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Preface

This edited volume focuses on various aspects of dynamic game theory providing
state-of-the-art information on recent conceptual and methodological developments.
It also includes novel applications in different areas such as economics, ecology,
engineering, and management science. Most of the selected papers were presented
at the 15th International Symposium on Dynamic Games and Applications held in
Bysice, Czech Republic on July 19-22, 2012. The symposium is held every two
years under the auspices of the International Society of Dynamic Games. The list of
contributors consists of well-established and young researchers working in different
countries. Every submitted paper has gone through a stringent reviewing process.
This volume is made of 15 chapters that we classified into three parts. The first
one regroups papers dealing with some theoretical and/or computational issues in
dynamic games; the second part includes four chapters applying dynamic games in
different areas; and finally, the third part has five chapters on pursuit—evasion games.
As in any clustering of papers of this type, the one proposed here is far from being
unique.

Part I. Dynamic Games: Theory and Computation

Arapostathis, Borkar, and Kumar study zero-sum stochastic differential games and
establish the existence of a solution to the Isaac’s equation for the ergodic game.
They characterize the optimal stationary strategies without assuming the data and
geometric ergodicity. The authors also study a relative value iteration scheme that
takes the form of a parabolic Isaac’s equation and show that it converges to the
elliptic Isaac’s equation as time goes to infinity under the hypothesis of geometric
ergodicity. Blueschke, Neck, and Behrens present an algorithm (OPTGAME?3) for
the computation of Nash and Stackelberg equilibria, as well as Pareto-optimal
solutions of dynamic games. The use of this algorithm is illustrated in the
context of a stylized nonlinear two-country macroeconomic model of a monetary
union for analyzing the interactions between fiscal (governments) and monetary
(common central bank) policy makers, assuming different objective functions of
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these decision makers. Botkin and Turova consider the problem of aircraft control
during take-off in a windshear. A four-dimensional dynamic programming method
is proposed and stable numerical algorithms for solving Hamilton—Jacobi—Bellman—
Isaacs equations arising from differential games with state constraints are utilized
for the design of controls.

Carlson formulates and proves a general existence theorem for an optimal
solution for the class of bi-level optimal control problems, when both upper and
lower level problems are described by ordinary optimal control models of Lagrange
type. An interesting feature of the result is that it does not require the lower level to
have a unique best response to each admissible strategy of the upper level problem.
Pachter studies a two-player linear-quadratic game, where the players have some
private information. Each player is able to formulate an expression for his/her
expected payoff without the need, a la Harsanyi, to provide a prior probability
distribution function of the game’s parameter and without recourse to the player
Nature. The paper characterizes the conditions under which the principle of certainty
equivalence holds. Finally, Zusai investigates a variety of conditions to establish the
connection between an interior convergence in regular payoff monotone selections
and versions of proper equilibrium and use the connection for equilibrium selection.

Part II. Dynamic Games: Applications

De Giovanni studies a differential game involving a manufacturer and a retailer
interacting in a supply chain. The retailer, who is the leader of chain, sets the price
and the advertising budget, whereas the manufacturer chooses the level of quality
improvement. The solutions of two scenarios are characterized and compared,
namely, a coordinated case, where the retailer supports the quality improvement
program, and the uncoordinated case, where he/she does not. Ramsey studies
evolution of parental care using evolutionary game theory. This research was
motivated by various types of parental care observed in mouth brooding fishes.
These types of behavior include paternal mouth brooding where the male only
holds eggs, maternal mouth brooding where the female takes eggs, or biparental care
where both males and females care for eggs. Ramsey surveys and extends existing
models in several directions. In particular, he compares a model where partners take
decisions simultaneously with a model where one sex decides first. These models
describe a complex feedback between the sex ratio and patterns of parental care.
Scheffran studies value-cost dynamic games, where multiple agents adjust the flow
and allocation of investments to action pathways that affect the value of other agents.
He determines conditions for cooperation and analyzes allocation priorities and the
stability of equilibrium. The approach is applied to the trading between buyers and
sellers of goods to determine conditions for mutually beneficial market exchange.
Starikovd, Abate, and Sabelis model interactions between predatory and prey
mites during a season. In particular, they focus on the time when these species begin
to enter diapause (a physiological state of dormancy to survive winter). Although
entering diapause is induced by environmental factor such as low temperature and



Preface vii

short days, presence of predators can also induce diapause in prey mites as a
survival strategy. Similarly, inability of finding dormant prey can induce diapause
in predators, which leads to a game prey and predatory mites play. Authors argue
that this is a Stackelberg game and they analyze the optimal behavior of prey and
predators. Troeva and Lukin consider a differential game in which n players dump
a pollutant, a by-product of their production process, in a water reservoir. The
evolution of the pollution concentration level is described by a partial-differential
equation. The authors prove the existence of an e-Nash equilibrium for the class
of piecewise-programmed strategies and illustrate their model with a series of
numerical examples.

Part II1. Pursuit-Evasion Games

Kamneva and Patsko deal with an open-loop solvability operator in two-person zero-
sum differential games with simple motions. This operator, which takes a given
terminal set to the set defined at the initial instant, possesses the semigroup property
in the case of a convex terminal set. The authors provide sufficient conditions
ensuring the semigroup property in the non-convex case and construct examples to
illustrate the relevance of these conditions. Kumkov, Patsko, and Le Ménec deal with
a zero-sum differential game, in which the first player controls two pursuing objects,
whose aim is to minimize the minimum of the misses between each of them and the
evader at some given instant. The authors consider the case where the pursuers have
equal dynamic capabilities, but are less powerful than the evader, and provide some
numerical results.

Le Ménec considers a team of autonomous vehicles, composed of a pursuing
vehicle and of several unmanned aircraft vehicles (UAVs), using on-board sensors
for tracking and intercepting a moving target. This situation is modeled as a zero-
sum two-player pursuit—evasion differential game with costly information. The
author solves the game for simple as well as complex kinematics and discusses
the 4D guidance law and the coordination algorithm implemented for managing
the UAVs. Shinar, Glizer, and Turetsky consider linear pursuit—evasion games with
bounded controls. They analyze the cases of an ideal, a first-order, and a second-
order pursuer against an ideal and a first-order evader and compare the values of
these games. The authors show that replacing the second-order pursuer by a first-
order approximation underestimates the value of the game.

Ceské Bud&jovice, Czech Republic Vlastimil Kfivan
Montreal, QC, Canada Georges Zaccour
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Chapter 1
Relative Value Iteration for Stochastic
Differential Games

Ari Arapostathis, Vivek S. Borkar, and K. Suresh Kumar

Abstract We study zero-sum stochastic differential games with player dynamics
governed by a nondegenerate controlled diffusion process. Under the assumption
of uniform stability, we establish the existence of a solution to the Isaac’s equation
for the ergodic game and characterize the optimal stationary strategies. The data
is not assumed to be bounded, nor do we assume geometric ergodicity. Thus our
results extend previous work in the literature. We also study a relative value iteration
scheme that takes the form of a parabolic Isaac’s equation. Under the hypothesis
of geometric ergodicity we show that the relative value iteration converges to the
elliptic Isaac’s equation as time goes to infinity. We use these results to establish
convergence of the relative value iteration for risk-sensitive control problems under
an asymptotic flatness assumption.

Keywords Stochastic differential games ¢ Ergodic control ¢ Relative value itera-
tion ¢ Risk-sensitive control
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4 A. Arapostathis et al.
1.1 Introduction

In this paper we consider a relative value iteration for zero-sum stochastic differ-
ential games. This relative value iteration is introduced in Arapostathis and Borkar
(2012) for stochastic control, and we follow the method introduced in this paper.

In Sect.1.2, we prove the existence of a solution to the Isaac’s equation
corresponding to the ergodic zero-sum stochastic differential game. We do not
assume that the data or the running payoff function is bounded, nor do we assume
geometric ergodicity, so our results extend the work in Borkar and Ghosh (1992). In
Sect. 1.3, we introduce a relative value iteration scheme for the zero-sum stochastic
differential game and prove its convergence under a hypothesis of geometric
ergodicity. In Sect. 1.4, we apply the results from Sect. 1.3 and study a value iteration
scheme for risk-sensitive control under an asymptotic flatness assumption.

1.2 Problem Description

We consider zero-sum stochastic differential games with state dynamics modeled
by a controlled non-degenerate diffusion process X = {X(t) : 0 <t < oo}, and
subject to a long-term average payoff criterion.

1.2.1 State Dynamics

Let U;, i = 1,2, be compact metric spaces and V; = Z?(U;) denote the space of
all probability measures on U; with Prohorov topology. Let

b:RIx U x Uy, — R? and o:RY — RIxd

be measurable functions. Assumptions on b and o will be specified later. Define
h:RIxVyxVy,— R as

b(x,vy,v12) = / b(x,uy, uz) vi(duy) va(dus)
Uy JUy

for x € R?, v; € V; and v, € V5. We model the controlled diffusion process X via
the It6 s.d.e.

dX(1) = b(X(1),vi(t), v2(1)) dr + o (X (1)) dW(2). (1.1)
All processes on (1.1) are defined in a common probability space (2, .%#, P) which

is assumed to be complete. The process W = {W(t) : 0 < t < oo} is an R?-
valued standard Wiener process which is independent of the initial condition X
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of (1.1). Player i, with i = 1,2, controls the dynamics X through her strategy
v; (-), a V;-valued process which is jointly measurable in (¢, w) € [0, c0) x Q2 and
non-anticipative, i.e., for s < ¢, W(t) — W(s) is independent of

Fy = the completion of o (Xy, vi(r), va(r), W(r),r <s).
We denote the set of all such controls (admissible controls) for player i by %,
i=12.

Assumptions on the Data: We assume the following conditions on the coefficients
b and o to ensure existence of a unique solution to (1.1).

(A1) The functions b and o are locally Lipschitz continuous in x € R¢, uniformly
over (up,up) € Uy x Uy, and have at most a linear growth rate in x € RY,
i.e., for some constant «,

b(x, ur, u2) || + || (x)|*> < /c(l + ||x||2) Y (x,u1, uy) € RY x Uy x Uy,

where ||o||? := trace (UOT), with T denoting the transpose. Also b is
continuous.
(A2) Foreach R > 0 there exists a constant k (R) > 0 such that

Zla(x)z = k(R)|z|? forall || x|| < R and z € RY,

where a := oo,

Definition 1.1. For f € C?(R?) define

Lf(x ui,un) := b(x,up,uz) -V f(x) + %tr(a(x)sz(x))

for x € R? and (u1,uz) € Uy x U,. Also define the relaxed extended controlled
generator L by

Lf(x,v1,v5) = [U/ULf(x,ul,uz)vl(dul)vz(duz), f e C*RY),

for x € R and (v, v2) € Vi x V5.
We denote the set of all stationary Markov strategies of playeri by .#; ,i = 1,2.

1.2.2 Zero-Sum Ergodic Game

Leth : RY x U, x U, — [0,00) be a continuous function, which is also locally
Lipschitz continuous in its first argument. We define the relaxed running payoff
function h : R x Vi x V5 — [0, 00) by
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h(X,U1,U2) = / / h_(x,ul,uz)vl(dul)vz(dug).
U JU,

Player 1 seeks to maximize the average payoff given by

llmmf — E, |:/ h(X(2),v1(2),v2(2)) dt:| (1.2)

over all admissible controls v; € %, , while Player 2 seeks to minimize (1.2) over
all v; € 7. Here E is the expectation operator corresponding to the probability
measure on the canonical space of the process starting at X(0) = x.

Since we shall analyze the average payoff as a limiting case of the discounted
payoff in the “vanishing discount” limit, we shall also consider the infinite horizon
discounted payoff

E, [ / e X (1), 01 (1), vz(t))dt] ,
0

where o > 0 is the discount factor.

Assumptions on Ergodicity: We consider the following ergodicity assumptions:

(A3)

(A3")

There exist a positive inf-compact function ¥ € CZ?(R?) and positive
constants kg, k1, and k, such that

L“//(x, ui, M2)

IA

k() — 2]{17/(36),

max  h(x,u;, ) < ko ¥ (x)

ui1€Uy,ur€ls

for all (u;,us) € U x U,, and x € R?. Without loss of generality we
assume ¥ > 1.

There exist nonnegative inf-compact functions ¥ € C2*(R?) and g €
C(R?), and positive constants kg and k such that

LY (x,u,un) < ko— g(x),

max h_(x,ul,uz) < kyg(x)
u€U,up €l

for all (u;,uz) € Uy x Uy, and x € R?. Also,

max,, et ,u,el, l’l(X, up, I/l2)
g(x) Ixll—o0

Without loss of generality we assume ¥ > 1 and g > 1.
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In this section we use assumption (A3’), while in Sect. 1.3 we employ (A3) which
is stronger and equivalent to geometric ergodicity in the time-homogeneous Markov
case.

For the uncontrolled (i.e., Markov) case, (A3’) is the so-called g-norm ergod-
icity in the terminology of Meyn and Tweedie (1993) which implies, in addi-
tion to convergence of laws to a unique stationary distribution, convergence of
% fot E[f(X(s))]ds to the corresponding stationary expectation as ¢ 1 oo for all f
with growth rate at most that of g and vice versa. Assumption (A3) corresponds
to the same with # = V and implies in particular exponential convergence to
stationary averages (and vice versa). This is the so-called geometric ergodicity.
When (A3’) holds in the controlled case, it implies in particular tightness of
stationary distributions attainable under stationary Markov controls. In fact this
condition is necessary and sufficient. See Arapostathis et al. (2011, Lemma 3.3.4)
for this and other equivalent characterizations. Thus (A3’) is the best possible
condition for uniform stability in this sense. While the results of Arapostathis and
Borkar (2012) can be extended to control problems when instability is possible but
is penalized by the cost structure, this does not extend naturally to the zero-sum
game, because what is penalty for one agent is a reward for the other.

We start with a theorem which characterizes the value of the game under a
discounted infinite horizon criterion. For this we need the following notation: For a
continuous function #:R? — (0, 00), Cy(R?) denotes the space of functions in

C(R?) satisfying sup, cpa ;:(();)) ‘ < oo. This is a Banach space under the norm
f(x)
[fll» = sup :
xeR4 nj/(x)

Theorem 1.1. Assume (Al), (A2), and (A3’). For o > 0, there exists a solution
Yy € Cy(RY) N C2RY) to the p.d.e.

a¥,(x) = min max [Llﬂa(x,vl,vz)+h(x,v1,v2)]

neV, viel;
(1.3)
= max min [L,(x,vi,02) + h(x,v1,02)]

vVIEV] 1EW,

and is characterized by

Yo(x) = sup inf E, |:/°° e h(X (1), v1 (1), v2(1)) dti|
0

VIE U 0E U

= inf sup EX|:/ooe“’h(X(t),vl(t),vz(t))dt:|.

V2€ U V1€ U 0

Proof. Let By denote the open ball of radius R centered at the origin in R?. The
p.d.e.
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apf(x) = min max [LoR(x,v1,v2) + h(x,v1, )], )

ok =0 on dBg

has a unique solution ¢ in C2(Bg) N C(Bg), see Gilbarg and Trudinger (1983,
Theorem 15.12, p. 382). Since

min max [LeX(x, v, v hix. v v
1 EVs UIEVl[ @a( s Ul 2)+ ( , U1, 2)]

= max min [LoX(x,v;,v h(x,vy,v
vi€EV] UzGVz[ (pa( 1, 2)+ ( s Vs 2)]?

it follows that o € C2(Bg) N C(By) is also a solution to

apR(x) = max min [L(pf(x,vl,vz)—}—h(x,vl,vz)],
vIEV] nEl, (1 5)

ok =0 on d0Bg.

Let Uﬁx: Br — V) be a measurable selector for the maximizer in (1.5) and
v{fl: Br — V5 be a measurable selector for the minimizer in (1.4). If we let

F(x,vi;98) = miy2 [Lo&(x,v1,v2) + h(x,v1, v2)],

ne

then (x,vy) = F(x,v;¢L) is continuous and also Lipschitz in x, and ¢F satisfies

F(x, vfa(x); gof)

gl (x)

= min [Lof(x,v{,(x).v2) + h(x, v} (x), v2)].

1 EV)
ok =0 on d0Bg.

By a routine application of Itd’s formula, it follows that

V2E U

eu(x) = inf Ex|:/IRe_mh(X(l),vﬁx(X(l)),vz(l))dti|, (1.6)
0

where

g = inf{r>0:|X(@0)| > R}

and X is the solution to (1.1) corresponding to the control pair (vl’fx, vp), with

UQG%Q.
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Repeating the above argument with the outer minimizer vﬁx of (1.4), we similarly
obtain

oX(x) = sup E, |;/TR e h(X (1), vi (1), va (X(2))) dt:|. (1.7)
0

V1€ U
Combining (1.6) and (1.7), we obtain

inf  sup EX|:/TR efotfh(X(t),vl(t),vz(t)) dt] < (polf(x)
0

VE U V€U

< sup inf Exl:/fRe_wh(X(l)»Ul(l)7U2(l))dlj|,
0

V1€ v2€ U

which implies that

¢a(x) = sup inf E[/ Ike“’h(X(t),vl(t),vz(t))dt:|
0

V1€ U V2€ YU

= inf sup Ex[/m e_‘”h(X(Z),vl(t),vz(t)) dl}.
0

V€YU vVIEY

It is evident that R (x) < ¥, (x), x € RY, where

Vo(x) := sup inf E_x[/ooe_"”h(X(t),vl(t),vz(l))dt}, xeR?.
0

v €U V2€ U

Also g is nondecreasing in R. By Assumption (A3’), it follows that

B = k| [T esxo)a)

where X is a solution to (1.1) corresponding to some stationary Markov control
pair. Since the function x — E; [ f0°° e ™ g(X (t)) dt] is continuous, it follows that

Vo € LfOC(Rd) forl < p < oo.
Benes’ measurable selection theorem (Bene$ 1970) asserts that there exists a pair
of controls (vffx, véfx) € M X > which realizes the minimax in (1.4)—(1.5), i.e.,

for all x € By the following holds:

max min [Lo®(x, vy, v h(x,vi,v
vi€V] vzeVz[ @a( a 2)+ ( b 2)]

= L¢5(x, vﬁx(x), Uﬁ(x)) + h(x, vﬁ(x), vf;(x)).
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Hence ¢ € C?(Bg) N C(Bg) is a solution to
agof(x) = L(polf(x, vfi(x), vﬁ(x)) + h(x, vffx(x), vfa(x)), x € Bg.

Hence by Arapostathis et al. (2011, Lemma A.2.5, p. 305), foreach 1 < p < oo
and R’ > 2R, we have

R/
l¢a

W2.r(Bg) Kl(H‘ptfl ” Lo(Bag) T ”L%If, - 0“/’5, ” LP(BZR))

IA

K (17 ) + TGO DE O )

IA

Kl(“&a ||Lp(32R) + KZ(R)|BZR|W) )

where K| > 0 is a constant independent of R’ and K,(R) is a constant depending
only on the bound of & on B,g. Using standard approximation arguments involving
Sobolev imbedding theorems, see Arapostathis et al. (2011, p. 111), it follows that
there exists W, € W27 (RY) such that gX 1 9 as R 1 0o and ¥, is a solution to

loc

aY,(x) = max min [Llﬁa(x,vl,vz)+h(x,v1,v2)].

vIEV] nEW,

By standard regularity arguments, see Arapostathis et al. (2011, p. 109), one can
show that ¥, € C>"(R%), 0 < r < 1. Also using the minimax condition, it follows
that ¥, € C>"(RY), 0 < r < 1, is a solution to

ayo(x) = min max [Lyo(x,vi,v2) + h(x, v, v2)]

meEV, vieNn

= max min [Lwa(x,vl,vz)—i—h(x,vl,vz)].
vIEV] nEV

Let v§ € .#, and v§ € .#, be an outer maximizing and an outer minimizing
selector for (1.3), respectively, corresponding to v, given above. Then 1, satisfies
the p.d.e.
avy(x) = max [L1//0,(x, vy, vg‘(x)) + h(x, vy, vg‘(x))].
1 1

For v; € %, let X be the solution to (1.1) corresponding to (v;, v§) and the initial
condition x € R?. Applying the Itd—Dynkin formula, we obtain

Ed[e ™ o (X(t))] — Va(x) < —E, [ /0 R OO ) dt].
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Since ¥, > 0, we have

Va(x) = Er|:/o Re_“’h(X(l),vl(t),vg(X(l)))dt}~

Using Fatou’s lemma we obtain

Ve l(x) > Ex[/o e_"”h(X(t),vl(t),vg‘(X(t)))dt}. (1.8)
Therefore

Yo(x) > sup Ex[/o e_“’h(X(t),vl(l),vg‘(X(t)))dt:|. (1.9)

V1€ U

Similarly, for v, € %, let X be the solution to (1.1) corresponding to (v{, v2) and
the initial condition x € R¢. By applying the Ito—Dynkin formula, we obtain

B ™ o (X ()] — Yux) > —E, [ [ o s ) dr] .
Hence

Yolx) < E [ [ oo . o) dr] e g (X ()]
By Arapostathis et al. (2011, Remark A.3.8, p. 310), it follows that

lim B[~ yu(X ()] = 0.

Hence, we have

Yo(x) < Ex[/o e_‘”h(X(t),v‘f‘(X(t)),vz(t))dt:|. (1.10)
Therefore
Yo(x) < inf EX[/OO e h(X (1), v} (X (1)), v2(1)) dti|. (1.11)
VE U 0

By (1.9) and (1.11), we obtain

Va(x) = E[ [0 e h(X(1), v (X(1)), v (X(1))) dz]. (1.12)
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Also by (1.8) and (1.10) we have

inf  sup Ex[/;we—ath(x([),vl(t),vz(t)) dti| < Yal(x)

VE U V1€ U

< sup inf Ex[/me_“’h(X(t),vl(t),vg(t))dt:|.
0

vie, V2€ U
This implies the desired characterization. O

Remark 1.1. Using Theorem 1.1, one can easily show that any pair of measurable
outer maximizing and outer minimizing selectors of (1.3) is a saddle point equilib-
rium for the stochastic differential game with state dynamics given by (1.1) and with
a discounted criterion under the running payoff function /.

Theorem 1.2. Assume (A1), (A2) and (A3'). Then there exists a solution (8, ¢*) €
R x Cy(RY) N C2(RY) to the Isaac’s equation

B = min max [Le*(x,vi,v2) + h(x,v1,v2)]

meV, veln;

= max min [Lo*(x,v1,v2) + h(x, v, 02)], (1.13)

vIEVE 1€V,
¢*(0) =0

such that B is the value of the game.
Proof. For (vy,v,) € M1 X M, define

Jo(x,v1,v2) := E, |:/(;°° e h(X (1), vi(X(1)), v2(X(2))) dti| , xeR?,

where X is a solution to (1.1) corresponding to (vy, v;) € .# X .#>. Hence from
(1.12), we have

Yo(x) = Jo(x, v, v9),

where (v{,v5) € .#, x .#, is a pair of measurable outer maximizing and outer
minimizing selectors of (1.3). Using (A3’), it is easy to see that (v{,v5) is a
pair of stable stationary Markov controls. Hence by the arguments in the proof
of Arapostathis et al. (2011, Theorem 3.7.4, pp. 128-131), we have the following
estimates:

K o« e
”Wa_W(x(O)”Wz.p(BR) < 3 ( ﬂ[vl l)z]

nlvy. v$1(Br) \ n[v$, v§](Br)

+ max h(x, vy, vz)) , (1.14)

(x,01,02)EB4r X V1 X V3
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sup ay(x) < K

XE€BR

( plvi, v5]

—_ max
ﬂ[U?, U(Zx](BR) (x,01,02)EB4r X V1 X V3

h(x,vl,vz)), (1.15)

where n[v{, v§] is the unique invariant probability measure of the process (1.1)
corresponding to (v§, v$) and

Ut o8] = [ Aot 0,05 00) il 1)),
It follows from Arapostathis et al. (2011, Corollary 3.3.2, p. 97) that

sup Blvf,vi] < oo. (1.16)

a>0

Also from Arapostathis et al. (2011, (2.6.9a); p. 69 and (3.3.9); p. 97) it follows that
ing nlvt, v5]1(Bgr) > O. 1.17)
o>

Combining (1.14)—(1.17), we have

Ve — Wa(o)”wlp(BR) Ky,

IA

(1.18)

IA

sup o (x) = Ky,

XEBR

where K, > 0 is a constant independent of o > 0.
Define

Va(x) 1= Yo(x) —¥e(0), xeR’.

In view of (1.18), one can use the arguments in Arapostathis et al. (2011, Lemma
3.5.4, pp. 108-109) to show that along some sequence o, | O, o, ¥ (0) converges
to a constant ¢ and 1}% converges uniformly on compact sets to a function ¢* €
C?(RY), where the pair (o, ¢*) is a solution to the p.d.e.

¢ = min max [Lo*(x,v1,v2) + h(x, v, 02)],
nel, viel;

¢*(0) = 0.

Moreover, using the Isaac’s condition, it follows that (o, ¢*) € R x C?(R?) satisfies
(1.13).

We claim that ¢* € o(¥), i.e., “’;((;)) — 0 as ||x|| — oo. To prove the claim let
(v}, v}) € A\ x.A, be apair of measurable outer maximizing and outer minimizing
selectors of (1.13) corresponding to ¢*. Let X be the solution to (1.1) under the
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control (v}, vy). Then by an application of the Ito—Dynkin formula and the help of
Fatou’s lemma, we can show that for all x € R?

o' = B [T (0o, o) ) ar |+ min ¢* ), 0119
0 Iyl =~
where
f o= inf{r =01 X)) <.

Let v{ € .#) be a measurable outer maximizing selector in (1.3). Then the function
Vo € C>"(R?) given in Theorem 1.1 satisfies the p.d.e.

a, = mi‘r/l2 [Ll/fa(x,v‘l’(x),vz) + h(x,v‘l"(x),vz)]. (1.20)

1 E

Let X be the solution to (1.1) under the control (v, v2), with v2 € %, and initial
condition x € R¢. Then by applying the It6—Dynkin formula to e =%, (X(¢)) and
using (1.20), we obtain

E, [e_a(%r/\m)wa(x(%r A TR))] — Valx)
- _F, [ / X ) X)) dt] ,
0
which we write as
Vulx) < E [ /0 (X)X, v2(0)) dt]

+E [ @My (X(E A )] (12D
Using Arapostathis et al. (2011, Remark A.3.8, p. 310), it follows that
Efe y (XD T = )] = Bufe ™ yu(X(@)] —= 0. (1.22)

Hence from (1.21) and (1.22), we obtain

Valx) < E[ /0 rh(X(f),U‘fl(X(f))»Uz(f))dl] B[ ya(X(3)].
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Therefore,

Valx) = Ex[/orh(X(t),vi'(X(f)),vz(t))df}

+ Ex[e T Yo (X (%)) — ¥ (0)]

= | [ (rxO 0te)10) ~ o) |

+Ex [w‘a (X(‘Er))_l/fot (0)]

+E Ja ' (1—e™) (0 — ey (X(%)))]

E. [ /0 T ((x@).0 X)) 1200)) o) dr]

IA

+ M(r) + Ex[%r] sup |Q _QWa(y)i

lyll=r

< sup E[ / T'(h(X(r),v1<X(r)),v2(t))—a)dt}

v EM

+ M(r)+ sup |o—av.(y)| sup Ei[%]

lyll=r v €M

for some nonnegative constant M(r) such that M(r) — 0 as r | 0. Next from
the definition of ¢*, by letting o | 0 along the sequence given in the proof of
Theorem 1.2, we obtain

o*(x) < sup E[ /0 (A(X(®), v1(X@), 12(0)) ) dt} + M), (123)

v EM

By combining (1.19) and (1.23), the result follows by Arapostathis et al. (2011,
Lemma 3.7.2, p. 125). This completes the proof of the claim.
Let (vf,vy) € .# x .#, be a pair of measurable outer maximizing and
minimizing selectors in (1.13) corresponding to ¢*. Then (o, ¢*) satisfies the p.d.e.
0 = max [Le*(x,v1,v5(x)) + h(x, v, 03 (x))].

vIEV]

Let v; € % and X be the process in (1.1) under the control (v, v5) and initial
condition x € R¢. By applying the Itdo—Dynkin formula, we obtain

o n ] =o' @) < B[ [ (x5 0w) - o) o |
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Hence
ot > EUO Rh(X(t)aUl(t)vv;(X(t)))dt}+Ex[(P*(X(t/\TR))]_(p*(x)

for all + > 0. Using Fatou’s lemma and Arapostathis et al. (2011, Lemma 3.7.2,
p- 125), we obtain

ot > E[ /0 h(X(z),m(r),v;<X(r)))dz}+Ex[<o*(X<r))]—<p*(x), (>0

Dividing by ¢ and taking limits again using Arapostathis et al. (2011, Lemma 3.7.2,
p- 125), we obtain

0 > liminf lEx[/th(X(l),vl(t),v;‘(X(l))) dt:|.
t—oo 0

Since v| € %, was arbitrary, we have

o > sup liminf ! E, [/ h(X (1), v1(7), v3(X(1))) dt]
V1€ =00 t 0
t
> inf sup liminf lEX|:/ h(X(l),vl(t),vz(t)) dti|. (1.24)
0

VWE U vewy 17 t
The pair (o, ¢*) also satisfies the p.d.e.
0 = miIr} [Lo™(x, v} (x), v2) + h(x, v} (x), v2)].

V€V

Let v, € % and X be the process in (1.1) corresponding to (v}, v;) and initial
condition x € R?. By applying the It6—Dynkin formula, we obtain

Ex[¢ (X(t Ar)] = 0" (0) = —Ex[ / (@) vF X @) 120)) — ) dr}.
0
Hence
oEi[t A 1] < E; [/ h(X(t), v (X(1)), vz(t)) dr + o*(X(t A TR))} — 0*(x).
0

Next, by letting R — oo and using the dominated convergence theorem for the L.h.s.
and Arapostathis et al. (2011, Lemma 3.7.2, p. 125) for the r.h.s., we obtain

ot < E[ /O h(X(r),v;%X(r)),vzm)dr] +E[o" (X0)] ¢ ().
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Also by Arapostathis et al. (2011, Lemma 3.7.2, p. 125), we obtain

o < liminf l xl:/th(X(l),vf(X(t)), (1)) dt:|.
0

—>o0

Since v, € %, was arbitrary, we have

o < inf hmlnf1 ,[/th(X(t),vT(X(l)),vz(t)) dt]
0

VEWYU >0

t
< sup inf hmmflE |:f h(X(t),vl(t),vz(t))dt:|. (1.25)
0

V1€ X VEYU 00

Combining (1.24) and (1.25), we obtain

~ | —

o = inf sup liminf
V2 E YU V1€ U —>00

Ex[/ h(X(l),vl(t),vg(t))dt]
0

sup inf liminf
V1€ VEY 100

~ | —

E[ / h(xm,vl(t),vz(z))dr],
0

i.e. 0 = B, the value of the game. This completes the proof. O

Remark 1.2. Using Theorem 1.2, one can easily prove that any pair of measurable
outer maximizing and outer minimizing selectors of (1.3) is a saddle point equilib-
rium for the stochastic differential game with state dynamics given by (1.1) and with
the ergodic criterion under the running payoff function /.

The following corollary, stated here without proof, follows along the lines of the
proof of Arapostathis et al. (2011, Theorem 3.7.12).

Corollary 1.1. The solution ¢* has the stochastic representation

¢*(x) = lim sup inf E, [ /0 Tr(h(X(t),vl(X(t)),vz(X(t)))—ﬁ)dt:|

N

= lim inf sup E, |:/Ofr (h(X(t), vi(X(1)). v2(X(1))) — ,3> dt:|

ry0 €A v €M,

lim E, [/O r(h(X(t), v (X)), v3 (X(1))) — ﬂ) df}

and is unique in the class of functions that do not grow faster than ¥ and vanish at
x =0.
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1.3 Relative Value Iteration

We consider the following relative value iteration equation.

d
_(p(t’x) = min max [L(p(t,x,vl,vz)~|—]’l(x,U1,U2)] — (,0),
ot 1€V vieV; (126)

@(0,x) = @o(x),

where ¢y € C (RY)NC?(RY) . This can be viewed as a continuous time continuous
state space variant of the relative value iteration algorithm for Markov decision
processes (White 1963).

Convergence of this relative value iteration scheme is obtained through the study
of the value iteration equation which takes the form

9%
—(p(t,x) min max [L@(t,x,vl,vz) + h(x,vl,vz)] -8,
8l 1m€Vy vieV] (127)

?(0,x) = @o(x),

where B is the value of the average payoff game in Theorem 1.2.

Under Assumption (A3), it is straightforward to show that for each 7 > 0
there exists a unique solution @ in Cy ([0, T] x RY) N C'2((0,T) x RY) to the
p.d.e. (1.27).

First, we prove the following important estimate which is crucial for the proof of
convergence.

Lemma 1.1. Assume (A1)—(A3). Then for each T > 0, the p.d.e. in (1.26) has a
unique solution ¢ € C((0,T) x RY) N CL2((0, T) x RY).

Proof. The proof follows by mimicking the arguments in Arapostathis and Borkar
(2012, Lemma 4.1), using the following estimate

E([7(X(t))] =< 2%0 + ¥ (x)e 2kt (1.28)
1

where X is the solution to (1.1) corresponding to any admissible controls v; and
v, and initial condition x € RY. The estimate for ¢ follows from the arguments
in Arapostathis et al. (2011, Lemma 2.5.5, pp. 63-64), noting that for all v; € %,
i = 1,2, we have

IA

/OEx[h”(X(s),vl(s),vz(s))]ds kz/o E([7(X(s))]ds

A

k>
= 2—kl(k0f + 7/(3()) ;
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where h" (x, vy, v;) := n A h(x, vy, vp) is the truncation of & at n > 0. O

Next, we turn our attention to the p.d.e. in (1.27). It is straightforward to show
that the solution ¢ to (1.27) also satisfies

7 o
5 (-0 = max min [L9(t.x,v1,v2) + h(x, v, v2)] — B, (129)

®o(x),

#(0.x)

Definition 1.2. We let v; : R4 x RY — V; fori = 1,2 be an outer maximizing
and an outer minimizing selector of (1.29) and (1.27), respectively. For each t > 0
we define the (nonstationary) Markov control

U= {l')f(s,-) = 0;(t—s,"), s € [O,t]}.

We also let PY'"2 denote the probability measure and EV'*? the expectation operator
on the canonical space of the process under the control v; € %,i = 1,2,
conditioned on the process X starting from x € R? at¢ = 0.

It is straightforward to show that the solution @ of (1.27) satisfies,

p(.x) = B [ [ (rx@ 01 = v x0) 52t~ 7. X)) - ) 80

+o(s. X(r - s))i|

= inf sup EY" |:/OI—S (h(X(T), v1(7), v12(7)) — ﬁ) dr

VE Y VIEU

+o(s, X(t —s))]

sup inf E[ [ (1x@.0.0200) - ) e
0

vi€ U V2€ U

+o(s, X(t - s))] (1.30)

forallt > s > 0.

Lemma 1.2. Assume (A1)—(A3). For each ¢y € C(R?) N C*(R?), the solution @
of the p.d.e. (1.27) satisfies the following estimate

— * — * k — —s
0.5 = " @] < 1760 = 0"l (5 + 700 vxerd,

and for allt > s > 0, where ¢* is as in Theorem 1.2.
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Proof. Let v € .#, and v} € ./, be an outer maximizing and outer minimizing
selector of (1.13), respectively. By (1.30) we obtain

P.x) — 9" (x) < BV [(s, Xt —5)) — 0" (X( —9))] (1.31)
and
0"~ (. x) < BV P[p*(X( —5) —7(s. X(t —9))] (132)

forallt > s > 0. By (1.31)-(1.32) we obtain

[P0 - @] = s ERR[[E(s X( —9) = 9" (X0 =)
(vl.vz)E%lX%z

|

and an application of (1.28) completes the proof. O

Arguing as in the proof of Arapostathis and Borkar (2012, Lemma 4.4), we can
show the following:

Lemma 1.3. Assume (A1)—(A3). If 9(0,x) = ¢(0,x) = @o(x) for some ¢y €
Cy (R4 N C2(RY), then

¢(t,x) —9(t,0) = 9(t,x) —9(,0),

and
0(t.x) = Glt.x)— e / ¢ 5(s.0)ds + B(1 — ™)
0

forall x e R andt > 0.
Convergence of the relative value iteration is asserted in the following theorem.

Theorem 1.3. Assume (A1)~(A3). For each ¢y € Cx(RY) N C*(RY), o(t,x)
converges to ¢*(x) + constant and ¢(t, x) converges to ¢*(x) + p ast — oo.

Proof. By Lemma 1.2 the map x +— ¢(t, x) is locally bounded, uniformly in

t > 0. It then follows that {B;E_ (d[,xj) . t > 1} are locally Holder equicontinuous
(see Ladyzenskaja et al. 1967, Theorem 5.1). Therefore the w-limit set w(gy) of
any initial condition ¢y € Cy(RY) N C*(RY) is a nonempty compact subset of

Cy (R N CE (RY).

loc
To simplify the notation we define

O,(x) 1= @(t,x) —@*(x), (t.x) e Ry xR?.

By Lemma 1.2, we have
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. k
limsup [, (x)] < —= [lgo — ¢*[»-
t—>00 2kl

Let {t, n € N} C R} be any increasing sequence such that ¢, 1 co and
®, — f € CyRHNCY*RY)  asn — .

Dropping to a subsequence we assume that 7,4 —#, T oo as n — o0. By
construction f + ¢* € w(go).
We first show that f is a constant. We define

f = sup f(x).

x€R4

and a subsequence {k,} C N by

- 1
k, := sup {k eN:sup @,(x) < f+ —}. (1.33)
XEBy ! k

Since ®;, converges to f uniformly on compact sets as n — 00, it follows that
k, T oo asn — oo. Let D be any fixed closed ball centered at the origin such that

2k
inf > —.
nf Y(x) > 3
It is straightforward to verify using (1.28) that if X is the solution to (1.1)
corresponding to any admissible controls v; and v, and initial condition x € R?
then there exists 7y < oo depending only on x, such that

P. (X, e D) > Vx e R, Vi > Ty(x). (1.34)

N =

By the standard estimates of hitting probabilities for diffusions (see Gruber 1984,
Lemma 1.1) for any r > 0 there exists a constant y > 0 depending only on r and
D, such that with B, (y) denoting the open ball of radius r centered at y € R? we
have

Px(X, € B,.(y)) >y vt €[0,1], Vx,yeD. (1.35)
Let I;(-) denote the indicator function of a set A C R?. An equivalent statement
to (1.35) is that if g : D — R is a Holder continuous function then there exists a

continuous function I" : Ry — R, satisfying I'(z) > 0 for z > 0 and depending
only on D and the Holder constant of g, such that

E,(g(X)Ip(X) > F(ma[))( g(y)) Viel[0,1], ¥YxeD.  (1.36)
ye
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Combining (1.34) and (1.36) and using the Markov property, we obtain

\

Efe(X)10(X)] = Eu[Bx, [g(X) Ip(X0)] 1o (X,

v

F(ryyleag g(y)) P.(X,—1 € D)

%

1
3 F(r;leal))( g(y)) Vi > To(x) + 1. (1.37)

and for all x € RY. Note that if n is sufficiently large, then D C By, and therefore
the function x — f + é — &, (x) is nonnegative on D. Thus the local Holder
equicontinuity of {®,, ¢ > 0} (this collection of functions locally share a common
Holder exponent) allows us to apply (1.37) for any fixed x € R¢ to obtain

Egllnﬂ'v; I:(f + é - @, (X(fn+1 - tn))) Ip (X(t”"‘] - t”))]

1 - 1 .
= s r(f+ o min®, (). (138)

for all n large enough. For A C R? and x € R? we define

1_)t”+1.l)*
lIJn (X; A) = Ex] 2 [qDI,Z (X([n-H - tn)) IA (X(tn-i-l - [n))]

By (1.31), (1.33), and (1.38) we have

1—)’n+l V¥
th,,_H(x) < E/ ? [thn (X(tn+1 - ln))]
= W,(x: D) + W, (x: By, \ D) + W, (x: By )
=

(f + é) E?c’l”Jrl & I:IBk" (X(tnt1 — ln))]

1 r 1 : . pc¢
—5 P(f+ -~ min®,(0)) + W BY)

- 1 1 - 1 )
< f+ E 5 F(f + E —Erélg q’t,,()’)) + W, (x; B;) . (1.39)
We claim that W, (x; B,gn) — 0 as n — oo. Indeed if X is the solution to (1.1)

corresponding to any admissible controls v; and v, and initial condition x € R?,
then by (1.28) we have
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k - s
Ex[®(X(9)) L (X ()] = [ @i L y(z—k"lwﬂ(x)e 2"“), (1.40)
By Lemma 1.2 we have
ko =
@, 15|, < [1DPoll; . 1.41
|| tiBR ||y = || 0”1/ (2k1 infxegj‘e V()C) +e ( )

It follows by (1.40) and (1.41) that

E.[®,(X(5)) 15 (X (5))] ———— 0

min{t,R}—00

uniformly in s > 0, which proves that W, (x; B,‘{’n) — 0 as n — oo. Thus, taking
limits as n — oo in (1.39), we obtain

fx) < f— % F(f—xylggf(y)) Vx e RY. (1.42)

Taking the supremum over x € R? of the left-hand side of (1.42) it follows that
F(f — min,ep f(y)) = 0 which implies that f is constant on D. Since D was

arbitrary if follows that f must be a constant.

We next show that f is unique. We argue by contradiction. Suppose that &, —
S/ over some increasing sequence {¢,} with ¢, 1 oo as n — oo. Without loss of
generality we assume #, < t, < t,4 for each n. By (1.31) we have

“In4-1 %
@, (x) < BV P[0y (X(tugr —1))]. (1.43)

and taking limits as 7 — oo in (1.43) we obtain f < f’. Reversing the roles of f
and f’ shows that f = f’.
By Lemma 1.3 we have

o(t.x) = P(t.x) + [ ¢~ (B — 5(s,0)) ds.

Hence, since ¢ (¢, x) converges to ¢*(x) + f, we obtain that ¢(¢, x) — ¢*(x) +
ast — oo. a

1.4 Risk-Sensitive Control

In this section, we apply the results from Sect. 1.3 to study the convergence of
a relative value iteration scheme for the risk-sensitive control problem which is
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described as follows. Let U be a compact metric space and V' = £(U) denote
the space of all probability measures on U with Prohorov topology. We consider the
risk-sensitive control problem with state equation given by the controlled s.d.e. (in
relaxed form)

dX(r) = b(X(@),v())dt + o(X())dW(2), (1.44)

and payoff criterion

J(x,v) := liminf l lnEX[exp(/Th(X(t),v(t))dt) ‘ X(0) = xi|.
T 0

T—o00

This is called the risk-sensitive payoff because in some sense it is sensitive to higher
moments of the running cost and not merely its mean, thus capturing ‘risk’ in the
sense understood in economics Whittle (1990).

All processes in (1.44) are defined in a common probability space (2, .#, P)
which is assumed to be complete. The process W is an R?-valued standard Wiener
process which is independent of the initial condition X of (1.1). The control v is
a V-valued process which is jointly measurable in (¢, w) € [0,00) x Q and non-
anticipative, i.e., for s < ¢, W(t) — W(s) is independent of .%#; := the completion
of o(Xy,v(r), W(r),r < s). We denote the set of all such controls (admissible
controls) by % .

Assumptions on the Data: We assume the following properties for the coefficients
band o:

(B1) The functions b and ¢ are continuous and bounded, and also Lipschitz
continuous in x € R? uniformly over v € V. Also (0o ")~ is Lipschitz
continuous.

(B2) Foreach R > 0 there exists a constant k (R) > 0 such that

Z'a(x)z > k(R)||z||*>  forall x| < Randz e RY,

wherea := oo’.

Asymptotic Flatness Hypothesis: We assume the following property:

(B3) (i) There exists a ¢ > 0 and a positive definite matrix Q such that for all x,
y € R? with x # y, we have

2(b(x, ) =b(y,) Q=) +tr((0) =0 (1) (6(x) 0 (1) Q)

@ -om) o —»|* _
(x=»T0(x—y) -

2
—cllx=yl~.
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(ii) Let Lip(f) denote the Lipschitz constant of a Lipschitz continuous
function f. Then

2|loo |3, Lip(h) Lip((o0™) ") < ¢’

The asymptotic flatness hypothesis was first introduced by Basak and Bhat-
tacharya (1992) for the study of ergodicity in degenerate diffusions and is a little
more general than the condition introduced by Fleming and McEneaney (1995) in
risk-sensitive control to facilitate the analysis of the corresponding HIB equation,
which is our motivation as well. An important consequence of this condition is that
if we fix a non-anticipative control process and consider two diffusion processes
with this control differing only in their initial conditions, they approach each other
in mean at an exponential rate (Arapostathis et al. 2011, Lemma 7.3.4). This ensures
a bounded gradient for the solution of the HIB equation, a key step in the analysis
of its well-posedness.

We quote the following result from Borkar and Suresh Kumar (2010, Theo-
rems 2.2 and 2.3):

Theorem 1.4. Assume (B1)—(B3). The p.d.e.

B = min max [itp*(x,w, v) + h(x,v) — %WT(afl(x))w]

veV weRd

= max min [l:go*(x, w,v) + h(x,v) — %WT(a_l(x))w] , (1.45)

weRd veV

@*(0) = 0,

where
Lf(x,wv) := (b(x,v) +w)-Vf(x)+ %tr(a(x)vzf(x)), f e C2(RY),

has a unique solution (B, ¢*) € R x C*(R?) N o(||x||). Moreover, B is the value of
the risk-sensitive control problem and any measurable outer minimizing selector in

(1.45) is risk-sensitive optimal. Also in (1.45), the supremum can be restricted to a
closed ball V = By, for

__ Lip(h) Lip((coT)™")K?
R = p + NG )

where K is the smallest positive root (using (B3) (ii)) of

c . — .
L ool Lin((007) ) 27 x4 Lip(h 0o = 0.
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For the stochastic differential game in (1.45) we consider the following relative
value iteration equation:

%—(tp(t,x) = min max [I:go(t,x,w, v) + h(x,v) — %WT(a_l(x))w] — (t,0),

VeV el

9(0.x) = ¢o(x),

where ¢y € Cy(R?Y) N C2(RY) with

_ (xTQx)lJroz
eI

for some positive constants ¢ and «. Here note that Assumption (B3) implies
Assumption (A3) of Sect.1.2 for the Lyapunov function ¥ given above, see
Arapostathis et al. (2011, (7.3.6), p. 257).

By Theorems 1.3 and 1.4 the following holds.

Theorem 1.5. Assume (B1)—-(B3). For each ¢y € Cy(R?) N C*(R?), (¢, x)
converges to ¢*(x) + B ast — oo.

The relative value iteration equation for the risk-sensitive control problem is
given by

8—w(t,x) = min [Ly (1, x,v) + (h(x,v) —Iny(1,0) ¥ (2, x)],
ot veV (1.46)

V(0. x) = Yo(x).

where
Lf(x,v) := b(x,v)-Vf(x)+ %tr(a(x)sz(x)), f e C*(RY).

That one has In ¥ (z, 0) instead of ¥ (z, 0) as the “offset” is only natural, because
we are trying to approximate the logarithmic growth rate of the cost. We have the
following theorem:

Theorem 1.6. Letzl//* be the unique solution in the class of functions which grow
no faster than e"*I" of the HIB equation for the risk-sensitive control problem given
by

By* = min [Ly*(e.v) +h(x. 0y, ¥7(0) = 1.

Under assumptions (B1)—(B3) the solution (¢, x) of the relative value iteration in
(1.46) converges as t — oo to ePyr*(x) where B is the value of the risk-sensitive
control problem given in Theorem 1.4.
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Proof. A straightforward calculation shows that * = ¢¢", where ¢* is given in
Theorem 1.4. Then it easily follows that ¥ (7, x) = e?"¥), where ¢ is the solution
of the relative value iteration for the stochastic differential game in (1.45). From
Theorem 1.5, it follows that (¢, x) — efy*(x) as t — oo, which establishes the
claim. O
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Chapter 2
OPTGAME3: A Dynamic Game Solver
and an Economic Example

Dmitri Blueschke, Reinhard Neck, and Doris A. Behrens

Abstract In this paper we present the OPTGAME3 algorithm, which can be
used to calculate equilibrium and optimum control solutions of dynamic games.
The algorithm was programmed in C# and MATLAB' and allows the calculation
of approximate cooperative Pareto-optimal solutions and non-cooperative Nash
and Stackelberg equilibrium solutions. In addition we present an application of
the OPTGAMES3 algorithm where we use a small stylized nonlinear two-country
macroeconomic model of a monetary union for analysing the interactions between
fiscal (governments) and monetary (common central bank) policy makers, assuming
different objective functions of these decision makers. Several dynamic game
experiments are run for different information patterns and solution concepts. We
show how the policy makers react optimally to demand and supply shocks. Some
comments are given about possible applications to the recent sovereign debt crisis
in Europe.

Keywords Numerical methods for control and dynamic games ¢ Economic
dynamics ¢ Monetary union
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2.1 Introduction

When we think about economic policy making in one single country, it is preferable
to consider the government controlling fiscal policy and the central bank controlling
monetary policy as independent players. When considering a country inside a
monetary union where monetary policy is no longer an instrument of national
institutions, it is essential to look at the government and the central bank of the
monetary union separately. Moreover, the interests of other countries inside the
union, which primarily pursue their own national interests and do not necessarily
care about the spillovers of their actions to other countries should also be taken into
account by the decision makers when determining the best policy actions. Such
problems can best be modelled by using the concepts and methods of dynamic
game theory, which has been developed mostly by engineers and mathematicians
but which has proved to be a valuable analytical tool for economists, too (see, e.g.,
Bagar and Olsder 1999; Dockner et al. 2000; Petit 1990).

The theory of dynamic games is well developed for linear-quadratic games. It is
also well known that considering linear problems alone is a very strong limitation,
thus a lot of research is required to extend the theory for nonlinear games. This
paper follows this line of research and presents an algorithm which is designed for
the solution of nonlinear-quadratic dynamic tracking games. The algorithm is called
OPTGAMES3 and is programmed in C# and MATLAB. Due to their nonlinearity,
the problems cannot be solved analytically but only numerically. The algorithm
allows the calculation of approximate cooperative Pareto-optimal solutions and non-
cooperative Nash and Stackelberg equilibrium solutions.

In addition we present an application of the OPTGAME3 algorithm for a
monetary union. Dynamic games have been used by several authors (Hager
et al. 2001; Pohjola 1986) for modelling conflicts between monetary and fiscal
policies. There is also a large body of literature on dynamic conflicts between
policy makers from different countries on issues of international stabilization
(Hughes Hallett 1986; Levine and Brociner 1994; Miller and Salmon 1985).
Both types of conflict are present in a monetary union, because a supranational
central bank interacts strategically with sovereign governments as national fiscal
policy makers in the member states. Such conflicts can be analysed using either
large empirical macroeconomic models (Engwerda et al. 2012; Haber et al. 2002;
Plasmans et al. 2006) or small stylized models (van Aarle et al. 2002; Neck and
Behrens 2004, 2009). We follow the latter line of research and use a small stylized
nonlinear two-country macroeconomic model of a monetary union for analysing
the interactions between fiscal (governments) and monetary (common central bank)
policy makers, assuming different objective functions of these decision makers. We
show how the policy makers react optimally to demand and supply shocks. Some
comments are given about possible applications to the recent sovereign debt crisis in
Europe.
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2.2 The Dynamic Game Problem

We consider intertemporal nonlinear game-theoretic problems which are given
in tracking form. The players aim at minimizing quadratic deviations of the
equilibrium values from given target (desired) values. Thus each player minimizes
an objective function J':

i i
U ool LA

T
min J' = min Li(x,u,....ul), i=1,...,N, 2.1
with
. 1 . . .
Li(x,ul, ... ,uM) = S 1Xi - XX, - X1, i=1,...,N, (2.2)
The parameter N denotes the number of players (decision makers). T is the

terminal period of the finite planning horizon, i.e. the duration of the game. X; is an
aggregated vector

X, =[x u ... ul, (2.3)

which consists of an (n, x 1) vector of state variables

xo= ) X2 X, (2.4)
and N (n; x 1) vectors of control variables determined by the playersi = 1,..., N:
wl o=t w? o u™y,
w? =2 W ", 25
ul = CARTAC AL
Thus X, (forall¢t = 1,...,T) is an r-dimensional vector, where
ri=ny+n +ny+--+ny. (2.6)

The desired levels of the state variables and the control variables of each player
enter the quadratic objective functions (as given by (2.1) and (2.2)) via the terms

X =[x @' @ ... . 2.7)
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It must be pointed out that each playeri = 1,..., N may be allowed to observe and
monitor the control variables of the other players, i.e. deviations of other control
variables can be punished in one’s own objective function.?

Finally, (2.2) contains an (r x r) penalty matrix ! (i = 1,..., N), weighting
the deviations of states and controls from their desired levels in any time period ¢
(¢t =1,...,T). Thus the matrices

Q; 0 --- 0

A i :
Q= | QRO N =T, 2.8)

L0 .0

0 .- 0 RN

are of block-diagonal form, where the blocks Q! and R/ (i,j = 1,...,N) are
symmetric. These blocks Q! and R;’ correspond to penalty matrices for the states
and the controls, respectively. The matrices Q! > 0 are positive semi-definite for
alli = 1,..., N; the matrices R’ are positive semi-definite for i # j but positive
definite for i = j. This guarantees that the matrices R!’ > 0 are invertible, a
necessary prerequisite for the analytical tractability of the algorithm.

In a frequent special case, a discount factor « is used to calculate the penalty
matrix £2] in time period :

Q=d7'Q i=1,...,N,t=1,...,T, (2.9)

where the initial penalty matrix §2) of player i is given.
The dynamic system, which constrains the choices of the decision makers, is
given in state-space form by a first-order system of nonlinear difference equations:

l -
X; = f(x,_l,xt,u,,...,uIN,zt), X0 = Xo. (2.10)

Xo contains the initial values of the state variables. The vector z, contains non-
controlled exogenous variables. f is a vector-valued function where f* (k =
1,...,n,) denotes the kth component of f. For the algorithm, we require that
the first and second derivatives of the system function f with respect to x;, x,—;
and u!,...,uV exist and are continuous. The assumption of a first-order system
of difference equations as stated in (2.10) is not really restrictive as higher-order
difference equations can be reduced to systems of first-order difference equations
by suitably redefining variables as new state variables and augmenting the state

vector.

For example, the central bank in a monetary union, which controls monetary policy, can also
penalize “bad” fiscal policies of member countries.
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Equations (2.1), (2.2), and (2.10) define a nonlinear dynamic tracking game
problem to be solved. That means, we try to find N trajectories of control variables
uﬁ, i = 1,..., N which minimize the postulated objective functions subject to the
dynamic system. In the next section, the OPTGAME3 algorithm, which is designed
to solve such types of problems, is presented.

2.3 OPTGAME3

This section describes the OPTGAME algorithm in its third version (OPTGAME3),
which was programmed in C# and MATLAB. For a better understanding, first a very
simplified structure of the OPTGAME algorithm will be presented.

Algorithm 1 Rough structure of the OPTGAME algorithm

1: iteration step k = 0

e ol ~ ~if
2: initialize input parameters xo, (,)7_,, (¥)T_,, @/ )_,, (z)=, and f(...)
. ol oN
3: calculate tentative path for states x;, = f(x,—1, X, 1, ..., 4, ,2),t =1,...,T

4: while the stopping criterion is not met (nonlinearity loop) do
5: for T to 1 (backward loop) do

6: linearise the system of equations: x; = A,;x;—; + ZlN:l Bf u; + ¢

7: min J, get feedback matrices: G! and g

8:  end for

9:  for 1to T (forward loop) do

10: calculate the solution: u!* = Gix;" | + gl and X" = f(x |, x, ul™, ... ul*, )
11:  end for

12:  at the end of the forward loop the solution for the current iteration of the nonlinearity loop
. . i T
is calculated: (u1*, x;),;—, ‘
. ol
13:  setnew tentative control paths: u}* —u, V t,i

. ol oN
14: calculate new tentative path for states x, = f(x,—1, xs,4,,...,u, ,z),t =1,...,T

15: k—k+1
16: end while
17: final solution is calculated: (u*)7_,, (x*)T_,, Ji*, J*

The algorithm starts with the input of all required data. As indicated in step 2,
for all players (i = 1,...,N) the initial tentative paths of the control variables

1
(Z,)IT=1 are given as inputs. In order to find an initial tentative path for the state
variables we apply an appropriate system solver like Newton—Raphson, Gauss—

Seidel, Levenberg—Marquardt or Trust region to x; — f(x,—1, X;, l?lt s ft, ,720) =0
in step 3. After that the nonlinearity loop is started where we iteratively approximate
the final solution of the nonlinear dynamic tracking game. To this end, following a
procedure introduced by Chow (1975) for optimum control problems, we linearise
the nonlinear system f along the tentative path determined in the previous iteration
steps. Note that we do not linearise the system only once prior to launching the



34 D. Blueschke et al.

optimization procedure (cf. step 4) but repeatedly linearise the entire system during
the iterative optimization process along the current tentative paths (for both controls
and states). This allows for replacing the autonomous nonlinear sytem by a non-
autonomous linear system evaluated along a tentative path that changes with each
iteration step. Accordingly, for each time period ¢ we compute the reduced form of
the linearised structure of (2.10) and approximate the nonlinear system by a linear
system with time-dependent parameters in step 6.

The dynamic tracking game can then be solved for the linearised system using
known optimization techniques, which results in feedback matrices G’ and g’ (see
step 7). These feedback matrices allow us to calculate in a forward loop the solutions
(ui* and x*) of the current iteration of the nonlinearity loop and, at the end of the
nonlinearity loop, the final solutions. If the new tentative path falls into an e-tube
around the old tentative path, no variable differs by more than a value of € between
two successive iterations, and, for € small enough, the consecutive paths are (more or
less) identical. In particular, then, the state path calculated according to the nonlinear
system dynamics (2.10) by using x, — f (x;—1, X;, u!, ..., ul, z;) = 0equals the state
path calculated according to the linearized system representation evaluated along
the current tentative path (step 5). In other words, the algorithm has converged,® and
the paths obtained indeed solve the original problem, i.e. (2.1) and (2.2) subject to
(2.10).

The core of the OPTGAME algorithm appears in step 7, where the linearised sys-
tem has to be optimized by each player. The optimization technique for minimizing
the objective functions depends on the type of the game or solution concept. The
OPTGAMES3 algorithm determines four game strategies: one cooperative (Pareto
optimal) and three non-cooperative game types: the Nash game for the open-loop
information pattern, the Nash game for the feedback information pattern, and the
Stackelberg game for the feedback information pattern.

Generally, open-loop Nash equilibrium solutions of affine-quadratic games are
determined using Pontryagin’s maximum principle. Feedback Nash and Stackelberg
equilibrium solutions of affine-quadratic games are calculated using the dynamic
programming (Hamilton—Jacobi—Bellman) technique. How to calculate the dynamic
game solutions depending on the type of the game will be discussed separately in
the next subsections.*

2.3.1 The Pareto-Optimal Solution

To determine a cooperative solution of the dynamic game, we have to define a joint
objective function of all the players. This joint objective function J corresponds to

3Note that if convergence has not been obtained before k has reached its terminal value, then the
iteration process terminates without succeeding in finding an equilibrium feedback solution.

4The mathematical details are based on Behrens and Neck (2007) and reflect the calculations and
proofs in Bagar and Olsder (1999).
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the solution concept of Pareto-optimality and is given by a convex combination of
the individual cost functions,

N

T N
T=3"3 WL, .u)), Y pl=1. (2.11)

t=1i=1 i=1

L is defined by (2.2). The parameters u' (i = 1,...,N) reflect player i’s
“power” or “importance” in the joint objective function. Therefore the solution of
the cooperative Pareto-optimal game with N players can be determined by solving
a classical optimum control problem. First, define the following matrices:

N
Q=) wol 2.12)
i=1
N
go=Yy WOl 2.13)
i=1
Rl =) wR/., j=1...N, (2.14)
i=1
rl=) WRIE . j=1,....N. (2.15)
i=1

The Riccati matrices H, and /i, for all players and for all time periods ¢ €
1,..., T are derived by backward iteration according to the following system of
recursive matrix equations:

N
Hy_y= Q0,1 +K/HK +)» G/ R/G/. Hr = Qr. (2.16)
j=1
N .y . . .
hiy =g — K[[Hik, —h]+ Y Gl [r/ =R/g/1. hr =qr. (217
j=1

where
N . .
K, :=A+) B/G]. (2.18)
j=l1
N . .
ki=s+Y Blgl. (2.19)
—
The feedback matrices Gli and g;' fori = 1,..., N are determined as solutions

of the following set of linear matrix equations:
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N
B! H A, +[R] + B/ H,B/1G] + B/ H, ) BfGf =0, (2.20)

k=1,
k#j

N
(R} + B/ H,B/\g/ + B/ 'H, Y Bgf + B/ His — B/'h, —r/ = 0. (221)
oy
In each time period ¢ the auxiliary matrices are determined in the following
order:

1. H, h’ according to (2.16) and (2.17),
2. G’ g': according to (2.20) and (2.21),7
3. Kt, k;: according to (2.18) and (2.19).

Using the Riccati matrices H,i and hi fori = 1,..., N and the feedback matrices
G,i and gj fori = 1,..., N for all time periods, we can compute the matrices
K, and k, as defined by (2.18) and (2.19). Then the states and controls forming
a cooperative Pareto-optimal solution of the game can be determined by forward
iteration according to:

x| = Kx | + ki, x§ = xo, (2.22)
w*=Gix* +g,i=1,..,N. (2.23)

2.3.2 The Feedback Nash Equilibrium Solution

To approximate the feedback Nash equilibrium solution of the game, the algorithm
proceeds as follows: Riccati matrices H, and k! for all players i = 1,..., N and
for all time periods ¢ € {1,..., T} are derived by backward iteration according to
the following system of recursive matrix equations:

H_, =0, +K/H| K,—I—ZG’ R/G!. Hi = 0}, (2.24)

j=1

N
hioy = Qi %oy — K[IH ki = W]+ 3G RU &) —gf), Wy = 07 %7,
j=l

(2.25)

3Tt is important to mention that we have a system with two simultaneous equations and two
unknown parameters in step 2 ((2.20) and (2.21)). Therefore a system solver must be applied.
In OPTGAMES3, the Gauss—Seidel method is applied for this purpose.
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where K; is defined by (2.18) and k; is given by (2.19). The feedback matrices G,i
and gf fori = 1,..., N are determined as solutions of the following set of linear
matrix equations:

N
DiG! + B'H Y B/G/ + BI'H A, =0, (2.26)
=
N . .
Djg/+ B/'H/ Y Blg/ +v[ =0, 2.27)
=
where
D! := R + B'H!B!, (2.28)
vl := BI'[H]s — hi] — RI'ii". (2.29)

In each time period ¢ the auxiliary matrices are determined in the following
order:

1. Hti, h;: according to (2.16) and (2.17)
2. G,i , gf: according to (2.26) and (2.27)
3. K;, k;: according to (2.18) and (2.19).

Using the Riccati matrices H, and i’ fori = 1,..., N and the feedback matrices
G! and g/ fori = 1,..., N for all time periods, we can compute the matrices K,
and k; as defined by (2.18) and (2.19). Then approximate feedback Nash equilibrium
values of the states and controls forming a solution of the game can be determined
by a forward loop in accordance with:

x| = Kx | + ki, x§ = xo, (2.30)
W*=Gix* , +g,i=1...,N. (2.31)

2.3.3 The Open-Loop Nash Equilibrium Solution

At the beginning of an open-loop Nash game, each of the N simultaneously acting
players makes a binding commitment to stick to a chosen policy rule for the entire
time horizon t = 1,...,T. As long as these commitments hold, the solution is an
equilibrium in the sense that none of the players can improve their individual welfare
by one-sided deviations from the open-loop Nash equilibrium path. Although the
open-loop Nash equilibrium solution is not time consistent, for certain situations this
solution concept could be the right choice. Furthermore, even if this kind of policy
is not very realistic, its analysis can help compare the quality of other solutions.
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In the following, the procedure of finding the open-loop Nash equilibrium
solution is described. For an invertible matrix

N
Ac=1+Y B/[RII™'B/ H/. (2.32)
j=1

the Riccati matrices for player i (i = 1,...,N) are determined by backward
iteration according to the following recursive system of matrix equations:

H | = Qi+ AH[A] A, Hj =0} (2.33)
hi_y =—=0, \%_ + A[H/[A] "0 + h). hfp = —04 % (2.34)
where
N =58 + Z B/ [w —[R’17'B] K. (2.35)
j=1

In each time period ¢ the auxiliary matrices are determined as follows:

1. H/!, hi:according to (2.33) and (2.34)
2. A;:according to (2.32).

With the Riccati matrices H; and h!, stored for all time periods 7 € {1,...,T},
the approximate open-loop Nash equilibrium values of the state and the control
variables for all players i = 1, ..., N) are determined by forward loop according to

xf = [A)TAXE + 0] (2.36)
and
w* =" — [RITVBI[H] X} + hi], (2.37)

starting with the initial condition xj = xo.

2.3.4 The Feedback Stackelberg Equilibrium Solution

The feedback Stackelberg equilibrium solution is asymmetric: The Stackelberg
leader (player 1) announces his decision rule, u! = ¢'(x,—), to all other players
while the actions of the other players (players i = 2,..., N, the Stackelberg
followers) are based on the current state x,_; and on the decision of the leader
according to the reaction function u! = ¢’ (x,—;, u!). At the time of optimizing his
performance, the leader considers the reaction coefficients,
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i 8”; .
¥ = —, i=2,...,N, (2.38)
du,
as rational reactions of the followers i = 2, ..., N. These reaction coefficients lI/f
(i = 2,...,N) are determined as solutions of the following set of N — 1 linear
matrix equations:
N . .

BI'H/B! + Diw + B'H! Y B/W/ =0. i=2...N, (2.39)

j=2

J#i

where H; denotes the Riccati matrices of the feedback Stackelberg game calcu-
lated as

N
H_ =0 +KHEK+Y G'RIG/. H. =0} i=1...N (240
j=1

and the matrix D! is given by
D! :=R! + B/ H!B]. (2.41)
The matrices W,' and w! (fori = 2,..., N), which are required for determining

the feedback matrices Gli and gf (fori =1,...,N), are calculated as solutions of
the following set of N — 1 linear matrix equations:

N
DiW/+BI'H | A+ B/W/ | =0, (2.42)
i
N . .
Diw; + Bl (H/s, —h}) — R’ + B H! > B/w] =0. (2.43)
=
Using
N . .. .. .
iy = Qi %o — K[[H/k =)+ Y G R[] — g/, Wy = Q7%7, (244)
j=1

and given that the matrix

N
A= R+ BHB + Y W RW (2.45)
=
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is invertible, for

N
B,:=B'+) Bl¥W (2.46)

j=2
we can derive the Riccati matrices, H/ | and h!_, fori = 1,..., N, by backward

iteration according to the Riccati equations (2.40) and (2.44). The feedback matrices
are determined by

N
Gl i=—[A]" | BiH'A+ > Diw/ |, (2.47)
j=2
- 1 N . .
gl =—[A]" v/ +5,+) Diwl|. (2.48)
j=2
G =W +W¥G!, i=2,....N, (2.49)
g i=w +W¥gl i=2,..N, (2.50)
where
Di:=w'R'" +BH'B, i=2,..N, (2.51)
N ./ .y .y . .
b= W [B/ H's,— B/'h! — RV a,“] : (2.52)
j=2
Using the Riccati matrices Hli and hi fori = 1,..., N and the feedback matrices
Gti and gf fori = 1,..., N for all time periods, we can compute the matrices K,
and k; by:
N . .
K, :=A +) B/G]. (2.53)
Jj=1
N . .
ki=s+Y Blgl. (2.54)
j=1

In each time period ¢ the auxiliary matrices are determined in the following
order:

1. H/, h':according to (2.40) and (2.44)

2. W' according to (2.39)
3. W/, wi: according to (2.42) and (2.43)
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4. G,i , gf: according to (2.47), (2.48), (2.49), and (2.50)
5. K, k;: according to (2.53) and (2.54).

Finally, the approximate feedback Stackelberg equilibrium values of the states
and controls for the game for all players i = 1,..., N) are determined by forward
iteration according to the following functional relationships:

x[ = Kx | + ki, x§ = xo, (2.55)
w*=G'x"  +g,i=1,...,N. (2.56)

2.4 An Application

2.4.1 The MUMODI Model

In order to show the applicability of the OPTGAMES3 algorithm we use a simplified
macroeconomic model of a monetary union consisting of two countries (or two
blocs of countries) with a common central bank. This model is called MUMOD1
and slightly improves on the one introduced in Blueschke and Neck (2011). For a
similar framework in continuous time, see van Aarle et al. (2002). The model is
calibrated so as to deal with the problem of public debt targeting in a situation that
resembles the one currently prevailing in the European Union, but no attempt is
made to describe a monetary union in general or the EMU in every detail.

In the following, capital letters indicate nominal values, while lowercase letters
correspond to real values. Variables are denoted by Roman letters and model
parameters are denoted by Greek letters. Three active policy makers are considered:
the governments of the two countries responsible for decisions about fiscal policy
and the common central bank of the monetary union controlling monetary policy.
The two countries are labelled 1 and 2 or core and periphery, respectively. The idea
is to create a stylized model of a monetary union consisting of two homogeneous
blocs of countries, which in the current European context might be identified with
the stability-oriented bloc (core) and the PIIGS bloc (countries with problems due
to high public debt).

The model is formulated in terms of deviations from a long-run growth path. The
goods markets are modelled for each country by a short-run income-expenditure
equilibrium relation (IS curve). The two countries under consideration are linked
through their goods markets, namely exports and imports of goods and services. The
common central bank decides on the prime rate, that is, a nominal rate of interest
under its direct control (for instance, the rate at which it lends money to private
banks).

Real output (or the deviation of short-run output from a long-run growth path)
incountry i (i = 1,2) attimet (t = 1,...,T) is determined by a reduced form
demand-side equilibrium equation:



42 D. Blueschke et al.

Yie = 8i(mwjs —mwit) = Vi(rie —0) + pi yju — Bimis + Ki Yig—1) — 0i &ir + 2disr, (2.57)

fori # j (i,j = 1,2). The variable m;, denotes the rate of inflation in country i,
r;; represents country i’s real rate of interest and g;; denotes country i’s real fiscal
surplus (or, if negative, its fiscal deficit), measured in relation to real GDP. g;; in
(2.57) is assumed to be country i’s fiscal policy instrument or control variable. The
natural real rate of output growth, 6 € [0, 1], is assumed to be equal to the natural
real rate of interest. The parameters &;, y;, p;i, Bi, ki, 0i, in (2.57) are assumed to be
positive. The variables zd;, and zd,, are non-controlled exogenous variables and
represent exogenous demand-side shocks in the goods market.

For¢t = 1,...,T, the current real rate of interest for country i (i = 1,2) is
given by:

rip = lis — 1), (2.58)

where 7/, denotes the expected rate of inflation in country i and I;;, denotes the
nominal interest rate for country i, which is given by:

liy = Rgy — Aigie + xiDir + zhpiy, (2.59)

where Rg; denotes the prime rate determined by the central bank of the monetary
union (its control variable); —A; and y; (A; and y; are assumed to be positive) are
risk premiums for country i’s fiscal deficit and public debt level. This allows for
different nominal (and a fortiori also real) rates of interest in the union in spite
of a common monetary policy due to the possibility of default or similar risk of a
country (a bloc of countries) with high government deficit and debt. zhp;, allows
for exogenous shocks on the nominal rate of interest, e.g. negative after-effects of a
haircut or a default.

The inflation rates for each country i = 1,2 and ¢ = 1,...,T are determined
according to an expectations-augmented Phillips curve, i.e. the actual rate of
inflation depends positively on the expected rate of inflation and on the goods market
excess demand (a demand-pull relation):

iy = 77,‘6; + & yir + z8is, (2.60)

where & and &, are positive parameters; zs;; and zsp; denote non-controlled
exogenous variables and represent exogenous supply-side shocks, such as oil price
increases, introducing the possibility of cost-push inflation; 7/, denotes the rate of
inflation in country i expected to prevail during time period 7, which is formed at
(the end of) time period ¢ — 1. Inflationary expectations are formed according to the
hypothesis of adaptive expectations:

i, = &imig— + (1 — 81’)771'6(1_1)» (2.61)

where g; € [0, 1] are positive parameters determining the speed of adjustment of
expected to actual inflation.
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The average values of output and inflation in the monetary union are given by:

VEr = 0y + (1 —w)yy, we]0,1], (2.62)
wg = ony + (1 —w)my, oel0,1]. (2.63)

The parameter @ expresses the weight of country 1 in the economy of the whole
monetary union as defined by its output level. The same weight @ is used for
calculating union-wide inflation in (2.63).

The government budget constraint is given as an equation for government debt
of country i (i = 1,2):

Dit = (1 +1ig—1)) Dig—1) — &ir + 2his, (2.64)

where D; denotes real public debt of country i measured in relation to (real) GDP.
No seigniorage effects on governments’ debt are assumed to be present. z/;, allows
us to model an exogenous shock on public debt; for instance, if negative it may
express default or debt relief (a haircut).

Both national fiscal authorities are assumed to care about stabilizing inflation
(), output (y), debt (D), and fiscal deficits of their own countries (g) at each time
t. This is a policy setting which seems plausible for the real EMU as well, with full
employment (output at its potential level) and price level stability relating to country
(or bloc) i’s primary domestic goals, and government debt and deficit relating to its
obligations according to the Maastricht Treaty of the European Union. The common
central bank is interested in stabilizing inflation and output in the entire monetary
union, also taking into account a goal of low and stable interest rates in the union.

Equations (2.57)—(2.64) constitute a dynamic game with three players, each of
them having one control variable. The model contains 14 endogenous variables and
four exogenous variables and is assumed to be played over a finite time horizon.
The objective functions are quadratic in the paths of deviations of state and control
variables from their desired values. The game is nonlinear-quadratic and hence
cannot be solved analytically but only numerically. To this end, we have to specify
the parameters of the model.

The parameters of the model are specified for a slightly asymmetric monetary
union; see Table 2.1. Here an attempt has been made to calibrate the model
parameters so as to fit for the EMU. The data used for calibration include average
economic indicators for the 16 EMU countries from EUROSTAT up to the year
2007. Mainly based on the public finance situation, the EMU is divided into two
blocs: a core (country or bloc 1) and a periphery (country or bloc 2). The first bloc
has a weight of 60% in the entire economy of the monetary union (i.e. the parameter
w is equal to 0.6). The second bloc has a weight of 40% in the economy of the union;
it consists of countries with higher public debt and deficits and higher interest and
inflation rates on average. The weights correspond to the respective shares in EMU
real GDP. For the other parameters of the model, we use values in accordance with
econometric studies and plausibility considerations.
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Table 2.1 Parameter values for an asymmetric monetary union,

i=1,2
T 0 1) 8i, Bi. i€ Vi PisKi Ei A Xi
30 3 0.6 0.5 0.25 0.0125

Table 2.2 Initial values of the two-country monetary union

Yio i 0 i Do D Rgp £1.0 £2.0
0 2 2 60 80 3 0 0

Table 2.3 Target values for an asymmetric monetary union

Vit 51[ 52[ it e YE: 8it R,
0 60\ 50 8060 1.8 1.8 0 0 3

The initial values of the macroeconomic variables, which are the state variables
of the dynamic game model, are presented in Table 2.2. The desired or ideal values
assumed for the objective variables of the players are given in Table 2.3. Country 1
(the core bloc) has an initial debt level of 60% of GDP and aims to decrease this level
in a linear way over time to arrive at a public debt of 50% at the end of the planning
horizon. Country 2 (the periphery bloc) has an initial debt level of 80% of GDP and
aims to decrease its level to 60% at the end of the planning horizon, which means
that it is going to fulfil the Maastricht criterion for this economic indicator. The ideal
rate of inflation is calibrated at 1.8%, which corresponds to the Eurosystem’s aim
of keeping inflation below, but close to, 2%. The initial values of the two blocs’
government debts correspond to those at the beginning of the Great Recession, the
recent financial and economic crisis. Otherwise, the initial situation is assumed to
be close to equilibrium, with parameter values calibrated accordingly.

2.4.2 Equilibrium Fiscal and Monetary Policies

The MUMOD1 model can be used to simulate the effects of different shocks acting
on the monetary union, which are reflected in the paths of the exogenous non-
controlled variables, and of policy reactions towards these shocks. In this paper
we show the applicability of the OPTGAME3 algorithm. To this end we assume a
mixed asymmetric shock which occurs both on demand (zd;) and supply side (zs;)
as given in Table 2.4.

In the first three periods, both countries experience the same negative demand
shock (zd;) which reflects a financial and economic crisis like the Great Recession.
After three periods the economic environment of country 1 stabilizes again, but for
country 2 the crisis continues for two more periods.

Starting with time period 3 both countries also experience adverse supply side
shocks, which lead to increases in inflation rates. These shocks last three periods
for both countries (or blocs) but vary in their strength. The core bloc experiences



2 OPTGAMES3: A Dynamic Game Solver and an Economic Example 45

Table 2.4 Negative

1 2 3 4 5 6 30
asymmetric shock on demand
and supply side W =2 —4 2 0 0 0
zd; -2 -4 =2 =2 -1 0 0
z81 0 0 2 2 0 0
782 0 0 4 4 4 0 0
3.5
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Fig. 2.1 Prime rate Rg, controlled by the central bank

an increase in inflation of 2 percentage points, the periphery bloc an increase of 4
percentage points.

In this section, we investigate how the dynamics of the model and the results
of the policy game (2.57)—(2.64) depend on the strategy choice of the decision
makers. For this game, we calculate five different solutions: a baseline solution
with the shock but with policy instruments held at pre-shock levels (zero for the
fiscal balance, 3 for the central bank’s interest rate), three non-cooperative game
solutions and one cooperative game solution. The baseline solution does not include
any policy intervention and describes a simple simulation of the dynamic system.
It can be interpreted as resulting from a policy ideology of market fundamentalism
prescribing non-intervention in the case of a recession.

Figures 2.1-2.5 show the simulation and optimization results of our experiment.
Figures 2.1 and 2.2 show the results for the control variables of the players and
Figs. 2.3-2.5 show the results of selected state variables: output, inflation and public
debt.

Without policy intervention (baseline scenario, denoted by “simulation”), both
countries suffer dramatically from the economic downturn modelled by the demand
side shock in the first periods. The output of country 1 drops by 6% and that of
country 2 by more than 7%, which for several European countries is a fairly good
approximation of what happened in reality. This economic crisis lowers the inflation
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Fig. 2.2 Country i’s fiscal surplus g;; (control variable) for i = 1 (core; top) and i = 2
(periphery; bottom)

rates to values very close to zero, but with the appearance of the supply side shock,
inflation rates go up and reach 3% for country 1 and nearly 6% for country 2 in the
non-controlled baseline scenario. Even more dramatic is the development of public
debt. Without policy intervention it increases during the whole planning horizon
and arrives at levels of 145% of GDP for country 1 (or core bloc) and 180% for
country 2 (or periphery bloc), which shows a need for policy actions to stabilize the
economies of the monetary union.

If the players want to react optimally to the demand and supply side shocks,
their actions and their intensity depend on the presence or absence of cooperation.
For example, optimal monetary policy has to be expansionary in all strategies, but
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Fig. 2.3 Country i’s output y;; for i = 1 (core; top) and i = 2 (periphery; bottom)

in the cooperative Pareto solution it is more active during the first eight periods.
The open-loop Nash equilibrium solution, in contrast, is more or less constant
during the whole optimization period, which causes the central bank to be less
active at the beginning and relatively more active at the end of the optimization
horizon.

With respect to fiscal policy, both countries are required to set expansionary
actions and to create deficits in the first four periods in order to absorb the demand
side shock. After that a trade-off occurs and the governments need to take care of
the financial situation and to produce primary surpluses. The only exception is the
cooperative Pareto solution: cooperation between the countries and the central bank



48 D. Blueschke et al.

5~
4L
3L
2
g
c s
kel
I ot
E
1L
X -+ simulation & '
-2 | —=— Pareto \O\()\
— © —Nash-OL & © <
-3+ Nash-FB s
—©&— Stackel-FB
-4 T I I L 1 ]
0 5 10 15 20 25 30
8
X - simulation
—=&— Pareto
6 - : — & —Nash-OL
Nash-FB
—©— Stackel-FB
4L
N
a
s 2
kS
E
oL
2L
\QX)\(; o
-4 1 © © -OfQ
0 5 10 15 20 25 30

Fig. 2.4 Country i’s inflation rate 7r;; fori = 1 (core; top) and i = 2 (periphery; bottom)

(which runs an expansionary monetary policy) and the high inflation means that the
balance of public finances can be held close below zero. Even so the countries are
able to stabilize and to bring down their public debts to the targeted values.

The non-cooperative Nash feedback and Stackelberg feedback solutions give
very similar results. In comparison with a Pareto-optimal solution, the central
bank acts less actively and the countries run more active fiscal policies (except
during the negative demand shock). As a result, output and inflation are slightly
below the values achieved in a cooperative solution, and public debt is slightly
above.
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Fig. 2.5 Country i’s debt level D;, fori = 1 (core; top) and i = 2 (periphery; bottom)

2.5 Concluding Remarks

In this paper we show the framework of the OPTGAME3 algorithm which allows
us to find approximate solutions for nonlinear-quadratic dynamic tracking games.
The algorithm was programmed in C# and MATLAB and includes the cooperative
Pareto-optimal solution and non-cooperative Nash and Stackelberg equilibrium
solutions. The applicability of the algorithm was shown using the MUMOD1 model,
a small stylized nonlinear two-country macroeconomic model of a monetary union.
We analyse the interaction between fiscal (governments) and monetary (common
central bank) policy makers. By applying a dynamic game approach to a simple
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macroeconomic model of a two-country monetary union, we obtain some insights
into the design of economic policies facing negative asymmetric shocks on the
demand and the supply side. The monetary union is assumed to be asymmetric in
the sense of consisting of a core with less initial public debt and a periphery with
higher initial public debt, which is meant to reflect the situation in the EMU.

Our model implies that optimal and equilibrium policies of both the governments
and the common central bank are counter-cyclical during the immediate influence
of the demand shock but not afterwards. The later occurrence of a negative supply
side shock increases the inflation rates and supports the countries in reducing their
public debts. In the case of the Pareto solution, this leads to the situation that the
countries can reduce their debts even without strongly restrictive fiscal policies.
Taken together, the two negative shocks worsen the economic situation in the
monetary union and produce growth rates of real output below the natural or long-
run growth rate. We also show that the cooperative Pareto solution gives the best
response to these shocks especially regarding output and public debt results.
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Chapter 3
Dynamic Programming Approach to Aircraft
Control in a Windshear

Nikolai D. Botkin and Varvara L. Turova

Abstract Application of a dynamic programming method to the problem of aircraft
control during take-off in a windshear is considered. A simplified four-dimensional
model of the aircraft dynamics is used, and stable numerical algorithms for solving
Hamilton—Jacobi-Bellman-Isaacs equations arising from differential games with
state constraints are utilized for the design of feedback controls.

Keywords Takeoff control ¢ Conflict control problems e State constraints
* Hamilton—-Jacobi-Bellman—Isaacs equations * Viscosity solutions ¢ Numerical
approximations

3.1 Introduction

Many aircraft accidents occur due to severe windshears such as microbursts.
The microburst appears when a descending air flow hits the earth surface. This
phenomenon is especially dangerous for aircrafts passing the microburst zone
during the landing or take-off, because quick changes of the wind velocity occur
at relatively low altitudes. Therefore, the development of automatic controls that
can counteract the sudden microburst attack is of great importance.

Papers of Miele et al. (1986a,b), Chen and Pandey (1989), Leitmann and Pandey
(1990, 1991), and Leitmann et al. (1993) address aircraft control during take-off in
the presence of windshears. In works of Miele et al. (1986a,b), the wind velocity
field is assumed to be known. Open-loop controls are constructed in Miele et al.
(1986b) by solving appropriate optimization problems. In Miele et al. (1986a), local
information about the wind is used for the construction of feedback controls. More
realistic situation assumes that the wind velocity field is not known at all. Having
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this in mind, different variants of feedback controls are proposed in papers of Chen
and Pandey (1989), Leitmann and Pandey (1990, 1991), and Leitmann et al. (1993).
In Chen and Pandey (1989), the design of a feedback robust control strategy is based
on the construction of an appropriate Lyapunov function. The robust control theory
is used in Leitmann and Pandey (1990) to develop feedback controls stabilizing
the relative path inclination, and in Leitmann and Pandey (1991) and Leitmann
et al. (1993) for the design of feedback controls stabilizing the climb rate. The
approach based on differential game theory advanced in books of Krasovskii and
Subbotin (1974, 1988) (the second book is a revised translation of the first, original,
one) is applied in papers of Botkin et al. (1993) and Turova (1991) to counteract
to unknown wind disturbances. Reasonable feedback control algorithms based on
solving appropriate linear differential games are suggested.

In this paper, feedback controls that are effective against microbursts are
designed using dynamic programming techniques. Both the case of known wind
velocity fields and the case of unknown wind disturbances are considered. Our
method is based on numerical solving Hamilton—Jacobi equations arising from
suitable nonlinear differential games of fixed time duration with state constraints.

3.2 Model Equations

We use a simplified model of the aircraft dynamics assuming the motion in the
vertical plane (see Miele et al. 1986a,b). The following four ordinary differential
equations governing the aircraft relative velocity V', the relative path inclination y,
the horizontal distance x, and the altitude & are considered:

mV = T cos(a + 8) — D —mgsiny — mW, cos y — mWj,siny, 3.1
mVy = T sin(a + 8) + L —mgcosy + mW, siny —mW, cosy, ’
x = Vecosy + W,

. ) (3.2)
h =Vsiny + W,.

Here, o is the attack angle; W, and W), are the longitudinal and vertical
components of the wind velocity, respectively; g is the acceleration of gravity; m
the aircraft mass; § the thrust inclination; T, D, and L are the thrust, the drag, and
the lift forces, respectively, defined as follows:

T =Ay+ AV + A, V2,
1
D = ECDpSVZ, Cp = By + Bia + Byo?,

Co + Cia, O < Olxx

1
L=-C.pSV? (.
2 Co+ Cio + Cy(o — a**)z» o€ [a**,a*].
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For simplicity, the coefficients 4;, B;, C;,i = 0, 1,2, are assumed to be constants;
o and o are given constants; p is the air density; and S is the reference surface
area.

The attack angle o is considered as the control parameter restricted by
0 < o < ax.

In the case where the longitudinal and vertical components, W, and W, of the
wind velocity field are supposed to be known, the derivatives W, and W, in (3.1)
are computed as follows:

oW,
iV siny + W),

. oW,

W, = —=WVcosy + W,) +
ox (3.3)

. aw, oW, '

Wy, = a—h(V cosy + Wy) + 3—hh(V siny + Wj).
X

To simulate wind velocity fields, two different models of microburst are used.

3.2.1 Microburst Model 1

The model equations are taken from Chen and Pandey (1989):

—k, x<a
Wy=q-k+2k(x—a)/(b—a), a<x=<bh

k, x=>b,

0, x<a

—k(h/he)(x —a)/(c —a), a<x<c
—k(h/h)b—x)/(b—c), ¢c<x<b
0, x> b,

where a and b are the onset and termination of windshear, respectively, ¢ =
(a + b)/2, and h, is a fixed constant. The parameter k defines the intensity of
the microburst.

An example of wind streamlines generated by this model is shown in Fig. 3.1.

3.2.2 Microburst Model 2

The second model of microburst is the double vortex model (see Fig. 3.2) taken from
Leitmann and Pandey (1990). Two cores of radius R located symmetric about the
vertical line x = 1500 are considered. The vortex motion of air about the centers of
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Fig. 3.2 Double vortex microburst model

the cores is assumed. Inside of each core, the tangential speed, Vp, of wind increases
linearly from zero at the center to a maximum value V; at r = R, where r is the
distance from the core center. Outside of the core, Vj decreases in inverse proportion
to the distance r. In polar coordinate system located at the core center, the tangential
speed of wind is

Vor/R,0<r <R,
0:
VoR/r,r > R.

At every spatial point (x, &), the horizontal (resp. vertical) component W, (resp.
Wy) of the wind velocity is computed as the projection of the vector Vg, + Vj,
(see Fig.3.2) to the axis x (resp. k). The resulting wind velocity field is shown in
Fig.3.3.



3 Dynamic Programming Approach to Aircraft Control in a Windshear 57

h

________ ~xwsANNALVYY I e R
A L N i W W O ! iy e
__,___.._...‘-.-.‘-.\.\\\\\{ R B R Fa S o M A
,,,,—_-—-HH‘M\Q§§§ e i e i
o o e o ————" T et e ——— N
P \\\'§ e N

\ ; ———— e N NN

e

PR S S T T T L T C S

Stk
[T f
R
?ﬁ
N ]
e b
e
NS ———— L,
Bt P ]
el T )
e il T 2 BV I I I B I )

Fig. 3.3 Example of a wind velocity field generated by microburst model 2

3.3 Problem Formulations

Three variants of the problem statement are considered.

P1. The objective of the control o in system (3.1)—(3.2) is to maximize the
performance index

Ly
J::/(V@)gnyay+W@@ayha»)h (3.4)

1o
and to satisfy the state constraint
h(t) =0, to<t<ty, (3.5)

where 1y and f; are the start and final times of the process, respectively. Notice
that the integrand in (3.4) is the aircraft climb rate so that the functional expresses
the altitude at the time #,. The wind velocity field is supposed to be known and
described by microburst model 1 or 2.

In this variant, the full four-dimensional nonlinear optimal control problem (3.1)—
(3.5) is numerically solved. Notice that indeed the performance index —J is to be
minimized by the control « to fit the problem statement to the numerical method
given in Sect. 3.4.

P2. In the second variant, a two-dimensional differential game is designed in the
following manner. The functions W, (x, ) and W}, (x, h) are supposed to be known
and defined by microburst model 1 or 2. The horizontal distance and the altitude are
determined from the assumption that the aircraft moves with a constant velocity V;
along a straight line with an inclination angle y,, i.e.

x=V,cosy,-t, h=V,siny,-t. (3.6)
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The expressions (3.6) are substituted into the functiqns Wx a_nd Wh defined !)y the
relatiqns (3.3), and then the resulting expressions for W, and W},, denoted by Wy |36
and W,|36), are substituted into (3.1). This yields a two-dimensional differential
game

V=5atV.y,a,0), 7=h5HEV.v,a,0),
where

fi =m™" (T cos(a + 8) — D — mg siny — mW |6 cos y — mWi e siny),
fo=mV)™ (T sin(a+8)+L—mg cos y+mWy| a6 sin y—mWy)| 3.6 cos ¥).

The attack angle « is, as before, the control parameter of the first player, the angle
¥» 1s considered as a disturbance controlled by the opposite player. It is assumed that
|Yo =¥+ < y«, where y, is a reference value of the path inclination, and yy is a given
bound. The objective of the first player is to minimize the functional

tr
7= / (V1) siny(t) — V, siny,)%d. 3.7)
to
whereas the aim of the disturbance is the opposite. The functional (3.7) measures

the deviation of the relative vertical velocity from a reference value.

P3. In the third variant of the problem statement, the wind velocity field is supposed
to be unknown. We use the idea to control the climb rate, see Leitmann et al. (1993).
The computation of / yields

. T D L
h = —[cos (e + §)siny + sin(« + §) cosy] — —siny + —cosy —g. (3.8)
m m m

Substituting the expressions for siny and cosy given by (3.2) into (3.8) and
introducing new variable z =h yield the system

Z—Wh
|4

22[}%005(054—8)—%] +[£sin(a+8)+%] 1—(2_—Wh)2—g.

Vv

(3.9)
The control parameter of the first player is, as before, the attack angle «. The second
player has the vertical wind velocity W}, at his disposal. To avoid the extension of
system (3.9) by adding an equation for V/, this variable is placed at the disposal of
the second player too, which is in accordance with the guaranteed control concept.
Moreover, such a formulation is reasonable because the relative velocity V' is
strongly affected by the wind velocity.
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The objective of the first player is to minimize the payoff functional (3.7), the
aim of the second player is the opposite. The bounds on the control parameters are
the following:

0<a<a., Ve[V,—50.V,]., W el[-100,0]. (3.10)

Notice that only negative deviations of V' and W, from their reference values
are assumed in (3.10), because negative deviations are mostly dangerous, whereas
positive ones are favorable.

3.4 Numerical Method

Let us outline solution methods for problems P1-P3. The description will be given
in terms of general nonlinear differential games with integral payoff functionals and
state constraints.

3.4.1 Viscosity Solutions

Consider the following differential game:
x = ft.x,u,v), (G.11)

where x := (x1,...,x,) € R” is the state vector, u and v are control parameters of
the first and second player, respectively, restricted as

uePCR’, veQCRY, (3.12)

Here, P and Q are given compacts. The game starts at #, € [0, 7] and finishes at
t . The objective of the first player (control u) is to minimize the functional

ty

J(x() = / o(t, x(t))dt, (3.13)

where o : [0,77] x R" — R is a given function. The objective of the second
player (control v) is the opposite. Moreover, the trajectories should remain in a state
constraint set N given by the relation

N :={(t,x):te€[0,t7], 0@, x) < e}, (3.14)

where 6 : [0,7/] x R" — R is a given function, and € is a fixed (small) value
comparable with expected values of the functional (3.13).
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It is reasonable to formalize the game (3.11)—(3.14) using the concept of feed-
back strategies (see Krasovskii and Subbotin 1988). Nevertheless, the existence of
the equilibrium in pure feedback strategies requires the fulfillment of the following
saddle point condition:

max min{p, f(t, x,u,v)) = minmax(p, f(z, x,u,v)) (3.15)
vEQ uepP ueP veQ

forany p € R", (t,x) € [0,77] x R". Unfortunately, this relation does not hold
for problems P, and P3 formulated in Sect. 3.3. On the other hand, it is known that
the equilibrium, the existence of the value function, can be achieved if one of the
players uses feedback counter strategies, whereas the other applies pure feedback
strategies (see Krasovskii and Subbotin 1988). In our case, the second player (wind)
will be permitted to measure the current value of the attack angle (“future” values
are not available). This meets the concept of guaranteeing aircraft control.

Coming back to the formal description, the first player uses feedback pure
strategies which are arbitrary functions

P [0.t;] xR" - P,

whereas the second player applies feedback counter strategies which are functions
of the form:

2°:[0,ts] xR"x P — Q.

For any initial position (fo, Xo) € [0, /] x R" and any strategies & and 2¢, two
functional sets X (¢, x9, &) and X, (%o, xo, 2°) are defined (see Krasovskii and
Subbotin 1988).

The set X (o, x9, &?) consists of all limits of Euler trajectories of (3.11) which
are obtained when the first player chooses u = (¢, x(t;)) on each interval
[#i, ti+1) of partitions of [fy,?r], and the second player uses admissible controls
v(t), t € [to, 7] In doing that, all possible partitions whose diameter tends to zero
and all admissible controls of the second player are exhausted. All Euler trajectories
start at ¢y from the fixed initial state xg.

The set X (2o, xo, 2°) consists of all limits of Euler trajectories of (3.11) which
are obtained when the first player uses admissible controls u(t), t € [fo,?/], and
the second player chooses v = 2€(t;, x(¢;),u(t;)) on each interval [t;,¢4+;) of
partitions of [fo,?,]. All possible partitions whose diameter tends to zero and all
admissible controls of the first player are exhausted. All Euler trajectories start at #,
from the fixed initial state x.

We assume that the function f is bounded, uniformly continuous, and uniformly
Lipschitzian in ¢ and x on the set [0,7] x R" x P x Q; the functions o and 6 are
bounded and Lipschitzian in ¢, x.

It is proved in Krasovskii and Subbotin (1988) that the differential game (3.11)—
(3.14) has a value function ¥ : (¢, x) — #(¢, x) defined by the relation
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¥ (t,x) = mi J(x()) = i J(x()). 3.16
(t,x) min emax (x() max emin (x()) (3.16)

In other words, the upper value of the game coincides with the lower one for
(¢, x) € [0,t7] xR", if the second player uses counter strategies. The value function
is bounded and Lipschitzian in ¢, x on [0,7] x R" (see Subbotin 1995; Subbotin
and Chentsov 1981).

Define the Hamiltonian as follows in the case of counter strategies of the second
player (see Krasovskii and Subbotin 1988):

H(t, x, p) = minmax(p, f(t,x,u,v)) + o(t, x) (3.17)
u€P veQ

and consider the Hamilton—Jacobi—Bellman—Isaacs equation
Y+ H(t,x,7)=0, ¥(tr,x)=0. (3.18)

It is a well-known fact in the theory of differential games that the value function is
a viscosity solution of an appropriate Hamilton—Jacobi—Bellmann—Isaacs equation.
In the case of state constraints, the following proposition, which is a particular case
of Proposition 4.1 from Botkin et al. (2011a), is true.

Proposition 3.1. A Lipschitz function ¥V is the value function of differential game
(3.11)—(3.14) if and only if:

(i) forany (t,x) € [0,t7] xR", ¥ (ty,x) =0and V(t, x) > 0(t, x);
(ii) for any point (s, yo) € [0,17] x R" and any function ¢ € C' such that ¥ — ¢
attains a local minimum at (g, yo), the following inequality holds

0 d
(50 30) + H(so. 0. 5 (s0. 30) < 0 (3.19)
t dy
(iii) for any point (so, yo) € [0,27] x R" such that ¥ (so, yo) > 6(so, yo) and any

function ¢ € C' such that ¥ — ¢ attains a local maximum at (sy, yo), the
following inequality holds

0 0
a—(f(so, ¥o0) + H(so, Yo, %(So, ¥0)) = 0. (3.20)

3.4.2 Finite-Difference Scheme

To compute viscosity solutions of (3.18) satisfying Proposition 3.1, the following
finite difference scheme is applied.

Letz,hy,...,h, be time and space discretization step sizes, and F be an operator
defined on continuous functions as
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F(7;t,7)(x) = min max ”//(x + tf(t, x,u, v)) + to(t, x). (3.21)
u€P veQ

PutA=ts/t+1,t, =4Lr,£ =0,..., A and introduce the following notation:
Vi xi)) =Y b, inhy), 05Xy X )=0(t i1k, L ighy).

Denote h := (hy,...,h,) and |h| = max{hy, ..., h,}. Let %}, be an interpolation
operator that maps grid functions to continuous functions and satisfies the estimate

%] — ¢ll < Clh|* | D] (3.22)

for any smooth function ¢. Here, ¢ is the restriction of ¢ to the grid, | - || the
point-wise maximum norm, D2¢ the Hessian matrix of ¢, and C is an independent
constant.

Notice that estimate (3.22) is typical for interpolation operators (see, e.g.,
MoBner and Reif 2009). Roughly speaking, interpolation operators reconstruct the
value and the gradient of interpolated functions, and therefore the expected error is
of order |h|>.

As an example, consider a multilinear interpolation operator constructed in the
following way (see Botkin et al. 2011b).

Let m € 1,2" be an integer, and (j ", ..., j7) the binary representation of m so
that j/" is either O or 1. Thus, each multiindex (j",..., j,") represents a vertex of
the unit cube in R”, and m counts the vertices. Introduce the following functions

n
om(x1,.x) = [[A—x) X o m=1 2 (3.23)

i=1

Note that the i th member in the product (3.23) is either 1 — x; or x; depending on
the value of j/”. Consider a point x = (x,...,x,) € R". Denote by x; the lower
and by X; = x; + h; the upper grid points of the i th axis such that x; < x; < X;.
Let ¢, m = 1,...,2" be the values of a grid function in the vertices of the n-brick
[T/=[x;,X;] (the vertices are ordered in the same way as the vertices of the unit
n-cube above). The multilinear interpolation of ¢~> at (xp,...,x,)is

2”
~ ~ X1 — X, Xn — X,
5% = m - W R .
7[p](x) m§=1¢ o, ( I, I )

Consider the following grid scheme:

yt-t =max{F(§ﬁ,[”f/z];tg,r),9Z}, YA=0, £=AA—1,...,1. (3.24)
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Here, F (,,?h [74;: te, ‘L’) is a continuous function which is assumed to be restricted
to the grid and then compared with the grid function 6. Thus, the right-hand side
of the first equation of (3.24) returns a grid function.

Theorem 3.1. The time-space grid function obtained by (3.24) converges point-
wise to the value function of the game (3.11)—(3.14) as t and |h| tend to zero under
the condition |h|/t < C, where C is any positive constant. The convergence rate is

max(+/z, v/|h)).

Proof. First, note that the problem (3.11)—(3.12) with the cost functional (3.13) and
state constraint (3.14) is equivalent to the problem

X = fit,x,u,v), i€l,n, (3.25)
Xpn+1 = U(tsx)

with the payoff functional
max {xn_H (tr), IEIB(?;(/] o(z. x(t))}. (3.26)

Really, if the value function of the game (3.25) and (3.26) at (¢y, X9, 0) is less than
or equal to €, then the first player guarantees the validity of the conditions

Xpgi1(ty) = /tf o(t,x(t))dt <e, 9(t,x(t)) <e, telttr]

independently on the behavior of the second player. Vice versa, if the guaranteed
result of the first player in the game (3.11)—(3.13) is less than or equal to € at (¢, x¢)
and the state constraint (3.14) holds, then the value function of the game (3.25) and
(3.26) at (29, x0, 0) is less than or equal to €. Thus, we deal with a particular case of
a more general problem considered in Botkin et al. (2011a).

Second, the operator F (,,th []; tes r) is monotone and possesses the following
consistency (generator) property:

F(Z[9.t.0)(x) —¢(x)

. H(t,x,D¢(x))| < Ci-|D*¢(x + |h*/7) (3.27)

for every ¢ € CZ(R"). The monotonicity of the operator F (.,Zﬁ, []: e, 1:) holds due
to the following monotonicity properties of the interpolation operator .%, and the
minimax step operator F(-;#;, 7):
Lilp)(x) = Zi[gal(x). xR,
F(p1:t,t)(x) = F(da:te,7)(x), x €R",
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where ¢, and ¢, are arbitrary grid functions such that ¢; (x") > ¢, (x") for all grid
nodes x", and ¢; and ¢, are arbitrary functions such that ¢;(x) > ¢»(x) for all
x e R".

The property (3.27) follows from inequality (3.22) and the boundedness of the
function f which provide the estimates

| L) (x + f(t.x,10,0)) = d(x + o/ (1, x,u,0))| < CIh]* | D3],

|¢(.X + rf(t,x,u, U)) —¢(X) - T(D¢(X), f(tvx’u» U))| = C/T2||D2¢||

that hold for all t € [0,¢7], x € R", u € P,and v € Q. These estimates along
with the definitions of the Hamiltonian H, see (3.17), and the operator F(-;#, 1),
see (3.21), prove (3.27).

Using the consistency property (3.27) and arguing as in Botkin et al. (2011a), we
arrive at the estimates (5.12) and (5.18) of Botkin et al. (2011a) with  + |h|>/T
instead of | P|. The assumption |k|/t < C provides the proof of Theorem 3.1. O

Notice that, in contrast to the upwind operator presented in Botkin et al. (2011a),
the grid scheme (3.24) does not require small values of t compared to |k|. This
advantage allows us to reduce the total number of time steps, which is very important
when the time interval of the game is relatively large, and each time step is resource
consuming.

3.4.3 Control Design

The control design proceeds in the following way. When computing the grid
approximation of the value function, see (3.24), minimizing (maximizing) values
of the control parameters of the first (second) players, see (3.21) are computed at
each grid node and stored on a hard disk at each sampling time instant (in our case,
only optimizing values of the attack angle are stored). In the simulation process,
the control is computed as a weighted linear combination of the control values at
the nodes of the grid cell in which the current four-dimensional state vector lies.
The weights are determined on the base of relative coordinates of the state vector in
the cell.

Thus, if the current state of the system at a time instant 7, is x, the grid function
u® with values

4

112...1pn

= arg min max Y (Xivigeody + Tf (te: Xiriy.oiy» 4, V)

is extracted from the hard disc. The control u(t;, x) is computed as % [u’](x).
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3.5 Simulation Results

This section describes numerical results obtained by the application of the above-
described grid method to problems P1-P3. Numerical values of the model coeffi-
cients correspond to Boeing-727 are taken from Chen and Pandey (1989).

The calculations are performed on a Linux SMP-computer with 8xQuad-Core
AMD Opteron processors (Model 8384, 2.7 GHz) and shared 64 Gb memory. The
programming language C with OpenMP (Open Multiprocessing) support is used.
The efficiency of the parallelization is up to 80%.

For problem P1 where we operate in the four-dimensional state space
(x,h,V,y), the grid size is 200 x 200 x 100 x 20. For problem P2 (P3) with only
two state variables V and y (h and 1), the grid size is 2000 x 400 (1000 x 100). It
should be stressed that the reduction of the grid size to 200 x 40 does not change
the quality of the control. However, the runtime is less than one second in this case,
which makes possible to develop diverse adaptive real-time control algorithms.

In Figs.3.4 and 3.5, results of the simulation of system (3.1)—(3.2) with the
control law obtained by solving problems P1 and P2 are presented. The wind
velocity field is described by microburst model 1. The solid lines correspond to
problem P1, whereas the dash and gray lines are related to problem P2. The
horizontal axes measure time in seconds. The vertical axes in Fig. 3.4a—d measure
the altitude & (feet), the aircraft relative velocity V' (feet/s), the path inclination
y (deg), and the angle of attack « (deg), respectively. The value of the parameter
k defining the intensity of the microburst is equal to 60. In Fig.3.5a, b, the
altitude and the angle of attack versus time are presented for a weaker windshear
(k = 50).

Figure 3.6 shows an example of the value function computed for problem P3.

Figure 3.7 shows simulation results for system (3.1)—(3.2). The control scheme
is based on solving problem P3, and the wind velocity is generated by microburst
model 2. Two different microburst intensities defined by the parameter V| are
considered: Vo = 100 and V,, = 140. Figures 3.7a, b show the altitude and the
aircraft velocity, respectively. The black lines correspond to V5 = 100, the dash
lines are related to the case Vy = 140. In the case V) = 140, the realizations of the
longitudinal and vertical wind velocities along the aircraft trajectory (Fig. 3.7¢) and
the realization of the (averaged) attack angle (Fig. 3.7d) are additionally presented.
The averaging of the control is necessary because of practical infeasibility of a bang-
bang control obtained by solving differential game (3.9)—(3.10).

Note that our simulation results are in a good agreement with those of Chen
and Pandey (1989) where a robust take-off control based on Lyapunov’s stability
theory is designed for the aircraft dynamics given by (3.1)—(3.2). Besides, our
results are in conformity with those of Turova (1991) where a control based on the
computation of switch lines in an appropriate two-dimensional linear differential
game is constructed.
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Fig. 3.4 Simulation results for problems P1 (solid black lines) and P2 (dash or gray lines);
microburst intensity k = 60: (a) the altitude & (feet), (b) the aircraft relative velocity V' (feet/s),
(c) the path inclination y (deg), (d) the angle of attack « (deg)

3.6 Conclusion

The current investigation shows that numerical methods can be successfully applied
to nonlinear (up to four-dimensional) optimal control problems and differential
games with terminal and non-terminal payoff functionals and state constraints. The
paper demonstrates that the approach based on the direct solution of nonlinear
problems yields control laws that are effective against severe wind disturbances
during take-off. These results are competitive with known approaches based on
robust control theory and numerical methods related to linearization and application
of linear differential games. The future work will be concentrated on the effective
numerical treatment of higher-dimensional nonlinear problems using sparse tensor
representation of grid functions.
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Fig. 3.6 Example of computed value function for problem P3
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Fig. 3.7 Simulation results for problem P3; microburst intensities ¥, = 100 and V, = 140: (a)
the altitude & (feet), (b) the aircraft relative velocity V' (feet/s), (c) the wind velocities W, and W
(feet/s), dashed and sold lines, respectively (d) the angle of attack o (deg)
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Chapter 4
Existence of Optimal Controls for a Bi-Level
Optimal Control Problem

Dean A. Carlson

Abstract In this paper we consider a class of bi-level optimal control problems.
Both the upper and lower level problems are formulated as ordinary optimal control
models of Lagrange type. Our goal is to formulate and prove a general existence
theorem for an optimal solution based on classical compactness, convexity and
seminormality conditions originating in the work of L. Tonelli for ordinary calculus
of variations problems and extended to optimal control problems by L. Cesari,
R.T. Rockafellar, L. Berkovitz and others. A distinguishing feature of our result
is that we do not require the lower level problem to have a unique optimal solution
corresponding to each admissible strategy of the upper level problem.

Keywords Optimal control ¢ Bi-level optimization e Existence ¢ Leader-
follower » Game theory ¢ Dynamic optimization

4.1 Introduction

The existence of optimal controls for problems involving ordinary differential
equations has a rich history going back to the beginning of the twentieth century
with the seminal work of L. Tonelli in the calculus of variations. This was the
beginning of what became known as the direct method which, for the first time,
adapted the Weierstrass theorem for continuous functions defined on compact sets
to lower semicontinuous functionals defined on a function space over a compact
set. Prior to that time, the theory of the calculus of variations primarily consisted of
necessary conditions for optimality and relatively few sets of sufficient conditions
for optimality. The existence of a solution to a specific problem relied on an

D.A. Carlson (<)

American Mathematical Society, Mathematical Reviews, 416 Fourth Street,
Ann Arbor, MI 48103, USA

e-mail: dac@ams.org

V. Kfivan and G. Zaccour (eds.), Advances in Dynamic Games, Annals of the 71
International Society of Dynamic Games 13, DOI 10.1007/978-3-319-02690-9_ 4,
© Springer International Publishing Switzerland 2013


mailto:dac@ams.org

72 D.A. Carlson

indirect method in which a candidate solution was first obtained using the necessary
conditions and then its existence was established by showing it satisfied a sufficient
condition. Tonelli’s direct method did not rely on the necessary conditions and did
not require a candidate solution. Instead the method consisted in showing that a
minimizing sequence of feasible trajectories forms a compact set in an appropriate
topology and that the objective functional is lower semicontinuous with respect
to that same topology. This type of result depends on a delicate balance between
these two goals to choose the correct topology. Namely, if the topology is too
strong, the semicontinuity properties will hold, but the conditions ensuring the
compactness properties will not hold. Conversely, if the topology is too weak, the
opposite problem arises. Fortunately since Tonelli’s time, this problem has been
carefully considered and a lot is known concerning this issue. In particular, for
the purposes considered here, it is important to remark that with the advent of
optimal control theory in the 1950s, Tonelli’s existence theory was extended to allow
for a corresponding theory for problems involving control functions. This theory
was developed primarily by L. Cesari and his students, but also had significant
contributions given by C. Olech, R.T. Rockafellar, L. Berkovitz, E. Balder, and many
others. To see these contributions as well as earlier ones in the calculus of variations
the reader is directed to the book by Cesari (1983). One distinguishing feature
between the existence theory of calculus of variations and the corresponding theory
for optimal control is the presence of the control functions. The desired optimal
control is obtained via a measurable selection theorem, once a convergent sequence
of minimizing trajectories is obtained. That is, there is no explicit convergence of
the optimal controls.

In this paper we adapt Cesari’s techniques to establish the existence of optimal
controls for a class of bi-level optimal control problems in which both the upper
and lower level problems are optimal control problems of Lagrange-type involving
ordinary differential equations. The lower level problem may be viewed as a
parametric control problem which depends on an admissible trajectory y of the
upper level problem. On the other hand, the upper level problem has a functional
dependence on the lower level problem in that the control system and cost objective
depend explicitly on the optimal trajectory of the lower level problem. These
problems have also been investigated as Stackelberg or hierarchal differential games
in which the upper level problem is considered to be “controlled” by the leader and
the lower level problem is “controlled” by the follower.

4.2 The Problem and Basic Hypotheses

The problem we consider is a bi-level optimal control problem in which the upper
level problem is an ordinary optimal control problem that depends on the optimal
state trajectory of a lower level ordinary optimal control problem which in turn
depends on the state trajectory of the upper level problem. More specifically, we
describe the upper level problem (UP) as follows:
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b
minimize  G(y, x,v) :=/ go(t,y(t),x(t),v(t)) dt

subject to
() =g, y(),x(),v(r), ae.a=t=<b,
(y(a), y(b)) € By, 4.1

v(t) € V(t,y(t),x(t)), ae.a<t<bh,
(t,y(t),x(t)) € oy, fora<t<bh,
x € I'(y),

where oy = [a,b] x Ay C R x R" x RF is closed, Zy C R?" is closed and
bounded, V : oy — 2%" is a set-valued mapping with a closed graph and (g, g)
are given functions satisfying some appropriate hypotheses given in the next section.
The notation x € I'(y) indicates that, for a given continuous function y : [a, b] —
R”", x : [a,b] — RX is an optimal state trajectory of the following lower level
problem (LP):

b
minimize  F(y, x, u) :=/ folt, y(),x(t),u(t))dt

subject to
() = f@t,x(0),u(t)), ae.a<t<b,
(x(a),x(b)) € Bx, 4.2)

u(t) € U(t,x(t)), ae.a<t<bh,

(t,x(t)) € o, fora<t <h,

where o7y = [a,b] x Ay C R x R¥ is closed, Zy C R* is compact, U : oy —
2 s a set-valued mapping with a closed graph and ( fy, ) are given functions
satisfying some appropriate hypotheses given in the next section.

For a fixed continuous function y, the lower level problem (4.2) is a standard
optimal control problem and a variety of existence theorems exist. On the other
hand, for the upper level problem (4.1), there are coupled constraints that involve
the optimal state trajectory x of the corresponding lower level problem (4.2), which
leads to difficulties when one tries to apply the direct method.

Remark 4.1. 'We note that the lower problem (4.2) depends on the trajectory y of
the upper problem (4.1) only through the objective functional. Further, we notice
that in the upper problem we have included constraints that depend on the optimal
state trajectory of the lower level problem. This seems to indicate that the Leader
reacts to the Follower’s optimal strategy. Formally, this constraint could also have
been placed as a constraint in the lower problem, where one could view it as the
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Follower reacting to the Leader. For reasons to become clear in the proof of our
result, we chose the former viewpoint.

Remark 4.2. Another interpretation of the above bi-level problem as a hierarchical
game is to view the Follower as being “behind the scenes” in that he/she wishes to
force the perceived leader to a desired outcome. In this case the goal of the lower
level problem is to use a strategy that is best for himself/herself so that the perceived
leader is encouraged to select their strategy to insure that it, combined with the
strategy of the lower level problem, solves the bi-level optimal control problem. A
potential application of such a model is when the lower level problem represents a
lobbyist and the upper level problem represents the government. The weak coupling
between the lower and upper level problems reflects the fact that the lobbyist wishes
to achieve its goal without having the government unduly influence its strategy.
That is, the lobbyist wishes to achieve its goal without being over regulated by the
government.

4.3 Admissible Pairs, Growth Conditions,
and Lower Closure

To investigate the existence of an optimal solution to the bi-level optimal control
problem (4.1), (4.2) we impose additional hypotheses. We begin by letting

Dy ={(t,y,x,v): (t,y,x) €y, veV(t,y, x)} C[a,b] x RiHktm+l

9x ={t.y,x,u) : (t,y,x) € oy, (t,x) € ox, u € U(t,x)} C [a,b] X
Rn+k+l and

Iy = {(t,x,u): (1,x) € oy, u € U(t,x)} C [a,b] x REH,

and impose the following conditions:

A. The function gy : Yy — R is a Lebesgue normal integrand. That is, go(¢, -, -, )
is lower semicontinuous for almost all ¢ € [a, b] and measurable with respect to
the o-algebra generated by Cartesian products of Lebesgue measurable subsets
of [a, b] and the Borel measurable subsets of R" <+,

B. The functions fy : Py — R, g : Py — R’ and f : Px — RF satisfy
the Carathéodory conditions, namely that ¢ — fo(?, y, x,v), t +— g(t,y,X,v)
and t — f(t, x,u) are Lebesgue measurable and that fy(z,-,-,-), g(z,-,-,-) and
f(t,-,-) are continuous for almost all ¢ € [a, b].

Remark 4.3. Notice that the sets Yy, Py and @X are closed sets.

Definition 4.1. For a fixed continuous function y : [a,b] — R”", we say a pair of
functions {x,u} : [a,b] — R¥*! is admissible for the lower level problem (4.2)
relative to y, if x : [a,b] — RX is absolutely continuous, u : [a,b] — R/ is
Lebesgue measurable, (¢, x(t)) € &/ forallt € [a,b], (x(a), x(b)) € By, u(t) €
U(t,x(t)) for almost every t € [a,b], X(t) = f(t,x(t),u(t)) for almost every
t €la,bland t — fo(z, y(¢), x(t), u(t)) is Lebesgue integrable on [a, b].
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Definition 4.2. For a fixed continuous function y : [a,b] — R" we say an
admissible pair for (4.2) {x*, u*} : [a,b] — R¥* relative to y is optimal for (4.2)
relative to y if

b b
/fo(t,y(t),X*(t),u*(t))dtE[ Jo(t. y (@), x (), u(r)) dt

for all admissible pairs {x, u} for (4.2) relative to y.

Definition 4.3. For a fixed continuous function x : [a,h] — R¥, we say a
pair of functions {y,v} : [a,b] — R"*™ is admissible for the upper level
problem (4.1) relative to x, if y : [a,b] — R" is absolutely continuous,
v : [a,b] — R™ is Lebesgue measurable, (¢, y(t),x(t)) € % for all t €
[a,b], (y(a),y(d)) € By, (v(t),u(t)) € V(t y(),x(t)) for almost every
t € [a,b], y(t) = g(t,y(),x(t),v(t)) for almost every t € [a,b] and t +>
go(t, y(t),x(t),v(t)) is Lebesgue integrable on [a, b].

Definition 4.4. A “pair” of functions {(y,x),(v,u)} : [a,b] — R*"T* x Rm+!
is admissible for the bi-level optimal control problem if {y,v} is an admissible
pair relative to x for the upper problem (4.1) and {x,u} is a optimal for (4.2)
relative to y.

Definition 4.5. We say an admissible pair {(y*, x*), (v*,u™)} is an optimal solu-
tion for the bi-level optimal control problem if

b b
/g(t,y*(r),x*(t),v*(t))dts/ gt y(t),x(t),v(r)) dt

for all admissible pairs {(y, x), (v, u)} for the bi-level optimal control problem.

Remark 4.4. Following standard conventions, given admissible pairs {x, u}, {y, v}
and {(y, x), (u, v)} we will refer to x, y, and (y, x) as admissible trajectories and to
u, v, and (v, u) as admissible controls (or strategies)

Our goal is to provide conditions so that the above bi-level problem has an
optimal solution. This assumes that the above problem is well-posed in the sense that
the set of admissible pairs {(y, x), (v, u)} for the bi-level optimal control problem
is nonempty. This is a standard assumption when studying existence of optimal
solutions, and we will follow standard protocol and make this assumption here.

The approach to existence followed by Tonelli and his successors is the so-called
direct method, in which one shows that the objective functional is bounded below
so that the infimum is finite, that given any minimizing sequence of admissible
pairs that it is relatively compact in an appropriate topology, and that the objective
functional is lower semicontinuous with respect to this topology. In optimal control
theory these properties are established through the use of lower closure theorems
and growth conditions.
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We begin with a discussion of growth conditions and relative weak compactness
in the space AC([a, b]; R") of absolutely continuous functions w : [a, b] — RV

4.3.1 Relative Weak Compactness

The first observation is to notice that the Fundamental Theorem of Calculus implies
that the space AC([a,b];R") is isomorphic to R x L!([a,b];R") through the
formula

w(t) = w(a) + [l w(s) ds.

Conversely if (wg,z) € RY x L([a, b];RY), then w € AC([a, b]; RY), uniquely
defined by the formula

w(t) = w, + /tz(s) ds,

is such that w(a) = w, and w(z) = z(¢) for almost all 7 € la, b].
With this observation we have the following definition.

Definition 4.6. We say that a sequence {w;};en of functions in AC([0, T]; R")
converges weakly to w € AC([a,b]; RY) if and only if there exists a sequence of
{tj}jen C [a,b] converging to to € [a, b] such that w;(¢;) — w(ts) as j — 00
and {W; },en converges weakly in L'([a, b];RY) to w as j — oo, that is for any
Y € L*([a, b]; N) one has

b
lim (Wi(s) —w(s), ¥(s))ds =0,

j—=+o00 J,
where (-, ) denotes the usual inner product in RV,

Remark 4.5. For our purposes, since the endpoints a < b are fixed, it will always
be the case that 1; = a forall j € N so that w;(a) — w(a) as j — 0.

The conditions for weak compactness in L!([a, b];R") are well known and in
particular we have the following due to Dunford and Pettis.

Theorem 4.1. Let Z be a family of functions in L'([a,b];RN). Then the family
Z is weakly relatively compact in L'([a,b]; RN if and only if the family Z is
equiabsolutely integrable. That is, for every € > 0 there exists a § > 0 such that for
every measurable set E C [a, b] that has Lebesgue measure meas(E) < § one has

/ |z(s)|ds < €
E

foreveryz e Z.
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Proof. See Dunford and Schwartz (1958, pp. 292). O

For the optimal control problems considered here it will also be convenient to
state the following theorem.

Theorem 4.2. Consider a family $2 consisting of pairs of function {n,w}, with
n € L'([a,b];R) and w € AC([a, b];RYN), such that for any element {n,w} € 2
one has

b
f nis)yds < M,

for some fixed constant M > 0. Further suppose for every € > 0 there exists a
function V. € L'([a, b]; [0, +00)) such that

W(t)| < Ye(t) + en(t) foraet € a,b], (4.3)

for every pair {n,w} € 2. Then the class of functionsw C AC ([a, b]; R") for which
there exists an n € L'([a, b]; R) so that {n,w} € §2 is such that the corresponding
family of integrable functions {W} is equiabsolutely integrable (and hence relatively
weakly compact in L' ([a, b]; R")). Moreover, if for each {n,w} € 82 it is the case
that {w(a)} C R is compact, then the family {w} is relatively weakly compact in
AC([a, b];RV).

Proof. See Cesari (1983, Theorem 10.41i). O
In view of the above theorem we impose the following growth conditions.

C. For every € > 0 there exist a function ¥, € L'([a, b]; [0, +00) such that

|f. x| + g y.x.v)| < Ye(t) + emin{ fo(z, y. x. ). go(, y. X, v)},

for almost all ¢ € [a, b] and all (z, y, x, u, v) in the appropriate domain.
D. There exists a Lebesgue integrable function M : [a,b] — [0,400) and a
continuous function K : R* — [0, +00) such that

| fo(t.y, x, u)| < M(t)K(y)

for almost all ¢ € [a, b] with (¢, y, x,u) € Dy.

Remark 4.6. Clearly, our choice of growth condition C is motivated by the above
discussion. We remark that there are other growth conditions which could be appro-
priately modified to obtain the desired compactness properties. For a discussion of
alternatives, we refer the reader to Cesari (1983, Sects. 10.3 and 10.4).

Remark 4.7. One consequence of the growth condition D is that it allows us to
ensure that every pair of functions {x,u} : [a,b] — R**!, for which x ¢
AC([a,b];R¥), u is Lebesgue measurable, x(t) = f(t,x(t),u(t)) a.e. on [a, b],
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(t,x()) € oy forall t € [a,b], (x(a),x(b)) € Bx and u(t) € U(t,x(1)) ae.
t € [a,b], is admissible relative to any continuous function y : [a,b] — R”
for which (¢, y (), x(t),u(t)) € Dx aet € [a,b] since it is clear from D, that
t— fo(t,y (), x(t),u(t)) is Lebesgue integrable.

4.3.2 Lower Closure

The appropriate lower semicontinuity properties are obtained through the use of
lower closure theorems for certain types of set-valued mappings. For the problem
considered here we consider two set-valued mappings, Ov : oy — 22" and
O oy — 2B yhere oy = {(¢,y,x): (t,x) € ofx}, given, respectively, by
the formulas

Qu(t.y.x) ={("2): 2 = go(t.y.x.v). z=g(t.y.x.v), v € V(1. y.x)}.
(4.4)

Q~L(ts y9x) = {(ZO’Z) : ZO > fO(ts y,x,u), <= f(t,x,u), uc U(lsx)}' (45)

One can notice that if {y,v} (resp., {x,u}) is admissible for the upper (lower)
problem relative to a continuous function x (resp., y) and if one defines
1) = golt, y(t),x(1),v(1) (resp., 2°(t) = fo(t,y(2), x(t),u(r))), then one
has (2°(), y(1)) € Qu(t, y(1),x(1)) (resp., (2°(t), ¥(1)) € Qr(t, y(1),x(1))) for
almost all ¢ € [a, b].

Given this observation we now consider a general lower closure theorem for
an arbitrary set-valued mapping Z : o — 2P®Y where @@ = [a.b] x
& C [a,b] x RN is closed. In particular we make the following assumption
concerning #

E. Foreach (¢, x) € o the set Z(t, x) is nonempty, closed and convex.
F. For eacht € [a, b] the set-valued mapping x — Z(t, x) satisfies the Kuratowski
upper semicontinuity property at each point X € .o. That is,

2(t.%) = (| J{2@.x) : |x - x| <8}

§>0

Theorem 4.3. Let o/ = [a,b] x o be closed and let Z# = & — 22®" be a set-
valued mapping satisfying assumptions E and F. Further let , x, n;, ¥, x;, A and
Aj (j =1,2...) be given measurable functions such that ¥, y; € L'([a,b]; RM),
n; € Ll([a,b];R), x,xj :la,b] - RN are such that X; — x in measure on |a, b]
as j — oo, Yj — ¥ weakly in L'([a, b]; RM) as j — oo,

(t.x;(@)) € o and (mj@), ;@) e Z(t,x;(t)) aetelabd], j=12,...,
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b
—00o<i = liminf/ n;(s)ds < 400,
j—=>oo J,
n;(t)>A;(t), A A; €L'(a,b;R), A; — A weaklyin L'([a,b];R).

Then there is a function n € L'([a, b]; R) such that

b
(t,x(@)) e o, (), ¥(t)) € Z(t,x(t)) forae.t € [a,b] and / n(s)ds <i.

Proof. See Cesari (1983, Theorem 10.7.1). O

To finish our prerequisites we need the following measurable selection theorem
due to Kuratowski and Ryll-Nardzewski.

Theorem 4.4. Lett — 7(t) C RY, t € [a,b], be a set-valued mapping such that
T(t) is closed for a.e. t € [a,b] and such that for every open set G C RN the set
{t € la,b]): T(t) N G} is Lebesgue measurable (i.e. t — 7 (t) is a closed valued,
Lebesgue measurable set-valued mapping), then there exists a Lebesgue measurable
function T : [a,b] — RY such that ©(t) € T(t) for almost everyt € |a, b].

Proof. See Cesari (1983, Sect. 8.3). m]

We now have the necessary prerequisites to prove our results.

4.4 The Existence Theorems

In this section we prove two existence theorems. The first is an existence theorem for
the lower level problem (4.2) for a fixed continuous function y : [a, b] — R" and the
second is an existence theorem for the bi-level optimal control problem (4.1), (4.2).
The first of these results is to provide conditions which support the assumption that
the feasible set of the bi-level problem is nonempty. The second, of course, is the
theorem we set out to prove.

4.4.1 Existence of a Solution to the Lower Level Problem

In this section we fix a continuous function y : [a¢,b] — R" and consider the
optimal control problem described by (4.2). With y fixed, the lower level problem is
a standard Lagrange type optimal control problem and we will easily adapt known
existence theorems to provide existence in this case.

Theorem 4.5. Assume that the optimal control problem (4.2) has at least one
admissible pair relative to the fixed continuous function y : [a,b] — R", and that
the functions fo and f satisfy assumption B and are such that for every € > O there
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exists an integrable function . : [a,b] — [0, 00) such that | f(t, x,u)| < Y(t) +
€ fo(t, y(t),x,u) for almost all t € |a,b]. Further assume that the set-valued
mapping % : o — 2RE defined, by using (4.5), as Z(t,x) = Qr(t, y(t), x)
where o/ = {(t,x) : (t,y(t),x) € oy, (t,x) € Ay}, satisfies assumptions E
and F. Then there exists an admissible pair {x*,u*} relative to y for (4.2) that is
optimal for (4.2) relative to y.

Proof. We begin by observing that for any admissible pair {x, u} relative to y for
the lower level problem (4.2) the growth condition, by taking € = 1, gives us

b b
- / () di < / Folt.y(0). x(0). u(0)) d.

which implies that (4.2) has a finite infimum. This mean there exists a sequence
{x;,u;} of admissible pairs (relative to y) such that

b
Jim [ Ao 0050, di = inf()

where iLnPf( y) denotes the infimum of the lower level problem with y fixed. For each
J € Ndefine n; : [a,b] — R by the formula n; (t) = fo(t, y(t),x;(t),u;(t)) for
t € [a, b]. We observe that, as a consequence of our assumptions, the family {n;, x;}
satisfies the growth condition (4.3). This fact, combined with the compactness of
Py, allows us to assume without loss of generality that there exists an absolutely
continuous function x* : [a,b] — RF such that {x;} converges weakly in
AC([a,b];R¥) to x*. This means we can write, for almost all ¢ € [a,b] and all
j=12,...,

(t,x; (1) € and  (n;(t), %; (1) € Z(t,x;(1)) = Or(t, (1), x; (1))

and
b
—oo < inf(y) = liminf/ n;(s)ds < 4o0.
LP j—=oo J,

Further we observe that for all j € N we have n;(t) > —;(¢) for almost all
t € [a,b]. We now can apply the lower closure theorem, Theorem 4.3, by taking
At) = Aj(t) = =i (2), to conclude that there exists an integrable function n* :
[a,b] — R so that

(t.x*(1)) € & and (n*(1), X* (1)) € B, x*(1)=0 (1, y(t),x*(t)) ae. € [a,b]

and

b b
/ n*(s)ds < iLnPf(y) = liminf/ n;j(s)ds.
a J=0 Jy
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We now show that we can associate a control u* : [a, b] — R! with the absolutely
continuous function x* so that {x*, u*} is admissible relative to y and, moreover,
that it is optimal for the lower level problem (4.2) with y fixed. To this end, for each
t € [a, b] define the set

T@)={ueU@t,x*(1): n*() = folt, y(t), x* (), u), X*(t)
= f(t,x*(t),u)} C R

It is an easy matter to show that ¢ +— .7(¢) is a closed valued, Lebesgue
measurable, set-valued mapping. Therefore by an application of the measurable
selection theorem, Theorem 4.4, there exists a Lebesgue measurable function u* :
[a,b] — R! such that u*(t) € 7 (t) for almost every t € [a,b]. With this
measurable selection we have that the pair {x*, u*} satisfies

X*(t) = f@t,x*@),u*(t)), ae.t€]a,b],
(x*(a), x*(b)) € Hx,
u*(t) € U(t,x*(t)), ae.t €la,b],
(1, x*(t)) € oy, foralls € [a,b],

and since t — fo(t, y(t), x* (), u*(¢)) satisfies

—Y1(t) = folt, y(0), x* (). u* (@) = n*(1), ae.1€a,b]

we see that it is Lebesgue integrable which implies that {x*, u*} is an admissible
pair for the lower level problem (4.2) relative to y. Moreover, we also have that

b b b
- [ nwas = [ pesosroarends < [ e s < o).

implying that this pair is optimal for (4.2) relative to y. O

Remark 4.8. In the above theorem the assumption that the function f; satisfies the
Carathéodory conditions may be weakened to assuming only that f; is a Lebesgue
normal integrand (see assumption A).

4.4.2 The Existence of an Optimal Solution for the Bi-Level
Problem

Theorem 4.6. Assume that the functions fy, go, & and f satisfy the assumptions
A, B and the growth conditions C and D. Further assume that the set-valued maps
QU and Q 1 given by (4.4) and (4.5), respectively, satisfy the assumptions E and F.
Then if the bi-level optimal control problem (4.1),(4.2) has at least one admissible
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pair {(y, x), (v,u)}, there exists an optimal admissible pair {(y*, x*), (v*,u*)} for
the bi-level optimal control problem.

Proof. As in the proof of the existence of the lower level problem, the growth
condition C allows us to conclude that the infimum for the bi-level optimal control
problem is finite. Thus, we know there exists a sequence of admissible pairs
{(yj.x;), (vj,u;)} for the bi-level problem such that

b
Jim [0ty 005,00, 0) e = it

where i = Ul1)nfL , denotes the infimum for the bi-level optimal control problem.

Moreover, as a consequence of the growth condition C and the compactness of Ay
and Ay, an application of Theorem 4.2 with n; (t) = go(¢, y;(t), x;(t),v;(¢)) and
wi(t) = (y;(),x;()) forall j = 1,2,..., allows us to assume that there exists
absolutely continuous functions y*:[a,b] — R” and x*:[a,b] — RF such that
y; — y*and x; — x* weakly as j — oo in AC([a, b]; .R") and AC([a, b]; RY),
respectively. Now observe that for almost all ¢ € [a,b] and all j = 1,2,..., we
have

(j(0),5;(t) € Oult,y;j(t),x;(t)) and (§;(t),%;(t)) € Or(t,y;(t), x; (1)),

where §;(1) = fot,y; (1), x; (t) u;(t)). Appeahng to the Lower Closure
Theorem 4.3, applied with Z = Qy and Z = Q;, and )L(t) =A;(t) = =y1(?)
we can conclude that there exists integrable functions n* : [a, b] — R and
&* : [a, b] — R such that

(1), 5*(t)) € Qu(t, y* (1), x* (1)) and (" (1), (1)) € Qr(t, y* (1), x* (1)),

for almost all ¢ € [a, b], and that

b b b
/ n*(t)dr <i and/ E@)dt < liminf/ Jot, y; (@), x;(t),u;(t))dt.
a a J=00 Jq

Now define the set-valued maps Ty : [a,b] — 2" and T : [a,b] — 2% by the
formulas
Ty (1) = {v 0" (1) = go(t, y™(1),x™(1),v), Y™ (1) = g(t, y* (1), x™ (1), v),
v E V(t,y*(t),x*(t))}
Tx(t) = {u: (1) = fo(t, y* (), x* (1), u), X*(t) = f(t,y" (1), x™ (1), w),
ue Ut x*(1))}.

It is easy to see that both of these set-valued mappings are closed valued, Lebesgue
measurable, and nonempty. Thus by an application of the Measurable Selection
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Theorem 4.4 there exists Lebesgue measurable functions v* : [a,b] — R™ and
u* : [a,b] — R such that we have the following

) =g, y* (@), x (1), v*(t)), ae.a<t<b,
(y*(a), y* (b)) € By,
v¥@) e V(t, y* (), x*(t)), ae.a<t<bh,
(t,y*(0),x*(t)) € oy, fora <t <b,

and

X*(t) = f(@t.x*(t),u"(t)), ae.a<t<bh,
(x*(a),x™(b)) € By,
u*(t) e U(t,x*(t)), ae.a<t<bh,

(t,x*(t)) € oy, fora<t <h.

In addition we have

b b
/ago(t,y*(t)’X*(t),v*(t))5/0 n*(0de < inf

P—LP

and

b b
/ Foltoy* (1) (0) (1)) dit < [ £ (1) di

b
< timinf [ it (0).x; (00,0
] —>00 a
From these facts it is clear that if we can show that the pair {x*, u*} is an optimal
solution of the lower level problem (4.2) relative to y* we can conclude that the pair
{(y*, x*), (v*,u*)} is an optimal solution to the bi-level optimal control problem.

To see that this is the case we observe that by the optimality of {x;,u;} relative to
y; we have that

b b
/ Foltoy (0)x, (1)t () di < / Folt v (0), x(0). u(e)) d.

holds for any admissible pair {x, u} relative to y;. This means that

b b
/ fO(t»y*(t)’X*(t)»u*(t))dt Slin_l)g;f/ fo(l,yj(l‘),X(l‘),I/l(t))dl‘.

By our remarks concerning the growth condition D we know that any pair
{x,u} that is admissible for (4.2) relative to y* is admissible relative to any y.
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This means for any such pair {x,u} we have, by the Carathéodory conditions,
Jo(t,y; @), x(t),ut)) — fot,y*(t),x(t),u(t)) for almost every ¢ € [a,b] as
j — 400 so that by an application of Lebesgue’s dominated convergence theorem
we have

b b
/J%(t,y*(t),x*(t),u*(t))dts/ fo(t, y* (1), x(t), u(?)) dt

as desired. O

Remark 4.9. The assumptions and hypotheses used to establish the above two exis-
tence results are the classical convexity and seminormality conditions found in the
existence theory of the calculus of variations originating in the works of L. Tonelli
and E.J. McShane and further continued in the realm of optimal control theory by
L. Cesari, L.D. Berkovitz, R.T. Rockafellar, and others. The first result (for the lower
level problem) could have been proved by appealing to one of a number of standard
existence results found in Cesari (1983) since for a fixed continuous function y this
problem is an ordinary optimal control problem of Lagrange type. We chose to give
a more direct proof to give a flavor of the approach as well as to ease the reader into
the somewhat more complicated proof for the full bi-level problem.

For the second existence result, we had to strengthen the hypotheses slightly to
affect the proof. In particular we refer to the strengthened regularity and growth
hypotheses imposed on the lower level objective integrand f;.

4.5 Conclusions

In this paper we considered a class of bi-level optimal control problems in which
the lower and upper level problems were described by ordinary optimal control
problems of Lagrange type. In particular we focused on sufficient conditions for
the existence of an optimal solution based on classical convexity, seminormality
conditions and compactness conditions (i.e., growth conditions) found in the
existence theory of optimal control and the calculus of variations. In particular, our
results do not require the lower level problem to have a unique optimal solution
relative to each admissible trajectory of the upper level problem which is apparently
a common assumption in earlier existence results for such problems.
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Chapter 5
Static Linear-Quadratic Gaussian Games

Meir Pachter

Abstract In this paper a simple static two-player linear-quadratic game where the
players have private information is addressed. The players have private information,
however each players is able to formulate an expression for his expected payoff,
without the need, a 1a Harsanyi, to provide a prior probability distribution function of
the game’s parameter, and without recourse to the player Nature. Hence, the closed-
form solution of the game is obtained. It is shown that in this special case of a one-
stage linear-quadratic game where the players have private information, the solution
is similar in structure to the solution of the game with complete information, namely,
the deterministic linear-quadratic game, and the linear-quadratic game with partial
information, where the information about the game’s parameter is shared by the
players. It is shown that the principle of certainty equivalence holds.

Keywords Linear-Quadratic Gaussian Games * Private information ¢ Imperfect
information ¢ Perfect information ¢ Certainty equivalence ¢ Static games

5.1 Introduction

This paper is a first step in an attempt at bringing closer together the dynamic
games paradigm and the theory of games, which historically have developed along
separate lines. Dynamic game theorists have traditionally emphasized control the-
oretic aspects and the backward induction/dynamic programming solution method,
whereas game theorists have focused on information economics, that is, the role of
information in games.
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Linear-Quadratic Dynamic Games (LQDG) with perfect information have
received a great deal of attention (Bagsar and Bernhard 2008; Basar and Olsder
1995; Engwerda 2005). In these works, the concepts of state, and state feedback, are
emphasized and the solution method entails backward induction, a.k.a., dynamic
programming. In previous work (Pachter and Pham 2013) a static LQG team
problem was addressed. In this paper a static LQDG, where each player has private
information, is considered. Specifically, the simplest linear-quadratic game with
incomplete/partial information is addressed: a one-stage, two-player, “zero-sum,’
Linear-Quadratic Gaussian Game (LQGG) is solved.

In this paper a simple static linear-quadratic game where the players have
private information, however each players is able to formulate an expression for
his expected payoff, without the need to provide a prior probability distribution
function of the game’s parameter and without recourse to the player Nature, is
analyzed. Thus, in Sect.5.2 the static linear-quadratic Gaussian game, where the
players have private information, is introduced. The solution of the baseline game
with perfect information is given in Sect.5.3 and the solution of the game with
imperfect information is given in Sect.5.4. The scenario where the players have
private information is analyzed in Sect. 5.5, and the complete solution of the game
is given in Sect. 5.6. Concluding remarks are made in Sect. 5.7.

5.2 LQGG Problem Statement

The following linear-quadratic game, a static, two-player, “zero-sum” game, is
considered. The players are P and E and their respective control variables are u
and v. It is a one-stage game with linear “dynamics”

x; = Axg + Buy + Cvy, x9 = x¢, 5.1

where the state xo, x; € R". The P and E players’ controls are u € R™ and v €
R™>_The payoff function is quadratic:

J = x] Qrxi + ul Rup — vl Ryvg (5.2)

where the QF, R,, and R, weighing matrices are real, symmetric, and positive
definite. Both players are cognizant of the A, B, C, O, R,, and R, data.

Player P strives to minimize the payoff/cost function (5.2) and player E strives to
maximize the payoff (5.2).

The initial state information available to player P is

xo~NE, PPy, (5.3)

where the vector fép) € R" and the n x n covariance matrix PO(P) is real, symmetric,
and positive definite. The initial state information available to player E is

xo ~NEP, PF)Y, (5.4)
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_(E . . E) . .
where the vector x(() ) € R" and the n x n covariance matrix PO( ) is real, symmetric,

and positive definite. The PO(P) and PO(E) data is public knowledge—only the YBP)

and YéE) information is proprietary to the respective P and E players. This is
tantamount to saying that players P and E took separate measurements of the initial
state xy, yet the accuracy of the instruments they used is known; however, the actual
measurements ff)P) and Yf)E) are the respective P and E players’ private information.

Since the pertinent random variables are Gaussian, we shall refer to the game

(5.1)—(5.4) as a Linear-Quadratic Gaussian Game (LQGG).

5.3 Linear-Quadratic Game with Perfect Information

It is instructive to first analyze the perfect information version of the linear-quadratic
game (5.1) and (5.2).

If the initial state x is known to both players, we have a game with perfect
information.

The closed-form solution of Linear-Quadratic Dynamic Games with perfect
information, a.k.a., deterministic Linear-Quadratic Dynamic Games (LQDGs), is
derived in Pachter and Pham (2010, Theorem 2.1). The Schur complement concept
(Zhang 2005) was used in (Pachter and Pham 2010) to invert a blocked (m,, +m,) x
(m, + m,) matrix and derive explicit formulae for the P and E players’ optimal
strategies. The said matrix contains four blocks and its diagonal blocks are m,, x m,,
and m, x m, matrices. One can improve on the results of Pachter and Pham (2010)
by noting that a matrix with four blocks has two Schur complements, say Sp and
Sc.

Concerning the linear-quadratic game (5.1) and (5.2), where the initial state/game
parameter x( is known to both players and thus the game is a game with perfect
information, the following holds.

Theorem 5.1. A necessary and sufficient condition for the existence of a solution
to the zero-sum game (5.1) and (5.2) with perfect information is

R,>CTQrC (5.5)

A Nash equilibrium/saddle point exists and the players’ optimal strategies are the
linear state feedback control laws

ug(x0) = =Sz (Qr)BT[I + QrC(R, —CTQrC)T'CT10FA-x0, (5.6)

v (x0) = (R, —CTQrC)"'CT{I — QrBS;'(QF)BT
[I +QrC(R, —CTQrC)'CT}QFA - xo
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An alternative formula for the optimal strategy of player E is
v*(x0) = =S QRCTI — Qr B(Ry + BT Q¢ B)'BT1QrA Xy (57)
The value of the game
Vo(xo) = xg Pixo . (5.8)
where the matrix
P = A"{Qr—0r[BS; (Qr)B"+BS;" (Qr)B" QrC(R,~CT QrC)~'CT”
+ C(R,—CTQrC)™'CTQrBSE (Qr) BT

+ C(R—C"QrC)"'CTQrBSE (QF)B" QrC(R,—CTQrC)~'CT
+ C(CTQrC—R,)'CTIQr}4A (5.9)

In (5.6) and (5.9),
S5(Qr) = B"QrB + R, + B"QrC(R, —~C"QrC)™'CTQrB (5.10)
is the first Schur complement of the blocked matrix and
Sc(Qr)=—[R, —C"QrC +C"QrB(R,+ B"QrB)"'B" 0rC]

is the second Schur complement of the blocked matrix.

Remark 5.1. Using both Schur complements of the blocked matrix renders the
respective P and E players’ strategies, (5.6) and (5.7), “symmetric.”

5.4 Linear-Quadratic Gaussian Game with Imperfect
Information

If in (5.3) and (5.4) P") = P} = P, and the P and E players’ information
YE)P) = f(()E) = X is public knowledge, we have on hand a linear-quadratic game
with imperfect information; this is tantamount to saying that both players, together,

took the measurement of the initial state and the outcome was
X0 ’\’N(YO,PO) (511)
This is a stochastic game.

The closed-form solution of Linear-Quadratic Dynamic Games with imperfect
information proceeds as follows.
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Using (5.1) and (5.2), we calculate the payoff function

I (u, vo: Xo) = xg AT QpAxg + uf (R, + BT QrB)ug — vg (R, — CT Q pC)vy
+ 2ul BT QrAxo +2v] CT Qr Axo + 2ul BT QrCuyp (5.12)
The random variable at work is the initial state xy. The players calculate the expected
payoff function
J (uo, v0: %) = Ey, (J (1o, vo: Xo) | Xo)

=Xy AT Qr AXo + Trace(A” Qr APy) + ul (R, + BT Q r B)ug

— vl (R, — CTQFC)ug + 2ul BT Qr A%y + 20 CT Q r A%

+ 2ul BT QrCuy (5.13)
The expected payoff function 7(140, vp; Xo) is convex in uy and concave in vy.
Differentiation in uy and v, yields a coupled linear system in the decision variables

up and vy. Its solution is obtained using the Schur complement concept and it yields
the optimal P and E strategies. The following holds.

Theorem 5.2. A necessary and sufficient condition for the existence of a solution to
the zero-sum game (5.1) and (5.2) with imperfect information, that is, a game where
the initial state information (5.11) is available to both P and E, is that condition
(5.5) holds. The respective optimal P and E strategies are given by (5.6) and (5.7),
where x is replaced by X. The value of the game is

Vo(X0) = Xg P1Xo + Trace(AT Qp APy) , (5.14)

where, as before, the real symmetric matrix Py is given by (5.9).

Similar to LQG optimal control, in the game with imperfect information the
separation principle/certainty equivalence holds.

5.5 Linear-Quadratic Gaussian Game with Private
Information

The initial state x, features in the payoff function (5.12). The players’ information
on the initial state x, is now private information: Player P believes the initial state
to be

xo ~NE, PP (5.15)

whereas player E believes the initial state to be

xo ~NE, P (5.16)
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This is tantamount to stipulating that players P and E took separate measurements
of the initial state xo. Assuming that the quality of the players’ instruments used
to take the measurements is public knowledge—we refer to the measurement error

P, (E) Py E)__the private information of the players P and E are their

respectwe measurements, X(O )

x(() ), is his private information and is not shared with player P. Hence, as far as

player P is concerned, an E player with the private information x( ) = xisan

E player of type x. Thus, the P player’s information on the game is 1ncomplete.
—(P) .

covariances and

and X, xo £) The measurement recorded by player E,

Similarly, the measurement recorded by player P, X, * is his private information and
is not shared with the E player. Therefore, as far as the E player is concerned, a
player P with the private information x( ) = = y is a P player of type y; also the E
player’s information on the game is 1ncomplete.

We are analyzing what appears to be a game with incomplete information. In
the process of planning his strategy, the player’s opposition zype is not known
to him. However, although the information is incomplete, a Bayesian player
can nevertheless assess, based on the private information available to him, the
probability that the opposition he is facing is of a certain zype. Consequently, the
player can calculate the expectation of the payoff functional, conditioned on his
private information.

The strategies available to player P are mappings f : R" — R™ from his
information set into his actions set; thus, the action of player P is

= fx) (5.17)

Similarly, the strategies available to the E player are mappings g : R” — R™ from
his information set into his actions set; thus, the action of player E is

vo = g(X") (5.18)

From player P’s vantage point, the action v, of player E is a random variable because
from player P’s vantage point, the measurement x( ) used by player E to form his
control vy, is a random variable. Similarly, from player E’s vantage point, the action
ug of player P is a random variable.

Consider the decision process of player P whose private information is x( ),
From player P’s perspective, the random variables at work are x, and x( ),
Player P is confronted with a stochastic optimization problem and he calculates
the expectation of the payoff function (5.12), conditional on his private informa-

—(P)
tion Xg s

D, g (%) = B, m (o, g x0) | %) (5.19)

It is important to realize that by using in the calculation of his expected cost in
(5.19) player’s E strategy g(f((,E)), rather than player E’s control vy, player P has
eliminated the possibility of an infinite regress in reciprocal reasoning. Thus, player
P calculates
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g, g(): %) = @Y AT Qp AR + Trace(A” Qr AP)
+ Uy (Ru + BTQFB)MO
+2uf BT Qp A% +2E w0 (g TEENCT Qraxy | )
— E (8" G (R, = CT0r O 1 %)
+ 2uf BT QrCE . (%) | ) (5.20)
Player P calculates the expectations with respect to the random variable x(E) ,
which feature in (5.20). To this end, player P models his measurement xé ) of the

—()

initial state xy, and player E’s measurement X, ~ of the initial state x, as follows.

= xo+wp (5.21)

where X is the true initial state and wp is player P’s measurement error, whose
statistics are

wp ~ N0, P"))

Similarly, player E’s measurement

% = xo +wi (5.22)
where xj is the true initial state and wg is player E’s measurement error, whose
statistics are

we ~ N(0, PF)

Furthermore, the Gaussian random variables wp and wg are independent.

From player P’s point of view, x( ) is a random variable, but x(P) is not.
Subtracting (5.21) from (5.22), player P concludes that as far as he is concerned,
player E’s measurement upon which he will decide on his control vy is the random
variable

P =3+, (5.23)
where the random variable
W= WwWg—Wwp; (5.24)

in other words

7~ NG P+ P (525
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Consider now the calculation of the expectations which feature in (5.20).
Er (85 |50 ) = Ex (5 + ) (5.26)
where the random variable
W~ N, PP + PF) (5.27)
Similarly, the expectation
Ew (87 (X )R —CTOrO() | %0) = Es (67 (7)) + W)(R,
— CTQrC)g(xy” + 1)) (5.28)
In addition, since
xo =%y —wp, (5.29)

the expectation
E, 0 (g7 (R NCT Qr A% | X6) = Enpp (67 Ry +wp—wp)CT Qp ARG —wp))

&+ w)CT Qpaxy”

(P)

= E; (g7 (X,

WF wp (g (x + WE — WP)CTQFAWP) (530)

Inserting (5.26), (5.28), and (5.30) into (5.20) yields the expression for player P’s
expected cost in response to player E’s strategy g(-), as a function of his decision
variable u,

(u g():; x(P)) — (—(P))TATQ AY(P) + Trace(ATQFAPO(P))
+ ug (R, + BT Qr Bug
+ 2l BT QpAx + 2E; (g7 &) + )T 0 paxl)
— 2By (€T & +wg —wp)CT Qr Awp)
— Eg (¢" (%) + W)(R, — CT QrC)g(x(" + )
+2ul BT QrCE; (3(xy + W) (5.31)
(E).

From player E’s perspective, the random variables at work are x, and x( ),
Player E is confronted with a stochastic optimization problem and he calculates
the expectation of the payoff function (5.12), conditioned on his private informa-

—(E)
tion Xo s

Consider now the decision process of player E whose private information is X

TPUO e = B0 GUGED vix) |7 (532)
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As before, it is important to realize that by using in the calculation of his expected

costin (5.32) player P’s strategy f (ng)), rather than player P’s decision variable uy,
player E has eliminated the possibility of an infinite regress in reciprocal reasoning.
Thus, player E calculates

B FOoTE) = @E)Y AT 0p AT + Trace(AT 0 APE)
— Yy (Rv -cT OrC)ug
+ 20 CTQrAX + E_ry (f TGV R, + BTQrB) Fx) | 5P)
XO
+2E, (fTE)BT QrAxo | TF)
+ 205 CT QrBE ) ( FEEY =) (5.33)

Player E calculates the expectations with respect to the random variable X _( ),

which feature in (5.33). To this end, player E models his measurement xf) ) of the
initial state x( using (5.22), and he models player P’s measurement xo ) of the initial
state xo using (5.21).

From player E’s point of view, X, ' is a random variable, but X, is not.
Subtracting (5.22) from (5.21), player E concludes that as far as he is concerned,
player P’s measurement upon which he will decide on his control u is the random
variable

—(P) —(E)

=3 —w (5.34)
In other words
T~ NEE PP+ P (5.35)
Consider now the calculation of the expectations which feature in (5.33).
Eqa (&) 1 507) = B (f (%7 =) (5.36)
Similarly, the expectation
Er (fT 6 Y RAB"QrB) f(5) 1 %) = Es (f T (557 —w)(R,
+ B QrB) f(xy =) (537)
In addition, since

xo =% —wg (5.38)
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the expectation

o (fTE)VBT QrAxo | 7) = Evpoy (fT & +wp—wi)BT
Qr AR —wr))
= E; (f" (5" =) B" 0 p AX("

X(; X

Ewpp (fTE4wp —wp)BT Qr Awg)
(5.39)

Inserting (5.36), (5.37), and (5.39) into (5.33) yields the expression for player E’s
expected payoff in response to player P’s strategy f(-), as a function of his decision
variable vy,

TP 003Dy = @Y AT Q p AXE) + Trace(AT 0 AP(P)
— vl (R, — CTQrC)vy + 20 CT 0 A"
+ Ex (fT " = w)(R, + BT Qr B) f(7y" — )
+2E; (fT (5" — @) B 0 AXg”
2Epwp (fTE +wp —wp)BT Qr Awg)
+ 20 CT QrBE; (f(x —w)) (5.40)
The cost of player P is now given by (5.31) and the payoff of Player E is
given by (5.40). Imperfect information leads to a nonzero-sum game formulation.
Consequently, one id interested in a Nash equilibrium, a.k.a., Person By Person
Satisfactory (PBPS) strategies.

Next, player P calculates his response to player E’s strategy g(YéE)). Thus, given

the information YéP), player P minimizes his expected cost (5.31); the minimization
is performed in the decision variable ug. The cost function is quadratic in
the decision variable. Thus, the optimal decision variable ug‘ must satisfy the
equation

= ~(Ry+ BT 0rB)' BT 0 (AX(" + CE; (5" + )
In other words, the optimal response of player P to player E’s strategy g(-) is

@) ==(R+B" Qs B) ' BT Q (AT +CE; (¢xV+w) ) VX e R

Similarly, player E calculates his optimal response to player P’s strategy f (7(()1))).

Thus, given the information Y((JE), player E maximizes his expected payoff (5.40);
the maximization is performed in the decision variable vy. The cost function is
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quadratic in the decision variable. Thus, the optimal decision variable vy must
satisfy the equation

vy = (R, —CTQrO)'CTQr (AR + BE; (f(xy) —W)))
In other words, the optimal response of player E to player P’s strategy f(-) is
" (% )=(R,=C" QrC)'CT Qr (AXy" +BE; (f(x —#)) VX € R'

Hence, the respective optimal strategies f*(-) and g*(-) of players P and E satisfy
the set of two coupled equations (5.41) and (5.42),

&) = —(R, + BT QrB) ' BT 0 p(AX") + CEs (6" =) + W)
Vi e R" (5.41)
g &®D) = (R, — CT0rC)"'CT 0 r(AXE + BE; (f* & —w)))

vx" e R" (5.42)

The expectation

1
Eq (f& =) =
()% yJdew(P” + P /

E) oo _1=Tp(P) p(E)—1=
f(xf) )—w)e 2w (B P )T g
R

It is convenient to use the notation for the multivariate Gaussian distribution with
covariance P (> 0),

1 _
G(x; P) = — P

(27)% \/det(P)

whereupon

By (S =) = [f * 6" + PO
Similarly, the expectation

Es (8" + W) = [gx G(R" + IO

Using the convolution notation in (5.41) and (5.42), one obtains
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[*@) = —(Ru+ BT 0rB) ' BT Qr(Axy” + Cg* % G(P)"
+ P(gE))) v Y(()P) € R
g* @) = (R, — CTQrO)'CTQp(A%" + Bf* x G(P" + PP
vy e R
Thus, the functions
F*(x) = —=(Ry+ BTOrB) ' BT Qp(Ax + Clg* * G(Py" + Py™)](x)).(5.43)

and

g (x) = (Ry = CTQrC)'CT Qp(Ax + BLf* * G(P" + Pi™)](x))
VxeR" (544)
Inserting (5.44) into (5.43) and suppressing the dependence of the Gaussian p.d.f.
on the covariance matrix yields
f*(x) = —(Ry+B"QrB)"'BTQrAx
— (Ru+BT0rB) 'BTQrC(R, —CTQrC)'CTQrAx %G
— (R, +B"QrB)'B"QrC(R, —C"QrC)"'CTQrB [*+G G
VxeR" (5.45)

Similarly, inserting (5.43) into (5.44) yields

g"(x) = (R, —CTQrC)7'CTQrAx
— (R, —CTQrC)"'C"QrB(R,+ B"QrB)'B"QrAx+G
— (R, —CTQrC)'CTQrB(R, + B"QrB) 'BTQrC g* xG %G
VxeR" (5.46)

The convolution operation is associative. We shall require the following

Lemma 5.1. The Gaussian kernel is self-similar, namely,

G(P) * G(P) = G2P) (5.47)
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Proof.

=T P (x—y)

1
Guepywoery= [ [ e
by Py

1 _1
(2n)%,/deu1>)e
1
_/"'[n((zn)'ﬁ./det(P

)2e —3[G=nT P =) +yT P My
We calculate
(x _y)TP—l(x )+ yTP—ly _ 2yTP—1y _ZXTP—ly +xTply
1 1 1
T -1 T -1
= -P —2(= —P
y(2 )y (236)(2 )y
1 1 1 1
+ (EX)T(EP)_I(EX) + EXTP_l.X
[ P 1 T -1
= (=30 GP) =50+ @P)
Hence

)2e —3a=T P~ =) +yT P~ y]dy1 .dy,

e~ 3030 G P =3

/ /R(@n) JW
/-

/R (2n)2 det( P)

1.7 —1
d S St B 2P) 'x
. ( ) (2n)?2 ‘/det(P
(l)n —*XT(ZP)_IX

(271) \/det(P

— . e—%xT(2P)_1x

()3 ,/det(zp)
= G(2P)

We also calculate

© % G(P) = /R (&= )G (; P)dy

—x VP>0 (5.48)
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Inserting (5.47) and (5.48) into (5.45) yields a Fredholm integral equation of the
second kind for the optimal strategy of player P,

&) = —(R+BTQrB) ' BT Qr[I+C(R,—CTQrC)"'CT QAT
— (Ry+BT"QrB)'BTQrC(R,~CTQrC)'CTQrB G(2P) % f*
v e R (5.49)

Similarly, inserting (5.47) and (5.48) into (5.46) yields a Fredholm integral equation
of the second kind for the optimal strategy of player E,

g @) = (R, —CTQrC)'CTQF[I — B(R,+ BT QrB)'BT QAT
— (R, —CTQrC)'CTQrB(R, +B"QrB) 'BTQrC GQ2P) x g*
vl e R (5.50)

The Fredholm equations of the second kind (5.49) and (5.50) are of the convolution
type and the kernel is a Gaussian function.
If the state’s measurement error covariances are “small,” namely, PO(P) < 1 and

PO(E) < 1 and therefore the Gaussian distribution approaches a delta function, from
(5.49) and (5.50) we conclude that the P and E strategies satisfy the equations

&) = —=(R+BTQrB) ' BT Qr[I+C(R,—CT Q1 C)'CT 0] AX"
— (R+BTQrB)'BTQrC(R,—CTQC)'CTQrBf*")
vx" e R (5.51)

and

@) = (R—CTQrC)'CTQr[I-B(RABTQrB) ' BT QAT
~ (R—CTQrC)'CTQrB(RABT Q1 BY ' BT 01 C g* (&)
v e R (5.52)

From (5.51) and (5.52) we therefore obtain players’ P and E optimal strategies,
which are explicitly given by

&) = ~[I+(R+B"QrB) ' B QrC(R,~C"QrC)"'CT QB (R,
— B"QrB)'BTQs[I+C(R,—CTQ;C)'CT QAT
= —[R,+B"QrB+BTQrC(R,—CTQC)"'CTQrB]'BT[I
+ 0rC(R—CTQrC)'CT QAT VT € R”
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that is, the optimal strategy of player P is

F*E) = =S5 (@R BTl + QrC(R, — CTQrC)'CT QAT
V_(P) c R" (5.53)

Similarly,

g @) =1 + R, —CT0rC)'CTQrB(R, + BT 0rB)"' BT 0rCI™ (R,
— C"QrC)"'CTQr[I — B(R, + B"QrB)"'B" QA
=[R,~CTQrC +CTQrB(R,+BTQrB)'BTQrCI7'CT1
— QrB(R,+ B"0rB)'BT10r AT V) € R

that is, the optimal strategy of player E is

&G = =SENORCTI — Qr B(R, + BTQrB)'BT10r A X"
v e R (5.54)

where the Schur complement
Sc(Qr) =—[R, —C"QrC +C"QrB(R,+ B"QrB)™' BT 0rC](5.55)

Indeed, having calculated the functions f*(x) and g*(x), we obtained the optimal
strategies of players P and E by setting x := xf) ) in f*(x)and x := x( )in g*(x).
In the limiting case of Gaussian distributions with small covariance matrices, the
players’ optimal strategies (5.53) and (5.54) are linear in the players’ respective
measurements.

Equations (5.53) and (5.54) are identical to the respective (5.6) and (5.7) in
Theorem 5.1—we have recovered the perfect information result of Theorem 5.1.
This makes sense—the initial state’s measurements of both players are very accurate
and thus the game is almost deterministic. Thus, one could have argued that
when the covariances are “small,” namely, PO(P) << 1 and PO(E) << 1, that is,

_(P ) A _(E) X Xg, one can re-use the deterministic state feedback strategies (5.6)

and 6.7 of players P and E given by Theorem 5.1—simply set x¢ := xo )in (5.6)
and xg 1= X 0 )in 6.7.

5.6 Linear Strategies

The Fredholm integral equations of the second kind, (5.49) and (5.50), are linear
integral equations. Furthermore, the “forcing terms”/inputs on the R.H.S. of (5.49)
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and (5.50) are linear in Yép) and Y(()E), respectively. Consequently, the solution f*(-)

of (5.49) is linear in 7((]1:) and the solution g*(-) of (5.50) is linear in YE)E)—think of
linear integral operators as infinite dimensional matrices. Hence, postulate that the
players’ optimal strategies are linear—in other words,

f&x$) = Fx{ (5.56)
and
g(xf) = Fx§ (5.57)

where the yet to be determined constant gains F, and F, are m, x n and m, X n
matrices, respectively. Constant gain strategies (5.56) and (5.57) which satisfy the
respective second kind Fredholm integral equations of the convolution type with
a Gaussian kernel, (5.49) and (5.50), can be found. This is due to the fact that,
according to (5.48), the convolution of the state vector x with a Gaussian function
returns the state vector x. In the process of deriving the equations which yield
the gains F, and F,, the necessary and sufficient conditions for the existence of
a solution are obtained.

The optimal gains F,* and F," are obtained as follows. Insert (5.56) into (5.49)
and insert (5.57) into (5.50):

Fr %) = —(RAB"QrB) ' BT Qr[14+C(R,~CTQrC)'CT Qp1AKY”
— (RA+BTQrB) 'BTQrC(R,~CTQrC)"'CTQrB F'x x G(2P)
= —(R,+B"QrB) ' BT Qr[1+C(R,~C"QrC)'CTQflA %"
— (R+BTQrB) 'BTQrC(R,~CTQrC)7'CT QB F; X"

vz eR"
Therefore
Ff=—[+(R,+B"QrB)'B"QrC(R, —C"QrC)"'CT QrBI"\(R,
+ B"QrB) 'BT Q[ + C(R,—CTQrC)~'CTQr]A

= —Sz'(QF)BTQFll + C(R,—CTQrC)'CTQF)A (5.58)
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Similarly

Fr x5 = (R=CTQrC)'CTQrll = B(RA+B"QrB)™' BT Qr]AX,"
— (R,—CTQrC)'CTQrB(R,+B"QrB) 'BTQrC F'x x G2P)
= (R,—C"QrC)"'CT Qr[I-B(R,+B"0rB)"'B" 0r]A %"
~ (Ry—CTQrC)'CTQrB(R,+BTQrB) 'BTQrC F}%}"

v x(()E) e R"
and

Fr=[I+®R,~CT0rC)'CTQrB(R, + BT"QrB)'BTQrCI™\(R,
—C"QrC)'CTQFlI —B(R,+ B"QrB)"'B" Qr]A
= —S:"(Qr)CTQF[I — B(R,+ BT QrB)'B"Qr]4 (5.59)

We have found constant gain strategies F," and F,* which satisfy the respective
second kind Fredholm integral equations of the convolution type with a Gaussian
kernel, (5.49) and (5.50). This is due to the fact that, according to (5.48), the
convolution of the state vector x with a Gaussian function returns the state vector x.
Furthermore, (5.48) holds, irrespective of the covariance P. Hence, the constant
gains are not dependent on the cumulative covariance P of the measurement errors
and also apply in the limiting case of a deterministic scenario—in other words, the
optimal constant gains F,, and F, are exactly as in (5.6) and (5.7), and certainty
equivalence holds. Having obtained the optimal strategies, one can now calculate
the respective value functions of players P and E by evaluating the expectations in
(5.31) and (5.40):

Consider (5.31), the expected cost 7(P)(u0, g(-);Y(()P)) of player P first. The
expectations

Eq (¢@" +w) = Frx(” (5.60)

Evprr T & +we —wp)CT QrAwp) = —Trace(P" AT QrCF})
(5.61)

and
Ey (g7 + W) (R, — CTOrC) g + )
= @ ) (FE)T (R~ CTQr O F

+ Trace((F)T (R, — CT QrC)FX (P + PF)) (5.62)
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Inserting (5.60)—(5.62) into (5.31) yields, with some abuse of notation, the value
function of player P,

VO(P) (—(P))TATQ A_( )+ Trace(ATQFAPO(P)) + ug (R, + BT Qr B)uy
n 2u0 B QFA—(P) +2(x(()P)) (F*)TCTQFAY(()P)
+ 2Trace(P( )ATQFCF*)
~@FEHT (R — CTQrC)FrxY”
— Trace((F*)T (R, — CTQFC)FU*(PéP) + PO(E)))
2l BT 0 F) (5.63)

Also, in (5.63)

up = —(R,+ BTQrB)'BTQr(AX" + CE; (¢S +W)))
~(R, +B"QrB)' BT Qr(A%,” + C FI%)")

—(R,+BT0rB) "B Qp(A+C FHT (5.64)

Inserting (5.59) and (5.64) into (5.63) yields the value function of player P. The
value function VO( P)(Y(()P) ) of player P is quadratic in Y(()P). It is of the form

P) —(P —(P —(P
VO( )(xé )) = (x(() ))TMx(() )+c(P)

where M is an n x n real, symmetric matrix and ¢P) is a constant. While the matrix
M is complex in appearance, note that it is not dependent on the covariances PO(P)

and PO(E) of the players’ state measurement errors. Hence, we conclude that the
matrix

M= Py,

where the matrix P is given by (5.11). The constant

P = Trace( AT QrpAP" +2P" AT QCF
—(F)"(Ry = CTQrOFI (" + B™)) . (5.69)

where the gain F,’ is given by (5.59).

Next, consider the expected cost 7(E)( 1@, v();f(()E)) of player E, (5.40). The
expectations
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E; (fT& —W)(R, + BT QrB) f(x — W)
= & =) (F)T (R, + BT QrB)F/xP
+Trace((F})" (R, + BT Qr BYF;(Py"
+P")) (5.66)
Ey (f& —w) = Frxy” (5.67)
and
Evpwp (fT(YéE) +wp —wg)BT QpAwg) = —Tmce((Fu*)TBTQFPO(E)) (5.68)

Inserting (5.66)—(5.68) into (5.40) yields the value function of player E

Vi = &) AT QAT + Trace(AT Q r APP)) — vl (R, — CT Q#C)uy
+ 200 CTQrAT) + @) (F)T (R, + BT Qp B)F} x4
+ Trace((F)T (R, + BT Qr BYE} (P + PP))
+ 2T (FT BT Q p AX
+ 2Trace((F¥)" BT Q  P{")
+ 2] CTQrBFx (5.69)
Also, in (5.69),
o) = (R = CTQrC)'CTQp(A%)" + BE; (f(R(" — )
=R, —C"0rC)'CTQr(A+ BFHT (5.70)
Inserting (5.58) and (5.70) into (5.69) yields the value function of player E. The
value function VO(E)(Y(E)) of player E is quadratic in x( ). Similar to the value
function of player P, it is of the form
VO(E)(Y((JE)) — (Y(()P))TP]YE)P) + C(E)
The constant
¢® = Trace( AT QrAP{® + (F))T (R, + BT Qr B)F} (P" + P{*)

+2(FHTBT QP (5.71)

where the gain F* is given by (5.58).
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These results are summarized in

Theorem 5.3. A necessary and sufficient condition for the existence of a solution to
the game (5.1) and (5.2) where the players have private information, that is, a game
where the initial state information of player P is specified in (5.15) and the initial
state information of player E is specified in (5.16) is that condition (5.5) holds.
Certainty equivalence holds and the optimal P strategy is given by (5.6) where X is
replaced by fgp) and the optimal E strategy is given by (5.7) where x is replaced

by YE)E) . The value function of player P is

Vi) = @OV PR 4 e (5.72)
and the value function of player E

VP EEY = @) P 4 ¢ (5.73)

The matrix Py in (5.72) and (5.73) is specified by (5.9) and the constant terms in
(5.72) and (5.73) , ¢®) and ¢'®), are specified in (5.65) and (5.71), respectively.

5.7 Conclusion

A static two-player linear-quadratic game where the players have private informa-
tion on the game’s parameter, is addressed. The players have private information,
however each player is able to formulate an expression for his expected payoff,
without the need, a la Harsanyi, to provide a prior probability distribution function
of the game’s parameter, and without recourse to the player Nature. Hence, the
closed-form solution of the game is possible. It is shown that in this special case of
a one-stage linear-quadratic game where the players have private information, the
solution is similar in structure to the solution of the game with complete information,
namely, the deterministic linear-quadratic game, and the solution of the linear-
quadratic game with partial information, where the information about the game’s
parameter is shared by the players. The principle of certainty equivalence holds.
The analysis in this paper shows the way to possible extensions of the theory to
multi-stage linear-quadratic dynamic games.
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Chapter 6

Interior Convergence Under Payoff Monotone
Selections and Proper Equilibrium: Application
to Equilibrium Selection

Dai Zusai

Abstract An interior convergent path in an evolutionary dynamic can be seen
as a sequence of perturbed quasi-equilibria to refine an equilibrium. In this
note, we investigate a variety of conditions to establish the connection between
interior convergence in regular payoff monotone selections and versions of proper
equilibrium and use the connection for equilibrium selection.

Keywords Evolutionary dynamics ¢ Payoff monotone selections ¢ Proper
equilibrium

6.1 Introduction

In equilibrium refinement, we consider a sequence of completely mixed strategy
profiles that satisfy a certain quasi-equilibrium condition and then define a refined
equilibrium as a limit of such a sequence. For example, a trembling-hand perfect
equilibrium is a limit of perturbed equilibria; a proper equilibrium is a limit of
strategy profiles in which a player is more likely to choose a better strategy than
a worse one. In evolutionary game theory, we could interpret such a sequence
as an interior convergent path under a certain kind of dynamics. In this paper,
we consider the relationship between proper equilibrium and interior convergence
under monotone selections such as the replicator dynamic.

Hofbauer (1995) verifies that, in a linear population game, a trembling-hand
perfect equilibrium is a limit of an interior convergent path under the best response
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dynamic (BRD) and vice versa.! Under the BRD, only the optimal strategy increases
its share of the players in the population. So each social state on the path can be seen
as a perturbed equilibrium, where most of players take the optimal strategy. Thus
it is natural to have the link between interior convergence under the BRD and a
trembling-hand perfect equilibrium.

Under the BRD, any suboptimal strategy decreases its share of players at a
constant decaying rate however close its payoff is to the optimal payoff. On the
other hand, a monotone selection requires the share of a worse strategy to decay
faster than that of a better strategy. Thus we would expect the limit of an interior
convergent path under a monotone selection to be a proper equilibrium. However,
in a simple two-stage chain-store game (Cressman 2003, p. 291), there is an interior
convergent path to a non-perfect/proper Nash equilibrium. So we cannot obtain a
general connection.

In this paper, we present a sufficient condition that guarantees the connection
between interior convergence in regular monotone selections and proper equilib-
rium. First, we prove that the limit of an interior convergent path under a monotone
selection is a weaker version of proper equilibrium, which is still stronger than Nash
equilibrium. Under a certain condition on the path and its limit, our theorem is
extended to verify that the limit is a proper equilibrium.

Here we employ a slightly weaker definition of payoff monotonicity than the
conventional definition so as to include the tempered best response dynamic (tBRD),
proposed by Zusai (2012). In the tBRD, an agent is more likely to revise his strategy,
as his current strategy becomes more disadvantageous compared to the optimal
strategy; when he revises it, he switches to the current optimal strategy like in the
standard BRD. The tBRD satisfies our definition of payoff monotonicity, while
the standard BRD does not. Using the results in this paper, Zusai (2012) contrasts
these two dynamics and argues that the introduction of payoff-dependent revision
rates makes both medium and long-run outcomes more consistent with equilibrium
refinement.

This paper proceeds as follows. The next section is devoted to set up the games
and the dynamics. In Sect. 6.3, we present several theorems to connect monotone
selections and proper equilibrium. We apply them to equilibrium selection in a
couple of examples in Sect. 6.4. The last section concludes the paper.

6.2 The Games and Dynamics
6.2.1 Population Games
We first introduce a general framework of a large population game and then interpret

finite-player normal-form games as population games. A population game is played
in a society with large populations of infinitely many anonymous agents. Here,

"Hendon et al. (1996) prove that the limit state under a fictitious play is a sequential equilibrium in
an extensive form game. They consider two kinds of fictitious play in a sequential-move game and
the theorem applies to both. Local fictitious play is the one played by “agents” in an agent-normal
form, while sequential fictitious play is the one played in a normal form of the sequential-move
game.



6 Monotone Selections and Proper Equilibrium 109

anonymity means that the aggregate distribution of strategies determines the payoffs
of each strategy.

A society is composed of P populations & := {1,..., P}. Each population
is a unit mass of infinitely many agents with the same strategy set and the same
payoff function.” Each agent in population p € £ chooses a strategy s from
SP = {1,...,87}. Let S := Zpe@ S” be the total number of strategies in all
populations.

Denote by x? € [0, 1] the mass/share of strategy-s players in population p. The

state of population p is represented by a column vector x” := (x{,...,x§,) in
XV = AP = {xP €[0,1]5"| Y co» xI' = 1}.3 The social state is represented
by a column vector x := (x',...,x") in 2 := [] ¢ 5» 277" We omit superscripts

for p, when it is clear from the context or the society consists of only one population
(P =1).

The payoff of each strategy is a function of the social state. Given the state x €
2, FP(x) is the payoff for a player of strategy s € .7 in population p. Define
payoff functions F? : 2" — R5" and F : 2~ — RS by column vectors F”(x) :=
(F/(x),...,F&(x)) and F(x) := (F'(x),...,FF(x)) foreach p € Z andx € 2.
In summary, a population game is mathematically defined by F : .2~ — RS. Assume
the continuous differentiability of F.

As usual, a Nash equilibrium is a state where (almost) every agent takes an
optimal strategy. Formally, a social state x € 2 is a Nash equilibrium, if for each
pePands € SP

FP(x) < Fl(x) = x? =0.

Here Fy(X) := maxyesr F/(x) is p’s payoff from an optimal strategy in state
x. Let b?(x) := argmaxy e o»r FS’,’ (x) be the set of p’s optimal strategies (the pure
best responses) in x. For a strategy profile s = (s',...,s") € .7, b7!(s) := {x €

Z'|s? € bP(x) V p} is the set of the social states to which s is the best response, i.e.
the best response region of s.

An interior social state x° € 3&2 = 2 N(0,1)5 is an e-perfect equilibrium with
e >0, if foreach p € & and s € 7P

FP(x°) < FI (X)) = x? <e.

A (trembling-hand) perfect equilibrium is the limit of a sequence {x"},en of &"-

perfect equilibria with " — 0. Furthermore, x* € 2" is an g-proper equilibrium
with ¢ > 0, if foreach p € & and 5,5 € /7

2The assumption of unit mass is made just for notational simplicity. We could easily extend the
model and the results to general cases where different populations have different masses.

3For a finite set 2 = {l,...,Z}, we define A% as A% = {(p1,....pz) € [0,1}%]
> .ca p. = 1}, ie. the set of all probability distributions on 2.

4A bold letter represents a column vector. Precisely x is a column vector (x 11, X ;1 R x12, R

2 P P
xsz.,..,xl,...,xsp).
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FP(x°) < F{(x*) = x{P < ex;?.

A proper equilibrium is the limit of a sequence {x" }, ey of &"-proper equilibria with
e" — 0.

Example 6.1 (Single-population random matching in a symmetric normal-form
game). Consider a symmetric two-player game in a normal form: each player
chooses a pure strategy from . = {1,...,S} and gets [1;; € R when he takes
strategy s € . and the opponent takes § € .. Let IT be the payoff matrix in which
I1; is in the s-th row and the §-th column.

To use IT to define a population game, we imagine a single population of agents
who are randomly matched: P = 1. An agent chooses a strategy from .7’; then he
meets another agent from the same population and they play the normal-form game
IT. When he decides on a strategy, the agent does not know which opponent he will
face; so to evaluate the payoff from each strategy, he uses the expected payoff. The
payoff function F : 2° — R in this population game is thus defined as

Fi(x) := Z Il;x; foreachs € ¥, xe Z .
se
Notice that the best response to social state x in this population game F coincides
with the best response in the normal-form game I7 when the opponent takes mixed
strategy x; hence, Nash equilibria of F coincide with symmetric Nash equilibria of
IT . Likewise the equilibrium concepts in F coincide with the symmetric ones in /7 .

Example 6.2 (Multi-population random matching in a normal-form game). Let
us consider a general multi-player game in a normal form. Now we explicitly
distinguish players and allow them to have different strategy sets and different

payoff matrices. Each player p € & := {l,..., P} chooses a pure strat-
egy from .7 = {1,...,S”} and gets payoff US € R from strategy profile
s = (s',...,s7) € 7, i.e. when each player ¢ € 7 takes strategy s¢ € .74,

Denote by U” the payoff matrix or alignment of player p, i.e. U? := {U/|s € .7}
and U := (U?) je .’

To interpret the normal-form game U as a population game, we imagine a society
with P populations &. One agent is randomly chosen from each population p € &
and they are matched and then play the normal-form game U. As before, the payoff
in this random-matching game is defined from the expected payoff in the normal-
form game U:

Fh(x):= > Ub o ] x4

S_[)z(sq)q;&pey_p q#p

for each of p’s strategy s? € .7 and each of the social state x € Z".

SNotice that a symmetric game IT € R5*S with the pure strategy set . is expressed as a general
two-player game as U, := I and U3 = IT;, with &' = #? := % Thatis, it is a bimatrix
game with (U',U?) = (IT, IT').
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Population p’s best response to social state x in this population game F coincides
with player p’s best response in the normal-form game U when the opponent players
take mixed strategy profile x 7 := (x%),,; hence, the set of Nash equilibria of
this random-matching game F coincides with the set of all (both symmetric and
asymmetric) Nash equilibria of the normal-form U. The other equilibrium concepts
in F also match with the ones in U.

6.2.2 Monotone Selections

We consider continuous-time evolutionary dynamics on 2. In an evolutionary
dynamic, each agent recurrently revises his strategy according to a certain revision
protocol. In large populations of infinitely many agents, their aggregate behavior is
described by a deterministic dynamic on the space of the social state 2 .

An evolutionary dynamic is said to satisfy payoff monotonicity and called a

(payoff) monotone selection, if any interior path {x(f)};er, C 2 satisfies both
of the following two conditions for almost all time ¢ € R4 := [0, 00), any p € &
and any 5,5 € /7

@) X

V4 14
Fr(x(1)) > F/ (x(1)) = X0 > xﬁ,,(t), (PM1)
s ebP(x(t)) = xP(t)=>0. (PM2)
Furthermore, we call it regular if
4 - P
. . p _ p . . X‘Y (l) _ x&\ (l)
hlrll)ggf{FS (x(2)) — F/ (x(2))} >0 = htrll)ggf% 0 xf(t) > 0. (PM3)

In the preceding literature, payoff monotonicity requires ‘“two-sided”
monotonicity:
() * 0
X7 (6)  xf(0)

FP(x(t) > F/(x(t)) + (PMO)
For example, see Weibull (1995, Definition 4.2) and Hofbauer and Sigmund (1998,
p- 88). Samuelson and Zhang (1992) and Cressman (2003, Definition 2.3.2) call it
monotonicity, and Sandholm (2010, p. 163) monotone percentage growth rates.

With the invariance of 2, i.e. ) ¢ » x! = 0, (PMO) implies our definition of
monotonicity, both of (PM1) and (PM2), but not vice versa. Hence our monotonicity
is weaker than theirs.°

5Cressman (2003, Definition 2.3.2) defines uniform monotonicity by imposing 3K > 1 such that
K|F (x(t)) — Ff (x(@)| = 15 (0)/x (1) = ¥ (0)/x{ ()] = K~'E (x(1)) — F (x(1))]. This
implies our regularity (PM3).
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Example 6.3 (Replicator dynamic). The replicator dynamic defined as below
(Taylor and Jonker 1978) is a regular monotone selection:

%P = xP(FF(x) — FP(x))  foreachpe &, s€ 77 xe 2.

Here FP(x) := Y cp x! F/(x) is the average payoff in population p. Schlag
(1998) proposes a protocol to derive the replicator dynamic from imitation. In
general, imitative dynamics are payoff monotone. See Sandholm (2010, Observation
54.8.).

Example 6.4 (tBRD). Zusai (2012) defines the tempered best response dynamic as

X" € Y xIQ(F/(x)(B"(x)—ef)  foreachpe #.xe 2.

SESP

Here F7 (x) := Ff(x) — F{(x) is the current payoff deficit of strategy s € .77,
Q : Ry — [0,1] is an increasing and continuously differentiable function with
Q(0) = 0and Q(sr) > 0 for any 7 > 0, and B”(X) = argmaxyez» y - F(x) is
the set of p’s mixed best responses to the current state x.” In the tBRD, an agent
myopically switches to the current optimal strategy if the payoff deficit is larger
than a stochastic status-quo bias, whose distribution function is Q; otherwise, he
continues to play the current strategy.

While the tBRD can admit multiple transition vectors like the standard BRD
when there are multiple optimal strategies, it satisfies our definition of regular payoff
monotonicity (PM1)—-(PM3) unlike the BRD. Note that the tBRD does not satisfy
the two-sided monotonicity (PMO0), because multiple optimal strategies can have
different nonnegative growth rates.?

6.3 Monotone Selections and Properness

Despite apparently natural analogy between payoff monotonicity and properness,
the limit of an interior convergent path under a payoff monotone selection may
not be proper, or even not perfect. In the definition of e-properness, the proportion
of a worse strategy should be smaller than that of better one. Although payoff
monotonicity makes the worse strategy decay faster than the better, the decaying
rate can vanish when the payoff difference diminishes. If the proportion of the
worse strategy is sufficiently large in the population, the vanishing decay rate may
eventually keep it survive in the limit.

Te, = (€ab)p—, € R" is a basis vector in R", with e,, = 1 and e y—o for any b # a.

8For the same reason, the tBRD does not satisfy Cressman’s uniformity.
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Fig. 6.1 Example 6.5. The inequality out of each column/row of the table is the condition on the
social state x for the strategy in this column/row to be the best response. In Figs. (¢) and (d), the
width of an arrow shows the norm of a transition vector, while the length of an arrow is normalized.
(a) Extensive form, (b) Normal form, (c) x in replicator, (d) x in tBRD

Example 6.5 (Cressman 2003). Consider a two-player sequential-move game in
Fig. 6.1a and a two-population random matching in its normal form. While (B, r) is
a subgame perfect equilibrium, there is a connected component of Nash equilibria
Ny = {x|x} = 1,x} > .5} that are not subgame perfect.

According to Fig. 6.1c, d, there are interior paths converging to Ny under both
the replicator dynamic and the tBRD. In the interior space 2 around Ny, both
strategy B in population 1 and strategy / in population 2 are suboptimal and thus
decrease their shares of players. But the payoff difference between / anr r vanishes
as the state approaches Ny. The decaying speed of strategy / hence diminishes to
zero under these dynamics, while strategy B keeps a large payoff deficit and a great
decaying speed. As a result, strategy / survives while strategy B does not, when the
state reaches a limit state in Ny. See also Cressman (2003, Example 9.1.2, p. 291).

Diminishing decaying rates due to vanishing payoff differences interrupt the
connection between proper equilibrium and monotone selections. To retain this
connection, we first neglect such vanishing payoff differences and define a weaker
version of proper equilibrium, a pseudo-proper equilibrium. In a sequence converg-
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ing to a pseudo-proper equilibrium, the shares of players are ranked according to the
payoff ordering at the limit, but they can be inconsistent with the payoff ordering
at each state in the sequence. This is the same idea as a weakly proper equilibrium
(van Damme 1991), while we drop perfectness from its definition.

Definition 6.1 (Pseudo-proper equilibrium). An interior social state x° € 2 is
an g-pseudo-proper equilibrium for x* € 2 with ¢ > 0, if for each p € & and
s, 5§ €77

FP(x*) < FY(x*) = x{? <ex{”.

A social state x* € 2 is a pseudo-proper equilibrium if there is a sequence
{(x", ") }nen C 2 x (0, 00) such that each x” is an &”"-pseudo-proper equilibrium
for x* and (x", &") — (x*,0) as n — oo. Further, x* is a weakly proper equilibrium,
if each x” in this sequence is also an &"-perfect equilibrium.

Pseudo-properness is weaker than properness but stronger than Nash equilib-
rium. Since a proper equilibrium always exists, so does a pseudo-proper equilib-
rium.

Theorem 6.1. Consider a social state x* € 2 in a population game F. (i) If
X* is a pseudo-proper equilibrium, it is a Nash equilibrium. (ii) If X* is a proper

equilibrium, it is pseudo-proper.

Proof. (i) A pseudo-proper equilibrium x* has a sequence of &"-pseudo-proper
equilibria {x"} with &” — 0 and X" — x* as n — oo. Consider a suboptimal
strategy s € .7 \ bP(x*) at x*. Then, x! < &”" by &"-pseudo properness and
x. < 1. Asn — oo, we have x} = limx? < 0 = lime". By xJ > 0, we
have x} = 0. Because this holds for any suboptimal strategy at x*, x* is a Nash
equilibtium.

(ii) A proper equilibrium x* has a sequence of &"-proper equilibria {x"}. Fix
& > 0 arbitrarily. The continuity of F guarantees the existence of N € N s.t.
Fl(x*) < F/(x*) implies F{’(x") < F/(x") foralln > N.Asx" is an ¢"-
proper equilibrium, this further implies x} < e”x’g; thus, at eachn > N, x" is
an &"-pseudo-proper equilibrium for x*. Hence x* is pseudo-proper. O

We can readily establish the connection between a pseudo-proper equilibrium
and monotone selections: the limit of an interior convergent path in any regular
monotone selection is pseudo-proper. The converse is not true, as we see in
Example 6.6.

Theorem 6.2. Consider a population game F. Suppose that there exists an interior
path {x(t)},er, C Z converging to a state X* € 2 under a regular payoff

monotone selection. Then this limit X* is a pseudo-proper equilibrium.

Proof. Consider any two strategies s, § € .7 such that F (x*) < FSAP (x*). Then,
by continuity of F and (PM3), the difference in their growth rates is bounded above
by some negative constant —Ag; < 0, after a sufficiently long time T;; has passed:
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d [ x0
o (log xj:(t)) < —Agg; <0 foranyt > Ty;.

Consequently we obtain

50 _ x(Ty)

x5()  x3(Ts)

Since the RHS converges to zero as ¢ — oo, for any ¢ > 0 we can find another
threshold moment of time TS’§(8) > Ty; such that

exXp (_Agsf(l - Tvﬁ)) for any 7 > T.

x(1)
x;(1)

<e¢ foranyr > T (). 6.1)

As we allow only finitely many strategies and hence finitely many pairs of strategies,
the maximum of these threshold moments exists: T(g) := max{T/.(e)|p €
P.s,§ € SPF(x*) < Ffp (x*)} < oo. Construct an increasing and
unbounded sequence of moments of time {t"},eny such as t' = T(1) and
t" = max{T(1/n),t""'} + 1 for n > 2, and then a sequence {X"},cx by choosing
x (") for x". Consequently, this sequence converges to x*, since t" — 0o asn — 00
and x(f) — X* as t — oo. Besides, at each n € N, (6.1) and t" > T(1/n) imply
that X" is an &"-pseudo-proper equilibrium for x* with &" = 1/n. Therefore, x* is a
pseudo-proper equilibrium. O

Under the same idea, Samuelson and Zhang (1992) prove that, if a pure strategy
is iteratively strictly dominated by pure strategies, it does not survive in the long
run under any regular payoff dynamic. As such a strategy is eliminated in a Nash
equilibrium, the above theorem seems a stronger statement than theirs. But they
have the convergence of the share of such a strategy to zero as a result and do not
assume the convergence of the social state X, i.e. the convergence of every strategy’s
share.

It is well known as the “folk theorem in evolutionary game theory” that the
limit of any interior convergent path in any “reasonable” evolutionary dynamic is a
Nash equilibrium.’ As a pseudo-proper equilibrium is a Nash equilibrum, the above
theorem, combined with Theorem 6.1, provides an easy proof of the folk theorem.

Pseudo-proper equilibrium may not be perfect. But, if the optimal strategy does
not change on the path and the limit is a pure strategy profile, the limit is weakly
proper, not only pseudo-proper.

Theorem 6.3. Consider a population game F. Suppose that there exists an interior

o
path {x(t)}ier, C 2 converging to a state X* € 2 under a regular payoff
monotone selection.

9For example, see Cressman (2003, p. 11).
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Furthermore, suppose that b? (x(t)) = b?(x(0)) foranyt € Ry and p € &
and that the limit X* is a pure strategy profile. Then this limit x* is a weakly proper
equilibrium.

Proof. Let s € bP(x(t)) be the optimal strategy for population p € &2 at some
moment of time ¢ € Ry ; then, it is optimal at any moment ¢ € R;. By (PM2), an
optimal strategy cannot decrease its share of players. Thus x > x,(0) > 0. Since
the limit x* is a pure strategy profile, s is the only strategy that is taken by agents
in population p at the limit, i.e. xJ = 1. Then, for an arbitrary ¢ > 0, there exists
T(e) € Ry such that, at any ¢t > T(¢), x,(t) > 1 — ¢ and thus x;(¢) < ¢ for any
other strategy § € .’7. Hence x(¢) is an g-perfect equilibrium. With Theorem 6.2,
this suggests that the limit x* is weakly proper. O

With further additional assumptions about the limit and the path, the limit
becomes proper. Condition (i) below strengthens the assumption of the invariant
optimal strategies in the above theorem to the invariant payoff ordering. Condition
(i) means that, if a strategy is suboptimal in the states on the convergent path, it
should be extinguished in the limit, whether or not it becomes optimal in the limit.'°
Condition (iii) prohibits the payoff difference between strategies from vanishing at
the limit, unless one strategy is the optimal and the other is the second best on the
path.

Theorem 6.4. Consider a population game F. Suppose that there exists an interior
path {x(t)},er, C 2 converging to a state X* € 2 under a regular payoff
monotone selection.

Furthermore, suppose that for any p € & and s,§ € /P

(i) sgn(FL (x(0) — FL (x(1)) = sgn(F (x(0)) — FY (x(0)) forall 1 € Ry,
(ii) x;7 = 0if I/ (x(t)) < FY(x(t)) atany t € Ry, and
(iii) Fy(x*) = F{](X*) implies F} (x(1)) = F{)(X(Z))for allt € Ry, unless either
sorSis 0ptiinal at some moment of time in R4.

Then, X* is a proper equilibrium.

Proof. Consider any two strategies s, § € .7 such that F{ (x(1)) < Ff(x(1)) at
some moment of time # € R,. Then, by (i), this holds at every moment # € R . If
this payoff ordering does not change at the limit, i.e., F;(x*) < F;(x*), then we can
repeat the proof of Theorem 6.2 and obtain (6.1) with some Ts/g (e) e Ry.

Consider a case of F;(x*) = F;(x*). By (iii), § should be optimal on the path
{x(7)}rer,. - By (PM2), an optimal strategy cannot decrease its share of players. So
x$ > x3(0) > 0. On the other hand, s is suboptimal on the path and thus x{* = 0 by
(ii). Hence we have x;()/x;3(1) — x;/x! = 0. Thus, for any ¢ > 0, we can find
some T.(e) € R that satisfies (6.1).

1Tn Example 6.5, interior Nash equlibria in Ny do not satisfy condition (ii).
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For each ¢ > 0, we have T (¢) := max{Ts/§(£)|p € P,s5.5 € 7 F'(x()) <
F§p (x(¢)) atevery t € R4} < oo. Construct an increasing and unbounded sequence
{t"}yen C Ry suchas t! = T(1) and " = max{T(1/n),t""} + 1 forn > 2;
then, define a sequence {x"},en C 3&2 as X" ;= x(t"). Ateachn € N, X" is an &"-
proper equilibrium with &” = 1/n. (Notice that the payoff ordering is invariant on
the path.) Besides, since 1" — oo and &" — 0 asn — oo and x(t) — x* ast — oo,
x" = x(") converges to x*. Therefore, the limit x* is a proper equilibrium. O

Condition (iii) seems to be quite restrictive, especially when we analyze a
sequential-move game in a normal form. Yet, we can apply it to an interesting class
of games. For example, consider a situation where one of the players decides on
whether or not to interact with the others. If he decides to interact, the other players
and he choose simultaneously and independently whether or not to cooperate
with each other; otherwise, each receives a status-quo payoff. Such a situation
is thought of, for example, when we consider how anticipation of uncommitted
cooperation/collusion or its absence affects potential entry. This is described as a
two-strategy simultaneous-move game with a single player having an outside option.
Theorem 6.4 is applicable to pure-strategy equilibria in such a game in a reduced
normal form, as we do in Example 6.7 in the next section.

6.4 Application to Equilibrium Selection

In equilibrium refinement, properness is justified as rational players’ careful con-
sideration of payoff rankings on the assumption of similar rationality on others.'!
In evolutionary game theory, we wonder if boundedly rational agents learn to play
the same outcome as fully rational players would play. Here, we see a couple of
examples where proper equilibrium results in the most plausible outcome while
weaker equilibria such as perfect or sequential seem implausible. By Theorem 6.4,
we find that boundedly rational agents eventually reach the plausible outcome as
long as they follow a monotone selection.

Example 6.6. Consider a single-population random matching game with ./ =
{1, 2, 3} and the payoff function F given below (Myerson 1978).

1 0 -9 X1 —9x3
Fx)=10 0 —7|x= —7x3
-9 -7 -7 —9X1 — 7X2 — 7X3

All vertexes ey, e, and e; are Nash equilibria. But strategy 3 is weakly dominated;
so e3 is not perfect. e, is only weakly proper, and e; is proper. Note that in the
replicator dynamic, (1/6,0,5/6) is also a rest point; but it is not stable and not a
Nash equilibrium.

" For epistemological foundation of properness, see Blume et al. (1991).
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€

es €

Fig. 6.2 Example 6.6. The solution paths are drawn with Dynamo. e, is a proper equilibrium, e,
is only a weakly proper equilibrium, and e is a non-perfect Nash equilibrium. In Fig. (b), the
optimal strategy is 1 in the region above the gray dash line, and 2 in the region below. (a) Paths in
replicator, (b) Paths in tBRD

Figure 6.2 shows that all the interior paths converge to the proper equilibrium e
both in the replicator dynamic and in the tBRD. We can negate interior convergence
to e,. Suppose that there was an interior path converging to e,. By (PM2), strategy
2 should be optimal before the path reaches e,. It also implies that, if strategy 1 is
optimal as well, x; should not decrease. Around e,, strategy 3 is the worse and hence
x3 should decrease in a monotone selection. These changes in x; and x3 improve
strategy 1’s payoff relative to strategy 2’s. So, if both strategies 1 and 2 are optimal
at a moment of time, strategy 1 becomes uniquely optimal after this moment. Then,
strategy 1 increases its share of players, remaining optimal and absorbing other
players.

Therefore, if there was an interior convergent path to e, strategy 2 should be the
unique optimal strategy on the path. Such a path and the limit e, would satisfy the
assumptions in Theorem 6.4. But, the limit e; is not a proper equilibrium, which
contradicts with the conclusion of Theorem 6.4. Consequently, there cannot be any
interior convergent path to e;.

This argument suggests that, regardless of the initial state, strategy 1 eventually
becomes uniquely optimal and then every agent switches to it. Thus the social state
converges to the proper equilibrium e;.

A proper equilibrium in a normal form implies a sequential equilibrium and thus
a subgame perfect equilibrium in any corresponding extensive form. Theorem 6.4
helps us to select the most plausible outcome in a sequential-move game by
convergence of a monotone selection, as long as the game is as simple enough as
the example below.

Example 6.7. Consider a two-player sequential-move game in Fig. 6.3 (van Damme
1991, Fig. 6.5.1.). In this example, player 1 has an outside option that allows not to
play a two-strategy simultaneous-move game with player 2. A typical interpretation
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Fig. 6.3 Example 6.7. The inequality out of each column/row of the table is the condition for the
strategy in this column/row to be the best response. Figs. (¢)—(f) are obtained from discrete-time
finite-population simulations. (a) Extensive form, (b) Normal form, (c) x! in replicator, (d) x! in
tBRD, (e) x? in replicator, (f) x> in tBRD

is that player 1 is the entrant into a market and, if he decides to enter, the incumbent
(player 2) and the entrant simultaneously choose whether to fight or to cooperate.

Both (A,r) and (L,l) are trembling-hand perfect in the normal form and
sequential equilibria in the extensive form. (L, /) is the only proper equilibrium,
while (A, r) is not. Actually (A,r) seems unreasonable if the two players are
rational and the rationality is common knowledge. To choose r, player 2 should
believe that player 1 plays R with higher probability than L. But R is always worse
than L for player 1; hence, this belief seems against 1’s rationality. We wonder if
such an unreasonable outcome could be sustained in the long run of an evolutionary
dynamic of boundedly rational agents.

Let us consider a two-population random matching in the normal form of this

game and a regular monotone selection. We show that, even if a path starts from

o
the interior of 57! (A,r), ie. {x € Z'|x] < xk,x7 < 1/3}, it converges to the
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proper equilibrium (L, /). Theorem 6.4 guarantees that the state does not reach the
non-proper equilibrium (e!, €?) without either inequality x} < xj or x7 < 1/3
reversed. With payoff monotonicity, the former inequality, i.e. the unique optimality
of r, implies that / decreases and the latter inequality keeps holding. Besides, as R
is always the worst, x}e should always decrease. Hence, for the path to escape from
the interior of b~ (A, r), the inequality x} < x% should be reversed; the state enters
the interior of 5~!(A4, /) and / becomes uniquely optimal. By payoff monotonicity,
xl2 increases and eventually exceeds 1/3; the social state goes into b~' (L, /). Then,
L becomes optimal for population 1, as well as / for population 2. So the social state
converges to (e} , €7), i.e. the proper equilibrium (L, 7).

Zusai (2012) uses this example to contrast the tBRD with the standard BRD,
where an interior path converges from b~ (A, r) to a normal-form trembling-hand
perfect equilibrium (A, 7). As any regular monotone selection results in interior
convergence to the proper equilibrium in this example, it shows a clear implication
of payoff monotonicity, distinct from consistency with optimality alone.

6.5 Concluding Remarks

We argue the connection between interior convergence in payoff monotone selec-
tions and proper equilibrium. The connection cannot be generalized when payoff
differences vanish at the limit, because of diminishing decaying rates. However, we
present several versions of additional conditions to establish a natural link between
them. In an example of a two-player three-strategy symmetric simultaneous-
move game, the theorem helps to confirm global interior convergence to a proper
equilibrium. A similar result is obtained in an example of a two-player two-
strategy simultaneous-move game with one of the players having an outside option.
These examples suggest that, despite very sophisticated rational reasoning implicitly
imposed on its definition, a proper equilibrium can be supported as the long-run
outcome from dynamic interactions of bounded rational (possibly non-optimizing)
agents in large populations.
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Chapter 7
Should a Retailer Support a Quality
Improvements Strategy?

Pietro De Giovanni

Abstract In a one-manufacturer-one-retailer supply chain, players establish both
operations and marketing strategies and coordinate the chain through the imple-
mentation of a support program. A retailer, who sets both the pricing and the
advertising strategies, acts as chain leader and decides whether to support a
manufacturer’s operational strategy, such as quality improvements. The players
share the overall chain revenues based on an exogenous, fixed sharing agreement.
We compared coordinated and non-coordinated solutions in which coordination is
carried out via a support program for quality improvements. While according to
the literature a retailer—leader always has an economic preference for operation-
based coordination, our findings reveal that: (a) low operational efficiency and
effectiveness discourage the retailer’s interest in coordination and (b) good sharing
parameter values overcome concerns regarding operational inefficiency but not
those of operational ineffectiveness.

Keywords Supply chain management ¢ Coordination ¢ Differential game
* Advertising ¢ Quality improvements ¢ Support program * Feedback equilibrium

7.1 Introduction

Cachon (2003) defined supply chain coordination as the adoption of a specific
contract that leads two or more players to a win—win situation. More recently,
coordination has been investigated by means of several alternative mechanisms,
such as a support program (Jgrgensen et al. 2001), an incentive scheme (Jgrgensen
et al. 2006), and a combination of mechanisms (De Giovanni and Zaccour 2013).
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Despite the devices employed, coordination has a unique objective: leading players
to a payoff-Pareto-improving situation (De Giovanni and Roselli 2012).

Researchers have demonstrated that coordination is complex in the context of
supply chains (von Lanzenauer and Pilz-Glombik 2002), as it is characterized by
multiple interfaces among business functions (Erickson 2011). Each function has
specific objectives, resources, and constraints; thus, determining optimal strategies
implies considering numerous facets (Erickson 2011). This evidence has emerged
in one of the most elaborate definitions of supply chain management (SCM),
which was proposed by Mentzer et al. (2001): “SCM is the systematic, strategic
coordination of the traditional business functions within a particular company and
across businesses within the supply chain.” Therefore, the interfaces among business
functions in SCM have become a strategic issue, whose understanding requires a
deep analysis of relationships, benefits, limitations, and countermeasures.

Research in differential games has addressed the existing interfaces between
business functions and their strategies, including quality and advertising (Nair
and Narasimhan 2006); quality, pricing, and advertising (De Giovanni 2011b);
management accounting, advertising, and pricing (De Giovanni and Roselli 2012);
quality and operational knowledge (Vo6ros 2006); pricing and inventory (Jgrgensen
1986); quality, inventory, pricing, and advertising (El Ouardighi et al. 2008); pricing
and quality (EI Ouardighi and Kim 2010; Martin-Herran et al. 2012); advertising
and promotion (Jgrgensen et al. 2003); contracting and operational efficiency (Kim
2003); operations and marketing (Erickson 2011); and innovation and pricing (Kim
2003). Managing interactions between business functions is critical and complex.
We contribute to this stream of literature by introducing a dynamic equation of
goodwill a la Nair and Narasimhan (2006) with the addition that quality influences
goodwill based on its entire history. This dynamic equation seems to be very
appealing nowadays, as it demonstrates that the impact of quality drastically affects
the value of the brand. For instance, the recent scandals concerning non-quality food
at Nestle’ and lkea have substantially damaged their respective images. Because
these companies enjoy worldwide recognition, such scandals involve a loss of image
that depends on the size of the brand value itself. That is, the higher the value of the
brand, the higher the impact of a quality strategy.

Driven by these circumstances, we present a one-manufacturer-one-retailer
Stackelberg differential game model that introduces quality, advertising and
pricing strategies. The retailer—who is the leader of the chain—controls
the marketing strategies, specifically: advertising efforts and pricing. The
manufacturer—who is the follower—controls an operational strategy, namely,
quality improvements efforts. The demand depends on both price and goodwill
dynamics, and advertising and quality improvements contribute to the accumulation
of goodwill over time. The players divide the total revenues based on
an exogenous fixed sharing mechanism (e.g., Chintagunta and Jain 1992;
Jgrgensen and Zaccour 2003; Jgrgensen et al. 2006). As chain leader, the
retailer decides whether the supply chain should be coordinated. The game
consists of the following moves: (a) the retailer announces whether the chain
will be coordinated, (b) the manufacturer sets the quality improvements
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strategy based on the retailer’s announcement, and (c) the retailer accounts
for the manufacturer’s strategies and determines the pricing and advertising
strategies.

We investigate supply chain coordination through the implementation of a
support program. In particular, we are interested in whether the retailer decides
to achieve supply chain coordination by paying (supporting) a part of the man-
ufacturer’s quality improvements expenses. This type of mechanism has been
extensively reported in the marketing and supply chain literature. For instance,
Jgrgensen et al. (2003) identified the conditions under which a manufacturer
is willing to support a retailer’s advertising expenditures. De Giovanni (2011b)
demonstrated that the economic benefits of supporting an advertising strategy
depends on advertising effectiveness and the choice of media. De Giovanni and
Roselli (2012) illustrated the usefulness of a support program to overcome the lim-
itations implied by the adoption of a revenue-sharing contract in a dynamic supply
chain. Similarly, Karray and Zaccour (2006) and Jgrgensen et al. (2000, 2001, 2003)
developed numerous marketing support programs to evaluate the benefits obtainable
through coordination. Although it is generally accepted that a support program may
be payoff-Pareto-improving, He et al. (2009) demonstrated that this is not always
the case. For instance, a manufacturer may offer a support program only when the
retailer’s margin is lower than, or close to, the manufacturer’s margin.

Supporting a quality improvements strategy entails an difficult challenge for
a supply chain. Quality improvements exerts both a positive role in demand—
increasing sales through goodwill—and a negative role in the manufacturer’s unit
profit margin—boosting production costs. Such trade-offs impose strict barriers to
coordination and influence several aspects of a business. For instance, Jgrgensen
et al. (2003) characterized a trade-off of sales promotion that has a positive impact
on demand but a negative influence on goodwill. El Ouardighi et al. (2008) showed
that a coordinated supply chain should balance investments in quality improvements
and advertising. Jgrgensen and Zaccour (2003) introduced a channel with multiple-
retailer promotions that positively affect sales and negatively impact brand image.
De Giovanni (2011b) highlighted the role of quality improvements in increasing
the stock of goodwill and reducing the manufacturer’s profits when advertising
effectiveness is low. Kim (1998) illustrated the role of technology in increasing the
value of dynamics production technology development while reducing sales, where
the internal learning rate determines the external technology a firm needs to acquire.
Resolving these trade-offs provides advantages to the coordination process in supply
chains.

To evaluate the benefits of coordination, we have characterized and compared
equilibria of two scenarios. In the first scenario, two firms choose their strategies
non-coordinatedly and non-sequentially and the game is modeled a la Stackelberg.
The second scenario, which is also modeled a la Stackelberg, characterizes coordi-
nation through a support program wherein the retailer announces a positive support
program. We compared the strategies and the outcomes in the two scenarios, taking
the non-coordinated scenario as a benchmark and highlighting the conditions under
which supply chain coordination is worthwhile.
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To address the research questions, the current paper is organized as follows.
The next section describes the differential game model while the third section
characterizes the equilibria in coordinated and non-coordinated scenarios. The
fourth section offers a comparison of strategies and their outcomes, and the final
section provides concluding remarks.

7.2 The Model and Scenarios

A conventional supply chain is composed of one manufacturer, player M, and
one retailer, player R. In this text, we have referred to the manufacturer as he
and to the retailer as she. We assumed that the manufacturer controls the quality
improvements rate, Q(¢), while the retailer controls both the price, p(¢), and the
advertising rate, A(¢). In this sense, we have referred to quality improvements
as an operational strategy and to pricing and advertising as marketing strategies.
In a non-coordinated scenario, the players establish their strategies to maximize
their own payoff function. As we demonstrate, coordination in a supply chain is
characterized by the integration of marketing and operational strategies through a
support mechanism.

We assumed that players split the total chain revenues based on a fixed sharing
mechanism (see, for instance, Chintagunta and Jain 1992; Jgrgensen and Zaccour
2003; Jgrgensen et al. 2006), which is characterized by a constant parameter
¢ € (0,1). The parameter value is common knowledge to both players. Leaving
the fixed share an exogenous element helps in identifying the ranges of values that
lead to economically successful supply chain coordination. The introduction of a
sharing mechanism to split the profits among firms is common in supply chain
practice, where companies belonging to the same supply chain eliminate all internal
inefficiency (e.g., a double marginalization effect due to a traditional wholesale price
contract) while identifying how the overall profits have to be shared (Mentzer et al.
2001).

Both the manufacturer and the retailer contribute to goodwill dynamics through
their quality improvements and advertising strategies, respectively. In a dynamic
framework, goodwill is investigated by means of the following dynamic equation:

G () = aA@t) +bO(1)VG (1) —8G(t),  G(0) = Go=0  (7.1)

where § > 0 is the decay rate or forgetting effect of the state while Gy is the initial
stock of goodwill. @ > 0 and b > 0 correspond to the marginal contributions
of advertising and quality to goodwill, which are generally called advertising and
quality effectiveness, respectively (De Giovanni 2011b). This way of modeling the
relationships between quality improvements and goodwill is one of the proposed
novelties. In contrast to Nair and Narasimhan (2006), De Giovanni (2011b),
Martin-Herran et al. (2012), and Jgrgensen and Zaccour (2003), who proposed a
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relationship between strategies and state that no longer depends on the history of the
state, we have proposed a formulation wherein quality improvements’ contribution
to the stock of goodwill also depends on the stock itself. An example for this
formulation is reported by Doganoglu and Klapper (2006), who modeled a goodwill
dynamic where an advertising strategy contributes to goodwill by considering its
entire history. To check the validity of such dynamic equation, one can think
about the brand damage caused by sources of non-quality. When there is a non-
quality event, the negative effects on the value of the brand are as large as the
prominence of the brand itself. For instance, the recent scandals that involved Nestlé
and Ikea (www.nytime.com, Feb. 2013) over beef products adulterated with horse
meat represent two suitable examples. The effects of (no) food safety—quality—
affect (negatively) positively the image brand according to the value of the brand
itself. In fact, the negative effects of these scandals on Nestlé’s and Ikea’s brands
have spread worldwide due to their importance and recognition, with the result that
quality affects goodwill according to its entire history
Customer demand, which depends on price and goodwill, is determined by:

D(p(1).G(1)) = 0VG (1) = Bp(1) (7.2)

where § > 0 and 6 > O represent the effects on current sales of pricing and
goodwill, respectively. According to (7.2), the retailer controls demand through
the price while both players’ influence the goodwill dynamics via investing in
quality improvements and advertising. Marketing and operational strategies should
be defined to ensure positive sales, thus setting the price such that p(z) < % VG(1).
Although a quality improvements strategy contributes to goodwill dynamics, it
also implies a marginal production cost, ¢ > 0, for each dollar invested in quality.
Thus, the manufacturer suffers when an investment in quality improvements is not
sufficiently efficient. The production cost function takes the following form:

Cp(Q ) =cQ1) (7.3)

Production cost is an increasing function of quality improvements, so any increase
in quality implies a higher production cost. The function in (7.3) has been used by
Voros (2006), De Giovanni (2011b), Fine (1986, 1988), Tapiero (1987), and Chand
et al. (1996), who modeled a production cost that increases with quality improve-
ments. Consequently, the manufacturer’s unit profit margin, my (p(¢), Q(t)) =
p(t)p — cO(t), decreases in quality improvements through production costs and
increases in pricing. Thus, we have referred to the effect that the cost parameter
c exerts as operational efficiency. When the manufacturer does not invest in
quality improvements, the unit profit margin coincides with the share of unit
revenue.

The role of quality improvements in (7.1) and (7.3) enhances an interesting
operational trade-off. On the one hand, production cost directly depends on
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quality improvements. However, investing in quality involves a set of operational
challenges—new controls and standards, training, setup, and trials—all of which
increase production costs (Roselli and De Giovanni 2012). On the other hand,
quality improvements makes a positive contribution to the accumulation of goodwill
(Nair and Narasimhan 2006).

Adpvertising and quality improvements efforts take a convex and quadratic forms:

A@)? Q( )2

Ca(A) = ——: Co(Q() = —— (7.4)

For the purpose of this research, coordinated and non-coordinated scenarios have
been proposed. In the non-coordinated scenario, the manufacturer is concerned
with operational issue strategies, whereas the retailer only controls marketing
efforts. In the coordinated scenario, the retailer supports the manufacturer’s quality
improvements efforts and makes use of both marketing and operational instru-
ments simultaneously. B(¢) denotes the retailer’s support rate, which represents
the percentage of quality improvements investments that the retailer pays to the
manufacturer, which takes values within the interval [0,1]. When B(¢) = 0, players
no longer coordinate the chain; when B(t) = 1, the retailer pays all the quality
improvements expenses. When B(t) € (0, 1) the players seek to reach coordination.
Assuming an infinite time horizon and a positive discount rate p, the manufacturer’s
objective functional under the coordinated scenario is:

aw = [ 05w - prn(ris - o) - 7 00! ar
(15)

and the retailer’s objective functional is:

B(r)

Jp = /0 e—mg(e@—ﬁp(t»p(r)(l—w ——00)* ~ A(r)z} dt

(7.6)

Using (7.1), (7.5), and (7.6), we define a two-player differential game with four
controls, A(¢) > 0, Q(t) > 0, B(t) > 0, and p(t) > 0, and one state, G(t) > 0.
In the non-coordinated scenario, only three controls are used since B(¢) = 0. From
this point forward, the time argument is omitted. We solve the games by assuming
that the players use a stationary feedback strategy, which is standard in differential
games over the infinite time horizon (Dockner et al. 2000). Although the complex
interfaces between marketing and operations that emerge in dynamic games suggest
using an open-loop solution, we developed feedback strategies because they provide
a time-consistent equilibrium. Moreover, the information obtained in the feedback
strategy is much more appropriate from a managerial perspective in supply chain
management studies due to the value of information that such strategies supply (He
et al. 2007).
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7.3 Equilibrium Results

To highlight the benefits that supply chain coordination provides, we have solved
for two scenarios. In both cases players are aware of how total chain revenues will
be split.

First, in the non-coordinated scenario, each player maximizes his payoff without
taking into consideration the other player’s strategies. The game is played a la
Stackelberg, thus strategies are set up sequentially and non-collaboratively while
B(t) = 0. Second, in a coordinated scenario, the retailer pays a fraction of the
manufacturer’s quality improvements expenses. Her motivations arise from the
positive effect that quality improvements exerts on the state. Its contribution depends
on the entire history of goodwill. Increasing production costs may discourage the
manufacturer’s investments. In a coordinated scenario, B(¢) € (0, 1].

7.3.1 Non-Coordinated Scenario

We consider the scenario in which the retailer decides her pricing and advertising
strategies without providing any support to the manufacturer. The manufacturer
determines the investments in quality improvements. The fact that the retailer
does not provide a support derives from marketing and operational motivations.
On the one hand, quality improvements implies managing a trade-off involving
higher state/higher production costs; thus, when its contribution to goodwill is low
and the marginal production cost is high, providing a support to invest more in
quality improvements becomes less important. On the other hand, the retailer has
a marginal interest in the implementation of a support program if the contribution
of advertising to goodwill is larger than the contribution of quality improvements
to the stock. Under those conditions, providing a support program could damage
the retailer’s profits. The equilibrium strategies in the non-coordinated scenario
have been identified through the superscript NC and displayed in the following
proposition:

Proposition 7.1. The equilibrium price, advertising, and quality improvements
strategies in a non-coordinated scenario are given by:

pre _ [00.=¢) + mibep] VG

26(1 — ) (1.7)
e _ L= $)@bmi —ch) + be2pms) JG¥C .
2(1-¢) :

ANC = am; (7.9)
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while the payoff functions turn out to be:

VY€ =m GV 4 m,y (7.10)
V¢ = myGNC 4 my (7.11)

where my, my, ms, and my are the constant parameters to be identified.
Proof. See the Appendix. O

Our results present novelties in the relationships between strategies and state.
While a state-independent advertising strategy is well established in the marketing
literature, state-dependent pricing and quality improvements strategies supply note-
worthy managerial insights. The higher a company’s capability to accumulate stock
of goodwill, the higher the price that it is able to charge. This statement enhances
a challenging link among marketing instruments: Companies can increase the retail
price according to the level of goodwill without damaging profits. Nevertheless,

[B0—g)tmsbep) - ) and £2 —

price increases in a concave way, resulting g—c'”; = VG =

_1ba=p)tmabep] _
84(1-9)VG? e . - .
A similar statement is also valid for a quality improvements strategy. This

research presents the first attempt to model the quality improvements strategy as
a state-dependent strategy. Previous research (e.g., De Giovanni 2011b; Nair and
Narasimhan 2006) has developed quality improvements strategies that are state-
independent, although they exert a positive influence on the state (e.g., goodwill
dynamics). In the reality of business, manufacturers adjust their investments in
quality according to the value of their brand. As Rao et al. (1999) observe, firms
should carefully set their quality strategies because a brand name is already a
signal of quality and, consequently, low quality has a strong negative impact on
brand value. Our results show that a firm should establish quality improvements
efforts according to the accumulated goodwill knowing that quality contributes to
the accumulation of goodwill based on its entire history. Higher goodwill induces
a manufacturer to spend more in quality improvements, as it results that g—g =
{(l—¢)(2bm1—69)+bczﬁm3}

> 0, although a quality improvements strategy depends on

4(1-9)VG { o
ill i 20 {(—¢)(2bm1—c6)+bc>ms3
goodwill in a concave way (e.g., 325 = S <0).

Plugging (7.7) and (7.8) into (7.1), the goodwill at the steady state easily results
in the following:

NC _ a’m32(1 — ¢)
oo = 20— g5 — (= p) b —cb) —betprs = 1P

Because the numerator is nonnegative, for goodwill at the steady state to be positive
t (284+c0)(1—¢)—bc2Bms
2b(1—-¢)

it must result tha > mj.
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7.3.2 Coordinated Scenario

This section introduces a coordinated scenario in which the retailer pays a fraction
of the manufacturer’s quality improvements expenses. The support is intended
to stimulate the manufacturer’s quality improvements efforts. The game evolves
according to the following sequence of events: The retailer announces a support
strategy; then, the manufacturer establishes his quality improvements efforts; the
retailer considers the manufacturer’s strategy when deciding her pricing, advertising
and support strategy. The retailer provides a support program because the quality
improvements strategy exerts a positive influence on the stock of goodwill that
depends on the stock itself. When a = b, which implies equal effectiveness of
both advertising and quality improvements on goodwill, an initial stock G(0) > 1
will supply an incentive to the retailer to spend more to support an operational
strategy (quality improvements) than to invest in marketing strategies (advertising).
This result depends on the fact that quality improvements contribute to goodwill
according to its square root: If the radicand is lower than 1, the square root function
substantially penalizes the contribution of quality improvements. The issue of
migrating from the use of an operational tool to a marketing tool and vice versa
has been addressed by De Giovanni (2011b), who showed that a manufacturer
is more willing to support an advertising campaign than to invest in quality
improvements, depending on media effectiveness. In our game, the retailer’s support
is an attractive incentive for the manufacturer to invest more. Nevertheless, the
increasing production cost can represent a serious barrier to invest more in quality
improvements.

Proposition 7.2. The equilibrium price, advertising, quality improvements, and
support strategies in a coordinated scenario are expressed by:

beBly + 0(1 — @) (1 + ¥2) —{cB b (i +15) — Oc] +20(1 —p)} ¥ JGe
= GC
r 280—¢) (1 +92) + B (B2 —4(1—)) ¥

(7.13)
o¢ = bh =0 =F9) s5e (7.14)
1=y
A€ = aly (7.15)
1 V2 (3d13dys — d?
_ 3i_«/—( 13d15 14) —dy (7.16)
3di3 | 32 &
while the value functions assume to form:
Ve =1LGE +1, (7.17)

VE =1LGE +1, (7.18)
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where l1, 15, I3, and 1, are the parameters to be identified, while dj, j = 1... 14 are
constants.

Proof. See the Appendix. O

As for the non-coordinated scenario, there is a compensating effect between
pricing and quality improvements; again, both turn out to be the only state-
dependent strategies. Nevertheless, the strategies are much more difficult to derive
as support program development heavily influences strategies and payoffs. On the
one hand, coordination requires higher efforts from a retailer: Increasing stocks of
goodwill implies a higher retailer’s value function and an increased incentive to
provide more support while the manufacturer invests more in quality improvements
efforts. On the other hand, coordination pushes the manufacturer to do more, while
the positive impact of changes in goodwill on the manufacturer’s value function
discourages the implementation of a support program. Indeed, the manufacturer can
push up its quality improvements efforts too much; thus, a supporting program may
provide only marginal economic benefits for a retailer.

By inserting (7.14) and (7.15) into (7.1), the stock of goodwill at the steady state
will assume the following form:

GC — 0213(1—'W)
(L —=y)—bbly —c(0 — Bo)l

(7.19)

> [; must be satisfied.

For this stock to be positive, condition WM

7.4 Numerical Analysis

To address our research hypotheses and analyze strategies and outcomes of the
games, we used a numerical analysis. The identified parameters for the scenarios
are recursive although the value functions are linear. This is a peculiar result
as in the domain of differential games when conjecturing linear value functions
generally leads to identification of linear parameters (De Giovanni 201 1a; Jgrgensen
et al. 2000, 2001, 2003). The different result reported in this paper is due to
the interface between goodwill and a quality improvements strategy, which leads
to nonlinear identified parameters. Finally, the network of relationships among
parameters precludes any analytical solution.

Based on the results of Propositions 7.1 and 7.2, findings are derived for
managers and practitioners by comparing profits and strategies in the two scenarios.
We obtain a benchmark solution by setting the parameters according to values used
in the marketing and operations literature (e.g., De Giovanni 2011a,b; De Giovanni
and Zaccour 2013; El Ouardighi et al. 2008 as well as in Operations Research (e.g.,
Almeder et al. 2009); in particular:
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Table 7.1 Sensitivity analysis

§(0.2;0.25;0.3) —
0(0.9;0.95;0.975) —

pNC ANC QNC GNC V}ll}]c VléVC pNC ANC QNC GC B V}S VRC
oL L1512 + + + 4+ o+ 4+ o+ o+ o+ o+ ++ +
B(0.5,055,0.6) — — — — — — — - -
a(;1.051)  + + + + + + + + + + ++ +
b(1;1.051)  + + + o+ + + 4+ + - 4+ ++ +
¢(0.2;02503) — — — o — — - - -
$(0.505506) + - + + + - + - 4+ + + - +

Demand parameters: 8 = 0.5,0 = 1,¢ = 0.5
Operational parameters: ¢ = 0.2

Goodwill parameters: a = 1,b = 1,8 = 0.2
Dynamic parameters: p = 0.9

The above parameter values generate several solutions because the identified
parameters my, ms,[; and /3 are not linear. Among the resulting solutions, only a
limited number of roots led to a feasible solution, which means that V,{l >0, Vlé >
0,4 >0,0" >0,p" >0,i = NC,C,and B € (0, 1). Before comparing the
strategies and payoffs, we run a sensitivity analysis to check that variations in the
benchmark parameters do not violate these assumptions. The sensitivity analysis is
reported in Table 7.1, starting from the benchmark values and evaluating changes in
all parameters. A “+” (“=”) in a cell should be interpreted as a positive (negative)
change of a give element in the main row due to the change in a given parameter in
the main colon. The sensitivity analysis shows that variations in any of the parameter
model do not violate our assumptions; thus, we run a comparison of strategies and
payoffs in the two scenarios. Starting from the benchmark solution, we found new
results when comparing payoffs and strategies in coordinated and non-coordinated
scenarios inside the space £2 (¢, ¢, b), where ¢ € (0.1,0.6), ¢ € (0.05,0.3) and
b € (0.3,1). When running simulations, we keep the other parameters at the
benchmark value as their variations supply little additional information.

Evaluation of the sharing parameter in that range provides noteworthy manage-
rial insights, as a proper setting enhances coordination effectiveness. The sharing
parameters is varied from low (e.g., ¢ = 0.1) to high values (e.g., ¢ = 0.6) to assess
coordination effectiveness when most of the economic value created is retained in
the upstream or downstream of the chain.

Considering the marginal production cost and the strategy effectiveness in the
respective ranges, it is possible to identify four trade-off cases:

1. Operational excellence. This is the case in which quality effectiveness is really
high (e.g., b = 1) while marginal production cost is low (e.g., ¢ = 0.05). This
combination pushes a decision maker through the implementation of a quality
improvements strategy: It provides a considerable contribution to the state while
it marginally affects production costs.
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Fig. 7.1 Manufacturer’s
payoff comparison 0.30]

2. Inefficient operations. This case is characterized by high quality effectiveness
(e.g., b =1) and high marginal production cost (e.g., ¢ = 0.3). The implementa-
tion of a quality improvements strategy is really appealing, but the high cost of
quality imposes stringent barriers.

3. Ineffective operations. In this case, a firm faces low quality effectiveness (e.g.,
b = 0.3) along with low marginal production cost (e.g., ¢ = 0.05). A quality
improvements strategy is really attractive because it only slightly increases the
cost of quality. Even so, the strategy has minor influence on the dynamics; thus,
it supplies a low contribution to goodwill.

4. Weak operations. In this case, the marginal production cost is really high (e.g.,
¢ = 0.3) while quality improvements effectiveness is really low (e.g., b = 0.3).
Both the implementation and the support of a quality improvements strategy are
problematic when these conditions apply; thus, players depart from operational
tools to exclusively espouse marketing strategies and pursue profit maximization.

Claim. Inside the region 2, a manufacturer’s preference for supply chain coordina-
tion depends on operational performance (see Fig.7.1.)

A manufacturer’s convenience in supply chain coordination slightly depends on
the sharing parameter values. Higher sharing parameter values marginally increase
the area inside which coordination will be preferred. Thus, the manufacturer should
set his strategies mainly according to operational performance.

A necessary condition for a manufacturer to be economically better-off through
coordination is that operational effectiveness is sufficiently high. In fact, when
quality improvements exert only a marginal influence on the state, the operational
strategy is not at all convenient, independently of both the sharing parameter values
and the operational efficiency. Even so, high operational effectiveness is never
a sufficient condition because operational efficiency plays an important role in
the manufacturer’s strategies. When the impact of quality on production cost is
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Fig. 7.2 Retailer’s payoff
comparison 30 g

marginal (high operational efficiency), the area in which the manufacturer is better-
off through coordination is larger.

Finally, coordination directs the manufacturer through an improved payoff
function only in the operational excellence case.

Claim. Inside £2, aretailer always prefers supply chain coordination under an excel-
lent operations case. She also prefers coordination under an inefficient operations
case when the sharing parameter is sufficiently high (see Fig. 7.2).

The retailer, as chain leader, always announces coordination except in one case:
when the cost of quality considerably increases according to quality improvements
investments and, simultaneously, the contribution to the accumulation of goodwill
is irrelevant. This is the scenario of low operational performance, which belongs to
the weak operations case and discourages a retailer from announcing coordination.
In all the other cases, the retailer can substantially increase her payoff, even when
operations are inefficient or ineffective conditioned on a sufficiently high sharing
parameter. This latter condition entails a manufacturer investing more in quality
improvements, thus when this condition misses supply chain coordination is not
attractive for a retailer because operations are inefficient. In fact, in the case of
inefficient operations, the cost of quality is very high; thus, the retailer wants to
support a quality improvements strategy because operational effectiveness is sub-
stantially relevant and the manufacturer will not be discouraged by higher marginal
production cost when the share he receives is high enough. A sufficiently high
sharing parameter eliminates the limitations created by operational inefficiency.

In contrast, in the case of ineffective operations, the cost of quality is very
low; thus, the retailer will announce coordination because the marginal cost is
of minor importance and the manufacturer finds it inexpensive to invest in this
strategy. Nevertheless, the scarce contribution of quality improvements on goodwill
discourages a retailer from coordinating the supply chain, independent of the



138 P. De Giovanni

Fig. 7.3 Quality improvements (LHS) and advertising (RHS) strategies comparison

revenue sharing agreement. Thus, when quality is ineffective coordination is less
important, even when the sharing parameter is sufficiently high.

Finally, the retailer will always announce a support program in an excellent
operations case, and her decisions will no longer be influenced by the sharing
parameter.

Claim. Inside §2, the Pareto-improving region corresponds to the region inside
which the manufacturer does prefer coordination (see Fig. 7.1).

Inside £2, a retailer has a broader set of parameter values for being economically
better-off through supply chain coordination. This mainly depends on the leader
position that she covers in the game. According to Cachon’s (2003) definition,
coordination seems to be a difficult target. However, coordination will be an
economically suitable option for both supply chain members conditioned on good
operational performance and sufficiently high sharing parameter.

Claim. Inside £2, the manufacturer always invests more in quality improvements
only when the operational effectiveness is sufficiently low. In contrast, the retailer
always advertises less under supply chain coordination (see Fig. 7.3).

Figure 7.3 interestingly shows that the retailer always advertises less under
coordination. This result contrasts with several findings in marketing and operations
(e.g., De Giovanni 2011b) that use a leader—follower structure. In such cases, the
leader always does something more under coordination (e.g., higher advertising),
independent of the amount of operational costs that she will pay. In our model,
when coordination is an option, the leader migrates some economic resources from
a marketing strategy (advertising) to an operational strategy (quality improvements)
independent of the operational performance and revenue sharing agreements. This
finding depends on the different ways through which advertising and quality
improvements contribute to the accumulation of goodwill, as quality improvements’
role depends on the stock of accumulated goodwill itself.
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Fig. 7.4 Price strategy (LHS) and goodwill (RHS) comparison

In contrast, the manufacturer invests more in quality improvements efforts when
the sharing parameter is sufficiently low. In fact, when the sharing parameter is low,
the manufacturer sees coordination as an opportunity to increase his profits through
higher investments in quality improvements because the sharing parameter cannot
be modified over the course of the game. When the sharing parameter is sufficiently
high the manufacturer does not invest more in quality improvements because it is in
the interest of the retailer to boost the advertising to increase her profits. This result
contrasts with El Ouardighi et al. (2008) and De Giovanni and Roselli (2012) who
show that investments in quality increase the sharing parameter. These contrasting
findings depend on the different game structure (Nash vs. Stackelberg) and the
missing interface of quality in the dynamics of goodwill.

The manufacturer’s strategy should also be interpreted with respect to the
operational effectiveness. Indeed, increasing operational effectiveness leads to lower
investments in quality improvements as the manufacturer can invest a lower amount
of economic resources to obtain the same results. On the one hand, the manufacturer
expects the retailer to invest more in advertising efforts; on the other hand, he does
not want to increase quality improvements investments too much.

Claim. Inside £2, the retailer always charges a higher price under coordination while
the accumulated goodwill turns out to be lower under a weak operations case (see
Fig.7.4).

The findings displayed in Fig. 7.4 highlight an interesting interface between mar-
keting and operations. The retailer always charges a higher price under coordination.
This is because she always invests more in advertising and support of a quality
improvements strategy may cover the inefficiency (lower sales) that a higher price
may imply. This incremental increase in prices is not fully covered by a higher
goodwill. Under a weak operations case, in fact, the accumulated goodwill under
coordination no longer compensates for the decreasing demand due to the negative
effect of higher prices. This compensation among marketing tools is not new in the
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literature of marketing and operations. Previous research shows that coordination
allows a supply chain to reach higher levels of goodwill to overcome all inefficiency
due to higher prices (e.g., De Giovanni 2011b; De Giovanni and Roselli 2012;
El Ouardighi et al. 2008). In contrast, we demonstrate that supporting a quality
improvements strategy that influences the stock of goodwill according to its entire
history does not always lead to solving trade-offs among marketing strategies.

7.5 Conclusions

This paper introduced a supply chain dynamic game with operations and marketing
interfaces. Our main research question related to the convenience of coordination
in a supply chain, which is achieved through the implementation of a support
program. Recent literature has demonstrated the higher effectiveness of such
a program in coordinating a supply chain in relation to a traditional contract
(De Giovanni and Roselli 2012), although it originally was a marketing strategy
(e.g., Jorgensen et al. 2001). This way of coordinating the chain allows a retailer to
use both marketing and operational devices to maximize her payoff function. The
operational strategy quality improvements enhances an operational trade-off for the
manufacturer: On the one hand, investing in quality boosts the goodwill dynamics,
thus increasing the stock forever; on the other hand, a quality improvements
strategy increases production costs, thus resulting in managerial concerns. Our
main result relates to the leader’s convenience in undertaking coordination. The
operations management literature reports a clear result: A leader will always support
an operational strategy (e.g., a quality improvements strategy) because the leader
will always be economically better-off (e.g., De Giovanni 2011b). Our results
contradict this statement when a quality improvements strategy contributes to the
accumulation of goodwill based on its entire history. In particular, a leader should
evaluate how profits are shared over the supply chain as well as the benefits
and drawbacks that an operational strategy (e.g., a quality improvements strategy)
implies.

One strength linked to quality improvements is its contribution to the state, which
depends not only on the investment but also on the stock of goodwill itself. In this
sense, investing in quality improvements could be more effective than investing
in advertising, which also contributes to the state but disregards the history of
goodwill. The players split the revenues based on a fixed sharing mechanism,
whose application has been shown to be diffused in the marketing literature
(Chintagunta and Jain 1992; Jgrgensen and Zaccour 2003). As leader of the chain,
the retailer announces her decision about coordination after evaluating supply chain
performance (e.g., operational efficiency and effectiveness). Our findings, which
are summarized in Table 7.2, suggest that the retailer is always in favor of supply
chain coordination when a quality improvements strategy is efficient, while when
operations is not efficient a sufficiently high sharing parameter is needed to involve
the manufacturer to a greater extent. When this operational strategy does not provide
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Table 7.2 Payoffs comparison

Low sharing parameters High sharing parameters
Operational excellence Vg > V¢, VE > vYC  vG>Vvic vE > Ve

Inefficient operations VG < VEHC, vE <vyC  vG <viC vE > Ve
Ineffective operations VG <vYCvE <vyC v <VHC VS <VNC
Weak operations VG < VHC, vE <vyC  vG <viC vE <vie

sufficient contributions to goodwill and it damages the manufacturer’s production
cost too much, a retailer will not support a quality improvements strategy, with the
result that coordination will not be an attractive option.

In the position of follower, the manufacturer hopes that operational performance
is sufficiently high so that the leader will announce coordination and the trade-off
of quality improvements will become a marginal concern.

Despite the novelty of the findings and the managerial implications, the con-
clusions present several limitations due to model assumptions. Windows for future
research remain open for further development. While we have investigated coor-
dination by means of a support program, other forms of coordination need to be
investigated. For instance, supply chain coordination through a support program
can be complemented either by the implementation of a formal contract (e.g.,
wholesale price contract, two-part tariff, revenue-sharing contract) or by the use
of an incentive scheme based on strategies and/or state (e.g., joint maximization
incentive (Jgrgensen et al. 2006)). Moreover, future research could integrate other
strategies beyond pricing, advertising, and quality improvements, such as product
development, service, green investments, conformance quality, and durability.
Consideration of competition or more players in the up- and downstream of the
channel is another avenue to explore. Finally, it would be useful to test our results
empirically with a case study and qualitative research.

Appendix

Proof of Proposition 7.1. Each player solves an optimal control problem to
design its equilibrium strategies according to the Hamilton—Jacobi—Bellman (HJB)
equations:

1
PV = (OVGNT = BpNO)(p¥Cg —c0¥) = S0V
+ VY @ANC +pQNCVGNC — 5GNC) (7.20)
pvlévc _ (0 /GNC _,Bch)pNC(l _¢) _ %ANC2

+ V€ (@ANC + QN VGNC —5GNC) (7.21)
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As the game is played a la Stackelberg where the retailer is the leader, we first
solved for the manufacturer’s strategy:

ONC = (bVNC — cO)VGNC + ¢ppN€© (7.22)

Then, substituting (7.22) in the retailer’s HIB functional we obtain
1 2 /
PVRC = (OVGNC — pp)pY (1 = g) — AN 4+ VI (@AY
+b [(bV,{}’C/ — ch)NGNC ¢ cﬂpNC] VGNC _§GNC)  (7.23)

Optimizing the leader’s functional with respect to her controls, the strategies turn
out to be:

(6= ) + V¥<'bep| VG
pNC = (7.24)
2B(1—¢)

ANC = qy ¢ (7.25)

The quality improvements strategy finally becomes:

{(1=#)@BVYE — c0) + b2V} VGTT
oN¢ = (7.26)
2(1—-¢)
Substituting (7.24), (7.25), and (7.26) inside (7.20) and (7.23), after several manip-
ulations we obtain:

8B(1— @ V¢ =26V [0(1 - @) — V¥ bep]

{(1=9)[00 — BBV = c0)| + VI bep (¢ - 2B))

i [(1 — )bV + ) — bcz,BVRNC/]

B {(1 —$)2bV N — o) + bczﬁVRNC’} GNe

+8B(1— ) VY (VY — 8GN (7.27)
(1= PpVRC=| P 1-g7 (VR bep) |6 42V @

+b [(1 — $)2bVYC — o) + V,gvc’bczﬁ] GNC _2(1 - $)8GNC) (7.28)
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Because both (7.27) and (7.28) are linear in the state, it is possible to conjecture
linear value functions, VY€ = m|G + m, and V¢ = m3G + my. Substituting
our conjectures and their derivatives in (7.27) and (7.28) we get:

8B(1 —¢)*p (m G +my) =2GNC [0(1 — ¢p) — m3bcp]
{(1—¢)[0¢ — cB(2bm| — cO)] + ms3beB (¢ — *B)}
+ [(1=¢)(2bm +cO)—bc*Bms] B {(1—¢)(2bmi—cO)+bc? Bms} GNC

+ 8B(1 — ¢)*m;(a’ms — §GNC) (7.29)
4B(1 = )p (G +ms) = [87(1 = ¢)” = (mabep)’| GN + 28ma(a’(1 = g)my
+ b [(1 — ¢)(2bmy — c0) + m3bc*B] GVE —2(1 — $)§GVC) (7.30)

By identification, it is possible to derive the constant parameters m, m,, ms, and
my as follows,

2[0(1 — ¢) — m3bcp]
{1 = ¢) [0¢ — cB(2bm) — cO)] + m3bcp (¢ — *B)} -0
+ [(1 —¢d)2bmy + c0) — bczﬁm3]
B —¢)(2bmy —cO) + bc*pms) —8B(1 — ¢)* (o + 8) m
(7.31)

m1m3a2 —pmp, =0
(7.32)

mib2c?B? 4+ 28(1 — ¢) [b(2bm; — c0) — 2 (p + 8)m3 + 0*(1 — $)* =0
(7.33)

2pmy —m3a* =0
(7.34)
a

Proof of Proposition 7.2. Each player solves an optimal control problem where
equilibrium strategies are derived from the HJB equations:

oVl = 63T ppO)(pp —c0¢) - L2 0
+ VS (@A + b0 VGC —5G°) (7.35)

pVE = (OVGE — Bp©)pC (1 — ) — 4"~ BOC

+VE'(@aA€ + b0 VGE —5G°) (7.36)
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As the game is played a la Stackelberg where the retailer is the leader, we first solved
for the manufacturer’s strategy:

(bV,S/ — c9) VGC + Bep€
QC — g (7.37)

Therefore, we substituted (7.37) in the retailer’s HJB that assumes the following
form:

pVE = (BVGE — pC)p (1~ 9) — 54"

B

— = pVEGE + 202GE + B2 p? —2bcHVE GE
2(1 - B)2|: M Bcp M

+ Zbﬂchg/pC VGC —2¢*0Bcp© GC:|

(bVﬁgl — 69) VGC + Bep€©

T VGC —8GC) (7.38)

+VE @A +b

The retailer’s strategies turn out to be:

beBVE + 0(1 — ¢) (1 + Bx?)

- {cﬂ b (Vg’ + VRC’) - 9(:] +20(1 - ¢)} Bx
P 2B(1—¢) (1 + B+) + (B —4(1 — §)) Bx ¢
(7.39)
B = B* (V,g’, v, 2) - Bx € (0,1) (7.40)
A€ =qv§ (7.41)

where ¥ € [0,8,¢,a,b,c,8,p] and B* is obtained by solving a polynomial
equation of third degree d4B + d;3B* + dioB® — d7 = 0, where the constant
parameters d;, j = 0... 14 are given by:

do =

:(2VRC’ —V )b+ ce]
dy = :(21/,5’ + V,g’) b —ce]
dy = 0(1 — §)cB

ds = :bv,g’ - 90] 2p?

dy = VS B
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ds =28(1 —¢)

ds = p2c?

d7 =dids —dy—dy

dy = dods +dy + dy

dy = (dvds — dy)

dio = (dods + d>)

dyy = (dy (de — 2ds) + 2d> + dy4 + d3)
di» = (do (d¢ — 2ds) —2dr — ds — d3)
diz =din—dy

dis =ds —dn

Among the three solutions obtained, only one solution satisfy our assumptions,
that is B € (0, 1), and it is given by:

1| & V2(3diwdis —d}y)
—d_i3

T3 (V2 §

where

— 42y}
&= 3 27d120d7 + 9d,od3d14 — 2d133 + \l |:4 (3d10d14 d13) i|

+ (27d170d7 + 9do0d13d14 — 2d133)2
To save notations, we write the pricing and support strategies such as:
p = evGC€ (7.42)
B=vy (7.43)

where

bV +0(1-9) (1+9?) - {cﬂ [b (V5’+V,§") —Gc] +29(1—¢)} "

v 28(1—¢) (1492) +B (B2—4(1—¢)) ¥
(7.44)
and
_ i B \3/5(361106114 —d123) 3
v = 310 |:€/§ E diz (7.45)

Plugging (7.42) and (7.43) into (7.37), the quality improvements strategy turns
out to be
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c _
Qc _ bVy —c(0 — By) /GC (7.46)
-y

Substituting (7.42), (7.43), and (7.46) inside (7.35) and (7.38) we obtain:

21—y Vi =26 - o) {0d (1 = 9) — ¢ [bV = (6 = Bo) |} G°
+ [bng’ —e(f— ,Bgo)]z GC +2vS (1) [aZVRC’ - SGC] (7.47)
2(1-9)?pVg =2(1=9)* (0 — Bp)e(1 — $)G©
+{2bvi = [(2vi + Vi ) b =0 — B |} [pV — (6 - Bp)| G°
+ (1 =9’V (@vE —25G¢) (7.48)

Because also in the coordination scenario both HJBs are linear in the state,
we conjecture linear value functions, V) = ,G€ + [, and VS = LGC + 1.
Substituting our conjectures and their derivatives in (7.47) and (7.48), we obtain:

2(1=9) p (LG + 1) =28 = Bo) [pp (1 =) — bl + *(0 — )] G©

+ [pV + 0 = o) | [pV — (0 - Bo) | G°

+ 20 (1 =) {a*l; — 8G} (7.49)
2(0=9)p (G +14) =2(1 = ¥)* (8 = Be)p(1 — $)G

+ {26l — ¥ (23 + 1) b — ¢ (0 — Bp)]} [bl — ¢(0 — Bp)] G€

+ (1 =) l3(a®l; — 28G©) (7.50)
By identification it is possible to derive the constant parameters to be identified:

260 - B9) [pd (1 — ) = bly + (6 — fg)]
+[ov + @ - o) | [pVS -6 - )| - (1= W) o+ 8)

(7.51)

plg — 021113 =0
(7.52)

{ 2(1=9)° (6 = Bo)p(1—9) =2(1=¥)* (0 +8) }:0
+ {26l = v [(2Ls + 1) b — (6 = Bo)]} [l — (6 - o)
(7.53)

20ly —a’l; =0
(7.54)

ad
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Chapter 8
A Large Population Parental Care Game
with Asynchronous Moves

David M. Ramsey

Abstract This article considers two game-theoretic models of parental care which
take into account the feedback between patterns of care and the operational sex ratio.
Attention is paid to fish species which care for their young by mouthbrooding, in
particular to St. Peter’s Fish. It is assumed here that individuals can be in one of the
two states: searching for a mate or breeding (including caring for their offspring).
However, the sets of states can be adapted to the physiology of a particular species.
The length of time an individual remains in the breeding state depends on the level of
care he/she gives. According to one model, parents make their decision regarding the
amount of care they give simultaneously. Under the second model, one individual in
a pair (for convenience, the female) makes her decision before the male makes his
decision. When in the searching state, individuals find partners at a rate dependent
on the proportion of members of the opposite sex searching. These rates are defined
to satisfy the Fisher condition that the total number of offspring of males equals
the total number of offspring of females. The operational sex ratio is not defined
exogenously, but can be derived from the adult sex ratio and the pattern of parental
care. The results obtained go some way to explain the variety of parental care
behaviour observed in fish, in particular the high frequency of male care, although
further work is required to explain the exact patterns observed.
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8.1 Introduction

Research on the evolution of patterns of parental care has indicated the complex
nature of this process. Trivers (1972) gave an in-depth exposition of the then current
state of research into patterns of parental care. By definition females invest more
in gametes. He argues that females have more to lose than males if the offspring
die and should thus invest more in caring. Males can potentially reproduce at a
much higher rate than females. However, due to the physiological constraints of
breeding, the ratio of the number of males searching for a mate to the number of
such females (the operational sex ratio, OSR) may be much greater than one, i.e.
males face strong competition from other males when looking for a mate. Hence, it
is argued that males should attempt to maximise the number of females they breed
with by being attractive to females and/or outcompeting other males, rather than
investing in parental care.

Emlen and Oring (1977) make an excellent review on the evolution of mating
systems. They define the OSR and its relation with sexual selection. The feedback
between patterns of parental care and the mating system is noted (e.g., mutual
mate choice is normally associated with biparental care). In addition, they state
that parental care in the form of egg incubation among birds will affect the OSR
(the more males care, the less male-biased the OSR is). Kokko and Jennions (2008)
argue that if males desert, then it is difficult for them to find a partner (since the
OSR is male biased). Hence, if the level of male desertion increases, paternal care
may become a more successful strategy, i.e. parental care is subject to frequency-
dependent selection.

Dawkins and Carlisle (1976) state that Trivers’ argument is a type of “Concorde
fallacy”, i.e. if one has invested heavily in a project, then one should continue even
if losses are expected. Maynard Smith (1977) defends Trivers’ approach by stating
that in calculating the expected number of future offspring one needs to take into
account the investment that has to be made. In that paper Maynard Smith describes
three models of parental care. The first two are matrix games in which deserting
males find another partner with probability p. However, he recognized that this
probability depends on the behaviour of the population as a whole. The third model
is more realistic, since it takes into account the Fisher condition that the total number
of offspring of males equals the total number of offspring of females (see Houston
and McNamara 2002, 2005; Kokko and Jennions 2003). This third model is a
so-called time in/time out model in which individuals spend some time breeding
and caring for their young and some time searching for a partner (between breeding
attempts). The cycle time of an individual is the mean time between his/her breeding
attempts. It is assumed that individuals maximise the rate of producing offspring
that survive to adulthood. Grafen and Sibly (1978) develop this approach. However,
these models assume that there is a pure equilibrium and so do not investigate
the possibility of stable polymorphisms or mixed strategies. Yamamura and Tsuji
(1993) adapt the model of Maynard Smith (1977). They assume that members of
the less common sex in the mating pool immediately find a mate. It is assumed
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that parents can only make one of the two decisions: care or desert. This model
was adapted to the life cycle of the St. Peter’s Fish, Sarotherodon galilaeus, by
Balshine-Earn and Earn (1997). This model was extended by Ramsey (2010) to
take into account the fact that searchers spend some time in the mating pool. The
rate at which mates are found depends on an exogenously defined interaction rate,
A1. This parameter can be thought of as a measure of the density and mobility of
the population. As Kokko and Rankin (2006) argue, density effects may be very
important in the evolution of behaviour. This allows us to model the feedback
between patterns of parental care and the OSR. By defining A; to be arbitrarily large,
we essentially obtain the model of Yamamura and Tsuji (1993). This paper further
extends the model by assuming that one of the members of a mating pair makes its
decision about whether to care or desert before the other. Since fish reproduce via
external fertilisation, it is assumed that the female is the first to make such a choice.

The model presented can be adapted to the particular nature of physiological
processes involved in reproduction (e.g. by assuming that females can be receptive
or non-receptive to model cestrus cycles in mammals). However, it should be noted
that these processes are assumed to be given (i.e. the model cannot explain why
these processes evolved in the first place).

As in Kokko and Jennions (2008), members of the less common sex in the mating
pool find mates at a faster rate than members of the other sex in such a way that
ensures each female mating corresponds to a male mating. Hence, the ASR (the
ratio of the number of fertile males to the number of fertile females) is fixed, but
the OSR results from the ASR and the observed pattern of parental care, rather than
being given as an exogenous parameter. In this way, the OSR and the pattern of
parental-care co-evolve as argued in Jennions and Kokko (2010).

Clutton-Brock and Parker (1992) consider a similar time-in/time-out model to
derive the OSR given the ASR as well as, patterns of parental investment (including
both gamete production and parental care). They include a parameter describing the
level of interaction between the sexes in a population, which in turn defines the mean
time individuals spend looking for a mate. However, they assume that the amount
of parental care given is fixed, since their goal is to derive the OSR and thus predict
which sex will compete most strongly for mates (assumed to be the most common
sex in the mating pool). As such, this model does not give us any insight into why
a particular pattern of parental care evolves. As well as giving an excellent review
of the research on patterns of mate choice and parental care, Kokko and Jennions
(2008) extend this model by allowing the level of parental care to evolve. Offspring
survival is increasing in the level of care from a parent, given the level of care
from the other parent. At the time of fertilisation, parents simultaneously choose
the amount of time for which they care from a continuous range. The minimum
time females can choose is assumed to be larger than the minimum time a male
can choose, since males can replenish their gametes more quickly than females.
Sexual selection is incorporated into the model by assuming that only a fraction of
the members of a particular sex mate. Due to the complexity of the model, they
assume that the level of sexual selection is fixed, although they admit that in reality
it evolves along with the parental care strategies.
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All these models assume that breeding is non-seasonal and the population size
is large. In such a case, at equilibrium the OSR will be constant over time. In the
case of seasonal breeders, the strategies used by individuals will change over the
breeding season and this is associated with temporal fluctuations in the OSR (see
Webb et al. 1999 and McNamara et al. 2005).

The models described above implicitly assume that the decisions are made
simultaneously. Asynchronous moves have been considered in 2-player games (see
Maynard Smith 1982). This paper extends this approach to large population parental
games. The results indicate that, along with physiological constraints, the order
in which players move has an important influence on patterns of parental care in
agreement with the results from two-player games, i.e. the sex that has the first
opportunity to desert will desert when there is single-parent care.

The evolution of mating systems depends on many interacting factors. Verbal
explanations of such evolution cannot realistically take these interactions into
account. The development of mathematical models that take such interactions into
account will prove useful in explaining behaviour and predicting the reaction of
mating systems to changes in the environment.

Section 8.2 presents the basic model. Section 8.3 describes the derivation of
pure stable profiles in which all the members of a particular sex always use the
same strategy. For example, in the game with simultaneous moves, four pure stable
profiles are possible: no parental care, maternal care, paternal care and biparental
care. Section 8.4 considers stable polymorphisms, where there is variation between
the behaviour of individuals of the same sex. Some analytic results are given and
a procedure for estimating such stable profiles, based on replicator dynamics, is
described. Section 8.5 gives a brief conclusion and directions for future research.

8.2 The Model

This model is adapted from the one presented by Ramsey (2010). Consider a large
population with no variation in the quality of mates and individuals only decide
whether to care for their young or desert. The model can be adapted so individuals
choose the level of care they give from a continuous interval. However, discrete
choices seem reasonable, e.g. in the case of the St. Peter’s Fish, where care consists
of mouthbrooding the young until they hatch.

There is no breeding season. Individuals may be in one of the two states:
searching or breeding. For simplicity, it is assumed that individuals in the breeding
state do not attempt to (or cannot) breed with other partners. The ASR is denoted by
r. Denote the proportions of males in the two male states, searching and breeding,
as p; and p, = 1 — py, respectively. The proportions of females in these states are
denoted as ¢, and g, = 1 — g, respectively.

Males in the searching state find a mate at a rate proportional to the number of
searching females, namely at rate A;¢;. Hence, in a small interval of time of length
§ units, a proportion A14;8 of searching males will find a mate. Similarly, searching
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Table 8.1 Glossary of the notation used (ratios and relative nos.)

r adult sex ratio ky,  no. of offspring with male care

ks mno. of offspring with female care  k;  no. of offspring with biparental care

Table 8.2 Glossary of the notation used (proportions)

1 prop. of all males searching Pl.C of caring males searching
P1.D of deserting males searching q1 of all females searching

q1.c of caring females searching q1.p of deserting females searching
Sm of males who care Sy of females who care

Table 8.3 Glossary of the notation used (rates)

AP deserting males return to searching AE  caring males return to searching

)&? deserting females return to searching )L? caring females return to searching
Ay interaction rate

females find a mate at a rate proportional to the number of searching males, i.e. at
rate A1 pyr. Note that these assumptions satisfy the condition that a male entering the
breeding state corresponds to a female going into the breeding state, i.e. the Fisher
condition is satisfied. Also, it is assumed that the population is freely mixing, e.g.
when a male mates with a female then the strategy used by the female is chosen
at random from the distribution of strategies used by the females in the mating
pool.

The rate at which individuals return to the mating pool depends on their sex
and level of care given. If they do not care for their young, males return to the
mating pool at rate A2, i.e. on average the mating process and time to replenish
sperm supplies together occupy on average é units of time. Similarly, if females

do not care for their young, they return to the mating pool at rate A ? . It is assumed

that AD is larger than A2, i.e. male deserters return to searching for a new mate
faster than female deserters. Since fish breed via external fertilization, it seems
reasonable that the time deserters require to return to the mating pool is proportional
to the amount of energy invested in gamete production. According to Hayward and
Gillooly (2011), females tend to invest between twice and four times as much as
males, depending on the species.

When they care for offspring, males and females return to the mating pool at
rates AS and /\?, respectively. In the case of St. Peter’s Fish, we may assume that

AE = )&?. The transitions between states are illustrated in Fig. 8.1. The notation
used is summarized in Tables 8.1-8.3.

The number of young surviving to maturity per brood is measured in relation to
the number surviving when no parental care is given. Suppose the relative number
of young surviving to maturity when (a) just the female cares, (b) just the male
cares and (c) both parents care are ks, k, and k,, respectively. It is assumed
that 1 < ky < kp and 1 < k, < kp, ie. the greater the number of caring
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Fig. 8.1 Transition rates Males Females
between states

Searching Searching

A A
A M Mpyr A
A\ \
Male Female
Breeding

e represents C or D according to whether a given sex
cares for their offspring or not

parents, the greater the number of surviving offspring per brood. See Gubernick and
Teferi (2000) and Wright (2006) for examples of parental care increasing offspring
survival. In the case of St. Peter’s Fish, since parental care consists solely of
mouthbrooding and there is no significant size dimorphism, it may be assumed that
km = ks and k;, = 2k s (see also Balshine-Earn 1997). It is assumed that the goal
of each individual is to maximise the rate of producing offspring that survive until
maturity. For simplicity this is referred to as the reproduction rate. This implicitly
assumes that the mortality rate is independent of the strategy used.

For other game-theoretic models of large population games with state transitions,
see Broom and Ruxton (1998) and Eriksson et al. (2004).

8.3 Derivation of Pure Stable Strategies

8.3.1 When Moves Are Made Simultaneously

When moves are made simultaneously, players only have two possible pure
strategies: C—care and D—defect. In order to investigate the pure ESSes of such
a system, we must first derive the “steady-state” proportions of individuals in each
state given the strategy profile used. A strategy profile is defined by a description of
both the strategies used by the males and the strategies used by the females. In this
section, it is assumed that all individuals of a particular sex use the same strategy.
Note that the term “steady-state” will only be used to describe the values g, and p;
tend to, given that the strategy profile used does not change over time. One important
aspect to note is the feedback between selection and these steady-state proportions.
Selection changes the proportions of males and females who care for their offspring,
which in turn changes these steady-state proportions.
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At the steady-state proportions, the number of individuals moving from state A
to state B per unit time must equal the number of individuals moving from state
B to state A. Considering the transition of females from searching to breeding, the
relative number of females finding partners per unit time is the proportion of females
searching times the rate at which a female finds mates, i.e. A1 p1q;r. This rate is
called the female population rate of transition from searching to breeding. Similarly,
the population rate of females returning to the mating pool is )t} (1—¢1), where e €
{C, D} denotes the action taken by females. Hence, at the steady-state proportions

Aipgir = A5 (1 —qn). (8.1)

Equating the male population rate of transition from searching to breeding to the
male population rate of transition from breeding to searching, it follows that

Alplql = A;’(l — pl) (82)

Equations (8.1) and (8.2) together lead to aql2 + bq; + ¢ = 0, where

a = )&}A]
b= A%+ AirAy — A%A,
c=—=AnA%.

The unique solution to this equation between 0 and 1 is

_ —=b+ vb?—dac

8.3
qi 2a (3.3)
From (8.2), it follows that
= A (8.4)
P ‘

Since these steady-state proportions depend on the strategy profiles adopted, the
strategy profile will be denoted using superscripts indicating firstly the strategy used
by males and secondly the strategy used by females. For example, pch denotes the
equilibrium proportion of males searching when males care for their offspring, but
females do not.

First, consider the conditions for no parental care to be an ESS. To find the
corresponding steady-state frequencies, set A% = A2 and A% = AD.

There are two ways to calculate the reproduction rate of males. Firstly, it is
the number of offspring surviving from a breeding attempt divided by the mean
cycle time, which is the mean time required to move from the searching state to the
breeding state and back again. Assume that neither parent cares for the offspring.
Denote this mean cycle time by T°? . It follows that
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7DD 1 1 A+ gP?

[ + _— =
AigP? AR APXgPP

Since the relative number of offspring surviving per breeding attempt is 1, the mean
reproduction rate of males is given by RP?” where

ROP = L Awha?” (8.5)

TP = 32+ higP?
The second way to calculate the reproduction rate of males is by noting that it must
be the population rate of males entering the breeding state multiplied by the relative
number of surviving offspring per breeding attempt. Hence, the mean reproduction
rate of males is given by

= LigPP pPP. (8.6)

From the Fisher condition, the average reproduction rate of females must be r times
the average reproduction rate of males.

For no parental care to be an ESS, R?” must be greater than the reproduction
rate of a male mutant who cares for his offspring. Since this is a large population
game, such a mutant does not affect the steady-state frequencies or the population’s
reproduction rate. The reproduction rates of mutants are calculated by considering
their mean cycle time. The mean cycle time of a male mutant who cares for offspring
when the rest of the population desert, denoted TmD D s

oD 1 1 A5+ AigP?

[ — J’— - =
AigP? o AS AS A1gPP

m

Since the relative number of surviving offspring of such a male per brood is k,,, it
follows that a male mutant cannot invade if

k A /\16]
apPPgpP > Tnim 1 8.7
1 ql A}g +)qu ( )

Arguing similarly, a female mutant who cares cannot invade if

kf/\?'AlplDD
)L_(/; + ArpPP

DD DD

2 p! (8.8)

It should be noted that the OSR at such an equilibrium, denoted SPP, is given by

rp
SDD — 1
a”?

The OSR at other equilibria can be calculated in an analogous way.
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The derivation of the stability conditions for the remaining three possible pure
equilibria are analogous. Therefore, the equilibrium conditions are presented in
Appendix 1. Suppose that A; = 20, AS = )t? = 0.05, A0 =5, A? =2,r = 1.
Assuming that k,, = k 7, the conditions for the existence of a pure ESS profile are
given below:

1. No parental care is an ESS when k ; < 34.8215.
. Just female parental care is an ESS when k ; > 36.4221 and ,’:—’; < 1.9875.

2
3. Just male parental care is an ESS when k ; > 79.7970 and ;{‘—j < 1.9725.
4

. Biparental care is an ESS when % > 17.1591.

Now consider the problem in which A; = 0.5, but the values of the remaining
parameters are unchanged. These parameters represent a case in which there is less
opportunity to find future partners. The conditions for the existence of a pure ESS
profile are given below:

1. No parental care is an ESS when k ; < 8.3241.
. Just female parental care is an ESS when k y > 8.7432 and ,]{‘—bf < 1.8993.

2
3. Just male parental care is an ESS when k y > 9.8141 and ]1;_;; < 1.8845.
4

. Biparental care is an ESS when ,]f—j > 3.6042.

From Ramsey (2010), when k is relatively large and k,/k, = 2, there is
no pure equilibrium for a wide range of parameter sets. In the case of St. Peter’s
Fish, such values of k  and k;, seem reasonable. Firstly, if neither parent cares, then
the expected number of offspring surviving will be very low. Secondly, due to the
lack of size dimorphism, about twice as many offspring survive when both parents
mouthbrood their offspring, compared to uniparental care. It is thus unsurprising
that a wide range of patterns of parental care has been observed in populations of
St. Peter’s Fish (see Fishelson and Hilzerman 2002).

8.3.2 When Females Move First

In the case of fish, females first lay their eggs and then males deposit sperm. Thus
the female has the first opportunity to defect. Hence, we consider a version of the
game where the female decides which action to take and then the male chooses his
action. As before, females have two possible pure strategies C and D. Males may
condition their action on the action taken by the female. The four possible pure
strategies of the male are denoted (C, C), (C, D), (D, C), (D, D) where the first
component is the action taken by a male when the female cares and the second is
the action taken by a male when the female deserts.

We now look for a pure equilibrium in this game. Given the strategy profile
played by the population as a whole, the actions of each individual are well defined.
For example, suppose the strategy profile used is [(D, C), D], i.e. females play D
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and males respond to C by playing D and respond to D by playing C. In this case,
females defect and males care. Hence, we can derive the steady-state distributions
as in the game with simultaneous moves.

The optimal actions of a male/female pair in a mating subgame (played when
two individuals mate) against this background can be derived by recursion as for a
standard game in extensive form. Also, it should be noted that since the payoffs
of individuals involved in such a subgame depend on the actions taken in the
population as a whole, then the equilibrium of the population game can be mixed or
polymorphic (see Ramsey 2010).

We first consider the stability of [(D, C), D]. Suppose all males play (D, C') and
all females play D. When all males care and females defect, the subgame perfect
equilibrium of the induced game faced by a male/female pair is [(D, C), D] when
the following three conditions are satisfied:

1. When the female cares, the male prefers deserting to caring.

2. When the female deserts, the male prefers caring to deserting.

3. The female must prefer the action pair CD (which results when she defects) to
the action pair D C (which results when she cares).

However, when all the population follow the appropriate strategy from the
strategy pair [(D, C), D], there is no selection pressure on the response of males
to females caring for their young. Hence, it is expected that when all females defect,
then the proportions of males using (D, C) and (C, C) will be subject to drift. It
is possible that the proportion of males using (C, C) will rise to a level where
it would start paying a female to change her strategy to C. Thus when the three
conditions above are satisfied, then we say that [(D, C), D] is neutrally stable. If in
addition the following condition is satisfied, then [(D, C), D] is said to be strongly
stable.

4. When all males care and females defect, the female must prefer the action pair
CD to CC [which results when she plays C and the male plays (C, C)].

Note that when this condition is satisfied, it does not pay a female to switch to C
whatever the proportion of males playing (C, C) is.

It will be assumed henceforth that k,, = k y. Suppose the population follows a
strategy profile which results in male only care, but the male meets a female mutant
who cares. The expected cycle length for a male deserting in this case is given by

Lo _ hgfP 4+ Ap
AR hgfP ARhgf?

Since the relative number of offspring surviving in this cycle is k s, the reproductive
rate of the male deserter is

k_,»x,l;,x]qf’)
AgfP + 20
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Arguing similarly, the reproductive rate of a male carer in this case is

kpAgdgt®
)quICD + /\% ’
It follows that Condition 1 is satisfied if and only if
ki - An(AS + i)

— . 8.9
kr S ACGD 1 g D) 2

Similarly, considering the reproduction rates when males care and females defect,
Condition 2 leads to

- APAS + A1gfP)
77 AEMAR + Mgty

(8.10)

It can be shown that the third condition is always satisfied when k,, = k r. Hence,
[(D, C), D] is neutrally stable when (8.9) and (8.10) are satisfied. Considering the
female’s reproduction rate when both parents care, [(D, C), D] is strongly stable
when, in addition,

b A2 pPr + xg).
ke " ASQupfPr+A2)

Using a similar argument, it can be shown that when females can desert first,
just female care, i.e. [(D, D),C] or [(D,C), C], cannot be neutrally stable. In
addition, neither can [(C, D), D] nor [(C, C), D] be neutrally stable profiles. The
conditions for the other strategy profiles to be neutrally or strongly stable are given
in Appendix 2.

As before, consider the problem with A; = 20, Ag = )L(j; = 0.05, /\fz =5,

/X? = 2, r = 1. The stability conditions are given below:

1. [(D, D), D] is neutrally stable when ky < 34.8215, k;/k; < 35.3418. It is
strongly stable if, in addition, k;, < 7.0830. Under such a profile, there is no
parental care.

2. [(D, C), D] is neutrally stable when k r > 79.7970 and k;/ k ; < 79.7970. It is
strongly stable if, in addition, k;/k s < 1.9725. Under such a profile, just males
care.

3. [(C,C),C] is strongly (and thus neutrally) stable when ky > 17.1591 and
ky/ky > 17.1591. Under such a profile, there is biparental care.

4. [(C, D), C] is strongly (and thus neutrally) stable when ky < 17.1591 and
kp/ky > 17.1591. At such an equilibrium there is biparental care.

When the interaction rate is reduced to A; = 0.5, the stability conditions are
given below:
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1. [(D, D), D] is neutrally stable when k, < 8.3241, k;/k; < 8.4368. It is
strongly stable when k;, < 2.0403. Under such a profile, there is no parental
care.

2. [(D, C), D] is neutrally stable when k > 9.8141 and k;,/k s < 9.8141. It is
strongly stable when k; /k ; < 1.8845. Under such a profile, just males care.

3. [(C,C),C] is strongly (and thus neutrally) stable when k; > 3.6042 and
ky/k ; > 3.6042. Under such a profile, there is biparental care.

4. [(C, D),C] is strongly (and thus neutrally) stable when ky < 3.6042 and
ky/k ;> 3.6042. Under such a profile, there is biparental care.

From the stability conditions, polymorphic equilibria are more likely when the
interaction rate is high. In such a case, selection will be highly frequency dependent.
When all individuals care, although there are not many prospective partners in the
mating pool, a mutant deserter will find a partner reasonably quickly and will thus
be selected for. On the other hand, when no individuals care, males return to the
mating pool more quickly than females do. Hence, it may be relatively hard for
males to find a new partner and thus caring males will be selected for.

8.3.3 Effect of the Asynchronocity of Moves on Behaviour

In the examples presented, there is at most one strongly stable pure profile. It is
assumed that if a strongly stable profile exists, then the population will evolve to
such a profile. If there is also a neutrally stable profile, then initially the population
may evolve towards such a profile. However, it is expected that genetic drift will
cause the population to eventually evolve to the strongly stable profile.

The conditions for biparental care to be stable (evolutionarily or strongly, as
appropriate) are identical in both games, while the region in which no parental care
is stable is smaller in the game with asynchronous moves (it is never stable when
the gains from biparental care are large). Hence, when the gains from uniparental
care are small and the gains from biparental care are large, it seems more likely that
biparental care will evolve when the decisions of the parents are made in sequence.

Just female care is never stable in the game with asynchronous moves. The
region in which [(D, C), D] (i.e. just male care) is strongly stable in the game with
synchronous moves corresponds to the region in which just male care is an ESS in
the game with synchronous moves (i.e. k s is large and k;,/ k ; is small). However, in
the game with synchronous moves, just female care is also an ESS and is expected
to evolve, since it has a larger basin of attraction.

For large values of k; and intermediate values of k;/k s, there is no ESS in
the game with synchronous moves. However, [(D, C), D] is neutrally stable in the
game with asynchronous moves. Since there is no other stable strategy profile, it is
expected that predominantly male care will evolve. When the gains from biparental
care relative to uniparental care increase, i.e. k; /K s increases, biparental care is the
only strongly stable profile and thus is predicted to evolve.
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In general, biparental care or, in particular, just male care are more likely to
evolve when moves are made in sequence rather than simultaneously.

In the game played by mouthbrooding fish, k s will be large and k;/k; ~ 2.
In the example with A; = 20, when ks is moderately large (34.8215 < k, <
79.7970), then there is neither a pure ESS in the game with simultaneous moves nor
a stable strategy profile in the game with asynchronous moves. In the case where
ky > 79.7970, then [(D, C), D] is neutrally stable in the game with asynchronous
moves, but there is no pure ESS in the game with simultaneous moves. Hence, the
new model seems to predict predominantly male care in St. Peter’s Fish.

It should be noted that the existence of a pure ESS does not necessarily mean
that there is no mixed or polymorphic equilibrium, since selection is frequency
dependent.

8.4 Polymorphic Equilibria

In this section we concentrate our attention on the type of games played by
mouthbrooding fish, i.e. k s is large and k;/ k y = 2. Suppose that Af, = 1§ = 0.05,

Ag =5, )L? = 2, r = 1. These parameters are chosen to reflect a fish species in
which the adult sex ratio is one and females invest 2.5 times as much energy in
producing gametes as males.

8.4.1 The Game with Simultaneous Moves

Ramsey (2010) shows that when k  is large and k; / k s is around 2, then we expect
an equilibrium where all females care and males show varied behaviour. That article
differentiates between polymorphisms (where each male always uses the same
action, but some males act differently from others) and mixed equilibria (where
each male chooses each action with an appropriate probability after mating). This
article only considers polymorphisms. Suppose that all females and a proportion
sP€ of males care at such a polymorphic equilibrium. The superscript PC shows
that males are polymorphic while females care. The remaining notation is adapted
accordingly. Let p; ¢ and p; p be the proportion of male carers and male deserters,
respectively, who are searching. The steady-state equations are

Mgl plé =2,(1=plé @.11)
Mgl plh = A0 —pl5 (8.12)
MlsPCplE + (1 =s")plElral € = 2501 =4 ). (8.13)

These expressions equate the population transition rates between the searching and
breeding states for (a) male carers, (b) male deserters, and (c) females, respectively.
In addition, the equilibrium conditions state that (a) the reproductive rates of male
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carers must equal the reproductive rate of male deserters and (b) the reproductive
rate of female carers must be greater than the reproductive rate of female deserters.
These conditions lead to (see Ramsey 2010)

kopic =kypih (8.14)
AP picks + A =s"Dpip] AT picks + (= 5D pibk)]
AP+ MlsPEpie + (L =sPOp(p] - AG +Mls"Opie + (1 =s"Oplp]

(8.15)
Setting y = kj/k s and solving (8.11)—(8.14), we obtain
)LD _ VAC
PC m m
=_m ‘' m 8.16
P =08 (610
A = VA,
pip = ST (8.17)
PC (y — 1)/\213
= __JTmm 8.18
R 7Y TS (©19
CyD _ 3C D _ . 3CY_ (v 111C D
e v PSORADIMGR - -0 - DAY
y—1 2ar(y — DPAGAB(AB — yAS)

When A; = 20, from (8.19) approximately 2.5% of males care at equilibrium. From
Condition (8.15), such an equilibrium exists if k; > 65.1628. When A; = 0.5,
approximately 22.2% of males care at equilibrium and such an equilibrium exists if
ks > 57.7576. Unsurprisingly, as it becomes harder to find a future partner, males
are more likely to care for their offspring.

Note also that given the physiological parameters, this equilibrium depends on
the ratio between k;, and k ; rather than their individual values.

8.4.1.1 Estimating Fully Polymorphic Equilibria Using Replicator
Dynamics

When A; = 20, 34.8215 <k ; <65.1628 and y =2, there is no pure equilibrium and
the polymorphism described above is unstable. It is expected that some individuals
of either sex care and some desert. We denote the proportion of females caring
and the proportion of males caring by s s and s,,, respectively. Let pi c, pi.p, q1.c
and g; p denote the proportion of caring males who are searching, the proportion
of deserting males who are searching, the proportion of caring females who are
searching and the proportion of deserting females who are searching, respectively.
Consider the rate at which: (a) caring males, (b) deserting males, (c) caring females
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and (d) deserting females, move between the mating pool and breeding state. The
steady-state equations are given by

Mprclsrgie + (1 =sp)qip] = A5 = prc) (8.20)
Mipiplssqic + (1= s)qup] = Ay (1= pip) (8.21)
Migiclsmprc + (1 =sn)pipl = A5(1 = qic) (8.22)
Migquolsnprc + (= sn)pipl = A7 (1 = q1.p). (8.23)

Assume that s, and s ;7 are fixed, i.e. we treat (8.20)—(8.23) as a system of equations
for pi.c, p1.p,q1.c and g p. This leads to

A?Ql,c

q1,p =
l? + (A? - A?)Ql.c
ARG+ (A7 = 2AD)a1c]
Pic =
A

AASIAS + (2 = 2D)qicl

)4W))

TR - 2OASG + A2 = 2D)gic] + A5A"
where
A=2525 +q1.c MG A7 =29 + MAGs s + (=5 AP+ dis (A7 =2)gi .

Substituting the expressions for p; ¢ and p; p into (8.22), we obtain an equation
for g ¢ of the form f(q,.c) = g(q1.c), where g(q1.c) = A?(l — q1.c). We have
f(0) =0 < g(0) and g(1) = 0 < f(1). The right-hand side of this equation is
clearly decreasing in gq; ¢, whilst it can be shown by differentiation that the left-
hand side is increasing in g; ¢ for 0 < g; ¢ < 1. Hence, there is a unique solution
of this equation in the interval (0, 1). Also, given a value of ¢; ¢ in (0, 1), it can
be shown that the remaining values of the unknowns in this system of equations
take unique values in the interval (0, 1). Hence, there is a unique solution to the
system of equations given by (8.20)—(8.23). This system of equations was solved
numerically.

We can now find the reproduction rates of individuals according to sex and
the strategy they follow. For example, consider a male deserter. The proportion of
females who care and are searching is g1,csy and the proportion of females who
desert and are searching is ¢;,p (1 — s 7). Hence, the expected number of offspring
that a male deserter produces per cycle is given by

qrcSrky + (1 —s7)q1.p
qicsr+ 0 —=sp)qip
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Also, the expected length of a cycle is given by

o ! _ A+ ailgiesy +qio —sp)]
An o Mlgresy +qo(=spl  Aphilgiesy + qup(l=sp)]

Dividing the expected number of offspring by the expected length of a cycle, we
obtain the reproduction rate of male deserters, denoted Rﬁ.

D _ 1211[611,chkf +q1.p(1 —s/)]
AR+ Mlgiesy o1 —sp)]

(8.24)

Arguing similarly, the reproduction rates of male carers, female deserters and female

carers (RS, R ? and R‘;, respectively) are given by

¢ _ Mnrlgiessks +qip(1—sp)ks]

C = (8.25)
AG + Milgresy +qip(1—sy)]
A0 Smk r + 1—s,

? _ g i1lpr.csmk s + p1p( )] 8.26)
Af + Al[pl,Csm + pl,D(1 - Sm)]

¢ AgMlpreswks + pro(1—swk/] 827)

28+ Mlprcsm + po(l—sw)]

By assuming that evolution acts slowly relative to the speed with which the steady
state is attained under a given strategy profile, we may use (8.24)—(8.27) to define the
replicator dynamics of such a population. Let §,, and § s be the updated proportions
of male and females, respectively, caring in the next generation. It follows that

s sm RS
_ 8.28
1= SwRC 1 (1— s,)RD (8.28)
s+ RC
5 = L . (8.29)

SfR? +(1 —Sf)R?

Suppose A1 = 20, AS, = X? = 0.05 A2 =5, )L? =2r =1,k =50
and k;, = 100. Using these replicator dynamics, at the equilibrium about 1.79% of
males and 99.15% of females care. By varying the initial frequencies with which
males and females care, it seems that this is the only attractor for this problem.

8.4.2 The Game with Asynchronous Moves

In the example with the high interaction rate, when k y > 79.7970, there is a unique
weakly stable strategy profile where only males care. Consider the realisation of
the problem in which k; = 50, k;, = 100. We expect that at least one of the
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sexes will be polymorphic at equilibrium. In order to investigate this, we define
the replicator equations for this game. As before, s, gic and q; p denote the
proportion of females who care, the proportion of caring females in the mating
pool and the proportion of deserting females in the mating pool, respectively. Let
rp.p,Tp.c,"c.p and rcc denote the proportion of males who play the strategies
(D, D), (D,C), (C,D) and (C, C), respectively. Let p; o be the proportion of e
playing males in the mating pool, where e € {(D, D), (D, C), (C, D), (C,C)}.

It should be noted that males using the strategy (D, D) always return to the
mating pool at rate A?. Similarly, males using the strategy (C, C) always return to
the mating pool at rate AC. Males using the strategy (D, C) return to the mating
pool at rate A2 when the female cares and at rate AS when the female deserts.
Considering the probability that a female in the mating pool is a carer, the mean
time spent breeding by such a male is given by

Sfq1.c n (I =s7)q1.0
ARlsrqic + (L =sp)qip]l — AS[srqic + (1 —s5)q1p]

_ AnSrgic + An(L=s7)q1p
APACIsrqi.c + (1 —57)q1.0]

The rate at which such males return to the mating pool is the reciprocal of this
expression. The rate at which males using the strategy (C, D) return to the mating
pool can be derived in a similar way. Hence, the steady-state equations for this game
are given by

Mpiopysraie + (L =sp)qipl = A0 (1= pro.p) (8.30)

APASTs rqr.c+(1=s7)q1.p](1=p1rp.c))
SrqreAs+(1=sp)qpAL

rMpro.o)lsrqrc+(—sy)qipl=
(8.31)

ABAS s pqi.c+(1=s)q1.0)(1=p1c.p))
SrqrcAD+(=s7)q1.pAf,

rMpre.olsrqrc+(1=ss)q1.pl=

(8.32)

Mprcolsrque + (1=sp)q1p] = Ay, (1= prc.c)) (8.33)
Aqiclrp.pprw.py + I'p.cPrLo.c)

+re.ppie,py + recpico)) = A?(l —4qi1.c) (8.34)
Aq1.p[rp.p Pr(p.p) + 'D.CPL(D.C)

+re.ppie,py + recpice)l = l?(l —q1,p). (8.35)

Assuming that the strategy profile [given by s¢, rp p, rp.c, Fc,p and ¢ c] is fixed,
we can determine the steady state [given by ¢.c, q1,p, P1,(D.D)> P1.(D.C)> P1,(C,D)
and pj c,c)] from (8.30)—(8.35). Using a similar argument to the one used for the
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game with simultaneous moves, it can be shown that there is a unique solution to
this system of equations.

We now derive the reproduction rates of individuals given the strategy profile
used. First consider female carers. The cycle time of such a female is given by

e 1 1
Ty =+ :
AG  Alrpoprw.py + rp.cPrw.c) + e Pre.p) + Fec Pre.o)

When the female cares, there is biparental care when the male plays (C, D) or
(C, C), otherwise only the female cares. Considering the probability that a male
in the mating pool plays (C, D) or (C, C), the expected number of offspring of a
female carer per cycle is given by

ky(rc.ppi(c,p) + recpie.cy)) + kr(rp.cpi.cy + rp.pP1.(p.p))

NE =
/ rc.ppuc.p) + rccPic.c)+ 'pcPio.c)+ Fp.pPl(D.p)

It follows that the reproduction rate of female carers is given by

RC AGMlky(re.p prie.p) +recpiece) +kp(rpepip.c) + .o pro.n)l
f= :

/\? + Ailrp.p pro.p) + Tp.cPrp.c) + Fe.pPic.p) + TecPico))
(8.36)
Arguing similarly, the reproduction rate of female deserters is given by

,  APMlks(rpcpi.c) +recpicc) +reppien) + oopim.n)
f =

/\? + M[rp.pprp.p) + rp.c Prp.cy F Te.pPrc.p) F TecPico)
(8.37)
Also, the reproduction rates of males according to their strategy are given by

DD _ MALTk s rqic + (1 —s7)q1.p)
" AL+ Milsrqic + (1 —s7)q1.p]

RDC — kf)“r?zkgzkl[sf%.c + (1 =s7)q1.0] (8.39)
" ASAD + Ai[spAS + (0 =sp)ARsrqic + (L =sp)qip]l

RCD — APAC Ailkps rqr.c + (1= s£)q1.p) (8.40)
" ASAD + Mi[spAD + (1 —sp)ASNsrqic + (L =sp)qip]

MASTkps rqi.c + k(1 —57)q1.p)
AS + Mlsrqie + (A —sp)qip]

(8.38)

cC _
R, =

(8.41)

As before, we may use (8.36)—(8.41) to define the replicator dynamics of such a
population. Let § s be the updated proportion of females caring and 7p p, 7p.c, Fc,p
and 7¢ ¢ be the updated proportions of males playing (D, D), (D, C),(C, D) and
(C, C), respectively. It follows that
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5 s RY (8.42)
Sr = .
ST SRS + (1= s/)R?

- re R},
Te = ! , (8.43)
rD,DR,Q'D +rpc R;Q'C + rC,DRr%D +rec Rrg'c

where e € {(D, D), (D, C),(C, D),(C,C)}.

Suppose A = 20, A5, = 4G = 005,42 =512 =2,r = 1, ky = 100
and k;, = 200. The unique neutrally stable strategy profile is [(D,C), D]. The
replicator dynamics were used with initially 50% of females caring and each of
the male strategies used by 25% of the males. The population evolved so that no
females cared, 99.89% of males used (D, C') and 0.11% of males used (C, C). Note
that when all females desert, in the absence of mutation, the only selection pressure
on males is to make the optimal response when a female deserts, i.e. to care. Hence,
when caring females and males responding to desertion with desertion have died
out, the fraction of males using (D, C) remains fixed. This fraction depends on the
starting point used.

Now consider the game where k y = 50 and k;, = 100. At the equilibrium about
60.17% of males use (D, D) and 39.83% use (D, C). Approximately 0.36% of
females care. At such an equilibrium, the probability of no parental care is 0.9964 x
0.6017 ~ 0.5995. The probability of just male care is 0.9964 x 0.3983 =~ 0.3969.
The probability of just female care is 0.0036. Biparental care never exists at such
an equilibrium. The replicator dynamics converge to the equilibrium profile, since
both types of female behaviour are present.

8.5 Conclusion

As far as the author knows, this is the first model of a parental care game, which
combines the time-in/time-out approach with asynchronous moves. The model was
used to predict behaviour in a species of mouth brooding fish.

As predicted by the model, there is a variety of parental care strategies observed
in St. Peter’s Fish. However, observations suggest that in reality the level of male
care lies in between the level predicted by the game with simultaneous moves
(almost all males desert) and the model where females decide first (many males
care). Similarly, the level of female care observed seems to lie in between the levels
predicted by these two models (see Fishelson and Hilzerman 2002). The following
factors may explain the differences to some degree.

1. A pair seem to play a war of attrition game before deciding whether they will
brood. This occurs due to variation in the size of partners and, particularly, in
the number of eggs laid and their state (see Jennions and Polakow 2001). Players
should gain information on the state of the eggs, but balance this against losses
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due to mortality when offspring are not brooded immediately. Yaniv and Motro
(2004) consider the game played by a mating pair as a war of attrition. Unlike
the large population game considered here, they consider a two-player game. It
would be good to extend the model presented here to consider the interaction
between a mating pair in more detail.

2. The model assumes that mating is random. Fishelson and Hilzerman (2002) note
that many pairs mate repeatedly. This has two obvious effects. Firstly, mating
repeatedly with one partner affects the rate at which individuals mate. Secondly,
the possibility of forming such partnerships is likely to increase the level of
parental care, since individuals may play a “tit-for-tat” strategy. Also, as Ros
et al. (2003) state, mating is not random, since individuals of both sexes prefer
large partners. Large females lay on average more eggs and larger individuals of
both sexes are able to mouthbrood more offspring.

Development of the model to take these factors into account would enable us to
model and understand parental care patterns more fully.

Another interesting problem to look at would be the case of sequential brooding.
Eretmodus cyanostictus is a mouthbrooding cichlid in which the clutch is first
brooded by the female and then by the male (see Griiter and Taborsky 2005). This is
a game in which the moves are obviously asynchronous. Also, this game has aspects
of a war of attrition, since the male would like the female to brood the clutch for as
long as possible.

In conclusion, the model explains to some degree why there is variety in the
parental care strategies of mouthbrooding fish. However, the model needs to be
expanded, in order to explain the pattern of parental care behaviour that is actually
observed.

Acknowledgements The author is grateful for the support of Science Foundation Ireland under
the BIO-SI project (no. 07MI012).

Appendix 1: Stability Conditions in Game with Simultaneous
Moves

The left-hand side of each inequality is the reproduction rate of males (which is the
reproduction rate of the females divided by the ASR), the first entry on the right-
hand side is the reproduction rate of a mutant male and the second entry is the
reproduction rate of a mutant female divided by the ASR.

Only male parental care is an ESS if

A AP gCP kb/\]/\C.pCD
kndag{P P > max § SLEmIL o S
A+ hgr? AG + Airpy

(8.44)
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Only female parental care is an ESS if

kyMASgPC  MAZpPC
k Aquchc > max , (8.45)
SE Ag+qulc A7+ darpP©
Parental care by both sexes is an ESS if
kAARgee  knhid pf€
kpAg€€ pCC > max 'g : mqlcc 5 S (8.46)
A +Aigr™ AY + Arptc

Appendix 2: Stability Conditions in Game with Asynchronous
Moves

No parental care with unconditional desertion by males, [(D, D), D], is neutrally
stable when

kp Abac -I—MqlDD)
kr, — m 8.47
max{k kf}</\C(AD+AqDD) ( )
/\D(/\C + )Llrp D) (8.48)

153808 £ arpPPy
This strategy profile is strongly stable when, in addition

)LD(AC + )&1rp1DD)
ACGE + urpP)

b <

Biparental care with unconditional care from males, [(C, C), C], is neutrally
stable when

. kp ADAS + g€
ke, — 8.49
M T AR + g (®49
ﬁ N )L_?()L? —i—/\lrplcc) 3:50)
k; ~ ACQR £ ArplC) ‘
S f( f+ 1rpq )

The condition required for strong stability, i.e.

)LD()LC + )nrplcc)

ky >

AC (AD + )Hrp
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is a weaker condition than Condition (8.50). Hence, if [(C, C), C] is neutrally stable,
then it is strongly stable.

Finally, it can be shown that [(C, D), C], i.e. biparental care with male care being
conditional on the female giving care, is neutrally stable when

_AnOn etk
P EASAR + 2qfS) T kg

- A?(A? + Airpfo)
)L?()L? —I—)&lrplcc)'

(8.51)

b (8.52)

This strategy profile is strongly stable when, in addition

ko _ ARG + 2ipPCr)
kr = ASAGAL + apfCr)’
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Chapter 9
Conditions for Cooperation and Trading
in Value-Cost Dynamic Games

Jiirgen Scheffran

Abstract In value-cost dynamic games multiple agents adjust the flow and
allocation of investments to action pathways that affect the value of other agents.
This article determines conditions for cooperation among agents who invest to
gain value from each other. These conditions are specified in a game-theoretic
setting for agents that invest to realize cooperative benefits and value targets. The
dynamic interaction of allocation priorities and the stability of equilibrium concepts
is analyzed. One focus is to determine solutions concepts based on cost-exchange
ratios and benefit-exchange ratios that represent trade-offs between the agents, as a
function of the action and interaction effects of the respective action pathways. The
general approach is applied to the trading between buyers and sellers of goods to
determine conditions for mutually beneficial market exchange, the price of goods,
and the specialization between consumers and producers.

Keywords Cooperative games ¢ Conjectural variation ¢ Economic trading e
Market price ¢ Interaction stability * Value-cost dynamic game

9.1 Introduction

One of the challenges in dynamic game theory is to understand the emergence of
cooperation and the transition between conflict and cooperation among multiple
players. Particularly relevant are phenomena of competitive and cooperative interac-
tions in trading processes involving buyers and sellers (respectively, producers and
consumers) who compete or cooperate with each other in changing constellations.
These issues have been analyzed in different frameworks.
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In differential games solution concepts are based on payoff optimization and
Nash equilibria (Bagar and Olsder 1982; Dockner et al. 2000). Studies analyzed
cooperative equilibria (Tolwinski et al. 1986); conditions for the existence of Pareto
optima (Engwerda 2010); semi-cooperative strategies (Bressan and Shen 2004);
cooperation in games with incomplete information (Petrosjan 2004); and the price
of anarchy, information, and cooperation (Bagar and Zhu 2011).

In oligopoly theory and market games firms compete according to reaction func-
tions to each other’s quantities and prices (Szidarovszky and Li 2000; Zhang and
Zhang 1996). Conjectural variations among players lead to an iterative hill climbing
process called “tdtonnement” (Bresnehan 1981; Figuieres et al. 2004). Well-known
are the Cournot model, where each firm chooses its output as a function of the output
of other firms, and the Bertrand-Edgeworth model where profit maximizing output is
selected at a given price. The Nash/Bertrand conjectures result in competitive equi-
libria such that firms set price equal to marginal cost for lacking capacity constraints,
or sellers set prices and buyers choose quantities at these prices (Bertrand competi-
tion) (Allen and Hellwig 1986; Dixon 1992; Simaan and Cruz 1976; Tuinstra 2000).
For multi-user communication, Su and van der Schaar (2011) investigate the stabil-
ity and Pareto boundaries of conjectural equilibria. In repeated games firms have an
incentive to cooperate by colluding to charge the monopoly price and sharing the
market. While conjectural variations have been mostly used to analyze competitive
interactions, applications in cooperative interaction deserve more attention.

Cooperative game theory has been developed for players joining coalitions, with
solution concepts such as the core or Shapley value transferred to a dynamic game
framework (Petrosjan 1995; Yeung and Petrosjan 2006, 2012). One issue is to
identify mechanisms that lead to cooperation in non-cooperative Nash equilibria
such as the prisoners’ dilemma (PD) (Gerber 2000). To overcome the PD in single-
stage games, Axelrod (1984) performed an experimental tournament of repeated PD
games in which tit for tat was the most successful rule-based response strategy. The
success of sequential strategies depends on the payoffs of the players and the social
context in which the games are played (Selten and Stoecker 1986). Some models
use punishment to enforce cooperation, including peer and institutional punishment
(Isakov and Rand 2012). Helbing and Johansson (2010) explore the robustness of
cooperation in spatial public goods games and the effect of the mutation rate on
the relaxation dynamics. Ohtsuki (2011) studies the stability of resource division in
the Nash demand game of selfish agents, with a focus on mutation and diffusion of
strategies leading to a fair split of resources. Gao et al. (2012) study the dynamics
of investment and the effect of punishment on cooperation in continuous public
goods games, finding an equilibrium between high-tolerance individuals with high
investments and low-tolerance individuals with low investments. While higher coop-
eration benefits tend to increase the share of cooperators, for some payoff values the
reverse is true (Nemeth and Takacs 2010). Assessing the trade-off between network
throughput and energy efficiency, the Shapley value was used to determine a fair
distribution of the total cooperative cost among players (Miao et al. 2012).

Evolutionary game theory analyzes the competition among populations via
replica equations that select cooperative and non-cooperative strategies regarding
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their fitness (Hofbauer and Sigmund 1998). Crucial is the coevolution of individual
strategies and social ties where the interplay of strategic updating and partner
network adaptation by social learning can facilitate the escape from social dilemmas
(Du and Fu 2011). The role of reinforcement learning and adaptive dynamics
in social dilemma situations is discussed in Tanabe and Masuda (2012), for
variants of tit-for-tat and the win-stay lose-shift strategy, where learning accelerates
the evolution to optimality. Gomez Portillo (2012) shows conditions to build a
cooperative system under unstable growth, depending on benefit-cost ratios and
imitation capacity required for cooperation. In dynamically weighted networks,
players update their strategies and weights of adjacent links depending on payoffs
in evolutionary games (Cao et al. 2011). An adaptive weight adjustment mechanism
dramatically promotes evolution of cooperation. Wang et al. (2010) analyze the role
of asymmetry in interaction and show that the probability of cooperation increases
with the payoff ratio between actors. While spatial structure and heterogeneity have
been recognized as potent promoters of cooperation, coevolutionary rules may affect
the interaction network, the reproduction capability, reputation, mobility, or age of
players (Perc and Szolnoki 2012). Among specific examples are shops competing
for different types of customers, leading to attracting price cycles (Hahn 2012), and
price auctions showing evolutionary stability and convergence to a Nash equilibrium
(Louge and Riedel 2012).

While dynamic game theory derives response mechanisms from optimization
principles, agent-based models (ABMs) use behavioral rules in multi-agent dynamic
settings and simulate complex multi-agent patterns of interaction, which is useful in
situations of uncertainty and bounded rationality, taking into account the adaptive
nature of human action under changing environmental conditions. Various tools
have been applied from statistical physics, nonlinear dynamics, and complex
systems science to analyze adaptive social phenomena, such as self-organization or
micro-macro phase transitions (e.g. Epstein and Axtell 1997; Helbing and Johansson
2010; Weidlich 2000). Applications range from moving crowds and traffic systems
to urban, demographic, and environmental planning. Due to the complexity an ana-
Iytic treatment is difficult, and better understanding is required on how cooperation
evolves in multi-agent settings. Agents repeatedly interact with the environment and
other agents, using dynamic reinforcement learning in multi-agent coordination and
network formation to update the probabilities of future action based on previous
actions and received rewards (Chasparis and Shamma 2012). In ABMs resource
limitation may modify the original structure of the interactions and allow for well-
mixed populations of cooperators and defectors under limited resources (Requejo
and Camacho 2012). To understand how cooperative behavior evolves in social
networks, Rezaei and Kirley (2012) investigate the evolution of cooperation in the
N-player prisoner’s dilemma game where cooperative actions create and defects
break social links. Computational simulations use varying population and group
sizes; group formation and partner selection; and agent decision-making strategies
under varying dilemma constraints (cost-to-benefit ratios). Simulation shows that
the social network model is able to evolve and maintain cooperation.

Despite significant progress, there is still a methodological gap between more
simple models with a few number of players which pursue optimizing game
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strategies subject to mathematical analysis, and more complex models with a large
number of agents which interact according to behavioral rules subject to computer
simulation. To overcome this gap integrated theoretical frameworks should be
sufficiently complex to represent the diversity in social interaction but not too
complex to preclude generalizable results.

Adaptive approaches explore the linkages between optimizing and rule-base
behavior. Different from differential games that search for optimal-control solutions
over an extended period, adaptive mechanisms consider short-term action-reaction
patterns among agents who in discrete time-steps act upon a system within their
resource and capacity limits according to response strategies to achieve target
values. When multiple agents act on the same environment, they may interact
with each other in conflictive or cooperative ways. Conflicts can be diminished
by compromising or win—win solution concepts. While agents may pursue optimal
utility strategies in some cases, they may follow heuristic rules based on experience,
learning, traditions, and social environments in other cases.

Adaptive frameworks also offer explanations why and when agents cooperate.
Generally agents cooperate to achieve individual or collective goals more efficiently.
In a PD situation cooperation is difficult as agents risk to lose individual benefits by
switching to cooperation, unless mechanisms guarantee the benefits of cooperation
despite the possibility for individual defection. Common rules and institutional
mechanisms offer a framework and may determine how much output (benefit)
agents receive for their input (investment). They also guarantee that agents who
defect lose the benefit of cooperation and thus have no incentive to cheat. Once
the benefits of cooperation are realized, a key question is how the investments
are allocated and the benefits are distributed among the agents. In extreme cases
one agent receives the full benefit and the other none. Here fair mechanisms of
distribution and sharing are required which are shaped by the power structures and
fairness principles between the agents.

A prominent example of cooperation is trading, which is a mutual transaction
where one agent commits an act beneficial to another agent who replies in turn.
Trading between buyers and sellers of economic goods is based on the supply
(production) and demand (consumption) of these goods. Related issues occur in
auctions to determine the price of goods and in communication between sender
and receiver of information. A framework of cooperation investigates sequences
of mutual actions and price formation in transactions, taking into account the
willingness to pay and requested benefits of buyers and sellers, as a function of
the impacts of the agents on each other. This goes beyond competitive mechanisms
of price formation between firms.

To analyze these phenomena an integrated model of value-cost dynamic games
is presented, connecting non-cooperative and cooperative dynamic games with
evolutionary games and multi-agent models. Individual action and social interaction
of agents are characterized by capabilities and efforts (costs) invested to change
the natural and social environment, using rule-based allocation of investments to
action pathways as main control variables and adaptive response mechanisms to
achieve value targets (Scheffran 2001). The framework allows to model dynamic
interactions, such as conflict and cooperation, group learning and adaptation,
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coalition formation and breakup (Scheffran 2006). The value-cost dynamic game
has been used in different applications, including arms races and arms control,
economic production and environmental sustainability, resource conflicts in water
and fishery, as well as energy security and climate change (for an overview, see
Scheffran and Hannon 2007). One focus has been on the conditions for stability of
the interaction matrix (Scheffran 2001).

This article analyzes conditions for cooperation and trading among agents that
invest part of their capital to cooperation with other agents, to achieve value targets
and benefits compared to unilateral action. Based on conjectural variations in two-
agent interaction, equilibria and their stability are determined, which serve as a basis
to relate cost exchange and benefit exchange according to trade-off mechanisms.
A focus is on trading between buyers and sellers of goods to explicitly determine
the market price of goods as a function of the tradeoff rules.

9.2 The Framework of the Value-Cost Dynamic Game

9.2.1 Model Outline

Value-cost dynamic games describe the behavior of individual agents who use part
of their capital to invest in different action paths to change system variables which
may affect the value of each of the agents. When agents repeatedly adapt the flow
of investment and its allocation to meet their target values, they interact in complex
dynamic ways.

Definition 9.1. The value-cost dynamic game is characterized by the elements:

e Agentsi =1,...,n

e Time periods ¢t = 1,..., T during which agents act.

+ System state x(¢) = (x'(¢), ..., x"(t)) of system variables x* (k = 1,...,m).

e Action af of agent i regarding system variable x¥ results in a system change
Axf‘ (1) = gf‘ (x (t),aff(t)) induced by agent i. An action path is a particular
sequence of actions a,’-‘(l) by agenti. a;(t) = (a)(¢),...,a" (1)) is the action
vector of agent i, a(t) = (a,(¢),...,a,(t))7T is the action matrix of all agents.

¢ Capital K, (¢) represents the capability of agent i to act.

e Cost Ci(t) = ki (t)K;(t) < K;(t) is the invested fraction 0 < x; < 1 of the
capital K; into action a; of agent i. The cost allocated to each of the action

variables a¥ is C}¥ = cF . a¥ where ¢/ is the unit cost of action variable a¥

such that C; = ", ¢k - ak are the total costs of agent i. The cost vector C =

(C1,...,C,) comprises the costs of all agents.'

ICapital and investment can be expressed in terms of financial units (money) but other capital
resources could also be considered, such as time, labor, energy, and natural resources. The unit
chosen is specific to the respective application area.
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¢ Allocation priorities 0 < pf‘ < 1 determine the fraction of investment
costs C; allocated to action a¥ = C; - pF/ck, with 3, pf = 1.
pi(t) = (pl(),...,p"(t)) is the allocation vector of agent i, while
p(t) = (pi1(t)..... pa(t))T is the allocation matrix of all agents.

e Value functions V;(t) = f;(C(¢), p(t),x(t)) represent the evaluation of the
system state and the action variables C(¢) and p(¢) of all agents in a given time

period . V;*(¢) indicates a target value set by agent i.

The multi-agent interactive targeting problem is to select priorities pf‘ () to allocate

cost C;(t) towards actions aff to meet or approach the value target V;(¢)

fi(C@), p(t),x(t)) = V.*(¢) forall agents i = 1,...,n
Model Specifications:

1. The following analysis will be restrained to value functions that are not explicitly
dependent on state x () and add up the value impacts of the actions of all agents
j = 1,...,n, leading to a linear value function of agent i (neglecting ¢ for the
respective time period to simplify notation):

V,-:ZV,, szﬂ] Zf,, i (i=1,...,n) 9.1)
J

k=1j=1

Wherev ; is the unit value of agent i induced by actlona Ax =C;-ps ] /c
of agent j (k = 1,...,m) where Ax is the change in system variable

* induced by action a* ;- Note that in vj; the first index refers to the agent
causing the action and the second index to the agent affected by this action. The
interaction effects for a pair of agents i and j

m k
Z% (G,j=1,....n)
k=1 /

form the value-cost interaction matrix

Suees fuie fin
= | T
fnl "'fni fnn
2. The vector equation V' = F(p)-C = V™ corresponds to n linear equations

Vi = fi(C, p) = V;* which for f;;(p;) # 0,Vi = 1,...,n can be resolved for
the target costs of agent i

- VRO = i (p)C; (1)

€)= Jii(pi) 02
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This is a response function of the costs of all other agents. If in a given time
period ¢ the actual cost C;(¢) diverts from the target cost C;(¢), the difference
equation

ACi (1) = Cit+1D)~Ci(1) = (G ~Ci (1) = - (V)= f3: C(1)
123 i=1
' 9.3)

provides an adaptation mechanism that depends on the interaction effects f};

which are controlled by the allocation priorities p’; of agents j = 1,...,n, as
well as the unit values v’;i and unit costs cf. For o; = 1 it takes one time step
to reach the target cost G (¢) which is moving due to the responses of other
agents. Depending on stability conditions the dynamic interaction evolves until
cost equilibria or boundaries are reached (Scheffran 2001).

3. While total costs C;(¢) represent the intensity of action, the allocation priorities
pf‘ (t) affect the direction of action and can serve as control variables to meet

target priorities p¥ (1), following their adaptation dynamics
Apf(1) = of (5 (1) = pf (1)) (94)

within the boundaries 0 < pf‘ (t) <land) pf‘ t)=1.

4. In real-world situations agents control the intensity C; (¢) and direction pf‘ () of
their investment which follow response functions to achieve target values. They
may evolve at different temporal scales, with two special cases:

» Fixed cost, variable allocation: For a certain time period T the total cost
C;(t) < K; is kept constant within the capital constraint, while agents adapt
allocation priority pf‘ (1) to each other. This represents agents that seek to find
the best cost allocation within given budget limits.

» Fixed allocation, variable cost: For a certain time period T the allocation
Pk (¢) is kept constant, while agents adapt their total flow of costs C; (¢) to each
other. This represents situations where agents only respond with the intensity
of their efforts (speed of action) while their direction of action and thus their
freedom of choice is restrained (e.g., due to rules and habits).

In this article we focus on problems of the first type where agents adapt
their action priorities within cost limits for a certain period, thus decisions on
allocation occur faster than on total cost. For subsequent periods, the one-period
act turns into a dynamic game in which all variables change over time.

5. It is assumed that investments and values have the same units, thus can be
added and subtracted. In practice this can be realized by estimating how
much cost C an agent is willing to invest to achieve a particular value
V;. This implies net value V; — C;” = 0 and positive (negative) net value
below (above) this cost threshold. Further, net value may be fully or partially
converted into capital which affects the capability to invest in the following time
period. Capital may further increase or decline according to its inherent growth
dynamics.
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6. The dynamic game includes the possibility that single playersi = 1,...,n form
collective agents (coalitions) I = 1,..., N that allocate joint investments C; to
coalition actions a% and pursue coalition values V; both which are distributed to
the individual values V; according to a distribution mechanism (Scheffran 2006).
The following analysis applies to both individual and collective agents.

7. The action and interaction effects f;; and f;; are held constant in this article
although in many cases may be time and state-dependent. For instance, they may
decline with increasing investment, thus diminish the value of allocating more
investment to this pathway. It is also possible that initially interaction effects
increase with investment (indicating a self-enforcing beneficial relationship)
and beyond some point begin to decline. To analyze these phenomena, specific
models are required to represent concrete application areas.

9.2.2 Game-Theoretic Framework of Direct Interaction

In the following, we assess the linear relationship between costs C; and values
Vi of a group of agents i = 1,...,n. Going beyond previous applications of the
value-cost dynamic game which describe the interaction of agents that allocate their
investment to individual actions we expand the analysis to agents that explicitly
allocate a fraction of their investment to the interaction with other agents. The
relationship between actions and system states is implicitly represented by the
interaction effects f;; between a pair of agents i and ;.

e Agent i allocates a fraction 0 < p;; < 1 of its investment C; to individual
(unilateral) actions, resulting in a direct action value

Vii = fupiCi.

fii is the direct action effect of agent i, indicating the value-cost ratio of
unilateral action. For p;; = 1, agent i only acts unilaterally and has no direct
interaction effect on another agent.

» Agent i allocates a fraction 0 < p;; < 1 of its investment C; to the direct
interaction with agent j, resulting in an interaction value to agent j

Vij = fijpijGi

where fj; is the direct interaction effect of i’s investment on j’s value.

Remark 9.1. In the general model framework there is no distinction between direct
and indirect effects as any action that affects the value of another agent is treated as
an interaction. The term “direct interaction” is introduced here to describe situations
where agents direct part of their investment towards the interaction with other
agents, assuming that this investment is no longer available for unilateral action.
Although indirect side effects can be relevant in real-world cases (i.e., when the
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investment of one agent affects value of either agent besides the intended path), the
focus will be in the following on the pure cases of direct interaction without side
effects (see further discussion in the final section).

Definition 9.2. The following cases of interaction are distinguished:

+ Conflicting effect f;; < 0: Investment C; > 0 causes value loss V;; < 0.
» Cooperative effect f;; > 0: Investment C; > 0 causes value gain V;; > 0.
e Unilateral loss f;; < 0: Investment C; > 0 causes value loss V;; < 0.

* Unilateral gain f;; > 0: Investment C; > 0 causes value gain V;; > 0.

Remark 9.2. Mixed cases are possible if one agent acts with a cooperative effect on
another agent who responds with a conflicting effect, and vice versa. The definition
is based on the assumption that value losses are associated with a conflicting relation
and value gains with a cooperative relation. In the following we focus on unilateral
gains (f;; > 0) and cooperative relationships ( f;; > 0).

Definition 9.3. The net value of direct interaction among agentsi = 1,...,nis

Vi=Y Vi—Ci =) fipjiC;—C. ©-5)
j J

The following analysis focuses on the conditions of cooperation among a pair
of agents i and j, neglecting the influence of other agents (for a discussion of the
general multi-agent case, see the concluding section). To simplify notation we use
pi = pi; as the allocation priority of agent i for cooperation with j and p;; = 1—p;
as the allocation priority for unilateral action, without specifying particular action
paths. For agent i the net value change becomes

Vi=Vi+Vi—=C = fiil=p)C + fjip;C; — C; (9.6

The case of positive action and interaction effects f;; > 0 and f;; > 0 for
i,j = 1,...,n is used to develop general conditions for cooperative interaction.
The extreme cases of full cooperation and full non-cooperation among agents i and
j are represented by the following game matrix.

Proposition 9.1. The following statements are evident from the game matrix:

Agent j No cooperation Full cooperation

Agent i (p; =0) (p; =1

No cooperation Vi =(fii — DC; Vi=(fii —1DC + f;iC;
(pi =0) Vi = (/i = 1DC; Vi =-=C;

Full cooperation = -G Vi = £ C; — G

(pi =1 Vi=U DG+ fiG V= £ G- G
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1. The case of non-cooperative action (p;, p;) = (0,0) is a stable Nash equilib-
rium, i.e. neither player has an incentive to divert from it unilaterally for positive
unilateral action effects fi; > 0, fj; > 0.

2. For f;; < 1 unilateral action is too costly, and agent i needs cooperation with
agent j to generate positive net value.

3. Provided that the value of mutual cooperation exceeds the value of mutual non-
cooperation, the cooperative case (p;, p;) = (1,1) is more beneficial for both
agents but is not a stable Nash equilibrium against unilateral change.

4. The transition from non-cooperation to cooperation contains the risk of large
asymmetry when one player has maximum value (unilateral and interaction
gains) and the other minimum value (loss of investment). In this case, one player
receives the full benefit of cooperation while the other pays for it.

Problem 9.1. Under which conditions will cooperation emerge in the value-cost
prisoner’s dilemma game? Specifically, which investment fraction p; will agent i
allocate to cooperation in response to an investment fraction p; of agent j?

9.3 Relative Benefits from Cooperative Interaction

To find ways out of the value-cost prisoner’s dilemma, the challenge is to develop
rules and mechanisms that guarantee both players the benefits of cooperation. One
option is that both agents specify these benefits and offer investments to realize
them. An enforced agreement would make sure that gains and losses of non-
cooperation are compensated by mechanisms that favor cooperation by incentives
and punishment. It is crucial to identify boundary conditions under which agents
switch behavior and make the transition from non-cooperation to cooperation by
starting an exchange of investment for mutual benefits.

9.3.1 Egquilibria and Boundary Conditions

To determine the benefits of cooperation among two agents i and j, two conditions
are distinguished (to avoid repetitions only the equations for one of the agents are
shown if the behavior of the other is mirror-symmetric):

1. Agent i invests p;C; in the interaction if the cooperation value V;; gained from
j in return exceeds the unilateral value V;; from the same investment:

Vii(pj) = fiip;C; > fiipiCi = Vii(pi) 9.7

2. Agent i decides to invest p;C; in the interaction if the cooperation value Vj;
gained from j in return exceeds the investment:

Vii(pj) = fiip;C; > piC 9.8)
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Condition 2 is a minimum requirement for interaction, requesting that the interaction
is worth the investment and no relative loss is incurred from it. For condition 1
investment in cooperation is related to the opportunity cost of non-cooperation.
In the following only condition 1 is pursued while condition 2 is mathematically
similar and identical to f;; = 1 and f;; = 1. One should note the different meaning
of both conditions which lead to different outcomes, in particular when unilateral
actions are inefficient f;; < 1 and fj; < 1 and agents can improve only through
collaboration.

Definition 9.4. The relative benefit of cooperation for agent i is:
Bi(pi.pj) =V;i(p;) =Vii(pi) = fjip;C; — fiipiCi 9.9)

Once agents i and j set target benefits B; = B and B; = B;‘ for given investments
C; and C; during the action period, this defines different response mechanisms for
meeting these targets.

1. Own benefit response: Allocation priority of cooperation p; is selected to meet
the target benefit of agent i:

_ JiipiC; =B _
pi = G = pi(p))

2. Partner benefit response: Allocation priority of cooperation p; is selected to meet
the target benefit of agent j :

_ JijpiCj + B}

Di 7,C = pi(p)) (9.10)

3. Joint equilibrium response: Allocation priority of cooperation p; is selected to
meet the target benefits of both agents 7 and j in the equilibrium allocation:

. BI/fi+ZB}/f;

pl = Gz 9.11)
with
Jij fii
7 = L 9.12
Fifs 9.12)

Remark 9.3. For response 1 the aim of agent i is to adapt priority p;(¢) at time
t to obtain its target benefit B/ and thus move towards p;(p;) which depends
on p; of agent j. Under response 2 the aim is to adapt priority p;(f) at time ¢
to meet the stated target benefit B;f of agent j, thus moving towards p;(p;) as
a function of p;. In the equilibrium (p}, p}f) both functions p;(p;) and p;(p;)
intersect, thus both response mechanisms lead to the same equilibrium allocation.
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For each of the three strategies there are different information requirements. For
strategy p;, agent i needs information about cost C; and allocation p; of agent
J» as well the effect f;; of j’s costs on agent i. For strategy p;, agent i needs to
know significantly more information about j: besides cost p;C; the action effects
fjj and interaction effects f;; on agent j, as well as the stated target benefit of
J - Equilibrium p} is independent of p; and C; but requires complete information
about the action and interaction effects of both agents. The existence of a mutually
satisfying equilibrium depends on Z > 1 which is the case if the product of the
cooperative interaction effects f;; f;; exceeds the product of the unilateral action
effects f;; f;;. The question is which combinations of B* and B} can be actually
realized for 0 < pf < land 0 < p}‘ < 1.

Proposition 9.2. The constraints on agreed allocations 0 < p¥ < 1 and
0< p; < 1 translate into constraints for the target benefits:

fji * fﬁ
———BY <BY=<(Z-1)f;C;— =B}

fi T fii

Jij Jij

The set of possible target benefits is given by the quadrangle with the coordinates
foragentsi:

B (p; =0,p; =0)=0

Bf(pf =1.pj =0) = —fiiC;

B (pi =0,p; =1) = f;C;

Bi(pi =1,p; =1 = fiC; — fiiCi
B*(1,1) > O and B_}k(], 1) > 0 is realized for

Ji LG _ Ty

<

Ji =G T S
which for Z > 1 defines a set of possible total investments (C;,C;) that allow

positive target benefits for both agents. The case p} = p;‘ = 1 is Pareto optimal
since each agent can improve benefit only by reducing benefit for the other.

9.3.2 Dynamics and Stability of Interaction

When agents pursue one of the response strategies identified in the previous section,
it is important whether these responses lead to a stable or unstable interaction. In the
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following, adaptive responses are considered that correspond to a linear difference
equation of the type for agent i:

Api(t) = pi(t +1) = pi(t) = a; (p; (t) — pi(?)) = a;;i pi(t) +ajip;(t). (9.13)

This equation describes agents that adapt their allocation priority p;(¢) in each
time step towards a time-dependent target priority p;(¢), where ¢; indicates the
adaptation rate from one time step to the next. For o; = 1, agent i adjusts p; (¢)
to the target p;(¢) in one time step, for ¢; < 1 allocation is adjusted to the target
asymptotically at slower rate. a;; and a ;; are the parameters in the linear difference
equations, indicating the effect of each allocation on the respective allocation
changes. As targets of adaptation p;, agents may use p;, p;, or p;*, depending on the
response strategy pursued. Whether the respective dynamics is stable or unstable is
a crucial question.

Theorem 9.1. The dynamic adaptation mechanism Ap;(t) = o;(p;i(pj(t)) —
pi(t)) is unstable for response strategy p; = p;(p;) and stable for response
strategies p; = p;(p;) and p; = p}.

Proof. 1. The eigenvalues of the dynamical equation
Api(t) = a;(pi(p;j (1)) — pi(1)) = aiipi(t) + ajip; () 9.14)

with a;; =« (f;;C;)/(fiiCi) and a;; = —o; are the solutions of
det(A—AI) =0:

o (Z —1) 9.15)

%+ \/(Oli + a;)?
4

For Z > 1, one of the eigenvalues is positive, indicating instability.
2. The eigenvalues of the dynamical equation
Api(t) = ;i (pi(p; (1)) — pi(1)) = aiipi(t) + a;ip; (1)

withaj;; = o; (f;;C;)/(fi; Ci) are

o + o o +o;)?

A]/zz— J ﬂ:\/( 4 ]) +O[,O{](1/Z—1) (916)
Accordingly both eigenvalues are negative for Z > 1 and the dynamics of
response strategy p; is asymptotically stable.

3. For p; = p the negative eigenvalues A; = —o; < Oand A, = —a; < 0
indicate asymptotic stability of the equilibrium.

a
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Remark 9.4. The instability of strategy p;(p;) is an expression of the prisoner’s
dilemma of individual rational action. To overcome the dilemma and achieve the
benefits of cooperation, p; offers an alternative mechanisms that leads to the
stable joint equilibrium p. This way of realizing the benefits turns the logic of
individual rational action around. The aim is not to adapt priority p;(¢) at time
¢ to obtain the own relative target benefit B and thus move towards p;(p;(t)),
but to adapt priority p;(¢) towards the stated relative target Bj’?‘ of the counterpart
and move towards p;(p;(¢)). The purpose of this response strategy is to convince
the counterpart to cooperate by offering benefits of cooperation, in expectation that
this would be followed by a cooperative move of j. This cooperative tit-for-tat
strategy is represented in statements like “If you do me a favor, I do a favor to you.”
The dynamics of cooperation would evolve according to the following bargaining
sequence:

1. Starting from the Nash equilibrium (p;, p;) = (0,0), agent i offers p;(0) =
B7//i; Ci to realize the requested benefit B} for agent ;j and takes the risk of a
potential value loss — f;; p; C; into account if j does not respond cooperatively.

2. In turn agent j offers

fiipiCi + B _ BY fii/ fij + Bf
Jii€i 15iC;

pj(pi) =

of its investment to meet the benefit target B* of agent i, accepting the risk of a
potential value loss compared to the first step if cooperation does not continue.

3. The process continues until both agents are sufficiently close to the equilibrium
(pf, p}) where both meet their target benefits.

While the cooperative response strategy leads to a stable interaction, it is potentially
unstable against individual diversion from cooperation. Two major options exist to
avoid or diminish this risk:

* Respond individually to non-cooperation by withdrawal from cooperation in
return, either by not realizing an offer for cooperation ex-ante or ex-post
switching to non-cooperation in the following time step (tit for tat) leading to
a loss of the cooperation benefit for the counterpart.

* Formal contracts and institutional mechanisms that structurally ensure coopera-
tion or punish unilateral withdrawal from cooperation.

In the evolution of cooperation timing matters and the magnitude of steps taken.
Incremental steps (represented by «; < 1) and small expected benefits B may help
initiating a cooperative relationship and reduce the risk of non-cooperation until
sufficient trust has been established between the partners to take larger cooperative
steps. When requesting too much benefit from cooperation, a deal might not be
struck. During the bargaining process, agents could subsequently increase their
target benefit B until the upper cost boundary is reached for one or both of the
agents, provided the upper limit (p;, p;) = (1,1) is within the bargaining set.
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Z = 2’1—2’]’ > 1 is an indicator for the stability of the two-agent interaction which
is a necessary condition for the existence of a bargaining set where cooperation is
beneficial to both. With increasing target benefits the gap between the individual
response function p;(p;) and the joint response function p;(p;) is widening and
increasing the potential risk of value loss if agent j diverts from the cooperative
solution. The question then is which combinations of target benefits are acceptable

for both agents within the bargaining space.

9.3.3 Trade-Offs of Benefit-Cost Exchange

As explained above, the equilibrium allocation of investment of agent i that realizes
the target benefit of cooperation is given as:

L BSAZBSy Ayl B
P = (Z -1DG (S fii = fufi)G

Accordingly, for Z > 1 equilibrium allocations increase with the target benefits
of both agents and are positive if these are positive. A solution concept that is of
particular interest is the cost exchange ratio as a function of the benefit exchange
ratio B;; = B/ B of cooperation

Vi = p,*C, _ fjjB;—FfjjBi* _ f]z +/3ijfjj
TG T fyBE+ fuBE i+ By fi

9.17)

which is dependent on the action and interaction effects f;;, fj;, fij, and f};. For a
given B;;, the benefit-cost ratio of cooperation is constant for agent i, positive for
Z > 1 and independent of costs:

7 = B zﬁffji_fiif/‘j _ Z—1 .
CoptG filB+ S Z/Bi fiy) + 1/ S

The overall benefit-cost ratio ¢; = B;*/C; is increasing with cooperation level p;
and the benefit exchange ratio B;;. The selection of 8;; determines the “sharing of
the cake” generated by the collaboration which is subject to bargaining on allocation
between both agents. The question is which cost exchange and benefit exchange
ratios are agreed by both agents, following certain rules and principles of interaction.
Examples are the quest for fairness or relative advantage and the power structure
among the agents. In the following, a few cases for y;; and B;; will be considered
that represent relevant trade-offs and justifications.

1. Asymmetric benefits: For B;; — 0, agent i ’s benefit would be marginal compared
to agent j, while for B;; — oo, it is the opposite. For these cases of asymmetry
the cost-exchange ratio and the benefit-cost ratio for agent i are
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Yij (Bij — o0) = ]Ji_j,] vij (Bij — 0) = %
¢7(Bij —> 00) = fil(Z=1) ¢! (Bij > 0) =0

2. Allocation equity: If both agents allocate the same fraction of their investment to
cooperation (p; = p;), then

B = 1iiCj — fiGi
Y G 15C
G
Yij = C_j
) Z-1
o” =
' Z/(Bij fij) + 1/ fii

Thus, agents increase their cooperative investments and benefits along the line
pr = p;‘ until they reach the upper limit of full cooperation. For asymmetric
cases of cost, f;;C; — f;;C; < 01is possible for one of the agents, leading to the
exploitation of that agent and a negative benefit exchange ratio.

3. Benefit equity: If both agents claim the same benefit B = B;‘ =B*(Bi; =1,
this results in the cost-exchange ratio and the benefit-cost ratio of agent i

Vi = fii + i
Y Jfij + fii
¢p — fii(Z - 1)
YL+ Sl Sy

Thus agent i allocates investment inversely proportionate to its combined effects
fij + fii, indicating that more efficient action and interaction can save investment
in the collaboration.

4. Cost equity: If both agents invest the same in cooperation, the cost-exchange
ratio is y;; = 1. Then benefit-exchange ratio and benefit-cost ratio are

Bii = i = Jii - ¢_lp
Yt ¢f
¢ip = fji — fii

Both are positive when the cooperation effects (f;;, fi;) on each agent exceed
its unilateral action effects (fi;, fj;) on agent i, where the agent with higher
benefit-cost ratio also receives higher benefits.

5. Benefit exchange ratio equals cost-exchange ratio: B;; = y;; represents agents
who claim benefits proportionate to investments which leads to a quadratic
equation for the benefit exchange ratio:
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g = Lt iy

Y fi 4 Bi Sy
with the solution §;; = a £ ~/a> + b, where a = (f}; — fii)/(2fi;) and b =
fji/ fij- One of the two solutions is positive, the other negative. If agents have
symmetric unilateral effects (f;; = fi;), the solutionis B;; = / fji/fij = yij. If
interaction effects are also symmetric (f;; = fj;), the solutionis 8;; =1 = y;;.

6. Indifference between individual and joint benefits: This solution concept com-

pares individual benefits of cooperation with the individual share of joint
benefit:?

B =B; + B; = piCi(fij = fir) + p; C;(fsi — f3j) = B} + Bj.

Here the target benefit B/ = p; C; (fij — fi;) is the share each agent i contributes
to the joint benefit. If no additional benefit is created in joint benefit, the re-
distribution cannot be beneficial for both agents at the same time, thus one agent
receives more, the other less compared to the individual benefits (the possibility
that collective action creates additional benefits is not considered here). Both
agents are indifferent between individual and joint benefit for

Bi = fiip;Cj — fiipiCi = piCi(fi; — fii) = Bf

which leads to V;; = fi;p;iC; = fjip;C; = Vj;, thus the mutually created
values of cooperation are identical for both agents. In this case, the cost-exchange
ratio

_nG _
piCi fij

Yij

is proportionate to the ratio of mutual interaction effects. Thus, when agent
i increases its interaction effect on agent j, it can reduce its cooperative
investment. Both agents strike a deal when they exchange the same value of
cooperation which corresponds to a balance condition in terms of value: the value
supplied by agent i is identical to the value received by agent j which can be seen
as an expression of a “fair deal.”

Remark 9.5. All cases of solution concepts can be considered from the perspective
of fairness. Case 1 defines asymmetric boundary conditions of “unfair”” deals where
one agent dominates over the other who receives no relative benefit from the
interaction. In case 2, allocations of both agents are equal and benefit claims are
proportionate to potential relative benefits from the counterpart while the actual cost

2In the following the benefits of both agents are assumed to have the same units. In case of different
units conversion factors apply.
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ratio is proportionate to the capacity to invest which may be seen as unfair by those
who contribute more to the cooperation. Cases 3 and 4 describe cases of formal
equity in terms of costs and benefits of both agents and can be seen as dual to each
other. While case 5 represents fairness by setting benefit ratios and cost ratios equal,
case 6 uses equality of the value exchange between two agents as a condition of
fairness. This case is particularly interesting as it also represents the indifference
condition between individual and joint benefit for both agents. The cost and benefit
exchange ratios of agent i generally increase with the interaction effect f;; and
decline with f;;, in some cases compared to unilateral effects f;; and f;.

9.4 Alternative Target and Solution Concepts

Rather than using relative benefits of cooperation compared to non-cooperation as
targets, agents may seek absolute target values or relative growth targets of benefit.

9.4.1 Cooperative Pursuit of Target Values

The previous section has considered conditions for agents that use their investments
in cooperation to achieve relative benefits compared to unilateral action. This section
describes agents i and j that use their investments to achieve absolute value targets
Vi = V" and V; = V7, which may be interpreted as a demand in terms of value.
In particular, agents seek to avoid losses from their action and interaction, thus they
want to assure Vl* > 0. On the other hand, agents tend to aim for the best possible
value outcomes V;* = V;/"**. For agent i the targeting problem in cooperation with
agent j is expressed by the equation

Vi=Vi+Vi—Ci = fiij(1=p)Ci + fjip,C; —Ci = V*.

If agent i is not able to meet its target value unilaterally for p; = 0, i.e. V;; =
(fii — 1)C; < V;*, this is an incentive to cooperate with j by increasing p; > 0
to achieve its target value, provided that f;; is sufficient to justify cooperation. The
cooperative targeting problem can be transformed into the framework analyzed in

the previous section with the relative benefit of cooperation

Bi = fiip;C; — fiipiCi =V + Ci(1 — f;;) = B}".

For Ci(1 — fi;) = 0 we have B = V;* and both problems are identical. For

1

C;(1 — fi;) # 0, the equilibrium solution becomes:

L B+ ZBYfy (VG = i) i + ZOV 4 C U= fi)fy
A C(Z—1)
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which increases with the target values of both agents. The constraints on allocation
define a set of reachable target values.

Definition 9.5. The constraints 0 < p* < 1 define the reachable set of target
values of agent i by cooperation for given investment budgets C; and C;:

_&Vj* + @i < Vi* < _&
fii Sii

where ©;(C;. C;) = (fii = DCi + (1= 7-) f: C;.

VE4 O +(Z 1[G

Remark 9.6. 1In this value trade-off, the reachable target values obviously decline
with the target values of the counterpart and generally increase with the total
investments of both agents (for Z > 1 and f;; > 1). The difference between the
upper and lower boundaries of target values is (Z — 1) f;;C;. As introduced in the
prisoner’s dilemma game of Sect. 9.2, the four boundary cases of the set of reachable
target values are:

V*(1.1) = f;;C; = C; V*(0,0) = (fii — DC;
V*(1,0) = =C;i V;*(0,1) = (fii — DG + f;iC;.

Of particular interest is the case of joint positive value V;*(1,1) > 0 and
Vj*(l, 1) > 0 for full mutual cooperation, which leads to the cost constraint

L = 2 < fii

fi 7 G
which is feasible only for fj; f;; > 1. Thus, full mutual cooperation allows
for positive target values of both agents only for this cost constraint which can
be expanded for increasing interaction effects. Beyond a certain level of cost
asymmetry, full mutual cooperation leads to negative values for one of the agents,
defining an upper limit of cooperation. Other cases may be of particular interest, e.g.
if the target value for one of the agents is Vj* = 0, then the reachable target value
for agent i is

1
Jii
which exceeds the jointly reachable target value of mutual cooperation for C; <
f;iC;. To bargain on and select combination of target values, it is possible to apply

the solution concepts discussed in the previous section, using the benefit-exchange
ratio

V' =(Zfii = 1)Ci + (1 = —) f3iC;

ﬂ“_B_,-*_ V*+ G- fii)
Y By  VI4+Ci(1-f)
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For instance, the principle of benefit equity 8;; = 1 leads to a linear relationship
between target values, costs and action effects of both agents. For low value targets

V;* and large f;;, the target benefits may be negative which implies that there is no
need for cooperation because target values can be better achieved unilaterally.

9.4.2 Relative Growth Targets

The equilibrium of cooperative allocations can be expressed as

. BI/fi+ZB}/fij Pl +wjip]

bi="cz-1n "~ z-1
where pf = fB - is the ratio of target benefit and maximum unilateral value of agent
i, indicating a requested growth rate of cooperative benefit compared to unilateral
fjl

action, and w;; = i c is the exchange ratio between maximum cooperative value
from j and maximum unilateral value of ;.

Thus the agreed level of cooperation p/ is driven by the target growth rates of
both agents, where p;‘ is weigthed by w ;. The allocation boundaries 0 < p/ <1
translate into a bargaining set for feasible growth targets (p;", p;'-‘)

where p;” and ,o;r are the lower and upper constraints. Positive target growth is
possible for p; > 0,

Z—-1 _ fiuC
*
p; =< (Z = 1.
/ Wji f/z
In case of p¥ = p* = 1 (full mutual cooperation), the equilibrium solution of
Pi P P q

growth targets becomes p} = w;; — 1. Accordingly, p{” < 1 and p} < 1lead to the
cost constraint

fy G _fun 1
A G AT

This defines a bargaining set between both agents regarding their available invest-
ments and their reachable target growth which exists for

(+ (1 +p0) < Z.

Thus the upper limits for the admissible target growth of both agents are located
on a hyperbola limited by Z. With p/; = p/'/p7] the cost-exchange ratio in the
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equilibrium (p/, p7) becomes

Vi = riG _ (0 + @;i)Ci
YpiCr (oh + )G

With this approach, solution concepts similar to Sect. 9.3 can be applied.

9.5 Conditions for Trading and Pricing of Goods

9.5.1 Problem Description in the Model Framework

The trading of goods is an asymmetric form of cooperative interaction which fits to
the model framework explained in the previous sections.

Definition 9.6. A trading game is characterized by several elements:

1. One agent acts as a buyer (agent 1) who invests into buying a good (respectively
paying for an induced change of system variables x that is subject to bargaining),
and a seller (agent 2) who sells a good and in turn receives the cooperative
investment from the buyer. Both buyers and sellers invest into unilateral action
and cooperative interaction and receive value in return. The relationship can be
described as follows:

* Both agents invest (1 — p;)C; into unilateral action (i = 1,2).

e The buyer transfers the cooperative investment p;C; to buy a good x;, =
p1C1/c12 from the seller at unit cost ¢1, which corresponds to the price paid.

* The seller invests p,C, to provide good x3; = p>C,/cy; at unit cost ¢y

2. When both agents accept this deal, all goods sold are also bought (market balance
of demand and supply):

_ 1€ _ 2Co
C12 Ca21

X12 = X21. (9.18)

3. Similarly, the cooperation value of the seller can be expressed in two ways: in
terms of the investment received from the buyer 1 and by the investment spent
by the seller 2:

V12
Via = p1C1 = viaxp = vipxyy = C—P2C2

21
where vy, is the unit value of the good for the seller which corresponds to the
price received from the buyer.
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4. The trading price of the good corresponds to the unit cost paid by the buyer ¢,
and the unit value v, received by the seller

1C1
D02Cr

T =V =C2 = C21 = Y12 C21 (9.19)

which is proportionate to the unit cost of the provider of the good and the cost-
exchange ratio Y. p; and p; are adjusted until the balance condition is reached
and the deal is accepted by both buyer and seller, fixing the mutual price 7 = 7y
(neglecting the indices).

5. The trading values of the buyer and the seller are

V2]
Var = va1 x01 = e C=fupC
21

Vi = piCi = fiapiCi

and the unilateral values V;; = v;; (1 — p;)Ci/cii = fii(1 — p)C; (i = 1,2).
With the action effects f;; = v;;/c;; and the interaction effects fo; = va1 /¢
and fi, = 1, the net values become:

v v
Vi=ful=p)Ci+ fuppC—Ci = ci(l —-p)Ci + cﬂpzcz -G
1 21

v
Vo = fo(1=p2)Co+ fiapi Ci — G = 6—22(1 —p2)C + piCy — .
2

Remark 9.7. 1. When sellers and buyers accept to trade, the price of a good
exchanged between buyer and seller is equal to the unit value of the seller’s
investment and the unit cost of the buyer’s investment. This is an expression
of the dual nature of price which is the unit cost the buyer is willing to pay and
the unit value the seller requests to realize the deal. The price is proportionate
to the cost-exchange ratio (investment tradeoff) y;, and thus increases with the
investment p;C; the buyer is willing to invest to meet its demand of goods and
inversely proportionate to the investment p,C, the seller is willing to invest into
the supply of goods. This represents the supply-demand relationship in terms
of investment. Price also depends on the unit cost of supplying the good by the
seller. To avoid loss, the seller requests at least the provision cost from the buyer,
thus p;C; > p,C, which defines a lower bound for the price &7 > ¢5;.

2. Accordingly, the buyer requests to receive a value that is at least worth the
investment V51 = prChva1/ca1 = p1Cy = Vi, transferred to the seller which
defines a lower bound for the price 7 < v;.

3. If the buyer is the consumer of a good and the seller is its producer, then ¢;; is the
unit cost of production and v is the unit value of consumption. However, both
agents in the trading game can be consumers and producers at the same time,
each for a different good or action path in which they are more efficient than the
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counterpart. Thus, agent 1 may buy one good from 2 and sell another good to
agent 2, leading to an exchange ratio that determines the relative price between
the two types of goods.

4. Tt is further possible that the seller (agent 2) has been a buyer of the product or
its components from another seller (agent 3) such that the provision cost is equal
to the price paid to this seller. Accordingly the buyer (agent 1) may sell the good
to another buyer such that the unit value is equal to the price received from that
buyer. In this sequence of buying and selling the price is set to rise if agents are
inclined to increase value.

9.5.2 Relative Benefits from Trading

Agents trade goods if the relative benefits are positive, i.e. the value from trading
exceeds the value from unilateral action:

v v
Bi(p1, p2) = Var(p2) — Viu(p1) = C—zlpzcz - C—“P1C1 >0 (buyer benefit)
21 11
v
Ba(p1, p2) = Via(p1) — Va2(p2) = p1Cy — c_22p2C2 >0 (seller benefit)
22

which leads to the two trading conditions

121Gy ¢nC

————Dp, ;2 <
v11621C) 022Gy

P1.

The constraints may fail if the buyer does not get sufficient value from trading or the
seller does not get sufficient payment to justify production. A window of admissible
investment allocations (p;, p,) exists for

_ Jufn _vaanen (9.20)

B f11f22 C21 V11 V22

which implies that the unit value-cost ratio of trading exceeds the product of the unit
value-cost ratios of unilateral action.

Remark 9.8. The two trading conditions provide constraints for the price:

V22 p1Ci cu
—C < T = €] < — V7]
2 P2Cy vl
For fi1 = f» = 1 the constraints reduce to ¢;; < @ < vy, i.e. the unit value

of the buyer exceed the unit cost of the seller, with the price in between. If buyer
and seller also act as consumer and producer, the same good may serve as a basis
for unilateral action (self-production and self-consumption) as well as interaction
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(trading). Then for vo; = vy; and ¢3; = ¢22, the stability index is Z = ¢11 /vy, and
the constraint becomes vy, < 7 < ¢y, i.e. the unit cost of production of the good
for the consumer exceeds the unit value of consumption of the good by the producer.
In other words, self-production is too costly for the consumer compared to buying
goods while self-consumption is not valuable enough for the producer compared to
selling of the good. This is a basic condition that drives the specialization between
consumer/buyer and producer/seller for a particular good (for another good this
relationship may be just reverse).

For given target benefits B; = B/ and B; = B7, the respective response
strategies p; and p; and the equilibrium p* can be defined as a function of the unit
costs and values. For the cooperative response strategy p;, the adaptive mechanism
is stable for Z > 1. The equilibrium allocation is

Bfci /v + ZB}

Py =

Ci(Z-1)
* _ BY /v + ZBfca/va
P2 = GZ =1

At the upper allocation limits (pf, py) = (1,1), B*(1,1) > O and B (1,1) > O1is
realized for the cost constraint '

viiC C c
near G _

civar ~ Cp T v

which for Z > 1 defines a set of possible total investments (Cj, C,).

9.5.3 Trade-Offs of Benefit Cost Exchange

Using the trade-offs developed in Sect. 9.3.3, the price can be specified as

= yac plclc va1/C21 + ﬁlzvzz/czzc
= Y1ca = 2 = 21.
J218) vii/cu + Bz

Generally the price increases with the unit value of trading for the buyer and the
unit cost of the seller as well as with the value-cost ratio of unilateral action of the
seller but declines with the value-cost ratio of unilateral action of the buyer. For the
special case of one good (vy; = vy, €21 = €22), one obtains

_ 1+ Bnpvn/vy

= c11 < cqy for Z > 1.
1+ Biacii/vi !
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In case of v;; = ¢y; and vy, = ¢y, (which corresponds to the case 2 in Sect. 9.3.1),
the price function is particularly simple

v + Praca
1+ B2

which for B, = 1 is the average of the buyer’s unit value and the seller’s unit cost
which shifts towards the seller’s unit cost with increasing B;,. The price function
can be specified for the respective solution concepts.

1. Asymmetric benefits: If buyer or seller receives the full benefit, the prices
V22 C11
(B2 = 00) = —ca1, (B2 > 0) = —wy
165) vy

correspond to the upper and lower limits of the trading constraints.
2. Allocation equity: If both agents allocate the same fraction of their investment to
cooperation (p; = p»), the price is:
G
T = —0C2.
G, 21
Thus, the capacity of the buyer drives price up and the capacity of the seller
brings it down.
3. Benefit equity: If buyer and seller claim the same benefit Bj' = By = B* (Bi» =
1), this results in a price:

Vo + evn/en
I +vi/cen
which is the arithmetic mean 7 = (vy; + ¢31)/2 for fi1 = f» = 1.

4. Cost equity: If buyer and seller invest the same in cooperation (y;; = 1), price
and benefit exchange ratio become:

var/co —vnfen @r
1 —vn/cn o)
This implies zero buyer benefit for f5; = fi; and zero seller benefit for
U = (2.
5. Benefit exchange ratio equals cost-exchange ratio: For B, = Yy, the price
becomes:

7T=,312C21 =a:|:\/a2+b

where a = (va/c2 — vi1/c11)/2 and b = vy /cay. For fi1 = [, the price is
the geometric mean 7 = ,/v21¢2;.

6. Indifference between individual and joint benefits: Here the buyer pays the value
received from the seller, Vi, = pC; = vy p2Ca/ca1 = Va1, and the price is
equal to the buyer’s unit value of the seller’s good:

T = Vp1.
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Similarly, the general conditions in Sect. 9.4 for the cooperative pursuit of target
values and relative growth targets can be applied to the interaction between buyers
and sellers. For instance, the case of joint positive target values Vl*( 1,1) > 0 and
V2*(1, 1) > 0 for full mutual cooperation leads to the cost constraint

which implies that the buyer’s unit value exceeds the seller’s unit cost (vy; > ¢31),
and total cost of the buyer C; exceeds total cost of the seller C,.

Accordingly, for full mutual cooperation (p} = p5 = 1) the equilibrium of
growth targets becomes

v21c11Co

*

oy =wy—1=—-—"--1
21011 Cy
szCl

*

,02 = w12 — 1= —

U22C2

The bargaining set of reachable growth targets between buyer and seller is

(o)1 +p)) <7 = 22y
’ C21 Vi1 V22

which demonstrates that the cooperative bargaining set expands with increasing unit
value v;; of the buyer and declining unit cost ¢, of the seller and declines with more
efficient unilateral action of either buyer or seller.

9.6 Conclusions and Outlook

The main focus of this article is to examine conditions for cooperation in value-
cost dynamic games among two agents who invest into action pathways to achieve
values. These conditions are specified in a game-theoretic setting of a prisoner’s
dilemma for agents that seek to realize certain benefits and value targets as a result
of investment in cooperation. Considering ratios of these benefits it is possible to
determine boundaries for the investment ratios in cooperation which depend on the
action and interaction effects. The general approach is applied to the trading of
economic goods to determine conditions for the mutually beneficial cost exchange
as well as the market price of these goods which should exceed the unit cost of the
seller and not exceed the unit value of the buyer. While some specifications of the
model have been realized, it is possible to extend the model framework in multiple
ways.
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. This article explicitly focuses on situations where agents allocate part of their
investment to the interaction with other agents. An extension would include
indirect side effects, i.e. when the investment p;; C; of agent i in interaction with
agent j causes a side effect V;5 = f;7p;;C; on i’s value. An example is the
impact of environmental pollution from trading between agents. Similarly, the
investment p;; C; in unilateral action by agent i may indirectly affect the value
of other agents V;; = f;; piiC;, e.g. when the consumption of a resource affects
another agent.

. The analysis given in this article can be fully embedded into the dynamic
framework introduced in the beginning. This implies that total costs C; (1) =
ki (t)K;(t) are not fixed but change from one time period to the next within
capital constraints, which depends on the degree to which capital can be
converted to investment (given by «;(¢)). Furthermore, the value obtained in
one time period could be added to or subtracted from capital: K;(t + 1) =
K;(t) 4 s;(t)V:(t) with a savings rate s;(¢) (which depends on the possibility
to convert value to capital). When multiple time steps are analyzed, agents could
include long-term value effects of cooperation into consideration.

. While the focus has been on unit costs and values, on total costs and values for
a particular time period as well as exchange ratios between these variables, it is
possible to perform the analysis in a differential form, using marginal costs and
values instead. Accordingly, the exchange ratios can be expressed in a differential
form: y;; = dC//dC} and B;j = dB;*/dB}. Then the time-discrete dynamic
game could be represented by a differential game.

. The action and interaction effects f;; and f;; have been treated as constant in this
article but may change as a function of time and state variables. For instance, unit
values v;; may decline for increasing consumption due to saturation effects. Unit
costs ¢;; may decline due to learning and economies of scale or they may increase
due to resource scarcity that affects production factors. If actions induce risks,
these reduce net unit values, e.g. due to environmental pollution that diminishes
the unit value for consumers as well as the benefit-cost ratio.

. Costs and values of different agents are assumed to have the same units which
allows to easily combine them. This assumption can be modified by conversion
factors that make comparison of costs and values between agents possible.
This is of particular interest in case of coalition formation where agents merge
investments to achieve joint values. Then coalition action may create additional
benefits of collaboration that would be distributed among the individual agents
according to acceptability and fairness principles.

. While the focus of this article is on the interaction between two agents, the
extension to multiple agents is straightforward. Obviously the analysis can be
applied to cooperation between any pair of agents i and j in a larger group,
independent of what other agents do. Next, the impact of other agents / may be
treated as a disturbance of the value function:

Vi=piifiiCi + pi f;C; + ViE = V"
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where V.E = VY + 3, fC; combines the environmental value effects of
changes in the natural environment V;! and of changes in the social environment
induced by investments applied to actions of other agents / where f,} are the side
effects of the investments C; by agent / (including side effects by agent i and j).
Provided the actions of agent / are not influenced by agents i and j, they can be
treated as given and included into modified target values V* =V*+ VE for
which the analysis of this article can be applied. Finally, the case of full multl-

player cooperation can be treated with value functions of the type

Vi=Y pifyCi=Vi  i=1....n)

Jj=1

Here similar dynamic responses of allocation Ap;; = o;;(pi; — pij) can be
considered where the response functions p;; as well as the equilibria pl’j of
each agent depend on the cooperative allocation p;; and the target benefits
B* of all other agents. The stability index Z corresponds to the determinant
and eigenvalues of the n-dimensional interaction matrix. Accordingly, trade-offs
between cost-exchange ratios and benefit-exchange ratios can be included. An
in-depth analysis of the multi-agent case is left to the future.

7. For the trading between buyers and sellers the multi-agent extension is also
straightforward. Whether a pair of agents i and j has an incentive to trade goods,
depends on the condition Z;; > 1 for this pair which becomes ¢;; > v;; if a good
is produced and sold by agent j and bought and consumed by agent i. Thus,
agents can be sorted according to their unit costs and values where incentives to
trade are largest between buyers and sellers with the largest Z;;, respectively, the
largest difference ¢;; — v; for one good. If two pairs of agents (1,2) and (3,4)
have different prices for one good

then buyer 3 has an incentive to shift part of its investment p3C; to seller 2,
while seller 2 has an incentive to shift part of its investment to buyer 3 until price
equality is achieved. As discussed before, each agent in the trading game can be
buyer and seller at the same time for different goods or action paths in which
they are more efficient than the counterpart. It is further possible that the seller
has been a buyer of the good or its components from another seller, and that the
buyer sells the good to another buyer. Understanding these processes of price
formation and trading cascades is left to future analysis.

8. The special case of multiple sellers / = 1,..., N, multiple buyersi = 1,...,n,
and multiple goods x* has been introduced in the coalition framework of
the value-cost model in Scheffran (2006) and used for an application in the
agricultural sector in Scheffran and Bendor (2009). The equilibrium market price
for each good is given as
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k= Zi PlkCi
0 PII(C[/C];

where p’l‘ and pf‘ are the allocations of investment C; and C; to good x*, and cf
is the unit cost of the good x* for producer 7. Applying the trade-off mechanisms
suggested in this article to this general price function may provide useful insights
into price formation in complex market situations.

9. Finally, it is subject to research which of the mentioned trade-off mechanisms
between cost exchange and benefit exchange are relevant in which contexts.
This is of particular interest to determine the market price of goods, and the
specialization between producers and consumers. Empirical research can help to
understand the behavioral and bargaining issues involved. This is also relevant
to design institutional frameworks that facilitate and ensure the benefits of
cooperation.

While some specifications of the model have been realized, it is possible to
extend the model framework along the lines described. In particular, it is promising
to extend the individual-agent perspective to coalitions that receive investments
from agents to realize more powerful actions than are possible individually, thus
investments are acquired from a large number of agents to implement larger
production capacities and achieve critical values. Interesting theoretical issues also
emerge to analyze the transition between conflict and cooperation or the stability
and instability of interaction. The general approach promises applicability in a wide
range of fields where agents collaborate, including trading processes as well as
resource use and environmental management. By adapting the model to specific
application areas, it becomes possible to quantify the unit costs and values and
develop exemplary simulations.
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Chapter 10
Intra-seasonal Strategies Based on Energy
Budgets in a Dynamic Predator—Prey Game

Katerfina Stankova, Alessandro Abate, and Maurice W. Sabelis

Abstract We propose a game-theoretical model to describe intra-seasonal
predator—prey interactions between predatory mites (Acari: Phytoseiidae) and
prey mites (also called fruit-tree red spider mites) (Acari: Tetranychidae) that feed
on leaves of apple trees. Its parameters have been instantiated based on laboratory
and field studies. The continuous-time dynamical model comprises predator and
prey densities, along with corresponding energy levels, over the length of a season.
It also includes time-dependent decision variables for the predator and the prey,
representing the current portions of the predator and prey populations that are
active, as opposed to diapausing (a state of physiological rest). Our aim is to find
the optimal active/diapausing ratio during a season of interaction between predatory
mites and prey mites: this is achieved by solving a dynamic game between predator
and prey. We hereby extend our previous work that focused solely on the optimal
strategy for the prey. Firstly, we analyze the optimal behavior of the prey. Secondly,
we show that the optimal strategy for the predator is to stay active for the entire
season. This result corresponds to biological observations.
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10.1 Introduction and Motivations

The work presented in this article is inspired by studies on the use of predatory
mites (Acari: Phytoseiidae) for biological pest control of fruit-tree red spider mites
(Acari: Tetranychidae) that feed on and thereby damage leaves of apple trees (Helle
and Sabelis 1985a,b).

This system involves continuous interactions and overlapping generations in
summer seasons, as well as discrete periods without interactions, and is therefore an
example of a hybrid system, in the biological literature referred to as a semi-discrete
system (Mailleret and Lemesle 2009; Patchepsky et al. 2008). Winters (covering 6—
7 months) are usually harsh and as such endanger the survival of fruit-tree red spider
(prey) mites (Helle and Sabelis 1985a) and (even more so) that of predatory mites
(Fitzgerald and Solomon 1991; Helle and Sabelis 1985a).

Predatory mite and prey mite densities in the following summer season depend
on the number of individuals in the previous year and on their survival during the
winter. For the prey, this number equals to the number of prey individuals that are in
a state of physiological rest (the so-called diapause state) at the end of the season,
as prey that is active at the end of the summer season does not have a chance to
survive. The decision to enter diapause promotes the survival of the prey individual
during winter and it emerges from induction by a combination of sufficiently long
night lengths and low temperatures (Veerman 1992). Focusing on a single season,
in Staiikova et al. (2013) we have shown that if the predator stays active the entire
season the optimal strategy of the prey can be described as follows (see Fig. 10.1):

1. In the beginning of the summer season the prey can be in any state (all active, all
in diapause, or anything in between), whereas at the end of the summer season
all prey individuals enter diapause.

2. If all prey individuals are active in early summer, the prey will start entering
diapause at a certain point in time and the proportion of diapausing individuals
increases monotonically. Similarly, if only part of the prey population is active
in early summer, then all prey end up being in diapause at one point in time and
stay in diapause until the next year. Yet, if all prey individuals are in diapause in
early summer, then they continue to stay in diapause until the next year.

3. The time (expressed in real time) of diapause onset depends on the energy of
the prey, on predator population size, and on the rate of energy utilization, but it
is independent of prey population size (i.e. timing of diapause does not require
quorum sensing).

4. If predators are absent in the environment, all prey individuals enter diapause
later than if the predators are present (see Fig. 10.2). Empirical observations
on diapause of fruit-tree red spider mites on apple trees in the field (Sabelis
and Overmeer, unpublished data) reveal that virtually all individuals become
active in early summer and starting from a certain point in time the population
enters diapause, gradually. Moreover, experimental manipulation of the predator
population in the field showed that the fruit-tree red spider mites enter diapause
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earlier in the presence of predatory mites and once in diapause they stay in
diapause. However, apart from an effect of predator presence also the density
of fruit-tree red spider mites had an effect on the time at which diapause was
initiated, suggesting that some form of quorum sensing (possibly via spider-mite
induced plant volatiles) takes place.

Using another similar spider mite species (more amenable to experimental
treatment), it was experimentally shown that the decision to enter diapause also
depends on predator density during summer (Kroon et al. 2004, 2005, 2008). From
the point of view of the prey mite this behavior makes intuitive sense as it faces a
grim future with increasing predator densities and thus an increased risk of death: it
may then do better by giving up reproduction, moving away from leaves to twigs and
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Fig. 10.2 If the number of predators increases (while all the other state variables and parameters
stay the same), the prey individuals begin to enter diapause earlier, but more gradually, balancing
between having enough energy to survive the diapause and escaping the predation. This figure is
taken from Stankova et al. (2013)

branches (a refuge from predation, but without food) and by entering diapause ear-
lier than indicated by the predictors of season length (night length and temperature).
However, if many prey mites would make the same decision, this could create a
negative feedback on the predatory mite population, which could lead them to enter
diapause. Consequently, at some point in time the prey mites would profit from the
decreased predation risk by terminating their diapause and returning to the leaves,
which in turn could trigger the predatory mites to become active again. Another
complicating factor is that an early prey diapause raises the demands on the energy
level of the individual mite, which needs to cover a longer period before terminating
diapause at the beginning of the next summer season—the energy level at diapause
termination will determine the reproductive capacity of the prey mite (Kroon et al.
2005). Thus, the decision to enter diapause within a year will depend on the current
internal energy level of the mite, as this will have far-reaching consequences for
winter survival and reproduction in the summer season of the next year.

There is less information on the diapause behavior of the predatory mites.
However, the predatory mites are much more flexible in entering diapause/active
state and can switch multiple times during the season. Physiological decision
variables depend on the predator and prey densities reached during summer, rather
than only on reliable season indicators, such as night/day length and temperature
(Danks 1987; Tauber et al. 1986).

This leads us to conclude that the predator’s and prey’s decision to enter diapause
is part of a game between the two species. While we think that this game is a
Stackelberg game with the population of predatory mites acting as a leader and the
population of the prey mites acting as a follower (Basar and Olsder 1999; Stanikova
2009), we will elaborate on this claim when analyzing the optimal behavior of both
parties involved.

Notation: In the remainder of this document, unless stated otherwise, the following
notation will be used:

T — length of the summer season
R(t)—fruit-tree red spider (prey) mite population at time ¢ € [0, T'], within the
summer season
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P (t)—predatory mite population at time ¢ € [0, T'], within the summer season
E R (t)—internal energy of the prey at time ¢ € [0, T'], within the summer season
E* (t)—internal energy of the predator at time ¢ € [0, T], within the summer
season

uR (t)—decision variable (control) of the fruit-tree red spider mites (prey), within
the summer season

u® (t)—decision variable (control) of the predatory mites (predator), within the
summer season

OR (T)’ OfER (T)’ (2908 (T)’ ap (T)’ ﬁR(T)’ ﬂER (T)v :BEP (T)’ ﬂP (T)_additional
variables for the characteristic system in reverse time

op, @/r—singular surfaces (as used in the analysis of the game)

The article is structured as follows. Section 10.2 introduces the dynamic game
between the predatory mites and the prey mites. Section 10.3 formally studies the
optimal strategies of the predator and prey in this game. Section 10.4 elaborates on
the biological interpretation of the results and proposes a new model to describe
interactions in predator—prey systems of our interest. Section 10.5 concludes the
article, discusses possible extensions, and sketches future work.

10.2 Game-Theoretical Model of the Interaction Between
Predatory Mites and Fruit-Tree Red Spider Mites

Each year is divided into two parts: the summer and the winter season. The
predatory mites and the fruit-tree red spider mites can consume food (prey and apple
leaves, respectively) only during the summer season (which is essential for their
reproduction). Furthermore, both predator and prey can enter diapause, a quiescent
state that protects from the environment, from predation, or possibly lack of food.
This implies a decoupling between predator and prey depending on the population
fraction in diapause. During the winter season the species do not interact, and their
populations independently decline at a constant rate, therefore we focus on the
summer interaction only. The dynamics during winter are trivial and can be simply
modeled by a reset (i.e., a decrease) of the energy and population levels.

The model that we propose describes the interactions between predatory mites
(predator) and fruit-tree red spider mites (prey) within a single summer season' and
allows characterizing the seasonal strategy of both predator and prey as a solution
of a dynamic game between them.

In the remainder of the text the terms “summer season” and “winter season” are
used interchangeably with the terms “summer” and “winter,” respectively.

!'Extension of our model to multiple seasons is a subject of our future research.
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10.2.1 Model Formulation

The summer interactions between the predatory mites and the prey mites can be
formulated as a game played with a finite horizon [0, 7] in which the predatory
mites select a u”*(¢) € [0, 1] for ¢ € [0, T], where

T
ub* :argsup/ (—OtP(I)+,35MP(I)EP(I)P(I))C1I, (10.1)
0

uf ()

whereas the prey mites choose a u®*(¢) € [0, 1] for t € [0, T], where

T
ul* = argsup/ (1 —uR@)ER(t) R(t)d1t, (10.2)
uk(y Jo

subject to the following system dynamics:

dE?

7=—ac(l—uP)EP+euPuRR—auPEP, (10.3)
dE® RypR R RER
- = —dh(1—u™)E" + f(t)g(R)u" —du"E”, (10.4)
dpP
- =P+ Bsu” E* P, (10.5)
dR R R P R
E:—GR—{—SM E®"R —yu"u"PR. (10.6)

In (10.3) a > O is the energy decrease rate for the predator when active, a ¢
(with ¢ € [0, 1)) is the energy decrease rate for the predator when in diapause, e is
the energy increase rate for the predator when feeding (here the energy increase is
proportional to the number of active fruit-tree red spider mites that are preyed upon
and to the number of active predatory mites).

In (10.4), d > 0 is the energy decrease rate for the prey when active, d i (with
h € [0, 1)) is the energy decrease rate for the prey when in diapause, f(¢) is a time-
dependent function characterizing the presence of nutrients for the fruit-tree red
spider mites in the environment (0 < f(-) < 1), g(R,) € [0, 1] is a non-increasing
function of its variable, which represents competition among individual fruit-tree
red spider mites—hence f(¢)g(R,)u® is a term representing the increase of energy
in the prey due to its active state.

The number of predatory mites slowly decreases with rate @ > 0 and increases
proportionally to their energy and number of active individuals with rate 8 &, where
B >0,6>0.

The number of fruit-tree red spider mites decreases with death rate ¢ > 0,
increases proportionally to their energy and number of active individuals with rate
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8 > 0, and decreases proportionally to the number of active predatory mites and
number of active fruit-tree red spider mites with rate y > 0.

E? and EX refer to the energy levels of the predator and the prey, respectively.
Since the energy of an organism is not a quantity that can be directly measured, we
could normalize these variables as E*, ER € [0, 1], so that they become ratios.
While for the steady state conditions (10.3)—(10.4) are invariant with respect to
E? € [0,1], ER € [0,1], in general E¥ and E® might reach values outside the
interval [0, 1]. For the sake of simplicity, in the remainder of the paper we will
assume that the initial conditions P(0), R(0), E¥(0), EX(0) are such that E” (¢),
ER(t) € [0,1] forallz € [0, T].

The fitness function for the predator (10.1) reflects the fact that all predator
individuals being alive at the end of the summer season (independently whether they
are active or in diapause) have a chance to survive the winter. The fitness function
for the prey (10.2) reflects the fact that only the prey individuals that are in diapause
at the end of the summer season have a chance to survive the winter, while the longer
in diapause they are and the more internal energy they have, the higher chance of
survival they have.

Note that u”* and u®* are optimal decisions on the population level. An
additional analysis is needed to validate whether the optimal behavior on the
population level coincides with the optimal behavior of an individual.

Based on Sabelis (1991) we set parameter & to h = ﬁ. We assume that the
increase of the energy of the prey from feeding (composition of the effects of the
environment and competition among the prey (f(¢) g(R)) equals to the decrease
rate of energy of the prey when active (d), i.e., d = f(¢) g(R). Based on field data
and (Sabelis 1991; Sabelis and Janssen 1993), we set § = %, o= 2]—0. Additionally,
observing that predator and prey are of the same size and their death rates are
approximately equal (Sabelis 1991; Sabelis and Janssen 1993), the dynamics in
(10.3)—(10.6) can be rewritten as follows (with § replaced by b in notation):

dEP 1 Py P P R PP
7=—ﬁ(l—u JEN+du uw" R—du" E", (10.7)
dER 1

— =—— (1 —-u®ER+ duf —d uR ER, (10.8)
dr 250

dpP 1 1

E=_2_0p+§buf’ EP P, (10.9)
dR 1 1 1

E = —2—0R+ guRERR—gl/tPMRP R, (1010)

where ER(¢) € [0,1], EP(¢) € [0,1], P(¢) > 0, R(¢) > O for each ¢ € [0, T] with
T known. Note that inequality d > ﬁ has to be satisfied (otherwise the energy
would decrease even if the prey is in diapause).

Within a summer, the goal of both predator and prey (the players) is to maximize

their chances of survival (Cressman 2003; Weibull 1995), which translates to



212 K. Stankova et al.

the optimization problems defined by (10.1) and (10.2), subject to the dynamical
constraints (10.7)—(10.10).

10.3 Solution of the Game

Firstly, we formulate the problem of the predator and the problem of the prey via
Hamilton—Jacobi—Bellman equations. Subsequently, we study the optimal strategies
for both the predator and for the prey, and we discuss their biological relevance.

10.3.1 Hamilton—Jacobi-Bellman Formulation
for the Predator

Let us introduce a reverse time scale t = T — ¢ and value functions for both the
predator and the prey. The value function for the predator in reverse time reads as

T 1
VP=/ —bu’ EP P— — P dr, (10.11)
r— \5 20

and the related Hamilton—Jacobi—Bellman (HJB) equation can be written as follows:

Ve 1
H" = = —|—m%x(ozEP(— 5551 —uE" +du” u* R—du" ET)

1
+aER(— ﬁ(l —MR)ER +dMR—dMR ER)

+ap(—%P+ébuPEP P)

1o 1 1 1
+ar(— oo R+ cuFEXR— Zulu*PR) + cbu” ETP %P),
(10.12)

. _ vt _ vt _ vt _ vt
WlthOlEP = BE_P’aP = W’aER = aE—R,andaR = TR *

The corresponding system of characteristics in reverse time 7 is then (with x’

denoting ‘é—f = —‘c’l—f for a general state variable x)
1
(EP)/Zﬁ(l—uP)EP—duPuRR—i—duP E?, (10.13)
1
(ER) = s (1 —u®)EX —d u® —d u® EX, (10.14)

250
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1 1
P=—P—-bu" EY P, (10.15)
20 5
/ 1 1 R R 1 P_ R
RR=—R——-u"E"R+ —-u"u"PR, (10.16)
20 5 5

1 1 1
pp = —opr (55(1 —u’)y+du”)+ gbuP apP + gbuP P, (10.17)

1 1
oor :—aER(ﬁ(I—MR)‘FdMR)—i‘g(XRMRR, (10.18)
o =Otp(—i—|—lbuPEP)—laRuPuRR—i—lbuPEP—i (10.19)
P 20 5 5 5 20 '
1 1 1
oy =dagru” uR—i—aR(—%—i—guRER—guPuRP), (10.20)
with transversality conditions agr(0) = agr(0) = ap(0) = ag(0) = 0 and

with E*(0) € (0,1), ER(0) € (0,1), P(0) > 0, R(0) > 0. The singular surface
corresponding to the HJB equation (10.12) is

1 1 1 1
op = —EP + duRR — dE?F —bap EPP — —uRagr PR + =bET P.
P oape (250 +du +5 o p Su R +5
(10.21)

Then, the optimal strategy for the predator is obtained as u” = Heav .7p, i.e.,

MP _ 1, if %P >0,
10, if o <O.

Moreover, u” € (0,1) if op = 0 (Melikyan 1994, 1998; Melikyan and Olsder
2010).

From the transversality conditions we can derive that u”(r = 0) =
Heav o/p(t = 0) = Heav (1b E¥(0) P(0)) = 1. Note that «7p is independent
of ER and of ayx. Further, note that regardless of the strategy of the prey the
predator is active at the end of the season.

10.3.2 Hamilton-Jacobi-Bellman Formulation for the Prey

Similarly as in Sect. 10.3.1, we can introduce the reverse time T = 7 — so that the
value function for the prey becomes:

T
VR =/ (1 —u®) ER Rdr, (10.22)
T

—t
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and the corresponding Hamilton—Jacobi—Bellman equation is:

R
%Rz%—i—mgx(ﬁy(—zlﬁ(l—up)EP+duPuRR—duPEP)
+,BER(—%(I—MR)ER+duR—duRER)
+ﬁp(—iP+lbuPEPP)
20 "5
1 1 R R 1 P R R R
+ Br(— 5p R+ U EX R— u"u*P R) + (1 =u") E R).

(10.23)

. VR __ VR _ VR — Wk
with Bpr = 557, Bp = G5, Per = Jr.and fr = G-

The corresponding system of characteristics is then (again introducing the

derivative in reverse time for any state variable x as x’ = g—f = —‘(jj—f)
1
(EP)/=ﬁ(l—uP)EP—duPuRR+duP E", (10.24)
1
(ER) = 5sg (1 —uER —du + duf EX, (10.25)
/ 1 1 P P
P =%P—§bu E? P, (10.26)
/ 1 1 R R 1 P_ R
R =55 R—cuf EXR+ cuu"P R, (10.27)
1 1
Bier = —Ber (ﬁ(l —u’)+d u”) +zbu"Br P, (10.28)
1 1
Bior = Ber [—==1 —u®) —du®) + —pru® R+ (1—u®) R,  (10.29)
250 5
By =Br (= + Bu’ E” ) — SuTuk xR (10.30)
P 20 5 5 ’ '
/ 1 1 R R 1 P_ R P R R R
Br = Br —%—{—gu E —gHu Pl+du u ,BEP—I—(l—u )E ,
(10.31)

with transversality conditions Szr (0) = 0, Bzx(0) = 0, Bp(0) = 0, Br(0) = 0,
and assuming ER E? € [0, 1], E?(0) > 0, ER(0) > 0, P(0) > 0, R(0) > 0.
The singular surface corresponding to the HIB equation (10.23) is

g =dul R+ Bpr (ﬁER—kd—dER) + Br (éERR—éuPPR) —ERR.
(10.32)
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Similarly as before, the optimal u® = Heav o, i.e.,

R0, i e <0,

1, if o >0,

and u® € (0,1) if @/ = 0. The value of u® for r = 0 is equal to 0 as @7 (0) =
—ER(0) R(0) < 0, i.e., regardless of the strategy of the predator the prey is in
diapause at the end of the season. Moreover, note that (10.32) is independent of E*
and of Bgr.

10.3.3 Optimal Strategy for the Prey

In the following analysis, we confine ourselves to a specific structure for the strategy
of the prey, which turned out to be optimal if the predatory mites are active the entire
season (Starikova et al. 2013). More precisely, we assume that the optimal action of
the prey is as shown in Fig. 10.3:

1 if 1 e[0,n],
u=13 =2 if 1€, nl (10.33)
0 if 1€l tr].

t=0 r=1 [‘:[2 t=T

Fig. 10.3 Predicted shape for the optimal strategy of the prey mites

Then the optimization problem of the prey can be written as the solution of

T
(1)) = argsup[o (1 —uR@)ER@t) R(t)dzt. (10.34)

1n.n

subject to (10.3)—(10.6). The dynamics of the model can then be distinguished as
that for ¢ € [0,1,) (Phase 1), for ¢ € [t,1,) (Phase 2), and for ¢ € [t,, T] (Phase 3),
as described in the following.

Phase 1 Notice that for ¢ € [0, ] that J® = 0 and (10.3)-(10.6) can be rewritten
as:



216 K. Stankova et al.

dE? 1 P\ P P P P

dER

e =d —dERX, (10.36)
dP 1 1

== P+ gﬂ ut EP P, (10.37)
dR 1 1 . 1,
yr ——20R + B ERR-— U PR. (10.38)

Phase 2 Notice that for ¢ € [t;,,] we can see that J ¥ = fttf ﬁER(t) r(t)dt and
(10.3)—(10.6) can be rewritten as:

dEP t—t

1
—  =—— (A —-uDE? +du” R—du® E?, 10.39
dr 250l THDET A dut i " (1039)
dER 1 t—t t—t t—t
= = 1T pRyg-—2 -T2 ER (10.40)
dr 2504 — 1 Hh—=n Hh—=n
dP 1 1
— =——P+-bu" E* P, 10.41
dr 20" T35 (1041)
dR 1 -t 1 1 —r
- __ R4+ "2 ERR__yP_"2pR, (10.42)
dr 20 5 ([1 — 1) 5 th—th

Phase 3 For t € [t,, T] that J® = flzT ER(t)r(t)dt and (10.3)-(10.6) can be
rewritten as:

dE? 1
Tl —ﬁ(l —uPEY —du? E?, (10.43)
dER 1
- = —ﬁER, (10.44)
dpP 1 1
dR 1
5 = —%R. (10.46)

With reasoning in reverse time, 7 = T —t, and o, = T — 1.

10.3.4 Optimal Strategy for the Predator

Since u” (0) = 1 and u®(0) = 0, (10.13)—(10.20) translates into

(EPY =d E", (10.47)
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1
ER/: ER,
(E7) 250
1 1
P’=%P—§bEPP,
, 1
R = —R,
20

1 1
Ol/Ep :—daEP+§b(XPP+§bP,

) 1
aERz_ﬁaER?
11 1 1
" —ap(— — 4+ -bEP)+ b EP — —,
op=ap(= o5+ 3bET) 43 20
o, = ]a
R= "ok

The solution of (10.47)—(10.54) can be computed explicitly as follows:

Ef(r) = EP(0)e?",
ER(7) = ER(0) e,

P P dt
bE (O)bSEd ©e’ |

P(r) = P(0)e T,
R(t) = R(0)ex,

= PO
apr(t) =0,
ap(r) = (=B 4 it
ar(t) = 0.

Substituting (10.55)—(10.62), u” = 1, and u® = 0 into (10.21) yields

_ bP(0) (EP(0)e’" — E(0) + 250 dE" (0))

)
F 1250d
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(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)
(10.56)

(10.57)
(10.58)

(10.59)

(10.60)

(10.61)
(10.62)

(10.63)

Note that this expression is always positive (because d > 1/250). In other words,
in reverse time, the predator is initially active and remains active until all prey are

in diapause.

If u® changes from O to different values, the expression for the singular surface
(10.21) changes. While the system of characteristics (10.13)—(10.20) with u” = 1

and uR

€ (0, 1] cannot be solved explicitly, we can observe (Sect. 10.3.3) that if

uR € (0,1), then uR)Y = ——— = 11— = Aand W®)” = 0.Ifu” € (0,1),

h—n =T
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=T =0

Fig. 10.4 The optimal strategy for the predator is to stay active during the entire summer season

conditions &7p = 0, o7}, = {a/p,h} =0, o7} = {<f}, h} = 0, where {-,-} denotes
Jacobi brackets (Melikyan 1998) and 4 is the expression supremized in (10.12), have
to be satisfied. Solving this system of three equations, with (u®)’ = A, u®)” = 0,
and subject to (10.13)—(10.20), leads only to the degenerate solution apr = 0,
ap = —1, ag = 0. This degenerate solution, which can be easily derived directly
from (10.21), cannot be achieved when emitting characteristics (10.13)-(10.20)
from their initial values. Moreover, the same degenerate solution will be found if
we replace u® in the equations o7p = 0, &} = {p,h} = 0, o} = {},h} =0
by 1. Therefore, we can conclude that the predator will not change strategy from
u” = 1 and will stay active the entireseason (Fig. 10.4).

Remark 10.1. In Stankova et al. (2013) a three-dimensional model, in which the
energy of the predator was not included, was used to show that the optimal behavior
of the prey is the one shown in Sect. 10.3.3. The underlying assumption was that
the predator stays active the entire season. As this strategy turned out to be the
optimal strategy of the predator in the model proposed in this article, we could use
the argumentation from Starikova et al. (2013) to confirm our hypothesis regarding
the structure of u#®-*. Technically, the proofs will be the same if we assume that d >
0, while for d close to ﬁ the underlying analysis becomes much more complex.
One can see that as the optimal strategy of the predator can be decoupled from
the optimal strategy of the prey, it does not matter whether the problem is defined
as a Stackelberg game or as a Nash game because the result of these two games will

coincide.

Remark 10.2. In fact, the outcome that u? = 1 is optimal will hold also when u
has a more general shape than the one depicted in Fig. 10.3. Namely, if u® = 1 for
some ¢ € [0, #1], nonincreasing for ¢ € (¢, t;] (not necessarily linearly decreasing),
and u® = 0 fort € (t,, T], the outcome for the predator will stay the same.

10.4 Discussion

In this article we have searched optimal active/diapause ratios for the predatory
mites and the fruit-tree red spider mites when there are no extra energetic costs to go
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in or out of diapause and when their decision depends on both densities and energy
levels of either species. The optimal strategy for the prey mites coincides with the
results of our previous work (Staitkova et al. 2013): Even if the prey mites do not
encounter costs to enter diapause, their optimal strategy is to go into diapause only
once per season. This implies that, once entered, the diapause is irreversible. In this
article we have shown that the best response of the predatory mites to this strategy
of the prey mites should be to stay active for the entire season, again assuming no
energetic costs for entering or leaving the diapause state.

The outcome of our analysis regarding the prey mites is remarkably close to the
empirical observations: in reality the fruit-tree red spider mites have an irreversible
diapause. Additionally, the prey mites also enter a so-called deep diapause. Once the
prey mites are in the deep diapause, it is not easy to bring them to a non-diapause
state (e.g., they require a cold period of a certain length before they can come
out of diapause). It is possible that this deep diapause evolved after the selection
for an irreversible diapause predicted by our model (assuming at least initially
a very flexible decision without costs for entering or leaving the diapause state).
Once this choice evolved, there were probably other reasons why it was selectively
advantageous to evolve a deep diapause (such reasons may be to invest more in anti-
freeze chemistry at the expense of energy for other purposes such as reproduction).
The deep diapause allows the spider mites to survive the winter better than, for
example, predatory mites that exhibit a very flexible diapause state (crude estimates
of winter survival for the prey mites are in the order of 50% whereas for predatory
mites they are in the order of 5%).

The outcome of our analysis regarding the predatory mites is also rather close
to real observations: while in our model the predatory mites stay active the entire
season, in reality the predatory mites might enter diapause at the very end of the
summer season (actually in autumn, which is part of the winter season in our
model), i.e., when there is no prey. Moreover, the predatory mites have a very
flexible diapause. Collecting predatory mites in the winter and bringing them to
the lab to offer them prey virtually always results in the predatory mites resuming
feeding within two days and reproducing within four days. This represents a great
flexibility when compared to the fruit-tree red spider mites (it may take one or two
months for the prey mites to become active again depending on the cold period they
already experienced). This “light diapause” of the predatory mites may have as a
consequence that they survive the winter less well (less than 5% of them survives)
than the spider mites.

Under natural conditions the predatory mites usually keep the spider mites at very
low levels, meaning that they may experience prey shortage in some periods (and
possibly a motivation to enter diapause in summer). Under those conditions it is not
easy to find the predatory mites on leaves as well as elsewhere on the plant. Hence,
any predatory mite entering diapause will be difficult to find too. It is expected that
the predatory mites respond to low prey density by entering diapause, but become
active again as soon as there is prey available.

Under agricultural conditions, however, predatory mites may suffer from pesti-
cide use (against spider mites or against pests other than spider mites) and there is
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much evidence that this allows the spider mites to increase in numbers and reach
the status of a pest. Under those conditions, spider mites may suffer severe food
competition and then they may also respond to plant food shortage by going into
diapause.

Predatory mites rarely enter diapause before the end of the season under
agricultural conditions and if they do they have a flexible diapause that allows
them to enter and leave the diapause state, e.g. depending on temperature and prey
availability. Such flexible strategies do not emerge as a solution from the model
above, but they may arise as optimal strategies in different models.

Let us consider another game, in which predator and prey choose u”* and u®-*,
respectively, such that

T
uP* () = argsup / (u” (=P + yu® P R))d1, (10.64)
u® ()€[0.1] /O
T
u®* () = argsup / (1 —u®(@)ER(t) R(t)dt, (10.65)
uR(-)€[0.1] /0
while
dER R R Ry R
dp
T u’ (=P +yu® P R), (10.67)
dR
i ERR—bu’PR, (10.68)

with y € (0,1). Adopting the HJB approach again, we can show that while the
optimal strategy of the prey does not change, the predator will end up in diapause
unlike what was predicted by the model discussed in this article. Moreover, this new
model is much simpler to solve as it is only three-dimensional and the characteristic
system for both predator and prey can be solved explicitly if they adopt bang-bang
actions. The comparison of different models, those including energy levels and those
excluding them, is a subject of our ongoing research.

10.5 Conclusions and Future Work

In this article, a dynamical model of the predator—prey interactions between
predatory mites and fruit-tree red spider mites during summer has been described
and analyzed. This model includes not only the dynamics of predator and prey
populations but also the dynamics of their energy levels and energy decision controls
for both predator and prey. We have considered the case where both predator and
prey can enter diapause. We have shown that it is optimal for the predator to stay
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active the entire season, while the prey stay active in the beginning of the season,
later enter diapause, and stay in diapause until the end of the season.

While the correspondence between theoretical predictions and empirical obser-
vations on mites is encouraging, there are also limitations (mostly analytical) that
should spawn new work. Moreover, it is still to be shown that optimal summer
behavior of the predator and prey populations, as derived in this study, is resistant
against invasion by mutant strategies and robust against structural modifications,
such as the inclusion of predator decisions to enter diapause or not. Ultimately, we
hope to explain winter dynamics of predatory mites and fruit-tree red spider mites
based on optimal timing of diapause induction in summer. The use of bifurcation
analysis can help determining for which parameter domains the proposed optimal
strategies are evolutionarily stable.

Different models of the predator—prey interactions will lead to different optimal
strategies of the predator and prey. Analysis and comparison of such different
models is a subject of our future research.
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Chapter 11
On a Game-Theoretic Model of Environmental
Pollution Problem

Marianna Troeva and Vassili Lukin

Abstract We consider a dynamic conflict model of environmental pollution in
which n enterprises contaminate a water reservoir by dumping a pollutant in the
production process. This process is formalized by the n-person differential game
with separated dynamics and continuous payoff functions. The existence of the ¢-
Nash equilibrium for the class of the piecewise-programmed strategies is proved in
this game. Some numerical examples are presented.

Keywords Differential games ¢ Value function ¢ Equilibrium point ¢ Environ-
mental pollution ¢ Finite-difference scheme ¢ Dynamic programming

11.1 Introduction

A game-theoretic approach plays a significant role in studying dynamic conflict
models of environmental pollution. The dynamic games that deal with these
problems were investigated in many works, see, e.g., Petrosyan and Zaharov (1997),
Jgrgensen and Zaccour (2001), Breton et al. (2005), Petrosyan and Zaccour (2003),
Zenkevich and Kozlovskaya (2010), Mazalov and Rettieva (2010), Rettieva (2011),
Krasovskiy and Tarasyev (2011), Martin-Herran et al. (2006), Botkin et al. (2011),
and references therein.

The differential games modeling joint implementation in international environ-
mental agreements were studied in Breton et al. (2005), Petrosyan and Zaccour
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(2003). A model of territorial environmental production was studied in Zenkevich
and Kozlovskaya (2010). Discrete dynamic models of bioresource management
(fish catching) were developed in Mazalov and Rettieva (2010), Rettieva (2011).
The noncooperative dynamic game of emission reduction trading was studied in
Krasovskiy and Tarasyev (2011). In Martin-Herrdn et al. (2006) the differential
game dealing with deforestation was investigated.

In this paper a dynamic conflict model of an environmental pollution problem
is considered. Enterprises (agents) contaminate a water reservoir by dumping a
pollutant (harmful substance) of the same type in the production process.

This environmental pollution problem is formalized by the noncooperative
n-person differential game. The dynamics of each agent is described by the initial
boundary value problem for the parabolic equation involving Dirac measure.

The parabolic equations appear in game-theoretical models of innovation, infor-
mation and technology diffusion, and diffusion processes of ecological systems (see,
e.g., Cappoza 2003; Petrosyan and Zaharov 1997; Rogers 2003).

Noncooperative differential games for the different class strategies were inves-
tigated in many works, e.g., Petrosyan (1993), Kleimenov (1993), Basar and
Olsder (1999), Kolokoltsov and Malafeyev (2010), Malafeyev (2000). The n-person
differential game in the finite-dimensional Euclidean space was investigated in
Malafeyev (2000). The existence of the e-equilibrium for the class of the piecewise-
programmed strategies was proved in this game using a similar approach such as
the one developed in Varaiya and Lin (1969) for zero-sum differential games.

In Troeva (2012) the results of Malafeyev (2000) were generalized to the n-
person differential game in Banach space. The dynamics of each player is described
by the initial value problem for the parabolic operator-differential equation involv-
ing Dirac measure. The existence of the unique solution of this initial value problem
follows from the results of Amann (2005). In Amann (2005) the existence of a
unique solution of abstract parabolic evolution equations involving Banach space-
valued Radon measures was proved.

The main purpose of this paper is to prove the existence of e-Nash equilibrium
in our model, and we did this using the results of Troeva (2012). Some numerical
simulations are provided.

11.2 The Model

A closed water reservoir (f.e. lake) is considered. The n enterprises dump a pollutant
(harmful substance) of the same type into this water reservoir in the process of
production.

Furthermore it is assumed that reservoir has a water intake. The level of pollution
at the water intake point (the total concentration of the pollutant released by all
enterprises) must not exceed the maximum permissible value. It is assumed that if
this value is exceeded, all the enterprises will pay a fine (penalty) as a percentage of
their income.
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It is also assumed that the company has certain expenses associated with the
cleaning of the pollutant.

The spread of the harmful substances in the reservoir occurs by diffusion.
Besides, a pollutant is decomposed with the rate r > 0.

The total income of an enterprise depends on its volume of production, which is
tightly linked with its total volume of dumped polutant. Besides, the total income
depends on the overall cleaning expenses and possible pollution fines.

The aim of each enterprise is to maximize the total income for finite period of
time.

11.3 Differential Game

The above-mentioned problem is formalized by n-person differential game I"(co, T')
with a prescribed duration 7 < oo and an initial position of the game ¢y =
(cdy... ). Let I ={i} = {1,...,n} be aset of the agents (enterprises).

Let us denote by u; (¢) the intensity of dumping the pollutant of the agenti € [/
at the moment ¢. Let us assume that the intensity of dumping the pollutant satisfies
the following conditions:

0<u;(t) <Gi(t), ie€l, (11.1)

at any moment ¢t € [0, T]. Here G;(t) > 0 is a given square integrable function
which describes the maximal intensity of dumping the pollutant of the agent i at the
moment 7. Let us assume that the costs of treatment per unit volume of the pollutant
of the enterprise i are constant and equal to M; > 0, i € I.

Let us denote by 7/ (x, y, ¢) the pollutant concentration of the agent i at the point
(x,y) € R? at the moment ¢.

Let us consider the closed water reservoir as a bounded two-dimensional domain
2 e R? with the boundary S € C2, 2 = QU S, t €[0,T].

Let us denote by (x,,, y,,) the coordinates of the water intake location inside the
domain §2.

The dynamics of the agent i € I in the game I"(cg, T') is described by the initial
boundary value problem for the following differential equation:

a9 Y\ 9 07!
2 _ 0 Y+ 2 (p =) -
Y ™ ( (x,y,1) ax) + % ( (x,y,1) 8y)
—rd Fuyi(x,y), (xy) e, 1>0. (11.2)

Here D(x,y,t) > 0 is the diffusion coefficient; r > 0 is the coefficient
characterizing the pollution decomposition; #; € Uj; is a control parameter of the
agent i, U; C R™ is a compact set in Euclidean space. The function ¥;(x,y) =
8(x — x;,y — yi) gives the location of the agent i inside the domain 2.
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Let the function 7' (x, y, t) satisfies the following boundary and initial conditions:

i

DUx e —0,  (ryes. 1el.T] (113)
m
Z(x,y,0) = cé(x,y), (x,y)e 2, t=0. (11.4)

where m is an outward normal to the boundary surface S x [0, T], ¢} (x, y) is some
given function describing the initial distribution of the pollutant concentration of the
agent i in the water reservoir at the initial moment t = 0.

Definition 11.1. A measurable function u; =u; (), satisfying the condition (11.1)
for all ¢t € [0, T] is called the admissible control of the agent i € I. Let us denote
by @i C L,(0,T), i € I the set of admissible controls (measurable functions)
u;(t), t €[0,T].

Let the function f;(¢) € [0, 1] be the percentage of the income of the agent i,
which determines the amount of the penalty for exceeding the maximum permissible
value of pollution at the water intake point (x,, y,,). The function f;(¢) is defined
as follows:

0. if 3 2/ (X, yurt) < Gy,

=1
n

ﬁ(l): sz(XWayw,t)—Cw

2 (X Ywo 1) =

n
> (X Ywit)
j=1

n .
E) lf Z Zj (xW$ vat) > CWa
Cw j=1

where C,, is the maximum permissible value of pollution at the water intake point.
Then the payoff of the agent i at time 7 is defined by the following functional:

T T

Hyzow) = / hu (@) (1 = pfi ()d T — / Mu@dr.  (115)
0

0

where z = (2,22, ..., 7").
Let us represent the problem (11.2)—(11.4) as the initial-value problem for the
following operator-differential equation

dci (1)
dt

—A(t)c'(t) =v' (1), t €[0,T], (11.6)
ci(O) = Zé') = c(i)7 (117)

where ¢’ (1) = 7' (x, y,1), vi(t) = u; (1) - 8(x — x;, ¥ — ¥;).
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The operator Ac = 9,(D(t,x,y)cy) + 9,(D(t,x, y)c,) — rc allows for the
boundary condition (11.3).

Equation (11.6) involves the Dirac measure. The existence of a unique solution
of abstract parabolic evolution equations involving Banach space-valued Radon
measures is proved in Amann (2005).

We assume that the coefficients D and r in (11.2)—(11.4) satisfy the following
conditions D(¢,x,y) € C([0,T];C'(R)), r € LOO(O T,L (.Q)) Accordmg
to results of Amann (2005), the unique solution ¢’ € L ,(0, T W (£2)), c[
LP(O,T;(Wq‘ (£2))), i € I of the problem (11.6)—(11.7) exists for all v' €
L,0,T; (qu(Q))/), for all admissible control u; € %; C L,(0,T), and for all
initial condition ¢}, € (qu/pfl(.Q))/ andg >2(1/p+1/qg=1).

Let us denote by F; (c{, to, t) the set of the points ¢’ (-) € W, (£2) for which there
exists an admissible control u; (7) such that the game goes from the state ¢’ (19) = )
to the state ¢’ (¢ + fo) for the time interval [fo, 7]. The set F;(cl, o, ) is a bounded
set of the space Wp1 (£2). It is known (Ladyzhenskaya 1985) that if the boundary of
the domain 2 is smooth, then a bounded set of the space Wp1 (£2) is a compact set in
L ,(£2). This implies that F;(c), fo, ) is a compact set for all ¢}, € w7 (@),
fo, t € [0,T] as well. F;(c{. to. 1)) = ¢} forall ¢ € (qu/p_l(Q))’, to € [0,T].
The set F;(c{. ty, t) has semigroup property.

One can show that the function I’i(cé, tp, t) is continuous in the Hausdorff
metric. So, the set F; (c('), to, t) satisfies all axioms which define generalized
dynamic systems. The set F; (co, to, t) is called the attainability set of the player
i, i = 1,n from the initial state ¢ on the time interval [, t].

Let us denote by F,(co, fo, 1), i € I the set of trajectories ¢'(c),t — ty) of
(11.6)—(11.7) which start at c(’) at the moment 7y and which are defined on the time
interval [fy, t]. The set of trajectories E(cé, tg, t) is compact, e.g., in the space
L,0,T; Wpl_s (£2)) for any s > 0, and the function I?,-(c("), ty, t) is continuous in
the corresponding Hausdorff metric.

At every moment ¢ € [0, T'] of the game I"(co, T) the agents know the realized
trajectory of the game, the dynamics, and the duration 7" of the game.

Let¢ () € F (c5,0, T) be the trajectory of (11.6)—(11.7) arising from a control
u; and ITg (¢! ') be the trajectory arising from the same control u; delayed by §7'. The
following lemma describes the relation between these trajectories.

Lemma 11.1. For each § € (0, 1] there exists a map Hg : 1:“1-(66,0, T) —> ﬁ,()
such that, if ¢ (t) = ¢ (1) for T € [0,1], then Hg (&) (r) = O} (z) for T €
[0,t+8T]if (t+8T) < T and Iy (¢')(v) = M (¢")(t) for T € [0, T]if (t +6T) >
T. Moreover,

g'(8) = sup [¢" —Mi(E")| — 0.
§—0

deki()
Let us fix the permutation p = (i,...,ik,...,iy) and consider n-person
multistep game F (co, T) at every step which the agents ij,...,i, choose in

sequence controls u” otk i
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Definition 11.2. The strategy

ol cErC) =] Fi() = F,0.
J#ik

of the agent iy in the game Flf (co, T) is a mapping such that if ¢/ (7) = ¢"/ (1) for
Jj < ix, T € [0,I18T] and if &/ (v) = ¢ (v) for j > ix, v € [0, (I — 1)8T], then
Sl (e* (1)) =%l (¢* (1)), T €[0,16T]. Here § = 1/2V, 1 = 1,2,...,2N,

Let us denote by 8@5 the set of the strategies of the agent i; in the game

FI? (Co, T)
In the game I p5 (co, T) the players iy,...,i, choose in sequence the strategies
5%’? s ’Sgoli . The trajectory y(®¢?) is uniquely defined for every n-tuple %p? =

Col.....%!) stepwise on successive intervals [0, 8T]. .. ., [T —8T, T]. The payoff
function of the agent i € [ in the game I” If (co, T') is defined as follows:

H(co,’9?) = Hi(x*Co?)), (11.8)

here H; () is the functional (11.5).
So, the n-person differential game I }f (co, T') with the prescribed duration T is
defined in a normal form:

[Pco. T) = (I 'y, {H}}).

With a help of the Zermelo—Neumann theorem, the existence of e-equilibrium
for any ¢ > 0 in the multistep game F}‘f (co, T') can be proved.
The previous Lemma 11.1 implies the following lemma.

Lemma 11.2. Ifi; > iy, ‘Sgol-i € ’S(Dii, then H;" -Sgoi’; € aéizik, where p;, = (ix, p),

D is a permutation of the set I \ iy; moreover, for ¢*' € ﬁ,: )
8 P (axiy i 8 Axi
P @) = (T3 -*eiD @] < 8) = 0.

The following lemma is valid from Malafeyev (2000).

Lemma 11.3. Let the game I'yr = (I, {X!}],{H]}) be obtained from the game
Ty = (I.{X:}].{H:}|) by the epimorphic mapping o; : X; — X/, i =1,....n,
with

IH(x) = H'(ex)| e, ox = (ar(x1),.... 0 (xn)).

Then, if x is an e-equilibrium of the game @'y, then ox is the 3e-equilibrium of the
game 'y.

Let us define the main game I"(cy, T).
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Definition 11.3. The pair (§;, {6<pi’7 "}s=1/2v) is called the strategy of the agent i.
Here N € Z, §; is a range of dyadic partition of the time interval [0, 7] and *¢/" is
the strategy of the agent i in the game FP‘S‘, (co, T) for the permutation p; = (i, p)
and p is the permutation of the set I \ i.

For n-tuple ¢ = (¢1,...,¢,) the game I'(cy, T) is played as follows. The
smallest §; = § is chosen and the trajectory y(-) is constructed for n-tuple *¢p =
CGol", ..., %p"). This trajectory is unique.

The game I'(cy, T) is obtained from the game I’lf (co, T) by the epimorphic
mapping which is defined in Lemma 11.2. Since in the game F}f (co, T') there exists
g-equilibrium, then the existence of the 3e-equilibrium in the game I"(cy, T') follows
from Lemmas 11.2 and 11.3.

Thus, the following theorem is valid.

Theorem 11.1. There exists e-equilibrium in the noncooperative n-person differ-
ential game I'(cy, T) for all ¢ > 0.

11.4 Numerical Example

Let us consider the differential two-person game I"(coy, T'). The dynamics of the
agent i = 1,2 in the game I'(co, T') is described by the initial boundary value
problem for the following differential equation on the domain £2 = [0, /]:

ai 821‘ )
L pLE it ui(x), xeR, >0 (11.9)
ot 0x?

Let the function 7’ (x, t) satisfies the following boundary conditions:

07

D— =0, x=0,tr€e][0,T], (11.10)
ox
07

—-D— =0, x=1[,1t€]0,T], (11.11)
ox

and the following initial condition:
F(x,0) =ci(x), xeR,t=0. (11.12)

A measurable function u; = u;(t), satisfying the condition u; = u;(t) € U; =
[Ul-l Ulz] i = 1,2forall t € [0,T] is called the admissible control of the agent
iel, U,»l = const, Uiz = const.

Let the function f;(¢) € [0, 1] be the percentage of the income of the agent i,
which determines the amount of the penalty for exceeding the maximum permissible
value of pollution at the water intake point (x,,) as follows:
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2
0, lf Z Zj (xwvl) S CW’
j=l
2 .
fit) = 2 o, 1) =Gy
(1) \j= o )
5 . . , if Z 7z (x,, 1) > C,,
Z Zj (xw, [) w j=1
j=1

where C,, is the maximum permissible value of pollution at the water intake point.
Then the payoff of the agent i at time 7 is defined by the following functional:
T

Hy o) = / P (1 — fi(2))dt — / M (v)d.,
0

0

(11.13)

where z = (z', 7%, ....7"). The goal of the agent i is to maximize H, (-).

The numerical method based on the dynamic programming method (Bellman
1960) and the finite difference method (Samarsky 1989) is proposed for the
numerical solving of the auxiliary multistep game I ]f (co, T).

On the domain £2 = [0, /] we construct the uniform net with steps / on x

wp ={xx=kh, k =0,...,Ny; xo0=0, xy,=1}. (11.14)

Here x; = X; is a location of the agent i, i = 1, 2.
On the every interval [ty, t,41], 8 = 0, N, — 1 we construct the uniform net with
step T

ar.s = {t_j = jrv ] = Oa NZ’ f() =, sz = tS"rl}‘
Here ¢; € o, where o is the time interval partition

O'={lo=0<[1< -<[N(,=T}~

.. —1 —2. .
On the admissible control parameters set U; = [U;,U;], i = 1,2 we construct the
following partition:

A; Z{I/ti():Ui1 < Ui <...<UnN; ZUIZ}, i=1,2.

Let us denote by y]i ** the function defined on the net @), = W), X Wy

We construct for the problem (11.9)—(11.12) following purely implicit difference
schemes (Samarsky 1989) on the net w;,, = @, X w. s for any pair of admissible
controls (41 ¢, Uz z,) € Ap X Ay, & €0, N3:

y/+ls_,' yj,s yj+ls_,‘ yj+l,s )
0 0 _ 1 0 iy,Js —
B 2D S e yo'r, k=0, (11.15)
i i, iy, J L i JtLs i+l
Sl i =2
T h?
i) 1 T N, —1
= g S k=T1,N —1, (11.16)
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l,s 1 /.S l,s 1,
M = —2Dly’jv'+h;2y{“+l iyl k=N, (1117)
j= 0T
Y=ty k=0.N. j =0, (11.18)
£ =0,Ns,
£ =0,Ns,
s =0,N, — 1,
Y0 = co(xi), k =0,Ni, s =0, j =0. (11.19)

Here 6 ; is the Kronecker symbol.

The constructed absolutely stable difference scheme (11.15)-(11.19) is solved
by the sweep method (Samarsky 1989).

The payoff function of the agent i € I = {1,2} in the game Flf(co, T) is
approximated as follows:

No—1 Na—1

Ho@)....ow ™ ™)y =1 > Puj(1—f) -

s=0 j=0

No—1 Nr—1

—T Y > Mu, (11.20)

s=0 j=0

Let Kf(-) be value of the payoff function of the agent i, i = 1,2 at the
equilibrium point. The following recurrence equations are valid:

Vi(yNemt 2yt ) = max {H, e B, )b (12D
15 A

(1 S 2 S t)— I:'laX {H (MIE 714{1\[}5{1\”) +_, (1y§1+],2y§2+] S+1)}7

s =N, 2,0, (11.22)
Vi(y2. 2% 1y,) =0, (11.23)

Here

Nr—1 Nr—1
H; (M?,E:"ﬁil\i}fu\i}) =T Z P,-uf»’si(l - flj) -t Z Miu?,%‘i' (11.24)
i= j=
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11.5 Numerical Results

The numerical experiment was realized for the following input datas: D = 2.
I =20,h =1, T =180, 7 = 1, N, = 6, r = 0.02, M|, = 45 M, =
Py = 15, U} ={0,10,20,30}, U} = {0,10,20,30}, X, =3,% =17,%, =1
C,, = 60, co(x) = 0.

The results of numerical experiments are presented on the Figs. 11.1-11.8.

The dynamics of changing of the pollutant concentration at the intake point
is presented in Fig. 11.4. The agent pays the penalty (Fig.11.5) in the case of
exceeding the maximum permissible value C,,.

The player with the lower costs receives significantly greater income (compare
Fig. 11.3 with Fig. 11.6).

27
57
O’

Fig. 11.1 Distribution of the pollutant concentration of agents: 1—light color, 2—dark
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Fig. 11.2 Optimal strategies of agents: 1—dashed line, 2—dot-dashed line
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Fig. 11.3 Payoff functions of agents: 1—dashed, 2—dot-dashed line

0 50 100 150

Fig. 11.4 The pollutant concentrations at the point of intake: total—dotted, 1—dashed line, 2—
dot-dashed line

The decrease of the value C,, = 50 results in significant reduction of the total
income of the agents (compare Fig. 11.8 with Fig. 11.3).

11.6 Conclusion

We investigated conditions for the existence of the e-Nash equilibrium point for the
class of the piecewise-programmed strategies in the noncooperative many agents
differential game which describes a conflict-controlled process of the contaminating
a closed water reservoir.
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Fig. 11.5 The penalty functions f(t): 1—dashed line, 2—dot-dashed line
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Fig. 11.6 The payoff function in case of changing M, = 5 — M, = 2. 1—dashed line, 2—dot-

dashed

The proposed numerical algorithm to solve the considered differential game is
based on the dynamic programming method and the finite difference method and

has been applied to compute the auxiliary multistep game.
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Chapter 12
Open-Loop Solvability Operator in Differential
Games with Simple Motions in the Plane

Liudmila Kamneva and Valerii Patsko

Abstract The paper deals with an open-loop solvability operator in two-person
zero-sum differential games with simple motions. This operator takes a given
terminal set to the set defined at the initial instant whence the first player can bring
the control system to the terminal set if the player is informed about the open-loop
control of the second player. It is known that the operator possesses the semigroup
property in the case of a convex terminal set. In the paper, sufficient conditions
ensuring the semigroup property in the non-convex case are formulated and proved
for problems in the plane. Examples are constructed to illustrate the relevance of the
formulated conditions. The connection with the Hopf formula is analysed.

Keywords Planar differential games ¢ Semigroup property ¢ Simple motions ¢
Open-loop solvability operator

12.1 Introduction

The paper concerns the simplest model description of dynamics in the differential
game theory:

X=p+q, peP, qgeO.

The system has no state variable x at the right-hand side, and the state velocity X is
defined only by controls p € P and g € Q of the first and second players, where
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the constraints P and Q do not depend on the time. In Isaacs (1965), games with
such dynamics are called games with simple motions.

In numerical methods of the differential game theory, the simple motion dynam-
ics arises absolutely naturally under a local approximation of linear or nonlinear
dynamics when the capabilities of the players are “frozen” in the time and
state variables. In the framework of the simple motion dynamics, one calculates
the next step of an iterative procedure to construct the value function of the
game.

For example, one important class of differential games consists of the games with
linear dynamics, a fixed terminal time, and a continuous terminal payoff function.
For these games, the transfer to new variables is known (Krasovskii and Subbotin
1974, pp. 159-161; Krasovskii and Subbotin 1988, pp. 89-91). The new variables
can be regarded as forecasting the state variables to the terminal instant by the “free”
motion of the system under zero controls of the players. The transfer is performed
by the Cauchy matrix of the original problem. The new dynamic system has no
state variables at the right-hand side, but the controls of the players are multiplied
by coefficients depending on time.

Under the numerical construction of level sets of the value function, the time
interval is divided by a step, and the coefficients of the dynamics are frozen on each
small time interval (Botkin 1984; Isakova et al. 1984). So, at each step we get some
dynamics of simple motions. Being given a level set of the payoff function as the
terminal set and going backward from the terminal set, one recalculates the level set
at each time step using the dynamics of simple motions. Then one passes to the limit
as the step of the partition goes to zero. If the operator of recalculation is properly
chosen (at one step), then the limit set coincides with the level set (Lebesgue set) of
the value function.

This is the scheme. To perform it effectively, it is very important to choose an
operator to use at each step of the backward iterative procedure. It is most desirable
that the operator possesses the semigroup property: if the dynamics is frozen on
some time interval, then the use of any additional points of the partition does not
change the result of the iterative procedure.

We investigate the operator known as the programmed absorption operator in
Russian literature on the differential game theory (Krasovskii and Subbotin 1974,
p- 122). It can be called the open-loop solvability operator as well. For the simple
motion games, the semigroup property was established earlier (Pshenichnyy and
Sagaydak 1971) in the case of the operator dealing with convex sets. In this
paper, sufficient conditions providing the semigroup property in the non-convex
case are formulated and proved for the problems in the plane. Examples are
constructed to illustrate the relevance of the formulated conditions. In the appendix,
we describe the connection between the question under investigation and the Hopf
formula known in the differential game theory and the theory of partial-differential
equations.

The results obtained in the paper can be useful for developments and justifica-
tions of numerical methods in the differential game theory.
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12.2 Problem Statement: Open-Loop Solvability Operator

Consider a conflict-control dynamic system with simple motions (Isaacs 1965):

%:p%—q, peP, geQ, xeR". (12.1)
Here, t € [0, ?]; p, g are controls of the first and second players; P, Q are convex
compact sets in R”. Let M be a compact terminal set in R”.

For a differential game, the notion of the maximal stable bridge W, C [0, #] x
R”" terminating at the instant ¥ on the set M (i.e., Wy(9) = M) was introduced
in Krasovskii and Subbotin (1974, p. 67), Krasovskii and Subbotin (1988, p. 61).
Here, the notation Wy () for a ¢-section of the set W, is used:

Wo(t) = {x e R": (t,x) € Wy}, t€]0,V].

To guarantee the inclusion x (¢}) € M, the positional strategy of the first player can
be constructed (Krasovskii and Subbotin 1974, 1988) by the procedure of extremal
aiming to the maximal stable bridge W,. The set W} coincides with the solvability
set in the problem of guidance over non-anticipating strategies (Bardi and Capuzzo-
Dolcetta 1997; Subbotin 1995). The notion of the maximal stable bridge W is very
close to the notion of the viability kernel (Aubin 1991; Cardaliaguet et al. 1999), and
its t-section Wy (¢) is well known as the alternating Pontryagin integral (Pontryagin
1967, 1981).

In the case of a convex set M, the Pshenichnyi formula describing constructively
the sections Wy(¢), t € [0, 9], is known (Pshenichnyy and Sagaydak 1971):

Wo(t) = (M — (% —t)P) 2 —1)0. (12.2)

Here, operations of the algebraic sum (the Minkowski sum) A+ B and the geometric
difference (the Minkowski difference) A = B of the sets A, B C R” are used (see,
for example, Hadwiger (1957); Polovinkin and Balashov (2004); Pontryagin (1967,
1981)):

A+ B:={deR": d=a+b,ac A, b€ B},

A*B:={deR": d+BCA}=()(A-b).
beB

The set A + B is convex if the both sets A and B are convex. The set A~ B is
convex in the case of a convex set A.
Define the open-loop solvability operator (the programmed absorption operator):

M T,(M):=(M—-1tP)21Q, 7=0—1.



242 L. Kamneva and V. Patsko

By (12.2), for a convex set M, we have
Wo(t) = Ty—(M). (12.3)

It is of interest to try to establish some conditions providing equality (12.3) in the
case of a non-convex set M.
For any compact (generally speaking, non-convex) set M, the representation

Wo(t) = N To (T (... Te,, (M) ..)) =: Ty (M)
+o+-+u,=0—t, meN

is true (Pshenichnyy and Sagaydak 1971). Its right-hand side defines the operator
with multiple recomputations:

M T, (M), t=0-—1.

Therefore, the operators T, and 7, are equal (i.e., T,(M) = T,(M) for all T €
[0, #]) if, for any 7, T, > O such that t; + 17, < ¥, the following relation holds:

Tr4ry(M) = T, (T, (M)). (12.4)

Equality (12.4) is known as the semigroup property of the operator 7.
In Pshenichnyy and Sagaydak (1971), the semigroup property was proved for
any convex set M. This implies (12.2).

Thus, the question on the validity of (12.3) in the case of a non-convex set M is
reduced to the formulation of conditions on the sets M, P, Q, and on the range of
71, T» to provide equality (12.4).

12.3 Auxiliary Results

Let us remark two obvious properties:

T(M) = (M — (P +q)); (12.5)
q€0Q
xeT,(M) & VgeQ (x+t(P+q)NM+a. (12.6)

The following two results are known (Pshenichnyy and Sagaydak 1971).
Lemma 12.1.

Tn (Tzz (M)) - T11+r2 (M) (127)
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Proof. Fix x € T, (T,(M)). By (12.6), for any ¢ € Q there exists p; € P such
that

x+uq+up e T,(M),
and there exists p, € P such that
z:==(x+1nqg+up)+ng+unp M.
Since the set P is convex, the following inclusion holds:

T + T
_up 22 c

RES P.
T+ T

We have
x+(@m+n)(pst+q9) =z M.
Thus, for any g € Q there exists p, € P such that
x4+ (6 4+ n)(ps+9) € M.

Then by (12.6), we obtain x € T7, 4, (M). O

Lemma 12.2. Assume the set M is convex. Then

T11+T2 (M) = Tfl (Trz (M))’ 7,72 > 0.

Proof. By Lemma 12.1, it remains to prove that
Tr1+zz (M) < Tr1 (Tzz (M))

Let x € 17 4,(M). Then, because of the property (12.6), for any g¢; € Q there
exists p; € P such that

z:=x+ @+ n)p +q) <M. (12.8)
Let us prove the inclusion
x+u(pr+q1) € T, (M). (12.9)
Fix ¢, € Q. By the same arguments as in (12.8), we find p, € P such that

2 =x4+(t1 + ©)(p2+ q2) € M.
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Considering the convexity of the set M, we have

7121 + T2
x+upm+q)+up+q) = —— M.
T+ 10

Thus, inclusion (12.9) holds. Therefore, by (12.6), we get x € T3, (T, (M)). O

In addition, three lemmas formulated and proved below are required.
Lemma 12.3 claims inequality (12.11), which, in particular, is necessarily true
if Tp4,(M) = T, (T,(M)). Further, a similar condition is used in the main
Theorem 12.1. In Lemma 12.4, the case of a convex set M is considered, and thus,
by Lemma 12.2, the semigroup property is necessarily true. The proof is based on
Lemma 12.3. The lemma is also used in the proof of Lemma 12.5, which is in its
turn necessary for our proof of Theorem 12.2.

Let p(-, A) be a support function of a compact set A C R", i.e.,

p(n,A) =max{(x,n): x € A}, neR".
Write

H(s) = max{g,s) + min{p,s), s e€R".
q€Q peEP

Lemma 12.3. Fix 71, v, > 0, and assume that the sets T,(M), T;,(Tr,(M)) are
nonempty, n € R", and

o, Ty 40, (M) = p(n, Tey (T, (M))). (12.10)
Then

oM, Ty +5,(M)) + t1H(n) < p(n, T, (M)). (12.11)

Proof. Since Ty (T,(M)) C Ty 4+.,(M), we have Ty, 4.,(M) # @.
The definition of the set 77, (T, (M)) implies the inclusion

T, (T,(M)) + 11Q C Ty, (M) — 7, P.
Then
p(n, Ty, (T, (M))) + 7y max{q,n) < p(n, T,(M)) + 71 max(—p,n).
q€Q PEP

So, we get (12.11) by (12.10) and taking into account the equality

r;lgg(—p, n = —ggg(p, n).
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Lemma 12.4. Let M be a convex set. Assume that t|, Ty > 0 and the sets T.,(M),
T: +, (M) are nonempty. Then, for any n € R", inequality (12.11) holds.

Proof. Since the set M is convex, Lemma 12.2 implies
Tt] +12 (M) = TT] (Tl’z (M))

Then p(n, Ty, (T, (M))) = p(n, Tz, +,(M)). Using Lemma 12.3, we have (12.11).
O

Lemma 12.5. Let n € R" and n # 0. Assume that there exists 7. € M such that
the intersection M N Il of the set M and the half-space

M ={x e R" : (x —z4,7) <0}

is convex and its interior is nonempty.
Then there exists ¥ > 0 such that, for any © € [0, ¥], the set T, (M) is nonempty
and the function

T = 8, (v) := p(=n, M) — tH(=n) — p(=n, T-(M))
increases on [0, V).
Proof.
1) Define
P = (24, —1).

Observe that ws« < p(—n, M). Choose any i € (u«, p(—7n, M)), and write

I, = I — (= ps)n/lInll.

Since the interior of the intersection M N I1,, is nonempty (in view of the fact that
the set M N I, is convex and its interior is nonempty), for rather small = > 0,
we get

T.(M)NIl, # 2. (12.12)

Thus, there exists 7; > 0 such that, for any 7 € [0, 7], we have (12.12).
Set

o= lggg;glg(p +4q,-n).

We are able to choose a value 7, > 0 such that



246 L. Kamneva and V. Patsko

Indeed, since + — o < 0, any 757 > 0 can be taken if o > 0; otherwise, we choose
any sufficiently small 7} > 0.
Set % = min{z{", ©;'}. (Thus, the value ¢ depends on the choice of 1.)

2) Fix t € [0, ¢]. Let us show that
T.(M)NnI, €T, (M NIl). (12.13)
Choose x € T-(M)NII,.By (12.6), forany ¢ € Q there exists p« € P such that
X + tq + tpsx € M. Since x € I1,, we obtain (x, —1) > . Therefore, considering
the choice of the value p and the definition of the value «, we deduce
—(xX,=n) + px < —p 4+ px <T@ < T(G + pi.—1).
Hence (x 4+ tq + tp«, —n) > W, 1., x + 1 + Tp« € I1,. Thus,

X+1tq+1pi € M NI,

and, consequently, x + tq € (M N I1,) — tP. Since g € Q is chosen arbitrarily, in
view of (12.5), we get

xe(((MNIL)—1(P+q) =T.(MNII).
q€Q

3) Fixp, 711 + 1p € [0, ¥]. By (12.12), we have
T,(M)# 2, Ty+no(M)NII, # @.

Considering (12.13), the convexity of the set M N I1,, Lemma 12.2, and the
monotonicity of T;, we calculate

Tr1+r2(M) n H;L g T11+12(M n H*) = TTI(TTZ(M N H*)) g Ttl (sz(M))
This implies that 77, (T-,(M)) # @ and
p(=1, Toy 4o, (M) N IT,) < p(=n, T (Tr,(M))). (12.14)

Since I, is a half-space with an outward normal vector 7 and the intersection
Tr 4+, (M) N I, is nonempty, we find

P(—Ua Tf1+T2(M)) = p(_777 T11+12(M) N H;L)-

We employ this identity in (12.14) to obtain the inequality
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(=1, Tty 4+, (M)) < p(=n, Ty, (T,(M))).

On the other hand, Lemma 12.1 implies the opposite inequality. So, equation (12.10)
holds.

Hence, considering Lemma 12.3, we get inequality (12.11), which is equivalent
to the inequality &, (t; + 12) > 8,(r2). Therefore, the function §,(-) increases on the
segment [0, ¥]. O

12.4 The Main Theorem

Now, we deal with the case of R?.

A set A is called arcwise connected (Schwartz 1967) (in the sequel, connected
for brevity) if any two distinct points of the set A can be joined by a simple curve
(arc) which lies in the set.

A set A C R? is called simply connected (Schwartz 1967) if any simple closed
curve can be shrunk to a point continuously in the set, i.e., the set consists of one
piece and does not have any “holes.”

A polygon is defined as a plane figure that is bounded by a closed path composed
of a finite sequence of straight line segments (edges of the polygon).

Let us denote by ¥ the set of all outward normal unit vectors to the edges of the
polygon A. If A is a segment, we suppose that the set ¥ consists of two opposite
directed vectors that are normal to the segment A.

Let us formulate the main theorem.

Theorem 12.1. Assume that

(A1) M C R?is a simply connected compact set;

(A2) P C R?is either a non-degenerate segment, or a convex polygon ;
Q C R?is a convex compact set;

(A3) forany x € R? and v € Vp, the set

My (x,v) =M nN{zeR*: (z,v) < (x,v)}
is connected;
(A4) forany t € [0, 9], the set T (M) is nonempty and connected;
(A5) foranyv € ¥p, the function
T 8,(7) := p(—v, M) — tH(—v) — p(—v, T:(M))

increases on the segment [0, ¥].

Then the operator T, possesses the semigroup property on the segment [0, ]. (And,
consequently, Wo(t) = Ty—, (M), t € [0,1].)
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Our proof of Theorem 12.1 is based on Lemma 12.6. To formulate the lemma,
let us introduce the following notations.
For the set T, (M) # @, we define “an envelope set”

env (To(M)) = [} {x €R?: (x,—v) < p(-v. T(M))}.

VEYP

Note that 7 (M) C env (T;(M)). If P is a segment, then env (7, (M)) is a closed
strip; if P is a polygon, then env (7;(M)) is a convex polygon.

Let &2 be the set of vertices of the segment or polygon P. For a vertex p € £,
define a bundle of unit vectors

A (p)={(p—x)/Ip—xl: xe€P\{p}
If P is a segment, then the set & consists of two vertices, and the set .4#"(p) consists
of a unique vector for p € &.
Let [(a, n) be a ray with the initial point a € R? and the direction along the vector
neR%:
l(a,n) ={a+an: o=>0}.

Lemma 12.6. Assume that ti,t2 > 0, the sets T,(M) and T; 4+.,(M) are
nonempty, and the following conditions hold:

LD ifyeR?q €0Q,and
O+ +g)NT,(M) =2, (y+u(P+q1)N env (T, (M)) # &,
then there exist px € & and q, € Q such that
Vne N(ps) 1y +ulps+q) +0ps+q2).—-n)NM=0a:
(L2) foranyv € ¥p, we have
P(=v, Tt 4, (M) + 11 H(=v) < p(=v. T, (M)).
Then

T, (M) = Tty (T, (M)). (12.15)

Proof. Suppose that (12.15) is false. Then, by Lemma 12.1, we can find

y € T11+12(M) \ TT](sz(M)) # a.
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Since y & T, (T, (M)), by (12.6), we find ¢, € Q such that
GNT,M) =2, G :=y+ulP+q). (12.16)
1) Assume
G N env(T,(M)) # @. 12.17)
a) We now assert that there exists g, € Q such that
Gi+nP+qp)NM=0. (12.18)

Indeed, using (12.16), (12.17), and condition (L1), we find p, € & and ¢, € Q
such that

Vne N(ps) 1(b,—NM =@, b:=y+1(p«+q1)+0(ps+q2). (12.19)
For any z € G| we have the representation
z=y+10u(p+q) peP
In addition, for any p € P, we can write

2+ n(p+q) =b—n«, Nx:=1(px — Pp) + 02(px — p).

We have
p* Px —
— e N (px) (P« # D)y ——— €N (ps) (P F# Ps).
Ip«— 5l || P« — Pl

Therefore, if 7, # 0, then 1./ ||n«] € A (p«). Considering (12.19), we get
i+np+q)¢M=0.

Hence (12.18) holds.
b) Setg = (1191 + 1292)/ (71 + 12). Then

Y@+ )P +§) =y+1uP +q)+ 0P +q) =06+ 0P +q).

Using (12.18), we get (y + (11 + »)(P + ¢)) N M = @. By (12.6), we conclude
vy & Ty, 4+, (M), that contradicts to our choice of y.

2) Assume G; N env (T, (M)) = . Then, using the definition of the operator
env, we write
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Gic | x eR2: (x.—v) > p(—v. T (M)},
vEYP

Since G is either a non-degenerate segment, or a convex polygon, and ¥ is the set
of outward normals to G, we deduce that there exists vy € #p such that

Vze G (z, —vo) > p(—vo, Tr,(M)). (12.20)
Remark also that the inclusion y € Ty, 4+, (M) implies the inequality

(V. —v0) < p(=v0, Teyra (M)). (1221)

Suppose
Po € Arg 1;131{((177 vo), z0:=y + t(po+q1).
Since zg € Gy, using (12.20), (12.21), and the relations

(po, —vo) = min(p, —vo), (g1, —Vvo) < max{q, —vp),
pEP q€0

we calculate

p(=vo, T,(M)) < (20, —Vvo) = (y,—Vvo) + T1{po + g1, —Vo)
< p(=vo, Tty 45, (M)) + 11 H(=p),
that contradicts to condition (L2).

So, assuming the violation of (12.15), we obtain the contradictions in the both
cases 1) and 2). |

Proof (of Theorem 12.1). Choose 1, T + 15 € (0, ©#]. To prove the equality
Toy40, (M) = Tt (T, (M),

check conditions (L1) and (L2) of Lemma 12.6.
For any v € ¥}, the increase of the function 4, (-) on the segment [0, ©¥] implies
the inequality 8, (t; + 12) > 8,(12), which is equivalent to the inequality in (L2).
Let us verify condition (L1). Fix y € R?and ¢, € Q.Set G, = y + 11(P + q1),
and assume the following conditions hold:

G\ NT,(M) =, (12.22)
G, Nenv (T, (M)) # @. (12.23)

Consider the following two cases: P is a non-degenerate segment and P is a
convex polygon.
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I. Let P be a non-degenerate segment.
Note that the set & is two-element (vertices of the segment P), and for any
p € &, the set A (p) consists of a unique vector.
Since G is a segment, which is parallel to P, and the set env (77, (M)) is a strip,
which is parallel to P, inequality (12.23) implies
G, C env (T, (M)).
Let us remark that the boundary of the set env (77, (M)) is formed by two supporting
lines of the connected set 77, (M ). Consequently, in view of (12.22), we can find a
vertex ax = y + 11(px + q1), p« € £, of the segment G such that
lax.ns) N T, (M) # @, A (ps) = {n+}- (12.24)
Since ax & T¢,(M ), remembering (12.6), we find g, € Q such that
(ax+(P+q))NM=02. (12.25)
Besides, (12.24) implies that
Ja>0: ax+ans € T,(M).
Thus, due to (12.6), we have
(as +ans + P + @) N M # 2. (12.26)

Eqs. Define by := ax + 2(px + ¢2)- In view of (12.25), (12.26), and b« € ax +
(P + ¢»), we find

[(bs,nx) N M # @.
To get property (L.1), it remains to prove that
I(bse,—x) N M = @.
Assume the converse. Then we can find
x* €l(be,—nx) N M.
Choose also x« € [(b«, nx) N M. Due to
[(bx, £1+) C Iy (bs,v) N Iy (bs, —v), v € Tp,

the assumption (A3) implies that there exist continuous arcs y4+ C [Ty (b, v) and
y— C Iy (bs, —Vv) connecting the points x, and x*. As a result, the complex arc
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Gy >

/ _ env(Ty, (M))

15 11,

Fig. 12.1 Illustration to the proof of (12.29)

y—y+ C M encircles the segment a, + 72(P + ¢2). Remembering (12.25), we get
the contradiction with the simple connectedness of the set M. This contradiction
completes the proof of property (L1).

II. Let P be a convex polygon.

1) We next show that there exists p, € & such that
vneN(ps) 1y +ulps+q).n)NTu(M) # 2. (12.27)
Assume the converse, i.e.,
Vpe2Z dneN(p): ly+ulp+q).nnTy(M)=02. (12.28)

Since G is a convex polygon, we write

G = ﬂ {zeR*: (z,v) < p(v.Gy)}.

VEYP

In view of (12.22), we have

T,(M) CR*\ Gy = | {z€R*: (z.v) > p(v.Gy)}.

vEYP

Using (12.28) and the connectedness of the set T;, (M), we find v, € ¥p (Fig. 12.1)
such that

T, (M) C {z € R?: (z,v4) > p(vs, G))}. (12.29)
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Define

I, = {z e R*: (z,v4) < p(vs, G1)}.
Therefore

R?\ IT; = {z € R?*: (z,—v4) < —p(vs, G1)}.
Because of (12.29), we have
I :={z € R*: (z,—vx) < p(—vs, Ty (M)} CR*\ [T
The last formula and the definition of the operator env imply
env (T, (M)) C IT, C R*\ .
Remembering that G| C I1;, we have
env(T,,(M)) NG = &,

that contradicts to (12.23). Thus, (12.27) holds.

2) Setay = y+1i(p«—+q1). Inview of (12.22), we getas & T;,(M ). Using (12.6),
we find g, € Q such that

G,NM =0, G:=as«+ (P +q). (12.30)

Besides, (12.27) implies that

VneN(px) Foy>0: ax+oyneT,(M).

So, considering (12.6), we have

Vne A (ps) Foy>0: (Gr+oyn) NM # 2. (12.31)
For the chosen p. and g, let us prove that

Vne N (ps) lax+n(ps+q2),—nNM=a. (12.32)
Let pT™ and p~ be the vertices of the polygon P adjoining the vertex ps such

that going around the vertices p~, p«, pT is counterclockwise (Fig. 12.2).
We have pt # p~. Set

b=dau+1(ps+q). 1F=pe—p*.

By vt (v7) denote the outward normal vector to the edge of P that has its vertices
at the points ps and p™ (respectively, ps and p™).
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Fig. 12.2 Tllustration to the
verification of condition (1)

Fig. 12.3 Step 1 of the proof of (12.32)

The proof of (12.32) is divided into two steps. In the first step, we assert an
auxiliary statement. At the second step, assuming that (12.32) does not hold, we
obtain a contradiction with the simple connectedness of the set M.

Step 1. We claim that there exists a continuous arc y (Fig. 12.3), which connects
some points e € I[(b,n") and e~ € I(bh, n7), and the inclusion

ycb+K)NM (12.33)

holds, where K := {an: n.€ A4 (p«). o > 0}.
Define

BEf={z+ant: a>0,z€ Gy} \G,.

Since G, N M = @ and (12.31) holds for n = n*/||n*||, we have BX* N M # @.
Fix any b* € B* N M. As Bt N B~ = &, we conclude that bt # b~

a) Suppose

Arg min(z,vt) = Arg min(z,v”) =: E.
7€Gy 7€Gy
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In this case, the convexity of G, implies that the set E consists of a unique vector,
i.e., E = {e}, and ¢ is a vertex of the polygon G, (Fig. 12.3a).

By o+ and ¥~ denote the outward normals to the edges adjoining the vertex é.
Assume that the normals are chosen in such a way that the counterclockwise angle
from U~ to U is less than 7. Set

K :={a(z—8&): >0, z€ Gy}
Note that K C K, 9K N 9K = {0}, and
b* e B c my@.v™). (12.34)

Besides, assgmption (A3) implies that the set Ty, (e, f)i) is connected.
Fix 77 € K. Applying (12.31) for n = 7/||7||, we can find & > 0 such that

(G +annNM #a.
Choose ¢ € (G, + @) N M. Note that
c € My @, v¥). (12.35)

Consider the two possible cases: (i)c € (BT UB™); (ii)c ¢ (BT UB™).

(i) Suppose ¢ € B*. Using (12.34), (12.35), and the connectedness of the set
Iy (e, f)i), we conclude that there exists a continuous arc y; C Iy (e, f)i)
connecting the points ¢ and b . In the set ITy (é, VF), the points ¢ and b
are separated by the set G, U (b + K). Applying (12.30), from the arc y;
we can single out the required continuous arc y without self-intersections
which lies in the set b + K and connects some points e™ € [(b,n*) and
e~ elb,n).

(i) Suppose ¢ ¢ (BT U B™). In this case, the point ¢ belongs to the interior of the
set b + K. We have

c, b+ € HM(é,INJ_), C, b~ € HM(E,1~)+).

Using the connectedness of the sets [Ty (¢, D) and [Ty (€,77), we get that
there exists a continuous arc y; C Ty (¢, ) connecting the points ¢ and b,
and there exists a continuous arc y, C [l (€, V™) connecting the points b~
and c. By (12.30), from the complex arc y;y, we can single out the required
continuous arc y without self-intersections which lies in the set » + K and
connects some points e™ € [(b,n*) and e™ € [(b, 7).

b) It remains to consider the case (Fig. 12.3b)

)

Arg min{z, v") # Arg min(z,v™).
€G> €G>y
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Fig. 12.4 Step 2 of the proof
of (12.32)

In this case, we can find ¥ € ¥p such that
BYfCIli:={zeR*: (z.V) < p(P,G,) ).

Since b™,b~ € I3, assumption (A3) implies that there exists a continuous arc
y1 C IT3 N M connecting the points b* and o~ In the half-plain IT3, the points b
and b~ are separated by the set G, U (b + K). By (12.30), from the arc y; we can
single out the required continuous arc y without self-intersections which lies in the
set b + K and connects some points et € [(b,n*) and e~ € (b, n7).

Thus, there exists the arc y with the required properties.

Step 2. Suppose that (12.32) is false, i.e.,
Ano € A(ps): 1(b.—m) N M # 2.

Choose by € I(b, —no) N M (Fig. 12.4).
Let us construct a continuous closed arc without self-intersections which lies in
the set M and encircles the set G,. We have

8+,b0 S HM(b, U+), e_,b() € HM(b, U_).

By assumption (A3), there exists a continuous arc ¥+ C Ty (b, vT) connecting the
points by and e, and there exists a continuous arc y~ C ITy; (b, v™) connecting the
points e~ and by. Without loss of generality, we can suppose that the arcs ¥+ and
y~ have no self-intersections.

The complex arc yTyy~™ C M is continuous and closed; it has no self-
intersections and encircles the set G,. Using (12.30), we obtain a contradiction with
the connectedness of the set M. Thus, relation (12.32) is proved, i.e., condition (L1)
holds. O
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12.5 The Case of Polygon M

Assumptions (A1)—-(A3) of Theorem 12.1 concern only the sets M and P; they are
geometric and easy to verify. Assumptions (A4)—(A5) deal with the segment [0, #].

Theorem 12.2 formulated below (based on Lemma 12.5) asserts that if M is a
polygon with some geometric property with respect to P, then there exists some
interval of T where assumptions (A4)—(A5) hold.

Theorem 12.2. Assume that

(AD* M c R? is a polygon,

(A2) P C R? is either a non-degenerate segment or a convex polygon;
Q C R? is a convex compact set;

(A3)  forany x € R?and v € Vp, the set

My (x,v) =M N{zeR>: (z,v) < (x,v)}

is connected.

Then there exists ¥ > 0 such that the operator T, possesses the semigroup property
on the segment [0, V). ( And, consequently, we get Wy(t) = Ty— (M), t € [0, V].)

Proof. The assumptions of the theorem contain assumptions (Al)-(A3) of
Theorem 12.1.

Note that the set 7, (M) is connected for rather small ¢ > 0, i.e., assumption
(A4) holds for rather small ¢

Letv € ¥p. By assumption (A3) of the theorem, for any x € R? the set [Ty, (x, v)
is connected. Since M is a polygon, we choose z« € M such that the set [Ty (z«, V)
is either a triangle or a trapezium. We obtain that the assumptions of Lemma 12.5
hold for n = v. Consequently, there exists ¢ > 0 such that assumption (AS5) of
Theorem 12.1 is true.

By assumptions (A1)—(AS5) of Theorem 12.1, we get that the operator T
possesses the semigroup property on the segment [0, ¥]. |

12.6 Examples on Violation of Assumptions (A3)-(AS)

Let us show that no one assumption from (A3)—(A5) of Theorem 12.1 is excessive,
i.e., violation of only one assumption of (A3)—(AS5) allows one to find sets M, P,
and Q, and instants 7, and 7, such that equality (12.4) is false.

Below, we consider that P and Q are the segments and t; = t, for all three
examples. The sets M, 1 P, 7, Q (thick solid line), T¢, (M) (dash line), T+, (T, (M))
(hair line), and T3, 4., (M) (dotted line) are represented in Figs. 12.5-12.7.

Figure 12.5 shows an example such that only the geometric assumption (A3) of
Theorem 12.1 is violated: as the set M has a triangle excision at the right, the set
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Fig. 12.5 Example 1.
Assumption (A3) of
Theorem 12.1 is violated; / is
the boundary of the set M, f
2 is the boundary of the set [ DS S I S )
T.,(M), 3 is the boundary of
the set Ty, (T+,(M)), 4 is the
boundary of the set

y P
Tf|+rz(M) * :

N7

3< . \ \
4 : :
N \ \ 0 T1Q
\ > \X
N\
AN
~
—V
Fig. 12.6 Example 2.
Assumption (A4) of ,/ o e -l
Theorem 12.1 is violated; / is 1 |
the boundary of the set M, S i
2 is the boundary of the set 0/
T, (M), 3 is the boundary of | | /1 7P
the set 7%, (T, (M), 4 is the T F
boundary of the set SR I VA 74
oo (M) \ 4
B A1 0
/ /I/ e
S/
/L

Iy (x,v) is not connected for some points x (here, v = (—1,0)T). The difference
between the boundaries of the sets 7y, (7%, (M)) and Ty, 4+, (M) takes place in its
middle part at the right.

The example in Fig. 12.6 is found in such a way that assumption (A4) concerning
the connectedness of the set 7, (M) is violated. The set P is a segment with the
slope 45°. Each of the sets Ty, (T%,(M)) and T3, 4., (M) consists of two disjoint
parts. The underparts coincide (the triangle); the upsides are different.

Figure 12.7 gives an example such that the inequality §, (7 + ) < 6,(12)
holds for v = (—1,0)", i.e., assumption (A5) is violated. The sets T, (T, (M))
and T;, 4, (M) are different by small triangle in its upper part at the right.
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Fig. 12.7 Example 3.
Assumption (AS5) of
Theorem 12.1 is violated:

8y (11 + 12) < 8,(12); 1 is the
boundary of the set M, 2 is
the boundary of the set ﬂ. —
T, (M), 3 is the boundary of
the set Ty, (T, (M)), 4 is the -
boundary of the set

Ty 40, (M) I/ / 0

i T ne:
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Appendix

Let us consider a connection between the question investigated in the present work
and the well-known Hopf formula (Alvarez et al. 1999; Bardi and Evans 1984; Hopf
1965).

1) For an arbitrary proper (i.e., not identically equal to 4o0) function g : R" —
(—o00, 400], we define the Legendre transform

g (s) = sup[{x,s) —g(x)]. seR"

x€R”

By cog denote the convex hull of the function g. Properties of the function
g* (Rockafellar 1970, Chap. 3, §16; Polovinkin and Balashov 2004) imply that if
the proper function co g is continuous in R”, then

(cog)* =g~ (12.36)

The support function p(-, A) of a compact set A C R” is connected with the
indicator function
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oa(x) = 0, x e A,
4 ] 400, x g A
of the set A by the relation
p(- A) = 0(). (12.37)

2) The Hopf formula

w(t, x) := sup[{x,s)—*(s)+ (O —1t)H(s)], s€R", xe€R", t <v (12.33)

s€R”

represents the generalized (viscosity (Bardi and Capuzzo-Dolcetta 1997) or min-
imax (Subbotin 1991, 1995)) continuous solution of the Cauchy problem for the
Hamilton—Jacobi equation

wi(t,x) + H(wy(t,x)) = 0,1 € (0,9), xe€R";
w(d, x) = ¢p(x), x e R",

(12.39)

with convex continuous terminal function ¢ (Bardi and Evans 1984).

3) Set
H(s) = max{q, s) + min(p,s), @(s) = oy (s),
q€Q PEP

where M is a convex compact set. Consider the function w defined formally by the
Hopf formula (12.38) for these data.
Let us show that

Ty— (M) ={x e R" : w(t,x) <0} (12.40)
As a preliminary, for the convex sets A and B, we establish the relation

p(-, AZB)=co(p(-., A)—p(-. B)). (12.41)

We use the equality

AXB = ()(A4-b).

beB

It is known that the support function for the intersection of an arbitrary collection
of compact convex sets coincides (Rockafellar 1970) with the convex hull of
the function that is the minimum of support functions for the sets used in the
intersection. In our case,
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min p(s, A —b) = p(s, A) + min(—b, s) = p(s, A) — p(s, B).
beB beB

Consequently, (12.41) holds.
Applying (12.41), for the convex set M and t = ¥ — ¢, we get

o(s, T;(M)) = co h.(s), (12.42)
where
he(s):= p(s, M) + p(s,—tP) — p(s,7Q) = p(s, M) — TH(s). (12.43)

The compactness of the sets P and Q implies that the function co h, is
continuous. Using (12.36) and (12.42), we get

h7(x) = (co he)*(x) = sup[{x.s) — (co ho)(s)] = sup[(x,s) — p(s, T=(M))].

sERN SER!
(12.44)
On the other hand, by (12.43) and (12.37), we calculate

h¥(x) = sup[{x,s) — h.(s)] = sup[{x,s) — oy (s) + TH(s)]. (12.45)

SER! SERN

Since

Ty—(M) ={x e R" - sup[{x.s) — p(s. Ty (M))] = 0},

SERN
applying (12.45), we write
Ty— (M) ={xeR": hl(x)<0}.

Comparing (12.38), (12.44), and (12.45), we get (12.40).

4) Thus, if the compact set M is convex, then
Wo(t) = Ty—,(M) = {x € R" : w(t,x) < 0}.

Now, in the case of a convex set M, we have two variants of useful description
of the set Wy(¢), whence the guidance problem of the first player to the set M at
the fixed instant 9 is solvable, namely, by the Pshenichnyi formula and by the Hopf
formula. The Pshenichnyi formula deals with sets, while the Hopf formula uses
functions.

In the paper, for the problems in the plane, we obtain sufficient conditions to
describe the set Wy (¢) by the Pshenichnyi formula for a non-convex set M. The
Hopf formula does not work in the non-convex case.
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Chapter 13
Game with Two Pursuers and One Evader:
Case of Weak Pursuers

Sergey Kumkov, Valerii Patsko, and Stéphane Le Ménec

Abstract This paper deals with a zero-sum differential game, in which the first
player controls two pursuing objects, whose aim is to minimize the minimum of
the misses between each of them and the evader at some given instant. The case is
studied when the pursuers have equal dynamic capabilities, but are less powerful
than the evader. The first player’s control based on its switching lines is analyzed.
Results of numeric application of this control are given.

Keywords Pursuit differential games ¢ Fixed termination instant e Positional
control ¢ Switching lines

13.1 Introduction

In papers (Ganebny et al. 2012a,b; Le Ménec 2011), a model pursuit problem with
two pursuers and one evader is considered. Three inertial objects move in a straight
line. Control of each object is scalar and has a bounded value. At some prescribed
instant 77, the distance between the first pursuer and the evader is measured; also,
at some instant 75, the distance between the second pursuer and the evader is
checked. The pursuers act together, and their aim is to minimize the payoff, which
is the minimum of these two distances. The pursuers can be joined into one player,
which will be called the first player. The evader is treated as the second player,
who maximizes the payoff. The obtained problem can be considered as a pursuit
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game, because its practical source is a spacial pursuit, where the instant 7 (73) is
the instant of the rendezvous of the first (second) pursuing object with the evading
object along the nominal trajectories.

From the point of view of the differential game theory, the model problem
described above is interesting because the level sets of the payoff function are non-
convex, and, therefore, the time sections of the level sets of the Value function
are non-convex too. The authors in works (Ganebny et al. 2012a,b; Le Ménec
2011) distinguish variants of the problem parameters giving qualitatively different
solutions of the problem and studied numerically corresponding level sets of the
Value function.

The simplest case is the situation of “strong” pursuers when both of them have
dynamic advantage over the evader. The most difficult case is when the dynamic
advantage passes from a pursuer to the evader or back during the pursuit process.
In particular, in this case, level sets appear, whose time sections lose connectedness
during the process, and further get it back.

The main problem is to construct efficiently optimal (or quasioptimal) feedback
controls of the player. The standard approaches from the differential game theory
need either storing entire Value function, or fast computing its value in the
neighborhood of the current point. With that, the optimal control is built using some
variant of generalized gradient of the Value function (Bardi and Capuzzo-Dolcetta
1997; Isaacs 1965; Krasovskii 1985; Krasovskii and Subbotin 1974, 1988; Tarasyev
et al. 1995).

The authors have experience (Botkin and Patsko 1983; Botkin et al. 1984; Patsko
2006; Patsko et al. 1994) of constructing optimal control in linear differential games
with convex payoff function on the basis of switching lines and surfaces. Mentioning
the switching lines, we mean some separation of the phase space at each instant into
some domains, in which each component of the control keeps some of its extreme
values. With that, we store the lines only without values of the Value function. In the
problem with two pursuers and one evader, the payoff function is not convex, but
the authors tried to extend (Ganebny et al. 2012a,b) their algorithms for constructing
feedback control on the basis of switching lines for this situation too. For the case of
“strong” pursuers, statements proving the optimality of corresponding controls are
set forth in work (Ganebny et al. 2012a). For other variants of the game parameters,
the switching lines are built also in papers (Ganebny et al. 2012a,b). But there was
no strict proof of optimality of the corresponding feedback control methods.

In this paper, such a study is made for the case of equal “weak” pursuers. We
assume that 77 = T5. Under these conditions, we formulate and prove statements
about quasioptimality of the first player’s control based on the switching lines. Also,
we consider the question of stability of this control with respect to inaccuracies of
numeric constructions and errors of measurements of the current position of the
system.

Sections 13.2 and 13.3 of this paper deal with the formulation of the problem
and passage to a two-dimensional equivalent differential game in coordinates
of forecasted misses. These sections mostly repeat the corresponding text from
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paper (Ganebny et al. 2012a). The authors have not reduced this text to keep the
readability. The remaining part of the paper is new. In Sect. 13.4, we introduce
the concept of an approximating differential game, which is used to construct
the switching lines. In the problem under consideration, the first player’s control
consists of two scalar components u;, i = 1, 2, which are bounded by the
constraints |u;| < w;. Each component has its own switching line depending on
time. The algorithm for constructing the switching lines is described in detail in
Sect. 13.5. On one side of the switching line, the corresponding control u; takes
value u; = +u;, on the other side, its value is #; = —pu;. It is important that if
the system has its current position just in the switching line, then the corresponding
control u; can be taken arbitrary from the interval [—u;, +;]. Auxiliary statements
concerning estimates of the Value function change along possible trajectories are
proved in Sect. 13.6. Section 13.7 is devoted to the estimate of the guaranteed result,
which is provided to the first player by the feedback control on the basis of the
switching lines. Results of numeric simulations of the system with usage of the
suggested control method are given in Sect. 13.8.

Note that there are a lot of publications dealing with group pursuit problems
(multi-agent systems) (Abramyantz and Maslov 2004; Blagodatskih and Petrov
2009; Chikrii 1997; Grigorenko 1991; Hagedorn and Breakwell 1976; Levchenkov
and Pashkov 1990; Petrosjan 1977; Petrosjan and Tomski 1983; Pschenichnyi 1976;
Rikhsiev 1989; Stipanovi¢ et al. 2009, 2012). But these problems are difficult due
to high dimension of the state vector and non-convexity of the payoff function.
Therefore, usually, some strong conditions are assumed for the dynamics of the
objects (for example, objects with simple motions are considered), of their initial
positions, etc. In this work, where the number of objects is small, the authors obtain
the solution without any essential simplifications of the problem.

13.2 Formulation of Problem

We consider a model differential game with two pursuers and one evader. All three
objects move in a straight line. The dynamics descriptions for pursuers P; and P, are

Zp = ap, ip, = ap,,
ap, = (w1 —ap)/lp., ap, = (ur—ap,)/lp,.
1 1 / 1 2 2 / 2 (13'1)
lui| < 1, luz| < o,
ap, (lo) =0, apz(l()) =0.

Here, zp, and zp, are the geometric coordinates of the pursuers; ap, and ap, are
their accelerations generated by the controls #; and u,. The time constants /p, and
[ p, define how fast the controls affect the systems.
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The dynamics of the evader E is similar:
ig=ag, ap=@—ag)/lg, [|v]|=v, aglto)=0. (13.2)

Unlike papers (Ganebny et al. 2012a,b; Le Ménec 2011), this work deals with
the case of equal pursuers only, that is, we assume that 4 = pp, = p and Ip, =
Ip, =1Ip.

Comparing dynamic capabilities of each pursuer P; and P, and the evader E, one
can introduce the parameters (Le Ménec 2011; Shinar and Shima 2002) n = /v,
e = lg/lp. We investigate the case of weak pursuers, that is, the situation when the
inequalities

n=1, ne=<l
are true and, at least, one of them is strict.

Let us fix some instant 7". At this instant, the misses of the pursuers with respect
to the evader are computed:

rp.e(T) = |26(T) —zp,(T)

. rpe(T) = |ze(T) — zp,(T)]. (13.3)

Assume that the pursuers act in coordination. This means that we can join them
into one player P (which will be called the first player). This player governs the
vector control u = (u,uy). The evader is regarded as the second player. The
resultant miss is the following value:

¢ =min{rp, g(T), rp,e(T)}. (13.4)

At any instant ¢, both players know exact values of all state coordinates zp,, Zp,,
ap,,zp,, Zpy, A p,, ZE, 2E. A . The vector composed of these components is denoted
as z. The first player choosing its feedback control minimizes the miss ¢, the second
one maximizes it.

Let the game interval be [¢, T'], where < T.

Following Krasovskii and Subbotin (1974, 1988), feasible strategies of the first
player are considered as arbitrary functions (¢, z) — U(t, z) with their values in the
set {(ul,uz) : |M1| <MK, |M2| < [L}

The symbol z(-; to, x0, U, A, v()) denotes a stepwise motion of system (13.1),
(13.2), which starts from the position (#y, xo) when the first player applies a strategy
U in a discrete control scheme with the step A > 0 and the second player uses
a measurable control v(-) with values |v(t)\ < v. The term “discrete scheme of
control” means the following. Some grid of instants #; with the step A (starting at
the instant #y) is introduced. Having a position z(#;) at the instant ¢, the first player
computes the vector control u = U (ts, z(ts)). The first player’s control chosen at
the instant #; is kept until the instant #,4; = 7, + A. At the position (fs+1 , z(tS_H)),
a new control value is chosen, etc.
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Assume

I (to. 20, U, A) = sup (2(T; t9.20, U, A, v(")).
v()

Here, the supremum is taken over all measurable functions ¢ +— v(¢#) bounded
by inequality [v(r)| < v. The quantity ¢(z(T)) is the value of the payoff func-
tion (13.3), (13.4) at the termination instant 7 on the motion z(-; 10,20, U, A, v(-)).

The quantity I"(#y, z9, U, A) is the guarantee of the first player provided by the
strategy U at the initial position (%), zo) in a discrete scheme of control with the
step A. The best guarantee of the first player for the initial position (%, zo) is defined
by the formula

(¢ = min lim I"(¢ A
(O,Zo) H%JIHAIEIO (o,Zo,U, ),

where the symbol lim denotes the upper limit. In Krasovskii and Subbotin (1974,
1988), it is shown that the minimum on feasible strategies U is reached.

It is known that the best guarantee I'(#y,zo) of the first player coincides with
the best guarantee for the second player defined symmetrically. Thus, the quantity
I"(to, 20) is also called the value V(#y, zo) of the Value function at the point (¢, zo).

In this paper for the case of weak equal pursuers, it is shown how to find a
quasioptimal strategy of the first player (that is, a strategy close to the one optimal
on the guaranteed result), which is stable with respect to inaccuracies of its numeric
construction and errors of measurement of the current phase state.

13.3 Passage to Two-Dimensional Differential Game

At first, we pass to relative geometric coordinates

V1 =2ZE—2p, Y2=2Z2E—2Ip, (13.5)

in dynamics (13.1), (13.2) and payoff function (13.4). After this, we have the
following notations:

Vi =ag—ap,, Y2 =ag —ap,,
ap, = (w1 —ap)/lp, ap, = (ua—ap,)/lp,
ag = (—ag)/lE, lua| < p,
lur] < p, [v] < v, ¢ = min{|y(T)][, |y2(T)I} (13.6)

State variables of system (13.6) are yi, y1, ap,, ¥2, Y2, ap,, ag; w1 and u, are
controls of the first player; v is the control of the second one. The payoff function ¢
depends on the coordinates y; and y, at the instant 7.
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Let us introduce zero effort miss coordinates (Shima and Shinar 2002; Shinar and
Shima 2002) x; and x, computed by formula

xi =y +yit—aplph(z/lp) +aplph(z/lg), i =1,2. (13.7)

Here, x;, y;, yi, ap,, and ag depend on ¢; T = T — t. Function / is described
by the relation k() = e™® + « — 1. It is very important that x; (T) = y;(T).
Let X(¢, z) be a two-dimensional vector composed of the variables x;, x, defined by
formulae (13.5), (13.7).

The dynamics in the new coordinates x;, X, is the following (Le Ménec 2011):

X1 = —lph(z/lp)uy + lgh(z/lg)v, |u| < p, ol < p,
Xp = —Ilph(t/lp)us + lgh(z/lg)v, |v| <v.

(13.8)

The payoff function is

¢(x1(T), x2(T)) = min{|x|(T)]. [x2(T)]}.

The first player governs the controls u;, u, and minimizes the payoff ¢; the
second one has the control v and maximizes ¢.

Let x = (x1.x2)" and V(t, x) be the value of the Value function of game (13.8)
at the position (¢, x). From general results of the differential game theory, it follows
that V(t,z) = V(t, X(t, z)). This relation allows us to compute the Value function
of the original game (13.1)—(13.4) using the Value function for game (13.8). The
transformation (¢z,z) +— x = X(¢,z) helps also to map the feedback controls in
game (13.8) to corresponding controls in game (13.1)—(13.4).

For any ¢ > 0, a level set (a Lebesgue set) W, = {(t, x) : V(t,x) < c}
of the Value function in game (13.8) can be treated as the solvability set for the
considered game with the result not greater than c, that is, for a differential game
with dynamics (13.8) and the terminal set

Me = {(T.x)  [xi| < ¢, |xa| < cf.

Let W.(t) = {x : (t,x) € W,} be the time section (¢-section) of the set W, at the
instant 7.

Problem (13.8) is of the second order on the state variable and can be rewritten
as follows:

X =0 + D(Ouy + E()v, lu| < p, Juo| <, ol <v. (13.9)
Here, x = (x1,x2)T; vectors 2,(t), Z»(t), and & (¢) look like

P1(6) = (~Lph((T =)/ 1), 0).  Za(t) = (0. ~Lph((T = 1)/1p))".
&) = (Ieh(T = 1)/ 1g). Ieh((T = 1)/ 1))
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The control of the first player has two independent components u; and u,. The vector
21(t) (2,(t)) is directed along the horizontal (vertical) axis. The second player’s
control v is scalar.

13.4 Approximating Differential Game

Together with system (13.9), we shall consider an approximating system
X = Di(t)ur + Dr(t)ur + E(t)v, lui] < w, |lua| <, v <v, (13.10)

which will be used for numeric constructions.
As system (13.10), let us take a system with piecewise-constant functions

Di(t) = Zi(t;), Et) = &(t)),t € [tj,tj4+1),1 = 1,2,

which approximate the functions Z; (-), &(-), i = 1,2, in some partition of the axis ¢
by instants ;.

The symbol x(z; 1, x4, u(-), v(-)) (or, shortly, xV(r)) denotes the position
of system (13.9) at an instant ¢ if its motion starts at the instant . from the
point x, and is generated by some feasible measurable controls u(-), v(:). Let
x@ (514, x4, u(-), v()) (or, shortly, x® (7)) be the analogical denotation for sys-
tem (13.10). The difference of the motions x(")(-) and x®(-) at an instant # brought
by difference of dynamics (13.9) and (13.10) can be bounded from above by the
value

t

2 t
Kt t) = Z/L/”D,»(S)—%(s)”ds+v/HE(s)—£(s)||ds.
i=1

* [

The payoff function for the approximating game is the same as for game (13.9).
Note that it obeys the Lipschitz condition with the constant A = 1.

Let V@ (¢, x) be the value of the Value function of the approximating game at the
position (¢, x). Since the right-hand side of the dynamics (13.10) does not include
the state variable, the Lipschitz constant of the function x — V@ (¢, x) for any t <
T coincides (Subbotin and Chentsov 1981, pp. 110-111) with the Lipschitz constant
of the payoff function, that is, with the number A = 1.

To find the function V® we apply a backward numeric procedure to construct
t-sections

WA(t) = {x: VO, x) < ¢}
of its level sets. An algorithm developed by Ganebny uses the specificity of the

plane and can be applied to problems with the dynamics piecewise-constant in time.
Descriptions of the procedure can be found in works (Ganebny et al. 2012a,b).
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For any ¢ > O and ¢t < T, the set Wc(z)(t) (if it is nonempty) is symmetric with
respect to the origin of the plane x;, x, because the same property is incident to
dynamics (13.10) (together with the constraints onto the controls) and the payoff
function. Moreover, there is the symmetry with respect to the bisectrix of the
second and fourth quadrants. The latter is the consequence of the assumption about
equality of the pursuers’ dynamic capabilities in the game with the common terminal
instant 7" and symmetry of the payoff function with respect to this bisectrix.

The numeric examples below are given for the game with the following
parameters:

n=09, £=07 T =20. (13.11)

In Fig. 13.1, the evolution in time of the set WC(Z) (t) for ¢ = 3.0 is shown. The
symbol t = T —¢ in the marks denotes the backward time. The upper-left subfigure
corresponds to the instant 7" when the game terminates. The section of the level set at
this instant is a cross having infinite strips along the axes. The upper-right subfigure
shows some intermediate instant when the infinite strips have not collapsed, but
they become narrower. The middle-left subfigure shows the instant when the infinite
strips disappear, and the 7-section of the level set consists of two right triangles
touching each other at the origin. Further, these triangles are compressing; also,
horizontal and vertical rectilinear parts appear, which grow in the backward time
(see the middle-right subfigure). At some instant, the parts parallel to the bisectrix of
the first and third quadrants disappear (the lower-left subfigure), and the pentagons
turn into squares. After that, the squares contract (the lower-right figure) until the
t-section of the level set becomes empty.

In Fig. 13.2, one can see two three-dimensional views of the set WC(Z) in the
space ?, x1, x, for ¢ = 3.0. On the boundary of the set, there are contours of 30
time sections with the time step 0.55. The constructions are made with quite fine
time step At = 0.05, so, the obtained set is a quite good approximation of the ideal
level set of the Value function of game (13.9).

Figure 13.3 at the top gives the picture of sections Wc(z) () computed at the
instant # = 17.0 (r = 3.0) for values ¢ in the range from 0 to 50 with the
step Ac = 0.5. It is important to emphasize that there are two points of minimum
of the function V® (z,-), which are located on the bisectrix of the second and fourth
quadrants. The picture of sections at the instant 1 = 8.0 (zr = 12.0) is shown in
Fig. 13.2 at the bottom.

Denote by Z(t), t < T, the set consisting of these two minimum points of the
function V@(t,-) in the plane x;, x, at the instant . With decreasing the direct
time ¢, the points of the sets Z(¢) go away from the origin. With that, the global
minimal value ¢y (¢) of the Value function grows.

An important property of dynamics (13.9) is that the directions of the vec-
tors Z,(t) and Z,(t) do not change in time. The vectors D(¢) and D,(¢) of approx-
imating dynamics (13.10) possess the same property. Namely, the vectors Z, (¢)
and D(t) (Z,(t) and D;(t)) are directed horizontally (vertically) contrary to the
positive direction of the axis x; (x;). In particular, this property provides appearance
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Fig. 13.1 Evolution of the set W;_f)) (t). The symbol t = T — ¢ denotes the backward time

of new horizontal and vertical parts of the boundary of the set Wc(z) (t) when it
becomes disconnected.
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Fig. 13.2 Two three-dimensional views of the level set WS%)

Denote by ¢(¢) the value of the function V®)(¢,-) on the axis x| (which is the
same for all points of the axis) at the instant 7. Due to symmetry, the quantity ¢ (¢) is
also the value of the function V) (¢, -) on the axis x,. The specific property of the
case of weak pursuers is that the function ¢ + ¢(¢) decreases with growth of 7.

For ¢ € [cmin(2), €(2)), the set Wc(z) () consists of two bounded non-intersecting
parts.

13.5 Switching Lines

Taking into account that the vector D1 (¢) is directed horizontally, we shall study the
restrictions of the function V(¢ ) to horizontal lines.
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Fig. 13.3 Time sections of a system of level sets at two instants: upper: t = 17.0; lower: t = 8.0

In each horizontal line that does not cross the set Wg((zt))
of minimum of the function V® (t,-), and this points is located on the axis x;.
In points of the axis x|, we have V® (¢, x) = &(¢). Therefore, the entire axis x;
consists of points of minimum. For horizontal lines that cross the interior of the

set Wg((zt)) (1), there are a lot of points of minimum, and they are rectilinear part of the

(1), there is only one point

boundary of some set Wc(z) (z). Such a segment degenerates to a point for the line,
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Ty

IF :
a

Fig. 13.4 Minima of restrictions of the Value function to horizontal lines

which passes through the point of the global minimum of the function V@ (z,-).
In any horizontal line, the value V' (¢, x) of the function V® (¢, -) grows if to move
the point x along the line away from the segment of minima. For quite far points,
the value is constant.

A set consisting of the segments of minimum is shown in Fig. 13.4 as a shadowed
domain.

The same properties of the function V) (¢, ) take place for vertical lines too,
which correspond to the vector D, ().

Decomposing the plane x;, x, into horizontal lines and considering restrictions
of the function V@ (¢,7),t < T, to each of them, one can take the middle point of
the corresponding segment of minimum. In the horizontal axis, we take the origin
as this middle point. The obtained collection of points can be seen in Fig. 13.5. Let
us close this set adding two limit points at the horizontal axis. After that, let us add
a horizontal segment that connects these two limit points. As a result, we get a line
(Fig. 13.6), which will be denoted by I1(1,¢) and called the switching line for the
control u; for system (13.10) at the instant ¢. On the right of this line, let u; = +pu,
on the left, u; = —u. On the switching line, the control u; can be taken arbitrary
from the interval [—u, +pu].

The switching line I7(2,¢) (Fig.13.7) for the control u, is symmetric to the
line I1(1,¢) with respect to the bisectrix of the second and fourth quadrants. Above
it, the control is up = +u, below it, uy = —p. On the switching line, the control u,
can be arbitrary from the interval [—u, +u].

The lines I1(1,¢) and I1(2, t) can be considered as exact ones for approximating
system (13.10). From the further text, it will be clear that they define the optimal
feedback control in system (13.10) and quasioptimal one (that is, close to the
optimal one) in system (13.9). Generally speaking, we cannot compute exactly the
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Ty
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Fig. 13.5 Collection of middles of the minima intervals of the Value function restrictions to
horizontal lines

x,

Uy =+

(1)

!

Fig. 13.6 Switching line for the control u;

lines I1(1,¢) and I1(2,t). For example, even if the sets Wc(z) (t) are constructed
ideally, we work with some finite collection of them with some step on the
parameter c. As a result, we get polygonal lines, which only approximate the ideal
switching lines. Therefore, a very important question is what guarantee they provide
for the first player.

For any t < T and any horizontal (vertical) line passing through a point x, let
us denote by ¥'(1,¢, x) (respectively, #(2,1, x)) the minimal value of the Value
function V@ (¢, -) on this line. One has 7 (1,1,x) = VP (¢, x), when x € I1(1,1),
and 7 (2,t,x) = VO(¢t,x), when x € IT(2,¢).
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Ty

Uy = [

I(2,t)

Ty

Uy = -}

Fig. 13.7 Switching line for the control u;,

Ty

Fig. 13.8 r-extension of the switching line for the component u; of the first player’s control

Take a number r > 0 and “expand” the line I1(1,¢) putting to it horizontal
segments with the length 2r. The obtained set (see Fig. 13.8) is denoted by I7"(1, t).
In the same way, using vertical segments, one can construct the set 11" (2, ¢).

Geometric r-expansion of the ideal switching lines is introduced to deal with
the case of inaccurate numeric construction of the switching lines. We would like
to “enclose” the switching lines [1(1,¢) and I1(2,¢) by a domain, in which the
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Fig. 13.9 «-neighborhoods Ty
of the set Z(¢) and the sets
K(1,t) and K(2,1)
) K20
Z(t)
K(1,t) .
c Y
T >
Z(t)
NV

inaccuracies of the construction or measurement errors can be concealed. With that,
for the control uy, it is convenient to use just the horizontal expansion, because
in every horizontal line the value ¥'(1,¢, x) is the same for all points. Let after
computations we have the following information: (1) we know the value 7'(1, ¢, x+)
in some point X, at some instant ¢; (2) the distance from the point x, to the switching
line I1(1,¢) in the horizontal direction is not greater than r. Then we can obtain an
upper estimate for V@ (t, x,):

VO(t,xe) < ¥V (1,1, x5) + Ar.

Due to similar reason, the vertical expansion is convenient for the control u5.

But the expansions are inefficient at the horizontal part of the line I7(1,¢) and at
the vertical part of the line I7(2,¢). Let us denote the horizontal (vertical) part of
the line I7(1,¢) (I1(2,t)) by K(1,¢) (K(2,t)). Choose o > 0 and consider closed
a-neighborhoods O (ar, K(i, 1)), i = 1, 2, of these sets.

For further constructions, we need to “prohibit” a fast transfer from the
r-expansion [17(1,¢) of the switching line I7(1,¢) to the r-expansion I1"(2,¢)
of the switching line I7(2,¢) and back. The lines I1(1,¢) and I1(2,t) cross in
the origin and in two points that constitute the set Z(¢). Let us introduce a closed
a-neighborhood O (a, Z(1)) of the set Z(r) (Fig. 13.9). Denote

mi.0 =e [ma0\ (0w 20) | J 0 K@.0))]. i=1 2

As it was said in Sect. 13.2, we assume that the initial instants in the considered
games are in the interval [f, T]. Let Y = [f, T] x R? be the space of the games.
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The lines [1(1,¢) and I1(2,¢),t < T, depend continuously on the time. Thus,
for any instant 7 € [7, T), one can find such quantities @ > 0 and # > 0 that

ma.n(\I,e.n=2. teli.i. a=da rel0.F (13.12)

Moreover, for these values ¢, «, and r, there is an estimate ﬂ(f ,a@,7) > 0, which is
less than the transfer time of systems (13.9) and (13.10) from one of the sets I/ (1, -)
and [1}(2, -) to another.

13.6 Auxiliary Statements

Let us formulate a number of statements, which will be used during the proof of the
main theorem about the guarantee when the first player applies in system (13.9) the
control based on the switching lines constructed in system (13.10).

Denote by 14 (1,¢) (IT-(1, 1)) the part of the plane, which is strictly on the right
(strictly on the left) of the switching line IT(1,¢). If x € [T (1,¢) (x € I[1_(1,1)),
then the control u; = +u (u; = —p) directs the vector D1 (¢)u; to the switching
line, that is, to the area of less values of the Value function V@ (t,+). In the same
way, the symbol 7, (2,¢) (IT-(2,t)) denotes the part of the plane above (below)
the switching line I7(2, ).

Leto = max{||D1(t)|| it et T]} Since || D1 (¢)|| = || D2(¢)|| in the considered
case of equal pursuers and equal termination instants 77, = T, = T, the value o is
also an upper estimate for the norm of the vector D,(¢) in the time interval [z, T].

Lemma 13.1. Let us fix i = 1, 2. Let the position (tx,x«) € Y and the
number § > 0, ty + 8 < T, be such that x, € Il (i,ty) (or x« € T1_(i,t4))
and any motion of system (13.10) starting from the point x at the instant t, stays in
the set [T (i,t) (I1_(i,t)) for any instant t € [t«, t« + 8] In the interval [t, t« + 8],
consider an arbitrary motion xV(-) of system (13.9) starting from the point x at
the instant t. under some control v(-) of the second player and some control u(-)
of the first player. The latter is such that u; = +u (u; = —[L) except, maybe, the
interval [ty, tx + ] with a length w < §.
Then for any t € [t«,t« + 8], the following estimate is true:

V(6. xD(1)) < VO(te, x2) + 2A00 1 + Ax(te. ti + §). (13.13)

Here,i =2ifi =1, andi = 1ifi = 2.

Remark 13.1. Let, for definiteness, i = 2 and from the variants + and — the sign +
be taken. Then x,. € [14(2,t), and the assumption about the “correct” control
up type is in agreement with this. The control can differ from u, = +pu in some
interval of the length w only. A feasible control u;(-) can be arbitrary. The value w
defines the second summand in the right-hand side of estimate (13.13). The third
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summand is standard addition, which estimates from above the increment of the
Value function V) (t,, t.) caused by difference of the dynamics of systems (13.9)
and (13.10).

Proof. Let us assume for definiteness that i = 2 and the sign + is chosen.

Together with the motion x(; 74, x4, u(-), v(-)) of system (13.9), which in
the formulation of the lemma is denoted as x(V(-), let us consider a motion
x(z)(-; Loy X, u(+), v()) (or, shortly, x@ (+)) of system (13.10), which is emanated
under the same controls u(-) and v(-).

Let ¢y = V(z)(t*,x*).

Fix some arbitrary instant ¢ € [tx, 1« + 8].

On the basis of the open-loop control v(-), which is considered in the inter-
val [t, t], choose an open-loop control ug(-) such that

Q) e W), (13.14)

where x( )( ) = x(z)( Loy X, Use (), v()) is a motion of system (13.10) starting from
the point x, at the instant 7, under controls ug(-) and v(-). Such a control can be
chosen in any case on the basis of stability property (Krasovskii and Subbotin 1974,
1988) of the level set W, of the Value function V. Inclusion (13.14) means that

VO (1.x2(1) < VO (1 x0). (13.15)

Consider anew control iy (-) with components it () = ui5(-) and itog (1) = + .
Let x x ( ) be a motion of system (13.10) starting from the point x, at the instant z,
under controls i (+) and v (-).

The following component-wise relations are true:

220 =x@00), 200 < xPa(0). (13.16)

Since the points £ (r) and x@(r) are in the set IT,(2,7), it follows
from (13.16) that

VO (1,2 (0) < vO(t, xPu0)). (13.17)
Due to the hypotheses of the lemma, the component u,(-) of the vector con-

trol u(-) differs from the constant control iip5(f) = +u in some interval of the
length w only. Therefore,

’xf)(z) - )egﬁg(z)\ < 2w00. (13.18)
One has

‘xé”(l) —xf)(t)( < 1(te,1). (13.19)
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From (13.18) and (13.19), it follows that
My 22
‘xz (1) — 22 (z)‘ < 2004 + g(ter1). (13.20)

Consider a point z in the horizontal line passing through the point xV(¢). The
point z is the closest one to fcs(f ) (t). Due to (13.20), one gets

A

Hz — xs(tz)(t)H <2wop + y(t«,t).
Consequently,
VO, z) < V(z)(t,fcs(tz)(t)) + 2 wop + Ay(ts, t).
Taking into account (13.15) and (13.17), this gives
VOU(t,2) < VOUty, x4) + 20001 + Ax(ts. 1).
Thus,
Y (1,1,2) < VO(ta, x4) + 2 00 + Ay(ts.1). (13.21)

Since ¥ (1,1,z) = ¥ (1,1,xV(r)), relation (13.21) gives (13.13). O

Lemma 13.2. Let (ty,x4) € Y,8 > 0, t, + 8 < T. Assume that some arbitrary
feasible controls u(-) and v(-) act in system (13.9) in the interval [t,ts + §]. Then,
along the corresponding motion xV(-) starting from the point x4 at the instant t,
the following estimate holds

V@ (£, xV(1)) < VO (tarxa) + 4Aopu(t — ta) + Ax(te.1). (13.22)
Proof. Fix some instant ¢ € [t«, t« + §].
Consider a motion x®(-) of system (13.10) starting from the point x, at the
instant 7, under the controls u(-) and v(-) from the lemma formulation. One has
[xV () = xP O] < x(@e.0). (13.23)
Let cx = V@ (4, x4). Use the stability property of the set WC(*Z) . Then on the
basis of the open-loop control v(-), one can choose an open-loop control ug(-) such
that
X&) = xO(t: ta. Xasua (), 0()) € W2 (@),

This means that

VO (e, xP(1) < VO (1 x0). (13.24)
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Taking into account the inequality
[x® @) = xP @) < dop 1)
and inequality (13.23), we obtain
[x® @) = xP O] < doplt — 1) + 1, ).
Therefore,
VO (1, xV () < VO (£, xQ (1)) + 4hopu(t — 1) + Ax(te, 1).

From this due to (13.24), inequality (13.22) follows. O

Lemma 13.3. Let (t«,x+) € Y, 6 > 0,t« + 6 < T. Assume that any motion
of system (13.10) starting from the point x, at the instant ty« does not reach the
lines [1(i,t),i = 1,2, fort € [ts,tx + b).

Assume that along a motion xV(-) of system (13.9) starting from the point x at
the instant t under some feasible controls u(-) and v(-), it is true that for any i =
1,2, in the interval [ts, ts« + 8)

o either xV(t) € M4 (i,t) and u; (t) = +pu;
o orxW(t) € M_(i,t) and u;(t) = —p.

Then the following estimate is true:
VO(ty 4+ 8,xV(ts +8)) < VO (ta, x4) + Ax(ta, ts + 8).

The proof of Lemma 13.3 can be done in the same way as for Lemmas 13.1
and 13.2 using the stability property of the set WC(*Z), where cx = VO (14, X4).

Lemma 13.4. Let (tx,x4) € Y, t* € (t4x,T). Let 0 < w < t* — t4. Assume that for
a motion xV(-) of system (13.9) starting from the point x at the instant t, under
some feasible controls u(-) and v(-), it be true that for any i = 1,2,

o cither xV(t) € My(i,t) in the interval (t4,t*) and u;(t) = +p in the
interval [ty + w,1t*];

o orxW(t) € I_(i,t) in the interval (ts,t*) and u; (t) = —u in the interval [ty +
w,t*].

Then for any t € [t«,t™], the following estimate is true:
VO, xD(1)) < VO (b, x4) + 4Awop + Ax(ta, t). (13.25)
Proof. Divide the interval [t,,2*] by instants {¢;}, s = 1,2, ..., e, 1] = ts, l, = 1%,

ts+1 < t; + & in such a way that for any interval [t,,#,4+1], s = 2, ..., e — 1 of the
division, no motion of system (13.10) starting from the point x (t;) at the instant ¢,
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reaches the lines I7(i,t),i = 1,2,t € [t;, t;+1]. This can be done due to continuity
of the switching lines I7(1,¢) and I7(2, ¢) in time and due to the assumption on the
location of the points x(! () with respect to the switching lines.

Due to Lemma 13.3 for any s = 2, ..., e — I such that #; > t« 4+ ®, one has
relation

VO (1541, xD(1541)) < VO (15, xV (1) + Ax(ts, 1541). (13.26)
For s such that #; € [t«, t« + ], from Lemma 13.2, it follows that
VO (ty41,xV (t541)) = VO (b, V(1)) + 4A80p + Ax(ts, t541). (1327

Fix t € [t«,t*]. Using estimates (13.26) and (13.27) fors = 1,2, ..., e — 1
while 7, < ¢, we get the inequality

VO (£, xD(1)) < VO (ty, x4) + 440 + 8)op + Ax(ts, ).

Passing to the limit as § — 0, one obtains estimate (13.25). O

13.7 Theorem About Guarantee

13.7.1 Estimation of Inaccuracies for Multivalued Strategy of
the First Player

Take an arbitrary instant f € [f, T). Using 7, choose & > 0 and 7 € (0, &) such that
in the interval [7, ﬂ, there is an estimate l?(f, &, 7) > 0, which is less than the time of
the transfer of systems (13.9) and (13.10) from one of the sets 175’:(1, -) and 175 2,
to another. Then, this estimate ¥ (7, &, 7) of the transfer time is held for & > @,
r € [0, 7] too. Note that r < «. Instead of ¥ (7, &, ), we write just .

Assume

SGa.r.t) = 0. Z0) | J O(. KG.0)) | 1T (. 1),
i=1,2 a>a,rel0,r,telT).

Let us introduce a multivalued strategy (¢, x) — U(¢, x) of the first player. Define
that

Ui(t,x) = {u; : lui| < p},ifx € SGa,rt), i=1,2.

Outside the set S(i,«,r,t), t < T, the component U;(¢,x), i = 1, 2, of the
strategy U is one-valued. Namely, in the position (¢, x), the value u;, i = 1, 2,
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equal either to +u, or —u is taken in such a way that the vector D; (¢)u; is directed
to the switching line I1(i, ¢), which is ideal for system (13.10).

Let the first player apply in system (13.9) the strategy U in a discrete scheme of
control with a step A < ¥. At each instant 7, of the discrete scheme, the first player
computes the vector control u € U(ls, X (ts)).

We estimate increment of the function V' along a motion x((-) starting from
the point x at the instant 7y € [¢, T'] under the first player’s strategy U in a discrete
scheme with a step A and some feasible control v(-) of the second player.

Assume

myo) =m0l Jae.n. Ko =K1l JKke.n.

A. Let us define the following time intervals.

1. The interval .7, = [t., %] from the instant ¢, of the first entry of the point x((¢)
in the set O(a, Z (t)) to the instant #° of the last leaving the set. That is

t, =min{t : V(1) € O(a, Z(1))}, * = max{t : xV(r) € O, Z(1))}.

If 7, = @, then assume 1° = ¢.

2. The interval J; = [t;,t*] from the instant #; of the first entry of the point xV(¢)
in the set O (oe, K (t)) to the instant £* of the last leaving the set. This interval is
considered only if #; € [t%, 7).

3. The interval 7 = [t;,1¢] from the instant 7; of the first entry of the point xV(z)
in the set O(a, WE(Z) (t)), where ¢ = &(7), to the instant ¢ of the last leaving
the set. This interval is considered only

4. The interval .7, = [t,, t°] for t” < . Suppose that

xV (@) e MI(,), xP(") e M(1").

Assume that the interval . is on the right of the instant #* and beyond the
interval 7. Moreover, let us agree that the interval 7} has the maximal possible
length under these conditions.

From the properties conditioning the interval .7, it follows that only two cases of
its location are possible: inside the interval [¢%, #] or inside the interval [¢¥, {]. If the
interval .7 is absent, then assume #;, = f.

B. Compute estimates of changing the function V® along a motion x(-).
The symbol Var(V(z), [, t*]) denotes the increment of the function V® on the
interval [£,, t*]. At first, consider the intervals .7, ., and Z>.

At the instant #%, one has

V(2 xV(t%) < cmin(t?) + 2o < VO (1, x0) + Acr. (13.28)
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At the instant ¢*, the following estimate is true:
V(% xV(@5)) < (t%) + A < &) + Ace.
Since
Ete) < VO (te, xV (1)) + A,

it holds
Var(V®, [t 1*]) < 27 (13.29)
At the instant té, it is true that

VO, xD (%)) < ¢ + Aa. (13.30)

C. The estimate for increment of V® along a motion x(V(-) on the interval .7 is
not so easy. Assume for definiteness that x(V(#,) € IT.(1, 2,).

Suppose t; = f,. The symbol 7,4 denotes the maximal instant belonging
to the interval [t,#; + ©#] N [t;,¢°] such that xV(¢) € [T’(¢). Since during a
period of the length ¥, the transfer from the set I1)(1,-) to the set [1}(2,-) is
impossible, one has xM(r;4) € IT7(1,1,4). It can happen that 1,1 = 1. To
estimate 1V ® (t1+, x(l)(t1+)), we can involve Lemma 13.1.

Assume 1,4 < t°. Let t, be the minimal instant from the interval [t; + ¥, °]
such that x(V(¢) € IT.(¢). Both cases xV(t2) € IT.(1,1;) and xV(12) € IT2(2, 1)
are possible. In any case, the point x(V(¢) in the interval (f,,1,) is outside the
set S(1,a,7,¢) |JS(2,a,r,1), and to estimate the quantity Var(V®, [t4,1,]) one
can use Lemma 13.4. Note that t, — #; > .

If t, < t°, then introduce an instant #,4 defining it as the maximal one in the
interval [ty, 7, + ©] N [tp, £°] such that x(V(t) € IT](¢). If xV(t,) € IT.(1,1,), one
has x(V(t,4) € M (1, 1,4). In the case xV(2,) € I12(2,1,), so one gets xV(124) €
M (2,1)+). Assume that 7,4 < #°. Then introduce an instant t; defining it as the
maximal one in the interval [, + &, "] such that xV(¢) € IT.(t), etc.

In the interval of the type [¢;,;4] due to Lemma 13.1, one obtains

V(i tj+.xV(1) < VO(t;,xD())) + 2040w + Ax(t;.t;4).  (13.31)
Here, i = 1 if x(l)(tj) € IT)(1,t;). The realization of the control u, under
the strategy U can be “wrong” only in the interval [¢;,¢; + w], where @ < A.
IfxV(¢;) € [17(2,1;), then assume i = 2 in the left-hand side of inequality (13.31).

Passing from “//(i, tit, x(l)(t_H_)) to V@ (tj+, x“)(tj+)), we get

VO, xD(t0) < V(i tj4,xV(t4)) + Ar.
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Thus,
Var(V?, [t;,14]) < 20 A0 + Ar + Ax(t;,t;+). (13.32)
For intervals of the type [f; 4, ;41], it follows that
Var(V®, [t 1. t;41]) < 4AAop + Ax(tj+.tj41). (13.33)
Due to relations (13.32) and (13.33),
Var(V, [t;,tj41]) < 6AAop + Ar + Ax(tj. tj41).
In the interval [f,,¢"], there are not more than [(z” — 1,)/?] intervals of the
type [¢;,¢;+1]. (Here and below, [-] denotes the Entier operation.) The last interval
terminating at the instant ¢” can be an interval of the type [£j,%j+], where

tj+ —t; <. Gathering estimates for all intervals, we get

=1

Var(V®, [t,1"]) < ([ } + 1) ~(6A Ao + Ar) + Ax(t.1").  (13.34)

D. As it was mentioned above, in the interval [¢%, ﬂ, not more than two intervals
of the type 7, can be located. If there are two of them, then they are separated by
an interval of the type .7;. Denote the first of them by [z,;, #°!] and the second one
by [t2, t*?]. In the intervals (£%, #,1), (¢"', 1), (t*, t,2), and (¢"2, 1), the point xV(¢)
is outside the set S(1,a,r,1)|JS(2,a,r,t). Therefore, in each interval, we can
estimate the increment of the function V® using Lemma 13.4 assuming @ < A.
Doing this and taking into account estimates (13.28), (13.29), and (13.34), we get

[A—l()

Var(V®, [t.1]) < ([

+4-4) Ao + 3da + Ax(to, 7). (13.35)

] + 2) -(6AAop + Ar)

E. Consider the case when for some ¢+ > { the point x!)(¢) is inside the
set O(oe, WCAQ) (t)). Since Z(t) C WEQ) (), this includes, in particular, the case
when % > ¢.

At the instant té, one has estimate (13.30). For ¢t > te, the point x(l)(t) is outside
the set O («, Wg(z) (1)). Since

Z0) c w2, KO w0, r<a
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Fig. 13.10 Bad points near
the switching set S(1,a,7,1)
at the place of conjunction of
the sets O (@, Z(¢)) and
I15(1,1)

0(a, 2(t))

we get that the motion x(V(-) is outside the sets O(a, Z(t)), O(a, K(t)), (),
and, therefore, along the motion x® (-) fort > t‘A’, the “correct” first player’s control
works except, maybe, an interval [t‘ e+ ], where @ < A. So, using Lemma 13.4,
for ¢ € [t¢, T], one gets estimate

VO, xV(1)) <&+ Ao + 4rAop + Ax (e, 1). (13.36)

Let for ¢ > 7 the point xV(¢) be outside the set O (e, WE(Z) (t)). Then the motion
is also outside the sets mentioned above, and in estimate of type (13.35) for
Var(V@, [1y, 1]), only the last summand grows.

F. Thus, the final estimate at the instant is the maximum of two values F(T)
and L(T):

V(T x(T)) < max{F(), L(1)},

F(T) = VP19, x0) + ([t ;to] + 2) S(6A Ao + Ar)

+ 161 Ao + 3da + Ax(t, T),
L(T)y=¢+ Aa+ 4 Ao+ Ax(ty, T). (13.37)

Recall that the quantity ¢ depends on 7: & = &(f).

Since V®(T,x"(T)) = qo(x{l)(T), xél)(T)), inequality (13.37) is an estimate
of the first player’s guarantee when he uses the strategy U in a discrete scheme of
control with a step A in system (13.9).

A problem with practical application of the strategy U is the following. At the
instant 7 € [f,T), there are “bad” points x located outside the set S(1,&,r,1)
(S(2,a,r,t)), for which the horizontal (vertical) direction to the line IT(1,¢)
(I1(2, t)) cannot be determined as the horizontal (vertical) direction from the point x
to the set S(1,&,r,1) (S(2,@&,r,t)) because the latter direction is not unique. This
situation is shown schematically in Fig. 13.10. At the same time due to possible
numeric inaccuracies, it is reasonable to think that the switching line for u; (u,)
obtained numerically is located in the set S(1,&,r,t) (S(2,&,r,t)).
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To exclude this problem for ¢ € [f, ], one can do the following thing. Take into
account that the line IT(1,¢) (IT(2,t)) for t € [f,{] crosses the horizontal lines
outside the axis x| (x,) with non-zero angle, and there is a lower estimate for this
angle. Let us increase o up to some & > & such that the set O(&, Z(1)).t € [f.1],
covers that “bad” points in the horizontal (vertical) lines for the set S(1,@&,r,1)
(S2,a,r,t)), r € [0,7]. Then for each point x & S(1,&,r,t) (x € S(Q2,&,r,1)),
t €t ﬂ, there is no such a non-uniqueness of the direction to the set S(1,@&,r,1)
(S(2,a,r,t)) for r € [0, 7]. Estimate (13.37) holds, but we shall use it for @ = &
only.

Fort € (f , T), the choice of the control &;,i = 1, 2, which takes into account the
direction of the vector D;(¢)u; to the switching line I1(i,t), is used for obtaining
estimate (13.37) only for positions x((¢) ¢ 0(05, WE(Z)(I)). If o > a,r €

[0,7],r < a,and t € (¢, T), there is the inclusion S(i,«, 7, 1) C 0(05, Wé(z)(t)).
Thus, the horizontal direction (for i = 1) from a point x ¢ O (oe, WE(Z) (t)) to the line
I1(1,t) coincides with the horizontal direction from this point to the set S(1, o, 7, t).
In the same way, the vertical direction from a point x ¢ O(oe, Wa(z) (t)) to the line

I1(2,t) coincides with the horizontal direction from this point to the set S(2, «, r, ).

Theorem 13.1. Fix r € [0,7]. Let the multivalued strategy U defined in the
interval [t, T) take the value U; (¢, x) = {ui Cui| < M} in the set S(i,&,r,t),i =
1,2. Let outside the set S(i,&,r,t) the value U;(t,x) equal either to +u, or
to —u be chosen in such a way that the vector D;(t)U; (¢, x) is directed to the
set S(i,&,r,t),i = 1,2. Then for any initial position (ty, xo) € Y, the strategy U in
a discrete scheme of control with a step A < 9(f,&, ') guarantees in system (13.9)
to the first player a result, which is described by formula (13.37), where a = Q.

13.7.2 Stability of Suggested Control Method

Let é be the lower estimate for the angle between the line I7(1,¢) and horizontal
lines outside the axis x;, when ¢t € [f,7]. Define B = r siné . Consider a
neighborhood O(,B, II(1, t)),t € [f,T). Take an arbitrary continuous line 7 (1,7)
in this neighborhood that will be used for constructing the component U}* of the
strategy U*. Let x be an arbitrary phase state at some instant ¢. Consider a ray
with the beginning at this point and directing vector D (z). If the ray crosses the
line 7(1,¢), then define U,* (¢, x) = +pu, otherwise U,"(t, x) = —u. In the same
way, we can introduce a line 77(2, ¢) for constructing the component U;". It is clear
that the strategy U * is a one-valued selector from the multivalued strategy U.

Fix an arbitrary & > 0. Choose an instant 7 such that ¢ = /4. Let the number &
obey the relation 3A@ = ¢/2. Choose numbers & € (0,&) and 7 € (0,&] such
that there is an estimate (7, &, 7) > 0, which is less than the time of transfer of
systems (13.9) and (13.10) from the set 175(1, -) to the set 176’: (2,-) and back in the



288 S. Kumkov et al.

interval [f,7]. Also, we demand that for chosen &, 7, and &, the property of absence
of “bad” points x outside the sets

o zw) | Jo@ ka.n)\Jmza.0. i=1,2,
holds. Then the quantity

T—1

is a fixed number. We choose r* € (0, 7] and A* < ¥(f, @, ') such that

A(F,Q,F) - (6BAA*ou + Ar*) + 16 AA*opu <

| ™

For B = rsing, one has
O(B.M(i,1)) C SGi.a,r1), i=12telii.

From this due to (13.37), where @ = @, it follows that there exist such * > 0
and A* > 0 that for any 8 € [0, 8*] and A € (0, A*], the following estimate is true:

o(x(1), x(T)) < V@ (19, x0) + & + Ax(to, T). (13.38)

Estimates (13.37) and (13.38) concern the case when at an instant ¢ the first
player knows the exact position xV(¢) of system (13.9) while constructing its
control. Now, let us consider the case of inexact measurements.

Assume that instead of the true position x (1) (¢) at an instant ¢, the first player gets
some measurement {(¢) such that [[{(r) — xV(¢)| < h. He uses this measurement
to produce the control U *(I,C (t)). As a consequence from estimates (13.37)
and (13.38), the next statement follows.

Corollary 13.1. For any ¢ > 0, one can choose numbers y* > 0,h* > 0,
and A* > 0 such that if the strategy U* in system (13.9) is built on the basis
of the switching lines w(1,t) and w(2,t) located for each t € [t,T) in the
sets O()/*, I, t)) and 0()/*, I1(2, t)), respectively, the measurement inaccuracy
is not greater than h*, and the step A > 0 of the discrete scheme of control obeys
the inequality A < A*, then for any initial position (ty,xo) € Y and for any
realization v(:) of the second player’s control, estimate (13.38) holds.

To prove this statement, it is sufficient to take y* < */2,h* < */2.

Remark 13.2. We talk about the strategy U™* as a quasioptimal one for sys-
tem (13.9). The last summand in estimate (13.38) decreases as approximating
system (13.10) gets closer to system (13.9). With that, the value V® (1, x0) tends
to the value V' (¢, xo) of the Value function for system (13.9). It is reasonable to
investigate the limit of the switching lines I7(1,¢) and I1(2, ¢). It is natural to try to
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prove that the limit lines define an optimal strategy of the first player in game (13.9).
But in this work, we do not deal with such a study.

Remark 13.3. The ideal switching lines I7(1,¢) and I1(2,¢) for system (13.10)
define an optimal strategy for all initial positions (7, xo) € Y in this system.
This strategy is stable with respect to small inaccuracies of numeric constructions
and errors of measurement of the phase state of the system. This follows from
estimate (13.38).

13.8 Simulation Results

Let the pursuers P;, P,, and the evader £ move in the plane. This plane is called
the original geometric space. At the initial instant f,, velocities of all objects are
parallel to the horizontal axis and sufficiently greater than the possible changes of
the lateral velocity components. Velocity of each object has a constant component
parallel to the horizontal axis. Magnitudes of these components are such that the
horizontal crossings of the objects P; and E and the objects P, and E happen at the
instant 7. The dynamics of lateral motion is described by relations (13.1), (13.2);
the resultant miss is given by formula (13.4).

Parameters of the game are taken as (13.11). The initial lateral velocities and
accelerations are assumed to be zero:

B =8 =B =0 d) =db =al =0,
The initial instant is o = 0.

In the following figures, the horizontal axis is denoted by the symbol d. So, the
coordinate d shows the longitudinal position of the objects. Controls of the objects
are built on the basis of exact measurements of the players’ positions and affect the
vertical (lateral) coordinate.

In Fig. 13.11, trajectories of the objects are shown for the following values of
the initial lateral deviations: z,, (fo) = —2,2,,(f0) = 5. The first player (who joins
the pursuers) applies the quasioptimal control generated by the switching lines built
in the framework of system (13.10) under quite fine grids on the parameter ¢ and
in time. The control of the second player (evader) is produced on the basis of its
switching lines, which are also built in the framework of system (13.10). A typical
picture of the switching lines for the second player’s control is given in Fig. 13.12.
There are six domains, in which the feedback control of the second player keeps one
of the extreme values +v and —v. The arrows show directions of the vector E(¢)v
in different domains. The procedure for constructing switching lines for the second
player is described in Ganebny et al. (2012a). The control of the second player
defined by its switching lines is not justified theoretically yet. We consider it as an
empirical quasioptimal one.
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Zp1,P2.E

P2 d
P1

Fig. 13.11 Trajectories of the objects in the original geometric space for small initial deviations
after application of the quasioptimal controls

40 + ﬁ i
20 + ﬂ ﬂ i

-20 |+ ﬁ ﬁ i

Fig. 13.12 Typical picture of the second player’s switching lines

In Fig. 13.13, one can see the trajectories for the same initial lateral deviations,
but under a random control of the second player (at each step of the discrete scheme
a uniformly distributed value is taken from the interval [—v, +v] and kept during
this step). In comparison with the case of quasioptimal control of the second player,
here, the situation of the exact capture is present.

Figure 13.14 shows trajectories for large initial lateral deviations: z,, (f) =
—120, z,,(t0) = 150. The first player uses its quasioptimal control based on the
switching lines. The empirical quasioptimal control of the second one is produced
by its switching lines.
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Zp1,p2.E
P2

P1

Fig. 13.13 Trajectories of the objects in the original geometric space for small initial deviations
after application of the quasioptimal control of the first player and a random control of the
second one

Zp1,p2.E

150
P2

-120 Pl

Fig. 13.14 Trajectories of the objects in the original geometric space for large initial deviations
after application of the quasioptimal controls

13.9 Conclusion

The main result of the work is in description and justification of a quasioptimal
feedback control of the first player in a zero-sum differential game with two “weak”
equal pursuers and one evader. The approach is based on construction of two
switching lines depending on time for two scalar controls of the first player in the
approximating system. The control is stable with respect to inaccuracies of numeric
constructions of the switching lines and errors of measurements of the current phase
state of the system.

A specific property of the considered problem, which allowed to justify the
suggested method of control, is that at the point of crossing the switching lines the
value of the Value function of the approximating game decreases with decreasing
time-to-go.

Estimates obtained during proof of the main theorem are quite simple, and the
interest is in the general scheme of reasoning.
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Chapter 14
Collaborative Interception of Moving
Re-locatable Target

Stéphane Le Ménec

Abstract This paper is dealing with a team of autonomous vehicles using on-board
sensors for tracking and intercepting a moving target. The team of autonomous
vehicles is composed of a pursuing vehicle and of several Unmanned Aircraft
Vehicles (UAVs). The on-board sensors we talk about have limited capabilities in
terms of range. Before acquiring the target, the pursuing vehicle relies on external
discrete time information. The target is a slow moving target with respect to the
pursuer velocity. The pursuer and the evader are both ground mobile vehicles. The
pursuer is able to decide when receiving target re-location information coming from
UAVs. UAVs are flying in a cooperative manner with the pursuing vehicle. This
situation has been described in terms of a zero-sum two-player pursuit-evasion
differential game with costly information. The pursuer minimizes the time to
reach the target, while the target tries to evade and to maximize the capture time.
After solving this pursuit-evasion game for simple kinematics, test and evaluation
simulations with more realistic kinematics have been performed. We also discuss
the 4D guidance law and the coordination algorithm we implemented for managing
the UAVs.
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14.1 Introduction

Modern systems with local network capability, i.e. communication network between
entities in the close vicinity, may allow the implementation of new guidance
schemes involving several cooperating platforms; see Le Ménec et al. (2011).
In the complex context of future applications as border control; fire fighting;
convoy protection; area surveillance; disaster and crisis situation management;
and many other applications; air (and ground) autonomous platforms will engage
ground objectives with initial goal locations given at launch. We focus on one-on-
one interceptions; i.e., one autonomous platform (herein called pursuer) reaching
one target objective. In the following, we call target a generic objective. The
ground target we consider is a generic vehicle moving slowly with respect to the
kinematics of the pursuing platform. However, the pursuing vehicle considered
so far is a Lock-On After Launch (LOAL) vehicle due to the sensor acquisition
range being limited compared to the distances they must fly before interception.
Receiving in-flight updated target designation information from radars covering
the entire operation field would require long range network communications. The
scenarios examined in this paper avoid using long range communication networks
for data latency; operator availabilities, robustness and environment perturbation
reasons. Moreover, re-location information based on large coverage radars may
require having high altitude observation facilities dedicated to this task. In this
manner, completing an interception path requires re-locating of the target due to the
amount of time elapsed between target designation and in-flight autonomous target
acquisition.

We propose a collaborative guidance scheme which relies on one intercepting
vehicle plus on small Unmanned Aircraft Vehicles (UAVs) called observer vehicles
flying over the target at prescribed times for target re-location (one unique target
is assumed). The guidance scheme specifies when target re-locations are needed to
guarantee interception whatever the behavior of the target is. In addition, the overall
guidance scheme manages the coordination of observer vehicles to provide these
re-locations. This algorithm implemented on-board the intercepting vehicle would
guide the interceptor and manage the flight path of some small observer vehicles.
Reachability techniques and pursuit-evasion game techniques detailed in Bernhard
and Pourtallier (1994), Neveu et al. (1995), Olsder and Pourtallier (1995) and Isaacs
(1965) have been used for computing re-location instants. The law applied for
guiding the observer vehicles to the right place at the right instant is sometimes
referenced as 4D guidance as described in Lee et al. (2007).

In the first part of this paper, using differential game concepts, we describe the
one-on-one guidance law we use for moving the pursuing vehicle. Then, the second
part of this paper is dedicated to the observer vehicle allocation plan management
and the overall guidance algorithm. Examples performed using Matlab simulations
are reported in the third section. The main contribution of this paper is related
to computing information sets when the evader has heading angle constraints. In
addition, using this guidance scheme based on information sets in a co-operative
guidance framework involving several platforms is new according to the knowledge
of the author.
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14.2 Guidance Law Based on Discontinuous Information

We consider a two-player pursuit-evasion game between Pursuer P and Evader E.
Maximum speed of P is a. P is not able to see target E beyond range Ry. When
P asks information about target location, then a penalty term is applied; i.e. the
interception is delayed of §; i.e. P stops during time duration §. In addition, E is
not able to see P except when P re-localizes E. E has maximum speed b, which is
smaller than a (b < a). Interception occurs when the range between E and P is
less than R, (the game stops at R = Rj). The objective for P is to minimize the
time to intercept £; meaning while E has the opposite objective (zero-sum pursuit-
evasion game). The pursuer aims finding a compromise between the number of re-
locations (penalty) and imprecise guidance (longer trajectory). The pursuit strategy
is a piecewise open loop guidance law.

14.2.1 Information Sets

We start first defining some conventions. We call stage an open loop guidance period
between two re-locations. Then, we introduce information sets C,. Cy = B (0, Ry)
is the set of positions where P perceives directly target E. Cj is a ball centered on P
described by distance Ry. Then, C is the set of initial positions such that, whatever
the evader does, evader E will be in Cj at the next stage. In a recursive manner, we
define C, being the set of initial conditions so that P is able to bring E into C,—;
in one stage. C,, corresponds also to the set of initial conditions (initial positions of
the target in the pursuer coordinates systems) such that the capture is guaranteed in
n stages. In addition, we define 7, as the optimal duration of a stage. During stage
n, the position of the target in the pursuer coordinates system is described as follow:

T =38
x (1) = xp—1 + / v(s)ds — / u(s)ds (14.1)
0 0

where v and u are, respectively, the evader and pursuer controls and § is the time
penalty. We note O, and P; the respective sets of possible movements for £ and P.
Then,

x(t)=x4—1 +q — p (14.2)
Withg € Q;and p € P,, Q. and P; being the possible moves (attainability

sets), respectively, of E and P. Saying that at next stage the state of the game will
be in C,_; is equivalent to:
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A1, | x (1) € Ciy (14.3)
— J5|x +qg - p e Cy (14.4)
— dulxn € (G — Or + Pr) (14.5)
= x € |G - 00 + P) (14.6)

First remark is that if t < §, then P does not move and as a consequence
""" = §. In addition, we notice from above equations that a control exists for
P ifandonly if C,—; — Q. # @. This last remark provides us with an equation

1 max
for computing 7,"**.

max
Tn

G=J (@€ -0+ P) (14.7)

min
Tn

For simplicity reasons, we consider that both players have no curvature constraint
and can go in any direction. Therefore, O, and P, are simple sets described by
circles with radius related to the maximum speed of players.

0. =/Iv(s) ds with |[v]] < b = B(0,b7) (14.8)
0

=6
P, :/ u(s) ds with |lul| < a = B(0,a(r — §)) (14.9)
0

Then, using equation (14.7) and using properties of Minkowski’s differences, we
compute C, as a ball of radius R, and R, as a function of R,,_;.

max
Tn

Co=|J BO. R—)) = BO. br) + B(O.a(r —8)) (14.10)

= B0, a(" — 8 — b"* + R,_)) (14.11)
And,
Cn—l - an 7é Y (1412)
< BO, R\—y —b1) #0 (14.13)
< Ry-1 <brt (14.14)
Rn—l
= " = = (14.15)

Decision (14.15) can be made also on the basis of geometric reasoning (see
Fig.14.2). When § — 0, then we say that the information is free. When the
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Fig. 14.1 Target trajectory in T st s i
the pursuer coordinates 3 — R
system with P and P playing a2 i

in an optimal manner a1 /-'—\a.\* i ) 1
; AY

information is free, the strategies computed using the process detailed above are still
piecewise open-loop strategies that minimize the number of relocations. In most of
the following sections, we assume that the information is free which is more relevant
to ground mobile vehicles. In the scenarios we consider in the following, it is not
required for P to stop for receiving information (immediate reception).

14.2.2 Target Without Heading Angle Constraint

For the remaining sections (except for Sect. 14.4.2) we now only consider the case
of § = 0. When P and E have both no curvature constraint, then during a stage the
optimal behavior for P is to go towards the last observed position because P does
not know if E is going left or right. In the meantime, E is going in the opposite
direction in a way to maximize the capture time. Figure 14.1 explains what happens
if P and E play optimally. The coordinates system of Fig. 14.1 is centered on P
with fixed directions for the horizontal and vertical axes. According to the previous
remark, we compute R,_; as a function of R,:

Ry—1 =R, + b.[;nax - af,:nax (1416)
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Fig. 14.2 Max duration z;;“*

of stage n « Worst case »
__/__E_.__ >
/. i i
| .
| . |
II P |
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However, the min-max reasoning explained above has sense only and only if the
game has finite time duration. If during a stage, E is going left or right following
a 90° angle direction with respect to the pursuer velocity vector, then P can never
see E if the stage duration is too long. P has to keep in mind that E can follow
this kind of strategy for computing 7,"**. ¢,"** is the longer duration such that P
can bring the target in C,,_; at next stage. Figure 14.2 describes in a graphic manner
Eq. (14.15). If 7, > 7,"*", then no control exists anymore; the target can be at more
than R, ;.

The duration of a stage can be less than 7,"** if the stage does not start at the
extreme boundary of an information set. Reasons why a stage does not start at the
boundary of informations sets can be because it is the beginning of the game (first
stage) or because at least one player did not play its optimal strategy at previous
stage. For each stage, we need the distance from P to E at next stage less than or
equal to R,—;;i.e.:

||X|| —art, + an < Rn—l (1417)

Then, the duration of next stage knowing E and P positions at the beginning of the
stage is given by the following formula:

x| — Ru—1
opt — T 14.18
Tn a — b ( )

Applying the pursuer optimal strategy which is going towards the last observation
of E and the stage duration 7" as described in Eq. (14.18) lead to trajectories
described in Fig. 14.3 (trajectories in absolute referential) and Fig. 14.4 (trajectories
in non-rotating coordinates frame attached to position P). If both players apply
their optimal strategies; i.e. E going in the opposite direction to P; P going
in direction to E; E and P using their maximum speed; then the end of each

stage coincides exactly with the boundary of the next information step as plotted
in Fig. 14.5.
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14.2.3 Target with Heading Angle Constraint

To limit the possible movements of E and to be less pessimistic, we consider a
constraint angle with respect to the pursuer evader line of sight (see Fig. 14.6 for
definition of angle «). « is a direction constraint for E defined at relocation which
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remains constant all along the following stage. The direction corresponding to o
is updated with respect to the line of sight between E and P when P observed
the position of E. The meaning of this constraint is that £ has to go not too far
away from the direction to P. The « constraint can also be viewed as a design
parameter that shapes the size of the information sets. Two scenarios have to be
analyzed separately: |@| > 90° and |a| < 90°; o being the maximum heading
angle of E; Evader heading angle varying from O (towards P) to «. Situations
corresponding to @ > 90° are described in Fig. 14.7. Then, the optimal evasion
strategy; i.e. the strategy which maximizes the evasion time corresponds to E going
along direction &+ «. P is always going towards the last observed position of E. E
has always the tentative £ 90° strategy which limits the stage duration as in previous
section (Sect. 14.2.2). Therefore, the maximum duration of a stage is still given by
e = %. By doing some analytical computation and using Al Kashi theorem
we obtain the following formulas:

Rn—l

2
(R, — aT)2 — 2R, R,y cosa + 2a 2=

R,
b cosa =0 (14.19)

And by considering the positive solution of Eq. (14.19) we still express R, as a
function of R,—;. As in previous section (Sect. 14.2.2), we compute 7o' which can
be less than 7,"“*. At the end of a stage, distance d between P and E needs to be
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less than or equal to R,,—;. Using the geometry of Fig. 14.7, we are able to write the
value of d and as a consequence the analytical value of z,” "

d = (|x|]] —at)?* + (b ") — 2(R, — at’) bt cos a (14.20)

An example with @ = 150° is reported in Figs. 14.8 and 14.9, respectively, in the
pursuer coordinates frame and in inertial/absolute referential. Everything is going
similarly if penalty terms 6 is no more 0. For the second case o > 90°, then there
is no more distinction between the evader strategy which consists in maximizing
the interception time and which consists in reducing as much as possible the stage
duration (strategy called & 90° strategy previously). Now, the optimal choice for
E is always to follow direction + «. We use numerical dichotomy for computing
by simulation R, and 7;”" when o > 90°. Figure 14.10 shows how R, evolves
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Fig. 14.10 Information set radius versus heading angle constraint

according to «. We confirm that R, increases when o decreases; it is easier (less
re-location required) to capture targets with less maneuverability.

14.3

Observer 4D Guidance Law

We move now to the definition of a co-operative guidance scheme in charge of
intercepting a ground mobile vehicle so-called evader by a ground mobile vehicle
(the pursuer). In addition, UAVs (fix body, flying at constant speed, no hovering
capability) so-called observers are in charge of providing information on request to
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Fig. 14.11 Biased i V
proportional navigation ;

the pursuer. The pursuer and the UAVs are in the same team; have same objective
which is having the pursuer intercepting the evader as fast as possible. Nobody has
a global view of the situation; just an initial designation at start of the game. The
pursuer and the observers have limited sensing range. Therefore, observers need
to be at the right place, at the right time in a way to support the pursuer vehicle,
i.e. in a way to precisely re-localize the evader position. Ideally, the pursuing
vehicle provides the observers with a list of future tentative (rough) evader positions
((x1, y1, 1), (x2, ¥2, 1) ...), where (x;, y;) are Cartesian coordinates and ¢#; are
times. The one-on-one guidance law studied in Sect. 14.2 only provides the next
immediate re-location instant t,. Moreover, the following episode (value of 7,,—;)
depends on what happens in stage 7; i.e. it is related to the fact that the pursuer and
the evader apply optimal controls or not. For estimating the future target positions
we assume that the target moves in straight line and at constant speed. According to
the number of UAVs we have, we use UAVs to cover different assumptions about
the target heading direction (see Sect. 14.4 about simulation examples for more
explanations). We update these sequences with the new information received after
each observation.

For controlling UAVs trajectories we implemented a guidance law called Impact
Time Control (ITC) which is an extension of a classical guidance law called Biased
Proportional Navigation (BPN). BPN is Proportional Navigation (PN) plus impact
angle constraint. If talking about M reaching 7', PN is a well-known guidance law
which applies a gain to the turning rate of the line of sight between M and T to
ensure that M is in collision course with respect to 7' trajectory; i.e. to nullify the
line of sight turning rate. BPN adds an extra term to PN for M being able to satisfy
a terminal slope constraint y, (see Fig. 14.11). PN and BPN are guidance laws for
moving targets that can also be used against fix targets as in the case of UAVs we
guide towards non-moving observation points. By controlling the terminal slope of
BPN and by shaping the UAV trajectory, ITC is able to control the impact time. For
more details, please refer to Lee et al. (2007).

There exist plenty of other guidance laws based also on close loop con-
trols (Glizer 1996; Jeon et al. 2006) and on way-point-based approaches. The
problem of optimal control of Dubins’ car is extremely difficult (see, for exam-
ple, Patsko and Turova 2011). General solutions enabling time arrival control
are preprogrammed mid-course strategies in which the vehicles approach to the
objectives (observation points) via predefined way-points. However, since this



306 S. Le Ménec

approach is difficult to cope with unpredicted changes in the engagement conditions
such as the target motion, this study only focuses on feedback guidance laws. We
obtain reasonable results with ITC guidance laws as soon as the required corrections
on impact times are not too large. However, if the UAV is too far or too close to the
aimed point, it cannot have the desired impact time. Choosing an observer which
has the ability to reach the right place at the specified time is mandatory, otherwise
the algorithm has to be restarted from the beginning (initial target designation; re-
compute information sets and so on; for more details, see the end of the algorithm
provided in Sect. 14.3.1) By the way, we need to remember that the impact times we
talk about are rough designations only.

14.3.1 Co-operative Guidance Algorithm

We implemented an auction algorithm for allocating UAV's to 4D positions (location
plus time). The planning algorithm we use runs as follow:

Vehicles: Pursuer (P ), Evader (E) and Observers (Os)
Initial position of P and E known from each other
n=2
Whilen > 1
Computation of information sets C to C,
Flag_information_sets <— “valid”
n is the number of observations required as defined in Sect. 14.2
n such that E is inside C,, and outside C,,_,
n and E position = 7"
If n = 0 then go directly to step “Perfect information homing”
If n = 1 then go directly to step “Pursuer trajectory”
Computation of m assumptions about the Evader future position:
m are the heading angles we assume for the Evader path
m heading angles are chosen between + o
(o being the angular constraint on the Evader direction
respect to the Pursuer Evader line of sight as defined in Sect. 14.2.3)
m is the number of UAVs we have
Evader position is extrapolated during
While Distance Pursuer to Evader > R
And Flag_information_sets = “valid”
If Last simulation step was a successful information step
about E position
Then Updaten: n < (n — 1)
If n = 1 then go directly to step “Pursuer trajectory”
Computation of new t;" " (next observation time;
computed by the pursuer and broad-casted to all the UAVs)
P is also in charge of computing the m new observation points

opt
‘L’np
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at new )" (and send these objective points to all the UAVs)
Allocation of the m observation points to the m UAVs
using an auction method for allocating the best UAV
in a decentralized manner without over allocations
(best UAV is related to how close an UAV can reach
an observation point satisfying the required impact time)
End if
Ifr < "
Then “STEP Pursuer trajectory’ Pursuer vehicle goes straight
to the Evader last observed position
The m UAVs go to their positions using ITC (Sect. 14.3)
When they arrive at destination (or have no objective) the UAVs
continue straight until they receive new observation points
Else (1 > 7."")
If There is an UAV able to detect the evader
Then Forward the Evader position to the Pursuer
Else (An observation instant has been missed)
Flag_information_sets < “not_valid”
Interception has failed
A first information about E position is required to restart
Information sets Cy to C,, need to be recomputed;
As the value of n, F " and the reallocation of the UAVs;
n can be larger; extra information sets can be required;
End if
End While
t <t + 1(t is time step simulation)
End While
Perform the “STEP Perfect information homing”

The co-operative guidance scheme described above aims providing the pursuer
with evader positions as required in Sect. 14.2. Even if the UAVs are able to track
more the evader positions, this information is not used to improve the pursuer
trajectory. We claim that sending data through data links is bandwidth consuming
and controlling the amount of data we exchange through data networks is also
something important.

14.4 Simulation Examples

14.4.1 Comparison to Standard Strategies

Figure 14.12 shows how the co-operative guidance algorithm described in
Sect. 14.3.1 works when there is only one re-location step involving three UAVs for
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Fig. 14.12 Co-operative guidance scheme with 3 UAVs and one step re-location; sensor
detection ranges have been plotted around the UAVs and around the pursuer (R) at target
detection

observation purpose. In addition, for illustration purpose, we compare the results
we obtain when applying three different guidance schemes (see Fig. 14.13):

The pursuer applies a collision course strategy; straight line extrapolation of the
evader trajectory plus impact point computation under this assumption;

The pursuer applies pure pursuit strategy; goes towards the last observed point
without re-location;
The pursuer applies the guidance algorithm defined in Sect. 14.3.1; three UAVs;
and one step re-location.

Figure 14.14 shows what happens in the pursuer coordinates frame; i.e. the
trajectories of Fig. 14.13 are superposed on the information sets.

14.4.2 Realistic 3D Simulation

Then, the co-operative guidance algorithm has been implemented in a 3D simulation
with more realistic models. The simulation parameters are as follows:
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Fig. 14.15 Evader trajectory with 4 bends; trajectories in absolute referential; trajectories plus
information sets

ypo = 10,0001’71

o = +180° (no constraint angle)

The trajectory of the evader has been defined in a random manner. First, we fix
a number of bends and then we decide randomly what are the evader heading
angles and the duration of each bend. The trajectories corresponding to a case
with the evader performing five segments (four bends) are drawn in Figs. 14.15
and 14.16 (trajectories in absolute referential). The complete scenario plus the
information sets have been plotted in Fig. 14.15 (information sets are moving with
the pursuer position). Figure 14.16 is a zoom of the bottom left part of Fig. 14.15.
The sensor detection ranges are plotted in Figs. 14.16 in place of the information
sets at re-location instants for the UAVs and at final detection for the pursuer.

Two-hundred runs have been performed in Monte Carlo mode for evaluating
the co-operative guidance algorithm with the parameters listed at the beginning of
Sect. 14.4.2. Target trajectories with 0 up to 4 bends occur during these 200 runs
and the ratio of success over target miss is 95.9%. We consider a run as a fail as
soon as UAVs are not able to re-localize the evader at prescribed time. Then, the
time interval [, tnax] We use for choosing the duration of each segment has been
adjusted in a way to have 250 random evader trajectories with 1 up to 6 bends. Then,
the ratio of success is equal to 82.2%.
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14.5 Conclusion

A co-operative guidance algorithm involving one pursuer, one evader, and several
UAVs has been proposed. This algorithm is based on a one-on-one pursuit evasion
differential game with discontinuous and costly information. The pursuer and the
UAVs belong to the same team. The pursuer tries to minimize the time to be at
range Ry from the evader; meaning while the evader aims to maximize this time.
The sensing capabilities of the vehicles are limited. The sensor detection range of
the pursuer is Ry. UAVs which have similar sensor detection limitation are in charge
of providing target re-locations at discontinuous time. The co-operative guidance
algorithm proposed has been evaluated using Monte Carlo runs. Encouraging results
have been obtained. Larger parametric studies could be performed to better evaluate
the potential of this kind of approach which mixes:

» Strategies based on a pursuit evasion differential game;

* Close loop 4D guidance laws;

* An auction algorithm for coordinating UAVs in a decentralized manner;
* And co-operative guidance concepts.

The one-on-one pursuit evasion differential game has been studied considering
vehicles without curvature constraints. Computing information sets with more real-
istic kinematics would require implementing numerical algorithms for calculating
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Minkowski’s differences. The expression of C, will be no more analytical. As
controlling the UAVs is the central part of the application, other guidance logics
could be used to improve the overall algorithm performances. Among other features,
the 4D guidance law (Impact Time Control guidance law) that we use for shaping
the UAVs trajectories could be updated. What happens if the number of pursuers we
consider is larger than one is also an open problem.
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Chapter 15

The Effect of Pursuer Dynamics on the Value

of Linear Pursuit-Evasion Games with Bounded
Controls

Josef Shinar, Valery Y. Glizer, and Vladimir Turetsky

Abstract Linear pursuit-evasion games with bounded controls are considered. The
cases of an ideal, a first-order, and a second-order pursuer against an ideal and a first-
order evader are analyzed. For these cases, the values of the games are compared
with each other, indicating the effect of the pursuer dynamics. It is shown that
replacing the second-order pursuer by a first-order approximation underestimates
the value of the game (the guaranteed miss distance).

Keywords Pursuit-evasion games ¢ Bounded control ¢ Linearized geometry e
Dynamics order * Scalarizing transformation ¢ Game value

15.1 Introduction

The optimal performance of modern interceptor missiles against maneuverable
targets can be analyzed by using the mathematical model of pursuit-evasion games
with bounded controls. In general, the endgame geometry of the interception can be
linearized with respect to a nominal collision course, allowing planar analysis.
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The complete solution of planar linear pursuit-evasion games with bounded
controls is well known (Gutman 1979; Gutman and Leitmann 1976; Shima and
Shinar 2002; Shinar 1981). The solution involves the decomposition of the game
space into a regular and a singular region. The regular region of the game space is
covered by the family of candidate optimal trajectories. In this region the optimal
strategies of both players are “bang-bang” type and the value of the game depends on
the initial conditions. The solution also indicates the existence of a singular region,
including the large majority of expected initial conditions of the endgame. In the
singular region the optimal strategies of both players are arbitrary and the game
value is constant. This value can be interpreted as the guaranteed minimal miss
distance against an optimally evading target.

The guaranteed minimal miss distance is an important parameter in the design
of interceptor missiles, determining the size of the warhead needed to destroy
the target. Even if in the presence of measurement noise the actual miss distance
distribution is certainly larger than guaranteed minimal miss distance, obtained by
assuming perfect information, the value of the guaranteed minimal miss distance
serves as a reference of the interceptor efficiency.

The guaranteed miss distance depends on the maneuverability ratio of the players
and their respective dynamics. So far only pursuit-evasion games with simple (ideal
and first-order) dynamics were analyzed in the literature. If the dynamics of both
players are ideal, point capture (zero miss distance) can be achieved from the
singular region if the pursuer has a superior maneuverability (Gutman and Leitmann
1976).

If the pursuer has first-order dynamics, but the evader dynamics is ideal (the
worst possible case for the pursuer) point capture is not possible (Gutman 1979).
In this case the guaranteed miss distance can be minimized by increasing the
maneuverability ratio of the pursuer. If the dynamics of the evader is also of the
first order, achieving point capture requires in addition to superior maneuverability
also superior pursuer agility (acceleration rate).

In this paper the yet unpublished results on a linear pursuit-evasion game
with bounded controls and with second-order pursuer dynamics against an evader
of ideal and first-order dynamics are presented. In this case point capture is of
course not possible, but very small miss distance can be guaranteed by sufficient
maneuverability ratio and fast dynamics of the pursuer. Comparison with the earlier
results is also presented. The structure of the paper is the following: in the next
section an interception scenario is formulated as a linear pursuit-evasion game with
bounded controls, which includes also the commonly used modeling assumptions.
It is followed by the general solution of such pursuit-evasion game with bounded
controls and previously published results are summarized. The new results presented
in this paper start with an analytical investigation of the game solution with second-
order pursuer dynamics followed by details of the game solution with comparison to
a model of first-order dynamics. The concluding section points out the importance
of using the more realistic model of second-order pursuer dynamics in guaranteed
miss distance assessment.
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15.2 Problem Formulation

15.2.1 Solution Outline

An (aerial) interception scenario belongs to the family of pursuit-evasion problems.
The objective of the interceptor missile (called in the sequel the pursuer) is
destroying the target (called in the sequel the evader). Target destruction can be
achieved either by a direct hit or (if a hit cannot be achieved) by detonating
an explosive warhead in its vicinity. Therefore, the natural cost function of an
interception is the distance of closest approach (called the miss distance), to be
minimized by the pursuer.

The evader’s acceleration strategy can be either known or unknown to the
pursuer. Only if the evader’s acceleration strategy or its future acceleration profile is
known to the pursuer, the interception can be formulated as an optimal control prob-
lem. Otherwise, the evader’s trajectory is not predictable and the optimal control
formulation is conceptually inappropriate. In such a case, assuming that the evader’s
acceleration bounds are known, a robust control formulation, requiring successful
interception against any feasible (or admissible) target maneuver, can be used.

Since in most aerial interception scenarios the evader’s acceleration is indepen-
dently controlled, another relevant formulation of the problem is in the context of
zero-sum differential games. In such a game the pursuer and the evader wish to
optimize (minimize/maximize, respectively) simultaneously the same cost function
by using their respective optimal strategies. If the minmax and maxmin processes
lead to the same solution, the game has a saddle-point and the corresponding
optimized cost is the value of the game. Thus, the solution of the game with a saddle-
point is a triplet composed of the optimal strategies of the pursuer and the evader
and the value of the game, all expressed as functions of the state and time.

Based on such game solution, the best interceptor’s guidance law (the realization
of the optimal pursuer strategy) and the best evasive maneuver (the realization of the
optimal evader strategy) can be found. If both players use their optimal strategies
the outcome of the interception, e.g. the guaranteed miss distance, will be the value
of the game. The pursuer cannot achieve a smaller miss distance and the evader
cannot generate a larger one, as long as the opponent uses its optimal strategy.

The formulation of an aerial interception as a zero-sum differential game was first
suggested by Isaacs (1965) and since then it was used in a great number of research
papers and publications. Due to the nonlinear nature of the scenario only very few
reduced dimensional pursuit-evasion games, based on oversimplified assumptions,
could be solved.

15.2.2 Modeling Assumptions

In order to obtain some kind of generalized (hopefully closed form) solutions, in
all analytical studies simplified models, relating to the scenario and to the dynamics
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of the players, were used. When the analytical solution of such model is obtained,
it becomes necessary to verify the validity of each simplifying assumption in the
context of the solution. The most commonly used assumptions are reviewed in the
sequel.

A great part of interception analysis has been carried out in a deterministic mind
set, assuming that all state variables and parameters are known to both participants.
This means that all state variables of the problem can be (and are) measured with
high accuracy. This perfect information assumption is unfortunately not valid. Some
variables, such as the acceleration of the opponent, are not measurable, so they have
to be reconstructed from measured data by an observer. Moreover, all measurements
are imprecise. This fact is expressed by saying that an actual measurement is the
sum of the actual value plus an additive error, modeled as a noise of a given
family. Having a large sequence of measurements, the noise can be filtered and the
unmeasured state variables can be obtained by an estimator. One should remember
that the outcome of a realistic noise corrupted scenario will not be identical to the
outcome predicted by a perfect information analysis.

Another frequently used assumption is that the flying vehicles can be represented
by their center of gravity, where the mass is concentrated. Such an assumption,
neglecting the angular motions, called the point-mass approximation, is very useful
for trajectory computations and for miss distances that are either negligibly small
or very large. If the miss distance is of the order of the interceptor and/or the target
dimensions, a lethality analysis with more details is needed.

In many studies interceptor and target velocities are assumed to be constant
or known as function of time. In the case of a maneuvering aerial vehicle
this assumption is simply not physical due to the maneuver-dependent induced
aerodynamic drag force. Different velocity profiles lead to different flight times and
different miss distances.

The maneuvering dynamics of a flying vehicle has a rather complex (not
necessarily linear) structure, while in many studies ideal (instantaneous) dynamics
or first-order linear dynamics are assumed. While the assumption of ideal interceptor
dynamics can lead to totally unrealistic results, the representation of first-order
dynamics preserves, at least qualitatively, a realistic behavior. In any case, the value
of an equivalent time constant has to be selected carefully for approximating the
true dynamics.

15.2.3 Linearized Interception Model

In spite of adopting some (or even all) of the above-mentioned simplifying
assumptions, interception kinematics remains generally nonlinear. There is no need
to emphasize the difficulties of analyzing nonlinear problems, particularly when
optimization is involved. Therefore, much effort has been devoted to create linear
interception models in order to obtain closed form optimal solutions. The lineariza-
tion is based on assuming that the relative interception trajectory is sufficiently close
to the initial collision course trajectory, to be used as a reference.
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Fig. 15.1 Collision course y
geometry

The notion of collision course comes from an ancient naval background for
intercepting a vessel by another. It relates therefore to a planar constant speed
scenario. The collision plane is defined by the line of sight vector R and the velocity
vector of the evader (target). Assuming that the target moves on a straight line and
the pursuer (interceptor) speed is larger (Vp > VE), there exists a unique direction
in the interception plane for the pursuer reaching the evader in a finite time, as
illustrated in Fig. 15.1.

Assuming constant speeds (Vp = VE = 0), the two conditions for collision can
be written as

VP sin¢p—VE sin¢E =0, (151)
Vpcos¢gp — Vicosgr = —R =V, >0 (15.2)

where ¢p € [0,7], ¢ € [0, 7] are the respective aspect angles, and V, is the
constant closing velocity. Equation (15.1) indicates that the line of sight angle
remains fixed: A(t) = Ao. This equation determines the required direction of the
interceptor missile with respect to the non-rotating line of sight:

(#p)ecol = arcsin [V singr/Vp]. (15.3)

This direction, called the collision course, is constant (q'bp = 0) as long as the
target does not maneuver (¢z = 0) and the velocities are fixed. For a given angle
¢, system (15.1)-(15.2) can have a unique solution ¢p only if Vp > Vg, as in
a missile/aircraft interception. If Vp < Vg, as in the case of anti-ballistic missile
defense, there may be either two solutions or none.

Based on (15.2), the relative motion in the x-direction becomes predictable as a
function of time.

x(t) = R(t) = Ry— Vit = Vu(ty —1), (15.4)
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P(t)

Fig. 15.2 Planar interception geometry

where tr = Ro/ V. is the predicted (fixed) final time of the engagement (collision).

If during the interception engagement the difference between the actual flight
conditions and an ideal collision course remains small, then by setting Ao = 0 the
line of sight angle A(¢) remains also small. In this case one can write two sets of
identical linear equations of motion normal to the reference line of sight in two
perpendicular planes. Thus, a valid trajectory linearization, based on the smallness
of angular deviations from the collision course, leads also to the decoupling of the
original three-dimensional motion to two planar motions in perpendicular planes
(Isaacs 1965). The validity of the linearization is preserved, even if the velocities Vp
and Vg are not constant, but known as functions of time. In an aerial interception
scenario, where both the interceptor and the target are equally affected by gravity,
the respective term can be left out of the equations and the direction of the two
perpendicular planes is immaterial.

This decoupling property is the reason for the common practice of designing
interceptor missiles in a cruciform configuration, having two identical guidance
channels acting in perpendicular planes. Based on the decoupling property of the
linearized motion, this paper concentrates on linearized planar interception models.
In such linearized planar interception model the x-axis of the (inertial) coordinate
system is aligned with the initial line of sight (LOS), i.e. Ry = Xo.

In a planar scenario the only state variable of interest is the relative position “y”
between the interceptor missile and the target normal to the initial reference LOS as
seen in Fig. 15.2.

y(t) 2 ye@) = yp(). (15.5)

The basic equations of linearized motion normal to the initial LOS and the
respective initial conditions are

y(1) = Vg singg(t) — Ve singp(1); y(0) =0, (15.6)
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V(@) =(ag)L —(ap)1; y(0) = Vgsingg, — Vpsingp, (15.7)

where (ag)1 = agcos¢p(t) and (ap); = apcos¢p(t) are the respective
acceleration components normal to the initial LOS (A(0) = 0). The relationship
between the actual accelerations and the respective acceleration commands (a%) 1
and (a% ) are expressed in most cases by a linear transfer function.

So the equations of a linearized planar pursuit-evasion game can be written in the
following form:

X = AX + Bu+ Cv, (15.8)

where X € R" is the state vector

X' =[y,y.@@p).(ag)i. .., (15.9)

the dimension n depends on the dynamics of the pursuer and the evader; A is annxn
matrix, B and C are n-dimensional vectors; u and v are the normalized (scalar)
control variables (a%)1 = uap™; (a%)L = vag™, where ap®™ and ap™ are the
maximal values of acceleration commands in the y-direction, which depend on the
initial aspect angles ¢ p, and ¢, respectively.

Thus, the normalized controls satisfy the constraints
luf =1, o] = 1. (15.10)
By the definition of the coordinate system (see Fig. 15.2),
X1(0) =0, X,(0) = Vgsingg, — Vp singp,. (15.11)

The notation (15.9) assumes that the maneuvering dynamics of the pursuer and
the evader may be not ideal. In this case, both lateral accelerations are state variables.
Moreover, it is assumed that

X3(0) =0, X4(0) = 0. (15.12)

The aerial interception engagement of an independently controlled maneuverable
evader can be formulated as a zero-sum differential game of pursuit-evasion. It
is a two-person zero-sum game that sometimes is considered as a “two-sided”
optimal control problem, but its solution is generally more complex. Although the
necessary conditions of game optimality look similar to those of an optimal control
problem, the sufficiency conditions are very different and are more difficult to
verify.

The natural cost function of an interception engagement with bounded controls
(15.10) is the miss distance (the distance of closest approach), which is the absolute
value of the final lateral separation between the players

J = |y(ty)l. (15.13)
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In this paper, similarly to many other studies, perfect information is assumed,
which means that both players have perfect knowledge of the state variables and the
parameters of the engagement.

The solution of a two-person zero-sum differential game consists in general
of four elements: the optimal strategies of the two players and (possibly) two
outcomes, namely the upper value and the lower value of the game. The players’
strategies (U for the minimizer and V for the maximizer) are mappings from the sets
of information available for each player to the respective set of admissible controls.
Since the players optimize the cost function independently, it is important whether
the minimization or the maximization occurs first. The upper value of the game Jy,
is defined as

Jup = minmax {J (U,V)} = max {J (U*,V)}, (15.14)
while the lower value of the game Jjoy is
Jiow = maxmin {J (U, V)} = min {J (U, V*)} . (15.15)

where U* and V* are the respective optimal strategies. These two outcomes are
generally different. Obviously

Jup = Jlow- (1516)

If both outcomes are equal (min max = max min), one says that the game has a value
J* and the respective optimal strategies U* and V* are saddle-point strategies
(or in other words the game has a saddle point). If the information available for
each player is the state vector of the game, the realizations of the optimal strategies
are feedback controls. Note that satisfaction of the necessary conditions of game
optimality provides only candidate optimal strategies. One way to verify that the
sufficiency conditions are also satisfied is to fill the entire game space with candidate
optimal trajectories (Shima and Shinar 2002).

Pursuit-evasion games with separated dynamics admit a saddle point and have
a value. The game solution provides the optimal guidance law of the interceptor
missile (optimal pursuer strategy), the optimal missile avoidance strategy (optimal
evader strategy), and the corresponding guaranteed outcome (value) of the game.

15.2.4 Terminal Projection Transformation

In this subsection, a useful methodology facilitating the solution of linear games is
presented. If the state variables are not involved in the “running” cost, as in (15.13),
the vector differential equation of a planar interception (15.8) can be reduced to
a scalar one by using the transformation (Bryson and Ho 1975; Krasovskii and
Subbotin 1988), called here as the terminal projection,



15 The Effect of Pursuer Dynamics on the Game Value 321
Z(t) = Do(ty,1)X(1), (15.17)

where D = [1,0,...,0] and @(¢/,t) is the transition matrix of the original
homogeneous system X = AX. The new state variable, denoted by Z(r), is the
zero-effort miss distance, the miss distance that created if none of the players use
any control until the final time of the interception. The notion of the zero-effort miss
distance has a central role in modern missile guidance theory.

Based on this scalarization, the cost function of the interception game (15.13)
can be rewritten as

J =1Z(@). (15.18)

The time derivative of Z (t) becomes, using the property of the transition matrix
@(lf, l‘) = —@(l‘f, l‘)A,

Z(t)=B(ty.t)ut)+C (ty.1) v(t). (15.19)
where
B(ty.t) = D®(t;,1)B; C (ty.t)=D® (ty.1)C. (15.20)

Note that due to (15.19) the evolution of Z(¢) depends only on the controls. Thus,
integrating (15.19),

t
Z (tf) =Z@)+ / {é (tf,s) u(s) + c (tf,s) v(s)} ds. (15.21)

t

In reality every interceptor missile and airborne target have inherent physical
limitations on the maximal value of the admissible lateral accelerations. Such
saturation phenomenon creates nonlinear dynamics with the difficulties of obtaining
closed form solutions. One approach to circumvent the effect of such nonlinearities
is limiting the acceleration commands to the value of the admissible lateral
accelerations as indicated by (15.10). In this case the cost function of the form
(15.13) is appropriate. Such “hard” control constraint guarantees that the actual
lateral accelerations respect the admissible physical limits (at least as long as the
physical limits are non-decreasing during the interception).

The realizations of the candidate optimal strategies using bounded controls
can become discontinuous (of the “bang-bang” type). The resulting eventual
chattering control creates an unnecessary excessive control effort and may create
also inconveniences of implementation. Nevertheless, the chattering phenomenon
can be eliminated by several feasible modifications in the guidance law (Glizer et al.
2012; Turetsky and Glizer 2005).
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15.3 Scalarized Game Solution

In this section several dynamic models of planar linearized pursuit-evasion games
with bounded control are presented. The presentations use the scalar (reduced) state
variable Z, the zero-effort miss distance. The cost function used in this formulation
is (15.18) to be minimized by the pursuer and maximized by the evader subject to
the dynamics (15.19) and the constraints (15.10).

The Hamiltonian of the game is

H = 2z[B (ty,t)u+C (ty.t)v], (15.22)

where A is the costate variable satisfying

Az =—0H/dZ =0, (15.23)
Az(ty) = 0J/Z|,, = sign{Z(17)}: Z(iy) # 0, (15.24)

leading to
Az(t) =sign{Z(tr)}; Z(tr) #0, (15.25)

as long as Az(¢) is continuous. This allows determining the optimal strategies
as

u*(t) = —sign{Z(t7)B (t7.1)}, (15.26)

v*(t) = sign{Z(t,)C (t7.1)}. (15.27)
Substituting (15.26) and (15.27) into (15.21) yields

Iy

Z(ty) = Z @) —sign{Z (ff)}/{|§(ff»s)| =[C (. 9)[} s (15.28)

t

Assuming that Z(¢) does not change sign, a candidate optimal trajectory that
terminates with the miss distance Z (¢ s) can be constructed by backward integration
using (15.28) and one can test whether the family of such optimal trajectories fills
the entire game space. Regions that are left empty by such construction are singular
and within them another pair of optimal strategies has to be found. This procedure
will be carried out in the following subsections for different dynamic game
models.
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15.3.1 Ideal Pursuer and Evader Dynamics

This is the simplest game model, where the directly controlled normalized lateral

accelerations are the control variables (a% = (ap)L = uap®™, ay% = (ag)L =

va'g®™) and the state vector has only two components (n = 2):
XT = [x1, %] = [y, ¥]. (15.29)

In this model,

01 0 0
A=  B= 1, c= : 15.30
[0 0} [—a‘;“*} [a;ﬁ“} (-0

The components of the transition matrix (¢, t) involved in this case are
o =1, @i = ty, (15.31)
yielding the zero-effort miss distance:
Z(ty) = y + Yigo, (15.32)
and the coefficients in (15.19) as
B (tr,t) = Blty) = —t30as™; C (t7,1) = C(ty) = tead™, (15.33)
as the functions of the time-to-go
to 217 —1. (15.34)
Remark 15.1. In order to not overload the paper with multiple notations, we keep
here and in what follows the same notation for the zero-effort miss distance Z and

the coefficients B and C in (15.19), although the independent variables are different
in different models.

Due to the form of Z, E’, and (~?, the time-to-go (15.34) is chosen as a new
independent variable, leading to the scalar system

az
dig

= loolp U — tgold 5V, (15.35)

and the cost function

J = |Z(0)]. (15.36)
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Fig. 15.3 DGL/I game space 3

decomposition for p < 1 \

Z[m]

tgo [sec]

We denote the game with the dynamics (15.35), the cost function (15.36) and the
control constraints (15.10) as DGL/I (differential game law/ideal).
By defining the pursuer/evader maneuver ratio

B ™ (15.37)

due to (15.26)—(15.28), one obtains for a fixed 75, > 0

1
Z(0) = Z(ty) — Etgz" (1 — 1) @™ sign { Z(140)} . (15.38)

From (15.38) it is clear that the game value J* = | Z(0)| depends on the value of .
If u < 1, zero miss distance cannot be achieved from any initial condition. Optimal
trajectories originate from the #4,-axis (serving as a dispersal line) and fill the entire
game space, as seen in Fig. 15.3.

If 4 = 1, the optimal trajectories are parallel lines to the #4,-axis filling the game
space, as shown in Fig. 15.4.

If w > 1, the reduced game space is decomposed in two parts: a singular
region, denoted as %, and a regular one, denoted as Z;, as shown in Fig. 15.5.
The boundaries that separate the two regions are symmetrical parabolas described
by the equation

1
73 (tg0) = :l:itgzo (w—1)am™ (15.39)

Within this singular region the optimal strategies are arbitrary and the value
of the game is constant (zero). Outside the boundaries (15.39) there is the regular
region, denoted as 2, where the optimal strategies are given by (15.26) and (15.27),
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Fig. 15.4 DGL/I game space 10
decomposition for u = 1
5¢ = g
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N
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Fig. 15.5 DGL/I game space
decomposition for u > 1

0 2 t [sec] 4
go

while the value of the game depends on the initial conditions, according to (15.28).
This game solution was published by Gutman and Leitmann (1976).

The implementation of an interceptor guidance law based on this game solution,
denoted DGL/I, is not unique, due to the existence of the singular region for
n >1, which is the case of practical interest. One option is to use the “bang-
bang” guidance law of (15.26) and (15.27) everywhere. Another option suggested
in Gutman and Leitmann (1976) is to use in % a linear guidance law in such a
way that on the boundaries of the region the maximal admissible acceleration is
reached. This guidance law turns out to be Proportional Navigation (PN) (Adler
1956). In a linearized scenario the small line of sight angle A (f) << 1 can be
written as
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Alt) = tanA(2) = y(t)/x(¢t). (15.40)
Using this approximation the line of sight rate becomes

: d (y yx—yx y X
Az_(_)z—z__—. 15.41
dt \x x? X x2 ( )
Since for the linearized geometry x(¢) = V. fgo,
Vetgo ~ Velgy  Velgy

[V + Vil (15.42)

The linear approximation of the final separation is y (¢ s). Therefore, the expression
for the linearized predicted zero-effort miss distance for PN becomes

Zpn(lgo) = ¥ + Yigo, (15.43)
leading to conclude that
L= 50_2), (15.44)
The classical form of PN is
(ap)L = N'V.A. (15.45)

In order to obtain maximal admissible acceleration on the boundaries of D, the
effective navigation ratio N’ depends on p. By using (15.39) with (15.43)—(15.45)
the appropriate value of N’ is

N =2u/(u—1). (15.46)

By accepting this suggestion, the interceptor guidance law can be expressed in
the entire reduced game space (Z, t,,) by using the saturation operator (sat{ f(¢)} =

S@if | f(@)] < land sat{ f(1)} = sign f (1) if | f(1)] = 1),

(ap)L = ap™sat — (15.47)
w—= 1 tgzoaPa

21 ZpN (tgo) §

Since the model of ideal dynamics, being far from reality, cannot provide a
reliable element in guided missile design, for such a purpose more realistic models
are needed.
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15.3.2 Ideal Evader and First-Order Pursuer Dynamics

This model, used first in Gutman (1979) acknowledges the strong effect of inter-
ceptor dynamics on the homing performance and approximates it by a first-order
transfer function with time constant 7p. The assumption of ideal evader dynamics
(although this is not realistic) provides the “worst case” for the pursuer and therefore
it is on the “safe side” for guided missile design.

Using such a model, the state vector of the game is three-dimensional (n = 3):

XT =[x, x0,x3] = [y, 9, (ap)L]. (15.48)
In this model,
01 0 0 0
A= |00 =L g 0 =] qmr |, (15.49)
1 ap
00 —— 0
Tp Tp

The components of the transition matrix @(¢, t) involved in this case are
ou =1 =10 pi3=—1p9(0). (15.50)
yielding the zero-effort miss distance
Z0) =y +y1p0 — (ap) LT3V (0). (15.51)
and the coefficients in (15.19) as
B(ty.t) = B(O) = —aP™tpy (0); C (t7,1) = C(0) = tpha’™, (15.52)
where

0 £ ty/tp, (15.53)

v Ee? +6-1. (15.54)

By using 0 as a new independent variable and the normalized zero-effort miss
distance, defined by

AC
2(0) 2 %m) (15.55)
TpdE

as a new state variable, the scalar system (15.19) is transformed to
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Fig. 15.6 DGL/0 game space
decomposition for pu > 1 z

0 6
d
d—; — wy (O)u — Ov. (15.56)
The cost function becomes
J = 1z(0)]. (15.57)

We denote the game with the dynamics (15.56), the cost function (15.57) and the
control constraints (15.10) as DGL/0.
Due to (15.26)—(15.28), one obtains for a fixed 6 > 0,

6
2(0) = z(6) — sign {z ()} / h(6)d®, (15.58)
0
where
h(0) £ uy(6) — 6. (15.59)

One can easily see that for > 1 the integral in (15.58) has a minimum attained
for 6 = 6, where 6, is the nonzero solution of the equation

uy(@)—60=0. (15.60)
For small values of 6 (8 < 6;) the integrand is negative, which means that zero miss

distance (z(0) = 0) can never be achieved. The decomposition of the reduced (z, 8)
game space for o > 1 is shown in Fig. 15.6.
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The two limiting trajectories (Z%, Z*), satisfying the condition that z(6) does
not change sign, reach the 0-axis tangentially at & = 6. The reduced game space
is decomposed into a singular region %, which is between these trajectories for
0 > 0, and the regular region Z,. In 2, the optimal strategies are given by
(15.26) and (15.27) while the nonzero value of the game depends on the initial
conditions.

In the singular region the optimal strategies are arbitrary and the value of the
game is a nonzero constant Jy. This singular game value, which is the smallest
guaranteed miss distance that an optimally playing pursuer can achieve against an
optimally playing evader, depends on the physical parameter p. Once 6; is found
from the solution of (15.60), J; can be computed from (15.58) by setting Z(6,) = 0
and by direct integration between 6; and zero. The larger is u, the smaller is 6; and
consequently also J; is smaller. For a sufficiently large value of u the guaranteed
miss distance J; is very small.

Every trajectory starting in %, must go through the throat [Z(6;) = 0]. This
is a dispersal point for the evader to decide on the maneuver direction for 8 <
0. The pursuer must wait at that point (for an infinitely short time) in order to
follow the direction selected by the evader in order to obtain an outcome not larger
than J,.

In the (practically unimportant) case of u < 1, there is no singular region and
the game space decomposition looks very similar to Fig. 15.3.

Similarly to DGL/I, the implementation of the guidance law, based on the DGL/0
solution, is not unique, due to the existence of the singular region. One option is
(similarly to DGL/I) to use the “bang-bang” guidance law of (15.26) and (15.27)
everywhere. In Gutman (1979) it is suggested to use in % a linear guidance
law in such a way that on the boundaries of the region the maximal admissible
acceleration is reached. Another interesting option is to use in %, a linear-
quadratic game solution that guarantees reaching the throat with minimal control
effort.

The interceptor guidance law DGL/0 has an important advantage. Its implemen-
tation requires only (see (15.42) and (15.51)) the knowledge of the line of sight rate
and own acceleration, but not the target acceleration. Although it cannot guarantee
zero miss distance even in an ideal situation, the guaranteed miss distance can be
made very small.

15.3.3 First-Order Evader and Pursuer Dynamics

If there is sufficient information on the evader dynamics, approximating it by a first-
order transfer function provides a more realistic and balanced game model (Shinar
1981). In this game the state vector is four-dimensional (n = 4):

X' =[x, x0. x5, x04] = [y. Y. (ag) 1. (ap) L] (15.61)
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In this model,

01 0 0 0 0
00 1 —1 0 0
A=]o0-L o |.B=| o |. C=]am | (15.62)
TE 1 arlralax e
00 0 — 0
Tp tp

The components of the transition matrix (¢, t) involved in this case are

o =1, @i =ty @13 = T2 (0/e); o1 = —15¥(9), (15.63)
yielding the zero-effort miss distance

Z(0) =y + ytp0 + (ap) LTp¥(0/e) — (ap) LTp Y (6). (15.64)
and the coefficients in (15.19) as

B(ty,t) = B(8) = —a%™t,y (0); C(ty,t)=C(0) =a™™wpy (0/e).
(15.65)
where 0 is defined by (15.53),

2 1p/tp. (15.66)

By using 6 as a new independent variable and the normalized zero-effort miss
distance, defined by (15.55), (15.64), as a new state variable, the scalar system
(15.19) is transformed to

dz

0= Y (0)u — ey (0/e)v. (15.67)

We denote the game with the dynamics (15.67), the cost function (15.57) and the
control constraints (15.10) as DGL/1. Due to (15.26)-(15.28), for a fixed 6 > 0,

z(0) is given by (15.58), where now
h(0) = u (0) — ey (6/). (15.68)
Depending on the values of the parameters w and &, 7(6) can be either positive

9
or negative. If u > 1 and e < 1, the function / h(§€)d & has a minimum at 6 = 6,
0

where 6 is the positive solution of the equation

uy(0) —eyr(6/e) =0, (15.69)
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Fig. 15.7 DGL/1 game space 10
decomposition for . < 1 and < \
ne>1

9

0 3 6 9
Table 15.1 Conditions for
various game solution p<l p=1 p>1
DGL/0
ne=0  Fig.153  Fig. 154  Fig. 15.6
DGL/1
ne <1 Fig.15.3  Fig.154  Fig.15.5
ne>1 Fig. 15.7 Fig. 15.5

and the game space decomposition is similar to Fig. 15.6 (the one of DGL/0 for
u>1).

For 4 > 1 and pe > 1, the only nonnegative solution of (15.68) is 8 = 0;
h(0) > 0 for 8 > 0, and the game space decomposition is similar to Fig. 15.5. In
this case from any initial position inside the singular region %, zero miss distance
is guaranteed by using arbitrary strategies. For the case of © < 1 and pe > 1 there
is a bounded singular region, where zero miss distance can be achieved, as seen in
Fig. 15.7. This game space decomposition was first presented by Shima and Shinar
(2002).

Due to the existence of the singular region, the implementation of the interceptor
guidance law based on this game solution, denoted as DGL/1, is also not unique and
options similar to those of DGL/0 and DGL/I can be adopted.

It should also be noted that the implementation of DGL/1 requires the knowledge
of the current evader maneuver as a component of the state vector, which cannot
be measured from another platform. It has to be reconstructed from available
measurements by an observer for a noise free case or by an estimator if the available
measurements are corrupted by noise.

In Table 15.1 the conditions for various game solution structures are summarized.
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15.4 Second-Order Pursuer Dynamics

In general, the autopilot dynamics of a well-designed interceptor missile is rather
complex. It contains several nonlinear elements and its linearized version is of high
order. The approximation of such high order dynamics by a simple first-order model
is very difficult. The approximation by a non-oscillatory second-order dynamic
model seems more suitable and (having two independent parameters, the frequency
wp and the damping factor {p) is also easier. In this section, results of a not yet
published analytical investigation of the game solution with second-order pursuer
dynamics is presented. The maneuvering dynamics of the pursuer is described by a
linear second-order transfer function with the damping coefficient {p > 0 and the
frequency wp

1

Hp(s) = .
r() 1+ 2¢ps/wp + s2/wh

(15.70)

In the pursuit-evasion differential game with the second-order pursuer dynamics
(15.70) and the first-order evader dynamics, the state vector is of the dimension
n=>5:

X" =[xy, %2, x3,x4,x5] = [y, Y. (@p) L. (@p) L. (@p)L]. (15.71)

In this model,

01 0 0 0 0 0
00 1 -1 0 0 0
A=100-1/tg O 0 , B= 0 ,C=|ap®/tg |,

00 O 0 1 0 0

00 0 —a)f) —Zzpwp w%a?&”" 0
(15.72)

and, in addition to (15.11)—(15.12), it is assumed that

X5(0) = 0. (15.73)

15.4.1 Scalarized Game Solution

The components of the transition matrix @(¢,, t) involved in this case are

ou=1; o1 =60/wp; @13 =139 (0:/e2), (15.74)
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0>

92
Q4= —> +wP/¢1s(§)d§, (15.75)
2wp )

—exp(—¢pbh) (C1 cosh(1/¢3 — 16;) + Cysinh(/¢3 — 192))
0, —2¢p
_T’ é‘P > 1,
1
$15=13 3 (=02 +2)exp(—th) — 6 +2), tp =1,
P
—exp(=¢pbh) (Cl cos(y/1 = ¢362) + Casin(y/1 - 5%92))
0, —2¢p
_T’ é‘p < 1,
(15.76)
where
A
0, 2 wplty —1), (15.77)
& 2 wptg. (15.78)
2 203 —1
Ci = if =2l (15.79)
“r wp /185 1]

The pursuit-evasion game with the dynamics (15.8), (15.72) can be scalarized
in non-dimensional form by choosing 6, as a new independent variable and the
normalized zero-effort miss distance

A OF
ns-L7, (15.80)
a
E
as a new state variable. The scalar state variable z; satisfies the differential equation

& = hp(ez)u—hE(Qz)U, (1581)
db,

and the initial condition
22(6h0) = 220, (15.82)

Moreover,

hp(62) = php(6), (15.83)
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where p is defined by (15.37) and

hp(6y) =
a)?, exp(—¢p6) (C1 cosh( é‘% — 192) + G sinh( {'%, - 162)) +
92 —Zé‘p, ;P > 1
(6> + 2) exp(—0) + 6, — 2, ¢p =1,

w3 exp(—¢pbh) (Cl cos( I—E%Qz) —l—Czsin( 1—5%92))4-
92 —2§P, é'P < 1.
(15.84)

For a first-order or ideal (tz = 0) evader

0
& (exp(—@z/sz) + 2 1) , &2 >0,
&2

hEg(62) = (15.85)
927 &y = 0.
Due to (15.11)—(15.12) and (15.73), the initial conditions are
2trX>(0
b = wpty. z = 2220 (15.86)
; a

Note that ¥ and v in the equation (15.81) are in fact ¥ = u(ty — 6,/wp) and
v = v(ty — 6/wp) and they satisfy the constraints (15.10). Since z2,(0) =
w%, Xi(ty)/a’g™, the cost functional (15.13) becomes

J = |2(0)]. (15.87)

Thus, the original differential game (15.8), (15.10), (15.13) is reduced to the scalar
differential game with the dynamics (15.81), the constraints (15.10), and the cost
functional (15.87).

In Glizer and Turetsky (2008) it is shown that a original differential game has a
saddle point, consisting of the optimal strategies

2
Wt X) = u* (wp(z,» —1), “;§XD¢(r,-,r)X) ,
. an ,
wz
V01, X) = v* (wp(zf —1), aTqus(rf,z)X) (15.88)
E
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where D = [1,0,0,0,0], u*(6,,22) and v*(6,,7,) are the optimal strategies
in the scalar differential game (15.81), (15.10), (15.87). The latter have the
form

signhp (92)signzg, (92, Zz) € @1 s
u* (02, 22) = (15.89)
arbitrary subject to (9), (62,22) € %,

signh g (62)signzz, (62, 22) € D1,
V¥ (02, 22) = (15.90)
arbitrary subject to (9), (62,22) € %,

where 2, and %) are the regular and singular regions, %y = R*\ 2, and the regular
region %, is closed.

The structure of the singular and regular regions depends on the behavior of the
determining function

I'(60y) = |hp(02)| — |he(62)], 62 = 0. (15.91)

In the next subsection, the behavior of the function I"(6,) and the structure of the
regions % and %, are analyzed in detail.

15.4.2 Analysis of I'(0>)

15.4.2.1 Positiveness of i p(6,) and kg (0,)

It is known (Shinar 1981) that hg(6;) > 0 for 6, > 0. The following lemma
establishes the same property of the function % p (6,).

Lemma 15.1. For all 6, > 0, the function hp(60,) is positive.
Proof. Based on (15.83)—(15.84), for all {p > 0,

hp(0) = hp(0) = 0. (15.92)

Now, let us start with the case {p > 1. The second derivative of & p (6,) is

penp(=pysinn /5~ 161

Jo -1 |

B (6:) = (15.93)

directly yielding

h%(6,) >0, 6, > 0. (15.94)
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Equation (15.92) and the inequality (15.94) imply that &', (6,) > 0 for 6, > 0, and,
consequently, zp(6,) > 0 for 6, > 0.
Proceed to the case {p = 1. In this case, the second derivative of & p(6,) is
Wp(62) = b, exp(—6), (15.95)
yielding (15.94). Therefore, similarly to the case {p > 1, the function hp(6,) is

positive for 6, > 0.

Finally, consider the case {p < 1. In this case, the first and the second derivatives
of hp(6,) are

hp(6) =
w1 —exp(=Cpb,) cos( l—é‘%@z) —}—;—Psin( l—é‘%,@z) ,
2
(15.96)

e exp(—py) sin ( -2 02)

By virtue of (15.97), for 6, > 0, the local minimum of /', (65) is attained for 6,, =

' (6,) = (15.97)

2rn/\/1— é’% n =1,2,...,and the local minima of 4’(6,) are

hp(02) = n(1 —exp(=Lpbay)) >0, n=1,2,.... (15.98)
Moreover,
lim h’P (6;) =pn>0. (15.99)
92—)()0

Equation (15.92) and inequalities (15.98)—(15.99) yield 4, (6,) > 0 for 6, > 0,
and, consequently, hp(6,) > 0 for 6, > 0. This completes the proof of the
lemma. O

Lemma 15.1 is illustrated by Fig. 15.8, where the function % p (6) is depicted for
i = 2 and three different values of {p.
Lemma 15.1 allows to rewrite the function I"(6,), given by (15.91), as

I'(62) = hp(62) —he(62), 6,>0. (15.100)
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Fig. 15.8 Function 4 p(6,) =2

7
hp(62)

15.4.2.2 Zeros of I'(6>)

Lemma 15.2. Forany {p > 0, u > 1 and &, > 0, the function I'(6,) has at least
one positive zero.

Proof. If &5 > 0,

ro)y=r/0=0, r"o= —8]—2 <0. (15.101)

Fore, =0,
ro)=0,r'0 =-1. (15.102)

Both (15.101) and (15.102) imply that the function I"(6,) decreases in the vicinity
of 8, = 0, i.e. there exists § > 0 such that

I'6,) <0, 6,¢</(0,9). (15.103)
Moreover, for 6, — +o0,
I(62) ~ (n— 10 —2ulp + & (15.104)
This means that if
> 1, (15.105)

then there exists M > 0 such that
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r®) >0 6 >M. (15.106)

The conditions (15.103) and (15.106) yield that the equation I"(6,) = 0 must have
at least one positive zero. O

Remark 15.2. From the proof of Lemma 15.2, it directly follows that the equation
I'(6,) = 0 can have only an odd number of positive zeros, taking into account their
multiplicities.

Lemma 15.3. Forany (p > 1, u > 1 and &, > 0, the function I"(6,) has a single
zero by > 0.

Proof. Due to Lemma 15.2, there exists at least one zero of I"(6,). Let us prove
that I"(6,) has exactly one positive zero.

Case 1. &5 > 0. For this, it is sufficient to show that the second derivative I"”(65)

has no more than two distinct positive zeros.
First, consider the case {p > 1. In this case,

1
6, = §+ exp(—¢p6y) sinh (92,/@% _ 1) ~ o ep(—h/e2). (15.107)

2.1

and the equation I"”(6,) = 0 is equivalent to

-1
f1(62)2 exp((1/e2 — £p)6,) sinh (92 Vip— 1) = %~ (15.108)

The derivative of the function f;(6,), defined in (15.108),

£ (62) = exp((1/e2 — £p))x

|:(1/82 — p)sinh (92,/@% - 1) + 1/¢3 — 1cosh (92,/{%3 - 1)i| . (15.109)

Thus, the equation fll (62) = 0 is equivalent to the equation

(1/e2 = Cp)(w—1/w) + /{3 — L(w + 1/w) =0, (15.110)

where

wE exp (92‘/5,%—1) > 1. (15.111)

Equation (15.110) can be rewritten as
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5 tp—1/ea+ /5 — 1
wo = . (15.112)
(p—1/er— /05 — 1

It

tp—1/ey— /82 —1>0, (15.113)

the Eq. (15.112) has the single positive root

tp—1/ea+ 5 — 1
> 1, (15.114)
tp—1/e2— /{3 — 1

yielding by simple algebra the single positive zero of the equation fl/ (6,) =0:

- 1 tp—1/e+ /03 —1
b, = In > 0. (15.115)
21 tr—1/e— b1

Thus, if (15.113) is valid, then f1 (92) = 0, while f1 (62) > 0 for 8, € [0, 92)
and fl (6,) < 0 for 6, > 6,. Therefore, the function f1(0) increases monotomcally
for 6, € [0, 92] from f1(0) =0to f (92) and decreases monotonically for 6, > 6,.
This means that the Eq. (15.108) has no more than two roots, depending on the value

of —‘52’2_1 If the condition (15.113) is not valid, then fll (6,) > 0 for all 6, > 0,
i.e. f1(6,) increases monotonically for all 6, > 0. In this case, the Eq. (15.108) has
exactly one root. It means that I"”(6,) = 0 has no more than two distinct positive
roots, which completes the proof of the lemma in the case {p > 1.

Proceed to the case {p = 1. In this case, the equation I"”(6) = 0, similarly to
(15.108) is equivalent to the equation

wp =

1
f2(02)2 exp((1/e; — 1)02)6; = s (15.116)
2
The derivative of the function f;, defined in (15.116), is
, 1
f2(62) = = exp((1/e2 — 1)62)[(1 — £2)0: + &2]. (15.117)
2

If

e > 1, (15.118)
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1.2
I'(0)
U —¢p=15pu=12¢=4 ]
08l | Cp=12,p=2¢e=15 ,/
---Cp=l,p=2,e9=2 .
/
0.6 |- (p=1,u=2¢e =009 e
0.4r
0.2r
0 o=
_02 L
~0.4 ‘
0 0.5 1 1.5 2 2.5 0 3
2
Fig. 15.9 Function I'(6,): {p > 1
then the equation fz/ (62) = 0 has the single root
~ 3
0= —2_>0. (15.119)
&) — 1

In this case, the function f,(6,) increases monotonically for 6, € [0, 92] from
f2(0) = 0to f2(92) and decreases monotonically for 6, > 6,. This means that
the Eq. (15.116) has no more than two roots, depending on the value of E' If the
condition (15.118) is not valid, i.e. &, < 1, then fz/(92) > 0 for all 6, > 0, and
f2(6>) increases monotonically for all 6, > 0. In this case, the Eq.(15.116) has
exactly one root. It is shown that I"”(0) has no more than two distinct positive
zeros, which completes the proof of the lemma in this case.

Case 2. &5 = 0. The proof is similar to Case 1. O

In Fig. 15.9, the function I"(6,) is depicted for different parameters. It is seen
that in all cases I"(6,) has the single positive zero.
Let us introduce the function

_exp(=pbh)

Ji-¢

Lemma 15.4. If the parameters {p < 1, u > 1 and &, > 0 satisfy the condition

A 0
e, =nun +60,—2tp | — &2 (exp(—@z/gz)—}—s—;_]).

(15.120)
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_ 2
'l —1|=>0, (15.121)

Ji-a )

then the function I"(60,) has a single zero 6,5 > 0.

Proof. Due to Lemma 15.2, there exists at least one zero of I"(65). Let us prove that
subject to the condition (15.121), the equation I"(6;) = 0 has exactly one positive
root.

Note that for {p < 1, the function % p (6,) has the form (see (15.83)—(15.84))

hp(02) =
n |:exp(—§p02) (Acos( 1-— {%92) + Bsin( 1- 5%92)) + 6, —2Cp:| ,
(15.122)
where A = 2¢p, B = (2(% —1)/4/1 — 3. Thus,
2, p2 2 A4+ 1
A2+ B2 =403 + = (15.123)

1-¢ 1=

Due to (15.122)—(15.123), the function % p (6,) can be rewritten as

exp(—¢pbh) q
V1-6

where singp = 2{p /1 — {3, cosgp = 2{3 — 1. Equation (15.124) leads to the
inequality

hp(6h) = p in( 1 -850, + <PP) +6:—-20p |, (15.124)

_exp(=pbh)
J1-83

which by (15.100) and (15.120) yields

hp(6) > hp(62)2p +6,-2tp|. 6,0, (15.125)

(6 >TI(6), 6,>0. (15.126)

Now, let us show that the equation I"(6,) = 0 has a single positive root. Due to
(15.120),

F0)=—p//1-8 —2uip <0, (15.127)
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and for 6, — o0,
F(0:) ~ (u—1)60, —2ulp + &. (15.128)

Since p > 1, there exists M > 0 such that I'(6,) > 0 for 6§, > M, which, along
with (15.127), means that the function I"(6,) has at least one positive zero. The
derivative of I"(6,) is

ulp exp(—=Cpb)

Therefore, the function r (0_2) increases monotonically for 6, > 0, having one zero
6, > 0. Thus, the function I"(6,) has no zeros for 6, > 6,:

') = +u+exp(—=6y/e2) —1>0, 6, >0. (15.129)

[ (6)>0, 6, >0, (15.130)
Due to the monotonicity of I (6,), the condition (15.121) guarantees that

_ 2
b<or =2 (15.131)

V1-8
By virtue of the inequalities (15.125)—(15.126),

') >0, 6,>06". (15.132)

Now, let us show that I"(6,) has no more than one (and, consequently, exactly
one) zero on the interval (0,6;*]. For this purpose, similarly to the proof of
Lemma 15.3, it is sufficient to prove that the second derivative I"”(6,) has no more
than two distinct positive zeros on the interval (0, 0*]. For {p < 1, the equation

I'"(6,) = 0 is equivalent to
Vi-8

f31(92)ésm( - ziez) = (1m0 faB). 15139

. . . J1-83
Depending on the sign of 1/e; — {p and the value of the coefficient M—SZP, the
Eq. (15.133) has no more than two distinct positive roots on the interval (0, 6;*].

This is illustrated in Fig. 15.10, where the case of two roots is depicted for 1/e; >
¢p,for 1/e; = ¢p and for 1/e, < {p. In these cases, the value of I'(27/,/1 — %)
is 8.37, 4.14 and 3.20, respectively. This completes the proof of the lemma. O

In Fig.15.11, a function I"(6,) is depicted for the parameters satisfying the
condition (15.121). It is seen that I"(6,) has a single positive zero.



15 The Effect of Pursuer Dynamics on the Game Value 343

Fig. 15.10 Functions f3;(6,), f32(62)

Fig. 15.11 Function I"(6,):
et r(ey)
08 —(Cp =08 pu=2e=11
---Cp =08, pu=15¢=13
06F |- (p =08 pu=14¢e9=125 |
0.4 - |
0.2 - ]
0 -
—0.2t ‘ AR e | |
0 0.5 1 1.5 5 s 3
2

Now, let us find the domain of the parameters u, &, for which the condition
(15.121) is satisfied for all p € (0, 1). Due to (15.120), this domain is described as

n= M**(Sz)é sup eyl l (eXp(—Qz**(é'P)/Sz) oG e 1),

Lre@) (0% (Lp) —2Lp)+J1 — &3 —exp(—CpB5* (Lp))
(15.134)

where

21

S-a

03*((p)= (15.135)
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1.25
I
1.2+

115

1.1}

0.95

Fig. 15.12 Curve . = u**(&2)

For any ¢; > 0 and u > p**(e,), the equation I'(6,) = 0 has a single positive root
for all {p € (0, 1). In Fig. 15.12, the curve u = u**(e2) is depicted. It is seen that
fore; > &5 ~ 1.98, u**(e2) < 1,i.e. forall &; > &3, the equation I"(f,) = O has a
single positive root for all u > 1 and all {p € (0, 1).

15.5 Game Solution

15.5.1 Case of a Single Positive Root of the Equation
r@, =0

In this subsection, we consider the following set of parameters u, &;, and {p:

O={(n>1e>0L>0: Cr=DV[0<lp<DA(u=p ()]
(15.136)

For any (i, &2, ¢p) € O, either Lemma 15.3 or Lemma 15.4 is valid. Based on the
analysis of Sect. 15.4 and the results of Glizer and Turetsky (2008), the following
theorem can be formulated.

Theorem 15.1. Let (i, &2,¢p) € O. Then the optimal strategies in the differential
game (15.81), (15.10), (15.87) are

signzs, (02,22) € D,

*
0,,20) = . .
u (6, 22) arbitrary subject to (15.10), (62, z2) € D,

(15.137)
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(p=12, p=11,¢e,=2.1

221k
Dl

05

0 D,
051 e

Dl

_1 L

0 2 4 6 8 g, 10

Fig. 15.13 Game space decomposition, {p > 1

i s 0 ,Zz) € 9,
*(03.22) = Sene © 15.138
v (0. 22) arbitrary subject to (15.10), (02, 22) € Db, ( )
where the singular region 9 is
0>
Do = (02,22) © 0r > a5, |22] < /F(s)dg , (15.139)
925

21 = R\, 0 > 0 is the single positive root of the equation I'(6,) = 0.
Moreover, the game value is

0
73, = [ r@dE >0, Gozn 20
925
I3y = I3 (020, 220) = (15.140)
0
Jo, = lz20| + / I')dg, (6x.z20) € 2.
620

In Figs. 15.13-15.15, the game space decomposition is shown for u = 1.1, &, =
2.1, and three values of {p: {p = 1.2, {p = 1,and {p = 0.8, respectively. For {p =
0.8, I;(Gz’k*(é’p)) = 9.26 > 0, i.e. the condition (15.121) is satisfied. Moreover,
since u = 2.1 > u**(1.1) = 1.06, the condition (15.121) with u = 2.1, &, = 1.1
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(p=1p=116=21
4 ‘ :

Fig. 15.14 Game space decomposition, {p = 1

(p=08,p=11¢e =21
6 ‘
22

Fig. 15.15 Game space decomposition, {p < 1

is satisfied for all {p € (0,1). For u = 2.1, &, = 1.1: 6, = 5.42 and J, = 0.59
for {p = 1.2; 6y = 3.23 and J;, = 0.24 for {p = 1; 0y = 2.30 and JJ, = 0.12
for {p = 0.8, i.e. 6, and J,, decrease monotonically for decreasing {p.

It can be seen that the regular zone for 6, < 6, between the boundaries becomes
smaller as {p is smaller.
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(P=0.02, p=11,e9=0.1

L5+
INCY)
1t |
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Fig. 15.16 Equation I"(6,) = 0 has three positive roots

15.5.2 Case of the Multiple Positive Roots of I'(63) = 0

The condition (15.121) of Lemma 15.4 is sufficient for the uniqueness of a positive
root of the equation I"(6,) = 0. Therefore, if this condition is violated, we can
expect the appearance of at least two more positive roots of I'(6;) = 0. In
Fig. 15.16, the case of three positive roots is depicted. For these parameters the roots
are 92.1 = 2.85, 92_2 = 7.30, and 92_3 = 8.24.

The game space decomposition, corresponding to the parameters of Fig. 15.16, is
shown in Fig. 15.17. The zero 6, plays the same role as 6, in the case of a single
positive root of I"(6,) = 0. The presence of the two additional zeros 6, and 6, 3
makes the behavior of the boundary of %, non-monotonic: namely, its upper part
has a local maximum at § = 6, , and local minimum at 6 = 6, 3.

15.5.3 Comparison with Pursuer Having First-Order
Dynamics

The analysis of a linear pursuit-evasion game with bounded controls and second-
order dynamics detailed in the previous sections clearly demonstrated the com-
plexity created by approximating the real dynamics of an interceptor missile by
a second-order transfer function. In order to reduce such complexity, the efforts
of replacing the second-order dynamics by some first-order dynamics, based on
apparent similarities in their step response were made, as illustrated in Fig. 15.18.
Since the normalized state and independent variables are different for the different
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g5 10

Fig. 15.17 Game space decomposition for three positive roots of I'(6,) = 0

Fig. 15.18 Step response
comparison 1+ - = = ]
ll
0.8 ) 1
1 ’,
2 o
g Ll
8 06 1) ,
i ey —Second order: wp = 5 sec™ !, ¢ =07
[
% 0.4F )] - - -First order: 7p = 0.2 sec J
",;;," - First order: 7p = 0.28 sec
o
0.2 —';{i ‘‘‘‘‘ First order: 7p = 0.4 sec 1
y
i
0 L L L
0 0.5 1 1.5 2 25 4+ 3

order of dynamics, the comparison is made using dimensional variables. The
second-order dynamics selected for this illustration had wp = 5 s~land ¢{p = 0.7.
The set of compared first-order dynamics had time constants of tp = 0.2, 0.28, and

0.4 s, respectively. The comparison of the guaranteed miss distances in a 4 s scenario

against an ideal evader with @'f®* = 50 m/s? obtained by the game solution, as the

function of the pursuer maneuverability advantage p, shown in Fig. 15.19, clearly
demonstrates that using the first-order dynamic model strongly underestimates the
guaranteed miss distances. Since these results should represent a pessimistic “worst
case” situation, underestimating the guaranteed miss distance can be critical in the

preliminary design phase.
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Fig. 15.19 Guaranteed miss
distance comparison

ty=4 sec, Tp = 0 sec, a** = 50 m/sec?

Second order: wp = 5 sec™!, (p= 0.7
- - - First order: 7p = 0.2 sec
““““ First order: 7p = 0.28 sec 1

‘‘‘‘‘ First order: 7p = 0.4 sec

15.6 Conclusions

This paper investigated the effect of the pursuer dynamics on the homing perfor-
mance of an interceptor missile, modeled as the pursuer in a linear pursuit-evasion
game with bounded controls. The homing performance is characterized by the
guaranteed miss distance against an optimally evading target. The elaborate mathe-
matical analysis, detailed in the paper, allowed to draw the following conclusions.
The basic structure of a linear pursuit-evasion game with second-order pursuer
dynamics is similar to the one with first-order pursuer dynamics. The reduced
order (normalized zero effort miss distance, normalized time-to-go) game space
is decomposed into two regions, a regular and a singular ones. The regular
region is filled by “bang-bang” strategies controlled optimal trajectories. Such
optimal trajectories do not fill the entire game space, indicating the existence of
a singular region, where the optimal strategies are arbitrary and game value is a
nonzero constant. This singular region has a major importance, because (being
an unbounded region) it includes the large majority of the initial conditions of
practical interest. The constant nonzero game value represents the guaranteed miss
distance that can be achieved in the interception of an optimally evading target. The
investigation of the analytical solution yields that for small values of the time-to-
go the determining function of the game is negative, indicating that capture (zero
miss distance) is not possible. Moreover, the analysis determined that for {p > 1
the determining function has a single zero. For {p < 1 another condition has
to be satisfied for guaranteeing the existence of a single zero. If this condition is
violated, odd numbers of additional roots may exist. The comparison of the homing
performance, characterized by the guaranteed miss distance against an optimally
evading target, shows that replacing the genuine second-order approximation of the
actual dynamics by a simpler first-order dynamic model strongly underestimates
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the guaranteed miss distances. The guaranteed miss distance can be reduced by
increasing the pursuer maneuverability and the frequency of the pursuer dynamics,
as well as by reducing the damping factor.
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