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Abstract Using an improvement of flatness Lemma, we prove Hölder regularity of
the gradient of solutions with higher order term a uniformly elliptic fully nonlinear
operator and with Hamiltonian which is sub-linear. The result is based on some
general compactness results.
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1 Introduction

In this paper we shall establish some regularity results of solutions of a class of
fully nonlinear equations, with a first order term which is sub-linear; it is a natural
continuation of [5, 12]. Precisely we shall consider the following family of equations

F.D2u/ C b.x/jrujˇ D f .x/ in ˝ � R
N : (1)

See also [1] for related recent results.

Theorem 1.1 Suppose that F is uniformly elliptic, that ˇ 2 .0; 1/, f and b are in
C .˝/. For any u, bounded viscosity solution of (1) and for any r < 1, there exist
� 2 .0; 1/ depending on ellipticity constants of F, kbk1, !.b/ and ˇ and C D C.�/
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such that

kukC 1;� .Br.xo// � C

�
kuk1 C kbk

1
1�ˇ1 C k f k1

�
;

as long as B1.xo/ � ˝ .

Answering a question that we raised in [4], Imbert and Silvestre in [12] proved an
interior Hölder regularity for the gradient of the solutions of

jruj˛F.D2u/ D f .x/

when ˛ � 0. Their proof relies on a priori Lipschitz bounds, rescaling and an
improvement of flatness Lemma, in this way they are lead to use the classical
regularity results of Caffarelli, and Evans [7, 8, 11] for uniformly elliptic equations.

Following their breakthrough, in [5], we proved the same interior regularity when
˛ � 0 in the presence of lower order terms. We also proved C1;� regularity up to
the boundary if the boundary datum is sufficiently smooth. Our main motivation to
investigate the regularity of these solutions i.e. the simplicity of the first eigenvalue
associated to the Dirichlet problem for jruj˛F.D2u/, required continuity of the
gradient up to the boundary.

When ˛ 2 .�1; 0/, in [4] we proved C 1;� regularity for solutions of the Dirichlet
problem, using a fixed point argument which required global Dirichlet conditions
on the whole boundary. So one of the question left open was: is the local regularity
valid for ˛ < 0?

Theorem 1.1 answers to this question since the following holds:

Proposition 1.1 Suppose that, for ˛ 2 .�1; 0/, u is a viscosity solution of

jruj˛F.D2u/ D f .x/ in ˝

then u is a viscosity solution of

F.D2u/ � f .x/jruj�˛ D 0 in ˝:

The proof is postponed to the appendix, but recall that singular equations require a
special definition of viscosity solutions.

Theorem 1.1 concerns continuous viscosity solutions of (1); we should point out
that in the case of Lp viscosity solutions (see [9]) it is possible to use a different
strategy. Indeed one could prove first, using the argument below, that the solutions
are Lipschitz continuous. By Rademacher theorem they are almost everywhere
differentiable and hence they will be an Lp viscosity solution of

F.D2u/ D g.x/
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with g 2 L1. The classical result of Caffarelli [7] implies that the solution are C1;˛ .
But this is a different result from ours, since continuous viscosity solutions are Lp

viscosity solutions only when g is continuous, which somehow is what we want to
prove.

In turn the C1;˛ regularity implies that g is Hölder continuous, so further
regularities can be obtained (see e.g. [6, 14]).

Even for F.D2u/ D �u it would be impossible to mention all the work that has
been done on equation of the form

F.D2u/ C jrujp D f .x/:

Interestingly most of the literature is concerned with the case p > 1. In particular
the so called natural growth i.e. p D 2 has been much studied in variational contexts
and the behaviours are quite different when p � 2 or 1 < p < 2. We will just
mention the fundamental papers of Lasry and Lions [13] and Trudinger [15]. And
more recently the papers of Capuzzo Dolcetta et al. [10] and Barles et al. [2]. In the
latter the Hölder regularity of the solution is proved for non local uniformly elliptic
operators, and with lower order terms that may be sublinear.

Remark 1.1 Observe that the operator is not Lipschitz continuous with respect to
ru. This implies that in general uniqueness of the Dirichlet problem does not hold.
For example, when ˝ is the ball of radius 1, then u � 0 and u.x/ D C.1 � jxj� /

with � D 2�ˇ

1�ˇ
and C D ��1.� C N � 2/

1
ˇ�1 are both solutions of equation

�
�u C jrujˇ D 0 in ˝;

u D 0 on @˝:

2 Interior Regularity Results

Let SN denote the symmetric N � N matrices. In the whole paper F indicates a
uniformly elliptic operator i.e. F satisfies F.0/ D 0 and, for some 0 < � � �,

�trN � F.M C N/ � F.M/ � �trN

for any M 2 SN and any N 2 SN such that N � 0. The constants appearing in the
estimates below often depend on � and �, but we will not specify them explicitly
when it happens.

We recall that we want to prove

Theorem 2.1 Let f and b continuous in B1 � ˝ . For any u, bounded viscosity
solution of (1) in B1, and for any r < 1 there exist

� D �.kf k1; kbk1; ˇ; !b.ı// and C D C.�/
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such that

kukC 1;� .Br/ � C

�
kuk1 C kbk

1
1�ˇ1 C kf k1

�
:

Before proving Theorem 2.1, we shall prove a local Lipschitz continuity result.

Lemma 2.1 Suppose that H W B1 � R
N ! R is such that

H.:; 0/ is bounded in B1 and there exist C > 0 such that for all q 2 R
N,

jH.x; q/ � H.x; 0/j � C.jqjˇ C jqj/:

Then there exists Co such that if C < Co, any bounded solution u of

F.D2u/ C H.x; ru/ D f .x/ in B1

is Lipschitz continuous in Br, for r < 1 with some Lipschitz constant depending
on r, kf k1, Co and kH.:0/k1.

Proof of Lemma 2.1 The proof proceeds as in [5, 12]. We outline it here, in order to
indicate the changes that need to be done.

Let r < r0 < 1 and xo 2 Br, we consider on Br0 � Br0 the function

˚.x; y/ D u.x/ � u.y/ � L2!.jx � yj/ � Ljx � xoj2 � Ljy � xoj2

where the continuous function ! is given by !.s/ D s � wos
3
2 for s � .2=3wo/

2 and
constant elsewhere; here wo is chosen in order that .2=3wo/

2 > 1.
The scope is to prove that, for L independent of xo, chosen large enough,

˚.x; y/ � 0 on B2
r : (2)

This will imply that u is Lipschitz continuous on Br by taking x D xo, and letting xo

vary.
So we begin to choose L >

8 sup u
.r0�r/2 . Suppose by contradiction that ˚.Nx; Ny/ D

sup ˚.x; y/ > 0. By the hypothesis on L; .Nx; Ny/ is in the interior of B2
r . Proceeding

in the calculations as in [2] (see also [3, 12]) we get that if (2) is not true then there
exist X and Y such that

.qx; X/ 2 J2;Cu.Nx/; .qy; �Y/ 2 J2;�u.Ny/

where J
2;C

, J
2;�

are the standard semi-jets, while qx D L2!0.jx�yj/ x�y
jx�yj C2L.x�xo/

and qy D L2!0.jx � yj/ x�y
jx�yj � 2L.y � xo/.

Then, there exist constant �1; �2 depending only on �; �; !o such that

MC.X C Y/ � ��1L2

and jqxj; jqyj � �2L2.
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Using the equation,

f .Nx/ � H.Nx; qx/ C F.X/

� H.Nx; qx/ C F.�Y/ C MC.X C Y/

� f .Ny/ � �1L2

CkH.:; 0/k1 C C.jqxjˇ C jqyjˇ C jqxj C jqyj/:

The term kH.:; 0/k1 is o.L2/, while for Co � �1

16�2

C.jqxjˇ C jqyjˇ C jqxj C jqyj/ � �1L2

2
C 4Co.1 C �2L2/

� 3�1L2

4
C 4Co:

In conclusion we have obtained that f .Nx/ � f .Ny/ � �1L2

4
C o.L2/. This is a

contradiction for L large.

Corollary 2.1 Suppose that .fn/n and .Hn.�; 0//n are sequences converging uni-
formly respectively to f1 and H1 on any compact subset of B1, such that for all
q 2 R

N,

jHn.x; q/ � Hn.x; 0/j � �n.jqjˇ C jqj/ (3)

with �n ! 0. Let un be a sequence of solutions of

F.D2un/ C Hn.x; run/ D fn.x/ in B1:

If kunk1 is a bounded sequence, then up to subsequences, un converges, in any
compact subset of B1, to u1 a solution of the limit equation

F.D2u1/ C H1.x/ D f1.x/ in B1:

2.1 Holder Regularity of the Gradient: Main Ingredients

We will follow the line of proof in [5, 12]. The modulus of continuity of a function g
is defined by !g.ı/ D supŒx�yj�ı jg.x/ � g.y/j. In the following, ! will denote some
continuous increasing function on Œ0; ıo� such that !.0/ D 0.

Lemma 2.2 (Improvement of Flatness) There exist �o 2 .0; 1/ and there exists
	 2 .0; 1/ depending on .ˇ; N; �; �; !/ such that : for any � < �o, for any
p 2 R

N and for any f and b such that kf k1 � �, kbk1 � � and such that
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!b.ı/ � kbk1!.ı/, if u is a solution of

F.D2u/ C b.x/jru C pjˇ D f .x/ in B1

with oscB1 u � 1 , then there exists q? 2 R
N such that

osc
B	

.u � q? � x/ � 1

2
	:

Proof of Lemma 2.2 We argue by contradiction i.e. we suppose that, for any n 2 N,
there exist pn 2 R

N , and un a solution of

F.D2un/ C bn.x/jrun C pnjˇ D fn.x/ in B1

with oscB1 un � 1 and such that, for any 	 2 .0; 1/ and any q? 2 R
N ,

osc
B	

.un � q? � x/ � 1

2
	:

Observe that un � un.0/ satisfies the same equation as un, it has oscillation 1 and it
is bounded, we can then suppose that the sequence .un/ is bounded. Suppose first
that jpnj is bounded, so it converges, up to subsequences. Let vn.x/ D un.x/ C pn � x,
which is a solution of

F.D2vn/ C bn.x/jrvnjˇ D fn.x/:

We can apply Corollary 2.1 with Hn.x; q/ D bn.x/jqjˇ, since (3) holds.

Hence vn converges uniformly to v1, a solution of the limit equation

F.D2v1/ D 0 in B1:

Furthermore v1 satisfies, for any 	 2 .0; 1/ and any q? 2 R
N ,

osc
B	

.v1 � q? � x/ � 1

2
	: (4)

This contradicts the classical C 1;˛ regularity results, see Evans [11] and Caffarelli
[7].

We suppose now that jpnj goes to infinity. There are two cases, suppose first
that jpnjˇkbnk1 is bounded. Let Hn.x; q/ D bn.x/jq C pnjˇ. Since !jpnjˇbn

.ı/ �
jpnjˇkbnk1!.ı/, Hn.x; 0/ is equicontinuous and up to a subsequence, it converges
uniformly to some function H1.x/, while .un/n is a uniformly bounded sequence of
solutions of

F.D2un/ C Hn.x; run/ D fn.x/:
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We can apply Corollary 2.1 and up to a subsequence, un converges to u1 which is a
solution of

F.D2u1/ C H1.x/ D 0:

Furthermore u1 satisfies (4), for any 	 2 .0; 1/ and any q? 2 R
N . As in the case pn

bounded, this contradicts the classical C 1;� regularity results cited above.
We are left to treat the case where an D jpnjˇkbnk1 is unbounded. Hence, up to

a subsequence, it goes to C1. We divide the equation by an, so vn WD un
an

satisfies

F.D2vn/ C bn.x/

an
janrvn C pnjˇ D fn.x/

an
:

We can apply Corollary 2.1 with

Hn.x; q/ D bn.x/aˇ�1
n jq C a�1

n pnjˇ:

Observe that, Hn.x; 0/ D bn.x/a�1
n jpnjˇ is equicontinuous, of L1 norm 1 and up to

a subsequence, it converges uniformly to some function H1.x/.
Passing to the limit one gets that the limit equation is

F.0/ C H1.x/ D 0:

This yields a contradiction, since H1 has norm 1 and it ends the proof of
Lemma 2.2.

The next step is an iteration process which is needed in order to prove
Theorem 2.1.

Lemma 2.3 Given �o, ! and 	 as in Lemma 2.2. Let b and f be such that
kf k1; kbk1 � �o and such that !b.ı/ � kbk1!.ı/. Suppose that u is a viscosity
solution of

F.D2u/ C b.x/jrujˇ D f .x/ in B1 (5)

and, oscB1 u � 1. Then, there exists � 2 .0; 1/, such that for all k > 1, k 2 N there
exists pk 2 R

N such that

osc
Brk

.u.x/ � pk � x/ � r1C�
k (6)

where rk WD 	k.

The proof is by induction and rescaling. For k D 0 just take pk D 0. Suppose now
that, for a fixe k, (6) holds with some pk. Choose � 2 .0; 1/ such that 	� > 1

2
.
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Define the function uk.x/ D r�1��
k .u.rkx/ � pk � .rkx// : By the induction

hypothesis, pk is such that oscB1 uk � 1 and uk is a solution of

F.D2uk/ C r1��
k b.rkx/jr�

k .ruk C pkr��
k /jˇ D r1��

k f .rkx/:

Denoting by bk the function bk.x/ D r1��.1�ˇ/
k b.rkx/ which satisfies !bk .ı/ D

r1��.1�ˇ/
k !b.rkı/ � r1��.1�ˇ/

k kbk1!.rkı/ � kbkk1!.ı/, the equation above can
be written as

F.D2uk/ C bk.x/jruk C pkr��
k jˇ D r1��

k f .rkx/:

Since the L1 norm of fk D r1��
k f .rk �/ is less than �, we can conclude that there

exists qk such that

osc
B	

.uk.x/ � qk � x/ � 1

2
	:

So that, for pkC1 D pk C qkr�C1
k ,

osc
BrkC1

.u.x/ � pkC1 � x/ � 	

2
r1C�

k � r1C�
kC1 :

This ends the proof of Lemma 2.3.

2.2 Holder Regularity of the Gradient: Conclusion

Lemma 2.4 Suppose that for any r, there exists pr such that

osc
Br

.u.x/ � pr � x/ � Cr1C�

then u is C 1;� in 0.

Proof It is clear that it is sufficient to prove that pr converges when r goes to 0.
We will prove that the sequence p2�k converges and then conclude for the whole

sequence. Let rk D 1
2k , since rkC1 < rk for x; y in BrkC1

ju.x/ � u.y/ � pkC1 � .x � y/j � Cr1C�
kC1

and

ju.x/ � u.y/ � pk � .x � y/j � Cr1C�
k :
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Subtracting

j.pkC1 � pk � x � y/j � C.r1C�
kC1 C r1C�

k /:

Then, choosing x D pkC1�pk

jpkC1�pkj rkC1 D �y, one gets

2jpkC1 � pkjrkC1 � C.r1C�
kC1 C r1C�

k /

which implies

jpkC1 � pkj � C2r�
k :

This proves that the series of general term .pkC1 � pk/ converges; hence so does the
sequence pk.

We deduce the convergence of the whole sequence p	 when 	 goes to zero. Let k
be such that rkC1 � 	 � rk. Then for all x 2 B	

.u.x/ � p	 � x/ � C	1C� � Cr1C�
k

and also, since x 2 Brk ,

.u.x/ � prk � x/ � Cr1C�
k :

Hence, by subtracting, .p	 � prk / � x � 2Cr1C�
k . Then, taking x D p	�prk

jp	�prk j	, we get

jp	 � prk j � C
r
1C�
k
	

� C
r
1C�
k

rkC1
D 2Cr�

k : This implies that p	 has the same limit as pk.
This ends the proof of Lemma 2.4.

Suppose now that u is a bounded solution of (5), for general f bounded in L1, and

b continuous. The function v.x/ D �u.x/ with ��1 D osc u C 1
�o

.kf k1 C kbk
1

1�ˇ1 /

satisfies the equation

F.D2v/ C b.x/�1�ˇjrvjˇ D �f .x/:

Our choice of � implies that we are under the conditions of Lemma 2.3, so v is in
C 1;� , by Lemma 2.4, and so is u.

Appendix

Proof of Proposition 1.1 We assume that ˛ 2 .�1; 0/ and that u is a supersolution
of

jruj˛F.D2u/ D f .x/ in ˝ (7)
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i.e. we suppose that for any xo 2 ˝ either u is locally constant in a neighbourhood
of xo and then 0 � f in that neighbourhood, or, if it is not constant, for any ' test
function that touches u by below at xo and such that r'.xo/ ¤ 0, we require that

jr'.xo/j˛F.D2'.xo// � f .xo/:

We need to prove that this implies that u is a supersolution of

F.D2u/ � f .x/jruj�˛ D 0 in ˝; (8)

in the usual viscosity sense. Without loss of generality we let xo D 0. If u is constant
around 0, D2u.0/ D 0 and Du.0/ D 0, so the conclusion is immediate. If ' is
some test function by below at zero such that r'.0/ ¤ 0, the conclusion is also
immediate. We then suppose that there exists M 2 S such that

u.x/ � u.0/ C 1

2
hMx; xi C o.jxj2/: (9)

We want to prove that

F.M/ � 0:

Let us observe first that one can suppose that M is invertible, since if it is not, it can
be replaced by Mn D M � 1

n I which satisfies (9) and tends to M.
Let k > 2 and R > 0 such that

inf
jxj<R

�
u.x/ � 1

2
hMx; xi C jxjk

�
D u.0/

where the infimum is strict. We choose ı < R such that k.2ı/k�2 < 1
2

infi j�i.M/j.
Let � be such that

inf
ı<jxj<R

�
u.x/ � 1

2
hMx; xi C jxjk

�
D u.0/ C �

and let ı2 < ı and such that k.2ı/k�1ı2 C kMk1.ı2
2 C 2ı2ı/ < �

4
. Then, for x such

that jxj < ı2,

inf
jyj�ı

fu.y/ � 1

2
hM.y � x/; y � xi C jy � xjkg � inf

jyj�ı
fu.y/ � 1

2
hMy; yi C jyjkg C �

4

D u.0/ C �

4
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and on the opposite

inf
R>jyj>ı

fu.y/ � 1

2
hM.y � x/; y � xi C jy � xjkg

� inf
jyj>ı

fu.y/ � 1

2
hMy; yi C jyjkg � �

4
> u.0/ C 3

�

4
:

Since the function u is supposed to be non locally constant, there exist xı and yı in
B.0; ı2/ such that

u.xı/ > u.yı/ � 1

2
hM.xı � yı/; xı � yıi C jxı � yıjk

and then the infimum infy;jyj�ıfu.y/ � 1
2
hM.xı � y/; xı � yi C jxı � yjkg is achieved

on some point zı different from xı . This implies that the function

'.z/ WD u.zı/ C 1

2
hM.xı � z/; xı � zi � jxı � zjk C 1

2
hM.xı � zı/; xı � zıi C jxı � zıjk

touches u by below at the point zı . But

r'.zı/ D M.zı � xı/ � kjxı � zıjk�2.zı � xı/ ¤ 0;

indeed, if it was equal to zero, zı � xı would be an eigenvector corresponding to the
eigenvalue kjxı � zıjk�2 which is supposed to be strictly less than any eigenvalue
of M.

Since u is a super-solution of (7), multiplying by jr'.zı/j�˛, we get

F

�
M � d2

dz2
.jxı � zjk/.zı/

�
� f .zı/jr'.zı/j�˛:

By passing to the limit for ı ! 0 we obtain the desired conclusion i.e. F.M/ � 0.
We would argue in the same manner for sub-solutions.
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