A Language Independent Task Engine
for Incremental Name and Type Analysis

Guido H. Wachsmuth!2, Gabriél D.P. Konat!, Vlad A. Vergu!,
Danny M. Groenewegen!, and Eelco Visser!

! Delft University of Technology, The Netherlands
{g.h.wachsmuth,v.a.vergu,d.m.groenewvegen}@tudelft.nl,

{gkonat,visser}@acm.org
2 Oracle Labs, Redwood City, CA, USA

Abstract. IDEs depend on incremental name and type analysis for re-
sponsive feedback for large projects. In this paper, we present a language-
independent approach for incremental name and type analysis. Analysis
consists of two phases. The first phase analyzes lexical scopes and bind-
ing instances and creates deferred analysis tasks. A task captures a single
name resolution or type analysis step. Tasks might depend on other tasks
and are evaluated in the second phase. Incrementality is supported on file
and task level. When a file changes, only this file is recollected and only
those tasks are reevaluated, which are affected by the changes in the col-
lected data. The analysis does neither re-parse nor re-traverse unchanged
files, even if they are affected by changes in other files. We implemented
the approach as part of the Spoofax Language Workbench and evaluated
it for the WebDSL web programming language.

1 Introduction

Integrated development environments (IDEs) provide a wide variety of language-
specific editor services such as syntax highlighting, error marking, code naviga-
tion, content completion, and outline views in real-time, while a program is
edited. These services require syntactic and semantic analyses of the edited pro-
gram. Thereby, timely availability of analysis results is essential for IDE respon-
siveness. Whole-program analyses do not scale because the size of the program
determines the performance of such analyses.

Incremental analysis reuses previous analysis results of unchanged program
parts and reanalyses only parts affected by changes. The granularity of the in-
cremental analysis directly impacts the performance of the analysis. A more
fine-grained incremental analysis is able to reanalyze smaller units of change,
but requires a more complex change and dependency analysis. At program level,
any change requires reanalysis of the entire program, which might consider the
results of the previous analysis. At file level, a file change requires reanalysis of
the entire file and all dependent files. At program element level, changes to an
element within a file require reanalysis of that element and dependent elements,
but typically not of entire files. Incremental analyses are typically implemented
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manually. Thereby, change detection and dependency tracking are cross-cutting
the implementation of the actual analysis. This raises complexity of the imple-
mentation and negatively affects maintenance, reusability, and modularity.

In this paper, we focus on incremental name and type analysis. We present
a language-independent approach which consists of two phases. The first phase
analyzes lexical scopes, collects information about binding instances, and creates
deferred analysis tasks in a top-down traversal. An analysis task captures a single
name resolution or type analysis step. Tasks might depend on other tasks and
are evaluated in the second phase. Incrementality is supported on file level by
the collection phase and on task level by the evaluation phase. When a file
changes, only this file is recollected and only those tasks are reevaluated, which
are affected by the changes in the collected data. As a consequence, the analysis
does neither re-parse nor re-traverse unchanged files, even if they are affected by
changes in other files. Only the affected analysis tasks are reevaluated.

Our approach enables language engineers to abstract over incrementality.
When applied directly, language engineers need to parametrize the collection
phase, where they have full freedom to create and combine low-level analysis
tasks. Thereby, they can focus solely on the name binding and typing rules of
their language while the generic evaluation phase provides the incrementality.
The approach can also form the basis for more high-level meta-languages for
specifying the static semantics of programming languages. We use the task en-
gine to implement incremental name analysis for name binding and scope rules
expressed in NaBL, Spoofax’ declarative name binding language [16].

We have implemented the approach as part of the Spoofax language work-
bench [I4] and evaluated it for WebDSL, a domain-specific language for the
implementation of dynamic web applications [7], designed specifically to enable
static analysis and cross-aspect consistency checking in mind [IT]. We used real
change-sets from the histories of two WebDSL applications to drive experiments
for the evaluation of the correctness, performance and scalability of the obtained
incremental static analysis. Experiment input data and the obtained results are
publicly available.

We proceed as follows. In the next section, we introduce the basics of name and
type analysis and introduce the running example of the paper. In Sects. [Bland @]
we discuss the two analysis phases of our approach, collection and evaluation. In
Sect. Bl we discuss the implementation and its integration into the Spoofax lan-
guage workbench. In Sect. [6, we discuss the evaluation of our approach. Sects. [
and [§] are for related work and conclusions.

2 Name and Type Analysis

In this section, we discuss name and type analysis in the context of the running
example of the paper, a multi-file C# program shown in Fig. [l

Name Analysis. In textual programming languages, an identifier is a name
given to program elements such as variables, methods, classes, and packages. The
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class A { class B { class C:A {
B b; int m; int i; float f;
float m() { int m() { int n() {
return 1 + b.f; }} return 0; }} return m(); }}

Fig. 1. C# class declarations in separate files with cross-file references. The underlined
expression causes a type error.

class A { class B { namespace N {

B b; int m; int i; float f; class C:B {

int m(B b) { int m() { int n() {
return 1 + b.1i; }} return 1; }} return m(); }}}

Fig. 2. C# class declarations after editing. Changes w.r.t. Fig. [[l are highlighted.

same identifier can have multiple instances in different places in a program. Name
analysis establishes relations between a binding instance that defines a name and
a bound instance that uses that name [I7]. Name analysis is typically defined
programmatically through a name resolution algorithm that connects binding
prospects to binding instances. When a prospect is successfully connected, it
becomes a bound instance. Otherwise, it is a free instance.

The C# class declarations in Fig. [Il contain several references, some of which
cross file boundaries. The declared type of field b in class A refers to class B in a
separate file. Also, the return expression of method m in class A accesses field £
in class B. The parent of class C refers to class A in a separate file and the return
expression of method n in class C is a call to method m in class A.

Languages typically distinguish several namespaces, i.e. different kinds of
names, such that an occurrence of a name in one namespace is not related to
an occurrence of that same name in another. In the example, class A contains a
field and a homonym method m, but C# distinguishes field and method names.

Scopes restrict the visibility of binding instances. They can be nested and
name analysis typically looks for binding instances from inner to outer scopes.
In the example, b is resolved by first looking for a variable b in method A.m,
before looking for a field b in class A. A named scope is the context for a binding
instance, and scopes other binding instances. In the example, class A is a named
scope. It is the context for a class name and a scope for method and field names.

An alias introduces a new binding instance for an already existing one. An
import introduces binding instances from one scope into another one. In the
example, class C imports fields and methods from its parent class A.

Type Analysis. In statically typed programming languages, a type classifies
program elements such as expressions according to the kind of values they com-
pute [20]. Fig. [l declares method C.n of type int, meaning that this method
is expected to compute signed 32-bit integer values. Type analysis assigns types
to program elements. Types are typically calculated compositionally, with the
type of a program element depending only on the types of its sub-elements [20].
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Type checking compares expected with actual types of program elements. A
type error occurs if actual and expected type are incompatible. Type errors
reveal at compile-time certain kinds of program misbehavior at run-time. In
the example, the return expression in method C.n causes a type error. The
expression is of type £loat, since the called method m returns values of this
type. But the declaration of C.n states that it evaluates to values of type int.

Incremental Analysis. When a program changes, it needs to be reanalyzed.
Different kinds of changes influence name and type analysis. First, adding a
binding instance may introduce bindings for free instances, or rebind bound in-
stances. Removing a binding instance influences all its bound instances, which
are either rebound to other binding instances or become free instances. Changing
a binding instance combines the effects of removing and adding. Second, adding
a binding prospect requires resolution, while removing it makes a binding obso-
lete. Changing a binding prospect requires re-binding, resulting either in a new
binding or a free instance. Third, addition, removal, or change of scopes or im-
ports influence bound instances in the affected scopes, which might be rebound
to different binding instances or become free instances. Similarly, they influence
bound instances which are bound to binding instances in the affected scopes. Fi-
nally, addition of a typed element requires type analysis, while removing it makes
a type calculation obsolete. Changing a typed element requires reanalysis.

Furthermore, changes propagate along dependencies. When bound instances
are rebound to different binding instances or become free instances, this influ-
ences bindings in the context of these bound instances, the type of these in-
stances, the type of enclosing program elements, and bindings in the context of
such types. Consider Fig. 2] for an example. It shows edited versions of the C#
class declarations from Fig. [[l We assume the following editing sequence:

1. The return type of method A.m is changed from £loat to int. This affects
the type of the return expression of method C.n and solves the type error,
but raises a new type error in the return expression of A.m.

2. The return expression of method A.m is changed to b. i. This requires res-
olution of i and affects the type of the expression, solving the type error.

3. Parameter B b is added to method A.m. This might affect the resolution
and by this the type of b and i in the return expression, the type of the
return expression, the resolution of m in method C.n, and the type of its
return expression. Actually, only the resolution of b and m and the type of
the return expression in C.n are affected. The latter resolution fails, causing
a resolution error and leaving the return expression untyped.

4. The parent of class C is changed from A to B. This affects the resolution of m
in method C.n and the type of its return expression. It fixes the resolution
error and the return expression becomes typed again.

5. Class C is enclosed in a new namespace N. This might affect the resolution
of parent class B, the resolution of m in N.C.n, and the type of the return
expression in N.C.n. Actually, it does not affect any of those.

6. The return expression of method m in class B is changed. This might affect
the type of this expression, but actually it does not.
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We discuss incremental analysis in the next sections. We start with the col-
lection phase in Sect. 3l and continue with the evaluation phase in Sect. [l

3 Semantic Index

We collect name binding information for all units in a project into a semantic
indet, a central data structure that is persisted across invocations of the analysis
and across editing sessions. For the purpose of this paper, we model this data
structure as binary relations over keys and values. As keys, we use URIs, which
identify bindings uniquely across a project. As values, we use either URIs or
terms. We use U and T to denote the set of all URIs and terms, respectively.

URIs. We assign a URI to each binding instance, bound instance, and free in-
stance. A bound instance shares the URI with its corresponding binding instance.
A URI consists of a language name, a list of scope segments, the namespace of
the instance, its name, and an optional unique qualifier. This qualifier helps to
distinguish unique binding instances by numbering them consecutively. A seg-
ment for a named scope consists of the namespace, the name, and the qualifier of
the scoping binding instance. Anonymous scopes are represented by a segment
anon (u), where u is a unique string to distinguish different scopes. For exam-
ple, C#://Class.A.1/Method.m.1 identifies method m in class A in the C#
program in Fig. [[l The qualifier 1 distinguishes the method. Possible homonym
methods in the same class would get subsequent qualifiers.

Index Entries. The index stores binding instances (B C U x U), aliases (A C
U x U), transitive and non-transitive imports for each namespace ns (T1,s C
U xU and NI,s C U x U), and types of binding instances (Pype € U X T).
For a binding instance with URI u, B contains an entry (u,u), where u' is
retrieved from u by omitting the unique qualifier. u’ is useful to resolve binding
prospects, as we will show later. An alias consists of the new name, that is a
binding instance, and the old name, that is a binding prospect. For each alias,
A contains an entry (a,u), where a is the URI of the binding instance and u is
the URI of the binding prospect. For a transitive wildcard import from a scope
with URI u into a scope with URI «', T, contains an entry (u’,u). Similarly,
NI,s contains entries for non-transitive imports. Finally, for a binding instance
of URI u and of type ¢, Py contains an entry (u,t). P can also store other
properties of binding instances, but we focus on types for this paper.

Ezample. Fig.[8lshows the index for the running example. It contains entries in
B for binding instances of classes A, B, and C, fields A.b, A.m, B.1,and B. £, and
methods A.m, B.m, and C.n. Corresponding entries for Py, contain the types of
all fields and methods in the program. Since the running example does not define
any aliases, A does not contain any entries. It also contains corresponding entries
for NI pieid, TI picia, NI pethod, and T1 preinoq. These entries model inheritance
by a combination of a non-transitive and a transitive import. C first inherits the
fields and methods from A (non-transitive import). Second, C inherits the fields
and methods which are inherited by A (transitive import).
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Relation Key Value

B C#:/Class.A C#:/Class.A.1
C#:/Class.A.1/Field.b C#:/Class.A.1/Field.b.1
C#:/Class.A.1/Field.m C#:/Class.A.1/Field.m.1
C#:/Class.A.1/Method.m C#:/Class.A.l/Method.m.1
C#:/Class.B C#:/Class.B.1
C#:/Class.B.1/Field.i C#:/Class.B.1/Field.i.1l
C#:/Class.B.1/Field.f C#:/Class.B.1/Field.i.1l
C#:/Class.B.1/Method.m C#:/Class.B.1/Method.m.1
C#:/Class.C C#:/Class.C.1
C#:/Class.C.1/Method.n C#:/Class.C.1l/Method.n.1

NIpicig, TIpiela C#:/Class.C.1 Task: /31

NI prethods T1 pethod CH#:/Class.C.1 Task:/31

Piype C#:/Class.A.1/Field.b.1 Task:/6
C#:/Class.A.1/Field.m.1l int
C#:/Class.A.1l/Method.m.1 ([], float)
C#:/Class.B.1/Field.i.1 int
C#:/Class.B.1/Field.f.1 float)
C#:/Class.B.1/Method.m.1 ([], int)
C#:/Class.C.1/Method.n.1 ([], int)

Change Key Value

AﬁﬁwW C#:/Class.A.1l/Method.m.1 ([1, float)

C#:/Class.A.1l/Method. ([1, int)

2

Aﬁ% C#:/Class.A.1l/Method.m.1l/Var.b C#:/Class.A.1l/Method.m.1/Var.b.1
AA%WW C#:/Class.A.1l/Method.m.1/Var.b.1 Task:/6
C#:/Class.A.1/Method.m.1 ([1, int)
C#:/Class.A.1l/Method.m.1 ([Task:/6]1, int)
%qu C#:/Class.C.1 Task:/31
C#:/Class.C.1 Task:/6
AA%MﬁMd C#:/Class.C.1 Task:/31
C#:/Class.C.1 Task:/6
A% C#:/Ns.N C#:/Ns.N.1
C#:/Class.C C#:/Class.C.1
C#:/Ns.N.1/Class.C C#:/Ns.N.1/Class.C.1
C#:/Class.C.1l/Method.n C#:/Class.C.1/Method.n.1
C#:/Ns.N.1/Class.C.1l/Method.n C#:/Ns.N.1/Class.C.1l/Method.n.1
?qu C#:/Class.C.1 Task:/6
C#:/Ns.N.1/Class.C.1 Task: /54
§Mam4 C#:/Class.C.1 Task:/6
C#:/Ns.N.1/Class.C.1 Task:/54
A%, Ch:/Class.C.1/Method.n.1 ([1, int)
‘ C#:/Ns.N.1/Class.C.1/Method.n.1 ([], int)

Fig. 3. Initial semantic index for the C# program in Fig. [l (top) and changes for the
C# program from Fig. 2] (bottom)
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Initial Collection. We collect index entries in a generic top-down traversal,
which needs to be instantiated with language-specific name binding and scope
rules. During the traversal, a dictionary S is maintained to keep track of the cur-
rent scope for each namespace. At each node, we perform the following actions:

1. If the node is the context of a binding instance of name n in namespace
ns, we create a new unique qualifier ¢, construct URIs v’ = S(ns)/ns.n and
u =1u'.q, and add (v',u) to B. If the instance is of type t, we add (u,t) to
Pyype. If the node is a scope for a namespace ns’, we update S(ns) to u.

2. If the current node is an anonymous scope for a namespace ns, we extend
S(ns) with an additional anonymous segment.

3. If the current node defines an alias, transitive, or non-transitive wildcard
import, we add corresponding pairs of URIs to A, TIng, or Nlps.

Collection does not consider binding prospects which need to be resolved.
Furthermore, entries in TIng, Nlng, and Pyy,e might still require project-wide
name resolution and type analysis. Instead of performing this analysis during the
collection, we defer the remaining analysis tasks to a second phase of analysis
and store unique placeholder URIs in the index. For example, the type of field
A.b contains a class name B, which needs to be resolved. The index in Fig. [
does not contain an actual type, but a reference to a deferred resolution task.
Also, the index entries for wildcard imports refers to a deferred task, since the
name of the base class of class C needs to be resolved first.

The semantic index is a project-wide data structure, but collection can be
split over separate partitions. A partition is typically a file, but can also be a
smaller unit. The only constraint we impose on partitions is that they need to
be in global scope. This ensures that index collection is independent of other
partitions. Collection for a partition p will provide us with a partial index con-
sisting of By, Ap, TIp ns, Nlp ns, and Py 1ype. The overall index can be formed
by combining all partial indices of a project.

Incremental Collection. When a partition is edited, reanalysis is triggered.
But only the partial index of the changed partition needs to be recollected,
while partial indices of other partitions remain valid. Partial recollection will
result in an updated relation BI’,‘ Given the original B, we define a change set
Ap = (B, \ Bp) U (B, \ B,,) of entries added to or removed from B. In the same
way, we can define A4, and Ap, . For imports, the situation is slightly different,
since we need to consider changes in transitive import chains. We keep a change
set Ay, for a derived relation I, = TI o NI, where TI* is the reflexive
transitive closure of 71 and [ is the composition of this closure with NI.

Example. Fig.Blshows non-empty change sets for the running example. Thereby,
superscripts indicate editing steps. In step 1, changing the return type of method
A.m causes a change in Pyy.. In step 3, adding a parameter to the same method
causes changes to B and Pyy.. In step 4, changing the parent of class C causes
changes in I'pie;q and I presnoq. In step 5, enclosing class C in a namespace affects all
index entries for the class and its contained elements. The next section discusses
how change-sets trigger reevaluation of deferred analysis tasks.
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4 Deferred Analysis Tasks

In the previous section, we discussed the collection of index entries. This col-
lection is efficient, since it requires only a single top-down traversal. When a
partition changes, recollection is even more efficient, since it can be restricted to
the changed partition, while the collected entries from other partitions remain
valid. This is achieved by deferring name resolution and type analysis tasks,
which might require information from other partitions or from other tasks.
Tasks are collected together with index entries and evaluated afterwards in a
second analysis phase. For evaluation, no traversal is needed. Instead, inter-task
dependencies determine an evaluation order. When a partition changes, only the
tasks for this partition are recollected in the first phase. Change sets determine
which tasks need to re-evaluated, including affected tasks from other partitions.

Instructions. Each task consists of a special URI, which is used as a placeholder
in the semantic index, its dependencies to other tasks, and an instruction. Fig. [
lists the instructions which can be used in tasks. Their semantics is given with
respect to the semantic index, a type cast relation C C T x T, where (t,t') € C
iff type ¢ can be cast to type t', and a partial function dc : T x T — N for the
distance between types. We write R[S] to denote the image of a set S under a

Instruction Semantics
resolve uri B [uri]

resolve alias uri Aluri]

resolve import ns Ins [uri]

into uri

lookup type of uri Py [uri]
check type t in T {e}nT
cast type t to T ClElnT
assign type t {t}

sl + s2 R[s1,s2]

R[s1],if #0

1 2 .
st rs {R[sZ] , otherwise
filter

sl + s2 by type T

{u € R[s1,52]| Puype 0 Clu] N T # 0}

filter {{UGR[SlH(PtypeOC)[U]ﬂT#@}aif #0
sl <+ s2 by type T | {u € R[s2]| Pype o Clu]NT # 0}

disambiguate {ue R[s1,s2]|Vu/ € R[s1,s2]: 6c(u/,T) > 6c(u,T)}
sl + s2 by type T

disambiguate {u € R[s1]|Vu' € R[s1,s2]:dc(u',T) > dc(u,T)} ,if #0
sl <+ s2 by type T | {u € R[s2]|Vu' € R[s1,s2] : 6c(v/,T) > dc(u,T)} ,ow.

Fig. 4. Syntax and semantics of name and type analysis instructions. uri denotes a
URI, ns a namespace, t a type, T a set of types, and s1, s2 subtask IDs.
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relation R and omit set braces for finite sets, that is, we write R [e] instead of
R[{e}]. We provide three name resolution instructions for looking up binding
instances from B (resolve), named imports from A (resolve alias), and
wildcard imports from the derived relation I,,; (resolve import), and four
type analysis instructions for type look-up from Py, (Lookup), for checks with
respect to expected types (check), for casts to an expected type according to
C (cast), and for assigning types to program elements (assign).

Ezxample. Fig. [l shows tasks and their solutions for the running example.
Tasks 1 to 6 try to resolve class name B. Task 1 looks for B directly in the
global scope. It finds an entry in B and succeeds. Task 2 looks for aliases, which
task 3 tries to resolve next. Instead of a concrete URI, the task 3 has a reference
to task 2. Since task 2 fails to find any named imports, task 3 also fails. Task 5
tries to resolve B inside imported scopes, which are yielded by task 4. Both
tasks fail. Task 6 combines resolution results based on local classes, aliases, and
imported classes. We will discuss such combinators in the next example.

Tasks 7 to 25 are involved in type checking the return expression of A.m ()
in Fig. [[l Task 7 assigns type int to the integer constant. Tasks 8 to 18 are
an example for the interaction between name and type analysis. The first six
tasks try to resolve b either as a local variable, a field in the current class, or
an inherited field. Next, task 14 looks up the type of the resolved field A.Db,
before the remaining tasks resolve field £ with respect to that type B. Task 19
looks up the type of the referred field. The remaining tasks analyse the binary
expression: Tasks 20 and 21 check if the subexpressions are numeric or string
types. Tasks 22 and 23 try to coerce the left to the right type and vice versa.
Both tasks are combined by task 24. Finally, task 25 checks if the type of the
return expression can be coerced to the declared return type of the method.

Combinators. Fig. M also shows six instructions to combine the results of
subtasks. The semantics of these combinators are expressed in terms of a relation
R, where (t,r) € R iff r is a result of task t. Notably, tasks can have multiple
results. We will revisit R later, when we discuss task evaluation.

The simplest combinators are a non-deterministic choice + and a determin-
istic pendant <+. The result of the non-deterministic choice is the union of the
results of its subtasks. while the result of the deterministic choice is the result
of its first non-failing subtask. Furthermore, we provide combinators filter
and disambiguate. Both can be used in a non-deterministic or deterministic
fashion to combine the result sets of resolution tasks with respect to expected
types. £ilter keeps only compliant results. disambiguate keeps only results
which fit best with respect to the expected types. The non-deterministic variant
keeps all of them, while the deterministic variant chooses the first subtask which
contributes to the best fitting results.

Ezample. In Fig. Bl task 6 combines resolution results based on local classes,
aliased classes, and imported classes. The non-deterministic choice ensures that
no result is preferred over another. Similarly, task 24 combines the results of
alternative coercion tasks. In tasks 12 and 13, deterministic choices ensure that
local fields win over inherited fields and variables win over fields, respectively.
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Instruction

resolve C#:/Class.B
resolve alias C#:/Class.B
resolve Task:/2
resolve import Class into C#:/
resolve Task:/4/Class.B
Task:/1 + Task:/3 + Task:/5
assign type int
resolve C#:/Class.A.l/Method.m.1/Var.b
resolve C#:/Class.A.1/Field.b
resolve import Field into C#:/Class.A.1l
resolve Task:/10/Field.b
Task:/9 <+ Task:/11
Task:/8 <+ Task:/12
lookup type of Task:/13
resolve Task:/14/Field.f
resolve import Field into Task:/14
resolve Task:/16/Field.f
Task:/15 <+ Task:/17
lookup type of Task:/18
check type Task:/7 in
{int, long, float, double, String}
check type Task:/19 in
{int, long, float, double, String}
cast type Task:/21 to Task:/20
cast type Task:/20 to Task:/21
Task:/22 + Task:/23
cast type Task:/24 to float
cast type Task:/20 to int
resolve C#:/Class.A
resolve alias C#:/Class.A
resolve Task:/28
resolve Task:/4/Class.A
Task:/27 + Task:/29 + Task:/30
resolve C#:/Class.C.1l/Method.m
resolve import Method into C#:/Class.C.1
resolve Task:/33/Method.m
assign type []
disambiguate Task:/32 <+ Task:/34
by type Task:/35
lookup type of Task:/36
cast type Task:/37 to int

Results

C#:/Class.

C#:/Class.

int

C#:/Class.

C#:/Class.
C#:/Class.
C#:/Class.
C#:/Class.

C#:/Class.

float

int

float

float
float
float
int

C#:/Class.

C#:/Class.

C#:/Class.
C#:/Class.

[]

C#:/Class.

W w o> o

B.

A

([1, float)

.1/Field.b.
.1/Field.b.1
1

.1/Field.f.1

.1/Field.b.1

=

1/Field.f.1

.1
.1/Method.m.1

.1/Method.m.1

Fig. 5. Tasks and their solutions for the C# program in Fig. [II
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Method call resolution in the presence of overloaded methods is a well-known
example for interaction between name and type analysis. Actual and formal
argument types need to be considered by the resolution, since they need to
comply. Furthermore, relations between these types indicate which declaration
is more applicable. As an example, consider tasks 32 to 36 in Fig. B They
resolve method call m () in the return expression of C.n () from Fig.[Il Task 32
tries to resolve it locally, while tasks 33 and 34 consider inherited methods.
Task 35 assigns an empty list as the type of the actual parameters of the call.
Task 36 selects only these methods which fits this type best, preferring local
over inherited methods. Finally, the last two tasks check the return expression
of C.n. Task 37 looks up the type of A.m. Task 38 tries to casts this to the
declared return type, but fails.

Initial Evaluation. During the generic traversal in the collection phase, we do
not only collect semantic index entries but also instructions of tasks (7' C U x I)
and inter-task dependencies (D C U x U). Language-specific collection rules are
needed to control the collection of name resolution and type analysis tasks. D
imposes an evaluation order for tasks. First, we can evaluate independent tasks.
Next, we can evaluate tasks which only depend on already evaluated tasks.
This will evaluate all tasks except those with cyclic dependencies, which we
consider erroneous. As mentioned earlier, we capture task results in a relation
RCUXxUUT).

The instruction of each task is evaluated according to the semantics given in
Fig. @l However, this only works, if we replace placeholders of dependent sub-
tasks with their results. When a subtask has multiple results, we evaluate the
dependent task for each of these results. Consider task 14 from Fig. Bl as an
example. It can only be evaluated after replacing the placeholder Task: /13
with a result of the corresponding task. Since this task has a single result
C#:/Class.A.1/Field.b.1, we actually need to evaluate the instruction
lookup type C#:/Class.A.1l/Field.b.1,yieldingC#://Class.B.1 as
its only result.

Incremental Evaluation. When a partition is edited, the partial index and
tasks for this partition will be recollected, resulting in an updated relation TZ;. We
need to evaluate new tasks, which did not exist in another partition before. We
collect the URIs of these tasks in a change set: Ar, = dom(7;\T}). Furthermore,
a changed semantic index might affect the results of the tasks from all partitions,
requiring the reevaluation of those tasks. The various change sets determine
which tasks need to be reevaluated:

(u',u) € Ap: tasks which evaluated an instruction resolve u’.

(a,u) € Ay tasks which evaluated an instruction resolve alias a.

(u',u) € Ar: tasks which evaluated an instruction resolve import u'.

(u,t) € Ap,,.: tasks which evaluated an instruction lookup type of u and
filter or disambiguate tasks with a subtask s with u € R [s].

We maintain the URIs of these tasks in another change set Ap. The URIs of
tasks which require evaluation is given by the set Ar, U D* [Ar].
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Ezample. In step 1 of the running example, task 25 becomes obsolete, since the
return expression needs to be checked with respect to a new type, which is done by a
new task 39, shown in Fig.[fl Furthermore, the disambiguation in task 36 depends
on an element in AL e , which is to be reevaluated. Transitive dependencies trig-
ger also the reevaluatlon of tasks 37 and 38. Since task 38 succeeds now, it does
no longer indicate a type error in C.n. But the new task 39 fails, indicating a new
typeerrorin A .m. In step 2, tasks 15,17 to 19, 21 to 24, and 39 become obsolete,
since another field needs to be resolved. The semantic index was not changed, and
only the corresponding new tasks 40 to 48 need to be evaluated. In step 3, the ad-
ditional variable parameter causes changes in the semantic index. A% requires the
reevaluation of task 8 and its dependent tasks 14, 16, and 40 to 48. Furthermore,
A‘}‘%W requires the reevaluation of task 3 6 and its dependent tasks 37 and 3 8. Sim-
ilarly, A‘}Md requires the reevaluation of task 33 and its dependent tasks 34 and 36
to 38. Finally, the new enclosing namespace introduced in step 5 makes tasks 32
to 34 and 36 to 38 obsolete and introduces new tasks 49 to 61, which take the new
namespace into account.

ID Instruction Results

39 cast type Task:/24 to int

40 resolve Task:/14/Field.i C#:/Class.B.1/Field.i.1
41 resolve Task:/16/Field.i

42 Task:/40 <+ Task:/41 C#:/Class.B.1/Field.i.1
43 lookup type of Task:/42 int

44 Sheck type Task:/43 in int

{int, long, float, double, String}

45 cast type Task:/44 to Task:/20 int

46 cast type Task:/20 to Task:/44 int

47 Task: /45 + Task:/46 int

48 cast type Task:/47 to int int

49 resolve C#:/Ns.N.1l/Class.B
50 resolve alias C#:/Ns.N.1l/Class.B
51 resolve Task:/50
52 resolve import Class into C#:/Ns.N.1
53 resolve Task:/52/Class.B
54 Task:/49 + Task:/51 + Task:/53
55 Task:/31 + Task:/54 C#/Class.B.1
56 resolve C#:/Ns.N.1l/Class.C.1/Method.m
resolve import Method
into C#:/Ns.N.1l/Class.C.1
58 resolve Task:/57/Method.m C#:/Class.B.1/Method.m.1

disambiguate Task:/56 + Task:/58

57 C#:/Class.B.1

59 C#:/Class.B.1l/Method.m.1
by type Task:/35

60 lookup type of Task:/59 ([1, int)

61 cast type Task:/60 to int int

Fig. 6. New tasks and their solutions for the C# program in Fig.
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5 Implementation

We have implemented the approach as three components of the Spoofax language
workbench [14]. The first component is a Java implementation of the semantic
index. It maintains a multimap storing relations B, A, I, and P, a set keeping
partition names, and another multimap from partitions to their index entries.
During collection, it calculates change sets on the fly, maintaining two multisets
for newly added and removed elements.

The second component is a task engine implemented in Java. It maintains
a map from task IDs to their instructions and bidirectional multimaps between
task IDs and their partitions, between task IDs and index entries they depend on,
and for task dependencies. Just as the semantic index, the task engine exposes
a collection API and calculates change sets on the fly, maintaining a set of
added and a set of removed tasks. Additionally, it exposes an API for task
evaluation. During evaluation, it maintains a queue of scheduled tasks and a
bidirectional multimap of task dependencies which are discovered dynamically.
Results and messages of tasks are kept in maps. Both components use hash-based
data structures which can be persisted to file. They support Java representations
of terms as values and expose their APIs to Stratego [2], Spoofax’ term rewriting
language for analysis, transformation, and code generation.

Class (NonPartial(), ¢, _, _): defines Class c scopes Field, Method
Field(_, f) : defines Field f

Method(_, m, _, _) : defines Method m scopes Var

Base (c) :

imports Field, imported Field, Method, imported Method from Class c

ClassType(c) : refers to Class c
Fieldacc(e, f) : refers to Field f in Class c where e has type c
VarRef (x) : refers to Var x otherwise refers to Field x

ThisCall (m, p*): refers to best Method m of type tx where px has type tx

overlays
NUMERIC() = [Int(), Long(), Float(), Double()]
STRING() = ClassType(PackRef ("System"), "String")

type—of (| ctx) :
Add(el, e2) — <choose(|ctx)> [tyl’, ty2’]

where

tyl := <type—check(|ctx)> (el, [STRING() | NUMERIC()])
; ty2 := <type—check(|ctx)> (e2, [STRING() | NUMERIC()])
; tylr = <typefmatch(|ctx, Coerce())> (tyl, ty2)
; ty2’ := <type—match(|ctx, Coerce())> (ty2, tyl)

Fig. 7. Declarative name binding and scope rules for C# in NaBL (top) and manually
written Stratego rule for typing additions and string concatenations in C# (bottom)
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The third component implements index and task collection as a generic traver-
sal in Stratego. At each tree node, the traversal applies language-specific rewrite
rules for name and type analysis. These rules can either be generated from name
binding and scope rules defined in NaBL, or manually written in Stratego. For
example, Fig. [0 shows an extract of NaBL rules as well as a manually written
Stratego rule for C#. The latter involves callbacks to the collection component,
which creates the corresponding tasks in the task engine. type—check creates
a check task, type—match creates a cast task, and choose creates a non-
deterministic choice. The rule looks very similar to an ordinary typing rule in
Stratego, but instead of calculating types, it calculates tasks, which are evaluated
later. The API hides the internals of our approach from the language engineer,
who can specify an incremental static analysis in NaBL and Stratego in the same
way as a regular static analysis.

6 Evaluation

We evaluate the correctness, performance, and scalability of our approach with
an implementation for name and type analysis of WebDSL programs. Correct-
ness is interesting since we only analyze affected program elements. We expect
incremental analysis to yield the same result as a full analysis. Performance and
scalability are crucial since they are the main purpose of incremental analysis.
We want to assess whether performance is acceptable for practical use in IDEs
and how the approach scales for large projects. Specifically, we evaluate the
following research questions: RQ1) Does incremental name and type analysis
of WebDSL applications yield the same results as full analysis? RQ2) What is
the performance gain of incremental name and type analysis of WebDSL ap-
plications compared to full analysis? RQ3) How does the size of a WebDSL
application influence the performance of incremental name and type analysis?
RQ4) Is incremental name and type analysis suitable for a WebDSL IDE?

Research Method. In a controlled setting, we quantitatively compare the
results and performance of incremental and full analysis of different versions
of WebDSL applications. We have reimplemented name and type analysis for
WebDSL, using NaBL to specify name binding and scope rules and Stratego to
specify type analysis. We apply the same algorithm to perform full and incre-
mental analyses to the source code histories of two WebDSL applications. We
run a fullanalysis on all files in a revision, and and incremental analysis only on
changed files with respect to the result of a full analysis of the previous revision.

Subjects. WebDSL is a domain-specific language for the implementation of
dynamic web applications [7]. It was designed from the ground up with static
analysis and cross-aspect consistency checking in mind [II]. This focus makes
it is an ideal candidate to evaluate its static analysis. WebDSL provides many
language constructs on which constraints have to be checked. It also embodies
a complex expression language that is representative of expressions in general
purpose languages such as Java and C#. It has been used for several applications



274 G.H. Wachsmuth et al.

in production, including the issue tracker Yellowgrassﬂ, which is a subject of
this evaluation, the digital library Researchr, and the online education platform
WebLab. When developing such larger applications, the usability of the WebDSL
IDE sometimes suffered from the lack of incremental analyses. We focus on two
open source WebDSL applications, Blog, a web application for wikis and blogs,
and Yellowgrass, a tag-based issue tracker. In their latest revisions, their code
bases consist of approximately 7 and 9 KLOC.

Data collection. We perform measurements by repeating the following for
every revision of each application. We run an incremental and a full analysis.
During each of the analyses we record execution timings. After each analysis we
preserve the data from the semantic index and the task engine which we analyse
afterwards. Each analysis is sequentially executed on command line in a separate
invocation of the Java Virtual Machine (JVM) and garbage collection is invoked
before each analysis. After starting the virtual machine, we run three analyses
and discard results allowing for the warmup period of the JVM’s JIT compiler.
All executions are carried out on the same machine with 2.7 Ghz Intel Core
i-7, 16 GB of memory, and Oracle Java Hotspot VM version 1.6.0 45 in server
JIT mode. We fix the JVM’s heap size at 4 GB to decrease the noise caused by
garbage collection. We set the maximum stack size at 16 MB.

Analysis procedure. For R(JIl we evaluate the structural equality of data from
the semantic index and the task engine produced by full and incremental anal-
ysis. For R(3 we determine absolute execution times of full and incremental
analysis and the relative speed up. We calculate the relative performance gain
between analyses separately for each revision. We report geometric mean and
distribution of absolute and relative performance of all revisions. For R(J3 we
determine the number of lines and the number of changed lines of a revision.
We relate the incremental analysis time to these numbers. For R¢Jj we filter
revisions which changed only a single file. On these revisions, we determine the
execution time of incremental analysis.

Results and Interpretation. We published the collected data and all analysis
results in a public repository@, including instructions on reproducing our experi-
ments. Since both applications yield similar results, we discuss only Yellowgrass
data here. Data for Blog can be found in the repository. For the future, we
plan to collect data on more WebDSL applications and on more programming
languages. Our implementation and the subjects are also open source.

Rdd) For all revisions of both applications, incremental and full analysis pro-
duce structurally equal data in semantic index and task engine. This is the
expected outcome and supports the equivalence of both analyses.

R(D) Fig. B show the absolute execution times of full and incremental anal-
yses of all revisions. Full analysis takes between 4.74 and 13.31 seconds. Incre-
mental analysis takes between 0.37 and 4.97 seconds. The mean analysis times
are 9.75 seconds and 0.96 seconds, with standard deviations of 2.29 and 0.61

!http://yellowgrass.org
2 https://bitbucket.org/slde/opendata-experiments
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seconds, respectively. Incremental analysis takes between 3.06% and 43.75% of
the time of a full analysis. The mean ratio between incremental and full analysis
is 10.56%. Thus, incremental analysis gives huge performance gains.

R{3) Fig. [ shows incremental analysis times per revision, ordered by LOC
and changed LOC, respectively. The size of a project does not seem to influence
incremental analysis time (correlation coefficient —0.18), but the size of the
change does. This is the expected outcome, but more experiments will be needed.

R(J{) There were 137 revisions which affected only a single file. Incremental
analysis takes between 0.37 and 1.12 seconds. There is only one revision where
incremental analysis takes longer than one second. The mean incremental analy-
sis time is 0.56 seconds. All analysis times would be acceptable response times in
an interactive IDE setting, where analysis is performed in the background with-
out blocking the user interface. Single responses which take slightly more than
one second would still be acceptable, if regular responses are fast. Furthermore,
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changes between two revisions are more coarse grained and should require more
re-evaluation than changes in an editing scenario.

Threats to Validity. An important threat to external validity is that we ana-
lyzed only WebDSL applications and only two of them. We are convinced that
WebDSL’s name and type analysis is representative for other languages, but
our evaluation cannot generalize beyond WebDSL and its sublanguages. Fur-
thermore, other WebDSL applications, particularly those of different size, might
show different characteristics. Additional threats are the large distance between
revisions and the correctness of revisions. In real-time editing scenarios, dis-
tances might be much smaller and revisions might switch between correct and
erroneous states. We believe that smaller distances would only be in the benefit
of incremental analysis. Erroneous revisions should not affect parse and collec-
tion times but evaluation times, which tend to be small. A threat to internal
validity is file size. Incremental analysis re-parses and re-collects changed files.
Independent of the actual changes inside a file, file size alone can influence parse
and collection times. However, we believe that this does not influence the con-
clusions from any of our research questions. Regarding construct validity, we
measured performance using wall-clock time only and control JIT compilation
with a warm-up phase. By running the garbage collector between analysis runs,
we ensured a similar amount of memory available to all analyses. However, the
semantic index and the task engine store large amounts of data (13 MB in the
worst case) and may experience garbage collection pauses.

7 Related Work

We give an overview of other approaches for incremental name and type analysis.

IDEs and Language Workbenches. IDEs such as Eclipse typically lack a
generic framework for the development of incremental analyses, but provide
manual implementations of incremental analysis and compilation for popular
languages such as Java or C#. Some language workbenches automatically derive
incremental analyses. In SugarJ [5], extensions inherit the incremental behaviour
of SugarJ, which uses the module system of Java to provide incremental compi-
lation on file-level, but lacks name and type analysis of its host language Java.
Xtext [6] leverages incremental analysis and compilation from the Eclipse JDT
to user-defined languages, as long as they map to Java concepts. The JDT per-
forms only local analyses on edit and global analyses on save. MPS [30] does
not require name binding due to its projectional nature. It supports incremental
type analysis but lacks a framework for other incremental analyses. In general,
language workbenches lack frameworks for developing incremental analyses.
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Attribute Grammars. Attribute grammars [15] provide a formal way of speci-
fying the semantics of a context-free language, including name and type analysis.
One of the first incremental attribute evaluators is proposed in [3]. It only evalu-
ates changed attributes and propagates evaluation to affected attributes. A sim-
ilar incremental evaluation algorithm is shown in [3132] for ordered attributed
grammars [13]. In [22I24)23/[12], extensions to propagation are shown that stop
propagation if an attribute value is unchanged from its previous attribution.
Similar to attribute grammars, our approach exploits static dependencies,
caching, and change propagation. Similar to ordered attribute grammars, we
assume an evaluation order of tasks. Though tasks can be cyclic, we just do
not evaluate them. While attributes are (re-)evaluated in visits to the tree, our
collection separates tasks from the tree and they are (re-)evaluated independent
of the tree. As a consequence, we do not require incremental parsing techniques
and are not restricted to editing modes. For name analysis, attribute grammars
typically pass environments throughout the tree. Incremental name analysis suf-
fers from this as a single change in the environment requires a full re-evaluation
of the aggregated environment and all dependent attributes. In our approach, we
have a predefined notion of an environment, the semantic index, which is glob-
ally maintained. It enables fine-grained dependency tracking for name and type
analysis tasks solely based on changing entries, not on changing environments.

Reference Attribute Grammars. A popular extension to attribute gram-
mars is the addition of reference attributes. These simplify the specification of
algorithms that require non-local information, including name resolution. Door
Attribute Grammars [8/9] extend attribute grammars with reference attributes
and door objects which facilitate analysis of object-oriented languages. A similar
but more general extension is shown in [2I]. Reference Attributed Grammars [10]
are a generalization of door attribute grammars where the door objects are re-
moved. In [26], an incremental evaluator for reference attributed grammars is
shown which is used by the JastAdd [4] meta-compilation system. JastAdd also
adds parametrized attributes which allow attributes to be parametrized, forming
a mapping. The approach is compared to traditional attribute grammars in [27]
and shows that the use of reference attribute grammars reduces the number of
affected attributes for name and type analysis significantly.

Our approach has two mechanisms similar to reference attributes. First, we
can refer to binding instances by URIs and can look up their properties in the
semantic index. Second, properties and tasks can refer to arbitrary other tasks.
Reference attribute grammars discover dependencies during evaluation. We de-
tect inter-task dependencies after collection. This already helps in establishing
an ordering for evaluation. Only dependencies from properties to tasks are dis-
covered during evaluation. Similar to ordinary attribute grammars, reference
attribute grammars also do not provide a solution for aggregate attributes.

Some attribute grammar formalisms take a functional approach to evalua-
tion. In [I9] attributes are evaluated using visit-functions with memoization.
A more general extension to attribute grammars is the higher order attribute
grammar [28/25] for which an incremental evaluator is presented in [29]. Similar
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to this approach, our approach employs a global cache and uses hash consing to
efficiently share tasks and to make look-ups into the cache extremely fast. Tasks
can also be seen as functions, but the evaluation strategy differs. Visit-functions
are still applied on subtrees while tasks are completely separated from the tree.

Other Approaches. Pregmatic [1] is an incremental program environment gen-
erator that uses extended affix grammars for specification. It uses an incremental
propagation algorithm similar to the one used by attribute grammar approaches
which were discussed earlier. Instead of separating parsing and semantic analysis,
all evaluation is done during parse-time which differs significantly from our parse,
collect and evaluate approach. Incremental Rewriting [18] describes efficient al-
gorithms for incrementally rewriting programs based on algebraic specifications.
An algorithm for incrementally evaluating functions on aggregated values is also
shown. The approach does not support non-local dependencies, making specifi-
cation of name binding less intuitive as it requires copying of information.

8 Conclusion

We have proposed an approach for incremental name and type analysis in two
phases, collection and deferred evaluation of analysis tasks. The collection is in-
stantiated with language-specific name binding and type rules and incremental
on file level. Unchanged files are neither re-parsed nor re-traversed. The eval-
uation phase is incremental on task level. When a file changes, all tasks that
are affected by this change are reevaluated. This might include dependent tasks
from other files.

Tasks execute low-level instructions for name resolution and type analysis,
and can form a basis for the definition of declarative meta-languages at a higher
level of abstraction. For example, we map declarative name binding and scope
rules expressed in NaBL to an instantiation of the presented approach. We im-
plemented the approach as part of the Spoofax language workbench. It frees lan-
guage engineers from the burden of manually implementing incremental analysis.
We applied the implementation to WebDSL and empirical evaluation has shown
this analysis to be responsive to changes in analyzed programs and suitable to
the interactive requirements of an IDE setting.
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