
Martin Erwig
Richard F. Paige
Eric Van Wyk (Eds.)

 123

LN
CS

 8
22

5

6th International Conference, SLE 2013
Indianapolis, IN, USA, October 2013
Proceedings

Software Language
Engineering

Lecture Notes in Computer Science 8225
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martin Erwig Richard F. Paige
Eric Van Wyk (Eds.)

Software Language
Engineering

6th International Conference, SLE 2013
Indianapolis, IN, USA, October 26-28, 2013
Proceedings

13

Volume Editors

Martin Erwig
Oregon State University
School of Electrical Engineering and Computer Science
Corvallis, OR 97331-5501, USA
E-mail: erwig@eecs.oregonstate.edu

Richard F. Paige
University of York
Department of Computer Science
Deramore Lane, York YO10 5GH, UK
E-mail: richard.paige@york.ac.uk

Eric Van Wyk
University of Minnesota
Department of Computer Science and Engineering
200 SE Union Street, Minneapolis, MN 55455, USA
E-mail: evw@cs.umn.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-02653-4 e-ISBN 978-3-319-02654-1
DOI 10.1007/978-3-319-02654-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013949676

CR Subject Classification (1998):
D.3.2-4, D.2.1-2, D.2.11-13, F.4.2, I.2.4, I.6.5, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present the proceedings of the 6th International Conference
of Software Language Engineering (SLE 2013). The conference was held in In-
dianapolis, USA, during October 26–28, 2013. It was co-located with the 12th
International Conference on Generative Programming and Component Engineer-
ing (GPCE 2013), the 4th Conference on Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH 2013, which includes OOP-
SLA), the Dynamic Languages Symposium, the 5th International Workshop on
Feature-Oriented Software Development, and three SLE workshops: the Indus-
try Track of Software Language Engineering, the Systems Biology and Language
Engineering, and the Parsing@SLE Workshop.

The SLE conference series is devoted to a wide range of topics related to
artificial languages in software engineering. SLE is an international research fo-
rum that brings together researchers and practitioners from both industry and
academia to expand the frontiers of software language engineering. SLE’s fore-
most mission is to encourage, synthesize, and organize communication between
communities that have traditionally looked at software languages from different
and yet complementary perspectives. Supporting these communities in learning
from each other, and transferring knowledge, is the guiding principle behind the
organization of SLE.

The conference program included a keynote presentation, 17 technical pa-
per presentations, 2 tool papers, and a number of poster presentations (which
are not included in these proceedings, but in a complementary volume). The
invited keynote speaker was Don Batory (University of Texas at Austin, USA),
who spoke provocatively about “Dark Knowledge and Graph Grammars in Au-
tomated Software Design”.

We received 56 full submissions from 63 abstract submissions. From these
submissions, the Program Committee (PC) selected 19 papers: 17 full papers
and 2 tool demonstration papers, resulting in an acceptance rate of 34%. Each
submitted paper was reviewed by at least three PC members and discussed in
detail during the electronic PC meeting.

SLE 2013 would not have been possible without the significant contribu-
tions of many individuals and organizations. We are grateful to the SPLASH
2013 general chairs and local organizing chairs, particularly Antony Hosking and
Patrick Eugster, for taking care of logistical matters and hosting the conference
in Indianapolis. The SLE Steering Committee provided invaluable assistance and

VI Preface

guidance. We are also grateful to the PC members and the additional review-
ers for their dedication in reviewing the submissions. We thank the authors for
their efforts in writing and then revising their papers and addressing the recom-
mendations of the referees in a constructive manner. Our final thanks go to the
sponsoring and cooperating institutions for their generous support.

August 2013 Martin Erwig
Richard F. Paige

Organization

General Chair

Eric Van Wyk University of Minnesota, USA

Program Co-chairs

Martin Erwig Oregon State University, USA
Richard F. Paige University of York, UK

Steering Committee

Mark van den Brand Eindhoven University of Technology,
The Netherlands

James Cordy Queen’s University, Canada
Jean-Marie Favre University of Grenoble, France
Dragan Gašević Athabasca University, Canada
Görel Hedin Lund University, Sweden
Eric Van Wyk University of Minnesota, USA
Jurgen Vinju CWI, The Netherlands
Kim Mens Catholic University of Louvain, Belgium

Program Committee

Emilie Balland Inria, France
Olaf Chitil University of Kent, UK
James R. Cordy School of Computing, Queen’s University,

Canada
Davide Di Ruscio Università degli Studi dell’Aquila, Italy
Iavor Diatchki Galois Inc., USA
Anne Etien LIFL - University of Lille 1, France
Jean-Marie Favre University of Grenoble, France
Dragan Gašević Athabasca University, Canada
Jeremy Gibbons University of Oxford, UK
Andy Gill University of Kansas, USA
Jeff Gray University of Alabama, USA

VIII Organization

Giancarlo Guizzardi Federal University of Espirito Santo, Brazil
Görel Hedin Lund University, Sweden
Markus Herrmannsdörfer Technische Universität München, Germany
Zhenjiang Hu NII, Japan
Oleg Kiselyov USA
Paul Klint CWI, The Netherlands
Thomas Kühne Victoria University of Wellington, New Zealand
Kim Mens Université Catholoque Louvain, Belgium
Pierre-Etienne Moreau Ecole des Mines de Nancy, France
Klaus Ostermann University of Marburg, Germany
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Fiona Polack University of York, UK
Lukas Renggli University of Bern, Switzerland
Bernhard Rumpe RWTH Aachen, Germany
João Saraiva Universidade do Minho, Portugal
Friedrich Steimann FernUniversität in Hagen, Germany
Gabriele Täntzer Philipps-Universität Marburg, Germany
Mark Van Den Brand TU Eindhoven, The Netherlands
Jurgen Vinju CWI, The Netherlands

Additional Reviewers

Alalfi, Manar
Arendt, Thorsten
Asadi, Mohsen
Bach, Jean-Christophe
Bieniusa, Annette
Boskovic, Marko
Bosnacki, Dragan
Brunnlieb, Malte
Chen, Sheng
Cho, Hyun
Corley, Jonathan
Cunha, Jácome
Dean, Thomas
Feller, Christoph
Fontaine, Pascal
Fort, Karën
Greifenberg, Timo
Groener, Gerd
Hermerschmidt, Lars
Horst, Andreas

Jacob, Ferosh
Kelter, Udo
Kolassa, Carsten
Kurnia, Ilham
Kurpick, Thomas
Martins, Pedro
Michel, Patrick
Pollet, Damien
Ressia, Jorge
Ringert, Jan Oliver
Serebrenik, Alexander
Smeltzer, Karl
Stephan, Matthew
Stevenson, Andrew
Sun, Yu
van Amstel, Marcel
van der Meer, Arjan
Verhoeff, Tom
Weber, Mathias

Table of Contents

Invited Talk

Dark Knowledge and Graph Grammars in Automated Software
Design . 1

Don Batory, Rui Gonçalves, Bryan Marker, and Janet Siegmund

Domain-Specific Languages

Developing a Domain-Specific Language for Scheduling in the European
Energy Sector . 19

Stefan Sobernig, Mark Strembeck, and Andreas Beck

Micro-Machinations: A DSL for Game Economies . 36
Paul Klint and Riemer van Rozen

xMOF: Executable DSMLs Based on fUML . 56
Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and
Gerti Kappel

Language Patterns and Evolution

Variability Support in Domain-Specific Language Development 76
Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and
Benoît Combemale

Software Evolution to Domain-Specific Languages . 96
Stefan Fehrenbach, Sebastian Erdweg, and Klaus Ostermann

Micropatterns in Grammars . 117
Vadim Zaytsev

Grammars

Safe Specification of Operator Precedence Rules . 137
Ali Afroozeh, Mark van den Brand, Adrian Johnstone,
Elizabeth Scott, and Jurgen Vinju

Detecting Ambiguity in Programming Language Grammars 157
Naveneetha Vasudevan and Laurence Tratt

A Pretty Good Formatting Pipeline . 177
Anya Helene Bagge and Tero Hasu

X Table of Contents

Tools

The State of the Art in Language Workbenches: Conclusions
from the Language Workbench Challenge . 197

Sebastian Erdweg, Tijs van der Storm, Markus Völter,
Meinte Boersma, Remi Bosman, William R. Cook, Albert Gerritsen,
Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D.P. Konat,
Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido H. Wachsmuth, and Jimi van der Woning

A Model-Driven Approach to Enhance Tool Interoperability Using
the Theory of Models of Computation . 218

Papa Issa Diallo, Joël Champeau, and Loïc Lagadec

Whiley: A Platform for Research in Software Verification 238
David J. Pearce and Lindsay Groves

Method and Tool Support for Classifying Software Languages
with Wikipedia . 249

Ralf Lämmel, Dominik Mosen, and Andrei Varanovich

Language Analysis

A Language Independent Task Engine for Incremental Name and Type
Analysis . 260

Guido H. Wachsmuth, Gabriël D.P. Konat, Vlad A. Vergu,
Danny M. Groenewegen, and Eelco Visser

A Generic Framework for Symbolic Execution . 281
Andrei Arusoaie, Dorel Lucanu, and Vlad Rusu

Circular Higher-Order Reference Attribute Grammars 302
Emma Söderberg and Görel Hedin

Meta- and Megamodelling

Mapping-Aware Megamodeling: Design Patterns and Laws 322
Zinovy Diskin, Sahar Kokaly, and Tom Maibaum

Partial Instances via Subclassing . 344
Kacper Bąk, Zinovy Diskin, Michał Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wąsowski

Table of Contents XI

Reifying Concurrency for Executable Metamodeling 365
Benoît Combemale, Julien De Antoni, Matias Vara Larsen,
Frédéric Mallet, Olivier Barais, Benoit Baudry, and Robert B. France

Author Index . 385

Dark Knowledge and Graph Grammars
in Automated Software Design�

Don Batory1, Rui Gonçalves2, Bryan Marker1, and Janet Siegmund3

1 University of Texas at Austin, Austin, TX 78712 USA
{batory,marker}@cs.utexas.edu

2 Universidade do Minho, Braga, Portugal
rgoncalves@di.uminho.pt

3 University of Passau, Germany
feigensp@ovgu.de

Abstract. Mechanizing the development of hard-to-write and costly-to-maintain
software is the core problem of automated software design. Encoding expert
knowledge (a.k.a. dark knowledge) about a software domain is central to its so-
lution. We assert that a solution can be cast in terms of the ideas of language
design and engineering. Graph grammars can be a foundation for modern auto-
mated software development. The sentences of a grammar are designs of complex
dataflow systems. We explain how graph grammars provide a framework to en-
code expert knowledge, produce correct-by-construction derivations of dataflow
applications, enable the generation of high-performance code, and improve how
software design of dataflow applications can be taught to undergraduates.

1 Introduction

Like many of you, I read popular science articles. I especially enjoy discussions on
current problems in theoretical physics. My favorite problem is that roughly 80% of
the mass of our universe is made of material that scientists cannot directly observe. It
is called dark matter. Dark matter emits no light or energy, but is not entirely invisible.
Scientists know it exists because with it they can explain the otherwise unusual rotations
of galaxies, the unexpected bending of light in empty space, and the surprising fact that
the expansion of our universe is accelerating. The issue of dark matter has been known
for at least 25 years [2], yet today it remains poorly understood.

Dark matter reminds me of a corresponding problem in software design. Software
design is a series of decisions whose effects are seen in programs, but are not directly
observable. In analogy to dark matter, I call it dark knowledge. Dark knowledge is
fleeting. Programmers may know it one day and forget it the next. It is not present
in source code. Yet we know dark knowledge exists, because with it we can explain
program designs. If an engineer makes a certain decision, (s)he would expect to see
algorithm α in a program; with an alternative choice, (s)he would see β. The presence
of dark knowledge in programs has been known for at least 30 years [6,9,22], and today
it too remains poorly understood.

� As this paper transcribes a keynote presentation, “I” refers to Batory’s personal experience and
“We” refers to the experience of all authors.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 1–18, 2013.
c© Springer International Publishing Switzerland 2013

2 D. Batory et al.

spec spec’

cone of
implementations

(a) (b)

Fig. 1. Cone of Implementations for a Specification

Dark knowledge is important. Software design starts with a formal or informal specifi-
cation. We know that there are huge numbers of possible programs that could implement
a spec (indicated by the “cone of implementations” in Fig. 1a, [3]). With domain and
software-engineering knowledge, an engineer makes a series of decisions to create a pro-
gram to implement the spec. The dashed lines in Fig. 1a indicate “dark knowledge”: the
engineer starts with an existing program (possibly the empty program) P0 that typically
does not satisfy the spec, makes a series of modifications (one per decision) to ultimately
arrive at a program that does satisfy the spec. This chain of decisions is fleeting—over
time it is forgotten, thereby losing vital knowledge about the program’s design. When the
spec is updated (Fig. 1b), engineers who maintain the program effectively have to recre-
ate the series of decisions that lead to the original program, erase a previous decision, and
replace it with those that are consistent with the new spec. In time, these decisions are
forgotten as before, bringing us back to square one where design knowledge is dark.1

The connection to language design is immediate in a shallow way: language design
and language implementation are instances of these ideas. They too involve a series of
decisions whose effects can be seen, but not explicitly encoded. Consequently, the same
problems arise: vital design knowledge for maintenance and evolution is lost.

The importance of dark knowledge is well-known. Making dark knowledge white
(explicit) was expressed in 1992 by Baxter in his paper on “Design Maintenance Sys-
tems” [6]. More recently, another version of this idea arises in self-adaptive and self-
managing software [48] . Here, the goal is to encode design decisions explicitly in
software to make dark knowledge white, so these decisions can be revisited and rede-
cided automatically (possibly with a human in the loop). Illuminating dark knowledge
embodies a new approach to software development [40].

The approach presented in this paper to make dark knowledge white is called Design
by Transformation (DxT) [17,21,37,38,46,50].

2 How Dark Knowledge Can Be Encoded

The challenge is how to encode dark knowledge thereby making it white. Transforma-
tions can do this. Fig. 2 shows the basic idea. Starting with program P0, a series of
transformations τ4 · τ3 · τ2 · τ1 is applied to produce the desired program P4. Of course,
today each of these transformations is accomplished manually: P0 is hacked into P1, P1
is hacked into P2, P2 into P3, and P3 into P4. With enough experience, an engineer can skip

1 Dark knowledge can be encoded in code comments, but this is woefully inadequate.

Dark Knowledge and Graph Grammars in Automated Software Design 3

Fig. 2. Program Derivation

intermediate steps. But if each transformation were programmed so that it could be ap-
plied by a tool, P4 would be automatically derived from P0. It is this automation mindset
that drives DxT.

grammar

cone of
sentences

S

(a)

A B + C* ()S =

(b)

S0

S0

Fig. 3. The Language of a Grammar and a
Parse Tree of Sentence S

Program derivation in DxT is related to
grammars and parse trees. A grammar G for
a language is a set of rules called productions
that describe how to form sentences (in the lan-
guage’s alphabet) that are valid according to
the language’s syntax. The set of derivable sen-
tences is the language L(G). Fig. 3a shows
grammar G and its cone of sentences L(G).
What I have called dark knowledge is a se-
quence of decisions that derives a particular
sentence S (the dashed arrows in Fig. 3a). Start-
ing from a representation S0 that likely does not
belong to L(G), a series of decisions (produc-
tion invocations) derives S. This derivation, of
course, is the parse tree of S: it is a proof that
S ∈ L(G) (Fig. 3b). It also represents the not-
so-dark knowledge of S. Characteristic of dark
knowledge is that there is no direct evidence of
these productions in S itself; all that appears are their after-effects. Such knowledge is
important; given the abstract syntax tree (AST) of a program, one can automate pro-
gram manipulations, such as refactorings. Without such knowledge, refactorings would
be difficult, if not impossible, to perform correctly.

In over 25 years of studying program design, I have come to see typical programming
languages and their grammars as one-dimensional; their sentences (eg Java programs)
are simply 1D strings. This is not enough: to see the possibilities that arise in program
development, one has to think in terms of n≥2 dimensional graphs, not 1D lines.

I focus on dataflow programs in this paper. They are not representative of all pro-
grams, but they do occupy a significant group of programs that are developed today. A
dataflow program can be visualized as a graph of computations, where nodes are primi-
tive computations and edges indicate the flow of data. Fig. 4a is an example: α,β,γ are
computations; data enters on the left and exits on the right. Although it is always possi-
ble to map dataflow graphs to 1D programs, there is an important distinction between
1D and nD grammars, which I’ll discuss later in Section 5.1.

Informally, graph grammars are generalizations of Chomsky string grammars. They
extend the concatenation of strings to a gluing of graphs [10,15]. Productions are of the
form Graphleft → Graphright; ie replace Graphleft with Graphright.2 Derivations are

2 There are different formalisms for graph grammars [47]. DxT grammars follow the algebraic
(double-pushout) approach to (hyper-)graph grammars.

4 D. Batory et al.

of the form Graphinitial⇒∗ Graphfinal; ie apply a sequence of rewrites to Graphinitial
to produce Graphfinal. Graph grammars have been used for many purposes, such as
design of visual languages [19,44,59], model synchronization [20,28], model valida-
tion [25,52], program compilation [49], and dynamic adaptation/evolution of architec-
tures [11,14,33,55,56].

(a)

(b)

(c)

(d)

Fig. 4. A Dataflow Graph and 3 Rewrites

Fig. 5. Graphinitial ⇒∗ Graphfinal

Fig. 4 shows three rewrites. Fig. 4b
replaces a β computation with a graph
of computations (eg a map-reduce of β).
Fig. 4c shows the same for γ. Fig. 4d
shows that of α followed by α−1 can-
cels each other, yielding an identity
map. Fig. 5 is a derivation that starts
at an initial graph where computation β
precedes γ to the final graph of Fig. 4a
using the rewrites of Fig. 4b-d.

A direct analogy of 1D and nD gram-
mars would have both defining the syn-
tax of a language. For example, it is
easy to imagine a language of cyclic
graphs, where each node is connected
to exactly two other nodes. DxT goes
further in that each production defines a
semantic equivalence between its LHS
and RHS graphs.

There is a subtle distinction
between a graph grammar and a graph-
rewriting system: the former enumer-
ates all graphs from some starting
graph and the latter transforms a given
state (host graph) into a new state [57].
In this sense, DxT is closer to a graph
grammar.

All of this is rather abstract, so let’s
pause here to see a concrete example.

3 Upright: A Synchronous
Crash Fault Tolerant Server

Upright was the state-of-the-art Byzan-
tine crash fault tolerant server in 2009
[8]. We were interested in its dataflow
design. Talking to the Upright authors,
we soon discovered that ∼15 people on
earth really understood it (and we cer-
tainly were not among them). It posed

Dark Knowledge and Graph Grammars in Automated Software Design 5

a challenging reverse engineering task [46]. In this section, we review Upright’s Syn-
chronous Crash Fault Tolerant (SCFT) design in terms of DxT. Doing so turns its dark
knowledge white.

Fig. 6. Cylinder

Upright’s starting dataflow graph is Fig. 7a. (My apology for the
size of this figure; it can be digitally enlarged). Such a graph in Model
Driven Engineering (MDE) is called a Platform Independent Model
(PIM). Clients (the C boxes) asynchronously send requests to a state-
ful server (box VS); the network effectively serializes these requests
(box Serialize). The server reads each request, updates its state, and
then sends out a response. The network routes the response back to
the originating client (box Demultiplex). In effect, messages exiting
on the right of Fig. 7a re-enter the figure on the left, as if the graph were embedded on
the surface of a cylinder (Fig. 6).

The derivation of Upright’s implemented dataflow graph, called a Platform Specific
Model (PSM), begins with the transition from Fig. 7a to Fig. 7b that exposes a network
queue (L) in front of the server (S). Next, the transition from Fig. 7b to Fig. 7c effectively
performs a map-reduce of both L and S [29]. Fig. 7d is a copy of Fig. 7c that shows the
subgraphs to be replaced (to eliminate single points of failure). The SCFT dataflow
design of Fig. 7e is a PSM for Fig. 7a [46]. We used this derivation to reimplement
Upright’s SCFT design [46].

The semantics of these rewrites are well-understood by experts of SCFT design; for
this presentation, we view them as sterile graph transformations.

(a)

(b)

(c)

(d)

(e)

Fig. 7. Upright’s SCFT PIM ⇒∗ PSM Mapping

6 D. Batory et al.

3.1 DxT and the Essence of Graph Grammars

A graph grammar GG is an ordered pair (g,P); g is the starting graph and P is a set
of graph productions. The language of GG , L(GG), is the set of graphs that can be
derived by applying the rules in P to g [10,15,47].

DxT builds on this foundation: (1) the primitive computations (operations) of a do-
main are the alphabet of GG , (2) the fundamental computational equivalences of the
domain are its graph transformations (which encode the fundamental patterns of com-
putation that were previously dark knowledge), and (3) the initial graph g is the PIM
of an application and L(GG) is the set of its PSMs—the cone of implementations for
g. DxT goes further, in that the initial graph can be a member of a domain of PIMs,
g ∈ Gpim.

There are indeed distinctions between 1D and nD grammars. Here are a few:

– In general, the parse of a sentence in a 1D grammar should be unique; the grammar
is either unambiguous or it is ambiguous with context making a parse unambiguous.
Not so for nD grammars: multiple parses of a dataflow program simply means
there are multiple equivalent ways of deriving that program—a perfectly acceptable
situation.

– 1D productions do not need proofs of correctness—they simply define a textual
pattern where there is nothing to prove. In contrast, each DxT rewrite defines a fun-
damental computational equivalence in a domain; there should be some evidence
(ideally a proof) that each rewrite is correct.

– A parse tree for sentence S in a 1D grammar G is proof that S is a sentence of L(G).
A derivation tree for dataflow application S in an nD grammar GG is a proof that
S ∈ L(GG), ie S is a correct-by-construction implementation of g.

– 1D technology aims at parsing sentences. Although DxT can also be used for re-
verse engineering (parse the design of a legacy application), here we use it to derive
programs (and explore the space of implementations of a spec).

It is not difficult to imagine the utility of Upright’s DxT explanation. I could go into
more technical details about DxT now, but that would be overkill. Instead, a big picture
is needed to motivate this general field of research, which I consider next.

4 Who Cares? Motivations from Practice

Software Engineering (SE) largely aims at techniques and tools to aid masses of pro-
grammers whose code is used by hoards—these programmers need all the help they
can get. At the same time, there are many domains where programming tasks are so de-
manding that there are only a few programmers that can perform them—these experts
need all the help that they can get, too.

As said earlier, the focus of my research group is on dataflow domains which repre-
sent an important class of today’s applications (eg virtual instrumentation [53] and appli-
cations of streaming languages [54]). The specific domains of our interest include par-
allel relational join algorithms [12], crash fault tolerant file servers [8], and distributed-
memory, sequential, and shared-memory Dense Linear Algebra (DLA) kernels [37,38].

Dark Knowledge and Graph Grammars in Automated Software Design 7

In practice, domain experts magically produce a big bang design: the dataflow graph
of the complete application. Typically, it is a spaghetti diagram. How it was created and
why it works are mysteries to all but its authors. For academic and practical reasons, it
seems intuitively better to derive the graph from domain knowledge; doing so would
answer both questions.3 A digitally enlargeable Fig. 8 shows a DxT derivation of the
parallelization of hash joins in the Gamma database machine [12]. Ask yourself: would
you want only Gammafinal or its derivation Gammainitial ⇒∗ Gammafinal? I return to
this point in Section 6.

HJOIN
A

B
A*B

Fig. 8. Derivation of the Gamma Join Algorithm

Our current project focuses
on the generation of DLA ker-
nels/libraries. Kernel portabil-
ity is a serious problem. First,
porting may fail: kernels for
distributed memory (where com-
munication between cores is ex-
plicitly handled via a high-speed
network [38]) may not work
on sequential machines and vice
versa. Second, if it does work,
it may not perform well. The
choice of algorithms to use on
one hardware architecture may
be different from those to use
on another. One cannot sim-
ply “undo” optimizations and ap-
ply others—hopefully the reason
for this is clear: such changes
require dark knowledge. Third,
in the worst case (which does
frequently happen), kernels are
coded from scratch.

Why is this so? The primary
reason is performance. Applica-
tions that make DLA kernel calls
are common to scientific computing, eg simulation of airflow, climate change, and
weather forecasting. These applications are run on extraordinarily expensive machines.
Time on these machines costs money; higher performance means quicker/cheaper runs
or more accurate results. Bottom line: Application developers want the best perfor-
mance to justify their costs [35].

Consider distributed-memory DLA kernels. They deal with Single Program, Multi-
ple Data (SPMD) hardware architectures: the same program is run on each processor,
but with different inputs and processors communicate with one another. The operations
that a DLA kernel is expected to support is fixed—they have been well-known and

3 This is no surprise to scientists. Physics students, for example, typically rederive equations to
understand a paper. Similar activities occur in Computer Science.

8 D. Batory et al.

well-defined for 40 years. Fig. 9 lists some of the Level 3 Basic Linear Algebra Subpro-
grams (BLAS3), which are matrix-matrix operations [13]. (Level 2 deals with

BLAS3 # of Variants

Gemm 12

Hemm 8

Her2k 4

Herk 4

Symm 8

Syr2k 4

Trmm 16

Trsm 16

Fig. 9. The BLAS3

vector-matrix operations and Level 1 vector-vector operations.)
There is Gemm, general matrix-matrix multiply, Hermitian Hemm,
symmetric Symm, and triangular Trmm matrix-matrix multiplies.
Trsm solves non-singular triangular system of equations.

What is unusual from an SE perspective is that each opera-
tion has many variants. Consider Gemm. With constants α,β, the
general form of this operation is:

C := α ·A ·B+β ·C
where matrices A and B are either “normal” or transposed.
That’s 4 possibilities. Further, the implementation of Gemm is
specialized for distributed memory based on whether A, B, or C
is largest. That’s another 3 for a total of 4× 3 = 12. A similar
variety is required for other operations.

We also must consider “LAPACK-level” algorithms, which call DLA and BLAS3
operations, such as solvers, factorizations (eg Cholesky), and eigenvalue decomposi-
tions [1]. We have to generate high-performance algorithms for these operations, too.

Let me be clear: our work on DLA kernels did not start from scratch. We mecha-
nized portions of van de Geijn’s FLAME project [26] and the distributed-memory DLA
library Elemental [42]. FLAME and Elemental leverage 15 years of polishing elegantly
layered designs of DLA libraries and their computations. FLAME and Elemental pro-
vided the foundation for us to convert dark knowledge of DLA into white knowledge.

4.1 Performance Results

We used two machines in our benchmarks: Intrepid, Argonne’s BlueGene/P with 8,192
cores and 27+ TFLOPS peak performance and Lonestar of the Texas Advanced Com-
puting Center with 240 cores and 3.2 TFLOPS peak performance. We compared our re-
sults against ScaLAPACK [7], which is the standard linear algebra library for distributed
memory machines. Each installation of ScaLAPACK is auto-tuned or manually-tuned.
ScaLAPACK was the only DLA library, other than Elemental, for these machines.

DxTer is our tool that generates Elemental code [34,37]. It takes a PIM g of a sequen-
tial DLA program as input. It exhaustively applies all of the productions P in its library
to produce the space of all of g’s implementations L((g,P)) in distributed memory. Us-
ing cost functions to estimate the performance of each derived graph, the most efficient
graph is chosen.4

We used DxTer to automatically generate and optimize Elemental code for BLAS3
and Cholesky FLAME algorithms. Fig. 10 shows the performance for BLAS3. Overall,
DxTer-generated code executes significantly faster than its hand-written ScaLAPACK
counterparts. Fig. 11 shows the performance of Cholesky factorization. Again, DxT-
er generated-code is noticeably faster, which is the same or better than hand-coded
Elemental implementations. These graphs are typical of DxTer results [36,37,38].

4 This process of mapping an abstract specification to an efficient implementation is historically
called automatic programming.

Dark Knowledge and Graph Grammars in Automated Software Design 9

Today, Elemental is shipped with DxTer-generated algorithms [16].

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ge
m
m

N
N

Ge
m
m

N
T

Ge
m
m

TN

Ge
m
m

TT

Sy
m
m

LL

Sy
m
m

RL

Sy
m
m

LU

Sy
m
m

RU

Sy
r2
k
LN

Sy
r2
k
LT

Sy
r2
k
U
N

Sy
r2
k
U
T

Sy
rk

LN

Sy
rk

LT

Sy
rk

U
N

Sy
rk

U
T

Tr
m
m

LL
N
N

Tr
m
m

RL
N
N

Tr
m
m

LL
TN

Tr
m
m

LU
N
N

Tr
sm

LL
N
N

Tr
sm

RL
N
N

Tr
sm

LL
TN

Tr
sm

LU
N
N

Pe
rf
or
m
an

ce
(G
FL
O
PS
) ScaLAPACK

DxTer

Fig. 10. BLAS3 Performance on Intrepid

0

200

400

600

800

1000

1200

1400

1600

1800

4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

Pe
rf
or
m
an

ce
(G
FL
O
PS
)

Matrix Dimension Size

DxT

ScaLAPACK

Fig. 11. Cholesky Performance on Lonestar

4.2 State-of-the-Art vs. Our Group’s Vision

Today’s linear algebra libraries exist as code. They are rewritten manually as the archi-
tecture du jour changes, and it changes rapidly. Consequently, library development lags
far behind architecture development, by as much as a decade. Attaining sub-optimal
performance on the latest and greatest machines carries a big price for end users.

This is not sustainable. We argue that linear algebra libraries written in a specific
language for a specific architecture should never be developed entirely manually. In-
stead, tools, techniques, and theories are needed to encode algorithms, expert knowl-
edge, and information about target architectures. The majority of code libraries can

10 D. Batory et al.

then be generated automatically. Experts can overlook optimizations and make mis-
takes. Machines can not. Performance of generated code is as good as or better than
hand-written [36,37,38]. For algorithms that cannot be automatically generated, experts
will now have more free time to code them manually. This code can eventually be cast
in terms of transformations to encode its dark knowledge. In short, automation will ul-
timately be a faster, cheaper, better, and more sustainable solution the development of
libraries for linear algebra (cf [4]).

4.3 DxT Limitations and Salute to Prior Work

DxT is not limited to stateless computations; DxT was originally developed to explain
the stateful design of Upright. DxT can be applied to any dataflow domain where the
mechanization of rote and/or high-performance code is needed. There are huge numbers
of such domains representing great diversity [53].

We would be remiss in not acknowledging prior projects with similar goals and
ideas. Among them are the pioneering works on correct-by-construction and deduc-
tive program synthesis [24], Amphion [32], rule-based relational query optimization
(from which DxT is a direct descendant) [31], SPIRAL [43], the Tensor Contraction
Engine [5], and Build-To-Order BLAS [51]. These projects were successful, because
their authors put in the effort to make them succeed. Unfortunately, the successes of
these projects are known to far too few in the SE community. I return to this point in
Section 6.

5 Technical Details

With the big picture made clear, let’s now drill down to see some details—what in MDE
is called the metamodel—of DxT. There are three basic “objects” in DxT: interfaces,
primitives, and algorithms. An interface is exactly what it suggests: It is a box that de-
fines only the input/output ports and—at least informally—box semantics. A primitive
is a box that implements a fundamental computation (operation) in code. An algorithm
is a dataflow graph that references interfaces and primitives.

DxT has two basic “relationships”: refinements and abstractions. A refinement re-
places an interface with an implementation (primitive or algorithm). An abstraction
rewrites in the opposite direction: from primitive or algorithm to an interface.5

Interfaces have preconditions (no surprise). But primitives and algorithms may have
preconditions of their own that are stronger than the interfaces they implement (this is
different). Fig. 12 is a classical example. The sort interface takes a stream of records as
input and produces a sorted stream as output. (The sort key parameter is not shown). The
first two refinements show quick-sort and merge-sort as primitives. The third shows a
map-reduce implementation, where hash and omerge are primitive and any implemen-
tation of sort can be substituted for sort interfaces. The last refinement is the focus
of this discussion: it says if the input stream is already in sort-key order, nothing needs
to be done. This donothing algorithm has a precondition that is stronger than its sort
interface.

5 There is more to DxT, but this is sufficient for this paper. See [21,46] for more details.

Dark Knowledge and Graph Grammars in Automated Software Design 11

Fig. 12. The sort Interface and its Implementations

The Liskov Substitution Principle (LSP) is a hallmark of object-orientation [30]. It
says if S is a subtype of T, then objects of type S can be substituted for objects of
type T without altering program correctness. Substituting an interface with an imple-
menting object (component) is standard fare today and is a way to realize refinement in
LSP [39,58]. The key constraints of LSP are that preconditions for using S can not be
stronger than preconditions for T, and postconditions for S are not weaker than that for
T.

The donothing refinement is incompatible with LSP. In fact, LSP is too restrictive
for graph rewriting; another principle is at work. In 1987, Perry [41] said a box A (read:
algorithm or primitive) is upward compatible with box I (read: interface) iff:

pre(A)⇒ pre(I) ; preconditions can be stronger

post(A)⇒ post(I) ; postconditions can’t be weaker

This is exactly what we need, which we call the Perry Substitution Principle (PSP) [41].
It is a practical alternative to LSP that dominates the DxT world. PSP takes into account
the local conditions surrounding an interface to qualify legal refinements. We could not
re-engineer legacy designs without it.

Abstraction—which replaces an implementation with an interface—has stronger con-
straints than refinement. It implies that a graph A must implement I. For this to hold,
the pre- and postconditions of A and I must be equivalent [21]:

pre(I)⇔ pre(A)

post(I)⇔ post(A)

5.1 Optimizations

Earlier we used rewrites that replace a graph α1 (more than a single node) with another
graph α2 (Fig. 13a), where Fig. 4d is an example. We call these rewrites optimizations.
Optimizations effectively break “modular” boundaries of adjacent algorithms to expose
inefficient graphs which are replaced with more efficient graphs. Optimization is equiv-
alent to an abstraction (replacing graph α1 with interface ι) followed by a refinement
(replacing ι with graph α2) (Fig. 13b). This allows DxT rewrites to assume the canonical
form of interfaces on the left and implementations on the right (Fig. 13b).

12 D. Batory et al.

(a) (b)

Fig. 13. Optimizing Rewrite Rules

Optimizations are easily expressed in nD grammars. Not so for 1D grammars. Con-
sider the following 1D grammar, where uppercase names are interfaces and lowercase
names are primitives:

A : a B c | . . . ;

B : b | . . . ;

A sentence of this grammar is abc. Suppose composition bc implements interface Z:

Z : bc | q ;

Further, domain experts know that bc is inefficient and can be replaced by box q, which
is faster. This is accomplished by abstracting sentence abc to aZ and then refining to
a faster program by replacing Z with q to yield aq. Although this makes perfect sense,
abstraction is foreign to 1D grammars and parsing technology [45]; it is a natural part
of nD grammars. I mentioned earlier (Section 2) that there is an important distinction
between 1D and nD grammars; this is the point that I wanted to make.

Much of this should look familiar: it is similar to optimization techniques in compil-
ers (esp. for functional languages) [27]. Optimizations break encapsulation boundaries
to produce more efficient code. The novelties of DxT are (1) DxT uses graphs not trees,
(2) DxT grammars derive software designs, which are not parse-trees or ASTs of pro-
grams and are not states of program executions, and (3) DxT rewrites should be clearly
visible to domain experts and program designers, not hidden compiler internals.

5.2 Abstract Interpretation

Another fundamental idea (stolen from compiler playbooks) is abstract interpretation.
A DxT graph g may have many interpretations. The default—what we have used up to
now—is to interpret each box of g as the computation it represents. sort means “sort
the input stream”. We call this the standard interpretation S . The S interpretation of
box b is denoted S(b) or simply b, eg S(sort) is “sort the input stream”. The standard
interpretation of graph g is S(g) or simply g.

There are other interpretations. C OST interprets each box b as a computation that es-
timates the execution time of S(b) given statistics about S(b)’s inputs. So C OST (sort)
is “return an estimate of the execution time to produce sort’s output stream”. Each box
b ∈ G has exactly the same ports as C OST (b) ∈ C OST (G), but the meaning of each
box and its ports are different.

– We mentioned in Section 4.1 that DxTer forward-engineers (derives) all possible
PSMs from an input PIM. The estimated run-time of a PSM p is determined by

Dark Knowledge and Graph Grammars in Automated Software Design 13

executing C OST (p). The most efficient PSM that implements the PIM is the one
with the lowest estimated cost [38].

– M 2T (p) is a model-to-text interpretation that maps p to executable code.
– Pre- and postconditions help guarantee the correctness of DxT graphs. The P OST

interpretation computes properties that are output by a box given properties about
box inputs. The P R E interpretation reads properties about box inputs (computed
by P OST) and checks if the preconditions of that box are satisfied. A composition
of these interpretations (P R E ·P OST (P)) computes postconditions and validates
preconditions of P [21].

6 The Reaction to DxT

Fellisen once remarked “It is not a problem to keep ourselves as researchers busy; we
need to keep undergraduates busy” [18]. I saved the most important message about DxT
for last. DxT is simple enough to teach to undergraduates.

Our thought has always been: once you have a proof or derivation of a design, you’ve
hit the jackpot: you have turned dark knowledge into white knowledge. Having said this,
we have been surprised at the reaction to DxT. Some of the reviews we received had
breathtaking statements of technical acuity. In Letterman Show countdown order, our
top 3 statements are:

3. “Refinement is not a transformation.”
2. “Why will you succeed where others have not?”6,7

1. “The work lacks motivation.”

We were comforted by the fact that conferences were being created solely for rejecting
our papers. Overall, none of the reactions made sense to us.

This lead us to conduct user studies involving third-year CS undergraduates and first-
year graduates. We split each set of students into two groups. To the first, we presented
the big-bang design for Gamma (Fig. 8); to the second, we presented Gamma’s deriva-
tion. We gave a written quiz that we graded. The result: no difference! There was no
difference in the number of correct answers, no obvious benefit to DxT derivations over
a big-bang. Both undergraduates and graduates were consistent on this point. This was
counter-intuitive to us; it didn’t make sense.

Perhaps, we thought, Gamma was too simple. So we re-ran the experiment using
Upright. The result: again no difference! We were mystified.

Then it occurred to us: maybe these students and referees had no experience develop-
ing software in this manner. It could not be the case that DxT was difficult to grasp—the
ideas are simple. And perhaps also the students and referees had no domain knowledge
of parallel relational query processing or crash fault tolerant servers. They could not
appreciate what we were telling them. If so, they could not recognize the value on our
part to distill software-architecture knowledge as elementary graph rewrites. Nor could
they see the practical implication of our results.

6 They conveniently ignored our performance results.
7 Others have been successful (Section 4.3). It helps to know the literature.

14 D. Batory et al.

DGemm NN

B

A

C
C'

[MC,MR]→[MR,*]
LGemm
NN

DGemm NN

B

A

C

C'

[MC,MR]→[MC,*]

[MC,MR]→[*,MR]
LGemm
NN

Temp
[MC,*] Sum

Scatter

DGemm
NN

B
A

C
C'

DGemm NN

B

A

C
C'

LGemm
NN

Temp
[*, MR] Sum

Scatter

[MC,MR]→[*,MC]

Fig. 14. Distributed Gemm Refinements

We had anecdotal evidence for this last conjecture. We asked ourselves “what are
the refinements of DGemm (Distributed Gemm)?” Of course, we knew the answer (see
Fig. 14), but how many others would? People who were familiar with distributed DLA
algorithms should know. But very few would know a majority of the rules that we used
in DxTer to derive DLA algorithms and how these rules could be applied. In short, the
answer was: very, very few.

This again brings us back to the differences between 1D and nD grammars. It is
relatively easy to understand 1D productions—there is little to know. Graph grammars
as we use them are different. One needs deep knowledge of a domain to appreciate
most rewrites. Very few have such knowledge. Cordell Green once told me “It takes
effort” [23]. Few people have been in his (our) position to appreciate this point.

Our next user study in Fall 2012 explored these conjectures. We gave a program-
ming assignment to an undergraduate class of 28 students. We had them build Gamma
given its derivation. Once they completed the task, we gave them a questionnaire asking
for them to compare their experiences with a big-bang approach (where derivation de-
tails were absent). As students had been exposed to big-bang implementations in other
classes (and in previous assignments), they could compare DxT with a big-bang. We
briefly review some of our questions and results [17,50]:

– Comprehension. Do you think the structured way DxT imposes gives you a deeper
understanding of Gamma’s design than you would get by not using it and doing it
your own way?

– Modification. Do you think it would be easier or more difficult to modify Gamma
with DxT compared to a big-bang approach?

– Recommendation. Would you recommend to your fellow students implementing
Gamma using DxT or in a big-bang manner?

Analyzing the responses showed that 55% said DxT provided a deeper comprehension
of Gamma’s design; over 80% said DxT improved comprehension. 47% said it would
be considerably easier to modify Gamma given its derivation; over 90% said it would
make modification easier. None said it would make it harder. And 88% said they would
recommend DxT over a big-bang.

Dark Knowledge and Graph Grammars in Automated Software Design 15

More gratifying were the written comments, a few from different individuals are
listed below:

– I have learned the most from this project than any other CS project I have ever done.
– I even made my OS group do a DxT implementation on the last 2 projects due to

my experience implementing Gamma.
– Honestly, I don’t believe that software engineers ever have a source (to provide a

DxT explanation) in real life. If there was such a thing we would lose our jobs,
because there is an explanation which even a monkey can implement.

– It’s so much easier to implement (using DxT). The big-bang makes it easy to make
so many errors, because you can’t test each section separately. DxT might take a bit
longer, but saves you so much time debugging, and is a more natural way to build
things. You won’t get lost in your design trying to do too many things at once.

In retrospect, these comments were familiar. In October 2003, NSF held a Science
of Design Workshop in Airlie, Virginia. Fred Brooks (1999 Turing Award) summarized
the conclusions of his working group to explore the role of science in design: “We
don’t know what we’re doing and we don’t know what we’ve done!”. To paraphrase
Edsger Dijkstra (1972 Turing Award): “Have you noticed that there are child prodigies
in mathematics, music, and gymnastics, but none in human surgery?”. The point being
that there are bodies of knowledge that take years to comprehend and there are no short-
cuts to achieve such understanding. We owe our success with DxTer to 15 years of
research by van de Geijn and others to understand the domain of DLA. Not all domains
are this hard to understand, but again, it takes effort. Our take-away conclusion is this:

Knowledge, experience, and understanding how to codify knowledge of effi-
cient programs in a reproducible way is everything to automated design. Lack-
ing any of these is a significant barrier to progress.

7 Conclusions

Programmers are geniuses at making the simplest things look complicated; finding the
underlying simplicity is the challenge. Programmers are also geniuses at making criti-
cal white knowledge dark; reversing the color of knowledge is yet another challenge.
It takes effort to understand a legacy application or domain to mine out its funda-
mental identities or rewrite rules that are key to (a) automated design, (b) correct-by-
construction, and (c) transforming undergraduate education on software design from
hacking to a more scientific foundation.

Software Language and Engineering (SLE) has great potential for the future of Soft-
ware Engineering. Formal languages will be the foundation for automated software de-
velopment. Knowledge of dataflow application designs will be encoded as graph gram-
mars, not Chomsky string grammars, whose sentences define complex programs. Such
grammars will enable the design of programs to be optimized automatically; they will
remove the burden of rote, tedious, difficult, and error-prone activities of program de-
velopment; they will scale domain expertise from a few people to the masses; and most
importantly, they ultimately will help modernize undergraduate curriculums in software
design.

16 D. Batory et al.

Acknowledgements. We thank R. van de Geijn (Texas), T. Riche (NI), M. Erwig
(Oregon), R. Paige (York), and C. Kästner (CMU) for their helpful comments on
drafts of this paper. We gratefully acknowledge support for this work by NSF grants
CCF-0724979, CCF-0917167, and ACI-1148125. Gonçalves was funded by the ERDF
project FCOMP-01-0124-FEDER-010152 and FCT grant SFRH/BD/47800/2008.
Marker held fellowships from Sandia National Laboratories and NSF (grant DGE-
1110007). Siegmund was funded by BMBF project 01IM10002B. This research used re-
sources of the Argonne Leadership Computing Facility at Argonne National Lab, which
is supported by the Office of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357. We are greatly indebted to Jack Poulson for his help to under-
stand his Elemental library.

References

1. Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)
2. Bahcall, J., Piran, T., Weinberg, S.: Dark matter in the universe. In: 4TH Jerusalem Winter

School For Theoretical Physics (1987)
3. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In:

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

4. Batory, D., Singhal, V., Sirkin, M., Thomas, J.A.: Scalable software libraries. In: SIGSOFT
(1993)

5. Baumgartner, G., et al.: Synthesis of high-performance parallel programs for a class of ab
initio quantum chemistry models. Proceedings of the IEEE (2005)

6. Baxter, I.D.: Design Maintenance Systems. CACM (April 1992)
7. Blackford, L.S., et al.: ScaLAPACK: a portable linear algebra library for distributed memory

computers - design issues and performance. In: SC (1996)
8. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: Upright

cluster services. In: SOSP (2009)
9. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large

systems. Comm. ACM (November 1988)
10. D’Antonio, F.: (October 2003), http://www.docstoc.com/docs/123006845/

Introduction-to-Graph-Grammars-DAntonio
11. Derk, M., DeBrunner, L.: Reconfiguration graph grammar for massively parallel, fault tol-

erant computers. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars
1994. LNCS, vol. 1073, pp. 185–195. Springer, Heidelberg (1996)

12. Dewitt, D.J., Ghandeharizadeh, S., Schneider, D., Hsiao, A.B.H., Rasmussen, R.: The
Gamma Database Machine Project. IEEE ToKaDE 2(1) (1990)

13. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Software 16(1) (March 1990)

14. Dowling, J., Cahill, V.: Dynamic software evolution and the k-component model. In: Work-
shop on Software Evolution at OOPSLA (2001)

15. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: SWAT
(1973)

16. Elemental Team, http://libelemental.org/about/team.html
17. Feigenspan, J., Batory, D., Riché, T.L.: Is the derivation of a model easier to understand than

the model itself? In: ICPC (2012)
18. Felleisen, M.: Private Correspondence (January 2007)

http://www.docstoc.com/docs/123006845/Introduction-to-Graph-Grammars-DAntonio
http://www.docstoc.com/docs/123006845/Introduction-to-Graph-Grammars-DAntonio
http://libelemental.org/about/team.html

Dark Knowledge and Graph Grammars in Automated Software Design 17

19. Ferrucci, F., Tortora, G., Tucci, M., Vitiello, G.: A predictive parser for visual languages
specified by relation grammars. In: VL (1994)

20. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars.
In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199,
pp. 543–557. Springer, Heidelberg (2006)

21. Gonçalves, R.C., Batory, D., Sobral, J.: ReFlO: An interactive tool for pipe-and-filter domain
specification and program generation (submitted 2013)

22. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.: Report on a knowledge-based
software assistant. Tech. rep., Kestrel Institute (1983)

23. Green, C.: Private Correspondence (January 2009)
24. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.: Report on a knowledge-based

software assistant. Kestrel Institute Technical Report KES.U.83.2 (1983)
25. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.: Using graph

transformation for practical model driven software engineering. In: Model-Driven Software
Development. Springer, Heidelberg (2005)

26. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal Linear
Algebra Methods Environment. ACM Trans. on Math. Softw. (December 2001)

27. Jones, S.L.P., Santos, A.L.M.: A transformation-based optimiser for haskell. Science of Com-
puter Programming 32(1-3) (1998)

28. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey. Electronic
Notes in Theoretical Computer Science 148(1) (2006)

29. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (1998)
30. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.

Syst. 16(6) (1994)
31. Lohman, G.M.: Grammar-like functional rules for representing query optimization alterna-

tives. In: ACM SIGMOD (1988)
32. Lowry, M., Philpot, A., Pressburger, T., Underwood, I.: Amphion: Automatic programming

for scientific subroutine libraries. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS,
vol. 869, pp. 326–335. Springer, Heidelberg (1994)

33. Maggiolo-Schettini, A., Peron, A.: A graph rewriting framework for statecharts semantics.
In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS,
vol. 1073, pp. 107–121. Springer, Heidelberg (1996)

34. Marker, B., Batory, D., Shepherd, C.: Dxter: A dense linear algebra program synthesizer.
Computer Science report TR-12-17, Univ. of Texas at Austin (2012)

35. Marker, B., Batory, D., van de Geijn, R.: DSLs, DLA, DxT, and MDE in CSE. In: SECSE
(May 2013)

36. Marker, B., Batory, D., van de Geijn, R.: A case study in mechanically deriving dense linear
algebra code. International Journal of High Performance Computing Applications (to appear)

37. Marker, B., Batory, D.S., van de Geijn, R.A.: Code generation and optimization of distributed-
memory dense linear algebra kernels. In: ICCS (2013)

38. Marker, B., Poulson, J., Batory, D., van de Geijn, R.: Designing linear algebra algorithms by
transformation: Mechanizing the expert developer. In: Daydé, M., Marques, O., Nakajima,
K. (eds.) VECPAR. LNCS, vol. 7851, pp. 362–378. Springer, Heidelberg (2013)

39. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: ICSE (1999)

40. Müller, H.: Private Correspondence (May 2013)
41. Perry, D.E.: Version control in the inscape environment. In: ICSE (1987)
42. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: A

new framework for distributed memory dense matrix computations. ACM Trans. on Math.
Softw. 39(2) (February 2013)

18 D. Batory et al.

43. Püschel, M., et al.: SPIRAL: Code generation for DSP transforms. In: Proceedings of the
IEEE, special issue on “Program Generation, Optimization, and Adaptation” (2005)

44. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph grammars.
Journal of Visual Languages & Computing 8(1) (1997)

45. Rich, E.A.: Automata, Computability and Complexity: Theory and Applications. Pearson-
Prentice Hall (2008)

46. Riché, T., Goncalves, R., Marker, B., Batory, D.: Pushouts in Software Architecture Design.
In: GPCE (2012)

47. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation.
Foundations, vol. I. World Scientific (1997)

48. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. (2009)

49. Schürr, A.: Introduction to progress, an attribute graph grammar based specification language.
In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 151–165. Springer, Heidelberg (1990)

50. Siegmund, J.: Framework for Measuring Program Comprehension. Ph.D. thesis, University
of Magdeburg, School of Computer Science (2012)

51. Siek, J.G., Karlin, I., Jessup, E.R.: Build to order linear algebra kernels. Parallel and Dis-
tributed Processing (2008)

52. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of soft-
ware. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–
453. Springer, Heidelberg (2004)

53. The LabVIEW Environment, http://www.ni.com/labview/
54. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming applica-

tions. In: Conference on Compiler Construction (2002)
55. Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component story diagrams: A transfor-

mation language for component structures in mechatronic systems. In: Workshop on Object-
oriented Modeling of Embedded Real-Time Systems, Paderborn, Germany (2008)

56. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture
reconfiguration. Sci. Comput. Program. (2002)

57. Wikipedia: Graph rewriting, http://en.wikipedia.org/wiki/Graph_rewriting
58. Wikipedia: Component-based software engineering (2013), http://en.wikipedia.org/

wiki/Component-based_software_engineering
59. Wittenburg, K.: Earley-style parsing for relational grammars. In: Visual Languages (1992)

http://www.ni.com/labview/
http://en.wikipedia.org/wiki/Graph_rewriting
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Component-based_software_engineering

Developing a Domain-Specific Language

for Scheduling in the European Energy Sector

Stefan Sobernig1, Mark Strembeck1, and Andreas Beck2

1 Institute of Information Systems, New Media Lab
Vienna University of Economics and Business (WU Vienna), Austria

firstname.lastname@wu.ac.at
2 VERBUND Trading AG, Austria

andreas.beck@verbund.com

Abstract. European electricity companies trade electric power across
country and market boundaries. So called schedules are data sets that
define the terms and conditions of such power trades. Different propri-
etary or standardized formats for schedules exist. However, due to a
wide variety of different trading partners and power markets, a number
of problems arise which complicate the standardized exchange of sched-
ules. In this paper, we discuss a project that we conducted to develop a
domain-specific language (DSL) for scheduling in a large Austrian elec-
tricity company running more than 140 power plants. The DSL is written
in Ruby and provides a standardized programming model for specifying
schedules, reduces code redundancy, and enables domain experts (“sched-
ulers”) to set up and to change market definitions autonomously.

Keywords: Domain-specific Language, DSL, Power Market, Power
Trading, Scheduling, Industry Project, Europe.

1 Introduction

The VERBUND AG1 is an Austrian electricity company and one of the largest
producers of electricity from hydropower in Europe. VERBUND AG has about
3.300 employees and is running more than 140 power plants in Austria and other
European countries (125 of which are hydropower plants) to serve about one
million private households and corporate customers. The VERBUND Trading
AG (VTR)2 is a subsidiary company of VERBUND AG. VTR is the operating
unit for the optimization of the power plants, for international power trading,
and for the scheduling process of the VERBUND group and its subsidiaries. VTR
trades about 500 GWh of electrical power on a daily basis (500 GWh correspond
to an annual electricity consumption of some 120 000 households). In the VTR
context, schedules are structured data sets which contain the technical details
about the terms, the conditions, and the volumes of the power deals made within
or across 21 European power markets in 18 countries.

1 http://www.verbund.com/cc/en/
2 http://www.verbund.com/cc/en/about-us/our-business-divisions/trading

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 19–35, 2013.
c© Springer International Publishing Switzerland 2013

http://www.verbund.com/cc/en/
http://www.verbund.com/cc/en/about-us/our-business-divisions/trading

20 S. Sobernig, M. Strembeck, and A. Beck

A transmission system operator (TSO) is a company that runs an infrastruc-
ture (the power grid) for transporting (electrical) energy. The scheduling process
ensures the transfer of schedules to the TSO concerning the amount of power
traded in each of the TSO’s markets. The liberalization of the energy market
(which occurred in 2001 in Austria) requires that the exchange of the schedules
between the TSO and its trading partners be carried out in a standardized way
so as to guarantee the quick and automated processing of schedules and to ensure
the maintenance of a stable power grid.

However, due to the large number of different energy markets and trading
partners, VTR faces a number of problems with respect to a standardized ex-
change of schedules. The first problem is the heterogeneous set of applications
and scripts that VTR currently uses to carry out its scheduling process. The
legacy system that VTR employs to support the scheduling process has been in
use since 2007. The system is based on a number of different Microsoft Excel
workbooks and embedded spreadsheet applications (Visual Basic for Applica-
tions, VBA, macros). The bulk of the source code used for data retrieval, calcu-
lations, and format-building logic is the same in every workbook (code clones).
There are, however, differences between the workbooks arising from the imple-
mentation of the local market rules (rules that are specific for a given power
market) in each workbook. Therefore, the maintenance of the code requires sub-
stantial effort because, in order to maintain a consistent code basis, every change
in one workbook must be incorporated into every other workbook. VTR reports
on having spent an average of 30 person-days per year since 2007 on maintain-
ing and further-developing the existing scheduling-support system. The second
problem is to develop the technical knowledge needed to make changes to the
workbooks throughout the organization and to render the scheduling system
adaptable by non-technical domain experts (“schedulers”). At the same time,
any scheduler wishing to make changes must comply with company requirements
and work within the existing system landscape.

In this context, we developed a scheduling system based on a domain-specific
language (DSL) to address the above problems. The project started in January
2011 and has evolved over 2.5 years. For this project, we applied an extraction-
based DSL development style [15] to systematically define a DSL for scheduling
in the energy sector based on the existing scheduling system. In the remainder,
we report on this development project and its exploratory evaluation by first
providing some background on the scheduling domain (see Section 2). We then
document the DSL design and implementation in Section 3. Based on an early
case-study evaluation reported on in Section 4, we review the achieved benefits
of the DSL-based system refactoring (see Section 5) and the lessons learned from
applying an extraction-based DSL development style (see Section 6).

2 Background: Scheduling Power Deals

During the scheduling process, VTR must handle different representation for-
mats of schedules which detail the amounts of power VERBUND AG produces,

Scheduling DSL 21

the amounts of power it imports, the amounts it exports (deliveries that cross
market boundaries), and the amounts of power it trades in internal areas (de-
liveries within a market). Furthermore, VTR must deliver those schedules to
various market-specific recipients, including TSOs. Each market has its own
schedule. Runtime occurrences of schedules are referred to as schedule messages
(messages, hereafter), with each message having its particular format, covering
a particular scope, and relating to a particular mode of transmission. The most
common message formats are ESS (ETSO Scheduling System [5,6,7]) and KISS
(Keep It Small and Simple [4]). ESS is a special-purpose XML-based data for-
mat, while KISS is based on Microsoft Excel. Moreover, for some markets VTR
must provide proprietary (mostly Excel based) formats. The scope of a partic-
ular schedule can cover market-internal power deliveries, market-external power
deliveries, or both. A schedule can be transmitted either via e-mail, FTP, Web
applications, Web services, or any combination of these. Figure 1 illustrates this
configuration space of schedules.

format

schedule

scope

SMTP

FTP

transport

market

......

ESS

KISS
custom WS-*

HTTP

internal

external

Legend:
mandatory feature

or-feature group

xor-feature group

Fig. 1. Excerpt from the Scheduling Domain Model, depicted as Feature Diagram [2]

There are some principles that every schedule follows. Every delivery or receipt
relationship is called a time series. Every time series is identified by a set of
elements. Every schedule has the following elements (although the name for a
particular element may differ, depending upon the format used for the particular
schedule): In Area, Out Area, In Party, Out Party, and the Capacity Agreement
ID. There are other elements that may elaborate upon the time series but those
elements are not part of the distinct identification of a schedule. Each time series
also contains the delivery quantities of the traded power. A particular time series
covers either the amount of electrical power delivered to one particular customer
or the amount of power received from a supplier in one control area.

The In and Out Area define the direction of the energy flow. The Out Area
is the market area the energy comes from and the In Area is the market area
to which the energy goes. For the identification of the areas, standardized codes
are used. Time series covering deliveries within a market area (i.e., an inter-
nal delivery) have the same In and Out Area code, while time series covering

22 S. Sobernig, M. Strembeck, and A. Beck

deliveries across two market areas (i.e., external or cross border delivery) bear
the respective area code for each market. The concept of the trading border is
similar to geographical borders, except that a trading border only exists where
there are power lines in place that link two markets. There are, for example, four
different market areas within Germany but only three have a border with and
power lines that link to Austria. As a result, there are trading borders between
three of the German markets and the Austrian market. Another example is the
border between Austria and Slovakia. There is a geographical border, but, be-
cause there are no power lines connecting the two countries, there is no trading
border between them.

The In and Out Party elements define separately the party which delivers and
the party which receives the energy. The Capacity Agreement ID is only applied
to cross border deals and identifies capacity rights. The term “capacity right”
refers to the right to export or import power across a specified trading border.
On limited borders, i.e., borders with limited power transmission capacity, one
of the parties must have a capacity for the import or export of power. Although
the required market-specific formats may dictate differing usage of certain ele-
ments, VTR defines a core data schema and value ranges across markets and
across different formats. In some markets, however, VTR employs proprietary
message formats which are fully customized. Additionally, the message exchange
protocols used to transmit time series can vary as well. The usual ways used to
transmit such series are SMTP (with attachments) and HTTP POST (via a web
application).

The number of recipients to which VTR sends the schedule messages also
varies from market to market. The schedules for these markets contain informa-
tion about the power flows both across and within market borders. A manda-
tory recipient of any schedule is the TSO but recipients can include other official
power market parties, such as power or energy exchanges like the EPEX (Eu-
ropean Power Exchange) in Germany and France or market makers in general
like Borzen in Slovenia, or OTE in the Czech Republic. In Austria, there are
two recipients. One is the TSO (the Austrian Power Grid AG) which receives
only data concerning power flows across the country’s borders and the other
is the APCS (Austrian Power Clearing and Settlement AG), to which all the
transaction data inside the Austrian market are sent.

The daily transactions result in a high number of schedules. On an aver-
age day, the number of schedules may go as high as about 200. The types
of schedules that VTR generates include long-term, day-ahead, intra-day, and
post-scheduling schedules. Long-term schedules cover the time frame before D-1,
where D stands for the delivery day. That is, if the delivery day is June 14, every
schedule sent before June 13 is considered to be long term. The valid time frame
for a specific market can be found in the local market rules. The time frame
for day-ahead usually begins the day before delivery and ends after the final
schedules for the delivery day are sent, which usually is on D-1 at about 14:30.
In our example that would be June 13, 14:30. Again, the valid time frame for a
specific market can be found in the local market rules. Intra-day schedules cover

Scheduling DSL 23

the time frame between the start of intra-day (which is usually shortly after the
end of day-ahead) and the end of the delivery day. Post-scheduling schedules
cover the defined time frame after delivery.

At VTR, long-term and day-ahead schedules are handled by a group of 4
schedulers. Intra-day scheduling is handled by an intra-day trading team, which
handles both intra-day scheduling and controls the power plants. Post scheduling
is again handled by the schedulers group. For verifying data quality, the standing
data (e.g., market definitions) and the transaction data (as retrieved by executing
data queries in the trading system) entering a schedule message are subjected to
review processes. The standing data must undergo a double-check by a second
scheduler to ensure their correctness. The transaction data at VTR are double-
checked upon processing by the power trader and the back-office staff.

Table 1. Key Figures for the Legacy Scheduling System

Number of implemented power markets 18
Number of Excel workbooks 14
Avg. SLOC3 per workbook 1 500
Avg. market-specific SLOC3 per workbook 50

3 A DSL for Scheduling

In addition to implementing the domain of scheduling as analyzed in Section 2,
the DSL-based scheduling system sets out to address a number of objectives.
The following four goals resulted from the actual difficulties with the existing
scheduling system as experienced by administrator and schedulers at VTR.

Minimize Code Clones. In the existing scheduling system, 14 Excel work-
books generate different schedule types for 18 of the 21 markets (see Table 1).
For the remaining three markets, third-party schedule generators are used which
are not maintained by VTR. On average, there are about 1 500 source lines of
code (SLOC3; mainly VBA code) in each workbook, for a total of approximately
21 000 SLOC in the 14 workbooks. The average number of market-specific SLOC
per market is approximately 50, summing up to 700 lines in 14 workbooks.
Therefore, when comparing the code bases of the workbooks, the workbooks
share approximately 97% of their code bases. Only the remaining 3% are code
fragments specific to single markets. Specialization involves local market rules
relating to message generation, such as those used in the mapping of codes
(e.g., market-area codes). Such rules usually follow a certain default rule that
makes it easy for human beings to read and to understand them. In some cases,
however, certain values must differ from default rules, such as crossing in and

3 The source lines of code (SLOC) were measured using cloc [3].

24 S. Sobernig, M. Strembeck, and A. Beck

Table 2. Schedule Configuration Specific to the RWE Market

Configuration point Configuration value(s)

Format ESS V2R3
Borders EON, ENBW, LU, AT, FR, CH
SenderIdentification 13XVERBUND1234-P
SenderRole A01
ReceiverIdentification 10XDE-RWENET—W
ReceiverRole A04

crossing out of a control area for cross-border energy deliveries. Table 2 exem-
plifies configuration data specific to the power market of the German company
“Rheinisch-Westfälische Elektrizitätswerks Aktiengesellschaft” (RWE).

The numerous code clones make the workbooks hard to maintain over time.
Propagating the latest version of the code to every workbook is tedious and
time-consuming. For example, one basic step within the scheduling process is
the use of Business Objects reports provided by the SAP business intelligence
software [12] as part of the power-trading system. SAP Business Objects offers
a COM-based API for generating such reports. Whenever there are SAP ven-
dor upgrades, there are API changes affecting any client application such as the
workbooks. As a result, one must examine every workbook to reflect these API
changes. In the majority of shared workbook code, a second source of redun-
dancy are recurring configuration data, common to all or subsets of markets.
For example, the various input and output identifiers (e.g., file names, output
directory names for messages and temporary files) follow one naming convention.

Establish Participatory Maintainability. There are two main participant
roles in the existing scheduling process. On the one hand, there is the sched-
uler as the non-technical domain expert, and, on the other hand, there is the
administrator responsible for setting up new markets. The scheduler, as the do-
main expert, has a deep knowledge of the scheduling process, of the message
formats used, of the local market rules, and of the delivery modes for messages.
The administrator, as the primary workbook developer, knows the programming
logic and the design of the workbook code. In the legacy system, almost every-
thing from the GUI logic that governs the configuration to the business logic
has been included in the monolithic workbook code. This means, of course, that
the administrator is the only one who can make even the smallest changes or
amendments to the code. The objective, therefore, is to develop a system that
will allow the schedulers to participate in implementing new markets, with new
rules, only requiring action by an administrator for non-routine tasks (e.g., code
changes due to new interface versions of SAP Business Objects).

Cover Standard and Custom Message Formats. For 18 of the 21 power
markets mentioned above, VTR uses standardized message formats, such as the

Scheduling DSL 25

Excel-based KISS or the XML-based ESS formats. However, VTR must be able
to derive custom, market-local message formats from standard formats to ac-
commodate market rules deviating from the standards. The concrete format for
a market is usually a deviation from a standard format and may be defined by
the market operator or energy controlling authority. Occasionally, even the rules
set by a TSO may differ from the standard or officially advertised rules.

Integrate Refactored System into the Existing System Landscape. To
keep changes to the existing technical landscape at VTR to a minimum, the
DSL development should avoid the introduction of new software components.
Software components already in use in the existing scheduling process are Excel,
Business Objects, as well as VBA and VB.NET as frontend languages to .NET
as runtime platform.

Provide Uniform, but Variable Graphical User Interfaces (GUI). Each
workbook provides a unique UI form to the scheduler for entering configuration
data, such as the delivery date, delivery message, or the message format to use.
These scheduler forms tend to be narrowly focused and tailored to meet the
exact needs of each particular market. This is, however, not a flaw in the design
of the forms. Rather, the narrowness is simply a result of the extreme tailor-
ing towards scheduling needs in a particular market. Nevertheless, the deviating
form designs affect a scheduler’s ease to move between the workbooks negatively,
because they require the user to interpret and to understand every different user
form. The goal, therefore, was to develop a uniform user interface that would
contain cross-market functionality to run schedules, but which would allow the
scheduler either to activate or to deactivate GUI parts deemed necessary or un-
necessary for a given market.

Given these requirements and restrictions, it was decided to develop an em-
bedded DSL using Ruby as its host-language infrastructure. An embedded DSL
meant a minimal and non-invasive addition to the existing system landscape
without the need for adding software components, for example, for parsing and
integrating an external DSL. Besides, an embedded DSL provides for seamless
integration with the existing runtime infrastructure such as the SAP business
intelligence software (see, e.g., [15,19]). The dominant interface for domain users
(schedulers) was to remain a revised, form-based GUI with the embedded DSL
serving as an alternative backend syntax for maintenance tasks, rather than as a
complete replacement. Ruby was adopted because of its suitability for develop-
ing embedded DSLs (see, e.g., [8]) and its availability as IronRuby for .NET [9],
including IDE support by Microsoft, which is the required development platform
at VERBUND Trading AG.

3.1 Language Model and Concrete Syntax

The language model and the concrete-syntax style were extracted from review-
ing the documentation, the code base, and auxiliary documents of the existing

26 S. Sobernig, M. Strembeck, and A. Beck

software system [15]. The reviews were performed by the DSL design team con-
sisting of the three authors. The main domain abstractions, which constitute
the core language model, were identified by studying, first, the Excel workbooks
because they host the existing VBA source code and the existing market defi-
nitions. Second, Business Objects reports were investigated for the trading data
they provide and for the business logic represented by data queries. Third, there
are the standards documents defining the schedule-message formats, including
markup-schema definitions such as the ETSO Scheduling System formats [5,6,7].

Abstract Syntax. Figure 2a shows the conceptual language model of the DSL.
The key abstraction is the Message which represents a schedule in a specific mes-
sage format. A Market models a power market and records important market-
specific data such as the market symbol, border codes, and the allowed message
formats. Market can refer to one direct default Market whose configuration
data is inherited if not redefined. A MessageBuilder implements a generator
for a specific message format which specifies a Message in terms of construction
rules for a ScheduleHeader and a ScheduleColumn. The attributes of Sched-
uleHeader enter the message headers as required by the message format. A
ScheduleColumn represents the different time series which form the body of a
schedule message. The construction rules typically take the form of mappings
and, if needed, transformations between message elements (e.g., as specified by
the KISS and ESS message formats) and the elements of a given Market defi-
nition. Depending on the message representation (e.g., XML), the construction
rules may also specify the representation creation. For writing XML markup,
our DSL integrates with the Builder library available for Ruby [18].

BusinessObject

Message

MessageBuilder

Market

ScheduleHeader ScheduleColumn

1..1

generated for

0..*

0..*

creates

0..1
+default

0..*

0..*

1..1

provided
to

provided
to

1..1

1..1

1..1

1..1

+requiredMessageTypes 1..11..*

(a) Core Language Model

Market :RWE do
@symbol = :RWE
@borders = [:EON ,:ENBW ,:LU ,:APG,

:FR ,:CH]
@requiredMessageTypes = [:KISS]
MessageBuilder :KISS do

schedule do
@OutArea = ""
@InArea = ""
@OutParty = ""
@InParty = ""
@Oasis = ""
@InitialTerm = ""

end
end

end

(b) Concrete Syntax Example

Fig. 2. Scheduling DSL

Scheduling DSL 27

Concrete Syntax. In the existing, workbook-based scheduling system, the con-
figuration data for markets and schedule messages are maintained in a rows-and-
columns spreadsheet format with assigning certain rows, columns, or individual
cells the role of meta-data stores identifying the meta-data type using a text la-
bel. Both roles, administrators and schedulers, performed their tasks using this
tabulated syntax. To meet the requirements of a uniform GUI for domain users
(i.e., schedulers) and to separate the user interfaces between administrators and
schedulers (see requirements above), a textual concrete-syntax for administra-
tors as primary users of the scheduling DSL was devised. Listing 2b shows the
Market definition for the control area RWE and an exemplary MessageBuilder

definition of the KISS message format, showing the assignment of a market-
name symbol, the six transmission network borders relevant for this market,
and the message format to use for this market: KISS. Note that for KISS only,
the variables are initialized using empty strings.

As an embedded DSL, the textual-concrete syntax leverages and integrates
with the concrete syntax of the Ruby host language. To reflect the use of the DSL
for configuration programming of markets and message builders, especially map-
ping and construction rules, a single assignment form is promoted. Assignments
establish correspondences between elements of market definitions and message
formats, on the one hand, as well as between market attributes and configuration
values, on the other hand. This syntax style is realized using the principles of
object scoping and nested closures [8].

Constraints. There are constraints applying to a Market and a Message-

Builder. The Marketmust have a unique name accompanied by a unique symbol
or abbreviation (e.g., “RWE”). This pair represents the market or control area
for which this definition stands. Furthermore, the possible borders for power
import and export have to be stated and the message types applicable to this
market. Each message format has then to be represented by a MessageBuilder

referenced by a Market. In addition, there are specific constraints on the data
representations of trading data. For example, value constraints on time stamps
are set by the ESS family of standards (see, e.g., [5]).

Structural Semantics. The inheritance semantics between a Market and its
default Market are those of concatenation-based prototypical inheritance [16].
This allows for factoring out common configuration data into single and reusable
Market definitions. This way, creating incremental variants of single market def-
initions upon changed market requirements eases maintenance. Implementing
this refinement scheme is facilitated by the use of nested closures (see below).

3.2 Implementation

The realized architecture is built from three interacting components: a GUI
component (VTRGUI), a managed assembly (VTRCore), and the IronRubyEngine
(see Figure 3). The GUI and the managed assembly are implemented using .NET
4.0 and VB.NET as frontend language. The retrieval process for transaction

28 S. Sobernig, M. Strembeck, and A. Beck

VTRWindowsForm

VTRGUI (VB.NET)
«component»

VTRCore (VB.NET)

RubyProvider

«component»

SchedulingDateProvider

«component»

ManageRubyEngine

GetConfigData

CreateMessage

«component»

«component»

MarketDefinition

IronRubyEngine
«component»

«component»

BOProvider

«component»

VTRSchedulingHelpers

«component»

AMarketDefinition.rb

«artifact»

AMessageBuilder.rb

«artifact»

ABusinessObject.rep

«artifact»

GetTransactionData

MessageBuilder

«component»

FormatData

RubyEngine

ConfigData

Message

«manifest»

«manifest»
«manifest»

GetStandingData

Fig. 3. An Architectural Overview of the DSL-Based Scheduling System

data uses Microsoft Excel 2010 and SAP Business Objects. The Ruby engine
is provided by IronRuby 1.1.3, a Ruby implementation targeting the Microsoft
Common and Dynamic Language Runtimes (CLR, DLR) and widely complying
with MRI-Ruby 1.9.2.

The overall workflow of creating a Message is controlled by the GUI component
in terms of a wizard. Once the scheduler has selected a market definition (AMar-
ketDefinition.rb) andamessage-builder definition (AMessageBuilder.rb), the
GUI sets up aRuby evaluation context using the RubyProvidercomponent. Based
on the standing data for the selectedmarket, the VTRCore retrieves the transaction
data in terms of a Business Objects report using the BOProvider and provides
market-specific configuration data to update the message-creation wizard (e.g.,
available control areas). The scheduler then completes the message-configuration
step and has the selected MessageBuilder create the final Message. The Mes-

sageBuilder formats the transaction data using helpers such as the Scheduling-
DateProvider provided by the VTRCore.

The language model is implemented by a Ruby class collaboration by mapping
the entities in Figure 2a to Ruby classes. Ruby provides built-in language mech-
anisms to realize nested closures, object scoping, and instance evaluation [8]; the
techniques used to implement the structural semantics and the concrete-syntax
style outlined before. A Ruby block (also called a Ruby Proc or a closure) is a
group of executable statements defined in the environment of the caller and is
passed unevaluated to the called method as an implicit argument. The called
method may then execute the block zero or more times, supplying the needed
arguments for each block evaluation. For example, a context variable storing a
reference to a Market can be provided to the MessageBuilder when processing
the block which stores the message production rules. To populate a Market or

Scheduling DSL 29

Fig. 4. The Controlling GUI of the DSL-Based Scheduling System

to construct a Message from a MessageBuilder, the market-definition scripts
and the message-builder scripts, which are implemented as blocks, are evaluated
in the scope of instance objects of Market and MarketBuilder. This principle
is referred to as object scoping [8]. In addition, this allows for implementing the
concrete syntax of Market and MessageBuilder as an expression builder [8]: For
this reason, each Market and MessageBuilder keyword (see, e.g., schedule in
Listing 2b) is implemented as a Ruby method. By limiting evaluation to defined
accessors, methods, and classes, there is scaffolding of schedulers to only use
this pre-defined vocabulary. Populating a Market and creating a Message are
controlled by the VTRCore component, by instrumenting Ruby entities in their
.NET representation using cross-language method invocations [14].

The Ruby-based DSL implementation is written in 500 SLOC3, the VB.NET-
managed VTRCore component has a code base of 1 100 SLOC, and the GUI
amounts to 800 SLOC in VB.NET. Figure 4 shows the GUI wizard having loaded
a definition of the Swiss market and the ESS 2.3 message builder. The wizard
provides views for both the administrator and the scheduler roles, with the
administrator being able to manipulate the market definitions and message-
builder definitions directly.

4 DSL Evaluation

To assess whether the DSL-based scheduling system meets the previously defined
requirements (see Section 3), we designed a case study [11]. In the following, we
summarize the case study objectives, the real-world setting to be studied (the
case), important details of data collection (collection techniques, actors), and

30 S. Sobernig, M. Strembeck, and A. Beck

key observations. A complete account on the case study and on supplementary
evaluation steps (e.g., scenario testing of the prototype) is given in [1].

As for case selection, we picked the task of defining a new power market
to generate schedules for this market. The power market to be implemented
was not only required to be representative, but it should also involve complex
and large-sized schedules and time series. In addition, it should cause a high
frequency of message generation in a trading time window and a comparatively
high number of trading partners as message recipients. The selected case dealt
with the generation of schedule messages for the German market area RWE.
This is the most important market area for VTR in Central Europe in terms
of the traded energy amounts. There are 350 active traders in that control area
and the schedules VTR sends to the TSO (Amprion) of that control area contain
more than 100 time series, each one identifying either a delivery or a receipt of
energy to or from one counterparty.

The case objectives were twofold: First, the DSL-based and the legacy schedul-
ing systems were to be exercised by implementing the RWE market. The two
procedures of setting up a new market were to be performed by a VTR scheduler,
sufficiently proficient in using both scheduling systems. Second, the DSL-based
prototype was to be evaluated against the critical timing requirements on gen-
erating schedules for the RWE market. Schedule generation and delivery are
time-critical in the range of 1 or 2 minutes in certain markets including RWE.
This is because energy trading happens in fixed time boxes (e.g., 15 minutes after
the hour) and price increases tend to grow towards the end of trading windows.
Trading, however, is stopped effectively before the end of a time box to create
and to deliver the schedule messages reliably for completing the transaction.
To optimize an intra-day trading portfolio, the energy seller seeks to minimize
schedule-handling times to extend the effective trading time.

The case work was performed by the third author who, as a VTR energy
manager, can take both the roles of the administrator and the scheduler for the
legacy and the DSL-based scheduling system. Performing the case study involved
preparatory steps identical for each system. These steps included gathering the
market rules for the RWE market area and interfacing with the power-trading
system to obtain the trading data in terms of Business Objects reports. The main
task was then to implement the RWE market rules, once using the scheduling
DSL and once using an Excel workbook. For this last step, we recorded the
working time needed, collected the resulting code artifacts (VBA macros, DSL-
based market definition), and monitored for runtime data to learn about the
time and space efficiency of the DSL-based scheduling system, especially when
generating schedules.

The key observation was that the effective market-definition time using the
DSL amounted to approximately 10 minutes, while the definition process in
the legacy system required an entire, 8-hours working day (i.e., one person-day).
This substantial effort escalation in the legacy system was due to the tedious and
time-consuming task of screening existing Excel workbooks for code fragments
to be reused directly or, mostly, in a modified form.

Scheduling DSL 31

Table 3. A Scheduler’s Work Station Configuration at VTR

Processor Intel U9600 @ 1.6 GHz
Memory (RAM) 3.00 GB
Hard Drive 60 GB SSD
Operating System MS Windows 7 Enterprise x64
Office suite MS Office 2010

0ms
200,000ms
400,000ms
600,000ms
800,000ms

1,000,000ms
1,200,000ms
1,400,000ms

1d 6d 11d 16d 21d 26d

(a) 110 Time Series per Schedule/Day, 1-
30 Days

0ms
10,000ms
20,000ms
30,000ms
40,000ms
50,000ms

1le
gs

11
leg

s

21
leg

s

31
leg

s

41
leg

s

51
leg

s

61
leg

s

71
leg

s

81
leg

s

91
leg

s

10
1le

gs

(b) 1-110 Time Series per Schedule/Day,
1 Day

Fig. 5. Schedule Generation Times of the DSL-Based Scheduling System

In light of the strict timing requirements, we ran time-efficiency measure-
ments. Time efficiency was assessed by measuring the elapsed execution time
between the start and the end of the schedule-creation process in milliseconds
on a scheduler’s typical work station (see Table 3). We devised different data
sets as representative workloads for distinct scenarios: a fixed-size schedule con-
taining 110 time series (“legs”) of one market for 30 trading days and a schedule
growing by one time series per iteration for one trading day. Overall, we found
linear growth patterns for these workloads (see Figure 5a and Figure 5b). For
large-sized schedules (110 time series per schedule), average processing times of
43 seconds were measured. This compares with approximately 1.5 minutes for
similarly sized schedules in the legacy system. For smaller sized, growing sched-
ules (one up to 110 times series per schedule), the average processing time was
approximately 345 milliseconds.

5 Achieved Benefits

Reduction of Code Redundancy. Where the old system required separate
Excel workbooks for each market implementation, the DSL only uses the
market-specific configuration artifacts called market definitions expressed in a
Ruby-based embedded DSL. In addition, general configuration settings, valid
for several markets, can be placed once into reusable market definitions used
together with specializations to generate a market-specific schedule. Different
message formats (KISS, ESS) are defined in a second set of DSL scripts referred
to as message builders. Again, message-format details only need to be maintained

32 S. Sobernig, M. Strembeck, and A. Beck

in one central location rather than in separate workbooks. This also applies to
defining new, custom message formats.

Standardized Interface. The GUI implementation has been centralized and
unified as well. Initially, the GUI component reads the available markets from the
market definition, identifies the market-required message formats, and automat-
ically updates that information in the GUI (e.g., by providing market-specific
drop-down lists and check boxes). In a next step, the GUI provides market-
specific configuration steps to the scheduler, such as the different trading borders
or trading times. This runtime adaptation allows for the GUI code to be reused
across market implementations. On top, the GUI is used to provide a uniform
representation to the Business Objects reports, as basis for handling transaction
data in a standardized and a consistent manner across markets.

Scheduler Participation. The DSL-based scheduling system renders selected
internals of the scheduling accessible to and adaptable by the non-technical do-
main experts, the schedulers. That is, the scheduler can be trained with little
effort to perform small and anticipated changes to market definitions and mes-
sage builders on duty, based on a syntax reflecting her domain terminology and
without requiring deep knowledge on the underlying software execution plat-
form (.NET, Ruby). The revised GUI providing a consistent view on markets
and transaction data facilitates collaborative tasks and context switching, such
as in peer reviews of transaction data between schedulers (see Section 2).

Whereas the systematic design process was primarily driven by artifact re-
views (see Section 3.1), a late prototype of the DSL-based scheduling system
was used to set two schedulers, the target audience of the DSL, in the future
situation of working with the prototype. In separate ad hoc sessions, each sched-
uler was guided through the schedule-generation process by the third author, a
former scheduler at VTR himself. Immediate feedback was collected orally, in
particular, feedback on the GUI, on the DSL-based procedure for defining a new
market, and on whether the generation times were acceptable. Defining mar-
kets using the DSL was judged intuitive by the two schedulers. Having the GUI
adapted immediately in response to changes in market definitions was deemed
useful. This positive feedback did not require any modifications to the actual lan-
guage design, that is, the abstract syntax, the concrete syntax, the constraints,
and the structural semantics (see Section 3.1).

Improved Concern Separation. The DSL-based scheduling system cleanly
separates between the concerns of defining/maintaining a market and defining/-
maintaining a message format. For example, a scheduler can implement a new
market and the pre-defined message formats (e.g., ESS 2.3 and KISS) can be
applied to schedules for this market directly. Conversely, when implementing a
new message format (e.g., another ESS revision), this format becomes available
to the base of market definitions. In the legacy system, such additions or changes
required modifications in all affected market implementations (workbooks).

Scheduling DSL 33

6 Discussion

The development of this scheduling DSL did not occur in a vacuum. Rather,
it was an enhancement of an existing system. The existing scheduling system
presented us with a number of benefits and liabilities during the DSL devel-
opment process. One benefit from working with the existing system was that
we could derive the domain abstractions (e.g., market, schedule, message) from
that system [15,19]. A second benefit of investigating the existing system was
that this system clearly defined the scope of the DSL, as well as functional and
non-functional requirements on the DSL [19]. For example, in the evaluation
phase, we established a baseline of execution timings and working times using
the legacy system. An existing system, however, poses the potential liability that
relying upon the existing domain abstractions could hinder the critical review
and adoption of revised domain concepts [19]. As a result, the extracted DSL
could be limited in its expressiveness. We addressed this risk by conducting a do-
main analysis beyond the narrow boundaries of the existing scheduling system,
by including standards documents available for the scheduling domain.

As for the concrete-syntax style of the embedded scheduling DSL, a textual
concrete syntax and a graphical frontend syntax were adopted [15]. Under this
approach, the basic configuration data are stored as text, and the representation
of such data for the user is done by means of a GUI. The textual syntax represen-
tations of market and message-builder definitions are interpreted and rendered,
especially for the scheduler role. The choice of using a textual concrete syntax
for DSL development has a number of benefits. With this syntax, market and
message-builder configurations can be specified in a compact manner and exist-
ing editors for Ruby can be reused [19]. Furthermore, a textual concrete syntax
in support of a graphical frontend helps separate different working tasks for in-
dividual domain users. For the repetitive and routine task of generating schedule
messages, the visual frontend allows for acquiring a quick overview of standing
and transaction data. The non-routine task of modifying or creating market and
message-builder definitions can be achieved in a compact textual form. A draw-
back of a mixed textual and graphical syntax is the need for scheduler awareness
of subtle interdependencies between the two syntactic representations of domain
concepts.

7 Conclusion

Documented and systematically collected empirical evidence on the alleged ben-
efits of DSLs such as an improved maintainability [17] in an industry setting
is rare (see, e.g., [13]). In this paper, we report on a successful development
and deployment project of an embedded DSL for the VERBUND Trading AG
(VTR), the subsidiary company responsible for power trading of the large-scale
Austrian electricity company VERBUND AG. The project was carried out in
a period of 2.5 years and included phases of domain analysis, DSL design and
implementation, and an empirical evaluation based on a case study design and

34 S. Sobernig, M. Strembeck, and A. Beck

auxiliary software measurement. The DSL-based scheduling system is being ac-
tively used as a training tool for schedulers and as a backup scheduling system.
VTR is planning to adopt the DSL-based system as a full replacement of the
legacy system.

This project report shows that a DSL-based system refactoring can provide
benefits in terms of reduced code redundancy for an improved maintainabil-
ity of a code base. By enabling non-technical domain experts (schedulers) to
participate in maintaining DSL-based system artifacts (e.g., market definitions,
message builders), maintenance times can be reduced substantially. Finally,
the project demonstrates that developing a DSL by extracting the DSL ele-
ments (e.g., its language model) from an existing system [15] represents a viable
software-refactoring strategy [10] in otherwise rigid enterprise system landscapes.
In follow-up work, we will perform more comprehensive and confirmatory em-
pirical evaluations (e.g., domain-expert interviews, controlled experiments with
domain-expert subjects) to reflect on the daily working routine based on the
new DSL-based scheduling system at VERBUND Trading AG.

References

1. Beck, A.: Development of a domain specific language for scheduling in the energy
sector. Master thesis, Institute of Information Systems and New Media, Vienna
University of Economics and Business (August 2013)

2. Czarnecki, K., Eisenecker, U.W.: Generative Programming — Methods, Tools, and
Applications. 6th edn. Addison-Wesley Longman Publishing Co., Inc. (2000)

3. Danial, A.: Count lines of code (2013), http://cloc.sourceforge.net/ (last ac-
cessed: May 02, 2013)

4. Electric System Operator: Schedule management (KISS). URL (April 2012),
http://www.tso.bg/default.aspx/schedule-management/en (last accessed: May
02, 2013)

5. European Network of Transmission System Operators for Electricity (ENTSO-E):
Scheduling system implementation guide 2.3. (April 2003),
https://www.entsoe.eu/fileadmin/user upload/edi/library/schedulev2r3/

documentation/ess-guide-v2r3.pdf (last accessed: May 02, 2013)
6. European Network of Transmission System Operators for Electricity (ENTSO-E):

Scheduling system implementation guide 3.1. (June 2007),
https://www.entsoe.eu/fileadmin/user upload/edi/library/schedulev3r1/

documentation/ess-guide-v3r1.pdf (last accessed: May 02, 2013)
7. European Network of Transmission System Operators for Electricity (ENTSO-E):

Scheduling system implementation guide 3.3. (April 2009),
https://www.entsoe.eu/fileadmin/user upload/edi/library/schedulev3r3/

documentation/ess-guide-v3r3.pdf (last accessed: May 02, 2013)
8. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley (2010)
9. IronRuby: IronRuby – the Ruby programming language for the .NET framework

(2012), http://www.ironruby.net/ (last accessed: May 02, 2013)
10. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Softw.

Eng 30(2), 126–139 (2004)
11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

http://cloc.sourceforge.net/
http://www.tso.bg/default.aspx/schedule-management/en
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev2r3/documentation/ess-guide-v2r3.pdf
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev2r3/documentation/ess-guide-v2r3.pdf
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev3r1/documentation/ess-guide-v3r1.pdf
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev3r1/documentation/ess-guide-v3r1.pdf
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev3r3/documentation/ess-guide-v3r3.pdf
https://www.entsoe.eu/fileadmin/user_upload/edi/library/schedulev3r3/documentation/ess-guide-v3r3.pdf
http://www.ironruby.net/

Scheduling DSL 35

12. SAP AG: SAP Business Objects (2012), http://www.sap.com/germany/
solutions/sapbusinessobjects/large/business-intelligence/

data-exploration/index.epx (last accessed: May 02, 2013)
13. Sobernig, S., Gaubatz, P., Strembeck, M., Zdun, U.: Comparing complexity of API

designs: An exploratory experiment on DSL-based framework integration. In: Proc.
10th Int. Conf. Generative Programming and Component Eng. (GPCE 2011), pp.
157–166. ACM (2011)

14. Sobernig, S., Zdun, U.: Evaluating Java runtime reflection for implementing cross-
language method invocations. In: Proc. 8th Int. Conf. Principles and Practice of
Programming in Java (PPPJ 2010), pp. 139–147. ACM (2010)

15. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-
specific languages. SP&E 39(15) (October 2009)

16. Taivalsaari, A.: On the notion of inheritance. ACM Comput. Surv. 28(3), 438–479
(1996)

17. Van Deursen, A., Klint, P.: Little languages: little maintenance? J. Softw. Maint.
Evol.: Res. Pract. 10(2), 75–92 (1998)

18. Weirich, J.: Builder (2013), http://builder.rubyforge.org/ (last accessed: June
15, 2013)

19. Zdun, U., Strembeck, M.: Reusable architectural decisions for DSL design: Foun-
dational decisions in DSL projects. In: Proc. 14th Annual European Conf. Pat-
tern Languages of Programming (EuroPLoP 2009). CEUR Workshop Proceedings,
vol. 566 (2009)

http://www.sap.com/germany/solutions/sapbusinessobjects/large/business-intelligence/data-exploration/index.epx
http://www.sap.com/germany/solutions/sapbusinessobjects/large/business-intelligence/data-exploration/index.epx
http://www.sap.com/germany/solutions/sapbusinessobjects/large/business-intelligence/data-exploration/index.epx
http://builder.rubyforge.org/

Micro-Machinations
A DSL for Game Economies

Paul Klint1 and Riemer van Rozen2

1 Centrum Wiskunde & Informatica��

2 Amsterdam University of Applied Sciences��

Abstract. In the multi-billion dollar game industry, time to market
limits the time developers have for improving games. Game designers
and software engineers usually live on opposite sides of the fence, and
both lose time when adjustments best understood by designers are imple-
mented by engineers. Designers lack a common vocabulary for expressing
gameplay, which hampers specification, communication and agreement.
We aim to speed up the game development process by improving designer
productivity and design quality. The language Machinations has intro-
duced a graphical notation for expressing the rules of game economies
that is close to a designer’s vocabulary. We present the language Micro-
Machinations (MM) that details and formalizes the meaning of a sig-
nificant subset of Machination’s language features and adds several new
features most notably modularization. Next we describe MM Analysis
in Rascal (MM AiR), a framework for analysis and simulation of MM
models using the Rascal meta-programming language and the Spin model
checker. Our approach shows that it is feasible to rapidly simulate game
economies in early development stages and to separate concerns. Today’s
meta-programming technology is a crucial enabler to achieve this.

1 Introduction

There is anecdotal evidence that versions of games like Diablo III1 and Dungeon
Hunter 42 contained bugs in their game economy that allowed players to illicitly
obtain game resources that could be purchased for real money. Such errors se-
riously threaten the business model of game manufacturers. In the multi-billion
dollar game industry, time to market limits the time designers and develop-
ers have for creating, implementing and improving games. In game development
speed is everything. This applies not only to designers who have to quickly assess
player experience and to developers that are under enormous pressure to deliver
software on time, but also to the performance of the software itself. Common
software engineering wisdom does not always apply when pushing technology
to the limits regarding performance and scalability. Domain-Specific Languages
(DSLs) have been successfully applied in domains ranging from planning and
�� This work is part of the EQuA project. http://www.equaproject.nl/
1 http://us.battle.net/d3/en/forum/topic/8796520380
2 http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 36–55, 2013.
c© Springer International Publishing Switzerland 2013

http://www.equaproject.nl/
http://us.battle.net/d3/en/forum/topic/8796520380
http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html

Micro-Machinations 37

financial engineering to digital forensics resulting in substantial improvements
in quality and productivity, but their benefits for the game domain are not yet
well-understood.

There are various explanations for this. The game domain is diffuse, encom-
passing disparate genres, varying objectives and concerns, that often require
specific solutions and approaches. Because the supporting technologies are con-
stantly changing, domain analysis tracks a moving target, and opportunities for
domain modeling and software reuse are limited [1]. Existing academic language-
oriented approaches, although usually well-scoped, are often poorly adaptable,
one-off, top-down projects that lack practical engineering relevance. Systematic
bottom-up development and reuse have yielded libraries called game engines but
such (commercial) engines are no silver bullet either, since they only provide gen-
eral purpose solutions to technical problems and need significant extension and
customization to obtain the functionality for a completely new game. Engines
represent a substantial investment, and also create a long-term dependency on
the vendor for APIs and support.

Our objective is to demonstrate that game development can benefit from DSLs
despite the challenges posed by the game domain and the perceived shortcomings
of existing DSL attempts. We envision light-weight, reusable, inter-operable,
extensible DSLs and libraries for well-scoped game concerns such as story-lines,
character behavior, in-game entities, and locations. We focus in this paper on the
challenge of speeding up the game development process by improving designer
productivity and design quality. Our main contributions:

– Micro-Machinations (MM), a DSL for expressing game economies.
– Micro-Machinations Analysis in Rascal (MM AiR), an interactive simula-

tion, visualization and validation workbench for MM.
– The insight that combining state-of-the-art tools for meta-programming

(Rascal3 [2]) and model checking (Promela/Spin4 [3]) enable rapid pro-
totyping of and experimentation in the game domain with frameworks like
MM AiR.

2 Micro-Machinations

2.1 Background

Our main source of inspiration is the language Machinations [4] that has been
based on an extensive analysis of game design practices in industry and provides
a graphical notation for designers to express the rules of game economies. A
game economy is an abstract game system governed by rules (e.g., how many
coins do I need to buy a crystal) that offers players a playful interactive means
to spend and exchange atomic game resources (e.g., crystals, energy). Resources
are characterized by amount and unit kind.
3 http://www.rascal-mpl.org/
4 http://spinroot.com/spin/whatispin.html

http://www.rascal-mpl.org/
http://spinroot.com/spin/whatispin.html

38 P. Klint and R. van Rozen

Its focus is on the simulation of game designs. Various game design patterns
have been identified in this context [4,5] as well. Machinations takes an approach
that closely resembles Petri Nets that have been used in the game domain by
others. For instance, Brom and Abonyi [6] use Petri nets for narratives, and
Araújo [7] proposes general game design using Petri Nets. Other approaches to
formalisms for game development related to design include hierarchical state
machines [8], behavior trees [9], and rule-based systems [10].

Machinations is a visual game design language intended to create, document,
simulate and test the internal economy of a game. The core game mechanics are
the rules that are at the heart of a game. Machinations diagrams allow designers
to write, store and communicate game mechanics in a uniform way. Perhaps the
hardest part of game design is adjusting the game balance and make a game
challenging and fun.

Figure 1a shows the Machinations framework as presented in [4]. Machinations
can be seen as a design aid, that augments paper prototyping, which is used by
designers to understand game rules and their effect on play. The Machinations
tool5 can be used to generate automatic random runs, that represent possible
game developments, as feedback on the design process. Machinations is already
in use by several game designers in the field.

(a) Machinations Conceptual Framework

Game
Engineering

Micro-Machinations
Analysis in Rascal

Textual
IDE

Graphical
Simulator Game Design

game
software

Micro-
Machinations

ve
rif

ie
s

requirements

Spin

analyzer

creates

D
es

ig
n

+
M

M

MM

play t
est

/ a
sse

s

1

2

4

3

analysis

adapt

(b) Micro-Machinations Architecture

Fig. 1. Side-by-side comparison of Machinations (a) and Micro-Machinations (b)

Micro-Machinations (MM) is an evolutionary continuation of Machinations
aiming at software prototyping and validation. MM is a formalized extended
subset of Machinations, that brings a level of precision (and reduction of non-
determinism) to the elements of the design notation that enables not only sim-
ulation but also formal analysis of game designs. MM also adds new features,
most notably modularization. MM is intended as embedded scripting language
for game engines that enables interaction between the economic rules and the so-
called in-game entities that are characterized by one or more atomic resources.
5 http://www.jorisdormans.nl/machinations/

http://www.jorisdormans.nl/machinations/

Micro-Machinations 39

An advantage of early paper prototyping is that loosely defined rules can be
changed quickly and analyzed informally. Later, during software prototyping the
rules have to be described precisely and making non-trivial changes usually takes
longer. To start software prototyping as early as possible, a quick change in a
model should immediately change the software that implements it. Therefore
we study the precise meaning of the language elements and how they affect
the game state. By leveraging meta-programming, language work-benches and
model checking we can provide additional forms of analysis and prototyping.
This enables us to answer questions about models designers might have, that
affect both the design and the software that implements it. Figure 1b shows
schematically how MM relates to game development.

Our objectives are to introduce short and separate design iterations (1 and 2)
to free time for separate software engineering iterations (4) and alleviate relying
on the usually longer interdependent development iterations (3).

2.2 Micro-Machinations Condensed

MM models are graphs that consist of two kinds of elements, nodes and edges.
Both may be annotated with extra textual or visual information. These elements
describe the rules of internal game economies, and define how resources are step-
by-step propagated and redistributed through the graph. Here is a cheat sheet
for the most important language elements6.

p
pool p

Empty pool

1
p

pool p at 1
Pool & resource

A pool is a named node, that abstracts from an
in-game entity, and can contain resources, such as
coins, crystals, health, etc. Visually, a pool is a
circle with an integer in it representing the
current amount of resources, and the initial
amount at which a pool starts when first
modeled. Pools may specify a maximum capacity
for resources, which can never be exceeded, that
is visually a prefix max followed by an integer.

1
max 2

p
pool p at 1 max 2
Limited capacity

2
max 2

p
pool p at 2 max 2

Full pool

�>
Resource

connection
flow rate of one

all

-all->
Resource

connection
unlimited rate

A resource connection is an edge with an
associated expression that defines the rate at
which resources can flow between source and
target nodes. During each transition or step,
nodes can act once by redistributing resources
along the resource connections of the model. The
inputs of a node are resource connections whose
arrowhead points to that node, and its outputs
are those pointing away.

/2

-/2->
Resource

connection
half flow rate

4*p+1

-4*p+1->
Resource

connection
flow expression

6 For conciseness we only give an informal description here, closely adhering to [4].

40 P. Klint and R. van Rozen

p
pool p

Passive pool

p
auto pool p

Automatic pool

The activation modifier determines if a node can
act. By default, nodes are passive (no symbol)
and do not act unless activated by another node.
Interactive (double line) nodes signify user
actions that during a step can activate a node to
act in the next state. Automatic (*) nodes act
automatically, once every step. Start (s) nodes
are active in the initial state, but become passive
afterwards.p

user pool p
Interactive pool

p
start pool p
Start pool

p
pool p

Pool with pull
act and any
modifier

p

&

all pool p
Pool with pull

act and all
modifier

Nodes act either by pulling (default, no symbol)
resources along their inputs or pushing (p)
resources along their outputs. Nodes that have
the any modifier (default, no symbol), interpret
the flow rate expressions of their resource
connections as upper bounds, and move as many
resources as possible. Additionally, these nodes
may process their resource connections
independently and in any order. Nodes that
instead have the all modifier (&) interpret them
as strict requirements, and the associated flows
all happen or none do.

p

p

push pool p
Pool with push

act and any
modifier

p

p&

push all pool p
Pool with push

act and all
modifier

s
source s
Source

A source node, appearing as a triangle pointing up,
is the only element that can generate resources. A
source can be thought of as a pool with an infinite
amount of resources, and therefore always pushes
all resources or all resources are pulled from it. The
any modifier does not apply, and resources may
never flow into a source. Also, infinite amounts
may not flow from sources.

d
drain d

Drain with any
modifier

d

&

all drain d
Drain with all

modifier

A drain node, appearing as a triangle pointing
down, is the only element that can delete re-
sources. Drains can be thought of as pools with
an infinite negative amount of resources, and have
capacity to pull whatever resources are available,
or whatever resources are pushed into them. No
resources can ever flow from a drain.

==1

.==1.>
Condition edge
equals one expr

>=2

.>=2.>
Condition edge
greater equals

expr

A node can only be active if all of its conditions
are true. A condition is an edge appearing as a
dashed arrow with an associated Boolean
expression. Its source node is a pool that forms
an implicit argument in the expression, and the
condition applies to the target node.

active

.active.>
Condition edge

active expr

>1||p!=1

.>1||p!=1.>
Condition edge
composed expr

Micro-Machinations 41

.*.>
Trigger edge

A trigger is an edge that appears as a dashed arrow
with a multiply sign. The origin node of a trigger
activates the target node when for each resource
connection the source works on, there is a flow
in the transition that is greater or equal to that
of the associated flow rate expression. Addition-
ally, automatic pulling nodes without inputs and
automatic pushing nodes without outputs always
activate targets of their triggers.

c
converter c from A to B

converter

Converters are nodes, appearing as a triangle
pointing right with a vertical line through the
middle, that consume one kind of resources and
produce another. Converters are not core
elements because they can be rewritten as a
combination of a drain, a trigger and a source.
Unlike basic node types, converters therefore take
two steps to complete. Converters can only pull,
and the any modifier does not apply. If specified,
the unit kinds on the inputs and outputs must
match the converter’s unit kinds.

c_sc_d

&

all drain c_d of A source c_s of B
c_d .*.> c_s

desugared converter

2.3 Introductory Example

Figure 2a shows an example how a designer might model a lady feeding birds in
the original Machinations language. Figure 2b shows the textual equivalent as
introduced in MM. The lady automatically throws bread crumbs in a pond (*p)
one at a time, and two birds with different appetites compete for them. The first
has a small appetite and the latter a big a appetite. Both birds automatically
try to eat the whole amount (*&) their appetite compels them to. The edges
from small_appetite and big_appetite are not triggers but edge modifiers, and
we have replaced them by flow rate expressions in MM (lines 11 & 21). Birds
digest food automatically which gives them energy and produces droppings on
the road.

2.4 Game Designer’s Questions

Given a model such as the example from Section 2.3, a designer might have the
following questions.

– Inspect: Given a game state, what are the values of the pools, which nodes
are active and what do they do?

– Select: Given a game state, what are the possible transitions? Are there
alternatives? What are these alternatives and what are their successor states?

– Reach: Given this model, does a node ever act? Does a flow ever happen?
Does a trigger ever happen? Where in the model can resources be scarce? Is
an undesired state reachable, e.g., can the player ever have items from the

42 P. Klint and R. van Rozen

b2_energyb1_energy

pond

2
lady

road

1
small_appetite

2
big_appetite

b2_eat

b1_digest

b1_eat

b2_digest

b1_life b2_life

(a) Visual Model

1 unit Bread : "bread�crumbs"
2 unit Droppings : "bird�residue"
3 unit Energy : "bird�energy"
4 pool BIG_APPETITE of Bread at 2
5 pool SMALL_APPETITE of Bread at 1
6 auto push all pool lady of Bread at 2
7 pool pond of Bread
8 pool road of Droppings
9 lady --> pond

10 auto all pool b1_eat of Bread
11 pond -SMALL_APPETITE-> b1_eat
12 auto converter b1_digest
13 from Bread to Droppings
14 b1_eat --> b1_digest
15 b1_digest --> road
16 pool b1_energy of Energy
17 source b1_life of Energy
18 b1_digest .*.> b1_energy
19 b1_life --> b1_energy
20 auto all pool b2_eat of Bread
21 pond -BIG_APPETITE-> b2_eat
22 auto converter b2_digest
23 from Bread to Droppings
24 b2_eat --> b2_digest
25 b2_digest --> road
26 pool b2_energy of Energy
27 source b2_life of Energy
28 b2_digest .*.> b2_energy
29 b2_life --> b2_energy

(b) Textual model that demon-
strates code duplication

Fig. 2. Modeling two birds that both eat from the same pond

store without paying crystals? Is a desired state always reachable, e.g., can
the game be won or can the level be finished?

– Balance: Are the rules well balanced?

2.5 Technical Challenges

Before answering these questions (in Section 2.6), we discuss engineering chal-
lenges and how to tackle them leveraging meta-programming, language work-
benches and model checking.

– Parse: To analyze any of these questions we need a representation that can
easily be parsed. Therefore, MM introduces a textual representation of the
game model, that serves as an intermediate format, that is compact and easy
to read, parse, serialize and store.

– Reuse: Having a closer look at the example in Figure 2a, we see mirroring in
the game graph that corresponds to code duplication in Figure 2b. We need
modular constructs for reuse, encapsulation, scaling views, partial analysis
and testing, and embedding MM in games (by way of connecting nodes and
edges with in-game entities).

– Inspect: We need an environment that enables users to inspect states by
visualizing serialized models.

– Select: Detailed insight in the game behavior can be obtained by interac-
tively choosing successors and seeing transition alternatives. This is similar
to debugging when stepping through code, and requires the calculation of
alternatives. This can, for instance, reveal a lack of resources or capacity.

Micro-Machinations 43

– Analyze Context Constraints: Some structural elements of models, re-
lated to contextual constraints can introduce errors that we want to catch
statically. Examples are: (i) Sources cannot have inputs; (ii) Drains cannot
have outputs; (iii) Edges are dead code if no active node can use them by
pushing or pulling; and (iv) Edges are doubly used when both origin and
target are pushing and pulling, which can lead to confusing results. Model-
ing errors can also be detected. Optionally, resource types of nodes can be
defined making resource connections easily checkable. Additionally, missing
references can be reported.

– Analyze Reachability: Analyzing reachability is hard because it requires
calculation of all possible paths through the game graph. Normally, we can-
not calculate all possible executions of programs due to the sheer number
of possibilities, and use abstractions to allow forms of analysis. Because a
MM model is itself an abstraction of the actual game, and types and in-
stances —MM’s modularization mechanism is described in more detail in
Section 2.7— enable partial analysis, we can exhaustively verify models in
an experimental context using model checking techniques. The challenge is
to translate MM diagrams to models that a model checker can analyze, and
making that analysis scalable. Non-deterministic choices lead to a combina-
torial explosion of execution path and this results in a state explosion in
the model checker. When searching for undesired situations, an exhaustive
search may not be necessary, since the moment an invalid state is found, the
execution stack trace represents a result.

– Balance: Providing useful analysis to support balancing games is very hard,
since this requires analyzing multiple types of play, each dynamic with differ-
ent unpredictable player choices and non-deterministic events. Experimental
set-ups in which instance interfaces are subjected to modeled input may pro-
vide designers with useful feedback, but building such set-ups is hard and is
the expertise of game designers.

– Prototype and Adjust: Prototyping game software and making adjust-
ments requires code. In addition to the MM format we require a light-weight
embeddable interpreter that enables using script for prototyping and adjust-
ing game software. A simple API for integrating MM in existing architectures
should at least provide a means for calculating successor states (step), ob-
serving pools value changes, activating interactive nodes and reading and
storing information. We require that this API relates the run-time state of
models to the state and the behavior of game elements that affect how the
game behaves when played. This is not further explored in the current paper.

2.6 Answers to Game Designer’s Questions

We will now answer the questions raised in Section 2.4 and illustrate them using
the bird feeding example.

Figure 3 shows a rewrite of the example using new language elements to be
detailed in Section 2.7. Figure 3a shows the definition of Bird, which references

44 P. Klint and R. van Rozen

pond

eat

appetite

digest

road energy

Bird

life

(a) A bird’s life

Bird b1 Bird b2

0
pond

2
lady = =

0
road

road = =road

1
small_appetite

2
big_appetite

appetite appetite = =

pond pond

(b) A lady feeding two birds

Fig. 3. Graphically modeling birds that eat, digest and live

1 Bird(ref appetite ,ref pond,ref road)
2 {
3 //birds eat exactly all they want
4 auto all pool eat of Bread
5 pond -appetite-> eat
6 auto converter digest
7 from Bread to Droppings
8 eat --> digest //digest Bread
9 digest --> road //produce Dropping

10 pool energy of Energy
11 source life of Energy
12 digest .*.> energy
13 life --> energy
14 assert fed: energy > 0 || road < 2
15 "birds�always�get�fed"
16 }

(a) A bird’s life

1 unit Bread : "bread�crumbs"
2 unit Droppings : "bird�residue"
3 unit Energy : "bird�energy"
4 pool BIG_APPETITE of Bread at 2
5 pool SMALL_APPETITE of Bread at 1
6 //a lady throws crumbs in the pond
7 auto push all pool lady of Bread at 2
8 pool pond of Bread
9 pool road of Droppings

10 lady --> pond
11 Bird b1 //b1 has a big appetite
12 BIG_APPETITE .=.> b1.appetite
13 pond .=.> b1.pond road .=.> b1.road
14 Bird b2 //b2 has a small appetite
15 SMALL_APPETITE .=.> b2.appetite
16 pond .=.> b2.pond road .=.> b2.road

(b) A lady feeding two birds

1 lady-1->pond
2 step
3 pond-1->b1_eat
4 lady-1->pond
5 step
6 pond-1->b1_eat
7 b1_eat-1->b1_digest_drain
8 step
9 b1_eat-1->b1_digest_drain

10 b1_life-1->b1_energy
11 b1_digest_source-1->road
12 step
13 b1_life-1->b1_energy
14 b1_digest_source-1->road
15 step
16 violate b2_fed

(c) Bird b2 starves

Fig. 4. Textual model and analysis that shows birds with a big appetite starve

external nodes pond, road and appetite. These external nodes act as formal pa-
rameters of the Bird specification and are bound twice in Figure 3b. Figure 4a
and Figure 4b show the textual equivalent of this model.

Next, we introduce assertions and pose that birds shall never starve by adding
an assertion at line 14 of Figure 4a.

Then, we run the analysis to check for reachability and find that (i) bird b2
starves because b1_eat always happens before big_appetite is available, and (ii)
the acts of bird b2_eat and b2_energy are unreachable for all execution paths.

Finally, we can explore the model and understand it better by inspecting
states, observing lack of alternative transitions, and automatically simulating the
trace that lead to the assertion violation visually, shown textually in Figure 4c.

2.7 Language Extensions

We have designed MM and have introduced new language features as necessary
to attain our goals. MM has modular constructs for reuse, encapsulation, scaling
views, partial analysis and testing, and relating MM to in-game entities. MM has
reduced non-determinism and increased control over competition for resources
and capacity by introducing priorities. Time is modeled and understood, in a
way that is embeddable in games. Finally, invariants are introduced for defining
simple properties for analysis.

Micro-Machinations 45

Types definitions and instances. The following table introduces7 our modular-
ization features type definitions and instances.

r

A

A(ref r){ ... }

Type definition
reference
definition

1

B

p

B(in p){
pool p at 1 }

Type definition
input modifier

A type definition is a named diagram that
functions as parameterized module for
encapsulating elements. Type definitions define
internal elements and how the they can be used
externally. A reference, represented by a circle with
a dashed line, is an alias that refers to a node that
is defined externally. Internal nodes annotated with
an interface modifier input, output or input/output
become interfaces on the instances of the type.
The input modifier denotes that an interface
accepts inputs, output implies it accepts outputs
and input/output accepts both. Interface modifiers
appear as an arrow in the top right corner of a
node, where an input modifier point into the node,
an output modifier points out of the node, and an
in-/output modifier does both.

C

2
p

C(out p){
pool p at 2 }

Type definition
output modifier

D

3
p

D(inout p){
pool p at 3 }

Type definition
in-/output
modifier

A a
r

A a
Type instance

reference
interface

B b
p

B b
Type instance
input interface

An instance is a named object that has individual
instance data, whose interfaces are defined by its
type and can be bound to other models, acting as
formal parameters.

An interface makes internal elements of an
instance available to the outside, and can be used
by connecting resource connections. Visually, an
interface is a small circle at the border of an
instance with its name under it. Input interfaces
have an arrow pointing into the circle, outputs
have an arrow pointing outward, and in-/outputs
have a bidirectional arrow. The direction of the
arrow implies the validity of the direction of the
edges that connect to it. Only reference interfaces
appear with a dashed line.

References must be bound to definitions using
edges called bindings, represented by dashed arrows
annotated with an equal sign, that originate from a
defining node and target a reference.
Additionally, instances can be nested inside type
definitions and build a name space, e.g., a nested
pool p inside an instance a of type definition A

is referred to as a.p.

C c
p

C c
Type instance

output
interface

D d
p

D d
Type instance

in-/output
interface

 a
p=

p
pool p A a p .=.> a.p

Type instance
with reference binding

A a
r=C c

p
C c A a c.p .=.> a.r

Type instances
with reference binding

E

r
=D d

p

E(inout p,ref r){D d d.p .=.> r}
Type definition with nested

instance and reference binding

7 Once again, for conciseness, only informally.

46 P. Klint and R. van Rozen

0

P21

P1 0

P3

2

2

(a) P2 or P3 pulls

2

0

P22

P1 2 0

P3

(b) P2 or P3 pulls

0

P21

P1

P3

2

2 0

(c) Push to P2 or P3

0

P22

P1 0

P3

2

2

(d) P1 cannot push

Fig. 5. Non-determinism due to shortage of resources

1

P2 0
max 1

P11

P3

(a) Pull from P2 or P3

1

P2 0
max 1

P11

P3
(b) P1 cannot pull

1

P2 0
max 1

P11

P3

(c) P2 or P3 pushes

1

P2 0
max 1

P11

P3
(d) P2 or P3 pushes

Fig. 6. Non-determinism due to shortage of capacity

Nodes have priorities. The sources of non-determinism that we have identified
are nodes competing for resources and the any modifier. Alternative transitions
exist due to lack of resources or capacity, as illustrated by Figure 5 and Figure 6.

We have already mentioned that each activated node can act once during a
step. Since the order in which nodes act is not defined, models under-specify
behavior and this can result in undesirable non-determinism. To allow a degree
of control, we specify that active nodes with the following actions and modifiers
are scheduled in the following order: pull all, pull any, push all, push any. Groups
of nodes from different categories do not compete for resources or capacity, which
helps in analyzing models and in understanding them. Section 4 makes use of
this feature.

Steps take time. MM does not support different time modes as Machinations
does. In MM each node may act at most once during a step, which conforms to
the Machinations notion of synchronous time. We do not support asynchronous
time, in which user activated nodes may act multiple times during a step with-
out affecting other nodes. Machinations supports a turn-based mode, in which
players can each spend a fixed number of action points on activating interactive
nodes each step. We note that turns are game assets that can be modeled, using
pools, conditions and triggers, enabling turn-based analysis. MM does not spec-
ify how long a step takes, it only assumes that steps happen and its environment
determines what the step intervals are.

Micro-Machinations 47

Invariants. Defining property specifications to verify a model against can be hard,
requiring knowledge of linear temporal logic. Defining invariants, Boolean expres-
sions that must be true for each state, is easier to understand. MM adds assertions
which consist of a name, a boolean expression that must invariantly be true, and
a message to explain what happened when the assertion is violated, i.e. becomes
false for some state. Figure 4a contains an example of an assertion (lines 14–15).

3 MM AiR Framework

Figure 7a shows the main functions of the MM Analysis in Rascal (MM AiR)
framework and Figure 7b relates them to the challenges they address. The frame-
work is implemented as a Rascal meta-program of approximately 4.5 KLOC.
We will now describe the main functions of the framework.

MM Analysis by SPIN

MM Analysis in Rascal IDE
MM Model

(.mm)

SimulateCheck

Translate

Graphical
View

MM Trace
(.mmt)

Promela
Model (.pml)

Verify
(pan)

Replay
(pan)

Pan Trail
(.trail)

Replay

messages

Analyze

Report

(a) MM AiR IDE functions

§ functionality challenges
3.1 check contextual

constraints (parse,
desugar, perform
static analysis)

define syntax, seman-
tics, reuse, constraints

3.2 simulate MM model
(interpret and evalu-
ate successor states,
interactive graphical
visualizations)

make models debug-
gable, improve scala-
bility and performance

3.3 translate MM to
Promela

relate formalisms, en-
sure interoperability,
improve scalability

3.4 verify MM in Spin ensure interoperability,
improve scalability

3.5 analyze reachability ensure interoperability
3.6 replay behaviors and

verification results
source level debugging,
ensure interoperability,
readability

(b) Sections, functions and challenges

Fig. 7. MM AiR Overview

3.1 Check Contextual Constraints

Starting with a grammar for MM’s textual syntax, using Rascal we generate
a basic MM Eclipse IDE that supports editing and parsing textual MM mod-
els with syntax highlighting. This IDE is extended with functionality to give
feedback when models are incorrect or do not pass contextual analysis. This is
implemented in a series of model transformations, leveraging Rascal’s support
for pattern matching, tree visiting and comprehensions. This includes labeling
the model elements, for storing information in states and for resource redis-
tributions in transitions. We check models against the contextual constraints
described in Section 2.5.

48 P. Klint and R. van Rozen

3.2 Simulate Models

Simulate provides a graphical view of a MM model and enables users to inspect
states, choose transitions and successors, and navigate through the model by
stepping forward and backward. We generate figures and interactive controls
for simulating flattened states and transitions. This is easily done by applying
Rascal’s extensive visualization library, which renders figures and provides call-
backs we use to call an interpreter. The interpreter calculates successor states
by evaluating expressions, checking conditions and generating transitions.

3.3 Translate to Promela

The biggest challenge in analyzing MM is providing a scalable reachability anal-
ysis. We achieve this by translating MM to Promela, the input language of
the Spin model checker. A naive approach is to model each node as a process,
enabling every possible scheduling permutation to happen. However, not every
scheduling results in a unique resource distribution, which hampers performance
and scalability. Therefore we take steps to reduce the number of calculations
without excluding possible behaviors. We take the following measures to reduce
the state space explosion.

– Reduce non-determinism. We model only necessary non-determinism.
We have identified two sources that are currently in MM: nodes compet-
ing for resources or capacity and the any modifier. For competing nodes
every permutation potentially results in a unique transition that must be
computed, but nodes that do not compete can be sequentially processed.

– Avoid intermediate states. Promela has a d_step statement that can
be used to avoid intermediate states, by grouping statements in single tran-
sitions.

– Store efficiently and analyze partially. Pools can specify a maximum
that we use to specify which type to use in Promela (bit, byte or int),
minimizing the state vector. For partial analysis we can limit pool capacities.

Translating an MM model to Promela works as follows. We bind references
to definitions and transform the model to core MM. We generate one proctype

per model, schematically shown in Figure 8, and a monitor proctype that tests
assertions for each state. Figure 8a depicts their general structure. At the begin-
ning of a step the state is printed, and step guards are enabled if a node is active.
This is followed by sections for each priority level as determined by node type.
In each section, groups of nodes may be competing for resources or capacity.

For each group of competitors ci consisting of nodes n1, ..., nn, we introduce a
non-deterministic choice using guards that are disabled after a competing node
acts as shown in Figure 8b. The remaining independent nodes r1, ..., rn are just
sequentially processed, since they never affect each other during a step. Figure 8c
shows that each path in the monitor process remains blocked until an invariant
becomes false, and a violation is found.

Micro-Machinations 49

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

(a) Process

competitors c1
{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

...

competitors cn
{n1 .. nn} branch

[else]

(b) Section

assert b1
 fail

assertions
{b1 .. bn} branch

assert bn
 fail

...

[!b1]

[!bn]

(c) Monitor

Fig. 8. Skeleton for generated Promela code: process, section and monitor

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

(a) All Node

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

(b) All Flow

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

(c) Any Node

any flow act

flow happens
[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]
full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

(d) Any Flow

Fig. 9. Skeleton of generated Promela code for nodes

The behavior of nodes with the all modifier is deterministic, as shown in
Figure 9a and Figure 9b. All flows f1, ..., fn are executed sequentially and per
flow conditions are checked. The effect of all flows is only committed if the
conditions for all flows have been satisfied.

The behavior of nodes with the any modifier is shown in Figure 9c and Fig-
ure 9d models the non-determinism by introducing a non-deterministic choice
between the flows f1, ..., fn.

Individual nodes act by checking shortages of resources on the old state from
which subtractions are made and check shortage of capacity on the new state,
to which additions are also made. Finally, when each node has acted the state
is finalized by copying the new state to the current state. Temporary values
and guards are reset, and active nodes are calculated by applying activation
modifiers, triggers and conditions. Next reachability is tested, the step is printed
and we start at the beginning to determine the next step.

50 P. Klint and R. van Rozen

3.4 Verify Invariant Properties

MM models are verified against their assertions by translating them to Promela
and then running a shell script. The script invokes Spin and compiles it to a
highly optimized model-specific Promela analyzer (Pan). It then runs this ver-
ifier to perform the state space exploration, and captures the verification report
Pan outputs, which may contain unreached states and associated Promela
source lines. If the verifier finds an assertion violation, it also produces a trail,
a series of numbers that represent choices in the execution of the state machine
representing the Promela model. The challenge is interoperability, relating the
verification report and the trail back to MM and showing understandable feed-
back to the user. We show how this is solved in Section 3.5 and Section 3.6.

3.5 Analyze Reachability

We tackle the interoperability challenge of relating a Spin reachability analysis to
MM as follows. During the generation of Promela we add reachability tests, in
which states and source lines become reachable if an element acts. We collect the
source lines using a tiny language called MM Reach, which specifies the test case
by defining whether a node receives full or partial flow via a resource connection
or if it activates a trigger. We extract unreached Promela source lines from
the Pan verification report and map them back to MM elements to report the
following messages, which are relative to a partial or exhaustive search.

– Starvation. Nodes that never push or pull full or partial flow via a resource
connection starve, and represent dead code.

– Drought. A resource connection through which resources do not flow runs
dry, and is unused dead code.

– Inactivity. A trigger that never activates its target node is idle.
– Abundance. A node with the any modifier that always receives full flow

along all of its resource connections indicates a lack of shortage.

3.6 Replay Behaviors

We tackle the interoperability challenge of relating Pan trails for Promela
models we obtained in Section 3.4 to MM model resource redistributions by
introducing an intermediate language called MM Trace (MMT). A sequence of
MMT statements forms a program that contains the transitions that an MM
model performs, which MM AiR graphically replays in a guided simulation.

Replaying a trail on Pan simulates the steps of a Promela model while
calling printf statements that generate an MMT program, ending in an assertion
violation. The program is obtained by embedding the following MMT statements
prefixed with MM: for filtering in the Promela model.

– Flow. Node causes flow to occur: source-amount->target
– Trigger. Trigger activates a target node in the next state: trigger node

– Violation. A state violates an assertion: violate name

– Step. Terminate a transition: step

Micro-Machinations 51

4 Case Study: SimWar

SimWar is a simple hypothetical Real-Time Strategy (RTS) game introduced
by Wright [11] that illustrates the game design challenge of balancing a game.
This entails ensuring different player choices and strategies represent engaging
and challenging experiences. Common strategies for RTS games are turtling, a
low-risk, long-term strategy that favors defense, and rushing, a high-risk short-
term strategy that favors attack. Adams and Dormans [4] study the game using
the Machinations tool. By simulating many random runs, they show the game
is indeed poorly balanced and that turtling is the dominant strategy.

 *

 *

 2

50

reserve

0

resources
*

turn
5

0

attack

1
max 3

factories

killed destroyed

buyAttack buyDefense buyFactory

opponent
_attack

opponent
_defense

/4/4

*1

1

defense ==0

(a) SimWar Base

1 Base(in BuyAttack, in BuyFactory, in BuyDefense, //choices
2 ref opponent_attack, ref opponent_defense, ref turn,
3 out attack, out defense, out factories, out resources){
4 turn .*.> resources //turn triggers resources to pull
5 turn .*.> killed //turn triggers killed
6 turn .*.> destroyed //turn triggers destroyed
7 pool reserve of Gold at 50 //Gold reserve (starts at 50)
8 pool resources of Gold //Gold resources (for purchases)
9 pool factories of Factory at 1 max 3 //factories for income

10 pool defense of Defense at 1 //defending units
11 pool attack of Attack //attacking units
12 drain killed of Defense, Attack //units can be killed
13 drain destroyed of Factory //factories can be destroyed
14 converter buyDefense from Gold to Defense //buy defense
15 converter buyAttack from Gold to Attack //buy attack
16 converter buyFactory from Gold to Factory //buy factory
17 reserve -factories-> resources //produce income
18 resources -5-> buyFactory //buyFactory consumes 5 Gold
19 buyFactory --> factories //buyFactory produces 1 Factory
20 resources -1-> buyDefense //buyDefense consumes 2 Gold
21 buyDefense --> defense //buyDefense produces 1 Defense
22 resources -2-> buyAttack //buyAttack consumes 1 Gold
23 buyAttack --> attack //buyAttack produces 1 Attack
24 factories -all-> destroyed //factories destuction
25 defense -opponent_attack/4-> killed //defense casualty rate
26 attack -opponent_defense/4-> killed //attack casualty rate
27 defense .defense == 0.> destroyed //undefended condition
28 }

(b) SimWar Base

Fig. 10. The rules of SimWar

Our MM adaptation of SimWar, shown in Figure 10, is based on [4], but it
models the rules for players in a definition called Base, avoiding duplication. It
also replaces probabilities on resource connections with amounts. Two players
compete by spending resources, choosing to buy defense (cost 1), attack (cost
2) or factories (cost 5). This is modeled by three converters in line 15–17 of
Figure 10b that pull their respective costs from resources when activated.

Factories produce income every turn, and represent an investment enabling
more purchases. We model this by turn triggering resources (line 5), which pulls
from reserve (line 9) the current amount of factories (line 18). A player must
destroy their opponent’s factories to win. Two references, opponent_defense and
opponent_attack determine the (rounded down) casualty rate of one in four (line
26, 27) for attack and defense respectively. Opponents fight until one player has
no defense, and her factories are destroyed (line 28).

52 P. Klint and R. van Rozen

 >=1 >=5

>=2

 >=3

 *
turn

buyDefense

count

tick

factories

buyFactory buyAttack

resources

 *
buy

 * *

 <3
>=20

>=8

 <8

*

*

(a) Turtle Strategy

1 Turtle(ref buyAttack, ref buyDefense,
2 ref buyFactory, ref factories,
3 ref resources, ref turn){
4 source tick
5 turn .*.> count
6 tick --> count
7 pool count
8 auto source buy
9 buy .*.> buyAttack

10 buy .*.> buyFactory
11 buy .*.> buyDefense
12 count .>=20.> buyAttack
13 factories .>=3.> buyAttack
14 resources .>=2.> buyAttack
15 count .<8 .> buyDefense
16 resources .>=1.> buyDefense
17 count .>=8.> buyFactory
18 factories .<3.> buyFactory
19 resources .>=5.> buyFactory
20 }

(b) SimWar Turtle

>=5

 >15 <3

buyDefense buyFactory buyAttack

1
max 1

choice<10

 *

count factories

resources

*

>20

turn

 * * *
getFactory getAttack

>=2
>=1

skip

tick

getDefense

(c) Random Strategy

1 Random(ref buyAttack, ref buyDefense,
2 ref buyFactory, ref factories,
3 ref resources, ref turn){
4 source tick
5 turn .*.> count
6 tick --> count
7 pool count
8 tick --> state
9 auto pool state max 1

10 auto all drain skip
11 auto all drain getFactory
12 auto all drain getAttack
13 auto all drain getDefense
14 getAttack .*.> buyAttack
15 getFactory .*.> buyFactory
16 getDefense .*.> buyDefense
17 state --> skip
18 state --> getAttack
19 state --> getDefense
20 state --> getFactory
21 count .>15.> skip
22 resources .>= 2.> getAttack
23 count .>= 20.> getAttack
24 resources .>= 1.> getDefense
25 count .<10.> getDefense
26 resources . >= 5.> getFactory
27 factories . <3.> getFactory
28 }

(d) SimWar Random

Fig. 11. SimWar Test Strategies

4.1 Experimental Setup

In an experiment with SimWar and two strategies shown in Figure 11 we apply
the MM AiR framework, analyzing (i) the reachability of modeling elements,
and (ii) the existence of a strategy that beats a turtling strategy.

The Turtle strategy, defined in Figure 11a and Figure 11b, simply counts turns,
and based on this triggers references for buying. The Random strategy defined in
Figure 11c and Figure 11d also counts, but adds a non-deterministic element which
uses priorities. Drains skip, getDefence, getFactory, getAttack compete for the re-
source in choice before it pulls a resource from tick, enabling the next choice. In our
test set-up shown in Figure 12, we bind instances of Random and Turtle to a Base
instance in lines 16–20 & 25-29 of Figure 12b. We bind base instances as opponents
in lines 13–14, 22–23 andbind turn to doit, our means for activity. Finally, we assert
in lines 30–31 that the factories of Turtle are never destroyed. A violation of this
assertion represents a behavior of Random that beats Turtle.

Micro-Machinations 53

Turtle p1

=

B
as

e
s2

=

B
ase s1

attack

=opponent_
defense

=

=
defense

opponent_
defense

attack
opponent_

attack

R
an

do
m

 p
2

=

=

=

=

=

=

=

=

=

=

resources
resources

factories
factories

buyDefense
buyDefense

buyAttack
buyAttack

buyFactory
buyFactory

resources

factories

buyDefense

buyFactory

resources

factories

buyDefense

buyAttack
buyAttack

buyFactory

turnturnturn

1
max 1

do

max 1 max 1

do2= = =do1

* **

opponent_
attack

defense

turn

(a) A Turtle instance battling a Random instance

1 unit Gold : "gold"
2 unit Factory : "factories"
3 unit Defense : "defense"
4 unit Attack : "attack"
5 Turtle p1 Base s1 //player p1 is turtling
6 Random p2 Base s2 //player p2 is random
7 auto all pool doit at 1 max 1
8 auto all pool do1 max 1
9 auto all pool do2 max 1

10 doit --> do1 do1 --> do2 do2 --> doit
11 doit.==1.>do1 do1 .==1.>do2 do2.==1.>doit
12 doit .=.> s1.turn
13 s2.defense .=.> s1.opponent_defense
14 s2.attack .=.> s1.opponent_attack
15 doit .=.> p1.turn
16 s1.resources .=.> p1.resources
17 s1.buyAttack .=.> p1.buyAttack
18 s1.buyFactory .=.> p1.buyFactory
19 s1.buyDefense .=.> p1.buyDefense
20 s1.factories .=.> p1.factories
21 doit .=.> s2.turn
22 s1.defense .=.> s2.opponent_defense
23 s1.attack .=.> s2.opponent_attack
24 doit .=.> p2.turn
25 s2.resources .=.> p2.resources
26 s2.buyAttack .=.> p2.buyAttack
27 s2.buyFactory .=.> p2.buyFactory
28 s2.buyDefense .=.> p2.buyDefense
29 s2.factories .=.> p2.factories
30 assert turtleLives:
31 s1.factories != 0 "turtle�dies"

(b) SimWar Battle

Fig. 12. SimWar experimental test setup

Fig. 13. MM AiR playing back a counter-example showing Turtle defeated

54 P. Klint and R. van Rozen

4.2 Experimental Results

We apply MM AiR by translating the models to Promela and running Spin.
Pan reports using 2500MB of memory, mostly for storing 10.5M states of 220
bytes, generating 188K states/second, taking 56 seconds on an Intel Core i5-
2557M CPU. It reports 11.9M transitions, of which 9.5M are atomic steps, and
an assertion violation (s1_factories!=0) at depth 8810.

The shortest trail yields an MMT file of 95 steps. Figure 13 shows its graph-
ical play-back. We find 22 strategies that beat our Turtle behavior, but these
strategies all fall into the turtling category, confirming the strategy is dominant.

During its limited state space exploration, Pan collects unreached Promela
source lines. Using these, our analysis reports the following:

Drought: No flow via s1_factories -s1_factories-> s1_destroyed at line 25 column 2
Drought: No flow via s2_factories -s2_factories-> s2_destroyed at line 25 column 2
Starvation: Node s2_destroyed does not pull at line 14 column 2
Starvation: Node s1_destroyed does not pull at line 14 column 2
Starvation: Node p1_buy does not push at line 39 column 2
Inactivity: Node doit does not trigger s2_destroyed at line 7 column 2

Initially puzzled by the first drought and the second starvation message, we
concluded that the assertion in the monitor process is violated before the reacha-
bility check happens. Indeed node p1_buy never pushes, since it has no resource
connections, it serves only to trigger choices.

The final message of inactivity tells us that s2_destroyed is never triggered by
doit, the binding of turn. This experiment shows MM AiR provides feedback for
analyzing and refining MM models intended to be embedded in game software.

5 Conclusions

Machinations was a great first step in turning industrial experience in game
design into a design language for game economies. In this paper we have taken
the original Machinations language as starting point and have analyzed and
scrutinized it. It turned out that the definitions of various of the original language
elements were incomplete or ambiguous and therefore not yet suitable for a
formal analysis of game designs. During this exercise, we have learned quite a
few lessons:

– Formal validation of rules for game economies is feasible.
– Unsurprisingly, modularity is a key feature also for a game design language.

Modularity not only promotes design reuse, but also enables modular vali-
dation that can significantly reduce the state space.

– In our refinement and redefinition of various language features, we have
observed that non-determinism had to be eliminated where possible in order
to reduce the state space.

– While a graphical notation is good for adoption among game designers, a
textual notation is better for tool builders.

– Promela is a flexible language that offers many features to represent the
model to be validated. Different representation choices lead to vastly different
performance of the model checker and it is non-trivial to choose the right
representation for the problem at hand.

Micro-Machinations 55

– The Rascal language workbench turned out to be very suitable for the de-
sign and implementation of MM AiR. In addition to compiler-like operations
like parsing and type checking MM AiR also offers editing, interactive error
reporting and visualization. It also supports generation of Promela code
that is shipped to the Spin model checker and the resulting execution traces
produced by Spin can be imported and replayed in MM AiR.

MM Air in its current form is an academic prototype, but it is also a first step
towards creating embeddable libraries of reusable, validated, elements of game de-
signs. Next steps include the use of probabilistic model checkers, mining of recur-
ring patterns in game designs and finally designing and implementing embeddable
APIs for MM. These will form the starting point for further empirical validation.
We see as the major contributions of the current paper both the specific design
and implementation of MM and MM AiR and the insight that the combination of
state-of-the-art technologies for meta-programming and model checking provide
the right tools to bring game design to the next level of productivity and quality.

Acknowledgements. We thank Joris Dormans for answering our many ques-
tions about Machinations, Tijs van der Storm for providing advice and feedback,
and the anonymous reviewers for giving valuable suggestions.

References
1. Blow, J.: Game Development: Harder Than You Think. ACM Queue 1, 28–37 (2004)
2. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal. In:

Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

3. Holzmann, G.: SPIN Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

4. Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design, 1st edn. New
Riders Publishing, Thousand Oaks (2012)

5. Dormans, J.: Level Design as Model Transformation: A Strategy for Automated
Content Generation. In: Proceedings of the 2nd International Workshop on Proce-
dural Content Generation in Games, PCGames 2011, ACM, New York (2011)

6. Brom, C., Abonyi, A.: Petri Nets for Game Plot. In: Proceedings of Artificial
Intelligence and the Simulation of Behaviour (AISB) (2006)

7. Araújo, M., Roque, L.: Modeling Games with Petri Nets. In: Proceedings of the
3rd Annual DiGRA Conference Breaking New Ground: Innovation in Games, Play,
Practice and Theory (2009)

8. Fu,D.,Houlette,R., Jensen,R.:AVisualEnvironment forRapidBehaviorDefinition.
In: Proc. Conf. on Behavior Representation in Modeling and Simulation (2003)

9. Champandard, A.J.: Behavior Trees for Next-Gen Game AI (December 2007),
http://aigamedev.com

10. McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J., Parker,
D.: ScriptEase: Generative Design Patterns for Computer Role-Playing Games. In:
Proceedings of the 19th IEEE International Conference on Automated Software
Engineering, pp. 88–99. IEEE Computer Society, Washington, DC (2004)

11. Wright, W.: Dynamics for Designers. Lecture delivered at the Game Developers
Conference (2003)

http://aigamedev.com

xMOF: Executable DSMLs Based on fUML

Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{mayerhofer,langer,wimmer,gerti}@big.tuwien.ac.at

Abstract. The basic ingredients of a domain-specific modeling language (DSML)
are its syntax and semantics. For defining the abstract syntax in terms of metamod-
els, MOF constitutes a standardized language. For specifying the behavioral se-
mantics, however, no standardized language exists, which hampers the emergence
of model execution facilities, such as debugging and simulation support. The con-
tribution of this paper is an integrated approach for specifying the abstract syntax
and behavioral semantics of DSMLs based exclusively on standardized modeling
languages. In particular, we integrate fUML, a standardized executable subset of
UML, with MOF leading to a new metamodeling language xMOF. Moreover, we
propose a methodology for developing executable DSMLs fostering the separa-
tion of abstract syntax and behavioral semantics. To evaluate our approach, we
provide an EMF-based implementation and report on lessons learned from per-
forming three case studies in which we implemented executable DSMLs using
xMOF.

1 Introduction

The success of model-driven engineering (MDE) depends significantly on the availabil-
ity of adequate means for developing domain-specific modeling languages (DSMLs).
The two key components that constitute a DSML are its syntax and its semantics. For
defining the abstract syntax, the OMG standard MOF [19] provides a well-established
and commonly accepted language for defining metamodels. Moreover, MOF fostered
the emergence of (i) a variety of techniques for (semi-)automatically deriving specific
facilities from a metamodel, such as modeling editors, and (ii) a multitude of generic
facilities, e.g., for model persistence, validation, comparison, and transformation.

For developing the behavioral semantics of a DSML, no standard language has been
established yet [1]. In practice, models are usually made executable by using code
generators or by implementing model interpreters with general purpose programming
languages (GPLs). However, code generators or model interpreters constitute only an
implementation of the behavioral semantics rather than an explicit specification. The se-
mantics is only implicitly, redundantly, and maybe only partially given (cf. Figure 1a).
Thus, it is difficult to analyze, extend, and reuse the implemented semantics, as well as
to verify whether the implementations are actually consistent with each other regarding
the intended semantics, making it costly to create and maintain such implementations.

As a first important step towards addressing these drawbacks, we stress the need for
a standardized way of specifying explicitly the behavioral semantics of a DSML (cf.
Figure 1b). Moreover, we think that a model-based specification of the behavioral se-
mantics would be beneficial because it enables to stay in the technical space of MDE

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 56–75, 2013.
c© Springer International Publishing Switzerland 2013

xMOF: Executable DSMLs Based on fUML 57

Behavioral

Modeling

Editor

Model

Validation

Model

Interpreter A

Model

Interpreter B

Metamodel

Code

Generator A

Behavioral

Semantics

Code

Generator B

Behavioral

Semantics

Interpreter B

Behavioral

Semantics

Generator B

Behavioral

Semantics
…

Behavioral

Semantics

(a) Implicit specification

Modeling

Editor

Model

Validation

Metamodel

BehavioralB h i l

Model

Interpreter A

Model

Interpreter B
C d

Code

Generator A

MetamodelBehavioral

Semantics
Behavioral

Semantics

Code

Generator B
…

Caption
Hand-written

Artifact

Generic or

Generated Artifact

dependency

Artifact Generated Artifact

(b) Explicit specification

Fig. 1. Specification of the behavioral semantics

and hence to immediately apply MDE techniques for processing such specifications.
An explicit specification of the behavioral semantics of DSMLs enables the simulation
and validation of the behavior of DSMLs already in early phases of the language de-
velopment process. Additionally, it may also provide similar benefits as MOF granted
for implementing modeling facilities based on a DSML’s abstract syntax: it may enable
the emergence of reusable generic components and (semi-)automatic derivation tech-
niques for developing dedicated model execution facilities, such as code generators,
model interpreters, model debuggers, and model analysis components.

Therefore, we propose to use fUML [20] for explicitly specifying the behavioral
semantics of DSMLs. fUML is standardized by the OMG and defines the semantics
of a key subset of UML in terms of a virtual machine. This subset contains the UML
modeling concepts for defining UML classes and for defining the behavior of these
classes using UML activities. As UML classes and MOF metaclasses differ only in
their intended usage (modeling of a software system vs. metamodeling), we argue that
fUML might be well suited not only for specifying the behavior of UML classes but
also for specifying the behavior of MOF metaclasses. Although OMG intended fUML
to be sufficient for specifying the semantics of the remainder of UML [20], it is, how-
ever, an open question how fUML can be employed for this purpose and, even more,
how fUML can be integrated with state-of-the-art metamodeling languages, techniques,
methodologies, and tools for specifying the semantics of arbitrary DSMLs.

Based on first ideas which we have outlined in previous work [15], the contribu-
tion of this paper is threefold. First, we show how fUML can be integrated with MOF
leading to a new metamodeling language called xMOF (eXecutable MOF) that allows
specifying both the abstract syntax and the behavioral semantics of DSMLs. Second,
we extend existing methodologies for developing DSMLs [25,26,27] with additional
steps concerning the behavioral semantics specification, fostering a clear separation of
abstract syntax and behavioral semantics ensuring compatibility with existing modeling
frameworks. Third, we present an approach for deriving a model interpreter for DSMLs
based on their semantics specified with xMOF which enables to execute models con-
forming to the DSML using the fUML virtual machine. To evaluate the applicability of
our approach, we implemented a prototype that is integrated with the Eclipse Model-
ing Framework (EMF) [26] and report on lessons learned from performing three case

58 T. Mayerhofer et al.

studies in which we developed distinct executable DSMLs. The contributions presented
in this paper have to be seen as a foundation for establishing a standardized way of spec-
ifying the behavioral semantics of DSMLs based on fUML. The challenges of leverag-
ing the fUML-based semantics specifications of DSMLs, proposed in this paper, for
building reusable generic components and (semi-)automatic derivation techniques for
developing dedicated model execution facilities as well as of providing extension and
reuse mechanisms for such semantics specifications are subject to future work.

The remainder of this paper is structured as follows. After surveying related work in
Section 2, we discuss how fUML can be used for specifying the behavioral semantics
of arbitrary DSMLs and how fUML can be integrated with MOF in Section 3. Sub-
sequently, we describe the proposed methodology for specifying executable DSMLs
using xMOF in Section 4. In Section 5, we present case studies evaluating the applica-
bility of xMOF for specifying the behavioral semantics of DSMLs and discuss lessons
learned, before we conclude this paper in Section 6.

2 Related Work

In this section we give an overview about existing approaches for specifying the behav-
ioral semantics of DSMLs and briefly describe efforts in using UML action languages
on the metamodel level.

2.1 Semantics Specification Approaches

For explicitly specifying the behavioral semantics of DSMLs, various approaches have
been proposed in the past, which can be divided into two categories: translational ap-
proaches and operational approaches.

Translational semantics specification approaches map constructs of a DSML to con-
structs of another language whose semantics is already formally and explicitly defined.
This has the advantage that existing tools for the target language, such as execution and
analysis tools, can also be used for the source language. The drawback, however, is that
the semantics of a DSML is defined by the mapping to the target language leading to
an additional level of indirection. Thus, the semantics of the source language is hard
to comprehend and to analyze. Furthermore, if tools of the target language are used,
for instance, to execute or analyze models of the source language, obtained results also
have to be mapped back to the source language. Examples for translational semantics
specification approaches are the work of Chen et al. [2] who use the Abstract State Ma-
chine formalism, Rivera et al. [22] who use Maude, Kühne et al. [10] who use Petri
nets, and Rumpe et al. [6] who use their System Model as target language for specify-
ing the behavioral semantics of DSMLs. In addition, a common approach to define the
behavioral semantics of domain-specific languages in a translational way is to utilize
code generation. This has a long tradition in several technical spaces [11], such as in
grammarware [7,16,30] and in modelware [26].

Compared to translational approaches, the operational semantics specification ap-
proach is more explicit in the sense that behavior is directly specified for the DSML
without moving to a different language. One way for defining operational semantics is

xMOF: Executable DSMLs Based on fUML 59

to define graph transformation rules operating on models as proposed by Engels et al. [5].
Another possibility is to follow an object-oriented approach by specifying the behavior
of the operations defined for the metaclasses of a DSML’s metamodel using a dedicated
action language. A plethora of action languages has been proposed for this purpose in-
cluding existing GPLs: Kermeta [17], Smalltalk [4], Eiffel [21], xCore [3], Epsilon Ob-
ject Language [8], and the action languages proposed in the Model Execution Framework
(MXF) [24] and by Scheidgen and Fischer [23] to name just a few.

Although several approaches for specifying the behavioral semantics of DSMLs have
been proposed, these approaches do not seem to be commonly accepted in the MDE
community [1], especially in comparison to the acceptance of MOF. As specifying the
behavioral semantics of DSMLs is a core challenge in MDE, we believe that a standard-
ized action language for metamodeling is required. Both MOF and fUML are standard-
ized by OMG, which is an important standardization body in the MDE domain; thus,
fUML may be considered as a promising candidate for serving as a well-established
and standardized action language for metamodeling. However, it is an open question
how fUML can be integrated with MOF and with currently applied metamodeling tech-
niques, methodologies, and tools, as well as how appropriate fUML is for specifying
the behavioral semantics of DSMLs and how an fUML-based semantics specification
can be utilized to directly execute models conforming to the DSMLs. In this paper, we
aim to address those research questions.

2.2 Using UML Action Languages on the Metamodel Level

The Action Semantics (AS) integrated with UML 1.5, the predecessor of fUML, was
employed by Sunye et al. [28,29] for defining programs on the metamodel level. In
particular, the authors proposed to implement refactorings, design patterns, as well as
aspect-orientation for UML by using AS to realize transformations of the abstract syn-
tax of UML models. In this paper, we go one step further and use fUML to define also
the behavioral semantics of DSMLs in general.

Recently, Lai and Carpenter [12] also proposed the usage of fUML for specifying
the behavioral semantics of DSMLs in an operational way. However, they focus on the
static verification of fUML models to identify structural flaws, such as unused or empty
model parts. The authors neither discuss possible strategies for using fUML as an action
language on the metamodel level, nor do they consider the execution of models based
on fUML. In contrast, the aim of our work is to enable the explicit specification of
executable DSMLs and the execution of conforming models by providing a framework
that seamlessly integrates with existing metamodeling environments.

3 Specifying Semantics with fUML

To use fUML for specifying the behavioral semantics of a DSML and for executing
models conforming to this DSML, we may apply two distinct approaches: the transla-
tional approach and the operational approach.

With the translational approach, the behavioral semantics of a DSML is specified
through a mapping of DSML concepts to fUML concepts. The mapping between the

60 T. Mayerhofer et al.

languages can be implemented using model transformation languages and the obtained
fUML models may be executed using the fUML virtual machine. However, when devel-
oping DSMLs having a semantics diverging from fUML’s semantics, this approach has
the disadvantage of potentially complex mappings, which are difficult to specify due to
the fact that three languages are involved: the DSML, the transformation language, and
fUML. An additional challenge arises with this approach when the results of executing
the fUML models have to be traced back to the original models.

Because of these drawbacks we advocate the operational approach where the be-
havioral semantics is introduced into the DSML’s metamodel by adding operations to
the metaclasses and implementing them using fUML activities that specify how models
shall be executed, i.e., fUML is used as action language. Having the operational seman-
tics of a DSML specified in terms of fUML activities, the fUML virtual machine can be
used to directly execute models conforming to the DSML. In the following, we discuss
how the operational approach for using fUML as semantics specification language can
be realized for MOF.

3.1 The Gap between fUML and MOF

Before fUML can be used in MOF-based metamodels, the gap between both modeling
standards has to be bridged. Therefore, let us consider how fUML is composed and how
it relates to MOF. For modeling structural aspects of a system, fUML contains a subset
of the Classes::Kernel package of UML. For modeling behavior, a subset of the UML
packages CommonBehaviors, Activities, and Actions is included in fUML. As fUML
uses the UML package Classes::Kernel and the same package is also merged into MOF,
the structural part of the fUML metamodel overlaps with MOF. Although the same
elements are used for structural modeling on a conceptual level, on a technical level,
they are two distinct languages. Furthermore, there is a conceptual mismatch between
an fUML class diagram and a MOF-based metamodel: considering the metamodeling
stack [9] (cf. left-hand side of Figure 2), fUML models (afUML Model) are situated
on the meta-level M1, whereas the metamodel of a DSML (aDSML MM) is located on
the meta-level M2. However, an operational semantics specification of a DSML has to
reside on the same meta-level as the metamodel of the DSML itself.

3.2 Bridging the Gap between fUML and MOF

To overcome the gap between MOF and fUML for enabling the usage of fUML as an
action language for MOF two strategies can be applied.

By Transformation: The first strategy is to transform the MOF-based metamodel of
the DSML into an fUML class diagram and extend the fUML classes with the opera-
tional semantics in terms of fUML activities as proposed by Lai and Carpenter [12]. For
executing a model conforming to the DSML, it has to be transformed into an fUML-
compliant object diagram consisting of objects representing ontological instances [9]
of the fUML classes that correspond to the DSML’s metaclasses. One advantage of
this approach is that model transformations for the metamodel and models are all that
is needed to obtain an executable model. However, one major drawback is that both
metamodeling environments and UML environments have to be used in parallel. The

xMOF: Executable DSMLs Based on fUML 61

MOF

fUML

«instanceOf»

afUML

Model

aDSML MM

«instanceOf» «instanceOf»

xMOF
MOF fUML

«instanceOf»

aDSML OS

(afUML Model)

«instanceOf»

aDSML MM
«extends»

«instanceOf»

aDSML

Model

Caption: MM … Metamodel, OS … Operational Semantics

M3

M2

M1

Current Situation Integration of fUML with MOF

«extends»

«instanceOf»

aDSML

Model

Fig. 2. Gap between fUML and MOF and how it is bridged

UML environment has to be used for defining the operational semantics, as well as for
executing, analyzing, and debugging models and the metamodeling environment has to
be employed for defining the syntax of the DSML, as well as conforming models. Con-
sequently, users have to switch between different environments and constantly apply
transformations on metamodels and models to obtain equivalent fUML class diagrams
and fUML object diagrams, respectively.

By Integration: Because of the aforementioned drawbacks, we advocate a second
strategy based on an integration approach as depicted on the right-hand side of Figure 2.
In this strategy fUML is integrated with MOF by extending MOF with the behavioral
part of fUML to obtain a language on M3 that we call eXecutable MOF (xMOF). By
extending MOF with certain parts of fUML, these parts are pulled up from the meta-
level M2 to the meta-level M3 enabling the specification of the abstract syntax as well
as the operational semantics of a DSML with one metamodeling language that is com-
posed of two standardized languages (MOF and fUML). As a result, the abstract syntax
can be specified in terms of a metamodel (aDSML MM) using the modeling concepts
provided by MOF and the operational semantics (aDSML OS) can be specified using
fUML activities. Models (aDSML Model) can be executed by employing the fUML
virtual machine.

3.3 Extending Ecore with fUML

As Ecore [26] constitutes the most prominent implementation of MOF (or to be more
precise essential MOF (EMOF)), we show in this section how we extended Ecore with
the behavioral parts of fUML leading to the novel metamodeling language xMOF.
Please note that a corresponding extension can be applied also to MOF itself, instead of
Ecore.

As depicted in Figure 3, xMOF extends Ecore in a way that enables to specify
fUML activities for the operations of the metaclasses defined in the metamodel of a
DSML. The fUML activity specified for an operation defines the implementation, i.e.,
the behavior, of this operation. Therefore, we introduced the metaclasses Behaviored-
EClassifier, BehavioredEClass, MainEClass, and BehavioredEOperation serving as

62 T. Mayerhofer et al.

Ecore metaclasses
(excerpt)

Integration metaclasses

fUML metaclasses
(excerpt)

EClass EOperation

BehavioredEOperation

Behavior

EClassifier

BehavioredEClass

MainEClass

Activity

ActivityNode

ActivityEdge

ownedBehavior *

classifierBehavior 0..1

eOperations *

node *

specification

0..1

method*

edge *

BehavioredEClassifier

Fig. 3. Metamodel of xMOF (excerpt)

connection points between Ecore and fUML. A BehavioredEClassifier is an EClassi-
fier that can own Behaviors in terms of Activities. One Behavior can serve as classifier
behavior of the BehavioredEClassifier. As specified in UML, the classifier behavior is
invoked when the owning BehavioredEClassifier is instantiated. BehavioredEClass is
a concrete subtype of BehavioredEClassifier and EClass. Thus, a BehavioredEClass is
an ordinary EClass but may own Activities in addition. The class MainEClass is intro-
duced to distinguish one BehavioredEClass in a semantics specification as the main
class controlling the execution of a model conforming to the DSML. An Activity serves
as specification of a BehavioredEOperation which is a subtype of Ecore’s EOperation.

Using xMOF it is now possible to use fUML activities (Activity) to specify the be-
havior of operations (BehavioredEOperation) of metaclasses (BehavioredEClass) in the
metamodel of a DSML and therewith it is possible to specify the behavioral semantics
of a DSML.

4 Methodology for Specifying Semantics with xMOF

With xMOF, as introduced in the previous section, it is possible to specify the abstract
syntax as well as the behavioral semantics of DSMLs. In this section we will present
the xMOF-based semantics specification of an example DSML. Furthermore, to fos-
ter a systematic and efficient development of behavioral semantics specifications using
xMOF, as well as to maximize the reuse and the compatibility with existing EMF-
based technologies, we propose a dedicated methodology, which is orthogonal to exist-
ing metamodeling methodologies [25,26,27]. Before we present this methodology by
means of the example DSML, we first discuss the goals we aim to address with this
methodology.

xMOF: Executable DSMLs Based on fUML 63

4.1 Goals of the Methodology

With the proposed methodology, we aim at supporting users in applying xMOF for
specifying executable DSMLs. In particular, we aim at addressing the following six sub-
goals. The proposed methodology shall (i) integrate seamlessly with existing method-
ologies for developing DSMLs, including their techniques and tools, and only extend
them concerning the specification of the behavioral semantics of DSMLs. Thus, the
use of existing metamodeling techniques and tools, as well as any other techniques and
tools for deriving modeling facilities or for processing models, shall not be affected.
Further, the proposed methodology shall (ii) enable a clear separation of the abstract
syntax specification from the specification of the behavioral semantics and (iii) allow
users to develop multiple behavioral semantics for the same abstract syntax without
interference. Moreover, the methodology should (iv) enable a clear distinction between
modeling concepts of the DSML and runtime concepts that are only needed for execut-
ing models (such as the specification of runtime variables and additional input param-
eters). Finally, the methodology shall also provide the means for (v) executing models
conforming to the DSML and (vi) for representing the results of the model execution
on the level of the executed model (i.e., on the DSML level and not on the fUML level).

4.2 xMOF Methodology

The proposed methodology consists of the metamodeling language xMOF and a set of
processes, techniques, and supporting tools for specifying the behavioral semantics of
DSMLs, as well as for executing models conforming to the DSML. The processes of
the methodology including the produced and consumed artifacts are depicted in Fig-
ure 4, which also annotates the steps of the processes that are carried out automatically
and the steps that have to be carried out manually. The relationships among the in-
volved artifacts are shown in more detail in Figure 5. The methodology consists of five
phases, which are discussed in the following by means of a running example; that is,
the specification of a DSML for modeling Petri nets.

Language Design. First of all the language designer has to specify the abstract syntax
of the DSML with an Ecore-based metamodel. For specifying the behavioral seman-
tics, an initial xMOF-based configuration is generated automatically from this meta-
model. In particular, for each concrete metaclass in the metamodel, one Behaviored-
EClass is generated, whereas one of them can be selected as MainEClass. Each of
these generated classes (configuration classes) is defined as subclass of the respective
metaclass it has been generated for and can now be extended to specify the behav-
ioral semantics of this metaclass. Therefore, the language designer may add operations
(BehavioredEOperations) providing an implementation of the designated behavior of
the metaclass in terms of fUML Activities. In addition to the configuration classes, one
class called Initialization, as well as a containment reference from the MainEClass to
it, is generated. This initialization class can be used to define supplementary data that
is needed as additional input for the execution of models based on the specified se-
mantics. Therefore, attributes, references, and additional contained initialization classes
(EClasses or BehavioredEClasses) can be added to this generated initialization class.

64 T. Mayerhofer et al.

Ecore-based

Metamodel

Specify

Abstract

Syntax

Generate

xMOF-based

Configuration

Artifact Manual

Task
Automated

Task

in/out relation

xMOF-based
Configuration

[initial]

Conf

Classes

Init

Classes

Specify

Semantics

Caption:

Generate

Runtime

Profile

e Runtime

Profile

Create

Model
Model

Instantiate

xMOF Conf

Classes

Instantiate

xMOF Init

Classes

fUML-based

Model

xMOF-based
Model

Conf

Model

Init

Model

Tramsform

xMOF- to fUML-

based Model

Execute

Model

Generate

Runtime Profile

Application

Runtime

Profile

Application

fUML

Extensional

Values

Language Design

Model Creation Model Execution Preparation

Model Execution

xMOF-based
Configuration

[complete]

Conf

Classes

Init

Classes

Ecore-based

Metamodel xMOF-based
Configuration

[complete]

Conf

Classes

Init

Classes

Execution Infrastructure
Generation

Runtime

Profile

xMOF-based
Model

Conf

Model

Init

Model

Fig. 4. Methodology for specifying the semantics of DSMLs with xMOF

«instanceOf»

«instanceOf»

Model

Runtime

Profile

Application

Runtime

Profile

E
x
e
c
u
ti
o
n«appliedOn»

«instanceOf»«instanceOf»

M3

M2

M1

xMOF

fUMLEcore
«extends»

fUML-based

Model

fUML

Extensional

Values

DSML

Ecore-based

Metamodel

xMOF-based
Configuration

Conf

Classes

Init

Classes

xMOF-based
Model

Conf

Model

Init

Model
Transformation

fUML

Metamodel

Metamodeling Environment UML Environment

Transformation

Transformation

Transformation

«instanceOf»«instanceOf»

MOF

«instanceOf»

«extends»

Fig. 5. Artifacts involved in the semantics specification with xMOF

xMOF: Executable DSMLs Based on fUML 65

xMOF-based Configuration

Ecore-based Metamodel

read self
ReadSelf

result

object

read input
ReadStructuralFeature

result[*]

«iterative»
target

Initialization Token

Net

Place

name :EString

Transition

name :EString

PlaceConfiguration

addToken() :void

removeToken() :void

TransitionConfiguration

fire() :void

isEnabled() :EBoolean

NetConfiguration

run() :void

heldTokens *

initialTokens

*

init

0..1

input *

output *

transitions* places*

holdingPlace

1 object

read output
ReadStructuralFeature

result[*]

«iterative»
target

call addToken()
(PlaceConfiguration::addToken)

call removeToken()
(PlaceConfiguration::removeToken)

Activity for Operation fire() (xMOF-based Configuration)

Fig. 6. Specification of the Petri net DSML

The xMOF-based configuration, consisting of configuration classes and optionally ini-
tialization classes together with their respective behavior specifications, completely de-
fine the behavioral semantics of a DSML.

Example. The metamodel of the Petri net DSML is depicted at the top left-hand side
of Figure 6. A Net consists of Places and Transitions whereas Transitions reference
their input and output Places. In the xMOF-based configuration of the Petri net DSML
depicted at the bottom left-hand side of Figure 6, the configuration classes NetConfig-
uration, TransitionConfiguration, and PlaceConfiguration were generated for the meta-
classes Net, Transition, and Place, respectively; NetConfiguration was selected to be the
MainEClass. Next, we extend these classes with the behavioral semantics specifica-
tion in terms of the operations addToken and removeToken for the configuration class
PlaceConfiguration, fire and isEnabled for TransitionConfiguration, and run for NetCon-
figuration. As an example, the fUML activity specifying the behavior of the operation
fire is depicted at the right-hand side of Figure 6. It calls the operation removeToken
for each input Place and addToken for each output Place of a Transition. Besides the
aforementioned operations, we added the class Token as a containment of the generated
initialization class for representing the initial token distribution, which is the necessary
input for executing a Petri net.

Model Creation. Using existing modeling facilities, a user may create models con-
forming to the DSML by instantiating the DSML’s Ecore-based metamodel. Thus, the
creation of models is not affected by our xMOF-based methodology at all and any mod-
eling editor developed with, for instance, GMF1 or Xtext2, can be used to conveniently
create models in the concrete syntax.

1 http://www.eclipse.org/modeling/gmp
2 http://www.eclipse.org/Xtext

http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/Xtext

66 T. Mayerhofer et al.

p1 p2t

Model

t : TransitionConfiguration

name = "t"

p1 : PlaceConfiguration

name = "p1"

p2 : PlaceConfiguration

name = "p2"

n : NetConfigurationi : Initialization

placesplaces

init

outputinput

transitions

xMOF-based Model (before execution)

t1 : Token

initialTokens

holdingPlace
t2 : Token

heldTokensholdingPlace

t : TransitionConfiguration

name = "t"

p1 : PlaceConfiguration

name = "p1"

p2 : PlaceConfiguration

name = "p2"

n : NetConfigurationi : Initialization

placesplaces

init

outputinput

transitions

fUML-based Model (after execution)

Fig. 7. Petri net and its xMOF/fUML-based models before/after the execution

Example. At the top left-hand side of Figure 7, an example of a Petri net is depicted in
concrete syntax consisting of two places and one transition between them.

Model Execution Preparation. As the behavioral semantics of a DSML is specified
in xMOF using fUML activities, models can be executed by leveraging the standard-
ized fUML virtual machine. Therefore, the model to be executed has to be represented
in terms of an instance of the xMOF-based configuration resulting in an xMOF-based
model. Thus, for each element in the model, the configuration class defined for the el-
ement’s metaclass is instantiated and initialized automatically, including its attribute
values and references, to obtain a configuration model. In addition, the initialization
classes have to be instantiated by the modeler in an initialization model to provide the
additional information required for executing the model. Together with this initializa-
tion model, the configuration model is ready to be executed using the fUML virtual
machine.

Example. At the bottom left-hand side of Figure 7 the xMOF-based model instantiated
for the Petri net model created before is depicted. For the Petri net, the transition, and the
places, the respective configuration classes NetConfiguration, TransitionConfiguration,
and PlaceConfiguration were instantiated and initialized accordingly. As an input to
the model execution, we manually instantiated the initialization classes for defining the
initial token distribution consisting of one token residing in place p1.

Execution Infrastructure Generation. To provide the result of a performed model
execution as feedback to the modeler in a comprehensible way, we annotate the execu-
tion result directly on the executed model. For this we again make use of a technique
standardized by the OMG, namely the UML Profiles mechanism. However, as we deal
with EMF-based models and not with UML models, we use EMF Profiles [13], which
is an adaptation of the UML Profile concept to DSMLs in the realm of EMF. Thus, EMF

xMOF: Executable DSMLs Based on fUML 67

Profiles is a mechanism for adding and visually annotating additional information on
EMF-based models without having to extend the respective metamodel. To annotate the
executed model with the result of the model execution, we automatically generate a run-
time profile from the xMOF-based configuration. More precisely, for each configuration
class, a dedicated stereotype is generated with dedicated tagged values and references
to represent the attributes and references of the respective configuration class.

Please note that the runtime profile itself is neither involved in the specification of
the behavioral semantics of a DSML nor in the execution of a conforming model. Its
sole purpose is to annotate the results of the model execution directly on the executed
model itself in order to provide a visualization of the execution result to the modeler.
Note that this visualization mechanism could be exchanged with another mechanism.

Example. The runtime profile generated for the xMOF-based configuration of the Petri
net DSML is depicted at the top of Figure 8. This profile consists of the stereotypes
NetConfigurationStereotype, TransitionConfigurationStereotype, as well as the Place-
ConfigurationStereotype, which are applicable to model elements of the metaclasses
Net, Transition, and Place, respectively. The attributes and references defined for the
configuration classes were also accordingly introduced in the stereotypes.

Model Execution. Having obtained an xMOF-based representation of the model to
be executed, as well as the means for representing the result of the model execution,
we may perform the execution by leveraging the fUML virtual machine. Therefore, the
xMOF-based model has to be converted into the in-memory representation (i.e., instan-
tiated Java classes) of an fUML-compliant model dictated by the fUML virtual machine.
For that reason, we provide an xMOF-to-fUML converter for accomplishing this trans-
lation automatically. The configuration classes are translated into fUML classes and the
activities specifying their behavioral semantics are translated into fUML activities. This
translation is a straightforward one-to-one transformation, as the language concepts for
specifying behavior in xMOF (activities, actions, etc.) are basically identical to the con-
cepts in fUML, due to the direct integration of fUML in xMOF. The language concepts
in xMOF for defining the structure (classes, references, etc.) are taken from Ecore di-
rectly and hence can be translated easily into fUML. The elements of the xMOF-based
model to be executed and their attribute values, as well as their references, are translated
into fUML objects and fUML links (both called extensional values in fUML). During
the execution of the obtained fUML-based model the fUML virtual machine interprets
the activities specifying the behavioral semantics of the DSML and manipulates the
objects and links representing the model to be executed accordingly. The result of the
execution consists of the manipulated objects and links representing the runtime state
of the executed model after the execution finished. This runtime information is then
automatically transformed into an application of the generated runtime profile. This
generated runtime profile application can now be loaded into the modeling editor to
annotate the executed model with the result of the model execution.

Example. The fUML-based model resulting from the performed execution is depicted
at the right-hand side of Figure 7. Basically, the token contained in the initial token

68 T. Mayerhofer et al.

«stereotype»

TransitionConfigurationStereotype

«stereotype»

NetConfigurationStereotype Initialization

Net PlaceTransition

Token
init

0..1

heldTokens
*

initialTokens

*

«stereotype»

PlaceConfigurationStereotype

Runtime Profile

Runtime Profile Application

«profile» petrinetConfigurationProfile

«metaclass» «metaclass» «metaclass» 1 holdingPlace

Fig. 8. Runtime profile and runtime profile application for Petri net DSML

distribution which was residing in the place p1 was removed and a new token was
created for place p2, which means that the transition t fired in the model execution. To
illustrate how the results of the execution is annotated, the generated runtime profile
application for the executed model is depicted at the bottom of Figure 8. We can see
in the EMF Profile Applications view that the stereotype NetConfigurationStereotype
was applied on the net and contains the initial token distribution. Further the stereotype
PlaceConfigurationStereotype was applied on both places, whereas the place p2 holds
one token.

Tool Support. We provide an EMF-based implementation supporting the presented
methodology. For further information on the tool support, such as demos, examples,
and source code, we kindly refer the interested reader to our project website3.

5 Case Studies and Lessons Learned

We used our xMOF prototype for carrying out several case studies in order to evaluate
the applicability of our approach and to answer the following research questions: Is it
possible to specify distinct languages’ semantics by using fUML as action language?
How appropriate and convenient is the usage of fUML and the proposed methodology
for specifying the behavioral semantics of DSMLs?

3 http://www.modelexecution.org

http://www.modelexecution.org

xMOF: Executable DSMLs Based on fUML 69

5.1 Case Studies Setup

We applied the presented methodology for developing three distinct DSMLs that follow
different semantic paradigms: (i) token flow semantics, (ii) the semantics of imperative
statements, and (iii) event-driven semantics.

As a first DSML, we chose the Petri net DSML (PN), which we already presented as a
running example in Section 4. In particular, we considered two implementation variants
of the Petri net DSML: the first variant PN1 incorporates the initial token distribution
with an attribute in the metaclass Place, whereas the second variant PN2 introduces the
initial token distribution as initialization class (as presented in Section 4). The second
DSML is an imperative modeling language (IML), which allows to specify statements
for defining variables, calculations of values, assignments to variables, and goto state-
ments. The statements are executed top to bottom considering goto jumps. The distinct
characteristic of this language is the need for a statement counter which holds the index
of the statement to be executed in the next execution step. As a third DSML, we imple-
mented the semantics of finite state automata (FSA) for processing a sequence of input
symbols and verifying whether it conforms to a given alphabet. The distinct feature
of this DSML is the event-driven nature of its behavioral semantics in terms of react-
ing to a sequence of input symbols. Table 1 shows some figures about the size of the
Ecore-based metamodels and xMOF-based configurations specified for the considered
DSMLs. All artifacts of the case studies can be found at our project website.

Table 1. Metrics about the size of the case study DSML specifications

Ecore-based Metamodel xMOF-based Configuration
PN1 PN2 IML FSA PN1 PN2 IML FSA

EClass 3 3 8 3 Activity 6 6 4 6
EReference 4 4 13 7 Action (all) 33 37 53 53
EAttribute 1 2 5 3 Read Action 15 16 29 22
xMOF-based Configuration Write Action 3 7 5 7

PN1 PN2 IML FSA Call Action 9 9 12 11
Conf Class 3 3 7 3 Other Action 6 5 7 13
Init Class 0 2 0 2 Control Node 19 12 25 20
EReference 0 4 0 3 Object Flow 49 51 89 81
EAttribute 1 0 2 4 Control Flow 18 10 24 15
EOperation 5 5 3 5

5.2 Lessons Learned

In summary, the performed case studies confirmed that the proposed metamodeling lan-
guage xMOF, as well as the presented methodology, are applicable for defining different
kinds of executable DSMLs. In the following, we critically reflect on the lessons learned
from performing the case studies by first outlining some strengths and, subsequently,
challenges that might need to be addressed in future.

70 T. Mayerhofer et al.

Strengths

Separation of Concerns. With the proposed methodology, the specification of the ab-
stract syntax and the specification of the behavioral semantics of a DSML are clearly
separated from each other in distinct artifacts. Thus, the Ecore-based metamodel does
not incorporate any semantics-specific aspects and can be left as is. This separation also
allows to define multiple behavioral semantics for the same metamodel by defining
multiple xMOF-based configurations.

Explicit Runtime Representation. The xMOF-based configuration acts also as a repre-
sentation for the runtime information of executed models (i.e., runtime variables, such
as the pointer to the current state in FSA). Moreover, the xMOF-based configuration
allows to define separately additional and maybe complex input parameters that are
needed for executing models (e.g., the input sequence of symbols in FSA).

Non-invasive Methodology. The proposed methodology may be used orthogonally to
existing methodologies for developing DSMLs. The usual steps for developing the ab-
stract and concrete syntax, as well as for creating models, are not affected. Further,
EMF was extended with appropriate tool support for this methodology enabling the in-
tegration of the semantics specification and model execution in any project that makes
use of Ecore-based metamodels.

Support for Model Execution. By leveraging the fUML virtual machine, models can
be directly executed. Only the behavioral semantics, the model to be executed, and the
input parameter values have to be provided. The execution result is provided as feedback
to the user on DSML level using the EMF Profiles mechanism, whereas the profile and
its application are generated automatically.

Suitability of fUML. As fUML is designed to specify the behavior of UML classes and
UML classes constitute the basis for MOF, fUML is a suitable candidate for an action
language for MOF. The case studies showed that fUML is adequate for defining the
behavioral semantics of executable DSMLs.

The first three listed strengths (separation of concerns, explicit runtime representation,
and non-invasive methodology) concern the semantics specification methodology pro-
posed in this paper and are not specific to the usage of fUML as semantics specifi-
cation language. Indeed, the methodology might be compatible with other semantics
specification languages as well. The latter two strengths (support for model execution
and suitability of fUML) are specific to fUML whereas direct model execution support
might be available for other action languages too.

Future Challenges

Semantics Specification Specialization. The behavioral semantics of a DSML may
contain semantic variation points. For instance for FSA, a design decision was that if
multiple transitions can process the next input symbol, the input is instantly declared as

xMOF: Executable DSMLs Based on fUML 71

invalid; alternatively, one could prefer that one of those transitions is selected randomly.
Although our methodology allows to define multiple xMOF-based configurations for
the same metamodel, each alternative configuration has to be developed independently
from scratch. Thus, it would be more efficient to have dedicated mechanisms for spe-
cializing existing behavioral semantics specifications by providing alternative behaviors
for explicitly defined semantic variation points. A possible approach to achieve this in
xMOF is the utilization of inheritance relationships among configuration classes. In
this approach the behavioral semantics of a DSML could be specialized by overriding
dedicated operations of the configuration classes which implement a semantic variation
point.

Semantics Specification Reuse. Many DSMLs share a reoccurring set of semantic
paradigms. For instance, the behavioral semantics of UML activity diagrams and di-
verse kinds of workflow languages, such as BPMN, incorporate the semantic paradigm
of token flow as specified for the Petri net DSML. For instance, in our Petri net case
study, the variant PN1 differs from the variant PN2 only in the representation and han-
dling of tokens, apart from that the specified semantics are equivalent, e.g., the imple-
mentations of the operations run and fire are exactly the same for PN1 and PN2. Nev-
ertheless, no reuse was possible since this is currently not supported. Thus, dedicated
means for reusing behavioral semantics specifications might increase the efficiency of
the semantics specification tremendously. Therefore, we envision the definition of so-
called kernel semantics that express reoccurring patterns in behavioral semantics spec-
ifications, such as control flow, data flow, events, statement counter, calculations etc.
Having xMOF-based specifications of such kernel semantics at hand, we could use
them to specify the behavioral semantics of comparable DSMLs very efficiently by
reusing and combining the required kernel semantics.

Comprehensive Library Support. With xMOF, the behavioral semantics of a DSML
is specified by means of the fUML action language which provides, besides basic ac-
tions for creating, updating, and destroying objects and links, also a set of functions
for primitive data types in a so-called fUML foundational model library (e.g., the func-
tions add and subtract for Integer values). However, when specifying the behavioral
semantics in the case studies, we missed essential functions, such as indexOf for fUML
lists, which we needed to implement the selection of the next statement to be executed
in IML, or random, which would have enabled us to implement nondeterministic FSA.
Furthermore, we noticed that functions for navigating and querying models more con-
cisely are needed in fUML. Currently, even simple navigations over multiple references
require one action for each navigated reference, which leads to long chains of reading
actions. As indicated in Table 1, 42%-55% of all actions in the developed semantics
specifications are reading actions. For collecting objects that fulfill certain conditions,
even more complex combinations of reading and writing actions, decision and merge
nodes are required. Thus, the size and complexity of the fUML activities developed
in our case studies could be reduced significantly, if a support for OCL queries (such
as collect and select) would be provided. fUML enables the extension of the fUML
foundational model library by providing and registering Java implementations of the
respective functions at the fUML virtual machine. However, functions for navigating

72 T. Mayerhofer et al.

and querying models more concisely are hard to integrate with this extension mecha-
nism because the conditions for selecting certain objects would have to be passed from
fUML to Java in terms of plain Strings, which can hardly be validated on model level.

Besides such general purpose functions, also external APIs might be required for the
specification of the semantics of a DSML. Consider for instance a DSML for control-
ling robots. If the robot should actually be operated by executing models, operations of
a dedicated robot API have to be invoked during the model execution. In such cases,
a mechanism for integrating domain-specific model libraries in addition to the fUML
foundational model library would be useful. As sketched in previous work [15], another
solution would be to integrate the interfaces of the required external libraries into the
xMOF-based configuration by reverse-engineering the library and to employ a dedi-
cated integration layer which delegates calls to the external library.

fUML Notation. For specifying the activities in xMOF, we implemented a graphical
editor that uses the well-known and standardized UML activity diagram notation. How-
ever, when specifying the behavioral semantics of a DSML with activities in a graphical
way, they easily become very large because it is required to model on a very detailed
level. In average, the activities of our case studies consist of 11 nodes, whereas large
activities contain up to 33 nodes. Although this is not a huge number, the diagrams
are already hard to read due to the large number of edges among them (on average 15
edges, maximum 44 edges per activity). While it might be useful to have a graphical
view of activities that are not very detailed, i.e., which mainly call other activities, a
textual representation would be more appropriate for more detailed activities. A poten-
tial solution for this issue is the integration of the standardized textual syntax for fUML
called Alf [18] in xMOF.

Detailed Runtime Information. Our approach of specifying the behavioral semantics of
a DSML with xMOF enables the execution of models by leveraging the fUML virtual
machine. As runtime information about the performed model execution, the runtime
state of the model after the execution finished is provided. While this runtime informa-
tion allows to reason about the result of executing a model, no information is provided
during the runtime, which, however, might be helpful to analyze the behavior of a model
more thoroughly. In previous work [14], we extended the reference implementation of
the fUML virtual machine by introducing a command API and an event mechanism
allowing to control and observe the execution of fUML models at runtime. Further, a
trace of the performed execution can be obtained. These extensions may be helpful for
the language designer when analyzing and debugging the xMOF-based semantics spec-
ification. However, to also provide this detailed runtime information to the modeler, the
runtime events, commands, and the trace should be tailored to the respective DSML, in-
stead of being provided on the level of the executed fUML actions, because the modeler
is only concerned with the concepts of the DSML and not with its behavioral semantics
specification. Thus, it would be useful to derive a DSML-specific event model, com-
mand API, and trace model from the behavioral semantics specification of the DSML
to enable the derivation of DSML-specific debuggers, as well as testing, analysis, and
verification tools.

xMOF: Executable DSMLs Based on fUML 73

It has to be noted that these challenges are not specific to our semantics specifica-
tion language xMOF, but are challenges generally faced when developing and matur-
ing new software languages. Although we can build on existing notable solutions and
approaches from general software language engineering research to address these chal-
lenges, it has to be investigated which of these solutions are most adequate and how
they have to be adapted for the realm of metamodeling and under the consideration of
the existing capabilities and peculiarities of fUML.

6 Conclusion

In this paper, we investigated the applicability of fUML for specifying the behavioral
semantics of DSMLs. Therefore, we composed a novel metamodeling language called
xMOF that integrates Ecore with the behavioral part of fUML. Moreover, we proposed a
non-invasive methodology, including dedicated tool support, for developing executable
DSMLs with xMOF that fosters a clear separation of concerns and enables the execu-
tion of models using the standardized fUML virtual machine. Based on the case studies
presented in this paper, we may conclude that fUML seems to be very promising for
being established as a standardized language for the specification of the behavioral se-
mantics of DSMLs. However, a large-scale case study applying our proposed semantics
specification approach based on fUML on more complex languages comprising more
complex modeling concepts (e.g., inheritance), which is for now left for future work,
is necessary to evaluate its scalability. In these large-scale case studies, we further plan
to investigate how adequate our approach is for supporting DSMLs that are only par-
tially executable; or that are only executable based on additional models. Furthermore,
a comprehensive comparison of fUML with other action languages existing in the MDE
domain might provide interesting insights into the strengths and weaknesses of fUML
as semantics specification language. Based on our experiences gained by carrying out
the case studies, we also revealed and discussed several challenges that need to be ad-
dressed in future for unleashing the full potential of using our fUML-based semantics
specification approach. Another interesting line of future research concerns the devel-
opment of techniques that exploit the explicit semantics specification to derive, for in-
stance, code generators or model analysis support (semi-)automatically.

References

1. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges and
directions in formalizing the semantics of modeling languages. Computer Science and Infor-
mation Systems 8(2), 225–253 (2011)

2. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with model
transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748,
pp. 115–129. Springer, Heidelberg (2005)

3. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for
Language Driven Development. Ceteva, Sheffield (2004)

4. Ducasse, S., Gı̂rba, T.: Using Smalltalk as a Reflective Executable Meta-language. In: Wang,
J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 604–618.
Springer, Heidelberg (2006)

74 T. Mayerhofer et al.

5. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML. In: Evans, A.,
Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337. Springer, Heidel-
berg (2000)

6. Grönniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition of Modeling Lan-
guage Semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS,
vol. 5522, pp. 152–166. Springer, Heidelberg (2009)

7. Kats, L.C.L., Visser, E.: The Spoofax language workbench. In: Companion to the 25th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pp. 237–238. ACM (2010)

8. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL). In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg
(2006)

9. Kühne, T.: Matters of (Meta-)Modeling. Software and System Modeling 5(4), 369–385
(2006)

10. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit Transformation
Modeling. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 240–255. Springer,
Heidelberg (2010)

11. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In: Proceedings
of the International Symposium on Distributed Objects and Applications, DOA (2002)

12. Lai, Q., Carpenter, A.: Defining and verifying behaviour of domain specific language with
fUML. In: Proceedings of the 4th Workshop on Behaviour Modeling - Foundations and Ap-
plications (BM-FA) @ ECMFA 2012, pp. 1–7. ACM (2012)

13. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: EMF Profiles: A Lightweight Extension
Approach for EMF Models. Journal of Object Technology 11(1), 1–29 (2012)

14. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: Proceedings of the
7th Workshop on Models@run.time (MRT) @ MoDELS 2012, pp. 53–58. ACM (2012)

15. Mayerhofer, T., Langer, P., Wimmer, M.: Towards xMOF: Executable DSMLs based on
fUML. In: Proceedings of the 12th Workshop on Domain-Specific Modeling (DSM) @
SPLASH 2012, pp. 1–6. ACM (2012)

16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Computing Surveys 37(4), 316–344 (2005)

17. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-
languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–
278. Springer, Heidelberg (2005)

18. Object Management Group. Action Language for Foundational UML (Alf), Version Beta 1
(October 2010), http://www.omg.org/spec/ALF/1.0/Beta1

19. Object Management Group. OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1 (August 2011), http://www.omg.org/spec/MOF/2.4.1

20. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0 (February 2011), http://www.omg.org/spec/FUML/1.0

21. Paige, R., Brooke, P., Ostroff, J.: Specification-driven development of an executable meta-
model in Eiffel. In: Proceedings of the 3rd Workshop in Software Model Engineering
(WiSME) @ UML 2004 (2004)

22. Rivera, J.E., Durán, F., Vallecillo, A.: On the Behavioral Semantics of Real-Time Domain
Specific Visual Languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 174–
190. Springer, Heidelberg (2010)

23. Scheidgen, M., Fischer, J.: Human Comprehensible and Machine Processable Specifications
of Operational Semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA.
LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007)

http://www.omg.org/spec/ALF/1.0/Beta1
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/FUML/1.0

xMOF: Executable DSMLs Based on fUML 75

24. Soden, M., Eichler, H.: Towards a model execution framework for Eclipse. In: Proceedings
of the 1st Workshop on Behaviour Modeling - Foundations and Applications (BM-FA) @
ECMFA 2009, pp. 1–7. ACM (2009)

25. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling - State of the Art and
Research Challenges. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) Model-
Based Engineering of Embedded Real-Time Systems. LNCS, vol. 6100, pp. 57–76. Springer,
Heidelberg (2010)

26. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley Professional (2008)

27. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-specific
languages. Software: Practice and Experience 39(15), 1253–1292 (2009)

28. Sunyé, G., Guennec, A.L., Jézéquel, J.-M.: Using UML Action Semantics for model execu-
tion and transformation. Information Systems 27(6), 445–457 (2002)

29. Sunyé, G., Pennaneac’h, F., Ho, W.-M., Le Guennec, A., Jézéquel, J.-M.: Using UML Action
Semantics for Executable Modeling and Beyond. In: Dittrich, K.R., Geppert, A., Norrie, M.
(eds.) CAiSE 2001. LNCS, vol. 2068, pp. 433–447. Springer, Heidelberg (2001)

30. van den Bos, J., Hills, M., Klint, P., van der Storm, T., Vinju, J.J.: Rascal: From Algebraic
Specification to Meta-Programming. In: Proceedings of the 2nd International Workshop
on Algebraic Methods in Model-based Software Engineering (AMMSE). EPTCS, vol. 56,
pp. 15–32 (2011)

Variability Support
in Domain-Specific Language Development

Edoardo Vacchi1, Walter Cazzola1, Suresh Pillay2, and Benoît Combemale2

1 Computer Science Department, Università degli Studi di Milano, Italy
2 TRISKELL (INRIA - IRISA), Université de Rennes 1, France

Abstract. Domain Specific Languages (DSLs) are widely adopted to
capitalize on business domain experiences. Consequently, DSL develop-
ment is becoming a recurring activity. Unfortunately, even though it
has its benefits, language development is a complex and time-consuming
task. Languages are commonly realized from scratch, even when they
share some concepts and even though they could share bits of tool sup-
port. This cost can be reduced by employing modern modular program-
ming techniques that foster code reuse. However, selecting and composing
these modules is often only within the reach of a skilled DSL developer.
In this paper we propose to combine modular language development and
variability management, with the objective of capitalizing on existing as-
sets. This approach explicitly models the dependencies between language
components, thereby allowing a domain expert to configure a desired
DSL, and automatically derive its implementation. The approach is tool
supported, using Neverlang to implement language components, and the
Common Variability Language (CVL) for managing the variability and
automating the configuration. We will further illustrate our approach
with the help of a case study, where we will implement a family of DSLs
to describe state machines.

Keywords: Domain-Specific Languages, Language Design and Imple-
mentation, Variability Management, CVL and Neverlang.

1 Introduction

In computer science, we call domain-specific language (DSL) a language that
is targeted towards a specific problem area. DSLs use concepts and constructs
that pertain to a particular domain, so that domain experts can express their
intentions using a language that is closely aligned with their understanding.
For instance, mathematicians often prefer MATLAB or Mathematica, while in
the modeling world we often talk about domain-specific modeling languages
(DSMLs). In the last few years, industry has shown a growing interest in DSL
development [15], because complex problems are more easily expressed using
problem-tailored languages. However these complex problems tend to have vari-
ations, thus requiring different language implementations.

Traditional language development is a top-down, monolithic process, that pro-
vides very little support in terms of reuse and management of reusable parts.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 76–95, 2013.
c© Springer International Publishing Switzerland 2013

Variability Support in Domain-Specific Language Development 77

Many modern programming languages include DSL-development oriented fea-
tures (e.g., Scala’s parser combinators, Groovy, and so on). However, language
development is still far from being within everyone’s reach. Language develop-
ment tools are generally not built for direct interaction with the end user of
the language; but rather the language developer. Thus, although componen-
tized development is today the norm, even in the case of language develop-
ment, complete language workbenches such as Xtext [9] or MPS [25] are usually
top-down, end-to-end development tools that are meant for programmers, and
therefore less suited for programming-illiterate users. Componentized language
frameworks such as LISA [19], JastAdd [10], or Neverlang [2,3] support reuse of
language components, but each component may have implicit dependencies on
other parts, and often these dependencies are not managed automatically by the
system, but are delegated to the developer.

We believe that combining variability and modular language frameworks would
bridge the gap between developers and end users, thereby further promoting
re-use. In software product lines [6], variability models represent the family of
products. Some works [22, 28] have shown that variability modeling improves
code reuse in DSL development, in that it makes explicit the way components
in a collection may cooperate, how to avoid conflicts and how to ensure that
dependencies are included. Even though it has been recognized as good prac-
tice, variability modeling in language development is still an overlooked aspect,
and most language frameworks usually do not natively take into account its
importance. The contribution of this work is an approach to apply variability
modeling to component-based language development, that focuses on reuse of
existing assets. In particular, we describe

1. a method to extract structured information from the set of existing assets
in the form of a graph of dependencies,

2. a strategy to construct a variability model using the extracted information,

3. an implementation of a derivation operator to generate the language imple-
mentation from the VM automatically,

thereby facilitating the collaboration between the language developer and the
domain expert, to the extent that the domain expert becomes autonomous in
extracting a desired language. The implementation of this approach will be
demonstrated using a real working toolset applied to a family of state machine
languages.

The rest of this paper is structured as follows: in Sect. 2 we provide some
background in terms of a modular language implementation and variability mod-
eling; in Sect. 3 we give an overview of the approach. In Sect 4 we describe the
approach in detail starting with a set of components and in Sect. 5 we apply
variability techniques. In Sect. 6 a case study of a family of statemachines is
provided. Finally, in Sect. 7 we discuss the related work and in Sect. 8 we draw
our conclusions.

78 E. Vacchi et al.

module com.example.AddExpr {
reference syntax {
AddExpr� Term;
AddExpr� AddExpr "+" Term;

}

role(evaluation) {
0 { $0.value = $1.value; }
2.{ $2.value = (Integer) $3.value + (Integer) $4.value; }.

}
}
slice com.example.AddExprSlice {
concrete syntax from com.example.AddExpr
module com.example.AddExpr with role evaluation

}

Listing 1. A simple Neverlang slice defining the syntax and semantics for the
sum. Numbers refer to nonterminals.

module com.example.Numbers {
reference syntax { Integer� /[0-9]+/; }
role(evaluation) { ... }

}
slice com.example.NumbersSlice {

concrete syntax from com.example.Numbers
module com.example.Numbers with role evaluation

}

Listing 2. The slice that defines Term for sum

2 Background

In this section we present the tools that we are going to use in the description
of our approach. As we already mentioned, we will employ Neverlang for the
componentization of the language implementation, while we will use CVL for
variability modeling and realization.

2.1 Neverlang

The Neverlang [2, 3] framework for DSL development promotes code reuse and
sharing by making language units first-class concepts. In Neverlang, language
components are developed as separate units that can be compiled and tested
independently, enabling developers to share and reuse the same units across
different language implementations.

In Neverlang the base unit is the module (Listing 1). A module may contain
a syntax definition or a semantic role. A role defines actions that should be
executed when some syntax is recognized, as prescribed by the syntax-directed
translation technique (for reference, see [1]). Syntax definitions are portions of
BNF grammars, represented as sets of grammar rules or productions. Semantic
actions are defined as code snippets that refer nonterminals in the grammar.

Syntax definitions and semantic roles are tied together using slices. For in-
stance, moduleneverlang.commons.AddExpr declares a reference syntax for sum,
and actions are attached to the nonterminals on the right of the two produc-
tions. Rules are attached to nonterminals by referring to their position in the

Variability Support in Domain-Specific Language Development 79

language com.example.CalcLang {
slices com.example.AddExprSlice com.example.MulExprSlice

com.example.ParenExprSlice com.example.ExprAssocSlice
com.example.NumbersSlice

roles syntax < evaluation < ... // other roles
}

Listing 3. Neverlang’s language construct

grammar: numbering starts with 0 from the top left to the bottom right, so the
first AddExpr is referred to as 0, Term as 1, the AddExpr on the second line would
be 2 and so on. The slice neverlang.commons.AddExprSlice declares that we will
be using this syntax (which is the concrete syntax) in our language, with that
particular semantics.

Finally, the language descriptor (Listing 3) indicates which slices are required
to be composed together to generate the interpreter or the compiler1 for the
language. Composition in Neverlang is therefore twofold:

1. between modules, which yields slices
2. between slices, which yields a language implementation

The result of the composition does not depend on the order in which slices are
specified. The grammars are merged together to generate the complete parser for
the language. Semantic actions are performed with respect to the parse tree of
the input program; roles are executed in the order specified in the roles clause
of the language descriptor. For lack of space, we cannot not give an in-depth
description of Neverlang’s syntax; for a more detailed description, see [3].

The set of generated components can be precompiled into JVM bytecode,
and can be instantiated and queried for their properties using a specific API.
For instance it is possible to retrieve the part of the syntax they define, the
actions they include, etc. This API can be exploited to collect information from
a given pool of slices.

In Neverlang the composition process is syntax driven and implicit. It is syntax
driven, in that relations between slices are inferred from the grammar definitions
that they contain. It is implicit in that these dependencies are implied by these
definitions, and they are not stated in an explicit way. We will describe this with
more detail in Sect. 4.

2.2 Variability Management and CVL

Variability modeling (VM) is a modeling approach in order to manage and ex-
press commonalities and differences in a family of products. These common-
alities and differences are represented as features (particular characteristic or
properties) of the family of products. Currently two approaches are possible,

1 Although in the following we will take the liberty to always use the term interpreter,
let it be known that Neverlang is perfectly capable of generating compilers.

80 E. Vacchi et al.

the first being that the underlying asset provides mechanisms to support exten-
sions which are used to introduce variations; and the second approach is when
the variability is expressed orthogonally to the asset. In the second approach
a binding is required between the features and the asset. A feature model is a
common approach to specifying the relationship between features defined as a
set of constraints between features.

The common variability language (CVL)2 [11] is a domain-independent lan-
guage for specifying and resolving variability over any instance of any MOF-
compliant metamodel. Inspired by feature models, CVL contains several layers.
The Variability Abstraction Model (VAM) is in charge of expressing the vari-
ability in terms of a tree-based structure. The core concepts of the VAM are
the variability specifications (VSpecs). The VSpecs are nodes of the VAM and
can be divided into three kinds: Choices, Variables and Classifiers. The Choices
are VSpecs that can be resolved to yes or no (through ChoiceResolution), Vari-
ables are VSpecs that requires a value for being resolved (VariableValue) and
Classifiers are VSpecs that imply the creation of instances and then providing
per-instance resolutions (VInstances). In this paper, we mainly use the Choices
VSpecs, which can be intuitively compared to features, which can or cannot
be selected during the product derivation (yes/no decision). Besides the VAM,
CVL also contains a Variability Realization Model (VRM). This model provides
a binding between the base model which contains the assets and the VAM. It
makes possible to specify the changes in the base model implied by the VSpec
resolutions. These changes are expressed as Variation Points in the VRM. The
variation points capture the derivation semantics, i.e. the actions to perform
during the Derivation. The CVL specification defines four types of variation
points, namely Existence, Substitution,Value Assignment and Opaque Variation
Point. An object existence variation point is used to determine when an ob-
ject found in the base model should be included or not. Finally, CVL contains
resolution models (RM) to fix the variability captured in the VAM. The RM
replicates the structure of the VAM, in the case of the Choice it would become
a ChoiceResolution which allows the choice to be either selected or not. Simi-
larly VariableValueAssignments are used to assign values to variables. Thereby
providing a mechanism to configure the features required in the desired product.

3 Approach Overview

As noted in the introduction, each component that we add to a language usually
has some dependencies, such as a semantic concept, a syntactic requirement, or
both of them. For instance, if we want some looping construct to terminate, be
it for, while, or whichever we may pick, we might as well include some concept
of truth value and the idea of a condition to test. Likewise, we would need some
syntax to express this concept. Similarly, there might be concepts that, together,
in the same language may conflict. For instance, we cannot have a three-valued
2 CVL is currently a proposal submitted to OMG. Cf.
http://variabilitymodeling.org.

http://variabilitymodeling.org

Variability Support in Domain-Specific Language Development 81

logic and the simple boolean logic to just coexist in the same places: what if the
condition of a loop evaluates to null? Should the loop exit or not?

Component-based language development is close to providing people with an
easy way to implement a language by just selecting components, but implicit
dependencies and conflicts between them creates a barrier to opening such de-
velopment to a wider audience. The challenge lies in the fact that an in-depth
knowledge of how the components are designed is required prior to using such
an approach. Applying variability modeling to a modular language framework
allows the explicit modeling of the relations between components in a manner
understandable to the domain expert or end-user.

In our approach, component-based development is necessary for users to be
able to selectively pick components; the feature model is necessary to represent
how components may interact and to relieve users from the burden of satisfying
complicated dependencies by hand. The variability model explicitly represents
the constraints and the resolution model complies with these constraints, so
that the result of the derivation is guaranteed to behave as expected. Typically a
variability model is used to represent a family of products; in our case we will use
it to represent a language family, that is a set of languages that share a common
set of features. In a perfect world, language components would be developed from
scratch, with the target variability model in mind, and therefore they would
be guaranteed to compose well together. However, implementing a language
from the ground requires a substantial investment. To minimize cost during
component-based language development, one approach would be to maximize
reuse of a set of already available language components.

We will focus on the case of Neverlang and CVL, but the approach that we
present can be applied to any kind of feature modeling approach and any compo-
nentized language development tool that will fit our framework. In particular, the
main requirement for the language framework is to support a way to define the
language constructs in separate components. Although Neverlang includes some
peculiar features [3], we believe that this approach can be applied by other mod-
ular language development frameworks (see Section 7 for other Neverlang-related
work), provided that it is possible to extract from the language components the
set of their relations (the dependency graph, see Section 4). The global approach
is a two-level process: first, the reusable language components are capitalized
and their possible combinations are captured in a variability model. Second, the
variability model is used to select an expected set of features (or configuration)
from which a woven model is produced by composition of the suitable reusable
language components.

From a methodological perspective, we also distinguish two roles for users of
our approach:

– Language Developer. A person experienced in the field of DSL implemen-
tation, and who knows how to break down a language into components.

– Domain Expert. A person that knows the concepts and the lexicon of
the target domain. People in this category would also be end-users of the
language.

82 E. Vacchi et al.

RAM
Model

RAM
Model

RAM
Model

RAM
Model

Neverlang
Slice

(reusable language
component)

CVL
Variability

Abstract Model

CVL
Variability

Realization Model

CVL
Resolution Model

generic model
(dedicated opaque variation point)

defined by a language developer

defined by a domain expert

Neverlang Model
(language description

with slices)

automatically generated

Language and
associated tools

(editor, type checker,
interpreter and compiler)

<<dependsOn>>

CVL
derivation
operator

Neverlang
compiler

generic tool

<<dependsOn>> <<dependsOn>>

13

4

5

6

DG
extractor

Dependency
Graph

2

Fig. 1. CVL in Language Development

In practice, as illustrated in Fig. 1, the approach is divided into the following
six steps:

➀ the language developer collects all of the available language components:
these could be pre-existing components or newly created components.

➁ the relations between components are extracted automatically and repre-
sented as a dependency graph

➂ the language developer and the domain expert collaborate to define a vari-
ability model using the dependency graph as a guide, in such a way as to
define a language family most relevant for the given domain.

➃ the domain expert becomes autonomous: it is now possible to extract a de-
sired language by resolving the variability (selecting a set of features).

➄ using a derivation operator, a list of composition directives is derived from
the resolution of the variability model

➅ the language development tool generates a complete interpreter/compiler for
the desired language.

In our case, if Neverlang is the language framework, and CVL is the variability
language, then we will implement the reusable language components (slices) us-
ing Neverlang (step ➀) and extract the dependency graph from Neverlang (step
➁); the specification of the variability (called variability abstract model) will
use the choice diagram proposed by CVL (step ➂); variability resolution will
be CVL’s resolution model (step ➃); the composition directives (the language

Variability Support in Domain-Specific Language Development 83

descriptor) will be derived (step ➄) using a dedicated derivation operator, im-
plemented using the CVL opaque variation point (and included in the variability
realization model); finally Neverlang (step ➅) will compose the slices contained
in the language descriptor. Please notice that Neverlang provides an additional
degree of composition: composition between slices (possibly) yields a language,
but, as described in Sect. 2, composition between modules yields slices. This
additional degree of freedom will not be discussed here as it would go beyond
the scope of this paper: code reuse at the module level would raise the problem
of multi-dimensional variability, that we reserve to explore in future work.

4 From Slices to Variability Modeling

The domain expert and the language developer interact to implement the vari-
ability model and map it onto a pool of slices. In this section we show that a
variability model can be reverse-engineered from language components. We will
show a simple DSL to express arithmetical expressions (similar to the ARI lan-
guage found in [12]) that, however, has the right level of complexity to explain
our approach. The language of arithmetical expressions is known to be more
complicated than it looks. For instance, the grammar is known to be non-trivial
to factorize, and the semantics is hard to modularize (cf. “the expression prob-
lem” in [26]). In this known setting, we imagine that a language developer and
the domain expert collaborate to implement a variability model on top of a set
of slices that implement a family of ARI-like languages. For the sake of brevity,
we will consider expressions that include only addition and multiplication over
the domain of positive naturals; e.g.: 12 + 5× (4 + 2).

In our example, the language has already been developed using Neverlang, and
a pool of slices is already available. In this context the variability model would
be a representation of all the possible language variants that can be obtained
from different subsets of this pool, and a language family (Sect. 3) would be seen
as the set of languages that share a common set of slices. In particular, given
this pool of slices, then the first step (Sect. 3) to design their variability model
(Fig. 3) is to derive a dependency graph (Fig. 2).

From Slices to Dependency Graph. In Sect. 2 we briefly introduced the
slices that implement the addition (Listing 1) and the definition of numbers
(Listing 2), and we said that the composition process in Neverlang is syntax-
driven and implicit. Slices are composed together automatically, because the

module neverlang.commons.ExprAssoc {
reference syntax {

Expr � AddExpr;
Expr � ParenExpr;
Term � MulExpr;
Factor� Integer;

}
}

Listing 4. Traditional Associativity Rules

84 E. Vacchi et al.

nonterminals that their grammars contain already implicitly declare something
about what they require and provide. For instance, consider the production for
com.example.Numbers:

Term � /[0-9]+/

In this case, the right-hand side is a regex pattern, i.e., a terminal symbol : this is
just a way to tell Neverlang’s parser generator that the text of a program should
contain a number, and has no implication on the way this slice composes with
others. On the other hand, the head of the production (its left-hand nonterminal)
represents something that the slice makes available to other slices. In other
words, since this slice has Term in the head of its production, another production,
possibly in another slice, may refer to it in its right-hand side. In this case, we
might say that the slice com.example.NumbersSlice provides the nonterminal
Term, which is bound to the high-level concept of number and operand of a
sum. Similarly, a nonterminal occurring in the right-hand side of a production
is predicating about what the slice requires to be available. For instance, in
com.example.AddExprSlice we had:

AddExpr � Term

In this case, the head says that the slice provides AddExpr, but, at the same time,
this slice requires Term. This constraint would be satisfied if com.example.AddExpr
and com.example.Numbers were part of the same language.

These implicit dependencies are not enforced. Satisfying these constraints is
left to the knowledge of the language developer. In Neverlang we have fostered
support to variability modeling by adding a high-level API to simplify extraction
of this data from a given slice. The result is that now slices can be queried
for what we call their provide set —i.e., the collection of all the nonterminals
that the slice defines— and for their require set —i.e., the collection of all the
nonterminals that should be made available by other slices— in order for this
slice to make sense in the language. For instance, the slice for the addition that
we presented does not make sense alone, but rather another slice in the same
language should define what a Term is; that is, Term should be found in the
provide set of another slice. It is then quite natural, that, given a pool of slices,
it is possible to derive a dependency graph depicting the relations.

The concept of dependency graph for a set of slices is quite intuitive, but more
formally, we may say that, given a set (a pool) of slices S = {s0, s1, . . . , sn}, we
define for each s ∈ S two sets Rs ⊂ N , the require set and Ps ⊂ N , the provide
set, with N being the alphabet of all the nonterminals in the grammars of all the
slices in S. A dependency is a pair (s,X), where s ∈ S and X ∈ Rs. We can say
that the dependency (s,X) is satisfied if there is at least one slice s′ ∈ S such
that X ∈ Ps′ , and then that s′ satisfies s. A dependency graph for a pool of slices
can be then defined as a tuple G = 〈S,D〉, with S being the set of slices and
D = {(s, s′) | s′ satisfies s}, with a function �(d) = X for each d = (s, s′) ∈ D,
such that (s,X) is a dependency satisfied by s′. For instance, given the pool of
slices that constitutes the language in Listing 3, the dependency graph is shown

Variability Support in Domain-Specific Language Development 85

Fig. 2. A Slice Pool, including the ARI language

Fig. 3. VAM for the Expression Language

in Fig. 2, in the grey box. The arrows point in the direction of a dependency,
and they are labeled by the nonterminal that represents that dependency. For
instance, com.example.ExprAssocSlice (Listing 4) requires some slice to define
the MulExpr, AddExpr and ParenExpr nonterminals. These dependencies are sat-
isfied by the slices for multiplication, addition and parenthesized expressions,
respectively; e.g., if s = com.example.ExprAssocSlice and X = MulExpr, then
the dependency (s,X) is satisfied by com.example.MulExprSlice.

From Dependency Graph to VAM. The CVL variation model (VAM) presents
a simple-to-use, feature-oriented view of a pool of Neverlang slices to the user. It
encodes the set of choices and the constraints between choices. Constructing a
VAM requires the collaboration between the language developer and the domain
expert. The language developer has experience in using a language development
tool (in our case, Neverlang) and can count on a code base of language com-
ponents that he or his colleagues have developed over the years. Any arbitrary
combination of slices from the pool of slices does not necessarily constitute a
language. As each slice may have specific dependencies and conflicts may arise
when combining certain slices. In order to establish such dependencies a depen-
dency graph is provided. The DG Extractor is a tool that uses Neverlang to
query a pool of slices and generate the corresponding dependency graph.

The language developer and the domain expert can exploit this graph as a
basis to design the variability they intend to obtain implemented as a variability

86 E. Vacchi et al.

abstract model (VAM) (Sect. 2.2). The VAM uses a tree-based structure to
define the dependency relationships between the features, typically as parent-
child relations. For the purpose of this explanation we target the VAM in Fig. 3
using the dependency graph in Fig. 2.

As we see in Section. 3, the join point between the domain expert and the
language developer is the definition of the VAM. First of all, the language de-
veloper knows that each of the features must be realized by either one or more
slices, thus the VAM could be constructed at first as having a root node with
the branches being each of the slices. These node names can be then refactored
in order to reflect appropriately the features they represent.

Identifying simple features. First of all, the domain expert is able to recog-
nize that AddExprSlice concerns the higher-level concept of addition and that
MulExprSlice concerns the higher-level concept of multiplication, which are
both operators. Therefore, it is possible to re-organize the hierarchy in the
VAM, by adding a parent node that groups the two, defined as the feature
operators.

Compound features. Now, it is really apparent that the graph in Fig. 2 con-
tains highly-connected components; there are nodes in the graph with a high
number of inbound and outbound edges. These highly-connected components
usually clusterize slices that are all required to implement some feature.
For instance, the slice OnlySums and AddExprSlice depend on each other,
and OnlySums depends on Numbers. A similar reasoning applies to OnlyProds,
MulExprSlice and Numbers. Both of these highly-connected components show
no dependency on ParenExprSlice. The domain expert has the knowledge to
abstract away from the language components that are shown in the graph,
and suggest that a language variant having only sums can be represented
in Fig. 3 as the feature Add_NoParenthesis being one of the alternative of
the feature Add. Similarly, the same thought process can be applied to the
multiplication operation. In addition, the fact that the dependency graph
shows that exists a dependency from feature Add and feature Mult to the
feature Numbers, implies that we have a cross-cutting constraint that when
any operator is selected the feature Number must be included.

Extra features. More information can be added. For instance, the domain ex-
pert might require that there exist another type of associativity, such as
feature SpecialAssoc. In this case it is also evident that in the current set
of slices this is not possible: this reflects the notion that building such a
model with the domain expert can also highlight missing features in the
language. It is also shown in Fig. 3 additional constraints —predicate logic
statements— which would need to be captured by the domain expert and
language developer.

For the ARI example, we obtain the VAM as depicted in Fig. 3. This VAM con-
tains a root choice ARI with three optional features. The operators feature allows
you to choose either addition (Add Feature) or multiplication (Mult Feature) or
both can be included in a language. Since these features are also dependent on

Variability Support in Domain-Specific Language Development 87

(a) Resolving the variability wiht CVL (b) Neverlang’s nlgi tool for CalcLang

Fig. 4. Example usage of the toolchain provided by CVL and Neverlang

numbers, additional constraints are shown below the legend as predicate logic
statements. Including associativity in the language requires that parenthesis is
also included shown as a mandatory child of feature Associativity. Finally im-
plementations feature represents alternatives in terms of the associativity im-
plementations. The rationale for building a VAM from a dependency graph,
provides a mechanism to ensure that dependencies are included and conflicts
are avoided. Also when the pool of slices needs to be maintained the variabil-
ity model provides an indication of what the impact could potentially be. The
current implementation merely provides the dependency graph, and it is left as
a manual process to completely define the VAM. In future work we intend to
provide additional facilities to cope with such a task.

5 From Variability Modeling to Language Implementation

The domain expert would select a set of features in order to derive a desired lan-
guage variant. In this section we provide details on how the process is automated
in order to obtain a fully-functional language by selecting a set of features.

From VAM to Resolution Model. The Resolution model (RM) contains a
set of choices defined as Choice Resolutions which corresponds to the features
found in the VAM. In addition the RM respects the constraints defined by the
VAM. In the implementation, we automatically generate a resolution model ac-
cording to the VAM and its constraints (cardinalities, isImpliedByParent,
DefaultResolution, . . .). The domain expert can select or reject a feature by
changing the choice resolution decisions and in the implementation a graphical
tool is provided depicted in Fig. 4(a).

From a resolution model to a language description. The mapping between
the features in the VAM and the Neverlang slices is defined in the CVL variability
realization model (VRM). The VRM takes as input a RM which effectively con-
tains the selected set of features. An object existence variation point (Sect. 2.2) is
used to include or reject a slice. An opaque variation point (OVP) is a black box
variation point whose behaviour is defined with an action language. In our CVL
implementation, we currently support OVPs defined in Groovy3, in Javascript or
in Kermeta [16]. Using the OVP we define a dedicated derivation operator. This
operator implements the semantics to generate a Neverlang language descriptor

88 E. Vacchi et al.

from a set of slices. The semantics of the CVL derivation process is extended to
allow for ordering of the execution of variation points. The dedicated derivator
operator has a lower precedence than object existence variation point thereby
ensuring that all slices would be included prior to the generation of the language
descriptor.

From language descriptor to fully-functional language. nlgc is a compiler
provided by Neverlang, which translates the script generated by the VRM. nlgc
creates the language by combining the pre-compiled pool of slices into a fully-
functional language implementation, that is ready to be invoked at a command
prompt with an input source file. The nlg tool can be invoked with the language
name to start a minimal non-interactive interpreter that executes a program
from a file input. Likewise, the nlgi tool starts an interactive interpreter that
executes user-input programs shown in Fig. 4(b). An additional process or step
is required in order to implement the variability model. However the benefit is
that we have an explicit model of the relations between features of the set of
languages. These features are also explicitly mapped to the slices in the VRM.
These models can be exploited when the pool of slices need to be modified or new
slices need to be introduced. In addition the resolution model provides a usable
interface for the domain expert, who can immediately benefit by selecting a set
of features and generating a desired fully-functional language. Which he/she can
immediately test and use interactively or in batch mode, thereby allowing the
domain expert to become completely autonomous.

6 Case Study: Family of Statemachines

Statemachines represented by statechart diagrams are typically used to model
behavior. Over the years different implementations of statecharts have emerged,
ranging from UML statechart diagrams, Harel’s statechart and their object-
oriented versions (implemented in Rhapsody). These implementations exhibit
syntactic and semantic variations. In Crane et al. [7] a categorization is provided,
highlighting the effects of such variations and the challenges in transforming from
one implementation to another. Consider for example the pseudostate fork which
would split an incoming transition into two or more transitions. In the case of
classic statecharts simultaneous triggers/events can be handled; thus, in the fork
implementation in the classic statechart the incoming and outgoing transitions
support a trigger, shown in Listing 5(a) as evt1, evt2 and evt3. In UML or Rhap-
sody, when an event arrives, the machine must complete the processing of such an
event prior to accepting a new event known as run-to-completion (RTC) events.
Using the statechart fork implementation in UML or Rhapsody statecharts would
result in an ill-formed statechart, as they do not handle simultaneous events. In
Listing 5(b) the UML implementation is shown: in this case we have removed
the triggers on the outgoing transitions, which makes it compliant with UML as
outgoing fork transitions may contain labels or actions. However this implemen-
tation would still remain ill-formed for Rhapsody, as the fork is simply a split
which is shown in Listing 5(c). In the next section a pool of slices in Never-
lang is defined to support the fork implementations in the different statechart

Variability Support in Domain-Specific Language Development 89

statechart Classic {
State: S1; State: S2; State: S3;
State<Fork> : F1;
Transition: T1 <S1,F> Trigger[evt1];
ForkTransition: T2 <F,S2> Trigger[evt2] Effect[act1];
ForkTransition: T3 <F,S3> Trigger[evt3] Effect[act2];

}

(a) Harel statechart

statechart UML {
State: S1; State: S2; State: S3;
State<Fork> : F1;
Transition: T1 <S1,F> Trigger[e];
ForkTransition: T2 <F,S2> Effect[act1];
ForkTransition: T3 <F,S3> Effect[act2];

}

statechart Rhapsody {
State: S1; State: S2; State: S3;
State<Fork> : F1;
Transition: T1 <S1,F> Trigger[e];
ForkTransition: T2 <F,S2>;
ForkTransition: T3 <F,S3>;

}

(b) UML statechart (c) Rhapsody statechart

Listing 5. Textual DSL notation for the three kinds of Statecharts

Table 1. Statechart implementations in relation to the slices

Implementation Neverlang Slices
Statechart State Transition ForkState ForkTriggerEffect ForkEffect ForkNoActions

Classic statechart ✓ ✓ ✓ ✓ ✓

UML statechart ✓ ✓ ✓ ✓ ✓

Rhapsody statechart ✓ ✓ ✓ ✓ ✓

variants. The CVL derivation engine and the Neverlang implementation can be
downloaded from their websites3.

Step ➀ Implementation of the language components. In Neverlang, such a
set of statecharts in Neverlang is defined as a set of slices. In the implementa-
tion, the statemachine supports simple states, transitions and the pseudostate
fork. For the sake of brevity we merely show the syntax of the slices which
would support the variations in the different fork implementation. The slice
ForkState represents the fork pseudostate, which is supported by the module
ForkState. The slice includes the syntax for State<Fork>, and includes the key-
word ForkTransitions, that introduces the outgoing transition in a fork. Finally
the nonterminal ForkActions represents the possible actions that can be used
in the fork transitions. Depending on the implementation the syntax for the
ForkActions would vary, as shown in Listing 6. Similarly, states and transitions
are implemented as slices. Using these slices we can implement each variation.

Classic State Chart. In this case we need to combine a set of slices that sup-
ports a simple statechart with a fork state, supporting simultaneous triggers.
In this case we would combine the slices for the simple statemachines together
with the slices ForkState and SimultaneousTriggers.

3 people.irisa.fr/Suresh.Pillay/vm-neverlang and neverlang.di.unimi.it respec-
tively.

people.irisa.fr/Suresh.Pillay/vm-neverlang
neverlang.di.unimi.it

90 E. Vacchi et al.

module ForkState {
reference syntax {

StateDef� Fork;
Fork� "State<Fork>" ":" Identifier;
TransitionDef� "ForkTransition" "<" Identifier "," Identifier ">" "(" ForkActions ")";

}}
slice ForkState {

concrete syntax from ForkState
module ForkState with role evaluation

}

module ForkTriggerEffect {
reference syntax { ForkActions� Trigger "," Effect; }

}
slice ClassicForkActions {

concrete syntax from SimultaneousTriggers
module ForkTriggerEffect with role evaluation

}

module ForkEffect {
reference syntax { ForkActions� Effect; }

}

slice UMLForkActions {
concrete syntax from RTCEffects
module ForkEffect with role evaluation

}

module ForkNoActions {
reference syntax { ForkActions� ""; }

}

slice RhapsodyForkActions {
concrete syntax from RTCEffects
module ForkNoActions with role evaluation

}

Listing 6. Slices and modules to support variations in Fork implementations

UML. In the case of UML we would use ForkState and RTCEffects as this kind
of graph supports RTC with labels or effects.

Rhapsody. Finally, in the case of Rhapsody we can simply use the simple statema-
chine together with ForkState as there is no need for fork triggers or effects.

A summary of the possible choices is represented in Table 1. Using such a set of
slices we can support the different language variants, and the right combination
of slices is automatically generated according to the domain expert choices.

Step ➁ Dependency Graph. Figure 5 shows the dependency graph extracted
from our pool of slices. Included in the pool is the states, transitions and the
pseudostate fork slices that would support the different implementations (classic,
UML and Rhapsody). The language developer and the domain expert can clearly
see that they have slices for representing states and transitions. The transition
supports three options Trigger, Guard and Effect. Using this set of slices, it is
also possible to represent a feature to support the pseudostate fork. In addition,
the different fork implementations reflect that the variability model should cater
for the variations to support classic and UML statechart.

Partitioning the slices in features correctly requires domain knowledge. The
major difference between the three implementations, with respect to the fork
pseudostate, is a result of how events are handled, either simultaneously or RTC.

Variability Support in Domain-Specific Language Development 91

Fig. 6. Variability Model for a Family of Statemachines

From the dependency graph, it is only possible to infer that each implementation
supports the different ForkActions. However only leveraging on the knowledge
of the domain expert, it is possible to decide to model this against the type
of event system adopted by the given implementation. The dependency graph
provides some guidance towards reaching a VM, however it still requires human
intervention.

Fig. 5. Dependency graph for a family of
statemachines

Step ➂ Variability Model.
Figure 6 shows the VAM for
a family of statemachines, and
shown in the legend it can be
seen that different relations (e.g.,
or, alternative) can be modeled
in such a structure. The focus
is on the pseudostate fork part
of the variability model. It is
possible to choose the feature
fork, which has a dependency
on feature TriggerTypes. Feature
TriggerTypes imposes an alterna-
tive between the ForkActions be-
ing either simultaneous triggers
or RTC triggers with or with-
out effects. Knowing how trigger-

s/events are handled provides sufficient information to implement the fork cor-
rectly. The VRM allows us to map the features to the slices. These variation
points are defined as Object Existence variation points in the VRM, which links
the feature to the slice or slices which would implement the requirements of such
a feature in the language. In Table 2 the mapping between the features and the
slices supporting the fork variations is listed.

Step ➃ Resolution of the variability by selecting a set of features. CVL pro-
vides a resolution model which is used to select or reject a feature. In Fig. 6 we
show three sets of possible feature selections. The numbers 1, 2 or 3 represent the

92 E. Vacchi et al.

language Classic {
slices

Program States Transitions
...

ForkState ClassicForkActions
roles syntax < evaluation

}

language UMLSC {
slices

Program States Transitions
...

ForkState UMLForkActions
roles syntax < evaluation

}

(a) Resolution 1 (b) Resolution 2

language Rhapsody {
slices

Program States Transitions
...

ForkState RhapsodyForkActions
roles syntax < evaluation

}

(c) Resolution 3

Listing 7. Neverlang language descriptor for (a) classic, (b) UML, (c) Rhapsody
statechart

configurations for the different implementations. Using such a set of selections
a desired statechart can be defined, 1 represents a classic statechart, 2 a UML
statechart and 3 the Rhapsody statechart.

Step ➄ and ➅ Derivation of the composition directives and generation of
the language implementation. The derivation process extracts the slices cor-
responding to the features selected in the resolution model, and applying the
opaque variation point (see Sect. 5) the Neverlang language descriptor is gener-
ated. In Listing 7(a), 7(b) and 7(c) the language descriptors for resolution model
1, 2 and 3 is shown. The Neverlang compiler then composes together the slices
that the language descriptor lists, and the result is an executable interpreter for
the language variation that the user had requested.

7 Related Work

This section discusses related work on language design and implementation, and
variability modelling approaches.

As we noticed in Section 3, the approach that we presented is general and
can be applied even to other frameworks that support modular language

Table 2. Mapping Features to Neverlang Slices

Feature Slice Feature Slice
Statemachine Program Fork ForkState

StatesTransitions States,Transition Simultaneous ClassicForkActions

Guard Guard RTCEffect UMLForkActions

Effect Effect RTCNoEffect RhapsodyForkActions

Variability Support in Domain-Specific Language Development 93

implementation. Several authors explored the problem of modular language de-
sign (e.g., [10,13,23,24]). For example, LISA [13] and Silver [23] integrate specific
formal grammar-based language specifications supporting the automatic gen-
eration of various language-based tools (e.g., compiler or analysis tools). One
practical obstacle to their adoption is a perceived difficulty to adopt specific
grammar-based language specifications, and the relative gap with the develop-
ment environments used daily by software engineers. JastAdd [10] combines tra-
ditional use of higher order attribute grammars with object-orientation and sim-
ple aspect-orientation (static introduction) to get better modularity mechanism.
To develop our work, we chose Neverlang [2, 3], a language development frame-
work that focuses on modularity, and reuse of pre-compiled language modules
for the JVM. In Neverlang, language components are compiled into regular JVM
classes that can be instantiated and inspected using a public API, to retrieve
rich, structured information. This is a departure from the classic source-based
analysis found in other tools, and makes Neverlang’s core easier to plug into a
higher-level workflow, such as the one we described.

Many formalisms were proposed in the past decade for variability model-
ing. For an exhaustive overview, we refer the readers to the literature reviews
that gathered variability modeling approaches [5, 14, 20, 21]. All formalisms for
variability modeling could be used following the approach we introduce in this
paper. In our case, we use the choice diagram proposed by CVL, very similar to
an attributed feature diagram with cardinalities.

Several works [8,12,22,28] have highlighted the benefits of coupling language
development and variability approaches. Czarnecki [8] has shown that DSL im-
plementation can be improved by employing feature description languages. Van
Deursen et al. has proved the usefulness of their text-based Feature Description
Language (FDL) using DSL design as a case study. In the work by Haugen et
al. [12], the authors show how the features of DSLs such as the ARI language (an
expression language similar to the one described in Sect. 4), the Train Control
Language (TCL) and even UML can be modeled to design possible variations
using CVL. White et al. [28] have demonstrated how feature modeling can be
used to improve reusability of features among distinct, but related languages.

More recently, some work has applied variability management to language im-
plementation. MontiCore [17] modularizes a language by extension. Extension
is achieved by inheritance and language embedding. In [4] a variability model is
used to manage language variants. In our case we focus on the reuse of exist-
ing components, not only varying a base language. Langems [27] uses role-based
metamodeling in order to support modularization of languages. The roles play
the role of interfaces and bind to concrete classes for the implementation. The
concrete syntax is bound to the abstract syntax. A more restrictive version of
EMFText is used to try to avoid ambiguities when the grammar is composed
following the abstract syntax. However it is left to the language developer to
avoid such conflicts. In [18] a family of languages is decomposed in terms of
their features. The grammar is constructed using SDF and the semantics is im-
plemented using re-writing rules in Stratego. However, in this work the focus is

94 E. Vacchi et al.

on the language developer, who implements the language components without
any assistance from a domain expert. Their approach is bottom up, but they
do not start from a set of pre-defined component, but rather they componentize
an already existing language and develop the variability model to support it.
Therefore, the relations between language components are imposed by the de-
velopers as they implement them, while in our approach we rely on the existing
dependencies of the language components to direct the implementation of the
VM using an intermediate artifact (the dependency graph, Sect. 4).

8 Conclusions and Future Work

Applying variability modeling techniques to language development bridges the
gap between the language developer and the domain expert. The variability
model not only represents the features of the domain and their relations, but
also the relation between the features and the language components. In our ap-
proach, the dependency graph provides a useful artifact to direct the construction
of the variability model. This graph helps the domain expert to recognize possible
language variants, and assists the language developer in finding possible short-
comings in the implementation of language components. A dedicated derivation
operator is provided to allow the domain expert to automatically generate a lan-
guage implementation, supported by an interactive interpreter, without further
assistance from the language developer. In future work we intend to provide a set
of operators to fully-automate the implementation of a variability model from a
pool of existing language components.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading (1986)

2. Cazzola, W.: Domain-Specific Languages in Few Steps: The Neverlang Approach.
In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 162–177. Springer, Heidelberg (2012)

3. Cazzola, W., Vacchi, E.: Neverlang 2: Componentised Language Development for
the JVM. In: Binder, W., Bodden, E., Löwe, W. (eds.) SC 2013. LNCS, vol. 8088,
pp. 17–32. Springer, Heidelberg (2013)

4. Cengarle, M.V., Grönniger, H., Rumpe, B.: Variability within Modeling Language
Definitions. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 670–684. Springer, Heidelberg (2009)

5. Chen, L., Ali Babar, M.: A Systematic Review of Evaluation of Variability Manage-
ment Approaches in Software Product Lines. Journal of Information and Software
Technology 53(4), 344–362 (2011)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (August 2001)

7. Crane, M.L., Dingel, J.: UML Vs. Classical Vs. Rhapsody Statecharts: Not All
Models Are Created Equal. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 97–112. Springer, Heidelberg (2005)

Variability Support in Domain-Specific Language Development 95

8. Czarnecki, K.: Overview of Generative Software Development. In: Banâtre, J.-
P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566,
pp. 326–341. Springer, Heidelberg (2005)

9. Efftinge, S., Völter, M.: Oaw xText: A Framework for Textual DSLs. In: Proc. of the
EclipseCon Summit Europe 2006 (ESE 2006), Esslingen, Germany (November 2006)

10. Ekman, T., Hedin, G.: The JastAdd System — Modular Extensible Compiler Con-
struction. Science of Computer Programming 69(1-3), 14–26 (2007)

11. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Svendsen, A., Zhang, X.: Standard-
izing Variability – Challenges and Solutions. In: Ober, I., Ober, I. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 233–246. Springer, Heidelberg (2011)

12. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Proc. of SPLC 2008,
Limerick, Ireland, pp. 139–148. IEEE (September 2008)

13. Henriques, P.R., Varanda Pereira, M.J., Mernik, M., Lenič, M., Gray, J., Wu,
H.: Automatic Generation of Language-Based Tools Using the LISA System. IEE
Proc.— Software 152(2), 54–69 (2005)

14. Hubaux, A., Classen, A., Mendonça, M., Heymans, P.: A Preliminary Review on
the Application of Feature Diagrams in Practice. In: Proc. of VaMoS 2010, Linz,
Austria, pp. 53–59. Universität Duisburg-Essen (January 2010)

15. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: Proc. of ICSE 2011, Hawaii, pp. 471–480 (May 2011)

16. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model Driven Language Engineering with
Kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011)

17. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: A Framework for Compositional
Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer 12(5), 353–372 (2010)

18. Liebig, J., Daniel, R., Apel, S.: Feature-Oriented Language Families: A Case Study.
In: Proc. of VaMoS 2013, Pisa, Italy. ACM (January 2013)

19. Mernik, M., Žumer, V.: Incremental Programming Language Development. Com-
puter Languages, Systems and Structures 31(1), 1–16 (2005)

20. Pohl, K., Metzger, A.: Variability Management in Software Product Line Engineer-
ing. In: Proc. of ICSE 2006, Shanghai, China, pp. 1049–1050. ACM (May 2006)

21. Rabiser, R., Grünbacher, P., Dhungana, D.: Requirements for Product Derivation
Support: Results from a Systematic Literature Review and an Expert Survey. Jour-
nal of Information and Software Technology 52(3), 324–346 (2010)

22. van Deursen, A., Klint, P.: Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technolog 10(1), 1–17 (2002)

23. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An Extensible Attribute
Grammar System. Science of Computer Programming 75(1-2), 39–54 (2010)

24. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in At-
tribute Grammars for Modular Language Design. In: Nigel Horspool, R. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

25. Völter, M., Pech, V.: Language Modularity with the MPS Language Workbench.
In: Proc. of ICSE 2012, Zürich, Switzerland, pp. 1449–1450. IEEE (June 2012)

26. P.: Wadler. The expression problem. Java-Genericity Mailing List (1998)
27. Wende, C., Thieme, N., Zschaler, S.: A Role-Based Approach towards Modular

Language Engineering. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE
2009. LNCS, vol. 5969, pp. 254–273. Springer, Heidelberg (2010)

28. White, J., Hill, J.H., Gray, J., Tambe, S., Gokhale, A.S., Schmidt, D.C.: Improving
Domain-Specific Language Reuse with Software Product Line Techniques. IEEE
Software 26(4), 47–53 (2009)

Software Evolution

to Domain-Specific Languages

Stefan Fehrenbach1, Sebastian Erdweg2, and Klaus Ostermann1

1 University of Marburg, Germany
2 TU Darmstadt, Germany

Abstract. Domain-specific languages (DSLs) can improve software
maintainability due to less verbose syntax, avoidance of boilerplate code,
more accurate static analysis, and domain-specific tool support. However,
most existing applications cannot capitalise on these benefits because
they were not designed to use DSLs, and rewriting large existing applica-
tions from scratch is infeasible. We propose a process for evolving existing
software to use embedded DSLs based on modular definitions and appli-
cations of syntactic sugar as provided by the extensible programming
language SugarJ. Our process is incremental along two dimensions: A
developer can add support for another DSL as library, and a developer
can refactor more code to use the syntax, static analysis, and tooling of a
DSL. Importantly, the application remains executable at all times and no
complete rewrite is necessary. We evaluate our process by incrementally
evolving the Java Pet Store and a deliberately small part of the Eclipse
IDE to use language support for field-accessors, JPQL, XML, and XML
Schema. To help maintainers to locate Java code that would benefit from
using DSLs, we developed a tool that analyses the definition of a DSL to
derive patterns of Java code that could be represented with a high-level
abstraction of the DSL instead.

1 Introduction

Language-oriented programming [6,14,29] is the idea of decomposing large soft-
ware systems into domain-specific languages (DSLs), which narrow the gap be-
tween the requirements of a software system and the implementation of these
requirements. Examples of DSLs are state machines for behavioural modelling,
XML for data serialisation, SQL for data querying, or BNF for parsing. Accord-
ing to language-oriented programming, a software system should be written in
a combination of many existing DSLs and, possibly, newly designed languages
specific to the application.

The ultimate goal of language-oriented programming is increased productiv-
ity and reduced maintenance effort [17]. DSLs address software maintenance
from four directions. First, domain-specific syntax reduces the representational
boilerplate associated with encoding domain concerns using regular program-
ming constructs and allows developers to focus on the domain-relevant aspects
of a program. Thus, DSLs improve understandability and modifiability of source
code.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 96–116, 2013.
c© Springer International Publishing Switzerland 2013

Software Evolution to Domain-Specific Languages 97

Second, domain-specific static analysis enables the encoding of domain invari-
ants and compile-time detection of any violation. In contrast, if encoding domain
concerns with regular programming constructs, errors are often only detectable
through testing. For example, when dynamically generating an XML document
through concatenating strings or calling an API such as JDOM, the validity of
generated XML documents cannot be statically guaranteed. An explicit repre-
sentation of the XML DSL enables a static analysis to guarantee that an XML
document adheres to its schema in all possible runs of a program. In case of a
violation, an analysis issues domain-specific error messages, which help program-
mers understand the problem. Consequently, DSLs improve the static safety and
understandability of source code.

Third, domain-specific semantics abstract over recurring patterns found in the
encoding of domain concerns, such as the application of string concatenation or
calling conventions. For example, a domain-specific language can ensure proper
escaping of injected code to prevent injection attacks, not relying on manually
called escape commands. Since a DSL specifies the semantics of domain concerns
once and for all, changes to the behaviour of domain concerns are local to the
DSL definition and separate from DSL programs. This separation of concerns
improves modularity and modifiability of source code, and allows programmers
to focus on domain-relevant aspects instead of their encoding.

Fourth, domain-specific editor support communicates domain knowledge from
the language implementation to developers: from domain-specific syntax high-
lighting to domain-specific content completion, editor support improves under-
standability and modifiability of source code. In summary, DSLs improve the
quality and thereby the maintainability of source code.

Today, the vast majority of software systems are not designed in a language-
oriented fashion. Instead, the long-standing success of C, C++ and Java has
led to large procedural and object-oriented systems. The closest many of these
applications come to making the best use of DSLs, is containing strings of SQL
for database queries. As a consequence, those applications do not benefit from
the maintenance advantages that DSLs provide.

Unfortunately, existing literature on language-oriented programming does not
address existing code bases, but promotes methodologies useful only when em-
ploying them in the original design of an application [29,6,2]. Therefore, to in-
troduce DSLs and their benefits into an existing application, we would have to
rewrite the application from scratch. However, rewriting large parts of realistic
applications all at once is infeasible [20].

Evolving existing Java applications to use DSLs requires a process that allows
for adding new language extensions and incrementally adapting existing code to
use them. In regular Java programming, libraries fulfil this role. On the one hand,
they extend the standard library with new classes. On the other hand, they need
to be imported explicitly in every file they are used, allowing existing code to
coexist unmodified with new libraries and adapted code.

Embedded DSLs [17] allow for incremental introduction of DSLs using li-
braries. However, their flexibility and power is limited by the general flexibility of

98 S. Fehrenbach, S. Erdweg, and K. Ostermann

the host language. The rigid syntax, type system and missing metaprogramming
facilities of Java limit the applicability of embedded DSLs [21]. In particular, the
maintenance benefits of concrete syntax with domain-specific editor support and
advanced static analyses like XML Schema validation cannot be achieved with
embedded DSLs.

We propose a solution for evolving existing code bases to DSLs based on
library-based embedding of DSLs in extensible host languages. A sufficiently
extensible host language avoids the disadvantages of regular embedding (rigid
syntax, no domain-specific editors or static analyses) by extending the corre-
sponding facilities of the host language. Specifically, we use our previous work
on the Java-based extensible programming language SugarJ [8,10,11], which per-
mits DSLs as libraries of Java that can define domain-specific syntax, seman-
tics, analyses and editor support. In our prior work on SugarJ, we focused on
the expressiveness that SugarJ provides in building new applications, much like
other works on language-oriented programming. For this paper, we extended the
SugarJ compiler to handle code bases that consist of standard Java source files
and jar files, and SugarJ source files that employ language extensions. Thus, the
SugarJ compiler supports a mix of unchanged legacy code and adapted code
that uses DSLs.

To assist maintainers in identifying code locations in an existing software
systems where a DSL is applicable, we developed a tool that analyses a DSL
definition to extract a pattern that represents the code generated from the DSL.
We match this pattern against existing source code to find potential application
sites for the DSL and to guide maintainers.

In summary, this work makes the following contributions:

– We explain why incremental introduction of DSLs is a necessary requirement
for the evolution of software systems to DSLs. We show that SugarJ is a
framework that supports incremental introduction of DSLs. In particular,
SugarJ organises DSLs as syntactic sugar in libraries and thereby supports
adding DSLs and adapting applications incrementally.

– To demonstrate the applicability of incremental introduction of DSLs in
extensible languages, we reengineered Sun Microsystem’s Java Pet Store,
which “is the reference application for building Ajax web applications on
Java Enterprise Edition 5 platform” [22]. We incrementally introduced four
DSLs into the Java Pet Store, in particular, for field-accessor generation,
data serialisation (XML), static XML Schema validation (which reveals what
appears to be a bug in the Java Pet Store), and data querying (JPQL). The
Java Pet Store remains executable throughout our maintenance activity.1

– We demonstrate the scalability of incremental introduction of DSLs to large
applications with a partially reengineered Eclipse code base.

– We extended SugarJ to support a mix of SugarJ and original Java files to
facilitate its use in a large code base. Previously, one would have had to
change every Java file to a SugarJ file before using SugarJ.

1 The source code of the reengineered Java Pet Store including all DSL definitions is
available at http://sugarj.org.

http://sugarj.org

Software Evolution to Domain-Specific Languages 99

– We explore SugarJ’s self-adaptable DSL mechanism to support the reuse of
existing language definitions that occur, for example, in documentation.

– We developed an analysis that finds source-code locations in a software sys-
tem at which a given DSL is applicable.

2 Problem Statement and Proposed Solution

Domain-specific languages have several advantages over general-purpose lan-
guages that influence the maintainability of programs [2,23,14,17,29]: They re-
duce syntactic boilerplate, enforce domain invariants, abstract over recurring
patterns, and provide domain-specific tool support. Unfortunately, the major-
ity of applications is not written in a language-oriented fashion, despite these
well-known benefits for software maintenance. Their size makes rewriting them
from scratch infeasible [20]. Nevertheless, these applications are still evolving
and important to their users.

Since software evolution is inherently incremental, any process for introducing
DSLs into existing applications must support incremental application along two
dimensions: (i) adding support for more DSLs and (ii) converting more code to
use the supported DSLs.

2.1 First Dimension: Support More DSLs

Most applications need to deal with multiple domains, and over their lifetime the
number of different domains is only going to increase. For applications developed
in a language-oriented fashion, specific domains that would benefit from DSLs are
identified in an initial design phase. For existing applications, potential domains
for improvement through DSLs are usually only identified while performing a
maintenance task. For example, imagine a programmer needs to understand and
modify the code shown in Figure 1(a) because the serialisation format requires
change. This code is a literate excerpt from the Java Pet Store [22] and serialises
an item to its XML representation. It uses string literals to represent the static
parts of the resulting XML document, that is, element names such as ”<item>”

or ”<price>”. Dynamic values like the item’s ID are concatenated in between the
static element names and the document tree as a whole is assembled through
calls to a StringBuffer’s append method.

This representation of XML documents as strings is common but has several
weaknesses. First, it is hard to read due to string concatenation, character es-
caping, and the interspersion with calls to append. All of this is boilerplate code
that has nothing to do with XML. Second, the structure of the code does not
reflect the structure of the XML document. For example, to add an element
currency as child of price, we have to disassemble the string describing price to in-
ject the currency at the right place. Third, the encoding is unsafe because domain
invariants are not enforced. For example, XML documents must be well-formed,
that is, start and end tags must match. In the string encoding, this invariant is
not explicitly stated, let alone statically enforced. An ill-formed document will

100 S. Fehrenbach, S. Erdweg, and K. Ostermann

private String handleItem(String targetId) {
Item i = cf.getItem(targetId);
StringBuffer sb = new StringBuffer();
sb.append(”<item>\n”);
sb.append(” <id>” + i.getItemID()

+ ”</id>\n”);
sb.append(” <price>” +
NumberFormat.getCurrencyInstance(Locale.US)

.format(i.getPrice())
+ ”</price>\n”);

[...]
sb.append(”</item>\n”);
return sb.toString();

}

(a) String-encoded XML document from
the Java Pet Store.

import sugar.Xml;

private String handleItem(String targetId) {
Item i = cf.getItem(targetId);
return <item>

<id>${i.getItemID()}</id>
<price>${NumberFormat

.getCurrencyInstance(Locale.US)

.format(i.getPrice())}
</price>
[...]

</item>;
}

(b) Semantically equivalent to (a) but
uses XML language support.

Fig. 1. Embedded XML using string embedding and language support

lead to a runtime error. Fourth, string concatenation is semantically unsafe be-
cause it allows for injection attacks that can only be prevented by passing each
concatenation argument to an escaping function, which is a global refactoring.
Fifth, the string encoding inhibits domain-specific tool support such as syntax
colouring; all strings appear the same. For all these reasons, data serialisation
with string-encoded XML is a problem domain in the Java Pet Store. There are
many others, we address some of them in Section 4.

A DSL-based solution to the problems with XML could look like the code in
Figure 1 (b). In general, a DSL should avoid string embedding and instead pro-
vide a higher level of abstraction. A more abstract representation that actually
represents the inherent structure of the domain also allows for static analysis
and dynamic checking. In XML we want to reject documents that do not adhere
to a given schema. In XML and SQL we want to prevent the injection of unsafe
Java runtime values into documents or queries.

Note that it is not sufficient to merely identify all domains for a single ap-
plication and use a language that supports them all. For example, Scala has
built-in support for XML which addresses some of the problems mentioned, but
consider a new browser-based front-end that requires JSON serialisation. Con-
tinuous software evolution requires adding language support for new domains.

2.2 Second Dimension: Convert More Code

Having language support for domain-specific problems is nice. Unfortunately,
existing code does not immediately benefit from such support. It has to be con-
verted from the original domain-unspecific encoding (such as string concatena-
tion) to the DSL (using the domain-specific syntax). However, it is undesirable
to require maintainers to locate all possible application sites of a DSL at once.

Likely, the maintainer of a code base would want to convert code to an existing
DSL at an opportune moment. For example, there might be a bug report claiming
a missing element in an XML document that so far went unnoticed. To address

Software Evolution to Domain-Specific Languages 101

this issue, a maintainer might first refactor the relevant code to use an XML
DSL with static validation against XML Schema, and then fix the resulting
XML Schema compile-time error.

We need some modularity guarantees to achieve both dimensions of incremen-
tality. Adding language support for a domain should not affect any existing code
immediately. Reengineered code should activate language extensions explicitly.
Also, reengineered code needs to coexist, or even better cooperate and coevolve,
with unchanged code.

2.3 Proposed Solution

We propose the following process for the evolution of an application to use DSLs.
First, choose a problem domain. Existing DSLs with weak embeddings, such
string embeddings of XML or SQL, are an obvious target but there are likely
other domains that can be improved with language support. Second, design
and implement a DSL as syntactic sugar, enriched with domain-specific static
analysis and tool support, in SugarJ [11]. Third, use SugarJ to modularly activate
the new DSL in some source files and incrementally rewrite code to use the DSL.

To scale our process to the evolution of large existing applications, we de-
signed it around syntactic sugar that is modularly activated. Syntactic sugar is
semantically transparent. Therefore, we achieve cooperation and coevolution of
old and new or reengineered code, because both remain semantically compatible
and thus interoperable at all times. This allows for incremental rewriting of large
code bases.

Modular activation of DSLs means that DSLs must be activated explicitly
per source file. Conversely, a DSL definition can only affect those source files
that activate the DSL. This is important for software evolution of large code
bases, because it gives maintainers the guarantee that DSLs have no effect for
files left unchanged by the maintainer. This way a single project can use multi-
ple conflicting DSLs in different parts of the code, which would be impossible
in tools that require global activation of DSLs. Moreover, in contrast to global
build-script based DSL activation, modular activation of DSLs retains the incre-
mental compilation character of Java, so that only affected source files require
recompilation.

We propose to use SugarJ [11] for the implementation of DSLs as syntactic
sugar that is modularly activated. SugarJ organises DSL definitions in regular
Java libraries so that regular Java import statements activate DSLs in a source
file. It is easy to add new DSLs as libraries, and it is even possible to use multiple
DSLs in a single file by importing all corresponding libraries.

3 Background: DSL Development with SugarJ

SugarJ is an extensible programming language based on Java that supports
library-based language extension [8,11]. SugarJ and its IDE [10] make all as-
pects of Java extensible: syntax, semantics, static analysis and tool support. In

102 S. Fehrenbach, S. Erdweg, and K. Ostermann

package sugar;

import sugar.XmlSyntax;
import org.sugarj.languages.Java;
import concretesyntax.Java;

public extension Xml {
context-free syntax
Document -> JavaExpr {cons(”XMLExpr”)}
”$” ”{” JavaExpr ”}” -> Element {cons(”JavaEscape”)}

desugarings
desugar-xml

rules
desugar-xml :
XMLExpr(doc) ->
|[String.format(∼xml-string, ∼java-escapes)]|

where <xml-to-string> doc => xml-string;
<xml-java-escapes> doc => java-escapes

xml-to-string : ...
xml-java-escapes : ...

constraint-error :
Element(lname, attrs, content, rname) ->
[(lname, ”element start and end tag need to coincide”),
(rname, ”element start and end tag need to coincide”)]
where <not(equal)> (lname, rname)

colorer
ElemName : blue (recursive)
AttrName : darkorange (recursive)
AttValue : darkred (recursive)
CharData : black (recursive)

folding
Element

}

Fig. 2. Definition of the XML DSL in SugarJ

particular, SugarJ’s extensibility is useful for embedding DSLs into Java [11]. In
this section, we exemplify the development of a DSL with SugarJ using the XML
DSL presented in the previous section.

SugarJ organises language extensions as regular Java libraries that, instead of
a Java class or interface, define an extension with custom syntax, static analyses
and tool support for a DSL. Figure 2 displays the SugarJ language extension
that defines the XML DSL. Figure 1 (b) already showed how to use this exten-
sion, namely by importing the corresponding library sugar.Xml. SugarJ supports
extension compositions [9], which is triggered by importing multiple extensions
into a single scope. We explain the implementation of the different language
aspects in turn.
Syntax. To define extended syntax, we employ the grammar formalism SDF [25]
and write productions in a context-free syntax block. For example, the first pro-
duction in Figure 2 declares that any valid syntax for the Document nonterminal
is also valid syntax for the JavaExpr nonterminal. The second production en-
ables writing a Java expression wrapped in ${...} in place of an XML element.
Additionally, a production specifies the name of the corresponding node in the
abstract syntax tree with a cons annotation.

Software Evolution to Domain-Specific Languages 103

We use the JavaExpr, Document and Element nonterminals to integrate XML
syntax into Java syntax and Java expressions into XML. These nonterminals
stem from the Java and XML base grammars defined in org.sugarj.languages.Java

and sugar.XmlSyntax. We use import statements to bring the Java and XML
syntax definitions into scope of the sugar.Xml library.
Semantics. The semantics of a DSL is given as a transformation from the ex-
tended syntax into SugarJ base syntax. In line with the notion of syntactic sugar,
we call such a transformation a desugaring and use the Stratego transformation
system [28] to implement it. A DSL defines transformations in a rules block. Each
transformation has a name (before the colon), pattern-matches an abstract syn-
tax tree (left-hand side of arrow) and produces another abstract syntax tree
(right-hand side of arrow). Since the generation of abstract syntax trees is te-
dious for complex languages such as Java, we use concrete Java syntax within
|[...]| for code generation [26]. To this end, we import the concretesyntax.Java

library, which extends Stratego with support for concrete syntax [11].
The desugaring for XML matches on an XMLExpr node and transforms it into

Java code that calls the String.format method of the standard Java library. Within
concrete syntax, the ∼ symbol allows us to escape back to Stratego code. In partic-
ular, we compute the arguments of String.format by applying the xml-to-string and
xml-java-escapes transformations (definitions elided for brevity) to the embedded
XML document. The former transformation pretty-prints the XML document
and inserts a placeholder %s for each escape to Java. The latter transformation
extracts the Java code from the XML document. Importantly, the string that
results from the generated String.format invocation is semantically equivalent to
the original string encoding; the DSL only provides syntactic sugar.
Static analysis. SugarJ represents static analyses as program transformations
that transform the program under analysis into a list of errors. To this end, a
programmer can define a special-purpose transformation named constraint-error.
For XML, we have defined a static analysis that matches on XML elements and
produces errors in case the start and end tag of the element differ. Accordingly,
this static analysis verifies the domain invariant that embedded XML documents
are well-formed. In case of an ill-formed document, our IDE uses the syntax tree
that amends an error message (lname and rname in our example) to determine
the position for displaying the domain-specific error message to the user.
Editor services. Finally, our SugarJ IDE enables domain-specific editor services
such as syntax colouring, code folding, code completion, or reference resolu-
tion [10]. We provide an Eclipse plugin based on the Spoofax language work-
bench [18]. In Figure 2, we have defined XML-specific syntax colouring and code
folding.

In summary, we defined the XML DSL from the previous section in SugarJ as
a language extension: We provide a syntactic extension to integrate the domain
syntax and semantics, use program transformations to encode domain invariants
as static analyses and leverage the extensibility of our IDE plugin to support
domain-specific editor services.

104 S. Fehrenbach, S. Erdweg, and K. Ostermann

4 Evolution to DSLs in Practice

We conducted two case studies to gather experience with applicability of DSLs
in existing software systems and to confirm the applicability of SugarJ for incre-
mentally evolving an existing software system to use DSLs.

Our first case study is based on the Java Pet Store [22], an interactive web ap-
plication developed by Sun Microsystems as a reference application for Java En-
terprise Edition. Following the process proposed in Section 2.3, we incrementally
identified four problem domains and designed and implemented corresponding
DSLs in SugarJ. We used these DSLs to incrementally reengineer part of the
Java Pet Store to improve subsequent maintainability; the code remained exe-
cutable at all times. This case study shows that SugarJ enables evolution of an
existing software system to use DSLs.

As a second case study, we reengineered a deliberately small part of the imple-
mentation of the Eclipse IDE to use DSLs. For the Eclipse IDE, it is essential to
retain modular reasoning, which allows developers to assume local effects for lo-
cal changes. In particular, a local improvement through a DSL should not affect
other code. In SugarJ this is witnessed through Java-style separate compilation:
Source files that are compiled separately cannot influence each others meanings.
This case study shows that SugarJ enables local and small-scale evolution in
large software systems.

4.1 Java Pet Store

First Iteration: XML As an interactive web application, the Java Pet Store makes
use of Ajax technologies for data exchange between server and browser. In par-
ticular, it uses string-embedded XML for data serialisation. In Section 2.3, we
already discussed the drawbacks of the string embedding of XML and designed
a DSL, which integrates XML documents into Java more directly as syntactic
sugar. The implementation of the XML DSL as a SugarJ library was illustrated
in the previous section.

Within the Java Pet Store, use of XML is cross-cutting multiple classes and
methods. In total, we reengineered 59 lines of legacy XML code to use the XML
DSL. Our syntactic integration of XML and static analysis for well-formedness
did not reveal any bugs in the original code, but increase confidence in its cor-
rectness.
Second Iteration: Field-Accessor Declarations

The second problem domain we identified are the getter and setter methods
that clutter the code of the Java Pet Store, following the JavaBeans standard.
The resulting amount of accessor methods is considerable and all of it is dispens-
able boilerplate. For example, consider the class definition shown in Figure 3 (a),
which is a literate but shortened excerpt from the Java Pet Store. This class
models a product with five properties: a product ID, an associated category ID,
a name, a description and a URL to some image. These properties are private
fields behind public getters and setters, and initialised by a constructor. The
only nontrivial aspect of this class is the @Id annotation on the productID getter,

Software Evolution to Domain-Specific Languages 105

public class Product {
private String productID, categoryID, [...];
public Product(String productID,

String categoryID, [...])
{ this.productID = productID;

this.categoryID = categoryID; }
public String getCategoryID(){return categoryID;}
public void setCategoryID(String categoryID)
{ this.categoryID = categoryID; }
@Id
public String getProductID(){return productID;}
public void setProductID(String productID)
{ this.productID = productID; }
[...]

}

(a) Java class definition from the Java
Pet Store.

import sugar.Accessors;

public class Product {
private String productID {set; con};
private String categoryID, description,

name, imageURL {get; set; con};

@Id
public String getProductID() {
return productID;

}
}

(b) Reengineered class definition using
the field-accessor DSL.

Fig. 3. The original Product class has 5 properties with corresponding accessors

which marks it as a primary key for the object-relational mapping employed by
the Java Pet Store.

The main problem with this class definition is the large amount of boiler-
plate code. Modern Java IDEs try to address this by automatically generating
getters and setters. However, this is insufficient because it does not solve the
maintainability issue. For a maintainer who reads such code, it is not immedi-
ately clear what fields are truly private, publicly readable, or publicly readable
and writable. Furthermore, actual application-specific code that deviates from
the standard template for accessors is masked by the large amount of boilerplate
code. For instance, the actually interesting @Id annotation of the productID get-
ter is easily overlooked in a file consisting mostly of getter, setter, and constructor
boilerplate code.

Based on these observations, we designed a DSL that abstracts over the boil-
erplate associated with field accessors. In our DSL, programmers declare the
desired accessors instead of implementing them. The unshortened reengineered
class definition from Figure 3 (a) is shown in Figure 3 (b). The syntax is inspired
by C#’s syntax for properties. The annotations get and set declare getters and
setters respectively, con makes a field part of the initialising constructor. To
achieve compatibility with existing code, the new annotations desugar to usual
field-accessor method implementations. Therefore, we were able to apply the
field-accessor DSL locally in some files without affecting others.
Third Iteration: JPQL The third problem domain we identified in the Java Pet
Store is its string-based embedding of the Java Persistence Query Language
(JPQL) used to query databases. Figure 4 shows a JPQL query from the Java Pet
Store. The string encoding of JPQL shares many of the problems we previously
saw in the XML example, but its handling of dynamic data is much better:
Within a query, a programmer can use a parameter (identifier prefixed by a colon)
in place of a regular JPQL expression. After processing the query string into a
Query object, the programmer calls the query’s setParameter method to provide
dynamic data for the parameters in the query. Thus, when used appropriately,

106 S. Fehrenbach, S. Erdweg, and K. Ostermann

public List<Item> getItemsByCategoryByRadiusVLH(...) {
Query query = em.createQuery(
”SELECT i ” +
”FROM Item i, Product p ” +
”WHERE i.productID=p.productID ” +
”AND p.categoryID = :categoryID ” +
”AND((i.address.latitude BETWEEN :fromLatitude AND :toLatitude) ” +
”AND (i.address.longitude BETWEEN :fromLongitude AND :toLongitude)) ” +
”AND i.disabled = 0 ” +
”ORDER BY i.name”);
query.setParameter(”categoryID”,catID);
query.setParameter(”fromLatitude”,fromLat);
query.setParameter(”toLatitude”,toLat);
query.setParameter(”fromLongitude”,fromLong);
query.setParameter(”toLongitude”,toLong);
return query.getResultList();

}

Fig. 4. JPQL query from the Java Pet Store

import sugar.JPQL;

public List<Item> getItemsByCategoryByRadiusVLH(...) {
Query query =
em.SELECT i

FROM Item i, Product p
WHERE i.productID = p.productID
AND p.categoryID = :catID
AND i.address.latitude BETWEEN :fromLat AND :toLat
AND i.address.longitude BETWEEN :fromLong AND :toLong
AND i.disabled = 0

ORDER BY i.name;
return query.getResultList();

}

Fig. 5. JPQL query from Figure 4 using the JPQL DSL

JPQL prevents injection attacks. However, there is not guarantee because string
concatenation in queries is still possible.

Even though the JPQL string embedding avoids some of the problems the
XML string embedding has, it is still problematic: Queries are not parsed and
thus may contain syntax errors; query parameters are dynamically resolved, can
be misspelled or forgotten; a query may illegally refer to a tuple variable not
bound within the FROM clause; there is no editor support for queries; string
concatenation is necessary to break long lines.

To address these problems, we implemented language support for JPQL as a
DSL in SugarJ. A reengineered version of the previous query is shown in Figure 5.
The reengineered query is statically syntax checked and does not require string
concatenation to break lines. Instead of indirectly injecting dynamic data into a
query, parameters (colon-prefixed identifiers) in our DSL refer to Java variables
directly. Hence, a programmer needs to manage fewer namespaces and cannot
forget calling setParameter. Our DSL desugars the reengineered query into the
original one and generates all setParameter calls to relate the query namespace to
the Java namespace.

Software Evolution to Domain-Specific Languages 107

Fig. 6. Content completion for JPQL in Eclipse

To guarantee that queries do not refer to unbound tuple variables, we imple-
mented a domain-specific static analysis. It traverses a query and checks that
every variable in the query is bound within the query’s FROM clause. Since
SugarJ executes the analysis before desugaring at compile time, we statically
ensure that no unbound variables can occur at runtime for reengineered queries
and we provide domain-specific error messages in case of the developer made a
mistake. Furthermore, the JPQL DSL includes editor support in the form of syn-
tax highlighting, code folding and JPQL-specific code completion, as illustrated
in Figure 6.

The BNF Meta-DSL. JPQL has many features and therefore its definition is
rather involved. For example, a grammar provided by Oracle as part of the doc-
umentation of the JavaEE consists of 217 lines.2 Unfortunately, Oracle employed
a different grammar formalism than the one used in SugarJ. Therefore, we can-
not directly reuse their grammar. However, DSLs in SugarJ are self-applicable,
that is, a programmer can implement a DSL for writing other DSLs. We call this
kind of DSL a meta-DSL. In particular, the dialect of BNF used by Oracle can
be implemented as a meta-DSL in SugarJ, which enables us to reuse Orcale’s
grammar for the JPQL DSL.

Technically, the BNF meta-DSL is implemented as syntactic sugar on top
of SugarJ’s standard grammar formalism SDF. Accordingly, a BNF grammar
desugars into an SDF grammar. It is even possible to mix BNF productions
and SDF productions within a single library, which we have done to integrate
JPQL into Java and Java variables as parameters into JPQL. The BNF meta-
DSL can be reused with only minor changes in other contexts where BNF and
its extensions are used for describing languages. For example, using a similar
meta-DSL it would be possible to reuse the host of available ANTLR grammars.

We believe that self-applicability is particularly useful in the context of main-
taining legacy applications, where it is more likely that a language description
already exists in some form, for example, as documentation. Our embedding of
BNF into SugarJ to reuse Oracle’s JPQL grammar gives some evidence that
a self-applicable DSL mechanism is not only theoretically desirable but indeed
useful in practice.

Fourth Iteration: XML Schema After implementing and using the DSLs de-
scribed above, we returned to the XML DSL described in Section 3 and added

2 http://docs.oracle.com/javaee/5/tutorial/doc/bnbuf.html

http://docs.oracle.com/javaee/5/tutorial/doc/bnbuf.html

108 S. Fehrenbach, S. Erdweg, and K. Ostermann

import xml.schema.XmlSchema;

public xmlschema FileUploadResponseSchema {
<xsd:schema targetNamespace=”jpsfur”>
<xsd:element name=”response” type=”FileUploadResponse”/>
<xsd:complexType name=”FileUploadResponse”>
<xsd:sequence>
<xsd:element name=”message” type=”string” />

[...]

Fig. 7. Excerpt of the XML Schema definition for file upload responses

Fig. 8. Element <response> is missing its first child <message>

support for XML Schema validation. XML Schema allows programmers to spec-
ify the structure required from XML documents. We have built language support
for XML Schema in SugarJ that performs XML Schema validation at compile
time as a domain-specific analysis.

For example, Figure 7 shows an XML schema for file upload responses as they
occur in the Java Pet Store. A programmer activates XML Schema validation
for an XML document by annotating the document with @Validate{namespace},
where an XML schema for namespace must have been locally imported. In ad-
dition to the standard XML well-formedness checks, XML schema validation
guarantees the presence or absence of tags and attributes and thus protects
against incomplete data and misspelling, as seen in Figure 8. Static validation
of schemas is particularly valuable if the serialisation format is to be changed.
After changing the schema accordingly, compile-time error messages will point
the maintainer to code that still needs to be adapted to the new format.

We defined three schemas by reverse engineering the XML documents that
are actually used in the Java Pet Store. Thanks to these schemas we discovered
several inconsistencies regarding XML documents in the Java Pet Store. First,
the handling of composed words in tags is inconsistent: The XML response to
a file upload contains both camelCase and under score element names. Second,
the XML encoding for categories contains redundant information, as seen below.

@Validate{jpsc}
<category>
<id>${c.getCategoryID()}</id>
<cat-id>${c.getCategoryID()}</cat-id>
[...]

The elements id and cat-id always contain the same value. Third, there is an
inconsistency between two instances of the XML representation of items, either
using an element prod-id or product-id. The Java Pet Store front-end does not
seem to use the generated XML documents and instead uses a JSON representa-

Software Evolution to Domain-Specific Languages 109

tion of essentially the same data. We believe these inconsistencies are previously
undiscovered bugs in the Java Pet Store.

4.2 Eclipse

With the Eclipse case study, our goal is not to show new and interesting DSLs for
IDE development. Rather, we aim to answer the question whether our approach
of incremental introduction of DSLs and incremental adaption of code scales to
very large code bases. We chose Eclipse because of the availability of its source
code, its stability in terms of the plugin API combined with active development,
and most importantly its size. According to a comparison of Eclipse’s and Net-
beans’ code sizes in 2011 [15], Eclipse comprises 10 million lines of source code
and is organised into just under 500 top-level folders which roughly equate to
subprojects.

For this case study we checked out an arbitrary selection of 194 top-level
folders from Eclipse’s CVS. Out of these 194, we chose two top-level folders,
namely org.eclipse.core.variables and org.eclipse.jdt.core.tests.model, for reengineering
using the Accessors and XML language extensions, respectively. Together, these
two folders contain 523342 lines of code in Java files.

Specifically for this case study, we extended the SugarJ compiler to support
using a mix of Java and SugarJ source files. Previously, it would only accept
SugarJ files. This was not a problem in the Java Pet Store, since every Java file
is also a valid SugarJ file, except for the file extension. Nevertheless, renaming
all source files of a project is contrary to our goal of incremental introduction.

We reused the existing DSL implementation code almost unchanged. The
XML library was missing syntax rules for XML comments in its grammar, which
required two new lines of SDF code. In Eclipse, field names are by convention
prefixed with an f. We adapted the Accessors library’s desugaring transformation
to respect this convention.

4.3 Results

We reflect on the goals and expectations described at the beginning of this
section. In summary, we expected easy identification of problem domains, need
for language composition, and reuse of language libraries.

We successfully used SugarJ’s syntactic-sugar based DSLs to improve the code
quality of the Java Pet Store considerably. In Figure 9, we show an overview of
the extent of code affected by our reengineering efforts. The main purpose of the
Accessors DSL was eliminating boilerplate code and its application exceeded
our expectations. It saves almost 10% of the Java back-end code of the Java
Pet Store. The XML and JPQL DSLs improve static safety with domain-specific
analyses, readability with domain-specific syntax and editing experience with
domain-specific editor support. Their application sometimes increases and some-
times reduces code size. We attribute increases to easier line breaks for more
natural code formatting in the respective DSL and reductions to more concise
integration of dynamic data into static DSL code. In the table we report lines

110 S. Fehrenbach, S. Erdweg, and K. Ostermann

DSL Usage in Java Pet Store New DSL imple-
mentation code

Reused code

Accessors avoid 506 lines of boilerplate in 13 classes 65 LoC 0 LoC
XML check 59 lines in 7 XML documents 35 LoC 160 LoC
XML Schema validate 51 lines in 5 XML documents using

3 schemas
20 LoC 713 LoC

JPQL check 29 lines in 14 JPQL queries 101 LoC 140 LoC
BNF reuse parts of the JPQL grammar 131 LoC 0 LoC

DSL Usage in Eclipse New DSL imple-
mentation code

Reused code

Accessors avoid 86 lines of boilerplate in 3 classes 3 LoC 62 LoC
XML check 449 lines in 56 XML documents 2 LoC 192 LoC

Fig. 9. Reengineering results and DSL implementation effort

of reengineered code. By manual inspection of the Java Pet Store’s source code,
we found ample opportunity for improvement with DSLs. Besides the DSLs we
implemented, there are further areas that would benefit from language support.

During this case study we often switched between implementing DSLs and
adapting code to use them. We also did not always adapt all code at once. This
shows that incrementality works as desired in both dimensions: making new
DSLs available and adapting parts of the code base to use them. In the reengi-
neered Java Pet Store, there is one file that uses two DSLs at once: the JPQL
and Accessors DSLs. These DSLs compose without conflict. This confirms our
expectation that language composability is needed in practice and that different
DSLs rarely interact unintentionally.

The implementation effort for new DSLs was reduced by reusing existing code.
Figure 9 lists the lines of new language-library-implementation code that were
written as part of this case study and the amount of code that was reused from
previous work. SDF’s declarative nature makes new syntax definition easy. For
example, there is no need to know details about parsing algorithms to avoid left-
recursive productions. We believe that the focus on syntactic sugar especially
helps reducing the complexity of implementing DSLs. All new desugaring trans-
formations employed in this case study are straightforward. Nonetheless, reuse-
ability is essential in reducing the costs of DSL implementation. The XML DSL
reuses the previously existing XML syntax. The XML Schema DSL is almost
entirely reused from previous work [11] since it only operates on the abstract
XML syntax. The XML schemas themselves are implemented in 42 lines of code
on average. All DSLs implemented in this case study are immediately reusable
for future reengineering efforts.

With 10 million lines of source code, Eclipse is a huge project. Any process
for improving its maintainability has to be incremental, because programmers
cannot be expected to change all of Eclipse’s code at once. For this case study,
we introduced two language extensions in two different parts of the code base. At
this point, only a small part of Eclipse has been reengineered to use these DSLs.
There are more opportunities to use both the XML and Accessors DSLs, and

Software Evolution to Domain-Specific Languages 111

String.format(
Alt(”< ? ? > ? </ ? >”,

” \”?\” ”,
”%s”,
””),

new Object[] { ?∗ }
)

(a) Pattern for XML.

Alt(
?,
?.createQuery(”?”),
?.createQuery(”?”)

.setParameter(”?”, id:?)
)

(b) Pattern for JPQL.

public void id:{set ? ?∗} (? id:?) {
this.id:? = id:?;

}
public Alt(Boolean,?)
Alt(id:{is ? ?∗}, id:{get ? ?∗}) () {

return id:?;
}

(c) Pattern for field-accessors.

Fig. 10. Automatically extracted patterns for code that can be refactored to use a DSL

others. Nevertheless, the whole project is fully functional, because the nature
of syntactic sugar makes changes necessary only local to its point of use. Thus,
the Eclipse case study shows that our process is incrementally applicable and
therefore scales to large code bases.

5 Automatically Locating Code for DSL Usage

Finding existing code that can be refactored to use a DSL is not always easy,
especially when working with a large code base. To assist maintainers, we devel-
oped a tool called sweet tooth3 that takes the definition of a SugarJ DSL and a
Java source file as input, and computes a ranked list of source locations at which
the DSL could be used.

Sweet tooth first analyses the DSL definition to derive a syntax-tree pattern
for the generated code, and then matches this pattern against a Java source file.
We illustrate the patterns derived for the DSLs of our case study in Figure 10
(manually transcribed to use concrete Java syntax instead of abstract syntax
trees). The question mark ? denotes an unknown subtree, the symbol ?* denotes
an unknown list of subtrees. The form Alt(x,...,x) denotes alternatives in the
pattern. The annotation id: denotes that the following tree is an identifier.

For example, for the XML DSL (see definition in Figure 2), sweet tooth anal-
ysed the recursive-descent XML pretty printer xml-to-string to derive a list of
alternative strings that can be produced. The generated code of JPQL calls the
createQuery method of a pre-existing entity-manager object on which the method
setParameter is called if there is at least one parameter in the JPQL query. Com-
pare this pattern to actual JPQL code from the Java Pet Store in Figure 4. For
field-accessors, the desugaring generates setter and getter functions. The name
of the setter function id:{set ? ?∗} is composed of the string set followed by at
least one character ? (for which the desugaring ensures it is upper case), followed
by any number of characters ?*. The generated getter function is similar, but,
depending on the type of the field, the method gets a different name using either
the prefix is or get.

Technically, sweet tooth derives these patterns by extracting the transforma-
tion from a SugarJ library, normalising the transformation to a core transfor-
mation language [27] for easier analysis, and performing abstract interpretation

3 Source code available online: http://github.com/seba--/sweet-tooth

http://github.com/seba--/sweet-tooth

112 S. Fehrenbach, S. Erdweg, and K. Ostermann

of the core transformation. In our abstract interpreter, we directly represent ab-
stract values as patterns, which thus are the result of abstract interpretation.
The abstract interpreter of sweet tooth supports transformations that use con-
ditional constructs (which lead to alternative patterns) and recursion (which is
truncated after few steps). Importantly, the pattern derived by sweet tooth is
complete in the sense that it captures all programs that can possibly be gener-
ated by the transformation. However, sweet tooth is currently limited since we
only reimplemented abstract versions of a part of the standard library of core
Stratego.

Finally, sweet tooth can match the derived patterns against a concrete Java
program. If multiple alternatives of a pattern match the same source location,
sweet tooth ranks the matches according to the specificity of the pattern. That
is, the more concrete syntax-tree nodes or string snippets a pattern contains, the
higher the score of this pattern. A match of a pattern that does not contain any
unknown subtrees (e.g., System.out.println()) has score 1, whereas a match of a
pattern without any concrete syntax-tree node or string snippet (e.g., Alt(?, ?*))
has score 0. This way a maintainer can efficiently detect those source locations
that would benefit most from using the DSL. We have successfully applied sweet
tooth to locate code applicable to our DSLs for JPQL and field-accessors.

6 Discussion

The choice of the case to study is an important aspect of a case study with
respect to generalisability [13]. With a varied selection of implemented DSLs
and the Java Pet Store’s status as a research object and reference application,
we are confident that the results presented here can be generalised to many other
existing applications.

The Accessors DSL shows how simple language extensions can address the
specific needs of an application. Similar extensions are imaginable for BigDecimal

support in banking applications or parallel looping constructs [1]. In our case,
conciseness was the most obvious benefit. In general, another important benefit
is localising design decisions, which makes them easy to change and reason about.

The XML and JPQL DSLs improve code quality: Domain-specific syntax re-
duces visual boilerplate and improves readability; domain-specific static analysis
helps to avoid errors; domain-specific semantics isolate code patterns and design
decisions; domain-specific editor support aids editing and understanding code.

Domain-specific semantics are of particular interest with respect to safety. For
example, Java’s semantics prevent access to arbitrary program memory by us-
ing array indices that exceed an array’s length. This language feature makes
Java programs immune to one source of exploits that C programs are frequently
vulnerable to because a programmer forgot to restrict access themselves. Sugar
libraries provide the tools for programmers to enforce similar restrictions in
DSLs. For example, the JPQL DSL prevents injection attacks because queries

Software Evolution to Domain-Specific Languages 113

are proper syntactic entities and query parameters are inserted by the sanitising
setParameter method instead of string concatenation. Using sweet tooth, main-
tainers can find all code that not yet uses the securer DSL and thereby enforce
security across the entire code base.

A common criticism of domain-specific languages is that they are hard to de-
sign and implement [23]. Our case study cannot confirm this. Since we rely on
syntactic sugar, design and implementation of simple DSLs is often reduced to
recognising a pattern in existing code, extracting a skeleton of static Java code
and filling it with the variable parts. Concrete Java syntax [26] makes this par-
ticularly easy. Moreover, most transformations will be easy because the domain
semantics are most likely implemented in a traditional class library already, like
in the JPQL example.

Our case study demonstrates that it is possible to incrementally introduce
DSLs into existing Java applications using SugarJ. New DSLs support can be
added at any time and code can be adapted to use it at opportune times. We
hope that in the future, adding DSLs and reengineering code to use them will
be as common-place as more traditional refactorings are today. This calls for
research into DSL-specific code smells and means to guide maintainers in making
decisions what kinds of problems are best addressed using DSLs.

To this end, we developed sweet tooth, which identifies code that can be refac-
tored to use a DSL. While our tool already is helpful in locating applicability of
DSLs, there are two immediate avenues for improving sweet tooth. First, sweet
tooth should not only locate code for DSL usage, but also propose a refactored
DSL program. Probably, we won’t be able to retain completeness for this kind of
automatic program transformation, but have to apply heuristics. Second, when
testing DSL applicability, sweet tooth currently applies syntactic matching of
the pattern. Often, this is insufficient because semantically equivalent programs
written in a different style are not matched. To also match alternative represen-
tations, we plan to extend sweet tooth so that it applies semantic matching via
equational reasoning when trying to match a program against a pattern.

7 Related Work

Ward and Fowler independently coined the term language-oriented programming
for a software design that focuses on DSLs [29,14]. In particular, Ward argues
that DSLs improve the maintainability of a software system, mainly due to a re-
duction in code size. However, like any other work on domain-specific languages
that we are aware of, Ward only addresses the design of newly created applica-
tions, that is, the use of DSLs must be anticipated from the start. In contrast,
we demonstrate the incremental introduction of DSLs into existing applications.

Bennet and Rajlich list language abstraction as one important research direc-
tion in their roadmap for software maintenance and evolution [3]. They mention
legacy applications as a problem and express some concern about whether soft-
ware reengineering is a feasible solution. They base this concern partly on Sneed’s
work [20], which quantifies the cost of reengineering software.

114 S. Fehrenbach, S. Erdweg, and K. Ostermann

Bianchi et. al. propose an incremental process for reengineering software and
argue that it avoids the problems of previous non-incremental approaches [4].
However, their main focus is data migration in the context of a legacy COBOL
application. It is not clear how to apply their process to introducing DSLs.

In this work, we employed SugarJ [11,10] to implement and apply DSLs for
the following reasons. First, we target existing Java applications and SugarJ
is based on Java. Incorporating language based abstractions into applications
written in Haskell, Ruby, Scheme, Dylan, C++, and others is possible via em-
bedded DSLs [17,16,5]. Unfortunately, Java has very restricted syntactic options,
no metaprogramming and a rather unexpressive type system which makes this
approach unsuited for our case. Second, SugarJ implements language extensions
as libraries. In contrast to extensible compilers [7,19,24] and language work-
benches [18,12] the focus on libraries enables easy extension and modular rea-
soning about source code. And finally, we are familiar with SugarJ, its strengths
and weaknesses, and as our case study shows its support for DSL development
is sufficient. A detailed comparison can be found in our previous work [9,8].

8 Conclusion and Future Work

We explored how DSLs can be incrementally introduced into legacy applica-
tions to improve maintainability: reduce boilerplate, improve readability, in-
crease static safety through domain-specific analyses, and improve navigation
and writing through domain-specific editor support. In this paper, we focused
on the technical feasibility of incrementally introducing DSLs into an existing
code base without requiring a full rewrite. Our solution is based on introducing
high-level language abstractions via semantically transparent syntactic sugar
that is modularly activated by library imports.

In future work, we want to explore tool support for introducing DSLs into
legacy applications. In particular, we want to answer the following questions:
Can we guarantee that a DSL can be introduced into an application conflict-
free? Based on sweet tooth, can we reliably detect all application sites for a DSL
in a code base? Once we detect a potential application site of a DSL, can we
provide an automatic refactoring of the legacy code into code that uses the DSL?

Acknowledgements. We would like to thank Paolo G. Giarrusso, Christian
Kästner, and the anonymous reviewers for valuable feedback. This work is sup-
ported in part by the European Research Council, grant No. 203099.

References

1. Bachrach, J., Playford, K.: The Java syntactic extender (JSE). In: OOPSLA, pp.
31–42. ACM (2001)

2. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility
through product-lines and domain-specific languages: A case study. TOSEM 11(2),
191–214 (2002)

Software Evolution to Domain-Specific Languages 115

3. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: A roadmap. In:
FOSE, pp. 73–87. ACM (2000)

4. Bianchi, A., Caivano, D., Marengo, V., Visaggio, G.: Iterative reengineering of
legacy systems. Transactions on Software Engineering (TSE) 29(3), 225–241 (2003)

5. Brabrand, C., Schwartzbach, M.I.: Growing languages with metamorphic syntax
macros. In: PEPM, pp. 31–40. ACM (2002)

6. Dmitriev, S.: Language oriented programming: The next programming paradigm
(2004)

7. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: OOPSLA, pp.
1–18. ACM (2007)

8. Erdweg, S.: Extensible Languages for Flexible and Principled Domain Abstraction.
PhD thesis, Philipps-Universiät Marburg (2013)

9. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In:
LDTA, pp. 7:1–7:8. ACM (2012)

10. Erdweg, S., Kats, L.C.L., Rendel, T., Kästner, C., Ostermann, K., Visser, E.: Grow-
ing a language environment with editor libraries. In: GPCE, pp. 167–176. ACM
(2011)

11. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: Library-based syn-
tactic language extensibility. In: OOPSLA, pp. 391–406. ACM (2011)

12. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

13. Flyvbjerg, B.: Five misunderstandings about case-study research. Qualitative In-
quiry, 219–245 (2006)

14. Fowler, M.: Language workbenches: The killer-app for domain specific languages
(2005), http://martinfowler.com/articles/languageWorkbench.html

15. Germán, D.M., Davies, J.: Apples vs. oranges?: An exploration of the challenges of
comparing the source code of two software systems. In: MSR, pp. 246–249. IEEE
(2011)

16. Gil, J., Lenz, K.: Simple and safe SQL queries with C++ templates. Science of
Computer Programming 75(7), 573–595 (2010)

17. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Inter-
national Conference on Software Reuse (ICSR), pp. 134–142. IEEE (1998)

18. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In: OOPSLA, pp. 444–463. ACM (2010)

19. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

20. Sneed, H.M.: Planning the reengineering of legacy systems. IEEE Software 12(1),
24–34 (1995)

21. Steele Jr., G.L.: Growing a language. Higher-Order and Symbolic Computa-
tion 12(3), 221–236 (1999)

22. Sun Microsystems. Java Pet Store (2002),
http://www.oracle.com/technetwork/java/index-136650.html

(accessed November 14, 2012)
23. van Deursen, A., Klint, P.: Little languages: Little maintenance? Software Mainte-

nance 10(2), 75–92 (1998)
24. Van Wyk, E., Krishnan, L., Bodin, D., Schwerdfeger, A.: Attribute grammar-based

language extensions for java. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 575–599. Springer, Heidelberg (2007)

http://martinfowler.com/articles/languageWorkbench.html
http://www.oracle.com/technetwork/java/index-136650.html

116 S. Fehrenbach, S. Erdweg, and K. Ostermann

25. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (1997)

26. Visser, E.: Meta-programming with concrete object syntax. In: Batory, D., Blum,
A., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 299–315. Springer, Heidel-
berg (2002)

27. Visser, E., Benaissa, Z.-E.-A.: A core language for rewriting. Electronic Notes in
Theoretical Computer Science 15, 422–441 (1998)

28. Visser, E., Benaissa, Z.-E.-A., Tolmach, A.P.: Building program optimizers with
rewriting strategies. In: ICFP, pp. 13–26. ACM (1998)

29. Ward, M.P.: Language-oriented programming. Software – Concepts and Tools 15,
147–161 (1995)

Micropatterns in Grammars

Vadim Zaytsev

Software Analysis & Transformation Team (SWAT),
Centrum Wiskunde & Informatica (CWI), The Netherlands

vadim@grammarware.net

Abstract. Micropatterns and nanopatterns have been previously
demonstrated to be useful techniques for object-oriented program com-
prehension. In this paper, we use a similar approach for identifying struc-
turally similar fragments in grammars in a broad sense (contracts for
commitment to structure), in particular parser specifications, metamod-
els and data models. Grammatical micropatterns bridge the gap between
grammar metrics, which are easy to implement but hard to assign mean-
ing to, and language design guidelines, which are inherently meaningful
as stemming from current software language engineering practice but
considerably harder to formalise.

1 Introduction

Micropatterns are mechanically recognisable pieces of design that reside on a
significantly lower level than design patterns, hence being closer to the imple-
mentation than to an abstract domain model, while still representing design
steps and decisions [14]. They have been proposed in 2005 by Gil and Maman
as a method of comparing software systems programmed in the object-oriented
paradigm — the original paper concerned Java as the base language for its ex-
periments, but the presence of similar classification methods for considerably
different languages like Smalltalk [26] leads us to believe that the approach is
applicable to any object-oriented programming language at the least. In this
paper, we investigate whether micropatterns can be detected in grammars in a
broad sense and become a useful tool for grammarware.

Grammatical micropatterns are similar in many aspects to the OOPmicropat-
terns, in particular in (cf. [14, §4]):

– Recognisability. For any micropattern, we can construct an algorithm that
recognises if the given grammar matches its condition. Our approach toward
this property is straightforward: we implement all micropattern recognisers
in Rascal [21] and expose them at the public open source code repository [42].
Unlike design patterns, no two micropatterns share the same structure.

– Purposefulness. Even though there are infinitely many possible micropat-
terns (“name starts with A”, “number of terminals is a prime number”,
“uses nonterminals in alphabetical order”, etc), we collect only those which
intent can be reverse engineered and clearly identified (“name starts with

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 117–136, 2013.
c© Springer International Publishing Switzerland 2013

vadim@grammarware.net

118 V. Zaytsev

uppercase” — because the metalanguage demands it; “no terminals used”
— because it defines abstract syntax; etc).

– Prevalence is the fraction of nonterminals that satisfy the micropattern
condition. It is a property that strengthens the purposefulness, showing
whether the condition happens in practice and if so, how often. We tend to
ignore micropatterns with zero prevalence or with prevalence greater than
50 %, with a few notable exceptions.

– Simplicity is a requirement that stops us from concocting overcomplicated
micropatterns like “uses a nonterminal that is not used in the rest of the
grammar”, even if they are useful. Mostly we pursued two forms of micropat-
tern conditions: ones that can be formulated with a single pattern matching
clause, and ones that assert one simple condition over all its children. (When
inspecting the implementation, one can notice multiline definitions as well,
which are only made so for readability and maintainability purposes, and
utilise advanced Rascal techniques like pattern-driven dispatch).

– Scope. Each micropattern concerns one nonterminal symbol, and can be
automatically identified based on the production rules of that nonterminal
symbol. It does not have to bear any information about how this nonterminal
is used or what the real intent was behind its design.

– Empirical evidence. The micropatterns from our catalogue are validated
against a corpus of grammars in a broad sense. Even if the corpus is not
curated and not balanced to yield statistically meaningful results, we have a
stronger claim of evidential usage of micropatterns in the practice of gram-
marware engineering than any software language design patterns or guide-
lines might have (simply because their claims rely on manual harvest).

However, there are some notable differences in our work:

– Usability of isolated micropatterns. One of the distinctive feature of mi-
cropatterns versus design patterns and implementation patterns pointed out
by Gil and Maman in [14, §4.2], was that a single micropattern is not useful
on its own, and only the entire catalogue is a worthy instrument. However,
as we found out, isolated micropatterns (single ones and small subsets of
the catalogue) can also be useful indicators of grammar properties (e.g., the
grammar defines an abstract syntax, if all its nonterminals satisfy the Ab-
stractSyntax micropattern), triggers for grammar mutations (e.g., perform
deyaccification for all nonterminals with YaccifiedX micropatterns), asser-
tions of technical compatibility, etc.

– Coverage is measured as a combined prevalence of a thematic group of mi-
cropatterns (it is not equal to the sum of their prevalences, since micropat-
terns in most groups are not mutually exclusive) and computed separately
for each group. For OOP micropatterns, coverage was calculated for the
whole catalogue, but per system: we do it the other way around, to empha-
size conceptual gaps between groups and to avoid issues with a non-curated
corpus. For groups with low coverage we also report on frequency, which is
prevalence within the group.

Micropatterns in Grammars 119

– Grammar mining is much less popular than software mining and data
mining [39], and hence the fact that we derived our catalogue by mining a
repository of versatile grammars, is a unique contribution in that sense.

2 Grammar Corpus

Grammar Zoo is a repository that aims at collecting grammars in a broad sense
(per [20]) from various sources: abstract and concrete, large and small, typical
and peculiar [39]. Technically and historically, it is a part of the larger initiative
titled Software Language Processing Suite (SLPS) and available as a publicly
accessible repository online since 2008 [42]. Beside the corpus of grammars, the
SLPS project also includes experiments and tools relating to the activities of
grammar extraction, recovery, documentation, convergence, maintenance, de-
ployment, transformation, mutation, migration, testing, etc. Contrary to prior
practice, we will also not include pointers to individual sources per grammar
in this paper, plainly due to sheer impossibility of delivering over 500 biblio-
graphic references. An interested reader is referred to the frontend of the Zoo
at http://slps.github.io/zoo to inspect any of the grammars or all of them,
together with the metadata concerning their authors, original publication dates,
extraction and recovery methods and other details properly structured and pre-
sented there.

The corpus mainly consists of the following kinds of grammars:

– grammars extracted from parser specifications composed by students
• for example, 32 TESCOL grammars were used in [9] for grammar testing

– grammars extracted from language documents
• ISO, ECMA, W3C, OMG, OASIS and other standardisation bodies pub-
lish standards [41] that are possible to process with automated notation-
parametric grammar recovery methods [37]

– grammars extracted from document schemata
• for example, XML Schema and RELAX NG definitions of MathML,
SVG, DocBook are available and ready to be researched and compared
to definitions of the same languages with other technologies like Ecore

– grammars extracted from metamodels
• the entire Atlantic Metamodel Zoo1 is imported into Grammar Zoo by

reusing their Ecore metamodel variants with our extractor
– grammars extracted from concrete syntax specs

• for example, the ASF+SDF Meta-Environment and the TXL framework
have their own repositories for concrete grammars, which have been ex-
tracted and added to the Grammar Zoo

– grammars extracted from DSL grammars in a versioning system (BGF)
• various DSLs were spawned by the SLPS itself during its development:
they are not interesting on their own, but the presence of many versions
of the same grammar is a rare treasure; for example, there are 35 versions
available of the unified format for language documents from [41].

1 AtlantEcore Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Ecore.

http://slps.github.io/zoo
http://www.emn.fr/z-info/atlanmod/index.php/Ecore

120 V. Zaytsev

533 grammars present in the Grammar Zoo2 make it biggest collection of
grammars in a broad sense; the grammars are obtained from heterogeneous
sources; they are all properly documented, attributed to their creators and anno-
tated with the data available about their extraction process — the combination
of these three factors may set the Zoo apart from its competitors [39], yet it
does not make it perfect. Even though Grammar Zoo is the largest of its kind,
it does not have enough content to claim any kind of balance between different
technologies, grammar sizes, quality levels, etc.

We could not emphasize strong enough that empirical investigation is not
the primary contribution of this paper. All presented evidence about prevalence
of proposed micropatterns serves as a mere demonstration that they indeed
occur in practice. Our grammar corpus consists of as many grammars as we
could secure, obtained by different means from heterogeneous sources, and we
calculate prevalence and coverage as an estimate of ever encountering the same
micropatterns in other real life grammars, not as a prediction of the probability
of that. At this point, it is not yet feasible to construct a representative versatile
corpus of grammars. However, this effort is an ongoing work.

3 Grammatical Micropatterns

The process of obtaining the micropatterns catalogue is identical to the one un-
dertaken by Gil and Maman [14], and we will spare the space on its details. In
short, all possible combinations of metaconstructs were considered and tried on
a corpus of grammars; those with no matches were either abandoned or kept
purely for symmetrical considerations; the intent behind each of them was man-
ually investigated, leading to naming a micropattern properly; and finally the
named micropattern was connected to its context by pointing out key publica-
tions related to it.

3.1 Metasyntax

It has been shown before [36] that many metalanguages existing for context-free
grammars, commonly referred to as BNF dialects or “Extended Backus-Naur
Forms”3, can be specified by a small set of indicators for their metasymbols,
which correspond both to the “grammar for grammars” and to human-perceived
aspects like “do we quote terminals in this notation?” or “how do we write down
multiple production rules for one nonterminal?”.

For every feature of the internal representation of a grammar in a broad sense,
we define a ContainsX micropattern, where X is that feature:

2 Counted at the day of paper submission: the actual website may contain more.
3 By “the EBNF”, people usually mean the most influential extended variant of BNF,
proposed in 1977 by Wirth [34] as a part of his work on Wirth Syntax Notation.
However, almost each of the metalanguages used in language documentation ever
since, uses its own concrete notation, which sometimes differs even in expressivity
from Wirth’s proposal — see [36] for more details.

Micropatterns in Grammars 121

Table 1. Metasyntax micropatterns

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%

ContainsFailure 69 0.17%
ContainsUniversal 825 2.01%
ContainsString 1,889 4.60%
ContainsInteger 343 0.84%
ContainsOptional 6,554 15.97%
ContainsPlus 4,586 11.18%
ContainsStar 3,080 7.51%
ContainsSepListPlus 55 0.13%
ContainsSepListStar 142 0.35%
ContainsDisjunction 2,804 6.83%
ContainsSelectors 17,328 42.22%
ContainsLabels 132 0.32%
ContainsSequence 19,447 47.39%
AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

– ContainsEpsilon for the empty string metaconstruct (ε, “nothing”),
– ContainsFailure for the empty language metaconstruct (ϕ, “error”),
– ContainsUniversal for the universal metaconstruct (α, “any symbol”)4,
– ContainsString for a built-in string value,
– ContainsInteger for a built-in integer value,
– ContainsOptional for an optionality metasymbol,
– ContainsPlus for the transitive closure,
– ContainsStar for the Kleene star,
– ContainsSepListPlus for a separator list with one or more elements,
– ContainsSepListStar for a separator list with zero or more elements,
– ContainsDisjunction for inner choice metasymbol,
– ContainsSelectors for named subexpressions,
– ContainsLabels for production labels,
– ContainsSequence for sequential composition metaconstruct.

Furthermore, we add one extra micropattern AbstractSyntax for nonterminals
which definitions do not contain terminal symbols — mainly because

4 These three metasymbols may seem confusing, but are commonly needed when rep-
resenting grammatical knowledge from different technological spaces. ε defines a
language with a single empty element: L(ε) = {“”}, so parsing with it would mean
successful parsing of an empty string (or a trivial term), while generating a language
from it will immediately and successfully terminate. ϕ defines an empty language:
L(ϕ) = ∅, which models unconditional failure of parsing and impossibility of gener-
ation. Formally, L(α) = T , so parsing with α consumes any input.

122 V. Zaytsev

investigations of abstract data types and abstract syntax vs. concrete syntax [32]
form a valuable subdomain of grammarware research. As can be observed on
Table 1, the prevalence of AbstractSyntax is quite high, which can be explained
by many Ecore metamodels and XML Schema schemata in our corpus.

3.2 Global Position and Structure

Since the very beginning of grammar research, even when grammars were still
considered as structural string rewriting systems and not as commitments to
structure, there was a need to denote the initial state for rewriting [5, §4.2].
Such an initial state was quickly agreed to be specified with a starting symbol,
or a grammar root — the nonterminal symbol that initiates the generation, or a
root of a parse tree. Not being able to overlook this, we say that a nonterminal
exercises the Root micropattern, when it is explicitly marked as a root of its
grammar. Contrariwise, we define the Leaf micropattern for nonterminals that
do not refer to any other nonterminals — they are the leaves of the nonterminal
connectivity graph, not of the parse tree.

In some frameworks, the roots are not specified explicitly: either because such
metafunctionality is lacking (such as in pure BNF), or because the information
was simply lost during engineering or knowledge extraction. For such cases,
found quite often in grammar recovery research, we could speak of the Top
micropattern, named after “top sorts” from [23, p.19] and “top nonterminals”
from [22, §2.2], which are nonterminals defined by the grammar, but never used.
A previously existing heuristic technique in semi-automated interactive grammar
adaptation, reported rather reliable, is to establish missing connections to all top
nonterminals, until only one non-leaf top remains, and assume it to be the true
root [22]. Methods such as this would become much easier to explain in terms
of micropatterns and relations between them.

In practical grammarware engineering, grammars are commonly allowed to
have multiple starting symbols, while most publications about formal languages
use a representation with a single root. The reason behind this is simple: one
can always imagine adding another nonterminal that becomes a new starting
symbol, defined with a choice of all nonterminals that are the “real” starting
symbols. Hence, we define a MultiRootmicropattern for catching such definitions
explicitly encoded. Surprisingly, it was not very popular: only one match in
the whole Grammar Zoo. However, if we were to investigate an XML-based
framework that relied heavily on the fact that each element defined by an XSD
is allowed to be the root, then such information can be decided to be propagated
by the xsd2bgf grammar extractor, which would then lead to all grammars
extracted from XML Schema schemata, to have one MultiRoot nonterminal each.
The current implementation of the xsd2bgf grammar extractor leaves the roots
unspecified, since it is hardly an intent of every XMLware developer to explicitly
rely on such diversity.

Complementary to Top, we propose the Bottom micropattern, which is exhib-
ited by a nonterminal that is used in a grammar but never defined — again,
we adopt these terminology from [22,23]. Usually in the same context another

Micropatterns in Grammars 123

Table 2. Global position micropatterns

Category Pattern Matches Prevalence
Global Root 563 1.37%

Leaf 9,467 23.07%
Top 3,245 7.91%
MultiRoot 1 0.002%
Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%
Singleton 29,134 70.99%
Vertical 3,697 9.01%
Horizontal 6,043 14.73%
ZigZag 784 1.91%
Total coverage 39,727 96.81%

property of a nonterminal is tested, called “fresh” [24, §3.4], for nonterminals
that are not present in the grammar in any way, but this property does not
convert well into a micropattern for obvious reasons.

For each nonterminal that is not bottom, there are only four possible ways
that it can be defined, and so we make four micropatterns from them: Disallowed
(defined by an empty language), Singleton (defined with a single production
rule), Vertical (defined with multiple production rules) and Horizontal (defined
with one production rule that consist of a top level choice with alternatives).
We also introduce a separate ZigZag micropattern for definitions that are both
horizontal and vertical (multiple production rules, with at least one of them
having a top level choice). These five micropatterns together with Bottom are
mutually exclusive and together always cover 100 % of any set of nonterminals,
and for the Zoo it can be seen on Table 2. The terms “horizontal” and “ver-
tical” are borrowed from the XBGF grammar transformation framework and
publications related to it [25, §4.1], other sources also relate to them as “flat”
and “non-flat” [24].

As for the global position micropatterns, unsurprisingly, most of nonterminals
do not belong to any of these classes, and this group of micropatterns has a
meager total coverage of 30.36 % (Table 2). As an example of how Top and
Bottom micropatterns encapsulate grammar quality and design intent, we quote
Lämmel and Verhoef [23, p.20]:

In the ideal situation, there are only a few top sorts, preferably one corresponding to
the start symbol of the grammar, and the bottom sorts are exactly the sorts that need
to be defined lexically.

In the scope of disciplined grammar transformation [25], a ZigZag nonterminal
could also be considered a bad style of grammar engineering, but we have no
evidence of what dangers it brings along, only an observation of its surprisingly
high prevalence.

124 V. Zaytsev

Table 3. Sugary micropatterns

Category Pattern Matches Prevalence Frequency
Sugar FakeOptional 134 0.33% 10.89%

FakeSepList 624 1.52% 50.69%
ExprMidLayer 349 0.85% 28.35%
ExprLowLayer 39 0.10% 3.17%
YaccifiedPlusLeft 354 0.86% 28.76%
YaccifiedPlusRight 6 0.01% 0.49%
YaccifiedStarLeft 0 0.00% 0.00%
YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

3.3 Metasyntactic Sugar

There are several micropatterns that are conceptually similar to those from the
previous section, but without the metafunctionality explicitly present in the met-
alanguage. When a particular metaconstruct is available in the metalanguage,
we can check its use, as we have done in subsection 3.1; when it is not a part of
the metalanguage, we can still check if any usual substitute for it, is used. For
example, the optionality metasymbol is in fact metasyntactic sugar for “this or
nothing” — i.e., a choice with one alternative representing the empty language
(ε). We call such explicit encodings FakeOptionals (see Table 3), they mostly
indeed found occurring in grammars extracted from technical spaces that lack
the optionality metasymbol. Similarly, a FakeSepList micropattern explicitly en-
codes a separator list, and its prevalence is much higher since there are more
metalanguages without separator list metasymbols.

For all metalanguages that do not allow to specify expression priorities ex-
plicitly, there exists a commonly used implementation pattern:

logical-or-expression ::= logical-and-expression

| logical-or-expression "||" logical-and-expression ;

logical-and-expression ::= inclusive-or-expression

| logical-and-expression "&&" inclusive-or-expression ;

... (12 layers skipped) ...

primary-expression ::= literal | "this"

| "(" expression ")" | id-expression ;

(ISO/IEC 14882:1998(E) C++)

Based on multiple occurrences of such an implementation pattern in the Gram-
mar Zoo, we have designed the following two micropatterns :

– ExprMidLayer: one alternative is a nonterminal, the others are sequences of
a nonterminal, a terminal and another nonterminal;

– ExprLowLayer: one alternative is a sequence of a terminal, a nonterminal and
another terminal, where the two terminals form a symmetric bracketing pair,
the others are solitary terminals or solitary nonterminals.

Micropatterns in Grammars 125

As one can see, these micropatterns are defined locally and do not enforce
any complicated constraints (e.g., concerning the nonterminal between brackets
in ExprLowLayer), which could possibly result in false positives, but satisfies our
requirements from section 1.

Similarly, we can look for “yaccified” definitions that emulate repetition meta-
symbols with recursive patterns. A yaccified definition [18,22] is named after
YACC [17], a compiler compiler, the old versions of which required explicitly
defined recursive nonterminals. Instead of writing X ::= Y+ ; one would write:

X ::= Y ;

X ::= X Y ;

because in LALR parsers like YACC, left recursion was preferred to right
recursion (contrary to recursive descent parsers, which are unable to process
left recursion directly at all). The use of metalanguage constructs X+ and X*

is technology-agnostic, and the compiler compiler can make its own decisions
about the particular way of implementation, and will neither crash nor have to
perform any transformations behind the scenes. However, as can be seen from
Table 3, many existing grammars contain yaccified definitions, and usually the
first step in any project that attempts to reuse such grammars for practical
purposes, starts with deyaccification [22,25,35, etc].

3.4 Naming

Research on naming conventions has enjoyed a lot of interest in the scopes of
program analysis and comprehension [4] and code refactorings that recommend
renaming misspelt, synonymous and inaccurate variable names [29]. Naming
conventions have not yet been thoroughly investigated in grammarware engi-
neering, but were noted to be useful to consider as a part of metalanguage for
notation-parametric grammar recovery [37] and were used as motivation for some
automated grammar mutations [38], usually preceding unparsing a grammar in a
specific metalanguage. In the scope of grammar recovery, mismatches like digit
vs DIGIT or newline vs NewLine were reported as common in recovering gram-
mars with community-created fragments [35].

Let us distinguish four naming conventions to be recognised by micropatterns,
namely: CamelCase (LikeThis), MixedCase (almostTheSame), LowerCase (appar-
entlyso) and UpperCase (OBVIOUSLY). Given that most of current research
on naming conventions in software engineering focuses on tokenisation and dis-
abbreviation, we add one more micropattern called MultiWord. A nonterminal
conforms to MultiWord, when its name is either written in camelcase or mixed
case and has two or more words; or when its name consists of letter subsequences
separated by a space, a dash, a slash, a dot or an underscore, — in other words,
when its name can be easily tokenised without any dictionary-based heuristics
nor heavy machine learning. Something akin to a SingleWordmicropattern would
have been useful as well, but we failed to obtain a reasonable definition for it: a
single mixed case word name is indistinguishable from a single lower case word;

126 V. Zaytsev

Table 4. Naming micropatterns

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%

LowerCase 3323 8.10%
MixedCase 1706 4.16%
MultiWord 31816 77.53%
UpperCase 2073 5.05%
Total coverage 40,562 98.84%

Naming, lax CamelCaseLax 18332 44.67%
LowerCaseLax 17840 43.47%
MixedCaseLax 1969 4.80%
MultiWordLax 32290 78.68%
UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

both lower case and upper case names may have no word delimiters; a single
word camelcase name could in fact also be a multi word capitalised name; etc.

By looking at the top half of Table 4, one quickly realises that the constraints
for naming notations could be formulated in a more relaxed way. The non-
terminal Express_metamodel::Core::GeneralARRAYType from the EXPRESS
metamodel is a nice example of an unclassifiable nonterminal name: it combines
four capitalised words, one lowercase and one uppercase one, with three different
kinds of concatenation (by an underscore, double colons and an empty separa-
tor). Arguably, though, its name can be considered CamelCase, with underscore
being a “neutral letter” and word boundaries being either empty or “::”. Hence,
we define a set of five more lax naming convention micropatterns, that together
easily cover the whole corpus by using “neutral letters” (underscores and num-
bers) and being more tolerant with separators.

In particular, one could notice a remarkably high prevalence of MultiWord mi-
cropatterns, both strict and lax. These micropatterns have no directly noticeable
use right away, but can become a central part of future research on mining and
tokenising nonterminal symbol names in grammars.

3.5 Concrete Syntax

We inherit the term Preterminal from the natural language processing field, where
it is used for syntactic categories of the words of the language. Preterminals are
the immediate parents of the leaves of the parse tree, and usually define keywords
of the language, identifier names, etc, without referring to other nonterminals.
Prevalence of the Preterminal micropattern is impressively high in our corpus
— 7.92 % — despite the fact that more then half of its grammars have been
extracted from metamodels and thus contain few or no terminal symbols at all.

Micropatterns in Grammars 127

This can be explained by many concrete syntax definitions and parser specifi-
cations in the corpus as well — in particular, the common practice in ANTLR
is to wrap every terminal symbol in a separate nonterminal with an uppercased
name, so the prevalence of the Preterminal micropattern in such grammars can
climb up to 46.9 % for big languages (Java 5 grammar by Dieter Habelitz) and
up to 71.19 % for small ones (TESCOL grammar 10000).

Mining concrete grammars from the corpus led us to discover several steadily
occurring patterns of terminal usage (all subcases of the Preterminal micropat-
tern, reported on Table 5):

– Keyword: defined with one production rule, which right hand side is an al-
phanumeric word:
non_end_of_line_character ::= "character" ;

(LNCS 4348, Ada 2005)

Retry ::= "retry" ;

(ISO/IEC 25436:2006(E) Eiffel)

this-access ::= "this" ;

(Microsoft C# 3.0)

– Keywords: a horizontal or vertical (recall subsection 3.2) definition with all
alternatives being keywords:
ConstructorModifier ::= "public" ;

ConstructorModifier ::= "private" ;

ConstructorModifier ::= "protected" ;

(JLS Second Edition, readable Java grammar)

exit_qualifier ::= ("__exit" | "exit__" | "exit" | "__exit__") ;

(TXL C Basis Grammar 5.2)

– Operator: defined with one production rule, which right hand side is a strictly
non-alphanumeric word:
formal_discrete_type_definition ::= "(<>)" ;

(Magnus Kempe Ada 95)

right-shift-assignment ::= ">>=" ;

(Microsoft C# 4.0)

empty-statement ::= ";" ;

(ECMA-334 C# 1.0)

– Operators: a horizontal or vertical definition with all alternatives being op-
erators:
relational_operator ::= ("=" | "/=" | "<" | "<=" | ">" | ">=") ;

(Lämmel-Verhoef Ada 95)

PostfixOp ::= "++" ;

PostfixOp ::= "--" ;

(JLS Third Edition Java, implementable)

equalityOperator ::= ("==" | "!=" | "===" | "!==") ;

(Google Dart 0.01)

128 V. Zaytsev

Table 5. Concrete syntax micropatterns

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%

Keyword 906 2.21% 27.89%
Keywords 1774 4.32% 54.60%
Operator 1001 2.44% 30.81%
Operators 1190 2.90% 36.63%
OperatorsMixed 110 0.27% 3.39%
Words 40 0.10% 1.23%
Tokens 34 0.08% 1.05%
Modifiers 19 0.05% 0.58%
Range 730 1.78% 22.47%
NumericLiteral 51 0.12% 1.57%
LiteralSimple 15 0.04% 0.46%
LiteralFirstRest 62 0.15% 1.91%
SimpleStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

– OperatorsMixed: a horizontal or vertical definition with some alternatives be-
ing operators and some being keywords:
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"

| "push" | "pop" | ":" | "~" | ">" | "<") ;

(TXL Basis Grammar for TXL 10.5)

op ::= (">" | "<" | "<=" | ">=" | "<>" | "=" | "in" | "is" | "+" | "-"

| "or" | "xor" | "*" | "/" | "div" | "mod" | "and" | "shl" | "shr"

| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

overloadable_unary_operator ::= ("+" | "-" | "!" | "~" | "++" | "--"

| "true" | "false") ;

(Validated TXL Basis Grammar for C# Edition 3)

– Words: a sequential and/or repetitive composition of keywords:
simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")*

(RELAX NG schema for XML Schema)

mml.lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)

– Tokens: a sequential and/or repetitive composition of nontrivial non-keywords:
WS ::= (" " | "\t" | "\r" | "\n")+ ;

(TESCOL 10100)

Micropatterns in Grammars 129

– Modifiers: a horizontal or vertical definition with all alternatives being com-
binations of same keywords:
mode ::= ("in"? | ("in" "out") | "out") ;

(LNCS 4348, Ada 2005)

static_constructor_modifiers ::=

(("extern"? "static") | ("static" "extern"?)) ;

(Validated TXL Basis Grammar for C# 3)

– Range: a choice of trivial terminals:
Integer_base_letter ::= ("b" | "c" | "x" | "B" | "C" | "X") ;

(ISO/IEC 25436:2006(E) Eiffel)

DIGIT ::= ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9") ;

(ANTLR Google Dart)
– NumericLiteral: a possibly signed repetition of choice of digits:

HEX_DIGIT ::= ("0" | "1" | ... | "9" | "A" | ... | "F" | "a" | ... | "f") ;

(Michael Studman Java 5)

INT ::= ("+" | "-")? ("0" | (("1" | ... | "9") ("0" | "1" | ... | "9")*)) ;

(TESCOL 00011)

– LiteralSimple: a repetition of a range of trivial terminals:
[NT-Digits] Digits ::= ("0" | "1" | "2" | "3" | ... | "8" | "9")+ ;

(W3C XPath 1.0)

– LiteralFirstRest: a choice of terminals followed by a Kleene star over a choice
of terminals:
IDENT ::= ("a" | ... | "z" | "A" | ... | "Z" | "_" | "$")

("a" | ... | "z" | "A" | ... | "Z" | "_" | "0" | ... | "9" | "$")* ;

(Michael Studman Java 5)

VARID ::= ("A" | ... | "Z" | "a" | ... | "z")

("A" | ... | "Z" | "a" | ... | "z" | "0" | ... | "9" | "_")* ;

(TESCOL 10110)

– SimpleStatement: a keyword followed by a semicolon:
terminate_alternative ::= "terminate" ";" ;

null_statement ::= "null" ";" ;

(ISO/IEC 8652/1995(E) LNCS 2219 Ada 95)

continue-statement ::= "continue" ";" ;

break-statement ::= "break" ";" ;

(ISO/IEC 23270:2003(E) C# 1.0)

3.6 Normal Forms

A lot can be said about normal forms in formal grammar theory, and in the
context of micropatterns we can also view normal forms as conditions on non-
terminals and their definitions. In particular, we have implemented the following
normal forms as micropatterns by reformulating them for unary grammars:

130 V. Zaytsev

Table 6. Normal form micropatterns

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%

GNF 3,074 7.49%
ANF 26,269 64.01%
Total coverage 28,168 68.64%

Table 7. Folding/unfolding micropatterns

Category Pattern Matches Prevalence Frequency
Folding Empty 3,028 7.38% 32.56%

Failure 69 0.17% 0.74%
JustOptional 48 0.12% 0.52%
JustPlus 199 0.48% 2.14%
JustStar 130 0.32% 1.40%
JustSepListPlus 28 0.07% 0.30%
JustSepListStar 32 0.08% 0.34%
JustChains 1,045 2.55% 11.24%
JustOneChain 2,065 5.03% 22.20%
ReflexiveChain 0 0.00% 0.00%
ChainOrTerminal 145 0.35% 1.56%
ChainsAndTerminals 290 0.71% 3.12%
Total coverage 9,300 22.66%

– Chomsky Normal Form, CNF [6]: all production rules of the nonterminal
have one of three forms: A ::= B C; or A ::= "a"; or A ::= ε.

– Greibach Normal Form, GNF [15]: all production rules of the nonterminal
have a form of either A ::= "a" B C · · · ; or A ::= ε.

– Abstract Normal Form, ANF [40]: a nonterminal is either defined with one
production rule without terminals, disjunction and labels on the right hand
side, or with several chain production rules in the form of A ::= B;.

Unsurprisingly, the prevalence of ANF is rather high due to many abstract
syntax definitions in the corpus (Table 6).

3.7 Folding/Unfolding

Not all nonterminals are introduced to the grammar because of the impossibility
to express the same language differently: many are simply results of folding/un-
folding transformations on a minimal grammar, and are meant to improve read-
ability, maintainability or modularity of the language definition. In this group we
collected micropatterns for nonterminals that can be removed from the grammar
with relative ease (examples are given only for less intuitive micropatterns):

Micropatterns in Grammars 131

– Empty: a nonterminal is defined as an empty term ε;
– Failure: a nonterminal is explicitly undefined or prohibited with ϕ;
– JustOptional: a nonterminal defined only with just an optional reference to

another nonterminal;
– JustPlus: a one-or-more repetition of a reference to another nonterminal;
– JustStar: a zero-or-more repetition of a reference to another nonterminal;
– JustSepListPlus: a non-empty separator list;
– JustSepListStar: a possibly empty separator list;
– JustChains: a nonterminal defined only with chain production rules (right

hand sides are nonterminals);
– JustOneChain: a nonterminal defined only with exactly one chain production

rule (right hand side is a nonterminal);
– ReflexiveChain: a nonterminal is circularly defined as itself: A ::= A; (usually

only happens as an intermediate transformation result);
– ChainOrTerminal: a choice of a nonterminal and a terminal:

return-type ::= (type | "void") ;

(Microsoft C# 4.0)
– ChainsAndTerminals: a choice where the all alternatives are either isolated

nonterminals or isolated terminals:
class-type ::= (type-name | "object" | "dynamic" | "string") ;

(Microsoft C# 4.0)

TypeDeclaration ::= ClassDeclaration ;

TypeDeclaration ::= ";" ;

TypeDeclaration ::= InterfaceDeclaration ;

(JLS Second Edition Java, readable)
– AChain: one production rule for the nonterminal is a chain production rule.

Table 7 summarises the prevalence observations of these micropatterns. The
ChainsAndTerminals nonterminals mostly tend to have a terminal as the first
alternative and nonterminals as the other ones, or vice versa, but we decided to
combine such cases into one micropattern due to their extremely low prevalence
(under 0.05 %).

3.8 Templates

In previous sections,we havealready seen somemicropatternsdefined as templates
like “opening-bracket, nonterminal, closing bracket” (part of ExprLowLayer), “sin-
gle terminal” (Keyword or Operator), etc. In fact, there are 2673 such templates
in total found in the corpus of grammars, and in this section we present the most
prevalent ones of them (Table 8):

– Constructor: a named (non-empty production label or a top-level selector)
empty term (ε);

– Bracket: a bracket-delimited nonterminal:
Explicit_creation_type ::= "{" Type "}" ;

Actual_generics ::= "[" Type_list "]" ;

Parenthesized ::= "(" Expression ")" ;

External_system_file ::= "<" Simple_string ">" ;

(ISO/IEC 25436:2006(E) Eiffel)

132 V. Zaytsev

Table 8. Template micropatterns

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%

Bracket 132 0.32% 2.73%
BracketedFakeSepList 56 0.14% 1.16%
BracketedFakeSLStar 10 0.02% 0.21%
BracketedOptional 117 0.29% 2.42%
BracketedPlus 6 0.01% 0.12%
BracketedSepListPlus 8 0.02% 0.17%
BracketedSepListStar 24 0.06% 0.50%
BracketedStar 15 0.04% 0.31%
Delimited 81 0.20% 1.67%
ElementAccess 25 0.06% 0.52%
PureSequence 2,999 7.31% 61.91%
DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

– BracketedFakeSepList: a bracket-delimited explicitly encoded separator list:
typeParameters ::= "<" typeParameter ("," typeParameter)* ">" ;

namedFormalParameters ::= "[" defaultFormalParameter

("," defaultFormalParameter)* "]" ;

(ANTLR Google Dart)

template ::= "{{" title ("|" part)* "}}" ;

tplarg ::= "{{{" title ("|" part)* "}}}" ;

(EBNF MediaWiki)

– BracketedFakeSLStar: a bracket-delimited possibly empty separator list;
– BracketedOptional: a bracket-delimited optional reference to another nonter-

minal;
– BracketedPlus: a bracket-delimited one-or-more repetition of a nonterminal;
– BracketedSepListPlus: a bracket-delimited separator list;
– BracketedSepListStar: a bracket-delimited possibly empty separator list;
– BracketedStar: a bracket-delimited zero-or-more repetition of a nonterminal;
– Delimited: a sequence of symbols delimited by non-bracketing terminals:

RecordType ::= "RECORD" Fields "END" ;

LoopStmt ::= "LOOP" Stmts "END" ;

(SDF Modula 3)

– ElementAccess: a nonterminal followed by a bracketed nonterminal:
slice ::= prefix "(" discrete_range ")" ;

(LNCS 4348, Ada 2005)

libraryDefinition ::= LIBRARY "{" libraryBody "}" ;

(ANTLR Google Dart)

ArrayDeclarator ::= VariableName "(" ArraySpec ")" ;

StructureConstructor ::= TypeName "(" ExprList ")" ;

(TXL Fortran 77/90)

Micropatterns in Grammars 133

– PureSequence: a definition that uses purely sequential composition;
– DistinguishByTerm: a choice where each alternative starts with a terminal:

wildcard_type_bound ::= ("extends" type_specifier)

| ("super" type_specifier) ;

(TXL Java 1.5 Basis Grammar)

default_expression_OR_nodefault ::= ("default" expression)

| "nodefault" ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

image-mode-manual-thumb ::= ("thumbnail=" image-name)

| ("thumb=" image-name) ;

(BNF MediaWiki)

4 Discussion and Related Work

An obviously related research topic to micropatterns are design patterns [13],
implementation patterns [3] and architectural patterns [11]. In the software lan-
guage engineering community, there is no widely accepted collection of “DSL de-
sign patterns”, but there is no shortage on papers and books with guidelines on
language design and implementation [31,16,33,1,27,19,12,30, 1965–2013]. Most
of these guidelines encapsulate their authors’ vision and experience, but are
still waiting to be formally organised, algorithmically expressed and verified. We
hope that the catalogue of micropatterns is a step toward that goal, even if a
small one. In [10], the main focuses of tool support for patterns were identified
as application, validation and discovery — of these three, micropatterns mostly
contribute to discovery.

Extending software metrics line of thinking to grammars can also be identi-
fied as a related domain to grammatical micropatterns. However, there are three
main differences between our work and grammar metric suites like gMetrics [7]
and SynC [28]. First, grammar metrics are used mostly for measurements, while
the main purpose of micropatterns is classification. One can compare grammars
based on their metrics, and one can cluster them by size, McCabe complexity
and other computed values, so this gap is not unbridgeable, but it is present. The
second issue is that grammar metrics work on the level of grammars, while mi-
cropatterns in this paper are formulated on the level of nonterminals. The third
difference is that some metrics like Varju height are very complicated and require
lengthy computations, which clearly contradicts with the simplicity requirement
we have formulated in section 1. It remains to be seen whether micropatterns
carry a value for grammar metrics in a form of “how many nonterminals in
grammar X satisfy the condition of micropattern Y?”.

In [8], it is noted that the expressiveness of the software language that is used
to define (micro)patterns, severely affects the complexity of their validation and
discovery. By using state of the art technology like Rascal [21], we were able to
fit the entire system of classifiers and all the experimental code around it, in 760
lines of code, which is about as concise as one could hope.

Being formulated on the level of nonterminals, which is arguably the most
fine-grained level of details one could get when working with grammars, puts

134 V. Zaytsev

grammatical micropatterns closer to OOP nanopatterns [2]. However, there is
still enough space for grammatical nanopatterns — one could think of them as
continuation of the ContainsX micropatterns from subsection 3.1 and operate
with patterns like “contains a semicolon terminal”, “contains two consecutive
terminals”, etc.

Grammar mutations are large scale intentional grammar transformations [38,
§3.8.1] that involve enforcing a new naming convention over the entire grammar,
performing massive folding/unfolding rewritings, removing all terminal symbols
in one sweep, etc. Micropatterns are related to them because they can be used
as triggers for actual transformation steps, as preconditions and postconditions.
For instance, we can say that some grammar mutation works on all nonterminals
satisfying the micropattern LowerCase, and as a result they start being Upper-
Case. The change itself can be either inferred or programmed, but still with a
lot of control and a strict specification around it.

An alternative mining source to a grammar corpus would be a bibliographic
corpus: while we reused some existing notions like CNF/GNF and top/bottom
for verifying intentionality of a micropattern, one could also systematically ex-
plore all nonterminal properties that have been used in prior publications, and
can be reformulated as micropatterns: left factoring, various forms of recursion,
all kinds of bracketing, etc. The result of such a mining process would conceiv-
ably be different from our results, and converging the two could strengthen any
claims about the completeness of the actually mined micropattern set or its do-
main coverage. Replicating the mining experiment on a curated balanced corpus
could give insights about which micropatterns are more natural than others,
perhaps per technical space of the grammar sources.

Gil and Maman list four aspects that micropatterns can enhance: more effi-
cient design (by reusing the existing domain knowledge), code learning (under-
standing code through familiarity with common patterns in it), training (rapid
introduction to software engineering), automation (enriching generated docu-
mentation) [14]. Now that we have identified various micropatterns actually oc-
curring in grammars in a broad sense, we can make the next steps toward these
goals by formalising existing practices in software language design. To facilitate
that, micropattern detection has been incorporated as one of the components of
the GrammarLab, a library for grammar analysis and manipulation5.

5 Conclusion

We have identified 85 algorithmically recognisable, purposeful, notable, simple
micropatterns, by analysing 41038 nonterminal symbols of 533 software lan-
guage definitions. Many of these micropatterns have been previously researched,
used or considered in publications in the domain of grammarware engineering.
Both the original corpus of grammars and the implementation of micropattern
recognisers is publicly exposed through GitHub projects.

5 GrammarLab, http://grammarware.github.io/lab/

http://grammarware.github.io/lab/

Micropatterns in Grammars 135

References

1. Ammeraal, L.: On the Design of Programming Languages Including MINI ALGOL
68. In: Mühlbacher, J.R. (ed.) GI 1975. LNCS, vol. 34, pp. 500–504. Springer,
Heidelberg (1975)

2. Batarseh, F.: Java Nano Patterns: A Set of Reusable Objects. In: Proceedings of
the 48th Annual Southeast Regional Conference, SE 2010, pp. 60:1–60:4. ACM
(2010)

3. Beck, K.: Smalltalk. Best Practice Patterns. Prentice Hall (1996)
4. Butler, S.: Mining Java Class Identifier Naming Conventions. In: Proceedings of

the International Conference on Software Engineering, ICSE 2012, pp. 1641–1643.
IEEE Press (2012)

5. Chomsky, N.: Syntactic Structures. Mouton (1957)
6. Chomsky, N.: On Certain Formal Properties of Grammars. Information and Con-

trol 2(2), 137–167 (1959)
7. Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On Au-

tomata and Language Based Grammar Metrics. Computer Science and Information
Systems 7(2) (2010)

8. van Emde Boas, P.: Resistance is Futile; Formal Linguistic Observations on De-
sign Patterns. Technical Report ILLC-CT-97-02, Institute for Logic, Language and
Computation, University of Amsterdam (1997)

9. Fischer, B., Lämmel, R., Zaytsev, V.: Comparison of Context-Free Grammars
Based on Parsing Generated Test Data. In: Sloane, A., Aßmann, U. (eds.) SLE
2011. LNCS, vol. 6940, pp. 324–343. Springer, Heidelberg (2012)

10. Florijn, G., Meijers, M., Winsen, P.: Tool Support for Object-Oriented Patterns.
In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 472–495.
Springer, Heidelberg (1997)

11. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional (2002)

12. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional (2010)
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)
14. Gil, J., Maman, I.: Micro Patterns in Java Code. In: Proceedings of OOPSLA 2005,

pp. 97–116. ACM (2005)
15. Greibach, S.A.: A New Normal-Form Theorem for Context-Free Phrase Structure

Grammars. Journal of the ACM 12(1), 42–52 (1965)
16. Hoare, C.A.R.: Hints on Programming Language Design. Technical report, Stan-

ford University, Stanford, CA, USA (1973)
17. Johnson, S.C.: YACC—Yet Another Compiler Compiler. Computer Science Tech-

nical Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey (1975)
18. de Jonge, M., Monajemi, R.: Cost-Effective Maintenance Tools for Proprietary

Languages. In: Proceedings of ICSM 2001, pp. 240–249. IEEE (2001)
19. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels. Addison-Wesley Professional (2008)
20. Klint, P., Lämmel, R., Verhoef, C.: Toward an Engineering Discipline for Grammar-

ware. ACM Transactions on Software Engineering Methodology (ToSEM) 14(3),
331–380 (2005)

21. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with rascal. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

136 V. Zaytsev

22. Lämmel, R.: Grammar Adaptation. In: Oliveira, J.N., Zave, P. (eds.) FME 2001.
LNCS, vol. 2021, pp. 550–570. Springer, Heidelberg (2001)

23. Lämmel, R., Verhoef, C.: Semi-automatic Grammar Recovery. Software—Practice
& Experience 31(15), 1395–1438 (2001)

24. Lämmel, R., Wachsmuth, G.: Transformation of SDF Syntax Definitions in the
ASF+SDF Meta-Environment. In: Proceedings of LDTA 2001. ENTCS, vol. 44,
Elsevier Science (2001)

25. Lämmel, R., Zaytsev, V.: Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal (SQJ) 19(2), 333–378 (2011)

26. Lanza, M., Ducasse, S.: A Categorization of Classes based on the Visualization of
their Internal Structure: The Class Blueprint. In: Northrop, L.M., Vlissides, J.M.
(eds.) Proceedings of OOPSLA 2001, pp. 300–311. ACM (2001)

27. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37(4), 316–344 (2005)

28. Power, J.F., Malloy, B.A.: A Metrics Suite for Grammar-based Software. Journal
of Software Maintenance and Evolution: Research and Practice 16, 405–426 (2004)

29. Thies, A., Roth, C.: Recommending Rename Refactorings. In: Proceedings of the
Second International Workshop on Recommendation Systems for Software Engi-
neering, RSSE 2010, pp. 1–5. ACM (2010)

30. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages (2013), dslbook.org

31. van Wijngaarden, A.: Orthogonal Design and Description of a Formal Language.
In: MR, vol. 76. SMC (1965)

32. Wile,D.S.:AbstractSyntaxfromConcreteSyntax.In:ICSE,pp.472–480.ACM(1997)
33. Wirth,N.:On theDesign ofProgrammingLanguages. In: IFIPCongress, pp. 386–393

(1974)
34. Wirth, N.: What Can We Do about the Unnecessary Diversity of Notation for

Syntactic Definitions? Communications of the ACM 20(11), 822–823 (1977)
35. Zaytsev, V.: MediaWiki Grammar Recovery. Computing Research Repository

(CoRR) 4661, 1–47 (2011)
36. Zaytsev, V.: BNF WAS HERE: What Have We Done About the Unnecessary

Diversity of Notation for Syntactic Definitions. In: Ossowski, S., Lecca, P. (eds.)
SAC/PL 2012, pp. 1910–1915. ACM (March 2012)

37. Zaytsev, V.: Notation-Parametric Grammar Recovery. In: Sloane, A., Andova, S.
(eds.) Post-Proceedings of LDTA 2012, ACM (June 2012)

38. Zaytsev, V.: The Grammar Hammer of 2012. Computing Research Repository
(CoRR) 4446, 1–32 (2012)

39. Zaytsev, V.: Grammar Zoo: A Repository of Experimental Grammarware. In: Fifth
Special issue on Experimental Software and Toolkits of Science of Computer Pro-
gramming (SCP EST5) (Currently under review after major revision 2013)

40. Zaytsev, V.: Guided Grammar Convergence. In: Poster Proceedings of the Sixth
International Conference on Software Language Engineering (SLE 2013) (2013) (to
appear in CEUR)

41. Zaytsev, V., Lämmel, R.: A Unified Format for Language Documents. In: Malloy,
B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 206–225.
Springer, Heidelberg (2011)

42. Zaytsev, V., Lämmel, R., van der Storm, T., Renggli, L., Wachsmuth, G.: Software
Language Processing Suite6 (2008-2013), http://slps.github.io

6 The authors are given according to the list of contributors at
http://github.com/grammarware/slps/graphs/contributors.

dslbook.org
http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors

Safe Specification of Operator Precedence Rules

Ali Afroozeh1, Mark van den Brand3, Adrian Johnstone4, Elizabeth Scott4,
and Jurgen Vinju1,2

1 Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

{ali.afroozeh,jurgen.vinju}@cwi.nl
3 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl
4 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

{a.johnstone,e.scott}@rhul.ac.uk

Abstract. In this paper we present an approach to specifying opera-
tor precedence based on declarative disambiguation constructs and an
implementation mechanism based on grammar rewriting. We identify a
problem with existing generalized context-free parsing and disambigua-
tion technology: generating a correct parser for a language such as OCaml
using declarative precedence specification is not possible without resort-
ing to some manual grammar transformation. Our approach provides a
fully declarative solution to operator precedence specification for context-
free grammars, is independent of any parsing technology, and is safe in
that it guarantees that the language of the resulting grammar will be the
same as the language of the specification grammar. We evaluate our new
approach by specifying the precedence rules from the OCaml reference
manual against the highly ambiguous reference grammar and validate
the output of our generated parser.

1 Introduction

There is an increasing demand for front-ends for programming and domain-
specific languages. We are interested in parser generation technology that can
cover a wide range of programming languages, their dialects and embeddings.
These front-ends are used for example to implement reverse engineering tools,
to build quality assessment tools, to execute research in mining software reposi-
tories, or to build (embedded) domain specific languages. In these contexts the
creation of the parser is a necessary and important step, but it is also an overhead
cost that would preferably be mitigated. In such language engineering applica-
tions, as opposed to compiler construction, we may expect frequent updates and
maintenance to deal with changes in the grammar.

Expression grammars are an important part of virtually every programming
language. The natural specification of expressions is usually ambiguous. In pro-
gramming languages books and reference manuals, the semantic definition of
expressions usually includes a table of binary and unary operators accompa-
nied with their priority and associativity relationships. This approach feels very

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 137–156, 2013.
c© Springer International Publishing Switzerland 2013

http://www.cwi.nl/sen1
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe

138 A. Afroozeh et al.

natural, probably because this is the way we learn basic arithmetic expressions
at school. Virtually all disambiguation techniques for expression grammars are
driven by such precedence rules. However, the implementation of such rules varies
considerably.

The implementation of operator precedence in grammars may considerably
deviate from the initial design the language engineer had in mind. In manual
rewriting approaches, grammars are factored to remove ambiguities. These ap-
proaches are not attractive for us because the resulting grammars are usually
large, and hard to read and understand. For example, programming languages
such as OCaml, C# and Java have many operators with a considerable num-
ber of priority levels and associativity relations. Manually transforming such
expression grammars, to encode precedence rules, is a significant undertaking.
To make matters worse, we expect changes and evolution of grammars [1]. Every
time a new operator is introduced we have to re-think or even re-do this com-
plex and error-prone transformation process. Therefore, we consider declarative
approaches in which the parser is generated from the set of precedence rules.

Generalized context-free parsing algorithms provide the opportunity to write
any context-free grammar, and allow for language compositions, which helps in
modeling embeddings and dialects. This makes generalized context-free parsing
a good starting point for our purpose: satisfying the demand for powerful and
maintainable front-ends. This is particularly important in the fields of domain-
specific languages and reverse engineering, where grammars should be easy to
understand, evolvable, and maintainable. Therefore, the focus of this paper is
mainly on providing a declarative framework for specification of precedence rules
in generalized context-free parsing algorithms, such as Earley [2], GLR [3,4,5,6]
and GLL [7].

1.1 From Yacc to SDF

In this section, we discuss two disambiguation techniques that influenced our
work the most, and are related to generating parsers from ambiguous grammars
using a set of precedence rules. Aho, Johnson, and Ullman [8] (AJU) present
an approach in which the LR(1) [9] parsing tables are modified to eliminate
shift/reduce conflicts based on the precedence of operator tokens, as specified by
the user. The AJU method is not only a disambiguation mechanism, it is also
a nondeterminism reducer, meaning that it has to resolve all shift/reduce and
reduce/reduce conflicts, even when there is no ambiguity, to make the parser
deterministic. This implies that the approach cannot predictably deal with ex-
pression grammars that are not inherently LR(1), unless the language engi-
neer understands how additional shift/reduce and reduce/reduce actions, used
for making the parser deterministic, affect the language. More importantly, the
AJU precedence semantics is defined in terms of the deterministic LR parsers:
to understand the semantics of the precedence rules, one must understand what
an LR(1) conflict is and why it happens. Finally, this method is not directly
applicable to non-LR parsers.

Safe Specification of Operator Precedence Rules 139

The AJU approach is implemented in Yacc1 and is very popular. For exam-
ple, the OCaml parser uses ocamlyacc2, which is a variant of Yacc. However,
the OCaml grammar used in ocamlyacc is heavily factored and is considerably
different from the nice, concise reference manual grammar of OCaml.

Although the AJU method is fast and effective when used in the context of
arithmetic expressions, because it is bound to LR(1) parsing, it does not fit into
our definition of declarative operator precedence techniques. We require that a
mechanism for declarative specification of operator precedence rules (1) be inde-
pendent of the underlying parsing technology, so that we can reason about the
precedence semantics or use the mechanism in other parsing technologies, (2) be
safe, meaning that the disambiguation mechanism derived from precedence rules
should not change the underlying sentences of the language, and (3) be complete,
i.e., be able to resolve all the ambiguities resulting from different precedence of
operators.

There has been a number of efforts to formalize a parser-independent se-
mantics for operator precedence, and to provide a declarative disambiguation
mechanism. The most notable one is SDF3 in which the semantics of operator
precedence is defined as a filter on derivation trees. SDF precedence filters are
implemented by removing transitions corresponding to filtered productions from
adapted SLR(1) tables [10]. Although we believe that SDF was in the right di-
rection in defining a declarative precedence mechanism, its filters lack the safety
and completeness requirements. For example, precedence rules in SDF fail to dis-
ambiguate a left-associative binary operator having higher priority than a unary
prefix operator. The limitations of SDF are discussed in detail in Section 2.1.

1.2 Contributions and Roadmap

In this paper we present a new semantics for the declarative specification of
precedence rules for context-free grammars. The key enablers of our technique
are the safety and support for resolving deeply nested precedence conflicts. We
also support indirect precedence conflicts when expression grammars are not
expressed using a single recursive nonterminal but rather more. The new al-
gorithms proposed in this paper are part of the implementation of the parser
generator for Rascal [11]. Using this implementation, we show that our approach
is powerful enough to allow declarative specification of operator precedence in
OCaml. More importantly, the semantics of our technique is implemented as
a grammar transformation, making it independent of the underlying parsing
technology. We also guarantee that the parsers we generate produce the ex-
act same parse trees (as if the original grammar was used). The completeness
proof —whether our technique resolves all precedence style ambiguities— and
the soundness proof of the transformation —whether the transformation exactly
implements the semantics— are future work.

1 http://dinosaur.compilertools.net/yacc/
2 http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
3 http://www.syntax-definition.org

http://dinosaur.compilertools.net/yacc/
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://www.syntax-definition.org

140 A. Afroozeh et al.

The rest of this paper is organized as follows. After this introduction, we give
formal definitions which we need in the rest of this paper. Then, we explain the
problems with SDF in detail in Section 2.1. After that, the formal semantics
of precedence rules and its implementation as a grammar transformation are
presented in sections 3 and 4. We present the results of parsing the OCaml test
suite in Section 5. Finally, a discussion of related work and a conclusion of this
work are given in sections 6 and 7, respectively.

2 Motivation

A grammar is a 4-tuple (N, T, P, S) where N is a set of nonterminals, T a set
of terminals, P a set of production rules of the form A ::= α where A, the head
of the production rule, is a nonterminal and α, the body of the production rule,
is a string in (T ∪ N)∗. We shall assume that there are no repeated rules, so
we can identify a production rule by writing its head and body. S ∈ N is the
start symbol of the grammar. By convention, in this paper, nonterminals and
terminals start with uppercase and lowercase letters, respectively. In addition,
symbols, such as + or ∗ are terminals. We use lowercase letters u, v, w to denote
non-empty sequences of terminal symbols. A group of production rules that have
the same head can be grouped as A ::= α1|α2|...|αn where each A ::= αi is a
production. In this representation, each αi is called an alternate of A.

A derivation step is of the form αAβ⇒αγβ where α, β ∈ (T ∪N)∗ and A ::= γ
is a production rule. In a derivation step a nonterminal A is replaced with the
body of its production rule. A derivation of σ from τ is a possibly empty sequence
of derivation steps of the form τ⇒α1⇒α2⇒...⇒σ, which is also written as τ

∗⇒σ.
A derivation is left-most if at each step its left most nonterminal is rewritten. A
derivation from the start symbol is called a sentential form which is a sequence of
terminals or nonterminals. A sentential form consisting only of terminal symbols
is called a sentence.

A sentence is ambiguous if it has more than one left-most derivation. Disam-
biguation is a process which eliminates derivations. A disambiguation is said to
be safe if it does not remove all derivations. Therefore, a safe disambiguation
mechanism does not change the underlying language generated by a grammar.

2.1 Limitations of SDF

SDF features three meta notations >, left , and right , which specify the prece-
dence, left and right associativity of operators, respectively [12]. Having A ::=
γ > B ::= α4 disallows the derivation steps of B ::= α from all B’s in γ.
A ::= Aα {left} means that the A in Aα should not derive A ::= Aα itself.
Right associativity is the same as the left, but applied on the right-most A.
There are three problems with the semantics of SDF5 disambiguation filters:

4 SDF adheres to algebraic notations and writes A ::= γ as γ → A. In this paper we
use the more common ::= notation.

5 We describe here SDF version 2 [12] but we simply call it SDF.

Safe Specification of Operator Precedence Rules 141

– It is unsafe: A filter is applied even when there is no ambiguity. For example,
having (E ::= E ∧ E > E ::= −E) rejects the string 1 ∧ - 1, even
though this string is not ambiguous. This is because, based on the semantics
of SDF, −E cannot appear under any of the E’s in the body of the rule.
SDF also allows the user to specify under which nonterminal the filtering
should be carried out. For example, the user can specify that the filtering
should only be carried out under the first E in the body of the rule, written
as (E ::= E ∧ E <0>> E ::= −E) in SDF. This solves the problem for
these two operators, but this explicit selection of the filtered nonterminal is
transitively applied to all levels below, even where it should not be applied,
producing wrong results.

– It is incomplete: The precedence relationship in SDF is defined as a one-
level relationship. As a result, it cannot resolve ambiguities in some cases
that require deeper than one level searching in the derivation trees. For ex-
ample, a left-associative binary operator having higher priority than a prefix
unary operator remains ambiguous. The problem with one-level filtering is
explained in Section 2.2.

– It is limited to directly recursive rules. Although SDF has some extensions
to filter priority modulo chain rules, general indirect recursion is not sup-
ported. Rules such as E ::= E A, where the right-most nonterminal, A, can
eventually produce an E at the right-most position cannot be filtered using
SDF priorities.

These limitations are encountered in practice. For example, the if-then-else

operator in functional programming languages such as OCaml and Haskell acts
as a unary operator with lower priority than left-associative binary operators.
Indirect recursion also happens, for example, in the reference grammar of OCaml.

2.2 Problem with One-Level Filtering

To illustrate the problem with one-level filtering, we consider the if-then-else
construct in OCaml, which has lower priority than +. For example, the expression
1 + if x then 2 else 3 + 4 is interpreted as 1 + (if x then 2 else (3 +

4)) rather than (1 + (if x then 2 else 3)) + 4. For notational simplicity,
the if...then..else part is replaced with if .

E ::=E + E

| if E

|Num

Fig. 1 shows the parse trees resulting from parsing the input 1 + if 2 + 3. For
a more compact presentation the terminals (1, 2 , 3) are removed.

In SDF, the precedence and associativity rules for disambiguating this case
will be:

E ::=E + E {left} (Rule 1)

E ::=E + E > E ::= if E (Rule 2)

142 A. Afroozeh et al.

E

E E+

E E+

Eif

(a) (E + ((if E) + E))

E

E E+

E E+

Eif

(b) (E(E + (if E)) + E)

E

E E+

Eif

E E+

(c) (E + (if (E + E)))

Fig. 1. Parse trees from parsing 1 + if 2 + 3

The disambiguation is not safe in this case: when Rule 2 is applied, E ::= if E
is removed under both E’s, which rejects a sentence such as 1 + if 2 + 3. We
can make it safe by changing Rule 2 into (E ::= E + E <0>> E ::= if E).
Now if we examine the effect of the definitions on the shown parse trees in Fig. 1,
we can observe that the left-associativity removes the derivation in Fig. 2a.
However, none of the definitions affect the remaining two parse trees, and thus
the disambiguation fails. The reason that SDF definitions fail to disambiguate
this grammar is that patterns of depth greater than two are required. The first
E in the body of E ::= E +E can first derive E ::= E +E and then the second
E in the body of the newly derived rule derives E ::= if E. In other words, the
following derivation

E ⇒ E + E ⇒ E + E + E ⇒ E + if E + E

remains, which is not rejected by any of the defined patterns, but it is seman-
tically incorrect. The derivation in Fig. 1c is correct and is the only one that
should remain after disambiguation.

For this grammar, a two level filtering can solve the problem, but in general,
we may need filters of arbitrary depth. For example, consider the following gram-
mar which has an additional expression rule E ::= E ∧ E , where ∧ is right
associative and has the highest priority.

E ::=E ∧ E

|E + E

| if E

|Num

To illustrate why filters of arbitrary depth may be needed, consider the fol-
lowing derivation:

E ⇒ E + E ⇒ E + E + E ⇒ E + E ∧ E + E
∗⇒ E + E ∧ E ∧ ... ∧ E + E

As can be seen, after deriving E+E, the second E may unboundedly produce
E ∧ E, leading to derivation trees with wrong precedence levels. Fig. 2 shows

Safe Specification of Operator Precedence Rules 143

E

E E+

E E+

E E∧

Eif

(a) (E(E + E(E ∧ (if E))) + E)

E

E E+

E E+

E E∧

E E∧

Eif

(b) (E(E + E(E ∧ (E ∧ E(if E)))) + E)

Fig. 2. For some expression grammars filters of arbitrary depth may be required

two of such derivations. For disambiguating such cases, either an infinite number
of filters or a mechanism to define filters with variable length is needed. It is not
trivial to implement a variable length filter during parsing and it is very likely
that the performance of such an implementation will suffer.

We have now established the gap in resolving ambiguities in expression gram-
mars. In the following we propose a general solution that solves the aforemen-
tioned limitation, and at the same time improves other quality aspects.

3 Syntax and Semantics for Operator-Style
Disambiguation

Expression-style grammar rules display a specific kind of ambiguity, which we
call operator-style ambiguity. We characterize and define two complementary
and safe ambiguity removal schemes for exactly this kind of ambiguity: priority
and associativity. Note that this does not imply that our mechanisms completely
disambiguate any expression grammar. There may be other ambiguity hidden
in the same rules with different causes. This other ambiguity should be left
untouched for safety.

3.1 Definitions

Definition 1 (Operator-style ambiguity). An operator-style-ambiguity ex-
ists if for some grammar nonterminal E there exist two leftmost derivations

xEμ ⇒ xβEμ
∗⇒
lm

xvEμ ⇒ xvEαμ (1)

xEμ ⇒ xEαμ ⇒ xβEαμ
∗⇒
lm

xvEαμ (2)

which contain identical sub-derivations β
∗⇒
lm
v.

144 A. Afroozeh et al.

The first derivation in the above definition effectively corresponds to the bind-
ing x(βE)αμ and the second derivation corresponds to binding xβ(Eα)μ. Both
derivations correspond to the same sentential form, but between them the order
of applying Eα and βE as been inverted. Note that it may happen that α = β,
but only for binary recursive rules, such as E ::= EγE.

The benefit of the above characterization of operator-style ambiguity is that
we use pairs of derivations that specifically allow an arbitrary distance (

∗⇒)
between application of βE and Eα. This creates the potential for supporting
deeper ambiguities, and indirectly recursive expression grammars. In addition,
we now have defined clearly what it means for operator-style ambiguity removal
to be safe: never both derivations (1) and (2) may be removed at the same time.

Given a grammar which contains operator-style ambiguity, the engineer has
to specify, somehow, which derivation should be removed. There are many situ-
ations in which the engineer wishes always (i.e., for all sentences) to choose one
derivation over the other. We first describe priority-based ambiguity removal.

Definition 2 (Priority-based ambiguity removal via >). The user speci-
fies a strict partial order > (irreflexive, antisymmetric and transitive) between
the alternates of E. For all βE > Eα, derivations which contain derivations of
the form (2) are always removed. Vice versa, for all Eα > βE, we choose to
remove (1). Note that we do not intend to apply the partial order on other cases
of ambiguity, only in the case of the (1) and (2) pair it serves to choose one over
the other.

This definition correlates with the common use of operator priority to specify
disambiguation, for example choosing the first derivation gives the β “operator”
priority over the α “operator”. Since all derivations β

∗⇒v are available for both
choices, priority disambiguation does not put constraints on other disambigua-
tion choices.

The fact that> is asserted to define a strict partial order is an important detail
for satisfying the safety requirement. If there would be both α > β and β > α
for example, then the above definitions would together remove all derivations
for both some or all sentences that α and β generate. Similarly α > α is not
allowed. The fact that > is allowed to be partial implies that under-specified
orderings may leave some operator ambiguity intact. This means it is up to the
language engineer to fully declare what the relative precedence of operator is,
and also that the priority relation can safely be developed incrementally.

There are, however, common situations in which we do not want to use
or cannot enforce a strict partial order as required by >. In particular, if an
expression-style rule has an alternate with both immediate left and right recur-
sion, E ::= EγE, then it is not possible to specify priority with itself, since
> must be irreflexive and antisymmetric. More generally, there may be two al-
ternates E ::= EγE | EδE where γ and δ are required to have a symmetric
relation (such as + and − in arithmetic expressions), which also contradicts a
strict partial order.

Safe Specification of Operator Precedence Rules 145

Definition 3 (Symmetric Operator-style Ambiguity). Instantiating α and
β from derivations (1) and (2) above as β = Eδ and α = γE both rules are now
binary recursive. We can instantiate derivations (1) and (2) above like:

xEμ ⇒ xEδEμ
∗⇒
lm

xvEμ ⇒ xvEγEμ (1’)

xEμ ⇒ xEγEμ ⇒ xEδEγEμ
∗⇒
lm

xvEγEμ (2’)

Also, taking β = Eγ and α = δE we can write derivations (1) and (2) above as

xEμ ⇒ xEγEμ
∗⇒
lm

xvEμ ⇒ xvEδEμ (1”)

xEμ ⇒ xEδEμ ⇒ xEγEδEμ
∗⇒
lm

xvEδEμ (2”)

Symmetric operator-style ambiguity is a special case of operator-style ambigu-
ity in which both rules are binary. Often we have δ = γ, although this is not
necessary. To see why we call the ambiguity symmetric, consider the example
where γ = + and δ = −, (1′) and (2′) both derive y + y − y and, (1′′) and (2′′)
both derive y− y+ y. Then, (1′) and (1′′) represent (y+ y)− y and (y− y) + y,
respectively.

Definition 4 (Associativity-based ambiguity removal via left and right).
We define two binary relations “left” and “right” between binary alternates, for
which holds that

(left ∩ right = ∅) ∧ (left ∩ ′>′= ∅) ∧ (right ∩ ′>′= ∅)

In other words, >, left and right are mutually exclusive relations.
When (α, β) ∈ left , associativity based ambiguity removal removes the deriva-

tions of the form (2′), corresponding to grouping γ and δ to the left, i.e. to
choosing x(wδE)γEμ over wδ(EγE)μ. This correlates with left associativity.
Similarly, when (α, β) ∈ right, removing derivations with derivations of the form
(1′) corresponds to right associativity.

The restriction of >, left and right being mutually exclusive is a sufficient
restriction for guaranteeing safety since now only one relation is allowed to be
active at the same time and each of the relations is safe in itself.

Since >, left and right need to define an order between all alternates of expres-
sion languages with dozens of rules, we cannot expect the language engineer to
specify each combination manually. This problem is dealt with in our formalism,
which is described later, by providing automatic transitive closure for > and a
computation akin to Cartesian product for left and right groups of rules.

In summary, the three relations >, left and right allow a language engineer
to remove all operator-style ambiguity of the form in Definition 1, either using
an anti-symmetric, irreflexive, transitive relation >, or using one of the possibly
reflexive, possibly symmetric and possibly non-transitive left and right relations
as long as the three relations exclude each other. Note that in theory all operator-
style ambiguity can be removed by simply asserting a full ordering among all

146 A. Afroozeh et al.

recursive alternates using > or by putting all rules in a single left or right group,
but this has no practical value. Instead, complete disambiguation of the operator-
style ambiguity in a language definition needs to be considered language-by-
language (see Section 5).

3.2 Pattern Notation for Illegal Derivations

As an intermediate step we now introduce a short notation for the derivations
(1), (2), (1′) and (2′), called “patterns”. Each pattern is specific for a given gram-
mar and combination of two alternate rules. In the next section, we demonstrate
how to compute a unified set of patterns from a context-free grammar augmented
with (>, left , right) relations, and how to use this set of patterns to compute a
grammar transformation that implements the above semantics.

Definition 5 (Operator ambiguity removal pattern). An operator am-
biguity removal pattern (pattern for short) is a 4-tuple of the form
(head , parent , i, child), where head is the nonterminal head of the expression
grammar for which the precedence rules are defined, parent is an alternate of
head, i is the index of a nonterminal in the body of parent, and child is the al-
ternate that should be filtered from the nonterminal at position i of parent. The
nonterminal at position i is called the filtered nonterminal.

In this paper we write a pattern as (E,α � β , γ) where E is the head, and
α �β and γ are the parent and the child alternates, respectively, and the filtered
nonterminal is identified by a dot before it.

The semantics of patterns are the same as derivations discussed above. For exam-
ple, the derivations (1) and (2) can be expressed as the patterns (E,α �E , Eβ)
and (E, � Eα , Eβ), respectively. Note that patterns are not implementation
mechanisms. In Section 4 we show a grammar rewriting algorithm to implement
patterns.

We now explain informally how to arrive at a set of patterns starting from
a context-free grammar augmented with (>, left , right). Table 1 documents the
semantics of priority in terms of patterns that are generated for each combination
of left, right and binary recursive expression rules. Note that for binary rules
sometimes two patterns are generated for the same combination of rules. The
semantics of left in terms of the patterns is expressed similarly in Table 2. We
leave the table for right associativity to the reader.

As can be seen, not all combinations of expression rules generate patterns.
Exactly when the combination of rules would not be ambiguous and filtering
would be unsafe no pattern is generated. This corresponds to the derivations
(1), (2), (1′), (2′) using specific combinations of left and right recursive rules. In
Section 4 we implement these tables.

3.3 Defining >, left and right in Practice

The following three features, which are taken from the design of SDF [13], are
described here for the sake of completeness. They are essential for having concise
expression grammars, as mentioned above.

Safe Specification of Operator Precedence Rules 147

Table 1. The semantics of the > operator in terms of patterns

> E ::= Eα2E E ::= Eα2 E ::= α2E

E ::= Eα1E (E, �Eα1E , Eα2E) (E,Eα1
�E , Eα2) (E, �Eα1E , α2E)

(E,Eα1
�E , Eα2E)

E ::= Eα1 (E, �Eα1 , Eα2E) —– (E, �Eα1 , Eα2)

E ::= α1E (E,α1
�E , Eα2E) (E,α1

�E , Eα2) —–

Table 2. The semantics of left associativity

left E ::= Eα1E E ::= Eα2E

E ::= Eα1E (E,Eα1
�E , Eα1E) (E,Eα1

�E , Eα2E)

E ::= Eα2E (E,Eα2
�E , Eα1E) (E,Eα2

�E , Eα2E)

Firstly, our formalism automatically transitively (but not reflexively) closes
the > relation precedence operator. As a result, when the language engineer
defines p1 > p2 and p2 > p3 we automatically derive p1 > p3. Furthermore,
when they accidentally define p1 > p1, or both p1 > p2 and p2 > p1, either
directly, or indirectly via the closure, an error message must be produced. Now
we can allow the short-hand p1 > p2 > p3 to obtain elegant definitions. Note that
the transitive closure step is carried out before generating the actual patterns.
The actual patterns are generated from the calculated priority pairs only when
is there is an operator-style ambiguity, as defined in Section 3.2 and documented
in Table 1.

Secondly, many programming languages have groups of binary operators that
have the same precedence level. For example, in E ::= E + E | E − E both
operators have the same precedence level but should be left associative with
respect to each other. We define a left associative group containing a set of rules
(p1| . . . |pn)(left) to generate a set of associativity declarations:

⋃

1≤i,j≤n

pi left pj ,when (pi, pj) /∈ right ∧ (pi, pj) /∈ ′>′ ∧ (pj , pi) /∈ ′>′

We do similarly for right associative groups. The groups simply compute the
Cartesian product, but do not add tuples that would contradict a relation defined
elsewhere. Finally, associativity groups may occur in the middle of a priority
chain, as in (p1| . . . |pn)(A) > (q1| . . . |qn)(B). In this case > will be extended
by combining each element of the two groups pairwise (and before closure). An
additional safety feature (which is novel) is to simply statically check for >, left
and right to be non-overlapping, as required.

Finally, some expression languages disallow certain direct nesting while indi-
rect nesting is allowed. For example 1 == 2 == 3 should not be allowed while

148 A. Afroozeh et al.

E ::=E Arg+ //function application

| − E //unary minus

|E ∗∗E
|E + E

|E − E

| if E then E else E

|Id
Arg ::= E

| ∼ label : E

Operator Associativity

function application –

unary minus –

** right

+, - left

if-then-else –

Fig. 3. Excerpt from OCaml’s grammar with “challenging” operator precedence

E ::=E Arg+ (non−assoc)
>− E

>E ∗∗E (right)

>(E + E |E − E) (left)

> if E then E else E

|Id
Arg ::= E

| ∼ label : E

Fig. 4. Example definition of challenging operator precedence rules

true == (2 == 2) is allowed. Normally we have to introduce a new expression
nonterminal just to disallow this direct nesting. So, in order to be able to write
concise grammars we add non−assoc declarations with the following semantics.
If p1 non−assoc p2, then (p1 left p2)∧ (p1 right p2). Notice that non−assoc dec-
larations are not safe: they intentionally and explicitly remove sentences from
the language as generated by the grammar. We extend the associativity group
semantics with non−assoc as well. Necessarily, any static safety checks on left
and right need to be done before the tuples from non−assoc have been added.

To illustrate the syntax of our approach we use the example grammar in
Fig. 3 and its priority and associativity properties, which both are taken from
the OCaml reference manual6. The grammar and the precedence rules can now
be written as in Fig. 4. We use ::=, >, left , right and non−assoc meta notation
to encode both the syntax and the precedence table in one go.

4 Grammar Rewriting to Exclude Illegal Derivations

In this section we present an algorithm for transforming a grammar accompanied
with a set of priority and associativity rules to a grammar that prevents the
generation of illegal derivations (see figures 5 and 6).

6 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

Safe Specification of Operator Precedence Rules 149

function extractDefinitions(G)
′>′ ← ′>′ ∪ {(pi, qj)|(p1 . . . pi)(A) > (q1 . . . qj)(B) ∈ G} � expand the groups
P ← {(p1, p2) | p1 > p2 ∈ G}+ � note the transitive closure
L ← {(p, p) | p left p ∈ G}, L′ ← L
R ← {(p, p) | p right p ∈ G}
L ← L ∪

⋃
0≤i,j≤n{(pi, pj) | (p1| . . . |pn)(left) ∈ G, (pi, pj) /∈ R}

R ← R ∪
⋃

0≤i,j≤n{(pi, pj) | (p1| . . . |pn)(right) ∈ G, (pi, pj) /∈ L′}
return P ∪ L ∪R

function rightRecursive(G, N) � leftRecursive is elided for brevity
R ← {N}
while R changes do R ← R ∪ {X|X ::= αY ∈ G,Y ∈ R}
return R

function plain(x) = x in which all Ni are replaced by N .

function rules(G,N) = {β|N ::= β ∈ G}
function fresh(N) = Ni where the integer index i has not been used before.

function generatePatterns(G)
D ← extractDefinitions(G)
R ← {}
for all (A ::= Xα,A ::= βY) ∈ D do

if X ∈ leftRecursive(G,A) ∧ Y ∈ rightRecursive(G,A) then
R ← R ∪ {(A, •Xα, βY)}

for all (A ::= αX,A ::= Y β) ∈ D do
if X ∈ rightRecursive(G,A) ∧ Y ∈ leftRecursive(G,A) then

R ← R ∪ {(A,α •X,Y β)}
return R

Fig. 5. Translating priority and associativity definitions to safe patterns

1. We translate the definitions to a set of patterns (generatePatterns).
2. We apply these patterns to transform the grammar (rewriteGrammar)

The generation of patterns in Fig. 5 follows exactly the semantics as defined
earlier in tables 1 and 2. extractDefinitions produces a set of binary tuples
which represent the associativity and priority declarations in a grammar. This
set is an over-approximation of the patterns that will be generated later, since
they are not specific for positions in the parents yet and may be ignored entirely
if no ambiguity may arise. For a specific nonterminal, rightRecursive and
leftRecursive compute which other nonterminals contribute to an eventual
left/right recursion of that nonterminal. The generatePattern function then
filters the extracted definitions making sure to introduce a pattern only where
left recursion tangles with right recursion and vice versa, i.e., simulating exactly
the priority and associativity semantics of Section 3.

Given the set of patterns generated by generatePatterns, we can now
transform the grammar using the rewriteGrammar function as shown in
Fig. 6. It is important to note that we use indexed nonterminals names, such
that when building parse trees, no new names for nonterminals are generated

150 A. Afroozeh et al.

1: function ApplyPattern(G, W, δ, V ::= μ′W ′τ ′))
2: Yalts = ∅
3: for all ρ ∈ rules(G,W) do
4: if plain(ρ)
= plain(δ) then add ρ to Yalts

5: if ∃Z ∈ G : (plain(Z) = plain(W)) ∨ (rules(G,Z) = Yalts) then
6: Y ′ ← Z
7: else
8: Y ′ ← fresh(W)
9: for all β ∈ Yalts do add Y ′ ::= β to G

10: remove V ::= μ′W ′τ ′ from G
11: add V ::= μ′Y ′τ ′ to G
12: return (G,Y ′)

13: function RewriteGrammar((G,P))
14: New ← ∅
15: Slots[] ← ∅ � an empty map from indexed nonterminal names to dotted rules
16: for all patterns (Y, β · Y γ, δ) in P do � Stage 1, reserve nonterminal names
17: Yi ← fresh(Y)
18: Slots[Yi] ← β · Y γ
19: add Yi to New
20: G1 ← G

21: for all patterns (Y, β · Y γ, δ) in P do
22: if Slots[Yi] = β · Y γ then � Stage 2, update use sites
23: replace Y ::= βY γ in G1 with Y ::= βYiγ

24: for all Yi in New do � Stage 3, add definitions for new nonterminals
25: if Slots[Yi] = β · Y γ then
26: for all Y ::= α in G1 do
27: if
 ∃ a pattern (Y, β · Y γ, δ) ∈ P with plain(α) = δ then
28: add Yi ::= α to G1

29: (G′′, G′) ← (G1, G) � Stage 4, look for nested ambiguity
30: while G′
= G′′ do
31: (G′,New′) ← (G′′,New)
32: for all Yi ∈ New′ do
33: if Slots[Yi] = ·Y γ then
34: for all grammar rules Yi ::= μW ∈ G′ do
35: if plain(W) = Y ∧ ∃Z(plain(Z) = Y then
36: ∧ W ∈ RightRecursive(G1, Z)) then
37: for all patterns (Y, ·Y γ, δ) do
38: (G′′, U) ← ApplyPattern(G′′, W, δ, Yi ::= μW)
39: (Slots[U],New) ← (Slots[W],New ∪ {U})
40: if Slots[Yi] = β · Y then
41: for all grammar rules Yi ::= Wμ in G′′ do
42: if plain(W) = Y ∧ ∃Z : (plain(Z) = Y
43: ∧W ∈ leftRecursive(G1, Z)) then
44: for all patterns (Y, β · Y, δ) do
45: (G′′, U) ← applyPattern(G′′, W, δ, Yi ::= Wμ)
46: (Slots[U], NT) ← (Slots[W],New ∪ {U})
47: return G′′

Fig. 6. Core algorithm that rewrites a grammar, applying patterns to remove alternates
from indexed nonterminals

Safe Specification of Operator Precedence Rules 151

(indices can be removed easily). As each rewrite action can only remove some
alternates, no new shapes of rules are created by the algorithm (no additional
chain rules). This preserves the shape of the parse forest as the language engineer
specified in the original grammar.

The algorithm first deterministically generates a set of nonterminals to imple-
ment single-level filtering. Lines 14–20 reserve fresh nonterminal names. Lines
21–23 change existing rules to use the new nonterminals at the right positions.
Lines 24–28 generate definitions for the new nonterminals by cloning the origi-
nal while leaving out the filtered alternate. Then, in a fixed point computation
(lines 29–46) we treat each level of newly generated nonterminals to a procedure
for eliminating deeply nested cases. For left recursive positions (lines 40–46), we
make sure that a nonterminal is generated which cannot derive a given postfix op-
erator at arbitrary depth at the right-most position which has lower priority. For
right recursive positions we do the opposite (lines 33–39). The applyPattern
helper function does the same as lines 21–46 for the first level, but it includes an
explicit check for the existence of generated nonterminals to reuse. This check
is necessary for termination as well as efficiency. The fixed point computation
will terminate because a new nonterminal is only created in ApplyPattern if a
nonterminal which defines the same subset of alternates does not already exist.
Since every step removes an alternate, eventually —in a worst case scenario—
all singleton sets will have been generated and the algorithm terminates.

We can illustrate the algorithm using the following example: Grammar G:

E ::= E + E (left) > iE | a;

generates patterns P (see Fig. 5): {(E, ·E+E, iE), (E, E+ ·E, E+E)}. Now
the algorithm in Fig. 6 can start. Lines 14–23 create the following grammar rule
in G1, having found two patterns to apply and allocating two fresh nonterminals:
E ::= E1 + E2 | iE | a

Then, at lines 24–28 we define the two new nonterminals and extend G1 with
their definition:

E ::= E1 + E2 | iE | a

E1 ::= E1 + E2 | a

E2 ::= iE | a

Finally we search for nested cases in lines 30–46. The outer loop executes twice.
The first time, E1 results in a new nonterminal E3 and E2 does nothing. The
second time nothing changes and we terminate with the final grammar:

E ::= E1 + E2 | iE | a

E1 ::= E1 + E3 | a

E2 ::= iE | a

E3 ::= a

152 A. Afroozeh et al.

5 Validation Using the OCaml Case

We have conducted an extensive validating experiment. The goal is to show that
our approach is indeed more powerful than SDF, and to provide evidence that
the algorithm works for complicated, real-world examples.

5.1 Method

For this case study, we selected the OCaml (.ml) files in the test suite directory
of the source release of OCaml 4.00.1. OCaml features the kind of ambiguity that
SDF filtering semantics cannot solve and our method should be able to solve. The
test suite contains numerous examples of different sizes and complexity, testing
the language features. We believe the test suite is a good choice for testing
our parser on safety and completeness, as the suite rigorously tests the language
itself. The suite contains 387 files of which 158 (in the tool-ocaml folder) contain
only source code comments that document expected output (assembler code) of
the compiler. The other 229 files are examples of OCaml code that exercise all
features of the language in different combinations to test the compiler.

We performed the experiments in Rascal [11], which is a meta-programming
DSL, supporting embedded syntax definitions. The parsing mechanism of Rascal
is based on GLL [7].

Our goal is to provide solid evidence of the complete equivalence between the
original OCaml parser and the parser generated from our approach. This means
that no parse error should be produced by the Rascal parser if no parse error was
produced by the original OCaml parser, and the generated parser should produce
single parse trees (no ambiguities), and that the structure of the abstract syntax
trees should be exactly the same.

To compare parse trees we adapted both the parser from the OCaml compiler
and the output of our generated parser to produce exactly the same bracketed
forms. The resulting files are then compared with diff, ignoring whitespace,
to check for equivalence. It should be noted that the ASTs from the OCaml
compiler were normalized, for example flat lists were converted to cons list. We
performed the same transformation steps on our ASTs.

OCaml programs are basically composed of groups of expressions. The AST
produced by the OCaml parser is complex and contains many features. However,
because of the expression-like nature of the language, most of the unnecessary
information can be removed, resulting in a bracketed form. We modified the
default AST printer7 to produce the bracketed form. For example, the original
AST and its bracketed form, resulting from parsing the string 1+2*3 is shown in
Fig. 7. The bracketed forms of all the examples we examined are on GitHub8.

7 The parsing/printast.ml file in the OCaml source release.
8 https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment

http://www.rascal-mpl.org
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment

Safe Specification of Operator Precedence Rules 153

Ptop_def
[
structure_item ([1,0+0]..[1,0+5]) ghost
Pstr_eval
expression ([1,0+0]..[1,0+5])
Pexp_apply
expression ([1,0+1]..[1,0+2])
Pexp_ident "+"

[
<label> ""
expression ([1,0+0]..[1,0+1])
Pexp_constant Const_int 1

<label> ""
expression ([1,0+2]..[1,0+5])
Pexp_apply
expression ([1,0+3]..[1,0+4])
Pexp_ident "*"

[
<label> ""
expression ([1,0+2]..[1,0+3])
Pexp_constant Const_int 2

<label> ""
expression ([1,0+4]..[1,0+5])
Pexp_constant Const_int 3

]]]

(
+
(

1
*
(

2
3

)
)

)

Fig. 7. The original AST print from the OCaml parser (left) and the stripped version
containing only the structure and the labels (right)

For conducting the experiments we wrote a Rascal grammar definition using
the notations defined in this paper. The grammar is obtained from the OCaml
reference manual9. We tried to be as faithful as possible to the grammar in the
reference manual, avoiding changes as much as possible.

5.2 Results

The priority and associativity properties, retrieved from the precedence tables
in the language manual, resulted in a grammar that uses > and left , right and
non−assoc declarations. These declarations result in 830 ambiguity removal pat-
terns. The rewriting was performed as explained in Section 4.

The rewritten grammar provided us with a very close over-approximation
of what the OCaml language designers had in mind. Only a handful of am-
biguities, such as the dangling-else ambiguity and identifier conflicts with
keywords, remained, which were resolved using other ambiguity resolution
features of Rascal. The OCaml grammar written in Rascal is available at:
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/

We have performed the parsing and comparison process for the given 229
number of files in the case study. 215 files parse correctly and without ambiguity,
of which, 182 files (84%) generate ASTs that are identical in both versions. This
means that our parser produces the same grouping as the original OCaml parser,

9 http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/
http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

154 A. Afroozeh et al.

providing evidence for the correctness of our algorithms. For the rest (16%), our
manual examination of the diff files shows that the differences are minor and
are caused by AST de-sugaring and normalization steps in the OCaml compiler,
and are not related to the operator precedence.

5.3 Discussion and Threats to Validity

One of the difficulties in this study was how to compare ASTs. The AST from the
OCaml parser, in some places, is significantly different from the grammar written
in the reference manual. The reason is that the parse trees have been normalized
by the front-end for easier processing later in the compiler. For example, flat
argument lists are converted to cons lists, presumably to simplify currying and
partial function features in OCaml. These changes are not documented in the
reference manual. We resolved them by observing the original AST output to
deduce the normalization step. We then mimicked these normalization steps as
rewrite rules in Rascal before outputting the final bracketed form.

Moreover, OCaml has some language extension and syntax varieties that are
not documented in the main language reference document. The use of semicolon
was particularly confusing. Semicolon is used in OCaml to separate expressions,
defined by the rule E ::= E ; E which is right associative. However, in the
inputs we parsed, we observed several occasions in which semicolon can end an
expression regardless of being preceded by another expression. We resolved this
issue by allowing optional semicolons at the end of expressions.

6 Related Work

Besides the AJU and SDF methods which have been described so far, there are a
number of work which present similar ideas. Aasa [14] proposes a framework for
the specification of precedences for implementing programming language. To the
best of our knowledge, this is the only declarative model that supports deeper
patterns. In this work, a parse tree is considered precedence correct based on the
weights given to operators in its sub-trees. This work correctly recognizes that,
for example, a unary operator can be placed under the right most operand of a
binary rule, regardless of their precedence. Our approach in defining precedence
semantics is different in that instead of focusing on parse trees, we defined the
semantics of precedence as derivations, which is closer to our implementation
technique. The main shortcoming of this work is that operators must be unique.
They are considered separately from their context, e.g., there cannot be a unary
minus and a binary minus at the same time. In addition, there is no discussion
of indirect recursions. Similar to us, the disambiguation technique in this work
is implemented as a grammar rewriting.

Thorup [15] presents an algorithm for transforming an ambiguous grammar
with a set of partial illegal parse trees to a grammar excluding those deriva-
tions. On the surface, the approach looks very similar to our technique shown
in Section 4, but the inner working is very different. The rewriting technique in

Safe Specification of Operator Precedence Rules 155

this work expects a set of illegal parse trees, and in case the set is unbounded,
as in Section 2.2, a set of parse forests with cycles. Then, the algorithm works
bottom up, generating all production rules which do not produce any of those
illegal parse trees. The resulting grammar of this step should go through an-
other transformation to be simplified. The problem of how to find sufficient
illegal parse trees is addressed in another work by the same author [16]. The
rewriting presented by Thorup is not directly aiming at providing a declarative
disambiguation mechanism, rather it is more an implementation mechanism. It
also covers a wider range of rewriting provided that enough illegal parse trees
are given, but the overall procedure is complicated. We are not aware of any
practical parser generator that uses this technique.

Visser presents “From context-free grammars with priorities to character class
grammars” [17], which describes a grammar transformation to give semantics
to the SDF2 priority relation similar to our transformation. In a first step, a
grammar’s nonterminals are replaced by explicit sets of identities (integers) of its
alternates. Then, elements are removed from these sets based on the precedence
relations. Since every rule is identified, the resulting parse trees do not show the
signs of grammar transformation. Character class grammars do not guarantee to
preserve the language and do not support indirect recursion, like our semantics
do. Although character class grammars are formalized quite differently from our
approach that directly manipulates grammars using indexed nonterminals, both
methods use grammar transformation to implement the precedence relations.

7 Conclusions

Constructing a parser that correctly implements precedence rules, for a language
such as OCaml, using its ambiguous reference manual and the set of precedence
rules is not possible without resorting to some manual grammar transformation.
In this paper, we defined a parser-independent semantics for operator-style am-
biguities that is safe and is able to deal with deeper level and indirect precedence
ambiguities. We evaluated our approach using an extensive experiment by com-
paring the output of the standard OCaml compiler front-end with the output of
our own parser, generated from Rascal. The result is promising and shows that
our approach is powerful enough to parse OCaml.

For other languages such as Haskell, F#, and Lua, which offer similar expres-
sion languages, our approach is expected to be equally beneficial. Although the
focus of this paper is mainly on generalized parsing algorithms, we should also
emphasize that our approach can be used by any parser generator that supports
left recursion.

Acknowledgments. We would like to thank Peter Mosses who has originally
identified the problem in OCaml. Also many thanks to Davy Landman and Mark
Hills from CWI who assisted us in performing the validation experiments.

156 A. Afroozeh et al.

References

1. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)

2. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2),
94–102 (1970)

3. Tomita, M. (ed.): Generalized LR parsing. Kluwer Academic Publishers (1991)
4. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University

of Amsterdam, The Netherlands (1992)
5. McPeak, S., Necula, G.C.: Elkhound: A fast, practical GLR parser generator. In:

Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 73–88. Springer, Heidelberg
(2004)

6. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS R©: Program transformations for prac-
tical scalable software evolution. In: Proceedings of the 26th International Confer-
ence on Software Engineering, ICSE 2004, pp. 625–634. IEEE Computer Society,
Washington, DC (2004)

7. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming (2012) (to appear) ISSN:0167-6423

8. Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic parsing of ambiguous gram-
mars. In: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1973, pp. 1–21. ACM (1973)

9. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

10. Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam (July 1997)

11. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with rascal.
In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and
Transformational Techniques in Software Engineering III. LNCS, vol. 6491, pp.
222–289. Springer, Heidelberg (2011), http://www.rascal-mpl.org

12. Klint, P., Visser, E.: Using filters for the disambiguation of context-free gram-
mars. In: Pighizzini, G., San Pietro, P. (eds.) Proc. ASMICS Workshop on Parsing
Theory, Milano, Italy, Tech. Rep. 126–1994, pp. 1–20. Dipartimento di Scienze
dell’Informazione, Università di Milano (1994)

13. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (1997)

14. Aasa, A.: Precedences in specifications and implementations of programming lan-
guages. Theor. Comput. Sci. 142(1), 3–26 (1995)

15. Thorup, M.: Disambiguating grammars by exclusion of sub-parse trees. Acta In-
formatica 33(5), 511–522 (1996)

16. Thorup, M.: Controlled grammatic ambiguity. ACM Trans. Program. Lang.
Syst. 16(3), 1024–1050 (1994)

17. Visser, E.: From context-free grammars with priorities to character class grammars.
In: van Deursen, A., Brune, M., Heering, J. (eds.) Dat Is Dus Heel Interessant, Liber
Amicorum Dedicated to Paul Klint, pp. 217–230. CWI (1997)

http://www.rascal-mpl.org

Detecting Ambiguity in Programming Language

Grammars

Naveneetha Vasudevan and Laurence Tratt

Software Development Team, King’s College London
http://soft-dev.org/

naveneetha@yahoo.com, laurie@tratt.net

Abstract. Ambiguous Context Free Grammars (CFGs) are problematic
for programming languages, as they allow inputs to be parsed in more
than one way. In this paper, we introduce a simple non-deterministic
search-based approach to ambiguity detection which non-exhaustively
explores a grammar in breadth for ambiguity. We also introduce two
new techniques for generating random grammars – Boltzmann sampling
and grammar mutation – allowing us to test ambiguity detection tools
on much larger corpuses than previously possible. Our experiments show
that our breadth-based approach to ambiguity detection performs as well
as, and generally better, than extant tools.

1 Introduction

Context Free Grammars (CFGs) are widely used for describing formal languages,
including Programming Languages (PLs). The full class of CFGs (grammars
from now on) includes ambiguous grammars—those which can parse inputs in
more than one way. Needless to say, ambiguous grammars are highly undesirable.
If an input can be parsed in more than one way, which one of those parses should
be taken? We would not enjoy using a compiler if it were to continually ask us
to choose which parse we want. Unfortunately, we know that, in general, it is
undecidable as to whether a given grammar is ambiguous or not [1]. While there
are various parsing approaches which allow a user to manually disambiguate
amongst multiple parses, one can not in general know if all possible points of
ambiguity have been covered. Perhaps because of this, most tools use parsing
algorithms such as LL and LR, which limit themselves to parsing only a subset
of unambiguous grammars. This leads to other trade-offs: grammars have to be
contorted to fit them within these subsets; and these subsets rule out the ability
to compose grammars [2].

As a consequence, there has been a steady stream of work trying to de-
tect ambiguity in arbitrary grammars, in order to bring most of the benefits
of the full class of CFGs without the disadvantages. Exhaustive methods such
as AMBER [3] systematically generate strings to uncover ambiguity, but for
even medium-sized grammars, this quickly leads to infinite state spaces. Ap-
proximation techniques, on the other hand, sacrifice accuracy for termination.
ACLA [4] transforms a language to an alternative whose accepted inputs are a

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 157–176, 2013.
c© Springer International Publishing Switzerland 2013

http://soft-dev.org/

158 N. Vasudevan and L. Tratt

Context-Free Grammars

PL grammars

Boltzmann
grammars

Mutated
PL grammars

Unambiguous
grammars

Fig. 1. An intuition about the relation between various classes of CFGs

superset of the original; it never reports false negatives, but may report false
positives. Hybrid approaches marry approximation techniques with exhaustive
search. Basten’s hybrid approach [5] first applies a noncanonical unambiguity
test to filter out provably unambiguous portions of a grammar before running
AMBER on the result. However, such hybrid approaches still rely on an exhaus-
tive search, although on a smaller state space. Bounded length approaches are in
a sense a subset of exhaustive methods: they exhaustively explore a small, fixed
part of the search space. CFGAnalyzer [6] uses a SAT solver to explore strings
of bounded length. Cheung and Uzgalis’ method [7] deterministically expands
rules from the start terminal until a fixed bound is reached.

Whereas previous ambiguity detection approaches are deterministic and ex-
plore a grammar in ‘depth’, our hypothesis is that approaches which explore a
grammar in ‘breadth’ have a greater chance of discovering ambiguity. By depth
we mean that a subset of the grammar is explored in (possibly exhaustive) detail;
by breadth that a large portion of the grammar is explored but not exhaustively
so. In other words, we suspect that a scatter-gun approach to detecting ambigu-
ity will be more successful than a focused beam.

To that end, we have created a tool SinBAD which houses a number of ambi-
guity detection approaches. This paper details one of SinBAD’s non-determin-
istic ambiguity detection algorithms which is intended to explore a grammar in
breadth rather than depth. The algorithm is extremely simple, with its core ex-
plained in less than a page. Despite the simplicity of the algorithm, experimental
results show that it performs at least as well as, and generally better than, more
complex deterministic approaches. Furthermore, good results are found more
quickly than by previous approaches.

Understanding the relation between grammars, and its various subsets is key
to understanding the motivation for, and the results of, our work. Figure 1 is our
attempt to give an intuition about these relations. Since all the sets involved are
infinite, this diagram is necessarily an approximation, but is hopefully helpful.
The set of unambiguous grammars is a strict subset of the grammars. Virtu-
ally all PL grammars reside within this unambiguous subset. Our underlying

Detecting Ambiguity in Programming Language Grammars 159

hypothesis is that PL grammars often stretch to the very edge of the class of
unambiguous grammars. Stated differently, we suspect that PL grammars are
often only a small step away from being ambiguous.

This paper also provides new techniques for evaluating the effectiveness of
ambiguity detection tools. We believe that evaluating such tools requires much
larger input corpuses than previously used: ours contains over 20,000 grammars
of various types. In order to generate such a large corpus, we cannot rely on
hand-written grammars. We therefore provide two classes of random grammars.
The first is generated using Boltzmann sampling, an approach which provides
some statistical guarantees about the randomness of the resulting generators.
The second class is generated by mutating existing PL grammars. This latter
category is particularly interesting as we, like most others working in this field,
are particularly interested in the ambiguity of PL-like grammars. There is an
inevitable problem with this: most PLs are written for approaches such as LR
parsing that accept only unambiguous grammars. Basten hand-modified 20 PL
grammars to be ambiguous [8] which we reuse in our suite for comparison pur-
poses. However, one can easily, and inadvertently, create a solution which works
well for such a small corpus but little beyond it. By generating a huge number
of possibly ambiguous PL-like grammars, we can explore a much wider set of
possibilities than is practical by hand.

To summarise, our work has two hypotheses:

H1. Covering a grammar in breadth is more likely to uncover ambiguity than
covering it in depth.

H2. PL grammars are only a small step away from being ambiguous.

The contributions of this paper are as follows. First, we show a new search-based
approach to ambiguity detection, which is simpler than previous approaches. Sec-
ond, we provide new means of evaluating the effectiveness of ambiguity tools by
providing the ability to produce large quantities of grammars using Boltzmann
sampling and grammar mutation. Third, we provide the first large-scale evalua-
tion of such tools. In so doing, we show that our simple search-based approach
performs at least as well as, and generally better than, existing tools. The basic
idea of our search-based approach was first presented in a workshop paper [9].
This paper extends that with Boltzmann sampled grammars, grammar muta-
tion, and a significantly larger experiment. SinBAD, the grammar generators,
the grammar corpus we used, and the results obtained can be downloaded from
our experimental suite:

http://figshare.com/articles/cfg_amb_experiment/774614

The structure of this paper is as follows. In Section 3 we describe our search-based
approach to ambiguity detection. Sections 4 and 5 describe our algorithms for
generating Boltzmann and mutated grammars respectively. In Section 6 we set
out the methodology for our experiment, which is split into 3 sub-experiments.
In section 10 we consider our hypotheses in the light of our experimental results.

http://figshare.com/articles/cfg_amb_experiment/774614

160 N. Vasudevan and L. Tratt

Sentence
Generator

Grammar
artefacts

Sentence
Earley
parser

Parsed
output Yes

No

No

StopAmbiguous?

 Time
exceeded?

<Backend 1>
<Backend 2>

<Backend n>

uses

Yes
Stop

Fig. 2. SinBAD architecture

2 Definitions

Before presenting our algorithms and descriptions, we first introduce some brief
definitions (mostly standard) and notations.

A grammar is a tuple G = 〈N,T,P,S 〉 where N is the set of non-terminals, T
is the set of terminals, P is the set of production rules over N × (N ∪T)* and S
is the start non-terminal of the grammar. A production rule A: α is denoted as
P [A] whereA ∈ N, and α is a sequence of strings drawn from (N∪T)*.Nε denotes
set containing non-terminals that have at least one empty alternative. For a rule
P [A], P [A]alt denotes a single alternative and ΣP [A]alt all its alternatives. We
define the size of a grammar as size(G) = |N |. We define a sentence of a grammar
as a string over T *. A sentence is ambiguous if it can be parsed in more than one
way. A grammar is ambiguous if there exists a sentence which is both accepted
and ambiguous. We define ‘symbol’ to mean either a terminal or a non-terminal.

For a list �, let �[i] denote the element at position i, and �[i:j] the items
from positions i (inclusive) to j (exclusive). Let insert(�, i, α) denote insertion
of α into � at position i and delete(�, i) denote deletion of element from � from
position i. Let append(�, α) denote appending element α to list �. For a dictionary
D containing key-value pairs, D[x �→ a] denotes an update to key x with value
a, D[x] denotes a lookup of key x, Dvalues denotes its list of values. Let R(�,n)
denote a list of n items chosen randomly from the list �. Further, let R[m..n]
denote a number chosen randomly between m (inclusive) and n (inclusive).

3 Search-Based Ambiguity Detection

Search-based techniques seek to find ‘good enough’ solutions for problems that
have no feasible algorithmic solution and whose search space is too big to ex-
haustively scan. Such techniques have been applied to a wide range of problems
including software itself (see e.g. [10]). Search-based techniques are either ran-
dom or guided by a fitness function.

In order to apply search-based techniques to ambiguity detection, we created
SinBAD, a simple tool with pluggable backends. Figure 2 shows SinBAD’s ar-
chitecture. Given a grammar and a lexer, the Sentence Generator component

Detecting Ambiguity in Programming Language Grammars 161

generates random sentences using a given backend. A backend, in essence, is an
algorithm that governs how sentences are generated. For instance, a backend can
use a unique scoring mechanism to favour an alternative when expanding a non-
terminal, or one that can generate sentences of bounded length. The generated
sentence is then fed to a parser to check for ambiguity (we use ACCENT [11],
a fast Earley parser for this). The search stops when an ambiguity is found or
when a time limit is exceeded. In this paper we consider the most successful
SinBAD backend we have created so far: dynamic1 1 .

3.1 The dynamic1 Backend

Given a grammar, the dynamic1 backend shown in Algorithm 1 non-determin-
istically creates a valid sentence which can then be used to test for ambiguity.
In essence, the algorithm continually picks random alternatives to follow for
sentence generation, recursing into the grammar. However, doing this naively
leads to frequent non-termination [9]. Therefore, the backend is parameterised
by a user-configurable integerD2. Once the algorithm has recursed beyond depth
D, it favours alternatives which immediately terminate (i.e. rules that contain no
non-terminals). When this is not possible – some rule’s alternatives all contain
non-terminals – the favouritism then chooses whichever rules have been least
visited. In this way, the generator tends not only to terminate in reasonable
time, but also to explore a grammar’s rules semi-uniformly.

The function START is initialised with a user-defined grammar G and thresh-
old depth D. The current depth d is set to zero. We initiate sentence generation
by deriving the start symbol S of the grammar. We keep a note of when we have
entered a rule and when we have exited. To derive a non-terminal, we randomly
select one of its alternatives (line 11). When the depth of the recursion exceeds
a certain threshold depth, we start favouring alternatives (lines 8 and 9).

The FAVOUR-ALTERNATIVE function is called when the algorithm wishes
to try and terminate. Given a rule, the function generates a score for each al-
ternative and the one with the lowest score is selected. In the event of a tie, one
of the lowest scoring alternatives is arbitrarily selected. Terminals are scored as
0. Non-terminals are scored as a ratio of the number of derivations that haven’t
been fully derived yet to the total number of derivations (line 30).

dynamic1 ’s simplicity means that our experimental corpus has uncovered
a handful of cases (1.4% of grammars in the corpus) where it doesn’t termi-
nate. This is due, in an unintended irony, to the one deterministic part of
dynamic1 : the favouring of alternatives. When FAVOUR-ALTERNATIVE is
called, it scores rules, selects those with the equal lowest score, and then non-
deterministically picks amongst them. If one alternative always has the lowest
score, then it will be picked every time. Consider the rules P: Q and Q: P | R

S. If, at a given point of time, the scores for the first and second alternatives

1 For a discussion of some other backends, see [9].
2 Setting D to ∞ provides equivalent behaviour to the naive non-terminating ap-
proach.

162 N. Vasudevan and L. Tratt

Algorithm 1. The dynamic1 algorithm

1: function start(G, D)
2: Sen ← ∅

3: generate(P [S], G, Sen, d = 0, D)
4: return Sen
5: end function

6: function generate(P [A], G, Sen , d, D)
7: P [A].entered ← P [A].entered + 1
8: if d ≥ D then
9: P [A]alt ← favour-alternative(P [A], G)
10: else
11: P [A]alt ← R(ΣP [A]alt, 1)
12: end if
13: for Sym ∈ P [A]alt do
14: if Sym ∈ N then
15: Sen ← Sen + generate(P [Sym], G, Sen , d+ 1, D)
16: else
17: Sen ← Sen + Sym
18: end if
19: end for
20: P [A].exited ← P [A].exited + 1
21: d ← d− 1
22: end function

23: function favour-alternative(P [A], G)
24: scores ← { }
25: scores ← {scores[alt �→ 0] | alt ∈ ΣP [A]alt}
26: for P [A]alt ∈ ΣP [A]alt do
27: for Sym ∈ P [A]alt do
28: if Sym ∈ N then
29: if P [Sym].entered > 0 then
30: scorealt ← scorealt + (1− (P [Sym].exited/P [Sym].entered))
31: end if
32: end if
33: end for
34: scores ← scores[P [A]alt �→ scorealt]
35: end for
36: altsmin ← {alt ∈ ΣP [A]alt | scores[alt] = min(scoresvalues)}
37: return R(altsmin , 1)
38: end function

of rule Q are <1 and >1 respectively, then the alternative favouring will always
select the first alternative, as it has the lowest score. We briefly outline a possible
solution for this in Section 12.

Detecting Ambiguity in Programming Language Grammars 163

Cfg = Cfg Rule ... Rule

Rule = SingleAlt Alt | RuleAlts1 Rule Alt

Alt = EmptyAltSyms | SingleAltSyms1 Symbol | AltSyms1 Alt Symbol

Symbol = NonTerm NonTerm | Term Term

NonTerm = NonTerm1 | NonTerm2 | ... | NonTermN

Term = Term1 | Term2 | ... | TermN

Fig. 3. Tree specification for generating grammars

4 Boltzmann Sampled Grammars

Boltzmann sampling is a framework for random generation of combinatorial
structures (see [12] for further details). The basic idea is to give the sampler a
class specification of a combinatorial structure and a value to control the size
of the generated objects. For a given class C, and size n, the sampler provides
approximate-size uniform random generation—objects are generated with ap-
proximate size n±ε, where ε is a fixed tolerance, but objects of the same size
occur with equal probability. This allows the sampler to generate large objects in
linear time. In this section we provide the first Boltzmann sampler for grammars.

4.1 Class Specification

A Boltzmann sampler class specification is a grammar containing a set of pro-
ductions. A production is of the form: A: 〈rhs〉, where A is the name of the class
being defined and 〈rhs〉 is a set of definitions. A definition is of the form DefX

Y, where DefX denotes a constructor and Y is either a reference to a definition
(if a definition Y exists) or a literal otherwise.

Since, as far as we are aware, this is the first time that Boltzmann sampling has
been used to generate grammars, we were forced to create a class specification
ourselves. Determining a good class specification is arguably the hardest part of
Boltzmann sampling, and is complicated by the fact that grammars do not have
a single, obvious specification. Furthermore, since grammars are unbounded in
size, we necessarily have to restrict the size of the those generated to make using
them practical. This immediately leads us to a difficult question: what style
of grammars do we want? In reality, we are most interested in grammars which
somewhat resemble PL grammars. Generating grammars with 2 rules containing
100 alternatives each may tell us something about grammars in general – though
getting enough coverage to say something useful may be much harder – but little
about programming languages. We have therefore crafted our use of Boltzmann
sampling to lead to grammars which roughly resemble real PLs. In order to do
this, we are forced to apply post-filters to restrict the grammars generated to
those we are most interested in, as we shall soon see.

Our class specification is shown in Figure 3. Using [13] as a guiding principle,
our specification is designed to give us control over three things: the number
of empty alternatives, the number of alternatives per rule, and the number of

164 N. Vasudevan and L. Tratt

symbols per alternative. Cfg denotes a context-free grammar, Rule a production
rule, Alt a production alternative, and Symbol denotes either a non-terminal (a
NonTerm) or a terminal (a Term) symbol. A CFG consists of 1 or more production
rules (hence the references to multiple Rule definitions). Rule has two outcomes:
it can either be called recursively to build a list of alternatives; or just build a list
with single alternative. Alt has three choices: it can either be called recursively to
build a sequence of symbols; or just build a sequence with one symbol (middle
choice); or an empty string (EmptyAltSyms). The specification enforces equal
numbers of NonTerms and Terms in a grammar, the 1:1 ratio seeming to us a
reasonable heuristic based on our observations of real grammars.

While we do not claim that our specification is perfect, it is the result of
considerable experimentation and the resulting grammars are close to those we
might expect to see for PLs. Minor variations to the specification can lead to sig-
nificantly differing “styles” of grammars being generated. For instance: replacing
SingleAlt Alt by EmptyAlt would cause a much higher percentage of empty
alternatives to be generated.

4.2 Precision

A Boltzmann sampler is parameterised by two values that control the size of
the generated objects: singular precision and value precision. To get an efficient
sampler, these two values need to be set as low as possible [12]. However, the
lower these values are, the greater the likelihood of large objects being generated.
This is a problem for us, as “large” means rules would have more alternatives
and symbols per alternative than we desire. The challenge, then, is to find values
that generate large numbers of relevant grammars in reasonable time. We settled
on values of 1.0e-7 and 1.0-e-4 for the singular and value precisions respectively.

4.3 Grammar Generation and Filtering

Our Boltzmann class specification gets us in the rough neighbourhood of PL
grammars, but some obvious differences remain. We also struggled to generate
grammars of all sizes that we wished for.

The sampler struggled to generate grammars when we restricted the number
of symbols per alternative to 5, so we relaxed this criterion. Approximately 10–
15% of alternatives from each grammar generated by the sampler have more
than 5 symbols per alternative.

Similarly, the sampler tends to generate a much larger number of empty al-
ternatives than are typical of PL grammars. Using Basten’s PL grammar corpus
as an example, the proportion of empty alternatives varied between 4% (Java)
to 12% (Pascal). We therefore wrote a filter to remove all grammars that had a
proportion of empty alternatives above 5%. Such filters are needed if one wishes
to generate PL-like grammars.

Because the sampler is unaware of the precise semantics of grammars, it can
and does produce grammars which are non-sensical or trivially ambiguous. We
filter out all grammars which contain non-terminating cycles of the form A:

Detecting Ambiguity in Programming Language Grammars 165

B and B: A as they consume no input and generate the empty language. We
also filter out grammars which contain alternatives with the same sequence of
symbols (e.g. A: X | X | ...) which are trivially ambiguous.

We wanted to generate grammars of size ranging from 10 to 50 inclusive.
However, the sampler was unable to generate any grammars for sizes 16, 20, 25,
26, 29, 32, 40, 42, and 49. This can be solved by making the precision greater
than 0.005, but this causes other issues (see Section 4.2), so we did not do so.

5 Mutated Grammars

Random grammar generators have one major problem from our perspective:
even if they produce grammars in the general style of those used by PLs, it can
be reasonably argued that they are never close enough. Of course, exactly what
is close enough is impossible to pinpoint: it seems unlikely that any metric, or
set of metrics, can reliably classify PL vs. non-PL grammars. Instead, we have
little choice but to fall back on the intuitive notion that “we know one when we
see one.” This means that past work has struggled to understand how ambiguity
affects PL-like grammars: we simply can’t get hold of enough of them to perform
adequate studies. The best attempt of which we are aware is the work of Basten,
who took 20 unambiguous PL grammars and manually altered them to introduce
ambiguity [14]. Manually altering grammars is tedious, hard to scale, and always
open to the possibilities of unintentional human bias.

We have therefore devised a simple way of generating arbitrary numbers of
‘PL-like’ grammars with possible ambiguity. Our approach to grammar mutation
bears no relation to grammar evolution or grammar recovery. Instead, our basic
tactic is inspired by Basten’s manual modifications: we take in a real (unam-
biguous) grammar for a PL and perform a single random alteration to a single
rule. Although there are numerous possible mutations, we restrict ourselves to
the following four, each of which is applied to a single rule:

Add empty alternative. This is only possible if a rule does not already have
an empty alternative.

Mutate symbol. Randomly select a symbol from an alternative and change it.
A non-terminal can be replaced by a terminal and vice versa.

Add symbol. Randomly pick an alternative and add a symbol at a random
place within it.

Delete symbol. Randomly delete a symbol from an alternative. Only non-
empty alternatives are considered.

Our mutated grammars are therefore identical to a real PL grammar, with only
a single change. This is the best way that we can imagine of solving the “we
know it when we see it” problem. As we will see later, these simple mutations
introduce a surprising number of ambiguities. The full algorithm is presented in
Appendix A.

166 N. Vasudevan and L. Tratt

6 Experiment Methodology

The objective of our experiment is to understand how well search-based ap-
proaches perform in detecting ambiguities. Since ambiguity is inherently unde-
cidable, it is impossible to evaluate such a tool in an absolute sense. Instead, we
evaluated our tool against three others: ACLA, AMBER, and AmbiDexter [14].
Each tool takes a different approach: ACLA uses an approximation technique;
AMBER uses an exhaustive search; AmbiDexter uses a hybrid approach; and
SinBAD uses a random search-based approach.

All the tools except ACLA have run-time options which adjust the way they
operate and thus affect which ambiguities they find. We believe the fairest com-
parison is between the tools at their best and that we need to use the “best”
run-time option values possible. However, discovering what the best options are
by trying all possibilities on our full set of grammars is prohibitively expensive.
Instead, we first run a “mini” experiment on a small set of grammars to de-
termine good tool options. We do not claim that the option values discovered
necessarily allow each tool to operate at its maximum potential; rather, we be-
lieve that they allow the tool to operate close enough to its maximum potential
to make a meaningful comparison.

Using the run-time options determined by the mini experiment, we then run
the “main” experiment on a larger set of grammars (about 7 times bigger) with
each tool. Finally, we check that the proportion of grammars discovered as am-
biguous scales up, by running a “validation” experiment using only dynamic1 on
a larger set of grammars again (about 5 times bigger than the main experiment).

Since grammars can specify infinite languages, grammar ambiguity tools can
run forever. We are therefore also interested in how long it takes each tool to
give quality results. For the mini and main experiments, we therefore run each
tool for 10, 30, 60, and 120 seconds, enforcing the limit with the timeout tool.
For AMBER the parser generation time is not included in the limit, whereas
for SinBAD it is (as we were unable to break the two apart). Since this time is
rather small (0.4s), we believe it does not unduly colour the results.

We evaluated the various tools on three different sets of grammars: Boltzmann
sampled, altered PL grammars, and mutated grammars. Boltzmann sampled
grammars were described in Section 4. Basten’s altered PL grammars are taken
from [5], where Pascal, SQL, Java, and C grammars were manually modified to
produce 5 ambiguous variations of each. The mutated grammars were described
in Section 5. Table 1 shows the size of the grammar sets used in each experiment.
For the Boltzmann sampled grammars, each size (10-50) is represented equally
(i.e. for the main experiment, 50 grammars of each size are used). Similarly, for
the mutated grammars, each mutation category (add empty alternative, mutate
symbol, add symbol, and delete symbol) is equally represented (e.g. for the main
experiment, 500 grammars from each category are used). Note that we are not
worried about differences in the ambiguous fragments identified: we care only
whether a tool uncovers ambiguity in a grammar or not.

All experiments were performed on a cluster of identical Intel i7-2600 CPU
3.4GHz machines with 8GiB memory. For the mini experiment, where perfect

Detecting Ambiguity in Programming Language Grammars 167

Table 1. The number of grammars used in the various experiments

Mini Main Validation

Boltzmann 384 1600 9600
Altered PL 20 20 20
Mutated 160 2000 11200

Total 564 3620 20820

Table 2. Options tried in the mini experiment

Tool Option Values

AMBER Search by length 5, 10, 15, 20, 25, 50, 100
Search by example 1010, 1020, 1030

Ellipsis Yes / No
AmbiDexter From 0 to N 5, 10, 15, 20, 25, 50, 100

From N to ∞ 0
Filter None, LR0, SLR1, LALR1, LR1

dynamic1 Depth 5, 6, 7, ..., 30

precision was not necessary, we used 8 cores (4 real and 4 hyperthreading) per
machine. For the main and validation experiments, where precision is important,
we disabled hyperthreading and restricted ourselves to utilising 3 cores per ma-
chine. We used parallel3 to parallelise our experiment. The experiments took
around 3400 core-hours in total, broken down into: 600 hours for the mini ex-
periment; 2000 for the main experiment; and 800 for the validation experiment.

Our experimental setup is fully repeatable and is available through our down-
loadable experimental suite.

7 Mini Experiment

In the mini experiment, we wish to uncover what reasonable values for various
options are. ACLA has no options, so does not to be considered further. The
options and their values tried for the other tools are outlined in Table 2.

AMBER can search either by length (sentences up to a fixed length) or by
example (search limited by number of sentences with no restriction on sentence
length). The ‘ellipsis’ option causes non-terminals to be treated as tokens, which
increases the chances of finding long ambiguous fragments. We found that in
most cases, turning on the ‘ellipsis’ option led to better results: 22 with it set
vs. 18 without. Only for the ‘add empty alternative’ variant of mutated grammars
did the ellipsis option perform worse.

3 http://www.gnu.org/software/parallel

http://www.gnu.org/software/parallel

168 N. Vasudevan and L. Tratt

Table 3. Best performing options for each tool

Grammar set ACLA AMBERa AmbiDexterb dynamic1 c

Boltzmann n/a ell+N=1010 ik+unf D=11
Altered PL n/a ell+len=10 k=15+LR0 D=9
Mutated n/a len=15 k=15+SLR1 D=17

a ell, len, N � AMBER options ellipsis, length and examples respectively.
b ik, k, unf � AmbiDexter options incremental length, maximum length of
sentences to check, unfiltered version of a grammar respectively.

c D � Threshold depth for dynamic1.

AmbiDexter has two modes of sentence generation: searching for sentences
up to length N , or searching for sentences from a starting length N to ∞.
AmbiDexter also supports filters that can identify and remove provably unam-
biguous subsets of a grammar. These filters are of varying power: LR0 (low) to
LR1 (high). The more powerful a filter is, the greater the portion of a grammar
it can filter out, but the longer it takes to do so. We evaluated the tool with
both unfiltered and filtered versions of a grammar. Generating a filtered version
of a grammar is included in the time limit.

SinBAD’s dynamic1 backend requires a depth option D to determine when
it should attempt to unwind recursion. We evaluated D for values from 5 to
30. For lower values of D, dynamic1 starts favouring alternatives much earlier,
and therefore sentences are short and quick to generate. For higher values of D,
dynamic1 generates longer sentences. In the cases where dynamic1 ’s sentence
generator did not terminate, we re-ran it (in such cases, the normal time limit
still applied, preventing infinite re-runs).

The values we chose for the mini experiment were based on our experience
of using the tools in question, and our need to choose a reasonable subset of
options in order to have a tractable experiment. To check that the values we
chose were not biased against the tools, we performed a brief sanity check on
each of the ‘best’ values found, checking several of its near neighbours. Only with
AMBER was there a measurable difference (when searching by example). Using
a value of 1010 with the ‘search by example’ option, 238 Boltzmann sampled
grammars were found to be ambiguous; with a value of 108, 240 were found to
be ambiguous. For the mutated grammars, 1010 found 6 ambiguities whereas 107

found 7 ambiguities. In both cases, the differences are sufficiently small to make
us comfortable with sticking with the original values.

Table 3 lists the best performing options for each tool. All the data involved
are available from our downloadable experimental suite.

8 Main Experiment

The main experiment is the largest cross ambiguity detection tool experiment
to date. All the data involved are available from our downloadable experimental
suite.

Detecting Ambiguity in Programming Language Grammars 169

10 30 60 120
400

600

800

1,000

1,200

Time [seconds]

A
m
b
ig
u
it
ie
s
fo
u
n
d

Boltzmann sampled grammars (1600)

ACLA

AMBER (ell +N = 1010)

AmbiDexter (ik + unf)

dynamic1 (D = 11)

Fig. 4. Number of ambiguities found for Boltzmann sampled grammars

Figures 4, 5, and 6 show the results of our experiments for each grammar set,
for each time limit. In analysing some of the results from the main experiment,
we had to perform additional experiments. In most cases, we used grammars
from the main experiment. In only one case, for collecting data for sentence and
ambiguous fragment length, have we used grammars from the mini experiment.

Our results from the main experiment indicated that three of our grammar
sets were highly ambiguous: Boltzmann sampled (70%), the ‘add empty alterna-
tive’ mutated grammars (60%), and ‘delete symbol’ mutated grammars (45%).
Manual observation of ambiguous grammars led to two observations:

Cyclic ambiguity. Rules that contain cycles of the form (A: A | ...) or (A:
B | ...; B: A | ...) contribute to cyclic ambiguity [15]. We manually cal-
culated the percentage of cyclically ambiguous grammars to be: 22% (Boltz-
mann sampled), 0% (Altered PL), and 0.009% (Mutated). This appears to
be by far the most common type of ambiguity we encounter.

Multiple ambiguity. A grammar has multiple ambiguity if it has more than
one ambiguous subset. 36% of Boltzmann grammars contained 2.5 ambigu-
ities per grammar. For mutated grammars the figures are: 37% and 2.8 for
‘add empty alternative’; 13% and 3 for ‘mutate symbol’; 4% and 2.7 for ‘add
symbol’; and 23% and 2.6 for ‘delete symbol’.

In the rest of this section, we explore what the results mean for each tool (in
alphabetical order).

8.1 ACLA

Given a grammar, ACLA will report it to be ambiguous, unambiguous, or pos-
sibly ambiguous (that is, it is unsure if the grammar is ambiguous). ACLA’s
approach to ambiguity detection is based on two linguistic properties: vertical
and horizontal ambiguity. Vertical ambiguity means that during the parsing of

170 N. Vasudevan and L. Tratt

10 30 60 120

5

10

15

20

Time [seconds]

A
m
b
ig
u
it
ie
s
fo
u
n
d

Altered PL grammars (20)

ACLA

AMBER (ell + len = 10)

AmbiDexter (k = 15 + LR0)

dynamic1 (D = 9)

Fig. 5. Number of ambiguities found for altered PL grammars

Table 4. Maximum sentence (‘Sen’) and ambiguous fragment (‘Amb’) length detected
by each tool using the options from Table 3. Note: we were unable to determine the
sentence length for ACLA.

ACLA AMBER AmbiDexter dynamic1

Sen Amb Sen Amb Sen Amb Sen Amb

Boltzmann - 15 58 14 27 21 1554664 2671
Altered PL - 11 10 9 15 15 281 88
Mutated - 15 15 6 15 15 4392 502

a string, there is a choice between the alternatives of a non-terminal. Horizontal
ambiguity means that, when parsing a string according to a production alterna-
tive, there is a choice in how the string can be split.

For Boltzmann and mutated grammars, ACLA reported only one or two gram-
mars to be unambiguous. On average across the grammar sets, ACLA was unsure
whether 50–60% of the grammars were ambiguous or not. ACLA did not detect
12% of cyclically ambiguous grammars as being ambiguous. ACLA detects am-
biguity in a grammar by iterating through each non-terminal, and checking its
language for vertically or horizontally ambiguous strings. Although it is not clear
what sort of string length it searches for, the length of ambiguous fragments that
it detects, on average, ranges between 10 and 15 (see Table 4). In most cases,
where the ambiguous subset is deeply nested, ACLA is unsure if the grammar
is ambiguous. For most grammar sets, ACLA reaches a point of diminishing
returns at 120s. Only in the case of mutated grammars, did our results (see Fig-
ure 6) seem to indicate that given additional time, ACLA might uncover further
ambiguities. Running ACLA for an extended time limit of 240s only uncovered
in 4 additional ambiguities being found.

Detecting Ambiguity in Programming Language Grammars 171

10 30 60 120
145

190

235

280

325

Time [seconds]

A
m
b
ig
u
it
ie
s
fo
u
n
d

Add Empty (500)

10 30 60 120

20

40

60

80

100

120

Time [seconds]

Mutate Symbol (500)

10 30 60 120

15

30

45

60

75

Time [seconds]

A
m
b
ig
u
it
ie
s
fo
u
n
d

Add Symbol (500)

10 30 60 120

80

120

160

200

240

Time [seconds]

Delete Symbol (500)

ACLA AMBER (len = 15)

AmbiDexter (k = 15 + SLR1) dynamic1 (D = 17)

Fig. 6. Number of ambiguities found for mutated grammars

8.2 AMBER

AMBER performs extremely well on the Boltzmann grammars, but less well on
manually altered or mutated grammars. AMBER uses an exhaustive approach
to ambiguity detection, whereby it systematically enumerates strings for a given
grammar, and checks for ambiguity. There are two possible reasons why AM-
BER does well on Boltzmann grammars. First, these grammars contain multiple
ambiguities, and a relatively high percentage of cyclically ambiguous grammars.
AMBER was quick to detect these ambiguities. Second, the ambiguous sub-
sets found are easily reachable, in the sense that they are referenced from very
near the start of the grammar. For instance, in the case of Java.1, where the

172 N. Vasudevan and L. Tratt

ambiguous subset originates from the rule compilation unit, which is close to
the start rule, and AMBER is quick to find it. In the case of Pascal.2, where
the ambiguous subset originates from within an expression rule set (term) –
that is, frequently referenced – AMBER is quick to find it. However, for some
of the nested ambiguous subsets (as in Pascal.3, which contains a nested if-else
ambiguous subset), AMBER struggles.

8.3 AmbiDexter

AmbiDexter is effective for PL (altered and mutated) grammars, but is less ef-
fective for Boltzmann grammars. AmbiDexter does well on PL grammars for
two reasons. First, PL grammars contain short ambiguous subsets (see Table 4)
and AmbiDexter’s exhaustive search, whereby it checks for short strings exhaus-
tively, is quick to find it. Second, its filtering of unambiguous fragments was
very effective on PL grammars. For mutated grammars, where SLR1 was the
best performing filter, the percentage of rules filtered out were 60% (Pascal),
90% (SQL), and 24% (Java) and 20% (C), whereas for Boltzmann grammars,
it was 19%. There was a noticeable difference in (SLR1) filtering time between
mutated (1.3s) and Boltzmann grammars (0.7s). Since AmbiDexter uses an ex-
haustive approach, it struggles when the ambiguous subsets are long and deeply
nested.

8.4 dynamic1

As Table 4 indicates, compared to other tools, dynamic1 generates much longer
sentences, and therefore, it does well, in detecting long and deeply nested am-
biguous subsets. For lower values of the dynamic1 ’s depth option, sentences are
short and quick to generate; higher values generate longer sentences.

Since dynamic1 uses a non-deterministic approach, there can be significant
variation in the sentence and ambiguous fragment length from run to run. The
set of grammars discovered as ambiguous by dynamic1 is sometimes different
than other tools. For 111 of the Boltzmann and 2 of the mutated grammars that
ACLA found ambiguous, dynamic1 failed to do so; for AMBER, 4 Boltzmann
and 2 mutated PL grammars; for AmbiDexter, 2 Boltzmann and 8 mutated
grammars. Some of the grammars amongst these sets are common, but by no
means all.

Of the 111 Boltzmann grammars for which ACLA detected ambiguity and dy-
namic1 failed to detect any, 110 of them contained ambiguous subsets that were
unreachable from the start rule. For instance, a grammar with rules root: ’p’

and A: ’q’ | ’q’ contains an ambiguous subset that is unreachable from the
start rule. Since ACLA’s approach to ambiguity detection is by searching for am-
biguous strings for each non-terminal, it can detect ambiguities that are unreach-
able from the start rule. We did not anticipate our Boltzmann sampler generating
such non-sensical grammars, and recommend that future experiments filter them
out. The remaining one grammar for ACLA, and the grammars for AMBER and
AmbiDexter, contained common subsets, totalling 4 Boltzmann grammars. For

Detecting Ambiguity in Programming Language Grammars 173

2 of them, dynamic1 did not terminate, exited and re-ran (roughly 500 times
for one of the grammars). For the remaining two grammars, one of them con-
tained a short but deeply nested ambiguous subset, whereas for the other the
ambiguous fragment was long and, for D=11 (the best performing option for
Boltzmann grammar), dynamic1 didn’t generate sufficiently long sentences to
uncover ambiguity.

For the mutated grammar set, dynamic1 didn’t detect ambiguity for a total
of 9 grammars for which the other tools detected ambiguity. For 4 of these
grammars, the ambiguous subsets were short but deeply nested. For 2 of these
grammars, the ambiguous fragments were long, and D=17 (the best performing
option for mutated grammars) did not generate sufficiently long sentences to
uncover ambiguity. The remaining 3 grammars were cyclically ambiguous, and
dynamic1 ’s sentence generator did not terminate for them.

9 Validation Experiment

In order to ensure that the results of Figures 4, 5, 6 scale to larger sets of
grammars, we used dynamic1 to perform a validation experiment on a much
larger set of grammars (see Table 1). The number of ambiguities found for 120
seconds were 70% (Boltzmann) and 63%, 21%, 13%, and 45% (for mutated
types: add empty alternative, mutate symbol, add symbol and delete symbol
respectively). The proportion of ambiguities found in our validation experiment
is close to the number of ambiguities found in the main experiment (see Figures 4
and 6). All the data involved are available from our experimental downloadable
suite.

10 Validating the Hypotheses

In Section 1, we stated two hypotheses which informed our work. In this section,
we revisit the hypotheses in the light of our results.

Hypothesis H1 postulates that “covering a grammar in breadth is more likely
to uncover ambiguity than covering it in depth.” dynamic1 ’s non-deterministic
approach tends to naturally generate sentences which cover much larger por-
tions of a grammar than previous approaches. It is therefore more successful at
uncovering ambiguity against our grammar corpus than other tools. Although
non-determinism clearly plays its part, we believe that dynamic1 ’s coverage is
key and strongly validates hypothesis H1.

Hypothesis H2 postulates that “PL grammars are only a small step away
from being ambiguous.” The mutated grammars are our attempt to explore this
hypothesis and as the validation experiment shows, just over a third of mutations
to real PL grammars result in dynamic1 detecting ambiguity. This proportion
is a lower-bound: it is possible that there is further ambiguity in the mutated
grammars that dynamic1 (and, indeed, any other tool) does not discover. We
consider this validation of hypothesis H2.

174 N. Vasudevan and L. Tratt

11 Threats to Validity

The most obvious threat to the validity of our results are the grammars used.
In a previous experiment [9] we used a hand-written generator to create ran-

dom grammars. In this paper we created a Boltzmann sampler to reduce the
chances of bias in our hand-written generator. Interestingly, this made relatively
little difference to the number of ambiguous grammars we found. However, it
is impractical to generate completely arbitrary grammars, since they have no
size limit. Our Boltzmann specification is therefore geared towards generating
grammars which are “somewhat PL like”. It is possible that it still produces
overly biased grammars, particularly as we are forced to use filters to remove
some grammars we consider irrelevant or unrepresentative. Our current Boltz-
mann sampler can create grammars which have subsets of rules which are not
reachable from the start rule; ironically, these grammars penalise dynamic1 rel-
ative to other ambiguity tools such as ACLA. However, we believe that, overall,
it is more trustworthy than any previous random grammar generator.

The mutated grammars are also a potential threat to validity as we might have
chosen unrepresentative grammars as a base. Since they come from an external
source, we have some level of confidence in them.

The final threat to validity is our use of a mini experiment to determine a
reasonable set of run-time options for the various tools used. It is possible that
the grammars used in the mini experiment were unrepresentative of those used
in the main experiment, though our measurements suggest this is unlikely. The
percentage of ambiguous Boltzmann grammars were 67% (mini) and 70% (main).
The percentage of ambiguous mutated grammars (add empty alternative, mutate
symbol, add symbol, delete symbol) were mini (60%, 30%, 10%, and 42%) and
main (63%, 22%, 13%, and 46%).

12 Conclusions

In this paper, we introduced the concept of a search-based approach to CFG
ambiguity detection with the SinBAD tool and its dynamic1 backend. Using
the largest grammar corpus to date, we showed that dynamic1 can detect a
larger number of ambiguities than previous approaches. The key to its success
is its use of non-determinism, which has several surprising consequences. It frees
us from having to design many complex heuristics. dynamic1 ’s only heuristic
relates to the need to terminate the sentence generator. In turn, this allows
dynamic1 to explore a much larger portion of a grammar than by previous
approaches and it increases the chances of detecting ambiguous fragments nested
deep within a grammar. In essence, our results suggest that covering the breadth
of a grammar’s state space is more important than covering it in depth.

dynamic1 ’s chief weakness is that its single deterministic point causes it not
to terminate on some grammars. We suspect that a probabilistic approach which
gives a lower chance to frequently derived alternatives – in other words, which
makes it less likely, but not impossible, that they are picked – will make non-
termination less likely whilst preserving dynamic1’s general approach.

Detecting Ambiguity in Programming Language Grammars 175

We also introduced two new ways of generating large grammar corpuses:
Boltzmann sampling and grammar mutation. The grammars created using Boltz-
mann sampling were highly ambiguous and thus not entirely representative of
PL grammars. The mutated grammars, on the other hand, are representative of
PL grammars although how ambiguous they are depends on the mutation. Our
results indicate that certain mutations tend to cause grammars to be highly am-
biguous whereas others less so. Our experience suggest that for uses that require
exploring wide class of grammars, one should use Boltzmann sampling whereas,
uses that require exploring PL grammars, one should use grammar mutation.

Acknowledgements. We are extremely grateful to Alexis Darrasse (LIP6) for
his advice in creating a Boltzmann sampler specification. We thank the Depart-
ment of Informatics at King’s College for giving extended access to computing
facilities. Edd Barrett and Carl Friedrich Bolz gave insightful comments on drafts
of this paper.

References

1. Cantor, D.G.: On the ambiguity problem of backus systems. Journal of the
ACM 9(4), 477–479 (1962)

2. Tratt, L.: Parsing: The solved problem that isn’t. HackerMonthly, 37–42 (June 2011)
3. Schröer, F.W.: Amber, an ambiguity checker for context-free grammars. Technical

report (2001), http://accent.compilertools.net/Amber.html
4. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-

mars. Science of Computer Programming 75(3), 176–191 (2010)
5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In:

Proc. LDTA, pp. 5:1–5:9 (2010)
6. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an

incremental SAT solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 410–422. Springer, Heidelberg (2008)

7. Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars. In: Proc. SAC,
pp. 272–276. ACM (1995)

8. Basten, H.J.S.: Ambiguity detection methods for context-free grammars. Master’s
thesis, Universiteit van Amsterdam (August 2007)

9. Vasudevan, N., Tratt, L.: Search-based ambiguity detection in context-free gram-
mars. In: Proc. ICCSW, pp. 142–148 (September 2012)

10. Harman, M.: The current state and future of search based software engineering.
In: FOSE, pp. 342–357 (2007)

11. Schröer, F.W.: Accent, a compiler compiler for the entire class of context-free gram-
mars. Technical report (2000), http://accent.compilertools.net/Accent.html

12. Canou, B., Darrasse, A.: Fast and sound random generation for automated testing
and benchmarking in objective caml. In: Proc. Workshop on ML, pp. 61–70 (2009)

13. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

14. Basten, H.J.S., van der Storm, T.: Ambidexter: Practical ambiguity detection. In:
Proc. SCAM 2010, pp. 101–102 (2010)

15. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proc. IJCAI, pp. 756–764 (1985)

http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Accent.html

176 N. Vasudevan and L. Tratt

A Mutated Grammar Generation Algorithm

Algorithm 2 shows how we generate a mutated version of a grammar. μtype ∈
{empty,mutate, add, delete} indicates the type of mutation to be performed for
a given grammar. The function MUTATE-GRAMMAR first creates a deep copy
of the grammar. For the ‘add empty alternative’ mutation, we first identify
non-terminals which do not already have an empty alternative (line 4), before
randomly selecting one, and adding an empty alternative. For mutations of type
‘add symbol’ we randomly select a non-terminal, before randomly selecting one
of its alternatives. From the selected alternative, we randomly pick a position
and insert a randomly selected symbol from V (line 12). For mutation s of type
‘mutate symbol’ and ‘delete symbol’, we randomly select a non-terminal, before
randomly selecting one of its non empty alternatives. To mutate a symbol, we
randomly pick a position from the selected alternative and replace it with a
randomly selected symbol from V (line 18). To delete a symbol, we randomly
pick a position from the selected alternative, and delete it (line 20).

Algorithm 2. An algorithm to generate a mutated version of a grammar

1: function mutate-grammar(G, μtype)
2: Gc ← copy(G) � Gc = 〈Nc,Tc,Pc,Sc〉
3: if μtype = empty then
4: Nψ ← {A ∈ Nc | A /∈ Nε }
5: A ← R(Nψ, 1)
6: ΣP [A]alt ← append(ΣP [A]alt , [])
7: else
8: A ← R(Nc, 1)
9: if μtype = {add} then
10: alt ← R(ΣP [A]alt , 1)
11: k ← R[0,|alt |)
12: alt ← insert(alt , k,R(V, 1))
13: else if μtype ∈ {mutate, delete} then
14: alts ← {alt ∈ ΣP [A]alt | |alt | > 0 }
15: alt ← R(alts , 1)
16: k ← R[0,|alt |-1)
17: if μtype = {mutate} then
18: alt [k] ← R(V, 1)
19: else
20: alt ← delete(alt , k)
21: end if
22: end if
23: end if
24: return Gc
25: end function

A Pretty Good Formatting Pipeline

Anya Helene Bagge and Tero Hasu

Bergen Language Design Laboratory
Dept. of Informatics, University of Bergen, Norway

Abstract. Proper formatting makes the structure of a program appar-
ent and aids program comprehension. The need to format code arises in
code generation and transformation, as well as in normal reading and
editing situations. Commonly used pretty-printing tools in transforma-
tion frameworks provide an easy way to produce indented code that is
fairly readable for humans, without reaching the level of purpose-built
reformatting tools, such as those built into IDEs. This paper presents a
library of pluggable components, built to support style-based formatting
and reformatting of code, and to enable further experimentation with
code formatting.

1 Introduction

Pretty-printing and code formatting are fundamental in the software language
engineering toolbox. There are two main aspects to pretty-printing: creating
textual output from an internal representation, and ensuring that the textual
representation is visually pleasing and/or structurally clear. The ideal code for-
matting results in text that conveys the semantics as clearly as possible within
the constraints of the medium.

In this paper, we will focus mainly on the formatting aspect, rather than on
producing text output from an internal representation. Code formatting must
take into account the syntactic and maybe also the semantic structure of the
code in order to maximise the readability of the output. For example, the treat-
ment of spacing around a minus symbol depends on whether it occurs as a binary
operator (typically spaced on both sides), a unary operator (typically with no
space after), or in some other context. For this reason, the input to the format-
ting must either contain the necessary syntactic and semantic information, or it
must be reconstructed prior to formatting (via lexical, syntactic and/or semantic
analysis).

We may consider several formatting concerns:

– Horizontal spacing. Good placement of spaces can make the details easier
to grasp. For example, an expression such as a+x * y may easily confuse a
casual reader as to the operator precedence, compared to a + x*y or even
the neutrally spaced a + x * y (assuming normal operator priorities).

– Indentation has long been considered important to visual recognition of
scope and nesting structures in program text [12]. This insight goes back
at least to the 1960s [11].

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 177–196, 2013.
c© Springer International Publishing Switzerland 2013

178 A.H. Bagge and T. Hasu

– Line breaking may be necessary to fit the program to the screen or output
medium. Line breaking must trade off efficient use of the human field of vi-
sion against program comprehension concerns such as keeping related things
together and less related things further apart.

– Other processing, such as colourising or highlighting, attaching additional
information such as hover text for HTML output and so on.

This paper describes our pretty good formatter (PGF) and associated exper-
imental formatting components. PGF uses a pipeline of connected components
to format or reformat code, where the various concerns of producing pretty code
are separated into different processors; one for inserting horizontal space, one for
breaking lines, one for adding colour and so on. PGF is designed to be useful for
code generation, reformatting, or just reindenting code – depending on which
components are plugged into the pipeline. PGF provides basic building blocks
for making processing components, and the included components are designed
to be reusable for different languages, with appropriate customisation.

The pipeline architecture itself is reusable for other purposes, and offers sup-
port for processing data concurrently in a pipeline, one data item at a time. Each
processing component has access to a stream of input and a stream of output,
and may specify a desired level of look-ahead and output history, in order to
process based on a sliding window of information.

PGF is implemented as a reusable Java library, with experiments and pro-
totypes in the Rascal meta-programming language [10] and the Scheme variant
Racket [4]. The paper presents a mixture of the library proper, and the associated
experiments. All source code and related content is online.1

The contributions of this paper include:

– Pipeline processing: a pipelined framework for building flexible code format-
ters and rule-based token processors (Section 2);

– Line breaking: a new heuristic line-breaking algorithm, and a reformulation
of two other algorithms to fit our architecture (Section 3).

– Pipeline plumbing: a stream-based plugin architecture for connecting com-
ponents in a pipeline, and a technique for grouping tokens and building
pipelines dynamically (Section 4)

After presenting the contributions, the paper continues with a discussion and
related work (Section 5), and conclusion (Section 6).

2 The Formatting Pipeline

Our formatter is built from a pipeline of token processors. Each processor receives
a stream of tokens, processes them one by one, and feeds them to the next
processor. The pipeline is illustrated in Fig. 1, which shows an input tree, an
output text and two different pipeline arrangements, one doing line breaking and
another one doing colourising and indentation. More details about the pipeline
infrastructure is provided in Section 4.
1 http://nuthatchery.org/pgf/

http://nuthatchery.org/pgf/

A Pretty Good Formatting Pipeline 179

if(b)L{
LLxL=L3;
}

Printer

Line Breaker Spacer Tokeniser

Indenter Colouriser

If

b Assign

x 3
\t x L =

L 3 ; \n x L = L 3 ; x = 3 ;

Fig. 1. A PGF pipeline. Starting with a program tree (rightmost), we translate it
to a stream of tokens, then insert spaces, do indentation and line breaking, before
producing program text (leftmost). The alternative path (light blue), adds colour and
does indentation without line breaking. The token stream is shown below each step. In
this example, each token is only one character wide; this is not generally the case.

2.1 Tokens and Categories

Tokens are either data tokens or control tokens. Each data token represents an
atomic piece of source code to be output, while the control tokens (if used) may
convey information about nesting, indentation levels, etc.

Each data token contains a string of characters, and is associated with a
category, and possibly other metadata. The categories are user-definable, but we
have selected a set of default categories (see Fig. 2), in order to aid reusability
of components.

In this paper, we write data tokens enclosed in quotes, optionally followed by
a colon and the category; for example, "if":KEYWORD, " ":WS, "(":LPAR. Control
tokens are marked by a hash character followed by the category and possibly
a list of parameters, e.g., #BEGIN(expr). The PGF library itself uses slightly
different conventions, depending on the implementation language.

Each token has only one specified category, but each category may be a sub-
category of zero or more supercategories, with A <: B indicating that A is a sub-
category of B – implying that any token categorised as A can also be categorised
as B:

t : A A <: B

t : B

We will use A <: B also for the case where A is connected to B through one or more
intermediate steps. Note that, in this case, there may be multiple paths through
the supercategory chain, since each category can have multiple supercategories.

The use of categories is crucial for achieving reusability and language inde-
pendence of processors. For example, languages that mostly follow the same
spacing rules can reuse the same processor as long as the language-specific to-
kens are mapped to the same, general categories – possibly with a few additional
language-specific rules.

When customising a processor for a particular language, it may be useful
to have a one-to-one correspondence between token text and category, for in-
stance, in the case of keywords. So, we may have "if":IF and "else":ELSE, with

180 A.H. Bagge and T. Hasu

category { TXT, SPC, CTRL } <: TOKEN;
category { START, STOP, BEGIN, END } <: CTRL;
category { WS, NL, COM } <: SPC; // horizontal, vertical space; comments
category { KEYWORD, PUNCT, ID, LITERAL, OP, GRP } <: TXT; // non−space
category { PAR, BRC, BRT } <: GROUPING; // parens, braces, brackets
category { LPAR, RPAR } <: PAR; // parentheses
category { LPAR, LBRC, LBRT } <: LGROUPING; // left grouping tokens
category { COMMA, SEMI, COLON, DOT } <: PUNCT; // punctuation

Fig. 2. A selection of the default token categories. In the notation, category defines
one or more new categories (left-hand side), listing any supercategories to the right of
the <: sign.

{IF, ELSE} <:KEYWORD, and a rule stating that we should never break the line
between IF and ELSE.

Token processors make their decisions primarily based on token categories,
and not by inspecting token data. The flexible category hierarchy allows several
aspects to be encoded. For example, with a default categorisation of "(" as LPAR,
a left parenthesis token will belong to both its own category, as well as PAR
(parentheses in general), LGRP (left grouping tokens), GRP (groupings in general),
TXT (printable, non-space tokens), TOKEN (any token), and decisions may be made
on the basis of any of these.

2.2 The Tokeniser

The first processor in a pipeline is the tokeniser, which turns the input (whatever
that might be) into a stream of tokens. We envisage three kinds of input:

– a parse tree, containing both structural and lexical information, or
– an abstract syntax tree, containing mostly structural information (maybe

including semantic information), or
– a token sequence from a lexer, containing mostly lexical information.

With an abstract syntax tree, the lexical information must be reconstructed,
for example using a pretty-print table generated from the grammar, or by a
hand-written tokeniser which traverses the AST and outputs appropriate tokens
for each AST node.

Lexer output might be more or less directly usable, possibly with mapping of
the lexer’s token categories to the formatter’s. As we’ve only been using scan-
nerless parsers, we have not explored this option further.

With a parse tree as input, all necessary information for printing and format-
ting should be available, and we can use a generic parse tree tokeniser to obtain
the token stream. We have written such tokenisers that accepts parse trees in
the UPTR and AsFix2 formats.2
2 UPTR is the Universal Parse Tree Representation; it is used by Rascal, and is fairly

similar to its predecessor, AsFix2, which is used by SDF2 and the SGLR and JSGLR
parsers.

A Pretty Good Formatting Pipeline 181

Generic Parse Tree Tokeniser. The parse tree tokeniser (available in UPTR
and AsFix2 versions) traverses a parse tree, and produces data tokens for leaf
node; i.e., lexical (corresponding to identifies, numbers and such), literal (corre-
sponding to keywords and punctuation) or layout (corresponding to white space
and comments) nodes. The layout nodes are split into horizontal space (WS), new-
lines (NL) and comments (COM), and literals and lexicals are categorised according
to a customisable scheme:

– the text of each token is checked against a category mapping table (one
for lexicals and one for literals) either by exact string matching or regular
expression matching;

– the parse tree node is checked for a category annotation (such annotations
can be added automatically by a parser); and/or

– all tokens of the same syntactic sort can be mapped to the same category.

Remaining non-space tokens are categorised as the default TXT.
Additionally, control tokens may be emitted for some non-leaf nodes in the

parse tree – for example, indentation may require #BEGIN/#END control tokens
around lists of statements and other parts of the code that should be indented.

Mapping tables for literals, lexicals and sorts are all configurable, allowing the
tokeniser to be customised to a particular language, and having it output tokens
categorised according to a common scheme.

As an example, consider the following Java code input:
if(b) { x = 3; }

After parsing it using an SDF2 grammar3, the AsFix2 tokeniser yields the fol-
lowing token stream:
"if":IF "(":LPAR "b":ID ")":RPAR " ":WS "{":LBRC #BEGIN " ":WS "x":ID
" ":WS "=":EQ " ":WS "3":NUM ";":SEMI " ":WS #END "}":RBRC

A further refinement would be to tokenise comments, so they can be refor-
matted as well.

2.3 Token Processors

A token processor accepts a stream of input tokens, and produces a stream
of output tokens. Each processor has a process method which performs one
step of the processor. The pipeline framework will ensure that process is called
whenever there is available input to process.

The processor connects to the overall pipeline through a pipe connector which
provides buffering (if needed), a history of recently outputted tokens (if needed)
and may also provide transparent handling of control tokens for processors that
are only interested in data tokens.

We are free to implement a process in any way, as long as it satisfies the
general interface, but for convenience and performance, we provide a rule-based
framework for specifying processors. This should be suitable for most simple
3 JavaFront – http://strategoxt.org/Stratego/JavaFront

http://strategoxt.org/Stratego/JavaFront

182 A.H. Bagge and T. Hasu

cases; more advanced processors can be programmed in a general purpose lan-
guage. Section 2.4 and Section 2.5 give examples of token processors for adjusting
spacing and breaking lines, respectively. Full versions of the processors and ad-
ditional processors (including a general indenter) can be found in the online
materials.

Rule-Based Token Processors. A rule-base processor makes decisions based
on a set of prioritised rules. Each rule consists of a condition and an action. In
our Java library, conditions and actions are built using static methods returning
condition and action objects. Two kinds of conditions are currently supported:

– at(CAT...) true if the next incoming token(s) match CAT... (“looking at”)
– after(CAT...) true if the last emitted token(s) match CAT...

For example, the condition after(A, B).at(C, D) matches if the next tokens
match category C and D, and the last emitted token was a B preceded by an A.4
A token t:Ct matches a category C iff Ct = C or Ct <: C.

An action may be arbitrary Java code, or selected from a simple library of
actions:

– insert("txt", CAT) – insert a token before the current token
– move – move the current token from input to output
– seq(a1, a2, ...) – execute actions in sequence
– drop – delete the current token without producing output

Rules are added to the processor using the addRule method. For example, the
following processing rule deletes all spaces:
addRule(at(SPC), drop);

We’ll see more examples in Section 2.4.
Rule processing is implemented using decision tables, where a pair of cate-

gories are looked up, resulting in an action to be executed. We currently only
support matching with two categories – either a after(A).at(B) pair, or a two
token look-ahead, at(A, B). If only one category is given in a rule, the other is
assumed to be TOKEN, the supercategory of all categories.

Rule Priorities. It will often be the case that there is more than one matching
rule in a given situation. The general rule for resolving such ambiguities is that
the more specific rule should apply. In this context, “more specific” means, for a
rule with two categories:

– Assuming we are looking at a token with categories C,D, and we have two
rules r1 and r2 with conditions involving C1, D1 and C2, D2 respectively,
with C <: C1, C <: C2, D <: D1, and D <: D2;

4 It is useful to think of the tokens as flowing in from the right (or, equivalently, that
the token processor moves left-to-right over the token stream).

A Pretty Good Formatting Pipeline 183

– rule r1 is more specific than rule r2 if dist(C,C1)+dist(D,D2) < dist(C,C2)+
dist(D,D2),

– where dist(A,B) is the number of steps in the shortest supercategory chain
A <: . . . <: B from A to B.

In addition to this priority rule we may also state that one set of rules should
always have priority over another set of rules. When building a rule processor,
this can be accomplished with the addPriorityLevel method.

Potential conflicts can be determined when the decision table is built, and a
suitable warning will be provided to the programmer.

2.4 Token Processor: Spacer

The duty of the spacer is to process a stream of tokens, and insert spaces as
appropriate. This is used to control horizontal spacing in a document.

Spacing can increase readability, even though many languages do not treat
spaces as significant. A naive pretty-printing may insert spaces between all to-
kens, just to be on the safe side (e.g., preventing identifiers from running into
each other). A more refined approach is to insert spaces according to style rules.

Spacing is readily implemented with a rule-based processor. Since many spac-
ing rules are similar across languages (e.g., “(x, y)” is preferable to “(x ,y)”),
we expect to be able to reuse much of the spacing code for multiple languages.

For a Java or a similar language, some sensible spacing rules might be:

– No spaces on the inner side of parentheses
– Always (or never) space between an if and the parenthesis
– Always space after a comma, never before
– No space before semicolon
– Always space around a binary operator
– Always spaces between any other tokens

We may implement these rules using the code in Fig. 3. The rule set removes
all spaces from the input (highest priority level), and – unless otherwise specified
– adds a new space between all text tokens (lowest priority level).

If we apply the rules to the following Java code:
if(b) {x=3;}else{x=4;}
if(b) x = f (1,2,3);

we get the following result, with some spaces inserted and some removed:
if (b) { x = 3; } else { x = 4; }
if (b) x = f(1, 2, 3);

A user-friendly configuration frontend could present customisation choices to
the user, and then select appropriate rules to implement them. Note that it is
also possible to specify certain rules to be followed (e.g., no space before comma,
always after), while not otherwise changing the input.

184 A.H. Bagge and T. Hasu

addRule(at(WS), drop); // delete all incoming spaces

addPriorityLevel(); // rules above have highest priority

addRule(after(LPAR), nop); // no space after left parenthesis
addRule(at(PAR), nop); // no spaces before parentheses
addRule(after(IF).at(LPAR), space); // but always between ’if’ and ’(’

addRule(at(PUNCT), nop); // no space before comma, semicolon, etc.

addRule(after(TXT).at(BINOP), space); // space around binary operators (this
addRule(after(BINOP).at(TXT), space); // actually follows from the general rule)

addPriorityLevel(); // rules below have lowest priority

addRule(after(TXT).at(TXT), space); // general rule

Fig. 3. A selection of sample spacing rules. The full spacing code for Java is available
online. The command space inserts a space before the token we’re looking at; drop
deletes the token, and nop keeps the token (used for overriding a more general rule).

2.5 Token Processor: Line Breaker

The line breaker is responsible for turning a token stream into something that is
ready for printing or converting into a string. This means reducing all formatting
related stream content into nothing but text and line breaks. If line breaking is
done, any indentation must be done together with it, since indentation has an
impact on line width (though it is certainly possible to do only indentation in a
pipeline, without line breaking).

Line breaking is easily the most challenging part of code formatting, involving
trade-offs between horizontal and vertical space usage, code clarity and aesthet-
ics. Also, earlier breaking decisions can impact later ones, in terms of how much
space is available on a line – making the ‘wrong’ choice can make it impossible
to achieve a pleasing result later.

We have experimented with three different line breakers. One is experimental,
and based on assigning a ‘breakability’ value to each space (based, e.g. on how
deeply nested an expression is); the higher its value, the more breakable it is,
and the more likely it is that we break the line at that point, particularly as we
get closer to the end of the line (Section 3.2). Another one is a refinement of an
algorithm by Wadler [18]; some extensions have been added, and adjustments
have been made to accept stream-based input in order to fit the pipeline (Sec-
tion 3.3). The third one is a recent algorithm by Kiselyov et al. [9], with a novel
implementation technique, reliant on stream-based processing (Section 3.4).

The experimental algorithm is implemented in Rascal only, and is not yet op-
timised for performance. The Wadler algorithm is implemented in both Rascal
and Racket (with Racket offering decent performance). The Kiselyov algorithm

A Pretty Good Formatting Pipeline 185

is implemented in Racket only, with a present shortcoming denying us the al-
gorithm’s theoretically pleasing performance characteristics. We have no clear
favourite among these line breakers, but with our library of pluggable compo-
nents we aim to avoid “lock-in” to any particular choice – and also to allow
comparison of the different algorithms.

3 Line Breaking

3.1 Nesting and Indentation

Proper indentation relies on information about the current nesting level of the
code. Additionally, one of our algorithms (Section 3.2) relies on nesting for mak-
ing line-breaking decisions.

As we are working on a stream of data rather than a tree where nesting is
explicit, we rely on control tokens to tell us about changes in the nesting level.
The current nesting level can be tracked using a stack.

In addition to the usual increasing and decreasing of indentation levels, our
nesting primitives supports absolute (specified column), relative (to the current
column), and string-based indentation, as well as non-indenting nesting. Abso-
lute indentation is useful for printing #ifdef and other CPP directives starting
from the first column, or Lisp ;;; comments. Relative indentation support makes
it easier to align related text appearing over multiple lines. String-based inden-
tation is necessary for pretty-printing “line comments” (e.g., comments starting
with // in C++), if they are to be allowed to be broken over multiple lines.

The available indentation controls are:

– LvInc(n) – increase level by n (negative OK)
– LvStr(s) – append indentation string s
– LvAbs(n) – set new indentation level to n
– LvRel(n) – set level relative to current output cursor column

For example, a list of statements in a block may be surrounded by #BEGIN(
LvInc(1)) ... #END, causing the statements to be indented one level more that
the surrounding context. Relative indentation is useful inside parentheses. For
example, the control tokens in the following stream would cause the line breaker
to store the current column c, and indent the following line to c+0 if the line is
broken inside the parentheses:
... "(":LPAR #BEGIN(LvRel(0)) ... #END ")":RPAR ...

A plain #BEGIN ... #END is ignored by the indentation code, but may be used
for other purposes, such as the algorithm in Section 3.2.

Our indentation control tokens are similar to Chitil’s [2], who provides Open-
Nest and CloseNest. The difference is that OpenNest takes a function rather than
an interpreted level value. This solution is more flexible than ours in that any
function computing a new indentation level in terms of the current indenta-
tion level and “cursor” column is allowed. However, the function signature only
permits integers, and hence the equivalent of LvStr is inexpressible.

186 A.H. Bagge and T. Hasu

3.2 A New Line-Breaking Algorithm

This line breaking algorithm tries to balance simplicity with the desire to keep
related code on the same line. It is based on assigning breakability factors to
spaces in the document (we’ll assume that we always break lines at a space; if
necessary, an empty space may be used as a break-point). The algorithm assumes
that control tokens are inserted into the stream to indicate nesting, and the
breakability is chosen based on this; the deeper the nesting, the less breakable
a point is. Additionally, breakability can be set directly on space tokens, for
“always break” and “never break”. In our experiments, we’ve used nesting for
each level of declarations, statements and expressions in our parse tree.

The Algorithm

– We keep track of
• the desired line width (W),
• the current breakability level (B) – a number between 0 and 1,
• a stack of indentation levels (I),
• and the current horizontal position, as a fraction of the line (P).

– Furthermore we have
• A queue of processed tokens that have not yet been output
• The last space that seemed like a good place to break (S)
• The desirability of breaking at the last space (D) – computed based on
P and B (based on experimentation, P ∗B2 seems to be a good starting
point). Initially zero, higher is better.

– For each incoming token, we do:
1. • if text : append to queue

• if explicit line break : flush queue, break line, indent, reset variables
• if nesting start : decrease breakability by some factor (e.g., nestFac-

tor=0.75)
• if nesting end : increase breakability again
• if space: we must decide whether this is a better place to break than

our previous candidate. We compute the desirability of breaking at
the current point, if it is higher or equal to D, we:
(a) flush the queue
(b) store this space as the best break point
(c) store the new value of D
Otherwise, the space is added to the queue.

2. If the current position + queue length is larger than W, we:
(a) break line, indent, reset variables
(b) flush queue, reset best break point to empty, D=0.0

The algorithm never examines a token more than once, and has linear time
complexity. In terms of memory, it needs a queue buffer proportional to the
desired line width. Note that we only make the final decision on where to break
when we reach the end of the line. Some tuning is necessary in order to find the
best way to calculate how “desirable” a particular potential break is.

A Pretty Good Formatting Pipeline 187

In the small example below, the algorithm has been applied to a code frag-
ment with nested expressions, with line width 15. Compared to naive breaking
nearest the end of line (right), our algorithm (left) tries to keep the deeper nested
expressions on the same line; in this case, at the cost of using an extra line.

x = a * b
2 + c / d
+ (c / d * f)

4 + c / d;

x = a * b + c
2 / d + (c / d
* f) + c / d;

3.3 Adaptation of Wadler’s Pretty-Printing Algorithm

Our next line breaker is based on a pretty-printing algorithm described in a
paper by Wadler [18]. We discuss the key concepts and characteristics of the
original algorithm, and present our stream-adapted version and its extensions.

Wadler’s Pretty-Printing Algorithm. The original implementation [18] of
the algorithm is Haskell based. The input given to the algorithm is specified
as a document, which can be composed using provided operations. The most
important operations include: nil (empty document), text, line (line break), <>
(concatenation), nest (indented block), and group. The group constructor may
produce a document whose layout involves line-breaking decisions, as the layout
may differ depending on page width w.

The Haskell-based algorithm operates on primitive document types, which
are: NIL, :<> (concatenation), NEST, TEXT, LINE, and :<|>. All except :<|> have a
direct counterpart in the list of operations given above. The :<|> primitive sig-
nifies a union (or choice) of two possible sets of layouts, and any line-breaking
sensitivity within documents (including those produced by group) must ulti-
mately be expressible in terms of unions. The semantics of a union is that the
left choice is taken if and only if it (fully, or up to any LINE break) fits on the
line (i.e., the line width will not exceed w characters).

Use of the union primitive easily results in huge documents due to combina-
torial explosion. For performance it is crucial for implementations of Wadler’s
algorithm to: (i) never inspect more than w characters per choice, and to (ii) not
build (parts of) documents that are not inspected. Together these two measures
achieve the property of boundedness [18] (of a pretty-printing algorithm), which
Wadler defines as not looking at more than the next w characters in making
line-breaking decisions. Measure (ii) is implementable by means of lazy evalua-
tion, which one gets “for free” in Haskell as it is the default semantics. Laziness
leads to a kind of co-routine computation [2], and it is also possible to encode
sufficient laziness in strict languages [19].

Our Adaptation of the Algorithm. Our layout algorithm is the same as
Wadler’s in the sense that the same primitive document types are supported.
They may appear somewhat different, however, due to our requirement for a
stream-based interface; NIL, for example, is simply represented as the empty

188 A.H. Bagge and T. Hasu

stream, whereas any two consecutive tokens in a stream can be thought to have
been composed by :<>. Another difference to the original algorithm is that we
chose to extend the NEST primitive to support the indentation controls of Sec-
tion 3.1, for additional flexibility. The extension adds expressive power without
taking anything away or affecting the general performance characteristics of the
original algorithm.

We have implementations in both the Racket and Rascal languages. These
bear little resemblance to the original Haskell-based implementations, both due
to Haskell’s different evaluation semantics (lazy vs strict) and the different “doc-
ument model” (objects vs streams).

Complexity Bounding Measures. In the original implementation Haskell’s
need-driven evaluation automatically takes care of the bounding measures re-
quired for good performance. Rascal and Racket are both strict languages, and
we had to implement both of the measures explicitly.

To account for measure (i) we implemented the actual layout algorithm in a
strict manner, making state and modifications to it explicit. All state is stored
in structures, and no recursion is used by the algorithm proper. This makes the
evaluation order and control flow clear, and no information enabling early prun-
ing of fruitless search paths is “hiding” somewhere up the call stack. Decisions
about whether or not to backtrack are made as soon the right margin is crossed
when examining a choice (of a union). Backtracking is implemented by switching
to an older, stored state, which is possible as state updates are purely functional.

Measure (ii) is more externally visible as documents are provided as input,
and operations for constructing documents, whether lazily or otherwise, must be
made available to the user. In many cases the required laziness can be hidden by
accepting reasonably-sized (and complete) “instructions” for building documents
as arguments to operations, and then performing the construction lazily within
said operations as appropriate. The on-demand construction in a stream setting
is enabled by defining a lazy (functional) stream type. Many of our document
construction operations return such lazy streams, conforming to the “even” style
of laziness [19].

While we do expose our Union primitive and the lazy stream API to al-
low for full document building flexibility, a variety of typical layouts can be
achieved using the higher-level operations that we provide. These operations in-
clude flatten, group, and fill, as documented by Wadler [18]: flatten replaces
each line break (and its associated indentation) by a single space; group adds
a flattened form of a document as the preferred choice; and fill takes a list
of documents and creates a fill layout for them, so that whenever there are two
or more documents left, the first two are laid out flattened and a single space
between them if they fit on the line, and otherwise the first document is laid out
unflattened and followed by a line break.

A Pretty Good Formatting Pipeline 189

3.4 Kiselyov et al’s Pretty-Printing Algorithm

We have also made a Racket port of the linear-time, backtracking-free, bounded-
latency pretty-printing algorithm by Kiselyov et al [9]. The algorithm is faster
than Wadler’s, and operates on a token stream, after any initial tokenisation.
The set of supported formatting operations is like Oppen’s [14]. The algorithm
is particularly interesting for us as it suggests a potentially convenient way to
organise a pipeline with interleaved operation of token processors, similar to our
own formatting pipeline.

The Kiselyov algorithm itself has an internal token pipeline making use of a
yield construct similar to what one finds in Ruby and many other languages [7].
Kiselyov’s implementation of yield however does not require first-class delimited
continuations (such as created by Racket’s call-with-continuation-prompt), but
rather is based on much lighter-weight simple generators. Their idea is to bind
each token processor’s yield target in the dynamic environment as a function.
Our implementation of yield uses Racket’s built-in support for dynamic binding
(i.e., “parameterization”), which is semantically equivalent to the original Haskell
implementation’s use of the Reader (or “environment”) monad.

Our initial impressions of using the simple generator style of co-routines for
building pipelines are positive. One can just write “regular” Racket functions
that may invoke yield to emit tokens, and the bindings can be established only
once composing the pipeline. Processors requiring state may simply retain it in
their closure.

The one problem with our current implementation is that one of its auxiliary
data structures does not have all of the required stringent algorithmic proper-
ties. We are currently using an implementation of Okasaki’s banker’s deque [13],
which does not enable concatenation and iteration with the required properties.
The pipeline itself requires no explicit data structure, thanks to the yield-based
approach of immediately passing tokens from one processor to another, without
any pipe data structure in between.

4 Plumbing

4.1 Java Pipeline Design

We have so far described the details of token processors and formatting compo-
nents, we’ll now go into the details of the pipeline itself and how components
are coupled together – the plumbing.

Our generic pipeline framework for Java is built on three concepts:

– processors that manipulate a stream of objects;
– pipe components that control the processors, and are connected together in

a pipeline; and
– pipe connectors that connect processors to pipe components, and provide

buffering and various utility services.

190 A.H. Bagge and T. Hasu

The framework is designed to support (optional) concurrency with each proces-
sor running in its own thread. The framework takes care of transporting the
information through the pipeline, without the processor implementer having to
worry about locking or concurrency issues (unless the processor accesses non-
local information). Streams may be of any kind of object – in our PGF formatting
framework the objects are tokens.

Pipe components supports a connect method for connecting the output to
another component, put for sending an object into the component, end for sig-
nalling the end of a stream, and restart for resetting any internal state and
preparing for a new stream of data. In a concurrent setting, the pipe component
will take care of managing a processing thread.

Each pipe component connects to its processor through a pipe connector.
The connector can provide input and output buffering, and can also maintain
histories of the last seen or last output data items. The buffering is useful to
provide look-ahead for the processor, and also to reduce the amount of locking
in a concurrent setting. Multiple connectors may be layered to provide filtering
or translation of the data stream (for example, processing control tokens).

Each processor has a process method, which is called by the pipe component
whenever there is input available through the pipe connector. The processor may
inspect or get objects from the input buffer, and also send objects to the output.
The processor can state the amount of look-ahead and output history needed,
and also how the start and end of the stream should be signalled.

Activity is driven by putting objects into the pipeline; put calls to the first
component will propagate calls through the entire pipeline; the output from
one processor triggering a put to the next component which triggers the next
processor, and so on.

4.2 Grouping and Dynamic Processors in Racket

The pretty printer adaptation in Section 3.3 is designed for pipelining, in the
sense of contributing to a result as input becomes available. For example, the
formatting of a nested range of tokens can proceed before the end marker of the
range has been seen. The nesting construct is easy to handle in a stream setting
as any tokens within a nested range may be processed unconditionally. This is
unfortunately not the case with union primitive.

As mentioned in the subsection on complexity bounding measures, it is im-
perative for performance not to inspect (or even build) all the content of “large”
unions. Hence such content should not appear within the stream in a “flat” form,
as then it would be necessary to scan through any union contents just to get
past them. We are forced to “unnaturally” express a union as a token containing
the left and right choices as embedded streams. These nested streams can then
be inspected to the appropriate extent.

Alternative and lazy constructions may not be natural within a token se-
quence, but often such constructions are just the low-level expression of what
really is a concrete sequence with some associated semantics. For instance, con-
sider the group function, defined in Racket as shown below, involving the Union

A Pretty Good Formatting Pipeline 191

primitive and a lazy flatten operation. In the (commented out) example group
expression, we essentially just have the word sequence of “a” followed by “b”,
with the semantics that the words should be laid out horizontally if they fit on
a line, and vertically otherwise.
; ; E.g. (group (tseq "a" br "b"))
(define (group ts) ;; tseq → tseq
(Union (flatten ts) ts))

tseq is our token sequence datatype in Racket: empty-tseq is an empty sequence,
tseq is a constructor, and tseq-put appends a token, with functional update.

As can be seen from the listing, implementing group as a function in terms
of other operations is trivial when the full token stream ts to be grouped is
available. We want to retain this ease of implementation, but would still like
to allow groups to be emitted incrementally, token by token, as is fitting for a
stream setting. Chitil, in his pretty printer [2], enables this specifically for group
by supporting Open and Close tokens for delimiting the contents of a group. To
a similar and more general effect we want to be able to “encode” the argument
value for group as a sub-sequence of tokens, and then have the result of invoking
group with that argument used as input for the actual layout algorithm.

To allow for such encoding, we introduce a grouping mechanism, which dy-
namically inserts a processor into the pipeline, along with a substream of tokens
to be processed. While this kind of preprocessing happens to be particularly es-
sential for Wadler’s algorithm (unlike e.g. for Kiselyov’s and our own), we have
implemented the grouping processor in a fairly general way, and might find useful
applications for it elsewhere within our token pipeline.

In a general sense the grouping facility makes it possible for “foreign language”
(e.g., arguments to a function) to appear within an input stream, provided that it
is known where the “foreign expression” begins and ends, and that a translator
(to “native” language) is provided – for example, doing special formatting of
comments. The former condition is met with opening and closing control tokens
indicating the foreign range. The latter condition is met in an open-ended way
by specifying a translator in the opening Begin token. A translator must conform
to the Grouping abstraction, which includes functions for managing state for the
delimited token range.

Below we define XML-inspired group/ and /group delimiters, and use tseq-put
to cache arguments for the group function. We then have group called with its
entire cached argument upon seeing an End token. In this example the result is
a single Union token, and hence there is no possibility of returning result tokens
incrementally. The Union token may be lazily constructed, however. Here the
specified #:end operation produces the full result (as a stream), which indeed is
lazily constructed. The #:put operation is expected to receive and incorporate
both new input as well as the results of any contained, nested groupings.
(define group-grouping ;; Grouping
(make-grouping ’group
#:new (thunk empty-tseq) ;; create fresh state
#:put tseq-put ;; incorporate token into state

192 A.H. Bagge and T. Hasu

#:end group)) ;; finalise by calling ’group’ with state

; ; E.g. (tseq group/ "a" br "b" /group)
(define group/ (Begin group-grouping))
(define /group (End group-grouping))

A grouping implemented in such a manner (i.e., call a function to get the
result) may cause prohibitive space consumption for some applications, as de-
pending on grouping semantics one may have to first buffer the entire input and
then the entire result, and these can generally be of arbitrary length. However,
depending on the grouping it may be possible to reduce space consumption by:
(i) having “argument” tokens incorporated into a (small) result as they are read,
without having to buffer them (cf. a hash function); and/or (ii) returning the
result as a (small) lazy stream which will compute the full result sequence one
token at a time (cf. a generator).

The group function gives us (ii), but (i) appears impossible, and we are still
left with worst-case linear space consumption for our grouping implementation.
We presently have no solution to avoid such overhead for all groupings, and to
begin to achieve that we suspect that our grouping mechanism would have to be
made less generic, more closely integrated with the algorithm proper, or both.
As shown by Chitil and Swierstra [2,17], achieving theoretically pleasing layout
performance can be challenging and intricate.

The grouping support mechanism is implemented by maintaining grouping
state within token sequences to ensure correct ordering as tokens flow in and out
of grouping processing. Multiple groupings may nest, and groupings may output
groupings; there is no guarantee of termination. No token reaches the layout
algorithm proper before any grouping processing concerning it is complete; the
algorithm proper is unaware of groupings.

5 Discussion

5.1 Plumbing Considerations

The concept of organising a code formatter as a pipeline is appealing. It offers
four benefits, as far as we can tell:

– a clear separation of concerns,
– flexibility in that components can be plugged together to achieve different

effects (e.g., indent only; spacing + indentation; line breaking + indentation),
– ease of prototyping and experimentation, since multiple interchangeable ver-

sions of one component can be tried,
– a possibility for fairly simple concurrent processing.

There are different ways to achieve pipelining. Our Java library uses a series
of interconnected objects to achieve fairly straight-forward pipelining in Java.
The technique of Kiselyov et al [9] uses the yield language construct to achieve
“native” pipelining in languages that support it, without having to manage the

A Pretty Good Formatting Pipeline 193

pipeline as a data structure. The grouping construct of Section 4.2 is designed
for use in a surrounding pipeline, but also provides a way to dynamically build a
more complex pipeline based on the control tokens in the incoming token stream.

Our Java version has advantages in the relative ease of doing buffered look-
ahead and concurrency; a yield-based pipeline offers relative simplicity for lan-
guages that have it or where it can be added. Overall, we feel the choice comes
down to the preferred (or required) implementation language.

5.2 Performance

Although performance may be of some importance in an interactive setting, it
is of less concern than the quality of output, as long as “decent” performance
is offered. In our experiments with our Java implementation of PGF, the most
time consuming part of formatting is the tokenisation of parse tree – but even
this is dominated by the time spend on parsing. Formatting a 2 MiB file of Java
source takes around 6s (excluding parsing) on our workstations, which is a bit
slower than Eclipse’s Java formatter, but not much.

5.3 Quality and Reusability of Processors

We had an expectation that the various processing components that make up
the formatting pipeline should be fairly easy to adapt to different languages,
provided that the tokenisation has been customised for the particular languages.
Our results so far are promising; generic spacing, indentation and line-breaking
processors do a fair (but by no means perfect) job of formatting Java and Mag-
nolia code. Producing high quality output requires careful tuning, and will of
course also have to take into account styling preferences. Examples of output
can be found in the online materials.

More work is needed on composing and combining rule sets of rule-based
processors; extending a generic processor with rules for a particular language
has a tendency to result in rule conflicts or unexpected behaviour.

5.4 Related Work

Oppen’s pretty printer [14] is also stream oriented. Unlike Wadler’s, it exploits
streams to allow two communicating sequential processes to coordinate their
work. This results in performance characteristics of time O(n) and space O(w),
with input length n and page width w. In comparison, the worst case time
complexity of Wadler’s algorithm is O(nw) [2], i.e. superlinear if w is considered
variable.

While Oppen’s solution is unbeaten in performance, it is also monolithic. The
constructs of his layout language only exist as part of a whole, without a mean-
ingful description in isolation [5]. The variety of parameters for Oppen’s blank
tokens add expressiveness to the language. For example, consistent and incon-
sistent blanks loosely correspond to group and fill, respectively. The variable

194 A.H. Bagge and T. Hasu

offset of blanks has the same motivation as the LvRel parameter we introduced
in Section 3.1.

Hughes’ pretty printer [5] is based on algebraic design, and served as a major
influence for Wadler’s. The Union operator, for instance, has its origins in Hughes’
algebra, and indeed in the set theoretical ∪ operator. Hughes’ layout operator
set is expressive, able to express some layouts that Wadler’s cannot [18], but also
such that a bounded implementation is impossible [18].

Chitil [2] managed to devise a purely functional pretty printer with Oppen-
level efficiency. In it he also opts to represent documents as token sequences
rather than trees, due to sequences appearing more amenable to efficient pro-
cessing.5 Chitil maintains context information in explicit data structures, and
notes that this is important for achieving high efficiency. Our implementation
of Wadler’s algorithm shares these two design choices, though for reasons of
architecture and clarity.

Swierstra’s and Chitil’s joint work on a pretty printer [17] resulted in two
linear-time implementations that are simpler and clearer than Chitil’s earlier
work. They provide the insight that such solutions can be achieved by utilising
two mutually recursive processes running asynchronously, but that such solutions
are hard to express in purely algebraic style. Wadler’s algorithm was derived
based on algebraic techniques.

Kiselyov et al. found a still simpler and clearer way to implement a linear-time,
bounded-latency solution to the pretty printing problem [9]. Their algorithm,
discussed in Section 3.4, is similar to Swierstra and Chitil’s second solution
in that instead of relying on Haskell’s lazy evaluation to interleave processing,
a co-routine style approach is used; Swierstra and Chitil’s approach is more
heavyweight in that it involves building and storing “continuation” functions.
Kiselyov et al. point out a sometimes overlooked [16] corner case in the processing
of groups, offering normalisation of document trees as the solution. We believe
such normalisation cannot be done efficiently on token streams, meaning that
bounded look-ahead is lost unless we can ensure that earlier token processors
only produce normalised output.

The Box [1,3,8] formatting model is based on composing two-dimensional
boxes of code. This produces good quality output, but the complexity of the
algorithm is high, leading to poor performance on large documents (often dom-
inating the other processing steps in a source-to-source transformation). Addi-
tionally, some forms of indentation are difficult to express.

Jackson et.al. [6] provide an efficient, stable peephole pretty-printing algo-
rithm, suitable for use in an interactive editor. The peephole property means
that it is capable of pretty-printing just a part of a program, corresponding
to an editor view. The running time of the pretty-printer is thus independent
of the full length of the program—only the size of the editor’s view (or peep-
hole) matters. The algorithm is stable, in that it gives the same result as if the
entire program was pretty-printed, avoiding reformatting artefacts as the user

5 Swierstra has shown that a tree representation does not preclude Oppen-level effi-
ciency [16].

A Pretty Good Formatting Pipeline 195

scrolls the editor view. The stable peephole is achieved by identifying anchors
in the program; places where the indentation level is the same, no matter which
choices are made by the formatter. The line-breaking algorithm itself is a variant
of Wadler’s [18].

Our new line breaker has (we believe) fewer choices than the Wadler algo-
rithm, so it should be easier to identify anchors, and provide stable peephole
functionality. However, peepholing may not work so well with a pluggable archi-
tecture. We need to explore this more.

Reiss [15] has shown that given samples of existing source code in the desired
style, machine learning can be used to deduce formatting rules for the style.
This approach should also apply to deducing rule tables for our spacer engine,
for example.

6 Conclusion

PGF is a general framework for code formatting, based on a flexible pipeline of
formatting components. We aim to use the framework as a basis for further ex-
perimentation into customisable, language-independent formatting components.
The flexibility of offered by pluggable components seems useful for conducting
such experiments. We provide both a rule system for implementing components,
and support for using general purpose languages.

We have built components for spacing, indentation and three variants of line
breaking, as well as tokenisers accepting parse trees in UTPR and AsFix2 format.
Although we are implementing PGF as a Java library, we also perform experi-
ments and prototyping in Rascal and Racket. This has allowed us to rapidly try
out various techniques, including three different line breaking algorithms.

The general pipelining framework should be reusable for other purposes than
just code formatting – it is built to be independent of the type of data processed.
We have applied the PGF formatter to the Java and Magnolia languages, so far
with promising results, though further tuning is needed to produce high quality
output, and to determine the level of code reuse possible when implementing
formatters for multiple languages.

Online materials are available at http://nuthatchery.org/sle13/

Acknowledgements. Thanks to Eivind Jahren, who has helped us understand
unfamiliar Haskell concepts. This research has been funded by the Research
Council of Norway.

References

1. van den Brand, M.G.J., Visser, E.: Generation of formatters for context-free lan-
guages. ACM Transactions on Software Engineering and Methodology 5(1), 1–41
(1996)

http://nuthatchery.org/sle13/

196 A.H. Bagge and T. Hasu

2. Chitil, O.: Pretty printing with lazy dequeues. ACM Trans. Program. Lang.
Syst. 27, 163–184 (2005)

3. Coutaz, J.: A layout abstraction for user-system interface. SIGCHI Bull. 16(3),
18–24 (1985), http://doi.acm.org/10.1145/1044201.1044202

4. Flatt, M.: PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc (2010),
http://racket-lang.org/tr1/

5. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995)

6. Jackson, S., Devanbu, P., Ma, K.L.: Stable, flexible, peephole pretty-printing. Sci-
ence of Computer Programming 72(1-2), 40–51 (2008)

7. James, R.P., Sabry, A.: Yield: Mainstream delimited continuations. In: First Inter-
national Workshop on the Theory and Practice of Delimited Continuations, TPDC
2011 (May 2011)

8. de Jonge, M.: A pretty-printer for every occasion. In: Ferguson, I., Gray, J., Scott, L.
(eds.) Proceedings of the 2nd International Symposium on Constructing Software
Engineering Tools (CoSET 2000), University of Wollongong, Australia, pp. 68–77
(June 2000)

9. Kiselyov, O., Peyton-Jones, S., Sabry, A.: Lazy v. Yield: Incremental, linear
pretty-printing. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 190–206. Springer, Heidelberg (2012)

10. Klint, P., van der Storm, T., Vinju, J.: Rascal: A domain specific language for
source code analysis and manipulation. In: SCAM 2009: Proceedings of the 2009
Ninth IEEE International Working Conference on Source Code Analysis and Ma-
nipulation, pp. 168–177. IEEE Computer Society, Washington, DC (2009)

11. McKeeman, W.M.: Algorithm 268: Algol 60 reference language editor. Commun.
ACM 8(11), 667–668 (1965)

12. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indenta-
tion and comprehensibility. Commun. ACM 26(11), 861–867 (1983)

13. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1999)

14. Oppen, D.C.: Prettyprinting. ACM Trans. Program. Lang. Syst. 2, 465–483 (1980)
15. Reiss, S.P.: Automatic code stylizing. In: 22nd IEEE/ACM International Con-

ference on Automated Software Engineering (ASE), Atlanta, Georgia, pp. 74–83
(November 2007)

16. Swierstra, S.D.: Linear, online, functional pretty printing (corrected and extended
version). Tech. Rep. UU-CS-2004-025a, Department of Information and Computing
Sciences, Utrecht University (2004)

17. Swierstra, S.D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(1), 1–16 (2009)

18. Wadler, P.: A prettier printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming. Cornerstones of Computing. Palgrave Macmillan (June 2005)

19. Wadler, P., Taha, W., Macqueen, D.: How to add laziness to a strict language
without even being odd. In: Workshop on Standard ML, Baltimore, Maryland
(1998)

http://doi.acm.org/10.1145/1044201.1044202
http://racket-lang.org/tr1/

The State of the Art in Language Workbenches
Conclusions from the Language Workbench Challenge

Sebastian Erdweg1, Tijs van der Storm2,3, Markus Völter4, Meinte Boersma5,
Remi Bosman6, William R. Cook7, Albert Gerritsen6, Angelo Hulshout8,

Steven Kelly9, Alex Loh7, Gabriël D.P. Konat10, Pedro J. Molina11, Martin Palatnik6,
Risto Pohjonen9, Eugen Schindler6, Klemens Schindler6, Riccardo Solmi12,

Vlad A. Vergu10, Eelco Visser10, Kevin van der Vlist13,
Guido H. Wachsmuth10, and Jimi van der Woning13

1 TU Darmstadt, Germany
2 CWI, Amsterdam, The Netherlands

3 INRIA Lille Nord Europe, Lille, France
4 voelter.de, Stuttgart, Germany

5 DSL Consultancy, Leiden, The Netherlands
6 Sioux, Eindhoven, The Netherlands

7 University of Texas, Austin, US
8 Delphino Consultancy, Best, The Netherlands

9 MetaCase, Jyväskylä, Finland
10 TU Delft, The Netherlands

11 Icinetic, Sevilla, Spain
12 Independent, Bologna, Italy
13 Universiteit van Amsterdam

Abstract. Language workbenches are tools that provide high-level mechanisms
for the implementation of (domain-specific) languages. Language workbenches
are an active area of research that also receives many contributions from industry.
To compare and discuss existing language workbenches, the annual Language
Workbench Challenge was launched in 2011. Each year, participants are chal-
lenged to realize a given domain-specific language with their workbenches as a
basis for discussion and comparison. In this paper, we describe the state of the art
of language workbenches as observed in the previous editions of the Language
Workbench Challenge. In particular, we capture the design space of language
workbenches in a feature model and show where in this design space the par-
ticipants of the 2013 Language Workbench Challenge reside. We compare these
workbenches based on a DSL for questionnaires that was realized in all work-
benches.

1 Introduction

Language workbenches, a term popularized by Martin Fowler in 2005 [19], are tools
that support the efficient definition, reuse and composition of languages and their IDEs.
Language workbenches make the development of new languages affordable and, there-
fore, support a new quality of language engineering, where sets of syntactically and
semantically integrated languages can be built with comparably little effort. This can

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 197–217, 2013.
c© Springer International Publishing Switzerland 2013

http://www.stg.tu-darmstadt.de/
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe
http://www.voelter.de/
http://www.dslconsultancy.com/
http://www.sioux.eu/en/
http://www.cs.texas.edu
http://www.delphino-consultancy.nl/
http://www.metacase.com/
http://www.tudelft.nl
http://www.icinetic.com/
http://www.uva.nl

198 S. Erdweg et al.

lead to multi-paradigm and language-oriented programming environments [8, 61] that
can address important software engineering challenges.

Almost as long as programmers have built languages, they have also built tools to
make language development easier and language use more productive. The earliest
language workbench probably was SEM [52]; other early ones include MetaPlex [7],
Metaview [51], QuickSpec [43], and MetaEdit [48]. Graphical workbenches that are
still being developed today include MetaEdit+ [28], DOME [24], and GME [38]. On
the other hand, language workbenches that supported textual notations include Cen-
taur [5], the Synthesizer generator [46], the ASF+SDF Meta-Environment [30], Gem-
Mex/Montages [2], LRC [36], and Lisa [42]. These systems were originally based
on tools for the formal specification of general purpose programming languages [20].
Nonetheless, many of them have been successfully used to build practical domain-
specific languages (DSLs) as well [41]. Textual workbenches like JastAdd [49], Ras-
cal [32, 33], Spoofax [27], and Xtext [17] can be seen as successors of these systems,
leveraging advances in editor technology of mainstream IDEs. At the same time, pro-
jectional language workbenches like MPS [57] and Intentional [47] are reviving and
refining the old idea of structure editors [9], opening up the possibility of mixing arbi-
trary notations.

Throughout their development, language workbenches and domain-specific
languages have been used in industry. Examples include:

– Eurofighter Typhoon [1], with IPSYS’s HOOD toolset (later ToolBuilder).
– Nokia’s feature phones [44], with MetaEdit+.
– RISLA, a DSL for interest-rate products [3], with ASF+SDF.
– Polar’s heart rate monitors and sports watches [26], with MetaEdit+.
– WebDSL [56] and Mobl [22] for building Web applications and mobile applications

respectively, with Spoofax.
– File format DSL for digital forensics tool construction [53], with Rascal.
– mbeddr [58, 59] a C-based language for embedded software development, includ-

ing extensions such as units of measure, components, requirements tracing, and
variability, based on MPS.

Language workbenches are currently enjoying significant growth in number and di-
versity, driven by both academia and industry. Existing language workbenches are so
different in design, supported features, and used terminology that it is hard for users
and developers to understand the underlying principles and design alternatives. To this
end, a systematic overview is helpful.

The goal of the Language Workbench Challenge (LWC) is to promote understanding
and knowledge exchange on language workbenches: Each year a language engineering
challenge is posed and the submissions (often but not exclusively by tool developers) im-
plement the challenge; documentation is required as well, so others can understand the
implementation. All contributors then meet to discuss the submitted solutions. By tack-
ling a common challenge, the approaches followed by different workbenches become
transparent, and understanding about design decisions, capabilities, and limitations in-
creases. In this paper, we channel the lessons learnt from the previous iterations of the
LWC and document this knowledge for the scientific community at large. In particular,
we make the following contributions:

The State of the Art in Language Workbenches 199

– We describe the history of the LWC.
– We establish a feature model that captures the design space of language work-

benches as observed in the previous LWCs.
– We present and discuss the 10 language workbenches participating in LWC’13 by

classifying them according to our feature model.
– We present empirical data on 10 implementations of the LWC’13 assignment (a

questionnaire DSL).
– Based on our investigation, we document the state of the art of language work-

benches.

2 Background

The idea of the LWC was born during discussions at the 2010 edition of the Code Gener-
ation conference. Since then, LWC has been held three times, each year with a different
language to implement as assignment. Below we briefly review the assignments of 2011,
2012, and 2013. Then we describe the methodology we followed in this paper.

2.1 The Challenges of LWC

The LWC’11 assignment1 consisted of a simple language for defining entities and re-
lations. At the basic level, this involved defining syntax for entities, simple constraint
checking (e.g., name uniqueness), and code generation to a general-purpose language.
At the more advanced level, the challenge included support for namespaces, a language
for defining entity instances, the translation of entity programs to relational database
models, and integration with manually written code in some general-purpose language.
To demonstrate language modularity and composition, the advanced part of the assign-
ment should be realized without modifying the solution of the basic assignment.

In the LWC’12 assignment2, two languages had to be implemented. The first lan-
guage captured piping and instrumentation models which can be used, for instance, to
describe heating systems. The elements of this language included pumps, valves, and
boilers. The second language consisted of a state machine-like controller language that
could be used to describe the dynamic behavior of piping and instrumentation models.
Developers were supposed to combine the two languages to enable the simulation of
piping and instrumentation systems.

The LWC’13 assignment3 consisted of a DSL for questionnaires, which should be
rendered as an interactive GUI that reacts to user input to present additional questions.
The questionnaire definition should be validated, for instance, to detect unresolved
names and type errors. In addition to basic editor support, participants should modularly
develop a styling DSL that can be used to configure the rendering of a questionnaire.
We describe the details of the LWC’13 assignment in Section 5.

1 http://www.languageworkbenches.net/index.php?title=LWC_2011
2 http://www.languageworkbenches.net/index.php?title=LWC_2012
3 http://www.languageworkbenches.net/index.php?title=LWC_2013

http://www.languageworkbenches.net/index.php?title=LWC_2011
http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.languageworkbenches.net/index.php?title=LWC_2013

200 S. Erdweg et al.

2.2 Research Methodology

The main goal of this paper is to document the state of the art of language workbenches
in a structured and informative way. We assemble the relevant information based on our
experience and involvement in the LWC from 2011 to 2013. Nevertheless, for this paper
we focused on the most recent challenge of 2013. We invited all participants of LWC’13
to contribute to the domain analysis and to the language workbench comparison as
described below.

Domain Analysis. The first part of our methodology addresses the goal of accurately
describing the domain of language workbenches. We have asked all participants of
LWC’13 to provide a detailed list of features supported by their language workbench.
The first three authors then started to “mine” a feature model [25] to capture the rel-
evant aspects of the language-workbench domain. Since non-functional features have
not been in scope of any previous LWC, we solely focused on the functional properties
of language workbenches. The extracted feature model was then presented to all partic-
ipants for feedback. The refined feature model presented in Section 3 provides a way to
categorize language workbenches according to which features they support.

Empirical Data. In addition to a general overview of language workbenches, we in-
vestigated empirical data on the solutions submitted to the LWC’13. We constructed a
feature model for the features of the questionnaire DSL and asked the participants to
indicate which features they realized in their solution. We present a description of the
assignment and the feature model in Section 5.

To get an impression about how different language workbenches achieve various
(subsets of) features of the questionnaire DSL, we also asked all participants to answer
the following three questions:

– What is the size of your solution? The suggested metric for the answer was SLOC
(Source Lines of Code)4.

– What are the static, compile-time dependencies? This captures the various libraries,
frameworks, and platforms that are needed to run the compiler and IDE of the
questionnaire DSL.

– What are the dynamic, runtime dependencies? This addresses the additional soft-
ware components that are needed to run the generated questionnaires GUIs.

We present the answers to these questions and discuss the language workbenches in
view of these results in Section 6 and Section 7 respectively.

Generality of the Survey. Not all existing language workbenches were represented
at LWC’13. Language workbenches that contributed to earlier challenges, but not to
LWC’13, include commercial ones, such as the Intentional workbench [47], OOMega5,
and Obeo Designer6, as well as academic systems such as Atom3 [37], Cedalion [39],
and EMFText [21]. As we show in Section 4, the language workbenches covered in
our study are very diverse regarding the features they support. To our knowledge, the

4 SLOC does not count comments or empty lines. Note that SLOC only works for textual lan-
guages; we come back to this problem in Section 6.

5 http://www.oomega.net/
6 http://www.obeodesigner.com/

http://www.oomega.net/
http://www.obeodesigner.com/

The State of the Art in Language Workbenches 201

features of aforementioned language workbenches are covered by our feature model.
Hence, even though not all language workbenches are part of this survey, we consider
the domain of language workbenches sufficiently covered.

3 A Feature Model for Language Workbenches

Language workbenches exist in many different flavors, but they are united by their
common goal to facilitate the development of (domain-specific) languages. Based on
input provided by the participants of LWC’13, we derived the feature model shown in
Fig. 1. It outlines the most important features of language workbenches. We use stan-
dard feature-diagram notation and interpretation [4]: The root node (Language work-
bench in Fig. 1) is always selected. A mandatory feature (filled circle) has to be selected
if its parent is selected. An optional feature (empty circle) does not have to be selected
even if its parent is selected. In a list of Or children (filled edge connector), at least one
feature has to be selected if the parent is selected.

We separate language workbench features into six subcategories. A language work-
bench must support notation, semantics, and an editor for the defined languages and
its models. It may support validation of models, testing and debugging of models and
the language definition, as well as composition of different aspects of multiple defined
languages. In the remainder of this section, we explain the feature model in more detail.

Every language workbench must support the mandatory feature notation, which de-
termines how programs or models are presented to users. The notation can be a mix of
textual, graphical, and tabular notations, where textual notation may optionally support
symbols such as integrals or fraction bars embedded in regular text.

A language workbench must support the definition of language semantics. We dis-
tinguish translational semantics, which compiles a model into a program expressed in
another language, and interpretative semantics, which directly executes a model with-
out prior translation. For translational semantics we distinguish between model-to-text
translations, which are based on concatenating strings, and model-to-model translations,
which are based on mapping abstract model representations such as trees or graphs. To
simplify the handling of abstract model representations, some language workbenches
support concrete syntax for source and target languages in transformation rules.

Editor support is a central pillar of language workbenches [19] and we consider
user-defined editor support mandatory for language workbenches. The two predominant
editing modes are free-form editing, where the user freely edits the persisted model
(typically the source code), and projectional editing, where the user edits a projection
of the persisted model in a standard, fixed layout. In addition to a plain editor, most
language workbenches provide a selection of syntactic and semantic editor services.
Syntactic editor services include:

– Customizable visual highlighting in models, such as language-specific syntax color-
ing for textual languages or language-specific node shapes for graphical languages.

– Navigation support via an outline view.
– Folding to hide part of a model.
– Code assist through syntactic completion templates that suggest code, graph, or

tabular fragments to the user.

202 S. Erdweg et al.

F
ig

.1
.F

ea
tu

re
m

od
el

fo
r

la
ng

ua
ge

w
or

kb
en

ch
es

.W
it

h
fe

w
ex

ce
pt

io
ns

,a
ll

fe
at

ur
es

in
th

e
fe

at
ur

e
m

od
el

ap
pl

y
to

th
e

la
ng

ua
ge

s
th

at
ca

n
be

de
fi

ne
d

w
it

h
a

la
ng

ua
ge

w
or

kb
en

ch
,a

nd
no

tt
o

th
e

de
fi

ni
tio

n
m

ec
ha

ni
sm

of
th

e
la

ng
ua

ge
w

or
kb

en
ch

its
el

f.

The State of the Art in Language Workbenches 203

– Comparison of programs via a diff -like tool (the basis for version control).
– Auto formatting, restructuring, aligning, or layouting of a model’s presentation.

Semantic editor services include:

– Reference resolution to link different concepts of the defined language such as dec-
larations and usages of variables.

– Code assist through semantic completion that incorporates semantic information
such as reference resolution or typing into the completion proposal.

– Semantics-preserving refactorings of programs or models, ranging from simple re-
naming to language-specific restructuring.

– In case an error is detected in the model, an error marker highlights the involved
model element and presents the error message to the user.

– Quick fixes may propose ways of fixing such an error. When the user selects any of
the proposed fixes, the faulty model is automatically repaired.

– When transforming models, keeping track of a model’s origin enables linking ele-
ments of the transformation result back to the original input model. This is particu-
larly useful for locating the origin of a static or dynamic error in generated code. It
is also useful in debugging.

– To better understand the behavior of a model, it can be useful to have a view of the
code that a model compiles to. Language workbenches that feature live translation
can display the model and the generated code side-by-side and update the generated
code whenever the original model changes.

In addition to the above services, the language editor provided by most language work-
benches can display information about the result of language-specific validations. We
distinguish validations that are merely structural, such as containment or multiplicity
requirements between different concepts, and validations that are more semantic, such
as name or type analysis. Language workbenches may facilitate the definition of user-
defined type systems or name binding rules. However, many language workbenches
do not provide a declarative validation mechanisms and instead allow the definition of
validation rules programmatically in a general-purpose programming language.

Another important aspect of building languages is testing of the language definition.
Testing a language definition may be supported by unit-testing the different language as-
pects: the syntax (parser or projections), semantics (translation or interpretation), editor
(completion, reference resolution, refactoring, etc.), and validation (structure or types).
Some language workbenches support debugging. We distinguish between support for
debugging the language definition (validation or semantics), and support for construct-
ing debuggers for the defined language. The latter allows, for instance, the definition of
domain-specific views to display variable bindings, or specific functionality for setting
breakpoints.

Finally, composability of language definitions is a key requirement for supporting
language-oriented programming [8, 61] where software developers use multiple lan-
guages to address different aspects of a software system. Language workbenches may
support incremental extension (syntactic integration of one language into another) and
language unification (independent languages can be unified into a single language) [12].
This composition should be achieved for all aspects of a language: syntax, validation,
semantics, and editor services.

204 S. Erdweg et al.

In summary, our feature model captures most of the design space for language work-
benches. In creating this feature model, we ignored how the various features can be
supported by a language workbench. This is the focus of the subsequent section.

4 Language Workbenches

In this section, we introduce the language workbenches that participated at LWC’13
and show which features of our feature model they support.

4.1 Introduction of the Tools

Ensō (since 2010, http://www.enso-lang.org) is a greenfield project to enable a soft-
ware development paradigm based on interpretation and integration of executable spec-
ification languages. Ensō has its roots in an enterprise application engine developed at
Allegis starting in 1998, which included integrated but modular interpreters for seman-
tic data modeling, policy-based security, web user interfaces, and workflows. Between
2003 and 2010 numerous prototypes were produced that sought to refine the vision and
establish an academic foundation for the project. The current version (started in 2010)
is implemented in Ruby. Rather than integrate with an existing IDE, Ensō seeks to even-
tually create its own IDE. The goal of the project is to explore new approaches to the
model-based software development paradigm.

Más (since 2011, http://www.mas-wb.com) is a web-based workbench for the creation
of domain-specific languages and models. Más uses projectional editing to provide con-
venient styling of models and an intuitive editor experience for “non-dev” users, and
makes language definition as simple as possible. Language semantics is defined through
“activations”, consisting, for instance, of declarative code generation templates. Más
aims at lowering the entry barrier for language creation far enough to allow adoption
and scaling of the model-driven approach across disciplines and industries.

MetaEdit+ (since 1995, http://www.metacase.com) is a mature, platform-independent,
graphical language workbench for domain-specific modeling [28]. MetaEdit+ aims to be
the easiest domain-modeling tool to learn and to use, removing accidental complexity to
allow users to concentrate on creating productive languages and good models. MetaEdit+
is commercially successful, used by customers in both industry and academia. Empirical
research has consistently shown that MetaEdit+ increases productivity of developers by
a factor of 5–10 compared to programming [26, 29, 44].

MPS (since 2003, http://www.jetbrains.com/mps/) is an open-source language work-
bench developed by JetBrains. Its most distinguishing feature is a projectional editor that
supports integrated textual, symbolic, and tabular notations, as well as wide-ranging sup-
port for composition and extension of languages and editors. MPS realizes the language-
oriented programming paradigm introduced by Sergey Dmitriev [8] and has evolved into
a mature and well-documented tool. It is used by JetBrains internally to develop various
web-based tools such as the Youtrack bugtracker. It has also been used to develop var-
ious systems outside of JetBrains, the biggest one probably being the mbeddr tool for
embedded software development [58].

http://www.enso-lang.org
http://www.mas-wb.com
http://www.metacase.com
http://www.jetbrains.com/mps/

The State of the Art in Language Workbenches 205

Onion (since 2012) is a language workbench and base infrastructure implemented in
.NET for assisting in the creation of DSLs. Onion has evolved from Essential (2008), a
textual language workbench with a focus on model interpretation and code generation.
The main goals of the Onion design is to provide the tools to speed up DSL creation for
different notations (text, graphical, projectional) and provide scalability for big models
via partitioning and merging capabilities. Onion emphasizes speed of parsing and code
generation, enabling real-time synchronization of models and generated code.

Rascal (since 2009, http://www.rascal-mpl.org) is an extensible metaprogramming
language and IDE for source code analysis and transformation [23, 32, 33, 54]. Rascal
combines and unifies features found in other tools for source code manipulation and
language workbenches. Rascal provides a simple, programmatic interface to extend the
Eclipse IDE with custom IDE support for new languages. Rascal is currently used as
a research vehicle for analyzing existing software and the implementation of DSLs.
It provides the implementation platform for a real-life DSL in the domain of digital
forensics [53]. The tool is accompanied with interactive online documentation and is
regularly released as a self-contained Eclipse plugin.

Spoofax (since 2007, http://www.spoofax.org) is an Eclipse-based language work-
bench for efficient development of textual domain-specific languages with full IDE
support [27]. In Spoofax, languages are specified in declarative meta-DSLs for syntax
(SDF3 [60]), name binding (NaBL [34]), editor services, and transformations (Strat-
ego [6]). From these specifications, Spoofax generates and dynamically loads an Eclipse-
based IDE which allows languages to be developed and used inside the same Eclipse
instance. Spoofax is used to implement its own meta-DSLs. Spoofax has been used to
develop WebDSL [56] and Mobl [22], and is being used by Oracle for internal projects.

SugarJ (since 2010, http://www.sugarj.org) is a Java-based extensible programming
language that allows programmers to extend the base language with custom language
features [11,14]. A SugarJ extension is defined with declarative meta-DSLs (SDF, Strat-
ego, and a type-system DSL [40]) as part of the user program and can be activated in
the scope of a module through regular import statements. SugarJ also comes with a
Spoofax-based IDE [13] that can be customized via library import on a file-by-file ba-
sis. A language extension can use arbitrary context-free and layout-sensitive syntax [15]
that does not have to align with the syntax or semantics of the base language Java. There-
fore, SugarJ is well-suited for the implementation of DSLs that combine the benefits of
internal and external DSLs. Variants of SugarJ support other base languages: JavaScript,
Prolog, and Haskell [16].

Whole Platform (since 2005, http://whole.sourceforge.net) is a mature projec-
tional language workbench supporting language-oriented programming [50]. It is mostly
used to engineer software product lines in the financial domain due to its ability to de-
fine and manage both data formats and pipelines of model transformations over big data.
The Whole Platform aims to minimize the explicit metamodeling efforts, so that users
can concentrate on modeling. The Whole Platform aims to reduce the use of mono-
lithic languages and leverages grammar-based data formats for integrating with legacy
systems.

http://www.rascal-mpl.org
http://www.spoofax.org
http://www.sugarj.org
http://whole.sourceforge.net

206 S. Erdweg et al.

Xtext (since 2006, http://www.eclipse.org/Xtext/) is a mature open-source frame-
work for development of programming languages and DSLs. It is designed based on
proven compiler construction patterns and ships with many commonly used language
features, such as a workspace indexer and a reusable expression language [10]. Its flex-
ible architecture allows developers to start by reusing well-established and commonly
understood default semantics for many language aspects, but Xtext scales up to full pro-
gramming language implementations, where every single aspect can be customized in
straightforward ways by means of dependency injection. Companies like Google, IBM,
BMW and many others have built external and internal products based on Xtext.

4.2 Language Workbench Features

We position the language workbenches above in the design space captured by our fea-
ture model as displayed in Table 1. In the remainder of this subsection, we reflect on
some of the findings.

Notation and Editing Mode. Most language workbenches provide support for textual
notations. Only MetaEdit+ is strictly non-textual. Más, MetaEdit+, MPS, and the Whole
Platform provide support for tabular notations. Más, MPS and Onion employ projec-
tional editing, which simplifies the integration of multiple notation styles. Currently,
only Ensō combines textual and graphical notations by providing support for custom
projections into diagram editors. All other language workbenches only support textual
notation, edited in a free-form text editor. MetaEdit+, MPS, and the Whole Platform
also support mathematical symbols, such as integral symbols or fractions.

Semantics. Except for Ensō, all language workbenches follow a generative approach,
most of them featuring both model-to-text and model-to-model transformations, and
many additionally supporting interpretation of models. In contrast, Ensō eschews gen-
eration of code and is solely based on interpreters, following the working hypothesis
that interpreters compose better than generators.

Validation. Some language workbenches lack dedicated support for type checking
and/or constraints. These concerns are either dealt with programmatically, or assumed
to be addressed by the use of semantically rich meta models. MPS, SugarJ [40], and
Xtext provide declarative languages for the definition of type systems. Spoofax has a
declarative language for describing name binding rules [34].

Testing. MPS, Spoofax, and Xtext feature dedicated sublanguages for testing aspects
of a DSL implementations, such as parsing, name binding, and type checking. Rascal
partially supports testing for DSLs through a generic unit testing and randomized testing
framework. Five language workbenches provide debuggable specification languages.
Four language workbenches support the debugging of DSL programs. For example,
Xtext automatically supports debugging for programs that build on Xbase and compile
to Java. MPS has a debugger API that can be used to build language-specific debuggers.
It also defines a DSL for easily defining how debugging of language extension works.
Both Xtext and MPS rely on origin tracking of data created during generation. In the
Whole Platform both metalanguage and defined language can be debugged using the
same infrastructure which has support for conditional breakpoints and variable views.

http://www.eclipse.org/Xtext/

The State of the Art in Language Workbenches 207

Table 1. Language Workbench Features (= full support, = partial/limited support)

E
ns

ō

M
ás

M
et

aE
di

t+

M
P

S

O
ni

on

R
as

ca
l

S
po

of
ax

S
ug

ar
J

W
ho

le

X
te

xt

Notation Textual
Graphical
Tabular
Symbols

Semantics Model2Text
Model2Model
Concrete syntax
Interpretative

Validation Structural
Naming
Types
Programmatic

Testing DSL testing
DSL debugging
DSL prog. debugging

Composability Syntax/views
Validation
Semantics
Editor services

Editing mode Free-form
Projectional

Syntactic services Highlighting
Outline
Folding
Syntactic completion
Diff
Auto formatting

Semantic services Reference resolution
Semantic completion
Refactoring
Error marking
Quick fixes
Origin tracking
Live translation

Composability. Composability allows languages to be built by composing separate,
reusable building blocks. Ensō, Rascal, Spoofax, and SugarJ obtain syntactic compos-
ability through the use of generalized parsing technology, which is required because only
the full class of context-free grammars is closed under union. The composability of Xtext
grammars is limited, since it is built on top of ANTLR’s LL(*) algorithm [45]. Syntactic
composition in Onion is based on composing PEG [18] grammars. The language work-
benches MPS and MetaEdit+, which do not use parsing at all, allow arbitrary notations
to be combined.

208 S. Erdweg et al.

Fig. 2. An example of a textual QL model (left) and its default rendering (right)

The composability of validation and semantics in Rascal, Spoofax, and SugarJ is
based on the principle of composing sets of rewrite rules. In Ensō, composition of se-
mantics is achieved by using the object-oriented principles of inheritance and delegation
in interpreter code. In MPS, different language aspects use different means of compo-
sition. For example, the type system relies on declarative typing rules which can be
simply composed. On the other hand, the composition of transformations relies on the
pair-wise specification of relative priorities between transformation rules.

Editor. The free-form textual language workbenches that are built on Eclipse (Rascal,
Spoofax, SugarJ, Xtext) all provide roughly the same set of IDE features: syntax color-
ing, outlining, folding, reference resolution, and semantic completion. Spoofax, SugarJ,
and Xtext have support for syntactic completion. Rascal, Spoofax, and Xtext allow the
definition of custom formatters to automatically layout DSL programs. Projectional ed-
itors such as MPS, Whole Platform or Más always format a program as part of the
projection rules, so this feature is implicit. Textual free-form language workbenches get
the Diff feature for free by reusing existing version-control systems. MPS comes with
a dedicated three-way diff/merge facility that works at the level of the projected syntax.
MetaEdit+ provides a dedicated differencing mechanism so that modelers can inspect
recent changes; for version-control a shared repository is used.

5 LWC 2013 Assignment: A DSL for Questionnaires

We use the assignment of LWC’13 for comparing the language workbenches introduced
in the previous section. In the present section, we briefly introduce the assignment and
its challenges, which was to develop a Questionnaire Language (QL)7. A questionnaire

7 Original assignment text: http://www.languageworkbenches.net/images/5/53/Ql.pdf.
The questionnaire language was selected based on the expectation that it could be completed
“after-hours” and that it would not be biased towards one particular style of language work-
benches (e.g., graphical or textual). We have had no feedback indicating that the assignment
was infeasible or unsuitable.

http://www.languageworkbenches.net/images/5/53/Ql.pdf

The State of the Art in Language Workbenches 209

Fig. 3. Feature model of the QL assignment

consists of a sequence of questions and derived values. A question may be condition-
ally visible based on the values of earlier questions. A questionnaire is presented to a
user by rendering it as a GUI, as exemplified in Fig. 2. In addition to these mandatory
features, we asked participants to realize a number of optional features. All features are
shown in the feature model of Fig. 3. Specifically, we asked for a QL language and IDE
implementation supporting the following features:

– Syntax: provide concrete and abstract syntax for QL models.
– Rendering: compile to code that executes a questionnaire GUI (or interpret di-

rectly).
– Propagation: generate code that ensures that computed questions update their value

as soon as any of their (transitive) dependencies changes.
– Saving: generate code that allows questionnaire users to persist the values entered

into the questionnaire.
– Names: ensure that no undefined names are used in expressions.
– Types: check that conditions and expressions are well-typed.
– Cycles: detect cyclic dependencies through conditions and expressions.
– Determinism: check that no two versions of equally-named questions are visible

simultaneously (requires SAT solving or model checking).
– Highlighting: provide customized visual clues to distinguish language constructs.
– Outline: provide a hierarchical view or projection of QL models.
– References: support go-to-definition for variables used in conditions and expres-

sions.
– Error marking: visually mark offending source-model elements in case of errors.

We also asked participants to develop a second language called QLS for declaring the
style and layout of QL questionnaires. QL has the requirement that it should be possible
to apply a QLS specification to an existing questionnaire without anticipation in the
definition of the questionnaire itself. Specifically, we asked for the following features:

– Sectioning: allow questions to be (re)arranged in sections and subsections.
– Pagination: allow questions to be distributed over multiple pages.

210 S. Erdweg et al.

– Styling: allow customization of fonts, colors, and font styles for question labels.
– Widgets: enable the selection of alternative widget styles for answering questions.
– Cross-validation: check that the references within a QLS specification refer to valid

entities of the corresponding questionnaire model.

Taken together, there are 17 features of which 3 are mandatory (syntax, rendering and
propagation). The next section discusses empirical data on the submitted solutions them-
selves.

6 Results

The results presented in this section are based on the solutions submitted to LWC’13
(links to the sources of these solutions are listed in Table 2). In Table 3 show for each
language workbench which features the corresponding QL/QLS implementation sup-
ports. The feature-based categorization of the solutions provides a qualitative frame of
reference for interpreting the size and dependency results given in Table 4. To indicate
the completeness of a solution, we computed feature coverage as shown in the bottom
row of Table 3. The coverage is computed by counting the number of supported features
(= 1, = 0.5), and then dividing by the total number of features (17).
Table 4 summarizes the results on the size of each QL/QLS solution. As a size metric,
we use the number of source lines of code (SLOC), excluding empty lines and com-
ments. Because in some language workbenches non-textual notations are used to realize
(parts of) the solution, SLOC does not tell the whole story. In these cases, we also count
and report the number of model elements (NME). Model elements include any kind of
structural entity that is used to define aspects of a language. For example, in MetaEdit+,
modeling elements include graphs, objects, relationships, roles, and properties.

For the textual language workbenches Ensō, Onion, Rascal, Spoofax, SugarJ, and
Xtext, SLOC were measured using the script cloc.pl8 or by manual count. For Más,
MetaEdit+, and the Whole Platform we counted the number of model elements and
measured the size additional code artifacts. Since MPS is purely projectional but still
provides a textual presentation of languages, we use an approximate SLOC count: We
counted modeling elements and computed SLOC of an equivalent Java program by
multiplying the number of model elements with different factors for different types of
modeling elements [59]. In addition we report the number of SLOC/NME per feature.
The number is obtained by dividing the total SLOC/NME by the number of supported
features. Finally, the table also shows the compile-time and runtime dependencies of
each solution to appreciate the complexity of deploying the resulting QL/QLS IDE and
the generated questionnaire applications.

It is important to realize it is not our intention to present the quantitative results of
Table 4 as an absolute measure of implementation effort or complexity (as is, e.g., done
in [35]). They cannot be used to rank language workbenches. Factors that prevent such
ranking include:

– The SLOC count is incomplete in systems where non-textual languages are used,
such as in Más, MetaEdit+, MPS and Whole Platform. The NME count only par-
tially makes up for this.

8 http://cloc.sourceforge.net

http://cloc.sourceforge.net

The State of the Art in Language Workbenches 211

Table 2. Published sources of the QL solutions
Lang. Workbench Links to the corresponding QL solutions

Ensō https://github.com/enso-lang/enso/tree/master/demos/Questionaire

Más http://www.mas-wb.com/secure/concrete/language?id=120001&securityToken=
restricted_public_token
http://www.mas-wb.com/languages/inspector?id=120001

MetaEdit+ http://www.metacase.com/support/50/repository/LWC2013.zip

MPS http://code.google.com/p/mps-lwc13

Onion https://bitbucket.org/icinetic/lwc2013-icinetic

Rascal https://github.com/cwi-swat/QL-R-kemi

Spoofax https://github.com/metaborg/lwc2013

SugarJ https://github.com/seba--/sugarj/tree/questionnaire/case-studies/
questionnaire-language

Whole Platform https://github.com/wholeplatform/whole-examples/tree/master/org.whole.
crossexamples.lwc13

Xtext http://code.google.com/a/eclipselabs.org/p/lwc13-xtext/

– A single number of SLOC is presented, but in each language workbench (a multi-
plicity of) different programming, modeling, and specification languages are used.

– The architecture and design may be substantially different across QL/QLS solu-
tions. For instance, chosing a client-server Web architecture over a desktop GUI
design may or may not affect SLOC.

– Different QL/QLS features may require varying amounts of effort, which may not
be reflected in SLOC. Furthermore, the degree as to how much effort is needed for a
particular feature may vary per language workbench. The coarse granularity of the
QL feature model may obscure this even more. For instance, the feature model does
not distinguish between the number of questionnaire data types that are supported.

– Even though, intuitively, more features would imply more effort, this relation is al-
most certainly not linear, since more features increase the risk of feature interaction.
The SLOC/feature metric ignores this aspect.

– The SLOC count may be influenced by the developer’s familiarity with the lan-
guage workbench. For instance, some of the solutions have been developed by the
language workbench implementors themselves (e.g., Más, SugarJ), whereas others
are built by first-time (e.g., MPS) or second-time (e.g., Rascal) users of a language
workbench. We did not record the time spent on a particular solution.

– Even if all risks above could be mitigated, our data set is to small to derive any
statistically significant conclusions. Moreover, in the low end of the SLOC data set
there are very few data points, and in the upper region of the data set there is high
variability.

In summary, we are aware that the presented numbers are a gross simplification of
reality. Nevertheless, juxtaposing the size, size per feature, and dependencies helps to
spot outliers and can enable interesting observations. Furthermore, this can guide future
investigations by workbench users or implementors. In the next section, we present our
findings based on the results above.

212 S. Erdweg et al.

Table 3. Implemented QL and QLS features per language workbench (= “fully implemented”,
= “partially implemented”)

E
ns

ō

M
ás

M
et

aE
di

t+

M
P

S

O
ni

on

R
as

ca
l

S
po

of
ax

S
ug

ar
J

W
ho

le

X
te

xt

Syntax
Execution Rendering

Propagation
Saving

Validation Names
Types
Cycles
Determinism

IDE Coloring
Outline
References
Marking

QLS Sectioning
Pagination
Styling
Widgets
Validation

Feature coverage (in percent) 24 44 88 74 82 88 97 59 65 94

Table 4. Size metrics and dependency information on the QL/QLS solutions

SLOC / NME SLOC/NME
per feature

Compile-time dependencies Runtime dependencies

Ensō 83 / − 21 / − Ensō, NodeJS or Ruby 1.9 Ensō, NodeJS, browser with
JavaScript, jQuery

Más 413 / 56 55 / 9 Más, browser with JavaScript browser with JavaScript, jQuery
MetaEdit+ 1177 / 68 78 / 5 MetaEdit+ browser with JavaScript
MPS 1324 / − 106 / − MPS, JDK, Sacha Lisson’s

Richtext Plugins
JRE

Onion 1876 / − 134 / − Onion, .NET 4.5,
StringTemplate

browser with JavaScript

Rascal 2408 / − 161 / − Rascal, Eclipse, JDK, IMP PHP server, browser with
JavaScript, jQuery and validator

Spoofax 1420 / − 86 / − Spoofax, Eclipse, JDK, IMP,
WebDSL

WebDSL runtime, SQL database,
browser with JavaScript

SugarJ 703 / − 70 / − SugarJ, JDK, Eclipse, Spoofax JRE
Whole 645 / 313 59 / 28 Whole Platform, Eclipse, JDK JRE, SWT, Whole LDK
Xtext 1040 / − 65 / − Xtext, Eclipse, ANTLR, Xtend JRE, JSF 2.1, JEE container

7 Observations

Completeness. All solutions fulfilled the basic requirements of rendering and execut-
ing QL models. Furthermore, 9 out of 10 solutions provide IDE support for the QL
language. Additionally, 7 of those solutions also provide confusing IDE support for

The State of the Art in Language Workbenches 213

the optional QLS language. All of the solutions achieve these results with fewer than
2 500 SLOC; for the language workbenches based on non-textual notations, the raw
SLOC count is below 1 200. For comparison, a simple QL implementation in Java,
consisting of a (generated) parser, type checker and interpreter, rougly requires around
3 100 SLOC, excluding IDE support and QLS features9. This shows that state of the art
language workbenches indeed provide advanced support for language engineering, and
confirms earlier research providing evidence that the use of DSL tools leads to language
implementations which are easier to maintain [31].

Diversity. Reflecting upon Tables 1 and 4 we can observe a striking diversity among the
tools, even though they perform more or less equally well in terms of the assignment.
In our study, half of the workbenches are developed in an academic context (Ensō,
Rascal, Spoofax, SugarJ, and the Whole Platform) and the other half in industry (Más,
MetaEdit+, MPS, Onion, and Xtext). Feature coverage and SLOC per feature show
no bias to either side. Similarly, the age of the language workbenches varies from 18
years (MetaEdit+) to 1 year (Onion). Yet, again there seems to be no bias towards a
particular age category. It is to be expected that the maturity, stability, and scalability
of industrial and academic tools differ; however, this has not been focus of our study.
Indeed, scalability will likely be one of the focuses of the next LWC, from which we
hopefully gain further insight into the field of language workbenches.

Another interesting distinction is whether a language workbench provides a single,
generic metalanguage or a combination of smaller metalanguages. For instance, Rascal
provides a unified language with domain-specific features (grammars, traversal, rela-
tional calculus, etc.) to facilitate the construction of languages. Similarly, apart from
metamodels in Más and grammars and metamodels in Onion, these two language work-
benches interface with general purpose languages for the heavy lifting (Xtend in Más,
C# in Onion). Both MPS and Xtext provide escapes to Java should the need arise.

On the other hand, Spoofax provides a multiplicity of declarative languages dedi-
cated to certain aspects of a language implementation (e.g., SDF3 for parsing and pretty
printing, Stratego for transformation, NaBL for name binding, etc.). Along the same
lines, MPS and SugarJ provide support for building such sub-languages on top of an
open, extensible base language. In this way, SugarJ integrates SDF, Stratego and a lan-
guage for type systems into the base language. MPS uses specialized languages for type
system rules, transformation rules and data flow specification, among others.

Finally, considering editor model and notation style, there seems to be no predom-
inant language-workbench style: textual, projectional and graphical notations are well
represented and have been found equally able to realize the QL/QLS assignment. It is
interesting to note however, that such boundaries are blurring. MPS already supports
tabular, symbolic, and textual notations. Both MPS and Spoofax are currently working
towards integrating graphical notations (see e.g., [55]). In the Onion language work-
bench, textual parsing is combined with projectional editing. Finally, Ensō apriori does

9 This number is based on computing the median SLOC of hand-written, non-test Java code
and ANTLR, Rats! or JACC grammar definitions over 48 QL implementations, constructed by
students of the Software Construction course in the Master Software Engineering, University
of Amsterdam, 2013. See:
https://github.com/software-engineering-amsterdam/sea-of-ql

https://github.com/software-engineering-amsterdam/sea-of-ql

214 S. Erdweg et al.

not commit to one particular style and supports both textual and graphical editing. Thus
there seems to be a convergence towards language workbenches where multiple, het-
erogeneous notations or editing modes may co-exist within one language, similar to the
original vision of intentional programming [47].

Language Reuse and Composition. An important goal of language-oriented program-
ming [61] is the ability to combine different languages describing different aspects of
software systems. The results on the QL/QLS assignment reveal first achievements in
this direction. First of all, as indicated above, a number of language workbenches ap-
proach language-oriented programming at the meta level: language definitions in MPS,
Spoofax, and SugarJ are combinations of different metalanguages. Second, some of the
language workbenches achieve high feature coverage using relatively low SLOC num-
bers. Notably, the low SLOC/feature number of Ensō, MPS, Spoofax, SugarJ and Xtext
can be explained by reusing existing languages or language fragments. The Ensō, MPS,
SugarJ, and Xtext solutions reuse a language for expressions, thus getting aspects like
syntax, type checking, compilation or evaluation for free. The Spoofax solution targets
the WebDSL platform, thus reusing execution logic at runtime. In contrast, the Rascal
solution includes full implementations of both syntax and semantics of expressions and
the execution logic of questionnaires.

Another observation in line with language-oriented programming is the fact that all
language workbenches considered in this paper are themselves compile-time dependen-
cies for the QL/QLS IDE. This suggests that the goal of state-of-the-art language work-
benches is not so much to facilitate the construction of independent compilers and IDEs,
but to provide an extensible environment where those compilers and IDEs can live in.
In Ensō, MetaEdit+, MPS, SugarJ, and the Whole Platform, new languages are really
extensions of or additions to the language workbench itself. MPS, Ensō and SugarJ go
sofar as to even facilitate extension of the metalanguages. Furthermore, with the excep-
tion of Xtext, all language workbenches allow new languages or language extensions to
be activated dynamically within the same instance of the IDE.

8 Concluding Remarks

To document the state of the art of language workbenches, we established a feature
model that captures the design space of language workbenches. We positioned exist-
ing language workbenches in this design space by identifying the features they support.
As our study reveals, all features of our feature model are realized by some language
workbench, but no language workbench realizes all features. To investigate the 10 lan-
guage workbenches of our study in more detail, we collected empirical data on feature
coverage, size, and required dependencies of implementations of a language for ques-
tionnaires with styling (QL/QLS) in each language workbench. Based on the results,
our observations can be summarized as follows:

– Language workbenches provide adequate abstractions for implementing a language
like QL. The results show a marked advantage over manual implementation.

– The language workbench space is very diverse: different sets of supported features,
age ranging from 1 to 18 years, single metalanguage or multiple metalanguages,

The State of the Art in Language Workbenches 215

industry or research, etc. Based on our results it is impossible to conclude that any
particular category performs better than others.

Finally, we have observed trends towards:

– Integrating different notation styles (textual, graphical, tabular, symbolic) and edit-
ing modes (free-form and projectional).

– Reuse and composition of languages, leading to language-oriented programming
both at the object level and meta level.

– Viewing language workbenches as an extensible environments, instead of a tools to
create other tools.

References

1. Alderson, A.: Experience of bi-lateral technology transfer projects. In: Diffusion, Transfer
and Implementation of Information Technology (1997)

2. Anlauff, M., Kutter, P.W., Pierantonio, A.: Tool support for language design and prototyping
with montages. In: Jähnichen, S. (ed.) CC 1999. LNCS, vol. 1575, pp. 296–300. Springer,
Heidelberg (1999)

3. Arnold, B.R.T., Van Deursen, A., Res, M.: An algebraic specification of a language for
describing financial products. In: Formal Methods Application in Software Engineering,
pp. 6–13. IEEE (1995)

4. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

5. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:
the system. SIGPLAN Not. 24(2), 14–24 (1988)

6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

7. Chen, M., Nunamaker, J.: Metaplex: An integrated environment for organization and infor-
mation system development. In: ICIS, pp. 141–151. ACM (1989)

8. Dmitriev, S.: Language oriented programming: The next programming paradigm. JetBrains
on Board 1(2) (2004)

9. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B.: Programming environments based on
structured editors: The MENTOR experience. Technical Report 26, INRIA (1980)

10. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,
W., Hanus, M.: Xbase: Implementing domain-specific languages for Java. In: GPCE,
pp. 112–121 (2012)

11. Erdweg, S.: Extensible Languages for Flexible and Principled Domain Abstraction. PhD
thesis, Philipps-Universität Marburg (2013)

12. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: LDTA, pp.
7:1–7:8. ACM (2012)

13. Erdweg, S., Kats, L.C.L., Rendel, T., Kästner, C., Ostermann, K., Visser, E.: Growing a
language environment with editor libraries. In: GPCE, pp. 167–176. ACM (2011)

14. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: Library-based syntactic language
extensibility. In: OOPSLA, pp. 391–406. ACM (2011)

15. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Layout-sensitive generalized parsing.
In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 244–263. Springer,
Heidelberg (2013)

16. Erdweg, S., Rieger, F., Rendel, T., Ostermann, K.: Layout-sensitive language extensibility
with SugarHaskell. In: Haskell Symposium, pp. 149–160. ACM (2012)

216 S. Erdweg et al.

17. Eysholdt, M., Behrens, H.: Xtext: Implement your language faster than the quick and dirty
way. In: SPLASH Companion, pp. 307–309. ACM (2010)

18. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: POPL,
pp. 111–122. ACM (2004)

19. Fowler, M.: Language workbenches: The killer-app for domain specific languages? (2005),
http://martinfowler.com/articles/languageWorkbench.html

20. Heering, J., Klint, P.: Semantics of programming languages: a tool-oriented approach. SIG-
PLAN Not. 35(3), 39–48 (2000)

21. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement
of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg (2009)

22. Hemel, Z., Visser, E.: Declaratively programming the mobile web with Mobl. In: OOPSLA,
pp. 695–712. ACM (2011)

23. Hills, M., Klint, P., Vinju, J.J.: Meta-language support for type-safe access to external re-
sources. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 372–391.
Springer, Heidelberg (2013)

24. Honeywell Technology Center. Dome guide (1999)
25. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report, CMU Software Engineering Institute
(1990)

26. Kärnä, J., Tolvanen, J.-P., Kelly, S.: Evaluating the use of domain-specific modeling in prac-
tice. In: DSM (2009)

27. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative specifica-
tion of languages and IDEs. In: OOPSLA, pp. 444–463. ACM (2010)

28. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A fully configurable multi-user and multi-tool
CASE and CAME environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.)
CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

29. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press (2008)

30. Klint, P.: A meta-environment for generating programming environments. TOSEM 2(2), 176–
201 (1993)

31. Klint, P., van der Storm, T., Vinju, J.: On the impact of DSL tools on the maintainability of
language implementations. In: LDTA. ACM (2010)

32. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with rascal. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE III. LNCS, vol. 6491, pp. 222–289.
Springer, Heidelberg (2011)

33. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source
code analysis and manipulation. In: SCAM, pp. 168–177. IEEE (2009)

34. Konat, G., Kats, L., Wachsmuth, G., Visser, E.: Declarative name binding and scope rules.
In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 311–331. Springer,
Heidelberg (2013)

35. Kosar, T., López, P.E.M., Barrientos, P.A., Mernik, M.: A preliminary study on various im-
plementation approaches of domain-specific language. Inf. Softw. Technol. 50(5), 390–405
(2008)

36. Kuiper, M.F., Saraiva, J.: Lrc – a generator for incremental language-oriented tools. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer, Heidelberg (1998)

37. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Hei-
delberg (2002)

38. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Intelligent Signal Process-
ing (2001)

http://martinfowler.com/articles/languageWorkbench.html

The State of the Art in Language Workbenches 217

39. Lorenz, D.H., Rosenan, B.: Cedalion: A language for language oriented programming. In:
OOPSLA, pp. 733–752. ACM (2011)

40. Lorenzen, F., Erdweg, S.: Modular and automated type-soundness verification for language
extensions. In: ICFP (to appear, 2013)

41. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316–344 (2005)

42. Mernik, M., Lenič, M., Avdicauševic, E., Zumer, V.: LISA: An interactive environment for
programming language development. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304,
pp. 1–4. Springer, Heidelberg (2002)

43. Meta Systems Ltd. Quickspec reference guide (1989)
44. MetaCase. MetaEdit+ revolutionized the way Nokia develops mobile phone software (2007),

http://www.metacase.com/cases/nokia.html (June 5th, 2013)
45. Parr, T., Quong, R.W.: ANTLR: A predicated-LL(k) parser generator. Software Practice and

Experience 25(7), 789–810 (1995)
46. Reps, T., Teitelbaum, T.: The synthesizer generator. SIGPLAN Not. 19(5), 42–48 (1984)
47. Simonyi, C., Christerson, M., Clifford, S.: Intentional software. In: OOPSLA, pp. 451–464.

ACM (2006)
48. Smolander, K., Lyytinen, K., Tahvanainen, V.-P., Marttiin, P.: MetaEdit—a flexible graphical

environment for methodology modelling. In: Andersen, R., Solvberg, A., Bubenko Jr., J.A.
(eds.) CAiSE 1991. LNCS, vol. 498, pp. 168–193. Springer, Heidelberg (1991)

49. Söderberg, E., Hedin, G.: Building semantic editors using JastAdd: tool demonstration. In:
LDTA, p. 11 (2011)

50. Solmi, R.: Whole platform. PhD thesis, University of Bologna (2005)
51. Sorenson, P.G., Tremblay, J.-P., McAllister, A.J.: The Metaview system for many specifica-

tion environments. IEEE Software 5(2), 30–38 (1988)
52. Teichroew, D., Macasovic, P., Hershey III, E., Yamato, Y.: Application of the entity-

relationship approach to information processing systems modeling (1980)
53. van den Bos, J., van der Storm, T.: Bringing domain-specific languages to digital forensics.

In: ICSE SEIP, pp. 671–680. ACM (2011)
54. van der Storm, T.: The Rascal Language Workbench. CWI Technical Report SEN-1111, CWI

(2011)
55. van Rest, O., Wachsmuth, G., Steel, J., Süss, J.G., Visser, E.: Robust real-time synchroniza-

tion between textual and graphical editors. In: ICMT (2013)
56. Visser, E.: WebDSL: A case study in domain-specific language engineering. In: Lämmel, R.,

Visser, J., Saraiva, J. (eds.) GTTSE II. LNCS, vol. 5235, pp. 291–373. Springer, Heidelberg
(2008)

57. Voelter, M., Pech, V.: Language modularity with the MPS language workbench. In: ICSE,
pp. 1449–1450. IEEE (2012)

58. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: Instantiating a language workbench in
the embedded software domain. Journal of Automated Software Engineering (2013)

59. Voelter, M., Ratiu, D., Schaetz, B., Kolb, B.: mbeddr: an extensible C-based programming
language and IDE for embedded systems. In: SPLASH Wavefront, pp. 121–140. ACM
(2012)

60. Vollebregt, T., Kats, L.C.L., Visser, E.: Declarative specification of template-based textual
editors. In: LDTA (2012)

61. Ward, M.P.: Language-oriented programming. Software – Concepts and Tools 15, 147–161
(1995)

http://www.metacase.com/cases/nokia.html

A Model-Driven Approach

to Enhance Tool Interoperability Using
the Theory of Models of Computation

Papa Issa Diallo, Joël Champeau, and Löıc Lagadec

Lab-STICC, ENSTA Bretagne, UEB - 2, Rue F. Verny 29806 Brest cedex 9, France
{papa issa.diallo,joel.champeau,loic.lagadec}@ensta-bretagne.fr

Abstract. In the context of embedded systems design, the growing het-
erogeneity of systems leads to increasingly complex and unreliable tool
chains. The Model-Driven Engineering (MDE) community has been mak-
ing considerable efforts to abstract tool languages in meta-models, and to
offer model transformation mechanisms for model exchanges. However,
the interoperability problems are recurring and still not consistently ad-
dressed. For instance, when it comes to executable model exchanges, it is
very difficult to ensure the preservation of the models behavior from one
tool to another. This is mainly due to a lack of understanding of the Mod-
els of Computation (MoC) and execution semantics behind the models
within different environments. In this paper, we introduce a methodol-
ogy and a framework to: make explicit the execution semantics of models
(based on the theory of MoC); provide semantics enrichment mechanisms
to ensure the preservation of the execution semantics of models between
tools. Our case study is an integration between a UML specification tool
and an industrial Intensive Data Flow processing tool. This contribution
helps to highlight execution semantics concerns within the tool integra-
tion context.

Keywords: Model-Driven Engineering, Model of Computation, Tool
Interoperability.

1 Introduction

Embedded systems design expectations have greatly evolved in the last few
decades. Accordingly, the number of engineering domains and tools involved
during the development phases have considerably increased.

In this context, tool interoperability became a major topic for tool integra-
tion and several solutions have been proposed to tackle the arising issues. Among
other contributions, A. Wasserman et al. [1] or I. Thomas et al. [2] have con-
tributed to establish an important basis for the resolution of tool interoperability.
Their contribution helped to classify tool integration in four main integration
concerns (presentation, process, control and data) that have been included in
several tool integration methodologies.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 218–237, 2013.
c© Springer International Publishing Switzerland 2013

A Model-Driven Approach to Enhance Tool Interoperability 219

More recently, Model-Driven Engineering (MDE) has proposed promising so-
lutions by promoting the use of models and meta-models for the interchange
between tools [3] [4]. Not only does MDE allow the definition of meta-models
that focus on the intrinsic properties of an engineering domain (e.g., signal-
processing, control systems), it also offers solutions for the automation of tool
exchanges during the design phases. For instance, model transformation tools
allow automatic model-to-model transformations and code generation. This en-
ables tool integration to take advantage of the several standardized languages to
describe meta-models [5] and to transform models [6].

1.1 Problematic and Contribution

In the embedded systems community, the reuse of exchanged models between
tools is difficult despite numerous contributions of MDE [7]. The known ap-
proaches for tool interoperability have struggled to be accepted, mainly because
they failed to provide solutions for consistent data interoperability within a do-
main where models are highly parallel and heterogeneous in nature.

For instance, to perform design and analysis during the development process,
the execution semantics of the exchanged models is a major factor to preserve the
models behavior. In particular, if those environments have potentially different
runtimes based on different execution semantics (e.g., IBM Rational Rhapsody
Modeler [8] with Discrete Events [9] semantics, or Gaspard2 [10] with Array-OL
[11] semantics).

Execution semantics describes the evolution of amodel and/or its behavior over
time. In the context of embedded systems design, execution semantics is based on
a theory of computation called Model of Computation (MoC). The MoC defines
the execution rules underlying execution semantics; every rule represents how a
machine will execute a program. The most popular MoC includes Communicating
Sequential Processes [12] and Synchronous Data Flow [13] models.

The execution semantics of models has been addressed in the MDE community
through the work of J.M. Jézéquel et al. [14] and D. Di Ruscio et al. [15]. In these
works, execution semantics is discussed to give executability to models. However,
they do not clearly relate execution semantics to the MoC theory. Moreover, in
the literature there is a lack of contributions addressing their use as key elements
for consistent tool interoperability. Usually, the execution semantics is not visible
to the designers i.e., it is implicitly defined in the execution engine or within the
transformation rules. This results in a low reuse of models, and their faulty
interpretation. The identified issues can be summarized as follows:

– the exchanges between tools are limited to structural alignments. In this
case, one is more interested in the interpretation of the static semantics;

– the modeling languages rarely explain the way in which the parallelism is
controlled by tools. In fact, this cannot be expressed without taking into ac-
count the execution semantics of the models. How such semantics is handled
during model exchanges remains an open question. Especially when the lack
of execution semantics causes poor quality and consistency of the analysis
activities;

220 P.I. Diallo, J. Champeau, and L. Lagadec

– the current approaches for execution semantics definition do not explicitly
identify the underlying MoC of the tools. Consequently, it is difficult to for-
mally reason about the links between several execution semantics of different
tools;

To address these issues, we provide a methodology for the explicit identification
of execution semantics and support for the specification of the parallelism control
at the meta-model level using MoC theory. This contributes to highlight the
importance of MoC definitions for the exchange of semantically enriched models.
The paper presents the following contributions:

– A methodology to disambiguate the semantics of models from a MoC view-
point. This methodology is based on the work of D. Harel et al. [16] and
A. Sangiovanni-Vincentelli et al. [17]. Its purpose is to use MoC theory to
characterize the interoperability between tools and languages;

– A framework to define semantic enrichments and semantic adaptations for
models from different tools. The framework is illustrated through a novel
design flow 1 integrating the Unified Modeling Language (UML) IBM Rhap-
sody Modeler [8] and the Spear Development Environment (Spear DE) [18]
industrial tool that performs design space exploration2 activities. The il-
lustration includes the capture of the Array-OL [11] MoC semantics with
Cometa (properties and execution control mechanisms);

– Finally, an experiment based on the intensive data processing model (section
4.2). In this experiment, thanks to the abstracted execution semantics, we
were able to simulate the Array-OL MoC within Rhapsody which does not
implement such semantics natively.

1.2 Outline

The rest of the paper is structured as follows: Section 2 presents background
information; Section 3 presents the methodology for MoC identification within
tool chains; Section 4 presents the semantics enrichment definitions, in particu-
lar using the Cometa framework and our experimentation on a Chirp3 model;
Section 5 presents related work; finally Section 6 concludes our work.

2 Background on Syntactic and Semantic Interoperability

The challenges regarding the tool interoperability have been addressed in several
communities (Information Systems, Web Semantics, Embedded systems, etc.).

1 The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement n◦ 100203 (see Article II.9. of the JU Grant
Agreement).

2 Design Space Exploration is an activity during the development process aiming to
provide the design possibilities before any implementation.

3 The Chirp model defines a pseudo-periodic signal that is filtered and processed by
several sub-modules (see Section 4.2).

A Model-Driven Approach to Enhance Tool Interoperability 221

For instance, in the context of embedded systems, Pimentel et al. [19] discuss
the need for a Common Design Flow Infrastructure (CDFI) framework to build
and adapt design flows offering reliable tool interoperability. Each tool within
the framework must formally specify its input requirements, its semantics to
fit in the framework. More importantly, interoperability must ensure semantics
consistency for accurate analysis activities of embedded systems.

Elsewhere, for modeling and simulation purposes, A. Tolk et al. [20] define
a conceptual model of interoperability called Levels of Conceptual Interoper-
ability Model (LCIM) describing different levels of interoperability for systems
and tools. Their contribution highlights two major challenges for the analysis of
systems towards different tools: the syntactic interoperability and the semantic
interoperability (Figure 1/ Level 2, 3, 4).

Fig. 1. Levels of Conceptual Interoperability Model [21]

The syntactic interoperability (Level 2) is reached when several tools are able
to exchange data using a common format, such concern is currently quite well
addressed. In our context, meta-models are used for syntactic interoperability.
The data are described as models conforming to meta-models, which in turn
conform to the standards such as the Meta-Object Facility (MOF) [5]. Conse-
quently, the communicating tools must define their corresponding meta-models
of data for exchanges.

Besides, semantics preservation (static and dynamic) is a major challenge for
tools interoperability and both should be addressed with lot of care in design
flows.

A. Tolk et al. defines the semantic interoperability as reaching a compromise
on the unambiguous meaning of models to be exchanged (level 3), regardless of
their representation. Similarly, D. Harel et al. [16] define a language as: a syntax
(abstract or concrete, see Figure 2) whose meaning is specified by its semantic
domain. The relation to semantic domains is described by semantic mapping
rules from the syntax to the domain where the different elements of syntax

222 P.I. Diallo, J. Champeau, and L. Lagadec

Fig. 2. Semantic Mapping of Language to Semantic Domain

make sense. However, this description only tackles the syntax interpretation
issue (static semantics). Because models should preserve their behavior towards
different tools, having a formal description of the dynamic semantics of models
is also mandatory. The example of Figure 3 highlights this shortcoming.

The A and B simulation tools have their model execution respectively driven
by the execution semantics ExecA (e.g., Discrete Events [9]) and ExecB (e.g.,
Array-OL [11]). If the execution semantics ExecA and ExecB are different, there
is no guarantee that the translation from an mA model to an mB model (af-
ter syntactical mappings) will behave equivalently in the tools, even when the
model’s structures are similar. Crane et al. [22] describes this problem with ex-
periments showing distinct execution results of a Finite State Machine (FSM)
within different environments.

Fig. 3. Simple example of execution semantics issue for Tool Interoperability

In [23], B. Combemale et al. argue that the description of a language must
also consider the formal description of the evolution of model elements; such
formal description is provided by MoC rules.

The MoC provide a framework for formal description of the different rules that
apply to execution of the models. By making explicit the MoC information, not
only are we able to identify the exchanges of models that will ensure preservation
of the execution semantics, but also we will be able to define (when necessary)
adaptations between execution semantics to preserve the overall behavior of
models through different tools.

In this paper, we argue the ability to do such identifications and adaptations
mainly because the execution semantics relationships are strongly related to the
MoC relationships. Consequently, we can use the classification of MoCs to estab-
lish links between execution semantics. For instance, A. Sangiovanni-Vincentelli
et al. [17] define the following classification (Figure 4), which reflects the level
of compatibility between a set of MoCs.

A Model-Driven Approach to Enhance Tool Interoperability 223

Fig. 4. MoC Classification according to A. Sangiovanni-Vincentelli et al.

The classification uses set theory to define relationships (union, intersection,
difference) between MoCs starting from the less flexible (more constrained e.g.,
Continuous Time [24]), to the more flexible (less constrained e.g., Tagged Signals
[25]). In our work, we use the above classification to specify consistency of tool
chains with regards to their formal execution semantics (MoC).

Afterwards, our idea is to use the framework Cometa to capture the execu-
tion semantics adaptations for the models using the MoC theory. Cometa [26]
reproduces scheduling mechanisms of concurrent entities based on the theory of
MoC to control the parallelism. It defines schedulers and communication proto-
cols that implement the synchronization of the system’s components. For specific
MoC properties capture, the meta-model abstracts four concerns previously de-
fined by A. Jantsch [27].

– The Data concern defines DataTypes. The DataTypes are used to cre-
ate elements representing the kind of data manipulated in a given semantic
domain e.g., booleans, integers, or complex structured types.

– The Communication concern highlights the description of the commu-
nication. This concern is based on the definition of ports and connectors.
According to the MoC, specific properties are added to these communica-
tion elements.

– The Time concern abstracts concepts to capture time definition for timed
systems. The Concepts such as TimeBase, Instant or Clock in the meta-
model are based on the time model of Modeling and Analysis of Real-time
and Embedded systems (MARTE) profile [28].

– The Behavioral concern is used to describe the operational semantics of
parallel entities. The behaviors of the schedulers and communication proto-
cols are described with event-based Finite State Machine (FSM). A FSM is a
theoretical and formal model which allows to switch easily from an abstract
representation of behavior to its implementation (e.g., C, Java) [8].

At this stage, we have depicted the importance of explicitly and formally express-
ing the execution semantics of models in the context of tool interoperability. In
addition, we as well have presented several approaches in the literature that

224 P.I. Diallo, J. Champeau, and L. Lagadec

aim to clarify, classify and express the execution semantics; though, they do not
reference its importance for interoperability and semantics preserving.

In the next sections, we propose to combine the various efforts that have been
presented i.e., D. Harel et al. [16] and A. Sangiovanni-Vincentelli et al. [17] to
strengthen the specification of the formal semantics of exchanged models with
regards to MoC. Then, we propose the use of the Cometa framework to provide
semantic adaptation layers to ensure the models behavioral consistency.

3 Systematic Approach to Identify the Relations between
Tools at a Semantics Level

3.1 Principles and Techniques

In this section, we describe the characterization of the tools semantics interop-
erability using the semantic domains and the underlying execution semantics of
the tools.

The semantic domain as defined by D. Harel et al. [16] is reused in a formal
context with the MoC theory. Therefore, we define a new term MoC-Based Se-
mantic Domain as the MoC domain on which the syntax of a given language has
its execution formally defined. Consequently, the produced models become exe-
cutable and follow the execution rules induced by the MoC. Before any further
argumentation, we introduce some definitions.

Within a design flow, each interconnected tool uses a language LTool to de-
scribe models. From the language syntax, one defines semantic mappings M to
well-defined semantic domains. More particularly, mappings can be directed to
so-called MoC-Based semantic domains MBSDMoC to specify the models exe-
cution rules. The mapping relation is denoted by M : LTool → MBSDMoC .

The relations between the MBSDMoC allows exhibiting feasible model ex-
changes that emphasize semantics and behavior preservation. These relations
are provided by the classification of MoC as defined in [17]. The classification is
based on a description of the properties underlying each MoC and their degree
of expressiveness. According to A. Jantsch [27], the main axes to character-
ize MoC properties are time, communication, behavior and data. Therefore, a
MBSDMoC is defined by the tuple 〈DMoC , BMoC , CMoC , TMoC〉 where: DMoC

characterizes the data types specific to the MoC domain; BMoC represents the
underlying behaviors induced by the MoC rules; CMoC represents how the com-
munication is expressed in the MoC; TMoC represents the way in which the time
is expressed.

When MBSDMoC are compliant, it is possible to define a transformation T
on the subset of compliant properties (tuples) to provide their translation. For
instance, a transformation can be T : DMoC1 → DMoC2. Based on this, we can
study the relationship between languages and the MBSDMoC . In Figure 5, we
depict the four main scenarios of relations.

In the first scenario, the language’s syntaxes are mapped to the same semantic
domain; e.g., L1 and L2 have their mapping to the same MBSDSR. Here, even if

A Model-Driven Approach to Enhance Tool Interoperability 225

Fig. 5. Language and MoC-Based semantic domains

the syntactic representations are different, there is a clear and common definition
of the MoC domain elements where each syntactic element of L1 and L2 is
mapped. The explicit definition of semantic mappings according to the four axes
should allow the description of the relationship between the syntactic elements
of languages.

In the second scenario, languages are mapped to different MBSDMoC that
are disjoint; e.g., L1 and L4 have their respective mapping to MBSDSR and
MBSDCT , plusMBSDSR

⋂
MBSDCT = ∅. Consequently, the set of properties

used to characterize MBSDSR and MBSDCT are disjoint (e.g., DSR

⋂
DCT =

∅). Therefore, the exchanges of data between tools from these domains cannot
be achieved consistently because their underlying MoCs are not compliant.

In the third scenario, the languages are mapped to different semantic do-
mains. However, the semantic domains are not completely disjoint (the semantic
domains intersection is not empty); e.g., L1 and L3 have their respective map-
ping to MBSDSR and MBSDHS . MBSDSR

⋂
MBSDHS �= ∅, which means

they have a subset of common properties. Here, at least one of the intersection
between the tuples describing MBSDSR and MBSDHS is not empty. Hence,
there exists a subset of properties exchangeable between these domains. As a
result, a transformation T (e.g., T : CSR → CHS) can be defined for the tuples
that have compliant elements. However, having no control over the rest of the
MoC properties for each tool is error-prone. Consequently, it is still difficult to
guarantee consistent model interpretation towards different tools.

In the fourth scenario, the languages are mapped to different semantic do-
mains and the semantic domains are fully compliant (e.g., inclusion relation on
the property sets); In this case, the properties of a source MBSDMoC1 can
all be transformed to equivalent MBSDMoC2 properties on a target domain,
while keeping the fundamental rules of the source MoC domain. For instance,
MBSDCT and MBSDHS are fully compliant and the semantics expressed by
CT [24] is expressible from HS semantics [29]. In this context, we can define a
semantic transformation on each of the tuples to complement or transform a CT
model into a HS model conforming to the constraints defined in CT.

226 P.I. Diallo, J. Champeau, and L. Lagadec

The following section shows an application of the above ideas to describe
the relationship between the execution semantics of IBM Rational Rhapsody
Modeler and the Spear tools. This description will help ensure the consistency of
the interconnection of these tools; but also identify compliant semantic properties
for which adaptations are possible.

3.2 Semantics Identification on the Rhapsody and Spear Design
Flow

The design flow connects the IBM Rational Rhapsody tool and the Spear De-
velopment Environment.

Rhapsody [8] is a proprietary tool that provides a system development en-
vironment (mostly embedded systems) based on the use of UML language and
profiles. Rhapsody incorporates several activities of software development cy-
cle (requirements specification, high-level system specification, code generation,
simulation and testing, etc.). Regarding the specification of systems, the tool in-
tegrates UML component models to specify communicating concurrent entities.
In such models, the components are interconnected via ports and connectors
(see the conceptual model on the left in Figure 6), these elements are classes
that may have a behavior (UML Statechart) and attributes (UML Attributes).
Besides, the communication is provided by events (signals) exchanges e.g., cal-
lEvent, receptionEvent.

DE semantics : The simulation tool provides a runtime based on discrete
events (DE) semantics. Thus, the exchanges between the system components are
considered as sequences of event requests temporarily stored in storage elements
(queue, FIFO, LIFO, etc). The system model defines execution end conditions
(e.g., stop Event, variable defining the number of allowed executions, etc). While
the execution stop condition is not reached, the scheduling behavior constantly
observes the storage elements to process events to the target components, and
updates the static values which may affect the execution stop condition.

Fig. 6. Conceptual description of Rhapsody and Spear syntax elements

A Model-Driven Approach to Enhance Tool Interoperability 227

Spear [18] is a tool for parallelization of intensive processing tasks on multidi-
mensional data arrays and implements the Array-OL specification. At the appli-
cation level, Spear has components communicating via ports and connectors (on
the right in Figure 6). The Components (Computation) have a vector defining
the number of executions (Loops); arrays are described at the application level
by their shape and elementary operations (ET - Elementary Transform). The
Multidimensional data define references to ports that produce them. Above this
description, an implementation of a scheduling mechanism allows components
to run following the Array-OL semantics.

Array-OL semantics : Array-OL is a specification for intensive data flow pro-
cessing. The idea is to parallelize tasks that extract and process multidimen-
sional arrays of data. The specification gathers two main definitions to exploit
and process the data:

– Task Parallelism is done by defining a dependency graph where every node
is a component of type compound.

– Data Parallelism is the definition of a repetition component which has a
repetitionSpace. A repetitionSpace defines how many times a component is
executed. These components extract, process and build multidimensional
arrays of predefined sizes (Shape’s).

The extraction mechanisms and pattern building properties are provided by the
definition of a “Tiler” connected to the ports or connectors. The Tiler consists
of a vector “Origin” (to determine the starting position for the extraction or
the point to start building a pattern in the output array), a fitting matrix to
determine the spacing between the selected elements in the Array, and a paving
matrix to change the origin at each repetition of the component.

Array-OL scheduling depends on the topology of the application (directed
acyclic graphs) which gives the dependency relationships between the system
components. The scheduling depends also on the expression of data-parallelism
where, the number of times each component must be executed to produce or
consume an array is given.

Figure 7 shows the positioning of the semantics domains for the Rhapsody and
Spear design flow. We define the semantic mappings of the UML (L uml) and
Spear (L spear) languages to their respective MBSDDE and MBSDArrayOL

domains.
The Array-OL and DE semantics have distinct levels of flexibility and ex-

pressiveness for semantics. One of the very basic conditions for the use of DE
semantics is that communication between components is performed using lists
(queues) of events and a scheduler to transmit events to the communicating
components. From this point of view, Array-OL is more constrained in terms
of properties. If we consider the previously defined tuples, we can identify the
following relations between the semantics:

– DArrayOL

⋂
DDE �= ∅. Array-OL defines multidimensional arrays of data.

The arrays are read and written concurrently by the system components.
Such data structures do not exist natively in Rhapsody. However, the UML

228 P.I. Diallo, J. Champeau, and L. Lagadec

Fig. 7. Rhapsody-Spear design flow and the semantics positioning

language concepts (e.g., class diagrams) model structures similar to multi-
dimensional arrays. Here, a formal description of the array’s characteristics
(sizes, number of vectors) must be provided. From this description, we can
define a transformation between Array-OL data models to UML.

– BArrayOL

⋂
BDE �= ∅. The Array-OL specification defines rules for schedul-

ing concurrent entities. The scheduling requirements combine: managing
dependency relations between entities, taking into account the relations be-
tween the multi-dimensional arrays, and finally taking into account the vec-
tors that define the number of executions allowed for each component. Any
algorithm or execution control mechanism that meets the requirements is
capable of simulating the components with respect to the semantics.

Algorithms solving these constraints have already been studied for the
SDF MoC [30]. The resulting solution is based on the resolution of linear
Diophantine equations [31] that take into account different production and
consumption rates. Such components execution control is describable in DE
as a program or using more abstract description mechanisms such as event-
based FSM. We present in section 4.1 mechanisms for the execution control
based on FSM.

– CArrayOL

⋂
CDE �= ∅. For communication, the same resources are used in

both specifications. Indeed, the components communicate through ports and
connectors and data are stored in storage entities accessible for the compo-
nents or the scheduler. However, in DE, the components exchange events.
Therefore, the stored elements in the queues are events. This representation
is different with the direct storage of data with Array-OL. The formal de-
scription of events allows adding parameters on events and parameters can
represent values or data. Therefore, it is possible to define a transformation
which is an encapsulation of arrays into events.

– The temporal aspect is not described in the Array-OL specification. For the
sake of simplicity, we do not consider time description in this experiment.

A Model-Driven Approach to Enhance Tool Interoperability 229

Considering the above information, the semantic domains are not disjoint at
least for Data, Communication, and Behavior viewpoints as shown in Figure 7.
This suggests that it is possible to define the appropriate adaptations to move
models from one tool to the other while keeping the execution semantics of the
source tool.

The transformation 1© must take into account the addition of the properties
related to data manipulation (enrichment). These properties correspond with the
capture of multidimensional data structures, information related to the allowed
array sizes on each port (Shape) and the vectors defining how patterns of data
are selected in the arrays. Section 4.1 shows the capture of this information in
Cometa. Further, we enrich the models that are candidates for translation with
the capture of execution control mechanisms to guarantee the preserving of the
rules imposed by the Array-OL execution semantics from Spear to Rhapsody.
This work corresponds to the translation 3© and is detailed in Section 4.1.

The explicit definition of MBSDMoC and their relations (mapping) enhance
the reasoning on tool interoperability definition. It ensures less focus on the tech-
nical support for interoperability and offers the opportunity to make decisions
on the consistency and feasibility of certain tool connexions. These mappings
help to assess compliance between tools, as well as to find the possible semantic
adaptations based on the relationships between MoC.

4 Semantics Enrichments and Adaptations Using Cometa

In our design flow, we want to alternate Design Space Exploration and Sim-
ulation activities with Spear and Rhapsody, respectively. The translation of a
Spear model in Rhapsody will not make sense if Rhapsody is not able to inter-
pret the model while preserving the execution semantics from Spear (Array-OL).
Therefore, the proper mechanisms (adaptations) to represent the semantics of
Array-OL in the context of the DE semantics have to be defined.

4.1 Adding Semantics Properties for the Design Flow

Adding New Properties from Rhapsody to Spear. In this section, we
present the usage of Cometa to abstract the data properties (DArrayOL) of
the MBSDArrayOL domain. As shown in Figure 8 (Structure Concern), in
Cometa the description of the structural part is done by using BasicCompo-
nent and CompositeComponent. BasicComponent owns communication ports,
a behavior and parameters that can be used to capture the repetitionSpace.
The behavior is defined to capture the execution semantics and is explained
in the next sub-section. The abstracted concepts (metaclasses) in the Data
concern are used to capture the specific data properties of the specification:
The concept Matrix is used to capture the vectors that extract the patterns
of data (Matrix MetaClass → (Tiler,Fitting,Paving)); The concept Vector is
used to capture the accepted data sizes on each port (Vector MetaClass →
(Shape,Origin)); and the concept Parameter for the capture of the repetition
space (Parameter MetaClass → (repetitionSpace)).

230 P.I. Diallo, J. Champeau, and L. Lagadec

Fig. 8. Array-OL semantic domain capture in a Cometa Model and relations between
concerns

Adding Execution Control from Spear to Rhapsody. In Cometa, the
execution control and scheduling mechanisms for Array-OL consists in the de-
scription of three state machines for control and communication of (BasicCom-
ponent and MoCPort (Input/Output)). The tiling mechanism is placed on I/O
ports. The two state machines presented in Figure 9 describe the behavior of
components and ports (input ports) to process data (Behavior Concern).

BasicComponent behavior has 2 states (cf. Figure 9 (B)): Idle and repetition-
State. In the Idle state, the component waits for the MoCPort to notify the
arrival of an array. On the reception of a notification, BasicComponent requests
data extraction as many times as the product of the defined values in its repeti-
tionSpace. At each repetition, the component waits for MoCPort to extract the
data before sending another extraction request.

The MoCPort behavior has three states (cf. Figure 9 (A)): Idle, Wait and
BuildArray. In the Idle state, the port waits for data arrival. On reception of
data array, it notifies the BasicComponent and waits for a response (Wait state).
After the data extraction request is received from the BasicComponent, the port
uses the Tiler matrix defined to extract array samples from the input array.
These FSM descriptions are generic and can be reused in several environnements.
In the same way, a generic FSM is defined to build the array on output ports.

The example of Figure 9 represents an abstract description of the interaction
mechanisms between components that integrate the finite state machines.

A Model-Driven Approach to Enhance Tool Interoperability 231

Fig. 9. Example of 3 inter-connected components with Array-OL semantics

A, B and C are composite components, and br is a repetition component. In
Phase 1© the scheduler enables the execution of component A, which produces
an array of a predifined size on its port Oa. The array and its size are defined
using the MetaClass Array of Cometa. The data is received by the port and
sent to br → Ib in the subcomponent br. In phase 2©, the port br → in has a
generic behavior and mechanism of extracting patterns (Tiler). Once the Array is
received, it notifies the state machine of the br component that data is available.
The BasicComponent after receiving the notification will run 2 times (2x1) every
execution, it will send to br → in request for the construction of sub-array and
produce a sub-array output on br → out. In phase 3©, the sub-array output is
received by the port Ob which also has a generic behavior and Tiler mechanism.
At each receiving of a sub-array, using the Tiler, Ob places the elements of the
sub-arrays on a defined position in the output array. Once all repetitions of br
are reached, an output array is built and sent to Ic from Ob. Ic on receipt of
this Array, will make other processings.

Mappings and Transformations. For the transformation rules, there are two
questions to answer: What are the required elements for Spear to run correctly
the Array-OL semantics that UML cannot provide natively? What are the ele-
ments that Rhapsody needs to execute the Array-OL semantics and Spear does
not provide? For the first question the missing elements are the Loops parame-
ters and multidimensional data types. For the second question, the missing ele-
ments are the behaviors for the control of the execution. This information was

232 P.I. Diallo, J. Champeau, and L. Lagadec

previously captured in Cometa models in Figure 8. For the rest of the concepts,
a simple mapping can be found between the concepts e.g., structural elements
(port, connector, component) 4. We have implemented two transformation rules
that follow the rules below:

– umlCometa2spear : For this transformation step, structural elements with a
trivial mapping are transformed into the target language Spear. To add the
description of multidimensional data models, the transformation rule parses
the stored data model in the Cometa libraries, and then reproduces the data
structure needed in Spear. Thereby, the final Spear model integrates data
properties.

– spearCometa2uml : The spear structural model is translated into a corre-
sponding UML model. However, for each element of the UML model that
must handle execution control behavior, the transformation rule parses the
patterns of behavior models described in Cometa to define the corresponding
StateChart for the element (e.g., component, port connector). The communi-
cation events defined in the FSM are also translated into their corresponding
signals in Rhapsody. The UML model obtained contains control behaviors
with respect to the Array-OL execution semantics.

In Section 4.2, we show the result of adding properties for the control of the
execution in the Rhapsody environment with the Chirp model.

4.2 Use Case: The Chirp Model

The Chirp model is a signal processing sub-system. All the modules process
intensively multidimensional arrays of data. The experiment presented in this
section corresponds with the simulation of the Chirp model in the Rhapsody
specification and simulation environment. The transformation spearCometa2uml
was used for the structural transformation of the Chirp Spear model to its cor-
responding UML Rhapsody model. For the control of the execution, the model
integrates the execution control FSM that was captured with Cometa and pre-
sented in Section 4.1.

The system consists of five modules (cf. Figure 10 (1)): Gen Chirp produces a
multidimensional array containing information of a radar signal, the Comp Imp
module performs pulse compression on the data received; Filt Dop performs
doppler filter on the data produced from Comp Imp; finally, reduce and Mod-
ule process the data produced by Filt Dop to retrieve the relevant data signal
without any loss of information. The modules can be launched in parallel. How-
ever, to avoid loss of information, the sizes of the array they can produce or
receive rule their scheduling. The above Cometa models are reused entirely for
the specification (cf. Figure 10 (2)) and simulation of the Chirp model in IBM
Rational Rhapsody environment. The Execution of the Chirp model in the UML
environment provides traces as shown in Figure 10 (3). At each repetition of the
BasicComponent A (Gen Chirp) an array is built (extracted) and transmitted

4 We showed excerpts of concepts in Section 3, Figure 6.

A Model-Driven Approach to Enhance Tool Interoperability 233

Fig. 10. (1) Excerpt of the Chirp Model (UML) enriched with Cometa properties
and FSMs; 2) Excerpt of the execution of Gen Chirp and Comp Imp with Array-OL
Semantics in Rhapsody.

to the next component BasicComponent B (Comp Imp) for processing. The rep-
etitionSpace of A is 1, which means that A executes once. The repetitionSpace
of B is 2x4 which implies that it executes 2x4 times.

The experiment shows that it is possible to keep the underlying behavioral
logic of Array-OL from Spear to UML Rhapsody, because we have provided the
necessary semantic adaptation for controlling the execution in an environment
where the execution semantics is not Array-OL but is based on DE.

4.3 Conclusion and Benefits

Figure 11 presents a subset of activities (first column) that highlights the gain
from Cometa for tool interoperability. In the second column, Rhapsody provides
support for UML specification and discrete events simulation activities.

Fig. 11. Semantics as articulation to connect Design and Implementation Tools

234 P.I. Diallo, J. Champeau, and L. Lagadec

However, at this level the Array-OL semantic properties are not natively
present in the UML environment, and the way Array-OL models should be ex-
ecuted is not defined. Therefore, they cannot be simulated. Cometa contributes
in this specific concern, using the relationship between the semantic domains
Array-OL, DE and FSMs. Thus, in column 3 the specification model is enriched
and can be simulated with respect to Array-OL. As a result, design space ex-
ploration activities are available with Spear, given that important semantics
properties have been integrated into the UML model; Array-OL simulation is
also available within Rhapsody.

5 Related Work

In this paper, our interest goes to the use of MoCs to improve the semantics
of the models exchanged between tools in the context of tool interoperability.
Historically, communities around MoCs and those around tool interoperability
have evolved separately. Indeed, their efforts have never been combined, despite
they both agree on the difficulty to preserve the behavioral semantics of models
between tools. Our contribution is precisely at this level. Nevertheless in this sec-
tion, we will present some of the contributions of both communities to innovate
MoC concerns or tool interoperability.

For instance, the Ptolemy [32] tool provides an environment to define models
of communicating systems based on hierarchical components. They have the two
main concepts that are the actors and directors. An actor can be seen as a compo-
nent that communicates with other components through MoC rules well-defined
by the Director which describes the communication. However, the way MoCs
are implemented is unique and the tool is not dedicated for model exchanges
between tools. Similarly, in ModHel’X [33], the author defines the concept of
hierarchical blocks and interface point for communication and a system based
on snapshot (triggering updates of data passing among components) to simu-
late the system. However, this approach presents the same shortcomings as in
Ptolemy.

Elsewhere, tackling tool interoperability, the work of [34] addresses the se-
mantic interoperability by defining model transformations based on the map-
ping between concepts of meta-models. This approach also advocates the use
of point-to-point transformation with a “bridge” metamodel to define the map-
ping between concepts of language tools. Unfortunately, the approach is not
dedicated to the identification of semantic domains and semantic enrichment
of models to ensure their proper execution. Our approach is complementary as
it can automatically define the mapping and transformation between a given
source metamodel, our semantic domain metamodel and the target metamodel.

In [35] the authors define an interesting approach to the definition of a map-
ping metamodel to make semantic equivalence between source concepts and
output concepts of metamodel elements. Thanks to this metamodel, they derive
a ”semantic translator” that implements the model transformation. Neverthe-
less, the approach is not generic because for each semantic mapping a new DSL
defining the mapping might be necessary to define the mapping.

A Model-Driven Approach to Enhance Tool Interoperability 235

6 Conclusion

The tools integration domain has several shortcomings that motivated many
ongoing research activities. Despite considerable efforts to provide solutions, se-
mantic interoperability remains an open issue mainly due to the multiplicity
of the design tools. In the MDE context, there is no new approach addressing
this issue. On the opposite, we propose a different and complementary way to
look at semantic interoperability. We advertise a method of abstracting seman-
tic domains underlying tools in the co-design domain. The Cometa approach
allows grouping languages according to their MoC-based semantic domains. We
also contribute to the execution semantic aspects of models to ensure equivalent
behavior of models in different environments.

This contribution offers great perspectives for solving the problem of behavior
preservation for models exchanges by integrating the tools formal execution se-
mantics definitions. In particular, it provides a solid foundation that will makes
it easier to include the activities of formal verification and validation for tool
chains.

References

1. Wasserman, A.I.: Tool integration in software engineering environments. In:
Long, F. (ed.) Software Engineering Environments. LNCS, vol. 467, pp. 137–149.
Springer, Heidelberg (1990)

2. Thomas, I., Nejmeh, B.A.: Definitions of tool integration for environments. IEEE
Softw. 9(2), 29–35 (1992)

3. Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.: Towards model driven
tool interoperability: Bridging eclipse and microsoft modeling tools. In: Kühne, T.,
Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp.
32–47. Springer, Heidelberg (2010)

4. Blanc, X., Gervais, M.-P., Sriplakich, P.: Model bus: Towards the interoperability
of modelling tools. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 17–32. Springer, Heidelberg (2005)

5. Object Management Group: Meta object facility (MOF) 2.0 core specification.
Technical Report formal/06-01-01, Object Management Group, OMG Available
Specification (2001)

6. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/ Trans-
formation Specification, QVT (2008)

7. The ModelCVS Project,
http://www.modelcvs.org/publications/conference.html

8. IBM Telelogic: Rational Rhapsody UML modeler.,
http://www.telelogic.com/products/rhapsody/index.cfm

9. Muliadi, L.: Discrete event modeling in Ptolemy II. Master’s report, Dept. of EECS,
University of California, Berkeley, CA (1999)

10. Labbani, O., Dekeyser, J.-L., Boulet, P., Rutten, É.: Introducing Control in
the Gaspard2 Data-Parallel Metamodel: Synchronous Approach. In: International
Workshop MARTES: Modeling and Analysis of Real-Time and Embedded Systems,
Montego Bay, Jamaica (October 2005)

http://www.modelcvs.org/publications/conference.html
http://www.telelogic.com/products/rhapsody/index.cfm

236 P.I. Diallo, J. Champeau, and L. Lagadec

11. Boulet, P.: Array-OL Revisited, Multidimensional Intensive Signal Processing
Specification. Rapport de recherche RR-6113, INRIA (2007)

12. Hoare, C.A.R.: Communicating sequential processes. Prentice Hall International
(1985)

13. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. In: Proceedings of the
IEEE, vol. 75(9), pp. 1235–1245. IEEE Computer Society (1987)

14. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011)

15. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. RR 06.02 RR
06.02

16. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

17. Sangiovanni-Vincentelli, A.L., Shukla, S.K., Sztipanovits, J., Yang, G., Math-
aikutty, D.: Metamodeling: An emerging representation paradigm for system-level
design. IEEE Design & Test of Computers 26(3), 54–69 (2009)

18. Lenormand, E., Edelin, G.: An Industrial Perspective: A pragmatic High end Signal
processing Design Environment at Thales (2003)

19. Pimentel, A.D., Stefanov, T., Nikolov, H., Thompson, M., Polstra, S., Deprettere,
E.F.: Tool integration and interoperability challenges of a system-level design flow:
A case study. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008.
LNCS, vol. 5114, pp. 167–176. Springer, Heidelberg (2008)

20. Tolk, D. A., Muguira, J.A.: The levels of conceptual interoperability model. In:
2003 Fall Simulation Interoperability Workshop (2003)

21. Wang, W., Tolk, A., Wang, W.: The levels of conceptual interoperability model: ap-
plying systems engineering principles to M&S. In: Proceedings of the 2009 Spring
Simulation Multiconference, SpringSim 2009, pp. 168:1–168:9. Society for Com-
puter Simulation International, San Diego (2009)

22. Crane, M.L., Dingel, J.: UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and Systems Modeling 6(4), 415–435 (2007)

23. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridging
the Chasm between Executable Metamodeling and Models of Computation. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 184–203. Springer,
Heidelberg (2013)

24. Liu, J.: Continuous time and mixed-signal simulation in Ptolemy II. Technical
Report UCB/ERL M98/74, Dept. of EECS, University of California, Berkeley, CA
(1998)

25. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17, 1217–1229 (1998)

26. Diallo, P.I., Champeau, J., Leilde, V.: An approach for describing concurrency and
communication of heterogeneous systems. In: Proceedings of the Third Workshop
on Behavioural Modelling, BM-FA 2011, pp. 56–63. ACM, New York (2011)

27. Jantsch, A.: Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Systems on Silicon. Morgan Kaufmann Publishers (June
2003)

28. Object Management Group: UML profile for MARTE, beta 1. Technical Report
ptc/07-08-04, Object Management Group (2007)

29. Liu, J., Liu, X., Lee, E.A.: Modeling distributed hybrid systems in Ptolemy ii. In:
Proceedings of the American Control Conference, pp. 4984–4985 (2001)

A Model-Driven Approach to Enhance Tool Interoperability 237

30. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the
IEEE 75, 1235–1245 (1987)

31. Clausen, M., Fortenbacher, A.: Efficient solution of linear diophantine equations.
J. Symb. Comput. 8(1-2), 201–216 (1989)

32. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for simu-
lating and prototyping heterogeneous systems. IEEE 10, 527–543 (2002)

33. Boulanger, F., Hardebolle, C.: Simulation of Multi-Formalism Models with Mod-
hel’X. In: ICST 2008: Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, pp. 318–327. IEEE Computer Society, Wash-
ington, DC (2008)

34. Kappel, G., Wimmer, M., Retschitzegger, W., Schwinger, W.: Leveraging model-
based tool integration by conceptual modeling techniques. In: Kaschek, R.,
Delcambre, L. (eds.) The Evolution of Conceptual Modeling. LNCS, vol. 6520,
pp. 254–284. Springer, Heidelberg (2011)

35. Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Software
and Systems Modeling 4(2), 157–170 (2005)

Whiley: A Platform for Research in Software
Verification

David J. Pearce and Lindsay Groves

Victoria University of Wellington
Wellington, New Zealand

{djp,lindsay}@ecs.vuw.ac.nz

Abstract. An ongoing challenge for computer science is the development of a
tool which automatically verifies programs meet their specifications, and are free
from runtime errors such as divide-by-zero, array out-of-bounds and null deref-
erences. Several impressive systems have been developed to this end, such as
ESC/Java and Spec#, which build on existing programming languages (e.g. Java,
C#). However, there remains a need for an open research platform in this area. We
have developed the Whiley programming language, and its accompanying veri-
fying compiler, as an open platform for research. Whiley has been designed from
the ground up to simplify the verification process. In this paper, we introduce the
Whiley language and it accompanying verifying compiler tool.

1 Introduction

Prof. Sir Tony Hoare (ACM Turing Award Winner, FRS) proposed the creation of a
verifying compiler as a grand challenge for computer science [1]. A verifying compiler
“uses automated mathematical and logical reasoning to check the correctness of the
programs that it compiles.” There have been numerous attempts to construct a verifying
compiler system, although none has yet made it into the mainstream. Early examples
include that of King [2], Deutsch [3], the Gypsy Verification Environment [4] and the
Stanford Pascal Verifier [5]. More recently, the Extended Static Checker for Modula-
3 [6] which became the Extended Static Checker for Java (ESC/Java) — a widely ac-
claimed and influential work [7]. Building on this success was JML and its associated
tooling which provided a standard notation for specifying functions in Java [8]. Finally,
Microsoft developed the Spec# system which is built on top of C# [9].

Both ESC/Java and Spec# build on existing object-oriented languages (i.e. Java and
C#) but, as a result, suffer numerous limitations. The problem is that such languages
were not designed for use with verifying compilers. Ireland, in his survey on the history
of verifying compilers, noted the following [10]:

“The choice of programming language(s) targeted by the verifying compiler
will have a significant effect on the chances of success.”

Likewise, a report on future directions in verifying compilers, put together by several
researchers in this area, makes a similar comment [11]:

“Programming language design can reduce the cost of specification and veri-
fication by keeping the language simple, by automating more of the work, and
by eliminating common errors.”

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 238–248, 2013.
c© Springer International Publishing Switzerland 2013

Whiley: A Platform for Research in Software Verification 239

This paper introduces Whiley, a programming language designed from scratch in con-
junction with a verifying compiler. The intention of this is to provide an open frame-
work for research in automated software verification. The initial goal is to automatically
eliminate common errors, such as null dereferences, array-out-of-bounds, divide-by-
zero and more. In the future, the intention is to consider more complex issues, such as
termination, proof-carrying code and user-supplied proofs. Finally, several works have
already been published which focus primarily on Whiley’s type system [12–14].

The Tool. The main tool underlying Whiley is the verifying compiler. This is been in
development for over three years, and has become a large (and relatively mature) code
base. Numerous student projects have been conducted already based on this compiler,
and the hope is to use it for teaching next year. The compiler is released under an open
source license (BSD), can be downloaded from http://whiley.org and forked
at http://github.com/DavePearce/Whiley/. Some interesting statistics are
available from http://www.ohloh.net/p/whiley and a fun demonstration
on writing loop invariants is available here: http://www.youtube.com/
watch?v=WwnxHugabrw. Finally, a prototype Eclipse plugin is available and can
be installed via the update site: http://whiley.org/eclipse.

2 Language Core

We begin by exploring the Whiley language and highlight some of the choices made in
its design. For now, we stick to the basic issues of syntax, semantics and typing and, in
the following section, we will focus more specifically on using Whiley for verification.
Perhaps one of our most important goals was to make the system as accessible as possi-
ble. To that end, the language was designed to superficially resemble modern imperative
languages (e.g. Python), and this decision has significantly affected our choices.

Overview. Languages like Java and C# permit arbitrary side-effects within methods and
statements. This presents a challenge when such methods may be used within specifi-
cations. Systems like JML and Spec# require that methods used in specifications are
pure (i.e. side-effect free). An important challenge here is the process of checking that
a function is indeed pure. A significant body of research exists on checking functional
purity in object-oriented languages (e.g. [15, 16]). Much of this relies on interprocedu-
ral analysis, which is too costly for a verifying compiler. To address this, Whiley is a
hybrid object-oriented and functional language which divides into a functional core and
an imperative outer layer. Everything in the functional core can be modularly checked
as being side-effect free. To make this possible, Whiley incorporates first-class sets, lists
and maps which are values (rather than mutable objects) and, hence, allow call-by-value
semantics (more on this later).

Flow Typing. An unusual feature of Whiley is the use of a flow typing system (see
e.g. [17, 18, 13, 14]). This gives Whiley the look-and-feel of a dynamically typed lan-
guage (e.g. Python). Furthermore, automatic variable retyping through conditionals is
supported using the is operator (similar to instanceof in Java) as follows:

http://whiley.org
http://github.com/DavePearce/Whiley/
http://www.ohloh.net/p/whiley
http://www.youtube.com/watch?v=WwnxHugabrw
http://www.youtube.com/watch?v=WwnxHugabrw
http://whiley.org/eclipse

240 D. J. Pearce and L. Groves

define Circle as {int x, int y, int radius}
define Rect as {int x, int y, int width, int height}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.radius * s.radius
else:

return s.width * s.height

A Shape is either a Rect or a Circle (which are both record types). The type test
“s is Circle” determines whether s is a Circle or not. Unlike Java, Whiley auto-
matically retypes s to have type Circle (resp. Rect) on the true (resp. false) branches
of the if statement. There is no need to explicitly cast variable s to the appropriate
Shape before accessing its fields.

Union Types. Another unusual feature of Whiley is the use of union types (see e.g.
[19, 20]), which complement the flow type system. Consider the following example:

null|int indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str]

Here, indexOf() returns the first index of a character in the string, or null if there is
none. The type null|int is a union type, meaning it is either an int or null. The sys-
tem seamlessly ensures null is never dereferenced because the type null|int cannot
be treated as an int. Instead, one must first check it is an int using e.g. “idx is int”.

Recursive Data Types. Whiley provides recursive types which are similar to the abstract
data types found in functional languages (e.g. Haskell, ML, etc). For example:

define LinkedList as null | {int data, LinkedList next}

int length(LinkedList l):
if l is null:

return 0 // l now has type null
else:

return 1 + length(l.next) // l now has type {int data, LinkedList next}

Whiley: A Platform for Research in Software Verification 241

Here, we again see how flow typing gives an elegant solution. More specifically, on
the false branch of the type test “l is null”, variable l is automatically retyped
to {int data, LinkedList next} — thus ensuring the subsequent dereference of
l.next is safe. No casts are required as would be needed for a conventional impera-
tive language (e.g. Java). Finally, like all compound structures, the semantics of Whiley
dictates that recursive data types are passed by value (or, at least, appear to be from the
programmer’s perspective).

Value Semantics. The prevalence of pointers — or references — in modern program-
ming languages (e.g. Java, C++, C#) has been a major hindrance in the development of
verifying compilers. Indeed, Mycroft recently argued that (unrestricted) pointers should
be “considered harmful” in the same way that Dijkstra considered goto harmful [21]. To
address this, all compound structures in Whiley (e.g. lists, sets, and records) have value
semantics. This means they are passed and returned by-value (as in Pascal, MATLAB or
most functional languages). But, unlike functional languages (and like Pascal), values
of compound types can be updated in place. Whilst this latter point may seem unimpor-
tant, it serves a critical purpose: to give Whiley the appearance of a modern imperative
language when, in fact, the functional core of Whiley is pure. This goes towards our
goal of making the language as accessible as possible.

Value semantics implies that updates to a variable only affect that variable, and that
information can only flow out of a function through its return value. Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the subse-
quent update to xs does not affect ys. Arguments are also passed by value, hence xs is
updated inside f() and this does not affect f’s caller. That is, xs is not a reference to
a list of int; rather, it is a list of ints and assignments to it do not affect state visible
outside of f().

Unbound Arithmetic. Modern languages typically provide fixed-width numeric types,
such as 32bit two’s compliment integers, or 64-bit IEEE 754 floating point numbers.
Such data types are notoriously difficult for an automated theorem prover to reason
about [22]. Systems like ESC/Java and Spec# assume (unsoundly) that numeric types
do not overflow or suffer from rounding. To address this, Whiley employs unbounded
integers and rationals in place of their fixed-width alternatives and, hence, does not
suffer the limitations of soundness discussed above.

Performance. Many of our choices (e.g. value semantics and unbound arithmetic) have
a potentially detrimental effect on performance. Whilst this is a trade-off we accept,
there are existing techniques which can help. For example, using reference counting
to minimise unnecessary cloning of compound structures (see e.g. [23]); and, integer
range analysis (see e.g. [24]) to place variables into native data types where possible.

242 D. J. Pearce and L. Groves

3 Verification

The key goal of the Whiley project is to develop an open framework for research in
automated software verification. As such, we now explore verification in Whiley.

Example 1 — Constrained Types. The following Whiley code defines a function ac-
cepting a positive integer and returning a non-negative integer (i.e. natural number):

int f(int x) requires x > 0, ensures $ >= 0 && $!= x:
return x-1

Here, the function f() includes a requires and ensures clause which correspond
(respectively) to its pre-condition and post-condition. In this context, $ represents the
return value, and must be used in the ensures clause. The Whiley compiler statically
verifies that this function meets its specification.

The above illustrates a function specification given through explicit pre- and post-
conditions. However, we may also employ constrained types to simplify it as follows:

define nat as int where $ >= 0
define pos as int where $ > 0

nat f(pos x) ensures $!= x:
return x-1

Here, the define statement includes a where clause constraining the permissible
values for the type ($ represents the variable whose type this will be). Thus, nat defines
the type of non-negative integers (i.e. the natural numbers). Likewise, pos gives the
type of positive integers and is implicitly a subtype of nat (since the constraint on
pos implies that of nat). We consider that good use of constrained types is critical to
ensuring that function specifications remain as readable as possible.

The notion of type in Whiley is more fluid than found in typical languages. In par-
ticular, if two types T1 and T2 have the same underlying type, then T1 is a subtype of T2
iff the constraint on T1 implies that of T2. Consider the following:

define anat as int where $ >= 0
define bnat as int where 2*$ >= $

bnat f(anat x):
return x

In this case, we have two alternate (and completely equivalent) definitions for a natural
number (we can see that bnat is equivalent to anat by subtracting $ from both sides).
The Whiley compiler is able to reason that these types are equivalent and statically
verifies that this function is correct.

Example 2 — Implicit Retyping. Variables in Whiley are described by their underlying
type and those constraints which are shown to hold. As the automated theorem prover
learns more about a variable, it automatically takes this into consideration when check-
ing constraints are satisfied. For example:

Whiley: A Platform for Research in Software Verification 243

define nat as int where $ >= 0

nat abs(int x):
if x >= 0:

return x
else:

return -x

The Whiley compiler statically verifies that this function always returns a non-negative
integer. This relies on the compiler to reason correctly about the implicit constraints
implied by the conditional. A similar, but slightly more complex example is that for
computing the maximum of two integers:

int max(int x, int y) ensures $ >= x && $ >= y
&& ($==x || $==y):

if x > y:
return x

else:
return y

Again, the Whiley compiler statically verifies this function meets its specification. Here,
the body of the function is almost completely determined by the specification — how-
ever, in general, this not the case.

Example 3 — Bounds Checking. An interesting example which tests the automated
theorem prover more thoroughly is the following:

null|int indexOf(string str, char c):
for i in 0..|str|:

if str[i] == c:
return i

return null

In this case, the access str[i] must be shown as within the bounds of the list str.
The Whiley compiler statically verifies this is true and, hence, that indexOf() cannot
cause an out-of-bounds error.

Example 4 — Loop Invariants. Another example illustrates the use of loop invariants
in Whiley:

define natlist as [int] where all { x in $ | x >= 0 }

int sum(natlist list) ensures $>=0:
r = 0
for v in list where r >= 0:

r = r + v
return r

Here, bounded quantifiers are used to define a list of natural numbers which is accepted
by the sum() function. Equivalently, we could have used [nat] (with nat defined as
before) — and these two alternative definitions of the same concept are, in a strong
sense, identical.

244 D. J. Pearce and L. Groves

Fig. 1. Illustrating the compilation and verification pipeline

A key constraint is that summing a list of natural numbers yields a natural number
(recall arithmetic is unbounded and does not overflow in Whiley). The Whiley compiler
statically verifies that sum() does indeed meet this specification. The loop invariant is
necessary to help the compiler generate a sufficiently powerful verification condition
to prove the function meets the post condition. In the future, we hope to automatically
synthesize simple loop invariants such as this.

4 Compiler Architecture

The Whiley verifying compiler is structured as a number of distinct modules. This has
proved invaluable for keeping a clear separation of concerns between the major compo-
nents, and for testing and debugging — since many modules can be tested in isolation
from others. The main modules of the verifying compiler are:

– Whiley Build System (WyBS). Responsible for information flow throughout the
compiler, managing source and binary roots, and determining compilation orders.

– Whiley Compiler (WyC). Responsible for parsing and type checking whiley
source files, and compiling them into binary wyil files.

– Whiley Intermediate Language (WyIL). A register-based intermediate language
similar to Java bytecode along with an accompanying binary file format.

– Whiley-2-Java Compiler (WyJC). A back-end which converts wyil files into
JVM class files.

– Whiley-2-C Compiler (WyCC). An experimental back-end which converts wyil
files into C source files.

– Whiley Constraint Solver (WyCS). An automated theorem prover responsible for
accepting input files in a variant of first-order logic called the Whiley Assertion
Language (WyAL) and verifying they are correct.

Figure 1 provides an overview of the flow of information within the compiler. Here we
see that whiley source files are converted into (binary) wyil files; in turn, these are

Whiley: A Platform for Research in Software Verification 245

converted into binary class files (for execution) and wyal source files (for verifica-
tion). The latter is, in turn, converted into the more concise binary wycs form. Note
that, in the general course of events, not all of these files are physically produced. For
example, when compiling a whiley source file into a class file, no other files are
written to disk (unless specifically requested).

From Figure 1, we see that a strong emphasis has been placed on the use of dif-
ferent file formats. Whilst this may seem overly complex, it helps the testing and de-
bugging process significantly. For example, consider diagnosing a bug presenting as
a whiley source file that incorrectly verifies. There are numerous places within the
compiler which could be causing the problem. For example, it could be a problem with
the translation of the whiley source to the wyil file. Likewise, it could be a problem
with the verification condition generator which generates wyal files from wyil files.
In debugging this, one can generate each of these files and inspect them individually to
identify the misbehaving module; furthermore, one can modify any of these files and
push them back into the pipeline to see the effect. Likewise, each module can be tested
in isolation of others by providing tests written in its given input format.

Another advantage of the modularisation in the verifying compiler, is that it enables
interesting possibilities for reuse. For example, other researchers could build a front-
end for a different language and compile down to our intermediate language — thereby
gaining the ability to verify their programs for free. Likewise, other researchers devel-
oping their own verifying compiler with a different intermediate representation might
still generate verification conditions in the wyal format and reuse our theorem prover.
Similarly, we can e.g. replace the WyCS theorem prover with another (e.g. Z3 [25] or
Simplify [26]) by writing a wrapper which converts files in the wyal format into the
appropriate input language of the external tool1.

4.1 Intermediate Language

The Whiley Intermediate Language (WyIL) is a register-based intermediate language
which resembles Java Bytecode. The following illustrates a Whiley function (left) and
the corresponding WyIL code (right):

int abs(int x) ensures $ >= 0:
if x >= 0:

return x
else:

return -x

int abs(int):
ensures:

const %3 = 0 : int
assertge %0,%3 "..." : int

body:
const %2 = 0 : int
iflt %0,%2 goto label0 : int
return %0 : int

.label0
neg %5 = %0 : int
return %5 : int

As can be seen from above, every WyIL bytecode is associated with a type. Fur-
thermore, registers are prefixed with % (e.g. %3); the const bytecode loads a constant

1 And, indeed, a student project run this year has been investigating doing exactly this.

246 D. J. Pearce and L. Groves

value into a register; the iflt bytecode branches to a label if its first operand is less
than its second; the neg bytecode negates its operand and assigns to a given register;
finally, the return bytecode returns its operand.

4.2 Assertion Language

The Whiley Assertion Language is a dialect of first-order logic with various additional
theories (e.g. for arithmetic, sets, lists, etc). A given wyil file will generate a single
wyal file that may contain numerous assertions. The following illustrates the two as-
sertions generated from our example above (written side-by-side to conserve space):

assert "...":
forall(int r0):

if:
r0 >= 0

then:
r0 >= 0

assert "...":
forall(int r0):

if:
r0 < 0

then:
-r0 >= 0

Here, the left assertion corresponds to the execution path through the true branch of the
if statement in the original Whiley function; likewise, the right assertion corresponds
to the path through the false branch. Finally, each assert statement is given a message
to report if it is found to be invalid (note, these are elided above for brevity).

4.3 Build System

The Whiley Build System (WyBS) controls the overall flow of information within the
compiler. Every build operates over a project which contains one or more source roots,
and one or more corresponding binary roots. A source root gives the root location of
a Whiley package (e.g. a file system directory). A binary root indicates where binary
files should be located (e.g. a file system directory, a jar file, etc). Observe that some
binary files (e.g. wyil) are written during compilation, but may also be read (e.g. from
the standard library). A key design feature is that roots may be virtual — meaning they
are not written physically to disk. A command-line option can then determine whether
or not a given root should be virtual (i.e. whether or not a given set of files need to be
physically generated). A further advantage of this approach is that it aids integration
with other tools (e.g. ant, eclipse, etc). For example, eclipse maintains its own
filesystem representation and, hence, integrating our compiler requires integrating with
this. In fact, this was straightforward: we simply created a range of root classes which
interface with eclipse and replace those used by the stand-alone compiler.

5 Conclusion

In this paper, we have presented the Whiley language and its accompanying verifying
compiler tool. Our goal is to provide an open framework for research in automated
software verification, and work continues on this front.

Whiley: A Platform for Research in Software Verification 247

Acknowledgements. This work is supported by the Marsden Fund, administered by
the Royal Society of New Zealand.

References

1. Hoare, T.: The verifying compiler: A grand challenge for computing research. Journal of the
ACM 50(1), 63–69 (2003)

2. King, S.: A Program Verifier. PhD thesis, Carnegie-Mellon University (1969)
3. Peter Deutsch, L.: An interactive program verifier. Ph.d. (1973)
4. Good, D.I.: Mechanical proofs about computer programs. In: Mathematical Logic and Pro-

gramming Languages, pp. 55–75 (1985)
5. Luckham, D.C., German, S.M., von Henke, F.W., Karp, R.A., Milne, P.W., Oppen, D.C.,

Polak, W., Scherlis, W.L.: Stanford pascal verifier user manual. Technical Report CS-TR-
79-731, Stanford University, Department of Computer Science (1979)

6. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. SRC Re-
search Report 159, Compaq Systems Research Center (1998)

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proc. PLDI, pp. 234–245 (2002)

8. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML ac-
commodates both runtime assertion checking and formal verification. Science of Computer
Programming 55(1-3), 185–208 (2005)

9. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview.
Technical report, Microsoft Research (2004)

10. Ireland, A.: A Practical Perspective on the Verifying Compiler Proposal. In: Proceedings of
the Grand Challenges in Computing Research Conference (2004)

11. Leavens, G.T., Abrial, J., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner, E., Jones, C.,
Miller, D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for enhanced
languages and methods to aid verification. In: Proc. of GPCE, pp. 221–235 (2006)

12. Pearce, D., Noble, J.: Implementing a language with flow-sensitive and structural typing on
the JVM. Electronic Notes in Computer Science 279(1), 47–59 (2011)

13. Pearce, D.J.: Sound and complete flow typing with unions, intersections and negations.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 335–354. Springer, Heidelberg (2013)

14. Pearce, D.J.: A calculus for constraint-based flow typing. In: Proc. FTFJP, page Article 7
(2013)

15. Rountev, A.: Precise identification of side-effect-free methods in Java. In: Proc. ICSM,
pp. 82–91. IEEE Computer Society Press (2004)

16. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

17. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Proc. ICFP,
pp. 117–128 (2010)

18. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing local control and state using flow analysis.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256–275. Springer, Heidelberg (2011)

19. Barbanera, F., Caglini, M.D.-C.: Intersection and union types. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 651–674. Springer, Heidelberg (1991)

20. Igarashi, A., Nagira, H.: Union types for object-oriented programming. Journal of Object
Technology 6(2) (2007)

21. Mycroft, A.: Programming language design and analysis motivated by hardware evolution.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 18–33. Springer, Hei-
delberg (2007)

248 D. J. Pearce and L. Groves

22. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.: Decid-
ing bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

23. Lameed, N., Hendren, L.: Staged static techniques to efficiently implement array copy
semantics in a MATLAB JIT compiler. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601,
pp. 22–41. Springer, Heidelberg (2011)

24. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer (1999)
25. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
26. Detlefs, Nelson, Saxe: Simplify: A theorem prover for program checking. JACM 52 (2005)

Method and Tool Support for Classifying
Software Languages with Wikipedia

Ralf Lämmel, Dominik Mosen, and Andrei Varanovich

University of Koblenz-Landau, Software Languages Team

Abstract. Wikipedia provides useful input for efforts on mining tax-
onomies or ontologies in specific domains. In particular, Wikipedia’s cat-
egories serve classification. In this paper, we describe a method and a
corresponding tool, WikiTax, for exploring Wikipedia’s category graph
with the objective of supporting the development of a classification of
software languages. The category graph is extracted level by level. The
extracted graph is visualized in a tree-like manner. Category attributes
(i.e., metrics) such as depth are visualized. Irrelevant edges and nodes
may be excluded. These exclusions are documented while using a man-
ageable and well-defined set of ‘exclusion types’ as comments.

1 Introduction

Ever since 2008, the calls for papers for the Software Language Engineering
(SLE) conference1 have contained slightly different, more implicit or more ex-
plicit definitions of the term ‘software language’. Other community material con-
tains yet other definition attempts; see, for example, the IEEE TSE special sec-
tion on SLE in 2009 [8]. At SLEBOK 2012 (i.e., an SLE 2012 satellite event
dedicated to the the SL(E) body of knowledge), the attendees were also getting
into the issue of what exactly a software language is.

A classification of software languages is a useful (if not necessary) pillar of
a definition of ‘software language’. Such classification is the topic of the present
paper. One branch of software languages appears to be well understood. That is,
programming languages are obviously software languages and they may be classi-
fied in terms of criteria and concepts as organized, for example, in textbooks on
programming languages, programming paradigms, and programming language
theory such as [13,16]. There is also scholarly (dated) work on the classification
of programming languages [1,6]. Actually quite a few sets of criteria or concepts
exist for programming languages; there is no obvious contender; there is no com-
prehensive classification. Several classes of languages (other than programming
languages) have been classified in scholarly work, e.g., model transformation
languages [5], business rule modeling languages [17], visual languages [3,4,11],
and architecture description languages [12]. The ultimate taxonomy of software
languages should subsume and integrate existing, fragmented classifications in a
1 http://planet-sl.org/

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 249–259, 2013.
c© Springer International Publishing Switzerland 2013

http://planet-sl.org/

250 R. Lämmel, D. Mosen, and A. Varanovich

transparent manner. The 101companies project2 hosts efforts targeted at such a
taxonomy, but the results are of limited use and quality so far.

In this paper, we try to inform the apparent classification challenge for
software languages by means of exploring Wikipedia. Obviously, Wikipedia con-
tains substantial amounts of taxonomy-like (if not ontology-like) information—
also for software languages (without though embracing the actual term,
at the time of writing). For instance, there are hierarchically orga-
nized categories such as Computer languages, Programming languages, and
Programming language classification that seem to apply; yet other categories
may be relevant. Accordingly, we describe a method and a corresponding tool,
WikiTax, for exploring Wikipedia’s category graph. Exploration is supported in
a manner such that a domain expert can reduce the category graph so that a
classification emerges. The overall approach is not specific to software languages,
but we apply it to software languages throughout the paper.

Contribution. We do not claim to have converged on a good candidate tax-
onomy for software languages. Rather we contribute procedural, tool-supported
elements of a method towards development of the ultimate taxonomy. The re-
sulting tool, WikiTax, is a rather simple graph exploration tool, which however
includes a few domain-specific features not available in more generic functional-
ity for searching and exploring Wikipedia’s category graph.

Road-map. §2 describes the overall exploration approach and sketches corre-
sponding tool support as implemented by WikiTax. §3 explores Wikipedia cate-
gories related to software languages. §4 concludes the paper. The source code
of WikiTax, a comprehensive manual, and all data covered in this paper are
available online.3

2 Exploring Wikipedia with WikiTax

Wikipedia’s Category Graph. Wikipedia uses several means of organizing its
information: plain links giving rise to an article graph, designated article lists,
portals meant to introduce users to key topics, info-boxes for semantic (‘typed’)
data, and categories giving rise to a category graph for the classification of
articles. When it comes to taxonomy mining, the category graph is particularly
relevant; the graph is accessible, for example, through the MediaWiki API, which
is the access path chosen by WikiTax.

Graph Extraction. Initially, WikiTax is pointed to a root category (level 0)
for extraction. Iteratively, subcategories and pages (in fact, page titles) can be
extracted level by level or exhaustively. Exhaustive extraction may take minutes
to hours depending on the root category. The Wikipedia category graph contains
many surprising edges, which would easily imply inclusion of large, arguably
irrelevant subgraphs. Thus, extraction is controllable.
2 http://101companies.org/
3 https://github.com/dmosen/wiki-analysis

http://en.wikipedia.org/wiki/Category:Computer_languages
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Programming_language_classification
http://101companies.org/
https://github.com/dmosen/wiki-analysis

Method and Tool Support for Classifying Software Languages with Wikipedia 251

Fig. 1. Exploration of level 1 and 2 subcategories of Computer languages

Graph Reduction. WikiTax supports reduction of the graph—both during
(level-by-level) extraction and post extraction. Reduction boils down to the ex-
clusion of nodes, i.e., categories. (In fact, we may also remove individual edges,
given that a category may have multiple parent categories.) A category would
be removed, if domain knowledge suggests that the category at hand does not
serve the intended kind of classification, e.g., classification of software languages
in our case. When exclusion is performed during extraction, then the excluded
nodes (edges) are ignored during subsequent extraction steps. When exclusion
is performed post extraction, then nodes (edges) are only blacklisted, without
actually reducing the graph. In this manner, exclusion decisions can be revisited.

WikiTax’s Visualization. Figure 1 shows the WikiTax exploration view after the
extraction of levels 1 and 2 starting from the category Computer languages. Some
edges are marked for exclusion. (Exclusion would be confirmed with the ‘removal’
button.) The marked categories are to be excluded because domain knowledge
suggests that these categories do not serve language classification in a conceptual
manner. Highlighting is applied to the categories according to the metric of im-
mediate member pages. In the figure, the category Articles with example code is

http://en.wikipedia.org/wiki/Category:Computer_languages
http://en.wikipedia.org/wiki/Category:Articles_with_example_code

252 R. Lämmel, D. Mosen, and A. Varanovich

Fig. 2. Metamodel of the WikiTax category graph

selected so that extra data is shown in the panel on the right, e.g., member pages.
All categories and pages are clickable to navigate to Wikipedia.

WikiTax’s Metamodel. WikiTax operates on an enhanced category graph; see
the metamodel in Figure 2. Thus, each category associates with contained pages
and subcategories. The subcategory associations are attributed to keep track of
metadata as follows:

backwardArc Marker for cyclic edges in the category graph.
blacklisted Marker for categories blacklisted past extraction.
excluded Marker for categories excluded during reduction.
comment Label (‘reason for exclusion’) to be associated with the edge.

Categories are associated with measures as follows:

level The level 0, 1, 2, ... of the category in the graph with the root at level 0.
subcategories The number of immediate subcategories.
transitiveSubcategories The number of all subcategories.
pages The number of immediately contained pages.
transitivePages The number of all pages in this category.

The implementation of WikiTax uses the Java-based JGraLab library4 for the
representation of (annotated) graphs with JSON as an export format.

Exclusion Types. A methodologically important aspect of graph reduction is
that reasons for category exclusion are not just simply documented by a com-
ment, but a manageable, well-defined set of exclusion types is to be developed
over time. For instance, the category Unified Modeling Language could be said
to be of an exclusion type ‘Singleton classifier’ to mean that this category, by
4 https://github.com/jgralab

http://en.wikipedia.org/wiki/Category:Unified_Modeling_Language
https://github.com/jgralab

Method and Tool Support for Classifying Software Languages with Wikipedia 253

design, is primarily concerned with a single language, i.e., UML in this case; the
other members or subcategories of the category are concerned with UML con-
cepts, tools, and other related artifacts. §3 lists several more exclusion types. The
aggregation and use of exclusion types captures domain knowledge and insight
into Wikipedia’s category graph in a transparent manner.

3 Explorative Study

In this study, we examine some Wikipedia categories with two objectives: a) to re-
trieve some candidate classifiers of an emerging taxonomy of software languages;
b) to get some experience with Wikipedia’s approach to classification and related
issues of style and consistency.5

Designation of a Root. Wikipedia’s classification hierarchies are complex
and thus, it is not straightforward to determine a root for exploration unam-
biguously. However, we have established by an ad-hoc search that the category
Computer languages may be a suitable root: its intended coverage may be similar
to what the SL(E) community has in mind for the notion of software languages.

Figure 1 showed all the immediate (i.e., level 1) subcategories of the cat-
egory Computer languages. Several of these immediate subcategories are ex-
cluded because they are not directly concerned with the classification of
languages: Lists of computer languages, Articles with example code, Data types,
and Programming language topics. One of the remaining immediate subcate-
gories is the category Programming languages. We found another major classifier
for programming languages, namely Programming language classification, which
is reachable through the excluded category Programming language topics.

Level-by-level Extraction. We decided to extract another level to obtain a
graph of manageable size. Again, we excluded several categories, if they did not
meet our objective of language classification. As a result, we obtained the cate-
gories shown in Figure 3. This is a pretty manageable set of language classifiers.
It happens that they all end on “... languages” except for two subcategories of
Markup languages which end on “... formats”. In contrast, most of the excluded
categories (see below) do not end on “... languages” . We take this to provide a
hint at the different classification styles of Wikipedia.

Exclusion Types. In order to obtain the reduced result of Figure 3, we had to
exclude 29 categories. This may seem like a small number, but it is clear that
yet more categories must be excluded once deeper levels are explored. We used
these 29 exclusions to develop a small set of exclusion types for the study; see
Figure 4 for the list of excluded categories with the associated exclusion type:

Alternative classifier. The category classifies software languages in a man-
ner that is not related to software concepts. For instance, the category

5 All Wikipedia data for this study and this paper was retrieved 7-18 June 2013.

http://en.wikipedia.org/wiki/Category:Computer_languages
http://en.wikipedia.org/wiki/Category:Computer_languages
http://en.wikipedia.org/wiki/Category:Lists_of_computer_languages
http://en.wikipedia.org/wiki/Category:Articles_with_example_code
http://en.wikipedia.org/wiki/Category:Data_types
http://en.wikipedia.org/wiki/Category:Programming_language_topics
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Programming_language_classification
http://en.wikipedia.org/wiki/Category:Programming_language_topics
http://en.wikipedia.org/wiki/Category:Markup_languages

254 R. Lämmel, D. Mosen, and A. Varanovich

Category Subcategories
Data modeling languages –
Markup languages Declarative markup languages, GIS file formats,

Knowledge representation languages,
Lightweight markup languages,
Mathematical markup languages,
Musical markup languages, Page description markup languages,
Playlist markup languages, User interface markup languages,
Vector graphics markup languages,
Web syndication formats, XML markup languages

Programming languages .NET programming languages,
Agent-based programming languages,
Agent-oriented programming languages,
Concatenative programming languages,
Concurrent programming languages,
Data-structured programming languages,
Declarative programming languages,
Dependently typed languages,
Domain-specific programming languages,
Dynamic programming languages,
Extensible syntax programming languages,
Formula manipulation languages, Function-level languages,
Functional languages, High Integrity Programming Language,
High-level programming languages,
ICL programming languages,
Intensional programming languages,
Low-level programming languages,
Multi-paradigm programming languages,
Nondeterministic programming languages,
Object-based programming languages,
Pattern matching programming languages,
Procedural programming languages,
Process termination functions,
Prototype-based programming languages,
Reactive programming languages,
Secure programming languages,
Set theoretic programming languages,
Statically typed programming languages,
Synchronous programming languages,
Term-rewriting programming languages,
Text-oriented programming languages,
Tree programming languages, Visual programming languages,
XML-based programming languages

Specification languages Algorithm description languages,
Dependently typed languages, Formal specification languages,
Hardware description languages

Stylesheet languages –
Transformation languages Macro programming languages

Fig. 3. Reduced subcategory lists for subcategories of Computer languages

http://en.wikipedia.org/wiki/Category:Data_modeling_languages
http://en.wikipedia.org/wiki/Category:Markup_languages
http://en.wikipedia.org/wiki/Category:Declarative_markup_languages
http://en.wikipedia.org/wiki/Category:GIS_file_formats
http://en.wikipedia.org/wiki/Category:Knowledge_representation_languages
http://en.wikipedia.org/wiki/Category:Lightweight_markup_languages
http://en.wikipedia.org/wiki/Category:Mathematical_markup_languages
http://en.wikipedia.org/wiki/Category:Musical_markup_languages
http://en.wikipedia.org/wiki/Category:Page_description_markup_languages
http://en.wikipedia.org/wiki/Category:Playlist_markup_languages
http://en.wikipedia.org/wiki/Category:User_interface_markup_languages
http://en.wikipedia.org/wiki/Category:Vector_graphics_markup_languages
http://en.wikipedia.org/wiki/Category:Web_syndication_formats
http://en.wikipedia.org/wiki/Category:XML_markup_languages
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:.NET_programming_languages
http://en.wikipedia.org/wiki/Category:Agent-based_programming_languages
http://en.wikipedia.org/wiki/Category:Agent-oriented_programming_languages
http://en.wikipedia.org/wiki/Category:Concatenative_programming_languages
http://en.wikipedia.org/wiki/Category:Concurrent_programming_languages
http://en.wikipedia.org/wiki/Category:Data-structured_programming_languages
http://en.wikipedia.org/wiki/Category:Declarative_programming_languages
http://en.wikipedia.org/wiki/Category:Dependently_typed_languages
http://en.wikipedia.org/wiki/Category:Domain-specific_programming_languages
http://en.wikipedia.org/wiki/Category:Dynamic_programming_languages
http://en.wikipedia.org/wiki/Category:Extensible_syntax_programming_languages
http://en.wikipedia.org/wiki/Category:Formula_manipulation_languages
http://en.wikipedia.org/wiki/Category:Function-level_languages
http://en.wikipedia.org/wiki/Category:Functional_languages
http://en.wikipedia.org/wiki/Category:High_Integrity_Programming_Language
http://en.wikipedia.org/wiki/Category:High-level_programming_languages
http://en.wikipedia.org/wiki/Category:ICL_programming_languages
http://en.wikipedia.org/wiki/Category:Intensional_programming_languages
http://en.wikipedia.org/wiki/Category:Low-level_programming_languages
http://en.wikipedia.org/wiki/Category:Multi-paradigm_programming_languages
http://en.wikipedia.org/wiki/Category:Nondeterministic_programming_languages
http://en.wikipedia.org/wiki/Category:Object-based_programming_languages
http://en.wikipedia.org/wiki/Category:Pattern_matching_programming_languages
http://en.wikipedia.org/wiki/Category:Procedural_programming_languages
http://en.wikipedia.org/wiki/Category:Process_termination_functions
http://en.wikipedia.org/wiki/Category:Prototype-based_programming_languages
http://en.wikipedia.org/wiki/Category:Reactive_programming_languages
http://en.wikipedia.org/wiki/Category:Secure_programming_languages
http://en.wikipedia.org/wiki/Category:Set_theoretic_programming_languages
http://en.wikipedia.org/wiki/Category:Statically_typed_programming_languages
http://en.wikipedia.org/wiki/Category:Synchronous_programming_languages
http://en.wikipedia.org/wiki/Category:Term-rewriting_programming_languages
http://en.wikipedia.org/wiki/Category:Text-oriented_programming_languages
http://en.wikipedia.org/wiki/Category:Tree_programming_languages
http://en.wikipedia.org/wiki/Category:Visual_programming_languages
http://en.wikipedia.org/wiki/Category:XML-based_programming_languages
http://en.wikipedia.org/wiki/Category:Specification_languages
http://en.wikipedia.org/wiki/Category:Algorithm_description_languages
http://en.wikipedia.org/wiki/Category:Dependently_typed_languages
http://en.wikipedia.org/wiki/Category:Formal_specification_languages
http://en.wikipedia.org/wiki/Category:Hardware_description_languages
http://en.wikipedia.org/wiki/Category:Stylesheet_languages
http://en.wikipedia.org/wiki/Category:Transformation_languages
http://en.wikipedia.org/wiki/Category:Macro_programming_languages

Method and Tool Support for Classifying Software Languages with Wikipedia 255

Category Exclusion type
Academic programming languages Alternative classifier
Articles with example code Deviating classifier
Cascading Style Sheets Singleton classifier
Data types Deviating classifier
Discontinued programming languages Alternative classifier
DocBook Singleton classifier
Esoteric programming languages Alternative classifier
Experimental programming languages Alternative classifier
HTML Singleton classifier
JSON Singleton classifier
Lists of computer languages List classifier
Lists of programming languages List classifier
Markup language comparisons Deviating classifier
Markup language stubs Maintenance classifier
Non-English-based programming languages Alternative classifier
Programming language families Deviating classifier
Programming language standards Deviating classifier
Programming language topics Deviating classifier
Programming languages by creation date Alternative classifier
Programming languages conferences Deviating classifier
Software by programming language Deviating classifier
SyncML Singleton classifier
TeX Singleton classifier
Text Encoding Initiative Singleton classifier
Troff Singleton classifier
Uncategorized programming languages Maintenance classifier
Unified Modeling Language Singleton classifier
Wikipedia categories named after programming languages Deviating classifier
XML Singleton classifier

Fig. 4. Exclusion types for levels 1 and 2 of Computer languages; this list is produced
by the WikiTax tool based on metadata (comments) entered by us interactively

Academic programming languages describes itself as being concerned with lan-
guages that are “influential in computer science and programming language the-
ory”.

Deviating classifier. The category does not actually classify software languages. It
rather classifies something else. For instance, category Articles with example code
describes itself as being concerned with “articles which include reference imple-
mentations of algorithms”.

Singleton classifier. The category is effectively concerned with a single software lan-
guage for which it serves as a container of related entities such as technologies
or standards. For instance, category Cascading Style Sheets contains pages on all
kinds of topics related to the CSS language.

List classifier. The category collects lists or categories of lists (rather than plain cat-
egories) of software languages. For instance, category Lists of computer languages
has Lists of programming languages as a subcategory, which in turn contains pages
for some lists of languages, such as the List of BASIC dialects.

Maintenance classifier. The category is used by the Wikipedia authors to capture
some information related to the maintenance of pages or categories. For instance,

http://en.wikipedia.org/wiki/Category:Academic_programming_languages
http://en.wikipedia.org/wiki/Category:Articles_with_example_code
http://en.wikipedia.org/wiki/Category:Cascading_Style_Sheets
http://en.wikipedia.org/wiki/Category:Data_types
http://en.wikipedia.org/wiki/Category:Discontinued_programming_languages
http://en.wikipedia.org/wiki/Category:DocBook
http://en.wikipedia.org/wiki/Category:Esoteric_programming_languages
http://en.wikipedia.org/wiki/Category:Experimental_programming_languages
http://en.wikipedia.org/wiki/Category:HTML
http://en.wikipedia.org/wiki/Category:JSON
http://en.wikipedia.org/wiki/Category:Lists_of_computer_languages
http://en.wikipedia.org/wiki/Category:Lists_of_programming_languages
http://en.wikipedia.org/wiki/Category:Markup_language_comparisons
http://en.wikipedia.org/wiki/Category:Markup_language_stubs
http://en.wikipedia.org/wiki/Category:Non-English-based_programming_languages
http://en.wikipedia.org/wiki/Category:Programming_language_families
http://en.wikipedia.org/wiki/Category:Programming_language_standards
http://en.wikipedia.org/wiki/Category:Programming_language_topics
http://en.wikipedia.org/wiki/Category:Programming_languages_by_creation_date
http://en.wikipedia.org/wiki/Category:Programming_languages_conferences
http://en.wikipedia.org/wiki/Category:Software_by_programming_language
http://en.wikipedia.org/wiki/Category:SyncML
http://en.wikipedia.org/wiki/Category:TeX
http://en.wikipedia.org/wiki/Category:Text_Encoding_Initiative
http://en.wikipedia.org/wiki/Category:Troff
http://en.wikipedia.org/wiki/Category:Uncategorized_programming_languages
http://en.wikipedia.org/wiki/Category:Unified_Modeling_Language
http://en.wikipedia.org/wiki/Category:Wikipedia_categories_named_after_programming_languages
http://en.wikipedia.org/wiki/Category:XML
http://en.wikipedia.org/wiki/Category:Academic_programming_languages
http://en.wikipedia.org/wiki/Category:Articles_with_example_code
http://en.wikipedia.org/wiki/Category:Cascading_Style_Sheets
http://en.wikipedia.org/wiki/Category:Lists_of_computer_languages
http://en.wikipedia.org/wiki/Category:Lists_of_programming_languages
http://en.wikipedia.org/wiki/List_of_BASIC_dialects

256 R. Lämmel, D. Mosen, and A. Varanovich

the category Uncategorized programming languages describes itself as serving cat-
egories or pages “which need to be classified under more specific categories”. Also:
“This category may be empty occasionally or even most of the time.”

An Observation Regarding Wikipedia Style. The resulting classifica-
tion of Figure 3 with the remaining level-1 and level-2 subcategories is of
a manageable size. We may review the classification and observe some of
its characteristics in this manner. During the study, we realized, for exam-
ple, an asymmetry between ‘query’ versus ‘transformation’. That is, there
is a category Transformation languages at level 1, but there is apparently
no category for ‘query languages’, not even at level 2. Let us inspect the
page for SQL, which is an obvious query language. It turns out that SQL
is a member of various categories including a category Query languages
which in turn is a subcategory of various categories including the category
Domain-specific programming languages which occurred in Figure 3. Let us com-
pare this classification scheme with the one of XSLT , which is an obvious trans-
formation language: it is a member of the categories Transformation languages,
Declarative programming languages, Functional languages, Markup languages,
XML-based programming languages, and yet other categories that may count
as ‘alternative classifiers’. However, XSLT (unlike SQL) is not a member of the
category Domain-specific programming languages.

WikiTax is helpful in making such observations regarding consistency (or lack
thereof) of classification on Wikipedia.

Programming Languages: All Levels According to Figure 3, the sub-
category of Computer languages with by far the most subcategories is
Programming languages. Thus, we embarked on a more comprehensive explo-
ration of category Programming languages:

Initially, we extracted 423 categories over 8 levels with 7515 pages. The au-
tomatic extraction took several minutes. We performed exclusion in two steps.
First, we (re-) excluded those direct subcategories that already appeared in
Figure 4. After such initial pruning, 288 categories with 6671 pages remained.
We completed reduction at all levels of the category graph. This process required
about 2 hours of manual work to determine what categories to remove and for
what reason. This effort is intrinsically manual; it requires domain knowledge
and involves consultation of the relevant and additional Wikipedia pages. Ulti-
mately, 79 categories over 4 levels with 1560 pages remained. Figure 5 visualizes
the reduced taxonomy for two different metrics supported by WikiTax.

On the left, the metric for the number of transitive member pages is applied for
visualization. No category is grayed out, which means that there is no category
without members. Most of the categories are shown in a plain font, which means
that they all carry members, but less than 25 % of the total members in the cate-
gory Programming languages (which has 1560 member pages). There is actually
one heavyweight: category Domain-specific programming languages carries 976
members, which is more than 50 % of all members; this status is expressed by
highlighting the category.

http://en.wikipedia.org/wiki/Category:Uncategorized_programming_languages
http://en.wikipedia.org/wiki/Category:Transformation_languages
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Category:Query_languages
http://en.wikipedia.org/wiki/Category:Domain-specific_programming_languages
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/Category:Transformation_languages
http://en.wikipedia.org/wiki/Category:Declarative_programming_languages
http://en.wikipedia.org/wiki/Category:Functional_languages
http://en.wikipedia.org/wiki/Category:Markup_languages
http://en.wikipedia.org/wiki/Category:XML-based_programming_languages
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Category:Domain-specific_programming_languages
http://en.wikipedia.org/wiki/Category:Computer_languages
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Domain-specific_programming_languages

Method and Tool Support for Classifying Software Languages with Wikipedia 257

Pages Categories

Fig. 5. Metrics-based views on Programming languages graph

On the right, the metric for the number of transitive subcategories is applied
for visualization. Most subcategories of Programming languages do not have any
subcategories; thus, they are grayed out. 7 out of 36 level-1 categories carry
subcategories. 6 out of these 7 categories carry only very few subcategories (less
than 5). Category Domain-specific programming languages carries 18 subcate-
gories, which is more than 25 % of all subcategories; this status is expressed by
highlighting the category.

4 Conclusion

Any domain with large data to explore (‘large’ in terms of what the user needs
to understand) may benefit from interactive exploration possibly with editing

http://en.wikipedia.org/wiki/Category:Programming_languages
http://en.wikipedia.org/wiki/Category:Domain-specific_programming_languages

258 R. Lämmel, D. Mosen, and A. Varanovich

or annotation; see tools for ontologies [2], graphs [9], semantic data [7], soft-
ware bugs [10], API usage [15]. In this paper, we described an approach to
the exploration of Wikipedia’s category graph so that candidate taxonomies can
be extracted from the graph. We were specifically interested in understanding
Wikipedia’s classification of software languages. To this end, we developed a
domain-specific exploration tool, WikiTax, which supports level-by-level graph
extraction, metrics-based graph visualization as well as transparent and revis-
able graph reduction. Such designated exploration support is missing in more
generic tools for searching or exploring the category graph.

The described method of graph reduction is deliberately interactive and re-
lies on domain knowledge for transparent exclusion decisions, as opposed to any
means of automated ontology extraction / generation [18,19]. (Without such
validation, there is little hope that the resulting taxonomy would be readily
meaningful.) An important conceptual contribution is our proposal to docu-
ment exclusion decisions with (comments for) exclusion types, thereby making
reduction more systematic and transparent. This interactive approach can be
contrasted with related work on taxonomy or ontology mining, where categories
are classified and additional relationships are inferred automatically, e.g., by
analyzing the structure of compound category names [14].

We contend that the described approach provides the initial core of a method
for actually developing a taxonomy for software languages (and possibly other
taxonomies) on the grounds of Wikipedia. Collaborative work and further im-
proved tool support are needed to actually arrive at a comprehensive taxonomy.
We imagine that we need powerful refactoring operations on the category graph
to facilitate taxonomy extraction and enforcement of consistent style. The ex-
ploration of the category graph could also be supported by additional forms of
visualization, e.g., for understanding the overlap of categories. Also, we need
to generally better understand (perhaps based on an automated analysis) the
different classifier styles used by Wikipedia.

References

1. Babenko, L.P., Rogach, V.D., Yushchenko, E.L.: Comparison and classification of
programming languages. Cybernetics 11, 271–278 (1975)

2. Baskaya, F., Kekäläinen, J., Järvelin, K.: A tool for ontology-editing and ontology-
based information exploration. In: Proc. of ESAIR 2010, pp. 29–30. ACM (2010)

3. Bottoni, P., Grau, A.: A suite of metamodels as a basis for a classification of visual
languages. In: Proc. of VL/HCC 2004, pp. 83–90. IEEE Computer Society (2004)

4. Burnett, M.M., Baker, M.J.: A classification system for visual programming lan-
guages. J. Vis. Lang. Comput. 5(3), 287–300 (1994)

5. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

6. Doyle, J.R., Stretch, D.D.: The classification of programming languages by usage.
International Journal of Man-Machine Studies 26(3), 343–360 (1987)

7. Dumas, B., Broché, T., Hoste, L., Signer, B.: ViDaX: an interactive semantic data
visualisation and exploration tool. In: Proc. of AVI 2012, pp. 757–760. ACM (2012)

Method and Tool Support for Classifying Software Languages with Wikipedia 259

8. Favre, J.-M., Gasevic, D., Lämmel, R., Winter, A.: Guest editors’ introduction
to the special section on software language engineering. IEEE Trans. Software
Eng. 35(6), 737–741 (2009)

9. Haun, S., Nürnberger, A., Kötter, T., Thiel, K., Berthold, M.R.: CET: A tool for
creative exploration of graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag,
M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 587–590. Springer,
Heidelberg (2010)

10. Hora, A., Anquetil, N., Ducasse, S., Bhatti, M.U., Couto, C., Valente, M.T., Mar-
tins, J.: Bug Maps: A tool for the visual exploration and analysis of bugs. In: Proc.
of CSMR 2012, pp. 523–526. IEEE (2012)

11. Marriott, K., Meyer, B.: On the classification of visual languages by grammar
hierarchies. J. Vis. Lang. Comput. 8(4), 375–402 (1997)

12. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Software Eng. 26(1), 70–93
(2000)

13. Mosses, P.D.: Action Semantics. Cambridge University Press (1992)
14. Nastase, V., Strube, M.: Decoding Wikipedia categories for knowledge acquisition.

In: Proc. of AAAI 2008, pp. 1219–1224. AAAI Press (2008)
15. Roover, C.D., Lämmel, R., Pek, E.: Multi-dimensional exploration of API usage.

In: Proc. of ICPC 2013, 10 pages. IEEE (to appear, 2013)
16. Sebesta, R.W.: Concepts of Programming Languages, 10th edn. Addison-Wesley

(2012)
17. Skalna, I., Gawel, B.: Model driven architecture and classification of business rules

modelling languages. In: Proc. of FedCSIS 2012, pp. 949–952 (2012)
18. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A large ontology from

Wikipedia and WordNet. J. Web Sem. 6(3), 203–217 (2008)
19. Wu, F., Weld, D.S.: Automatically refining the Wikipedia infobox ontology. In:

Proc. of WWW 2008, pp. 635–644. ACM (2008)

A Language Independent Task Engine
for Incremental Name and Type Analysis

Guido H. Wachsmuth1,2, Gabriël D.P. Konat1, Vlad A. Vergu1,
Danny M. Groenewegen1, and Eelco Visser1

1 Delft University of Technology, The Netherlands
{g.h.wachsmuth,v.a.vergu,d.m.groenewegen}@tudelft.nl,

{gkonat,visser}@acm.org
2 Oracle Labs, Redwood City, CA, USA

Abstract. IDEs depend on incremental name and type analysis for re-
sponsive feedback for large projects. In this paper, we present a language-
independent approach for incremental name and type analysis. Analysis
consists of two phases. The first phase analyzes lexical scopes and bind-
ing instances and creates deferred analysis tasks. A task captures a single
name resolution or type analysis step. Tasks might depend on other tasks
and are evaluated in the second phase. Incrementality is supported on file
and task level. When a file changes, only this file is recollected and only
those tasks are reevaluated, which are affected by the changes in the col-
lected data. The analysis does neither re-parse nor re-traverse unchanged
files, even if they are affected by changes in other files. We implemented
the approach as part of the Spoofax Language Workbench and evaluated
it for the WebDSL web programming language.

1 Introduction

Integrated development environments (IDEs) provide a wide variety of language-
specific editor services such as syntax highlighting, error marking, code naviga-
tion, content completion, and outline views in real-time, while a program is
edited. These services require syntactic and semantic analyses of the edited pro-
gram. Thereby, timely availability of analysis results is essential for IDE respon-
siveness. Whole-program analyses do not scale because the size of the program
determines the performance of such analyses.

Incremental analysis reuses previous analysis results of unchanged program
parts and reanalyses only parts affected by changes. The granularity of the in-
cremental analysis directly impacts the performance of the analysis. A more
fine-grained incremental analysis is able to reanalyze smaller units of change,
but requires a more complex change and dependency analysis. At program level,
any change requires reanalysis of the entire program, which might consider the
results of the previous analysis. At file level, a file change requires reanalysis of
the entire file and all dependent files. At program element level, changes to an
element within a file require reanalysis of that element and dependent elements,
but typically not of entire files. Incremental analyses are typically implemented

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 260–280, 2013.
c© Springer International Publishing Switzerland 2013

A Language Independent Task Engine 261

manually. Thereby, change detection and dependency tracking are cross-cutting
the implementation of the actual analysis. This raises complexity of the imple-
mentation and negatively affects maintenance, reusability, and modularity.

In this paper, we focus on incremental name and type analysis. We present
a language-independent approach which consists of two phases. The first phase
analyzes lexical scopes, collects information about binding instances, and creates
deferred analysis tasks in a top-down traversal. An analysis task captures a single
name resolution or type analysis step. Tasks might depend on other tasks and
are evaluated in the second phase. Incrementality is supported on file level by
the collection phase and on task level by the evaluation phase. When a file
changes, only this file is recollected and only those tasks are reevaluated, which
are affected by the changes in the collected data. As a consequence, the analysis
does neither re-parse nor re-traverse unchanged files, even if they are affected by
changes in other files. Only the affected analysis tasks are reevaluated.

Our approach enables language engineers to abstract over incrementality.
When applied directly, language engineers need to parametrize the collection
phase, where they have full freedom to create and combine low-level analysis
tasks. Thereby, they can focus solely on the name binding and typing rules of
their language while the generic evaluation phase provides the incrementality.
The approach can also form the basis for more high-level meta-languages for
specifying the static semantics of programming languages. We use the task en-
gine to implement incremental name analysis for name binding and scope rules
expressed in NaBL, Spoofax’ declarative name binding language [16].

We have implemented the approach as part of the Spoofax language work-
bench [14] and evaluated it for WebDSL, a domain-specific language for the
implementation of dynamic web applications [7], designed specifically to enable
static analysis and cross-aspect consistency checking in mind [11]. We used real
change-sets from the histories of two WebDSL applications to drive experiments
for the evaluation of the correctness, performance and scalability of the obtained
incremental static analysis. Experiment input data and the obtained results are
publicly available.

We proceed as follows. In the next section, we introduce the basics of name and
type analysis and introduce the running example of the paper. In Sects. 3 and 4,
we discuss the two analysis phases of our approach, collection and evaluation. In
Sect. 5, we discuss the implementation and its integration into the Spoofax lan-
guage workbench. In Sect. 6, we discuss the evaluation of our approach. Sects. 7
and 8 are for related work and conclusions.

2 Name and Type Analysis

In this section, we discuss name and type analysis in the context of the running
example of the paper, a multi-file C# program shown in Fig. 1.

Name Analysis. In textual programming languages, an identifier is a name
given to program elements such as variables, methods, classes, and packages. The

262 G.H. Wachsmuth et al.

class A {
B b; int m;
float m() {

return 1 + b.f; }}

class B {
int i; float f;
int m() {

return 0; }}

class C:A {

int n() {
return m(); }}

Fig. 1. C# class declarations in separate files with cross-file references. The underlined
expression causes a type error.

class A {
B b; int m;
int m(B b) {

return 1 + b.i; }}

class B {
int i; float f;
int m() {

return 1; }}

namespace N {
class C:B {

int n() {
return m(); }}}

Fig. 2. C# class declarations after editing. Changes w.r.t. Fig. 1 are highlighted.

same identifier can have multiple instances in different places in a program. Name
analysis establishes relations between a binding instance that defines a name and
a bound instance that uses that name [17]. Name analysis is typically defined
programmatically through a name resolution algorithm that connects binding
prospects to binding instances. When a prospect is successfully connected, it
becomes a bound instance. Otherwise, it is a free instance.

The C# class declarations in Fig. 1 contain several references, some of which
cross file boundaries. The declared type of field b in class A refers to class B in a
separate file. Also, the return expression of method m in class A accesses field f
in class B. The parent of class C refers to class A in a separate file and the return
expression of method n in class C is a call to method m in class A.

Languages typically distinguish several namespaces, i.e. different kinds of
names, such that an occurrence of a name in one namespace is not related to
an occurrence of that same name in another. In the example, class A contains a
field and a homonym method m, but C# distinguishes field and method names.

Scopes restrict the visibility of binding instances. They can be nested and
name analysis typically looks for binding instances from inner to outer scopes.
In the example, b is resolved by first looking for a variable b in method A.m,
before looking for a field b in class A. A named scope is the context for a binding
instance, and scopes other binding instances. In the example, class A is a named
scope. It is the context for a class name and a scope for method and field names.

An alias introduces a new binding instance for an already existing one. An
import introduces binding instances from one scope into another one. In the
example, class C imports fields and methods from its parent class A.

Type Analysis. In statically typed programming languages, a type classifies
program elements such as expressions according to the kind of values they com-
pute [20]. Fig. 1 declares method C.n of type int, meaning that this method
is expected to compute signed 32-bit integer values. Type analysis assigns types
to program elements. Types are typically calculated compositionally, with the
type of a program element depending only on the types of its sub-elements [20].

A Language Independent Task Engine 263

Type checking compares expected with actual types of program elements. A
type error occurs if actual and expected type are incompatible. Type errors
reveal at compile-time certain kinds of program misbehavior at run-time. In
the example, the return expression in method C.n causes a type error. The
expression is of type float, since the called method m returns values of this
type. But the declaration of C.n states that it evaluates to values of type int.

Incremental Analysis. When a program changes, it needs to be reanalyzed.
Different kinds of changes influence name and type analysis. First, adding a
binding instance may introduce bindings for free instances, or rebind bound in-
stances. Removing a binding instance influences all its bound instances, which
are either rebound to other binding instances or become free instances. Changing
a binding instance combines the effects of removing and adding. Second, adding
a binding prospect requires resolution, while removing it makes a binding obso-
lete. Changing a binding prospect requires re-binding, resulting either in a new
binding or a free instance. Third, addition, removal, or change of scopes or im-
ports influence bound instances in the affected scopes, which might be rebound
to different binding instances or become free instances. Similarly, they influence
bound instances which are bound to binding instances in the affected scopes. Fi-
nally, addition of a typed element requires type analysis, while removing it makes
a type calculation obsolete. Changing a typed element requires reanalysis.

Furthermore, changes propagate along dependencies. When bound instances
are rebound to different binding instances or become free instances, this influ-
ences bindings in the context of these bound instances, the type of these in-
stances, the type of enclosing program elements, and bindings in the context of
such types. Consider Fig. 2 for an example. It shows edited versions of the C#
class declarations from Fig. 1. We assume the following editing sequence:

1. The return type of method A.m is changed from float to int. This affects
the type of the return expression of method C.n and solves the type error,
but raises a new type error in the return expression of A.m.

2. The return expression of method A.m is changed to b.i. This requires res-
olution of i and affects the type of the expression, solving the type error.

3. Parameter B b is added to method A.m. This might affect the resolution
and by this the type of b and i in the return expression, the type of the
return expression, the resolution of m in method C.n, and the type of its
return expression. Actually, only the resolution of b and m and the type of
the return expression in C.n are affected. The latter resolution fails, causing
a resolution error and leaving the return expression untyped.

4. The parent of class C is changed from A to B. This affects the resolution of m
in method C.n and the type of its return expression. It fixes the resolution
error and the return expression becomes typed again.

5. Class C is enclosed in a new namespace N. This might affect the resolution
of parent class B, the resolution of m in N.C.n, and the type of the return
expression in N.C.n. Actually, it does not affect any of those.

6. The return expression of method m in class B is changed. This might affect
the type of this expression, but actually it does not.

264 G.H. Wachsmuth et al.

We discuss incremental analysis in the next sections. We start with the col-
lection phase in Sect. 3, and continue with the evaluation phase in Sect. 4.

3 Semantic Index

We collect name binding information for all units in a project into a semantic
index, a central data structure that is persisted across invocations of the analysis
and across editing sessions. For the purpose of this paper, we model this data
structure as binary relations over keys and values. As keys, we use URIs, which
identify bindings uniquely across a project. As values, we use either URIs or
terms. We use U and T to denote the set of all URIs and terms, respectively.

URIs. We assign a URI to each binding instance, bound instance, and free in-
stance. A bound instance shares the URI with its corresponding binding instance.
A URI consists of a language name, a list of scope segments, the namespace of
the instance, its name, and an optional unique qualifier. This qualifier helps to
distinguish unique binding instances by numbering them consecutively. A seg-
ment for a named scope consists of the namespace, the name, and the qualifier of
the scoping binding instance. Anonymous scopes are represented by a segment
anon(u), where u is a unique string to distinguish different scopes. For exam-
ple, C#://Class.A.1/Method.m.1 identifies method m in class A in the C#
program in Fig. 1. The qualifier 1 distinguishes the method. Possible homonym
methods in the same class would get subsequent qualifiers.

Index Entries. The index stores binding instances (B ⊆ U × U), aliases (A ⊆
U × U), transitive and non-transitive imports for each namespace ns (TI ns ⊆
U × U and NI ns ⊆ U × U), and types of binding instances (Ptype ⊆ U × T).
For a binding instance with URI u, B contains an entry (u′, u), where u′ is
retrieved from u by omitting the unique qualifier. u′ is useful to resolve binding
prospects, as we will show later. An alias consists of the new name, that is a
binding instance, and the old name, that is a binding prospect. For each alias,
A contains an entry (a, u), where a is the URI of the binding instance and u is
the URI of the binding prospect. For a transitive wildcard import from a scope
with URI u into a scope with URI u′, TI ns contains an entry (u′, u). Similarly,
NI ns contains entries for non-transitive imports. Finally, for a binding instance
of URI u and of type t, Ptype contains an entry (u, t). P can also store other
properties of binding instances, but we focus on types for this paper.

Example. Fig. 3 shows the index for the running example. It contains entries in
B for binding instances of classes A, B, and C, fields A.b, A.m, B.i, and B.f, and
methods A.m, B.m, and C.n. Corresponding entries for Ptype contain the types of
all fields and methods in the program. Since the running example does not define
any aliases, A does not contain any entries. It also contains corresponding entries
for NIField , TI Field , NIMethod , and TIMethod . These entries model inheritance
by a combination of a non-transitive and a transitive import. C first inherits the
fields and methods from A (non-transitive import). Second, C inherits the fields
and methods which are inherited by A (transitive import).

A Language Independent Task Engine 265

Relation Key Value

B C#:/Class.A C#:/Class.A.1

C#:/Class.A.1/Field.b C#:/Class.A.1/Field.b.1

C#:/Class.A.1/Field.m C#:/Class.A.1/Field.m.1

C#:/Class.A.1/Method.m C#:/Class.A.1/Method.m.1

C#:/Class.B C#:/Class.B.1

C#:/Class.B.1/Field.i C#:/Class.B.1/Field.i.1

C#:/Class.B.1/Field.f C#:/Class.B.1/Field.i.1

C#:/Class.B.1/Method.m C#:/Class.B.1/Method.m.1

C#:/Class.C C#:/Class.C.1

C#:/Class.C.1/Method.n C#:/Class.C.1/Method.n.1

NI Field ,TI Field C#:/Class.C.1 Task:/31

NIMethod ,TIMethod C#:/Class.C.1 Task:/31

Ptype C#:/Class.A.1/Field.b.1 Task:/6

C#:/Class.A.1/Field.m.1 int

C#:/Class.A.1/Method.m.1 ([], float)

C#:/Class.B.1/Field.i.1 int

C#:/Class.B.1/Field.f.1 float)

C#:/Class.B.1/Method.m.1 ([], int)

C#:/Class.C.1/Method.n.1 ([], int)

Change Key Value

Δ1
Ptype

C#:/Class.A.1/Method.m.1 ([], float)

C#:/Class.A.1/Method.m.1 ([], int)

Δ3
B C#:/Class.A.1/Method.m.1/Var.b C#:/Class.A.1/Method.m.1/Var.b.1

Δ3
Ptype

C#:/Class.A.1/Method.m.1/Var.b.1 Task:/6

C#:/Class.A.1/Method.m.1 ([], int)

C#:/Class.A.1/Method.m.1 ([Task:/6], int)

Δ4
IField

C#:/Class.C.1 Task:/31

C#:/Class.C.1 Task:/6

Δ4
IMethod

C#:/Class.C.1 Task:/31

C#:/Class.C.1 Task:/6

Δ5
B C#:/Ns.N C#:/Ns.N.1

C#:/Class.C C#:/Class.C.1

C#:/Ns.N.1/Class.C C#:/Ns.N.1/Class.C.1

C#:/Class.C.1/Method.n C#:/Class.C.1/Method.n.1

C#:/Ns.N.1/Class.C.1/Method.n C#:/Ns.N.1/Class.C.1/Method.n.1

Δ5
IField

C#:/Class.C.1 Task:/6

C#:/Ns.N.1/Class.C.1 Task:/54

Δ5
IMethod

C#:/Class.C.1 Task:/6

C#:/Ns.N.1/Class.C.1 Task:/54

Δ5
Ptype

C#:/Class.C.1/Method.n.1 ([], int)

C#:/Ns.N.1/Class.C.1/Method.n.1 ([], int)

Fig. 3. Initial semantic index for the C# program in Fig. 1 (top) and changes for the
C# program from Fig. 2 (bottom)

266 G.H. Wachsmuth et al.

Initial Collection. We collect index entries in a generic top-down traversal,
which needs to be instantiated with language-specific name binding and scope
rules. During the traversal, a dictionary S is maintained to keep track of the cur-
rent scope for each namespace. At each node, we perform the following actions:

1. If the node is the context of a binding instance of name n in namespace
ns, we create a new unique qualifier q, construct URIs u′ = S(ns)/ns.n and
u = u′.q, and add (u′, u) to B. If the instance is of type t, we add (u, t) to
Ptype . If the node is a scope for a namespace ns ′, we update S(ns) to u.

2. If the current node is an anonymous scope for a namespace ns, we extend
S(ns) with an additional anonymous segment.

3. If the current node defines an alias, transitive, or non-transitive wildcard
import, we add corresponding pairs of URIs to A, TI ns, or NI ns.

Collection does not consider binding prospects which need to be resolved.
Furthermore, entries in TI ns, NI ns, and Ptype might still require project-wide
name resolution and type analysis. Instead of performing this analysis during the
collection, we defer the remaining analysis tasks to a second phase of analysis
and store unique placeholder URIs in the index. For example, the type of field
A.b contains a class name B, which needs to be resolved. The index in Fig. 3
does not contain an actual type, but a reference to a deferred resolution task.
Also, the index entries for wildcard imports refers to a deferred task, since the
name of the base class of class C needs to be resolved first.

The semantic index is a project-wide data structure, but collection can be
split over separate partitions. A partition is typically a file, but can also be a
smaller unit. The only constraint we impose on partitions is that they need to
be in global scope. This ensures that index collection is independent of other
partitions. Collection for a partition p will provide us with a partial index con-
sisting of Bp, Ap, TI p,ns , NI p,ns , and Pp,type . The overall index can be formed
by combining all partial indices of a project.

Incremental Collection. When a partition is edited, reanalysis is triggered.
But only the partial index of the changed partition needs to be recollected,
while partial indices of other partitions remain valid. Partial recollection will
result in an updated relation B′

p. Given the original Bp, we define a change set
ΔB = (B′

p \Bp)∪ (Bp \B′
p) of entries added to or removed from B. In the same

way, we can define ΔA, and ΔPtype . For imports, the situation is slightly different,
since we need to consider changes in transitive import chains. We keep a change
set ΔIns for a derived relation Ins = TI ∗ns ◦ NI ns , where TI ∗ is the reflexive
transitive closure of TI and I is the composition of this closure with NI .

Example. Fig. 3 shows non-empty change sets for the running example. Thereby,
superscripts indicate editing steps. In step 1, changing the return type of method
A.m causes a change in Ptype . In step 3, adding a parameter to the same method
causes changes to B and Ptype . In step 4, changing the parent of class C causes
changes in IField and IMethod . In step 5, enclosing class C in a namespace affects all
index entries for the class and its contained elements. The next section discusses
how change-sets trigger reevaluation of deferred analysis tasks.

A Language Independent Task Engine 267

4 Deferred Analysis Tasks

In the previous section, we discussed the collection of index entries. This col-
lection is efficient, since it requires only a single top-down traversal. When a
partition changes, recollection is even more efficient, since it can be restricted to
the changed partition, while the collected entries from other partitions remain
valid. This is achieved by deferring name resolution and type analysis tasks,
which might require information from other partitions or from other tasks.

Tasks are collected together with index entries and evaluated afterwards in a
second analysis phase. For evaluation, no traversal is needed. Instead, inter-task
dependencies determine an evaluation order. When a partition changes, only the
tasks for this partition are recollected in the first phase. Change sets determine
which tasks need to re-evaluated, including affected tasks from other partitions.

Instructions. Each task consists of a special URI, which is used as a placeholder
in the semantic index, its dependencies to other tasks, and an instruction. Fig. 4
lists the instructions which can be used in tasks. Their semantics is given with
respect to the semantic index, a type cast relation C ⊆ T ×T , where (t, t′) ∈ C
iff type t can be cast to type t′, and a partial function δC : T × T → N for the
distance between types. We write R [S] to denote the image of a set S under a

Instruction Semantics

resolve uri B [uri]
resolve alias uri A [uri]

resolve import ns
into uri

Ins [uri]

lookup type of uri Ptype [uri]
check type t in T {t} ∩ T

cast type t to T C [t] ∩ T

assign type t {t}
s1 + s2 R [s1, s2]

s1 <+ s2

{
R [s1] , if
= ∅
R [s2] , otherwise

filter
s1 + s2 by type T

{u ∈ R [s1,s2]|Ptype ◦ C [u] ∩ T
= ∅}

filter
s1 <+ s2 by type T

{
{u ∈ R [s1]| (Ptype ◦ C) [u] ∩ T
= ∅} , if
= ∅
{u ∈ R [s2]|Ptype ◦ C [u] ∩ T
= ∅} , otherwise

disambiguate
s1 + s2 by type T

{u ∈ R [s1,s2]| ∀u′ ∈ R [s1,s2] : δC(u
′, T) ≥ δC(u, T)}

disambiguate
s1 <+ s2 by type T

{
{u ∈ R [s1]| ∀u′ ∈ R [s1,s2] : δC(u

′, T) ≥ δC(u, T)} , if
= ∅
{u ∈ R [s2]| ∀u′ ∈ R [s1,s2] : δC(u

′, T) ≥ δC(u, T)} , ow.

Fig. 4. Syntax and semantics of name and type analysis instructions. uri denotes a
URI, ns a namespace, t a type, T a set of types, and s1, s2 subtask IDs.

268 G.H. Wachsmuth et al.

relation R and omit set braces for finite sets, that is, we write R [e] instead of
R [{e}]. We provide three name resolution instructions for looking up binding
instances from B (resolve), named imports from A (resolve alias), and
wildcard imports from the derived relation Ins (resolve import), and four
type analysis instructions for type look-up from Ptype (lookup), for checks with
respect to expected types (check), for casts to an expected type according to
C (cast), and for assigning types to program elements (assign).

Example. Fig. 5 shows tasks and their solutions for the running example.
Tasks 1 to 6 try to resolve class name B. Task 1 looks for B directly in the
global scope. It finds an entry in B and succeeds. Task 2 looks for aliases, which
task 3 tries to resolve next. Instead of a concrete URI, the task 3 has a reference
to task 2. Since task 2 fails to find any named imports, task 3 also fails. Task 5
tries to resolve B inside imported scopes, which are yielded by task 4. Both
tasks fail. Task 6 combines resolution results based on local classes, aliases, and
imported classes. We will discuss such combinators in the next example.

Tasks 7 to 25 are involved in type checking the return expression of A.m()
in Fig. 1. Task 7 assigns type int to the integer constant. Tasks 8 to 18 are
an example for the interaction between name and type analysis. The first six
tasks try to resolve b either as a local variable, a field in the current class, or
an inherited field. Next, task 14 looks up the type of the resolved field A.b,
before the remaining tasks resolve field f with respect to that type B. Task 19
looks up the type of the referred field. The remaining tasks analyse the binary
expression: Tasks 20 and 21 check if the subexpressions are numeric or string
types. Tasks 22 and 23 try to coerce the left to the right type and vice versa.
Both tasks are combined by task 24. Finally, task 25 checks if the type of the
return expression can be coerced to the declared return type of the method.

Combinators. Fig. 4 also shows six instructions to combine the results of
subtasks. The semantics of these combinators are expressed in terms of a relation
R, where (t, r) ∈ R iff r is a result of task t. Notably, tasks can have multiple
results. We will revisit R later, when we discuss task evaluation.

The simplest combinators are a non-deterministic choice + and a determin-
istic pendant <+. The result of the non-deterministic choice is the union of the
results of its subtasks. while the result of the deterministic choice is the result
of its first non-failing subtask. Furthermore, we provide combinators filter
and disambiguate. Both can be used in a non-deterministic or deterministic
fashion to combine the result sets of resolution tasks with respect to expected
types. filter keeps only compliant results. disambiguate keeps only results
which fit best with respect to the expected types. The non-deterministic variant
keeps all of them, while the deterministic variant chooses the first subtask which
contributes to the best fitting results.

Example. In Fig. 5, task 6 combines resolution results based on local classes,
aliased classes, and imported classes. The non-deterministic choice ensures that
no result is preferred over another. Similarly, task 24 combines the results of
alternative coercion tasks. In tasks 12 and 13, deterministic choices ensure that
local fields win over inherited fields and variables win over fields, respectively.

A Language Independent Task Engine 269

ID Instruction Results

1 resolve C#:/Class.B C#:/Class.B.1

2 resolve alias C#:/Class.B

3 resolve Task:/2

4 resolve import Class into C#:/

5 resolve Task:/4/Class.B

6 Task:/1 + Task:/3 + Task:/5 C#:/Class.B.1

7 assign type int int

8 resolve C#:/Class.A.1/Method.m.1/Var.b

9 resolve C#:/Class.A.1/Field.b C#:/Class.A.1/Field.b.1

10 resolve import Field into C#:/Class.A.1

11 resolve Task:/10/Field.b

12 Task:/9 <+ Task:/11 C#:/Class.A.1/Field.b.1

13 Task:/8 <+ Task:/12 C#:/Class.A.1/Field.b.1

14 lookup type of Task:/13 C#:/Class.B.1

15 resolve Task:/14/Field.f C#:/Class.B.1/Field.f.1

16 resolve import Field into Task:/14

17 resolve Task:/16/Field.f

18 Task:/15 <+ Task:/17 C#:/Class.B.1/Field.f.1

19 lookup type of Task:/18 float

20 check type Task:/7 in
{int, long, float, double, String}

int

21 check type Task:/19 in
{int, long, float, double, String}

float

22 cast type Task:/21 to Task:/20

23 cast type Task:/20 to Task:/21 float

24 Task:/22 + Task:/23 float

25 cast type Task:/24 to float float

26 cast type Task:/20 to int int

27 resolve C#:/Class.A C#:/Class.A.1

28 resolve alias C#:/Class.A

29 resolve Task:/28

30 resolve Task:/4/Class.A

31 Task:/27 + Task:/29 + Task:/30 C#:/Class.A.1

32 resolve C#:/Class.C.1/Method.m

33 resolve import Method into C#:/Class.C.1 C#:/Class.A.1

34 resolve Task:/33/Method.m C#:/Class.A.1/Method.m.1

35 assign type [] []

36 disambiguate Task:/32 <+ Task:/34
by type Task:/35

C#:/Class.A.1/Method.m.1

37 lookup type of Task:/36 ([], float)

38 cast type Task:/37 to int

Fig. 5. Tasks and their solutions for the C# program in Fig. 1

270 G.H. Wachsmuth et al.

Method call resolution in the presence of overloaded methods is a well-known
example for interaction between name and type analysis. Actual and formal
argument types need to be considered by the resolution, since they need to
comply. Furthermore, relations between these types indicate which declaration
is more applicable. As an example, consider tasks 32 to 36 in Fig. 5. They
resolve method call m() in the return expression of C.n() from Fig. 1. Task 32
tries to resolve it locally, while tasks 33 and 34 consider inherited methods.
Task 35 assigns an empty list as the type of the actual parameters of the call.
Task 36 selects only these methods which fits this type best, preferring local
over inherited methods. Finally, the last two tasks check the return expression
of C.n. Task 37 looks up the type of A.m. Task 38 tries to casts this to the
declared return type, but fails.

Initial Evaluation. During the generic traversal in the collection phase, we do
not only collect semantic index entries but also instructions of tasks (T ⊆ U×I)
and inter-task dependencies (D ⊆ U ×U). Language-specific collection rules are
needed to control the collection of name resolution and type analysis tasks. D
imposes an evaluation order for tasks. First, we can evaluate independent tasks.
Next, we can evaluate tasks which only depend on already evaluated tasks.
This will evaluate all tasks except those with cyclic dependencies, which we
consider erroneous. As mentioned earlier, we capture task results in a relation
R ⊆ U × (U ∪ T).

The instruction of each task is evaluated according to the semantics given in
Fig. 4. However, this only works, if we replace placeholders of dependent sub-
tasks with their results. When a subtask has multiple results, we evaluate the
dependent task for each of these results. Consider task 14 from Fig. 5 as an
example. It can only be evaluated after replacing the placeholder Task:/13
with a result of the corresponding task. Since this task has a single result
C#:/Class.A.1/Field.b.1, we actually need to evaluate the instruction
lookup type C#:/Class.A.1/Field.b.1, yielding C#://Class.B.1 as
its only result.

Incremental Evaluation. When a partition is edited, the partial index and
tasks for this partition will be recollected, resulting in an updated relation T ′

p. We
need to evaluate new tasks, which did not exist in another partition before. We
collect the URIs of these tasks in a change set: ΔTp = dom(T ′

p\Tp). Furthermore,
a changed semantic index might affect the results of the tasks from all partitions,
requiring the reevaluation of those tasks. The various change sets determine
which tasks need to be reevaluated:

(u′, u) ∈ ΔB: tasks which evaluated an instruction resolve u′.
(a, u) ∈ ΔA: tasks which evaluated an instruction resolve alias a.
(u′, u) ∈ ΔI : tasks which evaluated an instruction resolve import u′.
(u, t) ∈ ΔPtype : tasks which evaluated an instruction lookup type of u and

filter or disambiguate tasks with a subtask s with u ∈ R [s].

We maintain the URIs of these tasks in another change set ΔT . The URIs of
tasks which require evaluation is given by the set ΔTp ∪D∗ [ΔT].

A Language Independent Task Engine 271

Example. In step 1 of the running example, task 25 becomes obsolete, since the
return expressionneeds to be checkedwith respect to a new type, which is done by a
new task 39, shown in Fig. 6. Furthermore, the disambiguation in task 36 depends
on an element in Δ1

Ptype
, which is to be reevaluated. Transitive dependencies trig-

ger also the reevaluation of tasks 37 and 38. Since task 38 succeeds now, it does
no longer indicate a type error in C.n. But the new task 39 fails, indicating a new
type error in A.m. In step 2, tasks 15, 17 to 19, 21 to 24, and 39 become obsolete,
since another field needs to be resolved. The semantic index was not changed, and
only the corresponding new tasks 40 to 48 need to be evaluated. In step 3, the ad-
ditional variable parameter causes changes in the semantic index. Δ3

B requires the
reevaluation of task 8 and its dependent tasks 14, 16, and 40 to 48. Furthermore,
Δ3

Ptype
requires the reevaluation of task36 and its dependent tasks37 and 38. Sim-

ilarly,Δ4
IField

requires the reevaluation of task 33 and its dependent tasks34 and36
to 38. Finally, the new enclosing namespace introduced in step 5 makes tasks 32
to 34 and 36 to 38 obsolete and introduces new tasks 49 to 61, which take the new
namespace into account.

ID Instruction Results

39 cast type Task:/24 to int

40 resolve Task:/14/Field.i C#:/Class.B.1/Field.i.1

41 resolve Task:/16/Field.i

42 Task:/40 <+ Task:/41 C#:/Class.B.1/Field.i.1

43 lookup type of Task:/42 int

44 check type Task:/43 in
{int, long, float, double, String}

int

45 cast type Task:/44 to Task:/20 int

46 cast type Task:/20 to Task:/44 int

47 Task:/45 + Task:/46 int

48 cast type Task:/47 to int int

49 resolve C#:/Ns.N.1/Class.B

50 resolve alias C#:/Ns.N.1/Class.B

51 resolve Task:/50

52 resolve import Class into C#:/Ns.N.1

53 resolve Task:/52/Class.B

54 Task:/49 + Task:/51 + Task:/53

55 Task:/31 + Task:/54 C#/Class.B.1

56 resolve C#:/Ns.N.1/Class.C.1/Method.m

57 resolve import Method
into C#:/Ns.N.1/Class.C.1

C#:/Class.B.1

58 resolve Task:/57/Method.m C#:/Class.B.1/Method.m.1

59 disambiguate Task:/56 + Task:/58
by type Task:/35

C#:/Class.B.1/Method.m.1

60 lookup type of Task:/59 ([], int)

61 cast type Task:/60 to int int

Fig. 6. New tasks and their solutions for the C# program in Fig. 2

272 G.H. Wachsmuth et al.

5 Implementation

We have implemented the approach as three components of the Spoofax language
workbench [14]. The first component is a Java implementation of the semantic
index. It maintains a multimap storing relations B, A, I, and P , a set keeping
partition names, and another multimap from partitions to their index entries.
During collection, it calculates change sets on the fly, maintaining two multisets
for newly added and removed elements.

The second component is a task engine implemented in Java. It maintains
a map from task IDs to their instructions and bidirectional multimaps between
task IDs and their partitions, between task IDs and index entries they depend on,
and for task dependencies. Just as the semantic index, the task engine exposes
a collection API and calculates change sets on the fly, maintaining a set of
added and a set of removed tasks. Additionally, it exposes an API for task
evaluation. During evaluation, it maintains a queue of scheduled tasks and a
bidirectional multimap of task dependencies which are discovered dynamically.
Results and messages of tasks are kept in maps. Both components use hash-based
data structures which can be persisted to file. They support Java representations
of terms as values and expose their APIs to Stratego [2], Spoofax’ term rewriting
language for analysis, transformation, and code generation.

Class(NonPartial(), c, _, _): defines Class c scopes Field, Method
Field(_, f) : defines Field f
Method(_, m, _, _) : defines Method m scopes Var

Base(c):
imports Field, imported Field, Method, imported Method from Class c

ClassType(c) : refers to Class c
FieldAcc(e, f) : refers to Field f in Class c where e has type c
VarRef(x) : refers to Var x otherwise refers to Field x
ThisCall(m, p∗): refers to best Method m of type t∗ where p∗ has type t∗

overlays
NUMERIC() = [Int(), Long(), Float(), Double()]
STRING() = ClassType(PackRef("System"), "String")

type−of(|ctx):
Add(e1, e2) → <choose(|ctx)> [ty1’, ty2’]
where

ty1 := <type−check(|ctx)> (e1, [STRING() | NUMERIC()])
; ty2 := <type−check(|ctx)> (e2, [STRING() | NUMERIC()])
; ty1’ := <type−match(|ctx, Coerce())> (ty1, ty2)
; ty2’ := <type−match(|ctx, Coerce())> (ty2, ty1)

Fig. 7. Declarative name binding and scope rules for C# in NaBL (top) and manually
written Stratego rule for typing additions and string concatenations in C# (bottom)

A Language Independent Task Engine 273

The third component implements index and task collection as a generic traver-
sal in Stratego. At each tree node, the traversal applies language-specific rewrite
rules for name and type analysis. These rules can either be generated from name
binding and scope rules defined in NaBL, or manually written in Stratego. For
example, Fig. 7 shows an extract of NaBL rules as well as a manually written
Stratego rule for C#. The latter involves callbacks to the collection component,
which creates the corresponding tasks in the task engine. type−check creates
a check task, type−match creates a cast task, and choose creates a non-
deterministic choice. The rule looks very similar to an ordinary typing rule in
Stratego, but instead of calculating types, it calculates tasks, which are evaluated
later. The API hides the internals of our approach from the language engineer,
who can specify an incremental static analysis in NaBL and Stratego in the same
way as a regular static analysis.

6 Evaluation

We evaluate the correctness, performance, and scalability of our approach with
an implementation for name and type analysis of WebDSL programs. Correct-
ness is interesting since we only analyze affected program elements. We expect
incremental analysis to yield the same result as a full analysis. Performance and
scalability are crucial since they are the main purpose of incremental analysis.
We want to assess whether performance is acceptable for practical use in IDEs
and how the approach scales for large projects. Specifically, we evaluate the
following research questions: RQ1) Does incremental name and type analysis
of WebDSL applications yield the same results as full analysis? RQ2) What is
the performance gain of incremental name and type analysis of WebDSL ap-
plications compared to full analysis? RQ3) How does the size of a WebDSL
application influence the performance of incremental name and type analysis?
RQ4) Is incremental name and type analysis suitable for a WebDSL IDE?

Research Method. In a controlled setting, we quantitatively compare the
results and performance of incremental and full analysis of different versions
of WebDSL applications. We have reimplemented name and type analysis for
WebDSL, using NaBL to specify name binding and scope rules and Stratego to
specify type analysis. We apply the same algorithm to perform full and incre-
mental analyses to the source code histories of two WebDSL applications. We
run a fullanalysis on all files in a revision, and and incremental analysis only on
changed files with respect to the result of a full analysis of the previous revision.

Subjects. WebDSL is a domain-specific language for the implementation of
dynamic web applications [7]. It was designed from the ground up with static
analysis and cross-aspect consistency checking in mind [11]. This focus makes
it is an ideal candidate to evaluate its static analysis. WebDSL provides many
language constructs on which constraints have to be checked. It also embodies
a complex expression language that is representative of expressions in general
purpose languages such as Java and C#. It has been used for several applications

274 G.H. Wachsmuth et al.

in production, including the issue tracker Yellowgrass1, which is a subject of
this evaluation, the digital library Researchr, and the online education platform
WebLab. When developing such larger applications, the usability of the WebDSL
IDE sometimes suffered from the lack of incremental analyses. We focus on two
open source WebDSL applications, Blog, a web application for wikis and blogs,
and Yellowgrass, a tag-based issue tracker. In their latest revisions, their code
bases consist of approximately 7 and 9 KLOC.

Data collection. We perform measurements by repeating the following for
every revision of each application. We run an incremental and a full analysis.
During each of the analyses we record execution timings. After each analysis we
preserve the data from the semantic index and the task engine which we analyse
afterwards. Each analysis is sequentially executed on command line in a separate
invocation of the Java Virtual Machine (JVM) and garbage collection is invoked
before each analysis. After starting the virtual machine, we run three analyses
and discard results allowing for the warmup period of the JVM’s JIT compiler.
All executions are carried out on the same machine with 2.7 Ghz Intel Core
i-7, 16 GB of memory, and Oracle Java Hotspot VM version 1.6.0 45 in server
JIT mode. We fix the JVM’s heap size at 4 GB to decrease the noise caused by
garbage collection. We set the maximum stack size at 16 MB.

Analysis procedure. For RQ1, we evaluate the structural equality of data from
the semantic index and the task engine produced by full and incremental anal-
ysis. For RQ2, we determine absolute execution times of full and incremental
analysis and the relative speed up. We calculate the relative performance gain
between analyses separately for each revision. We report geometric mean and
distribution of absolute and relative performance of all revisions. For RQ3, we
determine the number of lines and the number of changed lines of a revision.
We relate the incremental analysis time to these numbers. For RQ4, we filter
revisions which changed only a single file. On these revisions, we determine the
execution time of incremental analysis.

Results and Interpretation. We published the collected data and all analysis
results in a public repository2, including instructions on reproducing our experi-
ments. Since both applications yield similar results, we discuss only Yellowgrass
data here. Data for Blog can be found in the repository. For the future, we
plan to collect data on more WebDSL applications and on more programming
languages. Our implementation and the subjects are also open source.

RQ1) For all revisions of both applications, incremental and full analysis pro-
duce structurally equal data in semantic index and task engine. This is the
expected outcome and supports the equivalence of both analyses.

RQ2) Fig. 8 show the absolute execution times of full and incremental anal-
yses of all revisions. Full analysis takes between 4.74 and 13.31 seconds. Incre-
mental analysis takes between 0.37 and 4.97 seconds. The mean analysis times
are 9.75 seconds and 0.96 seconds, with standard deviations of 2.29 and 0.61

1 http://yellowgrass.org
2 https://bitbucket.org/slde/opendata-experiments

http://yellowgrass.org
https://bitbucket.org/slde/opendata-experiments

A Language Independent Task Engine 275

seconds, respectively. Incremental analysis takes between 3.06% and 43.75% of
the time of a full analysis. The mean ratio between incremental and full analysis
is 10.56%. Thus, incremental analysis gives huge performance gains.

RQ3) Fig. 9 shows incremental analysis times per revision, ordered by LOC
and changed LOC, respectively. The size of a project does not seem to influence
incremental analysis time (correlation coefficient −0.18), but the size of the
change does. This is the expected outcome, but more experiments will be needed.

RQ4) There were 137 revisions which affected only a single file. Incremental
analysis takes between 0.37 and 1.12 seconds. There is only one revision where
incremental analysis takes longer than one second. The mean incremental analy-
sis time is 0.56 seconds. All analysis times would be acceptable response times in
an interactive IDE setting, where analysis is performed in the background with-
out blocking the user interface. Single responses which take slightly more than
one second would still be acceptable, if regular responses are fast. Furthermore,

0

3

6

9

12

15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Ti
m

e
(s

)

Revision

Parse Collect Evaluate

Fig. 8. Analysis time for full (top) and incremental (bottom) analyses

0

1

2

3

4

5

3139 5516 6538 7836 8835

Ti
m

e
(s

)

LOC

Parse Collect Evaluate

0

1

2

3

4

5

0 2 5 10 14 23 33 46 67 103 189

Ti
m

e
(s

)

ΔLOC

Parse Collect Evaluate

Fig. 9. Incremental analysis time ordered by LOC (left) and ΔLOC (right)

276 G.H. Wachsmuth et al.

changes between two revisions are more coarse grained and should require more
re-evaluation than changes in an editing scenario.

Threats to Validity. An important threat to external validity is that we ana-
lyzed only WebDSL applications and only two of them. We are convinced that
WebDSL’s name and type analysis is representative for other languages, but
our evaluation cannot generalize beyond WebDSL and its sublanguages. Fur-
thermore, other WebDSL applications, particularly those of different size, might
show different characteristics. Additional threats are the large distance between
revisions and the correctness of revisions. In real-time editing scenarios, dis-
tances might be much smaller and revisions might switch between correct and
erroneous states. We believe that smaller distances would only be in the benefit
of incremental analysis. Erroneous revisions should not affect parse and collec-
tion times but evaluation times, which tend to be small. A threat to internal
validity is file size. Incremental analysis re-parses and re-collects changed files.
Independent of the actual changes inside a file, file size alone can influence parse
and collection times. However, we believe that this does not influence the con-
clusions from any of our research questions. Regarding construct validity, we
measured performance using wall-clock time only and control JIT compilation
with a warm-up phase. By running the garbage collector between analysis runs,
we ensured a similar amount of memory available to all analyses. However, the
semantic index and the task engine store large amounts of data (13 MB in the
worst case) and may experience garbage collection pauses.

7 Related Work

We give an overview of other approaches for incremental name and type analysis.

IDEs and Language Workbenches. IDEs such as Eclipse typically lack a
generic framework for the development of incremental analyses, but provide
manual implementations of incremental analysis and compilation for popular
languages such as Java or C#. Some language workbenches automatically derive
incremental analyses. In SugarJ [5], extensions inherit the incremental behaviour
of SugarJ, which uses the module system of Java to provide incremental compi-
lation on file-level, but lacks name and type analysis of its host language Java.
Xtext [6] leverages incremental analysis and compilation from the Eclipse JDT
to user-defined languages, as long as they map to Java concepts. The JDT per-
forms only local analyses on edit and global analyses on save. MPS [30] does
not require name binding due to its projectional nature. It supports incremental
type analysis but lacks a framework for other incremental analyses. In general,
language workbenches lack frameworks for developing incremental analyses.

A Language Independent Task Engine 277

Attribute Grammars. Attribute grammars [15] provide a formal way of speci-
fying the semantics of a context-free language, including name and type analysis.
One of the first incremental attribute evaluators is proposed in [3]. It only evalu-
ates changed attributes and propagates evaluation to affected attributes. A sim-
ilar incremental evaluation algorithm is shown in [31,32] for ordered attributed
grammars [13]. In [22,24,23,12], extensions to propagation are shown that stop
propagation if an attribute value is unchanged from its previous attribution.

Similar to attribute grammars, our approach exploits static dependencies,
caching, and change propagation. Similar to ordered attribute grammars, we
assume an evaluation order of tasks. Though tasks can be cyclic, we just do
not evaluate them. While attributes are (re-)evaluated in visits to the tree, our
collection separates tasks from the tree and they are (re-)evaluated independent
of the tree. As a consequence, we do not require incremental parsing techniques
and are not restricted to editing modes. For name analysis, attribute grammars
typically pass environments throughout the tree. Incremental name analysis suf-
fers from this as a single change in the environment requires a full re-evaluation
of the aggregated environment and all dependent attributes. In our approach, we
have a predefined notion of an environment, the semantic index, which is glob-
ally maintained. It enables fine-grained dependency tracking for name and type
analysis tasks solely based on changing entries, not on changing environments.

Reference Attribute Grammars. A popular extension to attribute gram-
mars is the addition of reference attributes. These simplify the specification of
algorithms that require non-local information, including name resolution. Door
Attribute Grammars [8,9] extend attribute grammars with reference attributes
and door objects which facilitate analysis of object-oriented languages. A similar
but more general extension is shown in [21]. Reference Attributed Grammars [10]
are a generalization of door attribute grammars where the door objects are re-
moved. In [26], an incremental evaluator for reference attributed grammars is
shown which is used by the JastAdd [4] meta-compilation system. JastAdd also
adds parametrized attributes which allow attributes to be parametrized, forming
a mapping. The approach is compared to traditional attribute grammars in [27]
and shows that the use of reference attribute grammars reduces the number of
affected attributes for name and type analysis significantly.

Our approach has two mechanisms similar to reference attributes. First, we
can refer to binding instances by URIs and can look up their properties in the
semantic index. Second, properties and tasks can refer to arbitrary other tasks.
Reference attribute grammars discover dependencies during evaluation. We de-
tect inter-task dependencies after collection. This already helps in establishing
an ordering for evaluation. Only dependencies from properties to tasks are dis-
covered during evaluation. Similar to ordinary attribute grammars, reference
attribute grammars also do not provide a solution for aggregate attributes.

Some attribute grammar formalisms take a functional approach to evalua-
tion. In [19] attributes are evaluated using visit-functions with memoization.
A more general extension to attribute grammars is the higher order attribute
grammar [28,25] for which an incremental evaluator is presented in [29]. Similar

278 G.H. Wachsmuth et al.

to this approach, our approach employs a global cache and uses hash consing to
efficiently share tasks and to make look-ups into the cache extremely fast. Tasks
can also be seen as functions, but the evaluation strategy differs. Visit-functions
are still applied on subtrees while tasks are completely separated from the tree.

Other Approaches. Pregmatic [1] is an incremental program environment gen-
erator that uses extended affix grammars for specification. It uses an incremental
propagation algorithm similar to the one used by attribute grammar approaches
which were discussed earlier. Instead of separating parsing and semantic analysis,
all evaluation is done during parse-time which differs significantly from our parse,
collect and evaluate approach. Incremental Rewriting [18] describes efficient al-
gorithms for incrementally rewriting programs based on algebraic specifications.
An algorithm for incrementally evaluating functions on aggregated values is also
shown. The approach does not support non-local dependencies, making specifi-
cation of name binding less intuitive as it requires copying of information.

8 Conclusion

We have proposed an approach for incremental name and type analysis in two
phases, collection and deferred evaluation of analysis tasks. The collection is in-
stantiated with language-specific name binding and type rules and incremental
on file level. Unchanged files are neither re-parsed nor re-traversed. The eval-
uation phase is incremental on task level. When a file changes, all tasks that
are affected by this change are reevaluated. This might include dependent tasks
from other files.

Tasks execute low-level instructions for name resolution and type analysis,
and can form a basis for the definition of declarative meta-languages at a higher
level of abstraction. For example, we map declarative name binding and scope
rules expressed in NaBL to an instantiation of the presented approach. We im-
plemented the approach as part of the Spoofax language workbench. It frees lan-
guage engineers from the burden of manually implementing incremental analysis.
We applied the implementation to WebDSL and empirical evaluation has shown
this analysis to be responsive to changes in analyzed programs and suitable to
the interactive requirements of an IDE setting.

Acknowledgements. This research was supported by NWO/EW Free Com-
petition Project 612.001.114 (Deep Integration of Domain-Specific Languages)
and by a research grant from Oracle Labs. We would like to thank Lennart Kats
for his contribution to the start of NaBL and to Spoofax’ incremental analysis
project. We would also like to thank Karl Kalleberg for valuable discussions on
the interpretation of name binding and scoping rules.

A Language Independent Task Engine 279

References

1. van den Brand, M.G.J.: PREGMATIC - a generator for incremental programming
environments. Ph.D. thesis, University Nijmegen (1992)

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. SCP 72(1-2), 52–70 (2008)

3. Demers, A.J., Reps, T.W., Teitelbaum, T.: Incremental evaluation for attribute
grammars with application to syntax-directed editors. In: POPL, pp. 105–116
(1981)

4. Ekman, T., Hedin, G.: The jastadd system - modular extensible compiler construc-
tion. SCP 69(1-3), 14–26 (2007)

5. Erdweg, S., Rendel, T., Kástner, C., Ostermann, K.: Sugarj: Library-based syntac-
tic language extensibility. In: OOPSLA, pp. 391–406 (2011)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: OOPSLA, pp. 307–309 (2010)

7. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: WebDSL: a domain-
specific language for dynamic web applications. In: OOPSLA, pp. 779–780 (2008)

8. Hedin, G.: Incremental static-semantic analysis for object-oriented languages using
door attribute grammars. In: SAGA, pp. 374–379 (1991)

9. Hedin, G.: Incremental Semantic Analysis. Ph.D. thesis (1992)
10. Hedin, G.: Reference attributed grammars. Informatica SI 24(3) (2000)
11. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-

ing of web applications with WebDSL. JSC 46(2), 150–182 (2011)
12. Johnson, G.F., Fischer, C.N.: A meta-language and system for nonlocal incremental

attribute evaluation in language-based editors. In: POPL, pp. 141–151 (1985)
13. Kastens, U.: Ordered attributed grammars. ACTA 13, 229–256 (1980)
14. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative

specification of languages and IDEs. In: OOPSLA, pp. 444–463 (2010)
15. Knuth, D.E.: Semantics of context-free languages. MST 2(2), 127–145 (1968)
16. Konat, G., Kats, L., Wachsmuth, G., Visser, E.: Declarative name binding and

scope rules. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp.
311–331. Springer, Heidelberg (2013)

17. Krishnamurthi, S.: Programming Languages: Application and Interpretation
(2007)

18. Meulen, E.A.V.D.: Incremental Rewriting. Ph.D. thesis, University of Amsterdam
(1994)

19. Pennings, M.C.: Generating incremental attribute evaluators. Ph.D. thesis, Com-
puter Science, Utrecht University (November 1994)

20. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
21. Poetzsch-Heffter, A.: Programming language specification and prototyping using

the max system. In: PLIPL, pp. 137–150 (1993)
22. Reps, T.W.: Optimal-time incremental semantic analysis for syntax-directed edi-

tors. In: POPL, pp. 169–176 (1982)
23. Reps, T.W.: Generating language-based environments. Massachusetts Institute of

Technology, Cambridge (1984)
24. Reps, T.W., Teitelbaum, T., Demers, A.J.: Incremental context-dependent analysis

for language-based editors. TOPLAS 5(3), 449–477 (1983)
25. Swierstra, S.D., Vogt, H.: Higher order attribute grammars. In: SAGA. pp. 256–296

(1991)

280 G.H. Wachsmuth et al.

26. Söderberg, E.: Contributions to the Construction of Extensible Semantic Editors.
Ph.D. thesis (2012)

27. Söderberg, E., Hedin, G.: A comparative study of incremental attribute grammar
solutions to name resolution (2012)

28. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In:
PLDI, pp. 131–145 (1989)

29. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Efficient incremental evaluation of higher
order attribute grammars. In: PLIPL, pp. 231–242 (1991)

30. Völter, M., Solomatov, K.: Language modularization and composition with pro-
jectional language workbenches illustrated with MPS. In: SLE (2010)

31. Yeh, D.: On incremental evaluation of ordered attribute grammars. BIT 23(3),
308–320 (1983)

32. Yeh, D., Kastens, U.: Improvements of an incremental evaluation algorithm for
ordered attribute grammars. SIGPLAN 23(12), 45–50 (1988)

A Generic Framework for Symbolic Execution

Andrei Arusoaie1, Dorel Lucanu1, and Vlad Rusu2

1 Faculty of Computer Science, Alexandru Ioan Cuza University, Iaşi, Romania
andrei.arusoaie@gmail.com, dlucanu@info.uaic.ro

2 Inria Lille Nord Europe, France
vlad.rusu@inria.fr

Abstract. We propose a language-independent symbolic execution fra-
mework for languages endowed with a formal operational semantics based
on term rewriting. Starting from a given definition of a language, a new
language definition is automatically generated, which has the same syn-
tax as the original one but whose semantics extends data domains with
symbolic values and adapts semantical rules to deal with these values.
Then, the symbolic execution of concrete programs is the execution of
programs with the new symbolic semantics, on symbolic input data. We
prove that the symbolic execution thus defined has the properties natu-
rally expected from it. A prototype implementation of our approach was
developed in the K Framework. We demonstrate the genericity of our
tool by instantiating it on several languages, and show how it can be
used for the symbolic execution and model checking of several programs.

1 Introduction

Symbolic execution is a well-known program analysis technique introduced in
1976 by James C. King [12]. Since then, it has proved its usefulness for testing,
verifying, and debugging programs. Symbolic execution consists in executing
programs with symbolic inputs, instead of concrete ones, and it involves the
processing of expressions involving symbolic values [19]. The main advantage of
symbolic execution is that it allows reasoning about multiple concrete executions
of a program, and its main disadvantage is the state-space explosion determined
by decision statements and loops. Recently, the technique has found renewed
interest in the formal-methods community due to new algorithmic developments
and progress in decision procedures. Current applications of symbolic execution
are diverse and include automated test input generation [13], [27], invariant
detection [18], model checking [11], and proving program correctness [26,7]. We
believe there is a need for a formal and generic approach to symbolic execution,
on top of which language-independent program analysis tools can be developed.

The state of a symbolic program execution typically contains the next state-
ment to be executed, symbolic values of program variables, and the path condi-
tion, which constrains past and present values of the variables (i.e., constraints
on the symbolic values are accumulated on the path taken by the execution for
reaching the current instruction). The states, and the transitions between them
induced by the program instructions generate a symbolic execution tree. When

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 281–301, 2013.
© Springer International Publishing Switzerland 2013

282 A. Arusoaie, D. Lucanu, and V. Rusu

the control flow of a program is determined by symbolic values (e.g., the next
instruction to be executed is a conditional statement, whose Boolean condition
depends on symbolic values) then there is a branching in the tree. The path
condition can then be used to distinguish between different branches.

Our Contribution. The main contribution of the paper is a formal, language-
independent theory and tool for symbolic execution, based on a language’s
operational semantics defined by term-rewriting1. To our best knowledge, our
framework is the only one supporting automatic derivation of the symbolic se-
mantics of languages from their concrete semantics. On the theoretical side, we
introduce a transformation between languages such that the symbolic execution
in the source language is defined as the concrete execution in the transformed
language. We prove that the symbolic execution thus defined has the following
properties, which ensure that it is related to concrete program execution in a
natural way:

Coverage: to every concrete execution there corresponds a feasible symbolic one;
Precision: to every feasible symbolic execution there corresponds a concrete one;

where two executions are said to be corresponding if they take the same path,
and a symbolic execution is feasible if the path conditions along it are satisfiable.

On the practical side, we present a prototype implementation of our approach
in K [20], a framework dedicated to defining formal operational semantics of
languages. Developing our tool within the K framework enables us to benefit
from the many existing language definitions written in K. We briefly describe our
implementation as a language-engineering tool, and demonstrate its genericity
by instantiating it on several nontrivial languages defined in K. We emphasize
that the tool uses the K language-definitions as they are, without requiring
modifications, and automatically harnesses them for symbolic execution. The
examples illustrate program execution as well as Linear Temporal Logic model
checking and bounded model checking using our tool.

We note that the proposed approach deals with symbolic data, not with sym-
bolic code. Hence, it is restricted to languages in which data and code are dis-
tinct entities that cannot be mixed. This excludes, for example, higher-order
functional languages in which code can be passed as data between functions.

Related Work. There is a substantial number of tools performing symbolic ex-
ecution available in the literature. However, most of them have been developed
for specific programming languages and are based on informal semantics. Here
we mention some of them that are strongly related to our approach.

Java PathFinder [28] is a complex symbolic execution tool which uses a model
checker to explore different symbolic execution paths. The approach is applied
to Java programs and it can handle recursive input data structures, arrays,
preconditions, and multithreading. Java PathFinder can access several Satisfi-
ability Modulo Theories (SMT) solvers and the user can also choose between
1 Most existing operational semantics styles (small-step, big-step, reduction with eval-

uation contexts, . . .) have been shown to be representable in this way in [25].

A Generic Framework for Symbolic Execution 283

multiple decision procedures. We have instantiated our generic approach to a
formal definition of Java defined in the K framework, and have performed sym-
bolic execution on several programs. This shows that our tool can tackle real
languages.

Another approach consists in combining concrete and symbolic execution, also
known as concolic execution. First, some concrete values given as input determine
an execution path. When the program encounters a decision point, the paths not
taken by concrete execution are explored symbolically. This type of analysis has
been implemented by several tools: DART [9], CUTE [23], EXE [4], PEX [5].
We note that our approach allows mixed concrete/symbolic execution; it can be
the basis for language-independent implementations of concolic execution.

Symbolic execution has initially been used in automated test generation [12].
It can also be used for proving program correctness. There are several tools (e.g.
Smallfoot [3]) which use symbolic execution together with separation logic to
prove Hoare triples. There are also approaches that attempt to automatically
detect invariants in programs([18], [22]). Another useful application of symbolic
execution is the static detection of runtime errors. The main idea is to perform
symbolic execution on a program until a state is reached where an error occurs,
e.g., null-pointer dereference or division by zero. We show that the implementa-
tion prototype we developed is also suitable for such static code analyses.

Another body of related work is symbolic execution in term-rewriting sys-
tems. The technique called narrowing, initially used for solving equation sys-
tems in abstract datatypes, has been extended for solving reachability problems
in term-rewriting systems and has sucessfully been applied to the analysis of se-
curity protocols [17]. Such analyses rely on powerful unification-modulo-theories
algorithms [8], which work well for security protocols since there are unification
algorithms modulo the theories involved there (exclusive-or, . . .). This is not
always the case for programming languages with arbitrarily complex datatypes.

Regarding performances, our generic and formal tool is, quite understandably,
not in the same league as existing pragmatic tools, which are dedicated to specific
languages (e.g. Java PathFinder for Java, PEX for C#, KLEE for LLVM) and
are focused on specific applications of symbolic execution. Our purpose is to
automatically generate, from a formal definition of any language, a symbolic
semantics capable of symbolically executing programs in that language, and to
provide users with means for building their applications on top of our tool. For
instance, in order to generate tests for programs, the only thing that has to
be added to our framework is to request models of path conditions using, e.g.,
SMT solvers. Formal verification of programs based on deductive methods and
predicate abstractions are also currently being built on top of our tool.

Structure of the Paper. Section 2 introduces our running example (the sim-
ple imperative language imp) and its definition in K. Section 3 introduces a
framework for language definitions, making our approach generic in both the
language-definition framework and the language being defined; K and imp are
just instances for the former and latter, respectively. Section 4 shows how the
definition of a language L can be automatically transformed into the definition

284 A. Arusoaie, D. Lucanu, and V. Rusu

Id ::= domain of identifiers

Int ::= domain of integer numbers (including operations)

Bool ::= domain of boolean constants (including operations)
AExp :: = Int | AExp / AExp [strict]

| Id | AExp * AExp [strict]

| (AExp) | AExp + AExp [strict]
BExp :: = Bool

| (BExp) | AExp <= AExp [strict]

| not BExp [strict] | BExp and BExp [strict(1)]
Stmt :: = skip | { Stmt } | Stmt ; Stmt | Id := AExp

| while BExp do Stmt

| if BExp then Stmt else Stmt [strict(1)]
Code ::= Id | Int | Bool | AExp | BExp | Stmt | Code � Code

Fig. 1. K Syntax of IMP

of a language Ls by extending the data of L with symbolic values, and by pro-
viding the semantical rules of L with means to process those values. Section 5
deals with the symbolic semantics and with its relation to the concrete seman-
tics, establishing the coverage and precision results stated in this introduction.
Section 6 describes an implementation of our approach in the K framework and
show how it is automatically instantiated to nontrivial languages defined in K.
An Appendix (for the reviewers only, not to be included in the final version)
contains more detailed descriptions of the examples and of the tool.

2 A Simple Imperative Language and Its Definition in K

Our running example is imp, a simple imperative language intensively used in
research papers. The syntax of imp is described in Figure 1 and is mostly self-
explainatory since it uses a BNF notation. The statements of the language are
either assignments, if statements, while loops, skip (i.e., the empty statement),
or blocks of statements. The attribute strict in some production rules means
the arguments of the annotated expression/statement are evaluated before the
expression/statement itself. If strict is followed by a list of natural numbers then
it only concerns the arguments whose positions are present in the list.

Cfg ::= 〈〈Code〉k〈MapId,Int 〉env〉cfg
Fig. 2. K Configuration of IMP

The operational semantics of imp is given as
a set of (possibly conditional) rewrite rules. The
terms to which rules are applied are called con-
figurations. Configurations typically contain the
program to be executed, together with any additional information required for
program execution. The structure of a configuration depends on the language
being defined; for imp, it consists only of the program code to be executed and
an environment mapping variables to values.

Configurations are written in K as nested structures of cells : for imp this
consists of a top cell cfg, having a subcell k containing the code and a subcell

A Generic Framework for Symbolic Execution 285

〈〈I1 + I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg
〈〈I1 * I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg
〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧ I2 	=Int 0 ⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfg
〈〈I1 <= I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg
〈〈true and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈false ···〉k ···〉cfg
〈〈not B ···〉k ···〉cfg ⇒⇒⇒ 〈〈¬B ···〉k ···〉cfg
〈〈skip ···〉k ···〉cfg ⇒⇒⇒ 〈〈 ···〉k ···〉cfg
〈〈S1;S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 � S2 ···〉k ···〉cfg
〈〈{ S } ···〉k ···〉cfg ⇒⇒⇒ 〈〈S ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1〉k ···〉cfg
〈〈if false then S1 else S2〉k ···〉cfg ⇒⇒⇒ 〈〈S2〉k ···〉cfg
〈〈while B do S ···〉k ···〉cfg ⇒⇒⇒

〈〈if B then{ S ;while B do S }else skip ···〉k ···〉cfg
〈〈X ···〉k〈M〉env〉cfg ⇒⇒⇒ 〈〈lookup(X,M) ···〉k〈M〉env〉cfg
〈〈X := I ···〉k〈M〉env〉cfg ⇒⇒⇒ 〈〈 ···〉k〈update(X,M, I)〉env〉cfg

Fig. 3. K Semantics of IMP

env containing the environment (cf. Figure 2). The code inside the k cell is
represented as a list of computation tasks C1 � C2 � . . . to be executed in
the given order. Computation tasks are typically statements and expressions.
The environment in the env cell is a set of bindings of identifiers to values, e.g.,
a �→ 3, b �→ 1.

The semantics of imp is shown in Figure 3. Each rewrite rule from the se-
mantics specifies how the configuration evolves when the first computation task
from the k cell is executed. Dots in a cell mean that the rest of the cell re-
mains unchanged. Most syntactical constructions require only one semantical
rule. The exceptions are the conjunction operation and the if statement, which
have Boolean arguments and require two rules each (one rule per Boolean value).

In addition to the rules shown in Figure 3 the semantics of imp includes ad-
ditional rules induced by the strict attribute. We show only the case of the if
statement, which is strict in the first argument. The evaluation of this argument
is achieved by executing the following rules:

〈〈ifBE then S1 else S2 � C〉k ···〉cfg ⇒⇒⇒ 〈〈BE�if � then S1 else S2�C〉k ···〉cfg
〈〈B�if � then S1 else S2 � C〉k ···〉cfg ⇒⇒⇒ 〈〈if B then S1 else S2�C〉k ···〉cfg

Here, BE ranges over BExp \{false, true}, B ranges over the Boolean values
{false, true}, and � is a special variable, destined to receive the value of BE
once it is computed, typically, by the other rules in the semantics.

286 A. Arusoaie, D. Lucanu, and V. Rusu

3 The Ingredients of a Language Definition

In this section we identify the ingredients of language definitions in an algebraic
and term-rewriting setting. The concepts are explained on the K definition of
imp. We assume the reader is familiar with the basics of algebraic specification
and rewriting. A language L can be defined as a triple (Σ, T ,S), consisting of:

1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for
configurations and a sort Bool for constraint formulas. For the sake of pre-
sentation, we assume in this paper that the constraint formulas are Boolean
terms built with a subsignature ΣBool ⊆ Σ including the boolean constants
and operations. Σ may also include other subsignatures for other data sorts,
depending on the language L (e.g., integers, identifiers, lists, maps,. . .). Let
ΣData denote the subsignature of Σ consisting of all data sorts and their
operations. We assume that the sort Cfg and the syntax of L are not data,
i.e., they are defined in Σ \ ΣData. Let TΣ denote the Σ-algebra of ground
terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms
with variables, TΣ,s(Var) denote the set of terms of sort s with variables,
and var (t) denote the set of variables occurring in the term t.

2. A ΣData-model D, which interprets the data sorts and operations. We assume
that the model D is reachable, i.e., for all d ∈ D there exists a term t ∈ TΣData

such that d = Dt. Let T � T (D) denote the free Σ-model generated by D,
i.e., T interprets the non-data sorts as ground terms over the signature

(Σ \ΣData) ∪
⋃

d∈Data

Dd (1)

where Dd denotes the carrier set of the sort d in the algebra D, and the
elements of Dd are added to the signature Σ \ΣData as constants of sort d.
The satisfaction relation ρ |= b between valuations ρ and constraint formulas
b ∈ TΣ,Bool(Var) is defined by ρ |= b iff ρ(b) = Dtrue . For simplicity, we often
write in the sequel true, false, 0, 1 . . . instead of Dtrue ,Dfalse ,D0,D1, . . .

3. A set S of rewrite rules. Each rule is a pair of the form l ∧∧∧ b ⇒⇒⇒ r, where
l, r ∈ TΣ,Cfg(Var) are the rule’s left-hand-side and the right-hand-side, re-
spectively, and b ∈ TΣ,Bool(Var) is the condition. The formal definitions for
rules and for the transition system defined by them are given below.

We explain these concepts on imp. Nonterminals in the syntax (Id, Int,Bool, . . .)
are sorts in Σ. Each production from the syntax defines an operation in Σ; e.g,
the production AExp ::= AExp + AExp defines the operation _+_ : AExp ×
AExp → AExp. These operations define the constructors of the result sort. For
the sort Cfg , the only constructor is 〈〈_〉k〈_〉env〉cfg : Code ×MapId,Int → Cfg .
The expression 〈〈X := I � C〉k〈X �→ 0 Env〉env〉cfg is a term of TCfg(Var), where
X is a variable of sort Id, I is a variable of sort Int, C is a variable of sort Code
(the rest of the computation), and Env is a variable of sort MapId,Int (the rest
of the environment). The data algebra D interprets Int as the set of integers,
the operations like +Int (cf. Figure 3) as the corresponding usual operation on
integers, Bool as the set of Boolean values {false, true}, the operation like ∧ as

A Generic Framework for Symbolic Execution 287

the usual Boolean operations, the sort MapId,Int as the set of maps X �→ I, where
X ranges over identifiers Id and I over the integers. The value of an identifier
X is an environment M is lookup(X,M), and the environment M , updated by
binding an identifier X to a value I, is update(X,M, I). Here, lookup() and
update() are operations in a signature ΣMap ⊆ ΣData of maps. The other sorts,
AExp, BExp, Stmt, and Code, are interpreted in the algebra T as ground terms
over a modification of the form (1) of the signature Σ, in which data subterms
are replaced by their interpretations in D. For instance, the term if 1 >Int

0 then skip else skip is interpreted as if Dtrue then skip else skip.
We now formally introduce the notions required for defining semantical rules.

Definition 1 (Pattern [21]). A pattern is an expression of the form π ∧∧∧ b,
where π ∈ TΣ,Cfg(Var) is a basic pattern and b ∈ TΣ,Bool(Var). If γ ∈ TCfg and
ρ :Var → T we write (γ, ρ) |= π ∧∧∧ b for γ = ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condition b
gives additional constraints these configurations must satisfy.
Remark 1. The above definition is a particular case of a definition in [21]. There,
a pattern is a first-order logic formula with configuration terms as sub-formulas.
In this paper we keep the conjunction notation from first-order logic but separate
basic patterns from constraints. Note that first-order formulas can be encoded as
terms of sort Bool, where the quantifiers become constructors. The satisfaction
relation |= is then defined, for such terms, like the usual FOL satisfaction.

We identify basic patterns π with patterns π ∧∧∧ true. Sample patterns are
〈〈I1 + I2 � C〉k〈Env〉env〉cfg and 〈〈I1 / I2 � C〉k〈Env〉env〉cfg ∧∧∧ I2 �=Int 0.

Definition 2 (Rule, Transition System). A rule is a pair of patterns of the
form l ∧∧∧ b ⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules
defines a labelled transition system (TCfg ,⇒S) such that γ α

=⇒S γ′ iff there exist
α � (l∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r.

4 Symbolic Semantics by Language Transformation

In this section we show how a new definition (Σs, T s,Ss) of a language Ls is
automatically generated from a given a definition (Σ, T ,S) of a language L.
The new language Ls has the same syntax as L , but its semantics extends L’s
data domains with symbolic values and adapts the semantical rules of L to deal
with the new values. Then, the symbolic execution of L programs is the concrete
execution of the corresponding Ls programs on symbolic input data, i.e., the
application of the rewrite rules in the semantics of Ls. Building the definition of
Ls amounts to:

1. extending the signature Σ to a symbolic signature Σs;
2. extending the Σ-algebra T to a Σs-algebra T s;
3. turning the concrete rules S into symbolic rules Ss.

We then obtain the symbolic transition system (T s
Cfgs ,⇒T s

Ss) by using Defini-
tions 1,2 for Ls, just like the transition system (TCfg ,⇒T

S) was defined for L.
Section 5 deals with the relations between the two transition systems.

288 A. Arusoaie, D. Lucanu, and V. Rusu

V s

TΣData(V s) Ds

D

ι

ϑ

ι

ϑ ϑs

Fig. 4. Diagram Characterising
Data Symbolic Domain Ds

V s

TΣ(V s) T s�Σ

T

ι

ϑ

ι

ϑ ϑs

Fig. 5. Lifting Diagram in Fig. 4
to from Data Domain D to T s�Σ

4.1 Extending the Signature Σ to a Symbolic Signature Σs

The signature Σs extends Σ with a sort Cfgs and a constructor 〈_,_〉 : Cfg ×
Bool → Cfgs, which builds symbolic configurations as pairs of configurations
over symbolic data and Booleans term denoting path conditions.

Example 1. For the imp example we enrich the configuration with a new cell:

Cfgs ::= 〈〈Code〉k〈MapId,Int〉env〈Bool〉cnd〉cfg
where the new cell cnd includes a formula meant to express the path condition.

4.2 Extending the Model T to a Symbolic Model T s

We first deal with the symbolic domain Ds, a ΣData-algebra with the following
properties:
1. The ΣData-algebra D is a sub-algebra of Ds.
2. We assume an infinite, sort-wise set of symbolic values V s of the data sorts,

disjoint from Var and from symbols in Σ, and assume that there is an
injection ι : V s → Ds such that for any valuation ϑ : V s → D there exists
a unique algebra morphism ϑs : Ds → D such that the diagram in Figure 4
commutes. The diagram essentially says that the interpretation of terms like
as +Int b

s via ϑ is the same as that given by the composition of ι with ϑs.
3. The satisfaction relation |= is extended to constraint formulas φs ∈ Ds

Bool

and valuations ϑ : V s → D such that ϑ |= φs iff ϑs(φs) = Dtrue .
For instance, Ds can be the algebra of ground terms over the signature

ΣData(V s ∪ D), or the quotient of this algebra modulo the congruence defined
by some set of equations (which can be used in practice as simplification rules).

We leave some freedom in choosing the symbolic domain, to allow the use of
decision procedures or other efficient means for handling symbolic artefacts.

By the definition of T = T (D), there is a unique Σ-morphism T → T (Ds).
We note that the extended definition (Σ,S, T (Ds)) is not suitable for symbolic
executions because the symbolic values in V s are constrained by the computa-
tions and decisions taken up to that point. This is why we extended the signature
to Σs, in which the path condition becomes a component of the configuration.

Next, we naturally define the model T s as being the free Σs-model generated
by Ds. Since there is an inclusion signature morphism Σ ↪→ Σs, T s can also be

A Generic Framework for Symbolic Execution 289

seen as a Σ-model T s�Σ , where only the interpretations of the symbols from Σ
are considered. This allows us to lift up the diagram in Figure 4 at the level of
the model T s�Σ and in particular to define ϑs : T s�Σ → T as the unique function
from T s�Σ to T that makes the diagram in Figure 5 commute. Furthermore, Σ
and Σs have the same data sub-signature and D is a sub-algebra of Ds, hence
there is a unique Σ-morphism T → T s�Σ . All these properties of the model T s

show that it is a suitable model for both concrete and symbolic executions.
However, the semantical rules S still have to be transformed into rules on

symbolic configurations including path conditions. Moreover, we must ensure
that the transition system defined by the new rules has the properties of coverage
and precision with respect to the transition system defined by (Σ,S, T). This
requires some transformations of the rules S, to be presented later in the paper.
The following lemma is crucial for obtaining symbolic executions via matching.

Lemma 1 (Semantic Unification is Reduced to Matching). Let us con-
sider l ∈ TΣ(Var), ρ : Var → T , πs ∈ T s�Σ, ϑ : V s → T such that l is linear,
any data sub term of l is a variable, and ρ(l) = ϑs(πs) (i.e., l and πs are se-
mantically unifiable in T). Then there is a (symbolic) valuation σ : Var → T s�Σ
such that σ(l) = πs and ϑs(σ(x)) = ρ(x) for each x ∈ Var .

Proof. We first prove the slightly weaker property (♦): there exists a valuation
σ : var (l) → T s�Σ such that σ(l) = πs and ϑs(σ(x)) = ρ(x) for each x ∈ var(l).

To prove (♦) we proceed by structural induction on l. If l is a variable x, then
we take σ(x) = πs and the conclusion of the lemma is obviously satisfied. We
assume now that l = f(l1, . . . , ln), n ≥ 0. The result sort of f is a non-data sort
by the hypotheses, hence Tf (a1, . . . , an) = f(a1, . . . , an) and T s

f (b1, . . . , bn) =
f(b1, . . . , bn) by the definition of T and T s, respectively. Consequently, ρ(l) =
f(ρ(l1), . . . , ρ(ln)), πs = f(πs

1, . . . , π
s
n)), ϑs(πs) = f(ϑs(πs

1), . . . , ϑ
s(πs

n)), and
ρ(li) = ρs(πs

i), i = 1, . . . , n, for certain πs
1, . . . , π

s
n ∈ T s�Σ. Recall that for each

sort s in Σ, (T s�Σ)s = T s
s . Each term li preserves the properties of l, hence there

is σi satisfying the conclusion of lemma for li and πs
i , i.e. σi(li) = πs

i and ρ(x) =
ϑs(σi(x)) for each x ∈ var (li). Since l is linear, var (l) = var (l1)� . . .�var (ln). It
follows we may define σ : var(l) → T s�Σ such that σ(x) = σi(x) iff x ∈ var (li).
We have σ(l) = f(σ(l1), . . . , σ(ln)) = f(σ1(l1), . . . , σn(ln)) = f(πs

1, . . . , π
s
n)) =

πs. The property ρ(x) = ϑs(σ(x)) for each x ∈ var(l) is inherited from σi.
The prove the lemma, we need to extend the valuation σ to Var such that

ϑs(σ(x)) = ρ(x) for all x ∈ Var , using the reachability of the data domain D:

– first, we prove that the function ϑs : T �Σ→ T is surjective. For this, consider
any τ ∈ T , thus, τ � C[τ1, . . . τn] with τ1, . . . , τn ∈ D and C a Σ-context,
since T is the free Σ-model generated by D. Since D is reachable, τi =
Dti for some ti ∈ TΣData , i = 1, . . . , n. Then, we have ϑs(ι(C[t1, . . . tn])) =
ϑ(C[t1, . . . tn]) per the diagram in Figure 5, and since C[t1, . . . tn] ∈ TΣ we
have ϑ(C[t1, . . . tn]) = TC[t1,...tn] = Tt = τ (as ϑ : TΣ(V

s) → T maps ground
terms in TΣ(∅) to their interpretation in T). Thus, for an arbitrary τ ∈ T we
found μ � ι(C[t1, . . . tn]) satisfying ϑ(μ) = τ , i.e., ϑs : T �Σ→ T is surjective.

– thus, for each x ∈ Var \ var(l), we choose σ(x) s.t. ϑs(σ(x)) = ρ(x). ��

290 A. Arusoaie, D. Lucanu, and V. Rusu

Definition 3 (Satisfaction Relation for Configurations). A concrete con-
figuration γ ∈ TCfg satisfies a symbolic configuration 〈πs, φs〉 ∈ T s

Cfgs , written
γ |= 〈πs, φs〉, if there exists ϑ : V s → D such that γ = ϑs(πs) and ϑs(φs) = true.

Example 2. Assume bs is a symbolic value of sort Bool. The configuration
γ � 〈〈if true then skip else skip〉k〈.〉env〉cfg

satisfies the symbolic configuration

〈πs, φs〉 � 〈〈if bs then skip else skip〉k〈.〉env〈bs〉cnd〉cfg
thanks to any valuation ϑ that maps bs to true.

4.3 Turning the Concrete Rules S into Symbolic Rules Ss

We show how to automatically build the symbolic-semantics rules Ss from the
concrete semantics-rules S, by applying the three steps described below.
1. Linearising Rules A rule is (left) linear if any variable occurs at most once in
its left-hand side. A nonlinear rule can always be turned into an equivalent linear
one, by renaming the variables occurring several times and adding equalities
between the renamed variables and the original ones to the rule’s condition. For
example, the last rule from the original imp semantics (Fig. 3) could have been
written as a nonlinear rule:

〈〈X ···〉k〈X �→ I ···〉env ···〉cfg ⇒⇒⇒ 〈〈I ···〉k〈X �→ I ···〉env ···〉cfg

To linearise it we just add a new variable, say X ′, and a condition, X ′ = X :
〈〈X ···〉k〈X ′ �→ I ···〉env ···〉cfg ∧∧∧X = X ′ ⇒⇒⇒ 〈〈I ···〉k〈X �→ I ···〉env ···〉cfg

2. Replacing Data Subterms by Variables Let Dpos(l) be the set of positions ω2

of the term l such that lω is a maximal subterm of a data sort. The next step
of our rule transformation consists in replacing all the maximal data subterms
of l by fresh variables. The purpose of this step is to make rules match any
configuration, including the symbolic ones.

Thus, we transform each rule l∧∧∧ b⇒⇒⇒ r into the rule
l[lω/Xω]ω∈Dpos(l) ∧∧∧ (b ∧

∧
ω∈Dpos(l)(Xω = lω))⇒⇒⇒ r,

where each Xω is a new variable of the same sort as lω.
Example 3. Consider the following rule for if from the imp semantics:

〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg
We replace the constant true with a Boolean variable B, and add the condition
B = true:

〈〈if B then S1 else S2 ···〉k ···〉cfg ∧∧∧B = true ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg

3. Adding Formulas to Configurations and Rules The last transformation step
consists in transforming each rule l ∧∧∧ b ⇒⇒⇒ r in S obtained after the previous
steps, into the following one:

〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉 (2)
2 For the notion of position in a term and other rewriting-related notions, see, e.g., [2].

A Generic Framework for Symbolic Execution 291

where ψ ∈ Var is a fresh variable of sort Bool (i.e. it does not occur in the
rules S) and 〈_,_〉 is the pairing operation in Σs. This means that when a
symbolic transition is performed on a symbolic configuration the current path
condition is enriched with the rule’s condition.

Example 4. The last rule for if from the (already transformed) imp semantics
is further transformed into the following rule in Ss:

〈〈if B then S1 else S2 ···〉k〈ψ〉cnd ···〉cfg ⇒⇒⇒ 〈〈S1 ···〉k〈ψ ∧ (B = true)〉cnd ···〉cfg

4.4 Defining the Symbolic Transition System

The triple (Σs, T s, Ds) defines a language Ls. Then, the transition system
(T s

Cfgs ,⇒Ss) can be defined using Definitions 1 and 2 applied to Ls. For this,
we note that both sides of the rules of the form (2) are terms in TΣs,Cfgs(Var),
thus, according to Definition 1 applied to Ls, they are (basic) patterns of Ls,
and then Definition 2 for Ls gives us the transition system (T s

Cfgs ,⇒Ss).

5 Relating the Concrete and Symbolic Semantics of L

We now relate the concrete and symbolic semantics of L, i.e., the transition
systems (TCfg ,⇒T

S) and (T s
Cfgs ,⇒T s

Ss). We prove certain simulation relations be-
tween them and obtain the coverage and precision properties as corollaries.

The next lemma shows that the symbolic transition system forward-simulates
the concrete transition system. We denote by αs ∈ Ss the rule obtained by
transforming α ∈ S (Section 4.3).

Lemma 2. (T s
Cfgs ,⇒Ss) forward simulates (TCfg ,⇒S): for all configurations γ,

symbolic configurations 〈πs, φs〉 and rules α ∈ S, if γ |= 〈πs, φs〉 and γ
α

=⇒S γ′

then there exists 〈π′s, φ′s〉 such that 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉 and γ′ |= 〈π′s, φ′s〉.

Proof. From γ
α

=⇒S γ′ we obtain α � (l ∧∧∧ b ⇒⇒⇒ r) ∈ S and ρ : Var → T such
that γ = ρ(l), ρ |= b, and γ′ = ρ(r). Recall that αs � (〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉).

From γ |= 〈πs, φs〉 we obtain ϑ : V s → D such that γ = ϑ(πs) and ϑ |= φs.
Using Lemma 1 we obtain the valuation σ such that σ(l) = πs and ρ(x) =

ϑ(σ(x)) for each x ∈ Var .
We define π′s � σ(r) and φ′s � σ(b) ∧ φs. Consider the valuation σ[ψ �→ φs],

which behaves like σ on Var \ {ψ} and maps ψ to φs.
We prove 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉 using the valuation σ[ψ �→ φs].
– First, (σ[ψ �→ φs)](〈l, ψ〉) = 〈σ(l), φs〉 = 〈πs, φs〉, since ψ does not occur in

the rule, thus, the left-hand side 〈l, ψ〉 of the rule αs matches 〈πs, φs〉.
– Second, 〈π′s, φ′s〉 = 〈σ(r), σ(b) ∧ φs〉 = 〈(σ[ψ �→ φs)](r), (σ[ψ �→ φs)](ψ ∧

b)〉 = (σ[ψ �→ φs)])(〈r, ψ ∧ b〉). Thus, αs rewrites 〈πs, φs〉 to 〈π′s, φ′s〉.
This proves 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉. There remains to prove γ′ |= 〈π′s, φ′s〉.

292 A. Arusoaie, D. Lucanu, and V. Rusu

For this we use the same valuation ϑ : V s → D as above. We have ϑ(π′s) =
ϑ(σ(r)), which, using Lemma 1, is ρ(r), and the latter equals γ′, cf. beginning
of the proof. Thus, γ′ = ϑ(π′s).

On the other hand, ϑ(φ′s) = ϑ(σ(b) ∧ φs) = ϑ(σ(b)) ∧ ϑ(φs) = ρ(b) ∧ ϑ(φs).
We have:

– ρ(b) = true because we have ρ |= b from the beginning of the proof;
– ϑ(φs) = true because ϑ |= φs, also from the beginning of the proof;

which implies ρ(b) ∧ ϑ(φs) = true, thus, ϑ(φ′s) = true, which together with
γ′ = ϑ(π′s) proved above implies γ′ |= 〈π′s, φ′s〉, which completes the proof. ��

For β � β1 · · ·βn ∈ S∗ we write γ0
β

=⇒S γn for γi
βi+1
=⇒S γi+1 for all i =

0, . . . , n−1, and use a similar notation for sequences of transitions in the symbolic
transition system, where we denote βs the sequence βs

1 · · ·βs
n ∈ Ss,∗.

We can now state the coverage theorem as a corollary to the above lemma:

Theorem 1 (Coverage). If γ β
=⇒S γ′ and γ |= 〈πs, φs〉 then there is a sym-

bolic configuration 〈π′s, φ′s〉 such that γ′ |= 〈π′s, φ′s〉 and 〈πs, φs〉 βs

=⇒Ss 〈π′s, φ′s〉

The coverage theorem says that if a sequence β of rewrite rules can be executed
starting in some initial configuration, the corresponding sequence of symbolic
rules can be fired as well. That is, if a program can execute a certain control-
flow path concretely, then it can also execute that path symbolically.

We would like, naturally, to prove the converse result (precision) based on
a simulation result similar to Lemma 2: for all configurations γ and symbolic
configuration 〈πs, φs〉, if γ |= 〈πs, φs〉 and 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉 then there is
a configuration γ′ such that γ α

=⇒T
S γ′ and γ′ |= 〈π′s, φ′s〉. But this is obviously

false, since it would imply that φ′s is satisfiable, which is not true in general.
Thus, we need another way of proving the precision result. The next lemma

says that the concrete semantics backwards-simulates the symbolic one:

Lemma 3. (TCfg ,⇒S) backward simulates (T s
Cfgs ,⇒Ss): for all configurations

γ′ and all symbolic configurations 〈πs, φs〉 and 〈π′s, φ′s〉, if 〈πs, φs〉 αs

=⇒Ss

〈π′s, φ′s〉 and γ′ |= 〈π′s, φ′s〉 then there exists γ ∈ TCfg such that γ |= 〈πs, φs〉
and γ

α
=⇒S γ′.

Proof. The transition 〈πs, φs〉 αs

=⇒Ss 〈π′s, φ′s〉 is obtained by applying a symbolic
rule αs � (〈l, ψ〉 ⇒⇒⇒ 〈r, ψ ∧ b〉) ∈ Ss, with some valuation that has the form
(σ[ψ �→ φs)] : Var → T s�Σ . Thus, σ(l) = πs, π′s = σ(r), and φ′s = φs ∧ σ(b).

From γ′ |= 〈π′s, φ′s〉 we obtain ϑ : V s → T such that γ′ = ϑs(π′s) =
ϑs(σ(r)) = (ϑs ◦ σ)(r) and true = ϑs(φ′s) = ϑs(φs) ∧ (ϑs ◦ σ)(b), thus, ϑs(φs) =
true and (ϑs ◦ σ)(b) = true.

Consider also ρ : Var → T � ϑs ◦ σ, and let γ � ρ(l). We have:

– on the one hand, γ = ρ(l) = (ϑs ◦σ)(l) = ϑs(σ(l)) = ϑs(πs), i.e., γ = ϑs(πs);

A Generic Framework for Symbolic Execution 293

– on the other hand, ϑs(φs) = true was obtained above;

which proves γ |= 〈πs, φs〉. There remains to prove γ
α

=⇒S γ′. To prove this we
consider the rule α = (l ∧∧∧ r ⇒⇒⇒ b) ∈ S whose symbolic version is αs from the
beginning of the proof, and the valuation ρ = ϑs ◦ σ from above. We have:

– γ = ρ(l) by definition of γ;
– ρ(b) = true, which is just (ϑs ◦ σ)(b) = true that we obtained above;
– γ′ = ρ(r), since we obtained above γ′ = (ϑs ◦ σ)(r).

This proves γ
α

=⇒S γ′ and completes the proof. ��

A consequence of this lemma is the precision theorem; it says that if a sequence
βs of symbolic rules can be executed starting in some initial symbolic configu-
ration and reaches a satisfiable final symbolic configuration (thus, implicitly, all
intermediary path conditions are satisifiable, since the final path condition is log-
ically stronger than all the intermediary ones) then the corresponding sequence
of concrete rules can be fired as well.

Theorem 2 (Precision). If 〈πs, φs〉 βs

=⇒Ss 〈π′s, φ′s〉 and γ′ |= 〈π′s, φ′s〉 then
there exists a configuration γ such that γ |= 〈πs, φs〉 and γ

β
=⇒S γ′ .

6 Implementation

In this section we present a prototype tool implementing our symbolic execution
approach. In Section 6.1 we briefly present our tool and its integration within
the K framework. In Section 6.2 we illustrate the most significant features of the
tool by the means of use cases involving nontrivial languages and programs.

6.1 Symbolic Execution within the K Framework

Our tool is part of K [20,24], a semantic framework for defining operational
semantics of programming languages. In K the definition of a language, say, L,
is compiled into a rewrite theory. Then, the K runner executes programs in L
by applying the resulting rewrite rules to configurations containing programs.

Our tool follows the same process. The main difference is that our new K

compiler includes the transformations presented in Section 4.3. The effect is that
the compiled rewrite theory defines the symbolic semantics of L instead of its
concrete semantics. We note that the symbolic semantics can execute programs
with concrete inputs as well. In this case it behaves like the concrete semantics.

The current version of the tool provides symbolic support for some of the
most standard K data types: Booleans, integers, strings, as well as arrays whose
size, index, and content can be symbolic. The symbolic semantics is in general
nondeterministic: when presented with symbolic inputs, a program can take
several paths. Therefore the K runner can be called with several options: it can
execute one nondeterministically chosen path, or all possible paths, up to a given
depth; it can also be run in a step-by-step manner. During the execution, the

294 A. Arusoaie, D. Lucanu, and V. Rusu

path conditions (which are computed by the symbolic semantics) are checked
for satisfiability using the axioms of the symbolic data domains as simplification
rules and, possibly, calls to the Z3 SMT solver[6]. For efficiency reasons the SMT
solver is called only if the rules add non-trivial formula to path conditions, which
cannot be simplified to true or false by the axioms of the symbolic domains. Users
can also fine-tune the amount of calls to the solver in order to achieve a balance
between the precision and the execution time of their symbolic execution. There
is also an option for displaying the transformed K definitions.

The current version of the tool has some limitations, which we are planning to
deal with in the future: only data constants, not full data subterms, are replaced
with variables, the tool is connected to only one prover (Z3), and it provides
only a limited support for building applications based on symbolic execution.

6.2 Use Cases

We show three use cases for our tool: the first one illustrates the execution
and LTL model checking for imp programs extended with I/O instructions, the
second one demonstrates the use of symbolic arrays in the simple language – an
extension of imp with functions, arrays, threads and several other features, and
the third one shows symbolic execution in an object-oriented language called
kool [10]. The simple and kool languages have existed almost as long as the
K framework and have intensively been used for teaching programming language
concepts. Our tool is applied on the current definitions of simple and kool.

imp with I/O Operations. We first enrich the imp language (Figure 1) with
read and print operations. This enables the execution of imp programs with
symbolic input data. We then compile the resulting definition by calling the
K compiler with an option telling it to generate the symbolic semantics of the
language by applying the transformations described in Section 4.3.

int n, s;
n = read();
s = 0;
while (n > 0) {

s = s + n;
n = n - 1;

}
print("Sum = ", s, "\n");

Fig. 6. sum.imp

int k, a, x;
a = read();
x = a;
while (x > 1) {
x = x / 2;
k = k + 1;
L : {}

}

Fig. 7. log.imp

Programs such as sum.imp shown in Figure 6 can now be run with the K

runner in the following ways:

1. with symbolic or with concrete inputs;
2. on one arbitrary execution path, or on all paths up to a given bound;
3. in a step-wise manner, or by letting the program completely execute a given

number of paths.

A Generic Framework for Symbolic Execution 295

For example, by running sum.imp with a symbolic input n (here and thereafter we
use mathematical font for symbolic values) and requiring at most five completed
executions, the K runner outputs the five resulting, final configurations, one of
which is shown below, in a syntax slightly simplified for readability:
<k> . </k>
<path-condition> n > 0 ∧ (n− 1 > 0) ∧ ¬((n− 1)− 1 > 0) </path-condition>

<state>
n |-> (n− 1) − 1

s |-> n+ (n− 1)

</state>
The program is finished since the k cell has no code left to execute. The path
condition actually means n = 2, and in this case the sum s equals n+(n−1) = 2+
1, as shown by the state cell. The other four final configurations, not shown here,
compute the sums of numbers up to 1, 3, 4, and 5, respectively. Users can run
the program in a step-wise manner in order to see intermediary configurations in
additional to final ones. During this process they can interact with the runner,
e.g., by choosing one execution branch of the program among several, feeding
the program with inputs, or letting the program run on an arbitrarily chosen
path until its completion.

LTL Model Checking. The K runner includes a hook to the Maude LTL (Linear
Temporal Logic) model checker [16]. Thus, one can model check LTL formulas
on programs having a finite state space (or by restricting the verification to a
finite subset of the state space). This requires an (automatic) extension of the
syntax and semantics of a language for including labels that are used as atomic
propositions in the LTL formulas. Predicates on the program’s variables can be
used as propositions in the formulas as well, using the approach outlined in [15].

Consider for instance the program log.imp in Figure 7, which computes the
integer binary logarithm of an integer read from the input. We prove that when-
ever the loop visits the label L, the inequalities x∗2k ≤ a < (x+1)∗2k hold. The
invariant was guessed using several step-wise executions. We let a be a symbolic
value and restrict it in the interval (0..10) to obtain a finite state space. We prove
that the above property, denoted by logInv(a,x,k) holds whenever the label L
is visited and a is in the given interval, using the following command (again,
slightly edited for better readability):

$ krun log.imp -cPC="a >Int 0 ∧Bool a <Int 10" -cIN="a"
-ltlmc "�Ltl (L→Ltl logInv(a, x, k))"

The K runner executes the command by calling the Maude LTL model-checker
for the LTL formula �Ltl (L →Ltl logInv(a, x, k)) and the initial configuration
having the program log.imp in the computation cell k, the symbolic value a
in the input cell in, and the constraint a >Int 0 ∧Bool a <Int 10 in the path
condition. The result returned by the tool is that the above LTL formula holds.

simple, Symbolic Arrays, and Bounded Model Checking. We illustrate
symbolic arrays in the simple language and shows how the K runner can directly

296 A. Arusoaie, D. Lucanu, and V. Rusu

void init(int[] a, int x, int j){
int i = 0, n = sizeOf(a);
a[j] = x;
while (a[i] != x && i < n) {

a[i] = 2 * i;
i = i + 1;

}
if (i > j) {

print("error");
}

}

void main() {
int n = read();
int j = read();
int x = read();
int a[n], i = 0;
while (i < n) {
a[i] = read();
i = i + 1;

}
init(a, x, j);

}

Fig. 8. simple program: init-arrays

be used for performing bounded model checking. In the program in Figure 8, the
init method assigns the value x to the array a at an index j, then fills the array
with ascending even numbers until it encounters x in the array; it prints error
if the index i went beyond j in that process. The array and the indexes i, j are
parameters to the function, passed to it by the main function which reads them
from the input. In [1] it has been shown, using model-checking and abstractions
on arrays, that this program never prints error.

We obtain the same result by running the program with symbolic inputs and
using the K runner as a bounded model checker:

$ krun init-arrays.simple -cPC="n >Int 0" -search -cIN="n j x a1 a2 a3"
-pattern="<T> <out> error </out> B:Bag </T>"

Search results:
No search results

The initial path condition is n >Int 0. The symbolic inputs for n,j,x are entered
as n j x, and the array elements a1 a2 a3 are also symbolic. The –pattern option
specifies a pattern to be searched in the final configuration: the text error should
be in the configuration’s output buffer. The above command thus performs a
bounded model-checking with symbolic inputs (the bound is implicitly set by the
number of array elements given as inputs - 3). It does not return any solution,
meaning that that the program will never print error.

The result was obtained using symbolic execution without any additional tools
or techniques. We note that array sizes are symbolic as well, a feature that, to
our best knowledge, is not present in other symbolic execution frameworks.

kool: Testing Virtual Method Calls on Lists. Our last example (Fig-
ure 9) is a program in the kool object-oriented language. It implements lists
and ordered lists of integers using arrays. We use symbolic execution to check
the well-known virtual method call mechanism of object-oriented languages: the
same method call, applied to two objects of different classes, may have different
outcomes.

The List class implements (plain) lists. It has methods for creating, copying,
and testing the equality of lists, as well as for inserting and deleting elements in
a list. Figure 9 shows only a part of them. The class OrderedList inherits from
List. It redefines the insert method in order to ensure that the sequences of

A Generic Framework for Symbolic Execution 297

class List {
int a[10];
int size, capacity;
...

void insert (int x) {
if (size < capacity) {
a[size] = x; ++size;

}
}

void delete(int x) {
int i = 0;
while(i < size-1 && a[i] != x) {
i = i + 1;

}
if (a[i] == x) {
while (i < size - 1) {

a[i] = a[i+1];
i = i + 1;

}
size = size - 1;

}
}
...

}

class OrderedList extends List {
...
void insert(int x){

if (size < capacity) {
int i = 0, k;
while(i < size && a[i] <= x) {

i = i + 1;
}
++size; k = size - 1;
while(k > i) {

a[k] = a[k-1]; k = k - 1;
}
a[i] = x;

}
}

}
class Main {
void Main() {

List l1 = new List();
... // read elements of l1 and x
List l2 = l1.copy();
l1.insert(x); l1.delete(x);
if (l2.eqTo(l1) == false) {
print("error\n");

}
}

}

Fig. 9. lists.kool: implementation of lists in kool

elements in lists are sorted in increasing order. The Main class creates a list l1,
initializes l1 and an integer variable x with input values, copies l1 to a list l2
and then inserts and deletes x in l1. Finally it compares l1 to l2 element by
element, and prints error if it finds them different. We use symbolic execution
to show that the above sequence of method calls results in different outcomes,
depending on whether l1 is a List or an OrderedList. We first try the case where
l1 is a List, by issuing the following command to the K runner:

$ krun lists.kool -search -cIN="e1 e2 x"
-pattern="<T> <out> error </out> B:Bag </T>"

Solution 1, State 50:
<path-condition>

e1 = x ∧Bool ¬Bool (e1 = e2)
</path-condition>
...

The command initializes l1 with two symbolic values (e1, e2) and sets x to the
symbolic value x. It searches for configurations that contain error in the output.
The tool finds one solution, with e1 = x and e1 �= e2 in the path condition. Since
insert of List appends x at the end of the list and deletes the first instance of x
from it, l1 consists of (e2, x) when the two lists are compared, in contrast to l2,
which consists of (e1, e2). The path condition implies that the lists are different.

The same command on the same program but where l1 is an OrderedList
finds no solution. This is because insert in OrderedList inserts an element in

298 A. Arusoaie, D. Lucanu, and V. Rusu

a unique place (up to the positions of the elements equal to it) in an ordered
list, and delete removes either the inserted element or one with the same value.
Hence, inserting and then deleting an element leaves an ordered list unchanged.

Thus, virtual method call mechanism worked correctly in the tested scenarios.
An advantage of using our symbolic execution tool is that the condition on the
inputs that differentiated the two scenarios was discovered by the tool. This
feature can be exploited in other applications such as test-case generation.

6.3 The Implementation of the Tool

Our tool was developed as an extension of the K compiler. A part of the connec-
tion to the Z3 SMT solver was done in K itself, and the rest of the code is written
in Java. The K compiler (kompile) is organized as a list of transformations ap-
plied to the abstract syntax tree of a K definition. Our compiler inserts additional
transformations (formally described in Section 4.3). These transformations are
inserted when the K compiler is called with the –symbolic option.

The compiler adds syntax declarations for each sort, which allows users to use
symbolic values written as, e.g., #symSort(x) in their programs. The tool also
generates predicates used to distinguish between concrete and symbolic values.

For handling the path condition, a new configuration cell, <path-condition> is
automatically added to the configuration. The transformations of rules discussed
in Subsection 4.3 are also implemented as transformers applied to rules. There
is a transformer for linearizing rules, which collects all the variables that appear
more than once in the left hand side of a rule, generates new variables for each
one, and adds an equality in the side condition. There is also a transformer
that replaces data subterms with variables, following the same algorithm as
the previous one, and a transformer that adds rule’s conditions in the symbolic
configuration’s path conditions. In practice, building the path condition blindly
may lead to exploration of program paths which are not feasible. For this reason,
the transformer that collects the path condition also adds, as a side condition to
rewrite rules, a call to the SMT solver of the form checkSat(φ)
= "unsat", where
the checkSat function calls the SMT solver over the current path condition φ.
When the path condition is found unsatisfiable the current path is not explored
any longer. A problem that arises here is that, in K, the condition of rules may
also contain internally generated predicates needed only for matching. Those
predicates should not be part of the path condition, therefore they had to be
filtered out from rule’s conditions before the latter are added to path conditions.

Not all the rules from a K definition must be transformed. This is the case, e.g.,
of the rules computing functions or predicates. We have created a transformer
that detects such rules and marks them with a tag. The tag can also be used by
the user, in order to prevent the transformation of other rules if needed. Finally,
in order to allow passing symbolic inputs to programs we generated a variable
$IN, initialized at runtime by krun with the value of the option –cIN.

A Generic Framework for Symbolic Execution 299

7 Conclusion and Future Work

We have presented a formal and generic framework for the symbolic execution of
programs in languages having operational semantics defined by term-rewriting.
Starting from the formal definition of a language L, the symbolic version Ls of
the language is automatically constructed, by extending the datatypes used in
L with symbolic values, and by modifying the semantical rules of L in order to
make them process symbolic values appropriately. The symbolic semantics of L
is then the (usual) semantics of Ls, and symbolic execution of programs in L
is the (usual) execution of the corresponding programs in Ls, which is the ap-
plication of the rewrite rules of the semantics of Ls to programs. Our symbolic
execution has the natural properties of coverage, meaning that to each concrete
execution there is a feasible symbolic one on the same path of instructions, and
precision, meaning that each feasible symbolic execution has a concrete execu-
tion on the same path. These results were obtained by carefully constructing
definitions about the essentials of programming languages, in an algebraic and
term-rewriting setting. We have implemented a prototype tool in the K frame-
work and have illustrated it by instantiating it to several languages defined in K.

Future Work. We are planning to use symbolic execution as the basic mechanism
for the deductive systems for program logics also developed in the K framework
(such as reachability logic [21] and our own circular equivalence logic [14]). More
generally, our symbolic execution can be used for program testing, debugging,
and verification, following the ideas presented in related work, but with the
added value of being language independent and grounded in formal operational
semantics. In order to achieve that, we have to develop a rich domain of symbolic
values, able to handle e.g., heaps, stacks, and other common data types.

Acknowledgements. The results presented in this paper would not have
been possible without the valuable support from the K tool development team
(http://k-framework.org). We would like to thank the reviewers for their
helpful comments. The work presented here was supported in part by Contract
161/15.06.2010, SMIS-CSNR 602-12516 (DAK).

References

1. Armando, A., Benerecetti, M., Mantovani, J.: Model checking linear programs with
arrays. In: Proceedings of the Workshop on Software Model Checking, vol. 144-3,
pp. 79–94 (2006)

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

http://k-framework.org

300 A. Arusoaie, D. Lucanu, and V. Rusu

4. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) ACM Conference on Computer and Communications Security, pp. 322–335.
ACM (2006)

5. de Halleux, J., Tillmann, N.: Parameterized unit testing with pex. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Dillon, L.K.: Verifying general safety properties of Ada tasking programs. IEEE
Trans. Softw. Eng. 16(1), 51–63 (1990)

8. Escobar, S., Meseguer, J., Sasse, R.: Variant narrowing and equational unification.
Electr. Notes Theor. Comput. Sci. 238(3), 103–119 (2009)

9. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)

10. Hills, M., Roşu, G.: KOOL: An application of rewriting logic to language proto-
typing and analysis. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 246–256.
Springer, Heidelberg (2007)

11. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

13. Li, G., Ghosh, I., Rajan, S.P.: KLOVER: A symbolic execution and automatic test
generation tool for C++ programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 609–615. Springer, Heidelberg (2011)

14. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

15. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K Framework Distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

16. Meseguer, J.: Rewriting logic and Maude: Concepts and applications. In L. Bach-
mair, editor, RTA. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 1–26.
Springer, Heidelberg (2000)

17. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation 20(1-2), 123–160 (2007)

18. Păsăreanu, C.S., Visser, W.: Verification of Java Programs Using Symbolic Execu-
tion and Invariant Generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS,
vol. 2989, pp. 164–181. Springer, Heidelberg (2004)

19. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

20. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. Journal of
Logic and Algebraic Programming 79(6), 397–434 (2010)

21. Roşu, G., Ştefănescu, A.: Checking reachability using matching logic. In: Leavens,
G.T., Dwyer, M.B. (eds.) OOPSLA, pp. 555–574. ACM (2012)

22. Schmitt, P.H., Weiß, B.: Inferring invariants by symbolic execution. In: Proceedings
of 4th International Verification Workshop, VERIFY 2007 (2007)

A Generic Framework for Symbolic Execution 301

23. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 263–272. ACM (2005)

24. Serbanuta, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Rosu, G.: The
K primer (version 2.5). In: Hills, M. (ed.) K 2011. Electronic Notes in Theoretical
Computer Science (2011) (to appear)

25. Şerbănuţă, T.-F., Roşu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

26. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model checking with
symbolic execution to verify parallel numerical programs. In: ISSTA, pp. 157–168.
ACM (2006)

27. Staats, M., Păsăreanu, C.S.: Parallel symbolic execution for structural test gener-
ation. In: Tonella, P., Orso, A. (eds.) ISSTA, pp. 183–194. ACM (2010)

28. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) ISSTA, pp. 97–107. ACM
(2004)

Circular Higher-Order Reference Attribute Grammars

Emma Söderberg and Görel Hedin

Department of Computer Science, Lund University, Sweden
{emma.soderberg,gorel.hedin}@cs.lth.se

Abstract. Reference attribute grammars (RAGs) provide a practical declarative
means to implement programming language compilers and other tools. RAGs
have previously been extended to support both circular attributes and context-
dependent declarative rewrites of the abstract syntax tree. In this previous work,
dependencies between circular attributes and rewrites are not considered. In this
paper, we investigate how these extensions can interact, and still be well defined.
We introduce a generalized evaluation algorithm that can handle grammars where
circular attributes and rewrites are interdependent. To this end, we introduce cir-
cular higher-order attributes, and show how RAG rewrites are a special form of
such attributes.

1 Introduction

Reference attribute grammars (RAGs) [14] provide a practical declarative means to im-
plement programming language compilers and other tools. Examples include a full Java
compiler [11], as well as extensions to aspect-oriented, context-oriented and feature-
oriented programming languages [3,2,1]. RAGs are an extension of Knuth’s attribute
grammars (AGs) [18], and support attributes with references to remote abstract syn-
tax tree (AST) nodes as values. Over the years, AGs and RAGs have been subject to a
multitude of extensions. For instance, RAGs have previously been extended to support
circular attributes [13,15,20], and attribute-dependent rewrites [9], performing in-place
transformations in the AST. In this previous work, dependencies between circular at-
tributes and rewrites are not considered.

In this paper, we investigate how circular attributes and rewrites can interact, and still
be well defined. We consider the similarities of rewritten values and higher-order at-
tributes [26], from here on referred to as non-terminal attributes (NTAs). We introduce
a generalized evaluation algorithm that can handle grammars with interdependent cir-
cular attributes and rewrites. To this end, we introduce circular higher-order attributes,
and show how RAG rewrites are a special form of such attributes. The contributions of
this paper are as follows:

– A definition of circular NTAs, together with an evaluation algorithm.
– A mapping from circular NTAs to rewrites.
– An evaluation of the presented algorithm on a typical rewrite problem.

The rest of this paper is structured as follows: Section 2 walks through the prelim-
inaries of this paper, Section 3 gives a motivating example, Section 4 presents circu-
lar NTAs, Section 5 presents a mapping to rewrites, Section 6 evaluates the presented
mechanism, Section 7 discusses related work, and finally Section 8 concludes the paper.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 302–321, 2013.
c© Springer International Publishing Switzerland 2013

Circular Higher-Order Reference Attribute Grammars 303

2 Preliminaries

To illustrate examples, and to present solutions, we use the syntax and evaluation code
supported and provided by the JastAdd system [12].

2.1 Attribute Grammars

Attribute grammars (AGs) were introduced by Knuth [18] and provide a means to com-
pute context-sensitive information for context-free grammars. The information is de-
fined by attributes associated with non-terminals, and equations associated with produc-
tions. In JastAdd, the non-terminals and productions are viewed as types and subtypes,
and attributes and equations belong to such node types, that is, they are hosted by node
types. Abstract syntax trees (ASTs) consist of nodes instantiated from node types, and
each node hosts instances of the attributes hosted by its node type.

An equation defines an attribute (on the left-hand side), using an expression (on the
right-hand side) that may use attributes in the hosting node, or its children. This expres-
sion is called the semantic function of the attribute. Attributes are either synthesized
or inherited. A synthesized attribute hosted by a node of type n, has a value defined
by an equation also hosted by n, while an inherited attribute has a value defined by an
equation hosted by the parent of n.

1 Root ::= First:A Second:A;
2 abstract A;
3 B: A ::= <ID:String>;
4 C: A;
5
6 inh int A.startPos();
7 syn int A.endPos();
8
9 eq Root.getFirst().startPos() = 1;

10 eq Root.getSecond().startPos() =
11 getFirst().endPos();
12 eq C.endPos() = startPos();
13 eq B.endPos() = startPos() + getID().length();

Root

C B

First Second

startPos 1
endPos 1

startPos 1
endPos 6

ID="hello"

Legend
Node instance

name value Attribute instance

Fig. 1. AG example A simple attribute grammar and an example of an attributed AST

Figure 1 shows a simple example of a JastAdd attribute grammar, and an AST fol-
lowing this grammar. The grammar defines a Root node type with two children of the
abstract type A. This type A has two subtypes B and C, where B has a token ID of type
String. A token is seen as an intrinsic attribute, i.e., an attribute whose value is de-
fined during the AST construction, rather than by an equation. The attribution defines an
inherited attribute startPos and a synthesized attribute endPos for A nodes, along
with equations defining the values of the attributes.

An equation has the form H.getC().i() = exp for an inherited attribute, or
H.s() = exp for a synthesized attribute. Here, H is the host type, getC() is an ac-
cessor to a child of H, i() is an inherited attribute of C(), and s() is a synthesized

304 E. Söderberg and G. Hedin

attribute of H. A right-hand side expression exp executes in the context of H. For ex-
ample, on line 10, an equation hosted by Root defines its second A’s startPos to
be equal to its first A’s endPos. The AST, with attribute instances and their values, is
illustrated to the right in the figure.

A simple and powerful way to compute the value of an attribute instance a0 is to lo-
cate its defining equation and evaluate its right-hand side expression, recursively eval-
uating any attribute instances a1...an used when evaluating the expression [17]. The
attribute a0 is said to depend on a1...an. Note that these dependencies are dynamic: the
dependencies themselves may depend on the values of attributes. For example, in an
equation a = b ? c : d, an instance of a will depend on b and on either c or d, depending
on the value of b.

This dynamic evaluation technique is called demand evaluation, since only those
attributes whose values are demanded are actually evaluated. The attribute values can
be cached after evaluation, so that a second demand for an attribute value will return the
value immediately, rather than evaluating the equation again. Despite being so simple,
this technique is very powerful, and is used in JastAdd. It can handle many extensions to
Knuth’s attribute grammars, including reference attributes and nonterminal attributes,
and it can be extended to support circular attributes and rewrites.

2.2 Reference Attributes

Reference AGs (RAGs), introduced by Hedin [14], extend AGs with attributes that
have references to other AST nodes as values, so called reference attributes, which
may be de-referenced in the right-hand side of equations to access attributes in distant
AST nodes. Reference attributes can be used to super-impose graph structures on top
of the AST, for example, to link variable use nodes to declaration nodes. They allow
for concise solutions to, for instance, name and type analysis for object-oriented lan-
guages [10,11].

...

inh A A.otherA();
syn int A.otherEndPos();

eq Root.getFirst().otherA() = getSecond();
eq Root.getSecond().otherA() = getFirst();
eq A.otherEndPos() = otherA().endPos();

Root

C B

First Second

otherA
otherEndPos 6

endPos 6
otherA
otherEndPos 1

ID="hello"

Legend
name Reference attribute

Fig. 2. RAG example Extends the grammar from Figure 1 with two attributes, of which one is a
reference attribute (otherA). For conciseness, most attributes from Figure 1 are omitted.

Figure 2 shows a simple example of a system with reference attributes, where the
grammar of Figure 1 has been extended with an inherited reference attribute otherA
and a synthesized attribute otherEndPos. The latter attribute is defined by derefer-
encing otherA and accessing that node’s endPos attribute. Note that the reference

Circular Higher-Order Reference Attribute Grammars 305

attributes super-impose a cyclic structure on top of the AST, but that the attribute de-
pendencies are not cyclic. The demand-driven evaluation algorithm works without any
problems.

2.3 Non-terminal Attributes

Higher-order AGs, introduced by Vogt, Swierstra and Kuiper [26], extend AGs with
non-terminal attributes (NTAs), i.e., attributes for which the semantic function com-
putes a fresh sub-AST, rooted by a given non-terminal. These sub-ASTs may them-
selves have attributes, hence the term higher-order. This extension makes it possible to
let the attribution decide parts of the AST structure, which otherwise would be decided
entirely during construction. NTAs can, for example, be used to de-sugar language con-
structs by constructing an alternative representation of a part of the AST. Like any
attribute, an NTA is hosted by a node type of the grammar and each node of that type
will host its own instance of the NTA.

Unlike other attributes, the value of an NTA is in itself attributable, and inherited
attributes are evaluated in the context of the node hosting the NTA. That is, the hosting
node becomes the parent of the NTA, and must provide equations defining the inherited
attributes of the NTA. In JastAdd, an equation defining the inherited attribute of a child
automatically applies to all nodes in the child sub-AST, so called broadcasting [12].
Thus, often there is already a suitable equation further up in the AST, and if not, the
host can provide an appropriate equation, overriding any broadcasting equation higher
up in the AST. Figure 3 shows an example. The demand-driven recursive evaluation
algorithm works directly for NTAs.

2.4 Circular Attributes

Circular attributes are attributes that depend (transitively) on themselves. They are use-
ful for describing many problems, for example, dataflow. Circular attributes are well-
defined as the least fixed-point solution to their equations, if their semantic functions are
monotonic and yield values over a lattice of bounded height [16,13]. Farrow describes
how an evaluator can compute a fixed-point by successive approximation of attribute

...

syn nta B C.myB();
eq C.myB() = new B("bye");

Root

C B

First
Second

otherA
otherEndPos 6
myB

otherA
otherEndPos 1

Root

B otherA
otherEndPos 6

Legend
name Non-terminal attribute

Fig. 3. Non-terminal attributes The grammar from Figure 2 is extended with an NTA computing
a new B node under C. The NTA value gets the same inherited values as C. This behavior could
be modified by adding more equations to C.

306 E. Söderberg and G. Hedin

values [13], as shown in Figure 4. The algorithm solves the equation X = F (X) by
starting from the bottom value (⊥) and then iterating until a fixed-point is reached. That
is, X = ⊥ ∪ F (⊥) ∪ F (F (⊥)) ∪ . . . F l(⊥) . . . until F l(⊥) = F l+1(⊥), where ∪ is
monotonic on the domain and co-domain of F .

1 // Initialize all attribute instances in the cycle with ⊥
2 repeat
3 change = FALSE

4 for each X in the cycle
5 Xnew = Fx(X)
6 change = change ∨X
= Xnew

7 X = Xnew

8 until ¬change

a
[a⊥ , a1, a2 , a2, a2]

b[b⊥ , b1 , b1 , b1 , b1]

c[c⊥, c1, c2, c3, c3]

Legend
[..] Attribute instance with values
Attribute dependency

Fig. 4. Fixed-point evaluation of attribute instances in a cycle. Example of cycle shown to the
right. Starting at ⊥, attribute instance values are updated each iteration until there is no change.

To support circular attributes in RAGs, the recursive demand-driven evaluation is
extended to do fixed-point iteration, as described by Magnusson and Hedin [20] and
shown in Figure 5. When the value of a circular attribute instance is demanded, there
are three different cases: Case 1 covers the case when the attribute instance is called
from "outside", i.e., from an attribute not involved in any cyclic evaluation. This part of
the algorithm contains the loop that drives the fixed-point iteration. Cases 2 and 3 cover
cases when a circular attribute is called from "inside", i.e., when a circular evaluation is
already ongoing. Case 2 computes the next value in the iteration for the attribute. Case
3 covers the case when the computation of the next value is already ongoing, in which
case the function immediately returns the current value. A global flag, IN_CIRCLE,
keeps track of if any cyclic evaluation is ongoing. Figure 6 illustrates the evaluation
stack for the example used in Figure 5.

As a simple example, Figure 7 shows a circular attribute in JastAdd that computes
whether any endPos of nodes, connected through the otherA references, are over
5. The attribute is boolean, and the values can be viewed as arranged in a simple lat-
tice with false at the bottom and true at the top, and the semantic function uses the
monotonic or operator (||).

2.5 Rewrites

Rewritable RAGs, introduced by Ekman and Hedin [9], extends RAGs with attribute-
dependent declarative transformations of the AST, called rewrites. Rewrite rules are
defined on node types and can be conditional, guarded by when clauses that may de-
pend on attribute values. One example use is in name resolution, to replace name access
nodes by more specific nodes depending on context, for example, field accesses or local
variable accesses [10]. A node is in a consistent state, with respect to rewrites, when it
has no applicable rewrite rules. An evaluator thus needs to automatically apply rewrite

Circular Higher-Order Reference Attribute Grammars 307

CIRCULAR-ATTR-EVAL(..)

1 if attr_computed
2 return attr_value
3 if ¬attr_initialized
4 attr_initialized = TRUE
5 attr_value = BOTTOM_VALUE
6 if ¬IN_CIRCLE // CASE 1
7 . . .

20 elseif ¬attr_visited // CASE 2
21 . . .
28 else return attr_value // CASE 3

7 IN_CIRCLE = TRUE
8 attr_visited = TRUE
9 repeat

10 CHANGE = FALSE
11 new_attr_value = ATTR-FUNC(..)
12 if new_attr_value 	= attr_value
13 CHANGE = TRUE
14 attr_value = new_attr_value
15 until ¬CHANGE
16 attr_visited = FALSE
17 attr_computed = TRUE
18 IN_CIRCLE = FALSE
19 return attr_value
20 . . . CASE 1

21 attr_visited = TRUE
22 new_attr_value = ATTR-FUNC(..)
23 if new_attr_value 	= attr_value
24 CHANGE = TRUE
25 attr_value = new_attr_value
26 attr_visited = FALSE
27 return attr_value
28 . . . CASE 2

a
[a⊥, a1, a2, a2, a2]

b
[b⊥, b1, b1, b1, b1]

c
[c⊥, c1, c2, c3, c3]

CASE 2

CASE 2

CASE 3

CASE 1

Fig. 5. Recursive fixed-point evaluation Listing of the algorithm divided into three cases, ex-
emplified for the dependency graph from Figure 4. ATTR-FUNC refers to the actual semantic
function of the attribute.

rules, intertwined with attribute evaluation, until no applicable rewrites remain. Figure
8 shows an example, where a new subtype D is defined that extends the type A. A rewrite
rule for the type B declares that it should be replaced by a D node in case the value of
its endPos attribute is larger than 4.

Like RAG attributes, rewrites are evaluated on demand, and with the use of a recur-
sive evaluation strategy. When a node is accessed for the first time (through the getter in
its parent), the rewrite rules for the node are applied repeatedly until there are no more
applicable rewrites, i.e., the node is in its final state. Thus, the client accessing the child
never sees the initial or any intermediate states, but only the final state of the node. The
root node itself is not allowed to have any rewrite rules. Initially, the root of the AST
is final, and as the AST is traversed, this final region is expanded from parent to child.
For instance, after building the initial AST in Figure 8, suppose we access first the root
node, and then its second child. The second child will then be rewritten, and a reference
to the final D node is returned.

The evaluation of rewrites, shown as the child access method ASTNODE.GETCHILD

in Figure 91, starts with a check of the current state of the child to be accessed. If the
child is NULL, if it is already in the final state, or if it has no rewrite rules, its current
value is returned immediately without any further evaluation. Alternatively, the rewrite
evaluation continues. Beyond the initial part, the ASTNODE.GETCHILD method han-
dles two cases: CASE 1 covers the case when the node is accessed for the first time, in
which case a loop is entered which drives the evaluation of the rewrite. CASE 2 covers

1 ASTNODE is a supertype of all node types.

308 E. Söderberg and G. Hedin

Time

E
va

lu
at

io
n

st
ac

k

CASE 1
1ST ITER., a⊥ → a1

CASE 2, b⊥ → b1
b1

CASE 2, c⊥ → c1
c1

CASE 3, a⊥
a⊥

2ND ITER., a1 → a2

CASE 2, b1 = b1
b1

CASE 2, c1 → c2
c2

CASE 3, a1
a1

3RD ITER., a2 = a2

CASE 2, b1 = b1
b1

CASE 2, c2 → c3
c3

CASE 3, a2
a2

4TH ITER., a2 = a2

CASE 2, b1 = b1
b1

CASE 2, c3 = c3
c3

CASE 3, a2
a2

Legend .. Attribute activation .. Driver loop iteration Call to / Return from →/= Change / No change

Fig. 6. Evaluation stack for recursive fixed-point evaluation and the example shown in Figure 5.
CASE 1 goes through three iterations (ITER) before a fixed point is found in the fourth.

...
syn boolean A.anyOver5() circular [false];
eq A.anyOver5() = endPos > 5 ||

otherA().anyOver5);

Root

C B

First Second

endPos 1
otherA
anyOver5 TRUE

endPos 6
otherA
anyOver5 TRUE

ID="hello"

Root

Fig. 7. Circular attribute example Extending the grammar from Figure 2 with a circular attribute
anyOver5 with false as bottom value

the case when the node is already in the process of being rewritten, but accessed again,
in which case the current value is returned.

CASE 1 contains a driver loop, similar to the first case for circular attributes in Fig-
ure 5. A difference is that each rewritten node is driven by its own driver loop, which
is kept track of using the boolean field INCIRCLE in the node. Another difference is
that the change check is not done by comparing values, but instead using a boolean flag
that is set in the beginning of each iteration (CHANGE), and reset (to NOCHANGE) by
the REWRITETO method, in case no when clause applies. These flags are pushed on a
stack (STACK), so that nested rewrites of different nodes each have their own flag.

...
D: A;
rewrite B {

when (endPos() > 4)
to D {
return new D();

}
}

Root

C B

First

otherA
endPos 6

endPos 6
otherA

D

Second

Legend

a b

Rewrite
a to b

Fig. 8. Rewrite example Extends the grammar in Figure 2 with a node type D and a rewrite rule,
replacing a B node with a D node, depending on the value of endPos (shown to the right)

Circular Higher-Order Reference Attribute Grammars 309

Because rewrites change the AST, attribute instance values may not be cached (mem-
oized) if they depend on nodes which have not yet become final. This requires additional
bookkeeping not shown in Figure 9.

ASTNODE.GETCHILD(index)

1 node = this .GETCHILDNOTRANSFORM(index)
2 if node = NULL ∨ node .ISFINAL()
3 return node
4 if ¬node .MAYHAVEREWRITE()
5 node .SETFINAL(parent .ISFINAL())
6 return node
7 if ¬node .INCIRCLE()// CASE 1
8 repeat
9 STACK .PUSH(CHANGE)

10 node .SETINCIRCLE(TRUE)
11 new_node = node.REWRITETO()
12 if new_node
= node
13 this .SETCHILD(index ,new_node)
14 node = new_node
15 node .SETINCIRCLE(FALSE)
16 state = STACK .POP()
17 until state
= CHANGE

18 if state = NOCHANGE ∧ this.ISFINAL()
19 node .SETFINAL(TRUE)
20 return node
21 else
22 return node // CASE 2

ASTNODE.REWRITETO

1 STACK .POP()
2 STACK .PUSH(NOCHANGE)
3 return this

ASTNODE.MAYHAVEREWRITE

1 return FALSE

NODE.REWRITETO

1 // when clauses in lexical order
2 return super .REWRITETO()

NODE.MAYHAVEREWRITE

1 return TRUE

Fig. 9. Rewrite evaluation The pseudo code for the initial part, together with the two evaluation
cases, is listed to the left, and node-specific code for controlling the change check and triggering
of rewrite evaluation, is listed to the right

3 Motivating Example

In the previous section, we walked through the evaluation of attribute grammars with
focus on two extensions: circular attributes and rewrites. The evaluation mechanisms
of these extensions are similar; both use a loop to drive the evaluation until there is
no change, both base their evaluation on some initial value, and both mechanisms may
create intermediate values on their way to a final value. That is, if a circular attribute is
called, entering CASE 2 or CASE 3, a potentially intermediate value is returned, and the
same goes for rewrites, entering CASE 2. The presented evaluation mechanisms handle
circular attributes and rewrites in isolation from each other, i.e., assuming there are no
interdependencies between them.

As an example of such an interdependency, consider the grammar specified in Fig-
ure 10. It includes one rewrite, one circular attribute and one inherited attribute (for

310 E. Söderberg and G. Hedin

convenience). The rewrite needs the value of the circular attribute to evaluate its when
clause, and the circular attribute, for the sake of the example, uses the A child of Root
to compute its value. Effectively, there are dependencies between the circular attribute
and the rewrite, and vice versa, as shown in the figure. The values in the figure are the
expected final values, that is, we expect the circular attribute to receive the value 2, and
we expect the child to receive the value C.

Root ::= A; B:A; C:A;
rewrite B {

when (parent().val() > 1) to C {
return new C();

}
}
inh Root A.parent();
eq Root.getA().parent() = this();
syn int Root.val() circular [0];
eq Root.val() {

int val = getA().parent().val();
return val < 2 ? val + 1 : val;

}

Root

B

val 2

parent

C

Root.val
[0, 1, 2, 2]

Root.getA
[B,C]

B.parent
[Root]

Fig. 10. Interdependent rewrite and circular attribute Example of a simple RAG system with
one rewrite and one circular attribute, depending on each other. The rewrite is shown in the AST,
and the attribute graph shows expected values and dependencies. The val equation uses a block,
which may have local state but no external side-effects, and getA corresponds to a child access
via ASTNode.getChild.

In just using the algorithms from Section 2, the interdependencies are not accounted
for, and the final value of the child becomes B rather than C, i.e., the rewrite terminates
too soon. Figure 11 illustrates the evaluation stack for the example, showing how the
initial call to the circular attribute enters circular CASE 1, and how the first child access
enters rewrite CASE 1. In both of these cases, a loop is started to drive the evaluation.
The first iteration of the rewrite driver loop results in a call to the circular attribute,
and this call becomes the second call to the circular attribute. At this point, the circular
attribute is already driving its own evaluation (CASE 1), hence it enters CASE 3 and
returns its current value. This current value is the bottom value of the circular attribute
(0), and with this value the when clause of the rewrite becomes false. With only false
when clauses, NOCHANGE is pushed on to the rewrite stack (STACK), causing the
rewrite evaluation to terminate.

Interdependencies, like the above, can either be disallowed or handled. Using the
global evaluation state (IN_CIRCLE, STACK) presented in Section 2, a runtime exception
can be thrown if a circular attribute instance uses a rewrite, or vice versa. Alternatively,
interdependencies can be handled, either by adding bookkeeping to each algorithm to
account for the other, or by generalizing the algorithms. The current JastAdd implemen-
tation uses an extended version of the REWRITE algorithm to allow for more caching
during evaluation. This extension results in handling of interdependencies like in the

Circular Higher-Order Reference Attribute Grammars 311

Time

E
va

lu
at

io
n

st
ac

k

CIRCULAR:1

1ST ITERATION, 0 → 1

REWRITE:1
1ST ITER., B=B

B

CIRCULAR:3
0

CIR.:3
0

2ND ITER., 1 → 2

RE.CA.
B

CIR.:3
1

3RD ITER., 2 = 2

RE.CA.
B

CIR.:3
2

Rewrite evaluation
terminates here!

Fig. 11. Evaluation stack of interdependent rewrite and circular attribute specified in Fig-
ure 10. Without handling of interdependencies, the rewrite terminates prematurely, because of
unawareness of changes to the circular attribute, and returns a cached rewritten value (RE.CA. =
REWRITE CACHED). Legend is described in Figure 6, and colon is used to indicate case number
for calls. Abbreviations: ITER. = ITERATION, CIR. = CIRCULAR

above example, but requires additional bookkeeping, making the algorithm more com-
plex. In this paper, we instead present a generalization, based on a unification of the
two mechanisms. We do this by introducing the notion of circular NTAs (Section 4), of
which rewrites can be seen as a special form (Section 5). This unification allows us to
account for interdependencies without special bookkeeping, using a simpler algorithm
with fewer conceptual entities. It also allows us to cache more attribute values during
rewrites (i.e., during the evaluation of circular NTAs), resulting in better performance.

4 Circular Non-terminal Attributes

In this section, we introduce circular NTAs, and show how these can be used to compute
the attribute values described in Section 3.

4.1 AST values

As for ordinary circular attributes, we require circular NTAs to take their values from
a lattice of bounded height, that the semantic function is monotonic, and that a bottom
value is provided as the starting point of the fixed-point iteration. Consider the following
circular NTA:

syn nta ReturnType HostType.attribute() circular [BottomNode] = SemanticFunction();

Here, SemanticFunction has the HostType node as its implicit argument, and
via this node, other attributes can be accessed. The SemanticFunction should be
side-effect free, and return a fresh subtree rooted by a node of type ReturnType. An
NTA value is seen as an unattributed subtree, defined as follows:

Definition 1. An AST value v is either null, or an AST node, where an AST node is a
tuple <Type,Tokens,Children>, where Type is an AST node type, Tokens is
a list of zero or more tokens, and Children is a list of zero or more AST values. Two
AST values are equal if they are both null, or if their types, tokens and children are
equal.

312 E. Söderberg and G. Hedin

Additionally, an AST node has a reference to its parent, but this reference is not seen as
part of the value, but instead as a computed value that refers back to the node of which
it is a child, i.e., satisfying the following child-parent invariant:
n.child(i).parent() == n. As an NTA is seen as a child of its host node, the host node
will be its parent. The attributes of an NTA are not seen as part of its value, as they are
computed values, depending on the context of the NTA.

There are many ways in which the AST values can be viewed as on a lattice of
bounded height. One simple way is to consider all values with the same Type to be
incomparable, and to order the types. But it is also possible to consider AST values with
the same Type as comparable, and to place an ordering on the tokens and children.

4.2 Evaluation

To evaluate circular NTAs we alter the demand-driven fixed-point evaluation algorithm
from Figure 5, to account for AST values. The result, listed in Figure 12, maintains the
three evaluation cases from Figure 5 (CASE 1, CASE 2, and CASE 3), but with a differ-
ent change check (ISEQUAL) and assignment of values. The change check corresponds
to a call to a boolean function ISEQUAL, complying with Definition 1. The assignment
of values must account for the possible null value of AST values, and establish the
child-parent invariant of the new AST value. For cases when there are several attributes
in a cycle, ordinary or NTA, these will be driven to a common fixed point.

CIRCULAR-NTA-EVAL()

1 if attr_computed
2 return attr_value
3 if ¬attr_initialized
4 attr_initialized = TRUE
5 attr_value = attr_bottom_value
6 if attr_value 	= NULL
7 attr_value.SETPARENT(THIS)
8 if ¬IN_CIRCLE // CASE 1
9 . . .

24 elseif ¬attr_visited // CASE 2
25 . . .
34 else return attr_value // CASE 3

9 IN_CIRCLE = TRUE
10 attr_visited = TRUE
11 repeat
12 CHANGE = FALSE
13 new_attr_value = ATTR-FUNC(..)
14 if ¬ISEQUAL(new_attr_value, attr_value)
15 CHANGE = TRUE
16 attr_value = new_attr_value
17 if attr_value 	= NULL
18 attr_value.SETPARENT(THIS)
19 until ¬CHANGE
20 attr_visited = FALSE
21 attr_computed = TRUE
22 IN_CIRCLE = FALSE
23 return attr_value
24 . . .

CASE 1

25 attr_visited = TRUE
26 new_attr_value = ATTR-FUNC(..)
27 if ¬ISEQUAL(new_attr_value, attr_value)
28 CHANGE = TRUE
29 attr_value = new_attr_value
30 if attr_value 	= NULL
31 attr_value.SETPARENT(THIS)
32 attr_visited = FALSE
33 return attr_value
34 . . .

CASE 2

33

Fig. 12. Circular NTA evaluation ATTR-FUNC contains the actual attribute function. Lines dif-
fering from Figure 5 are marked.

Circular Higher-Order Reference Attribute Grammars 313

Given that the AST values of NTAs are attributable, circular NTAs may be nested
and dependent on each other. A case where an outer circular NTA depends on an inner
circular NTA, and vice versa, may arise. In such a case, there may be several possible
orderings of iteration steps, for example, they may be interleaved, or one of them may
take a step as soon as possible. Due to the fixed-point properties, the result will be the
same, regardles of iteration order.

During the evaluation of a circular NTA, it may happen that an ordinary attribute is
evaluated that uses the NTA, in which case an intermediate value of the NTA may be
returned by CASE 1 or CASE 2. In this case, the value of that attribute should not be
cached, because it depends on a non-final value. To prevent caching in this situation, a
check is added to the evaluation of ordinary non-circular attributes, setting an extra flag
that is reset by the CASE 1 and CASE 2 code.

4.3 Revisiting Our Example

Revisiting the example from Section 3, we now compute the same values by using a
circular NTA instead of a rewrite, as seen in Figure 13. The evaluation of the val
attribute is illustrated in Figure 14.

Root ::= A;
B : A;
C : A;

inh Root A.parent();
Root.child().parent() = this();

syn int Root.val() circular [0];
eq Root.val() {

int val = child().parent().val();
return val < 2 ? val + 1 : val;

}

syn nta A Root.child()
circular [getA().fullCopy()];

eq Root.child() = child().rewriteTo();

syn A A.rewriteTo() = this;
eq B.rewriteTo() {

if (parent().val() > 1) {
return new C();

}
return super.rewriteTo();

}

Fig. 13. Interdependent example revisited Alternative grammar where the rewrite is replaced
by a circular NTA. The same values as in Figure 10 are computed.

Time

E
va

lu
at

io
n

st
ac

k

CIRCULAR:1

1ST ITERATION, 0 → 1

NTA:2, B=B

B

NTA:3
B

CIR.:3
0

CIR.:3
0

2ND ITERATION, 1 → 2

NTA:2, B→C

C

NTA:3
B

CIR.:3
1

CIR.:3
1

3RD ITER., 2 = 2

NTA:2
C

NTA:3
C

CIR.:3
2

Fig. 14. Evaluation stack for revisited example An illustration of the evaluation of the val
attribute in Figure 13. Legend described in Figure 6. Abbreviations: ITER. = ITERATION, CIR. =
CIRCULAR

314 E. Söderberg and G. Hedin

The important difference from the rewrite solution is the unification of the evaluation
cycles. The circular NTA and the circular attribute are evaluated in the same cycle, and
are aware of each others’ changes. Thus, the evaluation produces consistent values. In
comparing the rewrite and the NTA solution (Figure 10 and Figure 13), we see that
the rewrite solution transforms the children directly, while the NTA solution defines an
extra attribute (child). In the next section, we will see how rewrites in general can be
mapped to circular NTAs, allowing rewrites and circular attributes to be mixed freely.

5 Rewrites as Circular Non-terminal Attributes

In the previous section we replaced a rewrite with a circular NTA, in effect making a
child a computed entity, just like an attribute. We will now have a closer look at what
happens if we compute all children, and based on this idea, we will present a mapping
of rewrites to circular NTAs.

5.1 Considering Children as Attributes

An attribute grammar is in essence a complex function from an initial AST, typically
constructed by a parser, to the attributes of nodes in that AST. What we are now con-
sidering is to instead view the attribute grammar as defining an attribution of an AST
that is computed from the initial AST, using attributes. This makes sense if we consider
the computed AST to initially be the same as the initial AST, which by a fixed-point
computation gradually turns into the final computed AST. This way, both the computed
AST and the attributes of the computed AST is a function of the initial AST. Note that
the initial AST remains unchanged during the evaluation – it is only the attribution that
changes, including the computed AST, until it has reached its final state, where all equa-
tions are satisfied. To consider a computed AST raises questions about the parent-child
relation, and how to represent the initial and the computed AST:

The parent-child relation. The parent-child relation has a special role in an AG system,
since parents have the obligation to provide equations defining the inherited attributes
of their children. For our demand-driven evaluator, each node has a parent reference,
satisfying the parent-child invariant, which is used by the evaluator when computing
inherited attributes. In moving the AG to define an attribution over the computed AST,
rather than the initial AST, we have to make sure that the computed AST is actually a
tree, and that the parent-child invariant holds for both the initial and the computed AST.

Representation of initial and computed AST The initial child references are similar to
reference attributes, but they are intrinsic, i.e., they are available from the start, and
are not defined by equations, just like tokens. They can in fact be seen as tokens with
reference values, and the computed child references can be defined using reference
attributes. For a node where rewrites are not desired, the computed child references
can simply be defined as copies of the initial child references, by using synthesized
attributes. For a node where rewrites are desired, a circular NTA can be defined in its
parent, and the computed child reference can be defined to refer to this NTA. In both

Circular Higher-Order Reference Attribute Grammars 315

cases, a tree structure for the computed AST is guaranteed, and parent references can be
automatically added by the evaluator, whenever the computed child reference is updated
by the fixed-point computation.

Although equations that refer to children will access the computed children, it is still
possible to explicitly access the initial child references. This is useful, for example, to
define the bottom values for computed children that are defined by circular NTAs.

5.2 Mapping Rewrites to Circular Non-terminal Attributes

As will be demonstrated in this section, rewrites can be translated to circular NTAs. We
will take the solution presented in the earlier example in Figure 13 as a starting point,
and extend it to a parameterized attribute child(int), to handle all children of a
node. However, in order to make the mapping efficient, we will take the following two
properties into account: First, a rewrite is consistent when all when clauses are false,
and therefore, no value comparison is needed to decide that the rewrite has terminated.
Second, not all nodes have rewrites. These properties should be taken into account to
avoid expensive value comparisons and unnecessary creation of NTAs.

Design A
syn nta ASTNode ASTNode.child(int i)

circular [getChild(i).fullCopy()]{
return child(i).rewriteTo();
}
syn ASTNode ASTNode.rewriteTo();
eq ASTNode.rewriteTo() = this;
eq Node.rewriteTo() {

// list of when clause
return super.rewriteTo();

}

Design B
public ASTNode ASTNode.child(int i) {
if (getChild(i).mayHaveRewrite())
return rewriteChild(i);
return getChild(i);

}
syn boolean ASTNode.mayHaveRewrite();
eq ASTNode.mayHaveRewrite() = false;
eq Node.mayHaveRewrite() = true;
syn nta ASTNode ASTNode.rewriteChild(int i)

circular [getChild(i).fullCopy()] {
return rewriteChild(i).rewriteTo();

}

Design C
ASTNODE.REWRITETO

STACK .POP()
STACK .PUSH(NTA_NO_CHANGE)
return THIS

CASE 1/CASE 2. . .
STACK .PUSH(NTA_CHANGE)
new_value = ATTR-FUNC(..)
state = STACK .POP()
if state
= NTA_NO_CHANGE

CHANGE = TRUE

. . .

Fig. 15. Mapping Design A extends the solution in Figure 13 to a parameterized circular NTA
covering all children. Design B limits the construction of NTAs to children with statically de-
clared rewrites using mayHaveRewrite. Design C reuses the stack of change flags from Fig-
ure 9 to avoid value comparisons for rewrites mapped to circular NTAs.

Figure 15 lists code for three mappings; designs A, B, and C. Starting with design A,
we extend the child attribute from Figure 13 to handle an index parameter. Other than
that, the solution is the same; the initial child is copied and an attribute rewriteTo
maps to when clauses. With the above optimizations in mind, this solution is inefficient

316 E. Söderberg and G. Hedin

in that there is a circular NTA for every child, despite the fact that we know statically
that nodes of certain types do not have any rewrites.

To address this problem, design B represents the computed children by an ordinary
function child(int) that calls a circular NTA rewriteChild(int), but only
in case the node may have rewrites. Because of the demand-driven evaluation, the cir-
cular NTAs will be created only when they are actually needed. For nodes that do not
have any rewrites, getChild(i) is returned, i.e., the node from the initial AST. The
rewrite check is implemented by a synthesized attribute mayHaveRewrites, similar
to the namesake in Figure 9. This attribute is simple to generate from the grammar: it
is defined as false for the most general node type ASTNode, and then an overriding
equation that defines it as true is added for subclasses with rewrites.

With prevention of copies, the remaining efficiency concern in design B is the
change check, which still compares values. Given that we generate the mapping from
a rewrite specification, we know if a circular NTA is a replacement for a rewrite, and
we can use this knowledge to prevent value comparisons: if no rewrite is applicable,
the next value will be the same as the current one, so no value check is necessary. De-
sign C in Figure 15 shows how the implementation of rewriteTo uses a stack of
CHANGE/NO_CHANGE flags, in the same way as the rewrite evaluation in Figure 9.

5.3 Mapping Circular NTAs to Rewrites

In the reverse direction, circular NTAs may be mapped to rewrites. That is, the compar-
ison of AST values performed in the evaluation of circular NTAs can be moved into the
when clause of a rewrite, as follows:

rewrite Node {
when (!this.IS_EQUAL(nextValue())) to Node2 {

return nextValue();
}

}

This when clause would become false when there is no change, that is, when there is
a fixed-point, and this would be in accordance with the rewrite rules. Still, to support
interdependencies with circular attributes, the underlying rewrite evaluation would have
to be carried out in the same cycle as circular attributes, as discussed in Section 3.

6 Evaluation

We will now compare the new algorithm for rewrites, CIRCULAR-NTA, as listed in
design C in Figure 12, with the current algorithm used in the JastAdd system, REWRITE-
OPT, i.e., the one listed in Figure 9 extended with bookkeeping for caching. We also
compare to REWRITE-INIT, which is a variant of REWRITE-OPT that additionally saves
initial AST values. This variant is used to support incremental evaluation for RAGs with
rewrites, as described in [23]. The evaluation code in this section is available at [8].

For the comparison, we use the scaled-down language DemoJavaNames, that demon-
strates name resolution for Java, where contextually ambiguous dot-expressions like
a.b.c are resolved to package, type, and expression names using rewrites [10]. The

Circular Higher-Order Reference Attribute Grammars 317

Prog ::= CompUnit*;
CompUnit ::= .. ClassDecl*;
ClassDecl ::= .. BodyDecl*;
abstract BodyDecl;
FieldDecl:BodyDecl::= Name .. Expr;
MemberClassDecl:BodyDecl ::=ClassDecl;
abstract Expr;
abstract Name:Expr::=<name:String>;
Dot:Name ::= Left:Name Right:Name;
ExpressionName:Name;
PackageName:Name;
TypeName:Name;
ParseName:Name;
PackageOrTypeName : Name;
AmbiguousName : Name;
rewrite ParseName {
when(..) to Name new PackageName(..);
when(..) to Name new TypeName(..);
when(..) to Name new ExpressionName(..);
when(..) to Name new PackageOrTypeName(..);
when(..) to Name new AmbiguousName(..);
}

rewrite AmbiguousName {
when(..) to Name new ExpressionName(..);
when(..) to Name new TypeName(..);
when(..) to Name new PackageName(..);
}
rewrite PackageOrTypeName {
when(..) to Name new TypeName(..);
when(..) to Name new PackageName(..);

}

Rewrite value lattice:

ParseName

Package Type Expression

PackageOrType Ambiguous

Fig. 16. DemoJavaNames An excerpt from the DemoJavaNames RAG. The rewrite value lattice
is shown bottom right. Names are abbreviated for conciseness.

rewrites directly encode the rules in the Java language specification for reclassifica-
tion of parsed names, using intermediate classifications like AmbiguousName and
PackageOrTypeName. Figure 16 shows an excerpt from the DemoJavaNames RAG,
together with a lattice over rewrite AST values. Each when clause corresponds to an
arrow in the lattice.

The example programs in Figure 17 each contains at least one assignment with a
dot-expression on the right-hand side. To test the impact of nested dot-expressions, the
examples are expanded to different sizes, where the examples shown have size 1, and
an example of size K has K + 1 dots in the dot-expression (second dot-expression
for Program II). To obtain programs that are sufficiently large to measure performance
accurately, we have scaled up the program code in two different ways. In Program I, the
class is replicated 1000 times (mangling the names to avoid name conflicts), N = 1000.
In Program II, the class is replicated 10 times, N = 10, 10 inner classes are added inside
each outer class, M = 10, and finally, the inner assignment is replicated 100 times. The
result is that Program I has 1000 assignments and Program II has 10 000 assignments.

Given a set of Programs I and II, for different values of K , we do a full traversal of
each program using all three algorithms, to trigger all rewrites, or circular NTA com-
putations. We count the number of computations using an instrumented version of each
algorithm, and we measure performance on a non-instrumented version. To measure
performance we use the multi-iteration approach described in [4], and measure on a
Lenovo X230 with OpenJDK 1.7.0/Linux Mint.

Figure 18 shows the results for values of K between 1 and 10. In the left-side dia-
grams, we see that the CIRCULAR-NTA algorithm reduces the number of attribute com-
putations compared to REWRITE-OPT and REWRITE-INIT, which both have the same
number of computations. This remarkable decrease is due to the opportunity to cache

318 E. Söderberg and G. Hedin

xN

xK

Program I:

package p;
class A {
A f = p.A.f;

}

Prog

Comp
"P"

Class
"A"

Field
"f"

ParseN
"A"

xN

Dot

ParseN
"p"

Dot

ParseN
"A"

ParseN
"f"

xK xN
xM

xK

Program II:

package p;
class A {
A f = p.A.f;
class B {
A f = p.A.f;

}
}

Prog

Comp
"P"

Class
"A"

Field
A f = p.A.f;

xN

Member

Class
"B"

Field
...

xM

xF

Fig. 17. Expandable evaluation programs Program I is described to the left, and Program
II is described to the right. Each program is based on a small program which is expanded
(xN ,xM ,xK,xF), as indicated with boxes in the left-side code samples. The corresponding ini-
tial ASTs, and expansions, are shown to the right for each program. The inner field in Program II
is expanded xK, as described for Program I.

attributes during the rewrites in the CIRCULAR-NTA algorithm. As the same attribute
instance may be evaluated several times, early caching of attributes can make a big
difference in the number of attribute computations that need to be done.

The middle diagrams show the number of node copies made for each algorithm.
REWRITE-OPT makes no copies, while CIRCULAR-NTA and REWRITE-INIT both make
copies in order to keep the initial AST unmodified. The REWRITE-INIT algorithm makes
a copy during initialization before CASE 1. This is the same for CIRCULAR-NTA, and
non-surprisingly they end up making the same number of copies.

The right-side diagrams show the execution times for the algorithms. As we can
see, the CIRCULAR-NTA is faster than REWRITE-INIT for all K , for both Program I
and II, and that the gap grows for larger values of K . The REWRITE-OPT algorithm is
slightly faster for low values of K , for Program I, although with overlapping confidence
intervals, but for larger values of K , CIRCULAR-NTA is faster, and with an increasing
amount. For Program II, CIRCULAR-NTA is faster than REWRITE-OPT for all K .

7 Related Work

Knuth’s original attribute grammar definition assumes non-circular attributes, and pro-
vides an algorithm for determining statically if attribute grammars are cyclic or not [18].
However, for attribute grammars with remote attribute access, like in RAGs, determin-
ing circularity statically is an undecidable problem [5]. In JastAdd, it is assumed that
the user explicitly declares circular attributes as circular. If an attribute is not declared
as circular, but in fact turns out to be circularly defined for a given AST, this can be
detected dynamically [20].

RAG rewrites have similarities to tree transformation systems like Stratego [25],
ASF+SDF [24], and TXL [6]. These systems typically rely on user-defined rewrite ap-
plication strategies. RAG rewrites, in contrast, can depend on arbitrary attribute values,
that may themselves depend on rewrites, and the rewriting order is implicit, and driven
by the dependencies.

Circular Higher-Order Reference Attribute Grammars 319

Program I

5 10
0

2

4

6

·105
Computations (#)

Program I

5 10

0

0.5

1

·104
Nodes copied (#)

Program I

5 10

20

40

60

Execution time (ms)

Program II

5 10
0

1

2

3

·106

K

REWRITE-OPT
REWRITE-INIT

CIRCULAR-NTA
Program II

5 10

0

0.5

1

·105

K

Program II

5 10

200

400

K
Fig. 18. Results The rows show results for Program I (top row) and Program II (bottom row).
For each row, the left-side diagram shows number of attribute instance computations, the middle
diagram shows the number of node copies made, and the right-side diagram shows the execution
time, with an included confidence interval of 95%. The titles give the labels for the y axes.

An alternative approach to supporting transformations for attribute grammars is for-
warding [27]. Here, the transformed AST is constructed as an NTA, and synthesized
and inherited attributes can be automatically forwarded to the NTA, giving the effect of
a transformation. If the transformation includes several steps, all intermediate steps will
be kept when using forwarding, whereas with rewrites, the nodes are replaced. A major
difference between rewrites and forwarding is the open syntax provided by rewrites,
allowing conditional rewrite steps to be added in separate modules.

Martins, Fernandes and Saraiva suggest the use of functional zippers to provide a
functional embedding of attribute grammars in Haskell, including support for reference
attributes, higher-order attributes, and circular higher-order attributes [21]. They give
an example of implementing a circular higher-order attribute using fixed-point iteration.
Similar to our mapping of rewrites to circular NTAs, they terminate the iteration based
on changes, rather than value equality. In contrast to our work, they use a manually
encoded fixed-point iteration, rather than a general algorithm. Furthermore, they do not
address rewrites or cases where several attribute instances are mutually dependent, and
they do not give any performance results.

In editor applications, the initial AST can be modified as a response to edits done
interactively by the user, causing attributes to become inconsistent. For demand-driven

320 E. Söderberg and G. Hedin

evaluators, consistency can be restored simply by flushing all cached attribute values.
For large ASTs, this approach might not scale, and an alternative is to apply an in-
cremental evaluator that reuses unaffected attribute values. Incremental evaluators have
been presented both for AGs [7,22] and for RAGs [23]. In any case, the initial AST
needs to be kept. To use the REWRITE/REWRITE-OPT algorithm in this setting, the
evaluator needs to be modified to store the initial AST nodes before rewrites [23], cor-
responding to the algorithm REWRITE-INIT. For the new algorithm (CIRCULAR-NTA),
the initial AST nodes are kept as part of the algorithm.

Concerning termination, a circular NTA can be compared to constructing one new
NTA for each step in the fixed-point iteration. Krishnan and Van Wyk have suggested
an approach to conservatively determine termination for such multi-level NTAs [19].
It is based on ordering the nonterminals (the node types), so that each new NTA has a
lower order than its host. We used a similar technique for the DemoJavaNames example,
where node types were ordered in a lattice.

8 Conclusions

We have investigated the interplay between circular attributes and rewrites, and intro-
duced a generalized evaluation algorithm that can handle grammars with interdepen-
dent circular attributes and rewrites. To this end, we have introduced circular NTAs,
and shown how rewrites are a special form of such attributes, and how their evaluation
can be optimized. As a performance evaluation, we have compared the new and old al-
gorithms on a typical rewrite problem. The results suggest that the new algorithm, while
being more general, has similar performance for simple programs, and that the perfor-
mance is substantially improved for more complex programs. Further experiments on
full scale grammars and programs are needed to confirm these results.

The presented mapping of rewrites to circular NTAs provides a compelling simpli-
fication of the meta-compilation system that can handle more general grammars with
fewer evaluation mechanisms, and with similar or improved performance.

Acknowledgements. We would like to thank Niklas Fors and Jesper Öqvist for valu-
able feedback. This research was partially funded by the Swedish Research Council
(Vetenskapsrådet) under grant 621-2012-4727.

References

1. Apel, S., Kolesnikov, S., Liebig, J., et al.: Access control in feature-oriented programming.
Sci. Comp. Prog. 77(3), 174–187 (2012)

2. Appeltauer, M., Hirschfeld, R., Masuhara, H., Haupt, M., Kawauchi, K.: Event-specific soft-
ware composition in context-oriented programming. In: Baudry, B., Wohlstadter, E. (eds.)
SC 2010. LNCS, vol. 6144, pp. 50–65. Springer, Heidelberg (2010)

3. Avgustinov, P., Ekman, T., Tibble, J.: Modularity first: a case for mixing AOP and attribute
grammars. In: AOSD, pp. 25–35. ACM (2008)

4. Blackburn, S.M., McKinley, K.S., Garner, R., et al.: Wake up and smell the coffee: evaluation
methodology for the 21st century. CACM 51(8), 83–89 (2008)

5. Tang Boyland, J.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)

Circular Higher-Order Reference Attribute Grammars 321

6. Cordy, J.R.: The TXL source transformation language. Sci. Comp. Prog. 61(3), 190–210
(2006)

7. Demers, A.J., Reps, T.W., Teitelbaum, T.: Incremental evaluation for attribute grammars with
application to syntax-directed editors. In: White, J., Lipton, R.J., Goldberg, P.C. (eds.) POPL,
pp. 105–116. ACM Press (1981)

8. Söderberg, E.: Paper examples (2013), http://fileadmin.cs.lth.se/sde/
publications/papers/2013-Soderberg-SLE-CircularNTA

9. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 147–171. Springer, Heidelberg (2004)

10. Ekman, T., Hedin, G.: Modular name analysis for Java using JastAdd. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 422–436. Springer, Hei-
delberg (2006)

11. Ekman, T., Hedin, G.: The Jastadd Extensible Java Compiler. In: OOPSLA, pp. 1–18. ACM
(2007)

12. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler construction. Sci.
Comp. Prog. 69(1-3), 14–26 (2007)

13. Farrow, R.: Automatic generation of fixed-point-finding evaluators for circular, but well-
defined, attribute grammars. In: SIGPLAN 1986: Proceedings of the 1986 SIGPLAN Sym-
posium on Compiler Construction, pp. 85–98. ACM, New York (1986)

14. Hedin, G.: Reference Attributed Grammars. Informatica (Slovenia) 24(3), 301–317 (2000)
15. Jones, L.G.: Efficient evaluation of circular attribute grammars. ACM TOPLAS 12(3), 429–

462 (1990)
16. Jones, L.G., Simon, J.: Hierarchical vlsi design systems based on attribute grammars. In:

POPL, pp. 58–69. ACM (1986)
17. Jourdan, M.: An optimal-time recursive evaluator for attribute grammars. In: Paul, M., Robi-

net, B. (eds.) Programming 1984. LNCS, vol. 167, pp. 167–178. Springer, Heidelberg (1984)
18. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory 2(2),

127–145 (1968); Correction: Mathematical Systems Theory 5(1), 95–96 (1971)
19. Krishnan, L., Van Wyk, E.: Termination analysis for higher-order attribute grammars. In: Czar-

necki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 44–63. Springer, Heidelberg
(2013)

20. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evaluation and
applications. Sci. Comp. Program. 68(1), 21–37 (2007)

21. Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based attribute grammars and their extensions.
In: Du Bois, A. (ed.) SBLP 2013. LNCS, vol. 8129, pp. 135–149. Springer, Heidelberg (2013)

22. Reps, T.W.: Optimal-time incremental semantic analysis for syntax-directed editors. In: De-
Millo, R.A. (ed.) POPL, pp. 169–176. ACM Press (1982)

23. Söderberg, E., Hedin, G.: Incremental Evaluation of Reference Attribute Grammars using
Dynamic Dependency Tracking. Technical Report 98, Lund University, LU-CS-TR:2012-
249, ISSN 1404-1200 (April 2012)

24. den van Brand, M.G.J., et al.: The ASF+SDF meta-environment: A component-based lan-
guage development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 365–
370. Springer, Heidelberg (2001)

25. Visser, E.: Stratego: A language for program transformation based on rewriting strategies
system description of stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp.
357–361. Springer, Heidelberg (2001)

26. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. In: PLDI, pp. 131–
145 (1989)

27. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute gram-
mars for modular language design. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304,
pp. 128–142. Springer, Heidelberg (2002)

http://fileadmin.cs.lth.se/sde/publications/papers/2013-Soderberg-SLE-CircularNTA
http://fileadmin.cs.lth.se/sde/publications/papers/2013-Soderberg-SLE-CircularNTA

Mapping-Aware Megamodeling: Design Patterns

and Laws�

Zinovy Diskin1,2, Sahar Kokaly1, and Tom Maibaum1

1 NECSIS, McMaster University, Canada
{diskinz,kokalys,maibaum}@mcmaster.ca

2 University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

Abstract. Megamodeling is the activity of specifying systems of mod-
els and mappings, their properties, and operations over them. The latter
functionality is the most important for applications, and megamodels
are often used as an abstract workflow language for model processing.
To be independent of a particular modeling language, typical megamod-
els reduce relationships between models to unstructured edges encoding
nothing but a labeled pair of models, thus creating a significant gap be-
tween megamodels and code implementing them. To bridge the gap, we
propose mapping-aware megamodels, which treat edges as model map-
pings: structured sets of links (pairs of model elements) rather than pairs
of models. The workflow can then be represented as an algebraic term
built from elementary operations with models and model mappings.

1 Introduction

Model driven software engineering (MDE) puts models at the heart of software
development, and makes it heavily dependent on the provision of intelligent
model management (MMt) frameworks and tools. A common approach to im-
plementing MMt tasks is to present models as collections of objects, and to
program model operations in terms of operations applied to these objects; we
can call this object-at-a-time programming (ObjATP). Since models may contain
thousands of interrelated objects, ObjATP can be laborious and error-prone. In
a sense, it is similar to the infamous record-at-a-time programming (RecATP) in
data processing, and has similar problems of “micro-management”.

Replacing RecATP by relation-ATP (“macro-management”) has raised data
processing technology to a qualitatively new level in semantic transparency and
programmer productivity. Similarly, one can expect that model-ATP, in which
an engineer can think of MMt routines in terms of operations over models as
integral entities, could significantly facilitate development of MMt applications.
Lately, this program has been pursued by the database community [3], and
is being gradually developed by the MDE community under the umbrella of
megamodeling [4].

� This work was done as part of the NECSIS project, funded by Automotive Partner-
ship Canada and NSERC.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 322–343, 2013.
c© Springer International Publishing Switzerland 2013

Mapping-Aware Megamodeling: Design Patterns and Laws 323

Megamodeling is the activity of specifying systems of models and mappings,
their properties, and operations over them. The latter functionality is the most
important for applications, and megamodels are often used as an abstract work-
flow language for model processing. A simple megamodel is presented in Fig. 1(a).
Names Ai, A, B refer to models, and edges refer to different types of intermodel
relationships: arc o denotes an overlap between models A1 and A2, arrows ei are
model embeddings, and arrow t specifies model B as the result of transformation
t applied to model A. Label [merge] specifies A as the merge of A1, A2 modulo
overlap o. For example, one may think of A1 and A2 as a class and a sequence
diagram, A as an UML model merging them, and B as Java code generated from
A. In practical applications, this megamodel would also contain other models Ai

and their overlaps in the direction A1, A2: think of other class, sequence, stat-
echart and other types of diagrams. A typical megamodel would also contain
models preceding and succeeding those Ai via transformation/refinement chains
along the direction AB.

o

e1 t
[merge]

e2

a)

import models A1, A2

import overlap O=O(A1, A2)

merge (A1,A2) into A by O

import transformation t

apply t to A result B

b)

Fig. 1. Workflow megamodel

With a suitable implementation of a
megamodeling language, the megamodel in
Fig. 1(a) could be understood dynamically
as a simple workflow described by a pseudo-
script in Fig. 1(b). While the megamodel
Fig. 1(a) helps to understand what the
script does, it provides little help for the
script implementation. Indeed, there is a
rich structure, and important structural
dependencies, not explicated by the meg-
amodel. We will show in the paper that
edges of a typical metamodel like that in
Fig. 1 are actually structured sets of links
between the models—we will say model
mappings, and even a single model is a map-
ping from its data graph to its type graph.
MMt operations are thus operations over
models and model mappings: they take a configuration of models and map-
pings as their input, and return a configuration of models and mappings as their
output with the added constraint that certain structural dependencies between
mappings must be respected. In contrast, in typical megamodeling languages
[24,19], edges are considered as binary relationships (labeled pairs of models):
overlap(A1,A2), embedsIn(Ai,A), isTransformOf(A,B), and conformsTo(A,M) for
a model A and a metamodel M. Rich semantics of mappings and operations
over them is hidden in names and not anyhow made explicit. This semantics will
then be implicit in code but not specified, which leads to well known problems in
testing and maintenance. Moreover, unclear semantics hinders tool acceptance
by the user (cf. [34]).

In databases, SQL replaced RecATP by RelATP and achieved great success.
Megamodeling strives to repeat this experience by replacingObjATP byModATP,

324 Z. Diskin, S. Kokaly, and T. Maibaum

but is not yet successful. An important cause of this failure is that a crucial in-
gredient of the megamodeling landscape—model mappings—is missing from the
picture. At least, so far mappings are not properly placed into the general meg-
amodeling framework, and are not first-class citizens there.

Our goal is to demonstrate the primary role that model mappings can (and
must) play in megamodeling.We propose a new type of megamodel, themapping-
aware (MA-)megamodel, which is built from two elementary blocks: graphs and
graph mappings. Models and complex intermodel relationships are composed
from these blocks, and the workflow appears as an algebraic term built from ele-
mentary operations over them. We show how classical megamodeling constructs
(conformance, overlap, consistency, and transformation) can be composed from
graphs, graph mappings, and operations over them. Then, edges-are-relationships
megamodels appear as formally specified abstractions of our MA-megamodels.
Moreover, by combining the same blocks we can build new useful constructs, e.g.,
bidirectional transformations and heterogeneous merge. In this way, we are build-
ing a library of structural design patterns for megamodel engineering. We give
our patterns a formal semantics, and identity several basic mathematical laws
related to them. On the other hand, our notation for specifying MA-megamodels
can be usable in tools, GUIs, and “back of the envelope” designs. Importantly,
the patterns we propose are well-known and tested in category theory in the con-
text of mathematical structure design. What we do is thus more pattern reuse
and adaptation rather than pattern discovery, which, we believe, is itself a good
meta-pattern for applying mathematics to engineering disciplines.

Our plan is as follows. In Sections 2 and 3, we introduce MA-megamodels via
a series of simple examples, specify our library of elementary building blocks,
and demonstrate how to combine them into a complex workflow. Section 2 is
devoted to basic intermodel relations, and Section 3 is about basic operations
over models and mappings crucial for model transformations. In Section 3.4 we
will finish our tour of megamodeling blocks and unfold the megamodel in Fig. 1
into an ma-megamodel In Section 4 we discuss how to adapt the framework for
more general situations and show that richer mappings can be packaged into
the simple syntax developed in Sections 2 and 3. Related work is discussed in
Section 5, and Section 6 concludes.

2 Models, Mappings and Model Overlap

2.1 Elementary Blocks: Models

Fig. 2(a) presents a simple object model A describing John, Mary and their
happy relations. Normally, OIDs would be anonymous, and names would be
attributes, but to simplify presentation, we use names as OIDs.

Objects and their attributes are typed by elements of the class diagram M
(the metamodel for model A). The metamodel consists of a class Person and
two unidirectional associations (we will say maps), ‘loves’ and ‘helps’, with mul-
tiplicities: every person loves at most one person, and helps from 1 to 3 persons.
The arrow denotes an implication constraint: if x loves y, then x helps y. To be

Mapping-Aware Megamodeling: Design Patterns and Laws 325

loves helps
0..1 1..3

M

Model A

 Mary:Person
 helps = Mary

 John:Person
 loves = Mary
 helps = Mary

Metamodel M

(a) (c)

1
Mary

John

DA

Person

TM

helps

loves

 m1

:ant

:con
 i

CM

3

2

o

CDM

A

tA

DA

TM

tA |= CM

A

M

tM |= CMM

(b2
)

(b1
)

[confTo]

A

M Person

TMM

Class map ant
con Impl

Mult Int

tM

TMM

DM

 m2

1
3

0
1

MM

[confTo]

DMM

ncon

CMM

Fig. 2. A sample model and its formalization via graphs and graph mappings

a legal instance of the metamodel, an object diagram typed over M must satisfy
the constraints; e.g., model A satisfies them.

A typical megamodeling abstraction of (a) is shown in (c). The diagram spec-
ifies a relationship (A,M) ∈ conformsTo (a link) between models. The problem
with this specification is an essential gap between the real model and its abstract
description. The compact syntax of UML diagrams hides a multitude of struc-
tural connections not shown in (c). We plan to zoom into models in column (a),
reveal their structure and relations, and build an ma-megamodel less abstract
than (c), but still independent of the specifics of the concrete case in (a).

We first accurately formalize the metamodel. The latter consists of three types
(UML says classifiers): one class and two maps, which form the type graph TM in
column Fig. 2(b1) framed by a roundtangle. The three constraints are not types
but are important elements of the metamodel: they are represented by blank
nodes (red with a color display) connected to the types they constrain by dashed
(red) arrows: nodes m1, m2 denote multiplicities, and node i is implication.
Constraints form the constraint graph, CM , dashed-framed in Fig. 2(b1). The
intersection graph TM∩CM consists of types that are in the scope of at least one
constraint (i.e., all types for the case). Types and constraints together form the
data graph DM = TM∪CM of the metamodel (the outer roundtangle).

Model A is given by its data graph DA (the upper roundtangle in Fig. 2b1),
whose elements are typed as shown by curved (orange) links in Fig. 2(b1) (two
node typing links are skipped to avoid clutter). These links together make a

326 Z. Diskin, S. Kokaly, and T. Maibaum

typing mapping tA : DA → TM : tA(Mary) = tA(John) = Person, tA(1) = tA(3) =
help, tA(2) = loves. As model (DA, tA) satisfies all constraints declared in M ,
we write tA |= CM . It is an important statement about the model; in fact, it
is a part of the model as shown in Fig. 2, where the model frame encompasses
its data graph, the metamodel, and the constraint satisfaction statement. Now
connections between model A and its metamodel M are accurately specified.

The metamodel datagraph is typed by the meta-type graph TMM specified
in the bottom rectangle. Every node in graph DM is typed by the respective
node in TMM : tM (Person)=Class, tM (m1)=tM (m2)=Mult, tM (i)=Impl, and in-
teger values are typed by node Int. Every arrow in DM is typed by an ar-
row in TMM : tM (helps)=tM (loves)=map, tM (:ant)=ant, etc. Some of the pairs
[x, tM (x)] are shown in the figure by links. Together they form a typing mapping
t : DM → TMM , which preserves incidence between nodes and arrows – we say
tM is a (correct) graph morphism. Clearly, tA is a morphism too.

There are constraints accompanying the meta-type graph TMM , which we did
not mention. E.g., each map has only one multiplicity, or, implication can be
only declared for a pair of maps with the same source and the same target.
These and other meta-constraints constitute a set CMM , and tM |= CMM . In
Sect. 4.3 we will discuss metamodeling of constraints in more detail.

Our work in column Fig. 2(b1) is abstractly specified in column (b2). Black
circles denote graphs, and arrows refer to graph mappings (actually morphisms):
vertical ones provide typing, and horizontal ones are inclusions of type graphs
into data graphs. Dashed (blue with color display) mappings are compositions of
typing mappings with inclusions (we will motivate this visualization in Section
3). A dashed arrow comprises the same set of links as the solid arrow from the
same source, but has a different target; by the abuse of notation, we will denote
both mappings by the same symbol.

With one more abstraction step, we can denote all data embodied into models
by roundtangle black nodes, and conformance relationships between models by
bullet-tail arrows as shown in Fig. 2(c). The meaning of such relationships is
hidden in the label [confTo] (and described in column (b2)), but what is exactly
specified is two links labeled by a relationship type. Here and below we denote
links by thin arrows with bullet-tails. In contrast, mappings between structures,
which themselves are sets of links, are denoted by thick double-body arrows.

Thus, a metamodel is a pair of interrelated graphs, M = (T,C). It is assigned
with two classes of instances. Those that are legally typed but perhaps do not
satisfy the constraints will be called premodels; the class of all premodels is

Inst◦(M)
def
= {A = (DA, tA) | tA : DA → T is a correct graph mapping}, Those

that are legally typed and satisfy all constraints are called models; they make
a class Inst•(M) = {A | tA |= CM } ⊂ Inst◦(M). This distinction is important in
formalization of a multimodel’s consistency via merge (discussed later).
Pattern 1. A model is a total typing mapping from model’s data graph to
model’s metadata graph, which comprises a type graph and a constraint graph.
The Laws. Typing must be a correct graph morphism, and all constraints de-
clared in the metamodel are to be satisfied.

Mapping-Aware Megamodeling: Design Patterns and Laws 327

DMA

TB TA

DMB

Jo Mari
Data graph, DB

Student

likes

DA DB fD

[=]

(c)
Megamodel

(a) Multimodel (b) MA-Megamodel

tB |= CB

MB = [TB,CB]

fD

fMA

tA tB

[0..2]
fT

Mary John

Data graph,DA

Person

helps
loves [0..1] 1..3

MA = [TA,CA]

A

MA MB

f

B

[conf]

[conf]

fm

t MA
tMB

Class map Mult
Int DMM DMM

MM

fMD

TMM

DMM

tMA

tA |=
CA

id

[=]

id

tMB

MM id

Fig. 3. Model mapping

2.2 Elementary Blocks: Model Mappings

The idea behind a mapping from model B to model A is that everything de-
scribed by B must be present in A. Consider an example. Model A in Fig. 3(a)
presents the next step of our story: now Mary and John love each other. Model
B (created, perhaps, by a different team) is a view of A in which the help-side of
the story is ignored (recall that names here are OIDs and hence are different in
B). To explicate B as a view of A, we map each B’s element to a respective A’s
element as shown in Fig. 3(a) by curved (orange with a color display) correspon-
dence links (we will say corr-links). Together, these links form a totally defined
graph morphism fD : DA ← DB. However, these links do not respect typing and
map Students to Persons, and ’like’-links to ’love-links. To make correspondence
type-safe, we need to match the respective types and map B’s types to A’s types
as shown by two links making mapping fT : TA ← TB (inside bigger mapping
fM : MA ← MB in Fig. 3(a) with M referring to metadata. In a heterogeneous
environment, each model X refers to its own metamodel MX , and we write
TX for TMX .) 1 Thus, our corr-mapping f : A ← B consists of two parts: data
mapping fD : DA ← DB and metadata mapping fT : TA ← TB, which are both
graph morphism that together with vertical typing morphisms form the back-
face square diagram in Fig. 3(b). Type-safety is commutativity requirement for
this diagram: b.fD.tA = b.tB.fT for any element b of datagraph DB.

1 If Mari, Student etc. were values of attribute name rather than OIDs, we could
simply exclude them from the domain of the mapping, as we would exclude other
auxiliary (wrt. modeling as such) attributes, e.g., timestamps. On the other hand, if
we do want to pay attention to names, then we have a conflict between the models,
and their correspondence must be specified by a span of mappings, rather than by
a mapping, as will be explained in Sect. 2.3.

328 Z. Diskin, S. Kokaly, and T. Maibaum

Our intention to specify B as a view of A that ignores the ’help’-part of the
story is now explicit: Mary’s help-loop and its type ’help’ are outside the images
of mappings fD and fT resp. We say that A has its private part wrt. B, whereas
B does not have such a part and everything it says can be found in A. However,
the statement above is still not fully justified because nothing was said about
constraints. We need to consider compatibility of mapping fT with constraints
declared in the metamodels. First, we note that any type corr-mapping induces
a constraint translation. For example, if a constraint c is declared for arrow b in
graph TB (we write c[b]), we may create a constraint declaration c[fT (b] over
graph TA. A constraint c[b1, b2] over TB is translated into constraint c[a1, a2]
with ai = fT (bi) over TA. In this way any constraint c declared over graph
TB is translated into a constraint fT (c) over TA. The question is whether these
constraints fT (c) are actually declared in metamodel MA, or not.

Our philosophy of a corr-mapping (anything in B must be present in A) pre-
scribes all translated constraints fT (c) to be declared in MA, i.e., occur into
graph CA. This requirement can be indirectly satisfied if some translated con-
straint is not CA but is implied by other CA-constraints. For example, multiplic-
ity 0..2 for link help in TB is translated into mult. 0..2 for link ’love’=fT (’help’)
in TA, which is implied by mult. 0..1 declared in MA (indeed, “not more than
one” implies “not more than two”). Hence, we may informally map mult. 0..2
for ’like’ into mult. 0..1 for ’love’ as shown in Fig. 3(a). For complex constraints,
to check CA |= fT (c), we check consistency of theory CA∪{notfT (c)} with a
model checker. This gives us a bigger mapping fM : MA ← MB. Clearly, this
mapping must commute with two (meta)typing mappings tMA , tMB as shown
in the lower part of Fig. 3(a)—metatype-safety condition. Note that we need to
revise the philosophy underlying the notion of corr mapping f : A ← B. Now it
reads: everything in B must be present, perhaps indirectly, in A. In Sect. 4.3,
we will consider yet another indirection in model mappings, when data elements
from the source model are mapped to queries against the target model.

To treat constraint correspondence formally, we introduce graph C
|=
A ⊃ CA

encompassing all constraints implied by CA, and if all translated constraints are

indeed declared in C
|=
A , we have mapping fC : C

|=
A ← CB.Then we also have map-

ping (fT∪fC) : (TA∪C|=
A) ← (tB∪CB) or fM : M

|=
A ← MB as shown in Fig. 3(b)

(where superindex |= near MA is skipped).
Fig. 3(b) abstracts our work with example in terms of graphs and their mor-

phisms. As both models share the same meta-metamodel, the meta-metadata
mapping fMM is identity; for different MMA and MMB, it would be some non-
trivial corr-mapping. All arrows in the diagram denote graph morphisms. For
mappings fM and fMM , it implies compatibility with constraints. For vertical
(typing) mappings, constraint satisfaction is a special requirement (discussed
later in Sect. 4.1). Diagram Fig. 3(c) is an abstraction of diagram (b): horizontal
arrows encode the respective commutative diagrams (hence, the triple-body of
the arrows); vertical arrows are conformance relationships as in Fig. 2.

Mapping-Aware Megamodeling: Design Patterns and Laws 329

Pattern 2. A model mapping is a pair of total correspondence mappings be-
tween the respective data and metadata parts of the models. Together with the
respective typing mappings, they form a square of mappings.
The Laws. To ensure type-safety, the model mapping square is required to be
commutative. Moreover, translations of constraints declared for the source of a
mapping are to be implied by the constraints in the target: the target is to be
at least as constrained, perhaps more constrained, than the source.

2.3 Model Overlap and Consistency

2.3.1 Simple Overlaps
Models A and B in Fig. 4 present two views of the same domain. The views
overlap as Mary and John in model A and Mari and Jo in model B correspond
(refer to the same real world objects), and the ’love’ and ’like’ links between
them do too.

However, we cannot specify this overlap by a totally defined mapping from
one model to another because each of them has its own private information:
attribute ‘age’ in A and attribute ‘gpa’ in B. In addition, corr-links constitute
an important part of the megamodel, and we may want to annotate them with
auxiliary metadata (e.g., timestamp, authorship). Both issues (totality and an-
notation) can be managed by reifying the correspondence links with a new model
O(verlap) as shown in the figure. Elements of O could be thought of as pairs
of elements (a, b) ∈ A×B, and total mappings, f : A ← O and g : O → B, as
projections identifying the corresponding parts of the components.

Mary John

DA

30 20

Mari Jo

3.5 4.0
M J

DO DB

DA

tA |= CA

DB

tB |= CB

DO

tO |= CO

fD

gD

[=] [=]

MB

Person
MA loves

1

MO

age Int
Student

MB
likes

 1..2
gpa Real

MA DO

 0..2

fM

gM

fm gT

Fig. 4. Overlapping models

A pair of mappings with
a common source is called
a (binary) span, model O is
its head, projection mappings
f, g are legs, and their tar-
gets A,B are feet of the span.
There are also m-ary spans
with m legs and feet.

Below we will refer to
Mary/Mari and John/Jo as
to M and J resp. Note that
model O satisfies neither con-
straints CA nor CB. Indeed,
as model A misses an impor-
tant fact that M loves herself
while model B misses that she
likes J, neither of these two
links occurs in the overlap model O. Hence, we need to relax multiplicity in
the metamodel MO to a (0..1) value. This is a general rule: the head of the
overlap span is always less constrained than its feet.

330 Z. Diskin, S. Kokaly, and T. Maibaum

2.3.2 Complex Overlap via Constraints
In the example above, the overlap model MO declares only a set of “equations”
(John=Jo=J, Mary=Mari=M, etc.) specifying a correspondence between models
A and B. However, models can interact in a more complex way. An example is
shown in Fig. 5, in which maps in the models (‘loves’ and ‘helps’, resp.) are differ-
ent, but are logically related by a constraint chl: “if X helps Y, then X loves Y”.

Mary John

DA

M J

DO

Mari Jo

DB

Person

MA

loves
1 MB

helps
 0..1

1 MO

 0..1

Student

helps

loves

fM gM

fD gD

Fig. 5. Overlap via constraints

This constraint is declared in
the new metamodel MO and
denoted there by a double-
body (red) arrow between the
maps. Note that constraint
chl is an essentially new piece
of data, it belongs to nei-
ther MA nor MB and can-
not be declared in either of
them. Respectively, projec-
tion mappings are partially
defined (note links that go
into projection arrows and
vanish there). We call such spans partial, and overlaps complex. Finally, we show
in [8] that specifying overlap of n-models may need several m-ary (total and
partial) spans (2 ≤ m ≤ n).

Pattern 3 (Model Overlap). Overlap of two models is a span of model map-
pings. The latter are either total, if overlapping amounts to correspondence equa-
tions between elements, or partial, if new constraints are introduced. Overlap of
n-models is a set of m-ary (total and partial) spans with 2 ≤ m ≤ n.

2.3.3 Consistency and Merge
The upper part of Fig. 5 shows models A,B and their overlap model O. All
three models conform to their metamodels, but together they are inconsistent.
Indeed, the intermodel constraint clh (subsetting) together with model B imply
that M loves herself, which is missing from model A. Moreover, this fact cannot
be added to model A as it would violate the multiplicity 1 in the metamodel.
Thus, the models are inconsistent: if model B is faithful (to reality), then M
does not love J; if model A is faithful, then M does not help herself (indeed, J’s
help should be sufficient).

To make the arguments above, and those in Section 2.3.1, more precise, we
need to consider model merge. What we call inconsistency of a system of models
is nothing but violation of the merged metamodel’s constraints by the merged
model (all computed modulo their overlap). Examples and details can be found
in [33] for the homogeneous case, and in [8] for the heterogeneous case.

Pattern 3 Completed: The Laws. The merge of a system of models modulo
their overlap span is a correct premodel. However, it can violate inter-model
constraints. This is what we call inconsistency.

Mapping-Aware Megamodeling: Design Patterns and Laws 331

3 Model Transformations

There are two fundamental operations over models: computing a view of a given
source, and generating a source from a given view. The roles played by the
view models in these scenarios are entirely different: the view is descriptive for
the former, and prescriptive for the latter (cf. analytical vs. synthetic views in
[28]). We consider these operations in Sections 3.1 and 3.2 resp. In Section 3.3
we show that complex model transformations can be seen as combinations of
the two operations, and in Section 3.4 we consider a complex workflow scenario
described in Fig. 1.

To differentiate between given (basic) objects, and those computed with an
operation (derived), we will use the following formatting (different from the
static figures above). Basic models and mappings are shaded, and their nodes
and links are solid. Derived models and mappings are blank, and their nodes
and links are blank and dashed (and additionally blue with a color display).

To simplify diagrams, having two metamodels M,N and a mapping
v : M ← N , we will skip graph inclusions TM ↪→ DM , TN ↪→ DN , and only
keep metadata mapping v : DM ← DN . Also, to ease presentation, we will use
the same names Mary , John for both interrelated models.

3.1 Descriptive Views

We return to the case described in Fig. 3, but now consider it in a different
context (see Fig. 6). We have two metamodels, M and N with datagraphsDM =
(TM , CM) and DN = (TN , CN), and a mapping v : DM ← DN that describes N
as a view of M . We want to consider this mapping as a view definition in the
technical sense, i.e., as a declarative specification that can be executed for any
instance ofM , e.g., model A shown in the figure. The result should be an instance
of N , model V = getv(A) (read “get the view v of A”). In contrast to Fig. 3
where model B and mapping f are given, model V and traceability mapping
traceV are to be computed, as a database view would be.

The computing procedure works as follows. We take an element n ∈ DN , find
all elements a in DA whose type is v(n) and copy them to V with type n. In
detail, if tA(a) = v(n), we create a copy a∗ ∈ DV and set tV (a

∗) = n (the figure
shows how it works). Thus, all elements in graph DA, whose types belong to the
image v(TN), are copied into graph DV and respectively retyped. It is easy to
see that the graph structure (incidence of nodes and arrows) is preserved as soon
as both mappings, v and tA, are structure preserving. This is formally proven in
category theory, where the operation just described is called a pull-back, PB in
short (we also say that arrow tA is pulled-back along arrow v) [17]. We have thus
specified a function getv : Inst

◦(M) → Inst◦(N). (Note that as all constraints in
DM are beyond the image tA(DA), only the vT -part of v works here.)

Note that pulling back also produces a traceability mapping
traceV : DA ← DV such that the entire square diagram commutes. This
means that the pair (v, traceV) is a (pre)model mapping vA : A ← V .

332 Z. Diskin, S. Kokaly, and T. Maibaum

John Mary

Student Student
 lik

es

(a) Multimodel (b) MA-Megamodel

N

tA

0..2

Mary John Mary John

DA

Person

helps
loves 0..1 1..3

M

DV

v

tV

A V
:getv

DA

DM

DV

DN

[=]

tA |= CM tV |= CN :vExe
vA

traceV

traceV

M N v

vA

:vExe

(c) Megamodel

v

Fig. 6. Operation of view computation

Does view getv(A) satisfy the constraints CN declared in metamodel N? Sup-
pose c[x] ∈ CN is a multiplicity constraint for arrow x ∈ TN , which is trans-
lated into a constraint v(c) = c[v(x)] for arrow v(x) ∈ TM . If A |= v(c), then
getv(A) |= c as view computation amounts to copying and retyping of the cor-
responding part of DA. But, a legal M -instance A |= CM , and so if CM |= v(c)
(the case in our example), then getv(A) |= c as well. In other words, if the view
definition mapping is compatible with the constraints, then pulling-back a legal
model A produces a legal view model V = getv(A), and we have a total function
getv : Inst

•(M) → Inst•(N). This gives a semantics for metamodel morphisms,
which we discussed in Sect. 2.1.2 purely syntactically.

In Fig. 6(b), our considerations are presented in an abstract way as the dia-
gram operation of view execution (note the chevron labeled :vExe): it takes two
solid (black) arrows as its input, and produces two dashed (blue) arrows as its
output. The colon in the chevron’s label says that we specify an application in-
stance of the operation: for another source A′ and another view definition v′, we
would have another instance of vExe and another computed view V ′ = getv′(A′).
Note also that constraint satisfaction pre-conditions for vExe are shaded (with
red) while derived post-conditions are not shaded (and blue). Also, not shown
in the diagram, but important, is the following fact: if mapping v is injective (a
precondition that we normally assume by default), then mapping traceV is injec-
tive too (because pullbacks preserve injectivity [17]).Finally, Fig. 6(c) presents
an even more abstract setting: models are encapsulated as nodes, and model
mappings (= commutative squares of graph mappings) as arrows, from which
metamodels and their mappings can be projected out. As before, vertical arrows
are just links. The shaded chevron denotes an operation abstracted from the
blank chevron in Fig. 6(b): the latter works with graphs, whereas the former
works with models and metamodels. Note that the direction of the operation
is diagonally-opposite to the direction of the view definition mapping; for the
function getv : Inst

•(M) → Inst•(N), this opposition is somewhat striking: the
directions of getv and v are opposite. Our fine-tuned work with constraints is

Mapping-Aware Megamodeling: Design Patterns and Laws 333

also embodied in the diagram: if v is a metamodel morphism and A a (legal)
model, then V is also a model, and vA is a legal model mapping.

The view V = getv(A) possesses a remarkable property: it is a maximal
model amongst models that can be mapped to A over v, e.g., model B in Fig. 3
is mapped to model V in an evident (and uniquely determined!) way. Some
reflection on how the pullback works shows that it is a general property: for any
model B and mapping f : A ← B such that fT = v (think of node B placed to
the north-east of node V), there is a unique mapping !f : DV ← DB such that
both triangles commute: !f ; tV = tB and !f ; traceV = fD. In other words, any
mapping f : A ← B factors through getv(A) and we have f =!f ; vA.

Pattern 4 (Descriptive Views). A view definition is a metamodel mapping
v : M ← N . Its execution goes in the opposite direction: it maps pre-instances of
the target metamodel to pre-instances of the source metamodel, and is specified
by a function getv : Inst

◦(M) → Inst◦(N).

The Laws. (a) Legal instances are mapped to legal instances as soon as the view
definition mapping is compatible with constraints declared in the metamodels:
CM |= v(CN). Then getv is a total function Inst•(M) → Inst•(N). (b) For any
view definition v and model A, the view getv(A) is maximal amongst models
mappable to A over v.

3.2 Prescriptive Views

In the example above, model A was given and model V = getv(A) served a purely
descriptive function: to present a view of model A, in which ‘helps’ relations
are ignored, and other elements are retyped. In other words, the source A was
primary while the view V was secondary. A typical MDE example is when a
model is reverse engineered from code (the challenge of this task is to find a
proper view definition mapping).

Now consider the opposite situation of code generation: the view model V
is given and primary, while the source (code) A is to be built. For example,
suppose that Mary wants to achieve (implement) the situation in which John
helps her as specified by the ”platform-independent” model V (see Fig. 7 (a)).
For this goal, she is going to use the “platform” of personal relations (specified
by metamodel M), which satisfies the implementation law “If X loves Y, then X
helps Y”. This law is specified by a view definition mapping v : M ← N shown
in the figure: If “X loves Y” in some instance A of M , then “X helps Y” in the
view getv(A) according to the algorithm of view execution specified above. Thus,
Mary should build a model A over M such that V = getv(A). Of course, Mary
would be interested in building a minimal A satisfying the requirement, and it is
enough to place in A two objects, John and Mary, and a ‘John-loves-Mary’ link
between them. This link would implement the ‘John-helps-Mary’ link as shown
by mapping traceA in Fig. 7 (ignore the second link in graph DA and objects
inside the outer square DV NMDA for a while). Thus, A can be considered as a
(platform-dependent) model generated by V over implementation definition v,
and we write A = genv(V).

334 Z. Diskin, S. Kokaly, and T. Maibaum

(c) Megamodel (b) MA-Megamodel

A V
:genv

DA

DM

DV

DN

traceA

[=]
tA |= CA tV |= CN

 :sGen

Mary John
DA

John Mary

DV

Student N

0..3

Mary John

v

DV*

(a) Multimodel

:vExe

Person
loves

 1 M

:sGen

M N v

helps

traceA

!A traceV*

vV

tA tV

v

Fig. 7. Operation of source generation

This would be the end of the story except for the multiplicity constraint in M
requiring every person to love somebody. To satisfy this constraint, Mary must
add to model A either a link from herself to John, or a self-loop (or both, but this
would violate both the multiplicity 1 and minimality of A). Figure 7 shows the
case in which Mary chooses ‘Mary-loves-John’. (In the model synchronization
jargon, such a choice is defined by a (synchronization) policy.) However, now
an extra help-link appears in the view V ∗ = getv(A) (note the chevron :vExe,
which “computes” view V ∗), so that Mary needs to help John, which is not
assumed by the original view V . Thus, the platform of personal relations with
its constraint is not suitable for implementing given view V exactly; V ∗ �= V .
Nonetheless, implementation works in a weaker sense: view V ∗ properly includes
V via embedding !traceA

: V ∗ ← V ensured by V ∗’s maximality (if traceA is injec-
tive, then !traceA

is injective too [17]). We will refer to this inclusion as the GenGet
law, as it specifies a common case: to implement all the necessary requirements,
we may need to implement something extra. This extra thing should appear
in our computation only once: if we implement V ∗ and build A∗ = genv(V

∗),
then a reasonable implementation must ensure A∗ = A since all implementation
details are already reflected in V ∗. Conversely, given a source A and its view
V = getv(A), we should have V = getv(genv(V)) so that the source and the
view are synchronized after, at most, two synchronization steps. We call these
conditions the GenGetGen and the GetGenGet laws (see [12]).

Column (b) in the figure presents our considerations in an abstract way as a
diagram operation of source generation (note the :sGen-chevron in the middle): it
takes two solid (black) mappings and produces two dashed (blue) ones. Column
(c) is analogous to column (c) in Fig. 6, but works in the opposite direction from
the view to the source.

Pattern 5 (Prescriptive Views). Implementation of an instance of meta-
model N within a platform specified by M is an operation opposite to view

Mapping-Aware Megamodeling: Design Patterns and Laws 335

execution, and unfolds over a view definition mapping v : M ← N . Constraints
in M may prevent the existence of a unique minimal implementation; then a
policy is required to choose one implementation amongst all possiblilities.
The Laws. Implementation is specified by a function genv : Inst

•(M) ← Inst•(N)
satisfying GenGet, GenGetGen, and GetGenGet laws.

3.3 Model Transformations

Abstractly, a model transformation is a function t : Inst•(M) → Inst•(N) send-
ing instances of metamodel M to instances of metamodel N . However, this
widely used setting is far too abstract. The key point missed from the ab-
stract definition above is that if a model A ∈ Inst•(M) is transformed into a
model B = t(A) ∈ Inst•(N), then a majority of B’s elements should be trace-
able back to A’s elements responsible for their generation (while other B el-
ements could only be generated to conform to the metamodel’s constraints).
Thus, a (partial) traceability mapping rAB : A ⇐ B between models is a cru-
cial part of model transformation. In addition, such a traceability mapping
must be compatible with typing, that is, we should also have a mapping be-
tween metamodels r : M ⇐ N so that we have something like a commutative
diagram formed by these two mappings and two typing mappings. Moreover, as
we have seen in Sections 3.1-2, mappings between metamodels can be executed.

A

N

B

:sGen

t : transf

B
A

:vExe
:sGen

vtA

wtV

vtV

wtB

t :
transf

M St

N M St
wt vt

V

W

vt wt

:vExe

Fig. 8. Assembling model trans-
formations

We thus come to the idea of trying to consider
mapping r as a declarative definition of t, and
computation of t(A) as the execution of r for
the instance A ∈ Inst•(M), in analogy with
how we considered view execution and source
generation. However, in general, neither of the
metamodels could be considered a view of the
other. There may be private types inM not rel-
evant for the transformation, and, dually, there
are private types in N . Thus, a more practi-
cally applicable case is when a transformation
t is based on a common ”shared view” meta-
model St in-between M and N (Fig. 8) with
view definition mappings vt and wt. related. A
span rt = (vt, wt) of view definitions can be
executed for an arbitrary model A ∈ Inst•(M)
as shown in the top row of Fig. 8. We first
compute the intermediate view V = getvt(A)
by treating vt descriptively. Then we generate
model B from this view by treating wt pre-
scriptively. The same span can be executed in
the opposite direction as shown in the lower row: at first, mapping wt is executed
descriptively, then vt is executed prescriptively. If both mappings are compati-
ble with constraints, both transformations map legal instances to legal instances.
Note also that traceability mappings between models are also spans. Thus, with

336 Z. Diskin, S. Kokaly, and T. Maibaum

suitable technological support, the span can be executed in either direction pro-
viding bidirectional transformation. This facility is especially effective if both
models can be updated, and the changes are to be propagated to the other side
in an incremental mode. This scenario is discussed in the TR.
Pattern 6. A model transformation definition is a span of metamodel map-
pings, which can be executed in both directions. A full set of laws is an open ques-
tion. Two basic laws , identity propagation and weak invertibility, are specified
in [9].

3.4 Workflow Example Revisited

In this section we represent the megamodel from Fig. 1 as a composition of
several operations over models and mappings introduced above. To make the
scenario in Fig. 1 certain, we will make several additional assumptions.

We begin with two given heterogenous models ti : Di → Mi, i = 1, 2 with a
known overlap span (M0, v1, v2) (Fig. 9) between their metamodels. Here and
below we will refer to models by their data graph names (the upper plane in
Fig. 9), all typing mappings are vertical (or inclined) and unnamed. Merge is
realized by invoking the colimit operation over graphs: invocation 1:colimit takes
span (M0, v1, v2) as its input, and returns cospan (M, v1∗, v2∗) as shown in the
lower face of the cube in Fig. 9 (M is the merged metamodel and mappings vi∗

embed metamodels Mi into the merge).

1:colim

6:vExe

 7:sGen

2:v
Ex

e 2:v
Exe

5:colim DB

MB

D2

D1

M1

M2

D0

M0

vt

wt

vt wt

D

M

V1
V2 3:diff

v1
v2

v1

f2

 f1
p1

p2
v2

4:comp

4:c
om

p

v2*

v1*

data

metadata

1:colim
:colim

6:vExe
6:vExe

7:sGen
:sGen2:v

Ex
e

vE
xe 2:v

Ex
2:v

Ex

MM1

M2 MMM0MM

vt wt

D

MM

v1
v2

MB

vv2*

v1*

metadata

5:colim
5:co
5:co

m
:colim DB

D2

D1

DDDDD0000

vt wt
V1

V2VV3:diff
3:diff

v111

ff22

 f1
p11

p2p
v2

4:comp
44:comp

4:c
om

p
44:c

om
p

data

B D1

Exe D

Fig. 9. Worlflow megamodel Fig. 1 revisited

Now we need to merge data graphs. As the latter can contain thousands
of user-defined elements, discovering their overlap span requires a model match-
ing/differencing tool. However, the latter normally work with homogeneous mod-
els. Retyping Di to the merge metamodel would result in differencing two big
models, which is not necessary if we proceed in a more intelligent way. To wit,
first, we execute mappings v1, v2 treated as view definitions (note two chevrons

Mapping-Aware Megamodeling: Design Patterns and Laws 337

2:vEXe working in the left and the back faces of the cube), and obtain projec-
tions (views) V i of models Di with traceability mappings vi : V i → Di. These
views can be essentially smaller (less information) than the original models, and
we can effectively run a model differencing tool that returns an overlap span
(D0, p1, p2) in the data plane. We encode this procedure as a “quasi-operation”
diff (note greenish chevron 3:diff) that takes two models and returns a span
between them so that the two triangle diagrams commute. Diff is not a truly
algebraic operation as a) its results need correction by the user, and b) normally
diff uses complex heuristics, and its input actually includes several contextually-
dependent parameters in addition to the two models. That is why we color the
output of diff green rather than blue. Formal (i.e., algebraically), the elements
D0, p1, p2 form a part of the input for the entire workflow and should be black.

The next step is to invoke mapping composition and produce mappings fi
(note two chevrons 4:comp in the upper plain). Now we have a span of data
graphs (D0, f1, f2) correctly typed over a span of metadata graphs (M0, v1, v2).
Next we can invoke 5:colimit (the upper face of the cube) for span (D0, f1, f2),
which returns span (D, f1∗, f2∗) correctly typed over span (M, v1∗, v2∗) (be-
cause, in fact, we apply colimit to a span of (vertical) graph morphisms
ti : Di → Mi (i = 0, 1, 2), which always exists). However, the resulting typing
mapping t : D → M does not necessarily satisfy constraints in M , in which case
we say that the models are inconsistent. A detailed discussion and examples can
be found in [8]. Thus, if models are consistent, they can be merged into a correct
model t : D → M . Finally, we specify model transformation t as a span of view
definitions (vt, wt), which is executed as explained in Sect.3.3 (note chevrons
6:vExe and 7:sGen).

The entire diagram in Fig. 9 encodes an algebraic term, i.e., a composed
operation, over graphs and graph mappings: black and green elements are input
variables, chevrons are operation names, and blue elements are the output (see
[11] for a formal definition of such diagram operations and their composition).
Numbers before the operation names impose execution order: equally numbered
operations cna be executed in paralell, and a greater number points out that the
input for the operation needs the output of the preceding operation. We have a
worlkflow of MMt operations, which realizes a complex MMt scenario.

4 Beyond Simple Examples

We will argue that the way we specified our simple examples (typing, corr-
linking, and their composition) can be extended far beyond them. We need to
answer three main questions. 1) Does the machinery work for graphs more com-
plex than those considered in the examples? 2) Can any constraint declaration
be specified via typed graphs? 3) Do our simple notions of model correspondence
and view capture complex practically interesting intermodeling cases? We will
address these questions consecutively in Sections 4.1-3.

338 Z. Diskin, S. Kokaly, and T. Maibaum

4.1 Beyond Simple Graphs

Operations of mapping composition, pullback, merge/colimit can be performed
with any graphs (see, e.g., [17]). As for source generation, it is non-trivial for our
simple examples, and is even more complicated for complex graphs: the choice
of a reasonable policy to make the source unique is always an issue. There are
no universal solutions, but existence of many code generating, and other similar
transformations shows that in certain practical situations a reasonable solution
can be found.

4.2 Beyond Simple Constraints

Any constraint declaration has its scope: a configuration of a metamodel’s el-
ements, whose instantiation is constrained by requiring it to have a specified
property P . Hence, to add a constraint to metamodel M , we begin with a pred-
icate P with a specified arity graph art(P), and then substitute M ’s elements
(maps) for art(P)’s elements (arrows). For example, the arity of the implication
of Sect. 2.1 is some fixed graph with two arrows between the same nodes. This
constraint amounts to a formula Impl(m1,m2) with m1,m2 two maps in the
metamodel, which can be specified by a “graph” m1←(Impl)→m2 with links
from the constraint node to the maps it constrains (see Fig. 2). Maps m1,m2
must have the same source and the same target as prescribed by Impl’s arity.
Similarly, the arity of commutativity predicate Comm is some fixed triangle-
graph (with two consecutive arrows N1→N2→N3 and the third arrow N1→N3).
The commutativity constraint is then described by a formula Comm(m1,m2,m3)
with mi being three maps forming a triangle as required. It can be specified by
a star “graph” with node Comm in the center and three links from the center to
nodes mi representing three maps.

con ta
ant

Class Map
Impl

Comm

Mult

Int

so

1 2 3
l u

 MM

Fig. 10. Meta-metamodel for con-
straints

The mechanism above can be made precise
with ordinary graphs (rather than “graphs”)
as specified by meta-metamodel MM in
Fig. 10, where we consider three constraints:
Impl, Comm, and Mult(iplicity). For a pred-
icate P , metaclass P will be instantiated
by P -declarations as described above: arrows
P→Map correspond to arrows in art(P) (we
assume that arity graphs do not have isolated nodes) and are instantiated by
M -arrows from the constraint node to maps to be constrained; in fact, maps
are substituted for art(P) arrows. To ensure a correct substitution, the meta-
model must be endowed with equational meta-constraints: x.ant.so = x.con.so,
x.ant.ta = x.con.ta for any Impl declaration x, and x.1.ta = x.2.so, x.1.so =
x.3.so, x.3.ta = x.2.ta for any Comm declaration x. Any MM-instance is a correct
metamodel, and conversely, e.g., the metamodel in Fig. 2 is. As MM is a graph
with equational constraints, the class of all its instances is a category with many
good properties (a presheaf topos in the categorical jargon); in particular, it has
all limits and colimits, and so is closed under pullback and merge operations.

Mapping-Aware Megamodeling: Design Patterns and Laws 339

A detailed discussion can be found in [26], which originated the metamodeling
idea above.

4.3 Beyond Simple Correspondence Mappings: Queries

All corr-mappings considered so far consisted of links relating directly the given
model elements. Such linking works only for a part of practically interesting
cases. Often, an element in a model, say, B, is to be linked to a derived element
in another model, A, which is not present in A but can be computed with a
query against A.

DA
+ = [[Q]] (DA)

Person

M

loves 1..*

age

Int

Student Student

N

likes

S
 1..3 Person*

Int<30

loves*

Mary Bob

31

Mary*
 Mary*

DB

20

:vExe tA+=[[Q]] (tA)

age*
i

i*

DA

Per
1

v
M+

Fig. 11. View computation with queries

Consider our example of view
execution in Fig. 6, where map-
ping v says that Students are
Persons. Suppose now that only
young Persons with age less than
30 can be Students, and inter-
Student relation ‘likes’ is the same
as ‘love’ between young Persons.
This new situation is specified by
a mapping v in Fig. 11. The tar-
get of the mapping is metamodel
M+ obtained by augmenting M
(the inner roundtangle) with sev-
eral elements specifying a query
definition; we call such elements
derived. We first specify the sub-
set of integers less than 30 (note inclusion arrow i). Then a simple query Q
“Select those objects P in class Person, for which (a) P .age < 30 and (b)
P .loves.age< 30” is represented by class Person∗ for the query results and its
inclusion i∗ into Person, attribute age∗ into the domain of integers less than 30,
and reference loves∗. Algebraically, metamodel M+ can be considered as a term
freely generated by applying a diagrammatic operation Q to graph M , and we
write M+ = Q(M) (it can be made precise within diagram algebra described
in [11]). A query language also provides an execution mechanism for query def-
initions: for any model A typed over graph TM , query Q can be executed and
produce an augmented model A+ = [[Q]](A) typed over M+ = Q(M) (Fig. 11).

We call view definition mappings involving queries q-mappings. A q-mapping
is executed in two steps. First, the query is executed as explained above. Then the
query results are retyped according to mapping v as it was explained in Sect. 3.1.
Composition of two steps results in the same diagram operation pattern that we
used for ordinary views Fig. 6(b,c) — querying is hidden inside. Moreover, in
paper [7] we show that q-mappings (and their execution) can be composed and
have other properties making their encapsulation consistent: one can manipulate
q-mappings as if they were ordinary mappings.

In more detail, in [7] we show that a query language can be modeled by a
monad, and q-mappings are so called Kleisli mappings of this monad. Kleisli

340 Z. Diskin, S. Kokaly, and T. Maibaum

mappings can be composed and form a category. Since ordinary (typing) map-
pings can be pulled back over a Kleisli mapping (producing a Kleisli mapping for
traceability), our dynamic patterns and laws defined in Section 3 hold also for
view definitions based on complex queries. Also, as Kleisli categories are closed
under colimits, our model overlap patterns and laws hold for cases when one or
several legs of the overlap span are Kleisli mappings, i.e., involve queries. We
conclude that our patterns work for complex mappings involving queries.

A formal framework integrating constraints and queries is described in [6]. It
is based on the notion of fibration [2], which is, basically, CT’s way of saying
“view execution”, as specified in Fig. 6 (c).

5 Related Work

Categorical approaches to megamodeling broadly understood have been pro-
posed in several domains: in databases [1,10], in ontology engineering [27], in
software engineering [23], and in MDE [5]. They all can be traced back to the
pioneering ideas of Goguen & Burstall’s institution theory [21]. A fundamental
distinction of our framework is that we do not encode a model as a conventional
logical theory given by formulas, and a metamodel as an institution of such the-
ories. For us, a model itself is a theory in the sense of categorical logic, i.e., a
graph with diagram predicate constraints (DP-graph in short), and a semantic
model of that theory is a graph mapping satisfying the constraints.

DP-logic and its application to structural modeling were initially developed
by Diskin et al in the functorial semantics setting [15,14]. In this setting, a model
is a DP-graph G, and its instance is a graph morphisms [[..]] : G → SetMap into
some predefined universe of sets and mappings, which satisfies the predicate con-
straints declared in G. The dual but equivalent semantics, in which an instance
is a typing mapping tA : G ← DA as described in Section 2, was proposed in [10],
and accurately formalized in [16]. DP-graphs with this semantics were applied
to several MDE problems in [13,31,30]. Specifying constraints by typed graphs
as we did in this paper is new. Also, DP-framework of Rutle et al does not
have a query mechanism and, correspondingly, q-mappings (Kleisli morphisms),
which are a crucial ingredient of our view of megamodeling. Q-mappings in the
universe of logical theories were used in [23,25]; their use for megamodeling as
such was proposed in [10,11] and formalized in [7].

Attributed typed graphs as a mathematical framework are well-elaborated
[17], and applied to MDE by the graph-transformation community, e.g., for view
integration in [18] and for model transformation in [22]. However, they only
consider simple constraints whereas the DP-graph framework allows us to treat
all constraints in a uniform way. Specification of model tranformations (MTs)
with DP-graphs is developed in [32]. They specify an MT by a cospan of DP-
graph embeddings, whose execution is defined by a set of graph transformation.
Our pattern in Section 3 is different: an MT is specified by a span of q-mappings
between DP-graphs, whose execution is defined by query execution; as the latter
is not specialized, any query engine can be plugged-in. Other relevant surveys
of related work can be found in in [11,8].

Mapping-Aware Megamodeling: Design Patterns and Laws 341

6 Conclusion

We have proposed a megamodeling framework based on graphs and graph map-
pings, and operations over them. Using these elementary blocks, we recon-
structed classical megamodeling constructs: conformance, overlap, consistency,
and transformation relationships, in a mathematically correct way, and revealed
how they are built in terms of a small number of basic operations. We have
also shown that new constructs can be built by combining the same blocks, e.g.,
bidirectional transformations. In this way, we provided a library of structural
design patterns for megamodel engineering, and outlined a mathematical frame-
work in which these patterns can be provided with formal semantics. Though the
full details are not presented in the paper, they can be filled in using standard
concepts of category theory along the lines of [6,7].

Our structural patterns are fairly abstract structural blocks applicable to a
wide class of MMt situations and scenarios. Applying them in a concrete domain
as real design patterns, as the latter are understood in OO design [20], needs
instantiation and adaptation. In fact, each of the patterns is a separate research
topic that needs a separate paper for a reasonable presentation, but in the present
paper we have intensionally focused on breadth rather than depth. We aimed to
show that major megamodeling constructs can be made precise and accurately
specified in a uniform way within a framework provided by category theory. We
believe that a categorical unification is crucial for proper composition of separate
MMt blocks into a single workflow (simply because any categorical framework
is inherently compositional).

Going forward, we intend to elaborate these ideas both theoretically and
practically: there is further theory to develop, respective engineering practices
to create, and evaluation studies to do. Particularly, we are going to explore
the engineering applications of MA-megamodeling within the NECSIS research
network — a collaborative project between academia, the automotive industry
(General Motors Canada) and IBM Canada, [29] which focuses on MDE-based
design of embedded systems.

References

1. Alagić, S., Bernstein, P.A.: A model theory for generic schema management. In:
Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 228–246. Springer,
Heidelberg (2002)

2. Barr, M., Wells, C.: Category theory for computing science. Prentice Hall (1995)
3. Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings.

In: SIGMOD Conference, pp. 1–12 (2007)
4. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and

modeling in the small. In: Aßmann, U., Akcsit, M., Rensink, A. (eds.) MDAFA
2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

5. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling
language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 71–87. Springer, Heidelberg (2009)

342 Z. Diskin, S. Kokaly, and T. Maibaum

6. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Tech. Rep. GSDLAB 2011-02-01, University of Waterloo (2011)

7. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177.
Springer, Heidelberg (2012)

8. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

9. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: The symmetric case. In:
Whittle, et al. [35], pp. 304–318

10. Diskin, Z.: Mathematics of generic specifications for model management. In: Rivero,
L.C., Doorn, J.H., Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies
and Applications, pp. 351–366. Idea Group (2005)

11. Diskin, Z.: Model synchronization: Mappings, tiles, and categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
92–165. Springer, Heidelberg (2011)

12. Diskin, Z.: Lax lenses. Tech. Rep. GSDLab-TR 2013-03-01, University of Waterloo
(2013)

13. Diskin, Z., Easterbrook, S.M., Dingel, J.: Engineering associations: From models to
code and back through semantics. In: Paige, R.F., Meyer, B. (eds.) TOOLS (46).
LNCS, vol. 11, pp. 336–355. Springer, Heidelberg (1974)

14. Diskin, Z., Kadish, B.: Variable set semantics for keyed generalized sketches: formal
semantics for object identity and abstract syntax for conceptual modeling. Data
Knowl. Eng. 47(1), 1–59 (2003)

15. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal arrow foundations for
visual modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000.
LNCS (LNAI), vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

16. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
Electr. Notes Theor. Comput. Sci. 203(6), 19–41 (2008)

17. Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic Graph
Transformation (2006)

18. Ehrig, H., Heckel, R., Taentzer, G., Engels, G.: A combined reference model- and
view-based approach to system specification. Int. Journal of Software and Knowl-
edge Engeneering 7, 457–477 (1997)

19. Favre, J.-M., NGuyen, T.: Towards a megamodel to model software evolution
through transformations. In: SETRA Workshop. Elsevier ENCTS (2004)

20. Gamma, E., Helm, R.: Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

21. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of ACM 39(1), 95–146 (1992)

22. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of model synchronization based on triple graph grammars. In: Whittle et al.
[35], pp. 668–682

23. Jüllig, R., Srinivas, Y.V., Liu, J.: Specware: An advanced evironment for the for-
mal development of complex software systems. In: Nivat, M., Wirsing, M. (eds.)
AMAST 1996. LNCS, vol. 1101, pp. 551–554. Springer, Heidelberg (1996)

24. Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., Cabot, J.: MoScript: A DSL
for querying and manipulating model repositories. In: Sloane, A., Aßmann, U.
(eds.) SLE 2011. LNCS, vol. 6940, pp. 180–200. Springer, Heidelberg (2012)

Mapping-Aware Megamodeling: Design Patterns and Laws 343

25. Maibaum, T.S.E.: Conservative extensions, interpretations between theories and all
that! In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT
1997. LNCS, vol. 1214, pp. 40–66. Springer, Heidelberg (1997)

26. Makkai, M.: Generalized sketches as a framework for completeness theorems. Jour-
nal of Pure and Applied Algebra 115, 49–79, 179–212, 214–274 (1997)

27. Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed
specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS,
vol. 5486, pp. 266–289. Springer, Heidelberg (2009)

28. Muller, P.-A., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling
modeling. SoSym 11(3), 347–359 (2012)

29. NECSIS: Network for the Engineering of Complex Software-Intensive Systems for
Automotive Systems (2011), https://www.necsis.ca/

30. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Lamo, Y.: A graph transformation-
based semantics for deep metamodelling. In: Schürr, A., Varró, D., Varró, G. (eds.)
AGTIVE 2011. LNCS, vol. 7233, pp. 19–34. Springer, Heidelberg (2012)

31. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of
MOF-based modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE
2009. LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg (2009)

32. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formalisation of constraint-aware
model transformations. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010.
LNCS, vol. 6013, pp. 13–28. Springer, Heidelberg (2010)

33. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: RE. pp. 221–230 (2007)

34. Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open
questions. Software and System Modeling 9(1), 7–20 (2010)

35. Whittle, J., Clark, T., Kühne, T. (eds.): MODELS 2011. LNCS, vol. 6981. Springer,
Heidelberg (2011)

https://www.necsis.ca/

Partial Instances via Subclassing

Kacper Bąk1, Zinovy Diskin1, Michał Antkiewicz1, Krzysztof Czarnecki1,
and Andrzej Wąsowski2

1 GSD Lab, University of Waterloo, Canada
{kbak,zdiskin,mantkiew,kczarnec}@gsd.uwaterloo.ca

2 IT University of Copenhagen, Denmark
wasowski@itu.dk

Abstract. The traditional notion of instantiation in Object-Oriented
Modeling (OOM) requires objects to be complete, i.e., be fully certain
about their existence and attributes. This paper explores the notion of
partial instantiation of class diagrams, which allows the modeler to omit
some details of objects depending on modeler’s intention. Partial instan-
tiation allows modelers to express optional existence of some objects and
slots (links) as well as uncertainty of values in some slots. We show that
partial instantiation is useful and natural in domain modeling and re-
quirements engineering. It is equally useful in architecture modeling with
uncertainty (for design exploration) and with variability (for modeling
software product lines).

Partial object diagrams can be (partially) completed by resolving
(some of) optional objects and replacing (some of) unknown values with
actual ones. Under the Closed World Assumption (CWA), completion
reduces uncertainty of already existing objects, or deletes them if their
existence is optional. Under the Open World Assumption (OWA), com-
pletion may additionally introduce new elements, perhaps uncertain. The
paper presents a simple theory of partial instantiation and completion
under the CWA. It shows that partial object diagrams can be modeled by
subclassing and multiplicity constraints. As a result, class diagrams can
implement partial instances with the well-known notions of subtyping
and inheritance.

1 Introduction

Instances play a major role in modeling. They represent real-world objects for
which models provide abstractions. In Object-Oriented Modeling (OOM), an
instance of a class diagram is an object diagram, i.e., a collection of objects and
links instantiating, respectively, classes and associations. For a link l : o → v, we
will also say that object o owns slot l that holds value v.

Traditionally, objects are complete. Their types are known, and all slots have
well-defined values. Such a notion of an instance, however, is restrictive when
modeling involves uncertainty, variability, or simply underspecification. This is
because classic (we will also say complete) instantiation requires that all slots
are assigned values simultaneously. We discuss the notion of a partial instance

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 344–364, 2013.
c© Springer International Publishing Switzerland 2013

Partial Instances via Subclassing 345

that enriches the traditional instantiation. It allows object diagrams to have
partiality, by which we assume that (a) existence of some objects and slots can
be optional, and (b) there are slots with unknown values. By resolving optionality
and replacing unknown values with actual ones, a partial object diagram becomes
complete. There are many different completions of the same partial instance,
and so the latter implicitly represents a set of instances. In this sense, a partial
instance works like a class; in the paper we will make this observation precise.

Partial instances represent partial knowledge. They leave out knowledge that
is unavailable at a given time, either due to uncertainty, variability, or under-
specification. In uncertainty, the modeler captures several options but is unsure
which one is the correct one (which one is correct is the missing knowledge). In
variability, the modeler captures several options, each of which are correct and
should be supported (the missing knowledge is the set of choices for a particu-
lar application). In underspecification, the modeler leaves out information that
is irrelevant with respect to the modelers viewpoint. Thus, they differ in the
intention. Partial instances, under various names, occur in:

– Models with uncertainty. Uncertainty captures possible choices that the mod-
eler is unsure about (“don’t know” semantics). An example would be a mobile
device with hands-free input; this could be head gestures or voice input; the
designer is uncertain about the choice, but the final solution will pick on
them. Partial instances of meta-models can represent uncertainty in mod-
els. They can treat uncertainty in requirements [4,10] and in architectural
models [11].

– Models with variability. Several choices are possible, each for a different
product configuration (e.g., for a different customer). Partial instances of
meta-models represent variability in models [6]. They are used to represent
requirements models for product lines (including the product line scope),
product line architectures [3], and product line tests. The variabilities in
tests can be configured when the application is configured.

– Models with underspecification. Modelers focus on certain system aspects and
can leave other aspects, which are outside their scope, underspecified (“don’t
care” semantics). Partial instances allow us to express partial specification
of test cases as in Test-Driven Development (TDD) [13,17].

– Variability models (e.g., feature models [14]). Instances of variability mod-
els represent system configurations; their partial instances represent partial
configurations and support staged configuration [5,3]. Variability models are
related to models with variability, but they do not consider further instantia-
tions of the configurations (linguistically), because they are not meta-models.

– Data with uncertainty. Partial instances of data schemas represent uncer-
tainty in application data. They are useful in databases [12], exchanging
web data [2], and model finding [21].

The above applications of partial instances are difficult (if at all possible)
to manage with complete instances. Partial instances allow one to delay design
decisions and to construct instances incrementally. The missing parts of partial
instances can be completed either by the modeler, or automatically by tools.

346 K. Bąk et al.

Despite the important applications, the traditional notion of instantiation in
OOM offers limited support for partial instances. For example, UML object
diagrams cannot express optionality of objects. One can use, however, UML
class diagrams “as is” to encode partial instances. Our contribution makes this
encoding precise and general. We show that partial object diagrams can be
encoded by subclassing and strengthening multiplicity constraints. One of the
implications is that OOM languages with no direct support for partial
instances can support them via class-based modeling.

The paper is organized as follows. Section 2 demonstrates the usefulness of
partial instances in requirements elicitation. It introduces completion under the
Closed World Assumption (CWA) and Open World Assumption (OWA). Sec-
tion 3 shows the intuition behind encoding partial object diagrams as class dia-
grams. Section 4 presents a simple theory of partial instantiation and completion
under the CWA. Section 5 discusses related work and Section 6 concludes.

2 Requirements Elicitation with Partial Instances: An
Example

Example-Driven Modeling (EDM) [4] systematically uses examples for eliciting,
modeling, verifying, and validating complex business knowledge. During require-
ments elicitation a Subject Matter Expert (SME) transfers their knowledge to a
Business Analyst (BA) who then explicates it as documents, models, and code.
This section motivates the necessity of partial instances for eliciting and validat-
ing requirements, and in OOM in general. First, we consider partial instances
under the CWA, where completion of partial instances means reduction of uncer-
tainty, variability, or underspecification. Later, we discuss partial instances under
the OWA, in which new objects and slots (perhaps, optional) can be added.

2.1 Completion under the Closed World Assumption

Alice is an SME and her organization needs a system for booking meeting rooms.
She hires Charlie, a BA, to build such a system. Charlie’s task is to implement
room booking functionality. He is concerned with the timing aspect of scheduling
meetings. Requirements elicitation is a complex task and, in practice, can only
be done iteratively. The first session between Alice and Charlie goes as follows:

alice: We need to keep track of bookings to ensure that rooms and people
are not double-booked. Recently, for example, Sue, the head of research,
had scheduled two meetings at the same day at 10am.

charlie: How did that happen?
alice: First, she organized a meeting at 10am. The other meeting was orga-

nized by Sam also at 10am. Sue somehow understood that Sam wanted
to attend her meeting and confirmed her attendance of Sam’s meeting.
It wasn’t the first time that miscommunication happened.

charlie: I see. So how does Sue deal with conflicting meetings?

Partial Instances via Subclassing 347

Fig. 1. Several cases of completion of partial object diagrams. Changes between object
diagrams are highlighted in yellow.

alice: In several ways. First, she may cancel one of the meetings. Alter-
natively, she confirms only one of the meetings while keeping the other
one unconfirmed. She can also confirm the two meetings but they cannot
overlap. Sometimes she combines the two meetings into one if the top-
ics are similar. Each employee should have a daily agenda of meetings.
Based on that they should be able to confirm or decline each meeting.

charlie: That’s quite complex. I think I understand...
[Charlie writes down the possible ways of scheduling meetings (Fig. 1).]

Figure 1 Conflict models the situation where Sue has two meetings scheduled
at 10am. The object diagram shows her agenda with the meetings m1 and m2.
It conforms to the class diagram in Fig. 1 CD, where time of the meeting is
mandatory. The object diagram violates an important constraint that one person
cannot have several meetings scheduled at the same time. To manage conflict
resolution, Charlie creates a template for inserting information about the two
meetings, in fact, a partial instance POD as shown in Fig. 1. The dashed arrow
part indicates this activity. The initial partial instance must be as uncertain
as possible. However, Sue cannot manage time of Sam’s meeting, hence, this
attribute cannot be uncertain. By completing the partial instance incrementally,
Charlie can arrive at a non-conflicting schedule. The partial instance conforms
to the class diagram in Fig. 1 CD.

The partial instance POD has two types of partiality. First, the time of meet-
ing m1 is unknown (has value _). As an organizer, Sue may pick the time later.
The meaning of _ is that the concrete value exists but is unknown and it may be

348 K. Bąk et al.

specified by a more complete instance. The second type of partiality is that the
two meetings and corresponding slots are optional (labeled with ?). For example,
it is unknown whether Sue confirms or declines the meeting m1 and/or m2. The
meaning of ? is that an element may or may not exist.

Figure 1 depicts several cases of POD completion. The arrows c1 . . . c6 in Fig. 1
illustrate possible ways of scheduling meetings by Sue. They are partial or full
completions of Fig. 1 POD. All these completions conform to the class diagram
CD. Under the CWA, a partial instance is a (partial) completion of another
partial instance if it removes some unknown value _ (by specifying the actual
value) or label ? (by instantiating or deleting an element). A more complete
instance can only reduce uncertainty, variability, or underspecification.

Completion c1. Sue cancels the meeting m2. Elements labeled with ? (m2
and its slot) have no instances in the more complete diagram. Additionally, she
confirms the meeting m1, but may decide later when to schedule it. The object
m1 and its slot are no longer labeled with ?. The slot time has still unknown value,
as Sue cannot pick the time unless she talks to her colleagues. The completion c4
shows that Sue may decide to schedule the meeting at 11am. The more complete
diagram replaces the unknown value _ with the actual value. The meeting is a
fully complete instance without uncertainty, and is encoded as an object diagram.

Completion c2. Sue confirms the meeting m1 and schedules it at 11am. In
the partial object diagram, the label ? is removed from m1 and its slot. The value
of time is specified as 11. Sue keeps the meeting m2 unconfirmed (still labeled
as ?). The diagram can be further completed in two ways. First, Sue can cancel
the meeting m2 as in the completion c5. Alternatively, as in the completion c6,
she can confirm the meeting m2; its time does not overlap with m1. There may
be several completion chains (e.g., c1.c4 and c2.c5) leading to the same result.

Completion c3. Sue decides to merge her meeting with Sam’s one because
the topics are similar. Formally, two objects are combined into one named m12
(we will also say that objects are glued together).

2.2 Completion under the Open World Assumption

Charlie works with his partner, Bob, to build the room booking system. The
two BAs are interested in different aspects of the system. Charlie’s task is to
take care of scheduling; Bob needs to keep track of the available equipment. The
session between Alice and Bob goes as follows:

alice: Each meeting is organized by a chair who is responsible for book-
ing the room. Chair also notifies other participants about the meeting.
Rooms have different equipment, and obviously, different numbers.

bob: Let’s understand a concrete meeting. Could you please give me an
example of room booking? What equipment is used?

alice: Sure. For example, Sue organizes meetings for her research group.
They use an electronic whiteboard, as it simplifies sharing notes online.
[Bob writes down the example (see Fig. 2 Bob I).]

bob: Perfect. Do all rooms have an electronic whiteboard?

Partial Instances via Subclassing 349

Fig. 2. Abstraction and partial completion of examples. Changes between object dia-
grams are highlighted in yellow. Note that Bob II refines the type of room r.

alice: No. All rooms have a traditional whiteboard, but only some rooms
offer the electronic one.
[Bob completes the example (see Fig. 2 Bob II).]

In the next session Alice talks to Charlie again:

alice: As you may know, each meeting is organized by a chair.
bob: Right, such as Sue. Alice, how often are the meetings scheduled? Can

you give me a concrete example?
alice: For example, Sue organizes weekly meetings at 10am. They discuss

progress done on research projects.
[Charlie writes down the example (see Fig. 2 Charlie).]

After the two sessions Bob and Charlie meet to consolidate their knowledge
of different aspects of the system. Their goal is to come up with a consistent
picture. Bob learned about rooms and equipment, whereas Charlie learned that
meetings may repeat. Figure 2 shows the elicited examples and that the process
of adding details can be modeled as instance completion.

Bob’s first example (Fig. 2 Bob I) specifies that there is a meeting SM orga-
nized by Sue and that the meeting requires an Electronic whiteboard. He also
specifies that the meeting takes place in some room r, but he does not know the
room number num. After clarifying some details, Bob learned that only certain
rooms provide the electronic equipment that Sue needs. He completes the previ-
ous example by refining the type of r to an assumed subtype ERoom (Fig. 2 Bob
II). Charlie’s example (Fig. 2 Charlie) shows that he learned that Sue schedules
meetings at 10am and they repeat weekly.

350 K. Bąk et al.

Based on the partial examples Bob and Charlie create an example that merges
their knowledge (Fig. 2 POD II). The partial object diagram is a combination
of Charlie’s example and Bob’s refined example. Fortunately, there are no con-
flicts in the merged example. There is, however, still one unknown: the room
number num where Sue meets her group. The two BAs propose a class diagram
(Fig. 2 CD) that provides an abstraction for meetings. Abstractions generalize
information to improve understanding of a set of examples. The BAs were able
to construct the class diagram only after consolidating their partial knowledge.

Bob and Charlie decide to meet Alice again to validate the merged example
and the proposed class diagram. Alice confirms that the example is valid. She
also says that Sue uses room 200. Figure 2 OD shows a complete object diagram.

The completion in Fig. 2 works under the OWA. OWA allows completions to
add new elements. For example, the completion POD II adds new elements to
Bob’s and Charlie’s examples. Some slots do no exist in the example of Bob (e.g.,
rep) or Charlie (e.g., wb). Also, Charlie’s initial example had no uncertainty, but
the partial instance POD II has uncertainty: the room number num is unknown.
Clearly, completion based on OWA is more general than the one based on CWA.

Partial instances naturally express stakeholder’s partial view of the world.
When BAs focus on different aspects of the system, they construct partial exam-
ples. Modeling with partial instances has an important advantage over modeling
with always complete instances. It explicates what is known and unknown given
current knowledge. Our example showed that completion of partial examples
may work under the CWA or the OWA. The former is useful for conflict resolu-
tion and exploring a set of configurations. The latter is adequate for requirements
elicitation by various parties. OWA-completions subsume CWA-ones.

3 Modeling Partial Examples with Subclassing

This section shows that instantiation (partial and complete) of a class diagram
can be encoded as extending the latter via subclassing. The main idea is that
objects of class C are encoded as singleton subtypes of C; then links instantiating
C’s associations are naturally encoded as associations either inherited from C to
the subclasses, or redefined in the subclasses.

3.1 Extension under the CWA

Figure 1 showed possible ways of resolving a conflict between two overlapping
meetings. Let us now model all the solutions with subclassing as shown in Fig. 3.
It parallels the structure of the previous figure. Instead of typing and comple-
tion, the diagrams are related by subclassing (arrows with hollow heads placed
between class name and its superclass) and extension (hollow arrows between
diagrams). Extension is a relation expressing that a more complete diagram
includes the less complete one.

Figure 3 CD+ encodes Fig. 1 POD as a class diagram. The class diagram
CD+ includes classes from Fig. 3 CD (the same as in Fig. 1 CD), but makes
them abstract, and introduces subclasses. The class A is a singleton subclass of

Partial Instances via Subclassing 351

Fig. 3. Several cases of extension of class diagrams (compare with Fig. 1)

Agenda. Its class multiplicity is 1 (following class name and superclass), meaning
that there is exactly one instance of this class. The two optional meetings are
modeled by subclasses M1 and M2 with multiplicities 0..1. The two references
from A to the meetings are also optional. As A is a subclass of Agenda, the two
references redefine mt, i.e., they restrict the targets of mt to the two subclasses
of Meeting. Both subclasses inherit the attribute time from Meeting. The class M1
says nothing about time and keeps its value unknown. The class M2 redefines the
attribute time by specifying its value to be 10.

The extensions e1 . . . e6 parallel the completions c1 . . . c6 from Fig. 1. Infor-
mally, extension means that each element of the less complete diagram can be
mapped to an element of the more complete one. Under the CWA the extensions
reduce uncertainty. Class diagrams can do that by: introducing singleton sub-
classes, restricting multiplicities of classes/references/attributes, and redefining
targets of references and values of attributes. All the extensions should include
the class diagram from Fig. 3 CD, but with classes made abstract (similarly to
CD+). We omit these classes to ease reading.

The extension e1 models a situation when Sue confirms one of the meetings
and cancels the other one. The multiplicity of M1 (and its slot) is redefined as 1.
The multiplicity of M2 (and its slot) is redefined a 0. The diagram shows M2 to
make it explicit that its multiplicity is 0. Removal of M2 from the diagram would
have the same meaning. Furthermore, the value of time in M1 is kept unknown.
The extension e2 can be understood analogically. The extension e3 describes
a situation where Sue combines two meetings. It introduces a class M12 that
merges information from classes M1 and M2 by subclassing them. Additionally,

352 K. Bąk et al.

Fig. 4. Partial examples as subclassing (compare with Fig. 2)

it refines class and slots multiplicities to be 1. In the case of diamond inheritance,
the properties from the common base are not duplicated. Thus M12 redefines the
merge of the redefinitions of mt from M1 and M2.

3.2 Extension under the OWA

Bob & Charlie elicited examples of booking a meeting in Fig. 2. Figure 4 encodes
the diagram with subclassing and extension. The class model in Fig. 4 CD is
exactly the same as in Fig. 2. Other models are created as previously: objects are
encoded as singletons, slots are encoded as redefined references/attributes, and
each model includes classes from Fig. 4 CD but makes them abstract (omitted
to avoid repetition). The mapping completion is replaced by extension.

Working under the OWA is natural when using subclassing and extension.
For example, regardless of the definition of class Meeting, Charlie’s class SM can
easily add new attributes. They may have defined or undefined values. All the
arrows e1 . . . e6 could, in principle, be replaced by subclassing. The subclasses
would need to be renamed to avoid name clashes.

3.3 Encoding Partial Instances as Class Diagrams

We denote the encoding of partial object diagrams as class diagrams by a func-
tion cdenc. It takes a partial instance and encodes it as a class diagram that
extends the class diagram that the partial instance conforms to. Figure 5 shows
the previously defined class diagram from Fig. 1 CD and the partial instance
from Fig. 1 POD that conforms to it. It also shows the completion c6 of POD.
All derived elements are shown as dashed and blue. The result of function cdenc

Partial Instances via Subclassing 353

Fig. 5. Example of partial instantiation via subclassing

Fig. 6. Meta-model of formal class diagrams

Fig. 7. Sample instance:
class diagram Sample CD
and Sample CD+

is shown in the upper right corner of Fig. 5. The function cdenc takes POD,
and extends CD with singleton classes (that encode objects) and references/at-
tributes (that encode slots). It respects the labels ? by placing multiplicities in
the class diagram. If an attribute has undefined value, then it is skipped in the
resulting class diagram, because it is inherited from one of the superclasses.

The derived class diagram (cdenc(CD, POD) in Fig. 5) has two important
properties. First, it is an extension of CD that POD partially instantiates. Hence,
the partial instance POD can be typed over the derived class diagram by type+.
Second, all the completions of POD that are instances of CD must be isomorphic
with instances of the derived class diagram. In the example, the completion
c6 (POD) is isomorphic with POD’, i.e., an instance of cdenc(CD, POD). The
partial object diagrams are not exactly the same due to different typing. The
partial object diagram c6 (POD) is typed over CD, whereas POD’ is typed over
cdenc(CD, POD). We formally show that the typing of c6 (POD) over cdenc(CD,
POD) and the typing of POD’ over CD can be derived under the CWA.

4 Partial Instantiation as Subclassing

This section formalizes class diagrams (CDs) and partial object diagrams (PODs)
used in Sections 2 and 3 by building their meta-models. Meta-models are them-
selves formal class diagrams, i.e., graphs (collections of nodes and arrows)

354 K. Bąk et al.

endowed with constraints (predicate declarations). Such diagrams are a simpli-
fied version of UML class diagrams, and use the machinery of diagram predicate
logic [9,8,20]. We often skip the adjective ‘formal’ and call them just class dia-
grams.

We also formalize the extension relations between CDs, and the completion
relation between PODs, and prove a theorem stating that the latter can be
encoded by the former (under the CWA for extension and completion).

4.1 Formal Class Diagrams and Their Extensions

The Meta-model: Classifiers. Figure 6 specifies a meta-model of class di-
agrams. It is a graph whose nodes are meta-classes to be interpreted by sets;
elements of those sets instantiate meta-classes. Node Class is instantiated by
classes, for example, by Agenda, Meeting, int, string in Sample CD in Fig. 7; then
we write �Class� = {Agenda, Meeting, int, string}. Node Ref is instantiated by
references, for example, Sample CD instantiates Ref by set {person, mt, time}.

Arrows in the meta-model are unidirectional meta-associations; their target
multiplicities are exactly 1 by default and thus omitted; other multiplicities are
explicitly specified. Meta-associations are instantiated by sets of pairs of elements
instantiating nodes; for example, for Sample CD, set �owner� consists of pairs
(person, Agenda), (mt, Agenda), (time, Meeting). The default multiplicity 1 makes
such sets of pairs single-valued totally-defined mappings (or functions). Thus, for
Sample CD, sets �owner� and �type� are functions from set �Ref� to set �Class�.

Subclassing relation between classes is modeled by the meta-association isA.
If this meta-association is instantiated — e.g., in the Sample CD+ , set �isA� has
two elements (pairs of classes): (mngrAgenda, Agenda) and (mngrMeeting, Meet-
ing) — it means that mngrAgenda is a subclass of Agenda, and mngrMeeting is a
subclass of Meeting. Following UML, we denote subclassing by arrows with tri-
angle arrow head. Semantics of isA is subsetting: �mngrAgenda� ⊂ �Agenda�, and
�mngrMeeting� ⊂ �Meeting�. We will also often interpret subsetting by inclusion
mappings and write, e.g., �isA�: �MngrAgenda� ↪→ �Agenda�.

The keyword redefines means inclusion �mt*� ⊂ �mt� of the corresponding set
of pairs. In such a case, UML says mt* subsets mt, and thus defines a meta-
association loop isA for references too.

The isA (subsetting) mechanism is used in the meta-model itself (Fig. 6),
where triangle-head arrows are used for declaring meta-isA for meta-classes.
The upper such arrow says that Class and Ref are classifiers, and another
such arrow from Dom to Class says that some of meta-classes are domains. For
example, in Sample CD, �Dom�={string, int} ⊂ �Class� is the set of primitive
domains used in the class diagram. Node Attr denotes the result of the query
“Select all references whose type is a domain”; for Sample CD, �Attr�={person,
time}. We will say that it is a derived node (its frame is dashed and blue). The
query also produces derived arrow type* , which subsets (redefines) type.

As an attribute can be initialized with a concrete value (to be final in our
context), the meta-model has a partially-defined meta-association val. Its target
Val is instantiated by values of the primitive domains and by singleton classes

Partial Instances via Subclassing 355

that represent these values, �Val� = �int� ∪ �string� ∪ {{i} : i ∈�int�} ∪ {{s} :
s ∈�string�}, and function �Type� provides their type: if x ∈�Val� is in �int�,
then �Type�(x)=int. We require that for any object diagram instantiating the
meta-model, and for any its attribute a ∈�Attr�, if a is initialized with a value,
then the value has to be of the same type as the attribute, i.e., a.�val�.�Type� =
a.�type*�. We encode this constraint by labeling the three arrows with commu-
tativity predicate [=].

Metamodel II: Constraints. Constraints are an important part of formal
class diagrams. Specification of constraints begins with a signature Sign of pred-
icate symbols (or labels), each one is supplied with its arity, i.e., a configuration
(graph) of nodes and arrows for which the predicate can be declared. In our
examples, the signature is Sign = mult-node�mult-arr�{abstract, disj, =}. Set mult-
node=int×int∗ consists of pairs of integers (including * for int∗), which can be
declared for classes, i.e., the arity of each predicate in mult-node is some fixed
single-node graph. Set mult-arr=int×int∗ consists of pairs of integers (including
*), which can be declared for associations, i.e., the arity of each predicate in
mult-arr is some fixed single-arrow graph. The arity of predicate abstract is also
a singleton node graph. If a class is abstract, it can only be instantiated via its
subclasses. In other words, there are no elements whose typing mapping points
to the abstract class, but must point to one of the subclasses. UML’s notation
for declaring a class abstract is to display its name in italic.

The arity of predicate disj is the family of all graphs consisting of a finite set
of arrows with a common target. For example, we may declare disj for two arrows
MngrAgenda → Agenda and SecretaryAgenda → Agenda. In any legal instance of
this class diagram, sets �MngrAgdenda� and �SecretaryAgenda� are disjoint. To
ease notation, we assume that any set of subclasses that do not have a common
subclass is declared disjoint by default.

Predicate = (commutativity) can be declared for any arrow diagram, in which
there are two paths between the same source and target, like in the lower part
of Fig. 6. The declaration ensures that for any element instantiating the source
class, the two instantiated paths lead to the same element instantiating the tar-
get class. Note that having commutativity actually allows us to define subsetting
(redefinition) of associations. For example, in Fig. 7 Sample CD+, declaring mt*
redefines mt means commutativity: for any object diagram instantiating the di-
agram, and any object a ∈ �MngrAgenda�, we have a.�mt*�.�isA� = a.�isA�.�mt�.

A constraint declaration or just a constraint is an expression P (e1, ..., en)
with P a predicate symbol (label) from the signature Sign, and e1...en a list of
its arguments conforming to P ’s arity graph. For example, for commutativity
label, the argument list consists of two sublists giving two paths. In diagrams,
expression P (e1, ..., en) is declared by placing label P close to the members of the
argument list so that it should be clear what the elements ei are. Such placing
can be easily done for node and arrow multiplicities. By default, all classes have
multiplicity 0..*, and different default policies can be set for arrow multiplicities.

356 K. Bąk et al.

ExtensionRelation. We first give a formal definition and then explain its mean-
ing with special cases. Let CD be a consistent class diagram, i.e., Inst(CD) �= ∅.
(Note that an empty instance is legal if allowed by the constraints.) We say that a
class diagram CD′ extends CD (write CD ≤ CD′), if

1. CD graph is a subgraph of CD′ graph, particularly, they may coincide.
2. if a class A’ belongs to CD′ − CD, then

(a) there exists a family of CD classes sup(A′) = (A0,A1, ...,An) with A0

being the parent of A1..An, which are all (i = 0..n) declared abstract in
CD′ and such that A′ is a child of all A1..An (and hence of A0 too). The
case n=0, hence, sup(A′) = (A0), is not excluded.

(b) if B’ is another class (not equal to A’) in CD′ − CD with sup(B’) =
(B0,B1, . . . ,Bm) and B0 = A0, then A’ and B’ are declared disjoint.

(c) if a reference r′ is owned by class A′ in CD′ −CD, then there is some Ai

in the family sup(A′) such that r′ is either inherited from Ai or redefines
some of its references r. In the latter case, if type(r) = B and type(r′) =
B′, then B occurs into sup(B′).

3. all constraints in CD go into CD′. New constraints introduced in CD′ are
consistent with constraints in CD so that CD′ is also consistent.

Thus, CD ≤ CD′ means that there is an embedding mapping e : CD → CD′

satisfying the conditions above. There are several special cases of extension.

1. Strengthening constraints. CD is one class A with multiplicity 0..n and some
attributes. CD′ is composed of classes A and A’, such that A is abstract and
A’ is a subclass of A, and the multiplicity of A’ is 0 ≤ m′ . . . n′ ≤ n with
attributes inherited and/or redefined. Then because A is abstract in CD′,
CD′ actually amounts to class A’ with all its attributes inherited/redefined
from A, that is, A’ is A but with stronger multiplicity. For example, Fig. 3
shows that extension e1 makes M1 a singleton.

2. Deletion. If in the first case the multiplicity is strengthened to be 0..0 for A’,
then the class A in CD will be effectively deleted. For example, Fig. 3 shows
that extension e1 deletes M2.

3. Gluing. CD consists of class A with two subclasses, A1 and A2, with multiplic-
ities m1..n1 and m2..n2 respectively. CD′ has in addition class A′

12 subclassing
both A1 and A2, which are declared abstract in CD′, and its multiplicity is
m’..n’. Because all (grand) parents of A′

12 are abstract in CD′, the latter, in
fact, amounts to class A’12 with attributes inherited from A1 and A2. Thus,
A1 and A2 have glued in CD′ into A’12. For example, Fig. 3 shows that exten-
sion e3 introduces M12 that subclasses M1 and M2. To prohibit extensions
with gluing, it is enough to specialize the general definition by setting n = 0,
i.e., sup(A′) = (A0): a class in the extension has exactly one superclass.

For a class diagram CD, we write Ext(CD) for the set of all its extensions.

4.2 Partial Instances and Their Completion

Instantiation of Class Diagrams by Object Diagrams. A class diagram
is a pair CD = (GCD, CCD) with GCD a graph with some additional structure

Partial Instances via Subclassing 357

Fig. 8. Meta-model of partial object
diagrams

Fig. 9. Rules of instance completion

specified in the previous section, and CCD a set of constraints declared over the
graph. An object diagram OD over CD is a graph GOD equipped with a typing
mapping typeOD : GOD → GCD. Nodes in graph GOD represent objects and
values; arrows are links between them. As in UML, we also call links slots : for a
link time : M1 → 10, we say that object M1 owns slot time that holds value 10,
and for a link room : M1 → R, we say that slot room holds a reference to object
R. The typing mapping is a correct graph morphism compatible with partition
into classes and domains. For example, if a node in GOD is typed by int, then it
must be an integer value.

We call an OD correctly typed over a CD’s preinstance, and write PInst(CD)
for the set of CD’s preinstances.

Inverting the typing mapping maps nodes of graph GCD into sets, and arrows
into mappings. For example, if C is a class in GCD, then type−1

OD(C) is the set
of objects typed by C. In Sect. 4.1 we denoted such sets by �C�. Similarly, if
r : C → C’ is a reference arrow in GOD, then type−1

OD(r) is the set of links (i.e.,
pairs of objects) typed by r. In Sect. 4.1, we denoted such sets by �r�, and noted
that such a set defines a mapping �r� : �C� → �C’�. Hence, we can check whether
multiplicities and other constraints declared in CD are satisfied.

We say that an OD over CD is its correct (or legal) instance if all constraints
are satisfied. Let Inst(CD) denote the set of all legal CD’s instances. Clearly,
Inst(CD) ⊂ PInst(CD).

Instantiation of Class Diagrams by Partial Object Diagrams. A partial
object diagram is an object diagram, where some values in slots may be unknown,
and some objects and slots may not exist (our examples marked such by label
?). To deal with unknown values, we add to every primitive domain a countable
set of null values {_1, _2, . . .} called indexed nulls. (In the database literature,
they are called labeled nulls.) For a given domain, say, int, we need many nulls
(not just one), because different attributes of type integer may have (potentially
different) unknown values. Making attributes certain means replacing nulls by
actual (non-null) integer values, but having only one null value would force

358 K. Bąk et al.

us to make all values equal. In our examples, we placed symbol _ into a slot
with unknown value, but we assume that different slots (of the same type) hold
different indexed nulls.

If existence of an object or slot is declared uncertain, we label it by ? and
say it is optional. Otherwise, an object or slot is considered certain and manda-
tory. If in concrete syntax slots belong to an optional object, then they are
optional themselves. A mandatory object may have optional slots, but if a slot
is mandatory (in the semantics), its owner is mandatory too (but the value may
be unknown). Moreover, to avoid dangling references, a mandatory slot holding a
reference must refer to a mandatory object. We admit optional slots with known
values (for example, optional meeting M2 with certain time in Fig. 1).

The Metamodel. Metamodel in Fig. 8 makes the discussion precise. The up-
per part (Element, Object, Slot) says that a partial object diagram is a
graph. Meta-classes Object! and Slot! represent mandatory objects and slots;
mandatory elements form a correct subgraph of the partial object diagram graph.

Metaclass Value represent values of primitive domains (e.g., integers and
strings) together with the indexed nulls. For simplicity, values are assumed to be
special objects (class Value is a subclass of Object). Class Value• represents
actual values of primitive domains (nulls excluded). Derived class ValueSlot
is for slots holding values rather than references, and ValueSlot• is subclass
of slots holding actual known values.

To be precise, instances of the meta-model in Fig. 8 are partial graphs rather
than partial object diagrams: the latter are endowed with typing mapping into
some class diagram. The meta-model states that a partial graph is a triple PG =
(G,G!, G•) with G a graph, G! its subgraph of mandatory elements, and G• a
subgraph of slots with known values.

Given a class diagram CD, a partial object diagram over it, POD, is a partial
graph PGPOD = (GPOD ,G!POD,G•

POD) with a totally defined typing map-
ping (graph morphism) typePOD : GPOD → GCD, which maps proper objects
to classes and values to value domains. The pair (GPOD, typePOD) is denoted
by |POD|; it is the POD with all ?-labels removed.

Given a CD, we say that a POD is a (partial) preinstance if typePOD is
a correct graph morphism (thus, the set PInst(CD) also includes well-typed
graphs with unknown values). We call a preinstance POD an (partial) instance if
GPOD = G•

POD (i.e., all values are known) and all constraints are satisfied, i.e.,
|POD| ∈ Inst(CD). We denote the set of (partial) preinstances by pPInst(CD)
and of (partial) instances by pInst(CD).

Partial Object Diagram Completion. Let PG = (G,G!,G•) be a par-
tial graph. Its (partial) completion comprises another partial graph PG′ =
(G′,G’!,G’•) and a partially defined graph mapping c : G → G′, which is
compatible with the extra partial graph structure. To wit: both restrictions of
mapping c to the two subgraphs, c! : G! → G′ and c• : G• → G′, are actually
inclusion mappings into the respective subgraphs of G′, i.e., mapping c provides

Partial Instances via Subclassing 359

Fig. 10. Projection of preinstances
Fig. 11. Instances of CD+ are instances of CD
and completions of POD

two inclusions c! : G! → G’! and c• : G• → G’• as shown in Fig. 9 (and so G!
⊂ G’! and G• ⊂ G’•). Completion of partial object diagrams, i.e., typed partial
graphs, requires, in addition, commutativity with typing mappings as shown in
the upper part of the figure.

Let us see how this definition works. Given a CD, we say that a partial ob-
ject diagram POD′ is more complete than partial object diagram POD, if some
unknown values _ in POD are replaced by actual values, and some of labels ?
are removed by either removal of labels ? from objects/slots, or removal of ob-
jects/slots labeled by ?. The former removal means that an ?-element in POD
certainly exists in POD′, the latter removal means that a ?-element certainly
does not exist in POD′. The multiplicities on the complete arrow in Fig. 9 are
important. The multiplicity 0..1 means that an element of POD may have only
one completion in POD′. The multiplicity 1..* means that a completion com-
pletes at least one element, i.e., it can reduce uncertainty by gluing elements (if
the multiplicity was 1, gluing would be prohibited). Generally, we have a par-
tially defined mapping c : POD → POD′ commuting with typing of POD and
POD′. We call this mapping complete (see Fig. 9), and write c : POD ≤ POD′.

We write Compl(POD) = {|POD′| ∈ PInst(CD) : POD ≤ POD′} for the
set of all completions of POD.

4.3 Partial Object Diagrams via Class Diagrams

We first note that an extension ext : CD → CD′ of diagram CD gives rise to
a function ext∗ : PInst(CD′) → PInst(CD) that projects preinstances of CD′

to preinstances of CD (see Fig. 10). Let OD′ be a preinstance of CD′, e′ is its
element, and t′ = type′(e) is its type in CD′. If t′ = ext(t) for some type t ∈ CD,
then ext∗ copies e into OD and gives it the type t. If t′ ∈ (CD′ \CD), then e is
not copied into OD. In this way, by traversing all elements in OD′, we build a
CD’s preinstance OD and traceability mappings from OD to OD′.

Theorem. For any class diagram CD and its partial preinstance POD there
is a class diagram CD+

POD and an extension extPOD : CD → CD+
POD such that

the mapping

360 K. Bąk et al.

ext∗ : Inst(CD+
POD) → Inst(CD) ∩ Compl(POD)

is a bijection. Moreover, if POD �= POD′, then CD+
POD �= CD+

POD′ .

Figure 11 visualizes the theorem. Any correct instance of the class diagram
CD+

POD, projected onto preinstances of CD, is a correct instance of CD and
is a completion of POD. All completions of POD, that are correct instances of
CD, must also be correct instances of CD+

POD. Note that there are completions
of POD that are not correct instances of CD (they may violate its constraints).

We prove the theorem for the simpler case of completion without gluing, and
correspondingly CD+

POD without multiple inheritance.

Proof. The proof consists of two parts. In Part 1, we specify a function cdenc,
which for a given pair (CD,POD), as above, produces CD+

POD and an extension
mapping extPOD : CD → CD+

POD. In Part 2, we prove that ext∗ is a bijection.
Part 1. (Below we will skip the index POD near CD+ and ext)

Function cdenc encodes any partial object diagram POD as a class diagram
CD+, such that CD+ is an extension of CD (CD ≤ CD+). For a given class
diagram CD, any partial object diagram POD, such that |POD| ∈ PInst(CD),
the function cdenc(CD,POD) constructs CD+ ∈ Ext(CD) as follows.

1. Copy all elements of CD to CD+.
2. Label all classes of CD+ that belong to CD as [abstract].
3. For each o ∈ Object belonging to POD, create a singleton class c ∈ Class

belonging to CD+. The class subclasses o’s class, i.e., isA(c) = type(o). If
o ∈ Object! then the multiplicity of c is 1..1, otherwise it is 0..1.

4. For each s ∈ Slot where owner(s) = o and val(s) = v, such that v �= _,
create a reference r ∈ Ref belonging to CD+. Let us assume that the objects
o and v are mapped to classes c and d, respectively, in CD+. The reference
r is defined so that owner(r) = c. Additionally, the reference redefines its
type from CD, i.e., isA(r) = type(s). If s ∈ ValueSlot, then type(r) =
Type(type(v)) and val(r) = d, otherwise type(r) = d. In the former case, the
type of r is one of the primitive domains. If s ∈ Slot! ∪ ValueSlot• then
the multiplicity of r is 1..1, otherwise it is 0..1.

Part 2. For the function cdenc, as defined above, the mapping ext∗ defined at
the very beginning of Sect. 4.3 is a bijection.

2.1) Given a correct instance I in Inst(CD)∩Compl(POD), there is I+ in
Inst(CD+) such that ext∗(I+) = I.

The partial graph of POD can be typed over CD+, because of encod-
ing by cdenc. Each element ePOD of POD can be typed over CD+ by
typePOD : GPPOD → CD+. If I completes POD, then for each element e be-
longing to I, we have e = complete(ePOD). The instance I+ can be constructed
by having the same partial graph as I and typing each e of I over CD+ by
type+(e) = typePOD(ePOD). The instance I+ is correct, as CD+ preserves the
constraints of CD and POD.

Furthermore, ext∗(I+) = I holds. The instance ext∗(I+) is a correct instance
of CD, because extension is compatible with constraints. That is, we also have
a function ext∗ : Inst(CD+) → Inst(CD) (denoted again by ext∗). That way
each correct instance of CD+ can be projected onto a correct instance of CD.

Partial Instances via Subclassing 361

2.2) Given a correct instance I+ ∈ Inst(CD+), the projection ext∗(I)+ is in
Inst(CD) ∩ Compl(POD).

As shown previously, any correct instance I+ of CD+ can be projected onto
a correct instance of CD, i.e., ext∗(I+) ∈ Inst(CD).

Furthermore, I+ also belongs to Compl(POD). It is because, POD can be
typed over CD+. Each element belonging to I+ has exactly one type t+ such
that exactly one element of POD is mapped to t (it is established by cdenc).
This correspondence establishes completion between elements of I+ and |POD|,
and from that follows that ext∗(I+) ∈ Compl(POD).

As it is seen from the proof, the constructions b1 and b2 are mutually inverse.
The last statement of the theorem is also evident by construction. �

We conjecture that the theorem remains true for the general case of POD com-
pletions with gluing, but an accurate proof is our future work.

5 Related Work

Partial instances, under the name of incomplete information, is a classical topic
in databases, from a seminal (and still influential) paper [12] to lattice-theoretic
models [15] to semistructured data [2]. However, this work is based on the value-
oriented relational data model; optionality of objects and slots is not considered.

UML object diagrams [19] offer partial support for partial instances. Slots
may have unknown values, called nulls, that correspond to our _. Objects and
slots, however, cannot be labeled as optional. Our work provides syntax for
both partialities and supplies it with formal semantics. UML class diagrams, on
the other hand, can support partial instances “as is” via subclassing of classes,
attributes, and associations. Our work makes this encoding precise; it assumes,
however, that the typing mapping from object diagrams to class diagrams is
total. UML object diagrams allow partial typing for objects, i.e., objects may
have missing classifier. Partial typing is also supported by subclassing, as new
attributes and associations can be introduced in subclasses (as in Fig. 4) but the
presented theory needs to be extended to cover that case (extension for OWA).

MOF [18] is a standardized meta-modeling language. Similarly to UML object
diagrams, properties may have unknown values. They are specified as a question
mark ? (we use _ for the same purpose). MOF does not consider the second type
of partiality, i.e., optional existence of elements (that we label as ?).

Partial instances of meta-models occur in the context of uncertainty, vari-
ability, or underspecification. Partial models [10] express uncertainty about a
concrete model variant. Model templates [6] express variability and model mul-
tiple variants simultaneously. Both works use annotations (similar to our labels
?) to indicate optional elements. The annotations go beyond the semantics of as-
sumed base languages. The subclassing approach may encode labeled models at
the level of meta-models to make them compatible with the base languages [3].

Modal Object Diagrams (MODs) [16] extend UML object diagrams with pos-
itive/negative and example/invariant modalities. Our work focuses on positive
examples; the conflicting example in Sect. 2 would be a negative example in

362 K. Bąk et al.

MODs. MODs have two further extensions: partial and parametrized object dia-
grams. The former are related to our labels ? and extension relation. The latter
are related to unknown values _. We provide concrete syntax and semantics for
both. MODs were encoded in Alloy as partial instances via existentially quanti-
fied formulas, whereas we encode them generically via singletons. Existentially
quantified formulas do not reflect explicitly the structure of diagrams.

Alloy [7] is a structural modeling language based on sets and relations. Kod-
kod [21] is its relational model finder. Although Kodkod has direct support for
partial instances, Alloy does not expose it in the concrete syntax. One way of
encoding partial instances is through singletons. We make this encoding precise.
Alloy has no first-class support for redefinition of references. It can be done via
constraints. AlloyPI [17] extends Alloy with special syntax for partial instances;
i.e., types and partial instances have distinct notations. There are tradeoffs be-
tween separate notations and a unified notation for partial instances. The latter
allows keeping the language small, and there is no need to extend tools to deal
with new syntax; however, users may prefer an explicit notation for instances in
some situations; the tradeoffs should be investigated further in user studies.

Clafer [3] is a meta-modeling language with first-class support for variability
modeling. In contrast to mainstream OOM languages, Clafer allows for arbitrary
property nesting (classes/attributes/associations) in the containment hierarchy.
It encodes partial instances via singletons, as described in this paper. Similarly to
Alloy, a reasoner generates completions that, again, can be encoded as singletons.

Also, architectural languages, such as AADL [11] and AUTOSAR [1], support
subclassing of classes and associations. They are used to define partial architec-
tures and refine subcomponents.

While several previous works listed above encode partial instances as single-
tons (natively in Clafer; singleton idiom in Alloy; in AADL and in AUTOSAR,
the components are nested and they have cardinalities—AUTOSAR calls them
prototypes), we are not aware of a formalization of this idea. The presented
theory makes the concept of partial instances via subclassing and its relation
to explicit partial instances precise, improving the understanding of both ap-
proaches to language design and their tradeoffs.

We see several advantages of this encoding: 1) any OOM language without
native support for partial instances can support them at the class level; 2) the en-
coding can be relatively easily implemented on top of existing languages solely by
syntactical means, i.e., the semantics of underlying language is kept unchanged;
3) encoding (partial) instances as class diagrams allows the modeler to spec-
ify constraints in the context of each such instance – in contrast, objects in
object diagrams cannot contain constraints; and 4) a user of such a language
has fewer concepts to learn. On the other hand, we also see two main draw-
backs of this syntactical unification. A general disadvantage is that fundamental
OOM concepts (instances and types) are not directly visible in the syntax, which
may lead to confusion. Second, the class diagrams that encode partial instances
are, arguably, bulky and convoluted. In the presented encoding, we abused
class modeling by specifying “degenerated” class diagrams composed of singleton
classes. It is unlikely that practitioners would work directly with such diagrams.

Partial Instances via Subclassing 363

A dedicated UML profile could address this problem. Clafer avoids this problem
by a suitable syntax design.

6 Conclusion and Future Work

Partial instances enable modeling with uncertainty, variability, and underspecifi-
cation. We showed their use in requirements elicitation and validation. The first
example involved uncertainty; the second underspecification. We considered par-
tial instances and their completion under the CWA and the OWA. Despite many
applications, support for partial instances in OOM languages is limited.

Our work contributes to the design of modeling notations. It showed that un-
der the CWA partial instances can be encoded as class diagrams by strengthen-
ing multiplicity constraints, redefinition, and subclassing. In other words, partial
instantiation and subclassing/redefinition are formally equivalent for modeling
partialities within the presented scope. One of the implications is that any OOM
language can support partial instances as long as it offers the notion of subclass-
ing for classes and properties (associations and attributes). Our work makes this
encoding generic and precise; the presented concepts may be widely applicable.

The formal part of our work focused on completion and extension under the
CWA. It omitted the case of completion with gluing instances. The latter case
and formalization under the OWA remain future work. Another line of future
work is to formally consider instantiation and subtyping to understand if, and
to what degree, the two relationships can be unified.

References

1. AUTOSAR Partnership: Release 4.1, http://www.autosar.org/ (online; accessed August
2013)

2. Barceló, P., Libkin, L., Poggi, A., Sirangelo, C.: XML with incomplete information:
models, properties, and query answering. In: PODS (2009)

3. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and meta-models in Clafer: Mixed,
specialized, and coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

4. Bąk, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z., Wąsowski, A., Ray-
side, D.: Example-Driven Modeling. Model = Abstractions + Examples. In: ICSE
(2013)

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. SPIP 10(2) (2005)

6. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness ocl constraints. In: GPCE (2006)

7. Daniel, J.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

8. Diskin, Z., Kadish, B.: Variable set semantics for keyed generalized sketches: Formal
semantics for object identity and abstract syntax for conceptual modeling. DKE 47
(2003)

9. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal arrow foundations for
visual modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000.
LNCS (LNAI), vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

http://www.autosar.org/

364 K. Bąk et al.

10. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: ICSE (2012)

11. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional
(2012)

12. Imieliński, T., Lipski, W.: Incomplete information in relational databases.
JACM 31(4) (1984)

13. Janzen, D., Saiedian, H.: Test-driven development concepts, taxonomy, and future
direction. Computer 38(9) (2005)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Nowak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-
21, CMU (1990)

15. Libkin, L.: Approximation in databases. In: Vardi, M.Y., Gottlob, G. (eds.) ICDT
1995. LNCS, vol. 893, pp. 411–424. Springer, Heidelberg (1995)

16. Maoz, S., Ringert, J.O., Rumpe, B.: Modal Object Diagrams. In: Mezini, M. (ed.)
ECOOP 2011. LNCS, vol. 6813, pp. 281–305. Springer, Heidelberg (2011)

17. Montaghami, V., Rayside, D.: Extending Alloy with Partial Instances. In: Derrick,
J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 122–135. Springer, Heidelberg (2012)

18. OMG: Meta Object Facility (MOF) Core Specification (2011)
19. OMG: OMG Unified Modeling Language (2011)
20. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of

MOF-based modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE
2009. LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg (2009)

21. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

Reifying Concurrency for Executable Metamodeling�

Benoît Combemale1, Julien De Antoni2, Matias Vara Larsen2, Frédéric Mallet2,
Olivier Barais1, Benoit Baudry1, and Robert B. France3

1 University of Rennes 1, IRISA, Inria
2 Univ. Nice Sophia Antipolis, CNRS, I3S, Inria

3 Colorado State University

Abstract. Current metamodeling techniques can be used to specify the syntax
and semantics of domain specific modeling languages (DSMLs). Still, there is
little support for explicitly specifying concurrency semantics of DSMLs. Often,
such semantics are provided by the implicit concurrency model of the execu-
tion environment supported by the language workbench used to implement the
DSMLs. The lack of an explicit concurrency model has several drawbacks: it
prevents from developing a complete understanding of the DSML’s behavioral se-
mantics, as well as effective concurrency-aware analysis techniques, and explicit
models of semantic variants. This work reifies concurrency as a metamodeling
facility, leveraging formalization work from the concurrency theory and models
of computation (MoC) community. The essential contribution of this paper is a
language workbench for binding domain-specific concepts and models of com-
putation through an explicit event structure at the metamodel level. We present a
case study that serves to demonstrate the utility of the novel metamodeling facil-
ities and clarify the scope of the approach.

1 Introduction

In a context where software-intensive systems must handle an increasing number of
issues in diverse domains, for example, issues related to providing functional features
and qualitative guarantees, and to supporting heterogeneous hardware platforms, the
use of domain-specific modeling languages (DSMLs) can result in increased produc-
tivity while providing effective support for separating concerns. DSMLs can make it
easier for stakeholders from different domains (e.g., experts in fault tolerance, security,
communication) to participate in the design of a system, by providing linguistic con-
cepts tailored to their specific needs. However, for a DSML to be an effective system
design tool, it must be defined as precisely as possible and supported by sound analysis
tools [1].

The specification, design and tooling of DSMLs leverage the rich state of the
art in language theory. Several metamodeling environments support the specification
of the syntax and the (static and dynamic) semantics of a DSML. These two ele-
ments of a DSML specify the domain-specific concepts, as well as the meanings of
domain-specific actions that manipulate these concepts. Examples of metamodeling

� This work is partially supported by the ANR INS Project GEMOC (ANR-12-INSE-0011), and
the CNRS PICS Project MBSAR.

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 365–384, 2013.
c© Springer International Publishing Switzerland 2013

366 B. Combemale et al.

environments include Microsoft’s DSL tools1, Eclipse Modeling Framework (EMF) 2,
Generic Modeling Environment (GME) 3, and MetaEdit+ 4. A significant limitation of
current metamodeling environments is the lack of support for explicitly modeling con-
currency semantics. Concurrency semantics is currently defined implicitly in DSMLs
that support concurrent execution in their models. It is typically embedded in the under-
lying execution environment supported by the language workbench used to implement
the DSMLs (e.g., if the language runs on top of a Java Virtual Machine, the semantics
of Java threads defines concurrent behavior).

The lack of an explicit concurrency model has several drawbacks. It not only hinders
a comprehensive understanding of the behavioral semantics, it also prevents developing
effective concurrency-aware analysis techniques. For instance, knowing that a data-flow
model (e.g., an activity diagram) follows Kahn process networks semantics ensures de-
facto properties like latency-insensitive functional determinism but imposes communi-
cations through unbounded FIFOs. Restricting the data-flow model to the Synchronous
Data Flows semantics allows the computation of finite bounds on the communication
buffer sizes. Furthermore, having an implicit concurrency model also prevents the dis-
tinction of semantic variants in a model. For example, the fUML specification identifies
several semantic variation points. As stated in the fUML specification, some semantic
areas "are not explicitly constrained by the execution model: The semantics of time,
the semantics of concurrency, and the semantics of inter-object communications mech-
anism" [2]. The lack of an explicit model of concurrency, including time and commu-
nication, prevents one from understanding the impact of these variation points on the
execution of a conforming model.

In previous work, we developed an approach that bridges the gap between models of
computation and DSMLs [3]. In this paper we use that work as the base for reifying con-
currency as a metamodeling facility. We leverage formalization work on concurrency
and time from concurrency theory, specifically, theoretical work on tagged structures [4]
and on heterogeneous composition of models of computation [5,6]. The primary con-
tribution of this paper is an approach supported by a language workbench for binding
domain specific concepts and models of computation through an explicit event structure
at the metamodel level. We illustrate these novel metamodeling facilities by designing a
DSML specifying concurrent and timed finite state machines. We highlight the benefits
and the flexibility of the approach by making a semantic variation on the concurrency
specification of the DSML. We also provide pointers to other examples to show that our
approach applies to different MoCs and DSMLs.

The paper is organized as follows. Section 2 uses background on language and con-
currency theories to identify the key ingredients of a concurrency-aware executable
DSML, and to reify them as the association of four language units. Section 3 de-
scribes the language workbench built to implement the proposal, and the associated
environment for concurrent model execution. Section 4 demonstrates and discusses the
DSML implementation and execution environment obtained thanks to our language

1 http://www.microsoft.com/en-us/download/details.aspx?id=2379
2 http://www.eclipse.org/modeling/emf/
3 http://www.isis.vanderbilt.edu/Projects/gme/
4 http://www.metacase.com/mep/

http://www.microsoft.com/en-us/download/details.aspx?id=2379
http://www.eclipse.org/modeling/emf/
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.metacase.com/mep/

Reifying Concurrency for Executable Metamodeling 367

workbench. The approach is illustrated throughout the paper with the design, imple-
mentation and use of timed finite state machines. A comparison to related work and a
conclusion follow.

2 Ingredients of a Concurrency-Aware Executable DSML

2.1 Background Knowledge

Current metamodeling environments support defining a modeling language through the
specification of the concrete and the abstract syntaxes as well as the mapping from the
syntactic domain to the semantic domain. Over the last 50 years, the language theory
community has studied the mapping between the syntactic domain and the semantic
domain extensively. This has led to three primary ways of defining semantics: opera-
tional semantics, where a virtual machine uses guard(s) on the execution state to drive
the evolution of the models expressed in the language [7,8,9,10]; axiomatic semantics,
where predicates on the execution state allow reasoning about the models expressed in
the language and its correct evolution [11,12,13]; and translational semantics [14] that
defines an exogenous transformation from the syntactic domain to an existing language
(either an existing computer language or a mathematical denotation, i.e., a denotational
semantics [15]). A drawback of such approaches is that none of them supports the spec-
ification of concurrency in a manner that would allow systematic reasoning (chapter
14 of [13]). Even if these approaches could support the definition of concurrency, the
concurrency model would be scattered through the semantic specification, making it
difficult to understand and analyze the properties related to concurrency (e.g., deadlock
freeness, determinism).

In most language implementations, the concurrency semantics is implicitly embed-
ded in the underlying execution environment used to execute the conforming models.
For instance, some executable models supporting concurrent execution rely on the Java
concurrent model. On one hand, the concurrency of the model depends on the Java
concurrency and on the other hand it does not guarantee similar execution/analysis on
platforms with different parallelism possibilities (e.g., single core vs. many cores, pro-
cessor arrays).

Work on formal and explicit models of concurrency has been the focus of some re-
search programs since the fifties. Early work in this area resulted in three well-known
contemporary approaches: CCS [16], CSP [17] and Petri Nets [18]. Unlike the ap-
proaches from language theory, these solutions focus on concurrency, synchronizations
and the, possibly timed, causalities between actions. In these approaches, the focus is
on concurrency and, thus, the actions are opaque and abstract away details on data
manipulations and sequential control aspects of the system. Such models have proven
useful for reasoning about concurrent behavior, but they are not tailored to support the
description of a domain-specific modeling language dedicated to a domain expert. Af-
ter many years, work on models of concurrency has consolidated, from an analytical
point of view, into two different approaches, namely, event structures [19] and tagged
structures [4]. In these approaches the non-relevant parts of a model are abstracted away
into events (also named signal) and the focus is on how such events are related to each
other through causality, timed or synchronization relationships. Both event structures

368 B. Combemale et al.

Model of
Computation

Domain-Specific
Actions

Abstract
Syntax

Domain-Specific
Events

0..*

DSAMoC

DSE

Concept
0..*

aModel
Concurrency

Model

Concepts
(from Las)

Execution
Function
(from Ldsa)

Las

Event
(from Lmoc)

Ldsa

Ldse

Lmoc

Event

0..*

* *

Constraint

0..*

0..*

Legend

<<dependsOn>>

<<conformsTo>> (executable)
Model

(executable)
Modeling

Language

Metamodeling
Languages

Property

type
1Execution

State

0..*

Execution
Function

0..*

0..*

Fig. 1. Modular Design of a Concurrency-Aware Executable Modeling Language

and tagged structures have been used to formally specify or compare concurrency mod-
els underlying system models expressed in modeling languages. These concurrency
models and can be viewed as the concurrent specification of a specific system model.
However, such approaches are not related to the computational part of a model and have
not been used to specify the concurrency semantics of a language.

2.2 Language Units Identification

Taking a step back from these seminal approaches, we explicitly identify the com-
mon language units that constitute the design and implementation of an executable
concurrency-aware modeling language (see middle level of Fig. 1). Each language unit
is independent of the way it is implemented, and directly benefits from language and
concurrency theories described above.

Language Unit #1. The first language unit is the description of the language abstract
syntax (see Fig. 1). Older approaches build the semantics of the language on top of the
concrete syntax but the benefits of using the abstract syntax as a foundation for language
reasoning (first introduced in [20]) have been well understood since the 1960s. In the
MDE community, the abstract syntax is a first class part of a language definition. The
abstract syntax specifies the syntactic domain and is used to anchor the semantics. It is
however important to avoid blurring the syntactic domain with language elements that
represent the execution state of the model.

Reifying Concurrency for Executable Metamodeling 369

Definition 1. The Abstract Syntax (AS) specifies the concepts of the language and their
relationships. An instance of the AS is a model.

Consequently, a meta-language for modeling AS (Las in Fig. 1) must provide facil-
ities to define the language concepts (Concept) and the relationships between them
(Property).

Language Unit #2. The second language unit, called Domain Specific Actions (see
Fig. 1), adds new properties that represent the execution state of a model and a set of
execution functions that operate on these properties during the execution of a model.

The execution state can be represented, for example, by the current state in a Finite
State Machine (FSM). It can also be specified independently of the abstract syntax,
as in, for example, the incidence matrix that encodes the state of a Petri net. Such
information is needed to specify the state of a model during its execution but is not
needed to specify the model’s static structure. It is consequently part of the semantic
domain.

The DSA is also composed of execution functions that specify how the execution
state sequentially evolves during the model execution. For instance, when a transition
is fired in a FSM, the current state is updated. This is one of the roles of the execution
functions. They also specify how the concepts of a language behave. For instance if the
language contains a Plus concept, then an execution function must specify how the Plus
instances actually behave during the model execution.

Definition 2. The Domain Specific Actions (DSA) represent both the execution state
and the execution functions of a DSML. An instance of the DSA represent the state of a
specific model during the execution and the functions to manipulate such a state.

No hypothesis is made on how to specify the DSA (Ldsa in Fig. 1). However, the spec-
ification of the DSA depend on the AS since it describes a part of its semantic domain.
The execution state would be defined with structural properties representing the seman-
tic domain, in the same way Las supports the definition of the syntactic domain. The
execution functions can be specified in very concrete terms (e.g., operational semantics
that uses an action language to specify rewriting rules), or in more abstract terms (e.g.,
denotational semantics that provides functions specifying the execution functions). The
latter approach only denotes mathematical properties about the result, and does not
specify any details on how to implement the resulting functions. This is even more ab-
stract in an axiomatic semantics, where pre/post conditions on the execution state of the
system are specified and all the functions that respect such conditions are considered as
correct execution functions.

Note that the global ordering of the execution functions is not specified in the DSA

since it can be concurrent (and timed). This is the role of the third language unit.

Language Unit #3. Concurrency theory has proposed many approaches, but roughly
speaking a concurrency model is a way to specify how different events are causally and
temporally related during an execution (in our case, the execution of a model conform-
ing to a DSML). These ideas have been used in the notion of Model of Computation
(MOC) [6,21,5]. All definitions of MOCs share the fact that a MOC acts as a director

370 B. Combemale et al.

for some pieces of code. The MOC is then acting as an explicit concurrency pattern,
which provides MOC-dependent analysis properties. The third language unit is then
called Model of Computation (see Fig. 1) and explicitly specifies the concurrency.

Definition 3. The Model of Computation (MOC) represents the concurrency aspects in
a language, including the synchronizations and the, possibly timed, causality relation-
ships between the execution functions. An instance of a MOC is defined for a specific
model, conforming to the DSML. It is the part of the concurrency model that specifies
the possible partial orderings between the events instantiated with regards to the model.

A meta-language for modeling MOC (Lmoc in Fig. 1) would allow the definition
of events and the specification of causal relationships (and synchronizations) such as
scheduling, temporal constraints, and communications. The events can be discrete (i.e.,
a discrete event is a possibly infinite sequence of occurrences), or dense (i.e., a dense
event is an infinite set of occurrences and there are an infinity of occurrences between
any two event occurrences in the set). Lmoc must be independent of a specific AS or
DSA.

2.3 Reifying Language Units Coordination

In our approach, all language units previously presented are specified separately (see
middle level of Fig. 1). This separation benefits modularity, reuse and the identification
of the concurrency related analyses supported by the language. The modeling units
must then be consistently coordinate to provide an executable modeling language with
reified concurrency. This coordination has to keep the language units separated while
providing a natural articulation between them.

The AS and the DSA are kept separated to support several implementations of the DSA

for a single AS (to deal with semantic variation points, or with semantics for different
purposes, e.g., interpreter or compiler). There exists a mapping between the DSA and the
AS, however the DSA is dedicated to a specific AS (see dependency between AS and DSA

in Fig. 1), and both AS and DSA are dedicated to the DSML under design. Consequently,
we did not reify this mapping. The mapping is more conveniently described directly in
the DSA.

The definition of the DSML behavioral semantics then consists in specifying the co-
ordination of a given MOC with the DSA. This coordination must keep the MOC and DSA

independent to enable the (re)use of a MOC on different AS/DSA or changing the MOCs
on a single AS/DSA. Hence, the coordination specification can be put neither directly in
the MOC nor in the DSA. For this reason, we reify the binding as a proper language unit
that bridges the gap between the MOC and the DSA. This is done through the notion of
Domain Specific Event, a novel metamodeling facility that we propose to reify.

Language Unit #4. The Domain Specific Events (DSE, see Fig. 1) specify the coordi-
nation between the events from the MOC and the execution function calls from the DSA.
The DSE depend on both the MOC and the DSA. This coordination contains four parts:

DSE → DSA The DSE specify events that are associated with one or more execution
functions. When such an event occurs, it results in the call of the associated execu-
tion functions. The meta language for modeling DSE (Ldse on Fig. 1) has to make

Reifying Concurrency for Executable Metamodeling 371

some choices about how much associated functions can be associated with an event
(e.g., single one, any) and if several functions are associated with a single event, it
must specify how these calls must be done (e.g., in sequence, in parallel).

MOC → DSE The MOC events can be specified at a abstraction level different than the
execution functions from the DSA. For this reason, the DSE specify how the de-
fined events are obtained from the ones constrained by the MOC. This specification
can be, for example, the filtering of occurrences from an event or the detection of
an occurrence pattern from various events. It can also be the observation of some
dense events from the MOC. In this case the DSE are used to specify the relevant
observations on the dense event from the MOC and, in such a way, they specify the
events that can be observed by looking at the execution of the conforming models.
Such an adaptation between the low level events from the MOC and the ones in the
DSE can be arbitrarily complex (ranging from a simple mapping to a complex event
processing). However, when Ldse allows adaptations more complex than a simple
mapping, one must ensure that the adaptation is not breaking any concurrency-
related assumptions from the MOC.

DSA → DSE The MOC and the DSE represent the specification, at the language level of
the concurrency model (dedicated to a specific model conforming to the DSML).
This concurrency model specifies the acceptable partial orderings of both the events
constrained by the MOC and the ones from the DSE. During a specific execution, the
call to some execution functions can restrict such partial orderings. For instance, if
the DSML specifies a conditional concept (e.g., if-then-else), a MOC usually spec-
ifies that going through the then branch or through the else branch depends on the
evaluation of the condition (i.e., the condition evaluation causes either the then or
the else branch, exclusively). Both paths are specified in the concurrency model as
acceptable but the actual path taken during an execution depends on the result of the
call to an execution function. The specification of the feedback from the execution
function calls to the execution engine of the concurrency model must be specified
in the DSE.

MOC ← DSE → AS Finally , the DSE must specify how the MOC is applied on a spe-
cific model that conforms to the DSML (i.e., how to create the concurrency model
according to the MOC constraints and the AS concepts). Depending on the language
used for the MOC modeling, this specification can be of a different nature, how-
ever it requires the capacity to query the AS to retrieve the parameters needed for
the creation of the concurrency model. For instance, in a FSM the DSE can spec-
ify that a specific constraint must be instantiated for all the Transition instances in
the model. Also, it can retrieve the actual parameter of the constraint by querying
the AS. Once again, depending on the possibility offered by Ldse, one must en-
sure the preservation of the MOC assumptions (e.g., by using proven compilers or a
language supporting clear and simple composition of constraints from the MOC).

Definition 4. The Domain Specific Events (DSE) represent a coordination between the
MOC and the DSA to establish the concurrency-aware semantic domain. It is composed
of a set of domain specific events, a mapping between these events and the execution
functions from the DSA, a possibly complex mapping between the events constrained by
the MOC and the domain specific events; the specification of the impact of the execution

372 B. Combemale et al.

function results in the execution of the concurrency model and finally the specification
of the MOC application on a specific model that conforms to the DSML.

As highlighted by the previous description, the coordination between the MOC and the
DSA (i.e., the DSE) is a key point to enable concurrency-aware semantic domain. How-
ever, this coordination is often implicit or hard coded. We believe that its reification en-
ables effective use of a language that includes concurrency and computational aspects.
In this section, we have identified the key ingredients for designing a concurrency-aware
executable DSML that leads to the architectural pattern proposed in Figure 1. Conse-
quently, we consider in this paper the following definition for a concurrency-aware
executable DSML:

Definition 5. A concurrency-aware executable DSML is a domain-specific modeling
language whose conforming models are executable according to an explicit concur-
rency model. Its definition includes at least the abstract syntax and the behavioral se-
mantics (including the DSA, the MOC and the DSE to coordinate them). In the context
of this paper, a concurrency-aware executable DSML (xDSML) is defined as a tuple
〈AS,DSA,MOC,DSE〉.

3 A Language Workbench to Design and Implement
Concurrency-Aware Executable DSMLs

The reification of concurrency for executable metamodeling has been presented in its
general form and several implementations of it can be realized. In this section we
present the actual implementation of our language workbench that was used to vali-
date the proposition. We have tried to take the most adequate language/technology for
each language unit so that the model expressed in the resulting language can actually
be executed. Our implementation solution is illustrated by the definition of a concur-
rent Timed Finite State Machine (TFSM) language; a language where different state
machines augmented with timed transitions can be concurrently executed. Here timed
transitions possibly refer to different (independent) clocks.

This section is organized according to the implementation choices presented in Fig-
ure 3. It starts with the description of the AS, then the DSA, followed by the MOC and to
finish, the DSE reification is specified.

3.1 Abstract Syntax Design

In model-driven engineering, the abstract syntax is usually expressed in an object-
oriented manner. For example the de facto standard meta-language EMOF (Essential
Meta Object Facility) [22] specified by the Object Management Group (OMG) can be
used. EMOF provides the following language constructs for specifying an abstract syn-
tax: package, class, property, multiple inheritance (specialization) and different kinds
of associations among classes. The semantics of these core object-oriented constructs
is close to a standard object model (e.g., Java, C#, Eiffel).

Reifying Concurrency for Executable Metamodeling 373

Fig. 2. Abstract Syntax of TFSM (using Ecore)

In practice, we have chosen Ecore to design abstract syntax, a meta-language part of
the Eclipse Modeling Framework (EMF) [23] and aligned with EMOF. This choice is
motivated by the wide acceptance of Ecore and its correspondence to the MOF standard.
Additionally, EMF is well tooled and many other tools are based on it (e.g., XText,
OCL, GMF, Obeo Designer), so that a language developed in our workbench can benefit
from such tools. Note that any meta-language aligned with EMOF can be used in our
approach.

Briefly, the AS of TFSM starts with a System composed of a set of T FSMs, a set
of global FSMEvents and a set of global FSMClocks (see Fig. 2). Each TFSM is
composed of States among which an initial state is identified. Each state can be the
source of outgoing guarded Transitions. A guard can be specified by the reception of
a FSMEvent (EventGuard), by a duration relative to the entry time in the incoming
state of the transition (TemporalGuard) or by a boolean condition (BooleanGuard).
The duration of a temporal guard is measured on an explicit reference clock. An ac-
tion is associated with a transition and is represented in the abstract syntax as a String.
The condition of the boolean guard is also specified as a String. These strings represent
model level code defined by the designer (i.e., written using an opaque action language).
In our experiments such model level code is written in the Groovy language5. Groovy
was chosen for its capacity to be dynamically invoked. However any other action lan-
guage could be used. Finally, a transition can also generate a set of event occurrences
when fired.

Note that in the abstract syntax, we refrain from adding concepts about the execution
state or functions. These concepts are specified in the DSA.

3.2 Domain Specific Actions Design

The domain-specific actions (DSA) enriches the abstract syntax with data represent-
ing the execution state and with functions representing the execution functions. Since

5 http://groovy.codehaus.org/

http://groovy.codehaus.org/

374 B. Combemale et al.

EMOF (and Ecore) does not include concepts for the definition of the behavioral se-
mantics and OCL is a side-effect free language, we have used the Kermeta language to
define the DSA of a DSML. Kermeta is an extension of Ecore that provides an action
language used to express the behavioral semantics of a DSL [24]. Using the Kermeta
language, an execution function is expressed as methods of the classes of the abstract
syntax [24]. The body of the method imperatively describes what is the effect of execut-
ing an instance of the concept. The Kermeta language is imperative, statically typed, and
includes classical control structures such as blocks, conditionals, loops and exceptions.
The Kermeta language also implements traditional object-oriented mechanisms for han-
dling multiple inheritance and generics. For multiple inheritance, Kermeta borrows the
semantics from the Eiffel programming language [25]. Kermeta does not provide any
solution to specify the concurrency model. Indeed, the concurrency semantic model is
provided through the Java implicit concurrency model embedded in the underlying exe-
cution environment. As a consequence, the designer can use a foreign function interface
mechanism to call the Java Thread API but there is no specific support to describe the
concurrency model explicitly.

In the approach and the language workbench proposed, the AS and the DSA are con-
ceptually and physically (at the file level) defined in two different modules. The aspect
keyword enables DSML engineers to bind the AS and the DSA together. It allows DSML
engineers to reopen a previously created class in the abstract syntax to add some new
pieces of information such as new methods (execution functions) or new properties
(execution state representing the semantic domain). It is inspired by open-classes (aka.
static introduction) [26].

In the case of TFSM (cf. Listing 1.1), we have added the currentState as an attribute
of T FSM. We have also added numberO f Ticks as an integer attribute of FSMClock.
All the instances of TFSM in a system possess a current state. Also, all instances of
FSMclock have an integer representing their actual time. The execution state of the
system is then a set of current states and a set of Integers. The choice of what should
be added as attribute depends on the information we want to capture in the execution
state of the models. Such information can usually be specified in various ways. For
instance, we could have specified the execution state by a set of sensitive transitions
instead of a set of current states. Kermeta aspects are also used to specify operations
on metaclasses. They provide an operational specification of the execution functions
as described in the DSA language unit. The advantage is then the executability of such
operations. In TFSM, we have added six operations:

– init() on T SFM: Operation init() is used to initialize the execution state of the
T FSM (i.e., the current state in our case, lines 5 to 8).

– fire() on Transition: Operation f ire() is in charge of changing the current state from
the source state to the target state of the transition. It is also in charge of executing
the groovy code specified in the action attribute (lines 12 to 18).

– init() on FSMClock: Operation init() is used to initialize the numberOfTicks (not
shown in the listing).

– ticks() on FSMClock: Operation ticks() is used to increment the numberOfTicks of
FSMClock (line 24 to 27).

Reifying Concurrency for Executable Metamodeling 375

Listing 1.1. Part of the Kermeta aspects specifying the DSA

1 a s p e c t c l a s s TFSM
2 {
3 // Attribute used at runtime to store the current state
4 a t t r i b u t e currenteState : tfsm::State
5 operat ion i n i t () : String i s do
6 currentState := self.initialState
7 result:= "call to init() : " + name
8 end
9 }

10 a s p e c t c l a s s Transition
11 {
12 operat ion fire() : String i s do
13 var groovyExpression : String i n i t self.action
14 var res1 : kermeta::standard::Object i n i t ex tern org::
15 kermeta::extra::groovyembedded::GroovyEmbeder.runOnScript(

groovyExpression)
16 self.source.owningFSM.currentState := self.target
17 result := "fire: " + name + " -> " +self.action
18 end
19 }
20 a s p e c t c l a s s FSMClock
21 {
22 //Attribute used at runtime to store the number of tick
23 a t t r i b u t e numberOfTicks : Integer
24 operat ion ticks() : void i s do
25 numberOfTicks := numberOfTicks + 1
26 result := "ticks: " + name
27 end
28 }

Note that while the DSAs are described by Kermeta aspects over the concepts of
the AS, none of them specifies the execution workflow (like a main() operation). The
schedule of the different operation calls is made by the concurrency model according
to the MOC used in the DSML.

3.3 Model of Computation Design

The MOC defines the concurrency, the synchronizations and the possibly timed causal-
ity relationships in a DSML. The meta-language used for the specification of the MOC

must be able to specify constraints on events independently of the AS and the DSA

on which it is applied. We have chosen the Clock Constraint Specification Language
(CCSL) [27] for specifying the MOC (at the DSML level), as well as to represent its
instances as concurrency models (at the model level). In CCSL, a concurrency model is
a set of constraints whose definitions and formal parameters are given in libraries. We
use the library mechanism to specify MOC specific constraints. These constraints spec-
ify the correct evolution of the events given as formal parameters of the constraints.
More precisely it is a reusable set of constraints considered as consistent with regards
to a specific MOC; it defines the possibly timed synchronizations and causality relation-
ships between some events and has already been shown to be a good candidate for the
specification of the concurrent and temporal aspects of a language [27]. It is not possi-
ble to specify any computational aspects in CCSL so that it fits with the separation of
the concurrent and temporal aspects in the MOC from the computational aspects in the
DSA.

376 B. Combemale et al.

We have defined new constraints dedicated to the TFSM MOC in a specific library.
For instance we have defined TemporalTransition and EventTransition constraints whose
declarations are presented in Listing 1.26. Each declaration exposes a set of formal pa-
rameters, which are needed to specify the constraint between the events (named clocks
in CCSL). For instance, for the temporal transition relationship, four events are impor-
tant, the event that starts the "timer", the event used to measure the time, the event that
disables the transition (i.e., makes it non fireable until the next timer starts), and the
clock that actually fires the transition. Additionally, the integer representing the delay
after which the transition should be fired is also a parameter. Such parameters represent
the information that should be provided by a DSML so as the MOC can be used. Such
declarations do not make any assumptions about AS and DSA. These constraints define
the acceptable concurrency and the possibly timed synchronizations and causalities at
the language level. A change in the library affects the execution of all models expressed
in a language that uses the MOC (i.e., the constraints).

Listing 1.2. Excerpt of a MoC library used for TFSM (using CCSL)

1 R e l a t i o n D e c l a r a t i o n TemporalTransition(TemporalTransition_MakeFireable:clock,
TemporalTransition_RefClock:clock, TemporalTransition_Reset:clock,

TemporalTransition_delay:int, TemporalTransition_Fire:clock)
2 R e l a t i o n D e c l a r a t i o n EventTransition(EventTransition_MakeFireable:clock,

EventTransition_Trigger:clock, EventTransition_Reset:clock,
EventTransition_Fire:clock)

3.4 Domain Specific Event Design

The DSE put MOC and DSA together to constitute the behavioral semantics of the DSML.
They contain the events relevant to the DSML perspective and how they are linked to
the execution functions of the DSA; and on the other hand they specify queries on the
AS to specify the actual parameters that have to be used by the concurrency model on
a specific model. To do so, a specific meta-language named ECL (standing for Event
Constraint Language [28]) is developed as an extension of OCL [29] with events. The
ECL file specifies the constraints used in the concurrency model for a specific model,
by specifying the link between the MOC, the DSA and the AS of a DSML. ECL benefits
from the OCL query language and its possibility to augment an abstract syntax with
additional attributes (without any side effects). Using ECL it is then possible to define
new DSE in the context of a specific concept of the AS. DSE also specify, if needed,
the execution function that must be called when specific events occur. For instance, in
the TFSM example which is partially represented in Listing 1.3, we have defined three
domain specific events in the context of FSMEvent, FSMClock and Transition (lines
5–10 in Listing 1.3). The events defined in the context of FSMClocks and Transition,
respectively call when they occur the execution function ticks() defined in the context
of FSMClock and the execution function f ire() defined in the context of Transition.

The ECL file imports a MOC library (line 2 in Listing 1.3). It is used to define some
invariants that specify in which context and with which parameter(s) a constraint from
the MOC is used. The specification of the actual parameters are specified by querying
the AS. To specify the mapping between MOC and DSA, it is also possible to create

6 The definitions are not given for the sake of clarity.

Reifying Concurrency for Executable Metamodeling 377

intermediate events by using expressions over existing DSE. For instance, lines 13 to 23
represents the invariant that specifies that for each transition of the AS whose guard is
of type TemporalGuard, if the source state of this transition has more than one other
outgoing transition (line 16), then there is a constraint of type TemporalTransition in
the concurrency model (line 21). The parameters of the constraints can be queried on
the AS like in the line 17 or 22 and 23. It can also be specified by an expression over
existing domain specific events like specified in line 18 to 20, which specify a new event
defined by the Union of all the fire events from other outgoing transitions from the same
source state. It is used here to specify when the event transition must be disabled (see
the formal parameters line 8 in Listing 1.2). These queries define how the structure of
the AS is used to retrieve the actual parameters. For instance, the actual duration of the
temporal transition is defined by the afterDuration attribute defined in the AS (line 17).

Listing 1.3. Excerpt of the Domain-Specific Events of TFSM (using ECL)

1 import ’http://fr.inria.aoste.gemoc.example.tfsm ’
2 ECLImport "TFSMMoC.ccslLib"
3 package tfsm
4 // DSE definition , and mapping of the DSE to the DSA (i.e., Kermeta method)
5 c o n t e x t FSMEvent
6 def : occurs : Event()
7 c o n t e x t FSMClock
8 def : ticks : Event(s e l f .ticks())
9 c o n t e x t Transition

10 def : fire : Event(s e l f .fire())
11 // Mapping of the DSE to the MOC
12 c o n t e x t Transition
13 inv fireWhenTemporalGuardHoldsVariousTransition:
14 (s e l f .ownedGuard.oclIsKindOf(TemporalGuard)
15 and s e l f .source.outgoingTransitions->
16 select(t|t <> s e l f)->size() > 0) i m p l i e s
17 let guardDelay : Integer = s e l f .ownedGuard.oclAsType(

TemporalGuard).afterDuration in
18 let otherFireFromTheSameState: Event =
19 E xpr e s s ion Union (s e l f .source.outgoingTransitions->
20 select(t|t <> s e l f).fire) in
21 R e l a t i o n TemporalTransition(s e l f .source.entering ,
22 s e l f .ownedGuard.oclAsType(

TemporalGuard).onClock.ticks,
23 otherFireFromTheSameState, guardDelay ,

s e l f .fire)
24 // Using a MoC constraint specifying a rendez-vous semantics
25 c o n t e x t FSMEvent
26 inv occursWhenSolicitate:
27 (s e l f .sollicitingTransitions->size() >0) i m p l i e s
28 let AllTriggeringOccurrences : Event = E xpr e s s ion
29 Union(s e l f .sollicitingTransitions.fire) in
30 R e l a t i o n FSMEventRendezVous(AllTriggeringOccurrences, s e l f .occurs)

Listing 1.3 shows another invariant, which defines the FSMEventRendezVous con-
straint on the MOC. This constraint is changed in section 4 to highlight the impact of
a MOC variation. From such a specification, it is possible to generate a CCSL specifi-
cation that represents the concurrency model for any model that conforms to the AS;
i.e., a model that contains the actual constraints and their parameters according to a
specific model. ECL restricts the requirements expressed in section 2. For instance, it
is not possible yet to specify how the result of an execution function call influences the
execution path taken by the execution engine at runtime. Such information is for now

378 B. Combemale et al.

defined in the configuration of the execution engine. Information about the execution
engine is given in the next subsection.

3.5 Execution Engine

Each unit of a DSML is described in our language workbench using technologies built
on top of the Eclipse Modeling Framework (EMF). To summarize, we describe the AS

with the meta-language Ecore part of EMF (1 in Fig. 3). Then we describe the DSA

(both execution state and functions) with Kermeta [24] (2 in Fig. 3). We mainly use
Kermeta for its weaving capability on the abstract syntax. DSA are specified using as-
pects on metaclasses that enable the addition of execution state attributes and execution
functions. Then, we specify the MOC by constraints definition as a CCSL library (3 in
Fig. 3). Finally we define DSE and link them with the execution functions by using ECL
(4 in Fig. 3). ECL is also used to specify, at the language level, the constraints used in a
concurrency model for a specific model.

In the workbench, EMF generates an API for the AS that can load and save models
conforming to the DSML. Kermeta methods and properties are compiled as a set of
Scala traits that are woven within this model API [30]. As a result, Kermeta provides
an extended version of the Java API, encapsulated in a jar file, on which it is possible
to call the execution functions weaved within the AS (5 in Fig. 3). Then, for a specific
model conforming to the DSML, the ECL file can be used to automatically create a
concurrency model in CCSL (6 in Fig. 3). The concurrency model is directly linked to
the model elements. This model represents all the partial ordering of events consid-
ered as correct with regards to the MoC. In our workbench, it is interpreted by a tool
named TIMESQUARE [31] to provide one partial ordering between the domain specific
events in the model (7 in Fig. 3). To call the execution functions defined in the DSA,
TIMESQUARE has been extended in our language workbench with a new back-end able
to use the jar files to execute the model (8 in Fig. 3). In the proposed language work-
bench, EMF serves as a common technical foundation. Kermeta provides an API fully
compatible with EMF that eases the integration within the language workbench.

As a result, this language workbench provides a set of Java libraries allowing to
call execution functions on a model. The call to the execution functions is driven by
TIMESQUARE. The (possibly simultaneous) ordering of the calls to the execution func-
tions represents the concurrent-aware execution of the model. We illustrate in the next
section the use of the TFSM language on five concurrent TFSMs, which model road
traffic lights and their controller.

4 Demonstration and Discussion: Using TFSM on Concurrent
Road Traffic Lights

To go further in our approach, we present an example of five concurrent TFSMs built
using the executable language proposed in the previous sections and the tools mentioned
above. Our case study is a simple modeling of crossroad traffic lights. In our example,
the traffic lights regulate the traffic on a main road and a secondary road. The traffic
lights are synchronized differently during the day or the night. During the day, the two

Reifying Concurrency for Executable Metamodeling 379

(executable)
Model

(executable)
Modeling
Language

Metamodeling
Languages

CCSL Kermeta Ecore

MoC.lib.ccsl
(MoC)

MyDSML
.km

(DSA)

MyDSML
.ecore
(AS)

ECL

DSE4MyDSML
.ecl

(MoC<->DSA)

aModel
MyDSML

DSA-AS.jar

MyDSML
Concurrency
Model.ccslLegend

code generation

<<dependsOn>>

<<conformsTo>>

123

4
5

6

7

8

Fig. 3. Architecture of the language workbench and the associated execution engine for concur-
rent model execution

traffic lights on the main road are red during two minutes and then switch to green. They
remain green until a controller sends the switch event that makes the two main traffic
lights become red again. The two other traffic lights have exactly the same behavior
but are green when the main traffic lights are red and red when the main traffic lights
are green. The controller has two states Day and Night that change depending on the
reading of a sensor answering whether it is night or day. During the day it sends a switch
event every 4th minute and during the night every 6th minute. In Figure 4, the controller
TFSM (named Control) and one of the main road traffic lighs (named Semaphore0) are
shown. The abstract syntax has been tooled with Obeo designer to obtain a graphical
concrete syntax.

By using this example we want to highlight the impact of a simple change in a
MOC applied on the same AS/DSA. The MOC variation consists in the synchronization

Fig. 4. Partial traffic light model

380 B. Combemale et al.

Fig. 5. Timing output of the simulation with the rendez-vous semantics

between the firing of a transition, and the production of the occurrences of its gen-
eratedEvents. In the first case, we use a strong synchronization, meaning that if one
transition is fired and generates an event occurrence, all the transitions waiting for this
event are simultaneously fired (The transitions with an event guard on this event). For
that purpose, we use a constraint named FSMEventRendezVous in the MOC library (see
the lines 27 to 32 of the Listing 1.3). Once the concurrency model has been generated
for the model of Figure 4, we can execute the concurrency model in TIMESQUARE.
The model execution produced a timing diagram representing the occurrences of the
event according to the time (Figure 5). On this picture we can see that the firings of the
transition named Day_to_Day from the traffic light controller are simultaneous with
the occurrences of the switch event, themselves simultaneous with the firings of the
Green0_to_Red0 transition. In this case, the time spent in the Red0 state and the time in
the Green0 state is the same: 2 minutes. This mechanism is a strong synchronization so
that if the TFSM of Semaphore0 (Figure 4) is in the Red0 state when the Day_to_Day
transition is fired, a deadlock happens.

In a second case, we have changed this strong synchronization with a causal re-
lationship, meaning that if one transition is fired and generates an event occurrence,
all the transitions waiting for this event must be fired in a later step (it abstracts the
sending and the reception of a FSMEvent). For this purpose, we have modified the
MOC library and have replaced the FSMEventRendezVous with a constraint named FS-
MEventSendReceive, defining the causal relationship. In this case, all the parameters
remain identical, the constraint definition in the MOC library is the only modification
made. The model execution produces a different timing diagram and the time spent in
the Green0 and in Red0 state is now different. The time between the Day_to_Day tran-
sition firing and the occurrence of the switch event is not bound and could vary. In this
case, contrary to the previous case, if the TFSM of Semaphore0 is in the Red0 state
when the Day_to_Day transition is fired, no deadlock happens.

By defining the concurrent TFSM language according to the approach and work-
bench proposed in this paper, we have executed the TFSM instances concurrently.
By changing a single constraint in the MOC library, we get a different behavior of

Reifying Concurrency for Executable Metamodeling 381

Fig. 6. Timing output of the simulation with the send-receive semantics

the system, highlighting the importance to make explicit and to reify the MOC and
DSE. The presentation of the whole example with video of its compilation and ex-
ecution (including diagram animation) can be found on the companion web page:
http://gemoc.org/sle13. This web page also introduces two other usages of the
language workbench. The first one shows the definition of the Actor Computing Model
using the workbench. It allows the simulation of the behavior of a set of Actors. The
second one illustrates an example of the Logo language7 with two turtles sharing the
same playground.

5 Related Work

Much work has been done on the design and implementation of both DSML and models
of computation. In this paper, we propose a conceptual and technical framework to take
benefits from both underlying theory. This section presents related work in the field of
language design and implementation, and then in the field of models of computation.

The problem of the modular design of languages has been explored by several
authors (e.g., [32,33]). For example, JastAdd [33] combines traditional use of higher
order attribute grammars with object-orientation and simple aspect-orientation (static
introductions) to get a better modularity mechanism. With a similar support for object-
orientation and static introductions, Kermeta and its aspect paradigm can be seen as an
analogue of JastAdd in the DSML world. The major drawback of such approach is that
none of them provides a native support for concurrency.

A language workbench is a software package for designing software languages [34].
For instance, it may encompass parser generators, specialized editors, DSLs for ex-
pressing the semantics and others. Early language workbenches include Centaur [35],
ASF+SDF [36], and TXL [37]. Among more recent proposals, we can cite Generic
Model Environment (GME) [38], Metacase’s MetaEdit+ [39], Microsoft’s DSL Tools
[40], Krahn et al’s Monticore [41], Kats and Visser’s Spoofax [42], Jetbrain’s MPS
[43]. The important difference of our approach is that we explicitly reify the concur-
rency concern in the design of an executable language, providing a dedicated tooling

7 http://en.wikipedia.org/wiki/Logo_(programming_language)

http://gemoc.org/sle13
http://gemoc.org/sle13
http://en.wikipedia.org/wiki/Logo_(programming_language)

382 B. Combemale et al.

for its implementation and reuse. Our approach is also 100% compatible with all EMF-
based tools (at the code level, not only at the abstract syntax level provided by Ecore),
hence designing a DSL with our approach easily allows reusing the rich ecosystem of
Eclipse/EMF.

Models of computation, and in particular the concurrency concern, have been mainly
tooled in three different workbench: Ptolemy [6], ModHel’X [44] and ForSyDe [45].
Each of them have their own pros and cons but they are all based on a specific abstract
syntax and API. On one hand the unique abstract syntax avoids their use in the context
of specific DSMLs and on the other hand the use of an API to apply a specific MOC cre-
ates a gap between the MOC theory and the corresponding framework. In our approach
we use the notion of DSE to link a MOC to the DSA of a specific DSML and we use CCSL

to specify the MOC in a formal way, closer to theory like event structures or tagged sig-
nals. A similar approach has been used in BIP [46], where a specific algebra is used
to describe the interactions through connectors between behaviors expressed in timed
automata. From the properties of the connectors, it is possible to predict global proper-
ties of the models. This approach is interesting in its analysis capacity but is tailored to
the composition of timed automata. Finally another approach based on CCSL has been
used in [47] to describe two MOC and the interactions between heterogeneous models
of computation. This approach improved ModHel’X workbench but is still dedicated
to apply a MOC to a specific abstract syntax. However, it gives good hint for the use of
the approach proposed in this paper for the composition of heterogeneous executable
modeling languages.

6 Conclusion and Perspectives

This work proposes an approach that reifies the key concerns to design and implement
a concurrency-aware executable DSML (AS, DSA, MOC and DSE). The approach is sup-
ported by a language workbench based on EMF, including a meta-language dedicated to
each concern to design concurrency-aware executable DSMLs in a modular way. Then,
the implementation of a DSML automatically results in a dedicated environment for
concurrent execution of the conforming models. The explicit modeling of concurrency
as first-class concern paves the way to a full understanding and configuration ability of
the behavioral semantics. Additionally, the modular design enables the reuse of exist-
ing MoCs that come with specific analysis capabilities and tool support. We illustrate
our approach and language workbench on the design, the implementation and the use
of variants, of concurrent and timed finite state machine. A complementary video is
available on the companion webpage, as well as other DSML families implemented
according to our approach: http://gemoc.org/sle13.

In future works, we plan to focus more on the DSA and DSE relationships. Up to
now, the events are driving the execution of actions, but only a crude feedback is al-
lowed from the actions. The understanding of what kind of feedback is expected needs
to be further explored. Finally, the explicit definition of concurrency in the behavioral
semantics of DSML opens many perspectives. In particular, we are exploring the way
to support heterogeneous execution models (e.g., synchronization and composition of
interpreter or compiler). The goal here is to make explicit the composition of heteroge-
neous DSMLs by using the information provided by the reified language units.

http://gemoc.org/sle13
http://gemoc.org/sle13

Reifying Concurrency for Executable Metamodeling 383

References

1. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and
associated V&V tools. In: APSEC. IEEE (December 2012)

2. Object Management Group, Inc.: Semantics of a Foundational Subset for Executable UML
Models (fUML), v1.0 (2011)

3. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridging the Chasm
between Executable Metamodeling and Models of Computation. In: Czarnecki, K., Hedin,
G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 184–203. Springer, Heidelberg (2013)

4. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of computa-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems 17(12), 1217–1229 (1998)

5. Jantsch, A.: Modeling Embedded Systems and SoCs. Morgan Kaufmann Publishers Inc.
(2004)

6. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proc. of the IEEE 91(1) (2003)

7. Plotkin, G.D.: A structural approach to operational semantics (1981)
8. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformations for the

formal specification of model interpreters. Journal of Universal Computer Science 9 (2003)
9. Bendraou, R., Jezéquél, J.-M., Fleurey, F.: Combining aspect and model-driven engineer-

ing approaches for software process modeling and execution. In: Wang, Q., Garousi, V.,
Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS, vol. 5543, pp. 148–160. Springer, Heidel-
berg (2009)

10. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems 2(2), 127–
145 (1968)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–580 (1969)

12. Gries, D.: The science of programming, vol. 198. Springer (1981)
13. Winskel, G.: The formal semantics of programming languages: an introduction. MIT press

(1993)
14. Fredlund, L.A., Jonsson, B., Parrow, J.: An implementation of a translational semantics for an

imperative language. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 246–262. Springer, Heidelberg (1990)

15. Scott, D.S., Strachey, C.: Toward a mathematical semantics for computer languages. Oxford
University Computing Laboratory, Programming Research Group (1971)

16. Milner, R.: A calculus of communicating systems. Springer (1982)
17. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21(8),

666–677 (1978)
18. Petri, C.A.: Introduction to general net theory. In: Advanced Course: Net Theory and Appli-

cations, pp. 1–19 (1975)
19. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets:

Applications and Relationships to Other Models of Concurrency. LNCS, vol. 255, pp. 325–
392. Springer, Heidelberg (1987)

20. McCarthy, J.: Towards a mathematical science of computation. Information Processing 62,
21–28 (1962)

21. Boulanger, F., Hardebolle, C.: Simulation of Multi-Formalism Models with ModHel’X. In:
ICST, pp. 318–327. IEEE (2008)

22. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core (2006)
23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,

2nd edn. Addison-Wesley (2008)
24. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-

Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–
278. Springer, Heidelberg (2005)

384 B. Combemale et al.

25. Meyer, B.: Eiffel: The language. Prentice-Hall, Inc. (1992)
26. Clifton, C., Leavens, G.T.: Multijava: Modular open classes and symmetric multiple dispatch

for java. In: OOPSLA, pp. 130–145 (2000)
27. Mallet, F., DeAntoni, J., André, C., de Simone, R.: The Clock Constraint Specification Lan-

guage for building timed causality models. Innovations in Systems and Software Engineer-
ing 6, 99–106 (2010)

28. Deantoni, J., Mallet, F.: ECL: The Event Constraint Language, an Extension of OCL with
Events. Research report RR-8031, INRIA (July 2012)

29. Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0 (2003)
30. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup of metalan-

guages and its implementation in the kermeta language workbench. In: SoSyM (2013)
31. DeAntoni, J., Mallet, F.: TimeSquare: Treat Your Models with Logical Time. In: Furia, C.A.,

Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012)
32. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute gram-

mars for modular language design. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304,
pp. 128–142. Springer, Heidelberg (2002)

33. Ekman, T., Hedin, G.: The JastAdd system – modular extensible compiler construction. Sci.
Comput. Program, 14–26 (2007)

34. Volter, M.: From Programming to Modeling-and Back Again. IEEE Software 28(6) (2011)
35. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:

the system. In: 3rd ACM Software Engineering Symposium on Practical Software Develop-
ment Environments, pp. 14–24. ACM (1988)

36. Klint, P.: A meta-environment for generating programming environments. ACM
TOSEM 2(2), 176–201 (1993)

37. Cordy, J.R., Halpern, C.D., Promislow, E.: TXL: a rapid prototyping system for programming
language dialects. In: Conf. Int Computer Languages, pp. 280–285 (1988)

38. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer 30(4) (1997)
39. Tolvanen, J., Rossi, M.: MetaEdit+: defining and using domain-specific modeling languages

and code generators. In: Companion of the 18th Annual ACM SIGPLAN Conference OOP-
SLA, 92–93. ACM (2003)

40. Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Development with Visual Studio
DSL Tools. Addison-Wesley Professional (2007)

41. Krahn, H., Rumpe, B., Volkel, S.: MontiCore: Modular Development of Textual Domain
Specific Languages. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11,
pp. 297–315. Springer, Heidelberg (2008)

42. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative specification
of languages and IDEs. In: OOPSLA, pp. 444–463. ACM (2010)

43. Voelter, M.: Language and IDE Modularization and Composition with MPS. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–430. Springer, Heidel-
berg (2013)

44. Hardebolle, C., Boulanger, F.: Multi-Formalism Modelling and Model Execution. Interna-
tional Journal of Computers and their Applications 31(3), 193–203 (2009)

45. Sander, I., Jantsch, A.: System Modeling and Transformational Design Refinement in
ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 23(1), 17–32 (2004)

46. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP. In: 4th
IEEE SEFM, pp. 3–12 (September 2006)

47. Boulanger, F., Dogui, A., Hardebolle, C., Jacquet, C., Marcadet, D., Prodan, I.: Semantic
Adaptation Using CCSL Clock Constraints. In: Kienzle, J. (ed.) MODELS 2011 Workshops.
LNCS, vol. 7167, pp. 104–118. Springer, Heidelberg (2012)

Author Index

Afroozeh, Ali 137
Antkiewicz, Michał 344
Arusoaie, Andrei 281

Bagge, Anya Helene 177
Bąk, Kacper 344
Barais, Olivier 365
Batory, Don 1
Baudry, Benoit 365
Beck, Andreas 19
Boersma, Meinte 197
Bosman, Remi 197

Cazzola, Walter 76
Champeau, Joël 218
Combemale, Benoît 76, 365
Cook, William R. 197
Czarnecki, Krzysztof 344

De Antoni, Julien 365
Diallo, Papa Issa 218
Diskin, Zinovy 322, 344

Erdweg, Sebastian 96, 197

Fehrenbach, Stefan 96
France, Robert B. 365

Gerritsen, Albert 197
Gonçalves, Rui 1
Groenewegen, Danny M. 260
Groves, Lindsay 238

Hasu, Tero 177
Hedin, Görel 302
Hulshout, Angelo 197

Johnstone, Adrian 137

Kappel, Gerti 56
Kelly, Steven 197
Klint, Paul 36
Kokaly, Sahar 322
Konat, Gabriël D.P. 197, 260

Lagadec, Loïc 218
Lämmel, Ralf 249
Langer, Philip 56
Larsen, Matias Vara 365

Loh, Alex 197
Lucanu, Dorel 281

Maibaum, Tom 322
Mallet, Frédéric 365
Marker, Bryan 1
Mayerhofer, Tanja 56
Molina, Pedro J. 197
Mosen, Dominik 249

Ostermann, Klaus 96

Palatnik, Martin 197
Pearce, David J. 238
Pillay, Suresh 76
Pohjonen, Risto 197

Rusu, Vlad 281

Schindler, Eugen 197
Schindler, Klemens 197
Scott, Elizabeth 137
Siegmund, Janet 1
Sobernig, Stefan 19
Söderberg, Emma 302
Solmi, Riccardo 197
Strembeck, Mark 19

Tratt, Laurence 157

Vacchi, Edoardo 76
van den Brand, Mark 137
van der Storm, Tijs 197
van der Vlist, Kevin 197
van der Woning, Jimi 197
van Rozen, Riemer 36
Varanovich, Andrei 249
Vasudevan, Naveneetha 157
Vergu, Vlad A. 197, 260
Vinju, Jurgen 137
Visser, Eelco 197, 260
Völter, Markus 197

Wachsmuth, Guido H. 197, 260
Wąsowski, Andrzej 344
Wimmer, Manuel 56

Zaytsev, Vadim 117

	Preface
	Organization
	Table of Contents
	Invited Talk
	Dark Knowledge and Graph Grammars in Automated Software Design
	1 Introduction
	2 How Dark Knowledge Can Be Encoded
	3 Upright: A Synchronous Crash Fault Tolerant Server
	3.1 DxT and the Essence of Graph Grammars

	4 Who Cares? Motivations from Practice
	4.1 Performance Results
	4.2 State-of-the-Art vs. Our Group’s Vision
	4.3 DxT Limitations and Salute to PriorWork

	5 Technical Details
	5.1 Optimizations
	5.2 Abstract Interpretation

	6 The Reaction to DxT
	7 Conclusions
	References

	Domain-Specific Languages
	Developing a Domain-Specific Language for Scheduling in the European Energy Sector
	1 Introduction
	2 Background: Scheduling Power Deals
	3 A DSL for Scheduling
	3.1 Language Model and Concrete Syntax
	3.2 Implementation

	4 DSL Evaluation
	5 Achieved Benefits
	6 Discussion
	7 Conclusion
	References

	Micro-Machinations
	1 Introduction
	2 Micro-Machinations
	2.1 Background
	2.2 Micro-Machinations Condensed
	2.3 Introductory Example
	2.4 Game Designer’s Questions
	2.5 Technical Challenges
	2.6 Answers to Game Designer’s Questions
	2.7 Language Extensions

	3 MM AiR Framework
	3.1 Check Contextual Constraints
	3.2 Simulate Models
	3.3 Translate to Promela
	3.4 Verify Invariant Properties
	3.5 Analyze Reachability
	3.6 Replay Behaviors

	4 Case Study: SimWar
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

	xMOF: Executable DSMLs Based on fUML
	1 Introduction
	2 Related Work
	2.1 Semantics Specification Approaches
	2.2 Using UML Action Languages on the Metamodel Level

	3 Specifying Semantics with fUML
	3.1 The Gap between fUML and MOF
	3.2 Bridging the Gap between fUML and MOF
	3.3 Extending Ecore with fUML

	4 Methodology for Specifying Semantics with xMOF
	4.1 Goals of the Methodology
	4.2 xMOF Methodology

	5 Case Studies and Lessons Learned
	5.1 Case Studies Setup
	5.2 Lessons Learned

	6 Conclusion
	References

	Language Patterns and Evolution
	Variability Support in Domain-Specific Language Development
	1 Introduction
	2 Background
	2.1 Neverlang
	2.2 Variability Management and CVL

	3 Approach Overview
	4 From Slices to Variability Modeling
	5 From Variability Modeling to Language Implementation
	6 Case Study: Family of Statemachines
	7 Related Work
	8 Conclusions and Future Work
	References

	Software Evolution to Domain-Specific Languages
	1 Introduction
	2 Problem Statement and Proposed Solution
	2.1 First Dimension: Support More DSLs
	2.2 Second Dimension: Convert More Code
	2.3 Proposed Solution

	3 Background: DSL Development with SugarJ
	4 Evolution to DSLs in Practice
	4.1 Java Pet Store
	4.2 Eclipse
	4.3 Results

	5 Automatically Locating Code for DSL Usage
	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	Micropatterns in Grammars
	1 Introduction
	2 Grammar Corpus
	3 Grammatical Micropatterns
	3.1 Metasyntax
	3.2 Global Position and Structure
	3.3 Metasyntactic Sugar
	3.4 Naming
	3.5 Concrete Syntax
	3.6 Normal Forms
	3.7 Folding/Unfolding
	3.8 Templates

	4 Discussion and Related Work
	5 Conclusion
	References

	Grammars
	Safe Specification of Operator Precedence Rules
	1 Introduction
	1.1 From Yacc to SDF
	1.2 Contributions and Roadmap

	2 Motivation
	2.1 Limitations of SDF
	2.2 Problem with One-Level Filtering

	3 Syntax and Semantics for Operator-Style Disambiguation
	3.1 Definitions
	3.2 Pattern Notation for Illegal Derivations
	3.3 Defining >, left and right in Practice

	4 Grammar Rewriting to Exclude Illegal Derivations
	5 Validation Using the OCaml Case
	5.1 Method
	5.2 Results
	5.3 Discussion and Threats to Validity

	6 Related Work
	7 Conclusions
	References

	Detecting Ambiguity in Programming Language Grammars
	1 Introduction
	2 Definitions
	3 Search-Based Ambiguity Detection
	3.1 The dynamic1 Backend

	4 Boltzmann Sampled Grammars
	4.1 Class Specification
	4.2 Precision
	4.3 Grammar Generation and Filtering

	5 Mutated Grammars
	6 Experiment Methodology
	7 Mini Experiment
	8 Main Experiment
	8.1 ACLA
	8.2 AMBER
	8.3 AmbiDexter
	8.4 dynamic1

	9 Validation Experiment
	10 Validating the Hypotheses
	11 Threats to Validity
	12 Conclusions
	References

	A Pretty Good Formatting Pipeline
	1 Introduction
	2 The Formatting Pipeline
	2.1 Tokens and Categories
	2.2 The Tokeniser
	2.3 Token Processors
	2.4 Token Processor: Spacer
	2.5 Token Processor: Line Breaker

	3 Line Breaking
	3.1 Nesting and Indentation
	3.2 A New Line-Breaking Algorithm
	3.3 Adaptation of Wadler’s Pretty-Printing Algorithm
	3.4 Kiselyov et al’s Pretty-Printing Algorithm

	4 Plumbing
	4.1 Java Pipeline Design
	4.2 Grouping and Dynamic Processors in Racket

	5 Discussion
	5.1 Plumbing Considerations
	5.2 Performance
	5.3 Quality and Reusability of Processors
	5.4 Related Work

	6 Conclusion
	References

	Tools
	The State of the Art in LanguageWorkbenches
	1 Introduction
	2 Background
	2.1 The Challenges of LWC
	2.2 ResearchMethodology

	3 A Feature Model for Language Workbenches
	4 Language Workbenches
	4.1 Introduction of the Tools
	4.2 LanguageWorkbench Features

	5 LWC 2013 Assignment: A DSL for Questionnaires
	6 Results
	7 Observations
	8 Concluding Remarks
	References

	A Model-Driven Approach to Enhance Tool Interoperability Usingthe Theory of Models of Computation
	1 Introduction
	1.1 Problematic and Contribution
	1.2 Outline

	2 Background on Syntactic and Semantic Interoperability
	3 Systematic Approach to Identify the Relations between Tools at a Semantics Level
	3.1 Principles and Techniques
	3.2 Semantics Identification on the Rhapsody and Spear Design Flow

	4 Semantics Enrichments and Adaptations Using Cometa
	4.1 Adding Semantics Properties for the Design Flow
	4.2 Use Case: The Chirp Model
	4.3 Conclusion and Benefits

	5 Related Work
	6 Conclusion
	References

	Whiley: A Platform for Research in Software Verification
	1 Introduction
	2 Language Core
	3 Verification
	4 Compiler Architecture
	4.1 Intermediate Language
	4.2 Assertion Language
	4.3 Build System

	5 Conclusion
	References

	Method and Tool Support for ClassifyingSoftware Languages with Wikipedia
	1 Introduction
	2 ExploringWikipedia with WikiTax
	3 Explorative Study
	4 Conclusion
	References

	Language Analysis
	A Language Independent Task Engine for Incremental Name and Type Analysis
	1 Introduction
	2 Name and Type Analysis
	3 Semantic Index
	4 Deferred Analysis Tasks
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	A Generic Framework for Symbolic Execution
	1 Introduction
	2 A Simple Imperative Language and Its Definition in
	3 The Ingredients of a Language Definition
	4 Symbolic Semantics by Language Transformation
	4.1 Extending the Signature Σ to a Symbolic Signature Σs
	4.2 Extending the Model T to a Symbolic Model T s
	4.3 Turning the Concrete Rules S into Symbolic Rules Ss
	4.4 Defining the Symbolic Transition System

	5 Relating the Concrete and Symbolic Semantics of L
	6 Implementation
	6.1 Symbolic Execution within the K Framework
	6.2 Use Cases
	6.3 The Implementation of the Tool

	7 Conclusion and Future Work
	References

	Circular Higher-Order Reference Attribute Grammars
	1 Introduction
	2 Preliminaries
	2.1 Attribute Grammars
	2.2 Reference Attributes
	2.3 Non-terminal Attributes
	2.4 Circular Attributes
	2.5 Rewrites

	3 Motivating Example
	4 Circular Non-terminal Attributes
	4.1 AST values
	4.2 Evaluation
	4.3 Revisiting Our Example

	5 Rewrites as Circular Non-terminal Attributes
	5.1 Considering Children as Attributes
	5.2 Mapping Rewrites to Circular Non-terminal Attributes
	5.3 Mapping Circular NTAs to Rewrites

	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Meta- and Megamodelling
	Mapping-Aware Megamodeling: Design Patterns and Laws
	1 Introduction
	2 Models, Mappings and Model Overlap
	2.1 Elementary Blocks: Models
	2.2 Elementary Blocks: Model Mappings
	2.3 Model Overlap and Consistency

	3 Model Transformations
	3.1 Descriptive Views
	3.2 Prescriptive Views
	3.3 Model Transformations
	3.4 Workflow Example Revisited

	4 Beyond Simple Examples
	4.1 Beyond Simple Graphs
	4.2 Beyond Simple Constraints
	4.3 Beyond Simple Correspondence Mappings: Queries

	5 Related Work
	6 Conclusion
	References

	Partial Instances via Subclassing
	1 Introduction
	2 Requirements Elicitation with Partial Instances: An Example
	2.1 Completion under the Closed World Assumption
	2.2 Completion under the Open World Assumption

	3 Modeling Partial Examples with Subclassing
	3.1 Extension under the CWA
	3.2 Extension under the OWA
	3.3 Encoding Partial Instances as Class Diagrams

	4 Partial Instantiation as Subclassing
	4.1 Formal Class Diagrams and Their Extensions
	4.2 Partial Instances and Their Completion
	4.3 Partial Object Diagrams via Class Diagrams

	5 Related Work
	6 Conclusion and Future Work
	References

	Reifying Concurrency for Executable Metamodeling
	1 Introduction
	2 Ingredients of a Concurrency-Aware Executable DSML
	2.1 Background Knowledge
	2.2 Language Units Identification
	2.3 Reifying Language Units Coordination

	3 A Language Workbench to Design and Implement Concurrency-Aware Executable DSMLs
	3.1 Abstract Syntax Design
	3.2 Domain Specific Actions Design
	3.3 Model of Computation Design
	3.4 Domain Specific Event Design
	3.5 Execution Engine

	4 Demonstration and Discussion: Using TFSM on Concurrent Road Traffic Lights
	5 Related Work
	6 Conclusion and Perspectives
	References

	Author Index

