Chapter 7

Nonparametric Distribution-Free Model Checks
for Multivariate Dynamic Regressions

J. Carlos Escanciano and Miguel A. Delgado

7.1 Introduction

Parametric time series regression models continue being attractive among practi-
tioners because they describe, in a concise way, the relation between the response or
dependent variable and the explanatory variables. Much of the existing statistical lit-
erature is concerned with the parametric modelling in terms of the conditional mean
function of aresponse variable Y; € R, given some conditioning variable attime # — 1,
I,_; eR? deN, say. More precisely, let Z, € R", m € N, be a m-dimensional ob-
servable random variable (r.v) and W;_; = (Y;_1,...,Y;—s) € R®. The conditioning
set we consider attime f — 1 is given by [, = (Wl/_1 ,Z}),s0d = s+m. We assume
throughout the article that the time series process {(Y;, Z;)' : t = 0,%£1,£2,...} is
strictly stationary and ergodic. Henceforth, A" denotes the matrix transpose of A.

It is well-known that under integrability of Y;, we can write the tautological
expression

Yo = f(i—) + e,

where f(z) = E[Y; | I,_; = z], z € RY, is the conditional mean function almost
surely (a.s.) of Y, given I,_; = z,and ¢, = Y, —E[Y; | I,_] satisfies, by construction,
that Efe; | I,_1] =0 a.s.

Then, in parametric modelling one assumes the existence of a parametric family
of functions M = {f(-,0) : 8 € ® C R”} and considers the following regression
model

Yy = f(1i-1,0) + €(0), (7.1)
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with f([;_,60) a parametric specification for the conditional mean f(/;—;), and
{e;(®) : t+ = 0,+1,+£2,...} a sequence of r.v.’s, deviations of the model. Model
(7.1) includes classes of linear and nonlinear regression models and linear and non-
linear autoregression models, such as Markov-switching, exponential or threshold
autoregressive models, among many others (see Fan and Yao 2003).

The condition f(-) € M is tantamount to

Hy: Ele;(6y) | I,_1]1 =0 a.s. for some 8y € ® C R”.
We aim to test H against the alternative hypothesis
Hy: P(Ele,0) | ;11 #0) > 0,foralld € ® C R?,

where (€2, F, P) is the probability space in which all the r.v.’s of this article are
defined.

There is a vast literature on testing the correct specification of regression models.
In an independent and identically distributed (i.i.d) framework, some examples of
those tests have been proposed by Bierens (1982, 1990), Eubank and Spiegelman
(1990), Eubank and Hart (1992), Hardle and Mammen (1993), Horowitz and Hérdle
(1994), Hong and White (1995), Fan and Li (1996), Zheng (1996), Stute (1997),
Stute et al. (1998), Li and Wang (1998), Fan and Huang (2001), Horowitz and
Spokoiny (2001), Li (2003), Khamaladze and Koul (2004), Guerre and Lavergne
(2005) and Escanciano (2006a), to mention a few. Whereas, in a time series context
some examples are Bierens (1984), Li (1999), de Jong (1996), Bierens and Ploberger
(1997), Koul and Stute (1999), Chen et al. (2003), Stute et al. (2006) and Escanciano
(2006b, 2007). This extensive literature can be divided into two approaches. In
the first approach test statistics are based on nonparametric estimators of the local
measure of dependence E[e;(6y) | I,—1]. This local approach requires smoothing of
the data in addition to the estimation of the finite-dimensional parameter vector 6y, and
leads to less precise fits, see Hart (1997) for some review of the local approach when
d = 1. Tests within the local approach are in general asymptotic distribution-free
(ADF).

The second class of tests avoids smoothing estimation by means of an infinite
number of unconditional moment restrictions over a parametric family of functions,
i.e., it is based on the equivalence

Ele(00) | I-1]1 =0 a.s. <= Ele;(6p)w(l;-1,x)] =0,
almost everywhere (a.e.) in IT C RY, (7.2)

where IT C RY, g € N, is a properly chosen space, and the parametric family of
functions {w(-, x) : x € I1} is such that the equivalence (7.2) holds, see Stinchcombe
and White (1998) and Escanciano (2006b) for primitive conditions on the family
{w(-,x) : x € II} to satisfy this equivalence. We call the approach based on (7.2)
the “integrated approach”. In the integrated approach, test statistics are based on a
distance from the sample analogue of E[e,(6y)w(l;_1,x)] to zero. This integrated
approach is well known in the literature and was first proposed by Bierens (1982),
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who used the exponential function w(l,_1,x) = exp (ix'l,_), where i = /=1 de-
notes the imaginary unit, see also Bierens (1990) and Bierens and Ploberger (1999).
Stute (1997) using empirical process theory, proposed to use the indicator function
w(l;_1,x) = 1(Il;_; < x)in an i.i.d context. Stinchcombe and White (1998) empha-
sized that there are many other possibilities in the choice of w. Recently, Escanciano
(2006a) has considered in an i.i.d setup the family w(l,_y,x) = 1(8'l,_; < u),
x = (B, u) €Iy, where I, = S? x [ — 00, 00] is the auxiliary space with S¢ the
unit ball in R, i.e., S = {8 € R? : |B| = 1}. This new family combines the good
properties of exponential and indicator families and delivers a Cramér-von Mises
(CvM) test simple to compute and with excellent power properties in finite samples,
see Escanciano (2006a) for further details. Escanciano (2007) provides a unified the-
ory for specification tests based on the integrated approach for a general weighting
function w, including but not restricting to indicators and exponential families.

A tenet in the integrated approach is that the asymptotic null distribution of re-
sulting tests depends on the data generating process (DGP), the specified model and
generally on the true parameter 8. Consequently, critical values for integrated tests
have to be approximated with the assistance of resampling methods. In particular,
Escanciano (2007) justified theoretically a wild bootstrap method to approximate the
asymptotic critical values for general integrated-based tests. In contrast, Koul and
Stute (1999) avoided resampling procedures by means of a martingale transforma-
tion in the spirit of that initially proposed by Khamaladze (1981). However, Koul
and Stute’s setup was restricted to homocedastic autoregressive models of order 1.
Recently, Khamaladze and Koul (2004) have applied the martingale transform to
residual marked processes in multivariate regressions with i.i.d data, but the result-
ing test is not ADF since it depends on the joint distribution of regressors. The main
contribution of this article is to complement these approaches and extend them to het-
eroskedastic multivariate time series processes. We apply the martingale transform
coupled with the Rossenblatt’s transform on the multivariate regressors to get ADF
test free of the joint design distribution. We formally justify the effect of these trans-
formations on our test statistics using new asymptotic theory of function-parametric
empirical processes under martingale conditions. Finally, we compare via a Monte
Carlo experiment, our new model checks with existing bootstrap approximations.

The layout of the article is as follows. In Sect. 2 we present the ADF tests based on
continuous functionals of a martingale transform of the function-parametric residual
marked empirical process. We begin by establishing some heuristics for the martin-
gale transform. In Sect. 3 we establish the asymptotic distribution of our test under
the null. In Sect. 4 we compare the bootstrap approach with the martingale approach
via a Monte Carlo experiment. Proofs are deferred to an appendix.

A word on notation. In the sequel C is a generic constant that may change from one

expression to another. Throughout, | A| denotes the Euclidean norm of A. R’ denotes
the extended d-dimensional Euclidean space, i.e., @d = [ — o0,00]%. Let || X|| p be
the L,-normof ar.v X, ie., | XIl, = (E|X|")"/?, p > 1. Let Ny(e, H, |-l , ) be the
e-bracketing number of a class of functions H with respect to the norm |-[|,, i.e.,
the minimal number N for which there exist e-brackets {[/;, u;] : ||l iU ”,; <e,
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Hlj ||p < 00, ||uj ||p < o0, j =,1..., N} covering ‘H, see Definition 2.1.6 in van
der Vaart and Wellner (1996). Let €°°(H) be the metric space of all real-valued
functions that are uniformly bounded on . As usual, £*°(H) is endowed with the
supnorm, i.e., [|zllyy = sup,cy |2(h)| . Let = denote weak convergence on £*°(H),
see Definition 1.3.3 in van der Vaart and Wellner (1996). Throughout the article,
weak convergence on compacta in £°°(?) means weak convergence on £°°(C) for all

compact subsets C C H. Also iR and LA denote convergence in outer probability
and outer almost surely, respectively, see Definition 1.9.1 in Vaart and Wellner (1996).
The symbol — ; denotes convergence in distribution of Euclidean random variables.
All limits are taken as the sample size n — oo.

7.2 The Function-Parametric Residual Process
and the Martingale Transform

In view of a sample {(Y;,I/_;) : 1 <t < n}, and motivated from (7.2), we define
the function-parametric empirical process,

Ry(b,0) =n""7Y "e,(0)b(1; 1),

t=1

indexed by (b, 0) € B x ©, for a class of “check” functions B and a parameter space
®. Examples of B will be specified later. Two important processes associated to
R, (b,0) are the error-marked process R,(b) = R, (b,0y) and the residual-marked
process

Ry(D) = Ry(b,60,) = n~'*> e (0,)b(I,-1),

t=1

where 6, is a 1/n-consistent estimator for 8y (see Assumption A4 below). For con-
venience, we shall assume that B C Lz(ﬁd, G), the Hilbert space of all G -square
integrable measurable functions, where G(dx) = o>(x)F(dx), F(-) is the joint
cumulative distribution function (cdf) of I,_;, and o%() is the conditional error vari-
ance, i.e., 02(y) = E[e,2 | I,_1 = y]. As usual, Lz(ﬁd,G) is furnished with the
inner-product

(fog) = / F)gGdx).
]Rd

and the induced norm ||h|| = (h, h)'/?.

The aim of this section is to construct a suitable check space 3 such that the
process R;(b), with b € B, delivers tests based on test statistics, F(R,'l) say, which
are consistent and ADF. In this article we shall focus in a particular check space that



7 Nonparametric Distribution-Free Model Checks . . . 95

makes use of the martingale transformation proposed by Khmaladze (1981, 1993)
for the problem of goodness-of-fit tests of distributions.

Let g(Io.60) = (3/30")f(lo,60) and s(ly,00) = o 2(Ilp)g(lo,H) be the non-
standardized and standardized scores, respectively. From Theorem 1 in Sect. 3,
under the null hypothesis and some mild regularity conditions, we have the following
relation between R, (b) and R,ll (b), uniformly in b € B,

R} (b) = Ry(b) — (b,s")/n(6, — 00) + op(1). (7.3)

This relation gives us a clue about how to choose b for the test based on R},(b)
being ADF. Namely, if b is orthogonal to the score, i.e., (b,s’) = 0, we have the
uniform representation

R)(b) = Ry(b) + 0p(1),

and the estimation of 6y does not have any effect in the asymptotic null distribution
of R,ll (b). Furthermore, it can be shown that the limit process of R,(b) is a stan-

dard function-parametric Brownian motion in L,(R ', G), that is, a Gaussian process
with zero mean and covariance function (by, b,). Following ideas from Khmaladze
(1993), a simple way to make b orthogonal to the score is to use a transformation

T from Lz(ﬁd, G) to Lz(ﬁd, G) with values in the orthogonal complement of the
space generated by the score s, and consider the transformed process R} (7). The
covariance function of the limit process of R!(7b) is then (T by, Th,), so unless T
is an isometry (i.e., (T by, Tby) = (b1, b2)), the Brownian motion structure is lost.
Therefore, we observe that a way to make the asymptotic null distribution “immune”
to the estimation effect and, at the same time, preserve the original covariance struc-
ture is to consider R!(7b), where T is an isometry with image orthogonal to the
score. In other words, a suitable check space to obtain consistent and ADF tests is
B ={Th : h € H}, for an isometry 7 with image orthogonal to the score (to obtain
the ADF property) and with suitable large class of functions H (to obtain consistency
in the test procedure).

A large class of isometries with the previous properties is the class of shift isome-

tries. Let bas = {s, fi, f2,...} be an orthogonal basis of Lz(ﬁd, G). Let us define
the isometry 7y, in the following way

7Zasszfl ﬁasfj:fj+1’j>l'

Then, it is easy to show that 7 is an isometry from Lz(@d, G)to Lz(ﬁd, G) with
values in the orthogonal complement of the score s. A remarkable example of a
shift isometry is the Khmaladze’s martingale transform (cf. Khmaladze 1981, 1993),
that posseses the added property of having an explicit formula. We use the same
notation as in Khmaladze and Koul (2004). Introduce the so called scanning family

of measurable subsets A = {A; : A € R} of Kd, such that
I: A, CA,Vz<u
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2: G(A_x) =0,G(Ax) =1
3: G(A,) is a strictly increasing and absolutely continuous function of z € R.

An example of scanning family is the following. Assuming that G(8y) is ab-
solutely continuous for some 8 € Rd, then the family A = {A; : z € R} with
A, ={ye R B’y < z} is a scanning family. Now define z(y) = inf{z : y € A.}
and

C, = /s(x,@o)s/(x,Qo)G(dx),
Ac

where A{ is the complement of A;. The linear operator T is given by

Tfu) = f(u)— Kfw), (7.4)
where
Kf(u) = / f(x)s/(x,OO)CZ_(;)G(dx)s(u, 6p) (7.5)
Az(u)

and f(-) € Lz(ﬁd, G). Such transformation was first proposed in the goodness-of-fit
literature by Khmaladze (1981, 1993). In the statistical literature this transformation
has been considered and extended to other problems in e.g. Stute et al. (1998),
Koul and Stute (1999), Stute and Zhu (2002) or Koul and Khmaladze (2004). This
transformation is becoming well-known in other areas and has been already applied
to a variety of problems in Bai and Ng (2001), Koenker and Xiao (2002), Bai (2003),
Delgado et al. (2008), Delgado and Stute (2008), Bai and Chen (2008), Song (2009,
2010) and Angrist and Kuersteiner (2011). It is not difficult to show that 7 defined
by (7.4) is an isometry from Lz(@d, G) to Lz(ﬁd, G) with values in the orthogonal
complement of the score s, see Khmaladze and Koul (2004) for the proof.

The martingale transform! T depends on unknown quantities which can be
estimated from a sample. The natural estimator of the transformation is

Tnf(u) = f(u) - / f(X)S,/I()C, etl)cy:;(x)Gn(d-x)sl’l(u9 On),
Azw)
where
Cn,z = /Sn(x’en)sy/,(X, 0,)G,(dx),
A

with G,(dy) = an(y)F,,(dy), F, is the empirical cdf of {I,_1}}_,, s,(l0,0) =
o, 2(Ip)g(1y,0), 6, is a /n-consistent estimator of 6y, and a,%(y) is a consistent
nonparametric estimator of o-2(y) (for instance, a Nadaraya-Watson estimator).

' The martingale trasform has also been variously referred to as: an innovation approach
(Khmaladze, 1988), and an innovation process approach (Stute, Thies, and Zhu, 1998).
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From the integrated approach we know that in the construction of consistent

tests, it is not necessary to consider the whole space of functions Lz(ﬁd, G). A
parametric family that delivers well-known limit processes is the indicator class
Bina = {10 <x)=1,() : x € Ed} C LZ(Ed,G). For the univariate case, i.e.,
d = 1, continuous functionals of standardizations of R,{(T,, 1,) deliver ADF tests
for Hy, see Koul and Stute (1999). However, in the multivariate case, d > 2, the
asymptotic null distribution of R,ll(T,, 1,) still depends on the conditional variance
and the design distribution. To overcome this problem we consider the so-called
Rossenblatt’s (1952) transformation. This transformation produces a multivariate
distribution that is i.i.d on the d-dimensional unit cube, thereby, leading to tests that
can be based on standardized tables. Let I, = (I;1, 112, . . ., I,4) and define the transfor-
mation u = (uy,...,uy) = Tgr(x) component-wise by u; = Fi(x;) = P(I;; < x1),
uy = (e | x1) = P < x2 | Inn = x1),.. g = Falxg | x1,..,%4-1) =
P(ly <xq4| 11 =x1,...,01,g—1 = x4_1). The inverse x = TR_l(u) can be obtained
recursively. Rossenblatt (1952) showed that U,_; = Tg(l;_) has a joint distribution
which marginals are uniform and independently distributed on [0, 1]¢.

In the next section, we shall show that under the null hypothesis and some mild
regularity conditions the transformed process J,, (1) = R}l(Tn(on‘l(-)lu o Tx(+))) con-
verges weakly to a zero mean Gaussian process in £>°(B,,), for a suitable chosen
set By, C [0, 114, with covariance function u; A uy, where for a = (ay,...,ay)
andb = (by,....,by),a Nb = min{al,bl} X oo X min{ad,bd}, that is, a standard
Brownian sheet.

In practice the conditional distributions Fi, ..., F;, are unknown and have to be
estimated. Following Angrist and Kuersteiner (2004), we consider kernel estimators

Fi) = n7"Y 10 < x)
t=1

n S (g < x) Ko (7 — 1)/ )

t=1

Fara | XiyenXgo1) = m
nilde—l((xd_ - I,_,ld)/hn)
=1

[l

where xd_ = (x1,...,%4-1), Itild = (L1, Li1a-1), Kj(x) = (27T)_j/2
Yoo vilowl ™ exp (= 0.5x"x /o), ST v = LY yulowl*' = 0, for | =
1,2,...,w—1,and h, = O(m~"/?*9)is a bandwidth sequence. Other higher order
kernels or other nonparametric estimators are possible, as long as A6(ii) in the next
section is satisfied. R R R

Our final process is J,, (1) = R;(Tn (on_l(-)lu o Tg(-))), where Tk uses the previ-
ously described kernel estimation. -7;(”) is called here the Khmaladze-Rossenblatt’s
transformed residual marked process. As a test statistic we consider in this article a
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CvM functional

oM, = / |5 Fo(du),
By,

where F,y(-) is the empirical distribution function of the transformed sample
(U1}, By, = {u € [0, 19 - /B;Tlgl(u) < xo}, B1 € R%, and xy < cois a
user-chosen parameter necessary to avoid non-invertibility problems of the matrix
Ch z(x)» see Koul and Stute (1999) for a related situation. In the simulations we choose
X as the (100 — d)% empirical quantile of the sample {8]1,_;}/_,. Other spaces B,
threshold values x( and functionals different from the CvM are, of course, possible.
Our test will reject the null hypothesis Hy for “large” values of CvM,,. Next section
establishes the asymptotic theory for CvM,, and Sect. 4 shows, via a Monte Carlo
experiment, that it leads to a valuable diagnostic test.

7.3 Asymptotic Null Distribution

In this section we establish the limit distribution of j,; under the null hypothesis
Hy. First, we state a uniform representation for the function-parametric process
R,ll (b), b € B, for a generic B. This result is of independent interest. To derive
these asymptotic results we consider the following notation and definitions. Let
Fo=o,1_,,... 1)) be the o-field generated by the information set obtained up
to time ¢. Let us endow B with the pseudo-metric ||-|| 5 . Let us define A = B x ©.
For a given class of function D we define for (r;,r;) € D x D

dyp(ri.r) =n"" Y E[e] | Fra]lrnUi) — -y

t=1

and

dp(ri,r2) = |leri(i—1) — &2 (L=, -
Define the set Ay = {(r1,12) € DxD :r| <12, d?D(rl, r) = 2_2‘7}. If the family
D satisfies that

d,%,D(rh r2)

sup = Op(D),

(ruehggeN dp(ri,r2)
we say that D has bounded conditional quadratic variation with respect to dp. Also,
we say that the class D satisfies a bracketing condition of order p > 2 and s > 0, in
short Dis BEC(p,s), if

o0

; 1/2
/(log(N[](sl/‘,D, 11, )" de < oo.
0

The following assumptions are sufficient conditions for the weak convergence of
R!(b) in £(B) for a general B.
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Assumption Al: (on the DGP)
Al@):{(Y;, Z)Y : t =0,%x1,+£2,...} is a strictly stationary and ergodic process.
Al(b): El&; | Fi_il=0a.s. forallt > 1,and E |&,|* < C.

Assumption A2: (on the set of functions B)
A2(a): (Locally Uniform L ,-Smoothness) Suppose that for some s > 0,Cy > 0,
and for p > 2, the following holds: for each b, € B,

sup le:bi(li—1) — €:ba(1;—1)]
breBillby—bal ;5 <5

< C\8°.
p

A2(b): (control the size of B) The class of functions B is BEC(p,s) for p and s
as inA2(a).

A2(c): The class B has bounded conditional quadratic variation with respect to
dp and the parametric space ® is compact in R”.

Assumption A3: (on the model) f(-,0) is twice continuously differentiable in a
neighborhood of 6y € ©. There exists a function M(I,_;) with sup,.¢ ‘g([,_1,9)| <
M(I;_), such that M(I,_,) is F(-)-square integrable.

Assumption A4: (on the parameter)

A4(a): The true parameter 0y belongs to the interior of ©. There exists a unique
61 such that |06, — 6| = op(1).

A4(b): The estimator 0, satisfies \/n(6, — 6y) = Op(1).

Assumption Al(a) is standard in the model checks literature under time series, see,
e.g., Koul and Stute (1999). A1(b) is weaker than other related moment conditions
in the literature and allows for most empirically relevant conditional heteroskedas-
tic models. A2 is needed for the asymptotic tightness of the process R)(b). The
bracketing entropy condition has been frequently used in the literature. Combined
with locally uniform L ,-continuity, the bracketing entropy condition can be used to
establish the stochastic equicontinuity of a process that involves non-smooth func-
tions containing infinite dimensional parameters. Assumption A3 is classical in the
model checks literature, see, e.g., Stute and Zhu (2002). Assumption A4 is satisfied
for most estimators in the literature, such as the conditional nonlinear least squares
estimator (NLSE), or its robust modifications (under further regularity assumptions),
see Koul’s (1992, 2002) monographs. Under Hj, a more efficient estimator than the
NLSE (see Wefelmeyer 1996) is given by the M -estimator satisfying the equation

> 02 U-)8Uim1 0)(Ys — f(Li—1.6,) = 0. (7.6)

t=1

A4(a) and A4(b) imply that under the null 6, = 6;, but they might be different
under the alternative. A2(c) is a standard assumption to obtain weak convergence
theorems under martingale assumptions, see Bae and Levental (1995) and Nishiyama
(2000). Because this assumption is crucial in most of our asymptotic results, we now
give primitive and simple-to-check conditions for a class of functions D being of
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bounded conditional quadratic variation with respect to dp. See Escanciano and
Mayoral (2010) for a related result. Let us define the quantity

GP(r)=E[E[e | L\]r(—) | Fi2]  reD,

Lemma 1: Assume Al, A2(a-b) and that |GP(r)) — GP(r2)| < M,d%(r1,r2),
whereM, is a stationary process with E[ |My|] < co. Then, D has bounded condi-
tional quadratic variation with respect todp.

Let V be a normal random vector with zero mean and variance—covariance matrix
given by L(6p) (cf. A4(c)). Now, we are in position to state the asymptotic uniform
representation of the process R!(b) and its weak convergence.

Theorem 1: (i) Under Assumptions Al, A2 and A4(a) uniformly in b € B,

1

1 —_
Ri(®) = —=

D e(01) — Ele(6)) | Foa1} b(Ui—1)
t=1
1 n
+ 7 ; {Ele(0) | Fiillo—g, — Elei(®)) | Fial} b(Li—1)

1 n
+— Y Ele,6)) | FralbUi—1) — E [Ele(6)) | Fi11b(I;-1)]
Vi

+ VnE [Ele(61) | Fi-11bUi—)] + 0p(1)
(ii) If in addition, Hy, A3 and A4(a) hold, then uniformly inb € B,
R, (b) = Ry(b) — (b,s")~/n(0, — 60) + 0p(1).

The decomposition in Theorem 1(ii) paves the way for the discovery of appropriate
martingale transforms of the residual marked process, see previous section. The
analysis of function-parametric processes such as those considered in Theorem 1
provides simple methods of proof for the study of the asymptotic null distribution of
J,,. To proceed further we need some regularity conditions.

Assumption A5: (on the conditional variance and related quantities)

A5(1): The estimator onz(~) is a uniform consistent nonparametric estimator of
02()and 0 < a < oz(y) forall y € @d and some positive a.

A5Gi): o7/() e W, P(o,’() €e W) = lasn — oofor j = 1,2. The
class WV satisfies A2(c), A2(a) for p > 2 and s = s, > 0 and is BEC(p,r) with
r < min(1, sy). Moreover, VW has an envelope b, such that b(-) < C < oo, and the
norm in W, |||\ say, dominates the L,-norm, i.e., there exists a C > 0 such that
Il < Clibllyy , forall b € L,®", F).

A5(ii): Bing = {1:() 1 x € Ed} satisfies A2(c) and F is absolutely continuous

—=d
with respect to Lebesgue measure with density f(x) < oo forallx e R .
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Assumption A6: A6(i): The trimming constant xg is such that

inf |C,y| > & >0,

x€A X0

—d
for some &€ > 0 and where Ay, = {x e R" : Bjx < xo}.
AG6(ii): The nonparametric estimators for the conditional distributions satisfy

sup [Fi(x | %1, 1) = FiGu | X1, oxo)| = 0p(1),0 =2,..,d,

xeR4
A5(i) is standard in model checks under conditional heteroskedasticity, see Stute,
Thies and Zhu (1998). Condition A5(ii) is necessary to obtain a uniform represen-

tation and tightness of the process R,l,(b) inbeB={hl,:heWandx € Ed}.
AS5(ii) can be relaxed using results for degenerate U-processes, but it simplifies the
theory and it gives us a clue about what are the properties necessary in W to obtain
the asymptotic tightness of R!(b) in b € B. If we assume that o ~>(-) is smooth,
usual examples of WV are spaces of smooth functions such as Sobolev, Holder, or
Besov classes. Therefore, the covering number condition of Assumptions A2 or
A5(ii) can be found in many books and articles on approximation theory. To give
an example, define for any vector (ay, . . .,a,4) of d integers the differential operator

@ = glal/ax{" ... dx44, where |a| = Zf:] a;. Let R be a bounded, convex subset
of R, with nonempty interior. For any smooth function  : R € RY — R and some
n > 0, let n be the largest integer smaller than 5, and

. | D“h(x1) — D*h(x2)]
170, = maxsup | D“h(x)| + max sup - .
lal lal=ng, 2x, X1 — X272

Further, let C/(R) be the set of all continuous functions # : R € R? — R with
ooy < c. W = C!(R), then W satisfies Assumption A5(ii) provided that
n > d, see van der Vaart and Wellner (1996, Theorem 2.7.1). A5(i) implies the
invertibility of the matrix C,(y), and it is assumed only for simplicity in the exposition,
see Nikabadze (1997). Conditions for A6(ii) to hold are in abundance in the literature,
see, for instance, Andrews (1995). A6(ii) implies that

sup |Tr(x) — Tr(x)| = 0p(D)

xeR4

holds.
Theorem 2: Under the null hypothesis Hy, and Assumptions Al to A6

Ty = Joo, inl™®(By,),

whereJ is a standard Brownian Sheet, i.e, a continuous Gaussian process with zero
mean and covariance function given by (ujy A uz1) X « -+ X (U1g A upg), foruy =
(u“, cee uld)’ and Uy = (uzl, . uZd)’ in [O, l]d.

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see,
e.g., Theorem 1.3.6 in van der Vaart and Wellner (1996), we obtain the asymptotic
null distribution of continuous functionals such as CvM,,.
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Corollary 1: Under the assumptions of Theorem 2, for any continuous (with respect
to the sup norm) functional T'(-)

I'(7y) 5 T(Ja).

The integrating measure in CvM,, is a random measure, therefore, Corollary 1 is
not readily applicable to the present case. However, an application of Lemma 3.1 in
Chang (1990) shows that the estimation F, iy of the cdf of Uy, Fy say, does not affect
the asymptotic theory for CvM,, as long as

sup |F,u(u) — Fy(u)| — Oas.
u€ By,

By the Glivenko-Cantelli’s Theorem for ergodic and stationary time series, see
e.g. Dehling and Philipp (2002, p. 4), jointly with A6(ii), the previous uniform
convergence holds.

The power properties of CvM,, can be studied similarly to those established in
Escanciano (2009). We do not discuss this issue here for the sake of space. A more
important and difficult problem is the asymptotic power comparison between trans-
formed and non-transformed tests from a theoretical point of view. This problem will
be investigated elsewhere. Here, we focus on the finite-sample comparison between
our ADF test and the bootstrap based tests via a Monte Carlo experiment in the next
section.

7.4 Simulation Results

In this section we compare some bootstrap integrated CvM tests with our new
ADF test via a Monte Carlo experiment. For the bootstrap CvM tests we consider
the weighting functions w(l,_y,x) = exp (ix'I,_y), w(l,_1,x) = 1(I,_; < x) and
wlli—1,x) = 1(B' L1 < u), x = (B u) € My, = S? x [ — 00, 00]. Our Monte
Carlo experiment complements that of Koul and Sakhanenko (2005) in the context
of goodness of fit for error distributions.

We briefly describe our simulation setup. Let I,_; = (Y;_1, Y;—») be the informa-

tion set at time ¢t — 1. For our ADF test we consider A, = {y € Ez s By <z},
with 81 = (1,1)'. Let F, g(u) be the empirical distribution function of the projected
information set {8'I,_; : 1 <t < n}. Escanciano (2006a) proposed the CvM test

CVM . pro = / (Ry pro(B 1)) F p(du)dp,

npm
where
1 n
1 _ ’
R o1 = = ﬁzet(e)ﬂ)l(ﬁ Iy <u)
and

I
62 = ;Zef(e,,).
t=1
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For a simple algorithm to compute CVM, ,, see Appendix B in Escanciano
(2006a).

Bierens (1982) proposed to use w(l;_;,x) = exp(il/_,x) as the weighting
function in (7.2) and considered the CvM test statistic

CvM y exp = /

I

2
R} @] W(d),

where
1 n
erz,exp('x) = Ee—ﬁ;ez(@n)exp (ix'I,—y),

and with W(dx) a suitable chosen integrating function. In order that CvM , ¢, has a
closed expression, we consider the weighting function W(dx) = ¢(x), where ¢(x)
is the probability density function of the standard normal bivariate r.v. In that case,
CvM , exp simplifies to

1 1
CVMn,exp = ﬁzzet(en)es(gn) exXp <_§ [1—1 — Li— |2> .

¢ r=1s=1

Escanciano (2007) considered the CvM test based on the indicator function, which
is given by

2
1 n n
CvMuina = =53 [Zet(ennu,l < 1,-1)} :
e j=1 L=1

We consider the wild bootstrap approximation for all these test statistics as
described in Sect. 3 of Escanciano (2007).
Our null model is an AR(2) model:

Yl :a+bY[7] +CY[72+S[.

We examine the adequacy of this model under the following DGP:

. AR(2) model: Y, = 0.6Y;_; — 0.5Y;_, + &,.

2. AR(2) model with heteroskedasticity (ARHET): ¥; = 0.6Y,_; — 0.5Y,_, + h,¢;,
where hl2 =0.1+ O.IY,{1 + 0.3Y,{1.

3. Bilinear model (BIL): Y, = 0.6Y,_; + 0.7¢;_1Y,_» + &,.

4. Nonlinear Moving Average model (NLMA): Y, = 0.6Y,_; + 0.7¢,_16,—» + &;.

v _ ) 0.6Y_1 +&, ifY,—p < 1,
5. TAR(2) model: Y¥; = { —0.5Y,_, +,. ifY > 1.

—_—

We consider for the experiments the sample sizes n = 50, 100, and 300. The number
of Monte Carlo experiments is 1000 and the number of bootstrap replications is
B = 500. In all the replications 200 pre-sample data values of the processes were
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Table 7.1 Empirical critical

values forCvM,

J. C. Escanciano and M. A. Delgado

n\a 10 % 5% 1%

50 0.55557 0.74353 1.18788
100 0.56371 0.75706 1.21756
300 0.61113 0.81060 1.35720

generated and discarded. For a fair comparison, the critical values for the new tests
are approximated using 10000 replications of model 1. These critical values are given

in Table 7.1.

In Table 7.2 we show the empirical rejection probabilities (RP) associated with
the nominal levels 10, 5 and 1 %. The empirical levels of the test statistics are closed
to the nominal level. Only in the heteroskedastic case the tests presents some small
size distortion (underrejection).

In Table 7.3 we report the empirical power against the BIL, NLMA and TAR(2)
alternatives. The RP increase with the sample size n for all test statistics, as expected.

Table 7.2 Empirical size of tests

AR(2) ARHET
10 % 5% 1% 10 % 5% 1%
CvM, 9.4 4.8 0.8 14.1 7.4 1.7
n=>50 CvM  exp 10.5 5.5 1.1 13.6 7.8 0.8
CvM  ina 10.3 43 1.3 12.4 6.5 1.0
CvM 1o 11.6 5.7 0.8 13.1 59 1.0
CvM, 9.0 43 1.2 12.4 7.1 2.1
n=100 CvM  exp 13.4 7.0 1.0 11.7 6.9 2.7
CvM,, jna 11.3 6.5 1.4 12.7 5.8 1.4
CvM,, 1o 11.2 6.4 1.6 13.4 7.1 2.0
CvM, 10.5 4.8 0.6 11.9 6.4 1.2
n=2300 CvM  exp 10.3 6.0 1.9 12.3 6.1 1.5
CvM  ina 9.6 4.7 0.5 11.8 6.2 2.0
CvM o 12.5 5.7 1.8 132 7.1 1.6
Table 7.3 Empirical power of tests.
BIL NLMA TAR(2)
10% 5% 1% 10% 5% 1% 10% 5% 1%
CvM, 29.8 21.7 72 198 134 4.7 533 40.8 19.6
n=50 CvM,q, 294 18.0 44 160 8.6 1.5 230 13.4 2.0
CvM i 322 22.8 81 246 153 46 3938 30.0 105
CvM,p, 396 252 9.0 229 116 23 385 27.2 9.7
M, 56.1 430 246 367 270 129 763 69.1  49.7
n=100 CvM,q, 43.8 30,0 107 28,6 162 38 432 27.5 8.2
CvM, e 50.0 394 191 451 335 133 654 548 349
CvM, pry 557 423 201 41.0 268 9.0 620 513 282
CvM, 96.6 931 815 763 643 41.6 99.5 99.0 959
n=300 CvM,ep T77.2 660 369 756 610 284 925 864 61.1
CvM,jna 76.2 684 508 888 827 592 985 969  88.1
CvM,pry 752 658 448 894 808 519 987 96.6  86.5




7 Nonparametric Distribution-Free Model Checks . . . 105

The highest RP are presented in italics. It is shown that no test is better than the others
uniformly for all alternatives, levels and sample sizes. The new ADF Cramér-von
Mises test CvM,, performs quite well, being the best in many cases. In particular, it
has the highest empirical power for BIL and TAR(2) alternatives uniformly in the
level for n = 300. The empirical power for CvM , ¢, is low for these alternatives and,
in general, less than CvM,, ;,,4. The test statistic CvM,, ;4 has good power against the
BIL alternative for n = 50 and for the NLMA alternative for n = 100, and moderate
power against the TAR(2). CvM,, ,, performs similarly to CvM,, ;,.4, but with a little
less empirical power in general.

Summarizing, we conclude from this limited Monte Carlo experiment that our
new CvM test compares very well to bootstrap-based integrated tests, with power
against all alternatives considered, and in many cases presenting the highest power
performance. To conclude, we summarize the properties of our CvM test as follows:
(1) it is asymptotically distribution-free; (ii) it is valid under fairly general regularity
conditions on the underlying DGP, in particular, under conditional heteroskedasticity
of unknown form and multivariate regressors; and (iii) it is simple to compute and
has an excellent finite sample performance as has been shown in the Monte Carlo
experiment. All these properties make of our test a valuable tool for time series
modelling.
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processes many years ago. We are most thankful for his support to our research and the many
discussions we had during these years. We are pleased to contribute to this volume with warm
wishes for many more birthdays. Research funded by Spanish “Plan Nacional de I+D+i” reference
number EC0O2012-33053.

Appendix: Proofs

First, we shall state a weak convergence theorem which is a trivial extension of
Theorem A1 in Delgado and Escanciano (2007). Let for eachn > 1, Ir/:,o’ e I,;’nfl,
be an array of random vectors in R?, p € N, and ¢, 1, . . ., &,.,, be an array of real
random variables (r.v.’s). Denote by (£2,,.4,, P,), n > 1, the probability space in
which all the r.v.’s {g,,,, I,;’,}f=1 are defined. Let 7, ;, 0 <t < n, be a double array
of sub o -fields of A, such that F,,; C Fy;41,¢t =0, ...,n — 1 and such that for each

n > landeachy € H,
Ew(ens Ing—1,¥) | Fay—11=10 as,l1 <t<nvVn=>1. (7.7)

Moreover, we shall assume that {w(e, s, L,—1,7), Fns,0 < t < n} is a square-
integrable martingale difference sequence for each y € H, that is, (7.7) holds,
sz(e,,,,, Ihi—1,y) < oo and w(ep;, I;—1,y) is F,-measurable for each y € H
and Vt,1 <t < n,Vn € N. The following result gives sufficient conditions for the
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weak convergence of the empirical process

n
an,w(y) = n71/2zw(8n,t, In,t—la J/) Y € H.

t=1

Under mild conditions the empirical process «,,, can be viewed as a mapping
from €2, to £°°(H), the space of all real-valued functions that are uniformly bounded
on H. The weak convergence theorem that we present here is funded on results by
Levental (1989), Bae and Levental (1995) and Nishiyama (2000). In Theorem A1l
in Delgado and Escanciano (2007) H was finite-dimensional, but here we allow for
an infinite-dimensional H. The proof of theorem does not change by this possibility,
however.

An important role in the weak convergence theorem is played by the conditional
quadratic variation of the empirical process «,,, on a finite partition B = {H; 1 <
k < N} of H, which is defined as

n

_ 2

p(B) = max n ™' D E| sup |W(Enss huso1: 1) = WEngs Lyao1s v2)| | Faca-
L<k=N =1 Y1,Y2€Hy

Then, for the weak convergence theorem we need the following assumptions.

WI1: Foreachn > 1, {(gn;s, I,—1) : 1 <t < n}is a strictly stationary and ergodic
process. The sequence {w(g; s, Ins—1, V), Fus, 0 < t < n}is asquare-integrable mar-
tingale difference sequence for each y € H. Also, there exists a function C,,(yy, 2)
on H x H to R such that uniformly in (y;,2) € H X H

n
nY WEnis a1 YOWEns Ina—1,72) = Cu(n1, v2) + 0p, (1),

t=1

W2: The family w(e,,, I,,—1,y) is such that &, ,, is a mapping from 2, to £*°(H)
and for every ¢ > 0 there exists a finite partition B, = {Hy; 1 < k < N,} of H, with
N, being the elements of such partition, such that

/,/log (Ng)de < o0 (7.8)
0

and

an,w(Bs)
sup

= Op,(1). (7.9)
ec(0,HDNQ €

Let aw,v(+) be a Gaussian process with zero mean and covariance function given
by C,,(y1, y2). We are now in position to state the following
Theorem Al: If Assumptions W1 and W2 hold, then it follows that

Oy w — Uoo,w in ZOO(I;L[)
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Proof of Theorem AlI: Theorem Al in Delgado and Escanciano (2007).

Proof of Lemma 1: By A2(a-b) we can form for any ¢ > 0 a finite partition B, =
{Br; 1 < k < Np(e, B, -11,)} of Bin g-brackets B, = [gk,Ek]. Denote v = 1/s, with
s as in A2(a), and define for every g € N, ¢ > 1, ¢ = 279". We denote the previous
partition associated to & = 277" by B, = {By; | <k < N, = Ny@2™", B, ||l ,)}.
Without loss of generality we can assume that the finite partitions in the sequence
{B,} are nested. By A2(b), we have

oo
Z2’q‘/log N, < oo.
q=1

Furthermore, by definition of the brackets

R.(By) = e " 1ZE & | Fiei] ! legklrl(lzl)—rz(ltl)lz‘
’ q
- . - 2
= max |n I;E[efmfl]lm(n,l)—bk(n,l)! ‘
= 1n/3ax d2(by. by). (7.10)

Define the event

d*(b,,b,
V, = {sup max sz .
geNlsk=N, 272

We shall show that for all > 0, there exists some y > 0 such that
lim sup P,(V,) < n. Note that

d2 (b, bi) o
P(V)<21P (1<k<Nq2—2‘1 > :Z (7.11)
q g=1

Now, define the process

n

Gy =n"" Y E[e] | Fia]r(liy),

t=1

and the quantities for 1 <t < n, E,(r) =F [8,2 | .7-',_1] r(l,_y) — GtB(r). Hence,

Tn(r) =n""Y () +n7"Y "GP,

=1 =1
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> 22‘17/)

By triangle’s inequality

Vag P, max
1<k<N,

IA

ny B — BBy
t=1

—1 B B, —2
+P, (15%2”&, n ;|Gt (b)) — GP(by)|| = 2 qy)
= Alnq + A2nq~

Notice that { En,w(r), Fni—2} 1s a martingale difference sequence for each r €
B, by construction. By a truncation argument, it can be assumed without loss of

generality that 1H1:a)1§/ les] }lgk(ll_l) — Ek(],_l)|2 < ﬁaq_l, where henceforth a, =
<k<N,

279% [ /log (Ng41) with 1 < p < 2. See Theorem Al in Delgado and Escanciano
(2006). Define the set

Now, by Freedman’s (1975) inequality in Lemma A2 and Lemma 2.2.10 in van
der Vaart and Wellner (1996),

n

n= " |Biby) — BBy

=1
<cC (aj_l log (1 + Ny) + ag_12~4""2/log (1 + Nq)) .
Hence, by Markov’s inequality and the definition of a,, on the set B,
Ca‘?*l log (1 + Ny) + a,—1279"2 /log (1 + N,)
2-2y
- Cyflszq(pr + Cyflzfq(er%fl).

E max

1<k=<N,

1(B,)

Alnq

On the other hand, by (D) and by Markov’s inequality

A2nq

IA

n
y_'sn_zg E max 2%
; 1<k=<N,
=

n Y |GPb) - GE@)|
=1

IA

y—lz—q(v—2) (n_]ZMt> < Ky—lz—q(v—Z)’

1=1
on the set B,. Therefore, by our previous arguments and the last three bounds,

o0
P,(V,) < Cyflz (2*2%0*1) + 2—a(p+3-1 + 2*4(\/*2)> + Pn(Bz),
g=1

which can be made arbitrarily small by choosing a sufficiently large y and K. Hence,
B has bounded quadratic variation. ]
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Lemma AO0: (Uniform Law of Large Numbers) If the class B is such that
log (Nyy(e, B, [I-ll;) < oo for each & > 0, with envelope b, g(1,—1,0) satisfies A3
and E |M(It,1)b(1,,1)| < 00, then uniformly in (0,b) € © x B,

1 n
=D &1, 00;-1) = E [gUi-1,0)b(Ui-1)] | = 0p (D).

t=1

Proof of Lemma AO: Under the assumptions of the lemma, the class {g(l,_;,0)b
(I,_1) : 6 € ©,b € B} is Glivenko-Cantelli. O

Proof of Theorem 1: First we shall show that the process
1 n
5:(6.6) = —= Y {e0) — E[e®) | Fioa]}bldi-1) (7.12)
t=1

is asymptotically tight with respect to (b, 0) € A.

Let us define the class K = {{et(G) —E [e,(@) | .E_l]} b(I,_1) : (b,0) € A}
Denote X, | = (I;-1,1;—2,...). Let Be = {By;1 < k < Ne = Nyy(e, K, ||l .}, with
By = [wy (Y, X;—1), wi (Y, X,—1)], be a partition of K in e-brackets with respect to
lI-1l,, . Notice that A2 implies

sup  [{e0) — E[ei(@) | Fia]} bidin)
((b2,02)€.A:|01—02| <8
b1 —ba||lp<$

— {e(0) — E [e/(62) | Fioa]} ba(-0)|
< (8.

Theorem 3 in Chen et al. (2003) and A2 imply that (7.8) holds for such partition.
On the other hand

2
n
max n—'S E sup w1 (Yy, Xi—1) = wo (Y, Xi—DI| | Fia
1<k=<N; i wi,w2€By
" 2
< érzl?fvsn‘lZEE [t X)) = X0 1 Fia | (13)
t=

Therefore, A2(c) yields that (7.9) follows, and condition W2 of Theorem A1 holds.
The asymptotically tightness of S, (b, ) is then proved.
Then, the last statement and A4(a)

l n
1 . — — J—
R,() = NG ;:1 {e:(61) — Ele/(61) | Fi—11} b(I;—1)



110 J. C. Escanciano and M. A. Delgado

1
f Z Ele,0) | Fi-1llg—g, — Ele(01) | Fi-11} b(1i-1)

f ZE e(01) | Fi11b(Li-1) — E [Elei(61) | Fi11b(1;-1)]

+VnE [E[et(91) | Fioalb(Li-1)] + op(1),

uniformly in b € B. Part (i) is proved.
As for (ii), A3 and A4(a) imply by the Mean Value Theorem

1 n
7 Z {Ele:®) | Fimillg—g, — Elei(60) | Fi11} b(I,—1)
t=1

/ 1 .
=200 = 60)' Y i1, Ou)bCli),

t=1

and where 6,; satisfies |6,; — 6| < |6, — 6|. Now, A3, A2(b) and Lemma AO imply
that, uniformly in b € B,

1 n
=D U1, 0)b (1) = E [gCLi-1,00)b(-)]| = 0p().
=1

From (i) and the last display, (ii) is proved. [l
Before proving Theorem 2 we need several useful Lemmas. Let us define A, =

{x € R Bix < xo}.
Lemma Al: Under the assumptions of Theorem 2, uniformly in x € Ay,
Ry(To, ' ()1) = Ru(To ™ ()1) + op(1).
Lemma A2: Under the assumptions of Theorem 2, uniformly in x € Ay,,
R\(T,0, ' (V1) = R(To, (Y1) + op(1).
Lemma A3: Under the assumptions of Theorem 2, uniformly in u € By,
Ry(Ty(0, ' (Y1 0 Tr() = Ry(Tu(o, ()1 0 Tr()) + 0p(1).

Before proving Lemmas Al to A3 we shall prove two more Lemmas. We need
to define first the classes of functions S = {Thl,(-) : h € W and x € A,,} and
B =1{hl,:h €W andx € A, }. Define the semimetric

dina(x1,%2) = | & 15, (1) — & 15, (1i-1), -

and recall that B,y = {1(- <x) = 1,() : x € R}.
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Lemma B1: Assume that B, satisfies A2(c). Then, if W satisfies A5(ii) then B
satisfies A2 with p = 2.

Lemma B2: Assume A3, A5 and A6(i). Then, if B satisfies A2 with p = 2 then S
satisfies A2 with p = 2.

Proof of Lemma B1: We shall start with A2(a). Assume 0 < § < 1. By the triangle
inequality, for each #; € W and each x; € R’

sup |lechi 1, (1) — :ha 14, (1)
XQGEd,h2€WC||h1—}12||W<53dind(xl«12)<5 2
= C sup lechi (L) |12, (T—1) — Lo, (1-1)]
2R Iy eW:llhi —hallyy <8.dima(x1.x2)<8 5
+C sup Lo, (Jy—1) leshi(Li—1) — €cho(Li—1)|
2R haeWillhy —hallyy <8.dina(x1.%2) <8 5

< C8' 4+
S ng,

with s = min(1, sy), where the second inequality is by A5(ii). A2(b) follows from
Theorem 6 in Andrews (1994) and A5(ii), because B;,,, is BEC(p, 1/2) forall p > 2.
A2(c) follows from the previous arguments, using A5(ii) and that B;,; and WV satisfy
A2(c). O
Proof of Lemma B2: We shall start with A2(a). Assume 0 < § < 1. By the triangle
inequality, for each 4, € VW and each x| € Kd

sup le:Thile,(I—1) — & Thyl, (1))
xzeﬁd,hQEWIth*h2||w<5,dind(xlax2)<5’ 2
< C sup |51hl Loy (I—1) — ‘9th21x2(ll—l)‘
x2€RY haeW: b1 —hallywy <8.dina (x1.x2) <8, 5
C sup leKhy1 (I—1) — & Kho Ly (-] |
Xzeﬁd,thW:th—hznw <8,d,'nd(xl,x2)<8, 2

where K is defined in (7.5). Then, it is only necessary to consider the second term
in the last inequality. Now, by the linearity of K and the triangle inequality this term
is bounded by

= C sup & K{h1()(1x, () = 1, (N}(L1—1)

4
X2€R° i eW:llhi —hz llyy <8.dina(x1,x2) <8, 2
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+C sup & K1, ()(h1(-) = ha()Ui-1)

—d
X2€R" i eW:||hy —hallyy <8.dina(x1,%2) <8, 2
= A+ As.

A} is equal to

2
E|:SUP 8t2</1(y € Az )hi ()1 () — lm(-))S’(x,90)C§;)G(dX)S(1t—1,90)> } ,

where the sup is computed over d;,4(x1, x2) < §. By Cauchy-Schwartz’s inequality
(C-S), A3, AS and A6(i) the integral is bounded by

C ‘ f Ry () = 1, () G(dx)| < Cd2y(x1, x2),

and hence |A;| < C§. The proof for A, follows from the same steps that for A, and
hence, it is omitted.

The proof of A2(b) is straightforward. A2(c) can be proved following the ar-
guments in the proof of A2(a). These proofs are omitted for the sake of space.
O

Proof of Lemma Al: By Lemmas B1 and B2, B and S satisfies A2 with p = 2.
Hence, by Theorem 1,

RYU(Tb()1,) = Ry(Th()15) + op(1),
uniformly in x € A,, and b € W. Now, by the convergence of o,!,
Ry(To, ' ()1) = Ry(To ' ()1) + op(1),
uniformly inx € Ay,. O
Proof of Lemma A2: Write R,ll((T - T,l)an_l(-)lx) as
/ o LR (581G € AS) € gy, B F(dy)
- / o, MR, (57.0)1C € AS) C, ) 8(3, ) Fu(dy)

= f o, LB 0 2(), 00) [F(dy) — F,(dy)]

- / 0, N1 [Bu (0,2 ().00) — Bu(.0 (), 00)] Fuldy)

Aln(x) - A2n(x)’

where

Bu(y,b,0) = R} (g'(.OI()1(- € AL,) C,,8(3,6). (7.14)
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Putting

@, () = 0, (M 1L(0)Ba( 7 2(), 6p),

and using our Theorem 1 it is not difficult to show that the sequence {w,(-)} is
asymptotically tight. Hence, by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup A, (x)] = op(D).

X€Ay,

Similarly, it can be proved that 8,(y, b, 6) is uniformly tight in (y, b,0) € By, x
W x © (see Lemmas B1 and B2) and continuous in 6, but 8, converges in probability
to 6y, and hence, again by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup A, (x)] = op(1).
XEAy,

Proof of Lemma A3: Define

Vi) =1, 0 Tr(l,_),

Yu(li—1) = 1, 0 Tr(I;-1)
and
du() = 7u() = V().
Then, write R,ll(T,,an’l(du(J)) as
R0, (du(-)) — / du( o, (IR (54 0)1C € AS,) Coliy)8n(y, 6n) Fu(dy)
= A — An2.
|A,1] is bounded by

n_l/zzer(eo)on_l(If—l)d”(]’_l)

t=1

+

n=2Y fe(B) — e (O0)lo,  Ti—))du(1i-1)
=1

= Ry (0, ' du))| + |10 — 60)n ™"y (i —1,600)0, (i—1)du(l;—1)

t=1

= |B,(w)| + |Bn2(w)] .

Now, the stochastic equicontinuity of R,b1, inb € W and 1, € B4, and A6(ii)
yield

sup [Br,(w)| = op(1).
uel0,119
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On the other hand, by Lemma AO, uniformly in b € B,

1 n
;Zg(lr—l,em‘)b(lz—l) —E [g(lr—heo)b(lz—l)]‘ =op(1).
=1

Therefore, A4(b) and the last display yield

sup [By,(u)| = op(1).
uel0,1}4

As for A, by C-S,

1/2 1/2
[ / [ﬁ(y)—%(y)ﬁ&(dy)] [ / anz(y)ﬂ,f(y,on‘,9n>F,,<dy)] ,

where B, is defined in (7.14). Both integrants are asymptotically tight (see the
arguments of Lemma A2). Hence, Lemma 3.1 in Chang (1990) yields

/ [7:0) = 7]’ Fuldy) = / [7:0) = 7] F(dy) + 0p(1)
and
/ o, (WP (Y. 0, L 0 Fu(dy) = Op(1).

Now, we shall show that A6(ii) and A6(iii) imply

/ [7:) = 7]’ F(dy)| = op(1). (7.15)

sup
UE By

To that end, from A6(ii) we have that

sup |Tr(x) — Tr(x)| = 0p(1),

xeRd

Hence, for a given ¢ > 0, there exists and ng such that for all n > nyg

sup ’/fR(x) — TR(x)| <e

xeRd

with probability tending to one. Therefore, on that set

sup
ue BXO

/ [72) = 7] F@dy)| < sup |E[lw—e < Uy <u+e]| <2e.

ueBXO

Hence, as ¢ was arbitrary (7.15) holds, and Lemma A3 is proved. O
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