
Chapter 9
On Hodges and Lehmann’s “6/π Result”

Marc Hallin, Yvik Swan and Thomas Verdebout

9.1 Introduction

The Pitman asymptotic relative efficiency AREf (φ1/φ2) under density f of a test φ1

with respect to a test φ2 is defined as the limit (when it exists), as n1 tends to infinity,
of the ratio n2;f (n1)/n1 of the number n2;f (n1) of observations it takes for the test
φ2, under density f , to match the local performance of the test φ1 based on n1

observations. That concept was first proposed by Pitman in the unpublished lecture
notes (Pitman 1949) he prepared for a 1948–1949 course at Columbia University. The
first published rigorous treatment of the subject was by Noether (1955). A similar
definition applies to point estimation; see, for instance, Hallin (2012) for a more
precise definition. An in-depth treatment of the concept can be found in Chap. 10 of
Serfling (1980), Chap. 14 of van der Vaart (1998), or in the monograph by Nikitin
(1995).

The study of the AREs of rank tests and R-estimators with respect to each other
or with respect to their classical Gaussian counterparts has produced a number of
interesting and sometimes surprising results. Considering the van der Waerden or
normal-score two-sample location rank test φvdW and its classical normal-theory
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competitor, the two-sample Student test φN , Chernoff and Savage in (1958) estab-
lished the rather striking fact that, under any density f satisfying very mild regularity
assumptions,

AREf (φvdW/φN ) ≥ 1, (9.1)

with equality holding at the Gaussian density f = φ only. That result implies that
rank tests based on Gaussian scores (that is, the two-sample rank-based tests for
location, but also the one-sample signed-rank ones, traditionally associated with the
names of van der Waerden, Fraser, Fisher, Yates, Terry and/or Hoeffding—for sim-
plicity, in the sequel, we uniformly call them van der Waerden tests)—asymptotically
outperform the corresponding everyday practice Student t test; see Chernoff and
Savage (1958). That result readily extends to one-sample symmetric and m-sample
location, regression, and analysis of variance models with independent noise.

Another celebrated bound is the one obtained in 1956 by Hodges and Lehmann,
who proved that, denoting by φW the Wilcoxon test (same location and regression
problems as above),

AREf (φW/φN ) ≥ 0.864, (9.2)

which implies that the price to be paid for using rank-rank or signed-rank tests of
the Wilcoxon type (that is, logistic-score-based rank tests) instead of the traditional
Student ones never exceeds 13.6 % of the total number of observations. That bound
moreover is sharp, being reached under the Epanechnikov density f . On the other
hand, the benefits of considering Wilcoxon rather than Student can be arbitrarily
large, as it is easily shown that the supremum over f of AREf (φW/φN ) is infinite;
see Hodges and Lehmann (1956).

Both (9.1) and (9.2) created quite a surprise in the statistical community of the late
1950s, and helped dispelling the wrong idea, by then quite widespread, that rank-
based methods, although convenient and robust, could not be expected to compete
with the efficiency of traditional parametric procedures.

Chernoff–Savage and Hodges–Lehmann inequalities since then have been ex-
tended to a variety of more general settings. In the elliptical context, optimal
rank-based procedures for location (one and m-sample case), regression, and scatter
(one and m-sample cases) have been constructed in a series of papers by Hallin and
Paindaveine (2002a, 2006, and 2008b), based on a multivariate concept of signed
ranks. The Gaussian competitors there are of the Hotelling, Fisher, or Lagrange mul-
tiplier forms. For all those tests, Chernoff–Savage result, similar to (9.1) have been
established (see also Paindaveine 2004, 2006). Hodges–Lehmann results also have
been obtained, with bounds that, quite interestingly, depend on the dimension of the
observation space: see Hallin and Paindaveine (2002a).

Another type of extension is into the direction of time series and linear rank
statistics of the serial type. Hallin (1994) extended Chernoff and Savage’s result
(9.1) to the serial context by showing that the serial van der Waerden rank tests also
uniformly dominate their Gaussian competitors (of the correlogram-based portman-
teau, Durbin–Watson or Lagrange multiplier forms). Similarly, Hallin and Tribel
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(2000) proved that the 0.864 upper bound in (9.2) no longer holds for the AREs of
the Wilcoxon serial rank test with respect to their Gaussian competitors, and is to be
replaced by a slightly lower 0.854 one. Elliptical versions of those results are derived
in Hallin and Paindaveine (2002a, 2004, 2005).

Now, AREs with respect to Gaussian procedures such as t-tests are not always
the best evaluations of the asymptotic performances of rank-based tests. Their exis-
tence indeed requires the Gaussian procedures to be valid under the density f under
consideration, a condition which places restrictions on f that may not be satisfied.
When the Gaussian tests are no longer valid, one rather may like to consider AREs of
the form

AREf (φJ /φK ) = 1/AREf (φK/φJ ) (9.3)

comparing the asymptotic performances (underf ) of two rank-based testsφJ andφK ,
based on score-generating functions J and K , respectively. Being distribution-free,
rank-based procedures indeed do not impose any validity conditions on f , so that
AREf (φJ /φK ) in general exists under much milder requirements on f ; see, for
instance, Hallin et al. (2011) and Hallin (2013), where AREs of the form (9.3) are
provided for rank-based methods in linear models with stable errors under which
Student tests are not valid.

Obtaining bounds for AREf (φJ /φK ), in general, is not as easy as for AREs of the
form AREf (φJ /φN ). The first result of that type was established in 1961 by Hodges
and Lehmann, who in (Hodges and Lehmann 1961) show that

0 ≤ AREf (φW/φvdW) ≤ 6/π ≈ 1.910 (9.4)

or, equivalently,

0.524 ≈ π/6 ≤ AREf (φvdW/φW) ≤ ∞ (9.5)

for all f in some class F of density functions satisfying weak differentiability
conditions. Hodges and Lehmann moreover exhibit a parametric family of densi-
ties FHL = {fα|α ∈ [0,∞)} for which the functionα �→ AREfα (φW/φvdW) achieves
any value in the open interval (0, 6/π) (α �→ AREfα (φvdW/φW) achieves any value
in the open interval (π/6,∞)). The lower and upper bounds in (9.4) and (9.5) thus are
sharp in the sense that they are the best possible ones. The same result was extended
and generalized by Gastwirth (1970).

Note that, in case f has finite second-order moments (so that AREf (φW/φN )
is well defined), since AREf (φvdW/φN ) = AREf (φvdW/φW) × AREf (φW/φN ),
Hodges and Lehmann’s “6/π result” implies that the ARE of the van der Waerden
tests with respect to the Student ones, which by the Chernoff–Savage inequality is
larger than or equal to one, actually can be arbitrarily large, and that this happens for
the same types of densities as for the Wilcoxon tests. This is an indication that, when
Wilcoxon is quite significantly outperforming Student, that performance is shared
by a broad class of rank-based tests and R-estimators, which includes the van der
Waerden ones.
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In Sect. 9.2, we successively consider the traditional case of nonserial rank
statistics used in the context of location and regression models with independent
observations, and the case of serial rank statistics; the latter involve ranks at time t

and t−k, say, and aim at detecting serial dependence among the observations. Serial
rank statistics typically involve two score functions and, instead of (9.3), yield AREs
of the form

ARE∗
f (φJ1,J2/φJ3,J4 ). (9.6)

To start with, in Sect. 9.2.1, we revisit Gastwirth’s classical nonserial results.
More precisely, we provide (Proposition 2) a slightly different proof of the main
proposition in Gastwirth (1970), with some further illustrations in the case of Stu-
dent scores. In Sect. 9.2.2, we turn to the serial case, with special attention for
the so-called Wilcoxon–Wald–Wolfowitz, Kendall, and van der Waerden rank au-
tocorrelation coefficients. Serial AREs of the form (9.6) typically are the product
of two factors to which the nonserial techniques of Sect. 9.2.1 separately apply;
this provides bounds which, however, are not sharp. Therefore, in Sect. 9.3, we re-
strict to a few parametric families—the Student family (indexed by the degrees of
freedom), the power-exponential family, or the Hodges–Lehmann family FHL—for
which numerical values are displayed.

9.2 Asymptotic Relative Efficiencies of Rank-Based Procedures

The asymptotic behavior of rank-based test statistics under local alternatives, since
Hájek and Šidák (1967), is obtained via an application of Le Cam’s Third Lemma
(see, for instance, Chap. 13 of van der Vaart 1998). Whether the statistic is of the
serial or the nonserial type, the result, under a density f with distribution function F

involves integrals of the form

K(J ) :=
∫ 1

0
J 2(u)du K(J , f ) :=

∫ 1

0
J (u)ϕf (F−1(u))du,

and, in the serial case,

J (J , f ) :=
∫ 1

0
J (u)F−1(u)du

where, assuming that f admits a weak derivative f′, ϕf := −f′/f is such that the
Fisher information for location I(f ) := ∫ 1

0 ϕ2
f (F−1(u))du is finite. Denote by F the

class of such densities. If local alternatives, in the serial case, are of the ARMA type,
f is further restricted to the subset F2 of densities f ∈ F having finite second-order
moments. Differentiability in quadratic mean of f 1/2 is the standard assumption here,
see Chap. 7 of van der Vaart (1998); but absolute continuity of f in the traditional
sense, with a.e. derivative f′, is sufficient for most purposes. We refer to Hájek and
Šidák (1967) and Hallin and Puri (1994) for details in the nonserial and the serial
case, respectively.



9 On Hodges and Lehmann’s “6/π Result” 141

9.2.1 The Nonserial Case

In location or regression problems, or, more generally, when testing linear constraints
on the parameters of a linear model (this includes ANOVA etc.), the ARE, under
density f ∈ F , of a rank-based test φJ1 based on the square-summable score-
generating function J1 with respect to another rank-based test φJ2 based on the
square-summable score-generating function J2 takes the form

AREf

(
φJ1/φJ2

) = K(J2)

K(J1)
C2

f (J1, J2), with Cf (J1, J2) := K(J1, f )

K(J2, f )
, (9.7)

provided that J1 and J2 are monotone, or the difference between two monotone
functions. Those ARE values readily extend to the m-sample setting, and to R-
estimation problems. In a time-series context with innovation density f ∈ F2, and
under slightly more restrictive assumptions on the scores, they also extend to the
partly rank-based tests and R-estimators considered by Koul and Saleh in (1993) and
(1995).

Gastwirth (1970) has based his analysis of (9.7) on an integration by parts of
the integral in the definition of K(J , f ). If both J1 and J2 are differentiable, with
derivatives J′1 and J′2, respectively, and provided that f is such that

lim
x→∞ J1(F (x))f (x) = 0 = lim

x→∞ J2(F (x))f (x),

integration by parts in those integrals yields, for (9.7),

AREf

(
φJ1/φJ2

) = K(J2)

K(J1)

(∫∞
−∞ J′1(F (x))f 2(x)dx
∫∞
−∞ J′2(F (x))f 2(x)dx

)2

. (9.8)

In view of the Chernoff–Savage result (9.1), the van der Waerden score-genera-
ting function

J2(u) = JvdW(u) = �−1(u) (9.9)

(with u �→ �−1(u) the standard normal quantile function) may appear as a natu-
ral benchmark for ARE computations. From a technical point of view, under this
integration by parts approach, the Wilcoxon score-generating function

J2(u) = JW(u) = u − 1/2 (9.10)

(the Spearman–Wald–Wolfowitz score-generating function in the serial case) is more
appropriate, though. Convexity arguments indeed will play an important role, and,
being linear, JW is both convex and concave. Since J′W(u) = 1 and K(JW) = 1/12,
Eq. (9.8) yields

12AREf

(
φJ1/φW

) = 1

K(J1)

(∫∞
−∞ J′1(F (x))f 2(x)dx
∫∞
−∞ f 2(x)dx

)2

. (9.11)
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Bounds on J ′
1(F (x)) then readily yield bounds on AREs, irrespective of f .

That property of Wilcoxon scores is exploited in Propositions 2 and 3 for nonserial
AREs, in Proposition 4 for the serial ones; those bounds are mainly about AREs
of, or with respect to, Wilcoxon (Spearman–Wald–Wolfowitz) procedures, but not
exclusively so.

Assume that f ∈ F0 := {f ∈ F | limx→±∞ f (x) = 0}. Then, integration by
parts is possible in the definition of K(JW, f ), yielding

K(JW, f ) =
∫ ∞

−∞
f 2(x)dx.

Assume, furthermore, that the square-integrable score-generating function J1 (the
difference of two monotone increasing functions) is differentiable, with derivative J′1,
and that

f ∈ FJ1 := {f ∈ F0| lim
x→±∞ J1(F (x))f (x) = 0},

so that (9.8) holds. Finally, assume that J1 is skew-symmetric about 1/2. Defining
the (possibly infinite) constants

κ+
J := sup

u≥1/2

∣∣J′(u)
∣∣ and κ−

J := inf
u≥1/2

∣∣J ′(u)
∣∣ ,

we can always write

12AREf

(
φJ1/φW

) ≤ (κ+
J1

)2/K(J1) (9.12)

while, if J1 is non-decreasing (hence J′1 is non-negative), we further have

(κ−
J1

)2/K(J1) ≤ 12AREf

(
φJ1/φW

) ≤ (κ+
J1

)2/K(J1). (9.13)

The quantities appearing in (9.12) and (9.13) often can be computed explicitly,
yielding ARE bounds which are, moreover, sharp under certain conditions.

For example, if J1 is convex on [1/2, 1), its derivative J′1 is non-decreasing
over [1/2, 1), so that

κ−
J1

= J′1(1/2) ≥ 0 and κ+
J1
= lim

u→1
J ′

1(u) ≤ +∞. (9.14)

It follows that, under the assumptions made,

(J′1(1/2))2/K(J1) ≤ 12AREf

(
φJ1/φW

) ≤ ( lim
u→1

J ′
1(u))2/K(J1). (9.15)

The lower bound in (9.15) is established in Theorem 2.1 of Gastwirth (1970).
The double inequality (9.15) holds, for instance (still, under f ∈ FJ1 ), when the

scores J1 = ϕg ◦ G−1 are the optimal scores associated with some symmetric and
strongly unimodal density g with distribution function G; such densities indeed are
log-concave and have monotone increasing, convex over [1/2, 1) score functions.
Symmetric log-concave densities take the form

g(x) = Ke−μ(x), K−1 =
∫ ∞

−∞
e−μ(x)dx (9.16)
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with x �→ μ(x) a convex, even (that is, μ(x) = μ( − x)) function; assume it to be
twice differentiable, with derivatives μ′ and μ′′. Then, ϕg(x) = μ′(x), so that

J1(u) := ϕg(G−1(u)) = μ′(G−1(u)), K(J1)=
∫ ∞

−∞
(μ′(x))2 g(x)dx = I(g)

where I(g) the Fisher information of g (which we assume to be finite), and

J′1(u) = μ′′(G−1(u))/g(G−1(u)), hence J′1(1/2) = μ′′(0)

g(0)
= μ′′(0)

K
.

Specializing (9.15) to this situation, we obtain the following proposition.

Proposition 1. If the square-integrable score-generating function J1 is of the form
ϕg ◦G−1 with g given by (9.16), μ even, convex, and twice differentiable, then, under
any f ∈ FJ1 ,

(
μ′′(0)

K

)2

≤ 12 I(g)AREf (φJ1/φW) ≤ ( lim
u→1

J′1(u))2 = ( lim
x→∞ (μ′′(x)/g(x))2.

(9.17)

With μ(x) = x2/2 (so that K−1 = √
2π ) in (9.16), g is the standard Gaussian

density; μ′′(0) = 1, I(g) = 1, and the lower bound in (9.17) becomes (μ′′(0)/K)2 =
2π , whereas the upper bound is trivially infinite. This yields the Hodges–Lehmann
result (9.4).

Turning back to (9.12) and (9.13), but with J1 concave (and still nondecreasing)
on [1/2, 1), J′1 is nonincreasing, so that κ+

J1
= J′1(1/2) and

12AREf

(
φJ1/φW

) ≤ (J′1(1/2))2/K(J1). (9.18)

Not much can be said on the lower bound, though, without further assumptions
on the behavior of J1 around u = 1.

Replacing, for various score-generating functions J1 and densities f , the quanti-
ties appearing in (9.12), (9.15) or (9.18) with their explicit values provides a variety
of bounds of the Hodges–Lehmann type. Below, we consider the van der Waerden
tests φvdW, based on the score-generating function (9.9) and the Cauchy-score rank
tests φCauchy, based on the score-generating function

JCauchy(u) = sin (2π (u − 1/2)). (9.19)

Proposition 2. For all symmetric densities f in FvdW, FCauchy and FvdW
⋂

FCauchy,
respectively,

(1) AREf (φW/φvdW) ≤ 6/π ;
(2) AREf (φCauchy/φW) ≤ 2π2/3;
(3) AREf (φCauchy/φvdW) ≤ 4π .
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Proof. The van der Waerden score (9.9) is strictly increasing, and convex
over[1/2, 1). One readily obtains

K(JvdW) = 1 and J′vdW(u) = √
2π exp{(�−1(u))2/2},

hence κ−
vdW = J′vdW(1/2) = √

2π . Plugging this into the left-hand side inequality
of (9.15) yields (1). Alternatively one can directly apply (9.17).

The Cauchy score is concave over [1/2, 1), but not monotone (being of bounded
variation, however, it is the difference of two monotone function). Direct inspection
of (9.19) nevertheless reveals that

K(JCauchy) = 1/2 and J′Cauchy(u) = 2π cos (2π (u − 1/2)),

hence κ+
Cauchy = J′Cauchy(1/2) = 2π . Substituting this in (9.12) yields (2). The product

of the upper bounds in (1) and (2) yields (3). �

Remarkably, those three bounds are sharp. Indeed, numerical evaluation shows
that they can be approached arbitrarily well by taking extremely heavy-tails such as
those of stable densities fα with tail index α → 0, Student densities with degrees
of freedom ν → 0, or Pareto densities with α → 0; see also the family FHL of
densities fa,ε(x) defined in Eq. (9.24).

Figure 9.1 provides plots of AREf (φW/φvdW) and AREf (φCauchy/φvdW) for var-
ious densities. Inspection of those graphs shows that both AREs are decreasing as
the tails become lighter; the sharpness of bounds (1) and (3), hence also that of
bound (2), is graphically confirmed.

The bounds proposed in Proposition 2 are not new, and have been obtained already
in Gastwirth (1970). One would like to see similar bounds for other score functions,
such as the Student ones

Jtν (u) = (ν + 1)F−1
tν

(u)/(ν + F−1
tν

(u)2) 0 < u < 1

= 1 + ν√
ν

√

−1 + 1

IBν(1 − 2u)
IBν(1 − 2u) 1/2 ≤ u < 1 (9.20)

where IBν(v) denotes the inverse of the regularized incomplete beta function
evaluated at (1, v, ν/2, 1/2) and F−1

tν
stands for the Student quantile function with ν

degrees of freedom. Note that limv→−1 IBν(v) = 0, so that limu→1 Jtν (u) = 0.
Since Jtν (1/2) = 0 and J′tν (1/2) > 0, this means that, on [1/2, 1), Jtν is a
redescending function; in general, it is neither convex nor concave on [1/2, 1).

Differentiating (9.20), we get, for u ≥ 1/2,

J ′
tν

(u) =
√
π (ν + 1)�

(
ν
2

)

√
ν�
(
ν+1

2

) (−1 + 2IBν(1 − 2u)) IBν(1 − 2u)
1−ν

2 , (9.21)
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Fig. 9.1 AREf (φW/φvdW) and AREf (φCauchy/φvdW) under various families of densities: symmetric
stable (indexed by their tail parameterα), Student-t (indexed by their degrees of freedom ν) or Pareto
(indexed by their shape parameter α)

from which we deduce that

lim
u→1

J′tν (u) =
⎧
⎨

⎩

0 0 < ν < 1
−2π ν = 1
−∞ 1 < ν .

Except for the ν = 1 case, which is covered by (2) and (3) in Proposition 2, these
values do not provide exploitable values for κ+. For ν < 1, however, one can check
from (9.21) that maxu≥1/2|J′(x)| = J′(1/2), so that

κ+
Jtν

= −√
π (ν + 1)�

(ν
2

)/√
ν �

(
ν + 1

2

)
.

Elementary, though somewhat tedious, algebra yields

K(Jtν ) = (ν + 1)/(ν + 3).

Plugging this into (9.12), we obtain, for ν ≤ 1, the following additional bounds.

Proposition 3. For all 0 < ν ≤ 1 and all symmetric density f in FJtν
and

FJtν

⋂
FJvdW , respectively,

(4) AREf (φtν /φW) ≤ π�2( ν2 )(ν + 3)(ν + 1)/12ν�2( ν+1
2 ), and

(5) AREf (φtν /φvdW) ≤ �2( ν2 )(ν + 3)(ν + 1)/2ν�2( ν+1
2 ).

Inequality (4) is sharp, the bound being achieved, in the limit, under very heavy tails
(stable densities with α ↓ 0, or Student-tμ densities with μ ↓ 0). Since this is also
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the case, under the same sequences of densities, for inequality (1) in Proposition 2,
inequality (5) is sharp as well. The upper bounds (4) and (5) are both decreasing
functions of the tail index ν; both are unbounded at the origin, and both converge to
the corresponding Cauchy values as ν → 1.

9.2.2 The Serial Case

Until the early 1980s, and despite some forerunning time-series applications such
as Wald and Wolfowitz (1943) (published as early as 1943—two years before Frank
Wilcoxon’s pathbreaking 1945 paper), rank-based methods had been essentially lim-
ited to statistical models involving univariate independent observations. Therefore,
the traditional ARE bounds (Hodges and Lehmann 1956, 1961), Chernoff–Savage
(1958) or Gastwirth (1970), as well as the classical monographs (Hájek and Šidáak
1967; Randles and Wolfe 1979; Puri and Sen 1985, to quote only a few) mainly deal
with univariate location and single-output linear (regression) models with indepen-
dent observations. The situation since then has changed, and rank-based procedures
nowadays have been proposed for a much broader class of statistical models, in-
cluding time-series problems, where serial dependencies are the main features under
study.

In this section, we focus on the linear rank statistics of the serial type involving
two square-integrable score functions. Those statistics enjoy optimality properties
in the context of linear time series (ARMA models; see Hallin and Puri 1994 for
details). Once adequately standardized, those statistics yield the so-called rank-
based autocorrelation coefficients that are denoted by R(n)

1, . . . ,R(n)
n, the ranks in

a triangular array X(n)
1, . . . ,X(n)

n of observations. Rank autocorrelations (with lag
k) are linear serial rank statistics of the form

tr∼
(n)

J1J2;k
:= [(n− k)−1

n∑

t=k+1

J1
( R

(n)
t

n+ 1

)
J2
( R(n)

t−k

n+ 1

)−m
(n)
J1J2

]
(s

(n)
J1J2

)−1,

where J1 and J2 are (square-integrable) score-generating functions, whereas m
(n)
J1J2

and s
(n)
J1J2

:= s
(n)
J1J2;k denote the exact mean of J1

(R(n)
t

n+1

)
J2
(R(n)

t−k

n+1

)
and the exact standard

error of (n−k)− 1
2
∑n

t=k+1J1
(R(n)

t

n+1

)
J2
(R(n)

t−k

n+1

)
under the assumption of i.i.d.X(n)

t ’s (more

precisely, exchangeableR(n)
t ’s), respectively; we refer to pages 186 and 187 of Hallin

and Puri (1994) for explicit formulas. Signed-rank autocorrelation coefficients are
defined similarly; see Hallin and Puri (1992) or Hallin and Puri (1994).

Rank and signed-rank autocorrelations are measures of serial dependence offering
rank-based alternatives to the usual autocorrelation coefficients, of the form

r
(n)
k :=

n∑

t=k+1

XtXt−k/

n∑

t=1

X2
t ,

which consitute the Gaussian reference benchmark in this context. Of particular
interest are
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(i) the van der Waerden autocorrelations (Hallin and Puri 1988)

r∼
(n)

vdW;k
:= [(n− k)−1

n∑

t=k+1

�−1
( R

(n)
t

n+ 1

)
�−1

( R(n)
t−k

n+ 1

)−m
(n)
vdW

]
(s

(n)
vdW)−1,

(ii) the Wald-Wolfowitz or Spearman autocorrelations (Wald and Wolfowitz 1943)

r∼
(n)

SWW;k
:= [(n− k)−1

n∑

t=k+1

R
(n)
t R

(n)
t−k −m

(n)
SWW

]
(s

(n)
SWW)−1,

(iii) and the Kendall autocorrelations (Ferguson et al. 2000, where explicit values
of m(n)

K and s
(n)
K are provided)

r∼
(n)

K;k
:= [1 − 4D(n)

k

(n− k)(n− k − 1)
−m

(n)
K

]
(s

(n)
K )−1

with D
(n)
k denoting the number of discordances at lag k, that is, the number of

pairs (R(n)
t ,R(n)

t−k) and (R(n)
s ,R(n)

s−k) that satisfy either

R
(n)
t < R(n)

s and R
(n)
t−k > R

(n)
s−k , or R

(n)
t > R(n)

s and R
(n)
t−k < R

(n)
s−k;

more specifically, D(n)
k :=∑n

t=k+1

∑n
s=t+1 I (R(n)

t < R(n)
s , R(n)

t−k > R
(n)
s−k).

The van der Waerden autocorrelations are optimal—in the sense that they allow
for locally optimal rank tests in the case of ARMA models with normal innovation
densities. The Spearman and Kendall autocorrelations are serial versions of Spear-
man’s rho and Kendall’s tau, respectively, and are asymptotically equivalent under
the null hypothesis of independence; although they are never optimal for any ARMA
alternative, they achieve excellent overall performance. Signed rank autocorrelations
are defined in a similar way.

Let Ji , i = 1, . . . , 4 denote four square-summable score functions, and assume
that they are monotone increasing, or the difference between two monotone increas-
ing functions (that assumption tacitly will be made in the sequel each time AREs
are to be computed). Recall that F2 denotes the subclass of densities f ∈ F having
finite moments of order two. The asymptotic relative efficiency, under innovation
density f ∈ F2, of the rank-based tests φr

J1J2
based on the autocorrelations r

(n)
∼J1J2;k

with respect to the rank-based tests φr
J3J4

based on the autocorrelations r(n)
∼ J3J4;k is

ARE∗
f (φr

J1J2
/φr

J3J4
)

= K(J3)

K(J1)

(∫ 1
0 J1(v)ϕf (F−1(v))dv
∫ 1

0 J3(v)ϕf (F−1(v))dv

)2
K(J4)

K(J2)

(∫ 1
0 J2(v)F−1(v)dv
∫ 1

0 J4(v)F−1(v)dv

)2

= K(J3)

K(J1)
C2

f (J1, J3)
K(J4)

K(J2)
D2

f (J2, J4) (9.22)
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with Cf (J1, J3) := K(J1, f )/K(J3, f ) and Df (J2, J4) := J (J2, f )/J (J4, f ).
The Cf ratios have been studied in Sect. 9.2.1, and the same conclusions apply

here; as for the Df ratios, they can be treated by similar methods.
Denote by φr

vdW, φr
SWW, . . . the tests based on r

(n)
∼ vdW;k , r(n)

∼ SWW;k , etc. The serial
counterpart of AREf (φW/φJ1 ) is ARE∗

f (φr
SWW/φr

J1J2
), for which the following result

holds.

Proposition 4. Let the score functions J1 and J2 be monotone increasing, skew-
symmetric about 1/2, and differentiable, with strictly positive J′1(1/2) and J′2(1/2).
Suppose that f ∈ F2

⋂
FJ1

⋂
FJ2 is a symmetric probability density function. Then,

(1) if J1 and J2 are convex on [1/2, 1),

ARE∗
f (φr

SWW/φr
J1J2

) = ARE∗
f (φr

K/φ
r
J1J2

) ≤ 144
K(J1)K(J2)

(J′1(1/2) J′2(1/2))2
;

(2) if J1 and J2 are concave on [1/2, 1),

ARE∗
f (φr

J1J2
/φr

SWW) = ARE∗
f (φr

J1J2
/φr

K) ≤ 1

144

(J′1(1/2) J′2(1/2))2

K(J1)K(J2)
.

Proof. In view of (9.7), we have

ARE∗
f (φr

SWW/φr
J1J2

) = AREf (φW/φJ1 )
K(J2)

K(JW )

(∫ 1
0 (v − 1/2)F−1(v)dv
∫ 1

0 J2(v)F−1(v)dv

)2

.

Consider part (1) of the proposition. It follows from (9.13) that

AREf (φW/φJ1 ) ≤ 12 K(J1)/(J′1(1/2))2.

Since J2 is convex over [1/2, 1), J2(u) ≥ J′2(1/2)(u − 1/2) for all u ∈ [1/2, 1),
so that
∫ 1

0
J2(v)F−1(v)dv = 2

∫ 1

1/2
J2(v)F−1(v)dv ≥ J′2(1/2)

∫ 1

1/2
(v − 1/2)F−1(v)dv.

It follows that

K(J2)

K(JW )

(∫ 1
0 (v − 1/2)F−1(v)dv
∫ 1

0 J2(v)F−1(v)dv

)2

≤ 12 K(J2)

(J′2(1/2))2
,

where the assumption of finite variance is used. Part (1) of the result follows. A similar
argument holds (with reversed inequalities) if J2 is concave, yielding part (2).

Applying this result to the score functions J1(u) = J2(u) = �−1(u) (convex
over [1/2, 0)) for which J′1(1/2) = J′2(1/2) = √

2π and K(J1) = K(J2) = 1, we
readily obtain the following serial extension of Hodges and Lehmann’s “6/π result”:

ARE∗
f (φr

SWW/φr
vdW) = ARE∗

f (φr
K/φ

r
vdW) ≤ (6/π )2. (9.23)
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Table 9.1 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under densities fa,ε in the Hodges–Lehmann family FHL (see (9.24)), for various values of ε and
a → 0

ε Cf Df AREf ARE∗
f

0 0.398942 0.282070 1.90986 1.82346
0.2 0.396313 0.276619 1.88476 1.73062
0.4 0.388772 0.271848 1.81372 1.60844
0.6 0.377291 0.271061 1.70818 1.50608
1 0.348213 0.287973 1.45503 1.44796
2 0.294160 0.303085 1.03836 1.14461
3 0.282852 0.285646 0.960064 0.940023
10 0.282095 0.282095 0.954930 0.911891
100 0.282095 0.282095 0.954930 0.911891

An important difference, though, is that the bound in (9.23) is unlikely to be
sharp. Section 9.3 provides some numerical evidence of that fact, which is hardly
surprising; while the ratio Cf (JvdW, JW) is maximized for densities putting all their
weight about the origin, this no longer holds true for Df (JvdW, JW). In particular,
the sequences of densities considered in Hodges and Lehmann (1961) or Gastwirth
(1970) along which Cf (JvdW, JW) tends to its upper bound typically are not the same
as those along which Df (JvdW, JW) does.

9.3 Some Numerical Results

In this final section, we provide numerical values of AREf (φW/φvdW) (denoted as
AREf in the sequel) and ARE∗

f (φr
SWW/φr

vdW) (denoted as ARE∗
f in the sequel) under

various families of distributions.
First, let us give some ARE values under Gaussian densities: if f = φ, we obtain

Cφ(JW, JvdW) = Dφ(JW, JvdW) = 1

2
√
π

≈ 0.28209

so that

AREφ(φW/φvdW) = 3

π
≈ 0.95493

and

ARE∗
φ(φr

SWW/φr
vdW) = 9

π2
≈ 0.91189.

Tables 9.1, 9.2, and 9.3 provide numerical values of AREf and ARE∗
f under

(1) (Table 9.1) The two-parameter family FHL of densities fa,ε associated with the
distribution functions

Fa,ε(x) =
{

�(x) if 0 ≤ x ≤ ε

�(ε + a(x − ε)) if ε < x
(9.24)
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Table 9.2 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under Student-t densities with various degrees of freedom ν

ν Cf Df AREf ARE∗
f

0.1 0.394451 – 1.86710 –
1 0.343120 – 1.41277 –
2 0.321212 0.243196 1.23813 0.878736
4 0.304695 0.269173 1.11407 0.968623
6 0.297953 0.274541 1.06531 0.963551
8 0.294303 0.276784 1.03937 0.955507
10 0.292017 0.278005 1.02329 0.949042
100 0.283146 0.281737 0.962059 0.916370

Table 9.3 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under Student-t densities with various degrees of freedom ν

α Cf Df AREf ARE∗
f

0.1 0.393903 0.175222 1.86191 0.685991
1 0.313329 0.2720600 1.1781 1.046388
2 0.282095 0.2820950 0.954930 0.911893
10 0.222095 0.2934363 0.591916 0.611600
100 0.168549 0.2953577 0.340904 0.356871

where Fa,ε(x) is defined by symmetry for x ≤ 0 (this family of distributions,
which has been used by Hodges and Lehmann (1961), is such that the nonserial
6/π bound is achieved, in the limit, as both a and ε go to zero),

(2) (Table 9.2) The family FStudent of Student densities with degrees of freedom
ν > 0, and

(3) (Table 9.3) The family Fe of power-exponential densities, of the form

fα(x) := e−|x|α

2�(1 + 1/α)
x ∈ R, α > 0. (9.25)

All tables seem to confirm the same findings: both the serial and the nonerialAREs
are monotone in the size of the tails, with the nonserial AREf attaining its maximal
value (6/π ≈ 1.90986) under heavy-tailed f densities, while the maximal value
for the serial ARE∗

f lies somewhere around (6/π )(3/π ) ≈ 1.82346. Inspection of
Table 9.1 reveals that, although the limit ofCf as a → 0 is monotone in the parameter
ε, the ratio Df is not; from Table 9.3, the highest values of Df under the distribution
(9.24) are attained for a → ∞ and ε ≈ 0.

Under Student densities f = ftν , the nonserial AREf is decreasing with ν, taking
value 1.41277 at the Cauchy (ν = 1), value one about ν = 15.42 (a value of ν

that is not shown in the figure; Wilcoxon is thus outperforming van der Waerden up
to ν = 15 degrees of freedom, with van der Waerden taking over from ν = 16 on),
and tending to the Gaussian value 0.95493 as ν → ∞; the serial ARE∗

f is undefined
for ν ≤ 2, increasing for small values of ν, from an infimum of 0.878736 (obtained
as ν ↓ 2) up to a maximum of 0.968852 (reached about ν = 4.24), then slowly
decreasing to the Gaussian value 0.911891 as ν → ∞. Sperman–Wald–Wolfowitz
and Kendall thus never outperform van der Waerden autocorrelations under Student
densities.



9 On Hodges and Lehmann’s “6/π Result” 151

non serial ARE 
3.

0
2.

5
2.

0
1.

5
1.

0
0.

5
0.

0
serial ARE 

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

a->0
a=0.5
a=10
a=20
a=50
a=100
a->inf
6/pi

a->0
a=0.5
a=10
a=20
a=50
a=100
a->inf
(6/pi)*(3/pi)

0 1 2 3 4 0 1 2 3 4

Fig. 9.2 Nonserial AREf = AREf (φW/φvdW) (left plot) and serial ARE 
f = ARE∗

f (φr
SWW/φr

vdW)
(right plot) under densities fa,ε in the Hodges–Lehmann family FHL (see 9.24), as a function of
ε ∈ [0, 4]], for various choices of the parameter a

Power exponential distributionStudent distribution

non serial
serial

Fig. 9.3 Left plot: AREfν (φW/φvdW) and ARE 
fν

(φr
SWW/φr

vdW) for fν the Student distribution, as
a function of the degrees of freedom ν ∈ [2, 6]. Right plot: AREfα and ARE 

fα
for the power

exponential densities fα (9.25), as a function of the shape parameter α ∈ [0, 11]
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Under the double exponential densities f = fα , the nonserial AREf is decreasing
with α, with a supremum of 6/π (the Hodges–Lehmann bound, obtained as α ↓ 0),
and reaches value one about α = 1.7206 (similar local asymptotic performances
of Wilcoxon and van der Waerden, thus, occur at power-exponentials with parame-
ter α = 1.7206); the serial ARE∗

f is quite bad as α ↓ 0, then rapidly increasing for
small values of α, with a maximum of 1.08552 about α = 0.510, then deteriorating
again as α → ∞; for α larger than 3, the serial and nonserial AREs roughly coincide
(See figs. 9.2 and 9.3).
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