
Chapter 5
Static Linear-Quadratic Gaussian Games

Meir Pachter

Abstract In this paper a simple static two-player linear-quadratic game where the
players have private information is addressed. The players have private information,
however each players is able to formulate an expression for his expected payoff,
without the need, a la Harsanyi, to provide a prior probability distribution function of
the game’s parameter, and without recourse to the player Nature. Hence, the closed-
form solution of the game is obtained. It is shown that in this special case of a one-
stage linear-quadratic game where the players have private information, the solution
is similar in structure to the solution of the game with complete information, namely,
the deterministic linear-quadratic game, and the linear-quadratic game with partial
information, where the information about the game’s parameter is shared by the
players. It is shown that the principle of certainty equivalence holds.

Keywords Linear-Quadratic Gaussian Games • Private information • Imperfect
information • Perfect information • Certainty equivalence • Static games

5.1 Introduction

This paper is a first step in an attempt at bringing closer together the dynamic
games paradigm and the theory of games, which historically have developed along
separate lines. Dynamic game theorists have traditionally emphasized control the-
oretic aspects and the backward induction/dynamic programming solution method,
whereas game theorists have focused on information economics, that is, the role of
information in games.
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Linear-Quadratic Dynamic Games (LQDG) with perfect information have
received a great deal of attention (Başar and Bernhard 2008; Başar and Olsder
1995; Engwerda 2005). In these works, the concepts of state, and state feedback, are
emphasized and the solution method entails backward induction, a.k.a., dynamic
programming. In previous work (Pachter and Pham 2013) a static LQG team
problem was addressed. In this paper a static LQDG, where each player has private
information, is considered. Specifically, the simplest linear-quadratic game with
incomplete/partial information is addressed: a one-stage, two-player, “zero-sum,”
Linear-Quadratic Gaussian Game (LQGG) is solved.

In this paper a simple static linear-quadratic game where the players have
private information, however each players is able to formulate an expression for
his expected payoff, without the need to provide a prior probability distribution
function of the game’s parameter and without recourse to the player Nature, is
analyzed. Thus, in Sect. 5.2 the static linear-quadratic Gaussian game, where the
players have private information, is introduced. The solution of the baseline game
with perfect information is given in Sect. 5.3 and the solution of the game with
imperfect information is given in Sect. 5.4. The scenario where the players have
private information is analyzed in Sect. 5.5, and the complete solution of the game
is given in Sect. 5.6. Concluding remarks are made in Sect. 5.7.

5.2 LQGG Problem Statement

The following linear-quadratic game, a static, two-player, “zero-sum” game, is
considered. The players are P and E and their respective control variables are u
and v. It is a one-stage game with linear “dynamics”

x1 D Ax0 C Bu0 C C v0 ; x0 � x0 ; (5.1)

where the state x0; x1 2 Rn. The P and E players’ controls are u 2 Rmu and v 2
Rmv . The payoff function is quadratic:

J D xT
1 QF x1 C uT

0 Ruu0 � vT
0 Rvv0 (5.2)

where the QF , Ru, and Rv weighing matrices are real, symmetric, and positive
definite. Both players are cognizant of the A, B , C , QF , Ru, and Rv data.

Player P strives to minimize the payoff/cost function (5.2) and player E strives to
maximize the payoff (5.2).

The initial state information available to player P is

x0 � N .x
.P /
0 ; P

.P /
0 / ; (5.3)

where the vector x
.P /
0 2 Rn and the n�n covariance matrix P

.P /
0 is real, symmetric,

and positive definite. The initial state information available to player E is

x0 � N .x
.E/
0 ; P

.E/
0 / ; (5.4)
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where the vector x
.E/
0 2 Rn and the n�n covariance matrix P

.E/
0 is real, symmetric,

and positive definite. The P
.P /
0 and P

.E/
0 data is public knowledge—only the x

.P /
0

and x
.E/
0 information is proprietary to the respective P and E players. This is

tantamount to saying that players P and E took separate measurements of the initial
state x0, yet the accuracy of the instruments they used is known; however, the actual
measurements x

.P /
0 and x

.E/
0 are the respective P and E players’ private information.

Since the pertinent random variables are Gaussian, we shall refer to the game
(5.1)–(5.4) as a Linear-Quadratic Gaussian Game (LQGG).

5.3 Linear-Quadratic Game with Perfect Information

It is instructive to first analyze the perfect information version of the linear-quadratic
game (5.1) and (5.2).

If the initial state x0 is known to both players, we have a game with perfect
information.

The closed-form solution of Linear-Quadratic Dynamic Games with perfect
information, a.k.a., deterministic Linear-Quadratic Dynamic Games (LQDGs), is
derived in Pachter and Pham (2010, Theorem 2.1). The Schur complement concept
(Zhang 2005) was used in (Pachter and Pham 2010) to invert a blocked .mu Cmv/�
.mu C mv/ matrix and derive explici t formulae for the P and E players’ optimal
strategies. The said matrix contains four blocks and its diagonal blocks are mu � mu

and mu � mu matrices. One can improve on the results of Pachter and Pham (2010)
by noting that a matrix with four blocks has two Schur complements, say SB and
SC .

Concerning the linear-quadratic game (5.1) and (5.2), where the initial state/game
parameter x0 is known to both players and thus the game is a game with perfect
information, the following holds.

Theorem 5.1. A necessary and sufficient condition for the existence of a solution
to the zero-sum game (5.1) and (5.2) with perfect information is

Rv > C T QF C (5.5)

A Nash equilibrium/saddle point exists and the players’ optimal strategies are the
linear state feedback control laws

u�
0 .x0/ D �S�1

B .QF /BT ŒI C QF C.Rv � C T QF C /�1C T �QF A � x0 ; (5.6)

v�
0 .x0/ D .Rv � C T QF C /�1C T fI � QF BS�1

B .QF /BT

ŒI C QF C.Rv � C T QF C /�1C T �gQF A � x0
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An alternative formula for the optimal strategy of player E is

v�.x0/ D �S�1
C .QF /C T ŒI � QF B.Ru C BT QF B/�1BT �QF A x0 (5.7)

The value of the game

V0.x0/ D xT
0 P1x0 ; (5.8)

where the matrix

P1 D AT fQF �QF ŒBS�1
B .QF /BT CBS�1

B .QF /BT QF C.Rv�C T QF C /�1C T

C C.Rv�C T QF C /�1C T QF BS�1
B .QF /BT

C C.Rv�C T QF C /�1C T QF BS�1
B .QF /BT QF C.Rv�C T QF C /�1C T

C C.C T QF C �Rv/�1C T �QF gA (5.9)

In (5.6) and (5.9),

SB.QF / � BT QF B C Ru C BT QF C.Rv � C T QF C /�1C T QF B (5.10)

is the first Schur complement of the blocked matrix and

SC .QF / � �ŒRv � C T QF C C C T QF B.Ru C BT QF B/�1BT QF C �

is the second Schur complement of the blocked matrix.

Remark 5.1. Using both Schur complements of the blocked matrix renders the
respective P and E players’ strategies, (5.6) and (5.7), “symmetric.”

5.4 Linear-Quadratic Gaussian Game with Imperfect
Information

If in (5.3) and (5.4) P
.P /
0 D P

.E/
0 D P0 and the P and E players’ information

x
.P /
0 D x

.E/
0 D x0 is public knowledge, we have on hand a linear-quadratic game

with imperfect information; this is tantamount to saying that both players, together,
took the measurement of the initial state and the outcome was

x0 � N .x0; P0/ (5.11)

This is a stochastic game.
The closed-form solution of Linear-Quadratic Dynamic Games with imperfect

information proceeds as follows.
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Using (5.1) and (5.2), we calculate the payoff function

J.u0; v0I x0/ D xT
0 AT QF Ax0 C uT

0 .Ru C BT QF B/u0 � vT
0 .Rv � C T QF C /v0

C 2uT
0 BT QF Ax0 C 2vT

0 C T QF Ax0 C 2uT
0 BT QF C v0 (5.12)

The random variable at work is the initial state x0. The players calculate the expected
payoff function

J .u0; v0I x0/ � Ex0 .J.u0; v0I x0/ j x0/

D xT
0 AT QF Ax0 C Trace.AT QF AP0/ C uT

0 .Ru C BT QF B/u0

� vT
0 .Rv � C T QF C /v0 C 2uT

0 BT QF Ax0 C 2vT
0 C T QF Ax0

C 2uT
0 BT QF C v0 (5.13)

The expected payoff function J .u0; v0I x0/ is convex in u0 and concave in v0.
Differentiation in u0 and v0 yields a coupled linear system in the decision variables
u0 and v0. Its solution is obtained using the Schur complement concept and it yields
the optimal P and E strategies. The following holds.

Theorem 5.2. A necessary and sufficient condition for the existence of a solution to
the zero-sum game (5.1) and (5.2) with imperfect information, that is, a game where
the initial state information (5.11) is available to both P and E, is that condition
(5.5) holds. The respective optimal P and E strategies are given by (5.6) and (5.7),
where x0 is replaced by x0. The value of the game is

V0.x0/ D xT
0 P1x0 C Trace.AT QF AP0/ ; (5.14)

where, as before, the real symmetric matrix P1 is given by (5.9).

Similar to LQG optimal control, in the game with imperfect information the
separation principle/certainty equivalence holds.

5.5 Linear-Quadratic Gaussian Game with Private
Information

The initial state x0 features in the payoff function (5.12). The players’ information
on the initial state x0 is now private information: Player P believes the initial state
to be

x0 � N .x
.P /
0 ; P

.P /
0 / (5.15)

whereas player E believes the initial state to be

x0 � N .x
.E/
0 ; P

.E/
0 / (5.16)



90 M. Pachter

This is tantamount to stipulating that players P and E took separate measurements
of the initial state x0. Assuming that the quality of the players’ instruments used
to take the measurements is public knowledge—we refer to the measurement error
covariances P

.E/
0 and P

.E/
0 —the private information of the players P and E are their

respective measurements, x
.P /
0 and x

.E/
0 . The measurement recorded by player E,

x
.E/
0 , is his private information and is not shared with player P. Hence, as far as

player P is concerned, an E player with the private information x
.E/
0 D x is an

E player of type x. Thus, the P player’s information on the game is incomplete.
Similarly, the measurement recorded by player P, x

.P /
0 is his private information and

is not shared with the E player. Therefore, as far as the E player is concerned, a
player P with the private information x

.P /
0 D y is a P player of type y; also the E

player’s information on the game is incomplete.
We are analyzing what appears to be a game with incomplete information. In

the process of planning his strategy, the player’s opposition type is not known
to him. However, although the information is incomplete, a Bayesian player
can nevertheless assess, based on the private information available to him, the
probability that the opposition he is facing is of a certain type. Consequently, the
player can calculate the expectation of the payoff functional, conditioned on his
private information.

The strategies available to player P are mappings f W Rn ! Rmu from his
information set into his actions set; thus, the action of player P is

u0 D f .x
.P /
0 / (5.17)

Similarly, the strategies available to the E player are mappings g W Rn ! Rmv from
his information set into his actions set; thus, the action of player E is

v0 D g.x
.E/
0 / (5.18)

From player P’s vantage point, the action v0 of player E is a random variable because
from player P’s vantage point, the measurement x

.E/
0 used by player E to form his

control v0, is a random variable. Similarly, from player E’s vantage point, the action
u0 of player P is a random variable.

Consider the decision process of player P whose private information is x
.P /
0 .

From player P’s perspective, the random variables at work are x0 and x
.E/
0 .

Player P is confronted with a stochastic optimization problem and he calculates
the expectation of the payoff function (5.12), conditional on his private informa-
tion x

.P /
0 ,

J
.P /

.u0; g.�/I x
.P /
0 / � E

x0;x
.E/
0

.J.u0; g.x
.E/
0 /I x0/ j x

.P /
0 / (5.19)

It is important to realize that by using in the calculation of his expected cost in
(5.19) player’s E strategy g.x

.E/
0 /, rather than player E’s control v0, player P has

eliminated the possibility of an infinite regress in reciprocal reasoning. Thus, player
P calculates
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J
.P /

.u0; g.�/I x
.P /
0 / D .x

.P /
0 /T AT QF Ax

.P /
0 C Trace.AT QF AP

.P /
0 /

C uT
0 .Ru C BT QF B/u0

C 2uT
0 BT QF Ax

.P /
0 C 2E

x0;x
.E/
0

.gT .x
.E/
0 /C T QF Ax0 j x

.P /
0 /

� E
x

.E/
0

.gT .x
.E/
0 /.Rv � C T QF C /g.x

.E/
0 / j x

.P /
0 /

C 2uT
0 BT QF CE

x
.E/
0

.g.x
.E/
0 / j x

.P /
0 / (5.20)

Player P calculates the expectations with respect to the random variable x
.E/
0 ,

which feature in (5.20). To this end, player P models his measurement x
.P /
0 of the

initial state x0, and player E’s measurement x
.E/
0 of the initial state x0, as follows.

x
.P /
0 D x0 C wP ; (5.21)

where x0 is the true initial state and wP is player P’s measurement error, whose
statistics are

wP � N .0; P
.P /
0 /

Similarly, player E’s measurement

x
.E/
0 D x0 C wE ; (5.22)

where x0 is the true initial state and wE is player E’s measurement error, whose
statistics are

wE � N .0; P
.E/
0 /

Furthermore, the Gaussian random variables wP and wE are independent.
From player P’s point of view, x

.E/
0 is a random variable, but x

.P /
0 is not.

Subtracting (5.21) from (5.22), player P concludes that as far as he is concerned,
player E’s measurement upon which he will decide on his control v0 is the random
variable

x
.E/
0 D x

.P /
0 C Qw ; (5.23)

where the random variable

Qw � wE � wP I (5.24)

in other words

x
.E/
0 � N .x

.P /
0 ; P

.P /
0 C P

.E/
0 / (5.25)
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Consider now the calculation of the expectations which feature in (5.20).

E
x

.E/
0

.g.x
.E/
0 / j x

.P /
0 / D EQw .g.x

.P /
0 C Qw// (5.26)

where the random variable

Qw � N .0; P
.P /
0 C P

.E/
0 / (5.27)

Similarly, the expectation

E
x

.E/
0

.gT .x
.E/
0 /.Rv � C T QF C /g.x

.E/
0 / j x

.P /
0 / D EQw .gT .x

.P /
0 C Qw/.Rv

� C T QF C /g.x
.P /
0 C Qw// (5.28)

In addition, since

x0 D x
.P /
0 � wP ; (5.29)

the expectation

E
x0;x

.E/
0

.gT .x
.E/
0 /C T QF Ax0 j x

.P /
0 / D EwE ;wP .gT .x

.P /
0 CwE �wP /C T QF A.x

.P /
0 �wP //

D E
Qw .gT .x

.P /
0 C Qw//C T QF Ax

.P /
0

�EwE ;wP .gT .x
.P /
0 C wE � wP /C T QF AwP / (5.30)

Inserting (5.26), (5.28), and (5.30) into (5.20) yields the expression for player P’s
expected cost in response to player E’s strategy g.�/, as a function of his decision
variable u0,

J
.P /

.u0; g.�/I x
.P /
0 / D .x

.P /
0 /T AT QF Ax

.P /
0 C Trace.AT QF AP

.P /
0 /

C uT
0 .Ru C BT QF B/u0

C 2uT
0 BT QF Ax

.P /
0 C 2EQw .gT .x

.P /
0 C Qw//C T QF Ax

.P /
0

� 2EwE ;wP .gT .x
.P /
0 C wE � wP /C T QF AwP /

� EQw .gT .x
.P /
0 C Qw/.Rv � C T QF C /g.x

.P /
0 C Qw//

C 2uT
0 BT QF CEQw .g.x

.P /
0 C Qw// (5.31)

Consider now the decision process of player E whose private information is x
.E/
0 .

From player E’s perspective, the random variables at work are x0 and x
.P /
0 .

Player E is confronted with a stochastic optimization problem and he calculates
the expectation of the payoff function (5.12), conditioned on his private informa-
tion x

.E/
0 ,

J
.E/

.f .�/; v0I x
.E/
0 / � E

x0;x
.P /
0

.J.f .x
.P /
0 /; v0I x0/ j x

.E/
0 / (5.32)
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As before, it is important to realize that by using in the calculation of his expected
cost in (5.32) player P’s strategy f .x

.P /
0 /, rather than player P’s decision variable u0,

player E has eliminated the possibility of an infinite regress in reciprocal reasoning.
Thus, player E calculates

J
.E/

.f .�/; v0I x
.E/
0 / D .x

.E/
0 /T AT QF Ax

.E/
0 C Trace.AT QF AP

.E/
0 /

� vT
0 .Rv � C T QF C /v0

C 2vT
0 C T QF Ax

.E/
0 C E

x
.P /
0

.f T .x
.P /
0 /.Ru C BT QF B/f .x

.P /
0 / j x

.E/
0 /

C 2E
x0;x

.P /
0

.f T .x
.P /
0 /BT QF Ax0 j x

.E/
0 /

C 2vT
0 C T QF BE

x
.P /
0

.f .x
.P /
0 / j x

.E/
0 / (5.33)

Player E calculates the expectations with respect to the random variable x
.P /
0 ,

which feature in (5.33). To this end, player E models his measurement x
.E/
0 of the

initial state x0 using (5.22), and he models player P’s measurement x
.P /
0 of the initial

state x0 using (5.21).
From player E’s point of view, x

.P /
0 is a random variable, but x

.E/
0 is not.

Subtracting (5.22) from (5.21), player E concludes that as far as he is concerned,
player P’s measurement upon which he will decide on his control u0 is the random
variable

x
.P /
0 D x

.E/
0 � Qw (5.34)

In other words

x
.P /
0 � N .x

.E/
0 ; P

.P /
0 C P

.E/
0 / (5.35)

Consider now the calculation of the expectations which feature in (5.33).

E
x

.P /
0

.f .x
.P /
0 / j x

.E/
0 / D EQw .f .x

.E/
0 � Qw// (5.36)

Similarly, the expectation

E
x

.P /
0

.f T .x
.P /
0 /.RuCBT QF B/f .x

.P /
0 / j x

.E/
0 / D EQw .f T .x

.E/
0 � Qw/.Ru

C BT QF B/f .x
.E/
0 � Qw// (5.37)

In addition, since

x0 D x
.E/
0 � wE ; (5.38)
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the expectation

E
x0;x

.P /
0

.f T .x
.P /
0 /BT QF Ax0 j x

.E/
0 / D EwE ;wP .f T .x

.E/
0 CwP �wE/BT

QF A.x
.E/
0 �wE//

D E
Qw .f T .x

.E/
0 � Qw//BT QF Ax

.E/
0

� EwE ;wP .f T .x
.E/
0 CwP � wE/BT QF AwE/

(5.39)

Inserting (5.36), (5.37), and (5.39) into (5.33) yields the expression for player E’s
expected payoff in response to player P’s strategy f .�/, as a function of his decision
variable v0,

J
.E/

.f .�/; v0I x
.E/
0 / D .x

.E/
0 /T AT QF Ax

.E/
0 C Trace.AT QF AP

.E/
0 /

� vT
0 .Rv � C T QF C /v0 C 2vT

0 C T QF Ax
.E/
0

C EQw .f T .x
.E/
0 � Qw/.Ru C BT QF B/f .x

.E/
0 � Qw//

C 2EQw .f T .x
.E/
0 � Qw//BT QF Ax

.E/
0

� 2EwE ;wP .f T .x
.E/
0 C wP � wE/BT QF AwE/

C 2vT
0 C T QF BEQw .f .x

.E/
0 � Qw// (5.40)

The cost of player P is now given by (5.31) and the payoff of Player E is
given by (5.40). Imperfect information leads to a nonzero-sum game formulation.
Consequently, one id interested in a Nash equilibrium, a.k.a., Person By Person
Satisfactory (PBPS) strategies.

Next, player P calculates his response to player E’s strategy g.x
.E/
0 /. Thus, given

the information x
.P /
0 , player P minimizes his expected cost (5.31); the minimization

is performed in the decision variable u0. The cost function is quadratic in
the decision variable. Thus, the optimal decision variable u�

0 must satisfy the
equation

u�
0 D �.Ru C BT QF B/�1BT QF .Ax

.P /
0 C CEQw .g.x

.P /
0 C Qw/ //

In other words, the optimal response of player P to player E’s strategy g.�/ is

f �.x
.P /
0 /D�.RuCBT QF B/�1BT QF .Ax

.P /
0 CCEQw .g.x

.P /
0 C Qw/ // 8 x

.P /
0 2 Rn

Similarly, player E calculates his optimal response to player P’s strategy f .x
.P /
0 /.

Thus, given the information x
.E/
0 , player E maximizes his expected payoff (5.40);

the maximization is performed in the decision variable v0. The cost function is
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quadratic in the decision variable. Thus, the optimal decision variable v�
0 must

satisfy the equation

v�
0 D .Rv � C T QF C /�1C T QF .Ax

.E/
0 C BEQw .f .x

.E/
0 � Qw/ //

In other words, the optimal response of player E to player P’s strategy f .�/ is

g�.x
.E/
0 /D.Rv�C T QF C /�1C T QF .Ax

.E/
0 CBEQw .f .x

.E/
0 � Qw/ // 8 x

.E/
0 2 Rn

Hence, the respective optimal strategies f �.�/ and g�.�/ of players P and E satisfy
the set of two coupled equations (5.41) and (5.42),

f �.x
.P /
0 / D �.Ru C BT QF B/�1BT QF .Ax

.P /
0 C CEQw .g�.x

.P /
0 C Qw/ //

8 x
.P /
0 2 Rn (5.41)

g�.x
.E/
0 / D .Rv � C T QF C /�1C T QF .Ax

.E/
0 C BEQw .f �.x

.E/
0 � Qw/ //

8 x
.E/
0 2 Rn (5.42)

The expectation

EQw .f .x
.E/
0 � Qw/ / D 1

.2�/
n
2

q
det.P .P /

0 C P
.E/
0 /

Z

� � �
Z

Rn

f .x
.E/
0 � Qw/e� 1

2 QwT .P
.P /
0 CP

.E/
0 /�1 Qwd Qw

It is convenient to use the notation for the multivariate Gaussian distribution with
covariance P .> 0/,

G.xI P / � 1

.2�/
n
2

p
det.P /

e� 1
2 xT P �1x

whereupon

EQw .f .x
.E/
0 � Qw/ / D Œf � G.P

.P /
0 C P

.E/
0 /�.x

.E/
0 /

Similarly, the expectation

EQw .g.x
.P /
0 C Qw/ / D Œg � G.P

.P /
0 C P

.E/
0 /�.x

.P /
0 /

Using the convolution notation in (5.41) and (5.42), one obtains
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f �.x
.P /
0 / D �.Ru C BT QF B/�1BT QF .Ax

.P /
0 C Cg� � G.P

.P /
0

C P
.E/
0 // 8 x

.P /
0 2 Rn

g�.x
.E/
0 / D .Rv � C T QF C /�1C T QF .Ax

.E/
0 C Bf � � G.P

.P /
0 C P

.E/
0 //

8 x
.E/
0 2 Rn

Thus, the functions

f �.x/ D �.Ru C BT QF B/�1BT QF .Ax C C Œg� � G.P
.P /
0 C P

.E/
0 /�.x//; (5.43)

and

g�.x/ D .Rv � C T QF C /�1C T QF .Ax C BŒf � � G.P
.P /
0 C P

.E/
0 /�.x//

8 x 2 Rn (5.44)

Inserting (5.44) into (5.43) and suppressing the dependence of the Gaussian p.d.f.
on the covariance matrix yields

f �.x/ D �.Ru C BT QF B/�1BT QF A x

� .Ru C BT QF B/�1BT QF C.Rv � C T QF C /�1C T QF A x � G

� .Ru C BT QF B/�1BT QF C.Rv � C T QF C /�1C T QF B f � � G � G

8 x 2 Rn (5.45)

Similarly, inserting (5.43) into (5.44) yields

g�.x/ D .Rv � C T QF C /�1C T QF A x

� .Rv � C T QF C /�1C T QF B.Ru C BT QF B/�1BT QF A x � G

� .Rv � C T QF C /�1C T QF B.Ru C BT QF B/�1BT QF C g� � G � G

8 x 2 Rn (5.46)

The convolution operation is associative. We shall require the following

Lemma 5.1. The Gaussian kernel is self-similar, namely,

G.P / � G.P / D G.2P / (5.47)
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Proof.

G.xI P / � G.xI P / D
Z

: : :

Z

Rn

1

.2�/
n
2

p
det.P /

e� 1
2 .x�y/T P �1.x�y/

1

.2�/
n
2

p
det.P /

e� 1
2 yT P �1ydy

D
Z

: : :

Z

Rn

.
1

.2�/
n
2

p
det.P /

/2e� 1
2 Œ.x�y/T P �1.x�y/CyT P �1y�dy

We calculate

.x � y/T P �1.x � y/ C yT P �1y D 2yT P �1y � 2xT P �1y C xT P �1x

D yT .
1

2
P /�1y � 2.

1

2
x/T .

1

2
P /�1y

C .
1

2
x/T .

1

2
P /�1.

1

2
x/ C 1

2
xT P �1x

D .y � 1

2
x/T .

1

2
P /�1.y � 1

2
x/ C xT .2P /�1x

Hence
Z

: : :

Z

Rn

.
1

.2�/
n
2

p
det.P /

/2e� 1
2 Œ.x�y/T P �1.x�y/CyT P �1y�dy1 : : : dyn

D
Z

: : :

Z

Rn

1

.2�/
n
2

q
det. 1

2
P /

e� 1
2 .y� 1

2 x/T . 1
2 P /�1.y� 1

2 x/

dy1 : : : dyn � .
1

2
/

n
2

1

.2�/
n
2

p
det.P /

e� 1
2 xT .2P /�1x

D 1 � .
1

2
/

n
2

1

.2�/
n
2

p
det.P /

e� 1
2 xT .2P /�1x

D 1

.2�/
n
2

p
det.2P /

e� 1
2 xT .2P /�1x

D G.2P /

ut
We also calculate

x � G.P / D
Z

Rn

.x � y/G.yI P /dy

D x 8P > 0 (5.48)
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Inserting (5.47) and (5.48) into (5.45) yields a Fredholm integral equation of the
second kind for the optimal strategy of player P,

f �.x
.P /
0 / D �.RuCBT QF B/�1BT QF ŒICC.Rv�C T QF C /�1C T QF �A x

.P /
0

� .RuCBT QF B/�1BT QF C.Rv�C T QF C /�1C T QF B G.2P / � f �

8 x
.P /
0 2 Rn (5.49)

Similarly, inserting (5.47) and (5.48) into (5.46) yields a Fredholm integral equation
of the second kind for the optimal strategy of player E,

g�.x
.E/
0 / D .Rv � C T QF C /�1C T QF ŒI � B.Ru C BT QF B/�1BT QF �A x

.E/
0

� .Rv � C T QF C /�1C T QF B.Ru C BT QF B/�1BT QF C G.2P / � g�

8 x
.E/
0 2 Rn (5.50)

The Fredholm equations of the second kind (5.49) and (5.50) are of the convolution
type and the kernel is a Gaussian function.

If the state’s measurement error covariances are “small,” namely, P
.P /
0 < 1 and

P
.E/
0 < 1 and therefore the Gaussian distribution approaches a delta function, from

(5.49) and (5.50) we conclude that the P and E strategies satisfy the equations

f �.x
.P /
0 / D �.RuCBT QF B/�1BT QF ŒICC.Rv�C T QF C /�1C T QF �Ax

.P /
0

� .RuCBT QF B/�1BT QF C.Rv�C T QF C /�1C T QF Bf �.x
.P /
0 /

8 x
.P /
0 2 Rn (5.51)

and

g�.x
.E/
0 / D .Rv�C T QF C /�1C T QF ŒI�B.RuCBT QF B/�1BT QF �A x

.E/
0

� .Rv�C T QF C /�1C T QF B.RuCBT QF B/�1BT QF C g�.x
.E/
0 /

8 x
.E/
0 2 Rn (5.52)

From (5.51) and (5.52) we therefore obtain players’ P and E optimal strategies,
which are explicitly given by

f �.x
.P /
0 / D �ŒIC.RuCBT QF B/�1BT QF C.Rv�C T QF C /�1C T QF B��1.Ru

� BT QF B/�1BT QF ŒICC.Rv�C T QF C /�1C T QF �A x
.P /
0

D �ŒRuCBT QF BCBT QF C.Rv�C T QF C /�1C T QF B��1BT ŒI

C QF C.Rv�C T QF C /�1C T QF �A x
.P /
0 8 x

.P /
0 2 Rn



5 Static Linear-Quadratic Gaussian Games 99

that is, the optimal strategy of player P is

f �.x
.P /
0 / D �S�1

B .QF /BT ŒI C QF C.Rv � C T QF C /�1C T QF �A x
.P /
0

8 x
.P /
0 2 Rn (5.53)

Similarly,

g�.x
.E/
0 / D ŒI C .Rv � C T QF C /�1C T QF B.Ru C BT QF B/�1BT QF C ��1.Rv

� C T QF C /�1C T QF ŒI � B.Ru C BT QF B/�1BT QF �A x
.E/
0

D ŒRv � C T QF C C C T QF B.Ru C BT QF B/�1BT QF C ��1C T ŒI

� QF B.Ru C BT QF B/�1BT �QF A x
.E/
0 8 x

.E/
0 2 Rn

that is, the optimal strategy of player E is

g�.x
.E/
0 / D �S�1

C .QF /C T ŒI � QF B.Ru C BT QF B/�1BT �QF A x
.E/
0

8 x
.E/
0 2 Rn (5.54)

where the Schur complement

SC .QF / � �ŒRv � C T QF C C C T QF B.Ru C BT QF B/�1BT QF C � (5.55)

Indeed, having calculated the functions f �.x/ and g�.x/, we obtained the optimal
strategies of players P and E by setting x WD x

.P /
0 in f �.x/ and x WD x

.E/
0 in g�.x/.

In the limiting case of Gaussian distributions with small covariance matrices, the
players’ optimal strategies (5.53) and (5.54) are linear in the players’ respective
measurements.

Equations (5.53) and (5.54) are identical to the respective (5.6) and (5.7) in
Theorem 5.1—we have recovered the perfect information result of Theorem 5.1.
This makes sense—the initial state’s measurements of both players are very accurate
and thus the game is almost deterministic. Thus, one could have argued that
when the covariances are “small,” namely, P

.P /
0 << 1 and P

.E/
0 << 1, that is,

x
.P /
0 � x

.E/
0 � x0, one can re-use the deterministic state feedback strategies (5.6)

and (5.7) of players P and E given by Theorem 5.1—simply set x0 WD x
.P /
0 in (5.6)

and x0 WD x
.E/
0 in (5.7).

5.6 Linear Strategies

The Fredholm integral equations of the second kind, (5.49) and (5.50), are linear
integral equations. Furthermore, the “forcing terms”/inputs on the R.H.S. of (5.49)
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and (5.50) are linear in x
.P /
0 and x

.E/
0 , respectively. Consequently, the solution f �.�/

of (5.49) is linear in x
.P /
0 and the solution g�.�/ of (5.50) is linear in x

.E/
0 —think of

linear integral operators as infinite dimensional matrices. Hence, postulate that the
players’ optimal strategies are linear—in other words,

f .xP
0 / D FuxP

0 (5.56)

and

g.xE
0 / D FvxE

0 ; (5.57)

where the yet to be determined constant gains Fu and Fv are mu � n and mv � n

matrices, respectively. Constant gain strategies (5.56) and (5.57) which satisfy the
respective second kind Fredholm integral equations of the convolution type with
a Gaussian kernel, (5.49) and (5.50), can be found. This is due to the fact that,
according to (5.48), the convolution of the state vector x with a Gaussian function
returns the state vector x. In the process of deriving the equations which yield
the gains Fu and Fv , the necessary and sufficient conditions for the existence of
a solution are obtained.

The optimal gains F �
u and F �

v are obtained as follows. Insert (5.56) into (5.49)
and insert (5.57) into (5.50):

F �
u x

.P /
0 D �.RuCBT QF B/�1BT QF ŒICC.Rv�C T QF C /�1C T QF �A x

.P /
0

� .RuCBT QF B/�1BT QF C.Rv�C T QF C /�1C T QF B F �
u x � G.2P /

D �.RuCBT QF B/�1BT QF ŒICC.Rv�C T QF C /�1C T QF �A x
.P /
0

� .RuCBT QF B/�1BT QF C.Rv�C T QF C /�1C T QF B F �
u x

.P /
0

8 x
.P /
0 2 Rn

Therefore

F �
u D �ŒI C .Ru C BT QF B/�1BT QF C.Rv � C T QF C /�1C T QF B��1.Ru

C BT QF B/�1BT QF ŒI C C.Rv � C T QF C /�1C T QF �A

D �S�1
B .QF /BT QF ŒI C C.Rv � C T QF C /�1C T QF �A (5.58)
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Similarly

F �
v x

.E/
0 D .Rv�C T QF C /�1C T QF ŒI � B.RuCBT QF B/�1BT QF �A x

.E/
0

� .Rv�C T QF C /�1C T QF B.RuCBT QF B/�1BT QF C F �
v x � G.2P /

D .Rv�C T QF C /�1C T QF ŒI�B.RuCBT QF B/�1BT QF �A x
.E/
0

� .Rv�C T QF C /�1C T QF B.RuCBT QF B/�1BT QF C F �
v x

.E/
0

8 x
.E/
0 2 Rn

and

F �
v D ŒI C .Rv � C T QF C /�1C T QF B.Ru C BT QF B/�1BT QF C ��1.Rv

� C T QF C /�1C T QF ŒI � B.Ru C BT QF B/�1BT QF �A

D �S�1
C .QF /C T QF ŒI � B.Ru C BT QF B/�1BT QF �A (5.59)

We have found constant gain strategies F �
u and F �

v which satisfy the respective
second kind Fredholm integral equations of the convolution type with a Gaussian
kernel, (5.49) and (5.50). This is due to the fact that, according to (5.48), the
convolution of the state vector x with a Gaussian function returns the state vector x.
Furthermore, (5.48) holds, irrespective of the covariance P . Hence, the constant
gains are not dependent on the cumulative covariance P of the measurement errors
and also apply in the limiting case of a deterministic scenario—in other words, the
optimal constant gains Fu and Fv are exactly as in (5.6) and (5.7), and certainty
equivalence holds. Having obtained the optimal strategies, one can now calculate
the respective value functions of players P and E by evaluating the expectations in
(5.31) and (5.40):

Consider (5.31), the expected cost J
.P /

.u0; g.�/I x
.P /
0 / of player P first. The

expectations

EQw .g.x
.P /
0 C Qw// D F �

v x
.P /
0 ; (5.60)

EwE ;wP .gT .x
.P /
0 C wE � wP /C T QF AwP / D �Trace.P

.P /
0 AT QF CF �

v / ;

(5.61)

and

EQw .gT .x
.P /
0 C Qw/.Rv � C T QF C /g.x

.P /
0 C Qw//

D .x
.P /
0 /T .F �

v /T .Rv � C T QF C /F �
v x

.P /
0

C Trace..F �
v /T .Rv � C T QF C /F �

v .P
.P /
0 C P

.E/
0 // (5.62)
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Inserting (5.60)–(5.62) into (5.31) yields, with some abuse of notation, the value
function of player P,

V
.P /

0 D .x
.P /
0 /T AT QF Ax

.P /
0 C Trace.AT QF AP

.P /
0 / C uT

0 .Ru C BT QF B/u0

C 2uT
0 BT QF Ax

.P /
0 C 2.x

.P /
0 /T .F �

v /T C T QF Ax
.P /
0

C 2Trace.P
.P /
0 AT QF CF �

v /

� .x
.P /
0 /T .F �

v /T .Rv � C T QF C /F �
v x

.P /
0

� Trace..F �
v /T .Rv � C T QF C /F �

v .P
.P /
0 C P

.E/
0 //

C 2uT
0 BT QF CF �

v x
.P /
0 (5.63)

Also, in (5.63)

u�
0 D �.Ru C BT QF B/�1BT QF .Ax

.P /
0 C CEQw .g.x

.P /
0 C Qw/ //

D �.Ru C BT QF B/�1BT QF .Ax
.P /
0 C C F �

v x
.P /
0 /

D �.Ru C BT QF B/�1BT QF .A C C F �
v /x

.P /
0 (5.64)

Inserting (5.59) and (5.64) into (5.63) yields the value function of player P. The
value function V

.P /
0 .x

.P /
0 / of player P is quadratic in x

.P /
0 . It is of the form

V
.P /

0 .x
.P /
0 / D .x

.P /
0 /T Mx

.P /
0 C c.P /

where M is an n�n real, symmetric matrix and c.P / is a constant. While the matrix
M is complex in appearance, note that it is not dependent on the covariances P

.P /
0

and P
.E/
0 of the players’ state measurement errors. Hence, we conclude that the

matrix

M D P1 ;

where the matrix P1 is given by (5.11). The constant

c.P / D Trace. AT QF AP
.P /
0 C 2P

.P /
0 AT QF CF �

v

� .F �
v /T .Rv � C T QF C /F �

v .P
.P /
0 C P

.E/
0 / / ; (5.65)

where the gain F �
v is given by (5.59).

Next, consider the expected cost J
.E/

.f .�/; v0I x
.E/
0 / of player E, (5.40). The

expectations
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EQw .f T .x
.E/
0 � Qw/.Ru C BT QF B/f .x

.E/
0 � Qw//

D .x
.E/
0 � Qw/T .F �

u /T .Ru C BT QF B/F �
u x

.E/
0

CTrace..F �
u /T .Ru C BT QF B/F �

u .P
.P /
0

CP
.E/
0 // (5.66)

EQw .f .x
.E/
0 � Qw// D F �

u x
.E/
0 (5.67)

and

EwE ;wP .f T .x
.E/
0 C wP � wE/BT QF AwE/ D �Trace..F �

u /T BT QF P
.E/
0 / (5.68)

Inserting (5.66)–(5.68) into (5.40) yields the value function of player E

V
.E/

0 D .x
.E/
0 /T AT QF Ax

.E/
0 C Trace.AT QF AP

.E/
0 / � vT

0 .Rv � C T QF C /v0

C 2vT
0 C T QF Ax

.E/
0 C .x

.E/
0 /T .F �

u /T .Ru C BT QF B/F �
u x

.E/
0

C Trace..F �
u /T .Ru C BT QF B/F �

u .P
.P /
0 C P

.E/
0 //

C 2.x
.E/
0 /T .F �

u /T BT QF Ax
.E/
0

C 2Trace..F �
u /T BT QF P

.E/
0 /

C 2vT
0 C T QF BF �

u x
.E/
0 (5.69)

Also, in (5.69),

v�
0 D .Rv � C T QF C /�1C T QF .Ax

.E/
0 C BEQw .f .x

.E/
0 � Qw/ //

D .Rv � C T QF C /�1C T QF .A C BF �
u /x

.E/
0 (5.70)

Inserting (5.58) and (5.70) into (5.69) yields the value function of player E. The
value function V

.E/
0 .x

.E/
0 / of player E is quadratic in x

.E/
0 . Similar to the value

function of player P, it is of the form

V
.E/

0 .x
.E/
0 / D .x

.P /
0 /T P1x

.P /
0 C c.E/

The constant

c.E/ D Trace. AT QF AP
.E/
0 C .F �

u /T .Ru C BT QF B/F �
u .P

.P /
0 C P

.E/
0 /

C 2.F �
u /T BT QF P

.E/
0 / (5.71)

where the gain F �
u is given by (5.58).
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These results are summarized in

Theorem 5.3. A necessary and sufficient condition for the existence of a solution to
the game (5.1) and (5.2) where the players have private information, that is, a game
where the initial state information of player P is specified in (5.15) and the initial
state information of player E is specified in (5.16) is that condition (5.5) holds.
Certainty equivalence holds and the optimal P strategy is given by (5.6) where x0 is
replaced by x

.P /
0 and the optimal E strategy is given by (5.7) where x0 is replaced

by x
.E/
0 . The value function of player P is

V
.P /

0 .x
.P /
0 / D .x

.P /
0 /T P1x

.P /
0 C c.P / (5.72)

and the value function of player E

V
.E/

0 .x
.E/
0 / D .x

.P /
0 /T P1x

.P /
0 C c.E/ (5.73)

The matrix P1 in (5.72) and (5.73) is specified by (5.9) and the constant terms in
(5.72) and (5.73) ; c.P / and c.E/, are specified in (5.65) and (5.71), respectively.

5.7 Conclusion

A static two-player linear-quadratic game where the players have private informa-
tion on the game’s parameter, is addressed. The players have private information,
however each player is able to formulate an expression for his expected payoff,
without the need, a la Harsanyi, to provide a prior probability distribution function
of the game’s parameter, and without recourse to the player Nature. Hence, the
closed-form solution of the game is possible. It is shown that in this special case of
a one-stage linear-quadratic game where the players have private information, the
solution is similar in structure to the solution of the game with complete information,
namely, the deterministic linear-quadratic game, and the solution of the linear-
quadratic game with partial information, where the information about the game’s
parameter is shared by the players. The principle of certainty equivalence holds.
The analysis in this paper shows the way to possible extensions of the theory to
multi-stage linear-quadratic dynamic games.
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