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Abstract. We present a case study of applying a framework for learning from
numeric human feedback—TAMER—to a physically embodied robot. In doing
so, we also provide the first demonstration of the ability to train multiple behav-
iors by such feedback without algorithmic modifications and of a robot learning
from free-form human-generated feedback without any further guidance or eval-
uative feedback. We describe transparency challenges specific to a physically em-
bodied robot learning from human feedback and adjustments that address these
challenges.

1 Introduction

As robots increasingly collaborate with people and otherwise operate in their vicinity,
it will be crucial to develop methods that allow technically unskilled users to teach
and customize behavior to their liking. In this paper we focus on teaching a robot by
feedback signals of approval and disapproval generated by live human trainers, the tech-
nique of interactive shaping. These signals map to numeric values, which we call “hu-
man reward”.

Fig. 1. A training session with the MDS robot
Nexi. The artifact used for trainer interaction
can be seen on the floor immediately behind
Nexi, and the trainer holds a presentation re-
mote by which reward is delivered.

In comparison to learning from demon-
stration [1], teaching by such feedback has
several potential advantages. An agent can
display its learned behavior while being
taught by feedback, increasing responsive-
ness to teaching and ensuring that teach-
ing is focused on the task states experi-
enced when the agent behaves according to
its learned policy. A feedback interface can
be independent of the task domain. And we
speculate that feedback requires less exper-
tise than control and places less cognitive
load on the trainer. Further, a reward signal
is relatively simple in comparison a con-
trol signal; given this simplicity, teaching
by human-generated reward is a promising technique for improving the effectiveness
of low-bandwidth myolectric and EEG-based interfaces, which are being developed to
enable handicapped users to control various robotic devices.
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In this paper, we reductively study the problem of learning from live human feedback
in isolation, without the added advantages of learning from demonstration or similar
methods, to increase our ability to draw insight about this specific style of teaching and
learning. This paper demonstrates for the first time that TAMER [6]—a framework for
learning from human reward—can be successfully applied on a physically embodied
robot. We detail our application of TAMER to enable the training of interactive naviga-
tion behaviors on the Mobile-Dexterous-Social (MDS) robot “Nexi”. Figure 1 shows a
snapshot of a training session. In this domain, Nexi senses the relative location of an
artifact that the trainer can move, and the robot chooses at intervals to turn left or right,
to move forward, or to stay still. Specifically, the choice is dependent on the artifact’s
relative location and is made according to what the robot has learned from the feedback
signals provided by the human trainer. The artifact can be moved by the human, permit-
ting the task domain itself—not just training—to be interactive. The evaluation in this
paper is limited with respect to who trains the agent (the first author). However, multiple
target behaviors are trained, giving the evaluation a different dimension of breadth than
previous TAMER experiments, which focused on the speed or effectiveness of training
to maximize a predetermined performance metric [9,11,8].

Though a few past projects have considered this problem of learning from human
reward [4,21,20,16,18,13,9], only two of these implemented their solution for a robotic
agent. In one such project [13], the agent learned partially in simulation and from hard-
coded reward, demonstrations, and human reward. In another [18], the human trainer, an
author of that study, followed a predetermined algorithm of giving positive reward for
desired actions and negative reward otherwise. This paper describes the first successful
teaching of a robot purely by free-form human reward. One contribution of this pa-
per is the description of how a system for learning from human reward—TAMER—was
applied to a physically embodied robot. A second contribution is explicitly demonstrat-
ing that different behaviors can be trained by changing only the reward provided to the
agent (and trainer interaction with its environment). Isbell et al. [4] showed the potential
for such personalization by human reward in a virtual online environment, but it has not
previously been demonstrated for robots or for TAMER.

2 Background on TAMER

TAMER (for Training an Agent Manually via Evaluative Reinforcement) is a solution
to the problem of how an agent can learn to perform a sequential task given only real-
valued feedback on its behavior from a human trainer. This problem is defined formally
by Knox [6]. The human feedback—“human reward”—is delivered through push but-
tons, spoken word, or any other easy-to-learn interface. The human’s feedback is the
only source of feedback or evaluation that the agent receives. However, TAMER and
other methods for learning from human reward can be useful even when other evalu-
ative information is available, as has been shown previously [21,5,17,11]. The TAMER

algorithm described below has additionally been extended to learn in continuous ac-
tion spaces through an actor-critic algorithm [22] and to provide additional information
to the trainer—either action confidence or summaries of past performance—creating
changes in the quantity of reward instances given and in learned performance [14].
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Motivation and Philosophy of TAMER. The TAMER framework is designed around
two insights. First, when a human trainer evaluates some behavior, she considers the
long-term impact of that behavior, so her feedback signal contains her full judgment
of the desirability of the targeted behavior. Second, a human trainer’s feedback is only
delayed by how long it takes to make and then communicate an evaluation. TAMER as-
sumes that trainers’ feedback is focused on recent behavior; as a consequence, human
reward is considered a trivially delayed, full judgment on the desirability of behavior.
Following the insights above and TAMER’s assumption of behavior-focused feedback,
TAMER avoids the credit assignment problem inherent in reinforcement learning. It in-
stead treats human reward as fully informative about the quality of recent actions from
their corresponding states.

Mechanics of TAMER. The TAMER framework consists of three modules, as illus-
trated in Figure 2: credit assignment to create labels from delayed reward signals for
training samples; supervised learning from those samples to model human reward; and
action selection using the human reward model. The three modules are described below.

TAMER models a hypothetical human reward function, RH : S × A → R, that pre-
dicts numeric reward based on the current state and action values (and thus is Marko-
vian). This modeling, corresponding to the “supervised learner” box in Figure 2, uses
a regression algorithm chosen by the agent designer; we call the model R̂H . Learn-
ing samples for modeling are constructed from experienced state-action pairs and the
real-valued human reward credited to each pair as outlined below.
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Fig. 2. An information-flow diagram illustrating
the TAMER framework

The TAMER algorithm used in this
paper (the “full” algorithm with “delay-
weighted aggregate reward” described
in detail by Knox [6]), addresses the
small delay in providing feedback by
spreading each human reward sig-
nal among multiple recent state-action
pairs, contributing to the label of each
pair’s resultant sample for learning R̂H .
These samples, each with a state-action
pair as input and a post-assignment re-
ward label as the output, are shown as
the product of the “credit assigner” box
in Figure 2. Each sample’s share of a
reward signal is calculated from an es-
timated probability density function for
the delay in reward delivery, fdelay .

To choose actions at some state s (the “action selector” box of Figure 2), a TAMER

agent directly exploits the learned model R̂H and its predictions of expected reward.
When acting greedily, a TAMER agent chooses the action a = argmaxa[R̂H(s, a)].
This is equivalent to performing reinforcement with a discount factor of 0, where reward
acquired from future actions is not considered in action selection (i.e., action selection
is myopic). In practice, almost all TAMER agents thus far have been greedy, since the
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trainer can punish the agent to make it try something different, reducing the need for
other forms of exploration.

Putting TAMER in Context. Although reinforcement learning was inspired by
models of animal learning [19], it has seldom been applied to reward created from non-
expert humans. We and others concerned with the problem of learning from human
reward (sometimes called interactive shaping) seek to understand how reinforcement
learning can be adapted to learn from reward generated by a live human trainer, a goal
that may be critical to the usability of reinforcement learning by non-experts. TAMER,
along with other work on interactive shaping, makes progress towards a second major
form of teaching, one that will complement but not supplant learning from demonstra-
tion (LfD). In contrast to LfD, interactive shaping is a young approach. A recent survey
of LfD for robots cites more than 100 papers [1]; this paper describes the second project
to involve training of robots exclusively from human reward (and the first from purely
free-form reward).

In comparison to past methods for learning from human reward, TAMER differs in
three important ways: (1) TAMER addresses delays in human evaluation through credit
assignment, (2) TAMER learns a model of human reward (R̂H), and (3) at each time step,
TAMER myopically chooses the action that is predicted to directly elicit the maximum
reward (argmaxaR̂H(s, a)), eschewing consideration of the action’s effect on future
state. Accordingly, other algorithms for learning from human reward [4,21,20,16,18,13]
do not directly account for delay, do not model human reward explicitly, and are not
fully myopic (i.e., they employ discount factors greater than 0).

However, nearly all previous approaches for learning from human-generated reward
are relatively myopic, with abnormally high rates of discounting. Myopia creates certain
limitations, including the need for the trainer to communicate what behavior is correct
in any context (e.g., going left at a certain corner); a non-myopic algorithm instead
would permit communication of correct outcomes (e.g., reaching a goal or failure state),
lessening the communication load on trainers (while ideally still allowing behavior-
based feedback, which people seem inclined to give). However, the myopic trend in
past work was only recently identified and justified by Knox and Stone [10], who built
upon this understanding to create the first successful algorithm to learn non-myopically
from human reward [12]. Along with their success in a 30-state grid world, they also
showed that their non-myopic approach needs further human-motivated improvements
to scale to more complex tasks.

Complementing this continuing research into non-myopic approaches, this paper fo-
cuses on applying an established and widely successful myopic approach to a robotic
task, showing that TAMER can be used flexibly to teach a range of behaviors and draw-
ing lessons from its application. TAMER has been implemented successfully in a number
of simulation domains commonly used in reinforcement learning research: mountain
car [9], balancing cart pole [11], Tetris [9], 3 vs. 2 keep-away soccer [17], and a grid-
world task [10]. In comparison, other interactive-shaping approaches have been applied
in at most two domains.
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3 The MDS Robot Nexi

A main contribution of this paper is the application of TAMER to a physical robot,
shown in Figure 3a. The Mobile-Dexterous-Social robot platform is designed for re-
search at the intersection of mobility, manipulation, and human-robot interaction [2].
The mobile base of the MDS platform has 2 degrees of freedom, with two powered
wheels and one unpowered, stability-adding wheel. The robot estimates its environ-
mental state through a Vicon Motion Capture system that determines the 3-dimensional
locations and orientations of the robot and the training artifact; in estimating its own
position and orientation, the robot employs both the Vicon data and information from
its wheel encoders. In addition to the Vicon system, the robot has a number of other
sensing capabilities that are not employed in this work.

4 TAMER Algorithm for Interactive Robot Navigation

(a)

(b)

Fig. 3. (a) The MDS robot Nexi. (b) Nexi’s
action and state spaces, as presented to
TAMER.

We implemented the full TAMER algorithm
as described generally in Section 2 and
in detail by Knox [6], using the delay-
weighted aggregate reward credit assign-
ment system described therein.

From the robot’s estimation of the posi-
tion and orientation of itself and the training
artifact, two features are extracted and used
as input to R̂H along with the action. The
first feature is the distance in meters from
the robot to the training artifact, and the sec-
ond is the angle in radians from the robot’s
position and orientation to the artifact. Fig-
ure 3b shows these state features and the
four possible actions: turn left, turn right,
move forward, or stay still.

In implementing a version of TAMER that
learns interactive navigational behaviors,
we specified the following components. R̂H

is modeled by the k-nearest neighbors algo-
rithm. More detail is given later in this section. The training interface is a presentation
remote that can be held in the trainer’s hand. Two buttons map to positive and negative
reward, giving values of +1 and −1 respectively. Also, an additional button on the re-
mote toggles the training mode on and off. When toggled on, TAMER chooses actions
and learns from feedback on those actions; when off, TAMER does not learn further
but does demonstrate learned behavior (see Knox [6] for details about toggling train-
ing). Another button both turns training off and forces the robot to stay still. This safety
function is intended to avoid collisions with objects in the environment. The probabil-
ity density function fdelay, which is used by TAMER’s credit assignment module and
describes the probability of a certain delay in feedback from the state-action pair it tar-
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gets, is a Uniform(-0.8 seconds, -0.2 seconds) distribution, as has been employed in
past work [6].1

The duration of time steps varies by the action chosen (for reasons discussed in
Section 5). Moving forward and staying each last 1.5 seconds; turns occur for 2.5 sec-
onds. When moving forward, Nexi attempts to move at 0.075 meters per second, and
Nexi seeks to turn at 0.15 radians per second. Since changes in intended velocity—
translational or rotational—require a period of acceleration, the degree of movement
during a time step was affected by whether the same action had occurred in the previ-
ous time step.

R̂H is modeled using k-nearest neighbors with a separate sub-model per action (i.e.,
there is no generalization between actions), as shown in Algorithm 1. The number of
neighbors k is dynamically set to the floor of the square root of the number of sam-
ples gathered for the corresponding action, growing k with the sample size to coun-
teract the lessening generalization caused by an increase in samples and to reduce
the impact of any one experienced state-action pair, reducing potential erratic behav-
ior caused by mistaken feedback. The distance metric is the Euclidean distance given
the 2-dimensional feature vectors of the queried state and the neighboring sample’s
state. In calculating the distance, each vector element v is normalized within [0, 1] by
(v − vmin)/(vmax − vmin), where vmax and vmin are respectively the maximum and
minimum values observed across training samples in the dimension of v.

Algorithm 1. Inference by k-Nearest Neighbors
Given: Euclidean distance function d over state features
Input: Query q with state q.s and action q.a, and a set of samples
Ma for each action a. Each sample has state features, an action,
and a reward label ĥ.
1: k ← floor(

√|Mq.a|)
2: if k = 0 then
3: R̂H(q.s, q.a)← 0
4: else
5: knn = ∅
6: preds sum ← 0
7: for i = 1 to k do
8: nn← argminm∈Mq.a\knnd(m, q)

9: knn ← knn ∪ {nn}
10: dist← d(nn, q)

11: predictioni ← nn.ĥ×
max(1− (dist/2), 1/(1 + (5× dist)))

12: preds sum← preds sum + predictioni

13: end for
14: R̂H(q.s, q.a)← preds sum/k
15: end if
16: return R̂H (q.s, q.a)

To help prevent one or a few highly
negative rewards during early learning
from making Nexi avoid the targeted
action completely, we bias R̂H toward
values of zero. This biasing is achieved
by reducing the value of each neighbor
by a factor determined by its distance
d from the queried state, with larger
distances resulting in larger reductions.
The bias factor is calculated as the
maximum of linear and hyperbolic de-
cay functions as shown in line 11 of
Algorithm 1.

Lastly, when multiple actions have
the same predicted reward from the cur-
rent state, such ties are broken by re-
peating the previous action. This ap-
proach lessens the number of action
changes, which is intended to reduce
early feedback error caused by ambiguously timed changes in actions (as discussed
in Section 5). Accordingly, at the first time step, during which all actions are tied with
a value of 0, a random action is chosen and repeated until non-zero feedback is given.

1 Two minor credit-assignment parameters are not explained here but are nonetheless part of the
full TAMER algorithm. For this instantiation, these are εp = 1 and cmin = 0.5.
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Fig. 4. (a) Iconic illustrations of the five interactive navigational behaviors that were taught to the
MDS robot Nexi (described in Section 5). Each gray square represents a category of state space.
The arrow indicates the desired action in such state; lack of an arrow corresponds to the stay
action. (b) Heat maps showing the reward model that was learned at the end of each successful
training session. Nexi is shown by a transparent birds-eye rendering of the robot, with Nexi facing
the top of the page. The map colors communicate the value of the reward prediction for taking that
action when the artifact is in the corresponding location relative to Nexi. A legend indicating the
mapping between colors and prediction values for each behavior is given on the right. The small
triangle, if visible, represents the location of the artifact at the end of training and subsequent
testing of the behavior. (Note that in all cases the triangle is in a location that should make the
robot stay still, a point of equilibrium.)

5 Results and Discussion

We now describe the results of training the robot and discuss challenges and lessons
provided by implementing TAMER in this domain.

Behaviors Taught. Five different behaviors were independently taught by the first
author, each of which is illustrated in Figure 4a:

– Go to – The robot turns to face the artifact, then moves forward, and stops before
the artifact with little space between the two.

– Keep conversational distance – The robot goes to the artifact and stops at an
approximate distance from the training artifact that two people would typically
keep between each other during conversation (about 2 feet).
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– Look away – The robot should turn away from the artifact, stopping when facing
the opposite direction. The robot never moves forward.

– Toy tantrum – When the artifact is near the front of the robot, it does not move
(as if the artifact is a toy that is in the robot’s possession, satisfying the robot).
Otherwise, the robot turns from side to side (as if in a tantrum to get the toy back).
The robot never moves forward.

– Magnetic control – When the artifact is behind the robot, it acts as if the artifact
repels it. The repulsion is akin to one end of a magnet repelling another magnet that
faces it with the same pole. Specifically, when the artifact is near the center of the
robot’s back, the robot moves forward. If the artifact is behind its left shoulder, it
turns right, moving that shoulder forward (and vice versa for the right shoulder). If
the artifact is not near the robot’s back, the robot does not move.

Videos of the successful training sessions—as well as some earlier, unsuccessful
sessions—can be seen at http://bradknox.net/nexi. Figure 4b contains heat
maps of the learned reward model for each behavior at the end of successful training.

Adjustments for Physical Embodiment. All of the videos were recorded during a
one-day period of training and refinement of our implementation of the TAMER algo-
rithm, during which we specifically adjusted action durations, the effects of chosen
actions, and the communication of the robot’s perceptions to the trainer. Nearly all
sessions that ended unsuccessfully failed because of issues of transparency, which we
addressed before or during this period. These transparency issues were mismatches
between the state-action pair currently occurring and what the trainer believes to be
occurring. The two main points of confusion and their solutions are described below.

The start and end of actions. As mentioned previously in Section 4, there can
be a delay between the robot taking an action (e.g., turn right at 0.15 rad/s) and the
robot visibly performing that action. This delay occurs specifically after any change in
action. This offset between the robot’s and the trainer’s understandings of an action’s
duration (i.e., of a time step) can cause reward to be misattributed to the wrong action.
The durations of each action—2.5 seconds for turns and 1.5 seconds otherwise—were
chosen to ensure that the robot will carry out an action long enough that its visible
duration can be targeted by the trainer.

The state of the training artifact. The position of the artifact, unlike that of the
robot, was estimated from only Vicon data. When the artifact moved beyond the range
of the infrared Vicon cameras, its position was no longer updated. The most common
source of failed training sessions was a lack of awareness by the trainer of this loss of
sensing. In response to this issue, an audible alarm was added that fired whenever the
artifact could not be located, alerting the trainer that the robot’s belief about the artifact
is no longer changing.

The transparency issues above are illustrative of the types of challenges that are
likely to occur with any physically embodied agent trained by human reward. Such
issues are generally absent in simulation. In general, the designer of the learning en-
vironment and algorithm should seek to minimize cases in which the trainer gives
feedback for a state-action pair that was perceived by the trainer but did not occur

http://bradknox.net/nexi
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Table 1. Training times for each behavior

Target behavior
Active

training time
(in min.)

Total time
(in min.)

Go to 27.3 38.5
Keep conv. dist. 9.5 11.4

Look away 5.9 7.9
Toy tantrum 4.7 6.9

Magnetic control 7.3 16.4

The middle column shows the cumulative dura-
tion of active training time, and the right column
shows the time of the entire session, including
time when agent learning is disabled.

from the learning algorithm’s perspec-
tive, causing misattributed feedback.
Likewise, mismatches in perceived tim-
ing of state-action pairs could be prob-
lematic in any feedback-based learning
system. Such challenges are related to
but different from the correspondence
problem in learning from demonstra-
tion [15,1], which is the problem of
how to map from a demonstrator’s state
and action space to that of the emulat-
ing agent. Especially relevant is work by
Crick et al. [3], which compares learning
from human controllers who see a video
feed of the robot’s environment to learn-
ing from humans whose perceptions are
matched to those of the robot, yielding a more limited sensory display. Their sensing-
matched demonstrators performed worse at the task yet created learning samples that
led to better performance.

Training Observations. The go to behavior was taught successfully early on, after
which the aforementioned state transparency issues temporarily blocked further suc-
cess. After the out-of-range alarm was added, the remaining four behaviors were taught
successfully in consecutive training sessions. Table 1 shows the times required for train-
ing each behavior. Note that the latter four behaviors—which differ from go to training
in that they were taught using an anecdotally superior strategy (for space considera-
tions, described at http://bradknox.net/nexi), had the alarm, and benefitted
from an additional half day of trainer experience—were taught in considerably less
time.

6 Conclusion

In this paper, we described an application of TAMER to teach a physically embodied robot
five different interactive navigational tasks. The feasibility of training these five behaviors
constitutes the first focused demonstration of the possibility of using human reward to
flexibly teach multiple robotic behaviors, and of TAMER to do so in any task domain.

Further work with numerous trainers and other task domains will be critical to es-
tablishing the generality of our findings. Additionally, in preliminary work, we have
adapted TAMER to permit feedback on intended actions [7], for which we plan to use
Nexi’s emotive capabilities to signal intention. One expected advantage of such an ap-
proach is that unwanted, even harmful actions can be given negative reward before they
occur, allowing the agent to learn what actions to avoid without ever taking them. We
are also developing methods for non-myopic learning from human reward, which will
permit reward that describes higher-level features of the task (e.g., goals) rather than
only correct or incorrect behavior, reducing the training burden on humans, permitting
more complex behavior to be taught in shorter training sessions.

http://bradknox.net/nexi
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