
Chapter 4
Asymptotic Risk and Bayes Risk of Thresholding
and Superefficient Estimates and Optimal
Thresholding

Anirban DasGupta and Iain M. Johnstone

4.1 Introduction

The classic Hodges’ estimator (Hodges, 1951, unpublished) of a one dimensional
normal mean demolished the statistical folklore that maximum likelihood estimates
are asymptotically uniformly optimal, provided the family of underlying densities
satisfies enough regularity conditions. Hodges’ original estimate is

Tn(X1, · · · ,Xn) =
{
X̄n if |X̄n| > n−1/4

0 if |X̄n| ≤ n−1/4 (4.1)

A more general version is

Sn(X1, . . . ,Xn) =
{
X̄n if |X̄n| > cn
anX̄n if |X̄n| ≤ cn

(4.2)

Here, cn, for the moment, is a general positive sequence and 0 ≤ an ≤ 1.
With squared error as the loss function, the risk of X̄n, the unique MLE, satisfies
nR(θ , X̄n) ≡ 1, and Hodges’ original estimate Tn satisfies

lim
n→∞ nβR(0, Tn) = 0 ∀β > 0,

while

lim
n→∞ sup

θ

nR(θ , Tn) = ∞.

Thus, at θ = 0, Hodges’ estimate is asymptotically infinitely superior to the MLE,
while globally its peak risk is infinitely more relative to that of the MLE. Supereffi-
ciency at θ = 0 is purchased at a price of infinite asymptotic inflation in risk away
from zero. Hodges’ example showed that the claim of the uniform asymptotic opti-
mality of the MLE is false even in the normal case, and it seeded the development
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Fig. 4.1 Risk of Hodges’ Estimate for n=50

of such fundamental concepts as regular estimates. It culminated in the celebrated
Hájek-Le Cam convolution theorem. It probably, also had some indirect impact on
the development and study of the now common thresholding estimates in large p

small n problems, the most well known among them being the Donoho-Johnstone
estimates (Donoho and Johnstone (1994)), although while the classic Hodges’ es-
timate uses a small threshold (n−1/4), the new thresholding estimates use a large
threshold (Fig 4.1).

It is of course already well understood that the risk inflation of Hodges’ estimate
occurs close to zero, and that the worst inflation occurs in a neighborhood of small
size. This was explicitly pointed out in Le Cam (1953):

lim
n→∞ sup

Un

sup
θ∈Un

nR(θ , Tn) = ∞,

where Un denotes a general sequence of open neighborhoods of zero such that λ(Un),
the Lebesgue measure ofUn, goes to zero; we cannot have asymptotic superefficiency
in nonvanishing neighborhoods. Provided only that a competitor estimate sequence
Tn has a limit distribution under every θ , i.e.,

√
n(Tn − θ ) has some limiting distri-

bution Lθ , it must have an asymptotic pointwise risk at least as large as that of X̄ at
almost all θ :

For almost all θ , lim sup
n→∞

nR(θ , Tn) ≥ 1.

Indeed, a plot of the risk function of Hodges’estimate nicely illustrates these three
distinct phenomena, superefficiency at zero, inflation close to zero, worst inflation
in a shrinking neighborhood: Similar in spirit are the contemporary thresholding
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Fig. 4.2 Risk of Hodges’ Estimate for n = 250

estimates of Gaussian means. Formally, given X ∼ N (θ , 1), and λ > 0, the hard
thresholding estimate is defined as

θ̂λ = X if |X| > λ

= 0 if |X| ≤ λ

Implicit in this construction is an underlying Gaussian sequence model

Xi

indep.∼ N (θi , 1), i = 1, 2, · · · , n,

and

θ̂i = XiI|Xi |>λ(n), (4.3)

andλ(n) often being asymptotic to
√

2 log n, which is a first order asymptotic approx-
imation (although not very accurate practically) to the expectation of the maximum
of n iid N (0, 1) observations. The idea behind this construction is that we expect
nearly all the means to be zero (i.e., the observed responses are instigated by pure
noise), and we estimate a specific θi to be equal to the observed signal only if the
observation stands out among a crowd of roughly n pure Gaussian white noises. See
Johnstone (2012) for extensive discussion and motivation (Fig 4.2).

The similarity between Hodges’estimate and the above hard thresholding estimate
is clear. We would expect the hard thresholding estimate to manifest risk phenomena
similar to that of Hodges’ estimate: better risk than the naive estimate Xi itself if
the true θi is zero, risk inflation if the true θi is adequately away from zero, and we
expect that the finer details will depend on the choice of the threshold level λ. One
may ask what is the optimal λ that suitably balances the risk gain at zero with the
risk inflation away from zero.
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Another commonality in the behavior of Hodges’ estimate and the hard thresh-
olding estimate is that if we take a prior distribution on the true mean that is very
tightly concentrated near zero, then they ought to have smaller Bayes risks than the
MLE, and the contrary is expected if we take an adequately diffuse prior.

It is meaningful and also interesting to ask if these various anticipated phenomena
can be pinned down with some mathematical precision. The main contributions of
this article are the following:

a) For the one dimensional Gaussian mean and superefficient estimates of the gen-
eral form as in (4.2), we precisely quantify the behavior of the risk at zero
(Eq. (4.10), Corollary 1.2.5).

b) We precisely quantify the risk at k√
n

for fixed positive k (Eq. (4.22)), and we

show that the risk at 1√
n

(which is exactly one standard deviation away from zero)

is for all practical purposes equal to 1
n

, which is the risk of the MLE (Theorem
1.2.4, Corollary 1.2.5).

c) We show that in the very close vicinity of zero, the risk of superefficient estimates
increases at an increasing rate, i.e., the risk is locally convex (Theorem 1.2.2).

d) We show that the global peak of the risk is not attained within n−1/2 neighbor-
hoods. In fact, we show that at θ = cn, the risk is much higher (Theorem 1.2.5,
Eq. (4.26)), and that immediately below θ = cn, the risk is even higher. Precisely,
we exhibit explicit and parsimonious shrinking neighborhoods Un of θ = cn,
such that

lim inf c−2
n sup

θ∈Un

R(θ , Sn) ≥ 1. (4.4)

(Theorem 1.2.6, Eq. (4.28)). Note that we can obtain the lower bound in (4.4)
with an lim inf, rather than lim sup.

Specifically, our calculations indicate that argmaxθR(θ , Sn) ≈ cn −
√

log (nc2
n)

n
,

and supθ R(θ , Sn) ≈ c2
n − 2cn

√
log n

n
(Eq. (4.35)).

e) For normal priors πn = N (0, σ 2
n ), we obtain exact closed form expressions for

the Bayes risk Bn(πn, Sn) of Sn (Theorem 1.2.7, Eq. (4.45)), and characterize
those priors for which Bn(πn, Sn) ≤ 1

n
for all large n. Specifically, we show that

σ 2 = 1
n

acts in a very meaningful way as the boundary between Bn(πn, Sn) < 1
n

and Bn(πn, Sn) > 1
n

(Theorem 1.2.8).
More generally, we use the theory of regular variation to show the quite remark-
able fact that for general smooth prior densities πn(θ ) = √

nh(θ
√
n), all Hodges

type estimates are approximately equivalent in Bayes risk to the MLE X̄ and that
the exact rate of convergence of the difference in Bayes risks is determined by
whether or not Varh(θ ) = 1 (Theorem 1.2.10, Eq. (4.64)). This theorem, in turn,
follows from a general convolution representation for the difference in Bayes
risks under general πn (Theorem 1.2.9, Eq. (4.48)).

f) For the Gaussian sequence model, we obtain appropriate corresponding versions
of a)-e) for hard thresholding estimates of the form ( 4.3).
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g) We identify the specific estimate in the class (4.2) that minimizes an approx-
imation to the global maximum of the risk subject to a guaranteed specified
improvement at zero; this is usually called a restricted minimax problem. More
precisely, we show that subject to the constraint that the percentage risk improve-
ment at zero is at least 100(1− εn)%, the global maximum risk is approximately

minimized when cn =
√

2 log 1
εn

(Eq. (4.38)).

h) We illustrate the various results with plots, examples, and summary tables.

Several excellent sources where variants of a few of our problems have been ad-
dressed include Hájek (1970), Johnstone (2012), Le Cam (1953, 1973), Lehmann
and Romano (2005), van der Vaart (1997, 1998), and Wasserman (2005). Also, see
DasGupta (2008) and lecture notes written by Jon Wellner and Moulinath Banerjee.
Superefficiency has also been studied in some problems that do not have the LAN
(locally asymptotically normal) structure; one reference is Jeganathan (1983).

If the variance σ 2 of the observations was unknown, estimates similar to Hodges’
are easily constructed by hard thresholding the MLE whenever |X̄|

s
≤ cn, where s

is the sample standard deviation. Some of its risk properties can be derived along
the lines of this article. However, the optimal thresholding and global maximum risk
problems are likely to be even more difficult.

4.2 Risk Function of Generalized Hodges Estimates

Consider generalized Hodges estimates of the form (4.2). We first derive an ex-
pression for the risk function of the estimate Sn(X1, · · · ,Xn). This formula will be
repeatedly used for many of the subsequent results. This formula for the risk function
then leads to formulas for its successive derivatives, which are useful to pin down
finer properties of Sn.

4.2.1 Global Formulas

Theorem 1.2.1 Let n ≥ 1 and X1, · · · ,Xn iid N (θ , 1). Let 0 ≤ an ≤ 1 and cn > 0.
For the estimate Sn(X1, · · · ,Xn) as in (4.2), the risk function under squared error
loss is given by

R(θ , Sn) = 1

n
+ en(θ ),

where

en(θ ) =
[a2

n − 1

n
+ (1 − an)2θ2

] (
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

+2an(an − 1)θ√
n

(
φ(
√
n(cn + θ )) − φ(

√
n(cn − θ ))

)
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+1 − a2
n√

n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)
, (4.5)

where φ and � denote the density and the CDF of the standard normal distribution.

Proof Write R(θ , Sn) as

R(θ , Sn) = E[(X̄ − θ )2I|X̄|>cn
] + E[(anX̄ − θ )2I|X̄|≤cn

]

= E[(X̄ − θ )2] + E[(anX̄ − θ )2I|X̄|≤cn
] − E[(X̄ − θ )2I|X̄|≤cn

]

= 1

n
+
∫ √

n(cn−θ )

−√
n(cn+θ )

[an(θ + z√
n

) − θ ]2φ(z)dz − 1

n

∫ √
n(cn−θ )

−√
n(cn+θ )

z2φ(z)dz

= 1

n
+ T1 + T2 (say) (4.6)

On calculation, we get

T1 =
[a2

n

n
+ (1 − an)2θ2

] (
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

− a2
n√
n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)

+2an(an − 1)θ√
n

(
φ(
√
n(cn + θ )) − φ(

√
n(cn − θ ))

)
, (4.7)

and

T2 = 1

n

(
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

− 1√
n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)
(4.8)

On combining (4.6), (4.7), and (4.8), and further algebraic simplification, the stated
expression in (4.5) follows.

4.2.1.1 Behavior at Zero

Specializing the global formula (4.5) to θ = 0, we can accurately pin down the
improvement at zero.
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Corollary 1.2.1 The risk improvement of Sn over X̄ at θ = 0 satisfies

en(0) = 1

n
− R(0, Sn) = 2(1 − a2

n)

n
φ(
√
ncn)

[�(
√
ncn) − 1

2

φ(
√
ncn)

−√
ncn

]
(4.9)

Furthermore, provided that lim supn |an| ≤ 1, and γn = √
ncn → ∞,

R(0, Sn) = a2
n

n
+
√

2

π

1 − a2
n

n
γn e

−γ 2
n /2 + o(

γne
−γ 2

n /2

n
) (4.10)

Corollary 1.2.1 can be proved by using (4.5) and standard facts about the N (0, 1)
CDF; we will omit these details.

An important special case of Corollary 1.2.1 is the original Hodges’ estimate, for
which cn = n−1/4 and an ≡ 0. In this case, an application of Corollary 1.2.1 gives
the following asymptotic expansion; it is possible to make this into a higher order
asymptotic expansion, although it is not done here.

Corollary 1.2.2 For Hodges’ estimate Tn as in (4.1),

R(0, Tn) =
√

2

π
n−3/4e−

√
n

2 + o(n−3/4e−
√
n

2 ) (4.11)

In particular,

lim
n→∞

log (nR(0, Tn))√
n

= −1

2
(4.12)

We record the following corollary for completeness. Note that
√
ncn need not go to

∞ for superefficiency to occur, as shrinkage will automatically take care of it.

Corollary 1.2.3 Suppose γn = √
ncn → γ , 0 < γ ≤ ∞. Then, Sn is superefficient

at zero, i.e., lim supn nR(0, Sn) < 1 iff lim supn |an| < 1.

4.2.1.2 Local Convexity and Behavior in Ultrasmall Neighborhoods

For understanding the local shape properties of the risk function of Sn, it is necessary
to understand the behavior of its derivatives. This is the content of the next result,
which says in particular that the risk function of all generalized Hodges estimates is
locally convex near zero. For these results, we need the following notation:

fn(θ ) = (1 − an)2θ
[
2�(

√
n(cn + θ )) − 1

]
(4.13)

gn(θ ) = (an − 1)
[
(1 + an)

√
nc2

n +
2an√
n
+ 2

√
ncnθ

]
φ(
√
n(cn + θ )) (4.14)
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Theorem 1.2.2 For all n and θ ,

d

dθ
R(θ , Sn) = fn(θ ) − fn(−θ ) + gn(θ ) − gn(−θ ) (4.15)

In particular, d
dθ
R(θ , Sn)|θ=0 = 0, and provided that |an| < 1, d2

dθ2 R(θ , Sn) > 0 in
a neighborhood of θ = 0. Hence, under the hypothesis that |an| < 1, R(θ , Sn) is
locally convex near zero, and θ = 0 is a local minima of R(θ , Sn).

Proof Proof of (4.15) is a direct calculation followed by rearranging the various
terms. The calculation is not presented.

That the derivative ofR(θ , Sn) at θ = 0 is zero follows from symmetry ofR(θ , Sn),
or, also immediately from (4.15). We now sketch a proof of the local convexity
property. Differentiating (4.15),

d2

dθ2
R(θ , Sn) = f ′

n(θ ) + f ′
n(−θ ) + g′

n(θ ) + g′
n(−θ ). (4.16)

Now, on algebra,

f ′
n(θ ) = (1 − an)2

[
2�(

√
n(cn + θ )) − 1

]
+ 2θ (1 − an)2√nφ(

√
n(cn + θ ))

and g′
n(θ ) = 2(an − 1)

√
ncnφ(

√
n(cn + θ )) − n(cn + θ )φ(

√
n(cn + θ ))

×
[
2(an − 1)

√
ncnθ + 2an(an − 1)√

n
+ (a2

n − 1)
√
nc2

n

]
(4.17)

On substituting (4.17) into (4.16), and then setting θ = 0, we get after further
algebraic simplification,

d2

dθ2
R(θ , Sn)|θ=0 = 4(1 − an)2

[
�(

√
ncn) − 1

2
−√

ncnφ(
√
ncn)

]

+ 2(1 − a2
n)c3

nn
3/2φ(

√
ncn) (4.18)

By simple calculus, �(x) − 1
2 − xφ(x) > 0 for all positive x. Therefore, on using

our hypothesis that |an| < 1, from (4.18), d2

dθ2 R(θ , Sn)|θ=0 > 0. It follows from the

continuity of d2

dθ2 R(θ , Sn) that it remains strictly positive in a neighborhood of θ = 0,
which gives the local convexity property.

Remark Consider now the case of original Hodges’ estimate, for which an = 0 and
cn = n−1/4. In this case, (4.18) gives us limn→∞ d2

dθ2 R(θ , Tn)|θ=0 = 2. Together with
(4.11), we then have the approximation

R(θ , Tn) ≈
√

2

π
n−3/4e−

√
n

2 + θ2 (4.19)

for θ very close to zero. Of course, we know that this approximation cannot depict
the subtleties of the shape of R(θ , Tn), because R(θ , Tn) is known to have turning
points, which the approximation in (4.19) fails to recognize. We will momentarily
see that R(θ , Tn) rises and turns so steeply that (4.19) is starkly inaccurate in even
n−1/2 neighborhoods of zero.
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4.2.2 Behavior in n−1/2 Neighborhoods

We know that the superefficient estimates Tn, or Sn have a much smaller risk than
the MLE at zero, and that subsequently their risks reach a peak that is much higher
than that of the MLE. Therefore, these risk functions must again equal the risk of
the MLE, namely 1

n
at some point in the vicinity of zero. We will now first see that

reversal to the 1
n

level happens within n−1/2 neighborhoods of zero. A general risk
lower bound for generalized Hodges estimates Sn would play a useful role for this
purpose, and also for a number of the later results. This is presented first.

Theorem 1.2.3 Consider the generalized Hodges estimate Sn.

(i) Suppose 0 ≤ an ≤ 1. Then, for every n and 0 ≤ θ ≤ cn,

R(θ , Sn) ≥ a2
n

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]

(4.20)

(ii) Suppose
√
ncn → ∞, and that a, 0 ≤ a < 1 is a limit point of the sequence an.

Let θn = 1
(1−a)2√n

. Then, lim supn nR(θn, Sn) ≥ a2 + 1.

Proof In expression (4.5) for en(θ ), observe the following:

0 ≤ �(
√
n(cn + θ )) +�(

√
n(cn − θ )) − 1 ≤ 1;

For 0 ≤ θ ≤ cn, φ(
√
n(cn + θ )) − φ(

√
n(cn − θ )) ≤ 0;

For 0 ≤ θ ≤ cn, (cn + θ )φ(
√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ )) ≥ 0.

Therefore, by virtue of the hypothesis 0 ≤ an ≤ 1, from (4.5),

R(θ , Sn) ≥ 1

n
+ a2

n − 1

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]

= a2
n

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]
,

as claimed in (4.20).
For the second part of the theorem, choose a subsequence {ank } of {an} converging

to a. For notational brevity, we denote the subsequence as an itself. Then, (along this
subsequence), and with θn = 1

(1−a)2√n
,

a2
n + (1 − an)2θ2

n

[
�(

√
n(cn + θn)) +�(

√
n(cn − θn)) − 1

]
→ a2 + 1 (4.21)

Since we assume for the second part of the theorem that
√
ncn → ∞, we have that

θn ≤ cn for all large n, and hence the lower bound in (4.20) applies. Putting together
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(4.20) and (4.21), and the Bolzano-Weierstrass theorem, we have one subsequence
for which the limit ofnR(θn, Sn) is≥ a2+1, and hence, lim supn nR(θn, Sn) ≥ a2+1.

We will now see that if we strengthen our control on the sequence {an} to require it
to have a limit, and likewise require

√
ncn also to have a limit, then the (normalized)

risk of Sn at k√
n

will also have a limit for any given k. Furthermore, if the limit of

an is zero and the limit of
√
ncn is ∞, which, for instance, is the case for Hodges’

original estimate, then the risk of Sn at 1√
n

is exactly asymptotic to the risk of the

MLE, namely 1
n

. So, reversal to the risk of the MLE occurs, more or less, at θ = 1√
n

.
The next result says that, but in a more general form.

Theorem 1.2.4 Consider the generalized Hodges estimate Sn.

(a) If an → a,−∞ < a < ∞, and
√
ncn → γ , 0 ≤ γ ≤ ∞, then for any fixed

k ≥ 0,

lim
n→∞ nR(

k√
n

, Sn) = 1 +
[
a2 − 1 + k2(1 − a)2

] [
�(k + γ ) −�(k − γ )

]

+ 2a(a − 1)k
[
φ(k + γ ) − φ(k − γ )

]

+ (1 − a2)
[
(k + γ )φ(k + γ ) − (k − γ )φ(k − γ )

]
, (4.22)

with (4.22) being interpreted as a limit as γ → ∞ if
√
ncn → ∞.

(b) In particular, if an → 0 and
√
ncn → ∞, then, limn→∞ nR( k√

n
, Sn) = k2.

(c) If an = 0 for all n and
√
ncn → ∞, then for any positive k, we have the

asymptotic expansion

nR(
k√
n

, Sn) = k2 + 1√
2π

e−γ 2
n /2−k2/2

×
[
(γn − k)ekγn + (γn + k)e−kγn − (k2 − 1)

ekγn

γn
− (k2 − 1)

e−kγn

γn

]

+O(
e−γ 2

n /2+kγn

γ 2
n

) (4.23)

(d) If an = 0 for all n and
√
ncn → ∞, then for k = 0, we have the asymptotic

expansion

nR(0, Sn) =
√

2

π
e−γ 2

n /2
[
γn + 2

γn

]
+O(

e−γ 2
n /2

γ 3
n

) (4.24)

The plot below nicely exemplifies the limit result in part (b) of Theorem 1.2.4 Fig. 4.3.
The proofs of the various parts of Theorem 1.2.4 involve use of standard facts about

the standard normal tail and rearrangement of terms. We omit these calculations. It
follows from part (b) of this theorem, by letting k → ∞ that for the original Hodges’
estimate Tn, supθ R(θ , Tn) >> 1

n
for large n, in the following sense.
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Fig. 4.3 Plot of n* Risk of Hodges’ Estimate at k/sqrt(n) and k2 for n = 500

Corollary 1.2.4 If an → 0 and
√
ncn → ∞, then limn

[
supθ nR(θ , Sn)

]
= ∞.

On the other hand, part (c) and part (d) of the above theorem together lead to the
following asymptotic expansions for the risk of Hodges’original estimate Tn at θ = 0
and θ = 1√

n
. We can see how close to 1

n
the risk at 1√

n
is, and the rapid relative

growth of the risk near θ = 0 by comparing the two expansions in the corollary
below, which is also a strengthening of Corollary 1.2.2.

Corollary 1.2.5 For Hodges’ estimate Tn as in (4.1),

R(0, Tn) =
√

2

π
e−

√
n

2 n−3/4
[
1 + 2√

n

]
+O(

e−
√
n

2

n7/4
);R(

1√
n

, Tn)

= 1

n
+ 1√

2π
n−3/4e−

1
2 (n1/4−1)2

[
1 − n−1/4

]
+O(

e− 1
2 (n1/4−1)2

n3/2
) (4.25)

4.2.3 Behavior in cn Neighborhoods

We saw in the previous section that reversal to the risk of the MLE occurs in n−1/2

neighborhoods of zero. However, n−1/2 neighborhoods are still too short for the risk
to begin to approach its peak value. If cn >> 1√

n
and we expand the neighborhood

of θ = 0 to cn neighborhoods, then the risk of Sn increases by factors of magnitude,
and captures the peak value. We start with the risk of Sn at θ = cn and analyze its
asymptotic behavior.
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Theorem 1.2.5 Consider the generalized Hodges estimate Sn.

(a) Suppose 0 ≤ an ≤ 1 and that
√
ncn → ∞. Then, lim supn c−2

n R(cn, Sn) ≥
(1−lim infn an)2

2 , and lim infn c−2
n R(cn, Sn) ≥ (1−lim supn an)2

2 .
(b) If an → a,−∞ < a < ∞, and

√
ncn → γ , 0 ≤ γ ≤ ∞, then

lim
n→∞ c−2

n R(cn, Sn) = 1

γ 2
+
[a2 − 1

γ 2
+ (1 − a)2

][
�(2γ ) − 1

2

]

+2a(a − 1

γ

[
φ(2γ ) − φ(0)

]
+ 2(1 − a2)

φ(2γ )

γ
, (4.26)

with (4.26) being interpreted as a limit as γ → ∞ if
√
ncn → ∞.

Proof By (4.20),

R(cn, Sn) ≥ a2
n

n
+ c2

n(1 − an)2
[
�(2

√
ncn) − 1

2

]

⇒ c−2
n R(cn, Sn) ≥ (1 − an)2

[
�(2

√
ncn) − 1

2

]
(4.27)

Since
√
ncn → ∞, (4.24) implies that given ε > 0, for all large enough n,

c−2
n R(cn, Sn) ≥ (

1

2
− ε)(1 − an)2

⇒ lim sup
n

c−2
n R(cn, Sn) ≥ lim sup

n

(
1

2
− ε)(1 − an)2 = (

1

2
− ε)(1 − lim inf

n
an)2.

Since ε > 0 is arbitrary, this means lim supn c−2
n R(cn, Sn) ≥ (1−lim infn an)2

2 ; the
lim inf inequality follows similarly.

4.2.3.1 Behavior Near cn and Approach to the Peak

Theorem 1.2.6 Consider the generalized Hodges estimate Sn. Suppose an = 0 for
all n and γn = √

ncn → ∞. Then, for any fixed α, 0 < α ≤ 1, we have the
asymptotic expansion

c−2
n R((1 − α)cn, Sn) = (1 − α)2 + φ(αγn)

αγn
(2α − 1) + φ((2 − α)γn)

(2 − α)γn
(3 − 2α)

+O(
φ(αγn)

γ 3
n

) (4.28)
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Proof: Fix 0 < α < 1, and denote θn = (1 − α)cn. Using (4.5),

R(θn, Sn) = 1

n
+
[
(1 − α)2c2

n −
1

n

][
�((2 − α)γn) −�( − αγn)

]

+ 1√
n

[
(2 − α)cnφ((2 − α)γn) + αcnφ(αγn)

]

⇒ c−2
n R(θn, Sn) = 1

γ 2
n

+
[
(1 − α)2 − 1

γ 2
n

][
�((2 − α)γn) −�( − αγn)

]

+ 1

γn

[
(2 − α)φ((2 − α)γn) + αφ(αγn)

]
= 1

γ 2
n

+
[
(1 − α)2 − 1

γ 2
n

]

[
1 − φ((2 − α)γn)

(2 − α)γn
(1 +O(γ−2

n )) − φ(αγn)

αγn
(1 +O(γ−2

n ))
]

+ (2 − α)φ((2 − α)γn)

γn
+ αφ(αγn)

γn

= (1 − α)2 + φ((2 − α)γn)

γn

[
(2 − α) − (1 − α)2

2 − α

]

+ φ(αγn)

γn

[
α − (1 − α)2

α

]
+O(

φ(αγn)

γ 3
n

). (4.29)

The theorem now follows from (4.29).
By scrutinizing the proof of Theorem 1.2.6, we notice that the constant α can be

generalized to suitable sequences αn, and this gives us a useful and more general
corollary. Note that, indeed, the remainder term in the corollary below is O(φ(αnγn)

γn
),

rather than O(φ(αnγn)
γ 3
n

).

Corollary 1.2.6 Consider the generalized Hodges estimate Sn. Suppose an = 0
for all n and γn = √

ncn → ∞. Let αn be a positive sequence such that αn →
0,αnγn → ∞. Let θn = (1 − αn)cn. Then we have the asymptotic expansion

c−2
n R(θn, Sn) = (1 − αn)2 − φ(αnγn)

αnγn
+O(

φ(αnγn)

γn
) (4.30)

Remark Together, Theorem 1.2.5 and Corollary 1.2.6 enable us to make the fol-

lowing conclusion: at θ = cn,R(θ , Sn) ≈ c2
n

2 >> 1
n

, which is the risk of the MLE,
provided γn = √

ncn → ∞. If we move slightly to the left of θ = cn, then the risk
increases even more. Precisely, if we take θ = (1 − αn)cn with a very small αn, then
R(θ , Sn) ≈ c2

n. We believe that this is the exact rate of convergence of the global
maximum of the risk, i.e.,

lim
n→∞ c−2

n sup
−∞<θ<∞

R(θ , Sn) = 1. (4.31)
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4.2.3.2 Global Maximum of the Risk and Point of Maxima

Corollary 1.2.6 suggests a pathway to addressing the two related questions: what is
an approximation to the point at which the global maximum of the risk is attained,
and what is a higher order approximation to the value of the global maximum. In
Eq. (4.31), if we use the two leading terms (1−αn)2− φ(αnγn)

αnγn
, we notice that (1−α)2

and φ(αγn)
αγn

are both decreasing inα. Therefore, if we maximize (1−α)2− φ(αγn)
αγn

overα
(in (0, 1)), it will give us an approximation to the global maximum of R(θ , Sn) and at
the same time, an approximation to the point θn = (1−αn)cn where the maximum is
attained. It must be understood that these two approximations are heuristic, because
we do not have a proof that supθ R(θ , Sn) is attained at a point of the form (1−αn)cn
with αn as in Corollary 1.2.6.

To maximize (1 − α)2 − φ(αγn)
αγn

, we want to find the root of

0 = d

dα

[
(1 − α)2 − φ(αγn)

αγn

]

= 2(α − 1) + φ(αγn)
[
γn + 1

αγn

]
= 2(α − 1) + γnφ(αγn) + 0(γnφ(αγn))

⇒ (1 − α) = γn

2
φ(αγn)(1 + 0(1))

⇒ −α = log γn − α2γ 2
n

2
+O(1)

⇒ α2γ 2
n − 2α − 2 log γn +O(1) = 0 (4.32)

An approximation to the root of the quadratic Eq. (4.32) is

α =
√

2 log γn

γn
, (4.33)

which results in the following two heuristic approximations:

Conjecture In the class of estimates

Sn(X1, . . . ,Xn) = X̄n if |X̄n| > cn
0 if |X̄n| ≤ cn

, (4.34)

one has,

argmax−∞<θ<∞R(θ , Sn) ≈ cn −
√

log (nc2
n)

n
; sup

−∞<θ<∞
R(θ , Sn) ≈ c2

n −
2cn

√
log n√
n

.

(4.35)
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Example 1.2.1 We look at the credibility of (4.35) for Hodges’ original estimate Tn,
for which cn = n−1/4. In that case, (4.35) says that the global maximum of R(θ , Tn)

should be approximately 1√
n
− 2

√
log n

n3/4 and it should be attained at θn ≈ n−1/4−
√

log n

2n .
We show in the following table the exact global maximum (computed numerically),
the risk at cn and at θn and the approximation to the maximum risk as claimed in
(4.35). For very largen, our conjecture appears to work out almost exactly. Otherwise,
it does not.

n Exact Maximum R(cn, Tn) R(θn, Tn) Approx. (1.35)
100 0.0558 0.0550 0.0112 0.0357
2500 0.0126 0.0102 0.0073 0.0042
100000 0.0025 0.0016 0.0021 0.0020
250000 0.0016 0.0010 0.0014 0.0014
106 0.0008 0.0005 0.0008 0.0008

4.2.3.3 Optimal Thresholding

The approximation laid out in (4.35) enables us to pose and give a solution to an-
other relevant question: what is an optimal choice of the thresholding parameter
(sequence) cn? Obviously, this calls for a definition of optimal thresholding. We
adopt the definition of controlled minimaxity. Here is an explanation, and then a
formal mathematical definition.

It is clear that the choice of the thresholding parameter affects two key quantities
in the problem, the risk at zero, and the maximum risk. For instance, as an extreme, if
we choose cn = 0, then the risk at zero is zero, but the maximum risk is infinity. Thus,
there is a trade-off between R(0, Sn) and supθ R(θ , Sn), and the thresholding param-
eter cn influences both of them, but in opposite directions. It seems reasonable to ask
for the sequence cn that minimizes supθ R(θ , Sn) subject to a guaranteed percentage
improvement in risk over the MLE at θ = 0. More precisely, the question is: which
sequence cn minimizes supθ R(θ , Sn) subject to the constraint n|en(0)| ≥ 1 − εn,
where, en(θ ) = R(θ , Sn) − 1

n
. Thus, in this formulation we seek the thresholding

estimate that is minimax subject to a risk gain of at least 100(1 − εn)% at zero; εn
is supposed to be user provided. Such restricted minimax formulations have been
proposed and studied in other problems before; one reference is Bickel (1983).

From (4.9) and (4.35), we wish to

minimize γ 2
n − 2γn

√
log n subject to H (γn) = �(γn) − 1

2
− γnφ(γn) ≥ 1 − εn

2

The unconstrained minimum of γ 2
n − 2γn

√
log n is γn = √

log n. If H (
√

log n) ≥
1−εn

2 (which approximately corresponds to εn ≥ 1√
n

, then the solution to our prob-

lem is γn = √
log n. Otherwise, since H (x) is increasing in x for positive x, i.e.,
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increasing in x for x > 0, it follows that the sequence γn that solves the constrained
minimum problem is the root of the equation

�(γn) − 1

2
− γnφ(γn) = 1 − εn

2
(4.36)

⇔ 1 −�(γn) + γnφ(γn) = εn

2

⇔ φ(γn)
[
γn +O(

1

γn
)
]
= εn

2

⇔
√

π

2
e

γ 2
n
2

γn

γ 2
n +O(1)

= 1

εn
(4.37)

A first approximation to the root of (4.36) is γn =
√

2 log 1
εn

. Plugging the first

approximation back into (4.36), a higher order approximation is

γ 2
n = 2 log

1

εn
+ 2 log

(√

2 log
1

εn

)

= 2 log
1

εn
+ log log

1

εn
+O(1),

which gives

γn =
√

2 log
1

εn
+ log log

1

εn
+O(1) =

√

2 log
1

εn

[
1 + log log 1

εn

4 log 1
εn

+ o

(
log log 1

εn

log 1
εn

)]

=
√

2 log
1

εn
+ log log 1

εn

2
√

2 log 1
εn

+ o

⎛

⎜
⎝

log log 1
εn√

log 1
εn

⎞

⎟
⎠

We propose finally the following thresholding sequence:

γn = √
ncn = √log n, if εn ≥ 1√

n
,

γn = √
ncn =

√

2 log
1

εn
+ log log 1

εn

2
√

2 log 1
εn

, if εn <
1√
n

(4.38)

Example 1.2.2 The recommended thresholding sequence in (4.38) depends on the
specification of εn. We work out the form of cn for four choices of εn. Suppose,
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independent of n, we want a fixed percentage risk improvement 100(1−ε)% at zero.
Then, εn ≡ ε, which, by (4.38), leads to

cn =
√

log n

n

Thus, a fixed percentage risk improvement at zero leads to cn ∼
√

log n

n
.

Suppose we want the percentage risk improvement at zero to increase with n at a
polynomial rate, εn = n−β ,β > 1

2 . Then, (4.38) leads to

cn =
√

2β log n√
n

+ log log n

2
√

2βn log n
+O(

1√
n log n

).

Thus, for polynomial growth in the percentage risk improvement at zero, still, the

recommended thresholding sequence cn ∼
√

log n

n
, but with a constant in front that

is > 1.
Next, suppose we want the percentage risk improvement at zero to increase at a

subexponential rate, namely, εn = e−β
√
n,β > 0. Then, (4.38) leads to

cn = √2βn−1/4 + log n

4
√

2βn3/4
.

Thus, for subexponential growth in the percentage risk improvement at zero,we
get cn ∼ n−1/4. Compare this with Eq. (4.11) which describes the percentage risk
improvement at zero of Hodges’ original estimate Tn. Interestingly, his choice of
cn = n−1/4 matches to the first order the recommended sequence we just derived
above.

Finally, suppose we want the percentage risk improvement at zero to increase at
the fully exponential rate, namely, εn = e−βn,β > 0. Then, (4.38) leads to

cn = √2β + log n

2
√

2βn
.

Thus, for exponential growth in the percentage risk improvement, we get cn ∼ c,
a constant.

4.2.4 Comparison of Bayes Risks and Regular Variation

Since the risk functions of the MLE and thresholding estimates Sn cross, it is mean-
ingful to seek a comparison between them by using Bayes risks. Because of the
intrinsic specialty of the point θ = 0 in this entire problem, it is sensible to consider
priors that are symmetric about zero. Purely for technical convenience, we only con-
sider normal priors here, N (0, σ 2

n ), and we ask the following question: how should
σn behave for the thresholding estimate to have (asymptotically) a smaller Bayes risk
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than the MLE? It turns out that certain interesting stories emerge in answering the
question, and we have a fairly complete answer to the question we have posed.

We start with some notation. Let π = πn denote a prior density and Bn(Sn,π )
the Bayes risk of Sn under π . Let also Bn(π ) denote the Bayes risk of the Bayes rule
under π . Then,

Bn(Sn,π ) =
∫

R(θ , Sn)π (θ )dθ = 1

n
+
∫

en(θ )π (θ )dθ (4.39)

and

Bn(π ) = 1

n
− 1

n2

∫
(m′(x))2

m(x)
dx, (4.40)

where m(x) = mn(x) denotes the marginal density of X̄ under π . In the case where

π = πn is the N (0, σ 2
n ) density, Bn(π ) = σ 2

n

nσ 2
n+1 .

4.2.4.1 Normal Priors

We use (4.5) to write a closed form formula for Bn(Sn,π ); it is assumed until we
specifically mention otherwise that henceforth π = N (0, σ 2

n ), and for brevity, we
drop the subscript and write σ 2 for σ 2

n .
Toward this agenda, the following formulas are used; for reasons of space, we

will not provide their derivations.

∫
�(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = �(

√
ncn√

1 + nσ 2
) (4.41)

∫
φ(
√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = σe−nc2

n/(2(1+nσ 2))

√
2π

√
1 + nσ 2

(4.42)

∫
θφ(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = ∓σ 2ncne

−nc2
n/(2(1+nσ 2))

√
2π (1 + nσ 2)3/2

(4.43)

∫
θ2�(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = σ 2

[
�(

√
ncn√

1 + nσ 2
) − σ 2n3/2cne

−nc2
n/(2(1+nσ 2))

√
2π (1 + nσ 2)3/2

]

(4.44)

By plugging (4.41), (4.42), (4.43), (4.44) into
∫
en(θ ) 1

σ
φ( θ

σ
)dθ , where the expression

for en(θ ) is taken from (4.5), additional algebraic simplification gives us the following
closed form expression.
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Theorem 1.2.7

Bn(Sn,π ) = 1

n
+
∫

en(θ )π (θ )dθ ,

with

∫
en(θ )π (θ )dθ = 1 − a2

n

n
− (1 − an)2σ 2

+
[
2(1 − an)2σ 2 − 2(1 − a2

n)

n

]
�

( √
ncn√

1 + nσ 2

)

−
√
ncn√

1 + nσ 2
φ

( √
ncn√

1 + nσ 2

)[2n(1 − an)2σ 4

1 + nσ 2

+ 2(1 − an)2σ 2

1 + nσ 2
− 2(1 − a2

n)

n

]
(4.45)

Theorem 1.2.7 leads to the following more transparent corollary.

Corollary 1.2.7 Consider the generalized Hodges estimate Sn with an ≡ 0. Then

∫
en(θ )π (θ )dθ = nσ 2 − 1

n

[
2�(

γn√
1 + nσ 2

) − 1 + nσ 2

1 + σ 2

γn√
1 + nσ 2

φ(
γn√

1 + nσ 2
)
]

(4.46)

In particular, if σ 2 = 1
n

, then whatever be the thresholding sequence cn,Bn(Sn,π ) =
1
n

, i.e., Sn and the MLE X̄ have the same Bayes risk if θ ∼ N (0, 1
n

). By inspecting
(4.46), we can make more general comparisons betweenBn(Sn,π ) and 1

n
= Bn(X̄,π )

when σ 2 �= 1
n

. It turns out that σ 2 = 1
n

acts in a very meaningful sense as a boundary
between Bn(Sn,π ) < Bn(X̄,π ) and Bn(Sn,π ) > Bn(X̄,π ). We will now make it
precise. In this analysis, it will be useful to note that once we know whether σ 2 > or
< 1

n
, by virtue of formula (4.46), the algebraic sign of�n(π ) = Bn(Sn,π )−Bn(X̄,π )

is determined by the algebraic sign of ηn = 2�( γn√
1+nσ 2 ) − 1+nσ 2

1+σ 2
γn√

1+nσ 2 φ( γn√
1+nσ 2 ).

Theorem 1.2.8 Provided the thresholding sequence cn satisfies cn → 0, γn =√
ncn → ∞,

(a) �n(π ) < 0 for all large n if σ 2 = c
n
+ o( 1

n
) for some c, 0 ≤ c < 1.

(b) �n(π ) > 0 for all large n if σ 2 = c
n
+ o( 1

n
) for some c, c > 1.

(c) �n(π ) = 0 for all n if σ 2 = 1
n

.
(d) If nσ 2 → 1, then in general �n(π ) oscillates around zero.
(e) If nσ 2 → ∞, then �n(π ) < 0 for all large n.
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Proof We indicate the proof of part (a). In this case, nσ 2 − 1 < 0 for all large n.
On the other hand,

�(
γn√

1 + nσ 2
) → 1;

1 + nσ 2

1 + σ 2
→ 1 + c;

γn√
1 + nσ 2

φ(
γn√

1 + nσ 2
) → 0.

Therefore, ηn → 1 > 0, and hence, for all all large n, �n(π ) < 0. The other parts
use the same line of argument and so we do not mention them.

4.2.4.2 General Smooth Priors

We now give an asymptotic expansion for �n = Bn(Sn,π ) − Bn(X̄,π ) for general
smooth prior densities of the form π (θ ) = πn(θ ) = √

nh(θ
√
n), where h is a fixed

sufficiently smooth density function on (−∞,∞). It will be seen below that scaling
by

√
n is the right scaling to do in πn, similar to our finding that in the normal case,√

n θ ∼ N (0, 1) acts as a boundary between �n < 0 and �n > 0. We introduce the
following notation

q(z) =
∫ z

0
(t2 − 1)h(t)dt − h′(z),−∞ < z < ∞; w(z) = − d

dz
log q(z). (4.47)

The functions q(z) and log q(z) will play a pivotal role in the three main results
below, Theorem 1.2.9, Proposition 1.2.1, and Theorem 1.2.10. Note that q(z) ≡ 0
if h = φ, the standard normal density. For general h, q can take both positive and
negative values, and this will complicate matters in the analysis that follows.

We will need the following assumptions on h and q. Not all of the assumptions are
needed for every result below. But we find it convenient to list all the assumptions
together, at the expense of some generality.

Assumptions on h

(1) h(z) < ∞∀z.
(2) h( − z) = h(z)∀z.
(3)

∫∞
−∞ z2 h(z)dz < ∞.

(4) h is twice continuously differentiable, and h′(z) → 0 as z → ∞.
(5) q is ultimately decreasing and positive.
(6) log q is absolutely continuous, ultimately negative, and ultimately concave or

convex.
(7) lim infz→∞ d

dz log q(z) > −∞.

The first result below, Theorem 1.2.9, is on a unified convolution represen-
tation and some simple asymptotic order results for the Bayes risk difference
�n = Bn(Sn,π ) − Bn(X̄,π ). A finer result on the asymptotic order of �n is the
content of Theorem 1.2.10. In the result below, (4.49) and (4.50) together say that
the first order behavior of �n is determined by whether or not Varh(θ ) = 1. If
Varh(θ ) �= 1, then �n converges at the rate 1

n
; but if Varh(θ ) = 1, then �n converges

at a rate faster than 1
n

. This provides greater insight into the result of part (c) of
Theorem 1.2.8.
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Theorem 1.2.9 Consider generalized Hodges estimates Sn of the form (1.2) with
an ≡ 0. Let h be a fixed density function satisfying the assumptions (1)-(4) above
and let π (θ ) = πn(θ ) = √

nh(θ
√
n),−∞ < θ < ∞. Then we have the identity

�n = 2

n
(q ∗ φ)(γn) = 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz

= 2

n

∫ ∞

0
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz (4.48)

In particular, if q ∈ L1, then

n�n → 0, i.e., �n = o(
1

n
), (4.49)

and if q(z) → c �= 0 as, z → ∞, then

n�n → 2c, i.e., �n = 2c

n
+ o(

1

n
). (4.50)

In any case, if Varh(θ ) < ∞, and h′ ∈ L∞, then, for every fixed n,

|n�n| ≤ 1 +Varh(θ ) + ||h′||∞. (4.51)

Proof Using (4.5) and the definition of π (θ ),

�n =
∫ ∞

−∞
en(θ )πn(θ )dθ

=
∫ ∞

−∞
(θ2 − 1

n
)
[
�(γn + θ

√
n) +�(γn − θ

√
n) − 1

]√
nh(θ

√
n)dθ

+ 1√
n

∫ ∞

−∞

[
(cn + θ )φ(γn + θ

√
n) + (cn − θ )φ(γn − θ

√
n)
]√

nh(θ
√
n)dθ

= 1

n

( ∫ ∞

−∞
(z2 − 1)

[
�(γn + z) +�(γn − z) − 1

]
h(z)dz

+
∫ ∞

−∞

[
(γn + z)φ(γn + z) + (γn − z)φ(γn − z)

]
h(z)dz

)

= 1

n

( ∫ ∞

−∞
(z2 − 1)

[
2�(γn + z) − 1

]
h(z)dz + 2

∫ ∞

−∞
(γn + z)φ(γn + z)h(z)dz

)

= 2

n

( ∫ ∞

−∞
(z2 − 1)h(z)�(γn + z)dz +

∫ ∞

−∞
(γn + z)φ(γn + z)h(z)dz

)

− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

( ∫ ∞

−∞
(z2 − 1)h(z)�(γn + z)dz −

∫ ∞

−∞
�(γn + z)h′′(z)dz

)

− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz
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(by twice integrating by parts the integral
∫∞
−∞ (γn + z)φ(γn + z)h(z)dz)

= 2

n

∫ ∞

−∞

[
(z2 − 1)h(z) − h′′(z)

]
�(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

∫ ∞

−∞
q ′(z)�(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

(
q(z)�(γn + z)|∞−∞ −

∫ ∞

−∞
q(z)φ(γn + z)dz

)
− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

∫ ∞

0
(z2 − 1)h(z)dz − 2

n

∫ ∞

−∞
q(z)φ(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

(refer to (4.47))

= −2

n

∫ ∞

−∞
q(z)φ(γn + z)dz

(since 2
∫ ∞

0
(z2 − 1)h(z)dz =

∫ ∞

−∞
(z2 − 1)h(z)dz)

= 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz

= 2

n

∫ ∞

0
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz (4.52)

(since q(−z) = −q(z) for all z), and this gives (4.48). (4.49), (4.50), and (4.51) follow
on application of the dominated convergence theorem and the triangular inequality,
and this establishes the theorem.

Remark Eq. (4.48) is a pleasant general expression for the Bayes risk difference �n

and what is more, has the formal look of a convolution density. One might hope that
techniques from the theory of convolutions can be used to assert useful things about
the asymptotic behavior of �n, via (4.48). We will see that indeed this is the case.

Before embarking on further analysis of �n, we need to keep two things in mind.
First, the function q(z) is usually a signed function and, therefore, we are not dealing
with convolutions of probability measures in (4.48). This adds a bit of additional
complexity into the analysis. Second, it does not take too much to fundamentally
change the asymptotic behavior of �n. In the two pictures below, we have plotted
∫∞

0 q[z]
[
φ(γ−z)−φ(γ+z)

]
dz, for two different choices of the (probability density)

function h. In the first picture, h is a standard Laplace (double exponential) density,
while in the second picture, h is a Laplace density scaled to have variance exactly
equal to 1. We can see that just a scale change changes both the asymptotic (in γ )
sign and shape of �n (refer to (4.49) and (4.50) as well). Thus, in our further analysis
of �n by exploiting the formula in (4.48), we must remain mindful of small changes
in h that can make big changes in (4.48).

For future reference, we record the following formula.
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Fig. 4.4 Plot of (48) for a Standard Double Exponential h

If h(t) = 1
2σ e

−|t |/σ , then (for z > 0),

q(z) = σ 2 − 1

2
+ (α0 + α1z + α2z2)e−z/σ , (4.53)

where

α0 = 1

2
+ 1

2σ 2
− σ 2, α1 = −σ , α2 = −1

2

Thus, if 2σ 2 �= 1, then q acts asymptotically like a nonzero constant; but if 2σ 2 =
1, then asymptotically q dies. This affects the asymptotic sign and shape of the
convolution expression (4.48), and explains why the two pictures below look so
different. Fig. 4.4 and 4.5

The next technical proposition will be useful for our subsequent analysis of (4.48)
and �n. For this proposition, we need two special functions.

For −∞ < p < ∞, by Dp(z) we denote the parabolic cylinder function which

solves the differential equation u′′ + (p + 1
2 − z2

4 )u = 0. For −∞ < a < ∞
and c �= 0,−1,−2, · · · , M(a, c, z) (also often written as 1F1(a, c, z)) denotes the
confluent hypergeometric function

∑∞
k=0

(a)k
(c)k

zk

k! . We have the following proposition.

Proposition 1.2.1 Let k ≥ 0 be an integer and a a nonnegative real number. Then,
for any real number μ,

∫ ∞

0
zke−azφ(μ− z)dz = k!e−μ2/2

2k/2+1

[M( k+1
2 , 1

2 , (μ−a)2

2 )

�( k+2
2 )

+√
2(μ− a)

M( k+2
2 , 3

2 , (μ−a)2

2 )

�( k+1
2 )

]
(4.54)
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Fig. 4.5 Plot of (48) for a Scaled Double Exponential h

and, as γ → ∞,
∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz ∼ ea

2/2e−aγ γ k , (4.55)

(in the sense that the ratio of the two sides converges to 1 as γ → ∞)

Proof To obtain (4.54), write for any real number μ,

∫ ∞

0
zke−azφ(μ− z)dz = e−μ2/2

√
2π

∫ ∞

0
zke(μ−a)z−z2/2dz, (4.56)

and first, use the integration formula
∫ ∞

0
zke−bz−z2/2dz = k!eb2/4D−k−1(b) (4.57)

(pp 360, Gradshteyn and Ryzhik (1980)) Next, use the functional identity

Dp(z) = 2p/2e−z2/4
[ √

π

�( 1−p

2 )
M( − p

2
,

1

2
,

z2

2
) −

√
2πz

�( − p

2 )
M(

1 − p

2
,

3

2
,

z2

2
)
]

(4.58)

(pp 1018, Gradshteyn and Ryzhik (1980))
Substituting (4.57) and (4.58) into (4.56), we get (4.54), on careful algebra.
For (4.55), we use the asymptotic order result

M(α,β, z) ∼ ezzα−β �(β)

�(α)
, z → ∞ (4.59)

(see, for example, pp 255-259 in Olver (1997))
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Use of (4.59) in (4.54) withμ = ∓γ , and then subtraction, leads to the asymptotic
order result that as γ → ∞,

∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz = k!ea2/2

2k/2+1

×
{
e−aγ (

(γ − a)2

2
)k/2

√
π

�( k+1
2 )�( k+2

2 )

+√
2(γ − a)e−aγ (

(γ − a)2

2
)k/2−1/2

1
2

√
π

�( k+1
2 )�( k+2

2 )

}
×(1 + o(1))

+
{√

2(γ + a)eaγ (
(γ + a)2

2
)k/2−1/2

1
2

√
π

�( k+1
2 )�( k+2

2 )

− eaγ (
(γ + a)2

2
)k/2

√
π

�( k+1
2 )�( k+2

2 )

}
× (1 + o(1)) = k!ea2/2√π

2k+1/2�( k+1
2 )�( k+2

2 )
[
e−aγ (γ − a)k√

2
+ e−aγ (γ − a)k√

2
− eaγ

(γ + a)k√
2

+ eaγ
(γ + a)k√

2

]
× (1 + o(1))

= k!ea2/2√π

2k�( k+1
2 )�( k+2

2 )
e−aγ (γ − a)k × (1 + o(1)) (4.60)

In (4.60), by using the Gamma duplication formula

�(z + 1/2) = √
π21−2z �(2z)

�(z)
,

we get
∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz

= ea
2/2e−aγ (γ − a)k × (1 + o(1)) = ea

2/2e−aγ γ k × (1 + o(1)), (4.61)

as claimed in (4.55).

Remark The real use of Proposition 1.2.1 is that by using (4.54), we get an exact
analytical formula for �n in terms of the confluent hypergeometric function. If
all we care for is the asymptotic order result (4.55), then we may obtain it in a
less complex way. Indeed, by using techniques in Feller (1971, pp 442-446) and
Theorem 3.1 in Berman (1992), we can conclude that

∫∞
0 zke−azφ(γ − z)dz =

γ ke−aγ
∫∞
−∞ e

(a− k
γ

)t
φ(t)dt × (1 + o(1)), and (4.55) follows from this.
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Corollary 1.2.8 Consider generalized Hodges estimates of the form (4.2) with an ≡
0. Let h(θ ) = 1

2σ e−|θ |/σ and π (θ ) = πn(θ ) = √
nh(θ

√
n). Then,

�n = 2σ 2 − 1

n
(1 + o(1)), if Varh(θ ) �= 1 ⇔ 2σ 2 − 1 �= 0, (4.62)

and,

�n = −e
γ 2
n e

−γn
√

2

n
(1 + o(1)), if Varh(θ ) = 1 ⇔ 2σ 2 − 1 = 0 (4.63)

This corollary follows by using the formula in (4.53) and the result in (4.55). Notice
that the critical issue in determining the rate of convergence of �n to zero is whether
or not Varh(θ ) = 1.

As indicated previously, we can generalize the result on the asymptotic order of the
Bayes risk difference �n to more general priors. The important thing to understand
is that Theorem 1.2.9 (more precisely, (4.48)) gives a representation of �n in a
convolution form. Hence, we need to appeal to results on orders of the tails of
convolutions. The right structure needed for such results is that of regular variation.
We state two known results to be used in the proof of Theorem 1.2.10 as lemmas.

Lemma 1.2.1 (Landau’s Theorem) Let U be a nonnegative absolutely continuous
function with derivative u. Suppose U is of regular variation of exponent ρ �= 0 at
∞, and that u is ultimately monotone and has a finite number of sign-changes. Then
u is of regular variation of exponent ρ − 1 at ∞.

Lemma 1.2.2 (Berman (1992)) Suppose p(z) is a probability density function on
the real line, and q(z) is ultimately nonnegative, and that w(z) = − d

dz log q(z), v(z) =
− d

dz logp(z) exist and are functions of regular oscillation, i.e., if z, z′ → ∞, z
z′ →

1, then f (z)
f (z′) → 1 if f = w or v. If, moreover, lim infz→∞ d

dz log q(z) >

lim infz→∞ d
dz logp(z), then,

∫∞
−∞ q(z)p(γ − z)dz = q(γ )

∫∞
−∞ e−zw(γ )p(z)dz (1 +

o(1)), as γ → ∞.
We now present the following general result.

Theorem 1.2.10 Suppose assumptions (1)-(7) hold true and if − log q(z) is a
function of regular variation of some exponent ρ �= 0 at z = ∞. Then,

�n = 2q(γn)e
1
2

[
w(γn)

]2

n
(1 + o(1)), as n → ∞. (4.64)

Proof By assumption (6), w(z) is ultimately monotone, and by assumption (5), w(z)
is ultimately positive. By hypothesis, − log q(z) is a function of regular variation.
Therefore, all the conditions of Landau’s theorem (Lemma 1.2.1) are satisfied, and
hence it follows that w(z) is also a function of regular variation at ∞. This will imply,
by well known local uniformity of convergence for functions of regular variation
that if z, z′ → ∞, and z

z′ → 1, then w(z)
w(z′) → 1. By assumption (7), we have
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lim supz→∞ w(z) < ∞ = lim supz→∞
d
dz − logφ(z). Hence, we can now appeal to

Lemma 1.2.2 to coclude that
∫ ∞

−∞
q(z)φ(γn − z)dz = q(γn)

∫ ∞

−∞
e−zw(γn)φ(z)dz (1 + o(1))

= q(γn)e
1
2

[
w(γn)

]2

(1 + o(1))

(by completing the squares), and hence, by (4.48),

�n = 2

n

∫ ∞

−∞
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz

= 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz (1 + o(1))

= 2q(γn)e
1
2

[
w(γn)

]2

n
(1 + o(1)), (4.65)

as claimed.
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