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Abstract We study the uniqueness problem of the equation,

��L;pu C jujq�1u D h on R
N ;

where q > p � 1 > 0: and N > p: Uniqueness results proved in this paper hold
for equations associated to the mean curvature type operators as well as for more
general quasilinear coercive subelliptic problems.
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1 Introduction

Nonlinear elliptic problems of coercive type is still an interesting subject for
scholars of nonlinear partial differential equations.
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In [3] the authors studied, among other things, one of the simplest canonical
quasilinear coercive problem with non regular data, namely,

��pu C jujq�1u D h on R
N ; (1)

where q > p � 1 > 0 and h 2 L1loc.R
N/.

An earlier contribution to this problem in the case p D 2 was obtained in [5].
Among other things in [5] it was proved that for the semilinear equation (1), for any
h 2 L1loc.R

N/ there exists a unique distributional solution u 2 Lq
loc.R

N/:

Later on in [3] the Authors studied the general case p > 1:
By using an approximation procedure they proved that if q > p � 1 and

p > 2 � 1

N
; then for any h 2 L1loc.R

N/ the Eq. (1) possesses a solution belonging

to the space

X D W1;1
loc .R

N/\ W1;p�1
loc .RN/ \ Lq

loc.R
N/:

No general results about uniqueness of solutions were claimed in that paper.
In this work, we shall study the uniqueness problem of solutions of general

quasilinear equations of the type

� divL .A .x; u.x/;rLu.x///C  `jujq�1u D h on R
N ; (2)

and related qualitative properties in the subelliptic setting (see Sect. 2 for details).
The main goal of this paper is to show that the ideas introduced in [10] and
developed [11] apply to this more general setting as well.

In this regards we observe that the Eq. (2) contains a weight function  which
is related to subellipticity of the operator appearing in (2) and may vanish on some
unbounded negligible set. Problems containing this kind of degeneracy were not
studied in [11].

By using the notations introduced in Sect. 2, we shall prove the uniqueness of
solutions of (2) in the space

W1;p
L;loc.R

N/\ Lq
loc.R

N/ D fu 2 Lp
loc.R

N/ \ Lq
loc.R

N/ W jrLuj 2 Lp
loc.R

N/g:

To this end, first we set up two essential tools which are of independent interest.
Namely, the regularity of weak solutions of (2) in the space W1;p

L;loc.R
N/\Lq

loc.R
N/

and comparison principles on R
N : Further we shall derive some properties of the

solutions of the problems under consideration.
Our efforts here is to apply an approach that can be useful when dealing with

more general operators and related equations or inequalities.
Canonical cases of the main results proved in this paper are the following.
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Theorem 1.1 Let 1 < p < 2, 0 � ` � p, q � 1, h 2 L1loc.R
N/; then the problem

� divL
�jrLujp�2rLu

�C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;p
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

In the semilinear case we have,

Theorem 1.2 Let 0 � ` � 2, q > 1, h 2 L1loc.R
N/; then the problem

� divL .rLu/C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;2
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

Theorem 1.3 Let q � 1, 0 � ` � 1, h 2 L1loc.R
N/ then the problem,

� divL

 
rLu

p
1C jrLuj2

!

C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;1
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

When considering the case ` > 1; we need to look at solutions that belong to a
functional space which is smaller than W1;1

L;loc.R
N/ \ Lq

loc.R
N/.

We have the following.

Theorem 1.4 Let 1 < ` � 2, q � 1, q > ` � 1, h 2 L1loc.R
N/ then the problem,

� divL

 
rLu

p
1C jrLuj2

!

C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;`
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:
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Our uniqueness results concern solutions that belong to the class W1;p
L;loc.R

N/ \
Lq

loc.R
N/. Of course, this set in the canonical Euclidean case is contained in the

space X considered in [3]. We point out that when dealing with uniqueness results
additional regularity is required by several Authors. See for instance [1]. Indeed, in
that work the Authors obtain the existence of solutions of problem (1) belonging to a
certain space T1;p0 . Uniqueness of solutions proved in [1] concerns entropy solutions.

The paper is organized as follow. In the next section we describe the setting and
the notations. In Sect. 3 we prove some general a priori estimates on the solutions
of the problems under consideration.

In Sect. 4 we prove some comparison results and derive some consequences.
Finally in Sect. 5 we discuss an open question and we point out its solution in a

special case.
In this paper an important role is played by the M-p-C operators (see below for

the definition). For easy reference, in Sect. 6 we recall some inequalities proved in
[11]. These inequalities are of independent interest and will be used throughout the
paper when checking that an operator satisfies the M-p-C property.

2 Notations and Definitions

In this paper r and j�j stand respectively for the usual gradient in R
N and the

Euclidean norm.
Let � 2 C .RN IRl/ be a matrix � WD .�ij/, i D 1; : : : ; l, j D 1; : : : ;N and

assume that for any i D 1; : : : ; l, j D 1; : : : ;N the derivative @
@xj
�ij 2 C .RN/. For

i D 1; : : : ; l, let Xi and its formal adjoint X�
i be defined as

Xi WD
NX

jD1
�ij.�/

@

@�j
; X�

i WD �
NX

jD1

@

@�j

�
�ij.�/�

�
; (3)

and let rL be the vector field defined by

rL WD .X1; : : : ;Xl/
T D �r;

and

r�
L WD .X�

1 ; : : : ;X
�
l /

T :

For any vector field h D .h1; : : : ; hl/
T 2 C 1.RN ;Rl/, we shall use the following

notation divL.h/ WD div.�Th/, that is

divL.h/ D �
lX

iD1
X�

i hi D �r�
L � h:
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We suppose that the vector fields satisfy the following assumption. Let ı WD
.ı1; : : : ; ıN/ be an N-uple of positive real number. We shall denote by ıR the function
ıR W RN ! R

N defined by

ıR.x/ D ıR.x1; : : : ; xN/ WD .Rı1x1; : : : ;R
ıN xN/: (4)

We require that rL is ıR-homogeneous, that is, there exists ı D .ı1; : : : ; ıN/ such
that rL is pseudo homogeneous of degree 1 with respect to dilation ıR, namely

rL.�.ıR.�/// D R.rL�/.ıR.�// for R > 0 and � 2 C 1.RN/:

Notice that in the Euclidean framework we have � D IN , the identity matrix on
R

N . Examples of vector fields satisfying our assumptions are the usual gradient
acting on l.� N/ variables, vector fields related to Bouendi–Grushin operator,
Heisenberg–Kohn sub-Laplacian, Heisenberg–Greiner operator, sub-Laplacian on
Carnot Groups.

A nonnegative continuous function S W RN ! RC is called a ıR-homogeneous
norm on R

N , if S.��1/ D S.�/, S.�/ D 0 if and only if � D 0, and it is homogeneous
of degree 1 with respect to ıR (i.e. S.ıR.�// D RS.�/).

An example of smooth homogeneous norm is

S.�/ WD
 

NX

iD1
.�r

i /
d
ıi

! 1
rd

; (5)

where d WD ı1ı2 � � � ıN and r is the lowest even integer such that r �
maxfı1=d; : : : ; ıN=d}.

Notice that if S is a homogeneous norm differentiable a.e., then jrLSj is
homogeneous of degree 0 with respect to ıR; hence jrLSj is bounded.

Throughout this paper we assume that j�jL 2 C 1.RN n f0g/ is a general, however
fixed, homogeneous norm.

We denote by BR the open ball generated by j�jL, that is BR WD f� 2 R
N W j�jL <

Rg. Since the Jacobian of the map ıR is J.ıR/ D RQ with Q WD ı1 C ı2 C : : : ıN , we
have jBRj D RQjB1j,

We define  WD jrLj�jLj and assume that the set where  vanishes is negligible.
The function  is bounded and may vanish at some point. For instance in the

Euclidean setting, if j�jL is the Euclidean norm, then  � 1. If we endow R
N with

the Heisenberg group structure with R
N � H

n D R
n
x �R

n
y �Rt, rL is the Heisenberg

gradient and j�jL is the gauge of the canonical sublaplacian, then  2.�/ D .jxj2 C
jyj2/=j�j2L with � D .x; y; t/.

In what follows we shall assume that A W RN � R � R
l ! R

l is a Carathéodory
function, that is for each t 2 R and � 2 R

l the function A .�; t; �/ is measurable; and
for a.e. x 2 R

N , A .x; �; �/ is continuous.
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We consider operators L “generated” by A , that is

L.u/.x/ D divL .A .x; u.x/;rLu.x/// : (6)

Our canonical model cases are the p-Laplacian operator, the mean curvature
operator and some related generalizations. See Examples 2.1 below.

Definition 2.1 Let A W RN �R�R
l ! R

l be a Carathéodory function. The function
A is called weakly elliptic if it generates a weakly elliptic operator L i.e.

A .x; t; �/ � � � 0 for each x 2 R
N ; t 2 R; � 2 R

l;

A .x; 0; �/ D 0 or A .x; t; 0/ D 0:
(WE)

Let p � 1, the function A is called W-p-C (weakly-p-coercive) (see [2]), if A is
(WE) and it generates a weakly-p-coercive operator L, i.e. if there exists a constant
k2 > 0 such that

.A .x; t; �/ � �/p�1 � kp
2jA .x; t; �/jp for each x 2 R

N ; t 2 R; � 2 R
l: (W-p-C)

Let p > 1, the function A is called S-p-C (strongly-p-coercive) (see [2, 13, 14]),
if there exist k1; k2 > 0 constants such that

.A .x; t; �/ � �/ � k1j�jp � kp0

2 jA .x; t; �/jp0

for each x 2 R
N ; t 2 R; � 2 R

l:

(S-p-C)

We look for solution in the space W1;p
L;loc.˝/ defined as

W1;p
L;loc.˝/ WD fu 2 Lp

loc.˝/ W jrLuj 2 Lp
loc.˝/g:

Definition 2.2 Let ˝ 	 R
N be an open set and let f W ˝ � R � R

l ! R be a
Carathéodory function. Let p � 1. We say that u 2 W1;p

L;loc.˝/ is a weak solution of

divL .A .x; u;rLu// � f .x; u;rLu/ on ˝;

if A .�; u;rLu/ 2 Lp0

loc.˝/, f .�; u;rLu/ 2 L1loc.˝/, and for any nonnegative � 2
C 1
0 .˝/ we have

�
Z

˝

A .x; u;rLu/ � rL� �
Z

˝

f .x; u;rLu/�:

Example 2.1

1. Let p > 1. The p-Laplacian operator defined on suitable functions u by,

�pu D divL
�jrLujp�2rLu

�

is an operator generated by A .x; t; �/ WD j�jp�2� which is S-p-C.
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2. If A is of mean curvature type, that is A can be written as A .x; t; �/ WD A.j�j/�
with A W R ! R a positive bounded continuous function (see [2, 12]), then A is
W-2-C.

3. The mean curvature operator in non parametric form

Tu WD divL

 
rLu

p
1C jrLuj2

!

;

is generated by A .x; t; �/ WD �p
1Cj�j2 . In this case A is W-p-C with 1 � p � 2

and of mean curvature type but it is not S-2-C.
4. Let m > 1. The operator

Tmu WD divL

 
jrLujm�2rLu
p
1C jrLujm

!

is W-p-C for m � p � m=2.

Definition 2.3 Let A W RN � R
l ! R

l be a Charateodory function. We say that A
is monotone if

.A .x; �/ � A .x; �// � .� � �/ � 0 for �; � 2 R
l: (7)

Let p � 1. We say that A is M-p-C (monotone p-coercive) if A is monotone and
if there exists k2 > 0 such that

..A .x; �/ � A .x; �// � .� � �//p�1 � kp
2jA .x; �/ � A .x; �/jp: (8)

Example 2.2

1. Let 1 < p � 2 the function A .�/ WD j�jp�2� is M-p-C (see Sect. 6 for details).
2. The mean curvature operator is M-p-C with 1 � p � 2 (see Sect. 6).

In what follows we shall use a special family of test functions that we call cut-off
functions. More precisely, let '1 2 C 1

0 .R/ be such that 0 � '1 � 1, '1.t/ D 0 if
jtj � 2 and '1.t/ D 1 if jtj � 1. Next, for R > 0 by cut-off function we mean the
function 'R defined as 'R.x/ D '1.jxjL=R/.

Finally, if not otherwise stated, the integrals are considered on the whole
space RN .

3 A Priori Estimates

The following is a slight variation of a result proved in [10]. For easy reference we
shall include its detailed proof.

Consider the following inequality,

divL .A .x; v;rLv// � f � divL .A .x; u;rLu//� g on R
N : (9)
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We have,

Theorem 3.1 Let p � 1 and let A W RN � R
l ! R

l be M-p-C. Let f ; g 2 L1loc.R
N/

and let .u; v/ be weak solution of (9). Set w WD .v�u/C and let s > 0 and p � ` � 0.
If .f � g/w � 0 and

wsCp�1 ` 2 L1.B2R n BR/ for R large; (10)

then

.f � g/ws; .A .x;rLv/ � A .x;rLu// � rLw ws�1�fw>0g 2 L1loc.R
N/: (11)

Moreover, for any nonnegative � 2 C 1
0 .R

N/ we have,

Z
.f �g/ws�Cc1s

Z
.A .x;rLv/�A .x;rLu//�rLw ws�1��c2s

1�p
Z

wsCp�1 jrL�jp

�p�1 ;
(12)

where c1 D 1� p�1
p

�
�
k2

� p
p�1

> 0, c2 D pp

p�p and � > 0 is sufficiently small for p > 1

and c1 D 1 and c2 D 1=k2 for p D 1.

Remark 3.1

i) Notice that from the above result it follows that if u; v 2 W1;p
L;loc.R

N/ is a weak
solution of (9), then .f � g/w 2 L1loc.R

N/.
ii) The above lemma still holds if we replace the function f � g 2 L1loc.R

N/ with a
regular Borel measure on R

N .
iii) The right hand side in (12) could be divergent since we know only that

wsCp�1 ` 2 L1loc.R
N/.

iv) If in Theorem 3.1 we consider the case ` D 0, then Theorem 3.1 can be restated
for inequalities (9) on a open set ˝ by replacing R

N with ˝ and requiring that
wsCp�1 2 L1loc.˝/.

v) If .u; v/ is a weak solution of (9) and u is a constant i.e. u � const,
then Theorem 3.1 still holds even for W-p-C operators. See the following
Lemma 3.1.

Lemma 3.1 Let p � 1 and let A be W-p-C. Let f ; g 2 L1loc.R
N/ and let v 2

W1;p
L;loc.R

N/ be a weak solution of

divL .A .x; u;rLu// � f � g; on R
N : (13)

Let k > 0 and set w WD .v � k/C and let s > 0, p � ` � 0. If .f � g/w � 0 and (10)
holds, then

.f � g/ws; A .x; v;rLv/ � rLw ws�1�fw>0g 2 L1loc.R
N/ (14)
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and for any nonnegative � 2 C 1
0 .R

N/ we have,

Z
.f �g/ws�Cc1s

Z
A .x; v;rLv/�rLw ws�1� � c2s

1�p
Z

wsCp�1 jrL�jp

�p�1 ; (15)

where c1 and c2 are as in Theorem 3.1.

The above lemma lies on the following result proved in [10, Theorem 2.7].

Theorem 3.2 ([10]) Let A W ˝ � R � R
N ! R

N be a monotone Carathéodory
function. Let f ; g 2 L1loc.˝/ and let u; v be weak solution of

divL .A .x; v;rLv// � f � divL .A .x; u;rLu//� g on ˝: (16)

Let 	 2 C 1.R/ be such that 0 � 	.t/; 	 0.t/ � M, then

�
Z

˝

.A .x; v;rLv/� A .x; u;rLu// � rL� 	.v � u/ � (17)

�
Z

˝

	 0.v � u/ .rLv � rLu/ � .A .x; v;rLv/ � A .x; u;rLu/ � (18)

C
Z

˝

�	.v � u/.f � g/ on ˝: (19)

Hence

divL .	.v � u/.A .x; v;rLv/ � A .x; u;rLu/// � 	.v � u/.f � g/ on ˝:

Moreover1

divL
�
signC.v � u/.A .x; v;rLv/ � A .x; u;rLu//

� � signC.v � u/.f � g/ on ˝:
(20)

Proof (of Theorem 3.1) Let 	 2 C 1.R/ be a bounded nonnegative function with
bounded nonnegative first derivative and let � 2 C 1

0 .˝/ be a nonnegative test
function.

For simplicity we shall omit the arguments of A . So we shall write Au and Av

instead of A .x;rLu/ and A .x;rLv/ respectively.

1We recall that the function signC is defined as signC.t/ WD 0 if t � 0 and signC.t/ WD 1

otherwise.
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Applying Lemma 3.2, we obtain

Z
.f � g/	.w/� C

Z
.Av � Au/ � rLw 	 0.w/� � �

Z
.Av � Au/ � rL� 	.w/

�
Z

jAv � Auj jrL�j	.w/:
(21)

Let p > 1. From (21) we have

Z
.f � g/	.w/� C

Z
.Av � Au/ � rLw 	 0.w/� �

�
�Z

jAv � Aujp0

	 0.w/�
�1=p0 �Z

	.w/p

	 0.w/p�1
jrL�jp

�p�1

�1=p

� �p0

p0kp0

2

Z
.Av � Au/ � rLw 	 0.w/� C 1

p�p

Z
	.w/p

	 0.w/p�1
jrL�jp

�p�1 ;

where � > 0 and all integrals are well defined provided 	.w/p

	 0.w/p�1 2 L1loc.˝/. With a

suitable choice of � > 0; for any nonnegative � 2 C 1
0 .˝/ and 	 2 C 1.R/ as above

such that 	.w/p

	 0.w/p�1 2 L1loc.˝/; it follows that,

Z
.f �g/	.w/�Cc1

Z
.Av�Au/ �rLw 	 0.w/� � 1

p�p

Z
	.w/p

	 0.w/p�1
jrL�jp

�p�1 : (22)

Now for s > 0, 1 > ı > 0 and n � 1, define

	n.t/ WD
8
<

:

.t C ı/s if 0 � t < n � ı;
cns � s

ˇ � 1nˇCs�1.t C ı/1�ˇ if t � n � ı;
(23)

where c WD ˇ�1Cs
ˇ�1 and ˇ > 1 will be chosen later. Clearly 	n 2 C 1,

	 0
n.t/ D

(
s.t C ı/s�1 if 0 � t < n � ı;

snˇCs�1.t C ı/�ˇ if t � n � ı;

and 	n, 	 0
n are nonnegative and bounded with jj	njj1 D cns and jj	 0

njj1 D sns�1.
Moreover

	n.t/p

	 0
n.t/

p�1 D
(

s1�p.t C ı/sCp�1 for t < n � ı;

.t; n/ for t � n � ı;
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where


.t; n/ WD
.cns � s

ˇ�1nˇCs�1.t C ı/1�ˇ/p

.snˇCs�1.t C ı/�ˇ/p�1 � .cns/ps1�pn�.ˇCs�1/.p�1/ .t C ı/ˇ.p�1/:

Choosing ˇ WD sCp�1
p�1 we have c D p, and


.t; n/ � pps1�pnsp�.ˇCs�1/.p�1/.t C ı/sCp�1 D pps1�p.t C ı/sCp�1:

Therefore, for t � 0 we have,

	n.t/p

	 0
n.t/

p�1 � pps1�p.t C ı/sCp�1:

Since by assumption wsCp�1 2 L1loc.˝/, from (22) with 	 D 	n, it follows that

Z
.f � g/	n.w/� C c1

Z
.Av �Au/ � rLw 	 0

n.w/� � pps1�p

p�p

Z
.w C ı/sCp�1 jrL�jp

�p�1 :

Now, noticing that 	n.t/ ! .t C ı/s and 	 0
n.t/ ! s.t C ı/s�1 as n ! C1;

.f � g/.	n.w/ � 	n.0/ � 0 and A is monotone (that is .Av � Au/ � rLw � 0), by
Fatou’s Lemma theorem we obtain
Z
.f �g/ .wCı/s�Cc1s

Z
.Av�Au/�rLw .wCı/s�1� � c2s

1�p
Z
.wCı/sCp�1 jrL�jp

�p�1
:

By letting ı ! 0 in the above inequality, we have the inequality (12).
Next, we choose R > 0 large enough and � WD '

p
R with 'R a cut off function,

that is

�.x/ WD .'R.x//
p WD .'1.jxjL=R//p:

With these choice we have

jrL�jp

�p�1 D pp pR�pj' 0
1jp

� jxjL

R

�
� ppjj jjp�`jj' 0

1jjp1R�p ` DW c3 
`;

and from (12) we deduce

Z

BR

.f � g/ws C c1s
Z

BR

.Av � Au/ � rLw ws�1 � c2s
1�pc3

Z

B2rnBR

wsCp�1 `;

which completes the proof of the claim in the case p > 1.
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Let p D 1. From (21) and the fact that Av � Au is bounded, the estimate (22)
holds provided we replace p with 1 and � with k2. The remaining argument is similar
to the case p > 1; hence we shall omit it.

Lemma 3.2 Let p � 1 and let A W RN � R
l ! R

l be M-p-C. Let f ; g 2 L1loc.R
N/

and let .u; v/ be weak solution of (9). Set w WD .v � u/C. If .f � g/w � 0 and
wq ` 2 L1.B2R n BR/ for q > p � 1, p � ` � 0 and R > 0 large, then

.f � g/wq�pC1; ..A .x;rLv/ � A .x;rLu// � rLw wq�p�fw>0g 2 L1loc.R
N/; (24)

and for any 'R 2 C 1
0 .R

N/ cut-off function, for R large enough, we have,

Z
.f � g/ signC.w/ '�R � c

�Z

B2RnBR

wq `'�R

� p�1
q

RQ. q�pC1
q /�p

; (25)

where c D c.�; k2; p; q; jj jj1; `/ and � � pq
q�pC1�s , 0 < s < minf1; q � p C 1g.

Proof The claim (24) follows from Theorem 3.1.
Let s > 0 be such that q � s C p � 1. From Lemma 3.1, for any nonnegative

� 2 C 1
0 .R

N/; we have

Z
.f � g/ws� C c1s

Z
.Av � Au/ � rLw ws�1� � c2s

1�p
Z

S
wsCp�1 jrL�jp

�p�1 ; (26)

where, as in the proof of Theorem 3.1, we write Av and Av for A .x;rLv/ and
A .x;rLu/ respectively and S is the support of jrL�j.

Next, an application of Theorem 3.2 gives (20). That is

divL
�
signC.v � u/.A .x; v;rLv/ � A .x; u;rLu//

� � signC.v � u/.f � g/ on R
N :

(27)

Now we consider the case p > 1. Let 0 < s < minf1; q � p C 1g. By definition
of weak solution and Hölder’s inequality with exponent p0, taking into account that
A is M-p-C and from (26) we get,

Z
signC w.f � g/ � �

Z

S
jAv � AujjrL�j signC w (28)

D
Z

S
jAv � Aujw s�1

p0 �
1
p0 jrL�jw 1�s

p0 �
� 1

p0 (29)

� 1

k2

�Z

S
.Av � Au/ � rLw ws�1�

�1=p0 �Z

S
w.1�s/.p�1/ jrL�jp

�p�1

�1=p

(30)

� 1

k2

�
c2

c1sp

�1=p0 �Z

S
wsCp�1 jrL�jp

�p�1

�1=p0 �Z

S
w.1�s/.p�1/ jrL�jp

�p�1

�1=p

: (31)
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Since q > s C p � 1 and q > p � 1, applying Hölder inequality to (31) with
exponents � WD q

sCp�1 and y WD q
.1�s/.p�1/ , we obtain

Z
signC w .f � g/� � c0

3

�Z

S
wq `�

�ı  Z

S

jrL�jp�0

 �0
�1�p�0

�1

! 1
p0�0

 Z

S

jrL�jpy0

�y0
�1�py0

�1

! 1
py0

;

(32)

where

ı WD 1

�p0 C 1

yp
D p � 1

q
; c0

3 WD
�

c2
c1sp

�1=p0

1

k2
:

Next for � � p�0 (notice that p�0 > py0 implies � > py0), we choose � WD '�R .
From (32) it follows that S D B2R n BR and

Z
signC w .f � g/'�R � c0

3�
p

�Z

S
wq `'�R

�ı
�

�
�Z

S
 pR�p�0 j' 0

1jp�0

.
jxjL

R
/

� 1
p0�0

�Z

S
 pR�py0 j' 0

1jpy0

.
jxjL

R
/

� 1
py0

� c0
3�

p

�Z

S
wq `'�R

�ı
jj jj

p
p0�0

C p
py0

1 R� p�0

p0�0
� py0

py0 jj' 0
1jj

p�0

p0�0
C py0

py0

1 jB2R n BRj 1
p0�0

C 1
py0

� c

�Z

S
wq `'�R

�ı
RQ.1�ı/�p;

completing the proof of (25).
Now, we assume that p D 1. From (28), with the choice � WD '�R , we have

Z
signC w .f � g/'�R � �

k2

Z

S
jrL'Rj � cRQ�1;

which completes the proof.

4 Comparison and Uniqueness

In this section we prove a comparison principle and its implication on the uniqueness
property.

Consider the following inequality,

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N : (33)
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As preliminary result we have the following.

Lemma 4.1 Let p � 1, let A be M-p-C, q � 1 and q > p � 1.
Let .u; v/ be weak solution of (33) with p � ` � 0. Then ..v � u/C/r ` 2

L1loc.R
N/ for any r < C1.

Proof Let .u; v/ be a solution of (33) and set w WD .v � u/C. By using the well
known inequality

jtjq�1t � jsjq�1s � cq.t � s/q; for t � s .q � 1/; (34)

we deduce that wq ` 2 L1loc.R
N/: From this it follows that we are in the position to

apply Theorem 3.1, with s D q � p C 1 obtaining wq1 ` 2 L1loc.R
N/ with q1 WD

2q � p C 1. Applying again Theorem 3.1, with s D q1 � p C 1, we get wq2 ` 2
L1loc.R

N/ with q2 WD q1 C q � p C 1 D q C 2.q � p C 1/. Iterating j times we have
that wqj ` 2 L1loc.R

N/ with qj WD q C j.q � p C 1/. By choosing j sufficiently large
we get the claim.

Theorem 4.1 Let p � 1, let A be M-p-C, q � 1, q > p � 1 and p � ` � 0. Let
.u; v/ be a weak solution of

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N : (35)

Then v � u a.e. on R
N.

In particular if .u; v/ be a weak solution of

divL .A .x;rLv//� `jvjq�1v D divL .A .x;rLu//� `jujq�1u on R
N ; (36)

then u � v a.e. on R
N.

Proof Let .u; v/ be a solution of (35) and set w WD .v � u/C. From Lemma 4.1
we know that wr ` 2 L1loc.R

N/ for any r, and hence we are in the position to
apply Theorem 3.1 with s large enough. Thus, from (34) and (12) we get wqCs ` 2
L1loc.R

N/ and

Z
wqCs `� � c.s; q; p/

Z
wsCp�1 jrL�jp

�p�1 :

Applying the Hölder inequality with exponent x WD qCs
sCp�1 > 1 we have

Z
wqCs `� � c.s; q; p/

Z
 p.1�x0/ jrL�jpx0

�px0�1 :
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By the same choice of � we made in the proof of Theorem 3.1, that is � D 'R a cut
off functions, it follows that

Z

BR

wqCs ` � cRQ�px0 D cRQ�p.qCs/=.q�pC1/:

Choosing s large enough and letting R ! C1, we have that w � 0 a.e. on R
N :

This completes the proof.

Corollary 4.1 Let p � 1, let A be W-p-C such that A .x; 0/ D 0. Let q and ` be
as in Theorem 4.1. Let h 2 L1loc.R

N/. Let v be a weak solution of the problem

� divL .A .x;rLv//C  `jvjq�1v D h: (37)

Then,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

In particular, if h � 0 [resp. � 0], then v � 0 [resp. � 0] and if h
 `

2 L1.RN/,

then v 2 L1.RN/.

Proof We shall prove only the estimate

jvjq�1v � sup
RN

h

 `
;

the proof of the other inequality being similar. If sup
RN

h
 `

D C1 there is nothing

to prove. Let M WD sup
RN

h
 `
< C1. We define u WD sign.M/jMj1=q. Then

divL .A .x;rLv//� `jvjq�1vChD0 � h� `MD divL .A .x;rLu//� `jujq�1uCh;

that is .u; v/ satisfy (35) with u constant. In this case all the previous estimates
still hold since in this case the operator can be seen as it were M-p-C. See also
Remark 3.1 and Lemma 3.1.

Thus the claim follows from Theorem 4.1.

Corollary 4.2 Let p � 1 and let A be M-p-C. Let q and ` be as in Theorem 4.1.
Let h 2 L1loc.R

N/. Then the possible weak solution of the problem (37) is unique.
Moreover if A .x; 0/ D 0 and v is a solution of (37), then

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:
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Proof Uniqueness. Let u and v two solutions of (37). Then .u; v/ solves

divL .A .x;rLv//�  `jvjq�1v D divL .A .x;rLu//�  `jujq�1u on R
N ;

and applying Theorem 4.1 we conclude that u � v.
The remaining claim follows from Corollary 4.1.

5 Further Applications

5.1 Symmetry Results

An application of Theorem 4.1 to the symmetry of solutions is the following.

Proposition 5.1 Let p � 1. Let A be M-p-C and Let L be the operator generated
by A , see (6). Let q be as in Theorem 4.1.

Let ˚ W RN ! R
N be a map which leaves L invariant, that is

divL.A .x;rL.�.˚.x//// D divL.A .�;rL.�.�///.˚.x// for any � 2 C 2.RN/:

i.e.

L.�.˚.x/// D L.�/.˚.x// for any � 2 C 2.RN/:

Let h 2 L1loc.R
N/ be a ˚-invariant function, that is h.˚.x// D h.x/ for a.e. x 2 R

N.
If v is a solution of

� divL .A .x;rLv//C jvjq�1v D h; (38)

then v is ˚-invariant.
If  is ˚-invariant, p � ` � 0 and v is a solution of

� divL .A .x;rLv//C  `jvjq�1v D h; (39)

then v is ˚-invariant.

Proof Set v˚.x/ WD v.˚.x//. We have that

�L.v/.x/C  `.x/jvjq�1v.x/ D h.x/ D h.˚.x//

D �L.v/.˚.x//C  `..˚.x//jvjq�1v..˚.x//

D �L.v˚/.x/C  `.x/jv˚ jq�1v˚.x/

and by the uniqueness of the solution we have the claim.
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In the Heisenberg group examples of map which leaves the p-laplacian invariant
are the following, ˚.�/ D ��, ˚.x; y; t/ D .�x; y; t/ and ˚.x; y; t/ D .2� �
x; y;�t � 4�y/ for any � 2 R.

Proposition 5.2 Let q > 1, 2 � ` � 0 and h 2 L1loc.R
N/. Let�H be the Heisenberg

Laplacian on the Heisenberg group H
n and let j�jL the gauge related to �H. Then

the problem

��Hv C  `jvjq�1v D h (40)

has at most one solution.
Moreover, let v be a solution of (40) we have

i) If h is cylindrical, then v is cylindrical.
ii) Let ` D 0. If h does not depend on t, then v is independent on t and it solves the

problem

��v C jvjq�1v D h on R
2n: (41)

5.2 Some Applications to Systems

Another consequence of Theorem 4.1 is the following.

Theorem 5.1 Let p � 1, let A be M-p-C and odd, that is A .x;��/ D �A .x; �/
for any x 2 R

N and � 2 R
l. Let q � 1, q > p � 1 and p � ` � 0. Let h1; h2 2

L1loc.R
N/. Let .u; v/ be a weak solution of

8
<

:

divL .A .x;rLu// �  `jvjq�1v C h1 on R
N ;

divL .A .x;rLv// �  `jujq�1u C h2 on R
N :

(42)

If h1 C h2 � 0, then u C v � 0 a.e. on R
N.

Moreover, if .u; v/ solves also the equation in (42) and h1 D �h2, then u D �v
and u solves

� divL .A .x;rLu// D jujq�1u:

Proof Let w WD �u. Summing up the inequalities, we have that .w; v/ is a solution
of (35). Hence by Theorem 4.1 it follows that v � w: This completes the first part
of the proof.

Now, if .u; v/ is a solution of (42) with equality sign, then .�u;�v/ solves the
same equations. By the first part of this claim we deduce that �u � v � 0, thereby
concluding the proof.



194 L. D’Ambrosio and E. Mitidieri

Corollary 5.1 Let p � 1, let A be M-p-C and odd. Let q � 1, q > p � 1 and
p � ` � 0 and let .u; v/ be a weak solution of

8
<

:

� divL .A .x;rLu// D  `jvjq�1v on R
N ;

� divL .A .x;rLv// D  `jujq�1u on R
N :

(43)

Then u D v a.e. on R
N.

Proof The claim follows by observing that .�u; v/ solves the system (42) with
equality signs and h1 D h1 � 0. Hence the claim follows from Theorem 5.1.

The above Theorem 5.1 and Corollary 5.1 were proved in a weaker form by the
first author in [7].

5.3 An Interesting Question

We the point out the following challenging question.
If p D 1 and q � 1; from the results proved in the preceding sections it follows

that uniqueness and comparison principles for problem (37) hold.
A natural open question is whether in the case 0 < q < 1 the same results hold.

In these respects, the following partial results may give some indication that this
problem has an affirmative answer.

Theorem 5.2 Let p D 1, let A be M-p-C, q > 0 and p � ` � 0. If .u; v/ is a
bounded weak solution of

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N ; (44)

then v � u a.e. on R
N.

Proof It is easy to see that

jtjq�1t � jsjq�1s � cq.t � s/; for M � t � s � �M: (45)

Therefore by the argument used in the proof of Theorem 4.1, the claim follows.

Corollary 5.2 Let p D 1, let A be M-p-C, q > 0, p � ` � 0 and let h 2 L1loc.R
N/.

Then the possible bounded solution of (37) is unique.

Looking at one of the model case, the p-Laplacian, one can easily realize that,
for p > 2 the p-Laplacian operator in not M-p-C. In this direction some efforts have
been made in [11]. However, even if the technique developed in the present paper
shows that it is possible to study equations associated to general operators satisfying
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appropriated structural assumptions, the uniqueness problem for the equation

��pu C jujq�1u D h on R
N ;

for h 2 L1loc.R
N/ and u 2 W1;p

loc .R
N/; with q > p � 1 and p > 2 remains still open.

Clearly, looking for nonnegative solution with h � 0 several results are known
see [13] for the Euclidean setting and [6] for the degenerate and anisotropic case.
The interested reader may refer also to [8–10] and [11].

6 Inequalities and M-p-C Operators

Here, we recall some fundamental elementary inequalities proved in [11] that we
use throughout the paper.

In what follows we shall assume that A has the form

A .x; �/ D A.j�j/�;

where A W RC ! R. We set �.t/ WD A.t/t.

Theorem 6.1 Let A be nonincreasing and bounded function such that

�.0/ D 0; �.t/ > 0 for t > 0; � is nondecreasing: (46)

Then A is M-p-C with p D 2.

Theorem 6.2 Let 1 < p � 2. Let � be increasing, concave function satisfying (46)
and such that there exist positive constants cp; c� > 0 such that

�.t/ � cptp�1 (47)

and

�0.s/s � c��.s/: (48)

Then A is M-p-C.

Remark 6.1 We notice that (47) is a necessary condition on A to be an M-p-C
operator. Indeed, if A is M-p-C, by taking � D 0, then it follows that A is W-p-C,
and (47) holds by Hölder inequality.
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7 Examples

Example 7.1 Let l � N be a positive natural number and let �l 2 C 1.RN IRl/ be
the matrix defined as

�l WD �
Il 0
�
:

The corresponding vector field r l is the usual gradient acting only on the first l
variables

r l D .@x1 ; @x2 ; : : : ; @xl/:

Clearly rN D r and r l is homogeneous with respect to dilation

ıR.x/ D .Rx1;Rx2; : : : ;Rxl;R
ılC1xlC1; : : : ;RıN xN/

with ılC1; : : : ; ıN are arbitrary real positive numbers.

Example 7.2 (Baouendi-Grushin Type Operator) Let � D .x; y/ 2 R
n �R

k.D R
N/.

Let 	 � 0 and let � be the following matrix
�

In 0

0 jxj	 Ik

�
: (49)

The corresponding vector field is given by r	 D .rx; jxj	ry/
T and the linear

operator L D divL.rL�/ D �x Cjxj2	�y is the so-called Baouendi-Grushin operator.
Notice that if k D 0 or 	 D 0, then L coincides with the usual Laplacian
operator. The vector field r	 is homogeneous with respect to dilation ıR.x/ D
.Rx1; : : : ;Rxn;R1C	y1; : : : ;R1C	yk/.

Example 7.3 (Heisenberg-Kohn Operator) Let � D .x; y; t/ 2 R
n � R

n � R D H
n

and let � be defined as
�

In 0 2y
0 In �2x

�
:

The corresponding vector field rH is the Heisenberg gradient on the Heisenberg
group H

n. The vector field rH is homogeneous with respect to ıR.�/ D .Rx;Ry;R2t/
and Q D 2n C 2.

In H
1 the corresponding vector fields are X D @x C 2y@t, Y D @y � 2x@t. In this

case Q D 4.
In H

n a canonical homogeneous norm, called gauge, is defined as

j�jH WD
0

@

 
nX

iD1
x2i C y2i

!2
C t2

1

A

1=4

:
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Example 7.4 (Heisenberg-Greiner Operator) Let � D .x; y; t/ 2 R
n � R

n � R,
r WD j.x; y/j, 	 � 1 and let � be defined as

�
In 0 2	yr2	�2
0 In �2	xr2	�2

�
: (50)

The corresponding vector fields are Xi D @xi C 2	yir2	�2@t, Yi D @yi � 2	xir2	�2@t

for i D 1; : : : ; n.
For 	 D 1 L D divL.rL�/ is the sub-Laplacian �H on the Heisenberg group

H
n. If 	 D 2; 3; : : : , L is a Greiner operator. The vector field associated to � is

homogeneous with respect to ıR.�/ D .Rx;Ry;R2	 t/ and Q D 2n C 2	 .

Example 7.5 Let RN be splitted as

R
N D R

n1 � R
n2 � � � � � R

nr 3 .x1; x2; : : : ; xr/;

and let ˛2; ˛3; : : : ; ˛r > 0 be fixed.
Let g2 W Rn1 ! R be an homogeneous function of degree ˛2.
Let g3 W Rn1 � R

n2 ! R be an homogeneous function of degree ˛3 with respect
to dilation ıR.x1; x2/ D .Rx1;R˛2C1x2/, that is g3.Rx1;R˛2C1x2/ D R˛3g3.x1; x2/:

Let g4 W Rn1 � R
n2 � R

n3 ! R be an homogeneous function of degree ˛4 with
respect to dilation ıR.x1; x2; x3/ D .Rx1;R˛2C1x2;R˛3C1x3/.

We iterate the procedure by choosing analogously other homogeneous functions
gj up to gr W Rn1 �R

n2 �� � ��R
nr�1 ! R a homogeneous function of degree ˛r with

respect to dilation ıR.x1; x2; : : : xr�1/ D .Rx1;R˛2C1x2; : : : ;R˛r�1C1xr�1/.
Next we define the matrix � as

0

B
B
B
B
BB
B
@

In1 0

0 g2.x1/In2 0 � � �
� � � 0 g3.x1; x2/In3

: : : : : :

0 gr.x1; x2; : : : ; xr�1/Inr

1

C
C
C
C
CC
C
A

: (51)

We have that the vector field �r satisfies the assumption of Sect. 2. Indeed it is
homogeneous with respect to ıR.x/ D .Rx1;R˛2C1x2; : : : ;R˛rC1xr/. This example
generalizes the Example 7.2.

Example 7.6 (Carnot Groups) On a Carnot group the horizontal gradient can be
written in the form �r as in Sect. 2 and it satisfies our assumptions. We refer the
reader to [4] for more detailed information on this subject. Special examples of
Carnot groups are the Euclidean spaces R

N . The simplest nontrivial example of a
Carnot group is the Heisenberg group H

1 D R
3. See Example 7.3. Several other

examples can be found in the book [4].
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