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Abstract According to future projections, precipitation and temperature will in-
crease over Eastern Africa in the coming century. This chapter presents basin-level
impact of climate change over the Upper Gilgel Abay River catchment, Blue Nile
basin, Ethiopia, by downscaling the Hadley Centre Coupled Model, version 3
(HadCM3) global climate model using the statistical downscaling model (SDSM).
The baseline period (1961–1990) recommended by the Intergovernmental Panel on
Climate Change (IPCC) was considered for analysis of the baseline scenario. For
future scenario analysis, the time periods of the 2020s, 2050s, and 2080s were ap-
plied. Mean annual rainfall will be expected to increase by 2.21, 2.23, and 1.89 %
for A2 scenario and by 2.06, 1.85, and 0.36 % for B2 scenario by the 2020s, 2050s,
and 2080s, respectively. The projected average temperature increases by 0.43, 1.05,
and 1.92 ◦C for A2 scenario and by 0.47, 0.87, and 1.38 ◦C for B2 scenario in the
three time periods. In the study area, the minimum temperature increases by 0.55,
1.06, and 1.83 ◦C for A2 scenario and 0.50, 0.87, and 1.29 ◦C for B2 scenario in the
2020s, 2050s and 2080s, respectively.
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19.1 Introduction

The United Nations Framework Convention on Climate Change (UNFCCC 1992) de-
fines climate change as “a change of climate which is attributed directly or indirectly
to human activity that alters the composition of the global atmosphere and which is
in addition to natural climate variability observed over comparable time periods.” A
steady-state increase in the global annual mean surface air temperature associated
with a given global mean radiative forcing is referred to as climate sensitivity, and
radiative forcing (climate forcing) is the perturbation of the energy balance of the
surface–troposphere system, after allowing the stratosphere to readjust to a state of
global mean radiative equilibrium (Harvey et al. 1997).

Almost all scientists agree with global warming as an influence which contributes
to climate change. Greenhouse effect is the reason why the global temperature has
risen by 0.76 ◦C (0.57–0.95 ◦C) from 1850–1899 to 2001–2005 and this temperature
rise has resulted in warming of the oceans and melting of glaciers, which caused the
total twentieth-century sea level rise, estimated to be 0.17 m (0.12–0.22 m; Solomon
2007). This situation seriously affects coastal areas and densely populated countries.

Warming in Africa is very likely to be larger than the global annual mean warming
throughout the continent and in all seasons, with drier subtropical regions warming
more than the moister tropics, and there is likely to be an increase in annual mean
rainfall in East Africa (Christensen et al. 2007). Seasonally, in parts of equatorial
East Africa, rainfall is predicted to increase in December–February and decrease in
June–August (McCarthy et al. 2001).

For the Intergovernmental Panel on Climate Change (IPCC) mid-range (A1B)
emission scenario, the mean annual temperature will increase in the range of 0.9–
1.1 ◦C by 2030, in the range of 1.7–2.1 ◦C by 2050, and in the range of 2.7–3.4 ◦C
by 2080 over Ethiopia compared to the 1961–1990 normal (NMA 2007). The major
adverse impacts of climate variability in Ethiopia include (NMA 2007): (1) food
insecurity arising from occurrences of droughts and floods; (2) outbreak of diseases,
such as malaria, dengue fever, and water-borne diseases (e.g., cholera, dysentery)
associated with floods, and respiratory diseases associated with droughts; (3) land
degradation due to heavy rainfall; and (4) damage to communication, road, and other
infrastructure by floods.

The study by Abdo et al. (2009) showed that the average annual minimum
temperature is expected to increase by 1 ◦C in the 2020s while in the 2050s the
minimum temperature is expected to increase by 2.2 and 1.7 ◦C for A2 and B2
scenarios, respectively. The average annual minimum temperature is projected to
increase by 3.7 and 2.7 ◦C for A2 and B2 scenarios, respectively, in the period of the
2080s. The study also showed in 2020s, the maximum temperature is projected to
increase by 0.6 ◦C while in 2050s the maximum temperature is expected to increase
by 1.4 and 1.1 ◦C for A2 and B2 scenarios, respectively. In the 2080s, the annual
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Fig. 19.1 Location of the study area

maximum temperature is expected to increase by 2.5 and 1.8 ◦C for A2 and B2
scenarios, respectively. Bekele (2009) showed that the rainfall experiences a mean
annual increase by 0.82, 0.85, and 1.6 % for A2 scenario in the 2020s, 2050s, and
2080, respectively. In case of B2 scenario, rainfall exhibits a mean annual decrease
in amount by 0.5 and 1.0 % in the 2020s and 2050s and increase by 0.54 % in the
2080s. Abdo et al. (2009) also indicate that the variation in mean annual rainfall is
lesser than the variation in the monthly rainfall.

The objective of this chapter is to investigate future changes in local-scale climatic
variables in the Upper GilgelAbay catchment. Large-scale general circulation models
(GCMs) climate variables, such as rainfall and temperature, were downscaled by
using local-scale baseline climate variables (predictands) for this objective using
statistical downscaling model (SDSM).

19.2 Materials and Methods

19.2.1 Study Area

The GilgelAbay River is the largest tributary of the Lake Tana subbasin and originates
from the highland spring of Gish-Abay town. Traditionally, people believe that the
origin of Blue Nile River is this spring. The catchment covers the area of 1,654.3 km2

of the Lake Tana basin and the longest flow path extends to 80.6 km.

Location Geographically, the Upper Gilgel Abay River catchment is found north
of the Upper Blue Nile basin, which is the southern part of Lake Tana subbasin with
the latitudes and longitudes between 10◦56′ 53′′ to 11◦21′ 58′′N and 36◦49′ 29′′ to
37◦23′ 34′′E, respectively (Fig. 19.1).

Topography The elevation of the Upper Gilgel Abay catchment ranges from 1,891
to 3,524 m above mean sea level (amsl). The highest elevation of the catchment is
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Fig. 19.2 Mean monthly rainfall (1994–2008) distribution of the Upper Gilgel Abay catchment

located on the southeastern tip. Nearly half of the catchment has an elevation that
ranges from 1,891 to 2,190 m amsl which extends from the center to the north tip
(the outlet of the river).

Climate Mean monthly rainfall (1994–2008) plot of Enjibara, Sekela, Dangila, and
WetetAbay meteorological stations indicates that the study area has one peak per year
(Fig. 19.2). Therefore, the Upper Gilgel Abay catchment lies in monomodal climate
class according to Ethiopian climate classification (Tadege 2001) with respect to
rainfall regimes. The main rainfall season of the study area is from June to September
and accounts for 70–90 % of the annual rainfall (Abdo et al. 2009).

According to the traditional climate classifications of the country (Tadege 2001),
most of the area of the catchment is found in the woina dega climate (warm climate;
1,500–2,500 m amsl).

Mean annual areal rainfall (1994–2008) of the study area was computed using
inverse distance weighted (IDW) interpolation technique (Fig. 19.3) by accounting
the selected ten meteorological stations. As shown in the map, the mean annual areal
rainfall of the study area varies from 1,624 to 2,349 mm. Majority of the study areas
have a mean annual rainfall between 1,842 and 1,986 mm.

The temperature of the study area is highly affected by elevation change where
the temperature decreases with increasing elevation (Fig. 19.4). For instance, mean
monthly maximum temperature of Wetet Abay (1994–2008) at an elevation of
1,915 m amsl varies from 24.3 to 31.3 ◦C and of Gundil at an elevation of 2,574 m
amsl varies from 18.3 to 24.9 ◦C. Generally, daily variation between maximum and
minimum temperature is high as compared to the seasonal variation of temperature
in the study area.

19.2.2 Available Data

Predictands (historical climate variables) and daily predictor variables for past and
future projections were available to investigate future changes in local-scale climatic
variables in the catchment.



19 Climate Change Projections in the Upper Gilgel Abay River . . . 367

Fig. 19.3 Mean annual areal rainfall of the Upper Gilgel Abay catchment

Fig. 19.4 Mean monthly (1994–2008) temperature of stations with elevation difference
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Fig. 19.5 The grid box where the study area is located

Meteorological Data Meteorological variables such as rainfall, maximum and min-
imum temperature were required as predictands to downscale the global climate GCM
data to local climate variables. However, only Bahir Dar station was used as an input
for SDSM to derive statistical relationships between the predictand and predictor
that satisfy the baseline (1961–1990) historical data recommended by IPCC. These
30-year daily meteorological variables were collected from the National Meteoro-
logical Agency (NMA) Bahir Dar Branch Directorate.

GCM Data GCM data were required to project and quantify the relative change
of climate variables between the current and future time horizon. One of the global
circulation models, Hadley Centre Coupled Model, version 3 (HadCM3), was used
for this study because the model is widely applied in many climate change studies
and the model provides daily predictor variables which can be used for the SDSM.
The predictor variables are supplied on a grid box by grid box basis. On entering the
location of the study area, the correct grid box was calculated and a zip file was down-
loaded1 (Fig. 19.5). The African continent window with a resolution of 2.5◦ latitude
× 3.75◦ longitude of HadCM3 was, therefore, used as an input to the SDSM model.
When unzipping this file, the following three directories are available (CCIS 2013):

• National centers for Environmental predictions (NCEP) 1961–2001: This direc-
tory contains 41 years of daily observed predictor data, derived from the NCEP
reanalyses and normalized over the complete 1961–1990 period. These data were
interpolated to the same grid as HadCM3 (2.5◦ latitude × 3.75◦ longitude) before
the normalization was implemented.

• H3A2_1961–2099: This directory contains 139 years of daily GCM predictor data,
derived from the HadCM3A2(a) experiment, and normalized over the 1961–1990
period.

1 http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
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Table 19.1 HadCM3 predictor variables

Number Predictor variable Predictor description

1 mslpaf Mean sea-level pressure
2 p_faf Surface airflow strength
3 p_uaf Surface zonal velocity
4 p_vaf Surface meridional velocity
5 p_zaf Surface vorticity
6 p_thaf Surface wind direction
7 p_zhaf Surface divergence
8 p5_faf 500 hPa airflow strength
9 p5_uaf 500 hPa zonal velocity
10 p5_vaf 500 hPa meridional velocity
11 p5_zaf 500 hPa vorticity
12 p500af 500 hPa geopotential height
13 p5thaf 500 hPa wind direction
14 p5zhaf 500 hPa divergence
15 p8_faf 850 hPa airflow strength
16 p8_uaf 850 hPa zonal velocity
17 p8_vaf 850 hPa meridional velocity
18 p8_zaf 850 hPa vorticity
19 p850af 850 hPa geopotential height
20 p8thaf 850 hPa wind direction
21 p8zhaf 850 hPa divergence
22 p500af Relative humidity at 500 hPa
23 p850af Relative humidity at 850 hPa
24 rhumaf Near-surface relative humidity
25 shumaf Surface-specific humidity
26 tempaf Mean temperature at 2 m

• H3B2_1961–2099: This directory contains 139 years of daily GCM predictor data,
derived from the HadCM3 B2(a) experiment, and normalized over the 1961–1990
period.

To apply SDSM to GCM data, both observed predictand and GCM data should
ideally be available on the same grid spacing. Individual predictor (Table 19.1)
and predictand files (one variable to each file, time series data only) are denoted
by the extension *.DAT (Wilby et al. 2002). The predictor represents large-scale
atmospheric variables whereas the predictand represents local surface variables such
as temperature and precipitation.

19.2.3 The Climatological Baseline

In order to assess the implications of future changes on the environment, society,
and economy on an exposure unit, it is first necessary to have information about the
present-day or recent conditions as a reference point or a baseline (Carter et al. 1999;
McCarthy et al. 2001). Baseline information is important for: (1) characterizing
the prevailing conditions under which an exposure unit functions and to which it
must adapt; (2) describing average conditions, spatial and temporal variability, and
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anomalous events, some of which can have significant impacts; (3) calibrating and
testing impact models across the current range of variability; (4) identifying possible
ongoing trends or cycles; and (5) specifying the reference situation with which to
compare future changes (Carter et al. 1999).

The baseline period is usually selected according to the following criteria (Carter
et al. 1994): (1) It should be representative of the present-day or recent average
climate in the study region; (2) be of a sufficient duration to encompass a range
of climatic variations, including a number of significant weather anomalies (e.g.,
severe droughts or cool seasons); (3) should cover a period for which data on all
major climatological variables are abundant, adequately distributed over space, and
readily available; (4) include data of sufficiently high quality for use in evaluating
impacts; and (5) be consistent or readily comparable with baseline climatologies
used in other impact assessments.

A popular climatological baseline period is a 30-year “normal” period, as de-
fined by the World Meteorological Organization (WMO). The current WMO normal
period is 1961–1990, which provides a standard reference for many impact studies
(McCarthy et al. 2001). As well as providing a standard reference to ensure compara-
bility between impact studies, other advantages of using this baseline period include
(Carter et al. 1999):

• The period ends in 1990, which is the common reference year used for climatic
and nonclimatic projections by the IPCC in the first and second assessment reports
(and retained for the third assessment report).

• It represents the recent climate, to which many present-day human or natural
systems are likely to have become reasonably well adapted (though there are ex-
ceptions, such as vegetation zones or groundwater levels that can have a response
lag of many decades or more relative to the ambient climate).

• In most countries, the observed climatological data are most readily available for
this period, especially in computer-coded form at a daily time resolution.

According to the above-listed importance and advantage, this study considered the
suggested IPCC baseline period (1961–1990). Aground the catchment, only Bahir
Dar meteorological station fulfills the IPCC baseline period because the observed data
cover the range from 1961 to 1990. Therefore, these data were used as predictands
for downscaling.

19.2.4 Climate Scenarios

As per the IPCC description, climate scenarios are plausible representations of the
future that are consistent with assumptions about future emissions of greenhouse
gases and other pollutants and with our understanding of the effect of increased
atmospheric concentrations of these gases on global climate. These assumptions
include future trends in energy demand, emissions of greenhouse gases, land use
change, as well as assumptions about the behavior of the climate system over long
timescales. The IPCC- Task Group on Data and Scenario Support for Impact and
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Climate Assessment (IPCC-TGCIA) classified climatic scenarios into three main
types (Carter et al. 2007), based on how they are constructed. These are: (1) synthetic
scenarios, also known as incremental scenarios; (2) analog scenarios; and (3) climate
model-based scenarios.

Special Report on Emissions Scenarios The world will have changed by 2100 in
ways that are difficult to imagine—as difficult as it would have been at the end of the
nineteenth century to imagine the changes of the 100 years since (Nakicenovic et al.
2000). The IPCC Special Report on Emissions Scenarios (SRES) in replacing the
old IPCC scenarios (IS92) identifies 40 different scenarios following four families
of storylines (Santoso et al. 2008). Each storyline represents a distinctly different
direction for future developments, such as demographic, socioeconomic, technolog-
ical, and environmental developments. The four qualitative storylines yield four sets
of scenarios called families (A1, A2, B1, and B2).

The main characteristics of the four SRES storylines and scenario families
(Nakicenovic et al. 2000) are:

• A1: The A1 storyline and scenario family describes a future world of very rapid
economic growth, global population that peaks in the middle of the century and
declines thereafter, and the rapid introduction of new and more efficient technolo-
gies. Major underlying themes are convergence among regions, capacity building,
and increased cultural and social interactions, with a substantial reduction in re-
gional differences in per capita income. TheA1 scenario family develops into three
groups that describe alternative directions of technological change in the energy
system. The three A1 groups are distinguished by their technological emphasis:
fossil intensive (A1FI), nonfossil energy sources (A1T), or a balance across all
sources (A1B)2.

• A2: The A2 storyline and scenario family describes a very heterogeneous world.
The underlying theme is self-reliance and preservation of local identities. Fertil-
ity patterns across regions converge very slowly, which results in continuously
increasing global population. Economic development is primarily regionally
oriented and per capita economic growth and technological changes are more
fragmented and slower than in other storylines.

• B1: The B1 storyline and scenario family describes a convergent world with the
same global population that peaks in mid-century and declines thereafter, as in the
A1 storyline, but with rapid changes in economic structures toward a service and
information economy, with reductions in material intensity, and the introduction
of clean and resource-efficient technologies. The emphasis is on global solutions
to economic, social, and environmental sustainability, including improved equity,
but without additional climate initiatives.

• B2: The B2 storyline and scenario family describes a world in which the emphasis
is on local solutions to economic, social, and environmental sustainability. It is
a world with continuously increasing global population at a rate lower than A2,
intermediate levels of economic development, and less rapid and more diverse

2 Balanced is defined as not relying too heavily on one particular energy source, on the assumption
that similar improvement rates apply to all energy supply and end-use technologies.
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technological change than in the B1 and A1 storylines. While the scenario is also
oriented toward environmental protection and social equity, it focuses on local
and regional levels.

As mentioned earlier, the HadCM3 climate model has been selected for this study.
Climate change and climate change impact are more understandable with the use of
all available GCMs and emission scenario. However, to show the technique of how
one can study future climate change, only HadCM3 was used. HadCM3 model was
developed by considering A2 and B2 SRES emission scenarios.

19.2.5 Climate Model Downscaling

Downscaling Techniques GCMs indicate that rising concentrations of greenhouse
gases will have significant implications for climate at global and regional scales
(Wilby and Dawson 2007). Due to their coarse spatial resolution and inability to
resolve important subgrid scale features, such as clouds and topography, GCMs are
restricted in their usefulness for local impact studies by their coarse spatial resolution.
GCMs depict the climate using a three-dimensional grid over the globe, typically
having a horizontal resolution between 250 and 600 km, 10–20 vertical layers in
the atmosphere, and sometimes as many as 30 layers in the oceans (Nakicenovic
et al. 2000). Their resolution is thus quite coarse relative to the scale of exposure
units in most impact assessments. Several methods have been adopted for developing
regional GCM-based scenarios at the subgrid scale, a procedure variously known as
“regionalization” or “downscaling.” Two different approaches to downscaling are
possible (Hewitson and Crane 1996):

I. Dynamic (nested model) downscaling
The typical application in this case is to drive a regional dynamic model at
mesoscale or finer resolutions with the synoptic- and larger scale information
from a GCM (Giorgi and Mearns 1991; Jenkins and Barron 1997). Detailed in-
formation at spatial scales down to 10–20 km and at temporal scales of hours
or less may be achieved in such applications (Hewitson and Crane 1996). Such
models are computationally demanding and are not an easily accessible research
avenue, but in the long term, this technique is likely to be the best solution and
needs to be encouraged.

II. Statistical (empirical) downscaling
Statistical downscaling is computationally efficient in comparison with dynamical
downscaling and is a practical approach for addressing current needs in the climate
change research community, especially in many of the countries liable to be most
sensitive to climate change impacts (Hewitson and Crane 1996).

In the empirical approach, one seeks to derive quantitative relations between
circulation and local climate in some form of:

y = f (x) (19.1)
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where y represents the predictand (a regional or local climate variable), x is the pre-
dictor (a set large-scale atmospheric variables), and f is a deterministic/stochastic
function conditioned by x and has to be found empirically from observation or
modeled data sets.

Many of the processes which control local climate, e.g., topography, vegetation,
and hydrology, are not included in coarse-resolution GCMs. The development of
statistical relationships between the local and large scales may include some of these
processes implicitly (Fig. 19.6).

Under the broad empirical/statistical downscaling techniques, the following three
major techniques, which include the others, have been developed. These are weather
classification/typing schemes, transfer function/regression model, and stochastic
weather generators methods.

Regression models are a conceptually simple means of representing linear or non-
linear relationships between local climate variables (predictands) and the large-scale
atmospheric forcing (predictors; Wilby et al. 2004). Commonly applied methods
include canonical correlation analysis (CCA; von Storch et al. 1993) and artificial
neural networks (ANN) which are akin to nonlinear regression (Crane and Hewitson
1998) and multiple regression (Murphy 1999).

For this particular study, a type of regression model was used which is SDSM.
SDSM is widely applied in many regions of the world over a range of different
climatic condition. It permits the spatial downscaling of daily predictor–predictand
relationships using multiple linear regression techniques. The predictor variables
provide daily information concerning the large-scale state of the atmosphere, while
the predictand describes conditions at the site scale (CCIS 2008).

19.2.6 General Description of SDSM

SDSM is a decision support tool that facilitates the assessment of regional impacts of
global warming by allowing the process of spatial-scale reduction of data provided
by large-scale GCMs (Wilby et al. 2002). It is best described as a hybrid of the
stochastic weather generator and regression-based methods. This is because large-
scale circulation patterns and atmospheric moisture variables are used to linearly
condition local-scale weather generator parameters (e.g., precipitation occurrence
and intensity; Wilby et al. 2002).

Users are allowed to simulate, through combinations of regressions and weather
generators, sequences of daily climatic data for present and future periods by ex-
tracting statistical parameters from observed data series (Gagnon et al. 2005). The
stochastic component of SDSM permits the generation of 100 simulations. The
SDSM software reduces the task of statistically downscaling daily weather series
into seven discrete steps: (1) quality control and data transformation; (2) screening
of predictor variables; (3) model calibration; (4) weather generation (using observed
predictors); (5) statistical analyses; (6) graphing model output; and (7) scenario gen-
eration (using climate model predictors). The structure and operations of SDSM can
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Fig. 19.6 The concept of spatial downscaling. (Source: David Viner, Climatic Research Unit,
University of East Anglia, UK)

be best described with respect to the seven tasks as indicated in the bold box in
the flowchart and their short descriptions below the flowchart as shown in Fig. 19.7
(Wilby and Dawson 2007).
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Fig. 19.7 SDSM version 4.2 climate scenario generation. (Wilby and Dawson 2007)

Quality Control and Data Transformation The quality control in SDSM is used
to identify the gross data error, specification of missing data code, and outliers prior
to model calibration. In many instances, it may be appropriate to transform predictors
and/or the predictand prior to model calibration. The transform facility takes chosen
data files and applies selected transformations (e.g., logarithm, power, inverse, lag,
binomial).

Screening of the Predictor Variables Identifying empirical relationships between
gridded predictors (such as mean sea-level pressure) and single-site predictands (such
as station precipitation) is central to all the statistical downscaling methods. The
main purpose of screen variables operation is to assist the user in the selection of
appropriate downscaling predictor variables.
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Model Calibration Model calibration takes the specified predictand along with a set
of predictor variables and computes the parameters of multiple regression equations
via an optimization algorithm (either dual simplex of ordinary least squares). Then,
specification of the model structure, whether monthly, seasonal, or annual submodels
are required; or whether the process is unconditional or conditional. In unconditional
models, a direct link is assumed between the predictors and predictands, but in
conditional models, there is an intermediate process between regional forcing and
local weather.

Weather Generator The weather generator operation generates ensembles of
synthetic daily weather series given observed (or NCEP reanalysis) atmospheric
predictor variables. The procedure enables the verification of calibrated models (us-
ing independent data) and the synthesis of artificial time series for present climate
conditions.

Data Analysis SDSM provides means of interrogating both downscaled scenarios
and observed climate data with the Summary Statistics and Frequency Analysis
screens. For model output, the ensemble member or mean must also be specified.
In return, SDSM displays a suite of diagnostics including monthly/seasonal/annual
means, measures of dispersion, and serial correlation and extreme.

Graphical Analysis Three options of graphical analysis are provided by SDSM
4.2 through the Frequency Analysis, Compare Results and the Time Series Analysis
screens.

Scenario Generations Finally, the Scenario Generator operation produces ensem-
bles of synthetic daily weather series for the potential atmospheric predictor variables
supplied by a climate model (for either present or future climate experiments), rather
than observed predictors.

19.2.6.1 Model Setup

I. General Model Setting

Year Length The normal calendar year (366) which allows 29 days in February
every fourth year is used whenever dealing with predictand and NCEP predictor,
whereas the year length of 360 days is used in the scenario generation since
HadCM3 model uses years having 360 days. The 360-day calendar divides a year
into 12 months, each of 30 days in length.

Event Threshold The event threshold is set to zero for temperature and 0.1 mm/day
for precipitation to treat trace rain days as dry days.

Model Transformation The default (none) is used for predictand that is normally
distributed and unconditional as in the case of daily temperature and fourth root
transformation is applied for precipitation since the model is conditional and the
data are skewed.
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Table 19.2 Selected large-scale predictor variables for the predictands of Bahir Dar station

Predictand Predictor Description Month correlated

Precipitation ncepr500 Relative Humidity at 500 hPa Jan, Feb, Apr, Aug, Nov, Dec
nceprhum Near surface relative humidity Jun, Sep, Oct

Maximum ncepp5_u 500 hPa zonal velocity Feb, Apr
temperature ncepp500 500 hPa geopotential height Jan, Oct, Nov, Dec

nceptemp Mean temperature at 2 m Mar, May, Jun, Jul, Aug, Sep
Minimum ncepp500 500 hPa geopotential height Feb, Mar, Apr, May, Jun, Jul, Aug

temperature ncepshum Surface specific humidity Sep, Oct, Nov, Dec
nceptemp Mean temperature at 2 m Jan

Variance Inflation Variance inflation controls the magnitude of variance inflation
in the downscaled daily weather variables. This parameter can be adjusted during
the calibration period to force the model to replicate the observed data. The default
(i.e., 12) produces approximately normal variance inflation prior to any transforma-
tion and is applied to maximum and minimum temperatures. For precipitation, this
parameter can be adjusted during the calibration period.

II. Predictor Variables Screening

The choice of predictor variable is one of the most influential steps in the development
of statistical downscaling procedure. Identifying empirical relationships between
gridded predictors and single-site predictands is central to all statistical downscaling.
The screen variable option in SDSM assists the choice of appropriate downscaling
predictor variables through seasonal correlation analysis, partial correlation analysis,
and scatter plots. One of the approaches is to choose all predictors and run the
explained variance on a group of 12, at a time. Out of the groups, those predictors
which have high explained variance are selected. Then, partial correlation analysis is
done for selected predictors to see the level of correlation with each other. There could
be a predictor with a high explained variance but it might be very highly correlated
with another predictor. This means that it is difficult to tell that this predictor will add
information to the process, and, therefore, it will be dropped from the list. Finally,
the scatter plot indicates whether this result is due to a few outliers or whether it is
a potentially useful downscaling relationship. The selected predictor variables for
precipitation and temperature are shown in Table 19.2.

III. Model Calibration

The calibration model process constructs downscaling models based on multiple re-
gression equations, given daily weather data (the predictand), and regional-scale,
atmospheric (predictor) variables. The model structure for calibration can be speci-
fied by selecting either the unconditional or the conditional process. In conditional
models, a direct link is assumed between the predictors and predictand. In uncon-
ditional models, there is an intermediate process between the regional forcing and
local weather (e.g., local precipitation amounts depend on wet-/dry-day occurrence,
which in turn depends on regional-scale predictors, such as humidity and atmospheric
pressure). The model structure is set to unconditional for maximum and minimum
temperatures and conditional for precipitation. The model type determines whether
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individual downscaling models will be calibrated for each calendar month, climato-
logical season, or entire year. The model is structured as a monthly model for both
precipitation and temperature downscaling, in which case, 12 regression equations
are derived for 12 months using different regression parameters for each month equa-
tion. Finally, the data period should be set in order to specify the start and end date
of the analysis. The calibration was done for a period of 20 years (1961–1980), and
the rest 10 years were considered as validation period.

IV. Weather Generator/Scenario Generator

The Weather Generator operation generates ensembles of synthetic daily weather
series given observed (or NCEP reanalysis) atmospheric predictor variables. The
procedure enables the verification of calibrated models (using independent data)
and the synthesis of artificial time series for present climate conditions. Scenario
Generation operation produces ensembles of synthetic daily weather series given the
regression weight produced during the calibration process and the daily atmospheric
predictor supplied by a GCM (under either the present or the future greenhouse gas
forcing). These functions are identical in all respects except that it may be necessary
to specify a different convention for model dates and source directory for predictor
variables.

The two operations that were settled synthesize 20 daily ensembles either in
the case of NCEP (1961–1990) or in the case of GCM (1961–2099) for maximum
and minimum temperatures. Precipitation downscaling is necessarily more complex
than temperature because daily precipitation amounts at individual sites are relatively
poorly resolved by the regional-scale predictors, and precipitation is a conditional
process (i.e., both the occurrence and amount processes must be specified) (Wilby
and Dawson 2007). Regarding precipitation complexity, increasing the ensemble
number (up to 100) improves this problem.

19.3 Result and Discussion

19.3.1 Downscaling of Climate Variables

19.3.1.1 Selection of Predictor Variables

The best correlated predictor variables selected for precipitation, and maximum and
minimum temperatures with the corresponding month which have a strong correla-
tion between predictands and each predictor are listed in Table 19.2. Predictand and
predictor have good correlations that means the predictor has the best performance
to downscale the global climate variables to local-scale climate variable compared to
others. For instance, relative humidity at 500 hPa and near-surface relative humidity
had good performance to downscale precipitation rather than other predictors. Also,
relative humidity at 500 hPa was very good predictor for the months January, Febru-
ary,April,August, November, and December, whereas precipitation for the months of
June, September, and October was efficiently downscaled with near-surface relative
humidity.
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Table 19.3 Downscaled daily precipitation, maximum and minimum temperature efficiency (R2)
relative to observed data

Variables R2

Calibration (1961–1980) Validation (1981–1990)

Precipitation 0.24 0.25
Maximum temperature 0.66 0.64
Minimum temperature 0.57 0.56

19.3.2 Baseline Scenarios

Baseline scenario analysis was performed for Bahir Dar station within 30-year pe-
riod from 1961 to 1990. Thus, the HadCM3 was downscaled for daily base period
for two emission scenarios (A2 and B2), and some of the statistical properties of
the downscaled data were compared with daily observed data. One of the criteria
commonly used in evaluating the performance of any useful downscaling is whether
the historic or observed condition can be replicated or not.

The downscaled baseline daily temperatures show good agreement with observed
data. However, due to the conditional nature of daily precipitation, downscaled
values have less concurrence with observed daily data. In conditional models, there
is an intermediate process between regional forcing and local weather (e.g., local
precipitation amounts depend on wet-/dry-day occurrence, which in turn depends on
regional-scale predictors, such as humidity and atmospheric pressure) (Wilby et al.
2004). Additionally, complicated nature of precipitation processes and its distribution
in space and time are the other reasons for its concurrence. Climate model simulation
of precipitation has improved over time but is still problematic (Bader et al. 2008)
and has a larger degree of uncertainty than those for temperature (Thorpe 2005). This
is because rainfall is highly variable in space and, so, the relatively coarse spatial
resolution of the current generation of climate models is not adequate to fully capture
that variability.

Coefficient of determination (R2) for daily observed versus simulated (down-
scaled) data clearly shows the difference between unconditional and conditional
models for both calibration and validation (Table 19.3).

The replication of the observed data by the model is much better (with coefficient
of determination nearly one), when the timescale resolution is reduced to monthly
and annual. For this reason, baseline scenario mean monthly precipitation, maxi-
mum temperature, and minimum temperature of observed and downscaled data are
compared and discussed in the next section.

A. Precipitation SDSM estimated the mean monthly precipitation by performing
reasonably. This is why temporal resolution of the analysis changed from daily
to mean monthly values. Figure 19.8a shows this truth but there is a relatively
small model error in the month of July and August as compared to other months.
Mean monthly totals of observed and downscaled precipitation of July are 437.7
and 447.8 mm and of August are 382.5 and 395.4 mm, respectively. This result of
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precipitation was checked by plotting the absolute model errors monthly and shows
(Fig. 19.9a) a good agreement to that obtained during downscaling.

B. Maximum Temperature The downscaled maximum temperature for baseline
period shows good agreement between observed and downscaled values than that
of precipitation and minimum temperature both in A2 and in B2 emission scenarios
(Fig. 19.8b).

The monthly absolute model error of the downscaled maximum temperature for
the baseline period shows an almost similar result. As compared to other months,
February and July have somehow slightly higher model errors, though the magnitude
is small (Fig. 19.9b).

C. MinimumTemperature Like that of the maximum temperature, the downscaled
minimum temperature shows a satisfactory agreement with the observed minimum
temperature for all months both under A2 and under B2 emission scenarios, except a
little variation in the months of January, February, and May. Absolute model error of
the downscaled minimum temperature ensures this truth. The model error therefore
ranges from 0.1 to 0.2 ◦C. See Figs. 19.8c and 19.9c.

19.3.2.1 Future Scenario

Checking the efficiency of the downscaling model which can replicate the observed
statistical properties for future scenarios or does not help to project daily future cli-
mate variables for the next century using the HadCM3 (A2 and B2) global circulation
model. The projection generates 20 ensembles of daily temperature and 100 ensem-
bles of daily precipitation variables. These ensembles are averaged out in order to
consider the characteristics of all those ensembles.

The analysis was done for three 30 years of data ranges based on recommen-
dation of the WMO as the 2020s (2011–2040), 2050s (2041–2070), and 2080s
(2071–2099). The generated scenarios were dealt with individually for each baseline
predictand as below.

A. Precipitation The result of rainfall projection is discussed on a mean annual, sea-
sonal, and monthly basis. This research considered monomodal (one wet season) base
seasonal classifications of Ethiopia which are namely Bega (October–January), a dry
season, Belg (February–May), a short rainy season, and Kiremt (June–September),
a long rainy season.

Keeping its spatial and temporal variability, rainfall projection did not show a
magnified increasing or decreasing unlike the maximum and minimum temperatures
for both A2 and B2 emission scenarios. Rainfall, experiences a mean annual increase
by 2.21, 2.23, and 1.89 % forA2 scenario in the 2020s, 2050s, and 2080, respectively.
This mean annual increase was repeated by B2 scenario with 2.06, 1.85, and 0.36 %
in the 2020s, 2050s, and 2080, respectively. These values show that the trend is not
increasing uniformly; instead, it differs from one time horizon to another.
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Fig. 19.8 Baseline period (1961–1990) mean monthly observed and downscaled precipitation (a),
maximum temperature (b), and minimum temperature (c)



382 A. A. Adem et al.

Fig. 19.9 Absolute model error of mean monthly precipitation (a), maximum temperature (b), and
minimum temperature (c) (1961–1990)
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Table 19.4 Future percentage precipitation changes of A2 and B2 scenario

Precipitation (percentage difference)

Month A2 scenario B2 scenario

2020s 2050s 2080s 2020s 2050s 2080s

Jan − 0.17 31.48 21.70 10.37 0.91 − 13.35
Feb 6.87 26.91 15.20 38.82 1.86 33.75
Mar 11.06 13.98 7.81 3.90 5.64 5.70
Apr − 24.71 − 11.21 − 6.30 − 13.24 − 8.38 − 6.26
May − 0.64 − 0.33 − 5.45 7.96 0.75 0.98
Jun − 1.51 − 2.30 − 7.14 − 1.85 − 0.79 − 5.88
Jul − 0.26 1.33 − 0.97 1.22 − 1.21 − 1.03
Aug 0.23 − 1.38 − 2.60 − 0.24 0.51 − 1.84
Sep 10.75 3.89 7.96 5.05 10.11 8.07
Oct 13.70 24.02 34.95 10.62 5.09 3.09
Nov 24.33 31.05 48.86 17.54 22.02 27.17
Dec 17.44 16.09 25.86 0.99 4.95 0.50
Annual 2.21 2.23 1.89 2.06 1.85 0.36

A rainfall projection of Bega (October–January) shows an increase for the two
emission scenarios, except for the 2080s of B2 scenario. Whereas, Belg (February–
May) projection shows a decrease in mean monthly rainfall for the first 2 months
(February and March) and increase for the last 2 months (April and May) of the season
for A2 scenario. In case of B2 scenario with this Belg season, rainfall is increasing
in May in the 2020s. The Kiremt (June–September) season of the 2 months (June
and July) shares the rainfall decrease of April and May in the 2080s. Except for
September (increasing), the Kiremt season more or less has nearly constant rainfall
(see Table 19.4, Figs. 19.10a, b).

The projected mean monthly rainfall of this study has a similar pattern to that of the
work of Abdo et al. (2009) and deBoer (2007) using HadCM3 and European Cen-
tre Hamburg Model 5/Max-Planck-Institut für Meteorologie (ECHAM5/MPIOM)
global climate models in the same catchment. These works were done on the Gilgel
Abay River catchment and northern Ethiopian highlands. Both of the studies agreed
with the mean monthly rainfall decrease in May, June, and July and increase in
September, October, and November compared to the baseline period. Similarly,
on IPCC third assessment report of McCarthy et al. (2001), rainfall is predicted
to increase in December–February and decrease in June–August in parts of East
Africa under intermediate warming scenarios. This IPCC report strengthens this re-
search output on increasing mean monthly rainfall from December to February and
decreasing a little bit from June to August, for both A2 and B2 scenarios.

B. Maximum Temperature The projected maximum temperature for mean annual
shows an increase trend for all time horizons by 0.43, 1.05, and 1.92 ◦C for A2
scenario in the 2020s, 2050s, and 2080, respectively. B2 scenario also shows an
increase of mean annual maximum temperature with 0.47, 0.87, and 1.38 ◦C in the
2020s, 2050s, and 2080s, respectively. As compared to B2 scenario, A2 scenario has
a faster increasing trend. The increase will include all months largely for all time
horizons except April (Table 19.5, Figs. 19.10c, d).
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Fig. 19.10 The future absolute change in mean monthly precipitation for A2 (a) and B2 (b) sce-
narios; maximum temperature for A2 (c) and B2 (d) scenarios; minimum temperature for A2
(e) and B2 (f) scenarios from the baseline period

C. Minimum Temperature The projected minimum temperature shows an increas-
ing trend in all time horizons. In this case, both the A2 and B2 emission scenarios
generate the future minimum temperature in similar manner. For A2 scenario, mean
annual minimum temperature increases by 0.55, 1.06, and 1.83 ◦C and for B2 sce-
nario, 0.50, 0.87, and 1.29 ◦C in the 2020s, 2050s, and 2080, respectively. Mean
monthly variation of minimum temperature is higher than maximum temperature.
For both A2 and B2 emission scenarios, the minimum temperature will be expected
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Table 19.5 Future absolute maximum temperature changes of A2 and B2 scenarios

Maximum temperature (absolute difference)

Month A2 scenario B2 scenario

2020s 2050s 2080s 2020s 2050s 2080s

Jan 0.45 1.20 1.87 0.61 0.92 1.38
Feb 0.24 0.80 1.36 0.34 0.66 0.87
Mar 0.18 0.54 1.34 0.25 0.58 0.82
Apr 0.26 0.02 0.07 − 0.01 0.12 − 0.03
May 0.42 0.77 1.33 0.32 0.67 0.97
Jun 0.54 1.26 2.48 0.63 1.15 2.00
Jul 0.34 1.10 2.23 0.43 0.86 1.67
Aug 0.57 1.59 3.15 0.56 1.34 2.21
Sep 0.49 1.42 2.50 0.60 1.02 1.77
Oct 0.51 1.15 2.02 0.59 0.99 1.47
Nov 0.50 1.21 2.09 0.63 0.97 1.50
Dec 0.68 1.54 2.61 0.65 1.16 1.90
Annual 0.43 1.05 1.92 0.47 0.87 1.38

to increase from October to June. The difference from other months is in July, Au-
gust, and September. Especially in August, a decreasing trend will be expected to
dominate (Table 19.6, Figs. 19.10e and 19.10f).

Generally, the projected minimum and maximum temperatures in all time horizons
are within the range projected by IPCC, which says that the average temperature
will rise by 1.4–5.8 ◦C toward the end of this century. In relation to this, one can
understand and link the result of maximum and minimum temperature results to IPCC
emission scenario storylines that increment forA2 scenario is greater than B2 scenario
becauseA2 scenario represents a medium-high scenario which produces more carbon
dioxide concentration than the B2 scenario which represents a medium-low scenario.

19.4 Conclusion

HadCM3, which is one of the global climate models used in this research, was
downscaled for the Upper Gilgel Abay River catchment using Bahir Dar meteoro-
logical station climate variables as predictands. The statistical downscaling model
(SDSM), which is a multiple regression model, was the tool to downscale the GCM
by considering IPCC climatological baseline (1961–1990). The predictors supplied
by HadCM3 contain daily observed predictor (NCEP) and daily GCM predictor
data developed to A2 (medium-high emissions) and B2 (medium-low emissions)
scenarios.

Downscaling results of baseline predictor variables (NCEP) showed that maxi-
mum and minimum temperature values gave a better R2 of NCEP reanalysis versus
observed data and the value ranges from 0.56 to 0.66. This shows that future pro-
jections of maximum and minimum temperatures would be well replicated. The
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Table 19.6 Future absolute minimum temperature changes of A2 and B2 scenarios

Minimum temperature (absolute difference)

Month A2 scenario B2 scenario

2020s 2050s 2080s 2020s 2050s 2080s

Jan 0.31 0.58 0.87 0.19 0.46 0.55
Feb 0.55 1.46 2.34 0.51 1.07 1.65
Mar 0.91 2.03 3.44 0.88 1.56 2.43
Apr 1.37 2.67 4.73 1.23 2.24 3.51
May 0.51 1.05 1.74 0.55 0.84 1.31
Jun 0.87 1.74 2.94 0.90 1.53 2.21
Jul 0.27 0.29 0.13 0.16 0.21 0.02
Aug − 0.20 − 0.41 − 0.54 − 0.23 − 0.31 − 0.47
Sep 0.14 − 0.06 0.05 0.02 − 0.01 − 0.01
Oct 0.36 0.69 1.22 0.36 0.47 0.59
Nov 0.30 0.52 1.13 0.45 0.46 0.90
Dec 1.16 2.13 3.95 0.96 1.89 2.84
Annual 0.55 1.06 1.83 0.50 0.87 1.29

precipitation computation, on the other hand, showed that the calibrated model per-
formed poorly to replicate the independent data set with R2 of 0.24 and 0.25 for
calibration and validation, respectively. This is due to complicated nature of precipi-
tation processes and its distribution in space and time. However, when the daily data
are aggregated to mean monthly, the observed data is simulated better.

Results of downscaling for future projections of climate variables showed that
rainfall experiences a mean annual increase by 2.21, 2.23, and 1.89 % forA2 scenario
in the 2020s, 2050s, and 2080s, respectively. Mean annual increases of rainfall are
also expected in B2 scenario with 2.06, 1.85, and 0.36 % in the 2020s, 2050s, and
2080, respectively. Percentage changes of both A2 and B2 scenarios showed that
the trend is not increasing uniformly; instead, it differs from one time horizon to
another. Similar to the Abdo et al. (2009) findings, mean annual rainfall variation is
less than mean monthly rainfall. The variation was clearly observed from one month
to another and also from one time horizon to another.

Maximum temperature will be expected to increase for future time projections as
the results showed. The projected maximum temperature shows an increasing trend
for annual mean for all time horizons by 0.43, 1.05, and 1.92 ◦C forA2 scenario in the
2020s, 2050s, and 2080, respectively. B2 scenario also shows an increase of mean
annual maximum temperature of 0.47, 0.87, and 1.38 ◦C in the 2020s, 2050s, and
2080s, respectively. Minimum temperature projections forA2 scenario showed mean
annual increase of 0.55, 1.06, and 1.83 ◦C and for B2 scenario 0.50, 0.87, and 1.29 ◦C
in the 2020s, 2050s, and 2080, respectively. Mean monthly variation of minimum
temperature is higher than maximum temperature. As compared to B2 scenario, A2
scenario has a faster increasing trend because A2 scenario represents a medium-high
scenario which produces more carbon dioxide concentration than the B2 scenario
which represents a medium-low scenario. Based on the results of several GCMs
using the data collected by the IPCC Data Distribution Center (IPCC-DDC), future
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warming across Africa will range from 2 ◦C (low scenario) to 5 ◦C (high scenario)
by 2100 (Shaka 2008). Therefore, the results obtained from HadCM3 are supported
by the recommended range of IPCC.

Generally, this work considered one climate model only. However, climate change
and climate change impact studies will be fruitful if they account for different GCMs
and emission scenarios to minimize all types of uncertainties due to assumptions and
parameterizations of climate model representation and also different downscaling
techniques.
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