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Observing Integration Processes in European

R&D Networks: A Comparative Spatial
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R&D Networks and Co-patent Networks
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Abstract This study focuses on integration processes in European R&D by ana-

lyzing the spatio-temporal dimension of two different R&D collaboration networks

across Europe. These networks cover different types of knowledge creation, namely

co-patent networks and project based R&D networks within the EU Framework

Programmes (FPs). Integration in European R&D – one of the main pillars of the

EU Science Technology and Innovation (STI) policy – refers to the harmonisation

of fragmented national research systems across Europe and to the free movement of

knowledge and researchers. The objective is to describe and compare spatio-

temporal patterns at a regional level, and to estimate the evolution of separation

effects over the time period 1999–2006 that influence the probability of cross-

region collaborations in the distinct networks under consideration. The study adopts

a spatial interaction modeling perspective, econometrically specifying a panel

generalized linear model relationship, taking into account spatial autocorrelation

among flows by using Eigenfunction spatial filtering methods. The results show that

geographical factors are a lower hurdle for R&D collaborations in FP networks than

in co-patent networks. Further it is shown that the geographical dynamics of

progress towards more integration is higher in the FP network.
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8.1 Introduction

Today it is widely recognised that first, innovation processes are increasingly based
on interaction, research collaborations and networks of various actors (see, for

instance, Powell and Grodal 2005),1 and, second, innovation is the key element

for sustained economic growth of firms, industries, regions and countries (see, for

example, Romer 1990).2 Based on these arguments, the main focus of the Europe

2020 Strategy is on research and innovation in order to achieve a new growth path

that leads to a smart, sustainable and inclusive economy (European Commission

2011). In this context, the concept of the Innovation Union – one of the seven

flagships scheduled in the Europe 2020 Strategy – is intended to improve conditions

for innovation and knowledge diffusion to ensure that innovative ideas are effi-

ciently turned into new products and services that create growth and employment

(European Commission 2010). One of the main pillars of the Innovation Union is

the realisation of an integrated European Research Area (ERA), defined as one

explicit principal purpose to fulfil progress towards the Innovation Union.

The concept of the European Research Area (ERA) refers to the objective to

enable and facilitate “free circulation of researchers, knowledge and technology”

across the countries of the EU, and, by this, stimulating integration processes in

European R&D (see Commission of the European Union (CEU) 2008, p. 6). This

policy goal is to be addressed by improving coherence of the European research

landscape, thus removing barriers – such as geographical, cultural, institutional and

technological impediments – for knowledge flows, knowledge diffusion and

researcher mobility by a European-wide coordination of national and regional

research activities and policy programmes, including a considerable amount of

jointly-programmed public research investment (see Delanghe et al. 2009).

To gain insight into the nature of integration processes in European R&D, there

is urgent need for analysing the geographical dimension of R&D networks across

1 The literature on R&D networks underlines the crucial importance of cooperative agreements

between universities, companies and governmental institutes, for developing and integrating new

knowledge in the innovation process (see Powell and Grodal 2005). This is explained by consid-

erations that innovation nowadays takes place in an environment characterised by uncertainty,

increasing complexity and rapidly changing demand patterns in a globalised economy. Organisa-

tions must collaborate more actively and more purposefully with each other in order to cope with

increasing market pressures in a globalizing world, new technologies and changing patterns of

demand. In particular, firms have expanded their knowledge bases into a wider range of technol-

ogies (Granstand 1998), which increases the need for more different types of knowledge, so firms

must learn how to integrate new knowledge into existing products or production processes. It may

be difficult to develop this knowledge alone or acquire it via the market. Thus, firms form different

kinds of co-operative arrangements with other firms, universities or research organisations that

already have this knowledge to get faster access to it.
2 The theory of endogenous growth, and the geography-growth synthesis both consider that

economic growth and spatial concentration of economic activities emanate from localised knowl-

edge diffusion processes, in particular transferred via network arrangements between different

actors of the innovation system.
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Europe from a longitudinal perspective. The geography of such networks has –

from a static perspective – attracted increasing interest in Regional Science and

Economic Geography in the recent past. While from its beginning, the measure-

ment of such phenomena has faced numerous problems, the empirical investigation

of knowledge flows and R&D collaborations has significantly improved during the

1990s by using new indicators such as patent citations (see, for instance, the

pioneering study by Jaffe et al. 1993; Fischer et al. 2006), co-publications (see,

for instance, Hoekman et al. 2010) or project based R&D networks within the FPs

(see Scherngell and Barber 2009, 2011), and by introducing new methods, in

particular new spatial econometric techniques (see, for instance, LeSage

et al. 2007). Recent studies focus on the structure of knowledge flows by adopting

a spatial interaction modelling perspective (see, for instance, Scherngell and Barber

2009), employing a social network analysis perspective (see, for instance, Breschi

and Cusmano 2004) or a combination of both (see Barber and Scherngell 2011).

However, as these studies just provide a static picture on the geography of R&D

collaborations, novel questions arise – both in theoretical and empirical research as

well as in a European policy context – regarding R&D network structures and its

dynamics. Concerning the particular focus on integration processes in European

R&D, the evolution of different kinds of separation effects over time – such as

geographical, technological, institutional or cultural barriers – that determine R&D

collaboration networks is of crucial interest. Thus, this study shifts emphasis to the

investigation of the geographical dynamics of two different types of R&D collab-

oration networks across Europe, namely co-patent networks and project based R&D

networks within the European Framework Programmes (FPs). We take these types

of R&D collaboration networks to analyse integration processes in European R&D

over time from two different angles, shifting attention to a comparison of European

integration processes in these networks.

By this, the study addresses one of the major drawbacks of the current empirical

literature: the lack of a longitudinal and comparative perspective on distinct R&D

collaboration networks. Some exceptions are the studies of Maggioni and Uberti

(2009), Hoekman et al. (2010, 2013), and Scherngell and Lata (2013).3 The current

study intends to complement the picture drawn in these studies, by shifting attention

to a longitudinal and comparative perspective on two different R&D networks

across Europe. The objective is to identify and compare the evolution of

3Hoekman et al. (2010) and Scherngell and Lata (2013) investigate the ongoing process of

European integration by determining the impact of geographical distance and territorial borders

on the probability of research collaborations between European regions. By analysing

co-publication and FP network patterns and trends, the authors show that geographical distance

has a negative effect on co-publication activities and FP cooperation, while for the FP networks

this effect decreases over time. The study of Maggioni and Uberti (2009) focuses on the structure

of knowledge flows by analysing four distinct collaboration networks, including co-patenting.

Hoekman et al. (2013) focus on the effect of participation in FP networks on subsequent

international publications, showing that the FPs indeed positively influence international

co-publications, and, by this, seem to enhance integration across Europeans research systems.
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geographical, technological, institutional or cultural effects that influence the prob-

ability for collaboration activities in the different collaboration networks, and

provide direct evidence on integration processes in European R&D from different

angles. We adopt a regional perspective that is an appropriate approach to observe

different R&D collaboration networks in geographical space (see, for instance,

Hoekman et al. 2010; Scherngell and Barber 2009) over the time period 1999–2006.

The study employs a Poisson spatial interaction modelling perspective to address

these research questions. We adjust the spatial interaction models by accounting for

spatial autocorrelation issues of flows by means of Eigenvector spatial filtering (see

Chun 2008; Scherngell and Lata 2013).

The paper is organised as follows. Section 8.2 sets forth the conceptual back-

ground of the study with a special focus on ERA, before Sect. 8.3 reflects on the

different types of R&D collaboration networks under consideration. Section 8.4

describes the empirical setting and the data, accompanied by some descriptive

statistics and exploratory spatial data analysis. Section 8.5 specifies the empirical

model in form of a panel version of the spatial interaction modelling framework that

is used to identify the evolution of separation effects influencing the probability of

cross-region collaboration activities in the distinct networks. Section 8.6 presents

the modelling results, before Sect. 8.7 closes with a summary of the main results

and some conclusions in a European policy context.

8.2 The ERA Goal of Progress Towards More Integration

in European R&D

One significant turning point in the EU Science, Technology and Innovation (STI)

policy was the design of the concept of the European Research Area (ERA)

presented at the Lisbon Council in the year 2000, rooted in the increasing awareness

that European research activities suffer from diverse and fragmented national

research systems (Boyer 2009). The overall goal of ERA is to overcome fragmen-

tation in the European research system and to address the establishment of an

‘internal market’ for research across Europe, where researchers, technology and

knowledge are supposed to circulate freely (see Delanghe et al. 2009; European

Council 2000). The ERA green paper (CEC 2007) underlines the overall objectives

of the Lisbon strategy, emphasising that the future European science and research

landscape should be characterised by an adequate flow of competent researchers

with high levels of mobility between institutions by integrated and networked

research infrastructures and effective knowledge sharing, notably between public

research and industry. This requires the reduction of geographical, cultural, insti-

tutional, and technological obstacles in order to generate research collaboration

across European regions and countries (see, for instance, Hoekman et al. 2013;

Scherngell and Lata 2013).
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The Framework Programmes (FPs) of the European Commission (EC) constitute

the main instrument to achieve this goal, shifting emphasis on supporting and

stimulating collaborative R&D activities between innovating organisations across

Europe, in particular firms and universities. At the same time, regional and national

research policies deal with similar issues as reflected by a growing awareness

among national policy makers that national efforts are often insufficient to keep

pace in the international innovation competition. In this context the European

Council underlined the importance of cross border cooperation for the achievement

of these objectives and put collaborative R&D activities at the centre of its strategy

(Guzzetti 2009). Svanveldt (2009) highlights the crucial importance of cross-border

cooperation as instrument for adequately dealing these challenges.

During the last decade, the ERA concept has been developed further, becoming

strong political support in the context of the conception of the so-called Innovation
Union (European Commission 2010). As one of the seven flagships scheduled in the

Europe 2020 Strategy, the Innovation Union is intended to improve framework

conditions for innovation and knowledge diffusion. Moreover one of the main

objectives of the Innovation Union is to “. . . quickly taking all measures necessary

for a well functioning and coherent European Research Area in which researchers,

scientific knowledge and technology circulate freely, in which RDI investments are

less fragmented and the intellectual capital across Europe can be fully exploited”
(European Commission 2010, p. 7). In order to tackle these challenges, specific

commitments have been introduced. One of these commitments is to complete the

ERA by 2014 with the goal to remove the remaining obstacles for collaborative

knowledge production and consequently to foster the integration in the European

research landscape (European Commission 2010).

With this in mind, the present study aims to evaluate the progress towards more

integration in European R&D – as formulated in the concept of ERA and the

Innovation Union. To gain empirical insight into the nature of such integration

processes across Europe, the study focuses on a broad spectrum of R&D collabo-

ration activities, namely co-patent networks and project based R&D networks

within the FPs. In estimating the evolution of separation effects that capture the

above mentioned obstacles for collaborative knowledge production across Europe,

the analysis will show distinct mechanisms of integration processes corresponding

to the different types of R&D networks. The section that follows reflects on the two

different network types under consideration in some detail.

8.3 A Network Perspective on Integration in European

R&D

R&D networks – defined as sets of organisations performing joint R&D activities –

have attracted burst of attention in the recent past as essential element of modern

knowledge production and innovation processes (see, for instance, Castells 1996).
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In the current study, we take such network arrangements across Europe to analyse

integration processes in European R&D, focusing on two different types of net-

works that capture different types of knowledge production processes. We focus on

R&D networks in the form of joint patenting, resulting in co-patents, and project

based R&D networks within the FPs.

Co-patent networks mainly reflect research collaborations that are related to

applied knowledge generation focusing on the development of marketable innova-

tions and industry research activities (Maggioni and Uberti 2009). Patents represent

a well established indicator of knowledge generation activities and are widely used

in empirical studies on knowledge flows (see, for instance, Jaffe et al. 1993; Fischer

et al. 2006). A co-patent is defined as a patent invented by at least two inventors

from two different organisations. Therefore, it represents knowledge exchange

across actors within an inventor network in the process of patenting an invention

(see, for instance, Ejermo and Karlsson 2006).

The second type of R&D networks refers to project based R&D collaboration

within the FPs. While co-patent networks mainly reflect applied research, project

based FP networks involve basic and applied research aspects, given by the fact that

publications and patents may be outputs of FP networks. In the FP network, the

research collaboration is constituted by joint R&D projects conducted by organi-

sations distributed across Europe. The FPs are the main political instrument to

support pre-competitive collaborative R&D within the European Union. The key

objectives are, first, to strengthen the scientific research and technological devel-

opment in the scientific landscape, and, by this, to foster the European competi-

tiveness, and, second, to promote research activities in support of other EU policies

(Maggioni et al. 2009).4 FP projects share specific characteristics (see for example

Roediger-Schluga and Barber 2006). First, they are all promoted by self-organised

consortia and have distinct partners – for instance individuals, industrial and

commercial firms, universities, research organisations, etc. – that are located in

different EU members and associated states. Second, they focus primarily on

pre-competitive R&D projects. Third, they are characterised by less market orien-

tation and longer development periods (Polt et al. 2008).

Given the properties of the two different network types under consideration, it

may be hypothesised that integration processes for these network types differ. This

may, on the one hand, be related to the different knowledge generation processes in

these networks, on the other hand, to governance rules and policy programmes

implemented by the EC influencing the resulting network structures. Spatial inter-

action models (see Sect. 8.5) will enable us to proof this hypothesis, and disclose

distinct spatial characteristics and collaboration patterns in the networks under

4 Since their introduction in 1984, different thematic aspects and issues of the European scientific

landscape have been addressed by the FPs. Although the FPs have undergone different changes in

their orientation during the past years, their fundamental rational remained unchanged (Roediger-

Schluga and Barber 2006).
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consideration, and, by this, drawing a more detailed picture on integration processes

in European R&D.

8.4 Data and Descriptive Statistics

In our empirical analysis we aim to investigate integrations processes in European

R&D networks focusing on two different types of collaboration networks, that is FP

collaboration networks and co-patent networks. The EUPRO database is used to

capture project based R&D networks within the FPs, while the Regpat database is

taken to construct co-patent networks. The EUPRO database currently comprises

information on more than 60,000 research projects funded by the EU FPs and all

participating organisations. A network link is given between two organisations

when they conduct a joint research project in the FPs. We use information on the

geographical location in form of the city to trace the geographical dimension of the

network. The Regpat database contains information on patent applications from

various patent offices worldwide. It is provided by the OECD and contains, among

many others, all patent applications issued at the European Patent Office (EPO), and

the national patent offices of the European countries. A network link between two

organisations is given when inventors from two different organisations appear on a

patent application. We use information on the inventor address of an EPO patent

application to trace the origin of the invention.

The European coverage is achieved by using i, j ¼ 1, . . ., n NUTS-2 regions5 of
the 25 pre-2007 EU member-states as well as Norway and Switzerland. We extract

n-by-n collaboration matrices for each time period t ¼1,. . ., T, both for the FP- and

for the co-patent network, by aggregating the number of individual collaborative

activities at the organisational level in time period t to the regional level. This leads
to the observed number of R&D collaborations yijt between two regions i and j in
time period t in the respective network, that is the FP and the co-patent network.

The resulting regional collaboration matrix Yt for the two networks
6 for a given year

t contains the collaboration intensities between all (i, j)-region pairs, given the

i ¼ 1,. . ., n regions in the rows and the j ¼ 1,. . ., n regions in the columns.7

Figure 8.1 illustrates the spatial distribution of the cross-region R&D collaborations

in the FP- (Fig. 8.1a) and the co-patent network (Fig. 8.1b) across Europe. In the

5Although substantial size differences and interregional disparities of some regions exist, these

units are widely recognized to be an appropriate level for modelling and analysis purposes (see, for

example, LeSage et al. 2007).
6 Note that we do not distinguish between the FP network and the co-patent in the formal

description of data as well as the modelling approach in the section that follows.
7We use a full counting procedure for the construction of our collaboration matrices (see, for

example, Katz 1994). For a project with, for example, three different participating organizations a,

b and c, which are located in three different regions, we count three links (from a to b, from b to c

and from a to c).
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spatial network maps, the sizes of the nodes are proportional to the number of

regional participations in the two distinct networks. The darkness of the lines

corresponds with the number of joint R&D collaborations between two regions,

i.e. the darker the higher the interaction intensity. It is shown that the spatial

structures of the distinct networks differ markedly. The most striking difference

concerns the fact that the international collaboration activity is much higher in the

FP network than in the co-patent network. In the latter, R&D collaborations are

widely confined within national boundaries, while such boundaries seem to play a

minor role for the structure of the FP network. Furthermore, the intra-regional

collaboration intensity seems much higher in the co-patent network than in the FP

network, pointing to the geographical localisation of the co-patents within NUTS-2

regions, while the cross-region collaboration intensity is much higher in the FP

network.

Concerning the spatial distribution of the regions with high intra-regional

co-patent activities, a high intensity can be found for regions belonging to the

traditional industrial core of Europe (see Hoekman et al. 2012), also referred to as

the European ‘blue banana’ (Brunet 2002), while the participation within the FP

network seems to be spatially more dispersed. However, both networks seem to be

spatially concentrated in some European regions that show high collaboration

intensity. In this context the question arises, whether a spatial clustering of inter-

action patterns in the two networks can be observed, and which network shows a

higher degree of spatial clustering, also referred to as spatial autocorrelation of

flows (see, for instance, Berglund and Karlstrom 1999). Spatial autocorrelation of

flows is, for example, when flows from a particular origin may be correlated with

other flows that have the same origin, and, similarly, flows into a particular

destination may be correlated with other flows that have the same destination

(Scherngell and Lata 2013). In our case, this means that the intensity of R&D

Fig. 8.1 Spatial distribution of the cross-region R&D networks for the year 2006. (a) R&D

collaborations within the FP-network. (b) R&D collaborations within the co-patent network
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collaborations from an origin region i to a destination region j may be correlated

with the intensity of R&D collaborations from the same origin i to another desti-

nation j, or vice versa. Such a situation is specifically interesting from the perspec-

tive of our research question on integration in European R&D, namely by assessing

whether such R&D collaborations are statistically concentrated to a geographical

core of regions that are located nearby to each other.8

In order to test for the existence of spatial autocorrelation of flows, we calculate

a Moran’s I test for spatial dependence as widely used in exploratory spatial data

analysis (see Griffith 2003), given by

It ¼ yt
0
W�yt
yt

0
yt

ð8:1Þ

where yt is a vector of our observed collaboration flows at time t with N ¼ n2

elements (yijt) ¼ (y11t, . . ., y1nt, y21t, . . ., y2nt, . . ., yn1t, . . ., ynnt), and W* is defined

by W
N

W where W is the n-by-n spatial weights matrix and
N

denotes the

Kronecker product. For W, we set

wij ¼ 1 if s
1ð Þ
ij � s

1ð Þ
ig ið Þ

0 otherwise

(
ð8:2Þ

where sij
(1) measures the great circle distance between the economic centers of two

regions i and j, and gi denotes the g-nearest neighbour of i. We define g ¼ 5, as used

in various empirical studies dealing with European regions (see, for instance,

Scherngell and Lata 2013). The respective Moran’s I statistics for the years

1999–2006 are reported in Table 8.1. The results are most often significant pointing

to substantial spatial autocorrelation of R&D collaborations in both networks under

consideration, i.e. a high number of flows is correlated with flows that come from

nearby origins, and going into nearby destinations. However, the degree of spatial

dependence is much higher for the co-patent network as has been expected consid-

ering the spatial distribution of the flows that are visualised in Fig. 8.1. Further-

more, the Moran’s I for the FP network shows a decreasing trend, while for the

co-patent network no time trend can be observed, pointing to differences in

8 From a theoretical perspective the spatial autocorrelation of R&D collaboration flows may be

explained by the assumption that the collaboration behaviour of one region influences the

collaboration behaviour of neighbouring regions because – as described in various empirical

studies – contiguity of regions may induce knowledge flows between them, to them, and from

them, and, thus, evoke the transfer of information on potential collaboration partners that are

located further away (Scherngell and Lata 2013). To give an example, if region A has many

collaborations with region B (that is no neighbour of region A), region A may influence a

neighbouring region C also to collaborate with region B due to information flows between region

A and region C, in particular flows of ‘know who’ type information (see Cohen and Levinthal

1990).
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integration processes for the two network types. In this context, the existence of

spatial autocorrelation also bears important implications in a modeling context,

since estimates may be biased neglecting spatial autocorrelation issues of flows

(see, for instance, Fischer and Griffith 2008; Scherngell and Lata 2013).

8.5 The Empirical Model

This section shifts direct attention to the modelling approach used to estimate how

specific separation effects influence the variation of cross-region R&D collabora-

tions in two distinct collaboration networks over time, and, by this, providing direct

evidence on distinct integration processes in different types of R&D. We employ a

spatial interaction modelling approach.9 In implementing a panel version of the

spatial interaction model, we are able to identify time effects that are necessary to

observe potential integration processes of the networks over the time period

1999–2006. In what follows we will specify the panel version of the spatial

interaction model, an extension accounting for spatial autocorrelation issues of

flows, and describe the independent variables of the model.

8.5.1 The Panel Version of the Spatial Interaction Model
to Be Estimated

Let us denote Yijt as a random dependent variable corresponding to observed R&D

collaborations yijt within the FP- or the co-patent network between origin i (i ¼ 1,

. . ., n) and destination j ( j ¼ 1, . . ., n) at time t (t ¼ 1, . . ., T ). As in the previous

section, we do not distinguish between the two networks in the formal model

presentation; our basic model is given by

Table 8.1 Spatial autocorrelation of R&D collaboration in two distinct networks

Moran’ I

1999 2000 2001 2002 2003 2004 2005 2006

FP-network 0.016* 0.006* 0.003* 0.000 �0.001 0.007* �0.009 �0.001

Co-patent network 0.136* 0.120* 0.132* 0.144* �0.139* 0.153* 0.146* �0.147*

*significant at the 0.001 significance level

9 Spatial interaction models are widely used for modelling origin-destination flows data and were

used to explain different kinds of flows, such as migration, transport or communication flows,

between discrete units in geographical space (see, for instance, Fischer and LeSage 2010 among

many others).
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Yijt

��yijt ¼ μijt þ εijt i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:3Þ

where μijt denotes some mean expected interaction frequency between origin i and
destination j at time t, εijt some disturbance term about the mean with the property

E[εijt|yijt] ¼ 0. As in classical spatial interaction theory (see, for instance, Fischer

and LeSage 2010), we model the mean interaction frequencies μijt between origin

i and destination j at time t by some origin function Oit which characterizes the

origin i of interaction in time period t, some destination function Djt which

describes the destination j of interaction in time period t, and some separation

function Sijt which accounts for the separation between an origin region i and a

destination region j in time period t. Then we use a multiplicative relationship for

our basic model, given by

μijt ¼ Oit Djt Sijt i, j ¼ 1, . . . , n; t ¼ 1, . . . ,T ð8:4Þ

where

Oit ¼ oα1it i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:5Þ
Djt ¼ dα2jt i, j ¼ 1, . . . , n; t ¼ 1, . . . ,T ð8:6Þ

Sijt ¼ exp
XK
k¼1

βk s
kð Þ
ijt

" #
: i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:7Þ

oit and djt are origin and destination variables, s
ðkÞ
ijt are K (k ¼ 1, . . ., K ) separation

variables that are introduced below. α1, α2 and ßk are parameters to be estimated.

As has come into fairly wide use for spatial interaction models, we assume

(Yij) ~ Poisson due to the true integer non-negative count nature of our R&D

collaboration flows (see, for instance, Cameron and Trivedi 1998; Fischer

et al. 2006). The resulting panel version of the Poisson spatial interaction model

is given by,

μijt ¼ exp α1log oitð Þ þ α2log djt
� �þXK

k¼1

βks
kð Þ
ijt þ γij

" #
ð8:8Þ

where γij denotes the unobserved individual specific effect, also referred to as the

one-way error component model (see Baltagi 2008). The random term γij is time

invariant but varies across all (i, j)-region pairs. In our case γij accounts for region-
pair specific effects that are not included in the model. We assume the γij to be

correlated across our time periods for the same (i, j)-region pair, i.e. we follow a

random effects specification, and integrate out the random effect γij of the joint

probability ∏ T
t ¼ 1Pr(yij1, . . .,yijT) by obtaining
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Pr yij1; . . . ; yijT

� �
¼ð

Pr yij1, . . . , yijT , γij

� �
dγij ¼

ð
Pr yij1, . . . , yijT

�� γij� �
g γij
� �

dγij:
ð8:9Þ

Note that this is the same approach used in models for event counts to condition

the heterogeneity out of the Poisson model to produce the Negative Binomial model

(see Baltagi 2008), i.e. when (Yij) ~ Poisson with mean μijt as given by Eq. 8.8, and
exp(γij) ~ Gamma, then our random effects Negative Binomial spatial interaction
model to be estimated is

Pr yij1; . . . ; yijT

� �
¼

YT

t¼1
μijt

yijt
� �

Γ θ þ
XT

t¼1
yijt

� �

Γ θð Þ
YT

t¼1
yijt!

� � XT

t¼1
μijt

� �XT

t¼1
yijt

2
4

3
5

Qi 1� Qið Þ
XT

t¼1
yijt

ð8:10Þ

with

Qi ¼
θ

θ þ
XT

t¼1
μijt

ð8:11Þ

where Γ(.) denotes the Gamma distribution and θ its variance. Parameter estimation

is achieved via maximum likelihood estimation procedures (see Cameron and

Trivedi 1998).

8.5.2 Accounting for Spatial Autocorrelation and Time
Effects

Given the results of the spatial autocorrelation analysis of the previous section, it

can be assumed that spatial dependence among our collaboration flows may lead to

biased estimates. Thus, we re-specify our panel version of the Negative Binomial

spatial interaction model by accounting for spatial autocorrelation issues as well as

by introducing time effects enabling us to infer on time trends concerning the

evolution of collaboration patterns in the two networks.

As noted by Chun (2008), maximum likelihood estimation assumes that all

observations, in our case collaboration flows in our two networks under consider-

ation, are mutually independent. A violation of this assumption may be in particular

induced by spatial autocorrelation of flows leading to incorrect inferences due to

inconsistence of the standard errors, and, thus, unrealistic significances (Chun 2008;
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Griffith 2003).10 We follow Scherngell and Lata (2013) who apply a spatial filtering

method to filter out spatial autocorrelation of residual flows in a Negative Binomial

spatial interaction context. The essence of the spatial filtering approach is to extract

eigenvectors from a modified spatial weights matrix that serve as spatial surrogates

for omitted spatially autocorrelated origin and destination variables (see Fischer

and Griffith 2008). These proxy variables are extracted as n eigenvectors11 from the

modified spatial weights matrix of the form I� 11T 1
n

� �
W I� 11T 1

n

� �
with I

denoting the n-by-n identity matrix, 1 is an n-by-1 vector of one’s, 1T its transpose,
and W the n-by-n spatial weights matrix, as defined by Eq. 8.2. The eigenvectors

can be interpreted as synthetic map variables that represent specific natures and

degrees of potential spatial autocorrelation (Chun 2008; Griffith 2003).

As noted by Griffith (2003) it is not appropriate to use the full set of En

eigenvectors for the construction of the spatial filter variables. Further, we face a

situation where Eigenvectors have to be selected for each time period due to the

panel version of the spatial interaction model (Patuelli et al. 2011). As in Patuelli

et al. (2011) we select in a first step a subset of distinguished eigenvectors on the

basis of their Moran’s I values. Then, we follow Fischer and Griffith (2008) and

extract those Eigenvectors Em that show a higher Moran’s I value than 0.25. In a

second step, it is necessary to adapt these Eigenvectors to our spatial interaction

framework; origin candidate eigenvectors are drawn from 1
N

Em and the desti-

nation candidate eigenvectors are obtained from Em

N
1. In a third step, these

Eigenvectors are added as explanatory variables to T ¼ 9 cross-section versions of

the Negative Binomial spatial interaction model, from which statistically signifi-

cant Eigenvectors are identified. In a fourth step, we determine those eigenvectors

that are significant over all time periods and define the resulting set of common

origin and destination eigenvectors, Eq and Er, respectively, as our time invariant

10 One way to capture spatial autocorrelation of flows is the use of spatial autoregressive tech-

niques (LeSage and Pace 2008). An alternative approach is the use of spatial filtering methods. The

key advantage of the spatial filtering approach is that it can be applied to any functional form and

thus, does not depend on normality assumptions (Patuelli et al. 2011). Consequently, we prefer the

spatial filtering approach over spatial autoregressive model as we are dealing with a Poisson spatial

interaction framework.
11 The extracted eigenvectors have several characteristics. First, as shown by Griffith (2003), each

extracted eigenvector relates to a distinct map pattern that has a certain degree of spatial

autocorrelation. Second, the selected eigenvectors are centered at zero due to the pre and post

multiplication of W by the standard projection Matrix I� 11T 1
n

� �
. Third, the modification of W

ensures that the eigenvectors provide mutually orthogonal and uncorrelated map patterns ranging

from the highest possible degree of positive spatial correlation to highest possible degree of

negative spatial correlation as given by the Moran’s I (MI). (Griffith 2003). Hence, the first

extracted eigenvector is the one showing the highest degree of positive spatial autocorrelation

that that can be achieved by any spatial recombination; the second eigenvector has the largest

achievable degree of spatial autocorrelation by any set that is uncorrelated with until the last

extracted eigenvector will maximize negative spatial autocorrelation (Griffith 2003).
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spatial filter.12 The time invariant spatial filter covers the total number of space-

time observations, and accounts for spatial dependence of flows in our origin and

destination data.

We add the selected origin filters Eq and destination filters Er as regressors to our

panel version of the Negative Binomial spatial interaction model. Further we

introduce the subset of Zt time dummies in order to capture aggregate year effects

(Woodridge 2008).13 This leads to the spatially filtered panel version of the

Negative Binomial spatial interaction model accounting for time effects, given by

re-specifying the conditional mean μijt so that

μijt ¼

exp
XQ
q¼1

Eqψq þ α1log oitð Þ þ
XR
r¼1

Er φr þ α2log djt
� �þXK

k¼1

βks
kð Þ
ijt þ

XT
t¼1

Ztνt þ γij

" #

ð8:12Þ

The coefficients to be estimated for the spatial filters are ψq and φr, νt is the

associated parameter for the time dummy at time t.

8.5.3 Independent Variables

We use one origin measure, and one destination measure for the FP network model

and the co-patent network model. For the model on the FP networks, the origin

variable oit is measured in terms of organizations participating in joint FP projects

in region i, while the destination variable dit denotes the number of organizations

participating in joint FP projects in region j. For the co-patent network model, the

origin variable oit is measured in terms of the number of co-patents in region i,
while the destination variable dit denotes the number of co-patents in region j.

From the background of our research focus our interest is on K ¼ 5 separation

measures: s
ð1Þ
ijt measures the geographical distance between the economic centres of

two regions i and j in time period t, by using the great circle distance.14 s
ð2Þ
ijt is a

neighbouring region dummy variable that takes a value of one if the regions i and

12We use an time invariant specification of the spatial filter as we assume an time invariant

underlying spatial process.
13 In order to determinate changes of our separation variables we include interaction terms (see, for

an overview, Wooldridge 2008). In this procedure, variables of interest, for example R&D (see,

Griliches 1984), interact with time dummy variables and illustrate if effects changed over a certain

time period or not. In our case (time) interaction terms represent the interaction between our

separation variables and the time dummies and determinate how separation effects have changed

over time. These interaction terms pick up the inter-temporal variation of our separation effect and

remain only cross-sectional variation.
14 Note further that according to Bröcker (1989), we calculate the intraregional distance as

s
ð1Þ
ii ¼ (2/3) (Ai/π)

0.5, where Ai denotes the area of region i, i.e. the intraregional distance is two

third the radius of an presumed circular area.
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j in time period t are direct neighbours, and zero otherwise. s
ð3Þ
ijt is a country border

dummy variable that we use as a proxy for institutional barriers. The variable takes

a value of zero if two regions i and j in time period t are located in the same country,

and one otherwise. s
ð4Þ
ijt is a language dummy variable accounting for cultural barriers

that takes a value of zero if two regions i and j in time period t are located in the

same language area, and one otherwise.15 s
ð5Þ
ijt captures technological distance by

using regional patent data from the European Patent Office (EPO). The application

date is used to extract the data for each year of our time frame. We follow Moreno,

Paci and Usai (2005) and construct a vector for each region i that contains region i’s
share of patenting in each of the technological subclasses of the International Patent

Classification (IPC). Technological proximity between two regions i and j in time

period t is given by the uncentred correlation between their technological vectors.

8.6 Estimation Results

Table 8.2 reports the results from the estimation of the spatially filtered random

effects Negative Binomial spatial interaction models as specified in the previous

section. Standard errors are given in brackets. The first column presents the results

for the FP network, while the second column contains the estimates for the

co-patent network. As can been seen, the estimates for the origin, destination and

separation variables are most often statistically significant. The bottom of the table

presents some model diagnostics that are of methodological interest.16

The results are interesting in the context of the geography of innovation litera-

ture, but also very relevant and insightful from a European STI policy perspective.

Geographical distance, as evidenced by the estimate of β1, exerts in both networks,
the FP network and the co-patent network, a negative effect on collaboration

probability, i.e. in both networks R&D collaboration intensity between two regions

significantly decreases when they are located further away in geographical distance,

and this effect seems only to differ slightly in magnitude. However, concerning

other geographical factors, we find a much stronger negative effect in the co-patent

network than in the FP network. One striking result concerns the high negative

effect of country borders, as evidenced by the estimate for β3, for the co-patent

network as compared to the FP network, showing that for R&D collaborations in

the FPs country borders constitute only a low hurdle.

15 Language areas are defined by the region’s dominant language. However, in most cases the

language areas are combined countries, as for instance Austria, Germany and Switzerland (one

exception is Belgium, where the French speaking regions are separated from the Flemish speaking

regions).
16 The dispersion parameter is statistically significant in both model versions, indicating that the

Negative Binomial specification is essential to account for overdispersion in the data. A likelihood

ratio test which compares the panel estimator with the pooled estimator confirms the appropriate-

ness of the random effects specification.
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In addition, co-patent networks seem to be to a high degree focused on

neighbouring regions, i.e. the collaboration significantly increases when two orga-

nisations are located in regions that share a common border (β2). This effect is much

higher than in the FP network, pointing to a stronger spatial concentration and

geographical localisation of R&D collaborations reflected by co-patents.

Concerning language area effects (β4), we also find considerable differences

between the FP network and the co-patent network. The negative effect of language

is much higher for the co-patent network than for the FP network, i.e. the proba-

bility that organisations located in two different language areas collaborate is much

lower in the co-patent network. This may be explained by the fact that the co-patent

networks are much more subject to the industry sector, where such language

barriers may – as suggested by results provided from Scherngell and Barber

(2011) – constitute a lower hurdle than for research including public research

organisations, in particular universities. Technological distance (β5) is the most

important determinant for cross-region R&D collaborations in both networks, and,

by this, earlier results by Scherngell and Barber (2009, 2011) or Fischer et al. (2006)

are confirmed.

Table 8.2 Estimation results of the spatially filtered random effects negative binomial spatial

interaction models

FP-network Co-patent network

Origin and destination variable [α1] ¼ [α2] 0.955*** (0.001) 0.354*** (0.003)

Geographical distance [β1] �0.209*** (0.005) �0.266*** (0.005)

Neighbouring region [β2] 0.229*** (0.021) 0.710*** (0.017)

Country border effects [β3] �0.063*** (0.016) �1.058*** (0.016)

Language area effects [β4] �0.164*** (0.013) �0.740*** (0.014)

Technological distance [β5] �0.305*** (0.018) �1.536*** (0.023)

Number of significant time effects 7 2

Number of origin spatial filters 32 39

Number of destination spatial filters 29 47

Constant [α0] �9.799*** (0.045) �2.426*** (0.041)

Dispersion parameter 19.804*** (0.253) 2.722*** (0.045)

LR test (spatial filters) 1,335.17*** 4,932.10***

LR test (random effects) 190,354.7*** 30,634.3***

LR test (overdispersion) 281,497.1*** 2,232,645.8***

Log likelihood �879,642.1 �435,630.7

Notes: ***significant at the 0.001 significance level; The LR Test (spatial filter) is a Likelihood

Ratio test that compares the model fit of the spatially filtered model against the unfiltered model

versions. The test statistic is significant for both models. Thus the spatially filtered model

specification is appropriate. The LR Test (random effects) is a Likelihood Ratio test that compares

the panel estimator with the pooled estimator. The significant values confirm the importance of a

random effects specification. The LR Test (overdispersion) is the Likelihood Ratio Test that

compares the random effects negative binomial model to the random effects Poisson specification.

A significant value points to the existence of overdispersion, namely, the negative binomial

specification is to be preferred to the Poisson specification
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However, the effect is much stronger in the co-patent network, which is to be

expected since co-patent networks are more application oriented, where specific

technologies and technological devices are more important. Furthermore, the FPs

are intended to support in particular interdisciplinary knowledge production. Over-

all, in the context of our focus on integration in European R&D, we can infer that

integration is much higher in the FP network than in the co-patent network, as most

of the separation variables exert a higher negative effect. This result has been

expected, since more applied oriented, competitive research is subject to a minor

group of actors often located within one region. The precompetitive character of

knowledge production in the FPs may lead to a higher propensity to share this

knowledge with partners, while patenting is to a larger degree subject to strategic

considerations of the innovating organisation. However, having in mind the ERA

goal of progress towards more integration in European R&D, covering different

phases of R&D, one may conclude that barriers hampering collaborations in the

co-patent network – for instance language barriers or country borders – should be

addressed more thoroughly. This may be done by education programs for over-

coming language barriers or policy initiatives that remove institutional hurdles for

collaborations in patenting, though, one have to be clear that due to the competitive

character of this type of research, such patterns may never fully disappear.

However, in order to be able to gain empirical insight into progress towards

more integration, we need to reflect on time trends. For this reason we look at

interaction terms between selected separation variables and our time dummies.

Table 8.3 presents the results for these interaction terms in the two networks for the

years 2000–2005.

The most striking result is that all separation variables accounting for spatial

effects significantly decline in the FP-network, i.e. the FP network becomes more

geographically integrated over the observed time period. This cannot be observed

for the co-patent network. In particular for the years 2004 and 2005 we cannot

identify a significant interaction effect between time and spatial separation vari-

ables, i.e. progress towards more integration cannot be observed, while this pro-

gress can be clearly observed for the FP network.

8.7 Conclusions

The focus of this study has been on the nature of integration processes in European

R&D. More specifically we have shifted emphasis to the investigation of the

geographical dynamics of two different types of R&D collaboration networks

across Europe, namely co-patent networks and project based R&D networks within

the EU Framework Programmes (FPs). Adopting a spatially filtered panel version

of the Negative Binomial spatial interaction model, we have identified and com-

pared geographical, technological, institutional and cultural effects that influence
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the probability for collaboration activities in the different collaboration networks

over time, and, by this, have provided novel evidence on integration processes in

European R&D.

The most elemental and important result, both in the context of the literature on

the geography of innovation as well as in a European policy context, is that

integration in FP networks seems to be much higher than in the co-patent network.

This is underpinned by the strong intra-national character of the co-patent network

in contrast to the FP network, as well as the higher geographical localisation of

co-patent collaboration activities within narrow geographical boundaries. These

results may on the one hand be explained by the different nature of the knowledge

creation process in the two networks, but also by policy related circumstances, in

that the FP programmes explicitly foster integration processes, and at the same time

more policy efforts should be envisaged that ease collaboration in more applied

oriented research.

Methodologically, the study is interesting as it breaks new ground by estimating

a panel version of the Negative Binomial spatial interaction model accounting for

spatial autocorrelation of flows. Though robustness of the model may be tested

further, the methodological approach seems to be an important contribution to the

debate on spatial autocorrelation issues of flows, applied to a panel data structure

posing additional modelling requirements that have been applied in this study.

Some ideas for future research come to mind. First, the estimation of time

trends, for instance by means of a dynamic version of the spatial interaction

model, is a core subject for future research, requiring both theoretical as well as

computational advancements. Second, the inclusion of other types of R&D

Table 8.3 Time trends for identifying distinct geographical integration patterns in the networks

Time interaction

terms

FP-network

2000 2001 2002 2003 2004 2005

Geographical

distance

�0.057*** �0.042*** �0.039*** �0.033*** �0.010*** �0.003***

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Neighbouring

region

0.171*** 0.130*** 0.089*** 0.088*** 0.029** 0.002

(0.012) (0.011) (0.011) (0.011) (0.010) (0.010)

Country border

effects

�0.083*** �0.073*** �0.074*** �0.060*** �0.018*** �0.000***

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

Time interaction

terms

Co-patent network

2000 2001 2002 2003 2004 2005

Geographical

distance

�0.030*** �0.016*** �0.014*** �0.007 �0.006 �0.008

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Neighbouring

region

0.104** 0.057** 0.113*** 0.043 0.003 �0.024

(0.029) (0.029) (0.029) (0.024) (0.028) (0.028)

Country border

effects

�0.087*** �0.059*** �0.065*** �0.064** �0.003 0.018***

(0.023) (0.023) (0.023) (0.023) (0.022) (0.022)
***significant at the 0.001 significance level, **significant at the 0.01 significance level
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networks in the comparative analysis, in particular co-publication networks, is

essential to complement the results provided by the current study.

Acknowledgments This work has been funded by the FWF Austrian Science Fund (Project

No. P21450). We are grateful to Manfred M. Fischer (Vienna University of Economics) and

Michael Barber (AIT) for valuable comments on an earlier version of the manuscript.

References

Baltagi B (2008) Econometric analysis of panel data, 4th edn. Wiley, Chichester

Barber MJ, Scherngell T (2011) Is the European R&D network homogeneous? Distinguishing

relevant network communities using graph theoretic and spatial interaction modelling

approaches. Reg Stud 46:1–16

Berglund S, Karlström A (1999) Identifying local spatial association in flow data. J Geogr Syst 1

(3):219–236

Boyer R (2009) From the Lisbon agenda to the Lisbon treaty: national research systems in the

context of European integration and globalization. In: Delanghe H, Muldur U, Soete L (eds)

European science and technology policy. Towards integration or fragmentation? Edward

Elgar, Cheltenham, pp 101–126

Breschi S, Cusmano L (2004) Unveiling the texture of a European research area: emergence of

oligarchic networks under EU framework programmes. Int J Technol Manag 27(8):747–772,

Special Issue on Technology Alliances
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