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Abstract. We propose a language-independent symbolic execution fra-
mework for languages endowed with a formal operational semantics based
on term rewriting. Starting from a given definition of a language, a new
language definition is automatically generated, which has the same syn-
tax as the original one but whose semantics extends data domains with
symbolic values and adapts semantical rules to deal with these values.
Then, the symbolic execution of concrete programs is the execution of
programs with the new symbolic semantics, on symbolic input data. We
prove that the symbolic execution thus defined has the properties natu-
rally expected from it. A prototype implementation of our approach was
developed in the K Framework. We demonstrate the genericity of our
tool by instantiating it on several languages, and show how it can be
used for the symbolic execution and model checking of several programs.

1 Introduction

Symbolic execution is a well-known program analysis technique introduced in
1976 by James C. King [12]. Since then, it has proved its usefulness for testing,
verifying, and debugging programs. Symbolic execution consists in executing
programs with symbolic inputs, instead of concrete ones, and it involves the
processing of expressions involving symbolic values [19]. The main advantage of
symbolic execution is that it allows reasoning about multiple concrete executions
of a program, and its main disadvantage is the state-space explosion determined
by decision statements and loops. Recently, the technique has found renewed
interest in the formal-methods community due to new algorithmic developments
and progress in decision procedures. Current applications of symbolic execution
are diverse and include automated test input generation [13], [27], invariant
detection [18], model checking [11], and proving program correctness [26,7]. We
believe there is a need for a formal and generic approach to symbolic execution,
on top of which language-independent program analysis tools can be developed.

The state of a symbolic program execution typically contains the next state-
ment to be executed, symbolic values of program variables, and the path condi-
tion, which constrains past and present values of the variables (i.e., constraints
on the symbolic values are accumulated on the path taken by the execution for
reaching the current instruction). The states, and the transitions between them
induced by the program instructions generate a symbolic execution tree. When
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the control flow of a program is determined by symbolic values (e.g., the next
instruction to be executed is a conditional statement, whose Boolean condition
depends on symbolic values) then there is a branching in the tree. The path
condition can then be used to distinguish between different branches.

Our Contribution. The main contribution of the paper is a formal, language-
independent theory and tool for symbolic execution, based on a language’s
operational semantics defined by term-rewriting1. To our best knowledge, our
framework is the only one supporting automatic derivation of the symbolic se-
mantics of languages from their concrete semantics. On the theoretical side, we
introduce a transformation between languages such that the symbolic execution
in the source language is defined as the concrete execution in the transformed
language. We prove that the symbolic execution thus defined has the following
properties, which ensure that it is related to concrete program execution in a
natural way:

Coverage: to every concrete execution there corresponds a feasible symbolic one;
Precision: to every feasible symbolic execution there corresponds a concrete one;

where two executions are said to be corresponding if they take the same path,
and a symbolic execution is feasible if the path conditions along it are satisfiable.

On the practical side, we present a prototype implementation of our approach
in K [20], a framework dedicated to defining formal operational semantics of
languages. Developing our tool within the K framework enables us to benefit
from the many existing language definitions written in K. We briefly describe our
implementation as a language-engineering tool, and demonstrate its genericity
by instantiating it on several nontrivial languages defined in K. We emphasize
that the tool uses the K language-definitions as they are, without requiring
modifications, and automatically harnesses them for symbolic execution. The
examples illustrate program execution as well as Linear Temporal Logic model
checking and bounded model checking using our tool.

We note that the proposed approach deals with symbolic data, not with sym-
bolic code. Hence, it is restricted to languages in which data and code are dis-
tinct entities that cannot be mixed. This excludes, for example, higher-order
functional languages in which code can be passed as data between functions.

Related Work. There is a substantial number of tools performing symbolic ex-
ecution available in the literature. However, most of them have been developed
for specific programming languages and are based on informal semantics. Here
we mention some of them that are strongly related to our approach.

Java PathFinder [28] is a complex symbolic execution tool which uses a model
checker to explore different symbolic execution paths. The approach is applied
to Java programs and it can handle recursive input data structures, arrays,
preconditions, and multithreading. Java PathFinder can access several Satisfi-
ability Modulo Theories (SMT) solvers and the user can also choose between
1 Most existing operational semantics styles (small-step, big-step, reduction with eval-

uation contexts, . . . ) have been shown to be representable in this way in [25].
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multiple decision procedures. We have instantiated our generic approach to a
formal definition of Java defined in the K framework, and have performed sym-
bolic execution on several programs. This shows that our tool can tackle real
languages.

Another approach consists in combining concrete and symbolic execution, also
known as concolic execution. First, some concrete values given as input determine
an execution path. When the program encounters a decision point, the paths not
taken by concrete execution are explored symbolically. This type of analysis has
been implemented by several tools: DART [9], CUTE [23], EXE [4], PEX [5].
We note that our approach allows mixed concrete/symbolic execution; it can be
the basis for language-independent implementations of concolic execution.

Symbolic execution has initially been used in automated test generation [12].
It can also be used for proving program correctness. There are several tools (e.g.
Smallfoot [3]) which use symbolic execution together with separation logic to
prove Hoare triples. There are also approaches that attempt to automatically
detect invariants in programs([18], [22]). Another useful application of symbolic
execution is the static detection of runtime errors. The main idea is to perform
symbolic execution on a program until a state is reached where an error occurs,
e.g., null-pointer dereference or division by zero. We show that the implementa-
tion prototype we developed is also suitable for such static code analyses.

Another body of related work is symbolic execution in term-rewriting sys-
tems. The technique called narrowing, initially used for solving equation sys-
tems in abstract datatypes, has been extended for solving reachability problems
in term-rewriting systems and has sucessfully been applied to the analysis of se-
curity protocols [17]. Such analyses rely on powerful unification-modulo-theories
algorithms [8], which work well for security protocols since there are unification
algorithms modulo the theories involved there (exclusive-or, . . . ). This is not
always the case for programming languages with arbitrarily complex datatypes.

Regarding performances, our generic and formal tool is, quite understandably,
not in the same league as existing pragmatic tools, which are dedicated to specific
languages (e.g. Java PathFinder for Java, PEX for C#, KLEE for LLVM) and
are focused on specific applications of symbolic execution. Our purpose is to
automatically generate, from a formal definition of any language, a symbolic
semantics capable of symbolically executing programs in that language, and to
provide users with means for building their applications on top of our tool. For
instance, in order to generate tests for programs, the only thing that has to
be added to our framework is to request models of path conditions using, e.g.,
SMT solvers. Formal verification of programs based on deductive methods and
predicate abstractions are also currently being built on top of our tool.

Structure of the Paper. Section 2 introduces our running example (the sim-
ple imperative language imp) and its definition in K. Section 3 introduces a
framework for language definitions, making our approach generic in both the
language-definition framework and the language being defined; K and imp are
just instances for the former and latter, respectively. Section 4 shows how the
definition of a language L can be automatically transformed into the definition
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Id ::= domain of identifiers

Int ::= domain of integer numbers (including operations)

Bool ::= domain of boolean constants (including operations)
AExp :: = Int | AExp / AExp [strict]

| Id | AExp * AExp [strict]

| (AExp) | AExp + AExp [strict]
BExp :: = Bool

| (BExp) | AExp <= AExp [strict]

| not BExp [strict] | BExp and BExp [strict(1)]
Stmt :: = skip | { Stmt } | Stmt ; Stmt | Id := AExp

| while BExp do Stmt

| if BExp then Stmt else Stmt [strict(1)]
Code ::= Id | Int | Bool | AExp | BExp | Stmt | Code � Code

Fig. 1. K Syntax of IMP

of a language Ls by extending the data of L with symbolic values, and by pro-
viding the semantical rules of L with means to process those values. Section 5
deals with the symbolic semantics and with its relation to the concrete seman-
tics, establishing the coverage and precision results stated in this introduction.
Section 6 describes an implementation of our approach in the K framework and
show how it is automatically instantiated to nontrivial languages defined in K.
An Appendix (for the reviewers only, not to be included in the final version)
contains more detailed descriptions of the examples and of the tool.

2 A Simple Imperative Language and Its Definition in K

Our running example is imp, a simple imperative language intensively used in
research papers. The syntax of imp is described in Figure 1 and is mostly self-
explainatory since it uses a BNF notation. The statements of the language are
either assignments, if statements, while loops, skip (i.e., the empty statement),
or blocks of statements. The attribute strict in some production rules means
the arguments of the annotated expression/statement are evaluated before the
expression/statement itself. If strict is followed by a list of natural numbers then
it only concerns the arguments whose positions are present in the list.

Cfg ::= 〈〈Code〉k〈MapId,Int 〉env〉cfg
Fig. 2. K Configuration of IMP

The operational semantics of imp is given as
a set of (possibly conditional) rewrite rules. The
terms to which rules are applied are called con-
figurations. Configurations typically contain the
program to be executed, together with any additional information required for
program execution. The structure of a configuration depends on the language
being defined; for imp, it consists only of the program code to be executed and
an environment mapping variables to values.

Configurations are written in K as nested structures of cells : for imp this
consists of a top cell cfg, having a subcell k containing the code and a subcell
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〈〈I1 + I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg
〈〈I1 * I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg
〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧ I2 �=Int 0 ⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfg
〈〈I1 <= I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg
〈〈true and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈false ···〉k ···〉cfg
〈〈not B ···〉k ···〉cfg ⇒⇒⇒ 〈〈¬B ···〉k ···〉cfg
〈〈skip ···〉k ···〉cfg ⇒⇒⇒ 〈〈 ···〉k ···〉cfg
〈〈S1;S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 � S2 ···〉k ···〉cfg
〈〈{ S } ···〉k ···〉cfg ⇒⇒⇒ 〈〈S ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1〉k ···〉cfg
〈〈if false then S1 else S2〉k ···〉cfg ⇒⇒⇒ 〈〈S2〉k ···〉cfg
〈〈while B do S ···〉k ···〉cfg ⇒⇒⇒

〈〈if B then{ S ;while B do S }else skip ···〉k ···〉cfg
〈〈X ···〉k〈M〉env〉cfg ⇒⇒⇒ 〈〈lookup(X,M) ···〉k〈M〉env〉cfg
〈〈X := I ···〉k〈M〉env〉cfg ⇒⇒⇒ 〈〈 ···〉k〈update(X,M, I)〉env〉cfg

Fig. 3. K Semantics of IMP

env containing the environment (cf. Figure 2). The code inside the k cell is
represented as a list of computation tasks C1 � C2 � . . . to be executed in
the given order. Computation tasks are typically statements and expressions.
The environment in the env cell is a set of bindings of identifiers to values, e.g.,
a �→ 3, b �→ 1.

The semantics of imp is shown in Figure 3. Each rewrite rule from the se-
mantics specifies how the configuration evolves when the first computation task
from the k cell is executed. Dots in a cell mean that the rest of the cell re-
mains unchanged. Most syntactical constructions require only one semantical
rule. The exceptions are the conjunction operation and the if statement, which
have Boolean arguments and require two rules each (one rule per Boolean value).

In addition to the rules shown in Figure 3 the semantics of imp includes ad-
ditional rules induced by the strict attribute. We show only the case of the if
statement, which is strict in the first argument. The evaluation of this argument
is achieved by executing the following rules:

〈〈ifBE then S1 else S2 � C〉k ···〉cfg ⇒⇒⇒ 〈〈BE�if � then S1 else S2�C〉k ···〉cfg
〈〈B�if � then S1 else S2 � C〉k ···〉cfg ⇒⇒⇒ 〈〈if B then S1 else S2�C〉k ···〉cfg

Here, BE ranges over BExp \{false, true}, B ranges over the Boolean values
{false, true}, and � is a special variable, destined to receive the value of BE
once it is computed, typically, by the other rules in the semantics.
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3 The Ingredients of a Language Definition

In this section we identify the ingredients of language definitions in an algebraic
and term-rewriting setting. The concepts are explained on the K definition of
imp. We assume the reader is familiar with the basics of algebraic specification
and rewriting. A language L can be defined as a triple (Σ, T ,S), consisting of:

1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for
configurations and a sort Bool for constraint formulas. For the sake of pre-
sentation, we assume in this paper that the constraint formulas are Boolean
terms built with a subsignature ΣBool ⊆ Σ including the boolean constants
and operations. Σ may also include other subsignatures for other data sorts,
depending on the language L (e.g., integers, identifiers, lists, maps,. . . ). Let
ΣData denote the subsignature of Σ consisting of all data sorts and their
operations. We assume that the sort Cfg and the syntax of L are not data,
i.e., they are defined in Σ \ ΣData. Let TΣ denote the Σ-algebra of ground
terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms
with variables, TΣ,s(Var) denote the set of terms of sort s with variables,
and var (t) denote the set of variables occurring in the term t.

2. A ΣData-model D, which interprets the data sorts and operations. We assume
that the model D is reachable, i.e., for all d ∈ D there exists a term t ∈ TΣData

such that d = Dt. Let T � T (D) denote the free Σ-model generated by D,
i.e., T interprets the non-data sorts as ground terms over the signature

(Σ \ΣData) ∪
⋃

d∈Data

Dd (1)

where Dd denotes the carrier set of the sort d in the algebra D, and the
elements of Dd are added to the signature Σ \ΣData as constants of sort d.
The satisfaction relation ρ |= b between valuations ρ and constraint formulas
b ∈ TΣ,Bool(Var) is defined by ρ |= b iff ρ(b) = Dtrue . For simplicity, we often
write in the sequel true, false, 0, 1 . . . instead of Dtrue ,Dfalse ,D0,D1, . . .

3. A set S of rewrite rules. Each rule is a pair of the form l ∧∧∧ b ⇒⇒⇒ r, where
l, r ∈ TΣ,Cfg(Var) are the rule’s left-hand-side and the right-hand-side, re-
spectively, and b ∈ TΣ,Bool(Var) is the condition. The formal definitions for
rules and for the transition system defined by them are given below.

We explain these concepts on imp. Nonterminals in the syntax (Id, Int,Bool, . . .)
are sorts in Σ. Each production from the syntax defines an operation in Σ; e.g,
the production AExp ::= AExp + AExp defines the operation _+_ : AExp ×
AExp → AExp. These operations define the constructors of the result sort. For
the sort Cfg , the only constructor is 〈〈_〉k〈_〉env〉cfg : Code ×MapId,Int → Cfg .
The expression 〈〈X := I � C〉k〈X �→ 0 Env〉env〉cfg is a term of TCfg(Var), where
X is a variable of sort Id, I is a variable of sort Int, C is a variable of sort Code
(the rest of the computation), and Env is a variable of sort MapId,Int (the rest
of the environment). The data algebra D interprets Int as the set of integers,
the operations like +Int (cf. Figure 3) as the corresponding usual operation on
integers, Bool as the set of Boolean values {false, true}, the operation like ∧ as
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the usual Boolean operations, the sort MapId,Int as the set of mapsX �→ I, where
X ranges over identifiers Id and I over the integers. The value of an identifier
X is an environment M is lookup(X,M), and the environment M , updated by
binding an identifier X to a value I, is update(X,M, I). Here, lookup() and
update() are operations in a signature ΣMap ⊆ ΣData of maps. The other sorts,
AExp, BExp, Stmt, and Code, are interpreted in the algebra T as ground terms
over a modification of the form (1) of the signature Σ, in which data subterms
are replaced by their interpretations in D. For instance, the term if 1 >Int

0 then skip else skip is interpreted as if Dtrue then skip else skip.
We now formally introduce the notions required for defining semantical rules.

Definition 1 (Pattern [21]). A pattern is an expression of the form π ∧∧∧ b,
where π ∈ TΣ,Cfg(Var) is a basic pattern and b ∈ TΣ,Bool(Var). If γ ∈ TCfg and
ρ :Var → T we write (γ, ρ) |= π ∧∧∧ b for γ = ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condition b
gives additional constraints these configurations must satisfy.
Remark 1. The above definition is a particular case of a definition in [21]. There,
a pattern is a first-order logic formula with configuration terms as sub-formulas.
In this paper we keep the conjunction notation from first-order logic but separate
basic patterns from constraints. Note that first-order formulas can be encoded as
terms of sort Bool, where the quantifiers become constructors. The satisfaction
relation |= is then defined, for such terms, like the usual FOL satisfaction.

We identify basic patterns π with patterns π ∧∧∧ true. Sample patterns are
〈〈I1 + I2 � C〉k〈Env〉env〉cfg and 〈〈I1 / I2 � C〉k〈Env〉env〉cfg ∧∧∧ I2 �=Int 0.

Definition 2 (Rule, Transition System). A rule is a pair of patterns of the
form l ∧∧∧ b ⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules
defines a labelled transition system (TCfg ,⇒S) such that γ α

=⇒S γ
′ iff there exist

α � (l∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r.

4 Symbolic Semantics by Language Transformation

In this section we show how a new definition (Σs, T s,Ss) of a language Ls is
automatically generated from a given a definition (Σ, T ,S) of a language L.
The new language Ls has the same syntax as L , but its semantics extends L’s
data domains with symbolic values and adapts the semantical rules of L to deal
with the new values. Then, the symbolic execution of L programs is the concrete
execution of the corresponding Ls programs on symbolic input data, i.e., the
application of the rewrite rules in the semantics of Ls. Building the definition of
Ls amounts to:

1. extending the signature Σ to a symbolic signature Σs;
2. extending the Σ-algebra T to a Σs-algebra T s;
3. turning the concrete rules S into symbolic rules Ss.

We then obtain the symbolic transition system (T s
Cfgs ,⇒T s

Ss ) by using Defini-
tions 1,2 for Ls, just like the transition system (TCfg ,⇒T

S ) was defined for L.
Section 5 deals with the relations between the two transition systems.
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V s

TΣData(V s) Ds

D

ι

ϑ

ι

ϑ ϑs

Fig. 4. Diagram Characterising
Data Symbolic Domain Ds

V s

TΣ(V s) T s�Σ

T

ι

ϑ

ι

ϑ ϑs

Fig. 5. Lifting Diagram in Fig. 4
to from Data Domain D to T s�Σ

4.1 Extending the Signature Σ to a Symbolic Signature Σs

The signature Σs extends Σ with a sort Cfgs and a constructor 〈_,_〉 : Cfg ×
Bool → Cfgs, which builds symbolic configurations as pairs of configurations
over symbolic data and Booleans term denoting path conditions.

Example 1. For the imp example we enrich the configuration with a new cell:

Cfgs ::= 〈〈Code〉k〈MapId,Int〉env〈Bool〉cnd〉cfg
where the new cell cnd includes a formula meant to express the path condition.

4.2 Extending the Model T to a Symbolic Model T s

We first deal with the symbolic domain Ds, a ΣData-algebra with the following
properties:
1. The ΣData-algebra D is a sub-algebra of Ds.
2. We assume an infinite, sort-wise set of symbolic values V s of the data sorts,

disjoint from Var and from symbols in Σ, and assume that there is an
injection ι : V s → Ds such that for any valuation ϑ : V s → D there exists
a unique algebra morphism ϑs : Ds → D such that the diagram in Figure 4
commutes. The diagram essentially says that the interpretation of terms like
as +Int b

s via ϑ is the same as that given by the composition of ι with ϑs.
3. The satisfaction relation |= is extended to constraint formulas φs ∈ Ds

Bool

and valuations ϑ : V s → D such that ϑ |= φs iff ϑs(φs) = Dtrue .
For instance, Ds can be the algebra of ground terms over the signature

ΣData(V s ∪ D), or the quotient of this algebra modulo the congruence defined
by some set of equations (which can be used in practice as simplification rules).

We leave some freedom in choosing the symbolic domain, to allow the use of
decision procedures or other efficient means for handling symbolic artefacts.

By the definition of T = T (D), there is a unique Σ-morphism T → T (Ds).
We note that the extended definition (Σ,S, T (Ds)) is not suitable for symbolic
executions because the symbolic values in V s are constrained by the computa-
tions and decisions taken up to that point. This is why we extended the signature
to Σs, in which the path condition becomes a component of the configuration.

Next, we naturally define the model T s as being the free Σs-model generated
by Ds. Since there is an inclusion signature morphism Σ ↪→ Σs, T s can also be
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seen as a Σ-model T s�Σ , where only the interpretations of the symbols from Σ
are considered. This allows us to lift up the diagram in Figure 4 at the level of
the model T s�Σ and in particular to define ϑs : T s�Σ → T as the unique function
from T s�Σ to T that makes the diagram in Figure 5 commute. Furthermore, Σ
and Σs have the same data sub-signature and D is a sub-algebra of Ds, hence
there is a unique Σ-morphism T → T s�Σ . All these properties of the model T s

show that it is a suitable model for both concrete and symbolic executions.
However, the semantical rules S still have to be transformed into rules on

symbolic configurations including path conditions. Moreover, we must ensure
that the transition system defined by the new rules has the properties of coverage
and precision with respect to the transition system defined by (Σ,S, T ). This
requires some transformations of the rules S, to be presented later in the paper.
The following lemma is crucial for obtaining symbolic executions via matching.

Lemma 1 (Semantic Unification is Reduced to Matching). Let us con-
sider l ∈ TΣ(Var), ρ : Var → T , πs ∈ T s�Σ, ϑ : V s → T such that l is linear,
any data sub term of l is a variable, and ρ(l) = ϑs(πs) (i.e., l and πs are se-
mantically unifiable in T ). Then there is a (symbolic) valuation σ : Var → T s�Σ
such that σ(l) = πs and ϑs(σ(x)) = ρ(x) for each x ∈ Var .

Proof. We first prove the slightly weaker property (♦): there exists a valuation
σ : var (l) → T s�Σ such that σ(l) = πs and ϑs(σ(x)) = ρ(x) for each x ∈ var(l).

To prove (♦) we proceed by structural induction on l. If l is a variable x, then
we take σ(x) = πs and the conclusion of the lemma is obviously satisfied. We
assume now that l = f(l1, . . . , ln), n ≥ 0. The result sort of f is a non-data sort
by the hypotheses, hence Tf (a1, . . . , an) = f(a1, . . . , an) and T s

f (b1, . . . , bn) =
f(b1, . . . , bn) by the definition of T and T s, respectively. Consequently, ρ(l) =
f(ρ(l1), . . . , ρ(ln)), πs = f(πs

1, . . . , π
s
n)), ϑs(πs) = f(ϑs(πs

1), . . . , ϑ
s(πs

n)), and
ρ(li) = ρs(πs

i ), i = 1, . . . , n, for certain πs
1, . . . , π

s
n ∈ T s�Σ. Recall that for each

sort s in Σ, (T s�Σ)s = T s
s . Each term li preserves the properties of l, hence there

is σi satisfying the conclusion of lemma for li and πs
i , i.e. σi(li) = πs

i and ρ(x) =
ϑs(σi(x)) for each x ∈ var (li). Since l is linear, var (l) = var (l1)� . . .�var (ln). It
follows we may define σ : var(l) → T s�Σ such that σ(x) = σi(x) iff x ∈ var (li).
We have σ(l) = f(σ(l1), . . . , σ(ln)) = f(σ1(l1), . . . , σn(ln)) = f(πs

1, . . . , π
s
n)) =

πs. The property ρ(x) = ϑs(σ(x)) for each x ∈ var(l) is inherited from σi.
The prove the lemma, we need to extend the valuation σ to Var such that

ϑs(σ(x)) = ρ(x) for all x ∈ Var , using the reachability of the data domain D:

– first, we prove that the function ϑs : T �Σ→ T is surjective. For this, consider
any τ ∈ T , thus, τ � C[τ1, . . . τn] with τ1, . . . , τn ∈ D and C a Σ-context,
since T is the free Σ-model generated by D. Since D is reachable, τi =
Dti for some ti ∈ TΣData , i = 1, . . . , n. Then, we have ϑs(ι(C[t1, . . . tn])) =
ϑ(C[t1, . . . tn]) per the diagram in Figure 5, and since C[t1, . . . tn] ∈ TΣ we
have ϑ(C[t1, . . . tn]) = TC[t1,...tn] = Tt = τ (as ϑ : TΣ(V

s) → T maps ground
terms in TΣ(∅) to their interpretation in T ). Thus, for an arbitrary τ ∈ T we
found μ � ι(C[t1, . . . tn]) satisfying ϑ(μ) = τ , i.e., ϑs : T �Σ→ T is surjective.

– thus, for each x ∈ Var \ var(l), we choose σ(x) s.t. ϑs(σ(x)) = ρ(x). ��
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Definition 3 (Satisfaction Relation for Configurations). A concrete con-
figuration γ ∈ TCfg satisfies a symbolic configuration 〈πs, φs〉 ∈ T s

Cfgs , written
γ |= 〈πs, φs〉, if there exists ϑ : V s → D such that γ = ϑs(πs) and ϑs(φs) = true.

Example 2. Assume bs is a symbolic value of sort Bool. The configuration
γ � 〈〈if true then skip else skip〉k〈.〉env〉cfg

satisfies the symbolic configuration

〈πs, φs〉 � 〈〈if bs then skip else skip〉k〈.〉env〈bs〉cnd〉cfg
thanks to any valuation ϑ that maps bs to true.

4.3 Turning the Concrete Rules S into Symbolic Rules Ss

We show how to automatically build the symbolic-semantics rules Ss from the
concrete semantics-rules S, by applying the three steps described below.
1. Linearising Rules A rule is (left) linear if any variable occurs at most once in
its left-hand side. A nonlinear rule can always be turned into an equivalent linear
one, by renaming the variables occurring several times and adding equalities
between the renamed variables and the original ones to the rule’s condition. For
example, the last rule from the original imp semantics (Fig. 3) could have been
written as a nonlinear rule:

〈〈X ···〉k〈X �→ I ···〉env ···〉cfg ⇒⇒⇒ 〈〈I ···〉k〈X �→ I ···〉env ···〉cfg

To linearise it we just add a new variable, say X ′, and a condition, X ′ = X :
〈〈X ···〉k〈X ′ �→ I ···〉env ···〉cfg ∧∧∧X = X ′ ⇒⇒⇒ 〈〈I ···〉k〈X �→ I ···〉env ···〉cfg

2. Replacing Data Subterms by Variables Let Dpos(l) be the set of positions ω2

of the term l such that lω is a maximal subterm of a data sort. The next step
of our rule transformation consists in replacing all the maximal data subterms
of l by fresh variables. The purpose of this step is to make rules match any
configuration, including the symbolic ones.

Thus, we transform each rule l∧∧∧ b⇒⇒⇒ r into the rule
l[lω/Xω]ω∈Dpos(l) ∧∧∧ (b ∧

∧
ω∈Dpos(l)(Xω = lω))⇒⇒⇒ r,

where each Xω is a new variable of the same sort as lω.
Example 3. Consider the following rule for if from the imp semantics:

〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg
We replace the constant true with a Boolean variable B, and add the condition
B = true:

〈〈if B then S1 else S2 ···〉k ···〉cfg ∧∧∧B = true ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg

3. Adding Formulas to Configurations and Rules The last transformation step
consists in transforming each rule l ∧∧∧ b ⇒⇒⇒ r in S obtained after the previous
steps, into the following one:

〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉 (2)
2 For the notion of position in a term and other rewriting-related notions, see, e.g., [2].
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where ψ ∈ Var is a fresh variable of sort Bool (i.e. it does not occur in the
rules S) and 〈_,_〉 is the pairing operation in Σs. This means that when a
symbolic transition is performed on a symbolic configuration the current path
condition is enriched with the rule’s condition.

Example 4. The last rule for if from the (already transformed) imp semantics
is further transformed into the following rule in Ss:

〈〈if B then S1 else S2 ···〉k〈ψ〉cnd ···〉cfg ⇒⇒⇒ 〈〈S1 ···〉k〈ψ ∧ (B = true)〉cnd ···〉cfg

4.4 Defining the Symbolic Transition System

The triple (Σs, T s, Ds) defines a language Ls. Then, the transition system
(T s

Cfgs ,⇒Ss) can be defined using Definitions 1 and 2 applied to Ls. For this,
we note that both sides of the rules of the form (2) are terms in TΣs,Cfgs(Var),
thus, according to Definition 1 applied to Ls, they are (basic) patterns of Ls,
and then Definition 2 for Ls gives us the transition system (T s

Cfgs ,⇒Ss).

5 Relating the Concrete and Symbolic Semantics of L

We now relate the concrete and symbolic semantics of L, i.e., the transition
systems (TCfg ,⇒T

S ) and (T s
Cfgs ,⇒T s

Ss ). We prove certain simulation relations be-
tween them and obtain the coverage and precision properties as corollaries.

The next lemma shows that the symbolic transition system forward-simulates
the concrete transition system. We denote by αs ∈ Ss the rule obtained by
transforming α ∈ S (Section 4.3).

Lemma 2. (T s
Cfgs ,⇒Ss) forward simulates (TCfg ,⇒S): for all configurations γ,

symbolic configurations 〈πs, φs〉 and rules α ∈ S, if γ |= 〈πs, φs〉 and γ α
=⇒S γ

′

then there exists 〈π′s, φ′
s〉 such that 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′
s〉 and γ′ |= 〈π′s, φ′

s〉.

Proof. From γ
α

=⇒S γ′ we obtain α � (l ∧∧∧ b ⇒⇒⇒ r) ∈ S and ρ : Var → T such
that γ = ρ(l), ρ |= b, and γ′ = ρ(r). Recall that αs � (〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉).

From γ |= 〈πs, φs〉 we obtain ϑ : V s → D such that γ = ϑ(πs) and ϑ |= φs.
Using Lemma 1 we obtain the valuation σ such that σ(l) = πs and ρ(x) =

ϑ(σ(x)) for each x ∈ Var .
We define π′s � σ(r) and φ′s � σ(b) ∧ φs. Consider the valuation σ[ψ �→ φs],

which behaves like σ on Var \ {ψ} and maps ψ to φs.
We prove 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′
s〉 using the valuation σ[ψ �→ φs].

– First, (σ[ψ �→ φs)](〈l, ψ〉) = 〈σ(l), φs〉 = 〈πs, φs〉, since ψ does not occur in
the rule, thus, the left-hand side 〈l, ψ〉 of the rule αs matches 〈πs, φs〉.

– Second, 〈π′s, φ′
s〉 = 〈σ(r), σ(b) ∧ φs〉 = 〈(σ[ψ �→ φs)](r), (σ[ψ �→ φs)](ψ ∧

b)〉 = (σ[ψ �→ φs)])(〈r, ψ ∧ b〉). Thus, αs rewrites 〈πs, φs〉 to 〈π′s, φ′s〉.
This proves 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′
s〉. There remains to prove γ′ |= 〈π′s, φ′

s〉.
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For this we use the same valuation ϑ : V s → D as above. We have ϑ(π′s) =
ϑ(σ(r)), which, using Lemma 1, is ρ(r), and the latter equals γ′, cf. beginning
of the proof. Thus, γ′ = ϑ(π′s).

On the other hand, ϑ(φ′s) = ϑ(σ(b) ∧ φs) = ϑ(σ(b)) ∧ ϑ(φs) = ρ(b) ∧ ϑ(φs).
We have:

– ρ(b) = true because we have ρ |= b from the beginning of the proof;
– ϑ(φs) = true because ϑ |= φs, also from the beginning of the proof;

which implies ρ(b) ∧ ϑ(φs) = true, thus, ϑ(φ′s) = true, which together with
γ′ = ϑ(π′s) proved above implies γ′ |= 〈π′s, φ′

s〉, which completes the proof. ��

For β � β1 · · ·βn ∈ S∗ we write γ0
β

=⇒S γn for γi
βi+1
=⇒S γi+1 for all i =

0, . . . , n−1, and use a similar notation for sequences of transitions in the symbolic
transition system, where we denote βs the sequence βs

1 · · ·βs
n ∈ Ss,∗.

We can now state the coverage theorem as a corollary to the above lemma:

Theorem 1 (Coverage). If γ β
=⇒S γ′ and γ |= 〈πs, φs〉 then there is a sym-

bolic configuration 〈π′s, φ′
s〉 such that γ′ |= 〈π′s, φ′

s〉 and 〈πs, φs〉 βs

=⇒Ss 〈π′s, φ′
s〉

The coverage theorem says that if a sequence β of rewrite rules can be executed
starting in some initial configuration, the corresponding sequence of symbolic
rules can be fired as well. That is, if a program can execute a certain control-
flow path concretely, then it can also execute that path symbolically.

We would like, naturally, to prove the converse result (precision) based on
a simulation result similar to Lemma 2: for all configurations γ and symbolic
configuration 〈πs, φs〉, if γ |= 〈πs, φs〉 and 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉 then there is
a configuration γ′ such that γ α

=⇒T
S γ′ and γ′ |= 〈π′s, φ′s〉. But this is obviously

false, since it would imply that φ′s is satisfiable, which is not true in general.
Thus, we need another way of proving the precision result. The next lemma

says that the concrete semantics backwards-simulates the symbolic one:

Lemma 3. (TCfg ,⇒S) backward simulates (T s
Cfgs ,⇒Ss): for all configurations

γ′ and all symbolic configurations 〈πs, φs〉 and 〈π′s, φ′
s〉, if 〈πs, φs〉 αs

=⇒Ss

〈π′s, φ′
s〉 and γ′ |= 〈π′s, φ′

s〉 then there exists γ ∈ TCfg such that γ |= 〈πs, φs〉
and γ α

=⇒S γ
′.

Proof. The transition 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′
s〉 is obtained by applying a symbolic

rule αs � (〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉) ∈ Ss, with some valuation that has the form
(σ[ψ �→ φs)] : Var → T s�Σ . Thus, σ(l) = πs, π′s = σ(r), and φ′s = φs ∧ σ(b).

From γ′ |= 〈π′s, φ′
s〉 we obtain ϑ : V s → T such that γ′ = ϑs(π′s) =

ϑs(σ(r)) = (ϑs ◦ σ)(r) and true = ϑs(φ′s) = ϑs(φs) ∧ (ϑs ◦ σ)(b), thus, ϑs(φs) =
true and (ϑs ◦ σ)(b) = true.

Consider also ρ : Var → T � ϑs ◦ σ, and let γ � ρ(l). We have:

– on the one hand, γ = ρ(l) = (ϑs ◦σ)(l) = ϑs(σ(l)) = ϑs(πs), i.e., γ = ϑs(πs);
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– on the other hand, ϑs(φs) = true was obtained above;

which proves γ |= 〈πs, φs〉. There remains to prove γ α
=⇒S γ′. To prove this we

consider the rule α = (l ∧∧∧ r ⇒⇒⇒ b) ∈ S whose symbolic version is αs from the
beginning of the proof, and the valuation ρ = ϑs ◦ σ from above. We have:

– γ = ρ(l) by definition of γ;
– ρ(b) = true, which is just (ϑs ◦ σ)(b) = true that we obtained above;
– γ′ = ρ(r), since we obtained above γ′ = (ϑs ◦ σ)(r).

This proves γ α
=⇒S γ

′ and completes the proof. ��

A consequence of this lemma is the precision theorem; it says that if a sequence
βs of symbolic rules can be executed starting in some initial symbolic configu-
ration and reaches a satisfiable final symbolic configuration (thus, implicitly, all
intermediary path conditions are satisifiable, since the final path condition is log-
ically stronger than all the intermediary ones) then the corresponding sequence
of concrete rules can be fired as well.

Theorem 2 (Precision). If 〈πs, φs〉 βs

=⇒Ss 〈π′s, φ′
s〉 and γ′ |= 〈π′s, φ′

s〉 then
there exists a configuration γ such that γ |= 〈πs, φs〉 and γ β

=⇒S γ
′ .

6 Implementation

In this section we present a prototype tool implementing our symbolic execution
approach. In Section 6.1 we briefly present our tool and its integration within
the K framework. In Section 6.2 we illustrate the most significant features of the
tool by the means of use cases involving nontrivial languages and programs.

6.1 Symbolic Execution within the K Framework

Our tool is part of K [20,24], a semantic framework for defining operational
semantics of programming languages. In K the definition of a language, say, L,
is compiled into a rewrite theory. Then, the K runner executes programs in L
by applying the resulting rewrite rules to configurations containing programs.

Our tool follows the same process. The main difference is that our new K

compiler includes the transformations presented in Section 4.3. The effect is that
the compiled rewrite theory defines the symbolic semantics of L instead of its
concrete semantics. We note that the symbolic semantics can execute programs
with concrete inputs as well. In this case it behaves like the concrete semantics.

The current version of the tool provides symbolic support for some of the
most standard K data types: Booleans, integers, strings, as well as arrays whose
size, index, and content can be symbolic. The symbolic semantics is in general
nondeterministic: when presented with symbolic inputs, a program can take
several paths. Therefore the K runner can be called with several options: it can
execute one nondeterministically chosen path, or all possible paths, up to a given
depth; it can also be run in a step-by-step manner. During the execution, the
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path conditions (which are computed by the symbolic semantics) are checked
for satisfiability using the axioms of the symbolic data domains as simplification
rules and, possibly, calls to the Z3 SMT solver[6]. For efficiency reasons the SMT
solver is called only if the rules add non-trivial formula to path conditions, which
cannot be simplified to true or false by the axioms of the symbolic domains. Users
can also fine-tune the amount of calls to the solver in order to achieve a balance
between the precision and the execution time of their symbolic execution. There
is also an option for displaying the transformed K definitions.

The current version of the tool has some limitations, which we are planning to
deal with in the future: only data constants, not full data subterms, are replaced
with variables, the tool is connected to only one prover (Z3), and it provides
only a limited support for building applications based on symbolic execution.

6.2 Use Cases

We show three use cases for our tool: the first one illustrates the execution
and LTL model checking for imp programs extended with I/O instructions, the
second one demonstrates the use of symbolic arrays in the simple language – an
extension of imp with functions, arrays, threads and several other features, and
the third one shows symbolic execution in an object-oriented language called
kool [10]. The simple and kool languages have existed almost as long as the
K framework and have intensively been used for teaching programming language
concepts. Our tool is applied on the current definitions of simple and kool.

imp with I/O Operations. We first enrich the imp language (Figure 1) with
read and print operations. This enables the execution of imp programs with
symbolic input data. We then compile the resulting definition by calling the
K compiler with an option telling it to generate the symbolic semantics of the
language by applying the transformations described in Section 4.3.

int n, s;
n = read();
s = 0;
while (n > 0) {

s = s + n;
n = n - 1;

}
print("Sum = ", s, "\n");

Fig. 6. sum.imp

int k, a, x;
a = read();
x = a;
while (x > 1) {
x = x / 2;
k = k + 1;
L : {}

}

Fig. 7. log.imp

Programs such as sum.imp shown in Figure 6 can now be run with the K

runner in the following ways:

1. with symbolic or with concrete inputs;
2. on one arbitrary execution path, or on all paths up to a given bound;
3. in a step-wise manner, or by letting the program completely execute a given

number of paths.
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For example, by running sum.imp with a symbolic input n (here and thereafter we
use mathematical font for symbolic values) and requiring at most five completed
executions, the K runner outputs the five resulting, final configurations, one of
which is shown below, in a syntax slightly simplified for readability:
<k> . </k>
<path-condition> n > 0 ∧ (n− 1 > 0) ∧ ¬((n− 1)− 1 > 0) </path-condition>

<state>
n |-> (n− 1) − 1

s |-> n+ (n− 1)

</state>
The program is finished since the k cell has no code left to execute. The path
condition actually means n = 2, and in this case the sum s equals n+(n−1) = 2+
1, as shown by the state cell. The other four final configurations, not shown here,
compute the sums of numbers up to 1, 3, 4, and 5, respectively. Users can run
the program in a step-wise manner in order to see intermediary configurations in
additional to final ones. During this process they can interact with the runner,
e.g., by choosing one execution branch of the program among several, feeding
the program with inputs, or letting the program run on an arbitrarily chosen
path until its completion.

LTL Model Checking. The K runner includes a hook to the Maude LTL (Linear
Temporal Logic) model checker [16]. Thus, one can model check LTL formulas
on programs having a finite state space (or by restricting the verification to a
finite subset of the state space). This requires an (automatic) extension of the
syntax and semantics of a language for including labels that are used as atomic
propositions in the LTL formulas. Predicates on the program’s variables can be
used as propositions in the formulas as well, using the approach outlined in [15].

Consider for instance the program log.imp in Figure 7, which computes the
integer binary logarithm of an integer read from the input. We prove that when-
ever the loop visits the label L, the inequalities x∗2k ≤ a < (x+1)∗2k hold. The
invariant was guessed using several step-wise executions. We let a be a symbolic
value and restrict it in the interval (0..10) to obtain a finite state space. We prove
that the above property, denoted by logInv(a,x,k) holds whenever the label L
is visited and a is in the given interval, using the following command (again,
slightly edited for better readability):

$ krun log.imp -cPC="a >Int 0 ∧Bool a <Int 10" -cIN="a"
-ltlmc "�Ltl (L→Ltl logInv(a, x, k))"

The K runner executes the command by calling the Maude LTL model-checker
for the LTL formula �Ltl (L →Ltl logInv(a, x, k)) and the initial configuration
having the program log.imp in the computation cell k, the symbolic value a
in the input cell in, and the constraint a >Int 0 ∧Bool a <Int 10 in the path
condition. The result returned by the tool is that the above LTL formula holds.

simple, Symbolic Arrays, and Bounded Model Checking. We illustrate
symbolic arrays in the simple language and shows how the K runner can directly
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void init(int[] a, int x, int j){
int i = 0, n = sizeOf(a);
a[j] = x;
while (a[i] != x && i < n) {

a[i] = 2 * i;
i = i + 1;

}
if (i > j) {

print("error");
}

}

void main() {
int n = read();
int j = read();
int x = read();
int a[n], i = 0;
while (i < n) {
a[i] = read();
i = i + 1;

}
init(a, x, j);

}

Fig. 8. simple program: init-arrays

be used for performing bounded model checking. In the program in Figure 8, the
init method assigns the value x to the array a at an index j, then fills the array
with ascending even numbers until it encounters x in the array; it prints error
if the index i went beyond j in that process. The array and the indexes i, j are
parameters to the function, passed to it by the main function which reads them
from the input. In [1] it has been shown, using model-checking and abstractions
on arrays, that this program never prints error.

We obtain the same result by running the program with symbolic inputs and
using the K runner as a bounded model checker:

$ krun init-arrays.simple -cPC="n >Int 0" -search -cIN="n j x a1 a2 a3"
-pattern="<T> <out> error </out> B:Bag </T>"

Search results:
No search results

The initial path condition is n >Int 0. The symbolic inputs for n,j,x are entered
as n j x, and the array elements a1 a2 a3 are also symbolic. The –pattern option
specifies a pattern to be searched in the final configuration: the text error should
be in the configuration’s output buffer. The above command thus performs a
bounded model-checking with symbolic inputs (the bound is implicitly set by the
number of array elements given as inputs - 3). It does not return any solution,
meaning that that the program will never print error.

The result was obtained using symbolic execution without any additional tools
or techniques. We note that array sizes are symbolic as well, a feature that, to
our best knowledge, is not present in other symbolic execution frameworks.

kool: Testing Virtual Method Calls on Lists. Our last example (Fig-
ure 9) is a program in the kool object-oriented language. It implements lists
and ordered lists of integers using arrays. We use symbolic execution to check
the well-known virtual method call mechanism of object-oriented languages: the
same method call, applied to two objects of different classes, may have different
outcomes.

The List class implements (plain) lists. It has methods for creating, copying,
and testing the equality of lists, as well as for inserting and deleting elements in
a list. Figure 9 shows only a part of them. The class OrderedList inherits from
List. It redefines the insert method in order to ensure that the sequences of
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class List {
int a[10];
int size, capacity;
...

void insert (int x) {
if (size < capacity) {
a[size] = x; ++size;

}
}

void delete(int x) {
int i = 0;
while(i < size-1 && a[i] != x) {
i = i + 1;

}
if (a[i] == x) {
while (i < size - 1) {

a[i] = a[i+1];
i = i + 1;

}
size = size - 1;

}
}
...

}

class OrderedList extends List {
...
void insert(int x){

if (size < capacity) {
int i = 0, k;
while(i < size && a[i] <= x) {

i = i + 1;
}
++size; k = size - 1;
while(k > i) {

a[k] = a[k-1]; k = k - 1;
}
a[i] = x;

}
}

}
class Main {
void Main() {

List l1 = new List();
... // read elements of l1 and x
List l2 = l1.copy();
l1.insert(x); l1.delete(x);
if (l2.eqTo(l1) == false) {
print("error\n");

}
}

}

Fig. 9. lists.kool: implementation of lists in kool

elements in lists are sorted in increasing order. The Main class creates a list l1,
initializes l1 and an integer variable x with input values, copies l1 to a list l2
and then inserts and deletes x in l1. Finally it compares l1 to l2 element by
element, and prints error if it finds them different. We use symbolic execution
to show that the above sequence of method calls results in different outcomes,
depending on whether l1 is a List or an OrderedList. We first try the case where
l1 is a List, by issuing the following command to the K runner:

$ krun lists.kool -search -cIN="e1 e2 x"
-pattern="<T> <out> error </out> B:Bag </T>"

Solution 1, State 50:
<path-condition>

e1 = x ∧Bool ¬Bool (e1 = e2)
</path-condition>
...

The command initializes l1 with two symbolic values (e1, e2) and sets x to the
symbolic value x. It searches for configurations that contain error in the output.
The tool finds one solution, with e1 = x and e1 �= e2 in the path condition. Since
insert of List appends x at the end of the list and deletes the first instance of x
from it, l1 consists of (e2, x) when the two lists are compared, in contrast to l2,
which consists of (e1, e2). The path condition implies that the lists are different.

The same command on the same program but where l1 is an OrderedList
finds no solution. This is because insert in OrderedList inserts an element in
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a unique place (up to the positions of the elements equal to it) in an ordered
list, and delete removes either the inserted element or one with the same value.
Hence, inserting and then deleting an element leaves an ordered list unchanged.

Thus, virtual method call mechanism worked correctly in the tested scenarios.
An advantage of using our symbolic execution tool is that the condition on the
inputs that differentiated the two scenarios was discovered by the tool. This
feature can be exploited in other applications such as test-case generation.

6.3 The Implementation of the Tool

Our tool was developed as an extension of the K compiler. A part of the connec-
tion to the Z3 SMT solver was done in K itself, and the rest of the code is written
in Java. The K compiler (kompile) is organized as a list of transformations ap-
plied to the abstract syntax tree of a K definition. Our compiler inserts additional
transformations (formally described in Section 4.3). These transformations are
inserted when the K compiler is called with the –symbolic option.

The compiler adds syntax declarations for each sort, which allows users to use
symbolic values written as, e.g., #symSort(x) in their programs. The tool also
generates predicates used to distinguish between concrete and symbolic values.

For handling the path condition, a new configuration cell, <path-condition> is
automatically added to the configuration. The transformations of rules discussed
in Subsection 4.3 are also implemented as transformers applied to rules. There
is a transformer for linearizing rules, which collects all the variables that appear
more than once in the left hand side of a rule, generates new variables for each
one, and adds an equality in the side condition. There is also a transformer
that replaces data subterms with variables, following the same algorithm as
the previous one, and a transformer that adds rule’s conditions in the symbolic
configuration’s path conditions. In practice, building the path condition blindly
may lead to exploration of program paths which are not feasible. For this reason,
the transformer that collects the path condition also adds, as a side condition to
rewrite rules, a call to the SMT solver of the form checkSat(φ) �= "unsat", where
the checkSat function calls the SMT solver over the current path condition φ.
When the path condition is found unsatisfiable the current path is not explored
any longer. A problem that arises here is that, in K, the condition of rules may
also contain internally generated predicates needed only for matching. Those
predicates should not be part of the path condition, therefore they had to be
filtered out from rule’s conditions before the latter are added to path conditions.

Not all the rules from a K definition must be transformed. This is the case, e.g.,
of the rules computing functions or predicates. We have created a transformer
that detects such rules and marks them with a tag. The tag can also be used by
the user, in order to prevent the transformation of other rules if needed. Finally,
in order to allow passing symbolic inputs to programs we generated a variable
$IN, initialized at runtime by krun with the value of the option –cIN.
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7 Conclusion and Future Work

We have presented a formal and generic framework for the symbolic execution of
programs in languages having operational semantics defined by term-rewriting.
Starting from the formal definition of a language L, the symbolic version Ls of
the language is automatically constructed, by extending the datatypes used in
L with symbolic values, and by modifying the semantical rules of L in order to
make them process symbolic values appropriately. The symbolic semantics of L
is then the (usual) semantics of Ls, and symbolic execution of programs in L
is the (usual) execution of the corresponding programs in Ls, which is the ap-
plication of the rewrite rules of the semantics of Ls to programs. Our symbolic
execution has the natural properties of coverage, meaning that to each concrete
execution there is a feasible symbolic one on the same path of instructions, and
precision, meaning that each feasible symbolic execution has a concrete execu-
tion on the same path. These results were obtained by carefully constructing
definitions about the essentials of programming languages, in an algebraic and
term-rewriting setting. We have implemented a prototype tool in the K frame-
work and have illustrated it by instantiating it to several languages defined in K.

Future Work. We are planning to use symbolic execution as the basic mechanism
for the deductive systems for program logics also developed in the K framework
(such as reachability logic [21] and our own circular equivalence logic [14]). More
generally, our symbolic execution can be used for program testing, debugging,
and verification, following the ideas presented in related work, but with the
added value of being language independent and grounded in formal operational
semantics. In order to achieve that, we have to develop a rich domain of symbolic
values, able to handle e.g., heaps, stacks, and other common data types.
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