model of VTOS in Isabelle/HOL

We regard OS as a server that provides its services whenever a user-level program
claims the requests. After finishing the service, the OS gets ready to receive
another request. As described in subsection 3.5, an OS works like an OSSA
AOSSA = (S,Σ, δ, s0, Γ). The principal elements of OSSA are the system state
set S and the set of state transfer functions δ. Each element in S is a vector
that consists of values of the data objects of all the current processes. All the
functions of event handling and functionality constitute the set of state transfer

26 Z. Qian, H. Huang, and F. Song

functions δ. What each function in δ does is that it transfer the initial values of
the data objects to new ones according to the functionality semantics.

For describing the OS domain, there are two principal works, i.e., design of
the working object set, and of the functions of event handling and functional-
ity that operate on the working object set. The processing of functions in OS
corresponds to the transitions of values of the working object set. Therefore,
in order to show that VTOS accomplishes all its functions correctly, we prove
that VTOS correctly transfer the initial values of the data objects according to
the functionality semantics whenever it handles the events and service requests.
Relatively, in order to illustrate the security of VTOS, we prove that the system
states satisfy the security specifications at any time.

Now we explain how to describe VTOS as an OSSA. As mentioned in subsec-
tion 3.1, VTOS is a microkernel OS for general purpose, consisting of microker-
nel, file manage management, process management, memory management, and
device drivers. Firstly, we design the working object set {xij | j = 1, 2, · · · , ni}
for each computing object Mi, i.e., the software computing entity. Suppose the
object xij takes value on the set {Vij | j = 1, 2, · · · , ni}, the possible states for Mi

is the space
∏ni

j=1 Vij . Then we design the function set {fij | j = 1, 2, · · · ,mi} for
Mi. This function set is the subset of state transfer functions δ. The semantics
of the function fij can be expressed as the mapping from S to S. In order to
illustrate the correctness of the function fij , we prove that the running of the
function fij complies with the expected functionality semantics.

4.4 State Transition Functions of OSSA in Isabelle/HOL

From the aspect of view of composition, the functions implemented in VTOS
has two aspects, i.e., the working objects and the instruction sequences. In or-
der to illustrate the correctness of functions, we describe the working objects
and the instruction sequences in Isabelle/HOL. As shown in the following def-
initions of Instr, PCinc and NextS, we define the type of instructions as
Instr, that contains all kind of assembly instructions, e.g., mov, add, push,
pop, leave, etc. Due to the space limitations, we introduce some of them. The
case movrr Register Register, whose type is Instr, corresponds to the in-
struction “movl Register Register”. The function PCinc adds 1 to the pro-
gram counter register PC. The semantics of the function NextS is that for
“s′ = NextS s instr”, after executing the instruction instr, the system state
s is converted into s′. Similarly, by applying NextS to the sequences of the
functionality instructions, we can calculate the state transitions for multi-steps.

Definitions of Instr, PCinc and NextS in Isabelle/HOL

datatype Instr =

movrr Register Register

| movir int Register

| addrr Register Register

...

VTOS: Research on Methodology of “Light-Weight” Formal Design 27

fun PCinc :: "state => state"

where

"PCinc s = s (| R:=((R s) (pc:=((R s) pc)+1)) |)"

fun NextS :: "state => Instr => state"

where

"NextS s (movrr y x) = PCinc (s (| R:=((R s) (x:=((R s) y)))|))"

...

4.5 Proving the Integrity Property in Isabelle/HOL

The running OS is a collection of several processes. Each process provides des-
ignated services. Can these processes always provide the services during the
running of system? How can we describe and judge that these processes provide
the services correctly? These questions confuse many researchers. As illustrated
above, we regard that VTOS corresponds to an OSSA model. We prove the
immutability of the corresponding OSSA model of VTOS to demonstrate the
integrity of VTOS.

As illustrated in section 3, the current values of all working objects of the
processes in the OS correspond to the system state of OSSA. It is obvious that if
the accepted alphabet and transition functions of the OSSA remain unchanged,
the OSSA is immutable. In order to prove this characteristic conveniently, during
the design of VTOS, we guarantee that the working objects of any two processes
do not intersect, and that the possible target address set of the branch points
in the functions is identified and will not be changed by user applications and
inputs. Because the services provided by VTOS are identified, this objective is
reasonable. With these criteria We design and implement VTOS, and the result
shows that it is feasible. Therefore we need only to prove that the accepted events
and the semantics of functions in the microkernel are kept unchanged, i.e., that
all memory units occupied by the codes of microkernel remain unchanged, and
that the selection of target address in each branch point is consistent with the
semantics of the functionality. This actually proves that all the factors that may
affect the integrity of VTOS are kept unchanged during the running of system.

5 Verification of VTOS in Isabelle/HOL

In this section, we take the module of message processing service as the example
to describe the method of proving the correctness of event handling and state
transitions.

For building the model or structure in Isabelle/HOL, the significant work
is to construct the domain and define the mapping or interpretation from Is-
abelle/HOL to the domain.

While we design the working object set for the modules of the VTOS, we
have designed the state set of OSSA actually. And while we design the system
call functions, we have designed the state transition functions of OSSA actually,

28 Z. Qian, H. Huang, and F. Song

and while we establish the integrity conditions, we have constructed the relations
on domain actually. So when we complete VTOS design, we also complete the
construction of the domain.

As illustrated in subsection 3.4, whenever the events occur, the OS select
the corresponding event handlers to execute. The events may be interrupts, and
service requests, etc. It is important to prove the correctness of the execution of
event handlers and the corresponding state transitions.

In the microkernel of VTOS, the module of message processing service mainly
includes the functions of sys send, and sys receive, etc. The working objects of
these functions are components of the PCBs (process control block) of the sender
and receiver processes.

In the following sections, we illustrate the correctness proof of the function
sys send in VTOS, which sends message from one process to another process.
The main part of the C codes for sys send, the corresponding assembly codes
and definition in Isabelle/HOL are shown as follows.
sys send in C

int sys_send(struct proc *caller_ptr, int dst, message *m_ptr,

unsigned flags)

{

struct proc *dst_ptr = get_proc_from_pid(dst);

...

copy_mess(m_ptr, dst_ptr->p_messbuf, sizeof(message));

...

}

sys send in ASM

<sys_send>:

push %ebp

movl %esp,%ebp

subl $0x28,%esp

movl 0xc(%ebp),%eax

movl %eax,(%esp)

call c0101128

...

movl %eax,0x4(%esp)

movl 0x10(%ebp),%eax

movl %eax,(%esp)

call c010116d <copy_mess>

...

sys send in Isabelle/HOL

definition sys_send :: "Code"

where

"sys_send =

pushr ebp;

movrr esp ebp;

subir 10 esp;

movirr 3 ebp eax;

movrir eax 0 esp;

call get_proc_from_pid;

...

movrir eax 1 esp;

movirr 4 ebp eax;

movrir eax 0 esp;

call copy_mess;

..."

It is the key point for us to establish the formulae to describe the specifica-
tions for the correctness of the event handlers and the state transition functions
whenever the event handlers are called, because these conditions should fit to

VTOS: Research on Methodology of “Light-Weight” Formal Design 29

any starting state for the state transition functions. For example, we illustrate
the correctness specification for sys send as follows.

∀s. Q(s) ∧ (s′ = NextnS s sys send) −→ P (s, s′) (4)

in which “NextnS s sys send” means the state after execution of the function-
ality semantics of sys send, i.e., the state for multi-steps. The formula 4 means
when the starting state s satisfies the condition Q, the function sys send can
correctly send designated messages to target process, i.e., that the starting state
s and the subsequent state s′ satisfy condition P . We regard that not all the
states are security states. Therefore, there are some states that the VTOS may
not reach, and we need not consider these cases for the starting states. In the
formula 4, the condition P is considered as the semantic formula of the function
sys send, and Q as the initial condition.

From the aspect of view of the working object set, we consider the starting
state condition Q. The working object set of the function sys send includes
the actual parameters in the stack, and the accessibility of the corresponding
components of the PCBs of the sender and receiver processes. So the condition
Q is defined as follows:

Q(s) : (s.regs.sp+ 1 = caller ptr) ∧
(s.regs.sp+ 2 = dst) ∧
(s.regs.sp+ 3 = m ptr)

(5)

The formula 5 states that the actual parameters that the function sys send
needs are located in the stack at proper location and possess the correct values.

When the sender process requires to send the message to the receiver process,
the target process may be waiting for this message, or in dealing with other
messages. Here we explain the case that the target process is waiting for this
message. In this case, the handler sys send copies the designated length of bytes
from the sender’s message buffer to the receiver’s. Therefore, the correctness
condition for sys send is that the values in the two relevant memory location
interval, i.e., the message buffers of the sender and receiver, are equivalent. The
semantic formula P is defined as follows.

P (s, s′) = CmpM(s′, s.M(s.regs.sp+ 3),
s′.M(proc+ sizeof proc ∗

s.M(s.regs.sp+ 2) + p messbuf),
sizeof msg)

(6)

in which the auxiliary formula CmpM is defined as follows.

CmpM(s, p, q, n) = (i ≥ 0 ∧ i ≤ (n− 1))
−→ (s.M(p+ i) = s.M(q + i))

(7)

The amount of the verification codes in Isabelle/HOL for the whole VTOS is
about 56K SLOC. The result shows that VTOS achieves the desired safety.

30 Z. Qian, H. Huang, and F. Song

6 Conclusion and Future Work

In this paper, we present a “lightweight” formal method to design and implement
a safe and reliable OS. We propose a state automaton (OSSA) model as the basis
of the system design. With this model, we describe the system states and state
transition functions. We use Isabelle/HOL theorem proving tool to establish its
corresponding formal model, and define the specifications of the system, to prove
that the system design and implementation comply with these specifications.
With this method we achieve a safe and trusted operating system (VTOS). The
results show that this approach is feasible.

Various functional modules in the OS are often designed using a variety of
program logics, and involved in different levels of abstraction, such as C language,
assembly codes, and hardware layers, etc. For the correctness of the whole system
integrated with these functional modules, it is not simply the conjunction of the
correctness of each module. For the future work, we will study how to combine
the verification of the separated modules to illustrate the correctness of the whole
system, from the aspect of view of the domain and type theory.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

2. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11(2), 256–290 (2002)

3. Denney, R.: Succeeding with Use Cases: Working Smart to Deliver Quality.
Addison-Wesley Professional Publishing, Boston (2005)

4. Agerholm, S., Larsen, P.G.: A lightweight approach to formal methods. In:
Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998. LNCS,
vol. 1641, pp. 168–183. Springer, Heidelberg (1999)

5. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

6. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

7. Klein, G., Andronick, J., Elphinstone, K., et al.: seL4: Formal verification of an
operating system kernel. Communications of the ACM 53(6), 107–115 (2010)

8. Walker, B.J., Kemmerer, R.A., Popek, G.J.: Specification and verification of the
UCLA Unix security kernel. Communications of the ACM 23(2), 118–131 (1980)

9. Robinson, L., Roubine, O.: Special: A Specification and Assertion Language. Tech-
nical Report, Stanford Research Institute (1977)

10. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: A fast capability system. In: 17th
SOSP, pp. 170–185. ACM, New York (1999)

11. Shapiro, J.S., Sridhar, S., Doerrie, M.S.: BitC Language Specification. Technical
Report (1996)

12. Hohmuth, M., Tews, H., Stephens, S.G.: Applying source-code verification to a
microkernel: the VFiasco project. Technical Report (2002)

13. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

VTOS: Research on Methodology of “Light-Weight” Formal Design 31

14. Tews, H., Weber, T., Volp, M., Poll, E., Eekelen, M., Rossum, P.: Nova Micro-
Hypervisor Verification Formal, machine-checked verification of one module of the
kernel source code. Technical Report (2008)

15. Klein, G., Elphinstone, K., Heiser, G., et al.: seL4: Formal verification of an OS
kernel. In: 22nd SOSP, pp. 207–220. ACM, New York (2009)

16. Heiser, G., Murray, T., Klein, G.: It’s time for trustworthy systems. In: 33rd S &
P, pp. 67–70. IEEE Computer Society, Washington (2012)

17. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: Van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011)

18. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A.: Timing analysis of a
protected operating system kernel. In: 32nd RTSS, pp. 339–348. IEEE Computer
Society, Washington (2011)

19. Shao, Z.: Certified Software. Communications of the ACM 53(12), 56–66 (2010)
20. Stampoulis, A., Shao, Z.: Static and User-Extensible Proof Checking. In: 39th

POPL, pp. 273–284. ACM, New York (2012)
21. Stampoulis, A., Shao, Z.: VeriML: Typed Computation of Logical Terms inside a

Language with Effects. In: 15th ICFP, pp. 333–344. ACM, New York (2010)
22. Barendregt, H.P., Geuvers, H.: Proof-assistants using dependent type systems.

Elsevier, Amsterdam (1999)
23. Feng, X.: An Open Framework for Certified System Software. Ph.D. dissertation.

Yale University, New Haven (2007)
24. Guo, Y., Feng, X., Shao, Z., Shi, P.: Modular Verification of Concurrent Thread

Management. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 315–331. Springer, Heidelberg (2012)

25. Vaynberg, A., Shao, Z.: Compositional Verification of a Baby Virtual Mem-
ory Manager. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679,
pp. 143–159. Springer, Heidelberg (2012)

26. Liang, H.J., Feng, X., Fu, M.: A Rely-Guarantee-Based Simulation for Verifying
Concurrent Program Transformations. In: 39th POPL, pp. 455–468. ACM, New
York (2012)

27. Tan, G., Shao, Z., Feng, X., Cai, H.X.: Weak Updates and Separation Logic. New
Generation Comput. 29(1), 3–29 (2011)

28. Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about Optimistic Con-
currency Using a Program Logic for History. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 388–402. Springer, Heidelberg (2010)

29. Ferreira, R., Feng, X., Shao, Z.: Parameterized Memory Models and Concur-
rent Separation Logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012,
pp. 267–286. Springer, Heidelberg (2010)

30. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware
interrupts and preemptive threads. In: 30th PLDI, pp. 170–182. ACM, New York
(2008)

31. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.: The
Verisoft Approach to Systems Verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

32. Daum, M., Dorrenbacher, J., Bogan, S.: Model stack for the pervasive verification of
a microkernel-based operating system. In: 5th VERIFY, pp. 56–70. CEUR-WS.org,
Aachen (2008)

33. Alkassar, E., Cohen, E., Hillebrand, M.A., Kovalev, M., Paul, W.J.: Verifying
shadow page table algorithms. In: 10th FMCAD, pp. 267–270. IEEE Press, New
York (2010)

32 Z. Qian, H. Huang, and F. Song

34. Alkassar, E., Cohen, E., Hillebrand, M.A., Pentchev, H.: Modular specification and
verification of interprocess communication. In: 10th FMCAD, pp. 167–174. IEEE
Press, New York (2010)

35. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Ingredients of operating system
correctness. In: Embedded World 2010 Conference (2010)

36. Baumann, C., Bormer, T., Blasum, H., Tverdyshev, S.: Proving memory separation
in a microkernel by code level verification. In: 14th ISORCW, pp. 25–32. IEEE
Computer Society, Washington (2011)

37. Wentzlaff, D., Agarwal, A.: Factored Operating Systems (FOS): The Case for a
Scalable Operating System for Multicores. ACM SIGOPS Operating Systems Re-
view 43(2), 76–85 (2009)

38. Li, W.: Mathematical Logic: Basic Principles and Formal Calculus. Science China
Press, Beijing (2007) (in Chinese)

39. Marker, D.: Model Theory An Introduction. Oxford University Press, Oxford
(1990)

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 33–48, 2013.
© Springer International Publishing Switzerland 2013

Defeat Information Leakage from Browser Extensions
via Data Obfuscation

Wentao Chang and Songqing Chen

Department of Computer Science
George Mason University

Fairfax, VA 22030
U.S.A.

{wchang7,sqchen}@gmu.edu

Abstract. Today web browsers have become the de facto platform for Internet
users. This makes browsers the target of a lot of attacks. With the security con-
siderations from the very beginning, Chrome offers more protection against ex-
ploits via benign-but-buggy extensions. However, more and more attacks have
been launched via malicious extensions while there is no effective solution to
defeat such malicious extensions. As user’s sensitive information is often the
target of such attacks, in this paper, we aim to proactively defeat information
leakage with our iObfus framework. With iObfus, sensitive information is al-
ways classified and labeled automatically. Then sensitive information is obfus-
cated before any IO operation is conducted. In this way, the users’ sensitive in-
formation is always protected even information leakage occurs. The obfuscated
information is properly restored for legitimate browser transactions. A proto-
type has been implemented and iObfus works seamlessly with the Chromium
25. Evaluation against malicious extensions shows the effectiveness of iObfus,
while it only introduces trivial overhead to benign extensions.

Keywords: Browser Extension, Chrome, Data Obfuscation, Information
Leakage Threats.

1 Introduction

The web browser has become the de facto platform for everyday Internet users, and
unarguably the driving force of the recent years’ Internet revolution. Modern web
browsers, such as Chrome, Firefox, and IE, are no longer simple static data renderers
but complex networked operating systems that manage multiple facets of user online
experiences[1][3].

To help browsers handle various emerging files and events, functionalities of web
browsers are constantly enhanced. Most often such functionalities are extended by
third-party code that customizes user experience and enables additional interactions
among browser-level data and events. As of today, all major commodity web brows-
ers support extensions. For example, Chrome has a list of over 10,000 extensions on
Chrome Web Store by Dec 2010 [13].

34 W. Chang and S. Chen

However, the fact that web browsers have become the most popular vehicle for In-
ternet surfing attracts more and more attacks. Among them, an increasingly popular
attack is via browser extensions [7][8][10]. Commonly, these attacks are launched by
exploiting existing extensions’ weakness or by tricking user to install malicious ex-
tensions that can take over the web browser, steal cookies or user sensitive informa-
tion without users’ knowledge. For example, one of the earliest Firefox malicious
extensions, FFsniFF [14] hides itself from the extension manager after it has been
installed, monitors all form submissions in the browser for passwords and sends an
email with gathered data to the attacker, and many Trojans disguise themselves as
legitimate browser helper objects (BHO) for IE, but once installed they change user
Internet settings and redirect users to random websites.

To deal with such threats, Google Chrome, one of the most popular web browsers,
has made significant efforts by introducing several new security features to its exten-
sion framework [4][5]. It enforces strong isolation between web browsers and
extensions, separates privileges among different components of extension, and uses a
fine-grained permission system [11]. Recent studies [6][7] indicate that the Google
Chrome extension framework is highly effective in preventing and mitigating security
vulnerabilities in benign-but-buggy extensions that can be leveraged by web attackers.
However, even Chrome does not cover all the bases, and most importantly it is de-
fenseless to information dispersion or harvesting attacks launched by malicious exten-
sions. For example, as these days online social networks are very popular, a rogue
extension, Adobe Business Flash Player [15], fetches and executes arbitrary Java-
Script code from network once it has detected that the user has landed to certain social
media websites. Users’ social media accounts are then hijacked to post feeds or
“like”s without users’ consent. Other attacks can be launched to steal bank account
information when users conduct online transactions as discussed in [7][12]. Existing
work on extensions made little progress on the detection or protection of such attack
vector.

To mitigate such an imperative threat, in this paper we design and implement iOb-
fus. As users’ sensitive information is the most critical asset, iObfus aims to defeat
sensitive information leakage through browser extensions. It automatically classifies
sensitive information on the web page with different default protection levels. Based
on the protection policy, sensitive information will be automatically and passively
obfuscated before any IO operations are performed. In this way, the users’ sensitive
information is always protected even information leakage happens (under this case
only obfuscated information is leaked). To ensure the proper function of normal
browser transactions, iObfus restores the context-aware sensitive information for
legitimate transactions.

To demonstrate the effectiveness of iObfus, we build a proof-of-concept prototype
on top of web browser Chromium 25. Experiments conducted against several mali-
cious extensions in the wild show that iObfus can effectively protect user information
from leaking. Further tests show that Chromium with iObfus does not interfere with
normal daily transactions, and the data obfuscation/de-obfuscation cause trivial delay
on users’ experience.

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 35

The rest of the paper is organized as follows. Section 2 introduces some back-
ground information on Chrome extensions followed by an analysis of the information
leakage threats from Chrome extensions in Section 3. We describe iObfus design and
implementation in Section 4. An evaluation is conducted in Section 5. We discuss
some related work in Section 6 and make concluding remarks in Section 7.

2 Security of Chrome Extensions

Chrome uses a multi-process architecture, where the browser core process runs in the
privileged mode to access system resources and performs I/O tasks and the renderer
process is responsible for displaying web content. The single instance of the browser
core process handles the browser UI and manages all tab and plugin processes, while
each renderer process corresponds to a single tab in the browser and runs in a sand-
boxed environment. To perform any task that needs additional privileges, the renderer
process simply sends messages to the browser core process via IPC.

Fig. 1. Chrome Extension Security Architecture

Chrome also relies on various extensions to extend its functionality. Chrome exten-
sion consists of Content Scripts and extension core components. Figure 1 shows an
example. A Content Script is a piece of JavaScript code that can be injected into a
web page before/after the page is loaded. It is executed in the same process of the tab
but in its separate JavaScript engine (called isolated world). Content Scripts cannot
access any objects except for the DOM tree of the web page and cannot use any
Chrome extension APIs. To communicate with the extension core or Content Scripts
across tabs, a Content Script relies on the message passing mechanism of Chrome’s
inter-process communication (IPC). The extension core contains background web
pages and their associated JavaScript code, and it runs in a separate sandboxed ren-
derer process and has no privileges to access system resources or perform I/O. The
message passing mechanism is also needed by the extension core to dispatch I/O tasks
to the browser core process. Optionally, an extension can have binary code such as
NPAPI plugins, which have the same set of privileges as the browser. Note that bi-
nary plugins are native executable and not protected by the Chrome extension security
framework so we do not include these in our research.

The goal of Chrome extension security architecture is not to defend the browser
process against malicious extensions but to protect benign-but-buggy extensions from
being compromised. The most common attack against Chrome extensions is through

36 W. Chang and S. Chen

malicious JavaScript codes that are either bundled with web pages or fetched from the
network. Thus the security model is an effort to defeat attacks launched from mali-
cious web pages that target vulnerabilities of buggy extensions. To minimize the po-
tential damages caused to the browser process if the extension is exploited, Chrome
also uses a multi-component architecture with fine-grained privilege separation strate-
gies. Security features of Chrome extension framework mainly include four security
mechanisms: a permission mechanism that governs access control to privileged
browser extension APIs and web contents, privilege separation between extension
components that protects extension core from attackers in case that Content Script has
been compromised by a malicious website, isolated runtime environments for Content
Script that prevent tampering of extension’s JavaScript objects and the Content Secu-
rity Policy (CSP) that disables certain dangerous JavaScript functions and features.

3 Information Leakage Threats from Chrome Extensions

In this section, we discuss the information leakage threats from Chrome extensions,
and we further classify the sources of information leakage through Chrome extensions
into two categories: per-tab user data from open web pages and browser user data
exposed by extension APIs.

3.1 Threat Analysis

Security concerns that online transactions could be hijacked or tampered with mali-
cious extensions have arisen in recent years [7][12]. Password or financial informa-
tion sniffing is one form of security attacks that malicious extensions could launch
against web surfers. To access sensitive information such as the bank account number
or login credentials, extensions need to inject Content Scripts to the victim web page.
The injected Content Script will search in the DOM tree for elements of their inter-
ests, for example, <input> elements with type or name equal to “password” where
user password is usually stored. To steal this information, attackers also need to estab-
lish a communication channel to the IP address where they hide. Thus malicious ex-
tensions also request cross-origin XHR permissions.

The recently popular attacks against Social Media accounts do not even need to
steal users’ login credentials. Instead, the attackers try to masquerade as the users to
engage social interactions stealthily. Such malware instances will check browser coo-
kies to determine whether users have landed to certain social websites. If they have,
another piece of JavaScript code will be fetched and executed, via which, the account
can be used to spam your friends, post malicious links on news feed or follow/like
other people or pages. This type of attacks seemingly acts like users’ normal behavior,
thus they are unlikely to be detected by anti-virus programs. Once infected, this
threat tends to persist in user’s browser. As a matter of fact, this type of malicious
extensions is the most common ones in the wild because attackers could gain mone-
tary benefits and users are often not aware of the fact that they become victims.

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 37

 The root causes of these attacks are: 1) Content Scripts have full access privileges
to the DOM tree of the web page they are injected to, regardless of the fact that cer-
tain elements contain more sensitive information. If a fine-grained access control
policy is enforced, we could control the source of information leakage. 2) The cross-
origin XHR permission often grants access privileges to more origins than necessary.
Each origin specified in the extension manifest file expands the target set of origins
that the extension can leak information to. Since the extension core and the Content
Script share the same set of origins, the potential sink points could scatter anywhere in
Content Scripts or the extension core, making it difficult to track leakages.

3.2 Sources of Information Leakage through Browser Extensions

To defeat information leakage attacks, we need to first define the scope of “sensitive
information” in the context of web surfing. The term “sensitive information” often
differs in different research fields. In a broad sense, sensitive information includes but
not limited to:

• Any information that can reveal users’ true identities or can be used to uniquely
identify users, for instance, names, social security numbers, profile images, etc.

• Financial information or monetary equivalence such as bank account number, cre-
dit card number, digital currency, and so on.

• Any information from which others can infer users’ tendency or personal prefe-
rences, for example, users’ recent shopping list can indicate his/her lifestyle and be
used for marketing purpose.

In general any data that users wish to withhold from others should be considered as
sensitive and shall be protected cautiously by venders or service providers. The scope
of sensitivity is so wide that in reality without a meaningful context of the term, there
is little to be done to protect sensitive information practically. To defeat information
leakage, it is essential to define the scope of sensitivity precisely in the context of
browser extensions.

Based on our extensive study of possible leaking sources that are accessible to
browser extensions, we classify sensitive information into two categories:

Per-Tab User Data from Open Web Pages
When a user opens and views web pages, the multi-process Chrome browser will
fetch each web page along with its resource files from the web server and render them
in sandboxed render processes respectively. The extension core runs in its own
process and does not have direct access to the memory space of sandboxed render
process, however, Chrome allows extensions to inject Content Scripts to any web
pages as long as the origin of the web pages match Content Scripts’ injection patterns.
The injected Content Script has full access to the DOM tree of the targeted web page,
thus sensitive information from per-tab user data becomes exposed to Content Script
component of the extension.

38 W. Chang and S. Chen

Before Chrome 13, cross-origin XHR was not supported in Content Scripts, so that
information leakage can only happen in the extension core. The message passing me-
chanism of Chrome extensions framework enables Content Scripts to send collected
information back to the extension core. With proper message passing and receiving
code implemented in the Content Script and the extension core, any user sensitive
information on the web page is no longer local to its containing browser tab, and they
are shared with the extension core, via which they can be further shared with other
tabs.

We build our own set of privacy rules with the basis of HIPPA’s 18 rules [18] to
identify candidates of sensitive per-tab data. The scope of set is dynamic depending
on different websites; easy to expand/update and even let users choose their own to-
lerance level (The configurable level of sensitive information will be further studied).
Besides HIPPA rules, we also add to the scope DOM nodes with sensitive informa-
tion specific to the browser, for example, sessions cookies, anti-forgery tokens that
prevent Cross-Site Request Forgery (CSRF) attacks, etc.

Browser User Data Exposed by Extension APIs
Modern browsers are allowed to maintain certain state information about their users
aiming to remember user preferences and facilitate user actions. Such state informa-
tion includes bookmarks of websites, download history, browsing history, cache of
visited web pages, the chosen theme of browser UI, list of installed extensions, geo-
location of browser, etc. The Chrome browser even offers its users to back up ag-
gregated user settings via cloud services to their centralized Google account, so that
the state information is synchronized across different Chrome instances.

The state information together is called browser user data and security measures
should be taken by browsers to protect them from tampering and stealing by web and
local attackers. In Chrome’s approach, browser extensions are executed in a sand-
boxed environment and a permission system is used to regulate permissions assigned
to extensions. If the principle of least privilege is strictly enforced, even they are tak-
en over by attackers the damage to the browser should be contained.

However, Chrome’s rich extension APIs and rough privilege definition make this
situation complicated. In addition to all the APIs that web pages and Apps can use,
Chrome also provides its own set of extension APIs to allow tight integration with the
browser. While these APIs vastly enrich extension features, it also permits unfettered
accesses to browser user data by extensions. Browser user data that are inherently safe
in other browsers suffer from information leakage threats in the Chrome extension
framework [26].

4 Design and Implementation of iObfus

In this paper, we focus on protecting sensitive information that could be leaked
through browser extensions. For this purpose, we design iObfus. We do not try to
defeat information attacks launched by malicious websites in our system. We also

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 39

assume malicious extensions discussed in this paper are written following the content
security policy and are not easily detected by static analysis. Hence iObfus does not
consider information leakage via src attributes of img tags, iframe tags, etc.

Fig. 2. iObfus architecture

Figure 2 sketches the architecture of iObfus and its working flow. We build the
prototype on the open source Chromium project. Our prototype is compatible with all
extensions developed for Chromium 25 and plus. What motivates us to build our pro-
totype on Chromium is: (a) the Chrome browser is by far the most secure browser in
the market and already has a comprehensive security model in place. (b) Building the
prototype based on a platform that commercial browsers share the source code with
also indicates that the security enhancement we propose can be easily transported to
its commercial counterpart.

iObfus consists of four major components: Monitor, Interceptor, Obfuscator and
De-obfuscator.

4.1 Monitor

This component monitors the execution of Content Scripts and JavaScript code in
the extension core. Our system must be able to distinguish the execution of regular
JavaScript code in web pages from JavaScript code introduced by extensions, which
includes Content Scripts and JavaScript code running in background pages of the
extension core. The ability to separate the execution of JavaScript code is important
for two reasons. Firstly, limiting the scope of monitoring could reduce performance
overhead of our system. Because iObfus aims to mitigate information leakage threats
incurred by extensions in a cost effective manner, we can disregard attacks launched
by JavaScript code of malicious websites and rely on the existing security model of
Chrome extension framework to defeat them. Therefore, it is critical to identify

40 W. Chang and S. Chen

origins of JavaScript code at runtime and enable/disable iObfus features on demand.
Secondly, disabling obfuscation and restoration of sensitive per-tab data accessible to
regular JavaScript code can avoid breaking the functionality of websites. For exam-
ple, some normal behaviors in the web page such as the input validation of user login
could be identified as a potential leakage and be obstructed by iObfus if we cannot
exclude these JavaScript actions from our active monitoring.

We modify compileAndRunScript() method of WebKit’s ScriptController class to
check whether the execution of JavaScript code is within isolated world. Only if it is,
iObfus marks the separate copy of DOM documents as obfuscation candidates.

Table 1. List of Extension APIs that access browser user data

Extension API name Methods/Property Return Value
(property/type) Taint source

Bookmarks

get
getChidlren
getRecent
getTree

getSubtree

BookmarkTree-
Node

url, title

contentSettings
get

getResourceIdentifi-
er

ResourceIdentifier Id

Cookies
get

getAll
getAllCookieStore

Cookie
value, domain, path,

storied

History
search

getVisit
HistoryItem

VistItem
url, title, lastVist-

Time

pageCapture saveAsMHTML MHTML details(object)

Permissions
getAll

contains
Permissions

Boolean
permissions, origins

pushMessage getChannelId ChannelIdResult channelId

Storage
get

getBytesInUse
Sync
Local

Items(object)

Tabs
get

getCurrent
query

Tab url, title

Topsites Get MostVistedUrl url, title

Windows

get
getCurrent

getLastFocused
getAll

Window Tabs

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 41

4.2 Interceptor

This component intercepts the subset extension APIs we identify that can expose
browser user data to the extension core. As we discussed in the Section 3, the browser
user data is the second source of leakage, thus iObfus must be capable of instrument-
ing the subset extension APIs and obfuscating the browser user data before they are
read by the extension core. Since the Chrome extension APIs are under active devel-
opment, it is common that more experimental APIs become supported APIs in future
releases.

We perform the identification of leaking APIs from all extension APIs currently
available in Chromium 25, and the list of APIs that iObfus intercepts is shown in
Table 1. The data in the fourth column of the Table 1 are required to be properly
processed before they enter the isolated world of the Content Script.

4.3 Obfuscator

The goal of Obfuscator is to protect user sensitive information without breaking the
normal functionalities of extensions. The values of those potential leakage sources are
obfuscated before they enter the memory space of extensions. Extensions can still
access those data objects and use their values for actions as if they are regular Java-
Script objects.

Table 2. Regular expression of some common data formats

iObfus only obfuscates sensitive information derived from DOM documents that

have a marked sensitivity flag by the Monitor or browser user data from intercepted
extension APIs by the Interceptor. According to HIPAA and Chesapeake Research
Review, Inc. [19], from the security perspective there are 18 types of individual
identifiers including name, telephone number, social security number, account number,
etc. Based on our observation and previous research [7], DOM elements containing
sensitive information often have name, type or ID attributes with values correlating to
these individual identifiers. For example, the HTML input element for password in

SSN # \d{3}-\d{2}-\d{4}$

Email
Ad-
dress

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b

Url

^(http|https|ftp)\://([a-zA-Z0-9\.\-]+(\:[a-zA-Z0-9\.&%\$\-
]+)*@)*((25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-
9])\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\.(25[0-
5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\.(25[0-5]|2[0-
4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[0-9])|localhost|([a-zA-Z0-9\-
]+\.)*[a-zA-Z0-9\-
]+\.(com|edu|gov|int|mil|net|org|biz|arpa|info|name|pro|aero|coop|museum|[a
-zA-Z]{2}))(\:[0-9]+)*(/($|[a-zA-Z0-9\.\,\?\'\\\+&%\$#\=~_\-]+))*$

42 W. Chang and S. Chen

Google account sign-in page has attributes of type=”password”, name=”Passwd” and
id=”Passwd”. Hence, a set of regular expression patterns is defined in iObfus to locate
the first source of leakage – sensitive per-tab user data.

Due to the fact that the regular JavaScript code and the Content Script are executed
intermittently, to avoid repetitive processing, iObfus also assigns an “isProcessed”
Boolean flag to candidate DOM documents marked by the Monitor. Only if the value
of “isProcessed” is false, iObfus begins to iterate every element of the DOM tree to
find a pattern match for names, types and IDs. For matched DOM elements, iObfus
processes them differently depending on their element type. For text node, iObfus
applies the obfuscation algorithm to convert the text content into its obfuscated form
and then call replaceEntireText() method to substitute the entire content of text node;
for element node, iObfus only replaces the content of “value” attribute with obfus-
cated data.

A context-aware obfuscation algorithm is the key to the success of the Obfuscator.
The “obfuscated” form has to be syntactically equivalent to its original form so that
the evaluation of these DOM objects at runtime does not fail. In the current prototype,
iObfus defines regular expressions for some most common data formats as known
contexts, and they are listed in Table 2. Before applying a randomization-based gener-
ic obfuscation, iObfus examines the input for known contexts. If a pattern match is
detected, it will instead perform a context-aware transformation. For example, if iOb-
fus detects an email address smith@gmail.com in its input, it will transform the email
address into a fake one such as hnrgs@ymail.com, which can be restored later for
legitimate I/O operations.

4.4 De-obfuscator

The De-obfuscator is responsible for URL and payload inspection of cross-origin
XMLHTTPRequests and it also restores obfuscated data if requests are sent to trusted
domains. Some extensions heavily rely on the communication with their own servers
to demonstrate features, for example, an extension that synchronizes users’ book-
marks across multiple browser instances requires saving un-obfuscated bookmarks to
its server. To add this domain to the trusted list, extension developers need to explicit-
ly declare this specific domain in manifest.json file, and users’ approvals are also
required at the installation time for iObfus to trust this domain. Trusted domains also
include the resource URI of extension such as “chrome-extension://<extension-id>”.

To capture all cross-origin XHRs, iObfus instruments both the open() and send()
methods of XMLHttpRequest class because sensitive information can either be leaked
in the parameters of the target URLs or in the body of send() method. To restore sen-
sitive information if necessary, iObfus first determines what domain each specific
XHR is sent to. If the request URL matches any one of trusted domains, a de-
obfuscation algorithm is then applied to the parameters and the body of XHRs in an
effort to reverse the transformation done in the Obfuscator. iObfus also de-obfuscates
messages that are written to disk via LocalStorage.

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 43

5 Evaluation

To evaluate the effectiveness of iObfus, we first test whether the prototype could
defeat some known attacks via malicious extensions and then we assess iObfus’s
capability to protect users’ sensitive information from leaking. At last, the perfor-
mance overhead introduced by iObfus is studied.

Table 3. Experiment results of 20 popular extensions

Name Description Functioning
in iObfus

Has
Cross-origin

XHRs

Leakage
mitigated

AdBlock
2.5.63

Blocks ads all over the web −

Google Mail
Checker 4.4.0

Displays the number of un-
read messages in your
Google Mail inbox.

 −

Stylish 1.1

A user styles manager that
lets you easily install themes
and skins for Google, Face-
book, etc.

 −

Fastest-
Chrome
Browse Fast-
er 7.1.7

Get quick definitions, auto-
load next pages, search fast-
er, and more

 −

Bookmark
Sentry 1.7.13

A bookmark scanner that
checks for duplicate and bad
links.

 − −

Google
Voice 2.4.1

Make calls, send SMS, pre-
view Inbox, and more −

Webpage &
WebCam
Screenshot
8.0

Capture whole page, save
PNG, edit, annotate and
share to your favorite social
network

 −

Google
Translate
1.2.4

Translates entire webpages
into a language of your
choice with one click.

Turn Off the
Lights 2.2

The entire page will be fad-
ing to dark, so you can watch
the video as if you were in
the cinema

 −

SpellChecker
2.76

Prevent spelling, grammar
and punctuation mistakes
when you write emails and
post to social media sites

Xmarks
Bookmark
Sync 1.0.24

Backup and sync your
bookmarks, passwords and
open tabs across computers
and browsers.

 − −

44 W. Chang and S. Ch

SmartVideo
for YouTube
0.9926

Provides
slow conn
buffer pr
selection a

WOT 1.4.12
Helps you
websites b
users’ expe

Google
Chrome to
Phone Exten-
sion 2.3.1

Enables yo
other in
Chrome
device

PanicButton
0.14.2.2

Hide all yo
with one si
restore the

Google Dic-
tionary
3.0.17

View defin
you brows

Amazon 1
Button App
for Chrome
3.2013.530.0

Get specia
tures from

Google
Quick
Scroll 2

Let you ju
relevant b
search resu

Similar Sites
Pro 3

Instant acc
related to t
browsing

Fabulous
27.2

Customize
with this f
change co
and more

Fig. 3. Failed

hen

Table 3. (Continued)

'Smart Buffer' for
nections; auto loop;
references; quality
and more

 −

u find trustworthy
based on millions of
eriences

 −

ou to send links and
nformation from
to your Android −

our tabs at once
ingle button and

em later
 − −

nitions easily as
e the web.

al offers and fea-
Amazon −

ump directly to the
bits of a Google
ult

cess to the best sites
the one you are −

e your Facebook
free app. Block ads,
olors, zoom photos −

d stealthy actions of Business Adobe Flash Player

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 45

5.1 Mitigate Attacks That Hijack Social Media Accounts

Many rogue extensions that hijack Social Media accounts manifest similar attack
behaviors. They are either derived from the same open-source attack toolkit [2] or its
variants. Such rogue extensions include Adobe Flash Player 12.1.102.55, Business
Adobe Flash Player [17], Chrome Guncellemesi, Facebook Black, etc.

We have tested all these social hijacking extensions in our experiments and iObfus
can defeat all of them. Figure 3 shows a screenshot when Business Adobe Flash Play-
er was tested in our experiment. Basically, we installed the malicious extension,
landed to Facebook.com website and signed in as the test user “iObfus Leakage”. The
Monitor of iObfus accurately detected the execution of Content Script injected by
rogue extension to Facebook.com, and then the Obfuscator processed the DOM doc-
ument before it was accessed by the Content Script. We observed that the
“c_user=100006040261082” in cookie (the Facebook user id of “iObfus Leakage”)
was replaced with its syntactic equivalence by our obfuscation algorithm. Moreover,
since privacy rules defined in Section 3.2 contain anti-forgery token keyword
“name=fb_dtsg”, the value of token “AQBtosAv” was also obfuscated. Hence, the
stealthy actions performed by Business Adobe Flash Player failed due to invalid coo-
kie/anti-forgery token as shown in Figure 3.

5.2 Protect Sensitive Information from Leaking

We test iObfus prototype against 20 popular extensions from Chrome Web Store. The
experiment results in Table 3 show that the obfuscation of sensitive information does
not hinder the normal execution of most extensions with the exception of several ex-
tensions whose features are built on browser user data such as bookmarks or browsing
history. These include bookmark sentry, Xmarks Bookmark Sync and PanicButton.
We also observed that 7 of 20 extensions in our study do not initiate any cross-origin
XHRs. For extensions that do make cross-origin XHRs, the sensitive information clas-
sified in Section 3.2 was properly obfuscated before it was read by extensions. Some
extensions such as Google Translate and SpellChecker, did leak obfuscated informa-
tion via XHRs, but it was not comprehensible to attackers.

However, in our experiments we also noticed that iObfus blocked certain features
of extensions that heavily depend on interactions with their own servers, for instance,
Similar Sites Pro and WOT. This is because by design the De-obfuscator only at-
tempts to restore the obfuscated data when the request was sent to safe origins de-
clared specifically by developers, but in reality extension developers often specify
excessive web origins with wildcards such as http://*/*. Thus to ensure the data resto-
ration, a set of whitelisted origins are required to be listed in manifest.json file. After
adding the whitelist, the iObfus works with the browser seamlessly.

5.3 Performance Evaluation

We also evaluate the performance of iObfus prototype. The browser version is Chro-
mium 25.0.1347.0 and our test platform is an Intel Core2 Quad 2.66GHz machine

46 W. Chang and S. Chen

with 8GM memory running 64-bit Windows Server 2008R2. The SunSpider 1.0, V8
JavaScript benchmark suites 7.0 and Browsermark 2.0 online tools are used to meas-
ure the performance of an iObfus-enabled browser versus unmodified browser.

Table 4. Performance comparison between iObfus and unmodified browser

Benchmarks iObfus Unmodified browser
Overhead

percentages
SunSpider 1.0 393ms 387ms 1.55%
V8 JavaScript

benchmark suites 7.0
9422pts 9736pts 3.33%

Browsermark 2.0 4431pts 4695pts 5.96%

The final result is averaged over 5 runs and shown in Table 4. Compared to

the unmodified browser, the performance overhead introduced by iObfus is indeed
negligible.

6 Related Work

Browser extensions can pose significant threats to the security of the browser plat-
form and privacy of browser users [24]. Vulnerabilities in extension platforms have
been investigated [6][20], and attacks launched via malicious extensions have been
found and reported [25].

Google Chrome has enforced several security policies to protect the browser from
attacks via browser extensions. The security model of Chrome is found to be very
effective against benign-but-buggy extensions [6], however, it does not consider
threats from malicious extensions. Liu et al [7] demonstrated several possible attack
scenarios that be achieved by malicious extensions including email spamming, DDOS
attacks, password sniff, etc. A refined extension security framework has also been
proposed with micro-privilege management and fine-grained access control to DOM
elements. Compared to this work, iObfus focuses on defeating the most common
and dangerous information leakage attack so that we consider not only the DOM ele-
ments in web pages but also browser user data as leakage sources.

Several capacity leaks have been found in JetPack[9], the new Firefox extension
framework, via a thorough static analysis [21], many of which can be utilized by at-
tackers to steal user sensitive information. Static analysis techniques are utilized to
analyze JavaScript-based extensions. For example, VEX [22] applied a high-precision
static information analysis on JavaScript code to identify potential security vulnerabil-
ities in browser extensions automatically. Gatekeeper [23] is another static analysis
framework that enforces the security and reliability policy for JavaScript program.

A number of researchers also explored the use of information flow for browser ex-
tension security. SABRE [16] is a framework that analyzes browser extensions via
tracking in-browser information flows. Djeric et al [8] proposed a framework that is
capable of tracking taint propagation at runtime not only in the script interpreter but
also in browser’s native code. Compared to static techniques, dynamic information
flow techniques usually introduce significant performance and/or memory overhead.

 Defeat Information Leakage from Browser Extensions via Data Obfuscation 47

Our work combines static analysis with dynamic JavaScript instrumentation. iObfus
performs a static analysis to mark sensitive DOM elements first, and obfuscates the
source or inspects the sink of leakage at runtime. The performance overhead is mi-
nimal when compared with traditional dynamic information flow approaches.

7 Conclusion and Future Work

Attacks via web browsers pose immense threats to Internet users as web browsers are
the most commonly used platform for web surfing. Despite various efforts made,
attacks via browser extensions are continuously emerging. In this paper, we seek to
protect Internet users from information leakage via browser extension attacks. For this
purpose, we have designed and implemented a system called iObfus that can seam-
lessly work with Chrome. The core of iObfus is to obfuscate sensitive information
when there is IO operation pending. We have built a proof-of-concept prototype on
Chromium project. Our experiments show that iObfus can effectively mitigate the
information leakage threats without degrading users’ browsing experience.

To bypass iObfus, attackers could deliberately devise a malicious extension that
performs a transformation of sensitive data so that it can circumvent the pattern
matching when we inspect network messages. In our next step, we will design and
implement new techniques to overcome these attacks.

Acknowledgment. We appreciate constructive comments from anonymous referees.
The work is partially supported by U.S. National Science Foundation under grants
CNS-0746649 and CNS-1117300.

References

1. Firefox web browser,
http://www.mozilla.com/en-US/firefox/firefox.html

2. QhaoserHq, an open-source attack toolkit for Facebook,
http://userscripts.org/scripts/review/140659

3. Chrome browser features, https://www.google.com/intl/en/chrome/brow
ser/features.html

4. Barth, A., Jackson, C., Reis, C., Team, T.G.C.: The security architecture of the chromium
browser. In Stanford Technical Report (2008)

5. Barth, A.: More secure extensions, by default (February 2012), http://blog.chro
mium.org/2012/02/more-secure-extensions-by-default.html

6. Carlini, N., Felt, A.P., Wagner, D.: An Evaluation of the Google Chrome Extension securi-
ty architecture. In: Proc. of the 21st USENIX Security Symposium (2012)

7. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome Extensions: Threat Analysis and Counter-
measures. In: Network and Distributed System Security Symposium, NDSS (2012)

8. Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In: Proc. of the
19th USENIX Security Symposium (2010)

9. Jetpack, https://jetpack.mozillalabs.com/

48 W. Chang and S. Chen

10. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulne-
rabilities. In: Proc. of Network and Distributed System Security Symposium, NDSS (2010)

11. Felt, A.P., Greenwood, K., Wagner, D.: The Effectiveness of Application Permissions. In:
USENIX Conference on Web Application Development, WebApps (2011)

12. Chrome extensions flaw allows password theft, http://www.pcpro.co.uk/news/
security/359362/chrome-extensions-flaw-allows-password-theft

13. Chromium blog. A year of extensions, http://blog.chromium.org/2010/12/
year-of-extensions.html

14. Wuest, C., Florio, E.: Firefox and Malware: When Browsers Attack (2009),
http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/firefox_and_malware.pdf

15. Assolini, F.: Think twice before installing Chrome extensions, http://www.secure
list.com/en/blog/208193414/Think_twice_before_installing_
Chrome_extensions

16. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based browser ex-
tensions. In: Proc. of Annual Computer Security Applications Conference (2009)

17. Rogue Chrome Extension racks up Facebook “likes” for online bandits,
http://www.pcworld.com/article/2028614/rogue-chrome-
extension-racks-up-facebook-likes-for-online-bandits.html

18. Health information privacy, http://www.hhs.gov/ocr/privacy/
19. Chesapeake irb, http://chesapeakeirb.com/
20. Liverani, R.S., Freeman, N.: Abusing Firefox extensions. In Defcon 17 (2009),

https://www.defcon.org/images/defcon-17/dc-17-
presentations/defcon-17-roberto_liverani-nick_freeman-
abusing_firefox.pdf

21. Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-C.: An Analysis of the Mozilla Jetpack
Extension Framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 333–355.
Springer, Heidelberg (2012)

22. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: Vetting browser exten-
sions for security vulnerabilities. In: Proc. of the 19th USENIX Security Symposium
(2010)

23. Guarnieri, S., Livshits, B.: GATEKEEPER: mostly static enforcement of security and re-
liability policies for JavaScript code. In: Proc. of the 18th Conference on USENIX Securi-
ty Symposium (2009)

24. Martin Jr., D.M., Smith, R.M., Brittain, M., Fetch, I., Wu, H.: The privacy practices of
web browser extensions. Communications of the ACM (2001)

25. Facebook scammers host Trojan horse extensions on the Chrome web store,
http://www.pcworld.com/article/252533/facebook_scammers_
host_trojan_horse_extensions_on_the_chrome_web_store.html

26. Kotowicz, K., Osborn, K.: Advanced Chrome extension exploitation leveraging API pow-
ers for better evil. Black Hat, USA (2012)

Rating Web Pages Using Page-Transition Evidence

Jian Mao1, Xinshu Dong2, Pei Li1, Tao Wei3, and Zhenkai Liang2

1 School of Electronic and Information Engineering, BeiHang University
2 School of Computing, National University of Singapore

3 Institute of Computer Science and Technology, Peking University

Abstract. The rating of web pages is an important metric that has wide appli-
cations, such as web search and malicious page detection. Existing solutions for
web page rating rely on either subjective opinions or overall page relationships. In
this paper, we present a new solution, SnowEye, to decide the trust rating of web
pages with evidence obtained from browsers. The intuition of our approach is that
user-activated page transition behaviors provide dynamic evidence to evaluate the
rating of web pages. We present an algorithm to rate web pages based on page
transitions triggered by users. We prototyped our approach in the Google Chrome
browser. Our evaluation through real-world websites and simulation supports our
intuition and verifies the correctness of our approach.

1 Introduction

The rating of a web page is an important metric that has broad applications in the World
Wide Web, ranging from web search to the detection of malicious web pages involving
phishing or malware. A common way to rate web pages’ trustworthiness is to rely on
users to provide subjective opinions on web sites [1]. However, this is not a scalable
approach. Moreover, the accuracy of such ratings depends on users’ knowledge and
experience, which might be biased.

Alternative solutions infer web page ratings using page relationships. For example,
PageRank [2] used by Google leverages the link citation relationships among web pages
to decide their ranking in search results. Such static link citations provide the necessary
information to evaluate the overall popularity of web pages, yet they do not indicate the
trustworthiness of these pages. Malicious pages could be cited frequently by another
popular website, such as a web forum, which may give them relatively high rankings.
PageRank also cannot access internal links, such as pages in a banking site that re-
quire customer login. Although such internal banking pages are highly trustworthy,
they would usually have low ranking under algorithms such as PageRank.

Our Intuition: In this paper, we leverage user-activated page transition behaviors to
infer trust propagation among web pages. Our intuition is that page transitions resulting
from user clicks play an important role in deciding the trustworthiness of the destination
page given the trustworthiness of the source one. Such page transition behaviors provide
dynamic evidence to derive more objective page ratings on their trustworthiness.

To understand the intuition, consider a new benign URL and a URL from a mali-
cious site. The benign URL is usually visited by following links from other trustworthy
pages. In contrast, malicious web sites are much less likely to be visited from links in

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 49–58, 2013.
c© Springer International Publishing Switzerland 2013

50 J. Mao et al.

trustworthy web pages. Of course, page content from social networking sites and public
web forums should not be considered as trustworthy, although such sites are not mali-
cious. Therefore, the user-activated page transition to a web page is a form of evidence
to indicate how trust propagates from the source site to the destination one. At the client
side, web browsers can observe the dynamic behaviors of the non-public internal web
pages and Ajax-based websites as well, long before they are available, if at all, in search
engines.

Our intuition is based on an assumption that the vast majority of trustworthy web
pages, such as banking pages, will not include links to arbitrary websites, and users are
mindful in clicking links apparently leading to their intended destinations. It does not
apply to cases where a large fraction of banking websites have already been compro-
mised and thus containing links to malicious web pages. Addressing such devastating
attack scenarios goes beyond the capability of rating-based security solutions.

Our Solution: In this paper, we develop a novel approach, SnowEye, to evaluate the
trust rating of web pages. The core component of our solution is a dynamic-evidence-
based algorithm to quantify the rating of a web site. We use user-activated page transi-
tions as the evidence to propagate the trust between original and destination web pages.
Our solution propagates ratings from a (presumably small) pool of blacklisted and
whitelisted web pages whose rating are pre-assigned by security experts. Note that ma-
licious JavaScript can simulate user interactions with links in web pages; our approach
is able to distinguish page transitions from such malicious scripts and those from gen-
uine user behaviors, and only take page transitions by user clicks as the evidence for
trust propagation.

We prototyped SnowEye in the Google Chrome browser, we evaluated it using a real-
world dataset, and showed that our intuition is consistent with real-world scenarios.

In summary, we made the following contributions in this paper: a) we summarize
the basic requirements for the page trust rating system based on page behaviors, b) we
propose a novel algorithm to compute the trust of a web page based on dynamic evi-
dences from browsers, and c) we prototype our solution in the Google Chrome browser
and evaluated it with real-world data and simulation.

2 Problem and Approach

We define the problem we are targeting in this paper as follows.

Problem 1. Given a network of browsers, denoted as the set N , using the set of past
surfing behaviors B = {bi} gathered from the browser set, how to calculate the trust
rating of a target web page UrlTarget, denoted as R(UrlTarget)?

In this work, we focus on a basic scenario where we trust the browsers in reporting
their behaviors. Note that a web page with high trust rating is conceptually different
from a benign page. A benign page does not intentionally include malicious contents, or
imitate other pages, but may include untrusted contents. Instead, a page with high trust
rating indicates a benign page with probably only trusted content. Thus, web forums or
social network sites that allow users to freely upload content may be benign sites, but
their pages usually have low trust ratings.

Rating Web Pages Using Page-Transition Evidence 51

2.1 Basic Requirements

In this paper, we treat browser page transition behaviors as the dynamic evidence to
infer trust among web pages, where the source page transferring its trust to the target
web page.

Given The behavior tuple b = (Urloriginal, click, Urltarget) ∈ B, where the
Urloriginal means the original Url before the event click and the Urltarget represents
the Url of the target page after click. the rating of the target page corresponding to
this page transition triggered by the browser behavior b should satisfy the following
requirements:

R1: Transition Property. That means a web page transited from a high rating up-flow
web page should be assigned a relatively high rating. At least, it should get the
same rank as the original page.

R2: Non-degradation Property. This requirement claims that browser behaviors will
not cause the decrease of the target page’s rating.

R3: Feedback Property. If UrlTarget ∈ Blacklist, then R(UrlOriginal) should be de-
graded sharply. The web page should be responsible for the trustworthiness of the
links it cites. If a web page cites a fake page, it will be punished by our algorithm
accordingly. To fulfill the property, the feedback function should be employed in
the transition based rating algorithm.

The requirement R1 is provided to match our algorithm’s intuition that the page tran-
sition causes a rating transition consistent with its backward linked pages. Requirement
R2 is presented to prevent the Malicious Citation Attack, that is, malicious pages cite
benign web pages to degrade the rating of the benign on. Even if there exist low rating
websites citing the other pages in an attempt to degrade target page’s rating, the benign
page’s rating will not be affected if it is pointed to by a relatively high rating web page
(trustworthy page). In other words, the malicious citation is filtered out by the benign
one. Requirement R3 aims at the False Citation Attack, that is, attackers trick high-trust
web sites to transit to malicious pages or arrange malicious websites to cite each other’s
pages to promote the rating of low-trust pages. It comes from the basic assumption that
web page developers should audit the content inside their web sites carefully.

2.2 Rating Algorithm Based on Dynamic Evidence

We use an iterative algorithm to compute the rating of the target URL based on the
given behavior set B. The whole algorithm includes three parts: Rating initialization,
Rating computation, and Rating feedback & update.

Rating Initialization. In our algorithm, we whitelist a set of pre-trusted web pages,
blacklist a set of known malicious web pages, and we use them as a starting point to
initialize the page rating. That is, if the target URL is a new page that has no rating
before, it will get an initial rating R0 according to the record of the whitelist and black-
list. If the target URL belongs to the whitelist, then it should be a good web page and
gets the highest rating (e.g., 1). If the target URL belongs to the blacklist, then it should
be a malicious page and obtains the lowest rating (e.g.,0). If the page is published by

52 J. Mao et al.

a known developer who provided her/his technical confidence (or Reputation value, tic
for a node Ni) as the guarantee of the target page, then its rating value depends on the
technical confidence of its publisher/developer and for some practical consideration, we
use a relative technical confidence to initialize the rating of the new page. Otherwise,
we assign a relatively small value δ (where 0 < δ < ε, and ε is the threshold for the
future decision making) to the new page as its initial rating.

R0(url) =

⎧⎪⎪⎨⎪⎪⎩
1, if url∈ whitelist;
0, if url∈ blacklist;

tpc
max{Ni}tic

, if url is published by node Np;

0 < δ < ε, Otherwise.

Rating Computation. After the initialization part, The rating of the target url confirmed
by current page transition behavior Ri(url|bi) is quantified as follows

Ri(url|bi) = Ri−1(urloriginal)
Then we compute the final rating of the Target page UrlTarget. The final rating

of the url should be the maximum value of behavior based ratings obtained so far
corresponding to the target url.

Ri(url) = max{Ri(url|bi), Ri−1(url)}

Rating Feedback and Update. After getting the rating of the target page, if Ri(url) < ε,
where ε is a relatively low value depends on the effectiveness requirement, it means the
target page might be a malicious page. It is necessary to review the target page and give
a feedback to update (somehow, it means to degrade) the rating of its original link.

Then we set Ri(url) = 0 and Ri(urloriginal) = Ri−1(urloriginal)× e−k, where k
is the number of faulty citations found inside the web page urloriginal by now.

From Algorithm 1 we can see that Step 3 corresponds to the intuitive requirement
R1 Rating transition property, in which web pages will get corresponding ratings ac-
cording to page transition behaviors and at least obtain the same ratings as the original
pages. Step 4 corresponds to the intuitive requirement R2 Non-degradation property
that new behavior will not cause the degrade of rating. Thus, if there exists a malicious
citation attack in order to degrade the rating of the benign site, such a citation will be
ignored. Step 6 corresponds to the intuitive requirement R3 Feedback property that we
will degrade the rating of a web page if it cites a malicious page.

3 Implementation and Evaluation

To evaluate the algorithms we propose for web page trustworthiness rating, we have
prototyped SnowEye. In this section, we describe the implementation and evaluation
results of our prototype.

3.1 Implementation

Our prototype of SnowEye uses a server to maintain a database of collaborative ratings
to the hash values of target web site URLs, which are contributed from the browser

Rating Web Pages Using Page-Transition Evidence 53

Algorithm 1. Basic Dynamic-Evidence-Based Rating Algorithm
Input: Page transition behavior b = (Urloriginal, click, Urltarget), and Rating Database

DB, which is initialized to the blacklist and whitelist.
Output: Trust rating of Ri(Urltarget).

Rating Initialization
1: For url = b.d=UrlTarget /∈ DBurl, computes

R0(url) =

⎧⎪⎪⎨
⎪⎪⎩

1, if url∈ whitelist;
0, if url∈ blacklist;

tpc
max{Ni}tic

, if url is published by Np;

0 < δ < ε, Otherwise.

Rating compute
2: Computes Target page rating confirmed by current behavior bi

Ri(url|bi) = Ri−1(urloriginal)
3: Computes final rating of Target page UrlTarget

Ri(url) = max{Ri(url|bi), Ri−1(url)}
Rating Feedback& Update

4: Review the web page, if UrlTarget ∈ Blacklist, then
Ri(url) = 0, and
Ri(urlorg) = Ri−1(urlorg)× e−k

Where, k is the faulty citations found inside the urloriginal by now.
5: Update the Rating DataBase DBurl.
6: Output Ri(url)

clients. The server records the ratings under each client’s profile, and computes a client’s
technical confidence according to its rating history. The server also maintains a database
of blacklists and whitelists based on existing solutions and manual reviews. The server
is not necessarily a single node. It can be replaced by a set of distributed servers to
enhance the responsiveness and reliability. In our current prototype, we implemented
the server functionality in Perl.

We implemented the client side of SnowEye as an extension to Google Chrome.
The extension monitors Chrome’s internal behaviors about page transitions. The UI
of the Chrome extension is implemented based on BlockUI [3]. In the extension, we
inject content script to every page, which listens to page load and users’ click behaviors
and passes them to the extension core. When a page is loaded, the extension uses the
corresponding page transition information to calculate the rating to the current page. If
the rating is below the threshold, it will display a warning to the user. Optionally, such
a warning can only be displayed when the extension detects that the current web page
requests privacy information from users. In current implementation, the detection of
web pages requesting privacy information is based on the heuristics that the web page
contains password fields.

54 J. Mao et al.

Fig. 1. A Sample Scenario

3.2 Experience with SnowEye

Now we present a sample working scenario of SnowEye, which demonstrates that web
pages that were new to our system in the beginning would obtain higher trust values
after being navigated to from a high trust pages. For example, in Figure 1, with a single
client SnowEye browser, when the user first visits the page from www.blackberryworld.
com, it only had the trust value 0.1, as SnowEye had no knowledge about this page, nor
did it appear in the whitelist. But later when the user clicked on the link to it from the
high-trust page www.networkworld.com/topics/security.html, according to Algorithm 1,
such a click-triggered page transition propagated its trust value to the destination page,
so www.blackberryworld.com also obtained the trust value 0.7.

3.3 Evaluation of Trust Propagation in URL Transitions

As our algorithm is based on one intuition that web pages with higher trust values are
unlikely to link to malicious web pages, we performed the following experiment to
verify this intuition with a phishing page as an example. Subsequently, we will also
demonstrate how our algorithms automatically degrade the trust values of “good” web
pages that link to malicious web pages.

We performed a crawling on 10 seed URLs shown in Table 1 by following the links
on web pages we have crawled, and obtained 1388 unique URLs after 3-level crawling,
i.e., web pages that were within 3 links away from the seed pages..

1. We further investigate the number of cross-site links from each of the seed site. Here
cross-site links are loosely defined as links to a completely different domain other
than the same domain or the subdomain of the original page. In another word, we
use such cross-site links to investigate the links that cross the boundary of the seed
web sites. Shown in Table 1, although all of the 10 seed web sites contain cross-site

Rating Web Pages Using Page-Transition Evidence 55

Table 1. Seed Web Sites and the Number of Cross-site Links

Seed Web Site #Cross-site Links #Malicious/Phishing
www.paypal.com 253 0
www.bankofamerica.com 54 0
www.chase.com 55 0
www.wellsfargo.com 62 0
www.americanexpress.com 182 0
www.hdfcbank.com 18 0
www.hsbc.com 51 0
www.citibank.com 4 0
www.capitalone.com 7 0
www.commbank.com.au 32 0

links, none of the links point to a malicious or phishing web site. Therefore, as the
seed sites serve as whitelist, according to our algorithm, all benign web sites linked
from them will obtain good rating in our algorithm.

2. However, some of them point to benign web sites with untrusted contents, such as
www.twitter.com, www.google.com, www.facebook.com and myspace.com, etc. In
our crawling dataset, these sites will also obtain good ratings according to our algo-
rithm. This is not expected as those sites contain untrusted content posted by users
that may contain links to malicious or phishing web sites, and their high ratings
may be transferred to those malicious or phishing web sites. To solve this issue, we
simulate the rating feedback mechanism in our algorithm by introducing another
dataset, which is obtained by performing backward searching for web pages citing
phishing pages. This verified that bringing the rating feedback is critical in our al-
gorithms. As these benign sites also have links to phishing sites [4], our algorithm
degraded their trust values, although they may obtain high values in the beginning.

3.4 Trust Value Degrading

Now we show a concrete example of how SnowEye degrades web page originally with
high trust values after their links to phishing web pages are detected. As illustrated in
Figure 2, in the beginning, the page had a high trust value 0.80. However, it had links to
three phishing pages. When later the user clicked on the first link, such a page transition
was captured by SnowEye. As the destination page was in the phishing page blacklist,
the destination page was given the trust value 0.00. Besides, according to the feed-
back step in Algorithm 1, this page transition also degraded the trust value of the page
blog.sina.com.cn/s/blog 75b798e501012vb7.html according to number of faulty cita-
tions detected in that page. So in this round, its trust value was degraded to 0.80∗e−1 =
0.29. Similarly, when the user clicked on the second link, as it also redirected to
a phishing page, the trust value of blog.sina.com.cn/s/blog 75b798e501012vb7.html
was further degraded to 0.29 ∗ e−2 = 0.04. In the figure, we omitted the simi-
lar step after the user clicked on the third link, which degraded the trust value of
blog.sina.com.cn/s/blog 75b798e501012vb7.html to 0.00. This example demonstrated

56 J. Mao et al.

Fig. 2. Degrading Trust Values of Pages Linking to Phising Pages

that the basic algorithm of SnowEye automatically degrades the trust values of pages
that made faulty citations to phishing pages.

4 Related Work

4.1 Page Relationship Based Solutions

Google uses PageRank [2], a method for rating Web pages objectively and mechani-
cally, effectively measuring the human interest and attention devoted to them. It pro-
duces a global ”importance” ranking of every web page based on the link structure.
Actually, the simplicity of creating and publishing web pages results a large fraction
of low quality web pages that user are unlikely to read. Attackers can make use of this
to promote the rating of their malicious pages. This kind of approaches based on static
linkage are not suitable to evaluate the trust rating of the web pages.

4.2 Subjective Feedback Based Solutions

WOT [1] and iTrustPage [5,6], provide the solutions to rate the phishing possibility of a
given page by using reputation scores either reported from the anti-phishing community
or computed from the given web page. However, these two approaches are user-assisted.

Rating Web Pages Using Page-Transition Evidence 57

WOT’s rating algorithm is based on the comments subjectively submitted by the users.
Nettrust [7] tries to connect people with each other by social network. In their frame-
work, people make some interaction with the server to get some sharing experience
(some kind of subjective comments and ranks) released by other nodes/members. The
approach tries to defend the attack based on some kinds of common sense among the so-
cial peers. Nettrust proposes an e-mail based model to establish a security-related com-
munity, and mentions some privacy problems briefly. But there is no practical model
or approach was presented to defend a specific attack and does concern about the mali-
cious information posted by tricky members. The final score is the average of negative
ranks and positive ranks separately.

4.3 Webpage Feature Based Solutions

SpoofGuard [8] is a browser plug-in that users domain name, URL, link and image
check to determine if a given page is a part of a spoof attack. It applies three methods
and combines the result using a scoring mechanism: a stateless method to determine
whether a downloaded page is suspicious; a stateful method to evaluate downloaded
page in the light of user’s history and a method to evaluate outgoing HTML post data.

CANTINA [9] uses a content-based approach to detect phishing web sites. It com-
bines a term frequency-inverse document frequency (TF-IDF) algorithm with other
heuristics to determine whether a given web site is phishing one. The method uses
five words with the highest TF-IDF weight on a given web sites as a signature and then
submits those five words to the Google search engine. If the URL of the site is found
within top results, then that URL is classified as legitimate, otherwise phishing. An at-
tacker could bypass CANTINA using several approaches. Such as, use image instead
of words in a given page, add invisible text that is tiny or matches background color of
the page, or change a lot of words in order to confuse TF-IDF.

4.4 Black/White-List Solutions

EBay Toolbar [10] The eBay toolbar is an extension to Microsoft Internet Explorer and
combines a tool named AccountGuard to protect against spoofed eBay or PayPal web
sites. The tool can identify if any particular URL which is trying to phish ebay.com,
but it cannot handle the phishing URL targeting some other web sites. Bayesian Anti-
phishing toolbar [11] is a whitelist based approach using DOM analyzer to check if
the given URL is a legitimate web-site listed in the whitelist. If the URL is not in the
pre-set whitelist, DOM analyzer labels the given web site and sends it to a scoring
module. If the score exceeds a selected threshold, the URL is classified as malicious.
Cloudmark [12] rates the web sites based on the system maintained blacklist. When
the user surfs to the malicious web-site in blacklist, Cloudmark will direct the user to a
specific page that illustrates the security risk. The blacklist database is partly maintained
by the users in the way that user can report the malicious web-site. The system also
contains a user rating scheme based on users’ behavior to prevent users submitting fake
report. the blacklist and the rating database are managed and audited manually. The
effectiveness totally depends on the users and the system operators’ experience and
honesty.

58 J. Mao et al.

Unlike the web page rating solutions discussed above, SnowEye monitors the dy-
namic features of web page transitions in the browser. The corresponding information is
treated as critical metrics in web page trust rating evaluation. In addition, this objective
information is verifiable and cannot be forged. The trust rating generated by SnowEye
is more reliable. Attackers may mimic the static features of a web page somehow (e.g.,
URL, web page layout, content, etc.), but they cannot forge users’ surfing behavior
successfully without being detected.

5 Conclusion

In this paper, we present a novel trust rating approach for web pages, which is based
on dynamic evidence captured by web browsers. Our approach, SnowEye, treats user-
activated page transitions as an objective and dynamic evidence for the trust rating of
web pages. Based on this intuition, we developed an algorithm to compute the sus-
picious ratings of the target web-pages. We prototyped our approach in the Google
Chrome browser and evaluated it using real-world examples and simulation. Our eval-
uation verified our intuition and showed the effectiveness of SnowEye.

Acknowledgment. The authors thank anonymous reviewers for their insightful com-
ments. This work was supported in part by the Beijing Natural Science Foundation
(No. 4132056), the National Key Basic Research Program (NKBRP) (973 Program)
(No. 2012CB315905), the Beijing Natural Science Foundation (No.4122024), and the
National Natural Science Foundation of China (No. 61272501, 61173154, 61003214),
and the Ministry of Education of Singapore via Tier-1 grant R-252-000-460-112.

References

1. WOT, http://www.mywot.com
2. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order

to the web. Stanford InfoLab, Technical Report 1999-66 (November 1999)
3. BlockUI, jquery blockui plugin, http://jquery.malsup.com/block/
4. Report: Bank of melbourne’s twitter feed used for phishing,

http://www.thetechherald.com/article.php/201138/7633/
Report-Bank-of-Melbourne-s-Twitter-feed-used-for-Phishing

5. Ronda, T., Saroiu, S., Wolman, A.: itrustpage: A user-assisted anti-phishing tool. In: Pro-
ceedings of Eurosys 2008. ACM (April 2008)

6. iTrustPage, http://www.cs.toronto.edu/˜ronda/itrustpage/
7. Camp, L.J.: Net trust: Signaling malicious web sites (2007)
8. Boneh, D.: Spoofguard (2011), http://crypto.stanford.edu/SpoofGuard
9. Zhang, Y., Hong, J., Cranor, L.: Cantina: A content-based approach to detecting phishing

web sites. In: Proceedings of the International World Wide Web Conference (WWW) (May
2007)

10. eBay Inc., ebay toolar (2011), http://www.pages.ebay.com/ebay_toolbar/
11. Likarish, P., Jung, E., Dunbar, D., Hansen, T.E., Hourcade, J.P.: B-apt: Bayesian anti-

phishing toolbar. In: Proceedings of IEEE International Conference on Communications,
ICC 2008. IEEE Press (May 2008)

12. C.Inc., Couldmark toolbar, http://www.cloudmark.com/desktop/ie-toolbar

http://www.mywot.com
http://jquery.malsup.com/block/
http://www.thetechherald.com/article.php/201138/7633/Report-Bank-of-Melbourne-s-Twitter-feed-used-for-Phishing
http://www.thetechherald.com/article.php/201138/7633/Report-Bank-of-Melbourne-s-Twitter-feed-used-for-Phishing
http://www.cs.toronto.edu/~ronda/itrustpage/
http://crypto.stanford.edu/SpoofGuard
http://www.pages.ebay.com/ebay_toolbar/
http://www.cloudmark.com/desktop/ie-toolbar

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 59–74, 2013.
© Springer International Publishing Switzerland 2013

OSNGuard: Detecting Worms
with User Interaction Traces in Online Social Networks

Liang He, Dengguo Feng, Purui Su, Lingyun Ying, Yi Yang,
Huafeng Huang, and Huipeng Fang

Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

{heliang,feng,supurui,yly,yangyi,huanghuafeng,
fanghuipeng}@tca.iscas.ac.cn

Abstract. In the last few years we have witnessed an incredible development of
online social networks (OSNs), which unfortunately causes new security
threats, e.g., OSN worms. Different from traditional worms relying on software
vulnerabilities, these new worms are able to exploit trust between friends in
OSNs. In this paper, a new worm propagation model was proposed, named EP-
Model, to find out the common characteristics of OSN worms including XSS-
based JavaScript worms and Social-Engineering-based Executable worms. And
then we designed OSNGuard, a client-side defense mechanism which could
prevent the propagation of OSN worms conforming to the EP-Model.
Particularly, starting from tracing relevant user interactions with client
processes visiting OSNs, our system could identify and block malicious
payload-submissions from worms by analyzing these traced user activities. To
prove the effectiveness of OSNGuard, we presented a prototype implementation
for Microsoft Windows platform and evaluated it on a small-scale OSN
website. The system evaluations showed that OSNGuard could sufficiently
protect users against OSN worms in a real-time manner and the performance
tests also revealed that our system introduced less than 2.5% memory overhead
when simultaneously monitoring up to 10 processes.

Keywords: Worm Detection, Online Social Networks, User Interaction Trace.

1 Introduction

Since its first appearance in 2005, OSN worm has become one of the most serious
security issues on the Internet. Although the purpose of Samy, the first OSN worm,
was just to propagate across the MySpace without any malicious payload [1], it did
infect more than one million users within 20 hours, surpassing traditional worms such
as Code Red, Slammer and Blaster [2]. Now numerous new OSN worms released for
the purpose of getting privacy and profit have emerged in popular OSN websites, e.g.,
Twitter and Facebook. In fact, at the time of writing this article, a new OSN worm,
named Ohaa, is spreading in Twitter by posting a message containing a shortened
malicious URL on user’s behalf: “Ohaa habere bak :O goo.gl/VbpzM”.

60 L. He et al.

Owing to the popularity of Social-Engineering-based infection methods adopted by
the new worms, conventional countermeasure methods [3,4] which mainly rely on the
successful detection of the unique scanning patterns all become insufficient.
Furthermore, systems [5,6] that focus on traffic anomaly detection also fail to protect
users in that they can find no anomaly but only ordinary HTTP stream data.

Considering the ineffectiveness of traditional methods and the severity of impact of
these new worms, the security community has proposed some preliminary solutions to
mitigate the new threats. PathCutter [7], with view separation and request
authentication, does better in JavaScript worm prevention than Spectator [8], which is
the first server-side solution, and Sun’s first pure client-side system [9], which is
based on string comparison. Unfortunately, as the authors have mentioned, their
systems are incapable of preventing the drive-by download executable worms. While
Xu proposed an early warning OSN worm detection system [10] which is based on
the deployment of decoy nodes collecting the malicious messages, their server-side
system works only if the infection rate exceeds an empirical threshold which will
cause an inevitable delay.

The aforementioned analysis naturally leads to the questions: Can we propose a
generic approach to effectively prevent current (or future) forms of OSN worms? If
yes, how can we prevent them in real-time manner? In this paper, we address these
questions through a detailed study of OSN worms and their propagation model. First,
we classify the worms into JavaScript worm (J-worm) and Executable worm (E-
worm). Next, we propose a novel worm propagation model, named EP-Model which
can describe these new worms. Finally, we find out and extract a common
characteristic that can be used to detect and block OSN worms effectively.
Sepcifically, we find that although different worms adopt various enticements to trick
users, they propagate by submitting payload to servers with forged or without user’s
confirmations, which means the chance that we can prevent OSN worms if we are
able to analyze the relevant user interaction traces to detect those automatic
submissions.

In this paper, we propose OSNGuard as a complementary approach that addresses
some of the limitations of existing systems. Particularly, OSNGuard correlates
submissions from a client with relevant user interaction traces to identify propagation
of OSN worms. To this end, OSNGuard introduce several functional modules: Social
Traffic Monitor, Social Interaction Tracer and OSN Worm Detector. And to estimate
our system, we further implement a system prototype for Windows platform and
conduct experimental evaluations on a real but small-scale OSN website built on Elgg
[11]. The evaluation results demonstrate that OSNGuard can effectively prevent OSN
worms in real-time manner. Moreover, the performance test reveals that delays and
memory overhead introduced by OSNGuard can be negligible.

The remainder of this paper is organized as follows. We first discuss classification
and motivation in Section 2. Section 3 introduces our OSNGuard system and its
components. We present the experimental evaluation results in Section 4. Section 5
discusses some limitations and potential future work. In Section 6 and Section 7, we
discuss related work and conclude this paper.

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 61

2 Classification and Motivation

2.1 Worm Classification

By their existence forms and infection manners, OSN worms can be classified into
two categories, XSS-based JavaScript worms (J-worms) and Social-Engineering-
based Executable worms (E-worms).

J-worms. All J-worms exhibit similar behavior in propagating themselves as they
all inject malicious script-based payload into HTML pages in which there exist XSS
vulnerabilities. However, the J-worms can also be divided into passive and active
according to their enticements. For instance, a passive worm such as the Samy
propagates itself only to users who visit a victim’s infected page by accident. In
contrast, an active worms such as the HelloSamy spread more quickly by tricking
users (e.g., posting attractive wall posts) to browse an infected page.

E-worms. In terms of E-worms, they all rely on various social engineering tech-
niques to entice normal users to download and install their copies. However, we are
able to classify them by their forms of existence. Particularly, the Koobface is a Win-
dows worm that it is only able to propagate among Windows machines. And the Boo-
nana is a Mac worm that is able to only infect clients running Mac OS. From the Fig-
ure 1, we can see that although E-worms are usually OS-specific due to the limitation
of executable file formats, they can spread in different OSN websites as there is no
need for any XSS vulnerability except trust between friends.

Fig. 1. Classifications of OSN worms and its representative samples

2.2 Case Study

Considering the similarities of propagation methods applied by various worms, in this
work, we only present Samy and Koobface as the representative samples for J-worm
and E-worm respectively. Actually, based on our bulk analysis of all known worms,
for each kind of worms, they all present similar propagation behaviors with Samy (or
Koobface). The similarity can also be seen in Cao’s survey work [7].

62 L. He et al.

Samy Worm. Figure 2(a) illustrates the propagation of Samy worm. Basically, the
worm will first entice users to browse an infected web page in which the worm is
embedded (step 1-3). And then when loaded in client browsers, the worm will run to
inject itself into victims’ pages (step 4-5).

To find out how these J-worms propagate, we also delve into their source code. It
is obvious that we can directly analyze the Samy’s source code as it is usually
embedded into the victims’ web pages presented in client browsers. Although there
are various forms of existence for J-worms, e.g., Flash or Java Applet, they would
ultimately inject the source script code into the HTML pages. Figure 2(b) reveals the
pseudo code of the propagation function of Samy who replicates itself by operating an
XMLHTTPRequest object to post payload to servers without user’s confirmations.

Koobface Worm. Instead of relying on Updating Messages, Koobface will
actively send to each of the victim’s friends a disguised message usually containing
shorten malicious URLs linked to compromised servers in which the worm copies are
stored, as shown in Figure 3(a). Based on skilled social engineering techniques and
vulnerable trust among friends, the worm is able to infect a large number of users in a
very short time.

Similarly, we also intend to analyze the Koobface’s source code to chase down
how it propagates. However, the Koobface consists of various standalone function
modules to accomplish its indispensable tasks, e.g., Downloader, Social Network
Propagator, CAPTCHA breaker and Data stealer. As our aim is to prevent its
propagation, here we just put our focus on the Propagator which is responsible for
sending out worm messages in OSN websites. Figure 3(b) summaries our two-week
disassemble analysis result of the executable module which accomplishes its
propagation by operating an IWebBrowser2 object offered by Windows platform.
From the pseudo code, we can see that Koobface submits the payload with forged
user click to propagate itself. Although it may be a simpler method to submit the
payload by directly using Socket API functions, we will provide a reasonable
explanation why Kobbface dose not do it in this way based on our experiment results
provided in Section 4.

(a) Propagation of Samy (b) Pseudo code of propagation

Fig. 2. Details of Samy worm

Without user confirmation

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 63

(a) Propagation of Koobface (b) Pseudo code of propagation

Fig. 3. Details of Koobface worm

2.3 EP-Model and Assumptions

EP-Model. According to the analysis of OSN worms, we propose a new worm prop-
agation model, named EP-Model, as shown in Figure 4. And our goal is to prevent all
worms that confirm to this model. Basically, the model is based on the fact that OSN
worms propagate themselves with two common sequential steps as follows:

(1) Enticement: Instead of exploiting any software vulnerabilities, OSN worms
adopt various enticements to trick users to directly run their payloads. In this sense,
these new worms rely on exploiting trust of friends. Specifically, the J-worms usually
trick friends to visit one’s malicious script-embedded pages and then run themselves
in client browsers. For E-worms, they prefer to utilize social engineering-based en-
ticements to trick users to directly download their copies. Once installed in client
machines, a worm will run as a single process.

(2) Payload-Submission: To successfully propagate themselves, OSN worms have
to try every means to submit their payloads to OSN servers without user’s awareness.
Based on our aforementioned analysis, the J-worms directly POST their payload
without any user’s confirmation, whereas the E-worms mimic user’s confirmation by
firing the button click.

J-worm

E-worm

Enticement-1

…
Script runs in client

browser

Enticement-1

Enticement-m

Executable file runs
as a single process

Payload-Submission

Inject into Blog

Inject into Comment

Inject into Profile

Enticement-n

…

Fig. 4. EP-Model for OSN worms

With forged user click

64 L. He et al.

Assumptions. In this work, all our assumptions are derived from an observed fact
that users even equipped with the most advanced anti-viruses can still be infected by
OSN worms. So while they are downloaded and run in client machines, we assume
that OSN worms should not install any kernel-level rootkits, as otherwise they would
have been detected by existing OS-oriented defense mechanisms. Second, we assume
the worms do not present any high-risk behaviors in application-level such as adding
or modifying Registry entries, tampering with system files and injecting application
processes. Obviously, modern anti-viruses can easily notify and prevent these suspi-
cious acts for users. In fact, OSN worms especially for E-worms will run as normal
applications to avoid raising any doubt except a popup window for file download
request.

2.4 Motivation and Basic Concept

Concerning the existence of overwhelming social engineering technologies nowadays
and the vulnerable friendships, there is little work to be deployed to prevent all En-
ticements from attackers. However, from the EP-Model, we can see that OSN worms
share common Payload-Submissions which provide the chance to detect and prevent
all of them.

Before our basic idea, we first introduce several relevant concepts used in our fol-
lowing description. Specifically, we refer to any client process connecting OSN web-
sites as a suspicious process. And we use user interaction trace (UIT) to refer to a
collected sequence of user actions, such as browse, edit and confirm, which are re-
lated to a suspicious process. Finally, we use the term content-submission to broadly
refer to submissions conducted by users or OSN worms.

To explain the basic idea, let us consider two real-world scenarios depicted in the
top half of Figure 5. Here the Initial Page represents the first web page where a user
will meet when she starts to login to the OSN website. Medial Pages are the pages a
user has to browse first before she gets into his/her own Blog Page, such as news feed
or profile. Next, before the user posts any blog, she should edit the content first and
then confirms the blog posting usually by clicking a Submit button. Finally, the user
will get a Return Page which indicates the success of posting. In contrast, let us con-
sider a J-worm’s propagation which is also shown in the top half of Figure 5. Here we
assume the J-worm is just embedded in the infected Blog Page without regard to the
concrete locations, e.g., post body or comment board. And then the J-worm will si-
lently POST itself into Blog Page of the victim’s friends who just browse the infected
pages. Therefore, if we compare the two UITs for the content-submissions from user
and J-worm, which have been presented in the bottom half of Figure 5, we can easily
identify the scenario in which J-worm is propagating as there is no edit or confirm.

Similarly, based on our discussion of E-worm in the Section 2.2, we can only
detect the forged confirm for a suspicious process. Hence, if we are able to collect
the related UIT for E-worm’s payload-submission, we can also detect its propagation
effectively.

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 65

Fig. 5. User interaction traces involved in different conten-submissions

3 The OSNGuard System Architecture

In this section, we will introduce OSNGuard, a pure client-side system which aims to
detect all OSN worms in real-time manner. In the following subsections, after
providing an overview of the system, we elaborate the design of its components.

3.1 Overview

Figure 6 illustrates the fundamental architecture of OSNGuard system which consists
of four functional modules and an extra configuration module. The Supervisor is
responsible for configuring the entire system, e.g., loading all the possible locations
for the content-submissions. Meanwhile, the Supervisor also manages to load or
unload other modules in order to collect the relevant social traffic or user activities.
The Social Traffic Monitor (STM) is in charge of sniffing network traffic to find
suspicious process connecting the OSN website. Besides, the STM is also designed to
trigger worm detection once the social traffic involved in a content-submission is
detected. To collect the interaction traces, our Social Interaction Tracer (SIT) will
capture every interaction generated from the client user when visiting OSN websites.
For each collected user activity, the SIT will directly send it to our OSN Worm
Detector (OWD) module which will ultimately record the activities to construct the
corresponding UIT. Furthermore, the OWD will also accept normal interaction traces
from the external configuration module as the user behavior model. To detect the
propagation of OSN worms, our system will compare the configured traces with the
collected ones.

Now we will describe the components of OSNGuard in the order of the OSN worm
detection work-flow as presented in Figure 6.

66 L. He et al.

Fig. 6. Overview of OSNGuard system architecture

3.2 Social Traffic Monitor

To successfully detect OSN worms, we will first find suspicious processes by which
the worms will propagate their payload. And then, we also need to identify the specif-
ic social traffic involved in a content-submission to trigger the worm detector.

Find Suspicious Processes. While it is straightforward to sniff the host traffic to
find the suspicious processes that are connecting to OSN websites from the client
Network Interface Card, however in OSNGuard, the STM is designed as a dynamic
loadable module which will be loaded into the suspicious process space in order to
precisely collect the involved information, such as the process id (PID) which will be
used by the SIT to trace the corresponding user interactions.

Particularly, through Windows SPI technology, we design the STM as a service
provider which will timely monitor each CONNECT intention of applications and
precisely collect the process information, i.e., PID. Once finding any CONNECT to
OSN website, STM will immediately signal the Supervisior upon the appearance of a
suspicious process.

Identify Content-Submission. To detect any submission from a client, we need to
do more works. Basically, our current STM will only filter any outbound HTTP
POST request from suspicious processes as a content-submission. However, adding
support for HTTP GET request as a content-submission should be straightforward.
Besides, considering the popularity of SSL/HTTPS, all HTTP stream data may be
encrypted and we have to be able to deal with this encrypted traffic.

Based on our thorough investigation, encrypted strategies vary from one OSN
website to another. Accordingly, we use a configurable number, named EL, to refer to
the encrypted level of website and it will be configured in the OSNList described in
the next subsection. Specifically, for OSNs such as RenRen and Weibo, we will con-
figure their ELs to 0 as they do not adopt any encrypting methods at all. And for
OSNs such as Twitter, we will set their ELs to 2 as they encrypt all HTTP content

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 67

with SSL/TLS. Finally, we will set their ELs to 1 for OSNs such as Facebook as they
only encrypt user name and password for login and do not encrypt other content such
as blog or comment posts. As OSN worms only embed themselves into ordinary con-
tent, we will adopt the same SPI technology to identify POST packages outbound to
OSNs whose EL<2. And for OSNs such as Twitter, we will enable an extra parsing
routing that is used to intercept all contents before they are encrypted. And we have
implemented current parsing routines based on Detours lib to hook the relevant en-
crypting functions (e.g., cryptencrypt for Windows XP and SslEncryptPacket for
Windows 7).

In summary, once intercepting any content-submission by STM, the Supervisor
will immediately trigger OSN Worm Detector. And if any abnormal UIT is detected,
the STM will discard all relevant packages as malicious payload, which will suffi-
ciently block the propagation of OSN worms.

3.3 Supervisor

As the administrative module of OSNGuard, the Supervisor is mainly responsible for
configuration and communication. Once the system starts up, the Superviors will load
all the necessary information from the extra Configuration module. Furthermore, the
Supervisor is also in charge of maintaining the communications between different
modules, which is fundamental component in our system.

Configuration. When OSNGuard is launched, the Supervisor will sequentially
load the configurable information consisting of two parts. One is the user-defined
information which mainly includes OSNList. Particularly, the OSNList includes all
websites to be monitored with some attributes such as encrypted level EL and the
accepted HTTP request methods.

The other configurable information is the normal behavior model which will be uti-
lized by the worm detector to compare with the collected UITs. In this paper, we will
use regular-expression-based UIT, called Normal UIT, to summarize the patterns of
interactions involved in content-submissions confirmed by users.

Communication. In our system, the Supervisor is also mainly in charge of main-
taining internal communications among all the components, which enables it to coor-
dinate their executions. For instance, once it receives the notification of the appear-
ance of a suspicious process, the Supervisor initiates the tracing communications
between the SIT and the OWD. Furthermore, the Supervisor will immediately trigger
the worm detection when it is notified about a new content-submission.

3.4 Social Interaction Tracer

Once a suspicious process is found by STM, SIT will be notified by the Supervisor to
collect all the relevant user activities. In our system, we only need to focus on several
kinds of user actions as follows:

Browse or Edit: mainly includes user interactions related to the mouse or key-
board device, such as mouse-click and keystroke. For the convenience of description,
in this paper, we refer to each mouse or keyboard activity involved in the suspicious

68 L. He et al.

process as a user browse or edit action respectively. Hence, we can directly capture
these actions through collecting operating system input messages. Specifically, in our
current implementation, we use the SetWindowsHookex function to trace all the input
messages such as WM_LBUTTONDOWN and WM_KEYDOWN on Windows.

Confirm: represents a confirmation to the content-submission. Different from the
activities above, confirm activity cannot be identified by system input message. Al-
though the method proposed in BLADE [12] is able to obtain confirmations on a po-
pup button, it is not efficient for our web applications. Basically, some time-
consuming computations have to be introduced to correlate the mouse-click positions
with the areas of a download dialog.

Instead of obtaining any position of mouse-click or UI element, we propose a novel
approach to fetch the user confirm activities in OSN web pages. The basic idea is to
find and hook the HTML BUTTON element, and add an extra handler to notify the
user click as a confirmation. Specifically, we can get from the handle of current win-
dow, by which we can traverse to find the HTML submit button element and add the
extra handler which enables us to fetch all the confirm activities from client user. In
fact, this hook-based method is inspired by our code analysis of the Koobface.

3.5 OSN Worm Detector

The OSN Worm Detector (OWD) is the critical module of OSNGuard which is main-
ly in charge of worm detection. It has two working modes that one is UIT-Tracing
and the other is UIT-Comparing. Usually, the OWD changes its working mode based
on the messages received from other modules. Figure 7 illustrates the details of detec-
tion work-flow.

Fig. 7. The details of worm detection

UIT-Tracing. Before it receives any message, the OWD is initialized to create an
empty structured table1 which will be used to store all the UITs collected by the SIT.
When receiving the first Create message from the Supervisor notified of the appear-
ance of suspicious process, the OWD will run in UIT-Tracing mode. Usually, the PID
included in the Create message will be used as the index item of a record. And then, if

1 We use a tuple (PID, UIT) to form a complete record in a table and all the records are ordered

and indexed by its PID.

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 69

a user action is found, the SIT will directly send to the OWD an Insert message which
includes the PID and a collected action e.g., mouse-click, keystroke or Confirm. Once
receiving this message, the OWD will immediately insert the action into the corres-
ponding record in the table.

UIT-Comparing. The OWD will run in UIT-Comparing mode when it receives a
Query message from the Supervisor indicating the appearance of the content-
submission. In this working mode, the OWD will fetch the corresponding UIT ac-
cording to the PID included in the message and compare it with the Normal UIT
loaded from the configuration. Furthermore, the result will be set to true, indicating a
confirmation from user, if the collected UIT matches the Normal UIT. Otherwise, the
submission will be discarded as a payload-submission from OSN worms.

4 Experimental Evaluation

In this section, we first introduce our evaluation environment, an experimental OSN
website based on an open source framework. And then, we show the effectiveness of
our OSNGuard system against OSN worms. Finally, we provide test results for the
performance overhead introduced by OSNGuard.

4.1 Expeirmental Environment

Considering the security threats caused by the real OSN worms, it is inconvenient to
directly conduct the evaluations in a popular OSN websites. Accordingly, we build a
real but small-scale OSN website, MyOSN, which is based on Elgg and deployed on a
Windows machine with WampServer installed. Figure 8(a) reveals the MyOSN’s
news feed with various contents, e.g., newest members, latest upload files and blog
posts. Furthermore, two kinds of OSN worms are also planted into several initial us-
ers’ pages, e.g., blog, comment and profile. Figure 8(b) illustrates the results when
worms propagate among the users without the deployment of OSNGuard. To collect
real-world interaction data, more than 50 users are involved in the whole process of
our evaluations.

(a) MyOSN website (b) Propagations of OSN worms

Fig. 8. MyOSN website and two worms

70 L. He et al.

4.2 System Effectiveness

In this section, we will evaluate the effectiveness of our system. Experiment 1 reveals
the real-time defense against the typical Samy worm. Experiment 2 offers strong
evidence that our system is also able to effectively block the propagation of E-worms
such as the Koobface.
Experiment 1. OSNGuard against Samy

To evaluate the effectiveness of OSNGuard against J-worms, we plant into
MyOSN the Samy worm that is provided by its author on his blog site [13]. We only
modify a minimum of codes to make it infect users in various locations in MyOSN,
such as the profile, blog post and comment board. From the bottom of Figure 8(b), we
can see the results when the worm propagates among user blog posts without the dep-
loyment of OSNGuard.

To detect and contain this worm, we only need to configure the OSNGuard with a
very simple but efficient Normal UIT:

(mouse-click | keystroke)+confirm+
which means that a legitimate submission should be resulted from one or more con-
firm activities following one or more mouse-click or keystroke activities.

Table 1 provides the results of the worm detections. Due to space limit, we only
presented several representative interaction traces of five users who had visited the
infected pages and received the worm alerts from OSNGuard. As shown in the de-
tected results for the worm propagation, only several mouse and/or key activities were
traced when we identified the content-submissions which were actually resulted from
the POST activities of the worm.

Table 1. Results of Samy detection based on user interaction traces (M=Mouse-click,
K=Keystroke, C=Confirm, superscript denotes the number of repeats)

User UIT Result Description

User UIT Result Description

10001

K3- M1-K24- M1-K14- M1- C1 √ login

10037

K28- M1-C1 √ login

M1-K2- M1-K2-K15- M1-C1 √ profile K2-M4-K126-M1- C1 √ comment

M1-K6- M1-K6-M2-K78- M1-C1 √ blog K4-M3-K12- M1- C1 √ upload

M13-K32-M1- C1 √ comment M4-K164- M1- C1 √ comment

M1 × infection M4-K132- M1-C1 √ comment

10013

M1-K14- M1-K18- M1- C1 √ blog M4-K48-M1-C1 √ search

M7-K30- M1- C1 √ comment M3-K16-M1 × infection

M3- C1 √ profile

10045

M2- C1 √ login

M6-K53-M2- C1 √ search M6-K53-M2- C1 √ comment

M1-K7-M5 × infection M1-K7-M5-C1 √ upload

10025

K3- M1-K42- M1- C1 √ login K3- M1-K42- M1- C1 √ search

M1-K3-M6-K24- M1-K100- M1-

C1
√ blog M4-K12-M1-K12- C1 √ upload

M4-K9- M1-K16-M3- C1 √ comment M1-K3- K12- M1- C1 √ comment

K3- M1 × infection K3-M1 × infection

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 71

Experiment 2. OSNGuard against Koobface
As illustrated in Figure 3(b), to launch the worm propagation, the Koobface only

forges confirmation happened without any other user interaction activities, such as
mouse or keyboard inputs. Accordingly, OSNGuard can also effectively identify the
worm with the same Normal UIT used in the Experiment 1.

However, while it can detect the propagation of the Koobface worm, we admit that
our current OSNGuard is not able to locate the stored path of the original file on client
host. We need to consider the suspicious process OSNGuard can detect. In fact, it is
the IWebBrowser2 COM component that will run in a standalone process and visit the
OSN website, which means OSNGuard can only detect this component process.
Moreover, as we investigate it with other tools such as Process Explorer, the COM
component process is started up by svchost.exe process which implies that we cannot
find out the original main process according to the COM component process. This
finding may also explain why the attackers would like to choose the COM component
as an infection vector which can be used to hide their main process.

4.3 Performance Overhead

We conduct two additional experiments to measure the delay and memory
consumption of OSNGuard. And both of the experiments were conducted on a
Window XP client with two 2.5GHz Xeon processors and 2GB of memory.
Experiment 3. Delays on POST

Figure 10(a) shows the delays of submitting content when processing different
numbers of user interaction activities. The delay for detecting a UIT containing up to
550 activities is no more than 20ms (19.8ms). Based on our practical observations,
there are little users whose activity number exceeds 500 before an content-
submission, which means the delay can be negligible even in a worst case scenario.
Experiment 4. Memory overhead of OSNGuard

The memory overhead introduced by OSNGuard mainly depends on the number of
suspicious processes running on client system. When running without any suspicious
process, OSNGuard only introduce 0.16% memory overhead, as shown in Figure
10(b). Although the overhead increases near-linearly when monitoring more suspi-
cious processes, OSNGuard introduces less than 2.5% (2.035%) memory overhead in
total when simultaneously detecting 10 suspicious processes.

(a) Delays on POST (b) Memory overhead

Fig. 9. POST delay and memory overhead introduced by OSNGuard

72 L. He et al.

5 Discussion

Limitations. While the OSNGuard is designed to defend current OSN worms, we
have not yet intended to prevent all current socwares [14], such as the reflected XSS
and the Clickjacking. For the reflected XSS [15] attack, it usually tricks users to click
on a malicious link in an e-mail message, which implies the relevant browse and con-
firm activities, so our OSNGuard can be ineffective in this attack scenario. For the
Clickjacking [16] attack, the adversary will entice users to click a hidden button on a
web page in which our OSNGuard will be also insufficient.
Future Worms. Although current OSN worms have not mainly focused on forging
user interactions, we cannot ensure the effectiveness of current system when our
scheme is published and especially the adversaries begin to adopt the relevant mi-
micking techniques. We assume that the capable attackers can forge a number of
UITs. However, the personal specific behavioral biometric still cannot be forged, such
as the keystroke dynamics and mouse dynamics. Hence, we argue the effectiveness of
OSNGuard integrated with biometric-based authentication [17, 18] when coping with
future OSN worms.

6 Related Work

OSN Worm Detection. There have been several systems proposed to deal with the J-
worms in OSNs. Livshits et al. [8] provided the first automatic server-side solution,
Spectator, to defend the XSS-based J-worms. They find the propagation path of the
worms by tagging any HTTP request and response. If the length of the tag-path ex-
ceeded the threshold, the system would send alarms to the administrators. Sun et al.
[9] proposed the first pure client side defending system which is depending on the
content comparison implemented as a plugin on Firefox. By introducing view separa-
tion and request authentication, Cao et al. [7] proposed PathCutter approach which
can effectively sever the paths of the propagation of J-worms.

Xu et al. [10] provided a satellite decoy network which can collect malicious mes-
sages spreading among the whole network. When the frequency of monitored mes-
sages exceeded a preset threshold, the system would notify the administrators of the
propagation of malicious information. However, as we described in Section 1, their
server-side system cannot protect users in real-time manner.
Drive-by Download Detection. There have been several works aiming at the drive-
by download attacks, which are conceptually close to ours. Lu et al. [12] have devel-
oped BLADE, which is a system kernel extension designed to eliminate Drive-by
malware installations. It asserts that all executable files delivered through browser
downloads must result from explicit user consent and transparently redirects every
unconsented browser download into a nonexecutable secure zone on disk.

Xu et al. [19] also provided a similar behavior based detection system, DeWare, for
detecting the onset of infection delivered through vulnerable applications. It enforces
the dependencies between user actions and system events, such as file-system access
and process execution. Although these schemes are effective to detect drive-by down-
loads, they are not able to detect any Social-Engineering-based E-worms as the

OSNGuard: Detecting Worms with User Interaction Traces in Online Social Networks 73

worms are downloaded and installed by users themselves. In fact, the authors have
admitted this limitation in their papers.
User Interactoins in OSNs. The design of OSNGuard is extremely inspired by those
researches on user interactions in OSNs. Wilson et al. [20] proposed the use of inte-
raction graphs to impart meaning to online social links by quantifying user interac-
tions. Benevenuto et al. [21] analyzed the collected clickstream dataset to characterize
user behavior in OSNs. Their analysis reveals key features such as the types and se-
quences of activities that users conduct on these sites. Jiang et al. [22] focused on the
latent interactions such as profile browsing that cannot be observed by traditional
measurement techniques.

7 Conclusions

In this paper, we have presented a UIT-based approach to prevent the propagation of
OSN worms in real-time manner. To achieve this challenging goal, we divide OSN
worms into two categories and summary their commonalities. It is our primary
findings that OSN worms propagate themselves by accomplishing the payload-
submissions with forged or without the confirmations from users. Instead of focusing
on these worms, we trace all the relevant user activities and compare these to the
normal behavior model to prevent malicious propagation. We have designed a client-
side defending system and implemented it upon Windows platform to prove the
effectiveness of our approach. Finally, we have conducted various experimental
evaluations on our own OSN website and the results suggest that our client-side
system can be deployed to detect and prevent OSN worms effectively.

Acknowledgements. This work was supported by the National Program on Key Basic
Research Project (2012CB315804), the Major Research Plan of the National Nature
Science Foundation of China (91118006), the National Nature Science Foundation of
China (61073179) and the Beijing Municipal Nature Science Foundation (4122086).

References

1. Samy, http://en.wikipedia.org/wiki/Samy_(computer_worm)
2. Cross-site scripting worms and viruses, https://www.whitehatsec.com/reso

urce/whitepapers/XSS_cross_site_scripting.html
3. Schechter, S.E., Jung, J., Berger, A.W.: Fast Detection of Scanning Worm Infections. In:

Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 59–81.
Springer, Heidelberg (2004)

4. Weaver, N., Staniford, S., Paxson, V.: Very Fast Containment of Scanning Worms. In:
Proceedings of 13th USENIX Security Symposium, pp. 29–44 (2004)

5. Wang, K., Cretu, G.F., Stolfo, S.J.: Anomalous Payload-Based Worm Detection and Sig-
nature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858,
pp. 227–246. Springer, Heidelberg (2006)

74 L. He et al.

6. Ellis, D.R., Aiken, J.G., Attwood, K.S., Tenaglia, S.D.: A Behavioral Approach to Worm
Detection. In: Proceedings of the 2nd ACM workshop on Rapid Malcode (WORM),
pp. 43–53 (2004)

7. Cao, Y., Yegneswaran, V., Porras, P., Chen, Y.: PathCutter: Severing the Self-Propagation
Path of XSS JavaScript Worms in Social Web Networks. In: Proceedings of the 19th Net-
work and Distributed System Security Symposium, NDSS (2012)

8. Livshits, B., Cui, W.: Spectator: Detection and Containment of JavaScript Worms. In: Pro-
ceedings of the USENIX Annual Technical Conference, pp. 335–348 (2008)

9. Sun, F., Xu, L., Su, Z.: Client-Side Detection of XSS Worms by Monitoring Payload
Propagation. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 539–554. Springer, Heidelberg (2009)

10. Xu, W., Zhang, F., Zhu, S.: Toward Worm Detection in Online Social Networks. In:
Proceedings of the 26th Annual Computer Security Applications Conference (ACSAC),
pp. 11–20 (2010)

11. Elgg, http://www.elgg.org
12. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: An Attack-Agnostic Approach for

Preventing Drive-by Malware Infections. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS), pp. 440–450 (2010)

13. Technical explanation of The MySpace Worm,
http://namb.la/popular/tech.html

14. Rahman, M.S., Huang, T., Madhyastha, H.V., Faloutsos, M.: Efficient and Scalable
Socware Detection in Online Social Networks. In: USENIX Security Symposium,
pp. 663–678 (2012)

15. Cross-site scripting,
http://en.wikipedia.org/wiki/Cross-site_scripting

16. Clickjacking, http://en.wikipedia.org/wiki/Clickjacking
17. Monrose, F., Rubin, A.D.: Keystroke Dynamics as A Biometric for Authentication. Future

Generation Computer Systems 16, 351–359 (2000)
18. Jorgensen, Z., Yu, T.: On Mouse Dynamics as A behavioral Biometric for Authentication.

In: Proceedings of the 6the ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS), pp. 476–482 (2011)

19. Xu, K., Yao, D., Ma, Q., Crowell, A.: Detecting Infection Onset with Behavior-based Pol-
icies. In: Proceedings of the 5th International Conference on Network and System Security
(NSS), pp. 57–64 (2011)

20. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User Interactions in Social
Networks and Their Implications. In: Proceedings of the 4th ACM European Conference
on Computer Systems (EuroSys), pp. 205–218 (2009)

21. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing User Behavior in On-
line Social Networks. In: Proceedings of the 9th Internet Measurement Conference (IMC),
pp. 49–62 (2009)

22. Jiang, J., Wilson, C., Wang, X., Huang, P., Sha, W., Dai, Y., Zhao, B.Y.: Understanding
Latent Interactions in Online Social Networks. In: Proceedings of the 10th Internet Mea-
surement Conference (IMC), pp. 369–382 (2010)

A Secure and Efficient Scheme for Cloud Storage

against Eavesdropper

Jian Liu, Huimei Wang, Ming Xian, and Kun Huang

State Key Laboratory of Complex Electromagnetic Environment Effects on
Electronics and Information System, National University of Defense Technology,

Changsha, 410073, China
ljabc730@nudt.edu.cn

Abstract. Cloud storage system, which can be viewed as a large collec-
tion of individually unreliable storage nodes, is potential to be faced with
the threat of data loss and leakage, due to node failure and eavesdropped
by an intruder. As a solution, secret sharing scheme stores the data re-
dundantly across the distributed storage system(DSS) and it is able to
protect data security against �-eavesdropper without need of secret key
management mechanism, however, it do not provide regeneration prop-
erty. Combining the regenerating code with the secret sharing scheme is
an effective approach to address this drawback, yet all the schemes that
have been proposed in previous work are conducted under the perfect-
security criterion and leads to an unaffordable loss of the storage capacity
while the number of observed nodes � get close to threshold k. In this pa-
per we adopt the weak-security criterion and give a formal description of
“Secure DSS against an �-eavesdropper”. Applying a secure hash func-
tion and concatenated with the Product-Matrix minimum bandwidth
regenerating(PM-MBR) code, our scheme significantly improves the se-
crecy capacity and keeps the loss of data rate constantly in a low level
with any �. As the analysis result indicates, our scheme, which provides
sufficient security, repair efficiency and storage efficiency, is more suitable
for practical systems. Moreover, we introduce another approach as an ex-
tension, which combines the All-Or-Nothing Transform with PM-MBR,
and finally achieves a secure storage against �-eavesdropper without loss
of data rate.

Keywords: Cloud Storage, Eavesdropper, PM-MBR, Data Confiden-
tiality, Hash Function, All-Or-Nothing Transform, Secrecy Capacity.

1 Introduction

Cloud storage system is now increasing attracting individuals and organizations
to outsource their data from local to remote cloud servers. However, many con-
sumers are still feel hesitant, since they lose their control on the data which
maybe lost and leaked by incidents. To deal with node failure and compromised
by an attacker, which leads to data loss and leakage, the system is desired to
provide both storage reliability and confidentiality. In general, a cloud storage

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 75–89, 2013.
c© Springer International Publishing Switzerland 2013

76 J. Liu et al.

system is considered as a large-scale distributed storage system(DSS) which con-
sists of many independent storage nodes.

For reliable storage, DSS stores the data redundantly(e.g., by using (n, k)RS
code) on a collection of individually unreliable storage nodes, such that the data
can be recovered from active nodes even if a small set of nodes fails. However,
the repair-bandwidth is so high up to the size of original file when only one node
fails in this scenario. A repair-efficient scheme, called regenerating codes(RC),
was proposed in [1], where the tradeoff between the storage capacity of single
node and the repair-bandwidth was studied, furthermore codes that achieve two
extreme points, which are known as minimum storage regenerating (MSR) codes
and minimum bandwidth regenerating (MBR) codes, were introduced. Moreover,
explicit construct methods for MBR and/or MSR codes that allow exact re-
pair [24] were presented in [2–4].

Besides reliability, storage confidentiality is also a significant property for
DSS. Paulo et al.[5] considered a scenario in which a large, private file is to
be stored securely and there exists an intruder may gain access to some storage
nodes in the DSS, but not all. Assuming that the intruder only can eavesdrop on
compromised nodes but cannot modify the data stored on them, it’s desirable to
ensure that the intruder is unable to recover the whole file or any of its parts. A
straightforward solution is that, first encrypt the file using a secret key and then
partition the resulting cryptogram into multiple shares that can be spread over
the storage nodes. However, such cryptographic solution introduces the need for
secret key management mechanism[6], which increases the overall complexity
and the resources demanded by the system. The secret sharing scheme provides
an effective solution without secret key management. In a secret sharing scheme,
one divides a secret into shares, and a threshold number of shares is sufficient to
recover the original secret but any number of shares(obtained by the intruder)
smaller than the threshold reveal no information about the secret[5, 7, 8, 16].
Some other practical application of the combination of secret sharing scheme and
erasure codes was proposed in [9, 10], these schemes applied cryptography but
without need of key management and distribution. Even though all the schemes
above provide reconstruction and security of data shares, they do not provide
the property of regenerating the share as was stored in the failed node.

To address this drawback, combining RC with the secret sharing scheme is
an effective way. It is noted that schemes following this way have been also
studied in [11–14]. S.Pawar et al.[11] gave the upper bound of secrecy capacity
for secure (n, k, d)-DSS against passive eavesdroppers and proposed achievable
approach, based on nested MDS and RSKR-repetition codes, in the bandwidth-
limited regime for repair degree d = n − 1. Further more, literature [13, 14]
proposed information-theoretically secure MBR and/or MSR codes that achieve
the secrecy capacity in [11]. Moreover, Rawat et al.[12] gave tighter bound on the
secrecy capacity of a DSS at the MSR point, and presented an approach based
on Gubidulin precoding to achieve the upper bound for certain system param-
eters. However, all these schemes achieve the perfect-security criterion, that is,
intruder eavesdropping � < k nodes gets no information of the original file stored.

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 77

By mixing a certain number of random symbols with original data before en-
coded by RC, these schemes lead to a decrease of the file size that can be securely
stored in the DSS and the loss of secrecy capacity is unaffordable when � get
close to k. Take [13] for example, a (n = 6, k = 3, d = 4) PM-MBR is applied,
the storage capacity is 9β, in the presence of an intruder that can eavesdrop
the data on two nodes, we need the ratio of random symbols up to 7/9 of the
storage capacity to be added to achieve the perfect-security, and thus the data
rate 2/9 is unbearable. Considering the fact that perfect security criterion is too
strict and leads to above disadvantages, we adopt the weak-security criterion[15]
in our work instead. In case of weak-security criterion, intruder cannot get any
“meaningful” information of the stored data symbols when eavesdropping �(< k)
storage nodes.

In this paper, we focus on designing an efficient scheme for DSS, which pro-
vides not only data reliability but also data security against passive eavesdrop-
pers. Taking the PM-MBR code[3] as the basis of our scheme, it satisfies the
regeneration property(i.e., can regenerate a lost share with low bandwidth). Us-
ing a hash function or AONT[22] as the preprocessing procedure before data
symbols are encoded by minimum bandwidth regenerating code, our scheme
achieves the weak security criterion, which is sufficient in practical distributed
storage scenario. Simultaneously the data capacity securely stored in the DSS
is significantly improved, and the loss of data rate is kept constantly in a low
level(equal to zero in case of AONT) for any �(< k) with fixed (n, k, d).

Similar problem has been considered in the research field of multicast-network
applying network coding[19]. [15, 22, 23] showed that weakly secure network
coding can achieve the security with a higher multicast rate compared with
perfect secure network coding[20, 21]. Inspired by the achievement of [15, 22, 23],
their ideology is introduced into our research for building a secure distributed
storage system against eavesdropper with high secrecy capacity. However, we
use totally different models and methods in our work. To our best knowledge,
few papers strived in this direction applying weak security criterion to DSS.

Contributions: Our main contribution in this paper is to provide a secure
and efficient scheme, which exploits the Product-Matrix framework[3], for DSS.
The proposed scheme provides the following guarantees:

– Weak-Security Property: We assure that an intruder who can eavesdrop any
�(< k) out of n storage nodes is unable to recover any individual original
data symbol. To be viewed as a secret sharing scheme, however, our scheme
does not apply secret key management and distribution mechanism.

– Reconstruction Efficiency: Since the regenerating code utilized by us satisfies
MDS property, our proposed scheme is resilient to node failures, that is, a
data collector is able to reconstruct the original data file as long as there are
k out of n storage nodes active.

– Regeneration Efficiency: We combine minimum bandwidth regenerating code
with secret sharing scheme, thus ensure that our scheme not only provides
security guarantees, but also satisfies regeneration efficiency, i.e., low repair-
bandwidth when node failure happens.

78 J. Liu et al.

– Secure Storage Efficiency(High Secure Data Rate): We apply a secure hash
function in the preprocessing procedure, and then concatenated with PM-
MBR code. This approach is effective to improve secure data capacity, and
keep the loss of data rate constantly in a low level. Moreover, another
construction method with All-Or-Nothing Transform(AONT) is presented,
which can achieve the secure storage without loss of data rate.

Organization: The rest of this paper is organized as follows. In Section 2
we introduce the system model, intruder model and some preliminaries for our
scheme. Our proposed scheme is detailed described in Section 3 and evaluated
in Section 4. In Section 5 we briefly present another construction method and
analyze the essence of its security. Finally, we conclude this paper Section 6.

2 Model and Preliminaries

2.1 System Model

We consider the cloud storage to be a large-scale DSS, which consists of three
components, i.e., the source node s, n active storage nodes and data collector
DC. There’s an incompressible data file F of M symbols(each belonging to a
finite field Fq) in the source node s. We assume that each storage node has a
storage capacity of α symbols and is individually unreliable and may fail over
time.

The source node s split, encode the file F and then distribute the coded result
to the n connected storage nodes {v1, v2, ...vn}. Any DC who can connect to any
k out of n active nodes should be able to retrieve theM symbols and reconstruct
the original file F . We term this theMDS property of the DSS. To maintain the k-
out-of-n MDS property, failed node must be immediately replaced by newcomer
with same storage capacity α. In our work, we focus on the case of symmetrical
repair, where the newcomer connects to arbitrary d active nodes out of the
remaining active nodes and downloads equal amount of symbols, say β, from
each. The repair degree d is a system parameter satisfying k ≤ d ≤ n − 1. The
corresponding repair bandwidth of the system is defined as γ = dβ in this paper.
Thus we define such a DSS as D(n, k, d). For instance, the DSS depicted in Fig.1
corresponds to D(4, 2, 3) which is operating at (α, γ) = (2, 3) with functional
repair, the failed node v1 is replaced by the newcomer v5 in this scenario.

Moreover, for the reason that the functional repair [24] has some inherent
security shortcomings for DSS in the presence of an eavesdropper, in this paper
our presented scheme employs the exact repair where the newcomer regenerates
an exact copy of the lost data and thus α = dβ. Specifically, the PM-MBR code
proposed by Rashmi et al.[3] is applied. Besides, we denote the storage capacity
of the DSS as L, which was derived by [1] and:

L =

k∑
i=1

min{(d− i+ 1)β, α} (1)

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 79

1 2

1 2

,
,

a a
b b

1 2,a a

1 2,b b

1 1

2 2

a b
a b

1 1

2 2

2
2
a b

a b

1 2

1 23
a a
a a

DC

1v

2v

3v

4v

5v

s

1 2 1 2[, , ,]
4
a a b b

=

Fig. 1. D(4, 2, 3) under repair

Note that the right-hand side of Eq.(1) can be reduced to
∑k

i=0[(d− i+ 1)β] in
case where PM-MBR code is applied[3].

2.2 Intruder Model

We consider an (�1, �2) eavesdropper, which can access the stored data of nodes
in set ε1, and additionally can access both the stored and downloaded data of the
nodes in set ε2, with |ε1| = �1 and |ε2| = �2. The eavesdropper is passive and can
only read the data on the observed nodes without modifying it. This is the same
eavesdropper model considered in [12]. For the MBR code used in this paper,
we have dβ = α, i.e., a replacement node stores all the data that it downloads
during its repair. Thus an eavesdropper does not obtain any extra information
from the data that is downloaded for repair. Without loss of generality, we can
assume that �1 = �(� < k), �2 = 0, and then the intruder model is simplify to
the �-eavesdropper. In addition, the eavesdropper is assumed to have complete
knowledge of the storage and coding schemes employed by the DSS. As a result,
the intruder can choose any � nodes from the initial storage nodes and/or the
replacement nodes. For example in Fig.1 with � = 1, the replacement node v5 is
compromised by the intruder and shown in grey background.

2.3 Security Criterion

Here we first introduce perfect security criterion and then present our definition
of the secure DSS against the �-eavesdropper in this subsection.

Let S = [s1, s2, s3, ..., sL]
T be a random vector uniformly distributed over

FL
q , representing the incompressible data file at the source node. Each symbol

of S denoted by si(i = 1, 2, ..., L) is independent random variable uniformly
distributed over Fq. Let H(S) denotes the entropy of the random variable S.
The S is encoded into n shares ci ∈ Fα

q . For each i ∈ {1, 2, .., n}, a share ci is
stored in node vi. Let B be a collection of k active nodes randomly chosen from
all n storage nodes, and define CB := {ci : vi ∈ B}. Similarly, we let E be the

80 J. Liu et al.

collection of nodes that can be observed by the eavesdropper, and |E| = � < k
in our work, thus define CE := {ci : vi ∈ E}.

Then the reconstruction property (or k-out-of-n MDS property) of the DSS,
can be written as:

H(S|CB) = 0, |B| = k. (2)

and the perfect security condition implies:

H(S|CE) = H(S), |E| = � < k. (3)

The Eq.(3) can be interpreted that the eavesdropper cannot get any informa-
tion about the original vector S = [s1, s2, s3, ..., sL]

T , even she is able to obtain
the data shares on � compromised nodes. As mentioned above, this security cri-
terion is too strict and unnecessary in practical scenario. Notice the fact that an
intruder who get the si ⊕ sj(i �= j) is also unable to recover the symbols si and
sj , i.e., I(si; si ⊕ sj) = I(sj ; si ⊕ sj) = 0, because these symbols are uniformly,
independently and randomly distributed over Fq. Therefore, it is sufficient that
an intruder cannot get any “meaningful” information of each symbol in original
vector S to guarantee the data secure against the �-eavesdropper(� < k), which
is called the weak-security criterion[15]. We present the definition of a secure
DSS following such criterion:

Definition 1. (Secure DSS against an �-eavesdropper): A DSS is said to be
secure against an �-eavesdropper, if, for any set E of size � < k,

I(si;CE) = 0, (i = 1, 2, ..., Ls) (4)

Where si denotes the symbol of the data file S, and CE represents data observed
by the eavesdropper. Besides, we denote the file size that can be secure stored in
the DSS as Ls.

Under the weak-security condition[15], our proposed scheme can achieve a
higher secure data capacity as discussed in Section 4.

2.4 Product-Matrix MBR Code

Rashmi et al.[3] proposed the first construction of general and optimal exact-
regenerating code such as (a)(n, k, d) MBR code for all values of (n, k, d),and
(b)(n, k, d) MSR code for all values of (n, k, d) where d ≥ 2k − 2. In general, in
order to obtain a lower repair bandwidth, all n, k, d should satisfy k ≤ d ≤ n−1.
As the basis of our work, we briefly review the Product-Matrix MBR code here.

As assumed in [13], we set β = 1. It is reasonable since that any higher value
of β can be obtained by a simple concatenation of the β = 1 code. Thus the
PM-MBR code with β = 1 and α = d can be interpreted as an (n × α) code
matrix C, where each row corresponds to one storage node of the DSS, i.e., the α
elements in the ith row represent the α symbols stored in node vi(i = 1, 2, ..., n).
The code matrix C is a product of two matrices: a fixed encoding matrix Ψn×d

and a message matrix Md×α, i.e., Cn×α = Ψn×d ·Md×α.

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 81

The encoding matrix Ψn×d has the form as Ψn×d = [Φn×k Δn×(d−k)] where
the matrices Φn×k and Δn×(d−k) are chosen to satisfy (i)any k rows of Φ are
linearly independent, and (ii)any d rows of Ψ are linearly independent, thus, a
Vandermonde or Cauchy Matrix is applicable.

The message matrix Md×α contains the symbols of the data file to be stored
in a redundant fashion. From Eq.(1) we get that the stored symbols amount to

L = k(2d−k+1)

2
= k(k+1)

2
+ k(d − k) in the DSS employing the PM-MBR code.

The message matrix Md×α is of the following form

Md×α =

⎡⎣ Uk×k Vk×(d−k)

V t
k×(d−k) O(d−k)×(d−k)

⎤⎦
The Uk×k in the above expression denotes a symmetric matrix, thus the k(k+1)

2

components in the upper-triangular half of the matrix are filled up by k(k+1)

2

distinct message symbols drawn from the L message symbols. The remaining
k(d − k) message symbols are used to fill up the matrix Vk×(d−k). The V t de-
notes the transpose of matrix Vk×(d−k), and the O(d−k)×(d−k) denotes the zero
matrix with all zero components. To keep things simple, we use these denotations
without the subscript in the rest of this paper.

3 Our Proposed Scheme

3.1 Notation and Definition

The original data file of size L is represented by a vector S = [s1, s2, ..., sL]
T , with

si ∈ Fq, i = 1, 2, ..., L. Supposing that the file has been optimally compressed,
then the symbols si(i = 1, 2, ..., L) are independent random variables uniformly
distributed over the finite field Fq. Let K denotes a set of random symbols and
|K| = Lr, and each symbol is chosen independently and uniformly across the
elements of Fq. In addition, we make use of suitable one-way function, i.e., a
secure hash function defined as follow, in our scheme.

Definition 2. (Secure Hash Function): The function h(key, •) : key ×X → Y
where key ∈ Fq, for ∀X ∈ Fr

q(r ∈ N∗), the result Y ∈ Fq, is secure if the following
conditions satisfy:

(1)Given a hash value y ∈ Fq, it’s hard to find any x ∈ Fr
q(r ∈ N∗) in

polynomial time such that y = h(key, x);
(2)Given any x ∈ Fr

q(r ∈ N∗),the hash value y = h(key, x) can be easily got
in polynomial time;

(3)Given any x ∈ Fr
q(r ∈ N∗), it’s hard to find x′ ∈ Fr

q(r ∈ N∗) that have the
same hash value in polynomial time, i.e., h(key, x′) = h(key, x).

To keep things simple, we define that h(x) = h(x, x) with x ∈ Fq in the following
subsection.

Besides, we denote the ith row of the encoding matrix Ψ as ψi. In order to
meet the requirement of Ψ , we adopt the Vandermonde matrix to be the encoding

82 J. Liu et al.

matrix. The message matrix is represented by M . All the elements of matrix Ψ
belong to the finite field Fq, thus, q ≥ n. Further, we set β = 1 in the scenario
of D(n, k, d) in which our scheme executes.

3.2 Detailed Scheme

Our scheme is consisted of four procedures shown as follows:
1) Preprocessing Procedure:
step 1: Generate a set K that contains Lr = d − k + 1 random symbols

{k1, k2, ...kLr}, where each symbol is independently, randomly and uniformly
distributed over Fq;

step 2: Let S′ be a set with cardinality Ls(< L), and the elements of S′ are
the symbols drawn from the incompressible data file S = [s1, s2, ..., sL]

T , here we
set S′ = {s1, s2, ...sLs} without loss of generality. In the scenario of D(n, k, d),
Ls = L− Lr = k(2d−k+1)

2
− (d− k + 1);

step 3: Let sk = h(k1, k2||k3||...||kLr), where k2||k3||...||kLr denotes the con-
catenation of the random symbols ki(i = 2, 3, ...Lr). Utilizing the hash value sk
to preprocess the original data symbols, we get the result P = {p1, p2, ...pLs}
where p1 = s1 ⊕ h(sk), pi = si ⊕ h(sk, s1||s2||...||si−1)(i > 1, i ∈ N∗);

2) Encoding and Distributing Procedure:
step 1: Note that Ls + Lr = L, we populate the message matrix M with

elements in P and K. To be specific, place the symbols of P into the first k − 1
rows and hence first k−1 columns of the symmetric matrix M , the rest position
of submatrix U and V of M is filled with Lr random symbols of K(an example
is shown in Fig.2);

step 2: Choose n elements from Fq and then generate a Vandermonde matrix
to be the encoding matrix Ψ . According to the encoding method of PM-MBR,
we multiply the matrix Ψ and M to get the Product-Matrix C = Ψ ·M .

step 3: Extracting each row(denoted by ci) of the Product-Matrix C as a
share(of size d) of encoded data, the source node distributes them to the corre-
sponding storage node vi, i = 1, 2, ...n.

3) Regeneration Procedure:
Supposing that node vf (f ∈ [n]) fails at a time, the regeneration process of

our scheme is the same as that in traditional PM-MBR code[3]:
step 1: Notice that the share stored on the node vf is cf = ψfM . The re-

placement for the failed node f connects to an arbitrary set {hi|1 ≤ i ≤ d} of d
remaining nodes.

step 2: Each of these d nodes passes on the inner product (ψhiM)ψt
f to the

replacement node. Thus from these d nodes, the replacement node obtains the
d = α symbols, i.e., Crev = ΨrevMψt

f , where Ψrev = [ψh1 , ψh2 , ..., ψhd
] is invert-

ible by construction.
step 3: Replacement node performs matrix inversion on Ψrev and multiplies

Ψ−1
rev with Crev. Thus Mψt

f can be recovered, since M is symmetric, (Mψt
f)

t =
ψfM is precisely the data stored in the node prior to failure.

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 83

4) Reconstruction Procedure:
When a data collector try to reconstruct the original data file stored in the

(n, k, d)-DSS, it firstly perform the same action as traditional PM-MBR code[3],
then recover original symbols:

step 1: Data collector connects to k out of n active storage node, let ΨDC =
[ΦDC ΔDC] be the corresponding k rows of Ψ . Thus the data collector gains
the symbols ΨDCM = [ΦDCU +ΔDCV

t ΦDCV]. Being a submatrix of Vander-
monde matrix, ΦDC is nonsingular. Hence, by multiplying the matrix ΨDCM on
the left by Φ−1

DC , one can recover first the matrix V and subsequently the matrix
U . Thus, all symbols in set K and P are gained by data collector;

step 2: Compute the sk = h(k1, k2||k3||...||kLr) from K, and then the original
symbols in set S′ = {s1, s2, ...sLs} can be got in the way: s1 = p1 ⊕ h(sk),
si = pi ⊕ h(sk, s1||s2||...||si−1), (2 ≤ i ≤ Ls and i ∈ N∗). Finally, the original
data file stored in the system is reconstructed.

3.3 An Example

Detailed description of our scheme above should be tedious and stuffy, how-
ever, in order to make our scheme seems more concrete, we illustrate it with an
example similar to [13] in this subsection.

Example 1. Let (n, k, d) = (6, 3, 4), then with β = 1,we get α = d = 4, Lr = 2,
Ls = 7 and L = 9. Our scheme is designed over the finite field F7. The (6 × 4)
encoding matrix Ψ is chosen as a Vandermonde matrix with its ith row as ψi =
[1 i i2 i3].

As depicted in Fig.2, the original data symbols s1, s2, ..., s7 drawn from the
incompressible data file F are first preprocessed with the random symbols in K,
and then placed into the first two rows and first two columns of the message ma-
trix M4×4. In the end, the matrices U and V are populated by the preprocessed
symbols in P = {pi}7i=1 and random symbols in K = {k1, k2}:

U =

⎡⎣p1 p2 p3
p2 p4 p5
p3 p5 k1

⎤⎦ , V =

⎡⎣ p6
p7
k2

⎤⎦
Further, M4×4 is multiplied on the left with the Vandermonde matrix Ψ6×4 and
thus product-matrix C6×4 can be generated. Each row of C6×4 denoted by ψiM
corresponds to the share ci stored on storage node vi(i = 1, 2, ..., 6).

4 Discussion

In this section, we evaluate the security property of D(n, k, d) applying our
scheme, as well as its advantages in the aspects of secure data capacity and
repair bandwidth over previous work. Then the computation cost of the proposed
solution is compared against original PM-MBR scheme.

84 J. Liu et al.

Preprocess

Data File F

1 2 7' { , ,... }S s s s

Random Symbols

h(key,)

1 2{ , }K k k

1 2 7{ , ,... }P p p p

1 2{ , }K k k

Message Matrix

1 2(,)sk h k k

1 2 3 6

2 4 5 7

3 5 1 2

6 7 2 0

p p p p
p p p p

M
p p k k
p p k

PM-MBR code

Encoding Matrix

Node v1

Node v2

Node v3

Node v4

Node v5

Node v6

Fig. 2. An example with (n, k, d) = (6, 3, 4)

4.1 Security Analysis

To prove that our presented scheme is secure against an �-eavesdropper(� < k)
in the (n, k, d)-DSS, we make use of the method appeared in [13] at first.

Lemma 1. For any CE representing the shares {ci : vi ∈ E} stored on the node
collection E(|E| = � < k) eavesdropped by the intruder, no information about
the random symbols set K is revealed, i.e., the mutual information between the
random symbols and the eavesdropped shares is zero, that is

I(K;CE) = 0 (5)

Proof. To prove Eq.(5), our scheme can be interpreted as a particular case of
the construction method in [13], where � = k − 1, E = CE , and U = K. Since
original data symbol si(i = 1, 2, ..., Ls) in S is independently, randomly and
uniformly distributed over Fq, and so is the hash value, thus p1 = s1 ⊕ h(sk)
and pi = si ⊕ h(sk, s1||s2||...||si−1)(2 ≤ i ≤ Ls, i ∈ N∗) all satisfy independent,
random and uniform distribution over Fq as well. Then the preprocessed symbols

set P = {pi}Ls

i=1 can be equivalent to the random symbols set R = {ri}Ls

i=1

denoted in previous literature[13].
Based on the above analysis, our proof proceeds in the same manner as

[13](Section II), that is, H(P |CE ,K) = 0, H(CE) ≤ Ls proved firstly, and
finally I(K;CE) = 0 can be obtained. We do not present the details here due to
lack of space.

Thus the �-eavesdropper cannot obtain any information about the set K. ��

Theorem 1. The �-eavesdropper(� < k) cannot get any “meaningful” informa-
tion of the original data symbols from CE , i.e., the mutual information between
each si(i = 1, 2, ...Ls) and eavesdropped shares set CE, that is

I(si;CE) = 0, (i = 1, 2, ..., Ls) (6)

Proof. As shown in Lemma 1, the �-eavesdropper cannot obtain any information
of the K, the mutual information between sk = h(k1, k2||...||kLr) and CE comes
to zero. This is determined by the property(3) of the function h(key, •) defined
in Definition 2. Similarly, we can get I(h(sk);CE) = 0;

Next, we will show that the mutual information between original symbol
si(i = 1, 2, ...Ls) and CE is zero. We use the inductive method here, and take

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 85

i = 1 in the beginning, s1 = p1 ⊕ h(sk), since p1 is an independent and random
variable uniformly distributed in Fq,

I(s1;CE) = I(p1 ⊕ h(sk);CE) = 0 (7)

can be obviously obtained. For i ≥ 2, assuming that I(si−1;CE) = 0, since si and
sj are independent for i �= j, and that the hash function is secure against colli-
sion(property(3) in Definition 2), thus we see that I(h(sk, s1||s2||...||si−1);CE) =
0. Finally we get that

I(si;CE) = I(pi ⊕ h(sk, s1||s2||...||si−1);CE) = 0, (2 ≤ i ≤ Ls, i ∈ (N)∗) (8)

since pi satisfies independent, random and uniformly distribution over Fq.
Thus, equation(6) can be achieved for any i ∈ [Ls], i.e., and the

D(n, k, d) applying our scheme is secure against �-eavesdropper as shown in
Definition 1. ��

In essence, notice that the input parameter of the secure hash function pi =
h(key, •) differs from each other for any i = 1, 2, ...Ls, and each element of
P = {p1, p2, ...pLs} is “encrypted” with different key(similar to one-time pad).
Thus an intruder is unable to obtain any information of each original data symbol
si without knowledge about the hash value sk(see Lemma 1), even though she
has obtained some preprocessed symbols pi(i ∈ [Ls]).

4.2 Repair-Bandwidth and Secrecy Capacity Analysis

Obviously, our scheme satisfies the MDS property(see Section 1), thus we analyze
its repair and storage performance in such scenario: an D(n, k, d) with each
storage node capacity up to α, the newcomer connects to d nodes out of the
active ones when node failure happens, thus repair-bandwidth γ = dβ. In such
scenario, user accessing any k out of n storage nodes can recover the original
data file, however, access to any � < k does not leak any information about each
original data symbol. So our proposed method can be viewed as a secret sharing
scheme.

Before the analysis, we define data rate as follows at first:

R =
Lsec

L =
Lsec∑k

i=0 min{(d− i+ 1)β, α}
(9)

where Lsec denotes the secrecy capacity of the system, and L denotes the storage
capacity of D(n, k, d) using symmetrical repair.

Firstly, we will show that our scheme is repair efficiently compared to previ-
ous secret sharing schemes. Paulo F. Oliveira et al.[5] present a coding method
and realize multi-secret sharing scheme, their schemes improved the secrecy
capacity compared to Shamir’s (k, n)-threshold scheme[16] and Bessani’s
(k, L, n)-threshold scheme[8]. As shown in Fig.3, Paulo’s scheme provides an
secrecy capacity up to the storage capacity. However, all their repair-bandwidth

86 J. Liu et al.

is so high up to the same as the Reed-Solomon coding scheme, that γ = dα =
kα. Combined with MBR code, our secret sharing scheme provides the repair-
bandwidth the same as minimum bandwidth regenerating code, that is, γ =
dβ = α, which is much lower than schemes in [5, 8, 16]. Even though both
the secrecy capacity and storage capacity of our scheme is slightly lower than
Paulo’s schemeet al.[5], as well as data rate is lower than 1, that is affordable
and allowable in practise.

Various Schemes Repair Bandwidth Secrecy Capacity
sec

Storage Capacity Secure Data Rate Security
Criterion

RS code k 0 k 0 No

MBR code 0
2
k

kd 0 No

Paulo’s Scheme [5] k k k 1 Weak

Shah's Scheme [13]
2 2
k

kd ld
2
k

kd
2

2

(2 1)1
(2 1)

d
k d k

Perfect

Ours (1)
2
k

kd d k
2
k

kd
2(1)1
(2 1)

d k
k d k Weak

Fig. 3. Comparison of repair-bandwidth and secure storage performance

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes Observed by Eavesdropper

D
at

a
R

at
e

N.B. Shah's Scheme
Our Scheme

Fig. 4. An example with (n, k, d) = (15, 10, 13)

Next we will show that our scheme provides secure storage efficient(i.e., Higher
Data Rate) guarantee relative to other similar work. [11–14] gave methods to
construct schemes providing both the regenerating property and secure storage
against eavesdroppers. But all these techniques provide perfect-security with
expense of storage capacity so high, even unbearable. Taking N.B.Shah’s work
on secure MBR [13] for example without loss of generality, the random symbols
amount to [�d−

(
�
2

)
]β need to be mixed with the original symbols, and the data

rate R = Lsec

L =
[kd−(k2)]β−[�d−(�2)]β

[kd−(k2)]β
= 1 − �2−(2d+1)�

k2−(2d+1)k decrease rapidly when

the intruder can eavesdropped more nodes for � < k. Fig.4 shows an example
for (n, k, d) = (15, 10, 13), we can see that the data rate is lower than 20%

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 87

and intolerable to us when � ≥ 7. However, our scheme achieve a higher data
rate (approximate 95% in Fig.4) and it does not vary with �(< k) when the
parameters (n, k, d) are fixed. Although this comes at the expense of reduced
security, the weak-security is enough in practical scenario.

4.3 Computation Cost Analysis

Comparing with the PM-MBR scheme[3], our solution leads to additional compu-
tation cost for the purpose of security. Taking (n, k, d) as the design parameters,
we could get the overhead of our scheme. The Preprocessing Procedure takes
O(d2) Hash operations and O(d2) Xor operations in order to obtain the set P
from the original symbol set S. The number of operations taken by the second
and third procedure is equal to that of the original PM-MBR scheme. Especially
in the Regeneration Procedure, where the Ψrev is chosen to be a Vandermonde
matrix, O(d) + O(d2) + O(d log d2) arithmetic operations are needed to repair
the failed node. The Reconstruction Procedure firstly perform the same recover
action as conventional PM-MBR and then recover original symbols, as a inverse
precess of the first procedure, step 2 of this procedure takes the same amount
of operations as the first procedure. Totally, our scheme takes 2O(d2) Hash op-
erations and 2O(d2) Xor operations more than traditional PM-MBR codes, but
this overhead is rather smaller than schemes exploit encryption mechanism.

5 Divergent Thinking

As is mentioned above, we utilize the secure hash function and PM-MBR code,
and finally achieve the weak security guarantee with the loss of data capacity
kept in a low level. As shown in Fig.3, data rate of our scheme is a constant(close
to 100%) when the parameters (n, k, d) are fixed. A natural question arises: is
it possible to achieve the storage security against �-eavesdropper without loss
of the data capacity? The answer is yes, now we briefly introduce a construct
method below. Here the AONT(All-Or-Nothing Transform) [17] T is introduced
first.
T : (X1, X2, ..., Xn) → (Y1, Y2, ..., Yn) with Xi, Yi(i = 1, 2, ..., n) drawn from

a finite field Fq. The work in [18] considers AONT and addresses unconditional
security with respect to a single block of the original message. In other words,
someone who have obtained the symbols Y1, Y2, ..., Ym is unable to invert the
transform T and recover eachXi whenm < n, if and only ifm = n the transform
is invertible, this is an important property of the AONT.

Replace the preprocessing procedure in our scheme with an AONT, and take
the original data symbols s1, s2, ..., sLs as input of the AONT, then we can get
result symbols P = {p1, p2, ..., PLs}. Next, fill the result symbols into the message
matrix M . Denoting a subset of P as P̂ , and each symbol of P̂ is placed into
the first k − 1 rows and first k − 1 columns of the symmetric matrix M , thus

|P̂ | = k(2d−k+1)

2
− (d − k + 1). Reviewing the conclusion of Lemma 1, we know

that the intruder who eavesdrops � < k nodes cannot obtain any information

88 J. Liu et al.

of the subset P \ P̂ . As a result, the eavesdropper is impossible to recover each
single original symbol si because she did not obtain all the result symbols in
P = {p1, p2, ..., pLs}, i.e., I(si;CE) = 0. Obviously, without using the random
symbols(as K in above scheme), we can also achieve a secure storage against
�-eavesdropper with Ls = L and thus R = 1, i.e., without loss of data capacity.

We must recognize the fact that the security of both the two schemes, respec-
tively utilizing secure hash function and AONT, relies on the perfect security
of K and partial elements of P (these elements are placed in the position of
massage matrix M except that in the first k−1 rows and first k−1 columns, we
denote these elements as a set Q). Thus, making full use of the set Q, we believe
that various schemes with good properties can be constructed. In the future, we
will make an intensive research in this aspect.

6 Conclusion

In this paper, we proposed an efficient scheme which provides not only data
reliability but also data security against passive �-eavesdroppers in DSS, based
on the Product-Matrix framework. To be viewed as a combination of minimum
bandwidth regeneration code with secret sharing scheme, our scheme offers more
advantages over previous work. Other than data security against eavesdrop-
per, it satisfies both the MDS property and regeneration property (the repair-
bandwidth is as low as the MBR code).

Considering the fact that similar repair efficient scheme all provide perfect
security criterion for data stored in the system, however, this criterion is too strict
to be practical, because it leads to an unaffordable loss of the storage capacity
while � get closer to k. In contrast, we adopt the weak security criterion instead,
and give a definition of “Secure DSS against an �-eavesdropper”. Utilizing a
secure hash function and Product-Matrix framework, our scheme finally achieves
a high secrecy capacity and constant data rate close to 1 with fixed (n, k, d). The
analysis result indicates that, our scheme is sufficiently secure, repair efficient,
storage efficient and suitable for practical systems.

Furthermore, another approach was introduced, which combines the All-Or-
Nothing Transform with PM-MBR code, thus achieving a secure storage against
�-eavesdropper without loss of data rate.

References

1. Dimakis, A.G., Godfrey, P.G., Wu, Y., Wainwright, M.J., Ramchandran, K.: Net-
work Coding for Distributed Storage Systems. IEEE Trans. on Information The-
ory 56, 4539–4551 (2010)

2. Suh, C., Ramchandran, K.: Exact Regeneration Codes for Distributed Storage
Repair Using Interference Alignment. In: Proc. IEEE International Symposium on
Information Theory (ISIT), Austin (2010)

3. Rashmi, K., Shah, N.B., Kumar, P.V.: Optimal Exact-regenerating Codes for Dis-
tributed Storage at the MSR and MBR Points via a Product-Matrix Construction.
IEEE Trans. on Information Theory 57(8), 5227–5239 (2011)

A Secure and Efficient Scheme for Cloud Storage against Eavesdropper 89

4. Tamo, I., Wang, Z., Bruck, J.: Zigzag Codes: MDS Array Codes with Optimal
Rebuilding. IEEE Trans. on Information Theory 59, 1597–1616 (2013)

5. Oliveira, P.F., Lima, L., Vinhoza, T.T.V., Barros, J., Médard, M.: Coding for
Trusted Storage in Untrusted Networks. IEEE Trans. on Information Forensics
and Security 7(6) (2012)

6. Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Secu-
rity Engeering. Cambridge Univ. Press, Cambridge (2011)

7. Oliveira, P.F., Lima, L., Vinhoza, T.T.V., Médard, M., Barros, J.: Trusted Storage
Over Untrusted Networks. In: Proc. IEEE Global Communications Conference
(GLOBECOM2010), Miami, FL (2010)

8. Yamamoto, H.: Secret Sharing System Using (k, l, n) Threshold Scheme. Electron-
ics and Communications in Japan (Part I: Communications) 69, 46–54 (1986)

9. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable
and Secure Storage in a Cloud-of-Clouds. In: Proc. EuroSys 2011, Salzburg, Austria
(2011)

10. Krawczyk, H.: Secret Sharing Made Short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)

11. Pawar, S., El Rouayheb, S., Ramchandran, K.: Securing Dynamic Distributed Stor-
age Systems Against Eavesdropping and Adversarial Attacks. IEEE Trans. on In-
formation Theory 57(10), 6734–6753 (2012)

12. Rawat, A.S., Koyluoglu, O.O., Silberstein, N., Vishwanath, S.: Optimal Locally
Repairable and Secure Codes for Distributed Storage Systems. In arXiv:1210.6954
(2013)

13. Shah, N.B., Rashmi, K.V., Kumar, P.V.: Information-Theoretically Secure Regen-
erating Codes for Distributed Storage. In: Proc. IEEE Global Communications
Conference, GLOBECOM (2011)

14. Kurihara, M., Kuwakado, H.: Secret sharing Schemes Based on Minimum Band-
width Regenerating Codes. In: 2012 International Symposium on Information The-
ory and its Applications (ISITA), pp. 255–259 (2012)

15. Bhattad, K., Narayanan, K.R.: Weakly Secure Network Coding. In: Proc. First
Workshop on Network Coding, Theory, and Applicat. (NetCod), Riva del Garda,
Italy (2005)

16. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
17. Rivest, R.L.: All-or-Nothing Encryption and the Package Transform. In: Biham,

E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)
18. Stinson, D.R.: Something About All or Nothing (Transforms). Designs, Codes and

Cryptography 22(2), 133–138 (2001)
19. Cui, T., Ho, T., Kliewer, J.: On Secure Network Coding Over Networks with Un-

equal Link Capacities and Restricted Wiretapping Sets. In: Proc. IEEE Interna-
tional Symposium on Information Theory, ISIT (2010)

20. Cai, N., Yeung, R.W.: Secure network coding. In: Proc. IEEE International Sym-
posium on Information Theory (ISIT), Lausanne, Switzerland (2002)

21. El Rouayheb, S., Soljanin, E., Sprintson, A.: Secure network coding for wiretap
networks of type II. IEEE Trans. on Information Theory 58(3), 1361–1371 (2012)

22. Luo, M.X., Yang, Y.X., et al.: Secure Network Coding Against Eavesdropper. Sci-
ence In China Series F-Information Sciences 40(2), 371–380 (2010)

23. Adeli, M., Liu, H.: Secure Network Coding with Minimum Overhead Based on
Hash Functions. IEEE Communications Letters 13(12), 956–958 (2009)

24. Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A Survey on Network Codes
for Distributed Storage. Proceedings of the IEEE 99(3) (2011)

Secure and Private Outsourcing

of Shape-Based Feature Extraction

Shumiao Wang1,�, Mohamed Nassar2, Mikhail Atallah1,
and Qutaibah Malluhi2

1 Computer Science Department, Purdue University, West Lafayette, USA
wang845@purdue.edu, mja@cs.purdue.edu

2 Computer Science and Engineering, Qatar University, Doha, Qatar
meb.nassar@gmail.com, qmalluhi@qu.edu.qa

Abstract. There has been much recent work on secure storage outsourc-
ing, where an organization wants to store its data at untrusted remote
cloud servers in an encrypted form, such that its own employees can query
the encrypted data usingweak devices (both computationally and storage-
wise). Or a weak client wants to outsource an expensive computational
task without revealing to the servers either the inputs or the computed
outputs. The framework requires that the bulk of the computational bur-
den of query-processing be placed on the remote servers, without revealing
to these servers anything about the data. Most of the existing work in this
area deals with non-image data that is keyword based, and the present
paper is to deal with raw image data (without any keyword annotations).
We demonstrate that shape-based image feature extraction, a particularly
computationally intensive task, can be carried out within this framework,
by presenting two schemes for doing so, and demonstrating their viability
by experimentally evaluating them. Our results can be used in a number
of practical situations. In one scenario the client has images and wants
to securely outsource shape-based feature extraction on them, in another
the server has encrypted images and the client wants a feature-extracted
representation of those that are feature-rich.

Keywords: Secure Outsourcing, Feature Extraction, Cloud Service.

1 Introduction

One of the major impediments to larger-scale use of cloud services is concern for
confidentiality of the data and the queries carried out on it. This has motivated
much of the recent work on secure storage and computational outsourcing. In
the storage outsourcing setting that interests us, a data owner wants to store its

� Portions of this work were supported by National Science Foundation Grants CPS-
1329979, CNS-0915436, CNS-0913875, Science and Technology Center CCF-0939370;
by an NPRP grant from the Qatar National Research Fund; and by sponsors of the
Center for Education and Research in Information Assurance and Security. The
statements made herein are solely the responsibility of the authors.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 90–99, 2013.
c© Springer International Publishing Switzerland 2013

Secure and Private Outsourcing of Shape-Based Feature Extraction 91

data in encrypted form at untrusted remote cloud servers, after which trusted
clients can query it using weak devices (both computationally and storage-wise)
in such a way that the bulk of the computational burden of the query-processing
is placed on the remote servers without leaking the data to the servers. The
main technical challenges are (i) how to get the untrusted servers to do the
query-processing and associated computational work without leaking the data
to them (the security issue), and (ii) how to lighten the clients’ computational
burden and lessen the number of rounds in the client-server interaction (the
efficiency issue). Many problems have been considered in previous work, for
text, numerical data, spatial data, etc (as we will review later), there has been
almost no work that deal with raw image data. The present paper addresses
the problem of secure and private outsourcing of feature extraction of image
data. Feature extraction from an image is a fundamental operation in image
processing, and has the goal of producing a reduced representation of the image
that is more computationally tractable than working with the raw image. In
shape-based feature extraction, the image is reduced to a collection of based
shapes (line segments, circles, etc) for subsequent processing, and namely, these
shapes (represented by their parameters) are a set of features of the input image.
It is a computationally expensive operation, especially for massive image data
(such as satellite images), and is therefore an ideal candidate for outsourcing. To
be specific, we are outsourcing the Hough Transform method, which is a widely
used shape-based feature extraction method in computer vision [9]. The essential
idea of this method is that parametric shapes in an image are detected by looking
for accumulation points in the parameter space (the detailed detection process
will be reviewed in Section 3). The input images are used to produce a set of
features in each by the servers, after which any trusted client can query images
at the servers for the features.

We assume honest-but-curious untrusted servers (as is done in most of the
research work in the secure outsourcing setting). And our privacy model is that
the nature of the basic shapes (line segment, circle, etc) is not hidden from
the servers, and what is confidential is the positions at which they occur and
how they fit together to form complex patterns. Two approaches based on the
Hough Transform method are proposed in this paper: the preliminary approach
is simple, easy to implement, and has good performance, while it may leak
some minor information about the input image; the second approach is provably
secure, but it needs the implementation of more expensive cryptographic tools,
such as the garbled circuit protocol [15]. The performances of the two approaches
are evaluated by experiments, that quantify their security/efficiency trade-offs.

2 Related Work

There is much previous work in the area of secure outsourcing, and we lack the
space for a comprehensive review of all the related research problems, so we give
examples of what has been achieved. Paper [14] presents an implementation of
Oblivious RAM which allows clients with limited (logarithmic) local storage to

92 S. Wang et al.

store their data on untrusted storage and retrieve it securely without leaking
either the data or the access pattern to the server. Paper [5] shows how to
securely outsource modular exponentiation with two untrusted servers. Papers
[1] and [2] deal with the problem of securely outsourcing matrix computations.

In the area of secure image processing, related work exists in outsourcing
of feature extraction in images directed towards face recognition. [11] and [13]
address the problem of comparing subject faces with a database of faces and, at
the same time, preserving the privacy of the subject faces and the confidentiality
of the database. They are based on specific algorithms to extract features from
face images, e.g, Eigenfaces. [7] works on extracting another kind of features,
namely scale-invariant feature transform (SIFT). While these contributions are
similar to ours, they are not shape-based and thus cannot be used to identify
and analyze the structural components of images.

3 Building Blocks

Hough Transform. The Hough Transform (HT) method was introduced by
P.V.C. Hough in [6]. One input to HT is a binary image with each pixel either
1 or 0, where 1 is the pixel representing data and 0 is the background pixel.
Another input is the based shape (the nature of the features to be extracted),
which can be represented using a number of parameters in cartesian coordinates.
Generally, any parameterized shape can be represented by a vector of parameters
as−→p in the equation of the form f(−→p ,−→x) = 0, where−→x is the coordinates vector
in cartesian coordinates.

Given the based shape (e.g, straight line), HT first quantizes the parameters
and initializes an array with a cell for each possible parameter vector of the
shape in the quantized parameter space (e.g, we use a two dimension array for
the ρ-θ space of straight lines, described in Table 1). In the rest of the paper,
we may use the index of a cell to represent its corresponding parameter vector.
Then for each parameter vector in the parameter space, HT counts how many
data pixels are lying on its corresponding shape instance, and records this count
in the corresponding cell in the array. This is the accumulation process, and the
resulting array is called the accumulation array or accumulation matrix. The
cells in the accumulation array with high counts, and which are local maxima,
correspond to shape instances. If a −→p ’s cell in the accumulation array is (i) a
local maximum, and (ii) greater than a pre-determined threshold value t, then
that cell is considered to be the parameter vector of an instance of the based
shape. The set of all the indexes of such cells gives all the parameter vectors of
occurrences of the based shape in the image, which are the features extracted.
Paillier’s Homomorphic Encryption. The Paillier’s Homomorphic
Encryption[12] possesses the following properties. (i) It’s a public key scheme.
(ii) It’s probabilistic. (iii) It possesses the homomorphic property that E(M1) ∗
E(M2) = E(M1 +M2) holds for any M1 and M2, where E denotes the encryp-
tion, + is modular addition, and ∗ is modular multiplication.
Gaussian Blur. Gaussian blur [4] is a technique to blur an image by a Gaussian
function. In this work, we do not use such blurring on any image, but we do use it

Secure and Private Outsourcing of Shape-Based Feature Extraction 93

on the accumulation matrix in computing the local maxima, which preserves local
maxima with high probability. A Gaussian Blurring function specifies a group
of integer weights w0, w1, . . . , w8 to compute a weighted average of a cell (with
weight w0) and its 8 neighbors (with weight w1, . . . , w8 respectively), and the
weights satisfy the constraint w0 ≥

∑m
i=1 wm. And by blurring an accumulation

matrix, we mean to compute the weighted sum of each cell and its neighbors
with the weights specified in the function as the resulting cell.
Blind and Permute. The input to the Blind and Permute (BP) protocol is
a sequence of data items S = (s1, s2, · · · , sn) whose values are component-wise
additively split between party A who has S′ = (s′1, s

′
2, · · · , s′n) and party B who

has S′′ = (s′′1 , s
′′
2 , · · · , s′′n), where si = s′i + s′′i for i = 1, · · · , n. The output is

a sequence Ŝ (also additively split between A and B) obtained from S by (i)
permuting the entries of S according to a random permutation π that is known
to neither A nor B; and (ii) modifying the additive split of the entries of S so
that neither A nor B can use their share of it to gain any information about π.
A BP protocol (adapted from [3]) is used in the our secure approach.
Garbled Circuits. Garbled Circuits, first presented by Yao in [15], is a crypto-
graphic technique for securely evaluating two-party functionalities. A two-party
functionality can be written as f(x, y) = (f1(x, y), f2(x, y)), where x and y are
the private inputs from the two parties, and after the evaluation of the function,
one party receives f1(x, y) and the other one receives f2(x, y) as the outputs.
Neither of the two parties should learn anything about the other’s input other
than what can be inferred from his own input and output. We refer to [10] for a
review of Yao’s protocol and a rigorous security proof.

4 Approaches

A preliminary approach using blurring method is provided to prevent possible
leakage of information in Section 4.1 with a provably secure approach provided
in Section 4.2. The outsourcing framework consists of four parties: the Data
Owner DO, the Clients C, the first and second cloud server S1 and S2.

4.1 A Preliminary Approach with Homomorphic Encryption and
Blurring

We first give an overview of this approach. For each image, DO specifies the
shape(s) to be based on, encrypts each pixel in the image by the homomorphic
encryption scheme whose decryption key is shared with S2, and then sends the
encrypted image to S1 for analysis. With the homomorphic property, S1 gener-
ates an encrypted accumulation array for each shape under detection without
decryption, and associates each cell in the array with its encrypted index and
some neighboring information in order to allow S2 to check whether it’s a lo-
cal maximum cell, then permutes the cells and sends them to S2. S2 decrypts
the cells by the homomorphic encryption key, finds out the local maxima after
thresholding, and stores the qualified indexes(encrypted) as the set of features.

94 S. Wang et al.

(The main challenge here is that S2 should find the local maxima without know-
ing the index information.) The scheme is described in detail in the following,
using straight line as an example of the based shape(s)to simplify the description.
Initialization. DO initializes the scheme by specifying the shape(s) to be based
on and the global parameters (e.g, the ρ-θ space) to be used by the servers. DO
generates a public and private key pair (KE ,KD) for Paillier’s homomorphic
encryption scheme, publishes the public key KE , and sends the private key KD

only to S2. DO generates a keyK for a symmetric encryption scheme (e.g. AES),
and shares it with S1 and C, which is used to encrypt the indexes of cells in the
accumulation array as mentioned in the overview. In addition, if DO wants to
hide the image id or to share more information of the images with C which are
not supposed to be seen by the servers, he generates another symmetric keyKDC

shared only to C, and uses it to encrypt the image id and other information.
Analyzing a New Image. To analyze a new image I with id and add it to
the existing database, DO encrypts its id into EKDC (id) to hide it, encrypts the
image pixel by pixel with KE , and gets an encrypted image, denoted by EKE (I).
DO sends (EKDC (id), EKE (I)) to S1.

Accumulation. In this step, S1 uses the homomorphic property of the Pallier’s
scheme, to generate the encrypted accumulation array ACC for the shape of
interest, and we only consider the straight line here. Recall that HT counts the
pixels with value 1 on a straight line for the cell in ACC corresponding to its
parameter vector. In this scheme, for every possible parameter vector in ρ-θ
space, S1 calculates the sum of every pixel value on its corresponding straight
line by multiplying the encryptions of them. After this step, the encrypted counts
for all possible parameter vectors are obtained in the matrix ACC.

Processing Local Information and Permutation. Before sending ACC to S2,
S1 should randomly permute all the cells and associate each cell ACC[i][j] with
its encrypted index EK(i, j), and provide enough information for S2 to find
the local maxima without seeing the indexes. S1 computes the gradients for
each cell in ACC before permutation and associate them with the cell, so that
S2 could check whether it is a local maximum cell after decryption. Here we
define the gradients of a cell ACC[i, j] as the difference value between it and its
neighbors, and subtractions on the plaintexts could be performed by divisions
on the ciphertexts according to the homomorphic property. In order to break
the symmetry of the gradients between two neighbors, before computing the
gradients, S1 chooses two different simplified Gaussian functions, performs the
two Gaussian blurring processes separately on ACC and gets ACC1 and ACC2

as the resulting matrices respectively. Gaussian blur preserves the local maxima
with overwhelming probability due to the heavy weight of the central cell, so
the local maxima in ACC will be preserved in ACC1 and ACC2 very likely. To
compute the gradients for each cell ACC[i][j], instead of using the exact values
from ACC and performing the subtractions, if i + j is odd, S1 uses the values
from corresponding cells of ACC1; otherwise, uses the values from ACC2. For
each cell ACC[i][j], S1 creates a tuple (EK(i, j), ACC[i, j], its Gradients), and

Secure and Private Outsourcing of Shape-Based Feature Extraction 95

permutates all the tuples in the array randomly. S1 sends all the tuples in an
array along with EKDC (id) to S2.

Detection and Storage. In this step, S2 receives the data, and for each tuple,
he decrypts the gradients and checks whether it’s a local maximum. If not, just
discard it; otherwise, he decrypts ACC[i, j] and if it’s also beyond a pre-fixed
threshold, the index is corresponding to an occurrence of the based shape. S2

saves all the qualified indexes of occurrences of the based shape detected in I,
and stores them with EKDC (id).
Querying Phase. C queries S2 with the encrypted image id EKDC (id), gets
back all the encrypted indexes of occurrences of the based shape, and decrypts
them to recover the parameters as the features of the image.

4.2 Secure Approach with Additive Splitting and Garbled Circuit

The overall idea of this approach is thatDO additively splits the image randomly
into two shares, and sends one share to S1, the other to S2, so that the two servers
can perform the accumulation process locally, and then collaborate to detect the
parameters for the occurring based shapes without seeing any information about
the original image. To add an image in this approach, instead of encrypting each
pixel by encryption as in the preliminary approach, the DO additively splits each
pixel into two secret shares: DO first chooses a modulo m, say 232, which should
be larger than any value in the accumulation array; then for each pixel value v,
DO randomly chooses v1 over [0,m−1], and splits v as v1 and v2 = v−v1 mod m.
And it can be proved that if I ′ and I ′′ are the two shares obtained by pixel-
wise additive splitting of an image I, which means I = I ′ + I ′′ mod m, then the
accumulation matrices produced by I ′ and I ′′ are a pair of additive splitting
shares of the accumulation matrix produced by I. With this property, S1 and
S2 could perform the accumulation process for I ′ and I ′′ separately without
knowing I. Then they work together to detect the local maximum cells in the
accumulation matrix of I, and which is the main challenge when designing this
scheme and will be handled later. After the detection, one server could store the
results in encrypted form and serve the clients for queries.

We first present our solution for the problem that two parties share an additive
splitting of an accumulation matrix M = M ′ +M ′′ mod m, say A has M ′ and
B has M ′′, and they want to compute the indexes of local maximum cells in M
which are also beyond a given threshold t. In this protocol, we consider local
maximum cells as those which are greater than its 8 neighbors within the radius
equal to 1, while this radius can be adjusted as discussed in Table 1, and so is
the protocol. The computation should not leak one party’s share to the other
and neither should see the result indexes.

Let M , M ′ and M ′′ be matrices of size p× q, and the size is public known to
A and B. For each cell in M ′ (resp, M ′′), A (resp, B) constructs a 3× 3 square
matrix which is the 3× 3 submatrix of M ′ (resp, M ′′) centering at this cell (for
those cells who do not have 8 neighbors, pad 0’s to make a square matrix). A
(resp, B) orders all the square matrices sequentially as a sequence S′ = s′1, · · · , s′n

96 S. Wang et al.

(resp, S′′ = s′′1 , · · · , s′′n), where s′i (resp, s
′′
i) is the square matrix corresponding

to the cell M ′[j][k] (resp, M ′′[j][k]) with j = �i/q�, k = i− q ∗ j.
Note that now A and B together have the local information for each cell to

determine whether it’s a local maximum cell in M , and both of them know the
indexes of the cells. We start with a variation of the BP protocol to allow them
to permute their sequences of square matrices with the same permutation, which
is known to neither of them but could be recovered by the clients.

Initialization. Both of A and B initialize a public homomorphic encryption
scheme, denoted by EA and DA (resp, EB and DB) in this protocol. (The de-
cryption key of B should be shared with the clients, and we will explain this
later.) We use EA(si) or DA(si) to denote encrypting/decrypting a 3× 3 square
matrix si cell by cell.

One Direction Blind and Permute.

1. A computes and sends EA(s
′
1), · · · , EA(s

′
n) to B.

2. B generates n 3 × 3 random matrices r1, · · · , rn, and for i = 1, · · · , n he
computes EA(−ri) and cell-wisely multiplies it to EA(s

′
i), thereby obtaining

EA(s
′
i − ri). B associates EB(i) to the matrix EA(s

′
i − ri) as an index field.

3. B generates a random permutation πB and applies it to the sequence of
EA(s

′
i−ri)’s computed in the previous step, obtaining a sequence of the form

EA(v
′
1), · · · , EA(v

′
n) that he sends to A. He also applies πB to the sequence

s′′1 + r1, · · · , s′′n + rn, obtaining a sequence V ′′ = v′′1 , · · · , v′′n as his new share.
4. A decrypts the n items EA(v

′
1), · · · , EA(v

′
n) received from B, obtaining the

sequence V ′ = v′1, · · · , v′n as the new share.

The Other Direction Blind and Permute. A and B repeat the one direction BP
protocol by changing their roles with their new sequences V ′ and V ′′ as inputs
instead of S′ and S′′. The result of this step is they both possess a sequence
which two together form an additive splitting of the original sequence S after
permutation πA(πB). Now each square matrix in A’s sequence is associated with
an index filed which is the encryption of its original index in S as EB(i), and
each one in B’s sequence is associated with EA(πB(i)).

Detection of Local Maxima. For each aligned pair of square matrices in their
sequence, A and B perform the garbled circuit protocol to determine (i) whether
its central cell in the original matrix M is greater than all its neighbors and (ii)
is beyond the given threshold t, and reveal the answer to party A. If it satisfies
the two conditions, A adds the encrypted index to a result set. Let s′i, held by
A, and s′′i , held by B, be a pair of aligned square matrices, which are a pair of
additive splitting shares modulo by m. Let

s′i =

⎛⎝a1 a2 a3
a4 a5 a6
a7 a8 a9

⎞⎠ , s′′i =

⎛⎝ b1 b2 b3
b4 b5 b6
b7 b8 b9

⎞⎠ . (1)

We define the functionality to check the two conditions as:

f(s′i, s
′′
i) = equal(add(a5, b5),

9
max
j=1

(add(aj , bj))) ∧ gt(add(a5, b5), t) (2)

Secure and Private Outsourcing of Shape-Based Feature Extraction 97

A and B perform a garbled circuit protocol for f on each pair of the input
square matrices, and enable A to learn the result. If the result is 1, which means
the cell of the input square matrix is a local maximum point and beyond t, A
stores the associated encrypted index for later queries. Now we are ready to
present the main scheme for outsourcing feature extraction.
Initialization. DO initializes the scheme by specifying the shape(s) to be based
on and the global parameters (e.g, the ρ-θ space) to be used by the servers. DO
generates the homomorphic key pairs for S1 and S2 to be used in the BP protocol
and shares the decryption key with the clients.
Analyzing a New Image.

1. To add a new binary image I to the database, DO additively splits it as
I = I ′ + I ′′, and shares I ′ (resp, I ′′) to S1 (resp, S2).

2. S1 (resp, S2) performs Hough accumulation on I ′ (resp, I ′′) for the based
shape specified by DO, obtaining the accumulation matrix M ′ (resp, M ′′).

3. S1 and S2 collaborate to detect the indexes (encrypted) for local maxima
in M = M ′ + M ′′ which are also beyond a threshold, using the method
described above. WLOG, assume S1 plays the role of A.

4. S1 stores the set of indexes (encrypted) of occurrences of the based shape in
the image as the extracted features.

Querying Phase. The query part of this scheme is similar to the preliminary
approach, except that the clients interact with S1 for querying, and decrypt the
results with the key of S2.
Analysis. From the view of S1 and S2, either is receiving a random image due to
the property of additive splitting secret sharing. They perform accumulation on
their own share, which gives them no more information, after that they perform
the provable secure BP protocol as used in [3], and then interact for detection
under the garbled circuit protocol, the security of which has been proved in [10].

5 Experiment

In this section we evaluate the performance of the two approaches per party
and per activity. All the parties are run on a local machine having Win-
dows OS, Intel i5 four cores 2.67 GHz CPU, 4GB memory. For secure cir-
cuit evaluation, we adopt the approach in [8] and the tool (GCParser) from
http://www.mightbeevil.com. The performance measurements included next
are only indicative.

The most important input parameters are shown in Table 1. For this experi-
ment we use the image shown in Fig. 1(a). The detected lines in Fig. 1(b) show
a good accuracy example. However, a standalone study of the accuracy of the
Hough transform is outside the scope of this paper (as it is an image processing
issue). We focus more on the trade off between the accuracy and the computa-
tional demand.

For the preliminary approach, we show the breakdown by party in Fig. 2(a)
and by activity in Fig. 2(b); and for the secure one, we show the breakdown by

http://www.mightbeevil.com

98 S. Wang et al.

Table 1. Discussion on the Input Parameters

Parameter Description

ρ-θ space size Sampling of the ρ dimension and the θ dimension. Large size
means better accuracy but is more performance demanding.

Local maximization radius Choosing a large radius may enhance the accuracy because
it helps detecting only one line for a group of line segments
that are close in the ρ-θ space.

Threshold Since the parties are agnostic of the real votes for the lines,
we can not filter a subset of the lines based on the threshold.

Fig. 1. The image used for experiments (a) and the extracted line-based features of
the image shown as the detected lines (b)

Fig. 2. Computation Break Down - First Approach by Party (a) and by Activity (b);
Second Approach by Party (c) and by Activity (d)

party in Fig. 2(c) and by activity in Fig. 2(d). The second approach runs about
50 times slower than the first approach on the same set of parameters. This
big difference is mainly caused by the secure circuit evaluation and the blind
protocols in the second approach. Note that the time taken by both approaches
are mainly dependent on the ρ-θ space size, which is the size of the ACC matrix
and independent of how complex the original image is.

For the first approach Fig. 2(a) shows that the homomorphic server carries
more load than the Hough server. This is due to the homomorphic cryptography
operations as perceived in Fig. 2(b). For the second approach Fig. 2(c) shows
that the load is distributed symmetrically between the two servers (Still the
server starting the BP protocol does less homomorphic cryptography). The main
bottleneck is the use of garbled circuits as perceived in Fig. 2(d).

Secure and Private Outsourcing of Shape-Based Feature Extraction 99

6 Conclusion

In this paper, we presented two schemes for the secure outsourcing of shape-based
feature extraction of images, one is more practical and easier to implement, while
the other is provable secure, and experimentally demonstrated their viability and
quantified their security and efficiency trade-offs.

References

1. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:
ASIACCS, pp. 48–59 (2010)

2. Atallah, M.J., Frikken, K.B., Wang, S.: Private outsourcing of matrix multiplica-
tion over closed semi-rings. In: SECRYPT, pp. 136–144 (2012)

3. Atallah, M.J., Kerschbaum, F., Du, W.: Secure private sequence comparisons. In:
Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society
(WPES 2003), pp. 39–44 (2003)

4. Ballard, D., Brown, C.: Computer Vision. Prentice Hall (1982)
5. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-

putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

6. Hough, P.: Method and means for recognizing complex patterns (1962)
7. Hsu, C.-Y., Lu, C.-S., Pei, S.-C.: Image feature extraction in encrypted domain with

privacy-preserving sift. IEEE Transactions on Image Processing 21(11), 4593–4607
(2012)

8. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

9. Leavers, V.F.: Shape Detection in Computer Vision Using the Hough Transform.
Springer-Verlag New York, Inc., Secaucus (1992)

10. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

11. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi - a system for se-
cure face identification. In: 2010 IEEE Symposium on Security and Privacy (SP),
pp. 239–254 (2010)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

13. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984,
pp. 229–244. Springer, Heidelberg (2010)

14. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 293–304. ACM, New York (2012)

15. Yao, A.C.-C.: How to generate and exchange secrets. In: SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC (1986)

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 100–112, 2013.
© Springer International Publishing Switzerland 2013

Time-Stealer: A Stealthy Threat
for Virtualization Scheduler and Its Countermeasures

Hong Rong, Ming Xian, Huimei Wang, and Jiangyong Shi

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and
Information System, National University of Defense Technology, Changsha, China

ronghong01@gmail.com, qwertmingx@tom.com,
{freshcdwhm,fangtuo90}@163.com

Abstract. Third-party Cloud Computing, Amazon’s Elastic Compute Cloud
(EC2) for instance, provides Infrastructure as a Service (IaaS) solutions that
pack multiple customer virtual machines (VMs) onto the same physical server
with hardware virtualization technology. Xen is widely used in virtualization
which charges VMs by wall clock time rather than resources consumed. Under
this model, manipulation of the scheduler vulnerability may allow theft-of-
service at the expense of other customers.

Recent research has shown that attacker’s VM can consume more CPU time
than fair share on Amazon EC2 in that Xen 3.x default Credit Scheduler’s reso-
lution was rather coarse. Although considerable changes have been made in
Xen 4.x Credit Scheduler to improve the performance in case of such stealing
attacks, we’ve found another alternative attack called Time-Stealer which can
obtain up to 96.6% CPU cycles stealthily under some circumstances on Xen-
Server6.0.2 platform by analyzing the source code thoroughly. Detection me-
thods using benchmarks as well as a series of countermeasures are proposed
and experimental results have demonstrated the effectiveness of these defense
techniques.

Keywords: Cloud Computing, Virtualization, Xen, Credit Scheduler
vulnerability.

1 Introduction

Cloud Computing provides high efficiency mainly by multiplexing multiple customer
workloads onto a single physical machine to host data and deploy software and ser-
vices. For instance, Amazon’s Elastic Compute Cloud (EC2) [1] offers this sort of
service. In other words, Cloud Computing is used to refer to a new business model
where heavy computing and software capabilities are outsourced on demand to share
third-party infrastructure, not only providing a number of advantages, such as scala-
bility, dynamic provisioning, and low cost maintenance, but also introducing a great
deal of new risks [2-4].

In virtualization which is fundamental technology of Cloud Computing, a hypervi-
sor (also called Virtual Machine Monitor, VMM) schedules and manages different

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 101

VMs. Operating system scheduler’s vulnerabilities may result in inaccurate or unfair
scheduling and such malicious behavior has been proved in the past operating sys-
tems—DoS (Denial of Service) attack on BSD4.4 [5] and similar attack more recently
on Linux 2.6 [6]. F. Zhou, et al [7-8] have demonstrated that Xen hypervisor is vul-
nerable to timing-based manipulation and a VM using their attack method can obtain
up to 98% (on lab experiments) and 85% (on modified EC2 scheduler) of total CPU
cycles despite how many VMs running on the same core. Such attacks typically take
advantage of the use of periodic sampling or a low-precision clock to measure CPU
usage. An attacking process just needs to conceal itself whenever a scheduling tick
occurs.

However, since Xen moves onto latest version Xen 4.x, a lot of improvements have
been made to ensure scheduler’s fairness, meanwhile experiments show the former
attack can’t reach its theoretic point. In spite of these changes, we discover another
attack form: Time-Stealer which turns out to be useful on some conditions. An attack-
ing VM can acquire 96.6% CPU cycles regardless of the number of VMs on the same
pinned core, breaching fairness principle once again.

This paper presents a novel analysis of what variations are made in Xen 4.x sche-
duler and Time-Stealer’s attack scheme while some conditions have to be sufficed to
guarantee its success. In terms of its stealth, a detection method without CP support is
proposed and a series of countermeasures utilizing Xen 4.x’ features are discussed
afterwards.

The rest of this paper is organized as follows: Section 2 describes details of Xen
4.x scheduling mechanism and potential vulnerabilities. Section 3 explains Time-
Stealer attack mechanism and shows experimental consequences in the lab. Next,
Section 4 illustrates our detection scheme and countermeasures. Section 5 presents
related work and we draw a conclusion in Section 6.

2 Xen 4.x Scheduling Mechanism and Vulnerabilities

In this section, we start with a brief introduction of Xen hypervisor, and then give an
analysis of how does Xen 4.x Credit Scheduler work and what improvement are made
compared with previous versions. Finally, we present a novel illustration of its poten-
tial vulnerabilities that may be exploited by malicious Cloud customers.

2.1 Xen Hypervisor

Xen is an open-source VMM, or hypervisor, for both 32- and 64-bit processor archi-
tectures. It runs as software directly on top of the bare-metal, physical hardware and
enables you to run several virtual guest operating systems on the same host computer
at the same time. The VMs are executed securely and efficiently with near-native
performance [9]. Xen hypervisor is split into two parts: A hypervisor core, which runs
directly on the physical hardware and a privileged guest Domain0 (domain means
VM in Xen) that provides device drivers. The hypervisor core is responsible for basic

102 H. Rong et al.

management functions, such as CPU scheduling, interrupt handling and memory
management. It runs with ring0 privileges, whereas DomainUs are only allowed to
run in the rings 1-3. Therefore, the hypervisor can trap all sensitive processor instruc-
tions and remains in full control of the physical machine [10-11].

Many enterprises are making tremendous investments in promoting Xen project, to
name a few: Citrix, Amazon AWS, AMD, CA technologies, Cisco, Google, Intel,
Oracle and so forth. Motivated by consolidation, reliability and security, a growing
demand of server virtualization in industry boosts Xen’s step towards Cloud Compu-
ting for its opening and excellent performance.

2.2 Inner Workings of Credit Scheduler

As with a multitasking operating system, scheduling in Xen is a tradeoff between
achieving fairness for running domains and achieving good overall throughput
[9][12]. Xen allows a VM to have one or more VCPUs (virtual CPUs) which are de-
termined to run on which PCPU (Physical CPU) by scheduler. The design and tuning
of the scheduler is one of the most important factors in keeping Xen system running
well.

On the latest versions of Xen, the Credit Scheduler is used by default [13]. Each
domain has two properties associated with it, a weight and a cap. The weight deter-
mines the share of the PCPU time that the domain gets, whereas the cap represents the
maximum. Weights are relative to each other and decide the initial credits of the
VCPU. Each VCPU’s credits ensure its runtime compared to other VCPUs. There are
five priority states in Credit Scheduler: BOOST (with positive credits, capable of
preempting other VCPU if I/O comes to achieve better I/O latency), UNDER (with
positive credits, capable of being scheduled), OVER (with negative credits and only
can be scheduled in work-conserving mode) and IDLE (represent no VCPU running).
The VCPUs marked with Priority States on a PCPU are kept in an ordered queue,
with those in BOOST state ahead of those in UNDER state and those in UNDER state
ahead of OVER state. Apart from these, BLOCKED state is another VCPU state
which means that the current VCPU is not runnable any more, probably awaiting a
timing event like I/O response with remaining credits.

The Credit Scheduler uses a fixed-size 30ms quantum. At the end of each quantum,
it recalculates all VCPU’s credits and priorities and selects a new VCPU to run from a
list of those that have not already exceeded their fair allotment. If a PCPU has no
UNDER-state VCPUs, it tries to pull some from other PCPUs. The scheduler ticks
every 10ms, subtracting 100 credits from the running VCPU and restricting the max-
imum credits.

Recently, some changes have been made to improve Credit Scheduler performance
in Xen 4.1.2, with 195 lines added in source code compared to version 3.1.2. For
both, the default weight is 256 and cap is 0. To explain how the new Credit Scheduler
behaves, we analyze the source code in detail.

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 103

Fig. 1. Xen 4.1.2 Credit Scheduling Procedures

From Fig. 1, the scheduling process can be summarized as follows: a VCPU with
adequate credits first goes to UNDER queue waiting to be scheduled; as long as it’s
on the top of the queue, it can be executed on PCPU, in the meantime its credits will
be debited every 10ms; whenever it leaves the PCPU to enter OVER queue or
BLOCKED queue, its credits corresponding to the running-time less than 10ms will
also be debited. On each 30ms interval, all VCPUs’ credits are recalculated and more
credits are added. In this way, those in OVER queue can move onto UNDER queue
and the whole process will repeat.

The most significant improvement in Xen 4.1.2 Credit Scheduler is smaller granu-
larity in credit calculating. To illustrate further, one of the core scheduler functions
called csched_schedule() in /xen/common/sched_credit.c determines the next runnable
VCPU and its duration. A primary advance is that when this function executes, the
current VCPU’s credits has to be burned regardless of whether clock ticks comes or
not, as shown in Fig. 1. This kind of design restricts effectiveness of “Cycle Stealer”
[8] which attempts to sleep before scheduler tick arrives to avoid credit deduction and
wakes up later with BOOST state to obtain more CPU cycles, because its credits are
inevitably deducted by Xen.

2.3 Potential Vulnerabilities

Although Credit Scheduler’s resolution has been increased a great deal, as we de-
scribe in the following section, this adoption still allows attacker to steal CPU cycles
under some conditions and degrade the other VMs performance because of frequent
context switches. There are three major vulnerabilities in current Xen version:

(a) Boosting Mechanism
Boosting in Xen Credit Scheduler aims to achieve better I/O latency, simply by

prioritizing VCPUs executing I/O work. When a VCPU sleeps waiting for I/O, it will
still hold its remaining credits; when it wakes with positive credits, it enters BOOST
state and may instantly preempt running VCPU with lower priorities. This mechan-
ism, however, gives attacker’s VCPU chances to deprive of other VCPUs’ execution
by deliberately sleeping first and waking afterwards.

104 H. Rong et al.

(b) Fixed Scheduling Rate
Each VCPU can run on the PCPU at most 30ms by default, which renders attacker

to recognize the exact time when csched_schedule() executes easily. Thus, it is feasi-
ble for the attacker’s VCPU to evade being scheduled away.

(c) Fixed Credit Deduction
In some cases, attacker’s VCPU may quit running just before the debit tick comes,

that is, it’ s quite unfair that the next VCPU can merely run on the PCPU for less than
(10)ε ε < ms while its credits are reduced by 100 compared to those who execute for

complete 10ms. This gives an opportunity to breach the justice and launch a Reduc-
tion of Quality Attack.

What’s more, to achieve the theft-of-service goal like Cycle Stealer, there are two
kinds of bewilderments needs to be solved: one is whether VCPU can enter
BLOCKED state; the other is whether attacker’s VCPU can be aroused apart from I/O
events.

Both problems have been perfectly resolved with help of Xen hypervisor. Firstly,
when a VM sleeps on the run, an idle process occurs in it. Under of model of paravir-
tualization, VM’s idle process is supposed to be replaced by a hypercall named
do_sched_op(), making its VCPU blocked and raising a soft-interrupt-request to Xen.
Credit Scheduler then processes the request and reschedules next VCPU. Secondly,
instead of hardware timer, VM OS (Operating System) uses a singleshot_timer pro-
vided by hypervisor to complete timing events. When VCPU is about to go to sleep
for a period, a hypercall named do_set_timer_op() is invoked to set a timer. The mo-
ment timer expires, a software interrupt is released to hypervisor. In the end, attack-
er’s VCPU is unblocked. Moreover, it will preempt current VCPU in BOOST priority
with positive credits.

3 Time-Stealer Attack

Previous work F. Zhou [8] did has already proven a successful attack that every 10ms
the scheduler tick fires and schedules the malicious VM which runs for 10 ε− ms and
then calls halt() to briefly go idle to ensure another VM will be running at the next
tick. Later, the attacker wakes in BOOST priority and preempts the current running
VM, namely, it can execute for10 ε− ms out of every 10ms tick debit cycle. On ac-
count of improvements in Xen 4.x, the former attack cannot reach up to its threaten-
ing impact. In this section, a similar attack scheme is proposed and experiments show
Time-Stealer attack is more effective than Cycle Stealer.

3.1 Time-Stealer Attack Description

Time-Stealer attack mainly relies on the fixed scheduling rate used by Xen Credit
Scheduler, not only in version 3.1.2, but also in 4.1.2 as well as newest 4.2.1, the de-
fault scheduling period is always 30ms. When this schedule tick arrives, no matter how
many credits current VCPU may have, it has no choice but to leave the PCPU while
next VCPU on the head of UNDER queue is probably scheduled at next time slice.

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 105

Since any VCPU credits are inevitably debited, attackers might as well choose to ex-
ecute on the PCPU for 30 ε− ms and then go to sleep to prevent be scheduled away as
shown in Fig. 2. After a little while, it just wakes up again to consume CPU cycles. Via
this scheme, attackers can acquire more CPU time than fair share on conditions de-
scribed as follows.

Fig. 2. Time-Stealer scheme

According to scheduling policy, attacker’s VCPU can’t wake up in BOOST state
without positive credits. Here’s a critical question: can Time-Stealer still work if its
VCPU credits are burned? The answer is affirmative. Through theoretical analysis,
the probability of attacker’s VCPU running out of credits is relatively small, whereas
in contrast, the probability of other VCPUs’ being preempted is rather large.

To illustrate, consider a simplified scenario consisting of n identical VMs on a
Xen host server. Each VM has only one VCPU and the server has m PCPU cores.
Let Ra denote the minimum periods that attack’s VCPU runs continually and let
Rn denote the maximum scheduling periods that other VCPUs executes. We assume
attacker’s VCPU runs for 29ms then sleep 1ms in every scheduling period and its
initial credits is set to be 300. As has been mentioned earlier, each active VCPU will
get 300 /m n credits every 30ms. Thus, the total credits of attacker’s VCPU within
Ra are given by:

 300 290 (300 /)Ca Ra m n Ra= − + (1)

When attacker’s credits are negative, it will wake up in OVER state; that is,
by 0Ca < , we can get Ra :

300

()
290 300 /

Ra ceil
m n

=
−

 (2)

The function “ ()ceil x ” means the smallest integer which is larger than x .

When attacker’s VCPU enters OVER queue, there are at most 1n − VCPUs ahead
waiting for execution, thus: 1Rn n= − .

As long as the attacker’s VCPU credits return to positive (300 supposed) and stays
on the top of UNDER queue, the whole process above will just repeat. Then, the
probability of attacker’s occupation of PCPU can be defined as:

106 H. Rong et al.

Rn

Pa
Rn Ra

=
+

 (3)

Normally, the fair share probability of every VCPU is supposed to be1 / n . On the
condition that 1/Pa n> , attacker’s purpose of obtaining more CPU cycles can be
achieved. Notice that this sort of attack is closely related to number of PCPUs and
VCPUs. When n m≤ , Ca will remain positive forever. Usually, this is not the case.
When n m> , for instance, 6n = , 4m = , then Pa is 32.3% greater than normal rate
16.7%. Once taking the credits loss of other VCPUs into account, this proportion will
be magnified incredibly.

3.2 Implementation and Evaluation

Our implementation of Time-Stealer attack is simple: attacker’ VM chooses to run on
one PCPU for 30 ε− ms and then invokes a systemcall—usleep() to go into
BLOCKED state, hoping to be scheduled away from the PCPU. On the next scheduler
tick, another victim VM is charged by 100 credits, and immediately the attacker’ VM
wakes up in BOOST state and preempts the victim VCPU. TSC hardware register is
applied to provide precise time sampling.

To examine the performance of our attack scenario in practice, we evaluate in Ci-
trix XenServer6.0.2 (Free) which is an enterprise-level complete virtualization plat-
form delivering uncompromised performance, scale, and flexibility at no cost [14].
XenServer allows a deployment of virtual x86 computers based on Xen hypervisor.
Time-Stealer effectiveness is testified in two ways: one tested is by a simple loop; the
other is tested by a CPU benchmark. Experiment configurations are given in Table 1.

Table 1. Experiment Setup

ITEMS CONIFGURATIONS
Type Dell PowerEdge T410
CPU Intel Xeon E5606@2.13GHz
RAM 16GB

Platform XenServer6.0.2
Kernel Xen 4.1.2

Guest OS CentOS 5.8_32bit (paravirtualized)

As our CPU has 4 cores, we intentionally separate our testing instances in order to

prevent interferences: 2 cores for test instances and the other 2 for Domain0. Eight
identical VMs are setup by Xen “VM copy” function and every VM has only one
VCPU. Note that sleep time cannot go beyond ε to make sure waking up timely,
meanwhile, ε should be as small as possible to obtain maximum stealing cycles.
However, too small ε increases the risks to be ticked by the scheduler. In the overall
tests, sleep time is set to be 0.5ms.

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 107

5 10 15 20 25 30 35 40
0

20

40

60

80

100

execute time (ms)

C
P

U
(%

)
9ms

27ms

Fig. 3. Attack performance vs. execute time

Our first test concerns about the effect of Time-Stealer execute time on CPU utili-
zation. Fig. 3 shows that there’s unstable growth of attacker’s VM CPU utilization
before 30ms execution while a dramatic drop appears at exact 30ms point, after which
the usage remains to be around 20%. This figure demonstrates our attack effective-
ness, whereas the curve reaches its top at 27ms instead of 29ms probably because of
tick timing jitter. In addition, execution of 9ms proposed in [7-8] cannot reach its
theoretical point (98%).

0 2 4 6
0

20

40

60

80

100

Number of Victims
(a) CPU Proportion

C
P

U
 (

%
)

Attacker

Victim

0 1 2 3 4 5 6 7
0

2

4

6

8
x 10

5

Number of Victims
(b) CPU Benchmark

D
hr

ys
to

ne
 t

im
e

(m
se

c)

Attacker

Victim

Fig. 4. XenServer experiments- CPU and application performance for attackers and victims

In Fig. 4 (a), we can see attacker and victim CPU utilization on two-pinned-core
scenario. As with an increase of victim VM numbers, attacker can obtain up to 96%
CPU of a single core all the time while resource contentions of other VMs are getting
worse and worse.

Fig. 4 (b) presents consequence of CPU benchmark. In this test, we modified the
source code of a famous CPU benchmark—Dhrystone 2.1, by adding Time-Stealer’s
control part that runtime interval is checked every 9,000 iterations of Dhrystone runs.
Via comparing the time the modified VM and unmodified VMs takes to complete

91.0 10× runs of Dhrystone operation, the performance of Time-Stealer can be further
testified. The touchstone measurement was achieved by a VM using unmodified
Dhrystone without CPU usage competition; it finished the total iterations in
177,105ms compared with 207,935ms recorded by mere one VM with modified
benchmark. From Fig. 4 (b), it’s quite obvious to see that time costs have a steady

108 H. Rong et al.

growth with growth of victim VMs while attacker’s time keeps rather low and stable;
in the severest situation; the cost of victim VMs is 3 times higher than attacker’s.

4 Time-Stealer Detection and Mitigation Measures

The theft-of-service attack on Credit Scheduler mainly takes advantage of BOOST
mechanism and fixed scheduler timing. It’s rather easy and feasible to launch a simi-
lar attack on Xen 3.x platform proven by earlier work [7-8]. Due to more changes has
been made to Xen scheduler, especially, right before attacker’s VCPU chooses to
sleep, its credits will be subtracted even if credit tick does not arrive yet. In this sec-
tion, we propose some countermeasures to detect and mitigate Time-Stealer attack.

4.1 Detection Measures

Generally, it’s a little bit difficult to detect Time-Stealer attack, since it has no colla-
teral effect except for performance degradation like lowering CPU usage as well as
cache polluting because of frequent context switches. If users of victim VMs paid
more attention to their CPU utilization and time gap of finishing the same job, theft-
of-service evidences would be collected to detect attacker’s existence.

For our detection method, we take Dhrystone CPU benchmark as our detection
tool. Support from CP is not basically required. Specifically, it involves continual
surveillance on benchmark data and judgment on whether a turning point might come.
Assume that iT means the time Dhrystone takes in i th round; aveT shown in (4) is

the average time tested many times starting from the very beginning of purchasing
service from CP like Amazon EC2; currT shown in (5) is the average time tested re-

cently (m n). Note that the quantity of samples should be large enough to be
precise.

1

(1/)
i m

ave ii
T m T

=

=
= (4)

1

(1/)
i n

curr ii
T n T

=

=
= (5)

| |curr aveT T δ− < (6)

(6) can be used as a judgment formula where (0)δ δ > is the judgment factor set by

VM owner’s before the test. There might be Time-Stealer attack if the time difference
were larger than δ .

In our experiments, we also apply more simple strategy that it’s more efficient to
detect abnormity by observation of VM CPU usage under CPU-bound workloads like
Dhrystone. Generally, CPU-bound workloads consume a large proportion of CPU
(82% on average through various tests) while only 2~3% under Time-Stealer attack
cases. This can be considered as an alert that attacks like Time-Stealer may exist, but

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 109

more accurate judgments and forensics require longer observations using the method
we mentioned earlier.

4.2 Mitigation Measures

A. Be Careful to Pin
In the experimental scenario, pinning method is exploited on purpose of excluding the
interferences of Domain0. However, we find that results can be various with different
CPU affinity. Fig. 4 presents a test VMs sharing 2 cores and Fig. 5 shows CPU usage
under 3 different conditions. From Fig. 5 (a), it can be concluded that Time-Stealer
attack has no obvious effect under No-CPU-Affinity condition since they experience
the same drop as with the growing number of VMs. From Fig. 5 (b), we can see that
on 3 cores condition, attacker still occupies more CPU cycles though its plot drops
when the number of VM increases. From Fig. 5 (c), the competition seems worse for
victim VCPUs than (a) and (b), because the total CPU resources is restricted to one
PCPU, however, this does not affect attacker’s VCPU much. Obviously, CPU affinity
does have some relations with Time-Stealer performance. A primary reason for this is
that affinity restricts VCPU floating among the cores, offering a good chance for
launching the attack, whereas in no affinity case, each PCPU’s queue constantly
changes and load can be balanced among all cores.

0 2 4 6
0

20

40

60

80

100

Number of Victims
(a) No CPU Affinity

C
P

U
(%

)

0 2 4 6
0

20

40

60

80

100

Number of Victims
(b) Share 3 Cores

C
P

U
(%

)

0 2 4 6
0

20

40

60

80

100

Number of Victims
(c) Share 1 Core

C
P

U
(%

)

Attacker

Victim

Fig. 5. Attack performance vs. CPU affinity

B. Take Care of Default Parameters
As Xen has made a great deal of improvement in VCPU scheduling, we should make
the most of it to secure customer’s VM. For example, Xen 4.1 provides a feature
called cpupools, which allows users to divide PCPU into distinct groups [15]. Each
pool has its entirely separate scheduler, which can protect our CPU cycles from be
stolen by attackers from other cpupools.

In Xen 4.2, parameters like Schedule Rate Limiting (ratelimit_us) and Timeslice
(tslice_ms) were added for easier control and customization. “ratelimit_us” is used to
restrict the schedule rate to ensure the minimum amount of time which a VM is al-
lowed to run without being preempted [15]. The default value is 1000 (that is, 1ms).
This kind of parameter helps a lot to constrain Time-Stealer activities which depends
on BOOST priority.

110 H. Rong et al.

“tslice_ms” is Credit Scheduler timing period which is fixed at 30ms for the
Xen4.1.2 Credit Scheduler. Remember that our attack scheme relies a lot on this fixed
period. If this parameter can be changed, it’ll take much longer before attackers find
the real Timeslice. However, since its default setup is 30ms, we’d better not to use the
default parameter.

5 Related Work

A lot of security analyses have been conducted on the traditional operating system
scheduler; meanwhile, proof of concepts of timing attack were not received enough
focus until recently. McCanne and Torek [5] showed the timing attack on BSD4.4 and
created a uniform randomized sampling clock to estimate CPU utilization. Effective-
ness of a similar attack on the Linux 2.6 scheduler has been proven by Tsafrir [6],
which brought about receiving higher priority without consumption of CPU.

As I/O performance comes as a bottleneck for most hypervisors, researchers dedi-
cate great efforts on improving I/O [16-20]. Most of them handle the problems like
long-term fairness between various VMs such as CPU-bound, I/O bound, but mali-
cious VM’s activities are not taken into consideration. Recently, hypervisor security is
attached a great importance [21]. Hosting many VMs onto one physical server brings
various security threats to Cloud Computing, such as performance isolation violation
[22-29], scheduler timing attacks [7-8], and side-channel attacks [30-31]. Several
projects have demonstrated side-channel attacks through the shared LLC that can be
used to extract information from co-resident VMs.

6 Conclusion

Scheduling processes in hypervisors like Xen, VMware ESXi, KVM play a signifi-
cant role in multiplexing VMs as well as ensuring the fair share of CPU resources,
which should be considered carefully in commercial services like Cloud Computing.
Owing to vulnerabilities of schedulers, ordinary customers couldn’t get the service
they paid for if CPU cycles were stolen by a co-resident malicious VM.

We have demonstrated that this vulnerability still exists on the platform of Xen-
Server6.0.2. Under our test scenario, a malicious VM using Time-Stealer scheme
obtained up to 96.6% cycles of a PCPU regardless of competitions from other VMs
and effects were more obvious with modified Dhrystone CPU benchmark. In addition,
a feasible method to detect Time-Stealer existence without support of CP is proposed.
Finally, we further illustrate that this kind of attack can be mitigated if proper confi-
gurations are made like changing the default parameters.

References

1. Amazon Elastic Compute Cloud, EC2 (2013), http://aws.amazon.com/ec2/
2. Vaughan-Nichols, S.J.: Virtualization Sparks Security Concerns. IEEE Computer Socie-

ty 41, 13–15 (2008)

 Time-Stealer: A Stealthy Threat for Virtualization Scheduler and Its Countermeasures 111

3. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My Cloud:
Exploring Information Leakage in Third-Party Computer Clouds. In: ACM CCS,
pp. 199–212 (2009)

4. Tanzim Khorshed, M., Shawkat Ali, A.B.M., et al.: A Survey on Gaps, Threat Remedia-
tion Challenges and Some Thoughts for Proactive Attack Detection in Cloud Computing.
In: Future Generation Computer System, vol. 28, pp. 833–851 (2012)

5. McCanne, S., Torek, C.: A Randomized Sampling Clock for Cpu Utilization Estimation
and Code Profiling. In: USENIX, pp. 387–394 (1993)

6. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Secretly Monopolizing the CPU without Superuser
Privileges. In: The 16th USENIX Security Symposium, pp. 239–256 (2007)

7. Zhou, F., Goel, M., Desnoyers, P.: Scheduler Vulnerabilities and Coordinated Attacks in
Cloud Computing. In: IEEE International Symposium on Network Computing and Appli-
cations, pp. 123–130 (2011)

8. Zhou, F., Goel, M., Desnoyers, P.: Scheduler Vulnerabilities and Attacks in Cloud Compu-
ting. In: Distributed, Parallel, and Cluster Computing, pp. 1–23 (2011)

9. Williams, D.E., Garcia, J.: Virtualization with Xen, pp. 43–91. Syngress Publishing (2007)
10. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the Art of Virtualization. In: ACM

SOSP, pp. 164–177 (2003)
11. Jaeger, D., Krentz, K.-F., Richly, M.: Xen Episode IV: The Guests still Strike Back. In:

Cloud Computing Security Summer Term, pp. 1–15 (2011)
12. Chisnall, D.: The Definitive Guide to the Xen Hypervisor, pp. 217–223. Prentice Hall PTR

(2007)
13. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the Three CPU Schedulers in Xen.

SIGMETERICS Performance Evaluation Reviews, 42–51 (2007)
14. Citix, Inc.: Citrix XenServer 6.0 Administrator’s Guide. 1.1 Edition (2012)
15. Credit Scheduler (2013), http://wiki.xensource.com
16. Kim, H., Lim, H., Jeong, J., Jo, H., et al.: Task-aware Virtual Machine Scheduling for I/O

Performance. In: ACM VEE, pp. 101–110 (2009)
17. Govindan, S., Nath, A., Das, A., Urgaonkar, B., Sivasubramaniam, A.: Xen and Co.:

Communication-aware Cpu Scheduling for Consolidated Xen-based Hosting Platforms. In:
ACM VEE, pp. 126–136 (2007)

18. Ongaro, D., Cox, A.L., Rixner, S.: Scheduling I/O in a Virtual Machine Monitor. In: ACM
VEE, pp. 1–10 (2008)

19. Weng, C., Wang, Z., Li, M., et al.: The Hybrid Scheduling Framework for Virtual Ma-
chine Systems. In: ACM VEE, pp. 111–120 (2009)

20. Gulati, A., Merchant, A., Varma, P.J.: Mclock: Handling Throughput Variability for
Hypervisor IO Scheduling. In: OSDI, pp. 1–7. USENIX, CA (2010)

21. Luo, S., Lin, Z., Chen, X., et al.: Virtualization Security for Cloud Computing Service. In:
International Conference on CSC, pp. 174–179. CSC, Hong Kong (2011)

22. Bhadauria, M., McKee, S.A.: An Approach to Resource-aware Co-scheduling for CMPs.
In: ICS, pp.189-199. ACM (2010)

23. Merkel, A., Stoess, J., Bellosa, F.: Resource-conscious Scheduling for Efficiency on Mul-
ticore Processors. In: EuroSys, pp. 153–166. ACM (2010)

24. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing Shared Resource Contention in
Multicore Processors via Scheduling. In: ASPLOS, pp. 129–142. ACM (2010)

25. Raj, H., Nathuji, R., Singh, A., England, P.: Resource Management for Isolation Enhanced
Cloud Services. In: CCSW, pp. 77–84. ACM, Chicago (2009)

26. Shieh, A., Kandula, S., Greenberg, A., Kim, C.: Seawall: Performance Isolation for Cloud
Datacenter Networks. In: HotCloud, p. 1. USENIX (2010)

112 H. Rong et al.

27. Verghese, B., Gupta, A., Rosenbum, M.: Performance Isolation: Sharing and Isolation in
Share-memory Multiprocessors. In: ASPLOS, pp. 181–192. ACM (1998)

28. Cardenas, C., Boppana, R.V.: Detection and Mitigation of Performance Attacks in Multi-
tenant Cloud Computing. In: ICACON (2012)

29. Varadarajan, V., Kooburat, T., et al.: Resource-Freeing Attacks: Improve Your Cloud Per-
formance (at Your Neighber’s Expense). In: ACM CCS, pp. 281–292 (2012)

30. Xu, Y.J., Bailey, M., Jahanjan, F., Joshi, K., Hiltunen, M., Schlichting, R.: An Exploration
of L2 Cache Covert Channels in Virtualized Environments. In: CCSW, pp. 29–40. ACM,
Chicago (2011)

31. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency Detection in the
Cloud via Side-channel Analysis. In: Security and Privacy IEEE Symposium, Berkeley,
CA, pp. 313–328 (2011)

Detecting Malicious Co-resident Virtual

Machines Indulging in Load-Based Attacks

Smitha Sundareswaran and Anna C. Squcciarini

College of Information Sciences and Technology
Pennsylvania State University
University Park, PA 16802

Abstract. Virtualization provides many benefits for Cloud environ-
ments, as it helps users obtain dedicated environments abstracted from
the physical layer. However, it also introduces new vulnerabilities to the
Cloud such as making it possible for malicious VMs to mount cross-VM
attacks through cache based side channels. In this paper, we investigate
load-based measurement attacks born specifically as a result of the vir-
tualization in Cloud systems. We develop a framework to identify these
attacks based on the observation that the events taking place during
the attacks lead to an identifiable sequence of exceptions. We test the
accuracy of our framework using the Microsoft Azure infrastructure.

1 Introduction

Cloud computing provides great benefits to the consumers through effective and
efficient services in the form of infrastructure, platform, and software. These
types of services are offered by all leading Cloud Computing Service Providers
(CSPs), including Microsoft Azure, Amazon EC2, and Rackspace [1, 3, 15]. The
advantages of such a service model are exemplified in the reduced operational
costs, and efficient resource allocation and usage.

To date, security issues have remained the biggest thorns in the full blown
adoption of these services [6,8,19]. Most of the current and recent work on Cloud
computing security focuses on ensuring the privacy of general outsourcing tech-
niques (e.g. [20]). Furthermore, recently there has been a interest in attacks
which particularly target the weaknesses of the Cloud Computing architecture’s
general design [5, 10], particularly due to the use of virtualization [8, 9]. Virtu-
alization of computing resources is a prominent feature of the Cloud providers,
regardless of the type of service being offered (i.e. infrastructure, platform, and
software). However, virtualization also produces unique side-channels for attacks,
which cannot be controlled by usual information flow procedures. The virtual
machines (VMs) may be malicious themselves [22] or the VMs’ image may be
compromised [23]. Precisely, recent work [2,16,25] found that Cloud systems leak
information about location of the Cloud instances, letting attackers collocate an
instance with another specific instance. Thus, if an attacker can cause a victim’s
Cloud instance to leak information covertly, and if covert channels with sufficient
bandwidth exist, unauthorized leakage might be possible.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 113–124, 2013.
c© Springer International Publishing Switzerland 2013

114 S. Sundareswaran and A.C. Squcciarini

In this paper, we focus on load-based measurement attacks, which are covert
side-channel attacks born specifically as a result of the virtualization in Cloud
systems [16]. In general, a covert channel attack is an attack which takes place
when two entities or processes communicate with each other via channels that
are hidden and therefore not subject to the general access control techniques.
These channels can be formed by relying on time-based operations [2], such as
opening and closing a file at a certain time, or can rely on techniques such as
port knocking [24]. In the context of Clouds, these attacks are based on shared
physical resources, such as the physical host’s cache to create a side-channel in
VMs that are otherwise segregated. Attacks based on covert-channels not only
exploit co-residence, but also cover the basic requisites of identifying a particular
VM, instantiating a VM co-resident with the VM of interest, and communicating
data about the VM of interest. Other attacks, such as the VM conflicts arising
due to competitors sharing a physical host described in [17], and the adversarial
VMs presented in [25] are extensions on the same theme.

We design our attack detection framework based on empirical observations on
the attacks patterns and behavior. We observe that by identifying the patterns of
exceptions, and whether the number of exceptions in a given time period crosses
a carefully crafted threshold, one can identify on-going attacks, and with further
analysis, zoom in on the types of attacks being carried out. Our solution therefore
relies on extracting and detecting event-based patterns, where the events are
comprised of exceptions, and on establishing a baseline frequency for the total
number of events occurring in an allotted time.

We test our system’s accuracy using Windows’ Azure architecture, where we
co-host multiple VMs. We show our achieved accuracy even in increasing noise
of busy VMs, which have a large number of active programs and tasks.

The paper is organized as follows. We discuss the related work in Section 2.
Our threat model is discussed in Section 3. Section 4 describes the attacks we
handle. The design of our framework is described in Section 5. Experimental
results are discussed in Section 6. Finally, we conclude in Section 7.

2 Related Work

Since Ristenpart’s seminal work [16], there has been a lot of interest in side-
channel attacks. Accordingly, many have introduced new extensions of the orig-
inal attacks and tackled some of them, or their variations [7, 11–13,17, 25].

Cleemput [7] discusses compiler based mitigations for timing attacks. Simi-
lar to the approach discussed in this paper, the authors solution uses compiler
instructions to look for attacks, in as much that some exceptions are issued by
the compiler. The authors’ proposed solution however does not consider VMs or
co-resident systems, instead it focuses on loss of cryptographic secrets by tim-
ing attacks. A possible solution to load-measurement attacks is offered by Sun
et al. [11], who consider the load sharing between co-resident virtual machines
in a Cloud. They observe that two co-resident VMs may pose a “threat” to
each other due to a need for common resources, which may enable each to learn

Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 115

secrets of the others. Kong et al [12] suggests a combination of hardware and
software approaches to provide a solution to side-channel attacks. While they
do not consider VMs or Clouds in particular, they propose using a special set of
Load instructions that inform the software when the load-misses in the cache. As
we show in the next sections, although all similar to our work in their intention,
existing approaches are vastly different from ours. We are similar to Sun’s work
in terms of objective, but their primary focus is on conflict resolution through
negotiation, rather than on detection. Kong’s proposal also shares some similar-
ities with our work, i.e. it seeks to eliminate cache based interferences, but yet
differs vastly. Our idea is to exploit existing instructions as signals of an attack
as opposed to Kong’s approach, that is based on forming new ones.

A variation on this theme is offered by Choi and colleagues [4]. The authors
discuss an authentication scheme which may be used for Cloud Computing sys-
tems. An authentication scheme of this kind is useful in providing the attacker
with an identity, but it does nothing to prevent such attacks, and is therefore
complementary to the scheme proposed in our work. In addition, side-channel
analysis has been often used to mitigate problems due to co-residency, such as
competitive organizations’ VMs being co-resident or high loads on shared phys-
ical resources [13, 17, 25]. Also related to our methodology is work on software
component thefts [21] from Wang. Wang and colleagues exploit the notion of
dependencies among system calls to detect various attacks. We do not analyze
system calls’ dependencies in our approach, so as to focus on the events which
lead to the system calls.

3 Threat Model

Our architecture is built to identify the attacks launched between tenants of co-
existing VMs. We assume that all the VMs are compatible on a physical level,
and they may run any applications intended by the tenant. The provider and
its infrastructure are assumed to be trusted. That is, we do not consider attacks
that rely on subversion of the Cloud’s administrative functions. This in turn
means that we trust any software that is run on the physical machines or the
VMs that the Cloud hosts. Our threat model considers non-insider adversaries,
who manage to get a VM hosted on the same physical machine as their victim’s
by chance or intentionally [16, 17]. We assume that a malicious party can run
and control many instances in the Cloud, simply by leasing the required storage
space. The targeted victims are tenants who run confidential services in the
Cloud. Any data leakage, including data about the usage of the VMs, can breach
the confidentiality of the victim. From the victims’ point of view, the co-existing
VMs on the physical machine could be benign, or malicious by attempting to
find information about other co-existing VMs through the cache-based side-
channel. Although a tenant can trust that his VM is not willfully malicious, the
attacker can manipulate all shared physical resources at his own gain. Shared
resources include CPU caches, branch target buffers, and network queues. By
properly controlling and observing information gathered from these resources,

116 S. Sundareswaran and A.C. Squcciarini

information may be leaked unwittingly to the attacker. In particular, we focus
on load-based co-residence detection as this type of attack is a common and
well-know example of network probing attacks.

Notice that our model is a generalization of the threats discussed in the sem-
inal works [16, 17], which discussed the load-variation attacks tackled in this
work. In our threat model, however, we do not require an existing VM to have
a conflict with a newly migrated VM, for the existing VM to be malicious (as
in [17]). Further, different from [16], we do not differentiate between attackers
who are interested in simply attacking any known hosted service, and attackers
interested in attacking a particular victim service. Due to these differences, we
no longer can depend on shared services to point out possible conflicts.

4 Covert Attacks

4.1 Attack Description

Load-based attacks require two steps: placement and extraction. Placement
refers to the attacker placing their malicious VMs on the same physical machine
as that of a victim. Extraction refers to extracting confidential information via
a cross-VM attack using side-channels. Cross-VM information leakage is due to
the sharing of physical resources (e.g., the CPU’s data caches). In this work,
we focus on extraction, assuming placement is given. A malicious VM can de-
tect co-residence in many ways [16]. When the attacker has some knowledge of
computational load variation on the target instance, no network-based detection
techniques are needed. The attacker can actively cause load variation due to a
publicly-accessible service running on the target (for example, HTTP, POP3 or
FTP services). Publicly-accessible services are not suspect for an intrusion de-
tection system as they normally are not access restricted. Hence, any accesses or
measurements on these public services often remain unnoticed. In our work, we
consider the existence of such publicly-accessible services as the primary condi-
tion for an attack. The attacker may also be able to detect co-residence without
resorting to actively creating any load variations if he has a priori information
about some relatively unique load variation on the target. For example, knowing
that a certain website experiences heavy traffic from 9 am to 5 pm, and in the
remaining time, no traffic or negligible traffic is experienced on a daily basis can
provide useful a priori information for the attacker. In this case, based on the
time of the day, an attacker can detect the co-residence of a VM by identify-
ing the physical hosts which experience a similar load variation. The difficulty
(or ease) of detection would be based on the comprehensiveness of the apriori
information.

One of the best known ways for accurate measurement of cache usage is based
on three main functions: prime, probe and trigger [16]. Priming consists of
reading a contiguous buffer B of size b. The buffer B is located on the CPU cache
of the physical host. b is large enough that a significant portion of one of the
lower level caches (L1, L2 or L3) on the physical host is filled by the contents of
buffer B. The buffer B is read in s-byte offsets where s is the size of the cache.

Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 117

The next step of load measurement is trigger, which is busy looping. Busy
looping is a technique in which a process repeatedly checks if a condition is true.
The attacking VM busy loops until the CPU counter cycle jumps by a large
value, so that is allows enough time for the processes of the other VMs to run.
Thus, the cache is filled by data accessed by the victims. The final step is probing,
which consists of reading B again at s-byte offsets. When carrying out the probe
by reading b/s memory locations of B, the attacker uses a pseudorandom order,
and the pointer-chasing technique described in [18], as using the pseudorandom
order prevents the CPU’s hardware prefetcher from hiding the access latency.
The time of the final step’s read gives the load sample, where the load sample
is measured in number of CPU cycles.

Identifying whether or not a VM is co-located prepares the ground for the
attacker to mount more intrusive attacks, such as colluding with a rogue program
on the co-resident VM even if other channels of communications are stopped.
Further, knowing that a specific VM is co-resident allows the attacker to find
some meta data about the owner of the VM: an attacker can correlate the service
hosted on the VM with the name of a company running the service. This not
only tells the attacker the victim’s preferred Cloud provider, it also allows her
to identify the regions in which the victim is running certain services.

4.2 Preliminary Evaluation

In order to gauge a better understanding of the attacks’ dynamics, we recreated
the scenario required for co-residence detection. The testbed consisted of 5 Win-
dows Server 2008R2 SP1 based VMs 1, where each of the VMs had their TCP
ports 80 enabled to allow HTTP services. Out of these 5 VMs, 3 of them were
simply bystanders used to create noise. One of the VMs functioned as the at-
tacker VM, while another was the victim VM. The victim additionally hosted an
Apache Tomcat application server, with a single webpage. Because load-based
detection can occur in many ways, we executed the attacks under various set-
tings. First, to detect whether two VMs were co-resident, we created a high load
on one of the VMs (the target VM) using the LoadUI tool [14]. LoadUI is a util-
ity commonly used for load testing, and is being used to to simulate the attacker
VM in a systematic and rigorous fashion. The attacker VM collected 100 load
samples on a public HTML page of size 10KB both during the load variation
and when the load variation was not done. It tracked the variation in size of
the load samples: if the target and the attacker VM were co-resident the load
samples taken during the load induced by the LoadUI tool were larger.

To communicate with a co-resident VM (assuming all other communication
channels are closed), we rely on the simple cache-covert channel attack wherein
the attacker sending the message idles while transmitting “0”, but frantically
access the memory to transmit “1”. The receiver checks the latencies by collecting
a load sample or accessing a memory block of his own. While communicating

1 We ensured that the VMs were co-resident by checking their PhysicalHostName
through their registry keys.

118 S. Sundareswaran and A.C. Squcciarini

with a rogue program can be done simply by using load variations, where a high
load indicates a “1” and a low load indicates a “0”, a noisy channel can reduce
the efficiency of this method of transmission. To overcome the effects of noise,
the rogue program needs to be able to cause a sufficiently high load to be “heard”
over the channel by the colluding attacker. Empirically, we can see that a load
spike above 100000 CPU cycles is necessary for a clear co-residence detection.
Further, a process generally crashes when the process has a utilization of 67%-
70%. Our systems crashed upon reaching 8100000 CPU cycles, when channel
noise was created by loading 3 other VMs. The noise was measured by taking
load samples from the cache at any one of these VMs. So long as the load spike
of over 100000 CPU cycles can be achieved without crashing the loaded process,
the simple method of load variations to transmit a message works well.

In case of a high probability of crash due to noisy channels, the use of the
prime+probe+trigger method is preferable. To test the detection of co-residence
on a noisy channel, we simulated a channel with high noise by having 5 co-
resident VMs, out of which one was the attacker VM, and one was the victim,
while the others were just meant to create noise. We had the co-resident VMs
performing I/O operations, while the attacker VM measured took 100 load sam-
ples on a public HTML pages varying in size from 1Kb to 10 KB over a period of
time varying from 12 seconds (for the 1KB page) to 120 seconds (for the 10KB
pages). The measurements were then paused for a period of 30 sec. after which
they were repeated while simultaneously making numerous HTTP get requests
from a third system to the target. The attack was successful in that the malicious
VM was able to detect the co-residence when the HTTP requests were made.

These initial tests provided us with insights on the scope and effectiveness of
each of these attacks. We observed that there is always a pre-set sequence of
events that yields to an attack. All the events are observable from the physical
host in the form of exceptions.

5 Design of Co-residency Attack Detector

Our initial experiments confirmed that each attack instance incur into a notable
load increase accompanied by a given pattern of system calls and exceptions.
Accordingly, our solution consists of few main steps: (1) collection of system
calls occurring at the physical host, and the exceptions which may be specific to
the attacks, to (a) identify the VM causing the exception, and the process that
spawned the exception, and (b) identify whether conditions sufficient for the
attack exist, and (2) processing of these exceptions to detect the load-variation
attacks discussed in Section 4. Each of the steps is associated with a logic module,
which we refer to as Observer and Defender, in what follows. The Observer
and Defender are implemented as part of a trusted VM.

5.1 Observer

The Observer component is designed to dynamically collect metrics indicative of
suspicious load variations. We specifically focus on tracking network processes,

Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 119

VICTIM
VM

ATTACKING
VM

VMVM

HTTP Req.

System Calls and Events

System Calls and Events

System Calls
 Events

 PING

 PING

 PING

 PING

OBSERVER

DEFENDER

<syscalls, pids, VMs>

VM

Fig. 1. System Design

their CPU loads and spawned system calls. Hence, the Observer has three main
tasks: (1) extract systems calls and interrupts of monitored processes, (2) map
the identified system calls and interrupts to specific programs from the specific
VMs which generated them, and (3) determine whether the conditions necessary
for an attack to be carried out co-exist. In order to extract and map the system
calls, the Observer spawns multiple tracing threads, instantiated by means of
debugging tools, such as Linux strace and WinGB in Windows.

To quantify the necessary conditions for an attack, the Observer uses some
baseline system metrics on CPU utilization by processes observed in absence of
attacks, as well as the expected number of system calls experienced by any given
process. Specifically, a training phase is performed first, during which processes
are monitored under minimum activity for over 72 hours (or more), such that
each process activity remains lower than 1%. We observe the number of system
calls per second for each process, denoted as SysCPID

t , with PID denoting a
specific process. Obviously, the base number of system calls per second is unique
to each process. Nevertheless, we observed the following pattern. Given a process
PID, let SysCt be the base rate per second, and let CPU UT its percentage of
CPU utilization.

AV GPID
t =

{
SysCt + 0.02 ∗ SysCt if CPU UT < 20%
SysCt + (SysCt ∗ 2(CPU UT−0.2)/5)CPU UT

5
if CPU UT>20%

(1)
The above equation indicates that a general 2% rate increase exists when the

process activity increases up to 20%. Above 20% CPU utilization, the rate starts
exponentially increasing, for each 5% increase in process activity. When the num-
ber of system calls increases exponentially, the monitoring becomes exponentially
difficult too. Based on the above, we determine CPU utilization threshold, de-
noted as τ , which ranges from 10% to 20% for a given process. τ denotes the

120 S. Sundareswaran and A.C. Squcciarini

point to start the monitoring and is chosen so that the attack cannot be hidden
in the explosion of system calls. In addition, the system calls generated by each
process are then averaged over a time interval T according to Equation 1, to
AV GPID

T . The gathered data is stored with the trusted VM where the observer
is hosted.

Upon gathering sufficient training data on all possible network processes trig-
gered by the VMs, the Observer labels as suspicious each process PID if (a) the
CPU activity is above a given threshold τ , and (b) PID is a network process.
Specifically, with respect to (b), upon crossing the τ CPU threshold activity, the
Observer checks the event logs which are downloaded from the monitored VM
to the trusted VM hosting the Observer and Defender, to identify if a particular
external host or a group of hosts has been trying to ping or otherwise activate
the process. If the increase in activity is indeed caused by external systems, the
Observer alerts the Defender to check for possible attack patterns.

5.2 Defender

Once it receives the IDs of the VMs, the corresponding suspected processes
and the exceptions from the Observer, the Defender starts searching for attack-
specific patterns. It specifically starts monitoring for patterns if the network
processes reach a high load due to network events, per the information obtained
from the Observer. Each pattern consists of a particular sequence of exceptions,
wherein both the type of exceptions observed, their order, as well as the frequency
of particular system calls within the sequence matter. Of course, system calls may
be suppressed by a sophisticated attacker at the originating VM. Hence, before
searching for such patterns the Defender completes a sanity check, by verifying
whether the observed AV GPID

T
over a normalized time interval T matches the

correspondingAV GPID
T

stored in the system during training, per each suspicious
PID. If no system calls are suspected suppressed, the pattern search starts.
Otherwise, the process halts and a suspicious activity is detected.

As discussed in Section 4, load-variation attacks can be carried out in mul-
tiple ways, all of which result in different patterns of system calls. Due to this
“polymorphic” nature of load-variation attacks a single approach may not suit
all the possible ways according to which the load-variation is measured. There-
fore, similar to an intrusion detection system, it is possible to implement various
pattern recognition methods or security policies, zeroing-in the different forms
of these attacks. We provide the discussion of two sample patterns that can
be detected. The selected examples are representative of (1) the load-variation
technique which requires the least effort from the attacker end, and (2) the most
well-known load variation, based on prime, probe and trigger.
Load Variations by simple HTTP requests The Defender checks for patterns that
involve socket creation, connection acceptance and socket deletion. These calls
include sys accept (Accepts 3-way TCP handshake), sys poll (waits for http
request), and sys read (reads payload). sys socketcall is often seen during
various stages of a socket based connection as it supports a number of sub-
commands to create, open and close the socket. sys accept and sys poll are

Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 121

0 120

nmap/virtualloc read write

PRIME TRIGGER

rdtsc read

PROBE

Fig. 2. Typical pattern of a Probe, Prime, Trigger Load-based attack

seen early on during the socket creation stage. In case of an attack, these calls
are repeated multiple times in quick succession within a short time period due
to the large number of sockets created for causing a load variation. In particu-
lar, the larger the number of sockets created in a given time unit (roughly 120
seconds), the greater the chance of an attack.
Probe-Prime-Trigger Method The Defender uses the mapping provided by the
Observer to identify the suspicious exceptions generated in the prime, probe
or trigger phases of load measurement. The pattern followed by load-based at-
tacks includes a combination of system calls and interrupts generated during
load measurement. Precisely, mmap for Linux, virtualloc for Windows, read(),
write(), malloc and rdtsc are used. No additional interrupts or system calls
are needed. When load measurement is being carried out, these exceptions occur
continuously over a time period of 90 to 120 seconds depending on the attack
duration: the mmap call or the virtualloc, followed by the read(), and then
the write() occur repeatedly (the sequence occurs over 5 to 10 times due to re-
peated priming) during the first half, followed by a long gap after which another
rdtsc calls occur to signal the trigger. The rdtsc is then followed by repeated
read() to signal the probe phase. This pattern is shown in Fig. 2

Note that the challenge of pattern detection lies in the fact that these system
calls generated in any variant of the attacks occur during normal operations of
the VM also. The detection of some variants, such as the one using prime probe
and trigger is more accurate (see Section 6) because the attacker has to carry out
these steps within a set time and in a given order, generating a more recognizable
pattern, than say just HTTP (or FTP or POP3) requests. While HTTP requests
occur every day, the probability of seeing the steps of prime probe and trigger
in the wild are lesser than seeing a HTTP request.

6 Experimental Evaluation

In this Section we discuss the tests performed to validate our framework’s ac-
curacy, and scalability. The tests were performed on Azure’s infrastructure [3].
The testbed includes 5 Windows Servers, and is described in Section 4.2. One
of server implemented the Observer and Defender, and is assumed trusted. The
main goal of evaluation on Azure was to ascertain the detection accuracy during
an attack in a noisy channel. The channel noise was varied roughly in steps of
about 50000 CPU cycles (it is not possible to accurately control the noise level)

122 S. Sundareswaran and A.C. Squcciarini

from 200000 to 900000 cycles. Channel noise was created by loading 3 out of
the 5 co-hosted VMs. The noise was measured by taking load samples from the
cache at any one of these 3 VMs.

First, we conducted two experiments: The first set of experiments was aimed at
detecting the accuracy of co-residence detection using the simple load-variation
technique. Channel noise was generated by the 3 co-hosted VMs by running
multiple subsequent programs on each VM. In the first 346 ms in CPU time,
the VMs execute in parallel a program which performed route finding algorithm,
so as to cause excessive file reads and writes. In the following 346 ms of CPU
time, in each of the 3 VMs, using LoadUI we simulate 100 users’ activities on
a 10KB Web page. Finally, both the route algorithm and the LOADUI users
activities were executed for the remaining 346 ms/CPU. We varied the thresh-
old of detection τ from 20% to 10%. For each set threshold, we increased the
channel noise as described above. In all of our experiments, we had no false pos-
itives, but rather had a decreasing number of false negatives as we decreased the
threshold. Precisely, with τ set at 20% and 18%, we reported 5 false negatives
when then channel noise was higher than 620000 CPU cycles. Henceforth, the
overall accuracy was low, only 58%. With τ set at 16% and 14% the accuracy
increased to 66.7%. Our best results are obtained when τ = 10%, wherein 83.3%
accuracy was achieved.

The second set of experiments used the prime+probe+trigger to carry out the
load variations. The same experimental settings were used. As for the experiment
above, we tested various detection thresholds, from 20% to 10%. The overall
accuracy is consistently higher than the simple load variation attack, for all
cases. Accuracy ranges from 66.7% for τ = 20% to over 90% (for τ = 10%).
All of the errors were false negative, and reported when the noise was 670000
or above. The only false negative reported with τ = 10% was experienced when
the channel was at its highest, above 880000. The improvement in detection
accuracy occurs due to the unique pattern of system calls that occurs during the
prime, probe and trigger phases (see Figure 2).

We then executed a final experiment wherein we tested how sensitive our
mechanism is to high volume of noise, and whether and to what extent this
can lead to false positives. The final test was conducted on a similar set up
as the other two tests, except this time there was no attacking VM. We had
three executions: in one run the load variations were caused using LoadUI, in
the second run they were caused using the route planning algorithm, and in
the third run either the LoadUI or the route planning algorithm were used.
The load was again varied from 2000000 to 8800000 over an average of 346 ms
in CPU cycles. τ was varied too, between 10% and 20%. Results are reported
in Table 1. We notice that the higher τ , the lower the rate of false positives.
Intuitively, this is explained as one of the VMs causes a load variation, meeting
one of the conditions for a probable attack earlier in case of a low threshold.
Therefore, there is always a tradeoff between the number of false positive and
false negatives, and the percentage above minimum must be decided according
to which is more tolerable.

Detecting Malicious Co-resident VMs Indulging in Load-Based Attacks 123

Table 1. Deceptive loads: load variation was divided amongst all the 4 co-resident
VMs. 1 denotes a correct true negative, 0 denotes a false positive.

CPU/Threshold 20% 18% 16% 14 % 12% 10%

200,000 1 1 1 1 1 1

230,000 1 1 1 1 1 1

300,000 1 1 1 1 1 1

340,000 1 1 1 1 1 1

420,000 1 1 1 1 1 1

480,000 1 1 1 1 1 1

520,000 1 1 1 1 1 1

570,000 1 1 1 1 1 1

620,000 1 1 1 1 1 1

670,000 1 1 1 0 0 0

740,000 1 1 0 0 0 0

790,000 0 0 0 0 0 0

840,000 0 0 0 0 0 0

7 Conclusion

In this paper, we studied covert side-channel attacks that arise as a consequence
of virtualization in Cloud systems. We proposed a framework to identify load-
based attacks according to our analysis of system calls generated by the attacker
and the victim. Our evaluation, conducted on a real Cloud testbed, demonstrates
the accuracy of our approach. We plan to extend our architecture to extract more
probing patterns, and additional polymorphic forms of existing attacks.

Acknowledgement. The work from Squicciarini was partly funded under the
auspices of the National Science Foundation Project # 1250319.

References

1. Amazon Web Services, http://aws.amazon.com/

2. Aviram, A., Hu, S., Ford, B., Gummadi, R.: Determinating timing channels in
compute clouds. In: Proceedings of the 2010 ACM Workshop on Cloud Computing
Security Workshop, CCSW 2010, pp. 103–108. ACM (2010)

3. Chappell, D.: Windows Azure (2009),
http://www.microsoft.com/windowsazure/resources/

4. Choi, T., Acharya, H.B., Gouda, M.G.: Is that you? Authentication in a network
without identities. Int. J. Secur. Netw. 6(4), 181–190 (2011)

5. Christodorescu, M., Sailer, R., Schales, D.L., Sgandurra, D., Zamboni, D.: Cloud
security is not (just) virtualization security: a short paper. In: Proceedings of the
2009 ACM Workshop on Cloud Computing Security, pp. 97–102. ACM (2009)

6. Cisco. Cloud Security: Choosing the right email security deployment (2010)

7. Cleemput, J.V., Coppens, B., De Sutter, B.: Compiler mitigations for time attacks
on modern x86 processors. ACM Trans. Archit. Code Optim. 23, 1–23 (2012)

http://aws.amazon.com/
http://www.microsoft.com/windowsazure/resources/

124 S. Sundareswaran and A.C. Squcciarini

8. Cochrane, N.: Security experts ponder the cost of cloud computing (2010),
http://www.itnews.com.au/news/174941,security-experts-ponder-

the-cost-of-cloud-computing.aspx

9. Hay, B., Nance, K., Bishop, M.: Storm clouds rising: Security challenges for iaas
cloud computing. In: Hawaii International Conference on System Sciences, pp. 1–7
(2011)

10. Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud security issues. In: IEEE Inter-
national Conference on Services Computing, pp. 517–520 (2009)

11. Kong, J., Aciicmez, O., Seifert, J.-P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: Proceedings of the 2nd
ACM Workshop on Computer Security Architectures, pp. 25–34. ACM (2008)

12. Kong, J., Aciicmez, O., Seifert, J.-P., Zhou, H.: Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In: High
Performance Computer Architecture, pp. 393–404. IEEE (February 2009)

13. Okamura, K., Oyama, Y.: Load-based covert channels between xen virtual ma-
chines. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
2010, pp. 173–180. ACM (2010)

14. Ole: loadui: A uniquely cool approach to interactive distributed load testing. In:
DevoXX - The Java Community Conference (2010)

15. Rackspace, http://www.rackspace.com/
16. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

17. Sun, P., Shen, Q., Chen, Y., Wu, Z., Zhang, C., Ruan, A., Gu, L.: Poster: LBMS:
load balancing based on multilateral security in cloud. In: Proc. of the 18th ACM
Conference on Computer and Communications Security, pp. 861–864. ACM (2011)

18. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on aes, and counter-
measures. J. Cryptol. 23(2), 37–71 (2010)

19. VanTil, S.: Study on cloud computing security: Managing firewall risks (2011),
http://resource.onlinetech.com/study-on-cloud-computing-security-

managing-firewall-risks/

20. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: ESORICS, pp. 355–370
(2009)

21. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Behavior based software theft detection.
In: Proceedings of the 16th ACM Conference on Computer and Communications
security, CCS 2009, pp. 280–290. ACM (2009)

22. Wang, Y., Wei, J.: Viaf: Verification-based integrity assurance framework for
mapreduce. In: Proc. of the 2011 IEEE 4th International Conference on Cloud
Computing, CLOUD 2011, pp. 300–307. IEEE Computer Society (2011)

23. Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of vir-
tual machine images in a cloud environment. In: Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, CCSW 2009, pp. 91–96. ACM (2009)

24. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermea-
sures in computer network protocols. Commun. Surveys Tuts. 9(3), 44–57 (2007)

25. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection
in the cloud via side-channel analysis. In: Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP 2011, pp. 313–328. IEEE Computer Society (2011)

http://www.itnews.com.au/news/174941,security-experts-ponder-the-cost-of-cloud-computing.aspx
http://www.itnews.com.au/news/174941,security-experts-ponder-the-cost-of-cloud-computing.aspx
http://www.rackspace.com/
http://resource.onlinetech.com/study-on-cloud-computing-security-managing-firewall-risks/
http://resource.onlinetech.com/study-on-cloud-computing-security-managing-firewall-risks/

A Covert Channel Using Event Channel State

on Xen Hypervisor�

Qingni Shen1,2,��, Mian Wan1,2, Zhuangzhuang Zhang1,2, Zhi Zhang1,2,
Sihan Qing1,2,3, and Zhonghai Wu1,2

1 School of Software and Microelectronics, Peking University, Beijing 102600, China
2 MoE Key Lab of Network and Software Assurance, Peking University,

Beijing 100871, China
3 Institue of Software, Chinese Academy of Sciences, Beijing 100190, China

qingnishen@ss.pku.edu.cn

Abstract. Covert channel between virtual machines is one of serious
threats to cloud computing, since it will break the isolation of guest OSs.
Even if a lot of work has been done to resist covert channels, new covert
channels still emerge in various manners. In this paper, we introduce
event channel mechanism in detail. Then we develop a covert channel
called CCECS(Covert Channel using Event Channel State) and imple-
ment it on Xen hypervisor. Finally we quantitatively evaluate CCECS
and discuss the possible mitigation methods. Results show that it can
achieve larger bit rate than most existing covert channels.

Keywords: Covert Channel, Virtualization, Event Channel.

1 Introduction

Thanks to the resource sharing, both cloud computing and virtualization give the
users an illusion of “occupying resources independently”.Nevertheless, resource
sharing is a double-edged sword. It makes virtualization have a inherent feature -
multitenancy, placing multiple virtual machines(VM) of distinct customers upon
the same physical hardware. Therefore, the privacy and security of customers’
information may be compromised[1]. Isolation, one important function of virtu-
alization, is designed to eliminate this kind of threat. Due to isolation, a VM
cannot access the resources of others. Even if a VM is exploited or manipulated
by an attacker, it will not affect the other VMs within the same host.

However, this isolation has been proved not strong enough(e.g. covert and side
channels)[2]. Covert Channel[3] is a mechanism that is not intended to transfer
sensitive message, violating security policies specified by system . Covert channel
is actively sending data, while side channel[4] is passively observing information.
At present, several covert channels have been discovered, but the mediums they
used are not the same.
� This work is supported by National Natural Science Foundation of China
(No. 61232005, 61073156, 61170282).

�� Corresponding author.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 125–134, 2013.
c© Springer International Publishing Switzerland 2013

126 Q. Shen et al.

Ristenpart et al. [5] first exposed cloud computing to covert channel attacks.
They had implemented an L2 cache covert channel in Amazon EC2. The bit
rate of it was just 0.2 bps(bit-per-second), a mere fraction above the minimum
standard of 0.1 bps [3]. Xu et al. [6] refined the communication model of L2 Cache
Covert Channel and the channel arrived at considerably higher bandwidth(3.20
bps) in EC2. On the basis of previous work, Wu et al. [7] redesigned the data
transmission scheme and exploited the memory bus as medium. At last, their
new covert channel achieved a transmission rate of 107 plus or minius 39 bps in
EC2, and 700bps in house. Except for covert channels using CPU cache, there
were some other covert channels using other resource(such as CPU load [8], core
alternation [9], sharing memory [10],[11], mfn2pfn table [12], network [13]) as
medium. None of the covert channel above had considered event channel as a
vehicle. In fact, the channel via event channel states is feasible and even more
dangerous than most of the covert channels in virtualized environment.

In this paper, we analyze the event channel mechanism in Xen and develop a
reliable covert channel to transfer information between two virtual machines. We
verify the feasibility and effectiveness of the covert channel using event channel
state(CCECS) for data leakage through a set of experiments. The bandwidth
can achieve about 13Kbps. Then we discuss the method to mitigate the threat.

2 Background

Xen is an open-source VMM(Virtual Machine Monitor), also called hypervi-
sor [14], that widely used in the cloud computing industry. For example, Ama-
zon’s EC2 (Elastic Compute Cloud)[15] adopts Xen as its virtualization tech-
nology. It is a software layer that sits between the host hardware and the
VMs(Virtual Machine). It partitions hardware resources and offers them to the
VM as virtual resource. Aside from that, it also controls access to I/O devices.

In Xen, VMs is also called domains. When Xen boots, it first create a spe-
cial domain called Dom0, which has elevated privileges. It helps Xen to create,
destroy, configure, migrate, save and restore VMs, and controls VM’s access to
I/O devices.

DomU, VMs created by Dom0, is more restrictive. Since Xen is a kind of par-
avirtualization, DomU cannot perform any privileged operations. For instance,
instead of accessing the devices directly, DomU has to transmit device request
through the front-end driver to the back-end driver in Dom0. Then Dom0 access
the real devices as an agent. Unlike Dom0, users can have an arbitrary number
of domU guests.

As a hypervisor, Xen has to track and control the running situation of each
domain. And in some cases such as migration, communication between domains
is necessary. Xen hypervisor offers 3 communication mechanisms. They are hy-
percall, sharing memory and event channel. Since our channel uses event channel,
thus we will just introduce event channel mechanism in next section.

A Covert Channel Using Event Channel State on Xen Hypervisor 127

2.1 Event Channel Mechanism in Xen

Event channel is an asynchronous notifications mechanism within Xen. Event
channels cooperate with ring buffers in shared memory pages to accomplish the
message transmission between the front and back ends of split device drivers.
In Xen, events are notifications that are delivered from hypervisor to domains,
or between domains. Each event’s content is one bit of information that indi-
cates its occurrence. Events can divide into 4 categories: physical IRQ, virtual
IRQ(VIRQ), interprocessor interrupts(IPIs), interdomain events. Physical IRQ
is used for the communicating with hardware. Guest in Dom0 or domain that is
authorized to access device will set up physical IRQs to event channel mapping
for diverse devices. Because of its paravirtualization, this is done by a hypercall
instead of BIOS calls. Virtual IRQs resemble physical IRQs, but are related to
virtual devices. Interdomain events involve two domains and include two stages.
First, Domain A allocates a new event channel(port) as an unbound channel and
grants Domain B with the permission to bind to it. Then, Domain B allocates
a new channel and binds it to the remote domain(Domain A)’s port. When the
connection is built, either domain can send an event to the local port. Moreover,
the connection is duplex. The fourth kind of events, the interprocessor inter-
rupts, are equivalent to intradomain events. It can be viewed as a special case
of interdomain events where both local and remote domain are the same one. It
can be used to communicate between vCPUs in the same guest.

In Xen, every domain can own its own event channels. when a event channel
is allocated, a port is used to identify the channel. Besides port, a event channel
has some other attributes, mainly including the state and other variables related
to certain state. All the possible states of event channels is listed in Table 1.

Table 1. States and Statuses of Event Channels

State Constant Status Constant Comments

ECS FREE EVTCHNSTAT closed Not in use now

ECS RESERVED EVTCHNSTAT closed Not in use now

ECS UNBOUND EVTCHNSTAT unbound Waiting inter-dom connect

ECS INTERDOMAIN EVTCHNSTAT interdomain Connected to a remote Dom

ECS PIRQ EVTCHNSTAT pirq Bound to a physical IRQ

ECS VIRQ EVTCHNSTAT virq Bound to a virtual IRQ

ECS IPI EVTCHNSTAT ipi Bound for IPC

Like other operations of event channels, building interdomain event channels
is done by calling the hypercall HYPERVISOR event channel op. When DomA
wants to communicate with DomB, DomB initially acquires an unbound event
channel by calling the operation ”EVTCHNOP alloc unbound” in the hypercall.
During the allocating, its state is set as ECS UNBOUND. And its port is stored in
XenStore where DomA can consult. Besides, the channel creator specifies which
domain is authorized to bind to it. Next, DomA will also obtain an allocated

128 Q. Shen et al.

channel. After that, DomA accesses XenStore and retrieves the port number,
then binds itself by calling the operation ”EVTCHNOP bind interdomain” in the
hypercall. Then the two event channels will constitute a duplex connection. If
Dom A wants to send events to Dom B, it will just send them to local event chan-
nel. Both channels’ state changes to ECS INTERDOMAIN. Either of the channels
has remote dom and remote port attributes pointing to each other.

As long as interdomain communication is complete, either domain can close
its own event channel. Specifically, DomA decides to close its channel by calling
the operation ”EVTCHNOP close” in the hypercall. During the closing process,
DomB’s event channel’s state restores as ECS UNBOUND. Moreover, DomA’s state
alters as ECS FREE. The state change of event channel during a connection life
cycle between DomA and DomB is described in figure 1.

Fig. 1. State Change of Event Channel during Connection Life Cycle

During the use of event channels, it might be necessary to retrieve the state of
them. However, the state variable cannot be accessed by guests directly. Guests
have to inquire the status by calling the operation ”EVTCHNOP status” in the
hypercall. From Table 1, we can see the differences between state and status.

3 Covert Channel Using Event Channel State

3.1 Threat Scenario

In a host of cloud environment where Xen is installed, any domain may store
some sensitive information such as the user’s password and identity informa-
tion. We assume that an attacker is capable of injecting a spyware such as
Trojan into the guest in a domain. According to the isolation between domains,
other domains do not have the ability to access it or eavesdrop it. Thus, the
user or the VMM administrator usually adopts network traffic monitoring soft-
ware that monitor how the data stream transmit, specific-configured firewall or
IDS(Intrusion Detection Systems) that inspect the data packets transport in the
network, VPN(Virtual Private Network)that encrypts the data, to prevent data
leakage. Since the presence of these facilities, the spyware could not send the sen-
sitive data through Internet. Once there is abnormal data stream sent to outside,
the VMM administrator will notice or receive an alert. However, we find that
there is still a special information transmission path the attacker can make use
of. In our scenario, this domain owns sensitive information is called Sender Do-
main. Like the normal users, the spyware owner can rent(having not controlled

A Covert Channel Using Event Channel State on Xen Hypervisor 129

Dom0) or create(having controlled Dom0) a domain beside the Sender Domain
on the same hypervisor, that is to say, co-resident with the Sender Domain. We
presume the co-residence is always possible[16]. In most cases, Receiver Domain
is controlled by the attacker, so it doesn’t enable the additional facilities like
Sender Domain. The spyware in Sender Domain sends user’s private or secret
information to an unrecognized covert channel(e.g. CCECS, covert channel using
event channel state), through which a program in Receiver Domain can acquire
the data and send it to the attacker’s host through Internet.

3.2 A New Kind of Covert Channel

Fig. 2. Structure of CCECS

As depicted in Figure 2, the new CCECS(Covert Channel using Event Channel
State) is different from duplex interdomain event channel(see section 2.2).

According to the event channel mechanism mentioned above, the sender pro-
cess runs a spyware program in the sender domain which can read the sensitive
information that attackers are interested in. But the receiver process in the re-
ceiver domain of the attacker is not granted to share the secrets, though the
event channel is permitted between guests. In order to construct the CCECS,
the sender process would send sensitive information by building or closing in-
terdomain event channel connection to local end of the connection, which will
change the state of local end. Meanwhile, the receiving end of the connection
could change its state synchronously. So the receiver process could acquire the se-
crets by recognizing the changes of the local end’s state(see figure 1).This covert
channel exists between guests independently of the domain(dom0 or domU).

3.3 Request Hypercall from DomU

In most cases, OS kernel runs in Ring 1 can use the hypercall services directly.
However, the guest application running in Ring 3 may need to request hypercalls.

130 Q. Shen et al.

Fortunately, Xen kernel offers a privileged command driver /proc/xen/privcmd1

to invoke hypercalls. Applications in user space can request hypercalls by calling
ioctl function with necessary parameters. Thus, it is feasible for process in DomU
to operate event channels.

3.4 Communication Protocol

In this section, we describe the communication protocol of CCECS. The sender
and the receiver need to act in a synchronized manner. Therefore, both processes
must synchronize the timing of communication before sending bit-streams. When
an interdomain connection is constituted by calling hypercall, both end’s state is
ECS INTERDOMAIN. When one end closes, remote end is set to ECS UNBOUND and
its own state is ECS FREE. After analyzing the source code of Xen, we know that
the state-setting instructions are separated by a few lines of instructions. Thus,
in terms of the powerful computing capability of host CPUs, the time interval is
so short that it is negligible. Once the sender end’s state changes, the receiver’s
alters correspondingly. We can see the process in Figure 3.

Fig. 3. Communication Protocol of CCECS

Initial Synchronization Phase. In Figure 3, the initial synchronization phase
shows our timing setting for the sender and receiver. Because building interdo-
main event channel is done by hypercall, so it takes longer time than normal
function calls, which execution time is about 1s. Empirically, we let the re-
ceiver dectect its own state every ns(e.g. 3s) to ensure that the synchroniza-
tion request from the sender is always not missed. And we let the sender wait
(n+1)s(e.g. 4s) before sending data to ensure enough time to switch receiver’s
console to the process of receiving data. During the phase, it includes three
operations in order: First, the receiver domain should request an event chan-
nel and let the sender domain be its remote end, and then its initial state is

1 The driver have been re-engineered as /dev/xen/privcmd since the Linux 3.3 was
released.

A Covert Channel Using Event Channel State on Xen Hypervisor 131

ECS UNBOUND,that is the EVTCHNSTAT unbound for the process in the end. Sec-
ond, the sender should request a event channel for the interdomain connec-
tion with the remote end of receiver domain. When the new event channel is
allocated, it will retrieve the remote port number and bind itself to the local
port. Once the binding is finished, both end’s state becomes ECS INTERDOMAIN,
that is the EVTCHNSTAT interdomain for the processes in both ends. Third, the
receiver would check whether the state of its local event channel is EVTCHNSTAT
interdomain. If that is the case, it indicates both ends share the same timing
of the following operations and the transimission phase starts out.

Transmission Phase. After synchronization, the sender and receiver enter the
communication phase, in which they communicate 8n(n ≥ 1) bits informa-
tion. To stimulate the common situation, the transmission includes file opera-
tions. Apart from that, to be flexible, we let both entities share a value T(T
μs is configured by an attacker, we test some minimal value of T in section
4). The protocol require a short timespan to convey one bit. The timespan is
determined by how long some state of event channel lasts. As long as the lo-
cal end does the operation EVTCHOP close(or EVTCHOP bind interdomain) of
HYPERVISOR event channel op succesfully, it means the sender has sent the bit
data ’1’(or ’0’). Meanwhile, if sending bit ’0’, the sender suspends its process
for 1.5T μs, which is more than 1 time but less than 2 times of T. Otherwise,
if sending bit ’1’, the sender suspends its process for 3.5T μs, which is more
than 3 times but less than 4 times of T. We let the receiver measure the state of
local event channel every T μs. If the detected times is 1(supposing the previous
state has emerged) or 2 for the ”EVTCHNSTAT interdomain” state, it receives
bit ’0’. If the detected times is 3 or 4 for the ”EVTCHNSTAT UNBOUND” state, it
receives bit ’1’. Thus, during the transmission phase, no extra waiting time or
synchronization time is needed between two bit-sending.

To observe the transmission result more directly, we collects the bits and
combine them into text printed on the console. Thus, when the sender finishes
the transmission of one byte, we let it suspend 5.5T μs, which is more than 5
time but less than 6 times of T. Afterwards the receiver will detect one state
more than 4 times. If the condition is met, the receiver will print the 1 byte data.

End Phase. When communication of all bits finishes, the sender simply stops
changing the state of the event channel without doing extra operations. Con-
sidering recycling the event channel resources, if the channel is not closed, the
sender closes the channel and last the state for 7.5T. Afterward, the receiver
will detect the state more than 6 times. And they end the data communication.
After that, if both entities try to communicate more information, they have to
resume from the initial synchronization phase.

4 Evaluation

Our experimental platform is a HP Compaq 8100 Elite CMT PC with an Intel
Core i7-870 running at 2.93 GHz and We use Xen version 4.1.1 as the base

132 Q. Shen et al.

hypervisor. The domain0 in Xen’s terminology runs 32-bit Ubuntu 12.04.2 Linux
and the two guest domains(DomUs) that make use of the covert channel run
para-virtualized 32-bit Ubuntu 12.04.2. Xen assigns two virtual CPUs and 512
MB RAM to each guest VM while domain0 owns four virtual CPUs and 2048
RAM. Every domain uses the kernel 3.5.0-23.

And we conduct the experiments based on the CCECS ommunication protocol
mentioned above. There are 1023 Byte secret data stored as a file in the sending
end. Our first test target is to show that if the choice of T changes, the receiving
end could always get these information at very high bit rate. That is to say, we
will test if minimal T exists. Our second test target is to show that if the usage
of vCPU changes, the minimal T will increase and the maximal transmission
rate will decrease.

First, to get to know the minimal value of T at the error rate less than 5%, we
tested the value of T from 100-20000μs in 100μs intervals. Second, we developed
a small tool to simulate different execution environment with different usage of
vCPU. This tool will run two processes in each DomU to occupy their vCPUs,
each process binding itself to one vCPU in the local DomU using CPU affinity.
Considering the existed preempted core scheduling algorithm, we also assign each
process the highest priority to run in the individual vCPU and then keep them
staying on the core as long as possible. With the help of this tool, we simulate
the usage of vCPUs from 0%-100% and test the minimal T and maximal bit
rate.

Fig. 4. Maximal Bit Rate and Minimal T at Different Usage Rate of vCPU

The execution results with the error bit rate limited to 5% are shown in
figure 4. From 4, we can see that the minimal value of T is directly proportional
to vCPU usage. When the vCPU usage is about 0%, the T should not be smaller
than 800 μs. But when the usage is about 100%, the T should not be smaller
than 17200 μs. Correspondingly, the average bit rates is inversely proportional
to vCPU usage. When the vCPU usage is about 0%, the average rate is up to
13201bps, and when the usage is about 100%, the rate is also about 887bps.

A Covert Channel Using Event Channel State on Xen Hypervisor 133

As a result, if the T is not smaller than the minimal T, two guests could
always share large information using CCECS even though the vCPU is busy.

5 Discussion

Since the exclusiveness of interdomain event channels, the accuracy rate is steadily
high if the minimal T is adequate. To lower the danger of the covert channel, two
possible solutions are discussed here. First, adding security checks to the opera-
tions of creating, binding, closing and quering event channels between domains. As
we know, if the XSM(Xen SecurityModule) is enabled in Xen hypervisorte[14] and
the restriction policy is adequately enforced, this covert channel can be controlled
to some extent. The second solution is to reset all event channels randomly in each
domain. This will affect the time of state change and state query in CCECS, and
thus the accuracy of bits transimission will be decreased.

Furthermore, intradomain threat scenario using CCECS may exist when two
processes running in the same domain. In this case, the guest OS does not
permit them to communication with each other because of the mandatory policy
enforced in the operating system. But if the Xen hypervisor does not restrict the
event channel between them, the CCECS communication between them may
happen and will result in the data leakage from one process to another process.
We had evaluated the bit rate also, which is also very high but obviously lower
than the interdomain scenario. This is because the interferences between two
processes in the same domain is more often than those in the different domains.

6 Conclusion and Future Work

In this paper, we first demonstrate the danger of existing covert channels. Then
we introduce the event channel mechanisms of Xen. After that, we design a
protocol for CCECS(Covert Channel using Event Channel State) and implement
it on Xen hypervisor. Then we do a series of experiments to evaluate CCECS,
which can arrive at average 13210bps with error rate less than 5%. Additionally,
the state event channels is only impacted by either end of the channel, so the
channel is high noise-tolerant. In a word, CCECS is a perilous threat to Xen, its
bit rate is larger than most existing covert channel till now.

Our future job is mainly to do some experiments in Amazon EC2 and check
if the CCECS still works in the real world. The second aspect is to optimize the
transmission scheme because there may be new encoding method to improve the
transmission rate of CCECS. The third aspect is to analyze some new commu-
nication method introduced in Xen’s latest release(e.g. Xen4.3), check if some
other factors will downgrade the threat of CCECS.

References

1. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security?
Technical report, UCB/EECS-2010-5, EECS Department, University of California,
Berkeley (2010)

134 Q. Shen et al.

2. Reuben, J.S.: A survey on virtual machine security. In: Security of the End Hosts
on the Internet, Seminar on Network Security Autumn 2007. Helsinki University
of Technology Telecommunications Software and Multimedia Laboratory (2007)

3. U. D. of Defense: Trusted Computing System Evaluation Criteria. DoD 5200.28-
STD, Washington (1985)

4. Wang, Z., Lee, R.B.: Covert and Side Channels Due to Processor Architecture.
In: Proceedings of the 22nd Annual Computer Security Applications Conference,
Washington, pp. 473–482 (2006)

5. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, New York,
pp. 199–212 (2009)

6. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An ex-
ploration of L2 cache covert channels in virtualized environments. In: Proceedings
of the 3rd ACM Workshop on Cloud Computing Security Workshop, New York,
pp. 29–40 (2011)

7. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-speed covert channel
attacks in the cloud. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Berkeley, p. 9 (2012)

8. Okamura, K., Oyama, Y.: Load-based covert channels between Xen virtual ma-
chines. In: Proceedings of the 2010 ACM Symposium on Applied Computing, New
York, pp. 173–180 (2010)

9. Li, Y., Shen, Q., Zhang, C., Sun, P., Chen, Y., Qing, S.: A Covert Channel Us-
ing Core Alternation. In: Proceedings of the 2012 26th International Conference
on Advanced Information Networking and Applications Workshops, Washington,
pp. 324–328 (2012)

10. Wu, J., Ding, L., Wang, Y., Han, W.: Identification and Evaluation of Sharing
Memory Covert Timing Channel in Xen Virtual Machines. In: Proceedings of
the 2011 IEEE 4th International Conference on Cloud Computing, Washington,
pp. 283–291 (2011)

11. Xiao, J., Xu, Z., Huang, H., Wang, H.: POSTER: A covert channel construction
in a virtualized environment. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, New York, pp. 1040–1042 (2012)

12. Salaün, M.: Practical overview of a xen covert channel. J. Comput. Virol. 6,
317–328 (2010)

13. Ranjith, P., Priya, C., Shalini, K.: On covert channels between virtual machines.
J. Comput. Virol. 8, 85–97 (2012)

14. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield., A.: Xen and the art of virtualization. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, New York,
pp. 164–177 (2003)

15. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
16. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection

in the cloud via side-channel analysis. In: Proceedings of the 2011 IEEE Symposium
on Security and Privacy, Washington, pp. 313–328 (2011)

http://aws.amazon.com/ec2/

Type-Based Analysis of Protected Storage

in the TPM

Jianxiong Shao, Dengguo Feng, and Yu Qin

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences
{shaojianxiong,feng,qin_yu}@tca.iscas.ac.cn

Abstract. The Trusted Platform Module (TPM) is designed to enable
trustworthy computation and communication over open networks. The
TPM provides a way to store cryptographic keys and other sensitive val-
ues in its shielded memory and act as Root of Trust for Storage (RTS).
The TPM interacts with applications via a predefined set of commands
(an API). In this paper, we give an abstraction model for the TPM
2.0 specification concentrating on Protected Storage part. With identi-
fication and formalization of their secrecy properties, we devise a type
system with asymmetric cryptographic primitives to statically enforce
and prove their security.

Keywords: TPM, Trusted computing, Type system, API analysis.

1 Introduction

The Trusted Platform Module (TPM) is a system component designed to estab-
lish trust in a platform by providing protected storage, robust platform integrity
measurement, secure platform attestation and other security mechanisms. The
TPM specification is an industry standard [12] and an ISO/IEC standard [11]
coordinated by the Trusted Computing Group. The TPM is separate from the
system on which it reports (the host system) and the only interaction is through
the interface (API) predefined in its specification.

In the last few years, several papers have appeared to indicate vulnerabili-
ties in the TPM API designs. These attacks highlight the importance of formal
analysis of the API commands specifications. A number of efforts have analyzed
secrecy and authentication properties of protocols using model checkers, theorem
provers, and other tools. Backes et al. used ProVerif to obtain the first mech-
anized analysis of DAA protocol[2]. In [6], a TPM impersonation attack was
discovered when sharing authdata between users are allowed. Lin described an
analysis of various fragments of the TPM API using Otter and Alloy[10]. In [9],
an analysis of the TPM API was described by using finite state automata. De-
laune et al. used the tool ProVerif to analyze the API commands and rediscover
some known attacks and some new variations on them[7].

Most of the established work on formal analysis of TPM API commands and
protocols focus on original TPM 1.2 specification, whose latest revision [12] is in

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 135–150, 2013.
c© Springer International Publishing Switzerland 2013

136 J. Shao, D. Feng, and Y. Qin

2006. However, Trusted Computing Group (TCG) has published the TPM 2.0
specification on their website in 2012. The new version of the TPM specification
has several changes from previous versions especially on the protected storage
part. In this paper, we conduct a formal analysis of the protected storage part
of API commands in the TPM 2.0 specification w.r.t secrecy property. A formal
security proof of secrecy, in the presence of a Dolev-Yao attacker who have
complete control over all the existent sessions, is first proposed based on a core
type system statically enforcing API security.

Our present work extends the line of research by exploring a language-based,
static analysis technique that allows for proving the security of key management
API commands. In [4], Centenaro et al. devise a language to specify PKCS#11
key management APIs at a fine granularity. We utilize their abstraction of key
templates in our model but devise a new type system to check information flow
properties for cryptographic operations in security APIs. Moreover, we devise a
new set of assignment commands to specify the internal functions according to
Trusted Platform Module Library (TPML) 2.0, Part 4: Supporting Routines.

For the core type system, although Centenaro et al. considered the integrity
(they call it trust) for keys, the key with high integrity in their model must
be with high confidentiality. It cannot be used to formalize asymmetric cryp-
tographic primitives since the public key should be with high integrity but low
confidentiality. In our model, we devise a new type system with more specific
types for asymmetric cryptographic primitives. Actually in this sense our result
is more in the line of [13], in which Keighren et al. proposed a type system based
on the principles of information flow to investigate a much stronger property
noninterference for a general model. Yet they gave no language to express the
internal commands and did not consider the integrity level. We apply the types
of keys from [8,1,14], in which the types of the payload are determined by the
types of the key. We also consider the integrity level, which is different from [13].

The paper is organized as follows. In section 2 we give a brief introduction to
the protected storage part of the TPM 2.0 specification and describe the simple
language for modeling TPM commands. In section 3 we introduce the core type
system statically enforcing API security. In section 4 we apply the type system
to our model of the TPM API commands, which we prove to be secure. We
conclude in section 5.

2 Overview of the TPM Protected Storage

Trusted Platform Module (TPM) is defined as the Root of Trust for Storage
(RTS) by TCG, since the TPM can be trusted to prevent inappropriate access
to its memory, which we call Shielded Locations. TPM protections are based
on the concept of Protected Capabilities and Protected Objects. A Protected
Capability is an operation that must be performed correctly for a TPM to be
trusted. A Protected Object is data (including keys) that can be accessed to
only by using Protected Capabilities. Protected Objects in the TPM reside in
Shielded Locations. The size of Shielded Locations may be limited. The effective

Type-Based Analysis of Protected Storage in the TPM 137

memory of the TPM is expanded by storing Protected Objects outside of the
TPM memory with cryptographic protections when they are not being used and
reloading if necessary.

2.1 Protected Storage Hierarchy

In the TPM 2.0 specification, the TPM Protected Objects are arranged in a tree
structure, which is called Protected Storage Hierarchy. A hierarchy is constructed
with storage keys as the connectors to which other key objects or connectors may
be attached. A Storage Key, acting as a parent, protects its children when those
objects are stored out of the TPM. Storage keys should be used in the process of
creation, loading, duplication, unsealing, and identity activation. However, such
keys cannot be used in the cryptographic support functions.

When creating a new object on the device, two commands are needed. In
the command TPM2 Create(), a loaded storage key should be provided as the
parent and a loadable creation blob protected by it is created. The keys used in
this protection are derived from a seed in the sensitive area of the parent object.
Then the command TPM2 Load() may load the creation blob into the TPM with
a handle returned. The new key can be used by reference to its handle.

We focus on the process of duplication, which needs three commands. Dupli-
cation allows an object to be a child of an additional parent key. In the command
TPM2 Duplicate(), a loaded object for duplication and its new parent handle
should be provided and a duplication blob is returned. The duplication blob is
protected in a similar way to the creation blob except that the seed is random
and protected by new parent’s asymmetric methods to guarantee that only the
new parent may load it. In this way, the storage key must be asymmetric. In
the command TPM2 Import(), the duplication blob is transformed to a loadable
blob, which can be loaded in TPM2 Load().

An object might be connected to another hierarchy by two ways. One is to
duplicate it directly by the process above. The other is to duplicate one of its an-
cestors and it can be loaded by its creation blob. The hierarchy attributes of an
object, FixedParent and FixedTPM, indicate how the object can be connected
to another hierarchy. An object with FixedParent SET means it cannot be du-
plicated directly and with FixedTPM SET means all of its ancestors have Fixed-
Parent SET. Thus an object with FixedParent CLEAR must have FixedTPM
CLEAR. The attribute FixedTPM of an object depends on FixedTPM in its
parent and FixedParent in itself. The hierarchy attributes setting matrix is in
Table 1

The consistency of the hierarchy settings is checked by internal function
PublicAttributesValidation() in object templates (when creating) and in
public areas for loaded objects (when loading) or duplicated objects (when im-
porting). The root of a hierarchy is denoted as the Primary Object which is
protected by keys derived from a Primary Seed and its attributes. The Primary
Object can be seen as a child object of a virtual object with FixedTPM SET.

138 J. Shao, D. Feng, and Y. Qin

Table 1. Allowed Hierarchy Settings

Parent’s FixedTPM Object’s FixedParent Object’s FixedTPM

CLEAR CLEAR CLEAR

CLEAR SET CLEAR

SET CLEAR CLEAR

SET SET SET

2.2 Object Structure Elements

According to the TPM 2.0 specification, each object has two components: public
area and sensitive area. The former contains the fields objectAttributes and
type. For an asymmetric key object, the public key should also be contained in
the public area. The sensitive area includes an authorization value (authValue),
a secret value used to derive keys for protection of its child (seedValue), and
the private key (sensitive) dependant on the type of the object.

For the public area, the attributes of the object (objectAttributes) are in 5
classes: hierarchy, usage, authorization, creation, and persistence. The hierarchy
attributes have been discussed above.

The usage of an object is determined by three attributes: restricted, sign, and
decrypt. An object with only decrypt SET may use the key in its sensitive area
to decrypt data blobs that have been encrypted by that key (for symmetric key)
or the public portion of the key (for asymmetric key). Thus we call it Decryption
Key Object. An object with both decrypt and restricted SET is used to protect
the other objects when they are created or duplicated. A restricted decryption
key is often referred to as a Storage Key Object. An object with sign SET may
perform signing operation and with both sign and restricted SET may only sign
a digest produced by the TPM. This two kinds of objects corresponds to the
secure platform attestation. On the viewpoint of the protected storage, they
act the same way as the Decryption Key Objects and could not be used as the
Storage Key Objects. It is the same case for a legacy key with both sign and
decrypt SET. It is not allowed for an object with all the three attributes SET.
Thus we divide all the objects into two groups: Decryption Key Object and
Storage Key Object which correspond to the leaf node and the branch node.

For the sensitive area, seedValue is required for Storage Key Objects. It is
an obfuscation value for Decryption Key Object.

3 Modeling the TPM APIs

3.1 A Language for Modeling TPM Commands

In this section, we extend the work of [4] to get an imperative language which
is more suitable to specify the protected storage part of TPM 2.0 APIs.

Type-Based Analysis of Protected Storage in the TPM 139

Values and Expressions. Let C and F respectively denote the set of atomic
constant and fresh values with C

⋂
F = ∅. The former specifies any public data,

including the templates of the key objects and the usage of the key derivation
function (kdf). The latter is used to model the generation of new fresh values such
as the sensitive values and the seed values of the key objects. We introduce the
extraction operator f ← F in [4] to represent the extraction of the first ’unused’
value f from F . It is obvious that the extracted values are always different. We
define the values in Table 2. For the sake of readability, we let ṽ denote a tuple
(v1, · · · , vk) of values.

Table 2. Definition of Values and Expressions

v, v′, h ::= values e ::= expressions
val atomic fresh value x, y variables
tmp template kdf(usg, x) key diversification
usg {STORAGE, INTEGRITY } ek(x) encryption key
kdf(usg, v) key diversification senc(x, ỹ) sym encryption
senc(v′, ṽ) sym encryption aenc(x, ỹ) asym encryption
ek(v) encryption key hmac(x, ỹ) hmac computation
aenc(v′, ṽ) asym encryption
hmac(v′, ṽ) hmac computation

We use template to describe the properties of the key objects. Denoted by tmp,
a template is represented as a set of attributes. Set an attribute for a key object
is to include such an attribute in its template set. Formally, a template tmp
is a subset of {W,E,A, S,N, F}. First, two attributes are used to identify the
groups of key objects: W (wrap) for Storage Key Object; E (encryption) for
Decryption Key Object. Second, we use A (Asymmetric) and S (Symmetric)
to specify the field type in the public area of the key object. Third, for the
hierarchy attributes FixedTPM and FixedParent, we use N (Non-FixedParent)
to denote FixedParent CLEAR and F to denote FixedTPM SET. We do not
specify the other attributes since they are irrelevant to the protected storage
hierarchy. As in section 2, (W,E), (A,S), (N,F), and (W,S) are on the list of
conflicting attribute pairs. Actually, the allowable combination of the attributes
can only be of the form {W,A,N/F}, {E,A,N/F}, and {E, S,N/F} where
N/F means N , F or neither. We have 3 kinds of key objects which is denoted
by mode: the Storage Key Object, the Symmetric Decryption Key Object, and
the Asymmetric Decryption Key Object. We abstract such restrictions and focus
on a particular set of all allowable templates of keys denoted by ℘, which we call
the security policy. In our model, ℘ contains the above 9 possible templates.

Constant value usg ∈ {STORAGE, INTEGRITY } is a label to specify
the usage of the key derived from the Seed stored in a Storage Key Object.
STORAGE means a symmetric key and INTEGRITY means an HMAC key.
We use kdf(usg, v) to denote a new key obtained via key derivation function
from label usg and a seed value v. senc(v′, ṽ) performs symmetric encryption

140 J. Shao, D. Feng, and Y. Qin

on a tuple of values ṽ. ek(v) denotes the public encryption key value corre-
sponding to the private key v and can be published. Notice that we model
a cryptographic scheme where the encryption key can be recovered from the
corresponding decryption key, which means decryption keys should be seen as
key-pairs themselves. aenc(v′, ṽ) and hmac(v′, ṽ) denote, respectively, the asym-
metric encryption and the HMAC computation of the tuple ṽ with the key v′.

As in [4], we use a set of expressions to manipulate the above values.
Table 2 gives the formalization of expressions which are similar to those of val-
ues. Expressions are based on a set of variables V . We introduce the memory
environment M : x �→ v in [4] to denote the evaluation of variables. For simplic-
ity, we let x̃ denote a tuple (x1, · · · , xn) of variables and M(x̃) = ṽ the evaluation
M(x1) = v1, · · · ,M(xn) = vn. Expression e in an environment M evaluating to
v is denoted by e ↓M v. It is trivial to derive the semantics of evaluation for the
expressions in Table 2.

Handle-Map. In the TPM 2.0 specification, objects are referenced in the com-
mands via handles. We use a key handle-mapH : h �→ (tmp, vs, vk) from a subset
of atomic fresh values F to tuples of templates, seed values and key values. We
do not consider the Authentication mechanisms in the TPM. This corresponds
to a worst-case scenario in which attackers may gain access to all keys available
in the TPM without knowing their values. Thus, for the sensitive area, we only
need to model the field seedValue by vs and sensitive by vk. The type of
sensitive values vk and vs is dependant on the template tmp.

API Commands and Semantics. We devise a set of internal functions ac-
cording to the supporting routines in Trusted Platform Module Library 2.0 for
object and hierarchy.

An API is specified as a set A = {c1, · · · , cn} of commands. Each command
contains a binding of values to variables and a sequence of inner execution of
clauses as follows:
c ::= λx̃.p
p ::= ε| x := e| return ỹ| p1; p2| (xt, xs, xk) := checkTemplate (yh, tmp)|

xk := genKey (yt)|xs := genSeed (yt)|xh := ObjectLoad (ys, yk, yt)|
(xpA, xinA) :=PAV (ypA, yinA)|x̃ := f

f ::= sdec (yk, yc)| adec (yk, yc)| checkHMAC (yk, yhmac, ỹv).

All of the free variables (variables that have no evaluation) in clauses p appear
in input parameters x̃ = (x1, · · · , xn). We will only focus on the API commands
in which return ỹ can only occur as the last clause. Intuitively, ε denotes the
empty clause; x := e is an evaluation of variable x; p1; p2 recursively specifies the
sequential execution of clauses. chechTemplate retrieves ks, kv, and tmp′ of a key
object loaded on the device, given its handle by requiring the template to match
some pattern tmp. genKey and genSeed generate a new key value or seed value,
given its template yt. ObjectLoad loads a new key object with its sensitive values
and an allowable template. PAV checks the hierarchy attributes in the template

Type-Based Analysis of Protected Storage in the TPM 141

ypA of the parent object should be compatible with that in the template yinA
of an input object according to Table 1. The other three internal functions f
are cryptography operations provided by the TPM and cannot be used directly
by user applications. sdec and adec respectively specify the symmetric and
asymmetric decryption. The decrypting function fails (ie. is stuck) if the given
key is not the right one. checkHAMC checks whether yhmac = hamc(yk, ỹv) and
if so, ỹv is evaluated to x̃, or otherwise, it fails. A call to an API command
c = λ(x1, · · · , xk).p, written as c(v1, · · · , vk), binds variables x1, · · · , xk to values
v1, · · · , vk, executes p and outputs the value given by return ỹ.

For convenience, it is required that all the variables on the left side of the
assignment clauses may appear only once. This does not limit the capability of
our model since the repeated variables can be rewrite to different names.

An API command c working on a configuration contains a memory environ-
ment M and a key handle-map H, which is denoted as 〈M,H, p〉. Operation
semantics are expressed as follows.

e↓Mv
〈M,H,x:=e〉→〈M∪[x
→v],H,ε〉
H(M(yh))=(vt,vs,vk),tmp⊆vt

〈M,H,(xt,xs,xk):=checkTemplate(yh,tmp)〉→〈M∪[xt
→vt,xs
→vs,xk
→vk],H,ε〉
vk←F ,M(yt)∈℘

〈M,H,xk:=genKey(yt)〉→〈M∪[xk
→vk],H,ε〉 ,
vs←F ,M(yt)∈℘

〈M,H,xs:=genSeed(yt)〉→〈M∪[xs
→vs],H,ε〉
vh←F ,M(yt)∈℘

〈M,H,xh:=ObjectLoad(ys,yk,yt)〉→〈M∪[xh
→vh],H∪[vh
→(M(yt),M(ys),M(yk))],ε〉
yk↓Mk,yc↓Msenc(k,ṽ)

〈M,H,x̃:=sdec(yk,yc)〉→〈M∪[x̃
→ṽ],H,ε〉 ,
yk↓Mk,yc↓Maenc(ek(k),ṽ)

〈M,H,x̃:=adec(yk,yc)〉→〈M∪[x̃
→ṽ],H,ε〉
M(ypA),M(yinA)∈℘,F∈M(ypA)⇒N/F∈M(yinA),F /∈M(ypA)⇒F /∈M(yinA)

〈M,H,xinA:=PAV (ypA,yinA)〉→〈M∪[xinA
→M(yinA)],H,ε〉
yk↓Mk,ỹv↓M ṽ,yhmac↓MHMAC(k,ṽ)

〈M,H,x̃:=checkHMAC(yk,yhmac,ỹv)〉→〈M∪[x̃
→ṽ],H,ε〉
〈M,H,p1〉→〈M ′,H′,ε〉

〈M,H,p1;p2〉→〈M ′,H′,p2〉 ,
〈M,H,p1〉→〈M ′,H′,p′

1〉
〈M,H,p1;p2〉→〈M ′,H′,p′

1;p2〉
a=λx̃.p,〈Me∪[x̃
→ṽ],H,p〉→〈M ′,H′,return e〉,e↓M′v

a(ṽ)↓H,H′v

We explain the second rule and the other rules are similar. For the function
checkTemplate, it evaluates yh in M, finds the key referenced by the handle
M(yh), and checks whether tmp ⊆ vt. If so, it may store the key object in the
tuple variables (xt, xs, xk), noted M∪ [xt �→ vt, xs �→ vs, xk �→ vk]. The last rule
is standard for API calls on a configuration. The API command are executed
and the returned value is given as the output value of the call. Notice that we
cannot observe the memory used internally by the device. The only exchanged
data are input parameters and the returned value. This is the foundation for the
attacker model.

3.2 Attacker Model and API Security

The attacker is formalized in a classic Dolev-Yao style. The knowledge of the
attacker is denoted as a set of values derived from known values V with his
capability. Let V be a finite set of values, The knowledge of the attacker K(V)
is defined as the least superset of V such that v, v′ ∈ K(V) implies

(1) (v, v′) ∈ K(V)
(2) senc(v, v′) ∈ K(V)

142 J. Shao, D. Feng, and Y. Qin

(3) aenc(v, v′) ∈ K(V)
(4) if v = senc(v′, v′′), then v′′ ∈ K(V)
(5) if v = aenc(ek(v′), v′′), then v′′ ∈ K(V)
(6) kdf(v, v′) ∈ K(V)
(7) hmac(v, v′) ∈ K(V)
API commands can be called by attackers in any sequences and with any

parameters in his knowledge. The returned values will be added to his set of
known values and enlarge his knowledge. Formally, An attacker configuration is
denoted as 〈H, V 〉 and has a reduction as follows:

c ∈ A, v1 · · · vk ∈ K (V) , c (v1, · · · , vk) ↓H,H′
v

〈H, V 〉→A 〈H′, V ∪ {v}〉

The set of initial known values V0 contains all the atomic constant values in C.
For all Asymmetric key value v′′ ∈ F , ek(v′′) ∈ V0. The set of initial handle-map
H0 is empty. In our model, →∗

A notes multi-step reductions.
The main property of the Protected Storage Hierarchy required by TPM 2.0

specifications is secrecy. More specifically, the value of private keys loaded on a
TPM should never be revealed outside the secure device, even when exposed to
a compromised host system.

Formally, the sensitive keys available on the TPM should never be known by
the attacker, as well as the seed in a Storage Key. The definition of Secrecy of
API commands follows.
Definition 1 (Secrecy). Let A be an API. A is secure if for all reductions of
attacker configuration 〈∅, V0〉 →∗

A 〈H, V 〉, we have
Let g be a handle in H such that H(g) = (tmp, vs, vk) and F ∈ tmp. Then,

vs, vk /∈ K(V).
The language in section 2.2 can be used to model the TPM 2.0 API commands

of protected storage part. We give a brief specification on them and conclude
they preserve secrecy in section 4.

4 Type System

4.1 A Core Type System

In this section, we present a type system to statically enforce secrecy in API
commands. At first, we introduce the concept of security level [8], a pair σCσI ,
to specify the levels of confidentiality and integrity. We consider two levels:
High(H) and Low(L). Intuitively, values with high confidentiality cannot be
read by the attackers while data with high integrity should not be modified by
the attackers.

While it is safe to consider a public value as secret, low integrity cannot be
promoted to high integrity. Otherwise, data from the attackers may erroneously
be considered as coming from a secure device. Therefore, we have the confiden-
tiality and integrity preorders: L �C H and H �I L. We let σC and σI range
over {L,H}, while we let σ range over the pairs σCσI with σCσI � σ

′

Cσ
′

I iff

Type-Based Analysis of Protected Storage in the TPM 143

σC �C σ
′

C and σI �I σ
′

I . It gives the standard four-point lattice. Formally, type
syntax T is as follows:

T ::= σ|ρσ|SeedKσ[]|φKσ[T̃],

where
σ ::= σCσI = LL|LH |HL|HH
ρ ::= Unwrap|Dec|Sym|Any
φ ::= ρ|Wrap|Enc|hmac.

Each type has an associated security level denoted by L(T). For basic types
we trivially have L(σ) = σ. As expected, we have L(ρKσ[T̃]) = σ and L(ρσ) = σ.
It is nature to define LC(T) and LI(T) for confidentiality and integrity levels.

In type syntax T , σ is the type for general data at such level. ρσ is the type
of templates. label ρ specifies the mode of the key object which depends on its
template. Unwrap denotes the Storage Key Object;Dec denotes the Asymmetric
Decryption Key Object; Sym denotes the Symmetric Decryption Key Object;
Any is the top mode including all the three modes. All templates are public.
Yet the templates with F are generated by the TPM and cannot be forged.
Thus they have a security level LH . The other templates with attribute N or
without any hierarchy attributes may be forged by the attackers via the process
of duplication or loading. Thus they have a security level LL. The types are as
follows:

W,A, F ∈ tmp

� tmp : UnwrapLH
,
E,A, F ∈ tmp

� tmp : DecLH
,
E, S, F ∈ tmp

� tmp : SymLH
,

W,A ∈ tmp, F /∈ tmp

� tmp : UnwrapLL
,
E,A ∈ tmp, F /∈ tmp

� tmp : DecLL
,
E, S ∈ tmp, F /∈ tmp

� tmp : SymLL
.

The type φKσ[T̃] describes the key values at security level σ which are used
to perform cryptographic operations on payloads of type T̃ . For the sake of
readability, we let T̃ denote a sequence T1, · · · , Tn of types and use x̃ : T̃ to type
a sequence x1, · · · , xn of variables. Label φ specifies the usage of the key values.
Intuitively, Seed value is stored as vs in a Storage Key Object to be used for the
derivation of HMAC key and symmetric key which are used for the protection
of the other objects; Wrap and Unwrap are a pair of asymmetric keys stored
as vk in a Storage Key Object used in the process of duplication; Enc and Dec
are similar but stored in a Decryption Key Object; Sym is used in symmetric
encryption and decryption; hmac is used in the computation of HMAC for the
protection of integrity.

Based on security level of types, we have subtyping relations. Formally, ≤ is
defined as the least preorder such that:

(1) σ1 ≤ σ2 iff σ1 � σ2;
(2) LL ≤ φKLL [LL, . . . , LL] , LL ≤ ρLL, LL ≤ SeedKLL[];

(3) φKσ
[
T̃
]
≤ σ, SeedKσ[] ≤ σ, ρσ ≤ σ;

(4) ρKσ
[
T̃
]
≤ AnyKσ

[
T̃
]
, ρσ ≤ Anyσ.

144 J. Shao, D. Feng, and Y. Qin

It is obvious that subtyping relationship does not compromise the security,
since T ≤ T ′ implies L(T) � L(T ′).

Typing Expressions. After the definition of types, we introduce a typing
environment Γ : x �→ T , namely a map from variables to their respective types.
Type judgement for expressions is written as Γ � e : T meaning that expression
e is of type T under Γ . The typing rules for expressions are described as follows.

[var] Γ (x)=T
Γ�x:T , [sub] Γ�e:T ′,T ′≤T

Γ�e:T , [tuple] Γ�x̃1:T̃1,Γ�x2:T2

Γ�(x̃1,x2):(T̃1,T2)
,

[kdfSH] Γ�x:SeedKHH [],usg=STORAGE

Γ�kdf(usg,x):SymKHH [T̃]
, [kdfSL] Γ�x:SeedKLL[],usg=STORAGE

Γ�kdf(usg,x):SymKLL[LL,···,LL]
,

[kdfIH] Γ�x:SeedKHH [],usg=INTEGRITY

Γ�kdf(usg,x):hmacKHH [T̃]
, [kdfIL] Γ�x:SeedKLL[],usg=INTEGRITY

Γ�kdf(usg,x):hmacKLL[LL,···,LL]
,

[wrapK]
Γ�x:UnwrapKσCσI [T̃]
Γ�ek(x):WrapKLσI [T̃]

, [encK]
Γ�x:DecKσCσI [T̃]

Γ�ek(x):EncKLσI [T̃]
,

[Sym]
Γ�x:SymKσCσI [T̃],Γ�ỹ:T̃

Γ�senc(x,ỹ):LσI
, [hmac]

Γ�x:hmacKσCσI [T̃],Γ�ỹ:T̃ ,σ′
I=σI∪T∈T̃LI(T)

Γ�HMAC(x,ỹ):LσI
,

[Wrap]
Γ�x:WrapKσCσI [T̃],Γ�ỹ:T̃

Γ�aenc(x,ỹ):LσI
, [Enc]

Γ�x:EncKσCσI [T̃],Γ�ỹ:T̃
Γ�aenc(x,ỹ):LσI

.

Rules [var], [sub], and [tuple] are standard to derive types directly from Γ
or via subtyping relationship. Rules [kdfSH], [kdfSL], [kdfIH], and [kdfIL]
states that given a seed and its usage, we may derive a new key of the se-
curity level inherited from the seed. The security level of the seed value can
only be HH (Trusted) or LL (Untrusted). Rules [wrapK] and [encK] says
that if an asymmetric decryption key kx is of type ρKσCσI [T̃] where ρ ranges
over {Unwrap,Dec}, then the corresponding encryption key ek(kx) is of type
ρKLσI [T̃]. Notice that the confidentiality level is L(Low), since public keys are
allowed to be known to the attacker, while the integrity level is the same with
its decryption key. Rules [Sym], [Wrap], and [Enc] state the encryption of data.
The type of the operand e is required to be compatible with that of the payload
which is specified by the type of the key. The integrity level of the ciphertext
should be the same with that of the key. Rules [hmac] requires that the integrity
level of the HMAC should be σI

⊔
T∈T̃ LI(T), which represents the lowest in-

tegrity level of σI and each level of LI(T) while T ∈ T̃ . The reason for it is the
fact that if the attacker may generate either the HMAC key or the plaintext,
he could modify the computation of HMAC. Ciphertexts and the HMAC can be
returned to the caller and consequently their confidentiality level is L.

Typing API Commands. Type judgement for API commands is denoted as
Γ � p meaning that p is well-typed under the typing environment Γ . For sim-
plicity, we write Γ (x̃) = T̃ or x̃ �→ T̃ for the binding of variables x̃ = (x1, · · · , xn)
respectively to their types T̃ = (T1, · · · , Tn). The judgement for API commands
is formalized as follows.

Type-Based Analysis of Protected Storage in the TPM 145

[API] ∀c∈A Γ�c
Γ�A , [assign] Γ�e:T Γ,x
→T�p

Γ�x:=e;p , [seq] Γ�p1 Γ�p2

Γ�p1;p2
,

[checktmp] Γ�yh:LL ∀T̃∈PTS(tmp,℘)⇒Γ,x̃
→T̃�p
Γ�x̃:=checkTemplate(yh,tmp);p , [sdec]

Γ�yk:SymKσ[T̃] Γ,x̃
→T̃�p
Γ�x̃:=sdec(yk,yc);p

,

[genKey−H] Γ�yt:AnyLH Γ,xk
→AnyKHH [T̃]�p
Γ�xk:=genKey(yt);p

, [genKey− L] Γ�yt:LL Γ,xk
→LL�p
Γ�xk:=genKey(yt);p

,

[genSeed−H] Γ�yt:AnyLH Γ,xs
→SeedKHH []�p
Γ�xs:=genSeed(yt);p

, [genSeed− L] Γ�yt:LL Γ,xs
→LL�p
Γ�xs:=genSeed(yt);p

,

[ObjLoad−H] Γ�ys:SeedKHH [] Γ�yk:ρK
HH [T̃] Γ�yt:ρ

LH Γ,xh
→LL�p
Γ�xh:=ObjectLoad(ys,yk,yt);p

,

[ObjLoad− L] Γ�ys:LL Γ�yk:LL Γ�yt:LL Γ,xh
→LL�p
Γ�xh:=ObjectLoad(ys,yk,yt);p

,

[Dec]
Γ�yk:DecKσ[T̃] Γ�yc:T Γ,x̃
→T̃�p LI(T)=L⇒Γ,x̃
→(LL,···,LL)�p

Γ�x̃:=adec(yk,yc);p
,

[Unwrap]
Γ�yk:UnwrapKσ[T̃] Γ�yc:T Γ,x̃
→T̃�p LI(T)=L⇒Γ,x̃
→(LL,···,LL)�p

Γ�x̃:=adec(yk,yc);p
,

[PAV −H]
Γ�(ypA,yinA):(UnwrapLH ,LL) Γ,xinA
→AnyLσI�p

Γ�xinA:=PAV (ypA,yinA);p ,

[PAV − L]
Γ�(ypA,yinA):(LL,LL) Γ,xinA
→LL�p

Γ�xinA:=PAV (ypA,yinA);p ,

[chkHMAC]
Γ�yk:hmacKσ[T̃] Γ,x̃
→T̃�p

Γ�x̃:=checkHMAC(yk,yhmac,ỹv);p
,

[return] Γ�x̃:(LL,···,LL)

Γ�return x̃ , [command] Γ�x1:LL ··· Γ�xk:LL Γ�p
Γ�λx1,···,xk.p

Most of the above rules are standard. We just explain [checktmp] and [PAV].
The details of the others are in full version [16]. Rule [checktmp] is adapted form
the same rule in [4]. We have to type-check all the permitted templates tmp′ in
℘ matching the checked template tmp, such that tmp ⊆ tmp′. The Permitted
Templates Set is denoted as

PTS(tmp, ℘) = {(ρLσI , SeedKσIσI [], ρKσIσI [T̃])|
∃tmp′ ∈ ℘, tmp ⊆ tmp′∧ � tmp′ : ρLσI}.

For example, if tmp = {W}, the permitted templates matching with tmp
are {W,A}, {W,A,N}, and {W,A, F}. The corresponding types are (ρLL,
SeedKLL[], ρKLL[T̃]) and (ρLH , SeedKHH [], ρKHH [T̃]), where ρ = Unwrap.
We need to type-check the following clauses under the assumption that x̃
may have all the types in PTS. Meanwhile, PTS({W,F}, ℘) = (UnwrapLH ,
SeedKHH [], UnwrapHH [T̃]). The rules [PAV − H] and [PAV − L] are used
for public hierarchy attributes validation. The purpose for PAV is to check the
consistency of hierarchy attributes between the parent object and the child. The
former rule says that if the parent object has the attribute FixedTPM (F), then
any allowable combination of the hierarchy attributes would be fine for the child.
The latter rule states that if the template of the parent object does not include
the attribute F, then F cannot be in the template of the child.

4.2 Properties of the Type System

In this section, some properties of our Type System are introduced, including
the main result, well-typed APIs are secure. The proof of the main theorem can
be found in the full version [16]. Centenaro, et al.[4] have proposed the notion of

146 J. Shao, D. Feng, and Y. Qin

value well-formedness in their type system in order to track the value integrity
at run-time. Their judgement was based on a mapping Θ from atomic values
to types. We follow this method but lay more restriction on the foundation of
this typing environment for values to obtain more valuable properties. Rules for
typing values are given in Table. They are close to those for typing expressions.

[empty]φ � ∅,
[Env]

Θ�∅,v/∈dom(Θ),T=ϕKσ [T̃],SeedKσ []⇒(ϕ∈{Sym,Dec,Unwrap,hmac}∧σ=HH)

Θ∪{val 	→T}�∅ ,

[atom] Θ(val)=T
Θ�val:T

, [sub] Θ�v:T ′,T ′≤T
Θ�v:T

, [tuple] Θ�ṽ:T̃ ,Θ�v′:T ′

Θ�(ṽ,v′):(T̃ ,T ′)
,

[kdfSH] Θ�v:SeedKHH [],usg=STORAGE

Θ�kdf(usg,v):SymKHH [T̃]
, [kdfSL] Θ�v:SeedKLL[],usg=STORAGE

Θ�kdf(usg,v):SymKLL[LL,···,LL]
,

[kdfIH] Θ�v:SeedKHH [],usg=INTEGRITY

Θ�kdf(usg,v):hmacKHH [T̃]
, [kdfIL] Θ�v:SeedKLL[],usg=INTEGRITY

Θ�kdf(usg,v):hmacKLL[LL,···,LL]
,

[wrapK]
Θ�v:UnwrapKσCσI [T̃]
Θ�ek(v):WrapKLσI [T̃]

, [encK]
Θ�v:DecKσCσI [T̃]

Θ�ek(v):EncKLσI [T̃]
,

[Sym]
Θ�v′:SymKσCσI [T̃],Θ�ṽ:T̃

Θ�senc(v′,ṽ):LσI
, [HMAC]

Θ�v′:hmacKσCσI [T̃],Θ�ṽ:T̃ ,σ′
I=σI∪T∈T̃

LI (T)

Θ�HMAC(v′,ṽ):LσI
,

[Wrap]
Θ�v′:WrapKσCσI [T̃],Θ�ṽ:T̃

Θ�aenc(v′,ṽ):LσI
, [Enc]

Θ�v′:EncKσCσI [T̃],Θ�ṽ:T̃

Θ�aenc(v′,ṽ):LσI

However, two additional rules [empty] and [env] are set to define the well-
formedness of our typing environment Θ. The rule [env] requires that Θ does
not contain multiple bindings for the same value. Moreover, only atomic fresh
keys at a security level of HH are allowable. It is sound because in operation
semantics for commands in section 2.2, atomic fresh keys can only be generated
by genKey and genSeed, which are internal functions that cannot be touched by
the attackers. On the basis of these rules, some properties for the types of key
values can be obtained by easy induction on the derivation of Θ � v : φKσ[T̃].

Proposition 1 (Private Keys). If Θ � ∅, Θ � v : φKσ[T̃], and φ ∈ {Seed,
Sym, Dec, Unwrap, hmac}, then σ ∈ {HH,LL}.
Proposition 2 (Low Keys). If Θ � ∅, then Θ � v : φKLL[T̃] implies T̃ =
LL, · · · , LL.
Proposition 3 (Public Keys). If Θ � ∅, Θ � v : φKσ[T̃], and φ ∈
{Wrap,Enc}, then σ ∈ {LH,LL}.

The next proposition says the type of private key is unique, if it has a security
level of HH .

Proposition 4 (Uniqueness of Key Types). Let Θ � ∅. If Θ � k : φKσ[T̃]
and Θ � k : φ′Kσ′

[T̃ ′] with φ, φ′ ∈ {Seed, hamc, Sym, Unwrap,Dec}, then
σ = σ′. If σ = σ′ = HH , we also have φ = φ′.

The notion of well-formedness for memory environment follows the definition
3 in [4] except that we add item (1), which requires Θ is well formed. With this
requirement, we may apply proposition 1 to 4.

Definition 2 (Well-formedness).The judgement of well-formedness for mem-
ory environment and key handle-map is denoted as Γ,Θ �M,H if
(1) Θ � ∅, ie., the typing environment Θ is well formed by the typing rules
[empty] and [Env];

Type-Based Analysis of Protected Storage in the TPM 147

(2) Γ,Θ �M, ie., M(x) = v, Γ (x) = T implies Θ � v : T ;
(3) Θ � H. Let H(h) = (tmp, vs, vk). � tmp : ρLH implies Θ � vs : SeedKHH [],
Θ � vk : ρKHH [T̃]; � tmp : LL implies Θ � vs : LL, Θ � vk : LL.

As we have mentioned above, the security level σ restrict the capability of
attackers such that they can read from LL, LH and modify LL, HL. Due to
ρKLH [T̃] ≤ LH ≤ LL and the subtyping rule, we may assume the knowledge
of attackers has a security level of LL. Proposition 5 proves that if we only give
the attacker atomic values of type LL, all the values that can be derived from
his capability are of a security level LL. In the proof of this proposition, we may
use proposition 2 (Low Keys) in some cases.

Proposition 5 (Attacker typability). Let Θ � ∅, Θ � H and V be a set of
atomic values. Suppose ∀v ∈ V,Θ(v) = LL. Then, v′ ∈ K(V) implies Θ � v′ : LL
if v′ is an atomic values, and Θ � v′ : (LL, · · · , LL) if v′ is a tuple.

Lemma 1 states that in a well-formed memory, each expression has a type
matched with its evaluation. Lemma 2 states that well-typed commands remain
well-typed at run-time and preserve well-formedness of typing environment.

Lemma 1. If Θ � ∅, Γ,Θ �M, Γ � e : T , and e ↓M v, then Θ � v : T .

Lemma 2. Let Γ,Θ � M,H and Γ � p. If 〈M,H, p〉 → 〈M′,H′, p′〉 then we
have
(1) if p′ �= ε then Γ � p′;
(2) ∃Θ′ ⊇ Θ such that Γ,Θ′ �M′,H′.

With Lemma 1 and 2 above, we finally prove our main result that well-typed
API commands are secure.

Theorem 1. If Γ � A, then A is secure.

5 Type-Based Analysis of TPM 2.0 Specification
Commands

In this section, we show that the TPM 2.0 Specification commands such as
TPM2 Duplicate, TPM2 Import, TPM2 Create and TPM2 Load are secure in the
framework of our model (It is expected to include more commands). We will
prove that these commands guarantee the secrecy of the key object with its
FixedTPM SET, even in case of the worst scenario in which the attacker may
access all loaded key objects via API commands to perform operations corre-
sponding to the protected storage hierarchies rooted in the TPM.

The API is defined in Trusted Platform Module Library (TPML) Family 2.0,
Part 3: Commands [15], which specifies the input parameters, the response, and
the detailed actions of each command. We may translate the detailed actions to
our language introduced in section 2.2. The commands that need to be formalized
include Object Commands in Chapter 14 and Duplication Commands in Chapter
15 of TPML 2.0, Part 3. As we have discussed in section 2.1, we focus on these
commands since they decide how an object might be connected to the protected
storage hierarchy rooted in the TPM.

148 J. Shao, D. Feng, and Y. Qin

The detailed actions in these commands contain internal functions specified in
section 7.6 of TPML 2.0, Part 4: Supporting Routines. These internal functions
should be called by Protected Capabilities. We have transferred these functions
to our language. Now we give an example of AreAttributesForParent(), which
decides whether the input handle refers to a parent object. It can be implemented
by (ObjTemplate, ObjSeed, ObjSensitive):= checkTemplate (ObjHandle, {W});
In a similar way, we could formalize a set of internal functions in section 7.6 of
Part 4.

After this formalization, we could translate to our language the protected stor-
age API commands such as TPM2 Create(), TPM2 Load(), TPM2 Duplicate(),
and TPM2 Import() in Part 3. We give an example of TPM2 Load(). The detailed
translation is in the full version.

Command TPM2 Load takes as input the handle of the parent object (par-
entH), the public area of the loaded object (inAttributes), an HMAC to check
the integrity (inHMAC), and the encrypted sensitive area of the loaded object
(LoadPrivate). The execution of the command depends on whether the loaded
object has FixedTPM SET in its template (F ∈ inAttributes) since it decides
whether FixedTPM is needed in the parent object. In the detailed actions of
Part 3, it is expressed by a standard if/else statement. For the former case, F
is needed to be included in the template of the parent object. The latter is not.
Thus we have different requirements for the first checkTemplate. There are no
differences in the following clauses. Then, the public attributes of the loaded
object should be checked to be consistent with the parent’s by PAV. If passed,
a symmetric key (symKeyP) for secure storage and an HMAC key (HMACk-
eyP) for integrity are derived from the secret seed (parentSeed) in the parent
object. After checking the integrity of the public area (inAttributesC) and the
encrypted sensitive area (LoadPrivate), the command will decrypt the sensitive
area by sdec. At last, new object are loaded and its handle (ObjH) is returned.

In a similar way, we have translated the Object Commands and Duplication
Commands in Trusted Platform Module Library (TPML) Family 2.0, Part 3:
Commands. In the following, we need to type-check these API commands by
our type system in section 3.1 to enforce the security of API commands. We will
give an example of the command TPM2 Load. The detailed specification is in the
full version [16].

Since the command TPM2 Load requires a branch, we need to devise two typing
environment Γ respectively to type these two cases. For both cases, it is required
that all the input parameters have type LL (line 00 and line 10). For the former
case, when checkTemplate requires a handle for a parent key object with W,F
SET. Then the type returned is (UnwrapLH , SeedKHH [], UnwrapKHH [T̃]) ac-
cording to section 3.1. Then by the rule [PAV −H], we get the input attributes
after check should have type AnyLH because F ∈ inAttributes. By kdf, we
get two keys derived from the seed value in the parent sensitive area with
types SymKHH [SeedKHH [], AnyKHH] and hmacKHH [LH,AnyLH]. The pay-
load type is decided by the usage of the parent key object. Then after checking
the HMAC and symmetric decryption, the returned sensitive area types are

Type-Based Analysis of Protected Storage in the TPM 149

(SeedKHH [], AnyKHH [T̃]). With appropriate types of sensitive area and pub-
lic area, ObjectLoad could load the object into the TPM. Then the type of
the returned handle value is LL, which could be returned as the response. For
the latter case, checkTemplate requires a handle for a parent key with just W
SET and the returned type is in PTS({W}, ℘). There are two types in this
set, (LL,LL,LL) and (UnwrapLH , SeedKHH [], UnwrapKHH [T̃]). We have to
type-check the continuation clauses twice, under these two assumptions. The
two typing derivations are the same for PAV since F /∈ inAttributes. The input
template (inAttributes: LL) after PAV has type LL. For kdf, since the types
of payloads are decided by the usage of the parent key object, they both have
type LL,LL for the payloads. Thus these two cases are the same for checking
HMAC, decryption and loading the object. We finally type-check return ObjH
by [return].

We have shown that the command TPM2 Load is well-typed. By Theorem 1, we
know that TPM2 Load is secure. In a similar way, we could type-check the other
commands that have been formalized in our model and enforce the security of
protected storage APIs of the TPM 2.0 specification. We have Theorem 2 to
state the security of the TPM 2.0 API commands concentrating on Protected
Storage part.

Theorem 2. For the protected storage API A = {TPM2 Create(), TPM2 Load(),
TPM2 Duplicate(), TPM2 Import()} defined by TPM 2.0 specification, A is
secure.

6 Conclusion

We have prososed a type system to statically enforce the security of storage
part of the TPM 2.0 API commands. Our type system consumes type-checks for
asymmetric cryptographic primitives. A formal proof has been proposed that
the commands can guarantee the secret of key values in security devices under
the worst scenario where the attackers in Delov-Yao style may gain access to all
keys loaded on the device and the API commands can be called by any sequence
with any parameters. This has not been proved before.

As future work, we foresee extending our model with more commands such
as those involved in Credential Management. We also plan to model the TPM’s
platform configuration registers (PCRs) which allow one to condition some com-
mands on the current value of a register. Moreover, more security properties
such as integrity and noninterference will be the subject of future work.

Acknowledgments. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338003) and National
Natural Science Foundation of China (No. 91118006, No.61202414).

150 J. Shao, D. Feng, and Y. Qin

References

1. Abadi, M., Blanchet, B.: Secrecy types for asymmetric communication. Theoreti-
cal Computer Science 298(3), 387–415 (2003); In: Honsell, F., Miculan, M. (eds.)
FOSSACS 2001. LNCS, vol. 2030, pp. 25–41. Springer, Heidelberg (2001)

2. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy 2008, pp. 202–215 (2008)

3. Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG specifi-
cation and solution. In: Proceedings of ACSAC 2005, Tucson, AZ (USA), vol. 10,
pp. 127–137. ACSA, IEEE Computer Society (December 2005)

4. Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of PKCS#11 key
management. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust.
LNCS, vol. 7215, pp. 349–368. Springer, Heidelberg (2012)

5. Chen, L., Ryan, M.: Offline dictionary attack on TCG TPM weak authorisation
data, and solution. In: Gawrock, D., Reimer, H., Sadeghi, A.-R., Vishik, C. (eds.)
Future of Trust in Computing, pp. 193–196. Vieweg Teubner (2009)

6. Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation data
in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983,
pp. 201–216. Springer, Heidelberg (2010)

7. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 111–125. Springer, Heidelberg (2011)

8. Focardi, R., Maffei, M.: Types for Security Protocols. In: Formal Models and Tech-
niques for Analyzing Security Protocol, vol. 5, ch. 7, pp. 143–181. IOS Press (2010)

9. Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalua-
tion of scenarios based on the TCG’s TPM specification. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)

10. Lin, A.H., Rivest, R.L., Lin, A.H.: Automated analysis of security APIs. Technical
report, MIT (2005)

11. ISO/IEC PAS DIS 11889: Information technology –Security techniques – Trusted
Platform Module

12. Trusted Computing Group. TPM Specification version 1.2. Parts 1–3, revision,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

13. Keighren, G., Aspinall, D., Steel, G.: Towards a Type System for Security APIs. In:
Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 173–192.
Springer, Heidelberg (2009)

14. Centenaro, M., Focardi, R., Luccio, F.L., Steel, G.: Type-based analysis of PIN
processing APIs. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 53–68. Springer, Heidelberg (2009)

15. Trusted Computing Group. TPM Specification version 2.0. Parts 1–4, revision,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

16. Shao, J., Feng, D., Qin, Y.: Type-Based Analysis of Protected Storage in the TPM
(full version). Cryptology ePrint Archive (2013),
http://eprint.iacr.org/2013/501

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://eprint.iacr.org/2013/501

Remote Attestation Mechanism
for User Centric Smart Cards

Using Pseudorandom Number Generators

Raja Naeem Akram1, Konstantinos Markantonakis2, and Keith Mayes2

1 Cyber Security Lab, Department of Computer Science, University of Waikato,
Hamilton, New Zealand

2 ISG Smart card Centre, Royal Holloway, University of London
Egham, Surrey, United Kingdom

rnakram@waikato.ac.nz, {k.markantonakis,keith.mayes}@rhul.ac.uk

Abstract. User Centric Smart Card Ownership Model (UCOM) gives
the “freedom of choice” of respective applications to the smart card users.
The user-centric architecture requires a trusted entity to be present on
the smart card to provide security assurance and validation to the re-
questing application providers. In this paper, we propose the inclusion of
a trusted computing platform for smart cards that we refer as the Trusted
Environment & Execution Manager (TEM). This is followed by the ra-
tionale behind the changes to the traditional smart card architecture to
accommodate the remote security assurance and validation mechanism.
We propose an attestation protocol that provides an on-demand security
validation of a smart card by its respective manufacturer. Finally, the
attestation protocol is informally analysed, and its test implementation
and performance measurements are presented.

1 Introduction

The ecosystem of the User Centric Smart Card Ownership Model (UCOM) [1]
in centred around smart cards that have to implement adequate security and
operational functionality to support a) enforcement of security policies stipulated
by the card platform and individual Service Providers (SPs) for their respective
applications, and b) operational functionality that enables an SP to manage its
application(s), and a cardholder to manage her ownership privileges. The smart
card architecture has to represent this change in ownership architecture. For this
purpose, we require a trusted module as part of the smart card architecture. The
module would validate the current state of the platform to requesting entities in
order to establish the trustworthiness of a smart card in the UCOM ecosystem.

In the UCOM, the card manufacturers make sure that smart cards have
adequate security and operational functionality to support user ownership. In
addition, the cardholder manages her relationship with individual SPs. These
relationships enable her to request installation of their applications. Before leas-
ing an application, SPs will require an assurance of the smart card’s security and

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 151–166, 2013.
c© Springer International Publishing Switzerland 2013

152 R.N. Akram, K. Markantonakis, and K. Mayes

reliability. This assurance will be achieved through a third party security evalua-
tion of the smart cards before they are issued to individual users. Furthermore, to
provide a dynamic security validation [2], the evaluated smart cards implement
an attestation mechanism. The attestation mechanism should accommodate re-
mote validation, as in the UCOM an SP will not always have physical access
to the smart card. In addition, the attestation mechanism will certify that the
current state of the smart card is as evaluated by the independent third party.
Therefore, the trust architecture in the UCOM is based on the adequacy of the
third party evaluation, and the security and reliability of the remote attestation
mechanism.

1.1 Contributions

In this paper, we propose a smart card remote attestation mechanism based
on Pseudorandom Number Generators. The paper also proposes an attestation
protocol, both the protocol and attestation mechanism is implemented, and eval-
uated, along with presenting the underlying performance measurements.

1.2 Organisation

Section 2, discusses the major component that provides security and reliability
assurance to (remote) requesting entities: attestation handler and self-test man-
ager. Subsequently, we extend the discussion to the remote attestation mecha-
nism in section 3 and propose two attestation algorithms based on pseudorandom
number generators. In section 4 we propose an attestation protocol; in section 5
we detail an informal analysis and test implementation results of the attestation
protocol.

2 Proposed Components to Support Attestation
Mechanism

The crucial components that support the attestation mechanism are discussed
below. Both of these are part of the TEM, and for an indepth discussion on TEM
and Security Assurance & Validation Mechanism for UCOM please consult [2,3].
The difference between these two modules (i.e. the attestation handler and the
self-test manager) of the TEM is that one focuses on the software and the other
on the hardware. However, in the proposed attestation mechanism (section 3)
they complement each other to provide proof that a smart card is secure, reliable
and trustworthy.

2.1 Attestation Handler

During the application installation process, the attestation handler will verify
the current state of the platform runtime environment (e.g. security and opera-
tionally sensitive parts of the Smart Card Operating System) and affirm to the

Remote Attestation Mechanism for User Centric Smart Cards 153

appropriate SP that the platform is as secure and reliable as it is claimed to be
by the (third party) evaluation certificate [2]. Once the application is installed
the relevant SP can ask the TEM to generate its state validation (e.g. signed
hash of the downloaded application), ensuring that the application is downloaded
without any errors onto the platform. This function of the TEM is similar to the
GlobalPlatform’s DAP mechanism [4,5].

2.2 Self-test Manager

The self-test mechanism checks whether the smart card is tamper-resistant as
certified by a trusted third party evaluation. The aim of the self-test mechanism
is to provide a remote hardware validation framework in a way that enables a
requesting entity (e.g. an SP) to independently verify it. As our focus is not
the hardware end of the smart card, we do not propose any (pure) hardware-
based mechanism in this paper, which is one of the possible directions for future
research.

A self-test mechanism in the UCSC should provide the properties that are
listed below:

1. Robustness: On input of certain data, it should always produce associated
output.

2. Independence: When the same data is input to a self-test mechanism im-
plemented on two different devices, they should output different (random)
values.

3. Pseudo-randomness: The generated output should be computationally diffi-
cult to distinguish from a pseudo-random function.

4. Tamper-evidence: Any attack aiming to access the function should cause
irreversible changes which render the device dead.

5. Unforgeable: It should be computationally difficult to simulate the self-test
mechanism and mimic the actual deployed function on a device.

6. Assurance: the function should provide assurance (either implicitly or explic-
itly) based on independent evaluation (e.g. Common Criteria) to requesting
entities. The mechanism should not (always) require an active connection
with the device manufacturer to provide the assurance.

There are several possibilities for a self-test mechanism in a UCSC including
using active (intelligent) shield/mesh [6], the Known Answer Test (KAT) [7],
and the Physical Unclonable Function (PUF) [8].

To provide protection against invasive attacks, smart card manufacturers im-
plement an active shield/mesh around the chip. If a malicious user removes the
active shield then the chip will be disabled. The self-test mechanism can be
associated with this shield to provide a limited assurance that the protective
measures of the chip are still in place and active.

Furthermore, Hash-based Message Authentication Code (HMAC) can be de-
ployed with a hard-wired key that would be used to generate a checksum of
randomly selected memory addresses that have non-mutable code related to the

154 R.N. Akram, K. Markantonakis, and K. Mayes

Smart Card Operating System (SCOS). This mechanism requires the involve-
ment of the device manufacturer, as the knowledge of the correct HMAC key
would be a secret known only to the card manufacturer and its smart cards.

Another potential protection strategy is to utilise Physical Unclonable Func-
tions (PUFs) [8] to provide hardware validation [9]. It is difficult to find a single
and consistent definition of PUF in the literature [10]. However, a property de-
scription definition of the PUF is provided by Gassend et al. in [8].

Based on the above listed features, table 1 shows the comparison between
different possible functions that can act as the self-test mechanism. Although the
debate regarding the viability, security, and reliability of the PUFs is still open
in both academic circles and industry [11]; for completeness, we consider them
as a possible self-test mechanism in table 1. Similar to the PUF, Psuedorandom
Number Generators (PRNG) [12] might also be used to implement the self-test
mechanism.

Table 1. Comparison of different proposals for self-test mechanism

Features Active-Shield Keyed-HMAC PRNG PUF
Robustness Yes Yes Yes Yes
Independence No No Yes Yes
Pseudo-randomness No Yes Yes Yes
Tamper-evidence Yes – Yes* Yes
Unforgeable No Yes Yes* Yes
Assurance Yes No Yes Yes*

Note. “Yes” means that the mechanism supports the feature. “No” indicates that the
mechanism does not support the required feature. The entry “Yes*” means that it can
supports this feature if adequately catered for during the design.

If a manufacturer maintains separate keys for individual smart cards that sup-
port the HMAC then it can provide the independence feature. However the HMAC
key is hard-wired and this makes it difficult for it to be different on individual
smart cards of the same batch. Furthermore, it requires other features to provide
tamper evidence, like active-shield. On the other hand, PUFs and adequately de-
signed PRNGs can provide assurance that the platform state and the tamper-
resistant protections of a UCSC are still active. In this paper, we propose the
PRNG based design for the self-test mechanism that is detailed in section 3.1.

Before we discuss how a self-test manager and an attestation handler can
be implemented based on PRNG, we first discuss the overall framework that is
responsible for providing security assurance and validation of a smart card.

3 Attestation Mechanisms

In this section, we discuss the attestation mechanism based on PRNGs that
combine the functionality of attestation handler and self-test manager discussed
in section 2.

Remote Attestation Mechanism for User Centric Smart Cards 155

3.1 Pseudorandom Number Generator

In this section, we propose the use of a Pseudorandom Number Generator
(PRNG) to provide the device authentication, validation, and implicit anti-
counterfeit functionality. Unlike (non-simulatable) PUFs, PRNGs are emulatable
and their security relies on the protection of their internal state (e.g. input seed
values, and/or secret keys, etc.).

The PRNGs implemented in one device will be the same as they are in other
devices of the same batch and given the same input, they will produce the
same output. Therefore, the manufacturer will populate the PRNG seed file
with unique values in each smart card (no two smart cards from the same batch
should have the same seed file).

Algorithm 1. Self-test algo for offline attestation based on a PRNG
Input : l; list of selected memory addresses.
Output: S; signature key of the smart card.
Data:
seed; temporary seed value for the PRNG set to zero.
n; number of memory addresses in the list l.
i; counter set to zero.
a; memory address.
k; secret key used to encrypt the signature key of the smart card.
Se; encrypted signature key using a symmetric algorithm with key k.

1 SelfTestOffline (l) begin
2 while i < n do
3 a ←− ReadAddressList (l,i)
4 seed ←− Hash (ReadMemoryContents (a), seed)
5 i ←− i+1

6 if seed �= ∅ then
7 k ←− GenPRNG (seed)

8 else
9 return testfailed

10 S ←− DecryptionFunction (k, Se)
11 return S

The seed file is a collection of inputs that is fed to the PRNG to produce a
random number, and it is updated constantly by the PRNG [12]. This will en-
able a card manufacturer to emulate the PRNG and generate valid Chanllenge-
Response Pairs (CRPs: discussed in section 3.2) for a particular device. The
PRNG mechanism is not tamper-evident and it relies on the tamper-resistant
mechanisms of the smart card to provide physical security. Based on the
PRNG, algorithms 1 and 2 show the offline and online attestation mechanism,
respectively.

156 R.N. Akram, K. Markantonakis, and K. Mayes

The SelfTestOffline takes a list of selected memory addresses l that is illus-
trated in algorithm 1. The function iterates through the l reading one memory
address at a time, and then generating a hash of the contents stored at the given
memory address. In the next step at line six, the function SelfTestOffline
checks the value of seed and if it is not zero it will proceed; otherwise, it will
throw a test fail exception. If the seed value is not zero then the seed is input
to the PRNG and a sequence k is generated. The k is used to encrypt the smart
card signature key, and if the input to the PRNG at line seven is as expected
the signature key will be correctly decrypted.

Algorithm 2. Self-test algo for online attestation based on a PRNG
Input : c; randomly generated challenge sent by the card

manufacturer.
Output: r; hash value generated on selected memory addresses.
Data:
seedfile; seed file that has a list of non-zero values.
seed; temporary seed value for the PRNG set to zero.
ns; number of entries in a seed file.
s; unique reference to an entry in the seedfile.
nc; number of bytes in the c.
i; counter set to zero.
l; upper limit of memory address defined by the card manufacturer.
m; memory address.
mK; HMAC key shared between a smart card and respective card
manufacturer

1 SelfTestOnline (c) begin
2 while i < nc do
3 s←− ReadChallenge(c, i) % ns
4 seed←− ReadSeedFile(seedfile, s)
5 m←− GenPRNG(seed) % l
6 r ←− r ⊕ Hash(ReadMemoryContents(m),mK)
7 i←− i+ 1

8 return r

The algorithm returns the signature key, which is used by the attestation
handler to sign a message. The requesting entity will verify the signed message
and if the state of the platform is in conformance with the evaluated state then
the signature will be verified; otherwise, it will fail. The signature verification
will fail because the decrypted signature key will be different as the input to the
PRNG at line seven of the algorithm was different. Therefore, we can assume
that if the state is changed, the signature key will change, and the generated
signature will not verify.

Remote Attestation Mechanism for User Centric Smart Cards 157

The PRNG-based online attestation mechanism is illustrated in algorithm 2.
The function SelfTestOnline takes the challenge c from the card manufacturer
as input. The received challenge is treated as an array of bytes and individual
bytes of the challenge c are used to generate indexes to the seedfile; values stored
on these indexes are used to generate memory addresses (within the range speci-
fied by the card manufacturer). The contents of the generated memory addresses
are then HMACed and the result is securely sent to the card manufacturer. The
SP can use the same process described in algorithm 2 to generate the HMAC
result and if the result matches with the one sent by the smart card, then the
card manufacturer can ascertain that the current state of the card is trustwor-
thy. At line six of the algorithm 2, we update the seedfile with the value stored
in ‘m’. This update is necessary to avoid generation of the same ‘r’ if the card
manufacturer sends the same challenge ‘c’.

In the implementation of the attestation protocol (section 4), we implement
the online online attestation based on a PRNG illustrated in the algorithm 2.

3.2 Challenge-Response Pair (CRP) Generation

In the case of the mechanism based exclusively on the PRNG as depicted in al-
gorithm 2, the card manufacturer will provide a set of seed values that is referred
to as the seed file. This file is internally updated by the PRNG; however, as the
card manufacturer knows the initial seed file it does not need to communicate
CRPs with the smart card as it can generate the correct response independently
(using the seed file and the PRNG associate with the respective smart card).

3.3 Keys Generation

Individual smart cards have a unique set of cryptographic keys that the card
uses for different protocols/mechanisms during its lifetime. Therefore, after the
hardware fabrication and masking of the SCOS is completed [13] the card man-
ufacturer initiates the key generation process.

Each smart card will generate a signature key pair that does not change for
the lifetime of the smart card. The smart card signature key pair is certified
by the card manufacturer, and it is used to provide offline attestation (section
3). Furthermore, in the certificate hierarchy shown in figure 1, the smart card
signature key pair is linked with the Platform Assurance Certificate (PAC) [2] via
the card manufacturer’s certificate. The reason for this is that a malicious user
might copy a PAC that belongs to a genuine device and put it on his tampered
device and when an SP requests security assurance from the tampered device, it
provides the (copied) PAC of a (trusted) genuine device. By ensuring the PAC
is tied to genuine devices by the certificate hierarchy shown in figure 1 we can
avert such scenarios.

The evaluation authority (e.g. Common Criteria evaluation laboratory) issues
a certificate (e.g. a PAC) [2], which certifies that the signature key of the card
manufacturer is valid only for the evaluated product. If an adversary can get hold
of the manufacturer’s signature key pairs then he can successfully masquerade

158 R.N. Akram, K. Markantonakis, and K. Mayes

Common Criteria
Certification Authority

Card Manufacturer

PAC

Smart Card Signature
Key Pair Certificate

Smart Card Encryption
Key Pair Certificate

Smart Card User Signature
Key Pair Certificate

Fig. 1. Certificate hierarchy in the UCOM

as the smart card; either as a dumb device or by simulating the smart card on
a powerful device like a computer.

The smart card will also generate a public encryption key pair that is certified
by the smart card signature key. The smart card user signature key pair is used
to identify the owner of the device and to provide “proof of ownership” that is
beyond the scope of this paper. This signature key is unique to the individual
user and it is generated on the successful completion of ownership acquisition
process.

Finally, the smart card and card manufacturer share an encryption key for
symmetric algorithms (e.g. TDES, AES) and a MAC key. These keys will be
used to encrypt and MAC communication-messages between the smart card and
the card manufacturer.

4 Attestation Protocol

The attestation protocol, referred as Attestation Protocol (ATP), involves the
card manufacturer in the security assurance and validation framework by using
the online attestation mechanisms. The aim of the protocol is to provide an
assurance to a remote SP that the current state of the smart card is not only
secure but also (dynamically and on-demand) attested by the card manufacturer.
The card manufacturer generates a security validation message that testifies to
the requesting SP that its product is safe and still in compliance with the security
evaluation indicated by the associated PAC.

4.1 Protocol Goals

The goals for the attestation protocol are listed as below:

PG-1 Secrecy: During the attestation protocol, the communication messages are
adequately protected.

PG-2 Privacy: In the attestation protocol, the identity smart card owner (user)
should not be revealed to any eavesdropper or the card manufacturer.

Remote Attestation Mechanism for User Centric Smart Cards 159

4.2 Intruder’s Capabilities

The aim of an adversaryA could be to retrieve enough information to enable him
to successfully masquerade as a card manufacturer or as a smart card. There-
fore, we assume an adversary A is able to intercept all messages communicated
between a smart card and its manufacturer. In addition, A can modify, change,
replay, and delay the intercepted messages.

If A is able to masquerade as a card manufacturer then A can issue fake
attestation certificates to individual smart cards, which might compromise the
security and privacy of the user and related SPs. On the other hand, if A is
able to compromise the smart card then he can effectively simulate the smart
card environment. This will enable him to reverse engineer the downloaded ap-
plications and retrieve sensitive data related to the user and application (e.g.
intellectual property of the SP).

4.3 Protocol Notation and Terminology

Table 2 summarises the notation used in the proposed attestation protocol.

Table 2. Protocol notation and terminology

Notation Description
SC Denotes a smart card.
SP Denotes a Service Provider.
CM Denotes the respective card manufacturer of the SC.
CC Denotes the respective Common Criteria evaluation laboratory that

evaluates the SC.
Xi Indicates the identity of an entity X.
NX Random number generated by entity X.
h(Z) The result of applying a hash algorithm (e.g. SHA-256) on data Z.
KX−Y Long term encryption key shared between entities X and Y.
mKX−Y Long term MAC key shared between entities X and Y.
BX Private decryption key associated with an entity X.
VX Public encryption key associated with an entity X.
eK(Z) Result of encipherment of data Z with symmetric key K.
fK(Z) Result of applying MAC algorithm on data Z with key K.
VM The Validation Message (VM) issued by the respective CM to a

SC representing that the current state of the SC is as secure as at
the time of third party evaluation, which is evidenced by the PAC.

SignX(Z) Is the signature on data Z with the signature key belonging to an
entity X using a signature algorithm like DSA or based on the RSA
function.

CertSX←Y Is the certificate for the signature key belonging to an entity X,
issued by an entity Y.

CertEX←Y Certificate for the public encryption key belonging to an entity X,
issued by an entity Y.

160 R.N. Akram, K. Markantonakis, and K. Mayes

Notation Description
X → Y : C Entity X sends a message to entity Y with contents C.
X ||Y Represents the concatenation of data items X and Y.
SID Session identifier that is used as an authentication credential and to

avoid Denial of Service (DoS) attacks. The SID generated during
the protocol run ’n’ is used in the subsequent protocol run (i.e.
n+1).

4.4 Protocol Description

In this section, we describe the attestation protocol, and each message is repre-
sented by ATP-n, where n represents the message number.

ATP-1. SC : mE = ekSC−CM (SCi||N ′
SC ||CMi||ReqV al)

SC → CM : SCi′ ||mE||fmkSC−CM (mE)||SID
Before issuing the smart card to the user, the SC and CM will establish two

secret keys; encryption key KSC−CM and MAC key mKSC−CM . The SC and
CM can use these long-term shared keys to generate the session encryption key
kSC−CM and the MAC key mkSC−CM . The method deployed to generate session
keys is left to the sole discretion of the card manufacturer. Each SC has a unique
identifier SCi that is the identity of the smart card. To provide privacy to each
smart card (and its user) the identity of the SC is not communicated in plaintext.
Therefore, the psuedo-identifier SCi′ is used in the ATP-1, which is generated
by the SC and corresponding CM on the successful completion of the previous
run of the attestation protocol. We will discuss the generation of SCi′ and SID
in subsequent messages, as the generated SCi′ and SID during this message
will be used in the next execution of the attestation protocol. A point to note
is that for the very first execution of the attestation protocol, the smart card
uses the pseudo-identifier (SCi′) that was generated by the card manufacturer
and stored on the smart card before the card was issued to the user. The SID
is used for two purposes: firstly to authenticate the SC and secondly, to prevent
a Denial of Service (DoS) attack on the attestation server. The ReqV al is the
request for attestation process.

On receipt of the first message, the CM will check whether it has the correct
values of SCi′ and SID. If these values are correct, it will then proceed with
verifying the MAC. If satisfied, it will then decrypt the encrypted part of the
message.

ATP-2. CM : mE = ekSC−CM (CMi||N ′
SC ||NCM ||Challenge)

CM→ SC : mE||fmkSC−CM (mE)||SID
The CM generates a random number NCM and a Challenge. In case of the

PRNG-based attestation mechanism, the Challenge would also be a random
number.

ATP-3. SC : mE = ekSC−CM (N ′
SC ||NCM ||NSP ||NSC ||Resp||Opt)

SC → CM : mE||fmkSC−CM (mE)||SID

Remote Attestation Mechanism for User Centric Smart Cards 161

After generating the Resp using the PRNG-based algorithm discussed in sec-
tion 2, the SC will proceed with message three. It will concatenate the random
numbers generated by the SC, CM, and SP , with the Resp. The rationale for
including the random number from the SP in message three is to request CM to
generate a validation message that can be independently checked by the SP to
ensure it is fresh and valid. The function of the Opt element is to accommodate
the CRP updates if other algorithms are used (e.g. PUF-based attestation).

While the SC was generating the Resp based on the Challenge, the CM
also calculates the correct attestation response. When the CM receives message
three, it will check the values and if they match then it will issue the validation
message. Otherwise the attestation process has failed and CM does not issue
any validation message (VM).

ATP-4. CM : VM = SignCM(CMi||SCi||NSP ||NSC ||PAC)
CM : mE = ekSC−CM (N ′

SC ||VM ||SC+
i′ ||SID+||CertSCM)

CM→ SC : mE||fmkSC−CM (mE)||SID
If the attestation response is successful then the CM will take the random

numbers generated by the SP and the SC and include the identities of the SC and
CM. All of these items are then concatenated with the SC’s evaluation certificate
PAC and then signed by the CM. The signed message is then communicated to
the SC.

In the ATP-4, the CM will also generate a SID and SCi′ that will be used
in the subsequent execution of the attestation protocol between the SC and
CM. The SID and SCi′ for the subsequent run of the attestation protocol is
represented as SID+ and SC+

i′ . The SID+ is basically a (new) random number
that is associated with the pseudo-identifier of the smart card that it will use
to authenticate in the subsequent attestation protocol. Furthermore, the SC+

i′

is generated as SC+
i′ = fmKCM (CMi||NSC ||NCM ||SID), where mKCM is the

MAC key that the CM does not share.

5 Protocol Analysis

In this section, we analyse the proposed attestation protocol for given goals and
provide details of the test performance results.

5.1 Informal Analysis

In order to meet the goals PG-1 and PG-2, all messages communicated between
the SC and CM are encrypted and MACed using long term secret encryption and
MAC keys; kSC−CM and mKSC−CM , respectively. The A has to compromise
these keys in order to violate the PG-1. If we consider that the symmetric algo-
rithm used (e.g. AES) is sufficiently strong to avert any exhaustive key search
and robust enough to thwart any cryptanalysis then it is difficult for the A to
break the protocol by attacking the used symmetric algorithms. A possibility
can be to perform side-channel analysis of the smart card and attempt to re-
trieve the cryptographic keys; however, most modern smart cards have adequate

162 R.N. Akram, K. Markantonakis, and K. Mayes

security to prevent this attack, which are evaluated and certified by the third
party evaluation (e.g. Common Criteria evaluation). Nevertheless, these assur-
ances can only be against the state-of-the-art attack methodologies at the time
of manufacturing/evaluation. Any attacks which surface after manufacture and
evaluation may render both the assurance and validation mechanisms useless.

The smart card identity is not used as plaintext during the communication
between the SC and the CM. Instead of using the SCi, the SC uses a psuedo-
identity SCi′ which changes on every successful completion of communication
with the respective CM. Therefore, a particular SC will only use SCi′ once
during its lifetime.

5.2 Protocol Verification by CasperFDR

The CasperFDR approach is adopted to test the soundness of the proposed
protocol under the defined security properties. In this approach, the Casper
compiler [14] takes a high-level description of the protocol, together with its
security requirements. It then translates the description into the process alge-
bra of Communicating Sequential Processes (CSP) [15]. The CSP description of
the protocol can be machine verified using the Failures-Divergence Refinement
(FDR) model checker [16]. A short introduction to the CasperFDR approach
to mechanical formal analysis is provided in appendix A. The intruder’s capa-
bility modelled in the Casper script (appendix A) for the proposed protocol is
as: 1) An intruder can masquerade as any entity in the network. 2) It can read
the messages transmitted by each entity in the network. 3) An intruder cannot
influence the internal process of an agent in the network.

The security specifications for which the CasperFDR evaluates the network
are as shown below. The listed specifications are defined in the # Specification
section of appendix A: 1) The protocol run is fresh and both applications are
alive. 2) The key generated by a smart card is known only to the card man-
ufacturer. 3) Entities mutually authenticate each other and have mutual key
assurance at the conclusion of the protocol. 4) Long term keys of communicat-
ing entities are not compromised.

The CasperFDR tool evaluated the protocol and did not find any attack(s). A
point to note is that in this paper, we provide mechanical formal analysis using
CasperFDR for the sake of completeness and we do not claim expertise in the
mathematical base of the formal analysis.

5.3 Implementation Results and Performance Measurements

The test protocol implementation and performance measurement environment
in this paper consists of a laptop with a 1.83 GHz processor, 2 GB of RAM
running on Windows XP. The off-card entities execute on the laptop and for
on-card entities, we have selected two distinct 16bit Java Cards referred as C1
and C2. Each implemented protocol is executed for 1000 iterations to adequately
take into account the standard deviation between different protocol runs, and
the time taken to complete an iteration of protocol was recorded. The test Java

Remote Attestation Mechanism for User Centric Smart Cards 163

Cards (e.g. C1 and C2) were tested with different numbers of iterations to find
out a range, which we could use as a common denominator for performance
measurements in this paper. As a result, the figure of 1000 iterations was used
because after 1000 iterations, the standard deviation becomes approximately
uniform.

Regarding the choice of cryptographic algorithms we have selected Advance
Encryption Standard (AES) [17] 128-bit key symmetric encryption with Cipher
Block Chaining (CBC) [18] without padding for both encryption and MAC oper-
ations. The signature algorithm is based on the Rivest-Shamir-Aldeman (RSA)
[18] 512-bit key. We use SHA-256 [19] for hash generation. For Diffie-Hellman
key generation we used a 2058-bit group with a 256-bit prime order subgroup
specified in the RFC-5114 [20]. The average performance measurements in this
paper is rounded up to the nearest natural number.

The attestation mechanism implemented for emulating the practical perfor-
mance is based on the PRNG design. The PRNG for our experiments was based
on the AES [12] and it has been implemented such that it allows us to input the
seed file. The performance measures taken from two different 16-bit Java Cards
are listed in table 3. The offline attestation mechanism based on PRNG take
in total (excluding PRNG seed file) 2084 bytes. Similarly, the online attestation
mechanism and associated attestation protocol based on PRNG take in total
(excluding PRNG seed file) 5922 bytes.

Table 3. Test performance measurement (milliseconds) for the attestation protocol

Measures Offline Attestation Online Attestation
Card Specification C1 C2 C1 C2
Average 408.63 484.55 1008 1284
Best time 367 395 930 1075
Worse time 532 638 1493 1638
Standard Deviation 41.82 59.43 87.68 92.29

5.4 Related Work

The basic concept of remote attestation and ownership acquisition came from
the TCG’s specifications [21]. The user takes the ownership of the Trusted Plat-
form Module (TPM) and in return, the TPM generates a unique set of keys
that are associated with the respective user. The remote attestation mechanism
described in the TPM specification [22] provides a remote system attestation
(only software). The attestation mechanism is designed so that if the software
state is modified, the TPM cannot generate a valid report.

The TPM does not provide an attestation that includes the hardware state.
Furthermore, the attestation defined in the TPM specification is more like the
offline attestation. However, the offline attestation mechanism (algorithm 1) is
different to the one used by TPM, whereas the online attestation is not part of
the TPM specifications.

164 R.N. Akram, K. Markantonakis, and K. Mayes

Similarly, other proposals concentrate on the software attestation without
binding it to a particular hardware. Such proposals include SCUBA [23], SBAP
[24], and SWATT [25]. These protocols utilise execution time as a parameter
in the attestation process. This is difficult to guarantee remotely, even with the
delegation of time measurement to neighbouring trustworthy nodes [23]. Other
mechanisms that use trusted hardware are proposed by Schellekens et al. [26]
and PUF-based protocols [27,28,29].

There is no such proposal for remote attestation in smart card frameworks
like Java Card, Multos, or GlobalPlatform. The nearest thing is the DAP in the
GlobalPlatform card specification that checks the signature on the downloaded
application (if the application provider chooses this option). Furthermore, we
have opted out of having execution measurement as part of the attestation pro-
cess as it is difficult to ascertain the trustworthiness of the remote device that
measures it. However, unlike other proposed protocols we have an explicit re-
quirement that third party evaluation is used to provide an implicit trust in
the attestation process. Furthermore, our proposal binds the software attesta-
tion with the hardware protection (tamper-evident) mechanism to provide added
assurance.

6 Conclusion

In this paper, we briefly discussed the generic architecture of the UCSC and its
components. Later, we extended the discussion to the security assurance and
validation framework that requires a third party evaluation and an attestation
process. The attestation process includes hardware validation with the tradi-
tional software attestation. We proposed two modes for the attestation process:
offline and online attestation. In designing the attestation processes, we based
our proposal on the PRNG algorithms. To have an online attestation, we pro-
posed the attestation protocol that communicates with the card manufacturer
to get a dynamic certificate of assurance (a signed message from the card manu-
facturer) that the smart card is still secure and reliable. We implemented offline
and online attestation mechanisms, along with an attestation protocol on 16-bit
Java Cards. We also detailed the performance measurements of the implemented
mechanisms and protocols.

References

1. Akram, R.N., Markantonakis, K., Mayes, K.: A Paradigm Shift in Smart Card
Ownership Model. In: Apduhan, B.O., Gervasi, O., Iglesias, A., Taniar, D.,
Gavrilova, M. (eds.) Proceedings of the 2010 Intl. Conf. on Computational Sci-
ence and Its Applications (ICCSA 2010), pp. 191–200. IEEE Computer Society,
Fukuoka (2010)

2. Akram, R.N., Markantonakis, K., Mayes, K.: A Dynamic and Ubiquitous Smart
Card Security Assurance and Validation Mechanism. In: Rannenberg, K., Varad-
harajan, V., Weber, C. (eds.) SEC 2010. IFIP AICT, vol. 330, pp. 161–172.
Springer, Heidelberg (2010)

Remote Attestation Mechanism for User Centric Smart Cards 165

3. Akram, R.N., Markantonakis, K., Mayes, K.: Coopetitive Architecture to Support
a Dynamic and Scalable NFC Based Mobile Services Architecture. In: Chim, T.W.,
Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 214–227. Springer, Heidelberg
(2012)

4. The GlobalPlatform Proposition for NFC Mobile: Secure Element Management
and Messaging, GlobalPlatform, White Paper (April 2009)

5. GlobalPlatform: GlobalPlatform Card Specification, Version 2.2 (March 2006)
6. Eagles, K., Markantonakis, K., Mayes, K.: A comparative analysis of common

threats, vulnerabilities, attacks and countermeasures within smart card and wire-
less sensor network node technologies. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 161–174. Springer,
Heidelberg (2007)

7. FIPS 140-2: Security Requirements for Cryptographic Modules, Online, National
Institute of Standards and Technology (NIST) Federal Information Processing
Standards Publication, Rev. Supercedes FIPS PUB 140-1 (May 2005)

8. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Func-
tions. In: Proceedings of the 9th ACM Conf. on Computer and Communications
Security, CCS 2002, pp. 148–160. ACM, New York (2002)

9. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

10. Busch, H., Sotáková, M., Katzenbeisser, S., Sion, R.: The PUF promise. In: Ac-
quisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp.
290–297. Springer, Heidelberg (2010)

11. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-Channel Analysis of PUFs and
Fuzzy Extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R.,
Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 33–47. Springer, Hei-
delberg (2011)

12. Akram, R.N., Markantonakis, K., Mayes, K.: Pseudorandom Number Generation
in Smart Cards: An Implementation, Performance and Randomness Analysis. In:
Mana, A., Klonowski, M. (eds.) 5th Intl. Conf. on New Technologies, Mobility and
Security (NTMS), IEEE CS, Istanbuls (2012)

13. Rankl, W., Effing, W.: Smart Card Handbook, 3rd edn. John Wiley & Sons, Inc.,
NY (2003)

14. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6, 53–84 (1998)

15. Hoare, C.A.R.: Communicating sequential processes, vol. 21(8). ACM, New York
(1978)

16. Ryan, P., Schneider, S.: The Modelling and Analysis of Security Protocols: the
CSP Approach. Addison-Wesley Professional (2000)

17. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

18. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC (October 1996)

19. FIPS 180-2: Secure Hash Standard (SHS), National Institute of Standards and
Technology (NIST) Std. (2002)

20. Lepinski, M., Kent, S.: RFC 5114 - Additional Diffie-Hellman Groups for Use with
IETF Standards. Tech. Rep. (January 2008)

21. Trusted Computing Group, TCG Specification Architecture Overview, The
Trusted Computing Group (TCG), Oregon, USA, revision 1.4 (August 2007)

166 R.N. Akram, K. Markantonakis, and K. Mayes

22. Trusted Module Specification 1.2: Part 1- Design Principles, Part 2- Structures of
the TPM, Part 3- Commands, TCG Std., Rev. 103 (July 2007)

23. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: Secure Code
Update By Attestation in sensor networks. In: Proceedings of the 5th ACM Work-
shop on Wireless Security, WiSe 2006, pp. 85–94. ACM, NY (2006)

24. Li, Y., McCune, J.M., Perrig, A.: SBAP: Software-based attestation for peripherals.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 16–29. Springer, Heidelberg (2010)

25. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: SoftWare-based AT-
Testation for Embedded Devices. In: IEEE Symposium on Security and Privacy,
p. 272 (2004)

26. Schellekens, D., Wyseur, B., Preneel, B.: Remote attestation on legacy operating
systems with trusted platform modules. Sci. Comput. Program. 74, 13–22 (2008)

27. Schulz, S., Wachsmann, C., Sadeghis, A.-R.: Lightweight Remote Attestation us-
ing Physical Functions. Technische Universitat Darmstadt, Darmstadt, Germany,
Technical Report (July 2011)

28. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: Proceedings of the 44th Annual Design Automation
Conf. ACM Press, USA (2007)

29. Busch, H., Katzenbeisser, S., Baecher, P.: PUF-Based Authentication Protocols
– Revisited. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp.
296–308. Springer, Heidelberg (2009)

A Attestation Protocol

The Casper script in this section corresponds to the attestation protocol de-
scribed in section 4.

#Free variables
SC, CM : Agent
ns, nsp, nt, c, r : Nonce
S1, S2 : Num
VKey: Agent -> PublicKey
SKey: Agent -> SecretKey
InverseKeys = (sKey, sKey), (VKey,
SKey)

#Protocol description
0. -> SC : CM
1. SC -> CM : S1,{SC, ns, CM,}{sKey}
2. CM -> SC : {CM, ns, nm, c, S2}{sKey}
3. SC -> CM : {ns,nm,nsp,r}{sKey}
4. CM -> SC : {ns,{CM,SC,ns,nsp}

{Skey{CM}}}{sKey}

#Actual variables
SmartCard, CardManufacturer, MAppl :
Agent
Ns, Nsp, Nt, Nm, Challenge, Response :
Nonce
SOne, STwo : Num

#Processes

INITIATOR(SC, CM, ns, nsp, r) knows
sKey, VKey
RESPONDER(CM, SC, nm, c) knows sKey,
SKey(CM), VKey

#System
INITIATOR(SmartCard, CardManufacturer,
Ns, Nsp, Response)
RESPONDER(CardManufacturer, SmartCard,
Nm, Challenge)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = MAppl
IntruderKnowledge = {SmartCard,
CardManufacturer, MAppl, MAppl, Nm,
Nsp, SKey(MAppl), VKey}

#Specification
StrongSecret(SC, sKey, [CM])
StrongSecret(SC, r, [CM])
Aliveness(SC, CM)
Aliveness(CM, SC)

Direct Construction of Signcryption Tag-KEM

from Standard Assumptions in the Standard
Model

Xiangxue Li1,2, Haifeng Qian1,�, Yu Yu3, Jian Weng4, and Yuan Zhou5

1 Department of Computer Science and Technology, East China Normal University
hfqian@cs.ecnu.edu.cn

2 National Engineering Laboratory for Wireless Security, Xi’an University of Posts
and Telecommunications

3 Institute for Interdisciplinary Information Sciences, Tsinghua University
4 Department of Computer Science, Jinan University

5 Network Emergency Response Technical Team/Coordination Center, China

Abstract. The paper presents a direct construction of signcryption tag-
KEM under the standard DBDH and CDH assumptions in the standard
model, without using strongly unforgeable signature schemes as build-
ing blocks. We prove its confidentiality and unforgeability with respect
to adversarially-chosen keys where the adversary is given more advan-
tageous attack environment than existing models in the literature. The
performance of our construction is comparable to existing signcryption
tag-KEM schemes.

1 Introduction

Signcryption [13] provides confidentiality and non-repudiation simultaneously
for the messages sent over an insecure channel, at lower costs of computation
and communication than those required in both signature-then-encryption and
encryption-then-signature approaches. At Eurocrypt 2005, Abe et al. [1] intro-
duced tag-KEM (tKEM) scheme which has an extra input τ as a tag in KEM
scheme[6]. Bjørstad and Dent [3] extended tag-KEM scheme with an authenti-
cation by proposing signcryption tag-KEM (SC-tKEM).

This paper focuses on both security model and concrete construction of sign-
cryption tKEM schemes. We summarize our results in each of these areas, and
relate them to prior work.

Constructions. Concrete constructions for signcryption tag-KEM may be evalu-
ated according to the following perspectives: (1) the complexity assumptions on
which the security of the construction is based; (2) the operational assumption
of setting up the construction practically; etc.

The constructions in [3] are proven secure in the random oracle model [4].
Although those in [9] and [11] are without random oracles, yet ‘generic’: they

� Corresponding author.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 167–184, 2013.
c© Springer International Publishing Switzerland 2013

168 X. Li et al.

involve running standard strongly unforgeable signature schemes as building
blocks. The construction in [9] is based on non-standard GHDH assumption
[7]. We present in the paper a direct construction of signcryption tag-KEM
which is provably secure under the standard complexity assumptions (DBDH and
CDH) in the standard model. The idea of our construction follows the Waters
signature[12] and the public key encryption by Lai et al.[8]. Our trick allows us
to prove its security w.r.t. adversarially-chosen keys (see below).

Security. The security requirements of a signcryption tag-KEM scheme are con-
fidentiality and authenticity [3,9,11]. In the game that defines confidentiality in
[9], the challenger produces the challenge private/public key pairs of the sender
and the receiver, hands the key pair of the sender and the public key of the
receiver to the adversary A, who outputs a tag τ of which he receives an encap-
sulation of some symmetric key. A wins if it succeeds in guessing a bit. Thus,
the definition of confidentiality [9] only considered the case of honestly chosen
challenge key of the sender.

In real-world applications, however, the keys are usually chosen by the users
themselves. It seems thus natural to let the adversary choose the keys in the secu-
rity experiment to reflect this fact. Furthermore, the adversary should be allowed
to choose the challenge key of the sender in an adaptive manner, i.e., it can make
multiple queries containing a public key of some sender and a tag to the key de-
capsulation oracle, where future queries (especially, the challenge query) can de-
pend on the results of previous queries. Like the definition of confidentiality, the
unforgeability models in [9,11] did not consider the case of adversarially-chosen
challenge key of the receiver.

Hence, we define confidentiality and unforgeability with new adversarial pow-
ers such that the adversary can choose its challenge keys in the games that
define confidentiality and unforgeability. These games give the adversary more
advantageous attack environment which is indeed quite natural as the adversary
is given all the possible resources, except those that allow it to trivially win
the game. We also notice that there do exist some signcryption schemes which
consider adversarially chosen keys in their security models [10,5,2].

In a nutshell, our signcryption tag-KEM achieves the following desirable fea-
tures simultaneously, compared with the previous constructions [3,9,11].

1. Full insider security w.r.t. adversarially-chosen keys : Our SC-tKEM pro-
vides full insider security with respect to adversarially-chosen keys in the
standard model (in definitions 5 and 6). Whereas, there exist in the
prior work on SC-tKEM [3,9,11] the failure to consider the possibility of
adversarially-chosen challenge keys (for confidentiality and unforgeability).

2. Standard complexity assumptions : Security of our SC-tKEM relies on the
well-established Decisional Bilinear Diffie-Hellman and the Computational
Diffie-Hellman assumptions. Prior to our work, the SC-tKEM schemes [9]
require non-standard assumption (i.e., the Gap Hashed Diffie-Hellman as-
sumption [7]) to prove security in the standard model. And the schemes in
[11] partially relies on the strong unforgeability of the underlying signature.

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 169

3. Operational assumption: Our construction enjoys simple setup operation
since only one key generation algorithm is needed to generate the keys of
both the sender and the receiver. Whereas, two different key generation al-
gorithms are required in [9,11] respectively for the entities, e.g., RSA-like for
the sender and DLP-like for the receiver. Thus, the setup process of these
SC-tKEM schemes is more complicate than that of ours.

2 Preliminaries

2.1 Bilinear Group

Let G and GT be two multiplicative cyclic groups of prime order p, g a generator
of G; e : G×G→ GT an efficiently computable map with the following proper-
ties: i) bilinear: for all u, v ∈ G and a, b ∈ Zp, e(u

a, vb) = e(u, v)ab; ii) efficiently
computable: e(u, v) is efficiently computable for any input pair (u, v) ∈ G × G;
iii) non-degenerate: e(g, g) �= 1. We say that G is a bilinear group if it satisfies
these requirements.

2.2 Complexity Assumptions

Let G be a bilinear group of prime order p and g be a generator of G.

Definition 1 (DBDH). Let a, b, c and z be random from Zp, g the generator
of G. The (t, ε)-DBDH assumption says that there is no algorithm A that can
distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple (ga, gb, gc, e(g, g)z) in
time t with advantage ε, where the advantage of A is defined as the probability

AdvDBDH
A =

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣ .

Definition 2 (CDH). In a bilinear group G, the computational Diffie-Hellman

problem is: given (g, ga, gb) ∈ G3 for some a, b
R← Zp , to find gab ∈ G.

The success probability of an algorithm A in solving the CDH problem on G is

defined as AdvcdhA
def
= Pr

[
A(g, ga, gb) = gab : a, b

R←−Zp

]
. The probability is over

the random choice of g from G, of a, b from Zp, and the coin tosses of A. If
there is no adversary A which can break the CDH problem on G in time at most
t, and AdvcdhA ≥ ε, we say the CDH problem on G is (t, ε)-secure.

2.3 Collision Resistance

Definition 3 (Collision Resistance). Let �, �′ : N ← N be such that
�(n) > �′(n) and let I ⊆ {0, 1}∗. A collection of functions {Hs : {0, 1}�(n) →
{0, 1}�′(n)}s∈I is called collision-resistant hash family (with index-set I) if the
following holds: 1) There exists a probabilistic polynomial-time evaluation algo-
rithm that on input s ∈ I, x ∈ {0, 1}�(k) computes Hs(x); 2) Collisions are hard
to find. Formally, a pair x, x′ is called a collision for a function Hs if x �= x′

170 X. Li et al.

but Hs(x) = Hs(x
′). Collision resistance requires that given input s, every PPT

algorithm succeeds in finding a collision for the function Hs with a negligible
probability.

We say {Hs}s∈I is (t, εcr)-collision resistant hash function indexed by s ∈ I,
if no probabilistic t-polynomial time algorithm A, which outputs x, x′ such that
Hs(x) = Hs(x

′) and x �= x′ for chosen s ∈ I, is of probability at least εcr:
Pr[Hs(x) = Hs(x

′) ∧ x �= x′ : given s ∈ I; (x, x′)← A(Hs)] < εcr.

3 Definition of Signcryption Tag-KEM

3.1 Syntax

Unlike an encryption algorithm, the tag-KEM’s encapsulation algorithm does not
take any plaintext as input but rather randomly generates its own “message” –
the symmetric key K [1]. A signcryption tag-KEM is defined by direct analogy
to the definition of tag-KEM [1]. The following definition is borrowed from [9,11]
which is a simplified version of the original one defined by Bjørstad and Dent[3].

Definition 4 (SC-tKEM). A signcryption tag-KEM consists of the following
algorithms:

Setup(1λ): setup algorithm, on input a security parameter λ, outputs the com-
mon parameters used in the scheme.

tKeyGen(1λ): key generation algorithm, on input a security parameter λ, out-
puts the sender’s public/private key pair (pks, sks) and the receiver’s pub-
lic/private key pair (pkr , skr). We write (pk, sk) = tKeyGen(1λ).

tKeyEnc(sks, pkr, τ): key encapsulation algorithm, on input the sender’s private
key sks, the receiver’s public key pkr, and a tag τ , outputs a symmetric key
K, and a ciphertext C which is an encapsulation of the key K. We write
(K,C) = tKeyEnc(sks, pkr, τ).

tKeyDec(pks, skr, C, τ): key decapsulation algorithm, on input the sender’s pub-
lic key pks, the receiver’s private key skr, the encapsulation C of some sym-
metric key K, and the tag τ , outputs either the symmetric key K or the error
symbol ⊥ in case C is not valid. We write K = tKeyDec(pks, skr, C, τ).

The correctness of a SC-tKEM requires that K = tKeyDec(pks, skr, C, τ), for all
(K,C) = tKeyEnc(sks, pkr, τ), and public/private key pairs (pks, sks), (pkr, skr).

3.2 Definition of Confidentiality

The confidentiality condition requires, informally, that an adversary should not
be able to distinguish a real key output by the encapsulation algorithm from a
random key. As in the scenario of signcryption [10,5,2], we consider the confi-
dentiality with respect to adversarially-chosen keys for signcryption tKEM.

Definition 5. Given a SC-tKEM scheme, the attack model of confidentiality
w.r.t. adversarially-chosen keys is defined in terms of a game, termed the IND-
CCA2-SCtKEM game, played between a hypothetical challenger C and an attacker
A. For a given security parameter λ:

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 171

- Setup: The challenger C runs the key generation algorithm tKeyGen(1λ) (as
in definition 4) to produce the receiver’s key pair (pk�r , sk

�
r), and sends pk�r

to the attacker A, while keeping sk�r secret.
- Phase 1: During this phase, A may make the polynomially bounded queries
of key decapsulation. In a key decapsulation query, A submits to the chal-
lenger C a ciphertext C associated with the sender’s public key pks and a
tag τ . Herein, the public key pks and the tag τ may be generated by A as
it wishes. The challenger C performs key decapsulation operations for A in
the algorithm tKeyDec by using the private key sk�r and then sends the result
K = tKeyDec(pks, sk

�
r , C, τ) or ⊥ (if C is not valid) to A.

- Challenge: At the end of Phase 1, A generates and sends a sender’s key pair
(pk�s , sk

�
s) and a tag τ� to C. The challenger performs the key encapsulation

algorithm tKeyEnc by using the private key sk�s , the public key pk
�
r and the tag

τ�, and obtains the result (K�
0 , C

�) = tKeyEnc(sk�s , pk
�
r , τ

�). C also chooses a
random bit b ∈ {0, 1} and a random symmetric key K�

1 with the requirement
that K�

1 and K�
0 are of the same length. Lastly, C gives A the tuple (K�

b , C
�)

as the challenge.
- Phase 2: During this phase, A may make the queries as in Phase 1, while
differently we do not allow A to query the key decapsulation for the ciphertext
C� under the sender’s public key pk�s and the tag τ�. However, A is allowed
to make a key decapsulation query on the challenged ciphertext C� with a
different sender’s public key or a different tag.

- Guess: Eventually, A outputs a bit b′, and it wins the game if b = b′.

The advantage of the adversary A is defined as the probability AdvIND
A,SC−tKEM =

|2Pr[b = b′]− 1|. We say A (t, qd, ε)-breaks the IND-CCA2 security of the sign-
cryption tag-KEM, if A wins the IND-CCA2-SCtKEM game with the advantage
ε in time t after making qd key decapsulation queries. A signcryption tag-KEM
is said to achieve the IND-CCA2 security if no polynomially bounded adversary
has a non-negligible advantage in winning the IND-CCA2-SCtKEM game.

3.3 Definition of Unforgeability

Similarly, existing unforgeability definition of SC-tKEM defined in the litera-
ture [3,9,11] does not take into account the possibility of adversarially-chosen
challenge keys of the receiver. This induces the following definition.

Definition 6. The security model of strongly existential unforgeability for a
signcryption tag-KEM is defined by the so-called SUF-SCtKEM game, played
between a hypothetical challenger C and an attacker F described below. For a
given security parameter λ:

- Setup: The challenger C runs the key generation algorithm tKeyGen(1λ) (as
in definition 4) to produce the sender’s key pair (pk�s , sk

�
s), and sends pk�s to

the attacker F , while keeping sk�s secret.
- Attack: During this phase, F may make the polynomially bounded queries
of key encapsulation. In a key encapsulation query, the attacker F chooses a

172 X. Li et al.

receiver’s key pair (pkr, skr) and a tag τ , and sends pkr, τ to the challenger
C. Then C performs key encapsulation operations for F by the algorithm
tKeyEnc on input the private key sk�s , the public key pkr and the tag τ ,
obtains the result (K,C) = tKeyEnc(sk�s , pkr, τ), sends C to F , and appends
(C, pkr , τ) to a list Σ (which is initially empty).

- Forgery: Eventually, the attacker F outputs a receiver’s key pair (pk�r , sk
�
r),

a tag τ� and a ciphertext C� with the requirement that (C�, pk�r , τ
�) is a

fresh forgery, i.e., (C�, pk�r , τ
�) /∈ Σ. Then, we say F wins the game if

(C�, pk�r , τ
�) is valid under pk�s , i.e., tKeyDec(pk

�
s , sk

�
r , C

�, τ�) �= ⊥.

The advantage of the attacker F is defined as the probability of success in winning
the SUF-SCtKEM game: AdvSUFF ,SC−tKEM = Pr[Win].

We say the signcryption tag-KEM is (t, qe, ε)-forgeable if F wins the SUF-
SCtKEM game with the advantage ε in time t after making qe key encapsula-
tion queries. A signcryption tag-KEM has strongly existential unforgeability if
no polynomially-bounded adversary can win the SUF-SCtKEM game with non-
negligible advantage.

4 The Proposed Construction

Now we are ready to present our construction of SC-tKEM.

Setup(1λ): Let G be a group of prime order p, for which there exists an efficiently
computable bilinear map into G. The size of the group is determined by the
security parameter. Additionally, let e : G × G → GT denote the bilinear
map and g be the corresponding generator, along with u′, u1, . . ., un, f , h,
v, w, z ∈R G. Let G : {0, 1}∗ → {0, 1}n, H : {0, 1}∗ → Zp be two collision
resistant hash functions.

tKeyGen(1λ): A probabilistic polynomial-time sender/receiver key generation

algorithm, chooses xs, xr
R←− Zp, sets sks = xs, pks = gxs , skr = xr ,

pkr = gxr , and outputs the public/private key pair (pks, sks) for the sender
and the public/private key pair (pkr, skr) for the receiver.

tkeyEnc(sks, pkr, τ): A probabilistic polynomial-time key encapsulation algo-
rithm, takes as input the private key sks of the sender, the public key
pkr of the receiver and a tag τ , and outputs a key K and a ciphertext
C = (σ1, σ2, σ3, σ4) of (K, τ).

1. Randomly choose k, r, σ4
R←− Zp.

2. Compute K = e(h, pkr)
k, σ1 = gk, σ2 = gr, t1 = G(σ1, τ, σ4, pks, pkr),

t2 = H(σ1, σ2, τ, pks, pkr), and

σ3 = fxs ·
(
u′
∏
i∈T

ui

)r

·
(
z · vt2wσ4

)k
(4.1)

where T ⊂ {1, . . . , n} is the set of indices s.t. t1[i] = 1, letting t1[i] is the
i-th bit of t1.

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 173

3. Let C = (σ1, σ2, σ3, σ4) and return (K,C).

tKeyDec(pks, skr, C, τ): A deterministic polynomial-time decapsulation algo-
rithm, takes as input an encapsulation C = (σ1, σ2, σ3, σ4), the public key
pks of the sender, the private key skr of the receiver and a tag τ , and outputs
either a key K or the error symbol ⊥.
1. Compute t1 = G(σ1, τ, σ4, pks, pkr), t2 = H(σ1, σ2, τ, pks, pkr).
2. Return K = e(σ1, h

xr) (and ⊥ otherwise) if

e(g, σ3) = e(f, pks) · e
(
σ2, u

′
∏
i∈T

ui

)
· e
(
σ1, z · vt2wσ4

)
.

The correctness of the proposed signcryption tag-KEM can be easily verified.

4.1 Unforgeability

Our signcryption tag-KEM satisfies the security model of SUF-SCtKEM in def-
inition 6. The following theorem formally proves the unforgeability of our sign-
cryption tag-KEM. Note that we can conclude that the proposed construction
is unforgeable under the CDH assumption asymptotically if the underlying hash
function is collision-resistant, as security of the Waters signature [12] itself can
be reduced to the CDH problem(see [12] and the appendix A).

Theorem 1 (Unforgeability). Our signcryption tag-KEM is (t, qs, ε)-strongly
unforgeable assuming the Waters signature is (t + O(qs), qs, ε/2)-existentially
unforgeable, the CDH assumption (t + O(qs), (ε − εcr)/2qs)-holds in G, and H
is (t, εcr)-collision resistant.

Proof. Suppose there is an adversary A which can win the SUF-SCtKEM game in
time t with probability ε. A is first equipped with the public parameters and the
keys pk�s . Meanwhile A can make qs key encapsulation queries and will be given
Σ = {(Ci, pkr, τi)|i = 1, . . . , qs} on these queries where Ci = (σi1, σi2, σi3, σi4) is
a valid encapsulation ciphertext with respect to (pk�s , pkr, τi).

Let Σ1 = {(σi1, τi, σi4, pk
�
s , pkr)|i = 1, . . . , qs}, and let C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3 , σ

∗
4)

associated with (pk�s , pk
�
r , τ

�) be the forgery A eventually produces. As (C∗, pk�r ,
τ�) /∈ Σ, we can then distinguish between two types of forgeries:

Type I. A forgery where (σ∗
1 , τ

�, σ∗
4 , pk

�
s , pk

�
r) /∈ Σ1. In this case we denote the

adversary as type I forger AI.
Type II. A forgery where (σ∗

1 , τ
�, σ∗

4 , pk
�
s , pk

�
r) = (σl1, τl, σl4, pk

�
s , pkr) but σ

∗
2 �=

σl2 for some l ∈ {1, ..., qs}. In this case we denote the adversary as type II
forger AII.

Note that if (σ∗
1 , τ

�, σ∗
4 , pk

�
s , pk

�
r) = (σl1, τl, σl4, pk

�
s , pkr) and σ∗

2 = σl2 for some
l ∈ {1, ..., qs}, then σ∗

3 = σl3 because given (pk�s , pk
�
r , τ

�), σ∗
1 , σ

∗
2 and σ∗

4 (resp.,
(pk�s , pkr, τi), σl1, σl2 and σl4) uniquely determines σ∗

3 (resp., σl3) that implies
(C∗, pk�r , τ

�) = (Cl, pkr, τl) ∈ Σ is not a valid forgery.

174 X. Li et al.

A successful adversary A must output a forgery of either Type I or Type II.
We will show that AI can be used to break the existential unforgeability of the
Waters signature, and AII can be used to solve the CDH problem if H is collision
resistant. The simulator can flip a coin at the beginning of the simulation to
guess which type of forgery the adversary will produce and set up the simulation
appropriately. In both cases the simulation is perfect. We start by describing
how to use a Type II forgery which is the more interesting case.

Type II Forgery. Suppose AII is a Type II adversary which (t, qs, ε)-breaks
the strong unforgeability of our signcryption tag-KEM, producing a Type II
forgery. We will construct an adversary BII that can (t, 1

qs
(ε − εcr))-break

the Computational Diffie-Hellman problem if the hash function is (t, εcr)-
collision resistant. Details are described as follows:

Suppose BII is given (g, ga, gb) associated with the bilinear group parameters
pp = (G,GT , e, g) and its goal is to output gab. To utilize the forger AII, the
simulator BII simulates the environment of the SUF-SCtKEM game:

Setup. BII generates the parameters, the public key of the sender:

1. Randomly chooses α0, α1, . . ., αn, αv, αw, αz, βv, βw, βz, γ and xs

from Zp, then sets u′ = gα0 , u1 = gα1 , . . . , un = gαn , f = gb, h = gγ ,
v = gαvfβv , w = gαwfβw , z = gαzfβz , pk�s = gxs .

2. Give AII the parameters u′, u1, . . ., un, f , h, v, w, z and the public
key pk�s of the sender.
All the parameters and keys here we give have the same distribution
as those used in our construction. Therefore, in this phase, we get a
perfect simulation.

Encapsulation Queries. Suppose AII issues qs key encapsulation queries.
BII first picks up j� ∈ {1, . . . , qs} randomly, then on receiving (pkr, τ)
from AII, BII responds to the i-th query as follows (i = 1, ..., qs):

1. If i �= j�, select k, η, δ randomly from Zp, compute σi1 = gk, σi2 =
gη, σi4 = δ, t1 = G(gk, τ, δ, pk�s , pkr), t2 = H(gk, gη, τ, pk�s , pkr),

σi3 = (gb)xs ·
(
u′

∏
i∈T �

ui

)η

· (z ·vt2wδ)k, and return Ci = (σi1, σi2, σi3, σi4);

2. Otherwise i = j�, let σj�1 = ga, randomly choose s from Zp, compute

σj�2 = gs, t2 = H(ga, gs, τ, pk�s , pkr), σj�4 = δ� = −βz+t2βv

βw
, and

t1 = G(ga, τ, δ�, pk�s , pkr),

σj�3 = (gb)xs ·
(
u′ ∏

i∈T �

ui

)s

· (ga)αz+αvt2+αwδ� ,

eventually return Ci = (σj�1, σj�2, σj�3, σj�4).

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 175

3. Update Σ = Σ
⋃
{(Ci, pkr, τ)} (where we let Σ be initially empty).

Indeed, the ciphertext Cj� = (σj�1, σj�2, σj�3, σj�4) is valid because

σj�1 = ga, σj�2 = gs, σj�4 = δ�,

σj�3 = (gb)xs ·
(
u′

∏
i∈T �

ui

)s

· (ga)αz+αvt2+αwδ�

= (gb)xs ·
(
u′

∏
i∈T �

ui

)s

· (ga)αz+αvt2+αwδ�(fa)βz+t2βv+βwδ�

= (gb)xs ·
(
u′

∏
i∈T �

ui

)s

·
(
gαz+αvt2+αwδ�fβz+t2βv+βwδ�

)a

= (gb)xs ·
(
u′

∏
i∈T �

ui

)s

·
(
z · vt2wδ�

)a

.

Output. AII eventually outputs its forgery (C∗, pk�r , τ
�) /∈ Σ of Type II

where C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4). Then, it follows (σ∗

1 , τ
�, σ∗

4 , pk
�
s , pk

�
r) =

(σl1, τl, σl4, pk
�
s , pkr) and σ∗

2 �= σl2 for some l ∈ {1, ..., qs}. If l �= j�, BII

aborts; otherwise l = j� implies (σ∗
1 , τ

�, σ∗
4 , pk

�
s , pk

�
r) = (σj�1, τj� , σj�4,

pk�s , pk
�
r) and σ∗

2 �= σj�2, B does the following.
1. Compute t1 = G(σ∗

1 , τ
�, σ∗

4 , pk
�
s , pk

�
r), and t�2 = H(σ∗

1 , σ
∗
2 , τ

�, pk�s ,
pk�r), t2 = H(σj�1, σj�2, τj� , pk

�
s , pk

�
r).

2. If t2 = t�2, abort (we denote this event ColF); otherwise return

(Δ)
1

βz+t�
2
βv+δ�βw ,where Δ =

σ∗
3

(gb)xs · (σ∗
2)

α0+
∑
i∈T

αi

· (σ∗
1)

αz+t�2αv+δ�αw

.

Note that t2 �= t�2 implies that βz+ t�2βv+δ�βw �= 0. As C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4)

is a valid forgery, we have, for some s ∈ Zp:

σ∗
1 = ga, σ∗

2 = gs, σ∗
4 = δ�, σ∗

3 = (gb)xs ·
(
u′
∏
i∈T

ui

)s

· (z · vt�2wδ�)a,

Δ =
σ∗
3

(gb)xs · (σ∗
2)

α0+
∑
i∈T

αi

· (σ∗
1)

αz+t�2αv+δ�αw

=

(gb)xs ·
(
g
α0+

∑
i∈T

αi
)s

· (gαz+t�2αv+δ�αwfβz+t�2βv+δ�βw)a

(gb)xs · (gs)
α0+

∑
i∈T

αi

· (ga)αz+t�2αv+δ�αw

(4.2)

= (fβz+t�2βv+δ�βw)a = (gab)βz+t�2βv+δ�βw

Therefore, Δ
1

βz+t�
2
βv+δ�βw = gab.

176 X. Li et al.

For all, when AII outputs a valid forgery C∗ of Type II (denoted event ASuc),
B can successfully solve the CDH problem if l = j� holds and the event ColF
doesn’t happen.
Since j� is information theoretically hidden from AII, both event ASuc and
event ColF are independent from event l = j�. Then we have Pr[l = j�] ≥ 1

qs
,

and

Pr[gab ← B(g, ga, gb)]

= Pr[ASuc
∧
¬ColF

∧
l = j�] = Pr[ASuc

∧
¬ColF] · Pr[l = j�]

≥ Pr[ASuc
∧
¬ColF]

qs

≥ Pr[ASuc]− Pr[ColF]

qs

=
ε− Pr[ColF]

qs

(4.3)

If event ColF happens, then we can find a collision forH , i.e., (σ∗
1 , σ

∗
2 , τ

�, pk�s ,
pk�r) �= (σj�1, σj�2, τj� , pk

�
s , pk

�
r) is a pair of collision of H . Thus Pr[ColF] ≤

εcr. From Equation (4.3), we have

Pr[gab ← B(g, ga, gb)] ≥ ε− εcr
qs

.

The running time of B is close to that of AII except for (4qs + 12) · Te in
simulation where Te is the running time of the exponentiation in G.

Type I Forgery. Suppose AI is a Type I forger which (t, qs, ε)-breaks the
strong unforgeability of our signcryption tag-KEM, producing a Type I
forgery. We can construct an adversary BI that (t, ε)-breaks (existential un-
forgeability of) the Waters signature [12]. The readers may refer to [12] for
more details on the Waters signatures. Suppose BI is given a public key
g1 = ga associated with a signing oracle Ow that returns the Waters sig-
natures on requested messages and the parameters pp = (G,GT , e, g, u

′, u1,
. . . , un, g1, g2, G). Its goal is to output a Waters signature on a fresh message
which is not any of queried message. To utilize the forger AI, the adversary
BI simulates the environment of the SUF-SCtKEM game.

Setup. In this phase, BI generates the remaining parameters and the public
key of the sender and the private/public key pair of the receiver:
1. Randomly choose αz, αv, αw, γ and xr from Zp.
2. Set f = g2, h = gγ , z = gαz , v = gαv , w = gαw , pk�s = g1.
3. Give AI the parameters u′, u1, . . ., un, f , h, z, v, w and the sender’s

public key pk�s .
Encapsulation Queries. When AI makes a key encapsulation query on

(τ, pkr), BI simulates the encapsulation oracle as follows:
1. Select k, δ randomly from Zp, and compute σ1 = gk.
2. Submit M = (gk, τ, δ, pk�s , pkr) to the oracle Ow and obtain the

signature (σw1, σw2) on the message M .

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 177

3. Set t2 = H(gk, σw1, τ, pk
�
s , pkr), σ1 = gk, σ2 = σw1, σ4 = δ.

4. Compute σ3 = σw2 · (σ1)
αz+αvt2+αwδ = σw2 · (z · vt2wδ)k.

5. Return C = (σ1, σ2, σ3, σ4).
6. Update Σ1 = Σ1

⋃
{M} (where we let Σ1 initially be empty).

Output. Eventually AI outputs its forgery (C∗, pk�r , τ
�) of Type I, where

(σ∗
1 , τ

�, σ∗
4 , pk

�
s , pk

�
r) /∈ Σ1 and C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3 , σ

∗
4). Then, BI does the

following to obtain its own forgery for the Waters signature:
1. Set M� = (σ∗

1 , τ
�, σ∗

4 , pk
�
s , pk

�
r), t∗2 = H(σ∗

1 , σ
∗
2 , τ

�, pk�s , pk
�
r) and

σ�
w1 = σ∗

2 ;
2. Compute σ�

w2 = σ∗
3 · (σ∗

1)
−αz−αvt

∗
2−αwσ∗

4 , and return
(M�, (σ�

w1, σ
�
w2)).

Here M� /∈ Σ1 implies that (σ�
w1 = σ∗

2 , σ
�
w2) is a valid Waters signature as

σ�
w2 = σ∗

3 · (σ∗
1)

−αz−αvt
∗
2−αwσ∗

4 = σ∗
3 · (z · vt

∗
2wδ)−k = ga2 ·

(
u′

∏
i∈T �

ui

)s

,

where k = logg σ
∗
1 , s = logg σ

∗
2 , and T � ⊂ {1, . . . , n} is the set of indices

such that G(M�)[i] = 1, and G(M�)[i] is the i-th bit of G(M�). .
The probability of BI’s success in forging a Waters signature is the same as
that ofAI’s success in outputting a forgery of Type I. The running times ofA
and B are almost the same except for the 2qsTe exponentiation computations
in simulation.
This completes the whole proof. �

4.2 Confidentiality

We can also show that the proposed construction achieves confidentiality w.r.t.
adversarially-chosen keys (definitions 5) based on the standard DBDH assump-
tion in the standard model (unlike existing constructions [3,9,11]). Our signcryp-
tion tag-KEM achieves IND-CCA2 security (in definition 5) under the Decisional
Bilinear Diffie-Hellman assumption.

Theorem 2 (Confidentiality). If there exists an adversary A that can
(t, qd, ε)-break the IND-CCA2 security of our signcryption tag-KEM (where qd
is the total number of queries to the key decapsulation oracle), then it can be
utilized to construct an algorithm B that (t′, ε′)-breaks the Decisional Bilinear
Diffie-Hellman problem assuming that H is (t, εcr)-collision resistant, where

ε′ ≥ ε

2
− εcr −

qd
p
, t′ ≤ t+O(6 · qd + n+ 12)Te +O(6 · qd)Tp, (4.4)

and Te, Tp are the running-time of the exponentiation in G and the pairing
respectively.

Proof. Our idea of the proof is to utilize the adversaryA that (t, qd, ε)-breaks the
IND-CCA2 security of our signcryption tag-KEM, to construct an algorithm B

178 X. Li et al.

that first simulates the environment of the IND-CCA2-SCtKEM game, and then
uses the output of A to solve the DBDH problem.

Assume that algorithm B is given as input a random 5 tuple (g, ga, gb, gc, Z)
where Z = e(g, g)abc or e(g, g)z for a, b, c, z sampled in Zp. Algorithm B’s goal
is to output 1 if Z = e(g, g)abc and 0 otherwise. B does the following to achieve
the goal.

Setup. B randomly chooses α0, α1, . . ., αn, αv, αw, αz, βv, βw, βz, γ from Zp,
then sets u′ = gα0 , u1 = gα1 , . . . , un = gαn , h = gb, f = gγ , v = gαvhβv , w =
gαwhβw , z = gαzhβz , pk�r = ga. B gives A the parameters u′, u1, . . ., un, f ,
h, v, w, z and the public key pk�r of the receiver.
All the parameters and keys here we give have the same distribution as
those used in our construction. Therefore, in this phase, B provides a perfect
simulation.

Phase 1. When A submits a query (pks, C = (σ1, σ2, σ3, σ4), τ) to the key
decapsulation oracle, B responds as follows:
1. Compute t1 = G(σ1, τ, σ4, pks, pk

�
r), t2 = H(σ1, σ2, τ, pks, pk

�
r).

2. Return ⊥ if

e(g, σ3) �= e(f, pks) · e
(
σ2, u

′
∏
i∈T

ui

)
· e(σ1, z · vt2wσ4). (4.5)

3. Randomly choose λ from Zp and compute Ωg = αz + t2αv +σ4αw, Ωh

= βz + t2βv + σ4βw. Note that we have z · vt2wσ4 = gΩghΩh .
4. If Ωh = 0 (denoted by Event DecFail), abort; otherwise compute:

D1 = (ga)
−Ωg

Ωh ·
(
z · vt2wσ4

)λ
= ha · (ha)

−Ωh
Ωh · (ga)−

Ωg
Ωh ·

(
z · vt2wσ4

)λ
= ha ·

(
gΩghΩh

)− a
Ωh ·

(
z · vt2wσ4

)λ
= ha ·

(
z · vt2wσ4

)− a
Ωh ·

(
z · vt2wσ4

)λ
= ha ·

(
z · vt2wσ4

)λ− a
Ωh ,

D2 = gλ · (ga)−
1

Ωh = g
λ− a

Ωh .

Let η = λ− a
Ωh

, we have D1 = ha · (z · vt2wσ4)
η
, D2 = gη. Herein, we

use the random λ to generate random D1, D2 for each query of A.
5. Compute

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑
i∈T

αi

. (4.6)

Since C = (σ1, σ2, σ3, σ4) can pass the verification equation (4.5), we
have

pks = gx, σ1 = gk, σ2 = gr, σ3 = fx ·
(
u′
∏
i∈T

ui

)r

· (z · vt2wσ4)k,

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 179

for some x, k, r ∈ Zp. Thus, we know that

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑
i∈T

αi

= σ3 · (gx)−γ · (gr)
−α0−

∑
i∈T

αi

= σ3 · (gγ)−x ·
(
u′
∏
i∈T

ui

)−r

= (z · vt2wσ4)k.

6. Return K = e(σ1, D1)/e(D2, Δ).
Note that K is correct because

e(σ1, D1) = e
(
σ1, h

a · (z · vt2wσ4)η
)

= e (σ1, h
a) · e

(
gk, (z · vt2wσ4)η

)
= K · e

(
gη, (z · vt2wσ4)k

)
= K · e(D2, Δ).

Challenge. At the end of Phase 1, A sends a pair of keys (pk�s = gx, sk�s =
x) and a tag τ� to B. Then B generates the challenge ciphertext for the
adversary A:
1. Randomly choose s from Zp, compute σ�

2 = gs;
2. Let σ�

1 = gc, compute t�2 = H(σ�
1 , σ

�
2 , τ

�, pk�s , pk
�
r);

3. Compute σ�
4 = −βz+t�2βv

βw
, t�1 = G(σ�

1 , τ
�, σ�

4 , pk
�
s , pk

�
r), and

σ�
3 = (gγ)x ·

(
u′

∏
i∈T �

ui

)s

· (gc)αz+αvt
�
2+αwσ�

4 ;

4. Set K�
0 = Z, C� = (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4);

5. Choose a random bit θ ∈ {0, 1} and a random key K�
1 ∈ GT ;

6. Return (K�
θ , C

�) as the challenge.
The ciphertext C� is valid and can pass the Equation (4.5) since

σ�
3 = (gγ)x ·

(
u′

∏
i∈T �

ui

)s

· (gc)αz+αvt
�
2+αwσ�

4

= fx ·
(
u′

∏
i∈T �

ui

)s

· (gαz+αvt
�
2+αwσ�

4h0)c

= fx ·
(
u′

∏
i∈T �

ui

)s

· (gαz+αvt
�
2+αwσ�

4hβz+t�2βv+σ�
4βw)c

= fx ·
(
u′

∏
i∈T �

ui

)s

·
(
z · vt�2wσ�

4

)c

180 X. Li et al.

Note that C� has the same distribution as the real ciphertext generated
by the proposed scheme, due to the selection pattern of the parameters
generated in the setup phase and used to compute the challenge ciphertext
C�.

Phase 2. B responds to the queries of A as it does in Phase 1, except denying
to answer the query of the challenge ciphertext C� with respect to (pk�s , τ

�).
Guess. Eventually A outputs a bit θ′ as its guess for θ.

Algorithm B outputs 1 if θ′ = θ (denoted by ASuc) and 0 otherwise.

Analysis. In the following, we analyze B’s probability of success in solving the
Decisional Bilinear Diffie-Hellman problem. According to Claim 4.2 (see below),
the bound of the probability that B aborts is: Pr [DecFail] ≤ εcr +

2qd
p .

Now we can compute the probability that in the above game B outputs 1
given Z with either Z = e(g, g)abc or Z = e(g, g)z where a, b, c, z are random
chosen from Zp. Let ASuc be the event that adversary A succeeds in guessing θ
(i.e., θ′ = θ).

Due to the simulation, it follows that if Z = e(g, g)abc then the challenge
ciphertext C� = (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4) is a valid key encapsulation of K�

0 = Z and
τ� with respect to (sk�s , pk

�
r). Therefore, B provides a perfect simulation unless

event DecFail happens and then A’s view is identical to that in the real attack
game unless event DecFail happens. So we have the following result.

Pr
[
B(ga, gb, gc, Z = e(g, g)abc) = 1

]
= Pr

[
(ASuc|Z = e(g, g)abc)

∧
(¬DecFail)

]
≥ Pr

[
ASuc|Z = e(g, g)abc

]
− Pr [DecFail]

≥ Pr
[
θ = θ′|Z = e(g, g)abc

]
− εcr −

2qd
p

=
AdvIND

A + 1

2
− εcr −

2qd
p

=
ε+ 1

2
− εcr −

2qd
p

.

(4.7)

If Z = e(g, g)z, then the challenge ciphertext C� = (σ�
1 , σ

�
2 , σ

�
3 , σ

�
4) is an

invalid key encapsulation of K�
0 = Z and τ� with respect to (sk�s , pk

�
r). In this

case, both K�
0 = Z and K�

1 are random. Therefore, A succeeds in guessing θ
with probability at most 1

2
. Thus, we have

Pr
[
B(ga, gb, gc, Z = e(g, g)z) = 1

]
= Pr

[
(ASuc|Z = e(g, g)z)

∧
(¬CRFail)

]
≤ Pr [ASuc|Z = e(g, g)z]

= Pr [θ = θ′|Z = e(g, g)z]

=
1

2
,

(4.8)

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 181

herein, the event CRFail can be found in the following claim 4.2.
Combining Equation (4.7) and Equation (4.8), we conclude that

ε′ = AdvDBDH
B =

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣

≥ ε+ 1

2
− εcr −

2qd
p
− 1

2
=

ε

2
− εcr −

2qd
p

.

Finally, for the running-time of B, we mainly take into account the running-
time t of A, the exponentiations and the pairings in the key decapsula-
tion queries, and n exponentiation in setup phase. This takes time at most
t + O(6 · qd + n + 12)Te + O(6 · qd)Tp, where Te is the running-time of the ex-
ponentiation in G, Tp is the running-time of the pairing and qd is the number of
key decapsulation queries.

Claim. Pr [DecFail] ≤ εcr +
2qd
p .

Proof. For any valid ciphertext C = (σ1, σ2, σ3, σ4) with respect to (pks, τ), event
CRFail happens only when one of the following two events takes place:

1. Event CR, (σ1, σ2, τ, pks, pk
�
r) �= (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧
t2 = t�2

∧
σ4 = σ�

4 .
In this case, (σ1, σ2, τ, pks, pk

�
r) �= (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r) and t2 = t�2 happen

simultaneously, thus B can find a collision for hash function H . And it follows

Pr[CR] = Pr
[
(σ1, σ2, τ, pks, pk

�
r) �= (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧

t2 = t�2
∧

σ4 = σ�
4

]
≤ Pr

[
(σ1, σ2, τ, pks, pk

�
r) �= (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧

t2 = t�2

]
≤ εcr.

2. Event Fail, (σ1, σ2, τ, pks, pk
�
r) = (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧

σ4 = σ�
4 . In this

case the query C = (σ1, σ2, σ3, σ4) with respect to (pks, τ) is almost identi-
cal to the challenge ciphertext except the third part σ3. Indeed, (σ1, σ2, τ,
pks, pkr) = (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧
σ4 = σ�

4 implies σ3 = σ�
3 since σ3 (or

σ�
3) is uniquely determined by all the other parts of the ciphertext. Thus,

C = (σ1, σ2, σ3, σ4) = C� with respect to (pks, τ) = (pk�s , τ
�) is not allowed

to be queried in Phase 2. It follows that event Fail may happen in Phase
1, but it is impossible to happen in Phase 2.

However, the adversary can’t know the challenge ciphertext in Phase 1
because it is information-theoretically hidden in Phase 1. Then, A submits
a ciphertext identical to the challenge ciphertext with the same sender’s
public key and tag happens with probability at most 1

p . Thus we know event

Fail happens with probability at most qd
p for the qd queries in Phase 1, i.e.,

Pr[Fail] ≤ qd
p .

3. Event DiPart4, σ4 �= σ�
4

∧
Ωh = 0. For any pair (t2 = H(σ1, σ2, τ, pks, pk

�
r),

σ4), and randomly chosen βv, βw, βz, it follows that Ωh = βz+t2βv+σ4βw =
0 (for σ4 �= σ�

4) with probability at most 1
p . Thus, Pr[DiPart4] ≤

qd
p .

182 X. Li et al.

Since (σ1, σ2, τ, pks, pk
�
r) = (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r) implies t2 = t�2, thus

Pr
[
(σ1, σ2, τ, pks, pk

�
r) = (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧

t2 = t�2
∧

σ4 = σ�
4

]
= Pr

[
(σ1, σ2, τ, pks, pk

�
r) = (σ�

1 , σ
�
2 , τ

�, pk�s , pk
�
r)
∧

σ4 = σ�
4

] (4.9)

Therefore, we know B’s abortion probability is bounded as follows:
Pr [DecFail]

= Pr
[
σ4 �= σ�

4

∧
Ωh = 0

]
+ Pr

[
σ4 = σ�

4

∧
Ωh = 0

]
= Pr [DiPart4] + Pr

[
σ4 = σ�

4

∧
t2 = t�2

]
= Pr [DiPart4] + Pr

[
(σ1, σ2, τ, pks, pk

�
r) �= (σ�

1 , σ
�
2 , τ

�, pk�
s , pk

�
r)

∧
t2 = t�2

∧
σ4 = σ�

4

]
+Pr

[
(σ1, σ2, τ, pks, pk

�
r) = (σ�

1 , σ
�
2 , τ

�, pk�
s , pk

�
r)

∧
t2 = t�2

∧
σ4 = σ�

4

]
= Pr [DiPart4] + Pr[CR] + Pr

[
(σ1, σ2, τ, pks, pk

�
r) = (σ�

1 , σ
�
2 , τ

�, pk�
s , pk

�
r)

∧
σ4 = σ�

4

]
= Pr [DiPart4] + Pr[CR] + Pr[Fail] ≤ εcr +

2qd
p

.

�

5 Conclusion

We present a direct construction of signcryption tag-KEM from standard as-
sumptions without random oracles. When proving its security, we equip the
insider adversaries with the power such that they can choose their key pairs
of possibly ill-formed, rather than generated by the challenger [3,9,11]. As in
the signcryption schemes, such models give the adversary more advantageous
attack environment which is indeed quite natural as the adversary is given all
the possible resources, except those that allow it to trivially win the game.

Acknowledgement. This work has been supported by the National Natu-
ral Science Foundation of China (Grant Nos. 61272536, 61172085, 61103221,
61021004, 61070249, U1135004, 61170080, 11061130539 and 60703031) and
Key Program of Natural Science Foundation of Shaanxi Province(Grant
No.2013JZ020).

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and A new analysis of kurosawa-desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

Direct Construction of Signcryption Tag-KEM from Standard Assumptions 183

2. Arriaga, A., Barbosa, M., Farshim, P.: On the joint security of signature and en-
cryption schemes under randomness reuse: Efficiency and security amplification. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 206–223.
Springer, Heidelberg (2012)

3. Bjørstad, T., Dent, A.W.: Building better signcryption schemes with Tag-KEMs.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 491–507. Springer, Heidelberg (2006)

4. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998, pp. 209–218 (1998)

5. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic construc-
tions of signcryption with insider security in the multi-user setting. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg
(2011)

6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. on Comput-
ing 33(1), 167–226 (2004)

7. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

8. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-
based techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 132–147. Springer, Heidelberg (2010)

9. Li, F., Shirase, M., Takagi, T.: Efficient signcryption key encapsulation without
random oracles. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 47–59. Springer, Heidelberg (2009)

10. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryp-
tion schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.)
INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)

11. Tan, C.: Insider-secure signcryption KEM/tag-KEM schemes without random or-
acles. In: ARES 2008, pp. 1275–1281 (2008)

12. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

13. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption)
<< cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

A The Waters Signature

In [12], Waters showed an elegant technique to build a signature scheme that
is secure under the computational Diffie-Hellman assumption without random
oracles.

Let G andGT be two groups of prime order p, e : G×G→ GT the bilinear map
and g the corresponding generator of G. Additionally, G : {0, 1}∗ → {0, 1}n is a
collision resistant hash function which maps the messages of arbitrary length to
the messages of n bits. Waters’s scheme consists of the following three algorithms.

184 X. Li et al.

KeyGen The algorithm generates the signer’s public/private keys.
1. Choose α ∈ Zp randomly and set the value g1 = gα;
2. Choose g2, u

′ ∈R G and a random n-length vector U = (ui), whose
elements are chosen at random from G.

3. The public key is published as g, g1, g2, u
′, and U , and the secret key

is gα2 .
Sign Given a message m ∈ {0, 1}∗ and the private key gα2 of the signer, the

algorithm does the following.

1. Compute M = H(m);
2. Let Mi denote the i-th bit of M , and M ⊂ {1, ..., n} be the set of all i

for which Mi = 1;
3. Choose r ∈ Zp randomly;

4. Compute σ1 = gr, σ2 = gα2

(
u′ ∏

i∈M
ui

)r

;

5. Output σ = (σ1, σ2) as the signature on m.

Verify Given a signature σ = (σ1, σ2) on the message m, the signature σ is
accepted if

e(g, σ2) = e(g1, g2)e

(
σ1, u

′
∏
i∈M

ui

)
.

The Waters signature is existentially unforgeable under a chosen-message at-
tack (EUF-CMA, existential unforgeability under a chosen message attack, the
standard notion of signature security), but not strongly unforgeable.

Theorem 3. The Waters signature scheme is (t, q, ε) existentially unforgeable
assuming the Computational Diffie-Hellman problem is (t+O(q), 4nqε)-secure.

Efficient eCK-Secure Authenticated Key

Exchange Protocols in the Standard Model

Zheng Yang

Horst Grtz Institute for IT Security
Ruhr-University Bochum, Germany

zheng.yang@rub.de

Abstract. The extended CanettiKrawczyk (eCK) security model, is
widely used to provide security arguments for authenticated key ex-
change protocols that capture leakage of various kinds of secret infor-
mation like the long-term private key and session-specific secret state.
In this paper, we study the open problem on constructing eCK secure
AKE protocol without random oracles and NAXOS like trick. A generic
construction GC-KKN satisfying those requirements is first given relying
on standard cryptographic primitives. On the second a concrete proto-
col is proposed which is the first eCK secure protocol in the standard
model under both standard assumptions and post-specified peer setting.
Both proposed schemes can be more efficiently implemented with secure
device than previous eCK secure protocols in the standard model, where
the secure device might be normally used to store the long-term private
key and implement algorithms of protocol which require to be resilience
of state leakage.

Keywords: eCK model, authenticated key exchange, standard model,
key encapsulation mechanism, non-interactive key exchange.

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive
which forms a crucial component in many network protocols. The security model
for two party AKE and associated definitions have been evolved over years
subjecting to increasing security requirements. Recently the extended Canetti-
Krawczyk (eCK) [9] model is widely used to provide security arguments for AKE
protocols. The eCK model is known to be one of the strongest AKE models that
covers the most desirable security attributes for AKE including resistance to key
compromise impersonation (KCI) attacks, leakage of secret states and chosen
identity and public key (CIDPK) attacks and provision of weak perfect forward
secrecy (wPFS). Nevertheless the eCK model leaves out the definition of session
state or ephemeral key to specific protocols. Since it is hard to define session state
in a general approach, which is independent of any protocols and corresponding
implementation scenarios. However the ambiguities on session state may yield
a lot of potential problems in either the protocol construction or its security

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 185–193, 2013.
c© Springer International Publishing Switzerland 2013

186 Z. Yang

analysis. If any implementer realizes a specific AKE protocol in a careless way
allowing it to leak non-trivial session state to attackers, then it would trivially
invalidate the security proof in such strong model. On the other hand, to our
best of knowledge, no AKE protocol is secure in the eCK model if all session
states can be revealed. Namely some session states of AKE protocols should be
leakage resilience.

Implementation Model vs. Session States. In order to fulfil the gap that
often exists between formal models and practical security, Sarr et al. [12] intro-
duced two implementation scenarios for the situation that at each party an un-
trusted host machine is used together with a secure device such as tamper-proof
smart card. A secure device may usually be used to store long-term cryptographic
authentication keys and at least be able to fulfil a library of mathematical func-
tions which are necessary to implement cryptographic operations or primitives.
Hence based on secure device we are able to adopt a ‘All-and-Nothing’ strat-
egy to define the states that can be revealed without leaving any ambiguity.
General speaking we could assume that all intermediate states and ephemeral
keys generated on host machine are susceptible to the maximum state leakage
(MSL) attacks, but we treat the secure device as a black-box which is immune
to leakage of internal states. On the other side, our goal is to define the maxi-
mum states that can be leaked. As those secure devices might be short in both
storage capacity and computational resource, the algorithm on secure device is
often causing performance bottleneck of systems. In addition, the communica-
tion round between host machine and secure device (which is called HS-round
for short) might cause another efficiency problem, since the serial I/O bus of
most secure devices is too slow. Due to those facts, it is necessary to optimize
AKE protocols when they are realized involving secure device.

Motivating Problem. So far there are only few AKE protocols which are
provably secure without random oracles in the eCK model. Although the pro-
tocols [11,10] have been proven to be eCK secure in the standard model, they
require a rather strong class of pseudo-random function family with pairwise
independent random sources (which is referred to as πPRF) as key derivation
function (KDF). Most recently, Fujioka et al. [7] introduced a generic construc-
tion for two-message AKE from key encapsulation mechanism (KEM) which is
generalized from BCNP [3]. Although the FSXY scheme [7] has been shown to
be CK+ (eCK) secure in the standard model, it is built relying on a special
twisted-PRF trick (which is a variant of NAXOS trick and is first used in [11]).1

However to securely implement the FSXY protocol, one might need to distribute
all computations related to NAXOS trick on secure device in order to resist with
the leakage of corresponding states (see detail discussion in [13]). This would
lead to inefficiencies in the implementation of the FSXY protocol with secure
device. Another drawback of FSXY protocol is not a one-round AKE protocol.
Since two session participants cannot execute the FSXY protocol instances

1 The CK+ model can be seen as a variant of eCK model in which the StateReveal
query is used instead of EphemeralKeyReveal query to model MSL attacks.

Efficient eCK-Secure AKE Protocols in the Standard Model 187

simultaneously. To our best of knowledge it is still an open question to construct
eCK secure one-round AKE protocols without random oracles and NAXOS trick,
and under standard assumptions (e.g. without πPRF).

Contributions. We first present a one-round authenticated key exchange pro-
tocol (named GC-KKN) to solve the above open problem. As opposed to FSXY
scheme, GC-KKN does not rely on any NAXOS like trick that yields a more
efficient solution when it is implemented with secure device. We give compact
game-based proofs reducing eCK security of GC-KKN to break the used cryp-
tographic primitives without random oracles.

On the second we present a concrete and practical AKE protocol (P1) that
is eCK secure under standard assumptions (e.g. without πPRF). The proposed
protocol is based on bilinear pairings, target collision resistant hash function
family, and pseudo-random function family. To be of independent interesting,
P1 is able to run under post-specified peer setting [5] (i.e. without knowing any
information of communication peer at session activation), unlike FSXY scheme
and our GC-KKN scheme which might be executed under only pre-specified
peer setting. Our construction idea of P1 is inspired by the GC-KKN. In order
to securely implement P1, only one exponentiation is required on secure device
that is the more efficient than any previous eCK secure protocols without random
oracles.

2 Preliminaries

Notations. We let κ ∈ N denote the security parameter and 1κ the string that
consists of κ ones. Let a ‘hat’ on top of a capital letter denote an identity; without
the hat the letter denotes the public key of that party. Let [n] = {1, . . . , n} ⊂ N

be the set of integers between 1 and n. If S is a set, then a
$← S denotes the

action of sampling a uniformly random element from S. Let IDS be an identity
space. Let KAKE be the key space of session key, and {PK,SK} be key spaces
for long-term public/private key respectively. Those spaces are associated with
security parameter κ.

In our constructions, we will make use of one-round passively secure key ex-
change protocols KE, IND-CCA secure key encapsulation mechanism schemes
KEM, CKS-light secure [6] non-interactive key exchange protocols NIKE, strong
randomness extractor SEXT, pseudo-random function family PRF, symmetric
bilinear groups and Bilinear Decisional Diffie-Hellman (BDDH) assumption.

Meanwhile, a one-round KE = (KE.Setup,KE.EGen,KE.SKGen) protocol
consists of three algorithms, where KE.EGen is the ephemeral key genera-
tor and KE.SKGen is the session key generator. In our construction should
satisfy the following two conditions: (i) the protocol is executed with-
out any long-term keys; (ii) all ephemeral public/secret key are chosen
freshly and randomly from corresponding key spaces for each protocol in-
stance. A KEM = (KEM.Setup,KEM.Gen,KEM.EnCap,KEM.DeCap) scheme con-
sists of four polynomial time algorithms, where KEM.Setup is the initiation

188 Z. Yang

algorithm used to generate the system parameters, KEM.Gen is the key gen-
eration which outputs a pair of long-term keys, KEM.EnCap is the encryp-
tion algorithm and KEM.DeCap is the decryption algorithm. Furthermore, a
NIKE = (NIKE.Setup,NIKE.KGen,NIKE.ShKey) scheme consists of three al-
gorithms , where NIKE.KGen is the long-term key generation algorithm and
NIKE.ShKey is the algorithm that is used to compute the long-term shared secret
key between two parties. The corresponding security definitions are detailed in
the full version of this paper [13].

3 Security Model

In this section we present the eCK security model for two party PKI-based
authenticated key-exchange (AKE) protocol. We provide an ‘execution environ-
ment’ for active adversaries following an important research line research [2,4,9,8]
which is initiated by Bellare and Rogaway [1].

Execution Environment. In the execution environment, we fix a set of honest
parties {ID1, . . . , ID�} for � ∈ N, where IDi (i ∈ [�]) is the identity of a party which
is chosen uniquely from space IDS. Each identity is associated with a long-term
key pair (skIDi

, pkIDi
) ∈ (SK,PK). Each honest party IDi can sequentially and

concurrently execute the protocol multiple times with different intended part-
ners, this is characterized by a collection of oracles {πs

i : i ∈ [�], s ∈ [d]} for
d ∈ N. Moreover, we assume each oracle πs

i maintains a list of independent in-
ternal state variables with following semantics: (i) Ψs

i – storing the identity of its
communication partner; (ii) Φs

i – denoting the decision Φs
i ∈ {accept, reject};

(iii) Ks
i – recording the session key Ks

i ∈ KAKE; (iv) st
s
i – storing the maximum

secret states that allow to be revealed; (v) sT s
i – recording the transcript of mes-

sages sent by oracle πs
i ; (vi) rT

t
j – recording the transcript of messages received

by oracle πs
i . All those variables of each oracle are initialized with empty string

which is denoted by the symbol ∅. At some point, each oracle πs
i may complete

the execution always with a decision state Φs
i ∈ {accept, reject}. Furthermore,

we assume that the session key is assigned to the variableKs
i (such that Ks

i �= ∅)
iff oracle πs

i has reached an internal state Φs
i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine
taking as input the security parameter 1κ and the public information (e.g. generic
description of above environment), which may interact with these oracles by
issuing the following queries.

– Send(πs
i ,m): The adversary can use this query to send any message m of his

own choice to oracle πs
i . The oracle will respond the next message m∗ (if

any) to be sent according to the protocol specification. Oracle πs
i would be

initiated as initiator via sending the oracle the first message m = (�, ĨDj)

consisting of a special initialization symbol � and a value ĨDj , where the

ĨDj is either the identity IDj of intended partner or empty string ∅. After
answering a Send query, the internal state variables of πs

i will be updated
depending on the specific protocol.

Efficient eCK-Secure AKE Protocols in the Standard Model 189

– RevealKey(πs
i): Oracle πs

i responds with the contents of variable Ks
i .

– StateReveal(πs
i): Oracle πs

i responds with the contents of variable stsi .
2

– Corrupt(IDi): Oracle π1
i responds with the long-term secret key skIDi

of party
IDi if i ∈ [�]; otherwise a failure symbol ⊥ is returned.

– EstablishParty(IDτ , pkIDτ
): This query allows the adversary to register an

identity IDτ (� < τ < N) and a static public key pkIDτ on behalf of a party
IDτ , if IDτ is unique.

– Test(πs
i): If the oracle has state Φs

i = reject or Ks
i = ∅, then the oracle

πs
i returns some failure symbol ⊥. Otherwise it flips a fair coin b, samples

a random element K0 from key space KAKE, and sets K1 = Ks
i . Finally the

key Kb is returned.

Secure AKE Protocols. To formalize the notion that two oracles are engaged
in an on-line communication, we define the partnership via matching sessions.

Definition 1. We say that an oracle πs
i has a matching session to oracle πt

j,
if πs

i has sent all protocol messages and all the following conditions hold: (i)
Ψs
i = IDj and Ψ t

j = IDi, (ii) sT s
i = rT t

j and rT s
i = sT t

j .

Correctness. We say an AKE protocol Σ is correct, if two oracles πs
i and πt

j

accept with matching sessions, then both oracles hold the same session key, i.e.
Ks

i = Kt
j .

Definition 2. Let πs
i be an accepted oracle with Ψs

i = IDj. Let πt
j be an or-

acle (if it exists), such that πs
i has a matching session to πt

j. Then the oracle
πs
i is said to be fresh if none of the following conditions holds: (i) A queried

EstablishParty(IDj , pkIDj
); (ii) A queried either RevealKey(πs

i) or RevealKey(πt
j)

(if πt
j exists); (iii) A queried both Corrupt(IDi) and StateReveal(πs

i); (iv) If πt
j

exists, A queried both Corrupt(IDj) and StateReveal(πt
j); (v) If π

t
j does not exist,

A queried Corrupt(IDj).

Security Experiment EXPAKE
Σ,A(κ): On input security parameter 1κ, the secu-

rity experiment is proceeded as a game between a challenger C and an adversary
A based on an AKE protocol Σ, where the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of
oracles {πs

i : i ∈ [�], s ∈ [d]}, and generates � long-term key pairs (pkIDi
, skIDi

)
for all honest parties IDi for i ∈ [�] where the identity IDi ∈ IDS of each
party is chosen uniquely. C gives adversary A all identities, public keys
{(ID1, pkID1

), . . . , (ID�, pk�)} as input.
2. A may issue polynomial number of Send, StateReveal, Corrupt,

EstablishParty and RevealKey queries. At some point, A may issue a Test(πs
i)

query to an oracle πs
i during the game with only once.

2 We stress that the exact meaning of the StateReveal must be defined by each protocol
separately, and each protocol should be proven secure to resist with such kind of
state leakage as its claimed, i.e., the content stored in the variable st during protocol
execution. In other word, each protocol should define the protocol steps processed
on secure device. Our goal is to define the maximum states that can be leaked.

190 Z. Yang

3. At the end of the game, the A may terminate with returning a bit b′ as its
guess for b of Test query. Finally, 1 is returned if all following conditions hold:
(i) A has issued a Test query to a fresh oracle πs

i without failure, and (ii) A
returned a bit b′ which equals to b of Test-query; Otherwise 0 is returned.

Definition 3. A correct AKE protocol Σ is called (t, ε)-secure if probability
bound |Pr[EXPAKE

Σ,A(κ) = 1] − 1/2| ≤ ε holds for all adversaries A running
within time t in the above security experiment and for some negligible proba-
bility ε = ε(κ) in the security parameter κ.

4 A Generic One-Round AKE Construction from KE,
KEM and NIKE

In this section, we present a generic one-round authenticated key exchange proto-
col (denoted by GC-KKN), that is more suitable to be implemented for providing
eCK security than previous works.

Protocol Description. In our generic construction, the following building
blocks are required: (i) One-round key exchange scheme KE; (ii) Key encapsula-
tion mechanism scheme KEM; (iii) Non-interactive key exchange scheme NIKE;
and (iv) Strong randomness extractor SEXT; and (v) Pseudo-random function
family PRF.

Set-up: To initiate the system, the public system parameters pms := (pmske,
pmskem, pmsnike, kSEXT) are firstly generated via performing
pmske ← KE.Setup(1κ), pmskem ← KEM.Setup(1κ), pmsnike ← NIKE.Setup(1κ)

and kSEXT
$← SSEXT where kSEXT is the secret key of SEXT and SSEXT is a key

space.

Long-term Key Generation:A party Âmay run algorithms (pkkem
Â

, skkem
Â

)
$←

KEM.Gen(pmskem) and (pknike
Â

, sknike
Â

)
$← NIKE.KGen(pmsnike, Â) to generate

the long-term key pair.

Protocol Execution: On input pms, the protocol between party Â and party
B̂ is depicted in Fig. 1.

Session States and Implementaton Senario. We now define the session
states in terms of implementation model with secure device. Basically, all states
of KE.EGen, KE.SKGen and KEM.EnCap algorithms would be stored in the state
variable st. However, we assume no secret states related to KEM.DeCap and
NIKE.ShKey algorithms can be revealed. This can be realized by doing all com-
putations involving long-term private key of KEM.DeCap and NIKE.ShKey algo-
rithms, and final session key generation on secure device.

Security Analysis. We assume without loss of generality that the maximum
probability for the event that two oracles output the same ciphertext C or
ephemeral public key epk, is a negligible fraction 1/2λ where λ ∈ N is a large

Efficient eCK-Secure AKE Protocols in the Standard Model 191

Â B̂

(epkÂ, eskÂ)
$← KE.EGen(pmske) (epkB̂, eskB̂)

$← KE.EGen(pmske)

(KÂ, CÂ)
$← KEM.EnCap(pkkem

B̂
) (KB̂ , CB̂)

$← KEM.EnCap(pkkem
Â

)

−
Â, epkÂ, CÂ−−−−−−−−−−−→

←−
B̂, epkB̂, CB̂−−−−−−−−−−−

Each party has sid := Â||B̂||epkÂ||CÂ||epkB̂||CB̂

eK := KE.SKGen(eskÂ, epkB̂) eK := KE.SKGen(eskB̂, epkÂ)
KB̂ := KEM.DeCap(skkem

Â
, CB̂) KÂ := KEM.DeCap(skkem

B̂
, CÂ)

ShKÂ,B̂ := NIKE.ShKey(Â,

sknike
Â

, B̂, pknike
B̂

)

ShKÂ,B̂ := NIKE.ShKey(B̂,

sknike
B̂

, Â, pknike
Â

)
eK′′ := PRF(SEXT(eK), sid) eK′′ := PRF(SEXT(eK), sid)
K′′

Â
:= PRF(SEXT(KÂ, sid) K′′

B̂
:= PRF(SEXT(KB̂), sid)

K′′
B̂
:= PRF(SEXT(KB̂), sid) K′′

Â
:= PRF(SEXT(KÂ), sid)

ShK′′
Â,B̂

:=

PRF(SEXT(ShKÂ,B̂), sid)

ShK′′
Â,B̂

:=

PRF(SEXT(ShKÂ,B̂), sid)

ke :=
eK′′ ⊕K′′

Â
⊕K′′

B̂
⊕ ShK′′

Â,B̂

ke :=
eK′′ ⊕K′′

Â
⊕K′′

B̂
⊕ ShK′′

Â,B̂

Fig. 1. Generic One-round AKE Protocol from KE, KEM and NIKE

enough integer in terms of the security parameter κ. Let MAX(X1, X2, X3) de-
note the function to obtain the maximum values from variables X1, X2

and X3.

Theorem 1. Suppose that the SEXT is (κ, εSEXT)-strong randomness extractor,
the KEM is (qkem, t, εKEM)-secure (key indistinguishable) against adaptive chosen
message attacks and KE is (t, εKE)-passively secure, and the PRF is (qprf , t, εPRF)-
secure, and the NIKE is (t, εNIKE)-CKS-light-secure. And we assume that either
KE key or KEM key or NIKE key has κ-min-entropy. Then the proposed protocol
is (t′, ε)-secure in the sense of Definition 3 with t′ ≤ t, qkem ≥ d and qprf ≥ d+1,

and ε ≤ (d�)2

2λ
+ 3(d�)2 · (MAX(εKE, εKEM, εNIKE) + εSEXT + εPRF).

3

The proof of this theorem can be found in [13].

5 An Efficient One-Round AKE Protocol under Standard
Assumptions

In this section we present a concrete eCK secure AKE protocol P1 in the standard
model.

3 The integer qkem and qprf are the numbers of oracle queries that can be issued in
corresponding security experiment.

192 Z. Yang

Protocol Description. The proposed protocol relies on standard bilinear

pairings PG = (G, g,GT , p, e) [13] along with random values (u1, u2, u3, u4)
$← G,

target collision resistant hash function family TCR and pseudo-random func-
tion family PRF. The variable pms stores the public system parameters pms :=
(PG, {ui}1≤i≤4, hkTCR) where hkTCR is the hash key of TCR and is chosen uni-
formly at random.

Â B̂

x
$← Z∗

p, X := gx y
$← Z∗

p, Y := gy

hX := TCR(X)

tX := (u
h2
X

4 uhX
3 u2)

x

hY := TCR(Y)

tY := (u
h2
Y

4 uhX
3 u2)

y

−
Â,X, tX

−−−−−−−−−−−→

←−
B̂, Y, tY

−−−−−−−−−−−
hY := TCR(Y), hB := TCR(B) hX := TCR(X), hA := TCR(A)

reject if either

e(tY , g) �= e(u
h2
Y

4 uhY
3 u2, Y) or

reject if either

e(tX , g) �= e(u
h2
X

4 uhY
3 u2, X) or

e(tB, g) �= e(u
h2
B

4 uhB
3 u2, B) e(tA, g) �= e(u

h2
A

4 uhA
3 u2, A)

Each party has sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY
Each party rejects if some values recorded in sid are identical

βÂ := e(u1, BY), k := βa+x

Â
βB̂ := e(u1, AX), k := βb+y

B̂

accept ke := PRF(k, sid) accept ke := PRF(k, sid)

Fig. 2. Pairing-based AKE Protocol under Standard Assumptions

Long-term Key Generation: A party Â may run an efficient key generation

algorithm to generate the long-term key pair as: skÂ = a
$← Z∗

p, pkÂ = (A, tA)

where A = ga, tA := (u
h2
A

4 uhA
3 u2)

a and hA = TCR(A).4

Protocol Execution: On input pms, the protocol between parties Â and B̂ is
depicted in the Fig. 2.

Implementation and Session States: We assume that only the ephemeral
private key x (resp. y) would be stored in the state variable st. This can be
guaranteed by performing the computations of key material k and session key
ke on secure device.

Security Analysis. We show the security result of proposed protocol in our
strong security model via the following theorem.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-
size λ ∈ N. Suppose that the BDDH problem is (t, εBDDH)-hard in the symmetric

4 Please note that we allow arbitrary key registration.

Efficient eCK-Secure AKE Protocols in the Standard Model 193

bilinear groups PG, the TCR is (t, εTCR)-secure, and the PRF is (qprf , t, εPRF)-
secure. Then the proposed protocol is (t′, ε)-secure in the sense of Definition 3

with t′ ≈ t and qprf ≥ 2 and ε ≤ (d�)2

2λ
+ εTCR + 3(d�)2 · (εBDDH + εPRF).

The proof of this theorem can be found in [13].

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

3. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

5. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002), http://eprint.iacr.org/2002/120/

6. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key ex-
change. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 254–271. Springer, Heidelberg (2013)

7. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012)

8. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

9. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

10. Moriyama, D., Okamoto, T.: An eck-secure authenticated key exchange protocol
without random oracles. TIIS 5(3), 607–625 (2011)

11. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model (invited talk). In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 474–484. Springer, Heidelberg (2007)

12. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenticated
key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 219–234. Springer, Heidelberg (2010)

13. Yang, Z.: Efficient eck-secure authenticated key exchange protocols in the stan-
dard model (full version). Cryptology ePrint Archive, Report 2013/365 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/

XLRF: A Cross-Layer Intrusion Recovery

Framework for Damage Assessment
and Recovery Plan Generation

Eunjung Yoon1 and Peng Liu2

1 Department of Computer Science and Engineering
Pennsylvania State University, PA, USA

eyoon@cse.psu.edu
2 College of Information Sciences and Technology

Pennsylvania State University, PA, USA
pliu@ist.psu.edu

Abstract. Recovering mission-critical systems from intrusion is very
challenging, where fast and accurate damage assessment and recovery
is vital to ensure business continuity. Existing intrusion recovery ap-
proaches mostly focus on a single abstraction layer. OS level recovery
cannot fully meet the correctness criteria defined by business process
semantics, while business workflow level recovery usually results in non-
executable recovery plans. In this paper, we propose a cross-layer recovery
framework, called XRLF, for fast and effective post-intrusion diagnosis
and recovery of compromised systems using the dependencies captured at
different levels of abstraction; business workflow level and OS level. The
goal of our approach is two-fold: first, to bridge the semantic gap between
workflow-level and system-level recovery, thus enable comprehensive in-
trusion analysis and recovery; second, to automate damage assessment
and recovery plan generation, thus expedite the recovery process, an
otherwise time-consuming and error-prone task.

Keywords: cross-layer intrusion recovery, recovery plan, dependency
graph, system calls.

1 Introduction

Intrusion, especially in mission-critical, enterprise systems, often results in the
corruption of important data causing devastating effects to serious consequences
such as significant financial loss. In fact, many mission critical systems have
rather strict business continuity and availability requirements, and thus demand
fast and efficient recovery from intrusion, which is essential for minimizing fi-
nancial losses from cyber attacks.

Although a lot of effort has been devoted to the detection and prevention of
malicious attacks, perfect prevention is still unobtainable. Intrusion detection
can prevent the effects of the intrusion from spreading but cannot guarantee
the integrity and availability of the compromised system. In some situations, an

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 194–212, 2013.
c© Springer International Publishing Switzerland 2013

XLRF: A Cross-Layer Intrusion Recovery Framework 195

intrusion detection system (IDS) is also unable to discover all damage to the
system and the damage can be spread without being detected by the IDS. We
recognize that perfect intrusion detection is hard to achieve and some damage to
the system even after the detection of the attack is always possible. To this end,
we believe that an effective intrusion response and recovery scheme is essential
for repairing compromised systems from the damage.

There has been growing interest in studies of intrusion recovery ([1], [8–10],
[12], [14,15], [18], [20]), however most of intrusion recovery research has focused
on a single layer of abstraction: Operating System (OS) level, Application level,
or Business workflow level. None of them considered the problem of the semantic
gap in infection diagnosis and recovery between high-level business workflow and
the underlying infrastructure. Besides, there is a significant difference between
business workflow-level semantics and OS-level semantics. Different abstraction
layers may provide different granularity levels and different semantic views of
the attack.

Due to the significant semantic gap between the two layers, an effective and
comprehensive recovery may be very difficult. Most business-critical systems
adopt the workflow management system with mission-critical processes [3] and
thus, these systems, when intrusion detected either at workflow level or OS
level, would require combined damage assessment and recovery by cooperation
between the workflow layer and the underlying system layer.

In this paper, we present a Cross-Layer Intrusion Recovery framework, called
XLRF, based on a combination of workflow-level and OS-level view. A cross-
layer architecture allows us to have a global view about the intrusion and a
more comprehensive understanding about recovery from the intrusion. Primary
goal of our framework is to close the gap between business workflow-level and
OS-level recovery semantics by focusing on two levels of abstraction in both,
thus preserving workflow integrity, as well as system integrity. To the best of our
knowledge, this is the first cross-layer recovery approach that focuses on both at
business workflow level and OS level.

OS-level recovery approaches focus on low-level system events and do not
take into account high-level business workflow implications. Due to the lack of
higher workflow-level abstraction, OS-level intrusion recovery alone may cannot
provide the comprehensive recovery solution, thus in many situations, needs
manual work.

Similarly, workflow-level recovery approaches do not have enough information
about low-level system activities that are very useful for fine grained intrusion
analysis. Workflow-level recovery actions are generally performed at the gran-
ularity of business workflow tasks while OS-level recovery actions are generally
performed at a granular file level, and thus workflow-level recovery approaches
cannot handle the OS-level attacks (such as compromised processes, unautho-
rized data modification) properly. For example, workflow-level recovery performs
task-level recovery actions (e.g., undo and redo of tasks), and thus task-level
recovery actions cannot guarantee the removal of all the effects of the attack
(compromised components) at the OS layer. As a result, workflow-level recovery

196 E. Yoon and P. Liu

often results in non-executable recovery plan. In order for a recovery plan to
be effective, it must be executable in reality, which consists of low-level system
recovery operations. Therefore, neither the OS-level recovery nor the workflow-
level recovery can provide a comprehensive and effective recovery solution.

Our cross-layer recovery framework explores the association between two dif-
ferent levels of abstraction by extracting information about the relationships be-
tween a business workflow and system call invocations from system call traces.
We perform an automated analysis of system call log to semantically map OS-
level dependencies to workflow-level dependencies. The damage assessment and
recovery plan generation using dependency information is performed in both a
top-down and bottom-up fashion between OS layer and workflow layer by ex-
ploiting the hierarchical relationship between the two layers.

Another goal of our recovery framework is to maximize automation in damage
assessment and recovery plan generation. Traditionally, the recovery from an
attack is manually performed by system administrators, which is time-consuming
and error-prone. Automated response to intrusions has become a major issue in
defending mission-critical systems, in which it is important to know how fast a
problem can be resolved after it is detected, and distributed systems, in which
manual diagnosis and repair is difficult. To this end, we propose automated
recovery plan generation framework for fast recovery.

This paper makes the following contributions:

– We develop a cross-layer recovery framework that bridges the semantic gap
between business workflow-level recovery and OS-level recovery. To the best
of our knowledge, this work is the first to develop a cross-layer recovery
framework that considers business workflow layer and OS layer.

– We provide automated damage assessment and generation of recovery plan
that is executable.

– We point out the inherent problems with single layer intrusion recovery
schemes.

The remainder of the paper is organized as follows. We describe related
work in Section 2. Section 3 describes our running workflow example. Section
4 presents an overview of our cross-layer recovery framework, called XLRF. We
present the details of XLRF design and implementation of three phases in Sec-
tion 5, and the evaluation of XLRF in Section 6. In Section 7, we briefly re-
visit the limitations of single layer recovery Finally, we conclude the paper in
Section 8.

2 Related Work

Existing intrusion analysis and recovery approaches focus either on the OS layer
or the workflow layer (single-layered approach), whereas our work focuses on
both the OS layer and the workflow layer (cross-layered approach).

OS-level Recovery. OS-level recovery approaches only focus on low-level
system events and do not take into account high-level abstraction of workflow-
level recovery, which is essential for most business and mission-critical systems.

XLRF: A Cross-Layer Intrusion Recovery Framework 197

ReVirt [5] focuses on intrusion analysis by using Virtual Machine logging and
replay. ReVirt provides recovery capability using checkpoint and roll back, how-
ever, it removes both affected and legitimate changes. BackTracker [13] provides
intrusion analysis tool of tracking the sources of an intrusion. BackTracker cap-
tures and uses system calls for analyzing problems on the process and file system
level. BackTracker uses previously recorded system calls and constructs the de-
pendency graph by using system call dependencies from the detection point and
traces affected system events on files or processes. XLRF is closely related to
BackTracker for computation of system call dependencies and the dependency
graph generation. Taser [8] is an intrusion recovery system that determines the
set of tainted file system-operations and reverts the tainted operations but pre-
serves legitimate operations. Taser logs all process, file and network operations
to identify the file system modification after intrusion and provides selective redo
of legitimate file-system operations after an attack occurs. RETRO [12] analyzes
OS-level system events to determine the source of an intrusion by recording ac-
tion history graph. RETRO tries to minimize re-execution (selective redo) by
predicates, refinement, and shephered re-execution. SHELF [18] is a self-recovery
system that leverages the Virtual Machine Monitor and taint-analysis for dy-
namic dependency tracking and quarantine. SHELF logs system-level events to
track the dependencies among the events, maintains the dependency graph, and
quarantine the infected and malicious objects.

Workflow-level Recovery. As discussed in Section 1, workflow-level re-
covery approaches often result in non-executable recovery plan. Yu et al. [20]
introduced theories and analytical experiments for on-line attack recovery of
workflows. Their recovery system identifies all damages caused by the malicious
tasks that are detected by an IDS and automatically repairs the damages based
on data and control dependencies among workflow tasks. Our workflow-level
damage assessment using workflow-level dependencies are based on this work.
Eder et al. [6] introduced workflow recovery concepts for reliable and consistent
execution of business processes in the presence of failures and excetions. They
integrate workflow transactions into WFMSs so that processes are treated as
workflow transactions and in the event of failures, a running process is aborted
and compensated. However, this approach mainly focuses on workflow failure
recovery, which is different from the intrusion recovery that removes the effects
of intrusions.

Other Recovery Approaches. Polygraph [14] is a software layer that ex-
tends the functionality of weakly consistent replication systems to support com-
promise recovery. Polygraph is based on the replication technique and tries to
recover from data corruption in weakly consistent replicated storage systems.
Ammann et al. [1] presented the recovery approch to the problem of remov-
ing undesirable but committed transactions from databases. They detect the
flow of contaminated transactions through a database and roll back those trans-
actions that are affected directly or indirectly by contaminated transactions.
Solitude [10] is an application-level isolation and recovery system that uses a

198 E. Yoon and P. Liu

copy-on-write filesystem to limit attack propagation by sandboxing untrusted
applications and providing an explicit file sharing.

3 Example

For our case study in this work, we develop a simplified version of travel reser-
vation system running on the Apache web server. Our travel reservation system
can be represented as a business workflow that consists of six tasks as follows.

T1: Input travel information
T2: Reserve a flight ticket and sign in or sign up
T3: If the customer is signed as a member, reserve a hotel as a member.
T4: If the customer is a member, apply any credit or promo code.
T5: If the customer is a guest, reserve a hotel as a guest.

T6: Make a payment

Figure 1 shows the workflow graph that represents our travel reservation system
example. This model is based on [2] and [20]. The workflow has two choices of
execution paths, P1: T1T2T3T4T6 and P2: T1T2T5T6, but in each execution, only
one path can be selected by T2. An attack can change the execution path of the
workflow. In this example, P1 is the execution path led by an attack, and P2 is
the normal execution path without an attack.

The workflow shows control and data dependencies between tasks. For exam-
ple, if task T1 is a malicious task, tasks T2 and T4 would be affected by T1 as
they will read corrupted data from task T1, and thus calculating wrong results
as T2 is data dependent on T1 and T4 is data dependent on T2. Consequently, T2

would make a wrong decision to execute tasks on path P1, resulting in changing
the normal execution path as T3 and T5 are control dependent on T2.

T1 T2

T3

T5

T4

T6

Fig. 1. Workflow of Travel Reservation System

4 XLRF Overview

We propose a Cross-Layer Recovery framework, called XLRF, an automated in-
trusion analysis and recovery plan generation framework. Our approach consid-
ers two different levels of abstraction: workflow level and OS level, and provides
multi-level damage assessment and comprehensive recovery plan generation.

XLRF: A Cross-Layer Intrusion Recovery Framework 199

4.1 Assumptions

In this work, we assume the integrity of the system call log and checkpoints is
preserved. We archive and send the system call logs collected on the web server
to the trusted host that will investigate the effects of the intrusion and generate
a recovery plan by using XLRF framework. We also assume that the adminis-
trator noticed an attack (i.e., system compromise) and identified at least one
intrusion point before using XLRF, which is similar to the assumption of Back-
tracker [13] A sophisticated attacker may be able to successfully evade the IDS
by manipulating a sequence of system calls (i.e., mimicry attack [17]). Recovery
from mimicry or evasion attacks is out-of-scope for this paper, if these attacks
have never been identified, as XLRF starts from the identified intrusion point.

4.2 Cross-Layer Recovery

Our cross-layer recovery framework (XLRF) is based on the analysis of workflow-
level and OS-level control and data dependencies. We use the dependency infor-
mation at each layer to analyze the effects of the intrusion and to automatically
generate a recovery plan which consists of recovery actions that will revert the
effects. XLRF takes inputs as a workflow specification, system call log recorded
by the operating system, and the intrusion point identified by the administrator
from IDS alerts. XLRF builds the association between workflow tasks and sys-
tem calls based on the dependencies at the both layers. From the workflow-level
perspective, each component at the OS layer has a corresponding task node at
the workflow layer, and vice versa.

Damage assessment is performed in a combined bottom-up (from OS level to
workflow level) and top-down (from workflow level to OS level) analysis. Once
XLRF has completed damage assessment, it starts to generate a recovery plan
with the result.

4.3 Workflow Level

A workflow typically represents a business process, which is composed of a se-
quence of tasks (i.e., business activities), and a set of dependencies that represent
the relationships between the tasks.

Workflow Dependencies. The task dependencies in a business workflow is
imperative to determine which tasks to recover and the order in which tasks
are recovered. In this paper, we consider two types of dependencies between
workflow tasks: data dependency and control dependency.

– Data dependency. Data dependencies (data flows) among tasks describe in-
puts and outputs of a task. Given a task Ti, we use R(Ti, f) and W (Ti, f)
to denote a read operation and a write operation of task Ti on file f , re-
spectively. Task Tj is data dependent on task Ti if W (Ti, f) happens before
R(Tj, f) or W (Tj, f).

For example, if Ti modified file f and then Tj uses (reads or writes) the
file for performing the task, task Tj is data dependent on task Ti. That is,

200 E. Yoon and P. Liu

the state of Tj would depend on the value of the input file f as Ti has
modified the file f that is shared by the two tasks. In Figure 1, dotted red
lines represent data dependencies between tasks.

– Control dependency. The control dependency specifies the control flow of the
workflow. Given two tasks Ti and Tj within a workflow, the task Tj is control
dependent on Ti if Tj can be activated depending on the outcome of Ti. The
output value of Ti determines the execution path of the workflow, either to
execute Tj or another task. Thus, control dependencies of a workflow decide
the execution order of tasks. In our running example shown in Figure 1, T3

and T5 are control dependent on T2.

Workflow Dependency Graph (WDG). A workflow can be represented as a
directed graph G(V, E), called workflow dependency graph (WDG), comprising V
a set of nodes and E a set of directed edges, in which each node represents a task
and directed edges represent dependencies between tasks, as shown in Figure 1.
The WDG also can be generated by using workflow mining technique [16].

4.4 Operating System Level

XLRF uses OS-level information to identify system-level causal events (i.e., infor-
mation flow) that connect OS objects, such as processes and files. The OS-level
information can provide finer grained auditing and view of underlying system
activities. For OS-level analysis, we are particularly interested in system calls
and the data dependencies among system calls, which is similar to the approach
that is generally used for behavioral malware detection in [4] and [19]. XLRF
records all or selected system call invocations at run-time to extract system call
dependencies from the system call traces.

System Call Dependencies. Every system call operation has a list of argu-
ment values and the return value, which we use for exploring data dependencies
among system calls. We also use the timestamp of each system call to determine
the temporal order of system calls. We extract dependencies among system calls
for OS-level dependency analysis by analyzing each system call’s arguments and
the return value. In this paper, we only focus on data dependencies among sys-
tem calls, which allow us to effectively identify data flows between system calls
and to understand the semantics of the program and the effects of intrusion on
system objects.

Christodorescu et al. [4] describe three types of dependencies among system
calls: def-use, ordering, and value dependence but we only focus on data depen-
dency (same as their def-use dependency) in this paper.

– Data dependency: Data dependencies between system calls can be computed
by arguments (i.e., input) and a return value (i.e., output) of each system call.
The return value of a system call can be used as the argument of subsequent
system calls. For example, given two system calls sci and scj , system call
scj is data dependent on sci if scj uses the valid return value of sci as its
argument.

XLRF: A Cross-Layer Intrusion Recovery Framework 201

System Call Dependency Graph (SCDG). The data dependencies that
we extracted from system call traces are represented as a directed graph G(V,
E), called system call dependency graph (SCDG), such that nodes are system
calls and edges represent data dependencies among system calls. We compute
the dependencies by analyzing relationships between system call arguments and
return values.

5 Design and Implementation

The XLRF framework provides automated damage assessment and recovery plan
generation by analyzing dependencies within and across at the workflow layer
and at the OS layer, and by identifying affected workflow tasks and system
objects using the observed dependencies.

The XLRF framework consists of three main phases (Figure 2): dependency
analysis, damage assessment, and recovery plan generation. During the depen-
dency analysis phase, XLRF analyzes the system call log to determine depen-
dencies among system calls and workflow tasks and constructs a cross-layer
dependency graph, called XDG. In the damage assessment phase, XLRF identi-
fies all the malicious or affected workflow tasks and system objects by traversing
XDG from initially identified, malicious system objects (i.e., intrusion point). In
the recovery plan generation phase, XLRF automatically generates a recovery
plan based on the malicious or affected tasks and system objects that have been
identified.

Intrusion

Fig. 2. The XLRF framework

202 E. Yoon and P. Liu

5.1 Input

Workflow Specification. One of the inputs to XLRF is the workflow specifi-
cation. The workflow specification contains the workflow type information that
describes the workflow task structure (control flow) and information exchange
between tasks (data flow) in a workflow. Each workflow is an instance of a work-
flow type. XLRF takes as input the workflow specification and system call traces
to identify current running workflow instances.

System Call Log. The second input to XLRF is the system call log. System
call traces are essential for XLRF to identify attack events and analyze depen-
dencies between system calls. Logging mechanism will be discussed further in
Section 5.3

Intrusion Point. Once an intrusion is detected by an IDS, the administrator
can identify the intrusion point from the IDS alerts. XLRF takes as input the
intrusion point and start to investigate the effects of the intrusion both at the
OS layer and at the workflow layer to generate a recovery plan.

5.2 Output

Recovery Plan. The output of XLRF is a recovery plan that consists of a set
of recovery actions. XLRF automatically generates a recovery plan which is very
useful not only by reducing the system administrator’s manual recovery process
but also by minimizing human errors, and thus ultimately reducing the recovery
time.

5.3 Logging

To build a proof-of-concept prototype of XLRF, we collect system call traces on
the Apache HTTP server (httpd) using DTrace framework during normal execu-
tion of our online travel reservation workflow to track system events on OS-level
objects such as processes, files and socket connections. DTrace is a dynamic
tracing framework developed by Sun Microsystems. DTrace can dynamically in-
strument the running operating system kernel and running applications without
rebooting the kernel or restarting applications. Gessiou et al. [7] also used DTrace
framework for collecting data provenance information.

Each entry of the system call log contains detailed system object informa-
tion such as process ID, file descriptor, and socket descriptor, the timestamp,
and/or session ID of each system call invocation. During the dependency analysis
phase, XLRF uses this information to construct a system call dependency graph
(SCDG) and a workflow dependency graph (WDG). XLRF then constructs a
cross-layer dependency graph (XDG) by associating the two graphs, SCDG and
WDG; mapping of each node of SCDG (system call operation) and each node
of WDG (workflow-level task).

XLRF can identify a user’s workflow instance that corresponds to a particular
system call and process. In our running example, once an authenticated session has
been established, the session ID can be identified for all web page (php code file)

XLRF: A Cross-Layer Intrusion Recovery Framework 203

SSS

T1 T2
T3 T4

T6
T1 T2

T5
T6

WA WB
Workflow-level

(WDG)

OS-level
(SCDG)

f1

f2

write

read

cross-edge

system call

execution path(W)

execution path(S)

S1

Fig. 3. Cross-Layer Depedency Graph

accesses. In addition, the entities involved in a workflow can be uniquely identified
by a combination of a username and the workflow ID that is generated for every
workflow of a user. This user identification allows us to observe whose workflow
instance ID matches the current workflow instance (i.e., the origin of a system call
and the corresponding workflow task), and thus enables selectively to recover only
affected workflow instances. For example, in Figure 3, Alice’s workflow instance
(WA) and Bob’s workflow instance (WB) at the workflow layer aremapped to each
system call node at the OS layer based on our approach.

5.4 Dependency Analysis

Once an IDS has detected an intrusion, XLRF takes as input the intrusion point
deduced by the administrator from the IDS alerts, the system call logs collected
during normal execution, and the workflow specification. The system call log
allows us to learn about the executed path of the workflow and dependencies
among system calls. XLRF preprocesses the system call log by focusing partic-
ularly on file and process operations and extracts the data dependencies, and
constructs dependency graphs. The dependency information is essential for our
recovery framework to identify directly or indirectly affected objects from the
intrusion which recovery is needed for. XLRF identifies current running workflow
instances and their workflow dependency graph (WDG) with the workflow spec-
ification and the system call trace. Similarly, XLRF constructs the system call
dependency graph (SCDG) with the dependencies among system calls extracted
from the system call trace. XLRF then correlates and combines the two layers of
dependency graphs as a single hierarchical graph, called cross-layer dependency
graph (XDG), by associating semantic links between two graphs.

Cross-Layer Dependency Graph. Cross-layer dependency graph (XDG)
enables cross-layer damage analysis, which allows us to identify the effects of

204 E. Yoon and P. Liu

Table 1. Association of file information to workflow tasks

T1 T2 T3 T4 T5 T6

index.php (GET) login.php (POST) check.php (POST) member.php (GET) guest.php (POST) payment.php (POST)
flight.dat (R) guestinfo.php (POST) users.dat (R) hotel.dat (R) hotel.dat(R) invoice.dat (R)

users.dat (R/W) promo.dat (R) discount.php (POST) credit.dat (R/W)
invoice.dat (W) promo.dat (R) payment.dat (W)

invoice.dat (W)

intrusion using dependencies collected both at the workflow layer and the OS
layer.

After we constructed WDG and SCDG, we find the semantic relationships
(links) between the two dependency graphs. Given WDG and SCDG, XLRF
adds the edges that cross the two layers so that each cross-edge in the resulting
XDG connects vertices of each graph at the two layers.

XLRF correlates the relationship between WDG and SCDG by analyzing the
system call log and the workflow specification. Having a good criteria to associate
each system call to a task of a particular workflow instance is challenging, as the
system call log consists of multiple workflow instances involving multiple clients.
XLRF separates the combined traces at the OS layer (SCDG) into separate
workflow instances at the workflow layer (WDG) for each user. The workflow
specification provides us information of interaction between a workflow task and
its operations on some input and output data (e.g., data files). Therefore, XLRF
takes both the workflow specification and system call logs as inputs and leverages
the information to find out the semantic relationships between workflow-level
and OS-level activities.

Table 1 shows the information obtained from the workflow specification used
for our running workflow example. Our workflow example separates a workflow
into a set of tasks with the semantic relationships between webpages, and data
files specified in the workflow specification. Each workflow task basically com-
prises of program code files (php files) and data files. In this work, for the sake of
simplicity, we use data files stored in file system instead of database. Using this
information along with system call traces, XLRF can generate XDG, as shown
in Figure 3, which is an integrated graph of WDG and SCDG, connected by the
cross-edges.

5.5 Damage Assessment

During the damage assessment phase, XLRF identifies which tasks at the work-
flow layer and which system objects at the OS layer have been affected by ma-
licious system objects. XLRF takes as inputs XDG that has been constructed
in the dependency analysis phase, and the intrusion points (i.e., identified mali-
cious objects) to create the recovery list of malicious or affected workflow tasks
and system-level objects, as shown in Algorithm 1. This information is essential
for deciding recovery actions that will be used for generating a recovery plan.
The overview of recovery actions (undo and redo) will be given in the following
section.

XLRF: A Cross-Layer Intrusion Recovery Framework 205

The analysis is performed on XDG, in both directions: bottom-up
(SCDG→WDG) and top-down (WDG→SCDG):

Bottom-up Analysis. XLRF starts from the detection point to diagnose
affected workflow tasks by using a bottom-up analysis.

At the OS layer (SCDG). Given the intrusion point, locate a malicious node
of SCDG.

OS layer (SCDG) → Workflow layer (WDG). From the malicious node of
SCDG, follow the cross-edge to locate the associated task node of WDG. Add
the task to the recovery list (workflow undo list).

At the workflow layer (WDG). From the malicious task node, identify all
affected tasks by using data and control dependencies (dependency edges). Add
all affected tasks to the recovery list (workflow undo list or workflow redo list).
For workflow-level analysis, we use the approach similar to Yu et al’s workflow
recovery [20] to determine which workflow tasks have been affected and need to
be repaired.

We explain the analysis by using our workflow example and XDG, shown in
Figure 1 and Figure 3. Suppose that file f1 has been identified as corrupted by an
intrusion. From XDG shown in Figure 3, the first system call node s1 of SCDG
(read f1) will read the corrupted data (a). The system call node has a cross-
edge to task node T1 of Alice’s workflow instance (WA), and thus T1 of WDG is
marked as bad (malicious or affected) and added to Alice’s workflow undo list,
WUA = {T1} because T1 needs to be undone in the recovery (b). At the workflow
layer (WDG), by the data dependencies shown in Figure 1, task T2 is infected
by task T1 because it is data dependent on T1, by reading a corrupted data (f1)
from T1 and then creating wrong results. Thus, T2 is added to undo list, WUA =
{T1, T2}. Similarly, T4 is data dependent on T2, and thus added to the undo list,
WUA = {T1, T2, T4}. Although task T3 is not affected, it needs to be undone
in case T3 performed data write operations (e.g., write f), because the data
will be corrupted if the execution path is changed by redo(T2) and T3 is not on
the new execution path. XLRF adds T3 to candidate undo list, CUA = {T3}. T6

is also added to CUA = {T3, T6} because it will be data dependent on T5 and get
a wrong result from the current execution if the execution path is changed by
redo(T2). From the WUA = {T1, T2, T4} and CUA = {T3, T6}, XLRF creates
redo list WRA = {T1, T2, T6}, because the tasks are not control dependent on
any malicious or affected tasks. If any task is not on the new executing path (T3,
T4), it does not need to be redone because it can create corrupted data (c).

Top-down Analysis. XLRF refines the workflow-level recovery list at the
high level of abstraction (WDG) and bottoms out in a set of directly executable
OS-level recovery actions at the low level of abstraction (SCDG) by using a top-
down analysis. This analysis allows us to derive a recovery plan from recovery
goals. XLRF can create the OS-level recovery list of affected system objects given
malicious or affected tasks of a particular workflow instance, which will be used
in the recovery plan generation phase.

206 E. Yoon and P. Liu

Algorithm 1. Damage Assessment

Input:
XDG: Cross-layer dependency graph

M : Malicious Objects (from IDS alerts)

Output:
WU : Workflow Undo list

WR: Workflow Redo list

CU : Candidate Undo list

SU : System-call Undo list

1: if SCDG node s of XDG is data-dependent

on M then
2: if cross-edge e(s, t) exists then
3: Follow e(s, t) and locate task node t
4: Add t to WU
5: while succ(t) exists do

6: for all succ(t) data-dependent on

t do
7: Add succ(t) to WU
8: t ← succ(t)

9: if ti ∈ succ(t), not data-

dependent on t then
10: Add ti to CU

11: for each WDG node ti of XDG do
12: if ti is control-dependent on tj then
13: if (tj /∈ WU) or (tj ∈ WU , ti ∈

succ(redo(tj))) then
14: Add ti to WR

15: for each ti of WU do � backward

16: Follow cross-edgee(s, ti)
17: for all node s belongs to ti do
18: Add s to SU [ti]

Workflow layer (WDG) → OS layer (SCDG). Given a malicious or affected
task node of WDG, follow the cross-edges to identify the associated low-level
system call nodes of SCDG.

At the OS layer (SCDG). From the identified system call nodes and depen-
dencies among them, find all the affected system objects (files, in our example).

In our framework, redoing a workflow task will automatically re-execute all
system calls associated with the task. Thus, XLRF only maintains undo list for
system call-level operations (no redo list).

5.6 Recovery Plan Generation

The last phase of XLRF is to automatically generate a recovery plan based on
the dependency information and the damage analysis results. Generated recovery
plan describes executable recovery actions needed for reverting the effects of
intrusion both at the workflow layer and at the OS layer.

Before discussing our recovery plan generation scheme, we briefly describe
recovery actions.

Workflow Task Undo and Redo. To recover from intrusion, basically two
operations: undo and redo are used. To remove all effects of intrusion, XLRF
needs to undo malicious and affected tasks that have been identified during the
damage assessment phase. XLRF creates undo lists for workflow tasks to revert
all the effect and creates redo lists for tasks to restore legitimate but removed
operations that have been affected by the attack.

System-Call Undo and Redo. As far as we know, there is no known way
to actually undo the already executed system call. Alternatively, we could roll
back the object (e.g., file) affected by the system call to the last checkpoint,
which is commonly used for reverting write operation to a file, or we could
ideally use an inverse operation if supported. Executing inverse operations can
be substantially more efficient than checkpoint and rollback mechanism. A recent
work [11] presents a new technique for inverse operations but their approach is

XLRF: A Cross-Layer Intrusion Recovery Framework 207

still limited for linked data structures, which needs to be extended if it is to be
used in real systems.

In fact, XLRF generates a recovery plan for leveraging checkpoint and rollback
mechanism for system call undo and removing system-call level redo because the
task-level redo operation will automatically re-execute system calls that belong
to the specific task. From OS-level recovery perspective, the task-level redo is too
coarse-grained, resulting in some unnecessary system call redo operations can be
included in a recovery plan. However, we do not focus on efficient selective-redo
approach for system calls in this work. Nevertheless, our recovery plan generation
framework can be easily adapted to the advanced recovery technique as needed.

Algorithm 2. Recovery Plan Generation

Input:
WU : Workflow Undo list

WR: Workflow Redo list

CU : Candidate Undo list

SU : System-call Undo list

Output:
P : Recovery Plan

1: while WU is not empty do
2: Get task Ti from WU � backward

3: Add undo(Ti) to P
4: while SU [Ti] is not empty do
5: Get system call si from SU [Ti]

6: if si is write(f) then

7: Add rollback (f) to P

8: while WR is not empty do
9: Get task Ti from WR � forward

10: Add redo(Ti) to P
11: if redo(Ti) changes the execution path

then
12: while CU is not empty do
13: Get task Ti from CU
14: while SU [Ti] is not empty do
15: if si is write(f) then
16: if si is the first write then
17: Add undo(Ti) to P

18: Add rollback (f) to P

The Order of Recovery Actions. To preserve correctness during the repair,
the order of recovery actions needs to be correctly determined. The following
rules describe the correct order of recovery actions from a workflow perspective.

– undo actions are performed in reverse order.
– redo actions are performed by following the original order of the task oper-

ations.
– For any task , its undo action should be done before its redo action.
– For any two tasks that modify the same file in order, the later task should

be undone first before the earlier task is redone. For example, suppose that
both task ti and task tj modify the same file f , W (ti, f) precedes W (tj , f).
In this case, undo(tj) should be done before redo(ti).

XLRF automatically generates a recovery plan by the rules with undo list and
redo list obtained during the damage assessment phase (see Algorithm 2).

5.7 Implementation

We implemented a proof-of-concept prototype of the XLRF framework on Linux
based on the detailed design and algorithms that we have presented. We devel-
oped a simple web-based travel planning service in PHP running on Apache web

208 E. Yoon and P. Liu

server as our running example. Our implementation does not need to make any
changes to existing software components.

For logging system-level activities, we use DTrace framework to record se-
lected system call invocations (e.g., read(), write()) on httpd process. While we
do not focus on performance degradation problem in this work, logging overhead
using DTrace was not a big concern, as DTrace has been designed to operate with
low overheads when enabled, and zero or near-zero overhead when not enabled
(selective instrumentation). We store the logs collected from the web server on
a trusted platform that is isolated from the web server and we run the XLRF
framework on the trusted platform so it does not incur much overhead to the
HTTP server. We do not invent the wheel to prevent the integrity of the XLRF
framework in this work but it is also hard to compromise the XLRF framework
by the intrusion on the web server.

We implemented XLRF in Perl and XML for log analysis and automated
recovery plan generation. We selected Perl script language as Perl is powerful
for regular expressions processing. We generate dependency graphs using the de-
pendencies obtained in the dependency analysis phase. The dependency graphs
can be visualized using Graphviz as desired. XRLF then generates a recovery
plan as an XML file that is human-readable and machine-readable. XML pro-
vides a basic syntax that can be used for sharing information between different
platforms and applications. Manual or automated execution of a recovery plan
using scripts is also much easier with XML. Perl also provides the features of
XML parsing and converting it to Perl data structures.

6 Evaluation of Recovery Plan

We evaluated the correctness of our cross-layer recovery framework using sev-
eral intrusion scenarios. In this paper, we present the evaluation of two scenarios
due to space limit. We ran XLRF for each scenario on a trusted platform and
compared generated recovery plans with the manually derived dependencies and
expected recovery actions. We argue that XLF correctly generates a recovery
plan for each attack scenario based on the evaluation.

Scenario 1: Data File Compromise
In our running example, an attacker can modifty the content of an invoice

file (invoice.dat), in order to intentionally change the price of a particular travel
plan, for example, from $2000 to $1000. In this scenario, Alice’s workflow tasks
T4 and T6 will be affected by the compromise, and thus will lead to a financial
loss.

Recovery Goals. Revert invoice.dat and all affected files by rolling back the
file to the last checkpoint to remove the effect from compromise. Remove all the
effects and restore operations (undo and redo).

XLRF: A Cross-Layer Intrusion Recovery Framework 209

1. Generated Recovery Plan: (for Alice)

〈plan name= ”rWA”〉
〈action=”uT6”〉 undo(T6)

〈subaction=”T6w11”〉
rollback(payment.dat)

〈/subaction〉
〈/action〉
〈action=”uT4”〉 undo(T4)

〈subaction=”T4w12”〉
rollback(invoice.dat)

〈/subaction〉
〈 /action〉
〈action=”rT4”〉 redo(T4) 〈/action〉
〈action=”rT6”〉 redo(T6) 〈/action〉

〈/plan〉

2. Derived Dependencies (manual):
by Attacker:

write (invoice.dat, badInput)→invoice.dat′
by Alice’s workflow: from T6

read(payment.php)→read(invoice.dat′)→ read(credit.dat)
→write(payment.dat′)
Workflow level:

undo(T6) → undo(T4) → redo(T4) → redo(T6)

OS level (system call):

* Need undo? (Y/N)

T6: w(payment.dat):Y ⇒ rollback (payment.dat)

T6: r(credit.dat),r(invoice.dat), r(payment.php): N

T4: w(invoice.dat):Y ⇒ rollback(invoice.dat)
T4: r(promo.dat), r(hotel.dat), r(member.php): N

* Need redo? (Y/N)

T4: r(member.php), r(hotel.dat), w(invoice.dat): Y

System-call level redo actions are automatically performed by their task-level
redo, thus do not need to be added to a recovery plan.

Scenario 2: Execution Path Change. An attacker modifies login.php file
and changes the execution path, allowing a guest member to be redirected to the
webpage that only registered member can access. All guest members can benefit
from this attack by making her travel plan using a member-only promotion, but
resulting in a financial loss to the travel agency (workflow violation). Suppose
that Figure 3 shows Alice (guest member)’s new execution path after the at-
tack. Her original execution is T1 → T2 → T5 → T 6, but it has been changed to
T1 → T2 → T3 → T4 → T6, respectively.

Recovery Goals. Revirt all malicious (index.php) or affected files and op-
erations from the attack and restore original execution path.

1. Generated Recovery Plan: (for Alice)

〈plan name= ”rWA”〉
〈action=”uT6”〉 undo(T6)

〈subaction=”T6w11”〉
rollback(payment.dat)

〈/subaction〉
〈/action〉
〈action=”uT4”〉 undo(T4)

〈subaction=”T4w12”〉
rollback(invoice.dat)

〈/subaction〉
〈action=”uT2”〉 undo(T2)

〈subaction=”T2w11”〉
rollback(users.dat)

〈/subaction〉
〈 /action〉
〈action=”rT2”〉 redo(T2) 〈/action〉
〈action=”rT6”〉 redo(T6) 〈/action〉

〈/plan〉

2. Derived Dependencies (manual):
by Attacker:

write (users.dat, badInput) → users.dat′
by Alice’s workflow: from T2

read(login.php)→read(guestinfo.php)→ write(users.dat′)
→read(check.php)→ read(users.dat′) →read(member.php)→
read(hotel.dat)→read(promo.dat)→ write(invoice.dat′)
→read(payment.php) →read(invoice.dat′)→read(credit.dat)
→ write(payment.dat)
Workflow level:
undo(T6) → undo(T4) → undo(T2) → redo(T2) →
redo(T6)
OS level (system call):

* Need undo? (Y/N)
T6: w(payment.dat):Y ⇒ rollback (payment.dat)
T6: r(credit.dat), r(invoice.dat), r(payment.php): N
T4: w(invoice.dat):Y ⇒ rollback(invoice.dat)
T4: r(promo.dat), r(hotel.dat), r(member.php): N
T2: w(users.dat):Y ⇒ rollback (users.dat)
T2: r(guestinfo.php), r(login.php): N
* Need redo? (Y/N)
T2: r(login.php), r(guestinfo.php), r(users.dat): Y
T6: r(payment.php), r(invoice.dat), r(credit.dat), w (pay-

ment.dat): Y

Task T4 is not on the re-execution path, thus T4 needs not to be redone. The
generated recovery plan shows for each user after rollback(login.php) has been
done. The file login.php is shared by all users, so need to recover separately,
before recover any workflow instance. The comparison shows that the recovery
plan for Scenario 2 generated by XLRF is correct.

210 E. Yoon and P. Liu

In all the scenarios mentioned above, we show that our approach is effective
in damage assessment and recovery plan generation for intrusion recovery.

7 Revisiting the Limitations of Single Layer Recovery

As we discussed earlier, single layer recovery approaches cannot provide the
comprehensive damage assessment and recovery solution due to the semantic
gap between the high-level workflow abstraction and the low-level OS-level ab-
straction. Here we revisit and discuss the limitations of single layer recovery
approaches: workflow-level and OS-level recovery with our running example.

A host-based IDS can monitor system activities so the administrator can
identify the intrusion point such as a corrupted file, from the IDS alerts, which
is used for OS-level recovery. By using data dependencies among system calls,
all the affected files can be identified and recovered using the checkpoint and
roll-back scheme and some of system call redo operations. However, even after
all the corrupted files are recovered at the OS layer, the recovery still cannot
ensure the correctness in business workflow semantics.

Let’s revisit Scenario 1, OS-level recovery will do: rollback(payment.dat),
rollback(invoice.dat), and redo operations on the files, such as read

(invoice.dat), and write(payment.dat), however at the end of this OS-level re-
covery, only part of task T6 has been recovered; read(payment.php) of T6 will
not be redone. From a workflow perspective, the client’s payment process needs
to be cancelled and re-executed, thus the entire task needs to be undone and
redone for the client’s input (She can probably change her mind later due to the
price increase), so we need to redo the entire task T6. Without the association
between OS-level semantics and workflow-level semantics, the identification of
current workflow instances that are affected and need to be repaired, will be very
challenging. Therefore, we argue that OS-level recovery approach cannot provide
correct recovery actions for high-level business workflow as it cannot determine
the damage in the business workflow semantics correctly.

Workflow-level recovery scheme does not have the semantic information about
the low-level system activities such as system call invocations. Therefore, in
Scenario 1, when invoice.dat file has been compromised, workflow-level recov-
ery does not aware about the intrusion and the system-level damage until any
anomalous task of a workflow (e.g., task abortion) has been detected. It could
never been detected in case of normal execution of the task even with a ma-
licious data. Workflow-level approach provides task-level recovery so may can-
not perform fine-grained recovery actions such as single file operation. Most
workflow-level recovery approaches use workflow-level checkpointing resulting in
expensive coarse-grained recovery. Therefore, workflow recovery often results in
non-executable recovery plan as it cannot perform recovery actions at the OS
layer, which requires the system administrator’s manual process.

XLRF: A Cross-Layer Intrusion Recovery Framework 211

8 Conclusion

In this paper, we have first presented a cross-layer recovery framework for auto-
matically analyzing the damage caused by intrusion and generating a recovery
plan. We addressed the problem of single layer recovery approaches and pro-
posed a new cross-layer recovery approach that takes into account both business
workflow-level and OS-level recovery for providing a comprehensive recovery.
We developed a proof-of-concept prototype of our recovery framework, called
XLRF, that comprises dependency analysis, damage assessment, and recovery
plan generation phases. We evaluated the effectiveness of our cross-layer recovery
framework with several attack scenarios. XLRF correctly identified the effects
of the intrusion and generated recovery plans for reverting all the effects from
intrusion both at the workflow layer and at the OS layer.

Acknowledgments. This work was supported by ARO W911NF-09-1-0525
(MURI), AFOSR FA9550-07-1-0527 (MURI), NSF CNS-0905131, and AFOSR
W911NF1210055.

References

1. Ammann, P., Jajodia, S., Liu, P.: Recovery from malicious transactions. IEEE
Trans. on Knowl. and Data Eng. 14(5), 1167–1185 (2002)

2. Atluri, V., Ae Chun, S., Mazzoleni, P.: Chinese wall security for decentralized
workflow management systems. J. Comput. Secur. 12(6), 799–840 (2004)

3. Balzarotti, D., Cova, M., Felmetsger, V.V., Vigna, G.: Multi-module vulnerability
analysis of web-based applications. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS 2007, pp. 25–35. ACM, New York
(2007)

4. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC-FSE 2007, pp. 5–14. ACM, New York (2007)

5. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling
intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst.
Rev. 36(SI), 211–224 (2002)

6. Eder, J., Liebhart, W.: Workflow recovery. In: Proceedings of the First IFCIS
International Conference on Cooperative Information Systems, COOPIS 1996, pp.
124–134. IEEE Computer Society, Washington, DC (1996)

7. Gessiou, E., Pappas, V., Athanasopoulos, E., Keromytis, A.D., Ioannidis, S.: To-
wards a universal data provenance framework using dynamic instrumentation. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 103–114. Springer, Heidelberg (2012)

8. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery
system. In: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP 2005, pp. 163–176. ACM, New York (2005)

9. Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: A framework
for automatic malware removal and system repair. In: Proceedings of the 22nd
Annual Computer Security Applications Conference, ACSAC 2006, pp. 257–268.
IEEE Computer Society, Washington, DC (2006)

212 E. Yoon and P. Liu

10. Jain, S., Shafique, F., Djeric, V., Goel, A.: Application-level isolation and recovery
with solitude. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008, Eurosys 2008, pp. 95–107. ACM, New York
(2008)

11. Kim, D., Rinard, M.C.: Verification of semantic commutativity conditions and in-
verse operations on linked data structures. In: Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2011, pp. 528–541. ACM, New York (2011)

12. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using se-
lective re-execution. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, pp. 1–9. USENIX Association,
Berkeley (2010)

13. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP 2003, pp. 223–236.
ACM, New York (2003)

14. Mahajan, P., Kotla, R., Marshall, C.C., Ramasubramanian, V., Rodeheffer, T.L.,
Terry, D.B., Wobber, T.: Effective and efficient compromise recovery for weakly
consistent replication. In: Proceedings of the 4th ACM European Conference on
Computer Systems, EuroSys 2009, pp. 131–144. ACM, New York (2009)

15. Paleari, R., Martignoni, L., Passerini, E., Davidson, D., Fredrikson, M., Giffin, J.,
Jha, S.: Automatic generation of remediation procedures for malware infections.
In: Proceedings of the 19th USENIX Conference on Security, USENIX Security
2010, p. 27. USENIX Association, Berkeley (2010)

16. van der Aalst, W., Weijters, T., Maruster, L.: Workflowmining: Discovering process
models from event logs. IEEE Trans. on Knowl. and Data Eng. 16(9), 1128–1142
(2004)

17. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, pp. 255–264. ACM, New York (2002)

18. Xiong, X., Jia, X., Liu, P.: Shelf: Preserving business continuity and availability
in an intrusion recovery system. In: Proceedings of the 2009 Annual Computer
Security Applications Conference, ACSAC 2009, pp. 484–493. IEEE Computer
Society, Washington, DC (2009)

19. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS 2007,
pp. 116–127. ACM, New York (2007)

20. Yu, M., Liu, P., Zang, W.: Self-healing workflow systems under attacks. In: Pro-
ceedings of the 24th International Conference on Distributed Computing Systems
(ICDCS 2004), pp. 418–4025. IEEE Computer Society, Washington, DC (2004)

PRIDE: Practical Intrusion Detection

in Resource Constrained
Wireless Mesh Networks

Amin Hassanzadeh1, Zhaoyan Xu1, Radu Stoleru1,
Guofei Gu1, and Michalis Polychronakis2

1 Department of Computer Science and Engineering, Texas A&M University, USA
2 Computer Science Department, Columbia University, USA

{amin,z0x0427,stoleru,guofei}@cse.tamu.edu, mikepo@cs.columbia.edu

Abstract. As interest in wireless mesh networks grows, security chal-
lenges, e.g., intrusion detection, become of paramount importance. Tra-
ditional solutions for intrusion detection assign full IDS responsibilities
to a few selected nodes. Recent results, however, have shown that a mesh
router cannot reliably perform full IDS functions because of limited re-
sources (i.e., processing power and memory). Cooperative IDS solutions,
targeting resource constrained wireless networks impose high communi-
cation overhead and detection latency. To address these challenges, we
propose PRIDE (PRactical Intrusion DEtection in resource constrained
wireless mesh networks), a non-cooperative real-time intrusion detection
scheme that optimally distributes IDS functions to nodes along traffic
paths, such that detection rate is maximized, while resource consump-
tion is below a given threshold. We formulate the optimal IDS function
distribution as an integer linear program and propose algorithms for solv-
ing it accurately and fast (i.e., practical). We evaluate the performance of
our proposed solution in a real-world, department-wide, mesh network.

Keywords: wireless mesh network, intrusion detection, resource
constraints, integer linear programming, real-world implementation.

1 Introduction

Wireless Mesh Networks (WMN) are self-managing networks that provide In-
ternet, intranet, and other services to mobile and fixed clients using a multi-hop
multi-path wireless infrastructure consisting of mesh nodes [1, 2]. They have
emerged as a cost-effective broadband network technology for services in large
remote areas where no networking infrastructure is available, e.g., rural con-
nectivity in Zambia [3] and disaster response applications [4]. A wireless mesh
network can serve as the backbone communication infrastructure among WiFi
networks, ad hoc networks, sensor networks and the Internet [4]. It is impor-
tant to remark the lack of a vantage point for the network traffic, due to the
peer-to-peer nature of communication in WMN.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 213–228, 2013.
c© Springer International Publishing Switzerland 2013

214 A. Hassanzadeh et al.

As the interest in WMN grows, security issues, especially intrusion detection,
become of paramount importance. Due to the decentralized nature of WMN, re-
searchers have proposed distributed solutions for network wide intrusion detec-
tion. Distributed solutions do not rely on a single vantage point (e.g., gateways in
traditional intrusion detection systems (IDS) in wired networks) as there always
could be internal traffic (e.g., between two hosts1) in WMN to be monitored. The
state-of-the-art distributed solutions can be categorized as: i)monitoring node so-
lutions; and ii) cooperative solutions. Monitoring node solutions [5, 6] assign the
same set of IDS functions (i.e., detection rules) to monitoring nodes (note: each
monitoring node is responsible for a distinct part of the network). These solutions,
however, have high false negative rates. This is because some IDS functions cannot
be executed on monitoring nodes with limited resources (e.g., processing power
and memory). A recent work [7] investigates challenges in applying off-the-shelf
IDS (Snort and Bro) on mesh devices and proposes a lightweight (i.e., customized)
IDS for WMN. The proposed IDS requires less memory and decreases the packet
drop rate, when compared to off-the-shelf IDS. These achievements, however, are
at the price of detecting fewer types of network attacks (smaller detection cover-
age), since most IDS functions are not implemented. Cooperative solutions (e.g.,
hierarchical [8] or group-based [9] cooperation) distribute IDS functions to multi-
ple cooperative nodes, in order to achieve higher detection rate and lower IDS load.
These solutions, however, incur high communication overhead and high latency in
attack detection. This is because nodes have to exchange their local observations
with other nodes running different IDS functions. Considering the relatively high
traffic rates inWMN, caused bymesh clients and external hosts inWMN, the com-
munication overhead of cooperative IDS [9,10] degrades the network performance
and delays intrusion response.

This research is motivated by the fact that neither monitoring nodes nor co-
operative IDS techniques can practically solve the intrusion detection problem
in WMN. As we will show in Section 2, the fact that WMN are resource con-
strained poses significant challenges for intrusion detection. Our idea is to use
the knowledge a security administrator has about the WMN traffic to distribute
IDS functions more efficiently. More precisely, a security administrator, knowing
the routing paths of the traffic in the WMN, would employ a traffic-aware frame-
work that optimally places IDS functions on the nodes along the routing paths.
The information about the busiest and most frequently used paths in the WMN
is obtained from routing algorithms (e.g., OLSR) and network monitoring tools
(e.g., tcpdump). Furthermore, it is observed [4] that when deploying WMN for
disaster response, the points of interest like physical locations of data sources
(e.g., Search & Rescue Robots) and destinations, e.g., Command and Control
Center, and consequently the traffic paths are always known.

A related idea for traffic-aware IDS deployments in wired networks was re-
cently proposed [11], where different IDS responsibilities (i.e., different por-
tions of network traffic) are assigned to each node along the traffic paths while

1 A host inside the mesh is either a client or a local server (e.g., a local FTP server)
connected to the mesh routers.

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 215

ensuring that no node is overloaded. However, that technique cannot be directly
applied to WMN since it assumes that each node performs all IDS functions -
infeasible for resource constrained mesh devices. Our proposed solution has no
communication overhead, has no detection latency (i.e., it provides real-time in-
trusion detection, in contrast to cooperative IDS) and it has a higher detection
rate, when compared with monitoring node solutions. In our proposed solu-
tion, each node along a routing path, runs a distinct and customized IDS. This
customized IDS (technically a subset of IDS functions) allows resource conserva-
tion. The combination of distinct IDS along the path allows for a complete set
of IDS functions to be applied to the entire network traffic. Our main concern
in this paper is the reduction of RAM utilization as we will experimentally show
that it also improves the CPU utilization in regular traffic rates. More precisely,
our paper makes the following contributions: 1) demonstrates that distributing
IDS functions along routing paths increases the intrusion detection rate and de-
creases the average memory load; 2) formulates a novel IDS function distribution
problem, called Path Coverage Problem (PCP), with the objective to maximize
the detection rate while ensuring that nodes are not overloaded by IDS func-
tions; 3) presents PRIDE, a protocol implemented to solve PCP accurately and
fast, based on an Integer Linear Program (ILP); 4) presents results obtained
from a real prototype system implementation and an evaluation in a real-world,
department-wide, deployed WMN.

2 Motivation and Background

The research presented in this paper is motivated by the challenges we faced
when attempted to deploy a common off-the-shelf IDS with a full configura-
tion (i.e., configured to detect the largest set of attacks) on existing WMN
router hardware. When loading Snort with its full configuration on a Netgear
WNDR3700 router, the router crashes because the RAM is not sufficiently large.
In the remaining part of this section we describe the hardware capabilities of our
mesh routers, background information on Snort, and experimental results that
illustrate how Snort configuration (note: this is equivalent with trading off in-
trusion detection capabilities) impacts memory load of the router.

The Netgear WNDR3700 router has an Atheros AR7161 processor running at
680MHz, 64MB RAM, 8MB flash memory. It has two wireless cards with Atheros
AR9223-bgn and Atheros AR9220-an chipsets, working on 2.4GHz and 5GHz,
respectively. The operating system on the router is the most recent release of
OpenWrt (i.e., Backfire 10.03.1), a Linux distribution for embedded networking
devices, with kernel version 2.6.32.10. We emphasize that our mesh hardware
is more powerful (in terms of processing and memory resources) than devices
used in some existing real world deployments [2,3]. Although in this research we
focus mainly on Netgear WNDR3700 router hardware, later in this section we
present our experience and results with more sophisticated and expensive mesh
hardware, e.g., Meshlium Xtreme which has a 500MHz CPU, 256MB RAM,
8/16/32GB disk memory and WiFi, Zigbee, and GPRS wireless interfaces.

216 A. Hassanzadeh et al.

The router runs Snort, an off-the-shelf intrusion detection system. Snort’s de-
tection engine is based on thousands of detection rules (categorized in multiple
rule files, corresponding to known network threats) and several preprocessors.
All files are listed in “snort.conf”, a global configuration file. Upon activating
each rule file in “snort.conf” and running Snort, all detection rules present in
the rule file are loaded in memory and are used for packet investigation. A full
Snort configuration activates all preprocessors and rule files. A customized con-
figuration activates only some preprocessors and rule files (i.e., IDS functions),
thus, the network traffic is analyzed by fewer detection functions.

The intrusion detection in Snort is performed by packet-level rule matching.
Each packet is preprocessed, following preprocessing directives for extracting
possible plain-text content. The preprocessed packet is then inspected by Snort
detection rules, to expose whether it is an intrusion attempt or not. Preprocessors
parse network packets and provide abstract data for some high-level detection
rules in the rule files. It is important to note that a rule file that contains high-
level detection rules has preprocessor dependency. This dependency means that
the rule file cannot be activated (i.e., Snort generates an error message and
stops) unless all the preprocessors required by its rules (usually one or two
preprocessors) are also activated.

To understand how different Snort configurations impact the memory load on
the Netgear WNDR3700 and Meshlium Xtreme, we performed several experi-
ments. Running Snort causes two types of memory loads to the router: 1) static,
the initial load imposed by packet capturing modules, preprocessors, detection
rules, etc. when Snort is loaded; 2) dynamic, the variable load imposed by state-
ful preprocessors (e.g., Stream5) which is a function of the traffic load and some
configuration parameters.

 0

 20

 40

 60

 80

 100

Snort(S)

S+str5

S+dos

S+4Pre

S+20Sml

S+StrHtt

SpyConf

SpyBack

To
ta

l M
em

or
y

Lo
ad

 (%
)

Fig. 1. Effect of Snort configuration
on the memory load

We first investigate the static memory
load of Snort on the routers when no net-
work traffic is applied. We have observed
that a typical memory load on a Netgear
WNDR3700 router is ∼30% and on the
Meshlium Xtreme router it is ∼60%. This ac-
counts for OS firmware and various services
(OLSR, DHCP, etc.). Without preprocessors
or rule files active, loading Snort on Netgear
WNDR3700 increases memory load to 43%
(“Snort(S)” in Figure 1). Memory load in-
creases to 46% if preprocessor Stream5 is
activated (“S+str5” in Figure 1), and to 48% if preprocessors “http-inspect”,
“smtp” and “ftp-telnet” are also activated (“S+4Pre” in Figure 1).

The memory load of a rule file is a function of the number of detection rules in
it and the pattern matching algorithm Snort uses (e.g., Aho-Corasick). For exam-
ple, using “ac-bnfa-nq” search method, “dos.rules” which has 20 detection rules
and requires the Stream5 preprocessor, increases memory load to 47% (“S+dos”
in Figure 1). A very large file such as “spyware-put” (“SpyConf” in Figure 1)

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 217

which contains ∼1,000 rule files increases the RAM load to 70%. The memory
load caused by activating a set of rule files also depends on their sizes. For exam-
ple, activating 20 small rule files (i.e., 10 rules per file on average) and the Stream5
preprocessor (which the rules require) increases memory load to 49%. Activat-
ing two large rule files, “spyware-put.rules” and “backdoor.rules” (“SpyBack” in
Figure 1) increases memory load to 98%. We have experimentally verified that
adding a few small rule files on top of “spyware-put.rules” and “backdoor.rules”
causes the router to crash. We have observed a similarly overloaded operation for
the Meshlium Xtreme router, where a full configuration Snort increases the mem-
ory load to 98.5%, leaving almost no room for processes/services beyond stock de-
ployment. We also emphasize here the rapid increase in the number of Snort rule
files (i.e., currently about 70 files) and their sizes as functions of the number of
threats. Some rules might not be needed in a particular setting, but conversely,
that setting might require many more rules of some other kind (e.g., custom sig-
natures for suspicious or blacklisted domains, which can increase significantly).

Dynamic memory load, imposed by Stream5 when tracking traffic sessions,
is the other considerable type of Snort memory load since almost all rule files
require this preprocessor. Two configuration parameters of Stream5, “max tcp”
and “memcap”, specify the maximum simultaneous TCP sessions it tracks (sim-
ilarly, “max udp”, “max icmp”, and “max ip”) and the maximum buffer size
for TCP packet storage, respectively. We have experimentally observed that the
value of “max tcp” affects both dynamic and static memory loads. When using
the Snort version available on the OpenWrt development tree, the default con-
figuration has max tcp=8192. Choosing max tcp=100,000, imposes ∼10% more
static load than default “S+Str5” to the routers. Moreover, this value allows
more simultaneous TCP sessions to be inspected which also imposes larger dy-
namic memory load and may cause the router to crash at high traffic rates (note:
we observed that for max tcp≥150,000 the router crashes if a simple HTTP re-
quest is sent using the Linux “wget” tool). Throughout this paper, we use the
default setting, i.e., max tcp=8192, and consider the maximum dynamic load
this setting imposes on the router. Hence, the total memory load of Stream5
is assumed to be its static load plus its maximum allowable dynamic load. We
note that although hardware improves, the fundamental challenge for a resource-
limited node to handle ever-increasing network traffic still remains.

 0

 20

 40

 60

 80

 100

1000 2000 5000 10000

C
P

U
 L

oa
d

(%
)

Background Traffic (pps)

S+dos
SpyBack

Fig. 2. Effect of Snort configuration
on the CPU load

In addition to RAM, processing power
(CPU) is also limited on current mesh hard-
ware. Consequently, investigating the im-
pact of Snort IDS on this limited resource
might seem worthwhile. Experimentally we
have found that network traffic, actually,
has a much larger influence on CPU uti-
lization than executing Snort IDS functions.
Our experimental results are depicted in Fig-
ure 2 where we enabled “tcp track” and
“icmp track” in Stream5 and used “hping3”

218 A. Hassanzadeh et al.

to generate TCP and ICMP traffic. As shown, for an extremely high traffic rate,
both lightweight and heavy Snort configurations impose more than 95% CPU
utilization. Similar with our result, it was shown [7] that even a lightweight IDS
exhausted the CPU when traffic rate was extremely high. However, as shown in
Figure 2, “S+dos”, a lightweight IDS configuration, imposes less processing load
than “SpyBack”, a heavyweight IDS configuration, when the traffic rate is not
high. Consequently, we aim at reducing the memory utilization as we have ex-
perimentally observed that it also improves the CPU utilization in regular traffic
rates (as shown in Figure 2).

3 System and Security Models

The system we are considering in this paper is as specified by the IEEE 802.11s
WLAN Mesh Standard [1]. The system consists of: i) mesh access points (AP)
connecting mesh clients (from now on we will refer to them as “clients”) to the
mesh network; ii) a wireless mesh backbone; and iii) a gateway, connecting the
mesh network to the Internet. The network traffic is either external, i.e., between
clients and external hosts (external to the mesh), or internal, i.e., between two
hosts inside the mesh network. Our system also requires the presence of a base
station – a computer which periodically and securely collects, via a middleware,
information about mesh nodes: processing/memory loads, traffic information,
etc. Based on these information, the base station assigns IDS functions to nodes.

The IDS we are considering in this paper is Snort. We chose Snort because it
is a mainstream off-the-shelf IDS that consumes less resources than other IDS,
e.g., Bro (as it was shown recently [7]). Moreover, Snort is readily available for
our mesh hardware, as part of the OpenWrt development tree. To the best of
our knowledge, there is no port of Bro to the mesh hardware we have available.
Assigning a Snort IDS function to a node is equivalent to activating a rule file in
the Snort configuration file on that node. Activating a rule file imposes a specific
amount of memory load to the device, thus, a limited number of rule files can be
activated when running Snort on the device. We use the default search method
of Snort, i.e., “ac-bnfa-nq”, as we experimentally observed that it consumes the
minimum memory among all low memory search methods, e.g., “lowmem.”

We consider multi-hop attacks where the attacker and the target are con-
nected to the mesh network at different APs. Thus, the attack traffic (malicious
packet(s)) is routed across multiple nodes. The attacker can be either insider or
outsider. An insider attacker is a client, connected to a mesh AP, running attacks
against a target (a router or host) several hops away. An outsider attacker is an
external host attacking a router or a host in the mesh network.

4 Problem Formulation

In this section, we formulate the optimal distribution of IDS functions as an
optimization problem and propose a method to solve it. We use Figure 3 to

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 219

support our formulation. Although Snort is our target IDS (and present a for-
mulation that uses Snort terminology), we believe that other IDS (e.g., Bro) can
be analyzed similarly, if their internals and functionality are publicly available.

Fig. 3. An example graph for a WMN, consisting of
9 nodes, 8 links, and two paths (p1 and p2). The
nodes run different configurations of Snort, e.g., node
v5 runs Snort functions f3, f4 and f5, which require
preprocessors c1 and c2.

We denote the number of
nodes and number of links
in the wireless mesh net-
work by N and Q, respec-
tively. Considering the in-
formation collected from the
nodes, we denote the num-
ber of nodes and links ac-
tively contributing in traf-
fic routing by n (n ≤ N)
and q (q ≤ Q), respectively.
Thus, we model the wireless
mesh network (i.e., after re-
moving idle nodes/links) as
a reduced graph G = {V,E}, where V is the set of nodes {v1, v2, · · · , vn}, and E
is the set of links {e1, e2, · · · , eq}. An example of a reduced graph, in Figure 3,
V = {v1, v2, ..., v9} and E = {e1, e2, ..., e8}.

We denote the set of routing paths for the network traffic by P = {p1, p2, · · · ,
pl}, where Pi = {vj | vj is located in pi} and Pi ⊆ V . In Figure 3 two paths are
present: p1 and p2. Additionally, we denote by matrix Tl×n the mapping between
nodes and paths, i.e., tij = 1 iff node j is located on path i. For the example
shown in Figure 3, the matrix T is as follows:

T =

[
1 1 1 1 1 0 0 0 0
0 0 1 0 0 1 1 1 1

]
.

We denote the set of IDS functions by F = {fk | fk is a set of detection rules}
with size K (i.e., |F| = K). We denote the set of IDS preprocessors by C =
{cr |∃ fk ∈ F that requires cr} of size R (i.e., |C| = R). For the example in
Figure 3, F = {f1, f2, ..., f7} and C = {c1, c2}. The dependency between IDS
functions and preprocessors is stored in matrix DK×R where dkr = 1 means that
activation of function fk requires the activation of preprocessor cr.

Let w : {F , C} −→ [0, 1] be a cost function that assigns memory load wf
k

and wc
r to IDS function fk and IDS preprocessor cr, respectively. Consequently,

vectors W f = [wf
1 , w

f
2 , · · · , w

f
K] and W c = [wc

1, w
c
2, · · · , wc

R] represent memory
loads for the IDS functions in F and for the IDS preprocessors in C, respectively
(we remark that wc

Stream5 in Snort is the summation of its static load and its
maximum dynamic load). We denote by B = [b1, b2, ..., bn] the base memory
load (i.e., without IDS functions loaded) of all nodes. Finally, we use vector Λ =
[λ1, λ2, · · · , λn] (i.e., Memory Threshold) to represent the maximum allowable
memory load after IDS functions are loaded. Memory threshold is an important
parameter. It is typically set by a network administrator based on the number
of active services in the mesh network and the memory space they require.

220 A. Hassanzadeh et al.

Definition 1. An IDS Function Distribution, A={(vj ,Fj , Cj)| vj ∈ V,Fj ⊆
F , and Cj ⊆ C}, is a placement of IDS functions in the network, such that node
vj only executes IDS functions Fj and their corresponding preprocessors Cj.

For example, the IDS Function Distribution in Figure 3 is:

A = {(v1, {f2, f7}, {c1, c2}), (v2, {f6}, {c2}), (v9, {f6, f7}, {c2})}.
We represent an IDS Function Distribution by matrices Xn×K and Zn×R, cor-

responding to IDS functions and preprocessors active on each node, respectively.
For X, xjk = 1 iff IDS function fk is activated on node vj . For Z, zjr = 1 iff
preprocessor cr is activated on node vj . Matrix Z for the network in Figure 3 is
(we omit matrix X due to space constraints):

ZT =

[
1 0 1 0 1 1 1 1 0
1 1 0 0 1 0 0 1 1

]
.

Considering the above mathematical formalism, the dependencies between
IDS functions and preprocessors can now be represented more compactly as:

zjr =

{
1 if (X · D)jr ≥ 1
0 if (X · D)jr = 0

(1)

Equation 1 indicates that preprocessor cr must be activated on node vj if there
exists at least an IDS function fk requiring cr, assigned to it. It is important to
note that zjr = min {1 , ΣK

k=1xjkdkr} and zjr ∈ {0, 1}.
After the IDS Function Distribution, the total memory load for node vj be-

comes Lj = bj + Σcr∈Cjw
c
r + Σfk∈Fjw

f
k , where wc

r ∈ W c and wf
k ∈ W f . It is

important to mention that an IDS Function Distribution in which Lj > λj , i.e.,
the load Lj is greater than threshold λj , for any node vj , is deemed infeasible.

From a network security administrator point of view, we aim for an IDS
Function Distribution where all IDS functions are activated on each path. This
means that the entire network traffic will be investigated by all IDS functions
(albeit at different times), eliminating the possibility of false negatives.

Definition 2. For a given path pi and its corresponding set of nodes Pi, Cov-
erage Ratio (CR) is defined as CRi = |Ui|/K, where Ui =

⋃
vj∈Pi

Fj is the
set of IDS functions assigned to nodes along the path. Path pi is called covered
if CRi = 1 (Ui = F), i.e., for ∀fk ∈ F , ∃ vj assigned by Fj such that fk ∈ Fj.

Considering the effect of IDS Function Distribution on the memory load of
each node and the desired distribution of IDS functions to the nodes, in order to
achieve higher intrusion detection rate, we define Path Coverage Problem (PCP)
as follows:

Definition 3. Path Coverage Problem (PCP)
Given G = {V,E}, a set of paths P in WMN, the dependency matrix D, and
vectors W f and W c, find a distribution A = {(vj ,Fj, Cj)| vj ∈ V and Fj ⊆
Fand Cj ⊆ C}, such that 1

l

∑
pi∈P CRi is maximized and Lj ≤ λj ∀vj ∈ V .

PCP is an optimization problem which has the objective of maximizing the
average coverage ratio while guaranteeing that memory loads on nodes are be-
low a memory threshold. Although a lower memory threshold λj allows more
additional processes to execute on node vj , it makes solving PCP more difficult.

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 221

Max.
1

l
(1T · T)(X · 1) (2)

s.t.: BT + Z ·W cT + X ·W fT ≤ ΛT (3)

(T · X)ik ≤ 1 , ∀i, k (4)

zjr ≥ (X · D)jr
K

,∀j, r (5)

zjr ≤ (X · D)jr ,∀j, r (6)

xjk, zjr ∈ {0, 1} , ∀j, k, r (7)

We formulate PCP as an
Integer Linear Program (ILP)
that can be solved by an ILP
solver. The objective function
is maximizing the average cov-
erage ratio of all paths. Ad-
ditionally, preprocessor depen-
dency and memory threshold
are considered as ILP con-
straints. To better understand
the mathematical formulation of the objective function, one can expand the ob-
jective function as 1

lΣ
l
i=1Σ

n
j=1Σ

K
k=1tijxjk where tij = 1 means node vj is located

on path pi and xjk = 1 means node vj is assigned by function fk. In other words,
the average CR has to be maximized. Constraint 3 limits the memory load on ev-
ery node vj , i.e., Σ

R
r=1zjrw

c
r +ΣK

k=1xjkw
f
k , to be less than its memory threshold

λj . Most importantly, (to ensure that we can formulate PCP as a linear pro-
gram), this constraint computes the total memory load as the sum of individual
memory loads of preprocessors and rule files. Obviously, one needs to investi-
gate if this linearity assumption always holds (we will discuss this in the next
section). Constraint 4 ensures that only one copy of each function is assigned to
the nodes along each path. Constraints 5 and 6 ensure that if an IDS function is
assigned to a node, its required preprocessors are also assigned to the node. As
presented in Equation 1, zjr = 1 if at least one of the IDS functions assigned to
node vj requires preprocessor cr, otherwise zjr = 0. The maximum number of
functions that require a specific preprocessor is at most K. Hence, Constraint 5
ensures that 0 < zjr ≤ 1 if there is a function assigned to node vj that requires
preprocessor cr. On the other hand, if none of the functions assigned to node
vj requires preprocessor cr, then Constraint 6 enforces zjr to be zero. Taking
into account Constraint 7, i.e., zjr has to be either 0 or 1, Constraint 5 enforces
zjr = 1 if preprocessor r is required on node j, otherwise, Constraint 6 enforces
zjr = 0.

5 PRIDE: Challenges and Solutions

Considering the aforementioned ILP formulation for PCP, we investigated two
major challenges that impact the accuracy and time complexity of a solution.
First, we experimentally observed that the total memory load of multiple Snort
rule files is generally linear (i.e., it is equal to the sum of their individual memory
loads), but not always (e.g., for some small rule files and certain rule types).
This influences the accuracy of our proposed model for calculating the total
memory load on each node (i.e., Challenge 1). Next, one can observe that the
complexity of ILP depends on the number of paths in the network, the path
lengths, the number of IDS functions, the number of preprocessors, and the
memory threshold. For example, considering the number of Snort preprocessors
(i.e., more than 20) and the number of Snort rule files (i.e., more than 60),

222 A. Hassanzadeh et al.

for single path pi, the number of ILP constraints grows to more than 1400 ×
|Pi|, where |Pi| is the path length. Additionally, a lower memory threshold λj

increases the number of infeasible solutions, thus requiring more iterations for
the ILP solver. Hence, the ILP performance degrades as network size increases or
memory threshold decreases (i.e., Challenge 2). In this section, we investigate the
aforementioned challenges and propose techniques to overcome them. Finally, we
present PRIDE protocol that distributes IDS functions to the nodes accurately
and fast (i.e., practical).

Experimentally, we observed that when activating multiple small rule files
(i.e., containing at most 50 detection rules), Snort memory load is much less
than the sum of individual memory loads. However, we observed that when
multiple large rule files (i.e., containing more than 250 detection rules) were ac-
tivated, the memory load is closer to the sum of the rule file’s individual memory
loads. When a rule file is activated, depending on: 1) the number of detection
rules it has; 2) the preprocessors it activates (if already not activated); and 3)
the Snort search method, a different amount of memory load will be imposed
to the node. In order to show how the aforementioned three factors impact our
assumption about memory load linearity (i.e., constraint 3), we performed exten-
sive experiments (omitted here due to space constraints) on the Snort memory
consumption modeling in the absence of preprocessors. As the result, we ob-
served a linear behavior when adding blocks of 250 rules to the set of active rules
irrespective of rule order and search method. We use this finding to address the
non-linearity of memory load for the variable-size rule files (i.e., Challenge 1) in
the following subsections.

5.1 Rule Files Modularization

To reduce the complexity of the problem the ILP solver faces (i.e., Challenge
2), we propose to reduce the number of individual preprocessors and IDS func-
tions, which would result in a decrease in the number of constraints in ILP. Our
proposal is to group multiple IDS functions together and consider them as a
single function. From here on, we refer to each group of rule files as a “detecting
module” and use the term “group” for a group of preprocessors. If a detecting
module is assigned to a node, all rule files in that module will be activated. We
experimentally observed that grouping rule files not only reduces the problem
complexity (Challenge 2), but also decreases the variance in memory load es-
timation (Challenge 1). When several small rule files are grouped in a single
detecting module, it acts as a larger rule file (same as a block of 250 rules),
and the estimated memory load is more accurate. In addition, considering the
preprocessor dependency mentioned in Section 4, an efficient rule file grouping
reduces the number of preprocessor dependencies. For example, if two rule files
require the same preprocessor(s), they can be grouped in the same detecting
module. Similarly, multiple preprocessors required for the same rule files, can be
grouped together. Hence, when activating a new detecting module, the load im-
posed by rules’ data structure dominates the load imposed by the new activated

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 223

preprocessor (that can be ignored). This is very similar to the behavior observed
in memory consumption modeling experiments in the absence of preprocessors.

Grouping rule files together, however, has a disadvantage when the mem-
ory threshold set by the system administrator is very low. For low memory
thresholds, we cannot assign larger modules to nodes, which results in low cov-
erage/detection ratio. Consequently, despite the positive aspects of grouping
small rule files together, memory threshold forces us to avoid large detecting
modules. Unfortunately, there already exist large detecting modules. For exam-
ple, the memory space required by the “backdoor” rule file is twice the memory
space required by a detecting module with 25 small rule files. This illustrates the
need to also split extremely large rule files into some smaller ones (i.e., creating
several detecting modules out of a large rule file).

We thus define “modularization” as the procedure that, for a given set of IDS
functions (e.g., Snort rule files), i) groups small IDS functions together in order
to reduce the problem complexity and load estimation error, and ii) splits large
IDS functions into several smaller functions so that they can be activated with
low memory thresholds.

Rule File Splitting: When splitting a rule file, we consider the dependency
between detection rules and the dependency between preprocessors and detection
rules. This is to ensure that two dependent rules along with all of their essential
preprocessing directives are included in the same split rule file. In order to split a
rule file into several detecting modules, we first pre-parse each detection rule and
specify its preprocessing dependency in advance (e.g., Stream5 preprocessor for
HTTP-relevant rule files). We summarize all these preprocessing dependencies
before splitting the rule files. In addition, rule dependency is expressed by the
options’ keywords, e.g., “flowbits.” To meet the rule dependency requirements,
we parse each detection rule and specify whether the rule contains such keywords
or not, if it does, it must be relevant. For example, the “flowbits” options can
help us maintain the stateful check in a set of Snort detection rules. When some
keys are set by “flowbits” in a detection rule, every other detection rule which
does not set the “flowbits,” is dependent on that detection rule. Thus, using
these two types of dependency, we split large rule files properly.

In addition, rule dependency is expressed by the options’ keywords, e.g., “flow-
bits.” To meet the rule dependency requirements, we parse each detection rule
and specify whether the rule contains such keywords or not, if it does, it must be
relevant. For example, the “flowbits” options can help us maintain the stateful
check in a set of Snort detection rules. When some keys are set by “flowbits”
in a detection rule, every other detection rule which does not set the “flowbits,”
is dependent on that detection rule. Similarly, the keyword “rev:VALUE” in a
detection rule, that identifies revisions of Snort rules, denotes that it is related
to a detection rule whose “sid” is “VALUE.” Thus, using these two types of
dependency, we split large rule files properly.

Proposed Modularizations: We propose three modularizations with dif-
ferent numbers of detecting modules and different sizes. We then compare the
execution time of the solver, i.e., Matlab ILP solver, for each modularization.

224 A. Hassanzadeh et al.

In the first modularization, the entire set of Snort rule files is classified into 23
detecting modules where 6 different groups of preprocessors are required. The
average memory load of the 23 detecting modules is 3.98% and the standard de-
viation is 1.68%. The second modularization consists of 12 detecting modules of
average memory load 6.76% and standard deviation 2.31%, while the third mod-
ularization has only 6 detecting modules of average memory load 15.06% and
standard deviation 1.88%. The second and the third modularizations require
three groups of preprocessors.

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6

E
xe

cu
tio

n
Ti

m
e

(s
ec

.)

Path Length (hops)

 6 Mod. 3 Prp.
12 Mod. 3 Prp.
23 Mod. 6 Prp.

Fig. 4. Effect of modulariza-
tions on ILP execution time

Figure 4 shows the execution time of the
ILP solver when solving the problem for differ-
ent lengths of a single path. As depicted, 12-
module and 6-module configurations are much
faster than 23-module configuration, especially
for longer paths (i.e., more complex problems).
With these two modularizations, the ILP solver
finds the optimal solution in less than 2 sec, which
is very fast, thus practical in real deployments.
The longer execution time for 6-module configuration, comparing to 12-module
configuration, is because of its larger detecting modules that increase the num-
ber of infeasible solutions for a given memory threshold (increasing the solver’s
execution time). We use 6-module and 12-module configurations in our system
evaluations.

5.2 PRIDE Protocol

Algorithm 1. PRIDE IDS
Function Distribution
1: Data Collection(V, E,N,Q)

2: Relaxation(V, E, n, q)
3: Path Extract(V,E, P)

4: P = P
5: g = 0

6: while ∃ pi ∈ P do
7: g + +

8: Sg = {pi}
9: P = P\{pi}
10: while ∃ pj ∈ Q and

11:
⋃

pk∈Sg

(Pj ∩ Pk) �= ∅ do

12: Sg = Sg ∪ {pj}
13: P = P\{pj}
14: end while
15: end while
16: for ∀Sg do
17: Vg = {vj |vj ∈ Pi and pi ∈ Sg}
18: for ∀Vg do ILP(Vg , P)

Given a modularization chosen for the IDS
configuration, PRIDE periodically collects the
local information from the nodes, removes idle
nodes from the network, i.e., those not con-
tributing in the traffic routing, and optimally
distributes IDS functions to the nodes along
traffic paths. If the reduced graph is discon-
nected, each graph component is considered
as a sub-problem and solved separately. Algo-
rithm 1 presents PRIDE protocol.

Given the set of nodes, the protocol first
collects information from nodes and then pro-
duces the reduced sets V and E by removing
idle nodes/links. Next, the set of active rout-
ing paths P is extracted in Line 3. Given P ,
the Algorithm creates the set P of unvisited
paths, and then defines variable g as the num-
ber of sub-problems. For every unvisited path pi in set P , the Algorithm first
creates a new sub-problem Sg and marks it as a visited path. The Algorithm
then searches P to find any unvisited path pj which is connected (Two paths
are connected if they are in the same component of the reduced graph) to at

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 225

least one path in the current Sg. If so, the corresponding path pj will be added
to the current sub-problem Sg and removed from P . When no more paths in P
can be added to the current Sg, the Algorithm increases g and creates a new
sub-problem. This process repeats until there is no unvisited path in P . Next,
for every sub-problem Sg, the Algorithm creates the corresponding set Vg as the
set of nodes located on the paths of component Sg. Finally, the Algorithm runs
ILP on the nodes and paths of each sub-problem Sg.

6 System Implementation and Evaluation

In this section, we evaluate the performance of PRIDE in a department-wide
mesh network. Our mesh network consists of 10 Netgear WNDR3700 routers de-
ployed in a 50×30m2 rectangular area (Note: comparing with other testbeds, Dis-
tressNet [4] 8 nodes, SMesh [2] 14 nodes, PRIDE uses an average size testbed.).
The routers use OLSR as the routing protocol and provide mesh connections on
their 5GHz wireless interfaces and network access for the clients on the 2.4GHz
wireless interfaces. PRIDE periodically (i.e., 5 minutes in the current setup)
collects nodes/traffic information and runs ILP. This interval can be optimally
chosen by administrator in dynamic networks. We use bintprog function in Mat-
lab as the ILP solver.

We evaluate the intrusion detection rate (coverage ratio) and average memory
load of nodes. The parameters that we vary are the Path Length (PL) and
memory threshold (λ). The attack traffic we use is based on Rule 2 Attack tool,
as explained in [12]. In all our experiments, the memory thresholds of all nodes
are equal and some of the preprocessors (e.g., perfmonitor) are not used as they
are not activated by default or not required by rule files. Since the maximum path
length in our mesh network is 4 hops, we consider 2-hop, 3-hop and 4-hop paths.
The initial memory load on the routers is ∼ 30% (as caused by DHCP, OLSR,
and other services). We vary the Snort memory threshold from 30% to 60% (i.e.,
60% ≤ λ ≤ 90%). Since implementing the related traffic-aware solution [11]
on the mesh devices is infeasible (the routers crash), we compare PRIDE with
monitoring node solutions ([5,6]). We implement a monitoring node solution [5]
to which we refer as “MonSol”. A monitoring node loads detecting modules up
to a given memory threshold based on the default order of rule files in Snort
configuration file. If a monitoring node monitors at least one link of a given
path, the entire path is considered as monitored.

6.1 Proof-of-Concept Experiment

When assigning IDS functions to multiple nodes on a path, each node can de-
tect only a subset of attacks depending on the detecting modules it executes. As
a proof-of-concept experiment, we show that distributing two IDS functions to
two nodes generates exactly the same alerts as if both detecting modules were
assigned to a single node (e.g., MonSol). For that purpose, we used two routers
and one laptop connected wireless to each router (one laptop was the attacker

226 A. Hassanzadeh et al.

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

D
et

ec
tio

n
R

at
e

(%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(a)

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

A
ve

ra
ge

 M
em

or
y

Lo
ad

 (%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(b)

 0

 5

 (
%

)

PRIDE (PL=2)

 0

 5

PRIDE (PL=3)

 0

 5

 D
iff

er
en

ce
 in

 M
em

or
y

Lo
ad

PRIDE (PL=4)

 0
 5

60 65 70 75 80 85 90
λ (%)

Mon.Sol.

(c)

Fig. 5. 6-module configuration: effect of λ and PL on a) Detection rate. b) Average
estimated memory load. c) The difference between estimated and actual memory load.

and the other was the target). We ran a customized Snort on each router (mon-
itoring the mesh traffic) ensuring that every Snort rule file is activated on at
least one of the routers. We then generated two R2A exploits such that their
corresponding rule files, e.g., “dos.rules” and “exploit.rules”, were activated on
routers 1 and 2, respectively. When running attacks, the Snort on node 1 gener-
ated 4 alerts, while the one on node 2 generated 10 alerts (real-time detection,
unlike cooperative IDS). We repeated the experiment where only node 1 was
running Snort and both rule files were activated on node 1 (many other rule
files were deactivated due to memory constraint). In this experiment, node 1
generated exactly the same 14 alerts upon launching the same exploits. Hence,
we have shown that PRIDE can distribute IDS functions to nodes along a path
such that network packets are inspected by all IDS functions.

6.2 Effects of Memory Threshold and Path Length

Given the network paths in our test-bed mesh network, we evaluate the intrusion
detection rate of PRIDE and the average memory load on nodes, using 6-module
and 12-module configurations. For each modularization, we change λ and PL as
our evaluation parameters to see their effects on PRIDE performance. Given a
λ, we show PRIDE can achieve higher detection rate than MonSol.

Figure 5 shows the effect of memory threshold and path length on intrusion
detection rate and average memory load on the nodes when using the 6-module
configuration. As depicted in Figure 5(a), maximum detection rate for MonSol
is 50% which occurs when λ = 90%. However, PRIDE can achieve 100% detec-
tion rate even in a lower memory threshold (e.g., at λ = 80% for PL = 4 and
PL = 3). This is because more than one node is assigned with IDS functions and
packets are inspected by more detecting modules. In this modularization, for a
low memory threshold (e.g., λ = 60%), only module 3 can be activated on the
nodes, and thus, PRIDE cannot achieve a higher detection rate than MonSol.
Figure 5(b) depicts the average estimated memory load on the nodes for dif-
ferent memory thresholds. It can be observed that PRIDE usually requires less
memory load than MonSol, especially for the longer paths, since the modules
are distributed to multiple nodes. We also compare the estimated memory loads
and the actual memory loads of the two configurations in all of the experiments,

PRIDE: Practical Intrusion Detection in Resource Constrained WMN 227

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

D
et

ec
tio

n
R

at
e

(%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(a)

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

A
ve

ra
ge

 M
em

or
y

Lo
ad

 (%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(b)

 0

 5

 (
%

)

PRIDE (PL=2)

 0

 5

PRIDE (PL=3)

 0

 5

 D
iff

er
en

ce
 in

 M
em

or
y

Lo
ad

PRIDE (PL=4)

 0
 5

60 65 70 75 80 85 90
λ (%)

Mon.Sol.

(c)

Fig. 6. 12-module configuration: effect of λ and PL on a) Detection rate. b) Average
estimated memory load. c)The difference between estimated and actual memory load.

i.e., different memory thresholds and path lengths. Figure 5(c) shows the differ-
ence between estimated memory load and actual load measured on the routers
when using 6-module configuration. One can see that the difference is below
∼5%, thus giving confidence in our ILP formulation and memory consumption
modeling. The results for the same evaluations performed on the 12-module
configuration are shown in Figure 6. As depicted in Figure 6(a), the intrusion
detection rate for the 12-module configuration is higher than the detection rate
for the 6-module configuration (for the same memory threshold). This is because
the size of the detecting modules in the 12-module configuration is smaller than
for the 6-module configuration, which allows more modules to fit in the small
free memory spaces. In contrast with the 6-module configuration, where at low
memory thresholds the detection rate was similar to MonSol, in the 12-module
configuration the detection rate at 60% (a low memory threshold) is higher than
for MonSol. This is because more modules are activated on the nodes even at
this low memory threshold. The average estimated memory loads for this mod-
ularization are shown in Figure 6(b). Similar to the 6-module configuration, it
is observed that the 12-module configuration usually impose less memory load
than MonSol solution for the longer paths. It is worth mentioning that the es-
timated values for the 12-module configuration, as shown in 6(c), are closer to
the real values than the 6-module configuration because the modules are roughly
the same size as 250-rule blocks.

 0

 10

 20

 30

 40

 50

 60

 70

 60 65 70 75 80 85 90

E
xe

cu
tio

n
Ti

m
e

(s
ec

.)

λ (%)

 6M, PL=3
 6M, PL=4

12M, PL=3
12M, PL=4

Fig. 7. ILP solver execution time for
different problems and parameters

Figure 7 shows the ILP solver execution
time for PL = 3 and PL = 4, and for
each modularization. As depicted, the exe-
cution time of the algorithm ranges from a
few seconds to tens of seconds, thus mak-
ing it practical for real world deployments.
As shown, the lower the memory threshold
is, the longer the execution time is. This is
because lower memory thresholds increase
the number of infeasible solutions and the
solver requires more iterations to obtain
feasible and optimal solutions. As shown in Figure 7, the execution time in-
creases with the path length as well. As mentioned in Section 5, this is because

228 A. Hassanzadeh et al.

the number of ILP constraints (i.e., the problem complexity) is a direct function
of path length.

7 Conclusions

In this paper, we have shown that intrusion detection in WMN requires signifi-
cant resources, and traditional solutions are not practical for WMN. To address
these challenges, we propose a solution for an optimal distribution of IDS func-
tions. We formulate the optimal IDS function distribution as an integer linear
program and propose algorithms for solving it accurately and fast. Our solution
maximizes intrusion detection rate, while maintaining the memory load below a
threshold set by network administrators. We have investigated the performance
of our proposed solution in a real-world, department-wide, deployed WMN.

Acknowledgement. This work is based in part on work supported by Naval
Surface Warfare Center, Grant No. N00164-11-1-2007.

References

1. Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L., Walke,
B.: IEEE 802.11s: the WLAN mesh standard. Wireless Commun. (2010)

2. Amir, Y., Danilov, C., Musăloiu-Elefteri, R., Rivera, N.: The SMesh wireless mesh
network. ACM Transactions on Computer Systems (September 2008)

3. Backens, J., Mweemba, G., van Stam, G.: A rural implementation of a 52 node
mixed wireless mesh network in macha, zambia. In: Villafiorita, A., Saint-Paul, R.,
Zorer, A. (eds.) AFRICOM 2009. LNICST, vol. 38, pp. 32–39. Springer, Heidelberg
(2010)

4. Chenji, H., Hassanzadeh, A., Won, M., Li, Y., Zhang, W., Yang, X., Stoleru, R.,
Zhou, G.: A wireless sensor, adhoc and delay tolerant network system for disaster
response. LENSS-09-02, Tech. Rep. (2011)

5. Hassanzadeh, A., Stoleru, R., Shihada, B.: Energy efficient monitoring for intrusion
detection in battery-powered wireless mesh networks. In: ADHOC-NOW (2011)

6. Shin, D.-H., Bagchi, S., Wang, C.-C.: Distributed online channel assignment toward
optimal monitoring in multi-channel wireless networks. In: IEEE INFOCOM (2012)

7. Hugelshofer, F., Smith, P., Hutchison, D., Race, N.J.: OpenLIDS: a lightweight
intrusion detection system for wireless mesh networks. In: MobiCom (2009)

8. Hassanzadeh, A., Stoleru, R.: Towards optimal monitoring in cooperative ids for
resource constrained wireless networks. In: IEEE ICCCN (2011)

9. Krontiris, I., Benenson, Z., Giannetsos, T., Freiling, F.C., Dimitriou, T.: Coopera-
tive intrusion detection in wireless sensor networks. In: Roedig, U., Sreenan, C.J.
(eds.) EWSN 2009. LNCS, vol. 5432, pp. 263–278. Springer, Heidelberg (2009)

10. Hassanzadeh, A., Stoleru, R.: On the optimality of cooperative intrusion detection
for resource constrained wireless networks. Computers & Security (2013)

11. Sekar, V., Krishnaswamy, R., Gupta, A., Reiter, M.K.: Network-wide deployment
of intrusion detection and prevention systems. In: ACM CoNEXT (2010)

12. Hassanzadeh, A., Xu, Z., Stoleru, R., Gu, G.: Practical intrusion detection in re-
source constrained wireless mesh networks. Texas A&M University 2012-7-1, Tech.
Rep. (2012)

Fingerprint Embedding: A Proactive Strategy

of Detecting Timing Channels

Jing Wang1,2,�, Peng Liu3, Limin Liu1, Le Guan1,2, and Jiwu Jing1

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{jwang,lmliu,lguan,jing}@lois.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Pennsylvania State University, University Park, PA, USA

pliu@ist.psu.edu

Abstract. The detection of covert timing channels is notoriously a dif-
ficult work due to the high variation of network traffic. The existing
detection methods, mainly based on statistical tests, cannot effectively
detect a variety of covert timing channels. In this paper, we propose a
proactive strategy of detecting covert timing channels. The basic idea is
that a timing fingerprint is embedded into outgoing traffic of the to-be-
protected host in advance. The presence of a covert timing channel is
exposed, provided that the fingerprint is absent from the traffic during
transmission. As a proof of concept, we design and implement a detec-
tion system, which consists of two modules for fingerprint embedding
and checking, respectively. We also perform a series of experiments to
validate if this system works effectively. The results show that it detects
various timing channels accurately and quickly, while has less than 2.4‰
degradation on network performance.

Keywords: timing channel, covert channel, fingerprint embedding,
intrusion detection system.

1 Introduction

Covert timing channel is a mechanism that exploits timing intervals of trans-
mitted packets to convey sensitive information. Due to a large volume of data
over the Internet, network traffic has become an ideal medium for stealthy com-
munication. A cyber attacker can utilize this mechanism for various purposes,
e.g., exfiltrating secrets [25], launching DDoS attacks [13], and tracking network
flows [30]. Under the cover of massive overt traffic, it is generally hard to reveal

� This work was supported by National Natural Science Foundation of China
Grant 70890084/G021102 and 61003274, Strategy Pilot Project of Chinese
Academy of Sciences Sub-Project XDA06010702, National High Technology Re-
search and Development Program of China (863 Program, No.2013AA01A214), ARO
W911NF-09-1-0525 (MURI), NSF CNS-0905131, NSF CNS-0916469, and AFOSR
W911NF1210055.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 229–244, 2013.

© Springer International Publishing Switzerland 2013

230 J. Wang et al.

the presence of a covert timing channel. Sometimes, an attacker creates one in
a victim machine even with no additional traffic, only by manipulating the tim-
ings of the existing traffic, under which circumstance the system administrator is
practically unconscious of it. This kind of channels, referred to as passive timing
channels, are more difficult to be detected than active ones.

The detection of covert timing channels is acknowledged as a difficult work all
along. In the current literature, detection methods are mainly based on statistical
tests, which differentiate covert traffic with irregular statistical properties from
legitimate traffic. Empirically, these detection methods are over-sensitive to the
high variation of network traffic, and thereby causes a unacceptable false alarm
rate. Due to the inherent limitation, statistical-test-based detection methods are
strongly dependent of encoding techniques applied in timing channels, and only
accurate in detecting a specific timing channel. Furthermore, if covert traffic is
designed to be statistically approximate to legitimate traffic, these methods are
unable to detect it. In addition, the extraction of statistical properties requires
large test samples. If a covert channel exists, a large amount of sensitive infor-
mation (e.g., possibly, encryption keys or passwords) has already been leaked
before it is detected. In brief, previous detection methods have limitations in
detection effectiveness.

In this paper, we propose a proactive strategy of detecting covert timing
channels. The basic idea is that a secret fingerprint is embedded into outgoing
traffic of the to-be-protected host in advance. Meanwhile, a detector, which is
located in the transmission path of the protected traffic, checks if the traffic
still retains the fingerprint. The presence of a covert timing channel is exposed,
provided that the fingerprint is absent.

To demonstrate the feasibility of the proactive strategy, we design and imple-
ment a detection system targeting passive timing channels, whose covert encoder
resides on the intermediate routers/gateways or low-layer network protocol stack
of the victim machine. The detection system consists of two modules: ADAPTOR
and CHECKER. ADAPTOR is installed on the machine in protection, and the purpose
is to embed a specific fingerprint shared with CHECKER into each flow of network
traffic; CHECKER is located on the intrusion detection system (IDS) to examine
the presence of the fingerprint in passing traffic. To evaluate the performance of
our detection system, we also conduct a series of experiments to validate if the
detection system works effectively. In the experiments, it can successfully detect
existing timing channels and raw legitimate traffic with no fingerprint, which in-
dicates that the performance of our detection method is independent of channel
encoding methods. Moreover, the results show that our system can detect covert
traffic not only accurately but also quickly, while has little influence on network
performance.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work in timing channels. After that, we introduce the communication
scenario, the system model and the adversary model. In Section 4, we describe
the structure of our detection system. Then we validate the effectiveness of this
system. Finally, we conclude the paper.

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 231

2 Related Work

The timing of some events can leak secret information in a manner that compro-
mises security properties. In side timing channels, attackers exploit the fact that
the time for executing a cryptographic algorithm is data dependent. Specifically,
key information can be extracted through precise measurements of the time [17].
Side-channel timing attacks have also been proved to be practical over a network
[4,3,7]. In addition, it has been shown that such attacks are effective not only
on cryptosystems but also in other scenarios [8,27]. However, the focus of this
paper is on deliberate information leakage from timing channels established by
a premeditated adversary rather than unintentional leakage from side channels.

Inter-packet delays in network traffic can be used as a medium for data stealth
transfer. This kind of communication channel, which is not intended for data
transfer, is usually called “covert channel” [19]. Compared with network storage
channel, which exploits the redundancy of network protocols, timing channel is
more stealthy due to the cover of varying overt traffic.

The recent literature is not lack of practical exploitation of covert timing
channels. Since the first IP covert timing channel came into being [6], channel
exploitation has made great progress over the years. In [25], Shah et al. designed a
device called Jitterbug, which can extract typed information and leak it through
a timing channel. This is a typical example of real-world network timing channels.
Gianvecchio et al. [10] proposed a model-based covert timing channel, which
mimics the distribution of legitimate traffic. Liu et al. [20] introduced spreading
codes to encode messages for the purpose of increasing the robustness of timing
channel. Sellke et al. [24] proposed the “L-bits to N-packets” encoding scheme in
order to build a high-capacity covert timing channel. In general, the research on
network covert timing channel exploitation has been done from three aspects:
undetectability [5,10,28,18], robustness [14,20], capacity [2,34,32].

Covert timing channel can be categorized into two types: active and passive.
In an active channel, the sender generates additional network packets to embed
covert information and needs to compromise the host for the total control over
it. While in a passive channel, the sender just compromises the I/O device [25] or
low-level network protocol stack [33], or resides in the middle nodes (e.g., routers
or gateways) [21,34], manipulating the existing network traffic. In general, it is
harder to discover passive channels due to their parasitism on overt ones. Addi-
tionally, in terms of encoding techniques, passive channels usually maintain the
inter-packet dependencies of legitimate traffic, and thus, are hardly detectable.
The detection of them has become a challenging work.

There is another form of passive timing channel, i.e., network flow watermark,
intended for packet traceback. Wang et al. [31] develop a watermark, aiming to
correlate “stepping stones”, by means of sightly changing the timing of flow-
based packets. This technique can also be used to correlate encrypted VoIP calls
even in anonymous networks [30].

To eliminate the threat from covert timing channels, researchers have pro-
posed a series of solutions: fuzzy time [15], jammers [11], pump [16], etc. The
fundamental idea among them is to insert random interrupts in order to lower

232 J. Wang et al.

the channel capacity boundary. However, network suffers performance degrada-
tion therefrom. In addition, covert timing channel is still able to exist but with a
poor bandwidth. By comparison, it might be preferable to adopt passive traffic
analysis, namely channel detection, which aims to differentiate covert traffic from
normal traffic. The research on this field has attracted a lot of attention in re-
cent years, and meanwhile, a series of detection techniques have been developed
[6,2,22,9]. The most noteworthy among these, supposedly, is the entropy-based
method [9]. This method utilizes entropy and conditional entropy to detect the
anomaly in first-order and high-order statistics, respectively. Compared with the
others, empirically, it has a better performance in detecting various covert tim-
ing channels. Even so, it still can be defeated by some mimicry-based encoding
techniques [28,18].

3 Preliminaries

3.1 Communication Scenario

A covert timing channel consists of a covert encoder sending secrets by modu-
lating network event timings, and a decoder extracting secrets by observing the
timings. In reality, the covert encoder is not necessarily the sender of network
traffic. Specifically, it can be located in the transmission path, and manipulates
the delays of passing-by packets. Sometimes, an attacker may choose to create
such a passive channel instead of an active one, the reasons of which include:
1) sometimes the creation of a passive channel does not require a compromised
host. 2) the generation of additional traffic is prone to exposing the presence
of a covert channel, whereas a passive channel can avoid this risk. There has
been recognized difficulty in mitigating the security threat from such channels.
In this paper, we target passive channels to demonstrate the feasibility of our
proactive strategy. For the sake of clarity, we elaborate that, in the scenario of
covert communication we are concerned with, as shown in Figure 1, the covert
encoder can reside on the intermediate routers/gateways near the overt sender,
or even on the compromised output device or low-layer network protocol stack
of the same machine as the overt sender. We note that the scenario of Jitterbug
[25], which compromises an input channel, is not in the application scope of our
proof-of-concept implementation.

3.2 System Model

In a general system model of network covert communication, there is another
role besides a covert encoder and decoder, that is, a network warden, residing
between the covert encoder and decoder and monitoring the passing messages
[12]. There are mainly two types of wardens in the literature of covert timing
channel:

– A passive warden can detect the presence of covert timing channels, but
cannot alter the existing traffic.

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 233

Fig. 1. Communication Scenario

– An active warden can alter the timings of existing traffic to eliminate or
disrupt covert timing channels.

In this paper, we introduce a new type of warden, which is an active one but
intended for detection. Specifically, the warden embeds a specific timing finger-
print into the newly generated traffic by slightly altering inter-packet delays, and
meanwhile, he is located in the transmission path and detects if the transmitted
packets still retain the specific fingerprint.

3.3 Adversary Model

In some cases of passive channels, the location of an adversary is physically
separated from the overt sender, e.g., intermediate routers/gateways, so the ad-
versary is unable to directly access secrets in the victim machine. On the other
hand, an adversary might reside in some important components of the victim
machine, e.g., the output device or low-layer network protocol stack, and thus,
have an opportunity to steal secrets about fingerprint information. To consider
the worst situation, we assume the adversary has the ability to compromise the
host; then he can grab desirable information.

We also assume that virtualization technology is implemented in the to-be-
protected machine. Such assumption is realistic because this technology has
been widely applied in personal computers, servers, and workstations. The self-
protection of secrets about specific fingerprints and fingerprint embedding code
can be addressed by applying the SIM [26] framework. Even if an adversary com-
promises the OS kernel, he is unable to know about the fingerprints or disable
the code.

4 Detection System

The detection system consists of two modules: ADAPTOR and CHECKER. ADAPTOR,
which is installed on the to-be-protected machine, embeds a specific fingerprint

234 J. Wang et al.

into each flow of network traffic. CHECKER, installed on the IDS, which is located
on the edge of the LAN, checks if the passing traffic still retains the fingerprint.
Figure 2 shows the overview of our detection system.

P
A

C
K

E
T

 F
IL

T
E

R

ADAPTOR

FINGERPRINT-CHECKER

OTHER MODULES

TO-BE-PROTECTED MACHINE

IDS

PORT MIRRORING

FIREWALL

TCP/IP
PACKETS

NIC

Fig. 2. System Overview

In the practical implementation, ADAPTOR and CHECKER agree a priori on the
knowledge about fingerprint patterns, including the specific encoding/decoding
method and the involved secrets (e.g., sensitive parameters or random number
seeds). ADAPTOR can be installed on multiple to-be-protected machines in a LAN,
but the fingerprint patterns may be distinct from each other. CHECKER is only
required to be installed on the boundary between the LAN and the outside
world, and thus, is responsible to check all the traffic generated from protected
machines in the LAN. CHECKER should maintain a list of services in protection
and corresponding fingerprint patterns in use. The pair of each ADAPTOR and
CHECKER constitutes a trusted transmission path. If the timing interval pattern
of a flow deviates from the expected one, a covert timing channel probably
exits in the corresponding transmission path. A warning will be given to the
security administrator once CHECKER detects such traffic anomaly. The ADAPTOR
and CHECKER modules are detailed in the following subsections.

4.1 ADAPTOR

The main task of the ADAPTOR module is to change the timing characteristic
of the original traffic, which is intended to leave its fingerprint on the trans-
mitted traffic. As an exemplary implementation, we place ADAPTOR between the
OS kernel and network interface card. ADAPTOR intercepts TCP/IP packets just
generated from the OS. The original traffic is stored temporarily in a buffer,
waiting to be forwarded at an elaborately planned time. ADAPTOR classifies the
traffic into individual flows based on protocol, source and destination port and
IP address, and then calculates intervals between adjacent packets of each flow.
The transmission time of each packet is determined according to the original
intervals and the fingerprint pattern. ADAPTOR finally forwards the manipulated
packets to network interface card. Figure 3 shows the workflow of ADAPTOR.

Fingerprint Encoding. There is a basic principle regarding fingerprint en-
coding, that is, the timing of the original traffic cannot be altered a lot. If the

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 235

NIC
Flow

Classification

ADAPTOR

Temporary
Buffering

Fingerprint
Embedding

Packet
Fowarding

Kernel

Original traffic Marked traffic

Kernel Module

Fig. 3. The workflow of ADAPTOR

packets are delayed for a long time, the network performance will suffer penalty
seriously. We note that, this is similar to the negative effect of current disruption
techniques, which reduces covert channel capacity by adding random delays to
traffic. For this reason, a slight change in packet intervals is only allowed when
fingerprint information is encoded into the original traffic.

We develop a simple fingerprint encoding scheme for the detection system.
The sequence of original times when packets are delivered from the kernel is de-
noted as {t1, ..., tn} here. To mark the traffic generated from the to-be-protected
machine, we add a slight delay noted by τi to each element of the sequence. So
the new sequence of altered times when packets are forwarded by ADAPTOR turns
out to be {t′1, ..., t′n}, where t′i = ti+ τi. The fingerprint of ADAPTOR is marked on
the resulting inter-packet delays IPDi = t′i+1 − t′i, which satisfies the following
equation:

IPDi mod ω = 0

where ω is a time parameter, referred to as the fingerprint pattern.
We can infer that the delay τi is less than ω all the time. Therefore, the

parameter ω determines the maximum delay to packet transmission time, and
hence, directly affects the network performance.

An example is given below to help the understanding of the fingerprint en-
coding scheme. We assume ω = 1000us, and the sequence of original intervals is
{375, 17790, 3889, 8456, 55322}us. To make each interval be an integral multiple
of ω, ADAPTOR adds a delay to each packet, and consequently, the sequence of
altered intervals turns out to be {1000, 18000, 4000, 9000, 56000}us.

Influencing Factors. As described above, the delays manipulated by ADAPTOR,
which are bounded from above by the parameter ω, cannot be too long in consid-
eration of user experience. On the other hand, if ω is small, the fingerprint will
be wrongly decoded on the module CHECKER side although no intentional change
occurs during transmission. There are several factors influencing the accuracy
rate of fingerprint decoding.

The major one is jitter. In the context of computer networks, jitter, also re-
ferred to as packet delay variation, represents an average of the deviation from
the packet mean latency over a network. From another perspective, it indicates
that a network has inconstant latency, and there always exists a difference be-
tween an inter-packet delay on the sender side and that on the receiver side.

236 J. Wang et al.

A packet forwarded later may even reach at an earlier time due to the large net-
work jitter. The timing fingerprint cannot avoid the disturbance from network
jitter during packet transmission.

To ensure CHECKER decodes the fingerprint correctly under the existence of
jitter, ω must be at least two times larger than the largest jitter in a LAN. To
demonstrate this, we assume that ADAPTOR sends the i-th packet at t′i time, and
the packet is transmitted with an average delay of θ and a random jitter of γ
which is bounded by the inequality −γmax ≤ γ ≤ γmax, where γmax denotes the
longest jitter. Then the CHECKER observes the very packet at t+ θ+ γ. Figure 4
shows two extreme cases in which the observed intervals are changed by 2γmax.
Therefore, to counter network jitter, the parameter ω should be much larger
than 2γmax.

i i+1 i+2

1 2

1 max 2 max

i i maxi max i+1 i+1 maxi+1 max i+2 i+2 maxi+2 max

Fig. 4. Jitters involved in transmission

In addition, clock skew is another influencing factor. As a matter of fact, the
clock frequencies of the protected machine and IDS where two modules are in-
stalled respectively may not be completely identical. Although the difference is
rather small, it poses a non-ignorable obstacle to the precise fingerprint embed-
ding. Empirically, there is indeed a linear relationship between the timing shifts
and intervals. The asynchrony can be addressed by estimating the timing ratio
between the clock of the protected machine and that of the IDS as follows. The
protected machine transmits two packets with an interval of θ, and then the
corresponding interval θ′ in us is obtained on the IDS. The ratio is simply θ/θ′.
The timing intervals observed in the IDS will be finally multiplied by this ratio
so that the clocks are adjusted to be synchronous.

4.2 CHECKER

CHECKER is used in conjunction with ADAPTOR. It sits on the IDS of a LAN, and
takes charge of all outbound traffic from protected hosts in the LAN. Firstly, the
IDS monitors traffic of inside network via a mirroring port which carries a copy

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 237

of outbound traffic. CHECKER then singles out the traffic in protection according
to the maintained list. Sequently, since fingerprint embedding is flow based,
CHECKER should classify the picked traffic into individual flows based on the traffic
5-tuple. Each flow will be examined for the presence of the expected fingerprint.
If the fingerprint is absent, it implies that there is probably a covert timing
channel in the transmission path. Figure 5 shows the workflow of CHECKER.

FINGERPRINT
CHECKING

TRACE
SEPARATOR

NIC

DROPPING

FINGERPRINT-CHECKER

NON-SUSPICIOUS

ALERTSUSPICIOUS ADMINISTRATOR

Fig. 5. The workflow of CHECKER

Fingerprint Decoding. CHECKER takes the reverse operation of fingerprint em-
bedding to determine if packet intervals retain the expected fingerprint pattern.
For decoding, we assume the sequence of packets reaches the IDS at the times

of {T1, ..., Tn}. Each inter-packet delay is then denoted as ÎPDi = Ti+1−Ti. To
remove the effect of network jitter detailed in Section 4.1, the decoding of the
fingerprint allows each interval has small fluctuation. The decoding algorithm is

given as follows: if −β ≤ ÎPDi ≤ β (mod ω), where β is a tolerance parameter,
then the fingerprint is identified as present; otherwise, the fingerprint is identified
as absent. Obviously, the selection of β depends on the amount of network jitter
in the LAN. To tolerate the worst cases, β should be no less than the double of
the largest jitter γmax.

In addition, to counter bad network conditions, we utilize a tolerant mecha-
nism for determining whether a covert timing channel exits. If the fingerprint
pattern is absent in an interval, the corresponding packet is flagged as illegit-
imate. When an illegitimate packet comes along, a burglar alert will not be
immediately sent out. Actually, only a lot of illegitimate packets during a period
will trigger the IDS to send an alert to system administrator. We use the density
of illegitimate packets to indicate the health condition of the host in protection.
More specifically, we record the number of illegitimate packets among the pre-
vious 10 ones. If this number exceeds a threshold, the trusted transmission path
is identified to contain a covert timing channel.

4.3 Security Enhancement

There are some potential attacks against the naive fingerprint encoding method.
To mitigate these attacks, two security-enhanced schemes based upon the naive
one are presented hereinafter.

238 J. Wang et al.

Potential Attacks. The fingerprint encoding method has some drawbacks that
can be exploited by an attacker to forge the fingerprint pattern in use or evade
fingerprint checking. We discuss potential attacks in the following paragraphs.

1. Forging fingerprint After the fingerprint is embedded, packet intervals turn
into be multiples of the parameter ω. An attacker located on a router inside
the LAN can eavesdrop the traffic delivered from the host in protection
and extract the value of ω. If ω is not changed constantly, the attacker is
able to forge ADAPTOR’s fingerprint and embed it into covert traffic. CHECKER
will identify covert traffic with forged fingerprint as legitimate, and thereby,
covert traffic can pass through CHECKER undetected.

2. Invalidating censorship The parameter ω is generally much smaller than
the mean intervals of legitimate traffic. Some simple encoding schemes of
timing channels encode bit information in fixed and relatively long intervals,
e.g., IP-PCTC [34] transmits 0-bit by a 5ms interval and 1-bit by a 12ms
interval. Thus, the intervals of covert traffic happen to be multiples of ω.
If those channels can manipulate packet delays exactly on the millisecond,
CHECKER also fails to detect them.

Enhanced Schemes. One solution is to constantly change the parameter ω.
ADAPTOR and CHECKER are assumed to negotiate a set of ω values in advance.
For instance, there are 10 elements in the set, ranging from 1000us to 1900us
with the gradient of 100us. The parameter values are indexed from 0 through
9, respectively. We also assume ADAPTOR and CHECKER share a pseudo-random
sequence of integers that range from 0 to 9. The random seed and the set of
values used by ADAPTOR can be protected by the hypervisor in the host from
being stolen, as described in Section 3.3. For each inter-packet delay, ω value
to be used in the encoding algorithm is determined according to the newly
generated random number. Meanwhile, the same process is applied to decode
the fingerprint.

Another solution is to introduce another more secure parameter in the en-
coding algorithm. We assume ADAPTOR and CHECKER share a pseudo-random bit
stream {r1, ..., rn}. The random seed used by ADAPTOR can protected in the same
way as hereinbefore. The encoding algorithm turns into be as follows:

IPDi mod ω =

{
0, if ri = 0;
ω
2
, if ri = 1.

where IPDi is the resulting inter-packet delay as before, and ω is also the same
as before. To decode the fingerprint, the following algorithm is used:

ri =

⎧⎪⎨⎪⎩
0, if −β ≤ ÎPDi ≤ β (mod ω);

1, if ω/2− β ≤ ÎPDi ≤ ω/2 + β (mod ω);
invalid, otherwise.

We note that this enhanced scheme is inspired by Jitterbug [25]. This solution
can be combined with the former to achieve more secure properties.

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 239

5 Implementation and Evaluation

We implemented a prototype in a real network environment to validate the
effectiveness of our detection strategy. In this section, we first describe the im-
plementation details at a high level. Then, we measure the maximum network
jitter, based on which we determine the parameter ω and β. Finally, our de-
tection test is performed against two existing timing channels: MBCTC [10]
and Jitterbug [25]. Furthermore, we test if the detection method works against
legitimate traffic that has no fingerprint embedded.

The evaluation criterions include false positive rate, false negative rate, detec-
tion latency, and performance penalty. An ideal detection method achieves both
low false positive and false negative rate, while has small detection latency and
little influence on system performance. Generally, conventional detection tests
are unable to satisfy the first three due to their inherent limitation that comes
with statistical tests. The purpose of our proposed idea is to conquer this limita-
tion, thereby achieving a high performance on detection regardless of encoding
techniques used in covert timing channels.

5.1 Implementation Details

Our design goal is to be effective in detecting passive timing channels as much
as possible. We implemented ADAPTOR in Linux environment as a kernel mod-
ule, which can embed its fingerprint into a newly-generated packet. Netfilter
[23] hooks were utilized to intercept packets. For fingerprint encoding, we used
udelay() function to add delays to the original packets. This is because the
manipulation of intervals when embedding a fingerprint needs to be very pre-
cise. Additionally, we disabled Large Segment Offload feature, which alleviates
the burden of operating system by allowing it to assemble large packets and
by transferring the task of disassembling large packets into smaller segments to
NIC. This technology has been widely deployed in Linux since kernel 2.6.18. The
host in our prototype runs a Linux OS with kernel version 2.6.35.

We implemented CHECKER as a module of an IDS in Windows environment.
The IDS and the hosts in protection are located within the same LAN. For this
reason, the switch of the IDS is configured to mirror all the outbound traffic to
the IDS port. CHECKER only need to monitor the outbound traffic and record
packet arriving times. This module was implemented using WinPcap [1].

5.2 Parameter Determination

In order to counter the ubiquitous existence of network jitter, the parameters ω
and β are introduced in fingerprint encoding and decoding algorithms (detailed
in Section 4.1 and 4.2). More specifically, β is set to tolerate bad network con-
ditions and hence no less than jitter, while ω should be much larger than β so
as to have a high detection effectiveness. From a statistical perspective, packet
intervals with no fingerprint modulo ω uniformly fall in the range [−ω

2
, ω
2
], so

the probability that they fall in the tolerant range [−β, β] is 2β
ω . When this

240 J. Wang et al.

value is small, the situation that an illegitimate packet is wrongly identified as
legitimate occurs with a low probability. We set the ratio of 2β

ω to be 1
20
. For

example, when ω is 400us, the fingerprint pattern is valid if an observed interval
is in [k ∗ ω − 10, k ∗ ω + 10]us (k ∈ N+).

Since ADAPTOR and CHECKER both reside in the LAN, the variation of network
latency is intuitively rather small. To investigate the real jitter in a LAN, we
conducted a series of experiments as follows. We sent from ADAPTOR 4 test sets
of packets, whose intervals are multiples of 50us, 200us, 800us, and 1000us, re-
spectively. Each test set has 1027 packets (1026 intervals). On the CHECKER side,
we calculated the mean and standard deviation of observed intervals modulo the
respective parameter value, as shown in Table 1. Note that the count represents
the number of intervals beyond the tolerant range. We can observe that when
ω = 800us, the false alarm rate is very low, only 0.19%, which is acceptable. In
fact, approximately 85 percent of intervals modulo 800us gather within the range
[−10, 10]us. We choose ω = 800us and β = 20us in the following experiments.

Table 1. Timing Jitters

Parameter/us Mean/us StdDev/us2 Count Ratio

50 -0.3655 8.09576 908 88.50%

200 0.04191 7.9225 140 13.65%

800 0.14352 8.1617 2 0.19%

1000 0.16179 10.19637 2 0.19%

5.3 Detection

Real Timing Channels. To investigate the effectiveness of our detection sys-
tem, we performed the detection test against existing timing channels: MBCTC
[10] and Jitterbug [25]. We only concern about their encoding methods. We im-
plement their encoding methods with ADAPTOR disabled, which means no finger-
print is embedded in their traffic. For MBCTC, we utilize HTTP traffic, which
is extracted from NZIX-II data sets [29], as the modeling objective. We fit a
set of 100 packets to a model and use the model to generate covert traffic. For
Jitterbug, we use SSH traffic, also from NZIX-II data sets, to transfer covert
information. The timing window is set at 20 milliseconds, and a pseudo-random
sequence of integers is used to smooth out interval patterns, as suggested by
Shah et al. [25].

As illustrated in Figure 6, the number of illegitimate packets among the pre-
vious 10 ones rises rapidly when the transmission of covert packets starts. We set
the threshold to be 5. This indicates if the number exceeds 5, the traffic will be
identified as illegitimate, and then an alert will be sent to the security adminis-
trator. Based on this given threshold, the detection latency and effect is given in
Table 2. We can see that no more than 7 packets (6 intervals) have been sent out
before the presence of a timing channel is detected. In addition, the test main-
tains both 0% false positive rate and false negative rate. Our detection method

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 241

0 20 40 60 80 100

0

2

4

6

8

10

A
bm

or
m

al
 C

ou
nt

Packet

 MBCTC

0 20 40 60 80 100

0

2

4

6

8

10

A
bm

or
m

al
 C

ou
nt

/p
ac

ke
t

Packet

 JitterBug

Fig. 6. Detection against real timing channels

achieves much higher detection performance compared to statistical-test-based
detection methods, which not only require thousands of packets to analyze traffic
behavior, but also have over sensitivity to the high variation of traffic [9].

Table 2. Detection latency and effect

MBCTC JitterBug

Latency/interval 6 6

Information Disclosure/bit 6 6

False Positive Rate 0% 0%

False Negative Rate 0% 0%

Raw Legitimate Traffic. To validate the effectiveness of our detection system
further, we conducted the detection test against raw legitimate traffic which is
legitimate but with no fingerprint. We replayed HTTP traces from NZIX-II data
sets. During the experiment, we enabled and disabled ADAPTOR alternately, as
shown in Figure 7. After ADAPTOR is disabled at the 16th packet, the abnormal
count reaches up to 10 immediately and then stays around there. When ADAPTOR

is enabled again at the 56th packet, the abnormal count decreases gradually to
0. This experimental result shows that even legitimate traffic can be detected by
this test as long as it has no fingerprint. From another aspect, it indicates the
effectiveness of our detection method is independent of encoding methods. That
is to say, no matter how approximate covert traffic can be to legitimate overt
traffic, this method is still successful in detecting it.

5.4 Network Performance

Since packets are delayed when ADAPTOR’s fingerprint is embedded, network per-
formance degrades more or less. To estimate the practical performance penalty,

242 J. Wang et al.

0 20 40 60 80 100 120

0

2

4

6

8

10

ADAPTOR DISABLEDADAPTOR ENABLEDADAPTOR DISABLED

A
bn

or
m

al
 C

ou
nt

Packet

Fig. 7. Detection against raw legitimate traffic

the test machine sent 2 sets of HTTP packets, which are selected from the pre-
vious traffic. The first set consists of low-density traffic, while the second one is
highly dense. We calculated the difference between the total transmission time
with ADAPTOR and that without ADAPTOR. The penalty is set as the ratio of the
difference and the transmission time without ADAPTOR, as given in Table 3. We
consider the performance penalty of no more than 2.4‰ to be acceptable.

Table 3. Performance Penalty

Test set Number of intervals Mean Sum(without adaptor) Sum(with adaptor) Penalty

1 10000 0.91s 9070.45s 9074.59s 0.46‰
2 10000 0.17s 1681.52s 1685.56s 2.40‰

6 Conclusion and Future Work

We introduced a proactive strategy of detecting covert timing channels. The
basic idea is that a timing fingerprint is embedded into outgoing traffic of the
to-be-protected host in advance. If a covert timing channel exits in the transmis-
sion path, the fingerprint will probably be disrupted, and thereby the presence
of the timing channel can be detected. We described our detection system, a
proof-of-concept implementation aiming at passive timing channels. This sys-
tem consists of the ADAPTOR module and CHECKER module: the former is located
on the machine in protection, and the purpose is to embed a specific fingerprint
into each flow of network traffic; the latter resides on the IDS of the same LAN
to examine if the passing traffic retains the fingerprint.

We then applied our detection system to detect covert timing channels. The
experimental results show that it can detect various existing timing channels

Fingerprint Embedding: A Proactive Strategy of Detecting Timing Channels 243

accurately and quickly. Even raw legitimate traffic with no fingerprint is also
detectable by this system. This indicates that the performance of our detection
techniques is independent of channel encoding methods. Finally, we showed that
the penalty on network performance is acceptably small.

The arms race between covert timing channel design and detection techniques
has been ongoing. In this paper, we suggested some simple ideas to the design of
detection systems. We hope our proactive techniques can open a new perspective
for researchers. To further improve the proactive detection scheme, we plan to
investigate this direction in the future.

References

1. Winpcap: The windows packet capture library, http://www.winpcap.org
2. Berk, V., Giani, A., Cybenko, G., Hanover, N.: Detection of covert channel encod-

ing in network packet delays. Tech. Rep. TR2005-536, Dartmouth College, Com-
puter Science, Hanover (2005)

3. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Proceedings
of the 16th European Symposium on Research in Computer Security, pp. 355–371
(2011)

4. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium (2003)

5. Cabuk, S.: Network covert channels: design, analysis, detection, and elimination.
PhD thesis (2006)

6. Cabuk, S., Brodley, C., Shields, C.: Ip covert timing channels: design and detection.
In: Proceedings of the 11th ACM Conference on Computer and Communications
Security, pp. 178–187 (2004)

7. Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and limits of remote timing
attacks. ACM Transactions on Information and System Security 12(3), 17 (2009)

8. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proceedings of
the 7th ACM Conference on Computer and Communications Security, pp. 25–32
(2000)

9. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 307–316 (2007)

10. Gianvecchio, S., Wang, H., Wijesekera, D., Jajodia, S.: Model-based covert timing
channels: Automated modeling and evasion. In: Lippmann, R., Kirda, E., Tracht-
enberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 211–230. Springer, Heidelberg
(2008)

11. Giles, J., Hajek, B.: An information-theoretic and game-theoretic study of timing
channels. IEEE Transactions on Information Theory 48(9), 2455–2477 (2002)

12. Handel, T., Sandford, M.: Hiding data in the OSI network model. In: Anderson,
R. (ed.) IH 1996. LNCS, vol. 1174, pp. 23–38. Springer, Heidelberg (1996)

13. Henry, P.: Covert channels provided hackers the opportunity and the means for
the current distributed denial of service attacks. CyberGuard Corporation (2000)

14. Houmansadr, A., Borisov, N.: CoCo: Coding-based covert timing channels for net-
work flows. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS,
vol. 6958, pp. 314–328. Springer, Heidelberg (2011)

15. Hu, W.M.: Reducing timing channels with fuzzy time. In: IEEE Symposium on
Security and Privacy, pp. 8–20 (1991)

http://www.winpcap.org

244 J. Wang et al.

16. Kang, M., Moskowitz, I.: A pump for rapid, reliable, secure communication. In:
Proceedings of the 1st ACM Conference on Computer and Communications Secu-
rity, pp. 119–129 (1993)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

18. Kothari, K., Wright, M.: Mimic: An active covert channel that evades regularity-
based detection. Computer Networks (2012)

19. Lampson, B.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

20. Liu, Y., Ghosal, D., Armknecht, F., Sadeghi, A.-R., Schulz, S., Katzenbeisser, S.:
Hide and seek in time — robust covert timing channels. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 120–135. Springer, Heidelberg (2009)

21. Lucena, N.B., Pease, J., Yadollahpour, P., Chapin, S.J.: Syntax and semantics-
preserving application-layer protocol steganography. In: Fridrich, J. (ed.) IH 2004.
LNCS, vol. 3200, pp. 164–179. Springer, Heidelberg (2004)

22. Peng, P., Ning, P., Reeves, D.: On the secrecy of timing-based active watermarking
trace-back techniques. In: IEEE Symposium on Security and Privacy (2006)

23. Russell, R., Welte, H.: Linux netfilter hacking HOWTO (2002),
www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html

24. Sellke, S., Wang, C., Bagchi, S., Shroff, N.: TCP/IP timing channels: Theory to
implementation. In: INFOCOM 2009, pp. 2204–2212 (2009)

25. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proceedings
of the 15th Conference on USENIX Security Symposium, vol. 15 (2006)

26. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware
virtualization. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 477–487 (2009)

27. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on SSH. In: Proceedings of the 10th USENIX Security Symposium, vol. 2, p. 3
(2001)

28. Walls, R., Kothari, K., Wright, M.: Liquid: A detection-resistant covert timing
channel based on IPD shaping. Computer Networks 55(6), 1217–1228 (2011)

29. WAND Research Group: Waikato internet traffic storage,
http://wand.net.nz/wits/nzix/2/

30. Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer voip calls on
the internet. In: Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, pp. 81–91 (2005)

31. Wang, X., Reeves, D.S.: Robust correlation of encrypted attack traffic through
stepping stones by manipulation of interpacket delays. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security, pp. 20–29 (2003)

32. Wu, J., Wang, Y., Ding, L., Liao, X.: Improving performance of network covert tim-
ing channel through huffman coding. Mathematical and Computer Modelling 55(1),
69–79 (2012)

33. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and counter-
measures in computer network protocols. IEEE Communications Surveys & Tuto-
rials 9(3), 44–57 (2007)

34. Zi, X., Yao, L., Pan, L., Li, J.: Implementing a passive network covert timing
channel. Computers & Security 29(6), 686–696 (2010)

www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://wand.net.nz/wits/nzix/2/

Comprehensive Evaluation of AES Dual Ciphers
as a Side-Channel Countermeasure

Amir Moradi and Oliver Mischke

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mischke}@crypto.rub.de

Abstract. Because of the isomorphisms in GF(28) there exist 240 dif-
ferent non-trivial dual ciphers of AES. While keeping the in- and outputs
of a dual cipher equal to the original AES, all the intermediate values
and operations can be different from that of the original one. A com-
prehensive list of these dual ciphers is given by an article presented at
ASIACRYPT 2002, where it is mentioned that they might be used as a
kind of side-channel attack countermeasure if the dual cipher is randomly
selected. Later, in a couple of works performance figures and overhead
penalty of hardware implementations of this scheme is reported. How-
ever, the suitability of using randomly selected dual ciphers as a power
analysis countermeasure has never been thoroughly evaluated in practice.
In this work we address the pitfalls and flaws of this scheme when used
as a side-channel countermeasure. As evidence of our claims, we provide
practical evaluation results based on a Virtex-5 FPGA platform. We re-
alized a design which randomly selects between the 240 different dual
ciphers at each AES computation. We also examined the side-channel
leakage of the design under an information theoretic metric as well as its
vulnerability to different attack models. As a result, we show that the
protection provided by the scheme is negligible considering the increased
costs in term of area and lower throughput.

1 Introduction

From a mathematical point of view embedded systems can easily be protected
by modern ciphers which are secure in a black-box scenario. However, since the
late 90s the security of a cryptographic device relies not only on the use of a
secure cryptographic algorithm but also on how this algorithm is implemented.
Since sensitive information like encryption keys of an unprotected implementa-
tion can be recovered by observing so called side channels, the need of secure
implementations of cryptographic primitives like AES is at an all-time high.

Many different kinds of countermeasures have been proposed either for pro-
tection of software and/or hardware platforms (see [18] for instance). Masking
of sensitive values is one of the most considered solutions, and the community
has shown a huge interest to different aspects of masking countermeasures, e.g.,
[2, 5, 8, 10, 11, 15, 22–24, 26, 28]. Because of sequential nature of the platform,
masking in software is usually straight forward and effective. However, realizing

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 245–258, 2013.
c© Springer International Publishing Switzerland 2013

246 A. Moradi and O. Mischke

the masking schemes in hardware is intricate since glitches in the circuit can
cause otherwise theoretically secure schemes to leak [19–21].

Back to the early 2000s, there exist only few attempts to better understand the
algebraic specification of AES-Rijndael. One is about how to make dual ciphers
which are equivalent to the original Rijndael in all aspects [3]. By replacing all the
constants in Rijndael, including the replacement of the irreducible polynomial,
the coefficients of the MixColumns, the affine transformation in the S-box, etc,
the idea is to make another ciphers which generate the same ciphertext as the
original Rijndael for the given plaintext and key. As explained in [3], there exist
240 non-trivial Rijndael dual ciphers, and a comprehensive list of the matrices
and coefficients is given in [4]. Later in [27], it has been shown that one can
include field mappings from GF(28) to GF(2)8 as well as intermediate isomorphic
mappings to GF(22) and GF(24) to build 61 200 similar Rijndael dual ciphers.

This idea was taken by the authors of [31], and by means of the gate count
they investigated which of those 240 dual ciphers can be implemented in hard-
ware using smaller area, and which ones can speed up the implementation. Since
the intermediate values of the dual ciphers during encryption are different than
Rijndael’s, it is mentioned in [3] that one can randomly change the constants of
the cipher thereby realizing different dual ciphers and provide security against
power analysis attacks. This led to other contributions. For instance, a hardware-
software co-design of a system based on an Altera FPGA where according to the
randomly chosen parameters the content of the lookup tables are dynamically
changed is presented in [16, 17]1. Moreover, the authors of [12] and [13] repre-
sented a hardware implementation which can realize every selected dual cipher
amongst those 240 ones. They reported the performance and area loss when the
scheme is realized in order to increase the security against side-channel attacks.

In this work we examine this scheme, i.e., random selection of constants to
choose a dual cipher out of 240, from a side-channel point of view. We address
its flaws and weaknesses which can lead to easily breaking the corresponding im-
plementation. In order to examine our findings in practice, we implemented the
scheme on a Virtex-5 FPGA by means of precomputed matrices and constants
and – in contrast to [17] – by avoiding the use of any lookup table. Our prac-
tical side-channel evaluations confirm our claims indicating that the protection
provided by the scheme is negligible while having high area and performance
overheads. We show that the implementation can be easily broken when a suit-
able attack model is taken by the adversary.

The next section restates the concept of Rijndael dual ciphers with respect to
the original work [3]. Our design of the scheme considering our targeted FPGA
platform in addition to its performance and area overhead figures are represented
in Section 3. Our discussions about the side-channel resistance of the scheme
and practical investigations are given by Section 4 while Section 5 concludes our
research.

1 In fact, the cipher which is realized by their design is not always equivalent to the
original AES-Rijndael.

Comprehensive Evaluation of AES Dual Ciphers 247

2 Dual Cipher Concept

Two ciphers E and E′ are called dual ciphers, if they are isomorphic, i.e., if there
exist invertible transformations f(·), g(·) and h(·) such that

∀P,K EK(P) = f(E′
g(K)(h(P))),

where plaintext and key are denoted by P and K respectively.
The concept of dual ciphers for AES-Rijndael was first published in 2002 [3].

The authors demonstrate how to build a square dual cipher of the original AES
and show that it is possible to again iterate this process multiple times creating
more square dual ciphers. This way 8 dual ciphers for each possible irreducible
polynomial in GF(28) can be derived. Since it is also shown how to create dual
ciphers by porting the cipher to use one of the other 30 irreducible polynomials
in GF(28), a total of 240 non-trivial dual ciphers for AES exist. Here non-trivial
means that we are only considering those dual ciphers which actually change the
inner core of AES and not only consist of invertible transformations of the input
and output of the cipher.

As an example, closely following the explanation in [3], let us consider a square
dual cipher of the original AES-Rijndael. In order to create this dual cipher one
first has to multiply all AES constants by a matrix which performs the squaring
operation under the original AES-Rijndael polynomial 0x11b. These constants in-
clude the round constant of the key schedule, the coefficients of the MixColumns
transformation, as well as the input data and the key. In this special example
this matrix is generated by taking a generator a, in this case the polynomial x2

in GF(28), and building a matrix of the form R = (a0, a1, a2, a3, a4, a5, a6, a7),
where each of these elements represents a column of the matrix and the result
of the exponentiation is reduced by the original AES reduction polynomial. The
resulting matrix is

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, we also need to make changes to the SubBytes transformation. If
we consider SubBytes to be pure a table look-up of constants S(x), we can com-
pute a new look-up table S2 by applying the R matrix and its inverse R−1 as fol-
lows: S2 = RS(R−1x). If we consider the SubBytes transformation as inversion
in GF(28) followed by a multiplication by the affine matrix A and addition of the
constant b, then the inversion stays unchanged while the new affine matrix A2 is
computed as A2 = RAR−1 and the new constant b2 is computed (similar to the
other constants, i.e., those of MixColums and key schedule) by multiplying it with

248 A. Moradi and O. Mischke

the transformation matrix R: b2 = Rb. Note that in the case of S2 or A2 no actual
squaring is taking place.

If we consider the original cipher as E and the above described square dual
cipher as E2, by applying the same squaring routines again we can create a total
of 8 square dual ciphers (up to E128 since E256 is equal to E in GF(28)). These
square dual ciphers all use different constants and SubBytes transformations.
According to the dual cipher concept, if the R matrices are multiplied with all
input data bytes and key bytes and the result is transformed back by multiplying
each output byte with the inverse matrix R−1, the results of all ciphers when
given the same input data and key will be equal. The differences in the internal
structure, like the different S-box in SubBytes or the different coefficients in
the MixColumns, also translates into e.g., different power consumption and EM
emanations of a circuit implementing this technique. As denoted in [3], these
differences in the internal structure of the dual ciphers might be usable as some
kind of side-channel countermeasure. If the used dual cipher is randomly chosen,
this could be comparable to a normal masking countermeasure.

Besides using square dual ciphers of the original AES-Rijndael, one can use
the same transformation techniques as above to change all constants by using
different generators a and reducing the ai by the new irreducible polynomial. If
the SubBytes transformation is not implemented as table look-up but as inver-
sion plus affine, the inversion as well as all field multiplications as in MixColumns
are then also performed using the new irreducible polynomial not the original
one. This works for all 30 irreducible polynomials in GF(28). Since there exist 8
generators for all irreducible polynomials representing the 8 square dual ciphers,
as stated previously a total of 240 different non-trivial dual ciphers in GF(28)
exist. All generators, polynomials and constants of each of the 240 dual ciphers
can be found in [4]. Note that we consider only dual ciphers using mappings in
GF(28) not such where other composite field representations are utilized, e.g.,
those presented in [27].

3 Our Design

The first design decision one has to make is whether to implement the SubBytes
transformation purely based on look-up tables or if a general inversion circuit is
used together with the affine matrix multiplication and constant addition. Since
the area overhead to store 240 different complete S-boxes is massive, similar
to [12] and [13] we opted to implement a general inversion circuit. Since we
want to analyze the side-channel resistance of the original submission of dual-
ciphers [3], this requires the inversion to be implemented in GF(28) without the
option to save on resources by utilizing inversions in composite fields or using
a tower field approach [25, 29]. In other words, the inversion circuit must be
general and valid for all the 30 irreducible polynomials mentioned in Section 2.

In order to prevent leakage through the timing channel during the inversion
it is important to make the circuit time invariant. To achieve this one can make
use of the fact that in GF(28) x256 is equivalent to x, which leads to x−1 ≡ x254.

Comprehensive Evaluation of AES Dual Ciphers 249

SQ MUL SQ SQ MUL SQ SQ SQ SQ MUL MULx x2 x3 x6 x12 x15 x30 x60 x120 x240 x252 x-1

Fig. 1. Inversion circuit in GF(28)

Using addition chains this exponentiation can be implemented by a low number
of modular multipliers and squaring circuits as depicted in Fig. 1. Note that the
squaring step itself is free in GF(28) and only requires hardware resources for
the modular reduction.

For each possible dual cipher one needs to store the following parameters:

1. Initial transformation matrix R (64 bits), which is required to transform
the original input data and key to the dual cipher representation.

2. Inverse transformation matrix R−1 (64 bits), required to transform the
output of the AES computation from the dual cipher representation back to
the original AES representation, precomputed as normal matrix inversion of
R in GF(2).

3. Modular reduction polynomial p̂ (8 bits), to be used during all field
multiplications (MixColumns) and the inversion steps (SubBytes).

4. MixColumns coefficients m̂c (2× 8 bits). While the MixColumns coeffi-
cients originally are 8-bit elements of a 4× 4 matrix, because the coefficients
of each row are only a rotated variant of the first row and only two are not 01x
(in GF(28)), it is sufficient to store only these two transformed coefficients
(R(02x), R(03x)).

5. Affine matrix of SubBytes Â (64 bits), to apply the affine matrix mul-
tiplication step of the affine transformation. The matrix is computed as
Â = RAR−1, where A is the original affine matrix of the AES.

6. Affine constant b̂ of SubBytes (8 bits), final addition step of the affine
transformation. As for every other constant transformation this can be com-
puted as b̂ = Rb, where b is the original affine constant, i.e., 63x.

7. Round constants (rcon) of the key scheduling r̂c (10 × 8 bits). The
rcons are constructed as r̂c(r) = (R 02x)

r
mod p̂, with r starting from 1

for the first round, p̂ being the used irreducible polynomial, (02x) the initial
element, and R the transformation matrix. The rcons could also be computed
on-the-fly which would only require the storage of the transformed r̂cinit =
R 02x (8 bits). Since this would require another modular multiplier, we have
opted to store all the precomputed rcons for each of the 240 dual ciphers.

The overall architecture of our evaluation circuit is depicted in Fig. 2. The
initial transformations of the input data and key are performed prior to the
general AES/dual cipher computation. After the full encryption is complete,
the inverse transformation moves the result back to the original AES repre-
sentation as described previously. The AES/dual cipher computation itself is
implemented as round-based design, i.e., every round of AES requires one clock

250 A. Moradi and O. Mischke

S
ta
te
R
eg
is
te
rs

K
ey
R
eg
is
te
rs

BRAM
Constants
Storage

0

1
Matrix
Multiply
GF(2)

Matrix
Multiply
GF(2)

init

init

1

0

P
la
in
te
xt

K
ey

A
dd
R
ou
nd
ke
y

C
ip
he
rte
xt

PRNG

KeySchedule

SubBytes

x-1 M
at
rix

M
ul
tip
ly

G
F(
2)

A
dd

C
on
st
an
t

M
ix
C
ol
um
ns

0

1

lastround
Matrix
Multiply
GF(2)

AndGates done

R

R

R-1

p̂
b̂ mĉÂ

rĉ

Fig. 2. Overall architecture of the AES dual ciphers circuit

cycle and the computation is finished after ten clock cycles excluding the initial
and final transformations and data loading.

We chose to implement a round-based design because this is very common in
real-world implementations when a hardware platform is targeted. The on-the-fly
key scheduling seems to be the most suitable option since the roundkeys, which
are different for each dual cipher, would otherwise require 41 kBytes of storage.
We have implemented the whole design on a Virtex-5 LX50 FPGA mounted
on a SASEBO-GII [1] (Side-channel Attack Standard Evaluation Board). In our
implementation all the aforementioned parameters and constants are stored in
block RAMs and are preloaded before every complete AES computation. The
resource utilization is shown in Table 1. Compared to an unprotected design uti-
lizing a more common S-box implementation based on look-up tables we require
significantly more LUT resources. This is due to the 20 large general inversion
circuits implemented in parallel (16 for the round function and 4 for the key
scheduling) which are required to perform the inversion in every selectable dual
cipher representation. The number of LUTs could be heavily reduced by using
a composite field or tower field approach in the S-box design which, as stated

Table 1. Performance figures (excluding the PRNG)

Version #LUTs #FFs #BRAMs FREQ
Random Dual Cipher 13 481 651 6 21 MHz

General AES Enc Only 503 154 6 202 MHz

Comprehensive Evaluation of AES Dual Ciphers 251

previously, we have not implemented at this point to enable a side-channel eval-
uation of the original dual cipher proposal. We should also highlight the very low
maximum operation frequency of our design. It is due to the very long critical
path of the inversion unit. Since it has to be general for any given irreducible
polynomial, it could not be optimized with respect to both delay and area.

4 Evaluation

According to the explanation and the architecture figure given in the previous
section, at the start of each encryption process the PRNG randomly selects one
of the 240 dual ciphers and holds the outputs of the BRAM, i.e., constants
and coefficients, until the whole of the encryption process is finished. If the
selected dual cipher, whose index is denoted here by 1 ≤ i ≤ 240, is unknown
to the adversary, the intermediate values cannot be predicted. Therefore, it can
be seen as a kind of a masking scheme on which certain side-channel attacks
are supposed to be infeasible. However, below we address a few issues which
significantly affect the robustness of the scheme.

Mask Reuse. All intermediate values and inputs are transformed to a new
domain by means of the selected transformation matrix Ri. It means that all 16
plaintext bytes are transformed using the same transformation. It can be seen as
similar as the mask reuse issue in masking schemes. In the case of e.g., a boolean
masking when two S-boxes get the inputs masked by the same mask value, a
classical linear collision attack [6] might be able to recover the corresponding
key bytes difference [9]. The same holds for the dual ciphers case; all the S-
boxes compute the inversion using the same parameters and their inputs have
been transformed using the same matrix. By help of side-channel leakages once
a collision between two S-boxes is detected

Si(Ri(x
(1) ⊕ k(1))) = Si(Ri(x

(2) ⊕ k(2))),

the linear key difference k(1)⊕ k(2) is revealed as x(1)⊕ x(2), where x(j) and k(j)

denote the j-th byte of the given plaintext and key. However, in the case of our
design, which realizes a round-based architecture, this issue can be ignored since
the side-channel leakage of different S-boxes in a round cannot be separated
making the collision detection infeasible.

Concurrent Processing of Mask and the Masked Data. In contrast to
software implementations of masking, preventing univariate leakages when the
target platform is hardware is a challenging task. It is due to the glitches of
the circuit, e.g., a masked S-box, when processing both mask and the masked
data at the same time. This issue has been seen in many different realizations of
masking in hardware (see [19–21]). Our implementation of dual ciphers suffers
from this problem as well. The SubBytes unit gets the transformed key-whitened
input as well as the irreducible polynomial p̂, affine matrix coefficients Â, etc.

252 A. Moradi and O. Mischke

0 50 100 150 200 250
0
2
4
6

Sbox Input

F
re

q.

0 50 100 150 200 250
0
2
4
6

S−box output

F
re

q.

Fig. 3. Distributions of the S-box output for (top) 11x and (bottom) 44x as original
input over all 240 dual ciphers

All these parameters are independent of the transformed input. Therefore, the
side-channel leakage of e.g., the S-box circuit due to its glitches is not indepen-
dent of its original (untransformed) input. Hence it is expected that a univariate
attack, e.g., a CPA [7] with an appropriate power model or a MIA [14], will be
able to recover the relation between the leakages and the secret materials.

Unbalance. Having the lemmas and properties given in [22, 23] in mind, we
explain this issue as follows. For the sake of simplicity suppose a masking scheme
which maps an input value x into its masked representation xm for a given mask
m as xm = x ∗ m. In order to guarantee the balance of the distributions the
conditional probability

Pr(xm = XM |x)

must be constant for ∀x and the given XM by which we mean a realization of xm.
In other words, if fx(xm) represents the probability density function of xm for
the given x, each pair of probability distributions fx=X1(xm) and fx=X2(xm)
must be equal, where X1 and X2 are two realizations of x. Otherwise, when
two distributions are different, their corresponding side-channel leakages can be
distinguished from each other. Therefore, it may lead to detecting whether X1 or
X2 is processed. This property should hold for all intermediate values at all steps
of the scheme. However, it is not true for the case of dual ciphers. For example,
we considered the S-box output and computed the probability distributions for
two original input values 11x and 44x over all 240 cases. Two different resulting
histograms are shown by Fig. 3, clearly indicating the unbalance of intermediate
values. Therefore, it is expected that a univariate side-channel attack can be
successfully mounted.

Zero Value. There is a general problem in multiplicative masking schemes,
i.e., masking the zero value. That is because regardless of the mask m, input
value x = 0 never gets masked. Therefore, a CPA attack using the zero-value
power model [15] can easily overcome the protection. The same problem holds
for the dual cipher approach. Because of the linearity of the transformation, i.e.,

Comprehensive Evaluation of AES Dual Ciphers 253

μ

Fig. 4. A sample power trace, PRNG ON

multiplication by the matrix R in GF(2), the zero input is always transformed to
itself in all 240 cases. It is indeed a special case of the unbalanced distributions.
The distribution for the zero value fx=0(xm) shows the certainty of xm and is
much different to all other distributions when x �= 0. Therefore, a zero-value
CPA attack targeting the S-box input should break the implementation.

Before moving toward practical results, we would like to comment on these
issues when not only 240 AES dual ciphers are considered but also when one
can take more from those 61 200 cases of [27]. Regardless of the existence and
its difficulty one may find a set of 255 dual ciphers which satisfy the balance
property. Note that because of the zero-value issue, a set of 256 dual ciphers can
never satisfy the property. On the other hand, if the desired condition is fulfilled
considering e.g., the S-box input, keeping the balance property for the S-box
output cannot be certainly justified because each dual cipher employs a different
S-box. Therefore, it seems that the balance property can never be fully satisfied.
In short, for any selection of the dual ciphers all the aforementioned problems
stay valid theoretically making the scheme vulnerable to certain attacks.

4.1 Practical Investigations

As stated before, our practical experiences are based on a SASEBO-GII [1] plat-
form. The design was implemented on the crypto FPGA of the board, a Virtex-5
LX50. The crypto core receives the plaintext and by means of the stored key
performs the whole of the encryption operation while the dual cipher index i is
internally generated by a PRNG. A LeCroy HRO66Zi 600MHz digital oscillo-
scope at the sampling rate of 1GS/s was used to measure the power consumption
of the crypto core over a 1Ω resistor in the VDD path (oscilloscope in AC mode).
In order to reduce the electronic noise the bandwidth of the oscilloscope was set
to 20MHz, and the crypto core was running at the clock frequency of 1.5MHz
during the whole of our practical experiments.

A sample power trace clearly indicating the round computations is shown
in Fig. 4. The first peak between 0 and 1μs is due to the selection of the dual
cipher. At this clock cycle the corresponding parameters of the selected dual
cipher appear at the BRAMs’ output causing glitches and activities in whole of
the circuit. We should also highlight the very high power consumption of the
design resulting in more than 300mV peak-to-peak power traces.

254 A. Moradi and O. Mischke

μ

(a)

σ

(b)

Fig. 5. Mutual information based on an S-box output, using 2 000 000 traces (a) curves
over time, (b) over added noise standard deviation

Following the information theoretic metric of [30] to examine the amount of
information available through the power traces we computed the mutual infor-
mation based on the output of an S-box module in the first round. In order to
examine the level of protection provided by the scheme, we also collected the
power consumption traces of the design when the PRNG is OFF thereby se-
lecting the original AES parameters. In both cases we used 2 000 000 traces to
make the mutual information curves shown in Fig. 5(a). It indeed shows that
compared to the unprotected case – considering the same amount of traces –
the scheme can reduce information available to be recovered by an adversary.
Figure 5(b) compares the mutual information of these two cases in presence of
noise. In order to make this figure we artificially added Gaussian noise to the
collected traces.

The shown figures confirm our theoretical discussions on the available uni-
variate leakages which can be used by different attacks. In order to check the
feasibility of a successful attack we mounted a correlation collision attack [21]
making use of the first-order moments. We targeted two S-boxes of the first
round and tried to recover their corresponding key difference. The result of the
attacks is depicted in Fig. 6. As expected, the attack is successful though com-
pared to the unprotected case the number of required traces increased from less
than 5000 to 100 000.

We also examined the feasibility of a zero-value attack whose results are rep-
resented by Fig. 7. The graphics confirm our theoretical claims that a zero-value
attack is amongst the weakest points of the scheme since using a very low number
of traces of 10 000 one can overcome the provided protection.

Comprehensive Evaluation of AES Dual Ciphers 255

(a) PRNG ON

(b) PRNG ON (c) PRNG OFF

Fig. 6. Correlation Collision attack results, (a) using 500 000 traces, (b) and (c) over
the number of traces

(a) PRNG ON

(b) PRNG ON (c) PRNG OFF

Fig. 7. Zero-value attack results, (a) using 100 000 traces, (b) and (c) over the number
of traces

256 A. Moradi and O. Mischke

5 Conclusions

In this work we have taken an in-depth look at the AES-Rijndael dual cipher
concept from a side-channel point of view. We have implemented an evaluation
circuit which is able to perform AES computations using randomly chosen dual
ciphers. The inversion part of the circuit operates in GF(28), as in the original
dual cipher contribution [3], giving a total choice of 240 different internal com-
putations with correspondingly different side-channel leakage characteristics.

Besides providing practical evidence of the vulnerability of this original dual
cipher implementation to several side-channel attacks, we have also described
some of the general flaws of the scheme when considered as a side-channel coun-
termeasure. This includes the mask reuse, the concurrent operations on both
mask and the masked data, the violation of the balance property, and the in-
ability to mask the zero value. Because of these properties the vulnerability of
dual cipher implementations is not only limited to those which are restricted to
a low amount of possible transformations by focusing on mappings in GF(28).
Even when one would be able to select between several thousand dual ciphers
using composite fields, as given in [27], the described weaknesses still exist and
would enable an attacker to successfully extract the secret key. In conclusion,
even when ignoring the large area overhead of the circuit in comparison to other
lighter masking schemes, AES-Rijndael dual ciphers are unsuitable as a side-
channel countermeasure and can be broken using modest efforts and simple
attack models.

References

1. Side-channel attack standard evaluation board (sasebo). Further information are
available via, http://www.morita-tech.co.jp/SASEBO/en/index.html

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

4. Barkan, E., Biham, E.: The Book of Rijndaels. Cryptology ePrint Archive, Report
2002/158 (2002), http://eprint.iacr.org/

5. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

6. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

7. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004)

http://www.morita-tech.co.jp/SASEBO/en/index.html
http://eprint.iacr.org/

Comprehensive Evaluation of AES Dual Ciphers 257

8. Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES.
In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008.
LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008); the corrected version
at Cryptology ePrint Archive, Report 2009/011 http://eprint.iacr.org/.

9. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel,
B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg
(2011)

10. Genelle, L., Prouff, E., Quisquater, M.: Secure Multiplicative Masking of
Power Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 200–217. Springer, Heidelberg (2010)

11. Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

12. Ghellar, F., Lubaszewski, M.: A novel AES cryptographic core highly resistant to
differential power analysis attacks. In: Integrated Circuits and Systems Design -
SBCCI 2008, pp. 140–145. ACM (2008)

13. Ghellar, F., Lubaszewski, M.: A novel AES cryptographic core highly resistant to
differential power analysis attacks. Journal Integrated Circuits and Systems 4(1),
29–35 (2009)

14. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

15. Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002, vol. 2523, pp. 198–212.
Springer, Heidelberg (2003)

16. Jing, M.-H., Chen, J.-H., Chen, Z.-H., Chang, Y.: The Secure DAES Design for Em-
bedded System Application. In: Denko, M.K., et al. (eds.) EUC-WS 2007. LNCS,
vol. 4809, pp. 617–626. Springer, Heidelberg (2007)

17. Jing, M.-H., Chen, Z.-H., Chen, J.-H., Chen, Y.-H.: Reconfigurable system for high-
speed and diversified AES using FPGA. Microprocessors and Microsystems 31(2),
94–102 (2007)

18. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

19. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

20. Moradi, A., Mischke, O.: How Far Should Theory Be from Practice? In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer, Heidel-
berg (2012)

21. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

22. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

23. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

24. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

http://eprint.iacr.org/

258 A. Moradi and O. Mischke

25. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Germany (1994)

26. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using
Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

27. Raddum, H.: More Dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
AES 2005. LNCS, vol. 3373, pp. 142–147. Springer, Heidelberg (2005)

28. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

29. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

30. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

31. Wu, S.-Y., Lu, S.-C., Laih, C.-S.: Design of AES Based on Dual Cipher and Com-
posite Field. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 25–38.
Springer, Heidelberg (2004)

EMD-Based Denoising for Side-Channel Attacks

and Relationships between the Noises Extracted
with Different Denoising Methods

Mingliang Feng1, Yongbin Zhou1,�, and Zhenmei Yu2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

89-A, Mingzhuang Rd, Beijing, 100093, P.R. China
{fengmingliang,zhouyongbin}@iie.ac.cn

2 School of Information Technology,
Shandong Womens University,

45, Yuhan Rd, Jinan, 250002, P.R. China
yuzhenmei@gmail.com

Abstract. In essence, side-channel leakages produced during the exe-
cution of crypto implementations are noisy physical measurements. It
turns out that various noises contained in leakages have, in general,
negative effects on the key-recovery efficiency of side-channel attacks.
Therefore, in practice, frequency-based denoising methods are presented
and in wide use nowadays. However, most of them for reducing noises
of high-frequency are not always effective, and they sometimes do lit-
tle or even no help. On the other hand, the relationship between noises
extracted with different denoising methods that target different frequen-
cies, in time-domain, is not being discussed, which in turn will determine
the potential power of combining these denoising methods. Motivated by
this, we present two empirical mode decomposition (EMD) based denois-
ing methods for side-channel attacks, and study their effectiveness in re-
ducing noises of high frequency in real power traces. Compared with their
counterparts, EMD-based denoising methods achieve both effectiveness
and stability. Furthermore, we investigate the relationships between the
noises extracted with denoising methods that target different frequen-
cies, by performing attacks on real power traces denoised by multiple
combinations of different denoising methods. For this purpose, we de-
fine the notion of overlapping coefficient, which measures how much that
noises are overlapped with each other. Our results and observations are
evidently verified by correlation power analysis attacks on multiple real
power traces sets.

Keywords: Side-channel Cryptanalysis, Correlation Power Analysis,
Empirical Mode Decomposition, Noise Reduction, Overlapping
Coefficient.

� Corresponding author.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 259–274, 2013.
c© Springer International Publishing Switzerland 2013

260 M. Feng, Y. Zhou, and Z. Yu

1 Introduction

Side-channel attack (SCA) aims at recovering the secret information embed-
ded in a crypto devices from its physical leakages, including execution time[15],
power consumption[1], and electromagnetic emanation[16]. Among those, power
analysis attack which uses the instantaneous power consumption of crypto de-
vices as its side-channel leakage is one of the most widely researched powerful
side-channel attacks.

Generally, SCA consists of two stages: leakage acquisition and leakage ex-
ploitation. Concerning the latter, a number of power analysis attacks have been
proposed so far, which are also referred to as distinguishers. Among them, differ-
ential power analysis (DPA) [1] is the most original one, which was then extended
to other more powerful variants such as correlation power analysis (CPA) [2].
CPA is an effective method for finding the secret key based on the correlation be-
tween the hypothetical power consumption and the actual power consumption.
Recent work [8] shows that side-channel distinguishers are not only asymptoti-
cally equivalent, but also can be rewritten one in function of the other only by
modifying the power model. In particular, they have established one equivalence
between most univariate side-channel distinguishers and CPA performed with
different leakage models.

Even though the main focus of SCA is leakage exploitation, leakage acqui-
sition also plays a critical role, as acquisition itself is the physical requisite for
mounting power analysis attacks. The outputs of acquisition process are often
referred to as power traces. Because of the electronic characteristics of the phys-
ical implementation, power traces always contain not only useful side-channel
information which benefits cryptanalysts, but also a variety of noises which are
found to have negative effects on side-channel attacks [14]. Therefore, to reduce
noises inherent in power traces is commonly believed to be, in general, an effec-
tive approach enhancing the performance of power analysis attacks.

Up to now, a number of noise reduction methods have been proposed to
reduce noises contained in power traces after sampling, i.e. to increase the
signal-to-noise ratio (SNR). Generally speaking, those denoising methods can be
roughly divided into two categories: frequency-based and non frequency-based.
Frequency-based methods are the most popular one and in wide use in practice,
which include wavelet-based methods [3] [4] and trend removal method (TR)
[5]. Wavelet-based methods mainly target noise components of high frequency,
while TR mainly targets that of low frequency. In [3], one applies wavelet trans-
form to original power traces from a hardware implementation of unprotected
DES on smart card, producing an approximation sub-signal. Afterwards, one
performs DPA on the approximation sub-signal. In [4], one also applies wavelet
transform into original power traces to obtain the approximation sub-signal and
the detail sub-signal. The difference between [3] and [4] is that the latter sets
a specific threshold value for the detail sub-signal, while the former sets the
detail coefficients that dissatisfy the threshold to zero. Afterwards, one recon-
structs the power traces and then performs power analysis attacks on the recon-
structed power traces. Principal component analysis (PCA) [6] belongs to the

EMD-Based Denoising for Side-Channel Attacks and Relationships 261

non frequency-based method, because it identifies trends in a whole trace set
instead of a single trace. In [6], one applies PCA to original power traces, and
then performs a DPA attack on a PCA-transformed power traces. Actually, the
effects of PCA in practical attacks against hardware crypto implementations like
that used in DPA contest v2 are very limited, and sometimes even negative [5].
However, we focus on frequency-based methods only.Frequency-based methods
are most frequently used, yet there is one technical drawback: they are not al-
ways effective, and sometimes they do little or even no help, in practice. This
drawback is again confirmed by one recent work of [5]. Therefore, a very natural
and pertinent question arises at this point, namely, is there any effectively stable
and easy-to-use denoising method dealing with high frequency noises? Another
problem relates to the combination of denoising methods that target different
frequencies [5]. Noise components of different frequencies will locate at distinct
places with frequency domain, and they will overlap to some extent with each
other in time domain. Then, how much is this overlap? This problem makes
sense, because power analysis attacks examine the leakages in time domain. And
this also determines how best the combination of different denoising methods
would be.

Main contributions of this paper are two-fold. Firstly, we present two em-
pirical model decomposition (EMD) [9] based denoising methods that target
noises of high frequency for SCA, and address some technical issues concerning
their applications. Both of these methods achieve effectiveness and stability. Sec-
ondly, we study the relationship of the noises extracted with different denoising
methods. For this purpose, we define the notion of overlapping coefficient, which
measures how much that noises are overlapped with each other.

The rest of this paper is organized as follows. Section 2 briefly introduces
some background knowledge. Section 3 presents EMD-based denoising Methods
for power analysis attacks in practice. Section 4 discusses the relationship be-
tween noises extracted with different denoising methods. Section 5 presents our
experiments against real power traces from two kind of typical crypto implemen-
tations. Section 6 concludes the whole paper.

2 Preliminaries

In this section, we will present some basic knowledge, including composition of
power traces, the general relationship between SNR and CPA, and EMD-based
denoising methods in signal processing.

2.1 Composition of Power Trace

Power analysis attacks exploit the fact that the power consumption of cryp-
tographic modules is correlated to the operations performed and the data pro-
cessed. For each single point of a power trace, we denote the operation-dependent
component by Pop, the data-dependent component by Pdata. Due to the charac-
teristics of the physical implementation, the power measurements are not always

262 M. Feng, Y. Zhou, and Z. Yu

the same even if the operation performed and data manipulated are fixed. We
refer to this noise component of power consumption as Pel.noise. Besides these
three components, each point in a power trace also has a constant component
denoted by Pconst (which is, for example, caused by leakage currents). Therefore,
we can define each point of a power trace by (1).

P = Pop + Pdata + Pel.noise + Pconst (1)

Given the fact that different power analysis attacks often exploit different
properties of Pop and Pdata, we refer to the components that exploited by a
given attack as Pexp. And we refer to the rest part that is not exploitable of Pop

and Pdata combined with Pel.noise as Pnoise. So we can rewrite (1) to (2) in a
given attack scenario.

P = Pexp + Pnoise + Pconst (2)

2.2 General Relationship between SNR and CPA

SNR is the signal to noise ratio. Under our assumption and in a given attack
scenario, SNR of a set of power traces at a fixed point is given by (3), in which
var(x) denotes the variance of x.

SNR =
var(Pexp)

var(Pnoise)
(3)

SNR quantifies the amount of information that leaks from a point of a set of
power traces. The equation ρ(Hi, P) = ρ(Hi, Pexp)/

√
1 + 1/SNR [14] shows the

relationship among the correlation coefficient ρ(Hi, P) between the hypothetical
power consumption values and the real power consumption values, the correla-
tion coefficient ρ(Hi, Pexp) between the hypothetical power consumption values
and the real side-channel leakages and SNR. It can be seen that the increase of
SNR can effectively enhance the value of ρ(Hi, P) with a given power traces.
Besides this, in [14] the number of power traces needed to break a cryptographic
implementation by CPA which is referred to as n can be estimated by (4),

n = 3 + 8
Z2
1−α

ln2 1+ρ(Hck,P)

1−ρ(Hck,P)

(4)

where Z1−α is a quintile of a normal distribution for a 2-sided confidence interval
with error 1− α. From the above formulas (3) and (4) it can be easily deduced
that with the decrease of SNR, the traces number n will become bigger, and the
attack will become more difficult. In order to improve the performance of power
analysis attacks on given traces, attackers have to reduce the noise part Pnoise

in power traces as much as possible to enhance SNR.

2.3 Empirical Mode Decomposition and EMD-Based Denoising

In this section, we will introduce the empirical mode decomposition (EMD)
method [9], and then describe two typical EMD based denoising methods: con-
ventional EMD denoising and iterative EMD interval thresholding denoising.

EMD-Based Denoising for Side-Channel Attacks and Relationships 263

Empirical Mode Decomposition in Signal Processing

The EMD method is an algorithm for the analysis of multicomponent signal
[10] that breaks them down into a number of amplitude and frequency modu-
lated (AM/FM) zero-mean signals, termed intrinsic mode functions (IMFs). In
contrast to conventional decomposition methods such as wavelets, which per-
form the analysis by projecting the signal under consideration onto a number
of predefined basis vectors, EMD expresses the signal as an expansion of basis
functions that are signal-dependent and are estimated via an iterative procedure
called sifting. Next we will give EMD a brief description and notation.

EMD [9] adaptively decomposes a multicomponent signal [10] x(t) into a num-
ber L of the so-called IMFs I(i)(t) and a remainder d(t) as formula (5). Here
d(t) is a remainder that is non-zero-mean slowly varying function with only few
extrema. Each one of the IMFs, say, the ith one I(i)(t), is estimated with the
aid of an iterative process, called sifting, applied to the residual multicomponent
signal x(i)(t).

x(t) =
L∑

i=1

I(i)(t) + d(t) 1 ≤ i ≤ L (5)

x(i)(t) =

{
x(t) i = 1

x(t)−
∑i−1

j=1 I
(j)(t) i ≥ 2

(6)

The sifting process used in this paper is the standard one [9]. According to

this, during the (n + 1)th sifting iteration, the temporary IMF estimate I
(i)
n (t)

is improving according to the following steps. 1

1) Find the local maxima and mimima I
(i)
n (t)

2) Interpolate, using natural cubic splines, along the points of I
(i)
n (t)

estimated in the first step in order to form an upper and a lower envelope

3) Compute the mean of the two envelopes m
(i)
n

4) Obtain the refined estimate I
(i)
n+1(t) of the IMF by subtracting the mean

m
(i)
n found in the previous step from the current IMF estimate I

(i)
n (t).

5) Check whether a stopping criterion has been fulfilled. If not, proceed from
1) again

Supposing the procedure above runs N times before we getting the ith IMF
I(i)(t), then the following formula must be fulfilled.

I(i)(t) = x(i)(t)−
N∑
j=1

m
(i)
j (7)

What’s more all IMFs have the following properties:
1) Zero mean
2) All the maxima and all the minima of I(i)(t) will be positive and negative
respectively

1 For the first iteration, x(i)(t) is used as temporary IMF estimate I
(i)
1 (t).

264 M. Feng, Y. Zhou, and Z. Yu

Often, but not always, the IMFs resemble sinusoids that are both amplitude
and frequency modulated. By construction, the number of, say, N(i) extrema

of I(i)(t) positioned at time instances r(i) = [r
(i)
1 , r

(i)
2 , ..., r

(i)
N(i)] and the corre-

sponding IMF points I(i)(r
(i)
j), j = 1, ..., N(i) will alternate between maxima

and minima. As a result, in any pair of extrema, z
(i)
j = [I(i)(r

(i)
j), I(i)(r

(i)
j+1)]

corresponds to a single zero-crossing interval. Whats more, each IMF occupies
lower frequencies locally in the time-frequency domain than its preceding ones.
Fig. 1 presents an example the EMD of a real noisy trace signal(Fig. 1(a)), and
this EMD process results in seven IMFs and a final remainder(Fig. 1(b)-(i)).

0 1000 2000 3000
−2

0

2
x 10

4 (a)

0 1000 2000 3000
−2

0

2
x 10

4 (d)

0 1000 2000 3000
−2

0

2
x 10

4 (b)

0 1000 2000 3000
−2

0

2
x 10

4 (c)
0 1000 2000 3000

−2

0

2
x 10

4 (e)

0 1000 2000 3000
−2

0

2
x 10

4 (f)

0 1000 2000 3000
−2

0

2
x 10

4 (g)

0 1000 2000 3000
−2

0

2
x 10

4 (h)

0 1000 2000 3000
−2

0

2
x 10

4 (i)

Fig. 1. A Real Noisy Trace(shown in (a)) and its EMD Components (shown in (b)-(i))

Conventional EMD Denoising

The conventional EMD denoising (EMD-Conv) method here refers to the method
in [11]. The main idea is to discard the IMFs of which the main components are
noises. And it is usually considered that noises exist mainly in the high frequency
domain, In other words, it exists in the first few IMFs.

x̃(t) =

L∑
i=M1

I(i)(t) + d(t) (8)

In the above formula, x̃(t) is the signal after the noise reduction, and M1 can
be determined in the way that used in [11], and it can be described as below.

1) Calculate the actual IMF energies using a robust estimator based on the
components median [12]

Ek =

(
median(I(k)(t))

0.6745

)2

k = 1, 2, 3 . . . (9)

EMD-Based Denoising for Side-Channel Attacks and Relationships 265

2) Calculate the noise-only IMF energies. And they can be approximated
according to

Ẽk =
E1

β
ρ−k k = 2, 3, 4 . . . (10)

where E1 is the energy of the first IMF and β, ρ are parameters that for a
specific EMD implementation, depend mainly on the number of sifting iter-
ations used. It is suggested in [11] that setting β and ρ to be 0.719 and 2.01
respectively is a good choice. This paper also adopts this choice.
3) Compare the energies from the first IMF between the actual and the
theoretical ones. If the energies significant diverge from each other at the
ith IMF, indicating the presence of significant amounts of no-noise signal,
then we can assign i to the parameter M1.
Fig. 2 is an example of using conventional EMD denoising method on a noisy

signal, where the blue line is the original noisy signal and the red line represents
the denoised one.

0 500 1000 1500 2000 2500 3000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Time

Denoised Signal
Original Noisy Signal

Fig. 2. Conventional EMD Denoising

Iterative EMD Interval Thresholding Denoising

The iterative EMD interval thresholding (EMD-IIT) denoising method was first
introduced in [13]. The main idea of it is to enhance the tolerance against noise
by averaging a number of denoised versions of the signal which are obtained
iteratively. Before introducing the EMD-IIT method, we should get an under-
standing of the EMD interval thresholding method (EMD-IT), which is also
introduced in [13]. The main idea of the EMD-IT is to reconstruct the denoised
signal by

x̃(t) =

M2∑
i=M1

Ī(i)(t) +

L∑
i=M2+1

I(i)(t) + d(t) (11)

266 M. Feng, Y. Zhou, and Z. Yu

Here the Ī(i)(t) is calculated as the formula (12)

Ī(i)(z
(i)
j) =

{
I(i)(z

(i)
j) |I(i)(r(i)j)| > Ti

0 |I(i)(r(i)j)| ≤ Ti

(12)

where Ti = C

√
Ẽi2lnN and C is a constant. For consant C, choosing one value

between 0.6 and 0.8 is usually a good choice [13]. Ẽi is calculated using (10).
N is the sample number of the signal. Now we can go to an in-depth study of
EMD-IIT, it can be summarized as the following steps.

1) Perform an EMD expansion of the original noisy signal x.
2) Perform a partial reconstruction using the last L− 1 IMFs and the

remainder only, xp(t) =
∑L

i=2 I
(i)(t) + d(t)

3) Randomly alter the sample positions of the first IMF I
(1)
a (t) =

Alter(I(1)(t)).
4) Construct a different noisy version of the original signal xa(t) = xp(t) +

I
(1)
a (t)
5) Perform EMD on the new altered noisy signal xa(t).
6) Perform the EMD-IT denoising using formula (12) on the IMFs of xa(t)
to obtain a denoised version x̃1(t) of x
7) Iterate K − 1 times between 3)-6), where K is the number of averaging
iterations in order to obtain K denoised versions of x , i.e., x̃1, x̃2, , x̃K .
8) Average the resulted denoised signals x̃(t) = (1/K)

∑K
k=1 x̃k(t).

The altering function can take several forms, in this paper we use random per-
mutation approach recommended by [13], in other words, the samples of the first
IMF change their positions randomly.

3 EMD-Based Denoising Methods for SCA

Frequency-based denoising methods are in wide use nowadays. However, most of
them for reducing noises of high-frequency are not always effective, and some-
times they do little or even no help. Therefore, for practical purpose, a more
effectively stable method that target noise of high frequency is highly desirable.
To address this problem, we introduce two EMD-based denoising methods into
the filed of SCA. Applications of EMD-based denoising in power analysis attacks
involves some technical issues and appear to be tricky, even though these meth-
ods are relatively mature in the field of signal processing.

Before talking about how to use two typical EMD-based denoising methods in
power analysis attacks, we would define some key parameters concerned, which
are summarized in Table 1. First of all, we present conventional EMD-Conv for
SCA and show how it works. In this case, one applies EMD-Conv denoising to
every single trace contained in the trace set, and then produce a new trace set.
The corresponding process is shown in Algorithm 1.

EMD-Based Denoising for Side-Channel Attacks and Relationships 267

Table 1. Definition of Parameters Used in EMD-Based Denoising Methods

Parameter Name Description of Parameter

Traceset a set of power traces

Tracei the ith power trace in the traces set Traceset

T racenum the number of traces in the traces set

Traceset′ a set of new power traces that have been denoised

Trace
′
i a denoised trace that generated by Tracei

M1 the starting order of IMF that is used to reconstruct a denoised signal

IM2 M2 = L− IM2, meaning the last IM2 − 1 IMFs and the remainder do
not get thresholded

C it is a ocnstant coefficient of getting Ti, Ti = C

√
Ẽi2 lnN

Siftnum maximum number of the sifting progress to get an IMF in EMD

Iteration the average number to get a denoised signal in EMD-IIT

Algorithm 1. EMD-Conv for SCA

Input: Traceset,M1, siftnum
Output: Traceset

′

1: function EMDConvforSCA(Traceset,M1, siftnum)
2: i ← 1
3: while i <= Tracenum do
4: Trace

′
i ← EMD − Conv(Tracei,M1, siftnum)

5: end while
6: return Traceset

′

7: end function

In Algorithm 1, M1 can de determined according to the method introduced
in section 2.3, and siftnum is an optional parameter. If siftnum is not set, the
sifting progress will not end until a default stopping criterion has been fulfilled,
which would be very time-consuming. Therefore, in practice, choosing one value
between 10-16 of siftnum is a good balance between effectiveness and time-
efficiency.

Next, we will introduce more effective EMD-IIT method into SCA and show
how it works. The EMD-IIT transformation from one original dataset of power
traces into a new dataset, shown in Algorithm 2, is the same as that in EMD-
Conv transformation. Contrary to the case of EMD-Conv, in this case,. according
to [13], it has been empirically found that a very good choice of M1 is given by
M1 = max(1, J − 2) , where J is the order that used in EMD-Conv as a starting
order to reconstruct a denoised signal. Usually, a good choice of M2 is L − 1.
In other words, the last IMF and the remainder do not get thresholded. For
parameter C, the values between 0.6 and 0.8 is often the best choice, but not
always. In general, a balanced tradeoff between the number of sifting (siftnum)
and the performance of EMD-IIT is realized with about eight sifting iterations.
The final parameter Iteration can be set to a value between 10 and 20. Note
that, unlike using EMD-IIT in the field of signal processing, for EMD-IIT to

268 M. Feng, Y. Zhou, and Z. Yu

be correctly used in SCA, all traces must use the same permutation matrix, or
it will lead to a problem of power trace misalignment that would decrease the
performance of the attack or even worse make it fail.

Algorithm 2. EMD-IIT for SCA

Input: TracesetM1IM2, C, Siftnum, Iteration
Output: Traceset

′

1: function EMDIITforSCA(Traceset,M1, IM2, C, Siftnum, Iteration)
2: Generate a random permutation matrix pm(Iteration ∗ |trace|) according to

the parameter iteration and the length of a Trace
3: i ← 1
4: while i <= Tracenum do
5: Trace

′
i ← EMD − IIT (Traceset,M1, IM2, C, Siftnum, Iteration, pm)

6: end while
7: return Traceset

′

8: end function

Unlike the wavelet based denoising methods [3] [4] where one has to choose
a wavelet basis function that affects the performance of denoising greatly, EMD
based denoising methods are nonparametric. So in this respect, compared with
wavelet based denoising methods, EMD based denoising methods are more easily
used. Then how about the actual performance of EMD-based methods? We will
study this issue through a series of experiments in section 5.

4 Relationship between Noises Extracted with Different
Denoising Methods

Intuitively, the combination of denoising methods that target different frequen-
cies will be more effective than any one of them [5]. In this section, we will
examine the overlap between these noise components. And the overlap could re-
flect how best the combination will be in practice. Actually, this problem could
also be naturally extended into the case of noise components extracted with
different methods that target similar frequencies, as those of Wavelet-based and
EMD-based methods.

From the perspective of set theory, there are three kinds of relationships be-
tween two sets A and B. In order to measure the overlap between two sets, we
can use the formula (13), where |set| is the number of elements contained in
the set. If d = 0, then A and B do not intersect; if 0 < d < 1, then A and B
intersect, but they do not have a containment relationship; if d = 1, then they
have a containment relationship, namely, A contains B or B contains A.

d =
|A ∩B|

min(|A|, |B|) (13)

Inspired by formula (13), we will use a similar idea in analyzing the differ-
ent parts of a noisy leakages as shown in Fig. 3, where Pexp is the exploitable

EMD-Based Denoising for Side-Channel Attacks and Relationships 269

component by a given attack, Pnoise1 is the noise extracted with a denoising
method m1, Pnoise2 is the noise extracted with another denoising method m2.
Then what is the relationship between Pnoise1 and Pnoise2? In other words, how
much the noises are overlapped with each other? Currently, there is no direct
metric available to measure this overlap. Therefore, we try another indirect yet
useful way. Specifically, we define the notation of overlapping coefficient, which
could serve as a quantitative metric to measure the overlap rate between two
noise components. The definition of overlapping coefficient is based on success
rate (SR)[7], and is shown in formula (14), where ΔSR1 is the improvement of
SR achieved by m1 on a given number of power traces compared with that ac-
quired on the raw power traces; similarly, ΔSR2 is achieved by m2 and ΔSR3 is
achieved by the combination use of m1 and m2. In practice, this indirect quan-
titative metric could well reflect the relationship of the noises, which is verified
by the experiments in Section 5.

oc =
ΔSR1 +ΔSR2 −ΔSR3

min(ΔSR1, ΔSR2)
(14)

Fig. 3. Components of Noisy Side-Channel Leakages

As per its definition, it always holds that 0 ≤ oc ≤ 1.Apprently, the smaller
the value of oc is, the better the effect of the combination. If oc ≈ 1, it indicates
that the two denoising are almost of the same capability to remove the noise
extracted with the method that generates a smaller ΔSR. In this case, using the
method which makes a higher improvement of SR alone is enough, and using
the combination of the two does not help.

5 Experiments

In this section, we will firstly examine the stability and effectiveness of the two
EMD-based denoising methods for SCA(EMD-Conv and EMD-IIT respectively)
in eliminating noise of high frequency, by performing a series of CPA attacks on
real power traces from the second stage of DPA Contest and PowerSuite 4.0
(one software bechnark evalution board we designed and developed ourselves,
and its CPU is an 8-bit microcontroller STC89C58RD+). And then we will
explore the potential of combination of different denoising methods and study the
overlapping relationship of the noises extracted with different denoising methods
by performing CPA attacks on the DPA Contest v2 traces.

270 M. Feng, Y. Zhou, and Z. Yu

5.1 Settings

Hardware Implementation
The traces from the DPA Contest v2 are acquired with a sampling rate of 5G
sample/s from a SASEBO-GII board, which implements an unprotected hard-
ware AES implementation over a Xilinx Virtex-5 FPGA. Ideally, it is better to
perform the denoising methods on all 32 traces sets from DPA Contest v2 pub-
lic database to evaluate their performance. However, in actual cases, it is too
time consuming to perform this. Therefore, we turn to another way of randomly
choosing eight datasets of power traces from DPA Contest v2 public database.
And then, we target the last round of the AES on these raw sets of power mea-
surements to calculate SR on a given number of traces for the first S-box by
mounting a CPA attack 500 times. The evaluation results are shown in Fig. 4.
After these, we choose dataset1, which matches the average and median of the
eight different SRs best, as the representative dataset to analyze.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Number of Traces

dataset1

dataset2

dataset3

dataset4

dataset5

dataset6

dataset7

dataset8

Average

Median

Fig. 4. Results of CPA Attacks on Eight Sets of Traces from DPA Contest v2

Software Implementation
The other three traces sets are acquired with a sampling rate of 50 M sample/s
from PowerSuite 4.0 board, which contains an unprotected software AES im-
plementation. For simulating different levels of SNR, the traces sets differ only
in the average number during the sampling process. The average number is one
time, four times and eight times, respectively.

Next, we will use SR to evaluate the stability and effectiveness of each de-
noising method or their combinations, by mounting CPA key recovery attacks
500 times for the traces set from DPA Contest v2 and 1,000 times for the traces
sets from PowerSuite 4.0. For clarity, we name the denoising method in [3] as
Wavelet and another denoising method in [4] as Wavelet1. And all the descrip-
tion of the experiments’ labels are shown in Table 2. Note that our experiments’
results shown that the combination order of different denoising methods has lit-
tle influence on the final results.

EMD-Based Denoising for Side-Channel Attacks and Relationships 271

Table 2. Description of Our Experiments

Experiment Label Description of the Experiment

CPA perform CPA attacks on the original power traces

EMD-Conv+CPA perform EMD-Conv method to the original power traces, and

then perform CPA attacks on the resultant power traces

EMD-IIT+CPA perform EMD-IIT method to the original power traces, and

then perform CPA attacks on the resultant power traces

Wavelet+CPA perform wavelet transform in [3] to the original power traces,

and then perform CPA attacks on the resultant power traces

Wavelet1+CPA perform wavelet transform in [4] to the original power traces,

and then per-form CPA attacks on the resultant power traces

TR+CPA perform detrending method in [5] to the original power traces

, and then perform CPA attacks on the resultant power traces

EMD-IIT+TR+CPA remove noise in the original power traces using EMD-IIT,

perform detrending method in [5] to the resultant power traces,

and then perform CPA attacks on the final power traces.

EMD-IIT+Wavelet+CPA remove noise in the original power traces using EMD-IIT,

perform wavelet transform in [3] to the resultant power traces,

and then perform CPA attacks on the final power traces.

EMD-IIT+Wavelet1+CPA remove noise in the original power traces using EMD-IIT,

perform wavelet transform in [4] to the resultant power traces,

and then perform CPA attacks on the final power traces.

5.2 Results and Analysis

Firstly, we evaluate the stability and effectiveness of the two EMD-based de-
noising methods on the trace set from DPA Contest v2. The results are shown
in Fig. 5(a). From Fig. 5(a), it is shown that both EMD-Conv and EMD-IIT
denoising methods are capabale of improving the SRs of CPAs effectively. With
repsect to achieving a partial stable SR of 80%, compared with CPA which needs
12,050 traces, EMD-Conv+CPA needs 9,350, which reduces the traces needed by
22.4%. EMD-IIT+CPA works even better than EMD+CPA, and it needs only
8,150 traces, gaining an improvement of 32.3%. Meanwhile, the Wavelet-Based
methods used to remove noise of high frequency do little or even no help. Specif-
ically, Wavelet reduces the trace number less than 10%, and Wavelet1 less than
1%. That is to say, in our case, the EMD-based methods are more effective than
the Wavelet-based ones.

After the effectiveness of EMD-based methods have been proved, we would
like to further study their stability and performance under different SNRs. Since
under this scenario, the SNRs are relatively high compared with that of DPA
Contest v2, the performances of EMD-Conv and EMD-IIT are almost the same.
Therefore, in this part, we only focus on EMD-Conv which is more time effi-
cient. As is shown in Fig. 5(b), with the increase of SNR (or average times),
the percentage of the decrease of trace number to achieve a partial success rate
of 80% becomes smaller and smaller, from 26.9% to 14.3% to less than 2%.
This phenomena can be explained like this: with the increase of SNR, noises of
high frequency also decrease. In this case, the performance decrease of the EMD-
Based methods is reasonable. From another perspective, though the performance
of EMD-Based methods is not always significant, they can always remove noises
of high frequency, which is the evidence of their stability.

272 M. Feng, Y. Zhou, and Z. Yu

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

S
uc

ce
ss

 R
at

e

CPA
EMD−Conv+CPA
EMD−IIT+CPA
Wavelet+CPA
Wavelet1+CPA

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

S
uc

ce
ss

R
at

e

Average=1:CPA
Average=1:EMD−Conv+CPA
Average=4:CPA
Average=4:EMD−Conv+CPA
Average=8:CPA
Average=8:EMD−Conv+CPA

(b)

Fig. 5. (a)SRs of EMD-Based and Wavelet-based Denoising on Traces from DPA Con-
test v2 (b)SRs of EMD-Conv Denoising on Traces with Different Noise Levels

Next, we examine the potential power of combining denoising methods and
study the relationship of the noises reduced with different denoising methods on
the traces set from DPA Contest v2. Firstly, we make a combination of two de-
noising methods that target different frequencies: one is EMD-IIT which reduces
mainly noise of high frequency, and another is TR [5] which reduces the trend
noise of low frequency. The results are shown in Fig. 6(a). The SR is improved
greatly on a given traces number when we make a combination of EMD-IIT and
TR. In terms of achieving a partial success rate of 80%, this combination re-
duces as many as 58.5% of the traces that needed before denoising. To study the
relationship between the noises reduced by EMD-IIT and TR, we choose three
numbers, A, B and C, on the abscissa axis first. Given the number of each trace
set, the SR of one denoising strategy reaches 80% or little more, i.e., the SR of
EMD-IIT+TR+CPA reaches 80% when given A traces. Then we calculate the
overlapping coefficient for using three different number of traces respectively,
The results are shown in Table 3, where ΔSR1 is for EMD-IIT, ΔSR2 is for
TR, and ΔSR3 is for their combination. For more accuracy, we calculate the
mean value of the three overlapping cofficients, and the result is 0.6136, mean-
ing that about 61% noise that extracted by EMD-IIT can also be extracted by
TR. Secondly we make a combination between denoising methods that target
noises of high frequency and the results are shown in Fig. 6(b). Clearly, these
combinations do little help in reducing noise, and the overlapping coefficient val-
ues calculated by (14) are both very close to zero, which means that EMD-IIT
can remove almost all the noises extracted by the Wavelet-based methods. So in
these cases, choosing a more effective one, i.e. EMD-IIT, will be more reason-
able. Based on the analysis of the above experiments, combination of denoising
methods that target noise of different frequencies, may improve the denoising
performance a lot. As to the combination of denoising methods that target the
same frequency domain, it usually makes little or no improvement in removing
the noise. Therefore, in this scenario, choosing a better one alone is enough.

EMD-Based Denoising for Side-Channel Attacks and Relationships 273

Table 3. Overlapping Coefficients for Different Number of Traces

�����������
Traces number

ΔSR and oc
ΔSR1 ΔSR2 ΔSR3 oc

A 0.142 0.330 0.406 0.4648

B 0.206 0.364 0.408 0.7864

C 0.234 0.284 0.380 0.5897

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

S
uc

ce
ss

 R
at

e

CPA
EMD−IIT+CPA
TR+CPA
EMD−IIT+TR+CPA

A B C

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

S
uc

ce
ss

 R
at

e

CPA
EMD−IIT+CPA
Wavelet+CPA
Wavelet1+CPA
EMD−IIT+Wavelet+CPA
EMD−IIT+Wavelet1+CPA

(b)

Fig. 6. (a)SRs of the Combination of EMD-IIT and TR on the Traces from DPA
Contest v2 (b)SRs of the Combination of EMD-IIT and Wavelet-bsed Methods on
Traces from DPA Contest v2

6 Conclusions and Future Work

Reducing noise serves an important way to enhance the performance of the side-
channel attacks. Considering the fact that frequency-based denoising methods
are dominant and in wide use in practice and that most of existing of these
methods suffers instability in performance enhancement, stable and effective
frequency-based denoising methods make a lot of sense. In this paper, we pro-
posed EMD-based denoising methods for use in side-channel attacks. Results of
practical attacks against real power traces from two kind of typical crypto im-
plementations (i.e. hardware and software implementations of AES) proves that
these methods are superior to their counterparts (say, for example, Wavelet-
based approaches). On the other hand, through a series of experiments of com-
bination, it proves that the combination of methods that dealing with noises
of different frequencies may improve the denoising performance a lot. At the
same time we define the notion of overlapping coefficient, which is an indirect
yet helpful quantitative metric to measure to what extent that noises extracted
with different methods are overlapped with each other.

Additionally, EMD-based denoising methods seem not so good at dealing with
side-channel leakages with high SNR. Therefore, the study of improvements of
EMD-based methods in this case would be one of the relevant future works.

274 M. Feng, Y. Zhou, and Z. Yu

Acknowledgments. This work was supported in part by National Natural Sci-
ence Foundation of China (No. 61272478, 61073178 and 61170282), Beijing Nat-
ural Science Foundation (No. 4112064), Strategic Priority Research Program of
the Chinese Academy of Sciences (No.XDA06010701).

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Charvet, X., Pelletier, H.: Improving the DPA attack using Wavelet transform. In:
Non-Invasive Attack Testing Workshop 2005 (2005)

4. Souissi, Y., Aabid, M., Debande, N., Guilley, S., Danger, J.: Novel Applications of
Wavelet Transforms based Side-Channel Analysis. In: Non-Invasive Attack Testing
Workshop 2011 (2011)

5. Cao, Y., Zhou, Y., Yu, Z.: On the Negative Effects of Trend Noise and Its Appli-
cations in Side-Channel Cryptanalysis, http://eprint.iacr.org/2013/102.pdf

6. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA:
First Results of Using Principal Component Analysis for Extensive Power Analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

7. Standaert, F., Malkin, T., Yung, M.: A Unified Framework for the Analysis of Side-
Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

8. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. Journal of Cryptographic Engineering 1, 123–144 (2011)

9. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spec-
trum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London
A 454, 903–995 (1998)

10. Cohen, L.: Time-Frequency Analysis. Prentice- Hall, Englewood Cliffs (1995)
11. Flandrin, P., Rilling, G., Goncalves, P.: EMD equivalent filter banks, from inter-

petation to applications. In: Huang, N.E., Shen, S. (eds.) Hilbert-Huang Transform
and Its Applications, 1st edn. World Scientific, Singapore (2005)

12. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic, New York
(1999)

13. Kopsinis, Y., McLaughlin, S.: Development of EMD-Based Denoising Methods
Inspired by Wavelet Thresholding. IEEE Transactions on Signal Processing 57(4)
(April 2009)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

16. Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 29–45. Springer, Heidelberg (2003)

http://eprint.iacr.org/2013/102.pdf

Accelerating AES in JavaScript with WebGL

Yang Yang1,2,3, Zhi Guan1,2,3,�, Jiawei Zhu1,2,3,
Qiuxiang Dong1,2,3, and Zhong Chen1,2,3

1 Institute of Software, School of EECS, Peking University, China
2 MoE Key Lab of High Confidence Software Technologies (PKU)

3 MoE Key Lab of Network and Software Security Assurance (PKU)
{yangyang,guanzhi,chen}@infosec.pku.edu.cn

Abstract. Cryptography is a fundamental building block for security
sensitive Web applications. Because the architecture of JavaScript can
not provide sufficient performance, the client-side web applications still
lacks high performance cryptography primitives. In this paper we studied
the feasibility of a new Web standard, i.e., the WebGL API for accelerat-
ing AES in JavaScript by exploiting the ability of GPU. We design and
implemented AES using 128-bit key length. We compared the perfor-
mance of our approach to the currently reported fastest pure JavaScript
implementation and found our approach runs more than ten times faster
in major browsers on all platform. Our work showed the potential opti-
mization of using GPU via WebGL to accelerate JavaScript code.

Keywords: AES, WebGL, GPGPU, JavaScript.

1 Introduction

Recent years, the fast development of cloud computing makes it much easier for
users to synchronize their personal data with the cloud to access the data any-
where for convenience. Since the service provider are untrusted, the unencrypted
users’ privacy may leak to curious employees or even the government, according
to the recent report from Guardians1. It is necessary for many applications to
encrypt the data before uploading to the cloud to preserve the privacy of users,
especially sensitive photos, documents, musics, etc. As web browser is becoming
a universal tool for interacting with remote servers, almost all popular applica-
tions provides a web interface, it is important to provide efficient cryptographic
primitives for web applications to enhance their security, especially symmetric
cryptography such as AES.

Although the performance of JavaScript has been experienced a continuous
increasing recent years, there is still a remarkable gap between the performance
of JavaScript code and native code because of the nature of a untyped scripting
language dynamically interpreted running in a virtual machine. Unless a promi-
nent improvement on the architecture of JavaScript occurs in the future, the gap

� Corresponding author.
1 http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 275–287, 2013.
c© Springer International Publishing Switzerland 2013

http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

276 Y. Yang et al.

may still exist for a long time. Another restriction for JavaScript is it doesn’t
support parallel computing. This means even the performance gap has been nar-
rowed, pure JavaScript code can still not make full use of the processing power
of the CPU. Since the performance of the single core has almost reached the
limit, manufacturers tend to increase the performance mainly by increasing the
number of cores in one CPU instead of increasing the performance of each core.
This means unless there is a significant change in the architecture of JavaScript,
the increasing of performance of JavaScript may be limited.

The poor performance of cryptographic primitives in JavaScript may deter
potential users. In the experiment conducted by Chandra etc.[1], it takes more
than 3 seconds to encrypt and transfer a file of 1MB in JavaScript, while about
90% of the time was consumed on encryption and decryption. Due to the exis-
tence of these restrictions in JavaScript, increasing the performance of crypto-
graphic primitives in JavaScript is not simply a engineering problem, because
the improvements is limited within the framework of pure JavaScript and the
framework prevents the JavaScript code to make full use of the computation
power of processors.

The emergence of WebGL(Web Graphics Library) provides us a choice to get
rid of the restriction of JavaScript for more performance. WebGL is a web stan-
dard designed and maintained by the non-profit Khronos Group. It provides a
JavaScript API based on OpenGL ES 2.0 for GPU accelerated rendering of 3D
graphics within web browsers. The API is exposed through the HTML5 Can-
vas element as Document Object Model(DOM) interfaces. Developers can use
WebGL to create shaders, textures, framebuffers in the graphics memory run
shaders on GPUs directly. This indicates that we can run certain arithmetics on
GPU directly by using WebGL APIs exposed in JavaScript. As GPU(Graphics
Processing Unit) has been widely deployed as a de facto unit of personal com-
puter and mobile devices, and provides highly parallel specialized processors the
total throughput of which has surpassed CPU, the developers may gain great
benefits on both performance and portability using WebGL for computation.
This approach works similarly as the legacy GPGPU(General-Purpose Compu-
tation on Graphics Hardware)2 technique which uses graphics APIs and shader
language for general purpose programming and has been replaced by more ded-
icated GPGPU framework such as CUDA, OpenCL, etc. But in JavaScript, we
found this technique showed us more advantages than it used to.

The aim of this work is to investigate how the WebGL can be used to acceler-
ate browser side JavaScript cryptography computation. We selected the AES[2]
as the focal algorithm to demonstrate the possibility and efficiency of WebGL
acceleration. We made following contributions in this work:

– We analyzed the features provided by WebGL and discussed some issues
that may lead to mistakes when using WebGL for GPGPU.

– We designed and implemented a WebGL version of AES that use the power
of GPU for accelerating the AES encryption in JavaScript through WebGL
API.

2 http://www.gpgpu.org/

http://www.gpgpu.org/

Accelerating AES in JavaScript with WebGL 277

– We evaluated the performance of our implementation and compare the result
with the leading AES implementation in pure JavaScript.

We found that our implementation runs several times faster than AES im-
plementation in pure JavaScript on the platform with a powerful graphics card.
Even on a machine with a low end integrated graphics card our implementation
also runs well and performs almost as fast as the pure JavaScript Implementa-
tion. Our research demonstrates that it is possible and efficient to use WebGL
to accelerate the general purpose computing in browsers, and provides a way to
make the encryption and decryption practical in browsers.

The remainder of this paper is organized as follows. Section 2 gives a overview
of related work. Section 3 gives a brief introduction toWebGL and detailed several
important issues in general purpose computing usingWebGL. Section 4 introduced
the standard approachand the fast approachof AES algorithm. Section 5 describes
how we design and implemented the WebGL version of AES. Section 6 shows how
we conducted the experiment and the result of experiment. At last we conclude our
paper and talk about our future work.

2 Related Work

There is no cryptographic primitives and high performance general computa-
tion APIs currently available in major browsers. Web cryptography API is try-
ing to provide common cryptographic services in JavaScript through the object
window.crypto, but there is only a draft at the moment and no browser has
announced a time table to support this standard.

Some modern browsers also provide other ways to implement the logic of
web applications besides JavaScript, such as programmable plug-ins and Java
Applets, while all these techniques are not portable for browsers on all platform,
such as smart phones, and the extra installations they require also bothers users.

Asm.js3 provides a framework to compile the JavaScript code to a well defined
subset of JavaScript instructions which are easier to optimize. It reduce the
performance gap between JavaScript code and native code greatly, but it doesn’t
support parallel computing, either. WebCL4 is a JavaScript binding to OpenCL
for heterogeneous parallel computing, but there are only several prototypes at
the moment. Native Client[3] gives browser-based applications the computational
performance of native applications without compromising safety, but currently
only Chrome on X86 platform is supported.

There has been several cryptography libraries implemented in pure
JavaScript5,6. The most effective research previous published on accelerating
symmetric cryptography in JavaScript was done by Stark et al.[4]. They studied
a few optimizations and trade-offs for implementing AES effectively in JavaScript

3 http://asmjs.org/
4 http://www.khronos.org/webcl/
5 http://people.eku.edu/styere/Encrypt/JS-AES.html
6 https://code.google.com/p/crypto-js/

http://asmjs.org/
http://www.khronos.org/webcl/
http://people.eku.edu/styere/Encrypt/JS-AES.html
https://code.google.com/p/crypto-js/

278 Y. Yang et al.

and built a highly optimized AES implementation in JavaScript. Their AES im-
plementation is both faster and smaller than any other AES implementation
in JavaScript before their work, but still dozens of times slower than native
implementation.

D. Cook et al. [5] firstly implemented AES-128 on GPU by mapping the
AES cipher to the standard fixed graphics pipeline using OpenGL, but their
performance was only 184Kbps–1.53Mbps on Geforce3 Ti200, which was 40 to
100 times slower compared with CPU. Harrison et al.[6] used the shader-based
programmable pipeline to implement AES and got a much better performance
than Cook’s research, but still under performed compared to some optimized
implementations on standards CPU. Fleissner[7] accelerated the Montgomery
exponentiation with OpenGL to more than 100 times faster than the standard
algorithm. Moss[8] implemented RSA using an RNS based approach using
OpenGL and gave results comparable to the fastest CPU implementation.

The emergence of dedicated GPGPU frameworks such as CUDA[9], Brooks[10]
and OpenCL[11] inspired the research on accelerating crypto primitives with
GPU. Manavski[12] implemented AES using CUDA and showed GPU can per-
form as an efficient cryptographic accelerator for the first time, their solution was
20 times faster than the native implementation. Szerwinski et al.[13] used CUDA
to accelerated DSA, RSA and ECC. Zhang et al.[14] accelerated composite order
bilinear pairing with CUDA.

3 WebGL Background

WebGL is a standard of graphics APIs based on OpenGL ES 2.0 developed by
Khronos group, the version 1.0 of the WebGLspecification was released March
2011[15]. Until the time of this paper writing, most major desktop browsers and
mobile browsers have supportedWebGL officially or internally. This indicates our
approach can be used in most browsers across platforms without modification.

WebGL is a shader-based API using OpenGL Shading Language(GLSL),
which makes full use of programmable pipelines in GPUs and provides a great
convenience for general purpose computing. As illustrated in Figure 1, using
WebGL for general purpose computing works in similar as rending a frame in
graphics computing: developer passes bunch of input data into graphics memory
as textures, implements the computing logic in shaders, renders the computing
result into framebuffers, then read the result back to the main memory or use
the result as the input of the next iteration. These steps involves much glue code,
how to launch these steps and what these steps mean can be found at WebGL
tutorials and references books.

The key to general purpose computing in GPU via WebGL is how to map
the computing procedure to graphics rendering precisely and effectively. Since
WebGL is designed for graphics computing, it supports only limited data struc-
tures, especially for input and output, and it does not have full support of in-
teger arithmetics until now. This indicates that developers sometimes have to
map the unsupported arithmetics and data structures to supported ones in order

Accelerating AES in JavaScript with WebGL 279

JavaScript Vertex Shader Fragment Shader

Texture

Framebuffer

Convert
To

Assembly/
Rasterization

Display on
Web page

Allocated in Graphics Memory

Calculated on GPU

Read back to JavaScript

Fig. 1. A simplified view of WebGL pipeline model of computation

to leverage WebGL and GPU for computing. And any computing that is used
in shaders must take the precision that shaders supported into consideration in
order to prevent the unexpected truncation affect the result. As GPU is not ef-
fective at executing the serial control logic, the algorithm of the computing must
be optimized for parallel. From our observation and experiments, the following
concrete principles are helpful when using WebGL and GPU for general purpose
computing.

Simplify the logic of shaders. As we have mentioned, GPU is not good at
executing the control logics, such as the conditional branch. Another reason
is complex logic may consume much longer time to compile. A possible mit-
igation is to complete the computing with multiple renders, and use CPU to
execute the control flow between renders.

Reduce the number of data transfers on bus. As the bandwidth of the
bus is limited, transfer data between the main memory and the graphics
memory is time consuming.

Batch processing the data. Because of the executing model of GPU, com-
puting with a block of input may take the same time as computing with
1,000 blocks.

Memory access pattern. As most circuits of GPU are used to implement the
arithmetic units, the space of cache and registers is relatively small, there
will be a great penalty on the performance if the cache miss occurs too much.
It is important for the developer to optimize the memory access pattern, for
example, try not to access a large part of data randomly.

Number conversion. In WebGL, the data supplied to the texture in
JavaScript should be 8-bit integers, but the data got in GLSL are floating

280 Y. Yang et al.

numbers in [0, 1]. In brief, the integers are linearly mapped to the floating
number when they are transferred from main memory to graphics memory,
and mapped in the reverse way when floating numbers are transferred back
from graphics memory to main memory. So any linear transformations on
the floating form in GLSL would be equally applied to the integer form in
JavaScript. This is a feature or restriction in another word of GLSL, the
developers must be conscious of this.

Texture coordinate. In shaders, the texel is accessed by function texture2D()
using the coordinate (x, y). Each dimension of the coordinate is a floating
number within the range of [0, 1], which means there is not only one single
value can be used to look up any texel, but a range of coordinates. Gener-
ally speaking, any coordinate within the scope of the texel can be used to
look up the texel, but there is no guarantee for different hardware to be-
have totally the same for boundary values. For the texel at i-th column and
j-th row in a texture whose width is w and height is h, using (i

w−1
, j
h−1

)
as the coordinate is acceptable in most cases, but since accuracy is critical
for general purpose computing, it is necessary to calculate the coordinate by
(2×i+1

2×w , 2×j+1

2×h) sometimes.

4 AES Background

AES(Advanced Encryption Standard) [2] is a symmetric block cipher that en-
crypt plain text blocks of 128 bits with various key length of 128 bits, 192 bits
or 256 bits. It is a restricted version of Rijndael symmetric block cipher that
can encrypt and decrypt blocks of 128 bits using a key size of 128-bit, 192-bit,
and 256-bit length. The cipher is basically a series of round transformations on
blocks with round keys expanded from the original key using a key schedule
algorithm [16,2], the output of each round is the input of the next round. The
number of the rounds is determined by the key length: 10 rounds for 128-bit, 12
rounds for 192-bit, and 14 rounds for 256-bit. The block is depicted as a 4 × 4
column-major order matrix of bytes, termed state.

The standard implementation of AES encryption starts with an AddRound-
Key operation on the state, followed by 10/12/14 round transformations depend-
ing on the length of the key. Each round transformation includes 4 successive
steps except the final round: SubBytes, ShiftRows, MixColumns and AddRound-
Key. The final round is similar except the lack of the MixColumns step. Decryp-
tion is done by reversing each step of encryption using the same key.

SubBytes. Each byte of the state is substituted independently using a prede-
fined substitution box(S-box) computed over the Galois Field GF (28) [2].

ShiftRows. Rows are rotated by 0, 1, 2 and 3 bytes, respectively, to the left.
MixColumns. A substitution that makes use of arithmetic over the Galois

Field GF (28).
AddRoundKey. A simple bitwise XOR of the state with a piece of the ex-

panded round key.

Accelerating AES in JavaScript with WebGL 281

For processors supporting 32-bit or greater word length, Daemen and Rijmen
detailed a fast implementation approach that combines the SubBytes, ShiftRows
and MixColumns transformations into four 256-entry(each entry is 4 bytes)
lookup tables(“T-Table”)[16,2]. The T-Table approach reduces the SubBytes,
ShiftRows, MixColumns operations in round transformation to simply updating
the j-th column of the state according to the Equation 1.

[s′
j
0, s

′j
1, s

′j
2, s

′j
3]

T =
3
⊕
i=0

Ti[si,j + Ci], 0 ≤ j ≤ 3 (1)

where sj,k is the byte in the j-th row and k-th column of the state, and Ci

is a constant equivalently doing the ShiftRows in place. Each Ti is a rotation of
the other. After the state is updated, the step AddRoundKey is performed to
complete the round operation. As we can see from the equation, there are only
XORs and table lookups needed in this technique.

The block cipher itself is not sufficient for the security of multiple blocks, a
mode of operation is needed. The cipher mode is important for both performance
and security for block ciphers. The CBC mode, OFB mode and other chained
modes are secure but not efficient for parallel computing since the computation
of the next block depends on the result of the previous one. The ECB mode
is efficient for parallel computing but insecure. CTR mode is both secure and
efficient for parallel computing as the counter can be precomputed efficiently
and simple to implement. Another advantage for CTR mode is that only the
encryption procedure of the cipher is needed for both encryption and decryption
in CTR mode.

5 WebGL Version of AES

5.1 Overview

We implemented AES encryption using 128-bit key length using WebGL. The
decryption and other key lengths can be implemented with minor modifications.
We implemented the ECB mode for plain text of various length, and other
modes such as CTR mode can be implemented simply with a extra shader. As
our purpose here is to demonstrate the feasibility and efficiency of WebGL for
cryptography, we just keep our implementation simple but convincing.

Specifically, the algorithm we implemented is the fast approach for 32-bit
processors as mentioned in section 4, because this approach mainly involves
two types of operation: table lookup and XOR. Since the arithmetic operation
supported by GLSL is limited, this feature will facilitate our work. We did not
implement the key scheduling in WebGL, because this procedure is a serial of
limited operations that can be done in no time in JavaScript in CPU. And once
the key schedule is expanded, it can be used repeatedly to encrypt message of
any length. The key schedule, the plain text and other parameters would be
packed into textures as input to shaders, the cipher text would be written to the
framebuffer by shaders and read back into JavaScript. We can encrypt multiple
blocks in the same time with GPU and WebGL in order to exert the power of

282 Y. Yang et al.

high throughput of GPU. We denote the blocks we encrypt at the same time as
a packet.

The multiple-target technique is not supported in WebGL, so the output of
a shader could be only a texel which is no more than four bytes. As the size of
one block is 16 bytes, it takes four shader instances to produce the result of one
block. As each round operation requires the whole state output by the previous
round operation, there should be a synchronization after each round, or each
shader instance has to execute all the rounds completely before the final one.
The too complex logic takes much more time to compile and run, therefore we
decided to split the encryption logic into 3 independent shader programs: the
first implemented the initial round which just combines the key with the state
by a XOR operation, the second implemented the round operation between the
state and a piece of round key that can be specific by a parameter, the third
implemented the final round operation. In this case, we have to render for 11
times in total to encrypt a packet regardless of the size of the packet with a
128-bit key: 1 for the initial round, 9 for round operations, and 1 for the final
round. As we don’t want to read the intermediate result back into main memory,
we used two framebuffers alternatively: the one holding the result of the previous
round will be used as the input to the next round, since the framebuffer of one
render can also be used as the texture to another render.

5.2 XOR Operation

The AES fast approach requires to calculate the XOR of two 32-bit unsigned
integers, while both 32-bit integer and XOR operation are not supported in
GLSL. Although each texel can hold up to 32-bit data, it actually consists of
four 8-bit floating numbers in GLSL or four 8-bit integer in JavaScript. As XOR
of two integers is just the combination or XOR of each bits at corresponding
position, we can just hold the 32-bit integers in texels and calculate the XOR
of two texels by just calculating each 8-bit component of them. Therefore we
can construct a table whose element at i-th column and j-th row is i ⊕ j, then
the calculation of i ⊕ j can be transformed to looking up the element at i-th
column and j-th row in the table. In GLSL, the situation is a little sophisticated:
there is slightly difference between the mapped floating number and the texture
coordinate as mentioned the Section 3, an integer i will be transformed to i/255.0
in GLSL, as the reliable coordinate to access the i-th column or row is i×2+1

256×2
, it

is better to convert the floating form fi of the integer i to the texture coordinate
by fi×255.0×2+1

256.0×2
for accuracy, especially on GPUs with lower precision.

For XOR of two 8-bit integers, there would be 256×256 = 65536 entries in the
table. The random access to a table of this size in GPU may cause plenty of cache
misses. An optimization has been proposed in the paper[17]: We can construct
a table holding the XOR of any two 4-bit integers instead of for any two 8-bit
integers. For any two 8-bit integers first we divide it equally into two 4-bit parts
and calculate the XOR of each part, then combine the result to get the XOR
of original 8-bit integer. This optimization reduces the table from 256× 256 to
16× 16 and has been proved to be much faster in the experiments[17].

Accelerating AES in JavaScript with WebGL 283

11

4

(a) Key Schedule

16

16

(b) XOR Table

256

1

(c) T-Table

H

W

a block

(d) States

Fig. 2. The memory layout of the key schedule, the XOR table, the T-Table, and the
state, each square in the figure stands for a texel

5.3 Memory Layout

We will discuss the memory layout of the input, output and parameters in graph-
ics memory and how to access them in this part. As the texture and the frame-
buffer has two dimension, there could be many possibilities for memory layout
and access pattern of the same piece of data, our purpose is to choose the most
efficient and easy-to-use one.

The key schedule is common for all plain text blocks encrypted using the
same key. For the key of the same length, there are 11 round keys including
the original one, each round key is 16 bytes. Each texel holds 4 bytes at most,
we use 4 continuous texels for one piece of round key, and each round key is
held in a row in sequence in a texture as shown in Figure 2(a). In this layout,
the coordinate used to access the i-th element of the j-th round key is easy to
calculate as (i×2+1

2×4
, j×2+1

2×11
) as described in Section 3.

The original T-Table takes up 4KB memory in total. As the T-Table has to
be accessed randomly, it is better if we can reduce the memory usage to reduce
the cache miss. Since each T-Table is a rotation of the other, the Equation 1 can
be optimized to the Equation 2:

[s′
j
0, s

′j
1, s

′j
2, s

′j
3]

T = T0[s0,j + C0]⊕Rot(T0[s1,j + C1]⊕
Rot(T0[s2,j + C2]⊕Rot(T0[s3,j + C3])))

(2)

In this case, there is only one T-Table needed and takes up 1KB memory space
only. Each entry of the T-Table is 32-bit long and can be packed into one texel,
so we put the whole table in a texture whose size is 256 × 1. The layout of T-
Table is shown in Figure 2(c) The i-th element of the table can be looked up
with the coordinate (i×2+1

256×2
, 0.5).

The XOR table is a 16 × 16 matrix as shown in Figure 2(b) and mentioned
above, we use the alpha component of the texel to hold each XOR result.

The size of the state is 16 bytes, so we can keep it in sequence in a row in
the texture. Since it is not effective to encrypt just one block at one time, we
have to supply multiple blocks to the input texture. The difficulty is how to
locate the right block of state for each shader instance when there are multiple

284 Y. Yang et al.

blocks supplied. As the size of input and output of the encryption are same, we
can construct the framebuffers holding the result and the texture holding the
input of the same size, so there would be a one to one map between the input
and the output. This corresponding relation can be constructed by rendering a
rectangle to fill the viewport with a designed vertex shader program easily. A
simple approach is to place only one block in a row in the texture or framebuffer,
then for the shader instance outputting to (s, t) in the framebuffer, it can locate
the input to it at the t-th row of the input texture easily. Since the side length
of the texture and framebuffer that supported by GPU is limited to the order of
thousands, this approach can encrypt only thousands of blocks at the same time,
so it is necessary to put multiple blocks in each row as shown in Figure 2(d). In
this case, for the shader instance outputting to (s, t) in the framebuffer whose
size is w × h, the coordinate of the i-th column(0 ≤ i < 4) can be calculated
by Equation 3. In this approach, we can encrypt millions of blocks at the same
time.

si =
(floor(s× w × 2.0/8.0)× 8.0 + 2.0× i+ 1.0)

(w × 2.0)

ti = t

(3)

6 Experiment

Table 1. The configuration of test machines

Machine A B C

Platform Desktop Laptop Pad
Model Dell OptiPlex 990MT Lenovo Y400N Nexus 4
OS Ubuntu 12.04 Windows 8 Pro Android 4.2.2
CPU i7 2660 i5 3230M A5
GPU NVIDIA 560TI NVIDIA G750M PowerVR SGX 543

We expected to find out how fast the WebGL AES can be, and the impaction
of packet size on performance through the experiment. So we designed the ex-
periment as follows: We launched the the implementation with different packet
sizes, start from one block which is 16 bytes, up to 1M bytes, and the next packet
size is always four times of the previous one. We used the implementation to en-
crypt the randomly generated plain text whose length is 3 times of the packet
size, so the algorithm would run 3 times to finish the encryption. Then we get
the time consumed during the encryption and calculate the throughput of the
implementation. We also launched the experiment on SJCL(Stanford JavaScript
Crypto Library)[4] which is the fastest pure JavaScript AES implementation
currently reported in the same way for comparison.

Accelerating AES in JavaScript with WebGL 285

We launched the experiment in different browsers on different platforms in
order to have a comprehensive view of the implementation. We used two most
popular browsers of their latest version: Chrome(27.0) and Firefox(23.0). The
machines used belongs to different platforms: desktop, laptop and pad. The
major configuration are summarized in Table 1 and indexed by characters.

 0

 20

 40

 60

 80

 100

 120

16 256 4K 64K 1M

T
hr

ou
gh

pu
t(

M
B

/s
)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

 0

 10

 20

 30

 40

 50

 60

 70

16 256 4K 64K 1M

T
hr

ou
gh

pu
t(

M
B

/s
)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

16 256 4K 64K 1M
T

hr
ou

gh
pu

t(
M

B
/s

)

Framebuffer Size(Bytes)

Chrome WebGL
Firefox WebGL
Chrome SJCL
Firefox SJCL

Fig. 3. The throughput of different approaches with different packet size

The result of experiment is shown in Figure 3. We found that the WebGL
approach ran well on various operating systems and hardware platforms. The
speed of pure JavaScript AES implementation is almost stable regardless of
the packet size, while the speed of WebGL AES implementation continuously
increased as the packet size increased. From the figure we can see that when the
packet size is small, the WebGL version AES ran slowly, but when the packet
size became larger (more than 16K), the WebGL version AES ran much faster
than pure JavaScript version AES on all platforms. And when the packet size
is large enough(greater or equal than 1MB), the speed of WebGL version AES
could be more than 10 times of pure JavaScript version AES. Considering the
size of pictures, songs or other multimedia files users daily use could all be several
MBs or even dozens of MBs, the WebGL version AES could surely exert its full
power in modern Web applications.

7 Conclusion

In this paper, we proposed a new approach to accelerate AES in JavaScript
via WebGL. Our primary contribution is demonstrating the feasibility of using
GPU via WebGL to provide much better performance than pure JavaScript since
JavaScript is an untyped language and it doesn’t support parallel computing.

286 Y. Yang et al.

Our approach was more than ten times faster than pure JavaScript implementa-
tion of AES. The performance is sufficient for most cryptographic operations in
web applications to provide a smooth user interface. This also demonstrated that
legacy techniques such as using graphics API for GPGPU can be very powerful
in certain runtime environment.

Acknowledgement. I would like to thank my supervisor, Researcher Zhi Guan
and Professor Zhong Chen for their excellent guidance throughout the writing
of the paper.

References

1. Chandra, R., Gupta, P., Zeldovich, N.: Separating web applications from user data
storage with BSTORE. MIT web domain (June 2010)

2. NIST. Specification for the Advanced Encryption Standard (AES). Technical Re-
port Federal Information Processing Standards (FIPS) 197, National Institute of
Standards and Technology (November 2001)

3. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: A sandbox for portable, untrusted x86
native code. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 79–93
(2009)

4. Stark, E., Hamburg, M., Boneh, D.: Symmetric Cryptography in Javascript. In:
ACSAC, pp. 373–381. IEEE Computer Society (2009)

5. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: cryptographics: Secret key
cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

6. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-
modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

7. Fleissner, S.: GPU-accelerated montgomery exponentiation. In: Shi, Y., van Al-
bada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487,
pp. 213–220. Springer, Heidelberg (2007)

8. Moss, A., Page, D., Smart, N.P.: Toward acceleration of RSA using 3D graph-
ics hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

9. C. CUDA. Programming guide. NVIDIA Corporation (July 2012)
10. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanra-

han, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23(3), 777–786 (2004)

11. Munshi, A. (ed.): Khronos OpenCL Working Group. The opencl specification
(2008)

12. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: ICSPC 2007, pp. 65–68 (November 2007)

13. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric
Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 79–99. Springer, Heidelberg (2008)

Accelerating AES in JavaScript with WebGL 287

14. Zhang, Y., Xue, C.J., Wong, D.S., Mamoulis, N., Yiu, S.M.: Acceleration of com-
posite order bilinear pairing on graphics hardware. In: Chim, T.W., Yuen, T.H.
(eds.) ICICS 2012. LNCS, vol. 7618, pp. 341–348. Springer, Heidelberg (2012)

15. Marrin, C.: Webgl specification. Khronos WebGL Working Group (2011)
16. Daemen, J., Rijmen, V.: The design of Rijndael: AES–the Advanced Encryption

Standard. Springer, Berlin (2002)
17. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-

modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

Analysis of Multiple Checkpoints in Non-perfect

and Perfect Rainbow Tradeoff Revisited�

Wenhao Wang1,2 and Dongdai Lin1

1 State Key Laboratory Of Information Security,
Institute of Information Engineering, CAS, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
{wangwenhao,ddlin}@iie.ac.cn

Abstract. Time memory tradeoff (TMTO) attack has proven to be an
effective cryptanalysis method against block ciphers and stream ciphers.
Since it was first proposed in 1980s, many new ideas have come out to re-
duce the false alarms during the online phase, among which rainbow table
introduced by Oechslin and perfect table introduced by Borst et al. are
notable landmarks. Avoine et al. introduced the checkpoints technique
to detect false alarms using little additional memory without regener-
ating the pre-computed chain. In this paper, we revisit the analysis of
multiple checkpoints in rainbow tradeoff. For non-perfect table we give a
new sight to the computation of the expected decreasing number of chain
regenerations at the k-th iteration. This helps to better understand the
real nature of false alarms and leads us to the same results as the work
of Jung Woo Kim et al. at Indocrypt 2012. For perfect rainbow tradeoff
we give the first way to find optimal positions of multiple checkpoints.
The results are better than previous work of Avoine et al., which only
applies when the perfect table has the maximum number of chains. All
the results are verified through meticulous experiments.

Keywords: time memory tradeoff, rainbow tradeoff, multiple
checkpoints.

1 Introduction

Inverting one-way functions is one of the fundamental problems in cryptography.
Much of cryptanalysis of block ciphers and stream ciphers can be expressed as
the process of computation of pre-images or inversion of one-way functions. A
cryptanalytic time-memory tradeoff (TMTO) is a technique to quickly invert
generic one-way functions with the help of pre-computation. After it was first
introduced by Hellman to perform an attack over DES [7] TMTO has been
applied to many cryptosystems, for example against the GSM algorithm A5/1

� Supported by the National 973 Program of China under Grant 2011CB302400, the
National Natural Science Foundation of China under Grants 10971246, 60970152,
and 61173134, and the Strategic Priority Research Program of the Chinese Academy
of Sciences under grant XDA06010701.

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 288–301, 2013.
c© Springer International Publishing Switzerland 2013

Analysis of Multiple Checkpoints 289

[5], LILI-128 [16] and Windows LM Hash [15]. There are also ongoing research
projects dealing with the implementations, such as the RainbowCrack Project
[1] and the TMTO-based A5/1 Cracking Project [14] etc..

Two common ways to find a pre-image under a one-way function are exhaus-
tive search and table lookup. In an exhaustive search method, one simply tries
all possible keys in order to find the pre-image. With the table lookup method,
one precomputes a table containing all the values of the key and then perform
a search to find a pre-image. Hellman’s TMTO attack achieves a middle ground
between the exhaustive key search and the massive pre-computation of all possi-
ble ciphertexts for a given plaintext. During the pre-computation phase the at-
tacker precomputes sufficiently many chains and only stores the starting points
and ending points in a table. This concise table is used to find the pre-image in
time shorter than an exhaustive search during an online phase.

A major drawback of Hellman’s tradeoff attack is that it is possible to cause
false alarms, when the online chain merges with pre-computed chains. False
alarms significantly decrease the tradeoff efficiency and can increase more than
50% of the cryptanalysis time. After the inspiring work of Hellman, a lot of
work has been done to reduce the cost of false alarms. Perfect table, suggested by
Borst, Preneel, and Vandewalle in 1998, cleans the tables by discarding the merg-
ing and cycling pre-computed chains [6]. Rainbow table, introduced by Oechslin
et al. in 2003, uses a different reduction function for each column of a table [15]
and two different chains can merge only if they have the same key at the same
position of the chain.

In 2005, Avoine, Junod and Oechslin [3] proposed using checkpoints to rule
out false alarms. Additional information on some intermediate points of a chain
are stored in the pre-computed tables, besides the starting points and ending
points. During the online phase the attacker regenerates the pre-computed chain
only when a match of both the ending point and the checkpoints is found. Using
the technique, the cost of false alarms is reduced with a minute amount of
memory. In [4] Avoine et al. presented an analysis of the effects of checkpoints
in perfect rainbow tables when the table contains the MAXIMUM number of
chains. And they did not clearly figure out the way to obtain optimal positions
of multiple checkpoints in these tables. In 2010, Jin Hong et al. established a
theoretical framework of analyzing false alarms [8] and gave a fair comparison of
existing tradeoff algorithms [10]. Related works include the analysis of parallel
distinguished point tradeoff [9], non-perfect table fuzzy rainbow tradeoff [11],
perfect rainbow tradeoff [13] etc.. Analysis of one checkpoint for a single non-
perfect rainbow table was done also in [8]. Analysis of multiple checkpoints for
a non-perfect rainbow table was performed in [12].

In this paper we revisit the analysis of multiple checkpoints in rainbow trade-
off. For non-perfect rainbow tradeoff, when computing the expected decreasing
number of false alarms at the k-th iteration, [12] used the approximation of
z0 ≈ m(1 + k) and zu ≈ m(1 + k − cu). They applied the same reasoning
approach as [8] to analyze false alarm costs, by simply ignoring collisions and
treating the pre-computed chains as independent chains. However this might not

290 W. Wang and D. Lin

be obvious1. We adopt a natural approach to compute the expected chains to
be regenerated, with random selection of points at the k-th iteration. This leads
us to identical results but explains the real nature of false alarms. For perfect
rainbow tradeoff, considering that in most cases the perfect table has not the
maximum number of chains due to the limit of pre-computation, we give the
first way to find optimal positions of multiple checkpoints, even when the table
is not maximum. All our results are verified through meticulous experiments.

The rest of the paper is organized as follows. We first introduce the theo-
retical framework of pre-image under function iteration and fix some notations
in Section 2. In Section 3, we present our work on checkpoints for non-perfect
rainbow tradeoff. In Section 4, we present our work on checkpoints for perfect
rainbow tradeoff. In Section 5, we conclude the paper.

2 Theoretical Background

In this section we give some definitions that are used in the remainder of the
paper.

2.1 Time Memory Tradeoff Attack

Let F : N → N be the one-way function to be inverted. In an off-line phase,
we build m Hellman chains of length t with the form demonstrated in Fig. 1.
A nice property of a chain is that we do not need to store all the elements in
it. By knowing the starting point, we can recalculate the successive elements
in the chain. So we just store the pairs of starting points and ending points
{(SPj , EPj)}mj=1 in one table. Suppose l tables are constructed. A different re-
duction function ri is used in the i-th table, and we denote ri(F (x)) by Fi(x).
In the online phase, the goal is to find the unknown key by making use of the
pre-computed tables. The attacker is given y0 = F (x0) and has to find x0. To
search for x0 in the i-th table, recursively he applies Fi to ri(y0) and check
if some Yk = (Fi)

k(x0) appears as an ending point in the table. Whenever
a match Yk = EPj is found, he regenerates the corresponding pre-computed
chain by computing x = Xj,t−k+1 = (Fi)

t−k(SPj). There is a large chance that
(Fi)(x) = Y1, i.e. F (x) = F (x0).

Rainbow table uses a different reduction function for each column of a table.
A rainbow chain is of the form

SPj = Xj,1
F−→ Yj,1

r1−→ Xj,2
F−→ Yj,2

r2−→ · · · F−→ Yj,t
rt−→ EPj ,

and two different chains can merge only if they have the same key at the same
position of the chain.

Checkpoint is a technique for resolving false alarms (false alarms occur if an
online chain merges with pre-computed chains) without regenerating the chain,

1 Note that the table becomes a perfect table if we treat the pre-computed chains as
independent. And a perfect table is meant to cause less false alarms than a non-
perfect table.

Analysis of Multiple Checkpoints 291

SP1 = X1,1
F−→ Y1,1

r−→ X1,2
F−→ Y1,2

r−→ · · · F−→ Y1,t
r−→ EP1

...
...

SPj = Xj,1
F−→ Yj,1

r−→ Xj,2
F−→ Yj,2

r−→ · · · F−→ Yj,t
r−→ EPj

...
...

SPm = Xm,1
F−→ Ym,1

r−→ Xm,2
F−→ Ym,2

r−→ · · · F−→ Ym,t
r−→ EPm

Fig. 1. Structure of a Hellman table

applicable to both Hellman and rainbow tradeoffs. Besides the starting points
and ending points, additional information on some intermediate points are also
stored. During the online phase the attacker regenerates the pre-computed chain
only when a match of both the ending point and the checkpoints is found. Sup-
pose a 1-bit information bj about the intermediate point Xj,t−c is extracted by
a function G, i.e. bj = G(Xj,t−c). During the online phase at the k-th iteration
if an alarm is encountered and k ≥ c, then we have

Pr{bj = G(Yk−c)|Xj,t−c �= Yk−c} ≈
1

2
.

Hence the comparison of checkpoint information can be used to filter out false
alarms without regenerating the pre-computed chain.

2.2 Pre-image under Function Iteration

In this subsection we present previous results concerning the size of a pre-image
set under an iteration of functions. The framework was established in [8] to
analyze the cost of false alarms in Hellman tradeoff and rainbow tradeoff.

We consider a random one-way function F : N → N , where N is a set of size
N . Note that in Hellman tradeoff and rainbow tradeoff, the one-way function
F is followed by a reduction function. Considering F as a random function, the
following results are applicable to both Hellman tradeoff and rainbow tradeoff.
We denote the k-times iteration of F by F k = F ◦ · · · ◦F . It is well known that if
m0 distinct random inputs are subject to F k, the expected image size denoted
by mk can be approximated by

mk ≈
N

N/m0 + k/2
. (1)

Definition 1. An i-node with respect to a mapping is an element of the range
space with exactly i-many pre-images. For each non-negative integers i and k,
let

Rk,i(F) = {y ∈ N|y is an i-node under F k},
Dk,i(F) = {x ∈ N|F k(x) ∈ Rk,i(F)}

292 W. Wang and D. Lin

denote the set of i-nodes and pre-images of i-nodes, associated to the mapping
F k. An element of Rk,i(F) will be referred to as an (F k, i)-node and the proba-
bility of a random point from the range space N to be an (F k, i)-node is

pk,i =
|Rk,i|
N

.

For each non-negative integer k, fix a notation

Pk(x) =

∞∑
i=0

pk,ix
i,

for the formal power series relating to (Fk, i)-node ratios.

A closed form approximation for function Pk(x) is given in [8].

Theorem 1.

Pk(x) = 1− 2(1− x)

2 + k(1 − x)
.

The number of points that are F k-equivalent to a set of points is formulated
by the following theorem, given the image space size. The theorem is frequently
used by our later analysis and will not be explicitly specified.

Theorem 2. Let D0 ⊂ N be a set of randomly chosen points. If the number of
distinct elements in Dt = F t(D0) is mt, then the pre-image of Dt under F k is
expected to be of size

mt(1 + k)(1 − mtk

4N
).

3 Checkpoints for Non-perfect Rainbow Tradeoff

In this section, we analyze the expected number of chains to be regenerated
due to false alarms and the expected decreasing number of chain regenerations
by checkpoints in a single non-perfect rainbow table. Note that if an online
chain matches a common ending point of several pre-computed chains, then
all these chains will have to be regenerated for false alarm verification. In [12]
and [8], they compute the expected number of false alarms by simply ignoring
the collisions in pre-computed chains and treating the pre-computed chains as
independent chains. However the reasoning might not be obvious. We adopt a
natural approach to compute the expected number of chains to be regenerated at
the k-th iteration. This leads us to identical results but explains the real nature
of false alarms.

We consider a non-perfect rainbow table constructed from m0 = m distinct
starting points RT0 ⊂ N . Denote the chain length by t. For 1 ≤ k ≤ t, denote
the number of distinct elements in RTk = F k(RT0) by mk, then we have mk ≈

N
N/m+k/2 . We first study the expected number of pre-images of F k(x) under F t

that belongs to RT0, with a random selection of x ∈ N at the k-th iteration.

Analysis of Multiple Checkpoints 293

0 t-k t

x

Definition 2. If we randomly choose a point x ∈ N and assume F k(x) ∈ RTt,
then denote the number of pre-images of F k(x) under F k that belongs to RTt−k

by C(k, k), and denote the number of pre-images of F k(x) under F t that belongs
to RT0 by C(k, t).

Proposition 1.

pk,i =

⎧⎪⎪⎨⎪⎪⎩
k

k + 2
i = 0

4

k(k + 2)
· (1− 2

k + 2
)i i ≥ 1

.

Proof. Recall from Theorem 1 that

Pk(x) =
∞∑
i=0

pk,ix
i = 1− 2(1− x)

2 + k(1− x)
.

For i ≥ 1,

P(i)
k (x) = 4 · i! · ki−1 · (2 + k(1− x))−(i+1).

According to the Maclaurin Series Expansion, we have

pk,i =
P(i)
k (0)

i!
=

4

k(k + 2)
· (1− 2

k + 2
)i,

if i ≥ 1. When i = 0, pk,i = Pk(0) =
k

k+2
. ��

Proposition 2.

C(k, k) =
(mt−k·k

N + 2)2

mt−k·k
N + 4

, C(k, t) =
(mt−k·k

N + 2)2

mt−k·k
N + 4

· m

mt−k
.

Proof. Randomly choose a point x ∈ N , denote by random variable A the num-
ber of pre-images of F k(x) under F k. Since pk,i is the proportion of i-nodes in the
domain space and every i-node has i pre-images under F k, then the probability
of a random x to produce an (F k, i)-node is

Pr{A = i} = Pr{F k(x) is an i-node under F k} = i · pk,i.

294 W. Wang and D. Lin

Denote by random variable B the number of pre-images of F k(x) under F k that
belongs to RTt−k. Then for j ≤ i, we have

Pr{B = j|A = i} = Cj
i (1−

mt−k

N
)i−j(

mt−k

N
)j ,

P r{B �= 0|A = i} = 1− (1− mt−k

N
)i.

By the law of total probability, for j ≥ 1 we have

Pr{B = j} =
N∑
i=j

Pr{B = j|A = i} · Pr{A = i}

=
N∑
i=j

Cj
i (1−

mt−k

N
)i−j(

mt−k

N
)j · 4

k(k + 2)
· i(1− 2

k + 2
)i,

P r{B �= 0} =
N∑
i=1

Pr{B �= 0|A = i} · Pr{A = i}

=

N∑
i=1

[1− (1− mt−k

N
)i] · 4

k(k + 2)
· i(1− 2

k + 2
)i.

Thus

C(k, k) =
m∑
j=1

j · Pr{B = j|B �= 0}

=

m∑
j=1

j ·
∑N

i=j C
j
i (1 −

mt−k

N)i−j(mt−k

N)j · 4
k(k+2)

· i(1− 2
k+2

)i∑N
i=1[1− (1 − mt−k

N)i] · 4
k(k+2)

· i(1− 2
k+2

)i

=

∑m
j=1 j ·

∑N
i=j C

j
i (1−

mt−k

N)i−j(mt−k

N)j · 4
k(k+2)

· i(1− 2
k+2

)i∑N
i=1[1− (1− mt−k

N)i] · 4
k(k+2)

· i(1− 2
k+2

)i

=

∑N
i=1

∑i
j=1 j · C

j
i (1 −

mt−k

N)i−j(
mt−k

N)j · 4
k(k+2)

· i(1− 2
k+2

)i∑N
i=1[1− (1− mt−k

N)i] · 4
k(k+2)

· i(1− 2
k+2

)i

=

∑N
i=1 i ·

mt−k

N · 4
k(k+2)

· i(1− 2
k+2

)i∑N
i=1[1− (1− mt−k

N)i] · 4
k(k+2)

· i(1− 2
k+2

)i

≈
mt−k

N · t3
∫∞
0

x2e−
2t

k+2x dx

t2
∫∞
0

x(1 − e−
mt−kt

N x) · e− 2t
k+2x dx

≈
(
mt−k·k

N + 2)2

mt−k·k
N + 4

.

Analysis of Multiple Checkpoints 295

Given a random x ∈ RTt−k, the expected number of pre-images of x under
F t−k that belongs to RT0 is m0

mt−k
, then we have

C(k, t) = C(k, k) · m0

mt−k
=

(
mt−k·k

N + 2)2

mt−k·k
N + 4

· m

mt−k
.

��
Non-perfect Rainbow Tradeoff without Checkpoints. For a non-perfect
table without checkpoints, at the k-th iteration during the online phase, the
probability of an alarm is Pr{F k(x) ∈ RTt} = 1

N {mt(1 + k)(1 − mtk
4N)}. The

expected number of chains to be regenerated for every alarm is C(k, t). Then
the expected number of chains to be regenerated at the k-th iteration is

C(k, t) · 1

N
{mt(1 + k)(1 − mtk

4N
)} ≈ m(1 + k)

N
. (2)

Thus the expected number of chains to be regenerated due to false alarms at the
k-th iteration is 1

N (m(1 + k)−m). It is exactly what the authors claimed in [8].

Non-perfect Rainbow Tradeoff with n Checkpoints. Let c1, c2, · · · , cn
(c1 < c2 < · · · < cn) be the positions of n 1-bit checkpoints. That is the n
checkpoints are located at the (t − cj)-th columns for j = 1, · · · , n. Let c0 = 0
and cn+1 = t.

We compute the expected number of chains to be regenerated at the k-th
iteration such that cj < k ≤ cj+1 (j = 1, · · · , n). Given a random x ∈ N , we
have

Pr{F k−cj (x) ∈ RTt−cj} =
mt−cj (1 + k − cj)

N
[1−

mt−cj (k − cj)

4N
].

In such a case, an alarm always occurs and the expected number of chains to be
regenerated is

Pr{F k−cj (x) ∈ RTt−cj} · C(k − cj , t− cj) =
m(1 + k − cj)

N
.

For 0 ≤ u ≤ j − 1,

Pr{F k−cu(x) ∈ RTt−cu} =
mt−cu(1 + k − cu)

N
[1− mt−cu(k − cu)

4N
].

Then the expected number of pre-computed chains that merge with an online
chain before the (t− cu)-th column is

Pr{F k−cu(x) ∈ RTt−cu} · C(k − cu, t− cu) =
m(1 + k − cu)

N
.

Thus the expected number of pre-computed chains that merge with an online
chain between the (t− cu+1)-th column and the (t− cu)-th column is

m(1 + k − cu)

N
− m(1 + k − cu+1)

N
.

296 W. Wang and D. Lin

In such a case, an alarm occurs with probability 1/2j−u. Therefore the expected
number of chains to be regenerated at the k-th iteration such that cj < k ≤ cj+1

(j = 1, · · · , n) is

m(1 + k − cj)

N
+

j−1∑
u=0

1

2j−u
[
m(1 + k − cu)

N
− m(1 + k − cu+1)

N
].

Combined with Equation (2), we get the expected decreasing number of chains
to be regenerated due to checkpoints. This simplifies to the same results as
in [12].

Simulation Results. Our one-way function is built from a reduced version
of MD5 hash function with N = 224. We built our pre-computed table from
m = 216 different starting point and the chain length is t = 300. Table 1 shows
that Proposition 2 agrees well with the experiment.

Table 1. Verification of Proposition 2

k
C(k, t)

Theory Experiment

50 1.6363 1.6333

100 1.6900 1.6916

150 1.7473 1.7230

200 1.8087 1.8199

250 1.8745 1.8661

300 1.9453 1.9507

4 Checkpoints for Perfect Rainbow Tradeoff

Perfect rainbow table is constructed by eliminating merged chains and thus re-
duces the cost of false alarms. Most rainbow tables available online are perfected
before they are released to the public. It requires much more pre-computation
for the generation of a perfect table, because chains with duplicate endpoints
are removed.

We consider a perfect rainbow created with m0 starting points and denote the
chain length by t. Then we expect to collect m = N

N/m0+t/2 non-merging chains.

Let r = m0t
N be the pre-computation coefficient. When a perfect table is created

with m0 = N starting point, we have m = N
N/m0+t/2 = 2N

t+2
, and the table is

referred to as a maximal perfect rainbow table. Let r̄ = mt
N , then r̄ ≤ 2t

t+2
≈ 2.

Table 2 shows that building a maximal perfect rainbow table (with r̄ close to 2)
is very costly and is seldom used in practice. An analysis of multiple checkpoints
in maximal perfect tables was given in [4]. In this section, we give the first way

Analysis of Multiple Checkpoints 297

Table 2. Relations in a perfect rainbow table

r r̄ success rate r r̄ success rate

1.0607 0.6931 50% 1.6911 0.9163 60%

3.0251 1.2040 70% 4.5178 1.3863 75%

8.2407 1.6094 80% 18.4363 1.8971 85%

to find optimal positions of multiple checkpoints even when the perfect table is
not maximum.

Suppose n checkpoints are located at the (t− cj)-th columns for j = 1, · · · , n
(c1 < c2 < · · · < cn). Let c0 = 0 and cn+1 = t. In a perfect table for every false
alarm only one chain need to be regenerated, so we only need to compute the
probability of false alarms at the k-th iteration, for cj < k ≤ cj+1 (j = 1, · · · , n).
Given a random x ∈ N , we have

Pr{F k−cj (x) ∈ RTt−cj} =
m(1 + k − cj)

N
[1− m(k − cj)

4N
].

In such a case, an alarm always occurs. For 0 ≤ u ≤ j − 1,

Pr{F k−cu(x) ∈ RTt−cu} =
m(1 + k − cu)

N
[1− m(k − cu)

4N
].

Thus the probability of a merge of the online chain with pre-computed chain
between the (t− cu+1)-th column and the (t− cu)-th column is

m(1 + k − cu)

N
[1− m(k − cu)

4N
]− m(1 + k − cu+1)

N
[1− m(k − cu+1)

4N
].

In such a case, an alarm occurs with probability 1/2j−u. Also the expected
number of alarms at the k-th iteration without checkpoints is

Pr{F k(x) ∈ RTt} =
m(1 + k)

N
(1− mk

4N
).

Therefore the expected decreasing number of false alarms at the k-th iteration
such that cj < k ≤ cj+1 (j = 1, · · · , n) is

D(k, j) =
m(1 + k)

N
(1− mk

4N
)−

{
m(1 + k − cj)

N
[1− m(k − cj)

4N
]

+

j−1∑
u=0

1

2j−u

(
m(1 + k − cu)

N
[1− m(k − cu)

4N
]− m(1 + k − cu+1)

N
[1− m(k − cu+1)

4N
]

)}

=
1

N
{(1− 1

2j
) ·m(1 + k)(1− mk

4N
)−

j−1∑
u=0

1

2j−u
m(1 + k − cu+1)(1−

m(k − cu+1)

4N
)}.

The k-th iteration of the online phase is executed with probability (1 − m
N)k

and every verification of a false alarm requires (t− k + 1) iterations of F . This
leads us to the following theorem.

298 W. Wang and D. Lin

Theorem 3. The decreasing number of invocations of F due to n checkpoints
(c1 < c2 < · · · < cn) is

S =

n∑
j=1

{
∑

cj<k≤cj+1

(t− k + 1) ·D(k, j) · (1− m

N
)k}. (3)

Simplification. We rewrite Equation (3) to the sum of 4 parts.

S.1 =
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{(1− 1

2j
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k},

S.2 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
·
j−1∑
u=0

1

2j−u
m(1 + k)(1− mk

4N
) · (1− m

N
)k},

S.3 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m · (m(2k + 1)

4N
− 1) ·

j−1∑
u=0

cu+1

2j−u
· (1− m

N
)k}},

S.4 =

n∑
j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m

2

4N
·
j−1∑
u=0

c2u+1

2j−u
· (1− m

N
)k}}.

Computation of S.2:

S.2 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
·
j−1∑
u=0

1

2j−u
m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
· (

j−1∑
u=0

1

2j−u
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
· (1− 1

2j
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −S.1.

Computation of S.3:

S.3 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m · (m(2k + 1)

4N
− 1) ·

j−1∑
u=0

cu+1

2j−u
· (1− m

N
)k}}

≈ −mt2

N
·

n∑
j=1

{[
∑

cj<k≤cj+1

(1− k

t
) · (mt

2N
· k
t
− 1)e−

mt
N

· k
t] · 1

t
·
j−1∑
u=0

cu+1

2j−u
}

≈ −mt2

N

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N (

mt

2N
· x− 1) dx ·

j−1∑
u=0

cu+1

2j−u
}.

Analysis of Multiple Checkpoints 299

Computation of S.4:

S.4 =

n∑
j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m

2

4N
·
j−1∑
u=0

c2u+1

2j−u
· (1 − m

N
)k}}

=
m2t2

4N2
·

n∑
j=1

{[
∑

cj<k≤cj+1

(1− k

t
)e−

mt
N · kt] · 1

t
·
j−1∑
u=0

c2u+1

2j−u
}

=
m2t2

4N2
·

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N dx ·

j−1∑
u=0

c2u+1

2j−u
}.

Thus Equation (3) simplifies to

S = −mt2

N

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N (

mt

2N
· x− 1) dx ·

j−1∑
u=0

cu+1

2j−u
}

+
m2t2

4N2
·

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N dx ·

j−1∑
u=0

c2u+1

2j−u
}.

Simulation Results. We experiment with N = 224, m = 65536, t = 300.
Table 3 shows the experiment results with 3 checkpoints, located at the 177-th,
218-th and 251-th columns. We used Maple to obtain these optimal positions.
The data are averaged over 10000 random inversion targets. The success proba-
bility (69.5%) is also close to the theoretical expectation (69.02%).

Table 3. Experiment for 3 checkpoints

without checkpoint with 3 checkpoints
Theory Experiment Theory Experiment

#total operations 30255 30154 26687 26540

#operation for FA 8812 8833 5265 5219

#false alarms 69.4235 69.4529 42.8058 42.0807

5 Conclusion

Checkpoint is a useful technique to quickly rule out false alarms with a little
additional memory. While the positions of checkpoints significantly affect the
tradeoff efficiency, one of the key issue is to locate the optimal setting of multiple
checkpoints. In this paper, we revisited the analysis of multiple checkpoints in
rainbow tradeoff. For non-perfect table we gave a new sight to the computation of
the expected decreasing number of false alarms at the k-th iteration. This helps
to better understand the real nature of false alarms. For perfect rainbow table,
we obtained the first full analysis applicable even if the perfect rainbow table is

300 W. Wang and D. Lin

not maximum. Considering in practice the table available are mostly perfect and
not maximum, this part of our work is of value to the ongoing research projects,
e.g. the RainbowCrack Project. Through experiment we saw a drastic decrease
of cost due to false alarms, with only little additional memory.

References

1. Rainbowcrack project, http://project-rainbowcrack.com/
2. Avoine, G., Bourgeois, A., Carpent, X.: Discarding the endpoints makes the crypt-

analytic time-memory trade-offs even faster
3. Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: False alarm detection

using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183–196. Springer, Heidelberg (2005)

4. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Transactions on Information and
System Security (TISSEC) 11(4), 17 (2008)

5. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

6. Borst, J., Preneel, B., Vandewalle, J.: On the time-memory tradeoff between ex-
haustive key search and table precomputation. In: Symposium on Information The-
ory in the Benelux, pp. 111–118. Citeseer (1998)

7. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), 401–406 (1980)

8. Hong, J.: The cost of false alarms in hellman and rainbow tradeoffs. Designs, Codes
and Cryptography 57(3), 293–327 (2010)

9. Hong, J., Lee, G.W., Ma, D.: Analysis of the parallel distinguished point tradeoff.
In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 161–180. Springer, Heidelberg (2011)

10. Hong, J., Moon, S.: A comparison of cryptanalytic tradeoff algorithms. Journal of
Cryptology, 1–79 (2010)

11. Kim, B.-I., Hong, J.: Analysis of the non-perfect table fuzzy rainbow tradeoff.
In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 347–362. Springer,
Heidelberg (2013)

12. Kim, J.W., Seo, J., Hong, J., Park, K., Kim, S.-R.: High-speed parallel implemen-
tations of the rainbow method in a heterogeneous system. In: Galbraith, S., Nandi,
M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 303–316. Springer, Heidelberg
(2012)

13. Lee, G.W., Hong, J.: A comparison of perfect table cryptanalytic tradeoff algo-
rithms. Technical report, Cryptology ePrint Archive, Report 2012/540 (2012)

14. Nohl, K.: Attacking phone privacy. BlackHat 2010 Lecture Notes (2010)
15. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)
16. Saarinen, M.-J.O.: A time-memory tradeoff attack against LILI-128. In: Daemen,

J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 231–236. Springer, Heidelberg
(2002)

http://project-rainbowcrack.com/

Analysis of Multiple Checkpoints 301

A When Multiple Tables Are Used

It is easy to translate the results to the case when l tables are processed in
parallel. We just give the results and omit the proof.

Corollary 1. For non-perfect rainbow tables with the parameters m, t, and l,
where l is number of tables. Given n checkpoints c1 < c2 < · · · < cn, the expected
number of f invocations that can be removed through checkpoints is

l
∑
j=1

n

⎧⎨⎩ ∑
cj<k≤cj+1

(t− k + 1) · m
N

j−1∑
u=0

(cu+1

2j−u

)
·
∏

(1 − mt−i

N
)l

⎫⎬⎭ .

Corollary 2. For perfect rainbow tables with the parameters m, t, and l, where
l is number of tables. Given n checkpoints c1 < c2 < · · · < cn, the expected
number of f invocations that can be removed through checkpoints is

−mt2l

N

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtlx
N (

mt

2N
· x− 1) dx ·

j−1∑
u=0

cu+1

2j−u
}

+
m2t2l

4N2
·

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtlx
N dx ·

j−1∑
u=0

c2u+1

2j−u
}.

B Maple Code for Optimal Checkpoints in Perfect
Rainbow Tradeoff

> with(Optimization);
> N := 2^24;
> m := 65536;
> t := 300;
> l := 3;
> n := 4;
> c := array(1 .. n);
> S := {}:
> for i from 1 to n-1 do
> S := S union {c[i] <= c[i+1]}
> end do:
> S := S union {c[n] <= t}:
> eval(
> -m^2*l*t^3/N/N/2*sum(int((1-x)*x*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum(c[u+1]*2^(u-j),u=0..j-1),
> j=1..n-1)+m*l*t^2/N*sum(int((1-x)*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum(c[u+1]*2^(u-j),u=0..j-1),
> j=1..n-1)+m^2*t^2*l/4/N/N*sum(int((1-x)*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum((c[u+1])^2*2^(u-j),u=0..j-1),
> j=1..n-1)):
> Maximize(%,S, assume=nonnegative);

Efficient Implementation of NIST-Compliant

Elliptic Curve Cryptography for Sensor Nodes

Zhe Liu1, Hwajeong Seo2, Johann Großschädl1, and Howon Kim2

1 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

2 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,howonkim}@pusan.ac.kr

Abstract. In this paper, we present a highly-optimized implementation
of standards-compliant Elliptic Curve Cryptography (ECC) for wireless
sensor nodes and similar devices featuring an 8-bit AVR processor. The
field arithmetic is written in Assembly language and optimized for the
192-bit NIST-specified prime p = 2192 − 264 − 1, while the group arith-
metic (i.e. point addition and doubling) is programmed in ANSI C. One
of our contributions is a novel lazy doubling method for multi-precision
squaring which provides better performance than any of the previously-
proposed squaring techniques. Based on our highly optimized arithmetic
library for the 192-bit NIST prime, we achieve record-setting execution
times for scalar multiplication (with both fixed and arbitrary points) as
well as multiple scalar multiplication. Experimental results, obtained on
an AVR ATmega128 processor, show that the two scalar multiplications
of ephemeral Elliptic Curve Diffie-Hellman (ECDH) key exchange can
be executed in 1.75 s altogether (at a clock frequency of 7.37 MHz) and
consume an energy of some 42 mJ. The generation and verification of an
ECDSA signature requires roughly 1.91 s and costs 46 mJ at the same
clock frequency. Our results significantly improve the state-of-the-art in
ECDH and ECDSA computation on the P-192 curve, outperforming the
previous best implementations in the literature by a factor of 1.35 and
2.33, respectively. We also protected the field arithmetic and algorithms
for scalar multiplication against side-channel attacks, especially Simple
Power Analysis (SPA).

1 Introduction

Wireless Sensor Networks (WSNs) are a key technology of the 21st century, en-
abling new applications in such domains as infrastructure protection, industrial
automation and health monitoring, to name a few [1]. A WSN can be defined as
a network composed of autonomous, battery-powered computing devices (called
nodes) with sensing and wireless networking capabilities. The sensor nodes are

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 302–317, 2013.
c© Springer International Publishing Switzerland 2013

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 303

deployed in a certain environment or area of interest to monitor a phenomenon
or condition such as temperature, humidity, luminosity, etc. They cooperatively
collect and aggregate sensor readings and send them to a central unit (the base
station) for further processing and decision making. Unfortunately, WSNs face
all security threats inherent in any wireless network, plus additional ones that
are hard to protect against [24]. Since WSNs are often deployed in unattended
areas, an attacker may be able to access individual nodes and perform various
kinds of physical attacks, e.g. side-channel cryptanalysis [10]. The integration
of countermeasures against such attacks is a nontrivial task due to the resource
constraints (in particular limited energy) of battery-powered sensor nodes like
the MICAz mote [8]. These constraints make a good case for using lightweight
cryptosystems that can be effectively protected against side-channel attacks. In
the context of public-key cryptography, elliptic-curve based algorithms such as
ECDH and ECDSA are known to meet these requirements [15].

Energy is the most precious resource of a wireless sensor node. The MICAz
mote [8], for example, is powered by two 1.5 V AA batteries, which can not be
easily recharged or replaced after deployment. In general, the energy consump-
tion of cryptographic software depends primarily on the execution time of the
algorithm and the average power dissipation of the processor it is executed on
[11]. However, a cryptographic engineer can only influence the former since the
choice of the processor is normally not under his control. The overall execution
time of most elliptic curve cryptosystems is dominated by the time needed to
perform a scalar multiplication, which, in turn, depends on a number of factors
such as the order of the elliptic-curve group, the actual implementation of the
point arithmetic, and the efficiency of certain operations (e.g. multiplication) in
the underlying finite field [15]. Another important aspect is the concrete form
of the elliptic curve; for example, Montgomery curves [25] or Twisted Edwards
curves [16] allow for more efficient point addition/doubling than conventional
Weierstraß curves. Unfortunately, these special curve shapes are not standard-
ized, which prevents their use in commercial applications that need to undergo
a certification process. On the other hand, curves specified by standards bodies
like the NIST facilitate inter-operability and maximize access to resources and
services. Therefore, we decided to adopt the NIST-recommended elliptic curve
P-192 from [26] for our implementation.

Elliptic Curve Cryptography (ECC) has been exhaustively researched in the
past 25 years and is nowadays considered an excellent option for the implemen-
tation of key exchange and digital signatures. Virtually all ECC cryptosystems
of practical importance require to execute one (resp. two) of the following three
variants of scalar multiplication: (i) k · P where the point P is fixed and known
a priori (called fixed-point scalar multiplication), (ii) k · Q with Q being an ar-
bitrary point not known in advance, and (iii) k · P + l ·Q where P is fixed and
Q is an arbitrary point (called double scalar multiplication). For example, the
classical ECDH key exchange protocol consists of two stages; in the first stage
a key-pair is created, which comprises a fixed-point scalar multiplication by the
generator of an elliptic-curve group of prime order. The second stage involves

304 Z. Liu et al.

a scalar multiplication by a point that, unlike to the first stage, is neither fixed
nor known in advance. Something similar holds for ECDSA since the signature-
generation process entails a fixed-point scalar multiplication like the first stage
of ECDH. However, the verification of an ECDSA signature requires to execute
a double scalar multiplication of the form k · P + l ·Q, whereby one of the two
points is not known in advance.

1.1 Overview of Related Work and Motivation for Our Work

In the past ten years, a multitude of ECC implementations for 8-bit processors
appeared in the literature. The first milestone belongs to Gura et al [14], who
introduced highly-optimized ECC software for 8-bit AVR microcontrollers like
the ATmega128 [4] and reported an execution time of roughly 0.81 s and 1.24 s
for a 160-bit and 192-bit scalar multiplication, respectively (at a frequency of 8
MHz). They also found that the relative performance advantage of ECC versus
RSA increases with larger key sizes (i.e. larger groups). TinyECC [22] was one
of the first publicly available and, hence, widely used ECC libraries for wireless
sensor nodes. Most parts of TinyECC are implemented in nesC, but it contains
also numerous processor-specific optimizations (written in Assembly language)
for common 8-bit and 16-bit sensor platforms. It has been tested successfully on
MICA2/MICAz, TelosB/Tmote Sky, BSNV3, and the Imote2 node. TinyECC
supports the SECG-specified 128-bit and 160-bit domain parameters as well as
the NIST curve P-192 through dedicated field and curve arithmetic operations
[22]. There exist many other efficient ECC implementations for 8-bit AVR pro-
cessors, e.g. WM-ECC [33], Nano-ECC [31], MIRACL [6], NaCl [17] using prime
fields and RELIC [2] for binary fields.

All currently-existing prime-field based ECC libraries use either the hybrid
multiplication technique [14] (or a variant of it [6,22,33,31,20]) or employ the
Karatsuba method (e.g. NaCl [17]) for the performance-critical multi-precision
multiplication and squaring. Recently, the operand caching method [18] and its
successor, the consecutive operand caching method [28], were proposed as new
techniques to speed up multi-precision multiplication on embedded micro-con-
trollers, while Lee et al [21] developed several optimizations for multi-precision
squaring. However, these recent papers focussed exclusively on multi-precision
arithmetic and did not evaluate the impact of the described techniques on the
overall execution time of a scalar multiplication. It is, therefore, interesting to
combine these sophisticated multiplication and squaring techniques in order to
push the envelope of ECC on AVR micro-controllers. However, performance is
not our only goal since, as pointed out before, protection against side-channel
cryptanalysis (i.e. timing and SPA attacks) is similarly important. Most of the
previous ECC libraries, however, do not contain countermeasures; the only two
exceptions are the work from [20] and NaCl [17]. Lederer et al [20] implemented
ECDH for WSNs and protected the scalar multiplication against SPA attacks
by adopting highly “regular” variants of the comb and window method, respec-
tively. Their ECDH software uses a 192-bit prime field specified by the NIST as
underlying algebraic structure and needs 5.20 · 106 and 12.33 · 106 clock cycles

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 305

an ATmega128 processor to to compute a fixed-point and random-point scalar
multiplication, respectively. NaCl is a cryptographic library whose ECC part is
based on Curve-25519 [5] and, therefore, provides a (symmetric) security level
of about 128 bits. Unfortunately, a scalar multiplication on Curve-25519 needs
at least 22.95 · 106 clock cycles when executed on an ATmega128 micro-control-
ler (i.e. 3.11 s at a frequency of 7.37 MHz), which naturally raises the question
of how well Curve25519 is suited for battery-powered sensors nodes.

1.2 Our Contributions

We introduce a number of optimizations to improve both the performance and
security (i.e. resistance against timing and SPA attacks) of scalar multiplication
on the NIST curve P-192 when executed on an 8-bit AVR micro-controller. The
contribution of this paper is threefold.

– New approach for the efficient implementation of multi-precision squaring on
8-bit AVR micro-controllers. The novel “lazy doubling” method we describe
in this paper has been specially devised for multi-precision squaring. When
executed on the ATmega128, it needs merely 2, 064 clock cycles to square a
192-bit integer, which sets a new speed record for multi-precision squaring
on an 8-bit processor.

– Highly optimized arithmetic library for the NIST P-192 field. All operations
of our library (except inversion) are implemented in a highly regular fashion
independent of the value of the operands, which helps to thwart timing and
SPA attacks. Yet, our implementation of arithmetic operations modulo the
192-bit NIST prime is more than twice as fast as the widely-used TinyECC
library, the current de-facto standard for ECC in WSNs [22].

– Record-setting execution times for ECDH and ECDSA over a 192-bit prime
field. We employ a regular variant of the fixed-base comb technique for the
fixed-point scalar multiplication and a window method with a window size
of 4 when the point is not known a priori, while the double scalar multipli-
cation is executed in an interleaved fashion with joint doublings. Practical
results, obtained on an ATmega128, demonstrate that our work exceeds the
state-of-the-art in ECDH key agreement and ECDSA signature generation
(resp. verification), outperforming the best implementations reported in the
literature by a factor of 1.35 [20] and 2.33 [22], respectively.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
the mathematical foundations of ECC and describe the basic properties of the
NIST curve P-192 we adopt in our implementation. Thereafter, we explain the
algorithms for fixed-point and arbitrary-point scalar multiplication (for ECDH)
as well as double-scalar multiplication (for ECDSA). In Section 3, we introduce
our implementation of the field operations for the 192-bit prime, including the
new “lazy doubling” method for multi-precision squaring. The implementation
results (e.g. execution time, energy consumption, RAM footprint) we achieved
are summarized in Section 4. Finally, we conclude the paper in Section 5.

306 Z. Liu et al.

2 Elliptic Curve Cryptography

In this section, we first discuss some implementation aspects of ECC and then
present the domain parameters we used in our implementation. Thereafter, we
describe algorithms for fixed-point and arbitrary-point scalar multiplication as
well as double scalar multiplication.

2.1 NIST Curve P-192

Let Fp be a prime field. An elliptic curve E over Fp can be defined through a
short Weierstraß equation of the form y2 = x3 + ax + b, whereby a, b ∈ Fp and
4a3 + 27b2 �= 0. In order to improve efficiency, it is common practice to fix the
curve parameter a to −3 (i.e. a = p− 3) since this choice allows for optimizing
the point arithmetic, as will be discussed in more detail below. All prime-field
curves standardized by the NIST in [26] adopt this approach; consequently, the
so-called “NIST curves” can be defined via a short Weierstraß equation of the
following form

E : y2 = x3 − 3x+ b (1)

Before an elliptic curve cryptosystem can actually be carried out, the involved
parties need to agree on a set of domain parameters, which specifies besides the
curve and field to be used also a base point G = (xG, yG) that generates a large
cyclic subgroup of E(Fp), the order n of this subgroup (which is a prime), and
the co-factor h = #E(Fp)/n [15]. All five NIST curves over prime fields have a
co-factor of h = 1; consequently, any point P whose x and y coordinates fulfill
Equation 1 has prime order n. This property prevents small subgroup attacks
and, therefore, simplifies the implementation of ECDH key agreement. On the
other hand, Edwards curves and Montgomery curves require specific measures
to thwart these attacks since they always have a co-factor of h ≥ 4. Among the
five prime-field curves specified in [26], the curve P-192 is the most suitable one
for resource-constrained sensor nodes as it offers a reasonable balance between
security and execution time (i.e. energy consumption). This curve uses the field
Fp defined by the generalized-Mersenne (GM) prime

p = 2192 − 264 − 1 (2)

as underlying algebraic structure to facilitate the modular reduction. As shown
in [15], the product of two 192-bit integers can be reduced via three additions
modulo p by exploiting the relation 2192 ≡ 264+1 mod p. The parameter b, the
base point G, and the order n of curve P-192 can be found in [26].

In order to avoid expensive inversions in Fp, we represent the points on the
curve using projective coordinates. According to [15, Table 3.3], Jacobian pro-
jective coordinates yield the most efficient formula for point doubling, whereas
mixed Jacobian-affine coordinates allows for the fastest point addition on curve
P-192. Based on [15, Algorithm 3.22], a mixed addition needs 8 multiplications
(8M) and 3 squarings (3S) in the underlying field. The doubling of a point costs
only 4 multiplications and the same number of squarings (i.e. 4M+4S).

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 307

2.2 Algorithms for Scalar Multiplication

The Elliptic Curve Diffie-Hellman (ECDH) key exchange technique has much in
common with the “classical” Diffie-Hellman scheme, but operates in an elliptic
curve group E(Fp) instead of Z∗

p [15]. There exist two principal variants of the
ECDH protocol, namely static ECDH and ephemeral ECDH. The latter is com-
putationally more demanding, but provides the important advantage of forward
secrecy. Ephemeral ECDH requires each of the two involved parties to perform
two scalar multiplications; the first to generate an ephemeral key pair, and the
second to obtain the shared secret. The first scalar multiplication takes a fixed
and a-priori-known point as input, namely the generator G, whereas the second
scalar multiplication has to be carried out with an arbitrary point not known in
advance. Consequently, ephemeral ECDH key agreement requires each party to
execute both a fixed-point and an arbitrary-point scalar multiplication.

A fixed-point scalar multiplication can be efficiently performed through the
so-called fixed-base comb method as described in Section 3.3.2 of [15]. The idea
is to pre-compute and store 2w multiples of the base point P and then process
w bits of the scalar k at once, thereby reducing the number of point doublings
by a factor of w and the number of point additions by roughly w/2 compared to
the straightforward double-and-add method. A window size of w = 4 represents
a good trade-off between performance and storage requirements since only 16
points need to be pre-computed. In this case, a fixed-point scalar multiplication
on curve P-192 requires 48 point doublings and up to 48 point additions. The
multiples of the base point to be pre-computed are linear combinations of the
form d3 · (2144P) + d2 · (296P) + d1 · (248P) + d0 · P with di ∈ {0, 1}. As indi-
cated before, our comb method represents (and processes) a 192-bit scalar k in
4-bit digits Ki = 8k144+i + 4k96+i + 2k48+1 + ki for 0 ≤ i < 48 (see [15] for an
in-depth description of the fixed-base comb method).

A straightforward implementation of the comb method described above has
an irregular execution pattern (and, hence, succumbs to Simple Power Analysis
(SPA) attacks [19,15]) since the point addition is only carried out for non-zero
digits Ki. Consequently, an attacker able to distinguish point additions from
point doublings in the power consumption profile can get the position of 0 bits
in the scalar k. One possibility to prevent this SPA leakage is to represent the
4-bit digits using a digit set not containing 0, e.g. D′ = {±1,±3, . . . ,±15}, in-
stead of the ordinary set D = {0, 1, . . . , 15} and adapting the pre-computation
of multiples of P accordingly. When doing so, the comb technique executes the
same number of point additions and point doublings, independent of the actual
value of k, since all Ki are non-zero. Liu et al introduced in [23] a simple (and
highly regular) algorithm for the conversion of radix-24 integers represented via
the canonical digit set D into an equivalent representation based on the zero-free
digit set D′. We apply their algorithm to obtain the Ki ∈ {±1,±3, . . . ,±15} in
an SPA-resistant fashion. Using D′ instead of D also allows one to reduce the
storage requirements of the comb method by half since we need to pre-compute
only the multiples of P corresponding to the eight positive elements of D′. The
negative multiples can be generated “on the fly” via the regular point-negation

308 Z. Liu et al.

Algorithm 1. Regular window method for scalar multiplication (w = 4)

Input: n-bit scalar k = (kn−1, . . . , k1, k0)2, point P ∈ E(Fp).
Output: Scalar product R = k · P .
1: Convert k into radix-24 representation k′ = (Ks−1, . . . ,K1,K0)16 where s = �n/4�

and Ki ∈ {±1,±3, . . . ,±15} for 0 ≤ i ≤ s− 1 as described in [23].
2: Generate look-up table T consisting of 8 points T [i] = (2i+ 1) · P for 0 ≤ i ≤ 7.
3: R ← T [(Ks−1 − 1)/2] {Ks−1 is always positive}
4: for i from s− 2 by 1 down to 0 do
5: R ← 16 · R { four point doublings}
6: R ← R+ sign(Ki) · T [(|Ki| − 1)/2] { one point addition}
7: end for
8: return R

technique described in [23]. In this way, the 4-bit comb method requires a mere
384 bytes in read-only memory (i.e. ROM or Flash) as the pre-computed points
are stored in affine coordinates so that we can use the efficient mixed-addition
formula given in [15, Algorithm 3.22]

Besides a fixed-point scalar multiplication, each of the two parties involved
in an ECDH key agreement also has to perform a scalar multiplication with an
arbitrary base point not known in advance. Unfortunately, the comb method in-
volves an expensive pre-computation phase and is, therefore, only useful when
the base point is fixed. If this is not the case, it is generally more efficient to
employ a window method [15] such as shown in Algorithm 1 for a window size
of w = 4. First, we convert the scalar k into a radix-24 representation based on
the signed digit set D′ = {±1,±3, . . . ,±15}. Similar to the comb method, we
follow the approach introduced in [23] to ensure this conversion does not leak
any SPA-relevant information. The next step is then the generation of a table
containing eight multiples of P , namely P , 3P , 5P , . . . , 15P . Since all of these
points are needed in affine coordinates, it makes sense to do a simultaneous in-
version [15, page 44] of the Z coordinates so as to reduce the cost of the table
computation. The loop in Algorithm 1 is similar to that of the double-and-add
method, but we process a 4-bit digit Ki of k in each iteration instead of just a
single bit. At line 6, the pre-computed point from table T corresponding to the
absolute value of Ki is loaded from RAM. Even though the index for this table
access depends on the secret scalar, there is no information leakage since load
operations always have the same latency on an ATmega128. Depending on the
sign of Ki, the loaded point is added to R either directly or negated. We again
refer to [23] for a description of how this can be performed in a regular fashion
without the need to execute conditional statements. The window method with
w = 4 performs 192 point doublings and 48 point additions, idenpendent of the
actual value of k. It occupies 384 byte in RAM for table T .

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the
DSA signature scheme operating in an elliptic curve group [15]. From an arith-
metic point of view, the major operation of an ECDSA signature generation is
a scalar multiplication by a fixed and a-priori-known base point, similar to the

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 309

Algorithm 2. Double scalar multiplication with joint doublings

Input: Two n-bit scalars k and l, two points P,Q ∈ E(Fp).
Output: Scalar product R = k · P + l ·Q.
1: (k′, l′) ← JSF(k, l) { calculate JSF of (k, l) using [15, Algorithm 3.50]}
2: R ← O, S ← P +Q, T ← P −Q
3: for i from n by 1 down to 0 do
4: R ← 2R
5: if (k′

i = 1) and (l′i = 1) then R ← R + S
6: else if (k′

i = 1) and (l′i = −1) then R ← R + T
7: else if (k′

i = −1) and (l′i = 1) then R ← R − T
8: else if (k′

i = −1) and (l′i = −1) then R ← R− S
9: else if (k′

i = 1) and (l′i = 0) then R ← R + P
10: else if (k′

i = 0) and (l′i = 1) then R ← R +Q
11: else if (k′

i = −1) and (l′i = 0) then R ← R − P
12: else if (k′

i = 0) and (l′i = −1) then R ← R −Q end if
13: end for
14: return R

first stage of ECDH key exchange. The fixed-base comb method with w = 4 is
the natural choice to perform this operation in an efficient and secure (i.e. SPA-
resistant) fashion. On the other hand, the verification of an ECDSA signature
requires a so-called double scalar multiplication of the form k · P + l · Q where
one of the points is fixed and the other not. To reduce execution time, the two
scalar multiplications k ·P and l ·Q can be carried out simultaneously (i.e. in an
“interleaved” fashion) so that n point doublings suffice to get the result. Algo-
rithm 2 shows a possible realization of this approach, sometimes referred to as
Shamir’s Trick (see e.g. [15, p. 109]). We represent the n-bit scalars k and l in
Joint Sparse Form (JSF) [30], which means roughly n/2 point additions have to
be performed. In our case, i.e. 192-bit scalars, the cost of Algorithm 2 amounts
to 192 point doublings and some 96 point additions, not taking into account the
pre-computation of P +Q and P −Q in line 2. Note that the verification of an
ECDSA signature is a public-key operation and, therefore, does not need to be
protected against side-channel attacks.

3 Efficient Field Arithmetic for Curve P-192

In the following, we describe our implementation of basic arithmetic operations
modulo the 192-bit generalized-Mersenne prime p = 2192 − 264 − 1.

3.1 Addition and Subtraction

To add two elements a, b ∈ Fp, we firstly perform a conventional multi-precision
addition of the two byte-arrays A and B representing them. As result we get a
sum-array S consisting of 24 bytes and a carry bit c, which is either 0 or 1. The
carry bit c is then used to generate a mask M that, depending on c, is either an

310 Z. Liu et al.

Fig. 1. COC multiplication (left) and “lazy doubling” squaring (right)

“all-1” byte (i.e. has the value 255) or an “all-0” byte. A mask of this form can
be simply obtained via negation of the carry bit; we get the “all-1” byte if c is
1 and the “all-0” byte otherwise. Then, we perform two “masked” subtractions
of the prime p, which means we do a logical “AND” of prime-byte P [i] and the
mask M before we actually subtract it from the corresponding byte of S. Two
such subtractions are required to get a result of at most 192 bits, whereby the
carry bit c must be updated after the first subtraction. In this way, always the
same sequence of instructions is executed, independent of the value of the two
operands a and b. Note, however, that the final result may not be fully reduced
(even though it is always smaller than 2192), but this is no problem because all
functions of our arithmetic library can process incompletely reduced operands
[34]. The modular subtraction is implemented in a very similar way.

3.2 Multiplication and Squaring

Multiplication and squaring are two extremely performance-critical arithmetic
operations in ECC [2]. Our implementation employs an improved variant of the
Consecutive Operand Caching (COC) method [28] for the former and a novel
“lazy doubling” technique to speed up the latter. We use the following notation:

– n: operand size (192 bits in our case)
– w: word size of the processor (8 bits)
– m: number of elements in an operand-array, i.e. m = n/w = 24
– e: number of operand words (i.e. bytes) to be cached (10 in our case)
– r: number of row sections, r = �m/e�
– A, B: operands represented by byte arrays: A = (A[m − 1], . . . , A[1], A[0])

and B = (B[m− 1], . . . , B[1], B[0])
– C: 2n-bit product C = A · B whereby C = (C[2m− 1], . . . , C[1], C[0])

As shown in Figure 1, we describe the execution flow using a rhombus and
triangular forms. Each dot represents a byte-product of the form A[i]×B[j] or
A[i] × A[j]. The rightmost corner of the rhombus indicates the lowest indices
(i.e. i, j = 0), whereas the highest indices (i.e. i, j = m− 1) can be found at the
leftmost corner. All bytes C[k] of the product C are located at the bottom edge
of the rhombus, whereby C[0] is at the right and C[2m− 1] at the left.

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 311

���������

������������������

�����������	
�

�

�

��
�

���������

������������������

�����������	
�

�

�

��
�

���������

������������������

�����������	
�

�

�

��
�

���������

������������������

�����������	
�

�

�

��
�

���������

������������������

�����������	
�

�

�

��
�

���������

������������������

�����������	
�

�� ��

�� ��

�� ��

Fig. 2. Execution flow of the novel “lazy doubling” technique

To speed up the multiplication, we combine the COC method [28] with the
so-called carry-once technique described in [29]. The COC method reduces the
number of load instructions by re-scheduling the byte-multiplication sequences
so that each byte is loaded only once (i.e. it fully prevents re-loadings). On the
other hand, the carry-once technique minimizes the number of add instructions
by first delaying and then updating intermediate results at once instead of do-
ing it one-by-one. The execution flow is illustrated on the left of Figure 1. We
have r = � 24

10
� = 2, which means there are two row sections, namely bbottom and

bmiddle. First, we calculate the 16 byte-products in block btop at the top of the
rhombus; this requires to load the operand bytes A[20 − 23] and B[0 − 3]. The
latter four bytes are cached as they are used again in the next block, which is
bbottom. This block consists of four regions (labeled 1© to 4© in Figure 1) and is
processed from right (i.e. region 1©) to left (i.e. region 4©). The computations
in the regions 1© to 3© involve the loading of the bytes A[0− 9], B[4− 23], and
A[10 − 19]. Following the carry-once strategy, we load in region 2© and 3© the
intermediate-result bytes C[20− 27] and update them pair-wise in the following
order: C[20, 21], C[22, 23], C[24, 25], and C[26, 27]. In this way, we save an add
instruction in the processing of each of these pairs. Once bbotton is finished, we
pass the bytes A[10− 19] to the block bmiddle, which is processed similarly.

We describe now our novel “lazy doubling” approach for squaring. Unlike to
multiplication, an optimized squaring algorithm does not need to calculate all
m2 byte products since there exist a large number of pairs that have the same
value, e.g. A[1] ·A[0] and A[0] ·A[1]. After elimination of these “duplicates,” we
get a squaring algorithm with a triangular execution flow as illustrated on the
right of Figure 1. Figure 2 shows the main steps of the our squaring algorithm

312 Z. Liu et al.

in more detail. At first, in step (a), all byte products on the top of the triangle
are computed, which includes to load operand bytes A[20− 23] and to load and
cache bytes A[0− 3]. In step (b), all byte products of region 2© are formed and
the bytes A[0 − 8] are cached. Thereafter, in step (c), we apply the carry-once
technique, indicated by yellow dotted lines in Figure 2. This step uses operand
bytes A[9 − 17] and A[0 − 8], but only the former ones are cached. The bytes
C[10 − 18] of the intermediate result are computed and updated in a pair-wise
fashion, thereby saving one clock cycle per pair. In step (d), byte products are
generated using bytes A[10 − 23] and A[0 − 13], and in step (e), computations
are continued with A[13 − 23] and A[6 − 23], and the intermediate results are
updated. Finally, in step (f), we double the whole intermediate result we got so
far and then compute the remaining byte products. Our lazy doubling method
requires only 2064 clock cycles to square a 192-bit integer, which improves the
best previous result in the literature [21] by about 2%.

The result of a multiplication (or squaring) is a 384-bit integer, which must
be reduced modulo p = 2192 − 264 − 1 to get a 192-bit residue. As mentioned in
Subsection 2.1 (and explained in more detail in [15, Section 2.2.6]), it is possible
to perform this reduction via three 192-bit additions modulo p. However, in the
worst case, three subtractions of p are necessary to get a reduced result, which
can considerably slow down this operation, especially if one aims for resistance
against SPA or timing attacks. Therefore, we use the “sum scanning” method
for reduction modulo p proposed in [13, Algorithm 2] so that at most one final
subtraction of p has to be carried out. We perform this final subtraction in an
“unconditional way” using a byte-mask as described in Subsection 3.1.

3.3 Inversion

When using projective coordinates, it is generally necessary to invert the Z co-
ordinate of the point obtained at the end of the scalar multiplication to have a
final result in affine coordinates. The Extended Euclidean Algorithm (EEA) is
commonly used for computing multiplicative inverses in Fp. Unfortunately, the
EEA has a very irregular execution profile and, therefore, may leak information
about Z, which, in turn, could be used by an attacker to recover parts of the
secret scalar. To thwart such attacks, we firstly multiply Z by a random value
R, invert this product, and then multiply (ZR)−1 again by R to get Z−1.

4 Implementation Results

In this section, we firstly report the execution times of our implementation and
compare them with the results of previous work. Then, we analyze the memory
footprint and energy consumption of our ECC software.

4.1 Execution Time

We implemented all field operations (except of a few parts of the inversion) in
AVR Assembly language and the rest (i.e. point addition, point doubling, and

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 313

Table 1. Execution time of 192-bit arithmetic operations (in clock cycles)

Implementation mod-add mod-sub mod-mul mod-sqr mod-inv

Liu et al [22] 832 786 8, 152 7, 493 1, 305, 616

Chu et al [7] 632 632 4, 845 4, 052 476, 055

This work 378 378 4, 042 2, 658 280, 829

the scalar multiplication algorithms) in ANSI C. In order to achieve peak per-
formance, we unrolled the loops of all field operations except inversion. Table 1
summarizes the execution times of the five basic arithmetic operations modulo
the 192-bit NIST prime. The modular addition takes exactly the same time as
the modular subtraction, namely 378 clock cycles on an 8-bit AVR ATmega128
processor. Our modular multiplication executes in about 4,000 cycles, whereas
the modular squaring has an execution time of 2,658 clock cycles, which means
the squaring requires merely two-third of the multiplication cycles. This result
impressively demonstrates the efficiency of our “lazy doubling” technique since
modular squaring is typically only about 20% faster than modular multiplica-
tion. A comparison with Liu et al’s widely-used TinyECC software [22] shows
that our implementation of modular addition, subtraction and multiplication is
more than twice as fast as theirs, while the modular squaring gains a speed-up
by a factor of roughly 2.8. Our implementation is also significantly faster than
that of Chu et al [7], who used a 192-bit Optimal Prime Field (OPF) but did
not unroll the loops. Our inversion modulo p has an (average) execution time
of roughly 280k cycles, which means it is approximately 70 times slower than a
modular multiplication. However, our inversion needs only 56% of the execution
time reported in [7] and 21% of the time of the TinyECC inversion.

Table 2. Execution time (in cycles) of point addition and point doubling

Implementation Point addition Point doubling

Liu et al [22] (NIST P-192) 80, 774 63, 355

Chu et al [7] (Tw. Edwards) 54, 158 41, 630

This work (NIST P-192) 43, 604 29, 914

Table 2 shows the execution time of point addition and doubling. Compared
to TinyECC, our addition achieves a speed-up of slightly below 2.0x, whereas
the speed-up factor of point doubling is a bit above 2.0x. Interestingly, we are
also faster than Chu et al [7], who used a twisted Edwards curve that features
more efficient addition and doubling formulae than our NIST curve.

We also simulated the execution times of fixed-point and variable-point sca-
lar multiplication as well as double scalar multiplication; they amount to some
3.67, 9.23, and 10.4 million cycles, respectively. Considering the MICAz mote’s
clock frequency of 7.37 MHz [8], these cycle counts translate to execution times
of 0.5 s, 1.25 s, and 1.41 s. Each run of the (ephemeral) ECDH key agreement

314 Z. Liu et al.

Table 3. Comparison of fixed-point and arbitrary-point scalar multiplication, double
scalar multiplication, ECDH, and ECDSA on an ATmega128 clocked at 7.37 MHz

Implementation Field k ·P l ·Q k·P + l·Q ECDH ECDSA

Gura et al [14] 160 b 0.88 s 0.88 s n/a 1.76 s n/a

Wang et al [33] 160 b 1.34 s 1.46 s 3.09 s 2.80 s 4.43 s

Szczechowiak et al [31] 160 b 1.27 s 1.27 s n/a 2.54 s n/a

Ugus et al [32] 160 b 0.57 s 1.03 s n/a 1.60 s n/a

Liu et al [22] 160 b 2.05 s 2.30 s 2.60 s 4.35 s 4.65 s

Großschädl et al [12] 160 b 0.74 s 0.74 s n/a 1.48 s n/a

Chu et al [7] 160 b 0.78 s 0.78 s n/a 1.56 s n/a

Liu et al [22] 192 b 2.99 s 2.99 s n/a 5.98 s n/a

Gura et al [14] 192 b 1.35 s 1.35 s n/a 2.70 s n/a

Lederer et al [20] 192 b 0.71 s 1.67 s n/a 2.38 s n/a

This work 192 b 0.50 s 1.25 s 1.41 s 1.75 s 1.91 s

protocol requires the two involved parties to execute both a fixed-point and an
arbitrary-point scalar multiplication; adding them up gives an execution time
of 12.9 · 106 clock cycles (1.75 s) altogether. On the other hand, the two main
operations of ECDSA signature generation and verification, namely fixed-point
scalar multiplication and double scalar multiplication, have an overall execution
time of some 14 · 106 cycles (1.91 s). Table 3 compares our work with previous
ECC implementations for 8-bit AVR-based processors. We are much faster than
any other ECC software using a 192-bit prime field and outperform even some
160-bit implementations. For example, our ECDH key exchange improves the
best result in the literature (which can be found in [20]) by a factor of 1.35. On
the other hand, our ECDSA implementation is 2.33 times faster than the best
ECDSA software reported in the literature, namely the one in [33].

4.2 Memory Footprint

Low memory footprint is another very important requirement on ECC software
for sensor nodes, which becomes evident when considering that the ATmega128
on a MICAz mote has only 4 kB RAM and 128 kB flash ROM [3]. Our imple-
mentation occupies about 1.4 kB in RAM; this includes the two 384-bit tables
of the comb and windows method for scalar multiplication. However, there are
several options to reduce the RAM footprint. For example, when executing the
comb method, it is not necessary to have the full table of pre-computed points
in RAM since, at any time, only one entry of the table is required. Optimizing
our implementation in this direction would reduce the RAM footprint by some
350 bytes at the expense of a slight performance degradation. The binary exe-
cutable of our ECC software has a size of 28 kB, which leaves about 100 kB in
flash memory for the operating system and applications.

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 315

4.3 Energy Consumption

According to [8], the ATmega128 processor of a MICAz mote draws an average
current of about 8.0 mA (at a supply voltage of 3.0 V) when it is active. Since
the clock frequency of the mote is known to be 7.37 MHz, we can evaluate the
energy consumption of a scalar multiplication algorithm by simply forming the
product of average power consumption, supply voltage, and execution time. In
this way, the energy cost of a fixed-point scalar multiplication, arbitrary-point
scalar multiplication, and double scalar multiplication amounts to roughly 12.0
mJ, 30.0 mJ, and 33.84 mJ, respectively. The energy consumption of the two
scalar multiplications of ECDH key exchange is approximately 42.0 mJ, while
the overall energy cost (for both nodes) is about 84.0 mJ. Normally, one also
has to take into account the energy required for transmitting (i.e. sending and
receiving) the public keys, but previous work in [9,20,27] shows that ECDH is
clearly dominated by the computation energy cost. The energy required for the
scalar multiplications to generate/verify an ECDSA signature is 45.84 mJ.

5 Conclusions

We introduced a carefully-optimized implementation of NIST-compliant ECC
for sensor nodes equipped with an 8-bit AVR processor. Our software achieves
record-setting execution times for fixed-point scalar multiplication, arbitrary-
point scalar multiplication, and double scalar multiplication. For example, we
outperform the best implementation of ephemeral ECDH key agreement in the
literature by a factor of 1.35 and improve the state-of-the-art in ECDSA by a
factor of 2.33. These speed-ups are mainly due to the performance of our field
arithmetic, which is implemented in Assembly language and protected against
SPA and timing attacks. We also conducted a simple energy evaluation for the
ATmega128 and found that (ephemeral) ECDH key agreement consumes some
42.0 mJ per node. On the other hand, the two scalar multiplications needed to
generate and verify an ECDSA signature have an energy cost of 45.84 mJ. The
RAM footprint of our ECC software is 1.4 kB, which is just slightly more than
one third of the total RAM of the MICAz mote. In summary, our results show
that an efficient and secure (i.e. SPA-resistant) implementation of ECC on the
NIST curve P-192 is possible.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 40(8), 102–114 (2002)

2. Aranha, D.F., Dahab, R., López, J.C., Oliveira, L.B.: Efficient implementation
of elliptic curve cryptography in wireless sensors. Advances in Mathematics of
Communications 4(2), 169–187 (2010)

3. Atmel Corporation. ATmega128(L) Datasheet (Rev. 2467O–AVR–10/06) (October
2006), http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

316 Z. Liu et al.

4. Atmel Corporation. 8-bit ARVR© Microcontroller with 128K Bytes In-System
Programmable Flash: ATmega128, ATmega128L. Datasheet (June 2008),
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp.
207–228. Springer, Heidelberg (2006)

6. CertiVox Corporation. CertiVox MIRACL SDK. Source code (June 2012),
http://www.certivox.com

7. Chu, D., Großschädl, J., Liu, Z., Müller, V., Zhang, Y.: Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In: Xu, S., Zhao, Y.
(eds.) Proceedings of the 1st ACM Workshop on Asia Public-Key Cryptography
(AsiaPKC 2013), pp. 39–44. ACM Press (2013)

8. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data
sheet (January 2006), http://www.xbow.com/Products/Product pdf files/

Wireless pdf/MICAz Datasheet.pdf

9. de Meulenaer, G., Gosset, F., Standaert, F.-X., Pereira, O.: On the energy cost
of communication and cryptography in wireless sensor networks. In: Proceedings
of the 4th IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WIMOB 2008), pp. 580–585. IEEE Computer
Society Press (2008)

10. de Meulenaer, G., Standaert, F.-X.: Stealthy compromise of wireless sensor nodes
with power analysis attacks. In: Chatzimisios, P., Verikoukis, C., Santamaŕıa, I.,
Laddomada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45, pp.
229–242. Springer, Heidelberg (2010)

11. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software im-
plementation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

12. Großschädl, J., Hudler, M., Koschuch, M., Krüger, M., Szekely, A.: Smart elliptic
curve cryptography for smart dust. In: Zhang, X., Qiao, D. (eds.) QShine 2010.
LNICST, vol. 74, pp. 623–634. Springer, Heidelberg (2012)

13. Großschädl, J., Savaş, E.: Instruction set extensions for fast arithmetic in finite
fields gF(p) and gF(2m). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 133–147. Springer, Heidelberg (2004)

14. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

15. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer (2004)

16. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

17. Hutter, M., Schwabe, P.: NaCl on 8-bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013)

18. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryptog-
raphy on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.certivox.com
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 317

20. Lederer, C., Mader, R., Koschuch, M., Großschädl, J., Szekely, A., Tillich, S.:
Energy-efficient implementation of ECDH key exchange for wireless sensor net-
works. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell, C.J., Quisquater,
J.-J. (eds.) Information Security Theory and Practice. LNCS, vol. 5746, pp.
112–127. Springer, Heidelberg (2009)

21. Lee, Y., Kim, I.-H., Park, Y.: Improved multi-precision squaring for low-end RISC
microcontrollers. Journal of Systems and Software 86(1), 60–71 (2013)

22. Liu, A., Ning, P.: TinyECC: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press (2008)

23. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks (submitted for publication, 2013)

24. Lopez, J., Zhou, J.: Wireless Sensor Network Security. Cryptology and Information
Security Series, vol. 1. IOS Press (2008)

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

26. National Institute of Standards and Technology (NIST). Recommended Elliptic
Curves for Federal Government Use. White paper (July 1999),
http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf

27. Piotrowski, K., Langendörfer, P., Peter, S.: How public key cryptography influences
wireless sensor node lifetime. In: Zhu, S., Liu, D. (eds.) Proceedings of the 4th ACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN 2006), pp. 169–176.
ACM Press (2006)

28. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS,
vol. 7690, pp. 55–67. Springer, Heidelberg (2012)

29. Seo, H., Lee, Y., Kim, H., Park, T., Kim, H.: Binary and prime field multiplica-
tion for public key cryptography on embedded microprocessors. In: Security and
Communication Networks (2013)

30. Solinas, J.A.: Low-weight binary representations for pairs of integers. Technical
Report CORR 2001-41, Centre for Applied Cryptographic Research (CACR), Uni-
versity of Waterloo, Waterloo, Canada (2001)

31. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

32. Ugus, O., Westhoff, D., Laue, R., Shoufan, A., Huss, S.A.: Optimized imple-
mentation of elliptic curve based additive homomorphic encryption for wire-
less sensor networks. In: Wolf, T., Parameswaran, S. (eds.) Proceedings of the
2nd Workshop on Embedded Systems Security (WESS 2007), pp. 11–16 (2007),
http://arxiv.org/abs/0903.3900

33. Wang, H., Li, Q.: Efficient implementation of public key cryptosystems on mote
sensors. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp.
519–528. Springer, Heidelberg (2006)

34. Yanık, T., Savaş, E., Koç, Ç.K.: Incomplete reduction in modular arithmetic. IEE
Proceedings – Computers and Digital Techniques 149(2), 46–52 (2002)

http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf
http://arxiv.org/abs/0903.3900

Attacking and Fixing the CS Mode

Han Sui1, Wenling Wu1, Liting Zhang1, and Peng Wang2

1 Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

{suihan,wwl,zhangliting}@tca.iscas.ac.cn
2 Data Assurance and Communication Security

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, P.R. China

wp@is.ac.cn

Abstract. The security of the Cipher-State (CS) mode was proposed
to NIST as an authenticated encryption (AE) scheme in 2004. The usual
SPRP blockcipher security for AE schemes may not guarantee its secu-
rity. By constructing a special SPRP, one can easily make a key-recovery
attack with a single block query. The distinguishing attacks and the
forgery attacks can also be made with simpler SPRP constructions. The
security flaw relies in the method for generating initial whitening values.
To fix this shortcoming, we propose a modified version CS* which in-
corporates a new method for generating initial whitening values, while
keeping the main structure of CS unchanged. As we show, CS* is secure
when its underlying blockcipher is an SPRP and halves of which are
unpredictable.

1 Introduction

Background. An authenticated encryption (AE) scheme is a shared-key en-
cryption scheme whose goal is to provide both privacy and authenticity. There
are usually two approaches to build AE schemes from blockciphers.

• A two-pass scheme combines essentially separate privacy and authen-
ticity modes together, and has to process data twice; and
• a one-pass scheme tightly couples the parts of the mechanism responsi-
ble for both privacy and authenticity, and needs only one time to process
data.

The latter schemes firstly emerged in 2001, with the work of Jutla [12] and
developed by Katz et al. [13], Gilgor et al. [10] and Rogaway et al. [15]. Cipher-
State mode is such a one-pass AE scheme.

The CS mode was firstly introduced by Anderson et al. in ACISP 2004 [3]
and proposed to National Institute of Standards and Technology (NIST)[4] as
submissions for modes development. Besides its advantage for processing data
with only one time, it takes a special method for authentication with any round-
based blockcipher. That is, it takes the internal states in the middle round of

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 318–330, 2013.
c© Springer International Publishing Switzerland 2013

Attacking and Fixing the CS Mode 319

encryption for authentication information. This method provides a computation-
ally low cost alternative to CBC mode. Furthermore, it can be fully parallelized,
allowing fast execution.

It seems that little attention has been put to CS mode. It has been proposed
and put on the NIST’s web page for nearly a decade, however, seldom analysis
can be found publicly. Švenda provided a brief analysis of CS mode in his com-
parison of AE modes [16]. Besides this, only an incomplete security analysis can
be found in its designers’ report [5] without any formal proof.

Our Contribution. Consider the wide requirements for secure AE schemes,
especially with the recent motivation of CAESAR competition [1]. We find it
necessary to give a formal analysis for such an interesting mode. We study CS
mode from the provable-security point of view and discover that CS mode is
totally insecure with a special SPRP as its underlying blockcipher. The problem
is, EK(K⊕·) is used in generating initial whitening values and this may result in
non-random internal values, and even the leakage of K. Such a way of XORing
the key to a message block has been pointed out to be very dangerous by Furuya
and Skurai [9]. By constructing a special permutation FK(·), we show that one
can build a key-recovery attack against CS mode with FK(·) as its underlying
blockcipher. Distinguishing attacks and forgery attacks can also be made using
simpler SPRP constructions.

To fix CS mode, we build CS* which retains the main structure of CS and
the update method of Ri unchanged, but replaces the method for generating
initial whitening values R0. To simplify the mode, we also take away the LFSR
in Ti’s updating and unnecessary pre-whiten and post-whiten process in gen-
erating a tag from Tm. However, we keep the convenient method that derives
internal states from blockciphers to generate the tag. Therefore, CS* inherits
the advantages of CS and becomes even simpler.

Due to its special method to compose the tag, we have to handle the detailed
proof for CS* more carefully than usual. That is, we have to evaluate the prop-
erties of blockcipher internal states, and show how hard for adversaries to get a
collision just before the last blockcipher encryption for authentication. To solve
this, we introduce unpredictability into our proof. We argue that assuming the
internal states in the middle of blockcipher encryption are unpredictable is quite
suitable here. On the one hand, it is weaker than pseudorandomness, properly sim-
ulates the fact that the outputs of half-rounds blockcipher have less randomness
than those of full-rounds. On the other hand, unpredictability of blockcipher in-
ternal states is sufficient to prevent collisions before the final encryption, allowing
random tags for different messages. In the rest of this paper, we say “the internal
states in the middle of blockcipher encryption” as “the internal states” for short.

Our fixing mode, CS*, is a secure AE scheme as we prove by assuming that
the underlying block E is an SPRP and its internal states are unpredictable. For
privacy, the success probability for an adversary to distinguish CS*[Perm(n)]
from a random function is upper bounded by

320 H. Sui et al.

(σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

E1
(t, q, σ).

For authenticity, the success probability of making a forgery is upper
bounded by

(σ + 2q + c+ 5)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

E1,E2
(t, q, σ),

where E1 and E2 are two unpredictable permutations satisfying E = E−1
2 ◦ E1.

2 Preliminaries

2.1 Notation

A string is a finite sequence of symbols, each symbol being 0 or 1. The string
of length 0 is called empty string and is denoted ε. Let {0, 1}∗ denote the set of
all strings. If A,B ∈ {0, 1}∗ then AB, or A‖B, is their concatenation. 0i and 1i

denote the strings of i-many 0s and 1s, respectively. Let {0, 1}n denote the set
of all strings of length n. If A ∈ {0, 1}∗ then |A| denotes the length of A in bits.
If A,B ∈ {0, 1}∗ are strings of same length then A ⊕ B is the bitwise xor of A

and B. If A is a set, then #A denotes the size of set A, and a
$←− A denotes that

a is chosen from set A uniformly at random.
If M ∈ {0, 1}∗ then the padding rule used in this paper is pad(M) =

M10n−1−(|M| mod n). Furthermore, we assume that each message M used in
this paper has already padded and |M | is a multiple of n. In pseudocodes, “par-
tition M into M1 · · ·Mm” means “let m be the length of M in n-bit blocks
and let M1 · · ·Mm be string such that M1 · · ·Mm = pad(M) and |Mi| = n for
1 ≤ i ≤ n”.

If π is a function on {0, 1}n, let Dom(π) and Ran(π) be the domain and range
of π, respectively. Especially, if we defines the values of π(x) point-by-point
in game, Dom(π) is the set of values x ∈ {0, 1}n such that π(x) /∈ undefined.
Similarly, Ran(π) is the set of y ∈ {0, 1}n such that there exists an x ∈ {0, 1}n
for which π(x) = y. If π is a fixed function, we use Dom(π) and Ran(π) to
describe the sets of queried inputs and outputs, respectively.

2.2 Description of Cipher-State Mode

As illustrated in Fig.1, Cipher-State mode derives internal states from each
round-based blockcipher invocations during data encryption for authentication
information. It needs one blockcipher key K and one nonce N . An initial whiten-
ing value R0 is created from K and N .

An LFSR is used as a pseudorandom number generator (PRNG) to pre-whiten
the plaintext and post-whiten the ciphertext with the same parameter. The
polynomial selected for the authentication combiner and the PRNG is the lexi-
cographically least primitive polynomial, p(x) of degree n.

Attacking and Fixing the CS Mode 321

The blockcipher EK is split into two roughly equal pieces, 1:r/2EK and

(r/2+1):rEK : 1:r/2EK returns the internal state after completing r/2 rounds of
the blockcipher; while (r/2+1):rEK takes the internal state as input and returns
the final state after all rounds. If the blockcipher has odd rounds, it will be split
into 1:�r/2�EK and (�r/2�+1):rEK .

Let M be a padded data and be split into m n-bit blocks Mi:

M = M1‖M2‖ · · · ‖Mm.

The initial whitening value R0 is computed with R0 = EK(N ⊕K)⊕K. The
plaintext block Mi is pre-whitened using Ri which updates after each step using
LFSR with p(x). A pre-authenticator value Ti is computed with internal states
of the underlying blockcipher and updates in the same way.

Ri = Ri−1 × x (mod p(x)), i = 1, 2, · · · ,m.

Tm = Σm
i=1EK(Mi ⊕Ri−1)× xm−i.

To prevent possible information leakages from using the internal cipher state,
a final authenticator T is computed using an extra blockcipher invocation:

T = EK(Tm ⊕Rm)⊕ Tm.

N

R0

0n

R0

R0L C1

M1

Rm-1

Rm-1

Mm

0n Tm

1:r/2 EK

(r/2+1):r EK

EK

Cm

1:r/2 EK

(r/2+1):r EK

Tm

EK

T

LFSR

EK

K

K

LFSR

Rm

Tm

Fig. 1. Cipher-State Mode

2.3 Security Definitions

Adversaries. An adversary is a programwith access to an oracle. Oracle queries
are tuples of strings. An adversary is nonce-respecting if it never repeats the
first component, N , to its oracle, regardless of oracle responses. In this paper,
adversaries are always assumed to be nonce-respecting. We write an oracle as
superscript to the adversary that uses it.

322 H. Sui et al.

AE-schemes. We use the syntax of a nonce-using authenticated-encryption
schemes and their security given by Bellare et al. [6] and extended by Rogaway
et al. [15] [14]. An authenticated-encryption scheme (an AE-scheme) is a triple
Π = (K, E ,D) and an associated number n (the blockcipher length). Here K is a
finite set and E andD are deterministic algorithms. Encryption algorithm E takes
K ∈ K, N ∈ {0, 1}n, and M ∈ {0, 1}∗, and returns a string C ← EK(N,M).
Decryption algorithm D takes K ∈ K, N ∈ {0, 1}n, and C ∈ {0, 1}∗, and
returnsDK(N,M), which is either a stringM ∈ {0, 1}∗ or a distinguished symbol
Invalid. If C ← EK(N,M) then DK(N,C) = M .

Privacy. Consider an adversary A that has one of two types of oracles: a “real”
encryption oracle or a “fake” encryption oracle. A real encryption oracle, EK(·, ·),
takes as input N , M and returns C ← EK(N,M). Assume that |C| = l(|M |)
depends only on |M |. A fake encryption oracle, $(·, ·) takes as input N , M and

returns a random string C
$←− {0, 1}l(|M|). Given adversary A and encryption

scheme Π = (K, E ,D), define

Advpriv
Π = |Pr[K $←− K : AEK (·,·) ⇒ 1]− Pr[$(·, ·) $←− Rand(∗, ∗) : A$(·,·) ⇒ 1]|.

Authenticity. Fix an encryption scheme Π = (K, E ,D) and run an adversary
A with an oracle EK(·, ·) for some key K. Adversary A forges (in this run) if A is
nonce respecting, A outputs (N,C), where DK(N,C) �= Invalid, and A made

no earlier query (N,M) that resulted in a response C. Let Advauth
Π = Pr[K

$←−
K : AEK(·,·) forges]. We stress that the nonce used in the forgery attempt may
coincide with a nonce used in one of the adversary’s queries.

Pseudorandom Functions. A function family from n-bit to n-bit is a map
E : K × {0, 1}n → {0, 1}n, where K is a finite set of strings. It is a blockcipher
if each EK(·) = E(K, ·) is a permutation. Let Rand(n) denote the set of all
functions from {0, 1}n to {0, 1}n. These sets can be regarded as function families
by imagining that each member is specified by a string. For π ∈ Perm(n), let
π−1(Y) be the unique string X such that π(X) = Y . Let

Advprf
E (A) = |Pr[K $←− K : AEK(·) ⇒ 1]− Pr[ρ

$←− Rand(n) : Aρ(·) ⇒ 1]|

Advprp
E (A) = |Pr[K $←− K : AEK(·) ⇒ 1]− Pr[π

$←− Perm(n) : Aπ(·) ⇒ 1]|

Advsprp
E (A) = |Pr[K $←− K : AEK(·),E−1

K
(·) ⇒ 1]− Pr[π

$←− Perm(n) : Aπ(·),π−1(·) ⇒ 1]|

be defined for the advantages of adversary A attacking blockcipher E. The se-
curity of E is defined as the maximum over all advantages of the adversaries
with time complexity t, making at most q queries with at most σ blocks. If
the advantage Advprf

E (t, q, σ) is negligible, then E is said to be a pseudorandom
function (PRF). The notions of pseudorandom permutation (PRP) and strong
pseudorandom permutation (SPRP) are defined similarly.

Attacking and Fixing the CS Mode 323

Unpredictability. The notion of “unpredictablilty” is first proposed by Gol-
dreich et al. in 1986 [11]. Let E be a blockcipher and A be an adversary with
access to E for some key K. Consider this experiment.

ExperimentExpup
E (A)

K
$←− K

whenAmakes a queryM toEK(·), do
C ← EK(M)
returnC toA

untilA stops and outputs (M ′, C′) such that
− EK(M ′) = C′, and
− M ′ was never queried toEK(·)

then return 1 else return 0

Let

Advup
E (A) = Pr[Expup

E (A) = 1]

Advup
E (t, q, σ) = max

A
{Advup

E (A)}

where t, q, σ stand for the total time, number of queries, and the total length
of queries respectively. If Advup

E (t, q, σ) is sufficiently small, we say E is unpre-
dictable. Unpredictable is a wekaer notion than pseudorandomness, examples
can be found in [2].

3 Attacks against CS

In this section, we will show CS mode could not be secure with some special
SPRPs F : {0, 1}k×{0, 1}n → {0, 1}n. By constructing three different SPRPs, we
give a distinguishing attack, a forgery attack and a key-recovery attack against
CS[F] respectively, with only one query of length no more than two blocks.

3.1 Distinguishing Attack against CS

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a randomly chosen SPRP, and A ∈ {0, 1}n
be a randomly chosen constant. The special permutation F : {0, 1}k×{0, 1}n →
{0, 1}n is built with E with a special property: FK(K ⊕ A) = K for any key
K ∈ {0, 1}n. This will help us building the distinguishing attack against CS
mode.

FK(M) =

⎧⎨⎩
K ifM = K ⊕A,
EK(K ⊕A) ifM = E−1

K (K),
EK(M) else.

A similar PRP (PRP-RK) has been constructed with A = 0n−11 by Peng
Wang et al. to show that 2-Key XCBC using this PRP (PRP-RK) is totally
insecure[17]. They proved that the special permutation F is a PRP as long as
E is a PRP. And more specifically, F and E are indistinguishable. We can show
that F is an SPRP as long as E is an SPRP.

324 H. Sui et al.

Theorem 1. If E is an SPRP, then F is an SPRP. More spexifically, for any
adversary A with q queries trying to distinguish F and E, there exists an adver-
sary B with no more than (q + 1) queries such that

|Pr[AF,F−1 ⇒ 1]− Pr[AE,E−1 ⇒ 1]| ≤ 2qAdvsprp
E (B) + 2q

2n − q
.

Furthermore, B runs in approximately the same time as A.

If CS takes F as its underlying blockcipher, it is distinguishable from CS with
a random permutation. Let O be an oracle, with equal probability to be CS[F]
or CS[π], where π is a random permutation. One query with nonce N = A will
lead to R0 = EK(N ⊕K)⊕K = 0n. Notice that if R0 = 0n, the algorithm will
set R0 = K. A distinguishing algorithm is built using this information:

AlgorithmAO(·,·) :
query (A,A) toO(·, ·) and get (C, T)
ifC = 0n return 1

else return 0

We can see that Pr[ACS[FK] ⇒ 1] = 1 and Pr[ACS[π] ⇒ 1] = 1/2n, so the
advantage is 1− 1/2n.

3.2 Forgery Attack against CS

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a randomly chosen SPRP and I : {0, 1}k×
{0, 1}n → {0, 1}n be an identity function. The special permutation F is built
by combining E and I: 1:r/2FK(·) = EK(·), (r/2+1):rFK(·) = I(·). Obviously, F
is an SPRP as long as E is an SPRP. Taking F as the underlying blockcipher,
there will be Cj ⊕Rj−1 = Zj−1(j = 1, . . . , c) in CS.

Noticing that the tag T is generated by underlying blockcipher EK(·) with
Rm and Tm =

∑m
i=1 Zi · xm−i, and verified with Rc and Tc =

∑c
j=1 Zj · xm−j ,

where Zi(i = 1, . . . ,m) in former situation is the internal state of EK(Mi⊕Rj−1)
and Zj(j = 1, . . . , c) in latter situation is the internal state of E−1

K (Cj ⊕Rj−1).
Suppose (N,C, T) is valid, if we can find C∗

1 , . . . , C
∗
c satisfying

c∑
j=1

1:r/2E
−1(C∗

j ⊕Rj−1) · xm−j =

c∑
j=1

1:r/2E
−1(Cj ⊕Rj−1) · xm−j ,

then (N,C∗, T) will be valid. A forgery attack using only one query of two blocks
to CS.Enc can be built as following.

AlgorithmACS[F](·,·) :
randomly chooseN,M1,M2 ∈ {0, 1}n

query (N,M1||M2) toO(·, ·) and get (C1||C2, T)
randomly chooseC∗

1 ∈ {0, 1}n satisfyingC∗
1 �= C1

letC∗
2 = C2 ⊕ (C1 ⊕ C∗

1) · x
forgery(N,C∗

1 ||C∗
2 , T)

Attacking and Fixing the CS Mode 325

We can see that
T ∗
2 = Z∗

1 · x⊕ Z∗
2

= (C∗
1 ⊕R0) · x⊕ (C∗

2 ⊕R1)
= (C1 ⊕R0) · x⊕ (C2 ⊕R1)
= Z1 · x⊕ Z2

= T2

Therefore, T ∗ = FK(T ∗
2 ⊕ R2) ⊕ T ∗

2 = FK(T2 ⊕ R2) ⊕ T2 = T . The probability
of the forgery success is 1.

This attack shows the CS security requires some randomness on the
blockcipher internal states. We will show unpredictability is a proper choice
in Section 4.

3.3 Key-Recovery Attack against CS

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a randomly chosen SPRP. Similar to the
permutation we used in distinguishing attack, by modifying several ordered pairs
in EK(·) we can get:

FK(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
EK(A1) ifM = A2 ⊕K,
A3 ⊕ EK(A1) ifM = A3 ⊕K ⊕ EK(A1),
EK(A2 ⊕K) ifM = A1,
EK(A3 ⊕K ⊕ EK(A1)) ifM = E−1

K (A3 ⊕ EK(A1)),
EK(M) else.

where A1, A2, A3 are randomly chosen from {0, 1}n. What we do is exchanging
the values of EK(A1) and EK(A2⊕K), and the values of EK(A3⊕K⊕EK(A1))
and EK(E−1

K (A3⊕EK(A1))). Noting that, some chooses of (A1, A2, A3) may lead
to collisions happen in X = {A2⊕K,A3⊕K⊕EK(A1), A1, E

−1
K (A3⊕EK(A1))},

which may make this construction fail. The probability of no collision happens
in X is more than at least 1− 6/2n. We can proof that F is an SPRP as long as
E is an SPRP.

If CS takes this permutation F as underlying blockcipher, then we can build
a key-recovery attack as following.

AlgorithmACS[F](·,·) :
query (A2, A3) toCS[F](·, ·) and get (C, T)
K ← C ⊕A3

returnK

Noting that R0 = K ⊕ EK(A1), and

C ⊕A3 = (FK(M ⊕R0)⊕R0)⊕A3

= (FK(A3 ⊕ (K ⊕ EK(A1)))⊕ (K ⊕ EK(A1))) ⊕A3

= ((A3 ⊕ EK(A1))⊕ (K ⊕ EK(A1)))⊕A3

= (A3 ⊕K)⊕A3

= K

326 H. Sui et al.

Noting that, some choices of (A1, A2, A3) may lead this attack to fail. For
example, if EK(A1) = 0n and R0 will be set toK not EK(A1). The probability of
choosing such (A1, A2, A3) is less than 1/2n−1. Therefore, the success probability
of this attack is at least (1− 6/2n)(1 − 1/2n−1).

4 Fixing CS and Its Security Proof

The main problem of CS comes from the method for generating the initial
whitening value R0 with nonce and key. We naturally consider modifying only
the generation method of R0 and analyze the fixing mode CS*.

4.1 CS* Mode

CS* mode retains the updating way of Ri unchanged, but changes the method
for generating the initial whitening value R0.

R0 = EK(N ⊕ L)⊕ L with L = EK(0n).

To make the mode simpler, the LFSR in Ti’s updating and the unnecessary
pre-whiten and post-whiten process in generating a tag from Tm are taken away.

The algorithm given below illustrates the CS* construction for a m-block
message, M = M1, . . . ,Mm, initialization vector, IV , and encryption key, K.
Let EK be a r-round blockcipher.

N

R0

0n

EK

R0

R0L C1

M1

L

Rm-1

Rm-1

Mm

0n Tm

1:r/2 EK

(r/2+1):r EK

EK

Cm

1:r/2 EK

(r/2+1):r EK

Tm

EK

T

Fig. 2. CS* Mode

Attacking and Fixing the CS Mode 327

Algorithm CS.EncK(N,M) Algorithm CS.DecK(N,C, T)
Partition M into M1 · · ·Mm Partition C into C1 · · ·Cc

L ← EK(0n) L ← EK(0n)
T0 = 0n T0 = 0n

R0 ← EK(N ⊕ L) R0 ← EK(N ⊕ L)
for i ← 1 to m do Ri ← Ri−1 · x for i ← 1 to c do Ri ← Ri−1 · x
for i ← 1 to m do for i ← 1 to c do

Zi ←1:r/2 EK(Mi ⊕Ri−1) Zi ←1:r/2 E−1
K EK(Ci ⊕Ri)

Ci ←(r/2+1):r EK(Zi)⊕Ri−1 Mi ←(r/2+1):r E−1
K (Zi)⊕Ri−1

Ti ← Ti−1 ⊕ Zi Ti ← Ti−1 ⊕ Zi

T ← EK(Tm) T ′ ← EK(Tm)
return (C, T) if T = T ′ then return M

else return ⊥

Fig. 3. The specification of CS*

4.2 The Security of CS* Mode

We now proceed to show the security of CS*. For this we assume the underlying
blockcipher of CS*, P , is an SPRP and it can be split into two unpredictable
permutations P1 and P2 satisfying P = P−1

2 ◦ P1. Theorems as following show
the information-theoretic bounds and the computational bounds on the privacy
and authenticity of CS*.

Theorem 2. Let A be a nonce-respecting adversary that asks q queries and
then makes its forgery attempt. Suppose the q queries have aggregate length of σ
blocks, and the adversary’s forgery attempt has at most c blocks. Then

Advpriv
CS∗[Perm(n)](A) ≤ (σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

P1
(t, q, σ),

Advauth
CS∗[Perm(n)](A) ≤ (σ + 2q + c+ 3)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

P1,P2
(t, q, σ).

This theorem can be easily translated to the computational complexity setting
by adding a advantage of distinguishing blockcipher E and its inverse E−1 with
a random permutation π and π−1, where E can be split into two unpredictable
permutation E1 and E−1

2 .

Theorem 3. Suppose E : {0, 1}k × {0, 1}n → {0, 1}n is an SPRP-secure block-
cipher. Let E1 =1:r/2 E and E2 =1:r/2 E−1. Let A be an nonce-respecting ad-
versary that asks q queries and then makes its forgery attempt. Suppose the q
queries have aggregate length of σ blocks, and the adversary’s forgery attempt
has at most c blocks. Then

328 H. Sui et al.

Advpriv
CS∗[E](A) ≤ (σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

E1
(t, q, σ) +Advsprp

E (t′, q′, σ′),

Advauth
CS∗[E](A) ≤ (σ + 2q + c+ 3)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

E1,E2
(t, q, σ)

+Advsprp

E,E−1(t
′, q′, σ′),

where t′ = t, q′ = q + 1, and σ′ = σ + c+ 2q + 3.

For privacy, the initial whitening value R0 is generated by EK(·) with a new
nonce N in each query and is kept secret from A. Pre-whiten values are then
generated from R0 and they make the inputs to blockciphers pair-wise distinct,
resulting in random ciphertexts because E is an SPRP. Furthermore, noticing
E1 is unpredictable, it is easy to find Tm is collision-resistant, and the final tag T
is random after the final encryption. Therefore, both the ciphertexts and the tag
are random bits. For authenticity, if the forgery is composed with a new nonce
N , then it has a close-to-1 probability that the inputs to E2 are pairwise distinct
and also distinct from former blockcipher outputs. By the unpredictability of E2,
Tm would be new and the final tag is random. On the other side, if the forgery is
composed with a used nonce N , then there still exists large probability that at
least one of the inputs to E2 is new, resulting in a new Tm by the unpredictability
of E2 and a random tag by the SPRP of E. In either case, the probability to
make a valid forgery is negligible.

In CS* mode, the internal states of the underlying blockcipher are hidden from
adversaries and their sum is again encrypted before being output, these features
result in no information leakage, except the collision before the last blockcipher
encryptions for authentication.

Noting that, in our proofs, we assume that the underlying blockcipher E is
an SPRP and constructed by E = E−1

2 ◦ E1, where E1, E2 are two indepen-
dently unpredictable permutations. However, this doesn’t mean in theory that
the concatenation of two unpredictable permutations can make up an SPRP.

Despite the above, our assumption on blockciphers for the security of CS* is no
stronger than the usual and solo SPRP assumption. This can also be reflected by
the security of practical blockciphers. That is, a full-round blockcipher behaves
like an SPRP and its internal states are unpredictable for adversaries.

5 Conclusion

The CS mode was submitted to NIST in 2004, and is still in NIST’s modes
development list. However, only a few of papers involve this mode in and no
formal proof has been proposed before. In this paper, we pointed out that there
exist some security problems in its method for generating initial whiten values.
By constructing a special SPRP F , a key-recovery attack against CS[F] with a
single block query can be made.

Attacking and Fixing the CS Mode 329

A slight modification for generating initial whiten values leads to a new au-
thenticated encryption mode, CS*, which uses the same way of generating initial
whiten values as the OCB mode and retains most parts of CS. Assuming inter-
nal states of the underlying blockcipher behave as “unpredictable” while the
blockcipher is super pseudorandom, it can be proved that CS* is a secure AE
scheme.

Acknowledgments. The authors would like to thank the anonymous ref-
erees for their valuable comments. This work was supported by the Na-
tional Grand Fundamental Research 973 Program of China (Grant No.
2013CB338002), and the National Natural Science Foundation of China (Grant
No. 61272476,61232009,61272477 and 61202422).

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2013), http://competitions.cr.yp.to/index.html

2. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authen-
tication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

3. Anderson, E., Beaver, C., Draelos, T., Schroeppel, R., Torgerson, M.: ManTiCore:
encryption with joint Cipher-State authentication. In: Wang, H., Pieprzyk, J.,
Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 440–453. Springer,
Heidelberg (2004)

4. Anderson, E., Beaver, C., Draelos, T., Schroeppel, R., Torgerson, M.: Submission
to NIST: Cipher-State (CS) mode of operation for AES (2004),
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/cs/cs-spec.pdf

5. Anderson, E., Beaver, C., Draelos, T., Schroeppel, R., Torgerson, M.: Manticore
and CS mode: parallelizable encryption with joint Cipher-State authentication
(2004), http://dx.doi.org/10.2172/919631

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption: analysis of the DES modes of operation. In: Goldberg, A.V.,
Rao, S. (eds.) FOCS 1997, pp. 394–403. ACM Press, IEEE (1997)

7. Bellare, M., Namprempre, C.: Authenticated encryption: relations among no-
tions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

8. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

9. Furuya, S., Sakurai, K.: Risks with raw-key maksing - the security evaluations of
2-key XCBC. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 327–341. Springer, Heidelberg (2002)

10. Gligor, V., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

11. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random function. Jour-
nal of the ACM 33(4), 792–807 (1986)

http://competitions.cr.yp.to/index.html
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/cs/cs-spec.pdf
http://dx.doi.org/10.2172/919631

330 H. Sui et al.

12. Jutla, C.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

13. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

14. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
CCS 2002, pp. 98–107. ACM, ACM press (2002)

15. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. on Information and System Secu-
rity 6(3), 365–403 (2003); Earlier version, with Krovetz, T. in CCS 2001

16. Švenda, P.: Basic comparison of modes for authenticated-encryption (IAPM,
XCBC, OCB, CCM, EAX, CWC, GCM, PCFB, CS) (2004),
http://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

17. Wang, P., Feng, D., Wu, W., Zhang, L.: On the unprovable security of 2-key
XCBC. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 230–238. Springer, Heidelberg (2008)

http://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

Integral Attacks on Reduced-Round PRESENT

Shengbao Wu1,2 and Mingsheng Wang3

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, PO Box 8718, China

2 Graduate School of Chinese Academy of Sciences, Beijing 100190, China
3 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
wangmingsheng@iie.ac.cn

Abstract. Integral attack is a powerful technique to recover the secret
key of block ciphers by usually exploiting the fact that specific parts
of the output after several round encryptions has a zero-sum property
in a set of chosen plaintexts. In FSE 2008, bit-based integral attack
proposed by Z’aba et al. revealed that integral attacks may be not only
suitable for byte-based block ciphers but also still applied to bit-based
block ciphers. In this work, we show that integral attack against bit-
based block ciphers can be improved not only by the theorem of higher-
order differential attack but also by using specific algebraic properties of
Sboxes, and the order of plaintexts in a set, which is important in bit-
based integral attack, is not required here. We focus on the block cipher
PRESENT. Based on some algebraic properties of its Sbox, we propose
two integral distinguishers: a 5 round (4-th order) integral distinguisher
and a 7 round (16-th order) integral distinguishers, which can be used
to attack 10 (out of 31) round PRESENT. As far as we know, it is the
first time that a 7 round integral distinguisher of PRESENT is reported.
Algebraic techniques used in this paper may be also applied to other
block ciphers to improve their known integral attacks.

Keywords: Integral Attack, PRESENT, Higher Order Differential
Attack, Boolean Function.

1 Introduction

The integral attack is one of the most popular cryptanalytic tools for block
ciphers. It was first known as “Square attack” due to its efficiency in attacking
the Rijndael-predecessor Square [8]. Later, several variants of Square attack have
been proposed, including saturation attack [13] and multiset attack [5]. In FSE
2002, Knudsen andWagner introduced the definition of integral and unified these
kinds of attacks as integral attack [11].

The basic idea of integral attack is to analyze the propagation of sums of
(many) values. Thus, it can be seen as a dual to the differential cryptanalysis.
When applying integral attack to a block cipher, an attacker first selects a d-th
order integral, that is, he/she chooses a set of 2d plaintexts, where d bit positions

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 331–345, 2013.
c© Springer International Publishing Switzerland 2013

332 S. Wu and M. Wang

take on all values through the set, and the other bits are chosen to be arbitrary
constants. Then, he/she traces the evolvement of the sum of this set of plaintexts
through the encryption algorithm and builds an integral distinguisher as long as
possible. Finally, the integral distinguisher will be used to verify key guesses. In
practice, a zero-sum property in specific parts of the ciphertext is often used as
the integral distinguisher.

In quite a long time, integral attack has not been thought suitable for bit-based
block ciphers, such as Noekeon [9], Serpent [1] and PRESENT [2]. Until 2008,
Z’aba et al. proposed the bit-based integral attack [16], which was applied to
Noekeon, Serpent and PRESENT reduced up to 5, 6 and 7 rounds, respectively.
Although the bit-based integral attack does not pose a serious threat to known
block ciphers, it reveals that integral attacks may be not only suitable for byte-
based block ciphers but also still applied to bit-based block ciphers.

Many cryptanalysis methods may be not so powerful as nowadays in their
first proposals. However, with the studies getting further, they became more
and more powerful. On the one hand, new techniques may be introduced to
improve known cryptanalysis methods. For example, the partial-sum techniques
proposed by Ferguson et al. [10] enhance the ability of integral attack. On the
other hand, a cryptanalysis method may be improved using the theorem of other
cryptanalysis methods if they have some links. For example, the data complexity
of a zero-correlation attack [4] may be improved using the theorem of integral
attack [3].

Integral attack and higher-order differential attack also have some links in
constructing distinguishers. To construct a d-th order integral distinguisher with
a zero-sum property is equivalent to show that the algebraic degree of specific
parts of the ciphertext is at most d − 1, if XOR difference is considered in
the higher-order differential attack. This technique has been used, for instance,
in [15].

In this paper, we show that integral attack against bit-based block ciphers
can be improved not only by the theorem of higher-order differential attack but
also by using specific algebraic properties of Sboxes. What is more, the order
of plaintexts in a set, which is important in bit-based integral attack, is not
required here.

We focus on the bit-based block cipher PRESENT. Firstly, we analyze the
algebraic properties of PRESENT’s Sbox. We observe that the rightmost co-
ordinate of the Sbox is quadratic while other three coordinates has algebraic
degree 3. Combined it with the properties of diffusion layer, we find that, for
the rightmost bit of the output, the growth rate of its algebraic degree is slower
than other bits. Than, we propose two integral distinguishers: the first one uses
that the rightmost bit of the output after 5 rounds has a zero-sum property in
the 4 rightmost bits of the input. Similarly, the second distinguisher is based
on the fact that the rightmost bit of the output after 7 rounds has a zero-
sum property in the 16 rightmost bits of the input. Our distinguishers improve
the 3.5 round (4-th order) integral distinguisher proposed by Z’aba et al. and
the 5 round (32-th order) integral distinguisher proposed by Zhang et al [17].

Integral Attacks on Reduced-Round PRESENT 333

Finally, we applied our distinguishers to recover the keys up to 10 (out of 31)
rounds of PRESENT. All known integral attacks on reduced-round PRESENT
are summarized in Table 1.

Table 1. Summary of integral attacks on reduced-round PRESENT

Rounds Key Size Data Time Memory Attacks & Source

5 all N · 232 CP† - - (32-th order) integral distinguisher [17]
5 80 26.4 CP 225.7 - Bit-Pattern Based Integral [16]
6 80 222.4 CP 241.7 - Bit-Pattern Based Integral [16]
7 128 224.3 CP 2100.1 277 Bit-Pattern Based Integral [16]

7 80 28.3 CP 260 217 Section 5
8 80 210.1 CP 272.6 266 Section 5
9 80 220.3 CP 260 217 Section 5
10 128 222.4 CP 299.3 281 Section 5

† N is the number of sets required in a key-recover attack.

Even though we only restrict our attention on PRESENT in this work, the
algebraic techniques used in constructing longer integral distinguishers here may
be also applied to other block ciphers to improve their known integral attacks.

Outline of This Paper. In Section 2, we introduce the encryption process
of PRESENT, the definition of boolean functions and the basic idea of integral
attack. In Section 3, we analyze the properties of PRESENT’s S-box and present
some observations on the degree of boolean functions. The integral distinguishers
are constructed in Section 4 and attacks based on them are given in Section 5.
Finally, we conclude this paper.

2 Preliminaries

In this section, we briefly describe the block cipher PRESENT, boolean functions
and the integral attack.

2.1 Description of PRESENT

PRESENT [2], proposed by A. Bogdanov et.al in CHES 2007, is a 31-round
ultra-lightweight block cipher with block length 64 bits. It has two versions
supporting key length 80 bits and 128 bits, which will be denoted as PRESENT-
80 and PRESENT-128, respectively. The underlying structure of PRESENT is
a typical SP-network which has three layers in every round: AddRoundKey,
SBoxLayer and PLayer. In the AddRoundKey layer, a round key with 64 bits
is XORed to the current state. Then, one 4-bit Sbox is applied 16 times in
parallel in the SBoxLayer. Finally, a fully wired permutation P on the 64-bit
state is employed in the PLayer. The outline of one round PRESENT is shown
in Fig. 1. Notice that there is an AddRoundKey layer after round 31. The Sbox

334 S. Wu and M. Wang

Fig. 1. One round PRESENT

Table 2. The Sbox of PRESENT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

and P permutation used in PRESENT are illustrated in Table 2 and Table 3,
respectively.

The key schedule of PRESENT-80 is given below. Firstly, the 80-bit key
is stored in a key register K and represented as k79k78 . . . k0. In round i, the
most significant 64-bit keys are extracted as the subkey K(i), that is, K(i) =
k79k78 . . . k16. Then, key register K = k79k78 . . . k0 is updated as follows:

[k79k78 . . . k1k0] = [k18k17 . . . k20k19],

[k79k78k77k76] = S[k79k78k77k76],

[k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter.

We omit the key schedule of PRESENT-128 here since we do not use it in this
paper.

Table 3. The PLayer of PRESENT. Bit i of state is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

2.2 Boolean Functions

A boolean function f of n variables is a map from Fn
2 → F2. It can be expressed

as a polynomial in F2[x1, . . . , xn]/(x
2
1−x1, . . . , x

2
n−xn), called algebraic normal

form. That is,

Integral Attacks on Reduced-Round PRESENT 335

f(x1, x2, . . . , xn) =
�

Λ⊆{1,2,...,n}
aΛ
�
k∈Λ

xk. (1)

In the subsequent discussions, we denote by B2[x1, x2, . . . , xn] the set of all
boolean functions with variables x1, x2, . . . , xn. The algebraic degree (or degree)
of f , denoted by deg(f), is the number of variables in the highest order term
with nonzero coefficient. For a further step, the degree of a vectorial boolean
function from Fn

2 → Fm
2 is defined as the highest degree of its coordinates.

2.3 Integral Attack

Let E = E1 ◦ E0 be the encryption function of an r round block cipher, where
E0 is the first k rounds of E and E1 is the last r − k rounds. It can be written
formally as

Y = E(X,K) = E1(E0(X,K0),K1),

or equivalently,
E−1

1 (Y,K1) = E0(X,K0), (2)

where E−1
1 is the inverse function of E1, K is the master key, K0 and K1 are

subkeys in the first k rounds and the last r − k rounds, respectively.
In integral attacks, an attacker first selects a set of 2d plaintext, where d bit

positions of X take on all values through the set and the other bits of X are
chosen to be arbitrary constants. Then, a zero-sum property of the set of plain-
texts propagating through k round encryptions is proved, that is, an attacker
demonstrates that �

X∈Λ

E0(X,K0) = 0, (3)

where Λ is the set of 2d plaintexts. Finally, the subkey K1 in the last r−k rounds
is guessed and equation

�
X∈Λ,Y=E(X,K)

E−1
1 (Y,K1) = 0 (4)

is used to verify the guess. The remaining key bits in the master key K will be
obtained by exhausting method.

Notice that, the integral distinguisher (3) can be built upon a specific parts
of the output of E0, that is, the zero-sum property may be only valid in some
specific bits. Based on the theorem of higher-order differential attack, (3) can
be proved by showing that some specific bits of the output of E0 have degree at
most d− 1.

3 Degree of Boolean Functions and PRESENT’s Sbox

In this section, we discuss some properties for evaluating the degree of boolean
functions and then analyze the algebraic properties of PRESENT’s Sbox.

336 S. Wu and M. Wang

Some trivial bounds for operations between (vectorial) boolean functions are
summarized in Proposition 1.

Proposition 1. Suppose f, g ∈ B2[x1, x2, . . . , xn] are two boolean functions, h is
a vectorial boolean function from Fn

2 → Fn
2 , then the degree of composed function

f ◦ h, product f · g and sum f ⊕ g can be evaluated as

deg(f ◦ h) ≤ deg(f)deg(h),

deg(f · g) ≤ deg(f) + deg(g),

deg(f ⊕ g) ≤ max{deg(f), deg(g)}.

Moreover, deg(f), deg(g), deg(f ◦ h), deg(f · g) and deg(f ⊕ g) are less than or
equal to n.

These bounds are so loose that they are unfitted in some cases. Here, we
analyze the product of boolean functions and show a tighter degree bound in a
specific situation. First, we introduce the definition of m-partition.

Definition 1. Nonempty sets U1, . . . , Um is called an m-partition of U = {x1,
x2, . . . , xn}, if U = U1 ∪ · · · ∪ Um and Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ m.

Let ni be the number of variables in Ui, then n = n1+· · ·+nm. Our observation
is given below.

Proposition 2. Suppose U1, . . . , Um is an m-partition of U = {x1, x2, . . . , xn},
f1, f2, . . . , fk is a list of boolean functions satisfying:

1. For each fi, there exists a j ∈ {1, 2, . . . ,m} such that fi ∈ B2[Uj],
2. deg(fi) ≤ nj − 1,

then, for any k ≤ 2m− 1, we have

deg(f1 · f2 · · · fk) ≤ n− 1.

Proof. This can be explained as an allocation problem. Now, we have k tokens
f1, . . . , fk and m boxes B2[U1], . . . ,B2[Um]. When throwing k ≤ 2m− 1 tokens
to m boxes, there must exist a box with the condition that it contains no more
than one token. Without loss of generality, suppose this box is B2[U1].

If it’s empty, then all fis do not involve variables in U1, which implies

deg(f1 · f2 · · · fk) ≤ n− n1 ≤ n− 1.

If it contains a token fi, then, from Proposition 1, we have

deg(f1 · f2 · · · fk) ≤ deg(fi) + deg(f1 · · · fi−1 · fi+1 · · · fk)
≤ (ni − 1) + (n− ni) ≤ n− 1.

��

This property will be used for constructing integral distinguishers of
PRESENT, combining with the subsequent observations on PRESENT’s Sbox.

Integral Attacks on Reduced-Round PRESENT 337

Proposition 3. The Sbox of PRESENT is a permutation S : F4
2 → F4

2. It can be
expressed as a vectorial boolean function with four coordinates. Suppose its input
is a vector x = (x3, x2, x1, x0) and output is a vector y = (y3, y2, y1, y0), where
xi, yi ∈ F2 and 0 ≤ i ≤ 3. Then, the algebraic normal form of PRESENT’s Sbox
is: �

���
���

y3 = 1⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3;

y2 = 1⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3;

y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3;

y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2;

The correctness of Proposition 3 can be easily checked. From Proposition 3,
we immediately have

Corollary 1. The degree of PRESENT’s Sbox S is 3. However, its rightmost
coordinate is only quadratic, that is, deg(y0) = 2.

Corollary 2. Let f = cf ⊕ f0⊕ f2⊕ f3⊕ f1f2 and g = cg ⊕ g0⊕ g2⊕ g3⊕ g1g2,
where fi, gi ∈ B2[xi] for 0 ≤ i ≤ 3 and cf , cg ∈ F2 are constants, then we have
deg(f · g) ≤ 3.

According to the PLayer of PRESENT (see Fig. 1), all 16 quadratic coordi-
nates of Sboxes are translated to the rightmost 16 bits after one round encryp-
tion. Thus, we have

Observation. The growth rate of algebraic degree for the bits in the right side
of the output is slower than those in the left side.

After several rounds of encryption, the effect is finally accumulated to the
rightmost bit of the output. Therefore, in the subsequent discussions, we only
consider the degree for the rightmost bit of the output.

4 Integral Distinguishers of PRESENT

In this section, we proposed two integral distinguishers of PRESENT. We denote
by X(i) the state entering round i, Y (i) the state before the SBoxLayer, Z(i)

the state after the SBoxLayer and K(i) the subkey of round i. Thus, Y (i) =
X(i)⊕K(i). Each state and subkey can be represented as a vector of 64 bits, for

example,X(i) = (x
(i)
63 , x

(i)
62 , . . . , x

(i)
0), where x

(i)
0 is the least significant (rightmost)

bit of X(i). Additionally, let x
(i)
[j−k] be the consecutive j− k+1 bits of X(i) from

bit k to bit j, and x
(i)
[j,...,k] represents several separate bits x

(i)
j , . . . , x

(i)
k of X(i).

4.1 A 5 Round (4-th Order) Integral Distinguisher

In this subsection, we show a 4-th order integral distinguisher of PRESENT,
which provides us a 5-round integral distinguisher.

338 S. Wu and M. Wang

Proposition 4. Choose a set of 24 values in the input of round 2, where all

values of bits x
(2)

[48,32,16,0] of input X
(2) are chosen and other bits are chosen to

be arbitrary constants. Then, the rightmost bit of X(6), that is, the bit x
(6)

0 , has
a zero-sum property.

Proof. Consider x
(6)
0 as a boolean function of X(2), then we only need to prove

that x
(6)
0 ∈ B2[x

(2)
48 , x

(2)
32 , x

(2)
16 , x

(2)
0] has degree at most 3. The proof process is

shown in the phase T1 of Fig. 2.

In round 2, since x
(2)

[3−1]
are fixed, then z

(2)

[3−0]
are affine functions with only

one variable x
(2)

0 , that is, z
(2)

[3−0]
∈ B2[x

(2)

0]. Similarly, we have z
(2)

[19−16]
∈ B2[x

(2)

16],

z
(2)

[35−32]
∈ B2[x

(2)
32] and z

(2)

[51−48]
∈ B2[x

(2)
48]. Other bits of Z(2) are constants.

In round 3, we have x
(3)

[48,32,16,0] ∈ B2[x
(2)
0], x

(3)

[52,36,20,4] ∈ B2[x
(2)
16], x

(3)

[56,40,24,8] ∈
B2[x

(2)
32] and x

(3)

[60,44,28,12] ∈ B2[x
(2)
48].

In round 4, we have x
(4)

[12,8,4,0] ∈ B2[x
(2)
0], x

(4)

[13,9,5,1] ∈ B2[x
(2)
16], x

(4)

[14,10,6,2] ∈
B2[x

(2)

32] and x
(4)

[15,11,7,3] ∈ B2[x
(2)

48].

In summary, bits marked with red color (resp. green color, blue color and

purple color) in Fig. 2 are affine functions with only one variable x
(2)
0 (resp. x

(2)
16 ,

x
(2)
32 and x

(2)
48). Other bits are not considered here since they are independent

of x
(6)
0 .

In round 5, from the expression of Sbox, we have

y
(5)

i = k
(5)

i ⊕ y
(4)

4i ⊕ y
(4)

4i+2 ⊕ y
(4)

4i+3 ⊕ y
(4)

4i+1 · y
(4)

4i+2,

where y
(4)

4i+j ∈ B2[x
(2)

16j] for 0 ≤ j ≤ 3 and 0 ≤ i ≤ 3.
Finally,

deg(x
(6)

0) = deg(y
(5)

0 ⊕ y
(5)

2 ⊕ y
(5)

3 ⊕ y
(5)

1 · y(5)2)

≤ max{deg(y(5)0), deg(y
(5)

2), deg(y
(5)

3), deg(y
(5)

1 · y(5)2)}
≤ max{2, 2, 2, 3} = 3,

where the final inequation comes from Corollary 2. ��

A 5-round integral distinguisher is obtained by adding one round to the upper
side of the distinguisher given in Proposition 4.

Theorem 1. Choose a set of 24 values in the plaintext, where all values of

bits x
(1)

[3,2,1,0] of input X
(1) are chosen and other bits are chosen to be arbitrary

constants. Then, the rightmost bit of X(6), that is, the bit x
(6)
0 , has a zero-sum

property.

Integral Attacks on Reduced-Round PRESENT 339

Proof. It’s based on the fact that x
(1)

[3−0]
→ x

(2)

[48,32,16,0] is a permutation (see the

phase T2 of Fig. 2 with bold line). We have

�

x
(2)

[48,32,16,0]
∈F4

2

RK(5) ◦ · · · ◦RK(2) (x
(2)

[48,32,16,0]
, c′) =

�

x
(1)

[3−0]
∈F4

2

RK(5) ◦ · · · ◦RK(1) (x
(1)

[3−0]
, c),

(5)

where RK(i) is the round function with key K(i), c is the constant chosen in the
plaintext and c′ is the constant deduced from c by one round encryption. ��

Fig. 2. 4-th order integral distinguisher of PRESENT

340 S. Wu and M. Wang

4.2 A 7 Round (16-th Order) Integral Distinguisher

In this subsection, we show a 16-th order integral distinguisher of PRESENT,
which provides us a 7-round integral distinguisher.

Proposition 5. Choose a set of 216 values in the input of round 3, where all

values of bits x
(3)

4j (0 ≤ j ≤ 15) of input X(3) are chosen and other bits are

chosen to be arbitrary constants. Then, the rightmost bit of X(8), that is, the bit

x
(8)
0 , has a zero-sum property.

Proof. Consider x
(8)
0 as a boolean function of X(3), then we only need to prove

that x
(8)
0 ∈ B2[x

(3)
60 , x

(3)
56 , . . . , x

(3)
4 , x

(3)
0] has degree at most 15. The proof process

is shown in the phase T1 of Fig. 3.

In round 3, we have z
(3)

[4j+3,4j+2,4j+1,4j] ∈ B2[x
(3)

4j] (0 ≤ j ≤ 15).

In round 4, we have y
(4)

i ∈ B2[x
(3)

4j] (0 ≤ i ≤ 63), where j = i mod 16.

In round 5, from the expression of PRESENT’s Sbox, we have y
(5)

i ∈
B2[x

(3)

16j+12, x
(3)

16j+8, x
(3)

16j+4, x
(3)

16j] and deg(y
(5)

i) ≤ 3, where 0 ≤ i ≤ 63 and j = i
mod 4.

In summary, bits marked with red color (resp. green color, blue color and

purple color) in Fig. 3 are boolean functions in B2[x
(3)

12 , x
(3)

8 , x
(3)

4 , x
(3)

0] (resp.

B2[x
(3)

28 , x
(3)

24 , x
(3)

20 , x
(3)

16], B2[x
(3)

44 , x
(3)

40 , x
(3)

36 , x
(3)

32] and B2[x
(3)

60 , x
(3)

56 , x
(3)

52 , x
(3)

48]) and
have degree at most 3.

Now, we consider x
(8)

0 as a boolean function of Y (5). Then, x
(8)

0 ∈ B2[y
(5)

[63−0]
]

has representation

x
(8)

0 =
�

Λ⊆{0,1,2,...,63}
aΛ
�
k∈Λ

y
(5)

k . (6)

Notice that x
(8)

0 is also a boolean function in B2[x
(3)

60 , . . . , x
(3)

4 , x
(3)

0]. Thus, in the

following discussions, we have to show that each term aΛ
�

k∈Λ y
(5)

k ∈ B2[x
(3)
60 , . . . ,

x
(3)
4 , x

(3)
0] with aΛ �= 0 has degree at most 15.

First, we show that deg(
�

k∈Λ y
(5)

k) ≤ 15 if |Λ| ≤ 7. Here, |Λ| is the number of

elements in set Λ. Denote by U = {x(3)

4j |0 ≤ j ≤ 15} and Uk = {x(3)

16k+12, x
(3)

16k+8,

x
(3)

16k+4, x
(3)

16k} for 0 ≤ k ≤ 3, then U0, . . . , U3 is a 4-partition of U . Notice that

y
(5)

i (0 ≤ i ≤ 63) satisfies the condition of Proposition 2, which implies that

deg(
�

k∈Λ y
(5)

k) ≤ 15 if |Λ| ≤ 7. Therefore, we only need to check the terms

aΛ
�

k∈Λ y
(5)

k with aΛ �= 0 and |Λ| ≥ 8.
Secondly, we show that aΛ is always zero in (6) if |Λ| > 8. According to

Proposition 3 and Proposition 1, we have deg(y
(6)

[15−0]
) ≤ 2, deg(y

(7)

[3−0]
) ≤ 4

and deg(x
(8)
0) ≤ 8 if y

(6)

[15−0]
, y

(7)

[3−0]
and x

(8)
0 are viewed as boolean functions in

B2[y
(5)

[63−0]
]. Thus, in (6), all aΛ = 0 if |Λ| ≥ 9, which implies that we only need

to consider the terms with |Λ| = 8.

Integral Attacks on Reduced-Round PRESENT 341

Thirdly, we show that only one term in (6) may have |Λ| = 8. According to the

algebraic normal form of PRESENT’s Sbox, x
(8)
0 ∈ B2[y

(5)

[63−0]
] can be expressed

as follows.

x
(8)
0 = y

(7)
0 ⊕ y

(7)
2 ⊕ y

(7)
3 ⊕ y

(7)
1 y

(7)
2 � y

(7)
1 y

(7)
2

= (k
(7)
1 ⊕ y

(6)
4 ⊕ y

(6)
6 ⊕ y

(6)
7 ⊕ y

(6)
5 y

(6)
6)(k

(7)
2 ⊕ y

(6)
8 ⊕ y

(6)
10 ⊕ y

(6)
11 ⊕ y

(6)
9 y

(6)
10)

� y
(6)

5 y
(6)

6 y
(6)

9 y
(6)

10 � y
(5)

21 y
(5)

22 y
(5)

25 y
(5)

26 y
(5)

37 y
(5)

38 y
(5)

41 y
(5)

42 ,

where � means that the terms with degree 8 can only appear in these products.

Thus, the remaining work is to prove that y
(5)
21 y

(5)
22 y

(5)
25 y

(5)
26 y

(5)
37 y

(5)
38 y

(5)
41 y

(5)
42 is a

boolean function with degree at most 15 in B2[x
(3)
60 , x

(3)
56 , . . . , x

(3)
4 , x

(3)
0].

Finally, we show that y
(5)
21 y

(5)
22 y

(5)
25 y

(5)
26 y

(5)
37 y

(5)
38 y

(5)
41 y

(5)
42 ∈ B2[x

(3)
60 , . . . , x

(3)
4 , x

(3)
0]

has degree less than 15. Since y
(5)

[41,37,25,21] ∈ B2[x
(3)
28 , x

(3)
24 , x

(3)
20 , x

(3)
16] and

y
(5)

[42,38,26,22] ∈ B2[x
(3)
44 , x

(3)
40 , x

(3)
36 , x

(3)
32], we have

deg(y
(5)

21 y
(5)

22 y
(5)

25 y
(5)

26 y
(5)

37 y
(5)

38 y
(5)

41 y
(5)

42) ≤ 8.

In summary, x
(8)
0 ∈ B2[x

(3)
60 , x

(3)
56 , . . . , x

(3)
4 , x

(3)
0] has degree

deg(x
(8)

0) = max{deg(
�

k∈Λ,|Λ|≤7

y
(5)

k), deg(y
(5)

21 y
(5)

22 y
(5)

25 y
(5)

26 y
(5)

37 y
(5)

38 y
(5)

41 y
(5)

42)} ≤ 15.

��

A 7-round integral distinguisher is obtained by adding two rounds to the
upper side of the distinguisher given in Proposition 5.

Theorem 2. Choose a set of 216 values in the plaintext, where all values of

bits x
(1)

[15−0]
of input X(1) are chosen and other bits are chosen to be arbitrary

constants. Then, the rightmost bit of X(8), that is, the bit x
(8)
0 , has a zero-sum

property.

Proof. It’s based on the fact that x
(1)

[15−0]
→ x

(3)

[60,56,...,4,0] is a permutation. This

permutation is shown in phase T2 of Fig. 3 with bold line. ��

5 Integral Attack on Reduced-Round PRESENT

In this section, we attack reduced-round PRESENT using the 4-th order integral
distinguisher and 16-th order integral distinguisher.

The general attack procedure is given as follows.

1. Choose a set of 2n (n = 4 or n = 16) plaintexts to construct a structure,
where the rightmost n bits take all possible values of Fn

2 while other bits are
chosen to be arbitrary constants over F2. Obtain the corresponding cipher-
texts after r-round encryption.

342 S. Wu and M. Wang

Fig. 3. 16-th order differential characteristics of PRESENT

Integral Attacks on Reduced-Round PRESENT 343

2. For every guessing of the corresponding subkeys in the last (r −m) rounds,

decrypt the ciphertexts to obtain the one bit state y
(m+1)
0 after the m-th

round, where m is the length of integral distinguishers.

3. Check whether
�

Λ y
(m+1)
0 (=

�
Λ x

(m+1)
0) is zero, where Λ with |Λ| = 2n

is the set of chosen plaintexts. If the equation is not satisfied, we know the
guessed subkey is wrong. Then, we guess another subkey and repeat until
the correct subkey is found.

4. Recover the remaining key bits in the master key by exhausting method.

Suppose we need to guess k bit subkey in the last (r −m) rounds, the com-
plexity of this attack can be estimated as follows. Step 1 needs about 2n plain-
texts which requires 2n encryptions. In step 2 and step 3, a subkey needs about
r−m
r ×2n encryptions. For a wrong subkey guess, equation

�
Λ y

(m+1)
0 = 0 holds

with probability 1
2
. Therefore, to discard all the wrong k-bit subkey guesses, we

need about k plaintext structures. Suppose the master key has |K| bits, then
the time complexity of step 4 is about 2|K|−k r-round encryptions.

Thus, the data complexity is about k × 2n chosen plaintexts. The time com-
plexity in recovering these k key bits is about

k	
i=1

(2n + 2n × r −m

r
2k × (

1

2
)i−1) ≈ r −m

r
× 2n+k+1 (7)

r-round encryptions. So, the final time complexity ismax{ r−m
r ×2n+k+1, 2|K|−k}.

A total of 2k bits are required to keep track of possible values for the k key bits,
so the memory complexity is 2k−3 bytes.

To attack r = m+2 round PRESENT, we need to guess 4 key bits k
(m+2)

[48,32,16,0]

in K(m+2), 16 key bits k
(m+3)

4j for 0 ≤ j ≤ 15 in K(m+3) to obtain state y
(m+1)

0 .
Thus, when considering the 4-th order integral attack, we have n = 4, m = 5,
r = 7 and k = 20. In this case, we can recover 20 bit keys of 7-round PRESENT
with data complexity 20×24 ≈ 28.3, time complexity 2

7
×24+20+1 ≈ 223.2 7-round

encryptions and memory 217 bytes. To recover the master key of PRESENT-80,
we have to exhaust the remaining 60 key bits. Thus, the final time complexity is
260. Similarly, when considering 16-th order differential attack, we can recover
20 bit keys of 9-round PRESENT with data complexity 220.3, time complexity
234.8 9-round encryptions and memory 217 bytes. To recover the master key of
PRESENT-80, the final time complexity is 260.

To attack r = m + 3 round PRESENT, we need to guess all of 64 key
bits in K(m+4) additionally, totally guessing 84 key bits. Utilizing the 16-th
order integral, we can attack 10 rounds of PRESENT-128 with data complex-
ity 222.4, time complexity 299.3 10-round encryptions and memory 281 bytes.
The remaining 44 key bits can be obtained easily by exhausting method. To
attack 8 rounds of PRESENT-80 using 4-th order integral, we need some prop-
erties of the key schedule. After examining the key schedule for 80-bit keys, we

find that bits k
(m+3)

4j for j = 0 or 5 ≤ j ≤ 15 in K(m+3) and bits k
(m+2)

[48,16,0] in

K(m+2) are given from guessing all of K(m+4). Thus, in total we need to guess

344 S. Wu and M. Wang

64 + (16 − 12) + (4 − 3) = 69 bits of key, which leads to an attack of 8-round
PRESENT-80 with data complexity 210.1, time complexity 272.6 8-round encryp-
tions and memory 266 bytes. The remaining 11 key bits can be obtained easily
by exhausting method.

6 Discussions and Conclusions

In this paper, we discuss the integral attack against bit-based block ciphers.
We focus on the block cipher PRESENT and show that integral attack can
be improved not only by the theorem of higher-order differential attack but
also by using specific algebraic properties of Sboxes. What is more, the order
of plaintexts in a set, which is important in bit-based integral attack, is not
required here.

Combined with the algebraic properties of PRESENT’s Sbox and its diffusion
layer, we proposed two integral distinguishers: one 5 round (4-th order) integral
distinguisher and one 7 round (16-th order) integral distinguisher, where the
latter is the longest integral distinguisher of PRESENT as far as we know. Based
on the integral distinguishers proposed in this paper, 10 (out of 31) rounds of
PRESENT can be attacked.

Although the number of attack rounds in this paper are not so impressive
as other statistical attacks [6,7,14], it is the first time that some new algebraic
properties for constructing integral distinguishers of PRESENT are reported.
For a further step, the algebraic techniques used in constructing longer integral
distinguishers here may be also applied to other block ciphers to improve their
known integral attacks.

Acknowledgements. We are grateful to the anonymous reviewers for their
valuable comments on this paper. This work was supported by the National
Basic Research Program of China (Grant No. 2013CB834203 and Grant No.
2013CB338002) and the National Natural Science Foundation of China (Grant
No. 11171323).

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard. NIST AES Proposal (1998),
http://www.cl.cam.ac.uk/rja14/serpent.html

2. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

3. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimen-
sional Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

4. Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Designs, Codes and Cryptography (2012)

http://www.cl.cam.ac.uk/rja14/serpent.html

Integral Attacks on Reduced-Round PRESENT 345

5. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

6. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

7. Collard, B., Standaert, F.X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 195–210. Springer, Heidelberg (2009)

8. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

9. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: NOEKEON.
In: First Open NESSIE Workshop (2000), http://gro.noekeon.org/

10. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

11. Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

12. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proc. Sympo-
sium on Communication, Coding and Cryptography, in Honor of J. L. Massey on
the Occasion of his 60th Birthday, Kluwer Academic Publishers, Dordrecht (1994)

13. Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In:
Proc. 3rd AES Candidate Conf., pp. 215–229 (2000)

14. Wang, M.: Differential Cryptanalysis of reduced-round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

15. Yu, X., Wu, W., Li, Y., Zhang, L.: Cryptanalysis of Reduced-Round KLEIN Block
Cipher. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537,
pp. 237–250. Springer, Heidelberg (2012)

16. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008)

17. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending Higher-Order Integral:
An Efficient Unified Algorithm of Constructing Integral Distinguishers for Block
Ciphers. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341,
pp. 117–134. Springer, Heidelberg (2012)

http://gro.noekeon.org/

Computationally Efficient Expressive Key-Policy

Attribute Based Encryption Schemes
with Constant-Size Ciphertext

Y. Sreenivasa Rao and Ratna Dutta

Indian Institute of Technology Kharagpur
Kharagpur-721302, India

{ysrao,ratna}@maths.iitkgp.ernet.in

Abstract. In this paper, we present two attribute based encryption
(ABE) schemes for monotone access structure (MAS) in the key-policy
setting, where secret key is generated according to a MAS, ciphertext
is associated with a set of attributes and decryption is possible only if
the attribute set satisfies the MAS. The first scheme is secure against
chosen plaintext attacks (i.e., CPA secure) while the second scheme is
secure against chosen ciphertext attacks (i.e., CCA secure). The security
proofs are free from the random oracle heuristic. The most interesting
features of both schemes are constant-size ciphertext, constant number
of bilinear pairing evaluations and low computation cost (in terms of ex-
ponentiations) compared with previous schemes. We further propose two
non-monotone access structure (nonMAS) variants, one is CPA secure
and another is CCA secure, by using the idea of transforming a non-
MAS over attributes to a MAS over attributes and their negation. These
key-policy ABE schemes for nonMAS preserve the same functionality as
that of MAS primitives. While the secret key in all our constructions
has quadratic size in the number of attributes, the number of pairing
evaluations is constant. The (CPA and CCA) security of all our schemes
are proved under the decisional n-Bilinear Diffie-Hellman Exponent as-
sumption over prime order groups in the selective model.

Keywords: key-policy, attribute-based encryption, constant-size cipher-
text, (non-)monotone access structure, chosen ciphertext security.

1 Introduction

Functional Encryption (FE) [4] is a new version of public key encryption that
facilitates sophisticated and flexible relations between the “parameters” of secret
keys and ciphertexts where either (i) secret key is generated according to a
parameter A and ciphertext is associated with another parameter W , yielding
Key-Policy FE (KP-FE) or (ii) ciphertext is created according to a parameter A
and secret key is associated with another parameter L, yielding Ciphertext-Policy
FE (CP-FE). Decryption is successful in key-policy (or ciphertext-policy) FE if
and only if a relation RKP (A,W) (or RCP (L,A)) holds. A FE is an Attribute

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 346–362, 2013.
c© Springer International Publishing Switzerland 2013

{ysrao,ratna}@maths.iitkgp.ernet.in

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 347

Based Encryption (ABE) [1,2,3] if one of the parameters for ciphertext and secret
key is a tuple of attributes, and the other is an access structure or monotone
span program over a set of attributes, wherein the relation RKP (or RCP) is
an “inclusion” relation, i.e., RKP (A,W) (or RCP (L,A)) holds if and only if
W ∈ A (or L ∈ A). In this case, KP-FE (or CP-FE) is called as Key-Policy ABE
(KP-ABE) [2] (or Ciphertext-Policy ABE (CP-ABE) [3]).

The first ABE system introduced by Sahai and Waters [1] is considered as a
KP-ABE with threshold access policy. Later, Goyal et al. [2] designed the first
KP-ABE for Monotone Access Structure (MAS). There are quite a number of
KP-ABE schemes [6,5,4] that allow Non-Monotone Access Structure (nonMAS).
While all the schemes mentioned so far are proven to be selectively Chosen
Plaintext Attacks (CPA) secure where the adversary commits to her target before
the simulation is set up, the works presented in [7,4] achieve full CPA security.
Attrapadung et al. [8] proposed the first constant-size ciphertext selectively CPA
secure KP-ABE for MAS as well as nonMAS over prime order groups with
constant number of bilinear pairings, but secret key size is quadratic in the
number of attributes. Independent of this work, Wang and Luo [9] proposed
another KP-ABE for MAS with the same functionality as that of [8]. However,
their scheme is proven to be secure in the random oracle assumption, while [8]
does not use any such random oracle heuristic.

Security against Chosen Ciphertext Attacks (CCA) for ABE is a challenging
task and has received little attention so far. The KP/CP-ABE schemes [2,11,4]
used CHK (Canetti-Halevi-Katz) technique [10] to achieve CCA security in the
standard model (without random oracles). They associate one-time signature
keys with each encryption operation in combination with the delegation mech-
anism that uses key of one access structure A to construct a key for another
access structure A′ which is more restricted than A. Resulting CCA secure ABE
schemes have linear-size ciphertexts. Generalizing this idea, Yamada et al. [12]
proposed a generic construction of CCA secure ABE and proved that any CPA
secure ABE scheme preserving either delegatability or verifiability generically
yields a CCA secure ABE primitive in the standard model. Note that it is easy
to extend CPA security to CCA security in the random oracle model by applying
Fujisaki-Okamoto transformation [13]. To the best of our knowledge, there is no
constant-size ciphertext KP-ABE for expressive access policies (MAS as well as
nonMAS) that is CCA secure in the standard model.
Our Contribution. The main focus of this article is to construct computa-
tionally efficient constant-size ciphertext KP-ABE schemes for Linear Secret-
Sharing Scheme (LSSS)-realizable MAS as in [8,9] as well as nonMAS providing
both CPA and CCA security in the standard model. To this end, we propose
four KP-ABE schemes having the following unique features: (i) constant-size
ciphertext, (ii) constant number of bilinear pairing evaluations, (iii) constant
computation cost during encryption, (iv) O(|I|) exponentiations in decryption,
where |I| is the number of rows of LSSS matrix used in the decryption, and (v)
secret key size O(� ·n) group elements, where � is the number of rows in the user
LSSS matrix, n is the number of attributes in the attribute space.

348 Y.S. Rao and R. Dutta

Table 1. Comparison of constant-size ciphertext KP-ABE for MAS and nonMAS

SK Size CT Size Enc. Cost Dec. Cost
Scheme EG EG + EGT + EZ ExG ExGT ExG Pairings Security

MAS
[8,9] O(� · n) 2 + 1 + 0 O(φ) 1 O(|I | · φ) 2 sCPA

Scheme I O(� · n) 2 + 1 + 0 2 1 O(|I |) 2 sCPA
Scheme II O(� · n) 3 + 1 + 1 5 1 O(|I |) 6 sCCA

nonMAS
[8] O(� · n) 3 + 1 + 0 O(φ) 1 O(|I | · φ) 3 sCPA

Scheme III O(� · n) 3 + 1 + 0 3 1 O(|I |) 3 sCPA
Scheme IV O(� · n) 4 + 1 + 1 6 1 O(|I |) 9 sCCA

EG (resp. EGT , EZ) = number of elements in a group G (resp. GT ,Zp), ExG (resp.
ExGT) = number of exponentiations in a group G (resp. GT), � = number of rows in
the user LSSS access structure matrix, n = number of attributes used in the system,
φ = number of attributes in a ciphertext, n = maximum number of attributes that
can be associated with a ciphertext, |I | = number of rows of LSSS matrix used in the
decryption, sCPA (resp. sCCA) = selective CPA (resp. CCA) security, SK = Secret
Key and CT = Ciphertext. Note that n = n in the small universe setting.

We use the threshold public key encryption framework of [14] to design our
basic construction, referred as Scheme I, which realizes monotone LSSS access
structure. We further extend our monotone KP-ABE approach to non-monotone
KP-ABE by using the technique of [6] for transforming a nonMAS over attributes
to a MAS over attributes and their negation. The resulting nonMAS KP-ABE
construction is referred as Scheme III. Both the Scheme I and Scheme III are
proven to be selectively CPA secure (as [8,9]) in the standard model under the de-
cisional n-Bilinear Diffie-Hellman Exponent (n-BDHE) assumption over prime
order bilinear groups. Finally, to enhance the CPA security of our basic con-
structions for MAS and nonMAS to CCA security, we incorporate the technique
of CCA secure public key encryption of [15]. The generic conversions proposed
in [12] transform the existing constant-size ciphertext KP-ABE schemes [8,9]
to CCA secure schemes which no longer exhibit constant ciphertext-size as the
conversion appends additional (dummy) attributes to the ciphertext. This new
attribute addition incurs additional overhead which is linear to the number of
attached attributes. In sum, we believe that our Scheme II for MAS and Scheme
IV for nonMAS are the first CCA secure KP-ABE schemes with all the properties
listed above.

In Table 1, we provide a detailed comparison between our schemes and the
previous KP-ABE schemes [8,9] with constant-size ciphertext proposed so far.
As the number, n, of attributes in the attribute universe is a factor of the se-
cret key size, our constructions deal only with small attribute universe, thereby
the attributes are fixed at system setup phase as in [7,1,2,16,8]. The KP-ABE
schemes [8,9] are large universe constructions with a bound, n, on the number
of attributes that can be annotated to a ciphertext. For a fair comparison, we
consider the small universe variants of the schemes [8,9]. Under this assump-
tion, n = n, i.e., there is no bound on the number of ciphertext attributes. Our

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 349

Table 2. Comparison of our large universe KP-ABE for MAS with [8,9]

Public SK Size CT Size Enc. Cost Dec. Cost
Scheme Key Size EG EG + EGT ExG ExGT ExG Pairings Security

MAS
[8,9] O(n) O(� · n) 2 + 1 O(n) 1 O(|I | · n) 2 sCPA

Scheme V O(1) O(�2) (φ+ 1) + 1 O(φ) 1 O(|I |) 2 sCPA

schemes need only O(|I|) exponentiations and 2 pairing computations to decrypt
any ciphertext, |I| being the number of rows of LSSS matrix used in the decryp-
tion. On the contrary, the existing constant-size ciphertext KP-ABE schemes
[8,9] perform O(|I| · φ) exponentiations followed by 2 pairing computations to
decrypt a ciphertext, where φ denotes the number of attributes associated with
a ciphertext. This could be very expensive in terms of exponentiations in certain
situations. For instance, if a decryptor receives a ciphertext with 1000 attributes,
our schemes require 20 exponentiations (if |I| = 10) and 2 pairing operations
to decrypt that ciphertext. On the other hand, the schemes [8,9] require 10,000
exponentiations and 2 pairing operations to decrypt the same ciphertext. The
encryptor executes 1000 exponentiations to compute the above ciphertext in
[8,9], while that for our Scheme I is only 2. Thus, the schemes [8,9] in the large
universe setting cannot yield directly KP-ABE constructions for small attribute
universe that are computationally efficient, supporting expressive access policies
and achieving constant-size ciphertext. We believe that our new constructions
are of independent interest in the small universe setting as they outperform the
KP-ABE schemes of [8,9] in terms of exponentiations, thereby can efficiently be
deployed in practice.

By using the similar ideas in [16,14], our basic construction, Scheme I, can be
extended to large universe setting (referred as Scheme V, see Section 5) wherein
the attribute parameters are dynamically computed after the system setup by
using a hash function, while the ciphertext-size is proportional to the number of
attributes in it. However, it still preserves the decryption efficiency analogous to
our small universe construction. The large universe constructions of [8,9] place
a bound, n, on the maximum number of attributes to encrypt each message
in the system. This makes the system infeasible and the size of public key is
proportional to this bound n. On the other hand, Scheme V is free from any
such system-wide limitations and exhibits constant-size public parameters. But,
as in [9], the scheme is secure in the random oracle model. The secret key size
of [8,9] increases by a factor of n, while that for our Scheme V only increases
by a factor of the number of attributes in user secret key. In sum, while all the
proposed schemes present faster decryption capabilities over previous proposals,
we achieve a controllable trade-off between the ciphertext size and the attribute
universe size. In Table 2, we compare our large universe construction with the
previous schemes [8,9]. Even though we show some of the improvements over
previous schemes [8,9], the work of Attrapadung et al. [8] is a major step forward
in designing expressive KP-ABE schemes with constant-size ciphertexts.

350 Y.S. Rao and R. Dutta

2 Background

Notation. Let x ∈R X denote the operation of picking an element x uniformly
at random from the set X. We denote the set {1, 2, . . . , n} as [n].

In this section, we recall necessary background from [16,7].

Definition 1 (Access Structure). Let U be the universe of attributes and
P(U) be the collection of all subsets of U. Every subset A of P(U) \ {∅} is called
an access structure. An access structure A is said to be monotone access structure
(MAS) if for any C ∈ P(U), with C ⊇ B where B ∈ A implies C ∈ A.

2.1 Linear Secret-Sharing Schemes (LSSS)

Let U be the universe of attributes. A secret-sharing scheme ΠA for the access
structure A over U is called linear (in Zp) if ΠA consists of the following two
polynomial-time algorithms, where M is a matrix of size �× k, called the share-
generating matrix for ΠA and ρ : [�] → IU is a row labeling function that maps
each row of the matrix M to an attribute in A, IU being the index set of U.

(i) Distribute(M, ρ, α): This algorithm takes as input the share-generating ma-
trix M, row labeling function ρ and a secret α ∈ Zp which is to be shared. It
randomly selects z2, z3, . . . , zk ∈R Zp and sets v = (α, z2, z3, . . . , zk) ∈ Zk

p .

It outputs a set {Mi · v : i ∈ [�]} of � shares, where Mi ∈ Zk
p is the i-th row

of matrix M. The share λρ(i) = Mi · v belongs to an attribute ρ(i).
(ii) Reconstruct(M, ρ,W): This algorithm will accept as input M, ρ and a set of

attributes W ∈ A. Let I = {i ∈ [�] : ρ(i) ∈ IW }, where IW is index set of
the attribute set W. It returns a set {ωi : i ∈ I} of secret reconstruction
constants such that

∑
i∈I ωiλρ(i) = α, if {λρ(i) : i ∈ I} is a valid set of shares

of the secret α according to ΠA.

Lemma 1. Let (M, ρ) be a LSSS access structure realizing an access structure
A over the universe U of attributes, where M is share-generating matrix of size
�×k, and W ⊂ U. If W /∈ A (in other words, W does not satisfy M), there exists
a polynomial time algorithm that outputs a vector w = (−1, w2, . . . , wk) ∈ Zk

p

such that Mi ·w = 0, for each row i of M for which ρ(i) ∈ IW .

2.2 Bilinear Maps and Hardness Assumption

We use multiplicative cyclic groups (G,GT) of prime order p with an efficiently
computable mapping e : G×G→ GT such that e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G,
a, b ∈ Zp and e(g, g) �= 1T , where 1T is the unit element in GT .
Decisional n-BDHE Assumption. An algorithm (or distinguisher) D for
solving the decisional n-BDHE (Bilinear Diffie-Hellman Exponent) problem in
(G,GT) takes as input a tuple (−→y a,s, Z) ∈ G2n+1 ×GT , where a, s ∈R Zp, g ∈R

G, gi = ga
i

, ∀i ∈ [2n],−→y a,s = (g, gs, g1, . . . , gn, gn+2, . . . , g2n) and determines

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 351

whether Z = e(gn+1, g
s) or a random element in GT . The advantage of a 0/1-

valued algorithm D in solving the decisional n-BDHE problem in (G,GT) is
defined to be Advn-dBDHE

D = |Pr [D(−→y a,s, Z) = 1|Z = e(gn+1, g
s)]

− Pr [D(−→y a,s, Z) = 1|Z is random] |.

Definition 2. The decisional n-BDHE problem in (G,GT) is said to be (T , ε)-
hard if the advantage Advn-dBDHE

D ≤ ε, for any probabilistic polynomial-time
(PPT) distinguisher D running in time at most T .

2.3 KP-ABE Template

Let U be the attribute universe. A single trusted central authority (CA) manages
all the attributes and its keys, and is responsible for issuing secret keys to users
according to access structure of user attributes. The KP-ABE scheme consists
of the following four algorithms.

Setup(κ, U). This algorithm is run by the CA and takes as input a security
parameter κ and the attribute universe U. It returns public key PK and
master secret key MK. The secret key MK is kept secret by CA and the
public key PK is made public.

KeyGen(PK,MK,A). The CA runs this algorithm with the input PK,MK and
an access structure A. It outputs the secret key SKA associated with A.

Encrypt(PK,M,W). An encryptor will execute this algorithm with the input
PK, a messageM to be encrypted under a setW of attributes. It then returns
a ciphertext CTW in such a way that only the user with access structure A
satisfied by W can decrypt CTW .

Decrypt(PK, SKA,CTW). This algorithm is run by decryptor and takes as in-
put PK, SKA and CTW . It outputs the message M encrypted under a set W
of attributes if the access structure A embedded in decryptor’s secret key
SKA is satisfied by W , otherwise decryption will fail.

2.4 Selective-Set Security Model for KP-ABE

We describe IND-sCPA (ciphertext indistinguishability under selective-set cho-
sen plaintext attacks) security model in terms of a game GameIND−sCPA carried
out between a challenger and an adversary. The challenger executes the relevant
KP-ABE algorithms in order to answer the queries from the adversary. The game
is as follows:
Init. The adversary announces a set W ∗ of attributes that he wishes to be
challenged upon.
Setup. The challenger executes the Setup algorithm and gives public key PK
to the adversary.
Query Phase 1.The adversary is allowed to make secret key queries for an
access structure A subject to the constraint that W ∗ must not satisfy the ac-
cess structure A. The challenger then runs KeyGen algorithm and returns the
corresponding secret key SKA to the adversary. This process can be repeated
polynomial number of times.

352 Y.S. Rao and R. Dutta

Challenge. The adversary submits two equal length messages M0,M1. The
challenger flips a random coin μ ∈ {0, 1} and runs Encrypt algorithm in order
to encrypt Mμ under W ∗. The resulting challenge ciphertext CTW∗ is given to
the adversary.
Query Phase 2. Query Phase 1 is repeated.
Guess. The adversary outputs a guess bit μ′ ∈ {0, 1} for the challenger’s secret
coin μ and wins if μ′ = μ.

The advantage of an adversary A in the IND-sCPA game is defined to be
AdvA(GameIND−sCPA) = |Pr[μ′ = μ]− 1

2
|, where the probability is taken over all

random coin tosses of both adversary and challenger.
We note that the foregoing security model can easily be extended to IND-

sCCA (ciphertext indistinguishability under selective-set chosen ciphertext at-
tacks) security model by allowing decryption queries in Query Phase 1, 2, with
the restriction that no decryption query is allowed on challenge ciphertext CTW∗ .

Definition 3. A KP-ABE scheme is said to be (T , q, ε)-IND-sCPA secure if the
advantage AdvA(GameIND−sCPA) ≤ ε, for any PPT adversary A running in time
at most T that makes at most q secret key queries in the foregoing selective-set
CPA security game.

Definition 4. A KP-ABE scheme is said to be (T , q, qD, ε)-IND-sCCA secure
if the advantage AdvA(GameIND−sCCA) ≤ ε, for any PPT adversary A running
in time at most T that makes at most q secret key queries and qD decryption
queries in the selective-set CCA security game.

3 KP-ABE for Monotone Access Structures

In this section, we first present our efficient KP-ABE scheme with constant-size
ciphertext that provides selective CPA (sCPA) security. We further enhance the
sCPA security to selective CCA (sCCA) security by using the technique of CCA
secure public key encryption of [15]. In these two constructions, every monotone
access structure (MAS) is represented by LSSS access structure (M, ρ).

3.1 Scheme I: Basic sCPA Secure Scheme

Setup(κ, U). On receiving the implicit security parameter κ, this algorithm
generates a prime number p, a bilinear group G, a generator g ∈R G and a
bilinear map e : G × G → GT , where G and GT are multiplicative groups
of order p. It then chooses a random α ∈R Zp and h0 ∈R G, and for each
attribute attj ∈ U, it randomly chooses hj ∈R G, for all j ∈ [n]. The public
key is PK = 〈p, g, h0, Y = e(g, g)α, h1, h2, . . . , hn〉 and the master secret key
is MK = α.

KeyGen(PK,MK, (M, ρ)). HereM is a share-generating matrix of size �×k and
ρ is a mapping from each row i of M to an attribute attρ(i). The CA first exe-
cutes Distribute(M, ρ, α) and obtains a set {λρ(i) = Mi·v : i ∈ [�]} of � shares,
where v ∈R Zk

p such that v ·1 = α (here, 1 = (1, 0, . . . , 0) is a vector of length
k). For each row i ∈ [�], it chooses a random exponent ri ∈R Zp and computes

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 353

Di = gλρ(i)(h0hρ(i))
ri , D′

i = gri , D′′
i =

{
D′′

i,j : D
′′
i,j = hri

j , ∀j ∈ [n] \ {ρ(i)}
}
.

The CA then returns the secret key SK(M,ρ) = 〈(M, ρ), {Di, D
′
i, D

′′
i : i ∈ [�]}〉

associated with (M, ρ).
Encrypt(PK,M,W). To encrypt a message M ∈ GT under a set W of at-

tributes, the encryptor selects s ∈R Zp and computes C = MY s, C1 = gs

and C2 = (h0

∏
attj∈W hj)

s. It outputs the ciphertext CTW = 〈W,C,C1, C2〉.
Decrypt(PK, SK(M,ρ),CTW). The decryptor first runs Reconstruct(M, ρ,W) to

obtain a set {ωi : i ∈ I} of reconstruction constants, where I = {i ∈ [�] :
attρ(i) ∈W}. If W satisfies the access structure (M, ρ), then

∑
i∈I ωiλρ(i) =

α. The decryptor computes E1, E2 as follows:

E1 =
∏
i∈I

⎛⎝Di ·
∏

attj∈W,j �=ρ(i)

D′′
i,j

⎞⎠ωi

, E2 =
∏
i∈I

(D′
i)

ωi .

The message M can be obtained by computing C · e(C2, E2)/e(C1, E1).

Theorem 1 (Security Proof). If the attribute universe U has n attributes
then our Scheme I is (T , q, ε)-IND-sCPA secure, assuming that the decisional
n-BDHE problem in (G,GT) is (T ′, ε′)-hard, where T ′ = T +O(n2) · q · Te and
ε′ = ε/2. Here, Te denotes the running time of one exponentiation in G.

Proof. Suppose that an adversary A can (T , q, ε)-break our Scheme I in the
IND-sCPA security model. We will show that the decisional n-BDHE problem
in (G,GT) is not (T ′, ε′)-hard.

Suppose a distinguisherD is given the decisional n-BDHE challenge (−→y a,s, Z),

where −→y a,s = (g, gs, g1, . . . , gn, gn+2, . . . , g2n), gi = ga
i

, and Z = e(gn+1, g
s) or

Z is a random element of GT . Now, the distinguisher D plays the role of a
challenger in GameIND−sCPA and interacts with A in order to solve the decisional
n-BDHE problem (i.e., D attempts to output 1 if Z = e(gn+1, g

s) and 0 other-
wise) as follows.

Init. The adversary A outputs the target attribute set W ∗.

Setup. The distinguisher D selects a random value α′ ∈R Zp and implicitly sets

α = α′ + an+1 by letting Y = e(g, g)α = e(g, g)α
′
e(ga, ga

n

).
The distinguisher D then programs the parameters {hi : i ∈ [n]} as follows.

For i ∈ [n], D chooses a random value ti ∈R Zp and computes hi = gtign+1−i.
Furthermore, to program h0, the distinguisher selects a random t0 ∈R Zp and
computes h0 = gt0

∏
attj∈W∗ h

−1
j .We note that the parameters hi are distributed

randomly due to the gti factor, for i = 0, 1, . . . , n.
Finally, the public key PK = 〈p, g, h0, Y, h1, h2, . . . , hn〉 will be given to the

adversary A.
Query Phase 1. In this phase, the adversary A requests for secret keys corre-
sponding to the LSSS access structures (M, ρ) subject to the condition that W ∗

does not satisfy M and then the distinguisher responds as follows.
Let the size of a share-generating matrix M be � × k. Since W ∗ does not

satisfy M, by Lemma 1, there exists a vector w = (−1, w2, . . . , wk) ∈ Zk
p such

that Mi ·w = 0, for all rows i where attρ(i) ∈W ∗.

354 Y.S. Rao and R. Dutta

The distinguisher randomly selects y′2, y
′
3, . . . , y

′
k ∈R Zp and implicitly sets

v = (α′ + an+1,−(α′ + an+1)w2 + y′2, . . . ,−(α′ + an+1)wk + y′k) ∈ Zk
p

which will be used for generating shares of α as in the original scheme. Note that
v can be written as v = −(α′ + an+1)w + v′, where v′ = (0, y′2, . . . , y

′
k) ∈ Zk

p .

Observe that λρ(i) = M i · v contains the term an+1 and hence gλρ(i) contains

terms of the form ga
n+1

= gn+1 which is unknown to D. Therefore,D must make
sure that there are no terms of the form gn+1 involved in secret key components.
To this end, the distinguisher implicitly creates suitable ri values in such a way
that the unknown terms will be canceled out automatically. Now, the secret key
corresponding to each row Mi, i ∈ [�], of M is computed as one of the following
two cases:

Case 1: For i where attρ(i) ∈W ∗.
In this case, the distinguisher randomly chooses r′i ∈R Zp and implicitly sets

ri = r′i − aρ(i). Since attρ(i) ∈ W ∗, Mi · w = 0 and hence Mi · v = −(α′ +
an+1)Mi ·w +Mi · v′ = Mi · v′. Then the distinguisher computes

Di = gMi·v′
(h0hρ(i))

r′ig−t0
ρ(i)

∏
attj∈W∗, j �=ρ(i)

(
g
tj
ρ(i) · gn+1−j+ρ(i)

)
,

D′
i = gr

′
ig−1

ρ(i), D′′
i =

{
D′′

i,j : D
′′
i,j = h

r′i
j g

−tj
ρ(i)g

−1
n+1−j+ρ(i), ∀j ∈ [n] \ {ρ(i)}

}
.

Case 2: For i where attρ(i) �∈W ∗, i.e., ρ(i) �= j, for all attj ∈ W ∗.
Note thatMi·v = Mi·(v′−α′w)−(Mi·w)an+1. In this case, the distinguisher

selects a random r′i ∈R Zp and implicitly sets ri = r′i + (Mi ·w)aρ(i). Then the
secret key components are computed as

Di = gMi·(v′−α′w)(h0hρ(i))
r′ig

(Mi·w)(t0+tρ(i))

ρ(i) ·
∏

attj∈W∗

(
g
−(Mi·w)tj
ρ(i) g

−(Mi·w)

n+1−j+ρ(i)

)
,

D′
i = gr

′
ig

(Mi·w)

ρ(i) , D′′
i =

{
D′′

i,j = h
r′i
j g

(Mi·w)tj
ρ(i) g

(Mi·w)

n+1−j+ρ(i), ∀j ∈ [n] \ {ρ(i)}
}
.

Since 1 ≤ ρ(i) ≤ n and j �= ρ(i), the secret key components Di, D
′
i and D′′

i do
not contain any term which implicitly contains gn+1 and hence the distinguisher
can correctly distribute the secret key components. Therefore, the distribution of
the secret key is identical to that of the original scheme. Finally, the distinguisher
sends the secret key SK(M,ρ) = 〈(M, ρ), {Di, D

′
i, D

′′
i : i ∈ [�]}〉 associated with

(M, ρ) to the adversary.

Challenge. The adversary A submits two equal length messages M0 and M1 to
the distinguisher D. Now, the distinguisher flips a random coin μ ∈ {0, 1} and
encrypts Mμ under the challenge attribute set W ∗. The components of challenge

ciphertext CTW∗ are computed as follows: C = MμZ · e(gs, gα
′
), C1 = gs, C2 =

(gs)t0 . The challenge ciphertext CTW∗ = 〈W ∗, C, C1, C2〉 is returned to A.
If Z = e(gn+1, g

s), then the challenge ciphertext CTW∗ is a valid encryption of
the message Mμ under the attribute set W ∗ as C1 = gs, C2 = (gs)t0 = (gt0)s =

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 355

(h0

∏
attj∈W∗ hj)

s and C = MμZ · e(gs, gα
′
) = Mμ · e(gn+1, g

s) · e(gs, gα′
) =

Mμ · e(g, g)(α
′+an+1)s = Mμ · e(g, g)αs.

On the contrary, if Z is a random element in GT , then the challenge ciphertext
CTW∗ is independent of μ in the adversary’s view.

Query Phase 2. D proceeds exactly as it did in Query Phase 1.

Guess. The adversary A outputs his guess μ′ ∈ {0, 1} on μ. If μ′ = μ, then
D outputs 1 in the decisional n-BDHE game to guess that Z = e(gn+1, g

s);
otherwise it outputs 0 to indicate that Z is a random element in GT .

If Z = e(gn+1, g
s), then the adversary’s view in the above game is identical

to that in a real attack. In that case |Pr[μ = μ′]− 1/2| > ε. On the other hand,
if Z is a random element in GT , then A cannot obtain any information about
Mμ and hence Pr[μ = μ′] = 1/2. Since the events Z = e(gn+1, g

s) and Z is

random element in GT are equiprobable, it is easy to see that Advn-dBDHE
D > ε/2.

Thus, the decisional n-BDHE problem in (G,GT) is not (T ′, ε′)-hard, where
T ′ = T +O(n2) · q · Te and ε′ = ε/2. ��

3.2 Scheme II: Extension to sCCA Security

Setup(κ, U). This algorithm generates a tuple (p,G, g,GT , e) according to the
implicit security parameter κ. It then chooses a random α ∈R Zp and
h0, h1, . . . , hn, δ1, δ2, δ3 ∈R G. It also selects a collision-resistant hash func-
tion H : {0, 1}∗ → Zp. Now, it outputs the public key and master secret
key as PK = 〈p, g, h0, Y = e(g, g)α, h1, h2, . . . , hn, δ1, δ2, δ3,H〉 and MK = α,
respectively.

KeyGen(PK,MK, (M, ρ)). This algorithm is similar to the KeyGen algorithm
of sCPA secure construction given in Section 3.1.

Encrypt(PK,M,W). To encrypt a message M ∈ GT under a set W of at-
tributes, the encryptor selects at random s, γ ∈R Zp and computes

C = MY s, C1 = gs, C2 = (h0

∏
attj∈W hj)

s, C3 = (δβ1 δ
γ
2 δ3)

s,

where β = H(W,C,C1, C2). The encryptor outputs the ciphertext CTW as
CTW = 〈W,C,C1, C2, C3, γ〉.

Decrypt(PK, SK(M,ρ),CTW). The decryptor first checks the following two iden-

tities: e(g, C2)
?
= e(C1, h0

∏
attj∈W hj) and e(g, C3)

?
= e(C1, δ

β
1 δ

γ
2 δ3),

where β = H(W,C,C1, C2). If one of the two identities does not hold, de-
cryption will fail. Otherwise, it will proceed similar to the Decrypt algorithm
of sCPA secure construction given in Section 3.1.

Theorem 2 (Security Proof). Assume that the attribute universe U has n
attributes and collision-resistant hash function exists. Then our Scheme II is
(T , q, qD, ε)-IND-sCCA secure, assuming that the decisional n-BDHE problem
in (G,GT) is (T ′, ε′)-hard, where T ′ = T + O(n2) · q · Te + O(1) · qD · Tp and
ε′ = (1 − qD/p) · ε. Here, Te denotes the running time of one exponentiation in
G and Tp denotes the running time of one pairing computation in GT .

356 Y.S. Rao and R. Dutta

Proof. Suppose that there exists an adversaryA which can (T , q, qD, ε)-break our
Scheme II in the IND-sCCA security model. We can then build a distinguisher
D which uses A to show that the decisional n-BDHE problem in (G,GT) is not
(T ′, ε′)-hard. On input the decisional n-BDHE challenge (−→y a,s, Z),where−→y a,s =

(g, gs, g1, . . . , gn, gn+2, . . . , g2n), gi = ga
i

, and Z = e(gn+1, g
s) or Z is a random

element of GT , the distinguisher D attempts to output 1 if Z = e(gn+1, g
s) and

0 otherwise. Now, D plays the role of a challenger in GameIND−sCCA and interacts
with A as follows.

Init. The adversary A outputs the target attribute set W ∗ that he wishes to be
challenged upon.

Setup. This Setup phase is same as the Setup phase described in the proof of
Theorem 1. In addition, the distinguisherD randomly chooses τ2, τ3, θ1, θ2, θ3 ∈R

Zp and sets δ1 = g1g
θ1, δ2 = gτ21 gθ2, δ3 = gτ31 gθ3. Note here that δ1, δ2, δ3 are

distributed randomly due to the gθi factor. The public key PK = 〈p, g, h0, Y,
h1, h2, . . . , hn, δ1, δ2, δ3,H〉 will be given to the adversaryA, whereH : {0, 1}∗ →
Zp is a collision-resistant hash function.

Query Phase 1. In this phase, the distinguisher D answers secret key queries
as well as decryption queries from the adversary.

Secret Key Query: On adversary’s secret key query, the distinguisher proceeds
exactly as it did in Query Phase 1 in the proof of Theorem 1.

Decryption Query: When D is given a ciphertext CTW = 〈W,C,C1, C2, C3, γ〉
as an input to decryption query, D first computes β = H(W,C,C1, C2) and
performs the following pairing test on ciphertext components

e(g, C2)
?
= e(C1, h0

∏
attj∈W hj) and e(g, C3)

?
= e(C1, δ

β
1 δ

γ
2 δ3).

If one of the two pairing test identities does not hold, it returns ⊥. Otherwise,
it checks whether β + γτ2 + τ3 = 0 (this happens with probability at most 1/p).
If so, the distinguisher D aborts (we refer to this event as abort) and outputs a
random bit, else it returns

C · e
(
C3/C

βθ1+γθ2+θ3
1 , g

(β+γτ2+τ3)
−1

n

)−1

· e
(
C1, g

α′
)−1

= M.

Challenge. The adversary A submits two equal length messages M0 and M1 to
the distinguisher D. Now, the distinguisher flips a random binary coin μ ∈ {0, 1}
and encrypts Mμ under the challenge attribute set W ∗. The components of
challenge ciphertext CTW∗ are computed as follows

C∗ = MμZ · e(gs, gα
′
), C∗

1 = gs, C∗
2 = (gs)t0 , C∗

3 = (gs)β
∗θ1+γ∗θ2+θ3 ,

where β∗ = H(W ∗, C∗, C∗
1 , C

∗
2) and γ∗ = −(β∗+τ3)/τ2. The challenge ciphertext

CTW∗ = 〈W ∗, C∗, C∗
1 , C

∗
2 , C

∗
3 , γ

∗〉 is returned to the adversary A.
If Z = e(gn+1, g

s), then the challenge ciphertext CTW∗ is a valid encryption
of the message Mμ under the attribute set W ∗ as explained below.

C∗
1 = gs, C∗

2 = (gs)t0 = (gt0)s = (h0

∏
attj∈W∗ hj)

s.

Since γ∗ = −(β∗ + τ3)/τ2, we have β∗ + γ∗τ2 + τ3 = 0 and hence

C∗
3 = (gs)β

∗θ1+γ∗θ2+θ3 = (gs1)
β∗+γ∗τ2+τ3(gs)β

∗θ1+γ∗θ2+θ3 = (δβ
∗

1 δγ
∗

2 δ3)
s. Finally,

C∗ = MμZ · e(gs, gα
′
) = Mμ · e(gn+1, g

s) · e(gs, gα′
) = Mμ · e(g, g)(a

n+1+α′)s =
Mμ · e(g, g)αs.

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 357

If Z is a random element in GT , then the challenge ciphertext CTW∗ is inde-
pendent of μ in the adversary’s view.

Query Phase 2. The adversaryA issues more secret key and decryption queries
and the distinguisher D responds as in Query Phase 1.

We point out here a couple of facts. First, the adversary is not allowed to
make a decryption query on challenge ciphertext CTW∗ . If so, D aborts. Second,
if the adversary is able to create a ciphertext CTW = 〈W ∗, C, C1, C2, C3, γ〉 with
β∗ = H(W ∗, C, C1, C2) such that CTW �= CTW∗ , this represents a collision in the
hash function H. However, the probability that this event happens is negligible
since H is a collision-resistant hash function.

Guess.The adversaryA outputs his guess μ′ ∈ {0, 1} on μ. If any abort happens,
the distinguisher D outputs 0. Otherwise, D outputs 1 in the n-dBDHE game
to guess that Z = e(gn+1, g

s) if μ′ = μ, and it outputs 0 to indicate that Z is a
random element in GT if μ′ �= μ. Therefore, as long as D does not abort in the
simulation, D can use the A’s advantage to show that the decisional n-BDHE
problem is not (T ′, ε′)-hard. This can be checked as follows.

If Z = e(gn+1, g
s), then the distinguisher D provides a perfect simulation and

hence
ε < AdvA(GameIND−CPA) = Pr

[
μ′ = μ|[Z = e(gn+1, g

s)] ∧ abort
]
− 1

2

= Pr
[
D(−→y a,s, Z) = 1|[Z = e(gn+1, g

s)] ∧ abort
]
− 1

2
,

i.e., Pr
[
D(−→y a,s, Z) = 1|[Z = e(gn+1, g

s)] ∧ abort
]
> ε+ 1/2.

If Z is a random element X ∈ GT , then A cannot obtain any information
about Mμ and therefore, Pr

[
D(−→y a,s, Z) = 1|[Z = X] ∧ abort

]
= 1

2
.

Since the event abort is independent of whether Z = e(gn+1, g
s) or a random

element X ∈ GT , we have that
Pr [D(−→y a,s, Z) = 1|[Z = e(gn+1, g

s)] ∧ abort] = 1
2
and

Pr [D(−→y a,s, Z) = 1|[Z = X] ∧ abort] = 1
2
.

The probability of the event abort in the simulation is Pr[abort] = qD/p, where
qD is the maximum number of decryption queries the adversary can make during
simulation. Now,

Advn-dBDHE
D = Pr [D(−→y a,s, Z) = 1|Z = e(gn+1, g

s)]− Pr[D(−→y a,s, Z) = 1|Z = X]

= Pr[abort] · Pr [D(−→y a,s, Z) = 1|[Z = e(gn+1, g
s)] ∧ abort]

+Pr[abort] · Pr
[
D(−→y a,s, Z) = 1|[Z = e(gn+1, g

s)] ∧ abort
]

−Pr[abort] · Pr [D(−→y a,s, Z) = 1|[Z = X] ∧ abort]

−Pr[abort] · Pr
[
D(−→y a,s, Z) = 1|[Z = X] ∧ abort

]
>

qD
p
· 1
2
+ (1− qD

p
) · (ε+ 1

2
)− qD

p
· 1
2
− (1 − qD

p
) · 1

2
= (1− qD

p
)ε.

Thus, the decisional n-BDHE problem in (G,GT) is not (T ′, ε′)-hard, where
T ′ = T +O(n2) · q · Te +O(1) · qD · Tp and ε′ = (1 − qD/p) · ε. ��

358 Y.S. Rao and R. Dutta

4 KP-ABE Variants for Non-monotone Access Structures

This section is dedicated to the presentation of our constant-size ciphertext KP-
ABE schemes for Non-Monotone Access Structure (nonMAS) that provide both
sCPA and sCCA security.

To build a KP-ABE for nonMAS with constant-size ciphertext, we employ
the moving from MAS to nonMAS technique [6] that represents non-monotone
access structures in terms of monotone access structures with negative attributes
(NOTcrypto is a negative attribute of the attribute crypto). We discuss here the
technique for completeness. For ease of reference, we call the attribute crypto,
a positive attribute and we denote its negation NOTcrypto by ¬crypto. Let U
be a positive attribute universe.

Given a family F = {ΠA : A ∈ MA} of linear secret-sharing schemes for a set

of possible monotone access structures MA, and Ũ = U
⋃
{¬att : att ∈ U} is

the underlying attribute universe for each monotone access structure A ∈ MA,
a family NM of non-monotone access structures can be defined as follows. For
each access structure A ∈ MA over Ũ , one defines a possibly non-monotone
access structure NA over U in the following way.

– For every set W ⊂ U, form N(W) = W
⋃
{¬att : att ∈ U \W} ⊂ Ũ .

– Now, define NA by saying that W is authorized in NA if and only if N(W)
is authorized in A, i.e., W ∈ NA iff N(W) ∈ A.

The family of non-monotone access structures is NM = {NA : ΠA ∈ F}. Note
that the non-monotone access structure NA will have only positive attributes in
its access sets.

We combine the foregoing methodology with our KP-ABE schemes for MAS
in order to construct desired KP-ABE schemes for nonMAS.

4.1 Scheme III: sCPA Secure Construction

Setup(κ, U). This algorithm first generates p,G,GT , e according to the implicit
security parameter κ. It then picks a random generator g ∈R G, random
elements h0, k0 ∈R G and a random exponent α ∈R Zp. For each attribute
attj ∈ U, it randomly chooses hj , kj ∈R G, for all j ∈ [n]. Now, it outputs
the public key and master secret key respectively as

PK = 〈p, g, h0, k0, Y = e(g, g)α, {hj, kj}j∈[n]〉 and MK = α.

KeyGen(PK,MK, Ã). Given a non-monotone access structure Ã such that we

have Ã = NA for some monotone access structure A over Ũ = U
⋃
{¬att :

att ∈ U} and associated with a linear secret sharing scheme ΠA = (M�×k, ρ),
this algorithm first runs Distribute(M, ρ, α) and obtains a set {λρ(i) = Mi ·v :

i ∈ [�]} of � shares, where v ∈R Zk
p such that v ·1 = α (here, 1 = (1, 0, . . . , 0)

is a vector of length k). Note that each row i ∈ [�] of M is associated with
an attribute ãttρ(i) ∈ {attρ(i),¬attρ(i)}. For each row i ∈ [�], it chooses a
random exponent ri ∈R Zp and computes

Di = gλρ(i)(h̃0h̃ρ(i))
ri , D′

i = gri , D′′
i =

{
D′′

i,j : D
′′
i,j = h̃ri

j , ∀j ∈ [n] \ {ρ(i)}
}
,

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 359

where, for each j = 0, 1, . . . , n, h̃j =

{
hj , if ãttρ(i) = attρ(i),

kj , if ãttρ(i) = ¬attρ(i).
It then re-

turns the secret key SK
Ã
= 〈Ã, {Di, D

′
i, D

′′
i : i ∈ [�]}〉 associated with the

non-monotone access structure Ã.
Encrypt(PK,M,W). To encrypt a message M ∈ GT under a set W ⊂ U

of attributes, this algorithm selects at random s ∈R Zp and computes
C = MY s, C1 = gs, C2 = (h0

∏
attj∈W hj)

s and C3 = (k0
∏

attj∈W kj)
s.

It outputs the ciphertext CTW = 〈W,C,C1, C2, C3〉.
Decrypt(PK, SK

Ã
,CTW). This algorithm first checks whether W ∈ Ã. If not,

it outputs ⊥. Otherwise, since Ã = NA for some monotone access structure
A over Ũ associated with a linear secret sharing scheme ΠA = (M�×k, ρ),
we have N(W) ∈ A. It runs Reconstruct(M, ρ,N(W)) and obtains a set
{ωi : i ∈ I} of reconstruction constants such that

∑
i∈I ωiλρ(i) = α, where

I = {i ∈ [�] : ãttρ(i) ∈ N(W)}. Let I+ = {i ∈ [�] : ãttρ(i) = attρ(i) ∈ N(W)}
and I− = {i ∈ [�] : ãttρ(i) = ¬attρ(i) ∈ N(W)}. Then I = I+

⋃
I−. It now

computes E1, E2, E3 as follows:

E1 =
∏
i∈I

⎛⎝Di ·
∏

attj∈W,j �=ρ(i)

D′′
i,j

⎞⎠ωi

, E2 =
∏
i∈I+

(D′
i)

ωi , E3 =
∏
i∈I−

(D′
i)

ωi .

The message M is obtained by computing C ·e(C2, E2) ·e(C3, E3)/e(C1, E1).

Security Proof: The proof of the following theorem is straightforward from the
proof of Theorem 1 with the modification that in the simulation, the secret key
generation uses hj elements for positive attributes and kj elements for negative
attributes. Due to page limitation, the detailed proof is omitted.

Theorem 3. If the attribute universe U has n attributes then Scheme III is
(T , q, ε)-IND-sCPA secure, assuming that the decisional n-BDHE problem in
(G,GT) is (T ′, ε′)-hard, where T ′ = T + O(n2) · q · Te and ε′ = ε/2. Here, Te
denotes the running time of one exponentiation in G.

4.2 Scheme IV: Extension to sCCA Security

Similar to KP-ABE schemes for MAS, we can extend our Scheme III to sCCA
secure KP-ABE construction for non-monotone access structure by employing
the same technique used in Scheme II. We describe the sCCA secure scheme as
a set of the following four algorithms.

Setup(κ, U). This algorithm randomly selects δ1, δ2, δ3 ∈R G and a collision-
resistant hash function H : {0, 1}∗ → Zp. The other public parameters and
master secret are chosen analogous to the Setup algorithm of Scheme III. It
finally outputs the public key and master secret key respectively as
PK = 〈p, g, h0, k0, Y = e(g, g)α, {hj, kj}j∈[n], δ1, δ2, δ3,H〉 and MK = α.

KeyGen(PK,MK, Ã). This algorithm acts as KeyGen algorithm of Scheme III.

360 Y.S. Rao and R. Dutta

Encrypt(PK,M,W). To generate the ciphertext, this algorithm selects at ran-
dom s, γ ∈R Zp and computes C = MY s, C1 = gs, C2 = (h0

∏
attj∈W hj)

s,

C3 = (k0
∏

attj∈W kj)
s and C4 = (δβ1 δ

γ
2 δ3)

s, where β = H(W,C,C1, C2, C3).

It outputs the ciphertext CTW = 〈W,C,C1, C2, C3, C4, γ〉.
Decrypt(PK, SK

Ã
,CTW). This algorithm first checks the following identities:

e(g, C2)
?
= e(C1, h0

∏
attj∈W hj), e(g, C3)

?
= e(C1, k0

∏
attj∈W kj) and

e(g, C4)
?
= e(C1, δ

β
1 δ

γ
2 δ3), where β = H(W,C,C1, C2, C3). If one of the three

identities does not hold, decryption will fail. Otherwise, it will proceed similar
to the Decrypt algorithm of Scheme III in order to recover the message M.

Theorem 4 (Security Proof). Assume that the attribute universe U has n
attributes and collision-resistant hash function exists. Then our Scheme IV is
(T , q, qD, ε)-IND-sCCA secure, assuming that the decisional n-BDHE problem
in (G,GT) is (T ′, ε′)-hard, where T ′ = T + O(n2) · q · Te + O(1) · qD · Tp and
ε′ = (1 − qD/p) · ε. Here, Te denotes the running time of one exponentiation in
G and Tp denotes the running time of one pairing computation in GT .

5 Scheme V: Large Universe KP-ABE for MAS

In this section, we extend our basic construction Scheme I to the large attribute
universe setting as the set of the following four algorithms.
Setup(κ). Let (p,G,GT , e) be as in Section 4.1 and U = {0, 1}∗ is assumed to

be the attribute universe. Choose a hash function H : {0, 1}∗ → G, which
will be modeled as a random oracle, to compute attribute values dynamically.
Pick α ∈R Zp and set Y = e(g, g)α. The public key and master secret key
are PK = 〈p, g, Y,H〉 and MK = α, respectively.

KeyGen(PK,MK, (M, ρ)). HereM is a share-generating matrix of size �×k and
ρ is a mapping from each row i of M to an attribute ρ(i) ∈ {0, 1}∗. Let L be
the set of attributes appeared in LSSS access structure (M, ρ). The CA first
executes Distribute(M, ρ, α) and obtains a set {λρ(i) = Mi · v : i ∈ [�]} of �

shares, where v ∈R Zk
p such that v · 1 = α. For each row i ∈ [�], it chooses

ri ∈R Zp and computes
Di = gλρ(i)H(ρ(i))ri , D′

i = gri , D′′
i =

{
D′′

i,y : D′′
i,y = H(y)ri , ∀y ∈ L \ {ρ(i)}

}
The CA then returns the secret key SK(M,ρ) = 〈(M, ρ), {Di, D

′
i, D

′′
i : i ∈ [�]}〉.

Encrypt(PK,M,W). To encrypt a message M ∈ GT under a set W of at-
tributes, the encryptor selects s ∈R Zp and computes

C = MY s, C1 = gs, C2 = {C2,y : C2,y = H(y)s, ∀y ∈W}.
It outputs the ciphertext CTW = 〈W,C,C1, C2〉.

Decrypt(PK, SK(M,ρ),CTW). The decryptor first runs Reconstruct(M, ρ,W) to
obtain a set {ωi : i ∈ I} of reconstruction constants, where I = {i ∈ [�] :
ρ(i) ∈ W}. If W satisfies the access structure (M, ρ), then

∑
i∈I ωiλρ(i) = α.

The decryptor computes E1, E2, C
′
2 as follows:

E1 =
∏
i∈I

⎛⎝Di ·
∏

y∈W ′,y �=ρ(i)

D′′
i,y

⎞⎠ωi

, E2 =
∏
i∈I

(D′
i)

ωi , C′
2 =

∏
y∈W ′

C2,y,

Computationally Efficient KP-ABE Schemes with Constant-Size Ciphertext 361

where W ′ = {y ∈ W : ∃ j ∈ I such that ρ(j) = y}. The message M can be
obtained by computing C · e(C′

2, E2)/e(C1, E1).

Note. Due to lack of space, the security proof will be given in the full version.

6 Conclusion

In this paper, we proposed efficient CPA as well as CCA secure KP-ABE schemes
for both MAS and nonMAS with constant-size ciphertext and constant number
of bilinear pairing computations. Security of all our schemes against selective
adversary has been proven under the decisional n-BDHE assumption in the
standard model. Our schemes outperform the existing schemes in terms of com-
putation cost during encryption and decryption.

References

1. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

5. Lewko, A., Sahai, A., Waters, B.: Revocation Systems with Very Small Private
Keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

6. Ostrovksy, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security, pp. 195–203 (2007)

7. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. Cryptology ePrint report 2010/110 (2010)

8. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-Based Encryption Schemes with Constant-Size Ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

9. Chang-Ji, W., Jian-Fa, L.: A Key-policy Attribute-based Encryption Scheme with
Constant Size Ciphertext. In: CIS 2012, pp. 447–451. IEEE (2012)

10. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

11. Cheung, L., Newport, C.: Provably Secure Ciphertext Policy ABE. In: ACM Con-
ference on Computer and Communications Security, pp. 456–465 (2007)

12. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic Constructions
for Chosen-Ciphertext Secure Attribute Based Encryption. In: Catalano, D., Fazio,
N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89.
Springer, Heidelberg (2011)

362 Y.S. Rao and R. Dutta

13. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 53–68. Springer, Heidelberg (1999)

14. Qin, B., Wu, Q., Zhang, L., Domingo-Ferrer, J.: Threshold Public-Key Encryption
with Adaptive Security and Short Ciphertexts. In: Soriano, M., Qing, S., López,
J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 62–76. Springer, Heidelberg (2010)

15. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-
Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 132–147. Springer, Heidelberg (2010)

16. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. Cryptology ePrint report 2008/290 (2008)

Privacy-Preserving Decentralized

Ciphertext-Policy Attribute-Based Encryption
with Fully Hidden Access Structure

Huiling Qian, Jiguo Li, and Yichen Zhang

College of Computer and Information Engineering
Hohai University, Nanjing, P.R. China, 210098

lijiguo@hhu.edu.cn

Abstract. To make multi-authority ABE schemes collusion-resistant,
a user in the system must be tied with a globally verifiable identifier
GID. The drawback of this approach is that it compromises the user’s
privacy. Malicious authorities can collect user’s attributes by tracing the
user GID, thus compromises the privacy of the user. The other privacy
concern is access structures that sent along with ciphertext in traditional
CP-ABE schemes may have sensitive information. In this paper, we pro-
pose a multi-authority ABE scheme with fully hidden access structure
that authorities can get nothing about user GID when generating and
issuing user private keys and access structures are hidden to receivers.
We prove the security of our scheme under a standard complexity as-
sumption of decisional bilinear Diffie-Hellman (DBDH) assumption. The
access structure we used in our scheme is AND, OR gates on multi-valued
attributes.

1 Introduction

In distributed file systems, it allows users to access files from different hosts
via network. Thus multiple users can share files and store data. To protect the
sensitive data, a complicated access control policy is needed to specify who can
access those data. However, traditional access control policies may have some
drawbacks, especially in distributed systems. The first drawback is management
of user identities. In traditional access control policies, a user identity must
be validated by the authority when accessing files or data. So, it can be very
hard to manage numerous identities in large distributed file systems. Another
drawback is privacy concerns. To overcome these problems and drawbacks, Sahai
and Waters [1] introduced the concept of ABE. In this scheme, user’s secret
key and ciphertext are labeled with a set of attributes, when there is a match
between the secret keys and ciphertext, the user can decrypt the message. To
share his data, the user can specify an access structure on who can access the
data. Therefore, ABE schemes make it possible for users to be validated by
descriptive attributes rather than a unique identity. Furthermore, ABE schemes
enable one-to-many encryption; one can specify an access structure on who can

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 363–372, 2013.
c© Springer International Publishing Switzerland 2013

364 H. Qian, J. Li, and Y. Zhang

decrypt the data without knowing specific identity. Users whose attributes satisfy
the access structure can decrypt the data and access the file.

There are two forms of ABE schemes, key-policy attribute based encryption
(KP-ABE) and ciphertext-policy attribute based encryption (CP-ABE). In a
KP-ABE scheme [2], secret keys are associated with an access structure and
ciphertext is labeled by a set of attributes. If and only if the set of attributes in
the ciphertext satisfy the access structure in the secret keys, the user can access
the encrypted data. Conversely, in a CP-ABE scheme [3], ciphertext is associated
with an encryptor specified access structure and secret keys are labeled by a set
of attributes.

1.1 Related Work

The scheme proposed by Sahai and Waters [1] in 2005 can only express simple
(t, n) threshold access structure. The limited expressive power is a restriction to
the applicability of ABE schemes. Some efforts have been made to enhance the
expressibility of ABE schemes. Goyal et al. [2] greatly improved the expressibility
of ABE schemes by proposing an ABE scheme with fine-grained access control.
Ostrovsky et al. [4] gave the first KP-ABE scheme supporting non-monotonic
access structure.

The first CP-ABE scheme is proposed by Bethencourt et al.[3]. In this scheme,
it allows the encryptor to specify an access structure in terms of any mono-
tonic access formula. Cheung and Newport [5] constructed a CP-ABE scheme,
its complexity assumption is bilinear Diffie-Hellman assumption. However, the
scheme only supports positive and negative attributes and wildcards in the ac-
cess structure. To enhance the expressibility of the access structure, Balu et al.
[6] proposed a new CP-ABE scheme, the access structure in this scheme can
be expressed by AND, OR gates on multi-valued attributes. In traditional CP-
ABE schemes [3,5], access structures are sent to receivers along with ciphertexts.
However, access structures may contain some sensitive information. To address
this issue, Boneh and Waters [7] proposed a predicate encryption scheme based
on hidden vector encryption. Nishide et al. [8] proposed CP-ABE schemes with
hidden access structure. In [9], the authors proposed a fully secure CP-ABE with
partially hidden access structures.

In all the schemes we discussed above, there is only one authority monitoring
and issuing user secret keys. However, there will often be more than one party
that acts as authority in reality. Chase [10] proposed the first multi-authority
ABE scheme in 2007. In this scheme, there are multiple authorities responsible
for monitoring attributes and issuing secret keys. There also exists a central
authority generating public and secret keys for other authorities. Users get their
secret keys from multiple authorities. Different approaches have been provided
to remove the trusted central authority. In [11], a technique named distributed
PRF is used to remove the central authority. Moreover, the authors first give the
concern that malicious authorities might collect user’s attributes and combine
their own information to build a full profile, thus compromises the privacy of
the user. In [12], the scheme removes the need of cooperation with authorities

Privacy-Preserving Decentralized Ciphertext-Policy ABE 365

in the setup stage. They also remove the need of central authority, thus making
the system more scalable.

Multi-authority ABE scheme is more in line with reality, different authorities
monitor different sets of attributes. However, being different from single author-
ity ABE scheme, to resist collusion attacks in multi-authority ABE schemes
is difficult. Chase [10] solved this problem by introducing global identifier GID.
However, this solution compromises user’s privacy. Malicious authorities can col-
laborate and collect user’s attributes by tracing user’s GID, thus compromises
the privacy of the user. Han et al. [13] addressed this issue by involving a 2-party
secure computation protocol based on the ideas in [11].

1.2 Our Contributions

In this paper, we propose a decentralized multi-authority CP-ABE scheme. Mul-
tiple authorities monitor different kinds of attributes. Moreover, we remove the
need of trusted central authority. Even parts of the authorities are not honest,
our scheme remains secure. Authorities in our scheme do not need to collabo-
rate in the setup stage. Authorities can join and leave the system freely. In our
scheme, the access structure is fully hidden, and authorities in our scheme can
get nothing about user GID. Thus we protect user privacy from both malicious
users and malicious authorities.

2 Preliminaries

Definition 1. (Bilinear Maps).Let G, GT be two multiplicative cyclic groups
of prime order p. Let g be a generator of G and e be a bilinear map, e : G×G→
GT . The bilinear map e has the following properties:

– Bilinearity: for all g, h ∈ G, and a, b ∈ ZZp, we have e(ga, hb) = e(g, h)ab.
– Non-degeneracy: e(g, g) �= 1.
– Computability: Group operation e(g, h) is efficiently computable, where

g, h ∈ G.

Definition 2. (Decisional Bilinear Diffie-Hellman (DBDH)
Assumption)[14]. Let a, b, c, z ∈ ZZp be chosen at random and g be a
generator of group G. The DBDH assumption holds when no polynomial-time
algorithm B can distinguish the tuple (A,B,C, Z) = (ga, gb, gc, gabc) from the
tuple (A,B,C, Z) = (ga, gb, gc, gz) with non-negligible advantage. The advantage
of algorithm B is

AdvDBDH
B = |Pr[B(A,B,C, gabc) = 1]− Pr[B(A,B,C, gz) = 1]|.

Definition 3. (Access Structure)[15]. Let P = {P1, P2, ..., Pn} be a set of
parties. A collection A ⊆ 2P is considered to be monotone if ∀B,C satisfies that
if B ∈ A and B ⊆ C, then C ∈ A. An access structure (resp., monotonic access
structure) is a collection (resp., monotone collection) A that A ⊆ 2P {∅}. The
sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

366 H. Qian, J. Li, and Y. Zhang

Commitment.A commitment scheme allows someone to commit a chosen value
without leaking the value for a period of time and reveal the committed value
later when it is needed. The commitment scheme used in our scheme is a perfectly
hiding commitment scheme named as Pedersen commitment scheme [16].

Zero-Knowledge Proof. A zero-knowledge proof is an interactive proof for
a prover to prove some knowledge without revealing the knowledge. The zero-
knowledge proof scheme involved in our construction is introduced by Camenisch
and Stadler [17].

3 Formal Definition and Security Model

3.1 Outline of Decentralized CP-ABE Encryption

A decentralized CP-ABE scheme consists of the following five algorithms.
Global Setup: This algorithm takes an implicit security parameter l as input

and returns the system parameters params for the system.
Authority Setup: This algorithm is run by authorities in the system. Each

authority Ak generates his secret keys SKk and public keys PKk, where
k = 1, 2, ..., N .

KeyGen: This algorithm takes authority’s secret keys SKk, a set of attributes
Lk and a global identifier GID as input, returns the secret keys SKk

U for user
U . Here Lk = Âk ∩L, Âk denotes the attributes monitored by the authority Ak,
L denotes the list of attributes corresponding to the GID.

Encryption: The encryption algorithm takes the system parameters params,
a message M , authority’s public keys PKk and an access structure W as input,
returns the ciphertext CT .

Decryption: This algorithm takes the global identifier GID, a collection of
secret keys corresponding to user attributes and the ciphertext CT as input,
and outputs the message M when user attributes satisfy the encryptor specified
access structure.

3.2 Security Model

The security game is played between adversary and challenger as follows:
Initialization: Adversary A submits the challenge access structure W ∗

0 ,W
∗
1

and a list of corrupted authorities CA to algorithm B, where |CA| < N .
Global Setup: The challenger runs the algorithm Setup and outputs the

system parameters params to adversary A.
Authorities Setup: For the corrupted authorities, the challenger sends his

public and secret keys (PKk, SKk) to the adversary A. For the honest authori-
ties, the challenger sends his public keys PKk to the adversary A. For the third
kind of authorities, the challenger sends his public keys PKk and parts of secret
keys SKk to the adversary A.

Phase 1: The adversary A sends an attribute list L to the challenger for
secret keys queries, where (L � W ∗

0 or L � W1∗) and (L � W ∗
0 and L � W1∗).

The challenger returns secret keys for these attributes.

Privacy-Preserving Decentralized Ciphertext-Policy ABE 367

Challenge: The adversary A submits two equal length messages M0 and
M1. The challenger chooses a random bit ξ ∈R {0, 1} and runs the algorithm
Encryption. The challenger gives the ciphertext C∗

T,ξ to the adversary A. Note
that if L � W ∗

0 and L � W ∗
1 , then M0 = M1.

Phase 2: Phase 1 is repeated.
Guess: Finally adversary A outputs his guess ξ′ on ξ.

Definition 4. A decentralized CP-ABE scheme is (t, q, ε) secure in the selective-
set model if all t-time adversary makes at most q secret key queries and succeeds
in the above game with negligible advantage ε.

3.3 Outline of Privacy-Preserving Decentralized CP-ABE
Encryption

To protect user privacy from malicious authorities, we replace the algorithm
KeyGen in the decentralized CP-ABE encryption scheme with BlindKeyGen.
Other algorithms remain the same. The algorithm BlindKeyGen is described
as follows.

BlindKeyGen: User U runs the algorithm Commit and returns com to the
authority Ak. Authority Ak uses com to verify whether the user U has GID u
or not in zero-knowledge. If the proof is correct, authority Ak computes partial
secret keys for the user. The user verifies whether the authorityAk has the correct
secret keys in zero-knowledge through partial secret keys. If the proof is correct
and Decommit returns 1, the user U can compute his secret keys successfully
and authority Ak gets empty. Otherwise, algorithm aborts and outputs (⊥,⊥)
for the authority and user.

To be secure against both malicious users and malicious authorities, algorithm
BlindKeyGen should satisfy two properties: leak freeness and selective-failure
blindness [18,13]. Leak freeness requires that a malicious user can get nothing by
executing algorithm BlindKeyGen with an honest authority. Selective-failure
blindness requires that a malicious authority cannot get anything about user’s
GID u and cannot fail the algorithm according to user’s GID u through running
algorithm BlindKeyGen.

4 Our Construction

In this section, we propose a decentralized CP-ABE scheme which can fully hide
access structure specified by the encryptor.

4.1 Decentralized CP-ABE Encryption Scheme with Fully Hidden
Access Structure

Our scheme is constructed as follows.
Global Setup: Given the security parameter l, the algorithm returns a bilin-

ear group (e, p,G,GT) with prime order p. Let g, h and h1 be the generators of
group G. Suppose there are N authorities in the system, namely A1, A2, ..., AN .

368 H. Qian, J. Li, and Y. Zhang

Authority Setup: Each authority Ak chooses αk ∈R ZZp, βk ∈R ZZp and
tki,j ∈R ZZp(i ∈ [1, n], j ∈ [1, ni]), and computes Yk = e(g, g)

αk , Zk = gβk ,

and T k
i,j = gt

k
i,j . The secret keys and public keys of authority Ak are SKk =

(αk, βk, {tki,j}i∈[1,n],j∈[1,ni]) and PKk = (Yk, Zk, {T k
i,j}i∈[1,n],j∈[1,ni]).

KeyGen: Denote the user’s global identifier GID by u, where u ∈ ZZp. Let L
be the attribute list of the user U . To generate a key for the user U , authority
Ak selects rk, τk ∈R ZZp, ωi ∈R ZZ∗

p for 1 ≤ i ≤ n and computes

Dk
i,1 = gαkhrkh

1
u+βk
1 , Dk

i,2 = hωit
k
i,j , Dk

i,3 = hωi , Dk
0 = hrkh−τk

1 , Dk
1 = h

τk+
1

u+βk
1

for tki,j ∈ Lk, where Lk = Âk ∩ L, for k = 1, 2, ..., N , Âk denotes the attributes
monitored by the authority Ak.

Encryption: An encryptor chooses a random number s ∈R ZZp, and computes

C1 = M ·
∏
k∈Ic

Yk
s, C2 = gs,

where Ic is an index set of authorities Ak.

The encryptor sets the value of root node to be s, marks the root node as
assigned and all the child nodes as un-assigned.

For each non leaf node that is un-assigned, the encryptor proceeds as follows.

1. If the symbol in the access structure is ∧ and its child nodes are un-assigned,
the encryptor selects a random number si ∈R ZZp,1 ≤ si ≤ p− 1. For the

last child node, set sj = s−
∑j−1

i=1 si mod p. Mark this node assigned.
2. If the symbol in the access structure is ∨, the encryptor sets the value of

this node to be s and mark this node assigned.
3. The encryptor computes Ci,j,1 =

∏
k∈Ic

(T k
i,j)

si , Ci,j,2 = gsi .

The encryptor outputs the ciphertextCT =(C1, C2,{Ci,j,1, Ci,j,2}i∈[1,n],j∈[1,ni]).

Decryption: To decrypt the ciphertext CT , the user computes E =
∏

k∈Ic

e(Dk
1 , C2), F =

∏
k∈Ic

e(Dk
0 , C2), P = e(Dk

i,3, Ci,j,1), Q =
∏

k∈Ic
e(Dk

i,1, C2), H =∏
k∈Ic

e(Dk
i,2, Ci,j,2) and M = C1 · PEF

QH .
Now we prove the correctness of our scheme.

E =
∏

k∈Ic
e(Dk

1 , C2) =
∏

k∈Ic
e(h

τk+
1

u+βk
1 , gs) =

∏
k∈Ic

e(g, h1)
s(τk+

1
u+βk

)
,

F =
∏

k∈Ic
e(Dk

0 , C2) =
∏

k∈Ic
e(hrkh−τk

1 , gs) =
∏

k∈Ic
e(g, h)srke(g, h1)

−sτk ,

P = e(Dk
i,3, Ci,j,1) = e(hωi ,

∏
k∈Ic

gsit
k
i,j) = e(g, h)

∑
k∈Ic

siωit
k
i,j ,

H =
∏

k∈Ic
e(Dk

i,2, Ci,j,2) =
∏

k∈Ic
e(g, h)

∑
k∈Ic

siωit
k
i,j ,

Q =
∏

k∈Ic
e(Dk

i,1, C2) =
∏

k∈Ic
e(gαkhrkh

1
u+βk
1 , gs)

=
∏

k∈Ic
e(g, g)sαke(g, h)srk

∏
k∈Ic

e(g, h1)
s

u+βk ,

C1 · PEF
QH = M · e(g,h)

∑
k∈Ic

siωit
k
i,j

∏
k∈Ic

e(g,h1)
s

u+βk e(g,h)srke(g,g)sαk

e(g,h)
∑

k∈Ic
siωit

k
i,j

∏
k∈Ic

e(g,g)sαk e(g,h)srk e(g,h1)
s

u+βk

= M.

Privacy-Preserving Decentralized Ciphertext-Policy ABE 369

Theorem 1. Our decentralized CP-ABE scheme is (Γ, q, ε) semantically secure
in the selective-set model, if the (Γ ′, ε′) DBDH assumption holds in (e, p,G,GT),
where

Γ ′ = Γ +O(Γ) and ε′ =
1

2
ε.

4.2 BlindKeyGen Protocol

The first part of secret keys in the scheme we proposed in section 4.1 is Dk
i,1 =

gαkhrkh
1

u+βk
1 . In order to obtain secret keys blindly from authority Ak, the user

has to prove his possess of GID u in zero-knowledge. However, if the random
number rk is chosen by authority Ak as the same as we described in section 4.1,

then he can compute h
1

u+βk
1 =

Dk
i,1

gαkhrk
or h

1
u+βk
1 =

Dk
1

hτ
1
. Since h1 and u are public,

βk is the part of secret key of authority Ak, authority Ak can identify user GID

u by computing h
1

u+βk
1 , which is not allowed according to the property selective-

failure blindness of protocol BlindKeyGen. Therefore, we use the technique 2-
party secure computing to generate the random number rk and τk. The protocol
BlindKeyGen is described as follows.

1. The user U and authority Ak first use the technique 2-party secure com-
puting to generate ρ1(u+ βk), where ρ1 is a random number selected by
user U . They can operate as follows. Firstly, the user U selects ρ1 ∈R ZZp,
computes x = uρ1, and returns x to the authority Ak. Secondly, authority
Ak selects ρ3 ∈R ZZp, computes y = βkρ3, x

′ = ρ3x, and returns (x′, y)
to the user U . Then, user U computes y′ = ρ1y and returns y′ to au-

thority Ak. Authority Ak computes X = x′+y′

ρ3
, and then authority Ak

selects θ, p1, x1, x2, x3, x4 ∈R ZZp, computes T = h
θ
X
1 , T1 = gαkθ, P1 =

hp1 , Q1 = hp1

1 , T ′ = hx1
1 , T ′

1 = gx2 , P ′
1 = hx3 and Q′

1 = hx4
1 and returns

(T, T1, P1, Q1, T
′, T ′

1, P
′
1, Q

′
1) to the user U .

2. User U selects c ∈R ZZp and returns c to the authority Ak. Authority Ak

computes a1 = x1 − c θ
X , a2 = x2 − cαkθ, a3 = x3 − cp1, a4 = x4 − cp1.

Authority Ak returns (a1, a2, a3, a4) to the user U .
3. User U checks whether T ′ = ha1

1 T c, T ′
1 = ga2T c

1 , P
′
1 = ha3P c

1 and Q′
1 =

ha4Qc
1. If the equations hold, user U selects ρ2, p2, y1, y2, y3, y4, y5, y6, y7 ∈R

ZZp and computes T2 = (T ρ1T1)
ρ2 , P2 = hp2 , Q2 = hp2

1 , T3 = T ρ1ρ2 , P =
(P1P2)

ρ2 , Q = (Q1Q2)
ρ2 , T ′

2 = T y1T y2

1 , P ′
2 = hy3 , Q2 = hy4

1 , T ′
3 = T y5, P ′ =

(P1P2)
y6 andQ′ = (Q1Q2)

y7 . The user U returns (T2, P2, Q2, T3, P,Q, T ′
2, P

′
2,

Q′
2, T

′
3, P

′, Q′) to the authority Ak. The user U should prove his possess of
(ρ2, p2) to authority Ak in zero-knowledge.

4. Authority Ak selects c′ ∈R ZZp and returns c′ to the user U . User U computes
b1 = y1 − c′ρ1ρ2, b2 = y2 − c′ρ2, b3 = y3 − c′p2, b4 = y4 − c′p2, b5 = y5 −
c′ρ1ρ2, b6 = y6 − c′ρ2, b7 = y7 − c′ρ2. User U returns (b1, b2, b3, b4, b5, b6, b7)
to the authority Ak.

5. Authority Ak checks whether T ′
2 = T b1T b2

1 T c′

2 , P ′
2 = hb3P c′

2 , Q′
2 = hb4

1 Qc′

2 ,

T ′
3 = T b5T c′

3 , P ′ = (P1P2)
b6P c′ and Q′ = (Q1Q2)

b7Qc′ . If the equations hold,

370 H. Qian, J. Li, and Y. Zhang

then authority Ak selects rk, τk, z1, z2, z3, z4, z5, z6 ∈R ZZp, ωi, ti, ηi ∈R ZZ∗
p

for 1 ≤ i ≤ n and computes D̃k
i,1 = T

1
θ
2 P rk , Dk

i,2 = hωit
k
i,j , Dk

i,3 = hωi , D̃k
0 =

P rkQ−τk , D̃k
1 = T

1
θ
3 Qτk , (D̃k

i,1)
′ = T z1

2 P z2 , (Dk
i,2)

′ = (Dk
i,3)

ηi , (Dk
i,3)

′ = hti ,

(D̃k
0)

′ = P z3Q−z4 , (D̃k
1)

′ = T z5
3 Qz6 and returns (D̃k

i,1, D
k
i,2, D

k
i,3, D̃

k
0 , D̃

k
1 ,

(D̃k
i,1)

′, (Dk
i,2)

′, (Dk
i,3)

′, (D̃k
0)

′, (D̃k
1)

′) to the user U . Here, we replace the ran-
dom number rk and τk in the original scheme with (p1+p2)rk and (p1+p2)τk,
where p1 is only known to authority Ak and p2 is only known to user U . Thus

malicious authority cannot compute h
1

u+βk
1 and selectively fail the algorithm.

6. User U selects c′′ ∈R ZZp and returns c′′ to the authority Ak. Authority Ak

computes c1 = z1 − c′′

θ , c2 = z2 − c′′rk, c3 = z3 − c′′rk, c4 = z4 − c′′τk, c5 =

z5 − c′′

θ , c6 = z6 − c′′τk, di = ηi − c′tki,j and ei = ti − c′ωi and returns
(c1, c2, c3, c4, c5, c6, di, ei) to user U .

7. User U checks whether (D̃k
i,1)

′ = T c1
2 P c2(D̃k

i,1)
c′′ , (Dk

i,2)
′ = (Dk

i,3)
di(Dk

i,2)
c′′ ,

(Dk
i,3)

′ = hei(Dk
i,3)

c′′ , (D̃k
0)

′ = P c3Q−c4(D̃k
0)

c′′ and (D̃k
1)

′ = T c5
3 Qc6(D̃k

1)
c′′

or not. If the equations hold, user U computes Dk
i,1 = (D̃k

i,1)
1
ρ2 , Dk

0 = (D̃k
0)

1
ρ2

and Dk
1 = (D̃k

1)
1
ρ2 . Otherwise, the algorithm aborts.

Theorem 2. OurBlindKeyGen protocol is leak-free and selective-failure blind.

4.3 Security and Performance Comparison

We compared our scheme to other schemes [6,19,20] with hidden access structure
in Table 1.

Table 1. Security and Performance Comparison

Scheme Multi-
Authority

Anonymity
of Access
Structure

Access
Structure

Security
Model

Ciphertext
Size

LRZW ′s
scheme [19]

No Partially
hidden

AND-gates on
multi-valued

attributes with
wildcards

Selective-
set

Linear

LOSTW ′s
scheme [20]

No Fully hidden Inner product
predicates

Fully
secure

Linear

BK ′s scheme
[6]

No Fully hidden AND, OR
gates on

multi-valued
attributes

Selective-
set

Linear

Our scheme Yes Fully hidden AND, OR
gates on

multi-valued
attributes

Selective-
set

Linear

Privacy-Preserving Decentralized Ciphertext-Policy ABE 371

5 Conclusions

In this paper, we proposed a decentralized CP-ABE with fully hidden access
structure. The access structure in our scheme is AND, OR gates on multi-valued
attributes. Moreover, we considered user privacy from two aspects. On one hand,
the access structure in our scheme is fully hidden, so intermediate user can
get nothing about user attributes and policy from the access structure. On the
other hand, malicious authorities cannot collaborate to collect user attributes by
tracing user GID. The security of our scheme is proved under a standard DBDH
complexity assumption.

Acknowledgement. This work is supported by the National Natural Science
Foundation of China (60842002, 61272542, 61103183, 61103184), the Fundamen-
tal Research Funds for the Central Universities(2013B07014, 2010B07114), the
Six Talent Peaks Program of Jiangsu Province of China (2009182) and Program
for New Century Excellent Talents in Hohai University.

References

1. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: Juels, A., Wright, R.N., di Vimer-
cati, S.D.C. (eds.) CCS 2006. Proc. ACM Conf. Computer and Communications
Security, pp. 89–98 (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: SP 2007. IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-Based Encryption with Non-
Monotonic Access Structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) CCS 2007. Proc. ACM Conf. Computer and Communications Security,
pp. 195–203 (2007)

5. Cheung, L., Newport, C.: Provably Secure Ciphertext Policy ABE. In: Ning, P., di
Vimercati, S.D.C., Syverson, P.F. (eds.) CCS 2007. Proc. ACM Conf. Computer
and Comm. Security, pp. 456–465 (2007)

6. Balu, A., Kuppusamy, K.: Privacy Preserving Ciphertext Policy Attribute Based
Encryption. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.)
CNSA 2010. CCIS, vol. 89, pp. 402–409. Springer, Heidelberg (2010)

7. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

8. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially
Hidden Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

9. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with Partially Hidden Access
Structures. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012. Proc. ACM Conf.
Computer and Communications Security, pp. 18–19 (2012)

372 H. Qian, J. Li, and Y. Zhang

10. Chase, M.: Multi-Authority Attribute Based Encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

11. Chase, M., Chow, S.S.M.: Improving Privacy and Security in Multi-Authority
Attribute-Based Encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) CCS
2909. Proc. ACM Conf. Computer and Comm. Security, pp. 121–130 (2009)

12. Lewko, A., Waters, B.: Decentralizing Attribute-Based Encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

13. Han, J., Susilo, W., Mu, Y., Yan, J.: Privacy-Preserving Decentralized Key-Policy
Attribute-Based Encryption. IEEE Transantions on Parallel and Distributed Sys-
tem 23(11), 2150–2162 (2012), Nayak, A. (ed.)

14. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

15. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PHD thesis,
Israel Inst. of Technology, Technion, Haifa, Israel (1996)

16. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

17. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

18. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable
Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 265–282. Springer, Heidelberg (2007)

19. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-Aware Attribute-Based Encryption with
User Accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

20. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Se-
cure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner
Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010)

Toward Generic Method

for Server-Aided Cryptography

Sébastien Canard1, Iwen Coisel2, Julien Devigne1,3, Cécilia Gallais4,
Thomas Peters5, and Olivier Sanders1,6

1 Orange Labs - Applied Crypto Group
42 rue des coutures - 14000 CAEN - France

2 European Commission - Joint Research Centre (JRC)
Institute for the Protection and the Security of the Citizen - Digital Citizen Security

21027 ISPRA (VA) - Italy
3 Université de Caen Basse-Normandie - Laboratoire GREYC

Esplanade de la Paix - 14000 Caen - France
4 Tevalis

80 av. des Buttes de Cosmes - 35700 Rennes - France
5 Université catholique de Louvain - ICTEAM/Crypto Group

1348 Louvain-la-Neuve - Belgium
6 Ecole Normale Supérieure - Département d’Informatique

45 rue dUlm - 75230 Paris Cedex 05 - France

Abstract. Portable devices are very useful to access services from any-
where at any time. However, when the security underlying the service
requires complex cryptography, implying the execution of several costly
mathematical operations, these devices may become inadequate because
of their limited capabilities. In this case, it is desirable to adapt the way
to use cryptography. One possibility, which has been widely studied in
many particular cases, is to propose a server-aided version of the executed
cryptographic algorithm, where some well-chosen parts of the algorithm
are delegated to a more powerful entity. As far as we know, nothing
has been done to generically change a given well-known secure instance
of a cryptographic primitive in its initial form to a secure server-aided
version where the server (called the intermediary) may be corrupted by
the adversary. In this paper, we propose an almost generic method to
simplify the work of the operator who wants to construct this secure
server-aided instance. In particular, we take into account the efficiency
of the resulting server-aided instance by giving the best possible way to
separate the different tasks of the instance so that the resulting time
efficiency is optimal. Our methodology can be applied to most of public
key cryptographic schemes.

1 Introduction

Constrained devices (e.g. mobile phones, smart cards or RFIDs) are more and
more used in our daily life. Practical applications may require them to execute
cryptographic algorithms. However, in return for their low-cost, these devices are

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 373–392, 2013.
c© Springer International Publishing Switzerland 2013

374 S. Canard et al.

generally resource constrained and/or do not implement all the necessary math-
ematical/cryptographic tools to perform such executions. This is not a major
drawback in protocols requiring a low user’s workload, but it can become ap-
palling for some modern and complex protocols allying contradictory properties
(such as anonymity and accountability, or confidentiality and sharing). Then,
some applications may not be developed if the time taken by a device to execute
required operations is too long. Thus, cryptographic protocols sometimes need
to be further studied when executed in such environments. One solution is to
use preprocessing (see e.g. [30]) which permits some data to be computed in
advance so that the whole algorithm does not require heavy computation to be
efficiently executed. This has the drawback of consuming a lot of space memory
and may not be applicable all the time. Another possibility is to modify the cryp-
tographic mechanism to fit the device restrictions. This has already been done
in the RFID case [18,26] or when considering the integration of e.g. group and
ring signatures in a smart card [10,32]. This approach sometimes necessitates
important modifications of the initial algorithm, and may imply some stronger
(and questionable!) assumptions such as e.g. the tamper-resistance one.

This paper focus on the approach which consists in speeding up the crypto-
graphic operation by delegating a substantial part of computations to a more
powerful entity, generally called a server or an intermediary.

Related Work.Many papers in the literature propose a way to outsource cryp-
tographic operations to servers. Regarding efficiency, the result should be more
efficient than the non-server-aided execution. Regarding security, the possibility
to corrupt the intermediary should be taken into account in the server-aided
version. This work has been done e.g. in the case of RSA [25,5], where the aim is
to help the restricted device to perform a modular exponentiation with an RSA
modulus1, or in the case of the signature/authentication verification [23,19], for
several existing schemes. Multi-party computation techniques (see e.g. [33]) per-
mit several entities to jointly compute a function over their inputs, while each
entity keeps its own input secret.

When dealing with more complicated protocols, especially those dealing with
anonymity, a lot of research has also been carried out. For group signature
schemes [12], Maitland and Boyd [24] and then Canard et al. [9] proposed vari-
ants of existing schemes where the group member is helped by some semi-trusted
entity to produce a group signature. This trick is also part of the Direct Anony-
mous Attestation framework (see e.g. [8,13]).

Another approach, called wallet with observers, has been taken in the CAFE
project [11,16]. Here, a powerful prover interacts with a non-trusted smart card
to perform some computations, such that the prover is unlinkable w.r.t. the
smart card.

Hohenberger and Lysyanskaya [20] have proposed a new security model
where the server is necessarily split into two different components. For signa-
ture/authentication schemes, Girault and Lefranc [19] have given the theory for

1 Even if most of them have later been broken [29,28,27].

Toward Generic Method for Server-Aided Cryptography 375

server-aided verification. However, nothing has been done to generically trans-
form a given secure instance of a cryptographic primitive in its initial form into a
secure server-aided version where the server may be corrupted by the adversary.
Such a transformation permits creating automatically the previous systems, with
a potentially more efficient outcome.
Our contribution. In this paper, we provide an almost generic method to
simplify the work of an operator for the above problem. More precisely, we focus
on an entity E0 and its execution of a cryptographic algorithm Alg0 underlying
a secure instance of a cryptographic primitive. We first divide E0 into two roles:
a trusted entity T which manages the inputs of Alg0 but is not necessarily
powerful (typically a smart card or a PC) and an intermediary I which is not
necessarily trusted but is considered as more powerful (typically a mobile phone
or a cloud server). Our aim is then to produce a secure server-aided variant
which is as efficient as possible.
We first focus on the data manipulated inside Alg0. All the inputs and outputs
of the algorithm are known by E0 and, as we trust it, by T too. Regarding I,
this may be different since it depends on the possibility of corruption of I by the
adversary (who can passively listen to the interactions between T and I, can
obtain the data given to I or can corrupt I). Our method allows the operator
to choose the power of the adversary on each expected security property, and
automatically outputs, for most of manipulated data, whether this data can be
known or unknown (called the status of the data) to I.
We then consider the studied algorithm Alg0 as a set of tasks. Then, depending
on the status of the inputs and outputs, we decide whether each task can be
performed by T alone, I alone or by both (using some well-known server-aided
computations).
We finally provide an algorithm which outputs the best possible secure variant,
depending on the time performances of both T and I. All along the paper, we
use as a running example the case of group signatures (to make a comparison
with the work in [9]) but our method can also be applied to most existing cryp-
tographic primitives.

Organization of the paper. The next section describes our framework and
introduces the notion of intermediary. Section 3 describes how one can fill in
the data status table according to the chosen security. Section 4 defines task
statuses and explains how one can determine them. Section 5 is devoted to the
description of the way to efficiently distribute the computations.

2 Background and Definitions

All along the paper, any entity is denoted using calligraphic typography (e.g. E),
an object or a data using sans font typography (e.g. d), algorithm using small
capital letters (e.g. Alg), list using true type typography (e.g. list), and sets
using greek letters (e.g. Ω). A task is always denoted t.

When a single entity is required to perform a procedure, it is generally called
an algorithm, whereas it is called a protocol when interactions between several

376 S. Canard et al.

entities are required. However, protocols can be split into as many parts (algo-
rithms) executed by a single entity as needed. We thus only focus on the notion
of algorithm in the following.

2.1 Definitions

Notion of Primitive. A cryptographic primitive Π describes the main guide-
lines of a cryptographic application. Informally, a primitive Π is defined by a set
Ξ of entities, a set Ω of objects, a set Λ = {Alg1, . . . ,Algv} of algorithms and
a set Σ of security properties. An instance of a given primitive Π is a precise
description of all the algorithms and the associated objects which ensure the
security properties of Π . We consider in the following that each algorithm is
realized thanks to a sequence of tasks, defined below.

Considered Tasks. The instance of an algorithm Algi is a set of tasks, de-
noted Θi, related to cryptographic or mathematical operations, that formally
describes how to reach the output of the focused algorithm, denoted out, from
its input, denoted inp. In this paper, we group these tasks by types which are
assigned an identifier: (1) pseudo-random generation (e.g. r ∈R Z∗

p), (2) multi-
linear combination evaluation (e.g. s = a · b + c), (3) exponentiation evaluation
(e.g. T = gx), (4) group operation (e.g. z = g · h), (5) pairing evaluation (e.g.
h = e(P,Q)), (6) hash function evaluation (e.g. hash(m)) and (7) communica-
tion. This list is totally arbitrary and our generic transformation still works if
other types of tasks are introduced. As an example, exponentiations in a regular
finite field and in an elliptic curve group might be considered as two different
tasks while leading to the same result.

The Data. In an instance π of a primitive Π , data can come from two different
ways. Some of them represent the objects of the primitive, and so inputs and
outputs of the algorithms. But there are also data used as “intermediate values”
within a sequence of tasks of a given algorithm. The former data are called in-
trinsic, while the latter data are called ephemeral.

Definition of an instance. To sum up, an instance π of a primitive Π is
defined by a set Θ =

⋃v
i Θi of tasks, a set Φ =

⋃v
i Φi of intrinsic data and a

set Ψ =
⋃v

i Ψi of ephemeral data, where each subset is related to one specific
algorithm Algi. In the following, Algi(E , inp) = out denotes that the (intrinsic)
data contained in out ∈ Φ have been obtained by the execution of the algorithm
Algi by the entity E using the data contained in inp ∈ Φ as inputs.

2.2 Our Running Example: Group Signatures

In the group signature primitive [12], the set of entities is composed of one group
manager (sometimes called the issuer), several group members, one opener and
several verifiers. In this primitive, any member of a group can sign messages
on behalf of the group. Such signatures remain anonymous and unlinkable for

Toward Generic Method for Server-Aided Cryptography 377

anyone except a designated authority, the opener, who has the ability to identify
the signer. Anyone, called in this case a verifier, can check the validity of a group
signature. The objects related to this primitive are the issuer, members, and
opener keys as well as all the possible messages (generally defined by a message
space). Following [6], such primitive is composed of 7 procedures called Setup

(to compute secret keys and public parameters), UserKg (for users), Join (a
protocol for users to become group members), GSign (for the production of
a group signature), GVerify (for the verification step), Open (for anoymity
revocation) and Judge (for the public verification of an anonymity revocation).
An interested reader may refer to e.g. [6] for details.

2.3 Our Method in a Nutshell

Let π0 be a particular instance (e.g. XSGS [17]) of a given primitive Π0 (e.g.
group signature scheme). Let Θi be an instance of one particular algorithmAlg0

(e.g. the GSign algorithm) which is executed by the entity E0 (e.g. a group
member). This task description is called the initial version of the algorithm.
Our aim is to improve its time complexity without compromising the security of
π0, or in a controlled way.

In the literature, the notion of server-aided cryptography is most of the time
related to the split of an entity E0 into two components, namely a trusted entity,
denoted2 T , which manages all inputs of the algorithm, and an intermediary3,
denoted I with which T can interact and delegate some of his workload. We will
speak in this case of a server-aided version of the algorithm. From one initial
version of the instance π0, it is possible to design several secure server-aided

versions π
(1)
0 , π

(2)
0 ,

To decide which one is the most efficient, we first need to decide which data
(intrinsic or ephemeral) can be given to the intermediary. This is done in accor-
dance with the security properties of the studied primitive Π0 (see Section 3).
Then, depending on this result, we focus (in Section 4) on each task of Alg0 and
try to say whether it can be executed by T alone, I alone, and/or cooperatively
(both T and I participate in its execution). This leads to a bunch of different
secure repartitions. Our method finally outputs the most efficient one according
to the performances of T and I (see Section 5).

3 Status of the Data

Our methodology is in particular based on the definition of a status for each
manipulated data. In this section, we define the status of a data w.r.t. an entity
of an instance. Then, we adapt the adversary against the server-aided instance
in the security properties.

2 We should have used the notation TE0 but, as it is not ambiguous, we simplify it.
3 I is not necessarily a new entity in the system but can be in fact seen as a new role
played by one existing entity.

378 S. Canard et al.

3.1 Data Status and Intermediary

Traditionally in cryptography, some data are said secret, and some others are
said public. This can be formalized by the notion of known data w.r.t. a specific
entity, and we argue that this is enough to handle all possible cases. On the one
hand, the status of a data is secret if an entity is the only one to know it. On
the other hand, its status is public if all involved entities know such data. It
also permits to formalize intermediate cases where a data is known by several
entities, but not all. By the way, the only relevant status in our case is that of
known data.

Let Π = (Ξ, Ω, Λ, Σ) be a primitive and let π = (Θ,Φ, Ψ) be an instance of
Π . The security properties verified by π determine the status of each intrinsic
data w.r.t. the different entities. The status of an ephemeral data ed ∈ Ψ is
known by an entity E , denoted stE [ed] = kn, if ed is an output of an elementary
task t run by E for which the inputs are all known by E . Otherwise the status
of the data is unknown (noted ukn).

Now let us consider an algorithm Alg0, executed by an entity E0, the status
of intrinsic (Φ0) and ephemeral (Ψ0) data are thus known w.r.t. this entity. Now,
if E0 is divided into the two entities T and I, we should focus on the status of
intrinsic data w.r.t. I since it follows from our above choices that the status of
these data w.r.t. T is necessarily known.

Security Experiment and Adversaries. Let us consider a security property,
denoted secu, expected by the primitive Π . We assume that the studied instance
π verifies this security property. We thus need to clearly describe the server-aided
security property secu expected by a server-aided execution of the primitive Π .
We recall that I is only implicated in the execution of the Alg0 procedure.

Since T and I are two distinct entities, possible corruption of I by an ad-
versary must be taken into account, while we assume all along this paper that
T is never corrupted (if E0 is not). We should then modify the related security
experiments accordingly. First, we give the following definition which states the
possible strategies given to the adversary against a server-aided version of π.

Definition 1 (server-aided adversary). Let secu be a security property re-
lated to a server-aided instance π. Let A be an adversary against secu in the
server-aided setting. For the related experiment, an adversary is said to have the
power of a

– listener-receiver if A can obtain all the communication between T and I and
is given access to all the data known by I.

– controller if A totally controls I.

It is obvious that a controller is necessarily listener-receiver. Then, there are
three different types of adversary to study: standard (with no extra power),
listener-receiver and controller.

Dealing with several security properties. In most of the complex cryp-
tographic primitives, several security properties are required at the same time

Toward Generic Method for Server-Aided Cryptography 379

(see the example of group signatures in Section 2.2). In order to build a server-
aided instance with an improved efficiency it can make sense to relax some of
them in regards of the intermediary, while the others are preserved4.

Several server-aided instances of the initial instance π can thus be generated
depending of the combinations of desired properties. For example: the adversary
may e.g. be standard for the server-aided security property secu1 but controller
for secu2.

3.2 Filling the Data Status Table

We should now make the link between the security properties and the status of
all the data manipulated in Alg0.

Generic or not generic. Again, our aim is to design a generic autonomous
(as possible) method to obtain the best secure server-aided variant of a secure
instance. In fact, from the security point of view, it seems hard to completely
automate our work.

One solution is to make use of some formal analysis dedicated to cryptographic
protocols, such as the (non exhaustive) work given in [7,1,3,4]. For this purpose,
we first need to precisely formalize the operations available to the adversary.
We then make use of the description of the experiment, depending on the power
of the adversary (see above) and execute formal methods to find a way for the
adversary to break the security, using its available operations as defined above.
This execution is done several times by having the status of all the data vary.
Finally, each set of data status which leads to “no attack” by formal analysis can
be given to the next step of the procedure (with the deletion of some redundant
choices). Such work requires a complete and deep study and it is not our aim in
this paper to study this independent research topic.

Another possibility is to ask an operator to perform such choice(s). We give
him the new experiment and ask him on output the status of all data. We then
assume that such output is good regarding security.

In the following, we have chosen a compromise between the two. We have suc-
ceeded, using some results given below, in simplifying the work of this operator
by automatically treating some cases. The way we assign a status to each task
depends on their nature (intrinsic or ephemeral) and their type.

Status of intrinsic data. Informally, we do not want that a non-standard
adversary uses his extra power to get access to more data than the adversary in
the original security experiment. We then use the following result.

Definition 2. Let Σ = {secu[1], ..., secu[t]} be the security properties ensured
by π. For all i ∈ I = [1, t], Δi is the set of all intrinsic data known by Ai, the

4 In [9], the authors argue that the anonymity property may be relaxed w.r.t. the
intermediary as this latter may already know the identity of T , while it should not
be able to produce a group signature without the help of T , and thus break the
traceability property.

380 S. Canard et al.

adversary of the security experiment defining secu[i]. Let Ai be the adversary
against secu[i] in the server-aided setting. We define Δ =

⋂
i∈I

Δi where i ∈ I if

Ai has extra power (i.e. has the power of a listener-receiver or a controller).

We then consider that an intrinsic data d is stated as known to I iff d ∈ Δ.
We illustrate this method in Section 3.3 using the XSGS group signature scheme
given in [17].

Status of ephemeral data. A server-aided version should not compromise
the security of the instance π. One way is to make use of a strong notion, related
to the zero-knowledge property used for proofs of knowledge.

Definition 3. : A server-aided version π of an instance π is said to be

– listener-receiver secure iff there exists a simulator S, whose inputs are known
intrinsic data, such that the output of S is computationally indistinguishable
from the view of the real communications between T and (a non-controller)
I.

– controller secure iff, for any intermediary I∗, there exists a simulator SI∗,
whose inputs are known intrinsic data, such that the output of SI∗ is compu-
tationally indistinguishable from the view of the real communications between
T and I∗.

Definition 4. Let Π be a primitive and π an initial instance of Π ensuring
Σ = {secu[1],..., secu[t]}. Let secuvec be a vector of length t, defining the
class of each adversary Ai, such that for all i ∈ [1, t], secuvec[i] ∈ {standard,
listener-receiver, controller}. Let π be a server-aided version of the instance π.
The server-aided instance π is a secuvec secure server-aided version of π if for
all i ∈ [1, t] such that secuvec[i] �= standard, π is secuvec[i] secure.

The next result helps for a partial automation of the filling of the data status
table.

Lemma 1. Let Π be a primitive and π an initial instance of Π ensuring Σ =
{secu[1],..., secu[t]}. If π is a secuvec secure server-aided version of the in-
stance π then π ensures Σ̄ = {secu[1], ...,secu[t]}.
Proof. First, let Ai be a standard adversary against secu[i]. Since it does not
have access to the data given to I and cannot listen to the communication
between T and I, it is equivalent to an adversary against the initial security
property secu[i]. Thus the security of the initial instance implies the security of
the server-aided instance π.

Now we consider Ai, a non-standard adversary against secu[i]. We recall that
the status of intrinsic data are known to I iff they are known by any adversary
A of the security properties verified by π. Since we assume the existence of S
which is able, using these known intrinsic data, to simulate the communications
between T and I, we do not give more information to the adversary than in the
original experiment. Thus, the security of the initial instance implies the one of
the server-aided version. ��

Toward Generic Method for Server-Aided Cryptography 381

One can argue that we could reach the security property secu without this
strong “zero-knowledge” requirement. Indeed, in some experiments, if we allow
the adversary to get access to some additional information, we can get a more ef-
ficient repartition of the tasks without endangering the security of π. Yet it then
seems hard to guarantee the security of π without asking the operator which
ephemeral data can be stated as known.

In practice, the way our algorithm assigns status to each ephemeral data de-
pends on the type of task in which it is involved. For example, if a secret data is
involved in a multi-linear combination then another data involved in the same
task has to be set as unknown w.r.t. I. Now, if we consider a hash function
evaluation we could consider the output as known, regardless of the status of the
inputs. We still refer to Section 3.3 for a more explicit example.

Conclusions. The filling of the data status table by the operator is done by
first choosing the security vector secuvec, enabling him to determine Δ, the set
of intrinsic data known by I. Then he runs our algorithm that will automatically
assign a status to most of the ephemeral data. Finally, the operator just has to
indicate the status of the non treated ephemeral data, using the security notions
given in Definition 3.

3.3 Example of Group Signatures

Let us consider the XSGS group signature scheme given in [17,9] and we focus
on the data. The whole GSign algorithm is given in Figure 1.

Group signature scheme [17] - GSign(m, gsk[i] = (A,x, y))

t1. α1 ∈R Z∗
p t15. r1 ∈R Z∗

p t29. t
′′
5 = y−r8

2

t2. β1 ∈R Z∗
p t16. r2 ∈R Z∗

p t30. t5 = t′5 · t′′5
t3. α2 ∈R Z∗

p t17. r3 ∈R Z∗
p t31. t6 = Tr5

3

t4. β2 ∈R Z∗
p t18. r4 ∈R Z∗

p t32. e1 = e(t6, g2)

t5. γ1 = α1 + β1 t19. r5 ∈R Z∗
p t33. t7 = e(y1, Γ)−r7

t6. γ2 = α2 + β2 t20. r6 ∈R Z∗
p t34. t

′
7 = e(y1, g2)

−r6

t7. T1 = gα1 t21. z = γ1 · x+ y t35. t8 = e1 · t7 · t′7
t8. T2 = g′β1 t22. r7 = r1 + r2 t36. c = H(m‖T1‖ . . . ‖T6‖t1‖ . . . ‖t8)
t9. T′

3 = yγ11 t23. r8 = r3 + r4 t37. s1 = r1 + c · α1 (mod p)

t10. T3 = A · T′
3 t24. t1 = gr1 t38. s2 = r2 + c · β1 (mod p)

t11. T4 = gα2 t25. t2 = g′r2 t39. s3 = r3 + c · α2 (mod p)

t12. T5 = g′β2 t26. t3 = gr3 t40. s4 = r4 + c · β2 (mod p)

t13. T
′
6 = yγ22 t27. t4 = g′r4 t41. s5 = r5 + c · x (mod p)

t14. T6 = A · T′
6 t28. t

′
5 = yr71 t42. s6 = r6 + c · z (mod p)

Output: σ = (T1,T2,T3,T4,T5,T6, c, s1, s2, s3, s4, s5, s6)

Fig. 1. The XSGS GSign algorithm [17,9]

382 S. Canard et al.

Dealing with security properties. The security properties required from
a group signature scheme [6] are: correctness, traceability, anonymity and
non-frameability. We consider a standard adversary against the correctness
and listener-receiver against traceability and non-frameability. We use, as in [9],
the relaxed anonymity property w.r.t. the intermediary since it has other ways
to identify the signature issued by E0, and then consider a standard adversary
against the anonymity. Using the above order for security properties we then
set the corresponding security vector to secuvec = [standard, listener-receiver,
standard, listener-receiver].

Status of intrinsic data. We now have to determine Δ using Definition 2.
The status of most of the intrinsic data is obvious since the adversaries of the
different security experiments have access to the public parameters (g, g′, ...), the
message (m) and the group signature. We thus have:

{g, g′, y1, y2, Γ, g2, e(y1, Γ), e(y1, g2),m,T1,T2,T3,T4,T5,T6, c, s1, s2, s3, s4, s5, s6} ⊂ Δ.

Now let consider the user’s key: A, x, y. We have chosen non-standard adver-
saries for the traceability and non-frameability, the status of the user’s key only
depends on the knowledge of the adversaries of these experiments. Since the
issuer is adversary-controlled in both experiments, the adversaries know A and
x and thus we have: {A, x} ⊂ Δ. The only intrinsic data that has to remain
unknown to I is then y.

Status of ephemeral data. Once the status of each intrinsic data is set,
the operator runs the algorithm SetStatusData, described in Section 5, which
outputs stI [{r6, z}] = ukn and stI [Ψ0 \ {r6, z}] = kn.

4 Status of a Task

We will now focus on each task of the studied algorithm Alg0 and decide which
entity(ies) can execute it. For this purpose, each task of the algorithm is char-
acterized by a status. More precisely, let us consider independently each task
ti ∈ Θ of the procedure Alg0. We focus on the inputs and outputs of ti and
make use of the data status which has been stated as explained in the previous
section.

4.1 Execution of a Task by the Intermediary

Based on the data status table, there are initially two cases that can be seen as
trivial.

1. All input and output data of ti are known to I: for obvious reasons, this
task may be executed by either T or the intermediary I. We denote such
case st(ti) = 1.

Toward Generic Method for Server-Aided Cryptography 383

2. At least one output data of ti is not known to I: we first consider that ti
is executed by T and we say that the status of ti is 0, which is denoted
st(ti) = 0. However, depending on the existence of a cooperative version of
this task, this status could be changed (see Section 4.2).

Multiplicity of the choices. One important thing is that a task with status
1 will not necessarily be executed by I. Indeed, we consider that it can be either
executed by T or by I. Our main objective is to determine the best possible
server-aided instance, which may include a task that can be executed by I will
possibly be executed by T (if the latter has nothing more to do during enough
time for example). This will be taken into account in our main method below.

We now try to do better by searching in the literature some tasks where I
can help T even if some of the manipulated data are secret.

4.2 Server-Aided Execution of a Task

There are numerous papers about outsourcing some specific cryptographic tasks
(for example [25,5,20,31,2]). We here talk about a “cooperative” execution of a
task.

Cooperative execution of a task. We have previously made some choices
regarding the set Θ of tasks. Then, for each type of task in Θ, we can say
whether it exists in the literature a way to execute such task cooperatively or
not, depending on the status of the different inputs and outputs. For example,
the authors of [15,14] provide a method to compute e(A,B) when A and B are
secret. Appendix A lists some existing cooperative methods for the tasks in Θ. In
the following, the database CoopMeth contains the status of each task depending
on the status of the inputted and outputted data.

4.3 Status of a Task

Using the above results, we can now formally define the status of a task.

Definition 5 (status of a task). Let Π = (Ξ, Ω, Λ, Σ) be a primitive and
let π = (Θ,Φ, Ψ) be an instance of Π. The status of a task t ∈ Θ is defined as
st[t] = 0 if t has to be executed by T ; st[t] = 1 if t can be executed by either
T or I; st[t] = if t can be executed cooperatively, or by T alone; st[t] = 1
if t can be executed cooperatively, or by I or T alone; st[t] = 2 if t should be
entirely executed by I.

The last item (st[t] = 2) corresponds to the case where the trusted entity
T is not able to perform a task. For example, most of today’s smart cards
do not implement a bilinear pairing (even cooperatively), which makes all the
other statuses impossible. However, depending on the chosen security vector,
the introduction of such status may imply that no possible secure server-aided
version of a given instance can be designed (the result is that all the tasks should
be performed by T sole). As it may occur in practice, we prefer to keep it.

384 S. Canard et al.

Table of status task. Each task ti ofAlg0 (in Θ0) has to be associated to one
of these status in order to design the server-aided version, which is done by the
SetStatusTask algorithm. In order to ease the execution of this algorithm, we
list in a database the existing possibilities of execution for all elementary tasks
depending on the status of their inputs and outputs.

– If a task cannot be executed by T , then the status is necessarily stated to 2.
– If all the inputs and outputs of ti are known to I (except when the adversary

is a controller w.r.t. the correctness), then it can be totally executed by I
and the status includes a 1.

– We then focus on existing server-aided executions of the task. Regarding the
status of all inputs and outputs, we are able to say whether such cooperative
method exists or not (see Appendix A for some examples). If one exists,
then we can introduce the in the task status (which implies the possibility
to obtain a status 1 with the previous case). In addition, the cooperative
method is inserted in the database.

– Otherwise, the status of ti is set to 0.

Now the task status table is filled, we can explain how we determine the best
variant, which will be done in the next section. We first illustrate our purpose
on task status with our example of group signatures.

4.4 Example of Group Signatures

When considering the elementary tasks of the XSGS group signature we find two
types of them which can be executed cooperatively, namely the pairing and the
exponentiation. However, cooperative executions of the these tasks remain inef-
ficient (for example the delegation of pairing provided by [15] and [14] requires
respectively 10 and 7 exponentiations in GT which is costlier than computing
the pairing) or insecure [5,28]. We then do not consider in our example the status
“ ” and get the following repartition:

st[{t20, t21, t42}] = 0 and st[Θ0 \ {t20, t21, t42}] = 1.

5 Producing the Most Efficient Server-Aided Variant

Before formally describing the algorithms that construct the most efficient server-
aided version, we introduce some useful notations for this section. The best
server-aided version of an algorithm mainly depends on the efficiency of both
actors, namely the trusted entity T and the intermediary I. Consequently, a
database denoted Perf containing the performances of both entities for all types
of tasks must be set. Perf[X][t] returns the time taken by the entity X (either T
or I) to perform the task t. If it is not able to perform this task, the associated
time is arbitrarily fixed to ∞.

Each task is defined by its identifier, its type (exponentiation, pairing,...), its
inputs and its outputs.

Toward Generic Method for Server-Aided Cryptography 385

5.1 Description of the Global Method

We here make a high level description of our algorithms by taking again our run-
ning example of the XSGS group signature phase. The more formal description
of the main algorithms is further given by Algorithms 1, 2 and 3.

We first run the algorithm SetStatusData to determine the status of each
epheme-ral data depending on the status of the intrinsic data and on rules de-
fined by the operator. For example, if a secret data is involved in a multi-linear
combination over Zp, then another data involved in the same task has to be kept
secret from I. Considering the task t21 : z = γ1x + y, this means that the algo-
rithm will have to set γ1 or z as unknown because y is secret and stI [x] = kn.
Using the same methodology for each task, the algorithm will finally output the
status of each data. The resulting status of ephemeral data will be known, except
for r6 and z. We are then able to determine the status of each task. As already
explained, we will consider that a task can be executed by I if the status of all
inputs and outputs are known to I because of the lack of efficient cooperative
protocol for the considered tasks.

Before allocating each task to T or I we first have to ensure that their order
is respected. Indeed, some tasks take as inputs the output of other ones and thus
have to be computed after. For example tasks t37, t38, t39, t40, t41, t42 require the
data c and thus have to be computed after the task t36. We then assign to each
task, using the algorithm RepRound described below, a round number such
that every task of a same round only takes as input intrinsic data or ephemeral
data produced during previous rounds. We may thus look for the best repartition
of the tasks in the round without caring for their order of execution.

Group signature scheme [17] - GSign(m, gsk[i] = (A, x, y))

α1 ∈R Z
∗
p, β1 ∈R Z

∗
p α1 ∈R Z

∗
p, β1 ∈R Z

∗
p

γ1 = α1 + β1, T′3 = y
γ1
1

γ1 = α1 + β1

α2 ∈R Z
∗
p, β2 ∈R Z

∗
p β2 ∈R Z

∗
p α2 ∈R Z

∗
p, T′3 = y

γ1
1

T3 = AT′3 T3 = AT′3
r6 ∈R Z

∗
p r1 ∈R Z

∗
p, r2 ∈R Z

∗
p r5 ∈R Z

∗
p r1 ∈R Z

∗
p, r2 ∈R Z

∗
p

r3 ∈R Z
∗
p, r4 ∈R Z

∗
p r6 ∈R Z

∗
p r3 ∈R Z

∗
p, r4 ∈R Z

∗
p

r5 ∈R Z
∗
p, γ2 = α2 + β2

α2←−−−−−−−−
r7 = r1 + r2, r8 = r3 + r4 γ2 = α2 + β2 r7 = r1 + r2, r8 = r3 + r4

t′7 = e(y1, g2)−r6 t6 = T
r5
3

, T′6 = y
γ2
2

t′7 = e(y1, g2)−r6
r5−−−−−−−−→ t6 = T

r5
3

t′5 = y
r7
1 , t7 = e(y1, Γ)−r7 T′6 = y

γ2
2 t′5 = y

r7
1 , t7 = e(y1, Γ)−r7

e1 = e(t6, g2), t′′5 = y
−r8
2 e1 = e(t6, g2), t′′5 = y

−r8
2

T1 = gα1 , T2 = g′β1
β2, t′7, T′6−−−−−−−−→

T4 = gα2 , T5 = g′β2
α1←−−−−−−−−

T6 = AT′6, t1 = gr1 T1 = gα1 T2 = g′β1 , T6 = AT′6
t2 = g′r2 , t3 = gr3 T4 = g′α2 t1 = gr1 , t2 = g′r2
t4 = g′r4 , t5 = t′5t′′5 T5 = g′β2 t3 = gr3 , t4 = g′r4

t′7−−−−−−−−→
γ1←−−−−−−−− t5 = t′5 t′′5

γ1←−−−−−−−−
T1, T4, T5−−−−−−−−→

z = γ1x + y t8 = e1 t7t′7 z = γ1x + y t8 = e1t7 t′7
c = H(m‖T1‖...‖T6‖t1‖...‖t8) c = H(m‖T1‖...‖T6‖t1‖...‖t8)

c←−−−−−−−−
c, r1←−−−−−−−−

s6 = r6 + cz[p] s1 = r1 + cα1[p] s1 = r1 + cα1[p] s2 = r2 + cβ1[p]
s2 = r2 + cβ1[p] s6 = r6 + cz[p] s3 = r3 + cα2[p]
s3 = r3 + cα2[p] s4 = r4 + cβ2[p]
s4 = r4 + cβ1[p] s5 = r5 + cx[p]
s5 = r5 + cx[p]

Example with ratio 1000 Example with ratio 2

Fig. 2. The XSGS GSign algorithm [17,9]

386 S. Canard et al.

We get this best repartition using the algorithm Rep which focus on the dif-
ferent types of tasks of the round rather than on the tasks themselves. This algo-
rithm will determine how many tasks of each type have to be executed by T and
by I. For example, the round 7 is composed of the tasks t7, t8, t11, t12, t14, t24, t25,
t26, t27, t30 and t35, i.e. 8 exponentiations and 3 group operations. The algorithm
Rep will then decide how many exponentiations and group operations have to be
computed by T in order to minimize the execution time of this round. For a ratio
of 2 between T and I we get the following repartitions: 3 exponentiations for T
and the rest for I. Now we must choose the 3 exponentiations among the 8 that
will require the less communication time. This is done by the AttributeTask

algorithm which is described in appendix B. In a nutshell, it mainly depends
on the number of successors of each task. Indeed, since T handles less tasks
than I, the goal is to assign the tasks with the fewest successors to T since the
probability that their output will be required by I is smaller.

Using the same methodology for each round finally gives us the repartitions
described in Figure 2 for 2 different ratios (1000 and 2).

Considering the intermediary I as far more powerful than T is a typical
approach in cryptography [9,15,22], the resulting protocols trying to delegate as
many tasks as possible to the delegatee. The left side of figure 2 describes the
result of our algorithm in such case, the only tasks handled by T being those
who require knowledge of secret data (y, r6, z) and thus cannot be delegate to I.
One may note that we exactly find the same repartition as the one from [9]. Yet,
the gap between T and I may not be so important, the right side of the figure
describes a different repartition for a smaller ratio.

5.2 Round Attribution

The RepRound algorithm takes as inputs the number of tasks, taskNumber,
an array RepRound and a matrix SuccNumber such that SuccNumber[i, j] = 1
if tj takes as input the output of tj . It assigns the current round to every tasks
t with no successor and then removes t from the successor lists of all the other
tasks.

5.3 Rep Algorithm

The Rep algorithm takes as inputs five arrays TaskRoundT , TaskRoundI,
TaskT , TaskI, and Index and an integer typeNumber that is the number of
different types of tasks. TaskRoundT stores, for each type, the number of tasks
that have to be executed by T while TaskRoundI stores, for each type, the
number of tasks that can be executed by I. Index ensures that the while loop
tests all possible combinations. Finally, the best repartition is stored in TaskT
and TaskI.

Toward Generic Method for Server-Aided Cryptography 387

Algorithm 1. RepRound(RepRound, taskNumber, SuccNumber)

round = 1; count = 0;
while count != taskNumber do

for i ∈ [0; taskNumber[do
if RepRound[i] == 0 then

/*If no round has been assigned to ti */
succNumber = 0;
for j ∈ [0; taskNumber[do

succNumber+ = Succ[i ∗ taskNumber + j];

if succNumber == 0 then
RepRound[i] = round; count ++;

/* We remove each task assigned in this round from the successor list */
for i ∈ [0; taskNumber[do

if RepRound[i] == round then
for j ∈ [0; taskNumber[do

Succ[i ∗ taskNumber + j] = 0;

round ++;

Algorithm 2. Rep(TaskRoundT, TaskRoundI, TaskT, TaskI, typeNumber, Index)

bestT ime = +∞; consT imeT = 0;
for i ∈ [0; typeNumber[do

/*We first compute the computation time of the tasks that have to be
executed by T*/
constT imeT+ = TaskRoundT [i] ∗ Perf [T][i];

i = 0
while i! = typeNumber do

timeT = constT imeT ;timeI = 0;
for j ∈ [0; typeNumber[do

timeT+ = Index[j] ∗ Perf [T][j];
timeI+ = (TaskRoundI [j]− Index[j]) ∗ Perf [I][j];

if timeT > timeI then
timeMax = timeT

else
timeMax = timeI

if timeMax < bestT ime then
bestT ime = timeMax
for j ∈ [0; typeNumber[do

TaskT [round ∗ typeNumber+ j] = TaskRoundT [j] + Index[j];
TaskI [round ∗ typeNumber+ j] = TaskRoundI [j]− Index[j];

Index[0] + +;i = 0;
while Index[i] > TaskRoundI [i] and i < typeNumber do

Index[i] = 0; Index[i+ 1] + +;
i++;

388 S. Canard et al.

6 Conclusion

In this paper, we have proposed an almost generic method to simplify and pre-
cise the work of an operator wanting to construct the most possible efficient
secure server-aided instance of a cryptographic primitive. Our work can easily
be applied or adapted to any instance of any primitive.

This is obviously a first step and it remains a lot of work to do to improve the
final result. For example, regarding cooperative execution of elementary tasks
such as modular exponentiations or pairings, the related work clearly lacks of
efficient and secure dedicated solutions. Regarding our main methodology, we
also need to work on a true operator-free solution, especially regarding the se-
curity part. As said before, one option seems to work with formal methods, but
it needs to be confirmed by additional work.

Acknowledgments. The work of the first, third and sixth author has been
partially supported by the French ANR-11-INS-0013 LYRICS Project. The fifth
author was supported by the Camus Walloon Region project. We are grateful to
Nicolas Desmoulins for helpful discussions on the implementation aspects, and
to anonymous referees for their valuable comments.

References

1. Abadi, M., Blanchet, B., Comon-Lundh, H.: Models and proofs of protocol security:
A progress report. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 35–49. Springer, Heidelberg (2009)

2. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:
ASIACCS, pp. 48–59 (2010)

3. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistin-
guishability logic. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 375–386. ACM (2010)

4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

5. Béguin, P., Quisquater, J.-J.: Fast server-aided RSA signatures secure against ac-
tive attacks. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 57–69.
Springer, Heidelberg (1995)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

7. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

8. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
Conference on Computer and Communications Security 2004, pp. 132–145. ACM
(2004)

9. Canard, S., Coisel, I., De Meulenaer, G., Pereira, O.: Group signatures are suitable
for constrained devices. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 133–150. Springer, Heidelberg (2011)

Toward Generic Method for Server-Aided Cryptography 389

10. Canard, S., Girault, M.: Implementing group signature schemes with smart cards.
In: CARDIS 2002, pp. 1–10. USENIX (2002)

11. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Chen, L.: A daa scheme requiring less tpm resources. In: Bao, F., Yung, M., Lin, D.,
Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg
(2010)

14. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150
(2005), http://eprint.iacr.org/

15. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

16. Cramer, R., Pedersen, T.P.: Improved privacy in wallets with observers (extended
abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 329–343.
Springer, Heidelberg (1994)

17. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

18. Girault, M., Lefranc, D.: Public key authentication with one (online) single
addition. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 413–427. Springer, Heidelberg (2004)

19. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

20. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

21. Kawamura, S.I., Shimbo, A.: Fast server-aided secret computation protocols
for modular exponentiation. IEEE Journal on Selected Areas in Communica-
tions 11(5), 778–784 (1993)

22. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation.
IACR Cryptology ePrint Archive, 2005:259 (2005)

23. Lim, C.H., Lee, P.J.: Server (prover/signer)-aided verification of identity proofs and
signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS,
vol. 921, pp. 64–78. Springer, Heidelberg (1995)

24. Maitland, G., Boyd, C.: Co-operatively formed group signatures. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 218–235. Springer, Heidelberg (2002)

25. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with inse-
cure auxiliary devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
pp. 497–506. Springer, Heidelberg (1990)

26. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits:
A very compact and a threshold implementation of aes. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

27. Nguyên, P.Q., Shparlinski, I.E.: On the insecurity of a server-aided RSA proto-
col. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 21–35. Springer,
Heidelberg (2001)

http://eprint.iacr.org/

390 S. Canard et al.

28. Nguyên, P.Q., Stern, J.: The béguin-quisquater server-aided RSA protocol from
crypto ’95 is not secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 372–379. Springer, Heidelberg (1998)

29. Pfitzmann, B., Waidner, M.: Attacks on protocols for server-aided RSA computa-
tion. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 153–162.
Springer, Heidelberg (1993)

30. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

31. van Dijk, M., Clarke, D.E., Gassend, B., Edward Suh, G., Devadas, S.: Speeding
up exponentiation using an untrusted computational resource. Des. Codes Cryp-
tography 39(2), 253–273 (2006)

32. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: CARDIS
2004, pp. 271–286. Kluwer (2004)

33. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS,
pp. 160–164. IEEE Computer Society (1982)

Toward Generic Method for Server-Aided Cryptography 391

A Cooperative Execution of Elementary Tasks

We here provide some cooperative protocols one can find in the literature. Our
goal is not to be exhaustive but to show that they are relevant to our method-
ology. To the best of our knowledge there is no general method to cooperatively
perform a pseudo random generation or a hash computation. We focus on the
costliest types of tasks introduced in section 2.1.

A.1 Exponentiation

Let g be an element of a group G and a ∈ Zp. The cooperative execution of ga

depends on the status of g and a. Since our method only considers one inter-
mediary I, we do not use the method proposed by [20], secure under the strong
assumption that T has access to two intermediaries that cannot communicate
with each other.

The method of [31] describes the way to outsource the computation of an
exponentiation with verifiability of the result (i.e. the intermediary cannot con-
vince T to accept a false value for ga). Nevertheless, this method requires that
g and a are both public.

Several papers [25,21,5] provide protocols for secret data, however, they were
later proven insecure [29,5]. We then do not consider cooperative execution of
exponentiation when secret data are involved.

A.2 Bilinear Map

In [19], Girault and Lefranc have proposed a way to compute e(A,B) for secret
A or B. Their solution works as follows. First, T chooses at random u and v
in Zp, computes X = Au and Y = Bv and sends theses values to I. Then,
I computes z = e(X,Y), sends it to T which recovers e(A,B) by computing

z(uv)
−1

. Since X and Y are random elements of G1 and G2 we are able to
simulate the communication between T and I without knowledge of A and B.
The above cooperative execution of a pairing is then listener-receiver secure.

However, this protocol does not ensure verifiability of the result. Indeed, if I
returns a random value from GT instead of e(X,Y), then T is unable to detect
it. In [15] and [22], the authors provide verifiability but their protocol remain
inefficient since they require respectively 10 and 7 exponentiations in GT to
check the validity of the result.

B AttributeTask Algorithm

The algorithm AttributeTask takes as input TaskT , the output of the Rep

algorithm, AssignedTaskT , an array storing for each round and each type the
number of tasks with status 0, StatusTask, TypeTask and RepRound, arrays
indicating the status, the type and the round of each task and three integers
typeNumber, roundNumber and taskNumber. Recall that the Rep algorithm

392 S. Canard et al.

has chosen, for each type of tasks, how many of them T must compute to get the
best repartition. However, it remains to choose which ones will be computed by
this entity to minimize communication time. Since some tasks, involving secret
data, are already assigned to T , the algorithm only has to find n (see algorithm
3) other ones. It proceeds as follows. It counts, for each task of this type, the
number of successors succNumber and stores the n of them with the fewest
number in BestRep. Once this is done, we get the best repartition and it only
remains to add the communication time.

Algorithm 3. AttributeTask(TaskT, AssignedTaskT, StatusTask, TypeTask, RepRound,
typeNumber, roundNumber, taskNumber)

for i ∈ [1, roundNumber] do
for j ∈ [0, typeNumber[do

/* n is the number of tasks with status 1 that T has to compute */
n = TaskT [(i− 1) ∗ typeNumber+ j]−AssignedTaskT [(i− 1) ∗
typeNumber+ j];
if n != 0 then

repNumber = 0;
minIndex = 0;
for k ∈ [0, taskNumber[do

succNumber = 0;
if RepRound[k] == i and StatusTask[k] == 1 and
TypeTask[k] == j then

for l ∈ [0, taskNumber[do
succNumber+ = Succ[k ∗ taskNumber + j];

if taskNumber < n then
/*BestRep stores the best repartition at this stage */
BestRep[repNumber] = k;
BestSucc[repNumber] = succNumber;
repNumber++;
if BestSucc[minIndex] < succNumber then

minIndex = repNumber;

else
if BestSucc[minIndex] > succNumber then

BestRep[minIndex] = k;
BestSucc[minIndex] = succNumber;
for l ∈ [0;n[do

if Bestsucc[l] > succNumber then
minIndex = l;

Generation and Tate Pairing Computation

of Ordinary Elliptic Curves with Embedding
Degree One

Zhi Hu1,2, Lin Wang3, Maozhi Xu2, and Guoliang Zhang2

1 Beijing International Center for Mathematical Research, Peking University,
Beijing, 100871, P.R. China

2 LMAM, School of Mathematical Sciences, Peking University,
Beijing, 100871, P.R. China

3 Science and Technology on Communication Security Laboratory,
Chengdu, 610041, P.R. China

{huzhi,linwang,mzxu}@math.pku.edu.cn,

{guoliang_tj}@126.com

Abstract. We generalize Boneh-Rubin-Silverberg method [3] to con-
struct ordinary elliptic curves with embedding degree one, which pro-
vides composite order groups for cryptographic protocols based on such
bilinear groups. Our construction is more efficient and almost optimal for
parameter setting. In addition, we analyze the non-degeneracy of sym-
metric pairing derived from the reduced Tate pairing on such curves, and
prove that its non-degeneracy only relies on the existence of distortion
maps. Based on this observation, we propose a new method for comput-
ing the reduced Tate pairing on ordinary curves with embedding degree
one. Compared with previous methods, our formulae provide faster com-
putation of the reduced Tate pairing on such curves, which also implies
that the reduced Tate pairing may be preferred to use as symmetric
pairing instead of the modified Weil pairing in certain cases.

Keywords: Elliptic Curve, Complex Multiplication, Symmetric
Pairing.

1 Introduction

The idea of using composite order groups in pairing-based cryptography comes
from Boneh, Goh, and Nissim [2] for partial homomorphic public key encryption,
and now it has been used in a number of other important applications including
group signatures [5], ring signatures [23], non-interactive zero-knowledge proofs
[10], traitor tracing [4] and so on. Though there exist generic techniques to
translate protocols from composite-order to prime-order groups [17], some prop-
erties cannot be achieved in the prime-order setting [22]. Thus composite-order
pairing-friendly elliptic curves remain interesting.

The construction [2] of composite pairing-friendly groups is based on super-
singular elliptic curves. Boneh, Rubin and Silverberg showed that it is possible

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 393–403, 2013.
c© Springer International Publishing Switzerland 2013

394 Z. Hu et al.

to obtain composite groups from ordinary elliptic curves [3]. So elliptic curve
E/Fq which has small embedding degree k with respect to a composite num-
ber N (e.g. an RSA modulus) is considered for such cryptographic applications.
Freeman et al. [8] deduced that pairing-friendly curves of composite order should
have ρ-values (ρ = log q/ logN) and embedding degrees k chosen to minimize
ρ ·k. They also concluded that both k = 1 ordinary curves and k = 2 supersingu-
lar curves provided the minimum possible value for ρ ·k and are thus optimal for
such cryptographic setting. Koblitz [16] described a security weakness for such
cryptographic setting when k > 2.

Since the cryptographic applications mentioned above need symmetric pair-
ings on such curves, faster pairing computation is required. The computation
of symmetric pairing on desired curves has been considered in several papers.
Koblitz and Menezes [15] examined the efficiency of the modified Weil pairing as
opposed to the modified Tate pairing. Zhang and Lin [30] gave an optimal Omega
pairing based on the Weil pairing which would halve the length of Miller loop.
Zhao et al. [31] and Wu et al. [29] proposed faster computation of self pairing
(some kind of symmetric pairing) based on the Weil pairing. Their work con-
centrated on ordinary elliptic curves with embedding degree k = 1 and complex
multiplication discriminant D = −3 or D = −4.

This work concentrates on ordinary elliptic curves with embedding degree
one. We generalize Boneh-Rubin-Silverberg method to construct composite or-
der ordinary elliptic curves with embedding degree one. Our construction is very
efficient and reaches almost optimal parameter setting. Since the cryptographic
applications mentioned above need symmetric pairings on such curves, we con-
sider the use of the reduced Tate pairing, whose non-degeneracy only relies on
the existence of distortion maps. We give formulae under Jacobian coordinate for
the computation of the reduced Tate pairing on desired curves, with 8M + 10S
for each doubling step and 12M+5S for each addition step. It is shown that our
method achieves better performance than the previous methods for the reduced
Tate pairing computation.

Our manuscript is organized as follows. Section 2 gives some basic knowl-
edge of ordinary elliptic curves. In Section 3 we review Boneh-Rubin- Silverberg
method for constructing composite order ordinary elliptic curves with k = 1, and
propose our generalized method. In Section 4 we analyze the non-degeneracy of
symmetric pairing derived from the reduced Tate pairing on the desired curves,
and propose faster computation formulae for such pairing. At last in Section 5
we conclude this work.

2 Preliminaries

2.1 Ordinary Elliptic Curve with CM

Let E be an elliptic curve defined over Fp with p ≥ 5, and End(E) be its
endomorphism ring. E is said to be ordinary if it satisfies any of the following
equivalent conditions [24, Theorem V.3.1]:

Ordinary Elliptic Curves with Embedding Degree One 395

1. E[pm] ∼= Z/pmZ for all positive integers m;

2. End(E) is an order in a quadratic imaginary extension of Q;

3. The dual of the p-th power Frobenius endomorphism π is separable;

4. The trace of π (denoted by t) is co-prime to p.

If E is not ordinary, then E is said to be supersingular.
The complex multiplication (CM) method [1] is very important for construct-

ing elliptic curve. Let D be a negative integer, and p be a prime such that
4p = t2 − Ds2, where t, s ∈ Z. Then the CM method generates an elliptic

curve E/Fp with #E(Fp) = p+ 1 − t, and the Frobenius map π = t+s
√
D

2
. Let

K = End(E)⊗Q and OK be its integral closure, then D = m2Disc(K) for some
m ∈ Z, where Disc(K) denotes the discriminant of K.

2.2 Pairings on Elliptic Curve

Let r be a prime integer dividing #E(Fp) = p+ 1− t, and k be the embedding
degree with respect to r, that is, the smallest positive integer such that r|pk− 1.
Let P ∈ E(Fp)[r], Q ∈ E(Fpk) and O∞ be the identity element of E(Fp). For
any m ∈ N, let fm,P be the rational function on E such that div(fm,P) =
m(P)− ([m]P)− (m− 1)(O∞). Assume that DQ is a divisor which is equivalent
to (Q)− (O∞) with its support disjoint from div(fr,P). Let μr denote the group
of the r-th roots of unity in Fpk . The reduced Tate pairing [7] is a bilinear map

t : E(Fp)[r]× E(Fpk)/rE(Fpk)→ μr, t(P,Q) = fr,P (DQ)
(pk−1)/r.

Let P,Q ∈ E[r], P �= Q, DP , DQ be two divisors which are respectively equiv-
alent to (P) − (O∞) and (Q) − (O∞). Assume that fr,P , fr,Q are two rational
functions satisfying div(fr,P) = rDP and div(fr,Q) = rDQ. The Weil pairing
[18] is a bilinear map

e : E[r]× E[r]→ μr, e(P,Q) = fr,P (DQ)/fr,Q(DP).

Both pairings can be efficiently computed viaMiller’s Algorithm [19]. Let l[m]P,[n]P

and v[m+n]P be the rational function with div(l[m]P,[n]P) = ([m]P) + ([n]P) +
(−[m+ n]P)− 3(O∞) and div(v[m+n]P) = ([m+ n]P) + (−[m+ n]P)− 2(O∞)
respectively, then for any m,n ∈ N, the Miller iteration is

fm+n,P = fm,P · fn,P · l[m]P,[n]P/v[m+n]P .

There are some variants derived from the above two basic pairings. These
pairings usually are not symmetric, but under certain conditions they can be
modified to be symmetric with the help of distortion map . The distortion map
ψ is an endomorphism which maps a point P ∈ E(Fp) to ψ(P) ∈ E(Fpk), ψ(P) �∈
〈P 〉 [28]. Distortion map always exists on supersingular elliptic curves, but only
exists on ordinary curves with k = 1 [28].

396 Z. Hu et al.

3 Constructing Ordinary Elliptic Curves with k = 1

3.1 Boneh-Rubin-Silverberg Method

Let N be a positive integer (e.g., an RSA modulus) or a large prime. Below is
the method given by Boneh, Rubin and Silverberg [3] for constructing ordinary
composite order elliptic curves with embedding degree 1.

1. Choose a negative integer D suitable for the CM method and

p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−DN2 if D ≡ 0, 2 mod 6,

1− 4DN2 if D ≡ 3, 5 mod 6,

(1 −N)2 −DN2 if D ≡ 1 mod 6,

(1 − 2N)2 −DN2 if D ≡ 4 mod 6.

such that p is prime.
2. Use the CM method to construct an elliptic curve E over Fp with

#E(Fp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−DN2 if D ≡ 0, 2 mod 6,

−4DN2 if D ≡ 3, 5 mod 6,

(1−D)N2 if D ≡ 1 mod 6,

(4−D)N2 if D ≡ 4 mod 6.

3.2 Our Construction

Let N be a positive integer (e.g., an RSA modulus or a large prime), D be a
negative integer and gcd(N, [OK : End(E)] ·D) = 1.

Lemma 1. Let p be an odd prime where 4p = t2 −Ds2 for some t, s ∈ Z, and
E/Fp be the elliptic curve with #E(Fp) = p+ 1− t. Then the embedding degree
of E/Fp with respect to N is 1 if and only if t ≡ 2 mod N, s ≡ 0 mod N .

Proof. Since Verheul’s condition [28] for E of embedding degree 1 with respect
to N can be given by

t ≡ 2 mod N,

#E(Fp) =
(t− 2)2 −Ds2

4
≡ 0 mod N,

thus it must have t ≡ 2 mod N and s ≡ 0 mod N . ��

If we let t = 2 + 2uN, s = 2vN (usually we choose u, v very small compared
with N), the parameters for the desired curves are set by

p = (1 + uN)2 −D(vN)2,

#E(Fp) = (u2 −Dv2)N2.
(1)

Ordinary Elliptic Curves with Embedding Degree One 397

Theorem 1. Let the parameters of elliptic curves be set as Eqn.1. If
gcd(N, [OK : End(E)]Disc(K)) = 1, then E[N] ⊆ Ker(π − 1) = E(Fp), i.e.,
the embedding degree of E/Fp with respect to N is 1.

Proof. Since π − 1 = N(u+ v
√
D) ∈ N · End(E), then [π − 1](E[N]) = {O∞},

and thus E[N] ⊆ Ker(π − 1) = E(Fp). ��

To generate ordinary composite order elliptic curves with embedding degree
1, we describe our method as the following algorithm.

Algorithm 1. Generating Elliptic Curve

Input: CM discriminant D and positive integer N .
Output: Elliptic curve E/Fp.
1. Choose proper integers u, v such that p = (1 + uN)2 −D(vN)2 is prime;
2. For two special cases:
(1) If D = −3, choose a proper b ∈ F×

p such that the elliptic curve E/Fp : y2 = x3 + b
satisfying #E(Fp) = (u2 + 3v2)N2;
(2) If D = −4, choose a proper a ∈ F×

p such that the elliptic curve E/Fp : y2 = x3+ax
satisfying #E(Fp) = (u2 + 4v2)N2;
3. For the other cases:
(1). Compute the Hilbert class polynomial HD of Q(

√
D);

(2). Compute a root j ∈ Fp of HD mod p;
(3). Let m = j/(1728 − j), choose a proper c ∈ F×

p such that the elliptic curve E/Fp :
y2 = x3 + 3mc2x+ 2mc3 satisfying #E(Fp) = (u2 −Dv2)N2.

The main expenditure step in Algorithm 1 is the computation of Hilbert
class polynomial HD. Current computational power admits the above algorithm
when |D| < 1013 and the class number h(D) < 106 [26]. Under the assumption
of Generalized Riemann Hypothesis, Algorithm 1 has an expected running time
of O(|D|1+ε).

Remark 1. Algorithm 1 provides parameters with log p ≈ 2 logN which is al-
most optimal for embedding degree 1 ordinary curves as mentioned in [8]. The
curve given by Koblitz and Menezes (D = −4) [15] and the curve given by Hu et
al. (D = −3) [11] can be viewed as special cases in our construction. Moreover,
the Verheul’s theorem [28] (usually considered as an evidence for the difficulty
of pairing inversion) could be generalized to such curves with embedding degree
k = 1, answering an open problem given by Moody [20].

Example 1. We choose a 1024-bit RSA modulus N = p1p2 used in [14] as

p1 = 102550118092248893727190813122670715255234271983317876509247

657836689461959140199046574489670155654489279127517821498649

07464901841782492454031263306824711,

398 Z. Hu et al.

p2 = 108718831815908172189458574055378426263115188527869467799928

712852298197898426665821768850627019231743455793936091347027

76143459315515232095349365641880549.

For D = −3, u = 7 and v = 5, p = (1 + 7N)2 + 3(5N)2 is a prime number. The
elliptic curve is E/Fp : y2 = x3+3, with #E(Fp) = 124N2. For D = −4, u = 16
and v = 2, p = (1 + 16N)2 + 4(2N)2 is a prime number. The elliptic curve is
E/Fp : y2 = x3 + 4x, with #E(Fp) = 272N2.

Example 2. Let N be the RSA challenge number RSA-2048 (bit) [21], for
D = −7, u = 5 and v = 17, p = (1 + 5N)2 + 7 · (17N)2 is a prime number. The
elliptic curve is E/Fp : y2 = x3−35x+98, with #E(Fp) = 2048N2. When we run
the Boneh-Rubin-Silverberg method, the output D with the smallest absolute
value is D = −1893. For randomly selected RSA modulus N in our experiments,
we can usually find much smaller |D| by our method to meet the desired setting
than that given by Boneh et al. [3], and thus reduce the computation of Hilbert
class polynomial. Therefore, our method is more efficient.

4 Symmetric Pairing Based on the Reduced Tate Pairing

4.1 Non-degeneracy of the Reduced Tate Pairing

Previous non-degeneracy symmetric pairing on desired curves are usually derived
from the Weil pairing e and a distortion map [τ]. Let E/Fp be an ordinary
elliptic curve with embedding degree k = 1 as generated by Algorithm 1, r be a
prime factor of N and P ∈ E(Fp) of order r, then {P, [τ]P} generates E(Fp)[r]
and thus the modified Weil pairing ê : 〈P 〉 × 〈P 〉 → μr ⊂ F×

p , ê([a]P, [b]P) =
e([a]P, [b][τ]P) is non-degenerate.

In this section, we analyze the non-degeneracy of symmetric pairing based
on the reduced Tate pairing t and distortion map τ . Obviously, at least one of
t : 〈P 〉 × 〈P 〉 → μr and t : 〈P 〉 × 〈[τ]P)〉 → μr must be non-degenerate (t(P, P)
can be alternatively computed by t(P, P+R)/t(P,R) for some R ∈ E(Fp)). Note
that the first pairing is degenerate for any elliptic curve with embedding degree
k > 1 [9, Lem. IX.13]. However, we have the following result:

Theorem 2. Let E/Fp be the curve generated by Algorithm 1. Let t : 〈P 〉 ×
〈P 〉 → μr be the reduced Tate pairing, where P ∈ E(Fp) has order r. Denote (··)
as the Legendre symbol.

1. If (Dr) = −1, then t is non-degenerate for any non-trivial P ∈ E(Fp)[r];

2. If (Dr) = 1, then t is non-degenerate for non-trivial P belonging to all but
two subgroups of E(Fp)[r] having distortion maps.

Proof. Let F̄p be the algebraic closure of Fp. Since E[r] ⊂ E(Fp), by [24, VIII.
§1, §2] we can define two isomorphisms

δE : E(Fp)/rE(Fp)→ Hom(GF̄p/Fp
, E[r]), δE(P)(σ) = σ(Q)−Q,

Ordinary Elliptic Curves with Embedding Degree One 399

where Q ∈ E(F̄p) is chosen so that [r]Q = P , and

δFp : F×
p /F

×
p
r → Hom(GF̄p/Fp

, μr), δFp(b)(σ) = βσ/β,

where β ∈ F̄×
p is chosen so that βr = b. By [24, Thm. X.1.1], we have e(δE(P), P)

= δFp(t(P, P)).
Let End(E) = Z[τ] and π be the Frobenius map, π can be represented as

π = 1 + r(m+ nτ) for some m,n ∈ Z and n �≡ 0 mod r. In the above let σ = π,
then by Hilbert’s Theorem 90, we have

t(P, P) �= 1⇔ e(δE(P), P) �= 1⇔ δE(P) = π(Q)−Q �∈ 〈P 〉.
⇔ ∀s ∈ Z/rZ, [m − s+ nτ](P) �= O∞.

Therefore, by the above result and [6, Thm. 2] we deduce that

1. If (Dr) = −1, then [τ] acts on E(Fp)[r] as a distortion map, and hence
[m− s+ nτ]P �= O∞ for any non-trivial P ∈ E(Fp)[r];

2. If (Dr) = 1, then [τ] acts on all but two subgroups of E(Fp)[r] as a distortion
map, and hence t(P, P) �= 1 for all non-trivial P ∈ E(Fp)[r] except these two
subgroups.

��

Remark 2. Interestingly, Ionica also gave a similar result in [13] for the non-
degeneracy of self pairing but used a different proof. By Theorem 2 we can use
t : 〈P 〉 × 〈P 〉 → μr as symmetric pairing if there exists a distortion map [τ] for
P , even we do not know the explicit form of [τ]. To avoid attack for Subgroup
Decision Problem [2], we usually require (Dr) = −1 for any prime factor r of N ,
which implies that distortion maps always exist. From Algorithm 1 and Theorem
2 if we choose η = (u+v

√
D)/ gcd(u, v) ∈ End(E)\Z, then π = 1+N gcd(u, v)η

and π(Q)−Q ∈ 〈[η]P 〉, therefore t(P, [η]P) = 1 for any P ∈ E(Fp)[r]. Represent
η = u1 + v1τ for some u1, v1 ∈ Z. If chosen D very small, [τ] can be efficiently
computed by Vélu formula [27] or Stark algorithm [25]. Thus [η]P can also be
efficiently computed if D, u, v are very small.

Example 3. Let E/Fp be the curve defined in Example 1 with D = −3, u =
7, v = 5. Define [ζ](x, y) = (ζx, y), where ζ ∈ Fp and ζ2 + ζ + 1 = 0. Set
η = 12 + 10ζ, then for any P ∈ E(Fp)[pj], j = 1, 2, the reduced Tate pairing
t(P, [η]P) = 1; Also, let E/Fp be the curve defined in Example 1 with D =
−4, u = 16, v = 2. Define [i](x, y) = (−x, iy), where i ∈ Fp and i2 + 1 = 0. Set
η = 8 + 2i, then for any P ∈ E(Fp)[pj], j = 1, 2, t(P, [η]P) = 1.

4.2 The Computation of the Reduced Tate Pairing

For D = −3,−4, Zhao et al. [31] and Wu et al. [29] defined some self pairing
on ordinary elliptic curve with embedding degree k = 1 based on the Weil
pairing, where they accelerated the pairing computation by using the technique
of denominator elimination or numerator elimination respectively. Moreover, if

400 Z. Hu et al.

(Dr) = 1, we could use the technique given by Zhang and Lin [30] to halve
the Miller loop length of the Omega pairing based on the Weil pairing. But for
D < −4, the computation of the reduced Tate pairing is usually faster than that
of the Weil pairing, since the latter usually needs two Miller loops.

For P,Q ∈ 〈P 〉 (P = Q also known as self pairing) we usually can not compute
t(P,Q) directly but use an alternative method as t(P,Q) = t(P,Q+R)/t(P,R)
for some R ∈ E(Fp). Koblitz and Menezes [15] chose R = (0, 0) for the case
D = −4. By Remark 2, suppose t(P, [η]P) = 1 for some distortion map [η],
we can choose R = [η]P which can be pre-computed, and then t(P,Q) =
t(P,Q+R) = fN,P (Q+R)(p−1)/N . Let I, M and S denote the cost of inversion,
multiplication and squaring in Fp respectively. Based on the work of Zhao et
al. [31], we analyze the cost of the doubling and addition steps for computing
t(P,Q) in Miller’s algorithm [19].

Doubling Step: Suppose E has short Weierstrass form E : y2 = x3 + ax +
b, a, b ∈ Fp, usually we choose a very small. Let Q + R = (xQ+R, yQ+R), T =
(xT , yT) and 2T = (x2T , y2T) in affine coordinate systems. The function lT,T and
v2T correspond to the tangent line at the point T and the vertical line through
2T , respectively. For each bit of N we do

λ =
3x2

T + a

2yT
, x2T = λ2 − 2xT , y2T = λ · (xT − x2T)− yT ,

lT,T (Q +R) = yQ+R + y2T − λ · (xQ+R − x2T), v2T (Q+R) = xQ+R − x2T ,

f1 ← f2
1 · lT,T (Q +R), f2 ← f2

2 · v2T (Q+R).

It needs 1I + 5M + 4S to compute the doubling step in affine coordinates. We
also consider the operation count for the doubling step in Jacobian coordinates.
A point (X,Y, Z,W = Z2) in the modified Jacobian coordinates corresponds
to the point (x, y) in affine coordinates with x = X/Z2, y = Y/Z3. Let T =
(XT , YT , ZT ,WT = Z2

T) and 2T = (X2T , Y2T , Z2T ,W2T = Z2
2T), the following

formulae compute a doubling in 8M + 10S.

B = X2
T , C = Y 2

T , E = C2, F = W 2
T , S = 2((XT + C)2 −B − E),

M = 3B + aF, X2T = M2 − 2S, Y2T = M · (S −X2T)− 8E,

Z2T = (YT + ZT)
2 − C −WT , W2T = Z2

2T , G = W2T · xQ+R −X2T ,

lT,T (P +R) = Z2T ·W2T · yQ+R + Y2T −M ·G,

v2T (P +R) = Z2T ·G, f1 ← f2
1 · lT,T (Q+ R), f2 ← f2

2 · v2T (Q+R).

Addition Step: Let P = (xP , yP), Q + R = (xQ+R, yQ+R), T = (xT , yT), and
T + P = (xT+P , yT+P). The function lT,P and vT+P correspond to the line
through the points T, P and the vertical line through T + P , respectively. The
formulae for the addition step can be given by

λ =
yT − yP
xT − xP

, xT+P = λ2 − xT − xP , yT+P = λ · (xP − xT+P)− yP ,

lT,P (Q+R) = yQ+R − yP − λ · (xQ+R − xP), vT+P (Q+R) = xQ+R − xT+P ,

f1 ← f1 · lT,P (Q+R), f2 ← f2 · vT+P (Q +R).

Ordinary Elliptic Curves with Embedding Degree One 401

The total cost of the operation for the addition in affine coordinates will be
1I + 5M + 1S. Consider the operation count for the addition step in Jacobian
coordinates. Let T = (XT , YT , ZT ,WT = Z2

T), and T+P = (XT+P , YT+P , ZT+P ,
WT+P = Z2

T+P), the following formulae compute an addition in 12M + 5S.

U = xp ·WT , S = yp · ZT ·WT , H = U −XT , H2 = H2, I = 4H2, J = H · I,
L = S − YT , M = 2L, L2 = L2, M2 = 4L2, V = XT · I, XT+P = M2 − J − 2V,

YT+P = M · (V −XT+P)− 2YT · J, ZT+P = (ZT +H)2 −WT −H2,

WT+P = Z2
T+P , M3 = (L+ ZT+P)

2 − L2 −WT+P ,

lT,P (Q+R) = WT+P · (yQ+R − yP)−M3 · (xQ+R − xP),

vT+P (Q+R) = WT+P · xQ+R −XT+P ,

f1 ← f1 · lT,P (Q+R), f2 ← f2 · vT+P (Q+R).

We summarize the computational costs of basic doubling and addition steps
for the reduced Tate pairings on desired curves into the following table.

Table 1. Comparison of Computation for the reduced Tate pairings on Desired Curves

Coordinate System Method Doubling Step Addition Step

Affine coordinate [31] 1I+8M+4S 1I+8M+1S
This work 1I+5M+4S 1I+5M+1S

Jacobian coordinate [15] 13M+ 9S –
[12,31] 10M+10S 18M+3S
This work 8M+10S 12M+5S

Remark 3. Note that in Table 1, the cost estimations for [15,12] are only ap-
plicable for D = −4, while our result is applicable for various D. Moreover,
for D = −3 and P = Q (self pairing), we could choose proper R such that
yP = yP+R, then the cost of addition step would be reduced to 11M + 5S.

5 Conclusion

We propose a very efficient method to construct composite order ordinary el-
liptic curves with embedding degree one, and analyze the non-degeneracy of
symmetric pairing based on the reduced Tate pairing, which provides the cryp-
tographic bilinear pairing for protocols mentioned in [2,4,5,10,23]. We also give
faster computation for the reduced Tate pairing on desired curves, and see that
the reduced Tate pairing may be preferred to use as symmetric pairing instead
of the modified Weil pairing in case with D < −4.

402 Z. Hu et al.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their insightful comments and helpful suggestions. This work was supported
by the Natural Science Foundation of China (Grants No. 61272499 and No.
10990011) and the Science and Technology on Information Assurance Laboratory
(Grant No. KJ-11-02).

References

1. Atkin, A.O.L., Morain, F.: Elliptic Curves and Primality Proving. Math. Com-
put. 61, 29–68 (1993)

2. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Boneh, D., Rubin, K., Silverberg, A.: Finding Composite Order Ordinary Elliptic
Curves Using the Cocks-Pinch Method. J. Number Theor. 131(5), 832–841 (2011)

4. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boyen, X., Waters, B.: Compact Group Signatures without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

6. Charles, D.: On the Existence of Distortion Maps on Ordinary Elliptic Curves.
Cryptology ePrint Archive Report 2006/128, http://eprint.iacr.org/2006/128/

7. Frey, G., Rück, H.: A Remark Concerning m-divisibility and The Discrete Loga-
rithm in The Divisor Class Group of Curves. Math. Comp. 62, 865–874 (1994)

8. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-friendly Elliptic Curves.
J. Cryptol. 23, 224–280 (2010)

9. Galbraith, S.D.: Pairings-Advanced in Elliptic Curve Cryptography. In: Blake, I.F.,
Seroussi, G., Smart, N.P. (eds.) Cambridge Univ. Press, Cambridge (2005)

10. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

11. Hu, Z., Xu, M., Zhou, Z.H.: A Generalization of Verheul’s Theorem for Some Ordi-
nary Curves. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 105–114. Springer, Heidelberg (2011)

12. Ionica, S., Joux, A.: Another Approach to Pairing Computation in Edwards Co-
ordinates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 400–413. Springer, Heidelberg (2008)

13. Ionica, S.: Algorithmique des couplages et cryptographie. PhD thesis of the Ver-
sailles Saint-Quentin-en-Yvelines University (2010)

14. Keller, S.: The RSA Validation System (November 9, 2004)
15. Koblitz, N., Menezes, A.J.: Pairing-based Cryptography at High Security Levels.

In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

16. Koblitz N.: A Security Weakness in Composite Order Pairing Based Protocols
with Embedding Degree k > 2. Cryptology ePrint Archive Report 2010/227,
http://eprint.iacr.org/2010/227/

17. Lewko, A.: Tools for Simulating Features of Composite Order Bilinear Groups in
the Prime Order Setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

http://eprint.iacr.org/2006/128/
http://eprint.iacr.org/2010/227/

Ordinary Elliptic Curves with Embedding Degree One 403

18. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field. IEEE Trans. Inf. Theory. 39(5), 1639–1646 (1993)

19. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. J. Cryptol. 17, 235–261
(2004)

20. Moody, D.: The Diffie-Hellman Problem and Generalization of Verheuls Theorem.
Des. Codes Cryptogr. 52, 381–390 (2009)

21. The RSA Challenge Numbers, http://www.rsa.com/rsalabs/node.asp?id=2093
22. Seo, J.H.: On the (Im)possibility of Projecting Property in Prime-Order Setting.

In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79.
Springer, Heidelberg (2012)

23. Shacham, H., Waters, B.: Efficient Ring Signatures without Random Oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

24. Silverman, J.: The Arithmetic of Elliptic Curves. Springer, New York (1986)
25. Stark, H.M.: Class Numbers of Complex Quadratic Fields. In: Kuyk, W.

(ed.) Modular Functions of One Variable I. Lecture Notes in Math., vol. 320,
pp. 153–174. Springer, New York (1973)

26. Sutherland, A.: Computing Hilbert class polynomials with the Chinese Remainder
Theorem. Math. Comput. 80(273), 501–538 (2011)

27. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A 273,
238–241 (1971)

28. Verheul, R.: Evidence that XTR Is More Secure than Supersingular Elliptic Curve
Cryptosystems. J. Cryptol. 17, 277–296 (2004)

29. Wu, H., Feng, R.: Efficient Self-pairing on Ordinary Elliptic Curves. In: Chan, T.-
H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 282–293.
Springer, Heidelberg (2013)

30. Zhang, X.S., Lin, D.D.: Efficient Pairing Computation on Ordinary Elliptic Curves
of Embedding Degree 1 and 2. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089,
pp. 309–326. Springer, Heidelberg (2011)

31. Zhao, C.A., Zhang, F.G., Xie, D.Q.: Fast Computation of Self-pairings. IEEE
Trans. Inf. Theory 58(5), 3266–3272 (2012)

http://www.rsa.com/rsalabs/node.asp?id=2093

Threshold Secret Image Sharing

Teng Guo1,2, Feng Liu1, ChuanKun Wu1, ChingNung Yang3, Wen Wang1,2,
and YaWei Ren1,2,4

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2 University of Chinese Academy of Sciences, Beijing 100190, China
3 Department of Computer Science and Information Engineering,

National Dong Hwa University, Hualien 974, Taiwan
4 School of Information Management,

Beijing Information Science and Technology University, Beijing 100192, China
{guoteng,liufeng,ckwu,wangwen}@iie.ac.cn,cnyang@mail.ndhu.edu.tw

Abstract. A (k, n) threshold secret image sharing scheme, abbreviated
as (k, n)-TSISS, splits a secret image into n shadow images in such a way
that any k shadow images can be used to reconstruct the secret image
exactly. In 2002, for (k, n)-TSISS, Thien and Lin reduced the size of each
shadow image to 1

k
of the original secret image. Their main technique

is by adopting all coefficients of a (k − 1)-degree polynomial to embed
the secret pixels. This benefit of small shadow size has drawn many re-
searcher’s attention and their technique has been extensively used in
the following studies. In this paper, we first show that this technique
is neither information theoretic secure nor computational secure. Fur-
thermore, we point out the security defect of previous (k, n)-TSISSs for
sharing textual images, and then fix up this security defect by adding an
AES encryption process. At last, we prove that this new (k, n)-TSISS is
computational secure.

Keywords: Secret image sharing, Security defect, Computational
secure.

1 Introduction

Secret image sharing has drawn considerable attention in recent years [2, 5, 12,
14, 18–21, 25–27]. A (k, n) threshold secret image sharing scheme, abbreviated as
(k, n)-TSISS, encrypts a secret image into n shadow images (also referred to be
shadows) in such a way that any k shadows can be used to reconstruct the secret
image exactly, but any less than k shadows should provide no information about
the secret image. The secret pixel can be hidden in the constant term of a (k−1)-
degree polynomial using Shamir’s (k, n) secret sharing scheme, abbreviated as
Shamir’s (k, n)-SSS [17], and the secret image can be perfectly reconstructed
from any k shadows by Lagrange’s interpolation. In such a case, each shadow
is the same size as the secret image. For example, to encrypt a 10GB satellite
image by a (5, 10)-TSISS, we get 10 shadows, each with size 10GB; and to

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 404–412, 2013.
c© Springer International Publishing Switzerland 2013

Threshold Secret Image Sharing 405

reconstruct the 10GB satellite image, we have to collect 5 shadows, which sum
up to 50GB. The larger the amount of information grows, the severer the above
problem suffers from. To solve this large shadow size problem in secret image
sharing, Thien and Lin [18] embed the secret pixels in all coefficients of a (k−1)-
degree polynomial and reduce the shadow size to 1

k of the secret image. This
variant use of Shamir’s (k, n)-SSS is denoted as (k, n)-VSSS in this paper. Since
the smaller shadow size makes the transmission and storage more convenient,
the (k, n)-VSSS has drawn many attentions in the following studies [2, 3, 5,
12, 14, 18–22, 24–28] of TSISS ever since. Initially, Thien and Lin [18] adopt
GF (251) as the coefficient field, and the pixel’s gray-level degrees has to be
modified to less than 251. Therefore, Thien and Lin’s scheme is in fact a lossy
secret image sharing scheme, in which the reconstructed secret image may be
distorted slightly in gray-level. In 2007, Yang et al. [23] adopt GF (28) as the
coefficient field, avoiding the losses in gray-level. Recently, (k, n)-TSISS has been
combined with steganography and authentication [2, 3, 5, 24, 27], which divides
a secret image into several shadows and embeds the produced shadows in the
cover images to form the stego images, which can be transmitted to authorized
recipients without causing suspicion. In addition, these schemes also have some
authentication mechanisms to verify the integrity of the stego images, so that the
secret image can be reconstructed correctly. (k, n)-TSISS has also been combined
with visual cryptography [1, 8–11, 15, 16], which provides a two-in-one (k, n)-
TSISS [14, 25] with two decoding options: the first option is stacking shadows to
see a vague reconstructed image like visual cryptography; and the second option
is to perfectly reconstruct the original gray-level secret image by Lagrange’s
interpolation.

However, there is no free lunch. The (k, n)-VSSS is no longer information
theoretic secure, and to the best of our knowledge, no research has conjectured
that the inverting of a k − 1 degree polynomial f(x) from less than or equal
to k − 1 shadows is computational infeasible. From this viewpoint, all of the
above mentioned studies of (k, n)-TSISS provide neither of the two currently
well-known security guarantees: 1, information theoretic security (also known
as perfect secrecy), which is based on Shannon’s information theory, e.g. the
one-time pad, Shamir’s secret sharing scheme, visual cryptography; 2, compu-
tational security, which is based on computational hardness assumptions, e.g.
RSA, AES, DES. Motivated by the above observation, we in fact find the se-
curity defect of previous (k, n)-TSISSs for sharing textual images, in which the
secret can be perceived from any single shadow. Please refer to Section 3.

To avoid the above security defect, we suggest to add an AES encryption
process before the sharing process to form a computational secure (k, n)-TSISS,
which is denoted by (k, n)-CSTSISS. Then we prove it is computational secure by
giving a construction that transforms any efficient attack of the (k, n)-CSTSISS
to an efficient attack of AES. In addition to theoretic analysis, experimental re-
sults are given to show feasibility of the proposed scheme. Compared to previous
(k, n)-TSISSs, the proposed (k, n)-CSTSISS needs 256n bits more storage space
in overall, and more time for the AES encryption and decryption processes.

406 T. Guo et al.

This paper is organized as follows. In Section 2, we give some preliminaries
of TSISS. In Section 3, we point out the security defect of the previous (k, n)-
TSISSs. In Section 4, we propose a computational secure (k, n)-TSISS. The paper
is concluded in Section 5.

2 Preliminaries

In this section, we first give some basic knowledge of Shamir’s secret sharing and
its variant version that is commonly used in studies of TSISS, and then analyze
their security properties sequentially.

Suppose the secret we are going to share is in some finite field, e.g. prime
fields GF (p) or prime power fields GF (2n). For simplicity, we will take GF (p) for
example to illustrate the sharing process in the following. This will not cause any
limitations, for the underlying principle is the same except that the operations
in GF (2n) are modular of some irreducible polynomial of degree n, while those
of GF (p) are modular of prime number p.

In Shamir’s (k, n)-SSS, to divide the secret S ∈ GF (p) into n shadows Si ∈
GF (p) (1 ≤ i ≤ n), we first pick up k− 1 random numbers a1, a2, . . . , ak−1 from
GF (p) and form a k−1 degree polynomial f(x) = a0+a1x+a2x

2+a3x
3+ . . .+

ak−1x
k−1 with a0 = S. Then we evaluate each shadow by Si = f(i) (1 ≤ i ≤ n).

From any k-subset of these Si values, we can reconstruct f(x) by Lagrange’s
interpolation and compute the secret by S = f(0). However, from any (k − 1)-
subset of these Si values, we get no information about S. Detailed analysis can
be found in [17].

In the (k, n)-VSSS, which is widely used in the studies of (k, n)-TSISS, to
divide the secret D = (D0, D1, . . . , Dk−1) with D0, D1, . . . , Dk−1 ∈ GF (p) into
n shadows Si ∈ GF (p) (1 ≤ i ≤ n), we first form a k − 1 degree polynomial
f(x) = D0 + D1x + D2x

2 + D3x
3 + . . . + Dk−1x

k−1. Then we evaluate each
shadow by Si = f(i) (1 ≤ i ≤ n). From any k-subset of these Si values, we
can reconstruct f(x) by Lagrange’s interpolation and obtain all the coefficients
(D0, D1, . . . , Dk−1) = D. Detailed analysis of the information leakage can be
found in the proof of Theorem 2.

To analyze the information leakage of the (k, n)-VSSS from less than k shad-
ows, we have to assume a probability distribution on the secret. For the simplicity
of analysis and consistency with our proposed scheme, we assume that the secret
is uniformly distributed in its space. For some knowledge of information theory,
one can refer to [4]. Here we only give some necessary backgrounds. Entropy is
a measure of the uncertainty associated with a random variable. Suppose X is

a random variable, its entropy is defined by H(X) =
∑
x∈X

p(x) log
1

p(x)
1. The

amount of randomness in random variable X given that you know the value of

random variable Y is defined by H(X |Y) =
∑

x∈X,y∈Y

p(x, y) log
p(y)

p(x, y)
, which is

1 In this paper, the base of logarithm is 2.

Threshold Secret Image Sharing 407

also known as the conditional entropy of X and Y . Briefly speaking, a (k, n)-SSS
is information theoretic secure if any k−1 shadows provide no information about
the secret. Formally, this notion is given as follows.

Definition 1 (Information theoretic secure). In a (k, n)-SSS, suppose the
secret is distributed according to random variable S and the n shadows are dis-
tributed according to random variables S1, S2, . . . , Sn. The (k, n)-SSS is informa-
tion theoretic secure if H(S) = H(S|Si1 , . . . , Sik−1

) holds for any k− 1 shadows
Si1 , . . . , Sik−1

.

Theorem 1 ([17]). Shamir’s (k, n)-SSS is information theoretic secure.

Theorem 2. In the (k, n)-VSSS, there is only 1
k fraction of the uncertainty of

the secret left, given the knowledge of any k − 1 shadows.

Due to page limit, the proof of Theorem 2 is omitted in this version. If you
are interested in details of the proof, you can refer to the full version on eprint.

In the following, we present the common subprogram that all the above studies
of (k, n)-TSISS share formally as Construction 1.

Construction 1.

Input: A secret image S.
Output: n shadows S1, S2, . . . , Sn.
Step 1. Adopt all coefficients of a k − 1 degree polynomial f(x) to embed the

secret pixels of S. Each time we share k successive pixels, say p1, p2, . . . , pk.
Then fix f(x) = p1+p2x+p3x

2+. . .+pkx
k−1. The pixel value for each shadow

is calculated as qi = f(i) for i = 1, 2, . . . , n. Repeat the above process until
all pixels of S have been shared. The shadows are denoted as S1, S2, · · · , Sn.

Step 2. Participant i is distributed Si for i = 1, 2, . . . , n.

Remark: In Step 1., we use the (k, n)-VSSS, whose security is not guaranteed.
This may cause hidden security risk to Construction 1. Indeed we have found its
security defect for sharing textual images, please refer to Section 3.

3 The Security Defect of Construction 1

In this section, we present some experimental results to illustrate the security
defect of Construction 1, while concrete theoretical analysis of the experiment
is given in Appendix of the full version on eprint.

Here we only give a general idea of the cause of the security defect. Since the
sharing process (Step 1.) of Construction 1 is deterministic, the same combina-
tion of k secret pixels will always contribute to the same combination of n share
values. In such a case, if the secret image is of little variation in gray-level, e.g.
textual images, its content might be leaked from a single shadow.

For Construction 1 of (2, 3) threshold access structure, the experimental re-
sults on coefficient fields GF (251) and GF (28) can be found in Figures 1 and 2
respectively, in which any single shadow reveals the content of the secret image.

408 T. Guo et al.

Fig. 1. Experimental results of Construction 1 on GF (251), (a) the original secret
image with image size 300×300, (b) shadow 1 with image size 150×300, (c) shadow 2
with image size 150×300, (d) shadow 3 with image size 150×300

Fig. 2. Experimental results of Construction 1 on GF (28), (a) the original secret image
with image size 300×300, (b) shadow 1 with image size 150×300, (c) shadow 2 with
image size 150×300, (d) shadow 3 with image size 150×300

Remark: The above security defect seems to be obvious, so why it is not discov-
ered in previous studies? One of the reasons may be that in previous experiments,
they only use Construction 1 to encode natural dithered images and never use
Construction 1 to encode textual images. But we think a good secret image shar-
ing scheme should be able to deal with all kinds of images, and shouldn’t make
any restriction on the content of the image.

4 The Proposed Computational Secure (k, n)-TSISS

In this section, we first propose a new (k, n)-TSISS. Then we will prove that this
(k, n)-TSISS is computational secure.

Definition 2 (Computational secure). Let the secret s be drawn from
GF (2m). A (k, n)-SSS is computational secure if for any probability polynomial-
time (PPT) algorithm A, Pr[A(si1 , . . . , sik−1

) = s] is negligible in m, which is
the success probability of getting the secret s from any k−1 shadows si1 , . . . , sik−1

.

Remark: In other words, it is computational infeasible to invert the (k, n) secret
sharing scheme from any k − 1 shadows si1 , . . . , sik−1

.
To achieve computational security, we need to have a computational hardness

assumption. For some knowledge of computational security and AES in CBC
mode, one can refer to [7, 13]. In this paper, we will use the following assumption:

Threshold Secret Image Sharing 409

Assumption 1. It is computational infeasible to invert AES in CBC mode with-
out the key.

The proposed computational secure (k, n)-TSISS, also abbreviated as (k, n)-
CSTSISS, contains two parts: Construction 2, which is the sharing program
run by the dealer in the encoding phase; Construction 3, which is the revealing
program run by the shadow holders in the decoding phase.

Construction 2.

Input: A secret image S.
Output: n shadows (S1,K1, IV), (S2,K2, IV), . . . , (Sn,Kn, IV).
Step 1. Pick up a random 128 bit key K and a random 128 bit initialization

vector IV .
Step 2. Encrypt the secret image S by AES with key K and initialization vector

IV in CBC mode. Each time we encrypt a 128 bit block, which contains 16
pixels for gray level image. The encrypted secret image is denoted as D.

Step 3. Fix f(x) = p1 + p2x + p3x
2 + . . . + pkx

k−1, where p1, p2, . . . , pk are
k successive pixels. Then the pixel value for each shadow is calculated as
qi = f(i) for i = 1, . . . , n. Repeat the above process until all pixels of D have
been shared. The shadows are denoted as S1, S2, · · · , Sn.

Step 4. Pick up a random k − 1 degree polynomial g(x) = a1 + a2x + a3x
2 +

a4x
3 + . . . + akx

k−1 with a1 = K and a2, . . . , ak
r
∈ GF (2128). Then the

shadows are calculated by Ki = g(i) for i = 1, . . . , n.
Step 5. Participant i is distributed (Si,Ki, IV) as his shadow, where i = 1, 2,

. . . , n.

Remark: In Step 3., we use the (k, n)-VSSS, whose security is not guaranteed,
and in Step 4., we use Shamir’s (k, n)-SSS, which is information theoretic secure.
The coefficient field that we use in Step 3. is GF (28).

Construction 3.

Input: Any k shadows: (Si1 ,Ki1 , IV), . . . , (Sik ,Kik , IV).
Output: A image S.
Step 1. Use Ki1 , . . . ,Kik and Lagrange’s interpolation to recover the constant

term K of g(x).
Step 2. Use Si1 , . . . , Sik and Lagrange’s interpolation to recover all coefficients

p1, p2, . . . , pk of f(x). Repeat the above process until all pixels of D have been
recovered.

Step 3. Decrypt D by AES in CBC mode with key K and initialization vector
IV . The output is S.

Theorem 3. If Assumption 1 holds, then the proposed (k, n)-CSTSISS is com-
putational secure.

Due to page limit, the proof of Theorem 3 is omitted in this version. If you
are interested in details of the proof, you can refer to the full version on eprint.

410 T. Guo et al.

Compared to previous (k, n)-TSISSs, the price we have payed out is 2×128×n
bits more storage space in overall, and more time for the AES encryption and
decryption processes.

The experimental results of the proposed (2, 3)-CSTSISS can be found in Fig-
ure 3, in which shadow images (b,c,d) are noise-like and provide no information
about the content of the secret image (a). Compared to previous (k, n)-TSISSs,
the proposed (k, n)-CSTSISS indeed does not have security defect for sharing
textual images.

Fig. 3. Experimental results of the proposed (2, 3)-CSTSISS: (a) the original secret
image with image size 300×300, (b) shadow 1 with image size 150×300, (c) shadow 2
with image size 150×300, (d) shadow 3 with image size 150×300

5 Conclusions

In this paper, we have shown that the (k, n)-VSSS, being extensively used in the
studies of (k, n)-TSISS, does not have security guarantees. Furthermore, we have
found those studies’ security defect for sharing textual images and then patched
up this security defect by adding an AES encryption process before the sharing
process, which combines the beauty of small shadow size with computational
security guarantee.

Acknowledgments. This work was supported by NSFC grant No. 60903210,
the “Strategic Priority Research Program” of the Chinese Academy of Sciences
No. XDA06010701 and the IIE’s Projects No. Y1Z0011102, No. Y3Z001B102,
No. Y2Z0011102 and No. Y3Z0071C02.

References

1. Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.: Visual cryptography for general
access structures. Information and Computation 129, 86–106 (1996)

2. Chan, C., Sung, P.: Secret image sharing with steganography and authentication
using dynamic programming strategy. In: PCSPA, pp. 382–395 (2010)

3. Chang, C., Hsieh, Y., Lin, C.: Sharing secrets in stego images with authentication.
Pattern Recognition 41, 3130–3137 (2008)

Threshold Secret Image Sharing 411

4. Cover, T., Thomas, J.: Elements of information theory, 2nd edn. Wiley Interscience,
New York (2006)

5. Elsheh, E., Hamza, A.B.: Robust approaches to 3D object secret sharing. In:
Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 326–335.
Springer, Heidelberg (2010)

6. Goldreich, O.: Randomized methods in computation (2001),
http://www.wisdom.weizmann.ac.il/~oded/rnd.html

7. Goldwasser, S., Bellare, M.: Lecture notes on cryptography (2008),
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

8. Guo, T., Liu, F., Wu, C.: Multi-pixel encryption visual cryptography. In: Wu, C.-
K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 86–92. Springer,
Heidelberg (2012)

9. Guo, T., Liu, F., Wu, C.: On the equivalence of two definitions of visual cryptog-
raphy scheme. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS,
vol. 7232, pp. 217–227. Springer, Heidelberg (2012)

10. Guo, T., Liu, F., Wu, C.: Threshold visual secret sharing by random grids with
improved contrast. The Journal of Systems and Software 86, 2094–2109 (2013)

11. Guo, T., Liu, F., Wu, C.: k out of k extended visual cryptography scheme by
random grids. Signal Processing 94, 90–101 (2014)

12. Huang, C., Hsieh, C., Huang, P.: Progressive sharing for a secret image. The Jour-
nal of Systems and Software 83, 517–527 (2010)

13. Katz, J., Lindell, Y.: Introduction to modern cryptography. CRC Press (2007)
14. Li, P., Ma, P., Su, X., Yang, C.: Improvements of a two-in-one image secret sharing

scheme based on gray mixing model. Journal of Visual Communication and Image
Representation 23, 441–453 (2012)

15. Liu, F., Guo, T., Wu, C., Qian, L.: Improving the visual quality of size invariant
visual cryptography scheme. Journal of Visual Communication and Image Repre-
sentation 23, 331–342 (2012)

16. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

17. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

18. Thien, C., Lin, J.: Secret image sharing. Computers and Graphics 26, 765–770
(2002)

19. Thien, C., Lin, J.: An image-sharing method with user-friendly shadow images.
IEEE Transactions on Circuits and Systems for Video Technology 13, 1161–1169
(2003)

20. Ulutas, M., Ulutas, G., Nabiyev, V.: Medical image security and epr hiding using
shamir’s secret sharing scheme. The Journal of Systems and Software 84, 341–353
(2011)

21. Wang, R., Chien, Y., Lin, Y.: Scalable user-friendly image sharing. Journal of
Visual Communication and Image Representation 21, 751–761 (2010)

22. Wang, R., Shyu, S.: Scalable secret image sharing. Signal Processing: Image Com-
munication 22, 363–373 (2007)

23. Yang, C., Chen, T., Yu, K., Wang, C.: Improvements of image sharing with
steganography and authentication. The Journal of Systems and Software 80,
1070–1076 (2007)

http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

412 T. Guo et al.

24. Yang, C., Ciou, C.: A comment on “sharing secrets in stegoimages with authenti-
cation”. Pattern Recognition 42, 1615–1619 (2009)

25. Yang, C., Ciou, C.: Image secret sharing method with two-decoding-options:
Lossless recovery and previewing capability. Image and Vision Computing 28,
1600–1610 (2010)

26. Yang, C., Huang, Y., Syue, J.: Reversible secret image sharing based on shamir’s
scheme with discrete haar wavelet transform. In: ICECE, vol. 16-18, pp. 1250–1253
(2011)

27. Yang, C., Ouyang, J., Harn, L.: Steganography and authentication in image sharing
without parity bits. Optics Communications 285, 1725–1735 (2012)

28. Zhao, R., Zhao, J., Dai, F., Zhao, F.: A new image secret sharing scheme to identify
cheaters. Computer Standards and Interfaces 31, 252–257 (2009)

Author Index

Akram, Raja Naeem 151
Atallah, Mikhail 90

Canard, Sébastien 373
Chang, Wentao 33
Chen, Songqing 33
Chen, Zhong 275
Coisel, Iwen 373

Devigne, Julien 373
Dong, Qiuxiang 275
Dong, Xinshu 49
Dutta, Ratna 346

Fang, Huipeng 59
Feng, Dengguo 59, 135
Feng, Mingliang 259

Gallais, Cécilia 373
Gao, Debin 1
Großschädl, Johann 302
Gu, Guofei 213
Guan, Le 229
Guan, Zhi 275
Guo, Teng 404

Hassanzadeh, Amin 213
He, Liang 59
Hu, Zhi 393
Huang, Hao 17
Huang, Huafeng 59
Huang, Kun 75

Jing, Jiwu 229

Kim, Howon 302

Li, Jiguo 363
Li, Pei 49
Li, Xiangxue 167
Liang, Zhenkai 49
Lin, Dongdai 288
Liu, Feng 404
Liu, Jian 75
Liu, Limin 229

Liu, Peng 194, 229
Liu, Zhe 302

Malluhi, Qutaibah 90
Mao, Jian 49
Markantonakis, Konstantinos 151
Mayes, Keith 151
Mischke, Oliver 245
Moradi, Amir 245

Nassar, Mohamed 90

Peters, Thomas 373
Polychronakis, Michalis 213

Qian, Haifeng 167
Qian, Huiling 363
Qian, Zhenjiang 17
Qin, Yu 135
Qing, Sihan 125

Rao, Y. Sreenivasa 346
Ren, YaWei 404
Rong, Hong 100

Sanders, Olivier 373
Seo, Hwajeong 302
Shao, Jianxiong 135
Shen, Qingni 125
Shi, Jiangyong 100
Song, Fangmin 17
Squcciarini, Anna C. 113
Stoleru, Radu 213
Su, Purui 59
Sui, Han 318
Sundareswaran, Smitha 113

Tey, Chee Meng 1

Wan, Mian 125
Wang, Huimei 75, 100
Wang, Jing 229
Wang, Lin 393
Wang, Mingsheng 331
Wang, Peng 318

414 Author Index

Wang, Shumiao 90
Wang, Wen 404
Wang, Wenhao 288
Wei, Tao 49
Weng, Jian 167
Wu, ChuanKun 404
Wu, Shengbao 331
Wu, Wenling 318
Wu, Zhonghai 125

Xian, Ming 75, 100
Xu, Maozhi 393
Xu, Zhaoyan 213

Yang, ChingNung 404
Yang, Yang 275

Yang, Yi 59

Yang, Zheng 185
Ying, Lingyun 59
Yoon, Eunjung 194

Yu, Yu 167
Yu, Zhenmei 259

Zhang, Guoliang 393
Zhang, Liting 318
Zhang, Yichen 363

Zhang, Zhi 125
Zhang, Zhuangzhuang 125
Zhou, Yongbin 259

Zhou, Yuan 167
Zhu, Jiawei 275

	Preface
	ICICS 2013
	Table of Contents
	System Security
	Defending against Heap Overflow by UsingRandomization in Nested Virtual Clusters
	1 Introduction
	2 Naive Implementation
	3 Intuition
	4 Computation of Cluster Size
	4.1 Computation of smax
	4.2 Lower bound for c
	4.3 Computation of c
	4.4 Alternative Method for Computing pa,s

	5 Limitations
	6 Conclusions
	References

	VTOS: Research on Methodology of “Light-Weight” Formal Designand Verification for Microkernel OS
	1 Introduction
	2 Related Work
	3 State Automaton Model of VTOS (OSSA)
	3.1 Architecture and Functionality of VTOS
	3.2 Hardware and Software Computing Entities
	3.3 System Object State
	3.4 Events
	3.5 State Model of VTOS

	4 Method of Formal Verification for VTOS in Isabelle/HOL
	4.1 Introduction of Isabelle/HOL Theorem Proving
	4.2 Domain of VTOS in Isabelle/HOL
	4.3 OSSA Model of VTOS in Isabelle/HOL
	4.4 State Transition Functions of OSSA in Isabelle/HOL
	4.5 Proving the Integrity Property in Isabelle/HOL

	5 Verification of VTOS in Isabelle/HOL
	6 Conclusion and Future Work
	References

	Web Security and Worm Detection
	Defeat Information Leakage from Browser Extensionsvia Data Obfuscation
	1 Introduction
	2 Security of Chrome Extensions
	3 Information Leakage Threats from Chrome Extensions
	3.1 Threat Analysis
	3.2 Sources of Information Leakage through Browser Extensions

	4 Design and Implementation of iObfus
	4.1 Monitor
	4.2 Interceptor
	4.3 Obfuscator
	4.4 De-obfuscator

	5 Evaluation
	5.1 Mitigate Attacks That Hijack Social Media Accounts
	5.2 Protect Sensitive Information from Leaking
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	Rating Web Pages Using Page-Transition Evidence
	1 Introduction
	2 Problem and Approach
	2.1 Basic Requirements
	2.2 Rating Algorithm Based on Dynamic Evidence

	3 Implementation and Evaluation
	3.1 Implementation
	3.2 Experience with SnowEye
	3.3 Evaluation of Trust Propagation in URL Transitions
	3.4 Trust Value Degrading

	4 Related Work
	4.1 Page Relationship Based Solutions
	4.2 Subjective Feedback Based Solutions
	4.3 Webpage Feature Based Solutions
	4.4 Black/White-List Solutions

	5 Conclusion
	References

	OSNGuard: Detecting Wormswith User Interaction Traces in Online Social Networks
	1 Introduction
	2 Classification and Motivation
	2.1 Worm Classification
	2.2 Case Study
	2.3 EP-Model and Assumptions
	2.4 Motivation and Basic Concept

	3 The OSNGuard System Architecture
	3.1 Overview
	3.2 Social Traffic Monitor
	3.3 Supervisor
	3.4 Social Interaction Tracer
	3.5 OSN Worm Detector

	4 Experimental Evaluation
	4.1 Expeirmental Environment
	4.2 System Effectiveness
	4.3 Performance Overhead

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Cloud Storage Security
	A Secure and Efficient Scheme for Cloud Storageagainst Eavesdropper
	1 Introduction
	2 Model and Preliminaries
	2.1 System Model
	2.2 Intruder Model
	2.3 Security Criterion
	2.4 Product-Matrix MBR Code

	3 Our Proposed Scheme
	3.1 Notation and Definition
	3.2 Detailed Scheme
	3.3 An Example

	4 Discussion
	4.1 Security Analysis
	4.2 Repair-Bandwidth and Secrecy Capacity Analysis
	4.3 Computation Cost Analysis

	5 Divergent Thinking
	6 Conclusion
	References

	Secure and Private Outsourcingof Shape-Based Feature Extraction
	1 Introduction
	2 Related Work
	3 Building Blocks
	4 Approaches
	4.1 A Preliminary Approach with Homomorphic Encryption and
	4.2 Secure Approach with Additive Splitting and Garbled Circuit

	5 Experiment
	6 Conclusion
	References

	Virtualization for Cloud Computing
	Time-Stealer: A Stealthy Threatfor Virtualization Scheduler and Its Countermeasures
	1 Introduction�
	2 Xen 4.x Scheduling Mechanism and Vulnerabilities
	2.1 Xen Hypervisor
	2.2 Inner Workings of Credit Scheduler
	2.3 Potential Vulnerabilities

	3 Time-Stealer Attack
	3.1 Time-Stealer Attack Description
	3.2 Implementation and Evaluation

	4 Time-Stealer Detection and Mitigation Measures
	4.1 Detection Measures
	4.2 Mitigation Measures

	5 Related Work
	6 Conclusion
	References

	Detecting Malicious Co-resident VirtualMachines Indulging in Load-Based Attacks
	1 Introduction
	2 Related Work
	3 Threat Model
	4 Covert Attacks
	4.1 Attack Description
	4.2 Preliminary Evaluation

	5 Design of Co-residency Attack Detector
	5.1 Observer
	5.2 Defender

	6 Experimental Evaluation
	7 Conclusion
	References

	A Covert Channel Using Event Channel Stateon Xen Hypervisor
	1 Introduction
	2 Background
	2.1 Event Channel Mechanism in Xen

	3 Covert Channel Using Event Channel State
	3.1 Threat Scenario
	3.2 A New Kind of Covert Channel
	3.3 Request Hypercall from DomU
	3.4 Communication Protocol

	4 Evaluation
	5 Discussion
	6 Conclusion and Future Work
	References

	Trusted and Trustworthy Computing
	Type-Based Analysis of Protected Storagein the TPM
	1 Introduction
	2 Overview of the TPM Protected Storage
	2.1 Protected Storage Hierarchy
	2.2 Object Structure Elements

	3 Modeling the TPM APIs
	3.1 A Language for Modeling TPM Commands
	3.2 Attacker Model and API Security

	4 Type System
	4.1 A Core Type System
	4.2 Properties of the Type System

	5 Type-Based Analysis of TPM 2.0 Specification Commands
	6 Conclusion
	References

	Remote Attestation Mechanism for User Centric Smart CardsUsing Pseudorandom Number Generators
	1 Introduction
	1.1 Contributions
	1.2 Organisation

	2 Proposed Components to Support Attestation Mechanism
	2.1 Attestation Handler
	2.2 Self-test Manager

	3 Attestation Mechanisms
	3.1 Pseudorandom Number Generator
	3.2 Challenge-Response Pair (CRP) Generation
	3.3 Keys Generation

	4 Attestation Protocol
	4.1 Protocol Goals
	4.2 Intruder’s Capabilities
	4.3 Protocol Notation and Terminology
	4.4 Protocol Description

	5 ProtocolAnalysis
	5.1 Informal Analysis
	5.2 Protocol Verification by CasperFDR
	5.3 Implementation Results and Performance Measurements
	5.4 Related Work

	6 Conclusion
	References

	Authentication and Security Protocols
	Direct Construction of Signcryption Tag-KEM from Standard Assumptions in the StandardModel
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Group
	2.2 Complexity Assumptions
	2.3 Collision Resistance

	3 Definition of Signcryption Tag-KEM
	3.1 Syntax
	3.2 Definition of Confidentiality
	3.3 Definition of Unforgeability

	4 The Proposed Construction
	4.1 Unforgeability
	4.2 Confidentiality

	5 Conclusion
	References

	Efficient eCK-Secure Authenticated KeyExchange Protocols in the Standard Model
	1 Introduction
	2 Preliminaries
	3 Security Model
	4 A Generic One-Round AKE Construction from KE, KEM and NIKE
	5 An Efficient One-Round AKE Protocol under Standard Assumptions
	References

	Intrusion Detection and Recovery
	XLRF: A Cross-Layer Intrusion Recovery Framework for Damage Assessmentand Recovery Plan Generation
	1 Introduction
	2 Related Work
	3 Example
	4 XLRF Overview
	4.1 Assumptions
	4.2 Cross-Layer Recovery
	4.3 Workflow Level
	4.4 Operating System Level

	5 Design and Implementation
	5.1 Input
	5.2 Output
	5.3 Logging
	5.4 Dependency Analysis
	5.5 Damage Assessment
	5.6 Recovery Plan Generation
	5.7 Implementation

	6 Evaluation of Recovery Plan
	7 Revisiting the Limitations of Single Layer Recovery
	8 Conclusion
	References

	PRIDE: Practical Intrusion Detection in Resource ConstrainedWireless Mesh Networks
	1 Introduction
	2 Motivation and Background
	3 System and Security Models
	4 Problem Formulation
	5 PRIDE: Challenges and Solutions
	5.1 Rule Files Modularization
	5.2 PRIDE Protocol

	6 System Implementation and Evaluation
	6.1 Proof-of-Concept Experiment
	6.2 Effects of Memory Threshold and Path Length

	7 Conclusions
	References

	Fingerprint Embedding: A Proactive Strategyof Detecting Timing Channels
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Communication Scenario
	3.2 System Model
	3.3 Adversary Model

	4 Detection System
	4.1 ADAPTOR
	4.2 CHECKER
	4.3 Security Enhancement

	5 Implementation and Evaluation
	5.1 Implementation Details
	5.2 Parameter Determination
	5.3 Detection
	5.4 Network Performance

	6 Conclusion and Future Work
	References

	Side Channel Attacks and Defense
	Comprehensive Evaluation of AES Dual Ciphersas a Side-Channel Countermeasure
	1 Introduction
	2 Dual Cipher Concept
	3 OurDesign
	4 Evaluation
	4.1 Practical Investigations

	5 Conclusions
	References

	EMD-Based Denoising for Side-Channel Attacks and Relationships between the Noises Extractedwith Different Denoising Methods
	1 Introduction
	2 Preliminaries
	2.1 Composition of Power Trace
	2.2 General Relationship between SNR and CPA
	2.3 Empirical Mode Decomposition and EMD-Based Denoising

	3 EMD-Based Denoising Methods for SCA
	4 Relationship between Noises Extracted with Different Denoising Methods
	5 Experiments
	5.1 Settings
	5.2 Results and Analysis

	6 Conclusions and Future Work
	References

	Engineering Issues of Crypto
	Accelerating AES in JavaScript with WebGL
	1 Introduction
	2 Related Work
	3 WebGL Background
	4 AES Background
	5 WebGLVersionofAES
	5.1 Overview
	5.2 XOR Operation
	5.3 Memory Layout

	6 Experiment
	7 Conclusion
	References

	Analysis of Multiple Checkpoints in Non-perfectand Perfect Rainbow Tradeoff Revisited
	1 Introduction
	2 Theoretical Background
	2.1 Time Memory Tradeoff Attack
	2.2 Pre-image under Function Iteration

	3 Checkpoints for Non-perfect Rainbow Tradeoff
	4 Checkpoints for Perfect Rainbow Tradeoff
	5 Conclusion
	References

	Efficient Implementation of NIST-CompliantElliptic Curve Cryptography for Sensor Nodes
	1 Introduction
	1.1 Overview of Related Work and Motivation for Our Work
	1.2 Our Contributions

	2 Elliptic Curve Cryptography
	2.1 NIST Curve P-192
	2.2 Algorithms for Scalar Multiplication

	3 Efficient Field Arithmetic for Curve P-192
	3.1 Addition and Subtraction
	3.2 Multiplication and Squaring
	3.3 Inversion

	4 Implementation Results
	4.1 Execution Time
	4.2 Memory Footprint
	4.3 Energy Consumption

	5 Conclusions
	References

	Cryptanalysis
	Attacking and Fixing the CS Mode
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of Cipher-State Mode
	2.3 Security Definitions

	3 Attacks against CS
	3.1 Distinguishing Attack against CS
	3.2 Forgery Attack against CS
	3.3 Key-Recovery Attack against CS

	4 Fixing CS and Its Security Proof
	4.1 CS* Mode
	4.2 The Security of CS* Mode

	5 Conclusion
	References

	Integral Attacks on Reduced-Round PRESENT
	1 Introduction
	2 Preliminaries
	2.1 Description of PRESENT
	2.2 Boolean Functions
	2.3 Integral Attack

	3 Degree of Boolean Functions and PRESENT’s Sbox
	4 Integral Distinguishers of PRESENT
	4.1 A 5 Round (4-th Order) Integral Distinguisher
	4.2 A 7 Round (16-th Order) Integral Distinguisher

	5 Integral Attack on Reduced-Round PRESENT
	6 Discussions and Conclusions
	References

	Attribute-Based Encryption
	Computationally Efficient Expressive Key-Policy Attribute Based Encryption Schemeswith Constant-Size Ciphertext
	1 Introduction
	2 Background
	2.1 Linear Secret-Sharing Schemes (LSSS)
	2.2 Bilinear Maps and Hardness Assumption
	2.3 KP-ABE Template
	2.4 Selective-Set Security Model for KP-ABE

	3 KP-ABE for Monotone Access Structures
	3.1 Scheme I: Basic sCPA Secure Scheme
	3.2 Scheme II: Extension to sCCA Security

	4 KP-ABE Variants for Non-monotone Access Structures
	4.1 Scheme III: sCPA Secure Construction
	4.2 Scheme IV: Extension to sCCA Security

	5 Scheme V: Large Universe KP-ABE for MAS
	6 Conclusion
	References

	Privacy-Preserving Decentralized Ciphertext-Policy Attribute-Based Encryptionwith Fully Hidden Access Structure
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Formal Definition and Security Model
	3.1 Outline of Decentralized CP-ABE Encryption
	3.2 Security Model
	3.3 Outline of Privacy-Preserving Decentralized CP-ABE Encryption

	4 Our Construction
	4.1 Decentralized CP-ABE Encryption Scheme with Fully Hidden Access Structure
	4.2 BlindKeyGen Protocol
	4.3 Security and Performance Comparison

	5 Conclusions
	References

	Cryptographic Primitives and Applications
	Toward Generic Methodfor Server-Aided Cryptography
	1 Introduction
	2 Background and Definitions
	2.1 Definitions
	2.2 Our Running Example: Group Signatures
	2.3 Our Method in a Nutshell

	3 Status of the Data
	3.1 Data Status and Intermediary
	3.2 Filling the Data Status Table
	3.3 Example of Group Signatures

	4 Status of a Task
	4.1 Execution of a Task by the Intermediary
	4.2 Server-Aided Execution of a Task
	4.3 Status of a Task
	4.4 Example of Group Signatures

	5 Producing the Most Efficient Server-Aided Variant
	5.1 Description of the Global Method
	5.2 Round Attribution
	5.3 Rep Algorithm

	6 Conclusion
	References

	Generation and Tate Pairing Computation of Ordinary Elliptic Curves with EmbeddingDegree One
	1 Introduction
	2 Preliminaries
	2.1 Ordinary Elliptic Curve with CM
	2.2 Pairings on Elliptic Curve

	3 Constructing Ordinary Elliptic Curves with k=1
	3.1 Boneh-Rubin-Silverberg Method
	3.2 Our Construction

	4 Symmetric Pairing Based on the Reduced Tate Pairing
	4.1 Non-degeneracy of the Reduced Tate Pairing
	4.2 The Computation of the Reduced Tate Pairing

	5 Conclusion
	References

	Threshold Secret Image Sharing
	1 Introduction
	2 Preliminaries
	3 The Security Defect of Construction 1
	4 The Proposed Computational Secure (k,n)-TSISS
	5 Conclusions
	References

	Author Index

