
Chapter 15
Comparison of Autoregressive Curves Through
Partial Sums of Quasi-Residuals

Fang Li

15.1 Introduction

This chapter is concerned with testing the equality of two autoregressive functions
against two sided alternatives when observing two independent strictly stationary and
ergodic autoregressive times series of order one. More precisely, let Y1,i , Y2,i , i ∈
Z := {0,±1, · · · }, be two observable autoregressive time series such that for some
real valued functions μ1 and μ2, and for some positive functions σ1, σ2,

Y1,i = μ1(Y1,i−1) + σ1(Y1,i−1)ε1,i , Y2,i = μ2(Y2,i−1) + σ2(Y2,i−1)ε2,i . (15.1)

The errors {ε1,i , i ∈ Z} and {ε2,i , i ∈ Z} are assumed to be two independent
sequences of independent and identically distributed (i.i.d.) r.v.’s with mean zero
and unit variance. Moreover, ε1,i , i ≥ 1 are independent of Y1,0, and ε2,i , i ≥ 1 are
independent of Y2,0. And the time series are assumed to be stationary and ergodic.

Consider a bounded interval [a, b] of R. The problem of interest is to test the null
hypothesis:

H0 : μ1(x) = μ2(x), ∀ x ∈ [a, b],

against the two sided alternative hypothesis:

H1 : μ1(x) �= μ2(x), for some x ∈ [a, b], (15.2)

based on the data set Y1,0,Y1,1, · · · ,Y1,n1 , Y2,0,Y2,1, · · · ,Y2,n2 .
In hydrology, autoregressive time series are often used to model water reser-

voirs, see, e.g., Bloomfield (1992). The above testing problem could be applied in
comparing the water levels of two rivers.

Few related studies had been conducted under the two sample autoregressive
setting. Koul and Li (2005) adapts the covariate matching idea used in regression
setting to a one-sided tests for the superiority among two time series. Li (2009)
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studied the same testing problem, but the test is based on the difference of two sums
of quasi-residuals. This method is also an extension of T2 in Koul and Schick (1997)
from regression setting to autoregressive setting.

The papers that address the above two sided testing problem in regression set-
ting include Hall and Hart (1990); Delgado (1993); Kulasekera (1995) and Scheike
(2000). In particular, Delgado (1993) used the absolute difference of the cumula-
tive regression functions for the same problem, assuming common design in the
two regression models. Kulasekera (1995) used quasi-residuals to test the difference
between two regression curves, under the conditions that do not require common
design points or equal sample sizes. The current article adapts Delgado’s idea of
using partial sum process and Kulasekera’s idea of using quasi residuals to construct
the tests for testing the difference between two autoregressive functions.

Similarly, as in Delgado (1993), let

�(t) :=
∫ t

a

(
μ1(x) − μ2(x)

)
(f1(x) + f2(x)) dx, ∀ a ≤ t ≤ b, (15.3)

where μ1, μ2 are assumed to be continuous on [a, b] and f1, f2 are the stationary
densities of the two time series Y1,i and Y2,i , respectively. We also assume that f1, f2

are continuous and positive on [a, b]. It is easy to show that �(t) ≡ 0 when the null
hypothesis holds and �(t) �= 0 for some t under Ha . This suggests to construct tests
of H0 vs. Ha based on some consistent estimators of �(t). One such estimator is
obtained as follows.

First, as in Kulasekera (1995), we define quasi-residuals

e1,i = Y1,i − μ̂2(Y1,i−1), i = 1, · · · , n1, (15.4)

and

e2,j = Y2,j − μ̂1(Y2,j−1), j = 1, · · · , n2. (15.5)

Here, μ̂1 and μ̂2 are appropriate estimators, such as Nadaraya–Watson estimators
used in this article, of μ1 and μ2. See Nadaraya (1964) and Watson (1994).

Now, let

Un(t) = 1

n1

n1∑

i=1

e1,i1[a≤Y1,i−1≤t] − 1

n2

n2∑

j=1

e2,j1[a≤Y2,j−1≤t], (15.6)

where the subscript n, here and through out the chapter, represents the dependence
on n1 and n2. With uniformly consistent estimators μ̂1 and μ̂2 of μ1 and μ2 such as
kernel estimates and under some mixing condition on the time series Y1,i and Y2,j

such as strongly α−mixing, Un(t) can be shown to be U1n(t)+U2n(t)+U3n(t) with

U1n(t) = 1

n1

n1∑

i=1

σ1(Y1,i−1)ε1,i1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

σ2(Y2,j−1)ε2,j1[a≤Y2,j−1≤t] = oP (1),
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U2n(t) = 1

n1

n1∑

i=1

(μ1(Y1,i−1) − μ2(Y1,i−1))1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

(μ2(Y2,j−1) − μ1(Y2,j−1))1[a≤Y2,j−1≤t]

=
∫ t

a

(
μ1(x) − μ2(x)

)
(f1(x) + f2(x)) dx + oP (1),

U3n(t) = 1

n1

n1∑

i=1

(μ2(Y1,i−1) − μ̂2(Y1,i−1))1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

(μ1(Y2,j−1) − μ̂1(Y2,j−1))1[a≤Y2,j−1≤t] = oP(1),

uniformly for all t ∈ [a, b]. Thus, Un(t) provides a uniformly consistent estimator
of �(t). This suggests to base tests of H0 on some suitable functions of this pro-
cess. In this chapter, we shall focus on the Kolmogorov–Smirnov type test based on
supa≤t≤b |Un(t)|.

To determine the large sample distribution of the process Un(t), one needs to
normalize this process suitably. Let

τ 2
n (t) = q1E

{

σ 2
1 (Y1,0)

(
1 + f2(Y1,0)

f1(Y1,0)

)2

1[a≤Y1,0≤t]

}

+ q2E

{

σ 2
2 (Y2,0)

(
1 + f1(Y2,0)

f2(Y2,0)

)2

1[a≤Y2,0≤t]

}

, (15.7)

where, q1 = N
n1

= n2
n1+n2

, q2 = N
n2

= n1
n1+n2

and N = n1n2
n1+n2

.
We consider the following normalized test statistics:

T := sup
a≤t≤b

∣∣N
1/2Un(t)
√
τ 2
n (b)

∣∣. (15.8)

In the case σi’s and fi’s are known, the tests of H0 could be based on T , being
significant for its large value. But, usually those functions are unknown which renders
T of little use. This suggests to replace τn with its estimate τ̂ 2

n which satisfies

τ̂ 2
n (b)

τ 2
n (b)

→P 1. (15.9)

An example of such estimator τ̂n(t) of τn(t) is

τ̂ 2
n (t) = q1

1

n1

n1∑

i=1

⎧
⎨

⎩
(
Y1,i − μ̃1(Y1,i−1)

)2
(

1 + f̂2(Y1,i−1)

f̂1(Y1,i−1)

)2

1[a≤Y1,i−1≤t]

⎫
⎬

⎭

+ q2
1

n2

n2∑

j=1

⎧
⎨

⎩
(
Y2,j − μ̃2(Y2,j−1)

)2
(

1 + f̂1(Y2,j−1)

f̂2(Y2,j−1)

)2

1[a≤Y2,j−1≤t]

⎫
⎬

⎭
,

(15.10)



242 F. Li

where, μ̃i’s and f̂i’s are appropriate estimators, such as kernel estimators used in this
paper, of μi’s and fi’s. Therefore, the proposed tests will be based on the adaptive
version of T , namely

T̂ := sup
a≤t≤b

∣∣N
1/2Un(t)
√
τ̂ 2
n (b)

∣∣ (15.11)

We shall study the asymptotic behavior of T̂ as the sample sizes n1 and n2 tend
to infinity. Theorem 2.1 of Sect. 15.2 shows that under H0, T weakly converge to
supremum of Brownian motion over [0, 1], under some general assumptions and
with μ̂1 and μ̂2 being Nadaraya–Watson estimators of μ1 and μ2. Then, in Corollary
2.1, under some general assumptions on the estimates μ̃1, μ̃2 and f̂1, f̂2, we derive
the same asymptotic distributions of T̂ under H0. Remark 2.2 proves that the power
of the test basted on T̂ converges to 1, at the fixed alternative (15.2) or even at
the alternatives that converge to H0 at a rate lower than

√
τ 2
n (b). In Sect. 15.3,

we conduct a Monte Carlo simulation study of the finite sample level and power
behavior of the proposed test T̂ . The simulation results are shown to be consistent
with the asymptotic theory at the moderate sample sizes considered. In Sect. 15.4, we
study some properties of kernel smoothers and weak convergence of both empirical
processes and marked empirical processes. Those studies facilitate the proof of our
main results in Sect. 15.2. But, they may also be of interest on their own, hence are
formulated and proved in Sect. 15.4. The other proofs are deferred to Sect. 15.5.

15.2 Asymptotic Behavior of T and T̂

This section investigates the asymptotic behavior ofT given in (15.8) and the adaptive
statistic T̂ given in (15.11) under the null hypothesis and the alternatives (15.2).
We write P for the underline probability measures and E for the corresponding
expectations. In this chapter we consider Nadaraya–Watson estimators μ̂1, μ̂2 of μ1

and μ2, i.e.,

μ̂i(x) =
∑ni

j=1 Yi,jKhi (Yi,j−1 − x)
∑ni

j=1 Khi (Yi,j−1 − x)
, i = 1, 2, (15.12)

where Khi (x) = 1
hi
K( x

hi
), with K being a kernel density function on the real line

with compact support [ − 1, 1], h1, h2 > 0 are the bandwidths. First, we recall the
following definition from Bosq (1998):

Definition 2.1 For any real discrete time process (Xi , i ∈ Z) define the strongly
mixing coefficients

α(k) := sup
t∈Z

α(σ -field(Xi , i ≤ t), σ -field(Xi , i ≥ t + k)); k = 1, 2, . . .

where, for any two sub σ -fields B and C,

α(B, C) = sup
B∈B,C∈C

|P (B ∩ C) − P (B)P (C)|.
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Definition 2.2. The process (Xi , i ∈ Z) is said to be geometrically strong mixing
(GSM) if there exists c0 > 0 and ρ ∈ [0, 1) such that α(k) ≤ c0ρ

k , for all k ≥ 1.
The following assumptions are needed in this paper.

(A.1) The autoregressive functions μ1, μ2 are continuous on an open interval
containing [a, b] and they have continuous derivatives on [a, b].

(A.2) The kernel function K(x) is a symmetric Lipschitz-continuous density on R

with compact support [ − 1, 1].
(A.3) The bandwidths h1, h2 are chosen such that h2

i N1−c → ∞ for some c > 0
and h4

i N → 0.
(A.4) The densities f1 and f2 are bounded and their restrictions to [a, b] are posi-

tive. Moreover, they have continuous second derivatives over an open interval
containing [a, b].

(A.5) The conditional variance functions σ 2
1 and σ 2

2 are positive on [a, b] and
continuous on an open interval containing [a, b].

(A.6) Y1,i , Y2,i , i ∈ Z are GSM processes.
(A.7) For some M < ∞, we have

E(ε4
i,1) ≤ M , i = 1, 2.

(A.8) For i = 1, 2, the joint densities gi,l between Yi,0 and Yi,l for all l ≥
1 are uniformly bounded over an open interval I0 containing I, i.e.,
supl≥1 supx,y∈I0

gi,l(x, y) < ∞.
(A.9) The densities g1 and g2 of the innovations ε1,1 and ε2,1 are bounded.

Let K(y) = ∫ y

−1 K(t) dt be the distribution function corresponding to the kernel
density K(y) on [ − 1, 1] and let

Vn(t) = 1

n1

n1∑

i=1

ε1,i σ1(Y1,i−1)

(
1[a≤Y1,i−1≤t] + f2(Y1,i−1)

f1(Y1,i−1)

(
K
(
t − Y1,i−1

h2

)

−K
(
a − Y1,i−1

h2

)))

− 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)

(
1[a≤Y2,j−1≤t] + f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

−K
(
a − Y2,j−1

h1

)))
(15.13)

and

Wn(t) = 1

n1

n1∑

i=1

(μ1(Y1,i−1) − μ2(Y1,i−1))1[a≤Y1,i−1≤t]

+ 1

n2

n2∑

j=1

(μ1(Y2,j−1) − μ2(Y2,j−1))1[a≤Y2,j−1≤t] (15.14)

We are now ready to state the main result.



244 F. Li

Theorem 2.1 Suppose, the conditions (A.1)–(A.9) hold true. Then, under both null
and alternative hypotheses, as n1 ∧ n2 → ∞,

sup
a≤t≤b

∣∣∣∣∣
N1/2

√
τ 2
n (b)

(Un(t) − Vn(t) −Wn(t))

∣∣∣∣∣
= oP (1). (15.15)

Here, Un is given in (15.6) with μ̂1, μ̂2 of (15.12), and Vn and Wn are given in
(15.13) and (15.14). Consequently,

N1/2

√
τ 2
n (b)

(Un(t) −Wn(t)) �⇒ B ◦ ϕ(t), ϕ(t) = lim
n1∧n2→∞

τ 2
n (t)

τ 2
n (b)

, (15.16)

in the Skorohod space D[a, b], where B ◦ ϕ is a continuous Brownian motion on
[a, b] with respect to time ϕ. Therefore, under H0, T of (15.8) satisfies

T �⇒ sup
0≤t≤1

|B(t)|,

where B(t) is a continuous Brownian motion on R.

Proof: The proof is given in Sect. 15.5.
Next, we need the following additional assumption to obtain the asymptotic

distribution of T̂ given in (15.11)

Assumption 2.1 Let μ̃i , f̂i be estimators of μi and fi , respectively, satisfying

sup
a≤x≤b

|μ̃i(x) − μi(x)| = oP (1), sup
a≤x≤b

|f̂i(x) − fi(x)| = oP (1), i = 1, 2,

under both null and alternative hypotheses.

Corollary 2.1 Suppose the conditions of Theorem 2.1 hold true. In addition, suppose
that there are estimates μ̃i and f̂i in (15.10) satisfying Assumption 2.1. Then, as
n1 ∧ n2 → ∞ and under H0, T̂ of (15.11) satisfies

T̂ �⇒ sup
0≤t≤1

|B(t)|.

Proof: It suffices to prove (15.9). Let

O1 = E

{

σ 2
1 (Y1,0)

(
1 + f2(Y1,0)

f1(Y1,0)

)2

1[a≤Y1,0≤b]

}

and

O1n = 1

n1

n1∑

i=1

⎧
⎨

⎩
(
Y1,i − μ̃1(Y1,i−1)

)2
(

1 + f̂2(Y1,i−1)

f̂1(Y1,i−1)

)2

1[a≤Y1,i−1≤b]

⎫
⎬

⎭
.
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ByAssumption 2.1, (A.4), (A.5) and Chebyshev’s inequality, it can be derived that

O1n = O1 + oP (1). (15.17)

Similarly, we obtain

O2n = O2 + oP (1), (15.18)

with

O2 = E

{

σ 2
2 (Y2,0)

(
1 + f1(Y2,0)

f2(Y2,0)

)2

1[a≤Y2,0≤b]

}

and

O2n = 1

n2

n2∑

j=1

⎧
⎨

⎩
(
Y2,j − μ̃2(Y2,j−1)

)2
(

1 + f̂1(Y2,j−1)

f̂2(Y2,j−1)

)2

1[a≤Y2,j−1≤b]

⎫
⎬

⎭
.

From (15.17), (15.18) and the fact that O1, O2 are some positive constants, we
have

τ̂ 2
n (b) − τ̂ 2

n (a)

τ 2
n (b) − τ 2

n (a)
= q1(O1 + oP (1)) + q2(O2 + oP (1))

q1O1 + q2O2
→P 1,

which completes the proof of the corollary. �
Remark 2.1 An example of estimates μ̃i and f̂i satisfying Assumption 2.1 are:
μ̃i = μ̂i of (15.12) and

f̂i(x) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x), i = 1, 2, (15.19)

with h1,h2 being appropriate bandwidths that could be different for constructing μ̂i

in Un of (15.6). For example, here we can take hi = O(n−1/5
i ), See Bosq (1998). But

to construct μ̂i in Un of (15.6), we need to choose bandwidths that satisfy (A.3).

Remark 2.2 Testing property of T̂ : Under the model (15.1), consider the following
alternative that is the same as in (15.2):

Ha : μ1(x) − μ2(x) = δ(x) �= 0 for some x ∈ [a, b],

where δ is continuous on [a, b] since μ1, μ2 are continuous.
Theorem 2.1 and its corollary suggest to reject the null hypothesis for large values

of T̂ given in (15.11) under Assumption 2.1.
Let

T̂ (t) = N1/2

√
τ̂ 2
n (b)

Un(t), T̂1(t) = N1/2

√
τ̂ 2
n (b)

(Un(t) −Wn(t))
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Then,

T̂ (t) = T̂1(t) + h(t), h(t) = N1/2

√
τ̂ 2
n (b)

Wn(t)

By Ergodic theorem,

Wn →P

∫ t

a

δ(x) dx,

h(t) ∼ N1/2

√
τ̂ 2
n (b)

∫ t

a

δ(x) dx. (15.20)

This, together with N1/2√
τ 2
n (b)

→ ∞, (15.9), and the fact that
∫ t

a
δ(x) dx is not 0 for

some a ≤ t ≤ b implies,

sup
a≤t≤b

|h(t)| →P ∞. (15.21)

Hence, in view of (15.16) and (15.9),

T̂ = sup
a≤t≤b

|T̂ (t)| = sup
a≤t≤b

|T̂1(t) + h(t)| →P ∞. (15.22)

This, together with Corollary 2.1 indicates that the test bases on T̂ is consistent
for Ha .

Note: By using the same arguments as above, we even can claim that under As-
sumption 2.1, the test based on T̂ is consistent for the alternatives converging to the
null hypothesis at any rate αn that is lower than N−1/2, since (15.21) is still satis-
fied when δ(x) is replaced by δ(x)αn. Furthermore, under H1 : μ1(x) − μ2(x) =√

τ 2
n (b)

N1/2 δ(x), x ∈ [0, 1], the limiting powers of the asymptotic level α tests T is
computed as

lim
n→∞P (T̂1 > bα) = P

(
sup

a≤t≤b

|B ◦ ϕ(t) + g(t)| > bα

)
,

where bα is defined such that

P

(
sup

0≤t≤1
|B(t)| > bα

)
= α.

15.3 Simulation

In this section, we investigate the finite sample behavior of the nominal level of the
proposed test T̂ under H0 and power of T̂ against some nonparametric alternatives.
As sample sizes, we choose the moderate sample sizes n1 = n2 = n = 50, 100, 300,
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Table 15.1 The critical
values bα

α 0.05 0.025 0.01
bα 2.24241 2.49771 2.80705

600, 1, 000, and 2,000 with each simulation being repeated for 1,000 times. The data
is simulated from model (15.1), where the two autoregressive functions are chosen
to be μ2(x) = 1 + x/2 and μ1(x) = μ2(x) + δ(x), and the innovations {ε1,i} and
{ε2,i} are taken to be independent standard normal N (0, 1). We choose δ(x) = 0

corresponding to H0 and δ(x) = 1, 2(x − 3)/x, and 2
(

n1n2
n1+n2

)−1/2 = 2 N−1/2

corresponding to Ha . Note that the second choice of δ is negative for x < 3 and
positive for x > 3 and converge to 0 for x → 3; the last choice of δ corresponds to
the local alternatives with a rate being the same as τn of (15.7). For simplicity, the
conditional variance functions σ1 and σ2 are chosen to be (i) σ1(x) = σ2(x) = 1 and
(ii) σ1(x) = σ2(x) = 3/

√
1 + x2. Finally, the interval [a, b] in (15.2) is taken to be

[2, 4].
To construct the test statistics T̂ of (15.11), we consider Nadaraya–Watson esti-

mators μ̂1, μ̂2 of (15.12) with kernel K(x) = 3
4 (1−x2)1(|x| ≤ 1) and we considered

three different bandwidths h1 = h2 = 0.15, 0.2 and 0.25. The estimates μ̃1, μ̃2 and
f̂1, f̂2 in τ̂n of (15.10) are from Remark 2.1 with hi = n

−1/5
i , i = 1, 2. Let bα satisfy

P( sup0≤t≤1 |B(t)| > bα) = α. Then, the empirical size (power) is computed by the

proportion of rejects # of [T̂ >bα ]
1000 .

In Table 15.1, we give the critical values bα obtained from the formula
P
(
sup0≤t≤1 |B(t)| < b

) = P ( |B(1)| < b ) + 2
∑∞

i=1 ( − 1)iP ( (2i − 1)b < B(1) <
(2i + 1)b ) given on page 553 of the book by Resnick (1992).

The simulation programming was done using R. To generate each of the two
samples, we first generated (500 + n) error variables from N (0, 1). Using these
errors and model (15.1) with the initial value Yi,0 randomly chosen from N (0, 1), we
generated (501 + n) observations. The last (n + 1) observations from the data thus
generated are used in carrying out the simulation study.

The results of the simulation study are shown in Table 15.2 below. Three rows
correspond each choice of δ(x) with the first row corresponding to bandwidth 0.15,
the second to 0.2 and the third to 0.25. The finite sample level and power behavior
of the tests are shown to be quite stable across the various choices of the bandwidth.
One sees that for both choices of σ1 and σ2, the empirical sizes of the test are not
much different from the nominal levels for most moderate samples sizes, but they are
closer to the true levels when the sample size gets larger. The simulated powers under
fixed alternative δ(x) = 1 are close to 1 for all moderate sample sizes, even at α-level
.025. The simulated powers under fixed alternative δ(x) = 2(x − 3)/x are seen to
increase quickly with n and they are quite large for n ≥ 600. The simulated powers
under local alternative δ(x) = 2 N−1/2 are stable for most moderate sample sizes. In
summary, the simulated levels and powers are consistent with the asymptotic theory
at most moderate sample sizes considered.
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15.4 Properties of Kernel Smoothers and Weak Convergence
of Empirical Processes

In this section, we first study the asymptotic behavior of the following kernel
smoothers over [a, b] for i = 1, 2:

f̂i(x) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x), �i,n(x) = 1

ni

ni∑

j=1

σi(Yi,j−1)εi,jKhi (Yi,j−1 − x),

(15.23)

�i(x, y) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x)

�i(Yi,j−1)
1[Yi,j−1≤y], �1 = f2, �2 = f1, (15.24)

�1(y) = 1

n1

n1∑

i=1

ε1,i�2(Y1,i−1, y), �2(y) = 1

n2

n2∑

i=1

ε2,i�1(Y2,i−1, y), (15.25)

Hi,j (y) = 1

ni

ni∑

k=1

Khi (Yi,k−1 − y)(Yi,k−1 − y)j , i, j = 1, 2. (15.26)

By Lemma 1–4 in Li (2008), we have the following results.

Lemma 4.1 Suppose conditions (A.2), (A.3) and (A.4)–(A.8) hold. Then,

sup
a≤x≤b

∣∣�i,n(x)
∣∣ = OP

(√
log ni

nihi

)

, i = 1, 2,

where �i,n(x) is given in (15.23).

Lemma 4.2 Suppose conditions (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then fi

of (15.23) satisfies

sup
a≤x≤b

|f̂i(x) − fi(x)| = OP

(√
log ni

nihi

)

+O(h2
i ), i = 1, 2.

Lemma 4.3 Suppose condition (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then,
�i(x, y) of (15.24) satisfies

sup
a − hi ≤ x ≤ b + hi

a ≤ y ≤ b

Var{�i(x, y)} = O(
1

nihi

), i = 1, 2.
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Lemma 4.4 Suppose condition (A.2)- (A.4), (A.6) and (A.8) hold. Then Hi,j of
(15.26) satisfies

Hi,j (y) = h
j

i fi(y)uj +OP

(

h
j+1
i + h

j

j

√
log ni

nihi

)

,

uj =
∫ 1

−1
K(u)uj du, i, j = 1, 2

uniformly on a ≤ x ≤ b.
Next, we study the property of some empirical processes. The weak convergence

of marked empirical process proved in Theorem 2.2.6 of Koul (2002) implied the
following lemma:

Lemma 4.5 Suppose conditions (A.4), (A.6), (A.7) and (A.9) hold, then for i = 1, 2,

sup
a≤y≤b

∣
∣
∣
∣
∣∣

1

ni

ni∑

j=1

(|εi,j | − E|εi,j |)1[Yi,j−1≤y]

∣
∣
∣
∣
∣∣
= OP (n−1/2

i ).

Next, recall that K(y) = ∫ y

−1 K(t) dt is the distribution function corresponding to
the kernel density K(y) on [ − 1, 1]. We prove the following lemma:

Lemma 4.6 Suppose conditions (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then �i

of (15.25) satisfies

sup
a≤y≤b

∣∣∣∣∣
N1/2

(

�1(y) − 1

n1

n1∑

i=1

ε1,i
f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))∣∣∣∣∣
= oP (1),

sup
a≤y≤b

∣∣∣∣∣
N1/2

(

�2(y) − 1

n2

n2∑

i=1

ε2,i
f1(Y2,i−1)

f2(Y2,i−1)
K
(
y − Y2,i−1

h1

))∣∣∣∣∣
= oP (1).

Proof: The proof is similar to the proof of Lemma 1 of Li (2008) which is in turn
similar to Lemma 6.1 of Fan andYao (2003). It is sufficient to prove the first equality.
Let C denote a generic constant, which can vary from one place to another. Also let

N1/2

(

�1(y) − 1

n1

n1∑

i=1

ε1,i
f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))

= An(y)

Now, decompose An(y) into A1,n(y) + A2,n(y) with

A1,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
�2(Y1,i−1, y) − E(�2(Y1,i−1, y))

)
,

A2,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i

(
E(�2(Y1,i−1, y)) − f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))
.
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First, we show supa≤y≤b |A2,n(y)| = oP (1). For some (Y ∗
1,i−1 ∈ [a−2h2, b+2h2],

By Tayler expansion, We have

A2,n(y)

= N1/2 1

n1

n1∑

i=1

ε1,i

⎛

⎝
∫ y−Y1,i−1

h2

−1
K(u)

(
f2(Y1,i−1 + h2u)

f1(Y1,i−1 + h2u)
− f2(Y1,i−1)

f1(Y1,i−1)

)
du

⎞

⎠

= N1/2 1

n1

n1∑

i=1

ε1,i

⎛

⎝h2

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

+ h2
2

2

∫ y−Y1,i−1
h2

−1
u2 K(u)

f ′′
2 (Y ∗

1,i−1)f1(Y1,i−1) − f ′′
1 (Y ∗

1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

⎞

⎠

≤ N1/2h2
1

n1

n1∑

i=1

ε1,i

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

+N1/2h2
2

1

n1

n1∑

i=1

|ε1,i | · C, by (A.2) and (A.4),

uniformly over [a, b],
By a similar argument in proving Lemma 4.1 or Lemma 1 of Li (2008), it can be

shown that

sup
a≤y≤b

∣∣∣∣∣∣

1

n1

n1∑

i=1

ε1,i

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

∣∣∣∣∣∣

= OP

(√
log n1

n1h2

)

.

Also, N1/2h2
2

1
n1

∑n1
i=1 |ε1,i | = OP (N1/2h2

2)) = oP (1) by (A.3). Hence, by (A.3)
we have

sup
a≤y≤b

|A2,n(y)| = OP

(√
q1h2 log n1

)
+ oP (1)

= OP

(√

q1h2 log
N

q1

)

+ oP (1) = oP (1). (15.27)

Now, it is left to prove

sup
a≤y≤b

|A1,n(y)| = oP (1). (15.28)

Slightly simpler than the proof of Lemma 1 in Li (2008) and Lemma 6.1 in Fan
and Yao (2003), the proof consists of the following two steps:
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(a) (Discretization). Partition the interval [a, b] with length L into M = [(N1+c)1/2]
subintervals {Ik} of equal length. Let {yk} be the centers of Ik . Then

sup
a≤y≤b

|A1,n(y)| ≤ max
1≤k≤M

|A1,n(yk)| + oP (1). (15.29)

(b) (Maximum deviation for discretized series). For any small ε,

P

(
max

1≤j≤M
|A1,n(yj )| > ε

)
→ 0. (15.30)

Let Gi,n(y) = √
ni

(
1
ni

∑ni
j=1 1[Yi,j−1≤y] − P (Yi,j−1 ≤ y)

)
. The strong approxi-

mation theorem for the empirical process of a stationary sequence of strong mixing
random variables established in Berkes and Philipp (1997) and in Theorem 4.3 of
the monograph edited by Dehling et al (2002) implied

sup
1≤k≤M

sup
y∈Ik

∣
∣G1,n(y) −G1,n(yk)

∣
∣ = oP (1). (15.31)

Now, we prove part (a). First, for any 1 ≤ K ≤ M and all y ∈ Ik , we decompose
A1,n(y) − A1,n(yk) as D1,n(y) +D2,n(y) with

D1,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
�2(Y1,i−1, y) −�2(Y1,i−1, yk))

)
,

D2,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
E(�2(Y1,i−1, y)) − E(�2(Y1,i−1, yk))

)
,

Without losing generality, it is sufficient to consider all yk ≤ y ∈ Ik . It is easy to see
that

|D1,n(y)|

≤ CN1/2

(
1

n1

n1∑

i=1

|ε1,i |1[yk−h2≤Y1,i−1≤y+h2]

)(
1

n2h2

n2∑

i=1

1[yk≤Y2,i−1≤y]

)

≤ CN1/2

(
1

n1

n1∑

i=1

(|ε1,i | − E|ε1,i |)1[yk−h2≤Y1,i−1≤y+h2] + 1

n1

n1∑

i=1

1[yk−h2≤Y1,i−1≤y+h2]

)

(
1

h2

[
1√
n2

(G2,n(y) −G2,n(yk)) + P (yk ≤ Y2,i−1 ≤ y)

])

= C
N1/2

h2

(
OP

(
1√
n1

)
+ 1√

n1
(G1,n(y + h2) −G1,n(yk − h2))

+ P (yk − h2 ≤ y1,i−1 ≤ y + h2)
)(
oP (

1√
n2

) +OP (
1

M
)

)
by Lemma 4.5, (15.31)

= C
N1/2

h2

(
OP

(
1√
n1

)
+OP (h2)

)(
oP (

1√
n2

) +OP (
1

M
)

)
again by (15.31)

= oP (1),
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and similarly,

|D2,n(y)| ≤ CN1/2

(
1

n1

n1∑

i=1

|ε1,i |1[yk−h2≤Y1,i−1≤y+h2]

)(
1

h 2
P (yk ≤ Y2,i−1 ≤ y)

)

= C
N1/2

h2
OP (h2)OP

(
1

N1/2+c/2

)
= oP (1).

Hence, we have

sup
1≤k≤M

sup
y∈Ij

|A1,n(y) − A1,n(yk)| = oP (1).

This proves part (a). Next,

P ( max
1≤k≤M

|A1,n(yk)| > ε) ≤ M max
1≤k≤M

E
(
A2

1,n(yk)
)
/ε2

= N1/2+c/2N
1

n1
O

(
1

n2h2

)
→ 0, by Lemma 4.3 and (A.3).

This proves part (b) and hence finishes the proof of (15.28) and the Lemma. �

15.5 Proofs

Here, we shall give the proof of our main result, Theorem 2.1. The lemmas proved
in Sect. 15.4 will facilitate the proof of this theorem. As usual, let C be a generic
constant. It suffices to prove (15.15) and (15.16). Now consider N1/2Un(t) for all
a ≤ t ≤ b. We decompose N1/2Un(t) as B1,n(t) − B2,n(t) with

B1,n(t) = N1/2 1

n1

n1∑

i=1

(Y1,i − μ̂2(Y1,i−1))1[a≤Y1,i−1≤t],

B2,n(t) = N1/2 1

n2

n2∑

i=1

(Y2,i − μ̂1(Y2,i−1))1[a≤Y2,i−1≤t].

We first consider B1,n(t). Recall definitions (15.12) and (15.23)–(15.25). By
decomposition and simple algebra, we rewrite B1,n(t) as I (t) − II(t) + III(t) with

I(t) = N1/2

n1

n1∑

i=1

(ε1,iσ1(Y1,i−1) + (μ1(Y1,i−1) − μ2(Y1,i−1)))1[a≤Y1,i−1≤t] (15.32)

II(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

n2f2(Y1,n−1)
1[a≤Y1,i−1≤t] (15.33)

III(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 (μ2(Y1,i−1) − μ2(Y2,j−1))Kh2 (Y2,j−1 − Y1,i−1)

n2f̂2(Y1,i−1)
1[a≤Y1,i−1≤t]

(15.34)
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Now we consider II(t). By decomposition, we rewrite it as II1(t) + II2(t) with

II1(t) = N1/2 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)(�1(Y2,j−1, t) −�1(Y2,j−1, a))

= N1/2 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)
f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

− K
(
a − Y2,j−1

h1

))
+ oP (1), (15.35)

uniformly on a ≤ t ≤ b by Lemma 4.6 and its proof, and uniformly on a ≤ t ≤ b,

II2(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

n2f2(Y1,i−1)
1[a≤Y1,i−1≤t]

f2(Y1,i−1) − f̂2(Y1,i−1)

f̂2(Y1,i−1)

≤ C
N1/2

n1

n1∑

i=1

∣∣∣∣∣∣

1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

∣∣∣∣∣∣
1[a≤Y1,i−1≤t]

· sup
a≤Y1,i−1≤t

∣∣∣∣∣
f2(Y1,i−1) − f̂2(Y1,i−1)

f̂2(Y1,i−1)

∣∣∣∣∣

= CN1/2OP

(√
log n2

n2h2

)

·
(

OP

(√
log n2

n2h2

)

+OP (h2
2)

)

, by Lemma 4.1 and 4.2

= oP (1), by (A.3).

Next, we consider III(t). Let μ(1)
2 denote the first derivative of μ2. Then, by (A.1),

uniformly on a ≤ t ≤ b,

III(t) ≤ N1/2

n1

n1∑

i=1

μ
(1)
2 (Y1,i−1)|H2,1(Y1,i−1)| + C|H2,2(Y1,i−1)|

f̂2(Y1,i−1)
1[a≤Y1,i−1≤t]

= OP

(

N1/2

(

h2
2 + h2

√
log n2

n2h2

))

= 0P (1), by Lemma 4 and (A.3) (15.36)
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Hence, by (15.32) and (15.35)–(15.36), we have uniformly on a ≤ t ≤ b,

B1,n(t) = N1/2

n1

n1∑

i=1

(ε1,iσ1(Y1,i−1) + (μ1(Y1,i−1) − μ2(Y1,i−1)))1[a≤Y1,i−1≤t]

− N1/2

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)
f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

− K
(
a − Y2,j−1

h1

))
+ oP (1) (15.37)

Similarly, we have uniformly on a ≤ t ≤ b,

B2,n(t) = N1/2

n2

n2∑

j=1

(ε2,j σ2(Y2,j−1) + (μ2(Y2,j−1) − μ1(Y2,j−1)))1[a≤Y2,j−1≤t]

− N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)

(
K
(
t − Y1,i−1

h2

)

− K
(
a − Y1,i−1

h2

))
+ oP (1) (15.38)

By (15.37) and (15.38), we proved (15.15).
Now, we need to prove (15.16). Applying the CLT for martingales [Hall and Heyde

(1980), Corollary 3.1], we first could show that the finite-dimensional distributions
of N1/2

τ 2
n (b)Vn(t) tend to the right limit. Then, apply theorem for weak convergence

on functional space [Hall and Heyde (1980), Theorem A.2], we need to prove the
tightness of N1/2

τ 2
n (b)Vn(t). It suffices to prove the tightness of

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)1[a≤Y1,i−1≤t]

and

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
K
(
t − Y1,i−1

h2

)
.

The tightness of the first sequence is implied by the weak convergence of a marked
empirical process [Koul and Stute (1999), Lemma3.1].

Since K
(

t−Y1,i−1
h2

)
= 1 for Y1,i−1 ≤ t −h2 and K

(
t−Y1,i−1

h2

)
1[t−h2≤Y1,i−1≤t+h2] just

behaves like h2Kh2 (t − Y1,i−1), the second sequence can be rewritten as

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
1[Y1,i−1≤t−h2]

+ N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
K
(
t − Y1,i−1

h2

)
1[t−h2≤Y1,i−1≤t+h2],
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with second term bing oP (1) uniformly on a ≤ t ≤ b by a proof similar
to that of Lemma 4.1. Again, by the weak convergence of a marked empiri-
cal process [Koul and Stute (1999), Lemma3.1], we could prove the tightness of
N1/2

n1

∑n1
i=1 ε1,iσ1(Y1,i−1) f2(Y1,i−1)

f1(Y1,i−1) 1[Y1,i−1≤t−h2]. Therefore, we complete the proof of
the main theory. �
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