
Chapter 7
Nonparametric Distribution-Free Model Checks
for Multivariate Dynamic Regressions

J. Carlos Escanciano and Miguel A. Delgado

7.1 Introduction

Parametric time series regression models continue being attractive among practi-
tioners because they describe, in a concise way, the relation between the response or
dependent variable and the explanatory variables. Much of the existing statistical lit-
erature is concerned with the parametric modelling in terms of the conditional mean
function of a response variableYt ∈ R, given some conditioning variable at time t−1,
It−1 ∈ R

d , d ∈ N, say. More precisely, let Zt ∈ R
m, m ∈ N, be a m-dimensional ob-

servable random variable (r.v) and Wt−1 = (Yt−1, . . .,Yt−s) ∈ R
s . The conditioning

set we consider at time t−1 is given by It−1 = (W ′
t−1,Z′

t )
′, so d = s+m.We assume

throughout the article that the time series process {(Yt ,Z′
t )
′ : t = 0,±1,±2, . . .} is

strictly stationary and ergodic. Henceforth, A′ denotes the matrix transpose of A.

It is well-known that under integrability of Yt , we can write the tautological
expression

Yt = f (It−1) + εt ,

where f (z) = E[Yt | It−1 = z], z ∈ R
d , is the conditional mean function almost

surely (a.s.) ofYt , given It−1 = z, and εt = Yt−E[Yt | It−1] satisfies, by construction,
that E[εt | It−1] = 0 a.s.

Then, in parametric modelling one assumes the existence of a parametric family
of functions M = {f (·, θ ) : θ ∈ � ⊂ R

p} and considers the following regression
model

Yt = f (It−1, θ ) + et (θ ), (7.1)
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with f (It−1, θ ) a parametric specification for the conditional mean f (It−1), and
{et (θ ) : t = 0,±1,±2, . . .} a sequence of r.v.’s, deviations of the model. Model
(7.1) includes classes of linear and nonlinear regression models and linear and non-
linear autoregression models, such as Markov-switching, exponential or threshold
autoregressive models, among many others (see Fan and Yao 2003).

The condition f (·) ∈ M is tantamount to

H0 : E[et (θ0) | It−1] = 0 a.s. for some θ0 ∈ � ⊂ R
p.

We aim to test H0 against the alternative hypothesis

HA : P (E[et (θ ) | It−1] �= 0) > 0, for all θ ∈ � ⊂ R
p,

where (�, F ,P ) is the probability space in which all the r.v.’s of this article are
defined.

There is a vast literature on testing the correct specification of regression models.
In an independent and identically distributed (i.i.d) framework, some examples of
those tests have been proposed by Bierens (1982, 1990), Eubank and Spiegelman
(1990), Eubank and Hart (1992), Härdle and Mammen (1993), Horowitz and Härdle
(1994), Hong and White (1995), Fan and Li (1996), Zheng (1996), Stute (1997),
Stute et al. (1998), Li and Wang (1998), Fan and Huang (2001), Horowitz and
Spokoiny (2001), Li (2003), Khamaladze and Koul (2004), Guerre and Lavergne
(2005) and Escanciano (2006a), to mention a few. Whereas, in a time series context
some examples are Bierens (1984), Li (1999), de Jong (1996), Bierens and Ploberger
(1997), Koul and Stute (1999), Chen et al. (2003), Stute et al. (2006) and Escanciano
(2006b, 2007). This extensive literature can be divided into two approaches. In
the first approach test statistics are based on nonparametric estimators of the local
measure of dependence E[et (θ0) | It−1]. This local approach requires smoothing of
the data in addition to the estimation of the finite-dimensional parameter vector θ0, and
leads to less precise fits, see Hart (1997) for some review of the local approach when
d = 1. Tests within the local approach are in general asymptotic distribution-free
(ADF).

The second class of tests avoids smoothing estimation by means of an infinite
number of unconditional moment restrictions over a parametric family of functions,
i.e., it is based on the equivalence

E[et (θ0) | It−1] =0 a.s. ⇐⇒ E[et (θ0)w(It−1, x)] = 0,

almost everywhere (a.e.) in � ⊂ R
q , (7.2)

where � ⊂ R
q , q ∈ N, is a properly chosen space, and the parametric family of

functions {w(·, x) : x ∈ �} is such that the equivalence (7.2) holds, see Stinchcombe
and White (1998) and Escanciano (2006b) for primitive conditions on the family
{w(·, x) : x ∈ �} to satisfy this equivalence. We call the approach based on (7.2)
the “integrated approach”. In the integrated approach, test statistics are based on a
distance from the sample analogue of E[et (θ0)w(It−1, x)] to zero. This integrated
approach is well known in the literature and was first proposed by Bierens (1982),
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who used the exponential function w(It−1, x) = exp (ix ′It−1), where i = √−1 de-
notes the imaginary unit, see also Bierens (1990) and Bierens and Ploberger (1999).
Stute (1997) using empirical process theory, proposed to use the indicator function
w(It−1, x) = 1(It−1 ≤ x) in an i.i.d context. Stinchcombe and White (1998) empha-
sized that there are many other possibilities in the choice of w. Recently, Escanciano
(2006a) has considered in an i.i.d setup the family w(It−1, x) = 1(β ′It−1 ≤ u),
x = (β ′, u)′ ∈ �pro, where �pro = S

d × [−∞,∞] is the auxiliary space with S
d the

unit ball in R
d , i.e., S

d = {β ∈ R
d : |β| = 1}. This new family combines the good

properties of exponential and indicator families and delivers a Cramér-von Mises
(CvM) test simple to compute and with excellent power properties in finite samples,
see Escanciano (2006a) for further details. Escanciano (2007) provides a unified the-
ory for specification tests based on the integrated approach for a general weighting
function w, including but not restricting to indicators and exponential families.

A tenet in the integrated approach is that the asymptotic null distribution of re-
sulting tests depends on the data generating process (DGP), the specified model and
generally on the true parameter θ0. Consequently, critical values for integrated tests
have to be approximated with the assistance of resampling methods. In particular,
Escanciano (2007) justified theoretically a wild bootstrap method to approximate the
asymptotic critical values for general integrated-based tests. In contrast, Koul and
Stute (1999) avoided resampling procedures by means of a martingale transforma-
tion in the spirit of that initially proposed by Khamaladze (1981). However, Koul
and Stute’s setup was restricted to homocedastic autoregressive models of order 1.
Recently, Khamaladze and Koul (2004) have applied the martingale transform to
residual marked processes in multivariate regressions with i.i.d data, but the result-
ing test is not ADF since it depends on the joint distribution of regressors. The main
contribution of this article is to complement these approaches and extend them to het-
eroskedastic multivariate time series processes. We apply the martingale transform
coupled with the Rossenblatt’s transform on the multivariate regressors to get ADF
test free of the joint design distribution. We formally justify the effect of these trans-
formations on our test statistics using new asymptotic theory of function-parametric
empirical processes under martingale conditions. Finally, we compare via a Monte
Carlo experiment, our new model checks with existing bootstrap approximations.

The layout of the article is as follows. In Sect. 2 we present the ADF tests based on
continuous functionals of a martingale transform of the function-parametric residual
marked empirical process. We begin by establishing some heuristics for the martin-
gale transform. In Sect. 3 we establish the asymptotic distribution of our test under
the null. In Sect. 4 we compare the bootstrap approach with the martingale approach
via a Monte Carlo experiment. Proofs are deferred to an appendix.

A word on notation. In the sequelC is a generic constant that may change from one

expression to another. Throughout, |A| denotes the Euclidean norm of A. R
d

denotes

the extended d-dimensional Euclidean space, i.e., R
d = [ −∞,∞]d . Let ‖X‖p be

the Lp-norm of a r.v X, i.e., ‖X‖p = (E |X|p)1/p , p ≥ 1. Let N[](ε, H, ‖·‖p ) be the
ε-bracketing number of a class of functions H with respect to the norm ‖·‖p , i.e.,
the minimal number N for which there exist ε-brackets {[lj , uj ] :

∥∥lj − uj

∥
∥
p
≤ ε,
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∥∥lj
∥∥
p
< ∞,

∥∥uj

∥∥
p
< ∞, j =, 1. . .,N} covering H, see Definition 2.1.6 in van

der Vaart and Wellner (1996). Let �∞(H) be the metric space of all real-valued
functions that are uniformly bounded on H. As usual, �∞(H) is endowed with the
sup norm, i.e., ‖z‖H = suph∈H |z(h)| . Let�⇒ denote weak convergence on �∞(H),
see Definition 1.3.3 in van der Vaart and Wellner (1996). Throughout the article,
weak convergence on compacta in �∞(H) means weak convergence on �∞(C) for all

compact subsets C ⊂ H.Also
P ∗−→ and

as∗−→ denote convergence in outer probability
and outer almost surely, respectively, see Definition 1.9.1 inVaart andWellner (1996).
The symbol →d denotes convergence in distribution of Euclidean random variables.
All limits are taken as the sample size n → ∞.

7.2 The Function-Parametric Residual Process
and the Martingale Transform

In view of a sample {(Yt , I ′t−1)′ : 1 ≤ t ≤ n}, and motivated from (7.2), we define
the function-parametric empirical process,

Rn(b, θ ) = n−1/2
n∑

t=1

et (θ )b(It−1),

indexed by (b, θ ) ∈ B×�, for a class of “check” functions B and a parameter space
�. Examples of B will be specified later. Two important processes associated to
Rn(b, θ ) are the error-marked process Rn(b) = Rn(b, θ0) and the residual-marked
process

R1
n(b) ≡ Rn(b, θn) = n−1/2

n∑

t=1

et (θn)b(It−1),

where θn is a
√
n-consistent estimator for θ0 (see Assumption A4 below). For con-

venience, we shall assume that B ⊂ L2(R
d
,G), the Hilbert space of all G -square

integrable measurable functions, where G(dx) = σ 2(x)F (dx), F (·) is the joint
cumulative distribution function (cdf) of It−1, and σ 2(·) is the conditional error vari-

ance, i.e., σ 2(y) = E[ε2
t | It−1 = y]. As usual, L2(R

d
,G) is furnished with the

inner-product

〈f , g〉 =
∫

Rd

f (x)g(x)G(dx).

and the induced norm ‖h‖ = 〈h,h〉1/2 .

The aim of this section is to construct a suitable check space B such that the
process R1

n(b), with b ∈ B, delivers tests based on test statistics, �(R1
n) say, which

are consistent and ADF. In this article we shall focus in a particular check space that
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makes use of the martingale transformation proposed by Khmaladze (1981, 1993)
for the problem of goodness-of-fit tests of distributions.

Let g(I0,θ0) = (∂/∂θ ′)f (I0, θ0) and s(I0, θ0) = σ−2(I0)g(I0, θ0) be the non-
standardized and standardized scores, respectively. From Theorem 1 in Sect. 3,
under the null hypothesis and some mild regularity conditions, we have the following
relation between Rn(b) and R1

n(b), uniformly in b ∈ B,

R1
n(b) = Rn(b) − 〈b, s ′〉√n(θn − θ0) + oP (1). (7.3)

This relation gives us a clue about how to choose b for the test based on R1
n(b)

being ADF. Namely, if b is orthogonal to the score, i.e., 〈b, s ′〉 = 0, we have the
uniform representation

R1
n(b) = Rn(b) + oP (1),

and the estimation of θ0 does not have any effect in the asymptotic null distribution
of R1

n(b). Furthermore, it can be shown that the limit process of Rn(b) is a stan-

dard function-parametric Brownian motion in L2(R
d
,G), that is, a Gaussian process

with zero mean and covariance function 〈b1, b2〉. Following ideas from Khmaladze
(1993), a simple way to make b orthogonal to the score is to use a transformation

T from L2(R
d
,G) to L2(R

d
,G) with values in the orthogonal complement of the

space generated by the score s, and consider the transformed process R1
n(T b). The

covariance function of the limit process of R1
n(T b) is then 〈T b1, T b2〉, so unless T

is an isometry (i.e., 〈T b1, T b2〉 = 〈b1, b2〉), the Brownian motion structure is lost.
Therefore, we observe that a way to make the asymptotic null distribution “immune”
to the estimation effect and, at the same time, preserve the original covariance struc-
ture is to consider R1

n(T b), where T is an isometry with image orthogonal to the
score. In other words, a suitable check space to obtain consistent and ADF tests is
B = {T h : h ∈ H}, for an isometry T with image orthogonal to the score (to obtain
the ADF property) and with suitable large class of functions H (to obtain consistency
in the test procedure).

A large class of isometries with the previous properties is the class of shift isome-

tries. Let bas = {s, f1, f2, . . .} be an orthogonal basis of L2(R
d
,G). Let us define

the isometry Tbas in the following way

Tbass = f1 Tbasfj = fj+1, j > 1.

Then, it is easy to show that T is an isometry from L2(R
d
,G) to L2(R

d
,G) with

values in the orthogonal complement of the score s. A remarkable example of a
shift isometry is the Khmaladze’s martingale transform (cf. Khmaladze 1981, 1993),
that posseses the added property of having an explicit formula. We use the same
notation as in Khmaladze and Koul (2004). Introduce the so called scanning family

of measurable subsets A = {Aλ : λ ∈ R} of R
d
, such that

1: Az ⊆ Au, ∀z ≤ u.
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2: G(A−∞) = 0, G(A∞) = 1
3: G(Az) is a strictly increasing and absolutely continuous function of z ∈ R.

An example of scanning family is the following. Assuming that G(β ′y) is ab-

solutely continuous for some β ∈ R
d
, then the family A = {Az : z ∈ R} with

Az = {y ∈ R
d

: β ′y ≤ z} is a scanning family. Now define z(y) = inf{z : y ∈ Az}
and

Cz =
∫

Ac
z

s(x, θ0)s ′(x, θ0)G(dx),

where Ac
z is the complement of Az. The linear operator T is given by

Tf (u) = f (u) −Kf (u), (7.4)

where

Kf (u) =
∫

Az(u)

f (x)s ′(x, θ0)C−1
z(x)G(dx)s(u, θ0) (7.5)

and f (·) ∈ L2(R
d
,G). Such transformation was first proposed in the goodness-of-fit

literature by Khmaladze (1981, 1993). In the statistical literature this transformation
has been considered and extended to other problems in e.g. Stute et al. (1998),
Koul and Stute (1999), Stute and Zhu (2002) or Koul and Khmaladze (2004). This
transformation is becoming well-known in other areas and has been already applied
to a variety of problems in Bai and Ng (2001), Koenker and Xiao (2002), Bai (2003),
Delgado et al. (2008), Delgado and Stute (2008), Bai and Chen (2008), Song (2009,
2010) and Angrist and Kuersteiner (2011). It is not difficult to show that T defined

by (7.4) is an isometry from L2(R
d
,G) to L2(R

d
,G) with values in the orthogonal

complement of the score s, see Khmaladze and Koul (2004) for the proof.
The martingale transform1 T depends on unknown quantities which can be

estimated from a sample. The natural estimator of the transformation is

Tnf (u) = f (u) −
∫

Az(u)

f (x)s ′n(x, θn)C−1
n,z(x)Gn(dx)sn(u, θn),

where

Cn,z =
∫

Ac
z

sn(x, θn)s ′n(x, θn)Gn(dx),

with Gn(dy) = σ 2
n (y)Fn(dy), Fn is the empirical cdf of {It−1}nt=1, sn(I0, θ ) =

σ−2
n (I0)g(I0, θ ), θn is a

√
n-consistent estimator of θ0, and σ 2

n (y) is a consistent
nonparametric estimator of σ 2(y) (for instance, a Nadaraya-Watson estimator).

1 The martingale trasform has also been variously referred to as: an innovation approach
(Khmaladze, 1988), and an innovation process approach (Stute, Thies, and Zhu, 1998).
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From the integrated approach we know that in the construction of consistent

tests, it is not necessary to consider the whole space of functions L2(R
d
,G). A

parametric family that delivers well-known limit processes is the indicator class

Bind = {1(· ≤ x) ≡ 1x(·) : x ∈ R
d} ⊂ L2(R

d
,G). For the univariate case, i.e.,

d = 1, continuous functionals of standardizations of R1
n(Tn1x) deliver ADF tests

for H0, see Koul and Stute (1999). However, in the multivariate case, d ≥ 2, the
asymptotic null distribution of R1

n(Tn1x) still depends on the conditional variance
and the design distribution. To overcome this problem we consider the so-called
Rossenblatt’s (1952) transformation. This transformation produces a multivariate
distribution that is i.i.d on the d-dimensional unit cube, thereby, leading to tests that
can be based on standardized tables. Let It = (It1, It2, . . ., Itd)′ and define the transfor-
mation u = (u1, . . ., ud )′ = TR(x) component-wise by u1 = F1(x1) = P (It1 ≤ x1),
u2 = F2(x2 | x1) = P (It2 ≤ x2 | It1 = x1), . . ., ud = Fd (xd | x1, . . ., xd−1) =
P (Itd ≤ xd | It1 = x1, . . ., Itd−1 = xd−1). The inverse x = T −1

R (u) can be obtained
recursively. Rossenblatt (1952) showed that Ut−1 = TR(It−1) has a joint distribution
which marginals are uniform and independently distributed on [0, 1]d .

In the next section, we shall show that under the null hypothesis and some mild
regularity conditions the transformed process Jn(u) = R1

n(Tn(σ−1
n (·)1u ◦TR(·))) con-

verges weakly to a zero mean Gaussian process in �∞(Bx0 ), for a suitable chosen
set Bx0 ⊂ [0, 1]d , with covariance function u1 ∧ u2, where for a = (a1, . . ., ad )′
and b = (b1, . . ., bd )′, a ∧ b = min

{
a1, b1

} × · · · × min
{
ad, bd

}
, that is, a standard

Brownian sheet.
In practice the conditional distributions F1, . . .,Fd , are unknown and have to be

estimated. Following Angrist and Kuersteiner (2004), we consider kernel estimators

F̂1(x1) = n−1
n∑

t=1

1(It−11 ≤ x1)

...

F̂d (xd | x1, . . ., xd−1) =
n−1

n∑

t=1
1(It−1d ≤ xd )Kd−1((x−

d − I−t−1d )/hn)

n−1
n∑

t=1
Kd−1((x−

d − I−t−1d )/hn)
,

where x−
d = (x1, . . ., xd−1)′, I−t−1d = (It−11, . . ., It−1d−1)′, Kj (x) = (2π )−j/2

∑w
h=1 γh |σh|−j exp ( − 0.5x ′x/σ 2

h ),
∑w

h=1 γh = 1,
∑w

h=1 γh |σh|2 l = 0, for l =
1, 2, . . ., w − 1, and hn = O(n−1/(2+d)) is a bandwidth sequence. Other higher order
kernels or other nonparametric estimators are possible, as long as A6(ii) in the next
section is satisfied.

Our final process is Ĵn(u) = R1
n(Tn(σ−1

n (·)1u ◦ T̂R(·))), where T̂R uses the previ-
ously described kernel estimation. Ĵn(u) is called here the Khmaladze-Rossenblatt’s
transformed residual marked process. As a test statistic we consider in this article a
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CvM functional

CvMn =
∫

Bx0

∣∣Ĵn(u)
∣∣2 Fn,U (du),

where Fn,U (·) is the empirical distribution function of the transformed sample
{Ut−1}nt=1, Bx0 = {u ∈ [0, 1]d : β ′

1T
−1
R (u) ≤ x0}, β1 ∈ R

d , and x0 < ∞ is a
user-chosen parameter necessary to avoid non-invertibility problems of the matrix
Cn,z(x), see Koul and Stute (1999) for a related situation. In the simulations we choose
x0 as the (100−d)% empirical quantile of the sample {β ′

1It−1}nt=1. Other spaces Bx0 ,
threshold values x0 and functionals different from the CvM are, of course, possible.
Our test will reject the null hypothesis H0 for “large” values of CvMn. Next section
establishes the asymptotic theory for CvMn and Sect. 4 shows, via a Monte Carlo
experiment, that it leads to a valuable diagnostic test.

7.3 Asymptotic Null Distribution

In this section we establish the limit distribution of Ĵn under the null hypothesis
H0. First, we state a uniform representation for the function-parametric process
R1

n(b), b ∈ B, for a generic B. This result is of independent interest. To derive
these asymptotic results we consider the following notation and definitions. Let
Ft = σ (I ′t , I ′t−1, . . ., I ′0) be the σ -field generated by the information set obtained up
to time t. Let us endow B with the pseudo-metric ‖·‖B . Let us define A = B ×�.

For a given class of function D we define for (r1, r2) ∈ D × D

d2
n,D(r1, r2) = n−1

n∑

t=1

E
[
ε2
t | Ft−1

] |r1(It−1) − r2(It−1)|2

and

dD(r1, r2) = ‖εt r1(It−1) − εt r2(It−1)‖2 .

Define the set �q = {(r1, r2) ∈ D×D : r1 ≤ r2, d2
D(r1, r2) = 2−2q}. If the family

D satisfies that

sup
(r1,r2)∈�q ,q∈N

d2
n,D(r1, r2)

d2
D(r1, r2)

= OP (1),

we say that D has bounded conditional quadratic variation with respect to dD. Also,
we say that the class D satisfies a bracketing condition of order p ≥ 2 and s > 0, in
short D is BEC(p, s), if

∞∫

0

(
log (N[](ε

1/s , D, ‖·‖p ))
)1/2

dε < ∞.

The following assumptions are sufficient conditions for the weak convergence of
R1

n(b) in �∞(B) for a general B.
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Assumption A1: (on the DGP)
A1(a): {(Yt ,Z′

t )
′ : t = 0,±1,±2, . . .} is a strictly stationary and ergodic process.

A1(b): E[εt | Ft−1] = 0 a.s. for all t ≥ 1, and E |ε1|2 < C.

Assumption A2: (on the set of functions B)
A2(a): (Locally Uniform Lp-Smoothness) Suppose that for some s > 0,C1 > 0,

and for p ≥ 2, the following holds: for each b1 ∈ B,
∥∥
∥
∥
∥

sup
b2∈B:‖b1−b2‖B<δ

|εtb1(It−1) − εtb2(It−1)|
∥∥
∥
∥
∥
p

≤ C1δ
s.

A2(b): (control the size of B) The class of functions B is BEC(p, s) for p and s

as in A2(a).
A2(c): The class B has bounded conditional quadratic variation with respect to

dB and the parametric space � is compact in R
p.

Assumption A3: (on the model) f (·, θ ) is twice continuously differentiable in a
neighborhood of θ0 ∈ �. There exists a function M(It−1) with supθ∈�

∣
∣g(It−1,θ )

∣
∣ ≤

M(It−1), such that M(It−1) is F (·)-square integrable.

Assumption A4: (on the parameter)
A4(a): The true parameter θ0 belongs to the interior of �. There exists a unique

θ1 such that |θn − θ1| = oP (1).
A4(b): The estimator θn satisfies

√
n(θn − θ0) = OP (1).

AssumptionA1(a) is standard in the model checks literature under time series, see,
e.g., Koul and Stute (1999). A1(b) is weaker than other related moment conditions
in the literature and allows for most empirically relevant conditional heteroskedas-
tic models. A2 is needed for the asymptotic tightness of the process R1

n(b). The
bracketing entropy condition has been frequently used in the literature. Combined
with locally uniform Lp-continuity, the bracketing entropy condition can be used to
establish the stochastic equicontinuity of a process that involves non-smooth func-
tions containing infinite dimensional parameters. Assumption A3 is classical in the
model checks literature, see, e.g., Stute and Zhu (2002). Assumption A4 is satisfied
for most estimators in the literature, such as the conditional nonlinear least squares
estimator (NLSE), or its robust modifications (under further regularity assumptions),
see Koul’s (1992, 2002) monographs. Under H0, a more efficient estimator than the
NLSE (see Wefelmeyer 1996) is given by the M-estimator satisfying the equation

n∑

t=1

σ−2(It−1)g(It−1,θn)(Yt − f (It−1, θn) = 0. (7.6)

A4(a) and A4(b) imply that under the null θ0 = θ1, but they might be different
under the alternative. A2(c) is a standard assumption to obtain weak convergence
theorems under martingale assumptions, see Bae and Levental (1995) and Nishiyama
(2000). Because this assumption is crucial in most of our asymptotic results, we now
give primitive and simple-to-check conditions for a class of functions D being of
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bounded conditional quadratic variation with respect to dD. See Escanciano and
Mayoral (2010) for a related result. Let us define the quantity

GD
t (r) = E

[
E
[
ε2
t | It−1

]
r(It−1) | Ft−2

]
r ∈ D,

Lemma 1: Assume A1, A2(a-b) and that
∣∣GD

t (r1) −GD
t (r2)

∣∣ ≤ Mtd
2
D(r1, r2),

whereMt is a stationary process with E[ |M1| ] < ∞. Then, D has bounded condi-
tional quadratic variation with respect todD.

Let V be a normal random vector with zero mean and variance–covariance matrix
given by L(θ0) (cf. A4(c)). Now, we are in position to state the asymptotic uniform
representation of the process R1

n(b) and its weak convergence.

Theorem 1: (i) Under Assumptions A1, A2 and A4(a) uniformly in b ∈ B,

R1
n(b) = 1√

n

n∑

t=1

{et (θ1) − E[et (θ1) | Ft−1]} b(It−1)

+ 1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ1) | Ft−1]
}
b(It−1)

+ 1√
n

n∑

t=1

E[et (θ1) | Ft−1]b(It−1) − E
[
E[et (θ1) | Ft−1]b(It−1)

]

+√
nE
[
E[et (θ1) | Ft−1]b(It−1)

]+ oP (1)

(ii) If in addition,H0, A3 and A4(a) hold, then uniformly inb ∈ B,

R1
n(b) = Rn(b) − 〈b, s ′〉√n(θn − θ0) + oP (1).

The decomposition in Theorem 1(ii) paves the way for the discovery of appropriate
martingale transforms of the residual marked process, see previous section. The
analysis of function-parametric processes such as those considered in Theorem 1
provides simple methods of proof for the study of the asymptotic null distribution of
Ĵn. To proceed further we need some regularity conditions.

Assumption A5: (on the conditional variance and related quantities)
A5(i): The estimator σ 2

n (·) is a uniform consistent nonparametric estimator of

σ 2(·) and 0 < a ≤ σ 2(y) for all y ∈ R
d

and some positive a.

A5(ii): σ−j (·) ∈ W , P (σ−j
n (·) ∈ W) → 1 as n → ∞ for j = 1, 2. The

class W satisfies A2(c), A2(a) for p > 2 and s = sw > 0 and is BEC(p, r) with
r ≤ min(1, sw). Moreover, W has an envelope b, such that b(·) < C < ∞, and the
norm in W , ‖·‖W say, dominates the L2-norm, i.e., there exists a C > 0 such that

‖b‖2 ≤ C ‖b‖W , for all b ∈ L2(R
d
,F ).

A5(iii): Bind = {1x(·) : x ∈ R
d} satisfies A2(c) and F is absolutely continuous

with respect to Lebesgue measure with density f (x) < ∞ for all x ∈ R
d
.



7 Nonparametric Distribution-Free Model Checks . . . 101

Assumption A6: A6(i): The trimming constant x0 is such that

inf
x∈Ax0

∣∣Cz(x)

∣∣ > ε > 0,

for some ε > 0 and where Ax0 = {x ∈ R
d

: β ′
1x ≤ x0}.

A6(ii): The nonparametric estimators for the conditional distributions satisfy

sup
x∈Rd

∣∣F̂l(xl | x1, . . ., xl−1) − Fl(xl | x1, . . ., xl−1)
∣∣ = oP (1), l = 2, .., d,

A5(i) is standard in model checks under conditional heteroskedasticity, see Stute,
Thies and Zhu (1998). Condition A5(ii) is necessary to obtain a uniform represen-

tation and tightness of the process R1
n(b) in b ∈ B = {h1x : h ∈ W and x ∈ R

d}.
A5(ii) can be relaxed using results for degenerate U -processes, but it simplifies the
theory and it gives us a clue about what are the properties necessary in W to obtain
the asymptotic tightness of R1

n(b) in b ∈ B. If we assume that σ−2(·) is smooth,
usual examples of W are spaces of smooth functions such as Sobolev, Hölder, or
Besov classes. Therefore, the covering number condition of Assumptions A2 or
A5(ii) can be found in many books and articles on approximation theory. To give
an example, define for any vector (a1, . . ., ad ) of d integers the differential operator
Da = ∂ |a|/∂xa1

1 . . . ∂xad
q , where |a| =∑d

i=1 ai. Let R be a bounded, convex subset
of R

d , with nonempty interior. For any smooth function h : R ⊂ R
d → R and some

η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η = max|a|≤η
sup
x

∣∣Dah(x)
∣∣+ max|a|=η

sup
x1 �=x2

|Dah(x1) −Dah(x2)|
‖x1 − x2‖η−η

.

Further, let Cη
c (R) be the set of all continuous functions h : R ⊂ R

d → R with
‖h‖∞,η ≤ c. If W = C

η
c (R), then W satisfies Assumption A5(ii) provided that

η > d , see van der Vaart and Wellner (1996, Theorem 2.7.1). A5(i) implies the
invertibility of the matrixCz(x), and it is assumed only for simplicity in the exposition,
see Nikabadze (1997). Conditions forA6(ii) to hold are in abundance in the literature,
see, for instance, Andrews (1995). A6(ii) implies that

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ = oP (1)

holds.

Theorem 2: Under the null hypothesis H0, and Assumptions A1 to A6

Ĵn �⇒ J∞, in�∞(Bx0 ),

whereJ∞ is a standard Brownian Sheet, i.e, a continuous Gaussian process with zero
mean and covariance function given by (u11 ∧ u21) × · · · × (u1d ∧ u2d ), for u1 =
(u11, . . . u1d )′ and u2 = (u21, . . . u2d )′ in [0, 1]d .

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see,
e.g., Theorem 1.3.6 in van der Vaart and Wellner (1996), we obtain the asymptotic
null distribution of continuous functionals such as CvMn.
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Corollary 1: Under the assumptions of Theorem 2, for any continuous (with respect
to the sup norm) functional �(·)

�(Ĵn)
d−→ �(J∞).

The integrating measure in CvMn is a random measure, therefore, Corollary 1 is
not readily applicable to the present case. However, an application of Lemma 3.1 in
Chang (1990) shows that the estimation Fn,U of the cdf of U0, FU say, does not affect
the asymptotic theory for CvMn as long as

sup
u∈Bx0

∣
∣Fn,U (u) − FU (u)

∣
∣ −→ 0 a.s.

By the Glivenko-Cantelli’s Theorem for ergodic and stationary time series, see
e.g. Dehling and Philipp (2002, p. 4), jointly with A6(ii), the previous uniform
convergence holds.

The power properties of CvMn can be studied similarly to those established in
Escanciano (2009). We do not discuss this issue here for the sake of space. A more
important and difficult problem is the asymptotic power comparison between trans-
formed and non-transformed tests from a theoretical point of view. This problem will
be investigated elsewhere. Here, we focus on the finite-sample comparison between
our ADF test and the bootstrap based tests via a Monte Carlo experiment in the next
section.

7.4 Simulation Results

In this section we compare some bootstrap integrated CvM tests with our new
ADF test via a Monte Carlo experiment. For the bootstrap CvM tests we consider
the weighting functions w(It−1, x) = exp (ix′It−1), w(It−1, x) = 1(It−1 ≤ x) and
w(It−1, x) = 1(β ′It−1 ≤ u), x = (β ′, u)′ ∈ �pro = S

d × [ − ∞,∞]. Our Monte
Carlo experiment complements that of Koul and Sakhanenko (2005) in the context
of goodness of fit for error distributions.

We briefly describe our simulation setup. Let It−1 = (Yt−1,Yt−2) be the informa-

tion set at time t − 1. For our ADF test we consider Az = {y ∈ R
2

: β ′
1y ≤ z},

with β1 = (1, 1)′. Let Fn,β(u) be the empirical distribution function of the projected
information set {β ′It−1 : 1 ≤ t ≤ n}. Escanciano (2006a) proposed the CvM test

CVMn,pro =
∫

�pro

(R1
n,pro(β, u))2Fn,β(du)dβ,

where

R1
n,pro(β, u) = 1

σ̂e

√
n

n∑

t=1

et (θn)1(β ′It−1 ≤ u)

and

σ̂ 2
e = 1

n

n∑

t=1

e2
t (θn).
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For a simple algorithm to compute CVMn,pro see Appendix B in Escanciano
(2006a).

Bierens (1982) proposed to use w(It−1, x) = exp (iI ′t−1x) as the weighting
function in (7.2) and considered the CvM test statistic

CvMn,exp =
∫

�

∣∣∣R1
n,exp(x)

∣∣∣
2
�(dx),

where

R1
n,exp(x) = 1

σ̂e

√
n

n∑

t=1

et (θn) exp (ix′It−1),

and with �(dx) a suitable chosen integrating function. In order that CvMn,exp has a
closed expression, we consider the weighting function �(dx) = φ(x), where φ(x)
is the probability density function of the standard normal bivariate r.v. In that case,
CvMn,exp simplifies to

CvMn,exp = 1

σ̂ 2
e n

n∑

t=1

n∑

s=1

et (θn)es(θn) exp

(
−1

2
|It−1 − Is−1|2

)
.

Escanciano (2007) considered the CvM test based on the indicator function, which
is given by

CvMn,ind = 1

σ̂ 2
e n

2

n∑

j=1

[
n∑

t=1

et (θn)1(It−1 ≤ Ij−1)

]2

.

We consider the wild bootstrap approximation for all these test statistics as
described in Sect. 3 of Escanciano (2007).

Our null model is an AR(2) model:

Yt = a + bYt−1 + cYt−2 + εt .

We examine the adequacy of this model under the following DGP:

1. AR(2) model: Yt = 0.6Yt−1 − 0.5Yt−2 + εt .

2. AR(2) model with heteroskedasticity (ARHET): Yt = 0.6Yt−1 − 0.5Yt−2 + htεt ,
where h2

t = 0.1 + 0.1Y 2
t−1 + 0.3Y 2

t−1.

3. Bilinear model (BIL): Yt = 0.6Yt−1 + 0.7εt−1Yt−2 + εt .

4. Nonlinear Moving Average model (NLMA): Yt = 0.6Yt−1 + 0.7εt−1εt−2 + εt .

5. TAR(2) model: Yt =
{

0.6Yt−1 + εt , if Yt−2 < 1,
−0.5Yt−1 + εt , if Yt−2 ≥ 1.

We consider for the experiments the sample sizes n = 50, 100, and 300. The number
of Monte Carlo experiments is 1000 and the number of bootstrap replications is
B = 500. In all the replications 200 pre-sample data values of the processes were
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Table 7.1 Empirical critical
values forCvMn

n\α 10 % 5 % 1 %

50 0.55557 0.74353 1.18788
100 0.56371 0.75706 1.21756
300 0.61113 0.81060 1.35720

generated and discarded. For a fair comparison, the critical values for the new tests
are approximated using 10000 replications of model 1. These critical values are given
in Table 7.1.

In Table 7.2 we show the empirical rejection probabilities (RP) associated with
the nominal levels 10, 5 and 1 %. The empirical levels of the test statistics are closed
to the nominal level. Only in the heteroskedastic case the tests presents some small
size distortion (underrejection).

In Table 7.3 we report the empirical power against the BIL, NLMA and TAR(2)
alternatives. The RP increase with the sample size n for all test statistics, as expected.

Table 7.2 Empirical size of tests

AR(2) ARHET

10 % 5 % 1 % 10 % 5 % 1 %

CvMn 9.4 4.8 0.8 14.1 7.4 1.7
n = 50 CvMn,exp 10.5 5.5 1.1 13.6 7.8 0.8

CvMn,ind 10.3 4.3 1.3 12.4 6.5 1.0
CvMn,pro 11.6 5.7 0.8 13.1 5.9 1.0

CvMn 9.0 4.3 1.2 12.4 7.1 2.1
n = 100 CvMn,exp 13.4 7.0 1.0 11.7 6.9 2.7

CvMn,ind 11.3 6.5 1.4 12.7 5.8 1.4
CvMn,pro 11.2 6.4 1.6 13.4 7.1 2.0

CvMn 10.5 4.8 0.6 11.9 6.4 1.2
n = 300 CvMn,exp 10.3 6.0 1.9 12.3 6.1 1.5

CvMn,ind 9.6 4.7 0.5 11.8 6.2 2.0
CvMn,pro 12.5 5.7 1.8 13.2 7.1 1.6

Table 7.3 Empirical power of tests.

BIL NLMA TAR(2)

10 % 5 % 1 % 10 % 5 % 1 % 10 % 5 % 1 %

CvMn 29.8 21.7 7.2 19.8 13.4 4.7 53.3 40.8 19.6
n = 50 CvMn,exp 29.4 18.0 4.4 16.0 8.6 1.5 23.0 13.4 2.0

CvMn,ind 32.2 22.8 8.1 24.6 15.3 4.6 39.8 30.0 10.5
CvMn,pro 39.6 25.2 9.0 22.9 11.6 2.3 38.5 27.2 9.7

CvMn 56.1 43.0 24.6 36.7 27.0 12.9 76.3 69.1 49.7
n = 100 CvMn,exp 43.8 30.0 10.7 28.6 16.2 3.8 43.2 27.5 8.2

CvMn,ind 50.0 39.4 19.1 45.1 33.5 13.3 65.4 54.8 34.9
CvMn,pro 55.7 42.3 20.1 41.0 26.8 9.0 62.0 51.3 28.2

CvMn 96.6 93.1 81.5 76.3 64.3 41.6 99.5 99.0 95.9
n = 300 CvMn,exp 77.2 66.0 36.9 75.6 61.0 28.4 92.5 86.4 61.1

CvMn,ind 76.2 68.4 50.8 88.8 82.7 59.2 98.5 96.9 88.1
CvMn,pro 75.2 65.8 44.8 89.4 80.8 51.9 98.7 96.6 86.5



7 Nonparametric Distribution-Free Model Checks . . . 105

The highest RP are presented in italics. It is shown that no test is better than the others
uniformly for all alternatives, levels and sample sizes. The new ADF Cramér-von
Mises test CvMn performs quite well, being the best in many cases. In particular, it
has the highest empirical power for BIL and TAR(2) alternatives uniformly in the
level for n = 300.The empirical power for CvMn,exp is low for these alternatives and,
in general, less than CvMn,ind . The test statistic CvMn,ind has good power against the
BIL alternative for n = 50 and for the NLMA alternative for n = 100, and moderate
power against the TAR(2). CvMn,pro performs similarly to CvMn,ind , but with a little
less empirical power in general.

Summarizing, we conclude from this limited Monte Carlo experiment that our
new CvM test compares very well to bootstrap-based integrated tests, with power
against all alternatives considered, and in many cases presenting the highest power
performance. To conclude, we summarize the properties of our CvM test as follows:
(i) it is asymptotically distribution-free; (ii) it is valid under fairly general regularity
conditions on the underlying DGP, in particular, under conditional heteroskedasticity
of unknown form and multivariate regressors; and (iii) it is simple to compute and
has an excellent finite sample performance as has been shown in the Monte Carlo
experiment. All these properties make of our test a valuable tool for time series
modelling.
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Appendix: Proofs

First, we shall state a weak convergence theorem which is a trivial extension of
Theorem A1 in Delgado and Escanciano (2007). Let for each n ≥ 1, I ′n,0, . . ., I ′n,n−1,
be an array of random vectors in R

p, p ∈ N, and εn,1, . . ., εn,n, be an array of real
random variables (r.v.’s). Denote by (�n, An,Pn), n ≥ 1, the probability space in
which all the r.v.’s {εn,t , I ′n,t }nt=1 are defined. Let Fn,t , 0 ≤ t ≤ n, be a double array
of sub σ -fields of An such that Fn,t ⊂ Fn,t+1, t = 0, . . ., n−1 and such that for each
n ≥ 1 and each γ ∈ H,

E[w(εn,t , In,t−1, γ ) | Fn,t−1] = 0 a.s., 1 ≤ t ≤ n, ∀n ≥ 1. (7.7)

Moreover, we shall assume that {w(εn,t , In,t−1, γ ), Fn,t , 0 ≤ t ≤ n} is a square-
integrable martingale difference sequence for each γ ∈ H, that is, (7.7) holds,
Ew2(εn,t , In,t−1, γ ) < ∞ and w(εn,t , In,t−1, γ ) is Fn,t -measurable for each γ ∈ H
and ∀t , 1 ≤ t ≤ n, ∀n ∈ N. The following result gives sufficient conditions for the
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weak convergence of the empirical process

αn,w(γ ) = n−1/2
n∑

t=1

w(εn,t , In,t−1, γ ) γ ∈ H.

Under mild conditions the empirical process αn,w can be viewed as a mapping
from �n to �∞(H), the space of all real-valued functions that are uniformly bounded
on H. The weak convergence theorem that we present here is funded on results by
Levental (1989), Bae and Levental (1995) and Nishiyama (2000). In Theorem A1
in Delgado and Escanciano (2007) H was finite-dimensional, but here we allow for
an infinite-dimensional H. The proof of theorem does not change by this possibility,
however.

An important role in the weak convergence theorem is played by the conditional
quadratic variation of the empirical process αn,w on a finite partition B = {Hk; 1 ≤
k ≤ N} of H, which is defined as

αn,w(B) = max
1≤k≤N

n−1
n∑

t=1

E

[

sup
γ1,γ2∈Hk

∣
∣w(εn,t , In,t−1, γ1) − w(εn,t , In,t−1, γ2)

∣
∣2 | Fn,t−1

]

.

Then, for the weak convergence theorem we need the following assumptions.

W1: For each n ≥ 1, {(εn,t , In,t−1)′ : 1 ≤ t ≤ n} is a strictly stationary and ergodic
process. The sequence {w(εn,t , In,t−1, γ ), Fn,t , 0 ≤ t ≤ n} is a square-integrable mar-
tingale difference sequence for each γ ∈ H. Also, there exists a function Cw(γ1, γ2)
on H × H to R such that uniformly in (γ1, γ2) ∈ H × H

n−1
n∑

t=1

w(εn,t , In,t−1, γ1)w(εn,t , In,t−1, γ2) = Cw(γ1, γ2) + oPn
(1).

W2: The family w(εn,t , In,t−1, γ ) is such that αn,w is a mapping from �n to �∞(H)
and for every ε > 0 there exists a finite partition Bε = {Hk; 1 ≤ k ≤ Nε} of H, with
Nε being the elements of such partition, such that

∞∫

0

√
log (Nε)dε < ∞ (7.8)

and

sup
ε∈(0,1)∩Q

αn,w(Bε)

ε2
= OPn

(1). (7.9)

Let α∞,w(·) be a Gaussian process with zero mean and covariance function given
by Cw(γ1, γ2). We are now in position to state the following

Theorem A1: If Assumptions W1 and W2 hold, then it follows that

αn,w �⇒ α∞,w in �∞(H).
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Proof of Theorem A1: Theorem A1 in Delgado and Escanciano (2007).

Proof of Lemma 1: By A2(a-b) we can form for any ε > 0 a finite partition Bε =
{Bk; 1 ≤ k ≤ N[](ε, B, ‖·‖p )} of B in ε-bracketsBk = [bk , bk].Denote v = 1/s, with
s as in A2(a), and define for every q ∈ N, q ≥ 1, ε = 2−qv. We denote the previous
partition associated to ε = 2−qv by Bq = {Bqk; 1 ≤ k ≤ Nq ≡ N[](2−qv, B, ‖·‖p )}.
Without loss of generality we can assume that the finite partitions in the sequence
{Bq} are nested. By A2(b), we have

∞∑

q=1

2−q
√

logNq < ∞.

Furthermore, by definition of the brackets

Rn(Bq) = max
1≤k≤Nq

∣
∣
∣
∣
∣
n−1

n∑

t=1

E
[
ε2
t | Ft−1

]
sup

r1,r2∈Bqk

|r1(It−1) − r2(It−1)|2
∣
∣
∣
∣
∣

= max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

E
[
ε2
t | Ft−1

] ∣∣bk(It−1) − bk(It−1)
∣∣2
∣∣∣∣∣

= max
1≤k≤Nq

d2
n(bk , bk). (7.10)

Define the event

Vn =
{

sup
q∈N

max
1≤k≤Nq

d2
n(bk , bk)

2−2q
≥ γ

}

.

We shall show that for all η > 0, there exists some γ > 0 such that
lim sup

n→∞
Pn(Vn) ≤ η. Note that

Pn(Vn) ≤
∞∑

q=1

Pn

(

max
1≤k≤Nq

d2
n(bk , bk)

2−2q
≥ γ

)

≡
∞∑

q=1

Vnq (7.11)

Now, define the process

α̃n,w(r) = n−1
n∑

t=1

E
[
ε2
t | Ft−1

]
r(It−1),

and the quantities for 1 ≤ t ≤ n, β̃t (r) = E
[
ε2
t | Ft−1

]
r(It−1) −GB

t (r). Hence,

α̃n,w(r) = n−1
n∑

t=1

β̃t (r) + n−1
n∑

t=1

GB
t (r).
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By triangle’s inequality

Vnq ≤ Pn

(

max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣β̃t (bk) − β̃t (bk)
∣∣
∣∣∣∣∣
≥ 2−2qγ

)

+Pn

(

max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣GB
t (bk) −GB

t (bk)
∣∣
∣∣∣∣∣
≥ 2−2qγ

)

≡ A1nq + A2nq .

Notice that {β̃n,w(r), Fn,t−2} is a martingale difference sequence for each r ∈
B, by construction. By a truncation argument, it can be assumed without loss of

generality that max
1≤k≤Nq

|εt |
∣
∣bk(It−1) − bk(It−1)

∣
∣2 ≤ √

naq−1, where henceforth aq =
2−qρ/

√
log (Nq+1) with 1 < ρ < 2. See Theorem A1 in Delgado and Escanciano

(2006). Define the set

Bn =
{(

n−1
n∑

t=1

Mt

)

≤ K

}

.

Now, by Freedman’s (1975) inequality in Lemma A2 and Lemma 2.2.10 in van
der Vaart and Wellner (1996),

E max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣β̃t (bk) − β̃t (bk)
∣∣
∣∣∣∣∣
1(Bn)

≤ C
(
a2
q−1 log (1 +Nq) + aq−12−qv/2

√
log (1 +Nq)

)
.

Hence, by Markov’s inequality and the definition of aq , on the set Bn,

A1nq ≤ C
a2
q−1 log (1 +Nq) + aq−12−qv/2

√
log (1 +Nq)

2−2qγ

= Cγ−12−2q(ρ−1) + Cγ−12−q(ρ+ v
2 −1).

On the other hand, by (D) and by Markov’s inequality

A2nq ≤ γ−1s−2
n

n∑

t=1

E max
1≤k≤Nq

22q

∣∣∣∣∣
n−1

n∑

t=1

∣∣GB
t (bk) −GB

t (bk)
∣∣
∣∣∣∣∣

≤ γ−12−q(v−2)

(

n−1
n∑

t=1

Mt

)

≤ Kγ−12−q(v−2),

on the set Bn. Therefore, by our previous arguments and the last three bounds,

Pn(Vn) ≤ Cγ−1
∞∑

q=1

(
2−2q(ρ−1) + 2−q(ρ+ v

2 −1) + 2−q(v−2)
)
+ Pn(Bc

n),

which can be made arbitrarily small by choosing a sufficiently large γ and K. Hence,
B has bounded quadratic variation. �
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Lemma A0: (Uniform Law of Large Numbers) If the class B is such that
log (N[](ε, B, ‖·‖1 ) < ∞ for each ε > 0, with envelope b, g(It−1, θ ) satisfies A3
and E

∣∣M(It−1)b(It−1)
∣∣ < ∞, then uniformly in (θ , b) ∈ �× B,

∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θ )b(It−1) − E
[
g(It−1, θ )b(It−1)

]
∣∣∣∣∣
= oP (1).

Proof of Lemma A0: Under the assumptions of the lemma, the class {g(It−1, θ )b
(It−1) : θ ∈ �, b ∈ B} is Glivenko-Cantelli. �
Proof of Theorem 1: First we shall show that the process

Sn(b, θ ) = 1√
n

n∑

t=1

{
et (θ ) − E

[
et (θ ) | Ft−1

]}
b(It−1) (7.12)

is asymptotically tight with respect to (b, θ ) ∈ A.

Let us define the class K = {{et (θ ) − E
[
et (θ ) | Ft−1

]}
b(It−1) : (b, θ ) ∈ A}.

Denote Xt−1 = (It−1, It−2, . . .)′. Let Bε = {Bk; 1 ≤ k ≤ Nε ≡ N[](ε, K, ‖·‖p}, with
Bk = [wk(Yt ,Xt−1), wk(Yt ,Xt−1)], be a partition of K in ε-brackets with respect to
‖·‖p . Notice that A2 implies

∥∥∥∥∥∥∥
sup

((b2,θ2)∈A:|θ1−θ2|<δ
‖b1−b2‖B<δ

∣∣{et (θ1) − E
[
et (θ1) | Ft−1

]}
b1(It−1)

− {et (θ2) − E
[
et (θ2) | Ft−1

]}
b2(It−1)

∣∣

∥∥∥∥∥∥∥
p

≤ C1δ
s.

Theorem 3 in Chen et al. (2003) and A2 imply that (7.8) holds for such partition.
On the other hand

max
1≤k≤Nε

n−1
n∑

t=1

E

⎡

⎣

∣∣∣∣∣
sup

w1,w2∈Bk

|w1(Yt ,Xt−1) − w2(Yt ,Xt−1)|
∣∣∣∣∣

2

| Ft−1

⎤

⎦

≤ max
1≤k≤Nε

n−1
n∑

t=1

E
[∣∣wk(Yt ,Xt−1) − wk(Yt ,Xt−1)

∣∣2 | Ft−1

]
. (7.13)

Therefore, A2(c) yields that (7.9) follows, and condition W2 of Theorem A1 holds.
The asymptotically tightness of Sn(b, θ ) is then proved.

Then, the last statement and A4(a)

R1
n(·) = 1√

n

n∑

t=1

{et (θ1) − E[et (θ1) | Ft−1]} b(It−1)
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+ 1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ1) | Ft−1]
}
b(It−1)

+ 1√
n

n∑

t=1

E[et (θ1) | Ft−1]b(It−1) − E
[
E[et (θ1) | Ft−1]b(It−1)

]

+√
nE
[
E[et (θ1) | Ft−1]b(It−1)

]+ oP (1),

uniformly in b ∈ B. Part (i) is proved.
As for (ii), A3 and A4(a) imply by the Mean Value Theorem

1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ0) | Ft−1]
}
b(It−1)

= −n1/2(θn − θ0)′
1

n

n∑

t=1

g(It−1, θni)b(It−1),

and where θni satisfies |θni − θ0| ≤ |θn − θ0|. Now, A3, A2(b) and Lemma A0 imply
that, uniformly in b ∈ B,

∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θni)b(It−1) − E
[
g(It−1, θ0)b(It−1)

]
∣∣∣∣∣
= oP (1).

From (i) and the last display, (ii) is proved. �
Before proving Theorem 2 we need several useful Lemmas. Let us define Ax0 =

{x ∈ R
d

: β ′
1x ≤ x0}.

Lemma A1: Under the assumptions of Theorem 2, uniformly in x ∈ Ax0 ,

R1
n(T σ−1

n (·)1x) = Rn(T σ−1(·)1x) + oP (1).

Lemma A2: Under the assumptions of Theorem 2, uniformly in x ∈ Ax0 ,

R1
n(Tnσ

−1
n (·)1x) = R1

n(T σ−1
n (·)1x) + oP (1).

Lemma A3: Under the assumptions of Theorem 2, uniformly in u ∈ Bx0

R1
n(Tn(σ−1

n (·)1u ◦ T̂R(·))) = R1
n(Tn(σ−1

n (·)1u ◦ TR(·))) + oP (1).

Before proving Lemmas A1 to A3 we shall prove two more Lemmas. We need
to define first the classes of functions S = {T h1x(·) : h ∈ W and x ∈ Ax0} and
B = {h1x : h ∈ W and x ∈ Ax0}. Define the semimetric

dind (x1, x2) = ∥∥εt1x1 (It−1) − εt1x2 (It−1)
∥∥

2 ,

and recall that Bind = {1(· ≤ x) ≡ 1x(·) : x ∈ R
d}.
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Lemma B1: Assume that Bind satisfies A2(c). Then, if W satisfies A5(ii) then B
satisfies A2 with p = 2.

Lemma B2: Assume A3, A5 and A6(i). Then, if B satisfies A2 with p = 2 then S
satisfies A2 with p = 2.

Proof of Lemma B1: We shall start with A2(a). Assume 0 < δ < 1. By the triangle

inequality, for each h1 ∈ W and each x1 ∈ R
d

∥
∥
∥
∥
∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

∣
∣εth11x1 (It−1) − εth21x2 (It−1)

∣
∣

∥
∥
∥
∥
∥
∥

2

≤ C

∥
∥
∥
∥
∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

|εth1(It−1)| ∣∣1x1 (It−1) − 1x2 (It−1)
∣
∣

∥
∥
∥
∥
∥
∥

2

+C

∥
∥
∥
∥
∥∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

1x2 (It−1) |εth1(It−1) − εth2(It−1)|
∥
∥
∥
∥
∥∥

2

≤ Cδ1 + Cδsw

≤ Cδs ,

with s = min(1, sw), where the second inequality is by A5(ii). A2(b) follows from
Theorem 6 inAndrews (1994) andA5(ii), because Bind isBEC(p, 1/2) for allp ≥ 2.
A2(c) follows from the previous arguments, using A5(ii) and that Bind and W satisfy
A2(c). �
Proof of Lemma B2: We shall start with A2(a). Assume 0 < δ < 1. By the triangle

inequality, for each h1 ∈ W and each x1 ∈ R
d

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εtT h11x1 (It−1) − εtT h21x2 (It−1)
∣∣

∥∥∥∥∥∥
2

≤ C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εth11x1 (It−1) − εth21x2 (It−1)
∣∣

∥∥∥∥∥∥
2

C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εtKh11x1 (It−1) − εtKh21x2 (It−1)
∣∣

∥∥∥∥∥
∥

2

,

where K is defined in (7.5). Then, it is only necessary to consider the second term
in the last inequality. Now, by the linearity of K and the triangle inequality this term
is bounded by

≤ C

∥∥
∥∥∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

εtK{h1(·)(1x1 (·) − 1x2 (·))}(It−1)

∥∥
∥∥∥
∥

2
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+C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

εtK1x2 (·)(h1(·) − h2(·))(It−1)

∥∥∥∥∥∥
2

≡ A1 + A2.

A2
1 is equal to

E

[

sup εt
2

(∫
1(y ∈ Az(It−1))h1(·)(1x1 (·) − 1x2 (·))s ′(x, θ0)C−1

z(x)G(dx)s(It−1, θ0)

)2
]

,

where the sup is computed over dind (x1, x2) < δ. By Cauchy-Schwartz’s inequality
(C-S), A3, A5 and A6(i) the integral is bounded by

C

∣
∣
∣
∣

∫
h2

1(·)(1x1 (·) − 1x2 (·))2G(dx)

∣
∣
∣
∣ ≤ Cd2

ind (x1, x2),

and hence |A1| ≤ Cδ. The proof for A2 follows from the same steps that for A1, and
hence, it is omitted.

The proof of A2(b) is straightforward. A2(c) can be proved following the ar-
guments in the proof of A2(a). These proofs are omitted for the sake of space.
�
Proof of Lemma A1: By Lemmas B1 and B2, B and S satisfies A2 with p = 2.
Hence, by Theorem 1,

R1
n(T b(·)1x) = Rn(T b(·)1x) + oP (1),

uniformly in x ∈ Ax0 and b ∈ W. Now, by the convergence of σ−1
n ,

R1
n(T σ−1

n (·)1x) = R1
n(T σ−1(·)1x) + oP (1),

uniformly in x ∈ Ax0 . �
Proof of Lemma A2: Write R1

n((T − Tn)σ−1
n (·)1x) as

∫
σ−1
n (y)1x(y)R1

n

(
s ′(·, θ0)1(· ∈ Ac

z(y))
)
C−1

z(y)g(y, θ0)F (dy)

−
∫

σ−1
n (y)1x(y)R1

n

(
s ′n(·, θn)1(· ∈ Ac

z(y))
)
C−1

n,z(y)g(y, θn)Fn(dy)

=
∫

σ−1
n (y)1x(y)βn(·, σ−2(·), θ0) [F (dy) − Fn(dy)]

−
∫

σ−1
n (y)1x(y)

[
βn(·, σ−2

n (·), θn) − βn(·, σ−2(·), θ0)
]
Fn(dy)

≡ A1n(x) − A2n(x),

where

βn(y, b, θ ) = R1
n

(
g′(·, θ )b(·)1(· ∈ Ac

z(y))
)
C−1

z(y)g(y, θ ). (7.14)
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Putting

αn(y) = σ−1
n (y)1x(y)βn(·, σ−2(·), θ0),

and using our Theorem 1 it is not difficult to show that the sequence {αn(·)} is
asymptotically tight. Hence, by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup
x∈Ax0

|A1n(x)| = oP (1).

Similarly, it can be proved that βn(y, b, θ ) is uniformly tight in (y, b, θ ) ∈ Bx0 ×
W×� (see Lemmas B1 and B2) and continuous in θ , but θn converges in probability
to θ0, and hence, again by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup
x∈Ax0

|A2n(x)| = oP (1).

�
Proof of Lemma A3: Define

γ̂u(It−1) = 1u ◦ T̂R(It−1),

γ̃u(It−1) = 1u ◦ TR(It−1)

and

du(·) = γ̂u(·) − γ̃u(·).
Then, write R1

n(Tnσ
−1
n (du(·))) as

R1
n(σ−1

n (du(·))) −
∫

du(·)σ−1
n (y)R1

n

(
s ′n(·, θn)1(· ∈ Ac

z(y))
)
C−1

n,z(y)gn(y, θn)Fn(dy)

≡ An1 − An2.

|An1| is bounded by
∣∣∣∣∣
n−1/2

n∑

t=1

et (θ0)σ−1
n (It−1)du(It−1)

∣∣∣∣∣
+
∣∣∣∣∣
n−1/2

n∑

t=1

{et (θn) − et (θ0)}σ−1
n (It−1)du(It−1)

∣∣∣∣∣

= ∣∣Rn

(
σ−1
n du(·))∣∣+

∣∣∣∣∣
√
n(θn − θ0)′n−1

n∑

t=1

g(It−1, θni)σ
−1
n (It−1)du(It−1)

∣∣∣∣∣

≡ |Bn1(u)| + |Bn2(u)| .
Now, the stochastic equicontinuity of Rnb1x in b ∈ W and 1x ∈ Bind , and A6(ii)

yield

sup
u∈[0,1]d

|B1n(u)| = oP (1).
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On the other hand, by Lemma A0, uniformly in b ∈ B,
∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θni)b(It−1) − E
[
g(It−1, θ0)b(It−1)

]
∣∣∣∣∣
= oP (1).

Therefore, A4(b) and the last display yield

sup
u∈[0,1]d

|B2n(u)| = oP (1).

As for An2, by C-S,

[∫ [
γ̂u(y) − γ̃u(y)

]2
Fn(dy)

]1/2 [∫
σ−2
n (y)β2

n(y, σ−1
n , θn)Fn(dy)

]1/2

,

where βn is defined in (7.14). Both integrants are asymptotically tight (see the
arguments of Lemma A2). Hence, Lemma 3.1 in Chang (1990) yields

∫ [
γ̂u(y) − γ̃u(y)

]2
Fn(dy) =

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy) + oP (1)

and
∫

σ−2
n (y)β2

n(y, σ−1
n , θn)Fn(dy) = OP (1).

Now, we shall show that A6(ii) and A6(iii) imply

sup
u∈Bx0

∣∣∣∣

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy)

∣∣∣∣ = oP (1). (7.15)

To that end, from A6(ii) we have that

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ = oP (1),

Hence, for a given ε > 0, there exists and n0 such that for all n ≥ n0

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ < ε

with probability tending to one. Therefore, on that set

sup
u∈Bx0

∣∣∣
∣

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy)

∣∣
∣∣ ≤ sup

u∈Bx0

∣∣E
[
1(u − ε ≤ Ut−1 ≤ u + ε

]∣∣ ≤ 2ε.

Hence, as ε was arbitrary (7.15) holds, and Lemma A3 is proved. �
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