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Foreword

This book fervently presents a wide collection of methodological and applicative
studies related to the assessment of autonomic nervous system (ANS) dynamics
in healthy subjects and patients with mood disorders. Indeed, the high technical
content makes the book quite attractive to anyone interested in mathematics, applied
physics, electronics, statistics and, most especially, in signal processing.

Firstly, the authors amply review and discuss every aspect that concerns emotions
and mood recognition, emphasizing experimental set-up, procedures, and interpre-
tation of the results, and allowing physicians and clinical psychologists to take full
advantage of this monograph. Secondly, I am glad that the book emphasizes the
probabilistic approach based on point-process models, which I have been studying
in-depth during the last decade, in order to instantaneously assess ANS linear and
nonlinear dynamics. Here the authors present a novel extension of the point pro-
cess mathematical framework as characterized through analysis of heartbeat series,
thus providing a wide range of novel ANS markers that can be used for model-
ing and classification. Remarkably, the book is also a unique contribution to the
study of ANS nonlinear dynamics. Thirdly, although the emphasis of this work is
on advanced signal processing techniques, it contains critical points regarding the
development of wearable systems for ANS monitoring. I like the authors’ philoso-
phy to “sensorize” everyday clothes such as gloves, t-shirts, and hats to make the
recording process as non-invasive, effective and comfortable as possible.

I know the authors personally and I did not expect anything less from this book.
I think that they can be confident that there will be many grateful readers who will
have gained a broader perspective how the study of ANS dynamics can be integrated
within the fields of biomedical engineering for affective computing and psycho-
physiology. I do recommend the book for the active research scientists and PhD
students interested in such interdisciplinary approaches.

Riccardo BarbieriHarvard Medical School
Boston, MA, USA
August 2013
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Preface

The book reports on recent advances in studying autonomic nervous system (ANS)
dynamics for the assessment of mood and emotional states. We will illustrate several
concepts, some of which are currently sparse over different manuscripts, in order to
bring out a clear breakthrough in the field of affective computing, mood assess-
ment, biomedical engineering, biomedical signal processing, and data acquisition.
The aim is to describe some personalized methodologies able to characterize the
affective state of a subject by means of the analysis of a wide spectrum of periph-
eral biosignals such as Heart Rate Variability, Electrodermal Response, Respiration
Activity, Eye gaze information.

These methodologies will be presented with applications on actual data gath-
ered from healthy subjects as well as patients affected by mood disorders, although
the reported advances can also be applied to several other (clinical) fields. Start-
ing form a psychological description of how-to-elicit an emotion (including models
of emotions, affective stimuli etc.), concepts will move to the neuro-physiology of
emotions, explaining the physiological bases of emotion recognition through non-
invasive monitoring of the ANS. Afterwards, advanced methodologies of biomed-
ical signal processing will be thoroughly described pointing out the crucial role of
ANS nonlinear dynamics. Then, the book will emphasize a probabilistic framework
based on point-processes able to instantaneously assess the ANS control on the lin-
ear and the nonlinear cardiovascular dynamics. Concerning the signal acquisition,
novel wearable monitoring systems will be described in further sections along with
experimental procedures on healthy subjects and patients with bipolar disorders.
The high technical content and all the proposed pioneering approaches make this
monograph of large interest. Several professionals such as biomedical engineers as
well as physiologists, neuroscientists, etc. could benefit from the content of this
book.

Gaetano Valenza
Enzo Pasquale Scilingo

Pisa, Italy
August 2013
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Part I
Introductory Remarks and State of the Art

This first part of the book is going to emphasize some introductory remarks and
describe the current state of the art related to the study of autonomic nervous sys-
tem (ANS) dynamics for mood and emotional-state recognition. Mood assessment
is intended as long-lasting state and is performed monitoring patients with mental
disorders such as bipolar disorders. Several pragmatic issues such as emotional and
mood state modeling and elicitation will be pointed out introducing also physiolog-
ical and mathematical motivations to the study of ANS nonlinear dynamics.



Chapter 1
Introduction to Advances in Autonomic Nervous
System Dynamics for Mood and Emotional-State
Recognition

Emotions are important psychological conditions that reflect several human states,
such as pleasant or unpleasant feelings, human relationships, process and results
of action. They are present in all mental processes, and any human activity (even
psycho-pathological) is accompanied by emotional experiences. Many research
works have shown that emotional processing can have primacy over cognition [1].
The famous naturalist Darwin stated that emotions emerged in the course of evo-
lution as the means by which living creatures determine the significance of certain
conditions to meet their urgent needs [2]. They are the most important factors in the
regulation of cognition. In addition, several works have shown how emotion regula-
tion is an essential feature of mental health. In particular, it has been highlighted how
emotion and its regulation have an important role in various aspects of normal func-
tioning. For example, as it will be pointed-out later, emotions become dys-regulated
in major depressive episodes, and some theoretical views of depression are based on
emotion changes which have implications in assessment, treatment, and prevention
of the pathology [3]. Moreover, it has been shown that a strong relationship exists
between emotion and anxiety [4] as well as brain damages of emotional processing
areas and decision-making process [5].

Changes in emotional states often reflect facial, vocal, and gestural modifications
in order to communicate, sometimes unconsciously, personal feelings to other peo-
ple. Such changes can be generalized across cultures, e.g. nonverbal emotional, or
can be culture-specific [6].

The automatic emotion recognition is one of the most important applications in
neuroscience and, often, is identified within the so-called affective computing field.
Mainly, such a technical field refers to the engineering approaches able to link phys-
iological patterns to different emotions. Recently, a review on affective computing
was written by Calvo et al. [7] and reports on emotion theories as well as on affect
detection systems using physiological and speech signals (also reviewed in [8]),
face expression and movement analysis. Since alteration of mood strongly affects
the normal emotional process, emotion recognition is also an ambitious objective in
the field of mood disorder psychopathology.

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_1, © Springer International Publishing Switzerland 2014
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4 1 Introduction to Advances in Autonomic Nervous System Dynamics

In the last decade, several efforts have been spent to obtain a reliable methodol-
ogy to automatically identify the emotional/mood state of a subject, starting from
the analysis of facial expressions, behavioral correlates, and physiological signals.
Several computational methods for emotion recognition based on variables associ-
ated with the Central Nervous System (CNS), e.g. the Electroencephalogram (EEG),
have been recently proposed [9–15]. These methods are justified by the fact that
human emotions originate in the cerebral cortex involving several areas for their
regulation and feeling. The prefrontal cortex and amygdala, in fact, represent the
core of two specific pathways. Affective elicitations longer than 6 seconds allow the
prefrontal cortex to modulate bottom up inputs and produce appropriate cognitive
responses [16]. Stimuli briefly presented access the fast route of emotion recognition
via the amygdala. Of note, it has been found that also the visual cortex is involved in
emotional reactions to different classes of stimuli [17]. Dysfunctions on these CNS
recruitment circuits lead to pathological effects [18–20] such as anhedonia, i.e. the
loss of pleasure or interest in previously rewarding stimuli, which is a core feature
of major depression and other serious mood disorders.

A wider class of affective computing studies are related to changes of the Au-
tonomic Nervous System (ANS) activity as elicited by a specific emotional state.
Monitoring physiological variables linked to ANS activity, in fact, can be easily per-
formed through wearable systems, e.g. sensorized t-shirts [21] or gloves [22, 23].
Moreover, ANS dynamics is thought to be less sensitive to artifacts than EEG. In
addition, the human vagus nerve is anatomically linked to the cranial nerves that
regulate social engagement via facial expression and vocalization. Experimental ev-
idences over the past two decades show that respiration activity (RSP), electroder-
mal response (EDR), and especially Heart Rate Variability (HRV) analysis, in both
the time and frequency domain, can provide a unique, noninvasive assessment of
autonomic functions [24, 25] and cardiobvascular dynamics [26–28]. Given such
evidences,

this book aims at performing a breakthrough investigation on methodologi-
cal and theoretical aspects of ANS signals as source of reliable and effective
markers for mood state recognition and assessment of emotional responses.

Motivations and Impacts Primary impacts of this book are in the field of affec-
tive computing and all those applications that use emotion recognition systems. The
methodology and the rationale behind the reported studies, in fact, are able to as-
sess the personal cognitive association to positive and negative emotions with very
satisfactory results.

From a physiological perspective, this book confirms the inherent non-linearties
of the autonomic and cardiovascular systems (e.g. the nonlinear neural signaling
on the sinoatrial node [29]) through several experimental results in both healthy
subjects and patients.

Major achievements have impacts also in mood disorders psycho-pathology diag-
nosis and treatment. Since mood disorders produce an altered emotional response,
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the innovative wearable monitoring systems and the methodologies applied along
could make a continuous evaluation of possible disorders.

Moreover, advances methodologies based on stochastic point-process model was
devised for the instantaneous assessment of the cardiovascular system extracting
a novel set of dynamic signatures, based on the dynamical spectrum, bispectrum
and trispectrum, able to characterize the wide range of cardiovascular responses
under different physiological conditions [30]. Therefore, such novel instantaneous
nonlinear features could provide better assessment and improved reliability of other
different kinds of physiological responses and pathologies.

Book Contributions and Perspectives In this book, the overall input-output ANS
response is first presented in order to implement an effective automatic emotion
recognition system [31]. For this purpose, biosignals such as HRV and RSP, and
EDR contribute to the assessment. Emotions are elicited in agreement with a bi-
dimensional spatial localization of affective states, i.e. arousal and valence dimen-
sions. Specifically, thirty-five healthy volunteers underwent a passive emotional
elicitation protocol through the presentation of a set of emotional pictures gath-
ered from the International Affective Picture System (IAPS), categorized in 5 lev-
els of arousal and 5 levels of valence, including the neutral one. This outcome al-
lows allocating 25 different affective regions in the arousal-valence space, known
as Circumplex Model of Affect (CMA). Commonly-used monovariate analyses are
applied in order to extract features from standard and from nonlinear methods of
analysis. The arousal and valence multiclass recognition are performed by process-
ing the extracted feature sets through a Bayesian decision theory based classifier
which uses a Quadratic Discriminant Classifier (QDC). The comparative analysis
shows that the use of nonlinear system-derived approaches gives pivotal quantitative
markers to evaluate the dynamics and predicability of ANS changes. Specifically,
when nonlinearly extracted features are embedded in the mentioned affective com-
puting system along with the linearly derived ones, the percentages of successful
recognition dramatically increases (accuracy > 90% for both arousal and valence
classes) [31]. These findings simply confirm the important role played by nonlinear
and non-stationary dynamics in many physiological processes [32]. This behavior,
in fact, can be the result of a nonlinear frequency modulation or multi-feedback
interactions among the involved biological processes. For instance, on the human
cardiovascular system, a nonlinear frequency modulation of the heart primary pace-
maker (sino-atrial node) through ANS signaling [33] and hormonal control [29] has
been demonstrated.

These interactions can carry out several coupling mechanisms such as bio-
feedback for system regulation and synchronizations such as the respiratory si-
nus arrhythmia (RSA) [34] and baroreflex sensitivity (BRS) [35]. Accordingly,
the phase synchronization between breathing patterns and heart rate is investigated
during the mentioned IAPS passive affective elicitation [36]. Results demonstrate
that respiratory and cardiac systems adapt their rhythms in response to an exter-
nal emotional stimulation. In particular, when a strong affective event occurs, the
Cardio-Respiratory (CR) system becomes more synchronized (reasonably due to
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the sympathetic and parasympathetic signaling activity). The phase synchronization
is quantified by applying a bivariate analysis relying on the concept of phase syn-
chronization of chaotic oscillators, i.e. the Cardio-Respiratory Synchrogram (CRS)
[37]. This technique allows for the estimation of the synchronization ratio m : n as
the attendance of n heartbeats in each m respiratory cycles. A clearly increased syn-
chronization is observed during the presentation of images with significant arousal
content with respect to the neutral ones while no statistical difference has been found
among sessions with slightly different arousal content. Accordingly, the arousal af-
fective stimulation increases the coupling between the two considered systems [36].

Moreover, using the same data gathered from healthy subjects, another all-
inclusive methodology able to robustly discern the elicited 5 levels of arousal and 5
levels of valence, including a neutral state is proposed. According to the mentioned
previous findings [31, 36], the crucial roles of monovariate and bivariate measures
of ANS-signs such as HRV, RSP and EDR were jointed in order to obtain a more
effective and reliable emotion recognition system [38].

Moreover, in order to find theoretical foundations of emotional elicitation and
to bring benefits to other model-based emotion recognition systems, a model of
CR coupling during sympathetic elicitation using a theoretical nonlinear model has
been developed [38]. Note that this model is a simple adaptation of the theories of
weakly coupled oscillators [39–41] with external driving. The CR synchronization
was already studied under anesthesia [42, 43], exercise [44] or aging [45], where
particular emphasis was pointed out for the occurrences of transitions between syn-
chronization regimes. Therefore, the theoretical idea behind the proposed model is
that the CR system is comprised of weakly coupled self-sustained oscillators that,
when exposed to an external perturbation (i.e., sympathetic activation), becomes
synchronized and less sensible to input variations. This hypothesis is experimentally
proved by other findings relating the Dominant Lyapunov Exponent and the Approx-
imate Entropy [46] to nonlinear dynamics of the HRV, showing a clear switching
mechanism between regular and complex dynamics when switching from neutral to
arousal elicitation.

Despite the great achievements and novelty of the hereby proposed emotion
recognition systems, such methods require relatively long-time series of multivariate
records (tens of seconds or minutes). Reducing such a dimensionality would bring
beneficial results to both computational and operational equipment costs. Moreover,
they are unable to provide accurate characterizations in short-time series (less than
10 seconds of image presentation) and to track very fast stimulus-response changes.
To overcome these limitations, a novel personalized probabilistic framework able
to characterize the emotional state of a subject through the analysis and modeling
of heartbeat dynamics is also proposed. Due to the intrinsic nonlinearity and non-
stationarity of the RR interval series detected from the Electrocardiogram (ECG),
a specific point-process nonlinear autoregressive model is devised for such an in-
stantaneous identification [47]. Features from the instantaneous spectrum and bis-
pectrum of the equivalent nonlinear input-output model were extracted and given as
input to a classification algorithm. By taking advantage of the standard subdivision
in low frequency and high frequency ranges of HRV in the bispectral domain, this
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method introduces novel nonlinear indices of heartbeat dynamics directly related
to higher order interactions between faster (vagal) and slower (sympatho-vagal)
heartbeat variations, thus offering a new perspectives into more complex autonomic
dynamics. Results on the short-time emotion recognition reported first-rate correct
identification of personal predefined levels of arousal, valence and self-emotional
state, with recognition accuracies as high as 90%. Remarkably, this approach rep-
resents the first achievement for an instantaneous and personalized assessment of
short-term emotional responses, achieved by using only heartbeat dynamics. Fo-
cusing on the pure mathematical formulation, model improvements in terms of
goodness-of-fit and feature estimation are given by the use of the Laguerre expan-
sion of the input-output Volterra kernels [47–53].

The clinical applicative scenario concerns patients suffering from bipolar dis-
orders [54–56]. Such patients are characterized by a series of both depressive
and maniacal or hypo-maniacal episodes. Although common and expensive
to treat, the clinical assessment of bipolar disorder is still ill-defined.

Since the current literature reports on several correlations between mood disorders
and dysfunctions involving the ANS, one objective was to develop a novel and re-
liable mood recognition system based on a pervasive, wearable and personalized
monitoring system using ANS-related biosignals. The ANS monitoring platform
used in this study is the core sensing developed in the frame of a European project
PSYCHE (Personalized monitoring systems for care in mental health) [54]. It is
comprised of a comfortable sensorized t-shirt that can acquire the inter-beat interval
time series, the heart rate, and the respiratory dynamics. Two main experimental pro-
tocols are presented in order to study ANS changes in bipolar patients: a long-term
monitoring during the day through the night, and a short-term monitoring including
an affective elicitation. In the latter case, the EDR was acquired along [55]. In both
cases, bipolar patients were followed for a period of 90 days during which up to
six monitoring sessions and psychophysical evaluations were performed for each
patient. Specific signal processing techniques and artificial intelligence algorithms
were applied to analyze more than 120 hours of data. Concerning the long-term
analysis, a classification accuracy of about 97% was achieved for the intra-subject
analysis. Such an accuracy was found in distinguishing relatively good affective
balance state (euthymia) from severe clinical states (severe depression and mixed
state) and is lower in distinguishing euthymia from the milder states (accuracy up
to 88%). Concerning the short-term study, very satisfactory results were obtained
also for the inter-subject analysis. In this case, distinguished performances are re-
ported for the analysis of EDR (using EDR deconvolutive analysis) and HRV (using
nonlinear point-process models) [57]. Therefore, evidences about the correlation be-
tween mood disorders and ANS dysfunctions were found and the obtained results
are promising for an effective biosignal-based mood recognition [54–57].
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In this book,

besides signal processing methods and computational models, achievements
related to the hardware development of novel wearable systems for ANS mon-
itoring are reported as well.

Mainly, they are related to a textile-based fabric glove able to acquire the EDR
[22, 23] and an Eye Gaze Tracker (EGT) able to acquire also the pupil size variation
[58, 59]. More specifically, the glove [22, 23] is endowed with integrated textile
electrodes placed at the fingertips and was successful applied to discriminate af-
fective states. The textile electrodes were characterized in terms of voltage-current
characteristics and trans-surface electric impedance [22, 60]. Moreover, signal qual-
ity of EDRs acquired simultaneously from textile and standard electrodes was com-
paratively evaluated. The EGT system proposed, HATCAM, is a new wearable and
wireless eye tracking system comprised of only one lightweight camera able to cap-
ture, by means of a mirror, the eyes of the subject and the scene in front of him,
simultaneously. The proposed wearable and wireless EGT is able to robustly enable
eye tracking and pupil area detection. HATCAM is used to investigate whether the
eye tracking and pupil size variation can provide useful cues to discriminate emo-
tional states induced by viewing images at different arousal content [58, 59].



Chapter 2
Emotions and Mood States: Modeling,
Elicitation, and Classification

Common experience suggests that emotions cannot be reduced to single word def-
initions. Researchers exploring the subjective experience of emotions have pointed
out that emotions are highly intercorrelated both within and between the subjects
reporting them [61, 62]. For example, subjects rarely describe feeling a specific pos-
itive emotion without also claiming to feel other positive emotions [63]. This high
variability in expression and definition of emotions implies that the development of
an automatic emotion recognition system is a very challenging task.

In this chapter, three crucial issues are addressed: modeling, elicitation and clas-
sification of emotions. Moreover, the role of the Autonomic Nervous System (ANS)
patterns is emphasized along with the related nonlinear dynamics.

2.1 Modeling Emotions

In the literature, several approaches for modeling emotions have been proposed.
Discrete, dimensional, appraisal, and dynamical models are the most interesting,
and in addition, they are not exclusive from each other.

In discrete models, emotions can be seen as the result of a selective adaptation
that ensures survival [64]. This survival concept could be illustrated by the following
relation: danger ⇒ fear ⇒ escape ⇒ survival. The result of this selection is a small
set of basic, innate and universal emotions. For instance, Ekman proposed 6 basic
emotions which are identified on the basis of facial expressions: anger, disgust, fear,
joy, sadness and surprise [65, 66]. Besides, in the literature other discrete models
have been proposed which include more or less basic emotions, usually from 2 to
10 ([67–69]). These emotions are called primary emotions as opposed to secondary
emotions which result from a combination of the primary ones (e.g. contempt =
anger + disgust). Nevertheless, this model can be insufficient to describe mixed
emotions which necessarily require much more than one word to be expressed, and
in addition there are some controversies in the assumption of universality of basic
emotions (Darwinian hypothesis [64]). What seems true is that emotions are univer-
sally expressed (e.g. facial expressions [70]) but dependent on semantic attributions.

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_2, © Springer International Publishing Switzerland 2014
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It shows that inter-cultural differences, e.g. difference between Asian and occiden-
tal people, are more important than intra-cultural differences, e.g. between genders,
and that no significant differences between primary and secondary emotions exist.
From an evolutionary point of view, basic emotions may be the first emotions infants
could experience [71]. See Ortony et al. [72], for basic emotion categories defined
over the years.

Unlike discrete models, dimensional models consider a continuous multidimen-
sional space where each dimension stands for a fundamental property common to
all emotions. This kind of model has already been used by Wilhelm Wundt [73].
Over the years, a large number of dimensions has been proposed [74–79]. Two of
the most accepted dimensions were described by Russel [80]: valence (i.e. pleasure,
positive versus negative affect), and arousal (low versus high level of activation).
These dimensions were derived from a valence, arousal, and dominance space de-
veloped by Russell and Mehrabian [81], in which dominance represents the degree
of control over the emotion.

Appraisal models are based on the evaluation of current, remembered or imag-
ined circumstances. At the heart of appraisal theory is the idea that the particular
judgments made about the environment and ourselves causes different emotions.
The situational appraisals appear to be highly dependent on motives and goals. In
other words, how we feel depends on what is important to us, indeed all our ap-
praisals are connected to what we want and, therefore, to how we feel. For example,
frustration results from a goal which is not achieved. This model was introduced
by Arnold [82] and has been developed and refined by Frijda [83], Ortony et al.
by developing the OCC model [84], Scherer with the Component Process Theory
[85] and the derived one by Lisetti and Gmytrasiewicz [86]. The appraisal process
can be thought of having a continuous as well as a categorical nature. Roseman’s
(1996) model shows that appraisal information can vary continuously but categori-
cal boundaries determine which emotion will occur. To solve the problem between
categorical and continuous appraisal order, it may be a good idea to place discrete
emotional categories (i.e. happiness, sadness, etc.) while continuous models repre-
sent the varieties, styles, and levels of these already defined distinct emotions [87].

Finally, the dynamical model approach considers emotions as a dynamical pro-
cess. This model starts from an evolutionary perspective and characterizes emotion
in terms of response tendencies. In the dynamics perspective emotion is a regula-
ble system and the capability of understanding its rules is essential. According to a
process model of emotion regulation, emotion may be regulated at five points in the
emotion generative process: selection of the situation, modification of the situation,
deployment of attention, change of cognitions, and modulation of responses. It may
be useful to take into account concepts like mood and personality (see Egges et al.
for an implemented model [88]).

In all the studies presented in this book, a common dimensional model which
uses multiple dimensions to categorize emotions, the Circumplex Model of Affects
(CMA) [89] is adopted. This model interprets emotional mechanisms underlying
affects as a continuum of highly interrelated and often ambiguous states. They are
distributed on a Cartesian system of axes; each axis represents a neurophysiological
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Fig. 2.1 A graphical representation of the circumplex model of affect with the horizontal axis
representing the valence dimension and the vertical axis representing the arousal or activation
dimension (adapted from [31])

pathway by which emotion is being processed. In many cases, by using factor analy-
sis and multidimensional scaling of a wide set of psychometric assessments and self-
reports on emotional states, it is possible to use a more simplified bi-dimensional
model. In particular, in the CMA used in the reported experiments the two dimen-
sions are conceptualized by the terms of valence and arousal, which can be intended
as the two independent, predominantly subcortical systems that underlie emotions
(see Fig. 2.1). Valence represents how much an emotion is felt by people as positive
or negative. For example, someone feeling sad has evaluated surrounding events
as very negative. On the contrary, someone feeling joy would have appraised the
environment as positive for his well being. Arousal indicates how relevant the sur-
rounding events are and therefore how strong the emotion is. In this case, someone
feeling excited will have an emotion represented by a bigger arousal and someone
feeling bored will experience a much less relevant emotion. Accordingly, in CMA,
arousal and valence can be considered adequate parameters to identify specific emo-
tions. This simplified model addresses most of the methodological issues raised by
experimental studies on emotions and provides a reliable means for comparing out-
comes.

2.2 Autonomic Nervous System Correlates of Emotions

The idea behind this book is that ANS (nonlinear) dynamics reflects measur-
able changes according to the emotional experience [89, 90].
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Many researchers have observed that peripheral physiological responses to affec-
tive stimuli vary incrementally with subjective ratings of valence and arousal. As a
matter of fact, several physiological ANS signs, e.g. Heart Rate Variability (HRV),
Respiration (RSP), Electrodermal Response (EDR), pupil size and eye movement
variation) correlates with subject behavior or emotional status [91–94]. Neverthe-
less, the correlation between emotions and physiological reactions controlled by the
ANS are complex. Anger, for example, has been associated with higher heart rate
than happiness, and on the other hand, has been associated with higher finger tem-
perature than fear [95, 96].

2.2.1 Heart Rate Variability

One of the most important ANS-related marker is the HRV. It refers to the variations
in the beat-to-beat intervals or correspondingly in the instantaneous heart rate (HR).
HRV reflects the regulation mechanism of the cardiac activity by the ANS [97]. Over
the last 20 years, several studies have demonstrated the significant relationship be-
tween ANS and HRV, especially by means of frequency domain indexes, e.g. LF/HF
ratio [98]. Since the human cardiovascular system is intrinsically nonlinear, meth-
ods for studying dynamic systems have been adopted to quantify HRV and find non-
linear fluctuations in the HR, that are otherwise not apparent. Although a detailed
physiological explanation behind these complex dynamics has not been completely
clarified, several nonlinearity measures of HRV have been used as important quan-
tifiers of the complexity of cardiovascular control in healthy and impaired subjects
[99–101]. Some nonlinear methods used for studying the HRV include Lyapunov
exponents [102], 1/f slope [103], approximate entropy (ApEn) [104], Detrended
Fluctuation Analysis (DFA) [105], Recurrence Plot (RP) [106, 107], and entropy
analysis [108]. As reported in [109], HRV of sinus rhythm is characterized by be-
ing a chaos-like determinism, with at least a positive Dominant Lyapunov Exponent
(DLE) and 1/f -like broad-band spectrum with an exponent of approximately −1.
Moreover, HRV chaos-like determinism is modulated but not eliminated by the in-
hibition of the autonomic tone or by exercise.

2.2.2 The Electrodermal Response

Electrodermal Responses (EDR) has been shown to be a powerful emotion-related
signal [110]. EDR represents changes in the skin electrical properties, i.e. electric
impedance, due to psychologically-induced sweat gland activity [111] upon an ex-
ternal stimulus. More specifically, it is strictly related to the activity of the eccrine
sweat glands (located in the palms of the hands and soles of the feet) and the skin
pore size. In a variety of induction contexts, electrodermal reactivity consistently
varies with emotional intensity, with largest responses elicited in either unpleas-
ant and pleasant contexts with high rate of arousal. Many studies, for example, have
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found that skin conductance increases when people view pictures rated as emotional,
compared to neutral, regardless of whether they are rated pleasant or unpleasant
[111–113]. Moreover, when listening to affective sounds [114], or music [115], skin
conductance activity increases as the acoustic stimuli are highly rated in emotional
arousal. Demonstrating consistent modulation by affective intensity across percep-
tual contexts, elevated electrodermal reactions are also found when people view film
clips that are either unpleasant or pleasant [116]. The scientific community has ac-
cepted to consider the EDR as indirect indicator of the sympathetic nervous system
[110]. Several approaches are used to measure this signal (e.g. [117]).

In this work, a small continuous voltage is applied to the skin and the induced
current is measured through two electrodes positioned at the index and middle fin-
gertips of the non-dominant hand. The ratio between voltage drop and induced cur-
rent represents the skin electric impedance. EDR changes depend on the individual
physiological state as well as on interaction with environmental events. Using a con-
tinuous voltage as source, the EDR can be referred to as Skin Conductance (SC).
SC can be split into two components: tonic and phasic. Tonic component is the
baseline level of skin conductance (also called skin conductance level-SCL), whose
trend is different from person to person and depends on both patient physiological
state and autonomic regulation. Phasic component (also called Skin Conductance
Responses—SCRs), superimposed on the tonic baseline level, changes with specific
external stimuli such as lights, sounds, smells, etc. or events.

This book also focus on identifying emotional cues, due to arousal elicitation, in
EDR measurements by using a textile-based sensing glove. The use of a wearable
textile system exhibits several advantages in terms of portability and usability for
long-term monitoring, and gives minimal constraints. Therefore, this kind of system
broadens scientific horizons which autonomic regulation investigation is currently
based on, providing high acceptability and usability in daily activities.

2.2.3 Information Coming from the Eyes: Pupil Size Variation and
Eye Tracking

Eye movements can provide an estimation of what information an individual is con-
sidering. Eye tracking is becoming an increasing popular measurement of cognitive
information processing [118]. The most recent eye-tracking technology develop-
ment (e.g. ease of use, improved accuracy, and enhanced sampling rate) also offers
the possibility for unobtrusive monitoring in the field of emotions because no sen-
sors need to be attached to the user. By gathering and analyzing data on where and
how long eyes are looking, a lot of information about the cognitive and emotional
structure could be inferred. Eye tracking allows estimating cognitive or affective
states exploiting the property of the immediacy (people process information as it
is seen) and the eye-mind (the eye remains fixated upon an object while the object
is being processed). Concerning eye-tracking methods, two popular methods are
currently used:
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1. shining a light on the eye and detecting corneal reflection
2. simply taking visual images of the eye and then locating the dark pupil area.

Generally, the choice of the best method depends upon the external lighting con-
ditions. To compute where a person is fixating, the eye-tracking apparatus can be
placed on the person head along with a camera so that a visual image is captured
showing what the person is currently looking at, with a point on the image indicat-
ing the object being fixated. Pupil dilations and constrictions are also governed by
the ANS [119]. Previous studies have suggested that pupil size variation is related to
both cognitive and affective information processing. As a matter of fact, it has been
pointed how the eye tracking information plays a crucial role on emotional process-
ing related to visual stimuli [120, 121]. Moreover, some works reported on how eye
tracking information can be related to selective attention to emotional pictorial stim-
uli [122]. They found out that preferential attention depends on the affective valence
of visual stimuli, i.e. pleasant and unpleasant pictures.

Concerning information provided by the pupil, previous studies suggested that
pupil size variation is related to both cognitive and affective information process-
ing [58, 123]. More specifically, [124] pointed out that during cognitive tasks such
as recalling something from memory the pupils dilate and return to previous size
within a few seconds of completing the mental work. However, previous works
on affective elicitation and pupil size variation have been somewhat controversial.
Dated research activity of [125] studied the effects of various sensory and psycho-
logical stimuli to pupil size variation and argued that none of them caused pupil
constriction except for increased light intensity. On the contrary, [126] found out
that there would be a continuum ranging from extreme dilation due to interesting
or pleasing stimuli to extreme constriction due to unpleasant or distasteful con-
tent. Almost in the same years, [127] contradicted this bi-directional view argu-
ing that there is no pupil constriction in response to negative stimuli, or it can be
limited to a few individuals and a small range of stimuli. He proposed that pupil
size should be linearly related to the stimulation intensity. From this point of view,
pupil size variation seems to be sensitive to the valence scale, resulting largest at
the negative and positive ends of the continuum and smallest at the center, that
would represent neutral affect. The latest work of [123] reported a study concern-
ing pupil size variation during and after auditory emotional stimulation. Their re-
sults showed that pupil size was significantly larger after both negative and positive
than neutral stimulation. These results suggested that the autonomic nervous sys-
tem is sensitive to systematically chosen highly arousing emotional stimulation.
It is reasonable that the above contradictory results and theories may be due to
the variety of stimuli used. Mostly, they have used limited sets of pictures vary-
ing in content, and they have suffered from methodological problems with color,
luminance, and contrast [128]. Clearly, controlled stimulus set is a fundamental
requirement for a systematic study of the effects of emotions on pupil size varia-
tion.
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2.2.4 Cardio-Respiratory Coupling

The coupling between cardiac and respiratory patterns has been increasingly gaining
interest in the scientific community. Starting from the pioneering work of Angelone
et al. [129], the coupling between the respiratory system and the heart is known to be
both neurological and mechanical [130, 131] as well as nonlinear [132]. However,
the exact physiological mechanisms responsible for cardio-respiratory synchroniza-
tion are, so far, poorly understood. In the literature, at least two levels of interaction
are known.

One level is identified as the frequency modulation of the heart’s primary pace-
maker (sino-atrial node) through autonomic neural and hormonal control. In this
level two concurrent effects take place, the efferent neural activity (the respiratory
related rhythms [133]) and a mechanical coupling between the systems. In the latter,
the variation of the intra-thoracic pressure causes a mechanical stretch of the sinus
node, which alters the electrical properties of the sino-atrial node membrane, and
therefore influences the frequency of heart excitation [134].

The second level has been found in the cardio-respiratory center of the brain
stem where the respiratory rhythm is generated, [135]. At this level, the brain stem
modifies the heart rhythm according to information regarding blood pressure pro-
vided by arterial baroreceptors, and, in turn, the baroreceptor reflex depends on the
respiration phase [136].

Nowadays, it is well accepted that the cardiovascular system and its relation-
ship with respiration is a truly complex system. Therefore, nonlinearities and
nonlinear coupling measures should be taken into account in its modeling and
analysis [137].

As a matter of fact, the current literature provides plenty of nonlinear methods that
are able to distinguish between healthy subjects and patients, and sometimes can
even predict the status of the latter ones (e.g. see [100, 138]).

Although it is well-known that the cardiovascular and respiratory systems do
not act independently, in the biological physics community these two systems were
often considered to be not synchronized. So, there is a weak coupling between respi-
ration and cardiac rhythm, and the resulting rhythms are generally not phase locked
[139]. As a matter of fact, in rest conditions, while long synchronization episodes
were observed in athletes and heart transplant patients (several hundreds of seconds)
[140, 141], shorter episodes were detected in normal subjects (typical duration less
than one hundred seconds) [141, 142].

In other several cases the cardio-respiratory synchronization was well demon-
strated ([43, 143–145]). Since Pecora and Carroll [146] presented the conception of
chaotic synchronization for two identical chaotic systems with different initial con-
ditions, many synchronization methods have been proposed [147–151]. Recently,
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Schafer et al. presented a new technique for the analysis of cardio-respiratory inter-
action, [140, 152], making use of their recent achievements in understanding hid-
den synchronization effects in chaotic and noisy oscillators [39, 153]. Even though
some recent works have shown that ANS and cerebral cortex are implicated in the
changes of cardio-respiratory synchronization during mental tasks [154], the effect
of emotional stimuli on the cardio-respiratory interaction has been poorly investi-
gated [155]. Starting from the hypothesis that respiratory and cardiac systems adapt
their rhythms as a response to an external emotional stimulation, in this book it will
be demonstrated that the cardio-respiratory system tends to become synchronized
when experiencing strong affective events [36].

2.3 Emotion Elicitation

How emotions can be elicited is a crucial issue still open. The difficulty associated
to the elicitation is related to a complex interaction between cognition and neuro-
physiological changes. Several modalities and several perceptual channels could be
used for this purpose, which can be thought as affected by several “noisy” factors,
including physiological process such as attention, social interaction, and body-to-
biosensors connections. In the literature, a wide range of elicitation methods have
been applied: introspection, movements, lights and colors [156], set of actions, im-
ages (e.g. IAPS described below) [157, 158], sounds (e.g., music and IADS de-
scribed below) [12, 93, 159, 160], (fragments of) movies [161, 162], speech [163],
commercials [164], games, agents/serious gaming/virtual reality [165], reliving of
emotions [166], real world experiences [167, 168] along with using personalized
imagery stimuli [92].

In order to induce a specific emotion, some of these methods employ stimuli be-
longing to international standardized databases. In this context, the International Af-
fective Picture System (IAPS) [157] and the International Affective Digital Sounds
system (IADS) [169] are two of the most frequently cited tools in the area of af-
fective stimulation. They consist of hundreds of images and sounds, with associated
standardized affective values. A commonly used approach is to have a collection of
stimuli in which each is slightly varied in terms of intra-individual standard devia-
tion of affective ratings.

In several experiments reported on this book, a set of images gathered from the
IAPS is chosen [170]. Specifically, IAPS is a set of 944 images having a specific
emotional rating, in terms of valence, arousal, and dominance. The emotional ratings
are based on several studies previously conducted where subjects were requested
to rank these images using the self assessment manikin [171]. The elicitation by
IAPS is able to activate segregated neural representations of the different emotion
dimensions in different prefrontal cortical regions [172, 173].
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2.4 Affective Computing: From Theory to Emotion Recognition

Emotion recognition using intelligent systems is a crucial issue to be addressed for
understanding human behavior, investigating mental health, interpreting social rela-
tions, etc. Recently, several engineering approaches have been used in order to guar-
antee acceptable emotion recognition systems having high accuracy, robustness, and
adaptability to practical applications. An emotion recognition system is generally
comprised of two main parts: emotion elicitation and identification of physiological
correlates. Such systems are devised to map physiological patterns into well-defined
emotional states for an automatic classification. The physiological signs include im-
plicit and explicit emotional channels of human communication, such as speech, fa-
cial expression, gesture, physiological responses [7]. Recently, numerous automatic
emotion recognition systems have been proposed involving, among others, patient-
robot interactions [174], car drivers [175], facial expression [176], and adaptation
of game difficulty [177]. Table 2.1 summarizes the most relevant results reported in
the literature during the last decade about the emotion recognition through the ANS
biosignal response [92–94, 165, 168, 175, 178–188]. All the acronyms used in this
table are expanded in Table 2.2. Each row of Table 2.1 shows the first author along
with the publication year, the set of physiological signals used for that study, the
typology of stimulation pattern, the emotion classes, the type of the classifier and
the results in terms of best percentage of successful recognition. Besides, the rest of
the state-of-the-art of ANS-based emotion recognition is referred to a recent review
written by Calvo et al. [7] which reports on the most relevant theories and detec-
tion systems using physiological and speech signals, face expression and movement
analysis.

The detection and recognition of emotional information is an important topic
in the field of affective computing, i.e., the study of human affects by techno-
logical systems and devices [91].

2.5 Emotions and Mood Disorders: The Bipolar Disorders

Mood has been defined as a long-lasting, diffuse, affective state, not asso-
ciated to a specific trigger [189]. In turn, emotions are considered transient,
acute and arousing responses to specific stimuli. It is well-known, however,
that mood status affects the normal emotional response, and for this reason
a possible assessment approach is to study the physiological variations pro-
voked by external affective stimuli.
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Table 2.2 Peripheral
biosignals and classification
methods used in the literature,
along with acronyms

Peripheral biosignals Acronym

ElectroCardioGram ECG

ElectroMyoGram EMG

Blood Volume Pulse BVP

ElectroDermal Response EDR

ReSPiration Activity RSP

Skin Temperature ST

Pupil Diameter PD

Impedance CardioGram ICG

Heart Sound HS

Classification methods Acronym

Linear Discriminant Analysis LDA

Marquardt Backpropagation Algorithm MBA

Artificial Neural Network ANN

Support Vector Machine SVM

Canonical Correlation Analysis CCA

Stepwise Discriminant Analysis SDA

Specifically, paradigms based on emotional reactions have been proven to be widely
able to differentiate among different mood states both in normal [190] and patho-
logical conditions [191].

As a case study on patients, the concepts and methodologies developed in this
book were applied to data coming from patients with bipolar disorders. Bipolar
disorder, formerly known as manic-depressive illness, is a psychiatric condition in
which patients experience drastic mood shifts. Typically, the disorder is cyclic with
patients experiencing episodes of pathological low moods (depressive episodes),
pathological elevated moods (maniacal or hypomaniacal episodes) and episodes
in which depressive and maniacal symptoms are present at the same time (mixed
episodes). In the intervals between these episodes, patients typically experience pe-
riods of relatively good affective balance (euthymia). Patients during a depressive
episode experience a sad and desperate mood presenting a lack of interest together
with other several neurovegetative symptoms including loss of appetite and sleep.
Other symptoms such as cognitive retardation, somatic pain or functional symptoms
(headache, dyspepsia etc.) are frequent as well. Depressed patients might also expe-
rience thoughts of ruin, guilt or death including suicidal thoughts that might end in
suicide attempts. On the other hand, maniac patients express an increase in activity
and an acceleration of thoughts. Rather than being a positive effect, these conditions
are the cause of attention loss and prevent the patient from expressing a coherent
mental stream of thoughts. Hyperactivity is often not finalized and patients switch-
ing from task to task are not able to complete any activity. In the maniac phase
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patients also experience a reduction of the necessity to sleep, sleeping a few hours
per night without feeling tired. Finally, mania is often dominated by a feeling of an
excited mood with the idea of grandiosity and hypertrophic self-esteem. Maniacs,
differently from hypomaniacs, might be delusional, e.g. they often believe of be-
ing a descendent of some important historical character. In the mixed state, patients
share symptoms of both mania and depression, i.e. they exhibit symptoms of both
mood states. For instance, patients can be hyperactive but have insomnia, have an
increased self-esteem but also thoughts of inadequacy, and so on.

According to epidemiological studies,

almost 15% of the population in the United States has suffered from at least
one episode of mood alteration [192], and more than two million Americans
have been diagnosed with bipolar disorder. Moreover, it has been estimated
that about 27% (equals 82.7 million; 95% confidence interval: 78.5–87.1) of
the adult European population, from 18 to 65 years of age, is or has been
affected by at least one mental disorder [193, 194].

Despite its prevalence and the high cost of treating mood disorders, the clinical
management of this condition is still ill-defined. First of all, this long-term illness
may go undetected for years before it is diagnosed and treated. Secondly, bipolar pa-
tients are extremely heterogeneous with respect to the phenomenology and severity
of the symptoms, the number and duration of the episodes, as well as the time inter-
val between them. Even during euthymic periods (i.e. after remission from maniacal
or depressive episodes), patients tend to experience sub-threshold mood alterations
over time. In spite of the non-specific symptoms, currently the patient’s mood is
typically assessed by clinician-administered rating scales.

For clinical and research purposes, several clinical rating scales have been pro-
posed and validated, but at present neither biological markers nor physiological sig-
nals highlighted in research studies are used for clinical purposes [195–197]. In this
view, there is another fundamental issue concerning both the research and clini-
cal domains. Relying on subjective mood evaluation alone, there is no possibility to
evaluate the preclinical indicators of relapse or patient response to treatment. For in-
stance, previous studies on sleep [198–200], circadian heart rate rhythms [201, 202]
and the hormonal system [203–205] highlighted changes in these parameters ac-
cording to the clinical status that may be considered predictors of clinical changes.
However, none of these studies have reached an acceptable level of accuracy for
clinical use in order to forecast the clinical course in single patients. A possible
explanation for these negative results can be that mood disorders are more het-
erogeneous, in terms of psychophysiological, neuroendocrine and neurobiological
correlates, than relatively simple clinical phenotypes usually adopted for clinical
and also for research purposes. This might result in gathering subjects in groups
that, although homogeneous in a clinical descriptive point of view, are extremely
dishomogeneous in terms of endophenotypes.
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2.6 Autonomic Nervous System as a Nonlinear Physiological
System

Most of the methodologies developed and applied within this book are related to
nonlinear dynamics and the theory of nonlinear system identification. This choice is
justified by both physiological and experimental evidences.

As a matter of fact, it has been well-accepted by the scientific community that
physiological models should be nonlinear in order to thoroughly describe the char-
acteristics of such complex systems. Within the cardiovascular system,

the complex and nonstationary dynamics of heartbeat variations have been
associated to nonlinear neural interactions and integrations occurring at the
neuron and receptor levels, so that the sinoatrial node responds in a nonlinear
way to the changing levels of efferent autonomic inputs [29].

In fact, HRV nonlinear measures have been demonstrated to be of prognostic value
in aging and diseases [24, 25, 99–101, 138, 206–211].

For instance, ApEn and DLE are adopted to characterize the complexity of HRV
[46]. ApEn is chosen because it can distinguish between wide variety of systems.
Moreover, its estimation can be achieved with relatively few points, as reported by
Pincus et al. [104]. The DLE index has been already used in the literature, e.g. [109],
to characterize HRV in terms of low-dimensional chaos-like determinism.

In several previous works [30, 212–215], it has been demonstrated how it is pos-
sible to estimate heartbeat (nonlinear) dynamics in cardiovascular recordings under
nonstationary conditions by means of the analysis of the probabilistic generative
mechanism of the heartbeat. Concerning emotion recognition, the crucial role of
nonlinear dynamics has been demonstrated in order to perform an effective arousal
and valence recognition from ANS signals [22, 31, 36, 46].



Part II
Methodology

The second part of the book reports on methodological advances related to data
acquisition, signal processing and classification. In particular, experimental proce-
dures applied to study healthy subjects and patients as well as novel wearable sys-
tems for physiological monitoring such as sensorized t-shirt and glove, eye-tracking
hat, and the multi-parametric platform PSYCHE are described in Chap. 2. Concern-
ing data analysis, ad-hoc pre-processing methods for noisy data as well as advanced
feature extraction and classification techniques are reported in Chap. 3, particularly
emphasizing the assessment of the autonomic nervous system nonlinear dynamics.



Chapter 3
Data Acquisition: Experimental Procedures and
Wearable Monitoring Systems

In this chapter, the methodological procedures and techniques performed for mood
and emotion recognition based on ANS signs are reported. It includes several ex-
perimental protocols successfully applied to elicit emotional variations in healthy
subjects and in bipolar patients. The rationale behind all the proposed procedures is
to maximize the ANS dynamical response under specific stimuli with respect to the
baseline (rest condition).

The description of novel wearable systems able to perform an ubiquitous, perva-
sive, and comfortable ANS monitoring in a naturalistic environment is also reported
along with a brief description of a standard portable ANS monitoring system.

3.1 Procedures on Healthy Subjects

The procedures described here were applied to ANS signals, i.e., HRV, RSP, and
EDR, acquired from healthy subjects during a specific emotion-induced experiment
through visual stimuli. As mentioned in Chap. 2, such affective stimuli are char-
acterized by a common dimensional model which uses multiple dimensions to cat-
egorize the affective states, i.e. the Circumplex Model of Affects (CMA) [89]. In
particular, a simplified version of the CMA is used where the affective states are
conceptualized by the terms of valence and arousal, which can be intended as the
two independent, predominantly subcortical systems that underlie emotions.

Valence represents the extent to which an emotion is perceived as being pleas-
ant or unpleasant. Arousal indicates the intensity of the emotion.

Accordingly, the stimuli are presented as images gathered from the International
Affective Picture System (IAPS) having five levels of arousal and five levels of
valence, including a neutral reference level. Peripheral physiological signals are si-
multaneously acquired. The experimental protocol was structured into the following

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_3, © Springer International Publishing Switzerland 2014
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phases: recruitment of eligible subjects; elicitation of emotional stimuli; acquisition
of the physiological signal set.

3.1.1 Recruitment of Eligible Subjects

A group of 35 healthy subjects, i.e. not suffering from both cardiovascular and ev-
ident mental pathologies, is recruited to participate in the experiment. Their age
ranged from 21 to 24 and were naive to the purpose of the experiment. All partici-
pants were screened by Patient Health Questionnaire™ (PHQ) and only participants
with a score lower than 5 were included in the study. Such a cut-off value was chosen
in order to avoid the presence of either middle or severe personality disorders [216]
such as subjects suffering from borderline personality disorders. It is well-known in
the literature, indeed, that this typology of subjects show significantly lower levels
of emotional awareness, a lesser ability in coordinating mixed valence feelings, a
lower accuracy in recognizing facial expressions of emotion, and a more intense re-
sponse to negative emotions than the non-borderline controls, [217]. The tests were
evaluated by a team of expert psycho-physiologists from the University of Pisa. The
test uses an empirical keying approach, where personality scales were derived from
items endorsed by patients. It consists of 16 items, and usually took between 20 and
30 minutes (depending on the reading level). The test was given in Italian language
since the subjects were Italian native speakers.

3.1.2 Stimulus Elicitation

The affective elicitation is performed by projecting a set of pictures to a PC monitor.
These images are chosen from the official IAPS database [157, 170] which consists
of hundreds of pictures with an associated specific emotional rating in terms of
valence, arousal, and dominance. The emotional ratings are based on several studies
previously conducted where subjects were requested to rank these images using the
self assessment manikin [171]. In addition, the elicitation by IAPS is able to activate
segregated neural representation of the different dimensions of emotion in different
prefrontal cortical regions [172, 173].

In the proposed procedure, the slideshow is projected in a room equipped with
a dedicated monitor and headset to acoustically insulate from external noise. The
slideshow is comprised of 9 sessions of images N , A1, N , A2, N , A3, N , A4, N ,
where N is a session of 6 neutral images (mean valence rating = 6.49, SD = 0.87,
range = 5.52 ÷ 7.08; mean arousal rating = 2.81, SD = 0.24, range = 2.42 ÷ 3.22),
and Ai (with i going from 1 to 4) are sets of 20 images eliciting an increasing level
of arousal and valence. Detailed values are reported in Table 3.1.

Each session is characterized by the valence/arousal rating, i.e. a 66% Confi-
dence Interval (CI) expressed in terms of (Mean ± Standard Deviation) of the image
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Table 3.1 Ratings and ranges of the IAPS images used in the procedures on healthy subjects
(from [36])

Session N. images Valence rating Valence range Arousal rating Arousal range

Neutral 6 6.49 ± 0.87 [5.52, 7.08] 2.81 ± 0.24 [2.42, 3.22]

Arousal 1 20 / [2.87, 7.63] 3.58 ± 0.30 [3.08, 3.98]

Arousal 2 20 / [1.95, 8.03] 4.60 ± 0.31 [4.00, 4.99]

Arousal 3 20 / [1.78, 7.57] 5.55 ± 0.28 [5.01, 6.21]

Arousal 4 20 / [1.49, 7.77] 6.50 ± 0.33 [5.78, 6.99]

Ranges are expressed as [min, max] values, whereas ratings are expressed as mean ± standard
deviation

Fig. 3.1 Sequence scheme over time of image presentation proposed in the procedures on healthy
subjects (from [36])

scores. Since even a single outlier (i.e. image with a score outside the CI bound-
aries) could strongly bias the session, the valence/arousal range information (i.e.
from minimum to maximum score, reported in brackets as [min value,max value])
are also considered.

The overall protocol utilized 110 images. Each image is presented for 10 seconds
for a total duration of the experiment of 18 minutes and 20 seconds. Figure 3.1
shows a graphical representation of the protocol. During the visual elicitation three
physiological signals, ECG, RSP, and EDR are acquired.

In order to present arousal images with different valence (from unpleasant to
pleasant), arousal sessions resulted to be longer than the neutral ones. This protocol
ensures an unbiased measure of phase synchronization regardless of the valence of
the considered images. Figure 3.1 shows a graphical representation of the proto-
col. In some cases, it could be useful to collapse the elicited valence and arousal
session in a lower number of classes. In particular, arousal sessions can be di-
vided into Low–Medium (L–M) and Medium–High (M–H) classes, according to
the arousal score associated. Such sessions include 20 images eliciting an increas-
ing level of valence (from unpleasant to pleasant). The L–M arousal sessions have
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Fig. 3.2 Sequence scheme over time of image presentation in terms of arousal and valence levels.
The y axis relates to the official IAPS score, whereas the x axis relates to the time

range valence rating = 1.95÷8.03, and mean arousal rating = 4.01±0.30, range =
3.08 ÷ 4.99. The M–H arousal sessions have range valence rating = 1.49 ÷ 7.77,
and mean arousal rating = 6.01 ± 0.31, range = 5.01 ÷ 6.99 (see the specific exper-
imental protocol in Fig. 3.2). This simplified labeling of the sessions is successfully
applied with the point-process approach for a personalized and instantaneous assess-
ment of the fast emotional responses. The general overview of this analysis is shown
in Fig. 3.3. In line with the CMA model, the combination of two levels of arousal
and valence brings to the definition of four different emotional states. The stimuli,
which stimulate several cortical areas also allowing the generation of cognitive per-
ceptions [16], produce changes in the ANS dynamics through both sympathetic and
parasympathetic pathways that can be tracked by a multidimensional representation
estimated in continuous time by the proposed point-process model.

3.2 Procedures on Bipolar Patients

According to the state-of-the-art (see Chap. 2),

it is reasonable to hypothesize that a correlation between mood disorders and
dysfunctions involving ANS might exist.

To this aim, a novel approach to assessing the patient mood by using ANS-related
biosignals gathered by wearable systems is proposed here. In this study, the psy-
chophysiological variability in the same subject across different clinical states was
considered. This approach is also justified by the small number of patients enrolled
as well as the small number of examples for some classes. In the future, when a suf-
ficient number of acquisitions are available, suitable data-mining techniques could
be implemented in order to also investigate inter-subject variability. Considering
such an intra-subject variability, the basic idea of this procedure is to bridge the
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Fig. 3.3 An overview of the experimental set-up and rationale behind the emotional elicitation
procedure on healthy subjects. The central nervous system is emotionally stimulated through im-
ages gathered from the International Affective Picture System. Such a standardized dataset as-
sociates multiple scores to each picture quantifying the supposed elicited pleasantness (valence)
and activation (arousal). Accordingly, the pictures are grouped into arousal and valence classes,
including the neutral one. During the slideshow, each image stands for 10 seconds activating the
prefrontal cortex, along with other cortical areas, and thus producing the proper autonomic nervous
system changes through both parasympathetic and sympathetic pathways. Starting from the ECG
recordings, the RR interval series are extracted by using automatic R-peak detection algorithms ap-
plied on artifact-free ECG. A viable way to process the signals is represented by the point-process
model which gives features in an instantaneous fashion

gap between research and the clinical routine management of bipolar patients in-
tegrating the traditional clinical standard procedures of mood assessment with data
coming from the personalized monitoring systems for care in mental health (here-
inafter PSYCHE) pervasive system which includes long-term physiological signals,
as well as biochemical and behavioral data (see Sect. 3.3.2).
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More specifically, this protocol aims to the identification of mood changes by ac-
quiring and processing peripheral physiological signals from bipolar patients. They
were monitored from the first hospital enrollment to the end of the therapy, i.e. eu-
thymia condition. The study included up to a maximum of 6 evaluations performed
for each patient, over a period of 90 days. The protocol implied a patient evaluation
at the moment of the recruitment and a clinical assessment was repeated after one,
two, four, eight, and twelve weeks.

3.2.1 Recruitment of Eligible Subjects and Experimental Protocols

Patients were recruited according to the following general inclusion/exclusion cri-
teria:

• Age 18–65
• Diagnosis of bipolar disorder (I or II)
• Absence of suicidal tendencies
• Absence of delusions or hallucinations at the moment of the recruitment
• Absence of relevant somatic or neurological conditions
• Recent therapy switch

A physician presented the study to each patient. Before entering the study, each
patient needs to sign an informed consent approved by the local ethical committee.
Once enrolled, the patient is administered with a set of questionnaires and rating
scales in order to assess the current mood at the hospital (see Sect. 3.2.2).

3.2.1.1 Long-Term Monitoring

The main experimental protocol for bipolar patients deals with a long-term monitor-
ing in a naturalistic environment, performed by wearable systems. The clinicians as-
sociate to each patient a mood label in agreement with an ad-hoc mania–depression
model described more in detail in the next section and suitably developed for this
study. Before leaving the hospital, each patient is asked to wear the PSYCHE wear-
able system and keep it at all times until the battery ran out, i.e. approximately for
18 hours after leaving the hospital. The day after, the subject gave the t-shirt back
and the data is downloaded and stored in the database.

3.2.1.2 Emotion-Related Tasks in Bipolar Patients

This book also focuses on the ANS changes induced by emotion-related tasks in
bipolar patients. In this case, clinicians associated a mood label in agreement with
one of the four possible defined mood states: euthymia, depression, mania or hypo-
mania, and mixed-state.
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Fig. 3.4 Timeline of the emotional-related experimental protocol in bipolar patients

Each recording session was constituted by a dedicated affective elicitation pro-
tocol which started with two five minutes lasting phases of resting state with eyes
closed and open, respectively. Subsequently, passive (IAPS) and active (TAT) vi-
sual stimuli were administered. In this case, the IAPS protocol implies a slideshow
of pictures having two classes of arousal, either minimum or maximum, and ran-
dom valence, ranging from unpleasant to pleasant. After the IAPS elicitation, the
patients were asked to describe several TAT images. TAT stands for Thematic Ap-
perception Test, a projective psychological test. The TAT is supposed to tap the sub-
ject’s unconscious and reveal repressed aspects of personality, motives and needs for
achievement, power and intimacy, and problem-solving skills. However, in this pro-
tocol the pictures were only used to elicit spontaneous comments from the patients.
Of note, as there is no standardization of the use of the texts/pictures according to
the subjects’ clinical state, text/picture stimuli were always proposed in the same
order. A schematic timeline of the experimental protocol is shown in Fig. 3.4. The
described dedicated emotional elicitation protocol was performed according to the
following timeline:

• 5 minutes of resting state with eyes closed;
• 5 minutes of resting state with eyes opened;
• IAPS slideshow: in which the subject observed a series of images at different

content of arousal and random valence;
• TAT slideshow: in which the subject observed and commented particular images

that investigate the unconscious of a person.

The ECG and RSP are acquired using the PSYCHE platform whereas the EDR
signal was acquired by using the BIOPAC MP150 system (BIOPAC Systems, Inc.,
USA).

The presented paradigm is pretty heterogeneous and includes different condi-
tions which elicit different emotional responses and different changes in arousal.
In the future analyses, the perturbations of emotional baseline will be considered
as a whole regardless of any differential analysis between the different parts of the
protocol.
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Fig. 3.5 The
mania–depression model for
mood assessment in bipolar
patients (from [54])

3.2.2 The Mood Model

As mentioned in Chap. 2, the current clinical practice assesses the patient mood
through clinician-administered rating scales and questionnaires, namely the Bauer
internal mood scale (IMS) [218], the profile of mood states (POMS) [219], the 16th
items version of the quick inventory of depressive symptomatology (QIDS) [220],
and the Young mania scale (YMS) [221]. Concerning the Italian versions of these
scales, IMS and YMS can be found in [222]. The Italian version of POMS was pub-
lished by M. Farné et al. [223]. Finally, the Italian version of QIDS can be found in
the web-page www.ids-qids.org/tr-italian.html. From a data mining point of view,
it is necessary to have reliable mood labels associated to the points in the feature
space. For this purpose, an ad-hoc model of mood states describing all of the possi-
ble states of the mental disorder is developed. During each clinical visit, each patient
is diagnosed as belonging to a class of this model according to these clinical rating
scales. The model is shown in Fig. 3.5. This model is built considering mania and
depression not as opposite sides of a unique dimension, as it sometimes occurs in
mood agendas, but as two different dimensions. In this way, the linear combina-
tion of the two allows for the possibility of identifying mixed states. Three levels
with two degrees of severity for each of the two dimensions in order to have an
approximate evaluation of the clinical severity were considered. This model has to
be considered as a preliminary approach to categorize the mood states. In the liter-
ature other works exploring the mood assessment (e.g. A. Mehrabian et al. [224])
consider other basic dimensions. However, this is a preliminary clinical model that
fits current needs since the purpose of the PSYCHE system was to classify differ-
ent clinical states. Moreover, the algorithm for datamining might allow for multiple
classes with a higher number of subjects. The model will be enriched with other di-
mensions (e.g. anxiety levels) as the number of subjects considered for the analysis
increases.

http://www.ids-qids.org/tr-italian.html
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3.3 Portable and Novel Wearable Systems for Autonomic
Nervous System Monitoring

It has been pointed out in Chap. 2 how emotion elicitation is a crucial step to effec-
tively characterize the emotional or mood state of a subject. Indeed, different kind
of elicitation could generate different ANS dynamics leading to lower generality
properties of the proposed emotion recognition system. Moreover, it is well known
how the monitoring system used for data collection could bias the effectiveness of
the eliciting stimuli and, therefore, the whole experiment. As a matter of fact, nowa-
days, in the research and industrial world the requirement of wearability is strongly
increased.

To this aims, the description of three comfortable wearable systems able to ac-
quire ANS signals, even in a naturalistic environment, is reported. More specifically,
the following innovative wearable monitoring systems will be described: a glove
based on textile electrodes able to acquire the EDR, the PSYCHE platform able to
acquire the ECG-HRV and RSP, and the HATCAM able to perform the eye track-
ing in real-time along with the monitoring of the pupil size variation. In addition, a
standard portable instrumentation, i.e., the BIOPAC System Inc., able to acquire all
the mentioned peripheral signals but the eye tracking is also described.

3.3.1 The Glove System

In this section, a system prototype consisting of a fabric glove, with integrated textile
electrodes placed at the fingertips, and a dedicated electronic card including an ana-
log front-end, a digital block, and a wireless communication module for data trans-
mission to a remote Personal Computer (see Fig. 3.6) is described. Due to manufac-
turing reasons, the fabric glove incorporates textile electrodes at level of the first four
fingers, although only the first two have been tested for experimental sessions. The
analog front-end consists of a DC voltage source of Volt, a Wheatstone bridge fol-
lowed by a set of filters and amplifiers aiming at reducing noise, limiting bandwidth,
amplifying and adapting the signal to the analog-to-digital converter (ADC) dynam-
ics. The digital block consists of a Texas Instrument microcontroller, MSP430F169,
which is an ultra-low power device. The microcontroller is endowed with an in-
tegrated 12-bit ADC and an integrated Universal Synchronous Asynchronous Re-
ceiver Transmitter (USART) for serial data transmission. The communication is re-
alized by XBee-PRO 802.15.4 OEM RF transmitter module, which implements the
IEEE 802.15.4 networking protocol. Finally, data were real-time transmitted to a
remote PC.

3.3.1.1 Textile Electrode Performance Assessment

Textile electrode performances are experimentally assessed according to the scheme
shown in Fig. 3.7. First, textile electrodes are characterized by identifying the
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Fig. 3.6 Fabric glove
including textile electrodes
connected to a dedicated
electronic card (from [22])

Fig. 3.7 Block diagram of
textile electrode performance
assessment (from [22])

current-voltage curve and evaluating the electrode impedance in terms of magni-
tude and phase in the bandwidth of the EDR. Afterwards, they are used together
with standard electrodes Ag/AgCl in order to acquire simultaneously EDRs from
them and make a quantitative comparison.

A suitable electrochemical cell is realized to characterize textile electrodes. It is
comprised of a textile and a reference electrode immersed into a solution of potas-
sium chloride (KCl) 0.1M. The cell structure is shown in Fig. 3.8. The two faces
of the electrodes are connected to an external measurement device. Electrodes are
placed at a distance of 3 millimeters and immersed into 0.015 liters of solution. Tex-
tile electrodes are provided by Smartex s.r.l. (Navacchio, Pisa), and have been al-
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Fig. 3.8 Example of
electrolytic cell (from [22])

Fig. 3.9 Example of textile
electrode (from [22])

ready cited and described in literature [21, 225]. They are made up of 80% polyester
yarn knitted with 20% steel wire, with a dimension of 1 × 1 cm (see Fig. 3.9). The
reference electrode is represented by a standard platinum electrode of 3 × 4 cm (see
Fig. 3.10). The reference electrode size is chosen to be larger than the textile elec-
trode in order to minimize border effects. The current-voltage characteristics were
identified by applying a varying source voltage and determining the current flowing
through the cell. This measurement is performed with the aim of investigating the
electrode reaction due a potential drop applied between sensing and reference elec-
trodes. In particular, an offset-free voltage varied from 1 to 20 peak-to-peak Volts,
with an increasing step of about 1.2 volts, at frequency of about 0.1 Hz, has been ap-
plied. Experimental measurements were fitted by using the Butler–Volmer equation,
which is defined as follows:

j = j0
(
eα(zF/(RT ))η − e−(1−α)(zF/(RT ))η

)
(3.1)

where j is the electrode density current [Am2], j0 is the exchange density current
[Am2], η is the over-potential [Volt], T is the absolute temperature [K], F is the
Faraday constant, R is the universal gas constant, z is the valence of the ion, and
α is the transfer coefficient. By analogy with Ohm Law (V = IR) and for small
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Fig. 3.10 Example of
platinum reference electrode
(from [22])

Fig. 3.11 Equivalent electric
model of the textile electrode
(from [22])

overpotentials the gradient of the relation between η and j can be interpreted as the
equivalent resistance per unit area of the charge–transfer process on the electrode
and which is called the charge transfer resistance RT [226]. RT can be obtained as
follows:

RT = ∂η

∂j
= T R

αzFj0
(3.2)

In order to evaluate the agreement of our experimental measurements with the
Butler–Volmer equation, a nonlinear least square fitting method was used. The good-
ness of fit was evaluated by calculating the well-known statistic index Adjusted R-
square.

The electrode is also characterized by estimating the trans-surface electric
impedance. This measurement is used to investigate how the phase and amplitude of
the electrode impedance change in the frequency domain. The impedance of elec-
trodes in ionic liquids has been currently investigated experimentally and theoret-
ically [227]. Figure 3.11 shows an equivalent circuit that models the relevant phe-
nomena. In our experimental characterization, the same electrochemical cell is used
with the same solution. The amplitude of the voltage applied between the electrodes
was fixed while its frequency was varied in the range of the EDR bandwidth (from
0.01 Hz to 2.1 Hz with a step of about 0.13 Hz). In this equivalent circuit, CH is the
interface capacitance per area unit, which consists of the series combination of the
Helmholtz double layer and the diffuse layer where Zw is the Warburg impedance,
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Fig. 3.12 Electric circuit
used for the impedance
characterization of the textile
electrode (from [22])

RT is the charge–transfer resistance and Re is the spreading resistance. The Warburg
impedance is reported as follows:

Zw = ω−1/2

A

k

1 + j
(3.3)

where A is the electrode area and k [�s−1/2cm2] is constant. The low frequency of
EDRs implies, according to previous works [228], that both Warburg and interface
capacitance terms are important for this characterization. All the experiments were
carried out at 25◦C and pressure of 1 atm. The electric circuit developed for the
experimental characterization is illustrated in Fig. 3.12, where Vin is the generic
voltage generator and Res1 is a resistance of 560 � connected in series to the cell.
The voltage output was acquired using an instrumentation amplifier (INA118) with
an input impedance of about 1013 �. Raw data were acquired by using a 6115S-
series National Instrument acquisition board and processed by a personal computer.

3.3.1.2 Textile-Based EDR Validation

Textile-based EDR is further validated by simultaneously acquiring EDR through
textile electrodes and standard Ag/AgCl electrodes. Both signals are acquired using
the MP35 Biopac system with a sampling frequency of 1 KHz. It was found in the
literature that skin conductance activity is greater at distal than medial site of fin-
gers and is attributable to a greater number of active (open) sweat glands at distal
site [229]. In order to correctly compare the EDRs from standard and textile elec-
trodes, they were acquired simultaneously. Moreover, to minimize artifacts due to
the different concentrations of sweat glands at the distal and medial sites, electrodes
were placed in a crossed configuration, as shown in Fig. 3.13. Both signals were then
filtered with a 2.5 Hz low-pass finite impulse response (FIR) filter approximated by
a Butterworth polynomial. In order to consider only the variation of both textile and
standard EDRs, data were normalized to the maximum value. The comparison was
performed on the EDRs by means of a non-parametric correlation coefficient due to
the non-gaussianity of both tonic and phasic signals. For this comparison, Spearman
correlation [230] was chosen. Moreover, a ten-level wavelet decomposition was ap-
plied in order to obtain tonic and phasic signals using the Daubechies 5 function.
The approximation at level 1 is tonic, and the details from levels 2 to 8 are phasic.
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Fig. 3.13 Electrode
placement (from [22]): with
orange standard electrodes
(case 1); with blue textile
electrodes (case 2)

3.3.2 The PSYCHE System

The PSYCHE system is a personalized, pervasive, cost-effective, and multi-
parametric monitoring system based on textile platforms and portable sensing
devices for the long-term and short-term acquisition of data from a selected
class of patients affected by mood disorders. It is designed and currently used
in the frame of a European project, called precisely PSYCHE, which is funded
in the seventh framework programme (FP7).

This project proposes a novel approach for bipolar disease management based
on the paradigm that quasi-continuous monitoring in a natural environment pro-
vides parameters, indices and trends that will be used to assess mood status, sup-
port patients, predict and anticipate treatment response in its early phase, pre-
vent relapse and to alert physicians in case of a critical event. The main goal of
the PSYCHE project is to find out possible correlations between the patterns of
physiological/behavioral signs and mood fluctuation over long term monitoring.
The main novelty of this project is the number of features considered during sig-
nal processing, as opposed to previous works carried out in this field [198–202]
where only a few parameters were considered. Extracted from linear and non lin-
ear methods, these features were investigated to find possible relationships be-
tween physiological signs and mental disorders. This approach increased the sen-
sitivity and the specificity of the system functionality and therefore the success
rate.

Patients wear the sensorized shirt and are free of performing whatever activity
at home or elsewhere, while the aforementioned physiological signals were moni-
tored and stored in a microSD card. After about 18 hours of monitoring, patients are
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asked to bring the system back and the recorded data were manually sent to a central
database. The final version of the PSYCHE system will provide an automatized stor-
age process by means of a smartphone or a tablet personal computer without the in-
volvement of a technician. Data will be automatically sent to a remote server where
the processing and the data-mining procedures will be performed. The PSYCHE
project includes the acquisition of other physiological signals as well as behavioral
parameters (e.g. voice, activity index, sleep pattern alteration, biochemical mark-
ers), but they are not considered in this book. Moreover, the change in the diurnal
variations of these measurements (circadian rhythms) may further allow achieving
a better classification pattern and assessing other features in bipolar patients includ-
ing response to therapy and proneness to relapse. A user-friendly device such as
a smartphone for monitoring environmental information such as light, temperature
and noise complete the PSYCHE platform. It is worthwhile pointing out that the
experimental protocol undertaken in this study is novel with respect to the standard
practice. A biochemical and psychological assessment was performed during the
hospital admission. Since this book refers to the biomedical signal processing part
of the PSYCHE project, the biochemical assessment was not considered. The ex-
perimental results showed in Chap. 5 demonstrated that the PSYCHE platform is
able to recognize the mood state of the bipolar patients once the patients undergo an
initial training session of a few acquisition sessions.

3.3.2.1 The Wearable Monitoring Platform

As mentioned before, the PSYCHE platform is the core sensing system of the PSY-
CHE project. It consists of a comfortable, textile-based sensorized t-shirt, embedded
with fabric-based electrodes that can acquire ECG and RSP signals was used. This
shirt is developed by Smartex s.r.l., Navacchio, Pisa. The inter-beat interval series
(hereinafter RR) extracted from the ECG, i.e. the series constituted by the distance
of two consecutive peaks of the ECG, and the respiratory dynamics were considered
in the analysis strategy.

Figure 3.14 shows the wearable system prototype that employs textile electrodes
to detect the ECG and a piezoresistive sensor is used to acquire the respiration sig-
nal. In addition, a three axial accelerometer is integrated into the system to track the
movement. The technical specifications of the system are reported in Table 3.2.

3.3.3 HATCAM—Wearable Eye Gaze Tracking System

The system here proposed, HATCAM, is a new wearable and wireless eye tracking
system which can be tailored to both adults and children. It is comprised of only one
lightweight camera able to capture, by means of a mirror, the eyes of the subject and
the scene in front of him, simultaneously. It exhibits the following properties:

(1) wearability;
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Fig. 3.14 Wearable system
prototype of the PSYCHE
system (from [54])

(2) minimal obtrusiveness;
(3) eye tracking and pupillometry capabilities;
(4) lightweight below 100 g;
(5) wireless communication.

The system configuration is shown in Fig. 3.15. In detail, the system is comprised of
a wireless CMOS camera (CP294) having low weight (20 g), low size (2×2×2 cm),
and an A/V transmitter up to 30 m of distance. The camera has a resolution of
628×586 pixels with F2.0, D45◦ optic, and 25 frames per second (f.p.s.). The orig-
inal lens of the camera was removed and substituted with a wide-angle-lens without
IR filter. This operation allows enlarging the view angle and acquiring infrared com-
ponents, which emphasize the contrast between pupil and iris. This system is able
to capture simultaneously, without latency, the visual scene in front of the subject
and the position of his eyes. This is achieved using a mirror (4 × 0.6 cm) placed on
a shaft linked to the head (see Fig. 3.15). Tilt and shaft of the mirror and the camera
orientation can be tailored to the forehead profile of the user (see Fig. 3.15).

Figure 3.16 shows how the HATCAM is able to acquire simultaneously the eyes
of the user and the scene in front of him using the mirror. Eye extraction procedure
was constituted of visual inspection of the first video frame, in which a rectangular
area including the eye was manually selected (see Figs. 3.17 and 3.18). This re-
gion is called Region Of Interest (ROI). Since the system mounted on the head, the
ROI does not change throughout the experiment. In addition, only the red-image-
component (see Fig. 3.18a) is converted in gray scale (see Fig. 3.18b) and used as
input to the other processing blocks, as this component is specifically helpful in
enhancing the contrast between pupil and background.
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Table 3.2 Technical specifications of the wearable monitoring platform provided by Smartex s.r.l.
(from [54])

Characteristics

Power supply Litium battery (life up to 24 hours)

Data storage MicroSD card

Data communication Micro USB, bluetooth

Electrocardiogram

Measurement principle Bio-potentials on the thorax

Sensors Textile electrodes

Number of leads 1

Input auto configurable analog filter 0.67 Hz to 40 Hz

Analog-to-digital conversion 16 bits

Sampling rate 250 Hz

Respiration signal

Measurement principle Piezoresistive method

Range of electrical resistance 20 k� to 10 M�

Bandwidth DC to 10 Hz

Resolution 12 bits

Sampling rate 25 Hz

Fig. 3.15 HATCAM
configuration (from [58, 59])

3.3.3.1 Photometric Normalization Technique

The purpose of the illumination normalization is to reduce or eliminate some varia-
tions in the captured eyes due to different conditions of illumination. It normalizes
and enhances the eye image to improve the recognition performance of the system.
For this purpose, the Discrete Cosine Transform (DCT) has been proposed by Chen
et al. [231]. This approach is based on the Retinex theory (from the words “retina”
and “cortex”, suggesting that both eye and brain are involved in the processing) de-
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Fig. 3.16 Example of a
single frame captured by the
camera. The rectangular area
marked up in red represents
the ROI (from [58, 59])

Fig. 3.17 Example of a
single frame captured by the
camera. The rectangular area
marked by red represents the
ROI (from [58, 59])

veloped by Land, [232]. This theory is based on color constancy assumption which
ensures that the perceived color of objects remains relatively constant under vary-
ing illumination conditions. Land and his colleagues assume that the stimulus is not
the result of the light source and surface reflectivity only, but that the visual sys-
tem processes the stimulus, integrating the spectral radiance and generating a ratio
of integrated radiance of any region of the scene with that of the brightest region.
This stimulus is called lightness. This model eliminates the effect of a non uniform
illumination and is completely independent of any a-priori knowledge of the sur-
faces reflectance and light source composition. According to this theory, the image
intensity I (x, y) can be simplified and formulated as follows:

I (x, y) = R(x, y)L(x, y) (3.4)

where R(x, y) is the reflectance and L(x, y) is the illuminance at each point (x, y).
The luminance L is assumed to contain low frequency components of the image
while the reflectance R mainly includes the high frequency components of the im-
age. The DCT technique compensates for illumination variations by truncating the
low frequency components of the DCT in the logarithm domain. In the logarithm
domain the theory is formulated as follows:

log I (x, y) = logR(x, y) + logL(x, y) (3.5)
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Fig. 3.18 Red component of
the ROI (from [58, 59])

Fig. 3.18c shows the output of the DCT algorithm applied to gray scale image re-
ported in Fig. 3.18b.

3.3.4 BIOPAC: Set of Physiological Signals and Instrumentation

When wearability is not a fundamental requirement of the experimental protocol,
standard portable instrumentation can be used instead ofter giving better perfor-
mance in terms of signal-to-noise ratio, resolution, sampling frequency, etc. The
modules able to acquire physiological signals by using the BIOPAC MP150 are de-
scribed in this section: ECG, RSP, and EDR. The proposed sampling rate is set to
250 Hz for all signals.

3.3.4.1 Electrocardiogram

ECG is acquired by means of the ECG100C Electrocardiogram Amplifier from
BIOPAC inc., which records the D2 (II) lead ECG signal (bandwidth: 0.05–35 Hz)
connected with pregelled Ag/AgCl electrodes placed following Einthoven triangle
configuration. In the procedures reported in this book, ECG signal was used to ex-
tract the HRV [98], which reflects the sympathetic-parasympathetic balance.

3.3.4.2 Respiration

The dedicated module of BIOPAC MP150 used to record the respiration activity is
RSP100C Respiration Amplifier with the TSD201 sensor, which is a piezo-resistive
sensor with the output resistance within the range 5 ÷ 125 KOhm and bandwidth of
0.05÷10 Hz. This piezoresistive sensor changed its electrical resistance if stretched
or shortened, and it was sensitive to the thoracic circumference variations occurring
during respiration [233].

3.3.4.3 Electrodermal Response

In the literature, several approaches are used to measure this signal. In this section,
a small continuous voltage applied to the skin is proposed to induce current which
is measured through two Ag/AgCl electrodes positioned at the index and middle
fingertips of the non-dominant hand. The ratio between voltage drop and induced
current represents the skin electric impedance.



Chapter 4
Advanced Signal Processing and Modeling
for ANS Data

In this chapter, advanced signal processing and modeling methodologies used for
the analysis of ANS signals are reported. The main objective of such methods is to
extract reliable and effective features, in a monovariate or multivariate fashion, able
to characterize the emotional or mood status induced by an external stimulus. All
the methodologies reported here are appropriate to be applied to data collected with
standard portable or wearable systems using the procedures described in Chap. 3.
In agreement with the current literature (see Chap. 2) and also on the basis of the
comparative experimental results reported in the next chapter, a fundamental role in
the methodological approach is played by nonlinear analysis.

It has been well-accepted by the scientific community, in fact, that physiologi-
cal models should be nonlinear in order to thoroughly describe the characteristics
of such complex systems. For instance, considering the cardiovascular system, the
complex and nonstationary dynamics of heartbeat variations have been associated to
nonlinear neural interactions and integrations occurring at the neuron and receptor
levels, so that the sinoatrial node responds in a nonlinear way to the changing levels
of efferent autonomic inputs [29].

However, whether a linear or nonlinear model is used, several limitations are
present anyhow. For example, an interpolation process is required to cope with
the intrinsic discrete and unevenly spaced heartbeat intervals. In previous works
[30, 212–214], it has been demonstrated how it is possible to estimate heartbeat
dynamics even in short recordings under nonstationary conditions by means of the
point process theory, a powerful statistical tool able to characterize the probabilis-
tic generative mechanism of physiological events. The unevenly spaced heartbeat
intervals are represented as observations of a state-space point process model de-
fined at each moment in time, thus allowing to estimate instantaneous HR and HRV
measures [30, 212] without using any interpolation method.

Such a probabilistic approach is here proposed in a revised nonlinear version, and
therefore it is able to provide novel instantaneous nonlinear features coming from
the dynamic High Order Spectra (HOS).

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_4, © Springer International Publishing Switzerland 2014
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Fig. 4.1 Overall block diagram representing the acquisition and processing chain of three ANS
signals (from [31])

Fig. 4.2 Overall block
diagram representing specific
monovariate and bivariate
analyses in the processing
chain (from [38] “© Institute
of Physics and Engineering in
Medicine. Published on
behalf of IPEM by IOP
Publishing Ltd. All rights
reserved.”)

4.1 Overall Methodology

An overview of the general signal processing methodology is illustrated in Fig. 4.1.
After the emotional elicitation, all the considered ANS signals are preprocessed, i.e.
segmented and filtered. Afterwards, the most significant features are extracted and,
then, reduced using the Principal Component Analysis (PCA) method. Finally, the
feature set is classified using various machine learning methods [234].

More specifically, for each ANS biosignal, monovariate analyses can be applied
in order to extract significant features using both standard and nonlinear techniques.
Moreover, coupling measures by means of a bivariate analysis can be extracted from
the RR interval series along with the RSP (see Fig. 4.2).

The general scheme proposed in Fig. 4.1 can be further modified in order to
develop an effective mood recognition system by using, for instance, the PSY-
CHE platform to acquire ECG and RSP (see Fig. 4.3). In this case, a further pre-
processing step able to robustly identify and discard motion artifacts is included (see
Fig. 4.3).
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Fig. 4.3 Block diagram representing the acquisition and processing chain using the PSYCHE
wearable platform (from [54])

Fig. 4.4 Block scheme of the overall methodology for emotion recognition using point-process
theory

Finally, an overall block diagram of the proposed recognition based on point-
process theory system is illustrated in Fig. 4.4. As usual, the features obtained
through the model are processed for classification.



48 4 Advanced Signal Processing and Modeling for ANS Data

Fig. 4.5 Movement artifact
removal algorithm
(from [54])

4.2 Preprocessing

4.2.1 Movement Artifact Removal

Usually, signals acquired by wearable systems are strongly affected by movement
artifacts because the ECG textile electrodes could lose contact with the skin during
body movement. Therefore, an effective Movement Artifact Removal (MAR) algo-
rithm must be applied to the signals before extracting the features. For this purpose,
a simple and robust automatic MAR algorithm based on the four steps illustrated in
Fig. 4.5 is developed. First, the ECG is filtered within the specific frequency band in
which the movement artifacts were strongest, i.e. from 0.1 Hz to 4 Hz [235]. Then,
the maximum and the minimum envelopes of the filtered data are calculated in order
to extract the smoothed mean envelope. Movement artifacts are finally detected by
means of simple statistical thresholds, i.e. 95th percentile, above which the signal
is considered affected by artifacts. The parts of the signals with artifacts must be
always discarded for further analysis.

4.2.2 Electrocardiogram and Heart Rate Variability

First, the ECG is pre-filtered through a Moving Average Filter (MAF) in order to
extract and subtract the baseline. The frequency response of an M point moving
average filter is expressed as follows:

∣∣H [f ]∣∣ = sin (Mπf )

M sin (πf )
(4.1)

Accordingly, M = 500, which corresponds to a duration of 2 seconds, is proposed in
order to obtain a cut-off frequency of 0.5 Hz, approximately. This choice is justified
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by the guidelines provided by [236], suggesting to use a low-pass filter with a cut-
off frequency below 0.67 Hz. Since HRV refers to the change over time of the Heart
Rate (HR), a QRS complex detection algorithm could be used. The choice depends
on the characteristics of the specific ECG signal [237], e.g. signal-to-noise-ratio
(SNR), signal power, ECG leads. A common choice is represented by the algorithm
developed by Pan–Tompkins [238], which allows for the extraction of each QRS
complex and detection of the corresponding R-peak. Hence, the RR interval (tR–R)
is defined as the interval between two successive QRS complexes. Nevertheless, not
all of the RR intervals obtained by the automatic QRS detection algorithm are cor-
rect. Any technical artifacts (i.e. errors due to the R-peak detection algorithm) in
the RR interval time series may interfere with the analysis of these signals. There-
fore, an artifact correction is needed. A proper piecewise cubic spline interpolation
method [239, 240] can be adopted. Besides the above mentioned technical artifacts,
physiological artifacts could be also present in the analyzed RR series. They include
ectopic beats and arrhythmic events. A final check by visual inspection should be
however always performed and only artifact-free sections must be included in fur-
ther analysis. Another common feature that can significantly alter the analysis is
the slow trend within the analyzed RR series. In fact, slow non-stationarities can be
present in HRV signals and should be considered before the analysis [241]. In this
book, the detrending procedure was implemented by means of an advanced method
originally presented in [242]. This approach was based on smoothness priors reg-
ularization. The interval between two successive QRS complexes is defined as the
RR interval (tR–R) and the heart rate (beats per minute) is given by:

HR = 60

tR–R

(4.2)

As heart rate is a time series sequence of non-uniform RR intervals, this signal is
further re-sampled at 4 Hz according to the algorithm of Berger et al. [243]. This
algorithm is based on using an arbitrary frequency at which the heart rate samples
will be evenly spaced in time, and using a local time window defined at each heart
rate sample point as the time interval extending from the previous sample to the
next. Successively, the number of RR intervals (including fractions of them) that
occur within this local window are counted. The value ri of the heart rate at each
sample point is taken to be ri = fr − ni/2 where fr was the sampling frequency of
the resulting heart rate signal and ni was the number of RR intervals falling into the
local window centered at the ith sample point [243].

4.2.3 Respiration

At this stage, the respiratory signal is treated in order to remove the baseline and
reject the movement artifacts. Baseline removal is performed by means of MAF
technique similarly to the ECG signal. Moreover, it is filtered by means of a tenth
order low-pass Finite Impulse Response (FIR) filter with a cut-off frequency of 1 Hz
approximated by Butterworth polynomial.
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4.2.4 Electrodermal Response

EDRs is filtered by means of a 2.5 Hz low-pass FIR filter approximated by Butter-
worth polynomial. As reported in the literature, the bulk of the energy of the tonic
component of the signal is considered to be in the frequency band ranging from
0 to 0.05 Hz, and the energy of the phasic component is in the band from 0.05
to 1–2 Hz [244]. Therefore, a Wavelet filtering, which is one of the best available
non-stationary data analysis tool, is chosen. In detail, twelve levels wavelet decom-
position can be applied in order to obtain tonic and phasic signals using Daubechies
5 function. Approximation at level 1 is the tonic component and details represent
the phasic component.

4.2.4.1 EDR Deconvolution Analysis

The EDR signal is characterized by a slowly varying component called tonic compo-
nent (i.e. Skin Conductance Level, SCL) and a superposed phasic component (Skin
Conductance Response, SCR).

SCR is generally considered strictly related to a given stimulus and is defined as
the part of the signal which arises within a predefined response window (1–5 s after
stimulus onset), satisfying a minimum amplitude criterion (0.05 μS), [245, 246].
SCR is characterized by a short rise time followed by a slower recovery time. Gen-
erally, in case of an inter-stimulus interval shorter than the SCR recovery time, an
overlapping of consecutive SCRs is visible. It results in one of the main EDR issue,
since it does not allow a good estimation of responses as well as the signal divi-
sion into its phasic and tonic components. In order to overcome this issue, the EDR
signal process is modeled as a convolution process between the SudoMotor Nerve
Activity (SMNA), as part of the sympathetic nervous system, and an Impulse Re-
sponse Function (IRF) [247] under the hypothesis that EDR is controlled by SMNA
resulting in a sequence of distinct impulses which regulate the eccrine sweat glands
dynamics.

The IRF, also called Bateman function is modeled as a biexponential [248]:

IRF(t) = (
e−t/τ1 − e−t/τ2

) · u(t) (4.3)

where u(t) is the stepwise function. The result of deconvolution between EDR and
IRF is defined as driver function which describes the SMNA behavior. The Bateman
function is directly derived from bicompartment model of the diffusion process of
the sweat through the sweat ducts (first compartment) and the stratum corneum (sec-
ond compartment) [249].

Before applying the deconvolution analysis, EDR is filtered with a low pass zero-
phase forward and reverse digital filter [250, 251] with a cutoff frequency of 2 Hz,
to limit the frequency bandwidth of the EDR signal. The decomposition of the EDR
in its components can be performed by means of Ledalab 3.2.2. software package
for MATLAB [252]. In detail, EDR signal is described as follows [247]:

EDR = SMNA ⊗ IRF (4.4)
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Fig. 4.6 Example of decomposition analysis. In the upper figure the EDR signal before the de-
convolution analysis is reported. The lower figures report the deconvoluted tonic and phasic driver
signals during resting and elicitation phase (from [55])

where SMNA = (DRIVERtonic + DRIVERphasic). The sum of the two driver func-
tions is achieved by a deconvolution between the skin conductance data and the
impulse response function. According to Eq. 4.4 the phasic driver is obtained sub-
tracting the tonic from the deconvoluted signal. The hypothesis underling the EDR
behavior is that tonic activity is observable in the absence of any phasic activity
[253]. Therefore, the tonic component is obtained by the application of a smoothing
Gauss window of 200 ms and a peak detection algorithm in order to find the peaks
over a threshold of 0.2 μS (i.e. all the peaks over the threshold are identified as a
part of the phasic response), and the points under the threshold are considered as
part of the tonic driver. In order to estimate the continuous tonic driver signal, the
points detected are used to build a 10-s spacing grid. Then, the grid points are inter-
polated with a cubic spline fitting method. As mentioned above, the phasic driver is
the result of the subtraction between the continuos tonic and the deconvoluted sig-
nal. As shown in Fig. 4.6, the original EDR signal and the two deconvoluted tonic
and phasic driver signals, during resting and elicitation states, are reported.

4.3 Feature Sets

Sets of features can be extracted in different ways. In this book, two categories of
features are proposed: the first one consists of most standard and commonly used
features, and the second category is comprised of features extracted from nonlinear
dynamic techniques.
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4.3.1 Standard Feature Set

Standard features are derived from the time series, statistics, frequency domain, ge-
ometric analysis for the whole set of physiological signals. In the following sections
these methods are described in detail.

4.3.1.1 Heart Rate Variability

Heart rate variability (HRV) [24, 98] is concerned with the analysis of the time inter-
vals between heartbeats. Several features can be extracted from this signal, both in
the time and frequency domain. Time domain features include statistical parameters
and morphological indexes. Defining, e.g., a time window related to the Normal-
to-Normal beats (NN), several parameters are calculated, such as simple MNN and
SDNN, which are the mean value and the standard deviation of the NN intervals,
respectively. Moreover, the root mean square of successive differences of intervals
(RMSSD) and the probability of the successive differences of intervals which differ
by more than 50 ms (pNN50% expressed as a percentage of the total number of
heartbeats analyzed) can be calculated.

Referring to morphological patterns of HRV, the triangular index can be calcu-
lated. It is derived from the histogram of RR intervals into NN window (TINN) in
which a triangular interpolation was performed. Triangular interpolation approxi-
mated the RR interval distribution by a linear function and the baseline width of
this approximation (base of the triangle) is used as a measure of the HRV index. In
the literature, TINN is known to be correlated with SDNN as well as it is highly
insensitive to artifacts and ectopic beats, because they are left outside the triangle.

The time domain methods are simple and widely used, but are unable to discrim-
inate between sympathetic and para-sympathetic activity (although RMSSD can be
considered to reflect mainly parasympathetic activity, since it is computed as differ-
ences between successive beats), while an appreciable contribution is given by the
frequency domain parameters. All features extracted in the frequency domain were
based on the Power Spectral Density (PSD) of the HRV. Methods for the estimation
of PSD may be generally classified as non-parametric (like Fourier Transform) and
parametric (model based) method. In this book, the Auto-Regressive (AR) model
was used to estimate the PSD of HRV in order to provide better frequency resolution
than nonparametric method. Furthermore, conventional frequency transformation
based on the Fourier transform technique are not very suitable for analyzing non-
stationary signals. Considering HRV as an output process z(n) of a causal, all-pole,
discrete filter whose input is white noise, the AR method of order p is expressed as
the following equation:

z(n) = −
p∑

k=1

a(k)z(n − k) + w(n) (4.5)

where a(k) are AR coefficients and w(n) is white noise of variance equal to σ 2.
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AR(p) model is characterized by AR parameters {a[1], a[2], . . . , a[p], σ 2}. In
this book, the Burg method is used to get the AR model parameters, according to
the results presented by Akaike [254, 255]. This method provides high resolution in
frequency and yielded a stable AR model. The power spectrum of a pth order AR
process is:

P BU
zz (f ) = Êp

fs |1 + ∑p

k=1 âp(k)e−j2πf k|2 (4.6)

where Êp is the total least square error and fs is the sampling frequency. Three
main spectral components are distinguished in a spectrum calculated from short-
term recordings: Very Low Frequency (VLF), Low Frequency (LF), and High Fre-
quency (HF) components. It is well known, in the literature, that the distribution of
the spectral power changes follow the ANS modulation. However, the VLF band
is usually < 0.04 Hz and is almost never considered as an ANS marker because
it is related more to thermal regulation [256]. The LF band is centered in 0.1 Hz
(range: [0.04 ÷ 0.15] Hz) and is mainly due to the arterial baroreceptor modulation.
Current literature [24] suggests that the LF component of the power spectrum is
strongly affected by the sympathetic system. The HF components (> 0.15 Hz) are
also called respiratory components. A common viewpoint in the literature is that
the HF peak can be considered as an index of the vagal activity [257]. However,
available studies report the importance of HF and LF components and how their
analysis per se cannot afford a precise delineation of the state of sympathetic activa-
tion [258]. Therefore, in addition to VLF, LF, and HF power, the LF and HF power
in normalized units along with, especially, the LF/HF Ratio are proposed to give
more information about the sympatho-vagal balance [24].

4.3.1.2 Respiration

By defining a time window W , standard RSP feature set is comprised of the ReS-
Piration Rate (RSPR), Mean and Standard Deviation of the First (MFD and SDFD,
respectively) and Second Derivative (MSD and SDSD, respectively), i.e. variation of
the respiration signal, Standard Deviation of the Breathing Amplitude (SDBA) and
several statistical parameters. Respiration rate is calculated as the frequency corre-
sponding to the maximum spectral magnitude. Statistical parameters are calculated
in order to characterize the differences between inspiratory and expiratory phases
(range or greatest breath). These parameters include the maximum (MAXRSP)
and the minimum (MINRSP) value of breathing amplitude and their difference
(DMMRSP). Other measures used to quantify the asymmetries between the two
respiratory phases are obtained from the High Order Statistics (HOS). In detail, the
third order statistics (i.e. Skewness), which takes into account the quantification of
the asymmetry of the probability distribution, and the fourth order statistics (i.e.
Kurtosis), which is a measure of the “peakedness” of the probability distribution are
calculated. Moreover, another parameter is the Standard Error of the Mean (SEM),



54 4 Advanced Signal Processing and Modeling for ANS Data

which is calculated as follows: SEM = σ√
n

where σ is the standard deviation and n

is the number of points within the window W . Concerning features in frequency do-
main, spectral power in the bandwidths [0 ÷0.1 Hz], [0.1÷0.2 Hz], [0.2÷0.3 Hz],
[0.3 ÷ 0.4 Hz] can be also calculated [259].

4.3.1.3 Electrodermal Response

Standard methods for both tonic and phasic EDR features include the same statis-
tics applied to the RSP signal above described: rate, i.e. central frequency, mean and
standard deviation of the amplitude and statistical parameters, i.e. skewness, kurto-
sis, SEM and mean and standard deviation of the first and second derivative [170].
Moreover, further features are extracted only from the phasic component of EDR.
More specifically, the maximum peak and the relative latency from the beginning
of the image, Mean of Absolute of Derivative (MAD), Mean of Derivative for Neg-
ative Values (MDNV) only (mean decrease rate during decay time), Proportion of
Negative Samples in the Derivative vs All Samples (PNSDAS), and spectral power
in the bandwidths [0÷0.1 Hz], [0.1÷0.2 Hz], [0.2÷0.3 Hz], [0.3÷0.4 Hz] [259].

4.3.2 Features from Higher Order Spectra

In addition to the above-mentioned standard techniques High Order Spectra (HOS)
from all the acquired signals are also investigated.

HOS are defined as the Fourier transform of moments or cumulants of order
grater than two.

In particular, the study of the two dimensional Fourier Transform of the third
order cumulant, i.e. the Bispectrum [260, 261], is proposed. It is defined as:

B(f1, f2) =
∫∫ +∞

t1,t2=−∞
c3(t1, t2) exp−j (2πf1t1+2πf2t2) dt1 dt2 (4.7)

with the condition:

|ω1|, |ω2| ≤ π for ω = 2πf

The c3(t1, t2) variable represents the third order cumulant, which is defined as fol-
lows:

c3(t1, t2) = E
{
s(t1)s(t2)s(t1 + t2)

}
(4.8)

where s(t) is a square integrable stationary signal with zero mean. Thus, the bispec-
trum measures the correlation among three spectral peaks, ω1, ω2 and (ω1 +ω2) and
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estimates the phase coupling. Sometime, the bispectrum is unable to distinguish be-
tween pairs of frequencies strongly coupled and pairs of frequency weakly coupled
but at high frequencies, because their bispectrum values are similar. In order to over-
come this limitation, it is possible to evaluate the bicoherence function, according
to Brillinger et al. [262].

Bco(f1, f2) = B(f1, f2)√
P(f1)P (f2)P (f1 + f2)

(4.9)

where P(f ) is the estimated power spectrum of the s(t) signal. It has been demon-
strated that the bispectrum has several symmetry properties [261] which divide the
(f1, f2) plane in symmetric zones such as:

B(f1, f2) = B(f2, f1) (4.10)

B(f1, f2) = B∗(−f2,−f1) (4.11)

B(f1, f2) = B∗(−f1,−f2) (4.12)

B(f1, f2) = B(−f1 − f2, f2) (4.13)

B(f1, f2) = B(f1,−f1 − f2) (4.14)

B(f1, f2) = B(−f1 − f2, f1) (4.15)

B(f1, f2) = B(f2,−f1 − f2) (4.16)

The bispectrum of a real signal is uniquely defined by its values in the triangular
region of computation, 0 ≤ f1 ≤ f2 ≤ f1 + f2 ≤ 1, provided there is no bispec-
tral aliasing [262]. The bispectral feature set consisted of: Mean and Variance of
Bispectral Invariants (MBI and VBI), i.e. mean and variance of P(a), Mean Mag-
nitude (Mmean) of the Bispectrum (MMB) and the Phase Entropy Pe (PEB), Nor-
malized Bispectral Entropy P1 (NBE) and Normalized Bispectral Squared Entropy
P2 (NBSE). All the features were calculated within the region defined in Fig. 4.7,
according to results presented by Chang et al. [263] and Chua et al. [264, 265].

Specifically, let us introduce the bispectral parameter, P(a), which is invariant to
translation, dc-level, amplification, and scale. It is defined as follows:

P(a) = arctan

(
Ii(a)

Ir (a)

)
(4.17)

where:

I (a) = Ir (a) + jIi(a) =
∫ 1/(1+a)

f1=0+
B(f1, af1) df1 (4.18)

for 0 < a ≤ 1 and j = √−1 where a is the slope of the straight line on which
bispectrum is integrated. In this book, the mean and variance of P(a) are considered
as features. Also Mean magnitude and phase entropy [263] are calculated within the
region defined in Fig. 4.7.
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Fig. 4.7 Example of bispectrum invariant triangular region

Mean magnitude is defined as:

Mmean = 1

L

∑

Ω

∣
∣B(f1, af1)

∣
∣ (4.19)

and phase entropy is:

Pe =
∑

n

p(Ψn) log
(
p(Ψn)

)
(4.20)

p(Ψn) = 1

L

∑

Ω

1
(
Φ

(
B(f1, af1)

)
εΨn

)
(4.21)

Ψn = {
Φ|−π + 2πn/N ≤ φ ≤ −π + 2π(n + 1)/N

}
(4.22)

with n = 0,1, . . . ,N − 1.
L is the number of points within the region in Fig. 4.7, Φ refers to the phase

angle of the bispectrum, Ω refers to the space of the defined region in Fig. 4.7, and
1(·) is an indicator function which is equal to 1 when the phase angle Φ is within
the range of bin Ψn in Eq. 4.22.

The mean magnitude of the bispectrum can be useful in discriminating between
processes with similar power spectra but different third order statistics. However, it
is sensitive to amplitude changes. The Normalized bispectral entropy (P1) is equal
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to:

P1 = −
∑

n

pn log(pn) (4.23)

where:

pn = |B(f1, af1)|∑
Ω |B(f1, af1)| (4.24)

and Ω is the region as in Fig. 4.7.
Normalized bispectral squared entropy (P2) is calculated as:

P2 = −
∑

n

pn log(pn) (4.25)

where:

pn = |B(f1, af1)|2∑
Ω |B(f1, af1)|2 (4.26)

and Ω is the region as in Fig. 4.7.
In addition, the sum of logarithmic amplitudes of the bispectrum can be com-

puted as [266]:

Hbis1(t) =
∑

Ω

log
(∣∣Bis(f1, f2, t)

∣∣) (4.27)

As well-known, the sympatho-vagal linear effects on HRV are mainly characterized
by the LF and HF spectral powers [24, 257, 267–269]. Through bispectral analysis,
it is possible to further evaluate the nonlinear sympatho-vagal interactions by inte-
grating |B(f1, f2)| in the appropriate frequency bands. Specifically, it is possible to
evaluate:

LL(t) =
∫ 0.15

f1=0+

∫ 0.15

f2=0+
Bis(f1, f2, t) df1 df2 (4.28)

LH(t) =
∫ 0.15

f1=0+

∫ 0.4

f2=0.15+
Bis(f1, f2, t) df1 df2 (4.29)

HH(t) =
∫ 0.4

f1=0.15+

∫ 0.4

f2=0.15+
Bis(f1, f2, t) df1 df2 (4.30)

4.3.3 Pupillometry and Gaze Point

This paragraph deals with the processing techniques used to detect the center of the
eye and how its movements are mapped into the image plane. This technique is often
referred to video oculography and involves visible spectrum imaging. It is a passive
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Fig. 4.8 Block diagram
showing all the algorithmic
stages of the processing of
eyes and outside scene (from
[58, 59])

approach that captures ambient light reflected from the eye. The mounted camera is
modified to acquire also the IR components of natural light. Therefore, the system
keeps the advantages of IR illumination in increasing the contrast between pupil
and iris, and at same time preventing any possible injuries due to artificial IR illu-
minators, which are not required because of the presence of natural light. Figure 4.8
shows the block diagram of the algorithmic process used to classify visual stimuli
having different affective arousal. The upper block implements the pupillometry and
gaze point identification. The outputs are then processed to extract a specific set of
features used for the classification. More in detail, the pupillometry and gaze point
block is comprised of a sub-chain of blocks implementing eye extraction algorithm,
photometric normalization algorithm of illumination, pupil contour and mapping of
the eye center into the image scene. In the next sections, each block is described
more in depth.

4.3.3.1 Pupil Tracking

Pupil tracking algorithm extracts the contour of the pupil exploiting the higher con-
trast of the pupil than the background due to the IR components of the natural light.
Figure 4.9 shows the algorithm block diagram. More in detail, the first block bina-
rizes the image by means of a threshold. Figure 4.10 reports the histogram of the
eye, i.e. the distribution of the image pixel vs the gray levels from 0 to 255. The
threshold divides the histogram into two groups of pixels having only two levels
of gray; the zero level should group all the pixel belonging to the pupil whereas the
255 level should identify the background. The criterion implies choosing the thresh-
old as the absolute minimum value in the range comprised between the two highest
peaks of the eye histogram as reported in Fig. 4.10. An example of the binarization
process is reported in Fig. 4.11. After binarization, two sheafs of lines starting from
the middle points of the vertical sides of the image, with an angular aperture of 30◦,
are drawn. As result of the binarization process, the image borders are expected to



4.3 Feature Sets 59

Fig. 4.9 Block diagram of
the pupil tracking algorithm
(from [58, 59])

Fig. 4.10 Example of the
histogram of the eye: Tc

refers to the threshold
identifying the eye and the
sclera region (from [58, 59])

belong to the background, therefore the starting point of each line has a value of 255
in terms of gray level. Analogously, the pupil is expected to be placed roughly in the
middle of the image (this is assured by an accurate freehand selection of the ROI).
When each line encounters, along its path, a dark pixel, this latter can be thought to
belong to the contour of the pupil. Afterwards, the centroid of these points is calcu-
lated. After removing all the outliers, being these points very far from the centroid
with respect to the large point density (pupil edge), a large-grain approximation of
the contour is obtained. Next, a sheaf of lines starting from the centroid with an an-
gular aperture of 360◦, and detects all discontinuities, but now from black to white.
Finally, outliers are again removed. The result of this algorithm is a set of points
constituting the pupil edge. This set will be the input of the fitting algorithm (see
Fig. 4.12).
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Fig. 4.11 Example the eye
image after the binarization
process (from [58, 59])

Fig. 4.12 Pupil tracking
algorithm. Sheafs of lines are
in blue; black points identify
the eye including the outliers;
yellow points highlight the
pupil contour which is
interpolated by the ellipse
marked up in red (from
[58, 59])

4.3.3.2 Ellipse Fitting

Ellipse fitting algorithm is implemented for constructing the pupil contour and de-
tecting the center of the eye. Ellipse is considered as the best geometrical fig-
ure approximating the eye contour. According to the ellipse construction, it can
be expressed by an implicit second order polynomial, being a central conic (with
b2 − 4ac < 0), such as:

F(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 (4.31)

Ellipse fitting algorithms present in literature can be divided into two broad tech-
niques: the clustering/voting (CV) and the least square (LSq) techniques. The first
one uses two main approaches such as RANSAC and Hough Transform which are
extremely robust but they are time-demanding or excessively resource consuming
for real time machine vision [270, 271]. The LSq method is based on finding a set
of parameters that minimize the distance between the data points and the ellipse.
According to the current literature, this technique fulfills the real time requirement.
One implementation of the LSq technique has been introduced by Fitzgibbon et al.
[272], which is a direct computational method (i.e. B2AC) based on the algebraic
distance with a quadratic constraint. In this book, a custom B2AC algorithm, where
a Gaussian noise is added for algorithm stabilization [273], is used to calculate the
center of the pupil (that coincides with the ellipse center), the axes dimensions as
well as the eccentricity.

4.3.3.3 Mapping of the Eye Position

The mapping procedure associates the eye center position to the image plane of the
scene, providing as result the gaze point. An experimenter guides this procedure.
Firstly, the camera is positioned to capture both the scene (in our case the screen)
and the mirror. In detail, tilt of the camera is adjusted as well as the tilt of mir-
ror shaft and the tilt of the mirror to reflect the eyes. Each participant is asked to
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Fig. 4.13 Block diagram of
the mapping function
calculation process (from
[58, 59])

look at some specific points of the screen. These points are identified by coordinates
si = (xsi , ysi) referred to the image plane (i.e. the image plane captured by the cam-
era) (see Fig. 3.17). The participants were instructed to keep their head as still as
possible and to carefully look at each target point without blinking until looking at
the next one.

The mapping function gets as input the center of the eye coming from Ellipse
fitting block, and the coordinates of the gaze point on the image plane.

Mapping functions are quadratic polynomials defined as:

xsi = a11 + a12xei + a13yei + a14xeiyei + a15x
2
ei + a16y

2
ei (4.32)

ysi = a21 + a22xei + a23yei + a24xeiyei + a25x
2
ei + a26y

2
ei (4.33)

where xsi , ysi are the coordinates of the image plane (i.e. the coordinates of the point
on the screen mapped into the image plane captured by the camera), and xei , yei are
the coordinates of the center of the eye coming from the ellipse fitting block, referred
to the image plane as well. The coefficients a1,1-to-6 and a2,1-to-6 are unknowns.
Since each calibration point defines two equations, the system is over constrained
with 12 unknowns and 18 equations, and can be solved using LSq method. A block
diagram of the mapping function calculation progress is shown in Fig. 4.13.

4.3.3.4 Post-processing and Feature Extraction

Post-processing phase is based on parameters extracted by Recurrence Quantifica-
tion Analysis (RQA), along with fixation time and pupil area detection. Each image
can be represented as a matrix of 628 × 586 pixels. The gaze point is mapped into
a pixel in each frame. A matrix of 628 rows and 586 columns, in which any posi-
tion corresponding to the pixel coordinates associated to the gaze point is set to 1,
is constructed. In order to minimize errors due to the eye blinking, only the pixels
retained for at least five frames (0.2 sec) are set to 1.

4.3.3.5 Fixation Time

While watching each image, subject’s eye can be caught by specific details. Fixa-
tion time of each pixel is defined as the absolute time during which the subject is
dwelling on that pixel. A statistical distribution of fixation time over the fixed pixels
is then obtained and the mode, which is defined here as Tmax , is used as additional



62 4 Advanced Signal Processing and Modeling for ANS Data

feature. Tmax is calculated for each image and each subject during both neutral and
arousal elicitation as:

Tmax = N
max
i=0

(
t (Pi)

)
(4.34)

where N is the number of points of gaze in the image, Pi is the ith point of gaze,
t (Pi) is the fixation time of the ith point of gaze, respectively.

4.3.3.6 Pupil Area Detection

The pupil area was approximated as an ellipse whose area is calculated for the pupil-
lometry. To increase the robustness of the algorithm, averaged areas of both eyes are
considered:

Ap = πrl
ar

l
b + πrr

arr
b

2
(4.35)

where Ap is the pupil area, rl
a and rl

b are the ellipse semi-axes of the left eye, rr
a and

rr
b are the ellipse semi-axes of the right eye.

4.3.3.7 Most Visited Area in the Image

While looking at an image, there are areas more fixated than others. Hereby, the
Most Visited Area (MVA) in the image is defined as the area of each image on
which each subject lingered longer. Specifically, the area of the image is of n × n

(where n < N ) pixels, and the MVA was calculated as the sum of the fixation times
of all the pixels inside this area. Let T (x, y) be the time of fixation of the pixel
whose coordinates are x, y. Tmax(xc, yc) is the maximum time of fixation of the
image and (xc, yc) are the coordinates of the most watched pixel. The MVA can be
calculated as:

MVA =
xc+n/2,yc+n/2∑

x,y=xc−n/2,yc−n/2

T (x, y) (4.36)

where n is taken as forty pixels.

4.3.3.8 Length of the Gaze Path

The Length of the Gaze Path (LGP) of each image is calculated as the total length
of the gaze path while the image was presented. The path between two consecutive
points of gaze is approximated to a straight line, as two consecutive gaze points
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were obtained from two consecutive frames, i.e. in a time interval of 1/25 seconds.
The distance between two points was calculated as Euclidean distance.

LGP =
N∑

x,y=1

√
(xi − xi+1)2 + (yi − yi+1)2 (4.37)

4.3.4 Nonlinear Methods for Feature Extraction

The evolution of a nonlinear system can be represented by a trajectory through
a multidimensional space, often referred to as the phase space or state space.

If the multidimensional evolution converges to a subspace within the phase space,
this subspace is called the attractor of the system [274]. Measures that are com-
monly used to describe the attractor in the phase space are dimension, entropy, and
Lyapunov exponents.

A powerful basic technique used for analysis of complex dynamical systems
is the so-called embedding procedure [275]. Embedding of a time series xt =
(x1, x2, . . . , xN) is done by creating a set of vectors Xi such that

Xi = [xi, xi+Δ,xi+2Δ, . . . , xi+(m−1)Δ] (4.38)

where Δ is the delay in number of samples and m is the number of samples (dimen-
sion) of the array Xi . When embedding a time series, the dimension m and the delay
Δ of Xi must be chosen such that each vector Xi represents values that reveal the
topological relationship between subsequent points in the time series. The number
of samples in the embedded vector is usually chosen to be large enough to cover
the dominant frequency in the time series, but m should not be so large that the first
and last values in the epoch are practically unrelated. The evolution of the system
can be represented by the projection of the vectors Xi onto a trajectory through a
multidimensional space, i.e. the phase space. If the trajectory is comprised within a
subspace in the phase space, then this subspace is called the attractor of the system.

Given a good estimation of the phase space, several features can be extracted by
means of Recurrence Quantification Analysis, Lyapunov Exponents, Entropy mea-
sure, Detrended Fluctuation Analysis, etc.

4.3.4.1 Recurrence Plots and Recurrence Quantification Analysis

The Recurrence Plot (RP) [276] is a graph which shows all those times at which a
state of the dynamical system recurs. In other words, the RP reveals all the times
when the phase space trajectory visits roughly the same area in the phase space.
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Natural processes, in fact, can have a distinct recurrent behavior, e.g. periodicities
(as seasonal or Milankovich cycles), but also irregular cyclicities (as Southern Os-
cillation). Moreover, the recurrence of states, i.e. the states are arbitrarily close after
a little while, is a fundamental property of deterministic dynamical systems and is
typical for nonlinear or chaotic systems. The recurrence of states in nature has been
known for a long time and has also been discussed in early publications (e.g. re-
currence phenomena in cosmic-ray intensity, [277]). RPs were first introduced by
Eckmann et al. [278] as a tool able to visualize the recurrence of states xi in a phase
space. RPs enable to investigate the m-dimensional phase space trajectory through
a two-dimensional representation of its recurrences. When a state at time i recurs
also at time j , the element (i, j) of a squared matrix N × N is set to 1, 0 otherwise.
Such an RP can be mathematically expressed as:

Ri,j = Θ
(
εi − ‖xi − xj‖

)
(4.39)

where xi ∈ R
m, i, j = 1, . . . ,N ; N is the number of considered states xi , εi is a

threshold distance, ‖ · ‖ a norm and Θ(·) the Heaviside function which is defined
as:

Θ(z) =
{

1, if z ≥ 0

0, if z < 0
(4.40)

In this book, the optimal value of εi [279] is chosen as follows:

εi = 0.1 ∗ APD (4.41)

where APD is averaged phase space diameter of data xi .
Following the above description, the Recurrence Quantification Analysis (RQA)

[280] is a method of nonlinear data analysis which quantifies the number and du-
ration of recurrences of a dynamical system presented by its state space trajectory.
Quantification of RPs can be based either on evaluating diagonal lines to estimate
chaos–order transitions or on vertical (horizontal) lines to estimate chaos–chaos
transitions. RQA features used in this book are listed as follows.

Recurrence Rate (RR) is the percentage of recurrence points in an RP and it
corresponds to the correlation sum:

RR = 1

N2

N∑

i,j=1

Ri,j (4.42)

where N is the number of points on the phase space trajectory.
Determinism (DET) is the percentage of recurrence points which form diagonal

lines:

DET =
∑N

l=lmin
lP (l)

∑N
i,j=1 Ri,j

(4.43)

where P(l) is the histogram of the lengths l of the diagonal lines.
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Laminarity (LAM) is the percentage of recurrence points which form vertical
lines:

LAM =
∑N

υ=υmin
υP (υ)

∑N
υ=1 υP (υ)

(4.44)

where P(υ) is the histogram of the lengths υ of the diagonal lines.
Trapping Time TT is the average length of the vertical lines:

TT =
∑N

υ=υmin
υP (υ)

∑N
υ=υmin

P (υ)
(4.45)

Ratio (RATIO) is the ratio between DET and RR:

RATIO = DET

RR
(4.46)

Averaged diagonal line length (L) is the average length of the diagonal lines:

L =
∑N

l=lmin
lP (l)

∑N
l=lmin

P (l)
(4.47)

Entropy (ENTR) is the Shannon entropy of the probability distribution of the
diagonal line lengths p(l):

ENTR = −
N∑

l=lmin

p(l) lnp(l) (4.48)

Longest diagonal line (Lmax ) is the length of the longest diagonal line:

Lmax = max
({li; i = 1, . . . ,Nl}

)
(4.49)

where Nl is the number of diagonal lines in the recurrence plot.

4.3.4.2 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) is a method for determining the statistical
self-affinity of a signal. It is useful for analyzing time series that appear to be long-
memory processes (diverging correlation time, e.g. power-law decaying autocorre-
lation function). It is related to measures based upon spectral techniques such as
autocorrelation and Fourier transform. DFA method has proven useful in revealing
the extent of long-range correlations in time series [281]. Briefly, the time series
to be analyzed (with N samples) is first integrated. Next, the integrated time series
is divided into boxes of equal length, n. In each box of length n, a least squares
line is fit to the data (representing the trend in that box). The y coordinate of the
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straight line segments is denoted by yn(k). Next, the integrated time series, y(k), is
detrended by subtracting the local trend, yn(k), in each box. The root-mean-square
fluctuation of this integrated and detrended time series is calculated as:

F(n) =
√√√√ 1

N

N∑

k=1

[
y(k) − yn(k)

]2 (4.50)

4.3.4.3 Lyapunov Exponents

Deterministic chaos exhibits a number of features that distinguishes it from periodic
and random behavior, more specifically by its sensitive dependence on initial condi-
tions, which means that small changes in the state variables at one point will create
large differences in the behavior of the system at some future point. This manifests
itself graphically as adjacent trajectories that diverge widely from their initial close
positions. The Lyapunov exponent is a quantitative measure of the average rate of
this separation. A positive Lyapunov exponent indicates sensitive dependence on
initial conditions and thus loss of predictability, indicative of deterministic chaos
[282]. The Lyapunov exponent describes the speed of attraction as convergence, if
negative, or divergence, if positive, of trajectories in each dimension of the attractor.
In three dimensions, for instance, three Lyapunov exponents describe the evolution
of the volume of a cube, and, in general, the sum of all Lyapunov exponents indi-
cates how the measure of a hypercube evolves in a multidimensional attractor. The
sum of positive exponents indicate the spreading rate of the hypercube, hence the
increase of unpredictability per unit time. This dynamic is practically dominated by
the largest positive (or Dominant) Lyapunov exponent (DLE). It describes the ex-
pansion along the principal axis (pi ) of the hypercube over a given time interval t .
Formally, the exponents (λi ) are calculated as:

λi = lim
t→∞

1

t
log2

[
pi(t)

pi(0)

]
(4.51)

where λi are ordered from largest to smallest. The calculation of the DLE in short
time series is not a trivial task. For experimental applications, in fact, a number of
researchers have proposed algorithms that estimate the Dominant Lyapunov expo-
nent [283–287], or the positive Lyapunov spectrum, i.e., only positive exponents
[287]. Here, the approach proposed by Rosenstein et al. [102], which ensures re-
liable values of DLE even in short data sets, is suggested. This method, in fact,
is easy to implement and fast because it uses a simple measure of exponential di-
vergence that circumvents the need to approximate the tangent map. In addition,
the algorithm does not require large data sets. More in detail, the attractor dynam-
ics was reconstructed from a single series by means of the embedding procedure
[275]. The embedding dimension is usually estimated in accordance with Takens’s
theorem [275]. A common choice for the time delay estimation by means of the
correlation sum was addressed by Liebert and Schuster [288]. After reconstructing
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the dynamics Xi(t), the algorithm locates the nearest neighbor of each point on the
trajectory. The nearest neighbor, X

ĵ
, is found by searching for the point that mini-

mizes the distance to the particular reference point, identified by the vector Xj . This
is expressed as:

dj (0) = min
X

ĵ

‖Xj − X
ĵ
‖ (4.52)

where dj (0) is the initial distance from the j th point to its nearest neighbor, and ‖ ·‖
denotes the Euclidean norm. The largest Lyapunov exponent, also known as Domi-
nant Lyapunov Exponent (DLE), is then estimated as the mean rate of separation of
the nearest neighbors. When applied to HRV series, the time delay Δ is often held
constant to 1.

4.3.4.4 Approximate Entropy

Approximate Entropy (ApEn) measures the complexity or irregularity of the signal
[108, 289].

The ApEn algorithm can be computed as follows. First, a set of length m vectors
uj is formed:

uj = (RRj ,RRj+1, . . . ,RRj+m−1) (4.53)

where j = 1,2, . . . ,N − m + 1, m is the embedding dimension, and N is the num-
ber of measured RR intervals. The distance between these vectors is defined as the
maximum absolute difference between the corresponding elements, i.e.:

d(uj , uk) = max
n=0,...,m−1

{|RRj+n − RRk+n|
}

(4.54)

Next, for each uj the relative number of vectors uk for which d(uj , uk) ≤ r is cal-
culated, where r is the tolerance value. The index is denoted with Cm

j (r) and can be
written in the form:

Cm
j (r) = nbr of {uk|d(uj , uk) ≤ r}

N − m + 1
∀k (4.55)

The value of Cm
j (r) is always lesser than or equal to 1. Note that the value is, how-

ever, at least 1/(N − m + 1) since uj is also included in the count. Then:

Φm(r) = 1

N − m + 1

N−m+1∑

j=1

lnCm
j (r) (4.56)

Finally, the approximate entropy is obtained as:

ApEn(m, r,N) = Φm(r) − Φm+1(r) (4.57)
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The value of the estimate ApEn depends on three parameters: the length m of the
vectors uj , the tolerance r , and the data length N . When applied to HRV series,
m is often chosen as m = 2. The length N of the data also affects ApEn. As N

increases the ApEn approaches its asymptotic value. The tolerance r has a strong
effect on ApEn and should be selected as a fraction of the standard deviation of the
signal. A common selection for r is r = 0.2 · SD, which is also adopted in this book.
Large values of ApEn indicate high irregularity and smaller values of ApEn indicate
a more regular signal.

4.3.4.5 Multiscale Entropy

Multiscale Entropy (MSE) is based on the calculation of the Sample Entropy
(SampEn) over several time series, which are constructed from the original dis-
crete time series by averaging the data points within non-overlapping windows
of increasing length, τ . Formally, given a time series {x1, . . . , xi, . . . , xN } and
a scale factor τ , each element of a course-grained series {y(τ)} is calculated as
y

(τ)
j = 1

τ

∑jτ

i=(j−1)τ+1 xi , 1 ≤ j ≤ N/τ and, for each of the series, y
(τ)
j , SampEn

[104, 108, 290] is computed. SampEn estimation on each series starts with the
calculation of the distance between two vectors x1 and xj on the phase space
x(1), x(2), . . . , x(N − m + 1), which is defined in R

m, where m ≤ N is a positive
integer associated to the embedding dimension of the series [275, 291]. Then, all the
distances within a radius r are counted and normalized by the quantity N − m + 1.
This procedure is performed twice considering the chosen value of m and m + 1.

Previous studies suggest a fixed straightforward choice of the parameters as m =
2, and r = 0.15σ where σ is the standard deviation of the series [290]. While such
a choice could be reasonable for the m values, it could be pretty hazardous for the r

value.
Therefore, it is reasonable to consider different r values for each acquisition of

each subject such that maximizes the calculation of ApEn in the range 0.01 ≤ r ≤
1.2 [292–295]. The highest value ApEn(rk) is interpolated with the preceding and
the following values, ApEn(rk−1) and ApEn(rk+1), with a parabola. The position
of the vertex of the parabola gives rmax , and ApEn(rmax) quantifies the highest
information difference between vectors of length m and m + 1.

4.3.5 Cardio-Respiratory Synchronization Analysis

Concerning general dynamical systems, all the possible mode-lockings are defined
by the Farey tree [296, 297] (i.e. level 1: frequency ratio: 1 : 1; level 2: frequency
ratio: 1 : 2; level 3: frequency ratios: 1 : 3, 2 : 3; level 4: frequency ratios: 1 : 4, 2 : 5,
3 : 5, 4 : 3; etc.). Considering the cardio-respiratory system, the generic synchro-
nization ratio n : m indicates that m heart beats fall within n respiratory periods. It
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is clear that several of the mentioned Farey ratios cannot be used to describe physio-
logical cardio-respiratory behaviors, such as level 1 and level 2. Indeed, the majority
of healthy subjects have a resting heart rate between 50 (0.82 Hz) and 90 (1.5 Hz)
bpm [298] and breathing rates between 10 (0.17 Hz) and 20 (0.33 Hz) breaths/min
[299]. Therefore the resulting range for the ratio n : m is between 0.33/0.82 = 0.4
and 0.17/1.5 = 0.11. In this book, the following physiologically plausible ratios:
1 : 6, 1 : 5, 1 : 4, 1 : 3, 2 : 9, 2 : 7, 3 : 11, 3 : 10, 3 : 8 are considered.

4.3.5.1 Instantaneous Phase

In order to study the phase synchronization between two signals, it is necessary to
obtain instantaneous phases at least for the slower oscillating signal, i.e., for respira-
tion in our case. For a real valued continuous signal x(t), this can be done within an
analytic signal approach, adding a corresponding imaginary part ix̃(t) to the signal.
x̃(t) is calculated by employing Hilbert transform [300]:

x̃(t) = 1

π
PV

∫ ∞

−∞
x(t ′)
t − t ′

dt ′ (4.58)

where PV denotes the Cauchy principal value. Finally, instantaneous phases can be
defined from real and imaginary parts of the analytical signal:

φ(t) = arctan

[
x̃(t)

x(t)

]
(4.59)

4.3.5.2 Cardio-Respiratory Synchrogram

By definition, in the simplest case of two periodic oscillators, synchronization is
classically understood as phase locking:

|ϕm,n| = |mφ1 − nφ2| < c (4.60)

where m and n are some integers that describe the locking ratio, c is a constant value,
φ1,2 are the phases of the oscillators, and ϕm,n is the generalized phase difference, or
relative phase. The phases φ1,2 are not cyclic on the interval [0,2π], but are defined
on the whole real line. Schafer et al. used the concept of phase synchronization of
chaotic oscillators [39, 40] to develop a technique to analyze irregular non-stationary
bivariate data, i.e. the Cardio-respiratory synchrogram (CRS) [37, 140, 152]. In the
general case of m : n synchronization, such a structure appears if the phases of the
heart beats is related to the beginning of m adjacent respiratory cycles:

ϕ(tk) = φr(tk)mod(2πm)

2π
(4.61)
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where φr refers to the instantaneous phase of the respiratory signal and tk is the time
where the R-peak in the kth heartbeat occurs and hence the phase of the heart rhythm
increases by 2π . φr is calculated by means of the Hilbert transformation [39]. CRS
is obtained by plotting these relative phases ϕ as a function of tk . Therefore, if
m : n phase synchronization occurs, then CRS is constituted by n horizontal stripes
within m respiratory cycles. In case of 1 : n synchronization (i.e., if n heartbeats fit
to one breathing cycle) one observes n parallel horizontal (or at least approximately
horizontal) lines in the synchrogram. This technique allows distinguishing between
different periods of synchronization, even for noisy and non-stationary data [140,
152].

4.4 Feature Reduction Strategy

Given a large number of extracted features, a suitable feature reduction strategy is
necessary in order to perform an effective pattern recognition. Feature reduction can
be performed in different ways. The current literature distinguishes two main cate-
gories of reduction methods: feature selection and feature projection. In this book,
a simple and well-known feature projection method is used in order to retain the
most information from all features. Specifically, the Principal Component Analysis
(PCA) [301] is adopted, which is able to project high-dimensional data to a lower
dimensional space with a minimal loss of information. This means that new features
were created by the linear transformation of original feature values, rather than by
selecting a feature subset from a given feature set. Details are reported in the fol-
lowing paragraph.

4.4.1 Principal Component Analysis

PCA [301] is a useful statistical technique that projects a correlated high-dimension-
al space of variables to an uncorrelated low-dimensional space of variables. These
variables are ordered according to decreasing variance and are called principal com-
ponents. PCA uses the eigenvalues and eigenvectors generated by the correlation
matrix to rotate the original dataset along the direction of maximum variance. Ac-
cordingly, the above general description was implemented by means of the Singular
Value Decomposition (SVD). For the dataset matrix X, of dimension n×p and rank
r , it can be rewritten using SVD as:

X = USV T (4.62)

where U is an orthogonal n × r matrix, V is an orthogonal p × r matrix with the
eigenvectors (e1, e2, . . . , er ) and S is r × r diagonal matrix containing the square
roots of the eigenvalues of the correlation matrix XT X and hence the variances of
the Principal Components. The r eigenvectors, i.e. Principal Components of matrix
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V , form an orthogonal basis that spans a new vector space, called the feature-space.
Therefore, each vector can be projected to a single point in this r-dimensional fea-
ture space. However, according to the theory of PCA for highly correlated data, each
training set vector can be approximated by taking only the first few k, where, k ≤ r ,
Principal Components. This mathematical method is based on the linear transfor-
mation of the different variables in principal components which could be assembled
in clusters.

4.5 Classification

This book aims at classifying different mood and emotional states. Therefore, sev-
eral pattern recognition algorithms are applied and the relative performances were
evaluated using the confusion matrix [302]. The generic element rij of the con-
fusion matrix indicates how many times in percentage a pattern belonging to the
class i was classified as belonging to the class j . More the confusion matrix is di-
agonal and better is the classification. The matrix has to be read by columns. The
training phase is usually carried out on 80% of the feature dataset while the test-
ing phase to the remaining 20%. 40-fold cross-validation steps are performed in
order to obtain unbiased classification results, i.e. to consider Gaussian the classifi-
cation result distributions, which can be therefore described as mean and standard
deviation among the obtained 40 confusion matrices. Several classifiers such as the
linear discriminant classifier (LDC), the quadratic discriminant classifier (QDC), a
mixture of Gaussian (MOG), the k-nearest neighbor (k-NN), the Kohonen self orga-
nizing map (KSOM), the multi-layer perceptron (MLP), and the probabilistic neural
network (PNN) were applied to classify features from both the healthy subjects and
bipolar patients procedures. Below, the three classifiers which gave the best recogni-
tion accuracy are described in detail. Such best classification algorithms are chosen
by performing a statistical comparison of the results a-posteriori by means of the
ANOVA test [303].

4.5.1 Quadratic Discriminant Classifier

The Quadratic Bayes Normal Classifier (also called Quadratic Discriminant Classi-
fier (QDC)) [304] is a statistical based classifier which uses a supervised learning
method which determines the parameters based on available knowledge. Assuming
that the input training data is a finite set Γ {(x1, y1), . . . , (xl, yl)} containing pairs
of observations xi ∈ R

n and corresponding class labels yi ∈ Y . Basically, statistical
classifiers use discriminant functions fy(x), ∀y ∈ Y = {1,2, . . . , c} for c classes in-
put dataset and x is a d-component feature vector. The classifier is said to assign a
feature vector x to class yi if:

fi(x) > fj (x) ∀j �= i (4.63)
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Thus, the classifier is viewed as a network or machine that computes c discrimi-
nant functions and selects the category corresponding to the largest discriminant.
A Bayes based classifier is easily and naturally represented in this way. For the gen-
eral case with risks, fi(x) = −R(αi |x), since the maximum discriminant function
will then correspond to the minimum conditional risk. For the minimum-error-rate
case, it is possible to simplify things further by taking fi(x) = P(yi |x), so that the
maximum discriminant function corresponds to the maximum posterior probability.

The effect of any decision rule is to divide the feature space into c decision re-
gions, �1, . . . ,�c. If fi(x) > fj (x) ∀j �= i, then x is in region �1, and the decision
rule calls for us to assign x to fi . The regions are separated by decision boundaries,
surfaces in feature space where ties occur among the largest discriminant functions.

The structure of a Bayes classifier is determined by the conditional densities
P(x|yi) as well as by the prior probabilities, according to the Bayes theorem:

P(yi |x) = P(x|yi)P (yi)

P (x)
(4.64)

where P(yi) and P(x) are the prior probabilities.
Assuming that the minimum-error-rate classification can be achieved by using

the discriminant functions [304]:

fi(x) = lnP(x|yi) + lnP(yi) (4.65)

If the densities P(x|yi) are multivariate normal, i.e. P(x|yi) ∼ N(μi,Σi) where μi

is the d-component mean vector and Σi is the d-by-d covariance matrix:

fi(x) = −1

2
(x − μi)

T Σ−1
i (x − μi) − d

2
ln 2π − 1

2
ln |Σi | + lnP(yi) (4.66)

where (x − μi)
T is the transpose of (x − μi) matrix. In the general multivariate

normal case, the covariance matrices are different for each category. The only term
that can be dropped from the above equation is the d

2 ln 2π term, and the resulting
discriminant functions are inherently quadratic:

fy(x) = xT · Ayx + byx + cy ∀y ∈ Y (4.67)

which are quadratic with respect to the input vector x ∈ R
n. The quadratic discrim-

inant function fy is determined by:

Ay = −1

2
Σ−1

i (4.68)

by = Σ−1
i μi (4.69)

cy = −1

2
μT

i Σ−1
i μi − 1

2
ln |Σi | + lnP(yi) (4.70)

Of course, if the distributions are more complicated, the decision regions can be
even more complex, though the same underlying theory holds there too.
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4.5.2 k-Nearest Neighborhood

The k-Nearest Neighborhood (k-NN) implementation is performed according to the
following steps:

1. In the training phase, the k-NN algorithm just stores the training feature sets
together with the labels.

2. In the test phase, the k-NN algorithm calculates the n Euclidean distances be-
tween the new feature set and the n features of the whole training feature set as
follows:

Di =
√

(pi1 − q1)2 + · · · + (pin − qn)2 =
√√√√

n∑

j=1

(pij − qj )2 (4.71)

where Pi = (pi1,pi2, . . . , pin) is ith training feature set, Q = (q1, q2, . . . , qn) is
the new feature test set, n is the number of features.

Afterwards, the k-NN algorithm finds the k training feature sets that have the mini-
mum distance from the new feature set. Among these, m training feature sets belong
to the neutral class and K − m belong to the arousal class. The new feature set is
supposed to belong to the neutral class if m > (K − m), i.e. m > K

2 , to the arousal
class otherwise.

4.5.3 Multi-layer Perceptron

The Multi-layer perceptron (MLP) [305] is a neural network which has, in the pro-
posed implementation, an integrate-and-fire neuron model for the representation of
the relations between input and output values. It is trained by implementing the su-
pervised learning method, i.e. input and output values are specified and the relations
between them learnt. Specifically, in the training phase, for each data record, each
activation function of the artificial neurons is calculated. The weight wij of a generic
neuron i at time T for the input vector f k

n = f k
n1, . . . , f

k
nF is modified on the basis

of the well-established back propagation of the resulting error between the input
and the output values. The response of the MLP is a Boolean vector; each element
represents the activation function of an output neuron.

4.5.4 Support Vector Machine

Support Vector Machines (SVMs) are classification algorithms that allow robust
performances with respect to sparse and noisy data. Basically, they separate a set
of binary labeled data with a hyper-plane that is maximizes the distance between
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classes. Whether no linear separation is possible, it is possible to use kernel func-
tions that performs a non-linear mapping of the feature space. Let Xj the feature
space with xj = (x

j

1 , . . . , x
j
n) the j th point in n dimensions and Y j ∈ {−1,+1}

the class label associated to each point. Let also define φ : X ⊆ R
n → F ⊆ R

N be a
mapping function from the feature space to the input space F expressed in N dimen-
sion. Let us assume that S = {(x1, y1), . . . , (xm, ym)} a sample of the feature space.
The SVM learning algorithm finds a hyper-plane (w,b) such that the quantity:

γ = min
i

yi
{〈

w,φ
(
xi

)〉 − b
}

(4.72)

is maximized, where w has dimension N , 〈·, ·〉 represents an inner product, b is a
real number, and γ is named the margin. The quantity 〈w,φ(xi)〉 − b corresponds
to the distance between the point xi and the decision boundary and, if multiplied
by the label yi , it gives a positive value for all correct classifications and a negative
value for the incorrect ones. Given a new data point, a label is assigned according to
its relationship to the decision boundary, and the corresponding decision function is

f (x) = sign
(〈
w,φ

(
xi

)〉 − b
)

(4.73)

Other details can be found in [306–308].

4.6 Point-Process Theory and the Instantaneous Nonlinear
Dynamics

Hypothesizing that the ANS responds with different time-varying heartbeat
dynamics according to the patient’s mood state or to the elicited level of
arousal/valence, computational tools able to discern rapid dynamic changes
with high time resolution are the best candidates to provide optimal assess-
ments.

For this purpose, standard heart rate variability (HRV) analysis is not recommended
since it would require relatively long-time intervals of ECG acquisitions [24, 25]
and it would be unable to catch instantaneous variations.

To overcome these limitations, a novel stochastic model of heartbeat dynamics,
based on point-process theory, is proposed to instantaneously assess the cardiovas-
cular dynamics. This approach provides a novel paradigm in the literature in the
field of psychiatric disorders and affective computing. The core of the model is the
definition of the inter-beat probability function to predict the waiting time of the
next heartbeat, i.e. the R-wave event, given a linear and nonlinear combination of
the previous events. The use of point process theory allows for a fully paramet-
ric structure analytically defined at each moment in time, thus allowing to estimate
instantaneous measures [30, 212–214] without using any interpolation method.
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Fig. 4.14 Block diagram of
the point process models
derivation (from [48])

It has been demonstrated that the Inverse-Gaussian (IG) distribution well charac-
terizes the inter-beat probability function [30] and, in particular, a linear [30, 212]
and nonlinear [214] combination of the past events has been taken into account.

The hereby proposed quadratic Nonlinear Autoregressive Integrative (NARI)
model improves the achievement of stationarity [309] and consequently improves
system identification. This powerful approach further considers an equivalent 3rd-
order input–output Wiener–Volterra model, allowing for the instantaneous esti-
mation of the high-order polyspectra [310], such as bispectrum and trispectrum
[311, 312]. Therefore, the methodology here proposed is able to instantaneously as-
sess the subject’s cardiovascular/autonomic state, even in short-time events (< than
10 seconds), remarkably using only one biosignal, the ECG.

The novel heartbeat model developed has its foundations in the nonlinear system
identification theory. The general elements behind the considered model’s derivation
are shown in Fig. 4.14.

A Nonlinear Autoregressive Model (NAR) Model can be expressed, in a general
form, as follows:

y(k) = F
(
y(k − 1), y(k − 2), . . . , y(k − M)

) + ε(k) (4.74)

Considering ε(k) as independent, identically distributed Gaussian random variables,
such a model can be can be written as a Taylor expansion:

y(k) = γ0 +
M∑

i=1

γ1(i)y(k − i)

+
∞∑

n=2

M∑

i1=1

· · ·
M∑

in=1

γn(i1, . . . , in)

n∏

j=1

y(k − ij ) + ε(k) (4.75)

The autoregressive structure of Eq. 4.75 allows the system identification with only
exact knowledge on output data and with only few assumptions on input data (noise
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assumptions). The nonlinear physiological system is represented by using nonlinear
kernels up to the second order, i.e. γ0, γ1(i), and γ2(i, j), taking into account the se-
ries of the derivatives in order to improve stationarity [309, 313]. Hence, the general
quadratic form of a Nonlinear Autoregressive Integrative (NARI) model becomes:

y(k) = y(k − 1) + γ0 +
M∑

i=1

γ1(i)Δy(k − i)

+
M∑

i=1

M∑

j=1

γ2(i, j)Δy(k − i)Δy(k − j) + ε(k) (4.76)

where Δy(k− i) = y(k− i)−y(k− i −1) and Δy(k−j) = y(k−j)−y(k−j −1).
The quadratic kernel γ2(i, j) is assumed to be symmetric. The extended kernels
γ ′

1(i) and γ ′
2(i, j) are also defined as:

γ ′
1(i) =

{
1, if i = 0

−γ1(i), if 1 ≤ i ≤ M
(4.77)

γ ′
2(i, j) =

{
0, if ij = 0 ∧ i + j ≤ M

−γ2(i, j), if 1 ≤ i ≤ M ∧ 1 ≤ j ≤ M
(4.78)

and link the NARI model to a general input–output form, here defined by using the
well-known Wiener–Volterra [314] series:

y(k) = h0 +
M∑

i=1

h1(i)Δε(k − i)

+
∞∑

n=2

M∑

i1=1

· · ·
M∑

in=1

hn(i1, . . . , in)

n∏

j=1

Δε(k − ij ). (4.79)

where the functions hn(τ1, . . . , τn) are the Volterra kernels Mapping a quadratic
NARI model to an nth order input–output model [310] allows, after the input–output
transformation of the kernels, the evaluation of all the High Order statistics (HOS)
of the system, such as the Dynamic Bispectrum and Trispectrum [261, 315]. In
the following sections, after the definition of the point-process framework of the
heartbeat dynamics, mathematical details on the derivation of the nonlinear kernels
as well as the HOS tools are reported.
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4.6.1 Point-Process Nonlinear Model of the Heartbeat

The point process framework primarily defines the probability of having a
heartbeat event at each moment in time.

Defining t ∈ (0, T ], the observation interval, and 0 ≤ u1 < · · · < uk < uk+1 < · · · <
uK ≤ T the times of the events, it is possible to define N(t) = max{k : uk ≤ t} as
the sample path of the associated counting process. Its differential, dN(t), denotes
a continuous-time indicator function, where dN(t) = 1 when there is an event (the
ventricular contraction), or dN(t) = 0 otherwise. The left continuous sample path
is defined as Ñ(t) = limτ→t− N(τ) = max{k : uk < t}. Given the R-wave events
{uj }Jj=1 detected from the ECG, RRj = uj − uj−1 > 0 denotes the j th RR interval.
Assuming history dependence, the inverse Gaussian probability distribution of the
waiting time t − uj until the next R-wave event is [30]:

f
(
t |Ht , ξ(t)

) =
[

ξ0(t)

2π(t − uj )3

]1/2

× exp

{
−1

2

ξ0(t)[t − uj − μRR(t,Ht , ξ(t))]2

μRR(t,Ht , ξ(t))2(t − uj )

}
(4.80)

with j = Ñ(t) the index of the previous R-wave event before time t , Ht =
(uj ,RRj ,RRj−1, . . . ,RRj−M+1) is the history of events, ξ(t) the vector of the time-
varing parameters, μRR(t,Ht , ξ(t)) the first-moment statistic (mean) of the distribu-
tion, and ξ0(t) > 0 the shape parameter of the inverse Gaussian distribution. Since
f (t |Ht , ξ(t)) indicates the probability of having a beat at time t given that a previous
beat has occurred at uj , μRR(t,Ht , ξ(t)) can be interpreted as the expected waiting
time until the next event could occur. The use of an inverse Gaussian distribution
f (t |Ht , ξ(t)), characterized at each moment in time, is motivated both physiologi-
cally (the integrate-and-fire initiating the cardiac contraction [30]) and by goodness-
of-fit comparisons [213]. In previous works [212, 213], the instantaneous mean
μRR(t,Ht , ξ(t)) was expressed as linear and quadratic combination of present and
past R–R intervals, based on a nonlinear Volterra–Wiener expansion [214]. Here,
the novel NARI formulation is proposed. The instantaneous RR mean is defined as:

μRR
(
t,Ht , ξ(t)

) = RRÑ(t) + γ0 +
p∑

i=1

γ1(i, t)(RRÑ(t)−i − RRÑ(t)−i−1)

+
q∑

i=1

q∑

j=1

γ2(i, j, t)(RRÑ(t)−i − RRÑ(t)−i−1)

× (RRÑ(t)−j − RRÑ(t)−j−1) (4.81)
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The coefficients γ0, {γ1(i)}, and {γ2(i, j)} correspond to the time-varying zero-,
first-, second-order NARI coefficients, respectively. Considering the derivative RR
interval series improves the achievement of stationarity within the sliding time win-
dow W (W = 70 seconds) [309]. Since μRR(t,Ht , ξ(t)) is defined in continuous
time, it is possible to obtain an instantaneous RR mean estimate at a very fine
timescale (with an arbitrarily small bin size Δ), which requires no interpolation
between the arrival times of two beats. Given the proposed parametric model, all
linear and nonlinear indices are defined as a time-varying function of the parame-
ters ξ(t) = [ξ0(t), γ0(t), γ1(1, t), . . . , γ1(p, t), γ2(1,1, t), . . . , γ2(i, j, t)].

The unknown time-varying parameter vector ξ(t) is estimated by means of a
local maximum likelihood method [30, 316, 317]. Briefly, given a local observation
interval (t − l, t] of duration l, a subset Um:n of the R-wave events is considered.
Specifically, m = N(t − l) + 1 and n = N(t). At each time t , the unknown time-
varying parameter vector ξ(t) is found such that the following local log-likelihood
is maximized:

L
(
ξ(t) | Um:n

) =
n−1∑

k=m+P−1

w(t − uk+1) log
[
f

(
uk+1 |Huk+1 , ξ(t)

)]

+ log
∫ ∞

t

f
(
τ |Ht , ξ(t)

)
dτ (4.82)

where w(τ) = e�τ is an exponential weighting function for the local likelihood.
In Eq. 4.82, the latter term accounts for the next, not yet observed, R–R inter-
val (right censoring). A Newton–Raphson procedure is used to maximize the local
log-likelihood in Eq. 4.82 and compute the local maximum-likelihood estimate of
ξ(t) [316]. Because there is significant overlap between adjacent local likelihood
intervals, the Newton–Raphson procedure is started at t with the previous local
maximum-likelihood estimate at time t − Δ, where Δ defines the time interval shift
to compute the next parameter update.

The model goodness-of-fit is based on the Kolmogorov–Smirnov (KS) test and
associated KS statistics (see details in [30, 318]). Autocorrelation plots are con-
sidered to test the independence of the model-transformed intervals [30]. Once the
order {p,q} is determined, the initial NARI coefficients are estimated by the method
of least squares [319]. In order to provide reliable results, the HRV processing tech-
niques require uninterrupted series of RR intervals. Nevertheless, peak detection
errors and ectopic beats often determine abrupt changes in the R–R interval series
that may result in substantial deviations of the HRV indices, especially in changes
in the dynamics. In addition, they could potentially bias the statistical outcomes.
Therefore, all the actual heartbeat data are pre-processed with a previously devel-
oped algorithm [320]. It is based on the point process statistics (local likelihood) and
is able to perform a real-time R–R interval error detection and correction. Specif-
ically, the algorithm assesses whether the actual observation is in agreement with
the resulting model or if, instead, the alternative hypothesis of an erroneous beat is
more likely.
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4.6.2 Estimation of the Input–Output Volterra Kernels

The nth-order spectral representations are related to the Volterra series expansion
and the Volterra theorem [314]. In functional analysis, a Volterra series denotes a
functional expansion of a dynamic, nonlinear, and time-invariant function, widely
used in nonlinear physiological modeling [32, 321, 322]. The quadratic NARI model
can be linked to the traditional input–output Volterra models by using a specific
relationships [310] between the Fourier transforms of the Volterra kernels of order
p, Hp(f1, . . . , fn), and the Fourier transforms of the extended NAR kernels, Γ ′

1(f1)

and Γ ′
2(f1, f2).

In general, a second-order NARI model have to be mapped into a infinite-
order input–output Volterra model [310]:

ρ∑

k=mid(ρ)

∑

σ∈σρ

Hk(fσ(1), . . . , fσ(r),

ωσ(r+1) + fσ(r+2), . . . , fσ(ρ−1) + fσ(ρ))

× Γ ′
1(fσ(1)) · · ·Γ ′

1(fσ(r))

× Γ ′
2(fσ(r+1), fσ(r+2)) · · ·Γ ′

2(fσ(ρ−1), fσ(ρ)) = 0 (4.83)

where ρ is a given integer representing the kernel order, mid(ρ) = �ρ/2�, r = 2k−ρ

and σρ is the permutation set of Nρ . Obviously, there is the need to truncate the
series to a reasonable order for actual application. In this book, the cardiovascular
activity is modeled with a cubic input–output Volterra by means of the following
relationships with the NARI:

H1(f ) = 1

Γ ′
1(f )

(4.84)

H2(f1, f2) = − Γ ′
2(f1, f2)

Γ ′
1(f1)Γ

′
1(f2)

H1(f1 + f2) (4.85)

H3(f1, f2, f3) = −1

6

∑

σ3

Γ ′
2(fσ3(1), fσ3(2))

Γ ′
1(fσ3(1))Γ

′
1(fσ3(2))

× H2(fσ3(1) + fσ3(2), fσ3(3)) (4.86)

Once the vector of the autoregressive time-varing parameters ξ(t) is estimated, it
is possible to derive instantaneous quantitative tools such as the nth-order spectral
representations. To summarize, the necessary steps are the followings:

1. From γn(· · · ) find γ ′
n(· · · ).
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Fig. 4.15 Block diagram of
the point process quantitative
tools derivation (from [48])

2. Compute the Fourier transforms Γ ′
n(· · · ) of the kernels γ ′

n(· · · ).
3. Compute the input–output Volterra kernels Hk(· · · ) from the Γ ′

n(· · · ) of the au-
toregressive model.

4. Estimate the nth-order spectra such as the instantaneous spectrum Q(f, t) and
bispectrum Bis(f1, f2, t).

4.6.3 Quantitative Tools: High Order Spectral Analysis

The proposed framework allows for three levels of quantitative characterization of
heartbeat dynamics: instantaneous time-domain estimation, linear power spectrum
estimation, and higher order spectral representation. The general scheme of such
quantitative characterizations is shown in Fig. 4.15. The linear power spectrum es-
timation reveals the linear mechanisms governing the heartbeat dynamics in the fre-
quency domain. In particular, given the input–output Volterra kernels of the NARI
model for the instantaneous R–R interval mean μRR(t,Ht , ξ(t)), it is possible to
compute the time-varying parametric (linear) autospectrum [323] of the derivative
series:

Q(f, t) = Sxx(f, t)H1(f, t)H1(−f, t)

− 3

2π

∫
H3(f,f2,−f2, t)Sxx(f2, t) df2 (4.87)

where Sxx(f, t) = σ 2
RR. The time-varying parametric autospectrum of the R–R in-

tervals is given by multiplying its derivative spectrum Q(f, t) by the quantity
2(1 − cos(ω)) [309]. Importantly, previous derivations of the expressions for the
autospectrum [214, 215] were possible because the first- and second-order Volterra
operators are orthogonal to each other for Gaussian inputs. This property does
not hold for orders greater than two [323], and in cubic nonlinear input–output
Volterra systems the autospectrum is estimated by considering also the third or-
der term. By integrating Eq. 4.87 in each frequency band, it is possible to com-
pute the index within the very low frequency (VLF = 0.01–0.05 Hz), low frequency
(LF = 0.05–0.15 Hz), and high frequency (HF = 0.15–0.5 Hz) ranges.
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The higher order spectral representation allows for the consideration of statistics
beyond the second order, and phase relations between frequency components other-
wise suppressed [312, 324]. Higher order spectra (HOS), also known as polyspectra,
are spectral representations of higher order statistics, i.e. moments and cumulants of
third order and beyond. HOS can detect deviations from linearity, stationarity or
gaussianity. Particular cases of higher order spectra are the third-order spectrum
(Bispectrum) and the fourth-order spectrum (Trispectrum) [324], defined from the
Volterra kernel coefficients estimated within the point process framework.

4.6.3.1 Dynamical Bispectrum Estimation

Let H2(f1, f2, t) denote the Fourier transform of the second-order Volterra kernel
coefficients. The cross-bispectrum (Fourier transform of the third-order moment) is
[311, 312]:

CrossBis(f1, f2, t) ≈ 2Sxx(f1, t)Sxx(f2, t)H2(−f1,−f2, t) (4.88)

where Sxx(f, t) is the autospectrum of the input (i.e. σ 2
RR). Note that the approx-

imation shown in Eq. 4.88 is used since the equality only strictly holds when the
input variables are jointly Gaussian. The analytical solution for the bispectrum of a
nonlinear system response with stationary, zero-mean Gaussian input is [325]:

Bis(f1, f2, t)

= 2H2(f1 + f2,−f2, t)H1(−f1 − f2, t)H1(f2, t)Sxx(f1 + f2, t)Sxx(f2, t)

+ 2H2(f1 + f2,−f1, t)H1(−f1 − f2, t)H1(f1, t)Sxx(f1 + f2, t)Sxx(f1, t)

+ 2H2(−f1,−f2, t)H1(f1, t)H1(f2, t)Sxx(f1, t)Sxx(f2, t) (4.89)

Of note, an expression similar to Eq. 4.89 was derived in the early work of
Brillinger [326], and later in the appendix of [327]. Given the dynamical bispectrum
Bis(f1, f2, t), at each t it is possible to estimate the bispectral features as described
in details in Sect. 4.3.2.

4.6.3.2 Dynamical Trispectrum Estimation

Brillinger [328], Billings [314], Priestley [329], and others have demonstrated that
there is a closed form solution for homogeneous systems with Gaussian inputs.
Thus, the transfer function of a m-order homogeneous system is estimated by the
relation:

Hm(f1, . . . , fm) = Syx···x(−f1, . . . ,−fm)

m!Sxx(f1) · · ·Sxx(fm)
(4.90)
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where the numerator is the m + 1 − nth order crosspolyspectrum between y and x.
This result is a generalization of the classical result for the transfer function of a lin-
ear system resulting for m = 1. Therefore, the cross-trispectrum (Fourier transform
of the third-order moment) can be estimated as:

T (f1, f2, f3, t) ≈ 3!Sxx(f1, t)Sxx(f2, t)Sxx(f3, t)H3(f1, f2, f3, t) (4.91)



Part III
Results

This part of the book reports on the experiments performed by using the wearable
monitoring systems to gather data from healthy subjects and patients. Moreover,
all the methodologies described in the previous chapters have been applied to these
data. All the experimental evidences, which constitute the outcome of this part, are
taken as input to drawing the final conclusions and discussions.



Chapter 5
Experimental Evidences on Healthy Subjects
and Bipolar Patients

In this chapter, the experimental results on healthy subjects and bipolar patients are
reported. The experimental protocols and the methodologies applied were described
in detail in Chaps. 3 and 4, respectively.

The main objective of the study applied on healthy subjects was to characterize
the autonomic response during a visual emotional elicitation, by using IAPS images,
in order to recognize the elicited level of arousal, valence, and self-reported emo-
tions. Results considering long-time series (whole session of image having the same
level of arousal/valence) as well as short-time series (for each image) are reported
in detail.

Concerning the bipolar patients study, the main goal was to assess the clinical
mood state in order to develop an effective decision support system able to auto-
matically recognize mood changes on the basis of ANS information. Long-time and
short-time analyses were performed by using the standard analysis and the point-
process nonlinear models, respectively.

In general, as the major part of the extracted parameters did not have normal dis-
tribution (checked using the Lilliefors test [330]), the results are always expressed in
terms of median and median absolute deviation. Accordingly, non-parametric tests
are used in order to detect statistically significative differences among the different
classes. For instance, comparing more than 2 groups, the Kruskal–Wallis method
[331, 332], i.e. a non-parametric one-way analysis of variance, is applied to test the
null hypothesis that no difference exists among all groups. Moreover, to test the
null hypothesis of no statistical difference between two groups, either the Mann–
Whitney or Wilcoxon signed-rank tests is applied instead. Wilcoxon is used for
matched pairs.

All of the algorithms were implemented by using Matlab© v7.2 endowed with
additional toolboxes for pattern recognition (i.e. PRTool) [333] and time series anal-
ysis toolbox [334].

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_5, © Springer International Publishing Switzerland 2014
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Table 5.1 Feature sets gathered from standard and nonlinear methods for ANS signals analysis
(from [31])

Feature set Analysis Signals

Standard Time domain (MNN, SDNN, RMSSD, pNN50, TINN) HRV

Frequency domain (VLF, LF, HF, LF/HF) HRV

Frequency domain (Power in 0–0.1 Hz, 0.1–0.2 Hz,
0.2–0.3 Hz, 0.3–0.4 Hz, Central Frequency)

RSP, EDR

Statistics (SEM, RSPR, MFD, SDFD, MSD, SDSD,
SDBA, MAXRSP, MINRSP, DMMRSP, Skewness,
Kurtosis)

RSP, EDR

Statistics (Max Peak, Latency, MAD, MDNV, PNSDAS) Phasic EDR

High order spectra (MBI, VBI, MMB, PEB, NBE, NBSE) HRV, RSP, EDR

Nonlinear
methods

Deterministic chaos (m, Δ) HRV, RSP, EDR

Recurrence plot (DLE, RR, DET, LAM, TT, RATIO,
ENTR, Lmax )

HRV, RSP, EDR

Detrended fluctuaction analysis (α1, α2) HRV, RSP, EDR

5.1 Results from the Healthy Subjects Study

5.1.1 Effective Arousal and Valence Levels Recognition Through
Autonomic Nervous System Dynamics

The first goal of this study is to test the capability of an automatic classifier to dis-
criminate the elicited arousal and valence levels, along with the neutral elicitation.
A comparative analysis is performed considering only standard features and stan-
dard features joined with others extracted from nonlinear dynamic methods.

Accordingly, 89 standard features and 36 extracted from nonlinear dynamic
methods are defined (see Table 5.1). All features are calculated for each neutral
session (N ) as well as for each arousal session (Ai ).

Experimental results from 35 healthy subjects performing the experimental pro-
cedure described in Sect. 3.1 are shown in the form of confusion matrices and re-
ported in Tables 5.2, 5.3, 5.4 and 5.5. The principal diagonal represents the per-
centage of the successful recognition of each class. More specifically, Tables 5.2
and 5.3 show the results of the four classes of different arousal (Arousal1, Arousal2,
Arousal3 and Arousal4) along with the neutral one (Neutral), while Tables 5.4
and 5.5 report the results of the four classes of valence (Valence1, Valence2, Va-
lence3 and Valence4) in addition to the neutral class (Neutral). In Tables 5.2 and 5.4
results of the QDC applied to standard features are shown, while in Tables 5.3
and 5.5 classification results are based on features extracted from non-linear dy-
namic methods.

These tables were obtained through the cross-validation technique, which was an
average of 40 confusion matrices calculated on a randomly shuffled dataset.
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Table 5.2 Confusion matrix of QDC Classifier for Arousal level recognition based on standard
feature set reduced by PCA algorithm to 12 components (from [31])

QDC Neutral Arousal1 Arousal2 Arousal3 Arousal4

Neutral 98.57 ± 1.78 35.24 ± 16.66 40.47 ± 20.23 22.86 ± 17.83 24.28 ± 19.18

Arousal1 0.36 ± 1.09 37.14 ± 17.44 6.67 ± 8.98 3.33 ± 6.15 6.19 ± 8.94

Arousal2 0.36 ± 1.09 13.81 ± 13.25 22.38 ± 18.26 27.62 ± 20.86 25.71 ± 18.53

Arousal3 0.12 ± 0.65 6.67 ± 8.98 20.48 ± 20.09 20.95 ± 19.40 24.29 ± 18.05

Arousal4 0.59 ± 1.35 7.14 ± 11.10 10.00 ± 12.53 25.24 ± 23.03 19.52 ± 18.18

Table 5.3 Confusion matrix of QDC Classifier for Arousal level recognition based on features
extracted from nonlinear methods reduced by PCA algorithm to 7 components (from [31])

QDC Neutral Arousal1 Arousal2 Arousal3 Arousal4

Neutral 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Arousal1 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Arousal2 0.00 ± 0.00 0.00 ± 0.00 92.86 ± 10.73 0.00 ± 0.00 4.64 ± 8.79

Arousal3 0.00 ± 0.00 0.00 ± 0.00 5.36 ± 8.37 82.86 ± 14.17 19.28 ± 16.67

Arousal4 0.00 ± 0.00 0.00 ± 0.00 1.78 ± 4.78 17.14 ± 14.17 76.07 ± 16.93

Table 5.4 Confusion matrix of QDC Classifier for Valence level recognition based on standard
feature set reduced by PCA algorithm to 12 components (from [31])

QDC Neutral Valence1 Valence2 Valence3 Valence4

Neutral 28.57 ± 18.54 41.43 ± 22.66 18.57 ± 16.77 27.86 ± 15.70 22.14 ± 18.81

Valence1 27.14 ± 14.58 12.86 ± 14.58 5.00 ± 8.39 16.43 ± 19.81 3.57 ± 7.86

Valence2 9.28 ± 14.11 4.29 ± 11.45 22.86 ± 12.61 14.28 ± 13.11 17.14 ± 12.78

Valence3 27.86 ± 15.70 34.28 ± 24.26 15.00 ± 12.67 28.57 ± 17.95 28.57 ± 15.37

Valence4 7.14 ± 8.67 7.14 ± 10.86 38.57 ± 16.77 12.86 ± 13.03 28.57 ± 14.66

Table 5.5 Confusion matrix of QDC Classifier for Valence level recognition based on features
extracted from nonlinear methods reduced by PCA algorithm to 13 components (from [31])

QDC Neutral Valence1 Valence2 Valence3 Valence4

Neutral 96.79 ± 7.58 3.93 ± 6.46 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Valence1 3.21 ± 7.58 96.07 ± 6.46 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Valence2 0.00 ± 0.00 0.00 ± 0.00 87.14 ± 11.11 0.00 ± 0.00 18.57 ± 11.30

Valence3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00

Valence4 0.00 ± 0.00 0.00 ± 0.00 12.86 ± 11.11 0.00 ± 0.00 81.43 ± 11.30
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Table 5.6 Median and absolute median deviation of ApEn and DLE and SDNN across all the
sessions (from [46])

Session ApEn λ SDNN

Neutral 0.6146 ± 0.1469 0.0014 ± 0.2061 0.0423 ± 0.0523

Arousal1 0.5318 ± 0.1349 −0.0919 ± 0.0891 0.0406 ± 0.0728

Neutral 0.6308 ± 0.0816 0.0038 ± 0.1894 0.0390 ± 0.0494

Arousal2 0.5613 ± 0.1110 −0.1072 ± 0.0719 0.0404 ± 0.1972

Neutral 0.5511 ± 0.1020 0.0045 ± 0.2217 0.0434 ± 0.0460

Arousal3 0.5330 ± 0.1089 −0.0970 ± 0.0798 0.0361 ± 0.1279

Neutral 0.5822 ± 0.1013 0.0041 ± 0.1482 0.0422 ± 0.0744

Arousal4 0.5128 ± 0.1120 −0.1259 ± 0.0742 0.0407 ± 0.2138

Each element of the principal diagonal of all matrices is reported as mean value
and standard deviation of the classification result. All the other elements out of the
principal diagonal represent the error of classification.

Each principal component, obtained by applying the PCA algorithm to the fea-
ture sets, accounts for a given amount of the total variance. The reduction process
was stopped when the cumulative variance reached 95%. Therefore the number of
principal components was different for standard dataset and dataset from nonlinear
techniques and for arousal and valence (see captions of the tables for further details).

5.1.2 Approximate Entropy and Dominant Lyapunov Exponent
Analysis on Heart Rate Variability

Given the crucial role of nonlinear dynamics in characterizing the ANS response
during emotional elicitation, the complexity of HRV was studied in detail through
Approximate Entropy (ApEn) and Dominant Lyapunov Exponent (DLE) analysis.
Since, in the computation of the ApEn (see Chap. 4), the threshold is proportional
to the standard deviation of the RR intervals, changes in ApEn could be related to
changes in the standard deviation of the RR time series (SDNN) and not to the com-
plexity of the signal [335]. Therefore, a statistical analysis on the SDNN changes
throughout the sessions is provided as well.

In Tables 5.6, 5.7 and 5.8 the results from ApEn, DLE (i.e. λ) and SDNN calcu-
lation are shown in terms of median and median absolute deviation relative to each
session. Firstly, the Kruskal–Wallis test is applied among all the neutral classes to-
gether and among all the arousal classes. In both cases, for all the considered fea-
tures, the null hypothesis cannot be rejected implying that all the neutral classes
belong to the same population as well as for the arousal classes (p-value > 0.05).
Considering all the sessions, no statistical difference among all the sessions is ob-
tained for the SDNN, while the null hypothesis for both ApEn and λ can be re-
jected with (p-value < 0.05). This means that the SDNN values are undistinguish-
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Table 5.7 Number of
subjects out of 35
characterized by DLE
(adapted from [46])

Bold indicates the highest
values

Session DLE > 0 DLE < 0

Neutral 25 (71%) 10 (29%)

Arousal1 2 (6%) 33 (94%)

Neutral 22 (63%) 13 (37%)

Arousal2 3 (9%) 32 (91%)

Neutral 23 (66%) 12 (34%)

Arousal3 5 (14%) 30 (86%)

Neutral 25 (71%) 10 (29%)

Arousal4 1 (3%) 34 (97%)

able through all the sessions (ensuring the reliability of the ApEn findings) while at
least one session is statistically different from the other ones in both ApEn and λ

population.

Table 5.8 Results from the statistical analysis applying Kruskal–Wallis (K–W) and Rank-Sum
(R-S) tests for the ApEn and DLE analysis on HRV (from [46])

Test Features Sessions p-value Notes

K–W ApEn All neutral p > 0.05 No statistical difference among the neutral
sessions

K–W ApEn All arousal p > 0.05 No statistical difference among the arousal
sessions

K–W λ All neutral p > 0.05 No statistical difference among the neutral
sessions

K–W λ All arousal p > 0.05 No statistical difference among the arousal
sessions

K–W SDNN All neutral p > 0.05 No statistical difference among the neutral
sessions

K–W SDNN All arousal p > 0.05 No statistical difference among the arousal
sessions

K–W ApEn All p < 0.05 At least one session is statistically different
from the other ones

K–W λ All p < 0.05 At least one session is statistically different
from the other ones

K–W SDNN All p > 0.05 Features undistinguishable through all the
sessions

R-S ApEn All neutral vs
All arousal

p < 0.01 Statistical difference between neutral and
arousal sessions

R-S λ All neutral vs
All arousal

p < 0.01 Statistical difference between neutral and
arousal sessions

R-S SDNN All neutral vs
All arousal

p > 0.05 No statistical difference between neutral and
arousal sessions
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Fig. 5.1 Transient epochs within the data of a representative subject. The periods of cardiac acts
(RR) and the respiratory cycles are shown in (A) and (B), respectively. Several phase locking events
occurred. Here only the ratio 1:5, held for 30 heartbeats, was shown by way of illustration (C). tk is
the time where the R-peak in the kth heartbeat occurs (from [36])

Finally, the null hypothesis is tested between the two groups including all the
neutral and arousal classes, respectively, using the Wilcoxon signed-rank test. Even
in this case, the null hypothesis is rejected for both ApEn and λ (p-value < 0.01).

According to DLE findings, the median ApEn values tended to reduce in arousal
sessions. Moreover, Table 5.7 reports on the number of subjects in which positive
and negative DLE were found. The ApEn and DLE calculations are performed for
each subject for the whole duration of each session.

5.1.3 Cardio-Respiratory Synchronization Analysis

Regarding the cardio-respiratory synchronization (CRS) analysis, Fig. 5.1 reports
transient epochs within the data a representative subject which confirms the exis-
tence of synchronization. The periods of cardiac acts (RR) and the respiratory signal
are shown in (A) and (B), respectively. In this Figure only the interval presenting
the phase locking ratio 1:5 is marked by way of illustration, but other phase locking
events occur during the arousal phase. It was chosen this ratio to be shown because
it represents the longest (30 heartbeats) phase locking ratio over time and it was
most visually recognizable in the CRS (C). Figure 5.2 reports two CRSs referring
to the first neutral session, i.e. the upper figure, and the first arousal session, i.e.
the lower figure. Concerning the cardio-respiratory synchronization analysis, about
70% of synchronization was found during the arousal elicitation sessions compared
with 54% during the neutral sessions. The exact percentages, in terms of median
and median deviation, for each session are reported in the column %Synchro of Ta-
ble 5.9. In addition, in the same Table the values of medians and median deviations
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Fig. 5.2 The upper figure reports the CRS for the first neutral session, while the lower figure refers
to the first arousal session of a subject. Yellow vertical lines delimit the transients where 7:2 syn-
chronization occurs while the magenta vertical lines show the regions where 4:1 synchronization
takes place (from [36])

of the standard features extracted from the HRV signal along with the LF/HF are
reported. A detailed statistical analysis is performed on all the features extracted
from cardiac and respiratory signals and results are reported in Table 5.10.

Applying the Kruskal–Wallis test to the standard features from HRV, i.e.
MeanRR, SDRR, RMSSD, and pNN50, no statistical difference is obtained among
all sessions, while the null hypothesis for both LF/HF ratios and %Synchro can be
rejected with p < 0.001 and p < 0.05, respectively. This means that while standard
features are undistinguishable through all sessions, the sympatho-vagal balance and
the percentage of synchronization are features, which allow us to say that at least one
session is statistically different from all of the other ones. In order to better refine the
analysis for these two specific features, the null hypothesis is tested among all the
neutral classes together first and among all the arousal classes afterwards. In both
cases, the null hypothesis cannot be rejected implying that all neutral classes belong
to the same population as well as for the arousal classes. Finally, the null hypothesis
is tested between the two groups including all the neutral and arousal classes, re-
spectively. There, the Mann–Whitney test, which is a nonparametric alternative for
the t-test is used. The null hypothesis is rejected for both LF/HF (p < 0.001) and
%Synchro (p < 0.01).



92 5 Experimental Evidences on Healthy Subjects and Bipolar Patients

Table 5.9 Median and median absolute deviations of the features extracted throughout the ses-
sions for the cardio-respiratory synchronization analysis (from [36])

Session MeanRR SDRR RMSSD pNN50 LF/HF %Synchro

Neutral 0.77 ± 0.10 0.04 ± 0.05 0.04 ± 0.08 0.16 ± 0.15 3.68 ± 2.08 54.69 ± 24.45

Arousal1 0.79 ± 0.11 0.04 ± 0.07 0.04 ± 0.11 0.15 ± 0.14 4.28 ± 1.24 65.58 ± 21.41

Neutral 0.78 ± 0.10 0.04 ± 0.05 0.04 ± 0.07 0.13 ± 0.14 4.06 ± 1.84 59.02 ± 19.77

Arousal2 0.79 ± 0.16 0.04 ± 0.20 0.04 ± 0.28 0.16 ± 0.15 4.30 ± 1.01 70.48 ± 19.89

Neutral 0.78 ± 0.11 0.04 ± 0.05 0.04 ± 0.07 0.16 ± 0.12 4.00 ± 1.82 56.72 ± 22.58

Arousal3 0.80 ± 0.18 0.04 ± 0.13 0.03 ± 0.17 0.14 ± 0.14 4.31 ± 0.93 67.72 ± 24.59

Neutral 0.77 ± 0.11 0.04 ± 0.07 0.04 ± 0.11 0.17 ± 0.14 4.17 ± 1.79 54.05 ± 21.63

Arousal4 0.81 ± 0.17 0.04 ± 0.21 0.04 ± 0.30 0.18 ± 0.16 4.30 ± 0.65 68.31 ± 20.87

Table 5.10 Results from the statistical analysis applying Kruskal–Wallis (K–W) and Mann–
Withney (M–W) tests for the cardio-respiratory synchronization analysis (from [36])

Test Features Sessions p-value Notes

K–W MeanRR, SDRR All p > 0.05 Features undistinguishable through all
the sessions

K–W RMSSD, pNN50 All p > 0.05 Features undistinguishable through all
the sessions

K–W LF/HF All p < 0.001 At least one session is different from
the other ones

K–W %Synchro All p < 0.05 At least one session is different from
the other ones

K–W LF/HF All neutral p > 0.05 No difference among the neutral
sessions

K–W LF/HF All arousal p > 0.05 No difference among the arousal
sessions

K–W %Synchro All neutral p > 0.05 No difference among the neutral
sessions

K–W %Synchro All arousal p > 0.05 No difference among the arousal
sessions

M–W LF/HF All neutral
vs
All arousal

p < 0.001 Difference between neutral and arousal
sessions

M–W %Synchro All neutral
vs
All arousal

p < 0.01 Difference between neutral and arousal
sessions

5.1.4 Using Cardio-Respiratory Synchronization Information for
Emotion Recognition

Experimental results on emotion recognition (see Sect. 5.1.1) reports on the capa-
bility of the classifier to discriminate the five different arousal and five different
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Table 5.11 Comparison of the arousal levels recognition accuracy for the feature set α and the
proposed feature set β (from [38] “© Institute of Physics and Engineering in Medicine. Published
on behalf of IPEM by IOP Publishing Ltd. All rights reserved.”)

QDC Dataset N A1 A2 A3 A4

N α 100 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

β 100 ± 0.0 5.4 ± 9.6 1.4 ± 5.7 4.9 ± 11.1 8.1 ± 13.1

A1 α 0.0 ± 0.0 100 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

β 0.0 ± 0.0 94.6 ± 9.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

A2 α 0.0 ± 0.0 0.0 ± 0.0 92.9 ± 10.7 0.0 ± 0.0 4.6 ± 8.8

β 0.0 ± 0.0 0.0 ± 0.0 98.6 ± 5.7 0.0 ± 0.0 0.0 ± 0.0

A3 α 0.0 ± 0.0 0.0 ± 0.0 5.3 ± 8.4 82.9 ± 14.2 19.3 ± 16.7

β 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 95.1 ± 11.1 0.0 ± 0.0

A4 α 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 4.8 17.1 ± 14.2 76.1 ± 16.9

β 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 91.9 ± 13.1

valence classes. Relying on the CMA model of emotion [89], in fact, it is possible
to associate a certain emotion to a specific combination of arousal and valence levels
(see an example in Fig. 2.1). Therefore, in further applications, given a certain elic-
itation it would be possible to evaluate the proper arousal and valence levels whose
combination results in one of the 25 different regions of the CMA.

Given the significant role of Cardio-Respiratory (CR) coupling (see
Sect. 5.1.3) during the emotional stimulation, it is expected to increase the
accuracy of the emotion recognition system described in Sect. 5.1.1 [31] us-
ing CR information.

The features set obtained by means of monovariate analysis is only taken as ref-
erence and labeled as α. The proposed feature set, which is comprised of the union
set of α and the features coming from bivariate analysis (CRS) was labeled as β .
After the feature extraction phase, the PCA algorithm is applied to each dataset.
The reduction process is stopped when the cumulative variance reached 95%. The
discrimination results are shown in Tables 5.11 and 5.12 for the arousal and the
valence, respectively. The QDC performances are expressed in form of confusion
matrix calculated after 40 steps of cross-fold validation. The neutral elicitation is
labeled as N , the arousal levels as Ai with i = {1,2,3,4}, and the valence levels
as Vi with i = {1,2,3,4}. It is straightforward to notice that the inclusion of the
CR features improves the classification accuracy in both the arousal and valence
recognition problem.
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Table 5.12 Comparison of the valence levels recognition accuracy for the feature set α and the
proposed feature set β (from [38] “© Institute of Physics and Engineering in Medicine. Published
on behalf of IPEM by IOP Publishing Ltd. All rights reserved.”)

QDC Dataset N V1 V2 V3 V4

N α 96.8 ± 7.5 3.9±6.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

β 100 ± 0.0 3.1 ± 4.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

V1 α 3.2± 7.5 96.1 ± 6.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

β 0.0 ± 0.0 94.7 ± 4.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

V2 α 0.0 ± 0.0 0.0 ± 0.0 87.1 ± 11.1 0.0 ± 0.0 18.6 ± 11.2

β 0.0 ± 0.0 2.2 ± 4.5 91.7 ± 9.8 0.0 ± 0.0 0.0 ± 0.0

V3 α 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100 ± 0.0 0.0 ± 0.0

β 0.0 ± 0.0 0.0 ± 0.0 2.0 ± 9.8 90.1 ± 4.7 5.1 ± 9.8

V4 α 0.0 ± 0.0 0.0 ± 0.0 12.9 ± 11.1 0.0 ± 0.0 81.4 ± 11.2

β 0.0 ± 0.0 0.0 ± 0.0 6.3 ± 9.8 8.9 ± 4.7 94.9 ± 9.8

5.1.5 Instantaneous Bispectral Characterization of the Autonomic
Nervous System Through Point-Process Nonlinear Models

In this section, the developed point-process NARI model is validated in data gath-
ered from 10 healthy subjects undergoing a fast Tilt-Table protocol [47], i.e. postural
changes. The study, fully described in [30], was conducted at the Massachusetts In-
stitute of Technology (MIT) General Clinical Research Center (GCRC) and was ap-
proved by the MIT Institutional Review Board and the GCRC Scientific Advisory
Committee. After preprocessing the data with a point-process based R–R interval
(RR) error detection and correction algorithm [336], a preliminary model selection
analysis is also conducted for the experimental datasets. Specifically, using the first
5-min RR recordings, AIC analysis indicated 6 ≤ p ≤ 8 and 1 ≤ q ≤ 2 as optimal
orders. A representative tracking result is shown in Fig. 5.3, and its respective KS
plots and Autocorrelation plots are illustrated in Fig. 5.4 for the nonlinear model.
Almost all the obtained KS plots were inside the boundaries with small KS dis-
tances (i.e. 0.0811 ± 0.0532). The outcomes from an established nonlinearity test
[337] further validated that the nonlinear terms estimated by our model are not a
result of an over-fitting identification.

Once the optimal model has been established, the linear and nonlinear indices
are evaluated for all subjects and averaged the instantaneous (5 ms resolution) iden-
tification indices both within each “rest” and “tilt” epochs, and among all subjects.
The statistical difference between “rest” and “tilt” are expressed in terms of p-value
as computed by Rank-Sum test [338]. The results are shown in Table 5.13. It is
straightforward to notice that in terms of statistical difference between the rest and
tilt conditions, the bispectral features provide significative results in spite of the
discrimination obtained using the spectral ones.
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Fig. 5.3 Instantaneous
heartbeat statistics computed
from a representative subject
(N. 1) of the Tilt-Table
protocol using a NARI model.
The estimated μRR(t) is
superimposed on the recorded
R–R series. Instantaneous
heartbeat Power spectra in
Low frequency (LF), High
frequency (HF) and the
sympatho-vagal balance from
a representative subject of the
Tilt-Table protocol are shown
along with instantaneous
heartbeat Bispectral statistics
(from [47])

Fig. 5.4 KS plot (left) and
Autocorrelation plot (right)
from a representative subject
of the Tilt-Table protocol.
The dashed lines in all plots
indicate the 95% confidence
bounds (from [47])

5.1.6 Instantaneous Emotional Assessment Through Nonlinear
Point-Process Models

The emotion recognition system proposed in the previous sections, although effec-
tive, requires relatively long-time series of multivariate records. Reducing such a

Table 5.13 Results from the Tilt-Table experimental dataset, i.e. tilt (from [47])

Statistical index Rest Tilt-Table p-value

μRR (ms) 884.86 ± 96.82 777.21 ± 55.13 0.003849

σRR (ms) 21.54 ± 7.98 16.51 ± 4.41 0.068878

Power LF (ms2) 322.71 ± 258.96 322.27 ± 165.28 0.558337

Power HF (ms2) 192.67 ± 131.14 122.36 ± 65.01 0.141238

PowerBal. 1.35 ± 0.83 1.23 ± 1.14 0.739734

LL (106) 24.70 ± 18.51 30.04 ± 14.07 0.704275

LH (106) 168.90 ± 126.80 73.13 ± 22.52 0.055603

HH (106) 441.00 ± 378.98 172.17 ± 129.92 0.028176
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dimensionality would bring beneficial results in computational costs and number of
sensors needed. Moreover, these methods are not able to provide accurate character-
izations in short-time series (e.g., for each image showed for less than 10 seconds).

To overcome these limitations, the novel personalized probabilistic framework
based on the point-process theory (see Chap. 4) was applied to characterize the
instantaneous emotional state of an healthy subject through analysis and model-
ing of heartbeat dynamics exclusively. Due to the intrinsic non-linearity and non-
stationariety of the RR intervals, a specific nonlinear point-process model was de-
veloped. Features from an equivalent cubic input–output model were extracted from
the instantaneous spectrum, and bispectrum of the considered RR intervals, and
given as input to a support vector machine for classification [339].

The ECG signal is analyzed off-line to extract the RR intervals [24], then further
processed to correct for erroneous and ectopic beats with a previously developed
algorithm [320]. First, the presence of nonlinear behaviors in the heartbeat series is
tested by using a well-established time-domain test based on high-order statistics
[337]. The null hypothesis assumes that the time series are generated by a linear
system. The number of laps is set to M = 8, and a total of 500 bootstrap replications
for every test. Experimental results are shown in Table 5.14.

The nonlinearity test gave significant results (p < 0.05) on 27 out of 30 sub-
jects (see Table 5.14). In light of this result, a quadratic Nonlinear Autoregressive
Integrative (NARI) model was applied. Its main novelty relies on the possibility of
linking a regression on the derivative RR series based on an Inverse Gaussian (IG)
probability structure [30, 212, 213] to an equivalent nth-order input–output Wiener–
Volterra Model based on the Wiener-Volterra representation [32, 314], allowing for
the estimation of the nth-order polyspectra of the signal [310]. For this analysis, up
to the third-order input–output nonlinearities were considered to obtain the instan-
taneous estimation of the dynamic bispectrum and trispectrum [311, 312]. After a
transformation from the autoregressive to the input–output domain, from the lin-
ear and nonlinear terms of the NARI representation it is possible to extract crucial
cardiovascular instantaneous information related to the second-order (i.e., spectral)
and third-order (i.e., bispectral) statistics, respectively. Indices from a representa-
tive subject are shown in Fig. 5.5. Importantly, the NARI model as applied to the
considered data provides excellent results in terms of goodness-of-fit, with KS dis-
tances never above 0.056 (see Table 5.14), and the independence test verified for all
subjects.

Concerning the emotional pattern recognition, a two-class problem is consid-
ered for the arousal, valence and self-reported emotion: Low–Medium (L–M) and
Medium–High (M–H). The arousal classification was linked to the capability of the
point-process NARI methodology in distinguishing the L–M arousal stimuli from
the M–H ones, with the neutral sessions associated to the L–M arousal class. Re-
garding valence, the L–M was distinguished from the M–H valence regardless the
images belonging to the neutral classes. This choice is justified by the fact that the
neutral images can be equally associated to the L–M or M–H valence classes. For the
self-reported emotions, labels given by the self-assessment manikin (SAM) report
are used. After the visual elicitation, in fact, each subject is asked to fill out a SAM
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Table 5.14 Experimental results from the point-process NARI model: KS statistics, nonlinearity
test, and accuracy of classification of the SVM (in percentage)

Subjects KS dist. p-value Linear →
Nonlinear

Linear →
Nonlinear

Linear →
Nonlinear

1 <10−6 0.0362 65.45 → 63.64 78.45 → 78.46
√

84.37 → 81.25

2 <10−6 0.0397 73.13 → 74.63
√

83.61 → 85.25
√

79.03 → 85.48
√

3 <10−6 0.0321 66.15 → 58.46 87.69 → 92.31
√

75.00 → 73.44

4 <0.01 0.0372 47.83 → 60.87
√

80.00 → 90.77
√

54.69 → 68.75
√

5 <0.05 0.0250 70.91 → 69.09 89.23 → 95.38
√

70.31 → 60.94

6 <0.005 0.0470 70.31 → 67.19 79.69 → 90.62
√

80.95 → 87.30
√

7 <0.05 0.0331 70.18 → 64.91 94.74 → 98.25
√

72.13 → 78.69
√

8 <0.002 0.0335 56.52 → 67.39
√

85.94 → 92.19
√

84.13 → 82.54

9 <0.05 0.0474 59.57 → 53.19 61.54 → 67.69
√

62.50 → 75.00
√

10 <10−6 0.0302 67.74 → 61.29 87.30 → 85.71 78.69 → 70.49

11 <0.03 0.0311 73.21 → 76.78
√

81.25 → 90.62
√

79.36 → 80.95
√

12 <0.02 0.0216 64.62 → 63.08 79.69 → 87.50
√

68.25 → 66.67

13 <0.004 0.0306 53.23 → 72.58
√

87.69 → 81.54 57.81 → 75.00
√

14 <0.002 0.0463 81.36 → 83.05
√

76.92 → 84.62
√

82.81 → 87.50
√

15 <0.004 0.0130 72.73 → 67.27 87.69 → 86.15 73.44 → 75.00
√

16 <0.008 0.0168 51.79 → 66.07
√

73.85 → 60.00 65.62 → 78.12
√

17 >0.05 0.0464 80.65 → 82.26
√

91.80 → 88.52 86.88 → 78.69

18 <0.03 0.0298 70.59 → 67.65 78.46 → 73.85 79.69 → 90.62
√

19 <10−6 0.0357 68.33 → 61.67 93.85 → 80.00 70.31 → 75.00
√

20 <0.002 0.0514 65.71 → 67.14
√

73.84 → 76.92
√

60.94 → 70.31
√

21 <0.01 0.0550 62.50 → 71.43
√

76.92 → 93.85
√

87.50 → 90.62
√

22 >0.05 0.0309 62.72 → 72.88
√

96.92 → 92.31 75.00 → 73.44

23 <0.05 0.0395 92.16 → 84.31 78.46 → 75.38 96.87 → 92.19

24 <0.01 0.0427 78.57 → 71.43 83.08 → 87.69
√

78.12 → 79.69
√

25 <0.05 0.0455 61.02 → 64.41
√

68.75 → 76.56
√

69.84 → 73.02
√

26 <10−6 0.0558 61.67 → 66.67
√

58.06 → 72.58
√

58.06 → 74.19
√

27 >0.05 0.0315 76.81 → 72.46 90.77 → 80.00 85.94 → 82.81

28 <10−6 0.0494 79.63 → 74.07 84.37 → 75.00 87.30 → 82.54

29 <10−6 0.0463 73.44 → 70.31 78.12 → 78.12
√

66.67 → 73.02
√

30 <10−6 0.0347 55.88 → 63.23
√

57.81 → 67.19
√

59.68 → 74.19
√

test associating either a positive or a negative emotion to each of the seen images.
During this phase, the images were presented in a different randomized order with
respect to the previous sequence. For each of the three mentioned classifications,
80% of the available data was used for training the pattern recognition algorithm,
whereas the remaining 20% was associated to the test set. 40-fold cross-validation
steps were performed in order to obtain unbiased, Gaussian distributed classification
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Fig. 5.5 Instantaneous HRV indices computed from a representative subject (N. 12) using the pro-
posed NARI model during the passive emotional elicitation (two neutral sessions alternated to a
L–M and a M–H arousal sessions). In the first panel, the estimated μRR(t,Ht , ξ(t)) is superim-
posed on the recorded R–R series. Below, the instantaneous heartbeat Power spectra evaluated in
Low frequency (LF) and in High frequency (HF), the sympatho-vagal balance (LF/HF) and several
bispectral statistics are reported

results. Features are classified using a well-known Support Vector Machine [340].
Results are summarized based on recognition accuracy, i.e. the percentage of correct
classification among all classes.

First, five linear-derived features were used in the SVM classifier: the mean and
standard deviation of the IG distribution (corresponding to the instantaneous point
process definitions of mean and standard deviation of the RR intervals [30]), the
power in the low frequency (LF) band, the power in the high frequency (HF) band,
and the LF/HF ratio. Then, nonlinear features derived from the instantaneous bis-
pectral analysis, namely the mean and the standard deviation of the bispectral in-
variants, mean magnitude, phase entropy, normalized bispectral entropy, normalized
bispectral squared entropy, sum of logarithmic bispectral amplitudes, and nonlinear
sympatho-vagal interactions are added to the linear-derived feature set for further
classification. The recognition accuracy of the short-term positive-negative emo-
tions improves with the use of the nonlinear measures in 14 cases, with > 60% of
successfully recognized samples for all of the subjects and a maximum of 84% for
subject 23.

Concerning the L–M and M–H arousal classification, the recognition accuracy
of the short-term emotional data improves in 19 cases, with > 66% of successfully
recognized samples for all of the subjects and a maximum of 98% for subject 7.
Finally, the L–M and M–H valence classification the recognition accuracy of the
short-term emotional data is improved in 19 cases, with > 60% of successfully rec-
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Fig. 5.6 Fitting of
Butler–Volmer equation
(from [22])

Table 5.15 Butler–Volmer
coefficients (from [22]) α j0 (A/m2) RT (� × m2)

3.022 × 10−2 3.639 × 10−4 2358.78

ognized samples for all of the subjects and a maximum of 92% for subject 23 (see
Table 5.14).

5.1.7 Electrodermal Response Analysis and Sensorized Glove
Assessment

5.1.7.1 Textile Electrode Performance

Textile electrode performance assessment are presented for both textile electrode
characterization and EDR signals evaluation. Figure 5.6 shows the experimental
data fitting of the Butler–Volmer equation, from which α (transfer coefficient), j0
(exchange current density), and RT (charge transfer resistance) are estimated and
reported in Table 5.15. In addition, outside the region of validity of the Butler–
Volmer equation, a limiting current density JSAT is experimentally detected and
resulted to be 0.0103 [A/m2]. The goodness of fit is about of 0.969, calculated
by Adj(R2), which confirmed the good agreement between the theoretical and ex-
perimental data. Figures 5.7 and 5.8 report the magnitude and phase of the textile
electrode impedance calculated in the frequency bandwidth of the EDR, where the
impedance magnitude decreases as frequency increases and phase is pretty linear
implying a constant group delay and no distortion introduction. A comparative per-
formance evaluation of EDRs is performed by calculating the Spearman correla-
tion coefficient between signals coming from standard and textile electrodes placed
in crossed-finger configuration. More specifically, tonic and phasic components of
EDR are compared in addition to the whole signal. The choice of a non-parametric
index is justified by non-gaussianity of the data. In Table 5.16, the mean value and
the standard deviation of the correlation coefficient are reported.
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Fig. 5.7 Fit of the magnitude
of the textile electrode
impedance (from [22])

5.1.7.2 Electrodermal Response-Based Arousal and Valence Recognition

Data were acquired by means of the glove shown in Fig. 3.6 using only the index
and middle fingers. As reported in Sect. 5.1.1, experimental results are shown in
form of confusion matrix from the QDC classifier when only standard features are
used (α) rather than they are used in combination with features extracted from non-
linear methods (β). In Table 5.17 classification results of the four classes of different
arousal (A1, A2, A3 and A4) and the neutral class (N) are shown on the principal
diagonal of the matrix. It is obtained by the cross-validation technique, which is an
average of forty confusion matrix calculated on a randomly shuffled dataset. In each
element constituting the diagonal, it has been reported mean value and standard de-
viation of the classification result for that class, respectively. In all other elements
the error of classification is reported as well. Each principal component, obtained
from applying the PCA algorithm to the feature sets, accounts for a given amount

Fig. 5.8 Phase of the textile
electrode impedance
(from [22])

Table 5.16 Spearman correlation for tonic and phasic skin conductance, and whole EDRs in
crossed-finger configuration (from [22])

Spearman coefficient Tonic Phasic Total EDR

ρ 0.9570 ± 0.0241 0.9947 ± 0.0013 0.9604 ± 0.0311
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Table 5.17 Confusion matrix of QDC Classifier for Arousal level recognition, α indicates stan-
dard feature set with a PCA-reduction to 19 components; β indicates feature set, by nonlinear
methods, with a PCA-reduction to 7 components (from [22])

QDC Dataset N A1 A2 A3 A4

N α 95.7 ± 3.9 33.6 ± 18.7 33.6 ± 17.5 23.6 ± 16.2 20.7 ± 16.4

β 100 ± 0 10.0 ± 9.4 3.8 ± 2.1 5.3 ± 3.3 9.2 ± 12.5

A1 α 2.7 ± 3.8 26.4 ± 22.8 10.7 ± 13 5.7 ± 8.5 4.2 ± 11.4

β 0 ± 0 90.0 ± 9.4 0 ± 0 0 ± 0 0 ± 0

A2 α 0.9 ± 1.9 27.1 ± 13 25.7 ± 22 43.6 ± 26.4 30.7 ± 26.7

β 0 ± 0 0 ± 0 96.2 ± 2.1 0 ± 0 0 ± 0

A3 α 0.3 ± 1.1 3.6 ± 6.3 17.1 ± 15.8 11.4 ± 9.9 27.1 ± 18.5

β 0 ± 0 0 ± 0 0 ± 0 94.7 ± 3.3 1.6 ± 4.4

A4 α 0.3 ± 1.1 9.3 ± 16.9 12.8 ± 17.9 15.7 ± 19 17.1 ± 20.5

β 0 ± 0 0 ± 0 0 ± 0 0 ± 0 89.2 ± 13.8

of the total variance. The reduction process was stopped when the cumulative vari-
ance reached 95%. Therefore the number of principal components is different for
standard dataset and the joint dataset (see caption of the table for further details).

5.1.8 Eye Tracking and Pupil Area Variation

In this paragraph, a first study aiming at investigating eye tracking and pupil area
variation in response to stimulation using images form IAPS is reported. The as-
sociation between eye information and emotional image categories was studied by
using an innovative head-mounted eye tracking system (HATCAM, see Chap. 3)
able to acquire pupil variation together with eye gaze trajectory and time of fixation
as well, during exposition of subjects to affective images. The main goal was to iden-
tify characteristic features from pupil size variation and eye tracking and by means
of classification methods to distinguish the neutral from arousal elicited states. Let
Lij (x, y) be the set of eye-gaze points from the frame i of the image j , where x and
y are spatial coordinates. The recurrence quantification analysis (RQA) was applied
to the set Gm(x, y) defined as:

Gm(x, y) =
⋃

i

Lij (x, y) (5.1)

A subset of the healthy subjects participating the study described in Chap. 3 is con-
sidered. Specifically, ten subjects (nine males and one female) volunteered to partic-
ipate in the experiment. All subjects do not suffer from evident mental pathologies.
Six subjects had dark eyes and 4 had bright eyes. The average age was of 26.8 with
a standard deviation of 1.5. The experiment was performed in a room with illumina-
tion condition achieved by white neon lighting equally distributed in the room with
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Fig. 5.9 Example of the
points of gaze detected during
a neutral elicitation. Gaze
points are marked in red
(from [58, 59])

Fig. 5.10 Example of the
points of gaze detected during
a arousal elicitation. Gaze
points are marked in red
(from [58, 59])

a power of 50 lumens. Subjects were asked to sit on a comfortable chair in front
of a screen at a fixed distance of 70 cm. The HATCAM system was also equipped
with a chin-support in order to avoid unwanted head movements. They were pre-
sented with a sequence of images, gathered from the IAPS database, while wearing
headsets for acoustical insulation. The slideshow is comprised of 5 sessions of im-
ages N , A, N , A, N , where N is a session of 5 neutral images, and A are sets of 5
images having maximum level of arousal and the lowest valence, i.e. high negative
affective impact. During the experimental test all the subjects were asked to look at
the picture which appeared on the screen for 10 seconds. Each trial lasted about 25
minutes.

Figures 5.9 and 5.10 show the map of points of gaze over two sample images,
having neutral and the highest value of arousal, respectively. Gaze points are marked
in red. Already at glance, the neutral image (Fig. 5.9) shows a more sparse spatial
distribution of the gaze points than the arousal image, in which gaze points are
mainly concentrated in confined areas.

By way of illustration, Fig. 5.11 reports an example of neutral image also show-
ing the eye gaze pattern. No negatively valenced images are intentionally reported
because of high visual impact. In Fig. 5.12 a 3D representation of the eye gaze
points over a neutral image is reported. The z-axis represents how many times each
pixel was fixated during the presentation time of ten seconds. On each image, the
gaze points are reported. Already at glance, most of neutral images showed a more
sparse spatial distribution of the gaze points than the images with arousal, in which
gaze points were mainly concentrated into confined areas. A more quantitative anal-
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Fig. 5.11 Example of the
points of gaze detected during
a neutral elicitation. Gaze
points are marked up in red
(from [58, 59])

ysis was done extracting the above described features from the distribution of eye
gaze patterns and using them as input of the MLP classifier.

RQA analysis is used to quantify the gaze point distribution for each frame
of each image. All the extracted features from RQA and pupil area variation are
not normally distributed, as confirmed by the Lilliefors test [330], which returns
a p-value (p < 0.05) rejecting the null hypothesis of normality. Accordingly, the
Kruskal–Wallis test [331] is used, which is a non parametric one-way analysis of
variance by ranks for testing equality of population medians. Kruskal–Wallis is per-
formed on ranked data, so the measurement observations are converted to their ranks
in the overall data set. This test does assume an identically-shaped and scaled dis-
tribution for each group, except for any difference in medians. The null hypothe-
sis is stated as the probability that the samples come from identical populations,
regardless their distributions. In place of the mean of distributions, the median is
considered as a measure of location [341]. Having only two sets of features, one for
arousal and one for neutral, Kruskal–Wallis test returned the probability that the two

Fig. 5.12 3D representation of the gaze points over the image across the recurrence times each
pixel was fixated (from [58, 59])
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Table 5.18 Features
extracted from RQA using the
eye-gaze data (from [58, 59])

Features Neutral Arousal

RR∗ 0.0018 ± 0.0002 0.0019 ± 0.0002

DET∗∗ 0.7311 ± 0.0782 0.6373 ± 0.0798

TT∗∗ 2.5862 ± 0.9024 2.0345 ± 0.4368

L∗∗ 2.9184 ± 0.4564 2.6513 ± 0.3181

ENTR∗∗ 1.2592 ± 0.2306 1.0501 ± 0.2041

L∗∗
max 5.0000 ± 1.2800 5.0000 ± 1.0583

T ∗∗
max 1.9600 ± 0.3509 1.5600 ± 0.3501

Pupil 195.39 ± 19.689 197.27 ± 17.106

LGP∗∗ 480.0000 ± 208.5236 331.5000 ± 174.1567

MVA∗∗ 33.0000 ± 8.8630 27.0000 ± 7.8800

Table 5.19 Confusion
matrix of the k-NN classifier
using RQA and pupil size
features (from [58, 59])

Neutral Arousal

Neutral 90.2273 ± 5.9622 20.1136 ± 10.8881

Arousal 9.7727 ± 5.9622 79.8864 ± 10.8881

Table 5.20 Confusion
matrix of MLP classifier by
using the whole set of
eye-gaze and pupil size
features (from [58, 59])

Neutral Arousal

Neutral 93.9394 ± 4.2855 20.4545 ± 3.2141

Arousal 6.0606 ± 4.2855 79.5455 ± 3.2141

samples were not belonging to the same population, in other words, if there was a
statistical difference between the two samples.

Median and Median absolute deviation of all RQA features are reported in Ta-
ble 5.18. Statistical differences between neutral and arousal elicitation were found
(∗p < 0.01 and ∗∗p < 0.001).

In Table 5.19, the confusion matrix obtained from k-NN classifier after 40 fold-
cross-validation steps is shown.

In Table 5.20, the confusion matrix obtained from MLP classifier after twenty
fold-cross-validation steps is shown.

5.2 Modeling the Cardio-Respiratory Coupling During Arousing
Elicitation

All methodology proposed in this chapter for effective emotion recognition system
deals with monovariate and bivariate non-parametric and nonlinear techniques. In
fact, given the experimental data, i.e. ANS signals, several transformations were ap-
plied in order to obtain a reliable data-driven feature set able to train our automatic
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classification algorithm. Based on previous findings [31, 36, 46], a set of equations
model of CR coupling during sympathetic elicitation is proposed. This model is a
simply adaptation of the theories of weakly coupled oscillators [39–41] with exter-
nal driving. Accordingly, this model can constitute a general tool to be easily em-
bedded in other model-based emotion recognition systems. In a previous study [46],
the HRV nonlinear dynamics through the well-known DLE [282] was studied (see
Sect. 5.1.2). It has been found that, starting from positive values kept also during
the neutral elicitation sessions, the DLE became negative during the arousal session
with statistical significance (p < 0.05). Accordingly, it is reasonable hypothesize
a relationship between the DLE and the CR synchronization findings, especially
from a biophysics point-of-view. In fact, the physiological signals recorded during
the presentation of pictures with arousal contents present a clear loss of DLE (with
change of the sign) as well as a CR phase synchronization increase [36]. The con-
nection between DLE and synchronization is well-characterized for nonlinear and
also chaotic systems [39, 40]. In fact, if two or more nonlinear oscillatory processes
(e.g. heart beat and respiratory activity) are weakly coupled, they can become phase
synchronized and such a synchronization manifests itself in the Lyapunov spectrum
of the system [39]. Such a coupling leads to a decrease of the nφ1 −mφ2 differences.
Moreover, considering an external force (i.e. perturbation) applied to the systems,
the DLE is expected to be negative, as result of a stable value of the phase with
respect to the phase of the external force, in the time domain [40]. The novelty of
this model regards only the fact that it is possible to adapt the nonlinear model of
weakly coupled oscillators to the CR system relying on previously defined equa-
tions [38]. Let us consider the HRV as the representation in the Fourier domain of
the RR interval series, i.e., the weighted summation of complex functions having
frequencies fRR = ωRR/2π . Likewise, let us consider the respiration dynamics in
the frequency domain but with only one component, which corresponds to the res-
piratory frequency fRSP = ωRSP /2π . Therefore, the RR and RSP phase dynamics
can be written as follows:

˙φRR = ωRR + F(RR, t) (5.2)

˙φRSP = ωRSP + F(RSP, t) (5.3)

where F(RR, t) and F(RSP, t) stand for factors depending on the amplitude of RR
and RSP, respectively. When the two oscillators become coupled, then it is possible
to write:

{ ˙φRR = ωRR + FRR(RR, t) + εG(φRSP ,φRR,ψ)

˙φRSP = ωRSP + FRSP (RSP, t) + εG(φRR,φRSP ,ψ)
(5.4)

The simplest non-trivial case is given by G(φRR,φRSP ,ψ) = sin[(φRSP +
φRR) − ψ] = sin(ΔφCR), where Ω = dψ/dt represents the dominant oscillation
of an external stimulus (i.e. external force, perturbation). Eq. 5.4 becomes:

dΔφCR

dt
= {ωRR + ωRSP − Ω} + 2ε sin(ΔφCR) + {

F(RR, t) + F(RSP, t)
}

(5.5)
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This equation is similar to the simple Langevin equation describing phase locking
of periodic oscillators in the presence of noise [342]. In the presented experimental
framework, it is possible to consider a specific Ω = ΩGN = dψIAPS/dt assuming
its amplitude as function of the arousal level and, the frequency of elicitation of the

˙φRR and ˙φRSP systems as function of the valence level. It is possible to write the
formal solution of this equation assuming the {F(RR, t) + F(RSP, t)} to be Gaus-
sian δ-correlated: {F(RR, t) + F(RSP, t)}{F(RR, t ′) + F(RSP, t ′)} = 2Dδ(t − t ′).
Therefore, it could be solved by using the Fokker–Planck equation where the main
quantities that would characterize such a synchronization are, precisely, the aver-
aged frequency 〈 ˙ΔφCR〉 and the Lyapunov Exponent. Briefly, the Fokker–Planck
equation can be written as follows:

∂W

∂ΔφCR

= ∂

∂ΔφCR

[({ωRR + ωRSP − Ω} + 2ε sin(ΔφCR)
)
W

]

+ D
∂2W

∂Δφ2
CR

(5.6)

Taking the Fourier-representation of the stationary solution:

W(ΔφCR) =
∑

Wke
ikΔφCR (5.7)

It is possible to write the continuous-fraction representation of the first Fourier
mode:

W1 = (2π)−1

(2i/ε)({ωRR + ωRSP − Ω} − iD) + 1
(2i/ε)({ωRR+ωRSP −Ω}−i2D)+···

(5.8)

Therefore, the CR synchronization is mainly characterized by means of the aver-
aged frequency:

〈 ˙ΔφCR〉 = {ωRR + ωRSP − Ω} + 2πε Im(W1) (5.9)

and the Lyapunov Exponent:

〈
d ln δΔφCR

dt

〉
= −2πε Re(W1). (5.10)

5.3 Results from the Study on Bipolar Patients

According to the developed mania–depression model (see Sect. 3.2.2), the goal of
these studies is to test the ability of the developed methodologies and classifiers in
discriminating the mood states of bipolar patients.
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5.3.1 Long-Term Analysis

This analysis concerns with a long-term monitoring in a naturalistic environment
of three bipolar patients. According to the experimental procedure described in
Sect. 3.2.1, three patients enrolled for the preliminary validation phase of the PSY-
CHE project were included in this study. In detail, patient 1 (hereinafter BP1) is a
38 year-old female, patient 2 (hereinafter BP2) is a 55 year-old male, and patient
3 is a 37 year-old female (hereinafter BP3). Before entering the study, each patient
signed an informed consent approved by the ethical committee of the University of
Pisa.

The acquired signals are preliminarily processed, i.e. cleaned from the parts of
the signals with artifacts, segmented and filtered. Afterwards, the significant fea-
tures are extracted from each signal, combined in a unique feature space, and then
reduced using the PCA method. Finally, the features are classified using various
machine learning methods [234]. Several classifiers such as the linear discriminant
classifier (LDC), the quadratic discriminant classifier (QDC), a mixture of Gaussian
(MOG), the k-nearest neighbor (k-NN), the Kohonen self organizing map (KSOM),
the multi-layer perceptron (MLP), and the probabilistic neural network (PNN) were
tested. In order to choose the best classification algorithm, a statistical comparison
was performed using the analysis of variance (ANOVA) test [303] to test the null
hypothesis that no differences exist among all the classification algorithms. Since
this study deals with the long-term acquisition of ANS signals, the non-stationary
nature of such signals must be considered to perform a proper feature extraction
phase. Accordingly, features were extracted within moving time windows of length
W of the artifact-free signal. Each acquisition (see Table 5.21) can be seen as a con-
catenation of equally-long (i.e. W ) segments of biosignals. The multidimensional
points of the feature space associated to each acquisition have the same class label.
General statistics and specific features (hereinafter called standard features) as well
as features extracted from nonlinear dynamic techniques (e.g. entropy measures, re-
currence plot, etc.) were considered. A summary of the selected features extracted
from the RR and RSP signals is reported in Table 5.22. These measures were chosen
following concepts, guidelines and previous studies reported in the current literature
in both the psycho-physiological and bioengineering domains. Specifically, the RR
standard features were mainly suggested by the guidelines reported in [24, 98], and
the nonlinear measures were profitably used in my previous work [31].

Table 5.21 reports for each patient the initial and final time of each acquisition
along with the percentages of the signal cleaned from the movement artifacts. After
the MAR step, each signal was visually checked in order to identify physiological
(ectopic or arrhythmic beats) or algorithmic artifacts (i.e. errors due to misdetection
of the R-peaks). As it can be seen, good percentages of the retained signals were
achieved, thus confirming the robustness of the wearable system even during long-
term monitoring in a natural environment.

A class label was associated to each point in the feature space, according to
the model described in Sect. 3.2.2 and schematically reported in Fig. 3.5. Accord-
ingly, Table 5.23 reports the mood states of the patients during each acquisition.
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Table 5.21 Percentage of biosignals retained after the MAR step (from [54])

Subj. ID Original signal length Retained signal length % Retained

BP1-ACQ. 1 15h40m33s 10h20m8s 82.3453

BP1-ACQ. 2 16h30m6s 12h54m30s 70.3354

BP1-ACQ. 3 13h22m52s 11h36m24s 94.7302

BP1-ACQ. 4 15h17m29s 12h40m33s 79.1542

BP2-ACQ. 1 12h15m39s 8h22m16s 68.2755

BP2-ACQ. 2 15h14m3s 11h48m35s 77.5215

BP2-ACQ. 3 11h59m31s 10h5m36s 84.1692

BP2-ACQ. 4 10h16m26s 7h5m2s 68.9507

BP2-ACQ. 5 12h54m12s 10h40m42s 82.7556

BP2-ACQ. 6 16h19m50s 8h56m1s 54.7045

BP3-ACQ. 1 17h36m7s 15h51m40s 90.1105

BP3-ACQ. 2 14h49m5s 11h24m28s 76.9848

The original signal length column refers to the amount of data recorded for each acquisition until
the wearable system battery ran out. The retained signal length column refers to the amount of
artifact-free data retained for the post-processing analyses.

The mood states evaluated in this work are the remission-euthymia, (ES), mild de-
pression (MD), severe depression (SD), and mild mixed state (MS). Some descrip-
tive statistics about the most relevant indexes, also used for the classification, are
reported in Tables 5.24, 5.25, and 5.26. To average among all the values, the me-
dian values over all the acquisitions for each class were considered according to
the outcome of the Kolmogorov–Smirnov test for normality (p < 0.05, i.e. data
are not normally distributed). The values are expressed as median and its respec-
tive absolute deviation (i.e. for a feature X, X = median(X) ± MAD(X) where
MAD(X) = |X − median(X)|).

The dimension of this dataset was reduced by applying the PCA algorithm. Since
each principal component accounts for a given amount of the total variance, the opti-
mal reduced dimension was selected as the one which gives the cumulative variance
equal to 95% at least. It was found that a reduced dimension of 7 components is
sufficient to explain such a value of variance. In this study, only an intra-subject
classification was performed because of the small number of patients involved as
well as the small number of examples for some classes. Moreover, such an approach
falls within the area of personalized health care systems, which are preferred in the
field of mental disorders.

Confusion matrices from several commonly-used algorithms such as LDC, QDC,
MOG, k-NN, KSOM, MLP, and PNN are collected. Taking into account the ele-
ments of the main diagonal, i.e. rij with i = j , a statistical analysis was performed
for each i = j = {1,2} by means of the ANOVA test.

Concerning BP1 and BP2, the post-hoc analysis, using the Bonferroni correc-
tion, gave a significative p-value (p < 0.05) for both elements r11 and r22 showing
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Table 5.22 Selected features extracted from RR and RSP signals for the long-term bipolar patients
study (from [54])

Typology Biosignal Feature
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Table 5.23 Clinical labels associated to each bipolar patient during each long-term acquisition
(from [54])

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5 ACQ. 6

BP1 MD SD MD ES

BP2 MD MD MD MD MD ES

BP3 MS ES

that the best accuracy was obtained by means of the MLP neural network and, thus,
it is the most suitable classifier for the considered application, i.e. mood recogni-
tion/discrimination. Regarding the three confusion matrices of BP3, the MLP gave
comparable results (p > 0.05) in terms of r11 values obtained by means of KSOM,
and in terms of r22 values obtained by means of QDC. Otherwise, significative p-
values (p < 0.05) were obtained pointing out the MLP better accuracy. Note that
the k-NN, LDC, MOG and PNN gave poor results for all of the patients. In fact,
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Table 5.24 Selected descriptive statistics of the features from the bipolar patient BP1 (from [54])

BP1 features MD SD ES

μRR 0.7559 ± 0.0615 0.7507 ± 0.0826 0.8224 ± 0.1267

σRR 0.0317 ± 0.0172 0.0350 ± 0.0120 0.0685 ± 0.0250

RMSSD 0.0340 ± 0.0168 0.0424 ± 0.0181 0.0446 ± 0.0104

pNN50% 4.8128 ± 3.8649 3.9537 ± 2.4831 20.3980 ± 8.4363

TINN 0.2100 ± 0.1150 0.2825 ± 0.0975 0.3100 ± 0.1000

LF 2.6900 ± 2.2989 2.8248 ± 2.4202 0.0026 ± 0.0021

HF 3.6341 ± 2.9069 4.1721 ± 3.6044 8.4589 ± 3.1042

LF/HF 0.7388 ± 0.3289 0.6517 ± 0.2305 3.0415 ± 2.2429

ApEn 0.8640 ± 0.1186 0.8624 ± 0.1076 0.7077 ± 0.1145

DFA α1 0.9758 ± 0.1691 0.8489 ± 0.1670 1.3865 ± 0.2047

DFA α2 0.8288 ± 0.1798 0.6992 ± 0.1522 0.9661 ± 0.1615

Values are expressed as X = median(X) ± MAD(X)

Table 5.25 Selected
descriptive statistics of the
features from the bipolar
patient BP2 (from [54])

Values are expressed as
X = median(X) ± MAD(X)

BP2 features MD ES

μRR 0.7687 ± 0.0661 0.8192 ± 0.0988

σRR 0.0313 ± 0.0107 0.0319 ± 0.0136

RMSSD 0.0364 ± 0.0150 0.0274 ± 0.0129

pNN50% 3.4424 ± 2.3524 4.3256 ± 3.4817

TINN 0.2575 ± 0.0825 0.1800 ± 0.0650

LF 2.6926 ± 1.7427 4.4200 ± 3.2629

HF 2.4233 ± 2.0904 1.9436 ± 1.6271

LF/HF 1.0468 ± 0.5698 2.9063 ± 1.9288

ApEn 0.7891 ± 0.1226 0.7902 ± 0.1030

DFA α1 0.9322 ± 0.2053 1.2849 ± 0.2125

DFA α2 0.8364 ± 0.1575 0.7839 ± 0.1537

at least one of the two elements of the main diagonal of the confusion matrix was
< 67%.

The MLP results are shown in Tables 5.27, 5.28, 5.29, 5.30, and 5.31. An MLP
was implemented having three layers of neurons. The first layer, the input one, was
formed by 7 neurons, one for each of the reduced dimension of the feature space.
The third layer, the output one, was formed by 2 neurons, one for each of the consid-
ered classes to be recognized. The second layer, the hidden one, was constituted by
an empirically estimated number of neurons. Specifically, this number was chosen
as the superior limit of the half difference between the number of the input and out-
put neurons, i.e. 5. Insufficient recognition was obtained by considering the 3-class
problem (i.e. ES vs MD vs SD) on patient BP1.
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Table 5.26 Selected
descriptive statistics of the
features from the bipolar
patient BP3 (from [54])

Values are expressed as
X = median(X) ± MAD(X)

BP3 features MS ES

μRR 0.9698 ± 0.0244 0.7505 ± 0.0653

σRR 0.0979 ± 0.0108 0.0218 ± 0.0072

RMSSD 0.0606 ± 0.0062 0.0221 ± 0.0108

pNN50% 33.9872 ± 5.2543 1.0959 ± 1.0959

TINN 0.4375 ± 0.0500 0.1650 ± 0.0850

LF 0.0062 ± 0.0019 13.4740 ± 8.9033

HF 0.0013 ± 0.0006 7.6230 ± 4.9012

LF/HF 5.4873 ± 2.5745 1.7222 ± 0.9657

ApEn 0.6399 ± 0.0517 0.8115 ± 0.0922

DFA α1 1.5118 ± 0.0914 1.0785 ± 0.2299

DFA α2 0.9476 ± 0.1344 0.8489 ± 0.1629

5.3.2 Long-Term Analysis: The Role of History-Dependence

Although effective in characterizing patients’ mood states, the approach proposed in
the previous paragraph presents two main limitations: first, the temporal dynamics

Table 5.27 Intra-subject classification on BP3 data (from [54])

Conf. mat. MLP Class ES Class MS

Class ES 97.96 ± 2.27 3.24 ± 3.06

Class MS 2.04 ± 2.27 96.76 ± 3.06

Class ES: 126 examples. Class MS: 162 examples. Total: 288 examples

Table 5.28 Intra-subject classification on BP2 data (from [54])

Conf. mat. MLP Class ES Class MD

Class ES 68.31 ± 6.49 11.13 ± 3.23

Class MD 31.69 ± 6.49 88.87 ± 3.23

Class ES: 216 examples. Class MD: 412 examples. Total: 628 examples

Table 5.29 Intra-subject classification on BP1 data (from [54])

Conf. mat. MLP Class ES Class MD-SD

Class ES 74.58 ± 7.34 7.65 ± 2.05

Class MD-SD 25.42 ± 7.34 92.35 ± 2.05

Class ES: 131 examples. Class MD: 415 examples. Total: 546 examples
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Table 5.30 Intra-subject classification on BP1 data (from [54])

Conf. mat. MLP Class ES Class MD

Class ES 79.00 ± 7.12 12.00 ± 3.82

Class MD 21.00 ± 7.12 88.00 ± 3.82

Class ES: 131 examples. Class MD: 283 examples. Total: 414 examples

Table 5.31 Intra-subject classification on BP1 data (from [54])

Conf. mat. MLP Class ES Class SD

Class ES 93.75 ± 3.81 5.25 ± 3.84

Class SD 6.25 ± 3.81 94.75 ± 3.84

Class ES: 131 examples. Class MD: 132 examples. Total: 263 examples

of patient’s mood episodes is not taken into account (patients passing from depres-
sion to euthymia through mixed-state would be evaluated as patients passing from
mixed-state to depression through euthymia); second, patients experiencing more
than two mood states were assessed by performing comparative evaluations for each
couple of mood states, i.e., 2-class pattern recognition problem.

Here, a novel approach is employed to overcome such limitations. In particular,
patients’ mood changes are modeled as a discrete-time stochastic process, i.e., the
so-called Markov property [306–308]. Each recording is associated to a specific
mood state and its evaluation depends also on the previous state.

Once all HRV features are extracted, for each patient, the feature set related
to the kth acquisition can be defined as a multidimensional vector Xnk(Tm) rep-
resenting n features evaluated within the time window Tm. In order to consider
the process of mood states as Markov chain, i.e., Pr{Xnk = x|(Xn(k−1) = xk−1)}, a
simple rescaling procedure is applied. Specifically, for each feature vector the ma-
trix Ynk(Tm) = [Xnk(Tm) − median(Xn(k−1))]/MAD(Xn(k−1)) is calculated, where
MAD(X) = median(|X − median(X)|).

This model is justified by the hypothesis that the transition from a clinical mood
state to another is dependent on the past history of mood fluctuations. The obtained
feature set Ynk(Tm) is taken as input of the Leave-One-Out (LOO) procedure [343]
applied on a Support Vector Machine (SVM)-based pattern recognition [340]. nu-
SVM (nu = 0.5) having a radial basis kernel function with γ = n−1 was used.
A mood label, given by psychological clinical assessment, was associated to each
point in the feature space Ynk(Tm). All the classification results were expressed as
recognition accuracy in detailed confusion matrices [302].

To test this novel approach, another dataset of bipolar patients is taken into ac-
count. Details on the patients’ acquisitions as well as mood state information are
reported in Table 5.32.

Tables 5.33–5.40 show the recognition accuracy in terms of confusion matrices
obtained through the LOO procedure on nu-SVMs. Since no patients have a hy-
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Table 5.32 Clinical labels associated to each patient during each acquisition

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5 ACQ. 6

BP1 MC MC MC ES ES

BP2 MC MS MC MC

BP3 MC MC MC ES ES

BP4 DP DP DP DP DP ES

BP5 DP DP MC DP MC

BP6 MC MC MC ES ES

BP7 DP DP ES

BP8 MS MS DP DP DP ES

Mood states are associated to Euthymic state (ES), Mania (MC), Mixed-state (MS), and Depression
(DP)

Table 5.33 Confusion matrix
of SVM classifier for BP1 BP1 Mania Euthymic

Mania 88.64 11.36

Euthymic 29.20 70.80

Table 5.34 Confusion matrix
of SVM classifier for BP3 BP3 Mania Euthymic

Mania 97.78 2.22

Euthymic 11.11 88.89

Table 5.35 Confusion matrix
of SVM classifier for BP2 BP2 Mania Mixed-State

Mania 86.46 13.54

Mixed-state 3.75 96.25

Table 5.36 Confusion matrix
of SVM classifier for BP4 BP4 Depression Euthymic

Depression 99.68 0.32

Euthymic 8.05 91.95

pomaniac episode we assign only four labels: mania, depression, mixed state and
euthymia.

As shown in Table 5.33, the subjective ANS patterns of BP1 and BP3 are well-
distinguished reaching more than 88% of accuracy in recognizing the maniac state.
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Table 5.37 Confusion matrix
of SVM classifier for BP5 BP5 Depression Mania

Depression 74.87 25.13

Mania 3.77 96.23

Table 5.38 Confusion matrix
of SVM classifier for BP6 BP6 Mania Euthymic

Mania 93.98 6.02

Euthymic 7.49 92.51

Table 5.39 Confusion matrix
of SVM classifier for BP7 BP7 Depression Euthymic

Depression 97.47 2.53

Euthymic 13.33 86.67

Table 5.40 Confusion matrix
of SVM classifier for BP8 BP8 Mixed-state Depression Euthymia

Mixed-state 78.08 13.70 8.22

Depression 4.51 93.90 1.59

Euthymia 7.53 8.22 84.25

Regarding BP2, more than 86% and 96% of accuracy has been reached in distin-
guishing mania from mixed-state patterns.

The two mood patterns of BP4 result strongly different obtaining a recognition
accuracy as high as 99.68%.

Despite about 25% of the depressive patterns were confused with the maniacal
ones, the mania states of BP5 were recognized with more than 96% of accuracy.

Patient BP6 and BP7 showed accuracies greater than 86% in recognizing a severe
pathological behavior before reaching the euthymic condition.

Finally, BP8 showed mood swings among three states such as mixed-state, de-
pression, and euthymia, distinguished with satisfactory accuracies (see Table 5.40).

In order to generalize these results we tested the classifier when data were nor-
malized with respect to a casual mood status among the fluctuations or without
applying the normalization procedure. The accuracy resulted to be lower than the
proposed normalized approach.
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5.3.3 Long-Term Analysis: The Role of Nonlinear Heartbeat
Dynamics Through Multiscale Entropy Analysis

As reported in Chap. 2, many evidences in the literature on nonlinear dynamics of
physiological signals show that complexity is a marker of health status of biological
systems, and it is modulated by external stimuli, aging and presence of disease.
Here, the hypothesis that heartbeat nonlinear dynamics is modulated by different
pathological mental states is tested through MultiScale Entropy (MSE) analysis of
heart rate variability (HRV) series.

To this aim, a total amount of 16 night recordings, 6 out of which were associated
to the label depression, 5 to label hypomania, and 5 to label euthymia were analyzed.
All clinical states have been evaluated according DSM-IV-TR criteria [344] and all
patients were recruited in the out-patient university clinic of Strasbourg, France. The
night-recordings of HRV series were acquired using the comfortable sensing t-shirt
with integrated fabric electrodes and sensors developed in the frame of the European
project PSYCHE (see Chap. 3).

MSE was calculated on each acquisition of each patient estimating up to the
twentieth scale factor. For all scale factors, results are expressed as median and
its respective absolute deviation (i.e. for a feature X, X = median(X) ± MAD(X)

where MAD(X) = median(|X − median(X)|)). The m value is fixed for all cases to
the standard value m = 2. The objective rmax value has been taken as reference for
the MSE radius estimation.

Kruskal–Wallis test revealed statistical differences between the groups at all
scales. In particular, when scale is equal to 1 and for scale values comprised between
7 and 19, the null hypothesis of having no difference was rejected with p < 0.01.
At scales 2, 3, 4 and 6 the null hypothesis was rejected with p < 0.05, while at the
remaining scale 5, the obtained p-value is less than 0.06.

Moreover, the Complexity Index (CI) [211] of each series was evaluated as the
area under the curve of the MSE graph. Here, CI is calculated on short time scales,
from 1 to 8. Results of the CI index for the three groups (euthymic, depressed,
hypomanic) are as follows:

• Euthymic State: 15.18 ± 3.85
• Depressed State: 11.71 ± 1.50
• Hypomanic State: 9.14 ± 1.18

The Kruskal–Wallis test revealed statistical differences between the three mood
states on both short (p < 0.03) and higher time scales (p < 0.001).

Therefore, it has been demonstrated that complexity level can be used as marker
of mental states being able to discriminate among depressive, hypomaniac and eu-
thymic states, according to findings from the current literature that the healthier the
higher complexity.
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Table 5.41 Clinical labels
associated to each patient
during each acquisition
(from [54, 55])

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5

BP1 Euth

BP2 Depr

BP3 Depr Euth

BP4 Depr Depr

BP5 Depr Depr Depr Depr Euth

5.3.4 Short-Term Analysis

In this study, the goal was to discriminate depressive from euthymic ANS patterns
using the short-term emotional-related elicitation protocol described in Sect. 3.2.1.
Five patients were monitored over a period up to 90 days within the European
funded project PSYCHE. Details on patient’s acquisitions and associated mood
states, either euthymia (Euth) or Depression (Depr), are reported in Table 5.41.

5.3.4.1 Cardiovascular Assessment

Using the short-term data, experimental results concerning the discrimination of de-
pressive and euthimic cardiovascular patterns, which were obtained by HRV analy-
ses [57], are reported here.

Accuracies obtained by using the standard analysis were compared with those
obtained using the novel point-process nonlinear model proposed in Sect. 4.6.1.

The engagement of the nonlinear terms of the NARI model was further validated
by performing a comparative analysis demonstrating how the inclusion of instan-
taneous HOS features indeed improves the accuracy and reduces the uncertainty
(variance) in recognizing ANS depressive patterns. Experimental results are shown
in terms of statistical inference and confusion matrices [345].

For each subject, the NARI model was applied to the RR series detected from
the recorded ECG. The optimal model order was chosen by means of the Akaike
Information Criterion (AIC) [30] applied to the first 5-min RR recordings. The AIC
analysis indicated 6 ≤ p ≤ 8 and 1 ≤ q ≤ 2 as optimal orders. All the KS distances
were < 0.05 (range: 0.0345 ± 0.0068). No less than 97% of the autocorrelation
points were inside the boundaries.

The linear and nonlinear indices, described in Sect. 4.6.3, were evaluated for
all of the patient’s acquisition. The instantaneous identification (5 ms resolution)
was averaged within a time window of 1 second. Representative tracking results
are shown in Figs. 5.13 and 5.14 for BP1 (Euthymic phase) and BP2 (Depressive
phase), respectively.

A preliminary statistical analysis was performed in order to evaluate the feature
contribution as intra-subject analysis. Statistical inferences were performed to test
the null hypothesis of no significative differences occurring among different mood
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Fig. 5.13 Instantaneous HRV statistics computed from Subject 1 during the euthymic state. The
estimated μRR(t,Ht , ξ(t)) is superimposed on the recorded RR series. Following below, the in-
stantaneous heartbeat standard deviation, the instantaneous heartbeat spectral Low frequency (LF)
and High frequency (HF) powers and their ratio. Finally, bottom rows report on the three bispectral
statistics

Fig. 5.14 Instantaneous
HRV statistics computed
from Subject 2 during the
depressive state. The
estimated μRR(t,Ht , ξ(t)) is
superimposed on the recorded
RR series. Following below,
the instantaneous heartbeat
standard deviation, the
instantaneous heartbeat
spectral Low frequency (LF)
and High frequency (HF)
powers and their ratio.
Finally, bottom rows report on
the three bispectral statistics

states. Such analyses were performed on patients having more than one acquisition,
i.e., BP3, BP4, and BP5. First, the whole feature pattern (linear and nonlinear) was
treated as multivariate distribution and tested by means of non-parametric multivari-
ate analysis of variance (npMANOVA). Such a test revealed statistical differences
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among acquisitions for all the three patients (BP3: p < 10−6; BP4: p < 0.005; BP5:
p < 10−6). No significative conclusions can be drawn from this analysis, which is
therefore insufficient for an effective discriminative task.

As a consequence, further monovariate statistical analyses were performed to
evaluate difference among acquisitions for each of the extracted features. Non-
parametric Kruskal–Wallis and Rank-Sum tests were used to investigate the inter-
subject variability among the 5 acquisitions of BP5 and the 2 acquisitions of BP3
and BP4, respectively. These results are summarized in Tables 5.42, 5.43, and 5.44.
All the features coming from the linear (L) and nonlinear (NL) coefficients were
taken into account. Significative p-values in all cases but the LF/HF ratio of BP4
have been obtained. Remarkably, this is the only patient having more than one ac-
quisition having all the same mood label.

Moreover, an inter-subject analysis was performed to reveal the mood pattern,
which would be in common among patients. Discrimination of the mood states was
performed using the well-known MLP Neural Network [346]. All results are ex-
pressed in the form of confusion matrix, after 40-fold cross validation.

The MLP accuracy was compared by creating two feature sets. The first set, α,
is composed by μRR(t,Ht , ξ(t)), σRR , and the spectral indices LF, HF, and LF/HF.
The second set, β , includes the nonlinear LL, LH, and HH indices which will be
joined to the α set for future evaluations.

Looking at the values in Tables 5.42 and 5.43, it is straightforward to notice that
the inclusion of BP4 and BP5 strongly increases inter-subject variability.

In order to evaluate the effects of such an uncertainty, reflected on mood state
classification, a comparative classification analysis was performed considering ei-
ther three or five patients within the input feature set.

In all cases, in order to take into account the imbalanced number of available
examples per class, two different learning rates were considered in the MLP training
phases giving the euthymic examples three times more penalty with respect to the
depressive example ones.

MLP results using the NARI model are summarized in Tables 5.45 and 5.46. In
particular, Table 5.45 shows the recognition accuracy by considering three patients
only, namely BP1, BP2 and BP3. In this case, better results were obtained using the
joined dataset α + β . Such an improvement is consistent with all considered classes
(mood states), reaching more than 97% of correct recognition.

Table 5.46 shows the recognition accuracy by considering all five subjects. Using
dataset α, correct recognition of the euthymic state is below 75%, whereas using
dataset α + β accuracy increases up to 99%. To further justify the point-process
NARI approach, the linear and nonlinear features of the α and β sets were estimated
by more standard AR models (see Sect. 4.3.1.1) and then tested the MLP capability
of mood discrimination. The relative confusion matrices are shown in Table 5.47. In
this case, neither using the α feature set nor using the joined α + β set a sufficient
satisfactory recognition was reached.
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Table 5.43 Results for the intra-subject Euthymia–Depression Discrimination

BP4 Derivation ACQ1 (Depr) ACQ2 (Depr) p-val.

μRR (ms) L-NL 734.46 ± 15.94 655.34 ± 5.92 <10−6

σRR (ms) L-NL 146.39 ± 67.50 39.86 ± 7.62 <10−6

LF (ms2) L 197.54 ± 186.57 23.90 ± 18.67 <10−6

HF (ms2) L 53.42 ± 30.45 18.47 ± 9.49 <10−6

LF/HF L 3.16 ± 2.86 1.29 ± 1.16 >0.05

LL (106) NL 65.83 ± 53.67 17.35 ± 11.52 <10−6

LH (106) NL 83.46 ± 58.22 75.44 ± 34.19 <10−6

HH (106) NL 121.09 ± 64.45 124.64 ± 71.65 <10−6

p-values are obtained from the Rank-Sum test

Table 5.44 Results for the intra-subject Euthymia–Depression Discrimination

BP3 Derivation ACQ1 (Depr) ACQ2 (Euth) p-val.

μRR (ms) L-NL 632.61 ± 9.44 628.13 ± 18.84 <10−6

σRR (ms) L-NL 304.79 ± 97.86 237.73 ± 104.25 <10−6

LF (ms2) L 11.45 ± 10.14 104.77 ± 86.99 <10−6

HF (ms2) L 42.69 ± 21.98 107.00 ± 53.63 <10−6

LF/HF L 0.27 ± 0.23 0.99 ± 0.75 <10−6

LL (106) NL 3.92 ± 2.92 35.54 ± 27.75 <10−6

LH (106) NL 12.61 ± 9.88 83.34 ± 48.59 <10−6

HH (106) NL 67.53 ± 48.78 136.46 ± 73.80 <10−6

p-values are obtained from the Rank-Sum test

Table 5.45 Results for the
inter-subject
Euthymia–Depression
Discrimination in patients
BP1, BP2, and BP3

MLP-3 patients Dataset Euthymia Depression

Euthymia α 93.26 ± 2.98 5.88 ± 1.99

α + β 99.33 ± 0.46 2.41 ± 0.94

Depression α 6.74 ± 2.98 94.12 ± 1.99

α + β 0.67 ± 0.46 97.59 ± 0.94

5.3.4.2 Electrodermal Response Assessment

EDR changes are exploited for assessing the bipolar patient’s mood state during
the emotional stimulation. Patients are identified with the abbreviations Pz01, Pz02
and Pz03. Pz01 and Pz03 performed the experiment two times, while the patient
Pz02 performed the experiment five times. Details on the clinical evaluations of
the patients are reported in Table 5.48. The extracted features considered were the
mean value, maximum value and Area Under the Curve (AUC) of the driver signals
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Table 5.46 Results for the
inter-subject
Euthymia–Depression
Discrimination in all patients

MLP-5 patients Dataset Euthymia Depression

Euthymia α 74.44 ± 18.21 1.09 ± 1.92

α + β 99.56 ± 0.39 0.01 ± 0.06

Depression α 25.55 ± 18.21 98.91 ± 1.92

α + β 0.44 ± 0.40 99.98 ± 0.06

Table 5.47 Results for the
inter-subject
Euthymia–Depression
Discrimination using standard
techniques in all patients

MLP-5 patients Dataset Euthymia Depression

Euthymia α 25.00 ± 25.32 15.50 ± 16.00

α + β 32.50 ± 31.11 21.50 ± 19.42

Depression α 75.00 ± 25.32 84.50 ± 16.00

α + β 67.50 ± 31.11 78.50 ± 19.42

within a window response of 5 s. AUC is conceived as an optimum indicator of sym-
pathetic activity [247]. An intra-subject statistical inference analysis was performed
by means of non parametric tests due to the non-gaussianity of the sample sets.
Concerning subjects Pz01 and Pz03, the features of each pair of acquisition were
compared by a Rank-Sum test to show whether the data belonged to the same popu-
lation or not. The Subject Pz02 had more than two available acquisitions. Therefore
a multiple comparison analysis applying the Mann–Whitney U -test with a Bonfer-
roni adjustment for every pair of Pz02’s acquisitions was carried out. The procedure
was repeated for both the tonic and phasic driver features. The classification process
was used to perform a recognition of the clinical mood states (i.e. depression state,
mixed-state and euthymic state). In order to perform the classification, a k-Nearest
Neighbor classifier was used.

The clinical evaluations of the patients under examination are shown in Ta-
ble 5.49.

The Mann–Whitney test was performed on the features extracted from the pha-
sic driver signal, in order to compare the two acquisitions of both patients Pz01
and Pz03. A p-value less than 10−6 showing a strong statistical difference was ob-
tained. A Kruskal–Wallis test was performed on the acquisitions of subject Pz02
showing that the null hypothesis of equal medians among the acquisitions can be

Table 5.48 Clinical evaluations of the patients (from [55])

Acq.1 Acq.2 Acq.3

Mood state Anxiety Mood state Anxiety Mood state Anxiety

Pz01 Depressed High Euthymic Low × ×
Pz02 Mixed-state High Mixed-state Low Depressed High

Pz03 Mixed-state High Depressed Low × ×
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Table 5.49 Clinical
evaluations of the patients
(from [55])

Acq.4 Acq.5

Mood state Anxiety Mood state Anxiety

Pz01 × × × ×
Pz02 Depressed Low Euthymic Low

Pz03 × × × ×

Fig. 5.15 Linear regression of tonic-driver-AUCs of Pz02 (from [55])

rejected with a p-value less than 10−6. A post-hoc test using Bonferroni adjustment
was carried out to investigate on all pairwise comparisons. All the pairs resulted
statistically different with a p-value less than 10−6. Similar results were achieved
analyzing the features extracted from the tonic driver signal of patients Pz01, Pz03.
It was obtained, indeed, a strong statistical difference with a p-value less than 10−6.
Kruskal–Wallis test on the acquisitions of subject Pz02 showed that at least one
acquisition was statistically different from the others, while the post-hoc test with
Bonferroni adjustment showed that there were statistically significant differences
among all pairs of acquisitions (with a p value less than 10−6) except for the pair
Acq.4 vs Acq.5 (p = 0.108). Moreover, among the features, AUC of the tonic driver
(tonic-driver-AUC) showed an interesting behavior across the different acquisitions
on Pz02. Figure 5.15 reports the median tonic-driver-AUC versus the different ac-
quisitions. Already at a glance it is worthwhile noting a linear monotonic trend,
which is confirmed by a linear regression analysis which provided a correlation co-
efficient of 0.9886 and a p-value of 0.0015. An inter-subject analysis was performed
grouping those acquisitions with the same clinical label. The features corresponding
to the three groups, i.e. Depressed, Mixed-state and Euthymic, were used as dataset
for a pattern recognition by means of the k-NN classifier. More in detail, k-NN clas-
sifier was used as supervised machine learning to solve the two class problem for
the recognition of Euthymic vs Depressed (see Table 5.50), Euthymic vs Mixed-
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Table 5.50 Confusion
matrix of Depression state vs
Euthymic state (from [55])

Euthymic Depressed

Euthymic 90.50 ± 1.89 11.69 ± 1.54

Depressed 9.50 ± 1.89 88.31 ± 1.54

Table 5.51 Confusion
matrix of k-NN classifier for
Mixed-state vs Euthymic
state (from [55])

Euthymic Mixed-state

Euthymic 76.22 ± 3.11 18.73 ± 3.24

Mixed-state 23.78 ± 3.11 81.27 ± 3.24

Table 5.52 Confusion
matrix of k-NN classifier for
Mixed-state vs Depressed
state (from [55])

Depressed Mixed-state

Depressed 82.08 ± 2.82 16.91 ± 2.37

Mixed-state 17.92 ± 2.82 83.09 ± 2.37

state (see Table 5.51) as well as Depressed vs Mixed-state (see Table 5.52), it is
worthwhile noting that all classifications are greater than 76%.



Part IV
Conclusions and Future Works

In this final part, conclusions and future directions of research are drawn in agree-
ment with the experimental evidences found out from the studies on healthy subjects
and bipolar patients.



Chapter 6
Conclusions and Discussion on Mood and
Emotional-State Recognition Using the
Autonomic Nervous System Dynamics

This book demonstrated how electrophysiological signals related to the auto-
nomic nervous system (ANS) dynamics can be source of reliable and effective
markers for mood and emotional state recognition.

It has been pointed out that the methodological approach for signal processing
and status classification is a crucial step to obtain significative performances. In all
of the presented studies, standard signal processing techniques as well as nonlinear
measures have been taken into account. According to the significant complex be-
havior with strong nonlinear and nonstationary dynamic properties of ANS signals,
such nonlinear measures have been proven as important quantifiers of cardiovas-
cular control dynamics with prognostic value in both population of healthy subjects
and patients. Therefore, these measures should be always taken into account in ANS
modeling and analysis [137].

Accordingly,

it is reasonable to represent the cardiovascular system as a nonlinear dynami-
cal system and study it by means of “perturbation” analysis.

It means that the analysis will take into account observations during initial stable
conditions (i.e. during rest) and after fast perturbations (i.e., the emotional elicita-
tion). As a matter of fact, high accuracies can be achieved only retaining informa-
tion on the nonlinear dynamics of such physiological systems. The use of nonlinear
system-derived approaches was very important for an effective emotion recognition,
in both arousal and valence recognition.

Healthy subjects as well as patients with mood disorders were considered in order
to drawn these considerations.

G. Valenza, E.P. Scilingo, Autonomic Nervous System Dynamics for Mood and
Emotional-State Recognition, Series in BioEngineering,
DOI 10.1007/978-3-319-02639-8_6, © Springer International Publishing Switzerland 2014
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Studies on Healthy Subjects Thirty-five healthy subjects were presented with
sets of elicitation images gathered from the IAPS database according to a specific
protocol (see Chap. 3). Such affective stimuli were characterized by the Circumplex
Model of Affects (CMA) [89], in which the affective states are conceptualized by
the terms of valence and arousal. Valence represents the extent to which an emotion
is perceived as being pleasant or unpleasant. Arousal indicates the intensity of the
emotion.

First, the possibility of recognizing the elicited five levels of arousal (including
one neutral level) and five levels of valence (including one neutral level as well) by
using ANS signals such as HRV, RSP, and EDR has been shown. The results demon-
strated that the classification through standard features was acceptable only for the
neutral class, while all arousal and valence classes were misclassified. These results
highlight that standard feature sets were insufficient to discriminate close levels of
arousal or valence. On the contrary, when features extracted from nonlinear dynamic
methods were considered, the classification process was able to recognize each level
of arousal and valence as well as the neutral class. Accordingly, good classification
results are only supported by nonlinear derived features, providing an important
contribution to the state of the art, where usually affective state recognition is per-
formed with much less granularity. Results are very satisfactory, although in order to
have more statistical significance the number of subjects should be increased. This
problem is partially overtaken doing a cross validation in the classification process,
i.e. randomizing the subjects for training and test sets. It makes the classification
independent from the sequence of the subjects involved. In addition the 40 steps of
cross validation make the distributions of the results Gaussian, and explainable with
only two parameters (mean and variance) as reported in all the tables. When the clas-
sifier is applied to features extracted from nonlinear dynamic methods, results are
much higher than those standards. In addition, full successful recognition (100%)
was obtained on the Neutral and Arousal1 for arousal level recognition and on the
Valence3 for valence level recognition. A possible explanation of these results could
be found in the intrinsic nonlinear behavior of the physiological responses, although
the issue is inevitably open. The literature reports many attempts to find out corre-
spondences between nonlinear dynamic systems and physiological responses, but
often they are only mathematical tricks far from a clear physiological interpretation
[32, 347]. These findings only demonstrated the importance of nonlinear tempo-
ral patterns for emotion recognition [348, 349], but without claiming any specific
theory. Moreover, they are consistent with Scherer’s theory, which argues that syn-
chronization of periodic systems is fundamental to emotion, [350].

Aiming at deeply investigating the ANS nonlinear dynamics, techniques derived
from nonlinear system identification and chaos theory were applied to identify pat-
terns and mechanisms that are not detectable with traditional statistics based on
linear models. It is already documented in the literature that HRV exhibits chaotic
behavior dynamics in rest conditions. It has been pointed out how ApEn decreases
when switching from neutral to arousal sessions, and DLE is positive for all the
neutral sessions and negative during arousal sessions. A statistical analysis has been
performed in order to study the statistical significance of the changes in ApEn and
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DLE across all sessions and within similar sessions. Moreover, the percentage of
subjects exhibiting a more complex behavior in the HRV is significantly higher dur-
ing all the neutral sessions. Statistical results showed that all the samples of the
neutral sessions, as well as of the arousal sessions, can be considered originating
from the same distribution, but all neutral sessions considered as a whole and the
arousal sessions considered as a whole differ significantly. These results deserve to
be discussed. First of all, several physiological adaptation phenomena are involved
during the affective elicitation, so the system could react in a similar way during the
switching between a neutral and an elicitation with low arousal or high arousal. It
has been previously demonstrated how it is necessary to consider the HRV along
with both the respiration activity and the electrodermal response in order to well
characterize different (and similar) affective elicitation (see [31]). Concerning the
SDNN, no statistical difference (p > 0.05) was found, meaning that ApEn findings
depend only on the change in the complexity behavior and not on the SDNN value
used for the calculation of the ApEn itself.

These encouraging results led to extend the study of nonlinear dynamics also
for the CR systems interactions. In fact, nowadays, it is well accepted that the car-
diovascular system and its relationship with respiration is truly a complex system.
Accordingly, a methodology able to characterize the nonlinear interaction of the car-
diovascular and the respiratory system in a multivariate manner, even for noisy and
non-stationary data, was chosen. Specifically, since two or more weakly coupled
nonlinear oscillatory processes can become phase locked, the cardio-respiratory
synchronization was studied in the mentioned protocol involving healthy subjects
during an affective emotional visual elicitation protocol. CR synchronization was
quantified by using the concept of phase synchronization of chaotic oscillators, i.e.
the CRS. This technique allowed estimating the synchronization ratio m : n as the
presence of n heartbeats in each m respiratory cycle. A clearly reduced synchro-
nization was observed during the presentation of neutral images and an increased
synchronization during the presentation of images with significant arousal contents,
although no significant statistical differences could be gleaned from among differ-
ent arousal levels. The result remained stable and congruent throughout all subjects
and was not affected by gender. This new result can truly improve the knowledge
of the physiology behind affective elicitation and emotional processing. In fact,
changes in synchronization activity seem to agree with other kinds of stimulation
[43, 145, 351, 352]. The effectiveness of the presented visual stimuli was ensured
by the statistically significant changes in the sympatho-vagal balance (i.e. LF/HF ra-
tio). More specifically, the coherent changes of this value with the affective stimuli
suggest that the findings on the synchronization are reasonably related to the affec-
tive experimental setup excluding habituation phenomenons. For the sake of com-
pleteness, standard morphological features were also calculated from HRV such as
MeanRR, SDRR, RMSSD, pNN50. No statistical differences were found across the
sessions. Similar patterns in cardiovascular findings among different emotional elic-
itation are not new in the current literature (e.g. see [353]). Consistently with some
prior investigations, in fact, the similarity in cardiovascular responses may reflect a
generalized emotional response to the affective stimuli. From a physiological point
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of view, the outcome of this work could be related to the literature which reports
on the mechanisms of short-term cardio-respiratory coupling [34, 354–356]. It is
thought to be due to the following mechanisms: reflection of respiratory blood pres-
sure waves via baroreceptor feedback loop in the heart rate [34], respiratory phase-
dependent modulation of baroreflex information processing, and central coupling
between respiratory neurons on the one hand, and sympathetic and/or parasympa-
thetic neurons on the other hand. Mainly, these mechanisms refer to the Respiratory
Sinus Arrhythmia (RSA) [34]. Moreover, it was found that the activity and rhythm
of certain sympathetic efferents are closely related to the cardiovascular–respiratory
rhythm [33]. Accordingly, an increase of synchronization during arousal elicitation
with respect to the neutral elicitation, in which sympathetic activity should be domi-
nant (see the LF/HF ratio results in Table 5.9) was found. From an engineering point
of view, cardio-respiratory synchronization could be profitably used as an important
multivariate marker to be included in a feature set for discriminating between neutral
and arousal elicitation in the field of affective computing. In fact, it has been demon-
strated that a combination of features coming from multiple physiological signals
increases performance of emotion recognition systems [92, 180, 259, 349]. More-
over, considering the nonlinear behavior and interaction of the physiological system
truly improves the accuracy of such systems [31, 357]. It is worthwhile noting that
the results of this work are in agreement with the current literature supporting the
hypothesis that temporal patterns are important for emotion recognition [349]. In
principle, it is possible to apply such an approach to any stimulus acting to the CR
systems that produces a sympathetic activation (a statistically significant sympa-
thetic activation was found during the arousal sessions by evaluating changes in the
sympatho-vagal balance, i.e., LF/HF ratio, of the HRV [36]).

Moreover, based on the experimental evidences on DLE and CRS, a theoretical
nonlinear model on cardiopulmonary oscillators has been reported. It relies on the
previously defined theory of weakly coupled oscillators [39–41] driven by exter-
nal force. It has been hypothesized that the external force is given to the CR sys-
tems through the ANS activity modulation on the sympathetic and parasympathetic
nerves. Although chaotic behavior cannot be demonstrated in such a bio-system
because of the strong physiological noise, the theory reported here aims at giv-
ing an useful tool for the assessment of the CR phase synchronization and the DLE
changes in HRV. These experimental findings and theorization are in agreement with
the chaos–destroying synchronization, i.e., when a periodic external force acts on a
chaotic system destroys chaos and a periodic regime appears [358]. In the case of an
irregular forcing, the driven system follows the behavior of the force [359], which
has been experimentally demonstrated by the evaluation of the ANS response as a
whole system [31]. In such a case, in fact, the CR system seems to react to the vi-
sual elicitation by producing ANS linear and nonlinear markers able to follow the
stimulus changes.

In order to improve the accuracy of the previously developed emotion recog-
nition system, bivariate measures related to the CR phase synchronization, were
combined to the monovariate measures (feature set α). The obtained feature space
dimension was reduced using the PCA method and a QDC algorithm performed the



6 Conclusions and Discussion on Mood and Emotional-State Recognition 131

pattern recognition phase. Also in this case, results are very satisfactory. Despite
the reference set α, the proposed feature set β gave a recognition accuracy grater
than 90% for all classes in both arousal and valence discrimination. Moreover, the
performed cross validation process, i.e. randomizing the subjects for training and
test set, ensured that the classification was independent from the specific subjects
involved. Although the proposed methodology definitely goes beyond the state-of-
the-art, less performances in identifying one arousal class, i.e., the A1, and two
valence class, i.e., V 1 and V 3 were reported. From the literature, it is possible to
consider the CMA plane as an orthonormal space in which each point is a combi-
nation of arousal and valence values. Hence, these classification findings allowed
the finely identification of 25 regions. Although this is a great achievement, it is
noteworthy mentioning that they may not represent 25 different emotional states.

Considering the healthy subject assessment during the presentation of a single
image, a novel methodology (the point-process NARI model) able to assess in an
instantaneous, personalized, and automatic fashion whether the subject is experienc-
ing a positive or a negative emotion was presented. Remarkably, the NARI model
was validated with an experimental ECG dataset with healthy subjects undergoing
a tilt-table procedure [47]. Results demonstrate that the NARI algorithm confirms
the characterization of the tilt effect on standard and instantaneous indices of the
sympatho-vagal balance, while simultaneously tracking significant changes in the
inherent nonlinearity of heartbeat dynamics with tilt. Moreover, the NARI model
was applied on the recognition of two levels, i.e. low-medium and medium-high, of
arousal and valence in order to performed for a comprehensive characterization of
the emotional status. As mentioned above, such assessments were performed con-
sidering only the cardiovascular dynamics through the RR interval series on short-
time emotional stimuli (each image was kept for < 10 seconds). To achieve such a
result, an ad-hoc mathematical framework based on point-process theory has been
defined. The point-process framework is able to parametrize the heartbeat dynam-
ics in continuous time without using any interpolation methods. Therefore, instanta-
neous measures of HR and HRV [30, 212] for robust short-time emotion recognition
are made possible by the definition of a physiologically-plausible IG probability. An
innovative aspect of the methodological approach is also the use of the derivative
RR series [309, 313] to fit the model. This choice allowed us to remarkably im-
prove the tracking of the affective-related non-stationary heartbeat dynamics. The
novel fully autoregressive structure of our model accounts for the pioneering short-
time affective characterization having knowledge related to both linear and nonlin-
ear heartbeat dynamics. In fact, the quadratic autoregressive nonlinearity associated
to the most likely heartbeat accounts for the input–output HOS such as the instanta-
neous bispectrum and trispectum. Unlike other paradigms developed in the literature
for estimating human emotional states [7], this approach is purely parametric and
the analytically-derived indices can be evaluated in a dynamic and instantaneous
fashion. As currently used standard signal processing methods would be unable to
give reliable and effective results because of resolution or estimation problems, the
methodology proposed here represents a pioneering approach in the current liter-
ature and can open new avenues in the field of affective computing. Although the
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recognition accuracy proposed in this work relates to only two levels of arousal, va-
lence and self-reported emotion, oversimplifying the complete characterization of
the affective state of a subject, the emotional assessment in short-time events using
cardiovascular information only is a very challenging task never solved before. Us-
ing only heartbeat dynamics, the two basic levels of both arousal and valence were
effectively distinguished, thus allowing for the assessment of four basic emotions.
An important advantage is that the proposed framework is fully personalized, i.e. it
does not require data from a representative population of subjects. From a physio-
logical perspective, the inherent nonlinearties of the cardiovascular systems (e.g. the
nonlinear neural signaling on the sinoatrial node [29]) have been also confirmed by
our experimental results. According to the nonlinearity tests [337], in fact, 27 out of
the 30 RR series resulted to be the outputs of a nonlinear system. Of note, the results
from goodness-of-fit tests were all positive, demonstrating that the proposed NARI
model always performs a good prediction of the nonlinear heartbeat dynamics. In
agreement with previous results [31], here instantaneous nonlinear features have
been introduced and improved the accuracy in the majority of the population (> 15
subjects). In addition, these experimental results support previous studies where in-
stantaneous HRV indices extracted by means of a point process model provided a
set of dynamic signatures able to characterize the dynamic range of cardiovascular
responses under different physiological conditions [30]. Therefore, the novel instan-
taneous nonlinear features could provide better assessment and improved reliability
during such physiological responses.

In this book, novel wearable systems able to perform ANS monitoring in a nat-
uralistic environment have been also presented. The possibility of using a fabric
glove including textile electrodes to acquire EDR has been investigated. Firstly, tex-
tile electrodes have been electrically characterized, then they are used to acquire
EDR in a dedicated affective computing experiment similar to the one mentioned
above characterizing the elicited levels of arousal and valence. More specifically,
a set of features was extracted from the EDR and used as input to a classifier to
recognize five arousal classes. Electrode characterization has been performed cal-
culating the voltage-current characteristics as well as the electric impedance of the
textile electrode and finding that the electric behavior is comparable with standard
electrodes. In addition, an acquisition protocol was designed and realized, where
signals from textile and standard electrodes are simultaneously acquired, in order to
verify if textile electrodes were suitable for EDR acquisition. The results have been
very satisfactory and showed that textile electrodes can be used likewise standard
electrodes without loss of information. Nevertheless, further work has to be done
in order to carefully address the issue of contact quality and contact area stability
of textile electrodes as well as experimentally verify that finger movement does not
strongly affect the signal quality. Indeed, a sensing glove allows us to investigate
emotion fluctuations during naturalistic elicitation. Next works will aim at evaluat-
ing the movement artifact effect on the quality of the EDR acquired during dynamic
tasks. Moreover, eye tracking and pupil size variation has been investigated in re-
sponse to emotional elicitation induced by IAPS images. In particular, the goal was
to identify a set of features from pupil size variation and eye tracking in order to
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distinguish between neutral to arousal states. An innovative wearable and wireless
head-mounted eye tracking system (HATCAM) was used to acquire pupil variation
together with eye-gaze trajectory as well as time of fixation. In addition, a novel
methodology was adopted to characterize differences between neutral and arousal
elicitation, in eye-gaze acquisitions, by means of features extracted from RQA. This
choice is motivated by the analogy between the bi-dimensional image containing
eye-gaze points and the matrix commonly used for Recurrence Plot [276]. Both,
indeed, are matrixes of zero and ones. In addition to the features from RQA, the el-
liptic area of pupil and the fixation time were also included in the feature space for
arousal and neutral classification. Pattern recognition was performed by means of
k-Nearest Neighbor (k-NN) classifier. After the k-NN training process, the perfor-
mance of the classification task was evaluated by using the confusion matrix. It was
randomized for 40-fold cross-validation steps to avoid bias. Results are reported in
Table 5.20. As it can be seen results are very satisfactory. The percentage of suc-
cessful recognition is about 90% for neutral images and about 80% for images at
high arousal. It means that eye gaze, both in terms of pupil tracking and size, can be
a viable means to discriminate different affective states.

Since the extracted eye information is regulated by the autonomic nervous sys-
tem, the results of this experiment suggest that the autonomic nervous system
responds differently to emotionally arousing than to emotionally neutral stimuli.
These results are in line with the previous results [31], that showed changes in the
autonomic activity in terms of skin conductance responses, respiration and heart
rate variability behavior, during exposition to IAPS images with different arousal
content. Even though our results showed a significative information from eye gaze
pattern, however, they did not show significant pupil size differences among IAPS
stimulation. In the literature there are discordant works about the pupil size variation
upon affective stimuli. In the study of [125] it is reported that pupil size may not be
sensitive enough to discriminate emotional responses, while [126] and [123] showed
experimental evidence about this affective-dependence variation. In my study, pupil
size does not seem to have a relevant role, but it could also be explained in terms of
low resolution of the camera used in the HATCAM system, which did not detect the
fine pupil responses, or of a possible failure in providing right controlled stimuli,
considering also that there are several factors affecting the variation of pupil size.
[128] listed several different sources of pupil size variation, including, for exam-
ple, the light reflex, different stimulus parameters (e.g. visual and chemical), and
information-processing load. However, besides the role of pupil size, our results
are very satisfactory and very promising for the use of eye information pattern in
the context of pervasive monitoring. This would extend the perceptually intelligent
abilities of an engine to perceive and analyze human behavior. In human behavior
positive emotions have been argued to increase creativity, to help in creating richer
associations for memorized material, and to realize more efficient decision-making
machines [360, 361]. In addition, by using suitable emotion-related cues, it could
be also possible to modulate the user emotional reactions that could be used also as
possible therapy in mental disease management.
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Studies on Bipolar Patients Concerning the studies on bipolar patients, an effec-
tive mood recognition system based on a pervasive, long-term and short-term mon-
itoring of ANS-related physiological signals in bipolar patients has been presented.
This approach was supported by several studies that have shown how mood disor-
ders are correlated with several dysfunctions of the ANS, both in the sympathetic
and parasympathetic systems [203–205].

For this reason, a comfortable, textile-based sensorized t-shirt was used to per-
form the acquisition of the RR as well as the RSP. Alongside the acquisition, a
personalized classification system together with the related signal processing chain
was implemented in order to robustly estimate the mood state of the patient. The
above concepts are those behind the PSYCHE project.

As for the healthy subjects studies, both generic (i.e. statistics and nonlinear) and
specific features were extracted from the pre-processed signals and then a label de-
scribing the mood state was associated to each point of the feature set, correspond-
ing to a specific region of a bidimensional space in which mania and depression
have been sampled and combined to characterize the bipolar disorder. It is worth-
while noting that no effective mood recognition system using long-term monitoring
of ANS signals of bipolar patients based on an ad-hoc mood model has ever been
proposed in the current scientific literature.

Experimental results have been performed following three bipolar patients from
the first hospitalization to the end of the therapy, i.e. euthymia condition. For each
patient, the study included up to a maximum of 6 evaluations over a 90 day-period.
Each acquisition was obtained during long-term monitoring with up-to 16 hours
of data. A classification accuracy of up to 95% for the intra-subject problem was
achieved.

The very high accuracy for intra-subject classification has two direct relapses
from a clinical and research point of view. From the clinical point of view, it docu-
ments the reliability of the PSYCHE platform for the monitoring of the mood status
at the level of the single subject. For the first time a system that accurately detects the
mood state in bipolar patients was presented. After an adequate training (performed
for instance during hospitalization in a ward or even in a day-hospital facility) the
system could be used at home by the patient as a feasible monitor of the clinical con-
ditions and could provide the patient himself and clinicians helpful clues, e.g. for a
potential relapse, remission and, in general, mood change. Form a research point of
view it is also worth noting that this result suggests that a discrete combination of
psychophysiological features can be a specific marker of the mood status in bipolar
disorders.

As a preliminary evaluation, it is necessary to mention some limitations in this
study. In fact, the whole PSYCHE system relies on the patient mood label given by
the physician during the training phase. Therefore, an error in such an evaluation
could be crucial for the further assessment biasing the decision support. In addition,
more data coming from a statistical representative and homogeneous population of a
bipolar patient is needed for the validation of the system in terms of generalization,
robustness and reliability.

As mentioned in the method section, another possible limitation of the study is
the fact that it relies on an ad-hoc mood model without a clinical validation. The
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model is a summarized pattern sets of mood states relying on clinical observations.
It resulted to be an effective and viable means to fulfill the PSYCHE project mission,
which is to predict and classify the clinical status. A more detailed and validated
model will be defined when a higher number of participants will be available for
the analysis. However, it is worthwhile underlining that diagnosis in psychiatry still
suffers, in general, from a lack of validity, i.e. clinical diagnoses are not supported
by the evidence of neurobiological changes. Therefore, a validated model for clin-
ical assessment is quite far from being achieved. However, it is interesting to note
that it was possible to distinguish the non-pathological clinical status (remission-
euthymia, i.e., class ES) from the pathological ones (mild depression, i.e., class
MD; severe depression, i.e., class SD; mild mixed state, i.e., class MS;) in all of the
bipolar patients considered.

Moreover, the classification accuracy is greater in distinguishing euthymia from
severe clinical states (severe depression and mixed state) (Tables 5.27 and 5.31)
than euthymia from the milder ones (mild depression) (Tables 5.28 and 5.30). It is
possible to hypothesize that the differences in accuracy mirror the distances in clin-
ical status and in its psychophysiological correlates. Such results were presented
and evaluated by means of confusion matrices. This choice was motivated by the
effectiveness and conciseness of their values allowing for the straightforward cal-
culation of widely used statistical measures such as the sensitivity, specificity, ROC
curves, area under the curve etc. Nevertheless, results only emphasize the whole
cardio-respiratory pattern of the different mood states instead of identifying the ac-
tual biomarkers. Indeed, this investigation will be performed in the next develop-
ments of this work. These satisfactory results are very promising in the frame of the
PSYCHE project. In addition, the methodology proposed here can be easily applied
to data coming from other systems collecting cardio-respiratory signs (e.g. stan-
dard Holter with respiratory belt). Moreover, other previously proposed platforms
for data collection and health assessment, e.g. [362–364], can be adapted after the
integration of the proposed biosignal processing chain.

Another personalized approach which identifies mood states as intra-subject
analysis taking into account the temporal dynamics of the illness has also been pre-
sented. This approach has been suggested also by clinical observations: is widely
accepted that clinical status is different in different moment of the course of bipo-
lar illness. For instance one can diagnose a depressive episode in a patient that just
enter in the episode and in the one who is going to remit the very day after. Al-
though for the rigid diagnostic criteria the two episodes are equal, from a clinical
point of view it is very different. Following this logic here we demonstrate on a
psychophisological base this clinical descriptive evidence.

Finally, a multiscale entropy (MSE) analysis has been presented. The complexity
of the heartbeat dynamics in bipolar patients through MSE analysis of HRV series.
The choice of such a specific analysis is justified by the fact that MSE has been
proven a powerful tool in translational psychiatry discerning patients with major
depressive syndrome from healthy subjects [211], in spite of a high inter-subject
variability. In particular, significant lower complexity has been found in the depres-
sive patients with respect to the healthy subjects. Accordingly, the experimental



136 6 Conclusions and Discussion on Mood and Emotional-State Recognition

hypothesis was to extend the discerning capability of MSE analysis by studying
multiple pathological mental states associated to mood states. Using the objective
MSE estimation, an interesting complexity modulation coherent with both the cur-
rent literature and different mood states was found. In particular, higher complexity
at all scales is associated to the euthymic state, whereas the depressive and hypo-
manic states show decreased complexity values (p < 0.01).

Studies on Bipolar Patients: Short-Term Studies Concerning the investigation on
the bipolar patients short-term protocol, a novel experimental/methodological ap-
proach has been proposed for the assessment of instantaneous ANS patterns of de-
pression in bipolar patients. The novel point-process NARI approach allows the
mathematical representation of the cardiovascular system as a nonlinear dynamical
system characterized by means of a perturbation analysis, i.e., analysis before and
after short-time emotional elicitation.

Five patients, experiencing depressive and euthymic episodes, were enrolled to
participate in a dedicated affective elicitation protocol. A comfortable, textile-based
sensorized t-shirt (namely the PSYCHE platform) was used to perform noninvasive
recordings of physiological variables, and a novel point-process NARI model was
implemented and applied to the RR series derived from the ECG in order to pro-
duce novel instantaneous features. In particular, standard features in both the time
(i.e. μRR(t,Ht , ξ(t)) and σRR), and the frequency domain (i.e. LF, HF, and LF/HF)
along with higher order nonlinear features, i.e. LL, LH, and HH, were extracted
from the processed RR series. The NARI model was used to characterize the mean
of an IG distribution representing the inter-beat probability function. Such approach
allows for the instantaneous estimation of all HRV measures without any interpo-
lation method [30]. The method is also personalized, fully parametric, and able to
improve nonstationary identification [309]. All the mentioned features coming from
the NARI representation of the heartbeat dynamics were investigated by using a
statistical inference and a pattern recognition methods in intra- and inter-subject
analyses, respectively. Multivariate statistical analysis by using an npMANOVA ap-
proach revealed significant within-subject differences among different mood states,
whereas monovariate analyses pointed-out that only the LF/HF is statistically simi-
lar between two depressive phases. Pattern recognition algorithms (MLP) were then
applied to the estimated features to classify the mood state of the patients (i.e. “eu-
thymia” or “depression”), and two feature sets were compared. The first set, α, was
comprised of only the standard feature set, whereas the nonlinear indices were added
to the second set, β .

A comparative classification analysis was performed in order to evaluate the ef-
fects on the inter-subject variability. Considering the three patients with fewer ac-
quisitions, i.e., BP1, BP2 and BP3, we demonstrated that both datasets α and α + β

gave satisfactory results reaching more than 93% of correct recognition per class,
although the α + β showed highest accuracy (see Table 5.45). On the other hand,
considering all five subjects, a classification accuracy of up to about 74% for the
α set, and up to about 99% for the α + β set was achieved for the euthymic class
(see Table 5.46). Therefore, it is clear that the high inter-subject variability strongly
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affects the information given by the linear contribution (dataset α) of the model
whereas it does not affect the nonlinear one (dataset α + β). Moreover, the dis-
crimination accuracy obtained with traditional signal processing techniques was not
sufficient for a reliable assessment.

Given their preliminary nature, these results are very promising. A common pat-
tern of instantaneous heartbeat features was found despite the inter-subject variabil-
ity. Our results also show that the inclusion of nonlinear indices gives improved
results and smaller variance with respect to the classification performed by using
only the standard features. The final result (99.56% accuracy) went beyond expec-
tations, also considering that the few misclassified samples can be easily interpreted
as either algorithmic/mathematical artifacts or physiological outliers, i.e. events not
related to mood markers for whatever reason.

The presented point-process nonlinear analysis represents a pioneering study in
the field of mood assessment in bipolar patients. In our approach, the acquisition
paradigm (including high and low arousing IAPS and TAT) was considered as a
whole, without subdividing the protocol in separate epochs. More than a limitation,
the overall results give additional strength to this approach. Indeed it is not a matter
of specific emotional response but more in general the reactivity of the ANS to
be affected in bipolar disorders. The fact that it was possible to detect changes in
ANS during the protocol as compared to a relaxed baseline is enough to say that
ANS reactions are studied despite subjective measurements of emotional arousal or
valence related to the used cues.

EDR was analyzed in three bipolar patients recruited in the frame of the European
project PSYCHE. For each patient, mood state fluctuated at least once along with a
change in the anxiety level. Two patients were monitored with two acquisitions and
one subject with five acquisitions.

A deconvolution analysis was applied to the EDR signal. Several features were
extracted in order to quantify the phasic and tonic electrodermal activity. The pre-
liminary results showed a statistically significant difference for all the acquisitions
from the same subject, which is consistent with the corresponding clinical diagno-
sis. More specifically, for the subjects Pz01 and Pz03 that had only two acquisitions,
in two different mood states, statistical test showed that both mood states were ef-
fectively recognized as statistically different. Instead referring to the subject PZ02,
who underwent five acquisitions, each state was recognized as statistically different
according to the different mood states and anxiety levels.

Only between Acq.4 and Acq.5 of subject Pz02 the Mann–Whitney test showed a
p-value greater than 0.05 for the features extracted from the tonic driver component.
Acq.4 and Acq.5 had two different clinical labels but the same level of anxiety, but
they resulted to be equivalent from a statistical point of view. This may result from
the very short time-window occurring between the two acquisitions (six days only)
or by the same anxiety level. Much work has to be done in order to gain a closer
understanding on this aspect.

Moreover, subject Pz02 showed a monotonic trend of tonic-driver-AUC which is
the component that is not related to the stimulus. In particular, the transition from
the mixed-state with a high level of anxiety (2) to the euthymic state with a low level
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of anxiety (1) showed a linear trend modeled through a linear regression with a high
correlation coefficient. Even in this case, this behavior, although very interesting,
deserves to be investigated more in depth. Nevertheless, in the other subjects (who
had only two acquisitions available, i.e. a number insufficient for a linear regression
model) tonic electrodermal activity showed an increase in the presence of a mood
change from a depressed state to an euthymic state and from a mixed-state to a
depressed state, combined with a lower level of anxiety.

An inter-subject analysis was performed attempting to classify the acquisitions
accompanied by the label euthymic, depressed and mixed-state by means of a pair-
wise comparison between the three class. All the three possible comparisons showed
a high discrimination percentage (> 76%). The preliminary results support the hy-
pothesis of a relationship between mood state, anxiety level and electrodermal ac-
tivity. Although preliminary these results are very satisfactory and encouraging.



Chapter 7
Book Summary and Perspectives for Future
Research

In this chapter, the scientific contributions of this book are summarized as follows:

• An experimental procedure for a standardized emotional elicitation has been re-
ported. Data from thirty-five healthy subjects presented with sets of elicitation
images gathered from the IAPS database have been acquired. The affective stim-
uli were characterized by the Circumplex Model of Affects in which the affective
states are conceptualized by the terms of valence and arousal.

• The effectiveness of the presented visual stimuli was ensured by the statistically
significant changes in the sympatho-vagal balance (i.e. LF/HF ratio).

• The elicited five levels of arousal (including one neutral level) and five levels
of valence (including one neutral level as well) have been effectively recognized
only by using standard features together with nonlinear features extracted from
ANS signals such as HRV, RSP, and EDR.

• The ANS nonlinear dynamics has been deeply investigated through ApEn and
DLE analyses of HRV. ApEn decreases when switching from neutral to arousal
sessions, and DLE is positive for all the neutral sessions and negative during
arousal sessions.

• The nonlinear interaction of the cardiovascular and the respiratory system was
quantified by using the concept of phase synchronization of chaotic oscillators,
i.e. the CRS. A clearly reduced synchronization during the presentation of neutral
images and an increased synchronization during the presentation of images with
significant arousal contents were observed. No significant statistical differences
could be gleaned from among different arousal levels.

• Based on the experimental evidences on DLE and CRS, a theoretical nonlinear
model on cardiopulmonary oscillators has been developed. It relies on the previ-
ously defined theory of weakly coupled oscillators driven by external force.

• In order to improve the accuracy of the previously developed emotion recogni-
tion system, bivariate measures related to the CR phase synchronization were
combined to the monovariate measures. Despite the reference set of monovariate
features, the newly proposed feature set gave a recognition accuracy grater than
90% for all classes in both arousal and valence discrimination.
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• A novel methodology, i.e. the point-process NARI model, able to assess in an
instantaneous, personalized, and automatic fashion whether the subject is experi-
encing a positive or a negative emotion have been developed.

• Such a nonlinear point-process model was validated with an experimental ECG
dataset with healthy subjects undergoing a tilt-table procedure. Results demon-
strated that the NARI algorithm confirms the characterization of the tilt effect on
standard and instantaneous indices of the sympatho-vagal balance, while simul-
taneously tracking significant changes in the inherent nonlinearity of heartbeat
dynamics with tilt.

• The novel fully autoregressive structure of the NARI model accounts for the pi-
oneering short-time affective characterization having knowledge related to both
linear and nonlinear heartbeat dynamics. In fact, the quadratic autoregressive non-
linearity associated to the most likely heartbeat accounts for the input-output HOS
such as the instantaneous bispectrum and trispectum.

• According to the nonlinearity tests, 27 out of the 30 RR series resulted to be
the outputs of a nonlinear system. Of note, the results from goodness-of-fit tests
were all positive, demonstrating that the proposed NARI model always performs
a good prediction of the nonlinear heartbeat dynamics.

• Concerning the instantaneous emotional pattern recognition, a two-class problem
(Low–Medium (L–M) vs Medium–High (M–H) levels) was considered for the
arousal, valence and self-reported emotion. The novel point-process NARI model
was applied to extract linear and nonlinear features.

• The recognition accuracy of the short-term positive-negative emotions is im-
proved with the use of the nonlinear measures in 14 cases, with > 60% of suc-
cessfully recognized samples for all of the subjects and a maximum of 84%.

• The recognition accuracy of the short-term arousal classification is improved with
the use of the nonlinear measures in 19 cases, with > 66% of successfully recog-
nized samples for all of the subjects and a maximum of 98%.

• The recognition accuracy of the short-term valence classification is improved with
the use of the nonlinear measures in 19 cases, with > 60% of successfully recog-
nized samples for all of the subjects and a maximum of 92%.

• Novel wearable systems able to perform ANS monitoring in a naturalistic envi-
ronment have been developed. Specifically, a fabric glove including textile elec-
trodes to acquire EDR and a wireless head-mounted eye tracking system (HAT-
CAM) have been described.

• A novel personalized monitoring systems for care in mental health has been pre-
sented as the core platform of a research carried outing the frame of the European
funded project FP7-ICT-247777 PSYCHE.

• Textile electrodes characterization has been performed calculating the voltage-
current characteristics as well as the electric impedance of the textile electrode
and finding that the electric behavior is comparable with standard electrodes.

• EDR signals from textile and standard electrodes were simultaneously acquired,
in order to verify if textile electrodes were suitable for EDR acquisition. The
results have been very satisfactory and showed that textile electrodes can be used
likewise standard electrodes without loss of information.
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• A novel methodology has been proposed to characterize differences between neu-
tral and arousal elicitation, in eye-gaze acquisitions, by means of features ex-
tracted from RQA along with the elliptic area of pupil and the fixation time. The
percentage of successful recognition is about 90% for neutral images and about
80% for images at high arousal. It means that eye gaze, both in terms of pupil
tracking and size, can be a viable means to discriminate different affective states.

• An effective mood recognition system based on a pervasive, long-term and short-
term monitoring of ANS-related signals in bipolar patients has been presented.
For this reason, a comfortable, textile-based sensorized t-shirt was used to per-
form the acquisition of the RR as well as the RSP. Alongside the acquisition,
a personalized classification system together with the related signal processing
chain was implemented in order to robustly estimate the mood state of the pa-
tient. The above concepts are those behind the PSYCHE project.

• Generic (i.e. statistics and nonlinear) and specific features were extracted from the
pre-processed signals and then a label describing the mood state was associated
to each point of the feature set, corresponding to a specific region of a bidimen-
sional space in which mania and depression have been sampled and combined to
characterize the bipolar disorder.

• A classification accuracy of up to 95% for the intra-subject problem was achieved
following three bipolar patients from the first hospitalization to the end of the
therapy, i.e. euthymia condition. Each acquisition was obtained during long-term
monitoring with up-to 16 hours of data.

• A novel history-dependent approach based on HRV long-term analysis allowed
improved results in terms of recognition accuracies on all the considered mood
states.

• The study of heartbeat nonlinear dynamics through MSE analysis of long-term
HRV series allowed the inter-subject discrimination of three mental states associ-
ated to the bipolar disorder. It is possible to raise the hypothesis of using features
from HRV complexity analysis as effective biomarker for mental disorders.

• For the first time, a system that accurately detects the mood state in bipolar pa-
tients was presented. The classification accuracy was greater in distinguishing
euthymia from severe clinical states (severe depression and mixed state) than eu-
thymia from the milder ones (mild depression).

• Concerning the investigation on the bipolar patients short-term protocol, a novel
experimental/methodological approach for the assessment of instantaneous ANS
patterns of depression in bipolar patients has been proposed.

• The novel point-process NARI model was implemented and applied to the RR
series derived from the bipolar patients’ ECG in order to produce novel instan-
taneous features as standard features in both the time (i.e. μRR(t,Ht , ξ(t)) and
σRR), and the frequency domain (i.e. LF, HF, and LF/HF) along with higher order
nonlinear features, i.e. LL, LH, and HH.

• A classification accuracy of up to about 74% was obtained using the standard
feature set, and up to about 99% using the standard and nonlinear feature set in
distinguishing euthymia from other depressive state.
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• The high patients’ inter-subject variability strongly affects the information given
by the linear contribution of the cardiovascular dynamics whereas it does not
affect the nonlinear one.

• Patients’ EDR was also analyzed in three bipolar patients performing the short-
term protocol. The mood state fluctuated at least once along with a change in the
anxiety level.

• By applying the deconvolution analysis to the EDR signal and extracting several
features, a statistically significant difference for all the acquisitions from the same
subject has been observed.

• A specific bipolar patient showed a monotonic trend of tonic-driver-AUC which
is the component that is not related to the stimulus. In particular, the transition
from the mixed-state with a high level of anxiety (2) to the euthymic state with a
low level of anxiety (1) showed a linear trend modeled through a linear regression
with a high correlation coefficient.

• An inter-subject analysis was performed attempting to classify the acquisitions
accompanied by the label euthymic, depressed and mixed-state by means of a
pairwise comparison between the three class. All the three possible comparisons
showed a high discrimination percentage (> 76%). The preliminary results sup-
port the hypothesis of a relationship between mood state, anxiety level and elec-
trodermal activity.

Some future research directions exploiting the outcomes of the works reported in
this book are listed below.

• Study the ANS cross-recurrence by means of a cross Recurrence Plots analysis,
especially performed between EDR and HRV.

• Investigate the implementation of the standard and nonlinear algorithms in
portable devices such as microcontroller, ARM, DSP, FPGA, etc.

• Apply other nonlinear quantifiers to the ANS signals in order to better character-
ize the emotional elicitation.

• Improve the point-process NARI model performances using the Laguerre expan-
sion of the kernels.

• Include on further multivariate estimates within the NARI model, since the pro-
posed point-process framework allows the inclusion of physiological covariates
such as respiration or blood pressure measures [365].

• Extract novel instantaneous indices from the multivariate point-process model
such as features from the dynamic cross-spectrum, cross-bispectrum, respiratory
sinus arrhythmia, and baroreflex sensitivity in order to better characterize and
understand the human emotional states in short-time events.

• Apply all the developed algorithms to a wide range of experimental protocols in
order to validate such tools for underlying patho-physiology evaluation, as well as
explore new applications on emotion recognition that consider a wider spectrum
of emotional states.

• Exploit eye gaze together with peripheral physiological signals in healthy subjects
and in the field of mental care.

• Define novel features for eye-gaze and pupil size variation information.
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• Increase the number of bipolar patients enrolled and create a database contain-
ing a wide set of acquisitions on which an effective data mining machine could
effectively run. The statistical significance will also result improved.

• Explore additional aspects of the linear and nonlinear identification as related to
depression/bipolar states.

• Evaluate which part of the proposed short-term protocol is more informative for
mood recognition in bipolar disorders.

• Explore more carefully the physiological meaning of the dynamic autonomic sig-
natures both in the context of the underlying mood state, and as a result of the
different stimuli administered within the dedicated protocol.

• Investigate if these specific features can be used as a preclinical marker, meaning
that they start to change even before the subject mood changes. In this case, it
would be possible to use the PSYCHE platform to have an early, pre-symptomatic
diagnosis of mood episodes.

• Extend the proposed approaches within the PSYCHE project, including several
other available variables (e.g. voice, activity index, sleep pattern alteration, elec-
trodermal response, biochemical markers).
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