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Preface

This volume celebrates the seventieth birthday of Professor Ermanno Lanconelli,
whose scientific activity has strongly influenced the recent research on partial
differential equations (PDEs) with non-negative characteristic form, and on the
related potential theory. Beyond his distinguished scientific contributions, Ermanno
Lanconelli has also been responsible for forming a prestigious school of mathemati-
cians who share with him his infectious love for Mathematics.

The first notable contribution in Ermanno’s scientific activity was a represen-
tation formula on the level sets of the fundamental solution of the heat equation,
inspired by the work of Bruno Pini. This technique, until then used only for
harmonic functions, has since been extended to increasingly large classes of
equations, including the totally degenerate ones.

The scientific thought of Ermanno Lanconelli reached its full maturity with his
works on totally degenerate equations. In the early 1980s, he introduced an original
geometric approach for study of solutions to Grushin-type equations. Thereafter,
he investigated the link between the geometric properties of the vector fields
and the fundamental solutions of the associated second order operators in a long
series of papers, culminating in a monograph, which is now considered one of the
foundational references for potential theory in this setting.

He also addressed problems related to non-linear PDEs and proved a fundamental
result for curvature-type equations, which opened up a new direction in the study of
differential equations with non-linearity in the vector fields.

As a mathematician, Lanconelli has been constantly motivated by a strong desire
to develop unifying techniques in the analysis of problems related to differential
equations that classically were approached with separate and independent methods.

This volume contains 18 contributions that cover a wide range of topics that
characterize Ermanno’s scientific production. It brings together a selection of invited
contributions from the main speakers at the conference “Geometric methods in
PDEs: Indam Meeting on the occasion of the 70th birthday of Ermanno Lanconelli”
and presents a wide cross-section of the most recent contributions on linear and
non-linear differential equations and also on geometric problems that give rise to
differential equations.
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viii Preface

The first group of contributions in the volume deals with various kinds of
functional inequalities: Friedrichs-type commutator lemmas, sharp inequalities of
Hardy and Moser–Trudinger types, and Lusin theorems for BV functions.

Several contributions focus on the regularity theory of linear PDEs. They
touch on Harnack-type estimates for equations associated with harmonic maps,
subelliptic Fefferman–Phong type inequalities, estimates for parabolic equations
involving Ornstein–Uhlenbeck terms, and the problem of existence and regularity
of a fundamental solution for sum of squares of vector fields.

A third group of contributions deals with non-linear PDEs. Existence and
multiplicity results for non-local eigenvalue problems are established; uniqueness
problems for subelliptic semilinear and quasilinear equations are studied; existence
and non-existence results for differential inequalities in Carnot groups are given; and
gradient estimates with rigidity results for parabolic Modica-type PDEs are proven.

Some other contributions in the volume are concerned with fully non-linear PDEs
of elliptic type, focusing on local and global gradient estimates for non-negative
solutions and C1;� regularity estimates for equations with sublinear first-order terms.

Also included are contributions concerning, first, the existence of solutions for
a model to design reflectors and, secondly, some div-curl inequalities in Carnot
groups.

Finally, the volume includes two surveys, the first of which is on free boundary
problems. The second has been written by Ermanno Lanconelli’s former students
as a tribute to his career and to thank him for the guidance that he has provided
throughout their research activities.

Beyond the scientific contents mentioned above, Andrea Bonfiglioli, Giovanna
Citti, Giovanni Cupini, Maria Manfredini, Annamaria Montanari, Daniele Mor-
bidelli, Andrea Pascucci, Sergio Polidoro, and Francesco Uguzzoni conceived this
volume in order to offer researchers who have enjoyed collaborating with Ermanno
the opportunity to share their scientific experiences.

The Editors
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On Friedrichs Commutators Lemma for Hardy
Spaces and Applications

Jorge Hounie

Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday

Abstract We extend the classical Friedrichs commutator lemma—known for Lp

norms—to the case of local Hardy spaces hp.RN/, N=.N C 1/ < p � 1, and apply
the result to the study of the regularity in Sobolev-Hardy spaces of solutions of
elliptic systems of vector fields with non smooth coefficients.

Keywords Elliptic systems • Friedrichs lemma • Hardy spaces

AMS Classification: 35J46, 46E35

1 Introduction

Let hp.RN/ be the local Hardy space [2] for some 0 < p < 1 and consider a
distribution f .x/ 2 hp.RN/. Given a test function � 2 C1

c .R
N/ with

R
� dx D 1, let

us denote the Friedrichs approximation of the identity by

J"f .x/ D �" � f .x/; �".x/ D 1

"N
�.x="/; " > 0:

It is known that

kJ"f khp � C kf khp ; lim
"!0

kJ"f � f khp D 0;

with C > 0 independent of f 2 hp.RN/.
For p > 1 we have hp.RN/ D Lp.RN/ and the classical Friedrichs lemma states

that [4, p. 9] if b.x/ is a Lipschitz function and f 2 Lp.RN/, 1 � p < 1 and
j D 1; : : : ;N, then the commutators ŒJ"; b@j�f .x/ D �"�.b@jf /.x/�b.x/@j.�"�f /.x/,

J. Hounie (�)
Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, Brasil
e-mail: hounie@dm.ufscar.br
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2 J. Hounie

" > 0, satisfy

kŒJ"; b@j�f kLp � CkbkLipkf kLp ; lim
"!0

kŒJ"; b@j�f kLp D 0; (FL)

with C > 0 independent of f 2 Lp.RN/, b 2 Lip.RN/.
The main point about (FL) is that although the left hand side contains a derivative

of f , the right hand side does not so one derivative is gained in the commutation.
From the point o view of the calculus of pseudo-differential operators, J" can
be thought of as a pseudo-differential operator of order zero (uniformly with
respect to ") with symbol O�."�/ and, assuming b.x/ is smooth and bounded with
bounded derivatives, b@j is a pseudo-differential of order zero. Hence, this fact is
in agreement with the calculus of pseudo-differential operators, according to which
the commutator of an operator of order zero with an operator of order one yields
an operator of order zero. However, this calculus requires that b.x/ be smooth
(or, at least that it possesses a large number of derivatives that increases with the
dimension N in order to grant that ŒJ"; b@j� is bounded in Lp.RN/, furthermore,
pseudo-differential operators of order zero are not bounded in L1.RN/ in general).
Friedrichs lemma is, in its original form, a frequent, useful and standard tool in the
study of regularity properties for solutions of partial differential equations. For an
extension valid for Hölder spaces see [6].

In this work we deal with the extension of (FL) below the threshold p D 1

within the framework of local Hardy spaces. In fact, we prove that (FL) holds for
N=.N C 1/ < p � 1 as soon as we replace Lp norms by hp “norms” and take the
coefficient b.x/ in the Hölder space �1Cr for any r > N.p�1 � 1/. In other words,
we prove

kŒJ"; b@j�f khp � Ckbk1Crkf khp ; lim
"!0

kŒJ"; b@j�f khp D 0; (FL#)

with C > 0 independent of f 2 hp.RN/, b 2 �1Cr.RN/. This fact can be used as
a tool to study the regularity of solutions of systems of vector fields in terms of
Hardy-Sobolev “norms”.

The paper is organized as follows. In Sect. 2 we present various basic facts
about local Hardy spaces. In Sect. 3 we give sufficient regularity conditions for a
continuous function b.x/ to be a multiplier in hp.RN/ (i.e., f .x/ 2 hp.RN/ H)
b.x/f .x/ 2 hp.RN)). In Sect. 4 we prove our version of Friedrichs lemma in local
Hardy spaces and in Sect. 5 we present applications to the regularity of solutions of
elliptic systems of complex vector fields with non smooth coefficients.

2 Some Background on Local Hardy Spaces

We recall how the localizable Hardy spaces hp.RN/, introduced by Goldberg in [2],
are defined. Fix, once for all, a radial nonnegative function ' 2 C1

c .R
N/ supported

in the unit ball with integral equal to 1. For u 2 S 0.RN/we define the small maximal
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function m'u by

m'u.x/ D sup
0<t<1

j.u � 't/.x/j

where 't.x/ D t�N'.x=t/.

Definition 2.1 Let 0 < p < 1. A tempered distribution u 2 S 0.RN/ belongs to
hp.RN/ if and only if m'u 2 Lp.RN/, i.e.,

kukhp
:D km'ukLp < 1:

For p D 1, we set h1.RN/ D L1.RN/.

The spaces hp.RN/ are independent of the choice of the function ' 2 S .RN/ that
is used to define m' provided

R
RN '.x/ dx ¤ 0. For 0 < p � 1, the space hp.RN/ is

a complete metric space with the distance

d.u; v/ D ku � vkp
hp ; u; v 2 hp.RN/:

For p D 1, kukh1 is a norm and h1.RN/ is a normed space densely contained in
L1.RN/. For p > 1, hp.RN/ D Lp.RN/ and kukhp is a norm equivalent to the usual
Lp norm. Although hp.RN/ is not locally convex for 0 < p < 1 and kukhp is not
truly a norm (it is a quasi-norm [9]), we will still refer to kukhp as the “norm” of u,
as it is customary.

Definition 2.2 Let 0 < r < 1. A continuous function f belongs to the homogeneous
Hölder space P�r.RN/ if there exist c > 0 such that

jf .x C h/� f .x/j � cjhjr;

for every x; h 2 R
N . For r D 1, f 2 P�1.RN/ if there exist c > 0 such that

jf .x C h/C f .x � h/� 2f .x/j � cjhjr;

and if r D k C s, k D 1; 2; : : : , 0 � s < 1, f 2 P�r.RN/ if all derivatives D˛f 2
P�s.RN/ for j˛j � k.

This is a locally convex topological vector space with the seminorm

jf jkCs PD
X

j˛j�k

sup
x;h2RN

h¤0

jD˛f .x C h/� D˛f .x/j
jhjs

modulo the subspace of those functions such that jf jr D 0which are the polynomials
of degree � m if m is an integer such that m � 1 < r � m.

When 0 < p < 1 the dual space of hp.RN/ may be identified with the

nonhomogeneous Hölder space �r.RN/ PD P�r.RN/ \ L1.RN/ for r D N
�
1
p � 1

�

equipped with the norm kf kr D jf jr C kf kL1 . Note that N=.N C 1/ < p < 1 if and
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only if 0 < N
�
1
p � 1

�
< 1. The dual of h1.RN/ can be identified with the space

bmo.RN/ defined as the space of locally integrable functions f which satisfy

kf kbmo PD sup
jQj<1

1

jQj
Z

Q
jf � fQj C sup

jQj�1
1

jQj
Z

Q
jf j < 1:

Here Q is a cube in R
N with sides parallel to the axes and

fQ PD 1

jQj
Z

Q
f .x/dx

where jQj is the Lebesgue measure of Q.
We now describe the atomic decomposition of hp.RN/ [2, 7]. An hp.RN/ atom is

a bounded, compactly supported function a.z/ satisfying the following properties:
there exists a cube Q with sides parallel to the coordinate axes containing the support
of a such that

(1) ja.z/j � jQj�1=p, a.e., with jQj denoting the Lebesgue measure of Q.
(2) If kakL1 > 1, we further require that

R
z˛a.z/ dz D 0, ˛ 2 N

n, j˛j � N.p�1 �
1/.

Any f 2 hp can be written as an infinite linear combination of hp-atoms, more
precisely, there exist scalars �j and hp-atoms aj such that

P
j j�jjp < 1 and

the series
P

j �jaj converges to f both in hp and in S 0. Furthermore, kf kp
hp �

inf
P

j j�jjp, where the infimum is taken over all atomic representations. Another
useful fact is that the atoms may be assumed to be smooth functions, in particular
the inclusions C1

c .R
N/ � S .RN/ � hp.RN/ are dense. The atomic decomposition

of hp.RN/ is thus quite similar to the atomic decomposition of Hp.RN/ in terms
of Hp-atoms [7], the difference being that the notion of hp-atom is less restrictive
than that of Hp-atom, as an Hp-atom a must satisfy (1) and a stronger form of (2):
moments are required to vanish regardless of the size of kakL1 .

Let T W C1
c .R

N/ �! D 0.RN/ be a linear weakly continuous operator in the
sense that h�j;  i ! h�j;  i 8  2 C1

c .R
N/ H) hT�j;  i ! hT�j;  i 8  2

C1
c .R

N/).

Proposition 2.1 Given 0 < p � 1, assume that for any smooth hp-atom a.x/ we
have kTakhp � C for some fixed constant C. Then T can be extended as a bounded
operator from hp.RN/ �! hp.RN/.

Proof Indeed, if f and  2 C1
c .R

N/ and f D P
j �jaj is a smooth atomic

decomposition with kf kp
hp ' P j�jjp, we have

hTf ;  i D
X

j

�jhTaj;  i
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which for  .x0/ D 't.x � x0/ gives hTf ;  i D Tf � 't.x/ and we easily get

m'Tf .x/ �
X

j

j�jj m'Taj.x/:

Then

.m'Tf /p.x/ �
X

j

j�jjp .m'Taj/
p.x/:

Integrating in x we obtain kTf khp � Ckf khp , f 2 C1
c .R

N/, which allows the
extension of T to hp.RN/ by density. ut

3 Multipliers in hp.RN/

Let b.x/ be a bounded measurable function on R
N and consider the multiplication

operator Mbf .x/ D b.x/f .x/, f 2 C1
c .R

N/. It is clear that Mb W C1
c .R

N/ �!
D 0.RN/ is a weakly continuous linear operator in the sense described in the previous
section.

Definition 3.1 We say that b.x/ is a multiplier in hp.RN/ if the operator Mb can be
extended as a continuous linear operator Mb W hp.RN/ �! hp.RN/, i.e.,

kMbf khp � Ckf khp ; f 2 C1
c .R

N/; (�)

for some fixed C > 0.

Example 3.1 If b.x/ 2 C1.RN/ and D˛b.x/ is bounded for all ˛ 2 Z
NC, then Mb

may be regarded as a pseudo-differential operator of order zero with symbol b.x/ in
the Hörmander class S01;0. Hence (see [2, 5] for the continuity o pseudo-differential
on local Hardy spaces), Mb is bounded in hp.RN/ for all p > 0 and therefore b.x/ is
a multiplier in hp.RN/ for all p > 0.

Of course, for a fixed value of p, a function b.x/ does not need to possess an
infinite number of bounded derivatives in order to grant that Mb is a multiplier in
hp.RN/. The simplest situation occurs for p > 1 when hp.RN/ D Lp.RN/ so any
measurable bounded function b.x/ is a multiplier in hp.RN/, p > 1, a fact that
is no longer true for p � 1. For instance, the function b.x/ given by b.x/ D 1,
x � 0, b.x/ D �1, x < 0, is not a multiplier in h1.R/. To see this, consider the
interval I� D Œ��; ��, 0 < � < 1, its characteristic function 	�.x/ and the function
f�.x/ D b.x/	�.x/. Then f�=2 is an atom in h1.R/ and in particular

kf�khp � C; 0 < � < 1:
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On the other hand, b.x/f�.x/ D 	�.x/ D jf�.x/j and a simple computation shows
that

m'	�.x/ � c1 min
�
��1; jxj�1�; jxj � c2;

for some constants c1; c2 > 0 independent of �. Integrating this inequality on
Œ�c2; c2� we see that for 0 < � < c2

kMbf�kh1 �
Z c2

�c2

m'	�.x/ dx � c1.1C j log.c2�/j ! 1; � ! 0:

By taking regularizations of the functions f� it is now easy to violate .�/ and show
that b.x/ is not a multiplier in h1.R/. Note that b.x/f�.x/ D jf�.x/j is in L1.R/
uniformly in 0 < � < 1 but does not belong uniformly to the class L log L, a fact
related to the L log L theorem of Stein [8].

In the last example b.x/ is not continuous and has a jump of size 2 at the origin,
however, a refined construction in which the jump is avoided by modifying the graph
of b.x/ close to the origin thanks to the introduction of a very steep straight segment
so b.x/ passes rapidly although in a continuous way from the value �1 to the value
1, makes it possible to find a continuous b.x/ bounded by 1 such that Mb has an
arbitrary large operator norm in h1.R/. On the other hand, the closed graph theorem
implies that, should b 7! Mb map C.R/ \ L1.R/ into L .hp.R// (the space of
bounded linear operators on hp.R/) then b 7! Mb would be a bounded map from
C.R/ \ L1.R/ to L .hp.R//. Since the refined construction shows that this is not
true, we conclude that there exists b.x/ 2 C.R/\L1.R/ such that Mb is not bounded
in h1.R/.

Within the class of continuous functions, there is a standard way to describe
regularity by introducing the concept of modulus of continuity. We recall that ! is
a modulus of continuity if ! W Œ0;1/ �! R

C is continuous, increasing, !.0/ D 0

and !.2t/ � C!.t/, 0 < t < 1. A modulus of continuity determines the Banach
space C!.RN/ of bounded continuous functions f W RN �! C such that

jf jC!
:D sup

x¤y

jf .y/ � f .x/j
!.jx � yj/ < 1;

equipped with the norm kf kC! D kf kL1 C jf jC! . Note that C! is only determined
by the behavior of !.t/ for values of t close to 0. If, for 0 < r < 1, we set !.t/ D tr

the corresponding space C!.RN/ is precisely the Hölder space �r.RN/.
Continuous bounded functions which are regular enough in the sense of its

modulus of continuity yield multipliers in h1.RN/. Indeed, consider a modulus of
continuity !.t/ that satisfies

1

hN

Z h

0

!.t/tN�1 dt � K

�

1C ln
1

h

��1
; 0 < h < 1; (1)
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and the corresponding space C!.RN/. A proof of the following result can be found
in [1, p. 374].

Proposition 3.1 Let b.x/ 2 C!.RN/ and f .x/ 2 h1.RN/. Then b.x/f .x/ 2 h1.RN/

and there exists C > 0 such that

kbf kh1 � CkbkC!kf kh1 ; b 2 C!.R
N/; f 2 h1.RN/:

The next theorem shows that Hölder functions b.x/ 2 �r, r > 0, are multipliers
in hp.RN/, 0 < p � 1, provided r > N.p�1 � 1/. Note however that for p D 1

Proposition 3.1 gives a sharper result, as�r.RN/ is strictly contained in C!.RN/ for
any r > 0.

Theorem 3.1 Let 0 < p � 1 and r > N.p�1 � 1/. If b.x/ 2 �r.RN/ then Mb is a
multiplier in hp.RN/ and there exists C > 0 such that

kbf khp � Ckbkrkf khp ; b 2 �r.RN/; f 2 hp.RN/:

Proof We are going to give the proof only for N=.N C 1/ < p � 1 which is the
case we need for the applications we give in the next section. For these values of p,
N.p�1 � 1/ < 1 so it is enough to prove the theorem assuming that N.p�1 � 1/ <

r < 1 since �s.RN/ � �r.RN/ when s > r.
Let b.x/ 2 �r.RN/. It is enough to check that kbakhp � Ckbkr for every smooth

hp-atom a with C an absolute constant. This fact is obvious for atoms supported
in balls B with radius � � 1 without moment condition because b is bounded so
ba=kbkL1 is again an atom without moment condition. If B D B.x0; �/, � < 1,
we may write a.x/b.x/ D b.x0/a.x/ C .b.x/ � b.x0//a.x/ D ˇ1.x/ C ˇ2.x/. Then
ˇ1.x/=kbkL1 is again an atom while ˇ2.x/ is supported in B and satisfies

kˇ2kL1 � C�rkakL1 � C0�r

�N=p
(2)

kˇ2kL1 � CkakL1

Z

B
jx � x0jr dx � C0�rCN.1�p�1/: (3)

We wish to conclude that km'ˇ2kLp < 1. Let B� D B.x0; 2�/. Since m'ˇ2.x/ �
kˇ2kL1 , we have

J1 D
Z

B�

.m'ˇ2/
p.x/ dx � CjB�j�

rp

�N
� C0:

It remains to estimate

J2 D
Z

RNnB�

.m'ˇ2/
p.x/ dx D

Z

2��jx�x0j�2
.m'ˇ2/

p.x/ dx (4)
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(observe that m'ˇ2 is supported in B.x0; 2/ because supp' � B.0; 1/). If 0 < " < 1
and '" � ˇ2.x/ ¤ 0 for some jx � x0j � 2� we conclude that " � jx � x0j=2, which
implies

j'" � ˇ2.x/j �
ˇ
ˇ
ˇ
ˇ

Z
'".y/ˇ2.x � y/ dy

ˇ
ˇ
ˇ
ˇ � Ckˇ2kL1

"n
� C0jx � x0j�N�rCN.1�p�1/

so

jm'ˇ2.x/jp � C0�rpCN.p�1/

jx � x0jNp
for jx � x0j � 2�: (5)

It follows from (4) and (5) that

J2 �
Z

2��jx�x0j�2
C0�rpCN.p�1/

jx � x0jNp
dx � C00

which leads to

kbakp
hp � kˇ1kp

hp C kˇ2kp
hp � C1 C J1 C J2 � C2:

Tracking the estimates in the proof one sees that C2 may be majorized by Ckbkp
r .

Therefore, for every hp-atom

kbakhp � Ckbkr

which implies that Mb may be extended as a bounded linear operator in hp.RN/ and
kMbf khp � C kbkr kf khp . ut

4 Friedrichs Lemma in hp.RN/

Let f .x/ 2 hp.RN/, 0 < p < 1. Given a test function � 2 C1
c .R

N/ with
R
� dx D

1, let us denote the Friedrichs approximation of the identity by

J"f .x/ D �" � f .x/; �".x/ D 1

"N
�.x="/; " > 0:

It is known that

kJ"f khp � Ckf khp ; lim
"!0

kJ"f � f khp D 0 (6)

with C > 0 independent of f 2 hp.RN/.
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For p > 1 we have hp.RN/ D Lp.RN/ and the classical Friedrichs lemma states
that if b.x/ is a Lipschitz function and f 2 Lp.RN/, 1 � p < 1 and j D 1; : : : ;N,
then the commutators ŒJ"; b@j�f .x/ D �"�.b@jf /.x/�b.x/@j.�"�f /.x/, " > 0, satisfy

kŒJ"; b@j�f kLp � CkbkLipkf kLp ; lim
"!0

kŒJ"; b@j�f kLp D 0;

with C > 0 independent of f 2 Lp.RN/, b 2 Lip.RN/. The following extension to
local Hardy spaces holds.

Lemma 4.1 (Friedrichs Lemma) Let f .x/ 2 hp.RN/, N=.N C 1/ < p � 1, b.x/ 2
�1Cr.RN/, r > N.p�1 � 1/. Then

kŒJ"; b@j�f khp � Ckbk1Crkf khp ; lim
"!0

kŒJ"; b@j�f khp D 0; (7)

with C > 0 independent of f 2 hp.RN/, b 2 �1Cr.RN/.

Proof It is enough to prove just the estimate in (7) since lim"!0 kŒJ"; b@j�f khp D
0 clearly holds when f 2 C1

c .R
N/ and, once the estimate has been proved, the

conclusion about the limit follows in general by a density argument.
We will assume without loss of generality that r < 1. We may write after an

integration by parts

ŒJ"; b@j�f .x/ D
Z
�".x � y/

�
b.y/� b.x/

�
@jf .y/ dy

D
Z
.@j�/".x � y/

b.y/� b.x/

"
f .y/ dy �

Z
�".x � y/.@jb.y// f .y/ dy

:D I"f .x/ � J".f@jb/.x/: (8)

Since @jb.x/ 2 �r.RN/, Theorem 3.1 implies that f@jb 2 hp.RN/ and the second
term on the right hand side of (8), given by J".f@jb/, can be handled invoking (6).
To deal with the first term on the right hand side of (8) we may use Taylor formula
to write

b.y/� b.x/

"
D

NX

kD1

yk � xk

"
˛k.x; y/

where x 7! ˛k.x; y/ 2 �r.RN/ uniformly in y and y 7! ˛k.x; y/ 2 �r.RN/ uniformly
in x. Setting  k.x/

:D �xk@j�.x/, we have

I"f .x/ D
NX

kD1

Z
. k/".x � y/˛k.x; y/f .y/ dy

:D
NX

kD1
I";k.˛kf /:
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and we must prove

kI";k˛kf khp � Ck˛kf khp � C0kf khp : (9)

To prove (9) it is enough to prove it for atoms. To simplify the notation, we drop
indexes and consider the limit lim "!0 T"a.x/ where

T"a.x/
:D
Z
 ".x � y/ ˛.x; y/ a.y/ dy

while a.x/ is a smooth atom supported in B.x0; �/, ˛.x; y/ belongs to �r.RN/

separately in each variable uniformly with respect to the other variable and  2
C1

c .R
N/. Since y 7! ˛.x; y/a.y/ 2 Cc.B.x0; �// it is clear that T"a.x/ is supported

in B.x0; �C 1/. We want to show that

kT"akhp � C (10)

with C independent of the particular atom. For � � 1, (10) follows easily from
kT"akL1 � k kL1 sup j˛jkakL1 � C. Assume that � < 1 and write

T"a.x/ D ˛.x; x0/
Z
 ".x � y/ a.y/ dy C

Z
 ".x � y/ .˛.x; y/� ˛.x; x0// a.y/ dy

D ˛.x; x0/. " � a.x//C ˇ".x/:

Keeping in mind Theorem 3.1, the hp norm of the first term is majorized by

k˛.�; x0/k�r k " � akhp � Ck˛.�; x0/k�r kakhp � C0:

Note that

kˇ2kL1 � C�rk kL1kakL1 � C0�r

�N=p

and since jˇ2.x/j � C
�j "j � A

�
.x/ with A.y/ D jy � x0jrjja.y/j,

kˇ2kL1 � CkAkL1 � C1kakL1

Z

B
jx � x0jr dx � C2�

rCN.1�p�1/:

Hence, ˇ2 is supported in the ball B.x0; �C1/ and kˇ2kL1 as well as kˇ2kL1 satisfy
estimates analogous to the estimates (2) and (3) that were used in the proof of
Theorem 3.1. A similar computation can then be carried out to show that

Z

RN
.m'ˇ2/

p.x/ dx � C;

concluding the proof of (10). Thus, (9) holds and the lemma is proved. ut
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5 Elliptic Regularity in Hardy-Sobolev Spaces

Suppose that L D fL1; : : : ;Lng is a system of linearly independent vector fields
with continuous complex coefficients defined on an open set ˝ � R

N . We may
consider the operator rL u

:D .L1u; : : : ;Lnu/ for u 2 C1.˝/ which corresponds
to the operator r when n D N and Lj D @xj . We are interested in the regularity of
the equation

rL u D f (11)

in Hardy spaces. More precisely, if the coefficients of the vector fields Lj, j D
1: : : : ; n, are of class�1Cr.˝/ with r D N.p�1�1/ and u 2 hp.RN/, then rL u is a
well defined distribution in D 0.˝/ due to the duality between hp.RN/ and �r.RN/.
Roughly speaking, we wish to conclude that if the right hand side of (11) is in hp on
a neighborhood of a point x0 2 ˝ then the derivatives @ju, j D 1; : : : ;N, are also in
hp on some neighborhood of x0. To make things precise we introduce a definition.

Definition 5.1 Let p > 0 and consider on C1
c .R

N/ the “norm”

kf kh1;p.RN / PD
NX

jD1
k@jf khp.RN / D krf khp :

The completion of C1
c .R

N/ for the norm kf kh1;p.RN / may identified with a subspace
of S 0.RN/ denoted by h1;p.RN/ and called the Hardy-Sobolev space of order 1. If
f 2 h1;p.RN) then rf 2 hp.RN/ and

kf kh1;p.RN / D krf khp :

It is known that if f 2 h1;p.RN/ for some p > N=.N C1/ then f is locally integrable.
If ˝ � R

N is a domain the notation hp
c.˝/ and h1;pc .˝/ will stand for hp.RN/ \

E 0.˝/ and h1;p.RN/ \ E 0.˝/ respectively, where E 0.˝/ denotes the distributions
with compact support contained in ˝ .

The localizable spaces hp.RN/ give rise to the local Hardy-Sobolev spaces
hp

loc.˝/ which is the space of distributions u 2 d0.˝/ such that  2 hp.RN/ for
all  2 C1

c .˝/. A sequence uj 2 hp
loc.˝/ converges to u 2 hp

loc.˝/ if  uj !  u
in hp.RN/ for all  2 C1

c .˝/. It is enough to check the convergence for  D  k,
k 2 N, where . k/ is a partition of unity in ˝ so the topology induced by this
notion of convergence is metrizable. Similar remarks are valid for the localizable
spaces h1;p.RN/, i.e., the spaces h1;p.RN/ give rise to the local Hardy-Sobolev spaces
h1;ploc.˝/.

We will always assume that

(i) L1; : : : ;Ln are everywhere linearly independent.
(ii) The system fL1; : : : ;Lng is elliptic.
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The later means that for any real 1-form ! (i.e., any section of T�.˝/) such that
h!;Lji D 0 implies ! D 0. Consequently, the number n of vector fields must
satisfy

N

2
� n � N:

Alternatively, if the coefficients of the vector fields are of class C2, (ii) is equivalent
to saying that the second order operator


L PD L�
1L1 C � � � C L�

n Ln (12)

is elliptic. Here, L�
j D L

t
j , j D 1; : : : ; n, where Lj denotes the vector field obtained

from Lj by conjugating its coefficients and Lt
j is the formal transpose of Lj. If we

write divL f D divL .f1; : : : ; fn/ D L�
1 f1 C � � � C L�

n fn we have


L D divL rL :

Theorem 5.1 Assume N=.N C 1/ < p � 1 and r > N.p�1 � 1/. If the coefficients
of L1; : : : ;Ln are or class �1Cr.˝/ and u 2 hp

loc.˝/ satisfies (11) with f 2 hp
loc.˝/

then u 2 h1;ploc.˝/. In particular, the distribution u is a locally integrable function.

Proof Since we are dealing with a local question, it is enough to prove that given a
point x0 2 ˝ there exists � 2 C1

c .˝/ such that �.x0/ ¤ 0 and �u 2 h1;p.RN/ or,
equivalently, that �ru 2 hp.RN/. Thus, there is no loss of generality in assuming
that x0 D 0 and ˝ is an open ball centered at the origin.

Assume first that the coefficients of L1; : : : ;Ln are smooth. By a standard result
in the theory of pseudo-differential operators, we may find scalar operators q.x;D/
and r.x;D/ with symbols q.x; �/ of order �2 and r.x; �/ of order �1, such that

v D q.x;D/
Lv C r.x;D/v; v 2 E 0.˝/: (13)

Pick  2 C1
c .˝/ equal to 1 in a neighborhood of the origin and note that, by

Leibniz’s rule,


L. u/ D  
Lu C w D  divL f C w

with w 	 0 on a neighborhood of the origin. Write (13) for v D  u and take the
gradient of the resulting identity to obtain

r u D rq.x;D/. divL f /C w2 D f1 C w2 (14)

where w2 is smooth on a neighborhood of the origin and f1 2 hp.RN/. We have
used here that f1 D rq.x;D/. divL f / may be written as a sum of pseudo-
differential operators of order zero acting on  f 2 hp.RN/ or on .@j /f 2 hp.RN/,
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j D 1; : : : ;N, and pseudo-differential operators of order zero are bounded in hp.RN/.
Hence, if � 2 C1

c .˝/ is supported on the neighborhood where 	 1 and �.0/ ¤ 0,
multiplying (14) by � we conclude that �ru 2 hp.RN/ which is what we wanted to
show.

When the coefficients are not smooth we will use a roundabout argument that
involves a priori estimates. Still in the case of smooth coefficients, we make use
of (13) with v 2 C1

c .R
N/ and take the gradient on both sides to get

rv D p1.x;D/rL v C p2.x;D/v

where p1.x;D/ and p2.x;D/ are pseudo-differential operators of order zero, thus
bounded in hp.RN/. This implies the a priori estimate

krvkhp � C1krL vkhp C C2kvkhp ; v 2 C1
c .˝/:

Given � > 0, we may shrink˝ to grant the estimate

kvkhp � �krvkhp ; v 2 C1
c .˝/;

(cf. [3, Prop. 3.1]) which for � > 0 sufficiently small makes it possible to absorb the
zero order term in the previous estimate yielding

krvkhp � CkrL vkhp ; v 2 C1
c .˝/: (15)

Let us return to the case in which the coefficients of L are of class �1Cr. Call L0

the system with constant coefficients obtained by freezing the coefficients of L at
the origin. Applying (15) to L0 we get

krvkhp � CkrL0vkhp ; v 2 C1
c .˝/;

that, considering L as a perturbation of L0, implies

krvkhp � CkrL vkhp C Ckr.L�L0/vkhp ; v 2 C1
c .˝/:

The coefficients of the perturbation L � L0 are of class �1Cr and vanish at the
origin, so they may be assumed to have arbitrarily small norm in �r provided we
shrink˝ . Taking advantage of Theorem 3.1 we obtain

krvkhp � CkrL vkhp C O.diam.˝//krvkhp ; v 2 C1
c .˝/;

and absorbing the second term on the right hand side we get the a priori estimate

krvkhp � CkrL vkhp ; v 2 C1
c .˝/: (16)
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Consider now u 2 hp
loc.˝/ and suppose that it satisfies (11) with f 2 hp

loc.˝/. We
will now use Friedrichs mollifiers. Pick � 2 C1

c .˝/ satisfying �.x0/ ¤ 0 and
apply (16) to v D J".�u/ for " > 0 small to get

krJ".�u/khp � CkrL J".�u/khp

� CkJ"rL .�u/khp C CkŒrL ; J"�.�u/khp :

Note that g
:D rL .�u/ D urL � C �f 2 hp.RN/ and that kŒrL ; J"�.�u/khp ! 0

as " ! 0 by Friedrichs lemma (Lemma 4.1). Similarly, if we choose a sequence
"k & 0, set wk D J"k r.�u/, gk D J"k g and apply (16) to v D J"k .�u/ � J"j.�u/ we
get

kwk � wjkhp � Ckgk � gjkhp C �.k; j/

where �.k; j/ ! 0 as k; j ! 1, showing that wk is a Cauchy sequence in hp.RN/.
This implies that r.�u/ 2 hp.RN/ so �ru 2 hp.RN/ as we wished to prove. ut
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constant for the inequality

Z

˝

jruj2dx � c
Z
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dx ; u 2 C1
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1 Introduction

The well-known Hardy inequality for RNC D R
N�1 
 .0;C1/ reads

Z

R
N
C

jruj2dx � 1

4

Z

R
N
C

u2

x2N
dx ; for all u 2 C1

c .R
NC/; (1)

where the constant 1=4 is the best possible and equality is not attained in the
appropriate Sobolev space. The analogue of (1) for a domain˝ � R

N is

Z

˝

jruj2dx � 1

4

Z

˝

u2

d2
dx ; for all u 2 C1

c .˝/; (2)

where d D d.x/ D dist.x; @˝/. However, (2) is not true without geometric
assumptions on ˝ . The typical assumption made for the validity of (2) is that ˝
is convex. A weaker geometric assumption introduced in [5] is that ˝ is weakly
mean convex, that is

�
d.x/ � 0 ; in ˝; (3)

where
d is to be understood in the distributional sense. Condition (3) is equivalent
to convexity when N D 2 but strictly weaker than convexity when N � 3 [2]. Other
geometric assumptions on the domain that guarantee that the best Hardy constant is
1/4 were recently obtain in [3, 9].

For a general domain ˝ we may still have a Hardy inequality provided that the
boundary @˝ has some regularity. In particular it is well known that for any bounded
Lipschitz domain˝ � R

N there exists c > 0 such that

Z

˝

jruj2dx � c
Z

˝

u2

d2
dx ; for all u 2 C1

c .˝/: (4)

The best constant c of inequality (4) is called the Hardy constant of the domain˝ .
In general the Hardy constant depends on the domain ˝; see [6] for results

that concern properties of this dependence. In dimension N � 3 Davies [8] has
constructed Lipschitz domains with Hardy constant as small as one wishes. On the
other hand for N D 2 Ancona [1] has proved that for a simply connected domain
the Hardy constant is always at least 1=16; see also [11] where further results in this
directions where obtained.

Davies [8] computed the Hardy constant of an infinite planar sector �ˇ of
angle ˇ,

�ˇ D f 0 < r; 0 <  < ˇg:
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He used the symmetry of the domain to reduce the computation to the study of a
certain ODE; see (9) below. In particular he established the following two results,
which are also valid for the circular sector of angle ˇ:

(a) The Hardy constant is 1=4 for all angles ˇ � ˇcr, where ˇcr Š 1:546� .
(b) For ˇcr � ˇ � 2� the Hardy constant of �ˇ strictly decreases with ˇ and at

the limiting case ˇ D 2� the Hardy constant is Š 0:2054.

Our interest is to determine the Hardy constant of certain domains in two space
dimensions; see [4, 10] for relevant questions. In this direction, in our recent work
[7] we have established

Theorem Let ˝ be a non-convex quadrilateral with non-convex angle � < ˇ <

2� . Then the Hardy constant of ˝ depends only on ˇ. The Hardy constant, which
we denote from now on by cˇ, is the unique solution of the equation

p
cˇ tan

�p
cˇ.

ˇ � �

2
/
� D 2

�
� .

3Cp
1�4cˇ
4

/

� .
1Cp

1�4cˇ
4

/

�2
; (5)

when ˇcr � ˇ < 2� and cˇ D 1=4 when � < ˇ � ˇcr. The critical angle ˇcr is the
unique solution in .�; 2�/ of the equation

tan
�ˇcr � �

4

� D 4

�
� .3

4
/

� . 1
4
/

�2
: (6)

Actually the constant cˇ coincides with the Hardy constant of the sector �ˇ , so
Eq. (5) provides an analytic description of the Hardy constant computed numerically
in [8].

In this work we continue our investigation and determine the Hardy constant for
other families of non-convex planar domains. Our first result reads as follows; see
Fig. 1.

Theorem 1.1 Let ˝ D K \�ˇ, ˇ 2 .�; 2��, where K is a bounded convex planar
set and the vertex of �ˇ is an interior point of K. Let �C and �� denote the interior
angles of intersection of K with �ˇ. There exists an angle �ˇ 2 .�=2; �/ such that
if �C; �� � �ˇ, then the Hardy constant of˝ is cˇ, where cˇ is given by (5) and (6).

Detailed information on the angle �ˇ is given in Lemma 27 and Theorem 3.1. We
note that Theorem 1.1 can be extended to cover the case where˝ is unbounded and
the boundary of the convex set K does not intersect the boundary of the sector �ˇ;
see Theorem 3.2.

We next study the Hardy constant for a family of domains Eˇ;� which may
have two non-convex angles. The boundary @Eˇ;� of such a domain consists of the
segment OP and two half lines starting from O and from P with interior angles ˇ
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Fig. 1 A typical domain ˝
for Theorem 1.1

Fig. 2 A typical domain
Eˇ;� , � < � < ˇ

and � ; hence ˇ C � � 3�; see Fig. 2 in case � < � and Fig. 3 in case � > � . We
then have the following result

Theorem 1.2

(i) If 0 < � � � � ˇ � 2� then the Hardy constant of Eˇ;� is cˇ.
(ii) If � � ˇ; � � 2� then the Hardy constant of Eˇ;� is cˇC��� ,
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Fig. 3 A typical domain
Eˇ;� , ˇ; � > �

provided that

jˇ � � j � 2

cˇC���
arccos.2

p
cˇC���/: (7)

It is interesting to notice that in case (i) where we have only one non-convex angle,
the Hardy constant is related to the non-convex angle ˇ, whereas in case (ii) where
we have two non-convex angles, the Hardy constant is related to the angle ˇC���
formed by the two halflines.

Our technique can actually be applied to establish best constant for Hardy
inequality with mixed Dirichlet-Neumann boundary conditions. We consider a
bounded domain Dˇ whose boundary @Dˇ consists of two parts, @Dˇ D �0[� . On
�0 we impose Dirichlet boundary conditions and it is from �0 that we measure the
distance from, d.x/ D dist.x; �0/. On the remaining part � we impose Neumann
boundary conditions. The curve �0 is the union of two line segments which have as
a common endpoint the origin O where they meet at an angle ˇ, � < ˇ � 2� . We
assume that the curve � is the graph in polar coordinates of a Lipschitz function
r./,

� D f.r./; / W 0 �  � ˇg I

see Fig. 4.
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Fig. 4 A typical domain Dˇ .
Note that � is not necessarily
the boundary of a convex set

We then have

Theorem 1.3 Let Dˇ be as above, � < ˇ � 2� . If � is such that

r0./ � 0; 0 �  � ˇ

2
;

r0./ � 0;
ˇ

2
�  � ˇ ;

then for all functions u 2 C1.Dˇ/ that vanish near �0 there holds

Z

Dˇ

jruj2dx dy � cˇ

Z

Dˇ

u2

d2
dx dy :

The constant cˇ is the best possible.

The structure of the paper is simple: in Sect. 2 we prove various auxiliary results,
while in Sects. 3–5 we prove the theorems.

2 Auxiliary Results

Let ˇ > � be fixed. We define the potential V./,  2 .0; ˇ/,

V./ D

8
ˆ̂
<̂

ˆ̂
:̂

1

sin2 
; 0 <  < �

2
;

1; �
2
<  < ˇ � �

2
;

1

sin2.ˇ � /
; ˇ � �

2
<  < ˇ:

(8)
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For c > 0 we then consider the following boundary-value problem:

( � 00./ D cV./ ./; 0 �  � ˇ;

 .0/ D  .ˇ/ D 0:
(9)

It was proved in [8] that the Hardy constant of the sector �ˇ coincides with the
largest positive constant c for which (9) has a positive solution. Due to the symmetry
of the potential V./ this also coincides with the largest constant c for which the
following boundary value problem has a positive solution:

( � 00./ D cV./ ./; 0 �  � ˇ=2;

 .0/ D  0.ˇ=2/ D 0 :
(10)

The largest angle ˇcr for which the Hardy constant is 1=4 for ˇ 2 Œ�; ˇcr� was
computed numerically in [8] and analytically in [7, 12] where (6) was established;
the approximate value is ˇcr Š 1:546� .

We define the hypergeometric function

F.a; b; cI z/ WD � .c/

� .a/� .b/

1X

nD0

� .a C n/� .b C n/

� .c C n/

zn

nŠ
:

The boundary value problem (10) was studied in [7] where the following lemma
was proved:

Lemma 2.1

(i) Let ˇ > ˇcr. The boundary value problem (10) has a positive solution if and
only if c D cˇ. In this case the solution is given by

 ./ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

p
2 cos

�p
c.ˇ � �/=2� sin˛.=2/ cos1�˛.=2/

F. 1
2
; 1
2
; ˛ C 1

2
I 1
2
/

F.
1

2
;
1

2
; ˛ C 1

2
I sin2.



2
//;

if 0 <  � �
2
;

cos
�p

c. ˇ
2

� /�; if �
2
<  � ˇ

2
;

where ˛ is the largest solution of ˛.1 � ˛/ D c.
(ii) Let � < ˇ � ˇcr. The largest value of c so that the boundary value problem (10)

has a positive solution is c D 1=4. For ˇ D ˇcr the solution is

 ./ D

8
<̂

:̂

cos
�
ˇcr��
4

�
sin1=2 

F. 1
2
; 1
2
; 1I 1

2
/

F.
1

2
;
1

2
; 1I sin2.



2
//; 0 <  � �

2
;

cos
�
1
2
.
ˇcr
2

� /�; �
2
<  � ˇcr

2
;

;
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while for ˇcr < ˇ < 2� and 0 <  < �=2 it has the form

 ./ D c1 sin1=2.


2
/ cos1=2.



2
/F.

1

2
;
1

2
; 1I sin2.



2
//

Cc2 sin1=2.


2
/ cos1=2.



2
/F.

1

2
;
1

2
; 1I sin2.



2
//



Z 1=2

sin2.=2/

dt

t.1 � t/F2. 1
2
; 1
2
; 1I t/

for suitable c1, c2.

For our purposes it is useful to write the solution of (10) in case ˇ � ˇcr as a
power series

 ./ D ˛
1X

nD0
an

n ; (11)

where ˛ is the largest solution of the equation ˛.1 � ˛/ D cˇ in case ˇ > ˇcr and
˛ D 1=2 when ˇ D ˇcr. We normalize the power series setting a0 D 1; simple
computations then give

a1 D 0 ; a2 D � ˛.1 � ˛/
6.1C 2˛/

: (12)

We also define the auxiliary functions

f ./ D  0./
 ./

;  2 .0; ˇ/ ; (13)

and

g./ D  0./
 ./

sin  ;  2 .0; ˇ/ ; (14)

where  is the normalized solution of (9) described in Lemma 2.1. We note that
these functions depend on ˇ. Simple computations show that they respectively solve
the differential equations

f 0./C f 2./C cˇV./ D 0 ; 0 <  < ˇ (15)

and

g0./ D � 1

sin 

h
g./2 � cos  g./C cˇ

i
; 0 <  � �=2: (16)
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We shall also need the following

Lemma 2.2 Let � � ˇ � 2� and � � 0 with ˇ C 2� � 3� . Then

f ./ cos. C �/C ˛Œ1C sin. C �/� � 0 ;
�

2
�  � 3�

2
� � :

Proof We first note that

f ./ D p
cˇ tan

�p
cˇ.

ˇ

2
� /

�
;

�

2
�  � 3�

2
� �;

and

��
4

� p
cˇ.

ˇ

2
� / � �

4
;

�

2
�  � 3�

2
� �:

It follows that the required inequality is written equivalently,

˛.1 C sin.� C // cos.
p

cˇ.
ˇ

2
� // (17)

C p
c sin.

p
cˇ.

ˇ

2
� // cos.� C / � 0 ;

�

2
�  � 3�

2
� �: (18)

But, since ˛ � p
cˇ ,

˛ .1C sin. C �// cos.
p

cˇ.
ˇ

2
� //C p

cˇ sin.
p

cˇ.
ˇ

2
� // cos. C �/

� p
cˇ
n
.1C sin. C �// cos.

p
cˇ.

ˇ

2
� //C sin.

p
cˇ.

ˇ

2
� // cos. C �/

o

D 2
p

cˇ sin
hp

cˇ.
ˇ

2
� /C �

4
C 

2
C �

2

i
sin.

�

4
C 

2
C �

2
/: (19)

The second sine is clearly non-negative, so it only remains to prove that the first sine
is also non-negative. For this we use the monotonicity of

p
cˇ.

ˇ

2
� /C �

4
C 

2
C �

2

with respect to  to obtain

p
cˇ.

ˇ

2
� /C �

4
C 

2
C �

2
� p

cˇ
�ˇ

2
� .

3�

2
� �/�C �

4
C

3�
2

� �

2
C �

2

D p
cˇ
ˇ C 2� � 3�

2
C � � �; (20)

by our hypothesis ˇ C 2� � 3� . This completes the proof. ut
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We shall need to consider the initial value problem (21) below. Although this is
a strongly singular problem, we shall see that standard comparison arguments hold.
In particular we shall establish existence, uniqueness and monotonicity with respect
to a parameter.

Lemma 2.3 Consider the singular initial value problem

8
<

:
h0./ D � 1

sin 

�
˛h./2 � cos h./C 1 � ˛

�
; 0 <  � �

2
;

h.0/ D 1:

(21)

(i) If ˛ 2 .1=2; 1/ then the problem has a classical solution which is unique.
The solution h.˛; / depends monotonically on ˛: if ˛1 < ˛2 then h.˛1; / <
h.˛2; / for all  2 .0; �=2�.

(ii) For ˛ D 1=2 we do not have uniqueness. Indeed we have a continuum of
positive solutions.

(iii) Let 1=2 < ˛ < 1 and in addition let h 2 CŒ0; �=2� \ C1.0; �=2� be an upper
solution of problem (21), that is

8
<

:
h

0
./ � � 1

sin 

�
˛h./2 � cos h./C 1 � ˛

�
; 0 <  � �

2
;

h.0/ � 1:

(22)

Then

h.˛; / � h./ ; 0 �  � �

2
:

Proof

(i) By Lemma 2.1 the function

 ./ D sin˛.=2/ cos1�˛.=2/F.
1

2
;
1

2
; ˛ C 1

2
I sin2.



2
//

solves the differential equation

 00./C ˛.1 � ˛/  ./
sin2 

D 0 ; 0 <  <
�

2
:

It is then easily verified that the function

h./ D 1

˛

 0./
 ./

sin 

is a solution of the initial-value problem (21).



On Hardy Constant of Planar Domains 25

We next establish the uniqueness of a solution. Let h1, h2 be two solutions
of the initial value problem (21). Then the function z D h2 � h1 solves the
singular linear initial value problem

8
<

:

z0./ D � 1
sin 

�
˛.h1 C h2/ � cos 

�
z./;

z.0/ D 0:

Let us assume the z is not identically zero. By the standard uniqueness theorem,
z cannot have any positive zeros, hence we may assume that z./ > 0 for all
 2 .0; �=2/. However we have ˛.h1 C h2/ � cos  > 0 near  D 0, hence z
decreases near zero, which is a contradiction.

The monotonicity of the solution h with respect to ˛ will follow from the
monotonicity of the nonlinearity with respect to ˛. Let

V.; h; ˛/ D � 1

sin 

�
˛h2 � cos h C 1 � ˛

�
:

For 0 < h < 1 and 0 <  < �=2 we then have

@V

@˛
D 1 � h2

sin 
> 0: (23)

Now, let 1=2 < ˛1 < ˛2 < 1. By (23) we have h.˛2; / > h.˛1; / near
 D 0. Once we are away from  D 0 we can apply the standard comparison
arguments to complete the proof.

(ii) By Lemma 2.1 the general solution of the equation

 00./C 1

4

 ./

sin2 
D 0 ; 0 <  <

�

2
;

is

 ./ D c1 sin1=2.


2
/ cos1=2.



2
/F.

1

2
;
1

2
; 1I sin2.



2
//

Cc2 sin1=2.


2
/ cos1=2.



2
/F.

1

2
;
1

2
; 1I sin2.



2
//



Z 1=2

sin2.=2/

dt

t.1 � t/F2. 1
2
; 1
2
; 1I t/

:

This is positive in .0; �=2� when c1 > 0 and c2 � 0. For any such  the
function

h./ D 2 0./
 ./

sin 
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then satisfies

h0./ D � 1

2 sin 

�
h./2 � 2 cos h./C 1

�
; h.0/ D 1:

Actually after some computations we find that the function h is given in this
case by

h./ D cos  C sin2 
F. 3

2
; 3
2
; 2I sin2. 

2
//

4F. 1
2
; 1
2
; 1I sin2. 

2
//

� �

F2. 1
2
; 1
2
; 1I sin2. 

2
//
�
1C �

R 1=2
sin2.=2/

dt
t.1�t/F2. 12 ;

1
2 ;1It/

� ;

where � D c2=c1 � 0.
(iii) When h.0/ > 1 the result follows immediately by combining continuity with

standard comparison arguments. Assume now that h.0/ D 1. The function
z D h � h then satisfies

8
<

:

z0./ � � 1
sin 

�
˛.h C h/� cos 

�
z./;

z.0/ D 0:
(24)

The quantity ˛.h C h/ � cos  is positive near  D 0, say in .0; 0/. We
shall establish that z � 0 in this interval; the result for .0; �=2/will then follow
immediately. Suppose on the contrary that there exists an interval .1; 2/ �
.0; 0/ such that z < 0 in .1; 2/. By (24) we conclude that z is actually strictly
increasing in .1; 2/. This contradicts the initial value z.0/ D 0. ut

From Lemma 2.3 it follows that the case ˛ D 1=2 is critical and needs a
different approach. This will be done in the next lemma. In order to make explicit
the dependence on ˇ we denote

g.ˇ; / D  .ˇ; /

 .ˇ; /
sin  ;

where  .ˇ; / is the solution of (9) and  .ˇ; / is the derivative with respect to  .

Lemma 2.4 Suppose � � ˇ � ˇcr. Then g.ˇ; /, 0 <  � �=2, is strictly
increasing as a function of ˇ, that is, if � � ˇ1 < ˇ2 � ˇcr then g.ˇ1; / < g.ˇ2; /
for all  2 .0; �=2�.
Proof The function g.ˇ; / solves the differential equation

@g

@
D � 1

sin 

�
g2 � g cos  C 1

4

�
: (25)
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Since

g.ˇ;
�

2
/ D 1

2
tan.

ˇ � �
4

/;

which is strictly increasing with respect to ˇ, the result follows from a standard
comparison argument. ut

Let us note here that for � � ˇ � ˇcr we have g.ˇ; 0/ D 1=2. So the functions
g.ˇ; �/, � � ˇ � ˇcr, all solve the same initial value problem.

Lemma 2.5 Let ˇ 2 Œ�; 2��. There exists an angle � �̌ so that for all 0 < � � � �̌
we have

g.ˇ; / cos. C �

2
/C ˛ cos

�

2
� 0 ; 0 �  � �

2
: (26)

Moreover � �̌ is a strictly decreasing function of ˇ and in particular:

for � � ˇ � ˇcr we have 0:701� � � �̌
cr

� � �̌ � ��
� � 0:867�

for ˇcr � ˇ � 2� we have 0:673� � ��
2� � � �̌ � � �̌

cr
� 0:701� .

(27)

Proof Inequality (26) is written equivalently

cot
�

2
� sin 

cos  C ˛
g.ˇ;/

; (28)

so what matters is the maximum of the function at the RHS of (28). For each 0 <
 � �=2 this function is strictly monotone as a function of ˇ; this follows from
Lemma 2.3 for ˇcr � ˇ � 2� and from Lemma 2.4 for � � ˇ � ˇcr.

The angle � �̌ 2 .0; �/ defined by

cot
� �̌

2
D max

Œ0;�=2�

sin 

cos  C ˛
g.ˇ;/

is then a strictly increasing function of ˇ. The approximate values in the statement
have been obtained by numerical computations; see however Lemma 2.6. ut

It would be nice to have good estimates on � �̌ without using a numerical solution
of the differential equation (16) solved by g./. This will be done for ˇcr � ˇ � 2�

by obtaining very good upper estimates on g.ˇ; /. We define

g.ˇ; / D a � a

2.2a C 1/
2 C a.4a2 C 2a C 3/

24.2a C 1/.4a2 C 8a C 3/
4; 0 <  <

�

2
;
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where a is the largest solution of a.1 � a/ D cˇ. We define the auxiliary quantity
���
ˇ 2 .0; �/ by

cot
���
ˇ

2
D max

Œ0;�=2�

sin 

cos  C ˛
g.ˇ;/

:

Lemma 2.6 Let ˇcr � ˇ � 2� . Then we have

.i/ g.ˇ; / � g.ˇ; / ; 0 <  <
�

2
:

.ii/ ���
ˇ � � �̌:

Actually we have [cf. (27)]

���
ˇcr

� 0:700� ; ���
2� � 0:672� :

Proof We have g.ˇ; 0/ D g.ˇ; 0/ D ˛. Therefore, given that g.ˇ; / satisfies

@g

@
D � 1

sin 

�
g2 � g cos C cˇ

�
; (29)

it is enough to show that

@g

@
� � 1

sin 

�
g2 � g cos  C cˇ

�
: (30)

The function g.ˇ; / is decreasing with respect to  , hence

sin 
dg

d
C g2 � .cos /g C cˇ

�
�
 � 3

6
C 5

120

� dg

d
C g2 �

�
1 � 2

2
C 4

24

�
g C cˇ :

(31)

Now, a direct computation shows that the RHS of (31) is equal to

a.1 � a/6Œ16.2a C 3/.2a C 1/.22a2 C 2a C 3/ � .12a2 C 2a C 3/.4a2 C 2a C 3/2�

2880.2a C 1/2.4a2 C 8a C 3/2

� a.1� a/.12a2 C 2a C 3/.4a2 C 2a C 3/6.16� 2/

2880.2a C 1/2.4a2 C 8a C 3/2

� 0:

We note that in our argument we only used that ˛ 2 Œ1=2; 1/.
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We now establish (i) for ˇcr < ˇ � 2� . The function

h.˛; / D g.ˇ; /

˛

(where, as usual, ˛ is the largest solution of ˛.1 � ˛/ D cˇ < 1=4) is an upper
solution to the initial value problem (21). Hence applying (iii) of Lemma 2.3 we
obtain the comparison.

To obtain (i) for ˇ D ˇcr we use the monotonicity with respect to ˛ of h.˛; /.
Passing to the limit ˛ ! 1=2C we conclude that

H./ WD lim
˛!1=2C h.˛; / � h.

1

2
; / � 2g.ˇcr; / ; 0 <  <

�

2
:

The function H./ is then the maximal solution of the singular initial value
problem (21) and therefore coincides with the function 2g.ˇcr; /. This completes
the proof of (i). Part (ii) then follows immediately from (i). ut

3 Proof of Theorem 1.1

In this section we give the proofs of our theorems. We start with a proposition that
is fundamental in our argument and will be used repeatedly. We do not try to obtain
the most general statement and for simplicity we restrict ourselves to assumptions
that are sufficient for our purposes.

Let U be a domain and assume that @U D � [ �0 where � is Lipschitz
continuous. We denote by n the exterior unit normal on � .

Proposition 3.1 Let � 2 H1
loc.U/ be a positive function such that r�=� 2 L2.U/

and r�=� has an L1 trace on � in the sense that vr�=� has an L1 trace on @U for
every v 2 C1.U/ that vanishes near �0. Then

Z

U
jruj2dx dy � �

Z

U


�

�
u2dx dy C

Z

�

r�
�

� nu2dS (32)

for all smooth functions u which vanish near �0 and 
� is understood in the weak
sense. If in particular there exists c 2 R such that

�
� � c

d2
� ; (33)

in the weak sense in U, where d D dist.x; �0/, then

Z

U
jruj2dx dy � c

Z

U

u2

d2
dx dy C

Z

�

u2
r�
�

� ndS (34)

for all functions u 2 C1.U/ that vanish near �0.
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Proof Let u be a function in C1.U/ that vanishes near �0. We denote T D �r�=�.
Then

Z

U
u2divT dx dy D �2

Z

U
uru � T dx dy C

Z

�

u2T � n dS

�
Z

U
jTj2u2dx dy C

Z

U
jruj2dx dy C

Z

�

u2T � n dS ;

that is
Z

U
jruj2dx dy �

Z

U
.divT � jTj2/u2dx dy �

Z

�

T � nu2dS :

Using assumption (33) we obtain (34). ut
For ˇ 2 .�; 2�� we denote by ˘ˇ the class of all planar polygons which have

precisely one non-convex vertex and the angle at that vertex is ˇ. Given a polygon
in ˘ˇ we denote by �C and �� the angles at the vertices next to the non-convex
vertex.

Theorem 3.1 Let ˇ 2 .�; 2��. Let ˝ be a polygon in ˘ˇ with

�C; �� � minf� �̌;
3� � ˇ
2

g (35)

where � �̌ 2 .0; �/ is defined by

cot
� �̌

2
D max

Œ0;�=2�

sin 

cos  C ˛
g.ˇ;/

:

Then the Hardy constant of ˝ is cˇ .

Proof We denote by A�, AC the vertices next to the non-convex vertex O, so that
A�, O and AC are consecutive vertices with respective angles ��, ˇ and �C. We may
assume that O is the origin and that AC lies on the positive x-semiaxis. We write the
boundary @˝ as

@˝ D S1 [ S2

where S1 D OAC [ OA� and S2 D @˝ n S1. We then define the equidistance curve

� D fx 2 @˝ W dist.x; S1/ D dist.x; S2/g:

Hence � divides˝ into two sets˝1 and˝2, whose nearest boundary points belong
in S1 and S2 respectively. It is clear that � can be parametrized by the polar angle
 2 Œ0; ˇ�.
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The curve � consists of line segments and parabola segments. Starting from
 D 0 we have line segments L1; : : : ;Lk; then from  D �=2 to  D ˇ � �=2 we
have parabola segments P1; : : : ;Pm; and from  D ˇ��=2 to  D ˇ we have again
line segments L0

1; : : : ;L
0
n.

Let u 2 C1
c .˝/ be given. Let n denote the unit normal along � which is outward

with respect to ˝1. Applying Proposition 3.1 with �.x; y/ D  ˇ./, where  is the
polar angle of the point .x; y/, we obtain

Z

˝1

jruj2dx dy � cˇ

Z

˝1

u2

d2
dx dy C

Z

�

r�
�

� n u2dS: (36)

We next apply Proposition 3.1 on ˝2 for the function �1.x; y/ D d.x; y/˛ (we recall
that ˛ is the largest solution of ˛.1� ˛/ D cˇ). In˝2 the function d.x; y/ coincides
with the distance from S2 and this implies that

�
d˛ � ˛.1 � ˛/
d˛

d2
; on ˝C :

Applying Proposition 3.1 we obtain that

Z

˝C

jruj2dx dy � c
Z

˝C

u2

d2
dx dy �

Z

�

˛rd

d
� n u2dS : (37)

Adding (36) and (37) we conclude that

Z

˝

jruj2dx dy � c
Z

˝

u2

d2
dx dy C

Z

�

�r�
�

� ˛
rd

d

�
� n u2dS : (38)

We emphasize that in the last integral the values of r�=� are obtained as limits
from˝1 and, more importantly, those of rd=d are obtained as limits from˝2.

It remains to prove that the line integral in (38) is non-negative. For this we shall
consider the different segments of � . Due to the symmetry of our assumptions with
respect to  D ˇ=2 it is enough to establish the result for 0 �  � ˇ=2.

(i) Let L be one of the line segments L1; : : : ;Lk. The points on this segment L are
equidistant from the side OAC and some side E of @˝ n .OAC [OA�/. Let � be
the angle formed by the line E and the x-axis so that the outward normal vector
along E is .sin �; cos �/ and E has equation x cos � C y sin � C c D 0 for some
c 2 R. Elementary geometric considerations then give � 2 .��=2; �/. Now,
simple computations give

�r�
�

� ˛rd

d

�
� n D 1

d

�
g./ cos. C �

2
/C ˛ cos.

�

2
/
�
; on L. (39)
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It remains to show that the RHS of (39) is non-negative for 0 �  � �=2. In
the case 0 < � < � this is equivalent to showing that

cot
�

2
� sin 

cos  C ˛
g./

; 0 �  � �

2
: (40)

This is true since � � �C � � �̌.
In the case ��=2 < � � 0 we have cos. C �

2
/ � 0 for all 0 �  � �=2

and the RHS is clearly non-negative.
(ii) Let P be one of the parabola segments P1; : : : ;Pm. The points on P are

equidistant from the origin O and some side E of @˝ n .OAC [ OA�/. As
in (i) above, let � be the angle formed by the line E and the x-axis so
that the outward normal vector along E is .sin �; cos �/ and E has equation
x cos � C y sin � C c D 0 for some c 2 R. Then � 2 Œ� � ˇ

2
; ��. We note that

the axis of the parabola has an asymptote at angle  D 3�
2

� � . Indeed we shall

prove the required inequality for all  2 Œ �
2
; 3�
2

� �� � Œ �
2
;
ˇ

2
�.

Simple computations on P give

�r�
�

� ˛rd

d

�
� n D 1

r
p
2C 2 sin. C �/

�
f ./ cos. C �/C ˛Œ1C sin. C �/�

�
:

(41)

Hence, noting that � � �C, the result follows from Lemma 2.2. This completes the
proof. ut
Proof of Theorem 1.1 This follows easily by approximating the convex set K by a
sequence of convex polygons and using Theorem 3.1; see Fig. 1. ut
Remark In case ˇ � ˇcr we have � �̌ � � �̌

cr
� 0:701� and therefore the condition

�C; �� � minf� �̌; 3��ˇ
2

g of Theorems 1.1 and 3.1 takes the simpler form

�C; �� � � �̌:

If the convex set K is unbounded and @K does not intersect the boundary of �ˇ

then there is no need for any restriction. In particular

Theorem 3.2 Let ˝ D K \ �ˇ; where K is an unbounded convex set and �ˇ is a
sector of angle ˇ 2 .�; 2�� whose vertex is inside K. Assume that the boundaries of
K and �ˇ do not intersect. Then the Hardy constant of ˝ is cˇ , where cˇ is given
by (5) and (6).

Proof Let u 2 C1
c .˝/ be fixed. There exists a bounded convex set K1 such that

˝1 WD K1 \ Sˇ satisfies all the assumptions of Theorem 1.1 and in addition

dist.x; @˝/ D dist.x; @˝1/ ; x 2 supp.u/ I
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of course, K1 depends on u. Applying Theorem 1.1 to ˝1 we obtain the required
Hardy inequality. ut
Remark Of course, one could state an intermediate result where the intersection
@K \ @�ˇ is exactly one point forming an angle � ; in this the assumption � �
minf� �̌; 3��ˇ

2
g should hold.

4 Domains Eˇ;� with Two Non-convex Angles

We recall from the Introduction that given angles ˇ and � , we denote by Eˇ;� the
domain shown in Fig. 2 in case � < � and in Fig. 3 in case � > � . Its boundary
@Eˇ;� consists of three parts L1, L2 and L3. L2 is a line segment and meets the
halflines L3 and L1 at the origin O and the point P.1; 0/ respectively. We assume
that ˇ C � � 3� so that the halflines L1 and L3 do not intersect. Without loss of
generality we assume that ˇ � � and since we are interested in the non-convex case,
we assume that ˇ > � .

Proof of Theorem 1.2 Part (i) We denote by � the curve

� D f.x; y/ 2 Eˇ;� W dist..x; y/;L1/ D dist..x; y/;L2 [ L3/g:

The curve � divides Eˇ;� in two sets E� D f.x; y/ 2 Eˇ;� W d.x; y/ D
dist..x; y/;L2 [ L3/g and EC D f.x; y/ 2 Eˇ;� W d.x; y/ D dist..x; y/;L1/g. We
denote by n the unit normal along � which is outward with respect to E�.

Once again we shall use Proposition 3.1. We distinguish two cases: Case A,
where 0 � � � �=2 and Case B, where �=2 � � � � .

Case A (0 � � � �=2) We distinguish two subcases.

Subcase Aa ˇ C � < 2� . In this case � consists of three parts: a line segment �1
which bisects the angle at P; a parabola segment �2, whose points are equidistant
from the origin and the line L1; and a halfline �3 whose points are equidistant from
L1 and L3. We parametrize � by the polar angle  , so that �1 D f0 �  � �

2
g,

�2 D f�
2

�  � ˇ � �
2
g, and �3 D fˇ � �

2
�  <

ˇC���
2

g.

Let u 2 C1
c .Eˇ;� /. We apply Proposition 3.1 with U D E�, �0 D L2 [ L3 and

for the function �.x; y/ D  ./, where  D  ˇ and  is the polar angle of .x; y/.
We obtain that

Z

E�

jruj2dx dy � cˇ

Z

E�

u2

d2
dx dy C

Z

�

r�
�

� nu2 dS : (42)
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We next apply Proposition 3.1 to the domain EC and the function �1.x; y/ D
d.x; y/˛. We obtain that

Z

EC

jruj2dx dy � cˇ

Z

EC

u2

d2
dx dy � ˛

Z

�

rd

d
� nu2dS : (43)

Adding (42) and (43) we conclude that

Z

Eˇ;�

jruj2dx dy � cˇ

Z

Eˇ;�

u2

d2
dx dy C

Z

�

�r�
�

� ˛
rd

d

�
� n u2dS : (44)

We note that in the last integral the values of r�=� are obtained as limits from E�
while those of rd=d are obtained as limits from EC. It remains to prove that the
last integral in (44) is non-negative. For this we shall consider the different parts
of � .

(i) The segment �1 (0 �  � �=2). Simple computations give that

r�
�

� ˛rd

d
D 1

d

�
g./ cos. C �

2
/C ˛ cos.

�

2
/
�
; 0 <  � �

2
I

this is non-negative by Lemma 27, since � �̌ > �=2.
(ii) The segment �2 (�=2 �  � ˇ � �=2). In this case we have

�r�
�

�˛rd

d

�
�n D 1

r
p
2C 2 sin. C �/

�
f ./ cos.C�/C˛Œ1Csin.C�/�

�
;

this is non-negative by Lemma 2.2, since ˇ � �
2
< 3�

2
� � .

(iii) The segment �3 (ˇ � �
2

�  <
ˇC���

2
). The line containing �3 has equation

x cos.
ˇ � �

2
/C y sin.

ˇ � �

2
/ D sin �

2 sin. ˇC�
2
/
;

hence the outer (with respect to E�) unit normal along �3 is .cos. ˇ��
2
/;

sin. ˇ��
2
//.

Using the fact that d D r sin.ˇ � / on �3, we have along �3,

�r�
�

� ˛
rd

d

�
� n D Œ

1

r

 0./
 ./

.� sin ; cos /C ˛
.sin �; cos �/

d
�

� .cos.
ˇ � �
2

/; sin.
ˇ � �

2
//
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D 1

r

h 0./
 ./

sin.
ˇ � �
2

� /C ˛
sin. ˇC�

2
/

sin.ˇ � /

i

� 0;

since both terms in the last sum are non-negative (the first one, as the product of two
non-positive terms).

Subcase Ab ˇ C � � 2� . In this case � consists of only two parts �1 and �2,
described exactly as in subcase Aa, the only difference being that the range of  in
�2 is �

2
�  < 3�

2
� � . This means that the parabola segment goes all the way to

infinity. As before we have

�r�
�

�˛rd

d

�
� n D 1

r
p
2C 2 sin. C �/

�
 0./
 ./

cos.C�/C˛Œ1C sin.C�/�

�

and the result follows again from Lemma 2.2. This completes the proof in the case
0 < � � �=2.

Case B (�=2 � � � �). On E� we again consider the function �.x; y/ D  ./

and apply Proposition 3.1 as in the previous case. We fix a function u 2 C1
c .Eˇ;� /

and we obtain

Z

E�

jruj2dx dy � cˇ

Z

E�

u2

d2
dx dy C

Z

�

.
r�
�

� n/u2dS : (45)

In EC we consider a new orthonormal coordinate system with cartesian coordi-
nates denoted by .x1; y1/ and polar coordinates denoted by .r1; 1/. The origin O1 of
this system is located on the line L1 and is such that the line OO1 is perpendicular
to L1. The positive x1 axis is then chosen so as to contain L1 (Figure 2) We note that
this choice is such that

the point on �1 for which  D �
2

� �

2
satisfies also 1 D �

2
� �

2
. (46)

We apply Proposition 3.1 on EC with the function �1.x; y/ D  .1/. This
function clearly satisfies �
�1 D c d�2�1, hence we obtain

Z

EC
jruj2dx dy � c

Z

EC

u2

d2
dx dy �

Z

�

.
r�1
�1

� n/u2 dS ; (47)

where, as before, n is the interior to EC unit normal along � .
Adding (45) and (47) we conclude that

Z

Eˇ;�

jruj2dx dy � cˇ

Z

Eˇ;�

u2

d2
dx dy C

Z

�

�r�
�

� r�1
�1

�
� n u2dS : (48)
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The rest of the proof is devoted to showing that the last integral in (48) is non-
negative.

As in the case 0 < � � �=2, we need to distinguish two subcases: Subcase Ba,
where ˇ C � < 2� , and Subcase Bb, where ˇ C � � 2� .

Subcase Ba ˇ C � < 2� . The curve � consists of three parts: a line segment �1
which bisects the angle at P; a (part of a) parabola �2, whose points are equidistant
from the origin and the line L1; and a halfline �3 whose points are equidistant from
L1 and L3. As before, we consider separately each segment and we parametrize �
by the polar angle  so that

�1 D f 2 � W 0 �  � �

2
g ; �2 D f�

2
�  � ˇ � �

2
g ;

�3 D fˇ � �

2
�  <

ˇ C � � �

2
g:

(i) The segment �1 (0 �  � �=2). We have

r�
�

� n D  0./
r ./

cos. C �

2
/ ; on �1:

and similarly

r�1
�1

� n D �  0.1/
r1 .1/

cos.1 � �

2
/ ; on �1:

Since r1 sin 1 D r sin  along �1, it is enough to prove the inequality

g./ cos. C �

2
/C g.1/ cos.1 � �

2
/ � 0 ; 0 �  � �

2
: (49)

This has been proved in [7]; we include a proof here for the sake of completeness.
Recalling (46) and applying the sine law we obtain that along �1 the polar angles 
and 1 are related by

cot 1 D � cos � cot  C sin � : (50)

Claim There holds

1 �  C � � � ; on �1 : (51)

Proof of Claim We fix  2 Œ0; �=2� and the corresponding 1 D 1./. If  C
� � � � 0, then (51) is obviously true, so we assume that  C � � � � 0. Since
0 �  C � � � � �=2 and 0 � 1 � �=2, (51) is written equivalently cot 1 �
cot.C� ��/; thus, recalling (50), we conclude that to prove the claim it is enough
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to show that

� cos � cot  C sin � � cot. C �/ ; � � � �  � �

2
;

or, equivalently (since � �  C � � 3�=2),

�cos � cot2 C.� cos � cot ��cot �Csin �/ cot C1Ccos � � 0 ; ��� �  � �

2
:

(52)

The left-hand side of (52) is an increasing function of cot  and therefore takes its
least value at cot  D 0. Hence the claim is proved. ut

For 0 �  � �=2 � �=2 (49) is true since all terms in the left-hand side are
non-negative. So let �=2� �=2 �  � �=2 and 1 D 1./. From (50) we find that

d1
d

� 1 D �cos �.1C cot2 /C 1C cot2 1
1C cot2 1

D �1C sin2 � C cos � � 2 sin � cos � cot  C cos �.1C cos �/ cot2 

1C cot2 1
:

The function

h.x/ WD 1C sin2 � C cos � � 2 sin � cos �x C cos �.1C cos �/x2

is a concave function of x. We will establish the positivity of h.cot / for �=2 �
�=2 �  � �=2. For this it is enough to establish the positivity at the endpoints. At
 D �=2 positivity is obvious, whereas

h.tan.
�

2
// D 1C sin2 � C cos � � 2 cos � sin2

�

2
� 0:

From (46) we conclude that 1 �  for �=2� �=2 �  � �=2. Now, it was proved
in [7, Lemma 4] that the function g is decreasing. Hence for �=2� �=2 �  � �=2

we have,

g./ cos. C �

2
/C g.1/ cos.1 � �

2
/ � g./Œcos. C �

2
/C cos.1 � �

2
/�

D 2g./ cos.
 C 1

2
/ cos.

 � 1 C �

2
/

� 0;

where for the last inequality we made use of the claim. Hence (49) has been proved.
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(ii) The segment �2 (�
2

�  � ˇ � �
2

). After some computations we obtain that

�r�
�

� r�1
�1

�
� n D 1

r
p
2C 2 sin. C �/

�

f ./ cos. C �/

�f .1/ sin 1Œsin.1 �  � �/� cos 1�

	

;

where  and 1 are related by cot 1 D � cos. C �/. The result then follows
by applying [7, Lemma 6].

(iii) The segment �3 (ˇ � �
2

�  <
ˇC���

2
). Simple computations yield that along

�3 we have

�r�
�

�r�1
�1

�
�n D  0./

r ./
sin.

ˇ � �

2
�/C  0.1/

r1 .1/
sin.

ˇ C �

2
�1/: (53)

The first summand in the right-hand side of (53) is non-negative since  0./ and
sin. ˇ��

2
� / are non-positive in the given range of  . Moreover, two applications

of the sine law yield that along �3 the coordinates .r; / and .r1; 1/ are related by

r1 sin 1 D r sin.ˇ � / ; tan 1 D � sin.ˇ � /

cos. C �/
:

It follows in particular that 0 � 1 � �=2, and hence �=4 � ˇC�
2

� 1 � � . Hence
the second summand in the right-hand side of (53) is also non-negative, completing
the proof in this case.

Subcase B2 ˇ C � � 2� . In this case � consists only of two parts �1 and �2,
described as in Case B1. The only difference is that the range of  in �2 now is
�
2

�  < 3�
2

� � ; the result follows as before. This completes the proof of the
theorem. ut
Proof of Theorem 1.2 Part (ii) We set for simplicity  D  ˇC��� . We divide Eˇ;�
in three parts E1, E2 and E3 as in Figure 3, and denote Li D .@Ei/ \ @Eˇ;� . We also
set �i D f.i; y/ W y � 0g, i D 0; 1, the halflines that are the common boundaries
of the Ej’s. We first apply Proposition 3.1 to the domain E1. For this we introduce
polar coordinates .r1; 1/ centered at P, so that the positive x1 axis coincides with
the halfline L1. Let u 2 C1

c .Eˇ;� / be fixed. Applying Proposition 3.1 with �.x; y/ D
 .1/ we obtain

Z

E1

jruj2dx dy � cˇC���
Z

E1

u2

d2
dx dy C  0.� � �

2
/

 .� � �
2
/

Z

�1

u2

y
dy : (54)
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On E3 we use the standard polar coordinates .r; / and the function �.x; y/ D
 .ˇ�/. We obtain

Z

E3

jruj2dx dy � cˇC���
Z

E3

u2

d2
dx dy C  0.ˇ � �

2
/

 .ˇ � �
2
/

Z

�0

u2

y
dy : (55)

Without loss of generality we assume that ˇ � � and we therefore have

 0.� � �
2
/

 .� � �
2
/

D � 
0.ˇ � �

2
/

 .ˇ � �
2
/

� 0:

Now, we have u.1; y/2 � u.0; y/2 D 2
R 1
0

uuxdx, hence, using also the one-
dimensional Hardy inequality we have for any � > 0,

Z

�0

u2

y
dy �

Z

�1

u2

y
dy � �

Z

E2

u2

y2
dx dy C 1

�

Z

E2

u2xdx dy

� .� � 1

4�
/

Z

E2

u2

y2
dx dy C 1

�

Z

E2

u2ydx dy C 1

�

Z

E2

u2xdx dy

and therefore

Z

E2

jruj2dx dy �
�1

4
� �2

� Z

E2

u2

y2
dx dy C �

Z

�0

u2

y
dy � �

Z

�1

u2

y
dy : (56)

This is also true for � D 0. We choose � D  0.� � �
2
/= .� � �

2
/ and we note that

by (7) we have

cˇC��� � 1

4
� cˇC��� tan2

�p
cˇC���

ˇ � �

2

� D 1

4
�
� 0.� � �

2
/

 .� � �
2
/

�2 D 1

4
� �2 :

Adding (54), (55) and (56) we obtain the inequalities in all cases.
We now prove the sharpness of the constant. Let C denote the best Hardy

constant for Eˇ;� . We extend the halflines L1 and L3 until they meet at a point A,
and we call D0 the resulting infinite sector, whose angle is ˇC � �� . We introduce
a family of domains D� that are obtained from Eˇ;� by moving L2 parallel to itself
towards A so that it is a distance � from A. All these domains D� have the same
Hardy constant as Eˇ;� . Let d�.x/ D dist.x; @D�/ and d0.x/ D dist.x; @D0/. Then
clearly d�.x/ ! d0.x/ for all x 2 D0.

Let u 2 C1
c .D0/ vanish near �0. This can be used as a test function for the Hardy

inequality in D� , therefore we have

Z

D�

jruj2dx dy � C
Z

D�

u2

d2�
dx dy ;
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which can be written equivalently

Z

D0

jruj2dx dy � C
Z

D0

u2

d2�
dx dy :

Passing to the limit � ! 0 we therefore obtain

Z

D0

jruj2dx dy � C
Z

D0

u2

d20
dx dy :

Since the best Hardy constant of D0 is cˇC��� , we conclude that C � cˇC��� ,
which establishes the sharpness. ut

5 A Dirichlet–Neumann Hardy Inequality

We finally prove Theorem 1.3.

Proof of Theorem 1.3 Let u 2 C1.Dˇ/. Applying Proposition 3.1 for �.x; y/ D
 ./ we have

Z

Dˇ

jruj2dx dy � �
Z

Dˇ


�

�
u2dx dy C

Z

�

r�
�

� nu2dS

D cˇ

Z

Dˇ

u2

d2
dx dy C

Z

�

r�
�

� nu2dS:

A direct computation gives that along � we have

r�
�

� n D � r0./
r./

p
r./2 C r0./2

�  
0./
 ./

;

which establishes the inequality. The fact that cˇ is sharp follows by comparing with
the corresponding Dirichlet problem. ut
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Sharp Singular Trudinger-Moser-Adams Type
Inequalities with Exact Growth
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Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday, with friendship

Abstract The main purpose of this paper is two fold. On the one hand, we review
some recent progress on best constants for various sharp Moser-Trudinger and
Adams inequalities in Euclidean spaces R

N , hyperbolic spaces and other settings,
and such sharp inequalities of Lions type. On the other hand, we present and prove
some new results on sharp singular Moser-Trudinger and Adams type inequalities
with exact growth condition and their affine analogues of such inequalities (The-
orems 1.1, 1.2 and 1.3). We also establish a sharpened version of the classical
Moser-Trudinger inequality on finite balls (Theorem 1.4).

Keywords Best constants • Sharp Adams inequalities • Sharp inequalities with
exact growth condition • Sharp Moser-Trudinger inequalities

Mathematics Subject Classification: 26D10, 46E35

1 Introduction

The Trudinger-Moser-Adams inequalities are the replacements in the borderline
case for the Sobolev embeddings. When ˝ � R

n is a bounded domain and
kp < n, it is well-known that Wk;p

0 .˝/ � Lq .˝/ for all 1 � q � np
n�kp .

However, by counterexamples, W
k; n

k
0 .˝/ ª L1 .˝/. In this situation, Yudovich

[65], Pohozaev [58] and Trudinger [63] obtained independently that W1;n
0 .˝/ �

L'n .˝/ where L'n .˝/ is the Orlicz space associated with the Young function

'n.t/ D exp
�
˛ jtjn=.n�1/�� 1 for some ˛ > 0. These results are refined in the 1971

paper [55] by J. Moser. In fact, we have the following Moser-Trudinger inequality:
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Theorem (J. Moser [55]) Let ˝ be a domain with finite measure in Euclidean n-

space R
n; n � 2. Then there exists a sharp constant ˇn D n!

1
n�1

n�1 , where !n�1 is
the area of the surface of the unit n-ball, such that

1

j˝j
Z

˝

exp
�
ˇ juj n

n�1

�
dx � c0

for any ˇ � ˇn , any u 2 W1;n
0 .˝/ with

R
˝ jrujn dx � 1 . This constant ˇn is sharp

in the sense that if ˇ > ˇn , then the above inequality can no longer hold with some
c0 independent of u.

This result has been studied and extended in many directions. For instance, we
refer the reader to the sharp Moser inequality with mean value zero by Chang
and Yang [12], Lu and Yang [51], Leckband [41], sharp Moser-Trudinger trace
inequalities and sharp Moser-Trudinger inequalities without boundary conditions by
Cianchi [14, 15], Moser-Trudinger inequality for Hessians by Tian and Wang [62],
a singular version of the Moser-Trudinger inequality by Adimurthi and Sandeep in
[4], etc. We also refer to the survey articles of Chang and Yang [13] and Lam and
Lu [31] for descriptions of applications of such inequalities to nonlinear PDEs.

Recently, using the Lp affine energy Ep .f / of f instead of the standard Lp energy
of gradient krf kp ; where

Ep .f / D cn;p

0

@
Z

Sn�1

kDvf k�n
p dv

1

A

�1=n

;

cn;p D
�

n!n!p�1
2!nCp�2

�1=p

.n!n/
1=n ;

kDvf kp D
0

@
Z

Rn

jv � rf .x/jp dx

1

A

1=p

:

The authors proved in [16] proved a sharp version of affine Moser-Trudinger
inequality by replacing the constraint jjrf jjn � 1 by Ep .f / � 1 in Moser’s
inequality: Namely,

Theorem (Cianchi et al. [20]) Let˝ be a domain with finite measure in Euclidean
n-space Rn; n � 2. Then there exists a constant mn > 0 such that

1

j˝j
Z

˝

exp
�
˛ juj n

n�1

�
dx � mn
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for any ˛ � ˛n, any u 2 W1;n
0 .˝/ with En .u/ � 1. The constant ˛n is sharp in the

sense that if ˛ > ˛n, then the above inequality can no longer hold with some mn

independent of u.

It is worthy to note that by the Holder inequality and Fubini’s theorem, we have
that

Ep .f / � krf kp

for every f 2 W1;p .Rn/ and p � 1. Moreover, since the ratio
krf kp

Ep.f /
is not uniformly

bounded from above by any constant, these affine Moser-Trudinger inequalities are
actually stronger than the standard Moser-Trudinger inequality. In [39], Lam, Lu
and Tang used this Ln affine energy En .f / to study several improved versions of the
Moser-Trudinger type inequality in unbounded domains of Lions type.

In [26], Haberl, Schuster and Xiao used an asymmetric Lp affine energy

E C
p .f / D 21=pcn;p

0

@
Z

Sn�1




DC

v f



�n

p
dv

1

A

�1=n

;

DC
v f .x/ D max fDvf .x/; 0g ;

to study an asymmetric affine version of the Moser-Trudinger inequality in the
spirit of [16] by replacing the constraint En .u/ � 1 in the inequality of [16] by
E C

n .u/ � 1.
We note here that

E C
p .f / � Ep .f / � krf kp :

Hence, the theorem of [26] is an improvement of the classical Moser-Trudinger
inequality.

Concerning Moser’s type inequality with respect to high order derivatives,
D.R. Adams, using a different approach, investigated in [2] the following Moser-
Trudinger inequality in the high order case, which is now known as the Adams
inequality:

Theorem (D.R. Adams [2]) Let ˝ be an open and bounded set in R
n. If m is a

positive integer less than n, then there exists a constant C0 D C.n;m/ > 0 such that

for any u 2 W
m; n

m
0 .˝/ and jjrmujj

L
n
m .˝/

� 1, then

1

j˝j
Z

˝

exp.ˇju.x/j n
n�m /dx � C0
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for all ˇ � ˇ.n;m/ where

ˇ.n; m/ D

8
ˆ̂
<

ˆ̂
:

n
wn�1

�
�n=22m� .mC1

2 /

� . n�mC1
2 /

� n
n�m

when m is odd

n
wn�1

h
�n=22m� . m

2 /

� . n�m
2 /

i n
n�m

when m is even

:

Furthermore, for any ˇ > ˇ.n;m/, the integral can be made as large as possible.

The Adams inequality was extended recently by Tarsi [61]. More precisely, Tarsi

used the Sobolev space with Navier boundary conditions W
m; n

m
N .˝/ which contains

the Sobolev space W
m; n

m
0 .˝/ as a closed subspace: It was shown that the sharp

constants in this case are the same as in the classical Adams’ inequities.
We stress here that the method of Adams was used successfully to establish

the Moser-Trudinger-Adams inequalities in many settings, see on the Riemannian
manifolds by Fontana [24], on the Heisenberg group in [17] and on the CR spheres
in [19] by Cohn and Lu, sharp Moser-Onofri type inequalities on spheres by Beckner
[7] and CR spheres by Branson et al. [8], and generalizations in other settings
[6, 18, 20, 25, 38].

It can be noted that the Moser-Trudinger-Adams inequalities are senseless when
the domains have infinite volume. Thus, it is interesting to investigate versions of
the Moser-Trudinger-Adams inequalities in this setting. There are attempts to extend
the Moser-Trudinger inequality to infinite volume domains by Cao [9] and Ogawa
[56] in dimension two and by Do O in high dimension [22]. Moreover, Adachi
and Tanaka established the best constants for all dimensions in [1]. Interestingly
enough, by the sharp result of Adachi and Tanaka, the Moser-Trudinger type
inequality can only be established for the subcritical case while they use the norm
�R

Rn jrujn dx
�1=n

. Indeed, Adachi and Tanaka in [1] have proved that

sup
R
Rn jrujndx�1

Z

Rn
�
�
ˇ juj n

n�1

�
dx < 1

if ˇ < ˇn. Moreover, their results are actually sharp in the sense that the supremum
is infinity when ˇ � ˇn. The result of Adachi and Tanaka was investigated in the
affine case in [39] where the authors used the Lp affine energy Ep .f / of f instead of
the standard Lp energy of gradient krf kp : In fact, it was proved in [39] that

Theorem (Lam et al. [39]) For any ˇ 2 .0; n/ and ˛ 2
�
0;
�
1 � ˇ

n

�
˛n

�
, there

exists a constant C˛;ˇ > 0 such that

Z

Rn

�n;1

�
˛ juj n

n�1

�

jxjˇ dx � C˛;ˇ kukn�ˇ
n ,
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for any u 2 W1;n .Rn/ with En .u/ � 1: This inequality is false for ˛ �
�
1 � ˇ

n

�
˛n

in the sense that if ˛ �
�
1 � ˇ

n

�
˛n, then the above inequality can no longer hold

with some C˛;ˇ independent of u. Here

�p;q.t/ D et �
j p

q
�2
X

jD0

tj

jŠ
; j p

q
D min

�

j 2 N W j � p

q

	

� p

q
:

To achieve the critical case ˇ D ˇn; Ruf [59] and then Li and Ruf [45] need

to use the full form of the norm in W1;n, namely, jjujj1;n D �R
Rn jujn dx

�1=n C
�R

Rn jrujn dx
�1=n

.

Theorem (Ruf [59] and Li and Ruf [45]) For ˛ � ˛n, there exists a constant
C˛ > 0 such that

Z

Rn

�n;1

�
˛ juj n

n�1

�
dx � C˛ ,

for any u 2 W1;n .Rn/ with jjujj1;n � 1: This inequality is false for ˛ > ˛n in the
sense that if ˛ > ˛n, then the above inequality can no longer hold with some C˛
independent of u.

The singular version of Ruf and Li-Ruf inequalities was given in [5], and
sharp Moser’s type inequality on unbounded domains into Lorentz-Sobolev spaces
was established by Cassani and Tarsi [11]. We recall that Lions is the first one
who established an improvement of Moser’s result by sharpening the constant ˇn

[48]. The result of Lions was further improved by Adimurthi and Druet in [3].
Very recently, the authors in [39] used a rearrangement-free argument, initiated in
[34, 35], to study a sharp version of the affine and improved Moser-Trudinger type
inequality on domains of infinite volume in the spirit of Lions [48], namely,

Theorem (Lam et al. [39]) Let 0 � ˇ < n and � > 0: Then there exists a constant
C D C .n; ˇ/ > 0 such that for all u 2 C1

0 .Rn/ n f0g, En .u/ < 1, we have

Z

Rn

�n;1

 
2

1
n�1

�
1� ˇ

n

�
˛n

.1CEn.u/
n/

1
n�1

juj n
n�1

!

jxjˇ dx � C .n; ˇ/
kukn�ˇ

n

j1 � En .u/
nj1� ˇ

n

:

As a consequence, we have that there exists a constant C D C .n; ˇ; �/ > 0 such
that

M4;˛ � M3;˛ � M1;˛ � C .n; ˇ; �/ ;

M4;˛ � M2;˛ � M1;˛ � C .n; ˇ; �/ ;
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for all 0 � ˛ �
�
1 � ˇ

n

�
˛n, where

M1;˛ D sup
u2W1;n.Rn/; En.u/

nC�kukn
n�1

Z

Rn

�n;1

�
2

1
n�1 ˛

.1CEn.u/
n/

1
n�1

juj n
n�1

�

jxjˇ dx

M2;˛ D sup
u2W1;n.Rn/; En.u/

nC�kukn
n�1

Z

Rn

�n;1

�
˛ juj n

n�1

�

jxjˇ dx

M3;˛ D sup
u2W1;n.Rn/; krukn

nC�kukn
n�1

Z

Rn

�n;1

 
2

1
n�1 ˛

.1Ckrukn
n/

1
n�1

juj n
n�1

!

jxjˇ dx

M4;˛ D sup
u2W1;n.Rn/; krukn

nC�kukn
n�1

Z

Rn

�n;1

�
˛ juj n

n�1

�

jxjˇ dx:

Moreover, the constant
�
1 � ˇ

n

�
˛n in the above inequality and supremum is sharp

in the sense that when ˛ >
�
1 � ˇ

n

�
˛n; M1;˛ D M2;˛ D M3;˛ D M4;˛ D 1.

The Trudinger type inequalities for high order derivatives on domains of infinite
volume were studied by Ozawa [57], Kozono et al. [30] with non-optimal constants.
The sharp constants were recently established by Ruf and Sani [60] in the case of
even derivatives and by Lam and Lu in all order of derivatives including fractional
orders [32, 33, 35, 39]. The idea of Ruf and Sani [60] is to use the comparison
principle for polyharmonic equations (thus only dealt with the case of even order of
derivatives) and thus involves some difficult construction of auxiliary functions. The
argument in [32, 35] uses the representation of the Bessel potentials and thus avoids
dealing with such a comparison principle. Moreover, the argument in [35] does not
use the symmetrization method and thus also works for the sub-Riemannian setting
such as the Heisenberg groups [34, 40].

We state here the Adams inequality on unbounded domains in the most general
form for fractional orders.

Theorem (Lam and Lu [35]) Let 0 < � < n be an arbitrary real positive number,
p D n

�
and � > 0. There holds

sup

u2W�;p.Rn/;








.� I�
/ �2 u










p
�1

Z

Rn
�
�
ˇ0 .n; �/ jujp0

�
dx < 1
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where

�.t/ D et �
jp�2X

jD0

tj

jŠ
;

jp D min fj 2 N W j � pg � p:

Here

p0 D p

p � 1
;

ˇ0 .n; �/ D n

!n�1

"
�n=22�� .�=2/

�
� n��

2

�

#p0

:

Furthermore this inequality is sharp, i.e., if ˇ0 .n; �/ is replaced by any ˇ >

ˇ0 .n; �/, then the supremum is infinite.

The main idea in [35] is to write u in the Bessel potential form to avoid the
rearrangement of the high order derivatives. Therefore, we can first establish a
version of the Adams type inequality on domains of finite volume. Using a delicate
decomposition of Rn into level sets of the functions under consideration, we can get
the desired result. This method does not apply symmetrization argument which is
not available on high order Sobolev spaces and Heisenberg groups.

There is also an improved version of the Adams type inequality in the spirit of
Lions [48] as follows:

Theorem (Lam et al. [39]) Let 0 � ˇ < n; n � 3; and � > 0: Then there exists
a constant C D C .n; ˇ/ > 0 such that for all u 2 C1

0 .Rn/ n f0g, k
uk n
2
< 1,

u � 0; we have

Z

Rn

�n;2

0

B
@
2

2
n�2

�
1� ˇ

n

�
ˇ.n;2/

�

1Ck
uk
n
2
n
2

� 2
n�2

juj n
n�2

1

C
A

jxjˇ dx � C .n; ˇ/
kuk n

2� ˇ
2

n
2

ˇ
ˇ
ˇ1 � k
uk n

2
n
2

ˇ
ˇ
ˇ
1� ˇ

n

:

Consequently, we have that there exists a constant C D C .n; ˇ; �/ > 0 such that

sup
u2W2; n

2 .Rn/;
R
Rn j
uj n

2 C� juj n
2 �1

Z

Rn

�n;2

0

B
@ 2

2
n�2 ˛

�

1Ck
uk
n
2
n
2

� 2
n�2

juj n
n�2

1

C
A

jxjˇ dx � C .n; ˇ; �/ ;
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for all 0 � ˛ �
�
1 � ˇ

n

�
ˇ.n; 2/. When ˛ >

�
1 � ˇ

n

�
ˇ.n; 2/; the supremum is

infinite.

The next aim is to study the sharp subcritical Adams type inequalities in some
special cases. More precisely, we have proved that

Theorem (Lam et al. [39]) For any ˛ 2 .0; ˇ .n; 2//, there exists a constant C˛ > 0
such that

Z

Rn

�n;2

�
˛ juj n

n�2

�
dx � C˛ kuk n

2
n
2

, 8u 2 W2; n
2 .Rn/ ; k
uk n

2
� 1: (1)

Theorem (Lam et al. [39]) For any ˛ 2 .0; ˇ .2m;m//, there exists a constant
C˛ > 0 such that

Z

R2m

�2m;m

�
˛ juj2

�
dx � C˛ kuk22 , 8u 2 Wm;2

�
R
2m
�
; krmuk2 � 1: (2)

It was proved in [30] that the inequality (1) does not hold when ˛ > ˇ .n; 2/,
neither does inequality (2) when ˛ > ˇ .2m;m/. Nevertheless, we still cannot verify
the borderline case ˛ D ˇ .n; 2/ in the second order case and ˛ D ˇ .2m;m/ in the
high order case in the above two theorems.

Sharp Moser-Trudinger inequalities were also recently established on hyperbolic
spaces Mancini and Sandeep [54] on conformal discs and by Lu and Tang in all
dimensions [49, 50] including singular versions of Adachi-Tanaka type inequalities
[1] and those of Ruf [59] and Li and Ruf type [45]. Sharp Moser-Trudinger
inequalities on unbounded domains of the Heisenberg groups were also established
by Lam, Lu and Tang [34, 37, 39]. We also mention that extremal functions for
Moser-Trudinger inequalities on bounded domains were studied by Carleson and
Chang [10], de Figueiredo et al. [21], Flucher [23], Lin [47], and on Riemannian
manifolds by Li [42, 43], and on unbounded domains by Ruf [59], Li and Ruf
[45], Ishiwata [28] and Ishiwata et al. [29]. In [36], Lam, Lu and Zhang studied
some variants of the Moser-Trudinger type inequalities and their extremals. More
precisely, it was proved in [36] that

Theorem (Lam et al. [36]) Let N � 2 and 0 � ˇ < N. Then for all 0 � ˛ <

˛N

�
1 � ˇ

N

�
; q � 1 and p > q

�
1 � ˇ

N

�
(p � q if ˇ D 0); there exists a positive

constant Cp;N;˛;ˇ > 0 such that

Z

RN

exp
�
˛ juj N

N�1

�
jujp

jxjˇ dx � CN;p;q;˛;ˇ kukq
�
1� ˇ

N

�

q ;

8u 2 D1;N
�
R

N
� \ Lq

�
R

N
�
; krukN � 1:

This constant ˛N

�
1 � ˇ

N

�
is sharp. Moreover, the supremum can be achieved.
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Very little is known for existence of extremals for Adams inequalities. The only
known cases are in the second order derivatives on compact Riemannian manifolds
and bounded domains in dimension four by Li and Ndiaye [44] and Lu and Yang
[52] respectively.

Very recently, while trying to study critical Moser-Trudinger-Adams type
inequalities in the infinite volume domain cases when using the norm
�R

Rn jrujn dx
�1=n

, Ibrahim et al. [27] and Masmoudi and Sani [54] set up
the following Moser-Trudinger-Adams type inequalities with exact growth in
dimension two and dimension four respectively:

Theorem A (Ibrahim et al. [27]) There exists some uniform constant C > 0 such
that

sup
u2W1;2.R2/;jjrujjL2 .R2/�1

Z

R2

e4�juj2 � 1
.1C juj2/ dx � Cjjujj2L2.R2/:

Moreover, the power 2 in the denominator cannot be replaced with any p < 2 .

Theorem B (Masmoudi and Sani [54]) There exists some uniform constant C > 0

such that

sup
u2W2;2.R4/;jj
ujjL2 .R4/�1

Z

R4

e32�
2juj2 � 1

.1C juj2/ dx � Cjjujj2L2.R4/:

Moreover, the power 2 in the denominator cannot be replaced with any p < 2 .

A different type of improvement of Moser’s result involving a remainder term in
the norms was given by Wang and Ye [64]. More recently, Lu and Tang [50] have
established a singular version of sharp Moser-Trudinger inequalities on hyperbolic
spaces with exact growth. Thus, the result of [50] extends those of [49] in the same
spirit of [27, 54]. To describe the main result in [50], we need to introduce some
notions.

Let Bn D fx 2 Rn W jxj < 1g denote the unit open ball in the Euclidean space
R

n. The space Bn endowed with the Riemannian metric gij D . 1
1�jxj2 /

2ıij is called
the ball model of the hyperbolic space Hn. Denote the associated hyperbolic volume
by dV D . 2

1�jxj2 /
ndx. For any measurable set E � H

n, set jEj D R
E dV . Let d.0; x/

denote the hyperbolic distance between the origin and x. It is known that d.0; x/ D
ln 1Cjxj

1�jxj for x 2 H
n. The hyperbolic gradient rg is given by rg D . 1�jxj2

2
/2r.

Let ˝ � H
n be a bounded domain. Denote kf kn;˝ D .

R
˝

jf jndV/
1
n . Then we

have the following:

krgf kn;˝ D .

Z

˝

< rgf ;rgf >n=2
g dV/

1
n D .

Z

˝

jrf jpdx/
1
n :
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Let kf kn D .
R
Hn jf jndV/

1
n . Then we have

krgf kn D .

Z

Hn
< rgf ;rgf >n=2

g dV/
1
n D .

Z

Bn
jrf jpdx/

1
n :

We use W1;n
0 .˝/ to express the completion of C1

0 .˝/ under the norm

kukW1;n
0 .˝/

D .

Z

˝

jf jndV C
Z

˝

jrf jndx/
1
n :

We will also use W1;n.Hn/ to express the completion of C1
0 .H

n/ under the norm

kukW1;n
0 .Hn/

D .

Z

Hn
jf jndV C

Z

Hn
jrf jndx/

1
n :

Then the authors have established the following in [50]:

Theorem (Lu and Tang [50]) Let ˛n D n!
1

n�1

n�1 , then there exists a constant C > 0

such that for any u 2 W1;n.Hn/ satisfying krgukn � 1,

Z

Hn

˚n.˛njuj n
n�1 /

.1C juj/ n
n�1

dV � Ckukn
n;

where ˚n.t/ D ex �Pn�2
jD0 tj

jŠ . The result is sharp in the sense that: if the power n
n�1

in the denominator is replaced by any p < n
n�1 , there exists a sequence of function

fukg such that krgukkn � 1, but

1

kukkn
n

Z

Hn

Œ˚n.˛n.jukj/ n
n�1 /�

.1C juj/p dV ! 1:

More recently, motivated by the works of [27, 50, 54], H. Tang, M. Zhu and
the second author of this paper have established in [53] the sharp second order
Adams inequality with the exact growth in R

n in general dimension n � 3. Thus,
we obtained the extension of the work of [54] to all dimension n � 3.

The results of [53] are as follows.

Theorem (Lu et al. [53]) There exists a constant C > 0 such that for all f 2
W2; n

2 .Rn/ .n � 3/ satisfying k
f k n
2

� 1,

Z

Rn

˚.ˇnjf j n
n�2 /

.1C jf j/ n
n�2

dx � Ckf k n
2
n
2
:
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Where ˚.t/ D exp.t/ � Pj n
2

�2
jD0

tj

jŠ , j n
2

D minfj 2 N W j � n
2
g � n=2 and ˇn D

ˇ.n; 2/ D n
!n�1

Œ �
n
2 4

� .n=2�1/ �
n

n�2 .

We remark that both the power n
n�2 and the constant ˇ are optimal. These can be

justified by the following theorem.

Theorem (Lu et al. [53]) If the power n
n�2 in the denominator is replaced by any

p < n
n�2 , there exists a sequence of function ffkg such that k4ukk n

2
� 1, but

1

kukk
n
2
n
2

Z

Rn

˚.ˇn.jfkj/ n
n�2 /

.1C jfkj/p dx ! 1:

Moreover, if ˛ > ˇn, there exists a sequence of function ffkg such that k4ukk n
2

� 1,
but

1

kfkk
n
2
n
2

Z

Rn

˚.˛.jfkj/ n
n�1 /

.1C jfkj/p dx ! 1;

for any p � 0.

The main purpose of the remaining part of this paper is to establish sharp singular
Moser-Trudinger and Adams inequalities and then extend the above Theorems A
and B to the singular versions.

Theorem 1.1 (Sharp Singular Moser-Trudinger Inequality) Let 0 � ˇ < 2 and

0 < ˛ � 4�
�
1 � ˇ

2

�
. Then there exists a constant C D C .˛; ˇ/ > 0 such that for

all u 2 W1;2
�
R
2
� W E C

2 .u/ � 1; there holds

Z

R2

e˛u2 � 1
�
1C juj2�ˇ

�
jxjˇ

dx � C kuk2�ˇ2 :

Moreover, the power 2�ˇ in the denominator cannot be replaced with any q < 2�ˇ.

Theorem 1.2 (Sharp Singular Adams Inequality) Let 0 � ˇ < 4 and 0 < ˛ �
32�2

�
1 � ˇ

4

�
. Then there exists a constant C D C .˛; ˇ/ > 0 such that

Z

R4

e˛u2 � 1
�
1C juj2�ˇ=2

�
jxjˇ

dx � C kuk2�
ˇ
2

2 for all u 2 W2;2
�
R
4
� W k
uk2 � 1:

Moreover, the power 2 � ˇ=2in the denominator cannot be replaced with any q <
2 � ˇ=2 .
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As the reader will see, the key ingredients in the proofs of Theorems 1.1 and 1.2
are symmetrization arguments and the Radial Sobolev inequalities: Theorems 2.1
and 2.2 established in Ibrahim et al. [27] and in Masmoudi and Sani [54] (see
Sect. 2). It is worthy noting that such a Radial Sobolev inequality in all dimensions
has been recently established by Lu and Tang [50]:

Theorem (Lu and Tang [50]) Let N � 2: There exists a constant C > 0 such
that for any nonnegative nonincreasing radial function u 2 W1;N

rad

�
R

N
�

satisfying
u.R/ > 1 and

!N�1
1Z

R

ˇ
ˇu0.t/

ˇ
ˇN tN�1dt � K

for some R; K > 0, then we have

exp

�
˛N u

N
N�1 .R/

K
1

N�1

�

u
N

N�1 .R/
RN � C

1Z

R

ju.t/jN tN�1dt

K
N

N�1

:

With this Radial Sobolev inequality, we can prove a sharp version of the singular
affine Moser-Trudinger type inequality with exact growth for N-dimensional case
that we will state here and omit the proof:

Theorem 1.3 (Sharp Singular Moser-Trudinger Inequality on R
N) Let 0 � ˇ <

N and 0 < ˛ � ˛N

�
1 � ˇ

N

�
. Then there exists a constant C D C .˛; ˇ;N/ > 0 such

that for all u 2 W1;N
�
R

N
� W E C

N .u/ � 1; there holds

Z

RN

�N;1

�
˛u

N
N�1

�

�

1C juj N
N�1

�
1� ˇ

N

��

jxjˇ
dx � C kukN�ˇ

N :

Moreover, the power N
N�1

�
1 � ˇ

N

�
in the denominator cannot be replaced with any

q < N
N�1

�
1 � ˇ

N

�
.

Obviously, we can also obtain the singular version of the second order Adams
inequality in R

n for all n � 3 by combining the techniques in [53] and the method
here. We shall not present the proof here. We also remark that Theorem 1.2 is true
for all N � 3 by incorporating the result in [53].

Our last main result is an improved version of the classical Moser-Trudinger
inequality in W1;n

0 .B/ where B is the unit ball in R
n:
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Theorem 1.4 Let B be the unit ball in R
n: Then there holds

sup
u2W1;n

0 .B/; E C

n .u/�1

Z

B

�

ln
1

jxjn C 1 � ˛n juj n
n�1

�

e˛njuj n
n�1 dx < 1:

This constant ˛n is sharp in the sense that if ˛ > ˛n, then

sup
u2W1;n

0 .B/; E C

n .u/�1

Z

B

�

ln
1

jxjn C 1 � ˛n juj n
n�1

�

e˛juj n
n�1 dx D 1:

It is worthy noting that by symmetrization arguments, we have

sup
u2W1;n

0 .B/; krukn�1

Z

B
exp

�
ˇ juj n

n�1

�
dx

D sup
u2W1;n

0 .B/; krukn�1; u is radially nonincreasing

Z

B
exp

�
ˇ juj n

n�1

�
dx:

Also, if u 2 W1;n
0 .B/ ; krukn � 1 and is radially nonincreasing, then we could

show that

˛n juj n
n�1 � ln

1

jxjn : (3)

Combining these two things and the fact that E C
p .f / � krf kp, we obtain

sup
u2W1;n

0 .B/; krukn�1

Z

B
exp

�
˛n juj n

n�1

�
dx

� sup
u2W1;n

0 .B/; E C

n .u/�1

Z

B

�

ln
1

jxjn C 1 � ˛n juj n
n�1

�

e˛njuj n
n�1 dx:

Hence our Theorem 1.4 is indeed an improvement of the classical Moser-Trudinger
inequality [55] on W1;n

0 .B/ :
The organization of the paper is as follows. In Sect. 2, we will recall some

preliminaries on the symmetrization rearrangement and collect some known results
that we will need to prove our sharp singular Moser-Trudinger-Adams inequalities.
Section 3 will give the proof of the sharp singular Moser-Trudinger inequality in R

2

(Theorem 1.1 and Sect. 4 contains the proof of the sharp singular Adams inequality
in R

4 (Theorem 1.2. Finally, an improvement of the Moser-Trudinger inequality
will be studied in Sect. 5 (Theorem 1.4). Section 6 is devoted to the verification of
sharpness of the constants in Theorems 1.1 and 1.2.
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2 Some Useful Results

In this section, we introduce some useful results that will be used in our proofs.

2.1 Rearrangements

Let˝ � R
N ; N � 2, be a measurable set. We denote by˝# the open ball BR � R

N

centered at 0 of radius R > 0 such that jBRj D j˝j :
Let u W ˝ ! R be a real-valued measurable function. The distribution function

of u is the function

�u.t/ D jfx 2 ˝ W ju.x/j > tgj

and the decreasing rearrangement of u is the right-continuous, nonincreasing
function u� that is equimeasurable with u W

u�.s/ D sup ft � 0 W �u.t/ > sg :

It is clear that suppu�  Œ0; j˝j� : We also define

u��.s/ D 1

s

sZ

0

u�.t/dt � u�.s/:

Moreover, we define the spherically symmetric decreasing rearrangement of u W

u# W ˝# ! Œ0;1�

u#.x/ D u�
�
�N jxjN

�
:

Then we have the following important result that could be found in [16, 26, 46]:

Lemma 2.1 (Pólya-Szegö Inequality) Let u 2 W1;p .Rn/, p � 1. Then f # 2
W1;p .Rn/,

E C
p

�
f #
� D Ep

�
f #
� D 



rf #





p

and

E C
p

�
f #� � E C

p .f / I Ep
�
f #� D Ep .f / I 

rf #






p D krf kp :

We now recall two theorems from [27] and [54] respectively and we also refer to
[50, 53] for high dimensional cases.
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Theorem 2.1 There exists a constant C > 0 such that for any nonnegative radially
decreasing function u 2 W1;2

�
R
2
�

satisfying

u.R/ > 1 and
Z

R2nBR

jruj2 dx � K for some K > 0;

we have

e
4�
K u2.R/

u2.R/
R2 � C

K2

Z

R2nBR

juj2 dx:

Theorem 2.2 Let u 2 W2;2
�
R
4
�

and let R > 0. If u#.R/ > 1 and f D �
u in R
4

satisfies

1Z

jBRj


f �� .s/

�2
ds � 4K for some K > 0;

then there exists a universal constant C > 0 such that

e
32�2

K Œu#.R/�
2

Œu#.R/�2
R4 � C

K2

Z

R4nBR

ˇ
ˇu#
ˇ
ˇ2 dx:

We note here that in the Theorem 2.2 and also in the rest of this paper, when we
write u#.R/; we mean that u#.x/ for jxj D R:

We also recall the following result in [33]:

Lemma 2.2 Let 0 < � � 1, 1 < p < 1 and a.s; t/ be a non-negative measurable
function on .�1;1/ 
 Œ0;1/ such that (a.e.)

a.s; t/ � 1; when 0 < s < t; (4)

sup
t>0

0

@
0Z

�1
C

1Z

t

a.s; t/p
0

ds

1

A

1=p0

D b < 1: (5)

Then there is a constant c0 D c0.p; b; �/ such that if for � � 0;

1Z

�1
�.s/pds � 1; (6)
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then

1Z

0

e�F� .t/dt � c0 (7)

where

F� .t/ D � t � �
0

@
1Z

�1
a.s; t/�.s/ds

1

A

p0

: (8)

We will need the following strengthened lemma which is needed in the proof of
Theorem 1.4 and is also of independent interest.

Lemma 2.3 Let 1 < p < 1; k 2 N: There exists a constant c0 > 0 such that for
' .s/ � 0; and

1Z

0

j'.s/jp ds � 1;

it follows that

1Z

0

.F.t/C 1/k e�F.t/dt � c0

where

F.t/ D t �
0

@
tZ

0

'.s/ds

1

A

p0

� 0:

Proof Set

E� D ft � 0 W F .t/ � �g :

Then we can show that E� is empty for sufficiently small �, and that there exist
constant A1; A2 such that

jE�j � A1�C A2:

Now, we prove by induction.
k D 0 W this is the Lemma 2.2 with � D 1:
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k D 1 W
1Z

0

.F.t/C 1/ e�F.t/dt D
1Z

0

1Z

F.t/

e���d�dt

D
1Z

0

Z

F.t/��
e���dtd�

D
1Z

0

jE�j e���d�

� c0:

Assume that the result is true with k D 0; 1; : : : ;m: Then

1Z

0

.F.t//mC1 e�F.t/dt C .m C 1/

1Z

0

1Z

F.t/

e���md�dt D
1Z

0

1Z

F.t/

e���mC1d�dt

D
1Z

0

Z

F.t/��
e���mC1dtd�

D
1Z

0

jE�j e���mC1d�

� c0:

The proof now is completed.

We now state the Hardy-Littlewood inequality that could be found in [46].

Lemma 2.4 Let f 2 Lp
�
R

N
�

and g 2 Lq
�
R

N
�

where 1
p C 1

q D 1; 1 � p; q � 1:

Then
Z

RN

f .x/ g .x/ dx �
Z

RN

f # .x/ g# .x/ dx:

Using the above Hardy-Littlewood inequality, we will prove the following result
that will be used later in our proof of Theorems 1.1 and 1.2. This result is also
of independent interest and its proof is not immediately trivial at its first glance.
Nevertheless, it is indeed true after a careful analysis of the monotonicity of the

function e˛u2�1
1Cjuj2�ˇ .
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Lemma 2.5 Let 0 � ˇ < 2 and ˛ > 0. There holds:

Z

R2

e˛u2 � 1
�
1C juj2�ˇ

�
jxjˇ

dx �
Z

R2

e˛.u
#/
2 � 1

�
1C ju#j2�ˇ

�
jxjˇ

dx

for any u 2 W1;2
�
R
2
�
:

Proof Let u 2 W1;2
�
R
2
�

and set

f .x/ D .F ı juj/ .x/ D e˛u2.x/ � 1
�
1C ju.x/j2�ˇ

� and g.x/ D 1

jxjˇ

where

F.t/ D e˛t2 � 1
1C t2�ˇ

:

First, we note here that

g# .x/ D 1

jxjˇ D g.x/:

Now, we claim that F.t/ is nondecreasing on R
C. Indeed, we have

F0.t/ D
2˛te˛t2

�
1C t2�ˇ

�� .2 � ˇ/ t1�ˇ
�

e˛t2 � 1
�

�
1C t2�ˇ

�2

D e˛t2

2˛t C 2˛t3�ˇ � .2 � ˇ/ t1�ˇ

�C .2 � ˇ/ t1�ˇ
�
1C t2�ˇ

�2

D t1�ˇ
"

e˛t2

2˛tˇ C 2˛t2 � .2 � ˇ/�C .2 � ˇ/

�
1C t2�ˇ

�2

#

D t1�ˇh.t/
�
1C t2�ˇ

�2

where

h.t/ D e˛t2

2˛tˇ C 2˛t2 � .2 � ˇ/

�C .2 � ˇ/ :
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Noting that

h0.t/ D 2˛te˛t2

2˛tˇ C 2˛t2 � .2 � ˇ/

�C e˛t2

2˛ˇtˇ�1 C 4˛t

�

D e˛t2

2˛t

�
2˛tˇ C 2˛t2 � .2 � ˇ/

�C 2˛ˇtˇ�1 C 4˛t
�

D e˛t2

2˛t

�
2˛tˇ C 2˛t2

� � 2˛t .2 � ˇ/C 2˛ˇtˇ�1 C 4˛t
�

D e˛t2

2˛t

�
2˛tˇ C 2˛t2

�C 2˛ˇt C 2˛ˇtˇ�1�

� 0;

hence

h.t/ � h.0/ D 0 for t � 0:

Thus, F0.t/ � 0 when t � 0; which means that F is nondecreasing on R
C.

Hence, by a property of rearrangement (see [46]), we have that

f # .x/ D .F ı juj/# .x/ D �
F ı u#

�
.x/ :

By Lemma 2.4, we get our desired result.

3 Sharp Singular Truding-Moser Type Inequality with Exact
Growth

In this section, we will prove a version of sharp singular Moser-Trudinger type
inequality with exact growth, namely Theorem 1.1. We follow [27] closely. We
have chosen to present all the details for its completeness. Its proof is essentially an
adaptation of the proof of the non-singular version given in [27] and an application
of our Lemma 2.5, together with a careful decomposition of the integral domains in
terms of the weight function 1

jxjˇ and the norms of u.

Theorem 3.1 Let 0 � ˇ < 2 and 0 < ˛ � 4�
�
1 � ˇ

2

�
. Then there exists a

constant C D C .˛; ˇ/ > 0 such that for all u 2 W1;2
�
R
2
� W E C

2 .u/ � 1; there
holds

Z

R2

e˛u2 � 1
�
1C juj2�ˇ

�
jxjˇ

dx � C kuk2�ˇ2 :
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Proof By the symmetrization arguments: the Pólya-Szegö inequality, the Hardy-
Littlewood inequality; Lemma 2.5 and the density arguments, we may assume that
u is a smooth, nonnegative and radially decreasing function. Let R1 D R1.u/ be such
that

Z

BR1

jruj2 dx D 2�

R1Z

0

u2r :rdr � 1 � "0;

Z

R2nBR1

jruj2 dx D 2�

1Z

R1

u2r :rdr � "0:

Here "0 2 .0; 1/ is fixed and does not depend on u.
By the Holder’s inequality, we have

u .r1/� u .r2/ �
r2Z

r1

� urdr (9)

�
0

@
r2Z

r1

u2r :rdr

1

A

1=2 �

ln
r2
r1

�1=2

�
�
1 � "0

2�

�1=2 �

ln
r2
r1

�1=2
for 0 < r1 � r2 � R1;

and

u .r1/� u .r2/ �
� "0
2�

�1=2 �

ln
r2
r1

�1=2
for R1 � r1 � r2: (10)

We define R0 WD inf fr > 0 W u.r/ � 1g 2 Œ0;1/ : Hence u.s/ � 1 when s � R0.
WLOG, we assume R0 > 0.

Now, we split the integral as follows:

Z

R2

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx D
Z

BR0

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx C
Z

R2nBR0

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx

D I C J:
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First, we will estimate J. Since u � 1 on R
2 n BR0 , we have

J D
Z

R2nBR0

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx (11)

� C
Z

fu�1g
u2

jxjˇ dx

D C
Z

fu�1Ijxj>kuk2g
u2

jxjˇ dx C C
Z

fu�1Ijxj�kuk2g
u2

jxjˇ dx

� C kuk2�ˇ2 :

Hence, now, we just need to deal with the integral I.

Case 1 0 < R0 � R1:
In this case, using (9), we have for 0 < r � R0 W

u.r/ � 1C
�
1 � "0

2�

�1=2 �

ln
R0
r

�1=2
:

By using

.a C b/2 � .1C "/a2 C
�

1C 1

"

�

b2;

we get

u2.r/ � 1 � "20
2�

ln
R0
r

C
�

1C 1

"0

�

:

Thus, we can estimate the integral I as follows:

I D
Z

BR0

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx (12)

�
Z

BR0

e˛
1�"20
2� ln R0

jxj
C˛

�
1C 1

"0

�

jxjˇ dx

� CR
˛
1�"20
2�

0

R0Z

0

r1�˛
1�"20
2� �ˇdr
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� CR2�ˇ0

� C

0

B
@

Z

BR0

1dx

1

C
A

1� ˇ
2

� C kuk2�ˇ2 :

Case 2 0 < R1 < R0:
We have

I D
Z

BR0

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx

D
Z

BR1

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx C
Z

BR0nBR1

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx

D I1 C I2:

Using (10), we get

u .r/ � u .R0/ �
� "0
2�

�1=2 �

ln
R0
r

�1=2
for r � R1:

Hence

u .r/ � 1C
� "0
2�

�1=2 �

ln
R0
r

�1=2

and again, by using

.a C b/2 � .1C "/a2 C
�

1C 1

"

�

b2

we have

u2 .r/ � .1C "/
"0

2�
ln

R0
r

C
�

1C 1

"

�

; 8" > 0:
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So

I2 D
Z

BR0nBR1

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx

� C

R0Z

R1

e˛.1C"/
"0
2� ln

R0
r C˛.1C 1

" /r1�ˇdr

D Ce˛.1C 1
" /R

˛.1C"/ "02�
0

R
2�ˇ�˛.1C"/ "02�
0 � R

2�ˇ�˛.1C"/ "02�
1

2 � ˇ � ˛ .1C "/ "0
2�

� Ce˛.1C 1
" /

2 � ˇ � ˛ .1C "/ "0
2�

�
R2�ˇ0 � R2�ˇ1

�

� C
�
R20 � R21

�1� ˇ
2

� C

0

B
@

Z

BR0nBR1

1dx

1

C
A

1� ˇ
2

� C kuk2�ˇ2 ;

(since ˛ � 4� � 2ˇ, we can choose " > 0 such that 2 � ˇ � ˛ .1C "/ "0
2�
> 0).

So, we need to estimate I1 D
Z

BR1

e˛u2�1
.1Cu2�ˇ/jxjˇ dx with u .R1/ > 1.

First, we define

v.r/ D u.r/� u .R1/ on 0 � r � R1:

It’s clear that v 2 W1;2
0 .BR1 / and that

Z

BR1

jrvj2 dx D
Z

BR1

jruj2 dx � 1 � "0:

Moreover, for 0 � r � R1 W

u2.r/ D Œv.r/C u .R1/�
2

� .1C "/v2.r/C
�

1C 1

"

�

u2 .R1/ :
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Hence

I1 D
Z

BR1

e˛u2 � 1
�
1C u2�ˇ

� jxjˇ dx (13)

� e˛.1C 1
" /u

2.R1/

u2�ˇ .R1/

Z

BR1

e.1C"/˛v2.r/

jxjˇ dx

D e˛.1C 1
" /u

2.R1/

u2�ˇ .R1/

Z

BR1

e˛w2.r/

jxjˇ dx

where w D p
1C "v:

It’s clear that w 2 W1;2
0 .BR1 / and

Z

BR1

jrwj2 dx D .1 C "/

Z

BR1

jrvj2 dx � .1 C

"/ .1 � "0/ � 1 if we choose 0 < " � "0
1�"0 : Hence, using the singular Moser-

Trudinger inequality, we have

Z

BR1

ew2.r/

jxjˇ dx � C jBR1 j1�
ˇ
2 � CR2�ˇ1 : (14)

Also, using Theorem 2.1, we have

e˛.1C 1
" /u

2.R1/

u2�ˇ .R1/
R2�ˇ1 �

"
e

2
2�ˇ ˛.1C 1

" /u
2.R1/

u2 .R1/
R21

#1� ˇ
2

(15)

�

0

B
@

C

"20

Z

R2nBR

juj2 dx

1

C
A

1� ˇ
2

�
�

C

"20
kuk22

�1� ˇ
2

if we choose " such that

1

"0
� 1 � 1

"
� 2� .2 � ˇ/

˛

1

"0
� 1:

By (13), (14) and (15), the proof is now completed.
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4 Sharp Singular Adams Type Inequality with Exact Growth

We will prove Theorem 1.2 in this section. Again, we will adapt the argument of [54]
together with an application of the symmetrization lemma similar to our Lemma 2.5.
We mention that the following theorem holds for all N � 3 using the result in [53].
But we only state and present its proof in dimension N D 4.

Theorem 4.1 Let 0 � ˇ < 4 and 0 < ˛ � 32�2
�
1 � ˇ

4

�
. Then there exists a

constant C D C .˛; ˇ/ > 0 such that

Z

R4

e˛u2 � 1
�
1C juj2�ˇ=2

�
jxjˇ

dx � C kuk2�
ˇ
2

2 for all u 2 W2;2
�
R
4
� W k
uk2 � 1:

Proof Fix u 2 C1
0

�
R
4
�

such that k
uk2 � 1 and define

R0 D R0.u/ D inf
˚
r > 0 W u#.r/ � 1

� 2 Œ0;1/ :

We may assume that R0 > 0.
Similar to the proof of Theorem 1.1, we will need a symmetrization lemma. By

the Hardy-Littlewood inequality and a similar proof to Lemma 2.5, we have

Z

R4

e˛u2 � 1
�
1C u2�ˇ=2

� jxjˇ dx �
Z

R4

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2
�

jxjˇ
dx (16)

D
Z

BR0

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2
�

jxjˇ
dx C

Z

R4nBR0

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2
�

jxjˇ
dx

D I C J:

We now estimate J. Indeed, since u#.r/ � 1 on R
4 n BR0 , we get

J � C
Z

fu#�1g

�
u#
�2

jxjˇ dx (17)

� C
Z

n
u#�1I jxj�kuk1=22

o

�
u#
�2

jxjˇ dx C C
Z

n
u#�1I jxj<kuk1=22

o

�
u#
�2

jxjˇ dx

� C

2

4
Z

R4

�
u#
�2

dx

3

5

1� ˇ
4

� C kuk2�
ˇ
2

2 :
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So, the difficult part is the integral I.
Set

f D �
u

ˇ D
1Z

0


f ��.s/

�2
ds:

Then since k
uk2 � 1, we have ˇ � 4.
We now fix "0 2 .0; 1/ (we note that "0 is independent of u) and choose R1 D

R1 .u/ > 0 such that

jBR1 jZ

0


f �� .s/

�2
ds D ˇ .1 � "0/ (18)

1Z

jBR1 j


f �� .s/

�2
ds D ˇ"0:

We have the following result:

u#.r1/ � u#.r2/ �
p
2

16�

0

B
B
@

jBR2 jZ

jBR1 j


f �� .s/

�2
ds

1

C
C
A

1=2

�

ln
r42
r41

�1=2
for 0 < r1 < r2:

(19)

Hence, by (18) and (19), we get

u#.r1/ � u#.r2/ �
�
1 � "0

32�2

�1=2 �

ln
r42
r41

�1=2
for 0 < r1 < r2 � R1; (20)

u#.r1/ � u#.r2/ �
� "0

32�2

�1=2 �

ln
r42
r41

�1=2
for R1 � r1 < r2:

We distinguish two cases:

Case 1 0 < R0 � R1
In this case, by (20), we have for 0 < r � R0 .� R1/ W

u#.r/ � 1C
�
1� "0

32�2

�1=2 �

ln
R40
r4

�1=2
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u#.r/

�2 � 1 � "20
32�2

ln
R40
r4

C
�

1C 1

"0

�

:

Hence,

I D
Z

BR0

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2� jxjˇ
dx (21)

� C

R0Z

0

e˛
1�"20
32�2

ln
R40
r4

C˛
�
1C 1

"0

�

r3�ˇdx

� CR
4˛

1�"20
32�2

0

R0Z

0

r3�ˇ�4˛ 1�"
2
0

32�2 dr

� CR4�ˇ0

� C

0

B
@

Z

BR0

1dx

1

C
A

1� ˇ
4

� C kuk2�
ˇ
2

2 :

Case 2 0 < R1 < R0:

I D
Z

BR0

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2� jxjˇ
dx

D
Z

BR1

C
Z

BR0nBR1

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2� jxjˇ
dx

D I1 C I2:

Again, by (20), we have for R1 � r � R0 W

u#.r/

�2 � "0 .1C "/

32�2
ln

R40
r4

C
�

1C 1

"

�

; 8" > 0:



70 N. Lam and G. Lu

Hence if we choose 0 < " <
32�2

�
1� ˇ

4

�

˛
1
"0

� 1; we get

I2 D
Z

BR0nBR1

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2� jxjˇ
dx (22)

� C

R0Z

R1

e˛
"0.1C"/

32�2
ln

R40
r4

C˛.1C 1
" /r3�ˇdr

� CR
4˛

"0.1C"/

32�2

0

�

R
4�ˇ�4˛ "0.1C"/

32�2

0 � R
4�ˇ�4˛ "0.1C"/

32�2

1

�

� C

�

R4�ˇ0 � R
4˛

"0.1C"/

32�2

0 R
4�ˇ�4˛ "0.1C"/

32�2

1

�

� C
h
R4�ˇ0 � R4�ˇ1

i

� C

R40 � R41

�1� ˇ
4

� C

0

B
@

Z

BR0nBR1

1dx

1

C
A

1� ˇ
4

� C kuk2�
ˇ
2

2 :

To estimate I1, we first note that by (20), we have


u#.r/

�2 � .1C "/

u#.r/� u#.R1/

�2 C
�

1C 1

"

�

u#.R1/

�2
; for all 0 � r � R1I " > 0.

As a consequence, we get

I1 D
Z

BR1

e˛.u
#/
2 � 1

�
1C .u#/

2�ˇ=2� jxjˇ
dx (23)

� 1

Œu#.R1/�
2�ˇ=2

Z

BR1

e˛.u
#/
2

jxjˇ dx

� C
e˛.1C 1

" /Œu
#.R1/�

2

Œu#.R1/�
2�ˇ=2

Z

BR1

e˛.1C"/Œu#.jxj/�u#.R1/�
2

jxjˇ dx:
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By Theorem 2.2, we have that there exists a universal constant C > 0 such that

e˛.1C 1
" /Œu

#.R1/�
2

Œu#.R1/�
2�ˇ=2 D

0

@e˛
4

4�ˇ .1C 1
" /Œu

#.R1/�
2

Œu#.R1/�
2

1

A

1� ˇ
4

(24)

�

0

B
@

C

R41

Z

R4nBR1

ˇ
ˇu#
ˇ
ˇ2 dx

1

C
A

1� ˇ
4

� C

R4�ˇ1

kuk2�
ˇ
2

2 :

Here we choose " such that 1C 1
"

� 32�2
�
1� ˇ

4

�

˛
1
"0
:

Now, we claim that

1

R4�ˇ1

Z

BR1

e˛.1C"/Œu#.jxj/�u#.R1/�
2

jxjˇ dx � C: (25)

Indeed, we have for 0 < r < jBR1 j W

0 � u�.r/ � u� .jBR1 j/ �
p
2

16�

jBR1 jZ

r

f �� .s/p
s

ds:

Hence,

Z

BR1

e˛.1C"/Œu#.jxj/�u#.R1/�
2

jxjˇ dx � C

jBR1 jZ

0

exp

2

6
4
q
1 � ˇ

4

p
1C"
2

jBR1 jZ

r

f ��.s/p
s

ds

3

7
5

2

rˇ=4
dr

� C jBR1 j1�ˇ=4
1Z

0

exp

2

6
6
4

r

1� ˇ

4

p
1C "

2

jBR1 jZ

jBR1 je�t

f �� .z/p
z

dz

3

7
7
5

2

e�t.1�ˇ=4/dt

� C jBR1 j1�ˇ=4
1Z

0

exp

0

B
B
@.1 � ˇ=4/

2

6
6
4

p
1C "

2

jBR1 jZ

jBR1 je�t

f �� .z/p
z

dz

3

7
7
5

2

� t .1 � ˇ=4/

1

C
C
A dt
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� C jBR1 j1�ˇ=4
1Z

0

exp

0

B
@.1 � ˇ=4/

2

4
p
1C "

2

tZ

0

f �� .jBR1 j e�s/
pjBR1 j e�s

jBR1 j e�sds

3

5

2

�t .1 � ˇ=4/

1

A dt:

Here, we make change r D jBR1 j e�t in the second inequality and z D jBR1 j e�s in
the last one.

Now, using Lemma 2.2 with

� D 1 � ˇ=4I p D 2

a.s; t/ D
�
1 if 0 < s < t
0 otherwise

�.s/ D pjBR1 j
p
1C "

2
f �� .jBR1 j e�s/ e� s

2 dsI s � 0

we can conclude (25). Indeed, we have

1Z

0

�2.s/ds D jBR1 j
1C "

4

1Z

0


f �� .jBR1 j e�s/

�2
e�sds

D 1C "

4

jBR1 jZ

0


f �� .r/

�2
dr

� .1C "/ .1 � "0/ � 1

if we choose " such that

1

"0
� 1C 1

"
�
32�2

�
1 � ˇ

4

�

˛

1

"0
:

The proof now is completed.
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5 Proof of Theorem 1.4

Let u# be the symmetric decreasing rearrangement of u: By rearrangement proper-
ties: the Pólya-Szegö inequality and the Hardy-Littlewood inequality, we get




ru#






n
D E C

n

�
u#
� � E C

n .u/ ;
Z

B

�

ln
1

jxjn C 1

�

e˛njuj n
n�1 dx �

Z

B

�

ln
1

jxjn C 1

�

e˛nju#j n
n�1

dx;

Z

B

˛n juj n
n�1 e˛njuj n

n�1 dx D
Z

B

˛n

ˇ
ˇu#
ˇ
ˇ

n
n�1 e˛nju#j n

n�1
dx:

Hence, we may assume that u is radially symmetric and nonincreasing.
By changing of variable

jxjn D e�t;

w .t/ D n
n�1

n !
1=n
n�1u.x/

we have w.t/ is a C0-function and 0 � t < 1 satisfying

w.0/ D 0; w0 � 0;

1Z

0

ˇ
ˇw0.t/

ˇ
ˇn dt � 1

and we need to prove that

1Z

0

�
t � w

n
n�1 .t/C 1

�
ew

n
n�1 .t/�tdt � MT:

Set

F.t/ D t � w
n

n�1 .t/;

so we need to show

1Z

0

.F.t/C 1/ e�F.t/dt � MT:

Using Lemma 2.3 with ' D w0, we get the result.
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6 Sharpness of Constants in Theorems 1.1 and 1.2

The main purpose of this section is to prove the sharpness of the constants in
Theorems 1.1 and 1.2.

First, we will show that the Theorem 1.1 is sharp in the sense that the inequality

Z

R2

F.u/

jxjˇ dx � C kuk2�ˇ2 for all u 2 W1;2
�
R
2
� W E C

2 .u/ � 1

fails if the growth

F.u/ D e4�
�
1� ˇ

2

�
u2 � 1

�
1C juj2�ˇ

�

is replaced with the higher order growth

F.u/ D e˛u2 � 1

.1C jujq/

where either ˛ > 4�
�
1 � ˇ

2

�
and q D 2 � ˇ or ˛ D 4�

�
1 � ˇ

2

�
and q < 2 � ˇ:

The former case is easy since we can find some constant C D C .ˇ/ such that

Z

R2

e˛u2 � 1
�
1C juj2�ˇ

�
jxjˇ

dx � C
Z

R2

e

�
˛C4�

�
1�

ˇ
2

��

2 u2 � 1
jxjˇ dx:

Now, fix q < 2� ˇ and let

F.x/ D e4�
�
1� ˇ

2

�
x2 � 1

.1C jxjq/
:

First, we choose sequences

1n zn " 1 and An " A D 1

2�

such that

cn D exp

0

@
�2

�
1 � ˇ

2

�
z2n

An

1

A z
2
�
1� ˇ

2

�

n F .zn/ ! 1:
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We can do that since

lim
jxj!1

jxj2�ˇ F.x/

e2
�
1� ˇ

2

�
jxj2=K

D 1:

Let

un.r/ D

8
<̂

:̂

zn if r < Tn

zn
jlog rj

jlog Tnj if Tn � jxj < 1
0 if jxj � 1

where

Tn D exp

�

� z2n
An

�

:

Then, it is clear that

krunk22 D 2�z2n

1Z

Tn

dr

r jlog Tnj2 D 2�An < 1I

kunk2 �
p
2�An

zn
I

G .un/ D
Z

R2

F.un/

jxjˇ dx � 2�

2 � ˇ
T2�ˇn F .zn/ D 2�

2 � ˇ
cn

z2�ˇn

:

Hence

G .un/

kunk2�ˇ2

� Ccn ! 1:

Similarly, in Theorem 1.2, we just need to prove that for fix q < 2 � ˇ

2
, then the

inequality

Z

R4

e32�
2
�
1� ˇ

4

�
u2 � 1

.1C jujq/ jxjˇ dx � C kuk2�
ˇ
2

2 for all u 2 W2;2
�
R
4
� W k
uk2 � 1 (26)
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does not hold. Indeed, consider the sequence introduced by Lu and Yang in [52]:

un .r/ D

8
ˆ̂
<̂

ˆ̂
:̂

q
1

32�2
log 1

Rn
� r2q

8�2Rn log 1
Rn

C 1q
8�2 log 1

Rn

if 0 � r � 4
p

Rn

1q
2�2 log 1

Rn

log 1
r if 4

p
Rn < r � 1

�n if r > 1

where Rn # 0 and �n is smooth and is chosen such that for some R > 1 W

�nj@B1 D �nj@BR D 0;

@�n

@�
j@B1 D 1

q
2�2 log 1

Rn

I @�n

@�
j@BR D 0

and �n; 
�n are all O

 
1q

log 1
Rn

!

: Then, we can verify that

kunk2 D O

0

B
@

1
q

log 1
Rn

1

C
A

1 � k
unk22 D 1C O

 
1

log 1
Rn

!

:

Now, assume (26) holds. Then let

vn D un

k
unk2
;

we get

Z

R4

e32�
2
�
1� ˇ

4

�
v2n � 1

.1C jvnjq/ jxjˇ dx � C kvnk2�
ˇ
2

2 � C

0

B
@

1
q

log 1
Rn

1

C
A

2� ˇ
2

:

Hence

lim
n!1

 s

log
1

Rn

!2� ˇ
2 Z

R4

e32�
2
�
1� ˇ

4

�
v2n � 1

.1C jvnjq/ jxjˇ dx < 1: (27)
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Also, noting that un �
q

1
32�2

log 1
Rn

on B 4
p

Rn
, we have that

Z

R4

e32�
2
�
1� ˇ

4

�
v2n � 1

.1C jvnjq/ jxjˇ dx �
Z

B 4pRn

e32�
2
�
1� ˇ

4

�
v2n � 1

.1C jvnjq/ jxjˇ dx %
Z

B 4pRn

e32�
2
�
1� ˇ

4

�
v2n

jvnjq jxjˇ dx

%
exp

 
32�2

�
1� ˇ

4

�
1

32�2
log 1

Rn

k
unk22

!

�q
1

32�2
log 1

Rn

�q R
1� ˇ

4
n

� exp

 �

1 � ˇ

4

�

log
1

Rn

 
1

k
unk22
� 1

!!�

log
1

Rn

�� q
2

:

Hence

lim
n!1

 s

log
1

Rn

!2� ˇ
2 Z

R4

e32�
2
�
1� ˇ

4

�
v2n � 1

.1C jvnjq/ jxjˇ dx % lim
n!1

 s

log
1

Rn

!2� ˇ
2 �q

D 1

which is a contradiction of (27).
Our last main task is to verify (3) since if (3) holds, then with ˛ > ˛n W

sup
u2W1;n

0;rad.B/; E
C

n .u/�1

Z

B

�

ln
1

jxjn C 1 � ˛n juj n
n�1

�

e˛juj n
n�1 dx

� sup
u2W1;n

0;rad.B/; E
C

n .u/�1

Z

B

e˛juj n
n�1 dx D 1:

Indeed, by changing of variable

jxjn D e�t;

w .t/ D n
n�1

n !
1=n
n�1u.x/

we have w.t/ satisfies

w.0/ D 0; w0 � 0;

1Z

0

ˇ
ˇw0.t/

ˇ
ˇn dt � 1:
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Hence

w .t/ D
tZ

0

w0.s/ds �
0

@
tZ

0

ˇ
ˇw0.s/

ˇ
ˇn ds

1

A

1=n0

@
tZ

0

1ds

1

A

n�1
n

� t
n�1

n :

But this is exactly (3).
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A Quantitative Lusin Theorem for Functions
in BV

András Telcs and Vincenzo Vespri

Dedicated to our friend Ermanno Lanconelli on the occasion of
his 70th birthday

Abstract We extend to the BV case a measure theoretic lemma previously proved
by DiBenedetto et al. (Atti Accad. Naz. Lincei Cl. Sci. Mat. Appl. 9, 223–225,
2006) in W1;1

loc . It states that if the set where u is positive occupies a sizable portion
of an open set E then the set where u is positive clusters about at least one point
of E. In this note we follow the proof given in the Appendix of DiBenedetto and
Vespri (Arch. Ration. Mech. Anal. 132, 247–309, 1995) so we are able to use only
a 1-dimensional Poincaré inequality.
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1 Introduction

For � > 0, denote by K�.y/ � R
N a cube of edge � centered at y. If y is the origin

on R
N , we write K�.0/ D K�. For any measurable set A � R

N , by jAj we denote its
N-dimensional Lebesgue measure.
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If u is a continuous function in a domain E and u.x0/ > 0 for a point x0 2 E then
there is a r > 0 such that u.x/ > 0 in Kr.x0/\ E. If u 2 C1 then we can quantify the
radius r in terms of the C1 norm of u.

The Lusin Theorem says that if u is a measurable function in a bounded domain
E, than for any " > 0 there is a continuous function g such that g D u in E except
in a small set V � E such that jVj � ".

In this note we want to generalize the previous property in the case of measurable
functions. Very roughly speaking, we prove that if u 2 BV.E/ and u.x0/ > 0 for
a point x0 2 E than for any " > 0 there is a positive r, that can be quantitatively
estimated in terms of " and the BV norm of u, such that u.x/ > 0 for any x 2
Kr.x0/\E except in a small set V � E such that jVj � "jKr.x0/j. Obviously we will
state a more precise result in the sequel.

Such kind of result has natural application in regularity theory for solutions to
PDE’s (see for instance the monograph [3] for an overview). The case of W1;p.E/,
with 1 < p < 1 , was studied in the Appendix of [1]. It was generalized in the case
of W1;1.E/ in [2].

Here we combine the proofs of [1, 2] in order to generalize this result in BV
spaces. Moreover in this note we use a proof based only on 1-dimensional Poincaré
inequality. This approach could be useful in the case anisotropic operators where it
is likely that will be necessary to develop a new approach tailored on the structure of
the operator (a first step in this direction can be found in [4]). We prove the following
Measure Theoretical Lemma.

Lemma 1.1 Let u 2 BV.K�/ satisfy

kukBV.K�/ � ��N�1 and jŒu > 1�j � ˛jK�j (1)

for some � > 0 and ˛ 2 .0; 1/. Then, for every ı 2 .0; 1/ and 0 < � < 1 there exist
xo 2 K� and � D �.˛; ı; �; �;N/ 2 .0; 1/, such that

jŒu > �� \ K��.xo/j > .1 � ı/jK��.xo/j: (2)

Roughly speaking the Lemma asserts that if the set where u is bounded away from
zero occupies a sizable portion of K�, then there exists at least one point xo and a
neighborhood K��.xo/ where u remains large in a large portion of K��.xo/. Thus the
set where u is positive clusters about at least one point of K�.

In Sect. 2, we operate a suitable partition of K�. In Sect. 3 we prove the result
in the case N D 2 ( an analogous proof works for N D 1. We consider more
meaningful to prove the result directly in the less trivial case N D 2). In Sect. 4, by
an induction argument, we extend the lemma to any dimension.
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2 Proof: A Partition of the Cube

It suffices to establish the Lemma for u continuous and � D 1. For n 2 N partition
K1 into nN cubes, with pairwise disjoint interior and each of edge 1=n. Divide these
cubes into two finite subcollections QC and Q� by

Qj 2 QC ” jŒu > 1� \ Qjj > ˛

2
jQjj

Qi 2 Q� ” jŒu > 1�\ Qij � ˛

2
jQij

and denote by #.QC/ the number of cubes in QC. By the assumption

X

Qj2QC

jŒu > 1�\ Qjj C
X

Qi2Q�

jŒu > 1�\ Qij > ˛jK1j D ˛nN jQj

where jQj is the common measure of the Ql. From the definitions of the classes Q˙,

˛nN <
X

Qj2QC

jŒu > 1�\ Qjj
jQjj C

X

Qi2Q�

jŒu > 1�\ Qij
jQij < #.QC/C ˛

2
.nN � #.QC//:

Therefore

#.QC/ >
˛

2 � ˛ nN :

Consider now a subcollection NQC of QC. A cube Qj belongs to NQC if Qj 2 QC

and kukBV.Qj/ � 2˛

.2 � ˛/nN
kukBV.K1/.

Clearly

#. NQC/ >
˛

2.2� ˛/
nN : (3)

Fix ı; � 2 .0; 1/. The idea of the proof is that an alternative occurs. Either there
is a cube Qj 2 NQC such that there is a subcube QQ � Qj where

jŒu > �� \ QQj � .1 � ı/j QQj (4)

or for any cube Qj 2 NQC there exists a constant c D c.˛; ı; �; �;N/ such that

kukBV.Qj/ � c.˛; ı; �; �;N/
1

nN�1 : (5)
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Hence if (4) does not hold for any cube Qj 2 NQC, we can add (5) over all such
Qj. Therefore taking into account (3), we have

˛

2 � ˛ c.˛; ı; �;N/n � kukBV.K1/ � �

and for n large enough this fact leads to an evident absurdum.

3 Proof of the Lemma 1.1 When N D 2

The proof is quite similar to the one of Appendix A.1 of [1] to which we refer the
reader for more details. For sake of simplicity we will use the same notation of [1].

Let K 1
n
.xo; yo/ 2 NQC. Without loss of generality we may assume .xo; yo/ D

.0; 0/. Assume that

ˇ
ˇ
ˇŒu > 1�\ K 1

n

ˇ
ˇ
ˇ >

˛

2
jK 1

n
j (6)

kukBV.K 1
n
/ � 2˛

.2 � ˛/n2 kukBV.K1/: (7)

Denote by .x; y/ the coordinates of R2 and, for x 2 .� 1

2n
;
1

2n
/ let Y.x/ the cross

section of the set Œu > 1� \ K 1
n

with lines parallel to y-axis, through the abscissa x,
i.e.

Y.x/ 	 fy 2 .� 1

2n
;
1

2n
/ such that u.x; y/ > 1g:

Therefore

jŒu > 1� \ K 1
n
j 	

Z 1
2 n

� 1
2n

jY.x/jdx:

Since, by (6), jŒu > 1�\ K 1
n
j > ˛

2
jK 1

n
j,

there exists some Qx 2 .� 1

2n
;
1

2n
/ such that

jY.Qx/j � ˛

4n
: (8)
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Define

AQx 	 fy 2 Y.Qx/ such that 9x 2 .� 1

2n
;
1

2n
/ such that u.x; y/ � .1C �/

2
g:

Note that for any y 2 AQx the variation along the x direction is at least
.1 � �/
2

:

If jAQxj � ˛

8n
, we have that the BV norm of u in K 1

n
is at least

˛.1 � �/

16n
and

therefore (5) holds.

If jAQxj � ˛

8n
, we have that there exists at least a Qy 2 Y.Qx/ such that u(x,Qy/ �

.1C �/

2
for any x 2 .� 1

2n
;
1

2n
/:

Define

AQy 	 fx 2 .� 1

2n
;
1

2n
/ such that 9y 2 .� 1

2n
;
1

2n
/ such that u.x; y/ � �g:

Note that for any x 2 AQy the variation along the y direction is at least
.1 � �/
2

:

If jAQyj � ı

n
we have that the BV norm of u in K 1

n
is at least

ı.1� �/

2n
and

therefore (5) holds.

If jAQyj � ı

n
we have that jŒu > �� \ K 1

n
j � .1 � ı/jK 1

n
j and therefore (4) holds.

Summarizing either (4) or (5) hold. Therefore the alternative occurs and the case
N D 2 is proved.

4 Proof of the Lemma 1.1 When N > 2

Assume that Lemma 1.1 is proved in the case N D m and let us prove it when
N D m C 1.

Let z a point of RmC1. To make to notation easier, write z D .x; y/ where x 2 R

and y 2 R
m.

Let K 1
n
.z/ 2 NQC. Without loss of generality we may assume z D .0; 0/. Assume

that
ˇ
ˇ
ˇŒu > 1�\ K 1

n

ˇ
ˇ
ˇ >

˛

2
jK 1

n
j (9)

kukBV.K 1
n
/ � 2˛

.2 � ˛/nmC1 kukBV.K1/: (10)
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For any x 2 .� 1

2n
;
1

2n
/ consider the m -dimensional cube centered in .x; 0/,

orthogonal to the x-axis and with edge 1
n and denote this cube with NK 1

n
.x/. Define NA

as the set of the x 2 .� 1

2n
;
1

2n
/ such that

ˇ
ˇ
ˇŒu > 1�\ NK 1

n
.x/
ˇ
ˇ
ˇ >

˛

4
j NK 1

n
.x/j

and

kukBV. NK 1
n
.x// � 16

.2 � ˛/nm
kukBV.K1/:

It is possible to prove that

j NAj � ˛

8n
:

Let Nx 2 NA and apply Lemma 1.1 to NK 1
n
.Nx/ (we can do so because NK 1

n
.Nx/ is a

m-dimensional set).
So we get the existence of a constant �0 > 0 and a point yo 2 NK 1

n
.Nx/ such that if

we define the set

A 	 f.Nx; y/ 2 NK �0
n
.Nx; y0/ such that u.Nx; y/ � .1C �/

2
g

where NK �0
n
.Nx; y0/ denotes the m-dimensional cube of edge

�0

n
, centered in .Nx; y0/

and orthogonal to the x-axis, we have

jAj � .1 � ı

2
/.
�0

n
/m: (11)

Define

B 	 fy 2 A such that 9x 2 .� 1

2n
;
1

2n
/ such that u.x; y/ � �g:

Note that for any y 2 B the variation along the x direction is at least
.1 � �/
2

:

If jBj � ı

2
.
�0

n
/m, we have that the BV norm of u in K 1

n
is at least

ı.1� �/
4

.
�0

n
/m

and therefore (5) holds.
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If jBj � ı

2
.
�0

n
/m, taking in account (11) we have that in the cylinder .� 1

2n
;
1

2n
/


NK �0
n
.0; y0/ the measure of the set where u.x; y/ � � is greater than .1 � ı/

�m
o

nmC1 :
Therefore (4) holds in a suitable subcube of K 1

n
.

Summarizing either (4) or (5) hold. Therefore the alternative occurs and the case
N > 2 is proved.
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X-Elliptic Harmonic Maps

Sorin Dragomir

Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday

Abstract We study X-elliptic harmonic maps of an open set U � R
N endowed

with a family of vector fields X D fX1; � � � ;Xmg into a Riemannian manifold
S i.e. C1 solutions � W U ! S to the nonlinear system �L�˛ C aij.� ˛

ˇ� ı
�/.@xi�ˇ/.@xj��/ D 0 where L D PN

i;jD1 @xj.a
ij.x/ @xj u/ is an uniformly X-elliptic

operator. We establish a Solomon type (cf. Solomon, J Differ Geom 21:151–162,
1985) result for X-elliptic harmonic maps � W U ! SMn˙ with values into a sphere
and omitting a codimension two totally geodesic submanifold ˙ � SM. As an
application of Harnack inequality (for positive solutions to Lu D 0) in Gutiérrez and
Lanconelli (Commun Partial Differ Equ 28:1833–1862, 2003) we prove openness
of X-elliptic harmonic morphisms.
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1 Statement of Main Results

Let U � R
N be an open set and let X D fX1; � � � ;Xmg � X.U / be a family of

vector fields

Xa D
NX

iD1
bi

a.x/ @xi ; 1 � a � m;
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with bi
a 2 C1.U /. Let L be the second order differential operator

Lu D
NX

i;jD1
@xj.a

ij.x/ @xj u/; (1)

where aij D aji are measurable functions on U . Let us set A D Œaij� and let ˝ � U
be an open subset. L is X-elliptic in ˝ if there is a constant � > 0 such that

�

mX

aD1
hXa.x/; �i2 � hA.x/�; �i ; � 2 �RN

��
; x 2 ˝; (2)

where hA.x/�; �i D PN
i;jD1 aij.x/�i�j. Also L is uniformly X-elliptic in ˝ if L is

X-elliptic in ˝ and there is a constant� > 0 such that

hA.x/�; �i � �

mX

aD1
hXa.x/; �i2 ; � 2 �RN

��
; x 2 ˝: (3)

X-Elliptic operators were introduced by E. Lanconelli and A.E. Kogoi, [8] (cf. also
[4]) although the notion is implicit in [10] and goes back as far as the work by E.
Lanconelli, [7], for particular systems of vector fields X D f�j @xj W 1 � j � Ng. In
this paper we consider nonlinear PDEs systems of variational origin

� L�˛ C aij.� ˛
ˇ� ı �/.@xi�ˇ/.@xj��/ D 0 (4)

whose principal part is an X-elliptic operator. C1 solutions � W U ! S to (4) are
termed X-elliptic harmonic maps and are the main object of study in this work. Here
S is a Riemannian manifold, with the metric tensor h, and � ˛

ˇ� are the Christoffel
symbols of h˛ˇ D h.@˛ ; @ˇ/ with respect to a local coordinate system .V; y˛/ on
S (also @˛ 	 @=@y˛). The vector fields X D fX1; � � � ;Xmg are requested to satisfy
the structural assumptions in [4] (i.e. the assumptions (D), (S), (LT), (P) and (I) in
Sect. 2). Exploiting the variational structure of (4) we establish

Theorem 1.1 Let L be uniformly X-elliptic on U . Let � W U ! SM be an X-elliptic
harmonic map. Let ˙ � SM be a totally geodesic codimension two submanifold.
Then either (i) � meets ˙ i.e. �.U / \ ˙ ¤ ; or (ii) � W U ! SM n ˙ is
homotopically nontrivial, or (iii) if � W U ! SM n ˙ is null-homotopic then for
every smoothly bounded domain ˝ � R

N such that ˝ � U , X is a Hörmander
system on ˝ , and @˝ is characteristic relative to X, the map � W ˝ ! SM n ˙ is
constant.

If X D f@xi W 1 � i � Ng and aij are the (reciprocal) coefficients of a Riemannian
metric a on U an X-elliptic harmonic map � W U ! S is an ordinary harmonic
map (in the sense of [9]) among the Riemannian manifolds .U ; a/ and .S; h/ hence
Theorem 1.1 is an analog to a result in [11]. When S is the sphere SM � R

MC1 we
may (as well as in [11]) exploit the fact that SM n˙ is isometric to a warped product
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manifold SM�1C 
w S1, to consider a special variation .F; u C t'/ of � D .F; u/
with respect to which (4) reduces to a single X-elliptic equation and the maximum
principle (as devised in [4]) applies. However it doesn’t directly yield constancy
of u and the conclusion in Lemma 4.1 requires (unlike the elliptic case in [11])
an additional argument working only on domains with characteristic boundary and
provided X is a Hörmander system.

A map � 2 C1.U ; S/ is an X-elliptic harmonic morphism if for every local
harmonic function v W V ! R (i.e. V � S is an open subset and 
hv D 0 in V) one
has L.v ı �/ D 0 in U D ��1.V/. Here 
h is the Laplace-Beltrami operator of the
Riemannian manifold .S; h/. We establish the following Fuglede-Ishihara type (cf.
[2] and [5]) result

Theorem 1.2 Let L be X-elliptic on U . Then (i) any X-elliptic harmonic morphism
� W U ! S is an X-elliptic harmonic map and there is a continuous function
�� W U ! Œ0;C1/ such that �2� is C1 and

˝
A.x/D�˛.x/ ; D�ˇ.x/

˛ D ��.x/
2 ı˛ˇ ; 1 � ˛; ˇ � M; (5)

for any x 2 U and any normal local coordinate system .V; y˛/ on S centered at x
(here �˛ D y˛ ı �). Conversely (ii) any X-elliptic harmonic map satisfying (5) is an
X-elliptic harmonic morphism. (iii) If M > N then ��Xa D 0 for any 1 � a � m.
In particular if X D fXa W 1 � a � mg is a Hörmander system on U then there are
no nonconstant X-elliptic harmonic morphisms � W U ! S. (iv) If M � N then for
every nonconstant X-elliptic harmonic morphism � W U ! S and for every x 2 U
such that ��.x/ ¤ 0 there is an open set U � U such that x 2 U and � W U ! S
is a submersion. (v) For every X-elliptic harmonic morphism � W U ! S and any
f 2 C2.S/

L .f ı �/ D �2� .
hf / ı �: (6)

In Sect. 5 we apply the Harnack inequality (as established in [4]) to prove

Theorem 1.3 Let L be uniformly X-elliptic on U . Let � W U ! S be an X-elliptic
harmonic morphism whose dilation �� has at most isolated zeros. Then � W U ! S
is an open map i.e. for every open set U � U its image �.U/ is open in S.

This is the X-elliptic analog to a result by B. Fuglede (cf. Theorem 4.3.8 in [1], p.
112).

2 X-Elliptic Operators: Structural Assumptions

Let L be the second order differential operator

Lu D Lu C
NX

iD1
ai.x/

@u

@xi
; (7)
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where L is given by (1) and ai are measurable functions on U . We set a D
.a1; � � � ; aN/. Let ˝ � U be an open set. L is X-elliptic in ˝ if (i) L is X-elliptic
in ˝ (i.e. (2) in Sect. 1 holds for some � > 0) and (ii) there is a function �.x/ � 0

such that

ha.x/ ; �i2 � �.x/
mX

aD1
hXa.x/ ; �i2 ; � 2 R

N ; x 2 ˝: (8)

Also L is uniformly X-elliptic in ˝ if L is X-elliptic in ˝ and L is uniformly X-
elliptic in ˝ (i.e. (3) in Sect. 1 holds for some � > 0). A piecewise C1 curve � W
Œ0; 1� ! U is an X-path if

P�.t/ D
mX

aD1
fa.t/Xa.�.t//

for some functions fa.t/ and for a.e. t 2 Œ0; 1�. One sets

`.�/ D sup
0�t�1

 
mX

aD1
fa.t/

2

!1=2

:

Let � .x; y/ be the set of all X-paths connecting x; y 2 U . The control distance
d D dX is given by

d.x; y/ D inf f`.�/ W � 2 � .x; y/g :

As a fundamental assumption on the system of vector fields X D .X1; � � � ;Xm/

that we adopt through this paper, the control distance relative to X is well defined,
continuous in the Euclidean topology, and the following doubling condition is
satisfied:

(D) For every compact subset K � U there exist constants Cd > 1 and R0 > 0

such that

0 < jB2rj � Cd jBrj (9)

for every d-ball Br centered at a point of K and of radius r � R0. Here jEj D �.E/
is the Lebesgue measure of E � R

N .
Let ˝ � U be a bounded open set. As another fundamental assumption on the

given vector fields and the set ˝ , we set Xu D .X1u; � � � ;Xmu/ and postulate that
the following Sobolev inequality holds good.

(S) There exist constants q D q.˝/ > 2 and S D S.˝/ > 0 such that

kukLq.˝/ � S kXukL2.˝/ (10)

for every u 2 C1
0.˝/.
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We adopt the notation Q D 2q=.q � 2/. The maximum principle for X-elliptic
operatorsL as established in [4] also relies on the following assumption on the lower
order term a.

(LT) There is Q=2 < p < 1 such that � 2 L2p.˝/ [where � is the function
appearing in (8)].

Moreover the given set ˝ is assumed to support the Poincaré inequality i.e.
(P) For each compact subset K � U there is a constant CP > 0 such that

1

jBrj
Z

Br

ju � urj d� � CPr

jB2rj
Z

B2r

jXuj d�; u 2 C1.˝/; (11)

for any d-ball Br.x/ with center x 2 K and radius r � R0. Here ur D
.1=jBrj/

R
Br

u d�.
Finally the following dilation invariance property should hold good. Let

˛1; � � � ; ˛N 2 N be positive integers such that Q D ˛1 C � � � C ˛N and let us
set

ıRx D .R˛1x1 ; � � � ;R˛N xN/ ; R > 0; x D .x1; � � � ; xN/:

The system of vector fields X is required to be dilation invariant i.e.
(I) For every R > 0 and x 2 U

Xa .ıRu/x D R .Xju/ıR.x/ (12)

for any smooth function u. Here ıRu is given by .ıRu/.x/ D u.ıRx/.

3 First Variation Formula

We start with the differential operator L given by (7). Through this paper we work
under the assumption that aij 2 C1.U /. For each � > 0 we set

.g�/
ij D aij C � ıij ;


.g�/ij

� D 
.g�/

ij��1 ;

so that g� D .g�/ij dxi ˝ dxj is a Riemannian metric on U . Let .S; h/ be a
Riemannian manifold, with the Riemannian metric h and for each � 2 C1.U ; S/ let
kd�k� W U ! R be the Hilbert-Schmidt norm of d� i.e. for every local coordinate
system .V; y˛/ on S and every x 2 U D ��1.V/

kd�k� .x/ D
�

.g�/
ij .x/

@�˛

@xi
.x/

@�ˇ

@xj
.x/ h˛ˇ.�.x//

	 1=2
;

�˛ D y˛ ı �; h˛ˇ D h.@˛ ; @ˇ/; @˛ D @=@y˛ :



94 S. Dragomir

Let˝ �� U be a relatively compact domain. The energy of � as a map of .U ; g�/
into .S; h/ is

E˝;�.�/ D 1

2

Z

˝

kd�k2� d�

where � is the Lebesgue measure on R
N . Let x 2 U and let .V; y˛/ be a local

coordinate system on S such that �.x/ 2 V . We comply with the philosophy in [6]
and separate the metric on U (here g�) from the measure of integration (here d�,
rather than the canonical Riemannian measure of .U ; g�/). Let us set

eA.�/.x/ D aij.x/
@�˛

@xi
.x/

@�ˇ

@xj
.x/ h˛ˇ.�.x//:

The definition of eA.�/.x/ doesn’t depend on the choice of local coordinates .V; y˛/
about �.x/. Note that kd�k2� ! eA.�/ as � ! 0 thus prompting the energy
functional

EA.�/ D 1

2

Z

˝

eA.�/ d�: (13)

A map � 2 C1.U ; S/ is said to be X-elliptic harmonic if

d

dt
fEA.�t/gtD0 D 0

for any ˝ �� U and any smooth 1-parameter variation f�tgjtj<� � C1.U ; S/ of
� (i.e. �0 D �) supported in ˝ i.e. Supp.V/ � ˝ where

V 2 C1 �
��1T.S/

�
; Vx D .d.x;0/˚/.@=@t/.x;0/ ;

˚ W U 
 .��; �/ ! S; ˚.x; t/ D �t.x/; x 2 U ; jtj < �:

We proceed by deriving the first variation formula for the functional (13). One has

eA.�t/.x/ D aij.x/
@˚˛

@xi
.x; t/

@˚ˇ

@xj
.x; t/ h˛ˇ.�t.x// (14)

for any x 2 U D ��1.V/ and jtj < ı. Let us consider the function f W U 
.�ı; ı/ !
R given by f .x; t/ D eA.�t/.x/ for any x 2 U and jtj < ı. Then [by (14)]

@f

@t
.x; t/ D 2aij.x/

@2˚˛

@t @xi
.x; t/

@˚ˇ

@xj
.x; t/ h˛ˇ.�t.x// C

Caij.x/
@˚˛

@xi
.x; t/

@˚ˇ

@xj
.x; t/

@h˛ˇ
@y�

.�t.x//
@˚�

@t
.x; t/
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hence

@f

@t
.x; 0/ D 2aij.x/

@2˚˛

@t @xi
.x; 0/

@�ˇ

@xj
.x/ h˛ˇ.�.x//C

Caij.x/
@�˛

@xi
.x/
@�ˇ

@xj
.x/

@h˛ˇ
@y�

.�.x//
@˚�

@t
.x; 0/

or

@f

@t
.� ; 0/ D

D 2
@

@xi

�

aijV˛ @�
ˇ

@xj
.h˛ˇ ı �/

�

� 2V˛ @

@xi

�

aij @�
ˇ

@xj
.h˛ˇ ı �/

�

C

Caij @�
˛

@xi

@�ˇ

@xj

�
@h˛ˇ
@y�

ı �
�

V� D

D 2 div0

�

aijV˛ @�
ˇ

@xj
.h˛ˇ ı �/ @

@xi

�

�

�V�

�

2
@

@xi

�

aij @�
ˇ

@xj

�

.hˇ� ı �/C 2 aij @�
ˇ

@xj

�
@hˇ�
@y˛

ı �
�
@�˛

@xi
�

�aij @�
˛

@xi

@�ˇ

@xj

�
@h˛ˇ
@y�

ı �
�	

where div0 is the Euclidean divergence operator and

V˛.x/ D @˚˛

@t
.x; 0/; x 2 U:

Moreover if

�˛ˇ� D 1

2

�
@h˛�
@yˇ

� @hˇ�
@y˛

� @h˛ˇ
@y�

�

; � �
˛ˇ D h���˛ˇ� ;

then

@f

@t
.� ; 0/ 	

	 V�

�

�2.L�ˇ/.hˇ� ı �/C aij @�
˛

@xi

@�ˇ

@xj

�

2
@hˇ�
@y˛

� @h˛ˇ
@y�

�

ı �
	

	

	 2V� .h�� ı �/
�

�L�� C aij @�
˛

@xi

@�ˇ

@xj

�
� �
˛ˇ ı �

�	

; mod div0
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where L is given by (7). Summing up

d

dt
fEA .�t/gtD0 D

Z

˝

h� .V ; �A.�// d� (15)

(the first variation formula seek after) and �A.�/ 2 C1 �
��1T.S/

�
is locally given

by

�A.�/
˛ D �L�˛ C

�
� ˛
ˇ� ı �

� @�ˇ

@xi

@��

@xj
aij :

Also h� D ��1h is the pullback of h by � (a Riemannian bundle metric on
��1T.S/ ! R

N). Finally
R
˝
.@f=@t/.x; 0/ d� D 0 yields

� L�˛ C
�
� ˛
ˇ� ı �

� @�ˇ

@xi

@��

@xj
aij D 0 (16)

which is the X-elliptic harmonic map system.

4 X-Elliptic Harmonic Maps into Spheres

Let SM D f.x1; � � � ; xMC1/ 2 R
MC1 W x21 C � � � C x2MC1 D 1g. If S D SM then

h˛ˇ D ı˛ˇ C y˛yˇ

1 � jyj2 ; � ˛
ˇ� D y˛hˇ� ;

hence (16) becomes L�˛ C eA.�/�
˛ D 0. Due to the constraint

PMC1
KD1 ˚2

K D 1 the
X-elliptic harmonic map system for SM-valued maps ˚ D .˚1; � � � ; ˚MC1/ is

� L˚ C
MC1X

KD1
aij @˚

K

@xi

@˚K

@xj
˚ D 0: (17)

Lemma 4.1 Let L be uniformly elliptic in U . Let � W U ! SMC be an X-elliptic
harmonic map where SMC D fy 2 SM W yMC1 > 0g. Then ��Xa D 0 in˝ , 1 � a � m,
for every smoothly bounded domain˝ � U such that˝ � U and whose boundary
@˝ is characteristic relative to X. In particular if X is a Hörmander system then �
is constant on ˝ .

Proof By Green’s lemma

Z

˝

L˚MC1 d� D
Z

@˝

aij @˚MC1
@xj

�i d�
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where � D � i @=@xi and d� are the outward unit normal and “area” measure on @˝ .
On the other hand (by uniform X-ellipticity)

ˇ
ˇ
ˇ
ˇa

ij.x/
@˚MC1
@xj

�i

ˇ
ˇ
ˇ
ˇ � �hA.x/D˚MC1 ; D˚MC1i

MX

aD1
hXa.x/ ; �i2 D 0

for every x 2 @˝ , provided that each Xa is tangent to @˝ . Finally one may integrate
in (17) over˝ so that

0 D
MC1X

KD1

Z

˝

aij @˚
K

@xi

@˚K

@xj
˚MC1 d� �

� �

MC1X

KD1

mX

aD1

Z

˝

hXa ; D˚Ki2 ˚MC1 d�

hence (by ˚MC1 > 0) one obtains Xa.˚
K/ D 0 in ˝ . ut

Let � W U ! SM be a continuous map. Let ˙ � SM be a codimension two totally
geodesic submanifold, so that ˙ D fx 2 SM W x1 D x2 D 0g up to a coordinate
transformation. We say � meets ˙ if �.U / \ ˙ ¤ ;. If � doesn’t meet ˙ then �
links ˙ when � W U ! SM n˙ is not null-homotopic. By a result of B. Solomon,
[11], a harmonic map of a compact Riemannian manifold into SM either meets or
links˙ . To prove Theorem 1.1 we need some preparation. We establish

Theorem 4.1 Let � W U ! S be an X-elliptic harmonic map. Let S D P 
w R

be a warped product Riemannian manifold, where .P; gP/ is a .M � 1/-dimensional
Riemannian manifold and w W S ! .0;C1/ is a C1 function, endowed with the
Riemannian metric

h D ��
1 gP C w2 ��

2 ds ˝ ds:

Let F D �1 ı � and u D �2 ı �. Then

.w ı �/ Lu C 2aij @u

@xi

@

@xj
.w ı �/ D

�
@w

@s
ı �
�

aij @u

@xi

@u

@xj
: (18)

In particular if w 2 C1.P/ then

Lu C 2aij @u

@xi

@

@xj
flog.w ı F/g D 0: (19)

Consequently for every bounded open subset ˝ � U on which L is uniformly X-
elliptic

sup
˝

uC � sup
@˝

uC : (20)
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If ˝ � R
N is a smoothly bounded domain such that ˝ � U , its boundary @˝ is

characteristic relative to X, and L is uniformly X-elliptic on U , then Xa.u/ D 0 for
every 1 � a � m. If additionally X is a Hörmander system on ˝ then �.˝/ �
P 
 ft�g for some t� 2 R.

Here �1 W S ! P and �2 W S ! R are the natural projections. Also the
notations in (20) will be explained shortly. To prove Theorem 4.1 let ˝ � U
be a bounded open subset and ' 2 C1

0 .˝/. Correspondingly we consider the 1-
parameter variation

�t.x/ D .F.x/ ; u.x/C t '.x//; x 2 U ; jtj < �:

Then

eA .�t/ D eA.F/C .w ı �t/
2 aij @u

@xi

@u

@xj
C (21)

C2t .w ı �t/
2 aij @u

@xi

@'

@xj
C O.t2/:

Differentiation with respect to t in (21) gives

d

dt
feA .�t/g D 2 .w ı �t/

2 aij @u

@xi

@'

@xj
C

C2' .w ı �t/

�
@w

@s
ı �t

�

aij @u

@xi

@u

@xj
C O.t/

hence

d

dt
fEA .�t/gtD0 D

Z

˝

.w ı �/2 aij @u

@xi

@'

@xj
d�C (22)

C
Z

˝

' .w ı �/
�
@w

@s
ı �
�

aij @u

@xi

@u

@xj
d�:

Next one observes that

.w ı �/2aij @u

@xi

@'

@xj
D �' @

@xj

�

.w ı �/2 aij @u

@xi

�

C

Cdiv0

�

.w ı �/2 aij @u

@xi
'
@

@xj

�
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and integrates by parts [in the right hand side of (22)]. Hence

d

dt
fEA .�t/gtD0 D �

Z

˝

'

�
@

@xj

�

.w ı �/2 aij @u

@xi

�

� (23)

�.w ı �/
�
@w

@s
ı �
�

aij @u

@xi

@u

@xj

	

d�:

Yet � W U ! P 
w R is X-elliptic harmonic so that fdEA.�t/=dtgtD0 D 0 for every
' 2 C1

0 .˝/. Hence (23) yields (18). Also when @w=@s D 0 (i.e. w 2 C1.P/
and S is endowed with the Riemannian metric ��

1 gP C .w ı �1/2 ��
2 ds2) Eq. (18)

yields (19). To prove (20) in Theorem 4.1 we need to recall the maximum principle
for X-elliptic operators (cf. Theorem 3.1 in [4], p. 1840) as it applies to the situation
at hand.

Let ˝ � U be a bounded open set and let us assume that the structure condition
(S) is satisfied. Also let us assume that L is uniformly X-elliptic in˝ with � obeying
to (LT). Let Q=2 < p < 1 and f 2 Lp.˝/. Then there is a constant

C D C

�

�; S.˝/; p; Q; j˝j;
Z

˝

�.x/2p d�.x/

�

> 0

such that for every weak subsolution u 2 W1.˝;X/ to Lu D f one has

sup
˝

uC � sup
@˝

uC C C kf kLp.˝/ : (24)

As to the notations in (24) we set uC D maxfu; 0g. Also if u 2 W1.˝;X/ and
` 2 R then one says that u � ` on @˝ if .u�`/C 2 W1

0 .˝;X/ and sets by definition

sup
@˝

uC D inff` W uC � ` on @˝g:

As to the function spaces we use, by the Sobolev inequality (10) the function u 7!
kXukL2.˝/ is a norm in C1

0.˝/ and one takes W1
0 .˝;X/ to be the closure of C1

0.˝/ in
this norm. Also W1.˝;X/ is the space of all u 2 L2.˝/ admitting weak derivatives
Xau 2 L2.˝/ for every 1 � a � m. Finally we need to recall the notion of weak
(sub)solution to Lu D f . To this end one considers the bilinear form

BL.u; v/ D
Z

˝

fhA.x/Du ; Dvi � ha.x/ ; Dui vg d�.x/

with u 2 C1.˝/ and v 2 C1
0.˝/. For every x 2 ˝ we set

h�; �iA.x/ D aij.x/�i�j ; �; � 2 �RN
��
:
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By the X-ellipticity condition (2)

h� C t�; � C t�iA.x/ � 0; �; � 2 �RN
��
; t 2 R;

hence

ˇ
ˇh�; �iA.x/

ˇ
ˇ � h�; �iA.x/

� 1
2
h�; �iA.x/

� 1
2 : (25)

Uniform X-ellipticity of L in ˝ yields

jBL.u; v/j � �

Z

˝

jXuj jXvj d�C
Z

˝

.jXuj jvj C jXvj juj/ � d� (26)

hence BL is well defined. Then (by (26) and the structure assumption (LT))

jBL.u; v/j � �kXukL2.˝/ kXvkL2.˝/C
C �kXvkL2.˝/ kukLr.˝/ C kXukL2.˝/ kvkLr .˝/

� k�kL2p.˝/

where 1=r D 1=2� 1=.2p/. Moreover (by (10), boundedness of ˝ , and p > Q=2)

jBL.u; v/j � C
�kXukL2.˝/ C kukLr.˝/

� kXvkL2.˝/ (27)

where C D C
�
˝; S.˝/; �C k�kL2p.˝/

�
> 0. As a consequence of (27) the map

.u; v/ 7! B.u; v/ may be extended continuously to a bilinear form

BL W �W1.˝;X/\ Lr.˝/
� 
 W1

0 .˝;X/ ! R

and the following definitions are legitimate. Let f 2 L1loc.˝/. A function u 2
W1.˝;X/ is a weak solution to Lu D f if

BL.u; v/ D �
Z

˝

f v d�; v 2 C1
0.˝/:

If in turn

BL.u; v/ � �
Z

˝

f v d�; v 2 C1
0.˝/; v � 0;

then u is a weak subsolution to Lu D f .
Let us go back to the proof of Theorem 4.1. Let us consider the differential

operator

L u D Lu C
NX

iD1
ai @u

@xi
; ai D 2aij @�

@xi
; � D log.w ı F/:
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Since L is uniformly X-elliptic (i.e. the matrix A satisfies requirements (2) and (3),
while (8) is identically satisfied because L has no lower order terms) the operator L
is uniformly X-elliptic in ˝ , as well. Indeed for the lower order term of L one has
the estimate

ha.x/; �i2 D
�

2 aij.x/�i
@�

@xj
.x/

�2
�

� 4

aij.x/� i� j

�
�

aij.x/
@�

@xi
.x/

@�

@xj
.x/

�

�

[by (3)]

� �.x/
mX

aD1
hXa.x/ ; �i2

for every � 2 R
N and x 2 ˝ , where we have set

�.x/ D 4� aij.x/
@�

@xi
.x/

@�

@xj
.x/:

Since u D �2 ı � 2 C.˝/ and ˝ is bounded one has u 2 L2.˝/ \ C1.˝/ �
W1.˝;X/. Finally as u is a strong solution to Lu C ha;Dui D 0 one may take the
L2 inner product with v 2 C1

0.˝/ and integrate by parts in
R
˝.Lu/v d� to show that

BL .u; v/ D 0 i.e. u is also a weak solution to L u D 0. Finally one may apply (24)
with f D 0 to conclude that (20) holds. To prove the last statement in Theorem 4.1
one starts from

@

@xi

�

.w ı F/2aij @u

@xj

�

D 0:

Then

@

@xi

�

.w ı �/2 aij u
@u

@xj

�

D .w ı F/2 aij @u

@xi

@u

@xj

so that (by Green’s lemma)

Z

@˝

u.w ı F/2aij @u

@xj
�i d� D

Z

˝

.w ı F/2hA.x/Du;Dui d�.x/

and (as L is uniformly X-elliptic in U )

ˇ
ˇ
ˇ
ˇa

ij.x/
@u

@xj
�i

ˇ
ˇ
ˇ
ˇ � �hA.x/Du;Dui

mX

aD1
hXa.x/; �i2 D 0; x 2 @˝:
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Consequently 0 D hA.x/Du;Dui � �
P

ahXa.x/;Dui2 for every x 2 ˝ , thus
yielding Xa.u/ D 0 for any 1 � a � m. Q.e.d.

Let � W U ! SM be an X-elliptic harmonic map. Let ˝ � R
N be a smoothly

bounded domain such that ˝ � U and let us assume that �.˝/ \ ˙ D ;. We
shall show that � W ˝ ! SM n ˙ is homotopically nontrivial, provided that @˝ is
characteristic relative to the system of vector fields X. To this end we need to recall
that SM n ˙ is isometric to a warped product SM�1C 
w S1. Let SM�1C � R

M be the
open upper hemisphere

SM�1C D f.y1; � � � ; yM/ 2 R
M W

MX

iD1
y2i D 1; yM > 0g:

The map

I W SM�1C 
 S1 ! SM n˙; I.y ; �/ D .yM u; yM v; y0/;

y 2 SM�1C ; � D u C iv 2 S1; y0 D .y1; � � � ; yM�1/;

is an isometry of SM�1C 
w S1 onto .SM n ˙; hM/. Here hM denotes the standard
Riemannian metric on the sphere SM. Also SM�1C 
 S1 is organized as a warped
product manifold with the metric

��
1 hM�1 C .w ı �1/2 ��

2 h1 ;

w 2 C1.SM�1C /; w.y/ D yM ; y 2 SM�1C :

Lemma 4.2 Let U � R
N be a domain. If � W U ! SM n˙ is X-elliptic harmonic

then Q D I�1 ı � W U ! SM�1C 
w S1 is X-elliptic harmonic. Consequently if
� W U ! SM n ˙ is null-homotopic then � lifts to an X-elliptic harmonic map
 W U ! SM�1C 
w R.

Proof The warped product SM�1C 
w R carries the Riemannian metric

˘�
1 hM�1 C .w ı˘1/

2 ˘�
2 dt ˝ dt:

Let f W R ! S1 be the natural covering map i.e. f .t/ D exp.2�it/. The map

�
1SM�1

C

; f
�

W SM�1C 
w R ! SM�1C 
w S1

is a local isometry. The property that a map is X-elliptic harmonic is invariant with
respect to (local) isometries of the target manifold. Let us set

F D �1 ı Q ; Qu D �2 ı Q :
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Let x0 2 U and �0 D Qu.x0/. Let also t0 2 R such that f .t0/ D �0. Since � is null-
homotopic, so does Q . Hence Qu� �1.U ; x0/ D 0. Since U is connected and locally
connected by arcs one may apply standard homotopy theory to conclude that there
is a unique continuous map u W U ! R such that u.x0/ D t0 and f ı u D Qu. Then
 D .F; u/ W U ! SM�1C 
w R is the X-elliptic harmonic lift of Q claimed in
Lemma 4.2. ut
To prove Theorem 1.1 let � W U ! SM n˙ be a null-homotopic X-elliptic harmonic
map. By applying first Lemma 4.2 and then Lemma 4.1 for any domain ˝ � R

N

such that ˝ � U and @˝ is characteristic, it follows that  .˝/ � SM�1C 
 ft g for
some t 2 R. Let � be a defining function for ˝ i.e. ˝ D fx 2 U W �.x/ < 0g and
D�.x/ ¤ 0 for every x 2 @˝ . There is �0 > 0 such that M� D fx 2 ˝ W �.x/ D ��g
is a smooth hypersurface for every 0 < � � �0. Also X is a Hörmander system on
˝� D fx 2 ˝ W �.x/ C � < 0g and M� D @˝� is characteristic. Then Lemma 4.1
applies (with ˝ replaced by˝�) to the X-elliptic harmonic map p ı W ˝ ! SM�1C
(where p.x; t/ D x) i.e. pı is constant on˝� and then, by passing to the limit with
� ! 0, constant on the whole of ˝ . Q.e.d.

5 X-Elliptic Harmonic Morphisms

For every C1 function v W V ! R

L.v ı �/ D
�
@v

@y˛
ı �
�

�A.�/
˛ C aij @�

˛

@xi

@�ˇ

@xj

˚�r˛vˇ
� ı �� (28)

where

r˛vˇ D @2v

@y˛ @yˇ
� � �

˛ˇ

@v

@y�
:

We need the following result (referred hereafter as Ishihara’s lemma)

Lemma 5.1 Let C˛ ; C˛ˇ 2 R, 1 � ˛; ˇ � M, such that C˛ˇ D Cˇ˛ and
PM

˛D1 C˛˛ D 0. Let y0 2 S and let .V; y˛/ a local system of normal coordinates
on S centered at y0 such that y˛.y0/ D 0. There is a harmonic function v W V ! R

such that

@v

@y˛
.y0/ D C˛ ;

�r˛vˇ
�
.y0/ D C˛ˇ ; 1 � ˛; ˇ � M:

Cf. [5]. Let us prove Theorem 1.2. Let � W R
N ! S be an X-elliptic harmonic

morphism. Let ˛0 2 f1; � � � ;Mg be a fixed index. Let x0 2 R
N and let us consider a

normal coordinate system .V; y˛/ on S at y0 D �.x0/. By Ishihara’s lemma applied
for the constants C˛ D ı˛˛0 and C˛ˇ D 0 there is a harmonic function v W V ! R
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such that .@v=@y˛/.y0/ D ı˛˛0 and .r˛vˇ/.y0/ D 0 hence (by (28) and L.v ı
�/.x0/ D 0) one has �A.�/

˛0.x0/ D 0.
Let C˛ˇ 2 R such that C˛ˇ D Cˇ˛ and

PM
˛D1 C˛˛ D 0. By Ishihara’s lemma

there is a harmonic function v W V ! R such that .@v=@y˛/.y0/ D 0 and
.r˛vˇ/.y0/ D C˛ˇ . Then [by (28)]

aij.x0/
@�˛

@xi
.x0/

@�ˇ

@xj
.x0/C˛ˇ D 0: (29)

Let us set X˛ˇ D aij.@�˛=@xi/.@�ˇ=@xj/. Then (29) may be written

X

˛¤ˇ
C˛ˇX˛ˇ.x0/C

X

˛

C˛˛

X˛˛.x0/� X11.x0/

� D 0: (30)

If ˛0 2 f2; � � � ;Mg is a fixed index then let C˛ˇ 2 R be given by

˛ ¤ ˇ H) C˛ˇ D 0; C˛˛ D

8
ˆ̂
<

ˆ̂
:

1; ˛ D ˛0 ;

�1 ˛ D 1;

0; otherwise:

Identity (30) then yields X˛0˛0.x0/ � X11.x0/ D 0 hence X11.x0/ D � � � D XMM.x0/
and (30) becomes

X

˛¤ˇ
C˛ˇX˛ˇ.x0/ D 0:

Finally let ˛0; ˇ0 2 f1; � � � ;Mg be arbitrary fixed indices such that ˛0 ¤ ˇ0 and let
C˛ˇ 2 R be given by

C˛ˇ D
(
1; ˛ D ˛0 and ˇ D ˇ0 ;

0; otherwise;

so that to obtain X˛0ˇ0.x0/ D 0. Gathering the information got so far

X˛ˇ.x0/ D X11.x0/ ı
˛ˇ : (31)

Let us set X11 D �2U so that �U 2 C.U/ and �2U 2 C1.U/ where U D ��1.V/.
Contraction of ˛ and ˇ in (31) furnishes

M �U.x0/
2 D

MX

˛D1
aij.x0/

@�˛

@xi
.x0/

@�˛

@xj
.x0/:
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On the other hand if .V 0; y0˛/ is another normal coordinate system centered at y0 D
�.x0/ then y0˛ D a˛ˇyˇ for some orthogonal matrix

h
a˛ˇ

i
2 O.M/ hence

X

˛

aij.x0/
@�0˛

@xi
.x0/

@�0˛

@xj
.x0/ D

X

˛

aij.x0/
@�˛

@xi
.x0/

@�˛

@xj
.x0/

and the functions �U glue up to a globally defined function �� W RN ! Œ0;C1/

such that ��
ˇ
ˇ
U D �U . Clearly (31) may be written as (5) in Theorem 1.2.

To prove (ii) in Theorem 1.2 let � W R
N ! S be an X-elliptic harmonic map

satisfying (5) and let v W V ! R with V � S open and
hv D 0 in V . Then (by (28)
and �A.�/ D 0)

L.v ı �/.x0/ D aij.x0/
@�˛

@xi
.x0/

@�ˇ

@xj
.x0/

@2v

@y˛ @yˇ
.y0/ D

[by (5)]

D ��.x0/
2ı˛ˇ

@2v

@y˛ @yˇ
.y0/ D ���.x0/2 .
hv/.y0/ D 0

because of


hv D �g˛ˇ
�

@2v

@y˛ @yˇ
� �

�

˛ˇ

@v

@y�

�

;

g˛ˇ.x0/ D ı˛ˇ ; �
�

˛ˇ.y0/ D 0:

Therefore � is an X-elliptic harmonic morphism.
To prove (iii)–(iv) in Theorem 1.2 let � W R

N ! S be an X-elliptic harmonic
morphism. Let x0 2 R

N be an arbitrary point and let .V; y˛/ be a normal coordinate
system on S centered at y0 D �.x0/. If �˛ D y˛ ı � and �˛ D D�˛.x0/ 2 R

N ,
1 � ˛ � M, then [by (5)]

˝
A.x0/�

˛ ; �ˇ
˛ D ��.x0/

2 ı˛ˇ : (32)

Lemma 5.2 If the vectors f�˛ W 1 � ˛ � Mg are linearly dependent then
��.x0/D0.

Proof Assume there is ˛0 2 f1; � � � ;Mg such that �˛0 D P
˛¤˛0 a˛�˛ for some

a˛ 2 R. Then formula (32) for ˛ D ˇ D ˛0 gives

��.x0/
2 D hA.x0/�˛0 ; �˛0i D

X

˛¤˛0
hA.x0/�˛0 ; �˛i D 0

by applying (32) once more. ut
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Let us assume that M > N. Then f�˛ W 1 � ˛ � Mg are linearly dependent so that
(by Lemma 5.2) ��.x0/ D 0. Consequently [by (5)]

˝
A.x0/D�

˛.x0/ ; D�ˇ.x0/
˛ D 0:

In particular for ˇ D ˛ [by the X-ellipticity condition (2)]

hXa.x0/ ; D�˛.x0/i D 0

or Xa.�
˛/x0 D 0 for every 1 � a � m and 1 � ˛ � M. Let .W;w˛/ be an arbitrary

local coordinate system on S such that y0 2 W. Let f ˛.y1; � � � ; yM/ be the transition
functions relative to the pair of local coordinate systems .V; y˛/ and .W;w˛/. Then
w˛ ı � D f ˛.�1; � � � ; �M/ on ��1.V \ W/ and

Xa .w
˛ ı �/x0 D @f ˛

@�ˇ
.�1.x0/; � � � ; �M.x0//Xa.�

ˇ/x0 D 0

or ��Xa D 0 for every 1 � a � m. Let us define X.k/ � X.RN/ by recurrence by
setting

X.1/ D fXa W 1 � a � mg;
X.kC1/ D ˚

ŒXa ; Y� W 1 � a � m; Y 2 X.k/
�
; k � 1:

Then ��X.k/ D 0 for every k � 1. In particular if X D X.1/ is a Hörmander system
on R

N (i.e. there is k � 1 such that fYx W Y 2 X.k/g spans the tangent space Tx.R
N/

at any x 2 R
N) then � is constant.

Let now M � N and let x0 2 R
N such that ��.x0/ ¤ 0. Then (again by

Lemma 5.2) the vectors f�˛ W 1 � ˛ � Mg are linearly independent. Yet the N 
 M

matrix
h�
�1
�T
; � � � ; ��M

�T
i

is the Jacobian of � at x0 hence rank .dx0�/ D M i.e. �

is a submersion on some neighborhood of x0. Formula (6) follows from (28) and (5).
Q.e.d.

Let us prove Theorem 1.3. Given an open connected subset U � R
N we shall

show that V D �.U/ � S is an open set as well. Proof is by contradiction. Let us
assume that V n VV ¤ ; and consider y0 2 V n VV . Then B.y0 ; 1=j/ n V ¤ ; for any
j � 1, because otherwise y0 would be an interior point of V . Here B.x; r/ � S is the
ball of radius r > 0 and center x 2 S, relative to the distance function associated to
the Riemannian metric h. Let yj 2 B.y0 ; 1=j/ n V for any j � 1. This amounts to
having chosen a sequence of points yj 2 S n V such that yj ! y0 as j ! 1. As S is
Riemannian, there is an open set W � S such that y0 2 W and there is a fundamental
solution G to
h on W 
 W, which is C1 off the diagonal, and has the property that
for every y 2 W the function x 7�! G.x; y/ is strictly positive and
hG.� ; y/ D 0 in
W n fyg. Also if D D f.x; y/ 2 W 
 W W x D yg is the diagonal then G.x; y/ ! C1
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as .x; y/ ! D. We may assume without loss of generality that U � ��1.W/. Next
let us consider the sequence of functions

vj W W n fyjg ! .0;C1/;

vj.y/ D G.y; yj/; y 2 W; y ¤ yj :

Then 
h
�
vj
� D 0 in W n fyjg for every j � 1. The set W n fyjg is open in S. Hence,

as � is an X-elliptic harmonic morphism, the function

uj D vj ı � W ��1 �W n fyjg
� ! .0;C1/

must satisfy L.uj/ D 0 in ��1 �W n fyjg
�

and in particular in U. Let x0 2 U such
that �.x0/ D y0. Then

uj.x0/ D vj.y0/ D G.y0 ; yj/ ! C1; j ! 1:

To end the proof of Theorem 1.3 we need to recall the Harnack inequality for
uniformly X-elliptic operators L (cf. Theorem 4.1 in [4], p. 1848).

Let ˝ � R
N be a bounded open subset. By a result in [4] nonnegative solutions

to Lu D 0 in ˝ satisfy an invariant Harnack inequality provided that the structure
assumptions (D) and (P) are satisfied. Let K � R

N be a fixed compact subset
containing the closure of ˝ i.e. ˝ � K. By Theorem 1.15 in [3] there is a constant
r0.K/ > 0 such that the following Sobolev inequality

kukL
q
�
.Br/

� C r kXukL2
�
.Br/

; u 2 C1
0.Br/; (33)

q D 2Q

Q � 2
; Q D log2 Cd ;

holds for every control d-ball Br whose center lies in K and having radius 0 < r �
r0.K/. Here one adopted the notation

kukLs
�
.Br/ D

�
1

jBrj
Z

Br

jujs dx

�1=s

:

It is worth mentioning that (33) follows from the doubling condition (D) and
Poincaré inequality (P). The result from [4] that we need is that given a nonnegative
solution u 2 W1

loc.˝;X/ to Lu D 0 in ˝ and 0 < r � r0.K/=4 then for any control
d-ball B4r � ˝

sup
Br

u � C inf
Br

u (34)
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for some constant C D C.�; �; Cd ; CP ; ; ˛/ > 0 where ˛ is a Lipschitz constant
for the vector fields fXa W 1 � a � mg on ˝ . Harnack inequality (34) for
nonnegative solutions to Lu D 0 was proved in [8] and successively generalized
to a larger class of uniformly X-elliptic operators (including equations with lower
order terms Lu D 0) in [4]. To keep notation unitary we however make explicit
references to [4] alone. Let us go back to the proof of Theorem 1.3. Since U is
open there exist a bounded open set ˝ and a compact set K such that x0 2 ˝ and
˝ � K � U. Let 0 < r < r0.K/=4 be sufficiently small such that x0 2 Br and
B4r � ˝ . As Luj D 0 and uj > 0 in ˝ one may apply Harnack inequality to get

uj.x0/ � sup
Br

uj � C inf
Br

uj

hence on one hand limj!1 infBr uj D 1. On the other hand

Br n ��1.y0/ ¤ ;: (35)

Indeed if (35) is not true then � is constant on Br hence ��.x/ D 0 for every x 2 Br

[as a consequence of (5)], a situation excluded by the hypothesis of Theorem 1.3.
Let then x 2 Br n ��1.y0/ and let y D �.x/. It follows that

inf
Br

uj � uj.x/ D vj.y/ D G.y ; yj/ ! G.y ; y0/ < 1; j ! 1;

a contradiction.
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Abstract We define Stummel-Kato type classes in a quasimetric homogeneous
setting using sum operators introduced in (J. Fourier Anal. Appl. 9(5), 511–540,
2003) by Franchi, Perez and Wheeden. Then we prove an embedding inequality of
Fefferman–Phong type. As an application we give a unique continuation result for
non negative solutions of some subelliptic equations.
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1 Introduction

In his celebrated paper [22] C. Fefferman proved the following inequality

Z

B
ju.x/� uBjpjV.x/j dx � c

Z

B
jru.x/jp dx 8u 2 C1

in the case p D 2 assuming the potential V to belong in the Morrey class Lr;n�2r; 1 <

r � n=2: Later, Chiarenza and Frasca [4] extended Fefferman result - with different
proof - assuming V in Lr;n�pr , 1 < r � n=p, 1 < p < n (see also [35, 37]).

Danielli, Garofalo and Nhieu in [9] and Danielli [8] introduced a suitable
version of Morrey spaces adapted to the Carnot-Carathéodory metric and proved

G. Di Fazio (�) • M.S. Fanciullo • P. Zamboni
Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
e-mail: difazio@dmi.unict.it; fanciullo@dmi.unict.it; zamboni@dmi.unict.it

© Springer International Publishing Switzerland 2015
G. Citti et al. (eds.), Geometric Methods in PDE’s, Springer INdAM Series 13,
DOI 10.1007/978-3-319-02666-4_6

111

mailto:difazio@dmi.unict.it
mailto:fanciullo@dmi.unict.it
mailto:zamboni@dmi.unict.it


112 G. Di Fazio et al.

the following inequality assuming V in a Morrey space defined by using a system
of locally Lipschitz vector fields X D .X1;X2; : : : ;Xq/

Z

B
ju.x/� uBjpjV.x/j dx � c

Z

B
jXu.x/jp dx 8u 2 C1: (1)

In [10] inequality .1/ was proved assuming V in a Stummel-Kato class defined
by using the Carnot-Carathéodory metric d induced by the system X of locally
Lipschitz vector fields.

In the Euclidean case the Stummel-Kato class was introduced by Aizenman and
Simon in [1] (see also [6, 7]).

The fundamental tool of the proof of .1/ is the following integral representation
formula (see [33])

ju.x/� uBj � c
Z

B
jXu.y/j d.x; y/

jB.x; d.x; y//jdy ; x 2 B: (2)

The Fefferman-Phong inequality .1/ has been used by many Authors to obtain
regularity results for solutions of quasilinear equations (see [8, 9, 11–13, 15, 36,
37]). Moreover a Fefferman-Phong inequality type inequality has been used also for
regularity of solutions of linear and quasilinear degenerate elliptic equations with a
degeneracy of A2 type or strong A1 type (see [14, 16–20, 32, 34, 38]).

This paper is the first step in a project whose aim is to obtain regularity properties
of generalized solutions of subelliptic equations in a particular setting (see [21]).

Let X D .X1; : : : ;Xq/ be a system of locally Lipschitz vector fields in Rn that
turns Rn into a space of homogeneous type.

We assume that X satisfies the Poincaré inequality

1

jBj
Z

B
jf .x/ � fBj dx � cr.B/

�
1

jBj
Z

B
jXf .x/jp dx

�1=p

p > 1 (3)

for any smooth f . Unfortunately, in our setting inequality .3/ does not imply .1; 1/
Poincaré-Sobolev inequality (see examples in [30, 31]).

It is known (see [24]) that the integral representation formula .2/ is equivalent to
the following .1; 1/ Poincaré inequality

Z

Br

ju.x/� uBr j dx � cr
Z

Br

jXu.x/j dx :

This implies that we cannot use the representation formula .2/.
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In [27] Franchi, Perez and Wheeden showed that the Poincaré inequality .3/
implies the following representation formula

ju.x/� uB0 j � c
1X

jD0
r.Bj.x//

 
1

jBj.x/j
Z

Bj.x/
jXujpdy

!1=p

where fBjg is a suitable sequence of Carnot-Carathéodory metric balls (see Sect. 2).
This representation formula allows us to introduce a Stummel-Kato type class

modeled to our setting and prove an embedding result of Fefferman-Phong type.
As application, we prove a result of unique continuation for non negative

solutions of linear degenerate subelliptic equations in divergence form with a
potential belonging to the Stummel-Kato class. In other settings similar results can
be found in [5, 11, 16, 28, 35, 37].

2 Preliminaries

Let .S ; �/ be a quasimetric space, in the sense that � W S 
 S ! R satisfies

(1) �.x; y/ � 0 for all x; y 2 S and �.x; y/ D 0 iff x D y.
(2) �.x; y/ D �.y; x/ for all x; y 2 S .
(3) �.x; y/ � KŒ�.x; z/C �.z; y/� for all x; y; z 2 S .

We denote by B.x; r/ the ball centered at x 2 S of radius r. Let .S ; �/ be
endowed with a Borel measure � satisfying the following doubling property

(4) There exists A > 0 such that for all x 2 S and r > 0

�.B.x; 2r// � A�.B.x; r// :

Such a quasimetric space .S ; �; �/ is called space of homogeneous type.
Let B0 be a fixed ball in S . We assume the following geometric hypotheses: for

all x 2 B0 there exists a chain of balls fBig D fBi.x/g1
iD1, of radius r.Bi/, such that

(H1) Bi � B0 for all i � 0.
(H2) r.Bi/ � 2�ir.B0/ for all i � 0.
(H3) �.Bi; x/ � cr.Bi/ for all i � 0.
(H4) For all i � 0, Bi \ BiC1 contains a ball Si with r.Si/ � r.Bi/.

The balls Bj.x/may or may not contain x, but the sequence fBi.x/g1
iD1 depends on x.

Any positive constant that depends only on K, A and the constants in (H2) and (H3)
will be called a geometric constant.

Now we give the definition of sum operator in .S ; �; �/.
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Definition 2.1 Let a W B ! a.B/ be a nonnegative functional defined on balls
B � B0. If x 2 B0, let

T.x/ D
1X

iD0
a.Bi.x// ;

where fBi.x/g1
iD1 is a sequence of balls satisfying (H1), (H2), (H3), and B0.x/ D

B0 for all x 2 B0. The operator T.x/ is called a sum operator associated with the
functional a.B/.

The meaning of T.x/ lies on the following pointwise representation formula (see
[27]).

Theorem 2.1 Let B0 be a ball and (H1), (H2), (H3), (H4) hold true. Let u 2
L1.B0; �/ be such that for any ball B � B0

1

�.B/

Z

B
ju � uBjd� � ca.B/ (4)

where uB D 1
�.B/

R
B ud�. Then for � � a:e:x 2 B0

ju.x/� uB0 j � c T.x/;

where c is a geometric constant which also depends on the constant in .4/.

We define Stummel-Kato type spaces in the space of homogeneous type
.S ; �; �/.

Definition 2.2 Let 1 � p < C1. Let B.x0; r/ be a ball of S and let us fBj.x/g1
jD1

be a chain of balls related to x 2 B.x0; r/ satisfying (H1), (H2), (H3) and (H4) and
B0.x/ D B.x0; r/. We say that V 2 L1loc.S ; �/ belongs to the space QSp.S / if

�V.r/ 	 sup
x02S

sup
y2B.x0;r/

Z

B.x0;r/

1X

jD0

rp.Bj.x//jV.x/j
�.Bj.x//

	Bj.x/.y/d�.x/

is finite for all r > 0.
We say that V 2 QSp.S / belongs to Sp.S / if limr!0 �V.r/ D 0.

3 Embedding Inequality of Fefferman-Phong Type

Let X D .X1;X2; : : : ;Xq/ be a system of locally Lipschitz vector fields in Rn.
Denoted by d the associated Carnot-Carathéodory distance defined by means of
subunit curves, we assume that d is finite for each pair of points x; y 2 Rn (more
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details can be found in [2, 23]). From now on we denote by B.x; r/ the Carnot-
Carathéodory ball centered at x 2 Rn of radius r. Throughout the paper, we shall
assume the following:

.A1/ d is continuous with respect to the Euclidean distance in Rn.

.A2/ The Lebesgue measure is globally doubling with doubling constant A, that is
for all x 2 Rn and r > 0

jB.x; 2r/j � AjB.x; r/j :

.A3/ The .1; p/ Poincaré inequality holds true: let p > 1 and B0 be a ball in Rn,
then there exists a positive constant c such that 8 B D B.x; r/ � B0, and
8u 2 C1.B0/

1

jBj
Z

B
ju � uBjdy � cr

�
1

jBj
Z

B
jXujpdy

�1=p

;

where uB D 1
jBj
R

B udy.

We call Q D log2 A the homogeneous dimension.

Remark 3.1 We recall that the Carnot-Carathéodory metric satisfies the segment
property, i.e. for every pair of points x; y 2 Rn there is a continuous curve � W
Œ0;T� ! Rn connecting x and y such that d.�.t/; �.s// D jt � sj for all s, t 2 Œ0;T�
(see [26], Remark 2.6). Then in Carnot-Carathéodory space 8x 2 B0 D B.x0; r/
there exists a chain of balls satisfying (H1), (H2), (H3) and (H4). An example is
fB.x; 2�id.x; @B0//g. In this model case

�V.r/ D sup
x02Rn

sup
y2B.x0;r/

Z

B.x0;r/
jV.x/j

�
1

.d.x; y//Q�p
� 1

.d.x; @B0//Q�p

�

dx

(see e.g. [29]).

In the sequel we will use the following Sobolev space.

Definition 3.1 Let˝ be a bounded domain in Rn. We say that u belongs to W1;2.˝/

if u, Xiu 2 L2.˝/, for i D 1; : : : q;. We denote by W1;2
0 .˝/ the closure of the smooth

and compactly supported functions in W1;2.˝/ with respect to the norm

kukW1;2.˝/ D kukL2.˝/ C
qX

iD1
kXiukL2.˝/ :

We say that u belongs to W1;2
loc .˝/ if u 2 W1;2.˝ 0/ for any˝ 0 �� ˝ .

Let u 2 W1;2.˝/, we denote by Xu the vector .X1u;X2u; : : : ;Xqu/. We prove the
following embedding theorem and some useful corollaries (see also [4, 10, 14, 35–
37]).
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Theorem 3.1 Let B0 D B.x0; r/ be a ball of Rn and 1 < p < Q. Let V be a function
in QSp.Rn/. Then there exists a positive constant c such that

Z

B0

jV.x/j ju.x/� uB0 jp dx � c �V.r/
Z

B0

jXu.x/jp dx

for any smooth function u in B0.

Proof Let u be a smooth function in B0. Choosing the functional

a.B.z; s// D s

�
1

jB.z; s/j
Z

B.z;s/
jXujpdy

�1=p

;

from .A3/, the Theorem 2.1 yields the following representation formula for u

ju.x/� uB0 j � c
1X

jD0
r.Bj.x//

 
1

jBj.x/j
Z

Bj.x/
jXujpdy

!1=p

; (5)

for a.e. x 2 B0.
Now from .5/ and Hölder inequality

Z

B0

jV.x/jju.x/� uB0 jpdx

�
Z

B0

jV.x/jju.x/ � uB0 jp�1

1X

jD0

r.Bj.x//

"
1

jBj.x/j
Z

Bj.x/
jXu.y/jpdy

#1=p

dx

�
�Z

B0
jV.x/jju.x/� uB0 jpdx

�1=p0

2

4
Z

B0

1X

jD0

jV.x/j rp.Bj.x//

jBj.x/j
Z

Bj.x/
jXu.y/jpdydx

3

5

1=p

�
�Z

B0

jV.x/jju.x/� uB0 jpdx

�1=p0

2

4
Z

B0

1X

jD0

jV.x/j rp.Bj.x//

jBj.x/j
Z

B0

jXu.y/jp	Bj.x/.y/dydx

3

5

1=p

�
�Z

B0

jV.x/jju.x/� uB0 jpdx

�1=p0

2

4
Z

B0

jXu.y/jp

Z

B0

1X

jD0

jV.x/j rp.Bj.x//

jBj.x/j 	Bj.x/.y/dxdy

3

5

1=p

�
�Z

B0

jV.x/jju.x/� uB0 jpdx

�1=p0

�
1=p
V .r/

�Z

B0

jXu.y/jpdy

�1=p

;
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from which
Z

B0

jV.x/jju.x/� uB0 jpdx � c�V.r/
Z

B0

jXu.y/jpdy :

Corollary 3.1 Let 1 < p < Q and V be a function in QSp.Rn/. Then there exists a
positive constant c such that

Z

Rn
jV.x/j ju.x/jp dx � c �V.r/

Z

Rn
jXu.x/jp dx

for any compactly supported smooth function u in Rn.

Corollary 3.2 Let ˝ be a bounded open set ˝ � Rn and 1 < p < Q. Let V be a
function in Sp.˝/. For any � > 0 there exists a positive function K.�/ � �

Œ��1
V .�/�QCp

(where ��1
V is the inverse function of �V ), such that

Z

˝

jV.x/j ju.x/jp dx � �

Z

˝

jXu.x/jp dx C K.�/
Z

˝

ju.x/jp dx (6)

for any compactly supported smooth function u in ˝ .

Proof Let � > 0. Let r be a positive number that we will choose later. Let f˛p
i g,

i D 1; 2; : : :N.r/, be a finite partition of unity of ˝, such that spt˛i � B.xi; r/ with
xi 2 ˝ (for the construction of the cut off functions ˛i see [25]).

From Corollary 3.1 we obtain

Z

˝

jV.x/j ju.x/jp dx �
Z

˝

jV.x/j ju.x/jp
N.r/X

iD1
˛

p
i .x/ dx

D
N.r/X

iD1

Z

˝

jV.x/j ju.x/jp˛
p
i .x/dx

� c
N.r/X

iD1
�V .r/

�Z

˝

jXu.x/jp˛
p
i .x/ dx C

Z

˝

jX˛i.x/jpju.x/jp dx

�

� c�V.r/

�Z

˝

jXu.x/jp dx C N.r/

rp
ju.x/jp dx

�

:

Now we choose r such that c�V.r/ D � and since N.r/ � r�Q we get .6/.

Remark 3.2 Our setting is not comparable to Euclidean one. Indeed the .1 � 1/

Poincaré inequality is not known to be true.
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4 Unique Continuation

Let ˝ be a bounded domain in Rn. In ˝ we consider the following linear elliptic
equation

� X�
i .aij.x/Xju/C Vu D 0 (7)

where the coefficients satisfy the following condition

9� > 0 W �j�j2 � aij.x/�i�j � ��1j�j2 ;8� 2 Rq ; a:e: x 2 ˝ ;

and V 2 QS2.˝/.
Definition 4.1 A function u 2 W1;2

loc .˝/ is a local weak solution of .7/ if 8� 2
W1;2
0 .˝/

Z

˝

ŒaijXiuXj� C Vu��dx D 0 :

Now we prove the unique continuation property for solutions of .7/ (for similar
results see also [5, 11, 16, 35, 37]). First we recall the definition of zero of infinite
order.

Definition 4.2 A function u 2 L1loc.˝/ such that u.x/ � 0 a.e. x 2 ˝ , is said to
vanish of infinite order at x0 2 ˝ if 8k > 0

lim
�!0

R
B.x0;�/

u.x/dx

jB.x0; �/jk
D 0 :

Theorem 4.1 Let u 2 W1;2
loc .˝/, u � 0, u 6	 0, be a solution of .7/. Then u has no

zero of infinite order in ˝ .

Proof Let x0 2 ˝ , B.x0; r/ a ball such that B.x0; 2r/ � ˝ . Consider a ball B D
B.y; h/ contained in B.x0; r/. Let � be a non negative smooth function with support
in B.y; 2h/. We take � D �2u�11 as test function and we obtain

Z

˝

jX log u.x/j2�2.x/dx � c

�Z

˝

jX�.x/j2dx C
Z

˝

jV.x/j�2.x/dx

	

:

1We should take u C � (� > 0) which is positive in ˝ and, after obtaining estimates independing
of �, go to the limit for � ! 0.
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From Corollary 3.1 we have

Z

˝

jX log u.x/j2�2.x/dx � c
Z

˝

jX�.x/j2dx :

Choosing � such that � D 1 in B and X� � c
h we obtain

Z

B
jX log u.x/j2dx � c

jBj
h2
:

Then from John-Nirenberg Lemma (see [3])

Z

B
uı.x/dx

Z

B
u�ı.x/dx � cjBj2 ;

that is uı is a A2 weight for some ı > 0. Then uı satisfies a doubling property from
which uı (and then also u) has no zero of infinite order in ˝ .
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Abstract We prove Lp-parabolic a-priori estimates for @tu CPd
i;jD1 cij.t/@2xixj

u D f

on R
dC1 when the coefficients cij are locally bounded functions on R. We slightly

generalize the usual parabolicity assumption and show that still Lp-estimates hold
for the second spatial derivatives of u. We also investigate the dependence of the
constant appearing in such estimates from the parabolicity constant. The proof
requires the use of the stochastic integral when p is different from 2. Finally we
extend our estimates to parabolic equations involving non-degenerate Ornstein-
Uhlenbeck type operators.
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1 Introduction and Basic Notations

In this paper we deal with global a-priori Lp-estimates for solutions u to second
order parabolic equations like

ut.t; x/C
dX

i;jD1
cij.t/uxixj.t; x/ D f .t; x/; .t; x/ 2 R

dC1; (1)

d � 1, with locally bounded coefficients cij.t/. Here ut and uxixj denote respectively
the first partial derivative with respect to t and the second partial derivative with
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respect to xi and xj. We slightly generalize the usual parabolicity assumption and
show that still Lp-estimates hold for the second spatial derivatives of u. We also
investigate the dependence of the constant appearing in such estimates from the
symmetric d 
 d-matrix c.t/ D �

cij.t/
�

i;jD1;:::;d. In the final section we treat more
general equations involving Ornstein-Uhlenbeck type operators and show that the
previous a-priori estimates are still true.

The Lp-estimates we are interested in are the following: for any p 2 .1;1/, there
exists QM > 0 such that, for any u 2 C1

0 .R
dC1/ which solves (1), we have

kuxixjkLp.RdC1/ � QM kf kLp.RdC1/; i; j D 1; : : : ; d; (2)

where the Lp-spaces are considered with respect to the d C 1-dimensional Lebesgue
measure. Usually, in the literature such a-priori estimates are stated requiring that
there exists � and� > 0 such that

�j�j2 �
dX

i;jD1
cij.t/�i�j � �j�j2; t 2 R; � 2 R

d; (3)

where j�j2 D Pd
iD1 �2i . We refer to Chap. 4 in [16], Appendix in [24], Sect. VII.3 in

[19], which also assumes that cij are uniformly continuous, and Chap. 4 in [15].
The proofs are based on parabolic extensions of the Calderon-Zygmund theory
for singular integrals (cf. [8, 11]). This theory was originally used to prove a-
priori Sobolev estimates for the Laplace equation (see [5]). In the above mentioned
references, it is stated that QM depends not only on d, p, � (the parabolicity constant)
but also on �. An attempt to determine the explicit dependence of QM from � and �
has been done in Theorem A.2.4 of [24] finding a quite complicate constant.

The fact that QM is actually independent of� is mentioned in Remark 2.5 of [14].
This property follows from a general result given in Theorem 2.2 of [13]. Once this
independence from� is proved one can use a rescaling argument (cf. Corollary 2.1)
to show that we have

QM D M0

�
; (4)

for a suitable positive constant M0 depending only on d and p.
In Theorem 2.1 and Corollary 2.1 we generalize the parabolicity condition by

requiring that the symmetric d 
 d matrix c.t/ D �
cij.t/

�
is non-negative definite,

for any t 2 R, and, moreover, that there exists and integer p0, 1 � p0 � d, and
� 2 .0;1/ such that

�

p0X

jD1
�2j �

dX

i;jD1
cij.t/�i�j; t 2 R; � 2 R

d (5)
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(cf. Hypothesis 2.1 in Sect. 2). We show that (5) is enough to get estimates like (2)
for i; j D 1; : : : ; p0, with a constant QM as in (4) (now M0 depends on p; d and p0).
An example in which (5) holds is

ut.t; x; y/C uxx.t; x; y/C tuxy.t; x; y/C t2uyy.t; x; y/ D f .t; x; y/; (6)

.t; x; y/ 2 R
3 (see Example 2.1). In this case we have an a-priori estimates for

kuxxkLp .
We will first provide a purely analytic proof of Theorem 2.1 in the case of L2-

estimates. This is based on Fourier transform techniques. Then we provide the proof
for the general case 1 < p < 1 in Sect. 2.2. This proof is inspired by the one of
Theorem 2.2 in [13] and requires the concept of stochastic integral with respect
to the Wiener process. In Sect. 2.2.1 we recall basic properties of the stochastic
integral. It is not clear how to prove Theorem 2.1 for p 6D 2 in a purely analytic way.
One possibility could be to follow step by step the proof given in Appendix of [24]
trying to improve the constants appearing in the various estimates.

In Sect. 3 we will extend our estimates to more general equations like

ut.t; x/C
dX

i;jD1
cij.t/uxixj.t; x/C

dX

i;jD1
aijxj uxi.t; x/ D f .t; x/; (7)

where A D .aij/ is a given real d 
 d-matrix. If (5) holds with p0 D d then we
show that estimate (2) is still true with M0 D M0.d; p;T;A/ > 0 for any solution
u 2 C1

0 ..�T;T/ 
 R
d/ of (7) (see Theorem 3.1 for a more general statement).

An interesting case of (7) is when c.t/ is constant, i.e., c.t/ D Q, t 2 R. Then
Eq. (7) becomes

ut C A u D f ;

where A is the Ornstein-Uhlenbeck operator, i.e.,

A v.x/ D Tr.QD2v.x//C hAx;Dv.x/i; x 2 R
d; v 2 C1

0 .R
d/: (8)

The operator A and its parabolic counterpart L D A � @t, which is also called
Kolmogorov-Fokker-Planck operator, have recently received much attention (see,
for instance, [3, 4, 6, 7, 9, 17, 20, 23] and the references therein). The operator A
is the generator of the Ornstein-Uhlenbeck process which solves a linear stochastic
differential equation (SDE) describing the random motion of a particle in a fluid (see
[21]). Several interpretations in physics and finance for A and L are explained in
the survey papers [18, 22]. From the a-priori estimates for the parabolic equation (7)
one can deduce elliptic estimates like

kvxixjkLp.Rd/ � C1
�kA vkLp.Rd/ C kvkLp.Rd/

�
; (9)
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with C1 D M2.d;p;A/
�

, assuming that A is non-degenerate (i.e., Q is positive definite;
see Corollary 3.1). Similar estimates have been already obtained in [20]. Here we
can show in addition the precise dependence of the constant C1 from the matrix Q.

More generally, estimates like (9) hold for possibly degenerate hypoelliptic
Ornstein-Uhlenbeck operators A (see [3]); a typical example in R

2 is A v D
qvxx C xvy with q > 0 (cf. Example 43). In this case we have

kvxxkLp.R2/ � C1
�kqvxx C xvykLp.R2/ C kvkLp.R2/

�
: (10)

Estimates as (10) have been deduced in [3] by corresponding parabolic estimates
for A � @t, using that such operator is left invariant with respect to a suitable
Lie group structure on R

dC1 (see [17]). We also mention [4] which contains a
generalization of [3] when Q may also depend on x and [23] where the results in
[3] are used to study well-posedness of related SDEs. Finally, we point out that in
the degenerate hypoelliptic case considered in [3] it is not clear how to prove the
precise dependence of the constant appearing in the a-priori Lp-estimates from the
matrix Q.

We denote by j � j the usual Euclidean norm in any R
k, k � 1. Moreover, h�; �i

indicates the usual inner product in R
k.

We denote by Lp.Rk/, k � 1, 1 < p < 1 the usual Banach spaces of measurable
real functions f such that jf jp is integrable on R

k with respect to the Lebesgue
measure. The space of all Lp-functions f W Rk ! R

j with j > 1 is indicated with
Lp.RkIRj/. Let H be an open set in R

k; C1
0 .H/ stands for the vector space of all

real C1-functions f W H ! R which have compact support.
Let d � 1. Given a regular function u W RdC1 ! R, we denote by D2

xu.t; x/ the
d 
 d Hessian matrix of u with respect to the spatial variables at .t; x/ 2 R

dC1, i.e.,
D2

xu.t; x/D .uxixj.t; x//i;jD1;:::;d. Similarly we define the gradient Dxu.t; x/ 2 R
d with

respect to the spatial variables.
Given a real k 
 k matrix A, kAk denotes its operator norm and Tr.A/ its trace.
Let us recall the notion of Gaussian measure (see, for instance, Sect. 1.2 in [2]

or Chap. 1 in [7] for more details). Let d � 1. Given a symmetric non-negative
definite d 
 d matrix Q, the symmetric Gaussian measure N.0;Q/ is the unique
Borel probability measure on R

d such that its Fourier transform is

Z

Rd
eihx;�i N.0;Q/.dx/ D e�h�;Q�i; � 2 R

dI (11)

N.0;Q/ is the Gaussian measure with mean 0 and covariance matrix 2Q. If in
addition Q is positive definite than N.0;Q/ has the following density f with respect
to the d-dimensional Lebesgue measure

f .x/ D 1
p
.4�/d det.Q/

e� 1
4 hQ�1x;xi; x 2 R

d: (12)
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Given two Borel probability measures �1 and �2 on R
d the convolution �1 � �2 is

the Borel probability measure defined as

�1 � �2.B/ D
Z

Rd

Z

Rd
1B.x C y/�1.dx/�2.dy/ D

Z

Rd
�1.dx/

Z

Rd
1B.x C y/�2.dy/;

for any Borel set B � R
d. Here 1B is the indicator function of B (i.e., 1B.x/ D 1 if

x 2 B and 1B.x/ D 0 if x 62 B). It can be easily verified that

N.0;Q/ � N.0;R/ D N.0;Q C R/; (13)

where Q C R is the sum of the two symmetric non-negative definite matrices Q
and R.

2 A-priori Lp-Estimates

In this section we consider parabolic equations like (1).
We always assume that the coefficients cij.t/ of the symmetric d 
 d matrix c.t/

appearing in (1) are (Borel) measurable and locally bounded on R and, moreover,
that hc.t/�; �i � 0, t 2 R, � 2 R

d. Moreover, we will consider the symmetric
non-negative d 
 d matrix

Csr D
Z r

s
c.t/dt; s � r; s; r 2 R: (14)

We start with a simple representation formula for solutions to Eq. (1). This formula
is usually obtained assuming that c.t/ is uniformly positive. However there are
no difficulties to prove it even in the present case when c.t/ is only non-negative
definite.

Proposition 2.1 Let u 2 C1
0 .R

dC1/ be a solution to (1). Then we have, for .s; x/ 2
R

dC1,

u.s; x/ D �
Z 1

s
dr
Z

Rd
f .r; x C y/N.0;Csr/.dy/: (15)

Proof Let us denote by Ou.t; �/ the Fourier transform of u.t; �/ in the space variable x.
Applying such partial Fourier transform to both sides of (1) we obtain

Out.s; �/ �
dX

i;jD1
cij.s/�i�j Ou.s; �/ D Of .s; �/;
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i.e., we have

Ou.s; �/ D �
Z 1

s
e�hCsr�;�iOf .r; �/dr; .s; �/ 2 R

dC1: (16)

It follows that

Ou.s; �/ D �
Z 1

s

� Z

Rd
eihx;�iN.0;Csr/.dx/

�Of .r; �/dr:

By some straightforward computations, using also the uniqueness property of the
Fourier transform, we get (15).

Alternatively, starting from (16) one can directly follow the computations of
pages 48 in [15] and obtain (15). These computations use that there exists � > 0

such that hc.t/�; �i � �j�j2, � 2 R
d. We write, for � > 0, using the Laplace operator,

ut.t; x/C
dX

i;jD1
cij.t/uxixj.t; x/C �4u.t; x/ D f .t; x/C �4u.t; x/;

.t; x/ 2 R
dC1I since c.t/C �I is uniformly positive, following [15] we find

u.s; x/ D �
Z 1

s
dr
Z

Rd
f .r; y C x/N.0;Csr C �.r � s/I/.dy/

��
Z 1

s
dr
Z

Rd
4u.r; y C x/N.0;Csr C �.r � s/I/.dy/:

Using also (13) we get

u.s; x/ D �
Z 1

s
dr
Z

Rd
N.0; .r � s/I/.dz/

Z

Rd
f .r; x C y C p

� z/N.0;Csr/.dy/

��
Z 1

s
dr
Z

Rd
N.0; .r � s/I/.dz/

Z

Rd
4u.r; x C y C p

� z/N.0;Csr/.dy/:

Now we can pass to the limit as � ! 0C by the Lebesgue theorem and get (15). ut
The next assumption is a slight generalization of the usual parabolicity condition

which corresponds to the case p0 D d.

Hypothesis 2.1 The coefficients cij are locally bounded on R and the matrix c.t/ D�
cij.t/

�
is symmetric non-negative definite, t 2 R. In addition, there exists an integer

p0, 1 � p0 � d, and � 2 .0;1/ such that

hc.t/�; �i D
dX

i;jD1
cij.t/�i�j � �

p0X

jD1
�2j ; t 2 R; � 2 R

d: (17)
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A possible generalization of this hypothesis is given in Remark 2.1. Note that if we
introduce the orthogonal projection

I0 W Rd ! Fp0 ; (18)

where Fp0 is the subspace generated by fe1; : : : ; ep0g (here feigiD1;:::;d denotes the
canonical basis in R

d) then (19) can be rewritten as

hc.t/�; �i � �jI0�j2; t 2 R; � 2 R
d: (19)

Lemma 2.1 Let g W RdC1 ! R be Borel, bounded, with compact support and such
that g.t; �/ 2 C1

0 .R
d/, t 2 R. Fix i; j 2 f1; : : : ; p0g and consider

wij.s; x/ D �
Z 1

s
dr
Z

Rd
gxixj.r; x C y/N.0; I0.r � s//.dy/; .s; x/ 2 R

dC1;

where I0 is defined in (18). For any p 2 .1;1/, there exists M0 D M0.d; p; p0/ > 0,
such that

kwijkLp.RdC1/ � M0kgkLp.RdC1/: (20)

Proof If p0 D d the estimate is classical. In such case we are dealing with the heat
equation

@tu C 4u D g

on R
dC1 and wij coincides with the second partial derivative with respect to xi and

xj of the heat potential applied to g (see, for instance, page 288 in [16] or Appendix
in [24]). If p0 < d we write x D .x0; x00/ for x 2 R

d, where x0 2 R
p0 and x00 2 R

d�p0 .
We get

wij.s; x
0; x00/ D �

Z 1

s
dr
Z

Rp0

gxixj.r; x
0 C y0; x00/N.0; Ip0 .r � s//.dy0/;

where Ip0 is the identity matrix in R
p0 . Let us fix x00 2 R

d�p0 and consider the
function l.t; x0/ D g.t; x0; x00/ defined on R
R

p0 . By classical estimates for the heat
equation @tu C4u D l on R

p0C1 we obtain

Z

Rp0C1

jwij.s; x
0; x00/jpdsdx0 � Mp

0

Z

Rp0C1

jg.s; x0; x00/jpdsdx0:

Integrating with respect to x00 we get the assertion. ut
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In the sequel we also consider the differential operator L

Lu.t; x/ D
dX

i;jD1
cij.t/uxixj.t; x/; .t; x/ 2 R

dC1; u 2 C1
0 .R

dC1/: (21)

The next regularity result when p0 D d follows by a general result given in
Theorem 2.2 of [13] (cf. Remark 2.5 in [14]).

In the next two sections we provide the proof. First we give a direct and self-
contained proof in the case p D 2 by Fourier transform techniques (see Sect. 2.1).
Then in Sect. 2.2 we consider the general case. The proof for 1 < p < 1 is inspired
by the one of Theorem 2.2 in [13] and uses also a probabilistic argument. This
argument is used to “decompose” a suitable Gaussian measure in order to apply
successfully the Fubini theorem (cf. (30) and (31)).

We stress again that in the case of d D p0, usually, the next result is stated under
the stronger assumption that (17) holds with � D 1 and also that cij are bounded,
i.e., assuming (3) with � D 1 and� � 1 (see, for instance, Appendix in [16, 24]).

Theorem 2.1 Assume Hypothesis 2.1 with � D 1 in (17). Then, for p 2 .1;1/,
there exists a constant M0 D M0.d; p; p0/ such that, for any u 2 C1

0 .R
dC1/, i; j D

1; : : : ; p0, we have

kuxixjkLp.RdC1/ � M0kut C LukL p.RdC1/: (22)

As a consequence of the previous result we obtain

Corollary 2.1 Assume Hypothesis 2.1. Then, for any u 2 C1
0 .R

dC1/, p 2 .1;1/,
i; j D 1; : : : ; p0, we have (see (21))

kuxixjkLp.RdC1/ � M0

�
kut C LukLp.RdC1/; (23)

where M0 D M0.d; p; p0/ is the same constant appearing in (22).

Proof Let us define w.t; y/ D u.t;
p
� y/. Set f D ut C Lu; since u.t; x/ D w.t; xp

�
/,

we find

f .t;
p
� y/ D wt.t; y/C 1

�
Lw.t; y/:

Now the matrix . 1
�

cij/ satisfies 1
�

Pd
i;jD1 cij.t/�i�j � Pp0

jD1 �2j ; t 2 R; � 2 R
d:

Applying Theorem 2.1 to w we find

kwxi ;xjkLp � M0�
� d
2p kf kLp



Lp-Parabolic Regularity and Non-degenerate Ornstein-Uhlenbeck Type Operators 129

and so

�
1� d

2p kuxi;xjkLp � M0�
� d
2p kf kLp

which is the assertion. ut
Example 2.1 Equation (6) verifies the assumptions of Corollary 2.1 with p0 D 1

and � D 3=4 since

2X

i;jD1
cij.t/�i�j D �21 C t�1�2 C t2�22 � 3

4
�21 ; .t; �1; �2/ 2 R

3:

Hence there exists M0 > 0 such that if u 2 C1
0 .R

3/ solves (6) then

kuxxkLp.R3/ � M0

�
kf kLp.R3/:

Remark 2.1 One can easily generalize Hypothesis 2.1 as follows:
the coefficients cij are locally bounded on R and, moreover, there exists an

orthogonal projection I0 W Rd ! R
d and � > 0 such that, for any t 2 R,

hc.t/�; �i � �jI0�j2; � 2 R
d: (24)

Theorem 2.1 and Corollary 2.1 continue to hold under this assumption.
Indeed if (24) holds then by a suitable linear change of variables in Eq. (1) we

may assume that I0.Rd/ is the linear subspace generated by fe1; : : : ; ep0g for some
p0 with 1 � p � d and so apply Theorem 2.1.

Under hypothesis (24) assertion (22) in Theorem 2.1 becomes

khD2
xu.�/h; kikLp.RdC1/ � M0kut C LukLp.RdC1/;

where h; k 2 I0.Rd/.

2.1 Proof of Theorem 2.1 When p D 2

This proof is inspired by the one of Lemma A.2.2 in [24]. Note that such lemma has
p0 D d and, moreover, it assumes the stronger condition (3). In Lemma A.2.2 the
constant M0 appearing in (22) is 2

p
�.

We start from (16) with

f D ut C Lu:
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Recall that for g W RdC1 ! R, Og.s; �/ denotes the Fourier transform of g.s; �/ with
respect to the x-variable (s 2 R, � 2 R

d) assuming that g.s; �/ 2 L1.Rd/.
Let us fix s 2 R. Let i; j D 1; : : : ; p0. We easily compute the Fourier transform

of uxixj.s; �/ (the matrix Csr is defined in (14)):

Ouxixj.s; �/ D ��i�j Ou.s; �/ D �i�j

Z 1

s
e�hCsr �;�iOf .r; �/dr; � 2 R

d:

Since jI0�j2 D Pp0
iD1 j�ij2, we get

2jOuxixj.s; �/j � jI0�j2
Z 1

s
e�
�

hC0r �;�i�hC0s �;�i
�
jOf .r; �/jdr D G�.s/:

Now we fix � 2 R
d, such that jI0�j 6D 0, and define

g�.r/ D hC0r �; �i D
Z r

0

hc. p/�; �idp; r 2 R:

Changing variable t D g�.r/; we get

G�.s/ D jI0�j2
Z 1

g� .s/
e.g� .s/� t/ jOf .g�1

� .t/; �/j
1

hc.g�1
� .t//�; �i

dt:

Let us introduce '.t/ D et � 1.�1;0/.t/, t 2 R, and

F�.t/ D jI0�j2 jOf .g�1
� .t/; �/j

1

hc.g�1
� .t//�; �i

:

Using the standard convolution for real functions defined on R we find

G�.s/ D .' � F�/ .g�.s//:

Therefore (recall (19) with � D 1)

kG�k2L2.R/ D
Z

R

j.' � F�/.t/j2 1

hc.g�1
� .t//�; �i

dt � 1

jI0�j2 k' � F�k2L2.R/ (25)

which implies kG�kL2.R/ � 1
jI0�j k' � F�kL2.R/: On the other hand, using the Young

inequality, we find, for any � 2 R
d with jI0�j 6D 0,

k' � F�kL2.R/ � k'kL1.R/ kF�kL2.R/ D kF�kL2.R/

D jI0�j2
� Z

R

jOf .g�1
� .t/; �/j2

1

.hc.g�1
� .t//�; �i/2

dt
�1=2
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D jI0�j2
� Z

R

jOf .r; �/j2 1

.hc.r/�; �i/2 hc.r/�; �idr
�1=2

� jI0�j2
jI0�j

� Z

R

jOf .r; �/j2
�1=2 D jI0�j � kOf .�; �/kL2.R/:

Using also (25) we obtain, for any � 2 R
d, jI0�j 6D 0,

2kOuxixj.�; �/kL2.R/ � kG�kL2.R/ � kOf .�; �/kL2.R/:

From the previous inequality, integrating with respect to � over Rd we find

4

Z

R

ds
Z

Rd
jOuxixj.s; �/j2d� �

Z

R

ds
Z

Rd
jOf .s; �/j2d�:

By using the Plancherel theorem in L2.Rd/ we easily obtain (22) with M0 D 1=2.
The proof is complete. ut

2.2 Proof of Theorem 2.1 When 1 < p < 1

The proof uses the concept of stochastic integral in a crucial point (see (30)
and (31)). Before starting the proof we collect some basic properties of the stochastic
integral with respect to the Wiener process which are needed (see, for instance,
Chap. 4 in [1] or Sect. 4.3 in [24] for more details).

2.2.1 The Stochastic Integral

Let W D .Wt/t�0 be a standard d-dimensional Wiener process defined on a
probability space .˝;F ;P/. Denote by E the expectation with respect to P.

Consider a function F 2 L2.Œa; b�IRd ˝ R
d/ (here 0 � a � b and R

d ˝ R
d

denotes the space of all real d 
 d-matrices).
Let .�n/ be any sequence of partitions of Œa; b� such that j�nj ! 0 as n ! 1

(given a partition � D ft0 D a; : : : ; tN D bg we set j�j D suptk ;tkC12� jtkC1 � tkj).
One defines the stochastic integral

R b
a F.s/dWs as the limit in L2.˝;PIRd/ of

Jn D
X

tnk ; t
n
kC1

2�n

F.tn
k/ .WtnkC1

� Wtnk /;

as n ! 1 (recall that the previous formula means Jn.!/ D P
tnk ; t

n
kC1

2�n
F.tn

k/

.WtnkC1
.!/ � Wtnk .!//; for any ! 2 ˝). One can prove that the previous limit is



132 E. Priola

independent of the choice of .�n/. Moreover, we have, P-a.s.,

Z b

a
F.s/dWs D

Z b

0

F.s/dWs �
Z a

0

F.s/dWs: (26)

Set �ab D R b
a F.s/F�.s/ds where F�.s/ denotes the adjoint matrix of F.s/. Clearly,

�ab is a d 
 d symmetric non-negative definite matrix. Moreover, we have (see, for
instance, page 77 in [1])

E

ei

p
2hR b

a F.s/dWs;�i� D
Z

˝

ei
p
2 h
� R b

a F.s/dWs

�
.!/ ; �i

P.d!/ (27)

D
Z

Rd
eihx;�i N.0; �ab/.dx/ D e�h�;�ab�i; � 2 R

d:

Formula (27) is equivalent to require that for any Borel and bounded f W Rd ! R,

E

h
f
�p

2

Z b

a
F.s/dWs

�i
D
Z

Rd
f .y/N.0; �ab/.dy/: (28)

Equivalently, one can say that the distribution (or image measure) of
p
2
R b

a F.s/dWs

is N.0; �ab/.

2.2.2 Proof of the Theorem

It is convenient to suppose that u.t; �/ D 0 if t � 0 so that u 2 C1
0 .Œ0;1/ 
 R

d/.
Indeed if u.t; �/ D 0, t � T, for some T 2 R, then we can introduce v.t; x/ D

u.t C T; x/ which belongs to u 2 C1
0 .Œ0;1/ 
 R

d/; from the a-priori estimate for
vxixj it follows (22) since kvxixjkL p.RdC1/ D kuxixjkLp.RdC1/:

We know that, for s � 0, x 2 R
d,

u.s; x/ D �
Z 1

s
dr
Z

Rd
f .r; x C y/N.0;Csr/.dy/;

where f D ut CLu is bounded, with compact support on R
dC1 and such that f .t; �/ 2

C1
0 .R

d/, t � 0. Let us fix i; j 2 f1; : : : ; p0g.
Differentiating under the integral sign it is not difficult to prove that

uxixj.s; x/ D �
Z 1

s
dr
Z

Rd
fxixj.r; x C y/N.0;Csr/.dy/:
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Let us fix s and r, 0 � s � r, and consider

Csr D Asr C .r � s/I0; where Asr D
Z r

s
.c.t/ � I0/dt:

By (13) we know that N.0;Csr/ D N.0;Asr/ � N.0; .r � s/I0/ and so

Z

Rd
fxixj.r; x C y/N.0;Csr/.dy/ (29)

D
Z

Rd
N.0;Asr/.dz/

Z

Rd
fxixj.r; x C y C z/N.0; .r � s/I0/.dy/:

Now we introduce a standard d-dimensional Wiener process W D .Wt/t�0 on a
probability space .˝;F :P/ (see Sect. 2.2.1). Consider the symmetric d 
 d square
root

p
c.t/ � I0 of c.t/ � I0 and define the stochastic integral

�sr D p
2

Z r

s

p
c.t/� I0 dWt:

By (26) we know that

�sr D br � bs; where bt D p
2

Z t

0

p
c.p/� I0 dWp;

t � 0, and bt D 0 if t � 0. Moreover (cf. (28)) for any Borel and bounded g W Rd !
R, we have

EŒg.br � bs/� D
Z

˝

g
�
br.!/ � bs.!/

�
P.d!/ D

Z

Rd
g.y/N.0;Asr/.dy/: (30)

Using this fact and the Fubini theorem we get from (29)

Z

Rd
fxixj.r; x C y/N.0;Csr/.dy/

D E

h Z

Rd
fxixj.r; x C y C�rs/N.0; .r � s/I0/.dy/

i

D E

h Z

Rd
fxixj.r; x C y C br � bs/N.0; .r � s/I0/.dy/

i
: (31)

Therefore we find

uxixj.s; x/ D �E

h Z 1

s
dr
Z

Rd
fxixj.r; x C y C br � bs/N.0; .r � s/I0/.dy/

i
: (32)
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Now we estimate the Lp-norm of uxixj . To simplify the notation in the sequel we set
N
�
0; .r � s/I0

� D �sr. Using the Jensen inequality and the Fubini theorem we get

Z

RC

ds
Z

Rd
juxixj.s; x/jpdx

D
Z

RC

ds
Z

Rd

ˇ
ˇ
ˇ
ˇE
h Z 1

s
dr
Z

Rd
fxixj.r; x C y C br � bs/�sr.dy/

iˇˇ
ˇ
ˇ

p

dx

� E

h Z

RC

ds
Z

Rd

ˇ
ˇ
ˇ

Z 1

s
dr
Z

Rd
fxixj.r; x C y C br � bs/�sr.dy/

ˇ
ˇ
ˇ
p
dx
i
:

Now in the last line of the previous formula we change variable in the integral over
R

d with respect to the x-variable; we obtain
Z

RC

ds
Z

Rd
juxixj.s; x/jpdx (33)

� E

h Z

RC

ds
Z

Rd

ˇ
ˇ
ˇ

Z 1

s
dr
Z

Rd
fxixj.r; z C y C br/�sr.dy/

ˇ
ˇ
ˇ
p
dz
i
:

To estimate the last term we fix ! 2 ˝ and consider the function

g!.t; x/ D f .t; x C bt.!//; .t; x/ 2 R
dC1:

The function g! is bounded, with compact support on R
dC1 and such that g!.t; �/ 2

C1
0 .R

d/, t 2 R.
By Lemma 2.1 we know that there exists M0 D M0.d; p; p0/ > 0 such that, for

any ! 2 ˝ ,

Z

RC

ds
Z

Rd

ˇ
ˇ
ˇ

Z 1

s
dr
Z

Rd
fxixj

�
r; z C y C br.!/

�
�sr.dy/

ˇ
ˇ
ˇ
p
dz

D
Z

RC

ds
Z

Rd

ˇ
ˇ
ˇ

Z 1

s
dr
Z

Rd
@2xixj

g!
�
r; z C y

�
�sr.dy/

ˇ
ˇ
ˇ
p
dz � Mp

0 kg!kp
Lp :

Using also (33) we find

Z

RC

ds
Z

Rd
juxixj.s; x/jpdx � Mp

0 E

h Z

R

ds
Z

Rd
jg!.s; x/jpdx

i

D Mp
0 E

h Z

R

ds
Z

Rd
jf .s; x C bs/jpdx

i

D Mp
0

Z

R

ds
Z

Rd
jf .s; z/jpdz:

The proof is complete. ut
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3 Lp-Estimates Involving Ornstein-Uhlenbeck Operators

Let A D .aij/ be a given real d 
 d-matrix. We consider the following Ornstein-
Uhlenbeck type operator

L0u.t; x/ D
dX

i;jD1
cij.t/uxixj.t; x/C

dX

i;jD1
aijxj uxi.t; x/

D Tr.c.t/D2
xu.t; x//C hAx;Dxu.t; x/i;

.t; x/ 2 R
dC1; u 2 C1

0 .R
dC1/. This is a kind of perturbation of L given in (21) by

the first order term hAx;Dxu.t; x/i which has linear coefficients.
We will extend Corollary 2.1 to cover the parabolic equation

ut.t; x/C L0u.t; x/ D f .t; x/ (34)

on R
dC1. We will assume Hypothesis 2.1 and also

Hypothesis 3.1 Let p0 as in Hypothesis 2.1. Define Fp0 ' R
p0 as the linear

subspace generated by fe1; : : : ; ep0g. Let Fp0 be the linear subspace generated by
fep0C1; : : : ; edg if p0 < d (when p0 D d, Fp0 D f0g). We suppose that

A.Fp0/ � Fp0 ; A.Fp0 / � Fp0 : (35)

Recall that given a d 
 d-matrix B, kBk and Tr.B/ denote, respectively, the operator
norm and the trace of B. In the next result we will use that there exists ! > 0 and
� > 0 such that

ketAk � �e!jtj; t 2 R; (36)

where etA is the exponential matrix of tA. Note that the constant M0 below is the
same given in (22).

Theorem 3.1 Assume Hypotheses 2.1 and 3.1. Let T > 0 and set ST D .�T;T/ 

R

d. Suppose that u 2 C1
0 .ST/. For any p 2 .1;1/, i; j D 1; : : : ; p0,

kuxixjkLp.RdC1/ � M1.T/

�
kut C L0ukLp.RdC1/I M1.T/ D c.d/M0�

4e4T!C 2T
p jTr.A/j

:

(37)

Proof We fix T > 0 and use a change of variable similar to that used in page
100 of [6]. Define v.t; y/ D u.t; etAy/, .t; y/ 2 R

dC1. We have v 2 C1
0 .R

dC1/,
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u.t; x/ D v.t; e�tAx/ and

ut.t; x/C L0u.t; x/

D vt.t; e
�tAx/ � hDyv.t; e

�tAx/;Ae�tAxi C Tr
�
e�tAc.t/e�tA�

D2
yv.t; e

�tAx/
�

ChDyv.t; e
�tAx/;Ae�tAxi

D vt.t; e
�tAx/C Tr

�
e�tAc.t/e�tA�

D2
yv.t; e

�tAx/
�
:

It follows that

ut.t; e
tAy/C L0u.t; e

tAy/ D vt.t; y/C Tr
�
e�tAc.t/e�tA�

D2
yv.t; y/

�
: (38)

Now we have to check Hypothesis 2.1. We first define c0.t/, t 2 R,

c0.t/ D e�tAc.t/e�tA�

; t 2 Œ�T;T�; (39)

c0.t/ D e�TAc.T/e�TA�

; t � T; c0.t/ D eTAc.�T/eTA�

; t � �T:

Since v 2 C1
0 .ST/ we have on R

dC1

vt.t; y/C Tr
�
e�tAc.t/e�tA�

D2
yv.t; y/

� D vt.t; y/C Tr
�
c0.t/D

2
yv.t; y/

�

and so it is enough to check that c0.t/ verifies (19). Moreover, by (39) it is enough
to verify (19) for t 2 Œ�T;T�. We have

hc0.t/�; �i D hc.t/e�tA�

�; e�tA�

�i � � jI0e�tA�

�j2:

By (35) we deduce that Fp0 and Fp0 are both invariant for A�. It follows easily that

I0e
sA�

� D esA�

I0�; � 2 R
d; s 2 R: (40)

Using this fact we find for t 2 Œ�T;T�, � 2 R
d,

jI0�j2 D jI0etA�

e�tA�

�j2 D jetA�

I0e
�tA�

�j2 � �2e2T! jI0e�tA�

�j2

and so

�jI0�j2 � ��2e2T! jI0e�tA�

�j2 � �2e2T! hc0.t/�; �i;
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which implies ���2e�2T! jI0�j2 � hc0.t/�; �i. By Corollary 2.1 and (38) we get, for
any i; j D 1; : : : p0,

kvyiyjkLp D khD2
yv.�/ei; ejikLp � M0 �

2e2T!

�
kvt C Tr.c0.t/D

2
yv/kLp (41)

D M0 �
2e2T!

�
kut.�; e� A�/C L0u.�; e� A�/kLp � M0�

2e2T!

�
e

T
p jTr.A/j kut C L0ukLp :

Note that

hD2
yv.t; y/I0ei; I0eji D hD2

yv.t; y/ei; eji D hetA�

D2
xu.t; etAy/etAei; eji

and so I0D2
yv.t; y/I0 D etA�

I0D2
xu.t; etAy/I0etA, t 2 R; y 2 R

d. Indicating by R
p0 ˝

R
p0 the space of all real p0 
 p0-matrices, we find

kI0D
2
yv I0kLp.RdC1IRp0˝Rp0 / � e� T

p jTr.A/j ke� A�

I0D
2
xu I0e

� AkLp.RdC1IRp0˝Rp0 /:

Since, for .t; x/ 2 R
dC1,

kI0D
2
xu.t; x/ I0k � �2e2T! ket A�

I0D
2
xu.t; x/ I0e

tAk

by (41) we deduce

kI0D
2
xu I0kLp.RdC1IRp0˝Rp0 / � c.d/

M0

�
�4e4T! e

2T
p jTr.A/j kut C L0ukLp

which gives (37). The proof is complete. ut
Example 3.1 The equation

ut.t; x; y/C .1C et/uxx.t; x; y/C tuxy.t; x; y/C t2uyy.t; x; y/C yuy.t; x; y/ D f .t; x; y/;
(42)

.t; x; y/ 2 R
3, verifies the assumptions of Theorem 3.1 with p0 D 1 and so

estimate (37) holds for uxx.

Remark 3.1 Assumption (35) does not hold for the degenerate hypoelliptic opera-
tors considered in [3]. To see this let us consider the following classical example of
hypoelliptic operator (cf. [10, 12])

ut.t; x; y/C uxx.t; x; y/C xuy.t; x; y/ D f .t; x; y/; (43)

.t; x; y/ 2 R
3. In this case p0 D 1 and A D

�
0 0

1 0

�

. It is clear that (35) does not hold

in this case. Indeed we can not recover the Lp-estimates in [3].
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As an application of the previous theorem we obtain elliptic estimates for
non-degenerate Ornstein-Uhlenbeck operators A . These estimates have been first
proved in [20]. Differently with respect to [20] in the next result we can show the
explicit dependence of the constant C1 in (46) from the ellipticity constant �.

Let

A u.x/ D Tr.Q D2u.x//C hAx;Du.x/i; (44)

x 2 R
d; u 2 C1

0 .R
d/, where A is a d 
d matrix and Q is a symmetric positive define

d 
 d-matrix such that

hQ�; �i � �j�j2; � 2 R
d; (45)

for some � > 0:

Corollary 3.1 Let us consider (44) under assumption (45). For any w 2 C1
0 .R

d/,
p 2 .1;1/, i; j D 1; : : : ; d, we have (the constant M1.1/ is given in (37))

kwxixjkLp.Rd/ � c.p/M1.1/

�

�kA wkLp.Rd/ C kwkLp.Rd/

�
: (46)

Proof We will deduce (46) from (37) in S1 D .�1; 1/
 R
d with p0 D d.

Let  2 C1
0 .�1; 1/ with

R 1
�1  .t/dt > 0. We define, similarly to Sect. 1.3 of [3],

u.t; x/ D  .t/w.x/:

Since ut CL0u D  0.t/w.x/C .t/A w.x/, applying (37) to u we easily get (46). ut
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Local Solvability of Nonsmooth Hörmander’s
Operators

Marco Bramanti

Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday

Abstract This note describes the results of a joint research with L. Brandolini,
M. Manfredini and M. Pedroni, contained in Bramanti et al. [Fundamental solutions
and local solvability of nonsmooth Hörmander’s operators. Mem. Am. Math.
Soc., in press. http://arxiv.org/abs/1305.3398], with some background. We consider
operators of the form L D Pn

iD1 X2i C X0 in a bounded domain of Rp (p � n C 1)
where X0;X1; : : : ;Xn are nonsmooth Hörmander’s vector fields of step r, such that
the highest order commutators are only C1;˛ . Applying Levi’s parametrix method
we construct a local fundamental solution � for L, provide growth estimates for �
and its first and second order derivatives with respect to the vector fields and deduce
the local solvability of L in C2;ˇ

X spaces (for any ˇ < ˛).

Keywords Fundamental solution • Hölder estimates • Nonsmooth Hörmander’s
vector fields • Solvability
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1 Introduction and Main Results

In the study of elliptic-parabolic degenerate partial differential operators, an impor-
tant class is represented by Hörmander’s operators

L D
nX

iD1
X2i C X0
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built on real smooth vector fields

Xi D
pX

jD1
bij .x/ @xj

(i D 0; 1; 2; : : : ; nI n < p) defined in a domain˝ � R
p.

Let us assume for the moment that bij 2 C1 .˝/ and the vector fields Xi satisfy
Hörmander’s condition, i.e: if we define the commutator of two vector fields

ŒX;Y� D XY � YX;

then the system consisting in the Xi’s, their commutators, the commutators of the
Xi’s with their commutators, and so on up to some step r, generates Rp at any point
of ˝ .

A famous theorem by Hörmander [10] states that under these assumptions the
operator L is hypoelliptic in ˝:

Lu D f in ˝ (in distributional sense), A � ˝; f 2 C1 .A/ H) u 2 C1 .A/ :

After this result, several fundamental properties have been proved, both about
systems of Hörmander’s vector fields and their metric, and about second order
Hörmander’s operators. In the first group of results, let us quote the doubling
property of the Lebesgue measure with respect to metric balls (Nagel et al. [17]);
Poincaré’s inequality with respect to the vector fields (Jerison [9]). In the second
group of results, we recall the a priori estimates (in Lp or C˛) on XiXju, in terms
of Lu and u proved by Folland [7], Rothschild and Stein [19]; estimates about the
fundamental solution of L or @t � L ([17], Sanchez-Calle [20]).

It is natural to ask whether part of this theory still holds for a family of vector
fields possessing just the right number of derivatives required to check Hörmander’s
condition. Actually, a quite extensive literature exists, by now, regarding the
geometry of nonsmooth Hörmander’s vector fields. However, if we restrict our
attention to the research about systems of nonsmooth Hörmander’s vector fields
of general structure, only supposed to satisfy Hörmander’s condition at some step
r, the literature becomes much narrower. In this note I am going to describe some
results of this type obtained jointly with Brandolini et al. in [6]. This paper is the
third step in a larger project started by three of us in [4, 5], and the first one devoted
to the study of second order Hörmander’s operators built with nonsmooth vector
fields of general form, and also allowing the presence of a drift term of weight two.
Other results in this direction of research have been obtained in some papers by
Montanari and Morbidelli [14–16] and by Karmanova-Vodopyanov (see [11, 21]
and the references therein).

Our framework is the following. Let X0;X1; : : : ;Xn be a system of real vector
fields, defined in a bounded domain ˝ � R

p such that for some integer r �
2 and ˛ 2 .0; 1� the coefficients of X1;X2; : : : ;Xn belong to Cr�1;˛ .˝/ while the
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coefficients of X0 belong to Cr�2;˛ .˝/. Here Ck;˛ .˝/ stands for the classical space
of functions with Hölder continuous Cartesian derivatives up to the order k. If r D 2;

we take ˛ D 1. We assume that X0;X1; : : : ;Xn satisfy Hörmander’s condition of
weighted step r in ˝ , where the weight of a commutator


Xi1 ;


Xi2 ;


: : :

Xij�1 ;Xij

����

is defined as the sum of the weights of the vector fields Xik .k D 1; 2; : : : ; j/, with
X1;X2; : : : ;Xn having weight one while X0 has weight two.

In a few words, our main results are the following. We show how to build a local
fundamental solution � for the operator L, prove natural bounds on the growth of � ,
Xk� , XiXj� (i; j D 1; 2; : : : ; n, k D 0; 1; : : : ; n) and the local Hölder continuity of
XiXj� , and we use these facts to prove a local solvability result: every point x 2 ˝

possesses a neighborhood U .x/ such that for every ˇ 2 .0; ˛/ and f 2 Cˇ
X .U/ there

exists a solution u 2 C2;ˇ
X;loc .U/ to Lu D f in U. For some results of ours we require

the stronger assumption Xi .i D 1; 2; : : : ; n/ in Cr;˛ .˝/ and X0 in Cr�1;˛ .˝/. (See
Remark 4.1).

2 The Classical Framework

To describe the general line and strategy of this paper it is necessary to recall first
the strategy which has been followed in the classical case, as well as some of the
results proved in the nonsmooth case in the previous two papers [4, 5], which the
paper [6] under discussion is built on.

2.1 Homogeneous Groups

The simplest situation in which a priori estimates on XiXju have been proved for
classical Hörmander’s operators is that of homogeneous groups.

A homogeneous group in R
N is a Lie group G D �

R
N ; ı� (which we think as

“translations”) for which 0 is the identity and the inverse of u is �u, endowed with
a family of automorphisms (“dilations”)

D.�/ .u1; u2; : : : ; uN/ D .�˛1u1; �
˛2u2; : : : ; �

˛N uN/ .

We can define in G a homogeneous norm k�k letting

kuk D r ,
ˇ
ˇ
ˇ
ˇD

�
1

r

�

u

ˇ
ˇ
ˇ
ˇ D 1,
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where j�j is the Euclidean norm and k0k D 0: The Lebesgue measure in R
N is

biinvariant with respect to ı and

jB .u; r/j D jB .u; 1/j rQ 8u 2 G; r > 0;

where Q D PN
iD1 ˛i is called homogeneous dimension of the group.

We assume there exists a basis Y0;Y1; : : : ;Yq of the Lie algebra of left invariant
vector fields, Y0 homogeneous of degree 2, the Yi’s of degree 1. Under these
assumptions, the operator

L D
nX

iD1
Y2i C Y0

is hypoelliptic by Hörmander’s theorem, left invariant and homogeneous of degree
two. Its transpose is simply

L� D
nX

iD1
Y2i � Y0;

and shares the same properties of L. Thanks to these facts, Folland proved in [7] the
existence of a left invariant fundamental solution � , homogeneous of degree 2� Q,
such that

f .v/ D
Z

RN
�
�

u�1 ı v� Lf .u/ du D L
Z

RN
�
�

u�1 ı v� f .u/ du

for any f 2 C1
0

�
R

N
�
; v 2 R

N .
The good properties of the kernel � allow to apply a suitable general theory of

singular integrals in a way which is strictly analogous to the one used for classical
elliptic operators, proving local a priori Lp estimates on XiXju and X0u in terms of
u;Lu;Xiu (i; j D 1; 2; : : : ; n).

2.2 Lifting and Approximation

Let us now come to the case of general Hörmander’s vector fields, that is without an
underlying structure of homogeneous groups. This case has been dealt by Rothschild
and Stein in [19]. The goal is to approximate locally, in a suitable sense, a general
family of Hörmander’s vector fields by another family which is homogeneous
and left invariant with respect to a structure of homogeneous group, in order to
exploit the previous theory developed by Folland. However, it turns out that this
approximation is not possible for a completely general system of Hörmander’s
vector fields, but it is possible for a family satisfying an extra property. To bypass
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this problem without losing generality, Rothschild and Stein then implement a two-
step procedure. First the vector fields Xi are “lifted” (in a neighborhood of any
fixed point) to a higher dimensional space RpCm getting new vector fields QXi, which
project on the original Xi, that is

QXi D Xi C
mX

jD1
uij .x; h/

@

@hj
;

the QXi’s still fulfil Hörmander’s condition, and also satisfy the required extra
property: they are free up to step r; which means that all their commutators
up to step r do not satisfy linear relations others than those which follow from
anticommutativity and Jacobi identity.

As a second step, the QXi’s are locally approximated by homogeneous left invariant
vector fields Yi on a suitable homogeneous group G of the kind we have described
above. The description of this approximation is quite technical, but we cannot avoid
it completely:

Theorem 2.1 (Approximation) There exist a homogeneous group G on R
N,

N D p C m, a family of homogeneous left invariant Hörmander’s vector fields
Y0;Y1;Y2; : : : ;Yn on G and a neighborhood V of .x0; 0/ in R

N such that for any
� 2 V there exists a smooth diffeomorphism �� from a neighborhood of � onto
a neighborhood of the origin in G, smoothly depending on �, and for any smooth
function f W G ! R; i D 0; 1; : : : ; n

QXi
�
f ı��

�
.�/ D �

Yi f C R�i f
� �
�� .�/

� 8�; � 2 V

where R�i are smooth vector fields, smoothly depending on �, of weight � 0 for
i D 1; 2; : : : ; n; � �1 for i D 0.

The assertion about the weight means that, for small u,

ˇ
ˇR�i � .u/

ˇ
ˇ � c

kukQ�2 while jYi� .u/j � c

kukQ�1 for i D 1; 2; : : : ; n

ˇ
ˇR�0� .u/

ˇ
ˇ � c

kukQ�1 while jY0� .u/j � c

kukQ :

Moreover, the map �� .�/ enjoys suitable properties, which however we shall
not recall here. The line followed by Rothschild-Stein is then the following: they
use the function �

�
�� .�/

�
as a parametrix of the lifted operator: exploiting this

kernel, which is a good local approximation of the fundamental solution of the lifted
operator

QL D
nX

iD1
QX2i C QX0,
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they write representation formulas of u and QXi QXju in terms of QLu; u and QXiu. From
these representation formulas and a suitable abstract theory of singular integrals, Lp

a priori estimates are derived for QXi QXju and then, by projection on the original space
of variables, for XiXju.

3 Attacking the Problem: The Nonsmooth Background

In [4] we have built in the nonsmooth context an analogous kit of tools consisting
in “lifting, approximation and basic properties of the map �”. Namely: the lifting
theorem is perfectly analogous to the smooth one, with the new set of vector fields

QXi D Xi C
mX

jD1
uij .x; h/

@

@hj

still satisfying Hörmander’s condition at step r; the QXi’s have the same regularity of
the Xi’s; the approximation formula takes the same form

QXi
�
f ı��

�
.�/ D �

Yif C R�i f
� �
�� .�/

� 8�; � 2 V

where the Yi are homogeneous left invariant (smooth) vector fields on G; the R�i are
Cr�pi;˛ vector fields of weight � ˛ � pi (where p0 D 2, pi D 1 for i D 1; 2; : : : ; n),
that is

ˇ
ˇR�i � .u/

ˇ
ˇ � c

kukQ�1�˛ while jYi� .u/j � c

kukQ�1
ˇ
ˇR�0� .u/

ˇ
ˇ � c

kukQ�˛ while jY0� .u/j � c

kukQ :

Moreover, the coefficients of the R�i ’s and their first order derivatives depend on
� in a C˛ way; the map �� .�/ is smooth in � and C˛ in �, and satisfies suitable
other properties which we do not recall here. The important difference with respect
to the classical situation is therefore the lack of smoothness in the dependence on �
of both the map �� .�/ and the “remainder vector fields” R�i . This fact will have an
important drawback, as we will see.

Let us consider the function �
�
�� .�/

�
, where � is Folland’s homogeneous

fundamental solution of the left invariant operator
Pn

iD1 Y2i C Y0. This kernel
should be a parametrix for the operator QL. Note however that this function is now
smooth in � but just C˛ in �: a strong asymmetry in the roles of �; �. On the other
hand, Rothschild-Stein’s procedure to write by this parametrix good representation
formulas for QXi QXju heavily relies on the possibility of differentiating the parametrix
with respect to both variables, what we cannot do, due to the lack of regularity of
�� .�/ with respect to the “bad” variable �.
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So we apparently are stuck: after rebuilding Rothschild-Stein’s set of tools in the
nonsmooth case, we cannot use it as they do. The idea is then to exploit a different
technique, compatible with the different degree of regularity of �

�
�� .�/

�
with

respect to � and �. This technique is the parametrix method devised by Levi [13]
to build fundamental solutions for elliptic equations or systems, and later extended
to uniformly parabolic operators (see e.g. [8]). We recall that this method was first
adapted to hypoelliptic ultraparabolic operators of Kolmogorov-Fokker-Planck type
in [18], exploiting the knowledge of an explicit expression for the fundamental
solution of the “frozen” operator, which had been constructed in [12]. It was later
adapted in [1] to a general class of operators structured on homogeneous left
invariant (smooth) vector fields on Carnot groups, for which no explicit fundamental
solution is known in general, and in [3] to the more general context of arbitrary
(smooth) Hörmander’s vector fields.

Our strategy is the following: instead of using the parametrix for writing a
representation formula for second order derivatives (what we cannot do in the
nonsmooth case) and then using the representation formula for proving a priori
estimates, we use the parametrix to build an exact (local) fundamental solution,
and then use this to produce a local solution to the equation having a natural degree
of smoothness.

However, if we applied the method starting with �
�
�� .�/

�
, we would build a

local fundamental solution Q� for QL, in the space of lifted variables; but starting with
Q� there is no easy way to build a local fundamental solution for L: integrating Q� with
respect to the lifted variables just produces a parametrix for L.

So, we have to reverse the order of the procedures: first, starting with �
�
�� .�/

�

we define the kernel

P .x; y/ D
Z

Rm

�Z

Rm
�
�
�.y;k/ .x; h/

�
' .h/ dh

�

' .k/ dk;

where ' 2 C1
0 .Rm/ is a fixed cutoff function, D 1 near 0. Then, starting with this

P, “candidate parametrix” for L, we want to implement the Levi method in the space
of the original variables, to produce a local fundamental solution for L.

This however is not an easy task, because in this space we do not have a simple
geometry like in the space of lifted variables: the volume of metric balls does not
behave like a fixed power of the radius, there is not a number having the meaning of
“homogeneous dimension”. In order to measure the growth of the kernels involved
in the procedure, we have to use the control distance induced by the vector fields, we
need to know an estimate for the volume of metric balls, and a comparison between
volumes of balls in the lifted and original space. Briefly: we need a nonsmooth
analog of the theory developed by Nagel et al. in [17] for general Hörmander’s
vector fields with drift. This theory is contained in the paper [5]. Let us recall a few
facts from this paper.
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The subelliptic metric, analogous to that introduced by Nagel-Stein-Wainger, is
defined as follows:

Definition 3.1 For any ı > 0; let C .ı/ be the class of absolutely continuous
mappings ' W Œ0; 1� �! ˝ such that

' 0 .t/ D
X

jIj�r

aI .t/
�
XŒI�
�
'.t/

a.e.

with aI W Œ0; 1� ! R measurable functions, jaI .t/j � ıjIj:Then:

d .x; y/ D inf fı > 0 W 9' 2 C .ı/ with ' .0/ D x; ' .1/ D yg :

The following basic result can be proved also in this case:

Theorem 3.1 (Doubling Condition) Under the previous assumptions, for any
domain ˝ 0 b ˝; there exist positive constants c; �0; depending on ˝;˝ 0 and the
Xi’s; such that

jB .x; 2�/j � c jB .x; �/j 8x 2 ˝ 0; � < �0:

We also prove a sharp estimate on the volume of metric balls. A consequence of
this estimate is the couple of bounds:

c1

�
R

r

�p

� jB .x;R/j
jB .x; r/j � c2

�
R

r

�Q

8r;R with �0 > R > r > 0:

The dimensional gap between p (Euclidean dimension) and Q (homogeneous
dimension of the locally approximating group) causes a lot of problems in imple-
menting the Levi method. In contrast with this, note that

c1r
Q � ˇ

ˇ QB .�; r/ˇˇ � c2r
Q:

We can now also give the definitions of the function spaces defined by the vector
fields, which will be used in the following.

Definition 3.2 For any ˇ 2 .0; 1/ we will denote by Cˇ
X .U/ the space of Hölder

continuous functions of order ˇ with respect to the distance d.

By known results the following relations between Euclidean and subelliptic
Hölder spaces holds:

f 2 C˛ .U/ ) f 2 C˛
X .U/

f 2 C˛
X .U/ ) f 2 C˛=r .U/

where r is the step of the Lie algebra generated by the Xi’s (i.e., r is the integer
appearing in our assumptions).



Local Solvability of Nonsmooth Hörmander’s Operators 149

Definition 3.3 Let C2
X .U/ be the space of continuous functions on U possessing

in U continuous derivatives with respect to Xi (i D 0; 1; 2; : : : ; n) and second
derivatives XiXj (i; j D 1; 2; : : : ; n). For any ˇ 2 .0; 1/, let C2 ;ˇ

X .U/ be the space of
C2

X .U/ functions u such that Xku, XiXju (k D 0; 1; : : : ; n, i; j D 1; 2; : : : ; n) belong

to Cˇ
X .U/. We will also use the symbols Cˇ

X;0 .U/ ;C
2;ˇ
X;0 .U/ for the analogous spaces

of compactly supported functions.

4 The Parametrix Method

Let us recall what the parametrix method is. We look for a fundamental solution �
for L (that is, such that L .� .�; y// D �ıy) of the form

� .x; y/ D P .x; y/C J .x; y/ , with

J .x; y/ D
Z

U
P .x; z/ ˚ .z; y/ dz

and ˚ .z; y/ to be determined. In other words, the fundamental solution is sought as
a small integral perturbation of the parametrix.

Computing, for x ¤ y;

0 D L .� .�; y// D L .P .�; y//C L .J .�; y//

and letting Z1 .x; y/ D L .P .�; y// .x/ ; we find

�Z1 .x; y/ D L .J .�; y// .x/ D L
Z

U
P .x; z/ ˚ .z; y/ dz

D
Z

U
Z1 .x; z/ ˚ .z; y/ dz �˚ .x; y/ ;

whence ˚ .z; y/ satisfies the integral equation

˚ .x; y/ D Z1 .x; y/C
Z

U
Z1 .x; z/ ˚ .z; y/ dz

and can be therefore computed by Neumann series,

˚ .x; y/ D
1X

jD1
Zj .x; y/ , with

ZjC1 .x; y/ D
Z

U
Z1 .x; z/ Zj .z; y/ dz:
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So far, all this stuff is purely formal. To make this procedure rigorous we need,
in sequence:

(a) To compute Z1 .x; y/ D L .P .�; y// .x/ and find an upper bound.
(b) To bound iteratively ZjC1 .x; y/.
(c) To bound ˚ .z; y/ (getting the series converge for U small enough).
(d) To bound J .x; y/.
(e) To bound � .x; y/.

Let me give just an idea of the proof of step (a) in this procedure, to show how
several tools previously developed in the nonsmooth context are needed.

Let us start noting the following bounds:

ˇ
ˇ�YiYj�

� �
�� .�/

�ˇˇ � c



�� .�/




Q , while

ˇ
ˇ
ˇ
�

R�i R�j �
� �
�� .�/

�ˇˇ
ˇ � c




�� .�/




Q�˛ :

Then, for x ¤ y, the approximation theorem allows to write

Z1 .x; y/ D LP .x; y/ D
Z

Rm

Z

Rm

QL � ��.y;k/ .x; h/
�
' .h/

�
dh ' .k/ dk

D
Z

Rm

Z

Rm

�ı.y;k/ C .remainders/
� �
�.y;k/ .x; h/

�
' .h/ dh ' .k/ dk

since, for x ¤ y, �.y;k/ .x; h/ ¤ 0; hence ı.y;k/
�
�.y;k/ .x; h/

� D 0;

D
Z

Rm

Z

Rm


.remainders/

�
�.y;k/ .x; h/

��
' .h/ dh ' .k/ dk, where:

ˇ
ˇ.remainders/

�
�.y;k/ .x; h/

�ˇˇ � c



�� .�/




Q�˛ .

Therefore

jZ1 .x; y/j D jLP .x; y/j �
Z

Rm

Z

Rm

 .h/



�� .�/




Q�˛ dh ' .k/ dk.

So far, we have used the (nonsmooth) Rothschild-Stein-like machinery. To
bound the last integral we have to use the (nonsmooth) Nagel-Stein-Weinger-like
machinery. The local doubling property and the comparison between the volumes
of lifted and unlifted balls give the following:
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Lemma 4.1 For every ˇ 2 R there exists c > 0 such that for any x; y 2 U .x0/,

Z

Rm

Z

Rm

 .h/



�.y;k/ .x; h/




Q�ˇ dh ' .k/ dk � c

Z R

d.x;y/

rˇ�1

jB .x; r/jdr:

The function at the right hand side of the last inequality plays a central role in
our estimates:

�ˇ .x; y/ D
Z R

d.x;y/

rˇ�1

jB .x; r/jdr:

To visualize its size, note that we have the following bounds (which however are
not equivalences!):

�ˇ .x; y/ �

8
ˆ̂
<

ˆ̂
:

c
d .x; y/ˇ

jB .x; d .x; y//j for ˇ < p

c
d .x; y/p

jB .x; d .x; y//jRˇ�p for ˇ > p:

For instance,

jZ1 .x; y/j D jLP .x; y/j �
Z

Rm

Z

Rm

 .h/



�� .�/




Q�˛ dh ' .k/ dk

� c�˛ .x; y/ � c
d .x; y/˛

jB .x; d .x; y//j which is locally integrable,

while, by comparison, we have

jP .x; y/j � c�2 .x; y/ I
jXiP .x; y/j � c�1 .x; y/ for i D 1; 2; : : : ; nI

ˇ
ˇXjXiP .x; y/

ˇ
ˇ ; jX0P .x; y/j � c�0 .x; y/ for i; j D 1; 2; : : : ; n:

Having bounded jZ1 .x; y/j with a locally integrable kernel satisfying a quanti-
tative size condition is the starting point for iterative computations which allow to
carry out the parametrix method. Skipping many other facts, let us now jump to the
statement of the first main result of ours:

Theorem 4.1 (Existence of Fundamental Solution) The functions � .x; y/ D
P .x; y/C J .x; y/ and Xi� .x; y/ (i D 1; 2; : : : ; n) are well defined and continuous in
the joint variables x; y 2 U; x ¤ y, and satisfy the following bounds:

j� .x; y/j � c�2 .x; y/ I
jXi� .x; y/j � c�1 .x; y/ :
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Moreover, � .�; y/ is a weak solution to L� .�; y/ D �ıy, that is:

Z

U
� .x; y/ L� .x/ dx D � .y/ 8 2 C1

0 .U/ ; y 2 U:

Finally, if X0 	 0, then 9" > 0 such that

� .x; y/ > 0 for d .x; y/ < ":

Remark 4.1 All the results proved so far hold under the following assumptions Xi 2
Cr�1;˛ .˝/ ;X0 2 Cr�2;˛ .˝/ for some ˛ 2 .0; 1�.

Henceforth we will make instead the stronger assumptions Xi 2 Cr;˛ .˝/ ;X0 2
Cr�1;˛ .˝/ (if r D 2 then ˛ D 1).

The results stated in the previous theorem are not yet satisfying: we want to know
further regularity results for the fundamental solution. Our next step is the following:

Theorem 4.2 (Second Derivatives of the Fundamental Solution) For i; j D
1; 2; : : : ; n and x; y 2 U; x ¤ y, the following assertions hold true:

(a) 9 XjXiJ .x; y/, X0J .x; y/, XiXj� .x; y/, X0� .x; y/ continuous in the joint variables
for x ¤ y; in particular,

� .�; y/ 2 C2
X .U n fyg/ for any y 2 U.

(b) 8" 2 .0; ˛/, U0 b U 9c > 0 such that 8x 2 U0 and y 2 U;

ˇ
ˇXjXiJ .x; y/

ˇ
ˇ ; jX0J .x; y/j � c

d .x; y/˛�"

jB .x; d .x; y//j
ˇ
ˇXjXi� .x; y/

ˇ
ˇ ; jX0� .x; y/j � c

1

jB .x; d .x; y//j :

Let us give just an idea of the problems involved in the proof. Recall that

� .x; y/ D P .x; y/C J .x; y/

D P .x; y/C
Z

U
P .x; z/ ˚ .z; y/ dz:

Hence, in order to compute and bound XiXj� , the problem is the computation of the
singular integral

Xi

Z

U
XjP .x; z/ ˚ .z; y/ dz:
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This computation is made possible by a Hölder type estimate on the function
˚ .�; y/:
Theorem 4.3 For every " 2 .0; ˛/ there exists c > 0 such that

j˚ .x1; y/� ˚ .x2; y/j � cd .x1; x2/
˛�" �" .x1; y/

for any x1; x2; y 2 U with x1 ¤ x2; d .x1; y/ � 3d .x1; x2/.

Exploiting this Hölder bound we are able to prove the following:

XjXiJ .x; y/ D
Z

U

Z

Rm

Z

Rm

�
YjD1�

� �
�.z;k/ .x; h/

�
a0 .h/ b0 .k/ dhdk



 Œ˚ .z; y/ �˚ .x; y/� dz C c .x/ ˚ .x; y/C
Z

U
R2 .x; z/ ˚ .z; y/ dz

with R2 locally integrable kernel. This representation formula is the starting point
for several computations.

In turn, proving the Hölder bound on ˚ .�; y/ requires a more regular dependence
on the parameter for the “remainder vector fields” appearing in Rothschild-Stein-
type approximation formula, and better properties of the map�� .�/ with respect to
the “bad variable” �. This is made possible by a careful analysis of the properties of
this map�� .�/.

We can now refine the previous analysis of the second derivatives of our local
fundamental solution and prove a sharp bound of Hölder type on XiXj� :

Theorem 4.4 For every " 2 .0; ˛/ and U0 b U there exists c > 0 such that for any
x1; x2 2 U0, y 2 U with d .x1; y/ � 2d .x1; x2/, i; j D 1; 2; : : : ; n,

ˇ
ˇXiXjP .x1; y/� XiXjP .x2; y/

ˇ
ˇ � c

d .x1; x2/

d .x1; y/

1

jB .x1; d .x1; y//j
ˇ
ˇXiXjJ .x1; y/� XiXjJ .x2; y/

ˇ
ˇ � c

�
d .x1; x2/

d .x1; y/

�˛�" d .x1; y/
˛�"

jB .x1; d .x1; y//j
ˇ
ˇXiXj� .x1; y/ � XiXj� .x2; y/

ˇ
ˇ � c

�
d .x1; x2/

d .x1; y/

�˛�"
1

jB .x1; d .x1; y//j

jX0� .x1; y/� X0� .x2; y/j � c

�
d .x1; x2/

d .x1; y/

�˛�"
1

jB .x1; d .x1; y//j :

In particular, for every " 2 .0; ˛/ and y 2 U;

� .�; y/ 2 C2;˛�"
X;loc .U n fyg/ :
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5 Local Solvability

We can now come to another of the main results in the paper:

Theorem 5.1 (Local Solvability in C2
X) The function � is a solution to the equation

L� .�; y/ D 0 in U n fyg , 8y 2 U:

Moreover, 8ˇ > 0; f 2 Cˇ
X .U/, the function

w .x/ D �
Z

U
� .x; y/ f .y/ dy (1)

is a C2
X .U/ solution to the equation Lw D f in U:

Also, if X0 	 0, choosing U small enough, we have the following positivity
property: if f 2 Cˇ

X .U/ ; f � 0 in U, then the equation Lw D f has at least a
C2

X .U/ solution w � 0 in U.

The proof amounts to showing that the function w assigned by (1) is actually
C2

X .U/, since this easily implies it solves the equation.
The by-product of the proof of this theorem is a convenient representation

formula for the derivatives XiXjw, which is the starting point for the proof of Hölder
continuity of XiXjw. In order to simplify this presentation, I write this formula in a
simplified, schematic, way:

Corollary 5.1 8x 2 B
�
x; R

2

�
and i; j D 1; 2; : : : ; n; we have:

XjXiw .x/ D c .x/ f .x/C
Z

U
k0 .x; y/ f .y/ dyC

C
Z

B.x;R/
k1 .x; z/ b .z/ f .z/ dz C

Z

B.x;R/
k2 .x; z/ Œf .z/ � f .x/� b .z/ dz

where c 2 C˛
X

�
B
�
x; R

2

��
, k0 is a bounded kernel, k1 is a fractional integral kernel,

k2 is a singular integral kernel, b a cutoff function.

Then, a careful application of suitable abstract theories of singular and fractional
integrals on locally doubling spaces allows to prove Hölder continuity of XiXjw. We
will give some more details about this in the next section. Let us first conclude the
description of the main line of the paper. The final goal is to prove the following:

Theorem 5.2 For every ˇ 2 .0; ˛/ and f 2 Cˇ
X .U/, let w 2 C2

X .U/ be the solution

to Lw D f in U assigned by (1). Then w 2 C2;ˇ
X;loc .U/. More precisely, for every

U0 b U there exists c > 0 such that

kwk
C
2;ˇ
X .U0/

� c kf k
C
ˇ
X .U/

:



Local Solvability of Nonsmooth Hörmander’s Operators 155

Corollary 5.2 (C2;ˇ
X Local Solvability) For every ˇ 2 .0; ˛/ the operator L is

locally C2;ˇ
X solvable in ˝ in the following senses:

8x 2 ˝ 9U .x/ such that 8f 2 Cˇ
X .U/ there exists a solution u 2 C2;ˇ

X;loc .U/ to
Lu D f in U:

8x 2 ˝ 9U .x/ such that 8f 2 Cˇ
X;0 .U/ there exists a solution u 2 C2;ˇ

X .U/ to
Lu D f in U:

6 Real Analysis Estimates

Let us now spend a few words about the real analysis machinery we need to use to
get the C2;ˇ estimates described above.

An important starting remark is the following. Our construction lives in a fixed
neighborhood U, where the distance d induced by the vector fields Xi is defined;
then the Lebesgue measure is locally doubling, while we cannot assure the validity
of a global doubling condition in U, which should mean:

jB .x; 2r/\ Uj 6 c jB .x; r/ \ Uj for any x 2 U; r > 0. (2)

Actually, even for the Carnot-Carathéodory distance induced by smooth Hörman-
der’s vector fields, condition (2) is known when U is for instance a metric ball
and the drift term X0 is lacking; in presence of a drift, however, the validity of
a condition (2) on some reasonable U seems to be an open problem. This means
that in our situation .U; d; dx/ is not a space of homogeneous type in the sense of
Coifman-Weiss. However, .U; d; dx/ fits the assumptions of locally homogeneous
spaces as defined in [2]. We apply some results proved in [2] which assure the local
C˛ continuity of singular and fractional integrals defined by a kernel of the kind

a .x/ k .x; y/ b .y/

(with a; b smooth cutoff functions) provided that the kernel k satisfies natural
assumptions which never involve integration over domains of the kind B .x; r/ \ U,
but only over balls B .x; r/ b U; which makes our local doubling condition usable.

Definition 6.1 We say that a kernel k .x; y/ satisfies the standard estimates of
fractional integrals with (positive) exponents �; ˇ in B .x;R/ if

jk .x; y/j � c
d .x; y/�

jB .x; d .x; y//j 8x; y 2 B .x;R/ ; and

jk .x; y/� k .x0; y/j � c
d .x0; y/

�

jB .x0; d .x0; y//j
�

d .x0; x/

d .x0; y/

�ˇ

8x0; x; y 2 B .x;R/ such that d .x0; y/ � Md .x0; x/ for suitable M > 1:
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We say that k .x; y/ satisfies the standard estimates of singular integrals if the
previous estimates hold with � D 0 and some ˇ > 0.

As already stated, some of the terms in the representation formula of XiXjw are
fractional integrals while another is a multiplicative term by a Hölder function; the
singular integral part is the following term:

Tf .x/ D
Z

B.x;R/
k2 .x; z/ Œf .z/� f .x/� b .z/ dz; where

k2 .x; z/ D
Z

Rm

Z

Rm
YiYj�

�
�.z;k/ .x; h/

�
a .h/ b .k/ dhdk;

k2 satisfying the standard estimates of singular integrals.
In order to deduce an Hölder estimate for Tf we need in particular to establish a

suitable cancellation property for k2:

Theorem 6.1 There exists C > 0 such that for a.e. x 2 B .x;R/ and 0 < "1
< "2 < 1

ˇ
ˇ
ˇ
ˇ

Z

"1<d.x;y/<"2

a.x/k2 .x; y/ b.y/ dy

ˇ
ˇ
ˇ
ˇ � C:

As far as I know this is the first case of a priori estimate for PDEs when a singular
integral operator is directly handled in a context where there is no kind of exact or
approximate homogeneity, and the measure of a ball does not behave like a fixed
power of the radius.
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Multiple Solutions for an Eigenvalue Problem
Involving Non-local Elliptic p-Laplacian
Operators

Patrizia Pucci and Sara Saldi

Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday, with great feelings of esteem and affection

Abstract In this paper we establish the existence of two nontrivial weak solutions
of a one parameter non-local eigenvalue problem under homogeneous Dirichlet
boundary conditions in bounded domains, involving a general non-local elliptic
p-Laplacian operator.

Keywords Existence and multiplicity of solutions • Fractional elliptic Dirichlet
problems • Fractional Sobolev spaces • Variational methods
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1 Introduction

In the paper [1] Arcoya and Carmona extend to a wide class of functionals the three
critical point theorem of Pucci and Serrin in [12] (see also [11]) and applied it to
a one-parameter family of functionals J�, � 2 I � R. Under suitable assumptions,
they locate an open subinterval of values � in I for which J� possesses at least three
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critical points. Recently, a slight variant of the main abstract theorem of [1] has been
proposed in [4]. In both papers [1, 4] several interesting applications to quasilinear
boundary value problems are given.

In this paper, taking inspiration of [4], we establish the existence of two non-
trivial weak solutions of a one parameter eigenvalue problem under homogeneous
Dirichlet boundary conditions in an open bounded subset ˝ of RN , with Lipschitz
boundary. More precisely, we consider the problem

(
LKu D �Œa.x/jujp�2u C f .x; u/�; in ˝;

u D 0; in R
N n˝; (1)

where LK is an integro-differential non-local operator, defined pointwise by

LK'.x/ D �
Z

RN
j'.x/� '.y/jp�2Œ'.x/ � '.y/� � K.x � y/dy;

along any function ' 2 C1
0 .˝/, and the weight K W RN n f0g ! R

C satisfies the
natural restriction. There exists s 2 .0; 1/, with N > ps, such that

.K / � � K.x/jxjNCps � ı for all x 2 R
N n f0g and some suitable numbers �, ı,

with 0 < � � ı;

holds.
Clearly, when K.x/ D jxj�.NCps/, the operator LK reduces to the more familiar

fractional p-Laplacian operator .�
/sp, which up to a multiplicative constant
depending only on N, s and p is defined by

.�
/sp'.x/ D �
Z

RN

j'.x/� '.y/jp�2Œ'.x/ � '.y/�
jx � yjNCps

dy;

along any function ' 2 C1
0 .˝/.

In (1) we assume that the coefficient a is a positive weight of class L˛.˝/, with
˛ > N=ps, and that the perturbation f W ˝ 
 R ! R is a Carathéodory function,
with f 6	 0, satisfying the main assumption .F / of Sect. 2.

In Sect. 3 we determine precisely the intervals of �’s for which problem (1)
admits only the trivial solution and for which (1) has at least two nontrivial solutions.
More precisely, we study problem (1) by a slight variant of the Arcoya and Carmona
result in [1], as proved in Theorem 2.1 of [4].

2 Preliminaries and Auxiliary Results

Throughout the paper˝ is an open bounded subset of RN , with Lipschitz boundary,
a is a positive weight of class L˛.˝/, with ˛ > N=ps, and K satisfies .K / of
the Introduction in R

N n f0g. Since s 2 .0; 1/ and N > ps we denote by p� the
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critical Sobolev exponent for Ws;p
0 .˝/, that is p� D pN=.N � ps/. We recall that

Ds;p
0 .˝/ D C1

0 .˝/
k�k˝

, where k � k˝ is the standard fractional Gagliardo norm,
given by

kuk˝ D
�“

˝�˝
ju.x/� u.y/jpjx � yj�.NCps/dxdy

�1=p

for all u 2 Ws;p
0 .˝/. Furthermore, Ds;p.RN/ denotes the fractional Beppo–Levi

space, that is the completion of C1
0 .R

N/, with respect to the norm

kuks D
�“

R2N

ju.x/� u.y/jpjx � yj�.NCps/dxdy

�1=p

:

Moreover, by Theorems 1 and 2 of [10]

kukp

Lp�
.RN /

� cN;p
s.1 � s/

.N � ps/p�1 kukp
s ;

Z

RN
ju.x/jp dx

jxjps
� cN;p

s.1 � s/

.N � ps/p
kukp

s

(2)

for all u 2 Ds;p.RN/, where cN;p is a positive constant depending only on N and p.
Hence

Ds;p.RN/ D fu 2 Lp�

.RN/ W ju.x/� u.y/j � jx � yj�.sCN=p/ 2 Lp.R2N/g:

Following [8], we put

QDs;p.˝/ D fu 2 Lp�

.˝/ W Qu 2 Ds;p.RN/g;

with the norm kukQ
s D kQuks, where Qu is the natural extension of u in the entire R

N ,
with value 0 in R

N n˝ . Clearly,

kukQ
s D

�

kukp
˝ C 2

Z

˝

ju.x/jpdx
Z

RNn˝
jx � yj�.NCps/dy

�1=p

� kuk˝:

Since here ˝ is regular, an application of Theorem 1.4.2.2 of [8] shows that

QDs;p.˝/ D C1
0 .˝/

k�kQ

s . Finally, since ˝ is bounded and regular, by (2) there exists
a constant c˝ > 0 such that

c˝kQukWs;p.RN / � kQuks D kukQ
s � kQukWs;p.RN /
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for all u 2 QDs;p.˝/, and so, using also Corollary 1.4.4.10 of [8], we have the main
property

QDs;p.˝/ D fu 2 Ws;p
0 .˝/ W u d.�; @˝/�s 2 Lp.˝/g

D fu 2 Ds;p.RN/ W u D 0 a.e. in R
N n˝g

D fu 2 Ws;p.˝/ W Qu 2 Ws;p.RN/g;
where d.x; @˝/ is the distance from x to the boundary @˝ of ˝ .

It is not hard to see that QDs;p.˝/ is a closed subspace of Ds;p.RN/. Hence also
QDs;p.˝/ D � QDs;p.˝/; k � kQ

s

�
is a reflexive Banach space. For simplicity and abuse

of notation, in the following we still denote by u the extension of every function
u 2 QDs;p.˝/, by setting u D 0 in R

N n˝ .
From now on we endow QDs;p.˝/ with the weighted Gagliardo norm

kuk D
�“

R2N

ju.x/� u.y/jpK.x � y/dxdy

�1=p

;

equivalent to the norm k � kQ
s by virtue of .K /. Indeed, .K / implies at once that

mK 2 L1.RN/, where m.x/ D min f1; jxjpg, so that in particular k'k < 1 for all
' 2 C2

0.˝/.
In conclusion, also the natural solution space QDs;p.˝/ D � QDs;p.˝/; k � k� of (1)

is a reflexive Banach space.
Note that by Corollary 7.2 of [5] the embedding QDs;p.˝/ ,! L˛

0p.˝/ is compact,
being ˛0p < p� by the assumption that ˛ > N=ps. Moreover, the embedding
L˛

0p.˝/ ,! Lp.˝; a/ is continuous, since kukp
p;a � kak˛kukp

˛0p for all u 2 L˛
0p.˝/

by Hölder’s inequality. Hence,

the embedding QDs;p.˝/ ,! Lp.˝; a/ is compact: (3)

Let �1 be the first eigenvalue of the problem

(
LKu D � a.x/jujp�2u; in ˝;

u D 0; in R
N n˝; (4)

in QDs;p.˝/, that is �1 is defined by the Rayleigh quotient

�1 D inf
u2 QDs;p.˝/; u6D0

’
R2N ju.x/� u.y/jpK.x � y/dxdy

R
˝ a.x/jujpdx

: (5)

By Lemma 2.1 of [7] (see also Theorem 5 of [9] for the fractional p-Laplacian first
eigenvalue) the infimum in (5) is achieved and �1 > 0, when a 	 1. We refer also
to [6] for the special linear case of the fractional Laplacian and a 2 Lip.˝/. For sake
of completeness we prove the result for the general weight a, using a completely
different argument.



Non-local Elliptic p-Laplacian Problems 163

Proposition 2.1 The infimum �1 in (5) is positive and attained at a certain function
u1 2 QDs;p.˝/, with ku1kp;a D 1 and ku1kp D �1 > 0. Moreover, u1 is a solution
of (4) when � D �1.

Proof For any u 2 QDs;p.˝/ define the functionals I .u/ D kukp and J .u/ D
kukp

p;a. Let �0 D inffI .u/=J .u/ W u 2 QDs;p.˝/ n f0g; kukp;a � 1g. Observe that

I and J are continuously Fréchet differentiable and convex in QDs;p.˝/. Clearly
I 0.0/ D J 0.0/ D 0. Moreover, J 0.u/ D 0 implies u D 0. In particular, I
and J are weakly lower semi-continuous on QDs;p.˝/. Actually, J is weakly
sequentially continuous on QDs;p.˝/. Indeed, if .un/n and u are in QDs;p.˝/ and
un * u in QDs;p.˝/, then un ! u in Lp.˝; a/ by (3). This implies at once that
J .un/ D kunkp

p;a ! kukp
p;a D J .u/, as claimed.

Now, either W D fu 2 QDs;p.˝/ W J .u/ � 1g is bounded in QDs;p.˝/, or not. In
the first case we are done, while in the latter I is coercive in W, being coercive in
QDs;p.˝/. Therefore, all the assumptions of Theorem 6.3.2 of [2] are fulfilled, being
QDs;p.˝/ a reflexive Banach space, so that �0 is attained at a point u1 2 QDs;p.˝/,
with ku1kp;a D 1. We claim now that �0 D �1. Indeed,

�1 D inf
u2 QDs;p.˝/nf0g










u

kukp;a










p

D inf
u2 QDs;p.˝/
kukp;aD1

kukp � inf
u2 QDs;p.˝/
0<kukp;a�1

kukp

kukp
p;a

D �0 � �1:

In particular, �1 D ku1kp > 0 and I 0.u1/ D �1J 0.u1/ again by Theorem 6.3.2
of [2]. Hence u1 is a solution of (4) when � D �1. ut

From the proof of Proposition 2.1 it is also evident that

�1 D inf
u2 QDs;p.˝/
kukp;aD1

kukp:

Moreover Proposition 2.1 gives at once that

�1kukp
p;a � kukp for every u 2 QDs;p.˝/: (6)

In the following we put cp
p;a D 1=�1.

On the perturbation f we assume condition

.F / Let f W ˝
R ! R be a Carathéodory function, f 6	 0, satisfying the following
properties.

(a) There exist two measurable functions f0, f1 on ˝ and an exponent q 2
.1; p/, such that 0 � f0.x/ � Cf a.x/, 0 � f1.x/ � Cf a.x/ a.e. in ˝ and
some appropriate constant Cf > 0, and

j f .x; u/j � f0.x/C f1.x/jujq�1 for a.a. x 2 ˝ and all u 2 R:



164 P. Pucci and S. Saldi

(b) There exists � 2 . p; p�=˛0/ such that lim sup
u!0

jf .x; u/j
a.x/juj��1 < 1, uniformly

a.e. in ˝ .

(c)
Z

˝

F.x; u1.x//dx > 0, where F.x; u/ D
Z u

0

f .x; v/dv and u1 is the first

normalized eigenfunction given in Proposition 2.1.

Note that, in the more familiar and standard setting in the literature, as e.g. in [6, 7,
9], in which a 2 L1.˝/, the exponent � in .F /–.b/ belongs to the open interval
.p; p�/. In any case p < p�=˛0, since ˛ > N=ps.

As shown in [4], it is clear from .F /–.a/ and .b/ that problem (1) admits always
the trivial solution since f .x; 0/ D 0 a.e. in ˝ , and that the quantity

Sf D ess sup
u¤0; x2˝

jf .x; u/j
a.x/jujp�1 (7)

is a finite positive number. In particular,

ess sup
u¤0; x2˝

jF.x; u/j
a.x/jujp

� Sf

p
(8)

and the positive number

�? D �1

1C Sf
(9)

is well defined and positive.
The main result of the section is proved by using the energy functional J�

associated to (1), which is given by J�.u/ D ˚.u/C ��.u/, where

˚.u/ D 1

p
kukp; �.u/ D �H .u/; H .u/ D H1.u/C H2.u/;

H1.u/ D 1

p
kukp

p;a; H2.u/ D
Z

˝

F.x; u.x//dx:

(10)

It is easy to see that the functional J� is well defined in QDs;p.˝/ and of class C1 in
QDs;p.˝/. Furthermore, for all u, ' 2 QDs;p.˝/,

hJ0
�.u/; 'i D

“

R2N

ju.x/� u.y/jp�2Œu.x/� u.y/� � Œ'.x/ � '.y/� � K.x � y/dxdy

� �
Z

˝

˚
a.x/ju.x/jp�2u.x/C f .x; u.x//

�
'.x/dx;
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where h�; �i denotes the duality pairing between QDs;p.˝/ and its dual space
QD�s;p0

.˝/. Therefore, the critical points u 2 QDs;p.˝/ of the functional J� are
exactly the weak solutions of problem (1).

Lemma 2.1 The functional ˚ W QDs;p.˝/ ! R is convex, weakly lower semicontin-
uous and of class C1 in QDs;p.˝/.
Moreover, ˚ 0 W QDs;p.˝/ ! QD�s;p0

.˝/ verifies the .SC/ condition, i.e., for every
sequence .un/n � QDs;p.˝/ such that un * u weakly in QDs;p.˝/ and

lim sup
n!1

h˚ 0.un/; un � ui � 0;

h˚ 0.un/; un � ui D
“

R2N

jun.x/ � un.y/jp�2Œun.x/ � un.y/��


 Œun.x/ � u.x/ � un.y/C u.y/� � K.x � y/dxdy;

(11)

then un ! u strongly in QDs;p.˝/.

Proof A simple calculation shows that the functional ˚ is convex and of class C1

in QDs;p.˝/. Hence, in particular ˚ is weakly lower semicontinuous in QDs;p.˝/, see
Corollary 3.9 of [3].

Let .un/n be a sequence in QDs;p.˝/ as in the statement. Then ˚.u/ �
lim infn!1˚.un/, being ˚ weakly lower semicontinuous in QDs;p.˝/. Furthermore,
the linear functional h˚ 0.u/; �i W QDs;p.˝/ ! R is in QD�s;p0

.˝/, since
.x; y/ 7! ju.x/ � u.y/jp�1jx � yj�.NCps/=p0 2 Lp0

.R2N/, so that also .x; y/ 7!
ju.x/ � u.y/jp�1K.x � y/1=p0 2 Lp0

.R2N/ by .K /. Hence, since un * u in QDs;p.˝/

as n ! 1,

h˚ 0.u/; un � ui D o.1/ as n ! 1: (12)

Therefore, 0 � lim supn!1 h˚ 0.un/�˚ 0.u/; un � ui � 0 by convexity and (11). In
other words,

lim
n!1 h˚ 0.un/ �˚ 0.u/; un � ui D 0: (13)

Combining (12) with (13), we get

lim
n!1 h˚ 0.un/; un � ui D 0: (14)

By the convexity of ˚ we have ˚.u/C h˚ 0.un/; un � ui � ˚.un/ for all n, so that
˚.u/ � lim supn!1˚.un/ by (14). In conclusion,

˚.u/ D lim
n!1˚.un/: (15)
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Furthermore (13) implies that the sequence

n 7! Un.x; y/ D fjun.x/ � un.y/jp�2Œun.x/ � un.y/�� ju.x/ � u.y/jp�2Œu.x/ � u.y/�g�

 Œun.x/ � u.x/ � un.y/C u.y/� � K.x � y/ � 0

converges to 0 in L1.R2N/.
Fix now a subsequence .unk/k of .un/n. Hence, up to a further subsequence if

necessary, Unk.x; y/ ! 0 a.e. in R
2N , and so unk.x/ � unk.y/ ! u.x/� u.y/ for a.a.

.x; y/ 2 R
2N . Indeed, fixing x, y 2 R

N , with x 6D y and Unk.x; y/ ! 0, and putting
unk.x/� unk.y/ D �k and u.x/� u.y/ D �, we get

�j�kjp�2�k � j�jp�2�
� � .�k � �/ ! 0; (16)

since K > 0 by .K /. Hence .�k/k is bounded in R. Otherwise, up to a subsequence,

�j�kjp�2�k � j�jp�2�
� � .�k � �/ � j�kjp ! 1;

which is obviously impossible. Therefore, .�k/k is bounded and possesses a
subsequence .�kj/j, which converges to some � 2 R. Thus (16) implies at once
that

�j�jp�2�k � j�jp�2�
� � .� � �/ D 0 and the strict convexity of t 7! jtjp

yields � D �. This also shows that actually the entire sequence .�k/k converges
to �.

Consider the sequence .gnk/k in L1.R2N/ defined pointwise by

gnk.x; y/ D
�
1

2

�junk.x/ � unk.y/jp C ju.x/� u.y/jp
�

�
ˇ
ˇ
ˇ
ˇ
unk.x/� unk.y/� u.x/C u.y/

2

ˇ
ˇ
ˇ
ˇ

p	

K.x � y/:

By convexity gnk � 0 and gnk.x; y/ ! ju.x/ � u.y/jpK.x � y/ for a.a. .x; y/ 2 R
2N

as k ! 1. Therefore, by the Fatou lemma and (15) we have

p˚.u/ � lim inf
k!1

“

R2N

gnk .x; y/dxdy

D p˚.u/� 1

2p
lim sup
k!1

“

R2N

junk .x/ � unk .y/� u.x/C u.y/jp K.x � y/dxdy:

Hence, lim supk!1 kunk � uk � 0, that is limk!1 kunk � uk D 0. Since .unk/k is
an arbitrary subsequence of .un/n, this shows that actually the entire sequence .un/n
converges strongly to u in QDs;p.˝/, as required. ut
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If �.v/ < 0 at some v 2 QDs;p.˝/, that is ��1.I0/ is non-empty, where I0 D
.�1; 0/ D R

�, then the crucial positive number

�? D inf
u2��1.I0/

� ˚.u/

�.u/
(17)

is well defined.

Lemma 2.2 If .F /–.a/, .b/ and .c/ hold, then ��1.I0/ is non-empty and moreover
�? � �? < �1.

Proof By .F /–.c/ it follows that

H .u1/ >
1

p
; i.e. u1 2 ��1.I0/:

Hence, �? is well defined. Again by .F /–.c/ and Proposition 2.1

�? D inf
u2��1.I0/

� ˚.u/

�.u/
� ˚.u1/

H .u1/
D ku1kp

pH .u1/
< ku1kp D �1;

as required. Finally, by .F /–.a/, .b/, (6), (8) and (10), for all u 2 QDs;p.˝/, with
u 6D 0, we have

˚.u/

j�.u/j � kukp

.1C Sf /kukp
p;a

� �1

1C Sf
D �?:

Hence, in particular �? � �?. ut
Lemma 2.3 If .F /–.a/ holds, then H 0

1 , H 0
2 , � 0 W QDs;p.˝/ ! QD�s;p0

.˝/ are
compact and H1, H2, � are sequentially weakly continuous in QDs;p.˝/.

Proof Since � D �H , it is enough to prove the lemma for H . Of course, H 0 D
H 0
1 C H 0

2 , where

hH 0
1 .u/; vi D

Z

˝

a.x/jujp�2uv dx and hH 0
2 .u/; vi D

Z

˝

f .x; u/v dx;

for all u; v 2 QDs;p.˝/. Since H 0
1 and H 0

2 are continuous, thanks to the reflexivity
of QDs;p.˝/ it is sufficient to show that H 0

1 and H 0
2 are weak-to-strong sequentially

continuous, i.e. if .un/n, u are in QDs;p.˝/ and un * u in QDs;p.˝/ as n ! 1, then
kH 0

1 .un/� H 0
1 .u/k QD�s;p0

.˝/ ! 0 and kH 0
2 .un/� H 0

2 .u/k QD�s;p0

.˝/ ! 0 as n ! 1.

To this aim, fix .un/n � QDs;p.˝/, with un * u in QDs;p.˝/.
From the fact that un ! u in Lp.˝; a/ by (3), then kunkp;a ! kukp;a, or

equivalently, kvnkp0;a ! kvkp0 ;a, where vn D junjp�2un and similarly v D jujp�2u.
We claim that vn ! v in Lp0

.˝; a/. Indeed, fix any subsequence .vnk/k of .vn/n. The
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related subsequence .unk/k of .un/n converges in Lp.˝; a/ and admits a subsequence,
say .unkj

/j, converging to u a.e. in ˝ . Hence, the corresponding subsequence .vnkj
/j

of .vnk /k converges to v a.e. in ˝ . Therefore, being 1 < p0 < 1, by the Clarkson
and Mil’man theorems it follows that vnkj

* v in Lp0

.˝; a/, since the sequence

.kvnkp0 ;a/n is bounded, and so by Radon’s theorem we get that vnkj
! v in Lp0

.˝; a/,
since kvnkp0;a ! kvkp0 ;a. This shows the claim, since the subsequence .vnk /k of
.vn/n is arbitrary.

Now, for all ' 2 QDs;p.˝/, with k'k D 1, by Hölder’s inequality,

jhH 0
1 .un/� H 0

1 .u/; 'ij �
Z

˝

a1=p0 jvn � vj � a1=pj'jdx � kvn � vkp0;ak'kp;a

� cp;akvn � vkp0;a;

where cp
p;a D 1=�1 is the Sobolev constant for the embedding QDs;p.˝/ ,! Lp.˝; a/

by (5) and (6). Hence, kH 0
1 .un/ � H 0

1 .u/k QD�s;p0

.˝/ ! 0 as n ! 1 and H 0
1 is

compact.
Similarly, un ! u in Lq.˝; a/, since the embedding QDs;p.˝/ ,! Lq.˝; a/

is compact, being Lp.˝; a/ ,! Lq.˝; a/ continuous, since 1 < q < p by
.F /–.a/. Indeed kvkq;a � kak1=q�1=p

1 kvkp;a for all v 2 Lp.˝; a/ by Hölder’s
inequality and the fact that a 2 L˛.˝/ � L1.˝/, ˛ > N=ps > 1 and ˝ is
bounded. Clearly, the Nemitskii operator Nf W Lq.˝; a/ ! Lq0

.˝; a1=.1�q// given
by Nf .u/ D f .�; u.�// for all u 2 Lq.˝; a/ is well defined thanks to .F /–.a/. We
assert that Nf .un/ ! Nf .u/ in Lq0

.˝; a1=.1�q// as n ! 1. Indeed, fix a subsequence
.unk/k of .un/n. Hence, there exists a subsequence, still denoted by .unk/k, such that
unk ! u a.e. in ˝ and junk j � h a.e. in ˝ for all k 2 N and some h 2 Lq.˝; a/.
In particular, jNf .unk/ � Nf .u/jq0

a1=.1�q/ ! 0 a.e. in ˝ , being f .x; �/ continuous
for a.a. x 2 ˝ . Furthermore, jNf .unk/ � Nf .u/jq0

a1=.1�q/ � �a.1 C hq/ 2 L1.˝/,
� D .2Cf /

q0

2q0�1, by .F /–.a/, being a 2 L˛.˝/ � L1.˝/, since ˛ > N=ps > 1

and ˝ is bounded. This shows the assertion, since 1 < q < p by .F /–.a/.
Hence, by the dominated convergence theorem, we have Nf .unk/ ! Nf .u/ in
Lq0

.˝; a1=.1�q//. Therefore the entire sequence Nf .un/ ! Nf .u/ in Lq0

.˝; a1=.1�q//

as n ! 1.
Finally, for all ' 2 QDs;p.˝/, with k'k D 1, we have by Hölder’s inequality,

jhH 0
2 .un/ � H 0

2 .u/; 'ij �
Z

˝

a�1=qjNf .un/� Nf .u/j � a1=qj'jdx

� kNf .un/ � Nf .u/kq0;a1=.1�q/k'kq;a

� cp;akak1=q�1=p
1 kNf .un/ � Nf .u/kq0;a1=.1�q/ ;

where cp;a is given in (6). Thus, kH 0
2 .un/ � H 0

2 .u/k QD�s;p0

.˝/ ! 0 as n ! 1, that
is H 0

2 is compact.
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Since by the above steps H 0 D H 0
1 C H 0

2 is compact, then H is sequentially
weakly continuous by Zeidler [13, Corollary 41.9], being QDs;p.˝/ reflexive. ut
Lemma 2.4 Under the assumption .F /–.a/ the functional J�.u/ D ˚.u/C��.u/
is coercive for every � 2 .�1; �1/.

Proof Fix � 2 .�1; �1/. Then by (6) and .F /–.a/

J�.u/ � 1

p

�

1 � �

�1

�

kukp � j�j
Z

˝

jF.x; u/jdx

� 1

p

�

1 � �

�1

�

kukp � j�j
Z

˝

f0.x/dx � j�j
Z

˝

�

f0.x/C f1.x/

q

�

jujqdx

� 1

p

�

1 � �

�1

�

kukp � j�jC1 � j�j C2kukq;

(18)

where C1 D kf0k1, C2 D cq
˛0qkf0 C f1=qk˛ and c˛0q denotes the Sobolev constant of

the compact embedding QDs;p.˝/ ,! L˛
0q.˝/, being ˛0q < p�. Note that C1 < 1,

since f0 2 L˛.˝/ � L1.˝/, by .F /–.a/, being ˛ > N=ps > 1 and ˝ bounded.
This shows the assertion, since 1 < q < p by .F /–.a/.

3 The Main Result

In this section we prove an existence theorem for (1) as an application of the
principle abstract Theorem 2.1-.ii/, Part .a/ in [4], which represents the differential
version of the Arcoya and Carmona Theorem 3.4 in [1]. In order to simplify the
notation let us introduce the main auxiliary functions

'1.r/ D inf
u2��1.Ir/

inf
v2��1.r/

˚.v/ � ˚.u/

�.u/� r
; Ir D .�1; r/;

'2.r/ D sup
u2��1.Ir/

inf
v2��1.r/

˚.v/ � ˚.u/

�.u/� r
; Ir D .r;1/;

(19)

which are well-defined for all r 2 � inf
u2 QDs;p.˝/

�.u/; sup
u2 QDs;p.˝/

�.u/
�
, see [1, 4].

Theorem 3.1 Assume .F /–.a/ and .b/.

.i/ If � 2 Œ0; �?/, where �? is defined in (9), then (1) has only the trivial solution.
.ii/ If f satisfies also .F /–.c/, then problem (1) admits at least two nontrivial

solutions for every � 2 .�?; �1/, where �? < �1 is given in (17).
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Proof Let u 2 QDs;p.˝/ be a nontrivial weak solution of the problem (1), then

“

R2N

ju.x/� u.y/jp�2Œu.x/� u.y/� � Œ'.x/ � '.y/� � K.x � y/dxdy

D �

Z

˝

fa.x/jujp�2u C f .x; u/g' dx

for all ' 2 QDs;p.˝/. Take ' D u and put ˝0 D fx 2 ˝ W u.x/ 6D 0g, so that

�1kukp D �1�

�

kukp
p;a C

Z

˝0

f .x; u/

a.x/jujp�1 a.x/jujpdx

�

� �1�
�
1C Sf

� kukp
p;a

� �
�
1C Sf

� kukp

by (6) and (7). Therefore � � �? by (9), as required.
.ii/ The functional ˚ is clearly convex, ˚ is also weakly lower semicontinuous

in QDs;p.˝/ and ˚ 0 verifies condition .SC/, as already proved in Lemma 2.1.
Furthermore, � 0 W QDs;p.˝/ ! QD�s;p0

.˝/ is compact and � is sequentially weakly
continuous in QDs;p.˝/ by Lemma 2.3. The functional J� is coercive for every � 2 I,
where I D .�1; �1/, thanks to Lemma 2.4.

We claim that �. QDs;p.˝// � R
�
0 . Indeed, �.0/ D 0 and by .F /–.a/

�.u/ � �1
p

kukp
p;a C

Z

˝

jF.x; u/jdx � �1
p

kukp
p;a C kf0k1 C 2Cf

Z

˝

a.x/jujqdx

� �1
p

kukp
p;a C kf0k1 C 2Cf kak.p�q/=p

1 kukq
p;a;

since a 2 L˛.˝/ � L1.˝/, being ˛ > N=ps > 1 and ˝ bounded. Therefore,

lim
u2 QDs;p.˝/; kukp;a!1

�.u/ D �1;

being q < p. Hence, the claim follows by the continuity of � .
Thus, .inf�; sup�/ � R

�
0 . For every u 2 ��1.I0/ we have

'1.r/ � ˚.u/

r � �.u/
for all r 2 .�.u/; 0/;

so that

lim sup
r!0�

'1.r/ � � ˚.u/

�.u/
for all u 2 ��1.I0/:
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In other words, by (17) and (19)

lim sup
r!0�

'1.r/ � '1.0/ D �?: (20)

From .F /–.b/ and L’Hôpital’s rule

lim sup
u!0

jF.x; u/j
a.x/juj� < 1 uniformly a.e. in ˝;

so that using also .F /–.a/ and again .b/, that is (7), it follows the existence of a
positive real number L > 0 such that

jF.x; u/j � L a.x/juj� for a.a. x 2 ˝ and all u 2 R: (21)

The embedding QDs;p.˝/ ,! L� .˝; a/ is continuous, since � 2 .p; p�=˛0/ by .F /–
.b/. Indeed, by Hölder’s inequality kuk��;a � j˝j1=}kak˛kuk�p� � ckuk� for all

u 2 QDs;p.˝/, where c D c�p� j˝j1=}kak˛ and cp� is the Sobolev constant of the

continuous embedding QDs;p.˝/ ,! Lp�

.˝/ and } is the crucial exponent

} D ˛0p�

p� � �˛0 > 1;

being � 2 .p; p�=˛0/ by .F /–.b/. Hence, by (21)

j�.u/j � 1

p�1
kukp C Ckuk� ; (22)

for every u 2 QDs;p.˝/, where C D c L. Therefore, given r < 0 and v 2 ��1.r/, we
get

r D �.v/ � � 1

p�1
kvkp � Ckvk� D � 1

�1
˚.v/ � �˚.v/�=p; (23)

where � D Cp�=p. Since the functional ˚ is bounded below, coercive and lower
semicontinuous on the reflexive Banach space QDs;p.˝/, it is easy to see that˚ is also
coercive on the sequentially weakly closed non-empty set ��1.r/, see Lemma 2.3.
Therefore, by Theorem 6.1.1 of [2], there exists an element ur 2 ��1.r/ such that
˚.ur/ D inf

v2��1.r/
˚.v/. Taking u 	 0 2 ��1.Ir/ in (19), we have

'2.r/ � �1
r

inf
v2��1.r/

˚.v/ D ˚.ur/

jrj :
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Hence (23), evaluated at v D ur and divided by r < 0, gives

1 � 1

�1
� ˚.ur/

jrj C �jrj�=p�1
�
˚.ur/

jrj
��=p

� '2.r/

�1
C �jrj�=p�1'2.r/�=p:

There are now two possibilities to be considered: either '2 is locally bounded at 0�,
so that the above inequality shows at once that

lim inf
r!0�

'2.r/ � �1;

being � > p by .F /–.b/, or lim supr!0� '2.r/ D 1. In both cases (20) and
Lemma 2.2 yield

lim sup
r!0�

'1.r/ � �? < �1 � lim sup
r!0�

'2.r/:

Hence for all integers n � n? D 1C Œ2=.�1 � �?/� there exists a number rn < 0 so
close to zero that '1.rn/ < �

? C 1=n < �1 � 1=n < '2.rn/. In particular,

Œ�? C 1=n; �1 � 1=n� � .'1.rn/; '2.rn//\ I D .'1.rn/; '2.rn// (24)

for all n � n?. Therefore, since all the assumptions of Theorem 2.1-.ii/, Part .a/,
in [4] are satisfied and u 	 0 is a critical point of J�, problem (1) admits at least two
nontrivial solutions for all � 2 .'1.rn/; '2.rn// and for all n � n?. In conclusion,
problem (1) admits at least two nontrivial solutions for all � 2 .�?; �1/ as required,
being

.�?; �1/ D
1[

nDn?

Œ�? C 1=n; �1 � 1=n� �
1[

nDn?

.'1.rn/; '2.rn//

by (24). ut
Taking inspiration from [4], also in this new setting we can derive an interesting

consequence from the main Theorem 3.1 for a simpler problem. Let us therefore
replace .F /–.c/ by the next condition much easier to verify.
.F /–.c0/ Assume there exist x0 2 ˝ , t0 2 R and r0 > 0 so small that the closed
ball B0 D fx 2 R

N W jx � x0j � r0g is contained in ˝ and

ess inf
B0

F.x; jt0j/ D �0 > 0; ess sup
B0

max
jtj�jt0 j

jF.x; t/j D M0 < 1:

Clearly, when f does not depend on x, condition .F /–.c0/ simply reduces to the
request that F.t0/ > 0 at a point t0 2 R.
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Corollary 3.1 Assume that f W ˝ 
 R ! R satisfies .F /–.a/, .b/. Consider the
problem

(
LKu D �f .x; u/; in ˝;

u D 0; in R
N n˝: (25)

.i/ If � 2 Œ0; `?/, where `? D �1=Sf , then (25) has only the trivial solution.
.ii/ If furthermore f satisfies .F /–.c0/, then there exists `? � `? such that (25)

admits at least two nontrivial solutions for all � 2 .`?;1/.

Proof The energy functional J� associated to problem (25) is simply given by

J�.u/ D ˚.u/ C ��2.u/, where as before �2.u/ D �
Z

˝

F.x; u.x//dx, see (10).

First, note that J� is coercive for every � 2 R. Indeed, by (18)

J�.u/ � 1

p
kukp � j�j

Z

˝

jF.x; u/jdx � 1

p
kukp � j�j C1 � j�j C2kukq;

where C1 and C2 are as in (18). Hence J�.u/ ! 1 as kuk ! 1, since 1 < q < p
by .F /–.a/. In conclusion, here I D R, as claimed.

The part .i/ of the statement is proved using the same argument produced for the
proof of Theorem 3.1-.i/, being

�1kukp D �1�

Z

˝

f .x; u/udx � �1�Sf kukp
p;a � �Sf kukp

by (6) and (7). Thus, if u is a nontrivial weak solution of (25), then necessarily
� � `? D �1=Sf , as required.

In order to prove .ii/, we first show that there exists u0 2 QDs;p.˝/ such that
�2.u0/ < 0, so that the crucial number

`? D '1.0/ D inf
u2��1

2 .I0/
� ˚.u/

�2.u/
; I0 D .�1; 0/ D R

�;

is well defined. Indeed, in this special subcase (19) simply reduces to

'1.r/ D inf
u2��1

2 .Ir/

inf
v2��1

2 .r/
˚.v/ � ˚.u/

�2.u/� r
; Ir D .�1; r/;

'2.r/ D sup
u2��1

2 .Ir/

inf
v2��1

2 .r/
˚.v/ � ˚.u/

�2.u/� r
; Ir D .r;1/:

(26)
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Clearly t0 6D 0 in .F /–.c0/. Now take � 2 .0; 1/ and put

B D fx 2 R
N W jx � x0j � �r0g; B1 D ˚

x 2 R
N W jx � x0j � r1

�
;

where r1 D .1 C �/r0=2. Hence B � B1 � B0. Set v0.x/ D jt0j	B1 .x/ and denote
by �" the convolution kernel of fixed radius ", with 0 < " < .1 � �/r0=2. Define

u0.x/ D �" � v0.x/;

so that u0.x/ D jt0j for all x 2 B, 0 � u0.x/ � jt0j for all x 2 ˝ , u0 2 C1
0 .˝/ and

supp u0 � B0. Therefore, u0 2 QDs;p.˝/ by .K /. From .F /–.c0/ we also have

�2.u0/ D �
Z

B
F.x; jt0j/dx �

Z

B0nB
F .x; u0.x// dx � M0

Z

B0nB
dx � �0

Z

B
dx

� !NrN
0


M0.1 � �N/� �0�

N
�
:

Hence, taking � 2 .0; 1/ so large that �N > M0=.�0CM0/, we get that �2.u0/ < 0,
as claimed.

Furthermore, by (6), (8) and (10), for all u 2 QDs;p.˝/, with u 6	 0, we have

˚.u/

j�2.u/j � kukp

Sf kukp
p;a

� �1

Sf
D `?:

Thus, `? � `?.
In particular, for '1 given now by (26) and for all u 2 ��1

2 .I0/, we get

'1.r/ � ˚.u/

r � �2.u/ for all r 2 .�2.u/; 0/:

Therefore,

lim sup
r!0�

'1.r/ � '1.0/ D `?;

which is the analog of (20).
Also in this setting (21) holds and (22) simply reduces to

j�2.u/j � Ckuk� :

Taken r < 0 and v 2 ��1
2 .r/, we obtain

r D �2.v/ � �Ckvk� � �C Œp˚.v/��=p :
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Therefore, by (26), since u 	 0 2 ��1
2 .Ir/,

'2.r/ � 1

jrj inf
v2��1

2 .r/
˚.v/ � �jrjp=��1;

where � D C�p=�=p. This implies that lim
r!0�

'2.r/ D 1, being � > p by .F /–.b/.

In conclusion, we have proved that

lim sup
r!0�

'1.r/ � '1.0/ D `? < lim
r!0�

'2.r/ D 1:

This shows that for all integers n � n? D 2 C Œ`?� there exists rn < 0 so close
to zero that '1.rn/ < `? C 1=n < n < '2.rn/. Hence, all the assumptions of
Theorem 2.1-.ii/, Part .a/ are satisfied and, being u 	 0 a critical point of J� and
I D R, problem (25) admits at least two nontrivial solutions for all

� 2
1[

nDn?

.'1.rn/; '2.rn// �
1[

nDn?

Œ`? C 1=n; n� D .`?;1/;

as stated. ut
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Uniqueness of Solutions of a Class of Quasilinear
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birthday

Abstract We study the uniqueness problem of the equation,

�
L;pu C jujq�1u D h on R
N ;

where q > p � 1 > 0: and N > p: Uniqueness results proved in this paper hold
for equations associated to the mean curvature type operators as well as for more
general quasilinear coercive subelliptic problems.

Keywords A priori estimates • Carnot groups • Comparison and uniqueness •
Quasilinear elliptic inequalities
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1 Introduction

Nonlinear elliptic problems of coercive type is still an interesting subject for
scholars of nonlinear partial differential equations.
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In [3] the authors studied, among other things, one of the simplest canonical
quasilinear coercive problem with non regular data, namely,

�
pu C jujq�1u D h on R
N ; (1)

where q > p � 1 > 0 and h 2 L1loc.R
N/.

An earlier contribution to this problem in the case p D 2 was obtained in [5].
Among other things in [5] it was proved that for the semilinear equation (1), for any
h 2 L1loc.R

N/ there exists a unique distributional solution u 2 Lq
loc.R

N/:

Later on in [3] the Authors studied the general case p > 1:
By using an approximation procedure they proved that if q > p � 1 and

p > 2 � 1

N
; then for any h 2 L1loc.R

N/ the Eq. (1) possesses a solution belonging

to the space

X D W1;1
loc .R

N/\ W1;p�1
loc .RN/ \ Lq

loc.R
N/:

No general results about uniqueness of solutions were claimed in that paper.
In this work, we shall study the uniqueness problem of solutions of general

quasilinear equations of the type

� divL .A .x; u.x/;rLu.x///C  `jujq�1u D h on R
N ; (2)

and related qualitative properties in the subelliptic setting (see Sect. 2 for details).
The main goal of this paper is to show that the ideas introduced in [10] and
developed [11] apply to this more general setting as well.

In this regards we observe that the Eq. (2) contains a weight function  which
is related to subellipticity of the operator appearing in (2) and may vanish on some
unbounded negligible set. Problems containing this kind of degeneracy were not
studied in [11].

By using the notations introduced in Sect. 2, we shall prove the uniqueness of
solutions of (2) in the space

W1;p
L;loc.R

N/\ Lq
loc.R

N/ D fu 2 Lp
loc.R

N/ \ Lq
loc.R

N/ W jrLuj 2 Lp
loc.R

N/g:

To this end, first we set up two essential tools which are of independent interest.
Namely, the regularity of weak solutions of (2) in the space W1;p

L;loc.R
N/\Lq

loc.R
N/

and comparison principles on R
N : Further we shall derive some properties of the

solutions of the problems under consideration.
Our efforts here is to apply an approach that can be useful when dealing with

more general operators and related equations or inequalities.
Canonical cases of the main results proved in this paper are the following.
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Theorem 1.1 Let 1 < p < 2, 0 � ` � p, q � 1, h 2 L1loc.R
N/; then the problem

� divL
�jrLujp�2rLu

�C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;p
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

In the semilinear case we have,

Theorem 1.2 Let 0 � ` � 2, q > 1, h 2 L1loc.R
N/; then the problem

� divL .rLu/C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;2
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

Theorem 1.3 Let q � 1, 0 � ` � 1, h 2 L1loc.R
N/ then the problem,

� divL

 
rLu

p
1C jrLuj2

!

C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;1
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

When considering the case ` > 1; we need to look at solutions that belong to a
functional space which is smaller than W1;1

L;loc.R
N/ \ Lq

loc.R
N/.

We have the following.

Theorem 1.4 Let 1 < ` � 2, q � 1, q > ` � 1, h 2 L1loc.R
N/ then the problem,

� divL

 
rLu

p
1C jrLuj2

!

C  `jujq�1u D h on R
N ;

has at most one weak solution v 2 W1;`
L;loc.R

N/ \ Lq
loc.R

N/. Moreover,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:
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Our uniqueness results concern solutions that belong to the class W1;p
L;loc.R

N/ \
Lq

loc.R
N/. Of course, this set in the canonical Euclidean case is contained in the

space X considered in [3]. We point out that when dealing with uniqueness results
additional regularity is required by several Authors. See for instance [1]. Indeed, in
that work the Authors obtain the existence of solutions of problem (1) belonging to a
certain space T1;p0 . Uniqueness of solutions proved in [1] concerns entropy solutions.

The paper is organized as follow. In the next section we describe the setting and
the notations. In Sect. 3 we prove some general a priori estimates on the solutions
of the problems under consideration.

In Sect. 4 we prove some comparison results and derive some consequences.
Finally in Sect. 5 we discuss an open question and we point out its solution in a

special case.
In this paper an important role is played by the M-p-C operators (see below for

the definition). For easy reference, in Sect. 6 we recall some inequalities proved in
[11]. These inequalities are of independent interest and will be used throughout the
paper when checking that an operator satisfies the M-p-C property.

2 Notations and Definitions

In this paper r and j�j stand respectively for the usual gradient in R
N and the

Euclidean norm.
Let � 2 C .RN IRl/ be a matrix � WD .�ij/, i D 1; : : : ; l, j D 1; : : : ;N and

assume that for any i D 1; : : : ; l, j D 1; : : : ;N the derivative @
@xj
�ij 2 C .RN/. For

i D 1; : : : ; l, let Xi and its formal adjoint X�
i be defined as

Xi WD
NX

jD1
�ij.�/

@

@�j
; X�

i WD �
NX

jD1

@

@�j

�
�ij.�/�

�
; (3)

and let rL be the vector field defined by

rL WD .X1; : : : ;Xl/
T D �r;

and

r�
L WD .X�

1 ; : : : ;X
�
l /

T :

For any vector field h D .h1; : : : ; hl/
T 2 C 1.RN ;Rl/, we shall use the following

notation divL.h/ WD div.�Th/, that is

divL.h/ D �
lX

iD1
X�

i hi D �r�
L � h:
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We suppose that the vector fields satisfy the following assumption. Let ı WD
.ı1; : : : ; ıN/ be an N-uple of positive real number. We shall denote by ıR the function
ıR W RN ! R

N defined by

ıR.x/ D ıR.x1; : : : ; xN/ WD .Rı1x1; : : : ;R
ıN xN/: (4)

We require that rL is ıR-homogeneous, that is, there exists ı D .ı1; : : : ; ıN/ such
that rL is pseudo homogeneous of degree 1 with respect to dilation ıR, namely

rL.�.ıR.�/// D R.rL�/.ıR.�// for R > 0 and � 2 C 1.RN/:

Notice that in the Euclidean framework we have � D IN , the identity matrix on
R

N . Examples of vector fields satisfying our assumptions are the usual gradient
acting on l.� N/ variables, vector fields related to Bouendi–Grushin operator,
Heisenberg–Kohn sub-Laplacian, Heisenberg–Greiner operator, sub-Laplacian on
Carnot Groups.

A nonnegative continuous function S W RN ! RC is called a ıR-homogeneous
norm on R

N , if S.��1/ D S.�/, S.�/ D 0 if and only if � D 0, and it is homogeneous
of degree 1 with respect to ıR (i.e. S.ıR.�// D RS.�/).

An example of smooth homogeneous norm is

S.�/ WD
 

NX

iD1
.�r

i /
d
ıi

! 1
rd

; (5)

where d WD ı1ı2 � � � ıN and r is the lowest even integer such that r �
maxfı1=d; : : : ; ıN=d}.

Notice that if S is a homogeneous norm differentiable a.e., then jrLSj is
homogeneous of degree 0 with respect to ıR; hence jrLSj is bounded.

Throughout this paper we assume that j�jL 2 C 1.RN n f0g/ is a general, however
fixed, homogeneous norm.

We denote by BR the open ball generated by j�jL, that is BR WD f� 2 R
N W j�jL <

Rg. Since the Jacobian of the map ıR is J.ıR/ D RQ with Q WD ı1 C ı2 C : : : ıN , we
have jBRj D RQjB1j,

We define  WD jrLj�jLj and assume that the set where  vanishes is negligible.
The function  is bounded and may vanish at some point. For instance in the

Euclidean setting, if j�jL is the Euclidean norm, then  	 1. If we endow R
N with

the Heisenberg group structure with R
N � H

n D R
n
x 
R

n
y 
Rt, rL is the Heisenberg

gradient and j�jL is the gauge of the canonical sublaplacian, then  2.�/ D .jxj2 C
jyj2/=j�j2L with � D .x; y; t/.

In what follows we shall assume that A W RN 
 R 
 R
l ! R

l is a Carathéodory
function, that is for each t 2 R and � 2 R

l the function A .�; t; �/ is measurable; and
for a.e. x 2 R

N , A .x; �; �/ is continuous.
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We consider operators L “generated” by A , that is

L.u/.x/ D divL .A .x; u.x/;rLu.x/// : (6)

Our canonical model cases are the p-Laplacian operator, the mean curvature
operator and some related generalizations. See Examples 2.1 below.

Definition 2.1 Let A W RN 
R
R
l ! R

l be a Carathéodory function. The function
A is called weakly elliptic if it generates a weakly elliptic operator L i.e.

A .x; t; �/ � � � 0 for each x 2 R
N ; t 2 R; � 2 R

l;

A .x; 0; �/ D 0 or A .x; t; 0/ D 0:
(WE)

Let p � 1, the function A is called W-p-C (weakly-p-coercive) (see [2]), if A is
(WE) and it generates a weakly-p-coercive operator L, i.e. if there exists a constant
k2 > 0 such that

.A .x; t; �/ � �/p�1 � kp
2jA .x; t; �/jp for each x 2 R

N ; t 2 R; � 2 R
l: (W-p-C)

Let p > 1, the function A is called S-p-C (strongly-p-coercive) (see [2, 13, 14]),
if there exist k1; k2 > 0 constants such that

.A .x; t; �/ � �/ � k1j�jp � kp0

2 jA .x; t; �/jp0

for each x 2 R
N ; t 2 R; � 2 R

l:

(S-p-C)

We look for solution in the space W1;p
L;loc.˝/ defined as

W1;p
L;loc.˝/ WD fu 2 Lp

loc.˝/ W jrLuj 2 Lp
loc.˝/g:

Definition 2.2 Let ˝ � R
N be an open set and let f W ˝ 
 R 
 R

l ! R be a
Carathéodory function. Let p � 1. We say that u 2 W1;p

L;loc.˝/ is a weak solution of

divL .A .x; u;rLu// � f .x; u;rLu/ on ˝;

if A .�; u;rLu/ 2 Lp0

loc.˝/, f .�; u;rLu/ 2 L1loc.˝/, and for any nonnegative � 2
C 1
0 .˝/ we have

�
Z

˝

A .x; u;rLu/ � rL� �
Z

˝

f .x; u;rLu/�:

Example 2.1

1. Let p > 1. The p-Laplacian operator defined on suitable functions u by,


pu D divL
�jrLujp�2rLu

�

is an operator generated by A .x; t; �/ WD j�jp�2� which is S-p-C.
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2. If A is of mean curvature type, that is A can be written as A .x; t; �/ WD A.j�j/�
with A W R ! R a positive bounded continuous function (see [2, 12]), then A is
W-2-C.

3. The mean curvature operator in non parametric form

Tu WD divL

 
rLu

p
1C jrLuj2

!

;

is generated by A .x; t; �/ WD �p
1Cj�j2 . In this case A is W-p-C with 1 � p � 2

and of mean curvature type but it is not S-2-C.
4. Let m > 1. The operator

Tmu WD divL

 
jrLujm�2rLu
p
1C jrLujm

!

is W-p-C for m � p � m=2.

Definition 2.3 Let A W RN 
 R
l ! R

l be a Charateodory function. We say that A
is monotone if

.A .x; �/ � A .x; �// � .� � �/ � 0 for �; � 2 R
l: (7)

Let p � 1. We say that A is M-p-C (monotone p-coercive) if A is monotone and
if there exists k2 > 0 such that

..A .x; �/ � A .x; �// � .� � �//p�1 � kp
2jA .x; �/ � A .x; �/jp: (8)

Example 2.2

1. Let 1 < p � 2 the function A .�/ WD j�jp�2� is M-p-C (see Sect. 6 for details).
2. The mean curvature operator is M-p-C with 1 � p � 2 (see Sect. 6).

In what follows we shall use a special family of test functions that we call cut-off
functions. More precisely, let '1 2 C 1

0 .R/ be such that 0 � '1 � 1, '1.t/ D 0 if
jtj � 2 and '1.t/ D 1 if jtj � 1. Next, for R > 0 by cut-off function we mean the
function 'R defined as 'R.x/ D '1.jxjL=R/.

Finally, if not otherwise stated, the integrals are considered on the whole
space RN .

3 A Priori Estimates

The following is a slight variation of a result proved in [10]. For easy reference we
shall include its detailed proof.

Consider the following inequality,

divL .A .x; v;rLv// � f � divL .A .x; u;rLu//� g on R
N : (9)
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We have,

Theorem 3.1 Let p � 1 and let A W RN 
 R
l ! R

l be M-p-C. Let f ; g 2 L1loc.R
N/

and let .u; v/ be weak solution of (9). Set w WD .v�u/C and let s > 0 and p � ` � 0.
If .f � g/w � 0 and

wsCp�1 ` 2 L1.B2R n BR/ for R large; (10)

then

.f � g/ws; .A .x;rLv/ � A .x;rLu// � rLw ws�1	fw>0g 2 L1loc.R
N/: (11)

Moreover, for any nonnegative � 2 C 1
0 .R

N/ we have,

Z
.f �g/ws�Cc1s

Z
.A .x;rLv/�A .x;rLu//�rLw ws�1��c2s

1�p
Z

wsCp�1 jrL�jp

�p�1 ;
(12)

where c1 D 1� p�1
p

�
�
k2

� p
p�1

> 0, c2 D pp

p�p and � > 0 is sufficiently small for p > 1

and c1 D 1 and c2 D 1=k2 for p D 1.

Remark 3.1

i) Notice that from the above result it follows that if u; v 2 W1;p
L;loc.R

N/ is a weak
solution of (9), then .f � g/w 2 L1loc.R

N/.
ii) The above lemma still holds if we replace the function f � g 2 L1loc.R

N/ with a
regular Borel measure on R

N .
iii) The right hand side in (12) could be divergent since we know only that

wsCp�1 ` 2 L1loc.R
N/.

iv) If in Theorem 3.1 we consider the case ` D 0, then Theorem 3.1 can be restated
for inequalities (9) on a open set ˝ by replacing R

N with ˝ and requiring that
wsCp�1 2 L1loc.˝/.

v) If .u; v/ is a weak solution of (9) and u is a constant i.e. u 	 const,
then Theorem 3.1 still holds even for W-p-C operators. See the following
Lemma 3.1.

Lemma 3.1 Let p � 1 and let A be W-p-C. Let f ; g 2 L1loc.R
N/ and let v 2

W1;p
L;loc.R

N/ be a weak solution of

divL .A .x; u;rLu// � f � g; on R
N : (13)

Let k > 0 and set w WD .v � k/C and let s > 0, p � ` � 0. If .f � g/w � 0 and (10)
holds, then

.f � g/ws; A .x; v;rLv/ � rLw ws�1	fw>0g 2 L1loc.R
N/ (14)
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and for any nonnegative � 2 C 1
0 .R

N/ we have,

Z
.f �g/ws�Cc1s

Z
A .x; v;rLv/�rLw ws�1� � c2s

1�p
Z

wsCp�1 jrL�jp

�p�1 ; (15)

where c1 and c2 are as in Theorem 3.1.

The above lemma lies on the following result proved in [10, Theorem 2.7].

Theorem 3.2 ([10]) Let A W ˝ 
 R 
 R
N ! R

N be a monotone Carathéodory
function. Let f ; g 2 L1loc.˝/ and let u; v be weak solution of

divL .A .x; v;rLv// � f � divL .A .x; u;rLu//� g on ˝: (16)

Let � 2 C 1.R/ be such that 0 � �.t/; � 0.t/ � M, then

�
Z

˝

.A .x; v;rLv/� A .x; u;rLu// � rL� �.v � u/ � (17)

�
Z

˝

� 0.v � u/ .rLv � rLu/ � .A .x; v;rLv/ � A .x; u;rLu/ � (18)

C
Z

˝

��.v � u/.f � g/ on ˝: (19)

Hence

divL .�.v � u/.A .x; v;rLv/ � A .x; u;rLu/// � �.v � u/.f � g/ on ˝:

Moreover1

divL
�
signC.v � u/.A .x; v;rLv/ � A .x; u;rLu//

� � signC.v � u/.f � g/ on ˝:
(20)

Proof (of Theorem 3.1) Let � 2 C 1.R/ be a bounded nonnegative function with
bounded nonnegative first derivative and let � 2 C 1

0 .˝/ be a nonnegative test
function.

For simplicity we shall omit the arguments of A . So we shall write Au and Av

instead of A .x;rLu/ and A .x;rLv/ respectively.

1We recall that the function signC is defined as signC.t/ WD 0 if t � 0 and signC.t/ WD 1

otherwise.
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Applying Lemma 3.2, we obtain

Z
.f � g/�.w/� C

Z
.Av � Au/ � rLw � 0.w/� � �

Z
.Av � Au/ � rL� �.w/

�
Z

jAv � Auj jrL�j�.w/:
(21)

Let p > 1. From (21) we have

Z
.f � g/�.w/� C

Z
.Av � Au/ � rLw � 0.w/� �

�
�Z

jAv � Aujp0

� 0.w/�
�1=p0 �Z

�.w/p

� 0.w/p�1
jrL�jp

�p�1

�1=p

� �p0

p0kp0

2

Z
.Av � Au/ � rLw � 0.w/� C 1

p�p

Z
�.w/p

� 0.w/p�1
jrL�jp

�p�1 ;

where � > 0 and all integrals are well defined provided �.w/p

� 0.w/p�1 2 L1loc.˝/. With a

suitable choice of � > 0; for any nonnegative � 2 C 1
0 .˝/ and � 2 C 1.R/ as above

such that �.w/p

� 0.w/p�1 2 L1loc.˝/; it follows that,

Z
.f �g/�.w/�Cc1

Z
.Av�Au/ �rLw � 0.w/� � 1

p�p

Z
�.w/p

� 0.w/p�1
jrL�jp

�p�1 : (22)

Now for s > 0, 1 > ı > 0 and n � 1, define

�n.t/ WD
8
<

:

.t C ı/s if 0 � t < n � ı;
cns � s

ˇ � 1nˇCs�1.t C ı/1�ˇ if t � n � ı;
(23)

where c WD ˇ�1Cs
ˇ�1 and ˇ > 1 will be chosen later. Clearly �n 2 C 1,

� 0
n.t/ D

(
s.t C ı/s�1 if 0 � t < n � ı;

snˇCs�1.t C ı/�ˇ if t � n � ı;

and �n, � 0
n are nonnegative and bounded with jj�njj1 D cns and jj� 0

njj1 D sns�1.
Moreover

�n.t/p

� 0
n.t/

p�1 D
(

s1�p.t C ı/sCp�1 for t < n � ı;
.t; n/ for t � n � ı;
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where

.t; n/ WD
.cns � s

ˇ�1nˇCs�1.t C ı/1�ˇ/p

.snˇCs�1.t C ı/�ˇ/p�1 � .cns/ps1�pn�.ˇCs�1/.p�1/ .t C ı/ˇ.p�1/:

Choosing ˇ WD sCp�1
p�1 we have c D p, and

.t; n/ � pps1�pnsp�.ˇCs�1/.p�1/.t C ı/sCp�1 D pps1�p.t C ı/sCp�1:

Therefore, for t � 0 we have,

�n.t/p

� 0
n.t/

p�1 � pps1�p.t C ı/sCp�1:

Since by assumption wsCp�1 2 L1loc.˝/, from (22) with � D �n, it follows that

Z
.f � g/�n.w/� C c1

Z
.Av �Au/ � rLw � 0

n.w/� � pps1�p

p�p

Z
.w C ı/sCp�1 jrL�jp

�p�1 :

Now, noticing that �n.t/ ! .t C ı/s and � 0
n.t/ ! s.t C ı/s�1 as n ! C1;

.f � g/.�n.w/ � �n.0/ � 0 and A is monotone (that is .Av � Au/ � rLw � 0), by
Fatou’s Lemma theorem we obtain
Z
.f �g/ .wCı/s�Cc1s

Z
.Av�Au/�rLw .wCı/s�1� � c2s

1�p
Z
.wCı/sCp�1 jrL�jp

�p�1
:

By letting ı ! 0 in the above inequality, we have the inequality (12).
Next, we choose R > 0 large enough and � WD '

p
R with 'R a cut off function,

that is

�.x/ WD .'R.x//
p WD .'1.jxjL=R//p:

With these choice we have

jrL�jp

�p�1 D pp pR�pj' 0
1jp

� jxjL

R

�

� ppjj jjp�`jj' 0
1jjp1R�p ` DW c3 

`;

and from (12) we deduce

Z

BR

.f � g/ws C c1s
Z

BR

.Av � Au/ � rLw ws�1 � c2s
1�pc3

Z

B2rnBR

wsCp�1 `;

which completes the proof of the claim in the case p > 1.
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Let p D 1. From (21) and the fact that Av � Au is bounded, the estimate (22)
holds provided we replace p with 1 and � with k2. The remaining argument is similar
to the case p > 1; hence we shall omit it.

Lemma 3.2 Let p � 1 and let A W RN 
 R
l ! R

l be M-p-C. Let f ; g 2 L1loc.R
N/

and let .u; v/ be weak solution of (9). Set w WD .v � u/C. If .f � g/w � 0 and
wq ` 2 L1.B2R n BR/ for q > p � 1, p � ` � 0 and R > 0 large, then

.f � g/wq�pC1; ..A .x;rLv/ � A .x;rLu// � rLw wq�p	fw>0g 2 L1loc.R
N/; (24)

and for any 'R 2 C 1
0 .R

N/ cut-off function, for R large enough, we have,

Z
.f � g/ signC.w/ '�R � c

�Z

B2RnBR

wq `'�R

� p�1
q

RQ. q�pC1
q /�p

; (25)

where c D c.�; k2; p; q; jj jj1; `/ and � � pq
q�pC1�s , 0 < s < minf1; q � p C 1g.

Proof The claim (24) follows from Theorem 3.1.
Let s > 0 be such that q � s C p � 1. From Lemma 3.1, for any nonnegative

� 2 C 1
0 .R

N/; we have

Z
.f � g/ws� C c1s

Z
.Av � Au/ � rLw ws�1� � c2s

1�p
Z

S
wsCp�1 jrL�jp

�p�1 ; (26)

where, as in the proof of Theorem 3.1, we write Av and Av for A .x;rLv/ and
A .x;rLu/ respectively and S is the support of jrL�j.

Next, an application of Theorem 3.2 gives (20). That is

divL
�
signC.v � u/.A .x; v;rLv/ � A .x; u;rLu//

� � signC.v � u/.f � g/ on R
N :

(27)

Now we consider the case p > 1. Let 0 < s < minf1; q � p C 1g. By definition
of weak solution and Hölder’s inequality with exponent p0, taking into account that
A is M-p-C and from (26) we get,

Z
signC w.f � g/ � �

Z

S
jAv � AujjrL�j signC w (28)

D
Z

S
jAv � Aujw s�1

p0 �
1
p0 jrL�jw 1�s

p0 �
� 1

p0 (29)

� 1

k2

�Z

S
.Av � Au/ � rLw ws�1�

�1=p0 �Z

S
w.1�s/.p�1/ jrL�jp

�p�1

�1=p

(30)

� 1

k2

�
c2

c1sp

�1=p0 �Z

S
wsCp�1 jrL�jp

�p�1

�1=p0 �Z

S
w.1�s/.p�1/ jrL�jp

�p�1

�1=p

: (31)
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Since q > s C p � 1 and q > p � 1, applying Hölder inequality to (31) with
exponents 	 WD q

sCp�1 and y WD q
.1�s/.p�1/ , we obtain

Z
signC w .f � g/� � c0

3

�Z

S
wq `�

�ı  Z

S

jrL�jp	0

 	0
�1�p	0

�1

! 1
p0	0

 Z

S

jrL�jpy0

	y0
�1�py0

�1

! 1
py0

;

(32)

where

ı WD 1

	p0 C 1

yp
D p � 1

q
; c0

3 WD
�

c2
c1sp

�1=p0

1

k2
:

Next for � � p	0 (notice that p	0 > py0 implies � > py0), we choose � WD '�R .
From (32) it follows that S D B2R n BR and

Z
signC w .f � g/'�R � c0

3�
p

�Z

S
wq `'�R

�ı





�Z

S
 pR�p	0 j' 0

1jp	0

.
jxjL

R
/

� 1
p0	0

�Z

S
 pR�py0 j' 0

1jpy0

.
jxjL

R
/

� 1
py0

� c0
3�

p

�Z

S
wq `'�R

�ı
jj jj

p
p0	0

C p
py0

1 R� p	0

p0	0
� py0

py0 jj' 0
1jj

p	0

p0	0
C py0

py0

1 jB2R n BRj 1
p0	0

C 1
py0

� c

�Z

S
wq `'�R

�ı
RQ.1�ı/�p;

completing the proof of (25).
Now, we assume that p D 1. From (28), with the choice � WD '�R , we have

Z
signC w .f � g/'�R � �

k2

Z

S
jrL'Rj � cRQ�1;

which completes the proof.

4 Comparison and Uniqueness

In this section we prove a comparison principle and its implication on the uniqueness
property.

Consider the following inequality,

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N : (33)
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As preliminary result we have the following.

Lemma 4.1 Let p � 1, let A be M-p-C, q � 1 and q > p � 1.
Let .u; v/ be weak solution of (33) with p � ` � 0. Then ..v � u/C/r ` 2

L1loc.R
N/ for any r < C1.

Proof Let .u; v/ be a solution of (33) and set w WD .v � u/C. By using the well
known inequality

jtjq�1t � jsjq�1s � cq.t � s/q; for t � s .q � 1/; (34)

we deduce that wq ` 2 L1loc.R
N/: From this it follows that we are in the position to

apply Theorem 3.1, with s D q � p C 1 obtaining wq1 ` 2 L1loc.R
N/ with q1 WD

2q � p C 1. Applying again Theorem 3.1, with s D q1 � p C 1, we get wq2 ` 2
L1loc.R

N/ with q2 WD q1 C q � p C 1 D q C 2.q � p C 1/. Iterating j times we have
that wqj ` 2 L1loc.R

N/ with qj WD q C j.q � p C 1/. By choosing j sufficiently large
we get the claim.

Theorem 4.1 Let p � 1, let A be M-p-C, q � 1, q > p � 1 and p � ` � 0. Let
.u; v/ be a weak solution of

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N : (35)

Then v � u a.e. on R
N.

In particular if .u; v/ be a weak solution of

divL .A .x;rLv//� `jvjq�1v D divL .A .x;rLu//� `jujq�1u on R
N ; (36)

then u 	 v a.e. on R
N.

Proof Let .u; v/ be a solution of (35) and set w WD .v � u/C. From Lemma 4.1
we know that wr ` 2 L1loc.R

N/ for any r, and hence we are in the position to
apply Theorem 3.1 with s large enough. Thus, from (34) and (12) we get wqCs ` 2
L1loc.R

N/ and

Z
wqCs `� � c.s; q; p/

Z
wsCp�1 jrL�jp

�p�1 :

Applying the Hölder inequality with exponent x WD qCs
sCp�1 > 1 we have

Z
wqCs `� � c.s; q; p/

Z
 p.1�x0/ jrL�jpx0

�px0�1 :



Uniqueness of Solutions of a Class of Quasilinear Subelliptic Equations 191

By the same choice of � we made in the proof of Theorem 3.1, that is � D 'R a cut
off functions, it follows that

Z

BR

wqCs ` � cRQ�px0 D cRQ�p.qCs/=.q�pC1/:

Choosing s large enough and letting R ! C1, we have that w 	 0 a.e. on R
N :

This completes the proof.

Corollary 4.1 Let p � 1, let A be W-p-C such that A .x; 0/ D 0. Let q and ` be
as in Theorem 4.1. Let h 2 L1loc.R

N/. Let v be a weak solution of the problem

� divL .A .x;rLv//C  `jvjq�1v D h: (37)

Then,

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:

In particular, if h � 0 [resp. � 0], then v � 0 [resp. � 0] and if h
 `

2 L1.RN/,

then v 2 L1.RN/.

Proof We shall prove only the estimate

jvjq�1v � sup
RN

h

 `
;

the proof of the other inequality being similar. If sup
RN

h
 `

D C1 there is nothing

to prove. Let M WD sup
RN

h
 `
< C1. We define u WD sign.M/jMj1=q. Then

divL .A .x;rLv//� `jvjq�1vChD0 � h� `MD divL .A .x;rLu//� `jujq�1uCh;

that is .u; v/ satisfy (35) with u constant. In this case all the previous estimates
still hold since in this case the operator can be seen as it were M-p-C. See also
Remark 3.1 and Lemma 3.1.

Thus the claim follows from Theorem 4.1.

Corollary 4.2 Let p � 1 and let A be M-p-C. Let q and ` be as in Theorem 4.1.
Let h 2 L1loc.R

N/. Then the possible weak solution of the problem (37) is unique.
Moreover if A .x; 0/ D 0 and v is a solution of (37), then

inf
RN

h

 `
� jvjq�1v � sup

RN

h

 `
:
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Proof Uniqueness. Let u and v two solutions of (37). Then .u; v/ solves

divL .A .x;rLv//�  `jvjq�1v D divL .A .x;rLu//�  `jujq�1u on R
N ;

and applying Theorem 4.1 we conclude that u 	 v.
The remaining claim follows from Corollary 4.1.

5 Further Applications

5.1 Symmetry Results

An application of Theorem 4.1 to the symmetry of solutions is the following.

Proposition 5.1 Let p � 1. Let A be M-p-C and Let L be the operator generated
by A , see (6). Let q be as in Theorem 4.1.

Let ˚ W RN ! R
N be a map which leaves L invariant, that is

divL.A .x;rL.�.˚.x//// D divL.A .�;rL.�.�///.˚.x// for any � 2 C 2.RN/:

i.e.

L.�.˚.x/// D L.�/.˚.x// for any � 2 C 2.RN/:

Let h 2 L1loc.R
N/ be a ˚-invariant function, that is h.˚.x// D h.x/ for a.e. x 2 R

N.
If v is a solution of

� divL .A .x;rLv//C jvjq�1v D h; (38)

then v is ˚-invariant.
If  is ˚-invariant, p � ` � 0 and v is a solution of

� divL .A .x;rLv//C  `jvjq�1v D h; (39)

then v is ˚-invariant.

Proof Set v˚.x/ WD v.˚.x//. We have that

�L.v/.x/C  `.x/jvjq�1v.x/ D h.x/ D h.˚.x//

D �L.v/.˚.x//C  `..˚.x//jvjq�1v..˚.x//

D �L.v˚/.x/C  `.x/jv˚ jq�1v˚.x/

and by the uniqueness of the solution we have the claim.
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In the Heisenberg group examples of map which leaves the p-laplacian invariant
are the following, ˚.�/ D ��, ˚.x; y; t/ D .�x; y; t/ and ˚.x; y; t/ D .2� �
x; y;�t � 4�y/ for any � 2 R.

Proposition 5.2 Let q > 1, 2 � ` � 0 and h 2 L1loc.R
N/. Let
H be the Heisenberg

Laplacian on the Heisenberg group H
n and let j�jL the gauge related to 
H. Then

the problem

�
Hv C  `jvjq�1v D h (40)

has at most one solution.
Moreover, let v be a solution of (40) we have

i) If h is cylindrical, then v is cylindrical.
ii) Let ` D 0. If h does not depend on t, then v is independent on t and it solves the

problem

�
v C jvjq�1v D h on R
2n: (41)

5.2 Some Applications to Systems

Another consequence of Theorem 4.1 is the following.

Theorem 5.1 Let p � 1, let A be M-p-C and odd, that is A .x;��/ D �A .x; �/
for any x 2 R

N and � 2 R
l. Let q � 1, q > p � 1 and p � ` � 0. Let h1; h2 2

L1loc.R
N/. Let .u; v/ be a weak solution of

8
<

:

divL .A .x;rLu// �  `jvjq�1v C h1 on R
N ;

divL .A .x;rLv// �  `jujq�1u C h2 on R
N :

(42)

If h1 C h2 � 0, then u C v � 0 a.e. on R
N.

Moreover, if .u; v/ solves also the equation in (42) and h1 D �h2, then u D �v
and u solves

� divL .A .x;rLu// D jujq�1u:

Proof Let w WD �u. Summing up the inequalities, we have that .w; v/ is a solution
of (35). Hence by Theorem 4.1 it follows that v � w: This completes the first part
of the proof.

Now, if .u; v/ is a solution of (42) with equality sign, then .�u;�v/ solves the
same equations. By the first part of this claim we deduce that �u � v � 0, thereby
concluding the proof.
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Corollary 5.1 Let p � 1, let A be M-p-C and odd. Let q � 1, q > p � 1 and
p � ` � 0 and let .u; v/ be a weak solution of

8
<

:

� divL .A .x;rLu// D  `jvjq�1v on R
N ;

� divL .A .x;rLv// D  `jujq�1u on R
N :

(43)

Then u D v a.e. on R
N.

Proof The claim follows by observing that .�u; v/ solves the system (42) with
equality signs and h1 D h1 	 0. Hence the claim follows from Theorem 5.1.

The above Theorem 5.1 and Corollary 5.1 were proved in a weaker form by the
first author in [7].

5.3 An Interesting Question

We the point out the following challenging question.
If p D 1 and q � 1; from the results proved in the preceding sections it follows

that uniqueness and comparison principles for problem (37) hold.
A natural open question is whether in the case 0 < q < 1 the same results hold.

In these respects, the following partial results may give some indication that this
problem has an affirmative answer.

Theorem 5.2 Let p D 1, let A be M-p-C, q > 0 and p � ` � 0. If .u; v/ is a
bounded weak solution of

divL .A .x;rLv//� `jvjq�1v � divL .A .x;rLu//� `jujq�1u on R
N ; (44)

then v � u a.e. on R
N.

Proof It is easy to see that

jtjq�1t � jsjq�1s � cq.t � s/; for M � t � s � �M: (45)

Therefore by the argument used in the proof of Theorem 4.1, the claim follows.

Corollary 5.2 Let p D 1, let A be M-p-C, q > 0, p � ` � 0 and let h 2 L1loc.R
N/.

Then the possible bounded solution of (37) is unique.

Looking at one of the model case, the p-Laplacian, one can easily realize that,
for p > 2 the p-Laplacian operator in not M-p-C. In this direction some efforts have
been made in [11]. However, even if the technique developed in the present paper
shows that it is possible to study equations associated to general operators satisfying



Uniqueness of Solutions of a Class of Quasilinear Subelliptic Equations 195

appropriated structural assumptions, the uniqueness problem for the equation

�
pu C jujq�1u D h on R
N ;

for h 2 L1loc.R
N/ and u 2 W1;p

loc .R
N/; with q > p � 1 and p > 2 remains still open.

Clearly, looking for nonnegative solution with h � 0 several results are known
see [13] for the Euclidean setting and [6] for the degenerate and anisotropic case.
The interested reader may refer also to [8–10] and [11].

6 Inequalities and M-p-C Operators

Here, we recall some fundamental elementary inequalities proved in [11] that we
use throughout the paper.

In what follows we shall assume that A has the form

A .x; �/ D A.j�j/�;

where A W RC ! R. We set �.t/ WD A.t/t.

Theorem 6.1 Let A be nonincreasing and bounded function such that

�.0/ D 0; �.t/ > 0 for t > 0; � is nondecreasing: (46)

Then A is M-p-C with p D 2.

Theorem 6.2 Let 1 < p � 2. Let � be increasing, concave function satisfying (46)
and such that there exist positive constants cp; c� > 0 such that

�.t/ � cptp�1 (47)

and

�0.s/s � c��.s/: (48)

Then A is M-p-C.

Remark 6.1 We notice that (47) is a necessary condition on A to be an M-p-C
operator. Indeed, if A is M-p-C, by taking � D 0, then it follows that A is W-p-C,
and (47) holds by Hölder inequality.
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7 Examples

Example 7.1 Let l � N be a positive natural number and let �l 2 C 1.RN IRl/ be
the matrix defined as

�l WD �
Il 0
�
:

The corresponding vector field r l is the usual gradient acting only on the first l
variables

r l D .@x1 ; @x2 ; : : : ; @xl/:

Clearly rN D r and r l is homogeneous with respect to dilation

ıR.x/ D .Rx1;Rx2; : : : ;Rxl;R
ılC1xlC1; : : : ;RıN xN/

with ılC1; : : : ; ıN are arbitrary real positive numbers.

Example 7.2 (Baouendi-Grushin Type Operator) Let � D .x; y/ 2 R
n 
R

k.D R
N/.

Let � � 0 and let � be the following matrix
�

In 0

0 jxj� Ik

�

: (49)

The corresponding vector field is given by r� D .rx; jxj�ry/
T and the linear

operator L D divL.rL�/ D 
x Cjxj2�
y is the so-called Baouendi-Grushin operator.
Notice that if k D 0 or � D 0, then L coincides with the usual Laplacian
operator. The vector field r� is homogeneous with respect to dilation ıR.x/ D
.Rx1; : : : ;Rxn;R1C�y1; : : : ;R1C�yk/.

Example 7.3 (Heisenberg-Kohn Operator) Let � D .x; y; t/ 2 R
n 
 R

n 
 R D H
n

and let � be defined as
�

In 0 2y
0 In �2x

�

:

The corresponding vector field rH is the Heisenberg gradient on the Heisenberg
group H

n. The vector field rH is homogeneous with respect to ıR.�/ D .Rx;Ry;R2t/
and Q D 2n C 2.

In H
1 the corresponding vector fields are X D @x C 2y@t, Y D @y � 2x@t. In this

case Q D 4.
In H

n a canonical homogeneous norm, called gauge, is defined as

j�jH WD
0

@

 
nX

iD1
x2i C y2i

!2

C t2

1

A

1=4

:
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Example 7.4 (Heisenberg-Greiner Operator) Let � D .x; y; t/ 2 R
n 
 R

n 
 R,
r WD j.x; y/j, � � 1 and let � be defined as

�
In 0 2�yr2��2
0 In �2�xr2��2

�

: (50)

The corresponding vector fields are Xi D @xi C 2�yir2��2@t, Yi D @yi � 2�xir2��2@t

for i D 1; : : : ; n.
For � D 1 L D divL.rL�/ is the sub-Laplacian 
H on the Heisenberg group

H
n. If � D 2; 3; : : : , L is a Greiner operator. The vector field associated to � is

homogeneous with respect to ıR.�/ D .Rx;Ry;R2� t/ and Q D 2n C 2� .

Example 7.5 Let RN be splitted as

R
N D R

n1 
 R
n2 
 � � � 
 R

nr 3 .x1; x2; : : : ; xr/;

and let ˛2; ˛3; : : : ; ˛r > 0 be fixed.
Let g2 W Rn1 ! R be an homogeneous function of degree ˛2.
Let g3 W Rn1 
 R

n2 ! R be an homogeneous function of degree ˛3 with respect
to dilation ıR.x1; x2/ D .Rx1;R˛2C1x2/, that is g3.Rx1;R˛2C1x2/ D R˛3g3.x1; x2/:

Let g4 W Rn1 
 R
n2 
 R

n3 ! R be an homogeneous function of degree ˛4 with
respect to dilation ıR.x1; x2; x3/ D .Rx1;R˛2C1x2;R˛3C1x3/.

We iterate the procedure by choosing analogously other homogeneous functions
gj up to gr W Rn1 
R

n2 
� � �
R
nr�1 ! R a homogeneous function of degree ˛r with

respect to dilation ıR.x1; x2; : : : xr�1/ D .Rx1;R˛2C1x2; : : : ;R˛r�1C1xr�1/.
Next we define the matrix � as

0

B
B
B
B
B
B
B
@

In1 0

0 g2.x1/In2 0 � � �
� � � 0 g3.x1; x2/In3

: : : : : :

0 gr.x1; x2; : : : ; xr�1/Inr

1

C
C
C
C
C
C
C
A

: (51)

We have that the vector field �r satisfies the assumption of Sect. 2. Indeed it is
homogeneous with respect to ıR.x/ D .Rx1;R˛2C1x2; : : : ;R˛rC1xr/. This example
generalizes the Example 7.2.

Example 7.6 (Carnot Groups) On a Carnot group the horizontal gradient can be
written in the form �r as in Sect. 2 and it satisfies our assumptions. We refer the
reader to [4] for more detailed information on this subject. Special examples of
Carnot groups are the Euclidean spaces R

N . The simplest nontrivial example of a
Carnot group is the Heisenberg group H

1 D R
3. See Example 7.3. Several other

examples can be found in the book [4].
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Abstract We overview some recent results on the existence and non-existence of
positive solutions for differential inequalities of the kind

div0

�
'.jr0uj/

jr0uj r0u

�

> f .u/`.jr0uj/

in the setting of Carnot groups under the Keller-Osserman condition.

Keywords Carnot groups • Keller-Osserman condition

Mathematical Subject Classification: Primary: 35R03, Secondary: 35R45,
35B53

1 Introduction

A Carnot group G is a Lie group with underlying manifold R
N endowed with a one

parameter family fı�g�>0 of group automorphisms of the form

ı�

�
x.1/; x.2/; : : : ; x.r/

�
D
�
�x.1/; �2x.2/; : : : ; �rx.r/
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where x.i/ 2 R
Ni , N1 C N2 C : : :C Nr D N and such that the N1 left-invariant vector

fields X1;X2; : : : ;XN1 that agree with @=@x.1/i at the origin generate the whole Lie
algebra of left-invariant vector fields on G.

The vector fields X1; : : : ;XN1 are homogeneous of degree 1 with respect to the
dilations ı�, that is

Xj Œ f .ı� .�//� .x/ D �Xj f .ı�x/ :

The linear span of the vector fields X1;X2; : : : ;XN1 is called the horizontal layer of
the Lie algebra of G. The canonical sub-Laplacian on G is the differential operator


G D
N1X

iD1
X2i

which is hypoelliptic by Hörmander’s theorem (see [15]). We refer the interested
readers to [3] for a detailed introduction to Carnot groups.

By a general theorem of Folland (see [13]) the sub-Laplacian 
G admits a
smooth fundamental solution � which is homogeneous of degree 2�Q with respect
to the dilation ı�

� .ı� .x// D �2�Q� .x/

where Q is the homogeneous dimension of G defined by Q D N1C2N2C� � �C rNr .
The fundamental solution � can be used to define on G a symmetric homogeneous
norm by

d .x/ D
�
� .x/1=.2�Q/ x ¤ 0;

0 x D 0:

More precisely we have d .ı�.x// D �d .x/ and d .x/ > 0 if and only if x ¤ 0.
Setting

d .x; y/ D d
�
y�1 ı x

�

one can check that d .x; y/ D d .y; x/, d .x; y/ D 0 if and only if x D y and that the
pseudo triangle inequality

d .x; y/ 6 c Œd .x; z/C d .z; y/�

holds for a suitable c > 0 and for every x; y; z 2 G.
From now on we will denote by C1

H .G/ the space of continuous functions on G

having continuous derivative with respect to the vector fields of the first layer. For
k 2 N we define likewise Ck

H .G/.
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Given a function u 2 C1
H .G/ we define the horizontal gradient r0u as the vector

field

r0u D
N1X

iD1
.Xiu/Xi:

For a horizontal vector field W D PN1
iD1 wiXi we define the horizontal divergence

div0 W D
N1X

iD1
Xiwi:

If W D PN1
iD1 wiXi and Z D PN1

iD1 ziXi are horizontal vector fields we can define
the scalar product by W � Z D PN1

iD1 wizi, so that jWj2 D W � W D PN1
iD1 w2i and in

particular

jr0uj2 D
N1X

iD1
jXiuj2 :

Example 1.1 A first example of Carnot group is the Heisenberg groupHn D R
2n
R

with the group law

.x; y; t/ ı �x0; y0; t0
� D �

x C x0; y C y0; t C t0 C 2
�
y � x0 � x � y0��

and the family of dilations

ı� .x; y; t/ D �
�x; �y; �2t

�
:

In this case the horizontal vector fields are

Xi D @

@xi
C 2yi

@

@t
and Yi D @

@yi
� 2xi

@

@t

and, since

ŒXi;Yi� D XiYi � YiXi D �4 @
@t

D �4T;

they generate the whole (2n C 1)-dimensional Lie algebra of left invariant vector
fields. In this case the sub-Laplacian is given by


Hn D
nX

iD1

�
X2i C Y2i

�
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and its homogeneous fundamental solution has the closed-form expression

� .x/ D cn
�
.x2 C y2/2 C t2

�n=2

where cn is a suitable constant. In this case the homogeneous dimension is Q D
2n C 2 so that � is homogeneous of degree �2n and the homogeneous norm is
given by

d .x/ D � .x/�
1
2n D c�1=2n

n

��
x2 C y2

�2 C t2
�1=4

:

In what follows, we shall consider a non-linear generalization of the sub-
Laplacian called '-Laplacian defined by


'u D div0

�

' .jr0uj/ r0u

jr0uj
�

where the function ' satisfies the structural assumptions

(
' 2 C0

�
R

C
0

�\ C1
�
R

C� ;

' .0/ D 0, ' 0 > 0 on R
C:

A meaningful example of '-Laplacian is the p-Laplacian


pu D div0
�
jr0ujp�2 r0u

�

that can be obtained with the choice ' .t/ D tp�1. Another interesting example
comes from the choice ' .t/ D tp

1Ct2
that provides an analog of the mean curvature

operator on Carnot groups


MCu D div0

0

B
@

r0uq
1C jr0uj2

1

C
A :

Operators of this kind, or even more general, have been studied in R
n, in the

context of Riemannian geometry and on Carnot groups by several authors (see [8, 9,
19, 21, 23] and references therein). In particular in [19] the authors considered the
existence of weak classical solutions to the differential inequality


'u > f .u/ ` .jr0uj/
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on the Heisenberg group and on R
n. Under the generalized Keller-Osserman

condition

Z C1

t0

1

K�1 .F .t//
dt < C1

where F .t/ D R t
0

f .s/ ds and K .t/ D R t
0

s'0.t/
`.t/ dt, they proved that such differential

inequality admits only constant non-negative entire solutions.
Observe that for the differential inequality


pu > u� jr0uj

the generalized Keller-Osserman condition takes the form � C  > p � 1. One can
interpret this condition by saying that the non linearity in the RHS is bigger than the
non linearity in the LHS.

2 A Brief History of the Keller-Osserman Condition

Around 1957 Joseph Keller [17, 18] and Robert Osserman [22] independently
studied non-linear equations of the form


u D f .u/ (1)

or more generally


u > f .u/ : (2)

In [17] Keller derived Eq. (1) from the study of the equilibrium of a charged
gas inside a container. Let p denote the pressure, � the mass density, a� the charge
density and E the electric field vector. Keller wrote the following equations

8
ˆ̂
<

ˆ̂
:

rp D a�E equilibrium equation,

div E D 4�a� the electric field is generated by the gas,

p D g .�/ equation of state of the gas.

The function g .�/ is non-negative and increasing. Eliminating E from the first and
the second equation gives

div
�
��1rp

� D 4�a2�:

It is not difficult to see that by a change of variable this equation can be reduced to


u D 4�a2� .p .u// D f .u/ :
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For example if p D c � the change of variable

u D log .�/

gives

c
u D 4�a2

c
eu:

Theorem 2.1 (Keller) Let f W R ! Œ0;C1/ be increasing and assume

Z C1

1

�Z x

0

f .z/ dz

��1=2
dx < C1: (3)

There exists a decreasing function g W R ! R such that if u is a solution of 
u D
f .u/ in a domain D � R

n then

u .x/ 6 g .d .x; @D// :

Moreover g .R/ ! �1 as R ! C1.

Observe that for f .u/ D u� condition (3) is equivalent to � > 1.
The conclusion drawn by Keller using his theorem is the following:

Conclusion 2.2 For a certain class of equations of state, both � and p are bounded
above at every inner point of D, independently of the total mass of fluid within the
container D.

He also found this interesting corollary:

Corollary 2.1 Let f be as in the previous theorem, then 
v D f .v/ has no entire
solutions.

At the same time Osserman studied the differential inequality (2). In [22] he
proved the following:

Theorem 2.3 (Osserman) Let f .z/ be positive, continuous, and monotone increas-
ing for z > z0, and suppose

Z 1 �Z t

0

f .z/ dz

��1=2
dt < C1:

Then u cannot satisfy 
v > 0 on R
n and
v > f .v/ outside some sphere S.

Osserman’s motivation was mainly geometric and as a consequence of his
theorem, he obtained the following geometric result.
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Corollary 2.2 If a simply-connected surface S has a Riemannian metric whose
Gauss curvature K satisfies K 6 �" < 0 everywhere, then S is conformally
equivalent to the interior of the unit circle.

Let us briefly sketch out the technique used by Keller and Osserman. Under the

condition
R1 �R t

0 f .z/ dz
��1=2

dt < C1, the initial value problem

(
' 00 .r/C n�1

r '
0 .r/ D f .' .r//

' .0/ D "; ' 0 .0/ D 0

has a solution defined on Œ0;R"/ that satisfies lim
r!R�

"

' .r/ D C1. Let now u be a

solution of 
u > f .u/ defined in a disk of radius R". Without loss of generality we
can assume that the disk is centered at the origin and consider v .x/ D u .x/�' .jxj/.
Note that v .x/ ! �1 as jxj ! R". Suppose v .x/ has a positive maximum at x0.
In a neighborhood of x0


v D 
u �
' > f .u/� f .'/ > 0;

so that v would be sub-harmonic, contradicting that it has a maximum. It follows
that u .x/ 6 ' .jxj/.

After the seminal work of Keller and Osserman their technique has been extended
to a variety of equations, inequalities and operators. For example Redheffer [24]
considered a differential inequality with a gradient term


u > f .u/ ` .jruj/ ;

Naito and Usami [21] and Bandle et al. [2] considered respectively


'u > f .u/

and


'u D f .u/ ` .jruj/

in R
n. More recently Filippucci et al. [11, 12] gave sufficient conditions for the

non-existence of entire positive solutions of differential inequalities of the kind

div
n
g .jxj/ jrujp�2 ru

o
> h .jxj/ f .u/

and

div
n
g .jxj/ jrujp�2 ru

o
> h .jxj/ f .u/˙ Qh .jxj/ ` .jruj/ :
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Mari et al. [20] studied the differential inequality

1

D
div

�

D
' .jruj/

jruj ru

�

> b .x/ f .u/ ` .jruj/

and

1

D
div

�

D
' .jruj/

jruj ru

�

> b .x/ f .u/ ` .jruj/� g .u/ h .jruj/

on weighted Riemannian manifolds.
Farina and Serrin [9] studied differential inequalities of the kind

div .A .x; u;ru// > B.x; u;ru/

with

jA .x; z; �/j 6 c jxjs jzjr jA .x; z; �/ � �jp�1

B.x; z; �/ > Cjxj�tjzjq

obtaining non existence results under various assumptions on p; s; r; t; q.
Despite the large literature on the subject, the sub-elliptic setting has been

considered only in a few papers. D’Ambrosio [7] and D’Ambrosio and Mitidieri
[8] considered inequalities of the kind

Lu > f .u/

where

Lu D divL .A .x; u;rLu// :

In this case the gradient rL and the divergence divL are generated by suitable
homogeneous vector fields.

Magliaro et al. [19] considered differential inequalities of the kind


'u > f .u/ ` .jr0uj/

on the Heisenberg group H
n.
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3 Coercive Differential Inequalities on Carnot Groups

Our starting point is the following theorem of Magliaro et al. [19, Theorem 1.4].

Theorem 3.1 Let '; ` and f satisfy the following structural assumptions

(
' 2 C0

�
R

C
0

� \ C1
�
R

C� ;

' .0/ D 0, ' 0 > 0 on R
C;

(4)

(
f 2 C0

�
R

C
0

�
;

f .0/ > 0; f increasing,
(5)

8
<

:

` 2 C0 .Œ0;C1// ,

sup
Œ0;t�

` .s/ 6 C` .t/ ; ` .0/ > 0;
(6)

t' 0 .t/
` .t/

2 L1
�
0C� n L1 .C1/ ; (7)

and the relaxed homogeneity conditions

(
s' 0 .st/ 6 C1s�' 0 .t/ 8s 2 Œ0; 1� ;
s1C� ` .t/ 6 C2` .st/ 8s 2 Œ0; 1�

(8)

for positive constants C; C1;C2 and � . Define

K .t/ D
Z t

0

s' 0 .s/
` .s/

ds and F .t/ D
Z t

0

f .s/ ds:

If the generalized Keller-Osserman condition

1

K�1 .F .t//
2 L1 .C1/ (9)

holds and 0 6 u 2 C1
H .H

n/ satisfies


'u > f .u/ ` .jr0uj/ on H
n

then u 	 0.

The steps of their proof are more or less the following.

1. They assume there exists a non-negative, entire solution u 6	 0 of 
'u >
f .u/ ` .jr0uj/ :
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2. They construct a radial function v defined in an annulus of the kind

R1 6 d .x/ 6 R2

satisfying


'v 6 f .v/ ` .jr0vj/ ;

such that v .x/ ! C1 as d .x/ ! R�
2 and such that v .x/ is small when d .x/ is

close to R1. To do this, they implicitly define ˛ by

R1 � t D
Z ˛.R1/

˛.t/

ds

K�1 .�F .s//

and observe that ˛ satisfies ' 0 .˛0/ ˛00 D � f .˛/ ` .˛0/. Setting v .x/ D ˛ .d .x//
they obtain


'v D jr0dj2
�

' 0 �˛0 jr0dj�˛00 C ' .˛0 jr0dj/
jr0dj

Q � 1

d

�

and using ' 0 .˛0/ ˛00 D � f .˛/ ` .˛0/ and the structural assumptions, they are able
to show that for small �


'v 6 f .v/ ` .jr0vj/ :

3. A suitable choice of v implies that u � v must have a positive maximum q inside
the annulus. At such a point u > v and r0u D r0v. Also, since ` > 0


'u > f .u/ ` .jr0uj/ > f .v/ ` .jr0vj/ > 
'v:

It follows that there is a neighborhood of q where


'u > 
'v:

4. A comparison argument shows that this is not possible (if 
' were linear then
u � v would be sub-harmonic in a neighborhood of q).

Let now G be a Carnot group, let Q be its homogeneous dimension, � the

fundamental solution of the sub-Laplacian on G and d .x/ D �
1

2�Q .x/ the
homogeneous norm. In order to extend the results of Magliaro, Mari, Mastrolia and
Rigoli to Carnot groups the main problem to solve is the construction of the radial
supersolution. Let ˛ be defined by

t0 � t D
Z ˛.t0/

˛.t/

ds

K�1 .�F .s//
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and let v .x/ D ˛ .d .x//. For a radial function a lengthy computation gives


'v D jr0dj2
�

' 0 �˛0 jr0dj�˛00 C ' .˛0 jr0dj/
jr0dj

Q � 1

d

�

C
�

' 0 �˛0 jr0dj� ˛0 � ' .˛0 jr0dj/
jr0dj

�

r0 jr0dj � r0d

jr0dj :

Since on the Heisenberg group the homogeneous norm is explicit, it is possible
to check that in this case

r0 jr0dj � r0d

jr0dj D 0

giving a much simpler expression for the '�Laplacian of a radial function. The
Carnot groups where such quantity vanishes have been studied by Balogh and
Tyson in [1] and have been called polarizable since they admit polar coordinates.
Unfortunately the only known examples of polarizable groups are the Heisenberg
group and more generally Kaplan H-type groups (see [16]).

In [4] the authors show that the techniques of Magliaro, Mari, Mastrolia and
Rigoli can be extended straightforwardly to polarizable groups. The case of non-
polarizable groups turns out to be more complicated and requires extra assumptions.
In [4, Theorem 4.1] the following result is proved.

Theorem 3.2 Assume the validity of (4), (5), (6) and (7). Also assume that

8
ˆ̂
<

ˆ̂
:

s' 0 .st/ 6 C1s�' 0 .t/ ; 8s 2 Œ0; 1� ;
s��1` .t/ 6 C2` .st/ ; 8s 2 Œ0; 1� ;
t' 0 .t/ 6 C3' .t/

(10)

for positive constants C1;C2;C3 and � . If the generalized Keller-Osserman condi-
tion (9) holds, then every solution 0 6 u 2 C1

H .G/ of


'u > f .u/ ` .jr0uj/ on G

is identically zero.

We point out that conditions (10) are stronger than the original conditions (8).
Indeed, (10) imply that atp 6 ' .t/ 6 btpfor some positive constants a; b and p.

When condition (9) is not satisfied, the inequality 
'u > f .u/ ` .jr0uj/ admits
entire solutions. Indeed in [4, Theorem 5.1] the following is proved.

Theorem 3.3 Assume the validity of (4), (5), (6) and (7). Then, if the generalized
Keller-Osserman condition (9) is not satisfied, there exists a non-negative, non-
constant solution u 2 C1

H .G/ of inequality
'u > f .u/ ` .jr0uj/.
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4 A Sharper Result for the Heisenberg Group

An unpleasant feature of Theorem 3.2 is the assumption ` .0/ > 0 since it excludes
some interesting model cases such as


pu > f .u/ jr0uj :

In [5] it is proved that on the Heisenberg group it is possible to relax this hypothesis
and assume only ` .t/ > 0.

The condition ` .0/ > 0 was necessary in the comparison argument between u
and the radial supersolution. As shown in step 4 of the previous section, there exists
a point q where u > v and r0u D r0v. Assuming ` .0/ > 0 gives


'u > f .u/ ` .jr0uj/ > f .v/ ` .jr0vj/ > 
'v;

and therefore 
'u > 
'v in a neighborhood of q;which is not possible. If ` is
allowed to vanish at 0 we only obtain


'u > 
'v

at the point q and unfortunately this is not enough to get a contradiction. However
since f .u/ > f .v/ the equality case


'u > f .u/ ` .jr0uj/ D f .v/ ` .jr0vj/ > 
'v

only happens if jr0uj D jr0vj D 0. Observe that this may actually happen. Indeed,
since v .x/ D ˛ .d .x// we have

r0v .q/ D ˛0 .d .q//r0d .q/

and on the Heisenberg group for q D .z; t/ we have

jr0d .q/j D jzj2
d .z; t/

so that r0v .q/ vanishes on the vertical line z D 0. However, note that, if ˛0 ¤ 0,
for the Euclidean gradient we have

jrvj ¤ 0:

Idea 1 Construct v in such a way that u � v cannot have a maximum at a point
where jr0uj D jr0vj D 0.

Since at a point of maximum we have ru D rv ¤ 0 this will be achieved by
showing that the set

C D fp 2 H
n W r0u .p/ D 0 and ru .p/ ¤ 0g
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cannot be too big and choosing v in such a way that u � v cannot have a maximum
in C :

The next theorem (see [5, Proposition 4.1]) shows that, in a suitable sense, C is
“small”.

Theorem 4.1 Let u 2 C2
H

�
˝
�
, ˝ open set in H

m. Set

C D ˚
p 2 ˝ W Xju .p/ D Yju .p/ D 0; j D 1; : : : ;m, Tu .p/ ¤ 0

�
:

If m > 1, for a.e. z0 2 R
2m

C\ f.z0; t/ W t 2 Rg

is countable and discrete.
If m D 1; for a.e. z0 2 R

2m

C\ f.z0; t/ W t 2 Rg

has Hausdorff dimension 6 1
2
.

The idea of the proof of this theorem is the following. If p 2 C then

0 ¤ Tu . p/ D �1
4


XjYju . p/� YjXju . p/

�
:

It follows that XjYju .p/ and YjXju .p/ cannot both vanish at p. Hence either

p 2 ˚q 2 ˝ W Xju .q/ D 0, YjXju .q/ ¤ 0
�

or

p 2 ˚q 2 ˝ W Yju .q/ D 0, XjYju .q/ ¤ 0
�
:

Since this holds for every j D 1; : : : ;m it follows that p is in the intersection of
m of the above set.

Such intersections are m-codimensional H-regular surfaces by a theorem of
Franchi et al. [14]. In particular they have Hausdorff dimension equal to m C 2.
Thus

dim .C / 6 m C 2:

We now use Eilenberg’s inequality (see [10, Theorem 2.10.25] or [6, Theo-
rem 13.3.1]). If f W X ! Y is a Lipschitz map between separable metric spaces,
A � X and 0 6 k 6 d we have

Z�

Y
Hd�k

�
A \ f �1 .y/

�
dHk .y/ 6 c .Lip f /k Hd .A/ :
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Here Hd denotes the d-dimensional Hausdorff measure and �R the upper Lebesgue
integral.

Taking f W Hm ! R
2m such that f .z; t/ D z, d D k D 2m and A D C , we obtain

Z�

R2m
H0

�
C \ f �1 .z/

�
dH2m .z/ 6 c .Lip f /k H2m .C / :

Since dim .C / 6 m C 2 6 2m (if m > 1), we have

Z�

R2m
H0

�
C \ f �1 .z/

�
dH2m .z/ < C1;

which means that

H0 .C\ f.z; t/ W t 2 Rg/

is finite for a.e. z 2 R
2m.

The fact that it is possible to construct v in such a way that u � v does not have
a maximum in C is a consequence of the following Lemma. See Proposition 3.4 in
[5] for a proof.

Lemma 4.1 Assume that the structural assumptions (4), (5), (6) and (7) and the
Keller-Osserman condition (9) hold. Let 0 < t0 < t1, 0 < " < �, h1; h2 W
Œt0;C1/ ! R and let E � R be at most countable. Then there exist T > t1 and a
strictly increasing convex function ˛ 2 C2 .Œt0;T// such that, for every q 2 H

m, the
radial function v .p/ D ˛ .d .p; q// satisfies

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂


'v 6 f .v/ ` .jr0vj/ on BT .q/ n Bt0 .q/

v D " on @Bt0 .q/

v D C1 on @BT .q/

" 6 v 6 � on Bt1 n Bt0 :

(11)

Moreover, for every t 2 E \ Œt0;T� ;

˛0 �t
1
2

�
¤ h1 .t/ and ˛0 �t

1
2

�
¤ h2 .t/ :

The idea of the proof of this lemma is to construct a family of supersolutions
v� .p/ D ˛� .d .p; q// that satisfies (11), prove that for every t 2 E there exists

at most one value of � such that ˛0
�

�
t
1
2

�
D h1 .t/ and then note that there are

uncountably many values of � that work.
We are now ready to state the already-advertised result for the Heisenberg group

which is Theorem 5.1 in [5].
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Theorem 4.2 Let '; f ; ` satisfy the usual structural conditions except that we allow
` .0/ D 0. Assume the “relaxed homogeneity condition”

s2' 0 .st/

` .st/
6 c

' 0 .t/
` .t/

8s 2 Œ0; 1� , t 2 Œ0;C1/

and the Keller-Osserman condition. Let D D f.z0; t/ W t 2 Rg for some z0 2 R
2m.

Let u be a non-negative solution of


'u > f .u/ ` .jr0uj/

such that u 2 C1
H .H

m/ \ C2
H .H

m n D/. Also, in the case m D 1 assume that for
almost every z 2 R

2, Tu .z; �/ 2 Cˇ .R/ for some ˇ > 1
2
. Then u is constant.

When m > 1 this theorem follows from Theorem 4.1 and Lemma 4.1 in the
following way. Following the method of Magliaro, Mari, Mastrolia and Rigoli one
can construct a super-solution defined in an annulus that blows up on the exterior
boundary of the annulus. By choosing carefully the center .z0; t0/ of the annulus it
is possible to ensure that

E D C \ f.z0; t/ W t 2 Rg

is countable. Applying the above lemma with h1 .t/ D 2t
1
2 Tu .z0; t/ and h2 .t/ D

�2t
1
2 Tu .z0;�t/ ensures that at the points of E

Tu ¤ Tv

and therefore u � v cannot attain a maximum where jr0uj D jr0vj D 0.
For m D 1, the proof requires a more refined version of Lemma 4.1 which takes

into account the Hausdorff dimension of the set E. See Lemma 3.2 in [5].
The next theorem shows that Theorem 4.2 is sharp (see Theorem 6.1 in [5]).

Theorem 4.3 Under the usual structural assumptions, if the generalized Keller-
Osserman condition is not satisfied, there exists a non-negative, non-constant
solution u 2 C1

H .H
m/\ C2

H .H
m n fz D 0g/ of the inequality


'u > f .u/ ` .jr0uj/ :
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1 Introduction

In his pioneering paper [23] L. Modica proved that if u is a (smooth) bounded entire
solution of the semilinear Poisson equation 
u D F0.u/ in R

n, with nonlinearity
F � 0, then u satisfies the a priori gradient bound

jDuj2 � 2F.u/: (1)

With a completely different approach from Modica’s original one, this estimate
was subsequently extended in [3] to nonlinear equations in which the leading
operator is modeled either on the p-Laplacian div.jDujp�2Du/, or on the minimal
surface operator div..1 C jDuj2/�1=2Du/, and later to more general integrands of
the calculus of variations in [7]. More recently, in their very interesting paper [12]
Farina and Valdinoci have extended the Modica estimate (1) to domains in R

n which
are epigraphs whose boundary has nonnegative mean curvature, and to compact
manifolds having nonnegative Ricci tensor, see [13], and also the sequel paper with
Sire [15].

It is by now well-known, see [1, 3, 7, 23], that, besides its independent interest,
an estimate such as (1) implies Liouville type results, monotonicity properties of
the relevant energy and it is also connected to a famous conjecture of De Giorgi
(known as the "-version of the Bernstein theorem) which we discuss at the end of
this introduction and in Sect. 6 below, and which nowadays still constitutes a largely
unsolved problem.

In the present paper we study Modica type gradient estimates for solutions
of some nonlinear parabolic equations in R

n and, more in general, in complete
Riemannian manifolds with nonnegative Ricci tensor, and in unbounded domains
satisfying the above mentioned geometric assumptions in [12]. In the first part of the
paper we continue the study initiated in the recent work [2], where we considered
the following inhomogeneous variant of the normalized p-Laplacian evolution in
R

n 
 Œ0;T�,

jDuj2�p
˚
div.jDujp�2Du/� F0.u/

� D ut; 1 < p � 2: (2)

In [2] we proved that if a bounded solution u of (2) belonging to a certain class H
(see [2] for the relevant definition) satisfies the following gradient estimate at t D 0

for a.e. x 2 R
n,

jDu.x; t/jp � p

p � 1
F.u.x; t//; (3)

then such estimate continues to hold at any given time t > 0. On the function F we
assumed that F 2 C2;ˇ

loc .R/ and F � 0. These same assumptions will be assumed
throughout this whole paper.
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In Sect. 2 we show that a similar result is true for the following inhomogeneous
variant of the minimal surface parabolic equation

.1C jDuj2/1=2
�

div

�
Du

.1C jDuj2/1=2
�

� F0.u/
	

D ut; (4)

see Theorem 2.1 below. Equation (4) encompasses two types of equations: when
F.u/ D 0 it represents the equation of motion by mean curvature studied in [10],
whereas when u.x; t/ D v.x/, then (4) corresponds to the steady state which is
prescribed mean curvature equation.

In Sect. 3 we establish similar results for the reaction diffusion equation in ˝ 

Œ0;T�


u D ut C F0.u/; (5)

where now ˝ is an epigraph and the mean curvature of @˝ is nonnegative.
Theorem 3.1 below constitutes the parabolic counterpart of the cited result in [12]
for the following problem

(

u D F0.u/; in ˝;

u D 0 on @˝; u � 0 on ˝:
(6)

In that paper the authors proved that a bounded solution u to (6) satisfies the Modica
estimate (1), provided that the mean curvature of @˝ is nonnegative.

In Sect. 4 we turn our attention to settings where global versions of such estimates
for solutions to (5) can be established, i.e., when there is no a priori information on
whether such an estimate hold at some earlier time t0. In Theorems 4.1 and 4.2 we
show that, quite remarkably, respectively in the case Rn 
.�1; 0� and˝
.�1; 0�,
where ˝ is an epigraph that satisfies the geometric assumption mentioned above,
the a priori gradient estimate

jDu.x; t/j2 � 2F.u.x; t// (7)

holds globally on a bounded solution u of (5).
In Sect. 5 we establish a parabolic generalization of the result in [13], but in the

vein of our global results in Sect. 4. In Theorem 5.1 we prove that if M is a compact
Riemannian manifold with Ric � 0, with Laplace-Beltrami 
, then any bounded
entire solution u to (5) in M 
 .�1; 0� satisfies (7). It remains to be seen whether
our result, or for that matter the elliptic result in [13], remain valid when M is only
assumed to be complete, but not compact.

Finally in Sect. 6, as a consequence of the a priori estimate (7) in Sect. 4, we
establish an analogue of Theorem 5.1 in [3] for solutions to (5) in R

n 
 .�1; 0�.
More precisely, in Theorem 6.1 below we show that if the equality in (7) holds at
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some .x0; t0/, then there exists a function g 2 C2.R/, a 2 R
n, and ˛ 2 R, such

that

u.x; t/ D g.< a; x > C˛/: (8)

In particular, u is independent of time and the level sets of u are vertical hyperplanes
in R

n 
 .�1; 0�. This result suggests a parabolic version of the famous conjecture
of De Giorgi (also known as the "-version of the Bernstein theorem for minimal
graphs) which asserts that entire solutions to


u D u3 � u; (9)

such that juj � 1 and @u
@xn

> 0, must be one-dimensional, i.e., must have level sets
which are hyperplanes, at least in dimension n � 8, see [8]. We recall that the
conjecture of De Giorgi has been fully solved for n D 2 in [16] and n D 3 in [1],
and it is known to fail for n � 9, see [9]. Remarkably, it is still an open question for
4 � n � 8. Additional fundamental progress on De Giorgi’s conjecture is contained
in the papers [17, 24]. For results concerning the p-Laplacian version of De Giorgi’s
conjecture, we refer the reader to the interesting paper [25]. For further results, the
state of art and recent progress on De Giorgi’s conjecture, we refer to [4, 11, 14] and
the references therein.

In Sect. 7 motivated by our Theorem 6.1 below, we close the paper by proposing
a parabolic version of De Giorgi’s conjecture. It is our hope that it will stimulate
interesting further research.

2 Forward Modica Type Estimates in R
n � Œ0; T�

for the Generalized Motion by Mean Curvature Equation

In [3] it was proved that if u 2 C2.Rn/ \ L1.Rn/ is a solution to

div

�
Du

.1C jDuj2/1=2
�

D F0.u/; (10)

such that jDuj � C, then the following Modica type gradient estimate holds

.1C jDuj2/1=2 � 1

.1C jDuj2/1=2 � F.u/: (11)

In Theorem 2.1 below we generalize this result to the parabolic minimal surface
equation (4). Such result also provides the counterpart of the above cited main
result (2) in [2] for the normalized parabolic p-Laplacian (3). Henceforth, by
v 2 C2;1

loc , we mean that v has continuous derivatives of up to order two in the x
variable and up to order one in the t variable. We would also like to mention that
unlike the case when F D 0, further requirements on F need to be imposed to ensure
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that a bounded solution to (4) has bounded gradient, see e.g. Theorem 4 in [19]. This
is why an L1 gradient bound is assumed in the hypothesis of the next theorem.

We recall that throughout the whole paper we assume that F 2 C2;ˇ
loc .R/ for some

ˇ > 0, and that F � 0.

Theorem 2.1 For a given " > 0, let u 2 C2;1
loc .R

n 
 Œ0;T�/\ L1.Rn 
 .�";T�/ be a
classical solution to (4) in R

n 
 Œ0;T� such that jDuj � C. If u satisfies the following
gradient estimate

.1C jDuj2/1=2 � 1

.1C jDuj2/1=2 � F.u/ (12)

at t D 0, then u satisfies (12) for all t > 0.

Proof Since jDuj � C and F 2 C2;ˇ
loc , it follows from the Schauder regularity theory

of uniformly parabolic non-divergence equations (see Chaps. 4 and 5 in [22]), that
u 2 H3C˛.Rn 
 Œ0;T�/ for some ˛ > 0 which depends on ˇ and the bounds on u
and Du (see Chap. 4 in [22] for the relevant notion). Now we let

�.s/ D .s2 C 1/1=2; s 2 R: (13)

With this notation we have that u is a classical solution to

div.�0.jDuj2/Du/ D �0.jDuj2/ut C F0.u/: (14)

Now given that u 2 H3C˛.Rn 
 Œ0;T�/, one can repeat the arguments as in the proof
of Theorem 5.1 in [2] with � as in (13). We nevertheless provide the details for the
sake of completeness and also because the corresponding growth of � in s is quite
different from the one in Theorem 5.1 in [2]. Let

�.s/ D 2s�0.s/� �.s/; (15)

and define � D � 0. We also define P as follows

P.u; x; t/ D �.jDu.x; t/j2/ � 2F.u.x; t//: (16)

With � as in (13) above, we have that

P D 2
.1C jDuj2/1=2 � 1

.1C jDuj2/1=2 � 2F.u/: (17)

We note that the hypothesis that (12) be valid at t D 0 can be reformulated by saying
that P.�; 0/ � 0. We next write (14) in the following manner

aij.Du/ uij D f .u/C �0 ut;
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where for � 2 R
n we have let

aij.�/ D 2�00�i �j C �0ıij: (18)

Therefore, u satisfies

dij uij D f

�
C �0

�
ut; (19)

where dij D aij

�
. By differentiating (18) with respect to xk, we obtain

.aij .uk/i/j D f 0 uk C �0 utk C 2�00 uhk uh ut: (20)

From the definition of P in (16) we have,

Pi D 2�uki uk � 2f ui; Pt D 2�ukt uk � 2f ut: (21)

We now consider the following auxiliary function

w D wR D P � M

R

p
jxj2 C 1 � ct

R1=2
;

where R > 1 and M, c are to be determined subsequently. Note that P � w for
t � 0. Consider the cylinder QR D B.0;R/
 Œ0;T�. One can see that if M is chosen
large enough, depending on the L1 norm of u and its first derivatives, then w < 0

on the lateral boundary of QR. In this situation we see that if w has a strictly positive
maximum at a point .x0; t0/, then such point cannot be on the parabolic boundary
of QR. In fact, since w < 0 on the lateral boundary, the point cannot be on such set.
But it cannot be on the bottom of the cylinder either since, in view of (12), at t D 0

we have w.�; 0/ � P.u.�; 0// � 0.
Our objective is to prove the following claim:

w � K
defD R� 1

2 ; in QR; (22)

provided that M and c are chosen appropriately. This claim will be established
in (43) below. We first fix a point .y; s/ in R

n. Now for all R sufficiently large enough,
we have that .y; s/ 2 QR. We would like to emphasize over here that finally we let
R ! 1. Therefore, once (22) is established, we obtain from it and the definition of
w that

P.u; y; s/ � K0

R1=2
; (23)

where K0 depends on "; .y; s/ and the bounds of the derivatives of u of order three.
By letting R ! 1 in (23), we find that

P.u; y; s/ � 0: (24)
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The sought for conclusion thus follows from the arbitrariness of the point .y; s/.
In order to prove the claim (22) we argue by contradiction and suppose that there

exist .x0; t0/ 2 QR at which w attains it maximum and for which

w.x0; t0/ > K:

It follows that at .x0; t0/ we must have

."2 C jDu.x0; t0/j2/�1=2jDu.x0; t0/j2 � 1

2
P.x0; t0/ � 1

2
w.x0; t0/ >

1

2
K; (25)

which implies, in particular, that Du.x0; t0/ ¤ 0. Therefore, we obtain from (25)

jDu.x0; t0/j � .1C jDu.x0; t0/j2/�1=2jDu.x0; t0/j2 � 1

2
P.x0; t0/ >

1

2
K: (26)

On the other hand, since .x0; t0/ does not belong to the parabolic boundary, from the
hypothesis that w has its maximum at such point, we conclude that wt.x0; t0/ � 0

and Dw.x0; t0/ D 0. These conditions translate into

Pt � c

R1=2
; (27)

and

Pi D M

R

x0;i
.jx0j2 C 1/1=2

: (28)

Now

.dijwi/j D .dijPi/j � M

R
.dij

xi

.jxj2 C 1/1=2
/j;

where

.dijPi/j D 2.
aij

�
.�uki uk � f ui//j D 2.aij .uk/i uk/j � 2.f dij ui/j: (29)

After a simplification, (29) equals

2aij .uki/j uk C 2aij uki ukj � 2f 0 dij ui uj � 2f dij uij � 2f .dij/j ui:

We notice that

dijuiuj D 2�
00

ui uj ui uj C �0 ıij ui uj

�
D jDuj2:
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Now by using (20) and by cancelling the term 2f 0jDuj2, we get that the right-hand
side in (29) equals

2�0utk uk C 4�
00

uhk uh ukut C 2aij uki ukj � 2fdij uij � 2fdij;j ui:

Therefore by using the Eq. (19), we obtain

.dijPi/j D 2aij uki ukj C 2�
0

utk uk C 4�
00

uhk uh uk ut (30)

� 2 f 2

�
� 2

f �
0

ut

�
� 2fdij;j ui:

By using the extrema conditions (27) and (28), we have the following two conditions
at .x0; t0/

ukh uk uh D f

�
jDuj2 C M

2R�

xh uh

.jxj2 C 1/1=2
; (31)

2� ukt uk � 2fut C c

R1=2
: (32)

Using the extrema conditions and by canceling 2�
0

utkuk we obtain,

.dijwi/j �2aij uki ukj C 4�
00

f

�
jDuj2ut � 2f 2

�
� 2fdij;j ui (33)

C 2�
00

M xh uh ut

R � .jxj2 C 1/1=2
C c �0

R1=2�
� M

R
.dij

xi

.jxj2 C 1/1=2
/j:

Now we have the following structure equation, whose proof is lengthy but straight-
forward,

dij;jui D 2�
00

�
.jDuj2
u � uhk uh uk/: (34)

Using (32) in (34), we find

dij;i ui D 2�
00jDuj2
�

.
u � f

�
� M xh uh

2R jDuj2 �.jxj2 C 1/1=2
/:

Using the Eq. (14), we have

2�
00

uhk uh uk C �0 
u D f C �0 ut:
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Therefore,


 u D f C �0 ut � 2�
00

uhk uh uk

�0 : (35)

Substituting the value for 
u in (35) and by using the extrema condition (32), we
have the following equality at .x0; t0/,

dij;j ui D 2�
00 jDuj2
� �0

�

f C ut �
0 � 2� 00 jDuj2

�
f � f

�0

�
(36)

� �
00

M xh uh

R�.jxj2 C 1/1=2
� M xh uh �

0

2R jDuj2 � .jxj2 C 1/1=2

�

:

Using the definition of � and cancelling terms in (36), we have that the right-hand
side in (36) equals

2�
00 jDuj2ut

�
� �

00

M xh uh

�2 R .jxj2 C 1/1=2
� 2.�

00

/2 jDuj2 M xh uh

R �2 �
0

.jxj2 C 1/1=2
: (37)

Therefore, by canceling the terms 4�
00

f jDuj2ut
�

in (33), we obtain the following
differential inequality at .x0; t0/,

.dijwi/j � c �0

R1=2 �
� 2 f 2

�
� M

R
.dij

xi

.jxj2 C 1/1=2
/j C 2�

00

M xh uh ut

R �.jxj2 C 1/1=2
(38)

C 2f �
00

M xh uh

�2 R .jxj2 C 1/1=2
C 4f .�

00

/2 jDuj2 M xh uh

R �2 �
0

.jxj2 C 1/1=2
C 2aij uki ukj:

Now by using the identity for DP in (21) above, we have

uki ukj ui uj D .Pk C 2fuk/
2

4�2
: (39)

Also,

aij ukj uki D �0 uik uik C 2�
00

uik ui ujk uj:

Therefore, by Schwarz inequality, we have

aij ukj uki � �0 uik ujk ui uj

jDuj2 C 2�
00

uik ui ujk uj D �uik ui ujk uj

jDuj2 :
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Then, by using (39) we find

aij ukj uki � .Pk C 2fuk/
2

4�jDuj2 D jDPj2 C 4f 2jDuj2 C 2f < Du;DP >

4jDuj2� : (40)

At this point, using (40) in (38), we can cancel off 2f 2

�
and consequently obtain the

following inequality at .x0; t0/,

.dijwi/j � c�0

R1=2�
C f < Du;DP >

jDuj2� � M

R
.dij

xi

.jxj2 C 1/1=2
/j C 2 �

00

M xh uh ut

R �.jxj2 C 1/1=2

(41)

C 4f .�
00

/2 jDuj2M xh uh

R �2 �0.jxj2 C 1/1=2
C 2f �

00

M xhuh

�2 R .jxj2 C 1/1=2
:

By assumption, since w.x0; t0/ � K, we have that

jDuj � 1

2R1=2
:

Moreover, since u has bounded derivatives up to order 3, for a fixed " > 0, we have
that �0 and� are bounded from below by a positive constant. Therefore by (28), the

term f<Du;DP>
jDuj2� can be controlled from below by � M

00

R1=2
where M

00

depends on " and
the bounds of the derivatives of u. Consequently, from (41), we have at .x0; t0/,

.dijwi/j � C.c/

R1=2
� L.M/

R
� M00

R1=2
: (42)

Now in the very first place, if c is chosen large enough depending only on " and
the bounds of the derivatives of u up to order three, we would have the following
inequality at .x0; t0/,

.dijwi/j > 0:

This contradicts the fact that w has a maximum at .x0; t0/. Therefore, either
w.x0; t0/ < K, or the maximum of w is achieved on the parabolic boundary where
w < 0. In either case, for an arbitrary point .y; s/ such that jyj � R, we have that

w.y; s/ � 1

R1=2
: (43)



Modica Types Gradient Estimates, etc 225

3 Forward Gradient Bounds for the Reaction-Diffusion
Equation (5) in Epigraphs

In this section we consider Modica type gradient bounds for solutions to the
parabolic equation (5) in unbounded generalized cylinders of the type ˝ 
 Œ0;T�.
On the ground domain˝ � R

n we assume that it is an epigraph, i.e., that

˝ D f.x0; xn/ 2 R
n j x0 2 R

n�1; xn > h.x0/g: (44)

Furthermore, we assume that h 2 C2;˛
loc .R

n�1/ and that

jjDhjjC1;˛.Rn�1/ < 1: (45)

Before proving the main result of the section we establish a lemma which will be
used throughout the rest of the paper.

Lemma 3.1 Let u be a solution to (5), and assume that

inf
G

jDuj > 0; (46)

for some open set G 2 R
n 
 R. Define

P.x; t/
defD P.u; x; t/ D jDu.x; t/j2 � 2F.u.x; t//: (47)

Then, we have in G that

.
 � @t/PC < B;DP > � jDPj2
2jDuj2 ; (48)

where B D 2F0.u/Du
jDuj2 .

Proof The proof of the lemma follows from computations similar to that in the
proof of Theorem 2.1, but we nevertheless provide details since this lemma will be
crucially used in the rest of the paper. We first note that, since F 2 C2;ˇ

loc , we have
u 2 H3C˛;loc for some ˛ which also depends on ˇ. By using (5), it follows from a
simple computation that

.
 � @t/P D 2jjD2ujj2 � 2F0.u/2: (49)

From the definition of P, it follows that

DP D 2D2uDu � 2F0.u/Du:
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This gives

4jD2uDuj2 D jDP C 2F0.u/Duj2 D jDPj2 C 4F0.u/2jDuj2 C 4F0.u/ < DP;Du > :

Therefore, from Cauchy-Schwartz inequality we obtain

4jjD2ujj2jDuj2 � jDPj2 C 4F0.u/2jDuj2 C 4F0.u/ < DP;Du > :

By dividing both sides of this inequality by 2jDuj2, and replacing in (49), the desired
conclusion follows.

We now state the relevant result which is the parabolic analogue of Theorem 1
in [12].

Theorem 3.1 Let ˝ � R
n be as in (44), with h satisfying (45), and assume

furthermore that the mean curvature of @˝ is nonnegative. Let u be a nonnegative
bounded solution to the following problem

(

u D ut C F0.u/;
u D 0 on @˝ 
 Œ0;T�; (50)

such that

jDuj2.x; 0/ � 2F.u/.x; 0/: (51)

Furthermore, assume that jju.�; 0/jjC1;˛.˝/ < 1. Then, the following gradient
estimate holds for all t > 0 and all x 2 ˝ ,

jDuj2.x; t/ � 2F.u/.x; t/: (52)

Proof Henceforth in this paper for a given function g W Rn�1 ! R we denote by

˝g D f.x0; xn/ 2 R
n j x0 2 R

n�1; xn > g.x0/g

its epigraph. With ˛ as in the hypothesis (45) above, we denote

F D
�

g 2 C2;˛.Rn�1/ j @˝g has nonnegative mean

curvature and jjDgjjC1;˛.Rn�1/ � jjDhjjC1;˛.Rn�1/

	

:

We now note that, given a bounded solution u to (50) above, then by Schauder
regularity theory (see Chaps. 4, 5 and 12 in [22]) one has

jjujjH1C˛.˝�Œ0;T�/ � C; (53)
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for some universal C > 0 which also depends on ˝ and jju.�; 0/jjC1;˛.˝/, and for
every " > 0 there exists C."/ > 0 such that

jjujjH2C˛.˝�Œ";T�/ � C."/: (54)

Note that in (54), we cannot take " D 0, since the compatibility conditions at the
corner points need not hold. With C as in (53), we now define

˙ D
�

v 2 C2;1.˝g 
 Œ0;T�/ j there exists g 2 F for which v solves (50) in ˝g 
 Œ0;T�;

with 0 � v � jjujjL1 ; jjvjjH1C˛ .˝g�Œ0;T�/ � C; P.v; x; 0/ � 0

	

:

Note that in the definition of ˙ we have that given any v 2 ˙ , there exists a
corresponding g.v/ in F such that the assertions in the definition of the class ˙
hold. Moreover ˙ is non-empty since u 2 ˙ . From now on, with slight abuse of
notation, we will denote the corresponding˝g.v/ by ˝v.

We now set

P0 D sup
v2˙;.x;t/2˝v�Œ0;T�

P.vI x; t/:

We note that P0 is finite because by the definition of ˙ , every v 2 ˙ has H1C˛ norm
bounded from above by a constant C which is independent of v. Furthermore, by
Schauder regularity theory we have that (54) holds uniformly for v 2 ˙ in ˝v 

Œ0;T�. Our objective is to establish that

P0 � 0: (55)

Assume on the contrary that P0 > 0. For every k 2 N there exist vk 2 ˙ and
.xk; tk/ 2 ˝vk 
 Œ0;T� such that

P0 � 1

k
< P.vk; xk; tk/ � P0:

By compactness, possibly passing to a subsequence, we know that there exists t0 2
Œ0;T� such that tk ! t0. We define

uk.x; t/ D vk.x C xk; tk/:

We then have that uk 2 ˙ and 0 2 ˝uk . Moreover,

P.uk; 0; tk/ D P.vk; xk; tk/ ! P0:
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Now, if we denote by gk the function corresponding to the graph of ˝uk , from the
fact that 0 2 ˝uk we infer that

gk.0/ � 0:

We now claim that gk.0/ is bounded. If not, then there exists a subsequence such that

gk.0/ ! �1:

Moreover since jjDgkjjC1;˛ is bounded uniformly in k, we conclude that for every
x0 2 R

n�1

gk.x
0/ ! �1; (56)

and the same conclusion holds locally uniformly in x0. Since the uk’s are uniformly
bounded in H1C˛.˝uk 
 Œ0;T�/, we have that uk ! w0 locally uniformly in R

n 

Œ0;T�. Note that this can be justified by taking an extension of uk to R

n 
 Œ0;T� such
that (53) hold in R

n 
 Œ0;T�, uniformly in k. Applying (54) to the uk’s we see that
the limit function w0 solves (50) in R

n 
 Œ0;T�. Since by the definition of ˙ we have
P.uk; 0; 0/ D P.vk; xk; 0/ � 0, we have that t0 > 0, and therefore by (53) we conclude
that P.w0; 0; t0/ D P0 > 0. Moreover, again by (53), we have P.w0; 0; 0/ � 0. This
leads to a contradiction with the case p D 2 of Theorem 1.3 established in [2].
Therefore, the sequence fgk.0/g must be bounded.

Now since gk’s are such that Dgk’s have uniformly bounded C1;˛ norms, we
conclude by Ascoli-Arzelà that there exists g0 2 F such that gk ! g0 locally
uniformly in R

n�1. We denote

˝0 D f.x0; xn/ 2 R
n j x0 2 R

n�1; xn > g0.x
0/g:

For each k, by taking an extension Quk of uk to R
n 
 Œ0;T� such that Quk has bounded

H1C˛ norm, we have that (possibly on a subsequence) Quk ! u0 locally uniformly
in R

n. Moreover, because of (54) applied to uk’s, the function u0 solves the Eq. (5)
in ˝0 
 .0;T�. We also note that since Dgk’s have uniformly bounded C1;˛ norms,
@˝0 has nonnegative mean curvature. Moreover, by arguing as in (33) and (34) in
[12], we have that u0 vanishes on @˝0 
 Œ0; T�. Also, it follows that P.u0; x; 0/ � 0 for
x 2 ˝0, and therefore u0 2 ˙ . Arguing by compactness as previously in this proof,
we infer that must be t0 > 0, and since u0 2 ˙ , that

P0 D P.u0; 0; t0/ D sup
.x;t/2˝0�Œ0;T�

P.u0; x; t/ > 0:

Since u0 � 0 and u0 vanishes on @˝0 
 Œ0;T�, indicating by � the inward unit normal
to @˝0 at x, we have for each .x; t/ 2 @˝0 
 Œ0;T�

@�u0.x; t/ � 0: (57)
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Given (57) and from the fact that u0 is bounded, by arguing as in (36)–(38) in [12],
it follows that for all t 2 Œ0;T�

inf
x2˝0

jDu0.x; t/j D 0: (58)

Next, we claim that if for a time level t > 0 we have P.u0; y; t/ D P0, then it must
be y 2 @˝0. To see this, suppose on the contrary that y 2 ˝0. Since P0 > 0, this
implies that jDu0.y; t/j > 0. Consider now the set

U D fx 2 ˝0 j P.u0; x; t/ D P0g:

Clearly, U is closed, and since y 2 U by assumption, we also know that U 6D ¿.
We now prove that U is open. Since jDu0.x; t/j > 0 for every x 2 U, by Lemma 3.1
and the strong maximum principle (we note that since F 2 C2;ˇ

loc , we have that u0 2
H3C˛0 in the interior for some ˛0 which also depends on ˇ. Hence, P.u0; �; �/ is a
classical subsolution), we conclude that for every x 2 U there exists ıx > 0 such that
P.u0; z; t/ D P0 for z 2 B.x; ıx/. This implies that U is open.

Since ˝0, being an epigraph, is connected, we conclude that U D ˝0. Now
from (58) we have that for every fixed t 2 Œ0;T� there exists a sequence xj 2 ˝0 such
that Du0.xj; t/ ! 0 as j ! 1. As a consequence, lim inf

j!1

P.u0; xj; t/ � 0. This implies

that for large enough j we must have P.u0; xj; t/ < P0, which contradicts the above
conclusion that U D ˝0. Therefore this establishes the claim that if P.u0; y; t/ D P0,
then y 2 @˝0. Since P.u0; 0; t0/ D P0, and P0 is assumed to be positive, this implies
in particular that .0; t0/ 2 @˝0 
 .0;T�. Again, since P0 > 0 by assumption, we must
have that in (57) a strict inequality holds at .0; t0/, i.e.

@�u0.0; t0/ > 0: (59)

This is because if the normal derivative is zero at .0; t0/, then it must also be
Du0.0; t0/ D 0 (since u0 vanishes on the lateral boundary of ˝0 
 Œ0;T�), and this
contradicts the fact that P0 > 0.

From (59) we infer that Du0.0; t0/ ¤ 0, and therefore Lemma 3.1 implies that,
near .0; t0/, the function P.u0; �; �/ is a subsolution to a uniformly parabolic equation.
Now, by an application of the Hopf Lemma (see for instance Theorem 30 in [21])
we have that

@�P.u0; 0; t0/ < 0: (60)

Again by noting that u0 vanishes on the lateral boundary, we have that @tu0 D 0 at
.0; t0/. Therefore, at .0; t0/, the function u0 satisfies the elliptic equation


u0 D F0.u0/: (61)
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At this point, by using the fact that the mean curvature of @˝0 is nonnegative and
the Eq. (61) satisfied by u0 at .0; t0/, one can argue as in (50)–(55) in [12] to reach
a contradiction with (60) above. Such contradiction being generated from having
assumed that P0 > 0, we conclude that (55) must hold, and this implies the sought
for conclusion of the theorem.

Remark 3.1 Note that in the hypothesis of Theorem 3.1 instead of u � 0 we could
have assumed that @�u � 0 on @˝ 
 Œ0;T�.
Remark 3.2 We also note that the conclusion in Theorem 3.1 holds if ˝ is of the
form ˝ D ˝0 
 R

n�n0 for 1 � n0 � n, where ˝0 is a bounded C2;˛ domain with
nonnegative mean curvature. The corresponding modifications in the proof would
be as follows. Let D be the set of domains which are all translates of˝ . The classes
H and˙ would be defined corresponding to D as in [12]. Then, by arguing as in the
proof of Theorem 3.1, we can assume that sets˝uk 2 D are such that˝uk D pk C˝

where pk D .p0
k; 0/ 2 R

n0 
 R
n�n0 . Since 0 2 ˝uk and ˝0 is bounded, this implies

that p0
k is bounded independent of k. Therefore, up to a subsequence, pk ! p0 and

uk ! u0 such that u0 solves (50) in ˝1 D p0 C˝ . The rest of the proof remains the
same as that of Theorem 3.1.

Remark 3.3 It remains an interesting open question whether Theorem 3.1 holds for
the inhomogeneous variant of the normalized p-Laplacian evolution studied in [2].
Note that unlike the case of Rn, the Hopf lemma applied to P is a crucial step in the
proof of Theorem 3.1 for which Lemma 3.1 is the key ingredient. As far as we are
aware of, an appropriate analogue of Lemma 3.1 is not known to be valid for p ¤ 2,
even in the case when F D 0. Therefore, to be able to generalize Theorem 3.1 to
the case of inhomogeneous normalized p-Laplacian evolution as studied in [2], lack
of an appropriate subsolution-type argument (i.e., Lemma 3.1), and a priori H1C˛
estimates seem to be the two major obstructions at this point.

4 Gradient Estimates for the Reaction-Diffusion
Equation (5) in R

n � .�1; 0� and ˝ � .�1; 0�

In this section we turn our attention to the settings Rn 
 .�1; 0� and˝ 
 .�1; 0�,
where ˝ is an epigraph satisfying the geometric assumptions as in the previous
section. We investigate the validity of Modica type gradient estimates in a different
situation with respect to that of Sect. 3, where such estimates were established under
the crucial hypothesis that the initial datum satisfies a similar inequality. We first
note that such unconstrained global estimates cannot be expected in R

n 
 Œ0;T�
without any assumption on the initial datum. This depends of the fact that, if at
time t D 0 the initial datum is such that the function defined in (47) above satisfies
P.u; x; 0/ > 0 at some x 2 R

n, then by continuity P.u; x; t/ > 0 for all t 2 Œ0; "�, for
some " > 0. This justifies our choice of the setting in this section. We now state our
first main result.
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Theorem 4.1 Let u be a bounded solution to (5) in R
n 
 .�1; 0�. Then, with

P.u; �; �/ as in (47) we have

P.u; x; t/ � 0; for all .x; t/ 2 R
n 
 .�1; 0�: (62)

Remark 4.1 An explicit example of a bounded solution to (5) is an eternal travelling
wave as in Sect. 7.

Proof The proof is inspired to that of Theorem 1.6 in [3]. We define the class ˙ as
follows.

˙ D fv j v solves (5) in R
n 
 .�1; 0�; jjvjjL1 � jjujjL1g: (63)

Note that u 2 ˙ . Set

P0 D supv2˙;.x;t/2Rn�.�1;0�P.v; x; t/: (64)

Since F 2 C2;ˇ
loc .R/ and the L1 norm of v 2 ˙ is uniformly bounded by that of

u, from the Schauder theory we infer all elements v 2 ˙ have uniformly bounded
H3C˛ norms in R

n 
 .�1; 0�, for some ˛ depending also on ˇ. Therefore, P0 is
bounded.

We claim that P0 � 0. Suppose, on the contrary, that P0 > 0. Then, there exists
vk 2 ˙ and corresponding points .xk; tk/ 2 R

n 
 .�1; 0� such that P.vk; xk; tk/ !
P0. Define now

uk.x; t/ D vk.x C xk; t C tk/: (65)

Note that since tk � 0, we have that uk 2 ˙ and P.uk; 0; 0/ D P.vk; xk; tk/ !
P0. Moreover, since uk’s have uniformly bounded H3C˛ norms, for a subsequence,
uk ! u0 which belongs to ˙ . Moreover,

P.u0; 0; 0/ D sup
.x;t/2Rn�.�1;0�

P.u0; x; t/ D P0 > 0:

As before, this implies that Du0.0; 0/ ¤ 0. Now, by an application of Lemma 3.1,
the strong maximum principle and the connectedness of R

n, we have that
P.u0; x; 0/ D P0 for all x 2 R

n. On the other hand, since u0 is bounded, it follows
that

inf
x2Rn

jDu0.x; 0/j D 0:

Then, there exists xj 2 R
n such that jDu0.xj; 0/j ! 0. However, we have that

P.u0; xj; 0/ D P0 > 0 by assumption which is a contradiction for large enough
j. Therefore, P0 � 0 and the conclusion follows.
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As an application of Theorem 4.1 one has the following result on the propagation
of zeros whose proof is identical to that of Theorem 1.8 in [3] (see also Theorem 1.6
in [2]).

Corollary 4.1 Let u be a bounded solution to (5) in R
n 
 .�1; 0�. If F.u.x0; t0// D

0 for some point .x0; t0/ 2 R
n 
 .�1; 0�, then u.x; t0/ D u.x0; t0/ for all x 2 R

n.

We also have the following counterpart of Theorem 4.1 in an infinite cylinder of the
type ˝ 
 .�1; 0� where˝ satisfies the hypothesis in Theorem 3.1.

Theorem 4.2 Let˝ � R
n be as in (44) above, with h satisfying (45). Furthermore,

assume that the mean curvature of @˝ is nonnegative. Let u be a nonnegative
bounded solution to the following problem

(

u D ut C F0.u/
u D 0 on @˝ 
 .�1; 0�:

(66)

Then, we have that P.u; x; t/ � 0 for all .x; t/ 2 ˝ 
 .�1; 0�.

Proof By Schauder theory we have that

jjujjH3C˛.˝�.�1;0�/ � C; (67)

for some C which also depends on ˇ. We let F be as in the proof of Theorem 3.1
and define

˙ D˚v 2 C2;1.˝g 
 Œ0;T�/ j there exists g 2 F for which v solves (5) in ˝g 
 Œ0;T�;
with 0 � v � jjujjL1; v D 0 on @˝g 
 .�1; 0�

�
:

As before, note that in the definition of ˙ we have that, given any v 2 ˙ , there
exists a corresponding g.v/ in F such that the assertions in the definition of the class
˙ hold. With slight abuse of notation, we will denote the corresponding˝g.v/ by˝v .
Again by Schauder theory, we have that any v 2 ˙ satisfies (67) in ˝v 
 .�1; 0�,
where the constant C is independent of v. We now set,

P0 D sup
v2˙;.x;t/2˝v�.�1;0�

P.v; x; t/:

As before, we claim that P0 � 0. This claim would of course imply the sought for
conclusion. From the definition of H , we note that P0 is bounded. Suppose, on the
contrary, that P0 > 0. Then, there exists vk’s and corresponding points .xk; tk/ such
that P.vk; xk; tk/ ! P0. We define,

uk.x; t/ D vk.x C xk; t C tk/: (68)
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Since tk � 0, we note that uk 2 ˙ . Now, by an application of Theorem 4.1 and
a compactness type argument as in the proof of Theorem 3.1, we conclude that if
gk is function corresponding to ˝gk D ˝uk for each k, then gk.0/’s are bounded
and since Dgk’s have uniformly bounded C1;˛ norms, then gk’s are bounded locally
uniformly in R

n�1. From this point on the proof follows step by step the lines of
that of Theorem 3.1 and we thus skip pointless repetitions. There exists a g0 2 F

for which gk ! g0 locally uniformly in R
n�1 as in that proof and we call ˝0 the

epigraph of g0. From the uniform Schauder type estimates, possibly passing to a
subsequence, we conclude the existence of a solution u0 � 0 of (5) in ˝0 
 .�1; 0�

such that ˝uk ! ˝0, and uk ! u0 which solves such that @˝0 has nonnegative
mean curvature. Moreover, u0 vanishes on the lateral boundary and P.u0; 0; 0/ D
sup P.u0; 0; 0/ D P0. The rest of the proof remains the same as that of Theorem 3.1,
but with .0; 0/ in place of .0; t0/.

Remark 4.2 As indicated in Remark 3.3, the conclusion of Theorem 4.2 remains
valid with minor modifications in the proof when ˝ D ˝0 
 R

n�n0 , 1 � n0 � n;
where ˝0 is a bounded smooth domain with boundary having nonnegative mean
curvature.

5 Modica Type Estimates for Reaction-Diffusion Equations
on Compact Manifolds with Nonnegative Ricci Tensor

Let .M; g/ be a connected, compact Riemannian manifold with Laplace-Beltrami

g, and suppose that the Ricci tensor be nonnegative. In the paper [13] the authors
established a Modica type estimate for bounded solutions in M of the semilinear
Poisson equation


gu D F0.u/; (69)

under the assumption that F 2 C2.R/, and F � 0. Precisely, they proved that
following inequality holds

jrgu.x/j2 � 2F.u/; (70)

where rg is the Riemannian gradient on M.
In this section, we prove a parabolic analogue of (70). Our main result can be

stated as follows.

Theorem 5.1 Let M be a connected compact Riemannian manifold with Ric � 0,
and let u be a bounded solution to


gu D ut C F0.u/ (71)
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on M 
 .�1; 0� where F 2 C2;ˇ.R/ and F � 0. Then, the following estimate holds
in M 
 .�1; 0�

jrgu.x; t/j2 � 2F.u.x; t//: (72)

Proof By Schauder theory, we have that u 2 H3C˛.M 
 .�1; 0�/ for some ˛
which additionally depends on ˇ. This follows from writing the equation in local
coordinates and by using the compactness of M. We next recall the Bochner-
Weitzenbock formula, which holds for any � 2 C3.M/

1

2

gjrg�j2 D jH� j2C < rg�;rg
g� > C Ricg < rg�;rg� > : (73)

Here, H� is the Hessian of � and the square of the Hilbert-Schmidt norm of H� is
given by

jH� j2 D ˙i < 5Xirg;5Xi ;rg >;

where fXig is a local orthonormal frame. Moreover, Cauchy-Schwarz inequality
gives

jH� j2 � jrgjrg�jj2: (74)

See for instance [15] for a proof of this fact. Now we define the class

F D ˚
v j v is a classical solution to (71) in M
.�1; 0�; jjvjjL1.M/ � jjujjL1.M/

�
:

By the Schauder theory we see as before that for every v 2 F the norm of v in
H3C˛.M 
 .�1; 0�/ is bounded independent of v for some ˛ which additionally
depends on ˇ. In particular, without loss of generality, one may assume that the
choice of the exponent ˛ is the same as for u. Now, given any v 2 F , we let

P.v; x; t/ D jrgv.x; t/j2 � 2F.v.x; t//: (75)

Applying (73) we find

.
g � @t/P.v; x; t/ D 2jHvj2 C 2.< rgv;rg
gv > C Ricg < rgv;rgv >/�
2 < rgv;rgvt > �2F0.v/.
gv � vt/ � 2 < rgv;rgF0.v/ > :

Using the fact that v solves (71), we obtain

.
g � @t/P.v; x; t/ D 2jHvj2 C 2 < rgv;rgF0.v/ >

C 2Ricg < rgv;rgv > �2F0.v/2 � 2 < rgv;rgF0.v/ > :
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After cancelling off the term 2 < rgvrgF0.v/ >, and by using (74) and the fact that
the Ricci tensor is nonnegative, we find

.
g � @t/P.v; x; t/D 2jHv j2 C 2Ricg < rgv;rgv > �2F0.v/2 � 2jrg.jrgvj/j2 � 2F0.v/2:
(76)

Now from the definition of P,

rgP � 2F0.v/rgv D rg.jrgvj2/:

Therefore,

jrgPj2 C 4F0.v/2jrgvj2 � 4F0.v/ < rgv;rgP >D jrg.jrgvj2/j2 D 4jrgvj2jrg.jrgvj/j2:

By dividing by 2jrgvj2 in the latter equation, we find

jrgPj2
2jrgvj2 D 2jrg.jrgvj/j2 � 2F0.v/2 C 2

F0.v/
jrgvj2 < rgv;rgP > : (77)

Combining (76) and (77), we finally obtain

.
g � @t/P C 2
F0.v/
jrgvj2 < rgv;rgP >� jrgPj2

2jrgvj2 : (78)

The inequality (78) shows that P.v; x; t/ is a subsolution to a uniformly parabolic
equation in any open set where jrgvj > 0. Now we define

P0 D sup
v2F ;.x;t/2M�.�1;0�/

P.v; x; t/:

Our goal as before is to show that P0 � 0, from the which the conclusion of the
theorem would follow. Suppose on the contrary that P0 > 0. Then, there exists
vk 2 F and .xk; tk/ 2 M 
 .�1; 0� such that P.vk; xk; tk/ ! P0. We define

uk.x; t/ D vk.xk; t C tk/:

Since tk � 0 we have that uk 2 F , and since M is compact, xk ! x0 after possibly
passing to a subsequence. Moreover, P.uk; x0; 0/ ! P0. By compactness, we have
that uk ! u0 in H3C˛, where u0 is a solution to (71), and P.u0; x0; 0/ D P0 >
0. Since since F � 0 this implies that rgu0.x0; 0/ ¤ 0. By continuity, we see
that rgu0 6D 0 in a parabolic neighborhood of .x0; 0/. By (78) and by the strong
maximum principle we infer that P.u0; x; 0/ D P0 in a neighborhood of x0, and
since M is connected, we conclude that for all x 2 M

P.u0; x; 0/ D P0 > 0: (79)
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Since u0.�; 0/ 2 C1.M/ and M is compact, there exists y0 2 M at which u0.�; 0/
attains its absolute minimum. At such point one has

rgu0.y0; 0/ D 0:

Since F � 0, this implies that

P.u0; y0; 0/ � 0; (80)

which is a contradiction to (79). Therefore P0 � 0 and the theorem is proved.

Remark 5.1 It remains an interesting question whether the conclusion of Theo-
rem 5.1 (and for that matter even the corresponding elliptic result in [13]) continue
to hold when M is only assumed to be complete and not compact. In such a case, one
would need to bypass the compactness argument which uses translation in a crucial
way (see for instance (65) as in the proof of Theorem 4.1). We intend to come back
to this question in a future study.

6 On a Conjecture of De Giorgi and Level Sets
of Solutions to (5)

In 1978 Ennio De Giorgi formulated the following conjecture, also known as "-
version of the Bernstein theorem: let u be an entire solution to


u D u3 � u; (81)

such that juj � 1 and @u
@xn

> 0. Then, u must be one-dimensional, i.e., must have
level sets which are hyperplanes, at least in dimension n � 8.

As mentioned in the introduction, the conjecture of De Giorgi has been fully
solved for n D 2 in [16] and n D 3 in [1], and it is known to fail for n � 9, see [9].
For 4 � n � 8 it is still an open question. Additional fundamental progress on De
Giorgi’s conjecture is contained in the papers [17, 24]. Besides these developments,
in [3] it was established that for entire bounded solutions to

div.jDujp�2Du/ D F0.u/; (82)

if the equality holds at some point x0 2 R
n for the corresponding gradient estimate

jDujp � p

p � 1
F.u/; (83)
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then u must be one dimensional. The result in [3] actually regarded a more general
class of equations than (82), and in [7] some further generalizations were presented.
We now establish a parabolic analogue of that result in the case p D 2.

Theorem 6.1 Let u be a bounded solution to (5) in R
n 
 .�1; 0�. Furthermore,

assume that the zero set of F is discrete. With P as in (47) above, if P.u; x0; t0/ D 0

for some point .x0; t0/ 2 R
n 
 .�1; 0�, then there exists g 2 C2.R/ such that

u.x; t/ D g.< a; x > C˛/ for some a 2 R
n and ˛ 2 R. In particular, u is

independent of time, and the level sets of u are vertical hyperplanes in R
n 
.�1; 0�.

Proof We begin by observing that it suffices to prove the theorem under the
hypothesis that t0 D 0. In fact, once that is done, then if t0 < 0 we consider the
function v.x; t/ D u.x; t C t0/. For such function we have P.v; x; 0/ D P.u; x; t0/
and therefore v satisfies the same hypothesis as u, except that P.v; x0; 0/ D 0. But
then we conclude that v.x; t/ D u.x; t C t0/ D g.< a; x > C˛/, which implies the
desired conclusion for u as well.

We thus assume without restriction that P.u; x0; 0/ D 0, and consider the set

A D fx 2 R
n j P.u; x; 0/ D 0g:

By the continuity of P we have that A is closed, and since .x0; 0/ 2 A, this set is also
non-empty. We distinguish two cases:

Case 1 There exists x1 2 A such that Du.x1; 0/ D 0.

Case 2 Du.x; 0/ ¤ 0 for every x 2 A.

If Case 1 occurs, then from the fact that P.u; x1; 0/ D 0 we obtain that
F.u.x1; 0// D 0. By Corollary 4.1 we thus conclude that must be u.�; 0/ 	 u0 D
u.x1; 0/. At this point we observe that, since by assumption F � 0, and F.u0/ D 0,
we must also have F0.u0/ D 0. Therefore, if we set v D u�u0, then by the continuity
of F00 and the fact that u 2 L1.Rn/, we have

jF0.u/j D jF0.v C u0/j D jF0.v C u0/� F0.u0/j �
Z vCu0

u0

jF00.s/jds � Cjvj:

Since by (5) we have
v�@tv D 
u �@tu D F0.u/, we see that v is thus a solution
of the following inequality

j
v � @tvj � Cjvj:

Since v.�; 0/ D 0, by the backward uniqueness result in Theorem 2.2 in [5], we have
that u 	 u0 in R

n 
.�1; 0�, from which the desired conclusion follows in this case.
If instead Case 2 occurs, we prove that A is also open. But then, by connected-

ness, we conclude in such case that A D R
n. To see that A is open fix x1 2 A. Since

Du.x1; 0/ ¤ 0, by the continuity of Du we conclude the existence of r > 0 such that
Du.x; t/ ¤ 0 for every .x; t/ 2 G D B.x1; r/ 
 .�r2; 0�. By Lemma 3.1 above we
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conclude that P.u; �; �/ is a sub-caloric function in G. Since by Theorem 4.1 we know
that P.u; �; �/ � 0, by the strong maximum principle we conclude that P.u; �; �/ 	 0

in G. In particular, P.u; x; 0/ D 0 for every x 2 B.x1; r/, which implies that A is
open.

Since as we have seen the desired conclusion of the theorem does hold in Case
1, we can without loss of generality assume that we are in Case 2, and therefore
Du.x; 0/ 6D 0 for every x 2 A D R

n. Furthermore, since for x 2 A we have
P.u; x; 0/ D 0, we also have

jDu.x; 0/j2 D 2F.u.x; 0//; for every x 2 R
n: (84)

Next, we consider the set

K D ˚
.x; t/ 2 R

n 
 .�1; 0� j P.u; x; t/ D 0
�
:

We note that K is closed and non-empty since by assumption we know that .x0; 0/ 2
A (in fact, by (84) we now know that Rn 
f0g � K). Let .y1; t1/ 2 K. If Du.y1; t1/ D
0, we can argue as above (i.e., as if it were t1 D 0) and conclude by backward
uniqueness that u 	 u.y1; t1/ in R

n 
 .�1; t1�. Then, by the forward uniqueness
of bounded solutions, see Theorem 2.5 in [20], we can infer that u 	 u.y1; t1/ in
R

n 
 .t1; 0�. All together, we would have proved that u 	 u.y1; t1/ in R
n 
 .�1; 0�

and therefore the conclusion of the theorem would follow.
Therefore from now on, without loss of generality, we may assume that Du never

vanishes in K. With this assumption in place, if .y1; t1/ 2 K, then since Du.y1; t1/ ¤
0, by continuity there exists r > 0 such that Du does not vanish in G D Br.y1/ 

.t1 � r2; t1/. But then, again by Lemma 3.1, the function P.u; �; �/ is sub-caloric in
G. Since P.u; �; �/ � 0 in G (Theorem 4.2) and P.u; y1; t1/ D 0 (.y1; t1/ 2 K), we
can apply the strong maximum principle to conclude that P 	 0 in G. Then, again
by connectedness, as in the case when t1 D 0, we conclude that Rn 
 ft1g � K.
In particular, we have that P.u; y1; t/ D 0 when t 2 .t1 � r2; t1�. Therefore, we can
now repeat the arguments above with .y1; t/ in place of .y1; t1/ for each such t and
conclude that P 	 0 in R

n 
 .t1 � r2; t1�.
We now claim that:

K D R
n 
 .�1; 0�; or equivalently P.u; x; t/ D 0; for every .x; t/ 2 R

n 
 .�1; 0�:

(85)

Suppose the claim not true, hence P 6	 0 in R
n 
 .�1; 0�. From the above

arguments it follows that if for t2 < 0 there exists y2 2 R
n such that P.u; y2; t2/ ¤ 0,

then it must be P.u; x; t2/ ¤ 0 for all x 2 R
n. We define

T0 D supft < 0 j P.u; �; t/ ¤ 0g:

Since we are assuming the claim not true, we must have ft < 0 j P.u; �; t/ ¤ 0g ¤ ¿,
hence T0 � 0 is well-defined. We first observe that T0 < 0. In fact, since by the
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hypothesis .x0; 0/ 2 K and we are assuming that we are in Case 2, we have already
proved above the existence of r > 0 such that Rn 
.�r2; 0� � K. This fact shows that
T0 � �r2 < 0. Next, we see that it must be P.u; �;T0/ D 0. In fact, if this were not the
case there would exist y2 2 R

n such that P.u; y2;T0/ < 0. Since T0 < 0, by continuity
we would have that P.u; y2; t/ < 0, for all t 2 ŒT0;T0 C ı1/ for some ı1 > 0. By the
arguments above, this would imply that P never vanishes in R

n 
 ŒT0;T0 C ı1/, in
contradiction with the definition of T0. Since, as we have just seen, P.u; �;T0/ D 0,
arguing again as above we conclude that P 	 0 in R

n 
 .T0 � r2;T0� for some r > 0.
But this contradicts the definition of T0.

This contradiction shows that ft < 0 j P.u; �; t/ ¤ 0g D ¿, hence the claim (85)
must be true. We also recall that we are assuming that Du never vanishes in K D
R

n 
 .�1; 0�.
In conclusion, we have that

jDuj2 D 2F.u/ in R
n 
 .�1; 0�; and Du ¤ 0: (86)

At this point we argue as in the proof of Theorem 5.1 in [3], and we let � D H.u/,
where H is a function to be suitably chosen subsequently. Then, we have that


� � �t D H
00

.u/jDuj2 C H0.u/
u � H0.u/ut :

By using (5) and (86), we conclude that


� � �t D 2H
00

.u/F.u/ C H0.u/F0.u/: (87)

Let u0 D u.0; 0/ and define

H.u/ D
Z u

u0

.2F.s//�1=2ds:

Since jDuj.x; t/ > 0 for all .x; t/ 2 R
n 
 .�1; 0�, we have from (86) that F.u.x; t// >

0. Therefore, if the zero set of F is ordered in the following manner, a0 < a1 < a2 <
a3 < a4 < : : :, then by connectedness, we have that F.u.Rn 
 .�1; 0�// � .ai; aiC1/

for some i. We infer that H is well defined and is C2;ˇ , and with this H it is easy to
check that the right-hand side in (87) is zero, i.e., � is a solution to the heat equation
in R

n 
 .�1; 0�. Moreover, by the definition of H and (86),

jD�j2 D H0.u/2jDuj2 D 1;

i.e., D� is bounded in R
n 
 .�1; 0�. Since �i D Dxi� is a solution to the heat

equation for each i 2 1; : : : n, by Liouville’s theorem in R
n 
 .�1; 0� applied to

�i, we conclude that D� is constant, hence 
� D 0. This implies �t D 0, hence � is
time-independent. Hence, there exist a 2 R

n and ˛ 2 R such that � D< a; x > C˛.
The desired conclusion now follows by taking g D H�1. This completes the proof
of the theorem.
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7 A Parabolic Version of the Conjecture of De Giorgi

Motivated by the result in Theorem 6.1, the fact that Rn 
.�1; 0� is the appropriate
setting for the parabolic Liouville type theorems, and the crucial role played by
them in the proof of the original conjecture of De Giorgi, at least for n � 3 (see
[1, 16, 17]), it is tempting to propose the following parabolic version of De Giorgi’s
conjecture:

Conjecture 1 Let u be a solution in R
n 
 .�1; 0� to


u � ut D u3 � u;

such that juj � 1, and @xn u.x; t/ > 0 for all .x; t/ 2 R
n 
 .�1; 0�. Then, u must be

one dimensional and independent of t, at least for n � 8. In other words, for n � 8

the level sets of u must be vertical hyperplanes, parallel to the t axis.

However, Matteo Novaga has kindly brought to our attention that, stated this way,
the conjecture is not true. There exist in fact eternal traveling wave solutions of the
form

v.x0; xn; t/ D u.x0; xn � ct/; c � 0; (88)

for which @xn u.x/ > 0. This suggests that one should amend the above in the
following way.

Conjecture 2 Let u be a solution in R
n 
 .�1; 0� to


u � ut D u3 � u;

such that juj � 1, and @xn u.x; t/ > 0 for all .x; t/ 2 R
n 
 .�1; 0�. Then, u must

be an eternal traveling wave, i.e. after a change of coordinates, u must be of the
form (88). For interesting accounts of traveling waves solutions we refer the reader
to the papers [6, 18].

It also remains to be seen what additional assumption needs to be imposed in
the hypothesis of Conjecture 1 so that the corresponding conclusion holds. We hope
that these questions will stimulate interesting further research.
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results about second order fully non linear elliptic partial differential equations of
the form

F.D2u/ D g.u/C f .x/: (2)
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The results presented here are part of an ongoing program in collaboration with
F. Leoni (Sapienza Università di Roma) and A. Vitolo (Università di Salerno).

Here, and in the whole paper, f is a bounded continuous function and F denotes
a continuous scalar mapping defined on Sn, the set of symmetric n 
 n matrices with
the standard partial order Y � O if and only if Y is non-negative definite. We will
assume also, for simplicity, that F.O/ D 0.

In the first part we will discuss some L1-gradient estimates for positive viscosity
solutions of

F.D2u/ D g.u/C f .x/

in a ball BR under the main assumptions of uniform ellipticity of F, that is

0 < �jjYjj � F.X C Y/ � F.X/ � �jjYjj 8 X;Y 2 Sn; Y � 0 ;

and sublinearity of g. The results in this section of the paper are inspired by and
generalize those obtained in the linear case by Li and Nirenberg [23].

In the second part we address the issue of necessary and sufficient conditions for
existence of entire viscosity solutions of the differential inequality

F.D2u/ � g.u/C f .x/; x 2 Rn :

In this context, the nonlinear term g is typically superlinear and fulfills a Keller-
Osserman type integrability condition [18, 28]. Most of the existing literature on
both of the above type of problems deals with F D 
 or more general operators
under the assumption of uniform ellipticity, see for example [4, 11, 13, 23].

Let us point out explicitly that our results apply to a class of degenerate elliptic
operators satisfying some form of comparison principle. The model examples
considered in this paper are the partial Laplacian PC

k defined for real symmetric
matrices X 2 S n and a positive integer 1 � k � n as

PC
k .X/ D �n�kC1.X/C : : :C �n.X/

where �1.X/ � �2.X/ � : : : � �n.X/ are the eigenvalues of the matrix X, see [17]
and degenerate maximal Pucci operator defined by

MC
0;1.X/ D

X

�i>0

�i.X/:
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2 Glaeser’s Type Inequalities

In this section we discuss some interpolation inequalities for non-negative functions
which are classical for smooth functions and can be generalized to some non-smooth
case.

In order to introduce the reader to this topic, let us consider first the case of a non-
negative single variable function defined on R. A classical interpolation inequality
states that if u W R ! R is a bounded C2 function with bounded second derivative,
then

jju0jjL1 �
p
2 jjujjL1 jju00jjL1 : (3)

This well-known interpolation inequality due to Landau [20], see also Kolmogorov
[19], holds also for bounded functions of n variables having bounded Hessian matrix
D2u. Many authors contributed later several extensions and variants, for quite recent
results see e.g. [24, 25] and the material presented in this section.

2.1 An n-Dimensional Non-Smooth Glaeser Type Inequality

A similar but perhaps less known interpolation inequality holds under just unilateral
bounds on u and D2u. More precisely, assume that u 2 C2.Rn/ is non-negative and
that its Hessian matrix D2u satisfies, for some M � 0,

D2u.x/ h � h � M jhj2 for all x; h 2 R
n : (4)

For such functions the following inequality holds:

jDu.x/j �
p
2Mu.x/ for all x 2 R

n : (5)

Note the pointwise character of the above estimate and also that boundedness from
above of u is not required a priori. For bounded above u the above gives back the
Landau inequality (3) in any dimension n. Observe also that for M D 0, (5) implies
the well-known fact that concave non-negative functions defined on the whole R

n

are constants.
The above inequality (5), in the particular case of a strictly positive one variable

functions u with bounded second derivative, can be found in the paper [16] (and
attributed there to B. Malgrange) in the equivalent form

ˇ
ˇ �pu

�0
.x/
ˇ
ˇ �

r
sup ju00j
2

and employed later in [26].
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The elementary proof of the validity of (5) is as follows: the Taylor’s expansion
around a point x gives, since u � 0,

0 � u.x C h/ � u.x/C Du.x/ � h C M

2
jhj2: (6)

For any fixed x, the convex quadratic polynomial

Q.h/ WD u.x/C Du.x/ � h C M

2
jhj2

attains its global minimum at h� D � 1
M Du.x/ : Thanks to (6), one deduces that

0 � Q.h�/ D u.x/� 1

2M
jDu.x/j2

and inequality (5) follows.
A more general non smooth version of the weak Landau inequality (5) is valid

for semiconcave, non necessarily differentiable, functions u W Rn ! R. By this we
mean that u is continuous and there exists M � 0 such that x ! u.x/ � M

2
jxj2 is

concave on R
n.

It is well-known that for semiconcave functions, at any point x the superdifferen-
tial of u at x, that is the set

DCu.x/ D
n
p 2 R

n W lim sup
y!x

u.y/� u.x/� p � .y � x/

jy � xj � 0
o

is non empty, closed and convex. and that semiconcave functions are locally
Lipschitz continuous and twice differentiable almost everywhere as sums of a C2

function and a concave one. Of course, if u 2 C2.Rn/ and the previously considered
condition

D2u.x/ h � h � M jhj2 for all x; h 2 R
n

holds, then u semiconcave with constant M. It is also easy to check for semiconcave
functions a vector p 2 DCu.x/ if and only if

u.y/ � u.x/C p � .y � x/C M

2
jy � xj2 for all y 2 R

n:

It is therefore immediate to derive the simple generalization of estimate (5) stated
in the next

Proposition 2.1 Assume that u 2 C.Rn/ is semiconcave with semiconcavity
constant M and non-negative. Then,

DCu.x/  Br.0/ with r D p
2Mu.x/ :
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As an application of this estimate, consider the Hamilton-Jacobi equation

u C H.Du/ D f in R
n (7)

where H is convex and coercive and f semiconcave. Equations of this type arise in
the Dynamic Programming approach to deterministic optimal control problems.

Assuming that H.0/ D 0 and f � 0, then the unique bounded viscosity
solution of (7) is Lipschitz continuous, non-negative and semiconcave for some
semiconcavity constant M depending on H and f .

Therefore, by the preceding Proposition and the Rademacher’s theorem,

jDu.x/j � p
2Mu.x/ almost everywhere in R

n:

We refer to [2, 6] for properties of viscosity solutions of Hamilton-Jacobi equations.

2.2 Non-negative Functions in Bounded Sets

Let us consider first C2 non-negative functions u defined on a finite interval .�R;R/
with u” � M. In this setting, the following form of the Glaeser inequality holds,:

.?/ ju0.0/j � p
2u.0/M if M � 2u.0/

R2

.??/ ju0.0/j �
�

u.0/

R
C R

2
M

�

if M <
2u.0/

R2
:

Similar estimates holding at a generic x 2 .�R;R/ can be easily deduced from the
above. The constant

p
2 is optimal in the first inequality as shown by u.x/ D .x�R/2

The elementary proof is as follows:

0 � u.x/ D u.0/C u0.0/x C
Z x

0

.x � y/u”.y/ dy:

Hence,

ju0.0/j � u.0/

jxj C jxj
2

M:

The conclusion is then obtained by constrained optimization: if M � 2u.0/
R2

, minimize
the right hand side of above with respect to jxj 2 Œ0;R� to obtain .?/. In the other
case, the choice jxj D R optimizes the right hand side, yielding .??/.

Similar Glaeser’s type inequalities hold for non-negative functions defined on a
higher dimensional ball, see [23]. A model result from that paper is as follows: if
u 2 C2.BR.0// is such that j
uj � M and u � 0, then

jDu.x/j � C
p

u.0/M if 2jxj �
r

u.0/

M
� R
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jDu.x/j � C

�
u.0/

R
C MR

�

if 2jxj � R �
r

u.0/

M

for some constant C depending only on the space dimension.
Observe in this respect that condition (4) implies of course just the unilateral

bound
u � n M.
Consider now the following setting, generalizing that of [23]:

jF.D2u/� g.u/j � M in BR: (8)

Examples of functions satisfying the above are of course, continuous viscosity
solutions of the second order partial differential equation

F.D2u/� g.u/ D f .x/ in BR

with bounded right-hand side f .
Concerning the zero-order nonlinear term g we shall assume that, for some

positive constant G,

g W RC ! R is continuous and jg.s/j � Gs for all s > 0 : (9)

For the principal part, we assume uniform ellipticity:

0 < �jjYjj � F.X C Y/ � F.X/ � �jjYjj 8 X;Y 2 Sn; Y � 0 :

For R > 0, let u 2 C.BR/ be a non-negative viscosity solution of

F.D2u/� g.u/ D f .x/; x 2 BR

with f 2 C.BR/, kf kL1.BR/ � M and set

R� D
p

u.0/=M ; RG D
p
�=G ; R0 D min.R�;RG;R/:

Our result in this setting is as follows:

Theorem 2.1 For F, g and u as above, there exist positive constants 	 and �
depending only on n, � and� such that

	 sup
BR0=2

jDuj �

8
<̂

:̂

p
u.0/M if R� � min.RG;R/

u.0/
R C MR if R � min.R�;RG/

u.0/
p

G C Mp
G

if RG � min.R;R�/
: (10)

The main tools used in our proof of Theorem 2.1, which is notably different from
the one in [23] for the linear case, are comparison principles and, in a crucial way,
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the weak Harnack inequality and the C1;˛ regularity theory for viscosity solutions
as developed by Caffarelli [5]. Here below is a sketch of the proof, for simplicity in
the case F.D2u/ D 
u. We refer to [7] for full details and to [8] for complementary
result in this direction.

Let us assume then that

j
u � g.u/j � M

u 2 C.BR.0// ; u � 0 ; g.u.x// � Gu.x/:

The first step is to show that for 0 < r < 2.nC2/
G , the following form of weak

Harnack inequality holds:

sup
d2.0;r/

�
Z

Bd

u dx � 1

1 � Gr2

2.nC2/

�

u.0/C Mr2

2.n C 2/

�

: (11)

The proof uses the upper bound 
u � g.u/ � M, the divergence theorem and the
coarea formula.

In the second step we use the lower bound
u � g.u/ � M in order to show that
for 0 < r < 2.nC2/

G , the following inequality holds:

u.0/ �
1 � Gr2

2.nC2/
1� Gr2

nC2
�
Z

Br

u dx C 1

1 � Gr2

nC2

Mr2

2.n C 2/
: (12)

Combining the two inequalities above we obtain that the following form of the
Harnack inequality holds

sup
Br=2

u � 3 � 2n�1

1 � 1
2

Gr2
nC2

u.0/C
 

3 � 2n

1 � 1
2

Gr2
nC2

C 1

!
M

4

r2

n C 2
(13)

for r < min.
p
2.n C 2/=GI R/.

The final step of the proof makes use of the classical gradient estimate for
solutions of the Poisson equation:

jDu.0/j � 1p
2

"
1

r

�

4n C G

4
r2
�

sup
Br=2

u C M

4
r

#

(14)

which, together with the above inequality (13), allows to derive the claim after some
further computations. The Glaeser’s inequality easily produces a (perhaps) unusual
proof of the classical Liouville theorem for harmonic functions:

u 2 C2.Rn/ ; 
u D 0 ; u � 0 imply u 	 constant: (15)
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Indeed, if u.0/ D 0 then, by the Maximum Principle, u 	 0. The other possible
case is u.0/ > 0 I since u is harmonic,�" � 
u � " for any arbitrarily small " > 0.
Thanks to the above Theorem,

sup
BR"

jDu.x/j � C
p
" u.0/ ; R" D 1

2

r
u.0/

"
> 0

for some constant C depending only on n.
Since R" ! C1 as " ! 0C, one can pass to the limit by monotonicity in the

above to conclude that supRn jDu.x/j D 0 :

3 Entire Subsolutions

Consider the semilinear equation


u D juj��1u C f .x/ (16)

with � > 1 and f .x/ � " > 0 bounded and continuous. We know from Brezis [4]
that this equation has a unique classical entire solution u < 0 in R

n.
Then v D �u solves


v D jvj� � f .x/ :

Consider now the equation


u D juj� C f .x/ ; (17)

and observe that if u is a solution of the above then u solves also


u � g.u/ (18)

where

g.t/ D t� C " for t � 0 ; g.t/ 	 " for t < 0

is a positive, non decreasing and continuously differentiable function such that

Z C1

0

�Z t

0

g.s/ds

�� 1
2

dt D
Z C1

0

�
.� C 1/�1t�C1 C "t

�� 1
2 dt < C1:

Therefore, the so called Keller-Ossermann condition

Z C1

0

�Z t

0

g.s/ds

�� 1
2

dt D C1
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is not verified by g. hence, well-known results by Keller [18] and Osserman [28],
imply that inequality (18), and therefore also Eq. (17), does not have entire solutions.

We are interested here in investigating the validity of this type of results for
inequalities where the Laplace operator is replaced by somefully nonlinear, possibly
degenerate elliptic operator. More precisely, we consider viscosity solutions of the
partial differential inequality

F.D2u/ � g.u/ in R
n (19)

where F is a second order degenerate elliptic operator in the sense of Crandall–
Ishii–Lions [10], that is

0 � F.x;X C Y/ � F.x;X/ � Trace .Y/

for all x 2 R
n and X; Y 2 S n with Y � O and g.u/ is a positive, non decreasing

zero order term.
In our presentation here, F will be either the “partial” Laplacian operator PC

k ,
see [17, 23] and also [1, 27], defined for real symmetric matrices X 2 S n and a
positive integer 1 � k � n as

PC
k .X/ D �n�kC1.X/C : : :C �n.X/

where �1.X/ � �2.X/ � : : : � �n.X/ are the eigenvalues of the matrix X or the
degenerate maximal Pucci operator defined by

MC
0;1.X/ D

X

�i>0

�i.X/ : (20)

Observe that

PC
k .X/ � MC

0;1.X/

for any 1 � k � n and for all X 2 S n.
Our main results in this context are, for the “partial” Laplacian,

Theorem 3.1 Let 1 � k � n and g W R ! R be positive, continuous and non
decreasing. Then the inequality

PC
k .D

2u/ � g.u/ (21)

has an entire viscosity solution u 2 C.Rn/ if and only if g satisfies the Keller-
Osserman condition

Z C1

0

�Z t

0

g.s/ds

�� 1
2

dt D C1 (22)

while for the degenerate Pucci operator we have
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Theorem 3.2 Let g W R ! R be positive, continuous and strictly increasing. Then
the inequality

MC
0;1.D

2u/ � g.u/ (23)

has an entire viscosity solution u 2 C.Rn/ if and only if g satisfies the Keller-
Osserman condition (22).

In order to appreciate the novelty of the above results, let us mention that after the
classical results of Keller, Osserman and Brezis for F D 
 several extensions have
been established, see [3, 11, 21, 22] for operators in divergence form and [12, 13, 15]
for fully nonlinear equations. In these papers, existence, uniqueness and comparison
results are given for the equation F.D2u/ D g.u/ assuming that the zero order term
g W R ! R is odd, continuous, increasing, convex in Œ0;C1/ and satisfying the
growth condition

Z C1 �Z t

0

g.s/ds

�� 1
2

dt < C1:

In all these papers with the exception of [12], the principal part F of the operator is
assumed to be uniformly elliptic.

Let us emphasize that our results cover in fact the somewhat complementary
cases in which g is bounded below, say positive, and non decreasing. As far as we
know, no previous results in this spirit were known before for degenerate elliptic
equations.

The proof of both theorems is based on a comparison argument with radial
symmetric functions obtained as solutions of an associated ODE.

It is worth to point out that the comparison principle works also in the present
cases where a strong degeneracy may occur in the principal part and possibly in the
zero order term as well.

Let us indicate the main steps of the proof of Theorem 3.1. The proof of
Theorem 3.2 is completely analogous; observe however that the stronger assumption
required there, namely g strictly increasing, is used to prove the validity of the
comparison principle for this strongly degenerate elliptic operator.

We refer for details to the forthcoming paper [9].
The first step is to consider as in [28] an auxiliary Cauchy problem, namely

' 00.r/C c � 1

r
' 0.r/ D g.'.r// ; ' 0.0/ D 0 (24)
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with g W R ! R continuous, non negative and non decreasing. For this ODE one
can prove the following facts:

• If c > 0 then (24) has solutions ' 2 C2 .Œ0;R//, continuous in Œ0;R/, twice
differentiable in .0;R/ and such that

0 D ' 0.0/ D lim
r!0C

' 0.r/ ; ' 00.0/ D lim
r!0C

' 00.r/ D lim
r!0C

' 0.r/
r

¤ 1 :

• If c > 0 then every solution ' of (24) in some interval Œ0;R/ is non decreasing
and convex.

• If c � 1 then every maximal solution of (24) is globally defined in Œ0;C1/ if
and only if g satisfies the Keller-Osserman condition

Z C1

0

�Z t

0

g.s/ds

�� 1
2

dt D C1:

The second step amounts to establish a comparison principle between viscosity
sub solutions and classical super solutions:

• assume g W R ! R continuous and nondecreasing, let u 2 C.BR/ and ˚ 2
C2.BR/ be, respectively, a viscosity subsolution and a classical supersolution of
PC

k .D
2˚/ D g.˚/ in BR.

Or, alternatively,
• assume g W R ! R continuous and strictly increasing, let u 2 C.BR/ and ˚ 2

C2.BR/ be, respectively, a viscosity subsolution and a classical supersolution of
MC

0;1.X/ D P
�i>0

�i.X/ D g.˚/ in BR.

Then the boundary sign condition lim supjxj!R� .u.x/�˚.x// � 0 propagates to
the interior, that is u.x/ � ˚.x/ for all x 2 BR.

The proof of this property, see also [14], is by contradiction: suppose there is a
point x 2 BR where u.x/ > ˚.x/. As easy to check the set ˝ W	 fx 2 BR; u.x/ �
˚.x/ > "g is non-empty and ˝ � BR for " > 0 small enough. Since u is a viscosity
subsolution and˚ is a classical supersolution, then by viscosity calculus it turns out
that the function v D u �˚ satisfies

PC
k .D

2v/ � PC
k .D

2u/� PC
k .D

2˚/ � g.u/� g.˚/

in the viscosity sense in BR. Since g is non decreasing, it follows then that
PC

k .D
2v/ � 0 in ˝ .

Moreover, v > " in ˝ v D " on @˝ . Hence, there exists a concave paraboloid
�.x/ touching v from above at some point x0 2 ˝ , a contradiction to the inequality
PC

k .D
2�.x0// � 0 which holds since ˚ is a super solution.

The following step is to use the ODE to build a local radial solutions. To this end,
let 1 � k � n, g non negative, non decreasing and continuous and ' 2 C2 .Œ0;R//
be a solution of the auxiliary Cauchy problem with c D k.
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Then, ˚.x/ D '.jxj/ is a classical solution of PC
k .D

2˚/ D g.˚/ in BR.
To check this, note that

D2˚.x/ D

8
<̂

:̂

' 00.0/ In; if x D 0

'0.jxj/
jxj In C

�
' 00.jxj/� '0.jxj/

jxj
�

x
jxj ˝ x

jxj if x ¤ 0:

Hence, it is easy to check that ˚ 2 C2.BR/ and that the eigenvalues of D2˚.x/
are:

• ' 00.0/ with multiplicity n, if x D 0.
• ' 00.jxj/, which is simple, and '0.jxj/

jxj with multiplicity n � 1 for x ¤ 0.

Therefore,

PC
k .D

2˚.0// D k ' 00.0/ D g.'.0// D g.˚.0//

so that, by step 1,

PC
k .D

2˚.x// D ' 00.jxj/C k � 1
jxj ' 0.jxj/ D g.'.jxj// D g.˚.x// for x ¤ 0:

Hence ˚ is a classical solution of PC
k .D

2˚/ D g.˚/ in BR.
Suppose now that the Keller-Osserman condition (22) holds and let ' be a

maximal solution of the ODE . By the first step we know that ' is globally defined on
Œ0;C1/ which implies that u.x/ D '.jxj/ is an entire solution ofPC

k .D
2u/ � g.u/.

Conversely, assume that u 2 C.Rn/ solves PC
k .D

2u/ � g.u/ and let ' 2
C2 .Œ0;R// be a maximal solution of the ODE problem such that u.0/ > '.0/. The
claim is that R D C1. If, on the contrary, R < C1, then '.r/ ! C1 as r ! R�
and ˚.x/ D '.jxj/ blows up on the boundary @BR.

Hence, by comparison, u.x/ � ˚.x/ in BR, a contradiction to u.0/ > '.0/.
Therefore, the maximal interval of existence of ' is Œ0;C1/ and it follows

that (22) is satisfied.
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Abstract Using an improvement of flatness Lemma, we prove Hölder regularity of
the gradient of solutions with higher order term a uniformly elliptic fully nonlinear
operator and with Hamiltonian which is sub-linear. The result is based on some
general compactness results.
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1 Introduction

In this paper we shall establish some regularity results of solutions of a class of
fully nonlinear equations, with a first order term which is sub-linear; it is a natural
continuation of [5, 12]. Precisely we shall consider the following family of equations

F.D2u/C b.x/jrujˇ D f .x/ in ˝ � R
N : (1)

See also [1] for related recent results.

Theorem 1.1 Suppose that F is uniformly elliptic, that ˇ 2 .0; 1/, f and b are in
C .˝/. For any u, bounded viscosity solution of (1) and for any r < 1, there exist
� 2 .0; 1/ depending on ellipticity constants of F, kbk1, !.b/ and ˇ and C D C.�/
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such that

kukC 1;� .Br.xo// � C

�

kuk1 C kbk
1

1�ˇ1 C k f k1
�

;

as long as B1.xo/ � ˝ .

Answering a question that we raised in [4], Imbert and Silvestre in [12] proved an
interior Hölder regularity for the gradient of the solutions of

jruj˛F.D2u/ D f .x/

when ˛ � 0. Their proof relies on a priori Lipschitz bounds, rescaling and an
improvement of flatness Lemma, in this way they are lead to use the classical
regularity results of Caffarelli, and Evans [7, 8, 11] for uniformly elliptic equations.

Following their breakthrough, in [5], we proved the same interior regularity when
˛ � 0 in the presence of lower order terms. We also proved C1;� regularity up to
the boundary if the boundary datum is sufficiently smooth. Our main motivation to
investigate the regularity of these solutions i.e. the simplicity of the first eigenvalue
associated to the Dirichlet problem for jruj˛F.D2u/, required continuity of the
gradient up to the boundary.

When ˛ 2 .�1; 0/, in [4] we proved C 1;� regularity for solutions of the Dirichlet
problem, using a fixed point argument which required global Dirichlet conditions
on the whole boundary. So one of the question left open was: is the local regularity
valid for ˛ < 0?

Theorem 1.1 answers to this question since the following holds:

Proposition 1.1 Suppose that, for ˛ 2 .�1; 0/, u is a viscosity solution of

jruj˛F.D2u/ D f .x/ in ˝

then u is a viscosity solution of

F.D2u/� f .x/jruj�˛ D 0 in ˝:

The proof is postponed to the appendix, but recall that singular equations require a
special definition of viscosity solutions.

Theorem 1.1 concerns continuous viscosity solutions of (1); we should point out
that in the case of Lp viscosity solutions (see [9]) it is possible to use a different
strategy. Indeed one could prove first, using the argument below, that the solutions
are Lipschitz continuous. By Rademacher theorem they are almost everywhere
differentiable and hence they will be an Lp viscosity solution of

F.D2u/ D g.x/
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with g 2 L1. The classical result of Caffarelli [7] implies that the solution are C1;˛ .
But this is a different result from ours, since continuous viscosity solutions are Lp

viscosity solutions only when g is continuous, which somehow is what we want to
prove.

In turn the C1;˛ regularity implies that g is Hölder continuous, so further
regularities can be obtained (see e.g. [6, 14]).

Even for F.D2u/ D 
u it would be impossible to mention all the work that has
been done on equation of the form

F.D2u/C jrujp D f .x/:

Interestingly most of the literature is concerned with the case p > 1. In particular
the so called natural growth i.e. p D 2 has been much studied in variational contexts
and the behaviours are quite different when p � 2 or 1 < p < 2. We will just
mention the fundamental papers of Lasry and Lions [13] and Trudinger [15]. And
more recently the papers of Capuzzo Dolcetta et al. [10] and Barles et al. [2]. In the
latter the Hölder regularity of the solution is proved for non local uniformly elliptic
operators, and with lower order terms that may be sublinear.

Remark 1.1 Observe that the operator is not Lipschitz continuous with respect to
ru. This implies that in general uniqueness of the Dirichlet problem does not hold.
For example, when ˝ is the ball of radius 1, then u 	 0 and u.x/ D C.1 � jxj� /
with � D 2�ˇ

1�ˇ and C D ��1.� C N � 2/
1

ˇ�1 are both solutions of equation

�

u C jrujˇ D 0 in ˝;
u D 0 on @˝:

2 Interior Regularity Results

Let SN denote the symmetric N 
 N matrices. In the whole paper F indicates a
uniformly elliptic operator i.e. F satisfies F.0/ D 0 and, for some 0 < � � �,

�trN � F.M C N/� F.M/ � �trN

for any M 2 SN and any N 2 SN such that N � 0. The constants appearing in the
estimates below often depend on � and �, but we will not specify them explicitly
when it happens.

We recall that we want to prove

Theorem 2.1 Let f and b continuous in B1 � ˝ . For any u, bounded viscosity
solution of (1) in B1, and for any r < 1 there exist

� D �.kf k1; kbk1; ˇ; !b.ı// and C D C.�/
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such that

kukC 1;� .Br/ � C

�

kuk1 C kbk
1

1�ˇ1 C kf k1
�

:

Before proving Theorem 2.1, we shall prove a local Lipschitz continuity result.

Lemma 2.1 Suppose that H W B1 
 R
N ! R is such that

H.:; 0/ is bounded in B1 and there exist C > 0 such that for all q 2 R
N,

jH.x; q/� H.x; 0/j � C.jqjˇ C jqj/:

Then there exists Co such that if C < Co, any bounded solution u of

F.D2u/C H.x;ru/ D f .x/ in B1

is Lipschitz continuous in Br, for r < 1 with some Lipschitz constant depending
on r, kf k1, Co and kH.:0/k1.

Proof of Lemma 2.1 The proof proceeds as in [5, 12]. We outline it here, in order to
indicate the changes that need to be done.

Let r < r0 < 1 and xo 2 Br, we consider on Br0 
 Br0 the function

˚.x; y/ D u.x/� u.y/� L2!.jx � yj/� Ljx � xoj2 � Ljy � xoj2

where the continuous function ! is given by !.s/ D s � wos
3
2 for s � .2=3wo/

2 and
constant elsewhere; here wo is chosen in order that .2=3wo/

2 > 1.
The scope is to prove that, for L independent of xo, chosen large enough,

˚.x; y/ � 0 on B2r : (2)

This will imply that u is Lipschitz continuous on Br by taking x D xo, and letting xo

vary.
So we begin to choose L >

8 sup u
.r0�r/2

. Suppose by contradiction that ˚.Nx; Ny/ D
sup˚.x; y/ > 0. By the hypothesis on L; .Nx; Ny/ is in the interior of B2r . Proceeding
in the calculations as in [2] (see also [3, 12]) we get that if (2) is not true then there
exist X and Y such that

.qx;X/ 2 J2;Cu.Nx/; .qy;�Y/ 2 J2;�u.Ny/

where J
2;C

, J
2;�

are the standard semi-jets, while qx D L2!0.jx�yj/ x�y
jx�yj C2L.x�xo/

and qy D L2!0.jx � yj/ x�y
jx�yj � 2L.y � xo/.

Then, there exist constant �1; �2 depending only on �;�; !o such that

MC.X C Y/ � ��1L2

and jqxj; jqyj � �2L2.
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Using the equation,

f .Nx/ � H.Nx; qx/C F.X/

� H.Nx; qx/C F.�Y/C MC.X C Y/

� f .Ny/� �1L
2

CkH.:; 0/k1 C C.jqxjˇ C jqyjˇ C jqxj C jqyj/:

The term kH.:; 0/k1 is o.L2/, while for Co � �1
16�2

C.jqxjˇ C jqyjˇ C jqxj C jqyj/ � �1L2

2
C 4Co.1C �2L

2/

� 3�1L2

4
C 4Co:

In conclusion we have obtained that f .Nx/ � f .Ny/ � �1L2

4
C o.L2/. This is a

contradiction for L large.

Corollary 2.1 Suppose that .fn/n and .Hn.�; 0//n are sequences converging uni-
formly respectively to f1 and H1 on any compact subset of B1, such that for all
q 2 R

N,

jHn.x; q/ � Hn.x; 0/j � �n.jqjˇ C jqj/ (3)

with �n ! 0. Let un be a sequence of solutions of

F.D2un/C Hn.x;run/ D fn.x/ in B1:

If kunk1 is a bounded sequence, then up to subsequences, un converges, in any
compact subset of B1, to u1 a solution of the limit equation

F.D2u1/C H1.x/ D f1.x/ in B1:

2.1 Holder Regularity of the Gradient: Main Ingredients

We will follow the line of proof in [5, 12]. The modulus of continuity of a function g
is defined by !g.ı/ D supŒx�yj�ı jg.x/� g.y/j. In the following, ! will denote some
continuous increasing function on Œ0; ıo� such that !.0/ D 0.

Lemma 2.2 (Improvement of Flatness) There exist �o 2 .0; 1/ and there exists
� 2 .0; 1/ depending on .ˇ;N; �;�; !/ such that : for any � < �o, for any
p 2 R

N and for any f and b such that kf k1 � �, kbk1 � � and such that
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!b.ı/ � kbk1!.ı/, if u is a solution of

F.D2u/C b.x/jru C pjˇ D f .x/ in B1

with oscB1 u � 1 , then there exists q? 2 R
N such that

osc
B�
.u � q? � x/ � 1

2
�:

Proof of Lemma 2.2 We argue by contradiction i.e. we suppose that, for any n 2 N,
there exist pn 2 R

N , and un a solution of

F.D2un/C bn.x/jrun C pnjˇ D fn.x/ in B1

with oscB1 un � 1 and such that, for any � 2 .0; 1/ and any q? 2 R
N ,

osc
B�
.un � q? � x/ � 1

2
�:

Observe that un � un.0/ satisfies the same equation as un, it has oscillation 1 and it
is bounded, we can then suppose that the sequence .un/ is bounded. Suppose first
that jpnj is bounded, so it converges, up to subsequences. Let vn.x/ D un.x/C pn � x,
which is a solution of

F.D2vn/C bn.x/jrvnjˇ D fn.x/:

We can apply Corollary 2.1 with Hn.x; q/ D bn.x/jqjˇ, since (3) holds.

Hence vn converges uniformly to v1, a solution of the limit equation

F.D2v1/ D 0 in B1:

Furthermore v1 satisfies, for any � 2 .0; 1/ and any q? 2 R
N ,

osc
B�
.v1 � q? � x/ � 1

2
�: (4)

This contradicts the classical C 1;˛ regularity results, see Evans [11] and Caffarelli
[7].

We suppose now that jpnj goes to infinity. There are two cases, suppose first
that jpnjˇkbnk1 is bounded. Let Hn.x; q/ D bn.x/jq C pnjˇ. Since !jpnjˇbn

.ı/ �
jpnjˇkbnk1!.ı/, Hn.x; 0/ is equicontinuous and up to a subsequence, it converges
uniformly to some function H1.x/, while .un/n is a uniformly bounded sequence of
solutions of

F.D2un/C Hn.x;run/ D fn.x/:
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We can apply Corollary 2.1 and up to a subsequence, un converges to u1 which is a
solution of

F.D2u1/C H1.x/ D 0:

Furthermore u1 satisfies (4), for any � 2 .0; 1/ and any q? 2 R
N . As in the case pn

bounded, this contradicts the classical C 1;� regularity results cited above.
We are left to treat the case where an D jpnjˇkbnk1 is unbounded. Hence, up to

a subsequence, it goes to C1. We divide the equation by an, so vn WD un
an

satisfies

F.D2vn/C bn.x/

an
janrvn C pnjˇ D fn.x/

an
:

We can apply Corollary 2.1 with

Hn.x; q/ D bn.x/a
ˇ�1
n jq C a�1

n pnjˇ:

Observe that, Hn.x; 0/ D bn.x/a�1
n jpnjˇ is equicontinuous, of L1 norm 1 and up to

a subsequence, it converges uniformly to some function H1.x/.
Passing to the limit one gets that the limit equation is

F.0/C H1.x/ D 0:

This yields a contradiction, since H1 has norm 1 and it ends the proof of
Lemma 2.2.

The next step is an iteration process which is needed in order to prove
Theorem 2.1.

Lemma 2.3 Given �o, ! and � as in Lemma 2.2. Let b and f be such that
kf k1; kbk1 � �o and such that !b.ı/ � kbk1!.ı/. Suppose that u is a viscosity
solution of

F.D2u/C b.x/jrujˇ D f .x/ in B1 (5)

and, oscB1 u � 1. Then, there exists � 2 .0; 1/, such that for all k > 1, k 2 N there
exists pk 2 R

N such that

osc
Brk

.u.x/� pk � x/ � r1C�k (6)

where rk WD �k.

The proof is by induction and rescaling. For k D 0 just take pk D 0. Suppose now
that, for a fixe k, (6) holds with some pk. Choose � 2 .0; 1/ such that �� > 1

2
.
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Define the function uk.x/ D r�1��
k .u.rkx/� pk � .rkx// : By the induction

hypothesis, pk is such that oscB1 uk � 1 and uk is a solution of

F.D2uk/C r1��k b.rkx/jr�k .ruk C pkr��
k /jˇ D r1��k f .rkx/:

Denoting by bk the function bk.x/ D r1��.1�ˇ/k b.rkx/ which satisfies !bk.ı/ D
r1��.1�ˇ/k !b.rkı/ � r1��.1�ˇ/k kbk1!.rkı/ � kbkk1!.ı/, the equation above can
be written as

F.D2uk/C bk.x/jruk C pkr��
k jˇ D r1��k f .rkx/:

Since the L1 norm of fk D r1��k f .rk �/ is less than �, we can conclude that there
exists qk such that

osc
B�
.uk.x/� qk � x/ � 1

2
�:

So that, for pkC1 D pk C qkr�C1
k ,

osc
BrkC1

.u.x/� pkC1 � x/ � �

2
r1C�k � r1C�kC1 :

This ends the proof of Lemma 2.3.

2.2 Holder Regularity of the Gradient: Conclusion

Lemma 2.4 Suppose that for any r, there exists pr such that

osc
Br

.u.x/� pr � x/ � Cr1C�

then u is C 1;� in 0.

Proof It is clear that it is sufficient to prove that pr converges when r goes to 0.
We will prove that the sequence p2�k converges and then conclude for the whole

sequence. Let rk D 1
2k , since rkC1 < rk for x; y in BrkC1

ju.x/� u.y/� pkC1 � .x � y/j � Cr1C�kC1

and

ju.x/� u.y/� pk � .x � y/j � Cr1C�k :
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Subtracting

j.pkC1 � pk � x � y/j � C.r1C�kC1 C r1C�k /:

Then, choosing x D pkC1�pk

jpkC1�pkj rkC1 D �y, one gets

2jpkC1 � pkjrkC1 � C.r1C�kC1 C r1C�k /

which implies

jpkC1 � pkj � C2r�k :

This proves that the series of general term .pkC1 � pk/ converges; hence so does the
sequence pk.

We deduce the convergence of the whole sequence p� when � goes to zero. Let k
be such that rkC1 � � � rk. Then for all x 2 B�

.u.x/� p� � x/ � C�1C� � Cr1C�k

and also, since x 2 Brk ,

.u.x/� prk � x/ � Cr1C�k :

Hence, by subtracting, .p� � prk/ � x � 2Cr1C�k . Then, taking x D p��prk

jp��prk j�, we get

jp� � prk j � C
r
1C�
k
�

� C
r
1C�
k

rkC1
D 2Cr�k : This implies that p� has the same limit as pk.

This ends the proof of Lemma 2.4.

Suppose now that u is a bounded solution of (5), for general f bounded in L1, and

b continuous. The function v.x/ D �u.x/ with ��1 D osc u C 1
�o
.kf k1 C kbk

1
1�ˇ1 /

satisfies the equation

F.D2v/C b.x/�1�ˇjrvjˇ D �f .x/:

Our choice of � implies that we are under the conditions of Lemma 2.3, so v is in
C 1;� , by Lemma 2.4, and so is u.

Appendix

Proof of Proposition 1.1 We assume that ˛ 2 .�1; 0/ and that u is a supersolution
of

jruj˛F.D2u/ D f .x/ in ˝ (7)
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i.e. we suppose that for any xo 2 ˝ either u is locally constant in a neighbourhood
of xo and then 0 � f in that neighbourhood, or, if it is not constant, for any ' test
function that touches u by below at xo and such that r'.xo/ ¤ 0, we require that

jr'.xo/j˛F.D2'.xo// � f .xo/:

We need to prove that this implies that u is a supersolution of

F.D2u/� f .x/jruj�˛ D 0 in ˝; (8)

in the usual viscosity sense. Without loss of generality we let xo D 0. If u is constant
around 0, D2u.0/ D 0 and Du.0/ D 0, so the conclusion is immediate. If ' is
some test function by below at zero such that r'.0/ ¤ 0, the conclusion is also
immediate. We then suppose that there exists M 2 S such that

u.x/ � u.0/C 1

2
hMx; xi C o.jxj2/: (9)

We want to prove that

F.M/ � 0:

Let us observe first that one can suppose that M is invertible, since if it is not, it can
be replaced by Mn D M � 1

n I which satisfies (9) and tends to M.
Let k > 2 and R > 0 such that

inf
jxj<R

�

u.x/� 1

2
hMx; xi C jxjk

�

D u.0/

where the infimum is strict. We choose ı < R such that k.2ı/k�2 < 1
2

infi j�i.M/j.
Let � be such that

inf
ı<jxj<R

�

u.x/� 1

2
hMx; xi C jxjk

�

D u.0/C �

and let ı2 < ı and such that k.2ı/k�1ı2 C kMk1.ı22 C 2ı2ı/ <
�
4
. Then, for x such

that jxj < ı2,

inf
jyj�ı

fu.y/� 1

2
hM.y � x/; y � xi C jy � xjkg � inf

jyj�ı
fu.y/� 1

2
hMy; yi C jyjkg C �

4

D u.0/C �

4
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and on the opposite

inf
R>jyj>ı

fu.y/� 1

2
hM.y � x/; y � xi C jy � xjkg

� inf
jyj>ı

fu.y/� 1

2
hMy; yi C jyjkg � �

4
> u.0/C 3

�

4
:

Since the function u is supposed to be non locally constant, there exist xı and yı in
B.0; ı2/ such that

u.xı/ > u.yı/� 1

2
hM.xı � yı/; xı � yıi C jxı � yıjk

and then the infimum infy;jyj�ıfu.y/� 1
2
hM.xı � y/; xı � yi C jxı � yjkg is achieved

on some point zı different from xı . This implies that the function

'.z/ WD u.zı/C 1

2
hM.xı � z/; xı � zi � jxı � zjk C 1

2
hM.xı � zı/; xı � zıi C jxı � zıjk

touches u by below at the point zı . But

r'.zı/ D M.zı � xı/ � kjxı � zıjk�2.zı � xı/ ¤ 0;

indeed, if it was equal to zero, zı � xı would be an eigenvector corresponding to the
eigenvalue kjxı � zıjk�2 which is supposed to be strictly less than any eigenvalue
of M.

Since u is a super-solution of (7), multiplying by jr'.zı/j�˛, we get

F

�

M � d2

dz2
.jxı � zjk/.zı/

�

� f .zı/jr'.zı/j�˛:

By passing to the limit for ı ! 0 we obtain the desired conclusion i.e. F.M/ � 0.
We would argue in the same manner for sub-solutions.
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The Reflector Problem and the Inverse Square
Law

Cristian E. Gutiérrez and Ahmad Sabra

Al diletto amico Ermanno Lanconelli in occasione del suo
settantesimo compleanno1

Abstract We introduce a model to design reflectors that take into account the
inverse square law for radiation. We prove existence of solutions in the near field
case when the input and output energies are prescribed.

Keywords geometric optics • Monge-Ampere type equations • radiometry
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1 Introduction

It is known that the intensity of radiation is inversely proportional to the square of
the distance from the source. In particular, at large distances from the source, the
radiation intensity is distributed over larger surfaces and therefore the intensity per
unit area decreases as the distance from the surface to the source increases. The
purpose in this paper is to describe and solve a problem in radiometry involving the
inverse square law, see e.g., [2, Sect. 4.8.1, formula (10)] and [8, Chap. 4]. We will
present here only the essentials for the solution; details and further results can be
found in [6].

We begin explaining the concepts needed to pose the problem. Let ˝  S2, and
suppose that radiation is emanating from the origin O for each direction x 2 ˝;
f .x/ denotes the radiant intensity in the direction x, measured in Watts per steradian.

1Dedicated to Ermanno Lanconelli on the occasion of his 70th birthday.
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Then the total amount of energy received at ˝ , or in other words the radiant flux
through˝ , is given by the surface integral

˚ D
Z

˝

f .x/ dx:2

The irradiance E is the amount of energy or radiant flux incident on a surface per
unit area; it is measured in W=m2. If radiation is received on a surface � , given
parametrically by �.x/ x for x 2 ˝ , then by [2, Sect. 4.8.1, formula (10)] the
irradiance over an infinitesimal patch around �.x/x is given by

E.x/ D f .x/ x � �.x/
�.x/2

;

where �.x/ is the outer unit normal to the surface � at the point �.x/x. Based on the
above considerations we introduce the following quantity, measuring the amount of
irradiance at the patch of surface �.˝/, and given by the surface integral

Z

˝

f .x/
x � �.x/
�.x/2

dx: (1)

The problem we propose and solve in this paper is the following. Suppose f is a
positive function defined in ˝  S2, and � is a Radon measure on a bounded set D
contained on a surface in R3 with dist.0;D/ > 0. We want to find a reflector surface
� parameterized by �.x/x for x 2 ˝ such that the radiation emanated from O is
reflected off by � into the set D and such that the irradiance received on each patch
of D has at least measure �. In other words, we propose to find � such that

Z

�� .E/
f .x/

x � �.x/
�.x/2

dx � �.E/; (2)

for each E  D, where the set �� .E/ is the collection of directions x 2 ˝ that �
reflects off in E. We ask the reflector to cover all the target D, that is, �� .D/ D ˝ .
In particular, from (2) we need to have

Z

˝

f .x/
x � �.x/
�.x/2

dx � �.D/I (3)

we say in this case that the reflector � is admissible. Since f and � are given but we
do not know the reflector � , we do not know a priori if (3) holds. However, assuming

2The units for this quantity are Watts because the units for˝ � S2 are considered non dimensional
units, i.e., ˝ is measured in steradians.
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that the input and output energies satisfy

Z

˝

f .x/ dx � 1

C
�.D/;

we will show that there exists a reflector � satisfying (2); see condition (12) and
Theorems 4.1 and 5.1. Here C is an appropriate constant depending only on the
distance between the farthest point on the target and the source, and from how close
to the source we want to place the reflector. In particular, we will see that if the
target D has a point very far away from the source, then the constant 1=C will be
very large and therefore, for a given � we will need more energy f at the outset to
prove the existence of a reflector satisfying (2). We will also see that, in general, for
each fixed point P0 in the support of the measure �, a reflector can be constructed
so that it overshoots energy only at P0, that is, for each set E  ˝ such that P0 … E
we have equality in (2); see Theorems 4.1 [parts (2) and (3)] and Theorem 5.1. In
Sects. 4.1 and 5.1, we show that it is possible to construct a reflector that minimizes
the energy overshot at P0, that is unique in the discrete case, see Theorem 4.2.

To solve our problem, we introduce the notion of reflector and reflector measure
with supporting ellipsoids of revolution, and show that (2) makes sense in terms
of Lebesgue measurability, Sect. 3. With this definition, reflectors are concave
functions and therefore differentiable a.e., so the normal �.x/ exists a.e.. To obtain
the �-additivity of the reflector measure given in Proposition 3.5, we need to assume
that the target D is contained in a hyperplane or D is countable. This is needed in
the proof of Lemma 3.2 and Remark 3.1, those results might fail otherwise, see
Remark 3.2.

With this definition of the reflector, the reflected rays might cross the reflector
to reach the target, in other words, the reflector might obstruct the target in certain
directions. This is physically undesirable and it can be avoided by assuming that the
supporting ellipsoids used in the definition of reflector have the target contained in
their interiors. Another kind of physical obstruction might happen when the target
obstructs the incident rays in their way to the reflector. All of these are discussed
and illustrated in Sect. 3.1.

When the reflector is smooth, it satisfies a Monge-Ampère type pde that is
indicated in Sect. 6.

We finish this introduction mentioning results in the literature that are relevant for
this work and place our results in perspective. The reflector problem in the far field
case has been considered by L. Caffarelli, V. Oliker and X-J. Wang, see [3, 9, 10].
The near field case is in [7] where the notion of reflector defined with supporting
ellipsoids is introduced. In all these papers it is assumed that

R
˝

f .x/ dx D �.target/,
and the model does not take into account the inverse square law. For the far field
refraction, models taking into account the loss of energy due to internal reflection
are considered in [5].

We believe that this work is the first contribution to the problem of constructing
a reflector that takes into account how far it is from the source.
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2 Ellipsoids

Let O be the origin in R
3, P ¤ O be an arbitrary point, and c > OP. The ellipsoid

of revolution Ed.P/ with foci O and P is given by fX W jXj C jX � Pj D cg and has
polar radius

�d.x/ D d

1 � "x � m
; (4)

where d D c2 � OP2

2c
is the so called semi-latus rectum, " D OP

c
is the eccentricity,

and m D
�!
OP

OP
, x 2 S2. From (4), we obtain that the outer unit normal to the ellipsoid

Ed.P/ at the point �d.x/x is given by

�d.x/ D x � "m

jx � "mj : (5)

Using the formula for ", and d we get that OP D 2"d

1 � "2
: Solving for " we obtain

the following simple proposition that will be used frequently in the paper.

Proposition 2.1 Let O be the origin in R
3 and P ¤ O. Fix ı > 0 and consider an

ellipsoid Ed.P/with d � ıOP. Then there exists a constant 0 < cı < 1, independent
of P, such that Ed.P/ has eccentricity " � cı and we have

d

1C cı
� min

x2S2
�d.x/ � max

x2S2
�d.x/ � d

1� cı
: (6)

In fact,

" � �ı C
p
1C ı2 WD cı < 1: (7)

To conclude this section, we recall the following proposition borrowed from [7,
Lemma 6].

Proposition 2.2 For ellipsoids of fixed foci O and P, the eccentricity " is a strictly
decreasing function of d, and for each fixed x, �d.x/ is strictly increasing function
of d.

3 Reflectors and Reflector Measures

In this section we introduce the definition of reflector and reflector measure, and
prove some properties that will be used later in the paper.
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Definition 3.1 Let ˝  S2 such that j@˝j D 0. The surface � D f�.x/xgx2 N̋ is
a reflector from N̋ to D if for each x0 2 N̋ there exists an ellipsoid Ed.P/ with

P 2 D that supports � at �.x0/ x0. That is, Ed.P/ is given by �d.x/ D d

1 � " x � m

with m D
�!
OP

OP
and satisfies �.x/ � �d.x/ for all x 2 N̋ with equality at x D x0.

Notice that reflectors are concave and therefore continuous.
The reflector mapping associated with a reflector � is given by

N� .x0/ D fP 2 D W there exists Ed.P/ supporting � at �.x0/x0gI

and the tracing mapping is

�� .P/ D fx 2 N̋ W P 2 N� .x/g:

For the proof of the properties of the reflector measure, we will need the
following measure theory result.

Lemma 3.1 Let S  R
n be a set, not necessarily Lebesgue measurable, and

consider

f .x/ WD lim sup
r!0

jS \ Br.x/j�
jBr.x/j ;

where j � j� and j � j denote the Lebesgue outer measure and Lebesgue measure
respectively. If

M D fx 2 S W f .x/ < 1g;

then jMj D 0. Here Br.x/ is the Euclidean ball centered at x with radius r.
Moreover, if Br.x/ is a ball in a metric space X and �� is a Carathéodory outer

measure on X,3 then a similar result holds true for all S  X.

The proof of Lemma 3.1 uses Vitali’s covering theorem as stated in [11, Corol-
laries (7.18) and (7.19)]. From the book of Ambrosio and Tilli [1, Theorem 2.2.2.],
we conclude that the same result applies to the case of a general metric space.

The following lemma is essential for the reflector measure.

Lemma 3.2 Suppose D is contained in a plane ˘ in R
3, and let � be a reflector

from N̋ to D. Then the set

S D fx 2 N̋ W there exist P1 ¤ P2 in D such that x 2 �� .P1/\ �� .P2/g

has measure zero in S2.

3From [11, Theorem (11.5)] every Borel subset of X is Carathéodory measurable.
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Proof Let N be the set of points where � is not differentiable. Since � is concave,
it is locally Lipschitz and so the measure of N in S2 is zero. Let us write S D
.S \ N/[ .S \ Nc/. We shall prove that the measure, in S2, of F WD S \ Nc is zero.

Let x0 2 S\Nc, then there exist Ed1 .P1/ and Ed2 .P2/ supporting ellipsoids to � at
x0 with P1 ¤ P2, and x0 is not a singular point of � . Then there is a unique normal
�0 to � at x0 and �0 is also normal to both ellipsoids Ed1 .P1/ and Ed2 .P2/ at x0.
Hence from Snell’s law �.x0/x0 is on the line joining P1 and P2. Since D  ˘ we
get that E WD f�.x0/ x0 W x0 2 S \ Ncg  ˘ . That is, the graph of � , for x 2 S \ Nc,
is contained in the plane ˘ .

We will prove that the set S \ Nc has measure zero in S2.

Case 1 O 2 ˘ . Since �.z/ z 2 ˘ , for each z 2 F, then the incident ray is contained
in˘ . Therefore F is contained in a great circle of S2 and hence has surface measure
zero.

Case 2 O … ˘ . In this case, it can be shown, see [6], that for every z0 2 F, jBr.z0/\
Fj� � 1

2
jBr.z0/j for all r > 0, and hence by Lemma 3.1 the measure of F is zero in

S2 and the proof of the lemma is complete.

Remark 3.1 If D is a finite or countable set, then the conclusion of Lemma 3.2 holds
regardless if D is on a plane. In fact, let D D fPig1

iD1, with O … D. Let ˘ij be the
plane (or line) generated by the points O;Pi;Pj. Following the proof of Lemma 3.2
we have that

S \ Nc  [i¤j˘ij;

and since the surface measure of S \ Nc \˘ij is zero we are done.

Remark 3.2 We present an example of a target D that is not contained in a plane,
a set ˝  S2, and a reflector � from N̋ to D such that the set S in Lemma 3.2 has
positive measure. Consider the origin O, the point P0 D .0; 2; 0/, and the half sphere
S� D fX D .x1; x2; x3/ W jX � P0j D 1; x3 � 0g. Let D D S� [ fP0g, and consider
the ellipsoid Ed.P0/ D f�d.x/xgx2S2 with d large enough such that it contains D. Let
˝ D fx D .a; b; c/ 2 S2 W c > 0g and the reflector � D f�d.x/xgx2 N̋ .

Each point P 2 D is reached by reflection, because the ray from P0 passing
through P intersects � at some point P0 and since � is an ellipsoid, the ray emanating
from O with direction P0=jP0j is reflected off to P. We can see in this case that the
set S in Lemma 3.2 has positive measure, see [6].

Similarly, Lemma 3.2 does not hold when D is contained in a finite union of
planes. For example, let P D .0; 2; 0/, C be the closed disk centered at .0; 2;�1/
and radius 1 contained on the plane z D �1, and let the target be D D P [ C .
If � is a sufficiently large ellipsoid with foci O, P, and containing D, then the set
�� .P/\ �� .C / has positive measure.

As a consequence of Lemma 3.2 we obtain the following.
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Proposition 3.1 Suppose � is a reflector from N̋ to D and the target D is contained
in a plane or D is countable. If A and B are disjoint subsets of D, then �� .A/\�� .B/
has Lebesgue measure zero.

Definition 3.2 Suppose D is compact not containing O, and M D maxP2D OP. For
each ı > 0, we let A .ı/ be the collection of all reflectors � D f�.x/xgx2 N̋ from
N̋ to D, such that for each x0 2 N̋ there exist a supporting ellipsoid Ed.P/ to � at
�.x0/ x0 with P 2 D and d � ıM.

The following proposition will be used in Sect. 5.

Proposition 3.2 If � D f�.x/xgx2 N̋ is a reflector in A .ı/, then � is globally
Lipschitz in N̋ , the Lipschitz constant of � is bounded uniformly by a constant
depending only on ı and M.

Proof Let x; y 2 N̋ . Then there exist P 2 D with d � ıM such that Ed.P/ supports
� at �.x/x, i.e., �.z/ � �d.z/ for all z 2 N̋ with equality at z D x. Therefore since

OP D 2"d

1 � "2 , using (7) we get that

�.y/��.x/ D �.y/��d.x/ � �d.y/��d.x/ � OP

2

1C "

1 � " jx�yj � M

2

1C cı
1� cı

jx�yj:

Interchanging the roles of x; y, we conclude the proposition.

Proposition 3.3 Assume O … D with D compact such that either D is contained
on a plane or D is countable. Let � 2 A .ı/ and let S be the set from Lemma 3.2.
Suppose fxng1

nD1; x0 are in N̋ n S and xn ! x0. If Edn.Pn/ and Ed0 .P0/ are the
corresponding supporting ellipsoids to � at xn and x0, and �.xn/; �.x0/ are the
corresponding unit normal vectors, then we have

1. limn!1 dn D d0.
2. limn!1 Pn D P0.
3. limn!1 �.xn/ D �.x0/.

Definition 3.3 Let ı > 0 and let D be compact with O … D. Given � 2 A .ı/, we
define S D f E  D W �� .E/ is Lebesgue measurableg.

Proposition 3.4 If O … D, with D a compact set contained either on a plane or D
is countable, then S is a sigma-algebra on D containing all Borel sets.

We are now ready to define the notion of reflector measure.

Proposition 3.5 Assume the target D is a compact set with O … D such that D is
contained on a plane or D is countable. Let f 2 L1. N̋ / be non-negative, and let �
be a reflector in A .ı/ for some ı > 0. We define

�.E/ D
Z

�� .E/
f .x/

x � �.x/
�2.x/

dx

for each Borel set E. Then � is a finite Borel measure on D.
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Proof By Proposition 3.4, �� .E/ is Lebesgue measurable for each Borel set E. By
Proposition 3.3 the function x � �.x/ is continuous relative to N̋ n S. Since � 2 A.ı/,

� is continuous and bounded below. It then follows that the function
x � �.x/
�2.x/

is

continuous relative to N̋ n S.

Let x 2 N̋ n S, by (5) and Proposition 2.1, we have x � �.x/ D 1 � " x � m

jx � "mj �
1 � cı
1C cı

> 0, where " is the eccentricity of the supporting ellipsoid to � at �.x/x.

From Proposition 3.1, jSj D 0 and therefore �.E/ is well defined for each E
Borel set and is non negative. To prove the sigma additivity of �, let E1;E2; : : :
be countable mutually disjoint sequence of Borel sets. Then by Proposition 3.1,
�.Ei \ Ej/ D 0 for all i ¤ j, and hence �

�[C1
iD1 Ei

� D PC1
iD1 �.Ei/.

To complete the list of properties of the reflector measure, we state the following
stability property.

Proposition 3.6 Suppose D is a compact set with O … D and such that D is
contained on a plane or D is countable, and let f 2 L1. N̋ / be non-negative. Let �n

be a sequence of reflectors in A .ı/ for some fixed ı > 0, where �n D f�n.x/ xgx2 N̋
are such that �n.x/ � b for all x 2 N̋ , for all n and for some b > 0, and �n converges
point-wise to � in N̋ . Let � D f�.x/xgx2 N̋ . Then we have

1. � 2 A .ı/, i.e., for all x 2 N̋ there exist P in D and d � ıM such that Ed.P/
supports � at �.x/x.

2. If � is the reflector measure corresponding to � , then �n converges weakly to � .

Corollary 3.1 If D D fP1;P2; : : : ;PNg and �n; �; �n; � are as in Proposition 3.6,
then

lim
n!C1�n.Pi/ D �.Pi/:

Proof Define hi.Pj/ D ı
j
i , 1 � i; j � N. Since D is discrete, h is continuous on D,

then by the previous proposition

lim
n!C1�n.Pi/ D lim

n!C1

Z

D
hi.y/d�n.y/ D

Z

D
hi.y/d�.y/ D �.Pi/:

3.1 Physical Visibility Issues

With the Definition 3.1 of reflector, the reflected rays might cross the reflector to
reach the target, in other words, the reflector might obstruct the target in certain
directions. This is illustrated in Fig. 1a. In this section, we show by convexity that
if the ellipsoids used in the definition of reflector are chosen such that they contain
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Fig. 1 Reflectors illustrating
obstruction. (a) P D .1; 0/,
Q D .0; 1/, E1:2.P/ and
E1:4.Q/; (b) P D .�1; 0:2/,
Q D .1; 0/, E5:5.P/ and
E5.Q/

all points of D in their interiors, this obstruction can be avoided, that is, the reflector
will not obstruct the target in any direction. For example, in Fig. 1b each reflected
ray will not cross the reflector to reach the target.

Indeed, let fEdigi2I be a family of ellipsoids with foci O and Pi, such that the
convex body B enclosed by all fEdigi2I is a reflector. Let us assume that all Pi’s
are in the interior of B, and D D fPigi2I is compact. We shall prove that under
this condition any ray emanating from O is reflected into a ray that does not cross
the boundary of B to reach the target. Suppose by contradiction that there is ray r
emanating from O so that the reflected ray r0 crosses the boundary of B to reach the
target. Then r hits @B at some point P, and so P is on the boundary of some ellipsoid
Edi , and the reflected ray r0 crosses the boundary of B at a point Q to reach the target
at say Pi. Since Pi is in the interior of B, P 2 @B, and B is convex, the segment
.1 � t/P C tPi 2 Int .B/ for all 0 < t � 1. Since for some t, Q is on this segment,
then Q belongs to the interior of B, a contradiction.
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To assure that each supporting ellipsoid in the definition of reflector contain all
points in D, we proceed as follows. Take m D minP2D OP;M D maxP2D OP. Let
Pi;Pj 2 D, Pi is inside the body of the ellipsoid with focus O and Pj if and only if

OPi C PiPj < cj D OPj

"j
;

that is, if and only if "j <
OPj

OPi C PiPj
for all Pi;Pj 2 D. Therefore, in the definition

of reflector it is enough to choose ellipsoids with eccentricity " satisfying

" <
m

M C diam.D/
: (8)

Since dj D .1 � "2j /OPj

2 "j
then by monotonicity of d we have that (8) is then

equivalent to

dj >

1 �
�

m

M C diam.D/

�2

2
m

M C diam.D/

OPj for all Pj 2 D;

and so it is enough to choose d >
1 �

�
m

M C diam.D/

�2

2
m

M C diam.D/

M.

Therefore, to avoid obstruction of the target by the reflector, we can consider
reflectors in the class A .ı/ with

ı >

1 �
�

m

M C diam.D/

�2

2
m

M C diam.D/

WD ıD: (9)

To complete this section, we mention the case when the target is on the way to
the reflector, that is, the incident rays cross the target before reaching the reflector.
Clearly, this can be avoided if we assume that N̋ \ D� D ;, where D� is the
projection of D on S2.
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4 Solution of the Problem in the Discrete Case

Definition 4.1 Let ˝  S2 with j@˝j D 0, D D fP1;P2; : : : ;PNg is such
that O … D, and M D maxP2D OP. Let d1; � � � ; dN be positive numbers and
w D .d1; d2; � � � ; dn/. Define the reflector � D f�w.x/xg, x 2 N̋ , where

�w.x/ D min
1�i�N

�di.x/;

with �di.x/ D di

1 � "i x � mi
, "i D

s

1C d2i
OP2i

� di

OPi
and mi D

��!
OPi

OPi
, OPi D j��!OPij.

Lemma 4.1 Let 0 < ı � ı0, and let f�w.x/xg be the reflector with w D
.d1; � � � ; dN/, where d1 � ı0 M and di � ıM for 1 � i � N. If f 2 L1. N̋ / and
f > 0 a.e. then

�w.D/ D
Z

N̋
f .x/

x � �w.x/

�2w.x/
dx > C.ı; ı0;M/

Z

N̋
f .x/ dx (10)

where C.ı; ı0;M/ is a constant depending only on ı, ı0 and M.

Proof From Proposition 3.2, the set of singular points of the reflector �w has
measure zero. For each x 2 ˝ not a singular point the normal �w.x/ exists and

by (5) and Proposition 2.1,
x � �w.x/

�2w.x/
� .1 � cı/3

.1C cı/ .ı0 M/2
WD C.ı; ı0;M/ and

�w.D/ D
Z

N̋
f .x/

x � �w.x/

�2w.x/
dx � C.ı; ı0;M/

Z

N̋
f .x/ dx:

To prove the strict inequality, suppose by contradiction that we have equality. Since
f > 0 a.e., we then would get that

x � �w.x/

�2w.x/
D C.ı; ı0;M/; for a.e. x 2 ˝; (11)

then �w is constant a.e. and hence by continuity �w is constant on˝ , a contradiction.

The following lemma is similar to [7, Lemma 9].

Lemma 4.2 Consider the reflectors � D f�w.x/xgx2 N̋ and Q� D f�Qw.x/xgx2 N̋ ,
with w D .d1; d2; � � � ; dl; � � � ; dN/ and Qw D .d1; d2; � � � ; Qdl; � � � ; dN/, such that
Qdl � dl. We write in this case w �l Qw.

If � and Q� are the corresponding reflector measures, then Q�.Pi/ � �.Pi/ for
i ¤ l.
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As in [7] we obtain the following corollary.

Corollary 4.1 Let w1 D .d11; d
1
2; � � � ; d1N/ and w2 D .d21; d

2
2; � � � ; d2N/. Define w D

.d1; d2; � � � ; dN/ where di D min.d1i ; d
2
i /, we write w D min.w1;w2/. Let �1; �2; �

be their corresponding reflector measures. Then

�.Pi/ � max.�1.Pi/; �2.Pi// for all 1 � i � N:

We now prove existence of solutions in the discrete case.

Theorem 4.1 Let ˝  S2 with j@˝j D 0, f 2 L1. N̋ / such that f > 0 a.e,
g1; g2; � � � ; gN positive numbers with N > 1. Let D D fP1;P2; : : : :;PNg be such that
O … D, and let M D max1�i�N OPi. Define the measure � on D by � D PN

iD1 giıPi .

Fix ı > 0, let k � 1C cı
1 � cı

, where cı is from (7), and suppose that

Z

N̋
f .x/ dx � 1

C.ı; kı;M/
�.D/; (12)

where C.ı; kı;M/ D .1 � cı/3

.1C cı/.kıM/2
.

Then there exists a reflector Nw D . Nd1; � � � ; NdN/ in A .ı/, i.e., with Ndi � ıM for
1 � i � N, satisfying:

1. N̋ D SN
iD1 � N� .Pi/.

2. N�.Pi/ D gi for 2 � i � N, where N� is the reflector measure corresponding to Nw;
and

3. N�.P1/ > g1.

Proof Consider the set:

W D fw D .d1; � � � ; dN/ W d1 D kıM; di � ıM;

�w.Pi/ D
Z

��w.Pi/

f .x/
x � �w.x/

�2w.x/
dx � gi; i D 2; � � � ;Ng:

We first show that W ¤ ;. In fact, since d1 is fixed we can choose di large enough
for i ¤ 1 so that �w.x/ D �d1 .x/, in that case �w.Pi/ D 0 < gi for i D 2; � � � ;N and
w 2 W.

W is closed. In fact, let wn D .dn
1; � � � ; dn

N/ 2 W converging to w D .d1; � � � ; dN/,
and let �n and � be their corresponding reflector measures. By Proposition 2.1 we

have �wn.x/ D �d1 .x/ � kıM

1 � cı
. Then by Corollary 3.1 �.Pi/ D limn!1 �n.Pi/ �

gi for all i D 2; � � � ;N. Therefore w 2 W.
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Note that �w.P1/ > g1 for every w 2 W. In fact, by Lemma 4.1 and
condition (12), we have that

�w.P1/� g1 D�w.D/� .g1 C �w.P2/C � � � C �w.PN//

��w.D/� .g1 C g2 C � � � C gN/ > 0:

Let Nd1 D kıM, and Ndi D infw2W di for 2 � i � N. Take the reflector
N� D f� Nw.x/xg and it’s corresponding measure N�, with Nw D . Nd1; � � � ; NdN/.
We have that Ndi � ıM for 2 � i � N. Since W is closed and the
d0

is are bounded below, the infimum is attained at some reflector Nwi D
.kıM; Ndi

2; � � � ; Ndi
i�1; Ndi; Ndi

iC1; � � � ; Ndi
N/ 2 W for 2 � i � N. Let N�i be the reflector

measure corresponding to Nwi. Since Nw D min2�i�N Nwi, it follows from Corollary 4.1
that N�.Pi/ � max . N�2.Pi/; N�3.Pi/; � � � ; N�N.Pi// � gi for 2 � i � N, and so Nw 2 W.

It remains to prove that in fact we have N�.Pi/ D gi for all i � 2. Without loss of
generality, suppose that the inequality is strict for i D 2, that is, N�.P2/ < g2. Take
0 < � < 1, w� D .kıM; � Nd2; Nd3; : : : NdN/, and let �� be the corresponding reflector
measure. We claim that Nd2 > ıM. Suppose by contradiction that Nd2 D ıM. Then by

Proposition 2.1, � Nd2 � ıM

1 � cı
and � Nd1 � kıM

1C cı
, but since k � 1C cı

1 � cı
, we have

� Nd1 � � Nd2 . Therefore � N� .P1/  � N� .P2/ and hence by Proposition 3.1 N�.P1/ D 0, a
contradiction. This proves the claim, and therefore � Nd2 > ıM for all � sufficiently
close to one. Moreover, by Lemma 4.2, ��.Pi/ � N�.Pi/ � gi for i � 3, and by
Corollary 3.1 lim�!1 ��.P2/ D N�.P2/ < g2 Then there exist �0 close to one such
that ��.P2/ < g2 and � Nd2 � ıM, for �0 � � < 1. Hence w� 2 W contradicting the
definition of Nd2. We conclude that Nw satisfies conditions (1)–(3).

4.1 Discussion About Overshooting in the Discrete Case

Theorem 4.1 shows the existence of a solution that overshoots energy at P1.

Definition 4.2 With the notation of Theorem 4.1 we define the following

1. W D fw D .d1; � � � ; dN/ W d1 D kıM; di � ıM; �w.Pi/ � gi for 2 � i � Ng.
2. The reflector N� D f� Nw.x/xg, and its corresponding reflector measure N�, where

Nw D . Nd1; � � � ; NdN/ with Nd1 D kıM, and Ndi D infw2W di for 2 � i � N.

Theorem 4.2 Let w D .d1; d2; : : : ; dN/ 2 C and � its corresponding reflector
measure. Then

N�.D/ � �.D/;
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where N� is the reflector measure corresponding to Nw. Moreover, if N̋ is connected
and N�.D/ D �.D/ then:

Ndi D di for all 1 � i � N:

Proof Since w and Nw are in C , then �.Pi/ D N�.Pi/ for all 2 � i � N. By definition
of Nw D .Nd1; � � � ; NdN/ we have Nd1 D kıM D d1 and Ndi � di for all 2 � i � N,
since C  W. Let � and N� be the reflectors corresponding to w and Nw, respectively,
then by Proposition 2.2 � N� .P1/  �� .P1/ and N�.P1/ � �.P1/. We conclude that
N�.D/ � �.D/.

Suppose now that N̋ is connected and we have equality, i.e., N�.Pi/ D �.Pi/ for
all 1 � i � N. Let I D f1 � i � N W Ndi D dig and J D f1 � i � N W Ndi < dig:
Our goal is to prove that J is empty. First notice that I ¤ ;, since 1 2 I. Similarly
as before � N�.Pi/  �� .Pi/ for all i 2 I, and therefore

�.Pi/ D
Z

�� .Pi/

f .x/
x � �di.x/

�2di
.x/

dx D
Z

�� .Pi/

f .x/
x � � Ndi

.x/

�2Ndi
.x/

dx;

D
Z

�N� .Pi/

f .x/
x � � Ndi

.x/

� Ndi
2
.x/

dx C
Z

�� .Pi/n�N� .Pi/

f .x/
x � � Ndi

.x/

�2Ndi
.x/

dx

D N�.Pi/C
Z

�� .Pi/n�N� .Pi/

f .x/
x � � Ndi

.x/

�2Ndi
.x/

dx:

Since �.Pi/ D N�.Pi/ and
x � � Ndi

.x/

�2Ndi
.x/

f .x/ > 0 a.e., we get j��.Pi/ n � N� .Pi/j D 0, and

so j�� .Pi/j D j� N� .Pi/j for i 2 I.
Suppose now that J ¤ ; and let x 2 S

j2J �� .Pj/, then x 2 �� .Pj0 / for some
j0 2 J. By Proposition 2.2 we have:

� Nw.x/ D �Ndj0
.x/ < �dj0

.x/ � �di .x/ D � Ndi
.x/ for all i 2 I:

Then by continuity of � Nw,

x 2 Int

0

@
[

j2J

� N� .Pj/

1

A and so
[

j2J

�� .Pj/  Int

0

@
[

j2J

� N� .Pj/

1

A :

Since N̋ is connected and
S

j2J �� .Pj/ is closed, we get that the set A DS
j2J � N� .Pj/ n Sj2J �� .Pj/ contains the non empty open set then

S
j2J � N� .Pj/ D

�S
j2J �� .Pj/

�
[ A with jAj > 0, a contradiction.



The Reflector Problem and the Inverse Square Law 283

5 Solution for a General Measure �

Theorem 5.1 Suppose the target D is compact, O … D, and either D is contained
on a plane, or D is countable, and let M D maxP2D OP. Let˝  S2, with j@˝j D 0,
f 2 L1. N̋ / with f > 0 a.e, and let � be a Radon measure on D.

Given ı > 0, k � 1C cı
1 � cı

, with cı from (7), we assume that

Z

N̋
f .x/ dx � 1

C.ı; kı;M/
�.D/; (13)

where C.ı; kı;M/ D .1 � cı/3

.1C cı/.kıM/2
.

Given P0 2 supp.�/, the support of the measure �, there exists a reflector � D
f�.x/xgx2 N̋ from N̋ to D in A .ı/ such that

�.E/ �
Z

�� .E/
f .x/

x � ��.x/
�2.x/

dx;

for each Borel set E  D, and

�.E/ D
Z

�� .E/
f .x/

x � ��.x/
�2.x/

dx;

for each Borel set E  D with P0 … E; and
ıM

1C cı
� �.x/ � kıM

1 � cı
for all x 2 N̋ .

Proof Partition the domain D into a disjoint finite union of Borel sets with small
diameter, say less than ", so that P0 is in the interior of one of them (D has
the relative topology inherited from R

3). Notice that the �-measure of such a set
is positive since P0 2 supp.�/. Of all these sets discard the ones that have �-
measure zero. We then label the remaining sets D1

1; : : : ;D
1
N1

, and we may assume
P0 2 .D1

1/
ı and �.D1

j / > 0 for 1 � j � N1. Next pick P1i 2 D1
i , so that

P11 D P0, and define a measure on D by �1 D PN1
iD1 �.D1

i /ıP1i
: Then from (13),

�1.D/ D �.D/ � C.ı; kı;M/
R

N̋ f .x/ dx: Thus by Theorem 4.1, there exists

a reflector �1 D
�

�1.x/x W �1.x/ D min1�i�N1
d1i

1 � "1i x � m1
i

	

with d11 D kıM,

d1i � ıM for 2 � i � N1, m1
i D

��!
OP1i
OP1i

for 1 � i � N1, and satisfying

�1.E/ �
Z

��1 .E/
f .x/

x � ��1.x/
�21.x/

dx; with equality if P0 … E, for each E Borel subset

of D.
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By this way for each ` D 1; 2; � � � , we obtain a finite disjoint sequence of
Borel sets D`

j , 1 � j � N`, with diameters less that "=2` and �.D`
j / > 0

such that P0 2 .D`
1/

ı, D`C1
1  D`

1, and pick P`j 2 D`
j with P`1 D P0, for all

` and j. The corresponding measures on D are given by �` D PN`
iD1 �.D`

i /ıP`i
satisfying �`.D/ D �.D/ � C.ı; kı;M/

R
N̋ f .x/ dx: We then have a corresponding

sequence of reflectors given by �` D
�

�`.x/x W �`.x/ D min1�i�N`

d`i
1 � "`i x � m`

i

	

with d`1 D kıM, d`i � ıM for 2 � i � N`, m`
i D

��!
OP`i
OP`i

for 1 � i � N`, and satisfying

�`.E/ �
Z

��` .E/
f .x/

x � ��`.x/
�2`.x/

dx; with equality if P0 … E, for each E Borel subset

of D.
Since �` 2 A .ı/ for all `, it follows by Proposition 3.2 that �` are Lipschitz

continuous in N̋ with a constant depending only on ı and M. In addition, from

Proposition 2.1, and since d`1 D kıM, we have
ıM

1C cı
� �`.x/ � kıM

1 � cı
8`; x:

By Arzelá-Ascoli theorem, there is a subsequence, denoted also by �`, converging
to � uniformly in N̋ . From Proposition 3.6, � D f�.x/xg is a reflector in A .ı/ and
the reflector measures �`, corresponding to �`, converge weakly to �, the reflector
measure corresponding to � . We also have that �` converges weakly to �, and
�`.E/ D �`.E/ for every Borel set E  D with P0 … E, and each `. Then we obtain
that �.E/ D �.E/ for every Borel set E  D with P0 … E. Since �`.E/ � �`.E/ for
any Borel set E  D, we also conclude that �.E/ � �.E/.

5.1 Discussion About Overshooting

In this section, we will discuss the issue of overshooting energy to the point P0 2
supp.�/ and show that there is a reflector that minimizes the overshooting. Indeed,
let P0 2 supp.�/ and

I D inf

�Z

�� .P0/
f .x/

x � ��.x/
�2.x/

dx W � is a reflector as in Theorem 5.1

	

: (14)

There exists a sequence of reflectors �k D f�k.x/xg such that

I D lim
k!1

Z

��k .P0/
f .x/

x � ��k .x/

�2k.x/
dx:

Therefore from Proposition 3.2, �k are uniformly Lipschitz in N̋ , and by Theo-
rem 5.1 uniformly bounded. Then by Arzelá-Ascoli there exists a subsequence, also
denoted �k, converging uniformly to �. By Proposition 3.6, � D f�.x/xg 2 A .ı/,
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and the corresponding reflector measures �k and � satisfy �k ! � weakly. In

particular, I D
Z

�� .P0/
f .x/

x � ��.x/
�2.x/

dx, and we are done.

We now compare �.P0/ with �.P0/.

Case 1 �.P0/ D R
�� .P0/

f .x/
x � ��.x/
�2.x/

dx > 0.

In this case, we shall prove that for each open set G  D, with P0 2 G, we have:

Z

�� .G/
f .x/

x � ��.x/
�2.x/

dx > �.G/; (15)

in other words, the reflector overshoots on each open set containing P0. Notice
that from Theorem 5.1 we have equality in (15) for each Borel set not containing
P0. Suppose by contradiction there exists an open set G, with P0 2 G, such that
R
�� .G/

f .x/
x � ��.x/
�2.x/

dx D �.G/: Then

Z

N̋
f .x/

x � ��.x/
�2.x/

dx D
Z

�� .D/
f .x/

x � ��.x/
�2.x/

dx

D
Z

�� .DnG/
f .x/

x � ��.x/
�2.x/

dx C
Z

�� .G/
f .x/

x � ��.x/
�2.x/

dx

D �.D n G/C �.G/ D �.D/ � C.ı; kı;M/
Z

N̋
f .x/ dx

from (13). But f > 0 a.e. and by Proposition 2.1,
x � ��.x/
�2.x/

� C.ı; kı;D/ � 0,

thus
x � ��.x/
�2.x/

D C.ı; kı;M/ for a.e. x 2 N̋ : Hence, again by Proposition 2.1,

�.x/ is constant a.e., and since � is continuous, then is constant in N̋ . This is
a contradiction. Notice that if �.P0/ > 0, then �.P0/ > 0 and so the reflector
overshoots.

Case 2 �.P0/ D R
�� .P0/

f .x/
x � ��.x/
�2.x/

dx D 0.

This implies that j�� .P0/j D 0 and �.P0/ D 0. Then for each G open
neighborhood of P0 we have

�.G/ D
Z

�� .GnP0/
f .x/

x � ��.x/
�2.x/

dx C
Z

�� .P0/
f .x/

x � ��.x/
�2.x/

dx D �.G n P0/ D �.G/:

This identity also holds for every open set not containing P0, and so for any open set
in D. Since both measures � and � are outer regular then they are equal. Therefore
in this case the reflector doesn’t overshoot.
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6 The Differential Equation for the Problem

Proceeding similarly as in [4, Appendix] we conclude that � satisfies the following
Monge-Ampère type equation

ˇ
ˇdet

�
D2� C A .x; �.x/;D�.x//

�ˇˇ (16)

� f .x/

4 g.T.x//
p
1 � jxj2 ˇˇF.F C D� � DpF/

ˇ
ˇ �3

p
�2 C jD�j2 � .x � D�/2

with T the map from N̋ to D and F WD F.x; �.x/;D�.x//,where

F.x; u; p/ D
u

p
u2 C jpj2 � .p � x/2

�pu2 C jpj2 � .p � x/2 C 2.u C p � x/
u

p
u2 C jpj2 � .p � x/2

;

and

A .x; �;D�/ D 1

� .F C D� � DpF/
Œ.F C �Fu/D� ˝ D� C �D� ˝ DxF� :4

References

1. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in
Mathematics and Its Applications, vol. 25. Oxford University Press, Oxford (2004)

2. Born, M., Wolf, E.: Principles of Optics, Electromagnetic Theory, Propagation, Interference
and Diffraction of Light, 7th (expanded), 2006 edn. Cambridge University Press, Cambridge
(1959)

3. Caffarelli, L.A., Oliker, V.: Weak solutions of one inverse problem in geometric optics. J. Math.
Sci. 154(1), 37–46 (2008)

4. Gutiérrez, C.E., Huang, Q.: The near field refractor. Ann. Inst. Henri Poincaré (C) Anal. Non
Linéaire. 31(4), 655–684 (2014) https://www.math.temple.edu/~gutierre/papers/nearfield.final.
version.pdf

5. Gutiérrez, C.E., Mawi, H.: The far field refractor with loss of energy. Nonlinear Anal. Theory
Methods Appl. 82, 12–46 (2013)

6. Gutiérrez, C.E., Sabra, A.: The reflector problem and the inverse square law. Nonlinear Anal.
Theory Methods Appl. 96, 109–133 (2014)

7. Kochengin, S., Oliker, V.: Determination of reflector surfaces from near-field scattering data.
Inverse Prob. 13, 363–373 (1997)

8. McCluney, W.R.: Introduction to Radiometry and Photometry. Artech House, Boston (1994)
9. Wang, X.-J.: On the design of a reflector antenna. Inverse Prob. 12, 351–375 (1996)

10. Wang, X.-J.: On the design of a reflector antenna II. Calc. Var. Partial Differ. Equ. 20(3), 329–
341 (2004)

11. Wheeden, R.L., Zygmund, A.: Measure and Integral. Marcel Dekker, New York (1977)

4For a; b vectors in R
3, a ˝ b is the matrix atb.

https://www.math.temple.edu/~gutierre/papers/nearfield.final.version.pdf
https://www.math.temple.edu/~gutierre/papers/nearfield.final.version.pdf


Gagliardo-Nirenberg Inequalities for Horizontal
Vector Fields in the Engel Group and in the
Seven-Dimensional Quaternionic Heisenberg
Group

Annalisa Baldi, Bruno Franchi, and Francesca Tripaldi

Dedicated to Ermanno Lanconelli on the occasion of his 70th
birthday

Abstract Recently, Bourgain and Brezis and Lanzani and Stein considered a class
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1 Introduction

Let Z D Z.x/ D .Z1.x/;Z2.x/;Z3.x// be a compactly supported smooth vector field
in R

3, and consider the system

(
curl Z D f

div Z D 0 :
(1)
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It is well known that Z D .�
/�1curl f is a solution of (1). Then, by the Calderón-
Zygmund theory we can say that

krZkLp.R3/ � Cpkf kLp.R3/ ; for 1 < p < 1:

Then, by Sobolev inequality, if 1 < p < 3 we have:

kZkLp�.R3/ � kf kLp.R3/ ;

where 1
p� D 1

p � 1
3
. When we turn to the case p D 1 the first inequality fails.

The second remains true. This is exactly the result proved in [11] by Bourgain and
Brezis.

More precisely, in [11], Bourgain and Brezis establish new estimates for the
Laplacian, the divi-curl system, and more general Hodge systems in R

n and they
show in particular that if Z is a compactly supported smooth vector field in R

n, with
n � 3, and if curl Z D f and div Z D 0, then there exists a constant C > 0 so that

kZkLn=.n�1/.Rn/ � kf kL1.Rn/ : (2)

This result does not follow straightforwardly from Calderòn-Zygmund theory and
Sobolev inequality. The inequality (2) is a generalization of the classical sharp
Sobolev inequality (the so-called Gagliardo-Nirenberg inequality) valid for all
n � 1: let u be a compactly supported scalar smooth function in R

n then

kukLn=.n�1/.Rn/ � ckrukL1.Rn/: (3)

In [28] Lanzani and Stein proved that the classical Gagliardo–Niremberg inequal-
ity (3) is the first link of a chain of analogous inequalities for compactly supported
smooth differential h-forms in R

n. In particular, their result for one-forms read as

kukLn=.n�1/.Rn/ � C
�kdukL1.Rn/ C kıukH 1.Rn/

�
(4)

where d is the exterior differential, and ı (the exterior codifferential) is its formal
L2-adjoint.

Here H 1.Rn/ is the real Hardy space (see e.g. [34]). In other words, the main
result of [28] provides a priori estimates for the div-curl system

(
du D f

ıu D g;

when the data f ; g belong to L1.Rn/. This result contains in particular Burgain–
Brezis inequality (2); see also [36] for divergence-free vector fields in R

n [10, 11].
Related results have been obtained again by Burgain–Brezis in [12].
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We refer the reader to all previous references for an extensive discussion about
the presence of the Hardy space in (4). We stress explicitly that (4) holds for n D 2

(see [11]).
Recently, in [14], Chanillo and Van Schaftingen extended Burgain–Brezis

inequality to a class of vector fields in Carnot groups. Some of the results of [14]
are presented in Theorem 2.1 below.

We recall that a connected and simply connected Lie group .G; �/ (in general
non-commutative) is said a Carnot group of step � if its Lie algebra g admits a step
� stratification, i.e. there exist linear subspaces V1; : : : ;V� such that

g D V1 ˚ : : :˚ V�; ŒV1;Vi� D ViC1; V� ¤ f0g; Vi D f0g if i > �;

where ŒV1;Vi� is the subspace of g generated by the commutators ŒX;Y� with X 2 V1
and Y 2 Vi. The first layer V1 is called the horizontal layer and plays a key role in
the theory, since it generates the whole of g by commutation.

A Carnot group G can always be identified, through exponential coordinates,
with the Euclidean space Rn, where n is the dimension of g, endowed with a suitable
group operation.

In addition, the stratification of the Lie algebra induces a family of anisotropic
dilations ı� (� > 0) on g and therefore, through the exponential map, on G. We
refer to [18] or [9] for an exhaustive introduction.

We denote by Q the homogeneous dimension of G, i.e. we set

Q WD
�X

iD1
i dim.Vi/:

It is well known that Q is the Hausdorff dimension of the metric space G endowed
with any left invariant distance that is homogeneous with respect to group dilations.
In general, Q > N.

The Lie algebra g of G can be identified with the tangent space at the origin e
of G, and hence the horizontal layer of g can be identified with a subspace HGe of
TGe. By left translation, HGe generates a subbundle HG of the tangent bundle TG,
called the horizontal bundle. A section of HG is called a horizontal vector field.
Since, as usual, vector fields are identified with differential operators, we refer to
the elements of V1 as the horizontal derivatives.

The scalar Gagliardo-Nirenberg inequality is already well known in the setting of
Carnot groups, as well as its geometric counterpart, the isoperimetric inequality (see
[13, 20, 21, 23, 29, 30]) but, in spite of the extensive study of differential equations in
Carnot groups (and, more generally, in sub-Riemannian spaces) carried out during
the last few decades, very few results are known for pde’s involving differential
forms in groups (see, e.g., [1, 2, 6, 8, 19, 22, 31, 33]).

A natural setting for div-curl type systems in Carnot groups is provided by the
so-called Rumin’s complex .E�

0 ; dc/ of differential forms in G. In fact, De Rham’s
complex .˝�; d/ of differential forms, endowed with the usual exterior differential,
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does not fit the very structure of the group, since it is not invariant under group
dilations: the differential d mixes derivatives along all the layers of the stratification.
Rumin’s complex is meant precisely to overcome this difficulty.

As a matter of fact, the construction of the complex .E�
0 ; dc/ is rather technical

and will be illustrated in Sect. 2. However, it is important to stress here that Rumin’s
differential dc may be a differential operator of higher order in the horizontal
derivatives. This property affects crucially our results, that are therefore a distinct
counterpart of those of Lanzani and Stein.

Among Carnot groups, the simplest but, at the same time, non-trivial instance
is provided by Heisenberg groups H

n, with n � 1, and, in particular, by the first
Heisenberg group H

1 which is in some sense the “model” of all topologically three-
dimensional contact structures. These are step 2 Carnot groups and Lanzani-Stein
inequalities for Hn are studied in [3–5].

The aim of the present note is to attack the study of inequality (4) for differential
forms and their related div-curl type system in some distinguished Carnot groups
of higher step: the first Engel group and the seven-dimensional quaternionic
Heisenberg group. The Engel group is the model of the class of the so-called filiform
groups; the quaternionic Heisenberg groups represent in some way an extension
of Heisenberg groups: they are defined by replacing the complex field C by the
field of quaternions H in t he definition of Hn. This generates a two-step Carnot
group whose centre is three-dimensional (while the centre in H

n is one-dimensional
instead). The study of quaternions has received a boost in recent years, especially
from their application to computer graphics. Quaternion multiplication can be used
to rotate vectors in R

3 and it is much better suited than the usual multiplication
by 3 
 3 rotation matrices: data storage is reduced to speed up calculations and
distortions of lengths and angles due to numerical inaccuracies can be avoided since
quaternions can be easily renormalised without floating point computations.

Sections 3 and 4 contain a detailed presentation about these groups.
This note is organized as follows: in Sect. 2 we fix our notations and we

collect some known results about Carnot groups and in particular we recall a
crucial estimate proved by Chanillo and Van Schaftingen [14] for “divergence free”
horizontal vector fields in Carnot groups. Moreover, we sketch the construction
of Rumin’s complex of differential forms in Carnot groups, and we remind some
properties of the fundamental solution for a suitable Laplace operator on Rumin’s
forms [6, 7]. In Sect. 3 we present some basic facts about differential forms in the
first Engel group and we collect our main result in Theorem 3.1 In Sect. 4, we
extend the results seen in the Engel group to the seven-dimensional quaternionic
Heisenberg group.

Finally, we recall that different generalizations of the global inequalities proved
by Lanzani and Stein and Bourgain and Brezis have been proved in [27] (for
the differential complex associated with an involutive elliptic structure), in [38]
(for pseudoconvex CR manifolds) and in [37] (where, in particular, a Gagliardo-
Nirenberg inequality for the subelliptic @-operator in H

n is obtained).
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2 Preliminary Results and Differential Forms in Carnot
Groups

With the same notations used above, let us denote by .G; �/ a Carnot group of step
� identified to R

n through exponential coordinates, and with g its Lie algebra.
Let X D fX1; : : : ;Xng be the family of left invariant vector fields where the subset

fX1; : : : ;Xmg spans V1, and hence generates by commutations all the other vector
fields; we will refer to X1; : : : ;Xm as the generating vector fields of the algebra, or
as the horizontal derivatives of the group.

The Lie algebra g can be endowed with a scalar product h�; �i, making
fX1; : : : ;Xng an orthonormal basis.

We can write the elements of G in exponential coordinates, identifying p with
the n-tuple .p1; : : : ; pn/ 2 R

n and we identify G with .Rn; �/, where the explicit
expression of the group operation � is determined by the Campbell-Hausdorff
formula.

For any x 2 G, the (left) translation �x W G ! G is defined as

z 7! �xz WD x � z:

For any � > 0, the dilation ı� W G ! G, is defined as

ı�.x1; : : : ; xn/ D .�d1x1; : : : ; �
dn xn/;

where di 2 N is called the homogeneity of the variable xi in G (see [18], Chap. 1).
The Haar measure of G D .Rn; �/ is the Lebesgue measure L n in R

n.
The dual space of g is denoted by

V1g. The basis of
V1g, dual of the basis

X1; � � � ;Xn, is the family of covectors f1; � � � ; ng. We still indicate by h�; �i the
inner product in

V1g that makes 1; � � � ; n an orthonormal basis. We point out that,
except for the trivial case of the commutative group R

n, the forms 1; � � � ; n may
have polynomial (hence variable) coefficients.

Following Federer (see [16], 1.3), the exterior algebras of g and of
V1g are the

graded algebras indicated as
^

� g D
nM

hD0

^

h
g and

^�
g D

nM

hD0

^h
g where

V
0g D V0g D R and, for 1 � h � n,

^

h
g WD spanfXi1 ^ � � � ^ Xih W 1 � i1 < � � � < ih � ng;

^h
g WD spanfi1 ^ � � � ^ ih W 1 � i1 < � � � < ih � ng:

The elements of
V

hg and
Vhg are called h-vectors and h-covectors.

We denote by �h the basis fi1 ^ � � � ^ ih W 1 � i1 < � � � < ih � ng of
Vhg. We

remind that dim
Vhg D dim

V
hg D �n

h

�
:
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The dual space
V1
.
V

hg/ of
V

hg can be naturally identified with
Vhg. The

action of a h-covector ' on an h-vector v is denoted as h'jvi.
The inner product h�; �i extends canonically to

V
hg and to

Vhg making the bases
Xi1 ^ � � � ^ Xih and i1 ^ � � � ^ ih orthonormal.

We also setXf1;��� ;ng WD X1 ^ � � � ^ Xn and f1;��� ;ng WD 1 ^ � � � ^ n.
Starting from

V
�g and

V�g, by left translation, we can now define two families
of vector bundles (still denoted by

V
�g and

V�g) over G (see [8] for details).
Sections of these vector bundles are said respectively vector fields and differential
forms.

If f W G ! R, we denote by rGf the horizontal vector field

rGf WD
mX

iD1
.Xif /Xi;

whose coordinates are .X1f ; : : : ;Xmf /. Moreover, if ˚ D .�1; : : : ; �m/ is a
horizontal vector field, we define divG � as the real valued function

divG .˚/ WD
mX

jD1
Xj�j:

As costumary, we set


Gf WD divG .rGf /:

Following e.g. [18], we can define a group convolution on G: if, for instance,
f 2 D.G/ and g 2 L1loc.G/, we set

f � g.p/ WD
Z

f .q/g.q�1p/ dq for p 2 G:

We remind that, if (say) g is a smooth function and L is a left invariant differential
operator, then

L.f � g/ D f � Lg: (5)

In addition

hf � gj'i D hgjvf � 'i and hf � gj'i D hf j' � vgi
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for any test function'. Suppose now f 2 E 0.G/ and g 2 D 0.G/. Then, if 2 D.G/,
we have (all convolutions being well defined)

h.Lf / � gj i D hLf j � vgi D .�1/jIjhf j � .L� vg/i
D .�1/jIjhf � vL� vgj i:

(6)

We should also remind the notion of kernel of order ˛. Following [17], a kernel
of order ˛ is a homogeneous distribution of degree ˛ � Q (with respect to group
dilations), that is smooth outside of the origin.

Proposition 2.1 Let K 2 D 0.˝/ be a kernel of order ˛.

(i) vK is again a kernel of order ˛.
(ii) X`K is a kernel of order ˛�1 for any horizontal derivative X`K, ` D 1; : : : ;m.

(iii) If ˛ > 0, then K 2 L1loc.H
n/.

(iv) If ˛ D 0, then the map f ! f � K is Lp continuous for 1 < p < 1.

We now recall a remarkable estimate proved by Chanillo and Van Schaftingen in
the spirit of Bourgain–Bresis’s inequality which is crucial to our proof.

Let k � 1 be fixed, and let F 2 L1.G;˝k
V
1 h1/ belong to the space of horizontal

k-tensors. We can write

F D
X

i1;:::;ik

Fi1;:::;ik Xi1 ˝ � � � ˝ Xik :

The tensor F can be identified with the differential operator

u ! Fu WD
X

i1;:::;ik

Fi1;:::;ik Xi1 � � � Xik u:

Moreover, we denote by S .G;Sym.˝k
V
1 h1// the subspace of smooth symmetric

horizontal k-tensors with coefficients in S .G/.

Theorem 2.1 ([14], Theorem 5) Let k � 1, F 2 L1.G;˝k
V
1 h1/, ˚ 2 S .G;

Sym.˝k
V
1 h1//.

Suppose

Z

G

F dV D 0 for all  2 D.G/,

i.e. suppose that

X

i1;:::;ik

Wik � � � Wi1Fi1;:::;ik D 0 in D 0.G/:
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Then

ˇ
ˇ
ˇ

Z

G

h˚;Fi dV
ˇ
ˇ
ˇ � CkkFkL1.G;˝k

V
1 h1/

krG˚kLQ.G;˝k
V
1 h1/

:

Let us turn to differential forms in Carnot groups. The notion of intrinsic forms in
Carnot groups is due to Rumin [32, 33]. A more extended presentation of the results
of this section can be found in [8, 19, 35].

The following notion of weight of a differential form plays a key role.

Definition 2.1 If ˛ 2 V1g, ˛ ¤ 0, we say that ˛ has pure weight p, and we write
w.˛/ D p, if ˛\ 2 Vp. More generally, if ˛ 2 Vhg, we say that ˛ has pure weight p
if ˛ is a linear combination of covectors i1 ^� � �^ih with w.i1 /C� � �Cw.ih/ D p.

In particular, the canonical volume form dV has weight Q (the homogeneous
dimension of the group).

We have ([8], formula (16))

^h
g D

Mmax
hM

pDMmin
h

^h;p
g; (7)

where
Vh;p g is the linear span of the h-covectors of weight p and Mmin

h , Mmax
h are

respectively the smallest and the largest weights of left-invariant h-covectors.
Since the elements of the basis �h have pure weights, a basis of

Vh;p g is given
by �h;p WD �h \Vh;p g. In other words, the basis �h D [p�

h;p is a basis adapted
to the filtration of

Vhg associated with (7).
We denote by˝h;p the vector space of all smooth h-forms in G of pure weight p,

i.e. the space of all smooth sections of
Vh;p g. We have

˝h D
Mmax

hM

pDMmin
h

˝h;p:

Definition 2.2 Let now ˛ D P
h

i 2�h;p ˛i 
h
i 2 ˝h;p be a (say) smooth form of pure

weight p. Then we can write d˛ D d0˛ C d1˛ C � � � C d�˛; where di increases the
weight by i with i D 1; : : : ; �.

Definition 2.3 (M. Rumin) If 0 � h � n we set

Eh
0 WD ker d0 \ .Im d0/

? � ˝h:

In the sequel, we refer to the elements of Eh
0 as the intrinsic h-forms on G. Since the

construction of Eh
0 is left invariant, this space of forms can be seen as the space of

sections of a fiber subbundle of
Vhg, generated by left translations and still denoted

by Eh
0. In particular Eh

0 inherits from
Vhg the scalar product on the fibers.
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As a consequence, we can obtain a left invariant orthonormal basis �h
0 D f�jg of

Eh
0 such that

�h
0 D

Nmax
h[

pDNmin
h

�
h;p
0 ;

where �h;p
0 WD �h \ Vh;p g is a left invariant orthonormal basis of Eh;p

0 . All the
elements of �h;p

0 have pure weight p. Without loss of generality, the indices j of
�h
0 D f�h

j g are ordered once and for all in an increasing way according to the weight
of the respective element of the basis.

Correspondingly, the set of indices f1; 2; : : : ; dim Eh
0g can be written as the union

of finite (possibly empty) sets of indices

f1; 2; : : : ; dim Eh
0g D

Nmax
h[

pDNmin
h

Ih
0;p;

where

j 2 Ih
0;p if and only if �h

j 2 �h;p
0 :

Without loss of generality, if m WD dim V1, we can take

�1
0 D �1;1

0 D fdx1; : : : ; dxmg:

Once the basis �h
0 is chosen, the spaces E .˝;Eh

0/, D.˝;E
h
0/, S .G;Eh

0/ can be

identified with E .˝/dim Eh
0 , D.˝/dim Eh

0 , S.G/dim Eh
0 , respectively.

The differential dc acting on h-forms can be identified with respect to the bases
�h
0 and �hC1

0 with a matrix-valued differential operator Lh WD �
Lh

i;j

�
. If j 2 Ih

0;p and

i 2 IhC1
0;q , then the Lh

i;j’s are homogeneous left invariant differential operators of order

q � p � 1 in the horizontal derivatives, and Lh
i;j D 0 if j 2 Ih

0;p and i 2 IhC1
0;q , with

q � p < 1 (see, e.g., [33] and [8], Sect. 2).
Analogously, ıc can be identified, with a matrix-valued differential operator

Ph WD �
Ph

i;j

�
.

We have:

Ph
i;j D �

Lh�1
j;i

��
:

Let now L WD �
Lji
�

j;iD1;:::;N be a differential operator on E .G;RN/ defined by

L .˛1; : : : ; ˛N/ D �X

i

Li1˛i; : : : ;
X

i

LiN˛i
�
;
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where the Lij’s are constant coefficient homogeneous polynomials of degree a in
X1; : : : ;Xm. Due to the left invariance and the homogeneity (with respect to the
group dilations) of the vector fields X1; : : : ;Xm, the operator L is left invariant and
homogeneous of degree a. We notice that the formal adjoint tL of L is given by

tL .˛1; : : : ; ˛N/ D �X

i

tL1i˛i; : : : ;
X

i

tLNi˛i
�
:

The following result is contained in [7], Theorem 3.1.

Theorem 2.2 Suppose L is a left-invariant hypoelliptic differential operator on
E .G;RN/ such that tL D L . Suppose also that L is homogeneous of degree
a < Q. Then for j D 1; : : : ;N there exists

Kj D �
K1j; : : : ;KNj

�

with Kij 2 D 0.G/\ E .G n f0g/, i; j D 1; : : : ;N such that

(i) We have

X

i

Li`Kij D
�
ı if ` D j
0 if ` ¤ j:

(ii) The Kij’s are kernels of type a in the sense of [17], for i; j D 1; : : : ;N (i.e. they
are smooth functions outside of the origin, homogeneous of degree a � Q, and
hence belonging to L1loc.G/, by Corollary 1.7 of [17]).

(iii) When ˛ 2 D.G;RN/, if we set

K ˛ WD �X

j

˛j � K1j; : : : ;
X

j

˛j � KNj
�
;

then LK ˛ D ˛ and K L ˛ D ˛.

3 Engel Group

The first Engel group is a three-step Carnot group whose Lie algebra is given by
g D V1 ˚ V2 ˚ V3, where

V1 D spanfX1;X2g ; V2 D spanfT1 D ŒX1;X2�g ; V3 D spanfT2 D ŒX1;T1�g
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and thus will be realized on R
4. In exponential coordinates an explicit representation

of the vector fields is

X1 D @1 � x2
2
@3 � .

x3
2

C x1x2
12

/@4 ; X2 D @2 C x1
2
@3 C x21

12
@4

T1 D @3 C x1
2
@4 ; T2 D @4:

The Lie algebra g is endowed with a scalar product making fX1;X2;T1;T2g an
orthonormal basis. We denote by fdx1; dx2; �1; �2g the dual basis of �1g. The forms
dx1; dx2 have weight 1, whereas �1 has weight 2 and �2 has weight 3.

One can easily compute the intrinsic classes of forms E0 D ker d0 \ .Im d0/?:

E00 D ˝0;
E10 D ˝1;1 D spanfdx1; dx2g;
E20 D spanfdx2 ^ �1; dx1 ^ �2g � ˝2;3 ˚˝2;4;
E30 D ˝3;6 D spanfdx1 ^ �1 ^ �2; dx2 ^ �1 ^ �2g;
E40 D ˝4;7 D spanfdx1 ^ dx2 ^ �1 ^ �2g.

We want to compute the action of the differential operator dc on E�
0 as a matrix-

valued operator as follows:

• dc W E00 �! E10 can be seen in matrix form as

dc D
 

L01;1
L02;1

!

with L01;1 D X1 and L02;1 D X2 .
• dc W E10 �! E20 can be expressed as

dc D
 

L11;1 L11;2
L12;1 L12;2

!

where

L11;1 D �X22 ;L
1
1;2 D T1 C X2X1 ; L12;1 D T2 � X1T1 C X21X2 ;L

1
2;2 D �X31 :

• dc W E20 �! E30 is given by

dc D
 

L21;1 L21;2
L22;1 L22;2

!

where

L21;1 D X31 ;L
2
1;2 D �T1 � X1X2 ;L

2
2;1 D X2X

2
1 C T2 � T1X1 ;L

2
2;2 D �X22 :
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• dc W E30 �! E40 can be expressed as

dc D
�

L31;1 L32;1

�

with

L31;1 D X2 ; L32;1 D �X1 :

Analogously

• ıc W E10 �! E00 is given by:

ıc.f1dx1 C f2dx2/ D X1f1 C X2f2

so that, in matrix form we obtain

ıc D
�

P11;1 ; P11;2

�

where P11;1 D X1 and P11;2 D X2 :
• ıc W E20 �! E10 has the form:

ıc.f1dx2 ^ �1 C f2dx1 ^ �2/ D .L22;2f1 C L22;1f2/dx1 � .L21;2f1 C L21;1f2/dx2 :

The matrix form will be then:

ıc D
 

P21;1 P21;2
P22;1 P22;2

!

where P21;1 D �X22 ;P
2
1;2 D X2X21 C T2 � T1X1 ;P22;1 D T1 C X1X2 ;P22;2 D �X31 :

• ıc W E30 �! E20 has the form

ıc.f1dx1 ^ �1 ^ �2 C f2dx2 ^ �1 ^ �2/ D.�L12;2f1 C L12;1f2/dx2 ^ �1
C .�L11;2f1 C L11;1f2/dx1 ^ �2 :

The matrix form will be then:

ıc D
 

P31;1 P31;2
P32;1 P32;2

!

where P31;1 D X31 ;P
3
1;2 D X21X2 C T2 � X1T1 ;P32;1 D �T1 � X2X1 ;P32;2 D �X22 :

We must remind now few definitions of the function spaces we need for our
results.
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If p; q 2 Œ1;1�, we define the space

Lp;q.G/ WD Lp.G/\ Lq.G/

endowed with the norm

kukLp;q.G/ WD .kuk2Lp.G/ C kuk2Lq.G//
1=2:

We have:

• Lp;q.G/ is a Banach space.
• D.G/ is dense in Lp;q.G/.

Again if p; q 2 Œ1;1�, we can endow the vector space Lp.G/CLq.G/with the norm

kukLp.G/CLq.G/ WD inff.ku1k2Lp.G/ C ku2k2Lq.G//
1=2I

u1 2 Lp.G/; u2 2 Lq.G/; u D u1 C u2g:

We stress that Lp.G/CLq.G/ � L1loc.G/. Analogous spaces of forms can be defined
in the usual way.

The following characterization of .Lp;q.G//� can be proved by standard argu-
ments of functional analysis.

Proposition 3.1 If p; q 2 .1;1/ and p0; q0 are their conjugate exponents, then

(i) If u D u1 C u2 2 Lp0

.G/C Lq0

.G/, with u1 2 Lp0

.G/ and u2 2 Lq0

.G/, then the
map

� !
Z

G

.u1� C u2�/ dV for � 2 Lp;q.G/

belongs to .Lp;q.G//� and kukLp0

.G/CLq0

G/ � kFk.

(ii) If u 2 Lp0

.G/ C Lq0

.G/, then there exist u1 2 Lp0

.G/ and u2 2 Lq0

.G/ such
that u D u1 C u2 and kukLp0

.G/CLq0
G/ D .ku1k2Lp.G/ C ku2k2Lq.G//

1=2. Then the
functional

� ! F.�/ WD
Z

G

.u1� C u2�/ dV for � 2 Lp;q.G/

belongs to .Lp;q.G//� and kFk � kukLp0
.G/CLq0

G/.

(iii) Reciprocally, if F 2 .Lp;q.G//�, then there exist u D u1Cu2 2 Lp0

.G/CLq0

.G/,
u1 2 Lp0

.G/ and u2 2 Lq0

.G/ such that

F.�/ D
Z

G

.u1� C u2�/ dV for all � 2 Lp;q.G/.

Moreover kukLp0

.G/CLq0

G/ D kFk.
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We can state now our Gagliardo-Nirenberg inequality for horizontal vector fields
in Engel group.

Theorem 3.1 There exists a constant C > 0 such that, if u D u1 dx C u2 dy 2
D.G;E10/ and we set dcu D fdx2 ^ �1 C gdx1 ^ �2, then

kukLQ=.Q�2/.G;E10/CLQ=.Q�3/.G;E10/
� C

�kf kL1.G/ C kgkL1.G/ C k
GıcukH 1.G/

�
: (8)

Proof To prove (8), first we need to define a suitable differential operator 
G;1 on
E10 that is provided of a homogeneous fundamental solution. We set


G;1 WD ıc

��
G 0

0 1

�

dc C .dcıc/
3

D ıc

 
�
GL11;1 �
GL11;2

L12;1 L12;2

!

D
 

�.L11;1/�
GL11;1 C .L12;1/
�L12;1 �.L11;1/�
GL11;2 C .L12;1/

�L12;2
�.L11;2/�
GL11;1 C .L12;2/

�L12;1 �.L11;2/�
GL11;2 C .L12;2/
�L12;2

!

C .dcıc/
3:

It is easy to see that 
G;1 is a self-adjoint non-negative left invariant differential
operator that is homogeneous (with respect to group dilations) of degree 6 < 7 D Q.

Lemma 3.1 The operator
G;1 is hypoelliptic.

Proof We use Rockland’s approach as in [15, 24, 25]. Let � be a nontrivial
irreducible unitary representation of G. Without loss of generality, if S� is the space
of 1 vectors of the representation, we may assume that

S� D S .Rk/;

for a suitable k 2 N. By [25] (see also [15], p. 63, Remark 5), the hypoellipticity of

G;1 is equivalent to the injectivity of �

�

G;1

�
on SN1

� .

Let now u D .u1; u2/ 2 �S .Rk/
�2

be such that

�.ıc/

���.
G/ 0

0 1

�

�.dc/u C .�.dc/�.ıc//
3u D 0: (9)

We multiply (9) by u and we integrate the identity on .Rk/N1 .
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We consider first the term and we integrate by parts. We obtain

Z

G

h�.ıc/

���.
G/ 0

0 1

�

�.dc/u; ui dV

D
Z

G

n
.��.
G/�.L

1
1;1/u1/.�.L

1
1;1/u1/C .�.L12;1/u1/

2

C .�.�
G/�.L
1
1;2/u2/.�.L

1
1;1/u1/C .�.L12;2/u2/.�.L

1
2;1/u1/

C .�.�
G/�.L
1
1;1/u1/.�.L

1
1;2/u2/C .�.L12;1/u1/.�.L

1
2;2/u2/

C .�.�
G/�.L
1
1;2/u2/.�.L

1
1;2/u2/C .�.L12;2/u2/

2
o

dV WD I:

Consider now the term ��.
G/. We have

��.
G/ D �.�X21/C �.�X22/ D �.X1/
��.X1/C �.X2/

��.X2/:

Hence

I D
Z

G

n
.�.X1/�.L

1
1;1/u1//

2 C .�.L12;1/u1/
2

C 2.�.X1/�.L
1
1;2/u2/.�.X1/�.L

1
1;1/u1/C 2.�.L12;2/u2/.�.L

1
2;1/u1/

C .�.X1/�.L
1
1;2/u2/

2 C .�.L12;2/u2/
2
o

dV

C
Z

G

n
.�.X2/�.L

1
1;1/u1//

2

C 2.�.X2/�.L
1
1;2/u2/.�.X2/�.L

1
1;1/u1/

C .�.X2/�.L
1
1;2/u2/

2
o

dV

D
Z

G

n
.�.X1/�.L

1
1;2/u2 C �.X1/�.L

1
1;1/u1/

2

C .�.L12;2/u2 C �.L12;1/u1/
2
o

dV

C
Z

G

n
.�.X2/�.L

1
1;2/u2 C �.X2/�.L

1
1;1/u1/

2
o

dV:



302 A. Baldi et al.

Therefore (9) yields

�.X1/�.L
1
1;2/u2 C �.X1/�.L

1
1;1/u1 D 0; (10)

�.X2/�.L
1
1;2/u2 C �.X2/�.L

1
1;1/u1 D 0; (11)

�.L12;2/u2 C �.L12;1/u1 D 0 (12)

and

�.�
G/�.d
�
c /u D 0: (13)

We apply �.X1/ to (10) and �.X2/ to (11). Summing up we obtain

�.
G/.�.L
1
1;2/u2 C �.L11;1/u1/ D 0:

But �.
G/ is injective, since 
G is hypoelliptic, by [26], and hence

�.L11;2/u2 C �.L11;1/u1 D 0: (14)

Combining (12) and (14) we obtain

�.dc/u D 0: (15)

By [33], proof of Theorem 5.2, there exists X 2 g such that, for any v 2�
S .Rk/

�N1 ,

v D QX�.dc/v C �.dc/QXv; (16)

where

QX WD �.˘E0˘E/PXiX�.˘E˘E0 /:

Here PX is the inverse of �.LX/, LX being the Lie derivative along X.
Replacing (15) in (16), we get

u D �.dc/QXu: (17)

Thus, if we replace (17) in (13), we get

�..�
G/
2/QXu D 0;

yielding eventually u D 0, since .�
G/
2 is hypoelliptic and then �..�
G/

2/ is
injective. Thus QXu D 0 and therefore u D 0, by (17).
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To achieve the proof of Theorem 3.1, we notice that, by Theorem 2.2, if u 2
D.G;E10/ and � D �1dx C �2dy 2 D.G;E10/, we can write

hu; �iL2.H1;E10/
D hu; 
G;1K �iL2.H1;E10/

D hdcu;

 
�
GL11;1 �
GL11;2

L12;1 L12;2

!

K �iL2.G;E20/

C hu; .dcıc/
3K �iL2.G;E10/

:

(18)

Since dcu is a closed form in E20, we can write

dcu D f dy ^ �1 C g dx ^ �2;

with

� T1g C X31 f � X1X2g D 0 (19)

and

T2f C X2X
2
1 f � X22g � T1X1f D 0: (20)

We notice also that, if

K � D .K �/1dx C .K �/2dy;

we can write
 

�
GL11;1 �
GL11;2
L12;1 L12;2

!

K �

D � �
GL11;1.K �/1 �
GL11;2.K �/2
�

dy ^ �1
C �

L12;1.K �/1 C L12;2.K �/2
�

dx ^ �2:

Thus

hdcu;

 
�
GL11;1 �
GL11;2

L12;1 L12;2

!

K �iL2.G;E20/

D
Z

G

f
� �
GL11;1.K �/1 �
GL11;2.K �/2

�
dV

C
Z

G

g
�
L12;1.K �/1 C L12;2.K �/2

�
dV WD I1 C I2:
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We notice now that (19) can be written as

� 2X1X2g C X2X1g C X31 f D 0: (21)

On the other hand, we can write g D X1g1 C X2g2, with g1; g2 2 S .G/.
Therefore, (21) can be written as

�2X1X2X1g1 � 2X1X
2
2g2 C X2X

2
1g1 C X2X1X2g2 C X31 f D 0:

We denote by F the differential operator

F WD 2g1X1X2X1 C 2g2X1X
2
2 � g1X2X

2
1 � g2X2X1X2g2 � fX31

that, in turn, can be identified with the horizontal three-tensor

F WD2g1X1 ˝ X2 ˝ X1 C 2g2X1 ˝ X2 ˝ X2 � g1X2 ˝ X1 ˝ X1

� g2X2 ˝ X1 ˝ X2g2 � fX1 ˝ X1 ˝ X1:

Identity (19) can be written as

Z

G

F dV D 0 for all  2 D.G/.

Now we can estimate I1. Consider for instance

ˇ
ˇ
ˇ

Z

G

f 
GL11;1.K �/1 dV
ˇ
ˇ
ˇ;

and let ˚ be the symmetric three-tensor (with coefficients in S .G/)

˚ WD 
GL11;1.K �/1X1 ˝ X1 ˝ X1:

By Theorem 2.2,


GL11;1.K �/1 D 
GL11;1K11�1 C
GL11;1K12�2;

where 
GL11;1K11 and 
GL11;1K12 are convolution operators associated with kernel
of type 2. Thus by Theorem 2.1 and [17], Proposition 1.11,

ˇ
ˇ
ˇ

Z

G

f 
GL11;1.K �/1 dV
ˇ
ˇ
ˇ D

Z

G

hF; ˚i dV

� C
�kf kL1.G/ C kgkL1.G/

� � �krG
GL11;1K11�1kLQ.G/ C krG
GL11;1K12�1kLQ.G/

�

� C
�kf kL1.G/ C kgkL1.G/

�k�kLQ=2.G;E10/
:
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The same argument can be repeated for all terms that appear in I1 and we obtain

I1 �C
�kf kL1.G/ C kgkL1.G/

�k�kLQ=2.G;E10/

� C
�kf kL1.G/ C kgkL1.G/

�k�kLQ=2;Q=3.G;E10/
:

(22)

In order to estimate I2, we note first that (20) can be written as

X21X2f � 3X1X2X1f C 2X2X
2
1 f � X22g D 0:

We denote by G the differential operator

G WD .X2f /X
2
1 � 3.X1f /X2X1 C 2.X1f /X1X2 � gX22

that, in turn, can be identified with the horizontal two-tensor

G WD .X2f /X1 ˝ X1 � 3.X1f /X2 ˝ X1 C 2.X1f /X1 ˝ X2 � gX2 ˝ X2:

Identity (20) can be written as

Z

G

G dV D 0 for all  2 D.G/.

Since the function g appears as the coefficient of the symmetric tensor X2 ˝ X2, we
can try to repeat all the arguments yielding to the previous estimate of I1. However,
we are facing a crucial difference: when handling, e.g., the first term in I2, the terms

GL11;1K11 and 
GL11;1K12 (that are convolution operators associated with kernels
of type 2) are now replaced by L12;1K11 and L12;1K12 that are convolution operators
associated with kernels of type 3. Thus, we are led to the estimate

I2 � C
�kf kL1.G/ C kgkL1.G/

�k�kLQ=3.G;E10/

� C
�kf kL1.G/ C kgkL1.G/

�k�kLQ=2;Q=3.G;E10/
:

(23)

Combining (22) and (23) we obtain an estimate of the first term of the right-hand
side of (18).

Let us proceed to consider the second term of the right-hand side of (18). We can
write

hu; .dcıc/
3K �iL2.G;E10/

D hıcdcıcu; ıcdcıcuK �iL2.G/

D hıcdcıcu; ıcdcıcu..�1 � K1;1/dx C .�1 � K2;1/dy/iL2.G/

C hıcdcıcu; ıcdcıcu..�2 � K1;2/dx C .�1 � K2;2/dy/iL2.G/:
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By (5), the last term is a sum of terms of the form

hıcdcıcu; �j � LKi;j/iL2.G/;

where L is a left invariant differential operator of order 3 in the horizontal
derivatives. On the other hand, by (6),

ˇ
ˇ
ˇhıcdcıcu; �j � LKi;j/iL2.G/

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇhıcdcıcu � vLKi;j; �j/iL2.G/

ˇ
ˇ
ˇ

� kıcdcıcu � vLKi;jkLQ=.Q�3/.G/k�jkLQ=3.G/

� CkıcdcıcukH 1.G/k�jkLQ=3.G/;

(24)

by Theorem 6.10 in [18], since vLKi;j is a kernel of type 3, by Proposition 2.1.
Combining (18), (22), (23) and (24) we achieve the proof of the theorem by a

duality argument.

Remark 3.1 If dcu D gdx1 ^ �2 (in particular if u is closed), it follows from the
proof of the previous theorem that (8) may be improved as follows:

kukLQ=.Q�3/.G;E10/
� C

�kgkL1.G/ C k
GıcukH 1.G/

�
:

4 The Seven-Dimensional Quaternionic Heisenberg Group

Let H be the space of quaternionic numbers and let i; j;k be three imaginary units
such that

i2 D j2 D k2 D i�j�k D �1:

The quaternionic Heisenberg group (in dimension 7) is a nilpotent Lie group with
underlying manifold R

4 
 R
3, where the group structure is given by:

Œx; t��Œy; s� D Œx C y; t C s C 1

2
Im.Nyx/�

where x; y 2 H Š R
4 and t; s 2 Im.H/ Š R

3, where one identifies x D x1 C x2i C
x3j C x4k, with x D .x1; x2; x3; x4/ and t D t1i C t2j C t3k with t D .t1; t2; t3/.

A basis for the Lie algebra of left-invariant vector fields on the group is given by:

X1 D @

@x1
C 1

2
x2
@

@t1
C 1

2
x3
@

@t2
C 1

2
x4
@

@t3
I

X2 D @

@x2
� 1

2
x1
@

@t1
C 1

2
x4
@

@t2
� 1

2
x3
@

@t3
I
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X3 D @

@x3
� 1

2
x4
@

@t1
� 1

2
x1
@

@t2
C 1

2
x2
@

@t3
I

X4 D @

@x4
C 1

2
x3
@

@t1
� 1

2
x2
@

@t2
� 1

2
x1
@

@t3
I

Tk D @

@tk
for k D 1; 2; 3 :

The non-trivial commutation relations are:

ŒX1;X2� D �ŒX3;X4� D �T1 I ŒX1;X3� D ŒX2;X4� D �T2I
ŒX1;X4� D �ŒX2;X3� D �T3 :

The standard quaternionic contact forms �1; �2; �3 are given by:

�1 D dt1 � 1

2
x2dx1 C 1

2
x1dx2 � 1

2
x4dx3 C 1

2
x3dx4I

�2 D dt2 � 1

2
x3dx1 C 1

2
x4dx2 C 1

2
x1dx3 � 1

2
x2dx4I

�1 D dt3 � 1

2
x4dx1 � 1

2
x3dx2 C 1

2
x2dx3 C 1

2
x1dx4 :

So that:

d�1 D �dx1 ^ dx2 � dx3 ^ dx4I
d�2 D �dx1 ^ dx3 C dx2 ^ dx4I
d�3 D �dx1 ^ dx4 � dx2 ^ dx3 :

The space of intrinsic one-forms and two-forms are

E10 D ˝1;1 D spanfdx1; dx2; dx3; dx4g;

and

E20 D spanf˛2; ˛4; ˛6g ˚ spanfˇ1; ˇ2; ˇ3; ˇ4; ˇ5; ˇ6; ˇ7; ˇ8g ;

where

˛1 WD dx1 ^ dx2 C dx3 ^ dx4 ; ˛2 WD dx1 ^ dx2 � dx3 ^ dx4 ;

˛3 WD dx1 ^ dx3 � dx2 ^ dx4 ; ˛4 WD dx1 ^ dx3 C dx2 ^ dx4 ;

˛5 WD dx1 ^ dx4 C dx2 ^ dx3 ; ˛6 WD dx1 ^ dx4 � dx2 ^ dx3 ;
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and

ˇ1 WDdx1 ^ �2 C dx4 ^ �1 ; ˇ2 WD dx2 ^ �3 C dx4 ^ �1; ˇ3 WD dx1 ^ �3 C dx2 ^ �2 ;
ˇ4 WDdx3 ^ �1 C dx2 ^ �2; ˇ5 WD dx1 ^ �1 C dx3 ^ �3 ; ˇ6 WD dx4 ^ �2 C dx3 ^ �3 ;
ˇ7 WDdx2 ^ �1 � dx4 ^ �3 ; ˇ8 WD �dx3 ^ �2 C dx4 ^ �3; ˇ9 WD dx1 ^ �2 � dx4 ^ �1 ;
ˇ10 WDdx1 ^ �3 � dx2 ^ �2 ; ˇ11 WD dx1 ^ �1 � dx3 ^ �3; ˇ12 WD dx2 ^ �1 C dx4 ^ �3 ;

respectively.
We want to compute the action of the differential operator dc on E�

0 as a matrix-
valued operator as follows:

• dc W E00 �! E10 can be seen in matrix form as

dc D

0

B
B
B
@

L01;1
L02;1
L03;1
L04;1

1

C
C
C
A

with L01;1 D X1 , L02;1 D X2 , L03;1 D X3 and L04;1 D X4 .
• dc W E10 �! E20 can be expressed as

dc D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Q1
1;1 Q1

1;2 Q1
1;3 Q1

1;4

Q1
2;1 Q1

2;2 Q1
2;3 Q1

2;4

Q1
3;1 Q1

3;2 Q1
3;3 Q1

3;4

Q1
4;1 Q1

4;2 Q1
4;3 Q1

4;4

L11;1 L11;2 L11;3 L11;4
L12;1 L12;2 L12;3 L12;4
L13;1 L13;2 L13;3 L13;4
L14;1 L14;2 L14;3 L14;4
L15;1 L15;2 L15;3 L15;4
L16;1 L16;2 L16;3 L16;4
L17;1 L17;2 L17;3 L17;4
L18;1 L18;2 L18;3 L18;4

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where Q1
1;1 D 1

2
X2, Q1

1;2 D � 1
2
X1, Q1

1;3 D � 1
2
X4, Q1

1;4 D 1
2
X3, Q1

2;1 D 1
2
X3,

Q1
2;2 D 1

2
X4, Q1

2;3 D � 1
2
X1, Q1

2;4 D � 1
2
X2, Q1

3;1 D 1
2
X4, Q1

3;2 D � 1
2
X3, Q1

3;3 D
1
2
X2, Q1

3;4 D � 1
2
X1, L11;1 D 1

4
.T2 � X1X3/, L11;2 D 1

4
.3X1X4 � X4X1 C X2X3/,

L11;3 D 1
4
.X21 � X22 � X24/, L11;4 D 1

4
.X4X3 � 3X1X2 C X2X1/, L12;1 D � 1

2
X2X4,

L12;2 D 1
2
.T3 � X3X2/, L12;3 D 1

2
X22 , L12;4 D 1

2
X2X1, L13;1 D 1

4
.T3 � X1X4/, L13;2 D

1
4
.X2X4�3X1X3CX3X1/, L13;3 D 1

4
.X3X4C3X1X2�X2X1/, L13;4 D 1

4
.X21�X22�X23/,

L14;1 D � 1
2
X3X2, L14;2 D 1

2
X3X1, L14;3 D 1

2
.T1 � X4X3/, L14;4 D 1

2
X23 , L15;1 D
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1
4
.T1 � X1X2/, L15;2 D 1

4
.X21 � X23 � X24/, L15;3 D 1

4
.X3X2 � 3X1X4 C X4X1/,

L15;4 D 1
4
.X4X2 � X1X3 C 3X3X1/, L16;1 D � 1

2
X4X3, L16;2 D 1

2
X24 , L16;3 D 1

2
X4X1,

L16;4 D 1
2
.T2 � X2X4/, L17;1 D 1

4
.�X22 C X23 C X24/, L17;2 D 1

4
.T1 C X2X1/, L17;3 D

1
4
.X2X4 � 3X4X2 � X3X1/, L17;4 D 1

4
.3X3X2 � X2X3 � X4X1/, L18;1 D � 1

2
X23 ,

L18;2 D 1
2
X3X4, L18;3 D 1

2
.X1X3 � T2/ and L8;4 D � 1

2
X3X2 :

• ıc W E10 �! E00 is given by:

ıc.f1dx1 C f2dx2 C f3dx3 C f4dx4/ D �X1f1 � X2f2 � X3f3 � X4f4

so that, in matrix form we obtain

ıc D
�

P11;1 ; P11;2 ; P11;3 ; P11;4

�

where P11;1 D �X1 , P11;2 D �X2 , P11;3 D �X3 and P11;4 D �X4 :
• ıc W E20 �! E10 can be expressed in matrix form as:

ıc D �
P21 ; P22

�

where

P21 D

0

B
B
B
@

�Q5
4;1 �Q5

4;2 �Q5
4;3

Q5
3;1 Q5

3;2 Q5
3;3

�Q5
2;1 �Q5

2;2 �Q5
2;3

Q5
1;1 Q5

1;2 Q5
1;3

1

C
C
C
A

with Q5
1;1 D �X3, Q5

1;2 D X2, Q5
1;3 D X1, Q5

2;1 D �X4, Q5
2;2 D �X1, Q5

2;3 D X2,
Q5
3;1 D X1, Q5

3;2 D �X4, Q5
3;3 D X3, Q5

4;1 D X2, Q5
4;2 D X3, Q5

4;3 D X4 and

P22 D

0

B
B
B
@

L54;1 L54;2 �L54;3 �L54;4 �L54;5 �L54;6 L54;7 L54;8
�L53;1 �L53;2 L53;3 L53;4 L53;5 L53;6 �L53;7 �L53;8
L52;1 L52;2 �L52;3 �L52;4 �L52;5 �L52;6 L52;7 L52;8

�L51;1 �L51;2 L51;3 L51;4 L51;5 L51;6 �L51;7 �L51;8

1

C
C
C
A

with L51;1 D T1C 1
2
.X2X1�X3X4/, L51;2 D T1� 1

2
.X1X3CX3X4/, L51;3 D 1

2
.X21�X22/,

L51;4 D 1
2
.X23 � X22/, L51;5 D 1

2
.X1X3 C X3X1/, L51;6 D �T2 C 1

2
.X1X3 � X2X4/,

L51;7 D �T3 C 1
2
.X1X4 � X3X2/, L51;8 D T3 � 1

2
.X1X4C X2X3/, L52;1 D 1

2
.X21 � X24/,

L52;2 D 1
2
.X22 � X24/, L52;3 D � 1

2
.X1X2 C X2X1/, L52;4 D T1 C 1

2
.X4X3 � X1X2/,

L52;5 D T3 C 1
2
.X4X1 � X2X3/, L52;6 D T3 � 1

2
.X1X4 C X2X3/, L52;7 D � 1

2
.X2X4 C

X4X2/, L52;8 D T2 C 1
2
.X2X4 � X1X3/, L53;1 D � 1

2
.X1X4 C X4X1/, L53;2 D T3 C

1
2
.X3X2 � X1X4/, L53;3 D �T2 C 1

2
.X4X2 � X3X1/, L53;4 D �T2 C 1

2
.X4X2 C X1X3/,

L53;5 D 1
2
.X21 � X23/, L53;6 D 1

2
.X24 � X23/, L53;7 D T1 � 1

2
.X1X2 C X3X4/, L53;8 D
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1
2
.X3X4CX4X3/, L54;1 D �T2� 1

2
.X2X4CX3X1/, L54;2 D � 1

2
.X4X2CX2X4/, L54;3 D

T3 C 1
2
.X4X1 C X3X2/, L54;4 D 1

2
.X3X2 C X2X3/, L54;5 D T1 C 1

2
.X2X1 C X4X3/,

L54;6 D 1
2
.X3X4 C X4X3/, L54;7 D 1

2
.X24 � X22/, L54;8 D 1

2
.X23 � X24/ .

We can state now our Gagliardo-Nirenberg inequality for horizontal vector fields
in the seven-dimensional quaternionic Heisenberg group.

Theorem 4.1 There exists a constant C > 0 such that, if

u D u1 dx1 C u2 dx2 C u3 dx3 C u4 dx4 2 D.G;E10/

and we set

dcu WD
3X

iD1
fi˛i C

8X

jD1
giˇi;

then

kukLQ=.Q�1/.G;E10/CLQ=.Q�2/.G;E10/
� C

� 3X

iD1
kfikL1.G/ C

8X

jD1
kgjkL1.G/ C k
GıcukH1.G/

�
:

Proof Thanks to the explicit form of the intrinsic differential dc given above, we can
repeat more or less the proof of Theorem 3.1. In particular, it is crucial to provide
preliminarily a suitable differential operator 
G;1 on E10 with a homogeneous
fundamental solution. Let us set:


G;1 WD ıc

��
G � Id3�3 0

0 Id8�8

�

dc C .dcıc/
2 :

It is easy to check that
G;1 is a hypoelliptic operator and then Theorem 2.2 applies.
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with Distributed Sources
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Abstract In this survey paper we describe some recent progress on the analysis of
two phase free boundary problems governed by elliptic inhomogeneous equations.
We also discuss several open questions.
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1 Main Definitions and Results

In this brief survey we describe new regularity results concerning two phase prob-
lems governed by elliptic equations with forcing terms. In absence of distributed
sources, this theory has been developed by a number of authors (see for example
[2, 13–16]) along the ideas of Caffarelli in the seminal papers [3, 5]. Here we present
a new approach introduced in [8] by the first author and subsequently refined in [10–
12] to cover a broad spectrum of applications.
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Precisely we are interested in the regularity properties of the free boundary for
the following kind of problems. In a bounded domain˝ � Rn, consider the problem

8
<

:


u D f in ˝C.u/[˝�.u/;

uC
� D G.u�

� ; x/ on F .u/ D @˝C.u/\˝;
(1)

where

˝C.u/ D fx 2 ˝ W u.x/ > 0g; ˝�.u/ D fx 2 ˝ W u.x/ � 0gı:

Here f is bounded on˝ and continuous in˝C.u/[˝�.u/, while uC
� and u�

� denote
the normal derivatives in the inward direction to ˝C.u/ and ˝�.u/ respectively.
F .u/ is called the free boundary.

The function

G.�; x/ W Œ0;1/ 
˝ ! .0;1/

satisfies the following assumptions.

(H1) G.�; �/ 2 C0; N� .˝/ uniformly in �I G.�; x/ 2 C1; N� .Œ0;L�/ for every x 2 ˝:
(H2) G�.�; x/ > 0 with G.0; x/ � �0 > 0 uniformly in x.
(H3) There exists N > 0 such that ��NG.�; x/ is strictly decreasing in �, uniformly

in x.

We describe two typical model problems of this type arising in classical fluid-
dynamics. A traveling two-dimensional gravity wave moves with constant speed on
the surface of an incompressible, inviscid, heavy fluid. The bottom is horizontal.
With respect to a reference domain moving with the wave speed, the motion is
steady and occupies a fixed region ˝; delimited from above by an unknown free
line S; representing the wave profile.

Since the flow is incompressible, the velocity can be expressed by the gradient
of a stream function  : If some suitable hypotheses on the flow speed are satisfied,
then  and the vorticity, ! are functionally dependent i.e. ! D 
 .

Assuming furthermore that the bottom and S are streamlines, from Bernoulli law
on S we derive the following model:

8
ˆ̂
<

ˆ̂
:


 D �� . / in ˝ D f0 <  < Bg
0 �  � B in N̋
 D B on y D 0

jr j2 C 2gy D Q;  D 0 on S:

Here Q is constant, B; g are positive constants and � W Œ0;B� ! R is called
vorticity function.
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Fig. 1 Prandtl-Batchelor
flow configuration

The problem is to find S such that there exists a function  satisfying the above
system.

Since  � 	 0 this is a one phase problem and several papers have been recently
devoted to it. Of particular interest is the proof of the so-called Stokes conjecture,
according to which at points where the gradient vanishes (stagnation points) the
wave profile presents a 120ı corner. Away from stagnation points the free boundary
is Lipschitz and moreover Q � 2gy > 0.

We refer to [21, 22] and the reference therein for more details and known results.
Among the various problems left open there was the regularity of S away from
stagnation points. The answer is given in [8], where the author shows that in this
regions S is a smooth curve.

The second model is a two phase problem called Prantl-Batchelor flow. A
bounded 2-dimensional domain is delimited by two simple closed curves �; � . Let
˝1;˝2 be as in the Fig. 1.

For given constants � < 0; ! > 0; consider functions  1; 2 satisfying


 1 D 0 in ˝1; 1 D 0 on �;  1 D � on �;


 2 D ! in ˝2; 2 D 0 on �:

The two functions  1; 2 are interpreted as stream functions of an irrotational
flow in ˝1 and of a constant vorticity flow in ˝2: In the model proposed by
Batchelor, coming from the limit of large Reynold number in the steady Navier-
Stokes equation, a flow of this type is hypothesized in which there is a jump in the
tangential velocity along � , namely

jr 2j2 � jr 1j2 D �

for some positive constant � . In this problem � is to be determined and plays the
role of a free boundary.
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There is no satisfactory theory for this problem. Viscosity solutions are Lipschitz
across � as shown in [6], but neither existence nor regularity is known (uniqueness
fails already in the radial case, where two explicit solutions can be found).

As a consequence of the results in [11], flat or Lipschitz free boundaries are
smooth.

Other problems of the type (1) arise from singular perturbation problems with
forcing terms in flame propagation theory (see [18]) or from magnetohydrodynam-
ics as in [17].

We shall work in the context of viscosity solutions which we introduce below.
First classical comparison sub/super solutions are defined as follows.

Definition 1.1 We say that v 2 C.˝/ is a C2 strict (comparison) subsolution (resp.
supersolution) to our f.b.p. in˝ , if v 2 C2.˝C.v//\C2.˝�.v// and the following
conditions are satisfied:

1. 
v > f (resp. < f ) in ˝C.v/ [˝�.v/.
2. If x0 2 F.v/, then

vC
� .x0/ > G.v�

� .x0/; x0/ .resp. vC
� .x0/ < G.v�

� .x0/; x0/; v
C
� .x0/ ¤ 0/:

Observe that the free boundary of a strict comparison sub/supersolution is C2.
Given u; ' 2 C.˝/, we say that ' touches u by below (resp. above) at x0 2 ˝ if

u.x0/ D '.x0/; and

u.x/ � '.x/ .resp. u.x/ � '.x// in a neighborhood O of x0:

Definition 1.2 Let u be a continuous function in ˝ . We say that u is a viscosity
solution (resp. supesolution) to our f.b.p. in ˝ , if the following conditions are
satisfied:

1. 
u D f in ˝C.u/[˝�.u/ in the viscosity sense.
2. Let x0 2 F.u/ and v 2 C2.BC.v//\ C2.B�.v// (B D Bı.x0/) with F.v/ 2 C2. If
v touches u by below (resp.above) at x0 2 F.v/, then

vC
� .x0// � G.v�

� .x0// .resp. �/:

When f D 0 the existence of Lipschitz viscosity solutions has been settled by
Caffarelli in [4]. In particular, the positivity set of u has finite perimeter and, with
respect to the n � 1 Hausdorff measure Hn�1, a.e. point on F .u/ has a normal in the
measure theoretical sense.

Under the assumption G.�; x/ ! 1; as � ! 1; the Lipschitz continuity of
the solution in the nonhomogeneous case has been proven in [6], Theorem 4.5, as a
consequence of the following monotonicity formula:

Theorem 1.1 Let u; v be nonnegative, continuous functions in B1, with


u � �1;
v � �1 in the sense of distributions
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and u .0/ D v .0/ D 0; u .x/ v .x/ D 0 in B1: Then, for r � 1=2;

˚ .r/ D 1

r4

Z

Br

jruj2
jxjn�2

Z

Br

jrvj2
jxjn�2 � c .n/

�
1C kuk2L2.B1/

� �
1C kvk2L2.B1/

�
:

Observe that if the supports of u and v were separated by a smooth surface with
normal � at x D 0 then, by taking the limit as r ! 0, we could deduce that

.u� .0//
2 .v� .0//

2 � ˚ .1=2/ :

Hence ˚ .r/ “morally” gives a control in average of the product of the normal
derivatives of u at the origin.

As we have said, we are mainly interested in the regularity properties of the free
boundary, in particular in proving that flat or Lipschitz free boundaries are smooth
(C1;� ).

A way to express the flatness of the free boundary is to assume that F .u/ is
trapped between two parallel hyperplanes at ı-distance from each other, for a small
ı (ı-flatness): While this looks like a somewhat strong assumption, it is indeed a
natural one since it is satisfied for example by rescaling a solution around a point of
the free boundary where there is a normal in some weak sense (regular points), for
instance in the measure theoretical one. We have seen that in the homogeneous case
Hn�1-a.e. points on F .u/ are of this kind. Moreover, starting form a Lipschitz free
boundary, Hn�1-a.e. points on F .u/ are regular, by Rademacher Theorem.

The following results are proved in [11]. A constant depending only on (some
of) the parameters n; Lip.u/; �0 and N is called universal. The C1; N� norm of G.�; x/
may depend on x and enters in a qualitative way only. We will always assume that

0 2 F .u/ :

Theorem 1.2 (Flatness implies C1;� ) Let u be a viscosity solution to (1) in B1; with
Lip.u/ � L. Assume that f is continuous in BC

1 .u/ [ B�
1 .u/; kf kL1.B1/ � L and G

satisfies .H1/-.H3/.
There exists a universal constant Nı > 0 such that, if

fxn � �ıg � B1 \ fuC.x/ D 0g � fxn � ıg; .ı � flatness/ (2)

with 0 � ı � Nı; then F.u/ is C1;� in B1=2.

We also have:

Theorem 1.3 (Lipschitz implies C1;� ) Let u be a viscosity solution to (1) in B1, with
Lip.u/ � L: Assume that f is continuous in BC

1 .u/ [ B�
1 .u/, kf kL1.B1/ � L and G

satisfies .H1/–.H3/. If F.u/ is a Lipschitz graph in a neighborhood of 0, then F.u/
is C1;� in a (smaller) neighborhood of 0.
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As we shall see later, Theorem 1.3 follows from Theorem 1.2 and the main result
in [3] via a blow-up argument.

The flatness conditions present in the literature (see, for instance [5]), are often
stated in terms of “"-monotonicity” along a large cone of directions � .0; e/ of axis
e and opening 0. Precisely, a function u is said to be "-monotone (" > 0 small)
along the direction � in the cone � .0; e/ if for every "0 � ",

u.x C "0�/ � u.x/:

A variant of Theorem 1.2, found in [11] states the following.

Theorem 1.4 Let u be a solution to our f.b.p in B1, 0 2 F.u/: Suppose that uC is
non-degenerate. Then there exist 0 < �=2 and "0 > 0 such that if uC is "-monotone
along every direction in � .0; en/ for some " � "0, then uC is fully monotone in B1=2
along any direction in � .1; en/ for some 1 depending on 0; "0: In particular F.u/
is Lipschitz and therefore C1;� :

Geometrically, the "-monotonicity of uC can be interpreted as "-closeness of
F.u/ to the graph of a Lipschitz function (Fig. 2). Our flatness assumption requires
"-closeness of F.u/ to a hyperplane. If kf k1 is small enough, depending on ", it is
not hard to check that "-flatness of F.u/ implies c"-monotonicity of uC along the
directions of a flat cone, for a c depending on its opening.

The proof of Theorem 1.4 follows immediately from the fact that if uC is non-
degenerate and "-monotone along every direction in � .0; en/ for some " � "0, then
there exist a radius r0 > 0 and ı0 > 0 depending on "0; 0 such that uC is ı0-flat in
Br0 .

Fig. 2 "-monotonicity along
a cone of directions
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2 Reduction of Theorem 1.2 to a Localized Form

The proof of Theorem 1.2 is based on an iterative procedure that “squeezes” our
solution around an optimal configuration Uˇ .x � �/ at a geometric rate in dyadically
decreasing balls. Here Uˇ D Uˇ .t/ is given by

Uˇ .t/ D ˛tC � ˇt�; ˇ � 0; ˛ D G0 .ˇ/ 	 G .ˇ; 0/

and � is a unit vector which plays the role of the normal vector at the origin.
Uˇ .x � �/ is a so-called two plane solution.

This strategy of flatness improvement works nicely in the one phase case (ˇ D 0)
or as long as the two phases uC; u� are, say, comparable (nondegenerate case). The
difficulties arise when the negative phase becomes very small but at the same time
not negligible (degenerate case.) In this case the flatness assumption in Theorem
1.2 gives a control of the positive phase only, through the closeness to a one plane
solution U0 .xn/ D xC

n :

As we shall see, this requires to face a dychotomy in the final iteration. A similar
situation is already present in the homogeneous case f D 0 (see e.g. [5]).

The first step is to check that the flatness condition (2) implies that u is close to
Uˇ for some ˇ. Indeed we prove the following lemma.

Lemma 2.1 Let u satisfy (2). Given any � > 0 there exist Nı; N� > 0 depending only
on �; n; and L such that if ı � Nı; then

ku � UˇkL1.B N�/ � � N� (3)

for some 0 � ˇ � L:

The proof, by contradiction, follows from the following compactness result.

Lemma 2.2 Let uk be a sequence of (Lipschitz) viscosity solutions to

� j
ukj � M; in ˝C.uk/[˝�.uk/;

.uC
k /� D Gk..u�

k /�; x/; on F.uk/:

Assume that:

1. uk ! u� uniformly on compact sets of ˝ .
2. Gk.�; �/ ! G.�; �/ on compact sets of ˝ , uniformly on 0 � � � L D Lip.uk/:

3. fuC
k D 0g ! f.u�/C D 0g in the Hausdorff distance.

Then

j
u�j � M; in ˝C.u�/[˝�.u�/
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and u� satisfies the free boundary condition

.u�/C� D G..u�/�� ; x/ on F.u�/;

both in the viscosity sense.

In view of Lemma 2.1, after proper rescaling, Theorem 1.2 follows from the
following result.

Lemma 2.3 Let u be a viscosity solution to our f.b.p. in B1 with Lip .u/ � L. There
exists a universal constant N� > 0 such that, if

ku � UˇkL1.B1/ � N� for some 0 � ˇ � L; (4)

fxn � �N�g � B1 \ fuC.x/ D 0g � fxn � N�g; (5)

kf kL1.B1/ � N�; ŒG.�; �/�C0; N� .B1/ � N�; 80 � � � L;

then F.u/ is C1;� in B1=2.

We are almost ready to start the improvement of flatness procedure. This means
that from (4) and (5) we should be able to squeeze more the graph of u (and therefore
F .u/) around a possibly rotated new two plane solution in a neighborhood of the
origin. A closer look to (4) reveals that, when ˛ and ˇ are comparable, a nice control
on the location of F .u/ is available but when ˇ � ˛ only a one side control of F .u/
is possible. This dichotomy is well reflected in the following elementary lemma that
we state for a general continuous function. In particular, it translates the “vertical”
closeness between the graphs of u and Uˇ given by (4) into “horizontal” closeness.

Lemma 2.4 Let u be a continuous function. If, for a small � > 0;




u � Uˇ






L1.B1/
� �

and

fxn � ��g � B1 \ fuC.x/ D 0g � fxn � �g;

then:
If ˇ � �1=3;

Uˇ

�
xn � �1=3

� � u .x/ � Uˇ

�
xn C �1=3

�
in B3=4:

If ˇ < �1=3,

U0

�
xn � �1=3� � uC .x/ � U0

�
xn C �1=3

�
in B3=4:
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Set N� D Q"3 in Lemma 2.3. Then, according to Lemma 2.4, the dichotomy
nondegenerate versus degenerate will translate quantitatively into the two cases:

ˇ � Q" W nondegenerate; ˇ < Q" W degenerate:

The parameter Q" will be chosen later in the final iteration.

3 Lipschitz Implies C1;�

In this section we show how Theorem 1.3 follows from Theorem 1.2. For simplicity
of exposition we consider the model case

G.�; x/ D
p
1C �2:

We use the following Liouville type result for global viscosity solutions to a
homogeneous free boundary problem, that could be of independent interest. Note
that no growth at infinity is needed.

Lemma 3.1 Let U be a global viscosity solution to

8
ˆ̂
<

ˆ̂
:


U D 0; in fU > 0g [ fU � 0g0;

.UC
� /

2 � .U�
� /

2 D 1; on F.U/ WD @fU > 0g: (6)

Assume that F.U/ D fxn D g.x0/; x0 2 Rn�1g with Lip.g/ � M. Then g is linear
and (in a proper system of coordinates) U.x/ D Uˇ.x/ for some ˇ � 0.

Proof Balls of radius � and centered at 0 in Rn�1 are denoted by B0
�.

By the regularity theory in [3] , since U is a solution in B2, the free boundary
F.U/ is C1;� in B1 with a bound depending only on n and on M. Thus,

jg.x0/ � g.0/� rg.0/ � x0j � Cjx0j1C˛; x0 2 B0
1

with C depending only on n;M:Moreover, since U is a global solution, the rescaling

gR.x
0/ D 1

R
g.Rx0/; x0 2 B0

2;

which preserves the same Lipschitz constant as g, satisfies the same inequality as
above i.e.

jgR.x
0/� gR.0/� rgR.0/ � x0j � Cjx0j1C˛; x0 2 B0

1:



322 D. De Silva et al.

This reads,

jg.Rx0/ � g.0/� rg.0/ � Rx0j � CRjx0j1C˛; x0 2 B0
1:

Thus,

jg.y0/� g.0/� rg.0/ � y0j � C
1

R˛
jy0j1C˛; y0 2 B0

R:

Passing to the limit as R ! 1 we obtain that g is linear.
After a change of coordinates, the free boundary reduces to xn D 0: Since uxn

is harmonic and (it can be shown) positive on xn > 0; by Liouville Theorem we
conclude the proof.

We need another Lemma stating that if the free boundary F .u/ is trapped in a
ı-neighborhood of a Lipschitz graph, then our solution grows linearly ı-away from
the free boundary.

Lemma 3.2 Let u be a solution to (1) in B2 with Lip.u/ � L and kf kL1 � L. If

fxn � g.x0/� ıg � fuC D 0g � fxn � g.x0/C ıg;

with g a Lipschitz function, Lip.g/ � L; g.0/ D 0, then

u.x/ � c0.xn � g.x0//; x 2 fxn � g.x0/C 2ıg \ Bc0 ;

for some c0 > 0 depending on n;L as long as ı � c0:

Proof All constants in this proof will depend on n;L: It suffices to show that our
statement holds for fxn � g.x0/ C Cıg for some large constant C. Then one can
apply Harnack inequality to obtain the full statement. To this aim, we want to show
that

u.den/ � c0d; d � Cı:

After rescaling, we are reduced to proving that

u.en/ � c0

as long as ı � 1=C and kf k1 is sufficiently small. Let

w.x/ D 1

�
.1 � jxj�� /

be defined on the closure of the annulus B2 n B1 with kf k1 small enough so that


w > kf k on B2 n B1:
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Let

wt.x/ D w.x C ten/;

t 2 R: Notice that

jrw0j < 1 on @B1:

From our flatness assumption for jtj sufficiently large (depending on the Lipschitz
constant of g), wt is strictly above u. We increase t and let Nt be the first t such
that wt touches u by above. Since wNt is a strict supersolution to our free boundary
problem, the touching point z can occur only on the � WD 1

�
.1 � 2�� / level set in

the positive phase of u, and jzj � C D C.L/ . Since u is Lipschitz continuous,
0 < u.z/ D � � Ld.z;F.u//, that is a full ball around z of radius �=L is contained in
the positive phase of u. Thus, for Nı small depending on �;L we have that B�=2L.z/ �
fxn � g.x0/C 2 Nıg. Since xn D g.x0/C 2 Nı is Lipschitz we can connect en and z with
a chain of intersecting balls included in the positive side of u with radii comparable
to �=2L. The number of balls depends on L . Then we can apply Harnack inequality
and obtain

u.en/ � cu.z/ D c0;

as desired.

We can now provide the proof of Theorem 1.3.

Proof Let N� be the universal constant in Lemma 2.3. Consider the blow-up sequence

uk.x/ D u.ıkx/

ık

with ık ! 0 as k ! 1. Each uk solves (1) with right hand side

fk.x/ D ıkf .ıkx/

and

kfk.x/k � ıkkf kL1 � N�

for k large enough. Standard arguments (see for example [1]), using the uniform
Lipschitz continuity of the uk’s and the non-degeneracy of their positive part uC

k
(see Lemma 3.2), imply that (up to a subsequence)

uk ! Qu uniformly on compacts
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and

fuC
k D 0g ! fQu D 0g in the Hausdorff distance,

where the blow-up limit Qu solves the global homogeneous two-phase free boundary
problem

�

Qu D 0; in fQu > 0g [ fQu � 0g0;
.QuC
� /

2 � .Qu�
� /
2 D 1; on F.Qu/ WD @fQu > 0g:

Since F.u/ is a Lipschitz graph in a neighborhood of 0, it follows from
Lemma 3.1 that F.Qu/ is a two-plane solutions, Qu D Uˇ for some ˇ � 0. Thus,
for k large enough

kuk � UˇkL1 � N�

and

fxn � �N�g � B1 \ fuC
k .x/ D 0g � fxn � N�g:

Therefore, we can apply our flatness Theorem 1.2 and conclude that F.uk/ and hence
F.u/ is smooth.

4 The Nondegenerate Case

4.1 Improvement of Flatness

Assume that for some " > 0 small, we have

Uˇ.xn � "/ � u.x/ � Uˇ.xn C "/ in B1; (7)

with 0 < ˇ � L, ˛ D G .ˇ; 0/ 	 G0 .ˇ/. One would like to get in a smaller ball a
geometric improvement of (7).We assume that (this will be achieved at the end by
rescaling)

kf kL1.B1/ � "2 min f˛; ˇg ; (8)

and

kG.�; �/ � G0.�/kL1.B1/ � "2; 80 � � � L:

Then the basic step in the improvement of flatness reads as follows.
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Lemma 4.1 If 0 < r � r0 for r0 universal, and 0 < " � "0 for some "0 depending
on r, then

Uˇ0.x � �1 � r
"

2
/ � u.x/ � Uˇ0.x � �1 C r

"

2
/ in Br; (9)

with j�1j D 1; j�1 � enj � QC", and jˇ � ˇ0j � QCˇ" for a universal constant QC:
Assume the lemma above holds. To prove Lemma 2.3 we rescale considering a

blow up sequence

uk .x/ D u .�kx/

�k
�k D Nrk; x 2 B1 (10)

for suitable Nr � min
˚
r0; 116

�
; Q" � "0 .Nr/, as in Lemma 4.1, and iterate to get, at the

kth step,

Uˇk .x � �k � �k"k/ � uk.x/ � Uˇk .x � �k C �k"k/ in B�k ;

with "k D 2�k Q"; j�kj D 1; j�k � �k�1j � QC"k�1;

jˇk � ˇk�1j � QCˇk�1"k�1; "k � ˇk � L:

Note that in the non-degenerate case, ˇ � Q", at each step we have the correct
inductive hypotheses. For simplicity, say we are in the model case G.�; x/ Dp
1C �2: Starting with ˇ D ˇ0 � "0 D Q"; if k � 1 and ˇk�1 � "k�1, then

ˇk � ˇk�1.1 � QC"k�1/ � 2�kC1 Q" �1 � QC2�kC1 Q"�

� 2�k Q" D "k:

Thus, since

fk .x/ D �kf .�kx/ ; x 2 B1

(recall that N� D Q"3)

kfkkL1.B1/ � �k Q"3 � Q"2kˇk D Q"2k min f˛k; ˇkg :

The Fig. 3 describes the step from k to k C 1:

This implies that F .u/ is C1;� at the origin. Repeating the procedure for points in
a neighborhood of x D 0, since all estimates are universal, we conclude that there
exists a unit vector �1 D lim �k and C > 0; � 2 .0; 1�, both universal, such that,
in the coordinate system e1; : : : ; en�1; �1, �1?ej, ej � ek D ıjk, F .u/ is C1;� graph,
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Fig. 3 Improvement of
flatness (here �k D 2�k)

say xn D g .x0/ ; with g .00/ D 0 and

ˇ
ˇg
�
x0� � �1 � x0ˇˇ � C

ˇ
ˇx0ˇˇ1C�

in a neighborhood of x D 0:

The main question is: where is it hidden the information allowing one to realize
the step from (7) to (9)?

Here a linearized problem comes into play.

4.2 The Linearized Problem

Let us first consider the one-phase case (see [8]) where u � 0 in B1,


u D f in BC
1 .u/

and uC
� D ˇ

ˇruCˇˇ D g .x/ on the free boundary. Assume that

jf j � "2; jg .x/� 1j � "2:

The flatness condition writes
�
U0 .x/ D xC

n

�

.xn � "/C � u.x/ � .xn C "/C in B1: (11)
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Renormalize by setting

Qu" .x/ D u .x/� xn

"
in BC

1 .u/[ F .u/

or

u .x/ D xn C "Qu" .x/ in BC
1 .u/[ F .u/ : (12)

In (12), u appears as a first order perturbation of the hyperplane xn:

The idea is that the key information we are looking for is stored precisely in
the “corrector” Qu": To extract it, we look at what happens to Qu", asymptotically as
" ! 0. Note that, as " ! 0; BC

1 .u/ ! fxn > 0g and F .u/ goes to fxn D 0g ; both in
Hausdorff distance.

We have


Qu" D f

"
� " in BC

1 .u/

and on F .u/ ;

jruj2 D jen C "r Qu"j2 D g2 � 1C "2

that is, after simplifying by ",

2Quxn C " jr Qu"j2 � ":

Thus, formally, letting " ! 0, we get “for the limit” Qu D Qu0 the following problem:


Qu D 0; in BC
1=2 D B1=2 \ fxn > 0g (13)

and the Neumann condition (linearization of the free boundary condition)

Quxn D 0 on B1=2 \ fxn D 0g : (14)

We call (13), (14) the linearized problem.
Let us see how the general condition

ˇ
ˇruCˇˇ D G .jru�j ; x/

linearizes in the nondegenerate two phase problem.
First let


u D f in B1
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with

jf j � "2 min f˛; ˇg

and

jG .�; �/ � G0 .�/j � "2 8� 2 Œ0;L� :

The flatness condition

˛.xn � "/C � ˇ.xn � "/� � u.x/ � ˛.xn C "/C � ˇ.xn C "/� in B1; (15)

with 0 < ˇ � L, ˛ D G0 .ˇ/ ; suggests the renormalization

Qu".x/ D

8
<̂

:̂

u.x/�˛xn
˛"

; x 2 BC
1 .u/[ F.u/

u.x/�ˇxn
ˇ"

; x 2 B�
1 .u/

or

u .x/ D
�
˛xn C "˛ Qu".x/; x 2 BC

1 .u/[ F.u/
ˇxn C "ˇ Qu".x/; x 2 B�

1 .u/:
(16)

We have


Qu" � " in BC
1 .u/[ B�

1 .u/ :

On F .u/ ;

ˇ
ˇruCˇˇ D ˛ jen C "r Qu".x/j � ˛

�
1C " .Qu"/xn

C "2 jr Qu"j2
�

and

G .jru�j ; x/ D G .jˇen C "ˇr Qu"j ; x/ � G
�
ˇ
�
1C " .Qu"/xn

C "2 jr Qu"j2
�
; x
�

� G0.ˇ/C "G0
0 .ˇ/

�
ˇ .Qu"/xn

C "ˇ jr Qu"j2
�

C "2:

As before, letting " ! 0, we get formally for “the limit” Qu D Qu0 the following
problem:


Qu D 0; in BC
1=2 [ B�

1=2 (17)
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and (˛ D G0 .ˇ/) the transmission condition (linearization of the free boundary
condition)

˛ .Quxn/
C � ˇG0

0 .ˇ/ .Quxn/
� D 0 onB1=2 \ fxn D 0g (18)

where .Quxn/
C and .Quxn/

� denote the en-derivatives of Qu restricted to fxn > 0g and
fxn < 0g, respectively.

Thus, at least formally, we have found an asymptotic problem for the limits
of the renormalizations Qu". The crucial information we were mentioning before
is contained in the following regularity result. Consider the transmission problem,
( Q̨ ¤ 0)

�

Qu D 0 in B1 \ fxn ¤ 0g;
Q̨2.Qun/

C � Q̌2.Qun/
� D 0 on B1 \ fxn D 0g: (19)

Theorem 4.1 Let Qu be a viscosity solution to (19) in B1 such that kQuk1 � 1. Then
Qu 2 C1 � NB1̇

�
and in particular, there exists a universal constant NC such that

jQu.x/� Qu.0/� .rx0 Qu.0/ � x0 C QpxC
n � Qqx�

n /j � NCr2; in Br (20)

for all r � 1=2 and with Q̨ 2 Qp � Q̌2 Qq D 0:

The question is now how to transfer the estimate (20) to Qu" and then read it in
terms of flatness for u through the formulas (16).

The right way to obtain the proof of Lemma 4.1 is to proceed by contradiction.
Fix r � r0, to be chosen suitably. Assume that for a sequence "k ! 0 there is a

sequence uk of solutions of our free boundary problem in B1; with right hand side fk
such that kfkkL1.B1/ � "2k minf˛k; ˇkg;

kGk.�; �/� Gk.�; 0/k1 � "2k ; 80 � � � L; (21)

and

Uˇk .xn � "k/ � uk.x/ � Uˇk .xn C "k/ in B1; 0 2 F .uk/ ; (22)

with 0 � ˇk � L, ˛k D Gk .ˇk; 0/ ; but the conclusion of Lemma 4.1 does not hold
for every k � 1.

Construct the corresponding sequence of renormalized functions

Quk.x/ D

8
<̂

:̂

uk.x/�˛kxn
˛k"k

; x 2 BC
1 .uk/[ F.uk/

uk.x/�ˇkxn
ˇk"k

; x 2 B�
1 .uk/:



330 D. De Silva et al.

Up to a subsequence, Gk.�; 0/ converges, locally uniformly, to some C1-function QG0,
while ˇk ! Q̌ so that ˛k ! Q̨ D QG0. Q̌/:At this point we need compactness to show
that the graphs of Quk converge in the Hausdorff distance to a Hölder continuous Qu in
B1=2. The compactness is provided by the Harnack inequality stated in Theorem 4.2
below and its corollary, as we shall see later, and is inspired by the work of Savin
[20].

It turns out that the limit function Qu satisfies the linearized problem (17) and (18)
in the viscosity sense. Hence, from (20), having Qu.0/ D 0,

jQu .x/� .x0 � �0 C QpxC
n � Qqx�

n /j � Cr2; x 2 Br; (23)

for all r � 1=4 (say); with

Q̨ 2 Qp � Q̌2 Qq D 0; j�0j D jrx0 Qu.0/j � C:

Since Quk converges uniformly to Qu in B1=2, (23) transfers to Quk W

jQuk .x/ � .x0 � �0 C QpxC
n � Qqx�

n /j � C0r2; x 2 Br: (24)

Set

ˇ0
k D ˇk .1C "k Qq/ ; �k D 1

q
1C "2k j�0j2

�
en C "k

�
�0; 0

��
:

Then,

˛0
k D Gk.ˇk.1C "kq/; 0/ D Gk.ˇk; 0/C ˇkG0

k.ˇk; 0/"kq C O."2k/

D ˛k.1C ˇk
G0

k.ˇk; 0/

˛k
q"k/C O."2k/ D ˛k.1C "kp/C O."2k/

since from the identity Q̨p � Q̌ QG0
0.

Q̌/q D 0 we derive that

ˇk
G0

k.ˇk; 0/

˛k
q D p C O."k/:

Moreover

�k D en C "k.�
0; 0/C "2k�; j� j � C:

With these choices we can show that (for k large and r � r0)

QUˇ0

k
.x � �k � "k

r

2
/ � Quk.x/ � QUˇ0

k
.x � �k C "k

r

2
/; in Br
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where again we are using the notation:

QUˇ0

k
.x/ D

8
ˆ̂
<

ˆ̂
:

Uˇ0

k
.x/�˛kxn

˛k"k
; x 2 BC

1 .Uˇ0

k
/ [ F.Uˇ0

k
/

U
ˇ0

k
.x/�ˇkxn

ˇk"k
; x 2 B�

1 .Uˇ0

k
/:

This will clearly imply that

Uˇ0

k
.x � �k � "k

r

2
/ � uk.x/ � Uˇ0

k
.x � �k C "k

r

2
/; in Br

leading to a contradiction.
In view of (24) we need to show that in Br

QUˇ0

k
.x � �k � "k

r

2
/ � .x0 � �0 C QpxC

n � Qqx�
n / � Cr2

and

QUˇ0

k
.x � �k C "k

r

2
/ � .x0 � �0 C QpxC

n � Qqx�
n /C Cr2:

This can be shown after some elementary calculations as long as r � r0; r0 universal,
and " � "0 .r/.

4.3 Compactness

We are left with compactness. The Harnack inequality takes the following form.

Theorem 4.2 Let u be a solution of our f.b.p. in B1 with Lipschitz constant L: There
exists a universal Q" > 0 such that, if x0 2 B1and u satisfies the following condition:

Uˇ .xn C a0/ � u .x/ � Uˇ .xn C b0/ in Br .x0/ � B1 (25)

with

kf kL1.B2/ � "2 minf˛; ˇg; 0 < ˇ � L; (26)

kG.�; x/ � G0.�/kL1.B1/ � "2; 80 � � � L; (27)

and

0 < b0 � a0 � "r
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for some 0 < " � Q"; then

Uˇ .xn C a1/ � u .x/ � Uˇ .xn C b1/ in Br=20 .x0/

with

a0 � a1 � b1 � b0 and b1 � a1 � .1� c/ "r

and 0 < c < 1 universal.

If u satisfies (25) with, say r D 1, then we can apply Harnack inequality
repeatedly and obtain

Uˇ.xn C am/ � u.x/ � Uˇ.xn C bm/ in B20�m.x0/;

with

bm � am � .1 � c/m"

for all m’s such that

.1 � c/m20m" � N":

This implies that for all such m’s, the oscillation of the renormalized functions Quk in
Br.x0/; r D 20�m, is less than .1�c/m D 20��m D r� . Thus, the following corollary
holds.

Corollary 4.1 Let u satisfies at some point x0 2 B2

Uˇ.xn C a0/ � u.x/ � Uˇ.xn C b0/ in B1.x0/ � B2; (28)

for some 0 < ˇ � L, with

b0 � a0 � ";

and let (26)–(27) hold, for " � N"; N" universal. Then in B1.x0/, (˛ D G0.ˇ/)

Qu".x/ D

8
<̂

:̂

u.x/�˛xn
˛"

; in BC
2 .u/[ F.u/

u.x/�ˇxn
ˇ"

; in B�
2 .u/

has a Hölder modulus of continuity at x0, outside the ball of radius "= N"; i.e for all
x 2 B1.x0/, with jx � x0j � "= N"

jQu".x/ � Qu".x0/j � Cjx � x0j� :



Regularity of the Free Boundary in Problems with Distributed Sources 333

Since in the proof of Lemma 4.1,

�1 � Quk.x/ � 1; for x 2 B1

we can implement the corollary above and use Ascoli-Arzela theorem to obtain that
as "k ! 0 the graphs of the Quk converge (up to a subsequence) in the Hausdorff
distance to the graph of a Hölder continuous function Qu over B1=2.

Thus the improvement of flatness process in the nondegenerate case can be
concluded.

5 The Degenerate Case

5.1 Improvement of Flatness

In this case, the negative part of u is negligible and the positive part is close to a
one-plane solution (i.e. ˇ D 0). Precisely, assume that for some " > 0; small, we
have

U0.xn � "/ � uC.x/ � U0.xn C "/; in B1: (29)

Again one would like to get in a smaller ball an improvement of (29). This time the
key lemma is the following.

Lemma 5.1 Let the solution u satisfies (29) with

kf kL1.B1/ � "4;

kG.�; �/� G0.�/kL1 � "2; 0 � � � C"2;

and

ku�kL1.B1/ � "2: (30)

There exists a universal r1; such that if 0 < r � r1 and 0 < " � "1 for some "1
depending on r, then

U0.x � �1 � r
"

2
/ � uC.x/ � U0.x � �1 C r

"

2
/ in Br; (31)

with j�1j D 1; j�1 � enj � C" for a universal constant C:

The proof follows the same pattern of the nondegenerate case. For simplicity, we
outline it in the model case G.�; x/ D p

1C �2:
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Fix r � r1, to be chosen suitably. By contradiction assume that, for some
sequences "k ! 0 and uk; solutions of our f.b.p. in B1 with r.h.s. fk such that
kfkkL1.B1/ � "4k and

ku�
k kL1.B1/ � "2k ;

U0.xn � "k/ � uk.x/ � U0.xn C "k/ in B1; 0 2 F .uk/

the conclusion of the lemma does not hold.
Then one proves via a Harnack inequality (see below), that the sequence of

normalized functions

Quk.x/ D uk.x/� xn

"k
x 2 BC

1 .uk/ [ F.uk/

converges to a limit function Qu; Hölder continuous in B1=2.
The limit function Qu is a viscosity solution of the linearized problem

�

Qu D 0; in B1=2 \ fxn > 0g;
Qun D 0; on B1=2 \ fxn D 0g:

The regularity of Qu is not a problem and the contradiction argument proceeds as
before with obvious changes.

The Harnack inequality takes the following form.

Theorem 5.1 Let u be a solution of our f.b.p. in B1. There exists a universal Q" > 0

such that, if x0 2 B1 and u satisfies the following condition

.xn C a0/
C � uC .x/ � .xn C b0/

C ; in Br .x0/ � B1 (32)

with

kf kL1.B2/ � "4; ku�kL1.B2/ � "2

and

0 < b0 � a0 � "r

for some 0 < " � Q"; then

.xn C a1/
C � uC .x/ � .xn C b1/

C in Br=20 .x0/

with

a0 � a1 � b1 � b0 and b1 � a1 � .1� c/ "r

and 0 < c < 1 universal.
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Lemma 5.1 provides the first step in the flatness improvement. Notice that this
improvement is obtained through the closeness of the positive phase to a one plane
solution, as long as inequality (30) holds. This inequality expresses in another
quantitative way the degeneracy of the negative phase and should be kept valid at
each step of the iteration of Lemma 5.1. However, it could happen that this is not
the case and in some step of the iteration, say at the level "k of flatness, the norm
ku�kL1.B1/ becomes of order "2k . When this occurs, a suitable rescaling restores a
nondegenerate situation. This give rise in the final iteration to the dychotomy we
have mentioned in Sect. 2.

The situation is precisely described in the following lemma.

Lemma 5.2 Let u be a solution in B1 satisfying

U0.xn � "/ � uC.x/ � U0.xn C "/ in B1 (33)

with

kf kL1.B1/ � "4;

and for QC universal,

ku�kL1.B2/ � QC"2; ku�kL1.B1/ > "
2: (34)

There exists (universal) "1 such that, if 0 < " � "1, the rescaling

u" .x/ D "�1=2u
�
"1=2x

�

satisfies, in B2=3 W

Uˇ0.xn � C0"1=2/ � u".x/ � Uˇ0.xn C C0"1=2/

with ˇ0 � "2 and C0 depending on QC:
Let us see how the dychotomy arises. To prove Lemma 2.3 in the degenerate

case, ˇ < Q"; choose Nr � min fr0; r1; 1=16g and Q" � minf"0 .Nr/ ; "1 .Nr/ =2; 1=.2 QC/g.
In view of our choice of Q"; we obtain that u satisfies the relation

U0.xn � Q"/ � uC.x/ � U0.xn C Q"/ in B1:

Since




u � Uˇ






L1.B1/
� N� D Q"3
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we infer

ku�kL1.B1/ � ˇ C Q"3 � 2 Q":

Call "0 D p
2 Q": Then

U0.xn � "0/ � uC.x/ � U0.xn C "0/ in B1

and

kf kL1.B1/ � �
"0�4 ; ku�kL1.B1/ � �

"0�2 :

From Lemma 5.1, we get

U0.x � �1 � Nr "
0

2
/ � uC.x/ � U0.x � �1 C Nr "

0

2
/ in BNr

with j�1j D 1; j�1 � enj � C"0 for a universal constant C:
We now rescale considering a blow up sequence

uk .x/ D u .�kx/

�k
�k D Nrk; x 2 B1 (35)

and set "k D 2�k"0

fk .x/ D �kf .�kx/ x 2 B1:

Note that

kfkkL1.B1/ � �k
�
"0�4 � 1

16

�
"0�4 D "4k :

We can iterate Lemma 5.1 and obtain

U0.x � �k � "k/ � uC
k .x/ � U0.x � �k C "k/; in B1

with j�k � �k�1j � C"k�1, as long as

ku�
k kL1.B1/ � "2k:

Let k� > 1 be the first integer for which this fails:

ku�
k�kL1.B1/ > "

2
k�
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and

ku�
k��1kL1.B1/ � "2k��1:

We also have

U0.x � �k��1 � "k��1/ � uC
k��1.x/ � U0.x � �k��1 C "k��1/; in B1:

By usual comparison arguments we can write

uC
k��1.x/ � C jxn � "k��1j "2k��1 in B19=20

for C universal. Rescaling, we have

ku�
k�kL1.B1/ � C1"

2
k�

where C1 universal (C1 depends on Nr). Then uk� satisfies the assumptions of
Lemma 5.2 and therefore the rescaling

v .x/ D "
�1=2
k� uk�."

1=2

k� x/

satisfies in B2=3

Uˇ0.x � �k� � C0"1=2k� / � v.x/ � Uˇ0.x � �k� C C0"1=2k� /

with ˇ0 � "2k� : Call O" D C0"1=2k� : Then v is a solution of our f.b.p. in B2=3 with r.h.s.

g .x/ D "
1=2

k� fk�."
1=2

k� x/

satisfying the flatness assumption

Uˇ0.x � �k� � O"/ � v.x/ � Uˇ0.x � �k� C O"/:

Since ˇ0 � "2k� ; we have

kgkL1.B1/ � "
1=2

k� "
4
k� � O"2ˇ0

as long as O" � min
n
"0 .Nr/ ; 1

2 QC
o
; which is true if C0 .2 Q"/1=4 � min

n
"0 .Nr/ ; 1

2 QC
o

or

Q" � 1

2C04 min

�

"0 .Nr/ ; 1
2 QC
	 4
:
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With these choices, v satisfies the assumptions of the nondegenerate case and we
can proceed accordingly.

This concludes the proof of the main lemma.

6 Remarks and Further Developments

Theorem 1.2 holds for more general operators (see [11, 12]). For instance when
L is a uniformly elliptic operator in nondivergence form with Hölder continuous
coefficients,

L u D Tr
�
A .x/D2u

�C b .x/ � ru

or a fully nonlinear operator

L u D F
�
D2u

�
; .F .O/ D 0/

where D2u is the Hessian matrix of u.
Notably, in the fully nonlinear case we do not need to assume for F neither

concavity nor homogeneity of degree one. In this case in Theorem 4.1, u 2 C1.B˙
1 /

has to be replaced by u 2 C1;˛.B
˙
1 / and, in formula (20), r2 is replaced by r1C˛:

In general, we need to assume Lipschitz regularity of our solution. Indeed, in
this generality, the existence of Lipschitz viscosity solutions with proper measure
theoretical properties of the free boundary is an open problem and it will be object
of future investigations.

However, if L is linear and can be written in divergence form an estimate like in
Theorem 1.1 is available (see [19]) and one can reproduce the proof of Theorem 4.5
in [6], to recover the Lipschitz continuity of a viscosity solution. Observe that then
f D f .x; u;ru/ is allowed, with f .x; �; �/ locally bounded.

Theorem 1.3 continues to hold when L is linear or if F (positively) homo-
geneous of degree one (or when Fr.M/ has a limit F�.M/; as r ! 0; which is
homogeneous of degree one).

With the two Theorems 1.2 and 1.3 the regularity theory for two phase problems
has reached a reasonably satisfactory level. However many questions remain open,
object of future investigations.

The first one is to provide an existence results for viscosity solutions satisfying a
Dirichlet boundary condition, extending for instance the results in the homogeneous
case in [4].

Another question is the C1-smoothness (resp. analyticity) of the free boundary
in presence of C1 (resp. analytic) coefficients and data.

We shall deal with these two questions in forthcoming papers.
Also of great importance, we believe, is to have information on the Hausdorff

measure or dimension of the singular (nonflat) points of the free boundary. For
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instance, in 3 dimensions, the free boundary for local energy minimizer in the
variational problem

Z

˝

n
jruj2 C 	fu>0g

o
! min

is a smooth surface (see [7]). In dimension n D 7, De Silva and Jerison in [9]
provided an example of a minimizer with singular free boundary. The conjecture is
that energy minimizing free boundaries should be smooth for n < 7.

Nothing is known in the nonhomogeneous case.
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The Role of Fundamental Solution in Potential
and Regularity Theory for Subelliptic PDE
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Tu se’ lo mio maestro e ’l mio autore;
tu se’ solo colui da cu’ io tolsi
lo bello stilo che m’ha fatto onore1

Dante Alighieri

Abstract In this survey we consider a general Hörmander type operator, repre-
sented as a sum of squares of vector fields plus a drift and we outline the central
role of the fundamental solution in developing Potential and Regularity Theory
for solutions of related PDEs. After recalling the Gaussian behavior at infinity of
the kernel, we show some mean value formula on the level set of the fundamental
solution, which allow to obtain a comprehensive parallel of the classical Potential
Theory. Then we show that a precise knowledge of the fundamental solution leads
to global regularity results: estimates at the boundary or on the whole space. Finally
in the problem of regularity of non linear differential equations we need an ad hoc
modification of the parametrix method, based on the properties of the fundamental
solution of an approximating problem.

1You are my master, and indeed my author;
It is from you alone that I have taken
The exact style for which I have been honoured.
Dante Alighieri, The Divine Comedy, translated by C.H. Sisson, Oxford University Press,
New York, 2008.
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1 Introduction

In this paper we consider a general operator of the form

LA D
mX

i;jD1
aij .t; x/XiXj � X0 (1)

where

Xi D
NX

jD1
�ij@xj ; X0 D @t C

NX

jD1
�0j@xj ;

and the coefficients �ij only depend on the spatial variables x 2 R
N . We also require

that X0;X1;X2; : : : ;Xm is a system of real smooth vector fields defined in some
domain D � Œ0;TŒ
RN satisfying the Hörmander’s rank condition at any point:

rank.Lie.X0; : : : ;Xm/.t; x// D N C 1; 8 .t; x/ 2 D:

The matrix A D ˚
aij .t; x/

�m

i;jD1 is real symmetric and uniformly positive definite,
that is

��1 j�j2 � Pm
i;jD1 aij .t; x/ �i�j � � j�j2 (2)

for some � > 0 and for every � 2 R
N and every .t; x/ 2 D. We will assign

degree 1 to the vector fields .Xi/iD1;:::;m, (denoted d.Xi/ D 1), while d.X0/ D 2.
We will denote d..t; x/; .�; �// the Carnot-Carathéodory distance generated in D by
the vector fields X0;X1; : : : ;Xm with their degrees. Precisely for every pair of points
.t; x/ and .�; �/, we define

d..t; x/;.�; �// D inf
n
r > 0

ˇ
ˇ
ˇ there is a Lipschitz path � such that

�.0/ D .t; x/; �.1/ D .�; �/; and, for a.e. s, � 0.s/ D
mX

iD0
ˇi.s/Xi.�.s//

with jˇi.s/j � r for i D 1; : : : ;m; and jˇ0.s/j � r2
o
:

(3)
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The Carnot-Carathéodory metric generated by the vector fields X0;X1; : : : ;Xm plays
a crucial role in the regularity theory for subelliptic degenerate operators.

After the celebrated Hörmander’s paper [65], where the explicit fundamental
solution of a Kolmogorov-type operator was computed, Folland [55], Rothschild
and Stein [97], Jerison and Sánchez-Calle [66] proved existence and asymptotic
behavior of the fundamental solution, under the assumption that A is the identity.
Almost at the same time, Franchi and Lanconelli [58] studied regularity of sum of
squares of diagonal vector fields and established a Poincaré type inequality. The
equivalence of several distances was proved by Nagel et al. in [88]. After that, in the
last 20 years we witnessed an extraordinary development of the theory of subelliptic
operators. We refer the reader to the book [23] and to the introduction of each section
of this paper, for more historical remarks and references.

A significant contribution to the development of Potential Theory of subelliptic
PDEs is due to Ermanno Lanconelli. His personal and original approach is based
on a far-reaching use of the fundamental solution in order to prove, in this setting, a
complete parallel of the classical Potential and Regularity Theory.

In this paper we take this perspective, and we describe from a unitary point of
view a number of results obtained by the authors in collaboration with him. In Sect. 2
we will recall Gaussian estimates of the fundamental solution of large classes of
operators of the type (1). In particular for the heat equation we discuss the results of
Bonfiglioli et al. [21, 22], Bramanti et al. in [28], and for the Kolmogorov operator
we quote the results of Polidoro [94], Lanconelli and Polidoro [76], Lanconelli and
Pascucci in [74]. In Sect. 3 we describe the quasi-exponential mappings, introduced
in Lanconelli and Morbidelli [73], which are a tool to obtain a Poincaré inequality.
Level sets of the fundamental solution are special families of balls, on which mean
value formulas have been proved by Citti et al. (see [42]), Lanconelli and Pascucci
(see [75]), which lead to another proof of the Poincaré inequality. Using the mean
value formulas, characterizations of subharmonicity were obtained by Bonfiglioli
and Lanconelli [13, 15, 17]. The optimality of these sets have been investigated by
Lanconelli [72], Abbondanza and Bonfiglioli [1], Kogoj et al. [69] and Kogoj and
Tralli [68]. The properties of the fundamental solution immediately imply internal
regularity of solutions. Here we are also interested in global regularity of solutions
which will be presented in Sect. 4. Precisely we will recall Schauder regularity up
to the boundary, by Manfredini in [79], and the estimates on the whole of space by
Bramanti et al. [29, 31]. Finally in Sect. 5 we conclude our survey with a discussion
on regularity of solutions of non linear-equations with nonlinearity in the vector
fields, and in particular of the Levi equation. For the case of C2 see [40, 44]. For the
Levi equation in C

nC1 with n > 1, we refer to the regularity results in [49, 81, 83],
the counterexamples by Gutierrez et al. [62], and the symmetry results by Martino
and Montanari [80].
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1.1 Applications to Complex Analysis, Finance and Vision

Equation (1) is a natural generalization of the classical equation which models
particle interactions in phase spaces. In this case the drift term expresses the
coupling position-velocity:

X0 D
mX

jD1
pj@qj C @t

and the matrix .aij/ is the identity in the space of velocities:

L D 1

2

mX

jD1
@2pj

�
mX

jD1
pj@qj � @t; .t; q; p/ 2 R 
 R

m 
 R
m: (4)

Kolmogorov constructed already in 1934 an explicit fundamental solution of (4)
(see (13) below) which is a C1 function outside the diagonal [70].

As it is well known, in this problem the propagation is expressed as a
2m-dimensional stochastic process Y D .P;Q/, and the fundamental solution
of (4) describes its transition density. As a result of the random collision, the
propagation of the P-variables is driven by a m-dimensional standard Brownian
motion W, while Q variables are related to the P by a natural differential equality.
Then the propagation is formalized as solution of the Langevin’s equation

(
dP.t/ D dW.t/;

dQ.t/ D �P.t/dt:
(5)

In the deterministic expression, the differential relation between the variables is
coded as a 1-form. Clearly the fundamental solution of the more general Eq. (1) has
an analogous probabilistic meaning.

These models, introduced at microscopical level for the description of kinetic
theory of gases (see [36]), can be applied at meso-scopical level in biological
models, where the atoms are replaced by cells. Indeed simple cells of the cortex are
able to detect not only the intensity of the visual input, but also secondary variables,
typically gradient of perceived images or velocities of objects. The differential
relation between these variables allow to identify the cortical space as a phase space,
and to describe propagation of the visual signal with instruments similar to the ones
recalled above. Consequently propagation of the signal have been modeled with a
Kolmogorov-Fokker-Planck equation by Mumford [87], Williams and Jacobs [107],
August and Zucker [3], models with non linear differential equations are due to [41].

Also in financial mathematics, stochastic models involving linear and non linear
Kolmogorov type equations are relevant because they appear when considering
path-dependent contingent claims (see, for instance, [90]). More precisely, let us
assume that the price S of an asset is defined as in the Black-Scholes framework
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[10]: St D exp
��

r � �2

2

�
t C �Wt

�
where r and � denote the constant interest rate

and volatility respectively. Then the price u D u.t; St;Yt/ of a contingent claim
which depends on Yt D R t

0
log Ssds; solves a Kolmogorov type equation (see, for

instance, [4]). Other examples of path-dependent models arising in finance can be
found in [56, 63].

As a generalization of the phase space, we can consider a general CR structure
or a real hyper-surface in C

n: in this case the analogous of the coupling position-
velocity is realized by the quasicomplex structure. The basis of the complex tangent
bundle is a lower dimensional distribution, described by a family of vector fields. In
particular, curvature equations are naturally expressed in terms of vector fields and
provide examples non linear Hörmander type PDE (see [39, 84]).

2 Fundamental Solutions of Linear Operators

The first aspect of the problem we want to face is the existence and Gaussian
estimates and of a fundamental solution for the operator of (1) with Hölder
continuous coefficients. The first existence results for operators of Hörmander type
operators, refer to sum of squares of vector fields, plus a drift term.

LI D
mX

iD1
X2i � X0: (6)

In this case the matrix .aij/ in (1) is the identity. In particular Hörmander pointed out
in the introduction of his celebrated paper on hypoelliptic second order differential
equations [65] that the Kolmogorov method can also be applied to a class of
operators which generalize Eq. (4), but fall in the general framework (1). Uniform
but not Gaussian estimates, for families of Hörmander operators of this type,
were proved by Rothschild and Stein [97]. Gaussian but not uniform estimates
were proved by Jerison and Sánchez-Calle [66], via Gevrey regularity methods,
Varopoulos et al. [105], via semi-group theory, and by Kusuoka and Stroock [71],
via probabilistic techniques.

The results we plan to present here refer to non divergence form operators,
with C˛ coefficients, and the main results regarding the heat equation are due to
Bonfiglioli et al. [21, 22], Bramanti et al. in [28] while for the Kolmogorov operator
we quote the results of Polidoro [94], Lanconelli and Polidoro [76], Lanconelli and
Pascucci in [74].

The contribution of these papers are twofold: from one side they establish
uniform Gaussian bounds for the fundamental solution of a model operator of the
form

Lw D
mX

i;jD1
aij.w/Xi;wXj;w � X0;w (7)
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where .aij.w// are constant coefficients while the family .Xi;w/ is can be the given
operators or a nilpotent and stratified approximation. This goal can be reached either
with probabilistic instruments or with an analytic approach:

They apply the Levi’s parametrix method to prove the results for operators with
Hölder continuous coefficients aij. The method is based on the approximation of
the fundamental solution �A.zI �/ of the given operator by the fundamental solution
�w.zI �/ of a model operator belonging of the previous studied class and obtained
by evaluating the coefficient at a point w and approximating the vector fields in a
neighborhood of each point w.

We present here the application of the method in two particularly significant
cases of Eq. (1): the Kolmogorov equation, which will be studied with stochastic
instruments and the heat equation, which will be studied with deterministic ones.

2.1 Kolmogorov Type Operators

We will call Kolmogorov type operators an operator of the form

LAu.t; x/ WD
mX

i;jD1
aij.t; x/@xixj u.t; x/C

NX

i;jD1
bijxj@xi u.t; x/ � @tu.t; x/; (8)

where aij satisfy condition (2). This operator clearly falls in the general framework
of Eq. (1), by choosing X0 D @t � PN

i;jD1 bijxi@xj ; Xj D @j. In order to study its
fundamental solution, we will preliminary study a model operator

Ku.t; x/ WD1

2

mX

jD1
@2xj

u.t; x/C
NX

i;jD1
bijxj@xi u.t; x/� @tu.t; x/: (9)

The linear stochastic differential equation in R
N associated to K is the following:

dZt D BZtdt C �dWt; Zs D z; (10)

where W is a standard m-dimensional Brownian motion, B is a N
N constant matrix
and � is the N 
 m constant matrix

� D
�

Im

0

�

(11)

where Im denotes the identity matrix in R
m. Then the solution of (10) is a Gaussian

process with mean vector

E ŒZt� D e.t�s/Bz;
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and covariance matrix C0.t � s/ where

C0.t/ D
Z t

0

e.t��/B���e.t��/B�

d�; t � 0:

Since � has dimension N 
 m, the matrix C0.t/ is generally only positive semi-
definite in R

N , that is Zt possibly has degenerate multi-normal distribution. We
recall the well-known Kalman condition from control theory provides an operative
criterion for the positivity of C0.t/: the matrix C0.t/ is positive definite for t > 0 if
and only if

rank

�; B�; B2�; : : : ; BN�1�

� D N: (12)

Then (12) ensures that Zt has a Gaussian transition density

G.s; yI t; x/ D 1
p
.2�/N detC0.t � s/

exp

�

�1
2

hC�1
0 .t � s/.x � e.t�s/By/; x � e.t�s/By

�

:

(13)

Furthermore G is the fundamental solution of the Kolmogorov PDE associated
to (10).

The fundamental solution under special assumptions has been found by Kol-
mogorov and Hörmander [65], but a systematic study of the operator (9) has been
done by Lanconelli and Polidoro in [76]. In particular they recognized that the
hypoellipticity is equivalent to the following explicit expression of B, with respect
to a suitable basis of RN : B D .bij/i;jD1;:::;N writes in the form

B D

0

B
B
B
B
B
@

� � � � � � �
B1 � � � � � �
0 B2 � � � � �
:::
:::
: : :

:::
:::

0 0 � � � Br �

1

C
C
C
C
C
A
; (14)

where each Bj is a pj 
 pj�1 matrix with rank pj, with

p0 D m � p1 � � � � � pr � 1;

rX

jD0
pj D N; (15)

and the �-blocks are arbitrary. Let us explicitly recall that the stratification condition
implies in a standard way that in canonical coordinates there is a dilation and a
translation naturally associated to the vector fields.
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Using the existence of the fundamental solution for the constant coefficient
operator, from the parametrix method it follows:

Theorem 2.1 Assume that
�
aij.t; x/

�
i;jD1;:::;m is symmetric with Hölder continuous

entries and satisfies (2) for some positive constant �. Then the operator L defined
in (8) has a fundamental solution � . Moreover, for any T > 0 there exist some
positive constants c�; cC; ��; �C such that

c�� �.t; xI �; �/ � � .t; xI �; �/ � cC� C.t; xI �; �/;
ˇ
ˇ@xj� .t; xI �; �/ˇˇ � cC

p
� � t

� C.t; xI �; �/;

for any .t; x/; .�; �/ with 0 < � � t < T. Here � ˙ is the fundamental solution of L
in (9) with constant coefficients aC

ij D �Cıij; a�
ij D ��ıij.

We outline the proof of Theorem 2.1 given in Polidoro [95] and Di Francesco
and Pascucci [51].
Sketch of the Proof. For fixed w 2 R

1CN , we denote by �w.zI �/ the fundamental
solution of the model operator Lw, with constant coefficients evaluated at the point w

Lwu WD
mX

i;jD1
aij.w/XiXju � X0:

Then we call parametrix the function

Z.zI �/ D ��.zI �/: (16)

We remark that Z is a good approximation of � near � and the expression of Z can
be estimated explicitly. Then we suppose that the fundamental solution takes the
form:

� .zI �/ D Z.zI �/C
Z t

0

Z

RN
Z.zI w/G.wI �/dw: (17)

In order to find the unknown function G, we impose that � is the solution to the
equation L� .�I �/ D 0 in �0;C1Œ
RN : we wish to point out one more time, to
make this totally transparent, that the operator L acts on the variable z while the
point � is fixed. Then formally we obtain

0 D L� .zI �/ D LZ.zI �/C L
“

�0;TŒ�RN

Z.zI w/G.wI �/dw

D LZ.zI �/C
“

�0;TŒ�RN

LZ.zI w/G.wI �/dw � G.zI �/;
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hence

G.zI �/ D LZ.zI �/C
“

�0;TŒ�RN

LZ.zI w/G.wI �/dw: (18)

Therefore G is a solution of an integral equation equivalent to a fixed-point problem
that can be solved by the method of successive approximations:

G.zI �/ D
C1X

kD1
.LZ/k.zI �/; (19)

where

.LZ/1.zI �/ D LZ.zI �/;

.LZ/kC1.zI �/ D
“

�0;TŒ�RN

LZ.zI w/.LZ/k.wI �/dw; k 2 N:

It is possible to prove that there exists k0 2 N such that, for all T > 0 and � D
.0; y/ 2 R

1CN , the function .LZ/k.�I �/ is continuous and bounded for any k � k0.
Moreover the series

C1X

kDk0

.LZ/k.�I �/

converges uniformly on the strip �0;TŒ
RN . Furthermore, the function G.�; �/
defined by (19) is a solution to the integral equation (18) in �0;TŒ
RN and � in (17)
is a fundamental solution to L.

Remark 2.1 The method also gives some pointwise estimates of the fundamental
solution and its derivatives. We refer to Corielli et al. [48] where the accuracy of
the parametrix method is studied to obtain numerical approximations for financial
problems.

Remark 2.2 There exists a positive constant M and, for every T > 0, there exists
c D c.T/ > 0 such that

e�Md..t;x/;.�;y//2=.t��/

cjB �.t; x/;pt � �� j � �A ..t; x/; .�; y// � ce�d..t;x/;.�;y//2=M.t��/

jB �.t; x/;pt � �
� j (20)

for any .t; x/; .�; y/ with 0 < � � t < T, where d is the distance defined by the
vector fields. Gaussian estimates for a general equation like (1) have been obtained
by Boscain and Polidoro [26] and Cinti and Polidoro [37].
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2.2 Gaussian Estimates for the Fundamental Solution of Heat
Operators

An other particularly notable class of operators of type (1) is given by the heat
operators

LA D
mX

i;jD1
aij .t; x/XiXj � @t: (21)

For sum of squares of vector fields operators of the kind (1) with left invariant
homogeneous vector fields on Lie groups, Gaussian bounds have been proved by
Varopoulos (see [105] and references therein). In absence of a group structure,
Gaussian bounds have been proved, on a compact manifold and for finite time, by
Jerison and Sánchez-Calle [66], with an analytic approach and, on the whole RNC1;
by Kusuoka and Stroock, (see [71] and references therein), using the Malliavin
stochastic calculus.

In a long series of papers Bonfiglioli et al. [20–22], Bramanti et al. [28] and
Capogna et al. [35], proved new Gaussian bounds for the operator LA with Hölder
continuous coefficients. In the first papers the vector fields were assumed to belong
to a Carnot group. Then, in [28] the results are presented in the full generality of
C1 vector fields satisfying the Hörmander condition. In this last case, the operator
LA is initially assumed defined only on a cylinder R 
˝ for some bounded˝; but,
in order to obtain asymptotic estimates, it is extended to the whole space R

NC1, in
such a way that, outside a compact spatial set, it coincides with the classical heat
operator. Henceforth all our statements will be referred to this extended operator.

Theorem 2.2 (Gaussian Bounds) There exists a positive constant M and, for every
T > 0, there exists a positive constant c D c.T/ such that, for 0 < t � � � T,
x; � 2 R

N ; the following estimates hold

e�Md.x;�/2=.t��/

cjB �x;pt � �
� j � �A .t; xI �; �/ � ce�d.x;�/2=M.t��/

jB �x;pt � �� j

jXi�A .t; �I �; �/ .x/j � ce�d.x;�/2=M.t��/

.t � �/1=2jB �x;pt � �
� j

ˇ
ˇXiXj�A .t; �I �; �/ .x/

ˇ
ˇC j@t�A .�; xI �; �/ .t/j � ce�d.x;�/2=M.t��/

.t � �/jB �x;pt � �
� j

where jB .x; r/ j denotes the Lebesgue measure of the purely spatial d-Carnot-
Carathéodory ball in R

N.

We explicitly note that this estimate is analogous to the estimate (20) for the
Komogorov equation, but here the distance in Œ0;T� 
 R

N splits in the sum of a



The Role of Fundamental in Potential and Regularity Theory 351

purely spatial one and a purely temporal one. Hence in this case

d2 ..t; x/; .�; �//
2

M .t � �/ � d .x; �/2

M .t � �/
C C

allowing to discard the temporal part of the distance in the estimate.
As a main step in the proof of these bounds, they first consider constant

coefficients operators: the point here is to handle carefully the dependence on the
matrix A and obtain uniform estimates, in the ellipticity class of the matrix A. To
prove these uniform bounds, in [21] the authors exploited direct methods and the
previous results in [18, 19]. While in [28] the authors have followed as close as
possible the techniques of Jerison and Sánchez-Calle [66], the main new difficulties
being the following: first, they have to take into account the dependence on the
matrix A, getting estimates depending on A only through the number �; second, the
estimates have to be global in space, while in [66] they work on a compact manifold;
third, they need estimates on the difference of the fundamental solutions of two
operators which have no analogue in [66]. The procedure is technically involved, it
makes use of the uniform estimates [21] on groups, and a crucial role is played by
the Rothschild-Stein lifting theorem [97].

Once obtained the uniform estimates for the model operator with constant
coefficients, one can apply the Levi parametrix method and establish existence and
Gaussian bounds for the fundamental solution of the operators with variable Hölder
continuous coefficients aij.

Theorem 2.3 (Existence of a Fundamental Solution) Under the above assump-
tions, there exists a global fundamental solution �A.t; xI �; �/ for LA in R

NC1, with
the properties listed below.

(i) �A is a continuous function away from the diagonal of R
NC1 
 R

NC1;
�A.t; xI �; �/ D 0 for t � �: Moreover, for every fixed � 2 R

NC1, �A.�I �/ 2
C2;˛

loc .R
NC1 n f�g/, and we have

LA .�A.�I �// D 0 in R
NC1 n f�g:

(ii) For every  2 C1
0 .R

NC1/, the function w.z/ D R
RNC1 �A.zI �/  .�/ d�

belongs to the class C2;˛
loc .R

NC1/, and we have

LAw D � in R
NC1.

(iii) Let � � 0 and T2 > T1 be such that .T2 � T1/� is small enough. Then, for
every f 2 Cˇ.ŒT1;T2�
R

N/ (where 0 < ˇ � ˛) and g 2 C
�
R

N
�

satisfying the
growth condition jf .x; t/j; jg.x/j � c exp.� d.x; 0/2/ for some constant c > 0,
the function

u.x; t/ D R
RN �A.t; xI T1; �/ g.�/ d� C R

ŒT1;t��RN �A.t; xI �; �/ f .�; �/ d�d�;
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x 2 R
N ; t 2 .T1;T2�; belongs to the class C2;ˇ

loc ..T1;T2/ 
 R
N/ \ C.ŒT1;T2� 


R
N/. Moreover, u is a solution to the following Cauchy problem

LAu D �f in .T1;T2/ 
 R
N ; u.�;T1/ D g in R

N :

The proof follows the same ideas of the analogous presented in the previous
section. The parametrix function is built starting from the fundamental solution �w

of the constant coefficient operator

Lw D
mX

i;jD1
aij.w/ .t; x/XiXj � @t:

2.3 Fundamental Solution of More General Operators

Operators in the form of sum of squares of Hörmander vector fields with drift

L D
mX

jD1
X2j � X0 (22)

write in the form (1) as A is the m
m identity matrix. Kogoj and Lanconelli consider
this kind of operators in [67], under the assumption that every pair of points .t; x/
and .�; �/ with t < � can be joined by a Lipschitz path � which solves almost
everywhere the non-autonomous ODE

� 0.s/ D
mX

iD1
ˇi.s/Xi.�.s//C ˇ0.s/X0.�.s// (23)

with ˇ0.s/ � 0 for almost every s. In the article [67], Kogoj and Lanconelli give
a list of examples of operators satisfying (23), that include, among other examples,
Kolmogorov operators, as well as heat operators with smooth coefficients. For this
family of operators, they prove the existence of a fundamental solution � .t; x; s; y/,
which is strictly positive in the set

˚
.x; t/ 2 R

NC1 j t > s
�
, and Gaussian upper

bounds for � . They also prove mean value formulas and Harnack inequalities for
the positive solutions of Lu D 0.

Based on the Harnack inequality proved in [67], and on the translation invariance,
Pascucci and Polidoro prove in [91] sharp lower bounds for the fundamental solution
of operators satisfying (23). More recently, the method used in [91] has been
extended in [38] to the study of Hormander operators that do not satisfy (23). For
instance, the operator L D @2x1 C x21@

2
x2

C @t is considered in two space variables.
The fundamental solution � D � .t; x; �; �/ is supported in the set

˚
.t; x/ 2 R

3jt >
�; x2 > �2

�
, then no Gaussian estimates can be proved for this example. On the
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other hand, upper and lower bound have been proved by combining PDE methods
and Malliavin calculus.

3 Balls, Mean Value Formulas and Potential Theory

An important aspect in the study of the geometric analysis associated with many of
the PDEs discussed so far is the investigation of the underlying geometric properties
naturally associated to these PDEs. Starting from the celebrated papers of Bony
[25] and of Nagel et al. [88], it became clear that the properties of the exponential
maps associated with the smooth vector fields play a crucial role in understanding
the equivalence of the distances of the spaces. This notion has been weakened by
Lanconelli and Morbidelli [73] to the notion of quasi exponential for Lipschitz
continuous vector fields. Then they proved a Poincaré inequality under a ball box
type assumption.

A complementary point of view, largely adopted by Lanconelli, is to choose the
level sets of the fundamental solution as privileged class of balls for the operator.
The main advantage of this perspective is that the level sets of the fundamental
solution reflect the main properties of the operator, and in particular they give
information on the directions of propagation, allowing to express in a natural and
intrinsic way the Poincaré inequality and the Potential Theory results, properties
which are classically expressed on the balls of the metric.

The first results extending the mean-value formulas from the classical Laplace
setting to the parabolic one are due to Pini [92], Watson [106], Fabes and Garofalo
[54], Lanconelli and Garofalo [60, 61]. In the sub-Riemannian setting, a mean value
theorem for sums of squares of vector fields has been proved by Hoh and Jacob
[64], Citti et al. [42], while the formula for general Kolmogorov type operators of
type (1) is due to Lanconelli and Pascucci [75]. It has been proved in [23, 33, 59]
that there is a strict relation between the existence of representation formulas and
the Poincaré inequality, which indeed are equivalent in some special cases.

The use of asymptotic average operators in the characterization of classical
subharmonic functions has a long history, starting with the papers [9] of Blaschke,
[93] of Privaloff, [6] of Beckenbach and Radó, up to the recent monograph [2] of
Armitage and Gardiner. This direction of research has been deeply developed in the
framework of Carnot groups by Bonfiglioli et al. in the monograph [23], and then
by Bonfiglioli and Lanconelli, who obtained new results concerning with: Harnack
and Liouville type theorems [11]; characterizations of subharmonicity [13] (see also
the very recent paper [17]); average formulas and representation theorems [17];
formulas of Poisson and Jensen type; maximum principles for open unbounded sets
[12]; the Dirichlet problem with Lp boundary data and the Hardy spaces associated
with them [14]; the Eikonal equation and Bôcher-type theorems for the removal of
singularities [15]; convexity properties of the mean-value formulas with respect to
the radius [24]; Gauss-Koebe and Montel type normality results [5].
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Finally we quote some results of Lanconelli [72], Abbondanza and Bonfiglioli
[1], Kogoj et al. [69], Kogoj and Tralli [68], who characterized the set on which a
mean value formula can be proved as the level sets of the fundamental solution.

3.1 Almost Exponential Maps and Poincaré Inequality

The most classical result on exponential mappings and properties of control balls is
due to Nagel et al. [88].

An abstract version of these notions was provided in the paper [73] for a
family X1; : : : ;Xm of Lipschitz continuous vector fields in R

N . Indeed the authors
introduced the notion of controllable almost exponential map and they showed that,
if a suitable ball-box inclusion holds, then one can get a proof of a Poincaré-type
inequality for the family X1; : : : ;Xm. Next we will describe such result.

Definition 3.1 Let ˝ � R
N be an open set and let Q be an open neighborhood of

the origin in R
N . We say that a C1 map E W ˝ 
 Q ! R

N is an almost exponential
map if:

(i) The map Q 3 h 7! E.x; h/ is one-to-one for each x 2 ˝ .
(ii) There is C0 > 1 such that

0 < C�1
0

ˇ
ˇ
ˇdet

@E

@h
.x; 0/

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇdet

@E

@h
.x; h/

ˇ
ˇ
ˇ � C0

ˇ
ˇ
ˇdet

@E

@h
.x; 0/

ˇ
ˇ
ˇ for all h 2 Q.

An almost exponential map is controllable if there are a hitting time T > 0 and a
control function � W ˝ 
 Q 
 Œ0;T� ! R

N such that:

(iii) For each .x; h/ 2 ˝ 
 Q, the path t 7! �.x; h; t/ is subunit and it satisfies
�.x; h; 0/ D x and �.x; h;T.h// D E.x; h/ for some T.h/ � T.

(iv) For each h 2 Q and t 2 Œ0;T.h/�, the map x 7! �.x; h; t/ is one-to-one, of
class C1 and it satisfies for some C0 > 1

ˇ
ˇ
ˇdet

@�

@x
.x; h; t/

ˇ
ˇ
ˇ � C�1

0 for all x 2 ˝ , h 2 Q and t 2 Œ0;T.h/�.

Let us recall also the local doubling condition for the Lebesgue measure of
control balls: for any compact K there is CD and r0 > 0 such that

jB.x0; 2r/j � CDjB.x0; r/j for all x0 2 K and r � r0:

Now we are ready to give a condition which ensures the Poincaré inequality.

Theorem 3.1 ([73], Theorem 2.1) Let X1; : : : ;Xm be a family of locally Lipschitz-
continuous vector fields in R

N. Assume that the Lebesgue measure of Carnot–
Carathéodory balls is locally doubling. Let K � R

N be a compact set and let
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B D B.x0; r/ be a ball such that x0 2 K and r � r0. Assume that for a suitable
C0 > 0 there are open sets Q � f0g, ˝ � B and an almost exponential map
E W ˝ 
 Q ! R

N such that

(1) j˝j > C�1
0 jBj.

(2) The map E is controllable with a control � having hitting time T � C0r.
(3) we have the inclusion B � E.x;Q/ for each x 2 ˝ .

Then, there is a constant C1 depending on C0 and CD such that

Z

B
ju.x/� uBjdx � C1r

Z

C1B
jXu.x/jdx for all u 2 C1.C1B/: (24)

Remark 3.1 Here uB denote the standard average on the ball B:

uB D 1

jBj
Z

B
u.y/dy:

In the next section we will give a different definition of mean, to be used when the
vector fields are associated to an operator.

For the proof we refer to the original paper [73]. Here we note that the method
has been tested successfully in the case of Hörmander vector fields, with regular
and non regular coefficients and on a class of vector fields introduced by Franchi
and Lanconelli [57, 58] which have the form

X1 D @x1 ; X2 D �2.x1/@x2 ; : : : ; Xn D �n.x1; : : : ; xn�1/@xn ;

where the functions �j satisfy suitable assumptions. We refer to the discussion
in [73, Sect. 3] for the proof that these vector fields fit in the framework of
controllable almost exponential maps. Further results with minimal assumptions on
the coefficients are due to [85], and with a slightly different technique to [30].

3.2 Mean Value Formulas on Level Sets and Poincaré
Inequality

We will present here mean value formulas, which have been constructed for different
operators: in the subelliptic setting: by Citti et al. for sum of squares [42], Lanconelli
and Pascucci for Kolmogorov-type operators [75]. The first corollary will be a
Poincaré formula, to be compared with the one established in the previous section.

Let us consider a particular operator of type (1)

LA WD
NX

i;jD1
aijXiXj C X0 (25)
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for a constant coefficient matrix .aij/ satisfying (2). We will denote

˝r.x/ WD ˚
y 2 R

N W � .x; y/ > 1=r
�
;

so that @˝r.x/ will be the level set of � .
Let ˝  R

N be an open set and suppose u is u.s.c. on ˝ . For every fixed ˛ > 0,
and every x 2 R

N and r > 0 such that ˝r.x/ � ˝ , we define the Surface Mean mr

and the Solid Mean Mr for a function u:

mr.u/.x/ D
Z

@˝r.x/
u.y/

aij.y/Xi�x.y/Xj�x.y/

jrE�x.y/j d�.y/; (26)

M˛
r .u/.x/ D ˛ C 1

r˛C1

Z r

0

�˛ m�.u/.x/ d�; (27)

where rE denotes the Euclidean gradient, and �x.y/ D � .x; y/. Here � denotes the
Hausdorff .N � 1/-dimensional measure in R

N . We also denote

Ir.x/ D ˛ C 1

r˛C1

Z r

0

�˛
�Z

˝�.x/
aijXi� .x; y/Xju.y/ dy

�
d�: (28)

The following theorem, for the special case X0 D 0 has been proved in
[42], A general formula has been established by Lanconelli and Pascucci [75] for
Kolmogorov equations, which reduces to the following one, when divX0 D 0.

Theorem 3.2 Then, for every function u of class C2 on an open set containing
˝r.x/, we have the following mean value formulas:

u.x/ D mr.u/.x/�
Z

˝r.x/
aijXi� .x; y/Xju.y/ dy; u.x/ D M˛

r .u/.x/�Ir.x/: (29)

In [45] the authors remarked that the Poincaré inequality can be obtained by
means of the mean value formula for a very special class of vector fields, with
minimal regularity of the coefficients in the same spirit of Bramanti et al. [30]
and Montanari and Morbidelli [85]. Precisely when X0 D 0, and there exists a
continuous function ' such that

Xi D @xi � xiCn@x2n ; Xn D @xn C 2'.x/@x2n ;XiCn D @xiCn C xi@x2n ; (30)

i D 1; : : : ; n � 1: These vector fields satisfy the Hörmander condition, and ' is
continuous, so that there is a CC distance associated to these vector fields.

Theorem 3.3 Let˝ be an open set. Assume that the functions ' and u are Lipschitz
continuous defined on ˝ with respect to the CC distance associated to these
vector fields. For every compact set K � ˝ there exist positive constants C1;C2
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with C2 > 1 (depending continuously on the Lipschitz constant of ') such that if
˝C2r.Nx/ � K, we have

Z

˝r.Nx/
ju.x/� u˝r.Nx/jdx � C1r

Z

˝C2r.Nx/
jruj:

3.3 L-Subharmonicity and Average Operators

As we shall see soon, mean value formulas naturally allow the characterizations of
the L -subharmonic functions, and the derivation of an in-depth Potential Theory
for L .

Let

L WD
NX

i;jD1
@xi.ai;j.x/ @xj/ D div.A.x/r/ (31)

be a linear second order PDO in R
N , in divergence form, with C1 coefficients and

such that the matrix A.x/ WD .ai;j.x//i;j�N is symmetric and nonnegative definite at
any point x D .x1; : : : ; xN/ 2 R

N . The operator L is (possibly) degenerate elliptic.
However, we assume that L is not totally degenerate at every point. Precisely, we
assume that the following condition holds: there exists i 2 f1; : : : ;Ng such that
ai;i > 0 on R

N . This condition, together with A.x/ � 0, implies the well-known
Picone’s Maximum Principle for L .

A function h will be said L -harmonic in an open set ˝  R
N if h 2 C2.˝;R/

and L h D 0 in ˝ . An upper semicontinuous function (u.s.c. function, for short)
u W ˝ ! Œ�1;1/ will be called L -subharmonic in ˝ if:

1. The set ˝.u/ WD fx 2 ˝ j u.x/ > �1g contains at least one point of every
(connected) component of ˝ , and

2. For every bounded open set V � V � ˝ and for every L -harmonic function
h 2 C2.V;R/\ C.V;R/ such that u � h on @V , one has u � h in V .

We shall denote by S .˝/ the family of the L -subharmonic functions in ˝ .
It is well known that the subharmonic functions play crucial roles in Potential

Theory of linear second order PDEs (just think about Perron’s method for the
Dirichlet problem) as well as in studying the notion of convexity in Euclidean and
non-Euclidean settings.

Our main assumption on L is that it is C1-hypoelliptic in every open subset of
R

N . We further assume that, in the spirit of the rest of the present paper, L admits
a nonnegative global fundamental solution

R
N 
 R

N n fx D yg 3 .x; y/ 7! � .x; y/ 2 R;

with pole at any point of the diagonal fx D yg of RN and vanishing at infinity.
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We are then able to define suitable mean value operators on the level sets of � .
We explicitly remark that study of the integral operators related to general PDOs

considered in this paper is complicated by the presence of non-trivial kernels. For
instance, when L in (31) is a sub-Laplacian on a stratified Lie group G, the kernels
appearing in the relevant mean-integrals cannot be identically 1, unless G is the
usual Euclidean group .RN ;C/, as it is proved in [15].

Definition 3.2 (Mean-Integral Operators) Let x 2 R
N and let us consider the

functions, defined for y ¤ x,

�x.y/ WD � .x; y/; Kx.y/ WD
˝
A.y/r�x.y/;r�x.y/

˛

jr�x.y/j :

We will call surface mean integral operator and solid mean integral operator, the
two mean operators mr and Mr defined in (26) and (27), respectively. Furthermore,
for every x 2 R

N and every r > 0, we set

qr.x/ D
Z

˝r.x/

�
�x.y/� 1

r

�
dy; Qr.x/ D ˛ C 1

r˛C1

Z r

0

�˛ q�.x/ d�;

!r.x/ D 1

˛ r˛C1

Z

˝r.x/

�
r˛ � � �˛

x .y/
�

dy:

Remarkable mean-value formulas generalizing the classical Gauss-Green formulas
for Laplace’s operator and the ones in Theorem 3.2 hold true also in this more
general setting:

Theorem 3.4 (Mean-Value Formulas for L ) Let mr;M˛
r be the average opera-

tors in Definition 3.2. Let also x 2 R
N and r > 0.

Then, for every function u of class C2 on an open set containing˝r.x/, we have
the following L -representation formulas:

u.x/ D mr.u/.x/�
Z

˝r.x/

�
� .x; y/� 1

r

�
L u.y/ dy; (32)

u.x/ D M˛
r .u/.x/� ˛ C 1

r˛C1

Z r

0

�˛
�Z

˝�.x/

�
� .x; y/ � 1

�

�
L u.y/ dy

�

d�: (33)

We shall refer to (32) as the Surface Mean-Value Formula for L , whereas (33) will
be called the Solid Mean-Value Formula for L .

Before stating our main theorem, we need two definitions. With the same notations
as in the previous paragraph, an u.s.c. function u defined on an open subset˝ of RN

will be called m-continuous in ˝ if

lim
r!0

mr.u/.x/ D u.x/; for every x 2 ˝ .
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Analogously, u is said to be M˛-continuous in ˝ if lim
r!0

M˛
r .u/.x/ D u.x/, for every

x 2 ˝ .
Finally, let I  R be an interval and suppose that ' W I ! R is a strictly monotone

continuous function. We say that f W I ! R is '-convex if

f .r/ � '.r2/� '.r/

'.r2/ � '.r1/ f .r1/C '.r/� '.r1/

'.r2/� '.r1/
f .r2/;

for every r1; r; r2 2 I such that r1 < r < r2.
We are ready to present our main result (see [17, 24]). This generalizes previous

results in [13]; in the case of sub-Laplacians on Carnot groups, the paramount role
of mean value operators is shown in [1, 5, 11, 12, 14–16]; see also the comprehensive
monograph [23].

Theorem 3.5 (Characterizations of Subharmonicity) Suppose L satisfies the
above axioms. Let ˝ be an open subset of RN and let u W ˝ ! Œ�1;1/ be
an u.s.c. function such that ˝.u/ D fx W u.x/ > �1g contains at least one point of
every component of ˝ .

Let qr;Qr; !r be as in Definition 3.2. Let also R.x/ WD supfr > 0 W ˝r.x/  ˝g.
Then, the following conditions are equivalent:

1. u 2 S .˝/ with respect to L .
2. u.x/ � mr.u/.x/, for every x 2 ˝ and r 2 .0;R.x//.
3. u.x/ � M˛

r .u/.x/, for every x 2 ˝ and r 2 .0;R.x//.
4. It holds that

lim sup
r!0

mr.u/.x/� u.x/

qr.x/
� 0; for every x 2 ˝.u/.

5. It holds that

lim sup
r!0

M˛
r .u/.x/� u.x/

Qr.x/
� 0; for every x 2 ˝.u/.

6. u is m-continuous in˝ , and r 7! mr.u/.x/ is monotone increasing on .0;R.x//,
for every x 2 ˝ .

7. u is M˛-continuous in ˝ , and r 7! M˛
r .u/.x/ is monotone increasing on

.0;R.x//, for every x 2 ˝ .
8. u is m-continuous in ˝ , and

M˛
r .u/.x/ � mr.u/.x/;

for every x 2 ˝ and every r 2 .0;R.x//.
9. u is m-continuous in ˝ , and

lim inf
r!0

mr.u/.x/� M˛
r .u/.x/

!r.x/
� 0; for every x 2 ˝.u/.
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10. u is M˛-continuous in ˝ , u 2 L1loc.˝/ and L u � 0 in the weak sense of
distributions.

11. u is m-continuous and the map r 7! mr.u/.x/ is
1

r
-convex on .0;R.x//, for

every x 2 ˝ (or, equivalently, for every x 2 ˝.u/).
12. u is M˛-continuous and, for every x 2 ˝ (or, equivalently, for every x 2 ˝.u/),

the map r 7! M˛
r .u/.x/ is

1

r˛C1 -convex on .0;R.x//, for some (or for every)

˛ > 0.

Furthermore, if u 2 S .RN/ we have the following results:

13. The functions x 7! mr.u/.x/; M˛
r .u/.x/ are L -subharmonic in R

N, finite
valued and continuous.

14. Let�u be the L -Riesz measure of u; the maps r 7! mr.u/.x/ and r 7! M˛
r .u/.x/

can be prolonged with continuity up to r D 0 if and only if x 2 ˝.u/.
Furthermore, for every x 2 ˝ and r 2 .0;R.x//, one has the following

representation formulas (of Poisson-Jensen type):

u.x/ D mr.u/.x/�
Z r

0

�u.˝�.x//

�2
d�

D mr.u/.x/�
Z

˝r.x/

�
� .x; y/ � 1

r

�
d�u.y/;

u.x/ D M˛
r .u/.x/�

Z r

0

˛ C 1

�˛C2

 Z

˝�.x/

�
f˛.�/� f˛

� 1

� .x; y/

��
d�u.y/

!

d�

D M˛
r .u/.x/� ˛ C 1

r˛C1

Z r

0

�˛
�Z

˝�.x/

�
� .x; y/� 1

�

�
d�u.y/

�

d�:

When x … ˝.u/, all the sides of these formulas are �1, and this happens if
and only if �u.fxg/ > 0.

The equivalences (1)–(9) do not require the hypoellipticity of L , which is only used
in (10)–(14) (requiring Riesz-type representation results).

We observe that Theorem 3.5 provides new insight on the Potential Theory for
operators in divergence form, which are not necessarily in the form of Hörmander
sums of squares, nor left invariant on some Lie group (see [17, 24]).

Finally we mention some results of Lanconelli [72], Abbondanza and Bonfiglioli
[1], Kogoj et al. [69], Kogoj and Tralli [68]: in these papers, it is proved, for several
classes of PDOs, that the sets on which a mean value formula can be obtained are
precisely the level sets of the fundamental solution. For instance the inverse mean
value theorem for L states the following: let K0.y/ be as in Definition 3.2 and let
us set d�.y/ WD K0.y/ dy; let D be a bounded open neighborhood of 0 such that

u.0/ D 1

�.D/

Z

D
u.y/ d�.y/; (34)
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for every u which is L -harmonic and �-integrable on D. Then, necessarily, D D
˝r.0/ for some r > 0. More precisely, it suffices to suppose that (34) holds for the
family of the L -harmonic functions on D of the form D 3 y 7! � .y; x/, for x … D.

4 Global Regularity Results

Interior Schauder and Lp estimates can be obtained as a direct consequence of
existence of the fundamental solution. A much more delicate problem is the problem
of global regularity results, namely regularity on the whole space, or regularity at
the boundary.

We provide here a couple of results, obtained using potential theory and existence
of the fundamental solution, proved in the previous section.

4.1 A First Regularity Result at the Boundary

An essential play in study of the existence and regularity theory of the equation
Lu D f where L is the operator in (8) is the derivation of the Schauder estimates
in terms of weighted interior norms. Such apriori estimates allow to extends the
results of potential theory to the class of L having Hölder continuous coefficients
and to establish the solvability of the Dirichlet problem in the generalized sense.
For continuous boundary values and a suitably wide class of bounded open set the
proof of solvability of the Dirichlet problem can be achieved entirely with interior
estimates.

Interior Schauder’s estimates for the Kolmogorov operator (6) are proved in
Shatyro [99], for the operator (8) in the homogeneous case by Manfredini in [79]
and in the non homogeneous case in Di Francesco and Polidoro [52]. In Lunardi
[78] global estimates with respect to the spatial variable are proved for operator (8)
with constant coefficients aij.

We denote by C˛
d .˝/ the space of the Hölder continuous function whose norms

j � j˛;dI˝ are weighted by the distance to the boundary of the bounded open set
˝ . Schauder’s type estimate can be proved using classical arguments, based on a
representation formula for the second derivatives of smooth functions in terms of
the fundamental solution of the operator and on its bounds in Theorem 2.1.

Theorem 4.1 (Schauder Interior Estimates) Let ˝ be a bounded open set, f 2
C˛

d .˝/, and let u be a bounded function belonging to C2C˛
loc .˝/ such that Lu D f in

˝ . Then u 2 C2C˛
d .˝/ and there exists a positive constant c, independent of u, such

that

juj2C˛;dI˝ � c .sup
˝

juj C jd2f j˛;dI˝/:
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Here jd2f j˛;dI˝ denotes the following norm :

jd2f j˛;dI˝ D sup
z2˝

d2z jf .z/j C sup
z;�2˝;z¤�

d2C˛z;�

jf .z/� f .�/j
d.z; �/˛

where dz D infw2˝ d.z;w/ and dz;� D minfdz; d�g.
And

juj2C˛;dI˝ D sup
z2˝

ju.z/j C
mX

iD1
sup
z2˝

dzj@xi u.z/j C sup
z;�2˝;z¤�

d2C˛z;�

ju.z/� u.�/j
d.z; �/˛

C
mX

iD1
sup

z;�2˝;z¤�
d2C˛z;�

j@xi u.z/� @xi u.�/j
d.z; �/˛

C jd2X0uj˛;dI˝

C
mX

i;jD1
jd2@2xixj

uj˛;dI˝:

(35)

Using Schauder apriori estimates we can extend potential theory to the operator
L with Hölder continuous coefficients. In fact, L endows RNC1 with a structure of
ˇ-harmonic space (according to the classical definition in [47]). Precisely, if U is
a bounded subset of R

NC1 the space .U;HL/ of L-harmonic C2C˛
loc .U/ functions

satisfies the axiom of positivity and separation, the Doob convergence property and
finally the property of resolutivity. In particular the last axiom requires that there
exists a basis (for the Euclidean topology) of bounded open set V called HL-regular
set such that the Dirichlet problem

�
Lu D 0 in V;
u D ' in @V; ' 2 C.@V/

(36)

is univocally solvable. We cannot expect that the parabolic cylinders are HL-regular
set. A geometric condition on @V ensuring the solvability of (36) is a generalization
of the Poincaré exterior ball condition. Precisely, we assume that for every z0 2 @V
there exists a L-non-characteristic outer normal � 2 R

NC1 such that Beucl.z0 C
�; j�j/ � R

NC1 n V and

mX

i;jD1
aijz0h�;Xiih�;Xji > 0:

The construction of a basis of HL-regular sets is proved using an argument due a
Bony [25] and the method of continuity.

The general potential theory ensures the existence of a generalized solution in
the sense of Perron-Wiener-Brelot-Bauer of the Dirichlet problem in an arbitrary
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bounded open set ˝ . This solution assumes the boundary data at every L-regular
point. A point z0 is L-regular if there exists a local barrier at z0.

Theorem 4.2 Manfredini [79] (Existence of a Generalized Solution). Let ˝ be a
bounded open set, f 2 C˛.˝/ and ' 2 C.@˝/. Then, there exists a solution u 2
C2C˛

loc .˝/ of Lu D f in ˝ such that limz!z0 u.z/ D 'z0 for every L-regular point
z0 2 @˝ .

Geometric properties of the boundary determine the continuous assumption of
boundary values. In the paper [79] the author introduce an exterior cone type
condition which extends the classical Zaremba criteria for the regularity of the
boundary points and a boundary condition for the Kolmogorov operator in R

3

proved in [89]. Besides, a geometric condition ensures the regularity for the L-
characteristic boundary point, when the Fichera function X0�z0 is positive definite.

Related results on the regularity of boundary points for the Dirichlet problem are
also proved in [77, 102–104].

4.2 A Global Regularity Result in Lp Spaces

We conclude this section with Lp-regularity results on the whole space for degen-
erate Ornstein-Uhlenbeck operators obtained by Bramanti et al. in [29] (constant
coefficients) and [31] (variable coefficients).

The class of operators considered in [29] is

A D
p0X

i;jD1
aijXiXj C X0;

where 1 � p0 � N, Xi D @xi and X0 D PN
i;jD1 bijxi@xj : Here A D .aij/1�i;j�p0 and

Bt D .bij/1�i;j�N are constant coefficient matrices. Moreover, Bt has the structure
described in (14) and A satisfies the ellipticity assumption (2), with p0 in place of m.

The evolution operator corresponding to A , that is

L D A � @t,

is a Kolmogorov-Fokker-Planck ultraparabolic operator, studied in Sect. 2.1. For
this operator, Lp global estimates on the strip S D R

N 
 Œ�1; 1� have been proved in
[29].

Theorem 4.3 For every p 2 .1;1/ there exists a constant c > 0 such that






@2xixj

u







Lp.S/
� c kLukLp.S/ for i; j D 1; 2; : : : ; p0; (37)
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for every u 2 C1
0 .S/ : The constant c depends on p;N; p0, the matrix B and the

number � in (2).

As a by-product of the above result, global Lp.RN/ estimates are deduced for the
operator A .

Theorem 4.4 For every p 2 .1;1/ there exists a constant c > 0; such that for
every u 2 C1

0

�
R

N
�

one has:






@2xixj

u







Lp.RN/
� c

n
kA ukLp.RN/ C kukLp.RN/

o
for i; j D 1; 2; : : : ; p0: (38)

We point out that the estimates of [97] for these type of operators only allow to get
local estimates in Lp, while the results presented here are global.

The same authors prove in [31] similar estimates in the case of variable
coefficients aij, entries of the matrix A. Precisely, if aij are uniformly continuous
and bounded functions in R

N , estimates analogous to (37) (with S D R
N 
 Œ�T;T�,

for some T > 0) and (38) still hold true. The proofs of the results in [31] rely on
a freezing argument, that allows to exploit results and techniques contained in [29],
and useful estimates proved in [52, 76].

Let us describe now the general strategy of the proof of Theorem 4.3, as well as
the main difficulties.

Since B has the structure described in (14), with the �-blocks possibly not null,
the operator L is left invariant with respect to a suitable Lie group of translations,
but, in general, is not homogeneous. A basic idea is that of linking the properties of
L to those of another operator of the same kind, which not only is left translation
invariant, but is also homogeneous of degree 2 with respect to a family of dilations.
Such an operator L0 always exists under our assumptions by Lanconelli and Polidoro
[76], and has been called “the principal part” of L. Note that the operator L0 fits
the assumptions of Folland’s theory [55]. The authors exploit the fact that, by
results proved in [52], the operator L has a fundamental solution � with some good
properties. First of all, � is translation invariant and has a fast decay at infinity,
in space; this allows to reduce the desired Lp estimates to estimates of a singular
integral operator whose kernel vanishes far off the pole. Second, this singular kernel,
which has the form � � @2xixj

� where � is a radial cutoff function, satisfies “standard
estimates” (in the language of singular integrals theory) with respect to a suitable
“local quasisymmetric quasidistance” d, which is a key geometrical object in the
paper under consideration. Namely,

d .z; �/ D 


��1 ı z




 (39)

where ��1 ı z is the Lie group operation related to the operator L; while k�k is
a homogeneous norm related to the principal part operator L0 (recall that L does
not have an associated family of dilations, and therefore does not have a natural
homogeneous norm). This “hybrid” quasidistance does not fulfill enough good
properties in order to apply the standard theory of “singular integrals in spaces of
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homogeneous type” (in the sense of Coifman and Weiss [46]). Hence, an ad hoc
theory of singular integrals in nonhomogeneous spaces (see [27]) and a nontrivial
covering argument are applied to get the desired Lp bound.

5 Non Linear Curvature Equations

We conclude this review studying non linear PDE’s. The standard prototype of non
linear equations have always been minimal surfaces and curvature equations. Also
in the setting of CR manifolds and subriemannian spaces, curvature equations can
be chosen as the prototype of non linear equations. These equations describe the
curvature or the evolution of a graph, with respect to vector fields, (or a metric)
dependent on the graph itself. This is why curvature equation in this setting can be
expressed in the form (1), where the coefficients �ij D �ij.u;Xiu/ of the vector fields
depend on the solution or its intrinsic derivatives. Equations of this type naturally
arise while studying curvature equations in CR manifolds, called Levi Equation
[39, 84], Monge-Ampère equation [96, 98] or minimal graphs in the Heisenberg
group (see for instance [34, 50, 86]), as well as in mathematical finance [43, 53].

Here we will focus in particular on Levi equations, for which much of the
technique has been developed.

5.1 Regularity Results for the Levi Equations

The Levi curvatures of a graph is the formal complex analogous of the curvature
operator in R

N . Namely it is the determinant of Levi form of a real hypersurface
in C

nC1 (or elementary symmetric functions of it). We can always assume that the
surface M is the graph of a C2 function u W ˝ ! R, where ˝  R

2nC1 is open. We
identify R

2nC1 
 R with C
nC1, and denote

z D .x; y/ D .z1; : : : ; zn; znC1/; zj D x2j�1 C ix2j; 1 � j � n; znC1 D x2nC1 C iy:

We let

�.u/ D f.x; y/ 2 ˝ 
 R W y D u.x/g 	 graph of u:

Calling f .x; y/ D y � u.x/, the Levi form associated with f at the point p D .x; u.x//
is the following Hermitian form:

Lp.u; �/ D
nC1X

j;kD1
fj;Nk.p/�j

N�k; � 2 TC

p .�.u//;
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where TC

p �.u/ denotes the complex tangent space to the graph of u. If we denote

by h the complexified second fundamental form, it turns our that hp.�; N�/ D
1

j@f .p/jLp.u; �/ for all � 2 TC

p .�.u//. Let �1.p/; : : : ; �n.p/ be the eigenvalues of

h. For 1 � m � n; �.m/ denotes the m-th elementary symmetric function and

K.m/
p .@D/ WD 1

. n
m /
�.m/.�1; : : : ; �n/;

we define the m-th Levi curvature operator as

L .m/.u/.x/ WD K.m/
p .�.u//; x 2 ˝;

(see the papers by Bedford and Gaveau [7], by Tomassini [101], and by Lanconelli
and Montanari [84]).

The Levi form has been introduced by E.E. Levi and used by Oka, Bremmerman
and Norgouet in order to characterize domains of holomorphy. The first existence
results were obtained in the Levi flat case, i.e. null Levi form, by Bedford and
Gaveau [7] and by Bedford and Klingenberg [8]. They used a purely geometric
approach, which does not work in the non Levi flat case. Slodkowski and Tomassini
in [100] introduced a PDE’s approach in studying boundary value problems for
the prescribed Levi curvature equation with curvature different from zero at any
point and proved L1 a-priori bound for the gradient. However the degeneracy of
the equation did not allow the mentioned authors to obtain internal regularity with
standard instruments. Almost 10 years later the work by Slodkowski and Tomassini,
in [39] G. Citti recasted the problem in dimension n D 1 in the set of sum of squares
of vector fields. Precisely, choosing the coefficients of the vector fields Xi D �ij@xj

of (1) as �ij D ıij for i D 1; 2,

�13.Du/ D ux2 � ux1ux3

1C u2x3
; �23.Du/ D �ux1 C ux2ux3

1C u2x3

and the Levi Curvature operator for n D 1 can be expressed as

L .1/ u D .X21 u C X22 u/ .1 C u2x3/ and ŒX1 ; X2� D � L .1/u

1 C u2x3
@x3 :

This representation tells us that, while prescribing the curvature, we can control
the rank of the Lie algebra generated by the vector fields, allowing to apply to the
equation the theory of subriemannian operators. E. Lanconelli and A. Montanari
studied the problem in full generality (see [84]) proving that L .m/ can be written as
follows:

L .m/.u/.x/ D
2nX

j;kD1
aj;kZjZk.u/; u 2 C2.˝;R/; ˝ � R

2nC1
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where

• Zj D @xj C aj@x2nC1
; aj D aj.Du/; j D 1; � � � ; 2n:

• .aj;k/j;kD1;:::;2n is symmetric and aj;k D aj;k.Du;D2u/:

Then, if j ¤ k, we have : Zj;k WD ŒZj;Zk� D qj;k @x2nC1
: When computed on m-

strictly pseudoconvex functions, i.e., on functions satisfying L .k/.u/.x/ > 0 for
every x 2 ˝ and 1 � k � m, the operator L .m/ displays a subelliptic property.
Precisely:

• For every x 2 ˝; qj;k.x/ ¤ 0 for suitable j; k.
• The matrix .aj;k.x//j;kD1;:::;2n is strictly positive definite at any point x 2 ˝:

Therefore, if u is m-strictly pseudoconvex, L .m/ is elliptic only along the 2n
linearly independent directions Zj D @xj C aj@x2nC1

	 ej C ajenC1; j D 1; : : : ; 2n,
and the missing ellipticity direction e2nC1 is recovered by commutation. This
commutation property can be restated as follows:

dim.spanfZj.x/;Zj;k.x/ W j; k D 1; : : : ; 2ng/ D 2n C 1; for every x 2 ˝:

We would also like to stress that L .m/ is a PDO in R
2nC1, which is fully nonlinear

if n > 1:
From the subelliptic properties of L .m/ several crucial results follow. Here we

only mention a Strong Comparison Principle and a regularity result.

Theorem 5.1 (Strong Comparison Principle) Let u; v W ˝ ! R, where ˝ 
R
2nC1 is open and connected. Assume u and v strictly m-pseudoconvex and

(i) u � v in ˝ , u.x0/ D v.x0/ at x0 2 ˝ .
(ii) L .m/.u/ � L .m/.v/ in ˝:

Then u D v in ˝ (see [39] for n D 1, [84] for the general case).

Theorem 5.2 (Smoothness of Classical Solutions) Let u 2 C2;˛.˝/ be a strictly
m-pseudoconvex solution to the K-prescribed Levi curvature equation

L .m/.u/ D K.�; u/ in ˝:

If K is strictly positive and C1 in its domain, then u 2 C1.˝/ (see [40] for n D 1,
[83] for 1 � m and [81] for the general case 1 � m � n).

Strategy of the Proof for n=1. In the low dimensional case, the proof of regularity
is based on an ad hoc approximation method, similar to the parametrix method (see
Sect. 2). The difficult here is the fact that the approximation has to be applied to the
vector fields, not to the metric of the space. Following [97], the approximating vector
fields Xi;w of Xi are obtained via Taylor approximation. The additional difficulty here
is due to the fact that a function differentiable in the direction of the vectors Xi will
not necessarily be differentiable in the direction Xi;w: We explicitly note that not
even the more recent results of Bramanti et al. [32] could allow to obtain the result.
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On the contrary a completely new approach to singular integrals has been introduced
in order to deal with these non linear vector fields.

Strategy of the Proof in Higher Dimension. Since the prescribed Levi curvature
equations present formal similarities with the real and complex Monge-Ampère
equations, which are elliptic PDE’s if evaluated on strictly convex and plurisubhar-
monic functions, respectively, we would like to briefly recall how the smoothness
follows from the classical Schauder theory for the real Monge-Ampère equation.
The real Monge-Ampère equation in a domain ˝ � R

n is of the form det.D2u/ D
f .x; u;Du/: If u 2 C2;˛.˝/ is a strictly convex solution to this equation, then the
linearized operator L (at u) is elliptic with C˛ coefficients, and Du satisfies a linear
uniformly elliptic equation of the type L.Du/ D F 2 C˛.˝/: By the classical
Schauder theory, Du 2 C2;˛.˝/. Repeating this argument one proves u 2 C1.˝/.
In our case it is not possible to argue in the same way, because the Levi curvature
equations are not elliptic at any point, also when restricted to the class of strictly
pseudoconvex functions. However, in [82] Montanari proved interior Schauder-type
estimates for solutions of Hv D f with H a linear second order subelliptic operator
of the type H D Pn

m;jD1 hmjZmZj with Hölder continuous coefficients and with Zj

first order partial differential operator with C1;˛ coefficients. This result is obtained
by a non standard freezing method and on the lifting argument by Rothshild and
Stein. The study of the operator H is reduced to the analysis of a family of left
invariant operators on a free nilpotent Lie group, whose fundamental solutions are
used a parametrix of the operator H; and provides an explicit representation formula
for solutions of the linear equation Hv D f : Once this is established, the strategy
to handle the prescribed m-th Levi curvature equation in higher dimension is to
apply the a priori estimates in [82] to first order Euclidean difference quotients of a
strictly m-pseudoconvex solution u, in order to prove that the function Du has Hölder
continuous second order horizontal derivatives. The smoothness result is then obtain
by a bootstrap argument.

5.2 A Negative Regularity Result

We want to stress that, in dimension n > 1, the classical C2;˛ solvability of the
Dirichlet problem for the K-prescribed Levi curvature equations is still a widely
open problem. Even though it is possible to give a definition of Lipschitz continuous
viscosity solutions (we refer [83]), these solutions are not expected to be smooth if
the data are smooth. Indeed, very recently, Gutierrez et al. [62] proved the following
negative regularity result. To state the theorem, we need some more notation. With
Br we denote the Euclidean ball in R

2nC1 centered at the origin and with radius r,
K denote a function of class C1 defined on the ball .B1 
 R/, strictly positive and
such that s 7! K.�; s/ is increasing. Then, we have the following result.
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Theorem 5.3 (Gutierrez et al. [62]) There exist r 2 .0; 1/ and a pseudoconvex
function u 2 Lip. NBr/ solving

L .n/.u/ D K.x; u/ in Br;

in the weak viscosity sense and such that

• u 62 C1.Br/ if n D 2.
• u 62 C1;ˇ for any ˇ > 1 � 2

n when n > 2.

This equation is the motivation for a number of interesting problems: symmetry
problems and isoperimetric integral inequalities [80] of surfaces with prescribed
Levi curvature, and regularity results of radially symmetric solutions.
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