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Chapter 1

Professor Hira Lal Koul’s Contribution
to Statistics

Soumendra Lahiri, Anton Schick, Ashis SenGupta and T.N. Sriram

Professor Hira Koul received his Ph.D. in Statistics from the University of California,
Berkeley in 1967 under the supervision of Professor Peter Bickel. He has the unique
distinction of being the first doctoral student of Professor Bickel. True to his training
at Berkeley, in the initial years of his research career, he focused on developing
asymptotic theory of statistical inference. He pioneered the approach of Asymprotic
Uniform Linearity (AUL) as a theoretical tool for studying properties of the empirical
process based on residuals from a semiparametric model. This approach has been
widely employed by several authors in studying the asymptotic properties of tests
of composite hyptheses, and has been a particularly powerful tool for deriving limit
laws of goodness-of-fit tests. At around the same time, he also developed the theory
of weighted empirical processes which played a fundamental role in the study of
asymptotic distribution of robust estimators (e.g., Rank-based estimators and M-
estimators) in linear regression models. An elegant account of the theory of weighted
empirical processes for independent as well as dependent random variables is given
in his monographs on the topic (Koul (1992, 2002)).

He has made significant contributions to several different areas of Statistics,
including Asymptotic theory of efficient estimation, Bootstrap, Long-range depen-
dence, Measurement Error, Robustness, Sequential Analysis, Survival Analysis,
Nonlinear Time series, among others. In all his work, a common thread has been the
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2 S. Labhiri et al.

use of rigorous mathematical arguments to derive useful statistical theory for estima-
tion and testing. Here we highlight some of his major contributions to selected issues
and problems to give a glimpse of the breadth and impact of his research. Building
on his work on empirical processes, he developed asymptotic theory of minimum
distance estimation in semi-parametric models. He also initiated the use of weighted
empirical processes and repeatedly demonstrated its usefulness in studying limit dis-
tributions of classes of robust estimators, particularly the M- and R-estimators in
regression models and in complex time series models. Starting in the 1980s, jointly
with Professors V. Susarla and J. van Ryzin, he initiated the study of regression mod-
els in the presence of censoring and introduced the celebrated Koul-Susarla—van
Ryzin estimator of the regression parameters in their 1980 Annals of Statistics paper.
In contrast to its competitors, the Koul-Susarla—van Ryzin estimator is explicitly
defined and easy to compute, which made it a popular choice among practitioners.
Professor Koul further continued his work on censored data by establishing the Local
Asymptotic Normality (LAN) property and results on asymptotic efficient estimation
in semiparametric models.

Starting in the late 1980s, Professor Koul developed an interest in time series and
Econometrics. He has made fundamental contributions to nonparametric and robust
inference under complex temporal dependence structures, notably under long range
dependence (LRD). In addition to developing asymptotic distributional theory for
classes of robust estimators under LRD, jointly with Professor D. Surgailis, he de-
rived higher order asymptotic expansions for M-estimators, which provided critical
information into the structure of the successive smaller order terms. More recently,
together with his long time collaborators Professors L Giraitis and D. Surgailis, he
proved a Central Limit Theorem for periodogram based statistics under LRD requir-
ing a weak Lindeberg-type condition. This is a highly effective tool for investigating
asymptotic properties of such statistics, one that is bound to be used by researchers
working with time series under LRD for years to come. The recent monograph, Koul,
Giraitis and Surgailis (2013) gives an authoritative and detailed account of the sta-
tistical inference for time series under LRD, and contains many of Professor Koul’s
important results on the topic.

Many of Professor Koul’s publications appeared in top-tier statistics journals.
Given below is a chronological list of his publications to date.

Books:

1. Weighted Empirical and Linear Models. (1992). Lecture Notes-Monograph Series, 21, Institute
of Mathematical Statistics, Hayward, California.

2. Weighted Empirical Processes in Dynamic Nonlinear Models. 2nd Edition. (2002). Lecture
Notes Series in Statistics, 166, Springer, New York, N.Y., USA.

3. Large Sample Inference For Long Memory Processes (2013). Imperial College Press. London,

UK. (with L. Giraitis and D. Surgailis).
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Chapter 2

Martingale Estimating Functions for Stochastic
Processes: A Review Toward a Unifying Tool

S.Y. Hwang and L. V. Basawa

SY Hwang is currently Head of the Department and the Director
of Research Institute of Natural Sciences, Sookmyung Womens
University.

1V Basawa is a Prof. Emeritus in the Department of Statistics at
the University of Georgia.

2.1 Introduction

Various methods of estimation such as least squares, method of moments, maximum
likelihood, pseudolikelihood, and quasilikelihood have been studied extensively in
the literature. Historically, each of the estimating methods was developed individu-
ally to suit particular situations and at varying points of time. Large sample theory
(covering consistency and limit distributions of the estimates) was also developed
for each of the methods using diverse tools and limit theorems suited to the indi-
vidual method. Most of the early work on estimation was devoted to independent
observations. More recently, methods and theory of estimation (inference in general)
have been extended to cover dependent observations in stochastic processes. See, for
instance, Basawa and Prakasa Rao (1980a, b), Basawa and Koul (1988), and Basawa
(1983, 2001). Martingale estimating functions provide a unified framework which
covers various estimation methods under a single setting. See, among others, Go-
dambe (1985); Bibby and Sorensen (1995); Wefelmeyer (1996); Basawaetal. (1997);
and Heyde (1997). More recent research on large sample theory for estimating
functions is focused on developing a unified approach to establish asymptotic opti-
mality and large sample comparison of estimates obtained from estimating functions.
Martingale limit theorems have proved useful when establishing large sample
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properties of estimates for dependent observations. This paper is an overview of
current research by the authors (Hwang and Basawa 201 1b) on martingale estimating
functions and asymptotic optimality of parameter estimates for stochastic processes.

Section 2.2 presents a general formulation of martingale estimating functions
which includes conditional least squares, quasilikelihood, maximum likelihood, and
pseudolikelihood, as special cases. As an illustration, various estimates for a general
class of generalized autoregressive conditional heteroskedasticity (GARCH)-type
processes are presented in a unified way. Asymptotic optimality for a certain class of
martingale estimating functions (MEFs) for ergodic processes is established via the
convolution theorems in Sect. 2.3. Applications to conditional linear autoregressive
processes, GARCH-type processes, and bifurcating autoregressive processes are
then presented as examples of ergodic processes. Section 2.4 covers the extension
of results of Sect. 2.3 to the nonergodic case. Branching Markov processes and
explosive autoregressive processes are discussed to illustrate the nonergodic case.
Finally, Sect. 2.5 gives a brief summary of the results and some concluding remarks.

2.2 Martingale Estimating Functions: A Formulation

Let {X,,t =0,1,....} denote a discrete time stochastic process defined on a proba-
bility space. Suppose that the probability measure Py associated with {X,} is indexed
by a (k x 1) vector parameter 6. Assume that 6 takes values in ® which is an open
subset of the k-dimensional Euclidean space. It is noted that Py needs not be paramet-
ric (in the sense that 0 determines the underlying distribution). Rather, most of the
theory in the paper is applicable to semiparametric or even nonparametric cases with
arestriction depending on the parameter 6, allowing additional (infinite dimensional)
nuisance parameter. Based on a sample of size n observations X, X», ..., X,, we
are concerned with estimating the parameter vector 6. Consider the following (k x 1)
estimating function (EF) U, (0) given by

Un(0) =) t,(6) @.1)

t=1

where {u,(0)} is a sequence of martingale differences, i.e., E (1,(8)|F;—1) = 0. Here,
F; denote the o -field generated by X,, X;_i, ..., X;. We shall refer to U, (9) as the
MEEF. Assume for the moment that {X,} is strictly stationary and ergodic. Nonergodic
cases will be discussed separately in Sect. 2.4. Fix 8 € © and the local neighborhood
Njs(0) of the radius § > 0 about 6 is defined by

Ns(©) ={6"; /n|(0* —0)| < 8}. (2.2)

where and throughout, the vector (or matrix) norm will be simply denoted by |- |, viz.,
for any vector or matrix A, |A|?> = tr(AT A) = tr(AAT). Here, AT is the transpose
A. The neighborhood Nj(6) is to be further specified in Sect. 2.4 for discussing
“non-ergodic” cases. It is assumed that the (k x 1) vector u, () is differentiable (with
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respect to #). As to partial derivatives of column vector U,(8), dU,(8)/ 307 will be
used as usual to denote (k x k) matrix of partial derivatives. In this paper, we shall
confine ourselves to the case that U, (0) is regular in the following sense.

(C1: Regular MEF) For any radius § > 0, U,(0) satisfies, asn — oo
n~'sup | aU,(0%)/307 — 3U,(0)/307| = 0,(1)

where the sup is taken over 8% € Ns(6) and 0,(1) stands for a term converging to
zero in probability.

We now define a collection U of all regular MEFs U, (9). Some useful elements
contained in U are illustrated below. As special cases of regular MEFs, Godambe
(1985) considered the following “linear” MEF G,,(6).

Gu(0) =Y wi_1(0)a,(0) (2.3)

t=1

where a,(0) is a prespecified martingale difference vector of dimension d and w,_(6)
is a (k x d) weight matrix whose components are F;_; measurable. Godambe (1985)
generated the Godambe-class of “linear” MEFs G, (6) by varying the “coefficients”
w;—1(0) while a,(0), the innovation, being fixed. We shall refer to the Godambe-class
as L which is clearly a subset of U. The Godambe-class L is known to be useful for
the case when the likelihood is not known. Refer to, for instance, Hwang and Basawa
(2011b).

Conditional Least Squares (LS) Let m,(0) denote the conditional mean of X, given
F,_q, thatis, m;(0) = E(X,|F;_). Consider U,(0) = Z:’:I u; (0) with

_ (am(0)
u (0) = ( Y ) - (X —my(0)) (2.4)

which is referred to as a LS-score (cf. Klimko and Nelson (1979)).

Quasilikelihood (QL) Let the conditional variance of X, given F;_; be denoted
by h,(0) = Var(X,|F;—1). Note that m,(6) and h,(6) are F;_;-measurable and the
parameter vector 6 will be suppressed in m,(6) and k,(9) for notational simplicity.
Consider a QL score (see, e.g., Godambe (1985))

am

w®=—") b (X —my). (2.5)
a0

If we choose the innovation a,(#) = (X, — m,), LS and QL scores (2.4) and (2.5)

belong also to the Godambe-class L.

Maximum-likelihood (ML) As an important member of U, one may consider the
maximum likelihood (ML) score function by choosing u,(0) as the derivative of the
log-conditional density of X, given F;,_,, viz.,

dlnp.(9)

u;(0) = 59 . (k x 1)vector (2.6)



12 S.Y. Hwang and I. V. Basawa

where p;(0) denotes the conditional density of X, given F;_; and the property of
E (u;(0)|F;—1) = 0 follows from the differentiability under the integral sign. We
refer to, among others, Basawa et al. (1976) and Hwang and Basawa (1993) for a
broad treatment of ML asymptotics in stochastic processes.

Pseudo-likelihood (PL) 1t is usually the case that the true likelihood is unknown to
researchers, and thus we need to presume a tractable likelihood for the data which is
called a PL. A PL may be a falsely specified likelihood. A pseudomaximum likeli-
hood estimator is obtained by maximizing the objective function of PL score. Often,
the PL is taken via Gaussian errors, standardized #-distributions with unknown de-
grees of freedom, and generalized error distributions (refer to, for instance, Tsay
(2010, Chap. 10)). It is obvious that the PL-estimator reduces to the maximum like-
lihood (ML) estimator provided the PL coincides with the (unknown) true likelihood.
It is interesting to note that even when the true likelihood is different from the PL,
the PL estimator continues to be consistent and asymptotically normal under some
regularity conditions (cf., Gourieroux (1997, Chap. 4), Hwang et al. (2013b)).

To better understand the members in the class U of regular MEFs, it will be
illustrative to consider a general class of conditionally heteroscedastic processes. A
general GARCH-type process is defined by

X, =Vh e (2.7)

where h,(0) = Var(X,|F;—;) and {e,} is independent and identically distributed (iid)
with mean zero and variance unity. If we take h;, = oy + a]X,{l + Bih,—, with
0 = (ag, a1, B1)7, the process {X,} is called the GARCH of order one. Various
GARCH-type models making some variations to the standard GARCH have been
suggested and investigated in the literature. We refer to, for instance, a recent paper
of Choi et al. (2012) and references therein for a broad class of nonlinear (asymmet-
ric) GARCH processes. As an illustration of the asymmetric GARCH, consider the
following threshold- GARCH process (T-GARCH) defined by

he = o +an X2 +anX, % 4 Bl

where X and X~ denote the positive and negative functions respectively, that is,
Xt = max(X,0) and X~ = max( — X,0). If «;; = a2, then the T"=GARCH
model reduces to the standard GARCH(1,1). Here, the functional form of 4, is
not specified and therefore we are concerned with a broad class of GARCH-type
processes. Suppose that no distributional assumptions on e, are made, other than
E(e;) = 0 and Var(e;) = 1. Then, the ML-score is not applicable in estimating
the parameters. One may employ, e.g., a QL and a PL. For the QL, consider the
martingale differences {X? — h,}, and then generate the following Godambe-class
of estimating functions defined by

D wii(0) (X7 — h(6)) (2.8)

t=1
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Assume the finite fourth order moment of ¢,, i.e., E (ef) < 0. The QL score which
enjoys certain optimal property within the Godambe class (2.8) is given by (refer to
Godambe (1985); Heyde (1997); Hwang and Basawa (201 1b))

n

dh, (0 -
OL®O) =) % [(¢ = DR?®)] ' [X7 = 1 (6)] (2.9)
=1

where ¢ = E(e?). Note that ¢ turns out to be 3 when e, is N(0, 1). The QL estimator
is obtained by solving QL(#) = 0. Now, we turn to the PL-score. Let us denote
the pseudo density of the innovation e; by 2}‘ (-). The PL of the data is given by
[T pXF—) =TI, f [Xt/\/h_,] h;l/ where p (X;|F;_) denotes a pseudo-
conditional density of X, given the past F;_;, and h, = h,(6). The PL estimator is
obtained by solving PL(6) = 0 where

PL(O) =Y _1,() with 1,(8) = dlnf(e,)/86 — %hjlaht /36 (2.10)

t=1

where e, = X,//h;(0). In particular, if the PL is chosen based on the Gaussian
likelihood, that is, if we take f(-)as N (0, 1), it can be shown that the PL score PL(6)
reduces to

n

X2 — h; ohy
PLO)=) LI 2.11
=2 2h2 30 @1

t=1

which is proportional to the QL score in (2.9). Consequently, it is interesting to note
that the PL based on the Gaussian innovation is essentially the same as the QL based
on the martingale differences {X? — h,}. See Proposition 1 of Hwang et al. (2013b).
We also note that the conditional least squares (CL) score is given by

0 (0) o,
CL®®) = — X7 — h(0)]. 2.12
<);ae[t (©)] (2.12)
The question that arises naturally is which (if any) MEF produces the “best” estimator
within the class U. In the next section, via establishing the convolution theorem, the
ML score is shown to be optimal within the class U in the sense of the minimum
limit variance.

2.3 Convolution Theorems and Asymptotic Optimality

Consider any MEF U, (0) = ;1=1 u;(0) € U. Suppose that both the process {X,}
and {u,(0)} are strictly stationary and ergodic. Nonergodic cases will be discussed
in Sect. 2.4. One can obtain an estimator, say én of 0 as a solution of U,(#) = 0.
The question regarding existence of strongly consistent solution 6, and its limit
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distribution is addressed in the following theorem. In general, u,(f) may involve
unobservable random variables. As an illustration, consider the GARCH-type process
in (2.7) for which u,(6) may contain unobservable values X_;, X_», hg, h_g,....
If we treat these unobservable random variables as constants, {u,(0)} can not be
strictly stationary (but it is asymptotically stationary). Now, we are willing to extend
{X;, t =0,1,2,...} totwo sided strictly stationary process {X;, t = 0,£1,£2,...}.
Then, one may regard unobservable values (such as X_;, X_», ho, h_) involved in
u,(0) as stationary random variables so that one can view the two-sided {u,(9), t =
0,£1,+£2,...} as a strictly stationary process. From now on, we shall treat {u,(0)}
as being strictly stationary and ergodic. Define (k x k) matrices A and B such that

A—g( 2® 2.13
B <_ 967 > (2-13)
and

B = Var [u,(6)] = E(u,(0)u! (6)) (2.14)

where the expectation is taken under the stationary distribution. It is noted that B
is a symmetric matrix while A is permitted to be asymmetric, depending on the
specification of u,(6).

Theorem 3.1 For any fixed U, (0) € U, we have as n — o0;

(1) With probability tending to one, there exists a strongly consistent estimator 6,
such that U, (6,) = 0.
(2)

Va6 —0) S N(0,MY) with M=ATB'A. (2.15)

Proof The proof is omitted since it follows essentially from standard arguments
such as in, for instance, Basawa et al. (1976) and Klimko and Nelson (1979). Refer
also to recent reference of Hwang et al. (2013a, Theorem 1) and Hwang et al. (2013b,
Theorem 1).

Suppose that the true likelihood is known to us. The ML score, in particular, is
denoted by S,,(9);

$4(0) =Y 1(0) (2.16)

where /,(6) denotes % with p,(0) being the conditional density of X, given F;_;.

See Eq. (2.6). Define (k x k) symmetric matrix
C =E(l,(0) 1] ) = E(—al,0)/30"). (2.17)

Note that the covariance matrix between u,(6) and [,(6) is given by the matrix A,
that is,

A=E(—3u(0)/30") = E(u,0) - 1] (9)). (2.18)
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The ML estimator, say éML, is obtained from solving S, (8) = 0. For éML, itis obvious
that A = B = C and thus it follows readily from Theorem 3.1-(2) that

Vil —0) S N(0, ). (2.19)

It will be shown that the ML estimator 6y, is asymptotically optimal in the sense of
having the “smallest” covariance matrix among all the estimators 6, within U. To do
this, we state the following convolution theorem due to Hwang and Basawa (201 1a).

Theorem 3.2 (Convolutlon theorem within the class U) Consider any U, (0) € U
and the consistent solution 0 of U,(0) addressed in Theorem 3.1. Then, /n (9,1 — 0)
can be expressed as a sum of two independent random variables, say, N;(6) and
N>(0) where N;(6) and N,(0) follow N(O, (ATB 1A~ — C’l) and N(O, C’l) in
limit, respectively.

Remark The convolution theorem implies that (ATB’IA)71 — C~!is nonnegative

definite. Comparing (2.15) and (2.19), the ML estimator éML attains the “smallest”
variance—covariance matric C~! within the MEF class U.

Proof Since the proof follows essentially the same lines as in Theorem 3.3 of Hwang
and Basawa (201 1a), we provide outlines only, omitting details. A martingale central
limit theorem gives

—-1/2 Un(G) d 0 B A

2 (5i) = 4 () (4 &)
0, — 0 0 ATB 1At 1

(f—l(”s <0>)> N((O)’(( ) C)) @2

Consider the following expression

and

V(0 — 0) = Ni,(6) + Na(6)
where
Nip(@) = /n(@ —6) — C7'n7128,(0) and N1, (8) = C™'n=/25,(6).

Equivalently, we have

M@\ _ (1 =C1 (Vi —0)
(NM@))‘(O Cl)(n‘l/zsn(e))' 222)
Nln(e)

N 2n (9)
and variance—covariance matrix given by

(ATB'A)T—Cct 0
0 c)

Then, it follows from (2.21) that ( ) is asymptotically normal with mean zero
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This completes the proof.

Although the ML estimator Oy is asymptotically optimal in the sense of having
“the smallest variance”, it is usually the case in stochastic processes that the exact
likelihood is unknown to researchers and therefore éML is not available. Without the
knowledge of the likelihood, one may consider the QL score QL(9) instead of the
ML score. Godambe (1985) established certain “optimality” of the QL(6) within the
Godambe class L of linear MEFs G, () defined in (2.3), viz.,

Gu(0) =Y wi_1(0)a,(0) (2.23)
t=1

in which we consider the scalar innovation a,(8) for the simplicity of presentation.
Define (k x k) matrices H and J;

H = E(—3(w1a,)/80") = E(— wi_1(E,—1Da,)") (2.24)
and
J = Var(w,,la,) = E(w,,lthflE,,latz) (2.25)

where Da, represents da,/d6 and 0 is suppressed in w,_;(6) and a,(6). Here and in
what follows E;_; denotes the conditional expectation given F;_;. Let 6, denote the
consistent solution of G,(0) = 0 for G,,() € G. It then follows from (2.15) that

(0, —0) S N, (HT T H) . (2.26)
The QL score due to Godambe (1985) is obtained by

OLgy =Y w’,(0)a() (2.27)

=1
for which WZO_I(Q) = E,_l[8a,(9)/89]/E,_1[a,2(9)]. Let us denote the consistent
solution from QL(9) = 0 by éQL. It is not difficult to see that
Vi(for —0) > N(0, K7) (2.28)
where

K = E |(E-1Da)(E-1Da,)" /E,a]. (2.29)

By establishing the following convolution theorem within the restricted Godambe
class L, Hwang and Basawa (2011b) argued that the matrix (H7 J~'H)™' — K~!
is nonnegative definite, which implies that éQL is better than 6, in the sense of the
“smaller” asymptotic variance.
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Theorem 3.3 (Convolution theorem within the Godambe class L) Split é,, into
two components, viz.,

Vi, —0) = Y1,0) + Y2,6) (2.30)
where

Yin(0) = Vn, —60) — K~'QL©O)//n; Y2, (8) = K'QL®)/v/n. (2.31)

Then, Y;,(0) and Y>,(0) are asymptotically independent normal random vectors.
Specifically, we have

Yi,0)\ 4 0 (HTJ'HY''—K~' 0
(an(e)) - M <0>’< 0 K_l)). (2.32)

Proof Refer to Theorem 3 of Hwang and Basawa (2011b).

We have discussed asymptotic optimality for 6y and éQL within the class U and
L, respectively. When the likelihood is known, we may go ahead and use Oy I
the likelihood is not available, éQL will be a good choice as an alternative to éML.
Illustrative examples follow.

2.3.1 Conditionally Linear (AR(1)) Processes (CLAR(1))

Grunwald et al. (2000) introduced a class of conditionally linear AR(1) models
(CLAR(1)) defined by

mO0)=0,+6,X,_;, —00<b <o, |6 <l. (2.33)

where we do not require the knowledge of the likelihood. Note that the conditional
mean m,(6) is linear in terms of the parameter 6 = (6, 0,)" . Grunwald et al. (2000)
argued that the CLAR(1) class contains a large number of models in the literature,
including standard AR(1) process, random coefficient AR(1) model and various
integer-valued thinning models as special cases. Hwang and Basawa (2009, 2011b)
reviewed the class in the context of estimating function approach. Assume that the
conditional variance i, = Var(X,|F;_;) is known. To construct Godambe class, set
a;(0) = X, — my(0). Itis easily seen that

—1
A S bt ZX,_1h1> ( 3 X k! >
Oy = 1 ! ! 2.34
et <Zth[‘ X7 k! XXk (@34

and the limit distribution is given by

VoL —6) 5> N0, K
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which gives the “minimum” variance—covariance matrix K ~!' within the Godambe
class. Refer to Hwang and Basawa (2011b) for further details. The least squares
estimator 6, belonging to the Godambe class is seen to be

= (ph, ) (5N)

It is obvious from Theorem 3.3 that éQL is better than é,,.

2.3.2 A General GARCH-Type Processes

Revisit a general GARCH-type process

X, =/h e (2.35)

where {e;} is a sequence of iid random errors with mean zero and unit variance,
having density f,( - ). Here, h, denotes the conditional variance of X, given F,_;.
We here do not specify the functional form of /4, and accordingly a broad class
of conditionally heteroscedastic time series {X,} with a general form of %, will be
discussed. Hwang et al. (2013a) investigated general GARCH-type processes in
order to compare various MEFs. Discussions below are adapted from Hwang et al.
(2013a). First consider the conditional least squares score CL(#) given in (2.12). It
is noted that Var(X,|F,—) = h,(f) and

Var(X7|Fi—1) = (¢ — 1)k} (0) (2.36)
where { = E (e;‘). In order to determine the limiting distribution of éLs, one can
obtain

Ah(O)\ [ 0h O\
H = E(u,(O)ul ©9)) = (¢ — DE |:hf (3’—9) (5—9) }
and
S 2mON _ | (3@ (8m@\" |
260 0 20
‘We thus have
Vi(fus —0) 5 NO, H'THT). (2.37)

Next, we consider the QL score QL(6) given in (2.9). The QL estimator éQL is
obtained from QL(#) = 0. It can be verified that

T
K=G-1"E [h,‘z (%22) (%2) ] 2.38)
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which in turn yields
A d _
Vo, —0) = N(0,K71). (2.39)

Note that éQL is better than éLS in the sense of Theorem 3.3. Let f, denote the true
density of e¢,. The ML estimator éML is obtained from S,(6) = 0 where S,(0) is
defined in (2.9). It then follows that

Vi —0) > N(0,C7Y)

where C = E([,(0)IT(0)) = E( — 3,(6)/067). Although By is optimum in the
sense of “minimum variance” within U, it is noted that éML requires a specification
of the density f, (of e¢,) while éQL can be easily implemented regardless of f,. Refer
to Hwang et al. (2013a) for further details.

2.3.3 Bifurcating Autoregressive Processes (BAR)

Cowan and Stuadte (1986) introduced (BAR) processes indexed by a binary-splitting
tree for cell lineage study. A first-order BAR(1) process {X;,t = 1,2,...} is defined
recursively by

Xy =0X, + ey
Xoip1 = 0X, + €41 (2.40)

where || < 1 and {¢,} is a sequence of iid random errors with mean zero and
variance o>. In a BAR model, observations are indexed by a bifurcating tree where
each individual (mother) in one generation produces two individuals (sisters) in the
next generation. For each individual, an observation X is recorded. The BAR and
various BAR type models have been studied by several authors including, among
others, Hwang and Basawa (2009, 2011a) and Hwang and Kang (2012). Let #(1)
denote the first ancestor (i.e., mother) of the individual ¢. It can be shown that
t(1) = [t/2] where [ - ] denotes the greatest integer function. The BAR(1) in (2.40)
can be rewritten in terms of a single equation as (cf. Hwang and Kang 2012)

X, =0X,q)+ €, t>2. (241)
Consider the following nonlinear BAR process defined by
X =m, +h e (2.42)

where the variance of e, is set to be unity and m, = m(X,(1y) and h, = h(X,()) stand
respectively for the conditional mean and variance function defined by

m; = E(X,|X,1)) and h, = Var(X,|X,q1)) (2.43)
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It is noted that m, and h; are X,,—measurable. Suppose that the distribution of e,
is not known and then we rely on a QL score. Let

~ X, — mi(6)
() = <(x, —m0)? — h,(9>) 244)

and consider the Godambe class L given in (2.3) with £ = 2. Denote the (2 x 2)
conditional variance—covariance matrix of a,(0) given the first ancestor X, ;) by V;(9),
viz.,

Vi(0) = E[a,(0)a] 0)| X)) = (l’f;ffg)) Mg‘;ie,iz(e)). (2.45)

4
where j13,(8) = E[(X, — m, ()| X,c1)] and j1e(8) = E[(X, — m(0))*[X,1)] (cf.
Hwang et al. (2013b)). The conditional expectation of the derivative matrix of a,(0)
is given by

—(0m,(6)/36)"
E[9a,(0)/007 | X,1)] = (—((azt((e))//ae))T> L2 x k). (2.46)

We now have a QL score which is optimum within L

n

oL®) = > wl @)a,®) = (E-1[0a,0)/86"))" (Er-s[an(®)al ©)]) ' ar(®).
=1

t=1

=- Z (M2 B2 v oae e
where V;(0) is given in (2.45). It then follows from (2.28) and Theorem 3.3 that
V(0o —0) S N0, K7 (2.48)
where
T
K_E [(M ) 1 (2, 20 ] RS
20 a0 a0 a0

Refer to, for instance, Hwang and Basawa (2011b) for further details. A weighted
least squares seems to be simple to use. A weighted least squares estimator Ow1
X —m,(0)
Vhi(©)
m;(0) = 91X,J21) + 92Xt_(1) and h,(0) = ag + a1 X)), that is, we examine a simple
heteroscedastic threshold BAR process. See Hwang and Kang (2012) for details on
this model. Suppose that 8 = (6, 6,) is the parameter of interest and the secondary
parameter o« = (g, 1) is known so that /,(6) is free from the parameter 6 of interest.
The WL- score is given by

2
of 6 is obtained by minimizing ) _, ( ) . As an illustration, we consider

(X —mONX,/ hy . _
U, (0) = (Z(Xt mt(e))X,ii;/h,)’wuh m(0) = 01X, + 60Xy, (2.50)
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which in turn gives
A . _ _ B -1 X X+ h
bws = [diag (3" (X)) Do h ' (X)) ] (% Xixgiiﬁhi) 251)

where diag(-,-) represent a diagonal matrix. The limit distribution of éWL can be
obtained via Theorem 3.2 (cf. Hwang and Kang (2012)). It is noted that the WL-score
(2.50) is a member of Godambe MEFs L generated by the innovation vector a,(0) in
(2.44) and thus éQL provides the “smaller” variance than éw ., due to Theorem 3.3.

2.4 Non-Ergodic Martingale Estimating Functions

As discussed in Sect. 2.3, for ergodic stationary processes, a constant norm
(e.g., 5/n) is used to get asymptotic normal distributions of the various estimators
obtained from MEFs. On the other hand, for nonergodic type processes, limit distri-
butions of standard estimators are mixed-normal when a nonrandom norm is used.
Instead, a random norm is required to get normal limit distributions for nonergodic
processes. Asymptotics of various statistics normalized by random norms in a broad
context have recently been discussed by Pena et al. (2009) and Hwang et al. (2013a).
Refer to Basawa and Scott (1983) for various nonergodic processes including normal
mixture models, explosive autoregressive processes and branching processes. In this
section we consider large sample estimation based on MEFs for a class of nonergodic
processes. Via establishing a convolution theorem using a random norm, it will be
shown that the ML estimator continues to be asymptotically optimum in a sense of
“minimum variance” within a class of estimators obtained from nonergodic MEFs.
Most of the contents in this section are adapted from those in Hwang et al. (2013a)
and Hwang and Basawa (201 1a) and therefore we provide streamlined outlines only,
omitting some details.
Consider the following MEF U,,(#) arising from possibly nonstationary process

U,0) = Zu,(@) 1 (k x 1) vector (2.52)

t=1

Let &, denote the sum of conditional variance—covariance matrix, i.e.,
£ =Y Var(u©®)|F,1) = > E(uO)u] 0)|F,—1) : (k x k) matrix.  (2.53)
=1 =1

It is assumed that |£,] — oo almost surely, as n tends to infinity. The local
neighborhood Ns(8) about 6 defined earlier in (2.2) needs to be modified as

Ns(0) = {0*; |&,2(6* — 0)| < 8} (2.54)



22 S.Y. Hwang and I. V. Basawa

and in turn the supremum appearing in (C1) of the regular MEF is to be taken over the
local neighborhood of (2.54). Now, we collect all the regular MEFs into W. Consider
(arbitrary) member U,(6) € ¥ and assume that

(C2) There exists a nonsingular (non-random) matrix G such that

G = plim[—§&,/*(3U,(0)/367 g, '/*]. (2.55)

n

where plim denotes “limit in probability”.
In particular, for the ML score S,(8) = >_ 1,(6), G reduces to I, the identity matrix
of order k. Specifically, define

=Y Var(LO)Fi_1) =Y E(L@OL O)|F_1) = > E(—3l,(0)/30" |F,_))
(2.56)
and note that

Iy = plim [—n,'*(3S,(0)/30" )n, /] . (2.57)

Let 6, be a solution of the martingale estimating equation U,(#) = 0. The limit
distribution of 6, is identified in the following theorem.

Theorem 4.1 Under (C1) and (C2), we have

26, -0) 5> N(0.G'GT) (2.58)

where G is defined in (2.55). In addition, we conclude
A d
m/* (O — 0) — N(0, ). (2.59)

Note that the norming (random) matrices in (2.58) and (2.59) are different as given
by S,,l /% and n,l,/ 2, respectively.
(C3) There exists a nonrandom and nonsingular matrix C which is the limiting (k x k)
covariance matrix between 5;1/2 U,(0) and n,?l/zSn (0), viz.,

C = plim[&,' U, @0, 'S, @) ]. (2.60)
We now define the “ratio” matrix I" between G and C.

r=c’'c (2.61)

It can then be verified that the ML estimate using the norming matrix Enl / has the
limiting variance—covariance matrix given by I'"'I" 7, viz.,

£ (O —0) > N(O,T'TT). (2.62)

Refer to Hwang et al. (2013a) for details. It will be shown that G=!G~T — T~ is
non-negative definite and therefore we deduce that 6y, is optimal within the regular
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class ¥ of MEFs in the sense of having the “minimum” variance—covariance matrix.
A convolution theorem for non-ergodic MEFs (due to Hwang et al. (2013a)) is now
presented. Decompose

£12(6, — 0) = Y1,(0) + Y2,(8)
where

Y12(0) = £7%(0, — ) — T~ 1/%5,(0) (2.63)

n

and
Y2,(0) = T~y 128,(6). (2.64)

Theorem 4.2 (A convolution theorem for non-ergodic MEFs) Under some regu-
larity conditions, for any én obtained from U, () € W, énl /2 (é,, — 9) can be expressed
as a sum of two asymptotically independent components which are distributed as
N(O, Gl T - F’IF’T) and N(O, F’IF’T), respectively. Specifically,

£12(0, — 0) = Y1,(0) + Y2,(6)

Y1,0)\ 4 0 Gl T-r-irrt 0
(o) = (G)-(C57T )

where Y1,(0) and Y,,(0) are defined in (2.63) and (2.64).
To illustrate Theorems 4.1 and 4.2, two nonergodic processes are discussed.

2.4.1 Branching Markov processes (BMP)

A BMP is a tree-indexed process where the tree index is a branching process
{Z;,,t = 0,1,2,...} with Z, denoting the r—th generation size. BMPs were in-
vestigated by Hwang and Basawa (2009, 2011a). Let X,(j),j = 1,2,...,Z, and
t =0,1,2,..., denote observation on the j—th individual in the #—th generation.
Figure 2.1 illustrates a sample path of BMP (see Hwang and Basawa (2009)). We
assume that {Z,} follows a standard supercritical Galton-Watson (G-W) branching
process for which E(Z) =m > 1 and Var(Z,) = o2 > 0 where m and o2 are the
offspring mean and variance respectively. It is well known that there exists a random
variable W to which Z, /m" converges almost surely asn — oo, and P(W > 0) = 1.
To clarify the ancestral path of X;(j), use the notation X,_;(#(j)) to denote the ob-
servation on the immediate mother of the X;(j). Here, the subscript # — 1 is used
for denoting (# — 1)th generation. We refer to Hwang and Basawa (2009, 201 1a) for
various examples of BMP. A simple BMP is a branching AR model defined by

Xi(J) =060 + 61 X,-1(1())) + &()) (2.65)
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x, (1) z,(1) z,(1)

14(2)

r, (2) 7,(2) r(3)

x,(1) xy(4)

4(5)
x, (3) <
x,(3) 4(6)

i : : generation ¢

-4

Z= Z=3 Z=4 L=7

Fig. 2.1 A path of BMP model

where {¢,(j),t = 1,2,... and j = 1,2,...} are iid random variables with mean zero
and variance 2. The data is given as follows.

{(Zl’xl(j));t = 1’2""”1; J= 1’2"-"Zn}

with initial observation xo(1) on Zy = 1.
Set 6 = (00, 91)T. If €,(j) is normal, the ML estimate éML is given by

b _ ( >z ry th(l(j))>1 ( > ¥ X)) )
MEZAE Y Xa0G) XY X2 () Y X GNX 1t ()
(2.66)

where > = >7 jand Y > = >, Z]Z.':l. We now define (2 x 2) non-random
matrix

. Yz Y th(l(j)))
= plim (Z SXA) SEX iy 2k @D

It can be verified that (2.59) is valid, viz.,

0y —0) > N (0, 1) (2.68)



2 Martingale Estimating Functions for Stochastic Processes 25

if we choose the random norm 7, as , = a;zn > Z,. It is interesting to note that
Oy, 1s mixed-normal with the mixing random variable W when a non-random norm
is used. Specifically, set

mn+1

S, = ,m>1
m—1

where m is the offspring mean. Then, we have
a 1 _
83 (Onr — 0) = T N(0,02n7"). (2.69)

Note that 6y is asymptotically optimal within W in the sense of Theorem 4.2. We
refer to Hwang and Basawa (201 1a) and Hwang et al. (2013a) for asymptotic mixed
normality arising from nonergodic MEFs.

2.4.2 Explosive AR(1) Processes

Consider the following zero mean explosive AR process defined by
X, =0X,_1+¢, 0] >1 (2.70)

where {¢,} is iid N (0, Uf) errors and the initial value Xy = 0. The ML score function
S, (0) is seen to be

$u(6) = Y 1:(60) with [,(6) = 0 %€ (0)X, 1
t=1

where €,(9) = X, —6X,_; and it is obvious that 8y, = S X, X,—1/ Y X* | and the
corresponding random norm is given by n, = 06‘2 > X,zfl. We conclude via (2.59)

/Zx (B, — 0) < N, 1). 2.71)

We consider a case of mis-specification of the conditional variance %,. Suppose that
€; in (2.70) is misspecified as a ARCH(1) process. That is, we have

€ = \/h_tet

where {e,} is iid with mean zero and variance unity and
hy = agp + ale,{l 2.72)

for which 9 > 0 and 0 < «; < 1. Assume that oy and «; are known constants.
Consider the following misspecified MEF U, () defined by

Un(0) = ) _h'e(0)X, - (2.73)
t=1
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which in turn gives
0= X Xiih') > X7 b (2.74)

To discuss asymptotics for é,,, note that &, = ) _ ht’zaertz_l. It can be shown that
(2.58) holds, i.e.,

126, —0) S N©0.G) (2.75)

where
-1
E : E (o + e
G = plim [06_2 hz_]th,l/ E ht—zxfil] — 05_2 ( 0 1€; 1)

. (276)
E(o+arel,)

2.5 Concluding Remarks

This review paper presents asymptotic results on MEFs in stochastic processes. Stan-
dard estimation methods such as LS, QL, ML and PL can be unified via a single
framework of MEFs. When the likelihood is known, ML score is shown to provide
the “smallest” variance among the class U of regular MEFs. It is often the case in
stochastic processes that the likelihood is unknown but only first few moment struc-
tures are given instead. The QL score is then verified to be asymptotically optimal
within the restricted class L C U of Godambe MEFs. Two convolution theorems
are established to address optimality of ML score and QL score separately within
appropriate classes of MEFs.

Both ergodic and non-ergodic cases are discussed. Applications to conditionally
linear AR (CLAR) models, GARCH-type processes and bifurcating AR (BAR) mod-
els are presented to illustrate the ergodic case. A non-ergodic convolution theorem
is established and in turn (BMP) and explosive AR models are discussed for non-
ergodic applications. The results presented in the paper are mostly adapted from
recent literature on MEF asymptotics as a unifying tool for estimation in stochastic
processes.

We have not discussed testing problems in MEF asymptotics. When the likeli-
hood is available, one may use the classical three tests (Rao’s score, Wald, and LR
statistics). If the likelihood is unknown, we look to appropriate MEFs, for instance, a
QL score in constructing test statistics. Basawa (1991), Hwang and Basawa (201 1b),
and Hwang et al. (2013a) obtained some preliminary results on certain tests based
on MEFs. However, a rigorous treatment on asymptotic power and efficiency of tests
based on MEFs in a broad context has not yet been adequately addressed in the
literature and this will be pursued elsewhere.
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Chapter 3

Asymptotics of L, -Norms of ARCH(p)
Innovation Density Estimators

Fuxia Cheng

3.1 Introduction

Let Xy_,,..., X0, X1,... be random variables for some positive integer p. We
assume they form an ARCH(p)-model:

Xi=enJao X+ o, X, i=12. G.1)
where the parameters ay, . . ., &, are positive and the innovations ¢; are independent
and identically distributed random variables with mean 0, variance 1, unknown den-
sity function f and distribution function F’ and are independent of X_,,..., X;_.
It follows that the conditional variance of X; satisfies

Var{Xij|X\—p... . Xi) =0+ o X7 4+ +apX; . i=12... (32
Property (3.2) is called conditional heteroscedasticity and explains, together with its
autoregressive nature, the name of this model.

Model (3.1) has found much interest in financial econometrics. It was introduced
by Engle (1982) in order to provide a framework in which so-called volatility clus-
ters may occur, i.e., periods of high and low (conditional) variances depending on
past values of the series. The model was later extended into various directions. See
Gouriérous (1997) for details. In most of the work, the main focus has been on es-
timating the unknown parameters oy, . . ., «,, see Weiss (1986), Horvath and Liese
(2004) among others.

It is of interest and of practical importance to know the nature of the innova-
tion distribution. Actually, if the distribution of the innovation is unspecified, the
parametric component only partly determines the distribution behavior of (3.1). It
is as important to investigate the distribution of the innovation as estimating «;’s.
Stute (2001) uses the residual-based empirical distribution function (d.f.). F;, to es-
timate the distribution function of &;, and provides consistency and distributional
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convergence results for a class of statistics based on F},. Cheng (2008a) considers the
uniform strong consistency of the innovation distribution function estimation in au-
toregressive conditional heteroskedasticity (ARCH)(p)-time series, and obtains the
extended Glivenko-Cantelli Theorem for the residual-based empirical d.f.. Cheng
(2008b) develops the asymptotic distribution of the innovation density estimator at a
fixed point and globally. Cheng and Wen (2011) obtain the strong consistency of the
innovation density estimator under L;-norm. Cheng, Sun, and Wen (2011) develop
the asymptotic normality of the Bickel-Rosenblatt test statistic and show the strong
consistency of the estimator for the true density in L,-norm.

For generalized ARCH (GARCH) models, Koul and Mimoto (2012) prove asymp-
totic normality of a suitably standardized integrated square difference between a
kernel type error density estimator based on residuals and the expected value of the
error density estimator based on innovations of GARCH models.

Here, we will continue to develop the global property of the innovation density
estimator in ARCH(p). Notice that central limit theorems for L ,-norms of density
estimators (under independent and identically distributed (i.i.d.) set up) have been
obtained in Csorg6 and Horvath (1988); and the corresponding results have been
derived for the L ,-norms of error density estimators in the first-order autoregressive
models by Horvath and Zitikis (2004). For an autoregressive of order p > 1 (AR(p))
model, Yang, Fu, and Zhang (2011) have compared the kernel density estimator
(based on residuals) with the theoretical kernel density estimator based on unobserved
innovations, and they show that the L, -norm of the difference is asymptotically
negligible.

In this paper, we will consider asymptotic properties of residual-based kernel
density estimators of the innovation density f in L;(A > 1)-norms. The asymptotic
result for L;-norms of density estimators (under i.i.d. set up) will be extended to
L,-norms for the residual-based kernel density estimators in ARCH(p) time series.
Our main result gives a rate for the L;-norm of the difference between the residual-
based and the innovation-based kernel density estimators. This rate is faster than that
for the L;-norm of the difference between innovation-based kernel density estimator
and innovation density for the case A > 1, and of the same order for the case A = 1.
Thus the known asymptotic behavior for the L,-norm of the latter difference carries
over to that of the difference between residual-based kernel density estimator and
innovation density for the case A > 1, but not for the case A = 1.

The paper is organized as follows. In Sect. 2 we introduce the residual-based
kernel density estimator and state some basic assumptions. Section 3 presents the
main result. Detailed proofs are provided in Sects. 4 and 5.

3.2 Estimators and Some Basic Assumptions

Assume that we observe X_,, X>_,,- -, X,, which obey the model (3.1). Let o, =
(Gon, - - - ,&pn)T denote an estimator of the parameter vector @ = (o, ... ,a,,)T,
based on these observations. Set

éiZXZ‘/\/&()”‘I'&]”X[?;]+"'+&pnxl‘2, lflff’l,

p’
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to be residuals. Using these residuals, we construct an estimator of the innovation
density f as follows:

R 1 n
(1) = — K, (t— &), telR,
ful®) n; (= &)

with K, (t) = K(/h,)/h, and h, being positive numbers (usually called
bandwidth) tending to zero as n — oo, and K is the kernel density function.

Define the kernel innovation density based on the true innovations (which we
cannot observe) €y, €2, - , &yt

fult) == %; Ky (1 —&), teR.

The strong consistency of f, for f under L;-norm is given in Devroye (1983), i.e.,

/ | fu@®) — f(®)|dt — 0 almost surely (a.s.), as n — 00.
In Cheng and Wen (2011), the above result is extended to f,,, i.e.,
/ |fn(t) — f@®)|dt - 0 as., asn — oo.
For the integrated squared deviation of fn from

E(fu(1) = / Kx) f(t = hyx)dx = Kp, x (1), t€R,

(where K, * f denotes the convolution of the two functions K, and f) defined as

/ L) = K, FOPd1,

Cheng, Sun, and Wen (2011) develop its asymptotic normality which is the same as
the one of the Bickel-Rosenblatt test statistic based on f,, in Bickel and Rosenblatt
(1973). They also show that f [ f,,(t) — f(t)]?dt tends to zero almost surely.

For any (finite number) A > 1, the L, -norm of a measurable function g is defined

as follows:
1/
gl = (/ |g(x)|*dx> .

‘We mention that the convolution g * r of an integrable function » with a function ¢
of finite L,-norm has finite L,-norm and obeys the inequality

lig = rilix < lglllirlh.
We should also point out that, for such a g, the map

s> lg—s)—ql

is bounded by 2||g||, and is uniformly continuous; see, e.g. Theorem 9.5 in Rudin
(1974) for the later. The above inequality is a special case of the more general
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inequality
IVigsr* Il < IVIgP Vel

with V(x) = (1 + |x|)? for some B > 0. This follows from the inequalities
lg *r* < IIrlly gl = 1r] < Vel gl * 7|

and
(Vusrlly < [[VulliIVrii.

The former is a consequence of the Holder inequality, while the latter is from Schick
and Wefelmeyer (2007).

In this paper, we consider the asymptotic distribution of the L, -norm of the dif-
ference between the kernel innovation density estimators based on residuals and the
true density function, i.e., ||f,1 — flx-

In order to show the main result, we need the following assumptions.

Assumption 1. The entries of « and &, are positive, and the estimator &, is root-n
consistent: n'/%(&, —a) = 0,(1) asn — oc.

Assumption 2. The density f has mean zero and variance one and is absolutely
continuous, and the function x — (1 + x2) f(x) has finite L;, L, and L;-norms.

Assumption 3. The kernel X is a three-times continuously differentiable symmetric
density with compact support.

Remark2.1 Leta, = (Gop,...,0 pn)T be aroot-n consistent estimator of . Then the
estimator &, with entries & jn = max(1l/n, a;,) meets the requirement of Assumption
1. A possible root-n consistent estimator is the least squares estimator.

For later use, we introduce functions y, and y, by

v, (1) =xf(x) and y,(x)=x" f(x), xeR.

Remark 2.2 Assumption 2 implies the following. The density f is bounded. The
function y, is absolutely continuous with almost everywhere derivative

V()= f(x)+xf'(x), x€R,

which has finite L, L, and L;-norms. Thus v, is bounded. Similarly, the function
v, is absolutely continuous with almost everywhere derivative

W,(x) =2xf(x) + x> f'(x), x€R,
which has finite L, L, and L, -norms. Thus v, is bounded.

Remark 2.3 Assumption 3 guarantees that K and its first three derivatives are
bounded and integrable. Hence these functions have finite L,-norms. So do Kj,
and its first three derivatives, and we have

<
- P
n

1K1 v=0,1,2,3.

In the following sections, all limits are taken as the sample size n tends to co, unless
specified otherwise.
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3.3 Asymptotics of fn Under L;-Norm

Throughout this section A > 1 is a fixed finite number. We set
A—1 1
= =1

A= ——=1——

A A

and introduce the p + 1-dimensional random vectors

Wi=0X7 ... X0 ) R0+ i X7 4+ X))l i=1....n,

i—1°

and their average
- 1 <
Wy =~ Z w;.
i=1
We are ready to state our main result.

Theorem 3.1 Assume that Asumptions 1-3 hold, and the bandwidth h,, satisfies
h, — 0 and nhf,““/2 — o0. We also assume that

1. for1 <A <2, E(le;]}) < coand [ (14 |x)** f(x)* dx < oo for some B > 1.
2. for x> 2, E(Je1|*) < oo.

Then we have

nh | o = fo = @ — )T Wy, (01 = 0, (D).

For & > 1, this implies
nh | fo = fulli = 0p(1).

Remark 3.1 Let r, denote the square root of nh’+. The asymptotic distribution of
rall fu — £, has been developed in Csorgé and Horvath (1988). In fact, under some
natural assumptions, for some positive constants o and m,

ull fr = F1)* = m/y/hy —> N(©,5).

Here we have shown that r, ||f,, — fullx = 0p(1) if A > 1. Thus we can claim that

(under appropriate conditions) | f,l — full, has the same asymptotic distribution
as r, || fu — fullx for such A. For A = 1, however, the asymptotic distributions of

Pl fo = Jalli and ryll fo = fullx will differ.

Let us set
A T
g =& —&i(@, —a) W,

and

. 111
() = — K, (@t —¢"), tekR.
fr nz;m(sﬂ

Then the theorem is a simple consequence of the Minkowski inequality and the
following two lemmas.
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Lemma 3.1 Assume that €, has finite mean, K' has finite L;-norm, Assumption 1
holds and nh>*** — oo. Then we have

nhi | fu = £l = 0p(D).
Lemma 3.2 Under the assumptions of Theorem 3.1, we have

A~ N T -
nhy L i = fo = (G — ) Way, Il = 0,(1).

These lemmas are proved in the next sections.

3.4 Proof of Lemma 3.1

Fora = (ap,...,a,)" € RP™ andi =1,...,n,set
vi(a)=ao+a X+ +ay X},

and introduce
X;

i(8) = ———, 0=<s<1,
8i(5) VVila +sA)
with A =& —a = (G0, — @0, -+ »&pn — @) . Then we have

& =g(0) and & = gi(1).
Since g; is twice continuously differentiable, the identity
1
B=et g0+ f (1 — 5)g//(s)ds
0

holds. We calculate
vi(A) vi(A)

g0) =—X; = —g —& AW,
v (@ ) ila)
and 1/2
" 3V2(A) (Ol)VZ(A)
gi (s) = i 5/2 = 8i 5/2
(a+sA) (a + sA)
It is easy to check that
sup g/ ()| < |&lT,
1<s<l
with
, 2o 2
3 o [A ]
4 Z min(o, &) Z min(o;, &)

j=0 Jj=0

It follows from Assumption 1 that

T, = 0,(n~").
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In view of the identity
R R 1 n 1 )
hO - i =—3" / (3 — DK, (1 — & — u(( — e,
niziJo
the Minkowski inequality, and the Jensen inequality, we obtain the bound
1/1
1= Fli < —De, el // 1K (1 — & — (& — e[ dudr)™.

Fubini’s theorem and the substitution x = t —¢&} —u(€; — &) now yield the inequality

n

S B
I fo — 1o ||A_; lei — & [ I1Ky, la-

i=1

In view of the identity || K ;:n I = IIK ,;" Ilx/ h,ll“* (see Remark 2.3) and the inequality

1
6 —ef| = |/ (1 — )8, (5)ds| < l&:| T,
0

one derives the bound

A A T,y 0 l&il
* ! nui=1 1%

Ifo = filln = ||Kh”||/\w-

n

Since ¢; has finite mean, one has Z:’zl leil = Op(n). Using this, T, = O,(1/n),
and nh2** — 00, one obtains the rate

nhiy | fu— fili= 0 LU DAY (R —o,(1)
n n n )4 nh}lJr)L* p \/nh%—_'_)w p .

This is the desired result.

3.5 Proof of Lemma 3.2

We use the notation of the previous proof. It is easy to see that the j-th coordinate
W;; of the random vector W; is bounded by 1/(2ct;). From this we conclude that
|[ATW;| < S, where

p
N
§—2 =0,(n"'?)
Jj=0

Note that

—_

- Z K, (1 — & + & ATW,).

3
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A Taylor expansion yields

A 1 « , 1 y
= £y = = S [ATWiei K, (0 = e + S(AT WK, (¢ — &) | + Ry

i=1

with
1 < L,
R.(t) = — Z(ATW,-)%,?/ K, (t —& +sATWig)3(1 — ) ds.
6n i=1 0 ’
For t e Rand j,k=0,..., p, we set

1 « ,
Ajn) =~ D WijleiK),, (t — &) — (0],
i=1

1 « ,
B (t) = - Z Wi VVik[S,'thn(t — &) — pan()],

i=1
with
(1) = Ele1K,, (t — €1)]
and
[on(1) = E[3K,, (1 — &1)].

Then we can rewrite the difference fAn* ) — ful®) — ATW, 1//1 (1) as

p P

a 1 1
D A5AO+ T = )+ 5 37 3 A ABE) + 5 Tanitan (1) + Ro(r)
j=0 j=0 k=0

where
n

1
Tin=—Y (ATW) =0,m™"?), 1=1,2.
n=- ,;( ) =0,
Applications of the Minkowski inequality, the Jensen inequality, and the inequality
|ATW;| < S, yield

P P p
L = fo = ATWaw ls < Y IAGIA I+ DD 1A A Byl + Qo

Jj=0 j=0 k=0
where

" 1 "
Qn = Sulliin = Wil + Spllianlls + 3K, = > el
i=1
Next we show that |1, — W/ llx = o(1) and |2, ln = O(1/hy). In view of the
identity

(1) = / Kj (t = x)xf(x)dx = / Kj (6 = 1)y, (1) dx
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we have 1, = y, * K,’,” = 1//1 * K, and

() — (1) = / (Wt — ha) — /', ()K () d

and find with the help of the Holder inequality

i — Wi} < //Iu/l(t — hyu) — W, (O dt K (u) du — 0.

The convergence follows from the Lebesgue-dominated convergence theorem and
the fact that the map s — || \,/1( - —5) — 1//1 || is bounded and continuous. Similarly,

pon =y, % Kj = Wy % Kj and [l < 1WA ILIKG I = 510K I/ o

342,/2

Since &; has a finite third moment and n#h;, — 00, we derive

Vil Qn = 0,(B*) + 0,(h? /(0" 1h,)) + 0,(1)/(hZT+/%)) = 0,,(1).

Since ¢; is independent of ¢;_, X;_1, €2, X;_»,..., we see that the summands of
A (t) are centered and uncorrelated and obtain

J

1 « 1
nELAT(O] = =) EIWj(eiK;, (t — &) = tin())’] < 5 7()
i=1
with
V(1) = E[e1(K; )(t —&1)] = / v, (K, 2 — y)dy =y, (K Y (0).

Thus, for 1 < A < 2, we have

/ ElA; (0 dt < / ELA2O)2 dt < n™2 ) / (a2 dt

_ _ 1/2
<n2Qa ) (IVy i/ VL)Y

_ _ 1/2
< n2Qa)) (VWAL IV DI/ V)Y

with V(1) = (1 + |¢])f and B > 1 and thus obtain [|A;[l, = Op(n~"/2h,""?)
provided [ (1 + |x[)**# f(x)* dx is finite for some B > 1. Similarly one derives
IBjillx = O,(n~"*h,”*) provided [ (1+|x|)***# f(x)* dx is finite for some f > 1.
Thus, for 1 < A < 2, we find

P
Yl D T IAGIA L = 0y~ VPREP72) = 0,(1)
j=0
and
/4 14
VY Y IAIAUIB L. = 0, hy > = 0, (1),
j=0 k=0

For the case A > 2, we use the following lemma which gives bounds on the moments
of martingales.
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Lemma 5.1 Let {S,,n > 1} be a martingale, Sy = 0, X,, = S,, — Sy—1. Then for all
A>2andn =1,2,---

E(IS)1") < Gn* > Y T E(X|M),
i=1

where C;, = [8(A — Dmax(1, 2*~)]*.
See Dharmadhikari, Fabian, and Jogdeo (1968) for its proof.
For the remainder of this section we assume that A > 2. Note that

nAj(6) =Y WyYu(t), Yu(t) =K, (t — &) — ().
i=1

Then {Zle Wi Y,i(t),k = 1,...,n} is a martingale with respect to the filtration
{o(X1—p,..., X0,61,...,61),k =0,...,n}. Using Lemma 5.1, we calculate

Elna 11 = [ B Wt Ja
i=1

n
< G [ 37 EW Vo1
i=1

n

C, 21
< A:—/ZE[IYm(t)I 1d1
J

n

C}\nk/Z 1
<= 2 [ Y Btk ¢ — e,

J i=1

In the last step we used the fact that E[|Y — E[Y]|*] < 2*E[Y|*] holds for every
random variable Y with finite A-moment. With y(x) = |x |* f(x), we can write

EllsiK;, (t —e)*] = y* K, |"(0)

and find
CAnA/Z

A
EllnA;:*] < Iyl K, 11"

J

Thus, if &, has a finite A-moment, then [|A;|l; = O,(n~'/?h~'=*) and we obtain

p
Ve Y IAGIIA 1 = 0y~ PR 7%) = 0,(1).

Jj=0

In a similar fashion one derives
22

Cyn
E[InBl}] < -
O‘k

Ellet K 5
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Thus, if £; has a finite 2A-moment, then we have the rate || B ||, = O‘,,(n’l/zh’z”\*)
and obtain

14
vk Y S A IAIBll = 0p(n " h™>71%) = 0,(1).

p
j=0 k=0

This completes the proof.
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Chapter 4

Asymptotic Risk and Bayes Risk of Thresholding
and Superefficient Estimates and Optimal
Thresholding

Anirban DasGupta and Iain M. Johnstone

4.1 Introduction

The classic Hodges’ estimator (Hodges, 1951, unpublished) of a one dimensional
normal mean demolished the statistical folklore that maximum likelihood estimates
are asymptotically uniformly optimal, provided the family of underlying densities
satisfies enough regularity conditions. Hodges’ original estimate is

X, i [ Xul > a4
Tu(Xisee Xa) = {0 % = @.1)
A more general version is
. X, if |)_(,1| > cp
SulX1,-- 2 Xn) = {anirn i (%l <a 42

Here, c,, for the moment, is a general positive sequence and 0 < a, < 1.
With squared error as the loss function, the risk of X,, the unique MLE, satisfies
nR(9, X,) = 1, and Hodges’ original estimate T}, satisfies

lim n? R(0,T,)=0Vp > 0,
while

lim sup nR(6,T,) = oco.

n—o0o 0
Thus, at & = 0, Hodges’ estimate is asymptotically infinitely superior to the MLE,
while globally its peak risk is infinitely more relative to that of the MLE. Supereffi-
ciency at 8 = 0 is purchased at a price of infinite asymptotic inflation in risk away
from zero. Hodges’ example showed that the claim of the uniform asymptotic opti-
mality of the MLE is false even in the normal case, and it seeded the development
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Fig. 4.1 Risk of Hodges’ Estimate for n=50

of such fundamental concepts as regular estimates. It culminated in the celebrated
Hdjek-Le Cam convolution theorem. It probably, also had some indirect impact on
the development and study of the now common thresholding estimates in large p
small n problems, the most well known among them being the Donoho-Johnstone
estimates (Donoho and Johnstone (1994)), although while the classic Hodges’ es-
timate uses a small threshold (n~!/4), the new thresholding estimates use a large
threshold (Fig 4.1).

It is of course already well understood that the risk inflation of Hodges’ estimate
occurs close to zero, and that the worst inflation occurs in a neighborhood of small
size. This was explicitly pointed out in Le Cam (1953):

lim sup sup nR(6, T,,) = oo,

=0 y, geU,

where U, denotes a general sequence of open neighborhoods of zero such that A(U,,),
the Lebesgue measure of U,,, goes to zero; we cannot have asymptotic superefficiency
in nonvanishing neighborhoods. Provided only that a competitor estimate sequence
T, has a limit distribution under every 6, i.e., v/n(T, — 6) has some limiting distri-
bution Ly, it must have an asymptotic pointwise risk at least as large as that of X at
almost all :

For almost all 6,limsupnR(0,T,) > 1.

n—oo

Indeed, a plot of the risk function of Hodges’ estimate nicely illustrates these three
distinct phenomena, superefficiency at zero, inflation close to zero, worst inflation
in a shrinking neighborhood: Similar in spirit are the contemporary thresholding
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[ T L v vl theta
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Fig. 4.2 Risk of Hodges’ Estimate for n = 250

estimates of Gaussian means. Formally, given X ~ N(6,1), and A > 0, the hard
thresholding estimate is defined as

~

6, = X if|X]>xr
= 0 if|X]<x

Implicit in this construction is an underlying Gaussian sequence model

indep. .
Xi ~ N(eial)alzl’za"'7n7

and

~

0; = Xilix; =) 4.3)

and A(n) often being asymptotic to /2 log n, which is a first order asymptotic approx-
imation (although not very accurate practically) to the expectation of the maximum
of n iid N(0, 1) observations. The idea behind this construction is that we expect
nearly all the means to be zero (i.e., the observed responses are instigated by pure
noise), and we estimate a specific 6; to be equal to the observed signal only if the
observation stands out among a crowd of roughly n pure Gaussian white noises. See
Johnstone (2012) for extensive discussion and motivation (Fig 4.2).

The similarity between Hodges’ estimate and the above hard thresholding estimate
is clear. We would expect the hard thresholding estimate to manifest risk phenomena
similar to that of Hodges’ estimate: better risk than the naive estimate X; itself if
the true 0; is zero, risk inflation if the true 6; is adequately away from zero, and we
expect that the finer details will depend on the choice of the threshold level A. One
may ask what is the optimal X that suitably balances the risk gain at zero with the
risk inflation away from zero.
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Another commonality in the behavior of Hodges’ estimate and the hard thresh-
olding estimate is that if we take a prior distribution on the true mean that is very
tightly concentrated near zero, then they ought to have smaller Bayes risks than the
MLE, and the contrary is expected if we take an adequately diffuse prior.

It is meaningful and also interesting to ask if these various anticipated phenomena

can be pinned down with some mathematical precision. The main contributions of
this article are the following:

a)

For the one dimensional Gaussian mean and superefficient estimates of the gen-
eral form as in (4.2), we precisely quantify the behavior of the risk at zero
(Eq. (4.10), Corollary 1.2.5).

b) We precisely quantify the risk at \% for fixed positive k (Eq. (4.22)), and we

9

d)

show that the risk at \/LE (which is exactly one standard deviation away from zero)

is for all practical purposes equal to %, which is the risk of the MLE (Theorem
1.2.4, Corollary 1.2.5).

We show that in the very close vicinity of zero, the risk of superefficient estimates
increases at an increasing rate, i.e., the risk is locally convex (Theorem 1.2.2).
We show that the global peak of the risk is not attained within n~!/? neighbor-
hoods. In fact, we show that at & = ¢, the risk is much higher (Theorem 1.2.5,
Eq. (4.26)), and that immediately below 8 = c,, the risk is even higher. Precisely,
we exhibit explicit and parsimonious shrinking neighborhoods U, of 8 = c,,
such that

liminf ¢, % sup R(6,S,) > 1. (4.4)
6eU,

(Theorem 1.2.6, Eq. (4.28)). Note that we can obtain the lower bound in (4.4)
with an lim inf, rather than lim sup.

Specifically, our calculations indicate that argmax,R(6, S,) =~ ¢, — +/ log(nﬂ,
and sup, R(0, S,) = ¢ — 2,/ 22 (Eq. (4.35)).

n

For normal priors 7, = N(0 02), we obtain exact closed form expressions for

the Bayes risk B, (m,, S;) of S, (Theorem 1.2.7, Eq. (4.45)), and characterize
those priors for which B, (,, S;,) < }L for all large n. Specifically, we show that
2 _ 1

0 = . acts in a very meaningful way as the boundary between B, (7, S,) < %

and B, (m,, S,) > % (Theorem 1.2.8).

More generally, we use the theory of regular variation to show the quite remark-
able fact that for general smooth prior densities 7,,(8) = /nh(6./n), all Hodges
type estimates are approximately equivalent in Bayes risk to the MLE X and that
the exact rate of convergence of the difference in Bayes risks is determined by
whether or not Var,(0) = 1 (Theorem 1.2.10, Eq. (4.64)). This theorem, in turn,
follows from a general convolution representation for the difference in Bayes
risks under general m,, (Theorem 1.2.9, Eq. (4.48)).

For the Gaussian sequence model, we obtain appropriate corresponding versions
of a)-e) for hard thresholding estimates of the form ( 4.3).
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g) We identify the specific estimate in the class (4.2) that minimizes an approx-
imation to the global maximum of the risk subject to a guaranteed specified
improvement at zero; this is usually called a restricted minimax problem. More
precisely, we show that subject to the constraint that the percentage risk improve-
ment at zero is at least 100(1 — €)%, the global maximum risk is approximately

minimized when ¢, = ,/2log Gl (Eq. (4.38)).
h) We illustrate the various results with plots, examples, and summary tables.

Several excellent sources where variants of a few of our problems have been ad-
dressed include Hajek (1970), Johnstone (2012), Le Cam (1953, 1973), Lehmann
and Romano (2005), van der Vaart (1997, 1998), and Wasserman (2005). Also, see
DasGupta (2008) and lecture notes written by Jon Wellner and Moulinath Banerjee.
Superefficiency has also been studied in some problems that do not have the LAN
(locally asymptotically normal) structure; one reference is Jeganathan (1983).

If the variance o2 of the observations was unknown, estimates si_milar to Hodges’
are easily constructed by hard thresholding the MLE whenever 'is‘ < c¢,, where s
is the sample standard deviation. Some of its risk properties can be derived along
the lines of this article. However, the optimal thresholding and global maximum risk
problems are likely to be even more difficult.

4.2 Risk Function of Generalized Hodges Estimates

Consider generalized Hodges estimates of the form (4.2). We first derive an ex-
pression for the risk function of the estimate S,,(Xy,- - - , X,;). This formula will be
repeatedly used for many of the subsequent results. This formula for the risk function
then leads to formulas for its successive derivatives, which are useful to pin down
finer properties of S,,.

4.2.1 Global Formulas

Theorem 1.2.1 Letn > 1l and Xy,--- ,X, lid N0,1). Let0 < a, < landc, > 0.
For the estimate S,(X1,--- ,X,) as in (4.2), the risk function under squared error
loss is given by

1
R(99 Sn) = ; + 311(9),

where
2

) =[S L 1 (1~ 0,707 (@(ies — 00+ B(Vies +6) 1)

n

2a,(a, — 1)0
y20tan — 1)0

i (9ten +6) — 6/~ 00)
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1— 2
(@ + O9en +0) + (6 = (e —0)).  4S)
n

where ¢ and ® denote the density and the CDF of the standard normal distribution.
Proof Write R(9, S,,) as

R, S,) = E[(X = 0L zo., ] + E[(@, X — 0)*1 32, ]

= E[(X — 0’1+ E[(a,X — 0)* 1 31=,] — EL(X — 0)*I 3., ]

1 \/ﬁ(cnfg) z 1 \/ﬁ(cnfg)
- / [an(0 + =) — 01 (2)dz — ~ / 2p()dz
no ) Jaea+) NG nJ_ Jue,+6)

1
=-+T+T  (say) (4.6)

On calculation, we get

2

Ty = [“7 + (1= a0 | (®(/n(e, = 0)) + D(n(en +6) 1)

2
_% ((en + O)6(/n(en +6) + (cn = O)S(/nen — 0))
+ 282 (g(ten + ) = Uer = 0)). @7

and

1
T, = (/e = 0) + D(n(cr + ) — 1)

_% (e + 000 +6) + (e = OOPWnle, —0))  (48)

On combining (4.6), (4.7), and (4.8), and further algebraic simplification, the stated
expression in (4.5) follows.

4.2.1.1 Behavior at Zero

Specializing the global formula (4.5) to 6 = 0, we can accurately pin down the
improvement at zero.
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Corollary 1.2.1 The risk improvement of S, over X at 6 = 0 satisfies

®(/nc,) —
P(V/n. cn)

Furthermore, provided that lim sup, |a,| < 1, and y, = Jne, — 00,

60 = L= RO.5) = XDy e[SV ] )

a? 21-a —v2/2
R(©,S,) = 2 + —— y e y"/2+o(T) (4.10)

Corollary 1.2.1 can be proved by using (4.5) and standard facts about the N(0, 1)
CDF; we will omit these details.

An important special case of Corollary 1.2.1 is the original Hodges’ estimate, for
which ¢, = n~!/# and a, = 0. In this case, an application of Corollary 1.2.1 gives
the following asymptotic expansion; it is possible to make this into a higher order
asymptotic expansion, although it is not done here.

Corollary 1.2.2 For Hodges’ estimate T, as in (4.1),

2 n n
RO,T,) = | Zn~ e % 1 o(n¥4e %) 4.11)
T

In particular,

1 RO, T, 1
im M —_ (4‘ 1 2)
n—o00 ﬁ 2
We record the following corollary for completeness. Note that 1/zc, need not go to
oo for superefficiency to occur, as shrinkage will automatically take care of it.

Corollary 1.2.3 Suppose y, = /nc, — v,0 <y < oo. Then, S, is superefficient
at zero, i.e., limsup, nR(0, S,) < 1 ifflimsup, |a,| < 1.

4.2.1.2 Local Convexity and Behavior in Ultrasmall Neighborhoods

For understanding the local shape properties of the risk function of S,,, it is necessary
to understand the behavior of its derivatives. This is the content of the next result,
which says in particular that the risk function of all generalized Hodges estimates is
locally convex near zero. For these results, we need the following notation:

F1®) = (1 = a0 [20(/nen +6) — 1] (*.13)

8u®) = (@~ D[+ 4 Ve + 27 4 20 o te, +6) (@14

f
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Theorem 1.2.2 For all n and 9,

d

ER(Q’ Sp) = fn(0) — fu(=0) + £a(6) — gu(—0) (4.15)

In particular, %R(Q, Sle=o0 = 0, and provided that |a,| < 1, ddezR(B, S,) > 0in
a neighborhood of & = 0. Hence, under the hypothesis that |a,| < 1, R, S,) is

locally convex near zero, and 6 = 0 is a local minima of R(6, S,).

Proof Proof of (4.15) is a direct calculation followed by rearranging the various
terms. The calculation is not presented.

That the derivative of R(9, S,) at& = 01is zero follows from symmetry of R(9, S,),
or, also immediately from (4.15). We now sketch a proof of the local convexity
property. Differentiating (4.15),

d2
ﬁR(O,Sn) = £,0) + f,(=0) + g,(0) + g,(=0). (4.16)

Now, on algebra,
£10) = (1= a? [20(/n(ey +0) — 1] +20(1 = 4, Vg (Vn(cy +0))
and g,(6) = 2(a, — DV/c,$(/a(cy + 0) = (e, + O)p(/n(c, + )

2an(an -

NG
On substituting (4.17) into (4.16), and then setting 6 = 0, we get after further
algebraic simplification,

X [Z(an — D/ne,0 + D + (a? - 1)ﬁc5] 4.17)

d? 1
5RO, S)lom0 =41 = 0,)°| @(ne,) = 5 = Vcup(Vnc,) |

+2(1 — a))eynp(/ney) (4.18)

By simple calculus, ®(x) — % — x¢(x) > O for all positive x. Therefore, on using

our hypothesis that |a,| < 1, from (4.18), %R(Q, Su)le=o > 0. It follows from the
continuity of d‘% R(0, S,,) that it remains strictly positive in a neighborhood of 6 = 0,

which gives the local convexity property.

Remark Consider now the case of original Hodges’ estimate, for which @, = 0 and
¢, = n~'/* In this case, (4.18) gives us lim, _, o dd—(:zR(G, T,)|9—o = 2. Together with
(4.11), we then have the approximation

2 ;
RO.T) ~ | =n~ e % 102 (4.19)
T

for 6 very close to zero. Of course, we know that this approximation cannot depict
the subtleties of the shape of R(0,T,), because R(0, T,) is known to have turning
points, which the approximation in (4.19) fails to recognize. We will momentarily
see that R(0, T,) rises and turns so steeply that (4.19) is starkly inaccurate in even
n~Y2 neighborhoods of zero.
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4.2.2 Behavior in n~'/* Neighborhoods

We know that the superefficient estimates 7, or S, have a much smaller risk than
the MLE at zero, and that subsequently their risks reach a peak that is much higher
than that of the MLE. Therefore, these risk functions must again equal the risk of
the MLE, namely }l at some point in the vicinity of zero. We will now first see that
reversal to the % level happens within n~!/2 neighborhoods of zero. A general risk
lower bound for generalized Hodges estimates S,, would play a useful role for this
purpose, and also for a number of the later results. This is presented first.

Theorem 1.2.3 Consider the generalized Hodges estimate S,,.

(i) Suppose 0 < a, < 1. Then, foreveryn and 0 < 6 < ¢,,

2
RO.5,) = =2 + (1= 0,0 @(/n(c, +6)) + O(/n(e, — ) — 1]
(4.20)

(ii) Suppose «/nc, — 00, andthata,0 < a < 1 is a limit point of the sequence a,,.

Let 6, = g7 Then, lim sup, nR(6,, S,) = a* + 1.

7n

Proof 1In expression (4.5) for e,(6), observe the following:

0 < d(Vn(c, +0)) + P(Vnlc, —0) — 1 < 1;
For0 < 6 < ¢y, ¢(v/nlcy +0)) — p(x/n(c, —0)) < 0;

For0 < 6 < ¢, (¢4 + 0)p(Vn(c, +6)) + (cu — 0)p(/n(c, —6)) > 0.

Therefore, by virtue of the hypothesis 0 < a, < 1, from (4.5),

2

RO,5) =~ + 504 (1~ 0,20 @(ate, +0) + @i, —0) ~ 1]

2
= % + (1= PO @(/n(e +0)) + B(le, — ) — 1],

as claimed in (4.20).

For the second part of the theorem, choose a subsequence {ay, } of {a, } converging
to a. For notational brevity, we denote the subsequence as a, itself. Then, (along this
subsequence), and with 6, = m,

a2+ (1 = a0 @, + ) + S(le, — ) — 1] > @ +1 @21)

Since we assume for the second part of the theorem that v/nc, — 00, we have that
6, < c, for all large n, and hence the lower bound in (4.20) applies. Putting together
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(4.20) and (4.21), and the Bolzano-Weierstrass theorem, we have one subsequence
for which the limit of n R(6,, S,)is > a*+1, and hence, lim sup, nR(6,,S,) > al+1.

We will now see that if we strengthen our control on the sequence {a, } to require it
to have a limit, and likewise require /nc, also to have a limit, then the (normalized)
risk of S, at \% will also have a limit for any given k. Furthermore, if the limit of
a, is zero and the limit of \/nc, is 0o, which, for instance, is the case for Hodges’
original estimate, then the risk of S, at ﬁ is exactly asymptotic to the risk of the
MLE, namely % So, reversal to the risk of the MLE occurs, more or less, at 0 = \/Lﬁ
The next result says that, but in a more general form.

Theorem 1.2.4 Consider the generalized Hodges estimate S,,.
(a) If a, - a,—00 < a < 00, and y/nc, — y,0 < y < oo, then for any fixed
k>0,
li R( K
im nR(—
n—oo ﬁ
+2a(a = Dk[9(k + ) — 9tk — )]

S =1+ [az 1+ —a)z] [cb(k+y)— Dk — y)]

+ (1 =)+ P)ptk +y) = (k= )btk — )] (4.22)

with (4.22) being interpreted as a limit as y — oo if /nc, — 0.

(b) In particular, if a, — 0 and 4/nc, — oo, then, lim,,_, » nR(%, S,) = k2.

(c) If @, = 0 for all n and /nc, — oo, then for any positive k, we have the
asymptotic expansion

I’lR(L, Sn) = kz + Le—y"z/Z—kz/z

Vn Var

ek%l e_kVn
X [(Vn — k) + (v, + ke — (K* — 1) —(k*=1) ]
Yn Yn
e Va2 kv
+O0(———) (4.23)

Y

(d) If @, = 0 for all n and y/nc, — oo, then for k = 0, we have the asymptotic
expansion

) 2 -vi/2
nR(O,S,) = \/;eynzﬂ[yn + =]+ o) (4.24)

Y ¥

The plot below nicely exemplifies the limit result in part (b) of Theorem 1.2.4 Fig. 4.3.

The proofs of the various parts of Theorem 1.2.4 involve use of standard facts about
the standard normal tail and rearrangement of terms. We omit these calculations. It
follows from part (b) of this theorem, by letting k — oo that for the original Hodges’
estimate 7, supy R(6,T,,) >> }l for large n, in the following sense.
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15

10 -
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1 2 3 4

Fig. 4.3 Plot of n* Risk of Hodges’ Estimate at k/sqrt(n) and k2 for n = 500

Corollary 124 If a, — 0 and \/iic; — 0, then lim, | sup, nR(©,5,)| = oo.
On the other hand, part (c) and part (d) of the above theorem together lead to the
following asymptotic expansions for the risk of Hodges’ original estimate T, at6 = 0
and 6 = Jiﬁ We can see how close to % the risk at JLE is, and the rapid relative
growth of the risk near 6 = 0 by comparing the two expansions in the corollary
below, which is also a strengthening of Corollary 1.2.2.

Corollary 1.2.5 For Hodges’ estimate T, as in (4.1),

2 2 -% 1
RO.T) = e S 1 2] 4 0 R T
1 1y 1oy _ 24172
= — A2 >[1 1/“]JFO— 425
2t ( e

4.2.3 Behavior in c, Neighborhoods

We saw in the previous section that reversal to the risk of the MLE occurs in n~!/2
neighborhoods of zero. However, n~'/2 neighborhoods are still too short for the risk
to begin to approach its peak value. If ¢;, >> Ln and we expand the neighborhood
of 8 = 0 to ¢, neighborhoods, then the risk of S, increases by factors of magnitude,
and captures the peak value. We start with the risk of S, at & = ¢, and analyze its
asymptotic behavior.
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Theorem 1.2.5 Consider the generalized Hodges estimate S,,.

2R(cp, Sn) >

n

(a) Suppose 0 < a, < 1 and that /nc, — oo. Then, limsup, ¢
- 2 Clim e 2
Uoliminty &u) and lim inf,, ¢;>R(cy, ) > L0030 )

(b) Ifa, - a,—o00 < a < 00, and /nc, — y,0 < y < oo, then

. 1 a*—1 ) 1
lim ¢, R(c, $u) = — + [ —+0-a) ][<D(2y) - —]
n—oo Y 2

Y
2a(a — 1 2y)
20— 00)] + 20 - 2L (4.26)
with (4.26) being interpreted as a limit as y — o0 if \/nc, — oo.
Proof By (4.20),
a? 1
R(en Sp) = % 4 31 — an)? [@2vne) - 5]
n 2
1
= ;2R S,) = (1= a,)* [ @2/, - 5 | (4.27)

Since y/nc, — 00, (4.24) implies that given € > 0, for all large enough #,

_2 1 2
c, R(Cna Sn) > (5 - 6)(1 - an)

1 1
= limsup ¢, >R(c,, S,) > lim sup (5 —o)(1—a,)’ = (5 —€)(1 — liminf a,)>.

limi 2
T2R(cy, S,) > U he

Since € > 0 is arbitrary, this means lim sup, c,

lim inf inequality follows similarly.

4.2.3.1 Behavior Near c, and Approach to the Peak

Theorem 1.2.6 Consider the generalized Hodges estimate S,,. Suppose a,, = 0 for
all n and y, = /nc, — oo. Then, for any fixed a,0 < a < 1, we have the
asymptotic expansion

2R = a)en, S) = (1 — a2 + 2OV 0y _ 1y f HEZOW) (5
oYy (2 - O[)yn
¢(ayn)

+ O0(——=—) (4.28)
Y,

n
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Proof: Fix 0 < «a < 1, and denote 6, = (1 — a)c,. Using (4.5),
R0, 5) =+ [(1 ~arel —~ |[@@ — ) — @~ )]

o 2 - we@ - am) +acipen)]

= ¢ 2R(60,, ) = y— +[a-w2- %][@((2 — @) = &= ap)]

+ %[(2 —a)P((2 — a)y,) + ot¢(ay,,)] = yinz + [(1 _ 0{)2 . %]

[1 A2 —a)yn)
(2 - a)yn
+ 2 —a)p((2 — a)yn) n ap(@yn)
Vn Vn
¢((2—Ot)7/n)[ _a _a)z]

(1 + 0,2y — 2o
oY

EER 0+ 00,7)]

=1-a)’+ Q2—-a)

Vn 2—a

2
n ¢(ayn)[a (- ]+ 0(¢(a)/n)
Vn o yn

). (4.29)

The theorem now follows from (4.29).

By scrutinizing the proof of Theorem 1.2.6, we notice that the constant « can be
generalized to suitable sequences «,,, and this gives us a useful and more general
corollary. Note that, indeed, the remainder term in the corollary below is 0(%),

rather than 0(%).

Corollary 1.2.6 Consider the generalized Hodges estimate S,. Suppose a, = 0
for all n and y, = /nc, — 0. Let o, be a positive sequence such that a,, —
0,0,y — 00. Let 6, = (1 — a,)c,. Then we have the asymptotic expansion

RO, S = (1 — a? — 2y o P, (4.30)

nyn n

Remark Together, Theorem 1.2.5 and Corollary 1.2.6 enable us to make the fol-
lowing conclusion: at 6 = ¢,, R(6, S,) ~ % >> %, which is the risk of the MLE,
provided y, = /nc, — oo. If we move slightly to the left of 0 = c,, then the risk
increases even more. Precisely, if we take 0 = (1 — o,)c,, with a very small «,,, then
R(0,S,) ~ c2. We believe that this is the exact rate of convergence of the global
maximum of the risk, i.e.,

lim ¢;> sup R(,S,)=1. 4.31)

n—00 —00<fh <00



54 A. DasGupta and I. M. Johnstone
4.2.3.2 Global Maximum of the Risk and Point of Maxima

Corollary 1.2.6 suggests a pathway to addressing the two related questions: what is
an approximation to the point at which the global maximum of the risk is attained,
and what is a higher order approximation to the value of the global maximum. In
Eq. (4.31), if we use the two leading terms (1 — o) — M, we notice that (1 — «)?

n¥n
and 4’;“—;’”) are both decreasing in or. Therefore, if we maximize (1 —«)? — %}}"’) overo
(in (O, 1”)), it will give us an approximation to the global maximum of R(6, f,,) and at
the same time, an approximation to the point 6, = (1 — &, )c, where the maximum is
attained. It must be understood that these two approximations are heuristic, because
we do not have a proof that sup, R(0, Sy) is attained at a point of the form (1 —o,)cy,
with a,, as in Corollary 1.2.6.

To maximize (1 — «)> — %, we want to find the root of
d
0= _[(1 —a) — M]
da oY

1
| = 2@ = 1)+ ey + 0@y

n

= 2@ — D)+ plan)| v +

=(l-a)= %wam(l +0(1))

2.,2
)

= —a =logy, — — + 0(1)

= o?y? —2a —2logy, + O(1) =0 (4.32)

An approximation to the root of the quadratic Eq. (4.32) is

/2log y,
_ VLOBVn (4.33)
Vn
which results in the following two heuristic approximations:
Conjecture In the class of estimates
_ X, if 1X,| > cu
Sp(X1,..., X)) = ” X< (4.34)
one has,
/1 2 2¢, /1
argmax_., oo RO, S,) ~ ¢, — w; sup R, S, ~ cﬁ — ciogn_
n —00<f <00 \/ﬁ

(4.35)
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Example 1.2.1 We look at the credibility of (4.35) for Hodges’ original estimate 7,,,
for which ¢, = n~!/*. In that case, (4.35) says that the global maximum of R(0, T},

should be approximately JLE — 2:{;‘}? and it should be attained at 6, ~ n~1/4 — \/% .
We show in the following table the exact global maximum (computed numerically),
the risk at ¢, and at 6, and the approximation to the maximum risk as claimed in
(4.35). For very large n, our conjecture appears to work out almost exactly. Otherwise,
it does not.

n Exact Maximum  R(c,, T,) R,,T,) Approx. (1.35)
100 0.0558 0.0550 0.0112 0.0357
2500 0.0126 0.0102 0.0073 0.0042
100000 0.0025 0.0016 0.0021 0.0020
250000 0.0016 0.0010 0.0014 0.0014
10° 0.0008 0.0005 0.0008 0.0008

4.2.3.3 Optimal Thresholding

The approximation laid out in (4.35) enables us to pose and give a solution to an-
other relevant question: what is an optimal choice of the thresholding parameter
(sequence) c,? Obviously, this calls for a definition of optimal thresholding. We
adopt the definition of controlled minimaxity. Here is an explanation, and then a
formal mathematical definition.

It is clear that the choice of the thresholding parameter affects two key quantities
in the problem, the risk at zero, and the maximum risk. For instance, as an extreme, if
we choose ¢, = 0, then the risk at zero is zero, but the maximum risk is infinity. Thus,
there is a trade-off between R(0, S,) and sup, R(6, S,,), and the thresholding param-
eter ¢, influences both of them, but in opposite directions. It seems reasonable to ask
for the sequence ¢, that minimizes sup, R(6, S,,) subject to a guaranteed percentage
improvement in risk over the MLE at & = 0. More precisely, the question is: which
sequence ¢, minimizes sup, R(6, S,) subject to the constraint nle,(0)] > 1 — €,,
where, ¢,(0) = R, S,) — % Thus, in this formulation we seek the thresholding
estimate that is minimax subject to a risk gain of at least 100(1 — ¢,)% at zero; €,
is supposed to be user provided. Such restricted minimax formulations have been
proposed and studied in other problems before; one reference is Bickel (1983).

From (4.9) and (4.35), we wish to

_en

2

1 1
minimize Vnz - 2an 10gl’l subject to H(yn) = (D(Vn) - E - Vn(b()/n) =

The unconstrained minimum of y,> — 2y,/logn is y, = /logn. If H(\/Togn) >

1—¢, . . 1 .
> (which approximately corresponds to €, > T then the solution to our prob-

lem is y, = J/logn. Otherwise, since H(x) is increasing in x for positive x, i.e.,
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increasing in x for x > 0, it follows that the sequence y,, that solves the constrained
minimum problem is the root of the equation

1 —¢,

1
CD(J/n) - 5 - Vn¢(yn) = ) (436)
& 1= 00+ 1) = 3
1 €,
& o)+ 0= ==
Y
A 1 (4.37)
V2 T o) e '

A first approximation to the root of (4.36) is y, = ,/2log €i Plugging the first
approximation back into (4.36), a higher order approximation is

n

1 1 1 1
yn2=210g——|—210g< 210g—):2log—+loglog—+0(1),
El‘l Eﬂ en

which gives

1 1 1 loglog - loglog -
Vo = [210g — +loglog — + O(1) = 210g—[1+71€"+0 715]
€n €n €n 4log - log —

€n

1 log log = loglog el
= [2log — —_—
6" 2./2 log = /log 1 =
We propose finally the following thresholding sequence:

Yo = A/NC, = Jlogn, if e, >

Jne, = [21 loglog 5, ife, < (4.38)
Yo = /nc, = og— if e, < )
2 /2log L Vn

Example 1.2.2 The recommended thresholding sequence in (4.38) depends on the
specification of €,. We work out the form of ¢, for four choices of €,. Suppose,
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independent of n, we want a fixed percentage risk improvement 100(1 — €)% at zero.
Then, €, = €, which, by (4.38), leads to

logn
Cp =/
n

Thus, a fixed percentage risk improvement at zero leads to ¢, ~
Suppose we want the percentage risk improvement at zero to increase with n at a
polynomial rate, €, = nF, B > % Then, (4.38) leads to

V2B logn loglogn 1
Cn = + + O( ).
Jn 2/2Bnlogn J/nlogn

Thus, for polynomial growth in the percentage risk improvement at zero, still, the

logn

logn
n ’

recommended thresholding sequence ¢, ~ but with a constant in front that
is > 1.
Next, suppose we want the percentage risk improvement at zero to increase at a

subexponential rate, namely, €, = e PV , B > 0. Then, (4.38) leads to

logn
w= /28—
§ Pt 2B

Thus, for subexponential growth in the percentage risk improvement at zero,we
get ¢, ~ n~Y* Compare this with Eq. (4.11) which describes the percentage risk
improvement at zero of Hodges’ original estimate T,. Interestingly, his choice of
¢y = n~V* matches to the first order the recommended sequence we just derived
above.

Finally, suppose we want the percentage risk improvement at zero to increase at
the fully exponential rate, namely, €, = e~#", 8 > 0. Then, (4.38) leads to

_ logn
@ =V

Thus, for exponential growth in the percentage risk improvement, we get ¢, ~ c,
a constant.

4.2.4 Comparison of Bayes Risks and Regular Variation

Since the risk functions of the MLE and thresholding estimates S,, cross, it is mean-
ingful to seek a comparison between them by using Bayes risks. Because of the
intrinsic specialty of the point & = 0 in this entire problem, it is sensible to consider
priors that are symmetric about zero. Purely for technical convenience, we only con-
sider normal priors here, N(0,0?2), and we ask the following question: how should
o, behave for the thresholding estimate to have (asymptotically) a smaller Bayes risk
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than the MLE? It turns out that certain interesting stories emerge in answering the
question, and we have a fairly complete answer to the question we have posed.

We start with some notation. Let # = m,, denote a prior density and B,(S,, )
the Bayes risk of S,, under 7. Let also B, () denote the Bayes risk of the Bayes rule
under 7. Then,

B, (S,, ) =/R(9,Sn)7'r(6’)d6’ = % +/en(9)n(9)d9 (4.39)
and
/ 2
By =~ — — [ (4.40)
n n m(x)

where m(x) = m,(x) denotes the marginal density of X under 7. In the case where
7 = m, is the N(0,0?) density, B, () =

nr72+1

4.2.4.1 Normal Priors

We use (4.5) to write a closed form formula for B,(S,, 7); it is assumed until we
specifically mention otherwise that henceforth # = N(0, 0,12), and for brevity, we
drop the subscript and write o2 for o2

Toward this agenda, the following formulas are used; for reasons of space, we
will not provide their derivations.

/¢(«/_(cni9)) ¢( )do = d( Ve, ——) (4.41)
1+ no

1 6 o e/ C4no?)
) —p(—)dh = —————— 4.42
/¢>(x/ﬁ(c ))6¢(0) NN (4.42)

f 1 0 O,chnefncﬁ/(Z(IJrnaz))
/ Pen £6)¢(H0 = F— (4.43)
1 0 fc o232 ¢ e—nen/@(+ns?)

0% . £ 0)—¢(—)do = o? .
f (Ven 60~ 6 = o[ Dt - N T, |
(4.44)

By plugging (4.41), (4.42), (4.43), (4.44) into f e, (0)%(}5(%)0]9, where the expression
for e, (0)1is taken from (4.5), additional algebraic simplification gives us the following
closed form expression.
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Theorem 1.2.7
1
B(Sp ) = — + f e (0)7(0)d0,
n
with

_ 42

/en(Q)n(G)dO = na" —(—-ay)’e?
)
+[2(1—a,1)202—2(1 a”)]q>< e )
n

V14 no?
Jney ( Jne, ) [2n(1 —a,)*c*
1+ no? 1+ no? 1+ no?
21 — a0 21— a?)
e ] (4.45)

Theorem 1.2.7 leads to the following more transparent corollary.

Corollary 1.2.7 Consider the generalized Hodges estimate S,, with @, = 0. Then

/e 0)7(0)d6 = il [2@( Yy _ L+no® $(—2" )]
! N V1 +no? 1402 J/T+no?2 /1+no?
(4.46)

In particular, if ol = %, then whatever be the thresholding sequence ¢, B, (S, 7) =
%, i.e., S, and the MLE X have the same Bayes risk if & ~ N(O, %). By inspecting
(4.46), we can make more general comparisons between B, (S,, 7) and % = B.(X, )
when 0% # % It turns out that 0% = % acts in a very meaningful sense as a boundary
between B,(S,,7) < Bu(X,7) and B,(S,,7) > B,(X, 7). We will now make it
precise. In this analysis, it will be useful to note that once we know whether o> > or
< %, by virtue of formula (4.46), the algebraic sign of A, (1) = B, (S,, 7)— B.(X, )

is determined by the algebraic sign of 1, = 2®( lz’mz) — ll‘:":; li" = ( 1«):102 ).

Theorem 1.2.8 Provided the thresholding sequence c, satisfies ¢, — 0,y, =

Jne, — 00,

(@) A,(w) < 0 for all large n if 62 = ~+ 0(%) for some ¢,0 < c¢ < 1.
(b) A,() > 0 for all large n if 02 = “+ 0(%) for some ¢,c > 1.

(©) Ap(m)=0forallnifo? = %

(d) If no? — 1, then in general A, (7r) oscillates around zero.

(e) If no? — oo, then A, () < 0 for all large n.
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Proof We indicate the proof of part (a). In this case, no> — 1 < 0 for all large n.
On the other hand,

Vn 1 +no? Va Vn
— ) > 1, ——— > 1+c; o( )—> 0
V1 +no? 1402 V1+no?2 1+ no?

Therefore, n, — 1 > 0, and hence, for all all large n, A, () < 0. The other parts
use the same line of argument and so we do not mention them.

D(

4.2.4.2 General Smooth Priors

We now give an asymptotic expansion for A, = B,(S,, ) — B,(X, ) for general
smooth prior densities of the form 7 (0) = 7,(9) = /nh(0./n), where h is a fixed
sufficiently smooth density function on ( — 0o, 00). It will be seen below that scaling
by +/n is the right scaling to do in 7, similar to our finding that in the normal case,
/n@ ~ N(0,1) acts as a boundary between A, < 0 and A, > 0. We introduce the
following notation

4
q(2) = / (1* — Dh(t)dt — W' (z), —00 < z < 00; w(z) = _diz logq(z). (4.47)
0
The functions q(z) and log q(z) will play a pivotal role in the three main results
below, Theorem 1.2.9, Proposition 1.2.1, and Theorem 1.2.10. Note that q(z) = 0
if h = ¢, the standard normal density. For general h,q can take both positive and
negative values, and this will complicate matters in the analysis that follows.
We will need the following assumptions on 4 and q. Not all of the assumptions are
needed for every result below. But we find it convenient to list all the assumptions
together, at the expense of some generality.

Assumptions on h

(1) h(z) < ocoVz.

(2) h(—2) = h(x)Vz.

(3) [, 22 h(z)dz < oo.

(4) h is twice continuously differentiable, and 4'(z) — 0 as z — oo.

(5) ¢ is ultimately decreasing and positive.

(6) loggq is absolutely continuous, ultimately negative, and ultimately concave or
convex.

(7) liminf, o 4 logg(z) > —oc.

The first result below, Theorem 1.2.9, is on a unified convolution represen-
tation and some simple asymptotic order results for the Bayes risk difference
An, = By(S,,m) — B,(X, 7). A finer result on the asymptotic order of A, is the
content of Theorem 1.2.10. In the result below, (4.49) and (4.50) together say that
the first order behavior of A, is determined by whether or not Var,(0) = 1. If
Vary,(0) # 1, then A, converges at the rate rll; but if Var,(0) = 1, then A, converges
at a rate faster than % This provides greater insight into the result of part (c) of
Theorem 1.2.8.
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Theorem 1.2.9 Consider generalized Hodges estimates S, of the form (1.2) with
a, = 0. Let h be a fixed density function satisfying the assumptions (1)-(4) above
and let w(9) = m,(0) = /nh(0/n), —00 < 6 < 0o. Then we have the identity

2 2 [
Ay =—(g*d)yn) = — / q@¢(yn — 2)dz
n n J_o
2 (o]
=2 [Tq@[son-a-sm+al  @a
0
In particular, if ¢ € £, then
1
nA, — 0, i.e., A, =o0(-), (4.49)
n
and if ¢(z) — ¢ # 0 as, z — o0, then
. 2¢ 1
nA, — 2c, ie., A, = — 4+ o(-). (4.50)
n n
In any case, if Var,(0) < oo, and i’ € L, then, for every fixed n,
[nA,] < 14 Vary(0) + |14 ]]so- 4.51)
Proof Using (4.5) and the definition of 7 (0),

A, = / e (0, (6)d0

(o]

= / % - %)[@(yn +0/n) + Py, — 0/n) — 1]ﬁh(eﬁ>de

(o]

1 [e]
+ ﬁ/ [(cn + 0)d(Yu + 0/1) + (cn — 0)P(yn — gﬁ)]ﬁh(eﬁ)de
= l(/ @ - 1)[<I>(yn +2)+ Py —2) — 1]h(z)dz
n —00

[ on+ 2000+ 2+ 0 = 200 2]z

[e¢]

( / @~ D[2004 + 29 — 1 hndz +2 / (a + 2600 + Dh()z)

S| =

oo

(| @=vhaogn+aaz+ [~ on+200,+ 2hdz)

[ee]

1 [ 2
— —/ (z" — Dh(z)dz
nJ s

SRS

o0

2 e 2 "
=2 / (@ — DIy, + 2)dz / @y + @)z

n —0Q o]

— 1/ (2> — Dh(z)dz
nJ -
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(by twice integrating by parts the integral f_oooo W + 20(vn + 2Dh(2)dz2)

2 *© 2 " 1 *© 2
< / [(z — Dh(z) —h (z)]q>()/n+z)dz— - / (2 — Dh(z)dz
n nJ o

—0Q0

2 [* S
=2 f_ ¢ QP+ Dz~ - / @ — Dh()dz

o0 —0Q

2 o0 1 [
= —(q(z)<1>(yn + 2% — / q@)P(yn + Z)dz) - —/ (2> — Dh(z)dz
n —00 n —00

2 [, 2 [ 1 (>
= —/ (z" — Dh(zx)dz — —/ qQ)P(yn + 2)dz — —/ (z" — Dh(z)dz
nJo nJ nJ_

o0

(refer to (4.47))

2 o0
-2 [ 4@ (v + dz

]

(since 2 / (2% — Dh(z)dz = f (z> — Dh(2)dz)
0 —0

2 o0
= / q@)P(yn — 2)dz

2 (o]
= [ a@fprn -0 -sm+ale @s)
nJo

(since g(—z) = —q(z) forall z), and this gives (4.48). (4.49), (4.50), and (4.51) follow
on application of the dominated convergence theorem and the triangular inequality,
and this establishes the theorem.

Remark Eq. (4.48) is a pleasant general expression for the Bayes risk difference A,
and what is more, has the formal look of a convolution density. One might hope that
techniques from the theory of convolutions can be used to assert useful things about
the asymptotic behavior of A, via (4.48). We will see that indeed this is the case.

Before embarking on further analysis of A,, we need to keep two things in mind.
First, the function ¢g(z) is usually a signed function and, therefore, we are not dealing
with convolutions of probability measures in (4.48). This adds a bit of additional
complexity into the analysis. Second, it does not take too much to fundamentally
change the asymptotic behavior of A,. In the two pictures below, we have plotted
fooo qlz] [q&(y —2)—¢(y +z)] dz, for two different choices of the (probability density)
function 4. In the first picture, % is a standard Laplace (double exponential) density,
while in the second picture, % is a Laplace density scaled to have variance exactly
equal to 1. We can see that just a scale change changes both the asymptotic (in y)
sign and shape of A, (refer to (4.49) and (4.50) as well). Thus, in our further analysis
of A, by exploiting the formula in (4.48), we must remain mindful of small changes
in & that can make big changes in (4.48).

For future reference, we record the following formula.



4 Asymptotic Risk and Bayes Risk of Thresholding and Superefficient . . . 63

0.5
04}
0.3 B
0.2 B
0.1 B
1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L gamma
2 4 6 8 10 12 14
Fig. 4.4 Plot of (48) for a Standard Double Exponential h
If h(t) = 5-e~"/7, then (for z > 0),
2 1 2y ,—z/0
q@x) =0 _§+(050+05]Z+0122 Ve U (4.53)
where
1 " 1 2 1
W==—+——0°, a=-—0, 0)=—=
072 202 : 2T

Thus, if 202 # 1, then g acts asymptotically like a nonzero constant; but if 2062 =
1, then asymptotically g dies. This affects the asymptotic sign and shape of the
convolution expression (4.48), and explains why the two pictures below look so
different. Fig. 4.4 and 4.5

The next technical proposition will be useful for our subsequent analysis of (4.48)
and A,,. For this proposition, we need two special functions.

For —0co < p < o0, by D,(z) we denote the parabolic cylinder function which

solves the differential equation u” + (p + % — é)u = 0. For —o00 < a < ®©
and ¢ # 0,—1,-2,---, M(a,c,z) (also often written as | Fi(a, c,z)) denotes the

(ay 2
(©)k k!

Proposition 1.2.1 Let k > 0 be an integer and a a nonnegative real number. Then,
for any real number |,

confluent hypergeometric function Y ;- . We have the following proposition.

00 k!e—y,2/2 M(/il 1 (M—a)z)
k —az > 22 2
z e “Pp(u —2)dz = [
/0' 2k/2+1 F(k_ZZ)
M2, 3, )
e ] I D)
=)
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Fig. 4.5 Plot of (48) for a Scaled Double Exponential h
and, as y — oo,
o 2
| #esfor —o-pw +aliz~ e eyt asy
0
(in the sense that the ratio of the two sides converges to 1 as y — 00)
Proof To obtain (4.54), write for any real number pu,
=k A R ST
e “p(u — z2)dz = / e TV, (4.56)
/o V2 Jo
and first, use the integration formula
o 2 2
/ e 207 = ke A D_y_1(b) (4.57)
0

(pp 360, Gradshteyn and Ryzhik (1980)) Next, use the functional identity
Ty 2

L)

r(—g)M( 2 272

(4.58)

D) = 272~ 2 omz o 1-p 3 zz]
(@) =

(pp 1018, Gradshteyn and Ryzhik (1980))
Substituting (4.57) and (4.58) into (4.56), we get (4.54), on careful algebra.
For (4.55), we use the asymptotic order result

M(a, B,2) ~ ezz"‘_ﬂ%,

(see, for example, pp 255-259 in Olver (1997))

(4.59)
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Use of (4.59) in (4.54) with © = Fy, and then subtraction, leads to the asymptotic
order result that as y — o0,

k|ea2/2

fo zke*‘”[qb()/ -2 - ¢y + z)]dz = ST
e g

2 )
Vil — e (Y ;a)z)k/z—l/zr(;ﬁ%)}x(l +o(1))
[Vt e @ r(éf(%
_ ay((y ;a)z)k/zr(z%ﬁ(%)} x (14 o(1)) = 2k+1/]§!1f:1;\)/§(%)
[gay% fear \;za)k _ :;;)" eay%] « (1 + o(1))
KEPVT ary — af x (14 o(1) (4:60)

In (4.60), by using the Gamma duplication formula

Pt 1/2) = a2 L2,
I'(z)
we get
| e for -0 - 00 + 2]
0
=27 (yy — Y x (14 0(1)) = e 2 y* x (1 + o(1)), 4.61)
as claimed in (4.55).

Remark The real use of Proposition 1.2.1 is that by using (4.54), we get an exact
analytical formula for A, in terms of the confluent hypergeometric function. If
all we care for is the asymptotic order result (4.55), then we may obtain it in a
less complex way. Indeed, by using techniques in Feller (1971, pp 442-446) and
Theorem 3.1 in Berman (1992), we can conclude that foooz e %Py —2)dz =

ykemr [* 2 ¢(t)dt x (14 o(1)), and (4.55) follows from this.
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Corollary 1.2.8 Consider generalized Hodges estimates of the form (4.2) with a,, =
0. Let h(0) = % e 19/ and w(0) = m,(0) = /nh(8./n). Then,

262 —1
N, = d (1 +o(1)), if Vary(0) # 1 < 207 —1 # 0, (4.62)
n
and,
2 7Vn\/§

Ay ==X (4 o(l), ifVar@)=1w202—1=0 (4.63)
n

This corollary follows by using the formula in (4.53) and the result in (4.55). Notice
that the critical issue in determining the rate of convergence of A\, to zero is whether
or not Var,(6) = 1.

Asindicated previously, we can generalize the result on the asymptotic order of the
Bayes risk difference A, to more general priors. The important thing to understand
is that Theorem 1.2.9 (more precisely, (4.48)) gives a representation of A, in a
convolution form. Hence, we need to appeal to results on orders of the tails of
convolutions. The right structure needed for such results is that of regular variation.
We state two known results to be used in the proof of Theorem 1.2.10 as lemmas.

Lemma 1.2.1 (Landau’s Theorem) Let U be a nonnegative absolutely continuous
Sfunction with derivative u. Suppose U is of regular variation of exponent p # 0 at
oo, and that u is ultimately monotone and has a finite number of sign-changes. Then
u is of regular variation of exponent p — 1 at oo.

Lemma 1.2.2 (Berman (1992)) Suppose p(z) is a probability density function on
the real line, and q(z) is ultimately nonnegative, and that w(z) = — diz logq(2),v(z) =

—diz log p(z) exist and are functions of regular oscillation, i.e., if 7,7 — 00, 5 -

1, then j{((;,)) — 1if f = w or v. If, moreover, liminfz_mod%logq(z) >

liminf__, 4 log p(z), then, [*5 q@)p(y —2)dz = q(y) [Tog e p(2)dz (1 +
o(1)), as y — oo.
We now present the following general result.

Theorem 1.2.10 Suppose assumptions (1)-(7) hold true and if —logq(z) is a
function of regular variation of some exponent p # 0 at z = co. Then,

2
3w

A, = % (I +o0(1)), asn— oo. (4.64)

Proof By assumption (6), w(z) is ultimately monotone, and by assumption (5), w(z)

is ultimately positive. By hypothesis, —log g(z) is a function of regular variation.

Therefore, all the conditions of Landau’s theorem (Lemma 1.2.1) are satisfied, and

hence it follows that w(z) is also a function of regular variation at co. This will imply,

by well known local uniformity of conver(g)ence for functions of regular variation
w(zZ

that if z,7 — oo, and Zi — 1, then ey 1. By assumption (7), we have
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lim sup,_, . w(z) < 00 = limsup__, diz — log ¢(z). Hence, we can now appeal to
Lemma 1.2.2 to coclude that

/ q@Qd(vn — 2)dz = q(vn) / e M (2)dz (1 + o(1))

2
i W(Vn)]
= q(mez[ (1+o(1)
(by completing the squares), and hence, by (4.48),

2 o0
A= / 4@ [$(n — 2 — B + 2]z
nJ_so

2 (o]
= ;[ q(@2)P(yn — 2)dz(1 + o(1))

o]
2

% w(¥n)
_ % (1 + o(1), (4.65)

as claimed.
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Chapter 5

A Note on Nonparametric Estimation of a
Bivariate Survival Function Under Right
Censoring

Haitao Zheng, Guiping Yang and Somnath Datta

5.1 Introduction

Bivariate survival or event time data are frequently encountered in biomedical re-
search. Examples include data obtained from twin studies, data collected on eyes,
ears, legs, breasts or kidneys from the same person, event times of two related dis-
eases happening in one patient, etc. Like the univariate survival data, the bivaraite
survival times are not always observed due to right censoring. Generally, each of
the two component survival times 7 is subject to right censoring by a correspond-
ing censoring time C;, j = 1,2. In some applications, it may be assumed that
C| = C; and this type of censoring is sometimes referred to as univariate censor-
ing. However, in general, the two censoring times are distinct and the data consists
of independent and identically distributed (i.i.d.) copies of following four tuples:
D = (X],X2,81,82),Where Xj = Tj VAN Cj,and (Sj = I(T] < Cj), J = 1,2, and
the problem at hand is that of estimation of the bivariate survival function of
T =(T\,T,), S(t;,t0)= Pr{T, > t;, T» > t,} on the basis of Dy, ---, D,.

This problem has received considerable attention over the years. However, unlike
the case of univariate survival data where the celebrated Kaplan—Meier estimator is
“the” solution, this problem has led to many solutions each with its pros and cons.
In the remainder of this section, we briefly review a number of these estimators and
discuss the main issues associated with them. In the next section, we introduce a class
of novel bivariate function estimators. Chapter 3 reports the results of a simulation
study which shows superior performance of our estimators over existing estimators.
In Sect. 4, we apply our estimators to areal life bivariate data set for illustration where
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we also discuss an appropriate resampling scheme for construction of a confidence
interval. The paper ends with a discussion section (Sect. 5).

As mentioned before, unlike the univariate case, there are several nonparametric
estimators of the bivariate survival function that were proposed over the years. Hanley
and Parnes (1983) and van der Laan (1996, 1997) studied the nonparametric max-
imum likelihood estimation (NPMLE) of bivariate survival function. A maximum
likelihood approach with imputed observations was undertaken by Pruitt (1991). Lin
and Ying (1993), Wang and Wells (1997) and Tsai and Crowley (1998) proposed
some methods for estimation problem under some special censoring mechanisms,
for instance, univariate censoring. Dabrowska (1988) proposed a bivariate product
limit estimator using product integration. Prentice and Cai (1992) used marginal sur-
vival functions and their covariance function to estimate a bivariate survival function.
Akritas and Van Keilegom (2003) utilized a marginal distribution function estima-
tion combined with a conditional distribution function to estimate a bivariate survival
function. Dabrowska (1988), Pruitt (1991), van der Laan (1996) and Akritas and Van
Keilegom (2003) seem to have received the most attention in the literature.

As pointed out by Akritas and Van Keilegom (2003), many of these estimators are
not proper probability distributions (even after normalization) or have non-explicit
formulae, and some do not behave well in practice or depend heavily on the choice of
smoothing parameters. Among other things, many such estimators (e.g., Dabrowska,
1988) may assign negative masses to certain rectangles. Recently, Shen (2010) de-
veloped three new nonparametric estimators and studied the performance of the
proposed methods using simulation. Dai and Fu (2012) proposed a novel estimator
based on a polar coordinate transformation.

Extensive comparative studies for some of these estimators have been performed
by various researchers. For instance, van der Laan (1997) compared the Dabrowska
estimator, the Prentice-Cai estimator and the NPMLE of van der Laan (1996). Akritas
and Keilegom (2003) compared their estimators with those of Pruitt (1991) and van
der Laan (1996). They demonstrated through simulation studies that their estimator
is more efficient and easy to calculate. However, their estimator does not reduce to
the empirical survival function when the data has no right censored observations.
Very recently, Wang and Zafra (2009) computed a Volterra estimator with dynamic
programming and compared it with Dabrowska estimator. They have shown that the
new method improved the computational efficiency and produced an estimator with
reasonable performance.

5.2 The Estimators

We propose a class of nonparametric estimators of a bivariate survival function under
full bivariate censoring starting with a basic estimator constructed using the principle
of inverse probability of censoring weighting (IPCW). This technique has its root
in sample survey (Horvitz and Thompson 1952). In the survival analysis context,
this was first used by Koul et al. (1981) and later on popularized by Robins and his
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co-authors (Rotnitzky and Robins 2005; Satten et al. 2001; Satten and Datta 2001).
Although itis not immediately obvious, it turns out that this basic rewighted estimator
is equivalent to the estimator proposed by Akritas and van Keilegom (2003).

5.2.1 A Basic IPCW Estimator

First we consider estimating g (t;;5) = P (T} > t;|T, = s) for s,; > 0. Let
0 < h < 1 be a bandwidth tending to zero with the sample size. Note that

P{T, € [t,t +dt), T, € [s — h,s + h]}
g1 (ti;s) =~ 1_[ 1 -
i< P{Tl >t,T, €[s — h,s+h]}
r(: P{T, €[t,t +d1),8, =1,Tr € [s — h,s +h],6, = 1}
P{Ty>1,Ci>t,Th €[s — h,s+hl,6 =1} '

<t
Therefore an estimator of P (T} > t;|T, = s) is given by the product limit

dN (t;s,h))

Y (t;5,h) SR

?1 (tlug)-‘:i;(Tl >t1|T2:S):l_[(l_

t<t|

where
N(t;s,h) =Y I (T <t,8;=1,Ty €[s — h,s +h], 8 = 1)
i=1
and

Y (ts,h) =) 1 (Ty ACiy =0,y € s — hys +h].8y = 1).

i=1

Basically, the above estimator is a conditional Kaplan estimator with the uniform
kernel; it is a slight generalization of the Beran’s estimator (Beran, 1981) since the
conditioning variable 7 is also subject to censoring. It is possible to use general
kernel based weights (Meira-Machado et al. 2013) in defining the above conditional
counting and number at risk processes.

Next, note that the bivariate survival function can be expressed as a mean
S(t,) = E{g (t1;T) I(T, > t)}. Therefore, using the IPCW principles to
estimate means (Datta 2005), we can estimate the joint survival function estimator
by

~ 1 & 31 (11 Do) 8o 1 w21 (t1; Xa1) 8
GRS P QUL L SU PR S o TRULRC DL TS,
n K> (Thi—) K> (X2i—)

i=I i=1
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where K. » is a Kaplan—Meier estimator of the survival function of C; (right censored
by 7,); note that K, can be computed by the standard Kaplan-Meier product limit
formula with the data { X;, 1 —8;; 1 < i < n}. We can exchange the roles of 7| and
T, in the above estimator to obtain yet another bivariate survival function estimator

gz (125 Thi) 81 8 (123 X1i) 81
S, (0, 1) = Ty > )=~ 822200 poy )
2 (1) = ; R (T i >t ; % (XD i >t

and more generally, we can take a convex combination of these two estimators to
obtain a class of IPCW estimators

Sw (11, 1) = a(t1, )8, (11, 12) + {1 — altr, )} S (11, 12) » (5.2)

where 0 < a(t1,1,) < 1is a known (user selectable) function.

It turns out that this IPCW estimator is well connected to the Akritas and Van Kei-
legom (2003) (AK, hereafter) estimator. They obtained their estimator by averaging
(integrating) a Beran’s estimator g; with respect to the Kaplan-Meier estimator of
T, = 3 — j. Since Satten and Datta (2001) showed that the Kaplan—Meier
estlmator has a IPCW representation, we immediately obtain the following result.

Proposition 1. The IPCW estimator (1.2) is the same as Akritas and Van Keilegom
estimator.

This IPCW estimator was proposed by Yang (2005), where the connection with AK
was not established. Note that Sy (#;,#,) may not be a proper bivariate distribution
function unless «(t1, 1) is free from ¢, t,. Furthermore, it does not reduce to the
empirical survival function for uncensored data.

5.2.2 A Class of Modified Estimators

We now introduce a new bivariate survival estimator that uses the above estimator
in its construction and is expected to be more efficient. One nice feature of the new
estimator is that it reduces to the empirical survival function in the case of complete
(e.g., uncensored) data.

The idea behind the new estimator is as follows. Consider the following repre-
sentation of the empirical survival function

Su(tist) = n7' Y " 8udul (T > 11, T > 1)

i=1
nt Y 8udul (T > 11, Toi > 1)

i=1

n' Y " Subul (Tii > 11, T > 1)

i=l1
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A0 Y 8ubul (Tii > 11, Ty > 1) (5.3)

i=1

where § ji»J = 1,2, indicates that the jth component is censored. Note, however,
that only the terms in the first sum can be evaluated in the presence of censoring.
Therefore, we replace the terms of the other sums by their conditional expectations
given the available data in a suitable way. These conditional expectations can be
estimated using our previously defined estimators of the conditional and bivariate
survival functions.

The second summand in (5.3) is replaced by

E (81621 (T1; > 11, Toi > 1) | X11, X2, 81, 821)

P (Ty > 1 v Coi|Tyy)

= 81821 (X1; > 1)
P (T > Co|T1:)

We can use our earlier estimator g> to estimate the above conditional probabilities.
The third term of (5.3) can be handled in a similar way. The summand corresponding
to the last term of (5.3) is replaced by

E(3 6ol (Ty; > 1, T, >t)|X Xi,8 3)——85 01V Cuinta V Cai)

Note that we could use our preliminary IPCW estimator §W in estimating this term.
Finally combining the terms together we get second estimator of the bivariate survival
function that appears to be novel in the literature of bivariate survival estimator. A
penultimate form of this work appears in an unpublished thesis by Yang (2005); we
call this estimator described below a 1-step modified estimator

Sim () = n! D Sudul (Xy > 1, Xai > 1)
i—1
e 2 (1 vV X035 X1i)
7ty C8bd (Xy > 1) T
12:1: 8> (Xoi5 X1i)
e g1 (n Vv X155 Xo1)
A0ty 81l (Xoj > 1) T
; 81 (X1i5 Xoi)
—_ Sw(t VXV X
3.5 w (f lis 2 2). (5.4)
Sw (X1i, X2:)

Note that we can use (5.4) iteratively to obtain a sequence of bivariate survival
function estimators
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n
Sewm () = n! Z5li52i1(xli > 11, Xoi > 1)
i—1
n -~
_ VvV Xy X
+n! 2511‘521‘1 X1 > 1) —g2£2 _2l 1)
P 82 (X2i5 X1i)
n -~
_ = g1 (11 VvV Xiis Xoi)
7t ) Sudnl (X > 1) T
Z o l 81 (X1i5 X2i)

i=1

- = S (1 V XV Xo0)

15,5y Skt (1 1.tV Xo;
Se—1,m (X1i, X2i)

for k > 1, where §1,M = §W. We call this a k-step modified estimator (MB-k).

5.2.3 Bandwidth Selection

Akritas and Van Keilegom (2003) suggested a resampling based bandwidth selector.
Here we propose a cross-validation based bandwidth selector which could be com-
putationally less intensive. Let S(¢1,#) = S(#1, 2; k) be a bivariate survival function
estimate where £ is a smoothing parameter. Let us attempt to minimize the following
(weighted) integrated mean squared error:

IMSE = E / S(t1.1) — St 1) (H (. di)),

where H is the bivariate cumulative hazard function,

S2(11, 1) =
= E/ ———{=8(dt,dr)} —2ES(T", T,)) + / S, ){—S(dt1,dn)}
S(t1,12)

where (T, T;")is an independent (of the original sample) realization of the true
bivariate failure time.

Since, the third term is a constant it can be dropped from the minimization process.
Furthermore, replacing the first two terms by their estimates we get the following
CYV criterion function to be minimized:

2 i ’S\—i(XliaXZi)(sli(SZi'

— | <2 7
CVan = [ FnlTn ) — 13 "L,

i=1

here /S\,,C is a bivariate survival function estimator of the censoring times (that may
be based on an auxiliary bandwidth that is expected to have little effect on the entire
process) and S_; is the bivariate survival function estimator based on the sample with
the ith pair deleted. Finally, & can be selected to minimize C'V over a grid of values.

We have not studied the performance of this bandwidth selector in this paper. It
may be pursued elsewhere.
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Table 5.1 Design choices for

. . Parameters Values
the simulation
Correlation Coefficients p 0,0.6
Failure Time Quartiles ¢; 0.2,0.5,0.8
Sample Size n (bandwidth 2(n)) 50 (0.5), 100 (0.3), 200
0.2)
Censoring proportion 0.2,0.5

5.3 Simulations

We conducted a simulation study to compare the performances of the bivariate sur-
vival estimators described in the previous section. In particular, since the IPCW
estimator is the same as the one proposed by Akritas and Van Keilegom (2003), this
provides a comparison between that and the novel modified estimators. It is perhaps
worth noting that in their paper, Akritas and Van Keilegom already established su-
periority of their estimator over earlier estimators developed by Dabrowska (1988),
Pruitt (1991), Prentice and Cai (1992), Van der Laan (1996), and Wang and Wells
(1997). Therefore, this also provides a basis for an indirect comparison with those
estimators.

For the IPCW or AK estimator, we considered both uniform and normal kernels.
However, in order to minimize the computational burden, we only use the [PCW
estimator with a uniform kernel to compute our modified estimators. Also, throughout
the weight function o was taken to be 0.5.

The true survival pairs were generated from a bivariate log-normal distribution;
i.e., log (T1,T») ~ N, (0,0, 1,1, p). The censoring distribution function is bivariate

Gamma with independent components; that is Cy, C» i G (o, 1). We adjust the
values of « to control the censoring rate.

The scope of this simulation study was fairly extensive. This included comparing
performances under two choices of the correlation between the log-survival times:
zero and moderate. Three sample sizes 50, 100, and 200 were considered in this
study. The estimators were computed over a grid of quantile pairs. We also consid-
ered different censoring proportions (rates). For computational ease, a non-random
bandwidth sequence decreasing with the sample size was used. These are listed in
Table 5.1 below.

For each simulation setting, we compute the bias and mean squared error of
the estimators based on the Monte Carlo technique with 500 trials each. These
values are reported within parenthesis in Tables 5.2-5.5. In these tables, the format
(10°xBIAS, 10°xMSE) is used; for example, (—3.56, 4.48) means that bias is
—3.45 x 1073 and MSE is 4.48 x 1073. We have considered the following five
estimators: IPCW/AK with uniform kernel, IPCW/AK with normal kernel, MB-1,
MB-2 and MB-3.

InTables 5.3 and 5.5, we report the simulation results for p = 0.6. We compare the
results under different censoring proportion. With censoring proportion 0.5, we find
that the modified estimators give much better result than the IPCW/AK estimators
in terms of smaller bias and smaller MSE for all sample sizes under consideration.
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Table 5.6 Range of kidney

X i . . Event times X Percent X> Percent
infection times (in days). censored censored
Range [2,562] 28.9 [5,511] 18.4

IPCW/AK with the uniform kernel has better performance than that with normal
kernel. We observe the same pattern of performance amongst the five estimators
at 20 % censoring as well. All four estimation methods have better performance at
larger sample size and/or small censoring proportion. The modified estimators MB-2
and MB-3 have only slightly better performance than the one step modified estimator
MB-1 in most cases.

When the two components of bivariate survival data are independent, the relative
performances of [IPCW/AK and the MB estimators are mixed (Tables 5.2 and 5.4).
However, for moderate (50 %) censoring, the MB estimators have better performance
than the IPCW/AK estimator in terms of MSE. If censoring proportion decreases all
methods perform better in terms of MSE.

5.4 An Application to Real Data

We use our MB-1 bivariate survival estimator on a data set from McGilchrist and
Aisbett (1991). This data set contains recurrence times to infection at the point of
insertion of a catheter for 38 kidney patients using portable dialysis equipment. Two
times to recurrence of an infection (days since catheter placement for each episode)
were recorded as 77 and 7> for each patient; §; and §, were also recorded as the event
(infection or censoring) indicators.

We present the range of the event times X ; and the corresponding censoring rates
in Table 5.6. The overall censoring rate, where at least one of 7; or 73 in a pair was
right censored, was 39.5 %.

We construct our estimator MB-1 on a bivariate grid of 30x30 pairs of time
points that are evenly spaced between the observed marginal ranges in the data set.
For reference to the IPCW/AK estimator that was constructed in Akritas and van
Keilegom (2003), we choose the same bandwidth of 2 = 80. The result is displayed
in Fig. 5.1.

We also report (Fig. 5.2) the corresponding marginal estimators of the survival
functions of T}, j = 1, 2. The corresponding pointwise confidence intervals were
obtained by a smoothed bootstrap. Let S be our MB-1 estimator of the joint survival
function of T = (T}, T5) and by switching the roles of T and C, let SC be the MB-1
survival function estimator of the pairs of censoring times C = (Cy, C,). A smoothed

T5,),1s generated from §(-, < h),
s C5,)are

bootstrap sample of size n, (T}, T5}) -+, (T},

and independently, the corresponding censoring pairs (C};, C3,) - -+, (CT,,

generated from SC(-, -; h) to produce X5 =TinC, 05 = 1T <Ch), j =
1,2; 1 < i < n.Note that a larger bandwidth h = h'2 is needed to generate the
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Time 1 Time2

oo 400 300 200 100 0 0 100 200 300 400 500
5

1.0 —

0.8 —

0.6 —

S(t1,12)

0.4 —

0.2 —

0.0

Fig. 5.1 Estimated bivariate survival function for two kidney infection times (in days)

bootstrap version of the data in order to capture the bias term in the bootstrap world
(Li and Datta 2001).

Let Sy (t1;h) = S (11, 0; h) denote the marginal survival function estimator of 77.
For0 <o < 1,let Aj_g/2 (1) be the (1 — a/2) x 100t percentile of the bootstrap

distribution of
A* = ‘sin’1 {,/:S'\f (tl;h)} —sin”! { §1(t1;Z)} )

where §i‘ (t1; h) uses the same bandwidth as in the original but is based on the
bootstrap sample; however, :9\1(t1 ; h) for centering is recomputed from the original

sample but using the new bandwidth 2 = k', Then the pointwise confidence interval
for the marginal survival function of 7; at a time ¢, is given by [L, U], with

L = sin® {max (O, sin”! {\//S\l (tl;h)} - /A\1a/2)} )
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SM)

T T T
300 400 500 600

T

Fig. 5.2 Estimated marginal survival functions with 95% confidence intervals for kidney infection

times (in days)

and

U = sin? {min (%,sin_1 {,/3\1 (tl;h)} + Zl_a/2>} ;

the confidence interval for the 7, can be calculated in the same way.
The two marginal distributions look largely similar (Fig. 5.2); however the second

infection time appears to be stochastically larger.
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5.5 Discussion

In this paper, we propose a class of novel non-parametric estimators MB-k of a
bivariate survival function under general independent right censoring. The proposed
estimators were investigated via an extensive simulation study and compared with the
I[PCW estimators which were shown to be equivalent to earlier estimators proposed by
Akritas and Van Keilegom (2003). From our simulation study, we find that correlation
between paired failure times may play an important role on the behavior of our
bivariate survival function estimators. The novel estimators may indeed perform
better if the association between the paired survival times is moderate/strong.

It is fairly easy to extend these estimators to a general dependent censoring setup
due to their IPCW forms. Basically, we can handle any censoring mechanism that can
express the hazard of censoring C; in terms of an observed, possibly time dependent,
predictable covariate Z;(¢;). Once we fit the appropriate model we would replace
the K ; by the following formula

~ o
K;(tj) = exp {—f 2Ci(s|Zj(u),0 <u < S)dS} .
0

A flexible model suitable for this is the additive hazard model by Aalen (1989). See
Satten et al. (2001) for further details of the construction of this general K ;.
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Chapter 6

On Equality in Distribution of Ratios
X/(X+Y)and Y/(X+7Y)

Manish C. Bhattacharjee and Sunil K. Dhar

6.1 Introduction and Summary

One often comes across problems where the probability of male and that of female
each being equal to 50 % is questioned. This question can be thought of in terms
of the human sex ratio of X : Y (which is currently 101 male to 100 female, CIA
Fact Book, 2013) and the corresponding proportions being same to that of their
corresponding distributions being identical. In this context, X and Y are thought to be
nonnegative random variables. However, if the X and Y are independent identically
distributed i.i.d.; it is well-known that the ratios X/(X + Y) and Y/(X + Y) are
equal in distribution. This prompts the question: if we remove the assumption of
mutual independence of X and Y, can the equidistribution of these ratios still hold,
and under what reasonable conditions? In what follows, we explore some general
answers to this question. We show that, if X and Y have the same distribution then
XLH need not have the same distribution as x_fry and identify sufficient conditions
for an affirmative answer. Extension of our main result to the case of n-dimensional
random vectors (X, ---, X,) forn > 2 is indicated.

Generically, the cuamulative distribution function (c.d.f.) of arandom vector (X, Y)
is denoted by Fx y and its probability density function (p.d.f.), when it exists, by
fx,y. For higher dimensional random vectors (Xy,---, X,), n > 2; Fy, .. x, and

fx,..x, correspondingly denote its c.d.f. and p.d.f., respectively. We use £ to denote
equality in distribution of (r.v.s).

S. K. Dhar (P<)) - M. C. Bhattacharjee

Center for Applied Mathematics & Statistics, Department of Mathematical Sciences,
New Jersey Institute of Technology, NJ 07102, Newark, United States
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6.2 Counterexample

d .
We show a counterexample to demonstrate that X = Y does not guarantee equality
of distribution of the ratios —%~ and ——. For this purpose, we use a suitable joint

: X+Y X+r- 3
density of (X, Y), that we construct via the standard normal density
p) = — ( x2>
x) = exp|l —— ], —00 < X < 00.
V2 P 2

Consider the joint density function on R? = ( — 00, 00) X ( — 00, 00), given by

Frr(x, ) = [1 4+ xy$(x)p* (M ]P(x)(y).

To see that fx y is a valid joint density we need to observe that ¢(x) < 1 and that
|xp(x)| < 1 (because % < exp(x?)). This in turn gives 1 + xyg(x)¢*(y) > 0 and
the fact that the mean of a scaled standard normal random variable is zero, which
make fxy a valid density and both the marginals to be standard normal. Hence, X

and Y have the same distribution. We will now derive the density of V = XL” and

then show that densitiesof Vand 1 — V = xiw are not the same. Let W = X and
[w]

Y = % The absolute value of the Jacobian is given by T

density fw.y of (W, V) on the R? plane is given by,

Hence, the joint

_ wy [w|
Jwyw,v) = fxy <W, a_ v)) T

which simplifies to,
—w? w2y?
[w] N ( wy )exp (T - (1—v)2>
2 (1 —v)? 1—v (2m)3/2

—W2 W2V2
X exp T exXp —m .

In the above joint density, we integrate out the w variable, to get the marginal density
of V. Note that a closed form of the density of V can be obtained by using the
facts that if N is a normal random variable with mean zero and variance o} then

E|N| = \/goN and E|N|* = 2,/ 207 Hence, the density of V is given by

b/

1 + v(l —v)
T2+ =v)?) 275221 — v)? 4 3v2)%

Clearly, fy(v) # fv(1—v), and the latter is the density of U := XL” The two ratios
U and V are not equal in distribution.

Dependence between X and Y in the counterexample does not establish the ne-
cessity of their statistical independence for the equality in distribution of the ratios
U,V to hold. In fact, our results are typically based on the assumption of a joint
distribution, and cover independence as a special case.

Fov) = / Fuy (o v)dut =
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6.3 Main Results

For arandom vector (X, Y), denote the ratios of the two component r.v.s to their sum,
by
X Y
Ui=——, V= .
X+Y X+Y

6.1)

It may be noted that while U + V = 1, the r.v.s UandV cannot be thought of as
the proportional contribution of the components of (X, Y) to their sum, as is obvious
from the preceding counterexample.

If X, Y are absolutely continuous with a (joint) density, then so are U and V, with
their respective densities related via

fv@) = fu(l —w). (6.2)

Standard calculations yield an expression for the density of U . In particular, choosing
the transformation

X

U=——, T=X+Y;
X+Y +

the joint density of (U, T) is easily seen to be fy r(u,t) = fxy(ut, (1 —u)t) |t], so
that the marginal density of U is

fulu) = / F (ur, (1 = wye) 1e] . (6.3)

oo

which together with (6.2) implies
oo
frv) = / fxy ((1 -, vt) |t| dt
—00

£ /OO fX,Y<vz, a —v)t) It di = fu(v), —o0 < v < o0,

in general.
Define H to be symmetric in its arguments (x, y), if

H(x,y) = H(y,x),all (x, y).

If, however, fxy has this symmetry, then the earlier equality obviously holds. We
thus have the following proposition.
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Proposition 6.1 If (X,Y) admits a joint density that is symmetric in its arguments,
then the ratios in (6.1) are equal in distribution (U < V).

Remark 1. There is no explicit assumption that X = Y in the premise of the earlier
proposition, as it is an easy consequence of the symmetry; viz,

fx(x) = / fxy(x,y)dy = / fxy(y,x)dy = fr(x).

Remark 2. In view of the Remark 1 earlier, in the absolutely continuous case, the

classic result that X, Y i.i.d. implies U £V follows as a special case of proposition
6.1, since if X, Y are i.i.d. with a common p.d.f. fx(-) = fy(-), then the joint p.d.f.
satisfies

Fxy@,y) = fx()fr(y) = fr)fx(y) = fxr(y, x).

While proposition 6.1 provides an answer to our question when X, Y are absolutely
continuous, an affirmative answer in the general case, where the joint c.d.f. of X, Y
may also have discrete or/and singular components, is given by our next proposition.
Note that F(x,y) being symmetric in (x, y) implies that P{(X,Y) € (—o0,x] X
(—00,y]} = P{(Y,X) € (—00,x] x (— o0, y]} for all (x,y) € R?. This, in turn
implies that (X, Y) < (Y, X).

Proposition 6.2 If the joint c.d.f. Fx y(x,y) is symmetric in (x,y), then U Ly,

Proof. With Fx y(x,y) also denoting the Lebesgue—Stieltjes measure on the plane
induced by the joint c.d.f., we have,

E@'"Y) = / / exp(it( u ))de,y(x,y)

X +y
o0 o0 y
= / / exp (it(l - —)>dFX,Y(y7x)
oo J—oo x+y
= E(""7Y) = E('"), —00 < t < 00, (6.4)

where the second equality uses the symmetry condition of the joint c.d.f. and the
two corresponding measures are the same because they are seen to be same of the
relatively determining class of sets (— 0o, x] x (— 00, y]. Thus, the ratios U and V
having the same characteristic function and therefore must be equal in distribution.

Alternately, Fx y(x,y) = Fx.y(y,x)implies that (X, Y) Ca (Y, X)and h(x,y) = xiy

being a continuous function gives A(X,Y) 4 h(Y, X). Interestingly, converse of

Proposition 6.2 is not true namely, X /(X +Y) < Y /(X+Y)doesnotimply that X and
Y have symmetric distribution functions. To see this, let (X, Y) take on the bivariate
pairs (1,2) and (4,2) with probability 1/2 each. Then X/(X + Y) and Y/(X 4+ Y)
both have identical distributions, taking on the values 1/3 and 2/3 with probability
1/2 each.Yet,1/2=P[X =1,Y =2]# P[X =2,Y =1]=0.
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The joint c.d.f.’s symmetry condition was motivated by the corresponding

assumption in Proposition 6.1 and the following observation.

Lemma 6.3

(i) Suppose X, Y are absolutely continuous. Then Fy y is symmetric in its arguments
(x,y)if and only if sois fxy.
(i) The symmetry condition in Proposition 6.2 implies X and Y are identically
distributed.
Proof.

(i) Suppose fxy is symmetric in (x,y). Then the nonnegativity of the integrand
and Fubini’s theorem implies,

x y
FX,Y(X,)’): P(X =x, Y = y) = [ / fX,Y(u’V) dv du
—00 J—00

= /X /’V fxyy(v, M) dv du
y X
= / / fxy(,u) dudv

= PX=y Y =<x)=Fxy(y,x).
Conversely, supposing Fy y is symmetric in its argument (x, y), and has a joint
density; we have,
2 2

F ,y) =
dx,dy Xy (¥ 7) dax, dy

fxy(x,y) = Fxy(y,x) = fxy(,x).

(ii) Using the pointwise symmetry of Fy y(-,-) on R2,

P(X <x)= lim Fyy(x,y) = lim Fyy(y,x) = P(Y < x).
y—)DO y—)OO

Remark 3. The symmetry condition in Proposition 6.2 is of course equivalent to
X,Y being “exchangeable”, i.e., (X,Y) 4 (Y, X). For a pair of r.v.s however, it is
much more simply stated as the property that the joint c.d.f. Fy y(-,-) : R — [0, 1]
is symmetric in its arguments. For random vectors of higher dimensions, the corre-
sponding condition that the c.d.f. Fy, .. x, is permutation invariant in its arguments
is more succinctly and elegantly descried as X, - - , X,, being exchangeable; thus
generalizing our earlier proposition as follows.

Proposition 6.4 If X,,---, X, (n > 2) is a finite, exchangeable sequence, then

Aka . .
S_j=S_’ Joke{l,2,---,n}, j#k

where S, :=>"_, X;.
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Proof.  Suppose Xi,---,X, (n > 2) are exchangeable, ie., (X;, - -,X;,) S
(Xy,- -, Xy) for all permutations (i}, -- ,i,) of (1,--- ,n). For brevity, denote by
X = (Xl""7Xn)»and
0, X = Xi,--, Xj—1,Xj41,- -, X)),

be the corresponding vector that skips the j-th coordinate X ;, and the corresponding
values assumed as, x and 0; X, respectively. When

ele ()

n

o0 u
/ exp(it_> dFX(-x19"'axjflau’xjﬁ’l""’xn)
_ S

oo n

o u
= f exp (ll‘s—> dF(X_,-,()_,-X)(u7 ij)

[0}

o u
= / eXp (lts_) dF(Xk,OkX)(uv ka)

= E{exp (it)é—:)},

where the value s, of S, is given by s, = u+ Z?:li#/ X;ors, = u+ Z?:l,-# x; in the

second or third integrands earlier, respectively. Note, the two equalities preceding
the last step hold, since (X ;,0;X) x4 (Xk, 0;X) for all pairs j, k, by exchange-
ability. Alternately, since (X;,0;X) < (X4,0,.X) and h(x) = % is a continuous

function, h(X;,0;X) < h(Xy, 0, X). Hence the result.

In conclusion, any Archimedian copula can be used as a generator of such ex-
changeable r.v.s, Nelson (1999) and Genest et al. (1986). These results are also
applicable to Bayesian contexts, where the observations are conditionally i.i.d. given
an environmental variable with a prior distribution.
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Chapter 7

Nonparametric Distribution-Free Model Checks
for Multivariate Dynamic Regressions

J. Carlos Escanciano and Miguel A. Delgado

7.1 Introduction

Parametric time series regression models continue being attractive among practi-
tioners because they describe, in a concise way, the relation between the response or
dependent variable and the explanatory variables. Much of the existing statistical lit-
erature is concerned with the parametric modelling in terms of the conditional mean
function of aresponse variable Y; € R, given some conditioning variable attime # — 1,
I,_; eR? deN, say. More precisely, let Z, € R", m € N, be a m-dimensional ob-
servable random variable (r.v) and W;_; = (Y;_1,...,Y;—s) € R®. The conditioning
set we consider attime f — 1 is given by [, = (Wl/_1 ,Z}),s0d = s+m. We assume
throughout the article that the time series process {(Y;, Z;)' : t = 0,%£1,£2,...} is
strictly stationary and ergodic. Henceforth, A" denotes the matrix transpose of A.

It is well-known that under integrability of Y;, we can write the tautological
expression

Yo = f(i—) + e,

where f(z) = E[Y; | I,_; = z], z € RY, is the conditional mean function almost
surely (a.s.) of Y, given I,_; = z,and ¢, = Y, —E[Y; | I,_] satisfies, by construction,
that Efe; | I,_1] =0 a.s.

Then, in parametric modelling one assumes the existence of a parametric family
of functions M = {f(-,0) : 8 € ® C R”} and considers the following regression
model

Yy = f(1i-1,0) + €(0), (7.1)

AMS 2000 subject classification. 62M07, 62G09, 62G10.
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with f([;_,60) a parametric specification for the conditional mean f(/;—;), and
{e;(®) : t+ = 0,+1,+£2,...} a sequence of r.v.’s, deviations of the model. Model
(7.1) includes classes of linear and nonlinear regression models and linear and non-
linear autoregression models, such as Markov-switching, exponential or threshold
autoregressive models, among many others (see Fan and Yao 2003).

The condition f(-) € M is tantamount to

Hy: Ele;(6y) | I,_1]1 =0 a.s. for some 8y € ® C R”.
We aim to test H against the alternative hypothesis
Hy: P(Ele,0) | ;11 #0) > 0,foralld € ® C R?,

where (€2, F, P) is the probability space in which all the r.v.’s of this article are
defined.

There is a vast literature on testing the correct specification of regression models.
In an independent and identically distributed (i.i.d) framework, some examples of
those tests have been proposed by Bierens (1982, 1990), Eubank and Spiegelman
(1990), Eubank and Hart (1992), Hardle and Mammen (1993), Horowitz and Hérdle
(1994), Hong and White (1995), Fan and Li (1996), Zheng (1996), Stute (1997),
Stute et al. (1998), Li and Wang (1998), Fan and Huang (2001), Horowitz and
Spokoiny (2001), Li (2003), Khamaladze and Koul (2004), Guerre and Lavergne
(2005) and Escanciano (2006a), to mention a few. Whereas, in a time series context
some examples are Bierens (1984), Li (1999), de Jong (1996), Bierens and Ploberger
(1997), Koul and Stute (1999), Chen et al. (2003), Stute et al. (2006) and Escanciano
(2006b, 2007). This extensive literature can be divided into two approaches. In
the first approach test statistics are based on nonparametric estimators of the local
measure of dependence E[e;(6y) | I,—1]. This local approach requires smoothing of
the data in addition to the estimation of the finite-dimensional parameter vector 6y, and
leads to less precise fits, see Hart (1997) for some review of the local approach when
d = 1. Tests within the local approach are in general asymptotic distribution-free
(ADF).

The second class of tests avoids smoothing estimation by means of an infinite
number of unconditional moment restrictions over a parametric family of functions,
i.e., it is based on the equivalence

Ele(00) | I-1]1 =0 a.s. <= Ele;(6p)w(l;-1,x)] =0,
almost everywhere (a.e.) in IT C RY, (7.2)

where IT C RY, g € N, is a properly chosen space, and the parametric family of
functions {w(-, x) : x € I1} is such that the equivalence (7.2) holds, see Stinchcombe
and White (1998) and Escanciano (2006b) for primitive conditions on the family
{w(-,x) : x € II} to satisfy this equivalence. We call the approach based on (7.2)
the “integrated approach”. In the integrated approach, test statistics are based on a
distance from the sample analogue of E[e,(6y)w(l;_1,x)] to zero. This integrated
approach is well known in the literature and was first proposed by Bierens (1982),
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who used the exponential function w(l,_1,x) = exp (ix'l,_), where i = /=1 de-
notes the imaginary unit, see also Bierens (1990) and Bierens and Ploberger (1999).
Stute (1997) using empirical process theory, proposed to use the indicator function
w(l;_1,x) = 1(Il;_; < x)in an i.i.d context. Stinchcombe and White (1998) empha-
sized that there are many other possibilities in the choice of w. Recently, Escanciano
(2006a) has considered in an i.i.d setup the family w(l,_y,x) = 1(8'l,_; < u),
x = (B, u) €Iy, where I, = S? x [ — 00, 00] is the auxiliary space with S¢ the
unit ball in R, i.e., S = {8 € R? : |B| = 1}. This new family combines the good
properties of exponential and indicator families and delivers a Cramér-von Mises
(CvM) test simple to compute and with excellent power properties in finite samples,
see Escanciano (2006a) for further details. Escanciano (2007) provides a unified the-
ory for specification tests based on the integrated approach for a general weighting
function w, including but not restricting to indicators and exponential families.

A tenet in the integrated approach is that the asymptotic null distribution of re-
sulting tests depends on the data generating process (DGP), the specified model and
generally on the true parameter 8. Consequently, critical values for integrated tests
have to be approximated with the assistance of resampling methods. In particular,
Escanciano (2007) justified theoretically a wild bootstrap method to approximate the
asymptotic critical values for general integrated-based tests. In contrast, Koul and
Stute (1999) avoided resampling procedures by means of a martingale transforma-
tion in the spirit of that initially proposed by Khamaladze (1981). However, Koul
and Stute’s setup was restricted to homocedastic autoregressive models of order 1.
Recently, Khamaladze and Koul (2004) have applied the martingale transform to
residual marked processes in multivariate regressions with i.i.d data, but the result-
ing test is not ADF since it depends on the joint distribution of regressors. The main
contribution of this article is to complement these approaches and extend them to het-
eroskedastic multivariate time series processes. We apply the martingale transform
coupled with the Rossenblatt’s transform on the multivariate regressors to get ADF
test free of the joint design distribution. We formally justify the effect of these trans-
formations on our test statistics using new asymptotic theory of function-parametric
empirical processes under martingale conditions. Finally, we compare via a Monte
Carlo experiment, our new model checks with existing bootstrap approximations.

The layout of the article is as follows. In Sect. 2 we present the ADF tests based on
continuous functionals of a martingale transform of the function-parametric residual
marked empirical process. We begin by establishing some heuristics for the martin-
gale transform. In Sect. 3 we establish the asymptotic distribution of our test under
the null. In Sect. 4 we compare the bootstrap approach with the martingale approach
via a Monte Carlo experiment. Proofs are deferred to an appendix.

A word on notation. In the sequel C is a generic constant that may change from one

expression to another. Throughout, | A| denotes the Euclidean norm of A. R’ denotes
the extended d-dimensional Euclidean space, i.e., @d = [ — o0,00]%. Let || X|| p be
the L,-normof ar.v X, ie., | XIl, = (E|X|")"/?, p > 1. Let Ny(e, H, |-l , ) be the
e-bracketing number of a class of functions H with respect to the norm |-[|,, i.e.,
the minimal number N for which there exist e-brackets {[/;, u;] : ||l iU ”,; <e,
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Hlj ||p < 00, ||uj ||p < o0, j =,1..., N} covering ‘H, see Definition 2.1.6 in van
der Vaart and Wellner (1996). Let €°°(H) be the metric space of all real-valued
functions that are uniformly bounded on . As usual, £*°(H) is endowed with the
supnorm, i.e., [|zllyy = sup,cy |2(h)| . Let = denote weak convergence on £*°(H),
see Definition 1.3.3 in van der Vaart and Wellner (1996). Throughout the article,
weak convergence on compacta in £°°(?) means weak convergence on £°°(C) for all

compact subsets C C H. Also iR and LA denote convergence in outer probability
and outer almost surely, respectively, see Definition 1.9.1 in Vaart and Wellner (1996).
The symbol — ; denotes convergence in distribution of Euclidean random variables.
All limits are taken as the sample size n — oo.

7.2 The Function-Parametric Residual Process
and the Martingale Transform

In view of a sample {(Y;,I/_;) : 1 <t < n}, and motivated from (7.2), we define
the function-parametric empirical process,

Ry(b,0) =n""7Y "e,(0)b(1; 1),

t=1

indexed by (b, 0) € B x ©, for a class of “check” functions B and a parameter space
®. Examples of B will be specified later. Two important processes associated to
R, (b,0) are the error-marked process R,(b) = R, (b,0y) and the residual-marked
process

Ry(D) = Ry(b,60,) = n~'*> e (0,)b(I,-1),

t=1

where 6, is a 1/n-consistent estimator for 8y (see Assumption A4 below). For con-
venience, we shall assume that B C Lz(ﬁd, G), the Hilbert space of all G -square
integrable measurable functions, where G(dx) = o>(x)F(dx), F(-) is the joint
cumulative distribution function (cdf) of I,_;, and o%() is the conditional error vari-
ance, i.e., 02(y) = E[e,2 | I,_1 = y]. As usual, Lz(ﬁd,G) is furnished with the
inner-product

(fog) = / F)gGdx).
]Rd

and the induced norm ||h|| = (h, h)'/?.

The aim of this section is to construct a suitable check space 3 such that the
process R;(b), with b € B, delivers tests based on test statistics, F(R,'l) say, which
are consistent and ADF. In this article we shall focus in a particular check space that
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makes use of the martingale transformation proposed by Khmaladze (1981, 1993)
for the problem of goodness-of-fit tests of distributions.

Let g(Io.60) = (3/30")f(lo,60) and s(ly,00) = o 2(Ilp)g(lo,H) be the non-
standardized and standardized scores, respectively. From Theorem 1 in Sect. 3,
under the null hypothesis and some mild regularity conditions, we have the following
relation between R, (b) and R,ll (b), uniformly in b € B,

R} (b) = Ry(b) — (b,s")/n(6, — 00) + op(1). (7.3)

This relation gives us a clue about how to choose b for the test based on R},(b)
being ADF. Namely, if b is orthogonal to the score, i.e., (b,s’) = 0, we have the
uniform representation

R)(b) = Ry(b) + 0p(1),

and the estimation of 6y does not have any effect in the asymptotic null distribution
of R,ll (b). Furthermore, it can be shown that the limit process of R,(b) is a stan-

dard function-parametric Brownian motion in L,(R ', G), that is, a Gaussian process
with zero mean and covariance function (by, b,). Following ideas from Khmaladze
(1993), a simple way to make b orthogonal to the score is to use a transformation

T from Lz(ﬁd, G) to Lz(ﬁd, G) with values in the orthogonal complement of the
space generated by the score s, and consider the transformed process R} (7). The
covariance function of the limit process of R!(7b) is then (T by, Th,), so unless T
is an isometry (i.e., (T by, Tby) = (b1, b2)), the Brownian motion structure is lost.
Therefore, we observe that a way to make the asymptotic null distribution “immune”
to the estimation effect and, at the same time, preserve the original covariance struc-
ture is to consider R!(7b), where T is an isometry with image orthogonal to the
score. In other words, a suitable check space to obtain consistent and ADF tests is
B ={Th : h € H}, for an isometry 7 with image orthogonal to the score (to obtain
the ADF property) and with suitable large class of functions H (to obtain consistency
in the test procedure).

A large class of isometries with the previous properties is the class of shift isome-

tries. Let bas = {s, fi, f2,...} be an orthogonal basis of Lz(ﬁd, G). Let us define
the isometry 7y, in the following way

7Zasszfl ﬁasfj:fj+1’j>l'

Then, it is easy to show that 7 is an isometry from Lz(@d, G)to Lz(ﬁd, G) with
values in the orthogonal complement of the score s. A remarkable example of a
shift isometry is the Khmaladze’s martingale transform (cf. Khmaladze 1981, 1993),
that posseses the added property of having an explicit formula. We use the same
notation as in Khmaladze and Koul (2004). Introduce the so called scanning family

of measurable subsets A = {A; : A € R} of Kd, such that
I: A, CA,Vz<u
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2: G(A_x) =0,G(Ax) =1
3: G(A,) is a strictly increasing and absolutely continuous function of z € R.

An example of scanning family is the following. Assuming that G(8y) is ab-
solutely continuous for some 8 € Rd, then the family A = {A; : z € R} with
A, ={ye R B’y < z} is a scanning family. Now define z(y) = inf{z : y € A.}
and

C, = /s(x,@o)s/(x,Qo)G(dx),
Ac

where A{ is the complement of A;. The linear operator T is given by

Tfu) = f(u)— Kfw), (7.4)
where
Kf(u) = / f(x)s/(x,OO)CZ_(;)G(dx)s(u, 6p) (7.5)
Az(u)

and f(-) € Lz(ﬁd, G). Such transformation was first proposed in the goodness-of-fit
literature by Khmaladze (1981, 1993). In the statistical literature this transformation
has been considered and extended to other problems in e.g. Stute et al. (1998),
Koul and Stute (1999), Stute and Zhu (2002) or Koul and Khmaladze (2004). This
transformation is becoming well-known in other areas and has been already applied
to a variety of problems in Bai and Ng (2001), Koenker and Xiao (2002), Bai (2003),
Delgado et al. (2008), Delgado and Stute (2008), Bai and Chen (2008), Song (2009,
2010) and Angrist and Kuersteiner (2011). It is not difficult to show that 7 defined
by (7.4) is an isometry from Lz(@d, G) to Lz(ﬁd, G) with values in the orthogonal
complement of the score s, see Khmaladze and Koul (2004) for the proof.

The martingale transform! T depends on unknown quantities which can be
estimated from a sample. The natural estimator of the transformation is

Tnf(u) = f(u) - / f(X)S,/I()C, etl)cy:;(x)Gn(d-x)sl’l(u9 On),
Azw)
where
Cn,z = /Sn(x’en)sy/,(X, 0,)G,(dx),
A

with G,(dy) = an(y)F,,(dy), F, is the empirical cdf of {I,_1}}_,, s,(l0,0) =
o, 2(Ip)g(1y,0), 6, is a /n-consistent estimator of 6y, and a,%(y) is a consistent
nonparametric estimator of o-2(y) (for instance, a Nadaraya-Watson estimator).

' The martingale trasform has also been variously referred to as: an innovation approach
(Khmaladze, 1988), and an innovation process approach (Stute, Thies, and Zhu, 1998).
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From the integrated approach we know that in the construction of consistent

tests, it is not necessary to consider the whole space of functions Lz(ﬁd, G). A
parametric family that delivers well-known limit processes is the indicator class
Bina = {10 <x)=1,() : x € Ed} C LZ(Ed,G). For the univariate case, i.e.,
d = 1, continuous functionals of standardizations of R,{(T,, 1,) deliver ADF tests
for Hy, see Koul and Stute (1999). However, in the multivariate case, d > 2, the
asymptotic null distribution of R,ll(T,, 1,) still depends on the conditional variance
and the design distribution. To overcome this problem we consider the so-called
Rossenblatt’s (1952) transformation. This transformation produces a multivariate
distribution that is i.i.d on the d-dimensional unit cube, thereby, leading to tests that
can be based on standardized tables. Let I, = (I;1, 112, . . ., I,4) and define the transfor-
mation u = (uy,...,uy) = Tgr(x) component-wise by u; = Fi(x;) = P(I;; < x1),
uy = (e | x1) = P < x2 | Inn = x1),.. g = Falxg | x1,..,%4-1) =
P(ly <xq4| 11 =x1,...,01,g—1 = x4_1). The inverse x = TR_l(u) can be obtained
recursively. Rossenblatt (1952) showed that U,_; = Tg(l;_) has a joint distribution
which marginals are uniform and independently distributed on [0, 1]¢.

In the next section, we shall show that under the null hypothesis and some mild
regularity conditions the transformed process J,, (1) = R}l(Tn(on‘l(-)lu o Tx(+))) con-
verges weakly to a zero mean Gaussian process in £>°(B,,), for a suitable chosen
set By, C [0, 114, with covariance function u; A uy, where for a = (ay,...,ay)
andb = (by,....,by),a Nb = min{al,bl} X oo X min{ad,bd}, that is, a standard
Brownian sheet.

In practice the conditional distributions Fi, ..., F;, are unknown and have to be
estimated. Following Angrist and Kuersteiner (2004), we consider kernel estimators

Fi) = n7"Y 10 < x)
t=1

n S (g < x) Ko (7 — 1)/ )

t=1

Fara | XiyenXgo1) = m
nilde—l((xd_ - I,_,ld)/hn)
=1

[l

where xd_ = (x1,...,%4-1), Itild = (L1, Li1a-1), Kj(x) = (27T)_j/2
Yoo vilowl ™ exp (= 0.5x"x /o), ST v = LY yulowl*' = 0, for | =
1,2,...,w—1,and h, = O(m~"/?*9)is a bandwidth sequence. Other higher order
kernels or other nonparametric estimators are possible, as long as A6(ii) in the next
section is satisfied. R R R

Our final process is J,, (1) = R;(Tn (on_l(-)lu o Tg(-))), where Tk uses the previ-
ously described kernel estimation. -7;(”) is called here the Khmaladze-Rossenblatt’s
transformed residual marked process. As a test statistic we consider in this article a
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CvM functional

oM, = / |5 Fo(du),
By,

where F,y(-) is the empirical distribution function of the transformed sample
(U1}, By, = {u € [0, 19 - /B;Tlgl(u) < xo}, B1 € R%, and xy < cois a
user-chosen parameter necessary to avoid non-invertibility problems of the matrix
Ch z(x)» see Koul and Stute (1999) for a related situation. In the simulations we choose
X as the (100 — d)% empirical quantile of the sample {8]1,_;}/_,. Other spaces B,
threshold values x( and functionals different from the CvM are, of course, possible.
Our test will reject the null hypothesis Hy for “large” values of CvM,,. Next section
establishes the asymptotic theory for CvM,, and Sect. 4 shows, via a Monte Carlo
experiment, that it leads to a valuable diagnostic test.

7.3 Asymptotic Null Distribution

In this section we establish the limit distribution of j,; under the null hypothesis
Hy. First, we state a uniform representation for the function-parametric process
R,ll (b), b € B, for a generic B. This result is of independent interest. To derive
these asymptotic results we consider the following notation and definitions. Let
Fo=o,1_,,... 1)) be the o-field generated by the information set obtained up
to time ¢. Let us endow B with the pseudo-metric ||-|| 5 . Let us define A = B x ©.
For a given class of function D we define for (r;,r;) € D x D

dyp(ri.r) =n"" Y E[e] | Fra]lrnUi) — -y

t=1

and

dp(ri,r2) = |leri(i—1) — &2 (L=, -
Define the set Ay = {(r1,12) € DxD :r| <12, d?D(rl, r) = 2_2‘7}. If the family
D satisfies that

d,%,D(rh r2)

sup = Op(D),

(ruehggeN dp(ri,r2)
we say that D has bounded conditional quadratic variation with respect to dp. Also,
we say that the class D satisfies a bracketing condition of order p > 2 and s > 0, in
short Dis BEC(p,s), if

o0

; 1/2
/(log(N[](sl/‘,D, 11, )" de < oo.
0

The following assumptions are sufficient conditions for the weak convergence of
R!(b) in £(B) for a general B.
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Assumption Al: (on the DGP)
Al@):{(Y;, Z)Y : t =0,%x1,+£2,...} is a strictly stationary and ergodic process.
Al(b): El&; | Fi_il=0a.s. forallt > 1,and E |&,|* < C.

Assumption A2: (on the set of functions B)
A2(a): (Locally Uniform L ,-Smoothness) Suppose that for some s > 0,Cy > 0,
and for p > 2, the following holds: for each b, € B,

sup le:bi(li—1) — €:ba(1;—1)]
breBillby—bal ;5 <5

< C\8°.
p

A2(b): (control the size of B) The class of functions B is BEC(p,s) for p and s
as inA2(a).

A2(c): The class B has bounded conditional quadratic variation with respect to
dp and the parametric space ® is compact in R”.

Assumption A3: (on the model) f(-,0) is twice continuously differentiable in a
neighborhood of 6y € ©. There exists a function M(I,_;) with sup,.¢ ‘g([,_1,9)| <
M(I;_), such that M(I,_,) is F(-)-square integrable.

Assumption A4: (on the parameter)

A4(a): The true parameter 0y belongs to the interior of ©. There exists a unique
61 such that |06, — 6| = op(1).

A4(b): The estimator 0, satisfies \/n(6, — 6y) = Op(1).

Assumption Al(a) is standard in the model checks literature under time series, see,
e.g., Koul and Stute (1999). A1(b) is weaker than other related moment conditions
in the literature and allows for most empirically relevant conditional heteroskedas-
tic models. A2 is needed for the asymptotic tightness of the process R)(b). The
bracketing entropy condition has been frequently used in the literature. Combined
with locally uniform L ,-continuity, the bracketing entropy condition can be used to
establish the stochastic equicontinuity of a process that involves non-smooth func-
tions containing infinite dimensional parameters. Assumption A3 is classical in the
model checks literature, see, e.g., Stute and Zhu (2002). Assumption A4 is satisfied
for most estimators in the literature, such as the conditional nonlinear least squares
estimator (NLSE), or its robust modifications (under further regularity assumptions),
see Koul’s (1992, 2002) monographs. Under Hj, a more efficient estimator than the
NLSE (see Wefelmeyer 1996) is given by the M -estimator satisfying the equation

> 02 U-)8Uim1 0)(Ys — f(Li—1.6,) = 0. (7.6)

t=1

A4(a) and A4(b) imply that under the null 6, = 6;, but they might be different
under the alternative. A2(c) is a standard assumption to obtain weak convergence
theorems under martingale assumptions, see Bae and Levental (1995) and Nishiyama
(2000). Because this assumption is crucial in most of our asymptotic results, we now
give primitive and simple-to-check conditions for a class of functions D being of
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bounded conditional quadratic variation with respect to dp. See Escanciano and
Mayoral (2010) for a related result. Let us define the quantity

GP(r)=E[E[e | L\]r(—) | Fi2]  reD,

Lemma 1: Assume Al, A2(a-b) and that |GP(r)) — GP(r2)| < M,d%(r1,r2),
whereM, is a stationary process with E[ |My|] < co. Then, D has bounded condi-
tional quadratic variation with respect todp.

Let V be a normal random vector with zero mean and variance—covariance matrix
given by L(6p) (cf. A4(c)). Now, we are in position to state the asymptotic uniform
representation of the process R!(b) and its weak convergence.

Theorem 1: (i) Under Assumptions Al, A2 and A4(a) uniformly in b € B,

1

1 —_
Ri(®) = —=

D e(01) — Ele(6)) | Foa1} b(Ui—1)
t=1
1 n
+ 7 ; {Ele(0) | Fiillo—g, — Elei(®)) | Fial} b(Li—1)

1 n
+— Y Ele,6)) | FralbUi—1) — E [Ele(6)) | Fi11b(I;-1)]
Vi

+ VnE [Ele(61) | Fi-11bUi—)] + 0p(1)
(ii) If in addition, Hy, A3 and A4(a) hold, then uniformly inb € B,
R, (b) = Ry(b) — (b,s")~/n(0, — 60) + 0p(1).

The decomposition in Theorem 1(ii) paves the way for the discovery of appropriate
martingale transforms of the residual marked process, see previous section. The
analysis of function-parametric processes such as those considered in Theorem 1
provides simple methods of proof for the study of the asymptotic null distribution of
J,,. To proceed further we need some regularity conditions.

Assumption A5: (on the conditional variance and related quantities)

A5(1): The estimator onz(~) is a uniform consistent nonparametric estimator of
02()and 0 < a < oz(y) forall y € @d and some positive a.

A5Gi): o7/() e W, P(o,’() €e W) = lasn — oofor j = 1,2. The
class WV satisfies A2(c), A2(a) for p > 2 and s = s, > 0 and is BEC(p,r) with
r < min(1, sy). Moreover, VW has an envelope b, such that b(-) < C < oo, and the
norm in W, |||\ say, dominates the L,-norm, i.e., there exists a C > 0 such that
Il < Clibllyy , forall b € L,®", F).

A5(ii): Bing = {1:() 1 x € Ed} satisfies A2(c) and F is absolutely continuous

—=d
with respect to Lebesgue measure with density f(x) < oo forallx e R .
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Assumption A6: A6(i): The trimming constant xg is such that

inf |C,y| > & >0,

x€A X0

—d
for some &€ > 0 and where Ay, = {x e R" : Bjx < xo}.
AG6(ii): The nonparametric estimators for the conditional distributions satisfy

sup [Fi(x | %1, 1) = FiGu | X1, oxo)| = 0p(1),0 =2,..,d,

xeR4
A5(i) is standard in model checks under conditional heteroskedasticity, see Stute,
Thies and Zhu (1998). Condition A5(ii) is necessary to obtain a uniform represen-

tation and tightness of the process R,l,(b) inbeB={hl,:heWandx € Ed}.
AS5(ii) can be relaxed using results for degenerate U-processes, but it simplifies the
theory and it gives us a clue about what are the properties necessary in W to obtain
the asymptotic tightness of R!(b) in b € B. If we assume that o ~>(-) is smooth,
usual examples of WV are spaces of smooth functions such as Sobolev, Holder, or
Besov classes. Therefore, the covering number condition of Assumptions A2 or
A5(ii) can be found in many books and articles on approximation theory. To give
an example, define for any vector (ay, . . .,a,4) of d integers the differential operator

@ = glal/ax{" ... dx44, where |a| = Zf:] a;. Let R be a bounded, convex subset
of R, with nonempty interior. For any smooth function  : R € RY — R and some
n > 0, let n be the largest integer smaller than 5, and

. | D“h(x1) — D*h(x2)]
170, = maxsup | D“h(x)| + max sup - .
lal lal=ng, 2x, X1 — X272

Further, let C/(R) be the set of all continuous functions # : R € R? — R with
ooy < c. W = C!(R), then W satisfies Assumption A5(ii) provided that
n > d, see van der Vaart and Wellner (1996, Theorem 2.7.1). A5(i) implies the
invertibility of the matrix C,(y), and it is assumed only for simplicity in the exposition,
see Nikabadze (1997). Conditions for A6(ii) to hold are in abundance in the literature,
see, for instance, Andrews (1995). A6(ii) implies that

sup |Tr(x) — Tr(x)| = 0p(D)

xeR4

holds.
Theorem 2: Under the null hypothesis Hy, and Assumptions Al to A6

Ty = Joo, inl™®(By,),

whereJ is a standard Brownian Sheet, i.e, a continuous Gaussian process with zero
mean and covariance function given by (ujy A uz1) X « -+ X (U1g A upg), foruy =
(u“, cee uld)’ and Uy = (uzl, . uZd)’ in [O, l]d.

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see,
e.g., Theorem 1.3.6 in van der Vaart and Wellner (1996), we obtain the asymptotic
null distribution of continuous functionals such as CvM,,.
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Corollary 1: Under the assumptions of Theorem 2, for any continuous (with respect
to the sup norm) functional T'(-)

I'(7y) 5 T(Ja).

The integrating measure in CvM,, is a random measure, therefore, Corollary 1 is
not readily applicable to the present case. However, an application of Lemma 3.1 in
Chang (1990) shows that the estimation F, iy of the cdf of Uy, Fy say, does not affect
the asymptotic theory for CvM,, as long as

sup |F,u(u) — Fy(u)| — Oas.
u€ By,

By the Glivenko-Cantelli’s Theorem for ergodic and stationary time series, see
e.g. Dehling and Philipp (2002, p. 4), jointly with A6(ii), the previous uniform
convergence holds.

The power properties of CvM,, can be studied similarly to those established in
Escanciano (2009). We do not discuss this issue here for the sake of space. A more
important and difficult problem is the asymptotic power comparison between trans-
formed and non-transformed tests from a theoretical point of view. This problem will
be investigated elsewhere. Here, we focus on the finite-sample comparison between
our ADF test and the bootstrap based tests via a Monte Carlo experiment in the next
section.

7.4 Simulation Results

In this section we compare some bootstrap integrated CvM tests with our new
ADF test via a Monte Carlo experiment. For the bootstrap CvM tests we consider
the weighting functions w(l,_y,x) = exp (ix'I,_y), w(l,_1,x) = 1(I,_; < x) and
wlli—1,x) = 1(B' L1 < u), x = (B u) € My, = S? x [ — 00, 00]. Our Monte
Carlo experiment complements that of Koul and Sakhanenko (2005) in the context
of goodness of fit for error distributions.

We briefly describe our simulation setup. Let I,_; = (Y;_1, Y;—») be the informa-

tion set at time ¢t — 1. For our ADF test we consider A, = {y € Ez s By <z},
with 81 = (1,1)'. Let F, g(u) be the empirical distribution function of the projected
information set {8'I,_; : 1 <t < n}. Escanciano (2006a) proposed the CvM test

CVM . pro = / (Ry pro(B 1)) F p(du)dp,

npm
where
1 n
1 _ ’
R o1 = = ﬁzet(e)ﬂ)l(ﬁ Iy <u)
and

I
62 = ;Zef(e,,).
t=1
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For a simple algorithm to compute CVM, ,, see Appendix B in Escanciano
(2006a).

Bierens (1982) proposed to use w(l;_;,x) = exp(il/_,x) as the weighting
function in (7.2) and considered the CvM test statistic

CvM y exp = /

I

2
R} @] W(d),

where
1 n
erz,exp('x) = Ee—ﬁ;ez(@n)exp (ix'I,—y),

and with W(dx) a suitable chosen integrating function. In order that CvM , ¢, has a
closed expression, we consider the weighting function W(dx) = ¢(x), where ¢(x)
is the probability density function of the standard normal bivariate r.v. In that case,
CvM , exp simplifies to

1 1
CVMn,exp = ﬁzzet(en)es(gn) exXp <_§ [1—1 — Li— |2> .

¢ r=1s=1

Escanciano (2007) considered the CvM test based on the indicator function, which
is given by

2
1 n n
CvMuina = =53 [Zet(ennu,l < 1,-1)} :
e j=1 L=1

We consider the wild bootstrap approximation for all these test statistics as
described in Sect. 3 of Escanciano (2007).
Our null model is an AR(2) model:

Yl :a+bY[7] +CY[72+S[.

We examine the adequacy of this model under the following DGP:

. AR(2) model: Y, = 0.6Y;_; — 0.5Y;_, + &,.

2. AR(2) model with heteroskedasticity (ARHET): ¥; = 0.6Y,_; — 0.5Y,_, + h,¢;,
where hl2 =0.1+ O.IY,{1 + 0.3Y,{1.

3. Bilinear model (BIL): Y, = 0.6Y,_; + 0.7¢;_1Y,_» + &,.

4. Nonlinear Moving Average model (NLMA): Y, = 0.6Y,_; + 0.7¢,_16,—» + &;.

v _ ) 0.6Y_1 +&, ifY,—p < 1,
5. TAR(2) model: Y¥; = { —0.5Y,_, +,. ifY > 1.

—_—

We consider for the experiments the sample sizes n = 50, 100, and 300. The number
of Monte Carlo experiments is 1000 and the number of bootstrap replications is
B = 500. In all the replications 200 pre-sample data values of the processes were
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Table 7.1 Empirical critical

values forCvM,

J. C. Escanciano and M. A. Delgado

n\a 10 % 5% 1%

50 0.55557 0.74353 1.18788
100 0.56371 0.75706 1.21756
300 0.61113 0.81060 1.35720

generated and discarded. For a fair comparison, the critical values for the new tests
are approximated using 10000 replications of model 1. These critical values are given

in Table 7.1.

In Table 7.2 we show the empirical rejection probabilities (RP) associated with
the nominal levels 10, 5 and 1 %. The empirical levels of the test statistics are closed
to the nominal level. Only in the heteroskedastic case the tests presents some small
size distortion (underrejection).

In Table 7.3 we report the empirical power against the BIL, NLMA and TAR(2)
alternatives. The RP increase with the sample size n for all test statistics, as expected.

Table 7.2 Empirical size of tests

AR(2) ARHET
10 % 5% 1% 10 % 5% 1%
CvM, 9.4 4.8 0.8 14.1 7.4 1.7
n=>50 CvM  exp 10.5 5.5 1.1 13.6 7.8 0.8
CvM  ina 10.3 43 1.3 12.4 6.5 1.0
CvM 1o 11.6 5.7 0.8 13.1 59 1.0
CvM, 9.0 43 1.2 12.4 7.1 2.1
n=100 CvM  exp 13.4 7.0 1.0 11.7 6.9 2.7
CvM,, jna 11.3 6.5 1.4 12.7 5.8 1.4
CvM,, 1o 11.2 6.4 1.6 13.4 7.1 2.0
CvM, 10.5 4.8 0.6 11.9 6.4 1.2
n=2300 CvM  exp 10.3 6.0 1.9 12.3 6.1 1.5
CvM  ina 9.6 4.7 0.5 11.8 6.2 2.0
CvM o 12.5 5.7 1.8 132 7.1 1.6
Table 7.3 Empirical power of tests.
BIL NLMA TAR(2)
10% 5% 1% 10% 5% 1% 10% 5% 1%
CvM, 29.8 21.7 72 198 134 4.7 533 40.8 19.6
n=50 CvM,q, 294 18.0 44 160 8.6 1.5 230 13.4 2.0
CvM i 322 22.8 81 246 153 46 3938 30.0 105
CvM,p, 396 252 9.0 229 116 23 385 27.2 9.7
M, 56.1 430 246 367 270 129 763 69.1  49.7
n=100 CvM,q, 43.8 30,0 107 28,6 162 38 432 27.5 8.2
CvM, e 50.0 394 191 451 335 133 654 548 349
CvM, pry 557 423 201 41.0 268 9.0 620 513 282
CvM, 96.6 931 815 763 643 41.6 99.5 99.0 959
n=300 CvM,ep T77.2 660 369 756 610 284 925 864 61.1
CvM,jna 76.2 684 508 888 827 592 985 969  88.1
CvM,pry 752 658 448 894 808 519 987 96.6  86.5
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The highest RP are presented in italics. It is shown that no test is better than the others
uniformly for all alternatives, levels and sample sizes. The new ADF Cramér-von
Mises test CvM,, performs quite well, being the best in many cases. In particular, it
has the highest empirical power for BIL and TAR(2) alternatives uniformly in the
level for n = 300. The empirical power for CvM , ¢, is low for these alternatives and,
in general, less than CvM,, ;,,4. The test statistic CvM,, ;4 has good power against the
BIL alternative for n = 50 and for the NLMA alternative for n = 100, and moderate
power against the TAR(2). CvM,, ,, performs similarly to CvM,, ;,.4, but with a little
less empirical power in general.

Summarizing, we conclude from this limited Monte Carlo experiment that our
new CvM test compares very well to bootstrap-based integrated tests, with power
against all alternatives considered, and in many cases presenting the highest power
performance. To conclude, we summarize the properties of our CvM test as follows:
(1) it is asymptotically distribution-free; (ii) it is valid under fairly general regularity
conditions on the underlying DGP, in particular, under conditional heteroskedasticity
of unknown form and multivariate regressors; and (iii) it is simple to compute and
has an excellent finite sample performance as has been shown in the Monte Carlo
experiment. All these properties make of our test a valuable tool for time series
modelling.
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processes many years ago. We are most thankful for his support to our research and the many
discussions we had during these years. We are pleased to contribute to this volume with warm
wishes for many more birthdays. Research funded by Spanish “Plan Nacional de I+D+i” reference
number EC0O2012-33053.

Appendix: Proofs

First, we shall state a weak convergence theorem which is a trivial extension of
Theorem A1 in Delgado and Escanciano (2007). Let for eachn > 1, Ir/:,o’ e I,;’nfl,
be an array of random vectors in R?, p € N, and ¢, 1, . . ., &,.,, be an array of real
random variables (r.v.’s). Denote by (£2,,.4,, P,), n > 1, the probability space in
which all the r.v.’s {g,,,, I,;’,}f=1 are defined. Let 7, ;, 0 <t < n, be a double array
of sub o -fields of A, such that F,,; C Fy;41,¢t =0, ...,n — 1 and such that for each

n > landeachy € H,
Ew(ens Ing—1,¥) | Fay—11=10 as,l1 <t<nvVn=>1. (7.7)

Moreover, we shall assume that {w(e, s, L,—1,7), Fns,0 < t < n} is a square-
integrable martingale difference sequence for each y € H, that is, (7.7) holds,
sz(e,,,,, Ihi—1,y) < oo and w(ep;, I;—1,y) is F,-measurable for each y € H
and Vt,1 <t < n,Vn € N. The following result gives sufficient conditions for the
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weak convergence of the empirical process

n
an,w(y) = n71/2zw(8n,t, In,t—la J/) Y € H.

t=1

Under mild conditions the empirical process «,,, can be viewed as a mapping
from €2, to £°°(H), the space of all real-valued functions that are uniformly bounded
on H. The weak convergence theorem that we present here is funded on results by
Levental (1989), Bae and Levental (1995) and Nishiyama (2000). In Theorem A1l
in Delgado and Escanciano (2007) H was finite-dimensional, but here we allow for
an infinite-dimensional H. The proof of theorem does not change by this possibility,
however.

An important role in the weak convergence theorem is played by the conditional
quadratic variation of the empirical process «,,, on a finite partition B = {H; 1 <
k < N} of H, which is defined as

n

_ 2

p(B) = max n ™' D E| sup |W(Enss huso1: 1) = WEngs Lyao1s v2)| | Faca-
L<k=N =1 Y1,Y2€Hy

Then, for the weak convergence theorem we need the following assumptions.

WI1: Foreachn > 1, {(gn;s, I,—1) : 1 <t < n}is a strictly stationary and ergodic
process. The sequence {w(g; s, Ins—1, V), Fus, 0 < t < n}is asquare-integrable mar-
tingale difference sequence for each y € H. Also, there exists a function C,,(yy, 2)
on H x H to R such that uniformly in (y;,2) € H X H

n
nY WEnis a1 YOWEns Ina—1,72) = Cu(n1, v2) + 0p, (1),

t=1

W2: The family w(e,,, I,,—1,y) is such that &, ,, is a mapping from 2, to £*°(H)
and for every ¢ > 0 there exists a finite partition B, = {Hy; 1 < k < N,} of H, with
N, being the elements of such partition, such that

/,/log (Ng)de < o0 (7.8)
0

and

an,w(Bs)
sup

= Op,(1). (7.9)
ec(0,HDNQ €

Let aw,v(+) be a Gaussian process with zero mean and covariance function given
by C,,(y1, y2). We are now in position to state the following
Theorem Al: If Assumptions W1 and W2 hold, then it follows that

Oy w — Uoo,w in ZOO(I;L[)
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Proof of Theorem AlI: Theorem Al in Delgado and Escanciano (2007).

Proof of Lemma 1: By A2(a-b) we can form for any ¢ > 0 a finite partition B, =
{Br; 1 < k < Np(e, B, -11,)} of Bin g-brackets B, = [gk,Ek]. Denote v = 1/s, with
s as in A2(a), and define for every g € N, ¢ > 1, ¢ = 279". We denote the previous
partition associated to & = 277" by B, = {By; | <k < N, = Ny@2™", B, ||l ,)}.
Without loss of generality we can assume that the finite partitions in the sequence
{B,} are nested. By A2(b), we have

oo
Z2’q‘/log N, < oo.
q=1

Furthermore, by definition of the brackets

R.(By) = e " 1ZE & | Fiei] ! legklrl(lzl)—rz(ltl)lz‘
’ q
- . - 2
= max |n I;E[efmfl]lm(n,l)—bk(n,l)! ‘
= 1n/3ax d2(by. by). (7.10)

Define the event

d*(b,,b,
V, = {sup max sz .
geNlsk=N, 272

We shall show that for all > 0, there exists some y > 0 such that
lim sup P,(V,) < n. Note that

d2 (b, bi) o
P(V)<21P (1<k<Nq2—2‘1 > :Z (7.11)
q g=1

Now, define the process

n

Gy =n"" Y E[e] | Fia]r(liy),

t=1

and the quantities for 1 <t < n, E,(r) =F [8,2 | .7-',_1] r(l,_y) — GtB(r). Hence,

Tn(r) =n""Y () +n7"Y "GP,

=1 =1
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> 22‘17/)

By triangle’s inequality

Vag P, max
1<k<N,

IA

ny B — BBy
t=1

—1 B B, —2
+P, (15%2”&, n ;|Gt (b)) — GP(by)|| = 2 qy)
= Alnq + A2nq~

Notice that { En,w(r), Fni—2} 1s a martingale difference sequence for each r €
B, by construction. By a truncation argument, it can be assumed without loss of

generality that 1H1:a)1§/ les] }lgk(ll_l) — Ek(],_l)|2 < ﬁaq_l, where henceforth a, =
<k<N,

279% [ /log (Ng41) with 1 < p < 2. See Theorem Al in Delgado and Escanciano
(2006). Define the set

Now, by Freedman’s (1975) inequality in Lemma A2 and Lemma 2.2.10 in van
der Vaart and Wellner (1996),

n

n= " |Biby) — BBy

=1
<cC (aj_l log (1 + Ny) + ag_12~4""2/log (1 + Nq)) .
Hence, by Markov’s inequality and the definition of a,, on the set B,
Ca‘?*l log (1 + Ny) + a,—1279"2 /log (1 + N,)
2-2y
- Cyflszq(pr + Cyflzfq(er%fl).

E max

1<k=<N,

1(B,)

Alnq

On the other hand, by (D) and by Markov’s inequality

A2nq

IA

n
y_'sn_zg E max 2%
; 1<k=<N,
=

n Y |GPb) - GE@)|
=1

IA

y—lz—q(v—2) (n_]ZMt> < Ky—lz—q(v—Z)’

1=1
on the set B,. Therefore, by our previous arguments and the last three bounds,

o0
P,(V,) < Cyflz (2*2%0*1) + 2—a(p+3-1 + 2*4(\/*2)> + Pn(Bz),
g=1

which can be made arbitrarily small by choosing a sufficiently large y and K. Hence,
B has bounded quadratic variation. ]



7 Nonparametric Distribution-Free Model Checks . . . 109

Lemma AO0: (Uniform Law of Large Numbers) If the class B is such that
log (Nyy(e, B, [I-ll;) < oo for each & > 0, with envelope b, g(1,—1,0) satisfies A3
and E |M(It,1)b(1,,1)| < 00, then uniformly in (0,b) € © x B,

1 n
=D &1, 00;-1) = E [gUi-1,0)b(Ui-1)] | = 0p (D).

t=1

Proof of Lemma AO: Under the assumptions of the lemma, the class {g(l,_;,0)b
(I,_1) : 6 € ©,b € B} is Glivenko-Cantelli. O

Proof of Theorem 1: First we shall show that the process
1 n
5:(6.6) = —= Y {e0) — E[e®) | Fioa]}bldi-1) (7.12)
t=1

is asymptotically tight with respect to (b, 0) € A.

Let us define the class K = {{et(G) —E [e,(@) | .E_l]} b(I,_1) : (b,0) € A}
Denote X, | = (I;-1,1;—2,...). Let Be = {By;1 < k < Ne = Nyy(e, K, ||l .}, with
By = [wy (Y, X;—1), wi (Y, X,—1)], be a partition of K in e-brackets with respect to
lI-1l,, . Notice that A2 implies

sup  [{e0) — E[ei(@) | Fia]} bidin)
((b2,02)€.A:|01—02| <8
b1 —ba||lp<$

— {e(0) — E [e/(62) | Fioa]} ba(-0)|
< (8.

Theorem 3 in Chen et al. (2003) and A2 imply that (7.8) holds for such partition.
On the other hand

2
n
max n—'S E sup w1 (Yy, Xi—1) = wo (Y, Xi—DI| | Fia
1<k=<N; i wi,w2€By
" 2
< érzl?fvsn‘lZEE [t X)) = X0 1 Fia | (13)
t=

Therefore, A2(c) yields that (7.9) follows, and condition W2 of Theorem A1 holds.
The asymptotically tightness of S, (b, ) is then proved.
Then, the last statement and A4(a)

l n
1 . — — J—
R,() = NG ;:1 {e:(61) — Ele/(61) | Fi—11} b(I;—1)
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1
f Z Ele,0) | Fi-1llg—g, — Ele(01) | Fi-11} b(1i-1)

f ZE e(01) | Fi11b(Li-1) — E [Elei(61) | Fi11b(1;-1)]

+VnE [E[et(91) | Fioalb(Li-1)] + op(1),

uniformly in b € B. Part (i) is proved.
As for (ii), A3 and A4(a) imply by the Mean Value Theorem

1 n
7 Z {Ele:®) | Fimillg—g, — Elei(60) | Fi11} b(I,—1)
t=1

/ 1 .
=200 = 60)' Y i1, Ou)bCli),

t=1

and where 6,; satisfies |6,; — 6| < |6, — 6|. Now, A3, A2(b) and Lemma AO imply
that, uniformly in b € B,

1 n
=D U1, 0)b (1) = E [gCLi-1,00)b(-)]| = 0p().
=1

From (i) and the last display, (ii) is proved. [l
Before proving Theorem 2 we need several useful Lemmas. Let us define A, =

{x € R Bix < xo}.
Lemma Al: Under the assumptions of Theorem 2, uniformly in x € Ay,
Ry(To, ' ()1) = Ru(To ™ ()1) + op(1).
Lemma A2: Under the assumptions of Theorem 2, uniformly in x € Ay,,
R\(T,0, ' (V1) = R(To, (Y1) + op(1).
Lemma A3: Under the assumptions of Theorem 2, uniformly in u € By,
Ry(Ty(0, ' (Y1 0 Tr() = Ry(Tu(o, ()1 0 Tr()) + 0p(1).

Before proving Lemmas Al to A3 we shall prove two more Lemmas. We need
to define first the classes of functions S = {Thl,(-) : h € W and x € A,,} and
B =1{hl,:h €W andx € A, }. Define the semimetric

dina(x1,%2) = | & 15, (1) — & 15, (1i-1), -

and recall that B,y = {1(- <x) = 1,() : x € R}.
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Lemma B1: Assume that B, satisfies A2(c). Then, if W satisfies A5(ii) then B
satisfies A2 with p = 2.

Lemma B2: Assume A3, A5 and A6(i). Then, if B satisfies A2 with p = 2 then S
satisfies A2 with p = 2.

Proof of Lemma B1: We shall start with A2(a). Assume 0 < § < 1. By the triangle
inequality, for each #; € W and each x; € R’

sup |lechi 1, (1) — :ha 14, (1)
XQGEd,h2€WC||h1—}12||W<53dind(xl«12)<5 2
= C sup lechi (L) |12, (T—1) — Lo, (1-1)]
2R Iy eW:llhi —hallyy <8.dima(x1.x2)<8 5
+C sup Lo, (Jy—1) leshi(Li—1) — €cho(Li—1)|
2R haeWillhy —hallyy <8.dina(x1.%2) <8 5

< C8' 4+
S ng,

with s = min(1, sy), where the second inequality is by A5(ii). A2(b) follows from
Theorem 6 in Andrews (1994) and A5(ii), because B;,,, is BEC(p, 1/2) forall p > 2.
A2(c) follows from the previous arguments, using A5(ii) and that B;,; and WV satisfy
A2(c). O
Proof of Lemma B2: We shall start with A2(a). Assume 0 < § < 1. By the triangle
inequality, for each 4, € VW and each x| € Kd

sup le:Thile,(I—1) — & Thyl, (1))
xzeﬁd,hQEWIth*h2||w<5,dind(xlax2)<5’ 2
< C sup |51hl Loy (I—1) — ‘9th21x2(ll—l)‘
x2€RY haeW: b1 —hallywy <8.dina (x1.x2) <8, 5
C sup leKhy1 (I—1) — & Kho Ly (-] |
Xzeﬁd,thW:th—hznw <8,d,'nd(xl,x2)<8, 2

where K is defined in (7.5). Then, it is only necessary to consider the second term
in the last inequality. Now, by the linearity of K and the triangle inequality this term
is bounded by

= C sup & K{h1()(1x, () = 1, (N}(L1—1)

4
X2€R° i eW:llhi —hz llyy <8.dina(x1,x2) <8, 2
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+C sup & K1, ()(h1(-) = ha()Ui-1)

—d
X2€R" i eW:||hy —hallyy <8.dina(x1,%2) <8, 2
= A+ As.

A} is equal to

2
E|:SUP 8t2</1(y € Az )hi ()1 () — lm(-))S’(x,90)C§;)G(dX)S(1t—1,90)> } ,

where the sup is computed over d;,4(x1, x2) < §. By Cauchy-Schwartz’s inequality
(C-S), A3, AS and A6(i) the integral is bounded by

C ‘ f Ry () = 1, () G(dx)| < Cd2y(x1, x2),

and hence |A;| < C§. The proof for A, follows from the same steps that for A, and
hence, it is omitted.

The proof of A2(b) is straightforward. A2(c) can be proved following the ar-
guments in the proof of A2(a). These proofs are omitted for the sake of space.
O

Proof of Lemma Al: By Lemmas B1 and B2, B and S satisfies A2 with p = 2.
Hence, by Theorem 1,

RYU(Tb()1,) = Ry(Th()15) + op(1),
uniformly in x € A,, and b € W. Now, by the convergence of o,!,
Ry(To, ' ()1) = Ry(To ' ()1) + op(1),
uniformly inx € Ay,. O
Proof of Lemma A2: Write R,ll((T - T,l)an_l(-)lx) as
/ o LR (581G € AS) € gy, B F(dy)
- / o, MR, (57.0)1C € AS) C, ) 8(3, ) Fu(dy)

= f o, LB 0 2(), 00) [F(dy) — F,(dy)]

- / 0, N1 [Bu (0,2 ().00) — Bu(.0 (), 00)] Fuldy)

Aln(x) - A2n(x)’

where

Bu(y,b,0) = R} (g'(.OI()1(- € AL,) C,,8(3,6). (7.14)
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Putting

@, () = 0, (M 1L(0)Ba( 7 2(), 6p),

and using our Theorem 1 it is not difficult to show that the sequence {w,(-)} is
asymptotically tight. Hence, by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup A, (x)] = op(D).

X€Ay,

Similarly, it can be proved that 8,(y, b, 6) is uniformly tight in (y, b,0) € By, x
W x © (see Lemmas B1 and B2) and continuous in 6, but 8, converges in probability
to 6y, and hence, again by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup A, (x)] = op(1).
XEAy,

Proof of Lemma A3: Define

Vi) =1, 0 Tr(l,_),

Yu(li—1) = 1, 0 Tr(I;-1)
and
du() = 7u() = V().
Then, write R,ll(T,,an’l(du(J)) as
R0, (du(-)) — / du( o, (IR (54 0)1C € AS,) Coliy)8n(y, 6n) Fu(dy)
= A — An2.
|A,1] is bounded by

n_l/zzer(eo)on_l(If—l)d”(]’_l)

t=1

+

n=2Y fe(B) — e (O0)lo,  Ti—))du(1i-1)
=1

= Ry (0, ' du))| + |10 — 60)n ™"y (i —1,600)0, (i—1)du(l;—1)

t=1

= |B,(w)| + |Bn2(w)] .

Now, the stochastic equicontinuity of R,b1, inb € W and 1, € B4, and A6(ii)
yield

sup [Br,(w)| = op(1).
uel0,119
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On the other hand, by Lemma AO, uniformly in b € B,

1 n
;Zg(lr—l,em‘)b(lz—l) —E [g(lr—heo)b(lz—l)]‘ =op(1).
=1

Therefore, A4(b) and the last display yield

sup [By,(u)| = op(1).
uel0,1}4

As for A, by C-S,

1/2 1/2
[ / [ﬁ(y)—%(y)ﬁ&(dy)] [ / anz(y)ﬂ,f(y,on‘,9n>F,,<dy)] ,

where B, is defined in (7.14). Both integrants are asymptotically tight (see the
arguments of Lemma A2). Hence, Lemma 3.1 in Chang (1990) yields

/ [7:0) = 7]’ Fuldy) = / [7:0) = 7] F(dy) + 0p(1)
and
/ o, (WP (Y. 0, L 0 Fu(dy) = Op(1).

Now, we shall show that A6(ii) and A6(iii) imply

/ [7:) = 7]’ F(dy)| = op(1). (7.15)

sup
UE By

To that end, from A6(ii) we have that

sup |Tr(x) — Tr(x)| = 0p(1),

xeRd

Hence, for a given ¢ > 0, there exists and ng such that for all n > nyg

sup ’/fR(x) — TR(x)| <e

xeRd

with probability tending to one. Therefore, on that set

sup
ue BXO

/ [72) = 7] F@dy)| < sup |E[lw—e < Uy <u+e]| <2e.

ueBXO

Hence, as ¢ was arbitrary (7.15) holds, and Lemma A3 is proved. O
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Chapter 8

Ridge Autoregression R-Estimation: Subspace
Restriction

A. K. Md. Ehsanes Saleh

8.1 Introduction

Consider the usual AR(p)-model

Xi=pXis1+- -+ ppXi—p+e, t =0,£1,42,- - (8.1)

where e4(,--- ,es, are i.i.d.r.v. with a cdf F defined on R', Let ¥y = (X0, X_i,

e, X p)/ be an observable random vector independent of e, e3, - - -. We assume
that all the roots of p-degree polynomial (See Brockwell and Davis, 1987)

xP —pxPt— ... —p, =0arein(— 1,1). (8.2)

Here, p = (p1,--- ,pp)’ € RP? is vector of unknown autoregressive parameters.

Assume further that p is suspected to belong to the linear subspace Hp = h, where
H is a ¢ x p matrix of known constants and h, is a g-vector of known constants.

L 0 P P ) (p ) :
IfH = (.7 andh = (D), then Hp = ("D ) = ("D ] leading to
(0 Iﬂ) (0 ) g <P(2> 0 s

the subhypothesis, that p,) = 0. To this end, we first consider the theory of R-
estimation of p based on a class of rank statistics and define a class of rank test for
the null-hypothesis, Hy : Hp = h Vs Hp # h. To obtain the asymptotic properties
of the R-estimators, we use Koul and Saleh (1995) AUL results for the class of
rank statistics. These results are then used to investigate the asymptotic properties of
R-estimators of p and their properties.

For the AR(p)-model (1.1), let p,, be R-estimator of p and p,, be the R-estimator
of p under Hp = h. We designate p, as “unrestricted R-estimator” (URE) of p
and p,, as the “restricted R-estimator” (RRE) of p respectively. The RRE performs
better than the URE when Hp = h holds. But, if p departs from this subspace,
RRE may be considerably biased, inefficient and even inconsistent, while URE
retains all the performance characteristics for the variations of p around the sub-
space. Further, since Hp = h is suspected to hold, we consider the rank statistics,
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L, to test this restriction by a suitable form. Let ¢, be the upper level criti-
cal value for the distribution of £, under Hy : Hp = h, then we may define
the “preliminary test R-estimator” (PTRE), i),f " and the Stein-type R-estimator
(SRE), p! and the “positive-rule Stein-type R-estimator” (PRSRE), p." respec-
tively as in Koul and Saleh (1995) specific to the suspected restriction, Hp = h.
The relative merits of these R-estimators are studied in terms of asymptotic distri-
butional risks (ADR) as in Koul and Saleh (1995) and Saleh and Kibria (2011)
and Sen and Saleh (1987). Finally, we modify these five estimators using the
“ridge factors” to define “ridge autoregression estimators” (RARE) and study their
asymptotic dominance properties. The main results on the asymptotic properties
of different ridge autoregression R-estimators (RARRE) are presented in Sect. 8.5
and 8.6 with a concluding remarks in Sect. 8.7.

8.2 R-estimation of p for AR(p)-model

LetY; =(X;,--- ,Xi,p+1)/, 1 <i < n and define R;(b) as the rank of (X; —bY;_1)
among {X; —bY;_1,1 < j <n}fori=1,---,n. Set Rj(b) =0if i < 0. Let ¢ be
a nondecreasing function from [0, 1] to R! and define the vector of rank statistics,
L,(b) = (L1(b), -, Lpn(b)) Where

n R[ b
Linb)=n"t )" xi_j¢(n+(f>,igj§p,beRP (8.3)
i=j+1

It is natural to define an R-estimator of 14 by the relation
inf Ln b)|| = Ly, ,0~ . 8.4
bleRP ” ( )“ ( ") ( )

An alternative way to define R-estimator of p is to follow Jaeckel (1972) to
AR(p)-model. Accordingly, set a,(i) = ¢ (n’?) and Z;(b) = i largest residuals
{Xi =bYi 1, 1 <k<n}, 1<i<nand

T,(b) = Y an(i) Zu(b), b € R”. (8.5)

i=1

According to Jaeckel (1972), if Y"_ a,(i) = 0, then T,,(b) can be shown to be
convex on R” with a.e. differential equal to —L,, (b). Thus, the minimizer p ; of 7,,(b)
exists and has the property that makes ”Ln(b) || small. It follows from the linearity
results given below that p; and p, are asymptotically equivalent.

Theorem 2.1 (Koul and Saleh (1995)) Assume that (8.1) and (8.2) hold. In addition,
assume the following:
(a) (i) E(e;) = 0and E (ef) < oo V ¢. (ii) F has uniformly continuous density

f,f >0ae.
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(b) ¢ is non-decreasing function and differentiable with its derivative ¢ being
uniformly continuous on [0,1].
Then, for every 0 < ¢ < oo,

sup HL,,(p +n A —LE+ ATy H =o0,(1) (8.6)
|Af <
where L} = (L7, -, L;*m)/ with
1 n -
Lho=nt S Xjun — Xl (Flen) — ¢l ¢ = / o F () 87

i=j+1
)_(j =n! Z Xi_j,yv= /fd(p(F), and X is the Toeplitz matrix defined as
i=j+1
X=0(pG—pN, i, j=1,---,p, cov(Xo, Xi) = k), 1 <k < p. (8.8)

Note that the above Theorem covers Wilcoxon’s type score but not normal score.
Further, under (a) and (b) of Theorem 2.1 for every 0 < ¢ < oo

HZqu HLn(p Fn A —L,(p) + A y” = 0,(1) (8.9)

Arguing as in Koul (1985, Lemma 3.1) or in Jeackel (1972) one may conclude

Consequently, by Theorem 2.1

ni (5, — p)H = 0,(1).

n*(p, — p) =y "L +0,(1). (8.10)

Observe that L) is a vector of square intergrable mean zero martingales with
E[L*L¥] = 0,%, o, = var[p(w)]. Thus, by routine Cramer-Wold device and

n*n %

Corollary 3.1 of Hall and Hyde (1980) one obtains
L; 3 N,0,02%). Hence n} (5, — p) = Np0,y 202X, .11
Now, consider the restricted R-estimator, p, of p under Hp = h as
p,=p,— %, HHZ'H)'Hp, —h), (8.12)

where, Z, = (Y YiY;._l), where n7! | Z, | £ ¥. We draw two relations from
(8.6) of Theorem 2.1 given by

() La(p,) — Lu(p)+y n2(p, — P)Z = 0,(1) (8.13)
(i) La(p) =y n3(p, — ME = 0,(1). (8.14)
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As aresult of (8.13) and (8.14) we have

La(3,) =y 2 (B, — DT + 0,(1) (8.15)

Thus, for the rank statistics for the test of Hp = h, one may use the quadratic form

Ly = [La(p)] TulLn(p,)] (8.16)
2

= 155 (B = )T, — b+ 0p(D) (8.17)
¢

2
n% (Hp, —h) (HZ'H)'Hp, —h) +0,(1)  (8.18)
¢

Hence, one may show that

lim P(L, < x|[Hp =h) =H,(x;0) (8.19)
n—0oQ
where H,(x;0) is the cdf of the central chi-square distribution with q degrees of
freedom. For the application of £, one may have to estimate y consistently using
the methods suggested by Koul (2002, p. 128).

8.3 Various R-estimators of p and Their Asymptotic
Distributional Properties

First, we consider the following quasi-empirical Bayes R-estimators of p when one
suspects that p may belong to the linear subspace Hp = h, as follows using Saleh
(2006). (i) the unrestricted R-estimator (URE), p, (ii) the restricted R-estimator

(RRE), p,, (iii) the preliminary test R-estimator (PTRE), ,65 T

o’ =By — (B — PII(Ln < %] (@)) (8.20)

where x 5(0{) is the a-level critical value from the asymptotic null distribution of £,
and /(A) is the indicator function of the set A. (iv) the Stein-type R-estimator (SRE),

[
Py = Py — (@ = 2P, — PIL," (8.21)
and (v) the positive-rule Stein-type R-estimator (PRSRE), i)ff
Py =y — 1Ly <q =2+ PLI(L,y =g —2). (8.22)

Note that PTRE and PRSRE are convex combinations of p,, and p,, and p,, and
p, respectively, while g is not.

Now, we consider the asymptotic distributional bias (ADB), MSE (ADMSE) and
risks (ADQR) of the five R-estimators of p. It may be verified that £, is a consistent
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test for the test of the null hypothesis, Hy : Hp = h. As a result ,6: T pS and p°F

. . ~ P .
are asymptotically equivalent to p, and £, — 00 as n — 0o and the asymptotic
distribution of p, degenerates. To avoid this asymptotic degeneracy, we consider a
sequence of local alternatives

Kw :Hp=h+n"2& E e RY. (8.23)

Note that when & = 0, K,,, reduces to Hy. Now, we use the technique by Saleh
(2006) to obtain the following Theorem. But, first we let G, (.; p, ) and H,(.; A?)
respectively stand for the p-dimensional normal distribution with mean, g and co-
variance matrix, X and a non central chi-square cdf with q degrees of freedom and
noncentrality parameter, AZ, then

Theorem 3.1 Under {K )} and assumed conditions of Theorem 2.1 and a (ii). The
error distribution cdf F has an absolutely continuous density f withits a.e. derivative,
f' with finite Fisher information

(™ fw o,
()= (-2 Fwdu < oo (8.24)
o S
hold. Then, asn — oo
i (p, —p) - 0 1 3T -A A
@ | n(®, —p)’ = Nyp{| -8y 7o, [Z7'—A Z7'—A 0
(P, — py) 8 A 0 A
(8.25)
where
A=Y"'"HHTZ 'H)"'HX 'ands = T 'HHXZ 'H) ¢
(b) lim P{L, < x|Kuw}=H,(x; AD), A* =0,2y*(§ £§)
n—oo
(©)  lim PYn (p," —p) <x|Kp)
= Hy(x, (@) A)Gp[x +8.0,0,y > — A)]
+ / G,x— X "HHZ'H)'Z;0,62y 22! — A)ldG
E(A)
[Z.0,0)y *(HZ~ 'H)H
)/2 , , }/2
where E(A)=1{Z: 5(Z+ A)HZ'H) (Z+ A) = x2(@)}Z ~ Ny(0, 5 %)
0¢ GW

p(g— 2T 'HMHI'H) 'HZ + A)
(Z+AHZ'H) (Z+ A)

d)  Vn,-p) > Z-
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plg—2)T'HHI'H) '(HZ + A)
(Z+ A)HT 'H)-"(Z+ A)

1 ((Z FAHEH) T Z+A) > g — 2) + > 'HMHE'H) '(HZ + A)

(@) VA —p) 3 [Z-

<1 ((HZ FA)HTZH) HZ +A) < g — 2)
Assume that for a given estimator p* of p
lim P(V/n (p; — p) < x|Ke} = Gp(x:B*, 2

where B* is the bias and X* is the cov-matrix of \/n (p* — p). Then, the asymptotic
distributional bias and MSE matrix is given by

B* = lim E[V7 (o} — p)]
M*(p}) = =* + B"B”
The asymptotic distributional quadratic risk (ADQR) is then given by
R(p;;Q) = tr[2*Q] + B* QB
where Q is the matrix associated with the loss function
L(p;; p) = n(p; — p) Q(p;, —

Then, the following Theorem gives the asymptotic bias, MSE matrices and risk
expressions.

Theorem 3.2 Under K,y and the assumed conditions of Theorem 3.1, as n — 00,
the following holds.

@  bi(p,) =0, Mi(p,) =0,y >E~" and Ri(p,; Q) = tr[QZ "
(b)  by(p,) = —8, My(p,) =0y (T~ — A)+ 85
Ry(p,:Q) =0y 1tr[Q(E™" — A)] + 6 Q.
(©  bi(py") = —8H,(x2(@): AY), A* =0,y (E £7'8)
Ms(p, ") =0,y P — o)y PAH, (x ) (a); A7)
+ 88 (M2 (X2 (@): A?) — Hyra(x2(@): A7)}
Ry(py :Q) =0y > tr(QT ™) — 07y tr(QAYHgsa(x (@): A?)
+ @ Q3){2Hq+z(xq2(a)' A?) — Hyaxg (@); AP}
d)  ba(p)) =—(q — 2>8E[xq+2<A )]
My(py) =0,y T = (g — 2o,y ARELx, H(A)]
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— (g — DE(X, H(AD} + (g — 2)88 2E[x, H(AD)]
— 2E[x, H(AND] + (g — 2)El X, }4(AD)])
Ry(p,;Q) =0,y 2 tr(QZ ") — (g — 2o,y 7 tr(QAN2EL X, 5(AY)]
— (g = DE[x, H(AN + (g% — H(E Q8)Elx, A,
(€)  bs(py") = —(q — DJElx (A + Hyra(x, o(@); AY)

= EL(1- (g = 2 50)) 1 (a8 < g =2) I
M) = Mu}) — (@ — 2oty AEL (1~ (g — 20, 5(8")
I (xg42(A%) < g —2)]
+ 88 REL (1= (4 = Doyt (AD) 1 (1242(AD < g =2) ]
~ EL(1 (@ =2 20)) 1 (8% < g = 2) )
Rs(6,"" Q) = tr{QMa(p,)] = (q = ogy ~* 1r(QA)
< EL(1 = (g = 20, 2080) T (a8 < g~ 2)]
+ EQOREL(1 - (@ ~ D A)) 1 (12,(A%) < g = 2)]
— EL(1 (@ =2, 20) 1 (128 < g = 2) 1)
It is well-known that (see Saleh (2006, ch7)) the risk ordering is given by

Rs(p,";Q) < Ry(8,:Q) < Ri(p,; Q) ¥V A* € R
and under Hy, it is given by
Ra(p,: Q) = R3(8, 1 Q) = Rs(8,": Q) = Ra(8,: Q) = Ri(p,: Q).
The position of p pn changes between Ry(p,; Q) and Rs(l?)“r Q) to in between

R4(p); Q) and R,(p,; Q). The picture changes when A? moves from the origin. For
details see page 362 of Saleh (2006).

8.4 Ridge Autoregression R-estimators of p

In this section, we define the following ridge autoregression R-estimators of p using
Hoerl and Kennard (1970) ridge regression estimators

1 -1
£, () = Ry (k)p;,, Ry(k) = (Ip +k(;)3n)_l> : (8.26)
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where R, (k) is the “ridge factor” and p* stands for p,.p,.p. ,p. and pi"
respectively. Note that

Pinm Ry (k) = R(K) = (I, + k(2)™") "' (8.27)

We may now find the asymptotic distributional biases, MSE matrices and risk
expressions of these estimators based on the following Theorem.
First we consider H-K ridge autoregression R-estimators.

Theorem 4.1 Under {K,)} and the assumed regularity conditions of Theorem 2.1
as n — 09, the following holds.

Vn(p,(k)—p) \ —kR™'(k)p
@ | Vn@,—p) | = Nipq|-lkR™'K)p+RK)pl |00y > E*
Vn (p, (k) — p(k)) R(k)p
(8.28)
where R™\(k) = (£ +kI,)™!, § = S 'HMHEZ 'H) ¢
and A=Y 'HMHXZ 'H)'HZ ! with

RKE'"—AR*) REE'— AR (k) 0

R(k)X 'R (k) Rk)(Z™'— AR (k) RKk)AR (k)
T — (8.29)
R(k)AR (k) 0 R(k)AR (k)

(b) The asymptotic distributional bias (ADB), MSE (ADMSE) matrices and quadratic
risks (ADQR) are given by

(i) bi(p, (k) = [R(k) —L,]p = R, — (A, + kX~ "H]p = —kRK)Z"'p
= —k[Z +kI,]"'p = —kR'(k)p.
Mi(p, (k) = o,y [RIOZ R (k)] + [R(K) — L, 1pp [R(k) — 1] .

Ri(p (k1 W) = 0y *1r (WIRG)ELR ()]) + o [RGK) — 1, WIR(D) — 1, 1p.

i) ba(b, () = [R(O) — L,1p + R()3 = B say.
Mo, (0) = o2y~ {[RGE™'R (k)] — [R(OAR ()1} + BB

Ro(p, (K); W) = 02y tr (W[R(k)():—' - A)R’(k)]) + B'WB.

iii) b3(p, ' (k) = (IR(k) = L,1p + R(k) §H, 2(x] (@); A?)).
Mi(p," (k) = 02y A[RK)Z R (K)] — 02y [RIDAR () Hy2(x2(@):A)
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+ [R()SS R (){2H 12 (x ] (@); A7) — Hyra(x] (@); A%)
+ K[R(k) — L,]op [R(k) — I,] + k[R(k)3p (R(k) — L)
+ {RK) —1,)p — RK)§Hy42(x, (@); A}
x {[R() — 1,10 — ROVH, +2(x2(@); AV} .
Rs(py " (0: W) = o2y oW (RUE™" = AH1202(@); ADIR'(K)) ]
+ 1r[W (R(k)ss’R’(k)) 12H, 12 (x2(@); A%
— Hora(x2(@); AN} + K2p [R(k) — L] WIR(k) — L,]p
+ k tr[W{R(k)8p (R(k) — 1]

+ [RO) —1,)p — ROWH, 22(x2(@); AD))
x W{[R(K) — 1,10 — RO§H, 4201 (@); AP} .

(@) ba(p} k) = = (IRK) = T,] + (@ — DRIBEL, 2(AN)])
My(p;, (k) = [RI)E 'R (k)] — (g — DIRK)AR () H{2E[x, H(A”)]
— (g = DE[x H(AD]} + (g% — DIREK)SS R ()] Ex, 4 (AD)]
+ { R0 — 1,10 - RWSELG )]

{[R(6) — 1,00 — ROSEL; (801}

Ry(p},(k): W) = 02y 2 tr(WIR(D)Z 'R (K)]) — (¢ — 2)o 2y > tr(WR(k)AR/(k))
X {2E[xy (AD] = (g = DE[x Hh(AD} + (¢ — 4y ir
(W[R(k)aa R (k)]) X E[Xg 4]
+{ R — 1,00 — ROSELHA1] W

x {[R(0) ~ 1,10 — ROIELHAD]}

() b5y (k) = [R(K) = T 1p — RUDS{Hy 420y 5(@); AY)
— (g — DHELx; 2(@); A} — ELx, H(ADI (x7,,(A)) 1)
Ms(b) () = Ma(p}k)) — o2y *IRDAR OIEL (1 - (q - 2>x;+2<A2>)

x I (xg2(A%) <q—2)]



128 A. K. Md. Ehsanes Saleh

+ [RK)SS R 0N2EL (1 - (g = 2x,5(AY)
< I (xg12(0%) < g —2)]
2
— EL(1 = @ = 21,20D) 1 (12D <q =2) 1)

+ [bs(BET b5 (B2 (k)] .
Rs(8,”" (k); W) = Ry(p},(k); W) — {02y > tr(R(k)AR (k)

EL(1— (g~ 20, 2A%) <1 (a8 < g~ 2) )
+ OROWROSEL (1~ (g — 21, 58%)
I (a8 < g =2)1= EL(1- (g =2 5(A")

I (x22(AY) < q—2) 1} + [bs(p)" (k)] Wibs(p}t (k))].

8.5 Comparison of the Five Ridge Autoregression R-estimators

In this section, we consider the comparison of the Ridge Autoregression R-estimators
under a quadratic loss functions. Notice that the risk expression of the five ridge
autoregression rank estimators are functions of the departure parameter A as well as
the “ridge constant”, k. First, we consider the comparisons when the risk expressions
are function of k in Sect. 8.5.1 and in Sect. 8.5.2 we consider the comparison as a
function of A2. In this respect, we present the comparison in a sequence theorems
that follow in each section.

8.5.1 Comparison of RARE’s as a function of ridge constant

It is clear that, X is a positive definite matrix so that there exist an orthogonal matrix
I'suchthat ¥ = 'AT and A =T XI' =Diag(Ay,--- ,A,)where A > A > --- >
Ap > 0 are the eigenvalues of X. It is easy to see that the eigenvalues of R(k) and
R l(k)=2 + kI, are o +k, e, % and Ay +k,---, A, +k respectively. with this
background, we get the following identities:

2

(i) PR k)p = (A+kL)a = a=Tp (8.30)

p o5
J=1 j+i??
(i) rROERE) = Y7, 5

(iii) r[RGTHMHEZ'H)'HE'R(K)] = Y 1(Ahi’k)z
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where A}, > 0 is the j ™ diagonal element of
) P
(v) THMHZ'H)'HT =H*, §X8 =) &7

j=1

where § = T 'H (HEZ 'H)~'(Hp — h). Assume that W = I, in Theorem 4.1 (b).

8.5.1.1 Comparison of p, (k) and p,

The comparison results are presented in the following Theorem.

Theorem 5.1.1 Under K,y and basics assumptions, there exists a k € (0, ko) where

2,2

ky = azy such that the unrestricted ridge autoregression estimator p, (k) has
‘max -

smaller mean square error (mse) than the unrestricted estimator, p,, as n — 00.

Proof Consider the asymptotic distributional mse of p, (k) given by
» v Aj ~ a]g
Ri(p,(k);1,) = - —— +k P 8.31
10, (k); 1) = o,y j§:l G+ EP + j§:1 G+ RP (8.31)

Itis obvious that for k = 0, the first term equals o,y > Y7_, % = Ri(p,;1,) and
second term equals zero respectively. The first term is a continuous, monotonically
decreasing function of k and its derivative w.r.t k approaches —oo as k — 01 and
Ap — 0. The second term is also continuous, monotonically increasing function of
k and its derivative tends to zero as k — 07. We note that the second term tends to

0 p as k — oo. Differentiating (8.31) w.r.t k we get

@( (k); 1 )—2XP:L(W —o2y7?) (8.32)
ok Py »Ep) T p ()\-j+k)3 J (py . .
Thus, a sufficient condition for (8.32) to be negative is that there exists ak € (0, ko)
2,,-2
G'w}/

such that p, (k) has smaller mse than that of p,, where kg =

max<j<plo}’

YPT ~PT

8.5.1.2 Comparison between p, (k and o,

First, note that for o = 0, H42(x qz(oz); A?) = 1. In this case, one compares between
p,(k) and p,. On the other hand, if « = 1, then ’HqH(X(f(a);Az) = 0. Hence,
compares p, (k) and p, which have done in Sect. 8.5.1.1.

The comparison of p,, (k)T and i): Tis given in the following Theorem.
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Theorem 5.1.2 Under K,y and the regularity conditions as n — oo, a sufficient

condition for the mse of p,(k)*T is less than the mse fof T is that there exists a

k € (0, kpp (A2, ) where

fl(AZ’ (¥)
kpp (A2, q) = L1829 8.33
P = (A% (839
with
fi(A? ) = 1211‘12,7[0«%7’_2 {hj = I a0 (@) A7)
+ 23877 {2H120 @) A7) = Hyrag @) A7)
— A58 Hy a2 (xg (0): A7)]
and g1(A% @) = max [arjh; {o; = 87Hy 4205 AD)].
Proof

P
Ry(p, " (k) 1) Z(k - k)z{ajy‘z[x,-—h;f,-Hﬁz(x;(a);Az)]

+ AP 2H, 12X (@); A?) = Hyra(x g (@); AD)]
+ Ko 4 2ka A ;85 Hy o (x (@); A7)

Differentiating with respect to k, we obtain

aRs . )4
@) (1) = Z o k);{koe,-x,-[aj—h?;qu+z(x3<a>;A2>1

— logy 2 (hj — Bl Hgpa(x, (@); A?))
+ 185 12H 420X (@); A7) = Hypa(xg (@); A7)]
— @SS H 2 (x g (@); AP (8.34)

Hence, a sufficient condition that i): T (k) has mse less than Hannan (1970) the mse of

5T is that there exists a k € (0, kpr(AZ?, a)) where kpr (A2, @) is defined by (8.33).
Consequently, the mse of p, (k) is less than the mse of p,,.
8.5.1.3 Comparison between p, (k) and p,

The following theorem gives the sufficient conditions for the dominance of ) (k)
AS
over p,,.
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Theorem 5.1.3 Under K, and the assumed regularity conditions, R4(,62;I,,) >

R4(p’(k); 1,) holds whenever k € (0, ks), where ky = fﬁz; with

A8 = min [o0y () = (q = Dhjlq = DELxHAY)]

2 0x2
(q +2)A;07

+2<1—m) 2Elx, h(AN])
+(q — DT8P Elx, H(AN]] (8.35)
and (8% = max {a;d,le; - (@ =28 ELGHADN]  (836)

Proof Consider the mse expression for g (k) given by

P

Ra(B, (k): 1) Z o k)z{ojﬁ[x,—w—z)h (g = DELx, 40%)]

(q + 223872
a- W)AZE[X4+4(A Nk
+ 2k(q — 2)a;2 ;8T Elx, (AN} (8.37)

The derivative of R4(p, (k);I,) w.r.t. k is given by

ARy ., a _
—p BkL,) = Z k)3{koe,,~k,~[a,,-—(q—2>6;E[xqﬁ2<A2>]

o, *Z{A — (g — Dhl(g — 2ELx, H(AM)]
(q + 21357
+(1 20 2 _2A2h*u
szzE[xq+4<A2)]}—<q 228 Elxy H(AD).  (8.38)

Thus, a sufficient condition for (8.37) to be negative is that k € (0, k;) where k;
is given by (8.35) and (8.36). QED.

8.5.1.4 Comparison between p,f (k) and p p

The comparison between ,?)ff(k) and ,f)ff is given by the following theorem.

Theorem 5.1.4 Under K,y and the assumed regularity conditions as n — oo, a
sufficient condition for the mse of [)if (k) is less than Hannan (1970) f):f is that there

exists ak € (0, ky1) where kg = fzgizg and f3(A?) and g3(A?) are given by

f(A) = n min {o y A — (g — Dajil(q — DEx, H(AM)]
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(q + 22787 4 a2
W)QA )E[Xq+4(A )

— @ EL(1 = (q = D1, (AN 1 (xg (A7) < (g = 2)]

— M8PEL = (g — D 24 A (x4 4(A%) < (g — 2))]

+ (0 = 2800787 EL((q — 20X, 2a(A%) = DI(xg72(A?) < (g — 2))]

+dq6;87); ELx, (AN} (8.39)
and g3(A%) = max [2:0:{6; + 87 E((g — Dx, (AP — 1)

1<xq+2<A2) <(q—2)
— (g — 28 Elx, H(ANH.

Aa-‘r

Proof The risk function of p, " (k) can be expressed as

p
. 1 _
Rs(p)," (k):1,) = Ra(P), (k); 1) — ;m{{ ory”?

(1= (g = 2 AP 1042(AY = (g — 2)]
+ APE (1= (g = 2 AP IO, (A%) = (g — 2)])
+ 20572E (g = D280 = DI ) = (g =) )

+ 2k6;1;8; E[((q — 2)X;+22(A ) — 1)1(xq+2(A ) < (g —2)]}.
(8.40)

where R4(p) (k);1,) is given by (8.37). Differentiating Rs(p hL(k) I,,) with respect
to k, we obtain

ORs(p," (k):1,) _ 8R4<i>;<k) L) i

9k {kOt,)\,l(Sl*

=1 k)3

E[(q = 2017587 = DIGZ () < (q - 2)]

+ G2 E [(1 = (g = DA (a8 < (g - 2)]
A28:2

t ozt

— (@ = 250067 E [((q = 200587 = DIGEo(AY) = (q = 2)]),

(8.41)

(1= (@ = 2@ 102, 4% = @ - 2)))
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where m‘(ﬁ;% is given by (8.38). Hence, a sufficient condition for (8.41) to be

negative is that 0 < k < k4 where

_ f3(A2)
T gAY

whenever g3(A?) > 0. QED.

8.5.1.5 Comparison between g (k) and p,,

In this case, we may obtain the Theorem given below.

Theorem 5.1.5 Under K, and the assumed regularity conditions, as n — oo, a
sufficient condition for p, (k) to have mse value is less than or equal to the mse of p,,
is that there exists a value of k € (0, k}) where

( 4+ ) 2 *2
o2y” mm1<,<p{h,,(q DEL HAM] + (1 - z‘iy,szAaE[xMA%]}

k=
maxi<j<p, {2aj)»j5;'fE[Xq+2(A2)]}

(8.42)
For proof consider the mse difference R1(p,,(k);I,) — Ra(p; (k);1,) > 0, then k
follows.

8.5.1.6 Comparison of pn+(k) and i);(k)

The result is presented in the following Theorem.

Theorem 5.1.6 Under K,y and the assumed regularity conditions, as n — 00,
0% (k) has smaller mse than p; (k) for all k > 0.

Proof Consider the mse difference of pn+(k) and p; (k) given by

Ry (py(k):1,) — Rs(p)," (k):1,)
_Xp: 1 { 2 -2
(Aj + k)?
(h;,-E[(l (@ = DA = (g — )] )
= WBPRE[(1 = (g = 21, AAN (a8 = (g — )]

— E[(1 =@ = 2130 12, (8D = (@ = 2))

— 2k A 8TEL(L — (¢ — DA HAI (2 o(A) < (g =) (8.43)
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Since 1 — (¢ — 2))(‘;32(A2) <0= )(3+2(A2) < g — 2 and the expectation of a
negative r.v. is negative, hence, the R.H.S is non-negative for all £ > 0 and the mse
of p; " (k) is smaller than that of 4’ (k) uniformly in k > 0.

Further, we have the following corollary.

Corollary A sufficient condition that the dominance relation is given by
Rs(p," (k);1,) < Ra(@y,(k); L)) < Ri(p,,(k); 1) (8.44)

is that there exists a k such that k € (0, k}') where k is given by (8.42).

8.6 Comparison of the Five RRE’s as a Function of A?

Consider a mse differences of p, (k) and f); (k) and p, (k) and AH(k) are given by
(a) Ry (P, (k);1,) — Ra(p, (k) 1)
=0,y (g — Dtr[R*(k)AN{(q — 2)Elx, {,(AM)]

(g +2)8 R*(k)8 ) 2
U= o S aanrega] @A) E e (AN

+ 2k(g — I8 R~ (OR(K)PIE[x, H(AD] = 0

tr[R2C" o g+2
Chmax(Rz(k)Cil) - 2

Hence, R4(i)i(k); I,) < Ri(p,(k);1,) uniformly in A? for fixed k € (0, 00).

uniformly in A? since

(b) Ry (0, (k);L,) — Rs(p," (k);1,) = o)y (g — 2tr[R*(k)A]
}AEL(1 = (q = 2)x, (AN 1 (X7 12(A%) < (g — 2))]
+ 8 RA()S2EI(1 — (g — 2%, n( AN (X7 12(A%) < (g — 2)]
— E[(1 — (g = 2, (M) T(xg 1 4(A%) < (g =21
+2k(q — 2)8 R (OR(K)PElx, ,(A)] = 0

uniformly in A2
Hence, Rs(p),"(k);1,) < Ra(p),(k);1,) uniformly in A? for fixed k € (0,00).
Thus,
Rs(p," (k);1,) < Ra(py, (k) 1) < R1(B,(k); 1) for k € (0,k)).

Next, we compare the amse of p,,(k) and f)fT(k). Note that if « = 0, then f):T(k) =
p,, (k). Thus, consider the amse-difference between p,(k) and ,65 T(k) as follows:

Ri(p,(k):1,) — Ry(py, " (k):1,) = 02y *tr[R*(k) Al g 4o(x ] (@); A?)
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— 8 R*()8{2H,42(x . (@) A?)
— Hyralxg (@); A7)
— 2k8R™ () RU)PH g2(x (@); A%)
if @ = 0, the amse-difference becomes
a2y tr[R*(k)A] — § R*(k)8 — 2k8R™ (k)R(k)p
Hence,p” " (k) is better than p, (k) if and only if

02y r[RAK) ATH g2 (x2(@): A%) — 2k8 R (O R(K)pH g 12(x2(@): A2)

8 R*(k)s
(o = 2, 2 2(@); A7) — Hy a2 (@); )]

This imply i)f Ty is superior to p,, (k) if and only if

02y HrIRY () ATH g 2(x2(0); A2) — 2k8 R™U (k)R (k) pHy 42 (X2 (@); A?)

A? <
= Chmad (R E,T2H 12 (62(@); A7) — Hyaa(x2(@); AD)]

Similarly,p,, (k) is superior to p, (k) if and only if

A2 oyy 2tr[R*(k)A] — 2k8R™' (k)R(k)p
< .
- Chmax [R2(K)Z

Under Hy : Hp = h, the order the mse expressions is given by
Ra(p,(k):1,) < R(p, ' (k):1,) < Ri(B, (k) 1)
When does p,, superior to ,?): T(k)? Whenever

_ oy AR ATH 203 (@): A%) — 2k8 R ORK)PHy 1213 (@): A7)

Az
- Chnin[RRIOE [ 112H g 12(x2(@); A2) = Hgpa(x2(@); AY)]

If k = 0, the results coincide the five estimators in Sect. 8.3.
Similar, comments hold, tha is, p,(k) is superior to p, (k) if and only if

o2y 2r[RA(k)A] — 2k8 R~ (k)R(k)p

A? >
chmin[R2)Z ]

Thus, we obtain the same asymptotic properties of the R-estimators p,,, 0, , ,?)ff

and p.” for the ridge estimators.
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8.7 Summary and Conclusions

In this chapter, we defined a new class of R-estimators for the parameters p of the
autoregressive model (8.1) by weighting the usual five R-estimators as in Saleh (2006)

with a “ridge factor”. We established that the asymptotic distributional properties of

P00, bk, pET (), p5(k) and it (k) are similar to the estimators p,,, p,, p. ',

. and p." based on the mse’s as function of A2 and k respectively. It is shown
in particular that p;" (k) uniformly dominates p (k) (when p > 3) and p. " (k) is a
useful alternative to p, (k) (wWhen p < 2).

Acknowledgements The author thanks the referees for their careful reading of the paper. Also,
thanks to Prof. H.L.Koul, a strong researcher for his collaborative research with me on autoregressive
models which yielded several pioneering results on this topic.
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Chapter 9
On Hodges and Lehmann’s “6/7 Result”

Marc Hallin, Yvik Swan and Thomas Verdebout

9.1 Introduction

The Pitman asymptotic relative efficiency ARE (¢; /¢>) under density f of a test ¢;
with respect to a test ¢, is defined as the limit (when it exists), as n; tends to infinity,
of the ratio ny,s(n1)/n; of the number 1y, r(n) of observations it takes for the test
¢», under density f, to match the local performance of the test ¢»; based on n
observations. That concept was first proposed by Pitman in the unpublished lecture
notes (Pitman 1949) he prepared for a 1948—1949 course at Columbia University. The
first published rigorous treatment of the subject was by Noether (1955). A similar
definition applies to point estimation; see, for instance, Hallin (2012) for a more
precise definition. An in-depth treatment of the concept can be found in Chap. 10 of
Serfling (1980), Chap. 14 of van der Vaart (1998), or in the monograph by Nikitin
(1995).

The study of the AREs of rank tests and R-estimators with respect to each other
or with respect to their classical Gaussian counterparts has produced a number of
interesting and sometimes surprising results. Considering the van der Waerden or
normal-score two-sample location rank test ¢ygw and its classical normal-theory
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competitor, the two-sample Student test ¢ s, Chernoff and Savage in (1958) estab-
lished the rather striking fact that, under any density f satisfying very mild regularity
assumptions,

ARE f(¢vaw/oPn) = 1, O.1)

with equality holding at the Gaussian density f = ¢ only. That result implies that
rank tests based on Gaussian scores (that is, the two-sample rank-based tests for
location, but also the one-sample signed-rank ones, traditionally associated with the
names of van der Waerden, Fraser, Fisher, Yates, Terry and/or Hoeffding—for sim-
plicity, in the sequel, we uniformly call them van der Waerden tests)—asymptotically
outperform the corresponding everyday practice Student ¢ test; see Chernoff and
Savage (1958). That result readily extends to one-sample symmetric and m-sample
location, regression, and analysis of variance models with independent noise.

Another celebrated bound is the one obtained in 1956 by Hodges and Lehmann,
who proved that, denoting by ¢w the Wilcoxon test (same location and regression
problems as above),

ARE f(¢hw /o) > 0.864, 9.2)

which implies that the price to be paid for using rank-rank or signed-rank tests of
the Wilcoxon type (that is, logistic-score-based rank tests) instead of the traditional
Student ones never exceeds 13.6 % of the total number of observations. That bound
moreover is sharp, being reached under the Epanechnikov density f. On the other
hand, the benefits of considering Wilcoxon rather than Student can be arbitrarily
large, as it is easily shown that the supremum over f of ARE ((¢w /¢ ) is infinite;
see Hodges and Lehmann (1956).

Both (9.1) and (9.2) created quite a surprise in the statistical community of the late
1950s, and helped dispelling the wrong idea, by then quite widespread, that rank-
based methods, although convenient and robust, could not be expected to compete
with the efficiency of traditional parametric procedures.

Chernoff-Savage and Hodges—Lehmann inequalities since then have been ex-
tended to a variety of more general settings. In the elliptical context, optimal
rank-based procedures for location (one and m-sample case), regression, and scatter
(one and m-sample cases) have been constructed in a series of papers by Hallin and
Paindaveine (2002a, 2006, and 2008b), based on a multivariate concept of signed
ranks. The Gaussian competitors there are of the Hotelling, Fisher, or Lagrange mul-
tiplier forms. For all those tests, Chernoff—Savage result, similar to (9.1) have been
established (see also Paindaveine 2004, 2006). Hodges—Lehmann results also have
been obtained, with bounds that, quite interestingly, depend on the dimension of the
observation space: see Hallin and Paindaveine (2002a).

Another type of extension is into the direction of time series and linear rank
statistics of the serial type. Hallin (1994) extended Chernoff and Savage’s result
(9.1) to the serial context by showing that the serial van der Waerden rank tests also
uniformly dominate their Gaussian competitors (of the correlogram-based portman-
teau, Durbin—Watson or Lagrange multiplier forms). Similarly, Hallin and Tribel
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(2000) proved that the 0.864 upper bound in (9.2) no longer holds for the AREs of
the Wilcoxon serial rank test with respect to their Gaussian competitors, and is to be
replaced by a slightly lower 0.854 one. Elliptical versions of those results are derived
in Hallin and Paindaveine (2002a, 2004, 2005).

Now, AREs with respect to Gaussian procedures such as t-tests are not always
the best evaluations of the asymptotic performances of rank-based tests. Their exis-
tence indeed requires the Gaussian procedures to be valid under the density f under
consideration, a condition which places restrictions on f that may not be satisfied.
When the Gaussian tests are no longer valid, one rather may like to consider AREs of
the form

ARE;(¢;/¢x) = 1/ARE (¢ /¢7) 93)

comparing the asymptotic performances (under f) of two rank-based tests ¢, and ¢,
based on score-generating functions J and K, respectively. Being distribution-free,
rank-based procedures indeed do not impose any validity conditions on f, so that
ARE((¢;/¢x) in general exists under much milder requirements on f; see, for
instance, Hallin et al. (2011) and Hallin (2013), where AREs of the form (9.3) are
provided for rank-based methods in linear models with stable errors under which
Student tests are not valid.

Obtaining bounds for ARE (¢ /¢ ), in general, is not as easy as for AREs of the
form ARE (¢ /¢ 7). The first result of that type was established in 1961 by Hodges
and Lehmann, who in (Hodges and Lehmann 1961) show that

0 < ARE(¢pw/dvaw) < 6/m ~ 1.910 9.4)
or, equivalently,
0.524 ~ /6 < ARE ¢ (¢yaw/Ppw) < 00 (9.5)

for all f in some class F of density functions satisfying weak differentiability
conditions. Hodges and Lehmann moreover exhibit a parametric family of densi-
ties F = { fu| @ € [0, 00)} for which the function @ > ARE g, (¢pw/Pyaw) achieves
any value in the open interval (0,6/7) (o — ARE[, (¢vaw/¢w) achieves any value
in the open interval (77 /6, 00)). The lower and upper bounds in (9.4) and (9.5) thus are
sharp in the sense that they are the best possible ones. The same result was extended
and generalized by Gastwirth (1970).

Note that, in case f has finite second-order moments (so that ARE ((¢w/dnr)
is well defined), since ARE ;(¢vaw/Pn) = ARE f(¢yaw/dw) x ARE ((dw/dn),
Hodges and Lehmann’s “6/ result” implies that the ARE of the van der Waerden
tests with respect to the Student ones, which by the Chernoff—Savage inequality is
larger than or equal to one, actually can be arbitrarily large, and that this happens for
the same types of densities as for the Wilcoxon tests. This is an indication that, when
Wilcoxon is quite significantly outperforming Student, that performance is shared
by a broad class of rank-based tests and R-estimators, which includes the van der
Waerden ones.
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In Sect. 9.2, we successively consider the traditional case of nonserial rank
statistics used in the context of location and regression models with independent
observations, and the case of serial rank statistics; the latter involve ranks at time ¢
and t — k, say, and aim at detecting serial dependence among the observations. Serial
rank statistics typically involve two score functions and, instead of (9.3), yield AREs
of the form

ARE (¢, /$15,00)- (9.6)

To start with, in Sect. 9.2.1, we revisit Gastwirth’s classical nonserial results.
More precisely, we provide (Proposition 2) a slightly different proof of the main
proposition in Gastwirth (1970), with some further illustrations in the case of Stu-
dent scores. In Sect. 9.2.2, we turn to the serial case, with special attention for
the so-called Wilcoxon—Wald—Wolfowitz, Kendall, and van der Waerden rank au-
tocorrelation coefficients. Serial AREs of the form (9.6) typically are the product
of two factors to which the nonserial techniques of Sect. 9.2.1 separately apply;
this provides bounds which, however, are not sharp. Therefore, in Sect. 9.3, we re-
strict to a few parametric families—the Student family (indexed by the degrees of
freedom), the power-exponential family, or the Hodges—Lehmann family Fy; —for
which numerical values are displayed.

9.2 Asymptotic Relative Efficiencies of Rank-Based Procedures

The asymptotic behavior of rank-based test statistics under local alternatives, since
Hajek and Sidak (1967), is obtained via an application of Le Cam’s Third Lemma
(see, for instance, Chap. 13 of van der Vaart 1998). Whether the statistic is of the
serial or the nonserial type, the result, under a density f with distribution function F
involves integrals of the form

1 1
K(J) ::/ J?(u)du KW, f) :=/ J (W r(F~ (u))du,
0

0
and, in the serial case,

1
T, f) = / J)F~ Y (u)du
0

where, assuming that f admits a weak derivative f', ¢, := — f'/f is such that the
Fisher information for location Z( f) := fol go%(F ~1(u))du is finite. Denote by F the
class of such densities. If local alternatives, in the serial case, are of the ARMA type,
f is further restricted to the subset F; of densities f € F having finite second-order
moments. Differentiability in quadratic mean of f!/2is the standard assumption here,
see Chap. 7 of van der Vaart (1998); but absolute continuity of f in the traditional
sense, with a.e. derivative f’, is sufficient for most purposes. We refer to Héjek and
Sidak (1967) and Hallin and Puri (1994) for details in the nonserial and the serial
case, respectively.
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9.2.1 The Nonserial Case

In location or regression problems, or, more generally, when testing linear constraints
on the parameters of a linear model (this includes ANOVA etc.), the ARE, under
density f € F, of a rank-based test ¢;, based on the square-summable score-
generating function J; with respect to another rank-based test ¢;, based on the
square-summable score-generating function J, takes the form

K(J2) . KU f)
K, )Cf(Jl, Jr), with Cr(J1, o) = —’C(Jz, f)’ 9.7

provided that J; and J, are monotone, or the difference between two monotone
functions. Those ARE values readily extend to the m-sample setting, and to R-
estimation problems. In a time-series context with innovation density f € F,, and
under slightly more restrictive assumptions on the scores, they also extend to the
partly rank-based tests and R-estimators considered by Koul and Saleh in (1993) and
(1995).

Gastwirth (1970) has based his analysis of (9.7) on an integration by parts of
the integral in the definition of /C(J, f). If both J; and J, are differentiable, with
derivatives J; and J,, respectively, and provided that f is such that

ARE; (¢, /1) =

lim J(FE)F) = 0= lim J(Fe)Fx),

integration by parts in those integrals yields, for (9.7),

9.8)

o0 ’ 2 2
ARE; (¢1,/¢1,) = K(%) (foo JI(F(x) f (x)dx> |

K\ 22 J(F ) f2(x)dx

In view of the Chernoff-Savage result (9.1), the van der Waerden score-genera-
ting function

() = Jyaw(w) = ' (u) (9.9)

(with # + ®~'(u) the standard normal quantile function) may appear as a natu-
ral benchmark for ARE computations. From a technical point of view, under this
integration by parts approach, the Wilcoxon score-generating function

Jw) = Jw) =u—1/2 (9.10)

(the Spearman—Wald—Wolfowitz score-generating function in the serial case) is more
appropriate, though. Convexity arguments indeed will play an important role, and,
being linear, Jw is both convex and concave. Since Ji, (1) = 1 and K(Jw) = 1/12,
Eq. (9.8) yields

12ARE (¢, /pw) =

e} 4 2 2
1 ( [ T(F))f <x>dx> o1

KD ffooo f2(x)dx
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Bounds on J{(F(x)) then readily yield bounds on AREs, irrespective of f.

That property of Wilcoxon scores is exploited in Propositions 2 and 3 for nonserial
AREs, in Proposition 4 for the serial ones; those bounds are mainly about AREs
of, or with respect to, Wilcoxon (Spearman—Wald—Wolfowitz) procedures, but not
exclusively so.

Assume that f € Fo := {f € F| lim,_, 1o f(x) = 0}. Then, integration by
parts is possible in the definition of KC(Jw, f), yielding

K(Jw. f) = / F0dx,

Assume, furthermore, that the square-integrable score-generating function J; (the
difference of two monotone increasing functions) is differentiable, with derivative J;,
and that

feFu ={f Rl lim H(F)f(x)=0}

so that (9.8) holds. Finally, assume that J; is skew-symmetric about 1/2. Defining
the (possibly infinite) constants

[l

K} = sup |J'(u)| and «; := inf |J’(u)
u>1/2 ux1/2

we can always write

12ARE; (¢5,/¢w) < ;) /K () (9.12)
while, if J; is non-decreasing (hence J; is non-negative), we further have
(k70 /K(J1) < 12ARE (¢, /pw) < () /K(). (9.13)

The quantities appearing in (9.12) and (9.13) often can be computed explicitly,
yielding ARE bounds which are, moreover, sharp under certain conditions.

For example, if J; is convex on [1/2,1), its derivative J| is non-decreasing
over [1/2, 1), so that

< =J(1/D =0 and kg = limJj(u) < +oo. (9.14)

It follows that, under the assumptions made,
(Ji(1/2))/K(J1) < 12ARE (¢, /¢w) < (lim Ji@)?/K(J). - (9.15)

The lower bound in (9.15) is established in Theorem 2.1 of Gastwirth (1970).

The double inequality (9.15) holds, for instance (still, under f € F,), when the
scores J; = ¢, o G~ are the optimal scores associated with some symmetric and
strongly unimodal density g with distribution function G; such densities indeed are
log-concave and have monotone increasing, convex over [1/2, 1) score functions.
Symmetric log-concave densities take the form

o0
g(x) = Ke 9, K '= / e MV dx (9.16)
—0oQ
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with x — u(x) a convex, even (that is, u(x) = w( — x)) function; assume it to be
twice differentiable, with derivatives ' and u”. Then, ¢,(x) = w'(x), so that

JiW) = @ (G (W) = (G (w)), KWU)= / (K (x))* g(x)dx = Z(g)

where Z(g) the Fisher information of g (which we assume to be finite), and

1o _ 10
g(0) K

Jyw) = 1" (G~ '(w)/g(G™ (), hence Ji(1/2) =

Specializing (9.15) to this situation, we obtain the following proposition.

Proposition 1. [f the square-integrable score-generating function Jy is of the form
@go0 G~ with g given by (9.16), i even, convex, and twice differentiable, then, under
any f € Fy,

(0 2
<—M1§ )> < I2T(QARE (s /¢w) = (lim Jy(w)* = (lim (1" (x)/g(x))*.
9.17)

With p(x) = x2/2 (so that K~' = +/27) in (9.16), g is the standard Gaussian
density; 1”(0) = 1, Z(g) = 1, and the lower bound in (9.17) becomes (1" (0)/K)* =
27, whereas the upper bound is trivially infinite. This yields the Hodges—Lehmann
result (9.4).

Turning back to (9.12) and (9.13), but with J; concave (and still nondecreasing)
on [1/2,1), J; is nonincreasing, so that I(j; = J1(1/2) and

12ARE; (¢, /dw) < (J;(1/2)7* /K. 9.18)

Not much can be said on the lower bound, though, without further assumptions
on the behavior of J; around u = 1.

Replacing, for various score-generating functions J; and densities f, the quanti-
ties appearing in (9.12), (9.15) or (9.18) with their explicit values provides a variety
of bounds of the Hodges—Lehmann type. Below, we consider the van der Waerden
tests ¢yqw, based on the score-generating function (9.9) and the Cauchy-score rank
tests Gcauchy» based on the score-generating function

Jcauehy (1) = sin 2w (u — 1/2)). 9.19)
Proposition 2. For all symmetric densities f in Fyaw, Fcauchy and Fuaw () Fcauchy:
respectively,

(1) ARE(¢w/¢vaw) < 6/7;
(2) ARE f(@cauchy/Pw) < 27?%/3;
(3) ARE s (¢cauchy/Pvaw) < 4.
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Proof. The van der Waerden score (9.9) is strictly increasing, and convex
over[1/2, 1). One readily obtains

K(Jaw) =1 and T, (u) = +27 exp{(®~' (u))?/2},

hence k4w = Joqw(1/2) = V27 Plugging this into the left-hand side inequality
of (9.15) yields (1). Alternatively one can directly apply (9.17).

The Cauchy score is concave over [1/2, 1), but not monotone (being of bounded
variation, however, it is the difference of two monotone function). Direct inspection
of (9.19) nevertheless reveals that

K(Jcauchy) = 1/2  and J/Cauchy(u) = 2w cos 2w (u — 1/2)),

hence Kéauchy = JCauchy(1/2) = 27. Substituting this in (9.12) yields (2). The product
of the upper bounds in (1) and (2) yields (3). O

Remarkably, those three bounds are sharp. Indeed, numerical evaluation shows
that they can be approached arbitrarily well by taking extremely heavy-tails such as
those of stable densities f, with tail index « — 0, Student densities with degrees
of freedom v — 0, or Pareto densities with « — 0; see also the family Fyy of
densities f, .(x) defined in Eq. (9.24).

Figure 9.1 provides plots of ARE ;(¢w/¢vaw) and ARE ¢(dcauchy/$vaw) for var-
ious densities. Inspection of those graphs shows that both AREs are decreasing as
the tails become lighter; the sharpness of bounds (1) and (3), hence also that of
bound (2), is graphically confirmed.

The bounds proposed in Proposition 2 are not new, and have been obtained already
in Gastwirth (1970). One would like to see similar bounds for other score functions,
such as the Student ones

I, = +DF W/ + F ' (w?) 0O<u<1l1

14+v 1
= P B,-2w) 12<u<1 (920
S\ By T 2ses T 020

where 1B, (v) denotes the inverse of the regularized incomplete beta function
evaluated at (1,v,v/2,1/2) and F,v‘l stands for the Student quantile function with v
degrees of freedom. Note that lim,_,_; IB,(v) = 0, so that lim,_,; J; () = O.
Since J;,(1/2) = 0 and J; (1/2) > 0, this means that, on [1/2,1), J;, is a
redescending function; in general, it is neither convex nor concave on [1/2, 1).
Differentiating (9.20), we get, for u > 1/2,

T+ D (3)

(1) = 14 21B,(1 — 2u) 1B, (1 — 2u)' %", 21
J;, (W) NED (=1+ ( u)) IB,( u) 9.21)
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Fig.9.1 ARE ;(¢w/¢vaw) and ARE f(¢cauchy /$vaw) under various families of densities: symmetric
stable (indexed by their tail parameter «), Student- (indexed by their degrees of freedom v) or Pareto
(indexed by their shape parameter «)

from which we deduce that

0 0<v<l
lim J, () = { —27 v=1
u=l —00 1 <v

Except for the v = 1 case, which is covered by (2) and (3) in Proposition 2, these
values do not provide exploitable values for «*. For v < 1, however, one can check
from (9.21) that max,>1,2|J'(x)| = J'(1/2), so that

1
K} ==+ DT (g)/«/ﬁr (”“ZL >
Elementary, though somewhat tedious, algebra yields
K(J,) =@+ D/ +3).

Plugging this into (9.12), we obtain, for v < 1, the following additional bounds.

Proposition 3. For all 0 < v < 1 and all symmetric density f in F;, and
F1, () Fraw- respectively,

(4) ARE(¢,/6w) < 7T(5)(0 +3)v + D/1200 (451, and

(5) ARE (¢, /$vaw) < T2(5)(v + 3)(v + 1)/2vT2 ().

Inequality (4) is sharp, the bound being achieved, in the limit, under very heavy tails
(stable densities with & |, O, or Student-#, densities with p |, 0). Since this is also
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the case, under the same sequences of densities, for inequality (1) in Proposition 2,
inequality (5) is sharp as well. The upper bounds (4) and (5) are both decreasing
functions of the tail index v; both are unbounded at the origin, and both converge to
the corresponding Cauchy values as v — 1.

9.2.2 The Serial Case

Until the early 1980s, and despite some forerunning time-series applications such
as Wald and Wolfowitz (1943) (published as early as 1943—two years before Frank
Wilcoxon’s pathbreaking 1945 paper), rank-based methods had been essentially lim-
ited to statistical models involving univariate independent observations. Therefore,
the traditional ARE bounds (Hodges and Lehmann 1956, 1961), Chernoff-Savage
(1958) or Gastwirth (1970), as well as the classical monographs (Hajek and Siddak
1967; Randles and Wolfe 1979; Puri and Sen 1985, to quote only a few) mainly deal
with univariate location and single-output linear (regression) models with indepen-
dent observations. The situation since then has changed, and rank-based procedures
nowadays have been proposed for a much broader class of statistical models, in-
cluding time-series problems, where serial dependencies are the main features under
study.

In this section, we focus on the linear rank statistics of the serial type involving
two square-integrable score functions. Those statistics enjoy optimality properties
in the context of linear time series (ARMA models; see Hallin and Puri 1994 for
details). Once adequately standardized, those statistics yield the so-called rank-
based autocorrelation coefficients that are denoted by R™,, ..., R™, the ranks in
a triangular array X™,, ..., X, of observations. Rank autocorrelations (with lag
k) are linear serial rank statistics of the form

n

(n) —1 R(n) Rt(’i)k (n) n) \—1
" =[n—k7" Y +1)Jz(n+1) A (G

Sk t=k+1

(n)

where J; and J, are (square-integrable) score- generating functions whereas m ),

R™
and s}, := 5",  denote the exact mean of J; (n+l)J2(

i ) and the exact standard

error of (n —k)~ 22, k+]J1(n+l)J2( )undertheassumptlonofnd X5 (more

precisely, exchangeable R,(") ’s), respectively; we refer to pages 186 and 187 of Hallin
and Puri (1994) for explicit formulas. Signed-rank autocorrelation coefficients are
defined similarly; see Hallin and Puri (1992) or Hallin and Puri (1994).

Rank and signed-rank autocorrelations are measures of serial dependence offering
rank-based alternatives to the usual autocorrelation coefficients, of the form

e = Z X, X, k/ZX,,

t=k+1

which consitute the Gaussian reference benchmark in this context. Of particular
interest are
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(i) the van der Waerden autocorrelations (Hallin and Puri 1988)

)
R ) 1) -1
) vdW](svdW) >

™) I R(n)
r =[n—h)~ Z@ (n+l

Wik R +

(i1) the Wald-Wolfowitz or Spearman autocorrelations (Wald and Wolfowitz 1943)

7 [(n—k) 1 Z R(")R(”) _ (S’(’{/W](sé’{zlw)il’
NSWWk t=k+1

(iii) and the Kendall autocorrelations (Ferguson et al. 2000, where explicit values
of mY’ and s are provided)

4D
Ao [1 _ k (n)]( (n)) 1
~K:k n—k)Y(n—k— 1)
with D,(C") denoting the number of discordances at lag k, that is, the number of
pairs (R", Rt(") ) and (R™, R(") ) that satisfy either

R,(") < RAE”) and Rt('i)k > Ri’i)k, or R,(") > RE”) and Rf’?k < R;'i)k;

more specifically, Dy := Y7_, .| I(R™ < R™, R™, > R™)).

s=t+1

The van der Waerden autocorrelations are optimal—in the sense that they allow
for locally optimal rank tests in the case of ARMA models with normal innovation
densities. The Spearman and Kendall autocorrelations are serial versions of Spear-
man’s rho and Kendall’s fau, respectively, and are asymptotically equivalent under
the null hypothesis of independence; although they are never optimal for any ARMA
alternative, they achieve excellent overall performance. Signed rank autocorrelations
are defined in a similar way.

Let J;, i = 1,...,4 denote four square-summable score functions, and assume
that they are monotone increasing, or the difference between two monotone increas-
ing functions (that assumption tacitly will be made in the sequel each time AREs
are to be computed). Recall that F, denotes the subclass of densities f € F having
finite moments of order two. The asymptotic relative efficiency, under innovation

density f € J», of the rank-based tests ¢’ ; based on the autocorrelations ;;( J? Dk
(n)

with respect to the rank-based tests ¢’ ; based on the autocorrelations 7, ;, ., is

ARE’ (@, 1, /47,4,

KR ( J Jl(V)gaf(F_l(V))dv)z K(J5) < I Jz(v)F‘l(v)dv>2

— KU\ [} e (F-mdv) KU\ [ 1) F~ (v)dv
_ KW K(Js)
=X f(Jl,J3)’C(J)Df(Jz,J4) (9.22)
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with C¢(J1, J3) := K(J1, [)/K(J3, f)and D¢(Ja, Jy) := T (J2, )/ T (s, f).

The C/ ratios have been studied in Sect. 9.2.1, and the same conclusions apply
here; as for the D ratios, they can be treated by similar methods.

Denote by ¢4y, Ghwws - - the tests based on £, £"Swwy ete. The serial
counterpart of ARE ¢ (¢w /@, ) is ARE(dgww /@7, ;,). for which the following result
holds.

Proposition 4. Let the score functions J, and J, be monotone increasing, skew-
symmetric about 1/2, and differentiable, with strictly positive J|(1/2) and J,(1/2).
Suppose that f € F, (\Fy, [\ Fy, is a symmetric probability density function. Then,

(1) if J; and J, are convex on [1/2, 1),

KUDK(L)
(J3(1/2) Jy(1/2))*

ARE($hyww /', 1,) = ARE} (0 /7, ,,) < 144

(2) if J; and J, are concave on [1/2, 1),

6 ) = AREN (@ gy < - 10/2) (1/2)7
ARE} (9], /Bww) = ARES (00,1, /90) = 17~ o

Proof. In view of (9.7), we have

K(J- ! —1/2 F71 d 2
ARES (v /9, ) = ARE (g /1) 2 (fo v = 1/2F') V) |

KUw) \ [} ) F-1(w)dv
Consider part (1) of the proposition. It follows from (9.13) that
ARE(¢w/¢s) < 12K(ID/(J;(1/2))%.

Since J; is convex over [1/2,1), Jo(u) > J,(1/2)(u — 1/2) for all u € [1/2, 1),
so that

1 1 1
/ LOWF 'wydv =2 / LOWF (v > J5(1/2) / (v —1/2)F~'(v)dv.
0 1/2 1/2

It follows that

K (o= 1/2)F v)dv 2< 12 K1)
KUw) \ [} ) F-1(w)dv (K2

where the assumption of finite variance is used. Part (1) of the result follows. A similar
argument holds (with reversed inequalities) if J, is concave, yielding part (2).
Applying this result to the score functions Jy(u) = Jo(u) = P '(u) (convex
over [1/2,0)) for which J;(1/2) = J5(1/2) = /27 and K(J;) = K(J2) = 1, we
readily obtain the following serial extension of Hodges and Lehmann’s “6 /7 result™:

ARE’(@sww/law) = ARES 0k /lgw) < (6/7)%. (9.23)
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Table 9.1 Numerical values of G, Dy, ARE; = AREf(¢w /Pvaw), andARE;? = ARE; (Dsww /Doaw)
under densities f, . in the Hodges—Lehmann family Fyy, (see (9.24)), for various values of ¢ and
a—0

e G Dy ARE; ARE,

0 0.398942 0.282070 1.90986 1.82346
0.2 0396313 0.276619 1.88476 1.73062
0.4 0.388772 0.271848 1.81372 1.60844
0.6 0377291 0.271061 1.70818 1.50608
1 0.348213 0.287973 1.45503 1.44796
2 0.294160 0303085 1.03836 1.14461
3 0.282852 0.285646 0.960064 0.940023
10 0.282095 0.282095 0.954930 0.911891
100 0.282095 0.282095 0.954930 0.911891

An important difference, though, is that the bound in (9.23) is unlikely to be
sharp. Section 9.3 provides some numerical evidence of that fact, which is hardly
surprising; while the ratio C y(Jyaw, Jw) is maximized for densities putting all their
weight about the origin, this no longer holds true for D ¢(Jyaw, Jw). In particular,
the sequences of densities considered in Hodges and Lehmann (1961) or Gastwirth
(1970) along which C y(Jyqw, Jw) tends to its upper bound typically are not the same
as those along which D ¢(Jyqw, Jw) does.

9.3 Some Numerical Results

In this final section, we provide numerical values of ARE ¢(¢w/dvaw) (denoted as
ARE y in the sequel) and A RE’;(¢gyw /Pyqw) (denoted as ARE? in the sequel) under
various families of distributions.

First, let us give some ARE values under Gaussian densities: if f = ¢, we obtain

1
Cy(Jw, Jy = Dy(Jw, Jy, = —— ~(0.28209
»(Jw, Jyaw) o (Jws Jyaw) W

so that

~ (0.95493

Q| w

AREy(dw/Pvaw) =

and

9
AREj(@ww/biaw) = — ~ 0.91189.

Tables 9.1, 9.2, and 9.3 provide numerical values of ARE ; and ARE ’; under

(1) (Table 9.1) The two-parameter family Fy. of densities f, . associated with the
distribution functions

D(x) if0<x<e

P(e +a(x —e€)) ife <x (9.24)

Fa,e(x) = {
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Table 9.2 Numerical values of G, Dy, ARE; = ARE;(¢w /$vaw), and ARE}‘ = ARE; (Dsww /Doaw)
under Student-f densities with various degrees of freedom v

v G Dy ARE ARE",
0.1 0.394451 - 1.86710 -

1 0.343120 - 1.41277 -

2 0.321212 0.243196 1.23813 0.878736
4 0.304695 0.269173 1.11407 0.968623
6 0.297953 0.274541 1.06531 0.963551
8 0.294303 0.276784 1.03937 0.955507
10 0.292017 0.278005 1.02329 0.949042
100 0.283146 0.281737 0.962059 0.916370

Table 9.3 Numerical values of G, Dy, AREy = ARE;(¢w/Pvaw), and AREY = ARE; (dgww /Praw)
under Student-f densities with various degrees of freedom v

0.1 0.393903 0.175222 1.86191 0.685991
1 0.313329 0.2720600 1.1781 1.046388
2 0.282095 0.2820950 0.954930 0.911893
10 0.222095 0.2934363 0.591916 0.611600
100 0.168549 0.2953577 0.340904 0.356871

where F,(x) is defined by symmetry for x < O (this family of distributions,
which has been used by Hodges and Lehmann (1961), is such that the nonserial
6/m bound is achieved, in the limit, as both a and € go to zero),

(2) (Table 9.2) The family Fgudent Of Student densities with degrees of freedom
v > 0, and

(3) (Table 9.3) The family F, of power-exponential densities, of the form

ol
fo(x) := AT+ 1/a) xeR, a>0. (9.25)

All tables seem to confirm the same findings: both the serial and the nonerial AREs
are monotone in the size of the tails, with the nonserial ARE ; attaining its maximal
value (6/ =~ 1.90986) under heavy-tailed f densities, while the maximal value
for the serial ARE*J} lies somewhere around (6/7)(3/7) ~ 1.82346. Inspection of
Table 9.1 reveals that, although the limit of C y asa — 0is monotone in the parameter
€, the ratio Dy is not; from Table 9.3, the highest values of D s under the distribution
(9.24) are attained for a — oo and € ~ 0.

Under Student densities f = f; , the nonserial ARE f is decreasing with v, taking
value 1.41277 at the Cauchy (v = 1), value one about v = 15.42 (a value of v
that is not shown in the figure; Wilcoxon is thus outperforming van der Waerden up
to v = 15 degrees of freedom, with van der Waerden taking over from v = 16 on),
and tending to the Gaussian value 0.95493 as v — 00; the serial ARE" is undefined
for v < 2, increasing for small values of v, from an infimum of 0.878736 (obtained
as v | 2) up to a maximum of 0.968852 (reached about v = 4.24), then slowly
decreasing to the Gaussian value 0.911891 as v — oo. Sperman—Wald—Wolfowitz
and Kendall thus never outperform van der Waerden autocorrelations under Student
densities.
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Fig. 9.2 Nonserial ARE; = ARE ;(¢w/¢pvaw) (left plot) and serial ARE*f = ARE}‘((bgWW [Bvaw)
(right plot) under densities f, . in the Hodges—Lehmann family Fyp. (see 9.24), as a function of
€ € [0,4]], for various choices of the parameter a
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Fig. 9.3 Left plot: ARE, (pw/pvaw) and AREY, (dgww/Praw) for f, the Student distribution, as
a function of the degrees of freedom v € [2,6]. Right plot: AREy, and ARE% for the power
exponential densities f, (9.25), as a function of the shape parameter « € [0, 11]
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Under the double exponential densities f = f,, the nonserial ARE ; is decreasing
with «, with a supremum of 6/7 (the Hodges—Lehmann bound, obtained as « | 0),
and reaches value one about o« = 1.7206 (similar local asymptotic performances
of Wilcoxon and van der Waerden, thus, occur at power-exponentials with parame-
ter o = 1.7206); the serial ARE, is quite bad as « | 0, then rapidly increasing for
small values of «, with a maximum of 1.08552 about @ = 0.510, then deteriorating
again as @ — 00; for « larger than 3, the serial and nonserial AREs roughly coincide
(See figs. 9.2 and 9.3).
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Chapter 10
Fiducial Theory for Free-Knot Splines

Derek L. Sonderegger and Jan Hannig

10.1 Introduction

In statistical practice, there is a tension between fitting an easily interpretable model to
our data versus fitting a highly flexible model that fits the data better. One compromise
between these competing ideas is a spline model. The spline model of degree p can be
thought of as connected degree p polynomials with the requirement that the resulting
function be “smooth” at the connection points. These connection points are usually
called “knot points” and the usual smoothness requirement is that the p — 1 derivative
exists.

The simplest example is the p = 1 spline with one knot point, which is a linear
function with some slope until the knot point, and then continues with a different
slope. The smoothness requirement is that the Oth derivative exists, which is, that
the function is continuous at the knot point. The resulting function is often called
the hockey-stick function. A degree p = 2 spline with one knot point is just two
quadratic curves joined together such that at the knot point the function has a Ist
derivative and is therefore “smooth”.

When using splines to approximate an unknown but continuous function, one
important question is where to place the knots. In typical nonparametric function
estimation, more knots than necessary are evenly spread along the dependent axis
and a penalty based on the second derivative (also known as function “wiggliness”) is
introduced (Ruppert et al. 2003). An alternative approach is to use a small number of
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knots but carefully place them. This problem of where to place the knots is known as
the free-knot spline problem. The free-knot spline problem is primarily interested in
estimating the location of the knot point and interpreting it as some sort of threshold
(Toms and Lesperance 2003; Sonderegger et al. 2009).

A Bayesian solution to the arbitrary degree p problem with a fixed number of
knot points is given by DiMatteo et al. (2001) and they recommend using a prior
of p(ot,t,az) o o072 where o2 is the usual variance term, o is the polynomial
coefficients, and ¢ is the vector of knot points. The maximum likelihood solution for
the degree p = 1 free-knot spline problem is developed in Muggeo (2003) and is
available in the R package segmented (Muggeo 2008).

In this chapter, we investigate the fiducial solution to the free-knot spline problem
of degree p > 4. In Sect. 10.2, we first extend the univariate fiducial Bernstein-
von Mises theorem to the multivariate setting, which shows that multivariate fiducial
estimators have an asymptotic multivariate normal distribution under certain assump-
tions. In Sect. 10.3, we derive the fiducial solution to the free-knot spline problem,
note that the Bernstein-von Mises assumptions are satisfied and investigate the small
sample properties by conducting a simulation study of degree p = 4 splines com-
paring the fiducial solution to the Bayesian solution of DiMatteo et al. (2001). In
Sect. 10.4, we give our concluding remarks.

10.1.1 Introduction to Fiducial Inference

R. A. Fisher first introduced his idea of fiducial inference (Fisher 1930) to address
what he felt was the major shortcoming of Bayesian inference. His goal was to
invent a posterior-like distribution without the need for a prior distribution. He did
not succeed in developing a general theory for finding these fiducial distributions
and his idea was met with extreme skepticism. In the 1990’s, generalized confidence
intervals (Weerahandi 1993) were found to have very good small sample properties
and (Hannig et al. 2006) shows the connection between generalized confidence
intervals and Fisher’s fiducial inference. Hannig (2009) developed a general theory
for developing fiducial solutions which has been used in a variety of contexts. The
solution for wavelets is given by Hannig and Lee (2009). Other problems include
variance components in normal mixed linear model (Hannig and Iyer 2008; Cisewski
and Hannig 2012), extreme value models (Wandler and Hannig 2011), and multiple
comparison issues (Wandler and Hannig 2012).

The general framework of fiducial inference assumes that the n observed data can
be written as a data generating equation X = G(U, &), where & is a p length vector
of parameters, and U is a random vector of with a completely known distribution.

Setting Xo = (Xy1,... ,Xp), X, = (Xp+1,... , X)), Uy = (Uy,...,U,) and
Ue = (Up4i, ... , Uy,) the data generating equation can be factorized as

Xo =Go(Uo,§) and X = G(U.,$).
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Assuming that for each & € E that Gy(&, -) and G.(&, -) are one-to-one and differen-
tiable and that Gy(&, -) also invertible, then Hannig (2009) shows that the generalized
fiducial distribution is

fx(x18) Jo(xo. €)
[z fx(x1&") Jo(x0,&)dE’

r(&lx0) =
where
det (j—EGgl (x0,§)>
det (ﬁocg‘ (x0,§)>

Jo(x0,8) =

and fx(x|&) is the density function. Since the choice to use the first p observations in
the definition of G( was arbitrary, we could select any p observations that satisfy the
one-to-one, differentiable, and invertible conditions. Hannig (2009, 2013) suggests
letting the Jacobian J (x, &) be the average of all possible values of J, and using

Fx(x1€)J(x, &)
[z F(x|ENT(x,E)dE"

This distribution is similar to a Bayesian posterior distribution with the Jacobian
taking the role of the prior. This can be seen in the standard regression problem
where the Jacobian simplifies to J (x,&) = o2k (x). Since h (x) is in Jacobians
in both the numerator and denominator, it will cancel and the fiducial distribution is

the same as the Bayesian posterior with commonly used reference prior distribution
-2

r(élx) = (10.1)

o
Two numerical issues commonly arise in the evaluation of the fiducial density.
First, it is often not feasible to take the average of all possible values of Jy because
the number of possible permutations grows as n”. This is often solved by taking a
random selection of possible Jy and using the sample mean as an approximation to
J (x,&). A second challenge comes in evaluating the denominator, which is often
intractable due to the high number of dimensions. To address this issue, we use the
standard Markov Chain Monte Carlo (MCMC) techniques to take a random sample
from the fiducial density and all subsequent inference is based on that sample.

10.2 Asymptotic Consistency of the Multivariate Fiducial
Estimators

Many estimators have an asymptotic normal distribution and fiducial estimators
are no exception. Conditions AO—-A6 in Appendix A are the standard conditions
sufficient to prove that the maximum likelihood estimators to have an asymptotic
normal distribution (Lehmann and Casella 1998). That is, the maximum likelihood
estimators E are consistent and Jn (é‘ — &) is asymptotically normal with mean O

and covariance matrix [/ (é)] , where I () is the Fisher information matrix.
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The Bernstein-von Mises theorem gives conditions (B1-B2 in appendix A.10.1)
under which the Bayesian posterior distribution is asymptotically normal (van der
Vaart 1998, 2003). In brief, the proof can be thought of as showing that the posterior
distribution becomes close to the distribution of the MLE. Hannig (2009) gives
sufficient conditions (C1-C2) for the univariate fiducial distribution to converge to
the Bayesian posterior which is in turn close to the MLE distribution. Hannig (2009)
defines the following assumptions:

(C1) Forany § > 0

: mini—;._, log f(§,X;) P
inf —
§¢B&05) | Ly(§) — La(§p)|

where L, (§) = )", log f (x;|€§) and B (‘;‘0, 8) is a neighborhood of diameter
8 centered at §,.

(C2) Letw(§) = Eg,Jo(Xo,§). The Jacobian function J (X, §) Bx (&) uniformly
on compacts in &. In the single variable case, this reduces to assumptions that
J (X, &) is continuous in &, 7 (§) is finite and 7 (&) > 0, and for some &

Ee, sup Jo(X,§) ] < oo.
§€B(§0,9)

The extension to the multiparameter case follows Yeo and Johnson (2001) and re-
places assumption C2 with C2a, b, and c. Let w € 2 be a collection of indices in
{1,2,...ptand @ = {1, 2,... p}\w. Define

Jo (xw;g) = EEo [JO (X0, X(I),E)] .

(C2.a) There exists an integrable and symmetric function g (-) and compact space
B (80,6) such that for § € B (50,8) and x € R” then |J (x;&)| < g (x).
(C2.b) There exists a sequence of measurable sets S,{; such that

P (R? —Uy_,Sh)=0.

(C2.c) Foreach M andforallw € €2, J, (x,; §) isequicontinuousin§ for {x,} € Sy,
where S§, = S x S¢,.
Let R¢ be an observation from the fiducial distribution r(§|x) and denote the density

of s = it (R — §,) by 7* (§.x).

Theorem 1 Given a random sample of independent observations X, ..., X,, then
under assumptions AO-A6, BI-B2, and C1-C2.c

det |I (& , )
/Rp T (5. %) — %e—s 1G60)s2| gg 0 . (10.2)

Due to its technical nature, we relegate the proof to Appendix A, Sect. 10.2.
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10.3 Fiducial Free-Knot Splines

We consider the fiducial free-knot spline solution for splines of degree p > 4. We first
derive the fiducial distribution using a simple set of spline basis functions so that the
derivatives necessary derivatives can be calculated for the Jacobian. We then address
the asymptotic behavior of the solution by applying Theorem 1 to this solution. We
next consider the practical issue of creating a proposal distribution for the MCMC
simulation. Finally, we conduct a simulation study to compare the fiducial method
to the Bayesian solution with reference prior oc o =2 in four scenarios.

10.3.1 Deriving the Fiducial Free-Knot Spline

Suppose data {x;, y;} fori € [1,...,n] are generated from
yi =g (xila,t) + o€

where ¢; X N (0,1) and g (x|a,t) is a degree p > 4 spline with « knot points
denoted ¢ and p + « + 1 polynomial coefficients ec. We assume that « is known, but
the knot locations ¢ are unknown and are the primary target of investigation. The
spline can be written using many different basis functions, but computational ease,
we consider the piecewise truncated polynomial basis

p K
glxile, ) =Y agx] + Y o (xi — 1)}

=0 k=1
where
0 if u<O
(“)+ = .
otherwise

is the truncation operator and has higher precedence than the exponentiation. This
representation makes it clear that the response function changes form at each knot
point. The following derivation of the fiducial solution could, in principle, be done
using more numerically stable basis functions, but the derivatives become more com-
plicated. Our early work on this problem implemented a purely numerical solution
using the b-spline basis, but the lack of closed form representation prevented showing
that Theorem 1 holds.

We derive the fiducial solution the to free-knot spline solution by first inverting the
data generating equation and subsequently solving for ¢;. The Jacobian is then found
by taking the derivative (with respect to the parameters of interest) of the inversion
result.
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Specifically, we denote the inverse by Gal (yi,€) and let & = {OL, t, az}T. We
recognize that

_ 1
& =Gy (i, 6) = — (i — g(xil))
and therefore the partial derivatives with respect to the parameters are

0Gy i) _ 1

o _; (laxi»"'axip’(xi_tl){l)—7""(xi_tK){|)»)
G, bi®) _ p - -
OT = ; (Olp-H (x; — l‘])i 1,. s Ot (x; — t,(){:_ 1)
Gy (i, %) !
T 902 293 (i — 8(xi10))
0Gy' (i 6) _ 1
By,- o
where we define 0° = 0 for notational convenience. Let y; = {yq). .. ., yq)} where

| = p+« +2 be any selection of data points that satisfies the necessary invertability
criteria. The Jacobian using these data points y,, is therefore

1
Jo (y07£) = O__ZPK det[ B, B; B, ]

where
1 X1y .- x(pl) (X(1) _tl)i ()C(]) —Z‘K){:_
Bo=|i i i S
1 Xqp - X(Il)) (X(l) — l‘])i e (X(l) — tk)f_
P— p—
Al4p+1 (x(1> - l1)+ A1t ptu (x(l) - IK)+
B, = : : )
p—1 p—1
Ul+p+1 (x(z> - tl)Jr Ul ptu (x(z) - IK)+
and

—3 (ay — & (x)16))
B .= :

-3 (o — & (xa)10))

Because B> contains a subtraction of a linear combination of columns of B, and
B,, the subtraction does not change the determinant and therefore

1 1 -
;p"det[ B, B, B, ]‘: ‘pp"det[ B, B, B, ]

a
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where

Y
B, = :

a .
Yy
However, the question of which sets of indices satisfy the one-to-one and invertibility
requirements is not obvious. A sufficient condition is that the set of indices includes
at least two observations from each interknot region. As we are primarily interested

in cases where the number of observations is much larger than the number of knots,
this condition is not onerous.

Theorem 2 Given g (x|a,t), a free-knot spline of degree 4 or greater with pa-

rameters o and t with truncated polynomial basis functions and observations

with x; a randomly selected element on some contiguous interval [a,b] of R and
id

yi = g (xila,t) + o€; where €; XN, 1), define & = (a,t,oz). Let 7* (&,y) be

the fiducial distribution of Rg. Then,

det |I (80)’ T F
% v v —sTi(&y)s/2 d % 0
/Rp Y, = £

Proof. Tt suffices to show that the free-knot spline satisfies assumptions AO—AG6,
B1-B2, C1-C2.c. These are shown in Appendix B, which is available at the author’s
website. |

A shortcoming of this proof is the requirement that p > 4, while many free-knot
spline applications are concerned with degree p = 1 or 2 splines.

10.3.2 Numerical Evaluation of the Fiducial Density

There are two substantial challenges to numerical evaluation of the fiducial density.
The first is that the Jacobian does not simplify to a “nice” expression utilizing all of the
data. We use the suggestion of Hannig (2009) to use the mean of randomly selected
Jacobians as an estimate of J (x, £). The second challenge is that the scaling constant
in the denominator of Eq.10.1 is intractable and we only know the fiducial distribution
up to a scaling constant. This is the same numerical challenge found in evaluating
a Bayesian posterior distribution and we use MCMC methods to select a random
sample from the fiducial distribution. The key step of the MCMC is to produce good
proposal values, which is often difficult when model parameters are highly correlated.
Unfortunately, our choice to use the analytically convenient truncated polynomial
basis functions results in numerically inconvenient correlated parameters.
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If the knot point locations were known, then the fiducial distribution of the & and
o? terms is known and is same as the Bayesian posterior distribution with reference
prior distribution o o ~2. More formally, letting X = [B,,, B;] be the design matrix
with fixed and known knot points, the fiducial distribution is et|c?,y ~ N (&, Vy)
where @ = (XX )_l X'yandV, = (X'X )_l . Similarly, the marginal distribution
of 02|y isascaled inverse- x 2 distribution, 62|y ~ Inv-x> (n —p—Kk—1, sz) where
s is the usual mean squared error term s? = (y — X&)T (y— X&) /n—p—x—1).
We denote the product of these distributions as the fixed fiducial distribution.

Unfortunately, the fiducial distribution of o> and & conditioned on the knot point
locations ¢ is not the earlier fixed fiducial distribution because the Jacobian term
cannot be factored into terms that contain only ¢ parameters or only & terms. However,
the fixed fiducial distribution does provide a useful ... proposal distribution in a
MCMC estimation.

The procedure for creating a proposed value in the Markov chain is to take the
current knot locations and perturb them by adding a small amount of noise. The
proposed knots are ¢* = ¢ + u* where u* ~ MV N (0,671y), I is the identity
matrix and o is the tuning parameter for the MCMC and reflects how much each
knot point is “jittered.” We then take these proposed knot points and consider them as
known and use the aforementioned fixed fiducial distributions to produce proposed
values for o and then .

These three proposal distributions are multiplied to create the total proposal
distribution T (£*|£ ) For the given proposed set of parameters, if the ratio

_ f(1E) T (£18Y)
—fOlE) T (£7)%)

is greater than a Uniform(0,1) random deviate, we accept the proposed value as the
next value in the Markov chain, otherwise the current vector of parameters is used.

The use of the fixed fiducial distribution is similar in spirit to the method of
DiMatteo et al. (2001) where they integrate out the o and o> parameters and consider
only the distribution of the knot points ¢. The difference is that their prior factored
nicely whereas the Jacobian does not.

10.3.3 Simulation Study for Degree Four Splines

The simulation study will compare the fiducial method to the Bayesian method on
four different degree four splines, all defined on domain x € [0, 1] and with a similar
range of y values.

The software we used to evaluate the performance of the fiducial solution com-
pared to the Bayesian method with prior oc o2 used the same software for
implementing the MCMC and generating proposed values, with the only differ-
ence in the software being whether the likelihood was multiplied by the Bayesian
prior distribution or the calculated Jacobian.
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Single Knot 3 knots — Simple

Fig. 10.1 Degree four examples—the examples shown are the high sample size and high variability
case. Upper left panel, the “Single” knot case; upper right panel, three knots evenly spread across
the x-axis which we refer to as the “simple” three knot case. Lower left panel, three knots “clustered”
to the left side of the x-axis; lower right panel, 3 evenly spaced knots with with a “subtle” effect
initially but with increasing effect size from left to right

Table 10.1 Coefficients defining the four different simulation scenarios

Scenario Knot point(s) Spline coefficients

Single knot 0.5 0,8, —60, 144, —108,256

Three knots-simple 0.25, 0.50, 0.75 0,30, —203, 386, —179, —276, 854,270
Three knots-clustered 0.20, 0.40, 0.60 —1,47,-397,967, —640, —510,2002, —1043
Three knots-subtle 0.25, 0.50, 0.75 0,-3,2,1,1,10,—100, 600

The first spline has a single knot point at the center of the range of x values. The
second has three knot points even spread through the x values. The third function
also has three knot points, but the knots are not evenly distributed across the x values,
instead they are clustered toward the left. The final function has three knot points
evenly spread on the x-axis, but has a subtle change to the function at the first knot
point, a larger change at the middle knot point and a large change at final knot. These
functions are shown in Fig. 10.1 and are defined in table 10.1.

For each scenario, we compared the methods using two different levels of variance
and two samples sizes. The sample sizes n = {40, 100} were chosen to reflect real
world cases of data scarcity and moderate abundance. The two variance levels reflect
anidealistically low level of variance (¢ = 0.1) and a more realistic “‘signal-to-noise”
level (o = 0.25) commonly seen in the authors’ applied work.



164 D. L. Sonderegger and J. Hannig

Coverage Rates
sigma = 0.1 sigma = 0.25 sigma = 0.25
n =100 n =40 n =100

L = 10Uy
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Fig. 10.2 Coverage rates for the “Three Knot-Clustered” simulation. The color (red, blue) rep-
resents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1,n = 40 simulation. Graphs of the coverage rate for the other scenarios was similar
and can be found in Appendix B

We consider coverage rates (Fig. 10.2) of the fiducial credible intervals of the true
knot point values. In the “coverage plots” presented, the X-axis denotes the desired
confidence level and the Y-axis is the observed coverage rate in the experiment. If
the observed coverage rate is below the equivalence line (y = x), then the method
is considered liberal and if the observed rate is above the equivalence line then
the method is conservative. Ideally, a method would lie exactly on the equivalence
line but a conservative method is more preferable to a liberal because claiming a
95% coverage rate, when, in truth, the coverage rate is less is a more serious error
than having the true coverage rate being larger than claimed. The only complaint
against a conservative method is that the lengths of confidence intervals are larger
than necessary to achieve the desired confidence level.

In the coverage plots presented, the oval lines around the equivalence line are the
region in which we would expect the coverage rates to lie in due to stochastic variation
in the simulation. For each simulation, the «-level necessary for the inclusion of
the true parameter value in a confidence interval was calculated. Since, the data is
actually generated from the model we are fitting, then these «-levels should follow
a uniform distribution if the coverage rates are correct. The jth ordered statistic of
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these, therefore, follows a Beta (j,n — j 4 1) distribution and appropriate 95 %
point-wise confidence region can be calculated from this.

For each of the 16 combinations of function type, sample size, and variance,
1,000 simulations were performed and took approximately 4 days to run on a desktop
computer. For the three knot simple case, a fiducial analysis took &~ 100 s while the
Bayesian solution took ~ 10 s. The reason for this drastic difference is that for every
evaluation of the fiducial density, the jacobian at that point must be estimated from
averaging repeated samples of Jy (x, £).

10.3.4 Simulation Results

We display only the results of the “Three Knot-Clustered” function here and graphics
of the other functions to the appendix because the results were similar.

The coverage rates (Fig. 10.2) for the for the fiducial method was typically slightly
higher than the desired level, but was generally within the expected coverage region
given the sample size. The Bayesian method was also generally consistent with the
desired rate, but was liberal in a few instances. For the “single knot case,” both the
fiducial and Bayesian methods were neither conservative nor liberal. In the “simple
three knot case”, the Bayesian method was liberal for all knots and sample sizes in
the high variance cases, while the fiducial method was liberal for only the first knot in
the high variance high sample case. In the “three knot clustered” case, the Bayesian
method is conservative for knots one and two, but liberal for the third. In contrast, the
fiducial intervals were conservative for knot one. In the “three knot subtle” case, the
Bayesian method was conservative for knot one and two. The fiducial method was
conservative for knot one in the small variance case. Overall, the fiducial estimator
tends to have a coverage rate that is closer to the nominal rate than the Bayesian.

The lengths of the 95 % confidence (or credible) interval lengths showed a con-
sistent trend across our simulation (Fig. 10.3). The Bayesian intervals were longer in
every scenario we examined, however, the difference was the smallest in the single
knot case.

10.4 Conclusions

Free-knot splines are computationally challenging to fit, but in instances where in-
ference on the knot points is desired, we believe that the fiducial method is a viable
method for analysis. Simulation shows that the fiducial method is an effective method
for the high degree free-knot spline problem and is superior to the Bayesian solution
with prior o o ~2. This is consistent with our previous experience of the fiducial
method being equivalent to or better than the standard Bayesian solution derived
using the default prior (Cisewski and Hannig 2012).
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95% Confidence Interval Length
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Fig. 10.3 Confidence interval lengths for the “Three Knot-Clustered” simulation. The color (red,
blue) represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in
the sigma = 0.1,n = 40 simulation. Graphs of the interval lengths for the other scenarios was
similar and can be found in Appendix B

The foundational theory for fiducial inference is given in Hannig (2009) and this
chapter expands the fiducial Bernstein-von Mises theorem to the multivariate setting.
However, this result is not the most general result possible due to the restrictive
assumption of continuous fourth derivatives. In particular, we believe that replacing
the standard differentiability conditions used in the proof of Theorem 2, with Le
Cam’s continuity in quadratic mean assumptions (van der Vaart 1998) would allow
us to relax the differentiability assumptions to obtain the most general Bernstein-von
Mises type theorem for fiducial distributions. This is a subject of future work.

One case where continuous derivatives do not exist is the case of free-knot splines
of degree one. These are of great interest due to the interpretability of the knot point
as a change point. Based on our simulations results, we conjecture that asymptotic
normality holds even in this case. Further investigation into the the behavior of the
fiducial method in this case relative to both the Bayesian solution and segmented
regression (Muggeo 2003) are of interest.

For this chapter, we assume that the number of knot points to be fit is known. In
some cases, the physical system under investigation provides insight into the number
of knots. In the cases where the number of knots is not known, a reversible jump
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MCMC algorithm could allow for model selection, but would require some penalty
term on models of increasing complexity.

Perhaps, the largest reason for practitioners to not use new methodologies is the
lack of accessible software packages. If a new methodology has no freely available
software, or requires expensive software packages (such as Matlab and its associated
toolboxes), applied researchers tend to not adopt a method. To alleviate this issue, we
have provided the R package “FiducialFreeKnotSplines” that contains the software
used in the simulation studies conducted for this chapter and is freely available on
the Comprehensive R Archive Network (CRAN).

Acknowledgements Dr Hannig thanks Prof. Hira Koul for his encouragement and help ever since
he was a graduate student at Michigan State University. A young researcher cannot ask for a better
role model. The authors also thank the two anonymous referees that made several useful suggestions
for improving the manuscript.

Appendix A: Proof of Asymptotic Normality of Fiducial
Estimators

We start with several assumptions. The assumptions AO-A6 are sufficient for the
maximum likelihood estimate to converge asymptotically to a normal distribution
and can be found in Lehmann and Casella (1998) as 6.3 (A0)—(A2) and 6.5 (A)—(D).
The assumption B2 shows that the Jacobian converges to a prior (Hannig 2009) and
B1 is the assumption necessary for the Bayesian solution to converge to that of the
MLE (Ghosh and Ramamoorthi 2003, Theorem 1.4.1).

A.l1 Assumptions

A.1.1 Conditions for Asymptotic Normality of the MLE

(A0) The distributions P are distinct.

(A1) The set {x : f(x|&) > 0} is independent of the choice of &.

(A2) Thedata X = {X,,..., X, } are independent identically distributed (i.i.d.) with
probability density f( - |&).

(A3) There exists an open neighborhood about the true parameter value &, such that
all third partial derivatives (d°/0&;0&;0&) f(x|€) exist in the neighborhood,
denoted by B(&,, §).

(A4) The first and second derivatives of L(&,x) = log f(x|&) satisfy

9
Eg |:8—$jL(§,x)i| =0
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and

a a
1;1(§) = E¢ [a_é,-L(E’x) . B—&L(E,X)}

82
= —E; [—agjagkL(g,x)} .

(A5) The information matrix /() is positive definite for all £ € B(&,, §)
(A6) There exists functions M i (x) such that

3

sup a—L(E,x)

cenins | 9,08 05 0| = Miss)and - Erg M) < 00
€5(80- J

A.1.2 Conditions for the Bayesian Posterior Distribution to be Close to That
of the MLE.

Let 7(§) = E¢,Jo(Xo,€) and L,(§) = >_ L(&, X))
(B1) For any § > 0 there exists € > 0 such that

1
Pgyy sup — (L&) — Ly(§p) < —ep — 1
E¢B(E).8) I

(B2) m (&) is positive at &

A.1.3 Conditions for Showing That the Fiducial Distribution is Close to the
Bayesian Posterior

(Cl) Forany$ > 0
0 mini—;_,L(&§,Xj) Py
£¢B(&(.0) }Ln(s) - Ln(Eo)’

(C2) Letm(§) = Eg,Jo(Xo,§). The Jacobian function J (X, §) gy (&) uniformly
on compacts in £. In the single variable case, this reduces to J (X,§) is
continuous in &, v (£) is finite and 7 (&) > 0, and for some &

Eg, ( sup Jo (X,“g‘)) < 00.

§€B(60.9)

In the multivariate case, we follow Yeo and Johnson (2001). Let

Jj (xl,...,Xj;E) = Ef() [J() (xl,...,xj,Xj+1,...,Xk;§)].
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(C2.a) There exists a integrable and symmetric functions g (xl, cee X j) and com-
pact space B (&0,8) such that for & € B (80,8) then |Jj (xl,...,xj;§)| <
g(xl,...,xj) forj=1,...,k.

(C2.b) There exists a sequence of measurable sets S',@ such that

P (R —Uy%_Sy) =0

(C2.c) Foreach M and forall j € 1,...,k, J; (xy,...,x;;§) is equicontinuous in
£ for {xy,...,x;} € S, where S%, = 8/, S\

A.2  Proof of Asymptotic Normality of Multivariate Fiducial
Estimators

We now prove the asymptotic normality (Theorem 1) for multivariate fiducial
estimators.

Proof. Assume without loss of generality that § € E = R”. We denote J,, (x,,, &) as
the average of all possible Jacobians over a sample of size n and 7w (§) = E¢ Jo (x,§).
Assumption C2 and the uniform strong law of large numbers for U-statistics imply
that J, (x,&) = 7 (£) uniformly in & € B (go,a) and that 7 (§) is continuous.
Therefore,

SUp 1y (onn§) — 7 (B)] = 0 Py as.
£eB(£.5)

The multivariate proof now proceeds in a similar fashion as the univariate case. Let

PN (v + 255) 7 (alf + 35)
e o (0B ) 1 (alf, + 4) e
I (xn,én + %) exp [L,, (én + %)]
Jan I (xn,én + fz) exp [L,, (én + ﬁ)] dt

_ edr e[ (84 5) - (&)
Juo n (0 8+ 5 ) exp [ L0 (8, + %) = 14 (&,)]

dt
and just as Ghosh and Ramamoorthi (2003), we let H = —%ﬁLn <§n> and we
notice that H — I (£;) a.s. Pg,. It will be sufficient to prove
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Lot f)onfe v )6
—7 (§o) exp |:—_tTI L) t}
2

Let #; represent the ith component of vector ¢£. By Taylor’s Theorem, we can compute

L (B + 1) = L (& )+Z( >as, L (8)

Pey

dt =20 (10.3)

XX (g @)
2 i=1 j=1 8‘5’%’851 '
1 & itk d ‘
+a;;2( )

A tTHt
=Ln(§n)— —+ R

for some &' € [én,én + t/ﬁ]. Notice that R, = 0, (It /n*/?).
Given any 0 < § < §p and ¢ > 0, we break R” into three regions:

Ay ={t: |t]l < clog/n}
Ay ={t: clogy/n < |t]| < 8+/n}
As={t: 8n <|it]])

On A; U A, we compute

/AUA Jn<xn,§n+t/ﬁ>exp[ (E +t/\/_) (
— (so) w57 () ]| a
S/AUA T (xn,§n+t/~/ﬁ)_”(§n+t/ﬁ>)

cexp|La (8, +1/vn) — L (&,) ] @
oo

\h’r)

)]

\h’r>

7 (&, +t/v/n)exp[ Lo (8, +1/vn) = L (
- (50) exp [—%t’] ()‘;‘0) t:| ' dt

)]
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Since m (-) is a proper prior on A; U A,, then the second term goes to 0 by the
Bayesian Bernstein-von Mises theorem. Next we notice that

/A ol (w6, +e/vm) =7 (&, +1/v7)]
- exp [L,, (én + t/ﬁ) —L, (én)] dt
< sup |4 (0., +e/v) =7 (&, +1/v7)
teAjUA,

: fA ew [ (8, +t/v) = L (£,)

Since ﬁ(é‘n — Eo) EnN (O,I (EO)_I), then

P;, [{g t/Jn te AU Az} C B (50,50)] -1,

Furthermore, since L, (én + t/ﬁ) - L, (én) = —’T% + R, then the integral

converges in probability to 1. Since max¢ea,ua, |¢/+/n] < 8 and J, — 7, then the
term — 0 in probability.
Next, we turn to

ol (rees G5 B ) - 6)
s (§O)exp|: tle(Eo) :| dt
S oo )]

—i—/A}n(go)exp [#@O)t}dt

The second integral goes to 0 in P probability because mina, [|£|| — oo. As for the
first integral,

[ (b oz oo (B 2 )~ 2 (6) |
! 2/; (rrut 5= )ewp 2 (B4 52 ) - 2 (8) ] @
LE et )
exp {Ln (Bt 52 ) - o (B2) —toes (sid, + =) |
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Because J (-) is a probability measure, then sois J (-) f (-). Assumption C1 assures
that the exponent goes to —oo and therefore the integral converges to 0 in probability.
Having shown Eq. 10.3, we now follow Ghosh and Ramamoorthi (2003) and let

oo )i )]

then the main result to be proved (Eq. 10.2) becomes

[ oot )l o 5) 6]

det |I (& .
_Cn\/|27ﬂ(0)|e—S’1(50)5/2 ds @ 0 (10.4)

Because

~ TH A r TH
/ Jn (xnsEn) eXp |:_s s:| ds = J, (xnagn)/ eXp _s si| ds
RP 2 RP L 2

Jn (xn, Sl‘l

det (H)
2
det (1 (&))

and Eq. 10.3 imply that C,, - 7 (&0) ./ dt(?ﬁ itis enough to show that the integral
€ 0
in Eq:10.4 goes to 0 in probability. This integral is less than /; + I, where

o el ) )

—Jn xn,é exp —s" Hs ds
(00-8s) exp | =

Q

.S

\

7 (§0)

and
. —sTHs det |1 (&)|
L= Jn< , ) -C, =T (8032 g
? fRP *n§ eXp[ 2 } 2T ¢ s

Eq. 10.3 shows that I; — 0 in probability and I, is

n det |1 (§)| —sTHs
L = |J, (x,,,En)—C,,T /H‘{Pexp[ > ]ds
£ 0

because J, (xn’én) Lo (50) and G, 5o (EO) v det(?y(tfo))' .
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Appendix B: Proof of Assumptions for Free-Knot Splines Using a
Truncated Polynomial Basis

We now consider the free-knot spline case. Suppose we are interested in a p degree
(order m = p + 1) polynomial spline with x knot points, ¢ = {,...,.}’ where
tr € (a+8,b — 8) and |ti — tj‘ < § fori # j and some § > 0. Furthermore, we
assume that the data points {x;, y;} independent with the distribution of the x; having
positive density on [a, b].

Denote the truncated polynomial spline basis functions as

N(x,t) = {Ni(x,8),..., Neym(x,)}T

T
= {1,x,...,xp,(x —tl)i,...,(x —tk)i}

and let y; = N(x;,t)Ta + o¢; where ¢; w N(0, 1) and thus the density function is

f(y,8) = ! ex —L( — Nx t)Toc)2
y’ - W p 202 y k]
where & = {t,a, 0} and the log-likelihood function is

1 1 1 2
L,y = 510g271 3 logo? — 757 (y — N(x,t)Ta)

B.1 Assumptions A0O-A4

Assumptions AO-A?2 are satisfied. We now consider assumption A3 and A4. We note
that if p > 4 then the necessary three continuous derivatives exist and now examine
the derivatives. Let # = {¢, a} and thus

9 1 9
Eg |:BTOjL(§’y):| = E; [—EZ (y — N(x,t)Toc) <—£N(X,t)Tot):|

J

= —iz (Eg [yl = N(x, ) &) <—iN(x,t)Ta>

202 30,
=0
and
E; [%L(g,y)] = E; [_LZ bt > (y = NG, a) }
ao 20 2 (02
_ _lerz +- (;2)2 (?)
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Next, we consider information matrix. First, we consider the 6 terms.

9 1 9 9
Eg [*L(E y)—L(‘;‘ Y)] = E; [ (=N ) (ﬁN(x,t)Td> <@N(x,t)Ta>]

J

1 9 ]
= ;EE [(y - N(x,t)Tot)Z:| (ﬁN(x,t)Ta) (T@N(x,t)Ta)

J
(e e (nee o
L (o) (owosra)

The j, k partials for the second derivative are

2

9 Kl 1 B v r
FTRTA L, y)= [ ﬁz(y N(x,t) a)( agkN(x,t) a>i|

_i[_i(_ .(iN( H’ )+N( 0" (lN( 0’ ))]
= 36] o2 Yi 90, X, o X, o 90, X, o

! P nwoTat (“nwora) (DN
= —— | = X, o — N (x, o VX, o
o2 39 00, 39j 00y

a2

d
36,06,

+Nx, DT a N(x,t)Ta]

which have expectation

E ” LE,y) | = i(iN( H'a >(iN( t)T)
E[zaejaek E’y]__(ﬂ a0, a6, ot

=~k [—L(E y) o L(E y)}

as necessary. Next, we consider

[*L(E y) LG, y)}

| LD
=E| 5 (- NoD'e) o 252 T 254

N(x,t) a[—i+i(y—1v(x ' «) ]]

J

1 d 1 a
=E; [_ﬁ (y N(x,t) a) d—g}N(x O o+ 796 (y — N(x,t) a) %9, N(x,t)Ta]
=0

which is equal to

d 2 9
Es [ae PR y)] [ﬁ (y=N@.0'a) aT,jN(x,t)Ta}

=0.
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Finally,
d d
E¢ | — L(&,y) — L(§,
§|:3z72 & Py (& y)}
_E 1 1 N T \2 1 1 N T \2
= E |\ =53t 5.0 0= N ) 1o+ o (v = N0 a)

= E; [L - i(y—N(x,t)Tot)2—i-4L(y N(x,t) oc) :|

1 2, 1 4

=— — —o0; + —30

4cf61 4(75’ 0 403 0
2
B 406‘

which is equal to

a I 4, 2 T,,\?
_E'S [—80230-2 L(g,y):| = — EE |:EO' — EO' (y - N(X,t) (X)
1 _ 2 _
:—5004—'—50'04.

Therefore, the interchange of integration and differentiation is justified.

B.2 Assumptions A5

To address whether the information matrix is positive definite, we notice that since

Eg [ L, y) 72L&, y)] > 0 and E; [39 L(,y) 75 L(E, y)] — 0, we only need
to be concerned with the submatrix

d
1,40) = ZEI; [—L(& ) ekus,yi)}

— L i T i T
== ; <80jN(x,,t) oc) <30kN(x,,t) oc).

where the o~ term can be ignored because it does not affect the positive definiteness.
First, we note

d -1
gN(xi, H'a=—p (xi - tj)i Up+j+1
J

0 T
—N(x;, 1) o = Nj(x;, ).
oo
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If we let

Ny (st) oo Nppe (Gnt) pNGule oo NG, D' e
¥ . . . _

Nl (xn»t) Nm+l( (-xnst) %N(-xnat)ra %N(-xnst)ra

then 1(9) = X7 X. Then, I() is positive definite if the columns of X are linearly
independent. This is true under the assumptions that t; # #; and that a,,4; # 0.

B.3 Assumptions A6
We next consider a bound on the third partial derivatives. We start with the derivatives

of the basis functions.

2

Nx,H)'a=0 ifj#k

8tj8tk
i Nx,0)'a=pp—1(x— fj)pf2 Optj+1
Bt‘,-atj +
2
Nx,)fa=0
dajday
92 N(x t)T(xz—P(x—t~)p_1
3lj8ap+j+1 ’ 7t

3

— 2 N a=—pp—Dp—2(x —1t;)" " apy;

8t_,-8t_,~8tj (x )Ol P(P )(P )(x /)Jr Uptj+1
83

— N, )a= -1 — 1)
910600 (x,0) p(p =1 (x —1;)}

Since, x is an element of a compact set, then for § € B(&, §) all of the earlier partials
are bounded as is N (x, £)” a. Therefore

83
—FL
36,;00,00,

! v N, O o+ ” N(x, 0T i N(x, )"
= —— | — X, o X, o A X, o
o2 | 06,06,96, 96,96, 20,

(§.x)
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02 T 92 T
+ Nx,t))a || —N(x,t) «
30.,‘ 891 aek

5 S\ (9 .
N(x,t L N(xt
+(ae,aek (x ”‘) (aej (x )“>

83
+Nx, ) (—N(x,t)Tuﬂ

30,00,06,
and
83
— L,
96,96,90° &)
1 92 9 9
= — | —y——N@, 07 — N, )T — NG, )7
04[ Yau,a0, " )“+<aek x )“> (ae,» x )“)
2
N, )T N(x, )T
+N(x )a89j89k (x )oc:|
and
: L(&,y) 2( N(x,0) o) O NG
— L& y)=——(—-Nx,t) a)| ——N(x,t) «
00,902002 > T T4V 26,
and
" e Y= 2 (- N a)
302002002 V)= o6 o8 Y ’

are also bounded & € B(£,,d) since o > 0 by assumption. The expectation of the
bounds also clearly exists.

B.4 Lemmas

To show that the remaining assumptions are satisfied, we first examine the behavior
of

2(00,0,x;) = N(x;,t0) ag — N(xi, )" .

Notice that for x; chosen on a uniform grid over [a, b] then
1 1 b
= " (8(00.0.x)* > —— / (8(80.0.x)) dx.
n = b—aJ,

Furthermore we notice that g (6, @, x) is also a spline. The sum of the two splines
is also a spline. Consider the degree p case of g (x|e, 1) + g (x|a™, ™) where t < t*.
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Then the sum is a spline with knot points {z,¢*} and whose first p 4 1 coefficients
are o¢ + oo* and last two coefficients are {ot,,+1, ot;+] }
At this point, we also notice

E[n Y@ 00ma]=n" 3g 0,005 Ele)
=0

1% [lfl Zg (0,00, x;) Gi] =n"%V [Zg ©.60,x:) ei]
:n‘ZZV[g (0,00,x;) €]
=n"2) 8(8,80,x)° V [e]

=n2) g(0.00.x)

-0

and that ) el.z ~ x2 and thus =1} eiz converges in probability to the constant 1.
Therefore, by the SLLN,

1 n s 1 n 5 20_0 n 0_02 n 5
;;[g(eo,o,xiwaoei] =;Z[g(00,0,xi)] +7Zeig<oo,9,x,-)+7;e,«
fZ[gwo,ox,)] +0, OZE

i 7/ (g(00,0, x)) dx +00

Lemma 1. Given a degree p polynomial g(x|at) on [a, b] with coefficients o, then
3 Jnans ot > O such that |\l PA7,, < 3 370 [8Gxile)F < [lelPA7 -

nm — p
Proof. Ifa = 0,then g (x|a) = 0and theresultisobvious. If g (x|e) is a polynomial
with at least one non-zero coefficient, it therefore cannot be identically zero on [a, b]
and therefore forn > p then % 3" [g(xile)]* > 0 since the polynomial can only have
at most p zeros. We notice that

p—1

/h[g()ckx)]2 dx:/ Zaz 2’+22 Z otot]x

i=0 j=i+1
» b
2
_ Z o (2t +ZZ Z iy i+t
i=01+] i=0 j= 1+1 +‘]+1 r—a

=o' Xa
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where the matrix X hasi, j element (b7 — a’*/) /(i + j). Since fab [g(x]e)]* dx >
0 for all & then the matrix X must be positive definite. Next we notice that

- Z [gCxile)]” ZaTX o

= T(;ZX,)(!

=ozTX,,oc

and therefore X, — X and therefore, denoting the eigenvalues of X, as A,, and the
eigenvalues of X as A, we have A, — A

Letting A, ,, and A, » be the minimum and maximum eigenvalues of X, be the
largest, then A2, le[* < 1 3" [g(x]a)]* < Aow llee|? . O

The values A,,,A,n depend on the interval that the polynomial is inte-
grated/summed over and that if @ = b, then the integral is zero. In the following
lemmas, we assume that there is some minimal distance between two knot-points
and between a knot-point and the boundary values a, b.

Lemma 2. Given a degree p spline g(x|0) with k knot points on [a,b], let T =
(lal v |b)*. Then¥ & > 2t, 3 A, > O such that if |@| > 8 then %Z [g(x,~|0)]2 >
(82 + ‘L'z) An

Proof. Notice that ||0]> > 8> > 472 implies ||a||> > 8% — 2. First we consider
the case of k = 1. If aé + -4+ a]z’ > (82 + 12) /9 then % 3 [g(x,~|0)]2 Ligs (xi) >
Ay (8% + 72) for some A, > 0. If af + -+ + ai < (8% 4 1?) /9 then a[2,+1 >
3 (8% + 2) /4. Therefore (a a4+ 1), the coefficient of the x” term of the polynomial
on [t1,b]is

”O‘P +0‘p+1”2 > ||“P+1H2 - ”O‘p ”2
3(8*+17) (87 +71?)
4 4

1
> 5 (82 +‘L’2)

and thus the squared norm of the coefficients of the polynomial on [#;, b] must also be
greater than 1 (82 + ) and thus ’]7 > [g(x; |t9)]2 Ly (xi) > Ap (82 + 12) for some
An > 0. The proof for multiple knots is similar, only examining all x + 1 polynomial
sections for one with coefficients with squared norm larger than some fraction of
(6> +172). o
Lemma 3. For all § > 0, there exists A, > 0 such that for all @ ¢ B(80,3) then
522 (8(80,60,x))° > 1,8,
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Proof. By the previous lemma, for all A > 27 there exists 3 A, > 0 such that for
all@ ¢ B(0y, A) then % > (g(6y,0, xi))? > A, A. We now consider the region

C = closure [B (8¢, A) B (6, 6)]

Assume to the contrary that there exists § > 0 such that VA, > 0, 36 € C such
that %Z (g(00,¢9,x,~))2 < X,6 and we will seek a contradiction. By the negation,
there exists a sequence @, € C such that % > (g(00,0,x,-))2 — 0. But since 0, is
in a compact space, there exists a subsequence @, that converges to 8, € C and
% > (g8, 0,x;))*> = 0. But since 8 ¢ C this is a contradiction. O

Corollary 4. There exists A such that for any § > 0 and 6 ¢ B(0y, )
1 n
= 18 00,0,x) + 0peil* = 128"+ 0, (n7'?) + 5.
n
i=1

We now focus our attention on the ratio of the maximum value of a polynomial and
its integral.

Lemma 5. Given a degree p polynomial g (x|a) on [a, D], then

2
maXxie(1,..n) [ (Xiler) ] - A3, N ﬁ
IS (gl dx ~ A2, A2

for some Xpg, Ay > 0.

Proof. Since we can write [g (x|e)]> = o W, a for some nonnegative definite
matrix W, which has a maximum eigenvalue Ay ,, and because the the maximum
eigenvalue is a continuous function in x, let Ay, = sup Ays. Then the maximum of
g (x|oc)]2 over x € [a,b] is less than ||oc||2 )‘%\4- The denominator is bounded from
below by [lee||* A2, ]

Lemma 6. Given a degree p spline g (x|0) on [a, b], then

max [g(x|0)]2 - i
[ lg IO dx ~ A

for some hyg, Ay > 0.

Proof. Since a degree p spline is a degree p polynomial on different regions defined
by the knot-points, and because the integral over the whole interval [a, b] is greater
than the integral over the regions defined by the knot-points, we can use the previous
lemma on each section and then chose the largest ratio. O

Lemma 7. Given a degree p spline g (x|0) on [a, b] then
~2max; [eio0 + g (6., 0o, Xi)]z
n=' Y €00 + g (6,60, x)1

n

=0,0) (10.5)
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uniformly over 0.

Proof. Notice

n~"?max; [ei00 + g (0,00, Xi)]2 < 2n~"?max; [e}o7] + 2n~'max; [g (8. 6o, xi)]z
n' Y0 leioo + g (0,00, x)F T n! Y00 Leioo + g (8,80, x))°
Y2 max;e? + max; [g (0, 6o, Xi)]2

nt Y0 [€ioo + g (0,60, x)1

0, (") + max; [¢ 0,80, %)
n=' 30 (€00 + g (8,00, x)]

2 —
2045n

and since n=' Y7 [€;00 + g (8,00, x) ] iR - fab (8(80,0,x))* dx + o, and
lemma 8 bounds the ratio of the terms that involve @, this ratio is bounded in
probability uniformly over 6. ]

B.5 Assumptions Bl

Returning to assumption B1, we now consider & ¢ B(&,,5) and

L,® = Zlog {ﬁ exp [;—; Z (yi — N(x;, t)Ta)z] }

1
= —% log(2n) —nlogo — o Z [yi - N(x,-,t)Tot]2
1
= _% log (27) — nlogo — D [N t0) g + 00 — Ni(xi, t)Toc]2

1
= —%log (27) —nlogo — o Z [g (8,00,x) + o0e;]’

and therefore

% (Ln(g) - Ln(go))

1 1
= —logo — ol Z [g (8,80, x:) + 0oe;1* +logag + Inoo Z [g (80,00, ;) + ooe; ]

> lovei?

1

2
2noyg

1 (o)) 1
= |10g — —
& o 2no?

Z[g (8,60, x) + oo 1* +

o0 (0 (0.00)° o 1 >
—log — — 20 0 4 ;
o8 o 202 202 + 2n Z[G I
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where
1
(A, (0,00)) = - Z [g (0,00,x;) + 0peil* — of
which converges in probability to ﬁ fu b [g (0,00, x)] dx. The function goes to —oo

as o — 0 and 0 — oo. Taking the derivative

d o) 1 1 1 1
Jo |:10g oy [O)? + 00 + o Zef] = + = [O)? + 07 ]

and setting it equal to zero yields a single critical point of at o> = [()»n)2 + 002]
which results in a maximum of

11
log | —2 —s+ni Y (10.6)
VO + 0

which bounded away from zero in probability for & ¢ B(&,d)

B.6 Assumption C1

Assumption Cl1 is
min;—;_,L(§,X;) P
inf ——————=
§¢B&09) |Ly(§) — Lu(&y)|

First notice

1 1 2
L(E,Y) = =3 log @m) —logo — 5— (¥ = N(xi,0)"a)

1 1 T T \2
= —Elog (2m) —logo — 792 (eiao + N(x;,t0) ag — N(x;,t) ot)
o

1 1
= —~log(2m) —logo — = (€00 + g(80,0, x:))*
2 202

and we consider C = {& : & ¢ B(§,9)}. Define
min L (§,Y;)
Lo (&) — Ly (&)

_% log 2m) — logo — %%max [eiao + g(00,0,xi)]2
ne gL (8) = L (&)

@) =
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and notice that the denominator is bounded away from 0 by 10.6.

2
—1log 27) — logo — 51> max [€i0y + g(60. 6, xi)]

L(Ly ®) — L (]))

Ju (§)

% [—— log (27) — logo — s5xmax [€i00 + g(80, 0, xi)]2]

—Jn-Lnlog 2 — L 3" [(0.600.x) + ooei ]’ + 1 Y €7

log Qm) — loga [ 57— max €09 + (00,0, xl)]
—10g 24 L3 [8(6.00.x) + 00ei]” — 3 Y €F

§1~

1
R |: ra 2no2 > [g (0 00, x;) + opei ZE,'Z

_\/Lﬁ logo — %max [eiao + g(6y, 0, Xi)]2
—log 2 + =L 3" [g(8.600.x) + 00ei ] — 5 3 €7

We consider the infimums of the terms inside the brackets separately.

For the first term, since the denominator is bounded in probability above O uni-
formly in #, and the numerator goes to zero, the infimum of the first term goes to 0
in probability.

The second term is uniformly bounded over # by lemma 9. Notice that the
numerator is

1
-7 logo — \/_ = max [€i00 + (6.9, xl)]
max [i0p]>  max [g(6o.8,x)]”
> ——1logo — -
n J/nao? J/nao?
1 o 02 0, (logn)  max[g(@, 0,xi)]2
= ——_—— U —_ J—
N Jio? Jio?
. —logn logo — og 0, (log n) _ max [g(00,0,xi)]2
NG J/no? J/no?

and all three terms of the numerator converge to O for every o. Therefore, for o €
[0,d] for some large d, the infimum converges to 0. For o > d, the logo terms
dominate and the infimum occurs at ¢ = d which also converges to 0. Therefore

inf minL (§,Y;) P
§¢ BED) L@ — Lo (6)]
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B.7 Assumptions C2
Finally we turn our attention to the Jacobian. Recall that the Jacobian is

1
Jo (J’o’§)= ;pkdet[ B, B, B ]

where
1 X1y .- X(pl) (X(l) — tl)i . (X(]) — lk)i
By = |: : : . : ;
1 X@y .- x(;) (X([) — ll)i . (X(l) — t,()i
P= =
it (e —0)5 I (xay = 1) oo @ pre (xa) — lx)+ I (xqy — tc)
B, = : : ;
p—1 p—1
aippr (ko — 1) T (xoy—1) o e (v — 1) 1 (x0) — 1)
and

—1 (v — &8(x)10))
B_ > = .

o

-1 vy — 8(x19))

Following the notation of Yeo and Johnson, we suppress parenthesis and O subscripts.
We consider the & in compact space B(&,,8). We notice that for § < o~ that
J(y; &) < 8! p<g(y) for some g(y) because B, and B, are functions of x, f which
are bounded.

We let wa be the unit square in R of radius M.

Finally, we notice that J;(yi,...,y;;§) = E [J (yl, oY Yt Yl;‘;')] isa
polynomial in @ scaled by o2, which is equicontinuous on compacts of & where o is
bounded away from O.
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Appendix C: Full Simulation Results

Coverage Rates
sigma = 0.1 sigma = 0.25 sigma = 0.25
n =100

method
== Fiducial

Observed

== Bayesian

0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95
Nomial

Fig. 10.4 Coverage rates for the single knot scenario. The color (red, blue) represents the method
(fiducial, Bayesian)

Coverage Rates
sigma = 0.05 sigma = 0.05 sigma = 0.25 sigma = 0.25
n=40 n =100 n=40 n =100

7744
777/
veL L4

085090095 085090095 0.85 0.90 0.95 0.85 0.90 0.95
Nomial

Jouy

3

3 ~ method

> = .

o S == Fiducial
[} n

Q N == Bayesian
o) yf

0.95

Jouy

0.90

€=

Fig. 10.5 Coverage rates for the three knot “Simple” scenario. The color (red, blue) represents
the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma =
0.1,n = 40 simulation
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Coverage Rates
sigma = 0.1 sigma = 0.1 sigma = 0.25 sigma = 0.25
n =40 n=100 n =40 n =100

L =1ouwy

8 method

>

@ 0.90 - B Fiducial
o0

2 Il Bayesian
o) '

1oy

g=

A NN
NN\
ANN

W\

) 1 ) ) 1 ) ) ) L) ) )
0.85 0.90 0.95 0.85 0.90 0.95 . 0.85 0.90 0.95 0.85 0.90 0.95

Nomial

Fig. 10.6 Coverage rates for the three knot “Clustered” scenario. The color (red, blue) represents
the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma =
0.1,n = 40 simulation

Coverage Rates
sigma = 0.01 sigma = 0.01 sigma = 0.05 sigma = 0.05
n =40 n =100 n =40 n =100

| = j0Uy

0.95 -

method

== Fiducial
== Bayesian
0.85 -

NN\

0.95

Jousy

0.90

€=

0.85

NN\
AN\

i 1 1 1 1 1 1 1 1
0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95

Nomial

1 1 1
0.85 0.90 0.95

Fig. 10.7 Coverage rates for the three knot “Subtle” scenario. The color (red, blue) represents the
method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma = 0.1,n =
40 simulation
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95% Confidence Interval Length

sigma = 0.1 sigma = 0.1 sigma = 0.25 sigma = 0.25
n =40 n =100 n =40 n =100
0.75 -
- i method
B 050 - | E3 Fiducial
g e ES Bayesian

BRI S

Fiducial Bayesian Fiducial Bayesian Fiducial Bayesian Fiducial Bayesian
Method Type

Fig. 10.8 Confidence interval lengths for the single knot scenario. The color (red, blue) represents
the method (fiducial, Bayesian)

95% Confidence Interval Length

sigma = 0.05 sigma = 0.05 sigma = 0.25 sigma = 0.25
n =40 n =100 n =40 n =100
0.6 -
5
0.4 - =%
n
0.2- -
0.0 -
0.8 -
3
S

Length

4

: 154 IE T S
LT 4w T

FldUCIaI BayeSIan FldUCIaI BayeSIan FldUCIaI BayeSIan FldUCIaI BayeSIan
Method Type

Jouy

€=

Fig. 10.9 Confidence interval lengths for the three knot “Simple” scenario. The color (red, blue)
represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1,n = 40 simulation
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95% Confidence Interval Length

sigma = 0.1 sigma = 0.1 sigma = 0.25 sigma = 0.25
n =40 n =100 n =40 n =100
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Fig. 10.10 Confidence interval lengths for the three knot “Clustered” scenario. The color (red,

blue) represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in
the sigma = 0.1,n = 40 simulation

95% Confidence Interval Length

sigma = 0.01 sigma = 0.01 sigma = 0.05 sigma = 0.05
n =40 n =100 n =40 n =100
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Fig. 10.11 Confidence interval lengths for the three knot “Subtle” scenario. The color (red, blue)
represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1,n = 40 simulation
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Chapter 11

An Empirical Characteristic Function Approach
to Selecting a Transformation to Symmetry

In-Kwon Yeo and Richard A. Johnson

11.1 Introduction

Many statistical techniques are based on assumption about the form of population
distribution. The validity of those results may depend on the assumed conditions
being satisfied. When the observed data seriously violate these assumptions, trans-
formation of data can improve the agreement with the assumption about underlying
distribution. As an objective way of determining a transformation was introduced by
Box and Cox (1964), transformation of data has widely used in applied statistics as
well as theoretical statistics.

Generally, a main goal of transforming data is to enhance the normality and
homoscedasticity of data. Box and Cox (1964) discussed estimating transformation
parameter by the maximum likelihood approach and by a Bayesian method. It is well
known that, under the normality assumption, the maximum likelihood estimator of
the Box—Cox transformation parameter is very sensitive to outliers, see (Andrews
1971). Carroll (1980) proposed a robust method for selecting a power transformation
to achieve approximate normality in a linear model.

Robust techniques sometimes require symmetry rather than normality of data.
Hinkley (1975) and Taylor (1985) suggested methods for estimating the transforma-
tion parameter in the Box—Cox transformation when the goal is to obtain approximate
symmetry. Yeo and Johnson (2001) and Yeo (2001) introduced an M -estimator which
is obtained by minimizing the integrated square of the imaginary part of the empirical
characteristic function of Yeo—Johnson transformed data.

Many authors including Koutrouvelis (1980); Koutrouvelis and Kellermeier
(1981); Fan (1997); Klar and Meintanis (2005), and Jimenez-Gamero et al. (2009)
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have proposed the goodness-of-fit test statistics based on measuring differences be-
tween the empirical characteristic function and the characteristic function in the null
hypothesis.

Our estimators are obtained by minimizing a squared distance between the em-
pirical characteristic function of the transformed data and the target characteristic
function. Specifically, we minimize the integral of the squared modulus of the dif-
ference of the two characteristic functions multiplied by a weight function. This
estimation procedure for a vector-valued parameter can be viewed as solving esti-
mating equations based on a U-statistic, see Lee (1990). According to Yeo et al.
(2013), the estimator by the empirical characteristic function approach is still sensi-
tive, but less sensitive than the maximum likelihood estimate, to an outlier when the
target distribution is normal.

11.2 Estimation

Let y(x,A) be a general class of transformations which are indexed by the trans-
formation parameter A. Examples include the families introduced by (Box and Cox
1964; John and Draper 1980; Burbidge et al. 1988, and Yeo and Johnson 2000).
Based on calculations of the relative skewness by van Zwet (1964), the Box—Cox
transformation and the Yeo—Johnson transformation can improve the symmetry of
data and be applied to skewed data. By contrast, the modulus transformation by John
and Draper (1980) and the inverse hyperbolic sine transformation by Johnson (1949)
and Burbidge et al. (1988) are useful to reduce the kurtosis of heavy-tailed data.
Hence, we focus on the Box—Cox transformation, for x > 0,

(x*=1)/A, A #0
ylxh) = {log @,  a=0
and the Yeo—Johnson transformation
{+ D* =1} /A, AL#£0, x>0
_ Jog(x + 1), A=0,x>0
yixh) = —{fx+ D —1}/2=2), A#2,x<0
—log(—x + 1), A=2,x<0

and theorems derived below are based on these transformations. Note that, for these
transformations, 8 y(x, 1)/dx* and 8’ y(x, 1)/dA! are continuous in (x, 1) for k =
0,1,2and! =0,1,... and y(x, 1) is increasing in both x and A.

Let Xi,..., X, be independent and identically distributed random variables with
distribution function F(-).

Assumption 1 There exists a A for which the distribution of w(X, 1) is a location-
scale family with parameters | and o and symmetric about [L.

Usually, in a given example, it may not be possible to select A so that Assumption 1
holds. Nevertheless, we make that assumption similar to the assumption of normality
in Box and Cox (1964).
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Let ¢ (1) be the characteristic function of the standardized target distribution and let
¢,(0, 1) be the empirical characteristic function of standardized transformed variables
Z;0)={w(X;,0)—u} /o, j=1,...,n, thatis,

n
$u(0,1) = rll Z exp (itZ;(0)) = ¢en(0,1) + ids(0,1),
j=1
where @ = (6, 6,,63)T = (A, i, 0)T denotes the vector of parameters of interest and
ben(8,1) =" 37 cos (tZ;(8)) and ¢y, (0,1) = n~' Y1 sin(tZ;(8)).

Yeo and Johnson (2001) and Yeo (2001) studied selecting transformation so that the
transformed variable is nearly symmetrically distributed about 1. They selected A and
1 to make the integrated square of the imaginary part of the empirical characteristic
function of y(Xi,1),..., w(X,, ) with factor exp (— ifn) minimized,

2

1 n
/ Imf{exp (— it f)pu(h 1)) dG(1) = f S sin (1(yGu X)) — w) | dG),

j=1

where ¢,(t) = n~! sz:l exp (ity(X;,A)) and G(-) is a symmetric distribution
function.

In this chapter, we propose to transform X according to Z(#) and then to select 6 to
minimize an integrated weighted version of the distance between the empirical char-
acteristic function and a real-valued target characteristic function, ¢(¢). Specifically,
we minimize,

©n(0)

|¢(0) — @112
/ (60(0.1) — (1)) [Bn0.1) — POIw(r) dt,

where {¢,,(0,1) — ¢(#)} denotes the complex conjugate and w(t) is a nonnegative real-
valued weight function. We assume that w(¢) is nonnegative and symmetric about zero
and f w(t) dt < oo. Since the target distribution is assumed to be symmetric about
zero, the characteristic function ¢(¢) is real-valued so that ¢(r) = ¢(r). Therefore,

0®) = [ w6,0.08,0.0d
= [ W) {o,0.0 + 5@ 0 di+ [ wiorpar

1
x ;Z/w(t)cos (t12;0) — Zu(®)}) ar

Jj<k
—Z/w(r)¢(t)cos (t2;(6)) dt. (11.1)
j=1

The behavior in neighborhood of zero is important for characteristic functions. As in
Szekely et al. (2007), we may choose w(t) equal to =2 on some interval containing
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zero and define integrals as the principal values. The integral on 0 to oo is the limit
as € — 0 of the integral over (e,e~"). Under this preferred weight function, the
estimation procedure involves some difficult numerical integrations and the proof
of the asymptotic results is somewhat cumbersome. Instead, we impose moment
conditions on w(t) below.

Let ¢(@) be the integrated distance between the true characteristic function of
Z(0) and ¢ (1), that is,

90) = llp®6) — ¢ |1}, = / {90.1) — d)}{P(0,1) — P(1)}w() dt,

where ¢(0,t) = E[exp (it Z(0))] denotes the characteristic function of the standard-
ized transformed variable Z(#). The distribution of Z(#) is equivalent to the target
distribution if and only if ¢(@) is zero. Hence, a reasonable approach to estimation is
to select the value 6 = ()A\, {t,6)T which minimizes ¢, (0), that is 6 = arg ming,(6).

11.3 Asymptotic Theory

Assume that the parameter space © is a compact set of the form
O ={0|a; <06; <b; where0 < a3 and |g;|, |b;| < oo fori =1,2,3}. (11.2)

Theorem 1. Suppose that the parameter space © is a compact set such as (11.2)
and w(t) is nonnegative and symmetric about zero and f w(t) dt < oo. Then,

©n (0)“—'3'><p(0) uniformly in @ € © and () is continuous in 6.
Proof.  Since |¢.,(0,1)] < 1, |¢s(0,1)] < 1, and |¢(¢)] < 1, it is clear that

0. (0) — / (60(60.1) — (1)) [Bn 0, = SO w(t) dit

= / {@en(8,1) — p(1)) + Don(B, 1)} wit) dt (11.3)

IA

5[00 w(t)dt < oo.

o0

We begin by defining
n(z1,22;0) = / {(cos (121(8)) — (1)) (cos (122(0)) — ¢(1))  (11.4)

+ sin (¢z1(0)) sin (tz2(0))} w(t) dt,

and then have, from (11.3),

n n
1

1 n—1 -
wa®)=—> > 12, Z0) = ——Un(®) + — ; n(Z;,Z;;0) (115)

j=1 k=1
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where

—1
U, (0) = (Z) > (2. Z4:6).

Jj<k

Letting Syy = [— M, M] and 2y = Sy x Sy x 0, we can conclude that, since
n(z1,22; @) is bounded and continuous in (z1, z2;0) € $2u, 11(21, 22; @) is equicontin-
uous in @. Furthermore, the uniform strong law of large numbers of U -statistics in

Yeo and Johnson (2001) ensures that U, (0)ﬂ> En(Z,,Z,;0)] = n(@) uniformly in
0 € O and n(#) is continuous in § € O.
Since, by the uniform strong law of large numbers in Rubin (1956),

1 “ a.s.
=D 12}, 20> E [0(Z;, 2;30)] (11.6)
j=1

uniformly in # € © and this limit function in (11.6) is continuous in § € @, the last
term in (11.5) can be neglected. Therefore, as claimed

0.(0)51(0)

uniformly in # € ® and the limit is continuous in § € ©.
Finally we note that

@) = / {(Elcos(tZ1(8))]1 — ¢(t))* + E[sin (tZ1(0)]*} w(t) dt = n(6)
(11.7)

because Z; and Z, are independent and identically distributed. |

Lemma 1. Let {g,(0)} be a sequence of random functions defined on a probability
space and depend on a compact set, 0 € ©. Suppose that

(i) There exists a continuous function g(#) defined on ® such that g, (0)ﬂ> 2(@0)
uniformly in § € O,
(i) T(@) has a unique minimum at f, € ©.

Then, 8, = arg ming,(0) is a strongly consistent estimator of 6.
Since it is a standard result, we omit the proof.

Theorem 2. Suppose the conditions of Theorem 1 hold and ¢(0) has a unique global
minimum at 0o = (ho, o, 00)". Then, 050,

Proof. Since, according to Theorem 1, ¢, (O)E)(p(ﬂ) uniformly in @ and ¢(0) is
continuous in # and, by assumption, @ is unique minimizer of ¢(#), Lemma 1 allows

us to conclude that 9300. O
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Before stating asymptotic normality, we introduce some notations. For any
function g(0),
0—0*>

are the gradient and the Hessian of g evaluated at 6., respectively, for j, k = 1,2, 3.
We also write

d9g(6)
26

92 (6
and V2 g0, = | 8@
o, 96,00,

Vg(@.) = (

dg(0)

ng(a*) = 90
J

92 (8
and V% g(8,) = 80)
.y 9696y

0=0,

Theorem 3. Suppose the conditions of Theorem 2 hold and that [ |t|w(t)dt < oo.
Furthermore, assume that y (x,A) = dy(x,1)/dA is continuous in (x, A), and that
there exist functions h(x) and hy(x) that satisfy |y(x,1)| < h(x) and |y, (x,A)| <
hi(x)forall»in ® and E [hz(X)] < ooand E [h%(X)] < 09, respectively. Then, for
0o an interior point of ®, n'>V ,,(0) is asymptotically distributed with N (0, 0(0,)),
where 0(0) is specified in the proof.

Proof. We need to obtain an expression V1(zy, z2; 0) where n(z;, z2; @) is defined in
(11.4). Note that

oo
Vn(z1,22;0) = / {AGz1,22.1,0) + B(z1,22.1,0) }tw(1) dt

o0

+/ {A(z2,21,1,0) + B(z2,21,1,0) }tw(2) dt,

oo

where

A(z1,22,1,0) = {p(t) — cos (tz2(0))} sin (£21(0)) Vz1(0)
B(z1,22,t,0) = cos(tz1(0))sin (tz2(0))Vz1(0)

and these involve the factor Vz(@). Since |y(x, A)| and |y, (x, )| are bounded and
© is compact, each entry of

Vz(0) = (y,(x,0)/63, —1/65, — (y(x,61) — 6) /65)"

is bounded. We can now verify that V(z;,22; @) can be obtained by differentiating
under the integral sign in (11.4). The result is, for j = 1,2, 3,

o0
Vin(z1,22:0) < 4{ |V;210)] + |V;22(0)| } / |t| w(r)dt < oo.
Since Vn(z1,z2;0) is bounded and continuous in (z1,22;0) € 2y, Vn(z1,22;0) is
equicontinuous in ©. The random quantity y(X, A) and y, (X, A) are each assumed
to be dominated for all # by a function with finite expectation. The same is clearly
true all of the entries of Vi(Z;, Zy; 0).
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We now turn to the main proof. From (11.5), we see that

1
Vg, (0) = —VU Q) +— ZVT’I(ZJ,Z,,é’)
j=l
-1
== " (2) > Vn(Z, 2 0) + —ZVn(Z],ZJ,o) (11.8)
Jj<k

Again, by the uniform strong law of large numbers, the second term in (11.8) can be
neglected.

Note that, since the sine function is odd and the cosine function even, V#(zy,22;0)
is a symmetric kernel and so VU,(0) = (g)_1 Zj<k Vi(Z;,Zi;0) is also a U-
statistics. Thus, the multivariate central limit theorems for random samples and U -
statistics ensure the asymptotic normality of Vg, (6) with the mean vector Vp(0y) =
0 and the covariance matrix W,,(8), where the (j, k)-th element of W,,(8) is

(n —1)?

-1
W9 (00) — (’;) {200 = 2)E[V;n(Z1, Z2;00)Vin(Z1, Z3;60)]

+E[V;0(Z1, Z2;00)Vin(Z1, Z2;00)]}

Therefore, n'/ ZV% (6)) is asymptotically normally distributed as N (0, X(6y)), where
the (j, k)-th element of X(0) is

2UP@0) = AEIV(Z1, Z2;00)Vin(Z1, Z3;00)] O

Theorem 4. Suppose the conditions of Theorem 3 hold and [ 2wt)dt < oo.
Furthermore, assume that qu(x,)») = qu/(x,k)/ A% is continuous in (x,A), and
that there exists a function hy(x) that satisfies |y,(x,1)] < ha(x) for all A in

O and E [hz(X)z] < 00. Then, nl/z(é — 0y) is asymptotically distributed with
N, V(00)X(00)V(B)"), where V(6y) = (Vzw(“)o))_1

Proof. Expanding n'?ve, (é) about 0, we obtain that
n'2V0,(8) = n'?V,(80) + V2, (0)n' %0 — 0),

where 0 = 2,0 + (1 — a,)8 for a, € [0, 1]. Since nl/ZVgo(é) = @ at the minimum
when 6 lies in the interior of @, n'/2Vg,(00) + V3¢, (0)n'/2(6 — 6,) converges in
probability to . From (11.8), Vzgpn can be written as

-1

V20,(8) = " (2> D VIZ) Zis0)+ — szn(zpzp«?) (11.9)

Jj<k
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Since |y(x, 01, |y, (x,01)|, and |y,(x,6)| are bounded and ® is compact, each
element of

Wz(xael)/ef)' O _wl(xael)/932
V2z(0) = 0 0 1/63
—y,(x,00)/0; 1/6; 2 (y(x,61) —62) /63

is bounded and, after some manipulation, we can show, for j,k = 1,2, 3,
Vin@z:0) < 3{|V,20)Viai(0)] + | V,22(0)Viza(6)|} f 1> w(t) dt
—00

+2{|V5z10)| + |V32200)|} / lt|w(t)dt < oo.

By the uniform strong law of large numbers, the last term in (11.9) can be neglected.
Since V21(z1,22; ) is a symmetric kernel,

-1
V2U,(0) = (’;) > Vn(Z;, Zi: 0)

Jj<k

is a U-statistic. Applying the uniform strong law of large numbers for U -statistic by
Yeo and Johnson (2001) to V2U, , we conclude that V¢, (@) converges almost surely
to V2¢(#) uniformly in @ € @. Further, the limit function V2¢(#) is continuous in
6. Hence, using the uniform convergence of Vg, and the continuity of V¢ with
almost sure convergence of 0 to 0, it is easy to show that

Ve, (é)converges almost surely toV2¢(0). (11.10)

By Slutsky’s theorem along with asymptotic normality of n'/2¢,(8¢) and (11.10),
we conclude that

n'2(8 — 89)is asymptotically distributed with N (8, V(80)Z(0)V(80)"),

where V(0) = (V2p(6y))~". O

Remark 1. Note that, for a; < A < b;, the Box—Cox transformation and the
Yeo—Johnson transformation satisfy the following inequalities;

lw(x, 1) lw(x,an)| + |w(x, b1)| = h(x)
Y =y an) + ok = I
o) <y an| + |y bn)| = ko).

IA

Here y,(x,4) > 0 for all (x,A). This was established in Hernandez and Johnson
(1980) and Yeo and Johnson (2000), respectively, where it is also shown that y(x, A),
Y, (x,2), and y,(x, A) are continuous in (x, 1).
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11.4 Some Exact Calculations with Weight Functions

We have to decide upon a specific weight function to calculate ¢, (@). Our choice here
is to obtain some weight functions that yield a closed form for the distance function.
Suppose the weight function w(t) is a symmetric probability density function about
zero and its characteristic function is v(-). Then, v(a) = f cos (at)w(t) dt and the
first term in (11.1) is written as n=' Y~ v (Z;(6) — Z(8)). Some examples for
weight functions and their characteristic functions are as follows;

1 2 2 2 2
wt)= —e '/, —oco<t < oo, v(s)=e ¥ /2
N2mé
Ly Y
W([):WE , —O00 <!t <00, V(S) m (1111)
o 1 S<1<8 ) sm(8s)
wit)=—, —-8§<t<3, v(s) = .
28 8s

Note that weight distributions are indexed by a scale parameter, § > 0. As mentioned
in Epps and Pulley (1983), w(¢) should assign high weight in some interval around
the origin. This implies that the scale parameter must be a small value. A simulation
study shows that the shape of weight distribution may not exert a strong influence
on the estimation if the scale parameter is sufficiently small.

When the target distribution is normal, the normal density function w(t) gives the
closed form for the second term in (11.1) as follows;

/J1+—82 (_1+52

252

/¢(f)W(l)COS(tZ)dl = t2> cos(tz) dt

«/1+82
1 . 8272
——eXpPy (-
JTire P20+

Since the integration gives the same family as the weight function, we call this type
of weight a conjugate weight. Hence, the second term in (11.1) is written as

1 o {_322,(0)2}
Ve = e |

Consequently, when the normal density function with the standard deviation (SD) §
is employed as the weight function w(¢), estimates are obtained by minimizing

Z / w(t)p(1) cos (t Z ;(8)) dt =
=1

1 52
or @) o Zexp {—?(Zj(b’) — Zk(o))Z}
Jj<k

2
p\2
mz { 2(1 +82) ’(0)}‘

Note that if the degrees of freedom m are odd, the characteristic function of ¢,
distribution is



200 I.-Kwon Yeo and R. A. Johnson

p—1

¢(1) = exp(— /mlt) Y e por/mltl*
k=0

where p = (m +1)/2 and the ¢ ,s are some constants given in Johnson et al. (1995,
p- 367). If w() is the double gamma density function such as (11.11), for some k > 0
anda > 0,

8" Mot + k) oz N\
. SNk e
/Itl exp (= alt pw(t) cos (r2)dr = — - {(1 +ad) (l T +a6)2)}

and we can also have a closed form for ¢;(6) when the target distribution is
t-distribution with m degree of freedom and m is odd. Suppose the goal of transfor-
mation is to achieve the Cauchy distribution. Then ¢(¢) = exp (— |¢|) and, for some
o >0,

()w(t tz)dt = ! |t|a_1<1+8>a ( ﬂt) (tz)dt
/d) w(t) cos (1) = a+or ) 2he 5 exp | —— [t] ) cos (tz

_ 1 4 8272 “
T 201+ 8 m} '

The estimates are obtained by minimizing

P10 0~ S {14+ 8(2,0) - 200} - Z {(1 o) (1 N 522_,-(0)2>}‘“
n n o J k = (1 —{-5)2 .

11.5 Simulation Study

In this section, we present a small simulation to compare the proposed method
(MECF) with maximum likelihood estimation (MLE) of X. A series of 1,000 repli-
cations, of samples of size n = 30, 50, and 100, were generated for 1y = 0.0 and
0.5 according to (X, A9) ~f where y is Yeo—Johnson transformation and f is one
of following distributions: f,, with degrees of freedom m = 3, 5, 7 and the stan-
dard normal distribution. The double exponential weight function for ¢-distribution
and the normal weight function for standard normal distribution were employed and
8 = 0.1 was applied. The R program ‘nlminb’ is used to obtain optimizers of the
likelihood and ¢, ().

Since our goal of transformation is to approximate symmetry, we also calculate
the Pearson’s skewness of transformed data as follows;

" N o\ 3
\/E= 1 Z(‘I/(xj’)\)—llf)

n—ljzl Sy
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Table 11.1 The Monte Carlo Bias, standard deviation (SD) and mean squared error (MSE) of N
and +/b; for MLE and MECF

Ao = 0.0 Ao =0.5
A Vb W Vb1

Target n MLE MECF MLE MECF MLE MECF MLE  MECF

1 30 Bias 0069 0055 0086 0.101 0041 0038  0.023  0.037

SD 0.228  0.262 0.754 0328 0.300 0.315 0.674  0.303
MSE 0.057 0.071 0576  0.117 0.092 0.100 0.455  0.093
50 Bias 0.056 0.055 0.064  0.079 0.018 0.021 0.015  0.004
SD 0.173  0.198 0.983 0.447 0.216 0.234 1.006  0.484
MSE 0.033 0.042 0969  0.206 0.047 0.055 1.011 0.234
100 Bias 0.032 0.034 0.000 —0.052 0.012 0.019 —0.095 -0.096
SD 0.114  0.125 1.117  0.779 0.152 0.168 1.367  0.777
MSE 0.014 0.017 1.247  0.608 0.023 0.029 1.876  0.613

Is 30 Bias 0.068 0.063 0.051 0.089 0.024 0.022 0.037  0.051
SD 0.234  0.255 0.373 0.263 0.273 0.285 0326  0.245

MSE 0.059 0.069 0.142  0.077 0.075 0.082 0.108  0.062

50 Bias 0.036 0.048 0.028  0.102 0.019 0.028 —0.007  0.042

SD 0.166  0.177 0.387  0.273 0.212 0.214 0.374  0.239

MSE 0.029 0.034 0.150  0.085 0.045 0.047 0.139  0.059

100 Bias  0.015 0.035 0.007  0.103 0.007 0.022 —-0.022 0.036

SD 0.112  0.115 0436  0.284 0.140 0.144 0462  0.245

MSE 0.013 0.014 0.190  0.091 0.020 0.021 0.214  0.061

17 30 Bias 0.060 0.058 0.063 0.099 0.024 0.025 0.016  0.032
SD 0.218  0.240 0.223 0.226 0.270 0.279 0225 0.224

MSE 0.051 0.061 0.054  0.061 0.073 0.078 0.051 0.051

50 Bias 0.041 0.058 0.035 0.111 0.011 0.018 0.016  0.043

SD 0.181  0.190 0249  0.230 0.205 0.206 0.254  0.211

MSE 0.034 0.039 0.063 0.065 0.042 0.043 0.065  0.046

100 Bias 0.018 0.043 —-0.006 0.096 0.006 0.020 —0.020 0.028

SD 0.118 0.119 0286  0.229 0.143 0.142 0259  0.195

MSE 0.014 0.016 0.082  0.061 0.020 0.020 0.068  0.039

N(,1) 30 Bias 0.030 0.041 0.017  0.032 0.005 0.013 —0.004  0.008
SD 0.205 0.211 0299 0336 0.232 0.220 0.264  0.285

MSE 0.043 0.046 0.090 0.114 0.054 0.049 0.070  0.081

50 Bias 0.033 0.031 0.060  0.071 0.019 0.006 0.038  0.024

SD 0.194  0.183 0.506  0.511 0.193 0.197 0374  0.397

MSE 0.039 0.034 0260  0.266 0.038 0.039 0.141 0.158

100 Bias  0.039 0.038 0.130  0.125 0.013 0.024 0.028  0.057

SD 0.176  0.165 0.663  0.617 0.158 0.170 0362  0.412

MSE 0.032 0.029 0456 0396 0.025 0.029 0.132  0.172

“Usual proof of asymptotic normality of % does not hold because the necessary moments do not
exist

where y and s,, are the sample mean and the sample SD of y(x;, M)s, respectively.
For each estimation method, we summarize performance by calculating the means,
the SD and the mean squared errors (MSE) of X and JVby.

Table 11.1 gives bias, standard deviation and mean squared error of estimates for
Lo and /By = 0. One unexpected finding is that MLE provides better estimates A
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when the underlying distribution has heavier tails, especially for small n, and MECF
perform well for the normal distribution with large n and Ay = 0. For n = 100,
both methods provide similar performances. However, based on the inspection of
the skewness /b of transformed data, in all cases where the underlying distribution
is t-distribution, MECF is definitely better than MLE. From the Pearson skewness
point of view, this suggests that transforming data by our method leads to be more
symmetric when the population has heavy tails.

Acknowledgements We first met in 1968 when you spoke at a session I chaired at an IMS Regional
Meeting in Madison. From our regular contacts since that time, I have become very impressed with
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Chapter 12
Averaged Regression Quantiles

Jana Jureckova and Jan Picek

12.1 Introduction

Consider the linear regression model

Y, =X.8+U, (12.1)
with observations Y, = (¥4,...,Y,)", iid. errors U, = (Uy,...,U,)" with an
unknown distribution function F, and unknown parameter 8 = (8o, B1,-.- ,8 ,,)T.

The n x (p + 1) matrix X = X, is knowp\and xio=1fori =1,...,n (.e., By is
an intercept). The «-regression quantile §,(«) of model (12.1) is a solution of the
minimization

Z pe(Y; — X, b) := min (12.2)
i=1
with respect to b = (by, ... ,b,)" € RPT! where x; is the i-th row of X,,, i =
1,...,n and ,og(z) = |zl{el[z > 01 + (1 — a)I[z < 0]}, z € R!. The population
counterpart of B, («)is the vector B(e) = (Bo+F (), Bi, - .. , B,) . Forthe brevity,

we shall occasionally use the notation
* T . 1 d X* _ * 1T
X, = (Xi1,...,Xp) , i=1,...,n an n—[xl,...,xn]

and B(a) = (B1(@), ... , B,(a))T. Assume that the distribution function F(x) of the
errors U; is increasing on the set {x : 0 < F(x) < 1}. For any fixed @ € (0, 1),
denote U;y = U; — F (@), i = 1,...,n. Then Uj,, ..., U,y are i.i.d. random
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variables with distribution function F,(x) = F(x + F~(a)), x € R, and F,; ) =
F~'u) — F'(a), 0 < u < 1, so that F;l(a) = 0. It is sometimes convenient to
rewrite the model (12.1) in the following way:

Yui = Bo(@) + x5 B* + Ui, i = 1,... .1 (12.3)

with By(a) = By + F~'(a). We shall omit the subscript n whenever it does not cause
a confusion. The a-regression quantile for the reparametrized model (12.3) is then a
solution of the minimization

> {elY; — bo(@) — x; ThIT + (1 — a)[¥; — by(e) — X} "b]”} = min

i=1

with respect to by(ar) € R', b € R?, (12.4)

where z = max{z, 0}, z~ = max{—z, 0} for z € R

The «-regression quantile was introduced by Koenker and Bassett (1978), who
used a linear programming algorithm for its calculation. They also used the following
dual algorithm as a computational device:

n
E Y; 4; := max
i=1

under the constraint Z a; =n(l —a), (12.5)
i=1

n n
inf&i = (1 —a)inj, j=1,...,p,
i=1 i=1

0<a <1, i=1,...,n, O<a<l.
The components of the optimal solution of (12.5),
(@) = (an(@),... ’&nn(a))—r, 0<acxl

were named the regression rank scores by Gutenbrunner and Jureckova (1992), who
used them for construction of the rank tests in the linear model. The matrix form of
program (12.5) is more compact:
Y, a := max
under the constraint ~ (X,,)'a = (1 — a)(X,) "' 1,,, (12.6)
ac[0,1],0<a <1

This implies that the regression rank scores are invariant with respect to the shift in
location and scale and to the changes of B, i.e.,

2, Y +X,b) = a,(@,Y) Vbe RV (12.7)
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As ﬁn () and a,(c) are dual to each other, we get from the linear programming
theory that

I ... Yi>x ﬂ,,(ot)

é"i(“)z{o s Y <X Bu@). i=1....n (12.8)

and if Y¥; = xlT El (o) for some i (the exact fit), then 0 < a,;(a«) < 1; there are

exactly p + 1 such components for each «, corresponding to the optimal base among

X1,... ,X,. The pertinent values of a,;(«) are determined by the constraints in (12.6).
Assume the following regularity conditions on the matrix X,,:

Al lim,_, , Q, = Q, where Q, = n’IXTX and Q is a positive definite matrix.
A2 n7' Y xp=0(), a8 n — oo, forj =1,...,p.

Then the a-regression quantile admits the following Bahadur-type representation
(for the proof see e.g., Jureckovd et al. 2012):

Theorem 1. Suppose that the distribution function F is continuous and twice differ-
entiable in a neighborhood of F~'(«) and that F'(F~'(a)) = f(F ' (a)) > 0, 0 <
o < 1. Then, under the conditions A1-A2,

—~ ~ 1
Bu(a) — Bla) = m

where |R, ()| = (9,,(n‘3/4) asn — oo and

Bl)=(Bo+ F (@) Br.... .Bp) . w,@)=a—1[z<0], zeR".

The convergence is uniform on interval [¢, 1 — ¢] for every fixed ¢ € (0, 1/2). The
process on the right-hand side of (12.9) is the weighted empirical process. Such
processes and their asymptotic properties were systematically studied by H. L. Koul;
we refer to his excellent monograph Koul (2002) with a rich bibliography.

The regression quantiles were intensively applied in the statistical and econometric
inference; here we refer to Koenker’s (2005) monograph and to the references cited
in, among others. Their extension to the autoregression processes was studied by
Koul and Saleh (1995).

Parallelly, the two-step a-regression quantile was proposed by the authors in
Jureckovd and [ P1cek (2005): It first estimates the slope components 8* by means of
an R-estimate ﬂ R(a) € R? as aminimizer of the Jaeckel’s measure of rank dispersion
(Jaeckel 1972)

Q'Y iy, (U — F @)+ Ry(@).,  (12.9)
i=1

Z Y —x} Tb*)[a;i(a,b*) — (1 — @)] = min with respect to b* € R?  (12.10)

i=1
where
0 ... Ry(Y; — X Tb*) < na

ai(o,b) = R; —na ... no < R, (Y; —x; Tb*) < na + 1 (12.11)
1 na+1<R,;(Y; — X?Tb*),
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Ry(Y; — x¥ Th*) are the ranks of the residuals and a; (e, b*) are known as Hdjek’s

rank scores (H4j ek~l 965),i = 1,... ,n.The second step of the procedure determines
the [no]-quantile Byg(«) of the residuals {Y; — xfTﬁ;(a)}, i =1,...,n. Then the

two-step regression quantile is ER(a) = (50/@(01), ﬂ;‘eT(a))T. It is asymptotically
equivalent to the standard regression quantile 8, (), i.e.,

|Bu(e) = Bur(@)| = 0,(n~"/?) (12.12)

as n — 00. The common population counterpart of /’S\n(a) and ,En (@) is (FYa) +
Bo, B1, - - - ,,BP)T. The finite-sample relations of both versions of regression quan-
tiles are studied in Jureckova and Picek (2005); for special «’s their values exactly
coincide.

If the inference concerns mainly the functionals of F~!(a) rather than the
regressors, we try to reduce the influence of the matrix X,,. It turns out that a
suitable projection of B\” () (a special weighted empirical process) depends asymp-
totically only on the quantile of the model errors Uy, ... ,U,. This considerably
simplifies the inference, and we shall deal with this phenomenon further.

12.2 Averaged Regression Quantiles

‘We shall call the scalar statistic
_ —~ 1 <&
Bn =% n 5 _n = — ni 12.13
(@ =%, Bu(@), X n;x (12.13)

the averaged regression quantile, and will study its properties and relations to other
statistics. Notice that B, (c) is scale equivariant and it is regression equivariant in the
sense that

B,(;Y +Xb) = B,(a,Y) +X'b VbeR,.

Some properties of B,(c) are surprising; indeed, B, («) is asymptotically equivalent
to the [na]-quantile of the location model. The following useful identity for B, («)
was first proven in Hallin and Jureckova (1999) for the linear autoregression model:

Lemma 1l (i) If « € (0, 1) is a continuity point of B\n(a), then

- 1< d
B(@) === Y; ——ai(a).
() P2 daa(a)

(ii) B, («) and hence also —nl Z?:l Y; %&i () are nondecreasing step-functions of
a € (0,1).
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Proof. The duality between B\,l (o) and @, (o) implies that

> palYi = X[ Bul@) = Y Yi(ai(e) — (1 - a)).
i=1

i=1
Hence, for0 < o) < ap < 1,

n

> [Pan(Yi — X[ Ble)) — poy (Vi — %] Bler)]

i=1
= (m—a) Y i —xBi) = Y Vi[ai(e) — ai(er) + (@2 — o)),
i=1 i=1

thus

(02 — o) Y%} Blan) < =Y Yilaia) — dir(an)). (12.14)

i=l1 i=1

Analogously, we obtain

(02— o) Y %] Bil@)) = = Y Yilai(ea) — (). (12.15)

i=1 i=1

(12.14) and (12.15) imply

n A A
T alon) < —~ 3y, HEDZG@D) _grp o,
n im1 Oy — U]

This entails the monotonicity of XI B\n (). On the other hand, ,B:l(oz) is a step-function,
and @, («) is a piecewice linear function of o, and the points of discontinuity of B\n(a)
and of %ﬁn () coincide. Hence, letting oy — o], we obtain the Lemma. O

The following theorem shows that the averaged regression «-quantile is asymp-
totically equivalent to the location -quantile:

Theorem 2. Under the conditions of Theorem 1,

n'2 (%) (Bu(@) = B) = Unpar] = Op(n™"*) (12.16)
as n — oo, where U,.; < ... < U, are the order statistics corresponding to
Uy,...,U,.

Proof. By Al, A2 and Theorem 1,
V%, (Bu(er) — Blar)) (12.17)

1

= iy KX ) Xl — 11U < FTH @D + O,y

i=l1
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= [WVaf(F @™ Y x{ X X,) ™ xile — I[U; < F~' (@) + Op(n™"/*)
ki=1

= [Vaf (F~ (@)] "1 H,e,(0) + O, (n ™'/

= Wrf(F~ @)™, eu(@) + O, (n~ /%)

n

= [Vaf (F~ @)™ Y (o« = I1U; < F'(@)]) + O~

i=I
- \/E(Un:[na] - F_l(a)) + Op(n_l/4)
\Ehere (@) = (@—1I[U, < F Y o),...,a0 — I[U, < F Y )" and
H, =X, (X,;r X,,)’IX;r is the projection matrix.
Remark 1 1t follows from (12.12) that the approximation (12.16) is true also for
the two-step regression quantile Br(a). Moreover,

n'?[Bor(@) — Bo — Unipnag] = 0,(1) as n — oo. (12.18)

Theorem 2 has an easy corollary:

Corollary 1 Under the conditions of Theorem 1,
n'2 (%) (Bu(@2) = Bu(@1) = WUnitnas) — Unitnan))] = Op(n™ ) (12.19)

forany 0 <o) <oy < 1.

The statistics of type inT (E(ozg) — B\n (oep)) are invariant to the regression with
design X and equivariant with respect to the scale. As such, they provide a tool for
studentization of M-estimators in linear regression model and always when one needs
to make a statistic scale-equivariant. The properties of studentized M-estimators are
thoroughly studied in Jureckova et al. (2012). In Jureckova et al. (2003), the authors
use the regression interquartile range with oy = Alf, o = % in goodness-of-fit testing
with nuisance regression and scale.

12.3 Local Heteroscedasticity

The approximation (12.16) remains true under a sequence of local alternative distri-
butions, contiguous with respect to the sequence {]_[l'.’:1 F (um-)}. Among them, the
local heteroscedasticity deserves a special study. The frequent heteroscedastic model
has the form

Yi=Bo+x B+oilU;, i=1,...,n (12.20)



12 Averaged Regression Quantiles 209

where U, = (U, ... ,U,)" are the i.i.d. errors with the joint distribution function
and

oi=exp{dy}, i=1,...,n (12.21)

with known or observable d; € R?, 1 <i < n and unknown parameter y € R?. We
assume that

n
> dj=0, j=1,....q,
i=1

max d;]| = o(n?)as n — oo, (12.22)

. 1 T
Jfim D, = lim °) did! =D,

" -1
max {le (Z dkdkT> di} — O0asn — o0
== k=1

where D is positive definite (g x g) matrix. The homoscedasticity means that y = 0;
then (12.16) applies. The local heteroscedasticity means that

Y =va=n"28, SeRI 840, 8] <C < oo. (12.23)
The following theorem shows that (12.16) remains true under the local heteroscedas-
ticity:

Theorem 3. Consider the model (12.20) under the local heteroscedasticity satisfy-
ing (12.21), (12.22) and (12.23). Then (12.16) remains true for any fixed a € (0, 1).
Moreover,

VX, (Bu(@) — B — egF (@)

n

1
=— —I[U; < F~! + O, (n~ ',
Ty 2 @ T U < Pl + 0,67
\/E(Un:[not] - Fﬁl(a)) (1224)
1 n
= ey O (@~ 11U < F) + 07

i=I

and both (/X! (Bu(@) — B — eoF (@)} and (/AU na) — F~'(@)))} are asymp-
totically normally distributed N (O ol—0) ) also under local heteroscedasticity;

> fAF ()
ep=(1,0,...,00" e RPFL,

Proof.  Under (12.20), (12.21) and (12.23), the random vector Y has the density

Gy 1>+ yn) = [ [exptd v} f (yiexpld/ y}). (12.25)

i=I
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Under local heteroscedasticity (12.23), the sequence of densities {g,,, } is contiguous
to {g.0} corresponding to y = 0 (see Hajek 1965, Chap. VI). Hence, then propositions
(12.16) and (12.17) remain true. The asymptotic distributions follow from (12.24),
using expansions of the moments. O

12.4 Quantile Density Function

The quantile density function g(u) = m is used in nonparametric statistical
inference, as in the studentization, adaptive procedures, in the sequential confidence
sets, in tests on B based on L;-regression and elsewhere. It is a scale statistic, being
location invariant and scale equivariant. The sum of quantile densities is again a
quantile density of some random variable. A typical term in the asymptotic variance of
empirical o-quantile is qz(oc). Siddiqui (1960), Bloch and Gastwirth (1968), Bofinger
(1975), Lai et al. (1983), and others considered the histogram estimate of g(«) in the
location model. Parzen (1979), Yang (1985), Falk (1986), Zelterman (1990), Soni et
al. (2012), among others, considered kernel-type estimators of g(«). Xiang (1995)
studied the kernel estimator of the conditional quantile density function.

Based on observations Y, ... , ¥, in model (12.1), we want to estimate g(«) at
the point . Such estimator should be regression invariant and scale equivariant. The
first estimates of g(«) in the linear regression model were proposed by Koenker and
Bassett (1978) and Welsh (1987). Welsh (1987) constructed a class of estimators of
¢ (o) based on a kernel smoothing the empirical quantile function of the residuals from
an estimator of 8. Dodge and Jureckova (1995) extended Falk’s (1986) estimator
to the linear model, using the first component of E(oc) under the assumption that
Xj=Y i x;=0forj=1,...,p.

Applying Theorem 1, we can construct analogues of estimators of Dodge and
JureCkova (1995) based on B(w). These estimators, not demanding x; = 0 for
j=1,...,p,can be used also in autoregression and sequential models, where this
condition does not hold.

Let us first consider the histogram type estimate

1 - -
Hy(@) = 5—[By(@ +v) = Byl —vy)] (12.26)

n

where
_ ~1/3
v, = o(n ), nvy, —> o0asn — oQ.

Then H,(«) is consistent and asymptotically normal.

Theorem 4. Under (12.26) and under the conditions of Theorem 2,
Hy(a) — q(a) = Op(nv,)""* asn — oo, (12.27)

uniformly in o € (¢,1 —¢), Ve € (0,1/2).
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Moreover, H,(a) is asymptotically normal for every fixed o € (¢,1 — ¢),

1
()2 (Hy(@) — g(a)) B N (0, qu(a)) as n — 00. (12.28)
Proof. Let F, denote the empirical distribution function of U,,1, . .. , Up,. By (12.17)
and (12.26),

Hy(@) = )" (F N +v) — F (@ — )

+@v) gl + v)le + v, — Fu(F 7 (@ + v,))]

—q(a — vl — v, — Fy(F (@ — va)]} 4+ Op(n v, )
= q(@) + Op((nvy)~'"?),

what demonstrates (12.27).
To prove (12.28), notice that by Csorgo and Révész (1978), there exists a sequence
of Brownian Bridges B, (), dependent on U,,1, . . . , U,,, respectively, such that

Qnv) A (Hy(@) — g(@) = 2v,) " 2q(@)[ Byl + v,) — By(e — v)] + 0,(1)

as n — oo. This implies (12.28).
Following Falk (1986) and Dodge and Jureckova (1995), define the kernel estimate
of g(«) as follows:

1 ['e -
Rul@) = — f Bu(wk(Z=2)du, (12.29)
vn 0 n
assuming that
v, 40, nvfl J 0and nv,% — 00 asn — 00. (12.30)

The kernel function k : R! = R! is assumed to satisfy the following condition:

K1: k(") is continuous on its compact support and

/k(x)dx =0, /xk(x)dx =—1.

The estimator &, (o) is consistent and asymptotically normal:

Theorem 5. In the model (12.1), let distribution function F of U, have continuous
density f which is positive and finite in {x : 0 < F(x) < 1}. Let F~' be twice
differentiable with bounded second derivative in a neighborhood of a. Then, under
the conditions of Theorem 2,

Tn(@) — q(a@) = O, ((nv,))""* asn — . (12.31)
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Moreover, k,(c) is asymptotically normally distributed,
()2 @o@) — g(@) > N(0,4%(@) / K*(x)dx), (12.32)

where K (x) = [*__ k(y)dy.

Proof.  First notice that

a—u

_ Lot _
Rnlo) = — fo [Ba() — X, BIk(——)du.

n n

a—1
Vn

Starting with n > ny, the interval (
(12.16) and (12.17),

, Ui) contains the support of k(-). Hence, by

a—u

1
(@) = u,;zf F~ wyk( )du
0

Vn

oa—u

1
w7 [ gt G () 0,7

n

—Uu

n 1
=g +n"'v2 Y / qG{u — ITFU;) < ulk(E—2)du
i=1 70

n

+0,(m (12.33)
=q(e) + (nv) ™' Y f (e — vl — vz — [[F(U) < (@ = 1,2)]}dK Q)
i=1

+0,(n v = g(@) + O, ((nv,) ™),

what proves (12.31). Applying the central limit theorem in the fourth line of (12.33),
we arrive at (12.32).

Remark 2 Asan example of kernel satisfying K1, consider the Epanechnikov (1969)

kernel with s .
_ e if —-b<x<b
k(x) { 0 elsewhere.

The kernel estimate gets ahead of the histogram for b > g, when

2 _ 3 1

12.5 Numerical Illustrations

In order to illustrate the differences of the averaged regression «-quantile and the
location «-quantile for moderate samples we have conducted a simulation study.
We considered the following linear regression model
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Fig. 12.1 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between
averaged regression and
location a-quantiles in model
(12.34); normal distributions
of errors; sample sizes n =20

Fig. 12.2 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between
averaged regression and
location -quantiles in model
(12.34); normal distributions
of errors; sample sizes

n =500
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Yi=Bo+xip1+U;, i=1,...,n, (12.34)

TheerrorsU;, i = 1,...,n, were simulated from the normal, exponential and Cauchy

distributions. The design points x; j, .

.., X1, were generated from the uniform dis-

tribution on the interval (—5, 50). They remain fixed for all simulations under given
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Fig. 12.3 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between \
averaged regression and
location a-quantiles in model
(12.34); Cauchy distribution
of errors; sample sizes

n =500
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Table 12.1 Mean, standard deviation and quantiles of difference between averaged regression and

location 0.55-quantiles in model (12.34)

n,law Mean Stand. Quantiles
dev.
0 0.05 0.25 0.5 0.75 095 1

20,N —0.155 0.280 —1.856 —0.639 —0.270 —-0.098 —-0.010 0.209 1.017
20,E —0.006 0.049 —0.236 —0.081 —0.025 —0.006 0.008 0.071 0.303
20,C —20.032 100.811 —1699.680 —76.138 —7.176 —1.875 —0.298 0.467 16.006
100,N —0.033 0.102 —0.484 —-0.202 —0.081 —0.025 0.018 0.132 0.368
100, E 0.000 0.013 —0.042 —-0.018 —0.007 —0.001 0.005 0.025 0.055
100,C —1.486 2988 —38.802 —6.527 —1.803 —0.635 —0.074 0.656 4.648
500,N —0.006 0.034 —0.143 —-0.062 —0.023 —0.005 0.011 0.050 0.132
500, E 0.000  0.004 —0.013 —0.006 —0.002 0.000 0.002 0.007 0.021
500,C —0.234 0.535 —3.737 —1.200 —0.440 —0.141 0.044 0475 1.503

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors

n. The following parameter values of models were used: n = 20, 100, 500; By = 1

and g, = —2.

Our interest is comparing the averaged regression «-quantiles and the location
a-quantiles. We chose o = 0.05, 0.15, 0.55, 0.95 and 10,000 replications of the
models were simulated for each combination of the parameters and each «, and the
averaged regression «-quantiles and the location a-quantiles were then computed.
Figures 12.1-12.3 and Tables 12.1-12.3 compare some characteristics of differ-
ences of the averaged regression a-quantile and the location a-quantile for different

combination of the parameters.
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Table 12.2 Mean, standard deviation and quantiles of difference between averaged regression and
location 0.05-quantiles in model (12.34)

n,law  Mean Stand. Quantiles

dev. 0.05 0.25 05 075 095 1

20,N —0.055 0.179 -0.773  —-0.368 —0.128 —0.042 0.018 0.224 0.666
20,E 0.003  0.056 -0.182 -0.079 —-0.024 —-0.004 0.026 0.100 0.312
20,C —-0.788 2.107 —-37.602 —-3.385 —0.853 —0.247 -0.018 0413 5238
100,N —0.016 0.061 -0.233 -0.117 -0.052 -0.014 0.016 0.087 0.210
100, E 0.001  0.019 -0.076 —0.025 —0.008 —0.001 0.009 0.036 0.078
100,C —0.131 0.289 —-1.947 -0.691 -0.220 -0.066 0.012 0.220 1.017
500,N —0.001 0.019 -0.071  -0.032 -0.011 —0.001 0.008 0.029 0.079
500, E 0.000  0.006 —-0.020 —-0.008 —0.003 0.000 0.003 0.010 0.027
500,C —0.021 0.070 —0.333 —-0.140 -0.056 —0.013 0.015 0.083 0.260

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors

Table 12.3 Mean, standard deviation and quantiles of difference between averaged regression and
location 0.15-quantiles in model (12.34)

n,law  Mean Stand.  Quantiles

dev.
0 0.05 0.25 0.5 0.75 0.95 1

20,N  0.065 0.179 -0.592 —-0.215 -0.014 0.047 0.149  0.387 1.065
20,E  0.123 0269 -0.871 —0.214 —-0.008 0.073 0.230  0.669 1.453
20,C 0880 2314 2577 —0.378 0.024 0.260  0.875 3.899  32.680
100,N  0.012  0.061 -0.281 —0.089 —0.018 0.008 0.042 0.118 0.281
100,E  0.032 0.098 -0.275 —-0.113 -0.019 0.021 0.078  0.196 0.579
100,C  0.139 0325 -0.629 —-0.217 -0.017 0.067 0.228  0.692 3.420
500,N  0.002 0.019 -0.060 —0.030 -0.008 0.003 0.013 0.034 0.085
500,E  0.007 0.031 -0.123 —-0.042 -—-0.009 0.005 0.021 0.059 0.159
500,C 0.023 0074 -0.206 —0.085 —0.015 0.013 0.057 0.152 0.401

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors
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Chapter 13
A Study of One Null Array of Random Variables

Estate Khmaladze (with contribution from Thuong Nguyen)

13.1 The Sum

Suppose Uy, . .., U, are independent and uniformly distributed on [0, 1], and let m
be a large integer. Consider the sum

szijU;".

It certainly is sum of asymptotically negligible random variables with distribution
function
PU™ <s)=PU <s'/™)=s'"".

We want to say as much as we can about the limit distribution of S,,,.
This limiting distribution is, certainly, infinitely divisible. In order to obtain the
characteristic function of it, consider the characteristic function of the sum S,,,:
[n(D)]" = exp [mIn ¢, (1)] ~ exp [m(p,(t) — 1)]
1
. 1
= exp [m/ (€™ — 1)—s'/mds]

0 m

where

Lt
¢m(t) — _/ ell.ssl/m—lds
m Jo

is characteristic function of one summand. This immediately implies that

1 eil‘r -1 1 eits -1
lim [¢,,(1)]" =exp[ lim f smds] = exp/ ds. (13.1)
m—00 m—>oo Jq s 0 N
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1 eits -1
y(t) = / ds,
0 S

so that the characteristic function of the limit distribution of S,, is

Later, we use notation

exp [y(1)].

This, basically, means that the L ’evy - Khinchine measure of the limiting distribution
isds/s,0 <s < 1.
Since the distribution function of U™ is a B- distribution function with the density
1
B(a, B)

we have the representation of its characteristic function as an infinite series, see
Johnson et al. (1995),

s '(1 =57, where a=1/m, =1,

o0

1/m (it)*
“’"’(’)—1+Zl/m+k o

Therefore, for our earlier limit we obtain

ind 1 (n)k 21 Gk
Z -

() = 1) ~L
(o0 Um+k K kKl

i

k=1

which is another expression for y(z).
It is good to verify that the two expressions agree. To do this, it seems easiest to
differentiate both expressions. Differentiating the infinite series, one obtains

Differentiating the integral form of y/(¢), one obtains

d 1 eits_l
dt Jo N

1
ds = i/ eds = —[e" — 1],
0 t

and the derivatives coincide. To sum up: y can be written in two different forms,

1 its_l R 1 -tk .
W):/ R o N GV :/ Z[efT — 11dx.
0 N =l k k! 0

T
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13.2 Slightly Different View

Let us split the sum S, as follows:

Sw=Y UMIU; = 1=e)+Y UMIU; < 1—e)=Y UM"IU; > 1—€)+op(1),
i=1

i=1 i=1

which is correct because the second sum is asymptotically negligible:

ZU{”H(Ui <l—-e)<m(l—e)" -0, as m— oo.

i=1
This sum stays asymptotically negligible with slowly decreasing €, say, € ~ m~2/3,
Rewrite the first sum as

m

DUMIU; z1—e)=) "MVIU = 1-¢)

i=1 i=1

m m
. —_UH? _ _U:
— Ze—m(l—U,)emO(l U;) H(Ul > 1— 6) ~ Ze m(l U,)H(Ui > 1— 6),

i=1 i=1

which is true because 1 < ¢”(1=U* < ¢m€® _5 [ with our choice of €.
Finally, we can drop I(U; > 1 — €), which will increase the last sum by
asymptotically negligible random variable. Altogether

m m

Dour =" 40,1, (13.2)

i=1 i=1
This relationship may not be obvious initially, but becomes apparent when we turn
to characteristic functions. The distribution function of each summand e~V ig

1
P(e™™1-U) <x)=1+ —Inx, for xel[e™1].
m

Therefore its characteristic function is
(B |
Ou(t) = —/ e’ —ds
m Je—m N

and what 13.2 actually says is simply the probabilistic equivalent of the fact that
lim m(¢n(t) — 1) = lim m(g,(t) — 1)
m—00 m—00

or
1 1

lim @ — s ds = lim (" = 1)s~ds.
m— 00 0 m— 00 e—m
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13.3 Two More Modifications of the Same Facts

Suppose the limit distribution of sum
=2
i=1

is some F. It certainly is a member of semigroup of distributions F' = {F5(x),s > 0}
with convolution, see, e.g., Feller. We can always assume F' = F. Infinitesimal
operator of this semigroup of distributions is the operator defined as

1
Ua(x) = lim mE[a(x — U™) —a(x)] = lim m/ la(x — y) — a(x)]dy"/™.
m—0oQ m—00 0
Therefore .
d
Ua(x) = / la(x — y) —a(0)] 2.
0 y

The operator defined by the distribution Fy can be represented then as
/ a(x — y)dF,(y) = e%a = Z L{ka(x)
0

The power U, and the operator I/ itself, is intuitively very appealing. Namely,

uka(x) / / ubes Vka(X)dyldyz coodyy
Yiy2.

where A, ya(x) is the k-th increment of a, i.e.,

1250
Aya(x) =a(x — y1) —a(x)

is the first increment,

Ay ya(x) =alx —yr —y) —alx —y)) —alx — y2) +ax)

is the second increment, and so on. Since y;y; ...y, is the area of k-th increment,
Ura(x) is the “average size of k-th increment”.

As we discovered in the previous sections, the dK (y) = 1(0 < y < 1)% is Lévy -
Khinchine measure, corresponding to the semigroup F, and its relationship to U/ is

Ua(x) = / [a(x —y) — a(x)]dK (),

which is true in general.
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The second remark here is that
m 1 R
ZU{" = m/ x"dF,,(x),
i=1 0

where fm is the empirical distribution function of m uniformly distributed random
variables.

If we choose now ¢ = ¢, = C/m, with C — large but fixed, which is radically
smaller than in the pervious section, we can proceed as

1 . 1-C/m . 1 .
m/ xmdFm(x)zm/ x'"dFm(x)+mf x"dF,,(x)
0 0 1-C/m

The first integral
1-C/m R C
m/ x"dF,(x)=X",U"I0 < U; < —)
0 m
has expected value

1-C/m C
m/ x™dx = L(l — Zymtl 5 o€,
0 m+1 m

and the variance

1-C/m 1 C 2
m [f x2 mdx _ <—(1 _ _)m+1> :| N @72 C’
0 m+ 1 m

and both can be made arbitrarily small for sufficiently large C.

In the second integral, we can change the variable, z = m(1 — ) and consider the
empirical distribution function Fm,z(z) of random variables m(1 — U;) = Z;, which
are uniformly distributed on [0, m]:

1 R c N
m / ¥ A By () = m / (1= Zy"aFy ()
1-C/m 0 m

However, on interval [0, C], for any fixed C, the process

mFm,Z - 59

where £ is standard Poisson process, see, e.g., Reiss and Thomas (2007) or Karr
(2002). From this, it can be derived that

C z . d C
m f (1= 2y aFs() S f edE ). (13.3)
0 m 0
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At the same time, the random variable

/ e “dE(z)
c

also has small expected value and variance; they are
oo oo
/ e*dz = e and / e Fdz=e2C.
c c

Therefore,

1 o)
m f X"dF,(x) > / e~idE(2),
1 0

—C/m

and, altogether, we the following stochastic representation for the limiting random
variable:

DU / T, (134)
i=1 0

Limit theorem 13.3 is very suitable for simulations.

13.4 Distribution Function

‘We obtained the limit of characteristic function of our sum

m

S, = Z Uim

i=1

and the stochastic representation 13.4 of this limit. Let us use it now to derive what
we can for distribution function of this limit.
We first obtain two equations for the distribution function, although we will not

use them. We have
00 o0
X = / e *dE(z) = Ze‘T",
0 i=1

where T; is the moment of i-th jump of & (or i-th arrival time). Then

oo o0
Ze‘Ti =e I[1 + Ze_T"+T‘].
i=1 i=2

Since T is standard exponential random variable, e~ T is uniform random variable
on [0, 1], independent from the infinite sum on the right hand side, while two infinite
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sums have the same distribution. In notation,
d
X=U[l+X], X=X,U1X.

This implies
P(ng):]?(x/gg—l)
or
box
F(x)= f F(— — 1)du.
0 u
This also implies
X
P(ﬁ <x)=P1+X <x),
or

1
[ Fxu)du=F(x —1).
0

Both equations define F' uniquely, but we find it easier to use another equation later.
This equation is recursive, and leads to explicit expression for the limiting distribution
function.

Start with

o0 & o0
/ e dé(z) = / e *dé(2) + 6_6/ e dE(2),
0 0 5
or, in different but similar notations,
X :/ e *dE(z) + et X’
0
For the integral, we have
&€
JP’(/ e “dE() —e NI(T) < &) #0) =T < &) = O(c?)
0

and therefore

1
PX <x)=P(X' <ef(x —e NI(T; <¢))) = F(efx)e™® —i—/ F(ef(x — u))du,
or

F(x) = (F(x)+ f(x)xe)(l —e) + F(x — De + o(e),

and, finally,
xf(x)=Fx)— F(x—1).

This can be solved recurrently: F(x) = 0 for x < 0 and then

1
F(x):x[c—[ FF(y—l)dy]. (13.5)
0
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Namely, for 0 < x < 1, F(x) is just linear,
Fx)=cx, f(x)=c;
forl <x <2
F(x)=c[2x —xInx — 1], f(x)=c[l—1Inx].

For 2 < x < 3, Thuong Nguyen derived

“In(y — 1)
Fx)=cBx —xInx —-3+In(x—1)—xIn(x — 1)+x/ ———=dy].

2 y

To derive an analytic expression beyond x = 3 is possible, but looks like somewhat
unnecessary hassle, because F(3) = 0.988, quite high value already. The value of
the constant ¢ is about 0.563.

13.5 The Stretched Sum

1
Now, as m — o0, let a,, — o0 but am/ "™ > 1. There are many such sequences.

For example, a,, = m® for any constant & > 0, has this property. Consider random
variable
a, u™

It is asymptotically negligible: for any x > 0
1/m

Pla, U™ < x) = min(w, 1H— 1.
am

Still, its moments can very well diverge to co, or remain bounded away from zero,
because

1 , 1 m \’
Ea,,U" = a, , Var a, U™ =a, — .
m—+1 2m+1 \m+1

How small is a,, U™ ? To answer this, note that

1, ifz>1,

Z
P(a,U" < 7™) = min(——, 1) —
“ & (a,‘,/’” ) {z, ifz<1.

and that
1, ifz>1,

PU™ < ") = min(z, 1) = ]
z, ifz<1.

Therefore, on the scale 7" random variables a,, U™ and U™ look equally small.
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Can we say something about the limit behavior of the sum
Cm
Ry =) anU" = anS,,,
i=1

and what should be the choice of ¢,,? In the previous case it was ¢,, = m, but
now—not clear.

To find the limit for the characteristic function of R, is the same as to find the
limit for ¢, [¢ (ta,,) — 1]. We have:

o | am ity _ 1
CnlPm(tan) = 11 = ey / [e" @ —1]ds! ™ = =y / y!/"dy
0 m (an)t'™ Jo y

Here, as m — oo, the integral tends to oo, while (@)™ — 1. In order to obtain a

limit of the form )
00 Lty _
| M)
0 y

the measure c
dM,,(y) = ;my'/’"dy, Yy < dm,

should have a weak limit d M (y) and 1/y should be integrable with respect to this
limit. But this can not happen. The sequence of normalized measures

m

dMy(y),

m*m

which are probability distributions on [0, a,, ], “runs away” from the space.

13.6 Notes and Acknowledgment

This work was motivated by authors interest to null-arrays of positive random vari-
ables and their limiting Lévy measures. In the author’s view, they should play an
essential role in the statistical analysis of large number of rare events (statistical
theory of diversity), see Khmaladze (1989). Hopefully, this will be demonstrated in
subsequent publication(s).

Representation 13.1 describes the limiting infinitely divisible distribution as self-
decomposable. This also follows from stochastic representation 13.4—see for these
results Sato (2002), pp. 109—112. The fact that the density of F is constant on some
interval [0, ] is known in much more general situation, described in Sato (2002),
Lemma 53.2. At the same time, instead of looking for an aggregate general statement
it may be easier to derive the fact directly.

Limiting characteristic function 13.1 appears in the literature in several contexts.
For example, it was used as early as 1957 by I.A. Ibragimov (1957) in an attempt to
construct example of nonunimodal density of self-decomposable distribution.
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Fig. 13.1 The graph of the
distribution function F along
with computer simulated
distribution function of S,
with m = 50. The difference 0.8
is barely visible. For m as

small as 30 the difference

between the two is noticeable. 064
In the interval [3, 4] the

recurrence 13.5 was used for
calculation of F.

104

0.4
0.2
0.0
T T T T T T
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Iam obliged for these remarks to Ken-iti Sato and Jean Bertoin, who kindly agreed
to read the text and provide a feedback.
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Chapter 14
Frailty, Profile Likelihood, and Medfly Mortality

Roger Koenker and Jiaying Gu

14.1 Introduction

The notion of frailty to describe unobserved heterogeneity of population risks has
become a familiar feature of demographic analysis since Vaupel et al. (1979), and
has gradually spread to other statistical domains. A valuable early exposition of
the impact of frailty in models of treatment evaluation is provided by Shepard and
Zeckhauser (1980). Often, as in the aforementioned sources, parametric models are
posited for the frailty effects, but it is usually difficult to justify such assumptions
given the unobserved nature of the frailty components. Recent progress in estimation
and inference for general, nonparametric mixture models has opened the way to a
more flexible approach. We will illustrate some features of such an approach with a
reanalysis of the influential Carey et al. (1992) study of medfly mortality.

14.2 Data

In the largest of the three experiments reported in Carey et al. (1992), 1.2 million
Mediterranean fruit flies (Ceratitis capitata) were raised in a large facility in Mexico,

... Pupae were sorted into one of five size classes using a pupal sorter. This enabled size
dimorphism to be eliminated as a potential source of sex-specific mortality differences.
Approximately, 7,200 medflies (both sexes) of a given size class were maintained in each of
167 mesh covered, 15 cm by 60 cm by 90 cm aluminum cages. Adults were given a diet of
sugar and water, ad libitum, and each day dead flies were removed, counted and their sex
determined . ..

The primary objective of the experiment was to study the upper tail of the mortality
distribution, an endeavor that revealed several surprising features.

R. Koenker (I<) - J. Gu
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Fig. 14.1 Raw daily medfly mortality rates and moving average smooth

14.3 Declining Mortality Rates

Prior to this experiment it was an article of faith throughout biology that within
species mortality (hazard) rates were monotonically increasing with age. Indeed it
was commonly suggested that each species had a species specific upper bound for age
rendering the whole notion of investigating the “tail behavior” of the mortality distri-
bution pointless. In Fig. 14.1 we plot raw daily mortality rates from the experiment
and superimpose a smoothed, geometric moving average curve. More explicitly, let
y; denote the number of flies alive (at risk) at the beginning of day ¢, then the raw
mortality rates plotted in Fig. 14.1 are, r; = 1 — y;y1/y:, and the smoothed (geo-
metric) weekly moving average. Contrary to the received wisdom, mortality rates
actually declined after about age 60. This finding provoked an extensive reappraisal
of the biology of aging. The observed decline in mortality offered no consolation to
the 99.8 % of the flies that were already dead by age 60, but to the remaining, more
than 2000 less frail ones, it offered some hope of a prolonged retirement. The oldest
flies in the experiment expired on day 172.

How should we interpret this remarkably long tail? One explanation, suggested
by Vaupel and Carey (1998), was that the population under study was really a mix-
ture of several subpopulations of varying frailties. Rather than assume a particular
parametric form for the mixing distribution, Vaupel and Carey adopted a nonpara-
metric mixture model. While their two-page note in Science precluded a detailed
description of their computational methods, we have been able to “reverse engineer”
an approach that closely mimics the results reported in their Figure 1.



14 Frailty, Profile Likelihood, and Medfly Mortality 229

7
’ 0 4o 000% °
96,6920
-2 °°°°°oo°0°°o°°0c>°°° 000% 0% o 0059° 0 o o ©
0°° o % °
Cd o T o e
o 00 o o° o
o,
o ° )
_3 — ° o
i) °
®
N -4 - o
®© ()
ey
> °
]
-5 -
_6 — S
I
'
L
T T T T T T
0 20 40 60 80 100
days

Fig. 14.2 Estimated baseline Gompertz and Weibull hazard models: linear (Gompertz) and log
linear (Weibull) fits to the initial & observations of raw daily log mortality rates

The first question is: What are we mixing? Here we follow Vaupel and Carey
and consider both Gompertz and Weibull mixtures. The Gompertz model assumes
that log hazard is linear in age, while the Weibull model assumes that log hazard
is linear in log age. Figure 14.2 illustrates raw log-hazard rates plotted against age,
and superimposed are two estimates of the baseline model. The dashed line repre-
sents the estimated baseline Gompertz model fit to the data for the first 15 days of
the experiment by weighted least squares, with weights given by the relative fre-
quencies of the daily counts. It appears that the first day is an outlier in this plot,
however since few flies died on the first day, it exerts little influence on the fitted
line. The solid curve represents the baseline Weibull fit based on the first 20 days
of the experiment. How many observations to use to estimate the parameters of
the baseline model is obviously somewhat debatable, in this respect the problem is
somewhat similar to the notorious controversies over how to choose k in the Hill
estimator of the Pareto exponent. We will not indulge in further speculation about
these choices, but simply remark that our k selection yields baseline Gompertz haz-
ard of h(#) = 0.002 exp (0.24¢), while Vaupel and Carey use A(¢) = 0.003 exp (0.3¢),
and for the Weibull model we obtain A(¢) = 0.0004¢'%3, against Vaupel and Carey’s
h(t) = 0.00172. The intercept in these models is not crucial since the estimated
mixture distribution is scale-equivariant. It simply fixes a normalization. The shape
parameter is more important, but in both cases our approach of fitting the left tail
of the distribution yields rather similar estimates to those employed by Vaupel and
Carey. An intriguing, open theoretical and practical question remains: can likelihood
methods be brought to bear to estimate these shape parameters. We will return to this
question when we consider profile likelihoods.
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Given our estimated baseline models it is now time to address the problem of
estimating the mixing or frailty distribution. There is a long history and exten-
sive literature on this subject. Lindsay (1995) provides a thorough overview. Kiefer
and Wolfowitz (1956) demonstrated that such mixture models were consistently es-
timable under weak conditions by maximum likelihood. If we write the baseline
density as ¢(x, 0) and the mixture density as,

g(x) = / (. 0)dF (6),

then given independent and identically distributed (iid) observations, xy, - - - , x,, from
g, we wish to solve

] ).
glg;; og (g(x))

Following Laird (1978), the expectation-maximization (EM) algorithm, or a variant
of it, has been employed to solve such problems. However, EM is notoriously slow to
converge. Koenker and Mizera (2013) proposed an alternative computational strategy
based on convex optimization. Let, tp < t; < --- < t,, denote a grid of values for
the potential mass points of the distribution F', and let f; denote the mass associated
with the ith grid interval. Then, we can rewrite the MLE problem as,

max {Zlog(g(xi)) | g=Af. Y fidi=1, f> 0}’

where A denotes the n by m matrix with typical element, ¢(x;, t;), and g denote the
n vector with typical element g(x;). This is a garden variety convex optimization
problem that can be efficiently solved by modern interior point methods. We employ
MOSEK (Andersen 2010) for this purpose. The R package, REBayes (Koenker
2012), implements a variety of related problems, all of the computational results
reported here were carried out in this environment.

In Fig. 14.3 we plot the two mixing distributions estimated by the Kiefer—
Wolfowitz maximum likelihood procedure. Note that the vertical axis in these plots
is the cube root of the density to exaggerate the smaller mass points that are nearly
invisible on the original f(0) scale. The Kiefer—Wolfowitz estimator is known to
deliver a discrete distribution, here represented by a “density” with a small number
of “almost” point masses. The Weibull model is considerably more parsimonious in
this respect with only six distinct points of support. The implied hazard functions
for the two estimated mixture densities are shown in Fig. 14.4, superimposed over
the raw mortality rates. Fewer mass points in the Weibull model translates to much
smoother behavior of the hazard function, but this is ultimately traceable back to the
forms of the base density, the Gompertz being more sharply peaked and consequently
generating a rougher mixture. In both cases the mixing parameter 6 functions as a
scale parameter, but the mixing distribution is estimated on the log 6 scale, so we
can interpret the mixing as convolution as with the familiar kernel density estimator.
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Fig. 14.3 Estimated mixing distributions for the Gompertz (left) and Weibull (right) models
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Fig. 14.4 Hazard functions for the estimated Gompertz and Weibull models

14.4 Gender Crossover

An obvious source of observed heterogeneity is gender differences. Again, the Carey
et al. experiment revealed some surprising new facts. When we repeat our prior
exercise fitting separate baseline Weibull models for males and females, we obtain
the results appearing in Fig. 14.5. The Weibull model fits considerably better in both
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Initial Weibull Fit: Females
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Fig. 14.5 Gender specific of baseline Weibull models: weighted least squares fitting of the initial
k observations on daily mortality rates. The percentage of the sample population dead by day £ is
given in parentheses. The estimated shape parameter of the baseline Weibull model is o

of these plots than in the previous aggregated plot, and considerably better than the
corresponding Gompertz plots, so we will restrict attention henceforth to the Weibull
model. Given the baseline models the Kiefer—Wolfowitz estimates of the mixture
model yields the gender-specific hazard functions of Fig. 14.6. Several features of
this plot are worth noting. Until about age 20, female mortality is higher than that
of males, but after age 20, female mortality is substantially below male mortality.
This crossover of the hazard functions clearly contradicts the proportional hazard
assumption that is frequently made in survival analysis. The second crossover of the
estimated hazard curves at about age 75 probably shouldn’t be taken too seriously, but
the initial crossing is quite precisely estimated and induces a crossing of the estimated
gender-specific survival functions at about age 36. It is impossible to resist noting
that this pattern reverses the typical finding for human populations for which males
are more frail than females with a possible crossover only at very advanced ages.

14.5 Profile Likelihood and Covariate Effects

If nonparametric maximum likelihood estimation of frailty effects were restricted to
univariate survival models, it would still be a very valuable addition to the statistical
repertoire, but it would be much more useful if it could be extended to semiparametric
applications including covariate effects. Of course we already have the proportional
hazard model for this purpose, however frailty offers another valuable perspective.
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Fig. 14.6 Gender Specific of hazard functions for the Weibull Mixture model: raw daily mortality
rates are plotted in black for males and red for females, superimposed are the estimated hazard
functions for the Weibull mixture models using the baseline models shown in Fig. 14.6

Factorization of the likelihood makes the proportional hazard assumption especially
convenient from a computational viewpoint. The Weibull mixture model has no
comparable factorization; nevertheless, it is possible to employ a profile likelihood
formulation to elaborate the model to include covariate effects.

From the beginning a controversial aspect of the Carey experiment was the effect
of cage density. Critics claimed that flies raised in more crowded cages would be
more likely to die earlier. Carey et al. (1993) responded that the cage density was
quite low after 60 days, only 16 flies per cage, on average, survived beyond this age,
so it seemed difficult to attribute differences in mortality rates in elderly medflies
to differences in crowding. To investigate whether differences in initial cage density
had a significant impact on mortality we considered a model in which it entered as
a linear multiplicative scale shift in the Weibull model, that is, the baseline Weibull
scale becomes 6y exp (d; 8) where d; denotes initial cage density. To estimate the
density effect parameter, 8, we simply evaluated the profiled likelihood on a grid of
values on the interval [— 1, 1], yielding Fig. 14.7. This exercise yields a point estimate
of about # = —0.5 that is quite precise, at least if we are to believe the confidence
bounds implied by the classical Wilks, 2 log A ~+ x7, theory. Leaving the reliability of
such intervals to future investigation, we conclude simply that the negative estimated
coefficient implies that higher density shifts the survival distribution to the right, thus
prolonging lifetimes, and directly contradicting the conjecture of the Carey critics.
This finding is confirmed by other methods, see for example Koenker and Geling
(2001), where similar results are reported for both the Cox model and several quantile
regression models.
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Fig. 14.7 Profile likelihood for the initial cage density effect in the Weibull mixture model

The success of profile likelihood in a few cases prompts one to wonder how far
similar methods can be extended to other semiparametric mixture settings. There is
a considerable literature on this topic, pioneered by Lindsay. When profiling leads
to fully adaptive estimation of structural parameters, not only do we get efficient
estimates of those parameters, as a by-product we also get valid inference from the
profiled likelihood ratio statistic, see Murphy and Van der Vaart (2000). The latter
bonus is sometimes referred to as the Wilks phenomenon, e.g., Fan et al. (2001).

But profiling is not always so perceptive; sometimes it can lead the unwary toward
disaster. To illustrate this less benign side of profile likelihood for mixture models,
we would like to briefly reconsider estimation of the Weibull shape parameter, «,
based on the medfly data. In Fig. 14.8 we show the profile likelihood for « based on
the full medfly data. Based on our earlier results we know that o ~ 2.8 fits the initial
portion of the log hazard plot quite well. What does the profile likelihood have to
say about it? The message is a bit confusing: the profile likelihood increases sharply
up to about o = 2.8, and then dramatically flattens out. In fact, closer examination
reveals that the profile likelihood continues to increase beyond this value, but very,
very gradually. Indeed, as ¢ — oo, the profile likelihood also tends to infinity. To
understand this better it is helpful to consider how the estimated mixture distribution
responds to changes in «. For small ¢, the estimated mixture distribution has only
a single mass point, and this single mass point persists for a while, by the time we
get to « between 2.5 and 3.0 though we have 5 or 6 mass points as in Fig. 14.3. As
o becomes larger we get more and more mass points, eventually yielding positive
mass corresponding to virtually all the distinct observed values. This is reminiscent
of the familiar Dirac catastrophe produced by kernel density bandwidths chosen by
maximum likelihood. Indeed, the situation is quite similar, as & becomes large the
effective bandwidth of the baseline Weibull model becomes narrower and more mass
points are needed in the mixture distribution to mimic the density of the observed data.
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Fig. 14.8 Profile likelihood for the shape parameter in the Weibull mixture model

So profile likelihood has failed us. Now what? There is a familiar litany of cir-
cumstances in which naive adherence to the principle of maximum likelihood leads
to absurd results: various Gaussian examples in which driving variance parameters
to zero yields unbounded likelihood at unlikely places in parameter space, estima-
tion of the threshold parameter of the three-parameter lognormal distribution, and
many others. One approach that has proven successful in such situations is the maxi-
mum product-spacing methods introduced by Cheng and Amin (1983) and Ranneby
(1984). Roeder (1990) describes an application of this approach in astronomy that
although based on Gaussian assumptions is qualitatively quite similar to our Weibull
problem.

Log product spacings optimization can be viewed as a discretization of classical
maximum likelihood. Let G(x,8) denote the distribution function of a parametric
model for a scalar random variable, X. Given a sample, X;,---, X,, of identical
copies of X, let

AGi(9) = G(X,0) — G(X(i-1),9),

fori =1,...,n 41 with Xy = —oco and X,4+1) = +ocand X : i =1,---,n
denoting the order statistics of the original sample. Since G(X, 6p) is uniform when
evaluated at the true parameter, 6, of the model, the AG;(6p) constitute a sample of
uniform spacings for which there is an extensive theory. Considering

n+l1

- ; ) 26 1h/2
R, (0) = NS ;(IOg (AG;@)n+ 1)+ y)/(x"/6 —1)

with y & 0.577216, the Euler constant, we have a normalized sum that satisfies a
central limit theorem with a standard normal limiting distribution. Maximizing R, ()
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with respect to 0 requires computing the Kiefer—Wolfowitz mixture distribution,
G(x, ), at each 6 to obtain the profile log product spacing objective function. The
function R, (0) behaves like the usual log-likelihood; this is to be expected since the
summands can be viewed as difference quotient approximations of g(x;, ) for x; €
(X(i-1)» X(i)). However, by avoiding the direct evaluation of densities we circumvent
the pathological behavior of the log likelihood.

An important feature of the maximum product spacing method noted by Roeder
(1990), is that for given 6, it selects an G(x,0) thatis asymptotically equivalent to the
mixture distribution estimated by nonparametric maximum likelihood, that we have
focused on thus far. For 6 taking various values, we get a profiled objective function
similar to the profiled nonparametric likelihood. Yet unlike the problematic profiled
likelihood, the limiting form of R,(0) yields an estimating function centered at zero
for the true parameter and a simple confidence interval construction for the structural
parameter. Further details regarding the maximum product spacing method can be
found in Roeder (1990), Roeder (1992), and Ekstrom (2008).

We have seen already that an « parameter that fits the left tail of the survival
distribution can be estimated well by a simple regression of log hazards on log event
times using data from the first few days of the experiment. This assumes that flies that
only survive for the first k days are all from ahomogeneous parametric survival model.
When we move on to the semiparametric mixture model using all the observations,
a natural question becomes how reasonable is it to assume a global value for o while
allowing scale heterogeneity with frailty. We employ a first-order form of the log-
product-spacing method and find that the test strongly rejects the mixture models
with « = 2.85. However, when we use only the observations surviving up to 50
days, a subsample that actually contains 99.5 % of the full sample, we obtain a test
statistic of only 0.33 and the model is not rejected. Similar conclusions are drawn
when we estimate gender-specific models. The message seems to be that the Weibull
semiparametric mixture model fits the majority of the data quite well, but fails to
perform adequately for the extreme right tail.

This conclusion may simply reassert that estimating a fixed shape parameter in
the Weibull mixture model is an extremely difficult task; this is indeed the impression
one gets from the prior literature. Hahn (1994) shows that the information matrix is
singular for mixed Weibull proportional hazard model. When there are no covariates,
the score function for « is identically zero, hence also the Fisher information. This
means that the Weibull shape parameter can not be estimated at a root-n rate. Various
estimation strategies for « are nevertheless available, for example, Honoré (1990),
Honoré (1997), and Ishwaran (1996). We would like to highlight what seems to
be a somewhat neglected paper by Ishwaran (1999) discussing the information loss
phenomenon for a class of semiparametric mixture models. Ishwaran shows that
for the Weibull mixture model, there is information loss for as bigger than the true
value o, so that with ¢ > «g, one can find a mixing distribution that produces a
model that is arbitrarily close to the true model in the sense of Hellinger distance.
This corresponds to the flat region in our profile likelihood. On the other hand, as
he notes, it is curious that the same information loss phenomenon does not occur for
a’s that are smaller than «y. Whether one could take advantage of this asymmetric
behavior for estimation of « is left for future investigations.
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Chapter 15

Comparison of Autoregressive Curves Through
Partial Sums of Quasi-Residuals

Fang Li

15.1 Introduction

This chapter is concerned with testing the equality of two autoregressive functions
against two sided alternatives when observing two independent strictly stationary and
ergodic autoregressive times series of order one. More precisely, let Yy, Y2;, i €
Z := {0,4£1,-- -}, be two observable autoregressive time series such that for some
real valued functions w; and u,, and for some positive functions oy, o5,

Yij = wi(Yi—1) +o1(Y—1)er, Yy; = uo(Yoi—1) +02(Ya;—1)e2;. (15.1)

The errors {e,;,i € Z} and {g,;, i € Z} are assumed to be two independent
sequences of independent and identically distributed (i.i.d.) r.v.’s with mean zero
and unit variance. Moreover, €1;, i > 1 are independent of Y, o, and &5;, i > 1 are
independent of Y, . And the time series are assumed to be stationary and ergodic.

Consider a bounded interval [a, b] of R. The problem of interest is to test the null
hypothesis:

Ho @ pi(x) = pa(x), Vx € la,b],
against the two sided alternative hypothesis:
Hi @ pi(x) # ua(x), forsome x € [a,b], (15.2)

based on the data set Y]yo, Y]yl, e, Y]’nl, Yz’(), Yz’l, e, Y2,nz-

In hydrology, autoregressive time series are often used to model water reser-
voirs, see, e.g., Bloomfield (1992). The above testing problem could be applied in
comparing the water levels of two rivers.

Few related studies had been conducted under the two sample autoregressive
setting. Koul and Li (2005) adapts the covariate matching idea used in regression
setting to a one-sided tests for the superiority among two time series. Li (2009)
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studied the same testing problem, but the test is based on the difference of two sums
of quasi-residuals. This method is also an extension of 75 in Koul and Schick (1997)
from regression setting to autoregressive setting.

The papers that address the above two sided testing problem in regression set-
ting include Hall and Hart (1990); Delgado (1993); Kulasekera (1995) and Scheike
(2000). In particular, Delgado (1993) used the absolute difference of the cumula-
tive regression functions for the same problem, assuming common design in the
two regression models. Kulasekera (1995) used quasi-residuals to test the difference
between two regression curves, under the conditions that do not require common
design points or equal sample sizes. The current article adapts Delgado’s idea of
using partial sum process and Kulasekera’s idea of using quasi residuals to construct
the tests for testing the difference between two autoregressive functions.

Similarly, as in Delgado (1993), let

A(r) := / (11(x) = p2(0)) (fi(x) + fo(x)) dx, Ya <t <b, (15.3)

where 11, (o are assumed to be continuous on [a, b] and fi, f, are the stationary
densities of the two time series Y ; and Y, respectively. We also assume that f;, f,
are continuous and positive on [a, b]. It is easy to show that A(z) = 0 when the null
hypothesis holds and A(¢) # O for some ¢ under H,. This suggests to construct tests
of Hy vs. H, based on some consistent estimators of A(z). One such estimator is
obtained as follows.

First, as in Kulasekera (1995), we define quasi-residuals

e, =Yi; — (Y1), i=1,---,ny, (15.4)
and
erj =Y — 1Yo 1), j=1---,ny. (15.5)

Here, (1, and [i, are appropriate estimators, such as Nadaraya—Watson estimators
used in this article, of 1 and @,. See Nadaraya (1964) and Watson (1994).
Now, let

1 13
Un(t) = -~ > erilazyy, = — - > erjllazry; = (15.6)
g 250

where the subscript n, here and through out the chapter, represents the dependence
on n; and n,. With uniformly consistent estimators ft; and [t of u; and u, such as
kernel estimates and under some mixing condition on the time series Y ; and Y3 ;
such as strongly o —mixing, U, (¢) can be shown to be Uy, (¢) + U,,(¢) 4+ U3, () with

ny

1
Un,(@t) = - ZUI(Yl,i—l)Sl,i la<yi; 1<

i=1

1 &
- E 02(Y2,j-1)€2,jlja<y, ;1< = 0p(1),
2 4
Jj=1



15 Comparison of Autoregressive Curves Through Partial Sums of Quasi-Residuals 241

np

1
Uy (t) = - Z (1 (Y1) — o(Yim) la<yi;_y<n
L

ny

- Z (m2(Ya,j—1) — 1 (Y2, j—1)) ] a<r, ;<1
2 4
j=1

= / (11(x) = 12(0)) (f1(x) + f2(x)) dx + 0p(1),

np

1 N
Us, (1) = - Z (2(Y1,i-1) — o(Yi—i) la<yy;_ <

i=1

1 & .
- Z (1Yo, j—1) — 1 (Y, j— 1)) a<y, <y = op(1),
2 4
Jj=1

uniformly for all ¢ € [a, b]. Thus, U, (¢) provides a uniformly consistent estimator
of A(z). This suggests to base tests of Hy on some suitable functions of this pro-
cess. In this chapter, we shall focus on the Kolmogorov—Smirnov type test based on
SUP, < <b |Un(0)].

To determine the large sample distribution of the process U, (t), one needs to
normalize this process suitably. Let

2
12(t) = E {Ulz(Yl,o) (1 + fZ(Yl’O)) 1[a5Y1,ost]}

fiY10)
fif20)\?
+ @2 E Y03 (Ya0) (1 + —) Lia<¥ao<r] f » (15.7)
{ 2 £(Ya0) la<Yyp=t]
N N
where, 9 : n n]liznz’ CZZ T (tllﬁnz and N.:. n’:sz.
We consider the following normalized test statistics:

NY2U, (1)

T := su |

In the case o;’s and f;’s are known, the tests of Hy could be based on T, being
significant for its large value. But, usually those functions are unknown which renders
T of little use. This suggests to replace 7, with its estimate 7> which satisfies

2(b)
72(b)

I (15.8)

—p 1. (15.9)

An example of such estimator 7, () of 7,(¢) is

. 2
. 1 - 2 Jo(Y1i-1)
2O =qg— > (Y- i) [T+ 5] lazr,_ =
S - Si(Yii-1)

. 2
I 5 - 2 (. Si0-)
+aq2— Z (Yo — a(Ya,j-1)) <1 + ) N, i< ¢

na2 j=1 fA‘Z(YZ,j—l)

(15.10)
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where, [i;’s and f, ’s are appropriate estimators, such as kernel estimators used in this
paper, of w;’s and f;’s. Therefore, the proposed tests will be based on the adaptive
version of T, namely

Foe s ‘N”zUn(r)
' agtgb ‘/fnz(b)

We shall study the asymptotic behavior of T as the sample sizes n; and n;, tend
to infinity. Theorem 2.1 of Sect. 15.2 shows that under Hy, T weakly converge to
supremum of Brownian motion over [0, 1], under some general assumptions and
with (i; and /1, being Nadaraya—Watson estimators of 11 and ,. Then, in Corollary
2.1, under some general assumptions on the estimates fi;, fty and fl, fz, we derive
the same asymptotic distributions of T under Hy. Remark 2.2 proves that the power
of the test basted on T converges to 1, at the fixed alternative (15.2) or even at
the alternatives that converge to Hy at a rate lower than /t2(b). In Sect. 15.3,
we conduct a Monte Carlo simulation study of the finite sample level and power
behavior of the proposed test 7. The simulation results are shown to be consistent
with the asymptotic theory at the moderate sample sizes considered. In Sect. 15.4, we
study some properties of kernel smoothers and weak convergence of both empirical
processes and marked empirical processes. Those studies facilitate the proof of our
main results in Sect. 15.2. But, they may also be of interest on their own, hence are
formulated and proved in Sect. 15.4. The other proofs are deferred to Sect. 15.5.

| (15.11)

15.2 Asymptotic Behavior of 7 and T

This section investigates the asymptotic behavior of T’ givenin (15.8) and the adaptive
statistic 7 given in (15.11) under the null hypothesis and the alternatives (15.2).
We write P for the underline probability measures and E for the corresponding
expectations. In this chapter we consider Nadaraya—Watson estimators [i;, i, of i
and u,, i.e.,

i Yi K (Yij—1 = X)
> K (Yij —x)
where K, (x) = hl_K (5-), with K being a kernel density function on the real line

with compact support [ — 1, 1], k;, h, > 0 are the bandwidths. First, we recall the
following definition from Bosq (1998):

, i=1,2, (15.12)

fi(x) =

Definition 2.1 For any real discrete time process (X;,i € 7Z) define the strongly
mixing coefficients

a(k) := supa(o-field(X;,i <t), o-field(X;,i >t +k)); k=1,2,...
teZ

where, for any two sub o -fields B and C,

a(B,C)= sup |P(BNC)— P(B)P(C)|.
BeB,CeC
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Definition 2.2. The process (X;,i € 7Z) is said to be geometrically strong mixing
(GSM) if there exists co > 0 and p € [0, 1) such that a(k) < cop*, for all k > 1.
The following assumptions are needed in this paper.

(A.1) The autoregressive functions i, 4, are continuous on an open interval
containing [a, b] and they have continuous derivatives on [a, b].

(A.2) The kernel function K (x) is a symmetric Lipschitz-continuous density on R
with compact support [ — 1, 1].

(A.3) The bandwidths %4, h, are chosen such that hl2 N'=¢ — oo for some ¢ > 0
and h? N — 0.

(A.4) The densities f; and f, are bounded and their restrictions to [a, b] are posi-
tive. Moreover, they have continuous second derivatives over an open interval
containing [a, b].

(A.5) The conditional variance functions o} and o3 are positive on [a,b] and
continuous on an open interval containing [a, b].

(A.6) Yy;,Yr;,i € Z are GSM processes.

(A.7) For some M < oo, we have

E(e}) < M, i=1,2.

(A.8) For i = 1,2, the joint densities g;; between Y;o and Y;; for all [ >
1 are uniformly bounded over an open interval Z; containing Z, i.e.,

SUP;> SUPy ye, gi,/(-x’ y) < oo.
(A.9) The densities g; and g, of the innovations ¢;; and &, are bounded.

Let K(y) = f Y , K(#)dt be the distribution function corresponding to the kernel
density K(y)on [ — 1, 1] and let

1 & SYriz1) t—Yiiq
Vi) = — g1 01(Y1,-1) (1 a<yi;<t] + : (IC ( . )
ny ; M VA esti=i SfiYizn) h

-+ (=52)))

ny

{ fiYa-1) t— ¥y
- . Y . 1 a< : < : ]C ’
. 282,/ 02(Ya 1)( la<Vy; 1< T (Yo i-1) hy

j=1
_ a — Yzyjfl
K (—h1 >>> (15.13)

ny

1
Walt) = -~ D (Vo) = oY) asy,, <1
=

and

1 &
+ — D () = (V2 - lazrs, =0 (15.14)
2 7
j=1

We are now ready to state the main result.
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Theorem 2.1 Suppose, the conditions (A.1)—(A.9) hold true. Then, under both null
and alternative hypotheses, as ny A np — 00,

12
su ———
agtrs)b \/ ‘Er%(b)

Here, U, is given in (15.6) with j11, i of (15.12), and V,, and W, are given in
(15.13) and (15.14). Consequently,

(Un(t) = V(1) = Wa(0)) | = 0p (D). (15.15)

N1/2 .[Z(t)
——— (Ua(t) = W,(t)) = Boo(t), o)= li 5

Vi (b)

in the Skorohod space D|a,b], where B o ¢ is a continuous Brownian motion on
[a, b] with respect to time @. Therefore, under Hy, T of (15.8) satisfies

(15.16)

1 S
nipAn2— 00 ‘L'nz(b)

T = sup |B(1)],

0<t<l1
where B(t) is a continuous Brownian motion on R.

Proof: The proof is given in Sect. 15.5.
Next, we need the following additional assumption to obtain the asymptotic
distribution of T given in (15.11)

Assumption 2.1 Let 1;, f, be estimators of w; and f;, respectively, satisfying

sup |fii(x) — wi()| = op(),  sup | fi(x) = fitx)l = op(1), i=12,

a<x<b a<x<b
under both null and alternative hypotheses.

Corollary 2.1 Suppose the conditions of Theorem 2.1 hold true. In addition, suppose
that there are estimates [1; and f; in (15.10) satisfying Assumption 2.1. Then, as
ny A np — 0o and under Hy, T of (15.11) satisfie