
Chapter 21
Semiparametric Analysis of Treatment Effect
via Failure Probability Ratio and the Ratio
of Cumulative Hazards

Song Yang

21.1 Introduction

For clinical trials with time to event data, often proportional hazards (Cox 1972)
is assumed when comparing two treatment arms, and a single value of the hazard
ratio is used to describe the group difference. When the proportionality assumption
may not hold true, a natural approach to assess the time-dependency of the treatment
effect is to analyze the hazard ratio function. For example, a conventional method is
to give a hazard ratio estimate over each of a few time intervals, by fitting a piece-
wise proportional hazards model. Alternatively, a “defined” time-varying covariate
can be used in a Cox regression model, resulting in a parametric form for the hazard
ratio function (e.g., Kalbfleisch and Prentice 2002, Chap. 6). With these approaches,
it may not be easy to pre-specify the partition of the time axis or the parametric form
of the hazard ratio function. Also, although the hazard ratio provides a nice display
of temporal pattern of the treatment effect, it may not directly translate to the survival
experience. It is possible for the hazard ratio to be less than 1 in a region where there
is no improvement in the survival probability, or more than 1 in a region where the
survival probability is not reduced. Similar phenomena also exists for the average of
hazard ratio. Thus to assess the cumulative treatment effect, other measures can be
used to supplement the hazard ratio.

LetFT (t) andFC(t) be the cumulative distribution functions of the two comparison
groups, named treatment and control, respectively. The failure probability ratio

RR(t) = FT (t)

FC(t)

is the process version of relative risk, a measure often used in epidemiology. It directly
indicates if the failure probability in the time interval (0, t] is lower in the treatment
group than in the control group, regardless of the possible up and down pattern
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of the hazard ratio within (0, t]. Let �T (t) and �C(t) be the cumulative distribution
functions of the two comparison groups respectively. The ratio of cumulative hazards

CHR(t) = �T (t)

�C(t)

also indicates the cumulative treatment effect, taking value< 1 if and only ifFT (t) <
FC(t). Unlike the failure probability ratio, a value 0.8 for the ratio of cumulative
hazards does not translate to a 20 % reduction of the failure probability. However,
there is a nice property that if one adopts a proportional hazards adjustment for
baseline covariates, then the ratio of cumulative hazards remains the same while the
failure probability ratio depends on those covariates.

Although measures such as the failure probability ratio and the ratio of cumulative
hazards provide usual supplementary information in addition to the hazard ratio, and
the non-parametric estimators are easily available via the Nelson–Aalen estimator for
the cumulative hazard function (Nelson 1969; Aalen 1975) and the Kaplan–Meier
estimator of the survival function (Kaplan and Meier 1958), the non-parametric
inference procedures are not used frequently, as the estimates are often not very
smooth and the confidence intervals can be quite wide near the beginning of the data
range. In this chapter, we consider semiparametric inference on the two ratios under
a sufficiently flexible model. Assume that the failure times are absolutely continuous.
The short-term and long-term hazards model proposed in Yang and Prentice (2005)
postulates that

λT (t) = 1

e−β2 + (e−β1 − e−β2
)
SC(t)

λC(t), t < τ0, (21.1)

where β1, β2 are scalar parameters, SC the survivor function of the control group,
λT (t), λC(t) the hazard function of the two groups respectively, and

τ0 = sup

{
x :
∫ x

0
λC(t)dt < ∞

}
. (21.2)

Under this model, limt↓0 λT (t)/λC(t) = eβ1 , limt↑τ0 λT (t)/λC(t) = eβ2 . Thus, vari-
ous patterns of the hazard ratio can be realized, including proportional hazards, no
initial effect, disappearing effect, and crossing hazards. In particular, model (21.1)
includes the proportional hazards model and the proportional odds model as special
cases. There is no need to pre-specify a partition of the time axis or a parametric
form of the hazard ratio function. For this model,Yang and Prentice (2005) proposed
a pseudo-likelihood method for estimating the parameters, and Yang and Prentice
(2011) studied inference procedures on the hazard ratio function and the average of
the hazard ratio function. Extension of model (21.1) to the regression setting was
also studied for current status data in Tong et al. (2007).

In the sections to follow, we first obtain the estimates and point-wise confidence
intervals of the two ratios under model (21.1). Since the ratios are functions of
time, simultaneous confidence intervals, or confidence bands, of the ratios are more
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appropriate than the point-wise confidence intervals. We will employ a resampling
scheme to obtain the confidence bands of the ratios. Such semiparametric inference
procedures are applicable in a wide range of applications due to the properties of
model (21.1) mentioned before. They will be illustrated through applications to data
from two clinical trials.

Some previous work is related to the problems considered here. Dong and
Matthews (2012) developed empirical likelihood estimator for the ratio of cumula-
tive hazards with covariate adjustment. Schaubel and Wei (2011) considered several
measures under dependent censoring and non-proportional hazards, and point-wise
confidence intervals were constructed. In earlier works, Dabrowska et al. (1989)
introduced a relative change function defined in terms of cumulative hazards and
found simultaneous bands for this function under the assumption of proportional
hazards. Parzen et al. (1997) constructed nonparametric simultaneous confidence
bands for the survival probability difference. Cheng et al. (1997) proposed point-
wise and simultaneous confidence interval procedures for the survival probability
under semiparametric transformation models. McKeague and Zhao (2002) proposed
simultaneous confidence bands for ratios of survival functions via the empirical
likelihood method.

The article is organized as follows. In Sect. 21.2 the short-term and long-term
hazard ratio model and the parameter estimator are described. Point-wise confidence
intervals are established for the failure probability ratio and the ratio of cumula-
tive hazards. In Sect. 21.3, confidence bands are developed. Simulation results are
presented in Sect. 21.4. Applications to data from two clinical trials are given in
Sect. 21.5. Some discussion is given in Sect. 21.6.

21.2 The Estimators and Point-Wise Confidence Intervals

Denote the pooled lifetimes of the two groups by T1, · · · , Tn, with T1, · · · , Tn1 , n1 <

n, constituting the control group. Let C1, · · · ,Cn be the censoring variables, and
Zi = I (i > n1), i = 1, · · · , n, where I (·) is the indicator function. The available data
consist of the independent triplets (Xi , δi ,Zi), i = 1, . . . , n, where Xi = min(Ti, Ci)
and δi = I (Ti ≤ Ci).We assume that Ti , Ci are independent given Zi . The censoring
variables (Ci’s) need not be identically distributed, and in particular the two groups
may have different censoring patterns. For t < τ0 with τ0 defined in (21.2), let R(t)
be the odds function 1/SC(t)−1 of the control group. The model ofYang and Prentice
(2005) can be expressed as

λi(t) = 1

e−β1Zi + e−β2ZiR(t)

dR(t)

dt
, i = 1, . . . , n, t < τ0,

where λi(t) is the hazard function for Ti given Zi .
Under model (21.1), RR(t) and CHR(t) depends on the parameter β = (β1,β2

)T

and the baseline function R(t), where “T " denotes transpose. Yang and Prentice
(2005) studied a pseudo likelihood estimator β̂ of β which we describe below.
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Let τ < τ0 be such that

lim
n

n∑

i=1

I
(
Xi ≥ τ

)
> 0, (21.3)

with probability 1. For t ≤ τ , define

P̂ (t ; b) =
∏

s≤t

(
1 −

∑n
i=1 δie

−b2Zi I (Xi = s)
∑n

i=1 I (Xi ≥ s)

)
,

R̂(t ; b) = 1

P̂ (t ; b)

∫ t

0

P̂−(s; b)
∑n

i=1 I
(
Xi ≥ s

)d

(
n∑

i=1

δie
−b1Zi I

(
Xi ≤ s

)
)

,

where P̂−(s; b) denotes the left continuous (in s) version of P̂ (s; b). Let L(β,R) be
the likelihood function of β under model (21.1) when the function R(t) is known,
with the corresponding score vector S(β,R) = ∂ ln L(β,R)/∂β. Define Q(b) =
S(b,R)|R(t)=R̂(t ;b). Then the pseudo maximum likelihood estimator β̂ = (β̂1, β̂2)T of

β is the zero of Q(b). Note that the use of R̂(t ; b) results in the estimating function
Q(b) which does not involve the infinite dimensional nuisance parameter R(t), thus
the finite dimensional parameter β can be estimated much more easily.

Once β̂ is obtained, R(t) can be estimated by R̂
(
t ; β̂
)
. Thus under model (21.1),

plugging-in the estimators β̂ and R̂
(
t ; β̂
)
, we can estimate the failure probability

ratio RR(t) and the ratio of cumulative hazards CHR(t) by

R̂R(t) = 1 + R̂
(
t ; β̂
)

R̂
(
t ; β̂
)
(

1 − {1 + e−β̂2+β̂1R̂
(
t ; β̂
)}−eβ̂2

)
, (21.4)

and

ĈHR(t) = eβ̂2 ln
{
1 + e−β̂2+β̂1R̂

(
t ; β̂
)}

ln
{
1 + R̂

(
t ; β̂
)} , (21.5)

respectively. Note that under the model and with the pseudo likelihood estimator,
the distributions of the two groups share a common baseline function R(t) which
is estimated using pooled data. Thus the resulting estimators for RR(t) and CHR(t)
are expected to be smoother and more stable than the nonparametric estimators.
In Appendix A, we show that, under certain regularity conditions, the two estima-
tors in (21.4) and (21.5) are strongly consistent under model (21.1). To study the
distributional properties of the estimators, let

Un(t) = √
n(R̂R(t) − RR(t)), t ≤ τ ,

Vn(t) = √
n(ĈHR(t) − CHR(t)), t ≤ τ ,
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and

� = {− 1

n

∂Q(β)

∂β

}−1
.

Let �̂ be an estimator of � defined by replacing β with β̂ and R(t) with R̂
(
t ; β̂
)
.

InAppendix B we show that, for t ≤ τ , the processesUn andVn are asymptotically
equivalent to, respectively,

Ũn(t) = AT
RR(t)�√

n

(
∑

i≤n1

∫ τ

0
μ1dMi +

∑

i>n1

∫ τ

0
μ2dMi

)

+ BRR(t)√
n

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

(21.6)

and

Ṽn(t) = AT
CHR(t)�√

n

(
∑

i≤n1

∫ τ

0
μ1dMi +

∑

i>n1

∫ τ

0
μ2dMi

)

+ BCHR(t)√
n

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

, (21.7)

where ARR , ACHR, μ1, μ2 are appropriately defined 2 × 1 vector functions and
BRR , BCHR, ν1, ν2 scalar functions given in Appendix B. It will then be shown
that Un and Vn converge weakly to some zero-mean Gaussian processes U ∗ and V ∗
respectively. With estimators B̂RR(t), ÂRR(t), . . . , given in Appendix B, it will
be shown that the limiting covariance functions of U ∗ and V ∗ can be consistently
estimated, respectively, by

σ̂RR(s, t) = ÂT
RR(s)�̂

(∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ τ

0

μ̂2(w)μ̂T
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

�̂T ÂRR(t)

+ B̂RR(s)B̂RR(t)

(∫ s

0

ν̂2
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ s

0

ν̂2
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂RR(t)ÂT
RR(s)�̂

(∫ t

0

μ̂1(w)ν̂1(w)K1(w)dR̂
(
w, β̂

)

n
(
1 + R̂

(
w; β̂

))
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+
∫ t

0

μ̂2(w)ν̂2(w)K2(w)dR̂
(
w, β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂RR(s)ÂT
RR(t)�̂

(∫ s

0

μ̂1(w)ν̂1(w)K1(w)dR̂
(
w, β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ s

0

μ̂2(w)ν̂2(w)K2(w)dR̂
(
w, β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

, (21.8)

and

σ̂CHR(s, t) = ÂT
CHR(s)�̂

(∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ τ

0

μ̂2(w)μ̂T
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

�̂T ÂCHR(t)

+ B̂CHR(s)B̂CHR(t)

(∫ s

0

ν̂2
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ s

0

ν̂2
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂CHR(t)ÂT
CHR(s)�̂

(∫ t

0

μ̂1(w)ν̂1(w)K1(w)dR̂
(
w, β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ t

0

μ̂2(w)ν̂2(w)K2(w)dR̂
(
w, β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂CHR(s)ÂT
CHR(t)�̂

(∫ s

0

μ̂1(w)ν̂1(w)K1(w)dR̂
(
w, β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ s

0

μ̂2(w)ν̂2(w)K2(w)dR̂
(
w, β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

. (21.9)

The estimators �̂, ÂRR(t), ÂCHR(t) involve the derivative vector ∂R̂
(
t ;β
)
/∂β and

the derivative matrix in �. From various simulation studies, these derivatives can
be approximated by numerical derivatives for easier calculation, and the results are
fairly stable with respect to the choice of the jump size in the numerical derivatives.

For a fixed t0 ≤ τ , confidence intervals for RR
(
t0
)

can be obtained from the
asymptotic normality of R̂R(t0) and the estimated variance σ̂RR

(
t0, t0

)
. For better

small sample behavior and to ensure that the confidence intervals remain on the
positive side of the axis as usual, we make a logarithm transformation resulting in
the asymptotic 100(1 − α)% confidence interval
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R̂R(t0) exp

(

∓zα/2

√
σ̂RR(t0, t0)√
nR̂R(t0)

)

, (21.10)

where zα/2 is the 100(1 − α/2)% percentile of the standard normal distribution.
Similarly, for CHR(t0), an asymptotic 100(1 − α)% confidence interval is

ĈHR(t0) exp

(

∓zα/2

√
σ̂CHR(t0, t0)√
nĈHR(t0)

)

. (21.11)

21.3 Confidence Bands

For simultaneous inference on RR(t) over a time interval I = [a, b] ⊂ [0, τ ], let
wn(t) be a data-dependent function that converges in probability to a bounded func-
tion w∗(t) > 0, uniformly in t over I. Then, it follows that Un/wn converges weakly
U∗/w∗. Let cα be the upper αth percentile of supt∈I |U ∗/w∗|, then an asymptotic
100(1 − α)% simultaneous confidence band for RR(t), t ∈ I , can be obtained as

R̂R(t) exp

(
∓cα

wn(t)√
nR̂R(t)

)
. (21.12)

The analytic form of cα is quite intractable. The bootstrapping method provides a
well established alternative approach. However, it is very time-consuming. More
discussion on this is described further on the applications to clinical trial data in
Sect. 21.5. Here we have used a normal resampling approximation similar to the
approach used in Lin et al. (1993). This approach results in substantial savings in
computing time, and has been used in many works, including Lin et al. (1994), Cheng
et al. (1997), Tian et al. (2005), and Peng and Huang (2007).

For t ≤ τ , let Ni(t) = δiI (Xi ≤ t), i = 1, · · · , n, and define the process

Ûn(t) = ÂT
RR(t)�̂√

n

(
∑

i≤n1

∫ τ

0
μ̂1d(εiNi) +

∑

i>n1

∫ τ

0
μ̂2d(εiNi)

)

+ B̂RR(t)√
n

(
∑

i≤n1

∫ t

0
ν̂1d(εiNi) +

∑

i>n1

∫ t

0
ν̂2d(εiNi)

)

= ÂT
RR(t)�̂√

n

(
∑

i≤n1

εiδiμ̂1(Xi)I (Xi ≤ τ ) +
∑

i>n1

εiδiμ̂2(Xi)I (Xi ≤ τ )

)

+ B̂RR(t)√
n

(
∑

i≤n1

εiδi ν̂1(Xi)I (Xi ≤ t) +
∑

i>n1

εiδi ν̂2(Xi)I (Xi ≤ t)

)

,

(21.13)
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where εi , i = 1, . . . , n, are independent standard normal variables that are also
independent of the data. Conditional on (Xi , δi ,Zi), i = 1, . . . , n, Ûn is a sum of n
independent variables at each time point. In Appendix B, it will be shown that Ûn

given the data converges weakly to U ∗. It follows that supt∈I |Ûn(t)/wn(t)| given the
data converges in distribution to supt∈I |U ∗(t)/w∗(t)|. Therefore, cα can be estimated
empirically from a large number of realizations of the conditional distribution of
supt∈I |Û/w| given the data.

Similarly, to considerations in Yang and Prentice (2011) for inference on the
hazard ratio, we look at several choices of the weight wn. For wn(t) = √

σ̂RR(t , t)
we obtain the equal precision bands (Nair 1984), which only differ from point-wise
confidence intervals in using cα instead of zα/2. For wn(t) = 1 + σ̂RR(t , t) we obtain
the Hall–Wellner type bands recommended by Bie et al. (1987). The simplest case
wn(t) ≡ 1 does not require the computation of σ̂RR(t , t), and hence is easier to
implement.

To obtain simultaneous confidence bands for CHR(t), let

V̂n(t) = ÂT
CHR(t)�̂√

n

(
∑

i≤n1

∫ τ

0
μ̂1d(εiNi) +

∑

i>n1

∫ τ

0
μ̂2d(εiNi)

)

+ B̂CHR(t)√
n

(
∑

i≤n1

∫ t

0
ν̂1d(εiNi) +

∑

i>n1

∫ t

0
ν̂2d(εiNi)

)

= ÂT
CHR(t)�̂√

n

(
∑

i≤n1

εiδiμ̂1(Xi)I (Xi ≤ τ ) +
∑

i>n1

εiδiμ̂2(Xi)I (Xi ≤ τ )

)

+ B̂CHR(t)√
n

(
∑

i≤n1

εiδi ν̂1(Xi)I (Xi ≤ t) +
∑

i>n1

εiδi ν̂2(Xi)I (Xi ≤ t)

)

,

(21.14)

where εi , i = 1, . . . , n, are independent standard normal variables that are also
independent of the data. Let w̃n(t) be a data-dependent function that converges in
probability to a bounded function w̃∗(t) > 0, uniformly in t over I . Let c̃α be upper
αth percentile of supt∈[a,b] |V ∗(t)/w̃∗| . Similarly, to the argument above for RR(t),
an asymptotic 100(1 − α)% simultaneous confidence band for CHR(t), t ∈ I , can
be obtained as

ĈHR(t) exp

(
∓c̃α

w̃n(t)√
nĈHR(t)

)
, (21.15)

where c̃α can be approximated empirically from a large number of realizations
of the conditional distribution of supt∈[a,b] |V̂ (t)/w̃n| given the data. For w̃n =√
σ̂CHR(t , t), 1 + σ̂CHR(t , t) and w̃n ≡ 1 respectively, we obtain the equal precision,

Hall–Wellner type, and unweighted confidence bands for CHR(t).
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21.4 Simulation Studies

For stable moderate sample behavior, we restrict the range of the confidence bands
for both RR(t) and CHR(t). The range is between the 40th percentile of the uncen-
sored data at the lower end and the 95th percentile of the uncensored data at the
upper end. The lower end point of this range seems a little high compared to other
situations such as the inference on the hazard ratio in Yang and Prentice (2011).
This is to provide a range in which the nonparametric procedures and the proposed
model-based procedures in (21.10–21.12) and (21.15) are to be compared. Toward
the beginning of the data range, the nonparametric estimates can be very unstable
and the confidence intervals can be quite wide, as will be illustrated in the data ex-
ample to follow. Also, compared with the hazard ratio as a measure of the temporal
pattern of the treatment effect, RR(t) and CHR(t) measure the cumulative treatment
effect. Thus in biomedical research, there is little interest in their behaviors near the
beginning of the data range. In various applications to clinical trial data, the specified
range for the confidence bands is not nearly as restrictive as it seems and contains
a meaningful interval of the data range. In the estimating procedures, the function
P̂ (t ; b) is replaced by an asymptotically equivalent form

exp

(

−
∫ t

0

1
∑n

i=1 I
(
Xi ≥ s

)d

{
n∑

i=1

δie
−b2Zi I

(
Xi ≤ s

)
})

.

For simulation studies reported here and for the real data application in Sect. 21.5,
τ was set to include all data in calculating β̂. All numerical computations were done
in Matlab. Some representative results of simulation studies are given in Table 21.1,
where lifetime variables were generated with R(t) chosen to yield the standard expo-
nential distribution for the control group. The values ofβ were ( log (.9), log (1.2)) and
( log (1.2), log (.8)), representing 1/3 increase or decrease over time from the initial
hazard ratio, respectively. The censoring variables were independent and identically
distributed with the log-normal distribution, where the normal distribution had mean
c and standard deviation 0.5, with c chosen to achieve various censoring rates. The
data were split into the treatment and control groups by a 1:1 ratio. The empirical
coverage probabilities were obtained from 1000 repetitions, and for each repetition,
the critical values cα and c̃α were calculated empirically from 1,000 realizations of
relevant conditional distributions. For both RR(t) and CHR(t), the equal precision
bands, Hall–Wellner type bands and unweighted bands are denoted by EP, HW, and
UW respectively.

Note that with 1,000 repetitions and 1.96
√
.95 · 0.05/1000 = 0.0135, we expect

the empirical coverage probabilities to be mostly greater than 0.9365. In Table 21.1,
for RR, the empirical coverage probabilities are greater than 0.9365 for all but one
case with the smallest sample size n = 100 and at 50 % censoring. For CHR, the
confidence bands are mostly conservative, with all empirical coverage probabilities
greater than 0.95. One plausible explanation for this conservative phenomenon could
be that the estimate for CHR(t) is more directly related to the martingales associated
with censored data, resulting in better approximations.
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Table 21.1 Empirical coverage probabilities of the three types of confidence bands HW, EP, and
UW, for the failure probability ratio RR and the ratio of cumulative hazards CHR, under model
(21.1), based on 1000 repetitions

Hazard ratio Censoring n RR CHR

HW EP UW HW EP UW

0.9 ↑ 1.2 10 % 100 0.949 0.967 0.958 0.977 0.983 0.986
30 % 0.967 0.966 0.962 0.976 0.984 0.989
50 % 0.943 0.957 0.966 0.969 0.970 0.975
10 % 200 0.950 0.973 0.965 0.972 0.978 0.985
30 % 0.964 0.969 0.968 0.959 0.970 0.986
50 % 0.959 0.968 0.974 0.969 0.975 0.980
10 % 400 0.960 0.974 0.971 0.958 0.969 0.982
30 % 0.961 0.970 0.971 0.959 0.968 0.981
50 % 0.958 0.974 0.977 0.967 0.975 0.983

1.2 ↓ 0.8 10 % 100 0.946 0.963 0.962 0.974 0.980 0.980
30 % 0.958 0.964 0.968 0.969 0.977 0.981
50 % 0.926 0.940 0.966 0.962 0.969 0.974
10 % 200 0.958 0.967 0.952 0.968 0.975 0.971
30 % 0.958 0.959 0.958 0.972 0.974 0.968
50 % 0.946 0.954 0.961 0.962 0.964 0.974
10 % 400 0.960 0.957 0.954 0.969 0.972 0.973
30 % 0.960 0.969 0.960 0.966 0.969 0.970
50 % 0.949 0.962 0.959 0.967 0.974 0.972

21.5 Applications

For the Women’s Health Initiative (WHI) randomized controlled trial of combined
(estrogen plus progestin) postmenopausal hormone therapy, an elevated coronary
heart disease risk was reported, with overall unfavorable health benefits versus risks
over an average of 5.6-year study period (Writing Group 2002; Manson et al. 2003).
After controlling for time from estrogen-plus-progestin initiation and confounding,
hazard ratio estimates still indicate elevated risk of coronary heart disease and venous
thromboembolism early on during the trial, under a piece-wise Cox model assuming
constant hazard ratio separately on 0–2 years, 2–5 years, and 5+ years (Prentice
et al. 2005). Let us first illustrate the methods developed in the previous sections
with the venous thromboembolism (VTE) data from the WHI clinical trial. Among
the 16,608 postmenopausal women (n1 = 8102), there were 167 and 76 events
observed in the treatment and control group respectively, implying about 98.5 %
censoring, primarily by the trial stopping time. Fitting model (21.1) to this data set,
we get β̂ = (4.72, 0.014)T . Plots of the model based survival curves and the Kaplan–
Meier curves for the two groups show that the model is reasonable. For RR(t), the
three 95 % simultaneous confidence bands (EP, HW, and UW) under model (21.1)
are given in Fig. 21.1, together with the point estimates. The nonparametric point
estimates are also included to compare with the model-based estimates. Furthermore,
model-based 95 % point-wise confidence intervals are included as well, to indicate
by how much the confidence intervals are widened to improve from point-wise to
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Fig. 21.1 95 % point-wise confidence intervals and simultaneous confidence bands of the fail-
ure probability ratio for the WHI VTE data: Outside red solid lines—equal precision confidence
band, magenta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—
unweighted confidence band, dotted lines—95 % point-wise confidence intervals, central black
solid line—the estimated failure probability ratio under the model, central green dashed line—the
estimated failure probability ratio using Kaplan–Meier estimators

simultaneous coverage. From Fig. 21.1, it can be seen that the Hall–Wellner type
band and the equal precision band are almost the same a little after the 4th year.
However, the Hall–Wellner type band is noticeably wider toward the beginning of
the date range. The unweighted band maintains a roughly constant width through the
data range considered, which is roughly as wide as the equal precision band at the
begining of the data range, but wider throughout the rest of the data range. Similar
phenomena are often seen in additional applications not reported here. Based on
various applications and simulation studies, we recommend that the equal precision
band be used in making inference on RR(t) under model (21.1).

For CHR(t), the 95 % point-wise confidence intervals and confidence bands under
model (21.1) are given in Fig. 21.2. Similarly to the case forRR(t), the equal precision
band is preferred in making inference on CHR(t) under model (21.1). From Fig. 21.1
and 21.2, there is evidence that from 2.5 to 7.5 years, the event probability is higher
in the treatment group than in the control group.
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Fig. 21.2 95 % point-wise confidence intervals and simultaneous confidence bands of the ratio of
cumulative hazards for the WHI VTE data: Outside red solid lines—equal precision confidence
band, magenta dash-dotted lines—Hall–Wellner confidence band, em outside cyan dashed lines—
unweighted confidence band, dotted lines—95 % point-wise confidence intervals, central black
solid line—the estimated failure probability ratio under the model, central green dashed line—the
estimated failure probability ratio using Kaplan–Meier estimators

For comparison, from Yang and Prentice (2011), the 95 % point-wise confidence
intervals and equal precision confidence band are obtained for the hazard ratio under
model (21.1), given in Fig. 21.3. The results are in good agreement with the results
under the piece-wise Cox model used in Prentice et al. (2005). In an interval near
the beginning of the data range, there is greater hazard of venous thromboembolism
in the treatment group than in the control group. This interval has shorter length
than the intervals in Fig. 21.1 and 21.2 where the treatment group has a higher event
probability than in the control group.

Note that the simple bootstrap method for approximating cα and c̃α , when wn ≡ 1
and w̃n ≡ 1 respectively, is already much more computationally intensive than
the normal resampling approximation employed here. With wn(t) = √

σ̂RR(t) and
w̃n = √

σ̂CHR(t), the bootstrap method would require one more level of bootstrap-
ping samples to obtain the estimated variance functions, thus further increasing the
computational burden. In comparison, once σ̂RR(t) and σ̂CHR(t) are obtained, the
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Fig. 21.3 95 % point-wise confidence intervals and simultaneous confidence bands of the hazard
ratio function for the WHI VTE data: Red solid lines—equal precision confidence band, blue
dash-dotted lines—95 % point-wise confidence intervals, dotted line—the estimated hazard ratio
function

normal resampling approximation only needs a small additional computation and
programming cost.

To see how the nonparametric procedures compare with the proposed model-based
procedures, Fig. 21.4 presents 95 % point-wise confidence intervals, both model-
based and nonparametric, together with the point estimates, of CHR(t) for the VTE
data from WHI. It can be seen that the nonparametric estimates and confidence
intervals can be quite unstable near the beginning of the data range. As t ↓ 0, the
hazard ratio at t and CHR(t) should both approach the same limit, which is eβ1

under the model. From Fig. 21.4, the model-based estimator of CHR(t) near t = 0
takes values around 5, which is comparable to results in the literature, while the
nonparametric estimator of CHR(t) near t = 0 takes much more extreme values.
Also, the model-based estimates and confidence intervals are smoother throughout,
and the confidence intervals are often narrower than their nonparametric counterparts.
Similar phenomena are also present for RR(t) (omitted). This is a major reason that
the nonparametric estimates for RR(t) and CHR(t) are rarely used in biomedical
studies.
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Fig. 21.4 Model-based and nonparametric 95 % point-wise confidence intervals of the ratio of
cumulative hazards for the WHI VTE data: Outside red solid lines—model based 95 % point-
wise confidence intervals, outside blue dashed lines—nonparametric 95 % point-wise confidence
intervals, central magenta solid line—model based estimate of the ratio of cumulative hazards,
central blue dashed line—nonparametric estimate of the ratio of cumulative hazards

Next, we look at an example with mild violation of the proportional hazards as-
sumption. The Digoxin Intervention Group trial (The Digitalis investigation group
1997) was a randomized, double-blind clinical trial on the effect of digoxin on mor-
tality and hospitalization. In the main trial, patients with left ventricular ejection
fraction of 0.45 or less were randomized to digoxin (3397 patients) or placebo (3403
patients) in addition to diuretics and angiotensin-converting-enzyme inhibitors. We
look at the data on death attributed to worsening heart failure. For testing the pro-
portional hazards assumption, the acceleration test statistic of Breslow et al. (1984)
gives a p- value of 0.098. This indicates some mild proportionality violation. For
RR(t),the 95 % point-wise confidence intervals and confidence bands under model
(21.1) are given in Fig. 21.4. Possibly due to only a mild violation of the propor-
tionality assumption, the Hall–Wellner type band, the equal precision band and the
unweighted band are almost the same for the entire data range considered. From
Fig. 21.4, there is evidence that for the range of 1.5–3 year, the treatment reduces
the event probability.
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Fig. 21.5 95 % point-wise confidence intervals and simultaneous confidence bands of the failure
probability ratio for the DIG data: Outside red solid lines—equal precision confidence band, ma-
genta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—unweighted
confidence band, Dotted lines—95 % point-wise confidence intervals, central black solid line—the
estimated failure probability ratio under the model, central green dashed line—the estimated failure
probability ratio using Kaplan–Meier estimators

For CHR(t), the 95 % point-wise confidence intervals and confidence bands under
model (21.1) are given in Fig. 21.5. Again all three confidence bands are very close
to each other. From Fig. 21.5, there is evidence of reduced event probability in the
treatment group for the range of 1.3 year to 3 years.

Again for comparison, fromYang and Prentice (2011), the 95 % point-wise confi-
dence intervals and equal precision confidence band are obtained for the hazard ratio
under model (21.1), given in Fig. 21.6. From Fig. 21.6, there is evidence that from 0
to .75 year, in the treatment group there is reduced hazard of death attributed to wors-
ening heart failure. Note that this range is much narrower than the range where there
is evidence of reduced event probability in the treatment group seen from Fig. 21.4
and 21.5 (Fig. 21.7).
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Fig. 21.6 95 % point-wise confidence intervals and simultaneous confidence bands of the ratio of
cumulative hazards for the DIG data: Outside red solid lines—equal precision confidence band, ma-
genta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—unweighted
confidence band, dotted lines—95 % point-wise confidence intervals, central black solid line—the
estimated failure probability ratio under the model, central green dashed line—the estimated failure
probability ratio using Kaplan–Meier estimators

21.6 Discussion

We have studied the asymptotic properties of the estimators for the failure probability
ratio and the ratio of cumulative hazards under a semiparametric model applicable
to a sufficiently wide range of applications. Point-wise confidence intervals and con-
fidence bands are developed for the two ratios. In simulation studies, the confidence
bands have good performance for moderate samples. Among the confidence bands
with different weights, the equal precision confidence band is recommended based
on various simulation studies and clinical trial data applications. Similarly, inference
procedures can be developed for the odds ratio. The point-wise confidence intervals
and confidence bands for the odds ratio are usually wider than the corresponding
intervals and bands for the failure probability ratio and the ratio of cumulative haz-
ards. Due to space limit those results are not presented here. When the censoring is
heavy, there are very little differences among the confidence intervals and bands for
the failure probability ratio, the ratio of cumulative hazards, and the odds ratio. The
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Fig. 21.7 95 % point-wise confidence intervals and simultaneous confidence bands of the hazard
ratio function for the DIG data: Red solid lines—equal precision confidence band, blue dash-dotted
lines—95 % point-wise confidence intervals, dotted line—the estimated hazard ratio function

confidence intervals and bands presented here provide good visual tools for assessing
cumulative effect of the treatment. They can supplement the visual tools based on
the hazard ratio which focuses the temporal pattern of the treatment effect. It is also
of interest to extend the results here by considering adjustment for covariate via a
regression analysis. These and other problems are worthy of further exploration.
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Appendix A: Consistency

The following regularity conditions will be assumed throughout the Appendices:

Condition 1. lim n1
n
= ρ ∈ (0, 1).

Condition 2. The survivor function Gi of Ci given Zi is continuous and satisfies

1

n

∑

i≤n1

Gi(t) → �1,
1

n

∑

i>n1

Gi(t) → �2,
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uniformly for t ≤ τ , for some �1, �2, and τ < τ0 such that �j (τ ) > 0, j = 1, 2.
Condition 3. The survivor functions SC and ST are absolutely continuous and
SC(τ ) > 0.

Under these conditions, the strong law of large numbers implies that (21.3) is
satisfied.

For t ≤ τ , define

L(t) = �1SC + �2ST ,

Uj (t ; b) =
∫ t

0
�1dFC + exp

(− bj
)∫ t

0
�2dFT , j = 1, 2,

�j (t ; b) =
∫ t

0

dUj (s; b)

L(s)
, j = 1, 2,

P (t ; b) = exp{−�2(t ; b)}, R(t ; b) = 1

P (t ; b)

∫ t

0
P (s; b)d�1(s; b),

f 0
j (t ; b) = exp ( − bj )Rj−1(t ; b)

exp ( − b1) + exp ( − b2)R(t ; b)
, j = 1, 2,

mj (b) =
{∫ τ

0
f 0
j �2(t)dFT (t) −

∫ τ

0

f 0
j �2(t)ST (t)dR(t ; b)

exp
(− b1

)+ exp
(− b2

)
R(t ; b)

}

, j=1, 2,

and m(b) = (m1(b),m2(b)
)′

. We will also assume

Condition 4. The function m(b) is non-zero for b ∈ B−{β}, where B is a compact
neighborhood of β.

Theorem 1. Suppose that Conditions 1 ∼ 4 hold. Then, (i) the zero β̂ of Q(b) in
B is strongly consistent for β; (ii) R̂R(t) is strongly consistent for RR(t), uniformly
for t ∈ [0, τ ], and ĈHR(t) is strongly consistent for CHR(t), uniformly on t ∈ [0, τ ];
(iii) �̂ converges almost surely to a limiting matrix �∗.

Proof. Under Conditions 1 ∼ 3, the limit of
∑n

i=1I
(
Xi ≥ t

)
/n is bounded away

from zero on t ∈ [0, τ ]. Thus, it can be shown that, with probability 1,

∑n
i=1δie

−bjZi I
(
Xi = t

)

∑n
i=1δiI

(
Xi ≥ t

) → 0, j = 1, 2, |�P̂ (t ; b)| → 0, |�R̂(t ; b)| → 0,

(21.16)

uniformly for t ∈ [0, τ ] and b ∈ B, where � indicates the jump of the function in t .
Define the martingale residuals

M̂i(t ; b) = δiI
(
Xi ≤ t

)−
∫ t

0
I
(
Xi ≥ s

) R̂(ds; b)

e−b1Zi + e−b2Zi R̂(s; b)
, 1 ≤ i ≤ n.
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From (21.16) and the fundamental theorem of calculus, it can be shown that, with
probability 1,

Q(b) =
n∑

i=1

∫ τ

0

{
fi(t ; b) + o(1)

}
M̂i(dt ; b), (21.17)

uniformly in t ≤ τ , b ∈ B and i ≤ n, where fi = (f1i , f2i)T , with

f1i(t ; b) = Zie
−b1Zi

e−b1Zi + e−b2Zi R̂(t ; b)
, f2i(t ; b) = Zie

−b2Zi R̂(t ; b)

e−b1Zi + e−b2Zi R̂(t ; b)
.

From the strong law of large numbers (Pollard 1990, p. 41) and repeated use of
Lemma A1 of Yang and Prentice (2005), one obtain, with probability 1,

P̂ (t ; b) → P̂ (t ; b), R̂(t ; b) → R(t ; b), Q(b)/n → m(b), (21.18)

uniformly in t ≤ τ and b ∈ B. From these results and Condition 4, one obtains the
strong consistency of R̂R(t) and ĈHR(t), and almost sure convergence of �̂.

Appendix B: Weak Convergence

Let ξ0(t) = 1 + R(t), ξ (t) = e−β1 + e−β2R(t), ξ̂0(t) = 1 + R̂(t ;β), ξ̂ (t) = e−β1 +
e−β2R̂(t ;β), and define

K1(t) =
∑

i≤n1

I (Xi ≥ t), K2(t) =
∑

i>n1

I (Xi ≥ t),

H (t) = 1

ξ̂ (t)
(e−β1 , e−β2R̂(t ;β))T ,

J (t) =
∫ τ

t

H (s)K1(s)K2(s)

ξ̂ (s)P̂ (s;β)

(
e−β2

ξ (s)
− 1

ξ0(s)

)
dR(s).

Similarly, to the proof of Theorem 1, it can be shown that, with probability 1,

Q(β) =
∑

i≤n1

∫ τ

0
{μ1(t) + o(1)}dMi(t) +

∑

i>n1

∫ τ

0

{
μ2(t) + o(1)

}
dMi(t), (21.19)

uniformly in t ≤ τ and i ≤ n, where

μ1(t) = − ξ̂0(t)H (t)K2(t)

ξ̂ (t)K(t)
+ ξ̂0(t)P̂−(t ;β)

K
J (t),

μ2(t) = H (t)
K1(t)

K(t)
+ ξ̂ (t)P̂−(t ;β)

K(t)
J (t), (21.20)
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Mi(t) = δiI (Xi ≤ t) −
∫ t

0
I (Xi ≥ s)

dR(s)

e−β1Zi + e−β2ZiR(s)
, i = 1, . . . , n.

By Lemma A3 of Yang and Prentice (2005),

√
n(R̂(t ;β) − R(t)) = 1√

nP̂ (t ;β)

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

(21.21)

where

ν1(t) = nξ0(t)P̂−(t ;β)

K(t)
, ν2(t) = nξ (t)P̂−(t ;β)

K(t)
.

Define

ARR(t) =
(

ŜT (t)

F̂C(t)ξ̂ (t)
− F̂T (t)Ŝ2

C(t)

F̂ 2
C(t)

)
∂R̂(t ;β)

∂β
+ ŜT (t)

F̂C(t)

(
R(t)

ξ (t)
,�T (t) − R(t)

ξ (t)

)T

,

BRR(t) = 1

P̂ (t ;β)

(
ŜT (t)

F̂C(t)ξ̂ (t)
− F̂T (t)Ŝ2

C(t)

F̂ 2
C(t)

)

,

ACHR(t) =
(

1

�C(t)ξ̂ (t)
− �T (t)ŜC(t)

�2
C(t)

)
∂R̂(t ;β)

∂β
+ 1

�C(t)

(
R(t)

ξ (t)
,�T (t) − R(t)

ξ (t)

)T

,

BCHR(t) = 1

P̂ (t ;β)

(
1

�C(t)ξ̂ (t)
− �T (t)ŜC(t)

�2
C(t)

)

.

For ARR(t), BRR(t), ACHR(t), BCHR(t), mu1(t),μ2(t), ν1(t), ν2(t), let
A∗

RR(t), B∗
RR(t), . . . etc. be their almost sure limit. In addition, let Lj be the

almost sure limit of Kj/n, j = 1, 2. For 0 ≤ s, t < τ , let

σRR(s, t)

=A∗T
RR(s)�∗

(∫ τ

0

μ∗
1μ

∗T
1

1 + R
L1dR +

∫ τ

0

μ∗
2μ

∗T
2

e−β1 + e−β2R
L2dR

)
�∗T D∗(t)

+ B∗
RR(s)B∗

RR(t)

(∫ s

0

ν∗2
1

1 + R
L1dR +

∫ s

0

ν∗2
2

e−β1 + e−β2R
L2dR

)

+ B∗
RR(t)A∗T

RR(s)�∗
(∫ t

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ t

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)

+ B∗
RR(s)A∗T

RR(t)�∗
(∫ s

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ s

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)
, (21.22)

and

σCHR(s, t)
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=A∗T
CHR(s)�∗

(∫ τ

0

μ∗
1μ

∗T
1

1 + R
L1dR +

∫ τ

0

μ∗
2μ

∗T
2

e−β1 + e−β2R
L2dR

)
�∗T D∗(t)

+ B∗
CHR(s)B∗

CHR(t)

(∫ s

0

ν∗2
1

1 + R
L1dR +

∫ s

0

ν∗2
2

e−β1 + e−β2R
L2dR

)

+ B∗
CHR(t)A∗T

CHR(s)�∗
(∫ t

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ t

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)

+ B∗
CHR(s)A∗T

CHR(t)�∗
(∫ s

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ s

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)
. (21.23)

For ARR(t), BRR(t), . . ., etc. define corresponding estimator B̂RR(t), ÂRR(t), . . .
by replacing β with β̂, R(t) with R̂(t ; β̂). Defince σ̂RR(s, t) and σ̂CHR(s, t) by repal-
cing BRR(t), ARR(t), μ1(t), μ2(t), ν1(t), ν2(t), . . . in σRR(s, t) and σCHR(s, t) by
B̂RR(t), ÂRR(t), . . . etc.

Theorem 2. Suppose that Conditions 1 ∼ 4 hold and that the matrix �∗ is non-
singular. Then, (i) Un is asymptotically equivalent to the process Ũn in (21.6) which
converges weakly to a zero-mean Gaussian process U ∗ on [0, τ ], with covariance
function σRR(s, t) in (21.22). σRR(s, t) can be consistently estimated by σ̂RR(s, t). In
addition, Ûn(s) given the data converges weakly to the same limiting process U∗. (ii)
Vn(t) is asymptotically equivalent to the process Ṽn in (21.7) which converges weakly
to a zero-mean Gaussian process V ∗ on [0, τ ], with covariance function σCHR(s, t)
in (21.23). σCHR(s, t) can be consistently estimated by σ̂CHR(s, t). In addition, V̂n(s)
given the data converges weakly to the same limiting process V ∗.

Proof. (i) As in the proof for Theorem A2 (ii) in Yang and Prentice (2005), by the
strong embedding theorem and (21.19), Q(β)/

√
n can be shown to be asymptotically

normal. Now Taylor series expansion of Q(b) around β and the non-singularity of
�∗ imply that

√
n
(
β̂ − β

)
is asymptotically normal. From the

√
n- boundedness

of β̂,

√
n
(
R̂
(
t ; β̂
)− R̂

(
t ;β
)) = ∂R(t ;β)

∂β

√
n
(
β̂ − β

)+ op(1),

uniformly in t ≤ τ.These results, some algebra and Taylor series expansion together
show that Un is asymptotically equivalent to Ũn. Similarly, to the proof of the asymp-
totic normality of Q(β)/

√
n, one can show that Ũn converges weakly to a zero-mean

Gaussian process. Denote the limiting process by U ∗. From the martingale integral
representation of Ũn, it can be shown that the covariation process of U ∗ is given by
σ (s, t) in (21.22). The consistency of σ̂RR(s, t) can be shown similarly to the proof
of Theorem 1.

By checking the tightness condition and the convergence of the finite-dimensional
distributions, it can be shown that Ûn(s) given the data also converges weakly to U ∗.

(ii) The assertions on Vn, Ṽn, etc. can be proved similarly to the case for Un, Ũn,
etc. in (i).
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