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Preface

Fascination with graphene has been growing very rapidly in recent years and the
physics of graphene is now becoming one of the most interesting as well as the most
fast-moving topics in condensed-matter physics. Needless to say, the Nobel prize
in physics awarded to Andre Geim and Konstantin Novoselov in 2010 has given
a tremendous impetus to this topic. Several years have passed since Andre Geim
and his group put forward their method for the fabrication of graphene, as a result
of which an anomalous quantum Hall effect was observed. This, however, is only
one of the hallmarks of the unusual properties of the graphene system. The horizon
of the physics of graphene is ever becoming wider, where physical concepts go
hand in hand with advances in experimental techniques. Thus we are now expanding
our interests to not only transport but also optical and other properties for layered
systems that include multilayers as well as monolayer graphene.

Thus it should be very timely to publish a book that overviews the physics of
graphene, which is exactly why we have edited the present volume, where general
and fundamental aspects in the physics of graphene are overviewed by outstand-
ing authorities. The book comprises five experimental and five theoretical chapters.
A birds’ eye view of the chapter contents is given in the figure overleaf.

We have endeavored to have reasonable levels of accessibility to students as
well, with some heuristic introductions in each chapter. Given the unusually rapid
progress in the field of graphene, we have found it impossible to cover all the fron-
tiers, while parts of the chapters do extend to advanced levels. For instance, we
have not covered much on graphene applications, which would require another vol-
ume. We hope the state-of-the-art articles presented here on graphene physics, which
start from the “massless Dirac particle” and proceed with further unique aspects of
graphene, will benefit a wide audience, and encourage them to go even further and
to explore new avenues in this fascinating topic.

Hideo Aoki
Mildred S. Dresselhaus

Tokyo, Japan
Cambridge, MA, USA
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Chapter 1
Experimental Manifestation of Berry Phase
in Graphene

Andrea F. Young, Yuanbo Zhang, and Philip Kim

Abstract The honeycomb lattice structure of graphene requires an additional de-
gree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting
in two different sublattices of the honeycomb lattice. In the low energy spectrum of
graphene near the charge neutrality point, where the linear carrier dispersion mimics
the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin
in the usual Dirac Fermion spectrum. The exotic quantum transport behavior dis-
covered in graphene, such as the unusual half-integer quantum Hall effect and Klein
tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter
we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in
monolayer graphene under a magnetic field and its experimental consequences.

1.1 Introduction

Many of the interesting physical phenomena appearing in graphene are governed by
the unique chiral nature of the charge carriers in graphene owing to their quasi rel-
ativistic quasiparticle dynamics described by the effective massless Dirac equation.
This interesting theoretical description can be dated back to Wallace’s early work of
the electronic band structure calculation of graphite in 1947 where he used the sim-
plest tight binding model and correctly captured the essence of the electronic band
structure of graphene, the basic constituent of graphite [1]. Since then the chiral
nature of the graphene band structure has been rediscovered several times in dif-
ferent contexts [2–5]. Independent to these theoretical works, experimental efforts
to obtain graphene dated back to Böhm et al.’s early work of transmission elec-
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tron microscopy [6] and the early chemical deposition growth of graphene on metal
surfaces developed in the 1990s [7].

In the past decade, renewed efforts to obtain the atomically thin graphite have
been pursued through several different routes. In retrospect, these various methods
fall into two categories: the bottom-up approach and the top-down approach. In the
former, one started with carbon atoms and one tries to assemble graphene sheets
by chemical pathways [8, 9]. This is best exemplified by work of the W.A. de Heer
group at the Georgia Institute of Technology. In Ref. [9], they demonstrated that
thin graphite films can be grown by thermal decomposition on the (0001) surface
of 6H-SiC. This method opens the way to large scale integration of nanoelectronics
based on graphene. Recent progress through this chemical approach to graphene
synthesis has had dazzling successes by diverse routes, including epitaxial graphene
growth [10], chemical vapor deposition [11, 12], and solution processing [13].

On the other hand, the top-down approach starts with bulk graphite, which essen-
tially involves graphene sheets stacked together, and tries to extract graphene sheets
from the bulk by mechanical exfoliation. The mechanical extraction of layered ma-
terial dates back to the 1970s. In his seminal experiment [14], Frindt showed that few
layers of superconducting NbSe2 can be mechanically cleaved from a bulk crystal
fixed on an insulating surface using epoxy. While it is known for decades that peo-
ple routinely cleave graphite using scotch tape when preparing sample surfaces for
Scanning Tunneling Microscopy (STM) study and all optics related studies, the first
experiment explicitly involving the mechanical cleavage of graphite using scotch
tape was carried out by Ohashi et al. [15]. The thinnest graphite film obtained in this
experiment was about 10 nm, corresponding to ∼30 layers.

Experimental work to synthesize very thin graphitic layers directly on top of
a substrate [16] or to extract graphene layers using chemical [17] or mechanical
[18–20] exfoliation was demonstrated to produce graphitic samples with thicknesses
ranging from 1 to 100 nm. Systematic transport measurements have been carried
out on mesoscopic graphitic disks [21] and cleaved bulk crystals [15] with sam-
ple thicknesses approaching ∼20 nm, exhibiting mostly bulk graphite properties
at these length scales. More controllability was attempted when Ruoff et al. worked
out a patterning method for bulk graphite into a mesoscopic scale structure to cleave
off thin graphite crystallites using atomic force microscopy [20].

A sudden burst of experimental and theoretical work on graphene followed the
first demonstration of single- and multi-layered graphene samples made by a simple
mechanical extraction method [22], while several other groups were trying various
different routes concurrently [9, 23, 24]. The method that Novoselov et al. used was
pretty general, and soon after, it was demonstrated to be applicable to other layered
materials [25]. This simple extraction technique is now known as the mechanical
exfoliation method. It also has a nick name, ‘scotch tape’ method, since the ex-
perimental procedure employs adhesive tapes to cleave off the host crystals before
the thin mesocoscopic samples are transferred to a target substrate, often a silicon
wafer coated with a thin oxide layer. A carefully tuned oxide thickness is the key
to identify single layer graphene samples among the debris of cleaved and trans-
ferred mesoscopic graphite samples using the enhanced optical contrast effect due
to Fabry-Perot interference [26].
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Since this first demonstration of experimental production of an isolated single
atomic layer of graphene sample, numerous unique electrical, chemical, and me-
chanical properties of graphene have been investigated. In particular, an unusual
half-integer quantum Hall effect (QHE) and a non-zero Berry’s phase [27, 28] were
discovered in graphene, providing unambiguous evidence for the existence of Dirac
fermions in graphene and distinguishing graphene from conventional 2D electronic
systems with a finite carrier mass. In this review, we will focus on the chiral nature
of the electron dynamics in monolayer graphene where the electron wave function’s
pseudo-spin plays an important role. We will present two experimental examples:
the half-integer QHE [27, 28] and the Klein tunneling effect in graphene [29]. The
quasi relativistic quantum dynamics of graphene has provided a compact and pre-
cise description for these unique experimental observations and further providing a
playground for implementing tests of quantum electrodynamics (QED) in a simple
experimental situation [30], where electron Fabry-Perrot oscillations were recently
observed [29].

1.2 Pseudospin Chirality in Graphene

Carbon atoms in graphene are arranged in a honeycomb lattice. This hexagonal ar-
rangement of carbon atoms can be decomposed into two interpenetrating triangular
sublattices related to each other by inversion symmetry. Taking two atomic orbitals
on each sublattice site as a basis, the tight binding Hamiltonian can be simplified
near two inequivalent Brillouin zone corners K and K′ as

Ĥ = ±�vFσ · (−i�∇) (1.1)

where σ = (σx, σy) are the Pauli matrices, vF ≈ 106 m/s is the Fermi velocity in
graphene and the + (−) sign corresponds to taking the approximation that the wave
vector k is near the K (K′) point (see Fig. 1.1).

The structure of this ‘Dirac’ equation is interesting for several reasons. First, the
resulting energy dispersion near the zone corners is linear in momentum, E(κ) =
±�vF |κ |, where the wave vector κ is defined relative to K (or K′), i.e., κ = k − K
(or K′). Consequently, the electrons near these two Dirac points always move at a
constant speed, given by the Fermi velocity vF ≈ c/300 (rather than the real speed
of light c). The electron dynamics in graphene are thus effectively ‘relativistic’,
where the speed of light is substituted by the electron Fermi velocity vF . In a perfect
graphene crystal, the Dirac points (K and K′) are coincident with the overall charge
neutrality point (CNP), since there are two carbon atoms in the unit cell of graphene
and each carbon atom contributes one electron to the two bands, resulting in the
Fermi energy EF of neutral graphene lying precisely at the half-filled band.

For the Bloch wave function near K′, the ‘Dirac’ equation in (1.1) can be rewrit-
ten as

Ĥ = ±�vFσ · κ (1.2)
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Fig. 1.1 Energy band structure of graphene. The valence band (lower band) and conduction band
(upper band) touch at six points, where the Fermi level is located. In the vicinity of these points,
the energy dispersion relation is linear. Reproduced from Ref. [31]

The solution of this massless Dirac fermion Hamiltonian is studied by [5, 32, 33]:

|κ 〉 = 1√
2
eiκ ·r

(−ise−iθκ /2
eiθκ/2

)
(1.3)

where θκ is the angle between κ = (κx, κy) and the y-axis, and s = +1 and −1
denote the states above and below K, respectively. The corresponding energy for
these states is given by

Es(κ) = s�vF |κ | (1.4)

where s = +1/−1 is an index for the positive/negative energy band, respectively.
The two components of the state vector give the amplitudes of the electronic wave
functions on the atoms of the two sublattices, so the angle θκ determines the char-
acter of the underlying atomic orbital mixing.

The two-component vector in formula in (1.3) can be viewed as a result of a
spinor-rotation of θκ around ẑ axis with the spin-1/2 rotation operator

R(θ) = exp

(
−i θ

2
σz

)
=
(
e−iθ/2 0

0 e+iθ/2
)

(1.5)

More explicitly, the vectorial part of the Bloch state, |sp〉 = e−iκ ·r |κ 〉 can be
obtained from the initial state along the y-axis

|s0
p〉 = 1√

2

(−is
1

)
(1.6)

by the rotation operation, |sp〉 = R(θκ)|s0
p〉. Note that this rotation operation clearly

resembles that of a two-component spinor describing the electron spin, but arising
from the symmetry of the underlying honeycomb graphene lattice. In this regard,
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|sp〉 is often called ‘pseudo spin’ in contrast to the real spin of electrons in graphene.
The above operation also implies that the orientation of the pseudospin is tied to the
κ vector. This is completely analogous to the real spin of massless fermions which
always points along the direction of propagation. For s = +1, i.e., corresponding to
the upper cone at K in Fig. 1.1, the states have pseudospin parallel to κ , and thus
correspond to the right-handed Dirac fermions. For s = −1, i.e. for the antiparticles
in the lower cone, the situation is reversed, resulting in the left-handed Dirac anti-
fermions.

So far our analysis is focused on the K point. It would be interesting to see what
happens at the K′ point. We apply a similar analysis at K′, and the only difference
is that now we expand the Hamiltonian around the K′ point: k = κ + K′. Then we
obtain a new equation for K′ from (1.1),

H = �vF κ · σ̄ (1.7)

where σ̄ are the complex conjugate of the Pauli matrices σ . This Hamiltonian is
known to describe left-handed massless neutrinos. Therefore at K′ the electron dy-
namics is again characterized by massless Dirac fermions, but with opposite helicity.

The chirality of the electrons in graphene has important implications on the elec-
tronic transport in graphene. In particular, a non-trivial Berry phase is associated
with the rotation of the 1/2-pseudo spinor which plays a critical role to understand
the unique charge transport in graphene and nanotubes, as first discussed in Ando
et al.’s [5] theoretical work. For example, let us consider a scattering process κ → κ ′
due to a potential V (r) with a range larger than the lattice constant in graphene, so
that it does not induce an inter valley scattering between K and K′ points. The re-
sulting matrix element between these two states is given by [5, 33]∣∣〈κ ′∣∣V (r)|κ 〉∣∣2 = ∣∣V (κ − κ ′)∣∣2 cos2(θκ,κ ′/2) (1.8)

where θκ,κ ′ is the angle between κ and κ ′, and the cosine term comes from the over-
lap of the initial and final spinors. A backscattering process corresponds to κ = −κ ′.
In this case, θκ,κ ′ = π and the matrix element vanishes. Therefore such backward
scattering is completely suppressed. In terms of the pseudo spin argument, this back
scattering process can be described by rotating |κ 〉 by the rotating operation R(π).
For an atomically smooth potential the matrix element in (1.8) can be expressed〈

κ ′∣∣V (r)|κ 〉 ≈ V
(
κ − κ ′)〈κ |R(π)|κ 〉 (1.9)

Note that a π rotation of the 1/2 spinor always produces an orthogonal spinor to the
original one, which makes this matrix element vanish.

The experimental significance of the Berry’s phase of π was demonstrated by
McEuen et al. [33] in single-wall carbon nanotubes (SWCNTs), which are essen-
tially graphene rolled up into cylinders. The suppression of backscattering in metal-
lic SWCNTs leads to a remarkably long electron mean free path on the order of a
micron at room temperature [34].

The suppression of backward scattering can also be understood in terms of
the Berry’s phase induced by the pseudo spin rotation. In particular, for complete
backscattering, (1.5) yields R(2π) = eiπ , indicating that rotation in κ by 2π leads to
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a change of the phase of the wave function |κ 〉 by π . This non-trivial Berry’s phase
may lead to non-trivial quantum corrections to the conductivity in graphene, where
the quantum correction enhances the classical conductivity [35]. This phenomena
is called ‘anti-localization’ in contrast to such quantum corrections in a conven-
tional 2-dimensional (2D) system which lead to the suppression of conductivity in
a weak localization. This can simply be explained by considering each scattering
process with its corresponding complementary time-reversal scattering process. In
a conventional 2D electron system such as in GaAs heterojunctions, the scattering
amplitude and associated phase of each scattering process and its complementary
time-reversal process are equal. This constructive interference in conventional 2D
system leads to the enhancement of the backward scattering amplitude and thus
results in the localization of the electron states. This mechanism is known as weak
localization [36]. In graphene, however, each scattering process and its time reversal
pair have a phase difference by π between them due to the non-trivial Berry phase,
stemming from 2π rotation of the pseudospin between the scattering processes of
the two time reversal pairs. This results in a destructive interference between the
time reversal pair to suppress the overall backward scattering amplitude, leading
to a positive quantum correction in conductivity. These anti-weak localization phe-
nomena in graphene have been observed experimentally [37].

While the existence of a non-trivial Berry’s phase in graphene can be inferred
indirectly from the aforementioned experiments, it can be directly observed in the
quantum oscillations induced by a uniform external magnetic field [27, 28]. In a
semi-classical picture, the electrons orbit along a circle in k space when subjected
to a magnetic field. The Berry’s phase of π produced by the 2π rotation of the wave
vector manifests itself as a phase shift of the quantum oscillations, which will be the
focus of the discussion of the next section.

1.3 Berry Phase in Magneto-Oscillations

We now turn to the massless Dirac fermion described by Hamiltonian in (1.1). In a
magnetic field, the Schrödinger equation is given by

±vF (P + eA) · σψ(r) = Eψ(r) (1.10)

where P = −i��, A is the magnetic vector potential, and ψ(r) is a two-component
vector

ψ(r) =
(
ψ1(r)
ψ2(r)

)
(1.11)

Here we use the Landau gauge A: A = −Byx̂ for a constant magnetic field B per-
pendicular to the x–y plane. Then, taking only the + sign in (1.10), this equation
relates ψ1(r) and ψ2(r):

vF (Px − iPy − eBy)ψ2(r) = Eψ1(r) (1.12)

vF (Px + iPy − eBy)ψ1(r) = Eψ2(r) (1.13)
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Substituting the first to the second equations above, we obtain the equation for
ψ2(r) only

v2
F

(
P 2 − 2eByPx + e2B2y2 − �eB

)
ψ2(r) = E2ψ2(r) (1.14)

The eigenenergies of (1.14) can be found by comparing this equation with a
massive carrier Landau system:

E2
n = 2n�eBv2

F (1.15)

where n = 1,2,3, . . . . The constant −�eB shifts the LL’s by half of the equal spac-
ing between the adjacent LLs, and it also guarantees that there is a LL at E = 0,
which has the same degeneracy as the other LLs. Putting these expressions together,
the eigenenergy for a general LL can be written as [4, 38]

En = sgn(n)
√

2e�v2
F |n|B (1.16)

where n > 0 corresponds to electron-like LLs and n < 0 corresponds to hole-like
LLs. There is a single LL sitting exactly at E = 0, corresponding to n = 0, as a
result of the chiral symmetry and the particle-hole symmetry.

The square root dependence of the Landau level energy on n, En ∝ √
n, can be

understood if we consider the DOS for the relativistic electrons. The linear energy
spectrum of 2D massless Dirac fermions implies a linear DOS given by

N(E) = E

2π�2v2
F

(1.17)

In a magnetic field, the linear DOS collapses into LLs, each of which has the same
number of states 2eB/h. As the energy is increased, there are more states available,
so that a smaller spacing between the LLs is needed in order to have the same num-
ber of state for each LL. A linear DOS directly results in a square root distribution
of the LLs, as shown in Fig. 1.2(c).

A wealth of information can be obtained by measuring the response of the 2D
electron system in the presence of a magnetic field. One such measurement is done
by passing current through the system and measuring the longitudinal resistivity
ρxx . As we vary the magnetic field, the energies of the LLs change. In particular ρxx
goes through one cycle of oscillations as the Fermi level moves from one LL DOS
peak to the next as shown in Fig. 1.2(c). These are the so called Shubinikov de-Haas
(SdH) oscillations. As we note in (1.15), the levels in a 2D massless Dirac fermion
system, such as graphene, are shifted by a half-integer relative to the conventional
2D systems, which means that the SdH oscillations will have a phase shift of π ,
compared with the conventional 2D system.

The phase shift of π is a direct consequence of the Berry’s phase associated with
the massless Dirac fermion in graphene. To further elucidate how the chiral nature
of an electron in graphene affects its motion, we resort to a semi-classical model
where familiar concepts, such as the electron trajectory, provide us a more intuitive
physical picture.

We consider an electron trajectory moving in a plane in a perpendicular magnetic
field B. The basic equation for the semi-classical approach is

�k̇ = −e(v × B) (1.18)
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Fig. 1.2 Quantized magnetoresistance and Hall resistance of a graphene device. (a) Hall resistance
(black) and magnetoresistance (red) measured in a monolayer graphene device at T = 30 mK
and Vg = 15 V. The vertical arrows and the numbers on them indicate the values of B and the
corresponding filling factor ν of the quantum Hall states. The horizontal lines correspond to h/νe2

values. The QHE in the electron gas is demonstrated by at least two quantized plateaus in Rxy
with vanishing Rxx in the corresponding magnetic field regime. The inset shows the QHE for
a hole gas at Vg = −4 V, measured at 1.6 K. The quantized plateau for filling factor ν = 2 is
well-defined and the second and the third plateaus with ν = 6 and 10 are also resolved. (b) The Hall
resistance (black) and magnetoresistance (orange) as a function of gate voltage at fixed magnetic
field B = 9 T, measured at 1.6 K. The same convention as in (a) is used here. The upper inset shows
a detailed view of high filling factor Rxy plateaus measured at 30 mK. (c) A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall conductance (σxy ) as a
function of energy. Note that in the quantum Hall states, σxy = −R−1

xy . The LL index n is shown
next to the DOS peak. In our experiment, the Fermi energy EF can be adjusted by the gate voltage,
and R−1

xy changes by an amount of gse2/h as EF crosses a LL. Reproduced from Ref. [28]

which simply says that the rate of change of momentum is equal to the Lorentz
force. The velocity v is given by

v = 1

�
�k ε (1.19)

where ε is the energy of the electron. Since the Lorentz force is normal to v, no work
is done to the electron and ε is a constant of the motion. It immediately follows
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that electrons move along the orbits given by the intersections of constant energy
surfaces with planes perpendicular to the magnetic fields.

Integration of (1.18) with respect to time yields

k(t) − k(0) = −eB
�

(
R(t) − R(0)

)× B̂ (1.20)

where R is the position of the electron in real space, and B̂ is the unit vector along
the direction of the magnetic field B. Since the cross product between R and B̂
simply rotates R by 90◦ inside the plane of motion, (1.20) means that the electron
trajectory in real space is just its k-space orbit, rotated by 90◦ about B and scaled
by �/eB .

It can be further shown that the angular frequency at which the electron moves
around the intersection of the constant energy surface is given by

ωc = 2πeB

�2

(
∂ak

∂ε

)−1

(1.21)

where ak is the area of the intersection in the k-space. For electrons having an effec-
tive mass m∗, we have ε = �

2k2/2m∗ and ak is given by πk2 = 2πm∗ε/�2, while
(1.21) reduces to ωc = eB/m∗ . Comparing this equation with (1.21), we find

m∗ = �
2

2π

(
∂ak

∂ε

)
(1.22)

which is actually the definition of the effective mass for an arbitrary orbit.
The quantization of the electron motion will restrict the available states and will

give rise to quantum oscillations such as SdH oscillations. The Bohr-Sommerfeld
quantization rule for a periodic motion is∮

p · dq = (n + γ )2π� (1.23)

where p and q are canonically conjugate variables, n is an integer and the integration
in (1.23) is for a complete orbit. The quantity γ will be discussed below.

For an electron in a magnetic field,

p = �k − eA q = R (1.24)

so (1.23) becomes ∮
(�k − eA) · dR = (n + γ )2π� (1.25)

Substituting this equation into (1.20) and using Stokes’ theorem, one finds

B ·
∮

R × dR −
∫
S

B · dS = (n + γ )Φ0 (1.26)

where Φ0 = 2π�/e is the magnetic flux quanta. S is any surface in real space which
has the electron orbit as the projection on the plane. Therefore the second term on
the left hand side of (1.26) is just the magnetic flux −Φ penetrating the electron
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orbit. A closer inspection of the first term on the left hand side of (1.26) finds that it
is 2Φ [39]. Putting them together, (1.26) reduces to

Φ = (n + γ )Φ0 (1.27)

which simply means that the quantization rule dictates that the magnetic flux
through the electron orbit has to be quantized.

Remember that the electron trajectory in real space is just a rotated version of its
trajectory in k-space, scaled by �/eB (1.20). Let ak(ε) be the area of the electron
orbit at constant energy ε in k-space; then (1.20) becomes

ak(εn) = (n + γ )2πeB/� (1.28)

which is the famous Onsager relation. This relation implicitly specifies the permitted
energy levels εn (Landau Levels), which in general depend on the band structure
dispersion relation ε(k).

The dimensionless parameter 0 ≤ γ < 1 is determined by the shape of the energy
band structure. For a parabolic band, ε = �

2k2/2m∗, the nth LL has the energy
εn = (n + 1/2)�ωc. Each LL orbit for an isotropic m∗ in the plane perpendicular
to the magnetic field B is a circle in k-space with a radius kn = √

2eB(n + 1/2)/�.
The corresponding area of an orbital in k-space for the nth LL is therefore

ak(εn) = πk2
n =

(
n + 1

2

)
2πeB/� (1.29)

A comparison of this formula with (1.28) immediately yields

γ = 1

2
(1.30)

For a massless Dirac fermion in graphene which obeys a linear dispersion relation
ε = �vF k, the nth LL corresponds to a circular orbit with radius kn = εn/�vF =√

2e|n|B/�. The corresponding area is therefore

ak(εn) = πk2
n = |n|2πeB/� (1.31)

This gives, for a semiclassical Shubnikov de Haas (SdH) phase,

γ = 0 (1.32)

which differs from the γ for the conventional massive fermion by 1
2 [40].

The difference of 1
2 in γ is a consequence of the chiral nature of the massless

Dirac fermions in graphene. An electron in graphene always has the pseudospin |sp〉
tied to its wave vector k. The electron goes through the orbit for one cycle, k, as well
as the pseudospin attached to the electrons. Both go through a rotation of 2π at the
same time. Much like a physical spin, a 2π adiabatic rotation of pesudospin gives a
Berry’s phase of π [5]. This is exactly where the 1

2 difference in γ comes from.
The above analysis can be generalized to systems with an arbitrary band struc-

ture. The work of Roth [41] and Mikitik [42] show that the quantity γ is purely a
property of the topology of the electronic energy band structure. In general, γ can
be expressed in terms of the Berry’s phase, φB , for the electron orbit:

γ − 1

2
= − 1

2π
φB (1.33)
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For any electron orbits which surround a disconnected electronic energy band, as is
the case for a parabolic band, this phase is zero, and we arrive at (1.30). A non-trivial
Berry’s phase of π results if the orbit surrounds a contact between the bands, and
the energies of the bands separate linearly in k in the vicinity of the band contact.
In monolayer graphene, these requirements are fulfilled because the valence band
and conduction band are connected by K and K′, and the energy dispersion is linear
around these points. This special situation again leads to a γ = 0 in graphene (in
fact, γ = 0 and γ = ±1 are equivalent). Note that this non-trivial γ is only for
monolayer graphene; in contrast for bilayer graphene, whose band contact points
at the charge neutrality point have a quadratic dispersion relation, a conventional
γ = 1/2 is obtained [43].
γ can be probed experimentally by measuring the quantum oscillation of the 2D

system in the presence of a magnetic field, where γ is identified as the phase of such
oscillations. This becomes evident when we explicitly write the oscillatory part of
the quantum oscillations, e.g., as for the SdH oscillation of the electrical resistivity,
�ρxx [28, 44, 45]

�ρxx = R(B,T ) cos

[
2π

(
BF

B
− γ

)]
(1.34)

Here we only take account of the first harmonic, in which R(B,T ) is the amplitude
of the SdH oscillations and BF is the frequency in units of 1/B , which can be related
to the 2D charge carrier density ns by

BF = nsh

gse
(1.35)

where gs = 4 accounts for the spin and valley degeneracies of the LLs. The rela-
tion γ = 1/2 (for a parabolic band) and γ = 0 (for graphene) produces a phase
difference of π between the SdH oscillation in the two types of 2D systems. In
the extreme quantum limit, the SdH oscillations evolve into the quantum Hall ef-
fect, a remarkable macroscopic quantum phenomenon characterized by a precisely
quantized Hall resistance and zeros in the longitudinal magneto-resistance. The ad-
ditional Berry’s phase of π manifests itself as a half-integer shift in the quantization
condition, and leads to an unconventional quantum Hall effect. In the quantum Hall
regime, graphene thus exhibits a so-called ‘half-integer’ shifted quantum Hall ef-
fect, where the filling fraction is given by ν = gs(n + 1/2) for integer n. Thus, at
this filling fraction ρxx = 0, while the Hall resistivity exhibits quantized plateaus at

ρ−1
xy = e2

h
gs

(
n + 1

2

)
. (1.36)

The experimental observation of the quantum Hall effect and Berry’s phase in
graphene were first reported in Novoselov et al. [27] and Zhang et al. [28]. Fig-
ure 1.2a shows Rxy and Rxx of a single layer graphene sample as a function of
magnetic field B at a fixed gate voltage Vg > VDirac. The overall positive Rxy indi-
cates that the contribution to Rxy is mainly from electrons. At high magnetic field,
Rxy(B) exhibits plateaus andRxx is vanishing, which is the hallmark of the QHE. At
least two well-defined plateaus with values (2e2/h)−1 and (6e2/h)−1, followed by
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a developing (10e2/h)−1 plateau, are observed before the QHE features are trans-
formed into Shubnikov de Haas (SdH) oscillations at lower magnetic field. The
quantization of Rxy for these first two plateaus is better than 1 part in 104, with a
precision within the instrumental uncertainty. In recent experiments [46], this limit
is now at the accuracy of the 10−9 level. We observe the equivalent QHE features
for holes (Vg < VDirac) with negative Rxy values (Fig. 1.2a, inset). Alternatively,
we can probe the QHE in both electrons and holes by fixing the magnetic field
and by changing Vg across the Dirac point. In this case, as Vg increases, first holes
(Vg < VDirac) and later electrons (Vg > VDirac) are filling successive Landau levels
and thereby exhibit the QHE. This yields an antisymmetric (symmetric) pattern of
Rxy (Rxx ) in Fig. 1.2b, with Rxy quantization accordance to

R−1
xy = ±gs

(
n + 1

2

)
e2/h (1.37)

where n is a non-negative integer, and ± stands for electrons and holes, respectively.
This quantization condition can be translated to the quantized filling factor, ν, in the
usual QHE language. Here in the case of graphene, gs = 4, accounting for 2 by the
spin degeneracy and 2 by the sub-lattice degeneracy, equivalent to the K and K′
valley degeneracy under a magnetic field.

The observed QHE in graphene is distinctively different from the ‘conventional’
QHEs because of the additional half-integer in the quantization condition (1.37).
This unusual quantization condition is a result of the topologically exceptional
electronic structure of graphene [44, 45]. The sequence of half-integer multiples
of quantum Hall plateaus has been predicted by several theories which combine
‘relativistic’ Landau levels with the particle-hole symmetry of graphene [47–49].
This can be easily understood from the calculated LL spectrum (1.16) as shown
in Fig. 1.2(c). Here we plot the density of states (DOS) of the gs -fold degenerate
(spin and sublattice) LLs and the corresponding Hall conductance (σxy = −R−1

xy ,
for Rxx → 0) in the quantum Hall regime as a function of energy. Here σxy exhibits
QHE plateaus when EF (tuned by Vg) falls between LLs, and jumps by an amount
of gse2/h when EF crosses a LL. Time reversal invariance guarantees particle-
hole symmetry and thus σxy is an odd function in energy across the Dirac point [4].
However, in graphene, the n = 0 LL is robust, i.e.,E0 = 0 regardless of the magnetic
field, provided that the sublattice symmetry is preserved [4]. Thus the first plateaus
of R−1

xy for electrons (n = 1) and holes (n = −1) are situated exactly at gse2/2h. As

EF crosses the next electron (hole) LL, R−1
xy increases (decreases) by an amount of

gse
2/h, which yields the quantization condition in (1.37).
A consequence of the combination of time reversal symmetry with the novel

Dirac point structure can be viewed in terms of Berry’s phase arising from the
band degeneracy point [42, 50]. A direct implication of Berry’s phase in graphene
is discussed in the context of the quantum phase of a spin-1/2 pseudo-spinor that
describes the sublattice symmetry [5, 44]. This phase is already implicit in the
half-integer shifted quantization rules of the QHE. It can further be probed in the
magnetic field regime where a semi-classical magneto-oscillation description holds
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Fig. 1.3 An example of the SdH fan diagram for a few layer graphite. (a) The oscillatory part of
the longitudinal resistance,�Rxx , plotted as a function of 1/B . The peaks and valleys are indicated
by solid and open circles, respectively. (b) The Landau index n of each oscillation plotted against
its location in terms of 1/B in (a). The slope of the linear fit (broken line) yields the oscillation
frequency, BF , and the y-axis intercept yields the Berry’s phase, β , in units of π . The linear fit
results in β = 0 for this data set, indicating a trivial Berry phase for this few layer graphite sample.
Reproduced from Ref. [52]

[45, 51]. Reproducing (1.34), the first harmonic of the SdH oscillations can be writ-
ten as

�ρxx = R(B,T ) cos

[
2π

(
BF

B
+ 1

2
+ β

)]
. (1.38)

Here R(B,T ) is the SdH oscillation amplitude, BF is the frequency of the SdH
oscillation in 1/B , and β = 1

2 − γ is the associated Berry’s phase (divided by 2π )
of a value −1/2 < β ≤ 1/2. Berry’s phase β = 0 corresponds to the trivial case.
A deviation from this value is indicative of interesting new physics with β = 1/2
(or equivalently β = −1/2 implying the existence of Dirac particles [42]).

Experimentally, this phase shift in the semi-classical regime can be obtained from
an analysis of the SdH fan diagram. An example of the SdH fan diagram is given
in Fig. 1.3. We first locate the peaks and valleys of the SdH oscillations in terms of
1/B , and then plot them against their Landau index n. The slope of a linear fit to the
data points gives the SdH oscillation frequency, BF , which is related to the sheet
carrier density ns (1.35). The intercept of the linear fit with the n-index axis yields
Berry’s phase, β , in units of π , modulo an integer.

Figure 1.4 shows SdH fan diagram for graphene at different gate voltages, Vg .
Remarkably, the resulting β is very close to 0.5 (upper inset to Fig. 1.4) for all
the gate voltages, providing further evidence for the existence of a non-zero Berry’s
phase in graphene and the presence of Dirac particles. Such a non-zero Berry’s phase
was not observed in the early few layer graphite specimens [22, 51, 52], although
there have been claims of hints of a phase shift in earlier measurements on bulk
graphite [45]. Experimental data for graphene provide indisputable evidence for
such an effect in a solid state system.
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Fig. 1.4 Measurement of
Berry’s Phase in Graphene.
Landau fan diagrams are
shown for SdH oscillations at
different gate voltages. The
location of 1/B for the nth
minimum of Rxx counting
from B = BF is plotted
against n. The lines
correspond to a linear fit,
where the slope (lower inset)
indicates BF values and the
n-axis intercept (upper inset)
provides a direct probe of
Berry’s phase in the
magneto-oscillation in
graphene. Reproduced from
Ref. [28]

The linear energy dispersion relation also leads to a linearly vanishing 2D den-
sity of states near the charge neutrality point (CNP) at E = 0, ρ2D ∝ |εF |. This
differs from that for conventional parabolic 2D systems in which the density of
states, at least in the single particle picture, is constant, leading to a decrease in
the ability of charge neutral graphene to screen electric fields. Finally, the sublat-
tice symmetry endows the quasiparticles with a conserved quantum number and
chirality, corresponding to the projection of the pseudospin on the direction of mo-
tion [30]. In the absence of scattering which mixes the electrons in the graphene
valleys, pseudospin conservation forbids backscattering in graphene [5], momen-
tum reversal being equivalent to the violation of pseudospin conservation. This ab-
sence of backscattering has been advanced as an explanation for the experimentally
observed unusually long mean free path of carriers in metallic as compared with
semiconducting nanotubes [33].

1.4 Pseudospin and Klein Tunneling in Graphene

The observation of electron and hole puddles in charge neutral, substrate supported
graphene [53] confirmed theoretical expectations [54] that transport at charge neu-
trality is dominated by charged impurity-induced inhomogeneities [55–57]. The
picture of transport at the Dirac point is as a result of conducting puddles sepa-
rated by a network of p-n junctions. Understanding the properties of graphene p-n
junctions is thus crucial to quantitative understanding of the minimal conductivity,
a problem that has intrigued experimentalists and theorists alike [27, 54, 57–62].
Describing transport in the inhomogeneous potential landscape of the CNP requires
introduction of an additional spatially varying electrical potential into (1.1) in the
previous section; transport across a p-n junction corresponds to this varying poten-
tial crossing zero. Because graphene carriers have no mass, graphene p-n junctions
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provide a condensed matter analogue of the so called ‘Klein tunneling’ problem
in quantum electro-dynamics (QED). The first part of this section will be devoted
to the theoretical understanding of ballistic and diffusive transport across such as
barrier.

In recent years, substantial effort has been devoted to improving graphene sam-
ple quality by eliminating unintentional inhomogeneity. Some progress in this di-
rection has been made by both suspending graphene samples [63, 64] as well as
by transferring graphene samples to single crystal hexagonal boron nitride sub-
strates [65]. These techniques have succeeded in lowering the residual charge den-
sity present at charge neutrality, but even the cleanest samples are not ballistic on
length scales comparable to the sample size (typically �1 μm). An alliterative ap-
proach is to try to restrict the region of interest being studied by the use of local
gates.

Graphene’s gapless spectrum allows the fabrication of adjacent regions of pos-
itive and negative doping through the use of local electrostatic gates. Such het-
erojunctions offer a simple arena in which to study the peculiar properties of
graphene’s massless Dirac charge carriers, including chirality [30, 66] and emer-
gent Lorentz invariance [67–69]. Technologically, graphene p-n junctions are rele-
vant for various electronic devices, including applications in conventional analog
and digital circuits [70, 71] as well as novel electronic devices based on elec-
tronic lensing [72–75]. In the latter part of this review, we will discuss current
experimental progress towards such gate-engineered coherent quantum graphene
devices.

The approach outlined in the previous section requires only small modifications
to apply the approach to the case of carrier transport across graphene heterojunc-
tions. While the direct calculation for the case of graphene was done by Katsnel-
son et al. [30], a similar approach taking into account the chiral nature of carri-
ers was already discussed a decade ago in the context of electrical conduction in
metallic carbon nanotubes [5]. In low dimensional graphitic systems, the free par-
ticle states described by (1.1) are chiral, meaning that their pseudospin is paral-
lel (antiparallel) to their momentum for electrons (holes). This causes a suppres-
sion of backscattering in the absence of pseudospin-flip nonconserving processes,
leading to the higher conductances of metallic over semiconducting carbon nan-
otubes [33]. To understand the interplay between this effect and Klein tunneling
in graphene, we introduce external potentials A(r) and U(r) in the Dirac Hamilto-
nian,

Ĥ = vFσ · (−i�∇ − eA(r)
)+ U(r). (1.39)

In the case of a 1-dimensional (1D) barrier, U(r) = U(x), at zero magnetic field,
and the momentum component parallel to the barrier, py , is conserved. As a result,
electrons normally incident on a graphene p-n junction are forbidden from scatter-
ing obliquely by the symmetry of the potential, while chirality forbids them from
scattering directly backwards: the result is perfect transmission as holes [30], and
this is what is meant by Klein tunneling in graphene (see Fig. 1.5(a)). The rest of this
review is concerned with gate induced p-n junctions in graphene; however, the nec-
essarily transmissive nature of graphene p-n junctions is crucial for understanding
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Fig. 1.5 Potential landscape and angular dependence of quasiparticle transmission through (a) an
atomically sharp pnp barrier and (b) an electrostatically generated smooth pnp barrier in graphene,
with their respective angle-dependent transmission probabilities |T |2. Red and blue lines corre-
spond to different densities in the locally gated region. Reproduced from Ref. [89]

the minimal conductivity [62] and supercritical Coulomb impurity [76–79] prob-
lems in graphene, as well as playing a role in efforts to confine graphene quantum
particles [80, 81]. Moreover, p-n junctions appear in the normal process of contact-
ing [82–86] and locally gating [70, 87] graphene, both of which are indispensable
for electronics applications.

Even in graphene, an atomically sharp potential cannot be created in a realistic
sample. Usually, the distance to the local gate, which is isolated from the graphene
by a thin dielectric layer determines the length scale on which the potential varies.
The resulting transmission problem over a Sauter-like potential step in graphene was
solved by Cheianov and Fal’ko [66]. Substituting the Fermi energy for the potential
energy difference ε − U(x) = �vf kf (x) and taking into account the conservation
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of the momentum component py = �kF sin θ parallel to the barrier, they obtained a
result, valid for θ  π/2, that is nearly identical to that of Sauter [88]:

kF (x) =

⎧⎪⎨
⎪⎩

−kF /2 x < 0

Fx 0 ≤ x ≤ L

kF /2 x > L

|T |2 ∼ e
−2π2 hvF

Fλ2
F

sin2 θ

. (1.40)

As in the massive relativistic problem in one-dimension, the transmission is de-
termined by evanescent transport in classically forbidden regions where kx(x)2 =
kF (x)

2 − p2
y < 0 (Fig. 1.5). The only differences between the graphene case and

the one dimensional, massive relativistic case are the replacement of the speed of
light by the graphene Fermi velocity, the replacement of the Compton wavelength
by the Fermi wavelength, and the scaling of the mass appearing in the transmission
by the sine of the incident angle. By considering different angles of transmission
in the barrier problem in two dimensional graphene, then, one can access both the
Klein and Sauter regimes of T ∼ 1 and T  1.

The current state of the experimental art in graphene does not allow for injec-
tion of electrons with definite py [29, 90–95]. Instead, electrons impinging on a p-n
junction have a random distribution of incident angles due to scattering in the dif-
fusive graphene leads. Equation (1.40) implies that in realistically sharp p-n junc-
tions, these randomly incident electrons emerge from the p-n junction as a colli-
mated beam, with most off-normally incident carriers being scattered; transmission
through multiple p-n junctions leads to further collimation [96]. Importantly, even
in clean graphene, taking into account the finite slope of the barrier yields qual-
itatively different results for the transmission: just as in the original Klein prob-
lem, the sharp potential step [30, 97–102] introduces pathologies—in the case of
graphene, high transmission at θ �= 0—which disappear in the more realistic treat-
ment [66, 96, 103].

Transport measurements across single p-n junctions, or a pnp junction in which
transport is not coherent, can at best provide only indirect evidence for Klein tun-
neling by comparison of the measured resistance of the p-n junction. Moreover, be-
cause such experiments probe only incident-angle averaged transmission, they can-
not experimentally probe the structure T (θ). Thus, although references [83] and [94]
demonstrated that the resistance of nearly ballistic p-n junctions are in agreement
with the ballistic theory, to show that angular collimation occurs, or that there is per-
fect transmission at normal incidence, requires a different experiment. In particular,
there is no way to distinguish perfect transmission at θ = 0 from large transmission
at all angles, begging the question of whether “Klein tunneling” has any observable
consequences outside the context of an angle resolved measurement or its contri-
bution to bulk properties such as the minimal conductivity. In fact, as was pointed
out by Shytov et al. [104], an experimental signature of this phenomenon should
manifest itself as a sudden phase shift at finite magnetic field in the transmission
resonances in a ballistic, phase coherent, graphene pnp device.

Although graphene p-n junctions are transmissive when compared with p-n junc-
tions in gapfull materials (or gapless materials in which backscattering is allowed,
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such as bilayer graphene), graphene p-n junctions are sufficiently reflective, particu-
larly for obliquely incident carriers, to cause transmission resonances due to Fabry-
Perot interference. However, in contrast to the canonical example from optics, or to
one dimensional electronic analogues [105], the relative phase of interfering paths
in a ballistic, phase coherent pnp (or npn) graphene heterojunction can be tuned by
applying a magnetic field. For the case where the junction width is only somewhat
shorter than the mean free path in the local gate region (LGR), L� �LGR , the Lan-
dauer formula for the oscillating part of the conductance trace can be derived from
the ray tracing diagrams in Fig. 1.6(d),

Gosc = e−2L/lLGR 4e2

h

∑
ky

2|T+ |2 |T− |2R+R− cos(θWKB), (1.41)

in which T± and R± are the transmission and reflection amplitudes at x = ±L/2,
θWKB is the semiclassical phase difference accumulated between the junctions by
interfering trajectories, and �LGR is a fitting parameter which controls the amplitude
of the oscillations.

At zero magnetic field, particles are incident at the same angle on both junctions,
and the Landauer sum in (1.41) is dominated by the modes for which both transmis-
sion and reflection are nonnegligible, so neither normal nor highly oblique modes
contribute. Instead, the sum is dominated by modes with finite ky , peaked about
ky = ±√

F/(ln (3/2)π�vF ), where F is the electric force in the pn junction region.
As the magnetic field increases, cyclotron bending favors the contribution of modes
with ky = 0, which are incident on the junctions at angles with the same magnitude
but opposite sign (Fig. 1.6(c)). If perfect transmission at zero angle exists, then an-
alyticity of the scattering amplitudes demands that the reflection amplitude changes
sign as the sign of the incident angle changes [104], thereby causing a π shift in the
reflection phase. This effect can also be described in terms of the Berry phase: the
closed momentum space trajectories of the modes dominating the sum at low field
and high ky do not enclose the origin, while those at intermediate magnetic fields
and ky ∼ 0 do. As a consequence, the quantization condition leading to transmission
resonances is different due to the inclusion of the Berry phase when the trajectories
surround the topological singularity at the origin, leading to a phase shift in the ob-
served conductance oscillations as the phase shift containing trajectories begin to
dominate the Landauer sum in (1.41).

Experimental realization of the coherent electron transport in pnp (as well as npn)
graphene heterojunctions was reported by Young and Kim [29]. The key experimen-
tal innovations were to use an extremely narrow (�20 nm wide) top gate, creating
a Fabry Perot cavity between p-n junctions smaller than the mean free path, which
was ∼ 100 nm in the samples studied. Figure 1.6(a) shows the layout of a graphene
heterojunction device controlled by both top gate voltage (VTG) and back gate volt-
age (VBG). The conductance map shows clear periodic features in the presence of
p-n junctions; these features appear as oscillatory features in the conductance as a
function of VTG at fixed VBG (Fig. 1.6(b)). For the electrostatics of the devices pre-
sented in this device, the magnetic field at which this π phase shift, due to the Berry
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Fig. 1.6 (a) Scanning electron microscope image of a typical graphene heterojunction device.
Electrodes, graphene and top gates are represented by yellow, purple and cyan, respectively.
(b) A differential transconductance map of the device as a function of densities n2 and n1, cor-
responding to the locally gated region (LGR) and out side the LGR, i.e. graphene lead (GL) re-
gion, respectively. Interference fringes appear in the presence of pn junctions, which define the
Fabry-Perot cavity. (c) Inset: Conductance map of the device in the back gate and top gate voltages
(VBG–VTG) plane. The main panels show cuts through this color map in the regions indicated by
the dotted lines in the inset, showing the conductance as a function of VTG at fixed VBG. Traces
are separated by a step in VBG of 1 V, starting from 80 V with traces taken at integer multiples of
5 V in black. (d) Schematic diagram of trajectories contributing to quantum oscillations in real and
momentum space. With increasing B , the dominant modes at low magnetic field (blue) give way
to phase-shifted modes with negative reflection amplitude due to the inclusion of the non-trivial
Berry phase (orange), near ky = 0. The original finite ky modes are not yet phase shifted at the
critical magnetic field Bc , above which the non-trivial Berry phase shift π (green) appears. But
owing to collimation, these finite ky modes no longer contribute to the oscillatory conductance.
(e) Magnetic-field and density dependence of the transconductance dG/dn2 for n1 > 0 is fixed.
Note that the low field oscillatory features from FP resonance only appear for n2 < 0 where there
is pnp junction forms. (f) Oscillating part of the conductance at VBG = 50 V for low fields. Gosc
as extracted from the experimental data over a wide range of densities and magnetic fields (left)
matches the behavior predicted by a theory containing the phase shift due to Klein tunneling [104]
(right). Reproduced from [29]

phase at the critical magnetic field discussed above, is expected to occur in the range
B∗ = 2�ky/eL ∼ 250–500 mT, in agreement with experimental data which show an
abrupt phase shift in the oscillations at a few hundred mT (Fig. 1.6(f)). Experiments
can be matched quantitatively to the theory by calculation of (1.41) for the appro-
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priate potential profile, providing confirmation of the Klein tunneling phenomenon
in graphene. As the magnetic field increases further, the ballistic theory predicts
the disappearance of the Fabry-Perot conductance oscillations as the cyclotron ra-
dius shrinks below the distance between p-n junctions, Rc � L, or B ∼ 2 T for our
devices (Fig. 1.6(e)).

There is an apparent continuation of the low magnetic field Fabry-Perot (FP) os-
cillations to Shubnikov-de Haas (SdH) oscillations at high magnetic fields. Gener-
ally, the FP oscillations tend to be suppressed at high magnetic fields as the cyclotron
orbits get smaller than the junction size. On the other hand, disorder mediated SdH
oscillations become stronger at high magnetic field owing to the large separation
between Landau levels. The observed smooth continuation between these two oscil-
lations does not occur by chance. FP oscillations at magnetic fields higher than the
phase shift are dominated by trajectories with ky = 0; similarly, SdH oscillations,
which can be envisioned as cyclotron orbits beginning and ending on the same im-
purity, must also be dominated by ky = 0 trajectories [106]. The result is a seamless
crossover from FP to SdH oscillations. This is strongly dependent on the disorder
concentration: for zero disorder, SdH oscillations do not occur, while for very strong
disorder SdH oscillations happen only at high fields and FP oscillations do not oc-
cur due to scattering between the p-n junctions. For low values of disorder, such that
SdH oscillations appear at fields much smaller than the phase shift magnetic field,
Bc, the two types of coherent oscillations could in principle coexist with different
phases. The role of disorder in the FP-SdH crossover has only begun to be addressed
experimentally [29] and theoretically [68].

Similar experiments on at least partially phase coherent graphene heterojunctions
were carried out by several other groups [93, 94], although they did not observe the
phase shift that is the signature of Klein tunneling. Further theoretical considerations
of quantum transport across pnp junctions in the presence of disorder were discussed
by Rossi et al. [107], who calculated the resistance and the Fano factor in the pres-
ence of weak disorder: both resistance and Fano factor show broad resonance peaks
due to the presence of quasi-bound-states. As expected from the phenomenological
model described in (1.41), these features are washed out when the mean free path
becomes of the order of the distance between the two p-n interfaces.

Expanding the number of p-n junction boundaries can be achieved simply by
installing an array of top gates on graphene, producing a superlattice electrostatic
potential. While this has not been demonstrated experimentally due to constraints on
sample quality, there exist multiple theoretical studies of graphene p-n junction ar-
rays [96–99, 102, 108–113]. In the simple case of one dimensionally periodic Dirac
delta function barriers with the dimensionless barrier strength P whose potential is
given by V (x, y) = �vFP δ(x), Barbier et al. [112] showed that the dispersion re-
lation of this Kronig-Penney (KP) model of a superlattice is a periodic function of
P and causes collimation of an incident electron beam for P = 2πn where n is an
integer. For a KP superlattice with an alternating sign for the height of the barriers,
the Dirac point in the 2D dispersion becomes a Dirac line for P = π(n + 1/2). The
modification of the graphene spectrum remains an interesting direction to pursue
experimentally.
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Superlattices can also have a ‘supercollimating’ effect on ballistically propagat-
ing carriers, creating an electron beam with almost no spatial spreading or diffrac-
tion. The unit transmission of normally incident carriers means that, in a sample
with minimal scattering, a highly collimated electron beam can be created with-
out a waveguide or external magnetic fields [96]. Such a perfect collimation stems
from the creation of a chiral quasi-one-dimensional metallic state originating from
the collapse of the intrinsic helical nature of the charge carriers in the superlattice
potential.

In realistic graphene devices, however, disorder dominates, and any experimental
superlattice will need to be analyzed with this in mind. The conductance of disor-
dered graphene superlattices with short-range structural correlations was studied
theoretically [109, 111]. Ignoring intervalley scattering, these studies demonstrated
that the transport and spectral properties of such structures are strongly anisotropic
even in the presence of disorder. In the direction perpendicular to the barriers, the
eigenstates in a disordered sample are delocalized for all energies and provide a
robust minimum nonzero conductivity. However, along with extended states, there
exist discrete sets of angles and energies with exponentially localized eigenfunc-
tions, producing disorder-induced resonances. It is particularly interesting that the
disorder not only suppresses the transmission of carriers across the barriers but,
counter intuitively, can enhance transmission.

1.5 Conclusions

In this chapter, we discuss the role of pseudospin in electronic transport in graphene.
We demonstrate a variety of new phenomena which stem from the effectively rela-
tivistic nature of the electron dynamics in graphene, where the pseudospin is aligned
with two-dimensional momentum. Our main focus were two major topics: (i) the
non-conventional, half-integer shifted filling factors for the quantum Hall effect
(QHE) and the peculiar magneto-oscillation where one can directly probe the exis-
tence of a non-trivial Berry’s phase, and (ii) Klein tunneling of chiral Dirac fermions
in a graphene lateral heterojunction.

Employing unusual filling factors in QHE in single layer graphene samples as an
example, we demonstrated that the observed quantization condition in graphene is
described by half integer rather than integer values, indicating the contribution of
the non-trivial Berry’s phase. The half-integer quantization, as well as the measured
phase shift in the observed magneto-oscillations, can be attributed to the peculiar
topology of the graphene band structure with a linear dispersion relation and a van-
ishing mass near the Dirac point, which is described in terms of effectively ‘rela-
tivistic’ carriers as shown in (1.1). The unique behavior of electrons in this newly
discovered (2 + 1)-dimensional quantum electrodynamics system not only opens up
many interesting questions in mesoscopic transport in electronic systems with non-
zero Berry’s phase but may also provide the basis for novel carbon based electronics
applications.
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The development and current status of electron transport in graphene hetero-
junction structures were also reviewed. In these lateral heterojunction devices, the
unique linear energy dispersion relation and concomitant pseudospin symmetry are
probed via the use of local electrostatic gates. Mimicking relativistic quantum par-
ticle dynamics, electron waves passing between two regions of graphene with dif-
ferent carrier densities will undergo strong refraction at the interface, producing an
experimental realization of the century-old Klein tunneling problem of relativistic
quantum mechanics. Many theoretical and experimental discussions were presented
here, including the peculiar graphene p-n and pnp junction conduction in the diffu-
sive and ballistic regimes. Since electrons are charged, a magnetic field can couple
to them and magnetic field effects can be studied. In particular, in a coherent system,
the electron waves can also interfere, producing quantum oscillations in the electri-
cal conductance, which can be controlled through the application of both electric
and magnetic fields. A clear indication of a phase shift of π in the magnetoconduc-
tance clearly indicates again the existence of a non-trivial Berry’s phase associated
with the pseudo-spin rotation during the Klein tunneling process.
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Chapter 2
Probing Dirac Fermions in Graphene
by Scanning Tunneling Microscopy
and Spectroscopy

Adina Luican-Mayer and Eva Y. Andrei

Abstract Graphene is a two dimensional system which can be studied using sur-
face probe techniques such as scanning tunneling microscopy and spectroscopy.
Combining the two, one can learn about the surface morphology as well as about
its electronic properties. In this chapter we present a brief review of experimental
results obtained on graphene supported on substrates with varying degrees of disor-
der. In the first part we focus on the electronic properties of single layer graphene
without a magnetic field as well as in the presence of a perpendicular magnetic field.
The second part focuses on twisted graphene stacks and the effects of rotating away
from the equilibrium Bernal stacking on the electronic properties.

2.1 Scanning Tunneling Microscopy and Spectroscopy

Scanning tunneling microscopy (STM) is a powerful technique used to study the
surface morphology of materials as well as to learn about their electronic proper-
ties. The idea behind the operation of an STM, for which Gerd Binnig and Heinrich
Rohrer were awarded the Nobel prize in 1986 [1], is conceptually simple. By bring-
ing a sharp metallic tip atomically close (≈1 nm) to a conducting sample surface
one can create a tunneling junction and when a bias voltage is applied between the
two, a tunneling current will start flowing. Such a tunneling junction is depicted in
Fig. 2.1. In this situation the electrons below the Fermi level of the sample will be
tunneling into the tip, and therefore probe the filled electronic states. In the reverse
situation when the Fermi level of the tip is above that of the sample, the electrons are
flowing out of the tip into the sample probing the empty states of the sample. The
current between the sample and the tip It can be calculated from a Fermi Golden
rule expression which, assuming low temperatures, can be simplified to [2, 3]:

I ∝ 4πe

�

∫ eVBias

0
ρsample(ε)ρtip(eVBias − ε)|M|2dε (2.1)
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Fig. 2.1 (a) Sketch of the tunneling junction between the tip and the sample in an STM experi-
ment. The important quantities are indicated: the tip-sample separation d , the Fermi level EF , the
bias voltage VBias . The indicated DOS for the sample has an arbitrary shape and for the tip it is
assumed constant. (b) Sketch of the STM set-up in which a graphene flake is placed on a Si/SiO2
substrate. The main parts of an STM experiment are indicated: the scanning head, the feedback
system, the data acquisition interface, the bias voltage and tunneling current. In addition, a gate
voltage is applied between the graphene and the gate electrode (typically Si)

The matrix element, assumed to be constant for the energy interval of integration,

|M|2 ∝ e
−2d
�

√
2mΦ , yields:

I ∝ e
−2s
�

√
2mΦ

∫ eVBias

0
ρsample(ε)ρtip(eVBias − ε)dε (2.2)

Here ρsample and ρtip are the density of electronic states for the sample and tip,
d is the separation between the tip and sample, m, e are the electron mass, charge,
and Φ is the barrier height.

Topography Using the STM to measure the topography of a sample is based on
the condition that It is very sensitive to the tip-sample separation:

I ∝ e
−2d
�

√
2mΦ (2.3)

A common measurement mode of STM is the constant current mode in which the
tip moves across the sample and it is raised or lowered by a feedback loop in order
to keep the tunneling current constant. Tracing the contour made by the tip will give
information about the sample topography.

Spectroscopy If we assume that the tip density of states (DOS) is flat in the energy
range of choice, by taking the derivative of It with respect to the VBias , we obtain:

dIt

dVBias
∝ ρsample(eV ) (2.4)

Therefore, the STM can be used to learn about the density of states of the sample
in the scanning tunneling spectroscopy (STS) mode. For this, first the junction is
set, then the feedback loop is disabled and the tunneling current is recorded while
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varying the bias voltage. Typically this differential conductance is measured with
a lock-in technique by applying a small ac. modulation to the bias voltage. By re-
peating such a measurement on a grid of points across a chosen region one obtains
dIt/dVBias maps which reflect the local density of states as a function of spatial
coordinates.

In a realistic situation the measurement temperature imposes a lower bound on
the resolution which cannot be better than the thermal broadening: E ≈ kT . For
measurements at 4 K the minimum resolution is thus ≈0.35 meV. At the same time
the ac. bias modulation should be comparable to this value for optimal resolution.
Furthermore, common materials used for the tip such as Pt/Ir, W, Au typically sat-
isfy the condition of a flat DOS for small enough voltages. For a reliable STS mea-
surement one needs to check that the experiment is done in the vacuum tunneling
regime when the dependence of the tunneling current on tip-sample distance is ex-
ponential [4]. Reliable spectra are checked to be reproducible as a function of time
and they do not depend on the tip-sample distance.

In the following sections we will discuss the results obtained by investigating
graphene samples using scanning tunneling microscopy and spectroscopy.

2.2 From Disordered Graphene to Ideal Graphene

Graphene on SiO2 Graphene was initially isolated by mechanical exfoliation
from graphite (Highly Oriented Pyrolitic Graphite (HOPG) or natural graphite) onto
Si wafers capped with SiO2 [5]. In order to fabricate devices from these flakes,
metallic contacts are added using standard e-beam lithography. This sample config-
uration allows using the highly doped Si as a back gate so that by applying a voltage
between the flake and the back gate one can tune the carrier density in graphene.
Much of the experimental work and in particular transport experiments have used
this type of sample, but they are far from ideal.

Firstly, the nanofabrication procedure can result in disorder that can reside ei-
ther between the graphene and the SiO2 or on the surface of graphene. Secondly,
graphene will conform to the surface of SiO2 and it will therefore be rippled. An il-
lustration of this situation is presented in Fig. 2.2. As a consequence of the disorder,
the Fermi level of neutral graphene will not coincide with the Dirac point, mean-
ing graphene is doped [6, 7]. The doping varies on the surface of graphene creating
puddles of different carrier density (electron-hole puddles) [6, 7].

One of the main sources of the electron-hole puddles in graphene is the random
potential induced by the substrate. For the standard SiO2 substrates which are rou-
tinely used in graphene devices this is particularly problematic due to the presence
of trapped charges and dangling bonds [8]. Recent experiments demonstrated that
the use of dry-chlorinated SiO2 substrates leads to a significant reduction in the ran-
dom potential. The use of these substrates gave access to the intrinsic properties of
graphene allowing the observation of Landau levels as detailed in a later section [9]
(Sect. 2.2.4).
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Fig. 2.2 (a) Illustration of the varying carrier concentration across a graphene sample due to the
random potential underneath. The Fermi level and the Dirac point are shown by the black and green
lines, respectively. (b) Sketch of how graphene (the orange line) deposited on the surface of SiO2
will have a roughness comparable to the substrate [13]. The light gray dots schematically illustrate
trapped charges

Graphene on Hexagonal Boron Nitride (BN), Mica etc. More recently, exper-
imental methods were developed to manipulate other 2D materials from layered
structures (e.g. BN) [5, 10]. In order to minimize the disorder due to the underlying
substrate while still preserving the possibility of gating, graphene was placed on
thin flakes of BN which in turn, were previously exfoliated on Si/SiO2. The quality
improvement by using BN as a substrate was significant; the mobilities for devices
were above 100000 cm2/Vs which is an order of magnitude higher than typical
graphene devices on SiO2 [10]. In very high magnetic fields the fractional quantum
Hall effect was also observed in such samples [11]. Another substrate demonstrated
to be suitable for obtaining flat graphene is mica [12].

Graphene Flakes on Graphite After cleavage of a graphite crystal, one often
finds graphene flakes on the surface which are decoupled from the bulk graphite
underneath. These flakes provide the most favorable conditions for accessing
the intrinsic electronic properties of graphene as detailed in the following sec-
tions [13–15].

Epitaxial Graphene, Graphene Obtained by Chemical Vapor Deposition etc.
Other avenues of producing graphene are epitaxial growth on SiC crystals [16–
18] and chemical vapor deposition (CVD) [19–21]. In the epitaxial growth one
starts with a SiC crystal terminated in Si or C and annealing to temperatures above
1500 ◦C leads to the formation of graphene layers at the surface. Often the layers
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are misoriented with respect to each other thereby forming Moiré patterns. For the
CVD growth, a metallic substrate that plays the role of a catalyst is placed in a hot
furnace in a flow of gaseous carbon source. As a result, carbon is absorbed into the
metal surfaces at high temperatures and precipitated out to form graphene during
cool down to room temperature [22]. Other metallic substrates used for growing
graphene films include Ru [23, 24], Ir [25, 26] and Pt [27].

2.2.1 Surface Topography of Graphene

The discussion about the morphology of a graphene surface is important because the
stability of a 2D membrane in a 3D world is closely related to the tendency toward
crumpling or rippling [28, 29]. The degree of rippling also influences the quality
of the electronic properties [30]. The morphology of the graphene surface depends
strongly on the type of substrate (or lack of substrate) underneath.

Transmission Electron Microscope (TEM) experiments performed on graphene
films placed on TEM grids show that there is an intrinsic rippling of the suspended
graphene membrane with deformations of up to 1 nm [31]. However, when de-
posited on a flat surface such as mica [12], BN [32, 33], or HOPG [34] the height
corrugations become as small as 20–30 pm. On the surface of SiO2 the Van der
Waals forces will make graphene conform to the rough surface and typical values
reported for the corrugations are 0.5 nm in height and a few nm in the lateral dimen-
sion [7, 9, 13, 35, 36].

The first STM experiments on graphene deposited on SiO2 showed that the lattice
is indeed hexagonal with almost no defects [37]. Moreover, they also showed the
importance of sample cleaning in order to access the pristine graphene surface [38].
A more extensive analysis of the correlation between the substrate roughness and
intrinsic graphene roughness [13] suggested that in areas where the graphene does
not conform to the oxide surface and it is suspended over the high points, one can
find an additional intrinsic corrugation on smaller length scales consistent with TEM
studies [31].

A comparison between typical STM data for graphene on SiO2 and decoupled
graphene flakes on HOPG is presented in Fig. 2.3. In Fig. 2.3(a) the topography of
a graphene area on SiO2 shows a rippled surface. In contrast, graphene on HOPG is
much flatter as seen in the topography map in Fig. 2.3(b). The corresponding atomic
resolution data demonstrates that despite the corrugation of the surface of graphene,
the honeycomb lattice is continuous across the hills and valleys (Fig. 2.3(c), (d)).
Remarkably, in both cases the graphene lattice is defect-free over areas as large as
hundreds of nanometers.

When deposited on BN, graphene is significantly flatter than on SiO2 as shown
in Fig. 2.4. A comparison between the surface morphology for areas of graphene on
SiO2 and on BN is presented in Fig. 2.4(a) and (b). Two line cuts arbitrarily shifted
in the z direction in Fig. 2.4(c) show that, when placed on BN, graphene is one order
of magnitude smoother than on SiO2. On such samples STM/STS experiments re-
port Moiré patterns that arise because of the lattice mismatch and rotation between



34 A. Luican-Mayer and E.Y. Andrei

Fig. 2.3 (a) Scanning Tunneling Microscopy image of 300 nm × 300 nm graphene on a
SiO2 surface (Vbias = 300 mV, It = 20 pA). (b) Scanning Tunneling Microscopy image of
300 nm × 300 nm graphene on graphite surface (Vbias = 300 mV, It = 20 pA). (c), (d) Smaller
size image showing atomic resolution on graphene in area (a) and (b), respectively. (e), (f) Scan-
ning Tunneling Spectroscopy data obtained on the corresponding graphene samples in (c) and (d),
respectively [9, 34]

graphene and the BN [32, 33]. Furthermore, the random potential fluctuation mea-
sured by scanning tunneling spectroscopy appears much smaller than on graphene
samples exfoliated on SiO2 [32, 33].
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Fig. 2.4 Comparison between the topography of two areas 100 nm × 100 nm of (a) graphene on
SiO2 and (b) graphene on BN. (c) Comparison between two line cuts across (a), (b)

2.2.2 Tunneling Spectroscopy of Graphene

One of the reasons why graphene has attracted so much interest is its unique elec-
tronic band structure. In the low energy regime the charge carriers obey a Dirac-
Weyl Hamiltonian and have a conical dispersion. To the first approximation, it
is possible to obtain a closed analytical form for the density of states at low en-
ergy [39]:

ρ(E) = 2Ac
π

|E|
v2
F

(2.5)

where, Ac is the unit cell area of graphene lattice.
The DOS in graphene differs qualitatively from that in non-relativistic 2D elec-

tron systems leading to important experimental consequences. It is linear in energy,
electron-hole symmetric and vanishes at the Dirac point (DP)—as opposed to a con-
stant value in the non-relativistic case. This makes it easy to dope graphene with an
externally applied gate voltage. At zero doping, the lower half of the band is filled
exactly up to the Dirac points. Applying a voltage to the graphene relative to the
gate electrode (when graphene is on Si/SiO2, the highly doped Si is the back gate)
induces a nonzero charge. This is equivalent to injecting, depending on the sign of
the voltage, electrons in the upper half of Dirac cones or holes in the lower half. Due
to electron-hole symmetry the gating is ambipolar [40].

For graphene on graphite the measured density of states is linear and vanishes
at the Dirac point (Fig. 2.3(f)) as expected from theory. For the data shown in
Fig. 2.3(f), the Fermi level is slightly shifted away from the Dirac point (≈16 meV)
corresponding to hole doping with a surface density n = 2 × 1010 cm−2.

However, when disorder introduces a random potential, as is the case for the
graphene on SiO2, the spectrum deviates from the ideal V-shape [35, 36, 41–43].
Some of the measured features in the spectra were attributed to strain and ripples
[43], others to local doping due to impurities. A typical spectrum is presented in
Fig. 2.3(e) [9]. In this case, the Dirac point is shifted from the Fermi energy by
≈200 meV corresponding to a carrier concentration n = 2 × 1012 cm−2.

Some STM experiments on graphene exfoliated on SiO2 reported a gap at the
Fermi level which was attributed to inelastic tunneling into graphene (via phonon
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scattering) [42]. In other experiments though, the gap is seen only above certain
tunneling currents [41]. In most cases a dip at the Fermi level is observed in the
tunneling spectra of graphene on SiO2 [9, 36] which can be attributed to a zero bias
anomaly.

2.2.3 Doping and Electron Hole Puddles

Theoretically, in neutral graphene the Fermi level should coincide with the Dirac
point. However, it is observed that graphene is often doped such that there is an
energy difference between the Dirac point energy (ED) and the Fermi energy (EF ).
To find the dopant concentration, the carrier density can be calculated as follows:

n = N

A
= 4

πk2
F

(2π)2
= k2

F

π
= 1

π

E2
F

�2v2
F

(2.6)

Here the Fermi velocity is vF = 106 m/s and taking EF = 1 meV we get n ≈
108/cm2.

The origin of this doping is not yet well understood. However, the most likely
causes are trapped charges and absorbed species at edges/defects etc. Recent STM
experiments using graphene films doped on purpose with nitrogen (N) were aimed
at characterizing at atomic scales the electronic structure modifications due to indi-
vidual dopants [44]. It was found that N, which bonds with the carbon in the lattice,
can contribute to the total number of mobile carriers in graphene resulting in a shift
of the Dirac point. Moreover, the electronic properties of graphene are modified
around an individual N dopant on length scales of only a few atomic spacings [44].

The existence of electron-hole puddles was first pointed out by single electron
transistor studies with a spatial resolution of a hundred nm [6]. Higher resolution
studies of the spatial fluctuations of the carrier distribution using STM showed even
finer density fluctuations on nm scales [7]. The typical variation in the Dirac point
of graphene deposited on SiO2 was found to be 30–50 meV corresponding to carrier
densities of (2 × 1011–4 × 1011) cm−2 [6, 7, 9].

In the presence of scattering centers, the electronic wave functions can interfere
to form standing wave patterns which can be observed by measuring the spatial
dependence of dI/dV at a fixed sample bias voltage. By using these interference
patterns, it was possible to discern individual scattering centers in the dIt/dVBias
maps obtained at energies far from the Dirac point when the electron wave length is
small. No correlations were found between the corrugations and the scattering cen-
ters, suggesting that the latter play a more important role in the scattering process.
When the sample bias voltage is close to the Dirac point, the electron wave length
is so large that it covers many scattering centers. Thus, the dIt/dVBias maps show
coarse structures arising from the electron-hole puddles. The Fourier transform of
the interference pattern provides information about the energy and momentum dis-
tribution of quasiparticle scattering, which can be used to infer band structure in-
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Fig. 2.5 (a) Map of the Dirac point on graphene on graphite [14]. (b) Histogram of the values
of Dirac point in (a). (c) Map of the Fermi velocity on graphene on a graphite substrate [14].
(d) Histogram of the velocities in (c)

formation [45]. For unperturbed single layer graphene, interference patterns are ex-
pected to be absent or very weak [46]. However, due to the strong scattering centers,
clear interference patterns are observed for graphene on SiO2 [7], where the main
scattering centers are believed to be trapped charges.

In contrast to graphene on SiO2, graphene on graphite shows very little variation
of the Dirac point (≈5 meV) across hundreds of nm [14, 34] (Fig. 2.5(b)). This is
illustrated in the spatial map of the distance between the Dirac point and the Fermi
level shown in Fig. 2.5(a). The value of the Dirac point was extracted by fitting
the Landau level sequence, as discussed in the next section. Further demonstration
of the homogeneity of the graphene flakes on graphite is given by the Fermi ve-
locity which is found to vary by less than 5 % across the same area as shown in
Fig. 2.5(c), (d). For the histogram is Fig. 2.5(d) the mean value of the velocity is
vF = 0.78 × 106 m s−1. Similarly, the fluctuations of the local charge density in
graphene on h-BN were recently found to be much smaller than on SiO2 [32, 33].

2.2.4 Landau Levels

In the presence of a magnetic field, B , normal to the plane, the energy spectrum of
2D electron systems breaks up into a sequence of discrete Landau levels (LL). For
the non-relativistic case realized for example in the 2D electron system on helium
[47] or in semiconductor heterostructures [48], the Landau level sequence consists
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Fig. 2.6 Illustration of quantized energy levels in graphene and their signature in the density of
states. Right side: Dirac cone which in a magnetic field no longer has a continuum energy, but
discrete levels: red rings for electrons, blue rings for holes. Left side: the vertical axis is energy;
the horizontal axis is the density of states. For each Landau level there is a peak in the density
of states which is broadened by electron-electron interactions in ideal systems. In the presence of
disorder, the LL are further broadened. The indexes of the LLs are N = 0 for the one at the Dirac
point and N = +1,+2,+3, . . . for the electron side and N = −1,−2,−3, . . . for the hole side

of a series of equally spaced levels similar to that of a harmonic oscillator: E =
�ωc(N + 1/2) with the cyclotron frequency ωc = eB/m∗, a finite energy offset of
1/2�ωc, and an effective mass m∗. In graphene, as a result of the linear dispersion
and Berry phase of π , the Landau level spectrum is different [49]:

En = ±�ωG
√|N |, ωG =

√
2vF
lB

(2.7)

Here, N = . . . ,−2,−1,0,+1,+2, . . . is the index of the Landau level, ωG is the

cyclotron energy for graphene and lB =
√

�

eB
is the magnetic length.

Compared to the non-relativistic case the energy levels are no longer equally
spaced, the field dependence is no longer linear and the sequence contains a level
exactly at zero energy, N = 0, which is a direct manifestation of the Berry phase in
graphene [50–52]. We note that the LLs are highly degenerate, the degeneracy per
unit area being equal to 4B/φ0. Here B/φ0 is the orbital degeneracy with φ0 = h/e

the flux quantum and 4 = gs · gv , where gs and gv (gs = gv = 2) are the spin and
valley degeneracy, respectively.

In Fig. 2.6 an illustration of the quantized LL is presented. The conical dispersion
of graphene in the absence of a magnetic field is transformed into a sequence of
Landau levels corresponding to electron carriers above the Dirac point (DP) and
holes below it. In the density of states, represented on the left side, a LL corresponds
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Fig. 2.7 (a) STS spectrum of graphene on graphite showing the presence of Landau levels. (b) The
evolution of the LLs with magnetic field. (c) The energy dependence of the LLs on the reduced
parameter sgn(N)

√ |N |B [34], where sgn refers to ± signs

to a peak in the DOS. The indexes of the LLs are indicated as N < 0 for holes and
N > 0 for electrons. Assuming that the Fermi level is exactly at the DP (the case
of neutral graphene), the gray area in Fig. 2.6 represents electronic states that are
already filled.

Experimentally, a direct way to study the quantized Landau levels is through
STS as was demonstrated in early studies on HOPG [53, 54] and adsorbate-induced
two dimensional electron gases (2DEGs) formed by depositing Cs atoms on an n-
InSb(110)surface [55].

2.2.4.1 Landau Levels in Almost Ideal Graphene

STM studies of graphene flakes on graphite in a magnetic field by Li et al. [34]
gave direct access to the LL sequence and its evolution with magnetic field. The
main results are presented in Fig. 2.7. In Fig. 2.7(a) the high resolution spectrum
at 4 T shows sharp LL peaks in the tunneling conductivity dIt/dVBias . The field
dependence of the STS spectra, shown in Fig. 2.7(b), exhibits an unevenly spaced
sequence of peaks flanking symmetrically, in the electron and hole sectors, a peak
at the Dirac point. All peaks, except the one at the Dirac point, which is identified
as N = 0, fan out to higher energies with increasing field. The peak heights increase
with field, consistent with the increasing degeneracy of the LL. To verify that this
sequence of peaks does indeed correspond to massless Dirac fermions, the field and
level-index dependence of the peak energies in the sequence was measured. It was
then compared to the expected values (2.7) measured relative to the Fermi energy
(the convention in STS) as shown in Fig. 2.7(c). This scaling procedure collapses
all the data onto a straight line. Comparing to (2.7), the slope of the line gives a
direct measure of the Fermi velocity, vF = 0.79 · 106 m/s. This value is 20 % less
than expected from single particle calculations and, as discussed later, the reduction
can be attributed to electron-phonon interactions. The presence of a N = 0 field-
independent state at the Dirac point together with the square-root dependence of
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the LL sequence on both field and level index, are the hallmarks of massless Dirac
fermions.

The technique described above, Landau level spectroscopy, can be used to obtain
the Fermi velocity of Dirac fermions, the quasiparticle lifetime, the electron phonon
coupling, and the degree of coupling to the substrate [14, 56]. LL spectroscopy gives
access to the electronic properties of Dirac fermions when they define the surface
electronic properties. This technique was adopted and successfully implemented to
probe massless Dirac fermions in other systems including graphene on SiO2 [9], epi-
taxial graphene on SiC [57], graphene on Pt [58] and topological insulators [59, 60].

An alternative, though less direct, method of accessing the LLs is to probe the
allowed optical transitions between the LLs by using cyclotron resonance measure-
ments. This was done on exfoliated graphene on SiO2 [61, 62], epitaxial graphene
[63] and graphite [15]. Other indirect methods include scanning electron transistor
or similar capacitive techniques [64, 65].

Electron-Phonon Interaction and Velocity Renormalization The basic physics
of graphene is captured in a tight-binding model. However, many-body effects are
often not negligible. Ab initio density functional calculations show that the electron-
phonon (e-ph) interactions introduce additional features in the electron self-energy,
leading to a renormalized velocity at the Fermi energy [66]. Away from the Fermi
energy, two dips are predicted in the velocity renormalization factor, (vF −vF0)/vF ,
at energies E ±�ωph where ωph is the characteristic phonon energy. At the energies
of the phonons involved, such dips give rise to shoulders in the zero field density of
states which can be measured in STS experiments.

Figure 2.8(a) plots the tunneling spectra measured on a decoupled graphene flake
on graphite. Two shoulder features on both sides of the Fermi energy are seen around
150 meV. These features are independent of tip-sample distance for tunneling junc-
tion resistances in the range 3.8–50 G�. In Fig. 2.8(b) the corresponding two dips
in the renormalized velocity are visible. This suggests that the optical breathing
phonon, A′

1 with energy E ≈ 150 meV plays an important role in the velocity renor-
malization observed in graphene [66]. The line width of the A′

1 phonon decreases
significantly for bilayer graphene and decreases even more for graphite [67, 68].
Therefore the electron-phonon coupling through the A′

1 phonon is suppressed by
interlayer coupling and the induced velocity renormalization is only observed in
single layer graphene decoupled from the substrate.

Landau Level Linewidth and Electron-Electron Interactions The lineshapes
of the LLs for the case of graphene on graphite were found to be Lorentzian rather
than Gaussian [34], suggesting that the linewidth reflects the intrinsic lifetime rather
than disorder broadening. Furthermore, looking closer at the linewidth of the LLs in
Fig. 2.8(c), it is found that the width increases linearly with energy. This dependence
is consistent with the theoretical predictions that graphene displays a marginal Fermi
liquid behavior: τ ∝ E−1 ≈ 9 ps [69].

Another interesting feature is the presence of an energy gap with Egap ≈ 10 meV
in the B = 0 T spectrum as shown in Fig. 2.8(d) which may have the same origin
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Fig. 2.8 (a) STS data for graphene flakes on HOPG showing how the Fermi velocity is renormal-
ized below a certain energy (≈150 meV). (b) The calculated renormalization of the Fermi velocity
versus sample bias from the data in (a). (c) Fit of the LL lineshape with Lorentzians. (d) Tunneling
spectra taken with higher resolution revealing a 10 meV gap at the Dirac point [34]

as the splitting of the N = 0 level in finite field. One possible explanation for the
presence of this gap is the broken A-B symmetry due to the Bernal stacking of the
graphene layer with respect to the graphite substrate, but more work is needed to
elucidate its origin.

Lifting of the LL degeneracy was observed in quantum Hall effect measurements
on the highest quality suspended graphene devices [70, 71] and in STM experiments
on epitaxial graphene on SiC [72].

2.2.4.2 Effects of Interlayer Coupling

For graphene flakes on graphite one can also address the effect of interlayer coupling
in regions where the graphene flakes are weakly coupled to the substrate. It was
found that the LL spectrum of graphene which is weakly coupled to a graphite
substrate strongly depends on the degree of coupling.
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Fig. 2.9 (a) STM image showing two distinct regions: G—where the graphene flake is decoupled
from graphite; W—where the graphene flake is weakly coupled to the graphite substrate. (b) The
evolution of the Landau levels from region G to region W. The vertical axis is the position where
the spectrum is measured indicated by d in (a); the horizontal axis is the sample bias. (c), (d) Fits
of the LLs in (b) to the theoretical model [56], in which t is the coupling parameter between the
layers, for no coupling (c) and weak coupling (d) [14]

In Fig. 2.9(a) the topography image shows two regions: G, where the top layer is
decoupled and displays signatures of a single layer graphene and below it, a differ-
ent region, W, where there is weak coupling to the underlying graphite substrate. In
the presence of weak coupling the LL spectrum changes into a complex sequence
resulting from splittings of the levels due to lifted level degeneracy. This is illus-
trated by the spatial dependence of the LLs in Fig. 2.9(b) where the LL sequence
changes after crossing the boundary between G and W [14]. By fitting the LL se-
quence in W to the theoretical model described in [56], the coupling was found to
be a tenth of the one in a regular Bernal stacked bilayer [14].
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2.2.4.3 Landau Levels in Disordered Graphene

For graphene device applications which require gating and the ability to do transport
measurements, it is necessary to use insulating substrates. Therefore, although the
quality of graphene on graphite is far superior to that on an insulating substrates,
graphite substrates cannot be used in practical applications.

Initially, the disorder potential found on standard SiO2 substrates, was too large
to allow observation of LLs by STS even in the highest magnetic fields [41] so
further improvement of the substrate was needed. One procedure that was demon-
strated to dramatically improve sample quality is to remove the SiO2 substrate under
the graphene which becomes suspended [70, 71, 73, 74]. However, such samples are
fragile and small, so studying them is challenging.

Therefore, exploring ways to improve the substrate is of interest. In the semi-
conductor industry it is known that the quality of SiO2 can be greatly improved
using dry oxidation in the presence of chlorine. This process reduces the number
of trapped charges in the oxide, improving the uniformity and quality of the insula-
tor [75–78]. When using such substrates treated by chlorination, the STM and STS
measurements show that it is possible to see well defined quantized levels for high
enough magnetic fields [9]. The broadening of the LLs, however, together with the
deviation from a V-shaped zero-field density of states, indicate that such samples
are not ideal.

STS in zero field was used to give an estimate of the average length scale of
the disorder, the electron-hole puddle size, d ≈ 20 nm [9]. In order to observe well
defined levels, the magnetic length should be at most (d/2) ≈ 10 nm, corresponding
to a magnetic field B = 6 T. In Fig. 2.10(a) the STS data taken for graphene on
chlorinated SiO2 shows how indeed, for smaller fields, below 6 T, the levels are not
well defined, while above 6 T in Figs. 2.10(a), (b) they become clearly defined.

In such samples it is expected that the levels are broadened by disorder [79–81].
The measured width of the levels is typically γ ≈ 20–30 meV, much larger than on
HOPG and corresponds to a carrier lifetime of τ ≈ 22–32 fs consistent with values
obtained by different techniques [61, 64, 65].

The Fermi velocity obtained by LL spectroscopy is vF = (1.07 ± 0.02) · 106 m/s
(Fig. 2.10(d)) and varies by 5–10 % depending on the position on the sample. To
further illustrate the effect of disorder on the LLs, Fig. 2.10(c) shows how the se-
quence of levels changes along a 60 nm long line across the sample. The variation in
brightness indicates spatial dependence of the LLs width and height due to disorder.

2.2.4.4 Gate Dependence of Landau Levels

Due to its band structure, in particular the electron-hole symmetry, graphene shows
an ambipolar electric field effect. STS of gateable graphene on an insulating sub-
strate can be used to study the evolution of the electronic wave function and density
of states as the Fermi energy is moved through the LLs. The ability of STS to access
both electron and hole states makes this a particularly powerful technique. In an



44 A. Luican-Mayer and E.Y. Andrei

Fig. 2.10 (a) STS data for graphene on SiO2 for magnetic fields up to 7 T. (b) STS data on
graphene on SiO2 for magnetic fields between 7 T and 12 T. (c) Example of typical evolution of
the LL across a line of 60 nm for the graphene on SiO2 sample in B = 10 T. (d) Fermi velocity
extracted from the LL sequence in (a) and (b) [9]. The energies of the LLs were shifted so that
the Dirac point is the same for all fields. The spread in the LLs for different fields reflects slight
variations of the Fermi velocity due to the fact that the spectra for the different fields were not
taken at the exact same location on the sample

STS experiment EF is usually situated at zero bias and therefore it is convenient to
define the EF as the origin of the energy axis and to measure the Dirac point energy
with respect to it.

Figure 2.11(a) shows a set of data taken at B = 12 T in which the spectrum was
recorded for different gate voltages. Each vertical line is a spectrum at a particu-
lar gate voltage VG. The intensity of the plot represents the value of the dI/dV ,
the lighter color corresponding to the peaks in the spectrum. The vertical axis
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Fig. 2.11 (a) Map of the dependence of the LL in graphene on SiO2 on charge carrier density for
B = 12 T. The vertical axis is the sample bias, the bottom horizontal axis is the gate voltage and
the upper horizontal axis is the corresponding charge carrier density. The LL indexes are marked
N = . . .± 3,±2,±1,0. (b) Simulation of the evolution of the LL spectrum in (a). (c) Gate voltage
dependence of the Fermi velocity. The Dirac point, at VG = 35 V, is marked

is the sample bias and the horizontal axis is the gate voltage. The gate voltage
was varied in the range −15 V < VG < +43 V corresponding to carrier densities:
3 × 1012 cm−2 > nc > −0.5 × 1012 cm−2. In the spectrum taken at VG = −15 V
a very faint N = 0 level is seen at ≈240 meV. Because the sample was hole doped
at neutral gate voltage already, in the energy range that we probe, we only measure
the Landau levels corresponding to hole states: N = −1,−2,−3, . . . . At higher
gate voltages though, for VG > 40 V the levels corresponding to electron states
N = +1,+2,+3, . . . also become visible.

Qualitatively, one can understand the overall step-like features in Fig. 2.11
(plateaus followed by abrupt changes in slope) as follows: the LL spectrum contains
peaks, corresponding to high DOS, separated by regions of low DOS (Fig. 2.11(a)).
It takes a large change in the charge carrier density to fill the higher DOS regions—
therefore plateaus appear; at this point the Fermi level is pinned to the particular
Landau level being filled. On the other hand, filling the regions of low DOS in be-
tween the LLs does not require much change in carrier density—therefore an abrupt
change in slope appears. For broad Landau levels the DOS in between the peaks is
larger, thus smearing the step-like pattern.

A simulation considering the LL broadening and using vF = (1.16 ± 0.02) ×
106 m/s is plotted in Fig. 2.11(b) and shows good agreement with the measured data
in Fig. 2.11(a).

Similar experiments on graphene exfoliated on SiO2, probing areas of different
disorder across the sample, where reported by Jung et al. [36].
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In the two-dimensional electron system (2DES) of very high mobility GaAs sam-
ples, this pinning of the Fermi level to the LL was observed by time domain capac-
itance spectroscopy [82].

In contrast to electrical transport measurements that typically probe states near
the Fermi surface, STS can access both filled and empty states. Therefore, in a mag-
netic field, through LL spectroscopy one can probe the full shape of the Dirac cone
in the measured energy range. The shape of the cone was investigated as a function
of carrier concentration by measuring the Fermi velocity from the LL sequence
as a function of doping. Within the investigated range of charge carrier density
(3 × 1012 cm−2 > nc > −0.5 × 1012 cm−2), it was found that closer to the Dirac
point, the velocity increases by ≈25 % as seen in Fig. 2.11(c).

At low carrier density the effects of electron-electron interactions and reduced
screening on the quasiparticle spectrum are expected to become important. The ob-
served increase in the Fermi velocity is consistent with a renormalization of the
Dirac cone close to the neutrality point due to electron-electron interactions [69, 83].
If the random potential is further reduced such that LLs can be observed already in
small fields, the fact that the spacing between the levels is smaller will make it pos-
sible to probe the reshaping of the cone with higher accuracy.

A similar result was obtained by Elias et al. on suspended graphene samples by
measuring the amplitude of the Shubnikov de Haas oscillations as a function of
temperature [84].

2.2.4.5 Disorder Effects: Extended and Localized States

Impurities and the resulting random potential strongly affect the electronic wave
function in graphene. By measuring STS in the presence of a perpendicular mag-
netic field, one can visualize the wavefunctions corresponding to the LLs in real
space.

To this end, STS spectra are acquired on a fine grid of points across a chosen
area. At a particular energy one can plot an intensity map having the x, y spatial
coordinates and as z-coordinate the value of the dI/dV (∝ DOS) at that energy.
This map will illustrate the density of states variation in real space.

Such a procedure is shown in Fig. 2.12. Figure 2.12(a) represents the average
over spectra taken in B = 12 T over a grid of points across the area of the sample
shown by the STM image in the inset. The LLs with indexes N = 0,+1,+2, . . .
are resolved at this field value. Figure 2.12(b) and (c) are the dIt/dVbias maps at
energies marked in (a) as E and L where It is the tunneling current and Vbias is the
bias voltage. At E ≈ 0 eV corresponding to the peak of the N = 0 LL, Fig. 2.12(b)
shows bright regions of high DOS forming an extended percolating state. At E ≈
55 meV in between N = 0 and N = +1, Fig. 2.12(c) shows the complementary
localized states around impurities [85].

The presence of extended and localized states on the peaks and valleys of the LL
spectrum is often used to qualitatively understand the integer quantum Hall effect
(IQHE). A typical IQHE measurement in a Hall bar configuration [86] measures the
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Fig. 2.12 (a) Averaged tunneling spectra across the area in the inset showing LLs with index
N = 0,+1, . . . . The letters E and L indicate the energies where the STS maps in (b) and (c)
are taken. The scale bar of the inset is 16 nm. (b) STS map across the area in the inset of (a) at
Vbias = 0V . (c) STS map across the area in the inset of (a) at Vbias = 55 mV [85]

Hall (transverse) resistivity ρxy and the longitudinal resistivity ρxx while varying
the filling factor ν = (nsh)/(eB) with ns the carrier density, B the magnetic field, h
the Planck constant and e the electron charge.

When the filling is such that the Fermi level lies in between two LLs the electrons
are trapped in the localized states around the impurities and they do not play any role
in the conduction. At this point ρxx = 0 and ρxy is quantized. When the Fermi level
is at a peak of a Landau level, the electrons occupy the percolating state across
the sample so ρxx is finite and ρxy increases making the transition between the
quantized plateaus.

STM/STS experiments probing the extended and localized quantum Hall
states were reported on the adsorbate-induced two dimensional electron gas on
n-InSb(110) [55] and on epitaxial graphene on SiC [87].

2.2.5 Measuring Small Graphene Devices with Scanning Probes

The discovery of graphene opened exciting opportunities to study a 2D system by
surface probes. However the fact that the cleanest samples obtained by exfoliation
are only a few microns in size poses technical challenges. Some room temperature
experimental set-ups containing optical microscopes can overcome this problem.
Even low temperature experiments which are equipped with long range optical mi-
croscopes or scanning electron microscopes can find small samples, but most low
temperature and magnetic field setups are lacking such tools. For this reason, a ca-
pacitive method was developed in order to guide the STM tip towards micron size
samples as detailed in [88].

To measure STS one usually applies a small ac modulation to the sample bias
voltage, Ṽs , so that there is an ac current, Ĩ , flowing through the STM tip: Ĩ =
Gt · Ṽs + iωCṼs , where Gt is the tunneling conductance and C is the tip-sample
capacitance. The contributions to the ac current are from tunneling (first term) and
from capacitive pickup (second term). The pick-up signal can be used to resolve
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Fig. 2.13 (a) General set-up of the sample separated by a SiO2 layer from the back gate and
the quantities of interest: pick-up current Ĩ , the ac voltage applied to the sample Ṽs , and the gate
voltage Ṽgate . (b) Electric field lines above the sample when the tip is not taken into account, but
only the sample at V = +1 V and the back gate at V = −1 V. The arrows point to the edges of
the sample. (c) Sketch of the metallic lead connected to the sample. The tip will travel across the
largest pad on the indicated dashed line and after that towards the smaller pad as pointed by the
arrow. (d) The typical measured current versus position for the tip moving across one of the pads
as well as its derivative

small structures when the tip is far from the surface and it is not in the tunneling
regime.

The schematic set up for this method is shown in Fig. 2.13(a). The output voltage
from the reference channel of a lock-in amplifier is split into two with 180◦ phase
shift between them. One of the signals (+) is applied to the sample directly as
Ṽs , the other (−) is applied to the gate −Ṽgate through a pot resistor to adjust the
amplitude. The capacitive pickup current measured from the tip is Ĩ . One key aspect
of the procedure is tuning the voltage applied to the back gate in order to minimize
the background pick-up current as detailed in [88].

To qualitatively illustrate the sensitivity of this method in detecting sample edges,
Fig. 2.13(b) shows the electric field lines around the sample, when Vs = 1 V and
Vgate = −1 V, highlighting the presence of steep potential lines at the edges of the
sample.
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Another novel component is the design of the metallic lead connected to the
sample. This lead is made of connected pads which are becoming smaller in size
closer to the sample, as shown in a sketch of the typical design in Fig. 2.13(c). This
contact pad geometry makes it possible to locate small (micron size) samples on
large (mm size) substrates with an STM tip alone, without the aid of complicated
optical microscopy setups.

The measured pick-up current across one of the pads is shown in Fig. 2.13(d).
The vertical left axis is the measured current and the horizontal axis is the position
on the pad. The signal is higher when the tip is above the pad and smaller when it
is off the pad, riding on top of an overall background signal. In the derivative of this
current with respect to position, the edges of the pad can be identified as seen in the
Fig. 2.13(d)—right vertical axis.

Such a signal is dependent on the tip-pad distance, so after the edges of a large
pad have been identified, one can approach the tip to the conductive surface in the
STM mode and retract a smaller number of steps in order to resolve the edges of the
next smaller pad. The fact that the tip is far from the surface while moving across
the large pads prevents it from crashing.

This procedure is repeated until the smallest pad and the sample are found. The
sensitivity of this method is sufficient for finding samples of a few microns in size
as demonstrated by Luican et al. [9].

2.2.6 Graphene Edges

The two high symmetry crystallographic directions in graphene, zig-zag and arm-
chair are described in Fig. 2.14(a). A graphene flake can terminate in one of the
two or it can have an edge that is irregular and contains a mixture of zig-zag and
armchair. The type of edge is predicted to have a significant impact on its electronic
properties [90, 91].

One of the highest resolution imaging experiments of a graphene edge was done
using Transmission Electron Microscopy [92]. However, to simultaneously charac-
terize the atomic structure and probe the electronic properties of the graphene edges,
STM/STS are the techniques needed.

Theoretically, the zig-zag edge is predicted to have a localized state [93], i.e. a
peak in the DOS at the Fermi level. Experimentally this was observed on HOPG
by STM experiments [94]. To determine the structure of the edges with STM, one
compares the direction of the edge with the one of the graphite lattice which can
be measured inside the sample. Once the type of edge was inferred from topogra-
phy, Niimi et al. [94] found that when the spectrum is measured on a zig-zag edge,
it shows a peak close to the Fermi level which is absent in the armchair case as
expected from the theoretical calculations.

STM/STS experiments of graphene nanoribbons created by unzipping carbon
nanotubes are able in principle to detect the presence of edge states and correlate
them to the ribbon chirality [95].
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Fig. 2.14 (a) Sketch of the two crystallographic directions: zig-zag and armchair edges. (b) To-
pography image of a decoupled graphene flake on graphite, its edge and the positions where the
tunneling spectra were taken. The inset is the atomic resolution image obtained on the flake as
indicated. (c) STS traces at various distances from the edge of the flake in (b) towards the bulk.
(d) Evolution of the LL intensities moving towards the edge. Inset: Data points are heights of the
peaks for N = 1,2 and the curves are theoretical calculations [89]

However, to make a connection between the atomic structure of edges in
graphene and the magneto-transport experiments showing integer quantum Hall ef-
fect or evidence of many-body physics, it is important to study graphene edges in a
magnetic field. This was possible on graphene flakes on graphite. The topographic
image in Fig. 2.14(b) indicates the zig-zag edge as well as the positions where the
spectra in Fig. 2.14(c) were taken. The inset is the honeycomb lattice measured on
the decoupled flake. Figure 2.14(c) shows the spectra obtained, in a perpendicular
magnetic field B = 4 T, at distances from 0.5 lB (top curve) to bulk (bottom curve).
One feature that is unique to the zig-zag edge is the fact that while the higher in-
dex LLs get smeared closer to the edge, the N = 0 is robust. The decay of the LL
intensity upon approaching the edge is in good agreement with the theoretical pre-
diction [96–98] as shown in the inset of Fig. 2.14(d).
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2.2.7 Strain and Electronic Properties

Controlling strain in graphene is expected to provide new ways to tailor its elec-
tronic properties [99, 100]. Interestingly, as a result of strain in the lattice, the elec-
trons in graphene can behave as if an external magnetic field is applied. The origin
of this pseudo magnetic field is the fact that strain will introduce a gauge field in the
Hamiltonian which mimics the presence of a magnetic field. In order to create a uni-
form field, however, the strain needs to be designed in particular configurations such
as stretching graphene along three coplanar symmetric crystallographic directions
[100].

Experimentally the effect of strain on the graphene spectrum was addressed by
STM/STS measurements of graphene nanobubbles grown on a Platinum (111) sur-
face [58]. On such samples, the peaks in the tunneling spectroscopy reported in [58]
are interpreted as Landau levels originating from the pseudo magnetic field.

2.2.8 Bilayer Graphene

Graphene layers stack to form graphite in the so-called Bernal stacking arrange-
ment. If we name the two inequivalent atomic sites in the graphene lattice A and B,
the top layer will have B atoms sitting directly on top of A atoms of the bottom layer
and A atoms of the top layer sit above the centers of the hexagons of the graphene
underneath. A system consisting of two layers of graphene in Bernal stacking, bi-
layer graphene, is characterized by a hyperbolic energy dispersion of its massive
chiral fermions.

In the presence of a magnetic field the LL sequence for an ideal Bernal-stacked
graphene sample is given by: En = ( e�B

m∗ )
√
N(N − 1) where m∗ is the effective

mass of the carriers, B is the magnetic field, e is the electron charge, � is Planck’s
constant divided by 2π and N = 0,1,2,3, . . . . The eight fold degeneracy occurring
for N = 0, N = 1 can be broken either by an applied electric field or by electron-
electron interactions [101–103]. Experimentally, magneto-transport measurements
of high quality suspended bilayer samples have revealed the presence of interaction-
induced broken symmetry states [104–106].

In order to directly probe massive chiral fermions in bilayer graphene, STM/STS
were performed on mechanically exfoliated graphene placed on insulating SiO2

[107, 108]. It was found that the measured LL spectrum was dominated by effects of
the disorder potential due to the substrate. The random potential creates an electric
field between the two layers which results in locally breaking the LL degeneracy
and a LL spectrum that is spatially nonuniform [108]. Therefore, in order to access
the intrinsic properties of bilayer graphene, an improvement of samples that can be
measured by STM/STS is necessary.
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2.3 Electronic Properties of Twisted Graphene Layers

An infinitesimally small rotation away from Bernal stacking will completely change
the electronic properties of the graphene bilayer system, suggesting the possibility
of an extra knob to tune the electronic properties.

These rotational stacking faults are common and have been observed on graphite
surfaces already in early STM studies [109–112]. It was not until the discovery of
graphene that the electronic properties have been investigated both theoretically and
experimentally. With the new methods of preparing graphene by chemical vapor
deposition it became even more important to address questions regarding the prop-
erties of rotated layers since the growth mechanism seems to favor the formation of
twisted layers [21].

The consequence of superposing and rotating two identical periodic lattices with
respect to each other is the formation of Moiré patterns. Considering two hexagonal
lattices, the Moiré pattern emerging for an arbitrary rotation angle is illustrated in
Fig. 2.15(a). A commensurate pattern is obtained for discrete families of angles that
can be mathematically derived [113–118]. One such family of angles is: cos(θi) =
(3i2 + 3i + 1/2)/(3i2 + 3i + 1) with i = 0,1,2, . . . . The relation between the period
of the superlattice L and the rotation angle θ is:

L = a

2 sin( θ2 )
(2.8)

where a ≈ 0.246 nm is the lattice constant of graphene.
STM can reveal areas where a Moiré pattern resulting from the twist of graphene

layers is formed, as shown in Fig. 2.15(b). In this case, the top graphene layer is
misoriented with respect to the underlying graphite and has a Moiré pattern just un-
til its boundary. Different angles will result in the formation of different patterns,
as described by (2.8). Experimentally this is demonstrated by STM images show-
ing superpatterns of different periodicity in samples with different twist angles. For
example, at rotation angle θ = 1.79◦ the superperiod is L = 7.7 nm. The sequence
of four topographic maps in Fig. 2.15(c), (d), (e), (f) have approximately the same
field of view and they correspond to rotation angles of 1.16◦, 1.79◦, 3.5◦, 21◦. The
inset in Fig. 2.15(d) (for θ = 1.79◦) highlights the fact that the period of the atomic
lattice of the graphene layer is much smaller than the Moiré pattern and can be vis-
ible on top of it. Typically the height observed in topography for the Moiré patterns
is ≈0.1–0.3 nm.

2.3.1 Van Hove Singularities

In momentum space, the consequence of the twist between layers is the rotation of
the corresponding Dirac cones with respect to each other as sketched in Fig. 2.16(a).
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Fig. 2.15 (a) Illustration of an emerging Moiré pattern from the rotation of two graphene layers.
(b) STM topography image showing a Moiré pattern and its border in HOPG. (c)–(f) STM images
for Moiré patterns corresponding to angles 1.16◦ , 1.79◦ , 3.5◦ , 21◦ , respectively [53, 119]. Scale
bar in (c)–(e) 2 nm, (f) 1 nm

The distance between the cones is given by:

�K = 4π

3a
2 sin

(
θ

2

)
(2.9)

At the intersections of the two Dirac cones their bands will hybridize, resulting
in the key feature of the band structure, the two saddle points in both the electron
and hole sides [53, 113]. The theoretical calculation of the dispersion in the case of
rotation angle θ = 1.79◦ is presented in Fig. 2.16(b).

In two dimensions, the saddle points in the electronic band structure lead to di-
verging density of states, also known as Van Hove singularities (VHS) [120]. It
is important to note that in the absence of interlayer coupling, the Van Hove sin-
gularities will not appear. Corresponding to the saddle points in the dispersion
shown in Fig. 2.16(b), the VHS in the DOS are presented in Fig. 2.16(c). The
distance between the cones and implicitly between the saddle points is controlled
by the rotation angle such that the distance in energy between the VHS depends
monotonically on the angle θ . For the small angle regime, 2◦ < θ < 5◦ the en-
ergy separation is: �E = �vF�K − 2tθ , where tθ is the interlayer coupling. The
rotation-induced VHSs are not restricted to the bilayer case. Qualitatively, if one
layer is rotated with respect to a stack of layers underneath, the VHSs are still pre-
served.
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Fig. 2.16 (a) The relative rotation in momentum space of the Dirac cones corresponding to two
twisted graphene layers. (b) The calculated energy dispersion for two graphene layers rotated by
θ = 1.79◦ . (c) The DOS corresponding to (b). The inset represents a cut through (b) along a line
joining the two Dirac points. (d), (e), (f) STS for Moiré patterns corresponding to different angles,
1.16◦ , 1.79◦ , 3.5◦ . The insets are the corresponding real space superpatterns. (g) Theoretical curves
and experimental data obtained for the separation of VHSs as a function of rotation angle [53, 119]

To explore the angle dependence of VHSs, Li et al. [53] studied graphene lay-
ers prepared by chemical vapor deposition [21] as well as rotated graphene layers
on graphite. The experimental data obtained from STS for different angles, 1.16◦,
1.79◦, 3.5◦, is presented in Fig. 2.16(d), (e), (f). The corresponding Moiré patterns
are shown as insets. In each case, the measured spectra show two peaks, which are
signatures of the VHS. The measured energy separation between the VHSs together
with the theoretical curves are shown in Fig. 2.16(g) indicating a monotonic increase
with rotation angle.

An interesting situation arises in the limit of small angles [53]. Figure 2.17(a)
shows the measured topography of the Moiré pattern corresponding to θ = 1.16◦.
The spectrum in this case is presented in Fig. 2.17(c) showing the two VHSs sep-
arated by a small energy �E ≈ 12 meV. It is known that when the Fermi energy
is close to the VHS, interactions, however weak, are magnified by the enhanced
density of states, resulting in instabilities, which can give rise to new phases of
matter [121–123]. This is consistent with the observation that the STS maps in
Fig. 2.17(b), taken at the energy of the singularity, suggest the formation of an or-
dered state such as charge a density wave. Such localization by Moiré patterns is
also predicted by theoretical calculations [114].
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Fig. 2.17 (a) Topography of a Moiré pattern corresponding to a small rotation angle: θ = 1.16◦ .
The scale bar is 2 nm. (b) dIt /dVBias map taken at the area in (a) at energy E = 1 meV. The scale
bar is 2 nm. (c) STS on the peaks and valleys of the Moiré pattern in (a) [53]

2.3.2 Renormalization of the Fermi Velocity

While for sufficiently separated cones, the low energy electronic bands still describe
Dirac fermions, the slope of the Dirac cone is influenced by the Van Hove singular-
ities, leading to a renormalized Fermi velocity.

Theoretically the equation describing the velocity renormalization was derived
to be [113]

vF (θ)

v0
F

= 1 − 9

(
tθ⊥

�v0
F�K

)2

(2.10)

where v0
F is the bare velocity, vF (θ) is the renormalized value at an angle θ ; the

interlayer coupling is tθ⊥ ≈ 0.4t⊥ and t⊥ is the interlayer coupling in the Bernal
stacked bilayer.

The curve corresponding to this relationship is plotted in Fig. 2.18(g). For large
angles θ > 15◦ the renormalization effect is small, but the velocity is strongly sup-
pressed for smaller angles.

In order to probe vF , Luican et al. [119] measured the quantized LLs in a
magnetic field and from their field and index dependence the velocity was ex-
tracted. For the large angle shown in Fig. 2.18(a) the measured LL spectrum is
presented in Fig. 2.18(d). In this case of large angles, the low energy electronic
properties are indistinguishable from those in a single layer and the measured
vF = (1.10 ± 0.01)106 m/s.

In Fig. 2.18(b) the topography image shows two adjacent regions B and C. In
region B, a Moiré pattern with period of 4.0 nm is resolved, while in region C,
the pattern is not resolved, indicating an unrotated layer (or a much smaller period
not resolved within the experimental resolution). In both regions STS in a magnetic
field (Fig. 2.18(e)) shows LL sequences specific to massless Dirac fermions with
different Fermi velocities: 0.87 × 106 m/s and 1.10 × 106 m/s for regions B and C,
respectively.

At very small angles, θ < 2◦ such as the area in Fig. 2.18(c), the VHSs become
so dominant that massless Dirac fermions no longer describe the electronic states
(Fig. 2.18(f)). This regime is marked by a question mark in Fig. 2.18(g).
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Fig. 2.18 (a) STM of a Moiré pattern due to rotation θ = 21◦ . (b) STM of an area with two distinct
regions: region B which has a Moiré pattern corresponding to rotation angle θ = 3.5◦ and region C
where there is no superpattern. (c) STM for a Moiré pattern with θ = 1.16◦ . (d) STS in a magnetic
field showing the LL sequence measured in the area in (a). (e) STS in a magnetic field showing the
spectrum for the area in (b) for regions B and C. (f) STS of the area in (c) for the dark and bright
regions. (g) Plot of the theoretically predicted renormalization of the Fermi velocity together with
the experimental values obtained from areas with different Moiré patterns [53, 119]

It is important to note that the mechanism for renormalization of the Fermi ve-
locity due to the presence of VHS is different from the case of graphene flakes on
graphite discussed previously. In the twisted layers the renormalization is a sensi-
tive function of the misorientation angle. In contrast, the velocity renormalization
observed in the case of graphene on graphite is due to electron-phonon interac-
tion [34].

The results obtained on Moiré patterns on CVD graphene and graphite differ
from the ones on epitaxially grown graphene on SiC [57, 124] which report a sin-
gle layer graphene spectrum regardless of the twist angle. One clue towards under-
standing these results can be found in the unusual presence of a continuous atomic
honeycomb structure across the entire Moiré superstructure in the case of epitax-
ial graphene. This is in contrast to Moiré patterns generated by two rotated layers
where one sees a correlation between the Moiré pattern and the atomic structure
which changes from triangular, to honeycomb, or in between the two, depending on
the local stacking within the superpattern [53, 112].

If in addition to the twist of the top most layer, a Moiré pattern is present under
the first layer (layer 2 rotated with respect to layer 3), it is expected that a complex
superstructure involving several Moiré patterns will appear. This is the case in some
of the experiments reported on epitaxially grown graphene on SiC [125]. In the case
of the CVD graphene samples or graphite such multiple Moiré patterns were not
observed. Therefore, the previously discussed features (VHS, reduction in Fermi



2 Probing Dirac Fermions in Graphene by Scanning Tunneling Microscopy 57

velocity) are consequences of twisting only the top most layer with respect to the
underlying single layer graphene or Bernal-stacked multilayer graphene.

2.4 Conclusions

In this chapter we presented a brief review of experimental results obtained by scan-
ning tunneling microscopy and spectroscopy of graphene systems with various de-
gree of disorder.

When the charge carriers are minimally affected by potential fluctuations in the
substrate, as is the case for graphene flakes on the surface of graphite, one can access
the intrinsic properties of the massless Dirac fermions in graphene. STS measure-
ments show that the charge carriers in such flakes exhibit the hallmarks of massless
Dirac fermions: the density of states is V-shaped and vanishes at the Dirac point and
in the presence of a magnetic field the LL sequence contains a level at zero energy
and follows the predicted square root dependence on field and level index. The qual-
ity of such samples allows access to physics beyond the single particle picture and
signatures of electron-phonon and electron-electron interactions can be studied.

Tuning the charge carrier concentration in graphene requires placing it on an
insulating substrate such as SiO2. In this case, graphene conforms to the rough sur-
face of the oxide and the electrons are affected by the random potential introduced
by the substrate. For this system, in the presence of a magnetic field, the Landau
levels are broadened by disorder. The charge carrier density dependence of the LL
spectrum shows pinning of the Fermi level at the respective LL which is filled. In
such measurements that can probe the shape of the Dirac cone while tuning the car-
rier concentration, the velocity is found to increase upon reaching the Dirac point
suggesting the onset of many body interactions.

Twisting graphene layers away from the equilibrium Bernal stacking leads to
novel electronic properties. In the topographical images one can identify twisted
graphene layers by the appearance of Moiré patterns dependent on the rotation an-
gle. The twist gives rise to two Van Hove singularities which flank the Dirac point
symmetrically on the electron and hole sides and are centered at an energy that in-
creases with the angle of rotation. The Fermi velocity of the charge carriers in the
twisted layers is indistinguishable from single layer graphene for angles close to
30◦, but vF is dramatically reduced at very small angles.
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Chapter 3
Electron and Phonon Transport in Graphene
in and out of the Bulk

Jean-Paul Issi, Paulo T. Araujo, and Mildred S. Dresselhaus

Abstract Carbon atoms have the unique capability of associating with each other
in different ways at the macro- and nanoscopic scales to form various architectures,
some of them being unique. Following the discovery of fullerenes, these last twenty-
five years witnessed the discovery of some new forms of carbon atom associations
leading to a large diversity of nanocarbons with fascinating properties. As regards
bulk carbons, the decade preceding the discovery of fullerenes paved the way for
finding some physical properties which were found later to be displayed in these
new nano entities. This mainly concerns the semiclassical and, more particularly, the
quantum aspects of two-dimensional (2D) electronic transport and the behavior of
phonons in low-dimensional materials. These effects are discussed here in relation
to the electrical and thermal conductivities of various nano-carbon based materials.
This chapter also reflects the obvious similarities and differences observed in the
transport properties of an isolated single layer graphene out of the bulk (SLG), or a
few layers of graphene out of the bulk (FLG), supported or suspended, and those of
a single (stage-1) or more (stage-n, where n = 2,3, . . .) of these carbon layer planes
sandwiched between planes formed by other chemical species, as is the case for
macroscopic graphite intercalation compounds (GICs), and more particularly quasi

J.-P. Issi
CERMIN, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
e-mail: jean-paul.issi@uclouvain.be

P.T. Araujo · M.S. Dresselhaus
Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139-4307, USA

P.T. Araujo
Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324,
USA
e-mail: paulo.t.araujo@ua.edu

M.S. Dresselhaus (B)
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307,
USA
e-mail: millie@mgm.mit.edu

H. Aoki, M.S. Dresselhaus (eds.), Physics of Graphene, NanoScience and Technology,
DOI 10.1007/978-3-319-02633-6_3,
© Springer International Publishing Switzerland 2014

65

mailto:jean-paul.issi@uclouvain.be
mailto:paulo.t.araujo@ua.edu
mailto:millie@mgm.mit.edu
http://dx.doi.org/10.1007/978-3-319-02633-6_3


66 J.-P. Issi et al.

2D acceptor compounds (GACs), or even, in some cases, pristine highly oriented
pyrolytic graphite (HOPG).

3.1 General Introduction

Should one be asked to synthesize bulk graphite, one might start to pile up graphene
sheets and, should he be infinitely patient, he would eventually end up with the re-
quired graphite material. This bottom up approach could be envisaged now that
graphene sheets have been successfully isolated as either single layer graphene
(SLG) or as few layers graphene (FLG) [1]. We know that a related synthetic sp2

carbon material already exists in a bulk form,1 and is known as highly oriented py-
rolytic graphite (HOPG), and some properties of the isolated graphene sheets are
already observable in this form of carbon and such properties are even more pro-
nounced in its graphite intercalation compounds (GICs). As stated above, we shall
hereafter call these isolated sheets, whether supported or suspended, the graphenes
out of the bulk. They may occur as SLG or FLG according to the number of sheets,
to differentiate them from the more traditional forms of graphene layers existing in a
bulk material, which we shall identify as graphene in the bulk2 [2], including HOPG
or GICs.

3.1.1 Graphenes

Graphene is an infinite 2-D layer which consists of sp2 hybridized carbon atoms,
arranged in a hexagonal lattice. Each carbon atom in the layer is connected to three
others, making an angle of 120 degrees with each other and a bond length of 1.42 Å.

Graphite is a highly anisotropic 3D crystal consisting of stacked graphene layers.
Depending on the stacking of the graphene layers, these crystals could either have
hexagonal (ABABAB. . . ) or rhombohedral (ABCABC. . . ) stacking. Graphite crys-
tals can be either found naturally or they can be artificially synthesized at high pres-
sure and temperature in the form of highly oriented pyrolytic graphite (HOPG) [3].

Graphite intercalation compounds (GICs) result from the insertion of atomic or
molecular layers of a different chemical species, the intercalate, between layers of a
graphite host material. The intercalation compounds are highly anisotropic 3D lay-
ered structures where, as is the case for the host graphite, the intraplanar binding
forces are much stronger than the interplanar forces. Graphite intercalation com-
pounds are identified by a stage index n denoting the number of graphene layers

1Note that HOPG is not a single crystal but instead could be considered as a 2D polycrystalline
material with a crystallite size of about 10 micrometers when heat treated above 3,000 °C.
2One should note that the term “graphene” was already used in 1987 by Mouras et al. (Ref. [2])
to describe the single graphite sheets, which together with the intercalate species, constitute the
graphite intercalation compounds (GICs).
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between adjacent intercalate layers. The difference between the classical works dis-
cussed in the 1970 to 1985 timeframe and the work produced presently is that cur-
rent interest is focused now on the intercalation of FLG and not bulk graphite. There
are two important differences in the behavior of graphene in and out of the bulk:

(1) Pristine graphites cannot be considered as 2D materials, but rather as highly
anisotropic 3D systems, though in many cases they might roughly be con-
sidered as almost 2D for some semi-quantitative analyses relative to a given
property in a given temperature range. Besides, up to now, the highest qual-
ity HOPG samples available have limited in-plane coherence lengths, less than
15 μm (Fig. 3.1), and contain a significant density of point defects, and

(2) graphite acceptor compounds (GACs) are quasi-2D systems [4] with massless
Dirac Fermions for stage-1 GACs, and the results of electronic transport mea-
surements have for many years been interpreted coherently along these lines [5].
However, the presence of large-scale defects in GICs, which are inherent to the
intercalation process—the so-called Daumas-Hérold domains [6]—as well as
additional point defects, did not allow the observation of phenomena, such as
ballistic transport, which is found in SLG and FLG [7, 8] but not in GICs.

In order to illustrate the limitations encountered in studying the transport proper-
ties of bulk pristine graphite, we present in Fig. 3.1 the room temperature resistivity
of experimental graphitized carbon fibers of different structural perfection versus
the in-plane coherence length, La , as determined by X-ray diffraction [9]. It may
be seen that the electrical resistivity decreases with increasing structural perfec-
tion. Since La corresponds to the size of the 2D crystallites, we observe that below
about a 1 μm size sample, the room temperature electrical resistivity of the graphene
planes is size-dependent.

Indeed, the transport properties of bulk carbons depend dramatically on the in-
plane coherence length, which in turn mainly depends on the heat treatment or an-
nealing temperature. The data presented in Fig. 3.1 are also corroborated by the re-
sult of thermal conductivity measurements [10], where it was found that the phonon
mean free path for boundary scattering is almost equal to the in-plane coherence
length La as determined by X-ray diffraction. The fact that we are comparing re-
sults obtained on different carbon precursors (HOPG, vapor grown carbon fibers,
mesophase carbons, . . .) in Fig. 3.1 is justified since the results refer to well identi-
fied and well characterized graphene planes in the bulk.

These observations also clearly show the advantages of SLG and FLG over
graphene in the bulk as regards study of the electron (and phonon) mean free paths.
These are limited to around 10 μm for the highest quality HOPGs. These observa-
tions also explain also why carbon materials, which are not treated at sufficiently
high temperatures (≈2000 °C), have temperature-insensitive mobilities. In that case
the temperature dependence of the resistivity should be ascribed to that of the carrier
density.

When thinking about bulk carbons one should always bear in mind that, ex-
cept for the case of diamond, we seldom deal with 3D electronic carbon systems.
While bulk materials, such as HOPG and its intercalation compounds, have a 3D
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Fig. 3.1 Room temperature resistivity of experimental carbon fibers versus in-plane coherence
length, La . The two lower resistivity values (higher La ) are relative to data taken on vapor grown
carbon fibers heat treated above 3,000 °C, while all other data pertain to pitch-based fibers graphi-
tized at various different temperatures. It may be seen that the electrical resistivity decreases with
increasing La , i.e. with increasing structural perfection. Note that the two lower values for va-
por grown carbon fibers are close to those observed in HOPG (35 μ� cm) heat treated above
3,000 °C [9]

aspect (i.e., they occupy 3D space), the in-plane bonding is orders of magnitude
stronger than the out-of-plane bonding, so that their physical properties are strongly
anisotropic or quasi-2D. Some of them, such as acceptor graphite intercalation
compounds (GACs), are definitely recognized as typical 2D (stage-1) or quasi-2D
(stages higher than 1) hole gases, according to the stage of the intercalation com-
pound. At the other end of the scale, a donor compound, such as a first stage potas-
sium intercalation compound, KC8, is permeated by a 3D anisotropic electron gas
with a carrier density some orders of magnitude greater than that of HOPG. The 2D
graphene layer has an electronic structure with a linear dispersion relation close to
the Fermi level [11]. This 2D structure and linear electronic dispersion E(k) pro-
posed by Wallace [11] in 1947, was later adapted by Blinowski and Rigaux [4] in
the late 1970s to the case of GACs and was used by them and by others to describe
with some success the electronic and optical properties of GACs [12]. It was ob-
vious to them that a linear dispersion leads to a zero effective mass and a Fermi
velocity independent of energy in the 2D limit approximation.

Although this linear expression was used by researchers in the field to inter-
pret electronic phenomena in GACs, some important physical consequences were
only revealed recently when single graphene sheets were synthesized and investi-
gated [1]. Also, bilayer- and few layer-graphene were found in the last decade to
exhibit properties at variance with those of SLG, on one hand, and with graphite,
on the other hand. A similar variance was found more than twenty years ago when
multistage GACS were compared to stage-1 GACs [5].
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3.1.2 Transport

Transport in general solids is concerned with the internal motion within a quasi
particle electronic system, which has a momentum distribution in k-space that is
initially isotropic but becomes directed in a preferred orientation under the action
of external forces and fields. The charge carriers may be either electrons or holes
or both, and these quasi particles may either carry electrical current (electrical con-
ductivity) or heat energy (electronic thermal conductivity) [13]. The quasi-particles
associated with the lattice vibrations, the phonons, are responsible for the lattice
thermal conductivity. In all cases, collisions tend to bring each of these particle
systems back into equilibrium and the relaxation time—or the mean free path—is
generally the essential parameter that is used to describe the scattering process in
the Boltzmann approximation [13].

Until the end of the 1980s, bulk carbons were described by semiclassical phe-
nomenological transport theory. At that time, non relativistic quantum effects were
observed in the electrical resistivity of “bulk” graphites and GACs [5]. Indeed, weak
localization (WL) effects were reported and were consistently interpreted in terms
of a 2D hole gas [5].

The emergence of nanotubes justified the use of non-relativistic quantum me-
chanics (NRQM) and the Boltzmann equation to describe many of the nanotube
electronic and vibrational properties, while the era of graphene introduced a new
concept to condensed matter physics involving relativistic quantum mechanics
(RQM) or quantum electrodynamics (QED). Many properties of nanotubes and
graphene can be extrapolated from our knowledge of bulk graphites. But new ex-
citing features recently discovered in these nanostructured materials have shown up
and have brought new physical concepts to our attention.

For in-plane thermal conduction, pristine HOPG together with diamond are
known to be the best bulk heat conductors around room temperature [14]. Inter-
calation reduces the thermal conductivity, while carbon nanotubes and graphene
were found to confirm their predicted exceptionally high thermal conductivity (see
Fig. 3.13 and Tables 3.1 and 3.2 for more details).

3.1.3 Inelastic Scattering of Light

As stated above, phonons must be taken into account to properly explain many prop-
erties observed in carbon-based systems. Namely, electron-phonon and phonon-
phonon scattering mechanisms are fundamental to understanding relaxation pro-
cesses governing electrical and thermal properties.

In this context, mostly due to the linear electronic dispersion for carriers ob-
served in carbon structures, the inelastic scattering of light (well known as Raman
scattering), was found to be a particularly useful technique for understanding the
electronic and vibrational properties of carbons and nanocarbons. Namely, reso-
nant Raman scattering (RRS) is a fast, non-invasive and non-destructive technique
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which, by means of first and second order scattering processes, allows us to study,
for example, doping, disorder, thermal conductance, phonon dispersion and phonon
self-energy renormalizations in carbon systems.

3.1.4 General References and Historical Background

In the following sections we discuss some of the most prominent features of con-
duction in bulk—pristine and intercalated—and nano-forms of carbons, mainly
graphene. For more details on earlier works by pioneers in the field and for an his-
torical outlook, the review papers on bulk carbons of the Ubbelohde group [3, 15],
Mrozowski [16, 17], Pacault [18], Kelly [14] and Spain [19] should be consulted,
as well as the research papers of Delhaes and Marchand [20, 21]. More recently,
Delhaes published a book (three volumes) on the subject [22].

The work on intercalation compounds was first reviewed in 1981 [23]. Note that
the review of Dresselhaus and Dresselhaus published in 2002, which is often cited
by researchers on graphene, is dated 1981. Since this 2002 version was reprinted
without modifications of the 1981 paper, it reflects the state of the art at the time
of first publication (1981). It is important to emphasize that most of the papers on
transport in GICs were performed after this date [5].

As regards graphene, since the time of the seminal work of Novoselov and
co-workers [1], many review papers were published on the subject [24–29]. It is
worth noting that a monolayer of graphene was already synthesized by Boehm in
1962 [30], though further detailed studies developed slowly before 2004.

3.1.5 Objectives

The present chapter: (1) shows how studies on bulk carbons in the 1970s and the
1980s paved the way for some of the physical properties observed in nanocar-
bons, more particularly in graphene, (2) stresses the similarities and differences
observed in SLG and FLG and those observed in one or more graphene planes
sandwiched between electrically insulating planes, as in graphite acceptor inter-
calation compounds (GACs), (3) shows how a 2D model for the band structure
with massless fermions was already applied successfully in the 1980s to inter-
pret the properties of GACs, (4) shows that despite the similarity between the
dispersion relations in stage-1 GACs and graphene, there are some properties
which could not be observed in GACs, and for such detailed studies, SLG or
FLG host materials are needed, (5) shows that some of the very high mobili-
ties reported up to now in graphene are by no means unique and that higher
values have been observed and reported in other semimetals and in 2D elec-
tron gases in semiconducting superlattices, (6) addresses mainly semiclassical
and quantum (non-relativistic) aspects of transport, as were used in these earlier
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works that are often ignored by recent entrants to the nanocarbon field, (7) dis-
cusses briefly some important aspects of the inelastic scattering of light (Raman
scattering) present in sp2 carbon-based materials, including graphene and nano-
tubes.

3.1.6 Topics Addressed

In the 1980s the properties observed on bulk GICs were mainly compared with those
obtained on pristine HOPG or vapor grown carbon fibers (VGCF). In the present
overview we shall mainly concentrate on extracting the information available about
the graphene layers in the GICs and compare this information to that recently ob-
tained on SLG and FLG. From this knowledge of some properties of bulk carbons,
we will show that one could have anticipated some of the properties of graphene
at a much earlier time than occurred historically. In the same way, what has been
observed recently in graphene should help our understanding of the properties of
bulk carbons, some of which have found significant commercial use.

In the following sections, we shall first discuss electronic transport. After briefly
introducing the electronic band structure, we will compare the scattering mecha-
nisms and the effects of disorder in graphene in and out of the bulk. We will then
compare the thermal conductivities. The comparison will concern bulk pristine and
intercalated (GACs) and nanostructured carbons, mainly graphene. Concerning the
bulk, we will be mainly interested in GACs, since in donor intercalation compounds,
the anisotropy is less pronounced and it is less appropriate to consider the electron
gas as quasi two-dimensional. Finally, we discuss the differences and similarities
among the several carbon-based materials regarding their electronic and vibrational
properties as they manifest themselves in Raman scattering experiments.

3.2 Electrical Conductivity

3.2.1 Introduction

The announcement three decades ago that an electrical conductivity comparable to
that of copper has been observed at room temperature in an AsF5 intercalation com-
pound [31] was the starting point for the hype and the intensive research in the 1980s
on GICs. This experimental result [31] was neither reproduced on AsF5 since then,
nor observed on any other compound and it was later on demonstrated [32, 33]3

that, within the state of our knowledge, resistivities below about 5 × 10−6 μ� cm
could never be attained in acceptor GICs at 300 K, insofar as this value represents

3See also Ref. [5].
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Fig. 3.2 Residual (left-hand
scale) and ideal (right-hand
scale) room temperature
resistivities of acceptor GICs
based on various host
graphites. Resistivity values
are in 10−6 � cm [33]

the intrinsic value of the resistivity (ideal resistivity) for the electron-phonon inter-
action at this temperature (Fig. 3.2). Nevertheless, this misleading announcement
had beneficial effects, since it served to strongly promote a new exciting field of
research. Intercalated carbon fibers have not replaced copper in cables for power
transmission, but advances in lithium batteries, which are of commercial interest,
have instead benefited much from the basic work performed in the past on donor
intercalation compounds.

In metals and semimetals the charge carrier distributions are described by their
Fermi surfaces. Around and above room temperature, electrons and holes are mainly
inelastically scattered by phonons, while at low temperatures elastic scattering by
point defects and crystal boundaries dominate the scene. Also, at low and ultralow
temperatures, specific effects show up, revealing quantum effects at the macroscopic
scale. These are the weak localization effects [34, 35], Coulomb interaction effects
and the universal conductance fluctuations in a quasi-ballistic regime, which were
observed in carbon nanotubes [36].

The physics of electronic conduction in bulk pristine carbons is dominated by:
(1) the semimetallic behavior due to the presence of a small density of charged par-
ticles, electrons and holes, which has a drastic effect on the band structure and on
the scattering mechanisms (cf. Sect. 3.2.3), (2) the effects of a very high anisotropy
in both structures and properties, (3) the effects of disorder, even when relatively
weak, in relation to quantum aspects of conduction, (4) the possibility of interca-
lation and its effects. And for intercalation compounds, one should consider also:
(1) their metallic behavior, (2) the effects of reduced dimensionality, (3) the addi-
tional disorder introduced by the intercalation process itself.

The effect of reduced dimensionality will allow comparison with SLG and FLG,
while the additional disorder introduced by intercalation will limit the scattering
length of the charge carriers and mask some of the effects which were recently ob-
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served in SLGs and FLGs. The other side of the coin is that intercalation compounds
have allowed the observation of 2D weak localization effects in GACs, which have
not been studied in as much detail in graphene. The impact of a small Fermi surface
on the scattering mechanisms, which was already identified in the group V semimet-
als in the early 1950s [37], has been discussed later on for the case of graphites [38].
With regard to quantum aspects, they were mostly observed in the 1980s on carbons
and graphites [34, 35], and more recently (in the 1990s) on carbon nanotubes [36].

In bulk graphites, including carbon fibers, we shall only be interested here in
conduction in the graphene planes. Bulk HOPG presents the advantage that the
anisotropy in resistivity can be investigated since the resistivity can be measured
both in-plane and in the c-axis direction, while carbon fibers offer the advantage
that high resolution resistivity measurements can be performed. Indeed, the fact that
various geometries are available: bulk, fibers, particles, nanotubes is also a remark-
able feature of sp2 carbon materials.

Two dominant characteristics of the electrical conductivity of graphite interca-
lation compounds are their high in-plane conductivity and the anisotropy of the in-
plane to c-axis conductivity. This anisotropy, which in stages 1 donor compounds
may vary from 10 to 60, is much higher in all acceptor compounds, whatever the
stage, where this anisotropy may reach 106 at 300 K [23]. These experimental ob-
servations confirm what could be inferred from the band structure calculations de-
scribed in the section (Sect. 3.2.2).

3.2.2 Electronic Structure

In order to discuss the transport properties we first need to know about: (1) the elec-
tronic distribution of the quasi-particle system considered. In graphites, this means
that we must have a model for the Fermi surface and for the phonon spectrum.
(2) Some characteristic lengths, one of them being the mean free path, but for the
case of charge carriers, some other characteristic lengths should also be considered,
especially at low temperatures.

So, before discussing electronic transport, we will briefly describe how the
charge carriers are distributed in energy and momentum, e.g., the dispersion re-
lations for these carriers.

3.2.2.1 Pristine Graphite

Starting with the work of Wallace in 1947 [11], theorists have addressed graphene
following a bottom-up approach, while experimentalists have had to comply with
the materials and techniques at hand and, faute de mieux, have adopted a top-down
approach. On physical grounds, the common feature of graphene sheets in FLG and
in bulk pristine graphite is the strong intralayer covalent bonding and the relatively
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Fig. 3.3 Electronic energy
bands near the HK axis in
three-dimensional graphite as
obtained from the SWMcC
band model [39–41]

weak interlayer graphene-graphene Van der Waals type bonding. This is the domi-
nant aspect which determines the physical properties of these materials.

The large anisotropy of the graphite crystal structure, suggested as a first ap-
proximation the use of a two-dimensional electronic structure [11]. However, a 2D
model generates a zero gap semiconductor for graphite, which is contrary to ex-
perimental evidence. The interlayer interaction, though much weaker than the in-
tralayer coupling, has a profound effect on some physical properties, mainly wher-
ever charge carriers are concerned, since the interlayer interaction gives rise to a
small band overlap between the valence and conduction bands. This band overlap
is responsible for the semimetallic properties of graphite which governs most of its
low-temperature electronic properties. However, since the band overlap is on the or-
der of kBT , this difference will not have dramatic effects on the room temperature
transport properties.

So, a more realistic three-dimensional model, considering the AB Bernal stack-
ing of the graphene layers, giving rise to four carbon atoms per unit cell, was devel-
oped a decade later by Slonczewski and Weiss [39] and by McClure [40, 41]. This
model, known as the Slonczewski-Weiss-McClure (SWMcC) band model (Fig. 3.3),
was found to explain most of the observed physical properties dependent on the
electronic structure near the Fermi level, including transport, quantum oscillatory
behavior, optical and magneto-optical properties.4

3.2.2.2 Quasi 2D Graphene

Just as for pristine graphite and FLG, in GACs the dominant feature of the elec-
tronic structure is the strong intralayer bonding in graphene and the relatively weak
interlayer bonding. However, for the case of GACs, the strong binding also applies
to the intercalate layers in-plane, while the graphene-intercalate layer interaction in

4See, for example Refs. [12, 19] and [23].
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Fig. 3.4 Model developed by Blinowski et al. [4] for the E(k) relation of graphite acceptor com-
pounds for stages n = 1 (left) and n = 2 (right). For the stage 1 acceptors, the transport proper-
ties follow a linear dispersion relation, which is typical of two-dimensional models for pristine
graphite for the energy bands near the zone edge, as seen in Fig. 3.3. Note the similarity between
the electronic structure of stage-1 and stage-2 GACs and that of monolayer and bilayer graphene,
respectively, shown in Fig. 3.5

the intercalation compounds modifies the graphene layer more than the intercalated
layer.

The electronic structure of graphite intercalation compounds is expected to bear
some similarity with that of the graphite host material. In the dilute limit (higher
stages) one should expect an electronic structure closely related to that of pristine
graphite [11]. This explains why, in the 1980s, a first model for the band structure
for GICs was developed for dilute intercalation compounds [42].

This being stated, for comparison with SLG and FLG, we will consider here
instead the lowest stage compounds, stages 1 and 2, and concentrate on the case
of acceptor compounds, where graphene behaves most like a quasi 2D electronic
system. In contrast to 3D graphite, charge carriers in these two systems are strictly
confined in the graphene planes and can be considered as quasi free carriers for
motion along these planes. Moreover, both SLG and stage-1 GACs may be ideally
considered as typical massless 2D electron (hole) gases.

Along the lines of the SWMcC model, Blinowski et al. [4] developed a model
for the electronic band structures of stage 1 and 2 graphite acceptor compounds in
order to interpret their optical properties. For stage-1 acceptors, a two-dimensional
version of the SWMcC model was used. This model was obtained by neglecting all
interactions other than the nearest-neighbor in-plane overlap energy, γ0:

−εv(k) = εc(k) = 3

2
γ0ak (3.1)

where a = 1.42 Å is the in-plane nearest neighbor C–C distance.
This linear wave vector dependence of the energy in (3.1) is typical of two-

dimensional models for graphene for the energy bands near the zone edge, and the
dispersion relation for these systems are presented in Fig. 3.4 (left). The disper-
sion relations for the stage-2 compounds are shown in Fig. 3.4 (right). In addition
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to measurements of the optical properties, these models were confirmed by quan-
tum oscillatory measurements [23]. Also, when the dispersion relations were used
for the interpretation of transport measurements they were found to lead to results
consistent with each other [5].

Soon after the transport properties of individual graphene layers were success-
fully obtained [1], it was experimentally confirmed that the charge carriers in SLGs
were 2D systems with linear dispersion relations (Fig. 3.5(a)) akin to the stage-1
GACs. Similarly, bilayer graphene presents the same dispersion relations as stage-
2 GACs (compare Figs. 3.4 and 3.5). However, as will be seen later, the synthesis
of almost defect-free suspended graphene layers with very high carrier mobilities
allowed the observation of effects which could not be observed in the bulk.

Note the similarity between the dispersion relations presented in Fig. 3.4 for
GACs and Fig. 3.5 for graphenes. Owing to the linear energy-momentum relation
for monolayer graphene, electrons and holes in graphene at the Dirac point have
zero-effective masses and have been called massless Dirac fermions. The corre-
sponding density of states, which is also linear in energy should vanish at the Dirac
point where the conduction and valence bands touch.

As is the case for GACs, electrons and holes in graphene and FLG are confined
in the planes and behave as a 2D or as a quasi-2D electron (hole) gas, respectively.
Transport studies have been performed in graphene and FLG and the nature and
values of the effective masses of the charge carriers have been determined. GACs
were found to behave as semimetallic systems with coexisting electrons and holes.
One of the great advantages of the FLG systems over their bulk equivalents is that
the carrier population can be easily and reversibly modified by applying a transverse
electric field (gate voltage). One can switch from electron to hole transport by vary-
ing the Fermi level (or the gate voltage which determines the Fermi level). Also, in
recent work a couple of additional parameters have been added to the Slonczewski-
Weiss picture [43–45].

In Fig. 3.6 we present a summary of the models developed for the band structure
of graphene in and out of the bulk.

3.2.3 Charge Carrier Densities and Scattering

In its simplest form, the semi-classical conductivity of an isotropic solid is a scalar
which depends on two variable parameters: N , the carrier density and μ the carrier
mobility, which are related by,

σ = qNμ (3.2)

This same relation applies for 3D and 2D solids. For the 3D case the carrier density
is expressed in cm−3 and the conductivity in �−1 cm−1, while in 2D the units are
cm−2 and �−1, respectively. In order to examine to what extent high conductivities
can be observed in solids, or possibly can be achieved, we shall next examine the
two parameters N and μ in (3.2).
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Fig. 3.6 Summary of models developed for the band structure of graphene in and out the bulk.
Here Wallace refers to [11], SWMC to [39–41], and Blinowski-Rigaux to [4]. For graphene, one
should refer to the review papers in [24–29]

3.2.3.1 Intrinsic Carriers and Charge Transfer

Among the various types of solids, 3D metals have the highest carrier density, on the
order of the atomic density, i.e., 1023 cm−3. This density is temperature and impurity
insensitive and thus its 0 K value cannot be modified. In contrast, semiconductors
have no free carriers at 0 K, but electrons and/or holes may be thermally excited and
the carrier densities in semiconductors increase strongly with temperature, though
the carrier densities of semiconductors are typically several orders of magnitude
lower than in metals. Semimetals share with metals the fact that they have carriers
at 0 K and, as for semiconductors, the carriers in semimetals are small in number5

and are temperature sensitive. Both semiconductors and semimetals are able to have
their intrinsic carrier density readily modified through doping.

Doping6 consists of introducing a small number of foreign atoms in a 3D solid,
either by substitution or by insertion, while intercalation introduces in lamellar ma-
terials entire layers of foreign species and the whole layer can denote electron and
hole carriers. The common feature between intercalation and doping is that both
processes modify the intrinsic charge carrier densities of the host material.

While pristine HOPG is a semimetal with a small band overlap of nearly
0.040 eV (cf. Fig. 3.3), which is responsible for the presence of a small but equal
number of electrons and holes at 0 K—around 2.3 and 13.5 × 10−18 cm−3 at 4.2 K
and 300 K, respectively. In contrast, a graphene layer is a zero gap semiconduc-

5Actually the density of carriers at 0 K varies from one semimetal to another. If we consider the
group V semimetals, the density at 0 K is very small in bismuth and is comparable to that of
pristine graphite, it is larger in antimony and much larger in arsenic, where the electron gas is still
degenerate at room temperature.
6The word “doping” commonly attributed to intercalation—as it is for conducting polymers—is
not correct in this context. Solid state physicists introduced this concept initially to define the
introduction of a small amount of foreign atoms which increases the charge carrier density without
modifying the band structure which is considered according to the rigid band model. This is far
from being the case in GICs or in electroactive polymers.
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tor, or a zero band overlap semimetal. In GICs, through charge transfer, the density
of electrons or holes increases dramatically and for lower stage intercalation com-
pounds the charge density can be as large as that of a metallic conductor with a
Fermi energy on the order of one eV. Once the intercalation process is achieved, the
stage and carrier density are determined and cannot be modified, e.g., by applying
a transverse electric field. Also, this field-induced charge density is practically tem-
perature insensitive as in 3D metals. Although a finite transverse electric field could,
in principle, be maintained in GACs because of the large out-of-plane resistivity, its
effect could not be detected macroscopically along the planes, since the total density
of charge carriers is too large.

In undoped graphene there are no charge carriers at 0 K, but these could be ex-
cited by means of a transverse electric field [1]. Also, when the temperature in-
creases, charge carriers are excited, just as for the case of semimetals and semicon-
ductors.

3.2.3.2 Scattering

For diffusive motion, the relaxation time, τ , is the parameter commonly used to
characterize collision processes using the Boltzmann equation approximation. But
the mobility,7 which is defined in terms of the drift velocity, vd , of the charge carriers
per unit electric field, E:

μ = vd/E (3.3)

can be imagined as the ease with which the carriers move in the crystal lattice. The
parameter μ is usually used for sample characterization, since it may be derived
from analysis of the measured transport coefficients. There is a direct relation be-
tween the mobility μ and the relaxation time τ :

μ = qτ/m∗ (3.4)

where m∗ is the carrier effective mass. The relaxation time τ is the time elapsed
between two collisions, and its inverse 1/τ reflects the probability for a carrier to
experience a scattering event. The mean free path (mfp), ζ , which is the mean dis-
tance between two scattering centers, is expressed as:

ζ = vF τ (3.5)

where vF is the Fermi velocity. The conductivity then becomes:

σ = q2Nτ

m∗ (3.6)

or:

σ = q2Nζ

m∗vF
. (3.7)

7The mobility concept holds for a diffusive regime.
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These expressions were derived for a single type of charge carrier. If there are more
than one type of carrier, i.e., electrons and holes, as in pristine graphite or graphene,
or there are several bands for electrons or holes as in GACs for stages higher than
1, the contribution of each type of carrier should be taken into account. In that case,
the total electrical conductivity is given by the sum of the partial conductivities, σj
of each group of charge carrier, j :

σ =
∑

σj . (3.8)

When there are more than one scattering mechanism, s, experienced by charge car-
riers and when the relaxation times describing these scattering events, τs , are of the
same order of magnitude, then the total relaxation time τ is a combination of these
τs parameters and is commonly given by Matthiessen’s rule, which in that case may
be expressed as:

1

τ
=
∑
s

1

τs
(3.9)

which effectively sums the scattering probability for each scattering process. In or-
der that this rule applies, the various types of scattering processes that are considered
must be independent of one another and the relaxation time must be isotropic. These
assumptions are only partly true in many physical systems including sp2 carbons.

Thus, the main contributions to the electrical resistivity of conductors, ρ, consist
of an intrinsic temperature-sensitive ideal term, ρi , which is mainly due to electron-
phonon interactions and an extrinsic temperature independent residual resistivity
term, ρr , which is due to static lattice defects:

ρ = ρr + ρi (3.10)

In graphites the residual resistivity is determined by the defect structure of the
graphitic layers, which may vary widely according to the heat treatment temper-
ature and, to a lesser extent, to the type of carbon and the quality of the precursor.
In Fig. 3.7 we present the temperature dependence of the resistivity for pristine and
intercalated benzene-derived graphite fibers (BDF) as a typical illustration of the va-
lidity of Matthiessen’s rule for graphite intercalation compounds [46]. These results
represent the lowest resistivity values and the highest residual resistance ratios (on
the order of ×10−5) achieved to date in pristine and air-stable intercalated graphite
fibers.

Equation (3.8) shows that the contributions to the conductivity from different
carrier groups add, while (3.9) and (3.10) show that it is the resistivities due to vari-
ous scattering mechanisms that add. Matthiessen’s rule (3.9) should thus be applied
independently for each type of carrier.

Through charge transfer, intercalation of chemical species between the graphene
planes leads to an increase in the charge carrier density—electrons for donors and
holes for acceptors—which is accompanied by a decrease in the electronic mobility.
The net result of intercalation is thus generally an increase in the in-plane electrical
conductivity as is shown in Fig. 3.7.
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Fig. 3.7 Temperature
dependence of the resistivity
for benzene-derived graphite
fibers (BDF), heat treated to
2900 °C, of a pristine fiber
(top curve) and a Rb- and
FeCl3-intercalated fiber
(curves labeled Rb-BDF and
FeCl3-BDF,
respectively) [46]

It is commonly stated that the decrease in mobility is due to the defects generated
by the intercalation process. This is true, but defects are not the only mechanism
responsible for the loss of mobility. There is an additional effect, which is due to
the increase of the carrier density, or in other words an increase in the magnitude
of the Fermi energy. The relaxation time, τ , of the charge carriers is thus energy, ε,
dependent, and this dependence is usually written as:

τ = τ0ε
p, (3.11)

where p is the scattering parameter which takes the value of −1 when electron-
phonon scattering is dominant for two-dimensional GACs [47]. This means that the
relaxation time, and thus the conductivity, decreases with increasing Fermi energy
in this case. This is well justified on physical grounds by the following argument:
because of energy and momentum conservation requirements, with increasing en-
ergies, electrons interact with higher energy phonons which are more numerous.
However, it is generally observed that the increase of the carrier density with re-
spect to the pristine material due to charge transfer largely compensates the loss in
mobility and that the net effect is an increase in conductivity. This means also that,
even if ideally one could avoid the generation of defects during the intercalation pro-
cess, the mobility would in any case remain lower than in pristine HOPG because
of the increased intrinsic scattering.

Oddly enough, it was shown that for stage-1 acceptor compounds, because of
the linear dispersion relation, the intrinsic conductivity would not be increased with
additional charge transfer. This is due to the fact that the increase of the charge
carrier density is exactly compensated by the decrease in relaxation time due to the
enhancement of the Fermi level [5].
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Fig. 3.8 Schematic
representation of the
graphene electrically
conducting planes (small
black spheres) and the
intercalate electrically
insulating layers (large green
spheres). The graphene
planes are considered as
electrical conductors in
parallel, as shown (left) for
the calculation of their 2D
resistivity

At room temperature, the intrinsic part of the mobility due to electron-phonon
interactions generally dominates. Room temperature mobilities are relatively low in
metals—generally below 100 cm2/(V s) (32 cm2/(V s) for copper)—and in interca-
lation compounds, with high mobilities occurring in semimetals, including graphite.
We would therefore expect the mobilities to be the highest in a defect-free suspended
SLG of large in-plane size.

In Fig. 3.8 we illustrate schematically how the graphene layers between the near-
est intercalate layers in two-dimensional GACs may be considered as conductors
acting in parallel. This allows us to calculate the conductivity of the graphene layers
in the GAC from the results of measurements on the bulk.

3.2.3.3 Experimental Observations

For pristine HOPG, mobilities of 12,000 cm2/V s were early reported [19] at
300 K in-plane [18], which is comparable to the first values obtained in some
FLGs. Indeed, in their first paper, Novoselov et al. [1] reported temperature in-
dependent mobilities larger than 10,000 cm2/V in FLG at 300 K and around
60,000 cm2/(V s) at 4 K. Later on, Du et al. [48] reported mobilities of suspended
graphene at different temperatures. They claimed low temperature mobilities as high
as 200,000 cm2/(V s) for carrier densities below 5 × 109 cm−2. This result is not sur-
prising and, from measurements on other systems (cf. Fig. 3.9) and considering the
particular electron-phonon interaction in 2D semimetallic systems, one should even
expect higher values for large, free-defect samples.

At low temperatures charge carriers freeze out in semiconductors and thus, with-
out external excitation, no carrier mobility can be observed. In semimetals instead,
electrons and holes coexist naturally even at 0 K. In another highly anisotropic
semimetal, bismuth, where the dispersion relation for electrons deviates appreciably
from a parabolic energy-wavevector dependence, the effective mass components for
electrons are as low as 0.001m0 for certain wavevector directions [49, 50].

Zitter [51] and Hartmann [52] measured the galvanomagnetic properties of high
purity bismuth single crystals at 4.2 K and deduced their carrier mobilities. One
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Fig. 3.9 Values of the mobilities at three temperatures for various electrical conductors compared
to that of HOPG and graphene out of the bulk. For graphene, the different results obtained are not
comparable since, in the diffusive regime, there are different definitions of mobility according to the
experimental method used to measure it. Besides, the very high so-called mobilities are probably
measured under ballistic conditions. It does not make sense then to speak about mobilities in that
case, since the mobility concept applies only for the diffusive regime (cf. Sect. 3.2.3.2)

of the components of the mobility tensor (μ1 in the trigonal plane, i.e., the plane
perpendicular to the trigonal axis) for this semimetal was found to exhibit a value
as high as 4.3 × 107 cm2/(V s). The same component of the mobility tensor was
measured at higher temperatures [53] and was found to still exhibit very high values,
6.4 × 105 cm2/(V s) for a carrier density of 4.5 × 1017 cm−3 at 77 K and 3.2 ×
104 cm2/(V s) for a carrier density of 24.5 × 1017 cm−3 at 300 K (cf. Fig. 3.9).

The very high mobility values observed in bismuth are to be ascribed in part to the
small effective masses, but even more dramatically to the ineffectiveness of electron-
phonon interactions in semimetals. Indeed, as was pointed out by Sondheimer long
ago [37], because of energy and momentum conservation requirements, charge car-
riers in semimetals with small Fermi wave vectors can only interact with low energy
phonons, even at high temperatures where they are less numerous than the thermal
ones, which dominate the scene. This situation also holds for pristine HOPG [38],
but should be analyzed differently in GACs [5], since the Fermi wave vector is
much larger than in the pristine material. In 2D graphenes, this effect should be
even more pronounced because of the limitation of the phonon spectrum for lower
energy phonons, due to the limited size of the samples, and to restrictions imposed
by the selection rules that are more stringent than for a 3D solid. Carbon nanotubes
also exhibit very high mobilities, but this is generally attributed to the suppression
of scattering in the 1D case [54].
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Fig. 3.10 Qualitative comparison of the intrinsic mobilities for electron-phonon interactions in
electrical conductors (metals and semimetals) and semiconductors

Note that in Fig. 3.9, where we compare values of the mobilities at three tem-
peratures for various electrical conductors, we must be cautious when considering
graphene out of the plane. For graphene, the different results reported in the liter-
ature are not directly comparable. First, in the diffusive regime, there are different
definitions in the literature for the mobility according to the experimental method
used to measure the mobility. Second, the highest so-called mobilities are proba-
bly measured under ballistic conditions. It does not make sense then to speak about
mobilities in the case of ballistic transport, since the mobility concept applies only
for the diffusive regime (cf. Sect. 3.2.3.2). In Fig. 3.10 we compare the situation of
intrinsic mobilities for electron-phonon interactions in electrical conductors, metals
and semimetals, and semiconductors.

3.2.4 Quantum Effects

In the presence of weak disorder, which is always present in real graphites and
in their intercalation compounds, one should consider a quantum correction to the
residual resistivity (Fig. 3.11) due to weak localization resulting from quantum in-
terference effects and/or that due to Coulomb interaction effects [55, 56]. These
quantum effects, though they do not generally significantly affect the magnitude of
the resistivity, introduce new features into our understanding of low temperature
transport effects [55, 56]. So, in addition to the semiclassical ideal and residual re-
sistivities of carbons discussed above, we must take into account the contributions
due to weak localization and many body interaction effects. In the weak disorder
limit, which, i.e., when kF ζ � 1, where kF is the Fermi wave vector and ζ is the
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Fig. 3.11 Low temperature
dependence of the resistance
for low-stage fibrous acceptor
GICs, with various hosts and
intercalates, showing the
logarithmic increase in
resistivity with decreasing
temperature, characteristic of
localization and
electron-electron interaction
effects. All data are
normalized to the minimum
value of the resistance and
temperature is plotted on a
log scale [34, 60]

mean free path of the carriers,8 a correction term, δσ2D , should be added to the
classical (Boltzmann) electrical conductivity, σ2D,Boltz:

σ2D = σ2D,Boltz + δσ2D (3.12)

where

δσ2D = − q2

2π2�
ln

(
τin

τr

)
(3.13)

in which δσ2D is the conductivity associated with weak localization effects, τin is
the relaxation time due to inelastic collisions, mainly phonon scattering, and τr is
the relaxation time due to elastic collisions mainly due to static defects.

These localization effects [34, 35, 57] were found to confirm the 2D character of
conduction in acceptor GICs [34, 35] and in turbostratic carbons [57]. In the same
way, in carbon nanotubes, experiments performed at the mesoscopic scale revealed
quantum oscillations of the electrical conductance as a function of magnetic field,
the so-called universal conductance fluctuations [36].

Two distinct mechanisms may be responsible for a quantum correction to the
low temperature classical electrical conductivity, which shows up as a logarith-
mic increase in the resistivity. First, a single-carrier weak localization effect due
to the constructive quantum interference appears between elastically back-scattered
partial-carrier-waves.

For macroscopic samples, at high enough temperatures, inelastic collisions are
dominant, mainly through electron-phonon interactions, where the phase memory
of electrons is lost together with their momentum. At sufficiently high temperature,
we are in the situation of diffusive motion described above (Sect. 3.2.3.2), and in this
regime the charge transport is ohmic. When the temperature is lowered, the inelastic
mean free path increases and, eventually, becomes much larger than the elastic mean

8Note that kF ζ � 1 is also the condition for transport in the Boltzmann approximation.
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free path. Through elastic collisions, electrons lose momentum but not their phase
memory. Interferences may then show up in the electronic system generating weak
localization effects.

At low temperatures and in a metal sample of very small dimensions, the phase-
coherence length may become larger than the dimensions of the sample. In that
case, for an ideally perfect crystal, the electrons will propagate ballistically from
one end of the sample to the sample boundary. We then enter into a ballistic regime
where the laws of conductivity discussed above (Sect. 3.2.3.2) no longer apply. The
propagation of an electron is then directly related to the quantum probability of
transmission across the global potential of the sample. In a real crystal, static defects
will scatter electrons elastically so that the electrons do not lose memory of the phase
contained in their wave function and in this regime, the electrons propagate through
the sample in a coherent way. This may happen in defect-free graphene. The second
effect is the charge carrier many-body Coulomb interactions due to the screening
by other charge carriers [58, 59]. These two effects are enhanced in the presence
of weak disorder, i.e., by static defect scattering. A weak applied magnetic field
suppresses the phase coherence of the backscattered waves, but does not influence
the Coulomb interaction phenomenon. Thus magnetoresistance measurements allow
separation of the two effects.

Weak electron localization and electron-electron Coulomb interactions were ob-
served in GACs at low temperatures (Fig. 3.11) [5]. This anomalous resistivity be-
havior is accompanied by a negative magnetoresistance. The physical origin of this
decrease in resistance with the applied magnetic field is different from that of the
classical (positive) magnetoresistance, which is due to the deviation of the charge
carriers from their original longitudinal path across the sample due to the Lorentz
force.

GACs, and especially stage-1 compounds which have circular Fermi surfaces,
are natural 2D electronic systems since this 2D characteristic is inherent in their
electronic band structure. The 2D behavior results from the confinement of the
charge carriers in the graphene planes and these carriers are otherwise quasi free,
though weakly localized- for motion parallel to the planes. This is in contrast to
metallic films where the quasi 2D behavior results from the anisotropic scatter-
ing of electrons at the surfaces. Indeed, in metallic films, where localization ef-
fects were first observed, the 2D character is associated with the anisotropy of
the mean free path, the latter becoming very small in the direction perpendic-
ular to the film, thus confining the motion of the carriers to the plane of the
film. The differences between the 2D electronic structure of acceptor GICs and
that of other quasi 2D electronic systems originate from differences in the en-
ergy dependence of the density of states, which is linear in stage-1 acceptor GICs
(Sect. 3.2.2.2).

On the other hand, the possibility of varying the defect structure of the host ma-
terial over wide ranges in GICs allows extensive investigations of the phenomena
of weak localization. One may vary the host material through selection and control
of the microstructure by choice of the precursor and control of the heat treatment
temperature and other processing conditions. In addition, though to a lesser extent,
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Fig. 3.12 Electrical
resistivity at 4.2 K for various
fluorine GICs showing the
effect of the transition from
weak to strong disorder by
varying the fluorine content in
the intercalation compound. It
is worth mentioning that kF is
the Fermi wave number and I
the mean free path. The
product kF I sets the limit
from weak to strong disorder.
When it is larger than unity,
we are in the weak disorder
region [33]

the Fermi level may be modified by varying the nature of the intercalate and the
stage of the compound. Acceptor GICs are thus among the best candidates to in-
vestigate 2D localization and interaction effects, since it is possible in this case to
control the disorder over wide ranges and, to a lesser extent, to control the de Broglie
wavelength.

With regard to the control of the Fermi level, it is worth noting that in graphene
out of the bulk (SLG and FLG), one may use transverse electric fields and vary the
carrier density at will, within certain limits, and thus investigate weak localization
effects as a function of a single variable. In addition, one may shift from holes
to electrons. However, in order to realize the conditions where localization effects
show up, one needs a sample with a certain amount of static defects, such as point
defects which scatter the charge carriers elastically.

Of particular interest is the transition from weak to strong localization which
is observed in fluorine intercalated compounds by varying the fluorine con-
tent [60, 61]. Also, we find that by varying the fluorine content, one may,
for a given pressure and temperature, transform a semimetal to a metal, to a
poor electrical conductor, and finally to an insulator (Fig. 3.12). The degree
of disorder is also increased with increasing fluorine content. During this pro-
found concomitant change in geometric structure, electronic structure and conse-
quent scattering modifications, the degree of localization is also modified from
weak to strong. This combination is an unique situation in solid state physics.
Recent measurements performed on graphene out of the bulk indicate also
that profound structural and electronic modifications occur in fluorinated sam-
ples [62–65].
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3.2.5 Summary

In this section we compare the electronic conduction properties of graphene in and
out of the bulk. As in the case for GACs, electrons (holes) in SLG and FLG are
confined in the graphene planes and behave as 2D or quasi-2D electron gases, re-
spectively. The same dispersion relations are applicable to SLG and stage-1 GACs
as well as to bilayer graphene (BLG) and stage-2 GACs, respectively. Stage-1 GACs
and SLGs are both massless Dirac fermion systems.

The very high intrinsic mobility values observed in bulk semimetals are to be
ascribed in part to the charge carrier small effective masses, and even more impor-
tantly to the ineffectiveness of electron-phonon interactions due to their small Fermi
surfaces. However, in pristine HOPG, the mobilities are limited by boundary scatter-
ing at the limits (boundaries) of the crystallites and this effect is more pronounced in
GACs, where the in-plane coherence length decreases after intercalation. The addi-
tional disorder introduced by intercalation limits the scattering length of the charge
carriers and masks some of the effects which were recently observed in SLGs and
FLGs. This disorder, however, allows the observation of 2D weak localization ef-
fects in GACs, where it is possible to control the disorder over wide ranges and, to
a lesser extent, to control the de Broglie wavelength or Fermi Level. By contrast, in
graphene out of the bulk (SLG and FLG) the use of transverse electric fields allows
us to control the Fermi level and thus allows us to investigate weak localization ef-
fects as a function of a single variable. In this sense GACs and a combination of
SLG and FLG provide complementary tools for the exploration of certain physical
phenomena associates with transport in low-dimensional systems.

In Sect. 3.2 we have also shown that there exists other materials with mobili-
ties comparable to those reported up to now for SLG and FLG. However, since in
graphene out of the bulk, ballistic conditions could be realized, there is still room
for improving charge carrier transmission across the graphene layers.

3.3 Thermal Conductivity of Graphene in and out of the Bulk

3.3.1 Preliminary Remarks

As stated in the general introduction, we will focus on the properties of the graphene
layers in the pristine and intercalated bulk forms of HOPG and in this section we
compare their thermal conductivities to those observed on a one layer graphene
(SLG) or a few layer graphene (FLG) sample supported or suspended. We would
like first to make three general remarks:

(1) The knowledge of the room temperature value of the thermal conductivity of a
solid is important, especially when thermal management applications are envis-
aged. However, as is the case for other transport properties, the analysis of the
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temperature dependence over a wide temperature range is important for gain-
ing physical insights into the basic materials properties, especially regarding
phonon transport when the thermal conductivity is concerned.

(2) When decreasing the size of a bulk material, the thermal conductivity decreases
at low temperatures because of boundary scattering. Thus, the thermal conduc-
tivity of nanopowders and nanocrystalline bulk materials may be significantly
lower than that of the bulk single crystal material, since phonons are scattered
by the boundaries in all directions and their mean free path is thereby reduced.
This does not happen in nanotubes or graphene. Owing to the reduced dimen-
sionality, it is only the length which determines phonon boundary scattering for
otherwise defect-free samples. Thus, long nanotube or graphene samples main-
tain, and often surpass, the thermal conductivity of bulk carbon.

(3) Thermal conductivity is usually one of the easiest transport properties to predict
and analyze—especially in bulk carbons—and at the same time is one of the
most delicate properties to measure correctly. This is particularly true for the
case of nanoscopic systems. It is mainly due to the fact that heat flows are dif-
ficult to control and one has to make sure that the heat losses in the measuring
system are not comparable, or even greater than the thermal conductance mea-
surement of a nano sample. Thus, one must be very critical when examining the
data in the literature and a reader must question the technique used in the experi-
mental measurement. As a corollary, whenever possible, it is highly desirable to
analyze the experimental data obtained on the same material with different mea-
suring techniques and to compare the results thereby obtained. It is also helpful
to check whether the magnitude of the thermal conductivity is consistent with
the location of its so-called dielectric maximum (cf. Sect. 3.3.3.3).

3.3.2 Introduction

Recent experimental data on the room temperature thermal conductivity of sus-
pended SLG and FLG graphene [66] have confirmed the exceptionally high thermal
conductivity of an individual graphene layer that was previously predicted by Kle-
mens [67, 68] before single layer graphene research started seriously. In his seminal
work, Klemens calculations showed that isolated graphene sheets out of the bulk
should have a thermal conductivity much higher than that of bulk graphite in-plane.

Recently, Nika and co-workers [69] proposed a model for the lattice ther-
mal conductivity of graphene along the lines developed by Klemens. More re-
cently, Ghosh et al. have measured the room-temperature thermal conductivity
of suspended graphene layers [66] and found that it decreases from ∼ 2,800 to
∼1,300 W m−1 K−1 as the number of graphene sheets increases from 2 to 4.

In light of these results, we have revisited old results for κ pertaining to pristine
HOPG and GACs [70] and have examined to what extent the data relative to the
graphene sheets in the bulk are consistent with those obtained on monolayer and
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few layer graphene (SLG and FLG). We show the observation of the thermal con-
ductivity of supported graphene being relatively high, twice that of copper,9 is not
surprising at all if we consider the data obtained decades ago on bulk graphites and
their intercalation compounds [5]. One might have expected from these old results
that κ would indeed have such high values and perhaps even larger values.

After a short introduction to the mechanisms governing the thermal conduc-
tivity of solids, we then discuss in Sect. 3.3.3.4 the main results obtained in the
past on bulk graphites and their intercalation compounds, and we compare them
in Sect. 3.3.3.5 to those recently measured on SLG and FLG. We will also briefly
discuss in Sect. 3.3.3.7 the thermal conductivity of carbon nanotubes.

3.3.3 Comparing the Thermal Conductivity of Graphene in and
out the Bulk

3.3.3.1 Electronic and Lattice Conductivities

There are essentially two contributions to the transport of heat in solids [13, 71]:
the electronic thermal conductivity, κE , which is due to the charge carriers, and the
lattice thermal conductivity, κL, which is due to the phonons. In electrical insulators,
heat is exclusively carried by phonons, while in pure metals it is the charge carriers
that predominantly carry heat. Some values for the thermal conductivity of some
selected materials at room temperature are given in Fig. 3.13.

As in the case of some heavily doped semiconductors, metallic alloys and
group V semimetals, the lattice thermal conductivity of GICs may be comparable
to the electronic contribution in GICs in certain temperature ranges. In general, the
total thermal conductivity can be written as a sum of the electronic and lattice con-
tributions (κE and κL):

κ = κE + κL (3.14)

In principle, a high magnetic field, which decreases κE , may reduce κE to become
insignificant with respect to κL, thereby allowing the separation of the two contri-
butions.

9The common reference to copper, which is justified when we speak about practical applications,
is meaningless when we consider the physics: one is comparing a material with the highest elec-
tronic thermal conductivity (copper) to the family of carbon materials with a low carrier density
(diamond, HOPG, VDF, . . . ). Solid state physicists know that pure covalent materials have the
highest lattice conductivities, which are often higher than the highest electronic conductivities.
Also diamond and HOPG in-plane are known to be the best bulk thermal conductors. This high
thermal conductivity might be understood qualitatively using a naïve mechanical picture: strong
covalent bonding and light atoms favor the transmission of lattice vibrations.
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Fig. 3.13 Room temperature thermal conductivities of various carbons compared to copper and
non oriented polymeric materials. All materials are pristine (undoped)

3.3.3.2 Electronic Thermal Conductivity

The electronic thermal conductivity is directly related to the electrical conductivity,
σ , through the Wiedemann-Franz law [13, 71]:

κE = LT σ (3.15)

In the temperature ranges where κE and κL depend on the same relaxation time,
the Lorenz ratio, L, takes the value of the Lorenz number (L = L0 = 2.44 ×
10−8 V2 K−2). This applies for a degenerate free electron system which experiences
elastic collisions with impurities and other static defects and above the Debye tem-
perature when large angle intravalley electron-acoustic phonon interaction is dom-
inant. In these situations, Eq. (3.15) allows computation of κE from the measured
electrical resistivity.
κE is directly proportional to the electronic specific heat, CE , to the Fermi ve-

locity, vF , which increases with the carrier density in 3D systems, and to the mean
free path of the charge carriers, λE

κE = CEvFλE (3.16)

At low temperature, where the electrical resistivity for metals is constant in the resid-
ual range, the electronic thermal conductivity, κE , of pure metals increases linearly
with increasing temperature, then reaches a maximum as shown in Fig. 3.14, and
the maximum is more pronounced for samples with less impurities and defects. For
pure metal samples, κE decreases with increasing T , and then levels off at higher
temperatures, where the electrical resistivity, which is due to large angle electron-
phonon interactions, varies linearly with temperature. However, for samples with
a high concentration of impurities or lattice defects, the linear increase may be di-
rectly followed by a temperature insensitive κE without the intermediate thermal
conductivity peak [13, 71], as shown also in Fig. 3.14.
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Fig. 3.14 Temperature
variation of the in-plane
thermal conductivity of GICs
compared to that of pristine
HOPG (solid line). Results
are presented for pure stages:
2 (open circles), 3 (dark
circles) and 6 (open squares),
and a mixed 4∗ stage (open
triangles) FeCl3 acceptor
GICs. Data for a stage-5
potassium donor intercalation
compound are also presented
(dark squares) (from [70])

3.3.3.3 Lattice Thermal Conductivity

The exceptionally large thermal conductivity observed in diamond and in HOPG
in-plane at room temperature (Figs. 3.14 and 3.15) is due to the lattice. Naively, one
may attribute this large κ to the small mass of the carbon atoms and the strong inter-
atomic covalent forces which allow effective transmission of the vibrations and thus
results in a relatively high lattice thermal conductivity. Any perturbation to the regu-
lar arrangement of carbon atoms in the lattice, such as defects or atomic vibrations,
will give rise to scattering processes which decrease the thermal conductivity.

For a 3D solid, the lattice thermal conductivity κL is given by [13, 71]:

κL = 1

3

∑
s

∫ ω

ω0

cs(ω)vs(ω)λs(ω)dω (3.17)

where cs(ω)dω is the contribution to the specific heat of phonons of polarization, s,
and frequency, ω, in the range ω+dω, vs(ω) is the phonon velocity and λs(ω) is the
phonon mean free path. The integral in (3.17) is taken from the lowest phonon fre-
quency, ω0, to the Debye cut off frequency, ωD . The phonon mean free path λs(ω)
is directly related to the phonon relaxation time, τ , through the relation λ = vτ .

In the simplest form of (3.17), the Debye relation [13, 71]:

κL = 1

3
Cvλ (3.18)
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Fig. 3.15 Schematic
representation of the effect of
intercalation on the thermal
conductivity of pristine
graphites. Intercalation
decreases the lattice thermal
conductivity κL and increases
the electronic thermal
conductivity κE . The overall
effect is a decrease of the
thermal conductivity at high
temperature and an increase
at low temperature with
respect to the pristine
material (from [5])

can be used conveniently to discuss semi-quantitatively the experimental results for
the thermal conductivity. In the dominant phonon mode approximation, we use an
average phonon frequency, which is proportional to the absolute temperature (ω ∼
kBT ) and C in (3.18) is the lattice specific heat per unit volume and v is an average
phonon velocity, which is approximated by the velocity of sound.

3.3.3.4 Graphene in the Bulk

At a given temperature, the thermal conductivity of carbons and graphites may vary
by more than two orders of magnitude, according to their structural perfection [10].
HOPG and vapor deposited carbon fibers (VDF) heat treated at high temperatures
are among the best bulk heat conductors around room temperature [72], exceeding
2,000 W m−1 K−1 (Fig. 3.13). The thermal conductivity above the liquid helium
temperature range is entirely due to the phonons. In the lowest temperature range,
the lattice thermal conductivity is mainly limited by phonon-boundary scattering
and, as is the case for the electrical conductivity (cf. Sect. 3.2), the low tempera-
ture thermal conductivities are directly related to the in-plane coherence length, La .
Since La varies according to the precursor and, more importantly, is highly sensitive
to the heat treatment temperature (HTT), the higher is the HTT, the larger is the in-
plane coherence length [10]. Furthermore, it was found that the phonon mean free
path is almost equal to the in-plane coherence length [10] La . In fact the thermal
conductivity behavior as a function of crystallite size, or in-plane coherence length,
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is similar to that of the electrical conductivity illustrated in Fig. 3.1 and discussed in
Sect. 3.1.

When boundary scattering is dominant, the phonon mean free path is indepen-
dent of temperature. Since the velocity of sound is almost temperature insensitive,
the temperature dependence of the thermal conductivity follows that of the specific
heat. Thus, the larger is La , the higher is κ at a given temperature [9, 10]. For tem-
peratures above that for the maximum in κ for GICs in Fig. 3.14, phonon scattering
is largely due to intrinsic phonon-phonon umklapp processes, and the thermal con-
ductivity should be the same for different well-ordered graphites.

Around the thermal conductivity maximum, scattering of phonons by point de-
fects (small scale defects) becomes important. The position and the magnitude of
the thermal conductivity maximum will thus depend on the competition between
the various scattering processes (boundary, point defect, phonon). So, for different
samples of the same material, the position and magnitude of the maximum depends
on their specific point defect concentrations on La , since phonon-phonon interac-
tions are assumed to be the same [9, 10] for different samples.

Intercalation dramatically modifies the thermal conductivity of pristine graphites
[5, 70] (Figs. 3.14 and 3.15). Electronic conduction in GICs may contribute to heat
transport well above the liquid helium temperature range, owing to the large in-
crease in the charge carrier concentration in GICs due to charge transfer, especially
at low temperatures where the lattice thermal conductivity of the pristine material
decreases almost quadratically with temperature. Also, the fact that intercalation
also introduces lattice defects leads to a decrease of the lattice thermal conductivity
around the maximum. The overall effect is a decrease of the total thermal conduc-
tivity at high temperature and an increase at low temperature with respect to that of
the pristine material [5, 70]. A schematic representation of the effect of intercalation
on the thermal conductivity of pristine graphite is presented in Fig. 3.15.

Now let us consider the behavior of the graphene layers in a bulk graphene accep-
tor intercalation compound (GAC). First, if we consider pristine HOPG heat treated
at high temperature, its in-plane room temperature thermal conductivity is around
2,000 W m−1 K−1 (Figs. 3.13 and 3.14), despite the fact that graphene planes are
interacting in the bulk with their neighboring planes. In GACs the graphene planes
interact with the intercalate planes for stage 1 and with intercalate planes and other
graphene planes for higher stages. Second, the material which can be best compared
to supported graphene is a GAC, since its graphene planes are sandwiched between
two intercalate layers of different chemical compositions (Fig. 3.8). In GACs, heat is
mainly transferred through the graphene layers at all temperatures, since the thermal
conductivity of the intercalate layers was found to be negligibly small [73], except
in a limited region at low temperature. In principle, GACs cannot be considered
as a quasi-2D system for heat conduction, in contrast to the case of electrical con-
duction. Instead GACs are highly anisotropic thermal conductors, with anisotropy
ratios κin/κout that are orders of magnitudes lower than for the electrical conductiv-
ity: GACs have an anisotropy ratio of around 500 for their thermal conductivity at
room temperature, compared to 106 for their electrical conductivity σin/σout . How-
ever, when using the simplifying assumption that the contributions of the various
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layers can be considered separately and added as conductors in parallel to give the
total bulk conductivity, coherent results are obtained (as shown below), as for the
case of the electrical conductivity. This assumption was validated by Klemens for
pristine graphite on theoretical grounds [74].

Thus, intercalation of bulk graphites decreases the total thermal conductivity at
high temperature and increases κ at low temperature with respect to that of the
pristine material. Heat is mainly conducted by the graphene layers, though an ex-
tra contribution due to the intercalate phonons was obtained experimentally for a
limited temperature range [73].

In GACs the highly conductive graphene layers are sandwiched between two
electrically insulating and poorly thermally conducting layers. If we consider the
case of a stage-2 FeCl3-HOPG intercalation compound, a room temperature thermal
conductivity of nearly 500 W m−1 K−1 is observed for the bulk [70] (Fig. 3.14). This
means that the thermal conductivity of the graphene layers in this compound should
be much higher. Indeed, if, as was done for the case of the electrical conductivity
(Fig. 3.8), we consider the various layers to be acting as conductors in parallel, we
may express the measured thermal conductivity, κ , of a GIC of stage n in terms of
that of graphene, κc, and of the intercalate, κi , as:

κ = diκi + ncoκc

Ic
(3.19)

where

Ic = di + nco (3.20)

is the c-axis repeat distance,10 di , is the thickness of the FeCl3 intercalate layer
(0.606 × 10−9 m) and co is that of a carbon layer (0.335 nm). By neglecting the
thermal conductivity of the intercalate layers with respect to that of the graphene,
we may write:

κ = ncoκc

Ic
, (3.21)

which gives a value for the thermal conductivity κc of the graphene sheet within the
intercalation compound, which is roughly equal to 900 Wm−1 K−1. The fact that in
a typical GAC the graphene sheets have a thermal conductivity almost half that in the
bulk pristine HOPG should be attributed to the phonon scattering length for large-
scale defects, which is the boundary scattering length, λB . A previous study [70] has
estimated the length λB for this GAC to be around 0.6 μm, while it is of the order of
1 to 15 μm for the bulk pristine HOPG host material. As was previously stated, these
defects cannot be eliminated since they are inherent to the intercalation process. The
great advantage of suspended graphene (SLG) is that it does not interact with other
layers and can be obtained almost defect-free, thus providing direct information on
the intrinsic properties of graphene. From the data reported in [70], an estimate was

10Note that Ic varies slightly with the stage of the compound, but the effect is too small to be taken
into consideration in this context.
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Table 3.1 Comparison of the variation of the thermal conductivity κ∗ of the graphene layers as a
function of the number of layers in and out of the bulk

Parameter GAC
Stage-2

GAC
Stage-3

GAC
Stage-6

HOPG SLG FLG-2 FLG-4

κ∗ 470 480 560 2,000

κlattice 340 400 480 2,000

n 2 3 6 1 2 4

Ic = di + nco 1.28 1.61 2.62

κc 895 769 729 2,000 5,000 2,800 1,300

λB 580 620 770

κ∗ total thermal conductivity measured on the bulk sample [70]

n = stage of the GIC or the number of graphene layers in FLG

Ic = c-axis repeat distance, in the intercalation compound

κc = thermal conductivity of graphene sheet in GIC

λB = mean free path for phonon-boundary scattering, which is equal to the in-plane coherence
length La

The thermal conductivities are in units of Wm−1 K−1 and Ic and λB are in units of 10−9 m

Data for the bulk material from is Issi, Heremans and Dresselhaus [70] while data for suspended
graphene is from Ghosh et al. [66]

also made for the stage-3 and stage-6 compounds and the results are presented in
Table 3.1. We have also included in Table 3.1 the data obtained on SLG and FLG-2
and FLG-4 for comparison [66]. As is the case for suspended graphene sheets [66],
the thermal conductivity of a graphene sheet in the GAC decreases with increasing
stage, i.e., with the number of graphene planes between the intercalate layers.

One should be cautious when making comparisons at a given temperature be-
tween samples of the same material with different defect structures. For HOPG at
room temperature, we are, as regards the thermal conductivity, in the beginning of
the high temperature range, i.e., a little above the temperature of the dielectric max-
imum, where the phonon-phonon umklapp processes start to dominate the thermal
conductivity behavior. For FeCl3 intercalation compounds, the dielectric maximum
occurs at around 330 K and the thermal conductivity in this region is determined
by the combined effects of various scattering processes, which are given here in
order of decreasing importance: impurity, boundary and umklapp scattering pro-
cesses. Note that the temperature of the maximum κ depends mainly on boundary
scattering, while the magnitude of κ is mainly determined by point defect scattering
(Fig. 3.15).

3.3.3.5 Graphene out of the Bulk (SLG and FLG)

Similar to bulk graphites and CNTs, the thermal conductivity of graphene is dom-
inated by the lattice contribution κL. Micro-Raman spectroscopy-based techniques
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Fig. 3.16 Experimental thermal conductivity (κ) of SLG exfoliated from HOPG and suspended
over a 2–5 μm trench reported by Balandin et al. [79], SLG exfoliated from natural graphite (NG)
and suspended over a 44 μm diameter hole reported by Faugeras et al. [77], SLG grown by CVD
and suspended over a 9.7 μm diameter hole reported by Chen et al. [78], SLG exfoliated from NG
and suspended over a 6.6 μm diameter hole reported by Lee et al. [80], 9.5 μm long × 2.4 μm
wide SLG exfoliated from NG and supported on SiO2 reported by Seol et al. [88], and 12.4 μm
long × 2.9 μm wide 8-layer graphene exfoliated from NG and supported on SiO2 reported by
Sadeghi and Shi [64]. Shown in comparison are the basal plane thermal conductivities of NG re-
ported by Smith [89] and pyrolytic graphite reported by de Combarieu (dash-dot and dashed lines
are visual guides to the eye) [76], a ∼14 nm outer diameter, 2.5 μm long suspended MWCNT
synthesized by laser ablation reported by Kim et al. [81], a 16.1 nm outer diameter, 1.89 μm long
suspended MWCNT synthesized by arc discharge reported by Fujii et al. [86], and the calculated
κ for a 10 μm long suspended SLG by Lindsay for Seol et al. [88] (solid line). For Raman mea-
surement results of graphene, the temperature is the hot side temperature measured by the Raman
laser, instead of the average sample temperature used in other experimental and theoretical results.
From: M.M. Sadeghi et al. [75]

and micro-resistance thermometry have been used to obtain the thermal conductiv-
ity of graphene, which was found to be in the range of 1500–5800 Wm−1 K−1 for
a suspended single layer graphene (SLG) (Fig. 3.16) and ∼600 Wm−1 K−1 around
room temperature for SLG supported by a SiO2 substrate.

We present in Fig. 3.16 some values reported for the thermal conductivity of
graphene obtained using optothermal techniques [75]. The values thus obtained are
compared to the highest values reported for HOPG (de Combarieu [76] in Fig. 3.16).
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Fig. 3.17 Measured thermal conductivity as a function of the number of atomic planes in FLG.
The dashed straight lines indicate the range of bulk graphite thermal conductivities. The blue
diamonds were obtained from the first-principles theory of thermal conduction in FLG based on
the actual phonon dispersion and accounting for all allowed three-phonon Umklapp scattering
channels. The green triangles are Callaway–Klemens model calculations, which include extrinsic
effects characteristic for thicker films [71]

It is worth noting that during the sample preparation of Faugeras et al. [77] and Chen
et al. [78], the SLG was in contact with polymer resist residuals, which are difficult
to remove and these residuals have been shown to strongly scatter phonons in sus-
pended bi-layer graphene (BLG). In comparison, the graphene samples measured
by Balandin et al. [79] and Lee et al. [80] were directly exfoliated onto the mea-
surement device [75], and hence are expected to be relatively clean. However, one
should be critical in comparing data because of the large experimental uncertainties
associated with the experimental devices used and the large range of values reported
for κ .

3.3.3.6 Graphene in and out the Bulk—Comparison

It is interesting to compare the behavior of the thermal conductivity of graphene in
and out the bulk. In Table 3.1 we present the stage dependence of κco, the room
temperature in-plane lattice thermal conductivity of the graphene layers in graphite-
FeCl3 intercalation compounds [70]. It may be seen that the thermal conductivity of
the graphene layers in the bulk GAC decreases with increasing number of graphene
planes between the intercalate layers. In Fig. 3.17, the measured thermal conductiv-
ity is presented as a function of the number of atomic planes in FLG [66]. Here also
a decrease of the thermal conductivity is observed when the number of graphene
planes increases. These observations are consistent with Klemens’ theoretical pre-
dictions that the thermal conductivity of large enough single layer graphene sheets
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Table 3.2 Experimental data for the room temperature thermal conductivity of carbon nanotubes
CNTs

Sample κ (Wm−1 K−1) Remarks Reference

MNWT >3,000 Individual, suspended Kim et al. [81]

SWNT 3,400 Individual, suspended Pop et al. [82]

SWNT >1,750 Bundles Hone et al. [83]

SWNT >3,000 Individual, suspended Yu et al. [84]

MWNT 300 Choi et al. [85]

1,500–2,900 Individual Fujii et al. [86]

should be higher than that of the basal planes of bulk graphite [67, 68]. The fact
that in the case of FLG the thermal conductivities observed are much larger than in
GACs should be attributed to the small in-plane coherence length and the presence
of lattice defects in the graphene planes in GACs. Also, as stated above, the situa-
tion of graphene in GACS should be compared to that of supported graphene. Ghosh
and co-workers [66] explain the evolution from two dimensions to bulk by the cross-
plane coupling of the low-energy phonons and by the changes in the phonon Umk-
lapp scattering with increasing layer number.

3.3.3.7 Carbon Nanotubes

Most of the reported room temperature values of the thermal conductivity of indi-
vidual suspended carbon nanotubes (CNTs) range between 600–3,000 Wm−1 K−1

for single and double-walled CNTs and between ∼40–3,000 Wm−1 K−1 for multi-
walled CNTs. The large variations are generally ascribed to experimental uncer-
tainties (heat losses and thermal contact resistances, for example), to CNT diameter
determination uncertainties, and to differences in defect concentration arising from
the different synthesis methods (see Table 3.2 and Refs. [81–86]). For multiwall car-
bon nanotubes (MWCNTs), the high temperature arc discharge and laser ablation
methods yielded samples with the highest reported κ values. In Table 3.2, we present
some published values for the thermal conductivity of CNTs, while in Fig. 3.18, a
typical temperature dependence for the thermal conductivity of a carbon nanotube
is shown [81]. Note that the general trend is the same as in bulk graphites and in
graphenes (Figs. 3.14 and 3.16).

It was observed that the room temperature thermal conductivity of a CNT in-
creases as its diameter decreases [86]. In Fig. 3.19 the room temperature thermal
conductivity of individual multiwall carbon nanotubes of different diameters is pre-
sented [86]. The measured diameter-dependent thermal conductivity is ascribed to
the interactions of phonons between multiwalled layers which affect the thermal
conductivity. The thermal conductivity increases as the number of multiwalled lay-
ers decreases. A single-walled carbon nanotube is then expected to have the highest
thermal conductivity, since the inter-tube phonon scattering effect is absent.
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Fig. 3.18 Typical
temperature dependence of
the measured thermal
conductivity of a
nanotube [81]

Fig. 3.19 Room temperature
thermal conductivity of
individual multiwall carbon
nanotubes as a function of
their diameter. Note that Af
stands for the carbon
nanotube cross-sectional area,
d0 and di stand, respectively,
for the outer tube diameter
and for the inner-most
diameter of the multi-walled
tube structure [86]

Also, as is the case for the electrical conductivity, the thermal conductivity of
nanotubes increases with increasing length [81, 87]. In the case of the thermal con-
ductivity this could be ascribed to an addition of phonon modes, thus to an enhance-
ment of the measured specific heat, and to an increase of the phonon mean free
paths. Both effects lead to an increase in thermal conductivity (3.18). From theoret-
ical works it appears that the present situation for MWCNTs is rather complex to
analyze at this time.
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3.3.4 Summary

After briefly introducing the mechanisms governing the thermal conductivity of
solids, we have discussed above the main results obtained on bulk graphites and
their intercalation compounds and we compare theoretical predictions to those re-
cently measured on graphene (SLG) and FLG. We show that the qualitative behavior
of graphene planes in and out of the bulk is the same, i.e., a decrease in the lattice
thermal conductivity with increasing number of adjacent planes. However, the lat-
tice thermal conductivity of graphene in bulk GACs is much lower than in SLG and
FLG due to the limitation of the phonon mean free path by small- and large-scale
lattice defects. This comparative study shows also that, though graphite is known to
be the best bulk thermal conductor, there is little chance for further progress in bulk
graphites, because of the limitations imposed by large-scale defects. By contrast,
large area defect-free SLG and FLG still have large prospects for further increase
of κ .

3.4 Inelastic Scattering of Light—Raman Scattering

3.4.1 A Brief Overview of Inelastic Scattering of Light

As stated earlier in the text, mostly due to the linear electronic dispersion relation
observed in carbon structures, the inelastic scattering of light (well known as Raman
scattering), has been shown to provide a particularly sensitive tool for understand-
ing the electronic and vibrational properties of carbons and nanocarbons. Namely,
resonant Raman scattering (RRS) is a fast, non-invasive and non-destructive exper-
imental technique which, by means of first and second order scattering processes,
allows us to study, for example, doping, disorder, thermal conductance, phonon self-
energy renormalizations and phonon dispersions in nanocarbon systems. Indeed,
phonons must be taken into account to properly explain many properties observed
in carbon-based systems [90, 91]. More specifically, electron-phonon and phonon-
phonon scattering mechanisms are fundamental to understanding relaxation pro-
cesses governing the electronic and thermal properties [90, 91].

Briefly, the RRS process can be understood as follows: during a scattering event,
(1) an electron is excited from the valence energy band to the conduction energy
band by absorbing a photon, (2) the excited electron is scattered by emitting (or
absorbing) phonons, and (3) the electron relaxes to the valence band by emitting a
photon. We generally observe Raman spectra for the scattered photon (light), whose
energy is smaller (called the Stokes process) by the phonon energy than that of the
incident photon (note that if we were observing the scattered photon whose energy is
larger by the phonon energy, we would be observing the called anti-Stokes process).
By measuring the intensity of the Stokes scattered light as a function of frequency
downshift (losing energy) of the scattered light, which is what is plotted in typical
Raman spectra, we obtain an accurate measurement of the phonon frequencies of
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Fig. 3.20 (Left) First-order G-band process and (Center) one-phonon second-order DR process
for the D-band (intervalley process) (top) and for the D′ -band (intravalley process) (bottom) and
(Right) two-phonon second-order resonance Raman spectral processes (top) for the double res-
onance G′ process, and (bottom) for the triple resonance G′ -band process (TR) for monolayer
graphene. For one-phonon, second-order transitions, one of the two scattering events is an elas-
tic scattering event. Resonance points are shown as open circles near the K-point (left) and the
K′ -point (right) [91]

the material [90, 91]. It is important to note that every time the incident (scattered)
light energy connects two real electronic states, the signal observed in the phonon
spectra become very strong because of the resonance phenomenon that occurs in the
presence of an external oscillating field.

As shown in Fig. 3.20, the order of a Raman scattering process will be defined by
the number of phonons (and structural defects) involved. For example, if the scatter-
ing process involves just one phonon, the Raman process is of first order. However,
if two phonons (or a combination of a phonon and a structural defect) are involved,
the Raman process will be of second order. Both first order and second order pro-
cesses will be of major importance to study carbon materials. Besides this, we can
further classify the scattering process as an intravalley (AV) or an intervalley (EV)
process. In the case of carbon materials, an AV scattering process occurs around the
same high-symmetry K-point in the Brillouin zone, while in an EV scattering pro-
cess, two inequivalent high symmetry K- and K′-points are involved (see Fig. 3.20).

Given this short introduction, we shall now understand how to interpret and ex-
tract information from the phonon spectra of carbon-based materials. Namely, there
are two main features that are observable in almost all carbon based materials: the
G-band (1583 cm−1, which is a first order process (see Figs. 3.20 and 3.21) and the
G′-band (or 2D-band) (2670 cm−1), which is a second order process (see Figs. 3.20
and 3.21). When defects and impurities are present, a third defect-induced band,
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Fig. 3.21 (Top) the Raman
spectrum showing the G- and
G′ (or 2D)-bands. As
experimentally observed, the
G-band occurs around
1583 cm−1 while the G′ -band
occurs around 2670 cm−1.
(Bottom) the Raman spectrum
showing the G- and G′ -bands
for Bi-layer graphene. The
spectra were measured with a
532 nm laser line and the
power density used was
1 mW/μm2 [91, 98]

called the D-band, also appears. Like the G′-band, the D-band is also a second
order process but the G′-band is symmetry allowed, but the D-band intensity re-
quires symmetry-breaking phenomena. From now on, we will focus our discussion
on these spectral features. In general, all of these features are somehow sensitive to
dopants, stress, defects and impurities. However, each of them has been specifically
used to fingerprint different phenomena, which will now be discussed further.

3.4.2 The G-Band Mode

The G-band mode [90, 91] is a first order Raman scattering process that comprises
two degenerate optical phonon modes: the in-plane transverse optical mode (iTO)
and the in-plane longitudinal optical mode (iLO). The peak frequency is observed
from 1582 to 1585 cm−1 (for SLG, BLG, MLG and Graphite). In the case of carbon
nanotubes, the iTO/iLO degeneracy is broken due to curvatures effects [91]. In car-
bon nanotubes the G-band has been extensively utilized to obtain information about
the nanotube metallicity (metallic or semiconducting) as well as to obtain infor-
mation about the nanotube diameter, since the nanotube diameter is inversely pro-
portional to iTO G-band frequency for nanotubes (the reader should recall that the
iTO mode will be vibrating along the nanotube circumference. As a consequence,
if the circumference decreases, which increases the curvature of the tube, the iTO
frequency will decrease).

However, it was with the rise of SLG graphene systems that the Raman G-band
became strongly influential in providing evidence to show that we cannot describe
graphene systems within the so-called adiabatic approximation [92–97] as well as to
understand how this fact results in phonon self-energy corrections [92–97], which
are very sensitive to the graphene density of electrons and holes. Namely, these
phonon renormalizations occur any time we have an occupied (unoccupied) ini-
tial (final) electronic state, in the sense that an electron-hole pair can be created
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Fig. 3.22 G-band
frequencies (squares) and G
band linewidths (circles)
extracted from the
gate-modulated Raman
experiments. The vertical
dotted line is the approximate
position of the charge-neutral
Dirac point that is estimated
from the symmetry of the
data [97]

(annihilated) by a phonon absorption (emission) [92–97] and still conserve energy
and momentum subject to symmetry selection rules. These renormalizations are ex-
tremely sensitive to the density of electrons and holes, and therefore, to the Fermi
level energy EF of the system. Strategies like doping graphene with foreign atoms
(molecules) or the application of an electrostatic field through gate-modulated ex-
periments were extensively applied [92–97]. Figure 3.22 shows the results of a gate-
modulated Raman experiment [97]. As observed in this figure, the G-band frequency
increases for both electrons and holes, while the spectral line width narrows with in-
creasing |EF | [97].

Interestingly, the same results as in Fig. 3.22 are seen in Fig. 3.23 when doping
graphene with Boron (p-type impurity) and Nitrogen (n-type impurity) atoms, as re-
ported by Panchakarla et al. [99]. The impurities in this case are naturally introduced
during the growth process and are, therefore, mainly substitutional. Basically these
authors [99] report an asymmetric phonon renormalization of the G-band feature
in which defects due to both n-type and p-type impurities result in a frequency up-
shift (note that the impurity concentration only changes the renormalization factor).
Again, this hardening of the G-band is explained by means of the phonon self-energy
in graphene within the non-adiabatic formalism, and its broadening is due to the ab-
sence or blockage of the decay channels of the phonons into forming electron–hole
pairs [99]. However, the upshift rate shown in Fig. 3.23(b) is observed to be larger
for p-doped samples in comparison to the n-doped monolayer graphene samples.

3.4.3 The G′-Band (or 2D) Mode

The G′-band (or 2D-band, which is a harmonic of the D-band) mode is a symmetry
allowed intervalley (EV) second order Raman process accomplished by a combi-
nation of two iTO phonon modes around the K (K′)-point. The G′-band frequency
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Fig. 3.23 (a) Raman spectra of undoped (HG), boron-doped (BG) and nitrogen-doped (NG)
graphene samples. In (a) HG stands for undoped graphene, BG1 stands for 1.2 % boron doped
graphene, BG2 stands for 3.1 % boron doped graphene and NG1 stands for 0.6 % nitrogen doped
graphene. (b) G-band frequency shifts as a function of doping concentration caused by electron
(N) doping (with pyridine) and hole (B) doping [99]

is laser energy (EL) dependent so that the mode is known to be dispersive, show-
ing a change in frequency with changing laser excitation energy EL. In spite of the
G′-band also being sensitive to both foreign dopants and electrostatic gating, the
major usage of the G′-band spectrum has been to distinguish between the number
of layers contained in a given graphene flake. This is possible because the G′-band
is especially sensitive to the stacking order and to interlayer interactions in systems
with 2 or more graphene layers [98]. As shown in Fig. 3.24, Raman scattering in-
deed provides a very straightforward approach to rapidly distinguish the different
number layers in multi-layer graphene systems [90, 99]. It is worth commenting
that recently it has been shown that the G′-band is also an efficient choice to de-
cide whether a trilayer graphene is ABA-stacked (Bernal-stacking) or ABC-stacked
(rhombohedral-stacking) [100] by observing the differences in the Raman G′ band
frequency and lineshape.

3.4.4 The Disorder-Induced D-Band Mode

Carbon-based materials show a highly characteristic Raman feature called the D-
band (the D denoting disorder-induced), which is a symmetry-breaking Raman peak
that has no intensity in the absence of defects. Every time a given impurity breaks the
translational symmetry of the carbon material’s lattice, D-band intensity will appear
in the Raman spectrum and its Raman scattering cross-section will be proportional
to the defect concentration (see for example Fig. 3.23(a)). It is worth noting that not
only can the D-band feature be used to understand defects in carbon materials, but
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Fig. 3.24 The measured G′
(or 2D) Raman band with
2.41 eV laser energy for
(a) monolayer graphene
(1-LG), (b) bilayer graphene
(BLG), (c) trilayer graphene
(3-LG), (d) four layers
graphene (4-LG), (e) HOPG
and (f) turbostratic graphite.
The splitting of the G′ -band
opens up in going from
mono- to three-layer
graphene and then closes up
in going from 4-LG to
HOPG [91, 100]

also the symmetry allowed G-band and G′ (2D) band in the Raman spectra provide
valuable information about defects, especially when the impurity in question dopes
the material by changing the bonding strength of the atomic species to the host
carbon atoms [98].

Back in 1970, Tuinstra and Koenig [101] showed that the ratio between the D and
G-band Raman intensities (ID/IG) is directly related to the crystallite size (La) of
3-D graphite. At that time, they explained their findings for only one excitation laser
energy (EL), namely, 514 nm (2.41 eV). More than 30 years later, in 2006, Cancado
et al. [102] successfully extended the Tuinstra and Koenig findings to several EL
values and now the ratio ID/IG is more fully described by the equation:

ID

IG
= La

E4
L

560
(3.22)

where La is given in nm, EL is given in eV and the constant 560 is given in units
of eV4/nm. Although a general equation appeared through this scenario, a basic
question still remained: whether the crystallite size La is a very special character-
ization parameter in graphite or would other types of symmetry-breaking features
also follow a similar equation? The answer is, not exactly.
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Fig. 3.25 The ID/IG data points from three different mono-layer graphene samples as a function
of the average distance LD between defects that are induced by the ion bombardment procedure.
The inset shows the Raman intensity ratio ID/IG vs. LD on a semilog scale for two graphite sam-
ples: (i) a ∼50-layer graphene sample found near one of the three mono-layer graphene samples
(bullets); (ii) a bulk HOPG sample used for calibration (diamonds). The bulk HOPG values in the
inset are scaled by (ID/IG) × 3.5. The solid line is obtained from (3.23), where CA = (4.2 ± 0.1),
CS = (0.87 ± 0.05), rA = (3.00 ± 0.03) nm and rS = (1.00 ± 0.04) nm [103]

In 2010, Lucchese et al. [103] used Raman scattering to study disorder in
graphene caused by low energy (90 eV) Ar+ ion bombardment. By varying the
ion dose, these authors studied different densities of defects induced by the ion bom-
bardment and were able to understand the evolution of the ID/IG ratio with ion dose
(see Fig. 3.25). With this experiment, the authors provided a Raman spectroscopy-
based method to quantify the density of defects in graphene, using HOPG (highly
oriented pyrolytic graphite) for calibration. In Fig. 3.25 the density of defects due to
different ion doses is probed by LD , as given by (3.23), which denotes the average
distance between defects. This study [103] revealed important information about
the defect evolution by observing that ID/IG could be fitted by a phenomenological
model for ID/IG vs. LD [103]. The model considers that the impact of a single ion
in the graphene sheet causes modifications on two length scales, here denoted by
rA and rS (with rA > rS ), which denote the radii of two circular areas measured
from the incident ion impact point (the subscript A stands for “activated”, whereas
the subscript S stands for “structurally-defective”). Qualitatively speaking, only if
the Raman scattering process occurs at distances smaller than |rA − rS |, will the
corresponding “damaged” region contribute strongly to the D-band feature. Consid-
ering these assumptions in conjunction with statistical arguments, the ID/IG vs. LD
relation is given by [103]:

ID

IG
= CA
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S
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D

)]
(3.23)

where CA, CS , rA and rS are adjustable parameters determined by experiment. The
model is in conceptual agreement with a well-established amorphization trajectory
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for graphitic materials [104]. Additionally, the results show that the broadly used
Tuinstra and Koenig relation between ID/IG and La should be limited to the mea-
surement of 3-D crystallite sizes. Recently, in 2011, Cancado et al. extended the
proposed phenomenological model to be applicable to several laser lines [105].

3.4.5 Summary

In Sect. 3.4 a concise and tutorial discussion about inelastic scattering of light (Ra-
man scattering) for the characterization of carbon materials was provided with par-
ticular emphasis to carbon nanomaterials, graphene, and carbon nanotubes. After
introducing the basic concepts behind the Raman scattering phenomenon, a general
discussion about the Raman G, G′ (or 2D), and D bands were made, in which for
each of these features, a very focused discussion was given as regards the usage
of these phonon modes to characterize electrons and phonon in carbon materials.
Namely, the G-band is mostly used to gain insights about the phonon frequency and
linewidth dependence on the Fermi level energy. The G′-band is mostly used to dis-
tinguish among the different number of layers and the stacking order in multi-layer
graphene system [98]. Finally, the D-band is used to understand the effects caused
by impurities and defects in nano carbon materials.

3.5 Conclusions

In this overview we mainly show how previous work on bulk carbons covering sev-
eral decades has paved the way for finding some physical properties which were
found later to be displayed in graphene out of the bulk. This mainly concerns the
semiclassical and, more particularly, the quantum aspects of two-dimensional (2D)
electronic transport and the behavior of phonons in low-dimensional covalently-
bonded layered materials. Particular emphasis is placed on the obvious similarities
and differences observed in the transport properties of SLG or FLG and those of
stage-1 or higher stage graphite acceptor compounds (GACs). As regards electronic
transport, we show that the same dispersion relations are applicable to SLG and
stage-1 GACs as well as to double-layer graphene (DLG) and stage-2 GACs, re-
spectively, and that since the beginning of the 1980s, the charge carriers in stage-1
GACs were considered as massless Dirac Fermions, as is the case for SLGs.

In pristine HOPG the mobilities are mainly limited by large-scale defect scatter-
ing and this effect is even more pronounced in GACs. The additional disorder intro-
duced by intercalation is found to limit the scattering length of the charge carriers
and to mask some of the effects which were recently observed in SLGs and FLGs.
However, this disorder allows the observation of 2D weak localization effects in
GACs. We observe too that the very high mobilities observed in graphene are by no
means unique and that comparable values have been observed and reported in other
semimetals and in 2D electron gases in semiconducting superlattices.



3 Electron and Phonon Transport in Graphene in and out of the Bulk 109

As regards phonon transport, we show that the qualitative behavior of graphene
planes in and out of the bulk is the same, i.e., a decrease in the lattice thermal con-
ductivity with increasing number of adjacent planes. However, the lattice thermal
conductivity of graphene in bulk GACs is much lower than in SLG and FLG due
to the limitation of the phonon mean free path by small- and large-scale lattice de-
fects. These observations also clearly show the advantages of SLG and FLG over
graphene in the bulk as regards their electron and phonon mean free paths. These
are limited to around 10 micrometers for the highest quality HOPGs.

Finally, we briefly discussed the use of resonant Raman scattering (RRS) as a
characterization tool, arguing that it is now recognized as a fast, non-invasive and
non-destructive characterization technique which, by means of both first and second
order scattering processes, allows us to study, for example, doping, disorder, phonon
self-energy renormalizations and phonon dispersions in carbon systems. Such un-
derstanding was not available in the 1970s and 1980s, and the use of RRS at that
time was much more limited. To understand phonons in solid-state materials (such
as carbon-based ones) is very important since phonons must be taken into account
to properly explain many properties observed in nanocarbon and other layered sys-
tems. Namely, electron-phonon and phonon-phonon scattering mechanisms are fun-
damental to understanding relaxation processes governing both the electronic and
thermal properties of nanocarbons, as well as other related systems.
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Chapter 4
Optical Magneto-Spectroscopy
of Graphene-Based Systems

C. Faugeras, M. Orlita, and M. Potemski

Abstract Recent results of magneto-absorption and Raman scattering studies of
different graphene based systems are reviewed. The potential of these techniques
to derive the band structure, scattering efficiency and effects of interactions is dis-
cussed in reference to studies of two representative allotropes of sp2-bonded carbon:
graphene and graphite.

4.1 Introduction

Graphene and its layered structures including graphite are usually classified as zero-
bandgap semiconductors and/or semimetals [1, 2], and most naturally their prop-
erties are probed with electric conductivity measurements [3]. Indeed, our very
first knowledge on graphite is that it is a strongly anisotropic (three dimensional)
conductor [4] whereas the observation of the peculiar sequence of quantum Hall
states (half-integer quantum Hall effect) is a fingerprint of the characteristic (two-
dimensional) electronic states of graphene [5, 6]. What could be at first sight sur-
prising is that optical spectroscopy has played and continues to play an important
role in the research on graphene-based systems [7, 8]. Moreover, optical properties
can also be decisive for a number of anticipated applications of graphitic layers,
when, for example, they are used as saturable absorbers [9, 10], transparent con-
ducting electrodes [11, 12] or plasmonic devices [13]. Notably, optical properties of
graphene were a key ingredient to “see” the monolayer of carbon atoms deposited
on Si/SiO2 substrates through an optical microscope [14–18]—this was one of the
unquestionable milestones in the development of the graphene oriented research.
Optical spectroscopy of graphene based systems has developed today into a large
area of research with many different directions. Raman scattering of phonons is
one of the primary characterization tools of graphene materials [19–21] and also
provides the relevant information on electron-phonon interaction in these materials
[22–24]. Optical absorption is studied in a wide spectral range from far-infrared to
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the UV range. The experiments allow us to conclude about the characteristic doping
(Drude-like free carrier absorption in the limit of low frequencies) and the specific
band structure of the system studied (interband transitions in the infrared spectral
range) [25]. More challenging are perhaps: the intriguing frequency independent
(and given only by universal constants) optical absorption of graphene in a wide
spectral range [26–28], the excitonic effects at high energies (related to van Hove
singularities) [29–31] and possible modifications of the low frequency absorption
response by electron-electron interactions (enhanced/suppressed Drude peak, plas-
mons) [32–35]. A large number of optical experiments are devoted to the studies of
the dynamics of photo-excited carriers in graphene [36–45], which are closely re-
lated to possible application of graphene in optical devices. Interesting physics and
also potential applications may follow the recent interest in the photo-conductivity
response of graphene structures.

Optical spectroscopy appears to be a particularly forceful experimental tool to
study electronic properties when it is combined with the application of magnetic
fields. Primarily, this is because the application of a magnetic field significantly
changes the character of the motion of a charge carrier (cyclotron motion) and/or
induces a considerable modulation of the density of electronic states, including the
appearance of discrete (and highly degenerate) Landau levels in the case of two-
dimensional systems. When a magnetic field (B) is applied, the optical response
becomes richer in resonances which notably can be tuned with the field strength.
Very roughly speaking, the energies En(B) of Landau levels (and in consequence
the energies of cyclotron resonance and/or inter Landau level excitations) trace the
dispersion relations E(k) of the electronic states, following the approximate con-

jecture that En(B) ∝ E(kn) = E(
√
n
lB
), where n is an integer and lB =

√
�

eB
denotes

the (characteristic) magnetic length. The Landau level spacing which, for example,
scales as B · n is characteristic for parabolic bands whereas linear bands imply the√
B · n scaling. Hence, Landau level spectroscopy provides, first of all, information

about the band structure of the studied system. On the other hand, the analysis of
the broadening of the magneto-resonances is often a relevant source of information
about the efficiency of carrier scattering. The simple fact of observing the cyclotron
resonance (at frequency ωc and magnetic field B0) already implies some estimate of
the carrier scattering time (τ ) and/or mobility (μ): ωc · τ = μ ·B0 > 1. Optical mag-
neto spectroscopy is also a valuable tool to study the physics of interactions. This
certainly concerns the electron-phonon interaction because of the convenient pos-
sibility to tune the electronic excitations (with the magnetic field) across the char-
acteristic phonon energies. Furthermore, the magneto-optical response of an elec-
tronic system (in particular of a two-dimensional one) may also imply the effects
of electron-electron interactions. One must however admit that those latter effects
are most often hardly seen in the experiment. This can be understood when prob-
ing the electronic states with parabolic dispersion relations (optically active, zero
momentum excitation are insensitive to electron-electron interactions) but remains
surprising in the case of two-dimensional systems with linear bands.

As for the methods of optical magneto-spectroscopy, the typical magneto-
absorption, essentially in the far-infrared and microwave spectral range, is the most
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common technique applied to study graphene based materials. Pioneer magneto-
absorption measurements provided a relevant input to understand the electronic
properties of graphite already more than a half century ago [46, 47]. As shown
in this paper, those measurements have been more recently applied to many other
graphene based structures, providing valuable information on their band structure
and on the scattering efficiency as well as some input to the physics of interac-
tions in these systems. The methods of optical magneto-spectroscopy are comple-
mentary to other, for example, electric transport techniques widely applied to study
graphene based materials. Optics appears to be obviously advantageous when struc-
tures cannot be contacted/gated or when they consist of multilayered material with
different components (which can be spectrally resolved). So far, infrared magneto-
spectroscopy studies have been mostly limited to simple absorption type measure-
ments [7]. More information (particularly on the physics of the quantum Hall effect)
can be deduced when investigating the response of graphene with Faraday rotation
experiments [48], but only very first experiments towards this direction have been
announced so far [49, 50]. A clear drawback of magneto-spectroscopy at long wave-
lengths is that it is hardly applied to small graphene flakes and that the polarization-
resolved optics is also not very easy to handle in this spectral range. The methods of
Raman scattering, in a visible optical range, becomes then advantageous. Notably,
these are only very recent magneto-Raman scattering experiments [51, 52] which
show the possibility to trace the electronic response (inter Landau level excitations)
in graphene based structures [53, 54] using this technique. The results of these rel-
atively new experiments are largely discussed here. High quality of the electronic
system seems to be essential for tracing the electronic response in magneto-Raman
scattering experiments but we believe this will be possible in case of many different
graphene systems in the future.

The intention of this report is to present what can be learned from optical
magneto-spectroscopy studies of graphene based materials. Our main focuses are
two material systems: graphene (and/or graphene-like structures) and bulk graphite;
and the results of two types of experiments: of the magneto-absorption at long wave-
length (far-infrared and microwave range) and of the magneto-Raman scattering.
Section 4.2 is devoted to graphene with the subsequent subsections focused on the
aspects of the band structure, carrier scattering and the effects of interactions (es-
sentially electron-phonon). Section 4.4, devoted to graphite, has a similar structure.
Bilayer graphene is only briefly discussed (Sect. 4.3) since only few magneto-optical
investigations of these system has been reported so far.

4.2 Magneto-Spectroscopy of Graphene

4.2.1 Classical Cyclotron Resonance of Dirac Fermions

Cyclotron motion of charge carriers and the related cyclotron resonance (absorption
of light at the cyclotron frequency ωc) is primarily a classical effect, probably the
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Fig. 4.1 Upper panel:
Landau level fan chart with
schematically-shown
cyclotron resonance
transitions in the quantum
regime. Lower panel: A color
plot of the real part of the
experimentally determined
longitudinal optical
conductivity σxx(ω,B). The
dashed lines correspond to
transitions between adjacent
(hole) Landau levels in
graphene, L−m → L−m+1. In
both panels, a Fermi velocity
vF = 0.99 × 106 m/s was
considered to draw theoretical
lines. Taken from Ref. [35]

most representative for magneto-optical spectroscopy studies. Importantly, the cy-
clotron motion is not only characteristic for a conventional charged (e) particle with
mass m, which precesses with the frequency of ωc = eB/m, but also for massless
Dirac fermions. The solution of the classical equation of motion for a charged par-
ticle with energy ε that depends linearly on momentum p (ε = vFp), also results in
the cyclotron motion but with a frequency ωc = eB/(|ε|/v2

F ), in which one easily
identifies the energy dependent mass m = |ε|/v2

F . This latter expression, equivalent
to the Einstein relation between mass and energy, invokes the relativistic-like char-
acter of electronic states in graphene. Perhaps surprisingly, the classical regime of
the cyclotron resonance of graphene has been evidenced only recently [55]. This
classical regime, characteristic of the linear in B cyclotron resonance (CR) absorp-
tion at low magnetic fields is illustrated in Fig. 4.1 with recent results obtained on
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highly p-doped quasi-free standing epitaxial graphene on the silicon-terminated sur-
face of silicon carbide. If the 2D translational symmetry of (highly-doped) graphene
is broken either by the presence of specific disorder, or artificially, by lithographi-
cal patterning, effects of classical plasma dominate the optical response—CR is
replaced by magneto-plasmon resonances [56, 57].

It is worth noticing that the classical CR absorption is accompanied by a Faraday-
rotation effect, as demonstrated by Crassee et al. [49]. At higher fields, the quantum
regime of CR is approached [35] and CR gains the characteristic

√
B dependence,

see Fig. 4.1. The related Faraday rotation is expected to be quantized in units of the
fine structure constant [48], as indeed indicated in recent experiments [50]. Such
a quantum regime of the magneto-optical response of graphene is described in the
following section.

4.2.2 Magneto-Optical Response of Graphene: Quantum Regime

The specific electronic structure of graphene, namely the vanishing cyclotron mass
in the vicinity of the Dirac point, implies a rather large spacing between Landau
levels. A fully quantum-mechanical approach thus becomes necessary even in rela-
tively low magnetic fields, if we deal with a weakly doped graphene specimen. In a
quantum-mechanical picture, the application of the magnetic field B perpendicular
to the graphene plane transforms the continuous electronic spectrum into discrete
and highly degenerate Landau levels (LLs) [58]:

En = sign(n)vF
√

2|e|�B|n| = sign(n)E1
√|n|, n = 0,±1,±2 . . . (4.1)

which positions are defined by a single parameter, the Fermi velocity vF (E1 =
vF

√
2�|e|B). The degeneracy of each Landau level is ζ(B) = gvgs |eB|/h, where

we take into account both spin gs and valley gv degeneracies. This LL spectrum con-
sists of electron levels (n > 0), hole levels (n < 0) and a zeroth LL (n = 0) which is
shared by both hole and electron types of carriers and which is responsible for the
unusual sequence of the quantum Hall effect in graphene [5, 6]. We also immedi-
ately see that LLs in graphene are non-equidistant, they evolve as

√
B , see Fig. 4.2a,

and both the spacing and the field dependence, can be understood as a consequence
of the extreme non-parabolicity (in fact linearity) of the bands. The unusual

√
B-

dependence of LLs is responsible for the surprising sensitivity of graphene elec-
tronic states to a magnetic field. Experimentally, well-defined LLs have been ob-
served in this system down to 1 mT and almost up to the temperature of liquid
nitrogen [59]. It might be realistic that Landau level quantization in pure graphene
could also be observable in the magnetic field of the Earth (BEarth ∼ 10−5 T), which
is unique for a condensed-matter system.

Interaction of light with graphene in a quantizing magnetic field has been ex-
plored extensively both theoretically and experimentally over the few past years
[53, 59–73]. Graphene exhibits a relatively rich (multi-mode) magneto-optical re-
sponse, where the energies of individual resonances correspond to the individual
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Fig. 4.2 (a) Characteristic
√
B-dependence of LLs in graphene shown for a few low-index levels.

Dipole-allowed and Raman-active (Stokes branch) inter-LL transitions in undoped graphene are
shown in parts (b) and (c), respectively

inter-LL transitions and scale as
√
B . This unique property of the Landau level

spectrum is thus preserved in the magneto-optical response.
All dipole-allowed inter-LL transitions in graphene follow the selection rules

|n| → |n| + 1 and |n| → |n| − 1, which are active in the σ+ and σ− polariza-
tions of the incoming light [67, 69], respectively. These dipole-active transitions
can be divided into three groups (j ≥ 1): Inter-band resonances L−j → Lj+1 and
L−j−1 → Lj at an energy E1(

√
j + 1 + √

j), intra-band resonances Lj → Lj+1
and L−j−1 → L−j at an energy E1(

√
j + 1 − √

j), and the mixed L−1(0) → L0(1)
resonance, involving the n = 0 LL, which has an energy of E1. Typical magneto-
transmission data taken on quasi-neutral sheets of multilayer epitaxial graphene are
shown in Fig. 4.3. The spectra are in this particular case dominated by the mixed
mode L−1(0) → L0(1); nevertheless, a series of interband inter-LL resonances is
also well resolved. Experimentally, this behaviour has been observed in multi-
layer epitaxial graphene with a characteristic rotational stacking of adjacent lay-
ers [62, 66, 67, 70, 71] and also in exfoliated graphene specimens [64, 68].

The intra-band transitions appear at low energies and are followed by inter-band
resonances at higher energies. There is however no distinct separation in energy
scale between these two types of transitions, which is in contrast to the case of con-
ventional 2D systems based on gapped semiconductors, but somehow similar to the
case of narrow-gap II/VI compound structures [74–77]. Nevertheless, in graphene,
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Fig. 4.3 Far infrared transmission T plotted as − lnT as a function of the magnetic field at
T = 2.0 K. The dashed lines denote the expected transitions for vF = 1.02 × 106 m s−1. The
inset shows the transmission spectrum at B = 0.3 T. Copyright (2008) by The American Physical
Society

we deal with only one type of atomic orbital, and therefore both intra- and inter-
band transitions follow similar selection rules: namely, the modulus of the LL index
is changed by 1. This is again in contrast to the case of conventional 2D systems,
made for instance from GaAs, for which the inter-band transitions conserve the LL
index and their dipole moment is due to different s- and p-orbitals in the conduc-
tion and valence bands, respectively. Owing to the electron-hole symmetry of the
graphene band structure, two different inter-band resonances, such as, for example
L−2 → L3 and L−3 → L2 in Fig. 4.2b, may appear at the same energy. Such en-
ergy degenerated transitions are, however, active in opposite circular polarizations
of light. At low temperatures one may expect at most two different intra-band tran-
sitions, but a series of inter-band transitions. The situation is even more complex at
higher temperatures, when the thermal spreading of the Fermi distribution exceeds
the separation between Landau levels. The intra-band absorption (CR) may then also
reveal a multi-mode character, due to partial occupation of a few non-equidistant
LLs curve depicts the thermal activation of L0 →L1. Such a multi-mode intra-band
absorption spectrum, with an envelop that corresponds, nota bene, to the classical
cyclotron resonance, discussed at the beginning of this section, was recently ob-
served in graphene (on the surface of bulk graphite) by Neugebauer et al. [59].

Inter-LL excitations visible in Raman scattering experiments follow different se-
lection rules [53]. To indicate the different polarization configurations, we use the
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Fig. 4.4 Grey scale plot of the unpolarized scattered intensity as a function of the magnetic field
measured on natural graphite specimens. The B = 0 spectrum has been subtracted from each spec-
tra. Three different types of excitations are observed: Solid and dotted lines correspond to inter-
band inter-LL excitations in decoupled graphene flakes on graphite. The latter are coupled with
E2g phonon line resulting in characteristic avoided crossing behavior. Dashed lines correspond to
interband inter-LL excitations at the K point of bulk graphite. For details see Refs. [79] and [51].
Copyright (2011) by The American Physical Society

notation σExcitation/σCollection where σExcitation is the circular polarization of the
excitation photon and σCollection the one of the collected photon. The dominant con-
tribution to the Stokes component of the Raman scattering spectrum is provided by
transitions symmetric with respect to the n = 0 LL, −n → nwith n > 0, see Fig. 4.2,
that are visible in the so-called co-circular configuration, in which the in-coming
and out-going photons keep the same circular polarization (σ−/σ− or σ+/σ+).
These excitations have been detected in the Raman scattering spectra of graphene-
like locations on the surface of bulk graphite and represent probably the first purely
electronic excitation in graphene observed in Raman scattering experiments (see
Fig. 4.4). It is worth noticing that more recently, a purely electronic Raman scat-
tering signal has been also found in metallic carbon nanotubes [78]. The other
(relatively weak) contribution, predicted to be active in the cross-circular polariza-
tion [53] (σ+/σ− and σ+/σ−) and following the selection rule −n → n + 2 and
−n − 2 → n, respectively, see Fig. 4.2c, has not yet been observed experimentally.

4.2.3 Landau Level Fan Charts and Fermi Velocity

A clear illustration of the characteristic
√|Bn| scaling of Landau levels, in fact

equivalent to the observation of linear dispersion relations of carriers, has been
the first important feat of the Landau level spectroscopy of graphene systems [62].
Sadowski et al. [62] observed a practically perfectly

√|Bn|-scaled Landau level
fan chart in multilayer epitaxial graphene (MEG) structures and extracted the only
scaling parameter—the Fermi velocity, vF = 1.03 × 106 m s−1. Jiang et al. [64]
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and subsequently Deacon et al. [68] found somehow higher values vF ≈ 1.1 ×
106 m s−1 for gated (exfoliated) graphene flakes on Si/SiO2. We note that the
Landau levels in MEG structures as well as in graphene flakes floating on the
graphite surface have been also visualized using tunnelling spectroscopy in mag-
netic fields [80, 81]. The Fermi velocity found in these later STS experiments agrees
well with the magneto-transmission data in the case of MEG structures [62, 71]. The
STS experiments [80] on graphene flakes on graphite indicate a surprisingly low
0.79 × 106 m s−1 Fermi velocity in these systems in strike difference to the value
of 1.00 × 106 m s−1reported from microwave absorption measurements [59]. This
contradiction might be due to a different renormalization of vF seen by these two
experimental probes, or perhaps due to a very local (and invasive) character of the
STM tip.

4.2.4 Beyond Simple Band Models

Relatively small but noticeable deviations of the electronic bands from their ideal
linearity, on the order of a few percent at large ±0.5 eV distances from the Dirac
point, have been found by a combination of far and near-infrared magneto-optical
experiments performed on multi-layer epitaxial [70]. These deviations were re-
vealed by a departure of the observed excitations from a simple

√
B-dependence,

which increases with the photon energy of the probing light. No signs of the
electron-hole asymmetry have been found in these experiments. On the other hand,
traces of the electron-hole asymmetry have been reported by Deacon et al. [68] in
exfoliated graphene placed on Si/SiO2 substrate, who estimated the difference in
the electron and hole Fermi velocities to be on the order of a few percent. Magneto-
transmission experiments, if carried out on neutral graphene specimens, may also
bring relevant information on a conceivable appearance of a gap at the Dirac point.
Working in the limit of low magnetic fields, Orlita et al. have estimated a gap to be
smaller than 1 meV in quasi-neutral MEG structures [71] and its maximum possible
value of a fraction of 1 meV in graphene flakes on graphite substrates [59].

4.2.5 Scattering/Disorder

Cyclotron resonance measurements on graphene, in particular in the limit of low
magnetic fields (and low frequencies), can be effectively used to estimate the scat-
tering time and/or mobility of carriers. For instance, Orlita et al. [71] (working in
fields down to 10 mT range) have shown (see Fig. 4.3) the possibility to achieve a
room-temperature carrier mobility exceeding 250 000 cm2/(V s) in multi-layer epi-
taxial graphene, which is a record value among all other known materials. Nev-
ertheless, the dependence of the carrier mobility on the energy, i.e., on the dis-
tance from the Dirac point, was not determined. Recent line-shape analysis of in-
terband inter-LL resonances in equivalent specimens allowed the authors to follow
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the broadening of states as a function of energy. It was shown that the mobility
is a parameter strongly dependent on energy (or carrier density) in the graphene
system investigated [73]. This is in contrast with the behavior typical of exfoli-
ated graphene specimens and points towards significantly different types of scatter-
ing mechanisms in quasi-neutral epitaxial graphene, most likely due to short-range
scatterers [82]. Using also magneto-optical methods, a mobility of charged carriers
exceeding 107 cm2/(V s) up to the temperature of liquid nitrogen has been deter-
mined for high-quality graphene flakes on the surface of bulk graphite [59]. Even
today, this observations sets a surprisingly high limit for the mobility of man made
structures. For this particular, natural graphene system, the energy dependence of
the scattering time and or mobility has not yet been clarified.

4.2.6 Electron-Electron Interaction

Since the discovery of graphene, the effects of electron-electron interaction were
a subject of particular interest in this material. Nevertheless, a great majority of
experimental results obtained on various graphene systems are fairly well under-
stood within single electron models. This also concerns a number of magneto-
transmission studies [59, 62, 70, 71]. Characteristically, they display a regular, de-
fined by a single parameter vF , series of transitions, which are thus very tempt-
ing to be assigned as those between single particle Landau levels. However, the
excitations between highly degenerate Landau levels are known as nontrivial pro-
cesses which involve the effect of electron-electron interaction. The corresponding
electron-hole excitation is characterized by its wave vector (which is proportional
to the electron-hole separation). The specific shapes of the dispersion relations for
inter and intra Landau level excitations are central for the many-body physics of
the integer [5, 6, 83] and fractional [84–86] quantum Hall effects, respectively. We
know from this physics that, when considering a single parabolic band of a conven-
tional two-dimensional electron gas (with equidistant Landau levels), the energies
of optically active k = 0 inter-Landau level excitations correspond to those of single
particle excitations. This can be viewed as a consequence of Kohn’s (or Larmor’s)
theorem and can be seen as a result of the perfect cancellation of the Coulomb bind-
ing and exchange repulsion for the k = 0 electron-hole excitation. This reasoning
does not hold for a 2D gas of Dirac electrons, for which the exchange term may
even largely exceed the Coulomb binding, and in addition be different for different
pairs of Landau levels. The apparent approximate validity of the Kohn’s theorem
in graphene is a surprising effect, and in our opinion calls for further clarifications
of the theoretical background. The first theoretical works dealing with this problem
have been already published [87–89]. We note, however, that there are small (within
the line width) but noticeable deviations from a perfect single particle scaling of
inter Landau level excitations that have been already reported in experiments on
exfoliated graphene structures [64]. Recently, Henriksen et al. [72] have reported
changes in the energy of the L−1(0) → L0(1) transition, which is especially pro-
nounced at high magnetic fields, when tuning the Fermi energy in between n = −1
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and n = 1 Landau levels. Both these observations [64, 72] are discussed in terms
of electron-electron interactions but perhaps they also include some effects of dis-
order [90]. Notably, magneto-optics allows for probing the nature of quasi-neutral
graphene in high magnetic fields (a possible appearance of a gap in the zero LL at
a filling factor of zero), which became a subject of many theoretical considerations
and experimental works, see, e.g., [91, 92]. Visualization of the strong Fermi veloc-
ity enhancement [93], observed recently near the Dirac point in free-standing neutral
graphene by the magneto-transport technique, is another task for infrared magneto-
spectroscopy. Magneto-optical experiments performed on graphene specimens with
similar quality and carrier density (decoupled graphene flakes on graphite) [59] do
not show this behavior, probably as a result of strong screening effects induced by
the underlying substrate.

4.2.7 Effects of Electron-Phonon Interaction

The effective coupling of optical phonons (E2g) to electronic excitations in graphene
yields a particularly remarkable (resonant magneto-phonon) effect when the E2g
phonon response is investigated as a function of the magnetic field applied across
the layer [94, 95]. Then, the E2g phonon is expected to hybridize with the se-
lected Ln→m inter Landau level excitations. In consequence, the ample magneto-
oscillations in the phonon response (in disordered systems) [79] and/or a series
of avoided crossing events (in cleaner systems) [51, 96] can be observed in Ra-
man scattering experiments. So far, an increasing number of graphene-based sys-
tems such as quasi-neutral graphene-like systems: epitaxial graphene [79], doped
exfoliated graphene [97] together with the circular dichroism associated with circu-
larly polarized phonons and a non-zero Fermi energy, in quadrilayer graphene [98],
bulk graphite [52] and graphene locations on graphite surface [51, 96, 99], have
shown the clear magneto-phonon resonant effect. The amplitude of this effect de-
pends on the electron-phonon coupling constant, on the oscillator strength of the
inter LL excitation, which includes matrix elements and occupation factors of the
initial and final state LLs and certainly on the quality of the electronic system in-
vestigated. As for today, the most pronounced magneto-phonon effect is observed
for the high quality graphene locations on a graphite substrate. This is illustrated in
Fig. 4.5 with the results of recent polarization resolved magneto-Raman scattering
studies of such locations on a graphite substrate. As expected from theory [94, 95]
the E2g phonon, observed in the σ+/σ− (or σ−/σ+) configuration of the excita-
tion/scattered light, hybridizes with the specific asymmetric Ln,m excitations with
|n| − |m| = ±1. The appropriate analysis of the hybrid modes yields the character-
istic value of λ = 4.4 × 10−3 for the electron-phonon coupling in the system inves-
tigated. Surprisingly, however, experiments show that the E2g phonon of graphene
on graphite couples not only with asymmetric excitations but also with other inter
Landau level excitations: L−n,n and L0,2. These theoretically unexpected effects
remain to be clarified and could possibly be related to the particular structure of
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Fig. 4.5 (From Ref. [99]) Magneto-Raman scattering response: Intensity false color plot where
black (white) corresponds to high (low) intensity. Black dotted lines are the energies of the inter-LL
excitations that interact with the zone-center E2g -phonon. White lines are the calculated hybrid
electron-phonon mode energies including optical-like excitations, symmetric excitations and the
L0,2 excitation, with the parameters given on the right side. Copyright (2012) by The American
Physical Society

graphene-like locations on graphite, as they were not observed in multilayer epitax-
ial graphene [79]. Another manifestation of electron-phonon interaction has been
recently found in CR experiments on MEG structures, where a clear coupling of CR
line with K point phonons has been demonstrated [100].

4.3 Magneto-Spectroscopy of Bilayer Graphene

Bernal-stacked (AB) bilayer graphene, with its nearly parabolic bands near the
charge neutrality point, might provide us with a more conventional magneto-optical
response as compared to graphene. Nevertheless, bilayer graphene with its zero-gap
band structure and a chiral character of massive Dirac fermions carriers still exhibits
a behavior that is distinctively different from other semiconducting materials.

The simplest quantum-mechanical approach to the Landau levels, originally used
to interpret magneto-transport data on bilayer graphene [101], takes account of two-
bands with a parabolic profile. It implies a spectrum of LLs that is linear in B [102],
see Fig. 4.6a:

En = ±�ωc
√
n(n − 1), n = 0,1,2, . . . , (4.2)

and in the limit of high n (practically even for n > 2), the LL spectrum (4.2) has
the form En ≈ ±�ωc(n+ 1/2), typical of conventional massive particles. The n = 0
and n = 1 levels becomes degenerate and thus form a zero-energy level with an
eight-fold degeneracy and this results in a characteristic quantum Hall effect with
the Berry phase of 2π [101, 102]. Dipole-allowed transitions in bilayer graphene,
active in this simplest approach, follow the selection rule |n| → |n| ± 1 [69] seen
in Fig. 4.6b. Raman-active modes fulfill a different set of selection rules, depending
on the circular polarization of the incoming and outgoing light [54], as shown in
Fig. 4.6c.

Two independent measurements have been performed up to now—on exfoli-
ated flakes of graphene bilayer [103], and subsequently, on bilayer graphene that
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Fig. 4.6 Part (a): LLs in graphene bilayer, evolving nearly linearly with B at lower fields, but
bending to sub-linear dependence at higher B and/or higher energies. Parts (b) and (c): Schematic
plot of dipole-allowed and Raman-active inter-LL excitations in bilayer graphene

is present in a form of inclusions inside multilayer epitaxial graphene with the pre-
vailing rotational stacking of adjacent layers [104]. The first study focuses on the
intra-band response, i.e., on the cyclotron resonance of massive Dirac fermions (see
Fig. 4.7a), and the second work deals with the interband inter-LL transitions (see
Fig. 4.7b). In both cases, a clear departure of the optical response from a linear in B
behavior has been reported, and therefore, the above theoretical model can provide
a qualitative explanation only. A reasonable quantitative agreement is achieved if
the LL spectrum is calculated within the four-band model. In the case of gated ex-
foliated flakes [72], the potential drop between layers induced by the back-gate has
to be properly considered [105, 106].

Due to the lack of experimental data, a number of theoretical predictions for the
magneto-optical response of bilayer graphene is still awaiting experimental verifi-
cation [107–109]. These predictions involve, for instance, the appearance of the op-
tically active transition within the zero-energy Landau level [109], corresponding to
the splitting of n = 0 and n = 1 levels seen in Fig. 4.6a. Low-magnetic-field experi-
ments in the microwave range should be a sensitive tool to study the Lifshitz transi-
tion in bilayer graphene. It is the trigonal warping, which at low energies transforms
the nearly parabolic bands in bilayer graphene into four disconnected Dirac cones
and changes thus significantly the topology of the band structure [69, 102, 110].
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Fig. 4.7 Part (a): Cyclotron resonance absorption in exfoliated bilayer graphene. Taken
from [103]. Copyright (2008) by The American Physical Society. Part (b): Fan chart of transitions
observed in multi-layer epitaxial graphene. Transitions related to AB-stacked bilayer graphene in-
clusions are denoted by indices n and schematically depicted in the inset. Taken from Ref. [104].
Copyright (2011) by The American Physical Society

A new set of inter-Landau level excitations is also predicted to be active in Ra-
man experiments [54]. Perhaps surprisingly, part of these predictions can be veri-
fied using another system, bulk graphite. As discussed in the next part, this material,
namely at the K point of the band structure, shares the same single-particle Hamil-
tonian with bilayer graphene [111, 112].

4.4 Graphite

The renewed interest in the properties of bulk graphite is a direct consequence of
the outbreak of current graphene physics. As a 3D crystal, graphite is a system
characterized by a higher degree of complexity compared to graphene; neverthe-
less, both materials share many common properties. The appealing possibility of
tracing the relativistic carriers not only in graphene monolayer and bilayer but also
in bulk graphite resulted in a number of works which offer new pieces of informa-
tion, new interpretations of old data, but unfortunately, often also rediscoveries of
well-established prior knowledge [113].

4.4.1 Simplified Models for the Band Structure

As discussed in the preceding sections, optical spectroscopy combined with high
magnetic fields can provide a unique insight into the band structure of graphene
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based systems. Bulk graphite, graphene sheets in a Bernal type of stacking, is char-
acterized by a 3D band structure defined on its 3D hexagonal Brillouin zone. A con-
ventional description of the band structure of bulk graphite and its evolution with the
magnetic field relies on the SWM model with seven γ0, . . . , γ5,� tight binding pa-
rameters [114–116]. This model has been used to describe most of the data obtained
from magneto-transport [4, 117–119], infrared magneto-reflectivity [47, 120–122],
and magneto-transmission [112, 123, 124] experiments. It predicts the existence
of massive electrons near the K point with a parabolic in-plane dispersion and of
massless holes near the H point with a linear in-plane dispersion. Under an applied
magnetic field, Landau bands are formed with a continuous dispersion along kz, the
wave vector measured in the units of the inverse inter-layer spacing, from equally
spaced and linear in B Landau levels at the K point (kz = 0) to non equally spaced
and

√
B evolving Landau levels at the H point [116] (kz = π/2). Even though there

is still no consensus concerning the precise values of the SWM parameters, mainly
because of the different energy range probed in different experiments and because
of the lack of polarization resolved measurements, the validity of the SWM model
is generally accepted.

Instead of the full SWM model, it is often sufficient to use the effective two-
parameter model [111, 125] (so-called “effective bilayer” model), which describes
parabolic dispersion in the plane with the curvatures evolving along kz. This model
is obtained by (i) considering only the two first SWM parameters γ0 and γ1, the
intra-layer and the inter-layer nearest-neighbor hopping integrals, respectively, and
(ii) projecting the resulting kz-dependent 4 × 4 Hamiltonian on the two low-energy
bands. The Hamiltonian can be identified, at each value of kz, to that of a graphene
bilayer determined by the effective parameters γ0 and γ ∗

1 = 2γ1 coskz. As a con-
sequence, for kz = 0 (corresponding to the K point), γ ∗

1 is twice enhanced with
respect to γ1 describing the real graphene bilayer. The Landau level fan chart with
Landau level indices, together with dipole-allowed excitations and Raman scatter-
ing selection rules, is presented in Fig. 4.6. The electronic properties of the K point
carriers in graphite are hence very similar to those of bilayer graphene.

The effective, two-parameter parabolic model has been proven to bring a fair
frame to describe magneto-absorption experiments [112, 124]. It can be refined, as
done in Ref. [124], by (i) introducing two different effective mass values describing
positive and negative energy states, to reproduce electron-hole asymmetry, (ii) in-
troducing a splitting of the lowest Landau level to reproduce the low energy Landau
level structure of bilayer graphene and of bulk graphite. Figure 4.8a shows the re-
sults of such an analysis on magneto-absorption measurements performed on bulk
graphite (from Ref. [124]). An excitation with a

√
B evolution involving massless

holes at the H point is observed (line A in Fig. 4.8a) together different linear in B
excitations involving massive electrons at the K point. The effective two-parameter
parabolic model describes most of the observed behaviors in the low magnetic field
and low energy regime. Figure 4.8b shows that this model appears to be also efficient
at higher values of magnetic field or of energy. It can also be used to describe few
layer graphene specimens with band structures composed of superimposed graphene
bilayer electronic dispersions with different values of kz and hence of γ ∗

1 [111].
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Fig. 4.8 Part (a): Transmission minima (symbols) as a function of the magnetic field. Solid
lines are the results of the effective two-parameter model used in Ref. [124]. Part (b): High en-
ergy/magnetic field range with results after Ref. [112]. Solid lines are the same as in the upper
panel. Adapted from Ref. [124]. Copyright (2009) by The American Physical Society

4.4.2 Full Slonczewski-Weiss-McClure Model

If polarization resolved measurements are complicated to achieve in the infrared
range of energy, this problem can be overcome by using Raman scattering tech-
niques, in the visible range of energy. Such experiments have recently been per-
formed on bulk graphite [52]. Depending on the relative circular polarization of the
excitation beam and of the scattered light, different types of electronic excitations
can be selected: (i) �|n| = 0 excitations in the co-circular polarization configura-
tions (σ−/σ− and σ+/σ+) and (ii) �|n| = ±2 and �|n| = ±1 excitations in the
crossed circular polarization configurations (σ−/σ+ and σ+/σ−). Strictly speak-
ing, only �|n| = ±2 excitations are expected to be Raman active, but �|n| = ±1
excitations can also be observed in this polarization configuration thanks to trigonal
warping. These experiments allowed us to make a direct estimation of the electron-
hole asymmetry by selecting either an excitation from a level n− to a level (n+ 1)+
or from a level (n + 1)− to n+ for instance in the case of optical-like excitations.
Figure 4.9a shows the evolution of the maxima of the scattered light as a function
of the magnetic field for the two crossed circular polarization configuration together
with the theoretical expectations in the frame of the full SWM model (solid and
dashed lines). In contrast to the case of graphene where the main visible excitations
in crossed circular polarization configuration are the �|n| = ±1 excitations, the
dominant contribution to the electronic Raman scattering spectrum of bulk graphite
arises from �|n| = ±2 electronic excitations.

Such an experiment also allowed us to probe the dispersion along kz through
the line shape of the electronic Raman scattering features, in particular those ob-
served in both circular polarization configurations. As it is shown in Fig. 4.9b, the
observed line shape is strongly asymmetric with a long tail on the high energy side
of the feature. Theoretical calculations [126, 127] show that the scattered intensity,
at a fixed value of the magnetic field, is directly proportional to the density of states
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Fig. 4.9 Part (a): Evolution of the maxima of scattered light as a function of the magnetic field
for both crossed circular polarization configurations (σ−/σ+ and σ+/σ− ). Solid and dashed lines
represent the expectations from the full SWM model. Part (b): Three Raman scattering spectra
measured at B = 0, B = 12 T and B = 20 T in the co-circular polarization configuration (σ−/σ− ).
Solid and dashed lines are calculated line shapes. Adapted from Ref. [52]. Copyright (2011) by The
American Physical Society

and one expects an energy independent response for a bilayer graphene character-
ized by a parabolic dispersion and a rather linear in energy response for graphene
monolayer with linear dispersion. This is in striking contrast with the optical absorp-
tion which is energy independent in monolayer graphene [26] and which scales, at
low energies, with the inverse of the energy for a bilayer graphene specimen [128].
Studying the K point carriers in bulk graphite with Raman scattering experiments
confirms that there is a contribution of low energy electronic excitations to the Ra-
man scattering spectrum of bulk graphite at B = 0, which is flat up to 1200 cm−1

in agreement with the expectation for a graphene bilayer, but that can be identified
by applying a magnetic field. This energy independent response was also identified
in unpolarized configuration [129]. Under an applied magnetic field, it then trans-
forms into discrete features due to Landau quantization. The resulting line shape of
the electronic feature observe through Raman scattering is determined mainly by
the electronic dispersion around the K point and can be calculated quite accurately
within the SWM model (solid and dashed lines in Fig. 4.9b). This set of experimen-
tal results can only be understood within the full SWM model taking into account
the electron-hole asymmetry, the trigonal warping and the dispersion along kz.

4.4.3 Band Structure Close to the Neutrality Point: Proximity
to Lifshitz Transition

The low energy band structure of bilayer graphene and of bulk graphite, close to
the charge neutrality point, is extremely sensitive to the effect of trigonal warp-
ing described by the γ3 SWM parameter. In the case of bilayer graphene, recent
magneto-transport experiments [110] performed on gated high mobility specimens,
reveal that the low energy electronic dispersion is determined by interaction effects
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Fig. 4.10 Parts (a) and (b)
Low energy in-plane band
structure of bulk graphite
close to the K point. Solid red
lines show the two
separatrices and the blue solid
line shows the Fermi level.
Part (c) Derivative of the
magneto-absorption spectrum
measured at a fixed
microwave excitation energy
of �ω = 1.171 meV as a
function of ω/ωc . Adapted
from Ref. [130]. Copyright
(2012) by The American
Physical Society

which strongly modify the topology of the non trivial low energy Fermi surface. In
case of ideal and noninteracting system, the electronic band structure evolves from
a single electron (or hole) pocket at high energies to four distinct electron (or hole)
Dirac cones when the Fermi energy is tuned to lower energies, below the topologi-
cal transition named the Lifshitz transition. These magneto-transport measurements
show that the low energy band structure is in fact composed of only two Dirac cones
indicating a reduced symmetry caused either by the strain or, perhaps, pointing at a
nematic electronic phase transition driven by a Coulomb interaction.

The band structure of bulk graphite is very similar to that of graphene bilayer,
but the Fermi energy can hardly be tuned by gate effects. As a result, it is not nowa-
days possible to explore the situation where, as it was done for a graphene bilayer,
the Fermi energy is below the separatrix. Bulk graphite is an electronic system
with a Fermi energy slightly above the topological separatrices. Recent magneto-
absorption experiments performed in the micro-wave range of energy (1 meV) re-
veal the rich physics associated with the topology of the low energy band structure
close to the K point [130]. As is sketched in Fig. 4.10a and b, the band disper-
sion has six saddle points at two different energies εe−sp and εh−sp , which define
two separatrices (iso-energetic lines separating regions with different topologies).
When the Fermi energy εF crosses these separatrices, the topology of the Fermi
surface changes from a single electron pocket around the K point to four discon-
nected cones for εF < εe-sp . These topological changes have a pronounced effect
on the cyclotron frequency which vanishes at ε = εsp . Because εF in bulk graphite
lies ∼ 6 meV above εsp , the cyclotron resonance (CR) response measured at low
energies is strongly affected. As is presented in Fig. 4.10c, which shows the deriva-
tive, with respect to magnetic field, of the magneto-absorption spectrum measured
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Fig. 4.11 Raman scattering
spectra of the L2−,2+ feature
at B = 20 T and at T = 4.2 K
and T = 295 K. Adapted
from Ref. [52]. Copyright
(2011) by The American
Physical Society

at low temperature, this proximity results in (i) the appearance of a large num-
ber of CR harmonics (up to 20) (ii) an enhanced strength of 3k + 1 harmonics
as compared to 3k − 1 harmonics and finally, (iii) a characteristic broadening of
the observed resonances on the low energy side of the absorption peak. These are
the magneto-optical signatures of the proximity to the Lifshitz transition in bulk
graphite [130].

These results have been explained in the frame of a single particle model with-
out taking interaction effects into account. Having the possibility to tune the Fermi
energy across the separatrices in bulk graphite, for now, still remains a challenge.

4.4.4 Scattering Efficiency

In the case of optical excitations among discrete graphene-like Landau levels, the
room temperature magneto-optical response is very similar to the one observed at
low temperature, with no apparent shift nor broadening of the absorption lines [71].
This indicates that there is no relevant temperature activated scattering mechanism.
The case of bulk graphite appears to be quite similar. As can be seen in Fig. 4.11,
electronic Raman scattering features in a magnetic field, and in particular the L2−,2+
feature, can be observed up to room temperature. The line shape of this feature is
strongly affected by temperature with an overall blue shift and a smearing due to
thermal population of the final state n = 2+ Landau band. If the low energy onset
of this feature is rather sharp at low temperature since all the n = 2+ Landau band
is empty down to the kz = 0 states, the thermal population of this band leads to a
Pauli blocking of the transitions starting from those involving the kz = 0 final states.
This effect quantitatively accounts for the shift and additional broadening of the
L2−,2+ spectrum at elevated temperatures. Thermal population effects appear to be
the main source for the observed difference in the spectral response. This implies
that other possible sources of spectral broadening have a negligible temperature
dependence.
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Fig. 4.12 Part (a) Raman scattering spectra in the E2g phonon range of energy for different values
of the magnetic field. Parts (b) and (c): Evolution of the Raman shift and of the FWHM of E2g
phonon feature as a function of the magnetic field in the two different crossed circular polarization
configuration. Solid lines are the result of the calculation presented in Ref. [52]. Figures adapted
from Ref. [52]. Copyright (2011) by The American Physical Society

4.4.5 Electron-Phonon Coupling

As in the case of graphene systems discussed in the preceding section, it is possible
to tune the electron-phonon interaction to resonance in bulk graphite by applying
high magnetic fields. Relevant electronic excitations for the electron-phonon cou-
pling in bulk graphite are optical-like excitations (�k = 0 at B = 0) which trans-
form into inter Landau bands excitations with �|n| = ±1 under an applied mag-
netic field. It is possible to tune these excitations in resonance with the E2g optical
phonon occurring around 1580 cm−1 by increasing the magnetic field. This leads
to the magneto-phonon effect which manifests itself as pronounced oscillations of
the phonon energy and line width, as it is shown in Fig. 4.12a. The Raman shift
and the full width at half maximum (FWHM) extracted from the Lorentzian fitting
of this line are presented in Fig. 4.12b and c. This effect in bulk graphite is signifi-
cantly different that the one observed in the graphene monolayer. The fundamental
difference between these two systems is the 3D nature of electronic states in bulk
graphite and of the associated kz dispersion. The magneto-phonon effect in bulk
graphite involves Landau bands, in contrast to discrete Landau levels in graphene.
The electronic dispersion close to the K point causes the oscillator strength of the
optical-like excitations in this system to be spread over a significant range of energy
(typically a few meV). As a result, the observed oscillations of the phonon energy
and the line width are asymmetric and strongly damped, as shown in Fig. 4.12b
and c. In graphene, a fully resonant coupling occurs between two discrete excita-
tions while in bulk graphite, the 3D Landau bands that appear in magnetic field
spread the interaction over a range of energy as wide as the observed electronic
features. Although these oscillations are mainly due to K points excitations, they
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also reflect the excitation spectrum of the H point carriers and their electron-hole
asymmetry [52]. This results of the fact that the Fermi level at the H point lies be-
low the charge neutrality point and the 0th Landau band at this particular point is
completely empty. Hence, only the L−1,0 has a finite oscillator strength and couples
to the phonon while the oscillator strength of L0,1 vanishes, creating the asymme-
try observed in the two crossed circular polarization configurations, one component
being blue shifted at high fields while the other component is red shifted. Modelling
the magneto-phonon effect in bulk graphite allows us to extract the dimensionless
electron-phonon coupling constant λ which, in this case, is 3.0 × 10−3, approx-
imately one third lower than the expected value. This difference probably arises
from the approximation γ3 = 0 made in the calculation which impacts the matrix el-
ements and, in fine, the estimation of the coupling constant. To this end we note that
in more recent, Raman scattering experiments with unpolarized light, the magneto-
phonon resonance of bulk graphite could be traced in fields up to 45 T [131].

4.5 Conclusions

Concluding, the aim of our report has been to present the potential of optical
magneto-spectroscopy methods to investigate the electronic properties of graphene
based materials. Primarily, those methods provide the valuable information about
the characteristic band structure of the system investigated. Furthermore, they also
allow us to conclude on carrier scattering efficiency/mechanism and are the con-
venient techniques for studying the effects of electron-phonon coupling. Magneto-
absorption in the far infrared range is naturally the most straightforward tool to
studying the graphene and its derivatives, but this technique suffers an easy appli-
cation to small size samples. A relevant step forward to applying magneto-optics
to study the micron-size structure was the recent demonstration of the electronic
response in magneto Raman scattering experiments. These experiments, as far per-
formed only on graphite and on graphene locations on the graphite substrate, are cer-
tainly suitable to study all other high quality graphene structures. The fabrication of
large size graphene structures (e.g., CVD growth) on one hand and a clear progress
in increasing the quality (mobility) of well characterized individual graphene struc-
tures (e.g., graphene on boron nitride) on the other hand, will certainly open new
possibilities for optical magneto-spectroscopy studies in a very near future. Those
studies may in particular include the investigations of the effects of interactions
(electron-phonon and electron-electron) in the regime of the quantum Hall effect.
Other applications of optical magneto-spectroscopy might be relevant when search-
ing for the graphene systems with an open energy gap, when studying the plasmonic
structures and/or when searching for a light emission from graphene systems.
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54. M. Mucha-Kruczyński, O. Kashuba, V.I. Fal’ko, Spectral features due to inter-Landau-level
transitions in the Raman spectrum of bilayer graphene. Phys. Rev. B 82, 045405 (2010)
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Chapter 5
Graphene Constrictions

S. Dröscher, F. Molitor, T. Ihn, and K. Ensslin

Abstract One of the goals for future electronic devices is to reduce their dimen-
sions in order to improve their performance. Graphene is one of the potential ma-
terials systems for such applications due to its electronic properties and its impres-
sive material stability. To date, narrow constrictions serve as a main component for
nanoscale structures made out of graphene. This chapter aims to discuss electronic
transport through graphene constrictions and will compare theoretical predictions
with state of the art experimental findings.

5.1 Introduction

5.1.1 Graphene Electronics

Since its experimental discovery [1], graphene has been acclaimed for being a rev-
olutionary material for electronic devices. Among the special properties, several
meet the requirements of the present semiconductor technology. Graphene provides
good accessibility for patterning and contacting, since all atoms are exposed at the
surface. Lying only loosely on a substrate it has a remarkable stability even when
shaped into nanoscale structures [2, 3]. Additionally, the semiconductor industry is
thrilled by the sub-nanometer thickness of this mono-atomic layer. The channels of
current silicon field effect transistors could be thinned by a factor of one hundred if
being replaced by graphene [4]. Moreover, due to its unique band structure, charge
carriers do not suffer from backscattering and exhibit room temperature mobilities
ten times higher than in silicon.

Besides complementing standard technologies the realization of graphene quan-
tum devices is of substantial interest to the field of quantum information pro-
cessing. Graphene possibly satisfies the demand for long spin coherence times
since the electron spin is expected to interact only weakly with its orbital mo-
tion due to the low atomic weight of its host material. As graphene predominantly
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Fig. 5.1 Atomic force micrographs of different graphene nanostructures: (a) Single electron tran-
sistor (SET) with a nearby charge detector (CD) [5]. Source (S) and drain (D) are connected via
narrow constrictions to the SET. Several in-plane side-gates are used to tune the states on the
island and inside the constrictions. (b) Double quantum dot with in-plane gates [6]. The series
connection of source (S), left quantum dot (QD1), right quantum dot (QD2) and drain (D) is im-
plemented using narrow constrictions. In (a) and (b) constrictions are utilized as tunneling barriers.
(c) Aharonov-Bohm ring for quantum interference measurements [7]. Here, constrictions are used
as quasi one-dimensional transport channels

(98.9 %) consists of the 12C isotope, which has zero nuclear spin, hyperfine cou-
pling should be negligible as well. This property is promising for the realization
of spin-based quantum bits as components of possible solid-state quantum comput-
ers.

5.1.2 Graphene Nanostructures

Like in semiconductor devices, the charge carrier density in a graphene sheet can be
tuned by gate electrodes utilizing the field effect. However, the absence of a band
gap does not allow for a complete depletion of charge carriers inside the system
and hence precludes electrostatic confinement. Instead, a continuous transition be-
tween hole- and electron-like transport takes place close to the charge neutrality
point. Theoretical considerations show, however, that cutting graphene into narrow
ribbons along certain lattice directions can open a band gap depending on the lat-
tice orientation at the formed edges. Although experimental studies of narrow rib-
bons could so far not achieve the requested perfection of the edges and accuracy
of orientation, a suppression of electronic transport was observed. This so-called
transport gap was adopted as a tunneling barrier in numerous different nano struc-
tures, where narrow constrictions are used to define the structures. Three exem-
plary devices are depicted in Fig. 5.1 including a single and a double quantum dot
[Fig. 5.1(a) and (b)] and a quantum interference device [Fig. 5.1(c)]. A profound
understanding of the transport mechanisms through the constrictions, which repre-
sent a basic building block for the aforementioned sophisticated nanostructures, is
hence desirable to interpret observations and to enable control over their transport
characteristics.
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Fig. 5.2 (a) Schematic of a split-gate defined constriction in a semiconductor heterostructure as
measured in Refs. [8] and [9]. The 2DEG is depleted underneath the gates and the region above the
gates is connected only via a narrow opening with the lower part. (b) Conductance G as a function
of gate voltage VG for a quantum point contact of width W = 250 nm. Conductance is obtained
from inversion of the measured resistance signal and the subtraction of a gate voltage independent
background resistance. [Figure reprinted from Ref. [8]]

5.2 Constrictions in Conventional Semiconductors

Nanostructures have been studied in semiconductors for the last decades. Often,
heterostructures that contain a two-dimensional electron gas (2DEG) buried under-
neath the surface are used as the starting material. In order to confine charge carriers
to even lower dimensions, metal electrodes are placed on the surface. By applying
a negative voltage to these so-called split-gates, the 2DEG below the gate area is
depleted of charge carriers and hence electrically insulating.

As displayed in Fig. 5.2(a) a constriction is formed if only a small opening re-
mains between two electrodes such that electrons have to pass this channel when
crossing from one large reservoir to the other. Low-temperature transport measure-
ments on such a gate geometry on top of a GaAs/AlGaAs heterostructure have been
carried out in 1988 for the first time by two groups independently [8, 9]. The resis-
tance recorded in these measurements was transformed into a conductanceG which
is shown in Fig. 5.2(b) as a function of the applied split-gate voltage VG. Here, as
an over-all tendency, the conductance increases in steps as the gate voltage is made
less negative. The intuitive explanation for this effect is that the depleted area is re-
duced as VG is tuned to more positive voltages and the channel in Fig. 5.2(a) gets
effectively wider allowing more charge carriers to pass.

The more striking observation, however, is the appearance of conductance steps
of equal height along the gate voltage axis. With each step the conductance increases
by �G = 2e2/h which equals twice the conductance quantum G0 = e2/h. The
picture behind this experimental finding is that of discrete quantized states, called
modes, propagating along the channel axis [10]. These are formed as a consequence
of the lateral confinement normal to the direction of motion. Both the Fermi energies
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in the reservoirs and the width of the constriction determine the number of occupied
modes. If a small bias voltage Vbias is applied between the two reservoirs the current
carried by the modes traveling to the left and to the right, respectively, differs and
a net current flows. Each of the occupied quantum states contributes a net current
of I = (e2/h)Vbias , meaning one conductance quantum G0. In zero magnetic field,
electron spin degeneracy leads to a conductance contribution of 2e2/h per mode as
seen in Fig. 5.2(b).

The phenomenon discussed above is observed in experiment under the condition
that the thermal energy kBT of charge carriers is smaller than the energy spacing
between the transverse modes to resolve the discrete values of G. Additionally, the
channel width and the length have to be much smaller than the mean free path (bal-
listic regime) of the electrons and the Fermi wavelength has to be comparable to the
channel width. In semiconductor heterostructures these requirements are typically
met with the present sample quality at T ≤ 4.2 K (boiling point of helium). The
device introduced in this section is usually referred to as a quantum point contact
since its transport properties are a result of the quantum mechanical wave character
of the charge carriers.

5.3 Conductance in Graphene Constrictions

The absence of a band gap in bulk graphene does not allow for the adaptation of the
split-gate technique, which is commonly used in semiconductors, to graphene. In
order to form a quasi one-dimensional transport channel in graphene, the material
has to be cut into the desired geometry instead. In experiments, the propagation of
electrons along the channel is very sensitive to edge disorder due to the absence of
carrier depletion effects near the edges. A number of theoretical studies has been
carried out considering different possible edge orientations and edge disorder in
such ribbons which will be discussed in this section.

5.3.1 Nanoribbons with Ideal Edges

Like for bulk graphene, tight binding calculations were performed [11–14] to de-
termine the band structure for both clean armchair termination and zigzag termina-
tion of the ribbon edges as sketched in Fig. 5.3(a) and (b). Fundamentally different
characteristics were found depending on the edge type and the width of the rib-
bon. In Fig. 5.3(c)–(f) the energy bands of the four distinct cases are shown. Arm-
chair nanoribbons result in either a gapped band structure [Fig. 5.3(c) and (e)] or
a gapless metallic bandstructure [Fig. 5.3(d)] depending on the number of dimer
lines N across the ribbon width. The latter is found only under the condition that
N = 3m − 1, with m being an integer, and leads to a degenerate zero energy state at
k = 0. The size of the direct bandgap �Eg in semiconducting armchair ribbons de-
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Fig. 5.3 Lattice structure of (a) an armchair nanoribbon with N = 10 and (b) a zigzag
nanoribbon N = 5. Definition of dimer number N is indicated and the sublattice assignment is
marked. (c)–(f) Tight binding calculations of nanoribbon subbands for (c) N = 3m − 2 armchair,
(d) N = 3m− 1 armchair, (e) N = 3m armchair and (f) zigzag with N = 6. [Figure reprinted from
Ref. [12]]

creases with 1/W as the ribbon is made wider [14]. For zigzag nanoribbons the
dispersion exhibits a degeneracy of the valence and conduction bands at k = π

[Fig. 5.3(f)]. As the wave vector is diminished towards the center of the Brillouin
zone these two bands continue to lie close to the Fermi level within the wave vector
interval π ≥ |k| ≥ 2π/3 and show almost no dispersion.

The fact that in the armchair case neighboring atoms at the edges belong to dif-
ferent sublattices, whereas all edge atoms belong to the same sublattice in the zigzag
case, is responsible for the observed difference in the band structure. Armchair edges
include both A- and B-type atoms and hence the wave function needs to vanish on
both sublattices at the edges to fulfill the boundary conditions. A zigzag edge, on the
other hand, consists of only one sublattice, e.g.A-type on the top edge of Fig. 5.3(b),
allowing for a non-vanishing wave function on sublattice B . However, at the oppo-
site side of the ribbon the wave function is required to be zero on the B sublattice.
The two dispersionless states at finite k-values originate from this asymmetry be-
tween the sublattices and are as strongly localized electronic states at the edges of
the zigzag ribbon.

In analogy to the one-dimensional wires formed in semiconductor heterostruc-
tures, a quantization of the transverse modes is present in perfect graphene nanorib-
bons as well. A fundamental variation of the phenomenology is however the sym-
metry of the quantized spectrum around the Fermi energy. According to the differing
subband structures, the edge configuration results in characteristic quantization se-
quences for the three different cases [15–17]. For semiconducting armchair ribbons
a quantization in steps of even multiples of G0, namely 0, 2, 4, 6 . . . × (e2/h), is
predicted. In the metallic case, the mode at zero energy is already two-fold degen-
erate and hence the conductance at zero energy is 2e2/h and increases in steps of 2
G0 as the energy is tuned away from the charge neutrality point. The ideal armchair
edge leads to a lifting of the valley degeneracy and therefore only a factor of two
for the spins is considered for the quantization [15–17]. For perfect zigzag edges in
contrast, the valley degeneracy is expected to be maintained and a sequence of 2, 6,
10, 14 . . . × (e2/h) is obtained for the conductance.
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5.3.2 Extension to Disordered Edges

So far, only nearest neighbor hopping was considered within a tight-binding band
structure model, and any disorder was excluded from the discussion. Taking these
effects into account, however, induces distinct changes to the results obtained above.

Armchair ribbons, which have a metallic band structure for certain widths in the
ideal picture, are found to exhibit a bandgap of several 10 meV. This is obtained
by the inclusion of next nearest neighbor hopping and a contraction of the bonds
between the edge atoms by 3.5 % [18]. Similarly, a bandgap is opened in zigzag
nanoribbons. Here, the reason is a magnetic ordering at the edges with opposite
spin polarization on the two sublattices, which originates from on-site repulsion
between the states at the Fermi level. This exchange potential difference on the
two sublattices moves the previously flat bands that were lying close to the Fermi
level, away from each other. Hence, a small but finite band gap is predicted for
all nanoribbons with pure armchair [11, 14, 18–20] or zigzag [12, 13, 18] edge
termination. For 20 nm wide ribbons band gap values 10 meV ≤ Eg ≤ 70 meV
should hence be achievable according to these calculations.

In order to resemble realistic devices more closely, ribbons consisting of both
armchair and zigzag sections have been investigated [12]. Remarkably, the flat bands
of the zigzag termination are extremely robust to the inclusion of armchair sites
meaning that edge states are present even in ribbons having only few zigzag sites
incorporated in the edges. While these electronic states are delocalized along the
edge in pure zigzag ribbons, they get more and more localized as armchair fragments
interrupt the zigzag termination.

As a consequence of disorder [at the edges] and the accompanying change in the
density of states, the formation of subbands is getting less pronounced. Conductance
quantization is therefore no longer expected to be observable.

All theoretical studies show a significant deviation of the electronic properties
from the ideal case if the edges are assumed to be slightly imperfect. In to date
realistic devices, however, disorder is expected to be present both at the edges and
in the bulk of the graphene system. How this is affecting the transport properties is
going to be the subject of the following sections.

5.4 Experimental Observations and Microscopic Pictures

5.4.1 Fabrication

In order to get close to the device dimensions investigated in theoretical studies,
two-dimensional graphene sheets have to be patterned into narrow ribbons, which
then act as transport channels for the charge carriers. The commonly applied method
is a dry etching technique called reactive ion etching (RIE). After the standard me-
chanical exfoliation and subsequent identification of single layer graphene flakes by
atomic force microscopy and Raman spectroscopy [21, 22], the chip is covered by
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Fig. 5.4 Microscope images at different fabrication steps (a) Optical micrograph of a single layer
flake on a SiO2 substrate. (b) Graphene flake after fabrication of gold electrodes in an optical
microscope. (c) Atomic force micrograph after etching process. A number of constrictions with
varying aspect ratios is visible in between pairs of contacts. (d) Zoom into marked region of (c)
showing one nanoribbon. Graphene remains in the light grey areas whereas in the dark areas the
substrate is visible. The channel is formed between the source and drain reservoirs and has a width
of 75 nm and length of 200 nm

a resist layer. Since the chains of this polymer dissociate when high-energy elec-
trons impinge, electron beam lithography (EBL) can be used to modify the resist in
certain areas. The short polymer chains are soluble in a developer and hence the irra-
diated areas are no longer covered by resist after this processing step. Next, metal is
deposited by electron beam evaporation followed by a lift-off process. The created
metallic fingers are needed as contacts for all electronic transport measurements
discussed in this chapter. As a last step, a directed oxygen-argon plasma in the RIE
chamber removes the graphene in the regions laid open in another EBL step. After
removal of the remaining resist, the desired structure is left behind in the graphene
sheet.

5.4.2 Dependence of Transport on the Charge Carrier Density

Graphene devices are conventionally fabricated on a Si substrate which is cov-
ered by a SiO2 layer. Utilizing the field effect, the highly doped silicon serves as
a global back-gate (BG), meaning that by changing the applied gate voltage, the
charge carrier density in the graphene structure is tuned. Figure 5.5 shows a typical
low-temperature (T ≈ 1.25 K) gate voltage dependence of the conductance through
a graphene nanoribbon with a width of 75 nm and a length of 200 nm. By sweep-
ing the back-gate voltage VBG from negative to positive values, the Fermi energy
is tuned from the valence band through the charge neutrality point into the con-
duction band as is visualized by the sketched Dirac cones in Fig. 5.5. In these two
regimes, transport can therefore be described as being hole-like and electron-like,
respectively.

In contrast to transport data taken for bulk graphene, here, a region of strongly
suppressed conductance is observed in the vicinity of the charge neutrality point
around VBG = −2 V. In this regime the measured conductance values drop consid-
erably below e2/h [dashed horizontal line in Fig. 5.5], indicating that the system is
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Fig. 5.5 Conductance G as a function of applied back-gate voltage VBG. The data shown was
measured for a constriction with length L = 200 nm and width W = 75 nm at a tempera-
ture of T = 1.25 K. A DC bias voltage Vbias = 500 μV was applied and the conductance was
recorded using standard lock-in techniques at a frequency of 13 Hz and an AC bias modulation of
Vmod = 50 μV. The shaded region indicates the range of the transport gap �VBG and the dotted
curve marks the value of the conductance quantum e2/h. [Figure adapted from Ref. [23]]

strongly localized [24]. However, the formation of a band gap cannot explain this
feature. The expected size of a band gap Eg for an ideal ribbon of the given di-
mensions is much smaller than the large change of Fermi energy �EF necessary
to overcome the region of conductance suppression �VBG in this measurement.
Since current flow is strongly inhibited throughout �VBG, it is commonly called
“transport gap” in the literature.

Additionally, the curve in Fig. 5.5 exhibits strong conductance fluctuations at
low charge carrier densities and these fluctuations get smaller as the charge carrier
density is increased. Similar features have been observed in measurements of nar-
row disordered channels in Si-inversion layers [25] where they were explained by
hopping transport between strongly localized states caused by the structure of the
underlying density of states.

A comparison of the gate voltage dependence for a channel formed in a two-
dimensional electron gas plotted in Fig. 5.2(b) and the corresponding measurement
of a graphene nanoribbon in Fig. 5.5 illustrates the absence of conductance quanti-
zation in the latter. This observation does not come as a surprise since as discussed
here, the presence of disorder at the edges results in the disappearance of discrete
plateaus in the conductance trace. Due to the top-down fabrication applied here, it
is not possible to control the edge termination on the atomic scale as it would be
necessary to observe the theoretical predictions of quantized conductance.

5.4.3 Dependence of Transport on the Applied Voltage Bias

It proves helpful to look into the transport characteristics around the charge neu-
trality point in more detail. A zoom into the transport gap is shown in Fig. 5.6(a)
where a large number of conductance resonances show up as a function of back-gate
voltage. In between these peaks the conductance is close to zero. A similar behavior
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Fig. 5.6 (a) Close-up of the conductance spectrum as a function of back-gate voltage inside a
transport gap [grey shaded region in Fig. 5.5] taken with an applied voltage bias Vbias = 100 μV.
(b) Finite bias measurement of the same back-gate range as in (a) showing Coulomb blockade dia-
monds. Both measurements were obtained with the nanoribbon shown in Fig. 5.4 with L = 200 nm
and W = 75 nm at a temperature of T = 1.25 K using lock-in techniques. [Figure adapted from
Ref. [23]]

Fig. 5.7 (a)–(c) Energy diagram of a single electron transistor or single quantum dot. Tunneling
barriers separate the island from the leads. The island contains discrete energy levels at electro-
chemical potential μN and μN+1 that can be shifted to lower energies by increasing an applied
gate voltage Vgate as done from (a) to (c). The electrochemical potentials of the source and drain
reservoirs are offset by the bias voltage Vbias . (d) Charge stability diagram (Vbias vs. Vgate) show-
ing regions of suppressed transport in white, and regions where transport is allowed in grey. [Figure
adapted from Ref. [3]]

is known from systems in the Coulomb blockade regime as for example in a single
electron transistor (SET) or a single quantum dot (QD) [26].

In such devices a chargeable island is coupled to a source and a drain contact via
two tunneling barriers. Due to the size confinement of this island and the Coulomb
interaction, the available addition energy levels take discrete values with spacing
Eadd . Figure 5.7(a)–(c) shows a sketch of the arrangement. Additionally, a finite
bias can be applied across the structure inducing a difference in the electrochemi-
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cal potentials of source and drain. If an energy level of the island lies within this
window, as visualized in Fig. 5.7(a), transport is possible and a peak in the con-
ductance is observed. If, on the other hand, no level is inside the bias window [see
Fig. 5.7(b) and (c)], current flow is not allowed resulting in zero conductance—the
Coulomb blockade. In order to tune the system into or out of the blockaded regime
one can either shift the discrete energy levels by applying a gate voltage or change
the size of the bias window. In a measurement where both applied bias and gate
voltage are changed, diamond-like features of suppressed conductance are observ-
able which are commonly referred to as Coulomb blockade diamonds. As indicated
in Fig. 5.7(d), the size of these diamonds in the bias direction directly resembles the
energy Eadd = |e|Vbias needed to add one more electron to the island. The addition
energy Eadd is composed of the charging energy Ec = e2/C, where C is the capac-
itance of the island, and the single-particle level spacing �s . For large islands, the
contribution of �s is negligible and hence Eadd ≈ Ec. Since the charging energy
is related to the capacitance of the island, it is possible to extract information about
the size of the SET.

Figure 5.6(b) depicts the result of finite-bias spectroscopy for the graphene
nanoribbon introduced in this section. Strikingly, a large number of Coulomb di-
amonds is obtained similar to the ones expected for an SET. However, in contrast to
the rhombi sketched in Fig. 5.7(d), which touch each other in discrete points along
the gate-axis and are equal in size, in some regions the measured diamonds over-
lap each other and show a large variance of their extent in the bias direction. Such
characteristics have been observed in devices consisting of several islands which
all contribute to transport [27]. Due to the random gate dependence of charge car-
rier transfer through such a system as well as the randomly varying magnitude of
the charging energy Ec, this phenomenology is called stochastic Coulomb block-
ade.

The described observations evoke the assumption that several localized islands
form inside the narrow ribbon. For some back-gate voltage ranges, only one of these
islands dominates charge transfer and the characteristics of transport through a sin-
gle island is obtained [e.g. around −1.5 V in Fig. 5.6(b)]. In other voltage ranges
multiple islands contribute to the measured conductance. It is important to notice
that in the devices studied so far [23, 28–38], no self averaging is present, meaning
that the number of localized sites is rather small. As a consequence the charging of
individual islands is detectable in a finite-bias measurement by resolving individual
Coulomb diamonds.

A rough estimate of the average size of the localized sites can be obtained from
the charging energy extracted from the Coulomb diamonds utilizing a self capac-
itance model for a disc [26]. In the present device, the islands were found to ex-
tend across the total width of the ribbon and other devices yielded similar results
[23, 28–38]. An arrangement of the islands in a quasi one-dimensional chain is
hence likely and as a rule of thumb the number of puddles p can be approximated
by the ratio between the length and width p ≈ L/W .
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5.4.4 Microscopic Pictures

Differing models have been put forward to explain the origin of the transport gap
and the observed conductance resonances. Both assume a considerable influence
of disorder at the edges and/or in the bulk. While the former originates from the
etching process, which results in rough edges, the latter is induced by surface or
trapped charges in the substrate or by organic residues left over from the fabrication
and lying on top of the graphene sheet. Both types of disorder are hence inherent for
the devices discussed here.

The picture of Anderson localization is generally used to describe the influence
of disorder on electronic transport. In graphene nanoribbons non-perfect edge ter-
mination results in the formation of strongly localized low energy edge states as
argued in Sect. 5.3.2, resulting in the suppression of current flow. The localization
length is increased, however, as the absolute value of the Fermi energy is raised
from zero [39]. When the localization length exceeds the system length, transport
is no longer hindered and the transport gap �VBG is overcome. In the language of
Anderson localization, this transition is termed the “mobility edge”. Additionally,
the localized states lead to an enhanced density of states (DOS) around the charge
neutrality point. Calculations have shown that correlated with the large local DOS
at the boundaries there is a reduced DOS in the bulk of the nanoribbon [39, 40].
This may—for large edge defect concentration—span the complete ribbon width
and induce a barrier for charge transport [40], leaving localized islands behind. The
diameter of such an island is expected to be comparable to the ribbon width [41],
in agreement with size estimates from Coulomb diamonds. Hence, the origin of the
two identified energy scales�VBG and Ec can be accounted for using the Anderson
localization model.

A competing explanation involves the formation of localized islands as a con-
sequence of bulk disorder combined with a small energy gap. Due to the disorder
potential, a two-dimensional graphene sheet consists of electron-hole puddles [42]
close to the charge neutrality point. In large area samples, charge carriers can be
transferred from one puddle to another without energy expense via Klein tunnel-
ing. If a ribbon of only some nanometers width is considered, on the other hand, the
confinement is predicted to open a small band gap [12–14, 18] and electron-electron
interaction may additionally induce a Coulomb gap. The borders between adjacent
puddles are hence no longer transparent but display real tunneling barriers. Much
like in an SET, the particles have to pay a certain charging energy Ec to enter the
puddle and Coulomb blockade is expected to occur in such a system. The size of the
puddles depends on the spatial variation of the potential landscape. In this picture,
the size of the transport gap�VBG is given by the sum of the amplitude of the disor-
der potential and the size of the energy gap since transport is constricted as long as
the Fermi level lies between the global minimum of the valence band and the global
maximum of the conduction band.

Besides these two pictures, another model assumes transport in disordered
graphene to happen along percolating paths of constant energy. In the presence of
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Fig. 5.8 (a) Finite-bias spectroscopy for a 85 nm wide and 500 nm long nanoribbon. A region
of suppressed current is visible. The characteristic energy Eg was extracted from the size in the
bias direction as indicated by the dashed lines. (b) Eg as a function of ribbon width W . Fits
according to the equations indicated in the graph were carried out to compare the experimental
data with theoretical predictions. (c) Eg as a function of ribbon length L for various different
widths W between 30 and 110 nm. Indicated as grey bars are the expected values for the energy
gap Eg = α/We−βW according to Refs. [45] and [46]. The inset shows the minimum value of the
running averaged conductivity as a function of ribbon length for a 50 nm wide device. [Figures
reprinted from Refs. [44] and [38]]

an energy gap in nanoribbons, the system is expected to undergo a two-dimensional
metal-insulator transition [43].

The so far presented experimental transport data can be understood in all these
frameworks relatively well leaving the exact microscopic mechanisms behind trans-
port a question yet to be answered. To shine further light on this open issue, more ex-
periments have been carried out which will be the subject of discussion in Sect. 5.5.

5.4.5 Geometry Dependence

To get a better feeling for the meaning of the energy scales observed in transport
spectroscopy, a large number of experiments were conducted on ribbons of varying
geometries [28–30, 32, 34–38]. From these measurements, several empirical scaling
laws could be extracted.

The first quantitative characterization of the transport gap was done by Han
et al. [28]. By investigating the extent of the region of suppressed conductance
�VBG in the bias direction, they extracted a value for the size of the energy gap Eg .
Figure 5.8(a) displays finite-bias measurements for a nanoribbon of width 85 nm
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and the dashed lines indicate, how Eg is commonly extracted from such a con-
ductance map. Data for twelve nanoribbons of varying dimensions was analyzed in
Ref. [44] to find the width dependence of Eg . Plotting the determined values for Eg
as a function of width W yields the graph shown in Fig. 5.8(b). This plot clearly
shows the inverse proportionality between the two magnitudes. The data can be fit-
ted well with the relation Eg = α/(W − W ∗) with α being a scaling factor and W ∗
being the width of an inactive region at the edge of the ribbon. These two fitting
parameters were found to take the values α = 0.38 eV nm, in agreement with theo-
retical predictions [45], andW ∗ = 16 nm. Besides this empirical law, Sols et al. [45]
explained the energy gap as a renormalized charging energy and derived the expres-
sion Eg = (α/W)e−βW , where α and β are free parameters. Fitting the data with
this relation leads to values of α = 2 eV nm and β = 0.026 nm−1. Both models de-
scribe the data well within the experimental precision and quantify how the size of
the transport gap can be tuned by the ribbon width over a remarkably wide range.

In contrast, studies investigating the size of the energy gap as a function of ribbon
length L [38] obtain an almost constantEg-value when the length of the constriction
is changed [see Fig. 5.8(c)]. However, the minimum value of the averaged back-gate
dependent conductance Gmin exhibits a strong length dependence. With increasing
L the conductance value drops exponentially as shown in the inset of Fig. 5.8(c).
This finding is consistent with the microscopic picture of transport being dominated
by tunneling processes between localized charged islands.

Surprisingly, even for very short constrictions (L ≤ 60 nm) localization takes
place [30, 38]. Charge stability maps taken on such devices look very similar
to those of intentionally designed quantum dots. Inside the Coulomb diamonds a
number of co-tunneling lines is visible, suggesting a rather strong coupling to the
leads [38]. These systems might therefore be suitable to investigate the Kondo-effect
in graphene and observe Fano-resonances. Additionally, the limit of short constric-
tions is very interesting for the fabrication of more sophisticated devices since the
occurrence of localization allows for their use as tunneling barriers in graphene
nanostructures.

5.5 Further Experiments for More Detailed Understanding

5.5.1 Temperature Dependence

The measurements covered in the previous sections indicated that a number of local-
ized charge puddles form spontaneously in graphene nanoribbons around the charge
neutrality point. However, the mechanism behind transport in those devices was not
yet discussed. Studying the temperature dependence of the conductance reveals the
activation processes for electronic transport inside the transport gap [23, 34, 36].

In Fig. 5.9(a) the conductance inside the transport gap is plotted for various tem-
peratures between 1.25 K and 45 K [non-equal spacing in T ]. The sharp conduc-
tance peak spectrum at the lowest temperatures gets washed out more and more as
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Fig. 5.9 (a) Conductance G as a function of back-gate voltage VBG for temperatures
1.25 K ≤ T ≤ 45 K (black to red solid curves). Inset: Three distinct conductance resonances re-
produced by a convolution of the derivative of the Fermi function at T = 1.25 K and Lorentzian
distributions of different widths. (b) Conductance G vs. temperature 1/T for three positions in
back-gate voltage. Discrete points are the measured data and solid lines are the results of a fit to
the Arrhenius-type law given in (5.1). (c) Extracted activation energy Ea superimposed onto a
close-up of the finite-bias measurement in Fig. 5.6(b). (d) Back-gate dependence of the activation
energy Ea (red dotted line) and the conductance (black solid line) inside the transport gap. Insets:
Coulomb diamonds reconstructed from Ea for two characteristic regimes of the back-gate voltage.
[Figure adapted from Ref. [23]]

the temperature is increased. This is due to a large increase of the conductance in
the Coulomb blockaded regions in between resonances. For the conductance peaks,
two distinct behaviors are observable. A number of peaks decrease in height as
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the temperature is raised, whereas the majority exhibit an ever larger amplitude as
T is raised and get broadened at the same time. Hence, a rather smooth conduc-
tance curve is obtained for the highest temperature approaching a conductance value
of e2/h.

For single quantum dots, the evolution of the peak shape was explained by the
contributions of temperature, single-particle level spacing �s and a coupling of the
energy levels to the leads [47]. A 1/T -dependence is expected for a strongly coupled
ground state, as observed in Fig. 5.9(a) for peaks that are particularly sharp at the
lowest temperatures. If, however, an excited state exhibits a stronger coupling to the
leads than its ground state, a temperature increase will facilitate transport until, at
�s � kBT , both levels contribute to transport. The latter effect leads to the recorded
amplitude increase and the broadening of conductance peaks in Fig. 5.9(a).

The thermal activation of G in the conductance valleys gives insight into the
transport mechanisms. Figure 5.9(b) displays the conductance as a function of 1/T
for three representative back-gate values, showing the different temperature depen-
dences observed. In this Arrhenius-type plot, the curves show a branch with a linear
slope for the higher temperatures [T � 3 K] and a branch with almost constant value
of G at lower T . The activation above the threshold temperature is linked to the en-
ergy needed to induce transport through the system. Empirically, the data can be
fitted to

G(T ) = G0 exp

(
− Ea

kBT

)
+ B (5.1)

with the free parameters G0 being a prefactor quantifying the high-T limit of G,
Ea being the activation energy and B being a constant offset. The solid lines in
Fig. 5.9(b) are the resulting fits and show that the data [diamond shaped markers in
Fig. 5.9(b)] can be reproduced very well with this empirical law.

A physical motivation for (5.1) is found by reproducing the peak shape of the
Coulomb blockade resonances considering both thermal and coupling broadening.
The width of the peaks is resembled well by the derivative of the Fermi function at
a given temperature. A large discrepancy is found, however, for the tails of the peak
where the thermal broadening underestimates the conductance considerably. In or-
der to obtain higher values for the conductance away from the resonances, the Fermi
function is convoluted with a Lorentzian distribution function. With this additional
contribution the coupling of the energy levels to the leads is taken into account.
The tail of the Lorentzian, and hence the constant B in (5.1) can be interpreted as
describing cotunneling processes in the system at the lowest temperatures.

To motivate (5.1), the low temperature limit of the Fermi distribution, Ec =
2Ea � kBT , has to be considered, which reads

df (E)

dE
∝ G(T ) ∝ cosh−2

(
Ea

2kBT

)

⇒ G(T ) ∝ exp

(
− Ea

kBT

)
. (5.2)

Note that the maximum activation energyEa for transport is half the charging en-
ergy Ec describing the spacing between two energy levels of a localized island. The
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prefactor, G0, specifies the conductance value at high temperatures where the expo-
nential term in (5.2) approaches unity. It contains contributions from various trans-
port mechanisms which cannot be quantified easily. Finally, cotunneling of charge
carriers results in a constant background, B , which has to be added to (5.2). Hence,
the application of (5.1) for fitting the experimental data is well motivated.

The three fitting parameters Ea , G0 and B of (5.1) can be determined for each
back-gate voltage to obtain their specific energy dependence. Meaningful values are
attained for those back-gate values where G covers more than one order of magni-
tude as a function of T . In this section, the activation energy Ea will be discussed
exclusively but further analysis can be found in Ref. [23].

Figure 5.9(d) shows the extracted energy spectrum Ea(VBG) inside the transport
gap. A number of peaks are observable in the Ea curve, which coincide with valleys
in the conductance trace. Energies as high as 20 meV are necessary to activate trans-
port in the device in Fig. 5.9(d). Away from the peak maxima, the activation energy
decreases linearly towards the position of the adjacent conductance resonances.

This finding for theEa dependence is very similar to the behavior of the Coulomb
diamond edges in Fig. 5.6(b). To confirm this correlation, the two magnitudes are
plotted on top of each other for a chosen back-gate position in Fig. 5.9(c). Indeed
the shape of the large Coulomb blockade diamond is reproduced by the peak of
the activation energy. Accordingly, these two energy scales have the same physical
origin meaning that the activation energy corresponds to the Coulomb gap formed
inside the nanoribbon.

To support this hypothesis further, a number of Coulomb blockade diamonds are
reconstructed from the activation energy by reflecting the data at the gate voltage
axis and inserting lines along the slopes of the energy peaks. As depicted in the in-
sets of Fig. 5.9(d), two distinct characteristics are observable for certain back-gate
voltage values. On the left hand side, the regions of suppressed conductance are
separated from each other and exhibit similar size as is typical for a single quantum
dot. The graph on the right hand side shows overlapping Coulomb blockade dia-
monds with varying edge slopes and different size in the bias direction, as yielded
in a charge stability diagram for multiple quantum dots in series.

In summary, the interpretation of the finite-bias measurement presented in
Sect. 5.4.3 and the analysis of the thermal activation measurements arrive at the
same conclusions: Charge transport in graphene nanoribbons is dominated by
mainly one or a few puddles arranged in series. Although details depend on the
mesoscopic arrangements within the system, carrier transmission can be understood
in a single-particle picture including Coulomb blockade.

5.5.2 Magnetic Field Dependence

Studying an electronic system in the presence of a perpendicular magnetic field
allows for the detailed understanding of its properties since the spatial extent of the
electron wave function is changed as an external B-field is tuned. In a semi-classical
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Fig. 5.10 (a)–(c) Differential
conductance measurements as
a function of source-drain
bias and gate voltage at
B = 0 T (a), 3 T (b) and
6 T (c) showing the evolution
of the diamonds of
suppressed conductance with
increasing magnetic field.
(d) Differential conductance
G versus gate voltage at zero
source-drain bias with an
applied magnetic field of 0, 3
and 6 T. The device has a
width of 37 nm and length of
200 nm and was measured at
T = 1.6 K. [Figure reprinted
from [37]]

picture, this is due to the propagation of charge carriers on cyclotron orbits of radius
rcycl as a Lorentz force acts on them. As a consequence, transport is mainly sensitive
to potential fluctuations of certain length scales in the different regimes. Magneto
transport in graphene nanoribbons was investigated to probe the effect of a magnetic
field on the localized states inside the conduction channel [36, 37].

Figure 5.10(a)–(c) shows finite-bias measurements of a graphene nanoribbon of
dimensions W = 37 nm and L = 200 nm at magnetic fields B = 0 T, 3 T and 6 T
[37]. Coulomb blockade diamonds are visible indicating the formation of charged
islands inside the ribbon. As the magnetic field is ramped up, the size of these re-
gions of suppressed conductance shrinks considerably and the overall conductance
is enhanced. This is best seen in Fig. 5.10(d) where cuts at zero source-drain bias
are plotted for the three magnetic field values.

Smaller Coulomb diamonds indicate a decrease of the charging energy Ec and
therefore an increase in island size. In agreement with these findings, temperature
dependent measurements [23, 36] in finite magnetic fields indicated that the energy
scales relevant for transport, namely�VBG andEa , are shrinking if a finite magnetic
field is applied.
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To explain these observations, we compare the dimensions of the nanoribbon
with the magnetic length lB = (�/eB)1/2. If the ribbon width W is much smaller
than the cyclotron length W  lB , the electron wave function extends across the
whole width and hence transport is influenced by both edge and bulk disorder. This
condition is fulfilled for low magnetic fields. As B gets larger the magnetic length
falls below the system dimensions and the effect of both the quantum confinement
and the edges becomes less relevant for transport [37].

A contrary effect of the applied magnetic field is that the localization of the wave
function leads to a smaller wave function overlap and hence a smaller tunneling cou-
pling between neighboring puddles. As a consequence, the conductance is reduced
as the magnetic field is increased.

The two contributions are therefore expected to compete in nanoribbons. In the
data presented here, the reduced backscattering is dominating causing an increase of
the conductance. Following this observation, it is suggested [48–50], that the system
eventually undergoes a semiconductor-metal transition at high magnetic fields. The
data presented in Fig. 5.10 are in good agreement with this explanation and imply
that the ribbon width is a good estimate for the size of the localized states.

However, as noted in Ref. [36], Landau level quantization should be observable
at high magnetic fields where W � lB . Under these conditions, edge channels are
expected to be formed which each contribute to transport with (e2/h). Measure-
ments on wide channels [W � 100 nm] have indeed shown indications of conduc-
tance quantization [51]. Conductance data of narrower ribbons, on the other hand,
did not exhibit this feature. Possibly, scattering events between transport channels
located at opposite edges, inhibit the transmission for narrow ribbons. As the edge
channels are separated further for wider nanoribbons, scattering is less likely and
Landau level formation may be recorded in conductance measurements.

Following the reasoning of Ref. [36], the enhanced conductance originates from
the breaking of time reversal symmetry in a finite magnetic field [52, 53]. The mag-
netic flux through the area occupied by a localized state has to be comparable to a
flux quantum h/e in order to break time reversal symmetry. Measurements of the
B-field dependent conductance allow us to extract a size estimate for the localized
sites. The obtained value is comparable to the ribbon width [36], and hence, mag-
netic field spectroscopy is providing yet more evidence for the spatial extent of the
charged islands in graphene nanoribbons.

5.5.3 Side-Gate Influence

Changing the potential landscape locally helps to understand the spatial arrange-
ment of localized islands inside the narrow channels. Transport studies on graphene
nanoribbons with two nearby in-plane side-gates were carried out. While one of the
side-gates (SG1) affected the drain-side of the ribbon preferentially, the other (SG2)
acted more on the source-side. By tuning the side-gate voltage with respect to the
back-gate voltage, the conductance resonances inside the transport gap are shifted
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Fig. 5.11 Conductance G as a function of side-gate voltage VG1 in (a) and VG2 in (b) for the
back-gate voltage 9 V ≤ VBG ≤ 10 V inside the transport gap. Black lines indicate the evolution of
Coulomb blockade resonances and are labeled with the corresponding relative lever arms. (c) Rel-
ative lever arms α for different back-gate configurations inside the transport gap extracted from
maps similar to (a) and (b). The exemplary error bars arise from the fitting imprecision

in energy according to the coupling of the side-gate to the respective localized state.
Assuming that mainly the distance between the gate and the charged puddle de-
termines the coupling, Coulomb blockade resonances evolving with similar slopes
should originate from the same localized sites.

Representative gate-gate maps are shown in Fig. 5.11(a) and (b), where SG1 and
SG2 were used, respectively, to tune the conductance resonances in the back-gate
voltage range 9 V ≤ VBG ≤ 10 V. In each graph, two different slopes for the evolu-
tion of the Coulomb blockade resonances are distinguishable. This finding indicates
that only two localized islands dominate the transmission through the nanoribbon
in the investigated gate regime. The measured device has a length of L = 200 nm
and a width of W = 80 nm. Applying the rule of thumb for the number of puddles
[p ≈ L/W ] in a ribbon of these dimensions, yields 2–3 localized islands and hence
agrees well with the result of this measurement.

A relative lever arm α can be extracted from these slopes which characterizes the
strength of the capacitive coupling of the side-gate with respect to the back-gate. The
values determined from Fig. 5.11(a) and (b) are αSG1 ≈ 0.74 and 0.31 for SG1 and
αSG2 ≈ 0.78 and 1.94 for SG2. A rough estimate for the position of the respective
localized state is possible with these numbers. As the lever arm ≈0.75 appears in
both plots, the corresponding puddle is likely sitting in between the two side-gates
or in other words in the center of the ribbon. The other resonance is tuned only
weakly by SG1 [αSG1 ≈ 0.31] but strongly by SG2 [αSG2 ≈ 1.94], which suggests
that it is located much closer to SG2 than to SG1. Additionally, it couples better to
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the side-gate than to the back-gate indicating that the back-gate influence is screened
relative to the side-gate influence.

Measurements like those shown in Fig. 5.11(a) and (b) were performed for sev-
eral back-gate ranges inside the transport gap and the corresponding lever arms
were extracted [see Fig. 5.11(c)]. Generally, several slopes were recorded in all
regimes, however never more than four different ones. Furthermore, the discussed
anti-correlation of the relative lever arms originating from different side-gates is ob-
served in most back-gate voltage ranges as well. For the analysis, several Coulomb
resonances with similar slopes were fitted to extract the relative lever arms. Since
the evolution of such resonances in the gate map is not perfectly linear, a disper-
sion around a mean value is obtained. This error is relatively large, as it can be seen
from the exemplary error bars in Fig. 5.11(c). Nevertheless, the varying values for
α inside the transport gap illustrate the modulation of the coupling of distinct states
to the gates. This effect may be explained by puddles rearranging themselves inside
the constriction. Along with the tuning of the back-gate voltage comes a change in
the potential landscape and hence in the puddle size and position—some get larger
and even merge with neighboring ones, others fall into smaller islands.

In conclusion, a small number of puddles along the nanoribbon influences the
transmission. The exact number and arrangement of these islands is changed as a
function of Fermi energy as reasoned from the lever arm modulation. Hence, the ex-
periments on side-gated graphene nanoribbons support statements about the meso-
scopic character of the system made earlier in this chapter.

5.5.4 Thermal Cycling

In the previous sections, transport properties were interpreted as the finger print of
disorder in the graphene nanoribbons that were investigated. However, the micro-
scopic origin of this disorder was not discussed based on experimental results so far.
Two contributions—edge and bulk disorder—were identified in Sect. 5.4.4 but not
further specified.

In order to shine light on the character of these influences, conductance spec-
tra of a nanoribbon were measured at T = 1.25 K before and after warming the
nanoribbon up to room temperature. The recorded data is shown in Fig. 5.12 where
the conductance inside the transport gap is plotted as a function of applied back-gate
voltage.

Both measurements exhibit the region of suppressed current in the gate voltage
interval −1.5 V ≤ VBG ≤ 1 V and the conductance resonances show the same order
of magnitude of suppression in this regime. Some Coulomb blockade resonances
even fall on top of each other. As the gate voltage is moved away from the center
of the gap, the conductance spectra differ more. In contrast, some main features like
the small peak spacing at positive gate voltages and the larger spacing for negative
VBG are preserved.

These observations indicate that the potential landscape that is causing the con-
ductance fluctuations at low temperatures undergoes a significant change at ≈300 K.



5 Graphene Constrictions 161

Fig. 5.12 Conductance G as a function of applied back-gate voltage VBG before and after
warming the sample to room temperature. The data shown was measured for a nanoribbon with
length L = 200 nm and width W = 75 nm at a temperature of T = 1.25 K. A DC bias voltage
Vbias = 500 μV was applied and the conductance was recorded using standard lock-in techniques
at a frequency of 13 Hz and an AC bias modulation of Vmod = 50 μV

The thermal energy associated with room temperature is low compared to energies
necessary to reconstruct the graphene lattice or break covalent bonds. Hence the dis-
order is not only caused by the disordered edge structure of the graphene lattice, nor
is it only some bulk disorder due to lattice imperfections, rippling, or other structural
properties. Imperfections that can be rearranged at room temperature, on the other
hand, are charge traps in the SiO2, adsorbates and debris on the surface, etc. The
here discussed measurements therefore show that the environment [e.g. substrate,
processing residues] has an important influence on the transport characteristics in
graphene nanoribbons.

5.5.5 Tunneling Coupling in a Double Quantum Dot

In order to examine the role of constrictions as constituents of graphene nanostruc-
tures, we will discuss their effect on transport with the help of a double quantum
dot (DQD) structure [6]. DQD systems are of great interest for quantum informa-
tion processing and have been proposed for the implementation of solid-state spin
qubits [54]. Graphene, due to its expected long spin coherence time, may be par-
ticularly well suited for such applications. An introduction to the basic electronic
transport properties of such a structure can be found e.g. in Refs. [55] and [26].

The device is fabricated as described in Sect. 5.4.1 and consists of a source (S)
and a drain (D) lead each coupled to an island (QD1 and QD2). As seen in the mi-
crograph in Fig. 5.13, the series connection of these elements is realized by narrow
constrictions. The fact that current flow in the constrictions is suppressed inside the
transport gap is exploited here and these channels serve as tunneling barriers. If they
are resistive enough, namely if R > h/e2, the energies of charge states in the double
quantum dot are governed by Coulomb repulsion and by the alignment of the elec-
trochemical potentials in the source, drain and the two dots. Nearby gates allow for
the control and manipulation of the electronic states in the individual dots. However,
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Fig. 5.13 (a) Atomic force micrograph of a graphene double quantum dot (same device as shown
in Fig. 5.1(b)). The two quantum dots QD1 and QD2 are connected to source S and drain D via
a narrow constriction. A number of in-plane side-gates can be used to tune the constrictions and
the dots, respectively. (b) The capacitive coupling energy EmC as a function of center-gate voltage
VGC extracted from the splitting of the triple points in the charge stability diagram. (c) Schematic
of a pair of triple point without (dashed line) and with tunneling coupling t (solid line). The kinks
at the boundaries of hexagons are rounded as a result of the inter-dot doubling. (d) Measurement
of charge stability diagram around a pair of triple points. Due to the low bias Vbias = 15 μV, no
finite bias triangles are observed and the triple points can be examined separately. [Figure reprinted
from [51]]

the interaction between the dots is fundamental for qubit operations. Therefore we
will limit the discussion here to the constriction connecting the two quantum dots.

With the center-gate (GC), the coupling between the two dots can be tuned [6]. In
a first step the capacitive coupling is determined from the splitting of triple points in
the charge stability diagram at varying center-gate voltages VGC . Since the center-
gate voltage influences the electrostatics in the dots as well, the triple points shift
in gate space. However, by applying compensation voltages to the other gates, care
is taken to examine the same triple point for all gate configurations. The extracted
coupling energy EmC as a function of VGC is shown in Fig. 5.13(b). Clearly a non-
monotonic behavior is observed in this voltage range and EmC (VGC) doubles from
VGC = 0.1 V to VGC = 1.2 V. This observation is different from comparable mea-
surements of double quantum dots in conventional semiconductors where a mono-
tonic tuning of the tunneling barrier is expected.

The implications of the previous sections in this chapter are, that graphene con-
strictions exhibit a strongly non-monotonic dependence of the conductance on the
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applied gate voltage. As a consequence, transport is strongly modulated as a func-
tion of applied gate voltage. In the present device, the potential landscape inside the
center constriction hence affects the capacitive coupling between the dots consider-
ably.

Besides the capacitive contribution to the coupling, the barrier determines the
tunneling coupling t in the system. A weak inter-dot coupling causes the two elec-
tron wave functions to be localized on either dot. Strong coupling on the other
hand leads to delocalized quantum mechanical states that extend across the bar-
rier and form a two-level system. Such a system can be thought of as an artificial
molecule [55] since the wave functions of the two dots hybridize and form bond-
ing and anti-bonding states. The effect of a finite tunneling coupling on the energy
diagram is an anti-crossing at zero detuning of the energy levels in the two dots.

In experimental data, mixing of quantum states gets apparent again at triple
points in the charge stability diagram. As a consequence of the energy level anti-
crossing they get rounded as schematically drawn in Fig. 5.13(c). The shift of the
triple points [from A to A′ and from B to B′ in Fig. 5.13(c)] due to the tunneling
coupling t is expected to scale linearly with t .

A low-bias measurement [Vbias = 15 μV] of a pair of triple points in the
graphene DQD is presented in Fig. 5.13(d) [46]. No rounding of the hexagon corners
is evident in this graph and therefore an upper bound for the tunneling coupling can
be given by t ≤ 20 μV. The data was recorded at low temperatures of T ≈ 120 mK
and hence the thermal broadening of the conductance resonances is of the same
order of magnitude as the tunneling coupling [kBT ≈ 10 μV]. On the other hand,
the capacitive coupling energy EmC exceeds both energy scales by far. Numerical
simulations based on the rate equation for a double quantum dot [46] were in good
agreement with the experiment and yielded a value of t = 14 μV for the inter-dot
tunneling coupling.

Two possible explanations were identified for the large discrepancy between the
capacitive and the tunneling coupling. A narrow but high barrier would suppress
the tunneling coupling and at the same time allow for a large capacitive coupling.
This effect may originate from the potential fluctuation inside the constriction. The
device geometry itself may however also cause a difference in energy scales. Here,
the constriction is located at the upper edge of the structure where the probability
amplitude of the wave function is expected to be small. An extension to the adjacent
dot may therefore not be preferable, leading to small t . The capacitive coupling, on
the other hand, stays unaffected. Similar observations of capacitive coupling dom-
inating over tunneling coupling are made in GaAs double quantum dots as well.
However, in many cases the ratio between these two contributions can be tuned
monotonically [56] to achieve either single or double quantum dot behavior.

The experiment presented in this section illustrated the challenges involved with
the application of graphene constrictions as tunneling barriers in nanostructures. The
strongly non-monotonic transmission properties hamper the controlled tunability of
these devices. However, the stability of the system over a large gate voltage range is
remarkable [6] and—even though not monotonic—different coupling regimes can
be achieved. In order to get a better control over the system, clean tunneling barriers
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are required, however, and large effort need to be made to improve the transport
properties of graphene constrictions.

5.6 Recent Advances and Outlook

All structures presented in the previous sections of this chapter were fabricated
on a Si/SiO2 substrate and carved into a graphene sheet by means of dry etching.
The main conclusion of this chapter is, that the mesoscopic character of transport
through graphene nanoribbons originates from disorder at both the edges and in
the bulk. As discussed earlier, the environment like the substrate or adsorbates on
the graphene surface are likely to have a large impact on the potential landscape.
As a consequence of the strong disorder, the transmission tunability can be strongly
non-monotonic due to conductance resonances in the constriction. Since narrow and
short constrictions serve as tunneling barriers in nanoscale devices, the reduction of
bulk disorder and well controlled edges are desirable. Several approaches have been
realized recently to improve on these issues.

5.6.1 Bottom-Up Growth of Nanoribbons

High precision width and edge parameters are obtained by bottom-up growth of
graphene nanoribbons following the reaction scheme shown in Fig. 5.14(a). Single
molecules containing benzene rings [e.g. 10,10′-dibromo-9,9′-bianthryl] were used
as precursor monomers for the fabrication of narrow ribbons [57]. Under well de-
fined conditions these molecules are deposited onto either a gold or silver single
crystalline substrate. At elevated temperatures of T = 200 °C, dehalogenation takes
place and the generated radicals arrange themselves in linear polymer chains with
interconnecting C–C bonds. A low-temperature, scanning tunneling micrograph of
this intermediate step is depicted in Fig. 5.14(b) where the originally separated
monomers are connected in series along the center benzene rings. Further annealing
leads to a cyclodehydrogenation reaction, which removes the hydrogen termination
atoms and allows covalent C–C bonds to be established between adjacent benzene
rings.

The width of the resulting nanoribbons can be varied by the design of the pre-
cursor molecule and the type of edge termination—armchair or zigzag—is deter-
mined by the source chemical as well. The STM image in Fig. 5.14(c) demon-
strates the extraordinary quality of this armchair ribbon with N = 7 dimers across
the structure which resembles closely the nanoribbons discussed in Sect. 5.3.1. Po-
tentially, nanoribbons with well defined band structures due to atomically precise
edge termination and width can be achieved. However, measurements investigating
the size of the band gap for these narrow channels either by optical or by elec-
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Fig. 5.14 (a) Reaction scheme from precursor 1 to straight N = 7 GNRs. (b) Scanning tunneling
microscope (STM) image taken after surface-assisted C–C coupling at 200 °C but before the final
cyclodehydrogenation step, showing a polyanthrylene chain (left, temperature T = 5 K, voltage
V = 1.9 V, current I = 0.08 nA), and DFT-based simulation of the STM image (right) with par-
tially overlaid model of the polymer (blue: carbon; white: hydrogen). (c) High-resolution STM im-
age with partly overlaid molecular model (blue) of the ribbon (T = 5 K, V = −0.1 V, I = 0.2 nA).
At the bottom left is a DFT-based STM simulation of theN = 7 ribbon shown as a greyscale image.
[Figure reprinted from Ref. [57]]

tronic means remain to be carried out and to be compared to theoretical predic-
tions.

5.6.2 Quantized Conductance in Suspended Nanoribbons

Since the SiO2 substrate is believed to be a major source for the large disor-
der in graphene systems a possibility to improve the quality is to eliminate the
substrate. Different methods have been established to obtain suspended graphene
sheets. While the oxide is etched away in one approach [58, 59], a polymer spacer
layer is patterned in the other [60]. In both methods the suspension is the last step
of the fabrication applied to a contacted graphene flake. Directly before the mea-
surements, a high current is sent through the structure. The high current density
(j ≈ 1 mA/μm) induces local Joule heating, which reaches temperatures larger than
T = 500 °C, and removes organic residues from the surface and allows for recon-
struction of the edges leading to high mobility devices. In Fig. 5.15(a) a scanning
electron microscope image reveals the modification in the device induced by the
high current.

Surprisingly, finite-bias spectroscopy at zero magnetic field [Fig. 5.15(b)] reveals
a stair case-like pattern, with plateaus of constant conductance G along the zero
bias axis [60]. The steps are located at even multiples of G0 = e2/h as expected for
a system in which the valley degeneracy is lifted [15–17]. Although strong state-
ments about the exact edge structure cannot be made, the presence of conductance
quantization in this system indicates ballistic transport and hence a remarkably high
sample quality.
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Fig. 5.15 (a) Scanning electron microscopy picture of a typical suspended high-mobility graphene
device showing the formation of graphene constrictions after the current annealing step in vacuum
at 4.2 K (regions A and B). The scale bar is 2 μm. No current annealing was applied to region C.
(b) Finite-bias spectroscopy at T = 4.2 K. The differential conductance G versus DC-bias voltage
Vsd at zero external magnetic field measured with an AC modulation of VAC = 150 μV in the
gate voltage interval of −6 V < Vg < 0.8 V. Each line in this plot corresponds to a DC bias
measurement at a different gate voltage, from VG = −6 V (top) to 0.8 V (bottom) in steps of
50 mV. For Vbias = 0 V we observe conductance quantization at 1, 2, 3 and 4 × (2e2/h). The
energy spacing between the n = 1 and n = 2 subbands is approximately 8 meV, which is consistent
with the energy spacing expected for a 240 nm wide constriction. [Figure reprinted from Ref. [60]]

5.6.3 Outlook

The results of these very recent studies give hope for graphene electronics since
the influence of bulk and edge disorder is potentially negligible in these systems.
However, both approaches come along with some drawbacks as well. The bottom-
up ribbons are grown on a conductive substrate and need to be transferred to an
insulator, and the suspended ribbons are extremely fragile [in addition they are very
small so far, so processing, contacting etc is not trivial].

Substrate supported nanostructures are preferable due to their better stability. It
was shown [61], that hexagonal boron nitride (BN) as a supporting material main-
tains high electronic quality of graphene sheets and is hence a promising substrate
for devices. However, first studies indicate that the etched edges do influence trans-
port in nanoribbons built on BN-substrate [62]. Conclusive investigations remain to
be carried out.

Another alternative is the use of bilayer graphene instead of single layer graphene
as has been shown recently [63]. Since a real band gap can be opened in this system
as a perpendicular electric field is applied, electrostatic confinement like in GaAs
devices is possible. The apparent advantage of this method would be the smooth
confinement potential in contrast to the rough edges in devices fabricated until now.

In conclusion, a graphene nanostructure with low disorder and high tunability is
most likely achieved by using a crystalline substrate, which matches the graphene
lattice structure well (e.g. BN), and avoiding edge disorder induced in the patterning
process.
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Chapter 6
Electronic Properties of Monolayer
and Multilayer Graphene

Mikito Koshino and Tsuneya Ando

Abstract We present a theoretical review of the basic electronic properties of
graphene and its multilayers in terms of the effective mass approximation. Using
the low-energy effective Hamiltonian, we describe the electronic spectra, the trans-
port properties, the optical absorption and the orbital magnetism, which are distinct
from those of conventional systems.

6.1 Introduction

The physics of graphene and related materials has attracted broad interest since
the experimental realizations of mono-crystalline graphene [1, 2]. Its unique band
structure equivalent to a relativistic massless particle gives rise to unusual electronic
properties quite different from those of conventional systems. In this chapter we
present a short review of graphene’s electronic properties from a theoretical point of
view. The electronic structure of graphene is successfully described by the effective
mass approximation. In the family of graphene related materials, the effective mass
model was developed earlier for three dimensional graphite [3–5] and also for a sin-
gle wall carbon nanotube [6] which is a rolled-up graphene. The effective Hamilto-
nian of graphene is shown to be equivalent to the Dirac Hamiltonian for a zero-mass
particle, where the conduction band and valence band with linear dispersion touch
at the so-called Dirac point [4, 7, 8]. This is a topologically singular point around
which an electronic state acquires a geometrical phase factor called Berry’s phase.
The singularity at the Dirac point is responsible for the peculiar behavior in the
transport properties, such as the minimum conductivity [9], the dynamical conduc-
tivity [10], and the localization effect [11, 12]. This singularity is also considered
as the origin of the anomalous diamagnetic susceptibility [4, 13, 15–17], and the
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half integer quantum Hall effect [18–20] through the formation of the zero-energy
Landau level.

Multilayer systems containing few layers of graphene have also been fabricated
[1, 21–24]. There the interlayer coupling drastically changes the band structure, giv-
ing characteristic features depending on the number of layers and the stacking man-
ner [14, 25–27, 29–33]. Bilayer graphene contains a zero-gap band structure, but the
dispersion around the band touching point is quadratic unlike monolayer graphene
[25–28]. For multilayer graphenes with more than two layers, the electronic states
can be understood in terms of a decomposition of Hamiltonian into subsystems that
are effectively identical to monolayer or bilayer graphene [14, 35].

Here we theoretically describe the basic electronic properties in graphene us-
ing the effective-mass approximation. In Sect. 6.2, we introduce the effective mass
Hamiltonian of monolayer graphene, and describe the electronic spectrum with and
without a magnetic field. Based on this, we present the physical properties of mono-
layer graphene, including the orbital diamagnetism in Sect. 6.3, the transport prop-
erties in Sect. 6.4 and the optical properties in Sect. 6.5. We extend the arguments
to bilayer graphene in Sect. 6.6, where we will see that several properties are signif-
icantly different from those of the monolayer. In Sect. 6.7, we present the effective
Hamiltonian of a general N -layer graphene stack, and make arguments for the band
decomposition into monolayer-like and bilayer-like subsystems.

6.2 Electronic Structure of Graphene

6.2.1 Effective Hamiltonian

Graphene is composed of a hexagonal network of carbon atoms, for which the
atomic structure and the first Brillouin zone are shown in Fig. 6.1(a) and (b),
respectively. A unit cell, including the two carbon atoms at A and B sites, is
spanned by the primitive lattice vectors a = a(1,0) and b = a(−1/2,

√
3/2), where

a ≈ 0.246 nm is the graphene lattice constant. Let us also define τ 1 = a(0,1/
√

3),
τ 2 = a(−1/2,−1/2

√
3), τ 3 = a(1/2,−1/2

√
3), which are the vectors from a

B site to the nearest A sites. The reciprocal lattice vectors are given by a∗ =
(2π/a)(1,1/

√
3) and b∗ = (2π/a)(0,2/

√
3). The Brillouin zone has two inequiv-

alent corners called K and K′ points, defined by K = (2π/a)(1/3,1/
√

3) and
K′ = (2π/a)(0,2/

√
3), respectively.

The electronic structure of graphene in the low-energy region is described by the
effective mass approximation in a similar manner to graphite [4–8]. In the follow-
ing, we derive the effective Hamiltonian for low-energy graphene electrons, starting
from the tight-binding model for the carbon π band. In the tight-binding model, the
wavefunction is given by

ψ(r) =
∑
RA

ψA(RA)φ(r − RA) +
∑
RB

ψB(RB)φ(r − RB), (6.1)
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Fig. 6.1 (a) The lattice structure of a graphene sheet. The two primitive translation vectors are
denoted by a and b. The three vectors directed from a B site to the nearest neighbor A sites are
given by τ l (l = 1,2,3). (b) The first Brillouin zone. The vertices of the hexagon are called K
and K′ points and reciprocal lattice vectors are denoted by a∗ and b∗ . (c) The π -band structure
of graphene in the nearest-neighbor tight-binding model. The upper band is cut for illustrative
purposes

where φ(r) is the wavefunction of the pz orbital of a carbon atom, which composes
the π band, RA = naa + nbb + τ 1, and RB = naa + nbb with na and nb being
integers. Let −γ0 be the transfer integral (commonly denoted by t in the literature)
between nearest-neighbor carbon atoms. The Hamiltonian is then given by

H = −γ0

∑
RA

3∑
l=1

|RA − τ l〉〈RA| + h.c., (6.2)

where |R〉 represents φ(r − R), i.e., the atomic state localized at site R. The
Schrödinger equation then becomes

εψA(RA) = −γ0

3∑
l=1

ψB(RA − τ l)

εψB(RB) = −γ0

3∑
l=1

ψA(RB + τ l ),

(6.3)

where the origin of energy is set to be the energy level of the carbon pz orbital. When
assuming the Bloch wavefunction, ψA(RA) ∝ eik·rfA(k), ψB(RB) ∝ eik·rfB(k),
the Schrödinger equation becomes

(
0 h(k)

h(k)∗ 0

)(
fA(k)
fB(k)

)
= ε

(
fA(k)
fB(k)

)
(6.4)

h(k) = −γ0

3∑
l=1

exp(ik · τ l), (6.5)
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giving the eigenenergies

ε± = ±
√

1 + 4 cos
akx

2
cos

√
3aky
2

+ 4 cos2 akx

2
. (6.6)

Here ε+ and ε− give the eigenenergies for the conduction and valence bands, re-
spectively. There two bands touch each other at the K and K′ points where ε± = 0.
They are shown in Fig. 6.1(c). Since the π band is half-filled in graphene, the Fermi
energy goes through the band touching point in Fig. 6.1(c), which is called Dirac
point.

In the vicinity of K and K′, the energy dispersion approximates a linear form,

ε± = ±�v|k|, (6.7)

where k is now a relative wave vector measured from K or K′, and v is the constant
velocity defined by

v =
√

3

2

aγ0

�
. (6.8)

With the parameter value γ0 ≈ 3 eV for graphite, we have v ≈ 106 m/s, and this is
compatible with the experimental estimations [1, 2].

Low-energy electronic states near ε = 0 are written in terms of the states near
the K and K′ points. There the wave functions are expressed as a product of the
Bloch factor associated with K or K′ and the envelope function which slowly varies
compared to the atomic length scale a. Specifically, the wave amplitudes at A and
B sites are written as

ψA(RA) = eiK·RAFK
A (RA) + eiK

′ ·RAFK′
A (RA)

ψB(RB) = −ωeiK·RBFK
B (RB) + eiK

′ ·RBFK′
B (RB),

(6.9)

respectively, where FK
A ,F

K′
A ,F

K
B ,F

K′
B are the corresponding envelope functions,

and the factor ω = exp(2πi/3) is introduced to make the final equation simple.
By putting the above expression into (6.3), and using the long wave approximation
such as

F(r + τ l ) ≈ F(r) + (τ l · ∇)F (r) (
F = FK

A , etc.
)
, (6.10)

we obtain

HKFK = εFK, HK′
FK′ = εFK′

, (6.11)

where

HK =
(

0 vp−
vp+ 0

)
, HK′ =

(
0 vp+
vp− 0

)
, (6.12)

FK =
(
FK
A (r)

FK
B (r)

)
, FK′ =

(
FK′
A (r)

FK′
B (r)

)
, (6.13)
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Fig. 6.2 The electronic band structures near the K and K′ points and the density of states in
graphenes with a (a) zero gap and a (b) non-zero gap

p = (px,py) = −i�∇ and p± = px ± ipy . The effective Hamiltonians HK and HK′

give the identical eigenenergy

εs(p) = svp (s = ±), (6.14)

where p =
√
p2
x + p2

y , in accordance with (6.7).

The density of electronic states is

D(ε) = gsgv|ε|
2π�2v2

, (6.15)

where gs = 2 is the spin degeneracy and gv = 2 is the valley degeneracy, i.e., the
degrees of freedom for the K and K′ points. The energy bands and the density of
states in the low energy region of graphene are plotted in Fig. 6.2(a). The electron
or hole concentration at zero temperature is

ns = sgn(ε)
gsgvε

2

4π�2v2
, (6.16)

with

sgn(x) =

⎧⎪⎨
⎪⎩

+1 (x > 0);
0 (x = 0);
−1 (x < 0).

(6.17)

6.2.2 Landau Levels

Before considering quantum mechanics in detail, it is intuitive to consider the semi-
classical motion of a graphene electron under a magnetic field. The equation of
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motion for an electron in band s (s = ±) is given by

dp
dt

= −e

c
vs(p) × B, (6.18)

where p = (px,py) is the electron momentum, B is a uniform magnetic field per-
pendicular to the graphene layer, and

vs(p) = ∂εs(p)
∂p

= svp
|p| . (6.19)

Obviously the electron moves round on the equi-energy circle in p-space with the
cyclotron frequency,

ωc(ε) = eBv2

cε
, (6.20)

which is inversely proportional to the energy ε, and c is the speed of light.
In quantum mechanics, the Hamiltonian in a magnetic field is obtained by re-

placing p with p + (e/c)A, where A is the vector potential giving the magnetic field
B = ∇ × A. Then p± in the Hamiltonian (6.12) is replaced with

π± = πx ± iπy, π = p + e

c
A. (6.21)

The Landau level spectrum can be found using the relation π+ = (
√

2�/lB)a† and
π− = (

√
2�/lB)a. Here lB = √

c�/(eB) is magnetic length, and a† and a are rais-
ing and lowering operators, respectively, which operate on the Landau-level wave
function φn as aφn = √

nφn−1 and a†φn = √
n + 1φn+1.

The eigenfunction of the Hamiltonian at the K point is written as (c1φn−1, c2φn)

with an integer n ≥ 0. We define φn = 0 for n < 0. The Hamiltonian matrix for
(c1, c2) becomes

HK =
(

0 �ωB
√
n

�ωB
√
n 0

)
, (6.22)

where

�ωB =
√

2�v

lB
. (6.23)

We obtain [4]

εn = �ωB sgn(n)
√|n|, n = 0,±1,±2, . . . . (6.24)

The Hamiltonian at the K′ point is obtained by exchanging π± and the energy spec-
trum at K′ becomes identical to K. Figure 6.3(a) shows the Landau level structure.
Each Landau level is four-fold degenerate due to spin and valley degeneracies, when
the spin-Zeeman splitting is neglected. The valley degeneracy is guaranteed by the
spacial inversion symmetry with respect to the midpoint between A site and B site,
because K and K′ are inverted by the space inversion [38].
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Since the energy level is proportional to
√
n, the energy spacing between adjacent

Landau levels is not constant but becomes narrower going further from the Dirac
point. For large n, the energy spacing is written in terms of the classical cyclotron
frequency as

εn+1 − εn ∼ �ωc(εn). (6.25)

The other frequency parameter ωB defined in (6.23) represents the energy spacing
between n = 0 and 1, and is regarded as the quantum limit of the classical cyclotron
frequency ωc(ε) in the limit ε → 0.

The Hall conductivity σxy can be determined by counting the number of occupied
levels above the charge neutral point. When the Fermi energy is between εn and
εn+1, we have [18, 19]

σxy = −gvgs e
2

h

(
n + 1

2

)
, (6.26)

giving a sequence of quantized Hall conductivity, ±2,±6,±10, . . . in units of
−e2/h. The factor 1/2 in the bracket appears because the 0-th Landau level is half-
filled when the system is charge neutral.

6.2.3 Band Gap in Graphene

In the presence of a potential asymmetry between A and B sites, the Hamiltonian
becomes

HK =
(
� vp−
vp+ −�

)
. (6.27)

The diagonal terms ±� represent the potential at A and B sites opening an en-
ergy gap at the Dirac point, and the system is now equivalent to one with a massive
Dirac electron. Although A and B are intrinsically symmetric in usual monolayer
graphene, the asymmetry can arise in a sample placed on a certain substrate mate-
rial, where the interaction between the graphene and the substrate lattice produces
different potentials between A and B [36, 37]. We can safely assume � ≥ 0 without
loss of generality. The energy band in B = 0 is then given by

εs(p) = s

√
v2p2 + �2 (s = ±1). (6.28)

The density of states is correspondingly

D(ε) = gvgs |ε|
2π�2v2

θ
(|ε| − �

)
, (6.29)

where θ(t) is a step function, defined by

θ(t) =
{

1 (t > 0);
0 (t < 0).

(6.30)
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The energy bands and the density of states in the low energy region of gapped
graphene are shown in Fig. 6.2(b).

In a magnetic field, the valley degeneracy of the Landau levels is generally bro-
ken by the asymmetric potential �, since it breaks the spacial inversion symme-
try. The Hamiltonian in a magnetic field is again given by replacing p± with π±
in (6.27). The eigenenergies then become [39]

εK
n = sgn−(n)

√
(�ωB)2 |n| + �2,

εK′
n = sgn+(n)

√
(�ωB)2 |n| + �2

(6.31)

with n = 0,±1,±2, . . . , and

sgn±(n) =

⎧⎪⎨
⎪⎩

+1 (n > 0);
±1 (n = 0);
−1 (n < 0).

(6.32)

Figure 6.3(b) shows an example of a Landau level structure for � > 0. The Lan-
dau levels for n = 0 go to the top of the valence band in K, and to the bottom of
the conduction band in K′, while all other levels remain valley-degenerate. In the
Hall conductivity, the phase of σxy = 0 newly appears in the gap region, due to the
splitting of the n = 0 level.

Because the Hamiltonian of the gapped graphene is equivalent to a massive Dirac
electron, the Landau level structure around the band edge should correspond to that
of a conventional electron system. This is clearly illustrated by the effective Hamil-
tonian expanded in the vicinity of the band edge [39]. For the conduction band, the
effective Hamiltonian for the A site near the band bottom (ε = �) is written apart
from the constant energy as

H ≈ v2

2�
π−ξπξ = �ωc

(
N̂ + 1

2

)
+ ξ

2
�ωc, (6.33)

where N̂ = a†a, and ξ = +,− are for K and K′, respectively. The index N (eigen-
value of N̂ ) coincides with the number counted from the band bottom in each val-
ley, and is generally different from n in the previous numbering scheme as shown in
Fig. 6.3. Physically, N indicates the index of the Landau level wavefunction of the
A site, which has the dominant amplitude over the B site in low energies.

The second term in (6.33) is responsible for the energy difference between the
Landau levels of K and K′ belonging to the same N . This is written in the form of
the pseudo-spin (valley) Zeeman term, ξμ∗B , where the different valleys K and K′
serve as pseudo-spin up (ξ = +1) and down (ξ = −1), respectively. The effective
magnetic moment μ∗ associated with the valley splitting is given by

μ∗ = 1

2
g∗μB, g∗ = 2

m

m∗ , m
∗ = �

v2
, (6.34)
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Fig. 6.3 Landau level structure in graphene with potential asymmetry (a) � = 0 and (b) �> 0.
The horizontal dotted lines connecting levels indicate the correspondence of the levels in the limit
of � → 0. In (a), numbers between the levels indicate the quantized Hall conductivity in units of
−e2/h

where μB = e�/(2mc) is the Bohr magneton and m is the free electron mass. For
instance, the effective g factor is estimated at g∗ ∼ 60 for � = 0.1 eV. The origin of
the valley-dependent magnetic moment is attributed to the orbital current circulation
opposite between K and K′, which is inherent in the chiral nature of the Hamilto-
nian [58]. In the semiclassical picture, this is explained in terms of the self-rotation
of the wave packet [59, 60].

6.3 Orbital Diamagnetism

6.3.1 The Susceptibility Singularity

In a condensed matter system, the orbital magnetism sensitively depends on the
details of the band structure, and sometimes largely deviates from the conven-
tional Landau diamagnetism. Particularly, narrow gap materials, such as graphite
[4, 40, 41] or bismuth [42–44], exhibit a strong orbital diamagnetism which over-
comes the spin paramagnetism. The orbital magnetism was also studied for related
materials, such as graphite intercalation compounds [45–48], carbon nanotubes
[49–53], few-layer graphenes [14, 54, 55], and organic compounds having a Dirac-
like spectrum [56]. A graphene monolayer is an extreme case, in which the conduc-
tion and valence bands stick together, and accordingly the orbital susceptibility has
a strong singularity at the Dirac point [4, 13, 15, 16, 39, 57], as we will see below.
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The thermodynamical potential of graphene at temperature T and magnetic field
B is written as

Ω = − 1

β

gvgs

2πl2B

∑
s=±

∞∑
n=0

ϕ
[
εs
(
(�ωB)

2n
)](

1 − δn0

2

)
, (6.35)

where β = 1/kBT , εs(x) = s
√
x, ϕ(ε) = log[1 + e−β(ε−ζ )] with ζ being the chem-

ical potential. In a weak magnetic field, using the Euler-Maclaurin formula, the
summation in n in (6.35) can be written as an integral in the continuous variable x
and a residual term. In the lowest order in B , the latter becomes

�Ω = gvgs
e2v2B2

12π

∫ ∞

−∞

(
−∂f (ε)

∂ε

)
dε, (6.36)

where f (ε) is the Fermi distribution function. The magnetization M and the mag-
netic susceptibility χ are defined by

M = −
(
∂Ω

∂B

)
ζ

, χ = ∂M

∂B

∣∣∣∣
B=0

= −
(
∂2Ω

∂B2

)
ζ

∣∣∣∣
B=0

. (6.37)

Using (6.36) and (6.37), we obtain [4, 14, 45, 46]

χ = −gvgs e
2v2

6πc2

∫ ∞

−∞

(
−∂f (ε)

∂ε

)
dε. (6.38)

At zero temperature, the integral in (6.38) becomes a delta function in Fermi energy,
yielding

χ(εF ) = −gvgs e
2v2

6πc2
δ(εF ). (6.39)

This anomalous behavior can also be understood as the zero-mass limit of a
gapped Dirac electron [39]. Using the Landau levels of (6.31), the susceptibility
is calculated in a similar way as

χ(εF ) = −gvgs e
2v2

6πc2

1

2�
θ
(
� − |εF |), (6.40)

which is non-zero only in the energy gap, |ε| < �. In the limit of � → 0, χ(εF )
goes to the delta function of (6.39). Figure 6.4(a) and (b) show the density of states
and the susceptibility of gapped graphene, respectively. The magnetic susceptibil-
ity around the band edge corresponds to the conventional magnetism of an elec-
tron. The valley Zeeman energy argued in the previous section induces the Pauli
paramagnetism as a real spin does, and the Landau quantization gives the Landau
diamagnetism in the usual manner. Each component is written as

χP (ε) =
(
g∗

2

)2

μ2
BD(ε), (6.41)
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Fig. 6.4 (a) Density of states, and (b) susceptibility of monolayer graphene with the asymmetry
gap �. In (b), the upward direction represents a negative (i.e., diamagnetic) susceptibility

χL(ε) = − 1

3

(
m

m∗

)2

μ2
BD(ε), (6.42)

with the density of statesD(ε) = gvgsm
∗/(2π�2)θ(ε). The total susceptibility χP +

χL actually agrees with the amount of the jump at the conduction band bottom in χ
of (6.40). Because g = 2m/m∗ in the present case, we have χL = −χP /3 ∝ 1/m∗
as for the free electron, giving the paramagnetic susceptibility in total. This gives a
discrete jump of the total susceptibility toward the paramagnetic direction when the
Fermi energy enters the conduction band.

6.3.2 Response to a Non-uniform Magnetic Field

The argument can be extended to spatially modulated magnetic fields. Monolayer
graphene in a non-uniform magnetic field was studied in the context of the electron
confinement [20, 61, 62], the peculiar band structures in superlattice [63, 64], trans-
port [65], and the quantum Hall effect [66, 67]. Let us consider graphene placed
under a magnetic field given by B(r) = B(q) exp(iq · r) + c.c., where ‘c.c.’ stands
for complex conjugate. Within linear response, the induced magnetic moment can
be written as

m(q) = χ(q)B(q), (6.43)

where m(q) is the Fourier transform of the local magnetic moment perpendicular
to the layer, m(r), which is related to the local current density as jx = c∂m/∂y,
jy = −c∂m/∂x.

For graphene at the zero temperature, the q-dependent susceptibility can be ex-
plicitly calculated as [57]
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χ(q; εF ) = −gvgse
2v

16�c2

1

q
θ(q − 2kF )

[
1 + 2

π

2kF
q

√
1 −
(

2kF
q

)2

− 2

π
sin−1 2kF

q

]
,

(6.44)

where kF = |εF |/(�v) is the Fermi wave vector. Significantly, χ vanishes in the
range q < 2kF , i.e., no current is induced when the external field is smooth enough
compared to the Fermi wavelength. As a function of εF at fixed q , χ is nonzero
only in a finite region satisfying |εF | < �vq/2, and its integral over εF becomes
constant −gsgve2v2/(6π2c2). Thus, in the limit of q → 0, χ goes to a delta function
of (6.39).

The undoped graphene (εF = 0) has a special property in which the counter
magnetic field induced by the response current copies the spatial distribution of
the external magnetic field, regardless of its length scale [57]. At εF = 0, (6.44)
becomes

χ(q; 0) = −gvgse
2v

16�c2

1

q
. (6.45)

When undoped graphene is placed in a sinusoidal external field B(r) = B cosqx,
the counter magnetic field induced by graphene is calculated with (6.45) as

Bind(r) = −αgB(r), αg = 2πgvgse2v

16�c2
≈ 4 × 10−5. (6.46)

Because the ratio αg is independent of q , (6.46) is actually valid for any external
field B(r), i.e., the magnetic field on the graphene is always reduced by the same
factor 1 − αg . This property holds whenever χ(q) is proportional to 1/q . The argu-
ment of the magnetic field screening can be extended to the three dimensional field
distribution. When a certain magnetic object is placed above the undoped graphene
(z > 0), the counter magnetic field in z > 0 is shown to be equivalent to the field
induced by the mirror image of the original object reflected with respect to z = 0,
and reduced by the factor αg .

6.4 Transport Properties

Graphene exhibits peculiar transport properties due to its unusual band structure
where the conduction and valence bands touch at the single energy. When the Fermi
energy εF is much larger than the disorder level broadening, the system is not largely
different from the conventional metal, and the conductivity is well described by
the Boltzmann transport theory with a corresponding density of states and veloc-
ity. However, the approximation inevitably breaks down at the charge neutrality
point (εF = 0), where it is highly nontrivial if the system is metallic or insulating,
since the density of states vanishes whereas the band velocity is finite. To argue the
transport behavior at the charge neutrality point, we need a refined approximation
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that properly includes the finite level broadening. In this section, we first review
the transport properties of graphene within the Boltzmann approach [68], and then
introduce the self-consistent Born approximation to calculate the conductivity at
εF = 0.

6.4.1 Boltzmann Conductivity

The conductivity tensor is written as

σμν =
∫ (

−∂f

∂ε

)
σμν(ε)dε (μ, ν = x, y). (6.47)

In the Boltzmann approach, the diagonal conductivity becomes

σxx(ε) = e2v2

2
D(ε)

τtr

1 + ω2
cτ

2
tr

, (6.48)

where τtr is the transport relaxation time defined as

1

τtr (εsp)
=
∑
s′

∫
dp′

(2π�)2
〈|Us′ p′,sp |2〉δ[εs(p)− εs′

(
p′)][1 − cos(θp − θp′)

]
, (6.49)

where U represents impurity potential and 〈· · · 〉 denotes the average over impurity
configurations. In B = 0, we have

σxx(ε) = e2v2

2
D(ε)τtr , (6.50)

which is identical to the conventional formula for metals.
The Hall conductivity then becomes

σxy(ε) = −ωcτtrσxx(ε), (6.51)

where ωc is the cyclotron frequency defined in (6.20). In the case of a weak mag-
netic field |ωc |τtr  1, the Hall coefficient, defined by RH = −σxy/[B(σ 2

xx +σ 2
xy)],

becomes

RH = − 1

nsec
, (6.52)

at zero temperature. This is exactly the same as that in conventional semiconductors
and metals.

For a model disorder potential, we consider a short-range scatterer where the
length scale is much smaller than the Fermi wave length. This is modeled by

U(r) =
∑
j

uj δ(r − rj ), (6.53)
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where uj is the strength of the scatterer and rj its position. We also assume that the
length scale of the scattering potential is longer than the atomic scale a, to neglect
intervalley scattering between K and K′. The transport relaxation time in this model
is written as [9]

1

τtr (ε)
= π

�
W |ε|. (6.54)

HereW is a dimensionless parameter representing the strength of scatterers, defined
as

W ≡ niu
2

4π�2v2
, (6.55)

where u2 = 〈u2
j 〉 and ni is the concentration of scatterers per unit area. Equa-

tion (6.54) indicates that the ratio of the energy broadening �/τtr (ε) to ε has the
constant value πW . We should assume W  1 except in very dirty graphene such
that broadening is comparable to ε, i.e., the Dirac cone is completely smeared out
by the disorder. In graphene, it should be noted that τtr = 2τ , where τ represents
the usual scattering time corresponding to a single-particle lifetime. The factor two
corresponds to the absence of backscattering [69, 70]. The diagonal conductivity at
zero magnetic field then becomes

σxx(ε) = gvgse
2

2π2�

1

2W
, (6.56)

which is independent of the Fermi energy. The Hall conductivity in a weak magnetic
field is

σxy(ε) = −gvgse
3Bv2

4π3c

sgn(ε)

W 2ε2
. (6.57)

Experimentally, the conductivity increases almost linearly with ns for sufficiently
large ns , showing that the effective scattering strength in actual graphene on a SiO2

substrate varies considerably with ns . The most plausible scatterers giving rise to
such a strong ns dependence are charged impurities [68, 71]. The short-range scat-
terers argued above approximately describe charged impurities, by assuming that
|uj | effectively decreases when in proportion to k−1

F , where kF is the Fermi wave
vector. This leads to W ∝ ε−2

F ∝ n−1
s , and consequently, the conductivity increases

in proportion to the electron or hole concentration ns , as if there is a constant mo-
bility [68, 71]. However, this does not conclude that graphene is insulating at the
charge neutral point (ns = 0), since the present approach is no longer valid at zero
Fermi energy. As we will see in the following section, the improved treatment pre-
dicts a finite conductivity, on the order of e2/�, at the Dirac point.
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Fig. 6.5 (a) Some examples of the density of states (dashed lines) and the conductivity (solid lines)
in the absence of a magnetic field, calculated in a self-consistent Born approximation (SCBA) for
short-range scatterers. Thin horizontal lines are the Boltzmann conductivity [9]. (b) Some exam-
ples of calculated Hall conductivity as a function of the Fermi energy calculated in a self-consistent
Born approximation for short-range scatterers [74]

6.4.2 Self-consistent Born Approximation

The self-consistent Born approximation is a technique which properly treats the fi-
nite level-broadening effect by estimating the selfenergy by Dyson’s equation in a
self-consistent manner. This was applied to describe the broadening of the degen-
erate Landau levels in a two-dimensional electron gas [72, 73], and also is useful
in the present situation where the broadening energy can be larger than the Fermi
energy [9]. Figure 6.5(a) shows some examples of the density of states and the
conductivity in graphene calculated by the self-consistent Born approximation with
short-range scatterers assumed. The density of states becomes nonzero at εF = 0 be-
cause of the level broadening and is also enhanced due to the level repulsion effect
near εF = 0. Significantly, the electrical conductivity at εF = 0 is given by

σmin = gvgse
2

2π2�
(6.58)

which is independent of the scattering strength. The resulting conductivity varies
smoothly across εF = 0 but exhibits a sharp jump in the limit of weak scattering
(W  1) from the Boltzmann result in (6.56) for εF �= 0 down to σmin at εF = 0.
The energy scale characterizing this singularity in the vicinity of εF = 0 turns out
to be

ε0 = 2Wεce
−1/2W (6.59)

where εc is the cutoff energy roughly corresponding to a half of the π -band width
(∼ 9 eV). This becomes extremely small in clean graphene with W  1.

Similar calculations in the self-consistent Born approximation were performed
for the weak-field Hall conductivity [74]. Figure 6.5(b) shows some examples of
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Fig. 6.6 Calculated
minimum conductivity at the
Dirac point versus W for
scatterers with Gaussian
potential [75]

the calculated σxy . The Hall conductivity behaves roughly as −ε−1
F outside of the

region |εF | > ε0, but is considerably reduced from the Boltzmann result. σxy varies
almost linearly in the region −εc < ε < εc and crosses zero at the Dirac point. The
self-consistent Born approximation was also applied to the quantum Hall regime in
which the spectrum is split into the Landau levels [9, 18].

Calculations can be extended to the case of scatterers with a long-range poten-
tial [75]. We consider, for example, scatterers with a Gaussian potential U(r) =∑

j (vi/πd
2) exp[−(r − rj )2/d2 ] with the characteristic length scale d . The energy

region affected strongly by the presence of scatterers is limited to |ε| � �v/d be-
cause scattering becomes ineffective for k > d−1. Figure 6.6 shows the minimum
conductivity at the Dirac point as a function of W , at several different d’s. For
very short-range case kcd < 1, the conductivity is nearly independent of W , where
kc = εc/(�v) is the cutoff momentum. For kcd > 1, on the other hand, the conduc-
tivity increases with W . States at the Dirac point have higher k components because
of the strong forward scattering caused by long-range scatterers. These higher k
states are weakly scattered in the backward direction and therefore tend to have a
large contribution to the conductivity. Since the first experimental observation of a
minimum conductivity [1], which is larger than the theoretical prediction [9], there
have been various experimental [76–78] and theoretical works [79–86] to answer
the question whether the minimum conductivity is really universal or not. The above
discussion clearly shows that the conductivity at the Dirac point is not universal but
depends on the degree of the disorder for scatterers with a long-range potential when
the disorder is sufficiently large.
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6.5 Optical Properties

The optical absorption is related to the dynamical conductivity of the system. Within
the linear response, the dynamical conductivity is generally given by

σxx(ω) = e2
�

iS

∑
α,β

f (εα) − f (εβ)

εα − εβ

|〈α|vx |β〉|2

εα − εβ + �ω + iδ
, (6.60)

where S is the area of the system, vx = ∂H/∂px is the velocity operator, δ is the pos-
itive infinitesimal, f (ε) is the Fermi distribution function, and |α〉 and εα describe
the eigenstate and the eigenenergy of the system. The optical absorption intensity is
related to the real part of σxx(ω). The transmission of light incident perpendicular
to a two-dimensional system T is given by [72]

T =
∣∣∣∣1 + 2π

c
σxx(ω)

∣∣∣∣
−2

≈ 1 − 4π

c
Reσxx(ω). (6.61)

For graphene, σxx(ω) is written at zero temperature as [10]

σxx(ω) = gvgs

4

e2

4�

[
4

π

iεF

�ω + i�/τ(εF )
+ 1 + i

π
ln

�ω + i�/τ(�ω/2) − 2εF
�ω + i�/τ(�ω/2) + 2εF

]
,

(6.62)

where the first term in the bracket represents the Drude (intra-band) part, and the
second and third terms the inter-band part. We included the disorder effect by re-
placing δ with �/τ(ε) where τ(ε) is the relaxation time at the energy ε. In the
second term, we put τ(�ω/2), corresponding to the energy of the states giving a
major contribution to the optical excitation.

When we assume that the disorder potential is dominated by the short-range scat-
terers, the relaxation time is given by (6.54), and the frequency dependence of the
dynamical conductivity is scaled by �ω/εF . Figure 6.7(a) shows σxx(ω) as a func-
tion of �ω/εF for several values of the disorder strength parameter W . The scaling
of the dynamical conductivity as a function of �ω/εF shows that σxx(ω) exhibits a
singular behavior at the point (ω, εF ) = (0,0). In fact, when we set ω = 0 with fixed
nonzero εF , the static conductivity agrees with the Boltzmann result of (6.56). When
we set εF = 0 first with nonzero ω, on the other hand, the limit ω → 0 becomes

σ∞ = gvgs

4

e2

π�
(6.63)

which is the universal interband conductivity. Therefore, the static conductivity, i.e.,
σxx in the limit of ω → 0 at each εF , has a singular jump at εF = 0. The calculation
in the self-consistent Born approximation in the previous section shows that this
anomaly manifests itself as a near singular dependence of σxx on εF even if level
broadening effects are properly included, while the conductivity at εF = 0 becomes
a different value of (6.58).
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Fig. 6.7 (a) The dynamical conductivity Reσxx(ω) calculated using the Boltzmann transport
equation. The frequency is scaled by the Fermi energy [10]. (b) The interband part of the dynam-
ical conductivity Reσxx(ω) of graphene plotted against the frequency ω, calculated for different
magnetic fields. Dashed curves indicate the transition energies between several Landau levels in
the ideal limit [35]

The transmission of light incident perpendicular to a graphene sheet with εF = 0
is given by

T ≈ 1 − 4π

c
σ∞ = 1 − gvgs

4

πe2

c�
(6.64)

showing that the absorption is given by πα ≈ 0.023 independent of the frequency or
wavelength, with fine structure constant α ≡ e2/(c�) ≈ 1/137. This small absorp-
tion was experimentally observed [87–89].

The magneto-optical absorption is studied by calculating the dynamical conduc-
tivity for the Landau level structures. For graphene, the matrix element of the veloc-
ity operator vx is non zero only between the Landau levels n and n± 1 with arbitrary
combinations of s = ±, and this gives the selection rule for the photo-excitation.
Figure 6.7(b) shows the plots of the interband part of Reσxx(ω) of graphene in sev-
eral different magnetic fields [35]. Here we assume εF = 0, zero temperature, and
a constant relaxation time for simplicity. Dotted lines represent the transition ener-
gies between several specific Landau levels as a continuous function of B . The peak
positions of each panel correspond to the intersections of those and the bottom line
of the panel. The peak position obviously shifts in proportion to

√
B (i.e., ∝ �ωB ).

In the limit of vanishing magnetic field, the conductivity eventually becomes the
constant value given by (6.63) [10].
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Fig. 6.8 (a) The lattice structure of AB-stacked bilayer graphene. (b) The energy dispersion of
bilayer graphene with various values of interlayer potential asymmetry �

6.6 Bilayer Graphene

The most stable structure of bilayer graphene is known to be AB (Bernal) stacking as
shown in Fig. 6.8(a) [1, 21–24, 28]. A unit cell includes A1 and B1 atoms on layer 1
and A2 and B2 on layer 2, and the layers are stacked with the interlayer spacing of
d0 ≈ 0.334 nm, such that pairs of sites B1 and A2 lie directly above or below each
other. We can also have different stacking structures depending on the experimental
condition, such as AA stacked bilayer graphene where sites A1 and A2 lie directly
above or below each other [90–92], and rotationally-stacked (turbostratic) bilayer
graphene where two graphene layers are overlapped with a rotational misorientation
[93–99].

Below we consider particularly the electronic properties of the most common
AB stacked bilayer graphene. There the interlayer coupling drastically changes the
linear band structure of monolayer, leaving a pair of quadratic energy bands touch-
ing at zero energy [25–27, 29–33]. Accordingly, the electronic properties of bilayer
graphene become characteristic of this system as we will see in the following.

6.6.1 Electronic Structure

In order to write down an effective mass Hamiltonian, we adapt the Slonczewski-
Weiss-McClure parameterization of the tight-binding couplings of bulk graphite
[100]. The parameter γ0 is the same as the intralayer nearest neighbor coupling
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in monolayer graphene, and describes nearest-neighbor coupling between Ai and
Bi within each layer. γ1 describes the strong nearest-layer coupling between sites
(B1–A2) that lie directly above or below each other, γ3 describes nearest-layer cou-
pling between sites A1–B2 and γ4 is another nearest-layer coupling between A1–
A2, and between B1–B2. There is an energy difference �′ between the sites which
have neighboring atoms right above or below, and the sites which do not. For typ-
ical values of bulk ABA graphite we quote [100] γ1 = 0.39 eV, γ3 = 0.315 eV,
γ4 = 0.044 eV, and �′ = 0.047 eV, while it should be mentioned that the improved
band parameter values were reported in a recent experiment [101].

The Hamiltonian at the K point for the basis (|A1 〉, |B1 〉, |A2 〉, |B2 〉) is given
by [25]

H =

⎛
⎜⎜⎝

0 vp− −v4p− v3p+
vp+ �′ γ1 −v4p−

−v4p+ γ1 �′ vp−
v3p− −v4p+ vp+ 0

⎞
⎟⎟⎠ , (6.65)

where v and p± are the same as ones in (6.12) for monolayer graphene, and we
defined

v3 =
√

3

2

aγ3

�
, v4 =

√
3

2

aγ4

�
. (6.66)

The effective Hamiltonian for K′ can be obtained by exchanging p+ and p−, giving
the equivalent spectrum in zero magnetic field.

The parameters v3, v4 and�′ give relatively minor effects to the band structure as
mentioned later. When we neglect them, the eigenenergies of (6.65) become [25, 26]

εμ,s(p) = s

[
μ

2
γ1 +

√
1

2
γ 2

1 + v2p2

]
. (6.67)

The branch μ = − gives a pair of conduction (s = +) and valence (s = −) bands
touching at zero energy. The other branch μ = + is another pair repelled away by
±γ1. In the following we use the notation μ = H,L instead of +,− and specify the
four energy bands as (μ, s) = (L,±), (H,±). We will also use the notation the band
indexes 1,2,3,4 for (H,−), (L,−), (L,+), (H,+), respectively, in the ascending
order in energy. In ε  γ1, the lower subbands (L,−) and (L,+) are approximately
expressed as a quadratic form,

εL,±(p) ≈ ±v2p2

γ1
≡ p2

2m∗ , (6.68)

with the effective mass

m∗ = γ1

2v2
. (6.69)

The energy band of (6.67) is shown in the curve of � = 0 in Fig. 6.8(b), where � is
the interlayer potential asymmetry that will be discussed later.
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The Hamiltonian of (6.65) can be reduced to the low-energy expression with
additional parameters retained. Using a basis (ψA1,ψB2), this is written as

H(eff) = −v2

γ1

(
0 p2−
p2+ 0

)
+ v3

(
0 p+
p− 0

)
+ 2vv4p

2

γ1

(
1 0
0 1

)
. (6.70)

The corresponding eigenenergies are

εL,±(p) ≈ ±
√
v4p4

γ 2
1

− 2ξ
v3v2p3

γ1
cos 3ϕ + v2

3p
2 + 2vv4p

2

γ1
, (6.71)

where tanϕ = py/px . The parameter v3 produces trigonal warping in a similar way
to bulk graphite [100], where the energy band around each valley is stretched in
three directions. In the low-energy region |ε| < εtrig , we have the Lifshitz transition
in which the equi-energetic line splits into four separate pockets, and the conduction
band and valence band touch each other at four points inside the pockets [25, 27].
Here εtrig is the characteristic energy defined as,

εtrig = 1

4

(
v3

v

)2

γ1 ∼ 1 meV. (6.72)

The parameter v4 gives the common quadratic term to both of the conduction and
valence bands, and thus slightly breaks the electron hole asymmetry. The parameter
�′ appears in the second order of �′/γ1 in (6.71), and is neglected here. This term
influences mainly the (H,±) branches by giving an energy shift of �′ to these
levels. In the following, we will neglect v3, v4 and �′ unless otherwise stated.

6.6.2 Landau Levels

The Landau-level structure of the bilayer Hamiltonian (6.65) is derived in a simi-
lar way to monolayer graphene, by noting that p± are associated with the ascend-
ing/descending operators of the Landau levels [25, 26]. The eigenfunction can be
written as

(c1φn−1, c2φn, c3φn, c4φn+1). (6.73)

For n ≥ 1, the Hamiltonian matrix for the vector (c1, c2, c3, c4) then becomes

⎛
⎜⎜⎝

0 �ωB
√
n 0 0

�ωB
√
n 0 γ1 0

0 γ1 0 �ωB
√
n + 1

0 0 �ωB
√
n + 1 0

⎞
⎟⎟⎠ , (6.74)
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which immediately gives four eigen values

εμ,s,n = s√
2

[
γ 2

1 + (2n + 1)(�ωB)
2 + μ

√
γ 4

1 + 2(2n + 1)γ 2
1 (�ωB)

2 + (�ωB)4
]1/2

.

(6.75)
For n = 0, the first component of the wave function (6.73) disappears and we have
three levels,

εL,0 = 0,

εH,s,0 = s

√
γ 2

1 + (�ωB)2.
(6.76)

For n = −1, only the last component survives in (6.73), leaving a single level

εL,−1 = 0. (6.77)

Each Landau level is degenerate in valley and spin. The zero-energy level is 8-fold
degenerate due to the extra degeneracy of εL,0 = εL,−1, while all others are four-
fold degenerate as in monolayer graphene.

In low-energy region ε  γ1, the Landau levels of the lower subband L approx-
imate [25]

εL,s,n ≈ s
�eB

m∗
√
n(n + 1) (n = 0,1,2, . . .), (6.78)

where the two lowest levels εL,0 = εL,−1 = 0 are included in s = ± at n = 0. Since
the energy is proportional to B , the level spacing shrinks in the B → 0 limit much
faster than that in the monolayer, where the Landau levels behave as ∝ √

B . When
the Fermi energy is between εL,s,n and εL,s,n+1, the Hall conductivity becomes

σxy = −sgvgs e
2

h
(n + 1) (s = ±, n = 0,1,2, . . .) (6.79)

which gives the sequence of quantized Hall conductivity, ±4,±8,±12, . . . in units
of −e2/h. We notice that σxy/(gsgv) is an integer in bilayer graphene, while it is
a half-integer in monolayer graphene as we showed in (6.26). In experiments, this
appears as a clear difference in the plateau structure of the Hall conductivity [1].
Figure 6.9(a) shows the bilayer’s Landau level structure and the Hall conductivity
in the low energy region for the gapless case.

6.6.3 Gapped Bilayer Graphene

In bilayer graphene, a potential asymmetry between the top and bottom layers gives
rise to an energy gap at zero energy [25, 26, 29–31, 102–104]. The potential asym-
metry is intrinsically zero, but is induced by applying an electric field perpendicu-
lar to the layers [21, 24, 105–107]. The interlayer potential difference is generally
smaller than that given by the external electric field, because the graphene electron
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Fig. 6.9 Low-energy Landau level structure in bilayer graphene with interlayer potential asym-
metry (a) � = 0 and (b) �> 0. The horizontal dotted lines connecting levels indicate the corre-
spondence of the levels in the limit of � → 0. In (a), the numbers between the levels indicate the
quantized Hall conductivity in units of −e2/h. A corresponding diagram for monolayer graphene
is shown in Fig. 6.3

induces an interlayer depolarization effect. The self-consistent calculation shows
that the external field is decreased roughly by a factor of 2, in the weak field regime
[102, 103]. In the experiment, an energy gap as large as 0.2 eV was actually ob-
served in spectroscopic measurements [21, 106–108].

Let us assume an interlayer asymmetry between the on-site energy � for the
atoms, A1 and B1, on the first layer and −� for the atoms, A2 and B2, on the
second layer. The Hamiltonian matrix then becomes

H =

⎛
⎜⎜⎝
� vp− 0 0
vp+ � γ1 0

0 γ1 −� vp−
0 0 vp+ −�

⎞
⎟⎟⎠ . (6.80)

Figure 6.8(b) shows the energy bands with several values of� obtained by the diag-
onalization of (6.80). The low-energy Hamiltonian in a basis (ψA1,ψB2) becomes
[25]

H(eff) = −v2

γ1

(
0 p2−
p2+ 0

)
+ �

(
1 − 2v2p2

γ 2
1

)(
1 0
0 −1

)
. (6.81)

When �  γ1, the dispersion in the region of p  γ1/v approximates [26, 58]

ε ≈ ±
(
� − 2�

v2p2

γ 2
1

+ 1

2�

v4p4

γ 2
1

)
≡ ±

(
� − p2

2m0
+ p4

4m0p
2
0

)
, (6.82)
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where

m0 = γ 2
1

4v2�
, p0 =

√
2�

v
. (6.83)

Figure 6.10(a) shows the positive branch of (6.82). Due to coexistence of p2 and p4

terms, the energy bands have their extrema at off center momentum p0 located at
±(� − ε0) with ε0 = 2�3/γ 2

1 , and the energy gap extends between these extrema.
In a magnetic field, the interlayer asymmetric potential � causes a valley split-

ting of the Landau levels that is similar to monolayer graphene, since it breaks the
inversion symmetry [24, 25, 38]. Figure 6.9(b) illustrates an example of the Landau
level structure in the presence of�> 0. The two lowest levels of (0,±), which used
to be at the Dirac point when � = 0, now move to the top of the valence band at
point K, and to the bottom of the conduction band at point K′. Near the bottom of
the conduction band, the Hamiltonian is reduced to [58]

H ≈ � − 2�
(vπ−ξ )(vπξ )

γ 2
1

+ 1

2�

(vπ−ξ )2(vπξ )2

γ 4
1

= � + (�ω0)
2

4ε0

[(
N̂ + 1

2
+ ξ

)2

− 1

4

]
− �ω0

(
N̂ + 1

2
+ ξ

2

)
, (6.84)

where ξ = ± are for K, K′, respectively, and ω0 = eB/(m0c). The eigenvalue of N̂
(0,1,2, . . .) is the Landau level index counted within the conduction band of each
valley, and generally different from the previous numbering (s, n).

The energy difference between the Landau levels of K and K′ belonging to the
same N can be written as a Zeeman-like form, ±μ∗B , to the lowest order in B . The
effective magnetic moment μ∗ is given by

μ∗(p) = 1

2
g∗(p)μB, g∗(p) = 2m

m0

(
2p2

p2
0

− 1

)
, (6.85)

which now depends on p. We can show that μ∗ is induced by the intrinsic orbital
current in a similar manner to monolayer graphene [58]. Figure 6.10(b) plots the
Landau level energy of (6.84) as a function of magnetic field. A pair of dotted slopes
represent the energy of the band minimum shifted by the valley Zeeman-like energy,
i.e., −ε0 + ξμ∗(p0)B . In a small B-field, these dotted slopes actually serve as the
envelope curves for Landau levels of ξ = ±.

6.6.4 Orbital Diamagnetism

The delta-function susceptibility of monolayer graphene is strongly distorted by the
interlayer coupling γ1. For the Hamiltonian of the symmetric bilayer graphene, i.e.,
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Fig. 6.10 (a) Low energy dispersion of gapped bilayer graphene given by (6.82). (b) Landau level
spectrum of (6.84) with some small n’s, as a function of magnetic field. Energy is measured from
ε = �. Dashed (red) and solid (black) lines represent K,K′ , respectively. Numbers assigned to
the curves indicate Landau level index n. A pair of dotted slopes (not energy levels) represent
−ε0 ± μ∗(p0)B [58]

(6.80) with � = 0, the orbital susceptibility is calculated as [14, 46]

χ(ε) = gvgs
e2v2

4πc2γ1
θ
(
γ1 − |ε|)

(
log

|ε|
γ1

+ 1

3

)
. (6.86)

In this case χ diverges logarithmically at εF = 0, becomes slightly paramagnetic
near |εF | = γ1, and vanishes for |εF | > γ1 where the higher subband enters. The
integration of χ in (6.86) over the Fermi energy becomes −gvgse2v2/(3πc2) inde-
pendent of γ1, which is exactly twice as large as that of the monolayer graphene,
(6.39).

The susceptibility was also calculated in the presence of interlayer asymmetric
potential [39]. Figure 6.11(a) and (b) show the density of states and the magnetic
susceptibility, respectively, for bilayer graphene with �/γ1 = 0, 0.2, and 0.5. The
figures are to be compared to the corresponding plots for monolayer graphene, in
Fig. 6.4. The susceptibility diverges in the paramagnetic direction at the band edges
ε = ±ε0, where the density of states also diverges. This huge paramagnetism can be
interpreted as the Pauli paramagnetism induced by the valley pseudo-spin splitting
discussed in the previous section, together with the diverging density of states [58].
The susceptibility always vanishes in the energy region where H bands contribute
significantly.



198 M. Koshino and T. Ando

Fig. 6.11 (a) Density of states, and (b) susceptibility of bilayer graphenes with the asymmetry
gap �/γ1 = 0, 0.2, and 0.5. In (b), the upward direction represents negative (i.e., diamagnetic)
susceptibility [39]. A corresponding plot for monolayer graphene is Fig. 6.4

6.6.5 Transport Properties

The transport properties of bilayer graphene were theoretically studied in the liter-
ature [27, 109, 110]. In the following, we focus on the conductivity calculation in
zero magnetic field using the self-consistent Born approximation [27, 34]. We con-
sider the low-energy Hamiltonian (6.70) when the small electron-hole asymmetry
depending on v4 is neglected, and we assume the short-range scattering potential in
(6.53). The electrical conductivity at zero temperature is then approximately written
as

σxx(ε) ≈ gvgs
e2

π2�

1

2

[
1 +

( |εF |
Γ

+ Γ

|εF |
)

arctan
|εF |
Γ

+ 4πεtrig
Γ

]
, (6.87)

where Γ is the characteristic scale of energy broadening, defined by

Γ ≡ π

2
niu

2 m∗

2π�2
= π

2
Wγ1 (6.88)

where u2 is the square average of the scattering amplitude, ni is the concentration
of scatterers per unit area, and W is the parameter defined for monolayer graphene
in (6.55). The term including εtrig arises from the vertex correction due to the trig-
onal warping. At high energies |ε| � Γ , σxx approximates

σxx(ε) ≈ gvgs
e2

π2�

π

4

|ε|
Γ
, (6.89)

which increases linearly with energy. The value σxx(0) at zero energy is non-zero
and becomes

σxx(0) = gvgs
e2

π2�

(
1 + 2πεtrig

Γ

)
. (6.90)
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Fig. 6.12 (a) Calculated density of states and (b) electrical conductivity as a function of energy for
scatterers with Gaussian potential with a range d and a dimensionless scattering strengthW = 0.02.
The dotted line in (a) represents the density of states of an ideal bilayer graphene and the thin
dashed line represents twice that of monolayer graphene. The dotted lines in (b) show the Boltz-
mann conductivity [112]

In the strong disorder regime Γ � 2πεtrig , the correction term in (6.90) arising
from the trigonal warping vanishes and the conductivity approaches the universal
value gvgse2/(π2

�) [27, 34, 109], which is twice as large as that in monolayer
graphene in the same approximation. In transport measurements of suspended bi-
layer graphene [111], the minimum conductivity was estimated to be about 10−4 S,
which is close to gvgse2/(π2

�).
The calculation was recently extended to include long-range scatterers [112].

Figure 6.12 shows the calculated (a) density of states and (b) conductivity as a func-
tion of energy for scatterers with a Gaussian potential with range d and for scattering
strengthW = 0.1. In Fig. 6.12(a) the dotted line represents the ideal density of states
and the dashed line represents twice that in monolayer graphene and in (b) the dot-
ted lines represent the Boltzmann electrical conductivity. The conductivity exhibits
a kink-like structure when the energy crosses the bottom of the excited conduction
band. Apart from the difference in the kink position, the overall behavior of the
conductivity is very close to that of the Boltzmann result. It is also shown that the
conductivity at zero energy is not universal but depends on the degree of the disor-
der for scatterers with long-range potential, similar to the result discussed above for
monolayer graphene [75].
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Fig. 6.13 Calculated dynamical conductivity for (a) parallel polarization (σxx) and (b) that for
perpendicular polarization (σzz) in a symmetric bilayer graphene. The dotted lines in (a) denote
the absorption edges of the interband transitions (j → j ′ means those from band j to band j ′ ). The
dashed lines in (b) represent σzz(ω) without a depolarization effect and the solid lines represent
σ̃zz(ω) with a depolarization effect [104]

6.6.6 Optical Properties

In bilayer graphene, optical absorption is possible in two different configurations,
for light incident parallel and perpendicular to the layers. The optical absorption
for perpendicularly incident light is described by the dynamical conductivity in a
electric field parallel to the layers. For symmetric bilayer graphene, this is explicitly
estimated as [113, 114]

Reσxx(ω) = gvgs

16

e2

�

{
�ω + 2γ1

�ω + γ1
θ
(
�ω − 2|εF |)

+
(
γ1

�ω

)2[
θ(�ω − γ1) + θ

(
�ω − γ1 − 2|εF |)]

+ �ω − 2γ1

�ω − γ1
θ(�ω − 2γ1)

+ γ1 log

[
2|εF | + γ1

γ1

]
δ(�ω − γ1)

}
, (6.91)

where we assumed |εF | < γ1. The first term represents the absorption from the band
2 to 3, the second term from 2 to 4, and from 1 to 3, the third term from 1 to 4, and
the fourth term from 3 to 4, or from 1 to 2. Figure 6.13(a) shows some examples of
the calculated dynamical conductivity Reσxx(ω) with several values of the Fermi



6 Electronic Properties of Monolayer and Multilayer Graphene 201

Fig. 6.14 Interband part of
the dynamical conductivity
σxx for bilayer graphene with
Bernal stacking plotted
against the frequency ω,
calculated for different
magnetic fields. Dashed
curves indicate the transition
energies between several
Landau levels in the ideal
limit [35]

energy [104]. The curve for εF = 0 has essentially no prominent structure except a
step-like increase corresponding to transitions from 2 to 4. With increase in εF , a
delta-function peak appears at �ω = γ1, corresponding to allowed transitions 3 to 4.

In a magnetic field, the optical excitation by perpendicular incident light is only
allowed between the Landau levels with n and n ± 1 for arbitrary combinations of
μ = H,L and s = ±, since the matrix element of the velocity operator vx vanishes
otherwise. Figure 6.14 shows some plots of Reσxx(ω) in magnetic fields at εF = 0
and zero temperature. Dotted lines penetrating panels represent the transition ener-
gies between several specific Landau levels as a continuous function of �ωB . The
every peak position behaves as a linear function of B ∝ �ω2

B in weak fields but it
switches over to

√
B-dependence as the corresponding energy is going out of the

parabolic band region. In small magnetic fields, the peak structure is smeared out
into the zero-field curve more easily in the bilayer than in the monolayer, because
the Landau level spacing is narrower in bilayer due to the finite band mass.

For a perpendicular electric field (i.e., parallel incident light), the effective
conductivity is calculated as follows [104]. We apply an external electric field
Eext (ω)e

−iωt + c.c. perpendicular to the layer. By including the screening effect
by the depolarization of the graphene electrons, the total electric field becomes
Etot (ω)e

−iωt + c.c. where

Etot (ω) = Eext (ω)

ε(ω)
,

ε(ω) = 1 + 4πi

ωκd0
σzz(ω). (6.92)
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Here κ is the dielectric constant and d0 is the interlayer spacing. σzz is the dynam-
ical conductivity for a perpendicular electric field, which is calculated in a linear
response theory as

σzz(ω) = iωe2d2
0
gvgs

4

1

L2

∑
α,β

[f (εα) − f (εβ)]|τ̂αβ |2

εα − εβ + �ω + iδ
,

where α and β stand for a set of quantum numbers, δ is a phenomenological broad-
ening energy, and τ̂αβ is a matrix with only diagonal terms,

τ̂ =

⎛
⎜⎜⎝

+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

The power absorption per unit area is given by

P = 1

2
Re σ̃zz(ω)

∣∣Eext (ω)∣∣2.
The typical magnitude of σzz becomes

σ 0
zz = e2

�

gvgs

4

d2
0

2πγ 2
�2 ∼ e2

π�

gvgs

4
× 0.022,

where we have used a = 2.46 Å, d0 = 3.34 Å, � ≈ 0.4 eV, and γ0 ≈ 3 eV in the
last expression.

Figure 6.13(b) shows the calculated dynamical conductivity for perpendicular
polarization, with several values of the Fermi energy. The dashed lines represent
σzz without depolarization effect and the solid lines σ̃zz with depolarization effect.
For perpendicular polarization, the sharp peak from the band 3 to 4 is shifted to the
higher energy side due to the depolarization effect. When the Fermi level reaches
the bottom of band 4 (EF/γ1 = 1), this shift is as large as 30 %.

6.7 Multilayer Graphenes

The electronic structure of Bernal graphene multilayers having three or more layers
is more complicated, but we can show that the total Hamiltonian can be approxi-
mately decomposed into subsystems equivalent to monolayer or bilayer graphenes,
regardless of the number of layers [14, 35]. Figure 6.15 illustrates the atomic
structure of multilayer graphene arranged in the AB (Bernal) stacking. In N -layer
graphene, a unit cell contains Aj and Bj atoms on the layer j = 1, . . . ,N . If the
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Fig. 6.15 Atomic structure
of ABA-stacked multilayer
graphene. Top view (left) and
side view (right)

bases are sorted as |A1 〉, |B1 〉; |A2 〉, |B2 〉; . . .; |AN 〉, |BN 〉, the Hamiltonian for mul-
tilayer graphene around the K point becomes [14, 26, 29, 30, 32, 33]

H =

⎛
⎜⎜⎜⎜⎜⎝

H0 V W

V † H ′
0 V † W ′

W V H0 V W

W ′ V † H ′
0 V † W ′

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠
, (6.93)

with

H0 =
(

0 vp−
vp+ �′

)
, H ′

0 =
(
�′ vp−
vp+ 0

)
, (6.94)

V =
(−v4p− v3p+

γ1 −v4p−

)
, W =

(
γ2/2 0

0 γ5/2

)
,

W ′ =
(
γ5/2 0

0 γ2/2

)
.

(6.95)

The diagonal blocks H0 and H ′
0 describe intralayer coupling, V nearest-neighbor

interlayer coupling, and W next-nearest-neighbor interlayer coupling. In W , there
are two similar band parameters γ2 and γ5, which couple vertically located atoms at
distance of 2d . They are generally different because γ5 is for the atoms which are
involved in the nearest interlayer coupling γ1, while γ2 is for those which are not. In
graphite, they are estimated as γ2 = −0.02 eV and γ5 = 0.04 eV. Other parameters
are already introduced for bilayer graphene. The effective Hamiltonian for K′ is
obtained by exchanging p+ and p−.

In the following, we will rewrite the above Hamiltonian using a certain basis, and
block-diagonalize it into monolayer-like and bilayer-like subcomponents [114, 115].
Let us define the functions:

fm(j) = cm

√
2

N + 1

[
1 − (−1)j

]
sinκmj (6.96)
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gm(j) = cm

√
2

N + 1

[
1 + (−1)j

]
sinκmj, (6.97)

where

κm = π

2
− mπ

2(N + 1)
, (6.98)

cm =
{

1/2 (m = 0)

1/
√

2 (m �= 0).
(6.99)

Here j = 1,2, . . . ,N is the layer index, and m is the block index which ranges as

m =
{

1,3,5, . . . ,N − 1, N = even,

0,2,4, . . . ,N − 1, N = odd.
(6.100)

Obviously fm(j) is zero on even j layers, while gm(j) is zero on odd j layers. We
construct the basis by assigning fm(j), gm(j) to each site as

∣∣φ(X,odd)
m

〉 =
N∑
j=1

fm(j)|Xj 〉, ∣∣φ(X,even)
m

〉 =
N∑
j=1

gm(j)|Xj 〉, (6.101)

where X = A or B . A superscript such as (A,odd) indicates that the wave function
has a non-zero amplitude only on |Aj 〉 sites with odd j ’s.

We group the bases as um = {|φ(A,odd)
m 〉, |φ(B,odd)

m 〉, |φ(A,even)
m 〉, |φ(B,even)

m 〉}. The
Hamiltonian matrix between um and um′ becomes

Hm′m ≡ u†
m′Hum = U(λm)δm′m + W(αm′m,βm′m), (6.102)

with

U(λ) =

⎛
⎜⎜⎝

0 vp− −λv4p− λv3p+
vp+ �′ λγ1 −λv4p−

−λv4p+ λγ1 �′ vp−
λv3p− −λv4p+ vp+ 0

⎞
⎟⎟⎠ , (6.103)

W(α,β) =

⎛
⎜⎜⎝
αγ2 0 0 0

0 αγ5 0 0
0 0 βγ5 0
0 0 0 βγ2

⎞
⎟⎟⎠ , (6.104)

where

λm = 2 cosκm, (6.105)

αm′m = 2cmcm′
{
δmm′(1 + δm0) cos 2κm
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Fig. 6.16 Band structure of the multilayer graphene from N = 3 to 6. The energy bands belonging
to different blocks labeled by m are shown in different styles

+ sinκm sinκm′

N + 1

[
2 + (−1)

m−m′
2
(
1 − (−1)N

)]}
, (6.106)

βm′m = 2cmcm′
{
δmm′(1 − δm0) cos 2κm + sinκm sinκm′

N + 1
(−1)

m−m′
2
(
1 + (−1)N

)}
.

U(λm), appearing in diagonal blocks Hmm, is equivalent to the Hamiltonian of bi-
layer graphene with nearest-layer coupling parameters multiplied by λm. W in Hmm

adds an on-site asymmetric potential to this effective bilayer system. For a pair of
low-energy bands near zero energy, W effectively causes an overall energy shift of
(α + β)γ2/2, and an energy gap of ∼ |(α − β)γ2 | at the band touching point, as in
asymmetric bilayer graphene.

The case ofm = 0 is special in that gm(j) is identically zero, so that only two ba-
sis states {|φ(A,odd)

0 〉, |φ(B,odd)
0 〉} survive in (6.101). The matrix for the m = 0 block

for the two remaining bases is

H0 =
(

0 vp−
vp+ �′

)
− N − 1

N + 1

(
γ2 0
0 γ5

)
, (6.107)

which, barring the diagonal terms, is equivalent to the Hamiltonian of mono-
layer graphene. Odd-layered graphene with N = 2M + 1 is decomposed into one
monolayer-type and M bilayer-type subsystems, while even-layered graphene with
N = 2M is decomposed into M bilayers but having no monolayer.

The subsystems with different m’s are not exactly independent since they are
mixed by off-diagonal matrix elements Hmm′(m �= m′), which contain only the next-
nearest interlayer couplings, γ2 and γ5. The off-diagonal blocks are responsible for
small band repulsion at crossing points between differentm’s, while the overall band
structure is well described by only retaining the diagonal blocks [114]. Figure 6.16
plots the band structures from N = 3 to 6 with off-diagonal blocks neglected, show-
ing the basic idea of how the decomposition works.

Figures 6.17(a) and (c) are the low-energy band structures of N = 3 and 4, re-
spectively. In N = 3, the spectrum is composed of a monolayer-like band (m = 0,
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Fig. 6.17 (a) Low-energy band structure and (b) Landau levels as a function of magnetic field in
ABA-trilayer graphene. (c), (d): Similar plots for ABA-fourlayer graphene. In (b) and (d), numbers
represent the quantized Hall conductivity in units of −e2/h [38]

or M) and a bilayer-like band (m = 2, or B), while in N = 4 the spectrum includes
the light-mass bilayer (m = 1, or b) and the heavy-mass bilayer band (m = 3, or B).
In N = 4, the solid and dashed curves represent the band energies calculated with
and without the off-diagonal matrix, where we actually see small anticrossing at
the intersections (not shown in Fig. 6.16). In N = 3, there is no mixing between
different blocks since the off-diagonal matrix vanishes due to a difference in the
symmetry [114, 116]. For each subband, we see a relative shift of the band center
as well as the energy gap at Dirac points, due to the diagonal potential containing
terms such as γ2, γ5 and �′, as argued above [114]. In the bulk limit N → ∞, the
quantity κm corresponds to the three-dimensional (3D) wave vector kz, where the
monolayer-type block κ = π/2 is related to the H -point in the 3D Brillouin zone,
and κ = 0 is related to the K-point. The energy shift of the bilayer-like subband,
(α + β)γ2/2, approximates γ2 cos 2κm in the large N limit, and this is consistent
with the semi-metallic property of graphite with the hole-doping near H -point and
the electron-doping near K-point [100].

The Landau level spectrum is computed by replacing p± with π± in the Hamil-
tonian. Figures 6.17(b) and (d) show the energy levels forN = 3 and 4, respectively,
as function of magnetic field [115]. In odd layered graphene of N ≥ 3, generally,
the Landau level splitting occurs because the spatial inversion symmetry is orig-
inally missing in the lattice structure. On the other hand, the monolayer and all
even-layered graphenes are intrinsically spacial inversion symmetric, and that en-
sures the valley degeneracy of the Landau levels [38]. In the plot of Fig. 6.17(a), we
actually observe the valley splitting in N = 3, while all the levels are completely
valley-degenerate in N = 4 (Fig. 6.17(b)).

Using the decomposition of the Hamiltonian, the response function of the N -
layered graphene can be written as a summation over each sub-Hamiltonian, as long
as the external field is uniform in the z direction and does not mix different m’s. For
example, this decomposition can be used for the analysis of diamagnetic response
of multi-layer graphenes [14]. In fact, in odd-layered graphenes, the monolayer-like
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band gives a strong diamagnetic peak at εF = 0, while the bilayer-like bands present
a broad logarithmic peak. With the increase of the layer number, the susceptibility
is dominated by that of the bilayer-like bands. Thus, the large diamagnetic suscep-
tibility of bulk graphite can be understood in terms of the logarithmic singularity of
bilayer graphene. The optical absorption was also studied in this scheme [35], where
each peak in the complicated absorption spectrum is identified as a particular exci-
tation between Landau levels within the monolayer-like or bilayer-like subbands.

It should be noted that in graphene multilayer, there is another configuration
called rhombohedral (ABCABC . . .) stacking [117–119] which is distinct from
Bernal (ABAB . . .) stacking discussed above. A sequence such as ABC . . . rep-
resents the lattice point on every layer along a perpendicular axis, where A and B
are inequivalent sublattices of hexagonal lattice, and C is the center of the hexagon.
The Bernal phase is thermodynamically stable and common while it is known that
some portion of natural graphite takes the rhombohedral form. A rhombohedral-
stacked multilayer has a totally different spectrum from that of the Bernal case,
including a pair of flat low-energy bands which disperse as pN with momentum p

and the number of layers N [26, 120–126]. More generally, graphitic structures are
expected to take a Bernal-rhombohedral mixed form, and the electronic structure of
such mixed multilayers was also studied theoretically [124, 127, 128]. The charac-
teristic properties of multilayer graphene depending on the stacking structure were
actually observed in several experiments [129–137].

6.8 Summary

We have theoretically studied the electronic properties of graphene and its multilay-
ers. The motion of electrons in monolayer graphene is characterized by the massless
Dirac spectrum, which gives rise to several unusual properties distinct from those
of the conventional system. For multilayer graphenes, we considered particularly
AB (Bernal) stacking structure which is most likely to appear. The low-energy band
structure of bilayer graphene contains a conduction band and a valence band touch-
ing each other, but the dispersion is quadratic. The energy band of more than three
layer graphene is decomposed into separate subbands which are effectively equiva-
lent to either monolayer or bilayer graphene.

Using the low-energy effective Hamiltonian, we studied the electric transport
properties, the optical absorption and the orbital magnetism. For the electric trans-
port, we employed the self-consistent Born approximation to properly treat the finite
level broadening. We found that, in both of monolayer and bilayer graphenes, the
conductivity at the Dirac point becomes a finite value of the order of e2/h in any
disorder strength while the factor depends on the detail of the scattering potential.
We also presented the Landau level spectrum in magnetic fields, and discussed the
quantized Hall conductivity in details.

The optical absorption for perpendicular incident light in monolayer graphene
is nearly constant except for the Drude peak at zero frequency, and this describes
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nearly universal absorption ratio about 2.3 % observed in experiments. In bilayer
graphene, the optical spectrum is characterized by absorption edges, which reflect
the characteristics of the band structure. For bilayer graphene, we also considered
the optical absorption for parallel incident light, which is described by σzz.

The orbital diamagnetism is generally strong in graphene related materials. In
monolayer graphene, in particular, the magnetic susceptibility diverges at Dirac
point, and this can be understood from the zero gap limit of gapped graphene in
terms of valley pseudospin magnetic moment. The diamagnetic singularity at the
Dirac point is relaxed by an asymmetry potential opening an energy gap, and also
by interlayer coupling in a multilayer stack.

References

1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V.
Dubonos, A.A. Firsov, Nature 438, 197 (2005)

2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)
3. P.R. Wallace, Phys. Rev. 71, 622 (1947)
4. J.W. McClure, Phys. Rev. 104, 666 (1956)
5. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)
6. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005)
7. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)
8. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)
9. N.H. Shon, T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998)

10. T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn. 71, 1318 (2002)
11. H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002)
12. E. McCann, K. Kechedzhi, V.I. Falko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett.

97, 146805 (2006)
13. M. Koshino, T. Ando, Phys. Rev. B 75, 235333 (2007)
14. M. Koshino, T. Ando, Phys. Rev. B 76, 085425 (2007)
15. H. Fukuyama, J. Phys. Soc. Jpn. 76, 043711 (2007)
16. M. Nakamura, Phys. Rev. B 76, 113301 (2007)
17. A. Ghosal, P. Goswami, S. Chakravarty, Phys. Rev. B 75, 115123 (2007)
18. Y. Zheng, T. Ando, Phys. Rev. B 65, 245420 (2002)
19. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)
20. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411 (2006)
21. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)
22. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Falko, M.I. Katsnelson, U. Zeitler, D. Jiang,

F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)
23. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Phys. Rev. Lett.

98, 206802 (2007)
24. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nils-

son, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007)
25. E. McCann, V.I. Falko, Phys. Rev. Lett. 96, 086805 (2006)
26. F. Guinea, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006)
27. M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006)
28. E. McCann, M. Koshino, Rep. Prog. Phys. 76, 056503 (2013)
29. C.L. Lu, C.P. Chang, Y.C. Huang, J.M. Lu, C.C. Hwang, M.F. Lin, J. Phys. Condens. Matter

18, 5849 (2006)
30. C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006)



6 Electronic Properties of Monolayer and Multilayer Graphene 209

31. J. Nilsson, A.H. Castro Neto, N.M.R. Peres, F. Guinea, Phys. Rev. B 73, 214418 (2006)
32. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)
33. B. Partoens, F.M. Peeters, Phys. Rev. B 75, 193402 (2007)
34. M. Koshino, T. Ando, AIP Conf. Proc. 893, 621 (2007)
35. M. Koshino, T. Ando, Phys. Rev. B 77, 115313 (2008)
36. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H.

Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)
37. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F.E. Gabaly, A.K. Schmid, A.H. Castro Neto, D.-H.

Lee, A. Lanzara, Nat. Mater. 7, 259 (2008)
38. M. Koshino, E. McCann, Phys. Rev. B 81, 115315 (2010)
39. M. Koshino, T. Ando, Phys. Rev. B 81, 195431 (2010)
40. J.W. McClure, Phys. Rev. 119, 606 (1960)
41. M.P. Sharma, L.G. Johnson, J.W. McClure, Phys. Rev. B 9, 2467 (1974)
42. P.A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964)
43. H. Fukuyama, R. Kubo, J. Phys. Soc. Jpn. 27, 604 (1969)
44. H. Fukuyama, R. Kubo, J. Phys. Soc. Jpn. 28, 570 (1970)
45. S.A. Safran, F.J. DiSalvo, Phys. Rev. B 20, 4889 (1979)
46. S.A. Safran, Phys. Rev. 30, 421 (1984)
47. J. Blinowski, C. Rigaux, J. Phys. (Paris) 45, 545 (1984)
48. R. Saito, H. Kamimura, Phys. Rev. B 33, 7218 (1986)
49. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993)
50. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 2470 (1993)
51. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 63, 4267 (1994) (Erratum)
52. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 64, 4382 (1995)
53. M. Yamamoto, M. Koshino, T. Ando, J. Phys. Soc. Jpn. 77, 084705 (2008)
54. M. Nakamura, L. Hirasawa, Phys. Rev. B 77, 045429 (2008)
55. A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81,

109 (2009)
56. A. Kobayashi, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 77, 064718 (2008)
57. M. Koshino, Y. Arimura, T. Ando, Phys. Rev. Lett. 102, 177203 (2009)
58. M. Koshino, Phys. Rev. B 84, 125427 (2011)
59. M.-C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)
60. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)
61. A. De Martino, L. DellAnna, R. Egger, Phys. Rev. Lett. 98, 066802 (2007)
62. M.R. Masir, P. Vasilopoulos, A. Matulis, F.M. Peeters, Phys. Rev. B 77, 235443 (2008)
63. C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 101, 126804

(2008)
64. C.-H. Park, Y.-W. Son, L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 8, 2920 (2008)
65. Y.-X. Li, J. Phys. Condens. Matter 22, 015302 (2010)
66. J.S. Park, K. Sasaki, R. Saito, W. Izumida, M. Kalbac, H. Farhat, G. Dresselhaus, M.S. Dres-

selhaus, Phys. Rev. B 80, 081402 (2009)
67. I. Snyman, Phys. Rev. B 80, 054303 (2009)
68. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006)
69. T. Ando, T. Nakanishi, J. Phys. Soc. Jpn. 67, 1704 (1998)
70. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998)
71. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006)
72. T. Ando, J. Phys. Soc. Jpn. 38, 989 (1975)
73. T. Ando, Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974)
74. T. Fukuzawa, M. Koshino, T. Ando, J. Phys. Soc. Jpn. 78, 094714 (2009)
75. M. Noro, M. Koshino, T. Ando, J. Phys. Soc. Jpn. 79, 094713 (2010)
76. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)
77. Y.-W. Tan, Y. Zhang, H.L. Stormer, P. Kim, Eur. Phys. J. Spec. Top. 148, 15 (2007)
78. K.I. Bolotin, K.J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, H.L. Stormer, Solid State

Commun. 146, 351 (2008)



210 M. Koshino and T. Ando

79. H. Kumazaki, D.S. Hirashima, J. Phys. Soc. Jpn. 75, 053707 (2006)
80. I.L. Aleiner, K.B. Efetov, Phys. Rev. Lett. 97, 236801 (2006)
81. K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006)
82. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007)
83. J.H. Bardarson, J. Tworzydo, P.W. Brouwer, C.W.J. Beenakker, Phys. Rev. Lett. 99, 106801

(2007)
84. S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, Proc. Natl. Acad. Sci. USA 104, 18392

(2007)
85. K. Ziegler, Phys. Rev. B 78, 125401 (2008)
86. S. Adam, E.H. Hwang, E. Rossi, S. Das Sarma, Solid State Commun. 149, 1072 (2009)
87. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres,

A.K. Geim, Science 320, 1308 (2008)
88. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov,

Nat. Phys. 4, 532 (2008)
89. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101,

196405 (2008)
90. J.-K. Lee, S.-C. Lee, J.-P. Ahn, S.-C. Kim, J.I.B. Wilson, P. John, J. Chem. Phys. 129, 234709

(2008)
91. Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Phys. Rev. Lett. 102, 015501 (2009)
92. J.H. Ho, C.L. Lu, C.C. Hwang, C.P. Chang, M.F. Lin, Phys. Rev. B 74, 085406 (2006)
93. J. Hass, R. Feng, J.E. Millan-Otoya, X. Li, M. Sprinkle, P.N. First, W.A. de Heer, E.H.

Conrad, C. Berger, Phys. Rev. B 75, 214109 (2007)
94. J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger,

P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008)
95. G. Li, A. Luican, J. Dos Santos, A. Neto, A. Reina, J. Kong, E. Andrei, Nat. Phys. 6, 109

(2009)
96. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 99, 256802

(2007)
97. S. Shallcross, S. Sharma, O.A. Pankratov, Phys. Rev. Lett. 101, 056803 (2008)
98. P. Moon, M. Koshino, Phys. Rev. B 85, 195458 (2012)
99. P. Moon, M. Koshino, Phys. Rev. B 87, 205404 (2013)

100. M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51, 1 (2002)
101. L.M. Malard, M.A. Pimentada, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)
102. E. McCann, Phys. Rev. B 74, 161403 (2006)
103. T. Ando, M. Koshino, J. Phys. Soc. Jpn. 78, 034709 (2009)
104. T. Ando, M. Koshino, J. Phys. Soc. Jpn. 78, 104716 (2009)
105. J.B. Oostinga, H.B. Heersche, X.-L. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater.

7, 151 (2008)
106. Y.-B. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen,

F. Wang, Nature 459, 820 (2009)
107. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009)
108. A.B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K.S. Novoselov, A.K.

Geim, Phys. Rev. B 79, 115441 (2009)
109. J. Cserti, Phys. Rev. B 75, 033405 (2007)
110. J. Cserti, A. Csordas, G. David, Phys. Rev. Lett. 99, 066802 (2007)
111. B.E. Feldman, J. Martin, A. Yacoby, Nat. Phys. 5, 889 (2009)
112. T. Ando, J. Phys. Soc. Jpn. 80, 014707 (2011)
113. D.S.L. Abergel, V.I. Falko, Phys. Rev. B 75, 155430 (2007)
114. M. Koshino, T. Ando, Solid State Commun. 149, 1123 (2009)
115. M. Koshino, E. McCann, Phys. Rev. B 83, 165443 (2011)
116. M. Koshino, E. McCann, Phys. Rev. B 79, 125443 (2009)
117. H. Lipson, A.R. Stokes, Proc. R. Soc. Lond. A 181, 101 (1942)
118. R.R. Haering, Can. J. Phys. 36, 352 (1958)
119. J.W. McClure, Carbon 7, 425 (1969)



6 Electronic Properties of Monolayer and Multilayer Graphene 211

120. S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)
121. M. Aoki, H. Amawashi, Solid State Commun. 142, 123 (2007)
122. C.L. Lu, C.P. Chang, Y.C. Huang, J.H. Ho, C.C. Hwang, M.F. Lin, J. Phys. Soc. Jpn. 76,

024701 (2007)
123. J.L. Mañes, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 75, 155424 (2007)
124. H. Min, A.H. MacDonald, Phys. Rev. B 77, 155416 (2008)
125. M. Koshino, E. McCann, Phys. Rev. B 80, 165409 (2009)
126. M. Koshino, Phys. Rev. B 81, 125304 (2010)
127. D.P. Arovas, F. Guinea, Phys. Rev. B 78, 245416 (2008)
128. M. Koshino, E. McCann, Phys. Rev. B 87, 045420 (2013)
129. M.F. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A.F. Morpurgo, S. Tarucha, Nat. Nan-

otechnol. 4, 383 (2009)
130. C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Nano Lett. 11, 164 (2011)
131. A. Kumar, W. Escoffier, J.M. Poumirol, C. Faugeras, D.P. Arovas, M.M. Fogler, F. Guinea,

S. Roche, M. Goiran, B. Raquet, Phys. Rev. Lett. 107, 126806 (2011)
132. W. Bao, L. Jing, J. Velasco Jr., Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S.B. Cronin,

D. Smirnov, M. Koshino, E. McCann, M. Bockrath, C.N. Lau, Nat. Phys. 7, 948 (2011)
133. L. Zhang, Y. Zhang, J. Camacho, M. Khodas, I. Zaliznyak, Nat. Phys. 7, 953 (2011)
134. T. Taychatanapat, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nat. Phys. 7, 621 (2011)
135. T. Khodkov, F. Withers, D.C. Hudson, M.F. Craciun, S. Russo, Appl. Phys. Lett. 100, 013114

(2012)
136. E.A. Henriksen, D. Nandi, J.P. Eisenstein, Phys. Rev. X 2, 011004 (2012)
137. J. Ping, M.S. Fuhrer, Nano Lett. 12, 4635 (2012)



Chapter 7
Graphene: Topological Properties, Chiral
Symmetry and Their Manipulation

Yasuhiro Hatsugai and Hideo Aoki

Abstract This chapter looks at graphene from the viewpoint of underlying chiral
symmetry and topological properties. This reveals why a seemingly simple honey-
comb lattice can harbour such a rich physics, which includes doubled Dirac cones at
K and K′ points in the Brillouin zone, anomalously sharp Landau level and quantum
Hall effect at the Dirac point in magnetic fields even with ripples, and a host of other
peculiar features of graphene. After giving a self-contained description of these no-
tions, we then describe how topological and chiral properties also dictate that there
is a close link between bulk and edge states. We also emphasise that the notion of
chiral and topological properties are so universal (and robust) that we can also ex-
amine various extensions to electron-hole asymmetric cones, tilted cones, cone +
flat-band system, bilayer graphene, and many-body graphene. As a novel way of
manipulating the system, we also describe a Floquet topological state for graphene
in nonequilibrium.

7.1 Chiral Symmetry as a Generic Symmetry in Graphene

In the physics of graphene [1–3], which has been now developed into one of the
most active areas in condensed-matter physics, there are several unique features that
make graphene stand out. Above all, topological properties and the chiral symmetry
in graphene are fundamental in graphene physics. Namely, graphene is not just a
zero-gap semiconductor that has “massless Dirac particles” (or Weyl neutrino in the
field-theoretic language), but the system is topological, where positions and gap-
opening of Dirac cones dominate the physics, and the chiral symmetry is behind
various physical properties.
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In other words, a key question about graphene to start with is: what makes the
seemingly simple honeycomb lattice accommodate such a rich physics? Topological
and chiral properties inherent in graphene are just the reason. Indeed, a most remark-
able hallmark of graphene is the quantum Hall effect that is peculiar to graphene
[1, 2, 4, 5], as described in the chapter by Kim and coauthors in this volume, and
this reflects both these properties. So the purpose of the present chapter is to explore
the topological and chiral properties. In doing so we also address the question of
why the Dirac cones appear at two places (K and K′ points) in the Brillouin zone,
which is in fact related to Nielsen-Ninomiya theorem, a theorem in the field the-
ory [6–9].

Graphene physics all started when Wallace back in 1947 [10] noticed, theoreti-
cally, that graphene’s band structure contains a pair of massless Dirac dispersion (or
“Dirac cones”) with a k · p method in the effective-mass formalism. The Dirac cone
is nowadays observed experimentally with ARPES (angle-resolved photo emission
spectroscopy) [11]. Then McClure, as early as in 1956, showed that graphene in
magnetic fields has a peculiar Landau’s quantisation [12].

Is the appearance of a Dirac cone surprising? If we have a gap closing in a two-
dimensional (2D) system, that should be in general accidental, since a degeneracy
is required for a three-component quantity (which we shall call R in later sections)
according to, mathematically, the von Neumann-Wigner theorem, while there are
only two tunable parameters (two components of the 2D wave number) [13, 14].
By contrast, the emergence of the doubled Dirac cones at the K and K′ points in
the first Brillouin zone is dictated by the honeycomb crystal structure (and its group
theory) [15]. In a more general framework, however, one may consider the doubled
Dirac cones arise due to a symmetry called the chiral symmetry, where the exotic
name came from the four-dimensional lattice gauge theory. Many characteristic fea-
tures of graphene are those of the chiral-symmetric lattice fermions [16–18]. Topol-
ogy is another main, and chirality-related, ingredient in graphene, as we shall show
in the chapter. Namely, the Dirac cones themselves, specifically their robustness,
have a topological origin, and are responsible for many of the anomalous proper-
ties of graphene. An example is the existence of a Landau level at zero-energy (i.e.,
right at the Dirac point), is “protected” by the index theorem, which is a topologi-
cal theorem. Another example is the existence of edge states, which are inherent in
topological systems.

Most simply, the chiral symmetry has to do with the honeycomb lattice being
a non-Bravais but bipartite lattice, that is, the lattice points are decomposed into
two (• and ◦) sublattices (Fig. 7.1). The hopping matrix elements in the honeycomb
lattice connect neighbouring • − ◦ sites. From this comes the chiral symmetry, read-
ily stated in terms of the tight-binding model, but the notion is applicable to wider
cases as we shall see. Edge states are ubiquitous in topological systems, since there
is a universal theorem stating that edge states have to exist if the bulk is a topolog-
ical system, but massless Dirac fermions exhibit this in a specific manner [19, 20].
An analogous phenomenon appears in superconductors with d-wave pairing [20].
Also, the physics of graphene is now being extended to cold-atom systems in opti-
cal lattices, where the topological and chiral properties are now intensively explored,
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where a vast controllability of system parameters in optical lattice systems greatly
extends the horizon [21–23].

In this chapter we also discuss whether and how the chiral symmetry is affected
in various situations modified from the ideal honeycomb lattice. In real graphene,
the chiral symmetry does not rigorously hold. For instance, even within a tight-
binding model the electron hopping should comprise not only nearest-neighbour
ones but also second-neighbour ones etc, although the chiral-symmetry-breaking
parameters are relatively small in magnitude in the standard tight-binding param-
eters for graphene [24, 25]. There are various other manipulations of Dirac cones.
We can for instance discuss the situation when the two Dirac cones are shifted in
energy. In some organic metals, we encounter tilted Dirac cones [26]. The ques-
tion is how the chiral symmetry is modified in these situations. Another essential
question is a real system should also have disorders, and will the chiral symmetry
be always washed out when we introduce disorder? We shall show, first, we can
still extend the definition of the chiral symmetry, where the extended symmetry in
fact governs the anomalous properties associated with the Dirac cones [27, 34–36].
We then show that a disorder lets the zero-energy Landau level remain anomalously
sharp (delta-function like in fact), as long as the disorder respects the chiral symme-
try [27]. Thus the chiral symmetry is quite useful for discussion of the low-energy
physics of graphene in various situations, including multi-layer graphene [37]. In
this sense, we can say that the chiral symmetry, most typically manifests itself in
graphene, is rather an “generic symmetry” applicable to diverse condensed-matter
systems, which even encompass cold-atom systems [23].

We further ask ourselves: (i) while usually static properties are studied for the
phenomena arising from the Dirac cones, do we have interesting ac responses (i.e.,
optical properties) for graphene, (ii) while usually properties in equilibrium are ex-
amined, do we have novel phenomena when graphene is put out of equilibrium.
(iii) can the chiral symmetry a useful one for many-body physics. Yes to all the
questions, and we shall show, first, ac (optical) Hall conductivity exhibits an inter-
esting plateau structures, second, we can indeed manipulate the topological property
by e.g., shining a circularly polarised light to graphene, which will produce a dc Hall
current. This is remarkable as a non-equilibrium realization of “anomalous quantum
Hall effect”, which is defined as a quantum Hall effect in zero magnetic field. Third,
we shall briefly describe how the chiral symmetry can be applied to many-body sys-
tems. All in all the purpose of the present chapter is to show how graphene harbours
general and rich physics.

7.2 Chiral Symmetry, Dirac Cones and Fermion Doubling

7.2.1 Chiral Symmetry for Lattice Systems

Let us start with a tight-binding model of graphene. Mind you: many of the prop-
erties of graphene, including the chiral symmetry, are general enough, which are
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not restricted to the tight-binding model but come from a honeycomb transnational
symmetry. However, a tight-binding description is clear for heuristic purposes. In
graphene, the chemical bonds responsible for the honeycomb crystal are formed
from carbon orbitals (called σ orbitals) that stretch along the graphene plane, while
the conduction band arise from the carbon pz orbital (called π orbitals), so that we
can focus on the single orbital on each site. The honeycomb lattice is not a Bravais
lattice, but contains two atoms in a unit cell. If we denote the two non-equivalent
sites as ◦ and •, the Hamiltonian is given as

H = −t
∑
ij

c
†
i cj + h.c. = c†Hc,

where (i, j) are nearest-neighbour sites (with π orbitals of carbon atoms) on the
honeycomb lattice with the hopping, t (�2.8 eV in graphene). On the right-hand
side we have recasted the Hamiltonian into a matrix form spanned by the atomic
sites as

c =
[
c•
c◦

]
, c• =

⎛
⎜⎝
c•1
...

c•N•

⎞
⎟⎠ , c◦ =

⎛
⎜⎝
c◦1
...

c◦N◦

⎞
⎟⎠ ,

H ≡
[

O D
D† O

]
,

where we have divided the honeycomb lattice, which is bipartite, into two sublat-
tices, • and ◦. Since each nearest-neighbour transfer connects neighbouring • and ◦
sites, the Hamiltonian in this representation is block-offdiagonal. The off-diagonal
block is denoted as D, an N• ×N◦ matrix, where N•(N◦) is the total number of •(◦)
sites. We have N• = N◦ unless we consider edges (we come to this point later).

This implies the Hamiltonian changes its sign if we perform a transformation,

ci• → +ci•
ci◦ → −ci◦.

We can put this in a form,

{H,�} ≡ H� + �H = O, � =
[

IN• O
O −IN◦

]
,

where I is a unit matrix. The property that the Hamiltonian anticommutes with an
operator � (called a chiral operator) defines the chiral symmetry.

If a Hamiltonian has a chiral symmetry, then from the Schrödinger equation
HψE = EψE , we can see that any eigenstate, ψE , with an eigenenergy E should
have a “chiral partner”, ψ−E = Γ ψE with an eigenenergy −E. In terms of the ma-
trix form, the Schrödinger equation reads[

O D
D† O

][
ψ•
ψ◦

]
= E

[
ψ•
ψ◦

]
,
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with ψE = [ψ•
ψ◦
]
. The chiral partner then becomes

ψ−E = �ψE =
[

IN• O
O −IN◦

][
ψ•
ψ◦

]
=
[
ψ•

−ψ◦

]

with an inverted sign for the ◦ component, which indeed has an eigenenergy −E as
[

O D
D† O

][
ψ•

−ψ◦

]
= (−E)

[
ψ•

−ψ◦

]
.

Thus the chiral operation amounts to, as far as the tight-binding picture is concerned,
a sign reversal for one of the two sublattice components. The two components, ψ•
and ψ◦, are related, for nonzero energy states, as

ψ• = 1

E
Dψ◦, ψ◦ = 1

E
D†ψ•.

The chiral symmetry tells us that the zero-energy states are special: Such a state,
having its chiral partner at the same energy, can be made an eigenstate of the chi-
ral operator if we take linear combinations, that is, for any zero-energy eigenstate
ψE=0, we construct eigenstates of the chiral operator � as

�ψ± = ±ψ±,
ψ± = P±ψE=0

with

P± = (1 ± �)/2,

a projection onto the eigenstates of the chiral operator � (with (P±)2 = P±). From
the factor (1 ± �), ψ+ has finite amplitudes only on • sites, while ψ− on ◦ sites in
a lattice model.

When we apply a uniform magnetic field normal to graphene, the states coalesce
into graphene Landau levels. Since this also occurs at E = 0 (with the Landau in-
dex n = 0), for which the states are exactly degenerate in the presence of the chiral
symmetry as we shall see, one can take the one-particle states of the n = 0 Landau
level as the eigenstates of the chiral operator Γ . This is important for discussing
not only one-body problems but also many-body physics of graphene [37–39]. An-
other situation where the chiral symmetry plays an important role is its relevance to
edge states that appear along sample boundaries. It has long been known that edge
states (“Fujita states”) [40] appear along zigzag edges, where the states are in fact
eigenstates of the chiral operator [37–39, 41], as we shall discuss later.

In momentum space, the Hamiltonian is written as

H = c(k)†H(k)c(k), c(k) =
[
c•(k)
c◦(k)

]

where c•◦(k) = (1/N)
∑

i e
ik·xi ci•◦ is a Bloch representation, and
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Fig. 7.1 (a) Unit cell of graphene in real space, with primitive vectors êi indicated. (b) Brillouin
zone in reciprocal space, with primitive vectors b̂i indicated. (c) Energy dispersion (in an extended
zone)

H(k) =
[

0 D(k)
D∗(k) 0

]
, (7.1)

D(k) = t
(
1 + e−ik1 + e−ik2

)
, (7.2)

where k1, k2 are respectively wavenumbers along the primitive directions (Fig. 7.1,
centre panel). In this representation we have the chiral symmetry, {H,γ } = 0,
with γ = σz, the z component of Pauli matrix. Since the eigenequation becomes
|D(k)|2 = E2, the energy dispersion is given by ±|D(k)| (Fig. 7.1, right panel).

7.2.2 Fermion Doubling for Chiral Symmetric Lattice Fermions

While graphene is often described as a realisation of massless Dirac particles,
graphene harbours even more interesting physics that is related to the honeycomb
lattice. Namely, if a fermion system on a lattice, for which we have to work in a
reciprocal space, there is an interesting phenomenon called the “fermion doubling”
when the lattice possesses the chiral symmetry.

In more general terms of the band theory in the solid state physics, the task is
to find the chiral operator γ , with {H,γ } = 0,γ † = γ , and γ 2 = 1, for a general
two-band system (i.e., valence and conduction bands), so we depart for the mo-
ment from the honeycomb lattice. A two-band system has a 2 × 2 matrix Hamil-
tonian in k space, which is actually the situation considered by Berry [13], who
discussed the behaviour of wavefunctions around a (generally accidental) degener-
acy (level crossing) point. The Hamiltonian can then be expanded by Pauli matrices
σ = (σ1, σ2, σ3) as

H(k) = R(k) · σ =
[

R3 R1 − iR2
R1 + iR2 −R3

]
, R1,R2,R3 ∈ R

where R =t (R1,R2,R3), is a three-dimensional real vector with R1(k) = ReD(k)
and R2(k) = −ImD(k). In (7.1) R3 = 0, but R3 can generally be finite, and we
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Fig. 7.2 Two-dimensional
Brillouin zone (left panel),
which is topologically a torus
(right)

have taken the origin of energy in such a way that H is traceless. Then the secular
equation becomes E2 = R2 with R ≡ |R|, so that the valence and conduction bands
correspond respectively to E(k) = ±R(k). Now, in a 2D system as is the case with
graphene, the wavenumber k lives on a 2D plane (Fig. 7.2), while the Hamiltonian
is defined by R(k) which is a 3D vector. Since the degree of freedom for R(k) is
greater than the number of variables, the energy gap can close only accidentally in
general (i.e., when there is no chiral symmetry) [13].

How about the chiral-symmetric case? The chiral operator in the present repre-
sentation should also be a 2×2 matrix, so that it should point to a general direction
(nγ ) in the Pauli-matrix space as

γ = nγ · σ .

The condition for the chiral symmetry, {H,γ } = 2R · nγ = 0,1 then reads

R(k) ⊥ nγ ,

i.e., a geometrical condition that the vector R(k) be always normal to a constant
vector. Case of graphene corresponds to nγ ⊥ z with γ = σz. In this case, the role
of gamma matrices, γ0, γ1, γ5, in the (3 + 1)-dimensional field theory is played by
σx,σy, σz in (2 + 1)-dimensions, hence the nomenclature “chiral operator”.

Thus the degree of freedom in R(k) is reduced to two in the chiral-symmetric
case. Figure 7.3 schematically shows how R(k), generally a three-dimensional ob-
ject, is flattened in the presence of chiral symmetry, and Dirac points appear when-
ever the flattened object intersects zero points of R. This simple fact already implies
a topological stability of the Dirac cones [8, 9, 14]. The topological stability means
that the degeneracy is stable against finite (as opposed to infinitesimal) modifica-
tions, up to a certain extent.

Let us elaborate this. If we denote the momentum as k0 at which a zero point
occurs (R(k0) = 0), we can expand the Hamiltonian, as a k · p scheme, around this
momentum, where the leading term should be linear in δk = k − k0 (unless the
leading term is quadratic for a specific reason), so that we end up with an effective
Hamiltonian,

H ≈ h ≡ (X · σ )δkx + (Y · σ )δky,

X = ∂kxR, Y = ∂kyR,

1We have made use of (A · σ )(B · σ ) = A · B + i(A × B) · σ .
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Fig. 7.3 Topological stability of Dirac cones: Three-dimensional “balloons” at the top schemati-
cally represent the general image of R(k) when k moves over the first Brillouin zone (a torus T2;
previous figure). Flattened balloons below represent the chiral-symmetric case, where the objects
reside on a plane normal to nγ . (a) is the case in which a zero point (origin) of R(k) (dot) is within
the flattened object and Dirac cones appear in pairs, or (b) outside the object. Inset below (a) shows
doubled Dirac cones with chirality +1 (at K; left panel) and −1 (at K′ ; right), here represented in
R space

which is a massless Dirac Hamiltonian. Since X and Y are both perpendicular to nγ
as we have seen, the three vectors (X,Y,nγ ) can be either right-handed (which we
call the chirality χ = +1) or left-handed (χ = −1). Namely,

nγ = χX × Y/(c�)2,

Here c = |X × Y|1/2/� plays the role of the “speed of light” (velocity of a massless
Dirac particle), which corresponds to

√
3at/2 in the tight-binding model, and is

numerically ∼106 m s−1, some 1/300 times the velocity of light, for graphene.
The energy dispersion is obtained by calculating h2 as

h2 = (c�)2(δkx, δky)�

[
δkx
δky

]
,

� = 1

(c�)2

[
X · X X · Y
Y · X Y · Y

]
,

where �, a real symmetric matrix with det� = 1, can be diagonalised by an or-
thogonal matrix V as

� = V†diag (ξ1, ξ2)V,

where ξ1, ξ2 > 0 with ξ1ξ2 = 1. We have then
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E = ±cp̄,
p̄ = �

√
ξ1k

2
1 + ξ2k

2
2,

[
k1
k2

]
= V

[
δkx
δky

]
,

an (in general elliptic) Dirac cone.
Although we have so far restricted ourselves to the vicinity around K and K′

points in the Brillouin zone, we can extend the argument on the chiral symmetry
for the whole Brillouin zone, which will put a global constraint on the Dirac cones.
Since the two-dimensional Brillouin zone with its periodic boundaries is topologi-
cally a two-torus T 2 (Fig. 7.2), Berry’s parameterization of the Hamiltonian means
that the map, k → R(k), when k moves over the first Brillouin zone generates an im-
age R(T 2) as a compact, oriented surface (a “balloon”) in three dimensional space
of R (Fig. 7.3). We have seen that the chiral symmetry requires that the balloon be
flattened. The zero-energy point corresponds to the case where the origin (R = 0)
intersects the flattened balloon. Then it is graphically obvious that the Dirac cones
always appear in pairs, where each pair comprises opposite chiralities (i.e., left- and
right-handed) (Fig. 7.3). This is (two-dimensional analogue of) the fermion dou-
bling and Nielsen-Ninomiya theorem usually discussed for (3 + 1) dimensions. Ex-
istence of the doubled Dirac cones at K and K′ points in graphene with the opposite
chiralities,

χ(K) + χ
(
K′) = 0,

is a simplest realization of this.
In the case of graphene (i.e., a honeycomb lattice) the fermion doubling can be

attributed to the crystal symmetry, where the Dirac points correspond to, in a space-
group argument, the existence of two-dimensional representations at K and K′ [15].
We can also show that only the honeycomb symmetry of the periodic potential of
the crystal is required for the Dirac cones to arise, so that the Dirac cones appear not
only in the tight-binding model but more generally. Hsu and Reichl [42] have shown
this approximately for a honeycomb array of atomic potentials with a plane-wave
expansion for the band calculation. Later, the presence of Dirac cones was analyti-
cally shown with renormalisation of the potential strength and a regularisation of the
potential [43]. These works also indicate that the second-neighbour hopping integral
is small, ∼0.1 eV.

7.2.3 When and How Dirac Cones Appear?—Generalised Chiral
Symmetry

We have seen that if the Hamiltonian has a chiral symmetry, then (an even number
of) Dirac cones have to exist as far as the Hamiltonian contains zero point in the
sense of Fig. 7.3. Now we can pose an “inverse problem”. Namely, if a Hamiltonian
has gap-closing point(s), does this imply the Hamiltonian has a chiral symmetry?
This question is nontrivial, since the zero gap alone may not guarantee the existence
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of chiral symmetry. We have seen that the low-energy effective Hamiltonian around
a gap-closing point is expressed in general by a 2 × 2 matrix expanded by the Pauli
matrices. The gap closing point itself where the two bands become degenerate has a
co-dimension of 3 [13]. This implies that, in two spatial dimensions, the degeneracy
only occurs accidentally unless some constraint, such as the chiral symmetry, exists.

So let us here consider the gap closing when the chiral symmetry is absent.
Around the gap closing point the Hamiltonian is expanded as

H = [(σ0X
0 + σ · X

)
δkx + (σ0Y

0 + σ · Y
)
δky
]
.

Here we have included a terms proportional to σ0, a unit matrix, which is required
when we discuss non-chiral-symmetric case. When this term exists, the energy dis-
persion is affected when the term has a momentum dependence, and the Dirac cones
become tilted (Fig. 7.4(b)).

We can show, however, that even in this case we can define a “generalised chiral
symmetry”. Namely, if we define a generalised chiral operator,

γ = n · σ ,

n = (X × Y + iη)/(c�)2,

η = X0Y − XY 0,

c2 =
√

|X × Y|2 − |η|2,

then we can show that the Hamiltonian satisfies

Hγ + γ †H = 0.

While the matrix γ is now non-hermitian (γ † �= γ ), we still have γ 2 = σ0, which
implies that the eigenvalues of γ are again ±1. An interesting observation is that the
generalised chiral operator is definable only when the tilting is not too large (|η| ≤
|X × Y|) [35, 44], which is a condition that the Hamiltonian as a differential operator
be elliptic (as opposed to hyperbolic). The latter is exactly the condition for the index
theorem to hold, so that we can say there really is a well-defined mathematical
relation between the Dirac cone physics and the index theorem. The tilted Dirac
cones are related to the physics of some organic metal, as discussed in terms of the
chiral symmetry by Kawarabayashi et al. [35, 36].

The chiral symmetry can also be discussed (a) when there is a second-neighbour
hopping in the honeycomb lattice, which degrades the electron-hole symmetry, with
a dispersion displayed in Fig. 7.4(a) [34]. There are various other modified forms
of Dirac cones: (b) Tilted cones discussed above. (c) A single cone with a flat band
inserted occurs in a model proposed by Lieb [45], and in a class of graphene sys-
tems with antidot arrays (periodically perforated graphene, or, in today’s language,
graphene nanomesh), originally considered by Shima and Aoki [46]. This can be re-
garded as a Dirac cone with the (spin-1 realisation of) SU(2) symmetry [22]. (d) Two
parabolic dispersions touching at the apices appear in bilayer graphene. In this case
the chiral symmetry is preserved but the dispersion is no longer cones, but still the
anomalously sharp zero-energy Landau level is theoretically predicted [47].
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Fig. 7.4 Various modified forms of Dirac cones: (a) Electron-hole asymmetric cones with
second-neighbour transfers [34], (b) tilted cones [35], (c) a single cone with a flat band in-
serted [22, 46], and (d) two parabolic dispersions touching at the apices in bilayer graphene [47].
Bottom insets depict the corresponding lattice structures

7.3 Hall Conductivity of Dirac Fermions in Magnetic Fields

7.3.1 Landau Level of the Dirac Fermions

Graphene quantum Hall effect is one of the most remarkable phenomena inherent
in graphene. So let us first consider the electronic structure of Dirac fermions when
a uniform magnetic field B is applied perpendicular to graphene. We can then put
�δk → π ≡ p − eA, where p = −i�∇ and rot A = B = (0,0,B). The Hamiltonian
becomes

h(B) = �
−1[(X · σ )πx + (Y · σ )πy

]
,

where π has a commutation relation,

[πx,πy] = i�e(∂xAy − ∂yAx) = i�eB.

Here we assume e < 0, B < 0 (with eB > 0) without loss of generality.
It is a straightforward exercise to treat the Landau levels for Dirac particles, but

here we opt for a general expression in terms of the above Hamiltonian. Then, by
again taking the squared Hamiltonian, we have

h2 = �
−2{[X2π2

x + Y2π2
y + X · Y(πxπy + πyπx)

]
σ0 + i(X × Y) · σ [πx,πy]}

= c2
[
(πx,πy)�

[
πx
πy

]
σ0 + iχγ [πx,πy]

]

= c2[(ξ1Π
2
1 + ξ2Π

2
2

)
σ0 + iχγ [Π1,Π2 ]]

= 1

2m

′ 2

σ0 − χ
1

2
�ωcγ.
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Here we have defined


 = (Π1,Π2) = Vπ, Π ′
i = ξ

1/2
i Πi(i = 1,2),

[
Π ′

1,Π
′
2

] = i�eB,

in terms of the orthogonal matrix V introduced in the previous section. We have
also defined a mass by 1

2m ≡ c2 and the cyclotron frequency ωc ≡ eB/m = 2c2eB .
The first term on the right-hand side of the last line is the standard Hamiltonian
for two-dimensional electrons in a uniform magnetic field, so that its eigenvalues
are (n′ + 1/2)�ωc with n′: integer. The second term (∝ χγ ) is either +1 or −1
according as the eigenvalue of γ has the same sign as χ or not, and we end up with
the final Landau level structure,

h2�n′
± = �ωc

(
n′ + 1

2
∓ χ

1

2

)
�n′

±,

�n′
± = φn′ φ±,

where n′ is the Landau index, φn′ the Landau wavefunction, while φ± is the eigen-
state of γ with γφ± = ±φ±. For the original h we have the Landau levels of the
Dirac fermions given as

εn± = ±c√2�eB|n|, n = 0,±1,±2, . . . (7.3)

with n = n′ + (1 ∓ χ)/2.
This is the graphene Landau spectrum, which is special in two respects: (i) the

levels have absolute magnitudes proportional to
√
nB (as opposed to ∝ (n + 1/2)B

in usual 2DEG), and (ii) we have a zero-energy Landau level (for n = 0) right at the
Dirac point (E = 0). The zero Landau level is special in that its eigenstates can be
made eigenstates of the chiral operator γ with the eigenvalue χ , since we have to
take the minus sign in the factor (1 ∓ χ) appearing above. By putting

h2 = c2P†
χPχ ,

where Pχ = Π ′
1σ 0 + iχγΠ ′

2 with [Pχ ,P†
χ ] = χγ�eB , we can in fact rewrite the

condition for zero-energy states with chirality χ as h2�0
χ = c2P†

χPχ�0
χ = 0, which

implies (Pχ�0
χ )

†Pχ�0
χ = ‖Pχ�0

χ‖2 = 0, namely

Pχ�0
χ = 0.

7.3.2 Stability of the n = 0 Landau Level

Real samples are always disordered, and usual Landau levels in two-dimensional
electron gases are broadened accordingly. Now, an amazing property of graphene is
its zero Landau level remains sharp even in the presence of disorder under a certain
condition, which turns out to be just the chiral symmetry. For a heuristic purpose,
let us show this for the case of spatially inhomogeneous magnetic fields (i.e., ran-
dom gauge fields) following an argument due to Aharonov and Casher [16, 36], or
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more generically in terms of the index theorem. Namely, the zero-energy condition
Pχ�0

χ = 0 can be satisfied for an inhomogeneous B(r). Let us here summarise the
Aharonov-Casher argument with a slight extension. Introducing a scalar function φ,
we can express the vector potential as

(A1,A2) = (−ξ2∂2φ, ξ1∂1φ).

Then the secular equation for the zero mode becomes

0 = Pχ�0
χ = −i�

(
∂ ′

1 + i
2π

φ0
∂ ′

2φ + i∂ ′
2 + 2π

φ0
∂ ′

1φ

)
�0
χ

with φ0 = e/h the flux quantum, and ∂ ′
i = ξ

1/2
i ∂i . If we put

�0
χ = e

−2π φ
φ0 f,

the function f satisfies (∂ ′
1 +i∂ ′

2)f = ∂z̄f = 0 (z ≡ x′
1 +ix′

2 ). Namely, f is an entire
function of z on the whole complex plane z ∈ C, that is, polynomials. The function
φ needs to satisfy the equation, B = ∂1A2 − ∂2A1 = (ξ1∂

2
1 + ξ2∂

2
2 )φ. When the

magnetic field is nonzero only in a finite region, we have an asymptotic behaviour,2

φ
r→∞−→ Φ

2π
log

(
r

r0

)
,

where Φ = ∫ dx̃1dx̃2B is the total flux. This implies an asymptotic behaviour,

ψ
r→∞−→ f (z)

(
r

r0

)− Φ
φ0
,

namely, the degeneracy of the zero modes is precisely Φ/φ0. Since this exhausts the
total number of states in a Landau level, the zero-energy Landau level exactly has a
delta-function density of states. This holds even when B has a spatial dependence,
and concludes that the zero energy Landau level remains intact against spatial ran-
domness in magnetic field as far as the chiral symmetry exists.

As for graphene, an intrinsic randomness comes from ripples, i.e., random cor-
rugations of the honeycomb lattice plane. Ripples can be modeled by a randomness
in the hopping in the tight-binding model. Now, random bonds preserve the chiral
symmetry: We have seen that in real space we can decompose the honeycomb lattice
into two sub-lattices ◦ and •, for which the chiral operator acts as γ ciγ−1 = ±ci
with +(−) for i ∈ ◦(•). Obviously, the random hopping preserves the symmetry,
while a potential disorder does not. A ripple (spatial corrugation) is represented
by a spatially correlated randomness in the hopping [48, 49]. The robustness of
the sharp zero-energy Landau level, and the associated sharp QHE step, is con-
firmed numerically with a random hopping model of the graphene [27] as shown in
Fig. 7.5. We can also extend the Aharonov-Casher argument to n = 0 Landau level
for ripples [27].

2This can be shown from φ(x′
1, x

′
2) = ∫ dx̃′

1dx̃
′
2G(x̃1 − x̃′

1, x̃2 − x̃′
2)B(x̃

′
1, x̃

′
2), where G(x̃1, x̃2) =

1
2π log r

r0
, r2 = x̃2

1 + x̃2
2 , and the quantities with tilde are scaled by (ξ1, ξ2).
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Fig. 7.5 Density of states of graphene in a magnetic field for a spatially correlated random-bond
model for various values of the correlation length η of the randomness with the magnitude of the
disorder fixed. Insets on the right schematically depict an increased spatial scale of the ripple [27]

7.3.3 Massless vs Massive Dirac Fermions

We have emphasised that the massless nature is essential for the n = 0 Landau level
in the Dirac QHE. Then a natural question is how the massive case would cross over
to the massless case. For this heuristic purpose let us break the chiral symmetry
to consider a Dirac fermion having a mass m, for which the Hamiltonian, in zero
magnetic field, is

hm = (X · σ )kx + (Y · σ )ky + mc2γ.

The mass enters into a term proportional to the chiral operator γ = êX×Y · σ , which
is usually γ = σz. In this case the dispersion (in zero magnetic field) is hyperbolic,
±c√p2 + m2c2, since h2

m = c2p2 + m2c4. Such a massive case is not entirely ar-
tificial, since monolayer graphene has been reported to become massive when de-
posited on substrates such as BN [28–30] or Ru [31]. Incidentally, manipulation
of the massive case is also interesting, as in the impurity states [32] or graphene
quantum dot with charged vacuum [33].

Now, if we put hm = R · σ as before, then the eigenenergies are ± |R| with
R(kx, ky) again defining a plane in three-dimensional space as

R = Xkx + Yky + mχc2nγ .

The difference from the massless case is the point R = 0 is now away from the
plane spanned by X and Y, since the mass term is proportional to nγ ⊥ X,Y. Since
the Dirac particle has both of negative-energy (hole) and positive-energy (electron)
branches in its dispersion, with the hole branch being occupied (“Dirac sea”), the
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Fig. 7.6 (a) For valence and
conduction bands with a mass
> 0, energy spectrum in zero
magnetic field (left panel) and
the Landau levels in a finite
field (right) are schematically
shown, with the Chern
number for each energy gap
indicated. (b) How R(kx, ky)
in Fig. 7.3 looks like in a
massive case with a finite m

projection P onto the hole branch is expressed in terms of the normalised eigenstate
ψ that has (R̂ · σ )ψ = −ψ with R̂ ≡ R/R as [14]

P = ψψ† = 1

2
(1 − R̂ · σ ).

Let us evaluate the Chern number with the general gauge-invariant formula, C =
(2πi)−1

∫
Tr PdP2 (see (7.4) below), which in the present case reads

dP = − 1

2
dR̂ · σ ,

dP 2 = i

4
(dR̂ × dR̂) · σ ,

TrPdP 2 = − i

4
R̂ · (dR̂ × dR̂),

C = − 1

8π

∫
R̂ · (dR̂ × dR̂) = −sgn(mχ)

∫
dΩ

4π
= − 1

2
sgn(mχ),

where dΩ is the solid-angle element (see Fig. 7.6(b)). The last equality follows
from the fact that the total solid angle is half the full solid angle when the origin
of R is off-plane for a nonzero mass. This is a graphical way for understanding the
half-integer Chern numbers, well-known in the field theory.

Now, we can apply a magnetic field. The Hall conductivity of a gapped two-
dimensional system is given by a topological invariant, which is the first Chern
number, C, as shown by Thouless et al. [50, 51]. From the above procedure we can
deduce the Chern number for Landau levels of Dirac fermions in a magnetic field
by adiabatically turning on the magnetic field as depicted in Fig. 7.6(a). We can
then remember that the effect of the mass term is to shift the zero-energy Landau
level by mc2χ (i.e., upwards or downwards according as the chirality χ = 1 or −1),
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Fig. 7.7 (a) Schematic Landau levels and the quantised Hall conductivity σxy . (b) The way in
which the Landau levels of a massive Dirac fermion with chirality −1 (left column) or +1 (right)
cross over to those for the massless Dirac cones. The numbers represent the Chern numbers (with
±1,±3, . . . indicating the sum of K and K′ contributions). Top insets depict the dispersion

with the states being eigenstates of γ having eigenvalue χ (see Fig. 7.7). Since
the Chern number cannot change in an adiabatic process unless the gap closes, the
Chern number in the mass gap remains, for magnetic field B = 0 → finite, to be
−1/2 for χ = +1 (or, more precisely, for mχ > 0). In other words, the Landau
level (LL) that becomes the zero-mode (n = 0) LL in the massless limit (m → 0)
is adiabatically connected to the LL just above the bottom of the positive-energy
branch in the massive case. Conversely, for mχ < 0, the Chern number for the mass
gap is +1/2. The LL that becomes the zero-mode (n = 0) LL in the massless limit
resides just below the top of the negative-energy branch. These are for single Dirac
fermions, while in graphene with the honeycomb lattice, the total Chern number
is the sum of the contributions from K point (with mχ > 0) and from K′ point
(with mχ < 0), so that we end up with the graphene QHE with σxy = 2n + 1 (n =
0,±1, . . .) (in units of −e2/h, with the spin degeneracy dropped) as in Fig. 7.7.
There, each Landau level carries the Chern number of two.

7.3.4 Chern Number for Many-Particle Configurations

In the case of graphene, we are interested in the graphene QHE with σxy = −(2n +
1)(e2/h) (Fig. 7.7) in terms of the topological number. To be precise, a special care
is needed here, since we are specifically interested in the region around the Dirac
(charge-neutrality) point, where we have filled negative-energy states (“Dirac sea”).
So if we want to question the Chern numbers in this region, we have to deal with
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many-particle (i.e., filled Dirac sea) configurations. According to the Niu-Thouless-
Wu formula [52], the Chern number formulation can be extended to many-particle
configurations as

σxy = e2

h

1

q
C,

where we have included a possibility that the ground state has a (topological) degen-
eracy of q with a many-body multiplet (|Ψ1 〉, . . . , |Ψq〉). The Chern numberC, in the
differential geometry, is an integral of Berry’s connection A over a two-dimensional
(oriented) surface S as [53–55]

C = 1

2πi

∫
S

Tr F = 1

2πi

∫
S

TrdA,

F = dA + A2,

A = �†d� =
⎛
⎜⎝

〈Ψ1 |dΨ1 〉 · · · 〈Ψ1 |dΨq〉
...

. . .
...

〈Ψq |dΨ1 〉 · · · 〈Ψ1 |dΨq〉

⎞
⎟⎠ ,

� = (|Ψ1 〉, . . . , |Ψq〉),
where the differential is parametrised as d = dφx ∂

∂φx
+ dφy ∂

∂φy
, and dφxdφy =

−dφydφx . Here, each of the many-particle configuration � is a low-energy or-
thonormalized (�†� = 1) state of the many-body Hamiltonian H for a parameter
(φx,φy) ∈ S that specifies twisted boundary conditions along x and y,

∣∣Ψ (x + Lx,y)
〉 = eiφx

∣∣Ψ (x, y)〉,∣∣Ψ (x, y + Ly)
〉 = eiφy

∣∣Ψ (x, y)〉.
Since the twisted boundary condition for φμ = 2π (μ = x, y) is equivalent to the
periodic boundary condition, the parameter space, S, is a two-dimensional torus T 2.
This guarantees that the Chern number is a topological invariant (integers).

In a degenerate case, q > 1, a gap is required between the lowest q states and the
above ones for this formula to be applicable, but in general the low-energy q states
may have level crossings against the twist in the boundary condition. We can still
treat the situation with a unitary (gauge) transformation g ∈ U(q) for the multiplet
as

� = �gg,

A = g−1Agg + g−1dg
(
Ag ≡ �†

gd�g
)
,

F = g−1Fgg
(
Fg ≡ dAg + A2

g
)
.

The Chern number is then safely defined even in the presence of level crossings
among the q states in a gauge-invariant manner as [14, 56, 57]

Cg = 1

2πi

∫
Tr Fg = C.
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Although the Chern number itself is gauge invariant, Berry’s connection A is not.
One may have a manifestly gauge-invariant expression for the Chern number using
the gauge-invariant projection, P = ��† = �g�

†
g , to the multiplet � , which is

given [14] as

dP = d��† + �d�†,

(dP)2 = −d�d�†��† + d�d�† + �d�†d��† − ��†d�d�†,

P(dP)2P = �
[
d�†d� + (�†d�

)2]
�† = �F�†.

Now we have the manifestly gauge-invariant expression for the first Chern number
as [14, 56]

C = 1

2πi

∫
Tr PdP2. (7.4)

Having established the general formula, let us apply it to graphene in the absence
of electron-electron interactions. The ground state is non-degenerate for an integer
Landau level filling, and the many-particle ground state |Ψ 〉 is given by filling the
single-particle states below the Fermi energy, ψ1, . . . ,ψM , as

|ψ〉 =
M∏
�=1

(
c†ψ�

)|0〉 = (c†ψ1
) · · · (c†ψM

)|0〉, c† = (c†
1, . . . , c

†
N

)

where c†
i is the creation operator of a fermion, M the total number of occupied

states, and N the total number of sites. Then the Berry’s connection for the many-
electron state |Ψ 〉 is given as [18]

A = 〈Ψ |dΨ 〉 = Tr a,

a = ψ†dψ,

ψ = (ψ1, . . . ,ψM).

By applying the above procedure we have

F = dA + A2 = dA = Trda,

C = 1

2πi

∫
d Tr a.

In the case where the one-particle states have no level crossings, the expression
simply reduces to the sum of the Chern numbers in the TKNN formula [50] as

C =
M∑
j=1

cj , cj = 1

2πi

∫
daj , aj = ψ

†
j dψj .
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7.3.5 Quantum Hall Effect in Graphene

Now we are ready to discuss the quantum Hall effect (QHE) around the Dirac
(charge-neutrality) point, with a filled Dirac sea. We can do so by combining the
method described above with some technique originally developed for lattice gauge
theories [58], and the computed Hall conductivity for graphene is as displayed in
Fig. 7.8(b), third column for the Chern numbers against Fermi energy [8]. Dirac-
like behaviour [59, 60],

σxy = −(2n + 1)
e2

h
, (7.5)

(with the spin degeneracy of two suppressed here) is clearly shown in a region
around the Dirac point. We can immediately notice an intriguing point here: if we
look at the band dispersion of graphene on the whole Brillouin zone (Fig. 7.1, right
panel), the Dirac cone with the k-linear dispersion occurs only in the vicinity of K
and K′ points. So what would be the fate of the graphene QHE when we shift EF
away from the charge-neutrality point? The figure shows a clear answer to this ques-
tion: the Dirac-like QHE persists all the way up to the van Hove singularities, which
can be identified as the energies at which saddle points occur in the dispersion. Be-

yond each of these energies, the usual QHE with σxy = −N e2

h
(N : usual Landau

index) takes over, but this is accompanied by a huge jump with a sign change in the
Hall conductivity. The anomaly at the van-Hove singularities is topological in that
it is a boundary between different sequences of topological quantum numbers.

It is also possible to calculate these topological quantum numbers algebraically
in terms of the TKNN formula [8]. We can perform this by noting that the hon-
eycomb lattice can be continuously deformed into the usual square lattice or into
the π -flux lattice by introducing a diagonal (third-neighbour) transfer in the former.
Then we can use the adiabatic continuity for the topological numbers in the TKNN
Diophantine equation to derive those in the honeycomb lattice from those in the
square lattice, as depicted in Fig. 7.8. The calculation can also be extended to the
realistic multi-band electronic structure (that involves carbon’s σ bands) [61].

Now, an interesting point is that the factor of two coming from the doubled Dirac
cones at K and K′ inherently appears in the graphene QHE, so that the half integers
we talked about in terms of the field theory is actually hidden in the Hall conduc-
tivity. We can then pose a question: is it impossible to resolve the half-integer com-
ponents? As far as lattice models are concerned we cannot go around the TKNN
formula, so the quantum Hall number is always integer, but we can go around the
Nielsen-Ninomiya theorem to resolve the fermion doubling by considering a lattice
model in a wider (i.e., chiral-symmetry breaking) class. Watanabe et al. considered
a lattice model in which the relative energy between the two Dirac points is sys-
tematically shifted (Fig. 7.9(b)) [21, 22]. With an explicit calculation of the Chern
number, we can confirm that each Dirac cone does indeed contribute to the Hall
conductivity as the half odd integer series (. . . ,−3/2,−1/2,1/2,3/2, . . .) when the
Fermi energy traverses the (shifted sets of) Landau levels. The model has a complex
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Fig. 7.8 For a honeycomb lattice (top inset) with an extra transfer t ′ (dashed lines), energy dis-
persion (first column), density of states (second), Chern number (third) with red lines indicating
the graphene QHE, and Hofstadter’s diagram, i.e., energy spectrum against the magnetic flux φ
(fourth) are shown for (a) t ′/t = −1 (π -flux lattice), (b) t ′/t = 0 (honeycomb), and (c) t ′/t = 1
(square) [8]. For the honeycomb Hofstadter’s diagram, the Dirac-like Landau fan (∝ √

B) and the
2DEG-like ones (∝ B) are indicated

transfer, and reminds us of Haldane’s model for the “anomalous quantum Hall ef-
fect” in which a complex-transfer model accommodates Landau levels despite the
total magnetic flux being zero [62] (Fig. 7.9(a)). In this model, two Dirac cones
are made massive one by one, while the model in [21, 22] has two, massless cones
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Fig. 7.9 Energy dispersion
(top column) and the lattice
model (bottom) for
(a) Haldane’s model for the
anomalous quantum Hall
effect [62], and (b) shifted
Dirac cones [21, 22]

shifted in energy. The model, with a complex transfer, may seem unrealistic, but
this can be realised in cold atoms on an optical lattice, where non-Abelian gauge
structure can be experimentally realisable from an intra-atomic degree of freedom
with a fine-tuning of parameters [23, 63]. This is related to a field theory in which a
two-component (two hyperfine components in the case of cold atoms) fermion sys-
tems can accommodate non-Abelian gauge fields as shown by Wilczek and Zee in
1984 [53].

7.4 Bulk-Edge Correspondence for the Chiral-Symmetric Dirac
Fermions

7.4.1 Boundary Physics of Graphene

Usually, effects of edges are negligible for bulk systems, since edge (or surface)
states only cover a spatial dimension smaller by one than that in the bulk. However,
it often happens, both in condensed-matter physics and in field theories, that the
bulk properties are intimately related with the “boundary states” when the system
is finite. A remarkable example is the “topological states” in which the bulk state in
fact dictates the way in which the edge states appear. So let us look at the physics
for graphene, where the meaning of the “topological states” will be clarified.

A typical example of the topological states is the one that historically appeared
for the first time, namely the quantum Hall system. In the quantum Hall effect
(QHE) [5], the quantisation of the Hall conductivity as a bulk property is connected
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to the edge Hall conductivity, as first recognised by Laughlin and subsequently by
various authors [19, 64–66]. When the bulk has an energy gap (the Landau gap in
the case of a QHE system), which is not related to any order parameters, the gap
closes around edges. We can then question how the gapless edge modes affect the
properties of the system. As discussed in Sect. 7.2, the Hall conductivity in the bulk
has a topological meaning of the first Chern number. We can also show that the edge
transport has its topological meaning. So the question is how these two topological
numbers are related. From a topological argument we can show that the two are in
fact identical, which is called the “bulk-edge correspondence” [19]. In this sense,
the bulk Hall conductivity and the edge Hall conductivity are one and the same.
Experimentally, for the usual two-dimensional electron gas in semiconductor het-
erostructures, experimental results indicate that the Hall current flows both in the
bulk and along the edges [5].

Thus the QHE can be explained either as a bulk phenomenon or an edge phe-
nomenon. Mathematically, one can recognise the edge topological number as a
winding number (the number of times a zero point winds around the origin on the
complex energy surface [66]), which can be shown to be the same as the Chern
number for the bulk, despite the completely different expressions [19]. The bulk-
edge correspondence is now widely accepted, and applied for various physical sys-
tems. They include gapped quantum spins [67–69], cold atoms [70], photonic crys-
tals [71–73], and quantum spin Hall states [74, 75]. There, we can regard a gapped
bulk as a vacuum, while edge states as a kind of particles.

In the case of graphene, the bulk-edge correspondence plays a two-fold role. On
one hand, graphene has a peculiar quantum Hall topological numbers distinct from
those in the usual 2DEGs, and we can interpret this in terms of the bulk-edge cor-
respondence for Dirac fermions [8, 40]. While this appears already on the level of
effective Dirac field (around K or K′ point), the second aspect concerns the (hon-
eycomb) lattice structure—the edge states only appear, reflecting the honeycomb
lattice structure, along zigzag edges (while absent along armchair edges) in zero
magnetic field as first recognized by Fujita and coworkers [40]. The latter point has
an interesting analogy in superconductors [17, 20].

7.4.2 Types of Edges and Zero-Energy Edge States

In the tight-binding model described in Sect. 7.2, the appearance of zero-energy
edge states are very simply understood. In a sample with edges, we can have N• �=
N◦, say, N• > N◦. Then the nonzero, off-diagonal matrix D in Sect. 7.2.1 is not a
square matrix, and from a simple linear algebra we can show that there are as many
asN• −N◦ exact zero-energy states. The situationN• >N◦ occurs for zigzag edges,
where an edge is terminated by • (while an armchair edge has equal numbers of •s
and ◦s, as displayed in Fig. 7.10. Whereas a Dirac field theory can capture the low-
energy physics for each of K and K′ points in the Brillouin zone, we have thus to go
back to the honeycomb lattice model if we want to address the problem of boundary
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Fig. 7.10 Left: Dispersion (top panel) and two kinds of edges (bottom) for graphene. Atoms on
the Klein edge are not shown. Right: Dispersion of the Bogoliubov quasiparticle and two kinds of
edges for a two-dimensional d-wave superconductor, represented here as a CuO2 plane (after [78])

states. One-body energy dispersion for these edges are shown in Fig. 7.11 [40].
One can immediately notice an edge mode that has a flat dispersion at E = 0 for
the zigzag edge, as discovered by Fujita and coworkers [40]. The wavefunction on
the flat band is localised along the zigzag boundary and decays exponentially into
the bulk. The edge states are in fact governed by the chiral symmetry of graphene,
and indeed provides an example of the bulk-edge correspondence in the presence of
chiral symmetry as elaborated below. While this is a one-body picture, appearance
of such edge states has been confirmed in the local density approximation [76].
Experimentally, edge states have long been observed with STM [77] (Fig. 7.11).

7.4.3 Edge States and Chiral Symmetry

Thus a crucial question is whether the appearance of the edge states localised along
zigzag boundaries is an accident or not. This is answered by the bulk-edge cor-
respondence for chiral-symmetric Dirac fermions, where (Z2) Berry phase (some-
times called Zak phase) is responsible for a topological reason [17, 20]. To facilitate
discussion let us take a cylindrical geometry with a periodic boundary condition
along y. Now the Hamiltonian without boundary in two dimensions are expressed
as
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Fig. 7.11 (a) One-particle
energy dispersion along the
edge for graphene with
zigzag or armchair edge [40].
(b) Charge density in the
density functional theory for
graphene [76]. (c) An STM
image of charge densities
near edges [77]

H 2D =
∑
kx,ky

HZ(kx, ky) or
∑
kx,ky

HA(kx, ky).

Here HZ(HA) are Hamiltonians where we take a unit cell in such a way that zigzag
(armchair) boundaries appear when the boundary condition along one of the prim-
itive vectors is open. We call this direction y. We also recall that the honeycomb
system has the chiral symmetry ({H,γ } = 0).

As for the bulk, we can consider the one-dimensional energy bands against ky
parametrised by kx . By filling the negative energy state, one has a unique many-
particle configuration. Note that the two-dimensional energy gap closes at K and
K′ points, so that the one-dimensional dispersion as a function of ky is gapped
except at the two gap closing momenta. Let us write this many-particle configura-
tion with negative-energy states filled as |kx, ky〉Z,A withHZ,A(kx, ky)|kx, ky〉Z,A =
E(kx, ky)|kx, ky〉Z,A, and define the Berry (Zak) phase,

−iγ 1D
Z,A(ky) =

∫ 2π

0
dkx Z,A〈kx, ky | ∂

∂kx
|kx, ky〉Z,A

∣∣∣∣
ky :fixed

.

According to a generic argument for the Berry phase of chiral symmetric sys-
tems [18], the Berry phase is shown to take only two values, 0 or π (mod 2π ),
if the one-dimensional system is gapped against ky . This is the Z2 Berry phase.

Then using an adiabatic continuity and the locality of the chiral symmetry, one
has a sufficient condition for the appearance of the zero-mode edge states in terms
of the Z2 Berry phase as [17, 20]
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Table 7.1 Correspondence between graphene and two-dimensional d-wave superconductors
[20, 81, 82]

Physical observables Graphene 2D d-wave superconductors

Massless Dirac dispersion Band dispersion Dispersion of Bogoliubov
quasiparticle

Chiral symmetry Bipartite honeycomb
lattice

Time-reversal invariance

Zero-mode boundary states Fujita states along zigzag
edges

Andreev bound states along
(1,1) edges

Local chiral-symmetry breaking Spin alignment along
zigzag edges

Broken time-reversal symmetry
along (1,1) boundaries

γ 1D
Z,A =

{
π zero-mode edge states must exist,

0 not necessarily.

Namely, the Berry phase of π is a sufficient condition for the zero-mode edge states
to exist, so the above property is consistent with the presence (absence) of zero-
mode edge states along zigzag (armchair) boundaries, since they have π(0) phase.
This is the bulk-edge correspondence of the chiral symmetric Dirac fermions.

We have an interesting analogy of this in the excitation modes of Bogoliubov
quasiparticle excitations in the two-dimensional d-wave superconductors, which
belongs to the same universality class in the present context. This comes from
the fact that the Bogoliubov-de Gennes equation describing the excitation mode
in a d-wave superconductor has the same form as the Dirac equation we have de-
scribed for graphene. In the former system with tetragonal symmetry there are four
Dirac cones (Fig. 7.10). The bulk-edge correspondence translates into the Andreev
bound states of the d-wave superconductor in the edge along the (1,1) crystallo-
graphic direction, and the chiral symmetry translates into the time-reversal sym-
metry (i.e., the superconducting order parameter be real), which is broken in this
boundary state. As is known theoretically [78, 79] and experimentally [80], the ex-
istence and nature of Andreev bound states is dictated by the boundary, which is
thus understood by the Z2 Berry phases of the Bogoliubov states [17, 20]. The par-
allelism between graphene and d-wave superconductors is summarised in Table 7.1
and Fig. 7.10.

This attests the universality of the bulk-edge correspondence for Dirac disper-
sion. We can further argue the following. The chiral symmetry on a lattice system
implies the existence of zero-mode flat bands for some type of boundaries. When we
regard the boundary states as one-dimensional systems, it is natural to expect some
instability to set in. Such a boundary Peierls instability has indeed physical implica-
tions as an appearance of the local spin alignment in graphene [76, 81, 82], or local
vortex generation supplemented by a local breaking of the time-reversal symmetry
in d-wave superconductors [83, 84] (see Table 7.1).
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Fig. 7.12 (a) Energy spectrum against the wavenumber normal to the edges for a graphene QHE
system with zigzag edges [8]. Left (right) edge modes are shown as blue (red) lines. The quantised
values of the bulk Hall conductance in units of e2/h are shown by numbers and green bars on
the right. Here the magnetic flux per hexagon is (1/51)φ0. (b) A Riemann surface for the complex
energy for the Bloch function (see text). Its genus coincides with the number of energy gaps [8, 66]

7.4.4 Quantum Hall Edge States of Graphene

While the above is for zero magnetic field, we can examine graphene in the quantum
Hall regime for both of the bulk and edge states along the chiral/topological argu-
ment. Namely, one can extend the theory for the square lattice [66] to graphene [8].
When the Fermi energy is in the j -th energy gap from below, the Hall conductivity,
σ
edge
xy , of the system with zigzag boundaries is analytically determined by the be-

haviour of the edge states in the Laughlin argument. It is explicitly expressed by the
topological number Ij as [8, 19, 66]

σ
edge
xy = −e2

h
Ij .

Although we do not go into detail, the topological flavour is the following: The
edge-state wavefunction for each cylindrical momentum ky is given by an analytic
continuation of the Bloch wavefunction of the one-dimensional system. For this
continuation, it is necessary to consider a complex energy surface, which turns out
to have a genus g = q − 1 Riemann surface, Σg , for a magnetic flux per hexagon
of p/q in units of Φ0. When the momentum ky is scanned from 0 to 2π , the zeros
of the edge-state wavefunctions move around the perforations (Fig. 7.12(b)) of Σg ,
which are gap regions. Since 0 and 2π are equivalent, the locus forms a loop, and
the winding number of the loop is Ij which gives the Hall conductivity when the
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Fermi energy is in a gap. We can further show that the winding numbers assigned to
the gaps and the Chern number, Cj , assigned to the j th band are directly related as

Cj = Ij − Ij−1.

For a many-electron configuration, we have σbulkxy = − e2

h

∑j

� C�, so that we end up
with

σbulkxy = σ
edge
xy .

This is the analytical derivation for the bulk-edge correspondence for graphene [8].

7.4.5 n = 0 Landau Level and the Zero Modes

In the conventional quantum Hall system, the local charge density is depleted from
the boundaries due to the boundary potential [65], which results in locally-raised
Landau levels with gapless edge modes traversing adjacent Landau levels and in-
tersecting the Fermi energy. A similar situation occurs in graphene for armchair
boundaries [85] (see Fig. 7.13(b)). For zigzag edges, on the other hand, the situation
is quite different. While the Fujita state localised along a zigzag edge and its flat
band are considered for zero magnetic field, we can show that quite different, but
still zero-energy, states appear even in strong magnetic fields. Since the bulk has
the n = 0 Landau level just at the zero energy in a magnetic field, the zero-mode
edge states are embedded in the Landau level. We can show that an effect of this
appears as an enhancement (as opposed to depletion) of the local charge density
on one of the sublattices along the zigzag boundary [69, 85] (see Fig. 7.13(a)). The
edge states, being resonant, are hybridised with the bulk Landau states, with the
edge-state amplitude decaying exponentially into the bulk with a decay length of
the order of the magnetic length. Hence Arikawa et al. called this a “topological
compensation” [85]. This contrasts with the zero magnetic field case, where the Fu-
jita state decays into the bulk with a power law. These states may be closely related
with experimental results on scanning tunnelling spectroscopy in graphene [86].

7.5 Optical Hall Effect in Graphene

So far we have described the (static) Hall conductivity. Among various fascinations
in graphene, optical properties are particularly interesting, as described in the chap-
ter by Potemski and coauthors in this volume. So we can raise a question: does
graphene exhibit interesting optical properties in the quantum Hall regime? The
question is realistic, since recent experimental advances in spectroscopy in the THz
regime are making optical measurements feasible for QHE systems with the rele-
vant energy scale (cyclotron energy) being THz in magnetic fields of a few tesla.



240 Y. Hatsugai and H. Aoki

Fig. 7.13 (a) Top: Local density of states at E = 0 (here represented by the size of a circle at
each atom) around a zigzag boundary where the n = 0 Landau level and the zero-modes for the
edge states coexist [69, 85]. Bottom: The charge density against the distance from the boundary,
x, normalized by the magnetic length, �B , for various values of the magnetic flux per hexagon, φ.
(b) Similar plot for an armchair boundary

For instance, we can examine a possibility of a Landau-level laser under strong
pumping [87].

The optical Hall conductivity σxy(ω), on the other hand, is especially interest-
ing. Morimoto et al. have looked into this problem theoretically [88], and predicted
that (i) in the usual two-dimensional electron gas (2DEG) formed in the semicon-
ductor heterostructures, the plateau structure is retained, up to significant degree of
disorder, even in the ac (THz) regime, although the heights of the plateaus are no
longer quantised in the ac regime. The unexpected robustness is attributed to an ef-
fect of localisation, where the existence of extended states and mobility gaps ensures
the step structures in the ac Hall conductivity. (ii) For graphene, the plateau struc-
ture in the optical Hall conductivity is again predicted, where the structure reflects
the graphene Landau levels. (iii) The optical Hall conductivity should be detected
through Faraday rotation measurements (Fig. 7.14(b)) as a step structure in Fara-
day rotation angle. Its magnitude is estimated to be of the order of the fine-structure
constant α (∼10 mrad), which is within the experimental feasibility. If one utilizes a
free-standing graphene, for which α has been seen as transparency [89], the rotation
angle is exactly the fine structure constant.
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The optical Hall conductivity can be generally calculated with the Kubo formula,

σxy(ω) = i�e2

L2

∑
εa<εF

∑
εb≥εF

1

εb − εa

(
jabx j

ba
y

εb − εa − �ω
− jaby j

ba
x

εb − εa + �ω

)
, (7.6)

which is the extension of the static Hall conductivity [90] to the ac response. Here
εa is the eigenenergy, jabx the current matrix elements, εF the Fermi energy and
L the sample size. The difference in graphene from the usual 2DEG is that the
eigenstates are those of the Dirac Hamiltonian, Landau levels are graphene Landau
levels (sgn(n)

√
n�ωc with ωc = vF

√
2eB/�), and accordingly the selection rule for

the current matrix elements is |n| − |n′ | = ±1 (as opposed to |n−n′ | = 1 in 2DEG).
The theoretical result in Fig. 7.14(a) numerically obtained with exact diagonal-

isation (to incorporate the localisation effect) shows that, while there is a series of
cyclotron resonances between graphene Landau levels, a flat (plateau) structure is
clearly seen in the optical Hall conductivity. Robustness of the plateaus can be dis-
cussed in terms of Anderson localisation, more precisely in terms of the dynamical
scaling argument for the ac response [91].

The optical Hall conductivity can be detected as the Faraday rotation angle ΘH
which is directly connected to the optical Hall conductivity via

ΘH � 1

(n0 + ns)cε0
σxy(ω), (7.7)

where n0(ns) is the refractive index of air (substrate). Hence the plateau structure
in σxy(ω) should be observed as steps in Faraday rotation, where the step size is
estimated for the QHE regime by putting σxy ∼ e2/h, i.e., ΘH ∼ [2/(n0 + ns)]α ∼
7 mrad, where α = e2/(4πε0�c) is the fine-structure constant. Experimental de-
tection of the plateau structure was first done for a 2DEG system [92]. Then the
structure was observed in graphene as shown in Fig. 7.14(c) [93]. Thus the message
is that, although the Hall conductivity is no longer a topological invariant in the ac
regime, we still have its remnant in the ac response.

7.6 Nonequilibrium Control of Topological Property

So far we have concentrated on equilibrium (or linear-response) properties of
graphene and their manipulations. Now, an entirely different and novel avenue ex-
ists in nonequilibrium situations. Let us briefly describe this, which is now called
“Floquet topological states”. It was Oka and Aoki who first pointed out that illu-
minating an intense circularly polarised light to the two-dimensional (2D) Dirac
system (honeycomb model for graphene) can change and control topological prop-
erties of its quantum states [94]. Then, a dc Hall conduction is shown to emerge
in zero magnetic field (Fig. 7.15(a)). Namely, the graphene QHE, which is a topo-
logical phenomena associated with Chern quantum number, can be generated as a
nonequilibrium state. Emergence of the “photovoltaic (or light-induced) quantum
Hall effect” indeed comes from the laser that dynamically opens a topological gap
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Fig. 7.14 (a) Optical Hall conductivity σxy(εF ,ω) plotted against Fermi energy εF and frequency

ω calculated for the honeycomb tight-binding model with random hopping
√〈δt2 〉 = 0.1t which

respects the chiral symmetry [34, 88]. (b) Schematic magneto-optical Faraday rotation in graphene.
(c) Experimental result for magnetic field dependence of the Faraday rotation at the photon energy
of 4 meV (1 THz) [93]. Dashed curve is calculated by the Drude model, while solid curve is the
theoretical calculation obtained from the Kubo formula with the exact diagonalisation method

(as opposed to the usual band gap) at the Dirac points in the Floquet spectrum.
Below, we briefly sketch how this phenomenon physically arises.

In an intense ac field such as laser, we need a framework that can deal with
strong ac modulations. Floquet’s formalism is just that, which is applicable to time-
periodic fields so that the formalism is a temporal analogue of Bloch’s formalism
for spatially periodic potentials. For the time-dependent Schrödinger equation (with
� = 1), i d

dt
Ψ (t) = H(t)Ψ (t), where the Hamiltonian H(t) is assumed to be peri-

odic in time with period T , H(t + T ) = H(t), Floquet’s theorem states that there
exists a solution of the form Φα(t) = e−iεαtuα(t), where uα(t) = uα(t + T ) is a
periodic function of t , and the real number εα is called the Floquet quasienergy. To
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Fig. 7.15 (a) Graphene in a circularly polarised laser, and emergence of the photoinduced quan-
tum Hall effect in zero magnetic field is schematically shown. (b) Its Floquet quasi-energy
spectrum, in which a gap opens dynamically at K and K′ points. (c) Associated light-induced
Chern density. (d) Top: Floquet quasi-energy (black curves) plotted against kx with ky = 0 for
F/Ω = 0.2. The colour coding represents the weight of the m = 0 component. Arrows represent
the leading second-order processes. Bottom: An effective model from the second-order processes,
which is equivalent to Haldane’s model (Fig. 7.9). (After [94, 95])

determine εα , we can Fourier expand as uα(t) = ∑
n e

−inΩt unα (with Ω = 2π/T ),
where unα is called the nth Floquet mode, for which the Schrödinger equation reads

∑
n

(Hmn − nΩδmn)u
n
α = εαu

m
α ,

where

Hmn ≡ 1

T

∫ T

0
dt ei(m−n)ΩtH(t)

is the Floquet Hamiltonian. Thus the quasienergies {εα} are the eigenvalues of the
infinite dimensional Floquet matrixHmn −nΩδmn, where each element corresponds
to the probability amplitude of m photon absorption and n photon emission. Thus
the problem is cast into a time-independent one, but the price to pay is now we
have a matrix equation spanned by the Floquet modes (or photon-dressed states).
Namely, if εα is an eigenvalue, εα + nΩ (n: an integer) is another eigenvalue, so
that we have an infinite ladder of energies with spacing Ω .

Now, if we apply this formalism to a tight-binding honeycomb lattice in a circu-
larly polarised light, the Floquet spectrum consists of a ladder of graphene disper-
sion, and specifically a ladder of Dirac cones around K and K′ points as depicted
in Fig. 7.15(d). Since the set of Floquet modes exhibit avoided level crossing due
to the off-diagonal elements of Hmn, a gap dynamically opens at each crossing,
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specifically at the Dirac points (Fig. 7.15(b)) [94]. Floquet’s quasi-energy can be
expressed as

εα = 〈〈Φα|H(t)|Φα〉〉 + ΩγAAα /2π,

with Φα the Floquet state and double brackets the inner product averaged over the
time period. Here the first term is the dynamical phase while γ AAα = T 〈〈Ψα|i∂t |Ψα〉〉
represents the Aharonov-Anandan phase (non-adiabatic generalisation of Berry’s
phase) [96]. Physically, a circularly polarised light as represented by a vector po-
tential Aac(t) = (F/Ω)(cosΩt, sinΩt) makes each crystal-momentum to follow
a motion k − A(t). Around a Dirac cone, this gives rise to a nonzero Aharonov-
Anandan phase,

γ AAα = ±π{[4(F/Ω2)2 + 1
]−1/2 − 1

}
,

where ± refers to α = (hole,m = −1) and (electron, 0) with hole/electron indicat-
ing the negative/positive energy branch. In the adiabatic limit (Ω → 0) this reduces
to Berry’s phase of ±π . It is this geometric effect that opens the gap at the Dirac
points in the Floquet spectrum. The size of the nonequilibrium topological gap is
[94]

κ = 1

2

[√
4(F/�)2 + �2 − �

]
∼ v2

F a
2e2(F 2/�3),

where vF is graphene’s Fermi velocity, and a the lattice constant, so that the re-
quired field strength scales as F ∝ Ω3/2. This gap opens only when circularly (or
elliptically) polarised light is applied which breaks the time reversal symmetry.

The topological quantum number (quantum Hall number) can be computed in
terms of a Floquet extension of the Kubo formula for single-particle states as

σxy(Aac)

= i

∫
dk
(2π)2

∑
α,β �=α

[fβ(k) − fα(k)]
εβ(k) − εα(k)

〈〈Φα(k)|Jy |Φβ(k)〉〉〈〈Φβ(k)|Jx |Φα(k)〉〉
εβ(k) − εα(k) + i0

,

where J is the current operator, which results in a dc Hall current in a strongly ac-
driven system. Important differences in the nonequilibrium situation are: εα is the
Floquet quasi-energy, fα is a nonequilibrium distribution function, and the matrix
elements are computed from the Floquet statesΦ . Note that the sum is taken over the
whole Floquet spectrum with a series of Floquet sidebands (i.e., one-photon dressed
states, two-photon dressed states, . . . ). We can cast the formula into a Floquet ex-
tension of the conventional Thouless-Kohmoto-Nightingale-den Nijs (TKNN) for-
mula [50], which reads [94]

σxy(Aac) = e2
∫

dk
(2π)2

∑
α

fα(k)
[∇k × Aα(k)

]
z
,

where the gauge field,

Aα(Aac; k) = −i〈〈Φα(k)∣∣∇k
∣∣Φα(k)〉〉,
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is defined in terms of the Floquet states and its rotation, Bα(Aac; k) = ∇k × Aα(k),
gives the photo-induced Berry’s curvature (i.e., Chern density). Figure 7.15(c) de-
picts the photo-induced curvature, and we can see that peaks do appear around the
Dirac points. This contrasts with a trivial gap (e.g., from the level offset between A
and B lattice sites), where the curvature would have opposite signs between the K
and K′ points, leading to a zero net effect.

The light-induced quantum Hall effect described here is intimately related to
Haldane’s model of the “quantum Hall effect without Landau levels” [62], which is
sometimes called the quantum anomalous Hall effect in zero magnetic field. Hal-
dane proposed a honeycomb lattice model, where a complex second-neighbor hop-
ping term is added (Fig. 7.9(a)). This term opens a gap at the Dirac points, and the
Hall coefficient takes a quantized value, despite the model having zero total mag-
netic flux. Now, after the proposal for graphene of the light-induced quantum Hall
effect [94], Kitagawa et al. have noticed that, if we take the leading contribution
(second-order process between the original and a photon-dressed states) in the Flo-
quet formalism in graphene, the Haldane model is dynamically realized as a Floquet
model (Fig. 7.15(d)) [95].

The idea for the Floquet topological state is so general that the effect should
occur in various systems besides graphene, such as the surface Dirac states of topo-
logical insulators [95, 112], or bilayer graphene [97] or quantum wells [98]. While
the phenomenon has features common to topological insulators and superconduc-
tors [99, 100], this is a purely nonequilibrium, nonlinear effect, as evident from the
topological gap ∝ F 2/Ω3, where F is the laser field intensity and Ω the frequency.
A classification for the topological Floquet states, even going beyond two spatial
dimensions, was put forward [101].

Experimentally, graphene illuminated by circularly polarised THz lasers has re-
cently begins to be studied, and a light-induced Hall effect was observed as an asso-
ciated edge current [102, 103]. Although a theory predicts that the Hall effect should
be quantised in the scaling limit [104], the experiments at the moment show a classi-
cal Hall effect, i.e., the Hall current is not quantised. Several factors such as disorder,
electron-phonon and electron-electron interactions may cause this discrepancy.

7.7 Chiral Symmetry for Interacting Electrons

Up to this point we have concentrated on the one-body problem. While many-body
effects in graphene is a most interesting problem when we consider the electron-
electron interaction, this is out of the scope of the present chapter. However, let
us explain here that the chiral symmetry can play important roles even in many-
body physics. As in the one-body problem, we can focus on the n = 0 Landau level
around the charge-neutrality point. Then we can pose a question: can many-body in-
teraction exert interesting effects right at the Dirac point? Soon after the observation
of the graphene quantum Hall effect, experiments have indeed discovered new con-
ductivity plateaus, most notably at the Landau level filling ν = 0, for strong enough
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magnetic fields [105, 106]. The new plateaus have attracted considerable theoretical
attention [107]. Specifically, unusual behaviours at ν = 0 distinct from other fillings
are observed, including an insulating behaviour with exponentially diverging longi-
tudinal resistivity suggestive of a Mott transition at half filling [108]. More recent
experiments based on high quality samples revealed a spin-unpolarised aspect of the
ν = 0 state [109].

Now, the chiral symmetry discussed in this chapter in one-body physics should
also be important for many-body problems in the n = 0 Landau level. This is be-
cause we can characterise many-body states by the chiralities of filled zero modes.
Indeed, for a spin-split n = 0 Landau level, we can show that the ground state is a
chiral condensate, i.e., a many-body state in which electrons occupy the eigenstates
of the chiral operator, where the state has a finite excitation energy with a topologi-
cal two-fold degeneracy [37–39]. The total Chern number for the chiral condensate
turns out to be zero, where the contribution from the Dirac sea (negative-energy
states) cancels the zero-mode Chern number, but a topological nature of the state
appears as edge states, which is an example of the bulk-edge correspondence in
topological systems [19]. This line of approach can be extended to spin-unpolarised
states of the ν = 0 Landau level by extending the picture of the chiral condensate
to accommodate the spin degree of freedom. Hamamoto et al. have suggested that
the many-body ground state is a doubly-degenerate spin-resolved chiral conden-
sate, in which all the zero-energy states with up spin are condensed into chirality +,
while down spins to chirality − [38, 39]. The charge gap in this situation turns out
to grow linearly with the magnetic field, in qualitative agreement with the experi-
ments [109, 110].

To describe the many-body problem for n = 0, it is useful to consider a projected
Hamiltonian, H̃ = P(Hkin + HU + HJ )P

−1, with P denoting the projection onto
the n = 0 Landau level. The kinetic part is given by a tight-binding Hamiltonian,

Hkin = −t
∑

〈ij〉

∑
σ=↑↓

eiθij c
†
iσ cjσ + h.c.,

where σ denotes spin and θij the usual Peierls phase. To derive the effective Hamil-
tonian in the n = 0 Landau level in a many-body case, we can first diagonalise the
kinetic term. Due to the chiral symmetry, {Hkin, γ } = 0 with γ being the chiral op-
erator, a one-body state ψε at energy ε is related to its chiral partner as ψ−ε = γψε .
Thus a special situation arises at n = 0, where particle- and hole-states are degen-
erate. We denote the number of zero modes as 2M , with M being an integer de-
termined by the magnetic field. By reconfiguring these zero modes, one obtains a
chiral basis,

ψ = (ψ1+, . . . ,ψM+ +,ψ1−, . . . ,ψM− −),

where {ψk± } with k = 1, . . . ,M± are eigenstates of the chiral operator satisfying
γψk± = ±ψk±. M± is the degeneracy of the zero modes with chirality ±, hence
M+ + M− = 2M . While the kinetic energy is quenched in the n = 0 Landau level,
the information on the kinetic part is encoded in the properties of the chiral zero
modes. A simplest example is the fact that chirality designates the sublattice on
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which a zero mode resides, i.e., ψk+(−) has nonzero amplitudes only on A(B) sub-
lattice.

In terms of the chiral basis, the projection onto the n = 0 Landau level is defined
by a mapping c†

iσ  → c̃
†
iσ ≡ (c†

σψψ
†)i , with a row vector c†

σ = (c
†
1σ , . . . , c

†
2Nσ ) and

a projection matrix ψψ†. Note that c̃†
iσ no longer obeys the canonical anticommuta-

tion relations, since the chiral basis is not complete. Alternatively, we can introduce
creation operators of the zero modes, d†

kσ± ≡ c†
σψk±, which satisfy the anticommu-

tation relations,{
dkσχ , d

†
lσ ′ε
} = δklδσσ ′δχε, {dkσχ , dlσ ′ε} = {d†

kσχ , d
†
lσ ′ε
} = 0. (7.8)

With these fermions we can rewrite the interaction Hamiltonian.
Although we do not go into detail [37–39], let us mention that, when a many-

body state is constructed by occupying the chiral zero modes, the total chirality is
conserved, since the projected interaction Hamiltonian H̃ commutes with an opera-
tor,

G =
∑
σ=↑↓

(
M+∑
k=1

d
†
kσ+dkσ+ −

M−∑
k=1

d
†
kσ−dkσ−

)
. (7.9)

This enables us to diagonalise H̃ separately in a subspace for each sector in the total
chirality. For instance, we can consider a (doubly-degenerate) chiral condensate,

|G± 〉 =
M±∏
k=1

d
†
k↑±

M∓∏
l=1

d
†
l↓∓ |D<〉, (7.10)

where |D<〉 denotes the Dirac sea of the negative-energy states. In the above equa-
tion, the zero modes with up-spin form a chiral condensate with chirality +, while
those with down-spin a chiral condensate with chirality −, or vice versa. If we re-
strict ourselves to the case ofM+ = M−, which holds when the two sublattices con-
tain the same number of sites, the ground state falls upon the sector of total chirality
χtot ≡ 〈G〉 = 0, in sharp contrast to the spinless case, where the ground state is a
chiral condensate with fully polarised chirality. The many-body physics, especially
for the n = 0 Landau level, will open a new avenue in the physics of graphene.

7.8 Concluding Remarks

We have overviewed the chiral symmetry and topological aspects in graphene
physics. From this standpoint, stability of massless Dirac cones at K and K′ points
and the n = 0 Landau level are discussed. We have also described the graphene
quantum Hall effect, along with the bulk-edge correspondence for graphene from
the topological point of view. We have also touched upon the optical Hall effect
and nonequilibrium Hall effect in graphene. The chiral symmetry further suggests
importance of possible many-body physics as the chiral condensate, etc.
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We have interdisciplinary spinoffs of graphene physics in d-wave superconduc-
tors, cold atoms on optical lattices, optical graphene, Floquet topological systems,
and so on, so that we can expect an interesting outlook for various directions and
systems. A Dirac cone appears even in an iron-based superconductor, with an im-
plication on the spin Hall effect [111].
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Chapter 8
Aspects of the Fractional Quantum Hall Effect
in Graphene

Tapash Chakraborty and Vadim Apalkov

Abstract We present a brief overview of the nature of the fractional quantum Hall
effect (FQHE) in monolayer and bilayer graphene. After a short introduction on the
effect and the pseudopotential description of interacting electrons in the quantum
Hall regime, we discuss in detail the magnetic field effects on electrons in monolayer
graphene. We also briefly discuss the experimental signatures of the effect reported
in the literature. In bilayer graphene, the effect manifests itself in a very different
manner and we discuss in detail the various novel effects one expects there due
to electron-electron interactions. The nature of the collective excitations of Dirac
fermions in trilayer graphene is also briefly discussed. Existence of some exotic
states in bilayer graphene, such as the Pfaffian state is also highlighted. Finally,
we have touched upon the properties of the FQHE states of Dirac fermions on the
surface of a topological insulator.

8.1 A Brief History of the Fractional Quantum Hall Effect

The quantum Hall effects (QHEs), both the integral [1, 2] and fractional [3, 4] QHEs
are undoubtedly two of the most spectacular discoveries of the past century that have
enormously enriched the field of condensed matter physics. Similarly, the theoret-
ical explanation of the fractional QHE (FQHE) by Laughlin [5, 6] was a brilliant
contribution to the annals of many-body physics. The experimental observation of
the QHEs is summarized in Fig. 8.1. A two-dimensional electron gas in ultra-pure
semiconductor materials, subjected to a high magnetic field and very low temper-
atures, i.e., in the extreme quantum limit, exhibits nearly vanishing longitudinal
conductivity, σxx → 0 and formation of steps in the Hall conductance

σxy = ν
e2
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Fig. 8.1 Fractional (and
integer) filling factors where
the QHE is observed (adopted
from [7])

for special values of the quantum number ν. The filling factor ν is a simple integer
for the IQHE, and a rational fraction ν = p

q
, with q being an odd integer, for the

FQHE.
In an ideal (non-interacting and disorder free) two-dimensional (2D) electron

gas, an external magnetic field applied perpendicular to the electron plane influences
the orbital motion of the electron and the energy spectrum is quantized into highly
degenerate Landau levels with energies

E =
(
n + 1

2

)
�ωc,

where ωc = eB/m∗ is the cyclotron energy (∼10 meV for a magnetic field of B =
10 Tesla). The number of states per unit area is NΦ = eB/h = 1/2π�2

0, where �0 =
(�/eB)

1
2 is the magnetic length. In units of the flux quantum, Φ0 = h/e, NΦ =

B/Φ0. Therefore in an area A, NΦ = Φ/Φ0, the number of flux quanta threading
through that area, which is the Landau level degeneracy in area A. The Landau level
filling factor is then

ν = Ne/NΦ = 2π�2
0ne,

where Ne is the number of electrons and ne is the electron density in the system.
For an integer filling factor, ν = j , the lowest j Landau levels are completely

filled. The next electron that is added to the system must then go to the next energy
level which requires a jump across the energy gap �ωc. At very low temperatures
where the thermal energy is much lower than the cyclotron energy, the presence of
a gap guarantees a dissipationless flow of current as indicated by the vanishing lon-
gitudinal conductivity. The FQHE occurs when the magnetic field is so strong that
electrons partially fill only the lowest Landau level (LLL). In this case, for noninter-
acting electrons the ground state is macroscopically degenerate. It is the Coulomb
interaction between the electrons that lifts the degeneracy and opens a gap [7, 8].
The origin of the FQHE cannot therefore be understood based on the behavior of
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individual electrons in a magnetic field. It is the behavior of the collective ensem-
ble wherein lies the clue, i.e., in the language of Laughlin [6, 9], it is an emergent
phenomenon. In the words of Störmer, electrons in this state conduct “an elaborate,
mutual, quantum-mechanical dance” [4]. The nature of that state is discussed below.

8.1.1 A Novel Many-Body Incompressible State

The problem we face in describing the origin of the FQHE1 can be clearly stated. We
have at our disposal, Ne two-dimensional electrons moving on a plane perpendicu-
lar to a magnetic field B . The field is so strong that the energy separation between
adjacent Landau levels and the spin Zeeman energy are far greater than the char-
acteristic energy scale of the electron-electron (Coulomb) interactions. Mixing of
Landau levels can then be safely neglected. In that case, our job at hand is to evalu-
ate the energy spectrum and the wave functions of the system in the lowest Landau
level. We also need to determine the nature and origin of the excitation gap. It is
seemingly an intractable many-body problem with no small parameter present.

In 1983, just a year after the report of the discovery of the FQHE, Laughlin
proposed, based on an inspired guess, the celebrated trial wave function for the
many-electron state in the LLL [5]

Ψq(z1 · · · zNe) =
∏
i<j

(zi − zj )
q exp

(
−
∑
i

|zi |2/4

)
(8.1)

where z ≡ x + iy is the (complex) electron position and q is an odd integer thus sat-
isfying the antisymmetry requirement. By counting the maximal power of each zi
one can easily verify that the wave function given above corresponds to ν = 1

q
when

Ne → ∞ [7]. An important property of this wave function is that, it vanishes as the
q-th power when one electron approaches the other [7]. This property minimizes
the Coulomb interaction energy and hence the ground state energy. The wave func-
tion describes a uniform density charge-neutral liquid state in which the electrons
condense [7].

Laughlin then explained why the ν = 1
3 state is so special. The many-electron

system at this filling factor is in fact, incompressible, and there exists an energy
gap. The energy gap implies that there is a positive discontinuity in the chemical
potential at this filling factor [11], which means a vanishing compressibility. The
chemical potential jump has indeed been measured experimentally for the FQHE
states [12]. Starting with the ν = 1

q
state if we increase or decrease the number

of states by one, elementary excitations containing fractional charge, e∗ = ∓ e
q

are
created [7]. These ‘quasiparticles’ also obey fractional statistics [13].

1In this brief introduction to the FQHE, we limit ourselves only to the description of the filling
factor ν = 1

q
. Interested readers could consult other sources for a more detailed account [7, 8, 10].
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Laughlin’s theory for the FQHE is like good poetry in physics, rich in profound
ideas that has inspired researchers for decades and even from many other subfields
of physics [14]. Its novel concepts on correlated quantum fluids were certainly un-
conventional in the field where it was applied, viz. the semiconductors. In explaining
a truly remarkable macroscopic quantum phenomenon, Lauglin opened a floodgate
of novel ideas with a flow that is yet to subside. Description of all those ideas is
however, far beyond the scope of this brief introduction.

8.1.2 Pseudopotential Description of Interacting Electrons

In the FQHE regime where the magnetic field is so strong that the spacing between
the Landau levels are (in the absence of any disorder) much larger than e.g., the
thermal energy, and all the degree of freedom are confined to a single Landau level.
In that situation, the Hamiltonian of the system is simply the projected interparticle
interaction. Haldane was the first to point out [15] that the interaction energy of a
pair of particles with the same Landau indices can be written as

Hij =
∞∑
m=0

VmPm
ij ,

where Pm
ij projects the pair of particles i, j onto the relative angular momentum m.

Antisymmetry of the electron wave function dictates that m is an odd integer. The
parameters Vm are the so-called Haldane pseudopotentials, which are defined as the
energy of two electrons with the relative angular momentumm. They are determined
by the structure of the wave functions of the corresponding Landau level and for the
n-th Landau level can be found from the following expression [15]

V (n)m =
∫ ∞

0

dq

2π
qV (q)

[
Fn(q)

]2
Lm
(
q2)e−q2

, (8.2)

where Lm(x) are the Laguerre polynomials, V (q) = 2πe2/(κq�0) is the Coulomb
interaction in the momentum space, κ is the background dielectric constant, and
Fn(q) is the form factor of the n-th Landau level. The form factor is completely de-
termined by the n-th Landau level wave functions. For conventional semiconductor
systems, the form factors have the following form

Fn(q) = Ln
(
q2/2

)
. (8.3)

Therefore, any translationally and rotationally invariant two-body interaction, pro-
jected to a single Landau level can be described completely by a set of pseudopo-
tentials.

For the repulsive Coulomb potential, the pseudopotentials decrease with increas-
ing value of m [15]. In this context, it is interesting to note that the Laughlin state at
ν = 1

q
, with q being an odd integer, is quite unique. It has the property

Pm
ij ΨL = 0, for m< q.
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The ν = 1
q

Laughlin state is a zero-energy eigenstate with only Vm(m < q) being
non-zero. As the mean squared distance between the electrons is proportional to q
[7], the model potential is of short range. However, Haldane pointed out [16] that,
when one varies the pseudopotentials between a hard-core model with only non-
zero V1 and the true Coulomb system, the overlap between the true ground state (in
finite-size systems) and the Laughlin state is extremely good. This explains why the
Laughlin state captures the essential physics of the FQHE state by being close to the
exact ground state. It was also noted by Haldane that the pair interaction potential
Hij after projection into the subspace of fixed Landau index is discrete [15]. This
is the central feature of the physics underlying the incompressible many-electron
states that gives rise to the FQHE [8, 15].

8.1.3 Composite Fermions and the Fermion-Chern-Simons Theory

In addition to the primary filling factors, ν = 1
q

(with q as an odd integer), which cor-
respond to the Laughlin states, the FQHE was also observed in many other higher-
order fractional fillings of the Landau levels, such as ν = 2

5 , 3
7 , 4

9 , and so on [3, 7].
Some of those filling factors, such as ν = 2

3 , can be explained by the particle-hole
symmetry [7], while the presence of other filling factors can be described within the
composite fermion approach [17–19] and the Chern-Simons theory [20, 21]. The hi-
erarchy of the FQHE states based on the composite fermion picture is constructed in
the following way [17–19]. If the many-electron system is placed in a magnetic field
B∗ such that the filling factor of the system is ν∗ = n0Φ0/B

∗, where n0 is the elec-
tron density, then by multiplying the corresponding multi-particle wave function,
Ψ ∗ by a symmetric factor

Fp(z1, . . . , zN) =
∏
j<k

(zj − zk)
2p (8.4)

where p is a positive integer, we construct the wave function, Ψ = FpΨ
∗ corre-

sponding to a new filling factor ν. To find the relation between ν∗ and ν we notice
that the factor Fp introduces an additional effective magnetic field, �B = 2pn0Φ0
in the system. In fact, if we consider a particle travelling in a large orbit covering
an area A and encloses n0A other particles, then due to the additional factor Fp
that particle acquires an extra phase factor 2p2πn0A = 2π(�BA/Φ0). Therefore,
the additional factor, Fp in the many-particle wave function can be thought of as an
extra magnetic field, �B . Then the relation between the magnetic field B∗, corre-
sponding to the filling factor ν∗ and the new magnetic field B becomes

B = B∗ + �B = B∗ + 2pn0Φ0 = B∗(1 + 2pν∗). (8.5)

Therefore, the filling factor corresponding to the wave function Ψ , i.e., for n0 parti-
cles in a magnetic field B , is

ν = ν∗

2pν∗ + 1
. (8.6)
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Multiplying the many-particle wave function by the complex conjugated factor F ∗
p ,

we can construct the wave function corresponding to the filling factor ν∗
2pν∗ −1 . The

factor Fp thus introduces 2p magnetic flux quanta attached to each electron, thereby
creating a composite fermion. On average, such magnetic fluxes produce an effec-
tive magnetic field,�B . If we start with completely filled Landau levels with integer
filling factor n, then multiplication by the factor Fp , i.e., attaching the magnetic flux
quanta to the electrons produces the fractional filling factors of the form

ν = n

2pn ± 1
. (8.7)

As an example, for n = 2,p = 1 we obtain ν = 2
5 . Therefore, the integer filling fac-

tor of the composite fermions, i.e., electrons with even number of flux quanta, cor-
responds to fractional filling factor of real electrons. Since the ground state of the
composite fermion system is incompressible, we can assume that the ground state
of actual electrons with fractional filling is also incompressible. Numerical compar-
ison of composite fermion wave functions and the exact wave functions evaluated
in finite-size systems shows that the composite fermion approach indeed provides a
good description of the FQHE ground states at general filling factors. The composite
fermion description of FQHE states is closely related to the Chern-Simons theory
of the quantum Hall systems [20, 21]. Within the Chern-Simons theory, a gauge
Chern-Simons magnetic field is introduced through an unitary transformation. Such
a gauge field introduces an even number of magnetic flux quanta attached to the
electrons. Within the mean-field approximation, the Chern-Simons magnetic field is
replaced by an uniform average magnetic field, which reproduces the same effective
filling factors as in the composite fermion approach. In the Chern-Simons approach,
one can go beyond the mean-field approximation and calculate low-energy excita-
tion properties of the quantum systems. One of the applications of the Chern-Simons
theory is the description of the ν = 1

2 quantum state. In this case an external mag-
netic field exactly cancels the mean Chern-Simons field and the composite fermions
experience no average magnetic field. Therefore the ν = 1/2 quantum system in this
picture is equivalent to an electron system in the absence of an external magnetic
field. Experimental indications of such a situation, e.g., the existence of a Fermi
surface [22] at this filling factor provides ample support for this theoretical picture.

8.2 The Advent of Graphene

Just when everyone thought the glory days of the QHEs are perhaps over, along
came graphene [23–25]. It is a single sheet of carbon atoms arranged in a honey-
comb (hexagonal) lattice, often described as a molecular chicken wire where one
carbon atom sits at each 120◦ corner. This material is perhaps the most interest-
ing two-dimensional system possible, with unique electronic properties that are en-
tirely different (and unexpected) from those of conventional two-dimensional sys-
tems [26]. The electronic band structure of graphene was theoretically studied as far
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Fig. 8.2 The honeycomb
lattice structure of graphene
with two sublattices A and B.
Within the nearest neighbor
tight-binding approximation
the atoms of sublattice A are
coupled to atoms of
sublattice B through the
hopping integral γ0

back as 1947 [27]. Electrons and holes in graphene are described as ‘massless Dirac
fermions’ because of their linear energy dispersion near the Fermi surface [28].
Graphene is a bipartite lattice made up of two interpenetrating triangular sublat-
tices that provides a new degree of freedom for the electronic state, the pseudospin.
Transport properties of graphene exhibit many novel features, most notably (in our
context), the room temperature QHE [29]. Bilayer graphene has also proven to be
rich with unique properties, e.g., the gate tunable band gap. Here the energy disper-
sion corresponds to that of massive chiral fermions. A detailed account of all these
can be found in a review article by the present authors [30].

Since its isolation in 2004 [25], graphene has maintained a dominant presence in
the community. By August 2011, there were more than 11,000 publications with the
word ‘graphene’ in their titles. With the continued plethora of articles, most notably,
the superabundance of review articles [25, 28, 30–48] about various properties of
graphene makes it abundantly clear that our fascination with this system is far from
being over, and one expects more surprising discoveries in the coming years.

8.2.1 Massless Dirac Fermions

The two-dimensional lattice of graphene has the honeycomb structure, consist-
ing of two inequivalent sublattices of carbon atoms, say A and B (Fig. 8.2). The
nearest-neighbor tight-binding description of graphene results in a band structure
with the Fermi level located at two inequivalent points, K = (2π/a)( 1

3 ,
1√
3
) and

K′ = (2π/a)( 2
3 ,0), of the first Brillouin zone. Here a = 0.246 nm is the lattice con-

stant. The tight-binding approximation is valid over a wide range of energy. Within
the effective mass approximation which addresses the low-energy properties, these
points correspond to two valleys, K and K′. In each valley the low-energy electron
dynamics near the Fermi energy is described by the following Hamiltonian [28]

Hξ = ξvF

(
0 p−
p+ 0

)
, (8.8)

where p− = px − ipy , p+ = px + ipy , and p is the two-dimensional momentum
of an electron. Here vF ≈ 106 m/s is the Fermi velocity, which can be related to
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the hopping integral, γ0, between the nearest neighbor sites, vF = √
3γ0a/2�. The

index ξ is 1 and −1 for valleys K and K′, respectively. Without the spin-orbit inter-
action [49–51], each level determined by the Hamiltonian (8.8) has a two-fold spin
degeneracy. The wave functions corresponding to the Hamiltonian (8.8) have two
components belonging to sublattices A and B, and can be expressed as (ψA,ψB)T

for valley K and (ψB,ψA)T for valley K′, where ψA and ψB are wave functions
of sublattices A and B, respectively. The superscript T indicates the transpose of a
vector.

The single-electron states obtained from the Hamiltonian (8.8) has a linear dis-
persion relation given by

ε(p) = ±vFp, (8.9)

which is the dispersion relation of Dirac “relativistic” massless particles. In addition
to spin degeneracy, each energy level has a two-fold valley degeneracy. The smooth
impurity potentials or electron-electron interactions introduce coupling of different
valleys. However, due to the large momentum separation of the valley states this
coupling is weak and can be safely ignored.

8.2.2 Landau Levels in Graphene

In the tight-binding model the magnetic field is introduced through the Peierls sub-
stitution which introduces a magnetic field dependence of the hopping integrals.
Within this approach the Landau levels with low, intermediate and very high in-
dices can be obtained. Formation of the incompressible liquids in graphene due
to electron-electron interactions is expected to occur at low Landau level indices.
To study those Landau levels the effective mass approximation described by the
Hamiltonian (8.8) is fully adequate. The magnetic field is introduced in the Hamil-
tonian (8.8) by replacing the electron momentum p with the generalized momentum
π = p + eA/c where A is the vector potential. Then the Hamiltonian of an electron
in a perpendicular magnetic field in valley ξ takes the form

Hξ = ξvF

(
0 π−
π+ 0

)
. (8.10)

The eigenfunctions of the Hamiltonian (8.10) can be expressed in terms of the con-
ventional Landau wave functions, φn,m [52], for a particle obeying the parabolic
dispersion relation with the Landau index n and intra-Landau index m, which de-
pends on the choice of the gauge. For example, in the Landau gauge, Ax = 0 and
Ay = Bx, the indexm is the y-component of the momentum, while in the symmetric
gauge, A = 1

2 B × r, the indexm is the z-component of electron angular momentum.
For these wave functions, φn,m, the operators π+ and π− are the raising and low-
ering operators, respectively. This means that they increase or decrease the Landau
level index, n:
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vFπ+φn,m = −i�ωB
√
n + 1φn+1,m,

vFπ−φn,m = i�ωB
√
nφn−1,m,

where ωB = √
2vF /�0, and �0 is the magnetic length defined in Sect. 1. The Landau

eigenfunctions of the Hamiltonian (8.10) can then be written in the form

Ψn,m =
(
in−1χ1φn−1,m
inχ2φn,m

)
, (8.11)

where the coefficients χ1 and χ2 satisfy the following eigenvalue matrix equations

εχ1 = −ξ�ωBχ2 (8.12)

εχ2 = −ξ�ωBχ1. (8.13)

The resulting discrete Landau energy spectrum has both negative (valence band)
and positive (conduction band) values, which are described by introducing integer
values for the Landau index n = 0,±1,±2, . . . , which also include the negative
values of n. In terms of n, the Landau energy spectrum of electrons in graphene
takes the form

εn = �ωB sgn(n)
√|n|, (8.14)

where

sgn(n) =

⎧⎪⎨
⎪⎩

0 (n = 0)

1 (n > 0)

−1 (n < 0).

(8.15)

Each energy level (8.14) has a two-fold valley degeneracy. The wave functions cor-
responding to the Landau levels (8.14) can be obtained from (8.12)–(8.13) in the
following form

Ψ K
n,m =

(
ψA
ψB

)
= Cn

(
sgn(n)i|n|−1φ|n|−1,m

i|n|φ|n|,m

)
, (8.16)

for valley K (ξ = 1) and

Ψ K′
n,m =

(
ψB
ψA

)
= Cn

(
sgn(n)i|n|−1φ|n|−1,m

i|n|φ|n|,m

)
, (8.17)

for valley K′ (ξ = −1). Here Cn = 1 for n = 0 and Cn = 1/
√

2 for n �= 0.
The Landau levels in graphene have a square-root dependence on both the mag-

netic field and the Landau level index. For vF ∼ 106 m/s, the Landau level energy
spectrum takes the form, εn ≈ 36

√
B[Tesla]√

n (meV). This behavior is clearly dif-
ferent from that in conventional (henceforth called non-relativistic to distinguish it
from the graphene system) semiconductor 2D system with a parabolic dispersion re-
lation, for which the energy spectrum has a linear dependence on both the magnetic
field and the Landau level index. As an example, for the GaAs system the Landau
energy spectrum is εGaAs

n = �ωc(n + 1
2 ) ≈ 1.7B[Tesla](n + 1

2 ) (meV). The Landau
level spectra for graphene and for the GaAs systems are shown in Fig. 8.3, which
illustrates their different behaviors.
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Fig. 8.3 The Landau levels
as a function of the
perpendicular magnetic field
for graphene (red solid lines)
and a GaAs system (black
solid lines). Numbers next to
the lines are Landau level
indices. In the case of
graphene, only the Landau
levels with positive energy,
corresponding to the
conduction band, are shown

It is noteworthy that the n = 0 Landau level in graphene has zero energy at all
values of the magnetic field. It is populated equally by electrons and holes. The
wave functions at this Landau level are identical to those of n = 0 non-relativistic
Landau level [see (8.16)–(8.17)]. Therefore the interaction properties and the FQHE
of the n = 0 Landau level in graphene are the same as for the non-relativistic n = 0
Landau level. The wave functions in higher Landau levels (|n| ≥ 1) are mixtures of
non-relativistic Landau wave functions belonging to different Landau level indices.
Therefore the interaction effects in these Landau levels should be very different
from those of the non-relativistic systems. The nature of the Landau levels, in par-
ticular the lowest level, can be effectively studied by measuring the quantum Hall
activation gaps in graphene. Measurements of the inter-Landau level activation gap
in graphene [53] revealed that the lowest LL is very sharp in contrast to the broad-
ened higher LLs, and the measured gap between the zeroth and the first Landau level
approaches the bare Landau-level splitting for high magnetic fields.

8.2.3 Pseudopotentials in Graphene

As mentioned earlier, the interaction properties of electrons within a single Lan-
dau level are completely determined by the Haldane pseudopotentials (8.2). With
the known wave functions (8.16)–(8.17), the form factors in (8.2), can be readily
evaluated. For the n-th graphene Landau level,2 they are given by the following
expressions [see (8.3)] [54, 55]

F0(q) = L0
(
q2/2

)
(8.18)

Fn(q) = 1

2

[
Ln
(
q2/2

)+ Ln−1
(
q2/2

)]
. (8.19)

2If not otherwise stated, in what follows, we consider the positive values of n.
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Fig. 8.4 The Haldane
pseudopotentials shown as a
function of the relative
angular momentum for
non-relativistic and graphene
systems at n = 0,1 Landau
levels (a) and for graphene at
n = 0,1 and 2 Landau
levels (b). The inset in
panel (b) shows the
dependence of the
pseudopotentials on the
Landau level index n for
graphene. The energy is
evaluated in units of εC

With these form factors the pseudopotentials for graphene are then calculated
from (8.2). The pseudopotentials are given in units of the Coulomb energy, εC =
e2/κ�0, where κ is the background dielectric constant of the system.

To compare the interaction properties of graphene and the conventional non-
relativistic systems, we present in Fig. 8.4 the pseudopotentials calculated from (8.2)
for graphene and for the non-relativistic system. Since the FQHE can be realized
only in the low-index Landau levels, in Fig. 8.4 the results are shown only for small
values of n (n ≤ 2). As it was mentioned above, for n = 0 graphene and a non-
relativistic system have the same pseudopotentials [Fig. 8.4(a)]. In a higher Landau
level index there is an important difference in the behavior of the pseudopotentials
in these two systems. More specifically, for n = 1, the graphene system shows a
stronger electron-electron repulsion, i.e., a larger pseudopotential, at small relative
angular momentum, m < 2, and a weaker repulsion at a large angular momentum,
m ≥ 2, compared to that for a non-relativistic system [Fig. 8.4(a)]. Based on the
general properties of the Laughlin incompressible state, we can conclude that the
stronger repulsion at small values of the angular momentum implies a more stable
FQHE state.

In Fig. 8.4(b), the pseudopotentials of graphene are shown for different Landau
levels. Due to the antisymmetry of the electronic wave functions, only the pseudopo-
tentials with odd relative angular momenta contribute to the spin-polarized FQHE
states. Hence only the pseudopotentials with m = 1,3,5, . . . determine the spin-
polarized, and in the case of graphene, the valley-polarized properties of the system.
For these values of m the pseudopotentials in the n = 1 Landau level show an in-
teresting behavior: while for m = 3 and 5 the pseudopotential, V (n)m , monotonically
increases with n, and for m = 1, the pseudopotential V (n)1 has a maximum at n = 1
[see inset in Fig. 8.4(b)]. Therefore the electrons with relative angular momentum
m = 1 show the strongest repulsion in the n = 1 Landau level. This is different from
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Table 8.1 Characteristics of
Haldane pseudopotentials for
graphene and for
conventional electron systems

V
(n)
1 /V

(n)
3 V

(n)
3 /V

(n)
5

n = 0 (graphene) 1.60 1.26

n = 0 (non-relativistic) 1.60 1.26

n = 1 (graphene) 1.68 1.33

n = 1 (non-relativistic) 1.32 1.36

the behavior of a non-relativistic system, where the strongest repulsion is in the
lowest n = 0 Landau level.

The stability of the incompressible FQHE state, i.e., the magnitude of the FQHE
gap, depends on how fast the pseudopotentials decay with increasing relative an-
gular momentum. For spin and valley polarized electron systems this decay is de-
termined by the ratios V (n)1 /V

(n)
3 and V (n)3 /V

(n)
5 . The larger the ratios, the more

stable is the FQHE. In Table 8.1, the values of the ratios are shown for graphene
and for non-relativistic systems in the two lowest Landau levels with n = 0 and 1.
These values clearly indicate that V (n)1 /V

(n)
3 has the largest value for graphene in

the n = 1 Landau level which suggests that the gaps of the FQHE states should have
the largest value in graphene in the n = 1 Landau level.

8.2.4 Nature of the Incompressible States in Graphene

Each Landau level in graphene is four-fold degenerate due to two-fold valley and
two-fold spin degeneracies. The spin degeneracy is partially lifted due to the Zee-
man splitting, which is �Z = gμBB ≈ 1.5B [Tesla] (K) ≈ 0.13B [Tesla] (meV),
where g ≈ 2.2. The symmetry-breaking terms should be compared with the typical
energy of the inter-electron interactions within a single Landau level, which is the
Coulomb energy, εC = e2/κ�0. The Coulomb energy determines the magnitude of
the Haldane pseudopotentials and in graphene it is εC ≈ (54/κ)

√
B [Tesla] (meV).

For κ ≈ 4 the Coulomb energy becomes εC ≈ 14
√
B [Tesla] (meV). Due to the

small value of the dielectric constant, the Coulomb energy in graphene is a few
times larger than the corresponding energy in a non-relativistic system, where the
dielectric constant is about κ ∼ 13. Although the Coulomb interaction in graphene
is strong, it is still less than the inter-Landau level spacing. For example, the
energy separation between the n = 0 and n = 1 Landau levels in graphene is
36

√
B[Tesla] (meV) (see Sect. 8.2.2). The Coulomb interaction also introduces the

valley-symmetry breaking terms [55, 56], which are algebraically small in a/�0. For
typical values of the magnetic field, the Zeeman energy in graphene is almost two
orders of magnitude smaller than the Coulomb energy, �Z/εC ≈ 0.01

√
B [Tesla],

and within a good approximation, a single Landau level in graphene can be con-
sidered as the four-fold degenerate level. Electrons within a single Landau level
therefore have the SU(4) symmetry with weak symmetry breaking terms due to the
Zeeman splitting and the valley asymmetry terms in the interaction Hamiltonian.
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The properties of the FQHE are determined by the nature of the ground states,
e.g., valley or spin polarization of the ground states, and the value of the FQHE gap,
which characterizes the stability of the FQHE with respect to the temperature and
the disorder. Theoretically, the FQHE states are generally studied by numerical di-
agonalization of the Hamiltonian matrix for finite-size electron systems in either the
planar (torus) or the spherical geometry [7]. In the spherical geometry [16, 57–59]
the magnetic field is introduced in terms of the integer number 2S of magnetic flux
quanta through the sphere in units of the flux quantum. Then the radius of the sphere
R is defined as R = √

S�0. The single-electron states are characterized by the an-
gular momentum S, and its z component, Sz. The number of available states in a
sphere is (2S + 1). These states correspond to a single Landau level in the planar
geometry. Then for a given number of electrons Ne the parameter S determines the
filling factor of the Landau level. In the thermodynamic limit, the filling factor is
ν = Ne/(2S + 1), but the exact relation between the FQHE filling factor and the
number of electrons depends on the type of the FQHE state. In the spherical geome-
try, the many-particle states are described by the total angular momentum L and its
z component, while the energy depends only on L. For the many-electron system
only the lowest eigenvalues and eigenvectors of the interaction Hamiltonian matrix
are calculated [58]. These eigenstates determine the nature of the ground state of the
system and its neutral collective excitation gap. By varying the magnetic field flux
through the system the charged excitations can be also studied.

The valley and spin polarizations of the ground states at the major FQHE filling
factors, 1

3 , 2
3 , and 2

5 , were studied numerically for n = 0 and n = 1 Landau levels
[60–62]. It was found that in the n = 0 Landau level the ν = 1

3 ground state is valley
and spin polarized, but the ν = 2

3 and ν = 2
5 ground states are valley unpolarized

[56, 60, 61]. This behavior is similar to the non-relativistic 2D system with zero
Zeeman splitting, i.e., with the SU(2) symmetry. For the n = 1 level the graphene
system however shows a different behavior. In this case, the ground states at ν =
1
3 ,

2
3 , and 2

5 are all valley polarized [61]. It was also shown that for the graphene
system in the n = 0 Landau level with filling factor ν = 2 + 1

3 , the 1
3 state is valley

polarized even at a small Zeeman splitting [62].
The gaps of the FQHE states, i.e., the stability of the incompressible states, are

determined by the Haldane pseudopotentials. From the general analysis of the pseu-
dopotentials in different Landau levels we can conclude that the FQHE is more
stable in the n = 1 Landau level in graphene. Therefore the largest FQHE gap is
expected in the n = 1 Landau level. This property is illustrated in Fig. 8.5, where
the energy spectra of the valley and spin polarized electron system at filling factors
1
3 and 1

5 are shown. In the spherical geometry, the filling factors ν = 1/q (q is an
odd integer) are realized at S = (q/2)(Ne − 1). The ground state of the 1/q FQHE
is well described by the Laughlin function [5, 7].

The energy spectra of the ν = 1
3 FQHE system is shown in Fig. 8.5(a) for Ne = 8

electrons at the n = 0 and n = 1 Landau levels. The energy spectra in the n = 0
Landau level for graphene and the non-relativistic 2D system are exactly the same
with the same value of the excitation gap. For a non-relativistic system this is the
largest excitation gap of the ν = 1

3 FQHE state. That is not the case with graphene
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Fig. 8.5 (a) The energy
spectra of an eight-electron
ν = 1

3 -FQHE system shown
for different Landau levels:
n = 0 (stars) and n = 1 (filled
circles). The flux quanta are
2S = 21. (b) Energy spectra
of the six-electron
ν = 1

5 -FQHE system is
shown for different Landau
levels: n = 0 (stars) and
n = 1 (filled circles). The flux
quanta here are 2S = 25

where the FQHE gap has the largest value in the n = 1 Landau level [Fig. 8.5(a)].
For smaller filling factors, i.e., at ν = 1

5 , the pseudopotentials with larger values of
the relative angular momentum determine the properties of the system. As a result,
the difference between the FQHE states in the n = 0 and n = 1 Landau levels be-
comes less pronounced, which is illustrated in Fig. 8.5(b) for Ne = 6 electrons and
at the filling factor ν = 1

5 . This tendency is completely different from that of the
non-relativistic systems where the FQHE is strongly suppressed in the n = 1 Lan-
dau level. A similar conclusion about the unique interaction properties of the n = 1
Landau level in graphene was reported in Ref. [60], where the properties of the
FQHE states in graphene and GaAs systems were compared. In the n = 0 Landau
level the graphene system becomes similar to the GaAs system, while in the n = 1
Landau level, only the graphene system exhibits stable FQHE states.

The spectra shown in Fig. 8.5 correspond to the polarized neutral excitations of
the electron system and illustrate the relative strength of the electron-electron inter-
actions at different Landau levels in graphene. Due to the valley degeneracy of the
Landau levels in graphene, valley unpolarized excitations, which are of the type of
valley skyrmions, can have lower energies than those for polarized excitations. Nu-
merical analysis indicates that the lower-energy charged excitations at major filling
factors, ν = 1

3 , 2
3 , and 2

5 , are unpolarized valley skyrmions [61].
For the SU(4) symmetric graphene electron system, i.e., at small Zeeman split-

ting, new types of FQHE states at filling factors ν = q/(2pq ± 1) with q ≥ 3 were
also proposed [63] in the n = 0 and n = 1 Landau levels. These states are expected
in graphene because of the interplay between the spin and valley degrees of freedom.

From the discussions above, it is quite clear that the electron-electron interactions
in graphene are more pronounced in the n = 1 Landau level, which should result in
more stable FQHE states with large excitation gaps in the n = 1 Landau level. This
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is opposite to what we observe in a non-relativistic 2D system, where the strongest
interactions are realized in the n = 0 Landau level.

8.2.5 Experimental Observations of the Incompressible States

As explained in earlier chapters, experimental demonstration of the quantum Hall
plateaus at filling factors ν = 4(q + 1

2 ) [64, 65] quite convincingly confirmed the
Dirac nature of electron dynamics in graphene that was purely non-interacting and
devoid of any effects due to interactions among the electrons. Interestingly, any col-
lective behavior due to electron-electron interactions, akin to the FQHE was found to
be very difficult to observe. This is notwithstanding the strong unscreened Coulomb
forces that were supposed to exist between the charge carriers. Taking the cue from
earlier studies of the FQHE in a conventional two-dimensional electron gas (2DEG),
it was clear that experimental observation of these states crucially depends on sig-
nificantly high-quality samples where the Coulomb energy scale far exceeds that
of the impurity-induced random potential fluctuations. Such a significant improve-
ment in sample quality was indeed achieved in suspended graphene (SG) samples,
where the substrate-induced perturbations were entirely eliminated [66, 67]. Obser-
vation of the quintessential 1

3 -FQHE in suspended graphene was first reported by
two groups [68–70]. Observation of a few other fractions followed soon after.

It has been correctly pointed out by Skachko et al. [71] (also elaborated in the
previous subsection) that the FQHE in graphene can be expected to deviate from that
in conventional 2DEG in several important ways. First of all, electrons in graphene
are dynamically more two dimensional than in semiconductor quantum wells, where
the well widths range from 10–30 nm. This implies that the interaction at short dis-
tances in graphene is much stronger than in conventional quantum wells. Secondly,
electron-electron interactions in SG are enhanced even further due to the absence
of substrate screening (κ ∼ 1) as compared to, e.g., in GaAs, where κ ∼ 13. This
enhanced interaction in graphene leads to a larger gap [54], and therefore the FQHE
state persists at much higher temperatures. Finally, due to the four-fold spin and
valley degeneracy, the situation in graphene resembles more like what would be
realized in a double quantum well system, rather than a single quantum well. How-
ever, unlike in a GaAs system, the intra- and inter-well interactions in graphene are
almost identical. This suggests the existence of new FQHE states which are absent
in conventional systems [60, 72].

Experimental results of Andrei et al. [68, 69, 71] for quantum Hall plateaus at
ν = 1

3 in monolayer SG are shown in Fig. 8.6(a) for various values of the applied
magnetic field. These authors noted that the plateau at the 1

3 filling factor was very
robust—it appeared at ∼2 Tesla at low temperatures (∼1 K) and persisted up to
20 K at B = 12 Tesla. The robustness of the FQHE states can be further assessed by
studying the excitation gap [7]. The temperature dependence of the diagonal resis-
tivity ρxx (or diagonal conductivity σxx , since σxx ∼ ρxx/ρ

2
xy near the ρxx minima)

is interpreted as the activation energies in the FQHE [73–75]. These energies are
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Fig. 8.6 The results of Andrei et al. [68, 69, 71]: (a) Gate voltage dependence of resistance for
a suspended graphene sample shown at different magnetic fields and at temperature 1.2 K. The
plateaus at ν = 1, 2, and 1

3 are clearly visible. (b) The activation gap at ν = 1 and ν = 1
3 , obtained

from the temperature dependence of the diagonal conductivity

Fig. 8.7 Results of Kim et al. [70, 77]: The Hall resistance and the diagonal resistance as a function
of the magnetic field for two samples in four-terminal measurements

attributed to the energy gaps of the incompressible state at ν = 1
3 that separate the

many-body ground state from the excited states. Measurements of activation gaps
at integer filling factors have been already reported for monolayer [53] and bilayer
[76] graphene.

The activation gap at ν = 1
3 in monolayer SG, as reported by Andrei et al. [69], is

shown in Fig. 8.6(b). They obtained a value of �/kB = 4.4 K at 12 Tesla, where kB
is the Boltzmann constant. The corresponding value at ν = 1 was �/kB = 10.4 K.
These values are much higher than those in conventional semiconductor structures.
For example, in high mobility GaAs heterostructures, the ν = 1

3 activation gap is
∼ 2 K at 12 Tesla. The larger gap clearly signifies the robust nature of the 1

3 -FQHE
state in graphene.

The fractional QHE on ultraclean suspended graphene devices was also reported
by Kim et al. in two-terminal [70], and in multi-terminal [77] magnetotransport
measurements (Fig. 8.7). They also observed a remarkable stability of the corre-
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lated state in graphene, as compared to that in a conventional 2DEG, due to the
enhanced electron-electron interaction. The energy gap was measured via thermal
activation, and they reported the gap to be ∼ 20 K at 14 Tesla. The hierarchy of
FQHE states observed experimentally [78] in high-mobility graphene samples at
n = 0 Landau level confirms the existence of strong inter-electron interaction in
graphene. For n = 0, this interaction results in a spontaneous breaking of the SU(4)
symmetry (two spin and two valley degrees of freedom) at the FQHE filling factors.
The results in Ref. [78] also suggest a strong interaction between the composite
fermions within the composite fermion description of the FQHE. Therefore in the
composite fermion description of the FQHE in graphene the interaction between the
composite fermions should be taken into account. The large ν = 1

3 -FQHE gap in the
n = 1 Landau level observed in Ref. [78] supports the theoretical conclusion about
strong electron-electron interaction in the n = 1 Landau level in graphene. Details
about the measurements by these leading experimental groups can also be found
elsewhere in this book. Finally, magnetotransport measurements on suspended bi-
layer and trilayer graphene systems have also been reported [79]. In bilayer sys-
tems, a small plateau at ν = 1

3 was observed. The 1
3 -FQH state was not observed

in trilayer graphene. More experiments on bilayer graphene would certainly help
resolving many of the novel effects found theoretically and discussed below.

8.3 Bilayer Graphene

Bilayer graphene consists of two coupled monolayers of graphene [80]. Depending
on the orientation of the monolayers, there are two main stacking arrangements
of graphene bilayer: (i) AA stacking and (ii) Bernal (AB) stacking. These two
possibilities are shown schematically in Fig. 8.8. Only the nearest neighbor inter-
layer coupling, characterized by the inter-layer hopping integral, γ1, is introduced.
A typical value of inter-layer hopping integral is γ1 ≈ 400 meV. Unlike in mono-
layer graphene, the low energy excitations in bilayer graphene are massive with a
parabolic dispersion. The band structure is gapless. The dispersion can be probed
by measuring the activation gaps between the neighboring Landau levels [76].

The Hamiltonian of a bilayer graphene in a perpendicular magnetic field is de-
scribed by a 4 × 4 matrix, which, within the basis of Hamiltonian (8.10) can be
expressed as

H(AA)
ξ = ξ

⎛
⎜⎜⎝

0 vFπ− ξγ1 0
vFπ+ 0 0 ξγ1
ξγ1 0 0 vFπ−
0 ξγ1 vFπ+ 0

⎞
⎟⎟⎠ , (8.20)

for the AA stacking and

H(AB)
ξ = ξ

⎛
⎜⎜⎝

0 vFπ− 0 0
vFπ+ 0 ξγ1 0

0 ξγ1 0 vFπ−
0 0 vFπ+ 0

⎞
⎟⎟⎠ , (8.21)
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Fig. 8.8 Schematic illustration of two different stacking of bilayer graphene, consisting of two
coupled monolayers of graphene: (a) AA stacking; (b) Bernal (AB) stacking. Each graphene layer
consists of two inequivalent sites A and B. The intra-layer and intra-layer hopping integrals are
shown by γ0 and γ1, respectively

for the Bernal stacking. The Hamiltonians (8.20)–(8.21) are expressed in the basis
(ψA1,ψB1 ,ψA2,ψB2)

T for the K valley (ξ = 1) and (ψB2 ,ψA2,ψB1,ψA1)
T for the

K′ valley (ξ = −1), where the superscript ‘T ’ indicates the transpose of a vector.
Here A1, B1 and A2, B2 correspond to sublattices of monolayers 1 and 2, respec-
tively.

8.3.1 Magnetic Field Effects

In an external magnetic field each monolayer has discrete sets of Landau levels,
which are coupled in bilayer graphene. For the AA and AB stackings the coupling
of Landau levels have different structures. For the AA stacking the coupling oc-
curs between the same Landau levels, i.e., with the same Landau index n, of two
monolayers, resulting in a splitting of the initially degenerate Landau levels of two
monolayers. The wave functions of bilayer graphene with AA stacking have the
following form

Ψ (bi,AA)
n,m =

(
Ψ
(mono)
n,m

±Ψ (mono)
n,m

)
∼

⎛
⎜⎜⎝
φ|n|−1,m
φ|n|,m
φ|n|−1,m
φ|n|,m

⎞
⎟⎟⎠ , (8.22)

which shows that the wave functions of bilayer graphene with AA stacking are a
mixture of |n|-th and (|n| − 1)-th non-relativistic Landau wave functions [81]. The
Haldane pseudopotentials of bilayer Landau levels are completely identical to the
corresponding pseudopotentials of the monolayer graphene. Therefore the FQHE in
such a bilayer does not bring in any new features.
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A different situation occurs for the Bernal stacking, which introduces coupling
between different Landau levels of the two layers. The structure of the wave func-
tions of such a bilayer graphene is as follows

Ψ (bi,AB)
n,m ∼

⎛
⎜⎜⎝
φ|n|−1,m
φ|n|,m
φ|n|,m
φ|n|+1,m

⎞
⎟⎟⎠ . (8.23)

In this case the wave functions of bilayer graphene correspond to mixtures of the
non-relativistic Landau wave functions with indices n − 1, n, and n + 1. Such a
mixture can modify the interaction within a single Landau level of bilayer graphene
and can influence the properties of the FQHE in this system. In what follows, we
consider only the bilayer graphene with Bernal stacking.

8.3.2 Biased Bilayer Graphene

In addition to the inter-layer coupling, there are few other parameters, which can
control the interaction properties of bilayer graphene. These parameters are inter-
layer bias voltage, U , which can be varied for a given system [82, 83], and the
intra-layer asymmetry, �, in the bottom layer, which is in contact with a substrate.
Such an asymmetry depends on the substrate and results in different on-site energies
for sublattices A1 and B1. With these additional terms the Hamiltonian of bilayer
graphene with Bernal stacking (for valley ξ = ±1) takes the form [84]

H(AB)
ξ

= ξ

⎛
⎜⎜⎝
U
2 + �

4 (1 + ξ) vFπ− 0 0
vFπ+ U

2 − �
4 (1 + ξ) ξγ1 0

0 ξγ1 −U
2 + �

4 (1 − ξ) vFπ−
0 0 vFπ+ −U

2 − �
4 (1 − ξ)

⎞
⎟⎟⎠ .

(8.24)

The eigenfunctions of Hamiltonian (8.24) have the following form [see (8.23)]

Ψ (bi)
n,m =

⎛
⎜⎜⎝
ξC1φ|n|−1,m
iC2φ|n|,m
iC3φ|n|,m
ξC4φ|n|+1,m

⎞
⎟⎟⎠ , (8.25)

where the coefficients, C1, C2, C3, and C4, can be found from the following linear
system of equations

εC1 = [ξu + δ(1 + ξ)
]
C1 − √

nC2 (8.26)

εC2 = [ξu − δ(1 + ξ)
]
C2 − √

nC1 + γ̃1C3 (8.27)

εC3 = [−ξu − δ(1 − ξ)
]
C3 + √

n + 1C4 + γ̃1C2 (8.28)

εC4 = [−ξu + δ(1 − ξ)
]
C4 + √

n + 1C3, (8.29)
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where all energies are expressed in units of the Coulomb energy, εB = �vF /�0, ε is
the energy of the Landau level, δ = �/(4εB), u = U/(2εB), and γ̃1 = γ1/εB .

Then the eigenvalue equation which determines the Landau energy spectrum of
bilayer graphene is given by [85][

(ε + ξu)2 − δ2(1 − ξ)2 − 2n
][
(ε − ξu)2 − δ2(1 + ξ)2 − 2(n + 1)

]
= γ̃ 2

1

[
(ε − δ)2 − (u + δ)2

]
. (8.30)

For each value of n ≥ 0 there are four solutions of the eigenvalue equation (8.30),
corresponding to four Landau levels in a bilayer graphene for a given valley, ξ = ±1.
For convenience, let us introduce the following labelling scheme for these Landau
levels. The four Landau levels correspond to two valence levels which usually have
negative energies, and two conduction levels, which have positive energies. Then
the four Landau levels of bilayer graphene for a given value of n (n ≥ 0) and a
given valley, ξ , can be labelled as n(ξ)i , where i = −2,−1,1,2 is the label of the
Landau level in the ascending order of energy. Here negative and positive values of
i correspond to valence and conduction levels, respectively. For zero bias voltage,
U = 0, and zero intra-layer asymmetry, � = 0, these four Landau levels are

ε = ±
√

2n + 1 + γ̃ 2
1

2
± 1

2

√(
2 + γ̃ 2

1

)2 + 8nγ̃ 2
1 . (8.31)

In this case each Landau level has two-fold valley degeneracy, i.e., no dependence
on the index ξ in (8.31). For finite values of U and�, the valley degeneracy is lifted.
For zero intra-layer asymmetry,� = 0, the Landau energy spectra of two valleys are
not independent. They are related through the equation ε(n(ξ)i ) = −ε(n(−ξ)

−i ), where

ε(n
(ξ)
i ) is the energy of the Landau level n(ξ)i .
The coefficients C1, C2, C3, and C4, determined from the solution of the eigen-

value equation (8.30) and the system of equations (8.26)–(8.29), are expressed as

C1 = f

[
2γ̃1n

[ε + ξu − δ(1 − ξ)][(ε + ξu)2 − δ2(1 − ξ)2 − 2n]
] 1

2

C2 = f

[
γ̃1 [ε − ξu − δ(1 + ξ)]

[(ε − ξu)2 − δ2(1 + ξ)2 − 2(n + 1)]
] 1

2

C3 = f

[
γ̃1 [ε + ξu − δ(1 − ξ)]

[(ε + ξu)2 − δ2(1 − ξ)2 − 2n]
] 1

2

C4 = f

[
2γ̃1(n + 1)

[ε − ξu − δ(1 + ξ)][(ε − ξu)2 − δ2(1 + ξ)2 − 2(n + 1)]
] 1

2

.

Here the constant f is determined from the normalization condition, |C1 |2 + |C2 |2 +
|C3 |2 + |C4 |2 = 1.

Since the FQHE is expected to be observable only in the Landau levels with low
values i of the index, n, we consider below the sets of Landau levels of bilayer
graphene with n = 0 and n = 1 only. The wave functions of these Landau levels
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are mixtures of the conventional non-relativistic Landau functions with indices 0, 1,
and 2.

There are two special Landau levels of bilayer graphene which have unique prop-
erties. For n = 0 there is a solution of (8.30) with energy ε = −u for the K valley
(ξ = 1) and ε = u+ 2δ for the K′ valley (ξ = −1). The corresponding wave function
has the form

Ψ
(bi)
01,m

=

⎛
⎜⎜⎝
φ0,m

0
0
0

⎞
⎟⎟⎠ . (8.32)

This Landau level of bilayer graphene does not have any admixture of other Landau
levels and has exactly the same properties as the 0-th conventional non-relativistic
Landau level. At zero u and δ this Landau level has exactly zero energy.

For small values of u and δ there is another solution of (8.30) with n = 0 and
almost zero energy, ε ≈ 0. The corresponding Landau level has the following wave
functions

Ψ
(bi)
0−1,m

= 1√
γ̃ 2

1 + 2

⎛
⎜⎜⎝
γ̃1φ1,m

0√
2φ0,m

0

⎞
⎟⎟⎠ = 1√

γ 2
1 + 2ε2

B

⎛
⎜⎜⎝

γ1φ1,m
0√

2εBφ0,m
0

⎞
⎟⎟⎠ . (8.33)

The properties of this Landau level depends on the strength of the magnetic field.
In a small magnetic field, εB  γ1, the wave function becomes (ψ1,m,0,0,0)T

and the Landau level becomes identical to the n = 1 non-relativistic Landau level.
For a large magnetic field εB � γ1, the Landau level wave function becomes
(0,0,ψ0,m,0)T and the bilayer Landau level has the same properties as for the n = 0
non-relativistic Landau level.

8.3.3 Pseudopotentials in Bilayer Graphene

Once the wave functions (8.25) of the bilayer Landau level are evaluated, the form
factor in the Haldane pseudopotentials (8.2) can be obtained from

Fn(q) = |C1 |2Ln−1
(
q2/2

)+ (|C2 |2 + |C3 |2)Ln(q2/2
)+ |C4 |2Ln+1

(
q2/2

)
.

(8.34)

In fact, the shape of the form factor tells us about the interaction effects within the
bilayer Landau levels. For the Landau level 01, defined by (8.32), the form factor is
F01 = L0(q

2/2), which is exactly the same as the form factor in (8.3) of the non-
relativistic system in the n = 0 Landau level. Therefore the interaction effect in this
Landau level is the same as in the n = 0 non-relativistic Landau level.
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The bilayer Landau level 0−1, defined by (8.33), exhibits an interesting behavior
of bilayer graphene with increasing magnetic fields. The form factor corresponding
to that Landau level (8.33) is given by

F0−1(q) =
[

γ 2
1

γ 2
1 + 2ε2

B

]
L1
(
q2/2

)+
[

2ε2
B

γ 2
1 + 2ε2

B

]
L0
(
q2/2

)
. (8.35)

With increasing magnetic field, i.e., increasing εB , the bilayer Landau level 0−1 be-
comes identical to (i) the n = 1 non-relativistic Landau level with the form factor
L1(q

2/2) for a small magnetic field, εB  γ1; (ii) the n = 1 Landau level of mono-
layer graphene with the form factor 1

2 [L0(q
2/2)+L1(q

2/2)] for εB = γ1/
√

2; and,
(iii) the n = 0 non-relativistic Landau level with the form factor L0(q

2/2) for a large
magnetic field, εB � γ1. For typical values of γ1, only the first regime will be ac-
cessible experimentally. For example, for γ1 = 400 meV the condition εB = γ1/

√
2

is only achieved for a magnetic field of B = 120 Tesla.

8.3.4 Novel Effects from Electron-Electron Interactions

Once the pseudopotentials are known, the FQHE states in a graphene bilayer
can be studied using very accurate numerical techniques. Compared to monolayer
graphene, bilayer graphene has additional parameters by which we can control the
electron-electron interaction strength. As we recall, in monolayer graphene the in-
teraction strength depends only on the Landau level index. In bilayer graphene
the inter-electron interaction strength depends also on the magnetic field, the
bias voltage U , and the intra-layer asymmetry �. By varying these parameters,
the stability, i.e., the excitation gap of the FQHE states can therefore be con-
trolled [86].

Stable FQHE states in bilayer graphene are expected in the n = 0 and n = 1
bilayer Landau level sets. These sets are the mixtures of n = 0, n = 1, and n = 2
non-relativistic Landau level wave functions. The mixture depends on the values of
the parameters of the system. With a non-zero bias voltage and intra-layer asymme-
try, the valley degeneracy of the Landau levels of bilayer graphene is lifted, resulting
in different properties of Landau levels for different valleys.

The stability of the FQHE state is characterized by the value of the corresponding
FQHE gap. For the primary filling fractions of the FQHE, i.e., ν = 1

3 , 1
5 , 2

5 etc., the
bilayer system shows a similar behavior. Therefore, in what follows, only the results
for the ν = 1

3 FQHE state are shown. The general behavior of the FQHE gap for
different parameters of the bilayer system is illustrated in Figs. 8.9, 8.10 and 8.11.
For each value of n, n = 0 and n = 1, there are four Landau levels in each valley.
Within this set of bilayer Landau levels, there is one special Landau level which
has an unique property. This Landau level has the label 0(+)

1 with the wave function
given by (8.32), which is just the n = 0 non-relativistic Landau wave function for
all parameters of bilayer graphene. Therefore, the interaction properties within this
Landau level are identical to the interaction properties of the n = 0 non-relativistic
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Fig. 8.9 Landau levels of bilayer graphene [panels (a) and (c)] are shown as a function of the bias
voltage, U , i.e., the difference between the on-site energies in the two layers. Panels (b) and (d): the
Coulomb gaps of 1

3 -FQHE in corresponding Landau levels. The numbers next to the lines are the
labels of the Landau levels. The same types of lines [in panels (a) and (b) and panels (c) and (d)]
correspond to the same Landau levels. Panels (a) and (b) correspond to valley K, while panels (c)
and (d) correspond to valley K′ . The system is characterized by � = 150 meV, γ1 = 400 meV,
and a magnetic field B = 15 Tesla. The arrows in panels (a) and (c) show the Landau level with
the strongest 1

3 -FQHE. The arrows in panels (b) and (d) indicate the gap of 1
3 -FQHE in the n = 1

Landau level of monolayer graphene

Landau level and correspondingly the n = 0 Landau level of monolayer graphene.
The gap of the FQHE at this Landau level does not depend on the parameters of the
system and is the same as that of the n = 0 monolayer graphene. This property is
shown in Figs. 8.9–8.11 as a function of bias voltage, asymmetry parameter �, and
the magnetic field, where it is shown that the FQHE gap of the Landau level 0(+)

1
does not depend on the parameters of bilayer graphene.

From Figs. 8.9–8.11 it is quite clear that in each valley the bilayer graphene has
four Landau levels with a strong 1

3 -FQHE for all values of the parameters of the

system. These levels have the following labels: 0(+)
−2 , 0(+)

1 , 0(+)
2 , 1(+)

1 (valley K)

and 0(−)
−2 , 0(−)

−1 , 0(−)
2 , 1(−)

−1 (valley K′). Therefore for a given valley there are three
Landau levels with n = 0 and one Landau level with n = 1, which all show a stable
FQHE. The gaps of the corresponding FQHE states are usually between the gaps of
n = 0 and n = 1 ν = 1

3 -FQHE state in monolayer graphene. The value of the gap
of the 1

3 -FQHE state in the n = 1 Landau level of monolayer graphene is shown

by red arrows in Figs. 8.9–8.11. In the Landau level 0(+)
−2 , for a large asymmetry

(see Fig. 8.10), the FQHE state becomes more stable than the corresponding state
in monolayer graphene.

The Landau level with the label 0(+)
−1 shows a strong dependence of the interaction

properties on the parameters of the system. Namely, with increasing bias voltage or
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Fig. 8.10 Landau levels of bilayer graphene [panels (a) and (c)] are shown as a function of the
intra-layer asymmetry, �. Panels (b) and (b): the Coulomb gaps of 1

3 -FQHE in corresponding
Landau levels. The numbers next to the lines are the labels of the Landau levels. The same types of
lines [in panels (a) and (b) and panels (c) and (d)] correspond to the same Landau levels. Panels (a)
and (b) correspond to valley K, while panels (c) and (d) correspond to valley K′ . The system is
characterized by U = 200 meV, γ1 = 400 meV, and a magnetic field B = 15 Tesla. The arrows
in panels (a) and (c) show the Landau level with the strongest 1

3 -FQHE. The arrows in panels (b)

and (d) indicate the gap of 1
3 -FQHE in the n = 1 Landau level of monolayer graphene

intra-layer asymmetry, the gap of the FQHE state and correspondingly its stability
strongly increases. At a fixed filling factor of bilayer graphene, this type of behavior
can result in the unique experimental observation of a transition from a non-FQHE
state at small values of the bias voltage (for example) to a FQHE state at large bias
voltages.

The solid black lines in Figs. 8.9–8.11 correspond to the Landau levels without a
stable FQHE state. It should be noted that there is also no clear boundary between
the Landau levels with and without the FQHE, i.e., between two Landau levels with
the FQHE there is a Landau level without FQHE (see Fig. 8.9). This property can
be observed experimentally if the FQHE is studied as a function of the filling fac-
tor of bilayer graphene while the other parameters of the system are fixed. That
means, if one varies the filling factor of bilayer graphene and studies the 1

3 -state at
each Landau level then one should be able to observe transitions from the FQHE to
no-FQHE state and back to the FQHE state. We should emphasize that this unique
phenomenon has never been observed before in conventional two-dimensional sys-
tems.

The results illustrated in Fig. 8.9–8.11 are typical for the large inter-layer hopping
integral, γ1 ≈ 400 meV. At smaller values of γ1, bilayer graphene shows additional
features due to anticrossing of the Landau levels as a function of the parameters
of the system, i.e., the bias voltage. Such an anticrossing results in a transition of
the type, FQHE—no FQHE—FQHE within the same Landau level [86]. This be-
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Fig. 8.11 Landau levels of bilayer graphene [panels (a) and (c)] are shown as a function of the
magnetic field. Panels (b) and (b): the Coulomb gaps of the 1

3 -FQHE in corresponding Landau
levels. The numbers next to the lines are the labels of the Landau levels. The same types of lines [in
panels (a) and (b) and panels (c) and (d)] correspond to the same Landau levels. Panels (a) and (b)
correspond to the valley K, while panels (c) and (d) correspond to the valley K′ . The system is
characterized by� = 150 meV, U = 200 meV, and γ1 = 400 meV. The arrows in panels (a) and (c)
show the Landau level with the strongest 1

3 -FQHE. The arrows in panels (b) and (d) indicate the

gap of the 1
3 -FQHE state in the n = 1 Landau level of monolayer graphene

havior is illustrated in Fig. 8.12 for three different values of the inter-layer hopping
integral. The actual values of the inter-layer hopping integral depend on the experi-
mental realization of bilayer graphene and is about 400 meV. The anticrossing and
the coupling of different Landau levels is more pronounced at small values of γ1.
The anticrossing should be experimentally observable if the filling factor of bilayer
graphene is kept fixed and the bias voltage is varied.

For a small inter-layer tunnelling integral and a small bias voltage, some Landau
levels in bilayer graphene show strong non-monotonic behavior of the FQHE gap
with well-pronounced maxima. This property is illustrated in Fig. 8.13, where the
FQHE gap is shown as a function of the inter-layer coupling, γ1, for two values
of the bias voltage, U . The inter-layer coupling can be varied experimentally, for
example, by applying a tilted magnetic field, where the parallel component of the
magnetic field influences the inter-layer coupling [81]. For small bias voltage, the
Landau level 0(−)

1 has the wave function of the form of (8.33). With variation of the
intra-layer tunnelling integral, the wave function (8.33) transforms from the n = 0
non-relativistic Landau wave function for small γ1 to the n = 1 monolayer graphene

Landau function for γ1 = 2
1
2 �vF /�0 and finally to the n = 1 non-relativistic Lan-

dau level function for large γ1. Therefore the FQHE gap of bilayer graphene in the
0(−)

1 Landau level is equal to the FQHE gap of the n = 0 non-relativistic Landau
level for small γ1 and to the FQHE gap of the n = 1 monolayer graphene Landau

level for γ1 = 2
1
2 �vF /�0. This property is illustrated in Fig. 8.13(a), where a strong
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Fig. 8.12 A few lowest Landau levels of the conduction band as a function of the bias poten-
tial, U , for different values of inter-layer coupling: (a) γ1 = 30 meV (b) γ1 = 150 meV and
(c) γ1 = 300 meV and a magnetic field of 15 Tesla. The intra-layer asymmetry � is zero. The
numbers next to the curves denote the corresponding Landau levels. Left and right columns corre-
spond to the K and K′ valleys, respectively. The Landau levels where the FQHE can be observed
are drawn as blue and green filled dots. The green dots correspond to the Landau levels where the
FQHE states are identical to that of a monolayer of graphene or a non-relativistic conventional sys-
tem. The red dots represent Landau levels with weak FQHE. The open dots correspond to Landau
levels where the FQHE is absent. In (a), the dashed lines labeled by (i) illustrates the transition
between FQHE (symbol ‘F’) and no FQHE (symbol ‘NF’) states under a constant gate voltage and
variable bias potential [86]

non-monotonic behavior of the FQHE gap of the 0(−)
1 Landau level is shown. The

maximum of the FQHE gap at γ1 ≈ 2
1
2 �vF /�0 corresponds to the FQHE gap at

n = 1 monolayer graphene Landau level.
The above analysis clearly indicates that the interaction properties of biased bi-

layer graphene depend both on the magnetic field and on the parameters of the
system, such as the bias voltage, intra-layer asymmetry, and the inter-layer hopping
integral. In each valley there are a few Landau levels which display a strong FQHE,
the gap of which depends on the parameters of the bilayer. This dependence can
be observed experimentally as transitions between the FQHE and no-FQHE states
within the same Landau level when the parameters of the system, e.g., the bias volt-
age, are changed. Although the FQHE gaps can be controlled by the parameters of
the bilayer system, the gaps usually do not exceed the corresponding FQHE gaps in
monolayer graphene.
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Fig. 8.13 The FQHE gaps shown for different Landau levels. The labels next to the lines denote
the corresponding Landau levels. (a) U = 10 meV, and (b) U = 300 meV. All systems are fully
spin polarized and the magnetic field is 15 Tesla. The intra-layer asymmetry � is zero [86]

8.3.5 Interacting Electrons in Rotated Bilayer Graphene

Epitaxial graphene [87], which is thermally grown on the C face of the SiC substrate,
as well as graphene grown by chemical vapor deposition (CVD) [88], are multilayer
films and yet, quite surprisingly display behavior similar to that of a single layer
graphene [89]. These systems are known to have a high degree of rotational mis-
alignments [90]. Theoretical studies of turbostratic bilayer graphene [91–94] have
indicated that in this case the interlayer coupling is suppressed and the systems
can be roughly considered as two decoupled layers of graphene, as confirmed by
scanning tunneling spectroscopy together with Landau level spectroscopy measure-
ments [95]. At the same time due to the modulated nature [93] of the interlayer
transfer integral, these systems show quite rich low-energy physics, which strongly
depends on the nature of the commensurate stacking faults [94]. In this section,
we will deal with the question: how does the electron-electron interaction manifest
itself in a rotated bilayer graphene?

In a misoriented bilayer graphene, one graphene layer is rotated relative to the
other layer by an angle θ . We assume that the axis of rotation passes through the
atoms of A-sublattices in the two layers (Fig. 8.14). In general, the axis can pass
through any point of the bilayer. There is a special type of rotation, called com-
mensurate rotation, which is determined by the condition that the atoms of the two
layers are coincident not only at the axis of rotation but also at some other points.
The angles corresponding to the commensurate stacking fault are determined from:
cos θ = (3q2 − p2)/(3q2 + p2), where q > p > 0 are integers [93].

There are two types of commensurate rotations that are distinguished by their
symmetry, even or odd, with respect to the sublattice exchange [94]. For the even
commensurate stacking fault both A and B sublattice sites of the two layers are
coincident at some point, while for the odd stacking fault only A sublattice sites of
the two layers are coincident both at the axis of rotation and at some other points.
The regular stacking orientations, AA or Bernal, are realized at the following angles:
AA-stacking—at angle θ = 0, which corresponds to the even stacking orientation,
and Bernal stacking—at angle θ = 60◦, which is the odd orientation.
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Fig. 8.14 Misoriented
graphene bilayer with angle
of rotation θ , shown
schematically in real space.
The axis of rotation passes
through atoms of A-sublattice
in the two layers. The black
solid dots and the red open
dots are the atomic positions
in two different layers

The even and odd stacking faults can also be described in terms of the properties
of the reciprocal lattices of the two layers [94]. The reciprocal lattice of a graphene
layer consist of K and K′ sets of points: K + Gm,k , K′ + Gm,k , where Gm,k = mG1 +
kG2, m and k are integers, G1 = 2π/a(1, 1√

3
) and G2 = 2π/a(0, 2√

3
) are primitive

reciprocal lattice vectors, and K = 2π/a( 1
3 ,

1√
3
), K′ = 2π/a( 2

3 ,0). These two sets
of points correspond to the two valleys of graphene. Then in terms of the reciprocal
lattices, a rotation by an angle θ in real space corresponds to a rotation by an angle
θ in reciprocal space about the origin, i.e, (0,0). For an even commensurate stacking
fault, the K points of the reciprocal lattices of the two layers are then coincident
[94], i.e., K + Gm,k = K(θ) + Gm′,k′(θ), while for the odd stacking fault the K and
K′ points are coincident, i.e., K + Gm,k = K′(θ) + Gm′,k′(θ) [94]. Here k, m, k′,
and m′ are integer numbers.

Due to the periodic modulation of rotated bilayer graphene at the commensurate
angles, the effective interlayer coupling, γeff , is determined by the Fourier trans-
form of the interlayer potential function at the wave vector K + Gm,k . Then the
effective low-energy Hamiltonians of the rotated bilayer at the commensurate con-
dition are given by [94]

Heven =

⎛
⎜⎜⎝

0 vFπ− γθe
iφ/2 0

vFπ+ 0 0 γθe
−iφ/2

γ+
θ e

iφ/2 0 0 vFπ−
0 γ+

θ e
iφ/2 vFπ+ 0

⎞
⎟⎟⎠ , (8.36)

Hodd =

⎛
⎜⎜⎝

0 vFπ− 0 0
vFπ+ 0 γθ 0

0 γ+
θ 0 vFπ−

0 0 vFπ+ 0

⎞
⎟⎟⎠ . (8.37)

The Hamiltonians (8.36) and (8.37) are generalization of the Hamiltonians (8.20)
and (8.21) of regular bilayer graphene. Here γθ = γeff e

iθ and the phase angle φ is
determined by the interlayer potential.

For the odd rotated bilayer and for all rotation angles, the Hamiltonian (8.37)
is completely identical to the Hamiltonian (8.21) of bilayer graphene with Bernal
stacking. The only difference is the magnitude of the interlayer coupling. While
for Bernal stacking the interlayer coupling γ1 is around 400 meV, the coupling
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in the rotated bilayer is an order of magnitude smaller, γθ ∼ 10 meV. Therefore,
for the effects of the electron-electron interaction and the properties of FQHE,
the odd-rotated bilayer behaves similar to bilayer graphene with Bernal stack-
ing and the results of the previous section are applicable to the odd-rotated bi-
layer.

For the even rotated bilayer the Hamiltonian is similar to the Hamiltonian of bi-
layer graphene with AA stacking and the interaction properties of the even rotated
bilayer become completely identical to the bilayer graphene with AA stacking. The
additional phases in the Hamiltonian (8.36) affect the phases of the wave function
components, which can be visible in magneto-optics experiments [96], but the pseu-
dopotentials do not depend on these phases and correspondingly on the interlayer
coupling. The pseudopotentials for the even rotated bilayer are identical to those of
individual graphene layers. Therefore, as far as the FQHE is concerned, the even
rotated bilayer can be considered as two decoupled graphene layers for any twist
angle.

8.4 Fractional Quantum Hall Effect in Trilayer Graphene

A trilayer graphene consisting of three coupled graphene layers, has a very unique
electronic energy spectrum. Within the nearest-neighbor inter-layer coupling ap-
proximation, the energy spectrum of trilayer graphene with Bernal stacking con-
sists effectively of decoupled single-layer graphene and the bilayer graphene energy
spectra. Therefore the trilayer graphene system allows us to study experimentally
both the massless and massive energy spectra within a single system. In a strong
perpendicular magnetic field the Landau energy spectrum of trilayer graphene be-
comes the combination of Landau levels of single-layer and bilayer graphene. This
combination exhibits many crossings of the Landau levels as a function of the mag-
netic field. At the crossing points the Landau levels are highly degenerate. The de-
generacy is lifted when the higher-order inter-layer coupling terms are taken into
account, resulting in rich properties of quantum Hall effect in trilayer graphene
[97, 98].

Novel features of the FQHE should be also expected in trilayer graphene [99].
In what follows, we explore the properties of FQHE in trilayer graphene within
the nearest-neighbor inter-layer coupling approximation. The trilayer graphene can
be in two main stacking arrangements: the ABA (Bernal) stacking and the ABC
stacking, which are schematically shown in Fig. 8.15.

Within the nearest neighbour inter-layer coupling approximation, the Hamilto-
nian of trilayer graphene is characterized by two parameters alone: the intra-layer,
γ0, and inter-layer, γ1, tunnelling integrals. In a perpendicular magnetic field the
Hamiltonian of trilayer graphene for a single valley, e.g. valley K, takes the form
[97, 100]
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Fig. 8.15 Schematic illustration of two different stacking arrangements of trilayer graphene, con-
sisting of three coupled monolayers of graphene: (a) ABC stacking; (b) ABA stacking. Each
graphene layer consists of two inequivalent sites A and B. The intra-layer and inter-layer hopping
integrals are shown by γ0 and γ1, respectively

H(ABA) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 vFπ− 0 0 0 0
vFπ+ 0 γ1 0 0 0

0 γ1 0 vFπ− 0 γ1
0 0 vFπ+ 0 0 0
0 0 0 0 0 vFπ−
0 0 γ1 0 vFπ+ 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (8.38)

for the ABA stacking and

H(ABC) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 vFπ− 0 0 0 0
vFπ+ 0 γ1 0 0 0

0 γ1 0 vFπ− 0 0
0 0 vFπ+ 0 γ1 0
0 0 0 γ1 0 vFπ−
0 0 0 0 vFπ+ 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (8.39)

for the ABC stacking. The Landau levels of trilayer graphene can be obtained from
the Hamiltonian matrix (8.38) (or (8.39)). The corresponding wave functions are
parametrized by the integer n and can be expressed through the non-relativistic Lan-
dau level wave functions as

Ψ (ABA) =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1φn−1,m
C2φn,m
C3φn,m
C4φn+1,m
C5φn−1,m
C6φn,m

⎞
⎟⎟⎟⎟⎟⎟⎠
, (8.40)
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for the ABA stacking and

Ψ (ABC) =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1φn−1,m
C2φn,m
C3φn,m
C4φn+1,m
C5φn+1,m
C6φn+2,m

⎞
⎟⎟⎟⎟⎟⎟⎠
, (8.41)

for the ABC stacking. Therefore the Landau wave functions of trilayer graphene are
the combinations of n, n − 1, and n + 1 non-relativistic Landau functions for the
ABA stacking, and n, n − 1, n + 1, and n + 2 non-relativistic Landau functions for
the ABC stacking. With the known wave functions, the corresponding form factors
of the Haldane pseudopotential can be evaluated from the following expressions

FABAn (q) = (|C1 |2 + |C5 |2)Ln−1
(
q2/2

)
+ (|C2 |2 + |C3 |2 + |C6 |2)Ln(q2/2

)+ |C4 |2Ln+1
(
q2/2

)
, (8.42)

for the ABA stacking and

FABCn (q) = |C1 |2Ln−1
(
q2/2

)+ (|C2 |2 + |C3 |2)Ln(q2/2
)

+ (|C4 |2 + |C5 |2)Ln+1
(
q2/2

)+ |C6 |2Ln+2
(
q2/2

)
, (8.43)

for the ABC stacking.
The Landau energy spectrum found from the Hamiltonian matrices (8.38) and

(8.39) have the following properties:

ABA Stacking The ABA stacking has the unique property that it is completely
identical to the combination of the single graphene layer and the bilayer graphene
systems. This property follows directly from the Hamiltonian (8.38). Therefore
the Landau levels of trilayer graphene consist of the Landau levels of single layer
graphene and the Landau levels of bilayer graphene. Within the nearest neighbour
inter-layer coupling approximation, considered in the Hamiltonian (8.38) these Lan-
dau levels are decoupled. Hence the FQHE in this system should be identical to the
FQHE in a single layer graphene and in bilayer graphene.

ABC Stacking For each n ≥ 0 there are six Landau energy levels with energies
[100]

ε(1)n = ±
√

2
√
η cos

(
η

3

)
− δ1

3
(8.44)

ε(2)n = ±
√

2
√
η cos

(
η + 4π

3

)
− δ1

3
(8.45)

ε(3)n = ±
√

2
√
η cos

(
η + 2π

3

)
− δ1

3
(8.46)



282 T. Chakraborty and V. Apalkov

where

cosη = − δ3
1

27 + γ1γ2
6 − γ3

2

(
δ2

1
9 − δ2

3 )
3/2

(8.47)

and

δ1 = −2γ 2
1 − 3(1 + n)ε2

B (8.48)

δ2 = γ 4
1 + 2(1 + n)γ 2

1 ε
2
B + (2 + 6n + 3n2)ε4

B (8.49)

δ3 = −n(n + 1)(n + 2)ε6
B. (8.50)

At n = −1, there are three Landau levels. One Landau level has zero energy,
ε = 0, with the wave function Ψ (ABC) ∝ (0,0,0,−εBφ0,m,0, γ1φ1,m). The other

two levels have the energies ε = ±
√
ε2
B + γ 2

1 with the wave functions Ψ (ABC) ∝
(0,0,0, γ1φ0,m, εφ0,m, εBφ1,m).

At n = −2 there is only one Landau level with energy ε = 0 and the wave func-
tion Ψ (ABC) ∝ (0,0,0,0,0, φ0,m). This Landau level is completely identical to the
n = 0 non-relativistic Landau level. Therefore, the FQHE at this Landau level should
have exactly the same strength as for the n = 0 non-relativistic Landau level.

With the known wave functions of the Landau levels of trilayer graphene, we
evaluate the form factors and the corresponding pseudopotentials. With these pseu-
dopotentials we then analyse the properties of the FQHE in trilayer graphene. In
Fig. 8.16, the lowest Landau levels of trilayer graphene are shown, where the red
and blue lines correspond to the Landau levels with a strong FQHE. The strength of
the FQHE is characterized by the excitation gap, which are shown in Fig. 8.16 for
the filling factor ν = 1

3 .
For the ABA stacking, the trilayer graphene can be considered as the decoupled

system of single layer and bilayer graphene. The blue and red lines correspond to the
Landau levels with a strong FQHE of single layer graphene and bilayer graphene,
respectively. The strongest FQHE with a gap of 0.09εC is observed in the n = 1
single graphene layer [see Fig. 8.16(a)]. At the zero energy, the Landau levels of
bilayer graphene and the single-layer graphene are degenerate, having the FQHE of
the same strength.

For the ABC stacking (see Fig. 8.16), the trilayer graphene cannot be divided into
more simple systems. Similar to the ABA stacking there is one Landau level with
the strongest FQHE (the gap is 0.09εC ), the gap of which is close to the FQHE gap
of the n = 1 single layer graphene. The Landau level with zero energy is identical
to the n = 0 Landau level of the single-layer graphene and the n = 0 non-relativistic
Landau level. With a few Landau levels showing the strong FQHE, the strength of
the FQHE for the ABC stacking does not exceed the strength of the FQHE in a
single-layer graphene.
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Fig. 8.16 The lowest Landau energy spectra of trilayer graphene shown as the function of the
magnetic field for (a) ABA and (b) ABC stacking. The red and blue lines correspond to the Landau
levels with strong FQHE. The numbers next to the lines are the values of the ν = 1

3 FQHE gap
(in units of εC = e2/κ�0) at the corresponding Landau level. In panel (a) the blue and red lines
corresponds to the Landau levels of the single layer and bilayer graphene, respectively

8.5 Some Unique Properties of Interacting Dirac Fermions

In this section, we discuss some of the exotic properties of interacting Dirac
fermions. These include the pfaffians in graphene and the FQHE in a topological
insulator.

8.5.1 The Pfaffians in Condensed Matter

The vast majority of fractional quantum Hall states observed in the experiments oc-
cur at rational filling fractions ν = p/q , with q being an odd integer [3, 7]. Further,
there have never been any experimental indications that the FQHE would occur at
ν = 1

2 . One also expects that the states in the (n + 1)-th lowest Landau level (LLL)
should be similar to that at the LLL for ν = 1

2 , because the lower n Landau levels
are then completely filled. The discovery of FQHE in a traditional 2DEG at ν = 5

2 in
1987 [101, 102] was therefore a total surprise, for which a proper explanation of the
nature of the state has remained elusive ever since [103]. The state was found to be
quite robust with a sizeable excitation gap (� ∼ 0.6 K) and a well-defined plateau.
The Laughlin wave function (8.1) is not suitable for this state because at ν = 1

2 ,
the appropriate state represents a system of bosons. In order to explain the origin
of the corresponding incompressible state, it has been proposed that the ground
state of ν = 5

2 is described by a Pfaffian [104–107] (or anti-Pfaffian [108, 109])
function. Within this description, the elementary charged excitations have a charge
e∗ = e/4 and obey ‘non-abelian’ statistics [110, 111]. These unique charged excita-
tions have been recently observed experimentally [112, 113]. Interesting properties



284 T. Chakraborty and V. Apalkov

of these quasiparticles, which carry the signatures of Majorana fermions [114–116],
have initiated a lot of theoretical interest in the Pfaffian description of the even-
denominator FQHE.

The filling factor ν = 5
2 = 2 + 1

2 corresponds to a completely occupied n = 0
Landau level with two components of spin and half-filling of the n = 1 Landau
level. Therefore the Pfaffian state, which is proposed as the incompressible state of
ν = 5

2 , is the ground state of the half-filled n = 1 Landau level. It is obtained by
operating the Pfaffian factor on the Laughlin state (8.1) at ν = 1

2 :

ΨPf = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )
2 exp

(
−
∑
i

z2
i

4�2
0

)
, (8.51)

where the positions of the electrons are, as usual, described in terms of complex
variable z = x − iy and the Pfaffian factor is defined for any N × N anisymmetric
matrix Mij as [104–107]

PfMij = 1

2N/2(N/2)!
∑
σ∈SN

sgnσ
N/2∏
l=1

Mσ(2l−1)σ (2l). (8.52)

Here SN is the group of permutations of N objects. The Pfaffian factor therefore
provides the necessary antisymmetry to the Laughlin state at ν = 1

2 .
The Pfaffian state is realized at half occupation of the Landau level, i.e., at a fill-

ing factor ν = 1
2 in a given Landau level, and only for special interaction potentials.

The Pfaffian is the exact ground state with zero energy of the electron system at
half filling for a special three-particle interaction which is non-zero only if all three
particles are in close proximity to each other [106, 107]. In spherical geometry with
flux quanta 2S, it means that the three-particle interaction potential is non-zero only
if the total angular momentum of the three particles is 3S − 3, which is described
by the following interaction Hamiltonian

Hint = e2

κ�0

∑
i<j<k

Pijk(3S − 3), (8.53)

where Pijk(L) is the three-particle projection operator onto the state with total an-
gular momentum L. For realistic two-particle interactions the ν = 1

2 Pfaffian state
is not an exact eigenstate. By varying the two-particle interaction function, i.e., the
Haldane pseudopotentials, a close proximity of the ground state to the Pfaffian state
with an overlap of 99 % can be achieved.

It was shown in Ref. [117] that for traditional non-relativistic systems the Pfaffian
(Moore-Read) states can be adiabatically connected to the ν = 1

2 Coulomb ground
state in the n = 1 Landau level by varying the interaction potential from a three-
body interaction (8.53) to the Coulomb two-body interaction. However, there is no
such connection for the ν = 1

2 Coulomb ground state in the n = 0 Landau level. The
adiabatic connection means that by varying the interaction potential, the system is
always kept in the incompressible state with a finite collective excitation gap. This
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result illustrates that for the Coulomb interactions, the ν = 1
2 state in the n = 1 non-

relativistic Landau level is in the same topological phase as the Pfaffian state, but the
system in the n = 0 Landau level does not show any connection to the Pfaffian phase.
For the pure Coulomb interaction the overlap of the ground state of the ν = 1

2 system
in the n = 1 Landau level with the Pfaffian function is about 80 %. This overlap can
be increased by varying the electron-electron potential strength, for example, by
increasing the thickness of the two-dimensional layer [118].

The Pfaffian states are usually studied numerically in the spherical geometry
[106, 107, 119]. For a system of N electrons the size of the sphere for which the
Pfaffian ground state is realized, is determined by the condition 2S = 2N − 3, which
corresponds to the filling factor ν = 1

2 in the thermodynamic limit. For such a sys-
tem and for the interaction potential of the form of (8.53), the Pfaffian state is an
exact ground state with zero energy and finite excitation gap. For the two-particle
interaction the interaction potential is characterized by Haldane pseudopotentials
(8.2). The proximity of the actual ν = 1

2 ground state to the Pfaffian state is most
sensitive to the lowest pseudopotentials, V1, V3, and V5.

8.5.2 The Pfaffians in Graphene

The interaction potentials in monolayer and bilayer graphene are different from
those of the non-relativistic 2D systems. This can modify the properties of the ν = 1

2
state and its proximity to the Pfaffian state in graphene. The numerical analysis in a
spherical geometry of a finite-size monolayer graphene system with up to 14 elec-
trons shows that an incompressible ν = 1

2 Pfaffian state is unlikely to be found in
monolayer graphene [120]. The overlap of the ground state of the ν = 1

2 system
with the Pfaffian function is less than 0.5 for all Landau levels of the monolayer
graphene. The corresponding collective excitation gap is also small.

Interestingly, a very different situation occurs in bilayer graphene. The stability
of the ν = 1

2 Pfaffian state in bilayer graphene can be greatly enhanced as compared
to the non-relativistic system. Here the stability of the incompressible state is deter-
mined by the value of the collective excitation gap, which is correlated to the overlap
of the ground state and the Pfaffian state. In bilayer graphene there is one ‘special’
Landau level (for each valley), which is described by (8.33) and has the label 0(+)

−1

in valley K (or 0(−)
1 in valley K′). Numerical studies [120] in a spherical geometry

show that only in this special Landau level the overlap of the ground state with the
Pfaffian state and the excitation gap is large. In all other bilayer Landau levels the
overlap of the ν = 1

2 ground state with the Pfaffian state is found to be small (< 0.6)
and those states cannot be described by the Pfaffian.

At the zero bias voltage this special Landau level has zero energy and is degen-
erate with the level given by (8.32). In addition to this accidental degeneracy, each
level has a two-fold valley degeneracy, which makes the zero-energy state four-fold
degenerate. At a finite bias voltage this degeneracy is completely lifted and the spe-
cial Landau level of bilayer graphene can be isolated. In Fig. 8.17, several bilayer
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Fig. 8.17 Few LLLs of a
bilayer graphene, shown for
U = 50 meV, � = 0, and
t = 400 meV. The two solid
red lines belonging to
different valleys show the
‘special’ Landau levels where
the ν = 1

2 Pfaffian state can
be observed. The two solid
green lines show the Landau
levels, which at small
magnetic field, B → 0,
become identical to the n = 1
Landau level of the
non-relativistic 2D system

Landau levels are shown at a small bias voltage (U = 50 meV) and zero intra-valley
asymmetry (� = 0). The special Landau levels, 0(+)

−1 and 0(−)
1 , corresponding to two

different valleys, are shown by red lines. The interaction potentials and the many-
particle properties of these two levels are identical.

From the expression (8.35) for the form factor, Fn, of the Landau level 0(+)
−1 (or

0(−)
1 ) we can obtain the following general property: At a small magnetic field, γ1 
εB , the form factor is identical to the form factor of the non-relativistic n = 1 Landau
level. Therefore in this limit we should expect that the ν = 1

2 state is described by the
Pfaffian and it is in the same topological phase as the Pfaffian state. By increasing
the magnetic field we can change the relation between γ1 and εB , which changes the
interaction properties of the system and the properties of the ν = 1

2 state. Finally, at
a very large magnetic field, γ1  εB , the form factor becomes identical to that of
the n = 0 non-relativistic system, for which there are no ν = 1

2 Pfaffian states. At
an intermediate magnetic field there are two possibilities: (i) the excitation gap of
the ν = 1

2 state and the overlap with the Pfaffian state decrease monotonically with
the magnetic field and finally disappear or (ii) the system shows a non-monotonic
dependence with the maximum stability, i.e., the maximum gap, at the intermediate
magnetic field. Our numerical results show that for bilayer graphene the second
situation is indeed realized (see Fig. 8.18 and the discussion below).

In Fig. 8.18, the parameters of the ν = 1
2 state are illustrated at the intermediate

magnetic field. Here the overlap of the ground state with the Pfaffian state and the
corresponding excitation gap are shown. These results clearly indicate that with in-
creasing magnetic field the properties of the system change non-monotonically and
for γ1 = 400 meV the overlap with the Pfaffian state reaches its maximum at a mag-
netic field of ∼ 10 Tesla. The corresponding excitation gap also reaches its maxi-
mum at this point. In dimensionless units the maximum is achieved at γ1/εB ≈ 4.89.
Therefore, for smaller values of γ1 the maximum is achieved at smaller magnetic
fields, which is shown in Fig. 8.18 for γ1 = 300 meV. The overlap with the Pfaf-
fian state at the maximum point is ≈ 0.92, which is a major improvement over the



8 Aspects of the Fractional Quantum Hall Effect in Graphene 287

Fig. 8.18 (a) Overlap of the
exact many-particle ground
state with the Pfaffian
function. (b) Collective
excitation gap of the ν = 1

2
state. The results are for
N = 14, 2S = 25, and U = 0,
� = 0. The black and red
lines correspond to
γ1 = 400 meV and 300 meV,
respectively. The results are
shown for of the ν = 1

2
system at ‘special’ Landau
levels marked by red lines in
Fig. 8.17

non-relativistic system (∼ 0.75, which is the value at zero magnetic field limit in
Fig. 8.18).

Within this picture the magnetic field should be considered as the parame-
ter which adiabatically changes the interaction Hamiltonian from the n = 1 non-
relativistic system to the bilayer system at the special Landau level, 0(+)

−1 . These
changes are adiabatic since the gap remains non-zero and large. Therefore, we con-
clude that the ν = 1

2 state at the special bilayer Landau level is in the same topo-
logical phase as the ν = 1

2 state in the n = 1 non-relativistic Landau level and cor-
respondingly as the Pfaffian state. At the same time the overlap with the Pfaffian
state and the excitation gap is larger in bilayer graphene (at B ∼ 10 Tesla) than in
the non-relativistic system. Therefore, bilayer graphene provides the more stable
Pfaffian state.

At a large magnetic field the bilayer system, at the special Landau level, 0(+)
−1 ,

becomes close to the n = 0 non-relativistic Landau level, the overlap with the Pfaf-
fian state becomes small, the excitation gap becomes small, and the ν = 1

2 state
finally becomes compressible. This dependence on the magnetic field opens up
interesting possibilities to investigate the stability and appearance and disappear-
ance of the ν = 1

2 Pfaffian state in a single Landau level of bilayer graphene. Al-
though the Pfaffian state becomes unstable only at large magnetic fields, this prop-
erty strongly depends on the value of the hopping integral. At smaller hopping inte-
grals the magnetic field range of stability of the Pfaffian state shrinks. For example,
at t = 300 meV the Pfaffian state is expected to be unstable at B ∼ 40 Tesla (note
the suppression of the FQHE gap with increasing magnetic field in Fig. 8.18). The
dependence of the properties of the ν = 1

2 state on the bias voltage is weak within
the broad range of U [120].

In bilayer graphene there is another set of Landau levels, which are shown by
green lines in Fig. 8.17 and are labelled as 2(+)

1 for valley K and 2(−)
−1 for valley K′.

These Landau levels have the following property. At a finite bias voltage and a
small magnetic field, the corresponding Landau level wave functions are described
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Fig. 8.19 (a) Overlap of the
exact many-particle ground
state with the Pfaffian
function. (b) Collective
excitation gap of the ν = 1

2
state. The results are for
N = 14, 2S = 25, and γ1 = 0,
� = 0, and two values of
U = 50 meV and 400 meV.
The results are shown for the
ν = 1

2 system at the Landau

levels 2(+)
1 (2(−)

−1 ) marked by
green lines in Fig. 8.17

by the n = 1 non-relativistic Landau wave functions, (0, φ1,m,0,0). Therefore in
this limit the interaction potentials become identical to the interaction potentials
of the non-relativistic system in the n = 1 Landau level. Then the ν = 1

2 Pfaffian

state should be realized in the bilayer Landau level 2(+)
1 (2(−)

−1 ) for small values
of the magnetic field. With increasing magnetic field the interaction potentials are
modified which should influence the properties of the ν = 1

2 state. In Fig. 8.19,
we present the magnetic field dependence of the parameters of the ν = 1

2 state in

the Landau level 2(+)
1 (2(−)

−1 ). Evidently, in this case with an increasing magnetic
field the overlap with the Pfaffian state and the excitation gap are strongly sup-
pressed. Therefore in this bilayer Landau level the ν = 1

2 Pfaffian state cannot be
realized.

The stability of the ν = 1
2 ground state and its proximity to the Pfaffian state

can also be analyzed in terms of the general dependence of the Haldane pseu-
dopotentials, Vm, on the relative angular momentum, m. The ν = 1

2 Pfaffian state
is most sensitive to the following parameters of the pseudopotential: V1/V5 and
V3/V5 [117]. These parameters depend on the strength of the magnetic field. By
varying the magnetic field, we introduce an adiabatic transition of the pseudopo-
tentials from one set to another. Such a transition can be shown as a line in the
(V1/V5)–(V3/V5) plane (see Fig. 8.20). That line connects the initial point at B = 0
to the final point, corresponding to a large magnetic field, B = ∞. In Fig. 8.20, three
regions which were identified in Ref. [117] are shown: (i) region of large overlap of
the ν = 1

2 ground state with the Pfaffian function and the largest excitation gap and
correspondingly the most stable ν = 1

2 Pfaffian state. (ii) That region is surrounded
by the region of less stable Pfaffian state. (iii) The region of compressible states, i.e.,
with zero excitation gap.

The red line in Fig. 8.20 (a) corresponds to the special bilayer Landau level 0(+)
−1

(0(−)
1 ) (Fig. 8.17). In this Landau level the ν = 1

2 bilayer graphene system at the
initial and final points are identical to the non-relativistic 2D systems in the first
(n = 1) and zero (n = 0) Landau levels, respectively. For the intermediate magnetic
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Fig. 8.20 (a) The trajectory of the inter-electron interaction pseudopotential with varying mag-
netic field, shown by a solid red line in the plane (V1/V5)–(V3/V5) for the ‘special’ bilayer Lan-
dau levels 0(−)

1 and 0(+)
−1 . The corresponding Landau levels are marked by a red line in Fig. 8.17.

The green lines depict the trajectory of the interaction potential corresponding to the Landau levels
2(−)

−1 and 2(+)
1 , marked by green lines in Fig. 8.17. The initial point of the trajectory (at B = 0) cor-

responds to the non-relativistic system in the n = 1 Landau level, while the final point (at B = ∞)
corresponds to the non-relativistic system in the n = 0 Landau level. The shaded region illustrates
the compressible ν = 1

2 state, while the blank region corresponds to the incompressible ν = 1
2

state (Ref. [117]). The crossing of the boundary between the compressible and incompressible
states occurs at B ∼ 100 Tesla for the hopping integral γ1 = 400 meV. The blue dashed line shows
the region of large overlap with the Pfaffian state (Ref. [117]). (b) Ratios of the pseudopotentials at
two values of the angular momentum are shown as a function of the magnetic field for two ‘special’
Landau levels 0(−)

1 and 0(+)
−1 . The dashed region corresponds to a large overlap of the ground state

with the Pfaffian function and also a large excitation gap

field the line goes through the region of most stable Pfaffian state. Therefore with an
increasing magnetic field, the ν = 1

2 bilayer graphene system in the special Landau
level transforms from a ν = 5

2 non-relativistic state (at small values of B) to a more
stable incompressible state with a large overlap and a large gap, and finally to a com-
pressible state (at a large magnetic field). This behavior is consistent with the result
shown in Fig. 8.18, where the large excitation gap is realized at a finite magnetic
field. For the hopping integral t = 400 meV, the transition from the incompressible
to a compressible ν = 1

2 state occurs at B ∼ 100 Tesla. In Fig. 8.20(b) the depen-
dences of both parameters (V1/V5) and (V3/V5) on the magnetic field are shown
for the bilayer Landau level 0(+)

−1 . These dependences correspond to the red line in

Fig. 8.20(a). The dashed region shows the region of the stable ν = 1
2 ground state

with a large excitation gap and a large overlap with the Pfaffian state. This region is
realized at a finite magnetic field, B ∼ 10 Tesla, which is consistent with the results
of Fig. 8.18.

The green lines in Fig. 8.20 correspond to the Landau level 2(+)
1 (2(−)

−1 )
(Fig. 8.17). The results clearly show that with increasing magnetic field and for
all values of U and �, the ν = 1

2 system becomes less stable by having a smaller
excitation gap, which support the results shown in Fig. 8.19.
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Therefore, the incompressible ν = 1
2 Pfaffian state can actually be found in a

bilayer graphene in one of the Landau levels. The properties of this state strongly
depend on the magnetic field strength. With increasing magnetic field the graphene
system at this special Landau level shows a transition from the incompressible to
a compressible state with increasing magnetic field. At a finite magnetic field the
Pfaffian state in bilayer graphene becomes more stable with the larger excitation
gap than its counterpart in non-relativistic 2D electron systems.

8.5.3 Interacting Dirac Fermions on the Surface of a Topological
Insulator

The relativistic dispersion relation, observed in monolayer graphene, is also realized
in special insulators with topologically protected surface states [121, 122]. Those
states in topological insulators are gapless with a linear (relativistic) dispersion re-
lation similar to the energy spectra of graphene. Therefore the properties of the
surface states of topological insulators are expected to be similar to the properties of
graphene. Experimentally the topological insulator has been realized in Bi1−xSbx
and Bi2Se3 materials, containing a single Dirac cone on the surface [123, 124].

In an external magnetic field the properties of surface Landau levels of a topolog-
ical insulator are similar to those of Landau levels in graphene [125, 126]. Although
the low-energy dynamics of the surface states is similar to graphene, there is how-
ever, an important difference between these two systems. While the electronic states
of graphene are strictly two-dimensional and are localized within a single graphene
plane, the surface states in a topological insulator have a finite width in the growth
direction. The finite width of the surface states in topological insulators modifies
the electron-electron interaction potential which in turn, modifies the properties of
the FQHE states. In traditional (non-relativistic) electron systems, an increase in the
width of the 2D layer causes a reduction of the FQHE gaps and hence a reduction
of the stability of the corresponding incompressible states. Therefore, we should ex-
pect that the FQHE gaps in a topological insulator would be smaller than those in
graphene.

To analyze the properties of the FQHE in the surface states of a topological
insulator (TI), we start with the low-energy effective Hamiltonian introduced in
Ref. [127, 128]. The Hamiltonian has the matrix form of size 4 × 4 and is given
by

HT I =

⎛
⎜⎜⎝
ε(p) + M(p) (A1/�)pz 0 (A2/�)p−
(A1/�)pz ε(p) − M(p) (A2/�)p− 0

0 (A2/�)p+ ε(p) + M(p) −(A1/�)pz
(A2/�)p+ 0 −(A1/�)pz ε(p) − M(p)

⎞
⎟⎟⎠ , (8.54)

where ε(p) = C1 + (D1/�
2)p2

z + (D2/�
2)(p2

x + p2
y), M(p) = M0 − (B1/�)p

2
z −

(B2/�
2)(p2

x + p2
y). Here for the Bi2Se3 topological insulator the material con-

stants are A1 = 2.2 eV Å, A2 = 4.1 eV Å, B1 = 10 eV Å2, B2 = 56.6 eV Å2,
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C1 = −0.0068 eV, D1 = 1.3 eV Å2, D2 = 19.6 eV Å2, and M0 = 0.28 eV. The
topological insulator film has a finite thickness of Lz, where the axis z is a trigonal
axis of Bi2Se3 with three-fold rotational symmetry. We assume that the two surfaces
of the film are at z = 0 and z = Lz. The four-component wave functions correspond-
ing to the Hamiltonian (8.54) determine the amplitudes of the wave functions at the
positions of Bi and Se atoms: (Bi↑,Se↑,Bi↓,Se↓), where the arrows indicate the
electron spin directions.

The external magnetic field is introduced along the z-direction which results
in Landau quantization of the electron motion in the x–y plane. The correspond-
ing Landau levels, which include both the surface and bulk Landau levels, can be
found from the Hamiltonian matrix by replacing the x and y components of the mo-
mentum by the generalized momentum [129] and introducing the Zeeman energy,
�z = 1

2gsμBB . Here gs ≈ 8 is the effective g-factor of surface states [128, 130] and
μB is the Bohr magneton. The Landau levels are characterized by an integer index
n with the corresponding wave functions

Ψ (T I)
n =

⎛
⎜⎜⎜⎝
χ
(1)
n (z)φ|n|−1,m

χ
(2)
n (z)φ|n|−1,m

iχ
(3)
n (z)φ|n|,m

iχ
(4)
n (z)φ|n|,m

⎞
⎟⎟⎟⎠ , (8.55)

for n > 0 and

Ψ (T I)
n =

⎛
⎜⎜⎝

0
0

iχ
(3)
n (z)φ|n|,m

iχ
(4)
n (z)φ|n|,m

⎞
⎟⎟⎠ , (8.56)

for n = 0. The functions χ(i)n (z) satisfy the following eigenvalue equations

εχ(1)n (z) = (εz,n + Mz,n + �z)χ
(1)
n (z)

+ iA1
dχ

(2)
n (z)

dz
−

√
2(n + 1)

�0
A2χ

(4)
n (z) (8.57)

εχ(2)n (z) = (εz,n − Mz,n + �z)χ
(2)
n (z)

+ iA1
dχ

(1)
n (z)

dz
−

√
2(n + 1)

�0
A2χ

(3)
n (z) (8.58)

εχ(3)n (z) = (εz,n+1 + Mz,n+1 − �z)χ
(3)
n (z)

− iA1
dχ

(4)
n (z)

dz
−

√
2(n + 1)

�0
A2χ

(2)
n (8.59)

εχ(4)n (z) = (εz,n+1 − Mz,n+1 − �z)χ
(4)
n (z)

− iA1
dχ

(3)
n (z)

dz
−

√
2(n + 1)

�0
A2χ

(1)
n , (8.60)

where εz,n = C1 + D2
2n+1
�2

0
− D1

d2

dz2 and Mz,n = M0 − B2
2n+1
�2

0
− B1

d2

dz2 . The so-

lution of the system of equations (8.57)–(8.60) determines the Landau level energy
spectra and the corresponding wave functions. We are interested only in the surface
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Fig. 8.21 (a) The lowest surface Landau levels of a TI film are shown at a film thickness of
Lz = 30 Å. For each n there are two LLs of the TI film, belonging to the two surfaces of the film.
(b) The electron density along the z axis for one of the n = 1 Landau levels and for different values
of the thickness, Lz, of the Bi2Se3 film. The numbers next to the lines are the values of Lz. The
magnetic field is at 15 Tesla

Landau levels. These Landau levels are separated from the bulk Landau levels by
finite energy gaps and the wave functions of the surface Landau levels are localized
near the surface of the topological insulator. We assume that the wave functions χn
satisfy open boundary conditions (zero values) at the two surfaces of the TI film,
which correspond to a suspended TI film. The substrate can be taken into account
by modification of the boundary conditions.

For a topological insulator film there are two surfaces which results in two sets
of surface Landau levels. For thick films the separation between the Landau levels
of the two surfaces is large and the levels with the same n are degenerate. The wave
functions of the surface Landau levels have a finite width and therefore for small
thicknesses of the films, the wave functions of the two surfaces of the Bi2Se3 film
overlap. This results in inter-Landau level coupling which lifts the degeneracy of
the Landau levels of the two surfaces. In Fig. 8.21(a) the lowest energy surface
Landau levels with indices n = 0 and n = 1 are shown for a Bi2Se3 topological
insulator film of thickness Lz = 30 Å. For each n there are two Landau levels of
the two surfaces of the film. The degeneracy of the Landau levels is lifted due to the
finite film thickness and the finite inter-Landau level coupling. This coupling is more
pronounced at a small film thickness due to the larger overlap of the corresponding
wave functions [Fig. 8.21(b)] where results for four film thicknesses are shown. For
small Lz, the wave functions of the two surface states have a large overlap and a
large value within the whole topological insulator film, which results in a strong
inter-Landau level coupling. For large Lz, the surface Landau levels are localized
at the two surfaces of the film, resulting in a weak inter-Landau level coupling. The
strong inter-Landau level coupling lifts the degeneracy of the surface Landau levels
and changes the corresponding wave functions. The most important effect is how
this coupling affects the contributions of the n and n − 1 non-relativistic Landau
functions, φ|n|,m and φ|n|−1,m (see (8.55)), to the Landau wave functions of the
surface states. For the n = 0 surface Landau level this is not important since only
n = 0 non-relativistic Landau functions enter in the expression (8.56), while for the
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Fig. 8.22 The electron densities ρ(n=1)
1 (z) and ρ(n=0)

1 (z) of two n = 1 Landau levels for film
thickness of Lz = 24 Å. The black (solid and dotted) lines and blue (solid and dotted) lines corre-
spond to two n = 1 Landau levels. The densities ρ(n=1)

1 (z) and ρ(n=0)
1 (z) show the occupations of

the n = 1 and n = 0 non-relativistic Landau level functions, respectively

n = 1 surface state both the n = 1 and (n− 1) = 0 non-relativistic Landau functions
determine the properties of the topological insulator state. To show the effect of
the inter-Landau level coupling on the wave functions we present in Fig. 8.21 the
electron densities

ρ
(n0 =1)
1 (z) = ∣∣χ(3)n=1(z)

∣∣2 + ∣∣χ(4)n=1(z)
∣∣2, (8.61)

ρ
(n0 =0)
1 (z) = ∣∣χ(1)n=1(z)

∣∣2 + ∣∣χ(2)n=1(z)
∣∣2, (8.62)

which determine the contribution of the n0 = 1 and n0 = 0 non-relativistic Lan-
dau functions to the corresponding surface Landau levels. The results are shown in
Fig. 8.21(b) for two n = 1 surface Landau levels, which are coupled due to inter-
Landau level coupling. Figure 8.22 shows clearly that one of the n = 1 surface Lan-
dau levels has a larger contribution from the n0 = 0 non-relativistic Landau function,
φn0 =0,m, while the other n = 1 surface Landau level has a large contribution from
the n0 = 1 non-relativistic Landau function, φn0 =1,m.

With the known wave functions of the surface Landau levels (8.55)–(8.56), the
Haldane pseudopotentials, (8.2), can be readily evaluated from the following ex-
pression

V (n=0)
m =

∫ ∞

0

dq

2π
qV (q)F1,1(q)L

2
n

(
q2

2

)
Lm
(
q2)e−q2

, (8.63)

for n = 0, and

V (n)m =
∫ ∞

0

dq

2π
qV (q)

1

4

[
F1,1(q)L

2
n

(
q2

2

)

+ 2F1,2(q)Ln

(
q2

2

)
Ln−1

(
q2

2

)

+ F2,2(q)L
2
n−1

(
q2

2

)]
Lm
(
q2)e−q2

, (8.64)
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Fig. 8.23 The ratios of pseudopotentials, (V1/V3) (panel (a)) and (V3/V5) (panel (b)), for the
surface Landau levels of a Bi2Se3 topological insulator at two odd relative angular momenta shown
as a function of the thickness of the topological insulator film. The ratios are shown for the n = 0
and two n = 1 surface Landau levels of the topological insulator

for n > 0. Here the form factors Fi,j (q) are evaluated from,

F1,1(q) =
∫
dz1dz2ρ

(n0 =n)
n (z1)ρ

(n0 =n)
n (z2)e

−|z1 −z2 |q,

F1,2(q) =
∫
dz1dz2ρ

(n0 =n)
n (z1)ρ

(n0 =n−1)
n (z2)e

−|z1 −z2 |q,

F2,2(q) =
∫
dz1dz2ρ

(n0 =n−1)
n (z1)ρ

(n0 =n−1)
n (z2)e

−|z1 −z2 |q,

where ρ
(n0 =n)
n (z) = |χ(3)n (z)|2 + |χ(4)n (z)|2 and ρ

(n0 =n−1)
n (z) = |χ(1)n (z)|2 +

|χ(2)n (z)|2 determine the occupation of n0 = n-th and n0 = n − 1-th non-relativistic
LLs for the topological insulator surface Landau level with index n.

The mixture of surface Landau levels has a strong effect on the pseudopotentials,
which is visible only at a small thickness of the film and for n = 1 Landau levels
[see (8.63) and (8.64)]. The stability of the incompressible states (i.e., the gaps of
the FQHE states) depends on how fast the pseudopotentials decreases with increas-
ing relative angular momentum, m. In Fig. 8.23, the ratios of the two nearest odd
pseudopotentials, (V1/V3) and (V3/V5), are shown as the function of the thickness
of the film for the n = 0 and n = 1 surface Landau levels. For the n = 0 Landau
level the ratios of the pseudopotentials monotonically decrease with the thickness,
Lz. This monotonic dependence shows that the n = 0 surface Landau level does
not depend on the mixture of two surface states and the reduction is due to the in-
crease of the width of the surface wave functions in the z-direction [Fig. 8.21(b)].
For two n = 1 surface Landau levels there is a different dependence on the Lz. For
a small thickness the inter-Landau level coupling is large, which results in a strong
nonmonotonic dependence of the pseudopotential ratios on Lz. For one of the n = 1
Landau levels the pseudopotential ratios have a well pronounced maximum. For a
large thickness of the topological insulator film, the inter-Landau level coupling is
weak and the pseudopotentials monotonically decrease with Lz, which is similar to
that of the n = 0 Landau level and is due to the increase of the width of the surface
wave functions in the z-direction. For a large thickness of the topological insulator
film, the ratio of the first two pseudopotentials, V3/V1, becomes the same for all
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Fig. 8.24 (a) The ν = 1
3 FQHE gap shown for different Landau levels of a topological insulator

film as a function of the film thickness. The FQHE gaps were evaluated numerically for a finite-size
system of N = 9 electrons and flux quanta 2S = 24. (b) The ν = 2

5 FQHE gap is shown for
different Landau levels of the topological insulator film as a function of the film thickness. The
FQHE gaps were evaluated numerically for a finite-size system of N = 10 electrons and the flux
quanta 2S = 21. The magnetic field is 15 Tesla and the energy is shown in units of the Coulomb
energy, εC = e2/κ�0

Landau levels. This fact suggests that for large Lz (Lz > 50 Å) the FQHE gaps are
almost the same in the n = 0 and n = 1 Landau levels.

With the known pseudopotentials the energy spectra of the ν = 1
3 and ν = 2

5
FQHE systems are evaluated numerically in the spherical geometry. The corre-
sponding energy gaps are shown in Fig. 8.24(a) and (b), as a function of film thick-
ness [131]. The Lz dependence of the energy gaps is very similar to the Lz depen-
dence of the ratio of the pseudopotentials of the energy gaps at the corresponding
LLs (see Fig. 8.23). For a small thickness, the non-monotonic dependence for the
n = 1 Landau levels is due to the inter-Landau mixture, while for a large thickness,
the FQHE gaps monotonically decrease with the thickness due to the increase of the
width in the z-direction of the surface wave functions. The FQHE gaps in the n = 1
and n = 0 Landau levels become almost the same for large thicknesses of the film.

Experimentally it would be easier to study the dependence of the FQHE gaps on
the parameters of the system for a given thickness of the film by varying the strength
of the external magnetic field. In Fig. 8.25, we show the dependence of the ν = 1

3
FQHE gap on the magnetic field for two different films with a small thickness,
Lz = 25 Å, and a large thickness, Lz = 50 Å. The results presented in Figs. 8.24
and 8.25 are shown for actual values of the film thicknesses and the magnetic field.
Within the inter-Landau level mixture, the properties of the TI film are determined
by a dimensionless parameter which is the dimensionless thickness of the film, ex-
pressed in units of the magnetic length. Therefore with increasing magnetic field the
magnetic length decreases, and the dimensionless thickness increases. Then without
any inter-Landau mixture we would expect a monotonic decrease of the excitation
gaps with magnetic field due to the increase of the dimensionless width of the sur-
face wave functions. For the small thickness of 25 Å, which is about two quintuple
layers of Bi2Se3 [Fig. 8.25(a)], the inter-Landau coupling is strong. As a result the
FQHE gap at one of the n = 1 Landau levels increases monotonically with magnetic
field, while the other n = 1 Landau level displays a monotonic decrease of the gap
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Fig. 8.25 The ν = 1
3 FQHE gap as a function of the magnetic field shown for different Landau

levels of a topological insulator film: two n = 1 LLs (black lines) and one n = 0 LL (red line). The
thickness of the film is (a) Lz = 25 Å and (b) Lz = 50 Å. The red arrows show the FQHE gaps in
the n = 0 and n = 1 Landau levels of graphene. The FQHE gaps were evaluated numerically for a
finite-size system of N = 9 electrons and flux quanta 2S = 24. The energy is shown in units of the
Coulomb energy, εC = e2/κ�0

with magnetic field, B . An experimental observation of the monotonic increase of
the FQHE gaps with magnetic field would be a direct manifestation of the strong
inter-Landau level coupling.

For a large film thickness of 50 Å, i.e., five quintuple layers of Bi2Te3
[Fig. 8.25(b)], the inter-Landau level coupling is weak and we see a monotonic
decrease of the FQHE gaps with magnetic field for all Landau levels. This is due to
the increase of the dimensionless width of the surface Landau level wave functions.
For the n = 0 Landau levels, which are not affected by the Landau level coupling,
a monotonic decrease with magnetic field, B , is visible for both small and large
thicknesses of the film. The results shown in Fig. 8.25 also illustrate the fact that the
FQHE gaps in a topological insulator are less than the maximum FQHE gap that is
expected in graphene in the n = 1 Landau level.

The FQHE can indeed be observed on the surface Landau levels of a topologi-
cal insulator. The strength of the FQHE, which is characterized by the value of the
excitation gap, has non-trivial dependence on the thickness of the film. For a small
thickness of the topological insulator film, the inter-Landau level coupling and the
mixture of the Landau levels are strong, which results in a non-monotonic depen-
dence, with a well-pronounced maximum of the FQHE gaps on the thickness of the
film, in the n = 1 Landau levels. For a large thickness of the film, when the inter-
Landau level coupling is small, the FQHE gaps monotonically decrease with the
thickness, which is due to an increase of the width of the surface Landau levels. The
effect of the inter-Landau level coupling on the n = 0 surface states is very weak. As
a result, for the n = 0 Landau levels the FQHE gaps monotonically decrease with
the thickness for all values of Lz. In general, for a finite thickness of the topological
insulator films, the FQHE gaps are the largest in the n = 1 Landau levels, which is
similar to the case of a monolayer graphene. At a large enough thickness of the film,
Lz > 50 Å, the gaps of FQHE states in the n = 0 and n = 1 Landau levels become
comparable (Fig. 8.24). Experimental observation of these theoretical predictions,
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just as in the case of graphene [54, 69, 77] would be an important advancement in
our understanding of this unique state of matter. The possibility of a controllable
growth of the Bi2Se3 nanofilm in a wide range of one quintuple layer (10 Å) to 15
quintuple layer (150 Å) has been demonstrated in [132]. This indeed opens up the
interesting possibility to study the FQHE in Bi2Se3 films of different thicknesses.

8.6 Conclusions

We have briefly reviewed the rich physics exhibited by interacting electrons in
monolayer and bilayer graphene in the quantum Hall effect regime. The behavior
of massless Dirac fermions in monolayer graphene and massive chiral fermions in
bilayer graphene are distinctly different from the electron dynamics in traditional
two-dimensional electron systems. In bilayer graphene, we described in detail about
possible transitions from the fractional quantum Hall state to a compressible state
and back to the FQHE state in the same Landau level by simply tuning the band
gap at a given electron density. Similarly, we suggest the possibility of a FQHE—
no-FQHE—FQHE transition within a Landau level of bilayer graphene. These con-
trollable driven transitions are unique to bilayer graphene and do not exist in con-
ventional 2D electron systems. Experimental observation of these will provide a
rare glimpse into the properties of incompressible and compressible states in bi-
layer graphene. Incompressible states in trilayer graphene are also briefly discussed.
Novel states, such as the incompressible Pfaffian state at ν = 5

2 are expected to be
present in bilayer graphene. Finally, we present a brief description of the properties
of FQHE states of Dirac fermions on the surface of a topological insulator.
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Chapter 9
Symmetry Breaking in Graphene’s Quantum
Hall Regime: The Competition Between
Interactions and Disorder

Yafis Barlas, A.H. MacDonald, and Kentaro Nomura

Abstract Graphene is a two-dimensional carbon material with a honeycomb lattice
and Dirac-like low-energy excitations. When Zeeman interaction is neglected its
Landau levels are four-fold degenerate, explaining the 4e2/h separation between
quantized Hall conductivity values seen in recent experiments. In this chapter we
derive a criterion for the occurrence of interaction-driven quantum Hall effects near
intermediate integer values of e2/h due to charge gaps in broken symmetry states
in monolayer and bilayer graphene systems.

9.1 Introduction

Phase transitions characterized by spontaneous symmetry breaking are of broad in-
terest in modern physics, playing a central role in high energy physics, condensed
matter physics, and statistical physics. Spontaneous symmetry breaking is common
because the particle-interaction energy is almost invariably minimized by breaking
Hamiltonian symmetries. The simplest example of this tendency is crystallization,
in which atomic nuclei avoid each other’s proximity by breaking translational sym-
metry. Similarly, because of Fermi statistics systems, in which many interacting
particles carry a spin degree of freedom, can usually reduce their energy by align-
ing spin orientations. Broken symmetry phases support soft Goldstone collective
modes and nontrivial topological order parameter textures, such as kinks, vortices,
and hedgehog textures [1], that depend on the original and residual symmetries and
also on the number of spatial dimensions.
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Quantum Hall systems [2] exhibit many states in which spin symmetry is sponta-
neously broken. In a strong magnetic field kinetic energy is quenched when a single
Landau level (LL) or a set of degenerate Landau levels is partially occupied. Under
these circumstances electron-electron interaction plays the essential role and bro-
ken symmetry states are extremely common. The circumstance in which the filling
factor is an integer has especially robust order that is especially easy to describe
because Hartree-Fock mean-field-theory provides an excellent starting point for its
description. Because Zeeman coupling is often weak compared to Coulomb cou-
pling, for example in GaAs, the Hamiltonian for an electron in a magnetic field can
have an approximate SU(2) symmetry in spin space. This symmetry is broken at
odd integer filling factors ν = Ne/Nφ , where Ne is the number of electrons and
Nφ is the degeneracy of a single Landau level. This phenomenon is referred to as
quantum Hall ferromagnetism. Interactions lead to spontaneous electron spin polar-
ization due to the presence of a large exchange enhanced spin gap which induces
quasiparticle gaps and hence interaction driven integer quantum Hall (QH) effects.
The neutral and charged excitations of these spin-polarized ground states are spin
waves and topological spin textures called Skyrmions [2].

Another example of a multicomponent quantum Hall system is realized in
double-quantum well structures where the which-layer degree of freedom (pseu-
dospin) doubles the LL degeneracy. Because intra- and interlayer Coulomb inter-
actions are different, double-layer systems no longer exhibit SU(2) symmetry but
rather U(1) symmetry associated with the conservation of the charge difference be-
tween the two layers (assuming there is no interlayer tunneling). The ground state
for sufficiently small layer spacing at odd fillings can be viewed as an easy-plane
pseudospin ferromagnet in which the layer pseudospin orders spontaneously in the
x̂–ŷ-plane. At odd integer fillings, this state also supports a dissipationless counter-
flow (excitonic) supercurrent with transport properties different from either super-
fluids or superconductors [3]. Charged vortex excitations associated with the U(1)
broken symmetry are half-Skyrmion like objects called merons.

Graphene is a recently discovered purely two-dimensional carbon material with
a honeycomb lattice structure [6]. One of the most interesting aspects of graphene
is that its low-energy excitations are accurately described as two-dimensional mass-
less Dirac fermions. Many of the unusual properties of Dirac fermions show up in
graphene, in particular an unusual sequence of integer quantum Hall plateaus. In
graphene, besides the realspin degree of freedom, there are two equivalent points in
the first Brillouin zone with linear energy dispersion and hence four-fold degenerate
Dirac bands. In bilayer graphene, along, with the four-fold spin×valley degener-
acy, there is an additional doubling of the N = 0 Landau level which is half-filled
in an electrically neutral graphene sheet. The additional degeneracy occurs because
two LL’s that have the same orbital character as the n = 0 and n = 1 LLs in an
ordinary non-relativistic electron gas appear at the charge neutrality (Dirac) point.
When this additional degeneracy is accounted for, the N = 0 Landau level is eight-
fold degenerate. In a strong magnetic field, the Coulomb interaction leads to broken
symmetries within the approximately degenerate Landau levels that produce gaps
for charged excitations (and hence quantum Hall effects) and lead to new physical
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phenomena. The microscopic physics which controls the appearance and determines
the character of these interaction-induced quantum Hall states is the subject of this
chapter.

This chapter is organized as follows. In Sect. 9.2 we introduce the physics of sin-
gle particle states of Dirac Hamiltonian in the presence of a magnetic field and/or
disorder. Section 9.3 directs the reader to quantum Hall ferromagnetism to de-
scribe symmetry breaking of realspin and pseudospin (valley-spin). A competition
between the interaction and disorder is described. In Sect. 9.4 we discuss neutral
graphene (the ν = 0 case) in which, depending on broken symmetries, several types
of ground states and associated transport properties are considered. Section 9.5 cov-
ers symmetry breaking in bilayer graphene which has additional degeneracy leading
to quantum Hall ferromagnetism in the Landau index at zero energy. In Sect. 9.6 the
notion of quantum Hall ferromagnetism is generalized to the case of fractional fill-
ings. Finally in Sect. 9.7 we present a summary of the issues of quantum Hall effects
in graphene. Due to space limitation we are not able to review the subject fully in
this chapter. We therefore direct readers to two other recent reviews [4, 5] that em-
phasize different aspects of this topic.

9.2 The Quantum Hall Effect of Massless Dirac Fermions

9.2.1 Landau Levels and Quantized Hall Conductivities

The single-particle k · p Hamiltonian which describes the low energy properties of
graphene is the two-dimensional Dirac Hamiltonian [6]:

H = vF (px + eAx)σx + v(py + eAy)τzσy

=
(
HK 0

0 HK ′

)
, (9.1)

where HK = vFσ · [−i�∇ + eA], HK ′ is the transpose of HK , vF is the Fermi
velocity at the Dirac point, and the Pauli matrices σ and τ act on the sublattice
and valley degrees of freedom, respectively. In a finite magnetic field B = ∇ × A =
(0,0,B), the spectrum of HK consists of LLs with degeneracy 4Nφ = 4SB/Φ0
(Φ0 = hc/e is the electron magnetic flux quantum and S is the area of the system)
and eigenvalues [6]

En = sgn(N)�ω0
√|N | (9.2)

with N being an integer. The factor of 4 = 2 × 2 in the Landau level degeneracy
accounts for both spin and valley degeneracy. The energy and length scales are set
by ω0 = √

2vF /�B and �B = √
�/eB . The filling fraction ν > 0 is the ratio of the

number of carriers to Nφ with the number of carriers calculated as the difference
between the number of electrons in the system and the number of carriers in a neutral
system with filled valence bands and empty conduction bands.
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Fig. 9.1 (a) Hall conductivity of Dirac fermions in graphene calculated using the Kubo formula
as a function of the filling factor ν for several disorder induced Landau level widths Γ . Inset:
Density of states in the presence of disorder (after Ref. [13]). (b) Boltzmann theory results for zero
magnetic field longitudinal conductivity as a function of n/ni in the presence of screening (see
text), where n is the carrier density and ni is the density of charged impurities

In graphene the quantization rule for integer quantum Hall effect conductivity
plateaus is [6–12]

σxy =
(
N + 1

2

)
4e2

h
. (9.3)

This quantization rule can be crudely understood as follows, starting from the rela-
tivistic Dirac equation Landau level (LL) structure. For a neutral graphene layer, the
Fermi level is located at the center of the N = 0 Landau level and σxy = 0 because
electron and hole currents cancel. As is well known from the integer quantum Hall
literature, the zero-temperature Hall conductivity suddenly jumps between plateaus
when a single Landau level, or a set of essentially degenerate Landau levels, is
approximately half-filled. For the N = 0 Landau level of graphene, the Hall con-
ductivity has to jump by 4e2/h from the σxy = −2e2/h plateau to the σxy = 2e2/h

plateau.
The quantum Hall effect is observable in practice only when disorder is suffi-

ciently weak, i.e. when the Landau level spacing is larger than the impurity-induced
Landau level widths. As the density of impurities increases, the quantization of the
Hall conductivity becomes weaker at accessible experimental temperatures. The
typical behavior is shown in Fig. 9.1(a) for different Landau level width, where
the Hall conductivity was calculated numerically using the Kubo formula [13]. In
the following we discuss the impurity effects seen in typical graphene samples.
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9.2.2 Zero-Field Mobility and Charged Impurities

The starting point for discussions of impurity effects in graphene samples is Boltz-
mann transport theory at zero magnetic field. When applied to the four-fold degen-
erate Bloch bands of graphene it leads to [14]

σB=0
xx = e2τv2

FD(EF )
2

= e2

h

2EFτ

�
(9.4)

where τ−1 is the scattering rate, and D(EF ) is the density of states at the Fermi
level EF . When Boltzmann transport theory is evaluated using a golden-rule ex-
pression for the collision integral, graphene’s carrier scattering rate is given by

1

τ
= nikF

2π�2v

∫ 2π

0
dθ
∣∣Udis(q)∣∣2(1 − cos θ)

(1 + cos θ)

2
(9.5)

where θ is the scattering angle, kF is the Fermi wavevector, Udis(q) is the scatter-
ing potentials, ni is the density of impurities and q = 2kF sin(θ/2) is the scattering
wavevector on the circular two-dimensional Fermi surface. This expression assumes
that the scattering potential varies slowly on the lattice constant scale so that scat-
tering events conserve valley indices and the scattering potential is independent of
the sublattice pseudospin. The last θ -dependent factor in (9.5) is non-standard and
is due to the wavevector dependence of the relative phase of graphene Bloch band
wavefunctions on the two sites within its honeycomb lattice unit cell. The factor of
kF in (9.5) reflects the density dependence of the density-of-final states for elastic
scattering of Fermi surface quasiparticles. For short-range scatterers (U(q) indepen-
dent of q) the integral in (9.5) is independent of kF . Since D(EF ) is proportional
to kF for two-dimensional Dirac bands, (9.4) implies a conductivity that is indepen-
dent of kF and therefore independent of carrier density n ∝ k2

F . Indeed theoretical
studies of the conductivity of graphene [15] predict that the conductivity has a weak
carrier density dependence, remaining finite as kF → 0. Experiment, on the other
hand, finds that in graphene the mobility μ = σxx/ne, not the conductivity, is nearly
constant except at very low-densities and that it has values ∼ 104 cm2 V−1 s−1 in
samples that are sufficiently high quality to exhibit the integer quantum Hall ef-
fect. Evidently, quasiparticle scattering amplitudes are enhanced at lower densities
in such a way as to convert the k+1

F dependence of the scattering rate in (9.5) to
a k−1

F dependence. One plausible explanation for this behavior is that Dirac band
quasiparticle scattering is dominated by the Coulomb scattering potential VC(q)
from charged impurities near the graphene plane. For two-dimensional graphene
Udis(q) = VC(q) = 2πe2/q . Inserting this expression in (9.4) and (9.5) one obtains
that

σxx = e2

h

n

ni

2

πα2
g

(9.6)
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where αg = e2

ε�v
∼ 1 − 3 is the effective fine structure constant used to characterize

the ratio of the Coulomb interaction and the band energy scales in graphene. In (9.6)
ni should be thought of as the density of Coulomb scatterers that are located in the
substrate within a Fermi wavelength of the graphene plane. The influence of more
remote scatterers is suppressed by the factor exp(−qd) that appears in the two-
dimensional Fourier transform of the Coulomb interaction. From (9.4) and (9.6),
one finds that the mobility

μ ≡ σxx

ne
� 1

α2
g

155

ni[1012 cm−2 ]
[
cm2/(V s)

]
(9.7)

In systems with Coulomb electron-electron or electron-impurity interactions,
screening normally plays an essential role, changing long-range interactions into
short-range ones. In a static approximation, the screened disorder potential in
graphene is

Usc(q) = 2πe2

q + 2πe2Π(q)
(9.8)

where Π(q) is the polarization function of the graphene Dirac bands. Screen-
ing does not change the density dependence of the conductivity in graphene be-
cause Π(q) also scales like kF . The influence of screening on the mobility can
be estimated by making a Tomas-Fermi approximation, replacing Π(q) by Π(q =
0) = D(EF ). When the coupling constant αg is much larger than 1 Usc(q) �
(�vπ)/(2kF ) and

σxx = e2

h

n

ni

32

π
(9.9)

yielding a value for the mobility that is

μ � 2500

ni[1012 cm−2 ]
[
cm2/(V s)

]
, (9.10)

16α2
g times larger than the unscreened value [14]. We note that αg cancels in (9.9),

which makes it easier to estimate the mobility because its effective value can be
influenced by non-universal substrate dielectric screening. Corrections to (9.9) be-
come important for αg < 1 [16]. One can use these expressions to extract a value
for the density of scatterers ni from measured mobilities. Figure 9.1(b) shows the
transverse conductivity at αg = 1 computed by the Boltzmann theory [14, 16].

9.2.3 Self-consistent Treatment of Screened Impurities
in a Magnetic Field

Although the perturbative Born approximation is often quite successful in the ab-
sence of a magnetic field in estimating band state lifetimes and transport properties,
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it fails from the outset at B �= 0. The problem is the Landau level degeneracy, which
makes the density-of-states that appears in the golden rule diverge. This problem
can be partially solved by using a self-consistent Born approximation [17], in which
the finite lifetime of final states is accounted for in the scattering rate determination.
The self-consistent Born approximation is also useful in accounting qualitatively for
the finite density-of-states at the carrier-neutrality (Dirac) point in the absence of a
magnetic field. When the self-consistent Born approximation is applied to the Lan-
dau levels, with mixing between Landau levels neglected and a static approximation
used for screening, the width of each LL Γ is determined by the equation [17]

Γ 2

4
= ns

∫
d2q

(2π)2

∣∣∣∣ 2πe2

q + 2πe2Π(q)

∣∣∣∣
2

exp
(−q2�2

B/2
)[
F(q)

]2
. (9.11)

The integral over scattering processes yields an expression for Γ 2 rather than Γ
because the density of final states is strongly influenced by disorder, varying as Γ −1.
Note that the polarization function Π(q) is finite for q → 0 even for N = 0 because
of the enhanced density-of-states at the carrier neutrality point in a magnetic field.
Since Γ 2 diverges if we neglect screening, its role is essential.

We now need to specify the Landau level form factor F(q). Taking the Coulomb
interaction to be diagonal in the honeycomb lattice site index it follows that the form
factor

F(q) ≡ 1 (9.12)

for N = 0, and that

F(q) = 1

2

[
L|N |

(
q2�2

B/2
)+ L|N |−1

(
q2�2

B/2
)]

(9.13)

for N �= 0 [14, 18–20]. If the magnetic field is strong enough to neglect coupling
between different Landau levels the normal state static polarization function Π(q)
is given approximately by

Π(q) ≈ 4 exp(−q2�2
B/2)

2π�2
B

2

πΓ

√
1 −

(
μ0

Γ

)2

. (9.14)

The factor of 4 in (9.14) is due to the spin×valley degeneracy and the factor
exp(−q2�2

B/2) accounts for the orbital character of Landau level wavefunctions.
Since the polarization function is larger (the screening is stronger) when the Landau
level width Γ is smaller, (9.11) must be solved self-consistently.

9.3 Spontaneous Breaking of Spin and Valley Symmetry

9.3.1 Exchange Interactions

The relevant energy scales for graphene in a magnetic field are
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• The separation between n = 0 and n = ±1 LLs; �ω0 ≡ √
2�vF /�B �

400
√
B[T ] [K],

• Zeeman coupling; �z ≡ gμB |B| � 1.3 × (B[T ])[K], and
• The Coulomb energy; e2/ε�B � 100

√
B[T ][K].

When the weak Zeeman coupling term is neglected, the Landau levels of graphene
are four-fold degenerate. This degeneracy is directly responsible for the size of the
steps in the Hall conductivity in the quantization rule (9.3). Although the Coulomb
interaction is spin and valley degenerate in a continuum model, it can split Landau
levels by breaking symmetries. Experimental studies of the quantum Hall effect
have demonstrated that gaps appear at essentially all integer filling factors because
of Coulomb interactions, and in particular at ν = 0,±1,±4 [21, 22], only because
electron-electron interactions play an essential role [14, 18–24]. Recent experiments
observed further plateaus at ν = ±3 in suspended graphene [25, 26].

There have been a number of theoretical investigations of possible broken sym-
metry ground states and there are two leading theoretical scenarios for the origin
of the additional gaps and associated quantum Hall effects. Electron-electron inter-
action can lead to charge-density-wave (CDW) or spin-density-wave (SDW) order
at the carrier neutrality point [27–35]. In these states the A sublattice and B sub-
lattice spin-densities occupancies for a particular spin orientation are unequal, with
the unbalance being spin-independent in the CDW case and opposite for opposite
spin in the SDW case. These broken symmetry states have a mass term, i.e. a term
proportional to sublattice pseudospin operator σz added to their quasiparticle Dirac
equation due to interactions between quasiparticles and the condensate. If it is as-
sumed [27–30] that this is the only type of broken symmetry that can occur, and
Zeeman splitting is neglected, then the only filling factor at which an additional in-
teraction induced quantum Hall effect will occur is ν = 0. The second scenario is
often referred to as quantum Hall ferromagnetism (QHF) [2], and has usually been
discussed in a framework which assumes that Landau level mixing is negligible. In
this scenario [14, 18–20, 36], when a group of essentially degenerate Landau levels
is filled, energy gaps are likely at all intermediate integer filling factors because the
system can open a gap and lower its energy by ordering the additional degrees of
freedom associated with the degeneracy—spin, valley, or layer for example—which
can always be viewed as pseudospins.

Although these scenarios are not entirely orthogonal, they do lead to different
predictions, particularly for the occurrence of gaps in N �= 0 LLs. From a micro-
scopic point of view, quantum Hall ferromagnetism is often well described by a
Hartree-Fock mean-field theory. Coulombic exchange interactions favor the spon-
taneous polarization of the real and/or valley spins at integer filling factors to the
maximum degree permitted by the Pauli exclusion principle. The many body ground
state wavefunction in the Hartree-Fock approximation is

∣∣Ψ νn
〉 =

νN∏
α=1

Nφ∏
m=1

c†
m,α|0〉, (9.15)
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where α is four component spin-pseudospin index, νN (=1, 2, or 3) is the filling
factor measured from the bottom of the nth Landau level, andm labels all the orbital
states within a Landau level.

An elementary calculation in Hartree-Fock theory yields the following expres-
sion for the size of the energy gaps induced by Coulomb interactions:

Eexc =
∫

d2q

(2π)2
2πe2

ε|q| + 2πe2Π(q)

[
Fn(q)

]2
exp
(− |q|2�2

B/2
)

(9.16)

In the absence of screening Π(q) = 0,

Eexc = √π/2(e2/ε�B
) � 120

√
B [T] [K] (9.17)

in the N = 0 LL, and Eex = 11
16

√
π/2(e2/ε�B) for the N = 1 LL.

9.3.2 Phase Diagram: Disorder vs Exchange

Real materials always have disorder that lift their Landau level degeneracies with a
finite width Γ . The possibility of reducing the electron-electron interaction energy
by breaking pseudospin symmetries competes with the possibility of reducing the
disorder potential interaction energy by maximizing the electron density in the re-
gions of the sample with the most attractive disorder potentials. We now discuss a
criterion for the occurrence of interaction-driven quantum Hall effects [14] in dis-
ordered samples. In a weak magnetic field, the Coulomb interaction scale which
grows with field strength is weak and has a minor role. The four (nearly) degenerate
Landau levels are then equally occupied as indicated schematically in Fig. 9.2(a).
The disordered state is unstable in a strong magnetic field only when the exchange
energy is more important than the disorder potential. This symmetry breaking tran-
sition occurs at a critical magnetic field B∗ which is in the range where the LL width
and the exchange interaction are similar in size, as known as the Stoner criterion. In
Ref. [14], the LL width and the exchange energy were computed self-consistently
in order to construct a phase diagram. Given a disorder potential model, the sponta-
neous symmetry breaking point can be related to the zero-field mobility of graphene
by applying the Stoner-like criterion that follows from mean-field theory, as illus-
trated in Fig. 9.2(b). The mobility is conveniently measured experimentally. The
origin of the weaker tendency toward ordered states in the N = 1 Landau level is
the difference in form factor F(q) which weakens exchange interactions. This trend
is expected to persist to higher N .

These theoretical estimates are uncertain because they depend on mean-field-
theory considerations and because they depend on a particular model of disorder
which may not apply to all samples. Since the dominant disorder source, whatever
it is, yields a dependence of conductivity on density that is similar to the Coulomb
disorder model, it seems reasonable that the phase boundary estimate expressed



310 Y. Barlas et al.

Fig. 9.2 (a) Splitting of a disorder broadened Landau band when the exchange interaction strength
exceeds the Landau level’s disorder broadening. At B = B∗ the two Landau bands start to split via
spontaneous sublattice symmetry breaking. When Landau level mixing is neglected sublattice sym-
metry breaking is equivalent to valley symmetry breaking. At B ≥ Bpol , the sublattice pseudospins
are fully polarized. Above Bpol the density of states at the Fermi level vanishes and the exchange
energy Eex is unscreened in the static screening approximation. (b) Phase Diagram for SU(4)
quantum Hall ferromagnetism in the N = 0 and N = 1 Landau levels of graphene. For disorder
due to charged scatterers, the ordered region can be characterized by a maximum value of νi , the
ratio of the density of Coulomb scatterers to the density of a full Landau level. νi is inversely pro-
portional to the product of the sample mobility at B = 0 and the external field strength. Order near
integer filling factors requires the minimum values for this product indicated on the right-hand
vertical axis

as a mobility-field product may be approximately universal. Although the Stoner
criterion in the presence of disorder can be applied at all filling factors and provides a
reasonable assessment of the crossover between interaction dominated and disorder
dominated physics, we caution that the simple quantum Hall ferromagnetic states
occur only at integer values of the total filling factor. We expect the emergence of
interaction-driven gaps at intermediate integer filling factors to be the first signal
that sample quality is adequate to see interaction-dominated physics. For very weak
disorder the physics of the fractional quantum Hall effect will become relevant at
non-integer filling factors.

Here we can compare the theoretical result in Fig. 9.2 with the first experiment
[21] to report quantum Hall ferromagnetism in graphene. The mobility of the sample
used in [21] is μ = 5 × 104 [cm2/(V s)]. Figure 9.2 indicates that for this mobility
and ν = ±1 the symmetry breaks at 17 T, in good agreement with experiment [21].
The appearance of quantum Hall plateaus observed at ν = ±4, in the middle of the
four-fold degenerate N = ±1 Landau levels at around 30 T is also in reasonable
agreement with Fig. 9.2 which predicts a critical field 40 T. The ν = ±3 states were
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Fig. 9.3 (a) Realspin polarized ν = 0 graphene quantum Hall state in which both A and B sublat-
tices (pseudospins) are occupied. (b) Charge density wave state in which the pseudospin is polar-
ized by occupying only the B sublattice. The spin-density wave is similar except that the sense of
pseudospin polarization is opposite for opposite spins. (c) Energy spectrum for state (a). (d) Same
for state (b) [24]

observed in a suspended graphene sample with μ ∼ 2 × 105 [cm2/(V s)] [25, 26]
that is also reasonably consistent with above results.

9.4 Field-Induced Insulator at ν = 0

9.4.1 Field-Induced Dissipative States and Insulating States

We have so far neglected the Zeeman energy and other symmetry breaking pertur-
bations, because they are much weaker than the competing disorder and interaction
energy scales and will have little influence on whether or not quantum Hall ferro-
magnetism occurs. When quantum Hall ferromagnetism does occur, however, the
symmetry breaking interactions will play a larger role, since the long-range part of
Coulomb interaction is independent of spin and valley pseudospin degrees of free-
dom. Taking account of Zeeman splitting at ν = 0, it follows that the continuum
model ground state at ν = 0 should be one with majority spin N = 0 states occupied
and minority spin N = 0 states empty, i.e. a state with ν = 1 for majority spins and
ν = −1 for minority spins. This spin-polarized state is expected to support counter
propagating edge states, whereas the charge and spin density wave states both have
partial filling factors equal to zero and no edge states. This distinction is illustrated
in Fig. 9.3. It was argued, on the basis of early data, that the transport properties of
graphene at ν = 0 are described by the spin filtered edge state model which gives
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rise to a metallic conductance [23]

G = 2e2

h
. (9.18)

As pointed out in Ref. [35], intervalley exchange, which is readily captured in lat-
tice models, favors the spin-density-wave state over charge-density-wave and spin-
polarized states. Determining the character of the ground state on the basis of theo-
retical considerations alone is therefore challenging.

Reference [24] reports observation of the metallic dissipative transport expected
from the spin filtered edge state picture, and concluded on this basis that the ground
state is spin polarized. Later experiments, however, with higher quality samples and
stronger magnetic fields revealed a rapid growth of the longitudinal resistance Rxx
as a critical field Bc is approached [21, 25, 37–39].

The resistance can be fit by the Kosterlitz-Thouless (KT) form [37, 38]

Rxx ∼ ea/
√
B−Bc (9.19)

over three decades of resistance. The KT transition is a phase transition known to
occur in the two-dimensional XY model at which vortex-antivortex pairs change be-
tween bound and unbound. Interestingly the critical field Bc tends to be lower as the
quality of samples increases. For B <Bc the resistance saturates at low temperature
at a value much larger than the quantum of resistance. For B > Bc , on the other
hand, the strongly insulating behavior observed suggests that other scenarios might
be at play.

9.4.2 Possible Broken Symmetries at ν = 0

The diverging resistance observed experimentally in Refs. [37, 38] is difficult to
account for in the realspin polarization scenario, since these states always support
counter-propagating spin-filtered edge states that give rise to a metallic conductance
of 2e2/h [23, 24]. An attempt has been made to understand the observed insulat-
ing behavior by invoking spin-flipping backscattering due to magnetic impurities to
localize the counter propagating edge states [40]. However, this scenario does not
explain the experimental finding that there is a correlation between the critical field
Bc and the sample quality. In the CDW scenario [27–30] it is difficult to explain
the KT type resistance divergence, and the high-resistance metallic state below the
critical field [37, 38].

The KT transition occurs in two-dimensional systems described by anXY model,
which describes the breaking of U(1) symmetry [41]. The ordered phase is de-
stroyed at the KT transition by unbinding of pairs of topological excitations (e.g.
vortices). Motivated by the KT behavior and the highly resistive metallic state, an
alternative scenario has been proposed [43]: the degeneracy splitting at ν = 0 is due
to a spontaneous ordering of the pseudospin on the Tx–Ty plane (XY pseudospin
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Fig. 9.4 (a) The Kekule bond-density wave order with two defects marked by a filled circle. Red,
Green, and Blue indicate possible Kekule patterns. The defects at A and B are charged since they
support a midgap electron state. (b) The U(1) phase φ = tan−1(Ty/Tx) corresponding to the bond
order pattern (a)

ferromagnet). This involves a spontaneously generated hybridization between the
N = 0 LLs associated with B (K) and A (K ′), and is represented by the ground
state wavefunction

|Ψ 〉 =
∏

m,s=↑↓

1√
2

[
c

†
Kms + eiφc

†
K ′ms

]|0〉, (9.20)

where c†
τms is the creation operator for an electron in the m-th N = 0 LL orbital

at valley τ = K,K ′ with realspin s =↑,↓. By specifying the value of φ this state
breaks theU(1) symmetry. This type of order also breaks the lattice translation sym-
metry due to the mixing of B and A, and represents a bond-density-wave (BDW)
of some kind (Kekule order) [see Fig. 9.4(a)] [31–34, 42]. The phase φ of this hy-
bridization matrix element is the U(1) phase angle which represents a direction in
the Tx–Ty plane, T = (cosφ, sinφ,0), and is associated with the sliding degrees of
freedom of the density-wave. The low-energy charged excitations are vortices and
antivortices [Fig. 9.4(b)] and depend on phase angle φ. Their binding-unbinding
transition can be driven either by magnetic fields or by disorder.

We now describe in greater detail the parts of the Hamiltonian which break the
SU(4) symmetry. The full Hamiltonian has the structure

HSB =
∫
d2r

[
− 1

2
�zSz − U0 |S|2 − UzT

2
z − U⊥

(
T 2
x + T 2

y

)]
. (9.21)

Here S is the realspin operator. The first term in HSB represents the Zeeman energy
where �z ≡ gμBB � 1.3 × (B[T])[K]. The short-range part of the Coulomb inter-
action is SU(4) symmetric, and instead has a pseudospin dependence specified by
Uz and U⊥. These parameters be estimated from the on-site and the nearest neigh-
bor interactions, and are smaller than EexC by a factor ∼ a/�B [18, 19], where a is
the lattice constant. While U0 favors realspin polarization, Uz, on the other hand,
favors the CDW phase (Tz �= 0) [18, 19, 36].
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Table 9.1 SU(4) symmetry breaking terms, with the pattern of symmetry breaking and the energy
scales [43]. This model does not account for electrostatic energies that favor charge density-wave
states over spin density wave states [35]

Residual symmetry [(spin) × (valley)] Energy scale

�z No × SU(2) 1.3[K] × B[T] [22]

U0 SU(2) × SU(2) 1.0[K] × B[T] [19]

Uz SU(2) × Z2 (CDW) 0.5[K] × B[T] [19]

U⊥ SU(2) × U(1) (Kekule) 2.0[K] × B[T] [31–33]

Furthermore, the U⊥ term can arise from the electron-phonon interactions, for
example from the in-plane optical mode at the K point [31–33, 42–44]. Out-of-
plane lattice distortions are studied in Ref. [30], and are shown to contribute to
Uz, but the effect is much weaker than that associated with the in-plane modes in
graphene. The SU(4) breaking terms are summarized in Table 9.1.

Since the SU(4) symmetric part of the Coulomb interaction is much stronger than
the symmetry breaking parts HSB , it is the former that sets the basic energy scale
for the SU(4) symmetry breaking. The symmetry breaking terms simply select the
way the SU(4) symmetry is broken: they determine the nature of the ordered phase.
Since U0,Uz,U⊥ in Table 9.1 all have similar energy scales, it is difficult to predict
a priori which order occurs. However, these considerations at least suggest that the
U(1) broken inter-valley coherent state given by (9.20) is a reasonable candidate for
lifting the degeneracy of the N = 0 LLs.

9.4.3 Field-Induced Transition and Divergence of Resistance

When B � Bc and when the energy scales associated with the temperature is suf-
ficiently lower than the Coulomb exchange energy but still finite, the U(1) phase
fluctuations are described by the following classical energy functional [2, 41]

EXY = ρs

2

∫
d2x(∇φ)2. (9.22)

Elementary excitations are vortices and antivortices as illustrated in Fig. 9.4. The
unbinding of the vortex-antivortex pairs triggers the KT transition from the pseudo
spin XY quasi-long-range ordered phase to the disorder phase at Bc .

Vortices and anti-vortices are charged [2, 43, 44] and they can contribute to elec-
trical transport. The reason why they carry a charge can be understood, in the lattice
point of view, as follows from Fig. 9.4(a): A defect in the Kekule order can be
visualized as a A or B sublattice a site that is not dimerized with neighbors, and
hence supports a midgap state (zero energy mode). The presence (absence) of an
electron on such site makes the Kekule vortex or antivortex positively (negatively)
charged. The pseudospin is pointing along Tz = +1 (−1) at the vortex core while
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along Tz = −1 (+1) at the antivortex core. In the continuum model, the charge and
currents generated by vortex excitations are given by [2]

δρ(x) = Tz

4π
∇ × ∇φ. (9.23)

Thus, in the presence of an impurity potential Vimp(x), the energy cost is given by

Eimp =
∫
d2xVimp(x)δρ(x)

= −
∫
d2xρsa(x) · ∇φ(x) (9.24)

where we have introduced the random vector potential, a(x) = 1
4πρs

ẑ × ∇Vimp(x).
Thus, as claimed above, the charge impurities amount to a position dependent phase
shift,

ErandomXY = ρs

2

∫
d2x
[∇φ − a(x)

]2
. (9.25)

Equation (9.25) describes the KT transition induced by randomness [41].
In the KT disordered phase (B∗ < B < Bc), the vortices are unbound, and their

diffusion gives rise to a conductivity given by σ ∝ nvtxμvtx where nvtx is the den-
sity of vortices and μvtx their mobility. This vortex conducting mechanism is a
two-dimensional analog of the soliton conduction mediated by charged defects (do-
main walls) in polyacetylene [45]. In the KT disordered phase nvtx ∼ 1/ξ2 where
ξ is the KT correlation length [41]. Since ξ ∝ ea/

√
Bc−B , this gives rise to the KT-

divergent resistivity. This argument closely follows the one used by Halperin and
Nelson in analyzing the behavior of the electrical conductivity of a thin film su-
perconductor above its KT transition [46]. Indeed, our situation is dual to theirs. In
Ref. [46] the Cooper pair (charge) current exerts the Magnus force on the vortices
and, through the finite vortex mobility, induces a vortex current perpendicular to it.
Since the vortex current causes an transverse electric field (hence a voltage drop)
through the Josephson relation, this gives rise to a finite electrical resistivity. In our
case the vortex is charged, and it is the external electric field that induced the vortex
(charge) current. Thus our electric field plays the role of charge (Cooper pair) cur-
rent in Ref. [46], while our charge (vortex) current plays the role of electric field in
Ref. [46]. As the result, the electrical conductivity in Ref. [46] should be translated
into an electric resistivity ρ in our case; the finding of σ ∼ ξ2 in Ref. [46] implies
ρ ∼ ξ2 in our situation.

A self-consistent Hartree-Fock study [43] concluded that symmetry breaking oc-
curs at

B∗ � 100

μ[103 cm2/(V s)] [T] (9.26)
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as a function of sample mobility μ and the critical field is given by

Bc � 400

μ[103 cm2/(V s)] [T]. (9.27)

This is reasonably consistent with experiments with high mobility samples on SiO2
where μ ∼ 2–3 × 104 [cm2/(V s)] and Bc � 10–20 [T] [37, 38]. Moreover a sus-
pended graphene sample which has a mobility 10 times larger than that of samples
on SiO2 indicates Bc ∼ 2 [T] [25] that is also consistent with above estimation. Fur-
ther experimental work will be necessary to determine unequivocally that this is the
correct microscopic picture of the field-induced insulator.

The spontaneous inter-valley coherence discussed above is very similar to the
inter-layer coherence in the double-layer ν = 1 QH effect [2, 3]. However, there are
several important differences: (i) The parameter of d/�B (d is the interlayer sep-
aration and �B is the magnetic length) in the double-layer QH system is replaced
by a/�B where a is the lattice spacing. For the current system a/�B  1, a regime
which has not been achieved in the double layer system. (ii) The inter-valley coher-
ent state in graphene is a spin singlet rather than being spin polarized. (From this
point of view, the ν = 1 bilayer QH system is similar to the ν = ±1 QH effect in
graphene rather than to ν = 0.) Although the supercurrent cannot be directly mea-
sured in the inter-valley coherent state in graphene, the two facts identified above
may make it easier to observe Kosterlitz-Thouless physics.

9.5 Quantum Hall Ferromagnetism in Bilayer Graphene

9.5.1 Bilayer Graphene

The N �= 0 Landau levels of bilayer graphene have the same spin×valley four-fold
degeneracy as single layer graphene and can be described by an approximate SU(4)
invariant Hamiltonian. The ground states corresponding to the interaction induced
plateaus are then captured by the variational wavefunctions in (9.15). Generally the
physics associated with these states should be similar to that of the higher Lan-
dau levels in single layer graphene, with the same number of collective modes and
the presence of Skyrmions. However there will be some important quantitative dif-
ferences related to bilayer graphene’s orbital structure. This is because the spatial
structure of the electron-electron interactions is modified due to the chiral nature of
bilayer graphene’s charge carriers. The most interesting aspects of bilayer graphene
are associated with the interaction driven states that form between the ν = −4 and
ν = 4 QH plateaus [47], many of which do not have a counterpart in either graphene
or other semiconducting QH systems.

In this section we focus on the rich quantum Hall ferromagnetism within the
eight-fold degenerate bilayer graphene N = 0 Landau level [48]. The N = 0 Lan-
dau level manifold in bilayer graphene has an extra pseudospin corresponding to
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the N = 0 and N = 1 orbital degree of freedom, referred to below as the Landau
level degree of freedom. The ordering and fluctuations of this pseudospin degree of
freedom is unique to bilayer graphene and leads to unusual collective modes [47],
anomalous exciton condensation [49], and spiral ordering [50]. It is this new aspect
associated with the physics of bilayer graphene that will be the focus of the rest of
this section.

Bilayer graphene’s Landau-level octet was immediately apparent in the earli-
est [51] bilayer quantum Hall experiments because of the 8e2/h Hall conductiv-
ity jump between well formed plateaus centered on the Landau-level filling factors
ν = −4 and ν = 4. When external magnetic fields are strong enough or disorder is
weak enough, interactions drive quantum Hall effects at the octet’s seven interme-
diate integer filling factors [52, 53]. The unusual character of some of these broken
symmetry states was anticipated by theory. For example, in Ref. [47] it was pre-
dicted that these quantum- Hall ferromagnets (QHFs) will exhibit unusual intra-
Landau-level cyclotron modes at odd filling factors, and that the collective mode
excitations at these filling factors are nearly gapless, even though there is no contin-
uous symmetry breaking.

When trigonal warping and Zeeman coupling are neglected, the low energy prop-
erties of Bernal stacked unbalanced bilayer graphene are described by the band
Hamiltonian [48]

H = 1

2m

(
0 π†2

π2 0

)
+ λ�V

[
1

2

(
1 0
0 1

)
− v2

γ 2
1

(
π†π 0

0 −ππ†

)]
, (9.28)

where the influence of an external potential difference �V between the layers is
captured by the last two terms. In (9.28), π = p + (e/c)A is the kinetic momentum
and π = πx + iπy , the 2×2 matrices act on the pseudospin degree of freedom asso-
ciated with the two low energy sites (the top and bottom layer sites without a near
neighbor in the opposite layer), v is the single-layer Dirac velocity, γ1 ∼ 0.4 eV is
the interlayer hopping amplitude, and the effective mass m = γ1/2v2 � 0.054me.
H describes both K (λ = 1) and K ′ (λ = −1) valleys provided that we choose the
pseudospin representation (A, B̃) for K and (Ã,B) for K ′.

In bilayer graphene the n = 0 and n = 1 orbital Landau levels are members of the
same octet. This peculiarity is behind most of the physics explored in the following.
Neutral bilayer graphene’s Landau-level octet is the direct product of three S = 1/2
doublets: realspin and which-layer pseudospins (as in a normal bilayer), and the
Landau-level pseudospins for the n = 0, 1 orbitals and their degrees of freedom
which is responsible for new physics.

9.5.2 Octet Hund’s Rules

The octet Hartree-Fock Hamiltonian was studied in Ref. [47] and the result for a
balanced bilayer (�V = 0) is summarized in Fig. 9.5. The large gaps (∼ (π/8)1/2
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Fig. 9.5 Filling factor dependence of the integer filling factor Hartree-Fock theory occupied state
(spectrum of the bilayer graphene octet at �V = 0). Energies of occupied (solid red lines) and
unoccupied (dashed blue lines) states are in units of

√
π/2e2/ε�B

in e2/ε�B units) separating occupied and empty states, at the odd integer filling
factors of primary interest, partially justify the use of mean-field theory. The octet
filling, proceeding in integer increments starting from filling factor ν = −4, follows
a Hund’s rule behavior: we first maximize spin-polarization, then maximize layer-
polarization to the greatest extent possible, then maximize Landau-level polarization
to the extent allowed by the first two rules. For balanced bilayers, the layer symmet-
ric states (S) are filled before the layer antisymmetric states (AS), so that the layer-
pseudospin polarization is achieved by forming an interlayer coherent state, instead
of a state with more electrons in one layer than the other. The first four states to be
filled are (S, n = 0,↑), (S, n = 1,↑), (AS, n = 0,↑) and (AS, n = 1,↑) in this order.
This sequence is then repeated for the next four states with down (↓) spin. Because
the layer separation is small compared to the magnetic length in bilayer graphene,
the continuum model interaction Hamiltonian is nearly SU(4) invariant. The priority
of spin over layer in the Hund’s rules is therefore mainly reflective of the Zeeman
energy. As in the single-layer case it is possible that at weak fields, the inter-valley
(and therefore interlayer) exchange process could alter this order of priority in lead,
for example, to density wave states rather than spin-polarized states, at ν = 0.

The Hund’s rules imply that the Landau-level pseudospin is polarized at all odd
integer filling factors between ν = −4 and ν = 4. The physics of this new type of
pseudospin polarization is the main qualitative physics that is unique to the bilayer
case. An important distinction between layer and Landau-level polarization is that
the former is associated with spontaneous inter-layer phase coherence whenever a
Landau level occupies both layers simultaneously, whereas the latter polarization is
controlled by the Landau-level dependence of the microscopic Hamiltonian.

Octet quantum Hall ferromagnets have an interesting and intricate dependence
on the external potential �V . Because the two-layers are close together, a small
value of �V is sufficient to change the character of the layer polarization from the



9 Symmetry Breaking in Graphene’s Quantum Hall Regime 319

Fig. 9.6 Collective mode ωq of the Landau-level pseudospin polarized state in units of interaction
strength e2/ε�B = 11.2

√
B[T] meV plotted as a function of q�B at different values of the external

potential difference �V at a magnetic field of 20 T. The black (solid) line indicates the q�B → ∞
asymptote for �B = 0

XY spontaneous-coherence form, to an Ising polarization form in which one layer
is occupied before the other. We find that for �V larger than a critical value �∗

V , the
layer filling proceeds by filling the top layer first (for ν = −3, �∗

V = 0.082(0.31)
meV at B = 20(50) [T]). As we explain later, this filling sequence has qualitative
consequences for the odd-integer filling factor LL pseudospin polarized states.

9.5.3 Collective Modes of Landau Level Pseudospins

We now focus on the LL pseudospin fluctuations of a state with odd-integer filling
factor, freezing the spin and layer degrees of freedom. Fluctuating LL spinors are
linear combinations of n = 0 orbitals (even with respect to their cyclotron orbit
center) and n = 1 orbitals (odd with respect to orbit center), and therefore carry an
electric dipole proportional to the in-plane component of their pseudospin. Because
dipole-dipole interactions are long-range, they play a dominant role in the quantum
Hall ferromagnet (QHF) long-wavelength effective action [54]. We find that the
effective action S[m] is given by

S[m] =
∫
dt

[∫
d2qA · ∂tm − E[m]

]
, (9.29)

where the first term is the Berry-phase contribution [54, 55] which appears in the
path-integral formalism for spins. For small fluctuations away from mz = 1 (full
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n = 0 polarization), the energy is given by

E[m] = e2

ε�B

∫
d2q

[
1

2|q| (q · m)2 + �̃LL

2

(
m2
x + m2

y

)]
, (9.30)

where �̃LL = �LL/(e
2/ε�B), and �LL is the single particle induced splitting be-

tween the n = 0 and n = 1 LL orbitals and mx,my denote the in-plane magneti-
zation. The mass term �̃LL in (9.30) is due to the single-particle splitting between
n = 0 and n = 1 levels and the interaction term is due to electric-dipole interac-
tions. The absence of interaction contributions to the mass terms is a surprise, since
the interaction is Landau-level pseudospin dependent. We address this point below.
Because of the in-plane electric dipoles associated with LL pseudospinors, the long-
wavelength pseudo-spinwave collective mode dispersion is not analytic:

lim
q→0

�ω ∼ (�2
LL + �LLe

2(q�B)/ε
)1/2

, (9.31)

which for�LL → 0 is proportional to q3/2 when exchange interactions are included
in the energy functional. The in-plane dipoles are also responsible for an unusual
intra-Landau-level cyclotron resonance signal.

The energy dispersion of the collective modes of the LL polarized state is plotted
vs q�B in Fig. 9.6. This collective mode has a roton minimum at q�B ≈ 2.3 and
approaches the Hartree-Fock theory band splitting for q → ∞ as expected. Sur-
prisingly there is no interaction contribution to the gap at q = 0. This absence of the
gap can be understood by examining the dependence of the uniform state interaction
energy on global rotations in LL pseudospin space:

2E[z]
Nφ

= − e2

ε�B

√
π

2

[
|z0 |4 + 3

4
|z1 |4 + 2|z0 |2 |z1 |2

]
, (9.32)

where z0(z1) are the coherent state amplitudes corresponding to the n = 0,1 LL-
pseudospin. The factor in square brackets above is 1 − |z1 |4/4, and is independent
of z1 to quadratic order. This is expected as Kohn’s theorem within the projected
lowest Landau level leads to a gapless mode due to a vanishing contribution from
electron-electron interactions. Hence this intra-Landau level mode would acquire
a gap in the presence of a single particle induced Landau level-splitting. It was
proposed in Ref. [47] that this mode could be observed in the cyclotron resonance
signal by applying an external potential difference between the layers.

9.5.4 Instabilities, Ordering and Topological Excitations
of LL-Pseudospins

Notice that because �LL < 0 for ν = −1,3 the absence of interaction contributions
to the gap implies that the fully LL-pseudospin-polarized state is unstable. The pres-
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ence of the Landau level-pseudospin also has important consequences on the prop-
erties of the exciton condensates at the odd fillings ν = −3,1. The superfluid density
vanishes at these filling factors leading to a finite-temperature fluctuation-induced
first order isotropic-smectic phase transition when the layer densities are not bal-
anced. This vanishing superfluid stiffness leads to a quadratic rather than expected
linear [54] phonon collective mode. The transition to the smectic state is a conse-
quence of the negative Landau level-pseudospin gap in one of the valleys along with
the zero superfluid stiffness; combined, this leads to a long-wavelength instability
of the Brazovskii-type [56, 57].

At other odd filling factors ν = −1,3, due to a negative Landau level-gap [48],
the single particle Landau level splitting competes with the interaction induced
Landau level exchange splitting which prefers n = 0 Landau level polarization.
This leads to a sequence of transitions from (i) an inter-layer coherent state, and
(ii) a mixed state with inter-orbital and inter-layer coherence to (iii) an inter-orbital
coherence state spiral Landau level-pseudospin ordering [50]. The spiral state is due
to the presence of Dzyaloshinskii-Moriya terms which occur as the application of
the electric potential breaks inversion symmetry of the QH ferromagnet at the fill-
ing factors ν = −1,3. The presence of orbital coherence leads to a finite density of
in-plane electric dipoles [58] which can be manipulated by in-plane electric fields.

Another interesting aspect associated with the broken symmetry N = 0 octet
states in bilayer graphene is the possibility of new and interesting topological ex-
citations not expected in monolayer graphene and semiconducting 2DEGs. It has
been proposed that charge-2e Skyrmions are the low energy charged excitation near
the filling factors ν = −2,2 [59]. As expected these charge-2e Skyrmions have tex-
tures in both n = 0 and n = 1 Landau level orbitals. Interlayer charge-2e meron and
Skyrmions crystals with checkerboard patterns for balanced and unbalanced layers
have subsequently been identified in numerical calculations [60]. These charge-2e
objects also condense in a rich variety of crystal states at odd filling factors where
these pseudoskyrmions are associated with the Landau level-orbital degree of free-
dom. The orbital Skyrmions exhibit an unusual vorticity and charge relationship
exhibiting textures of in-plane electric dipoles and can be seen as an analogue of
spin Skyrmions which carry a magnetic textures. These texture would couple to an
in-plane electric field and the modulation of the electronic density in the crystalline
phases should be experimentally accessible through a scanning tunneling micro-
scope measurement of their local density of states [59, 60].

9.5.5 ν = 0 QH Plateaus in Bilayer Graphene

Just like for monolayer graphene, the ν = 0 state in bilayer graphene has drawn spe-
cial attention. In the quantum Hall regime the ordering seems to indicate either spin
or valley polarization, or both [52, 53]. The interest in the ν = 0 QH state of bilayer
graphene is different from that in graphene though, as the parabolic dispersion of bi-
layer graphene makes it susceptible to interaction-induced symmetry breaking even
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at zero magnetic field [61–65]. Incompressibilities for suspended bilayer graphene
were seen to survive even in the B → 0 limit [66, 67], where it was concluded
that the incompressibility at the charge neutrality point was consistent with either
spontaneously broken time-reversal symmetry or spontaneously broken rotational
symmetry. The broken time reversal symmetry leads to an anomalous quantum Hall
state where electrons in one layer occupy valley K whereas electrons in the other
layer occupy valley K′ [63]. This state supports topologically protected edge modes
and would exhibit a finite conductance. However, the time-reversal symmetric state
is predicted to exhibit nematic order where the parabolic dispersion is expected to
split into two Dirac cones. This would result in a lowering of the density of states at
the charge neutrality point [64, 65].

Some authors [61, 62, 68] have concluded that the B = 0 broken symmetry states
have spin and valley dependent sublattice polarization. If this is true, the states are
associated with interesting momentum space Berry curvature [69], anomalous Hall,
and orbital magnetism effects. Among the states in this class with no overall layer
polarization, are [70] SDW states, usually called LAF states (layer antiferromagnet)
in the bilayer case, QSH (quantum spin Hall) and QAH [68] (quantum anomalous
Hall states). These three states have quantized Hall conductances with the values
0, 0, and ±4e2/h for the LAF, QSH, and QAH states, respectively. In each case
the gaps associated with order evolve smoothly into quantum Hall gaps with filling
factors ν = 0,0,4, respectively. In a magnetic field the QAH state evolves into a
bilayer state that is similar to the non-interacting ν = 4 state. The QSH state evolves
in field into a spin-polarized state with a total filling factor ν = 0 but a filling factor
difference of 4 between the majority and minority spins. The LAF state evolves into
a state which appears at ν = 0 and has no spin-polarization. Given these properties,
studies of the quantum Hall effect at weak magnetic fields can shed light on the
character of the B = 0 broken symmetry states. For example if the QAH state is
the B = 0 ground state [68], the ν = 4 quantum Hall effect should persist to B = 0,
whereas if the LAF state where the ground state, it is the ν = 0 quantum Hall state
that would persist. Current experiments do not yet provide consistent results on
these points, presumably because of small differences in the disorder potential. The
possibility of observing quite different transport properties on quite similar samples
suggests that the various potential ordered states of bilayers compete with each other
closely.

9.6 Quantum Hall Ferromagnetism at Fractional Fillings

The quantum Hall ferromagnetism at integer filling discussed above can be gener-
alized to the case of fractional fillings [71]. Now we introduce the effective filling
factor νN for the N th LL defined by

νN = ν − 4(N − 1/2), (9.33)

measured from the bottom of nth Landau level. For simplicity we focus on the two-
component systems by assuming that the realspin is fully polarized by the Zeeman
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splitting. (As we discussed in Sect. 9.4, we need to be careful at this point for the
N = 0 LL.) The trial wave function at the νN = 1/m state is written by [2, 18, 20,
72–75]

Ψ =
∏
i<j

(zi − zj )
m
∏
i<j

(wi − wj)
m
∏
i,j

(zi − wj)
m, (9.34)

where zi = xi + iyi is the position of ith electron on the B sublattice, and wi is that
on the A sublattice. The charged excitations from the ground state are described by
Skyrmions [20]. The excitation energies � are estimated by the numerical diago-
nalization and the density matrix renormalization group method. The activation en-
ergies at νN = 1/3 obtained in finite systems are extrapolated to the thermodynamic
limit; � = 0.03 [e2/ε�B ] for the N = 0 LL, and � = 0.05 [e2/ε�B ] for the N = 1
LL. Interestingly the gap in the N = 1 LL is larger than that in the N = 0. This
gap enhancement originates from the unique properties of the effective Coulombic
interaction projected onto the N = 1 LL. Judging by the relative size of the charge
gaps at integer and fractional filling factors, we estimate that the first fractional
filling factors will require mobilities approximately five times larger than those re-
quired to realize quantum Hall ferromagnetism. Under an available magnetic field
� 50[T], estimated mobility above which fractional states could be measured is
μ ∼ 2 × 105 [cm2/(V s)] [14, 74, 75].

Recently the fractional quantum Hall states have been observed in suspended
graphene and also in graphene on boron nitride substrates. The mobilities of these
samples are reported as high as ∼ 105 [cm2/(V s)] [25, 26, 76, 77]. Since the Zee-
man interaction and other interactions which explicitly break SU(4) symmetry are
much smaller in energy than the long-range part of the Coulomb interaction, one
has to consider the problem in four-component systems [20, 78]. Indeed a recent
experiment indicates that the hierarchy structure in graphene reflects the spin and
valley degeneracy [77]. The SU(4) nature of these Landau levels will open up a new
frontier for the fractional quantum Hall effect that is likely to yield some surprises.

9.7 Concluding Remarks

Because of their Landau-level degeneracy, two-dimensional electron systems sub-
jected to a perpendicular magnetic field are always in the limit of strong correlations.
In general to unravel the mysteries of these strongly correlated electron systems, an
understanding of the internal degrees of freedom, such as spin and pseudospin, is
essential. Graphene has realspin and (valley) pseudospins which gives rise to the
rich physics of spontaneous symmetry breaking. The Coulomb exchange interac-
tion which is SU(4) invariant if lattice effects are neglected favors the spontaneous
polarization of SU(4) pseudospins. The polarization could occur in the realspin or
valley pseudospin degrees of freedom, or some combination of both. Small SU(4)
symmetry breaking terms, like Zeeman splitting, can play an essential role in deter-
mining the character of the ground state. Because it lifts Landau level degeneracy,
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disorder which is always present to some degree in practice, can also play an es-
sential role in determining the character of the ground state. In many cases explicit
symmetry breaking terms in the Hamiltonian can have similar magnitudes to the
disorder potential and compete closely. Lattice effects can be subtle and difficult to
estimate and this often makes it difficult to predict the ground state order. At ν = 0,
for example, disorder competes with the Coulomb exchange interaction and a phase
transition can occur between a disorder dominated normal phase and an interaction
dominated ordered phase as the magnetic field changes magnitude. In this review,
we have discussed some possible scenarios to explain the field induced transition
observed at ν = 0. Further experimental work will be necessary to determine the
correct physical picture associated with these phenomena. Measurements at tilted
magnetic fields, and careful studies of the dependence of the gap on field magnitude
may give important hints.

Bilayer graphene has additional ingredients for the manifestation of various bro-
ken symmetry states. One important and enriching ingredient is the presence of an
experimentally controllable external field, the potential difference between the two
layers, which can be tuned between large and small values with external gates. In
addition, the N = 0 Landau level supports a Landau level orbital degree of free-
dom along with the four-fold degeneracy already present due to spin and valley
degeneracy. Speaking loosely, the Landau level degree of freedom appears because
quantum states corresponding to cyclotron orbits with different radius, which would
have different energies in an ordinary two-dimensional electron gas, are degener-
ate. Subtle interplays between layer and orbital Landau level pseudospin degrees of
freedom lead to novel collective excitations with unusual dispersion relations and
are also expected to lead to new types of skyrmion excitations. Experiments have
confirmed the role of such interactions in bilayer graphene, as additional integer
quantum Hall plateaus due to interaction-induced gaps within the eight-fold degen-
erate zero-energy Landau level have been observed by several groups. When the
Landau level orbital degree of freedom is active (for example at odd integer filling
factors in bilayer graphene), Landau level orbital ordering reveals exotic QH states,
which in the pseudospin language are analogs of spiral and helical ferromagnets.
Because the quantum Hall effects at odd integer filling factors are least strong and
more easily altered by disorder, they have not yet been studied extensively. However
as sample quality gets better, these plateaus will become more robust and transport
experiments in separately contacted bilayers, along with optical measurements are
likely to yield many surprises.

Fractional quantum Hall states in both monolayer and bilayer graphene have been
studied theoretically and experimentally. The SU(4) nature of these Landau levels
will open up a new frontier for the fractional quantum Hall effect that is likely to
yield some surprises. The FQH states observed so far in the N = 0 Landau level are
most likely multicomponent generalizations of the Laughlin states that are promi-
nent in ordinary two-dimensional electron gases. The gaps at these filling factors
are most likely determined by spontaneous broken symmetries; hence understand-
ing of the internal degrees of freedom such as spin and pseudospin, is essential. The
competition between incompressible states and disorder is certainly influenced by
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the difference in Landau level degeneracy, and this could be important in explaining
the fractions which have been observed to date. We anticipate increasing interest
in studies of the physics of symmetry breaking in graphene and especially, bilayer
graphene’s quantum Hall regime.
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Chapter 10
Weak Localization and Spin-Orbit Coupling
in Monolayer and Bilayer Graphene

Edward McCann and Vladimir I. Fal’ko

Abstract The effective Hamiltonian of low-energy electrons in monolayer and bi-
layer graphene is described, taking into account static disorder and spin-orbit cou-
pling. We review different regimes of weak localization in these materials that
arise from an interplay between lattice, valley, and spin degrees of freedom and
the relative strength of different types of symmetry-breaking scattering. At very
low temperature, weak localization may be sensitive to the presence and nature of
spin-orbit coupling, and we derive formulae for the corresponding low-field mag-
netoresistance. If Bychkov-Rashba spin-orbit coupling is present, it tends to induce
weak anti-localization in both monolayers and bilayers—as in semiconductors and
metals—but, if intrinsic spin-orbit coupling prevails, it results in a suppression of
weak localization.

10.1 Introduction

In conventional metals and semiconductors, anti-localization is usually indicative
of the presence of strong spin-orbit (SO) coupling [1]. In graphene, two types of
SO coupling have been suggested. The first, introduced by Kane and Mele [2–11]
in the context of the quantum spin Hall insulator, is a full invariant of the system
while the second is a Bychkov-Rashba term [2–4, 12, 13] requiring broken inversion
symmetry of the graphene plane. While the latter tends to induce anti-localization, as
in conventional systems [1, 14–16], the former tends to suppress weak localization,
mimicking saturation of the dephasing time.

In this chapter, the tight-binding model of electrons in monolayer and bilayer
graphene is described, and we show how the low-energy Hamiltonians support chi-
ral quasiparticles with corresponding Berry’s phase π and 2π , respectively. We re-
view the model of disorder in them and the calculation of the weak localization
correction to conductivity [17–22], explaining how the interplay of disorder with
lattice and valley degrees of freedom is characterized by the magnetoresistance sig-
nature at low magnetic field. Then, SO coupling is taken into account through the
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Fig. 10.1 Regimes of weak localization (WL) and weak anti-localization (WAL) behavior in
monolayer and bilayer graphene as determined by the magnitude of the inelastic dephasing rate
τ−1
ϕ relative to characteristic relaxation rates describing intravalley symmetry-breaking τ−1∗ and

intervalley scattering τ−1
i . The left side shows the expected behavior when the dephasing rate is

smaller than scattering rates related to either Bychkov-Rashba (BR) or Kane-Mele (KM) spin-orbit
coupling

influence of the intrinsic Kane-Mele and the Bychkov-Rashba terms on the weak
localization correction in monolayers and bilayers, and we derive formulae for the
corresponding low-field magnetoresistance.

Figure 10.1 summarizes the nature of weak localization [1, 17] in monolayer
graphene. Different regimes of weak localization (WL) and weak anti-localization
(WAL) behavior are determined by the magnitude of the inelastic dephasing rate τ−1

ϕ

relative to characteristic relaxation rates describing intravalley symmetry-breaking
τ−1∗ and intervalley scattering τ−1

i [18–30]. At very low temperature, when the de-
phasing rate is smaller than scattering rates related to either Bychkov-Rashba (BR)
or Kane-Mele (KM) spin-orbit coupling, then weak anti-localization or suppressed
weak localization is expected, respectively [14–16].

10.2 The Low-Energy Hamiltonian of Monolayer Graphene

10.2.1 Massless Dirac-Like Quasiparticles in Monolayer Graphene

The crystal structure of monolayer graphene, Fig. 10.2(a), consists of an hexago-
nal Bravais lattice with a basis of two atoms, labeled A and B , per unit cell. The
primitive lattice vectors are a1 = (a/2,

√
3a/2) and a2 = (a/2,− √

3a/2) where
a is the lattice constant, |a1 | = |a2 | = a. The reciprocal lattice is an hexagonal
Bravais lattice, Fig. 10.2(b), with primitive lattice vectors b1 = (2π/a,2π/

√
3a)

and b2 = (2π/a,−2π/
√

3a), and the first Brillouin zone is a hexagon [the shaded
hexagon in Fig. 10.2(b)]. The Fermi level lies near two inequivalent corners of the
Brillouin zone, known asK points or valleys and labeled K+ and K− in Fig. 10.2(b),
with wave vectors Kξ = ξ(4π/(3a),0) where ξ = ±1 is a valley index.

In graphene, the electronic orbitals are sp2 hybridized [31], meaning that the 2s
orbital and two of the 2p-orbitals, 2px and 2py , mix, resulting in σ bonds between
each atom and its three nearest neighbors [shown as solid lines in Fig. 10.2(a)]. The
remaining orbital, 2pz, lies perpendicular to the graphene plane and forms π orbitals
when combined with 2pz orbitals on adjacent atoms. A tight-binding model, taking
into account one 2pz orbital per atom, provides an accurate description of states in
the vicinity of the Fermi level [31].
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Fig. 10.2 (a) The crystal structure of monolayer graphene, consisting of an hexagonal Bravais
lattice with a basis of two atoms, labeled A and B , per unit cell. Primitive lattice vectors a1 and
a2 are of length equal to the lattice constant a, the shaded rhombus shows a conventional unit cell.
(b) The reciprocal lattice (crosses) is an hexagonal Bravais lattice with primitive vectors b1 and b2.
The shaded hexagon shows the first Brillouin zone, points K+ and K− are non-equivalent points
at the corner of the Brillouin zone, known as K points

The tight-binding model includes two atomic orbitals per unit cell, φA and φB .
Assuming translational invariance, the model is based upon two Bloch functions,
one each for the A and B sublattices:

Φj(k, r) = 1√
N

N∑
i=1

eik·Rj,i φj (r − Rj,i), (10.1)

where j = A or B , the sum with respect to index i = 1 . . .N counts N different
unit cells, and Rj,i denotes the position of the j th orbital in the ith unit cell. The
electronic wave function Ψl(k, r) is written as a linear superposition of the Bloch
functions, Ψl(k, r) = ∑n

j=1 clj (k)Φj (k, r), where clj are coefficients. The tight-
binding model, described in detail in the book by Saito, Dresselhaus, and Dres-
selhaus [31], leads to an energy eigenvalue equation Hψl = εlψl , l = 1,2, where
the Hamiltonian, H , is a transfer integral matrix with matrix elements given by
Hij = 〈Φi |H|Φj 〉, and ψl = (clA, clB)

T is a column vector.
The form of the matrix elements Hij = 〈Φi |H|Φj 〉 may be determined us-

ing the Bloch functions (10.1). As the A and B atoms are chemically identi-
cal, the diagonal elements are assumed to be equal, and they may be set to zero
without loss of generality HAA = HBB = 0. The off-diagonal element, HAB =
〈ΦA|H|ΦB〉, describes hopping between adjacent atoms. Assuming a dominant
contribution from nearest neighbors, HAB = H ∗

BA = −γ0f (k) where parameter
γ0 = −〈φA(r − RA,i)|H|φB(r − RB,l)〉 characterizes the strength of coupling be-
tween adjacent atoms, leading to

Ĥ
(0)
1 = −γ0

(
0 f (k)

f ∗(k) 0

)
. (10.2)

Here, function f (k) = ∑3
l=1 exp(ik.δl ), where the position vector of atom Bl

relative to the Ai atom is denoted δl = RB,l − RA,i , takes into account phase
factors accumulated in hopping from an atom to its three nearest-neighbors. For
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three B atoms surrounding one A atom, Fig. 10.2(a), the displacement vectors
are δ1 = (0, a/

√
3), δ2 = (a/2,−a/2√

3), δ3 = (−a/2,−a/2√
3), giving f (k) =

exp(ikya/
√

3) + 2 exp(−ikya/2
√

3) cos(kxa/2).
At the two inequivalent corners of the Brillouin zone, known as valleys and

labeled K+/− in Fig. 10.2(b), the wave vectors are Kξ = ξ(4π/(3a),0) where
ξ = ±1. At these points, f (Kξ ) = 0. We introduce a small momentum p mea-
sured from the center of the Kξ point, p = �k − �Kξ , so that f (k) ≈ −√

3a(ξpx −
ipy)/2� + a2(ξpx + ipy)

2/8�2 an expansion that is valid near to the valley Kξ , i.e.
for pa/�  1, where p = |p| = (p2

x +p2
y)

1/2. Then, the Hamiltonian in the vicinity
of each valley may be written [32] as

Ĥ
(0)
1 ≈ v

(
0 ξpx − ipy

ξpx + ipy 0

)
−μ

(
0 (ξpx + ipy)

2

(ξpx − ipy)
2 0

)
, (10.3)

where the velocity is v = √
3aγ0/(2�) and parameter μ = γ0a

2/(8�2).
The first term in (10.3) describes massless Dirac-like chiral quasiparticles with

linear dispersion ε = ±vp and a pseudospin degree of freedom related to the relative
amplitude of the electronic wave function on the A and B sublattices, as determined
by the components of the column vectorψl = (clA, clB)

T . The second term in (10.3)
is quadratic in momentum and describes a weak ‘trigonal warping’ of the Fermi
circle in the vicinity of the valley center [32], introducing a perturbation of the
chiral nature of the quasiparticles that tends to increase with distance away from the
center of the valley.

The matrix (10.3) is explicitly written in the A/B sublattice space, but, in the fol-
lowing, we will describe the valley and spin structure, too. For this, we consider a
space of eight-component Bloch functions [ΦK+,A,↑,ΦK+,B,↑,ΦK−,B,↑,ΦK−,A,↑,
ΦK+,A,↓,ΦK+,B,↓,ΦK−,B,↓,ΦK−,A,↓ ] consisting of two valleys K+/K−, two sub-
lattices A/B , and two spin components ↑/↓. Then, the Hamiltonian is written us-
ing direct products of Pauli matrices Πx,y,z,Π0 ≡ 1̂ acting in the K± valley space,
σx,y,z, σ0 ≡ 1̂ acting in the A/B sublattice space, and Sx,y,z, S0 ≡ 1̂ acting in the
↑/↓ spin space:

Ĥ
(0)
1 ≈ vΠzS0σ · p − μΠ0S0

[
σx
(
p2
x − p2

y

)− 2σypxpy
]
, (10.4)

the presence of S0 indicating that this Hamiltonian is spin degenerate.

10.2.2 Model of Disorder in Monolayer Graphene

In order to develop a general model of static disorder in graphene, we identify terms
in the electronic Hamiltonian that satisfy symmetry requirements at the K points
[20, 21, 33]. Our analysis includes time reversal t → −t and, for this, the sublat-
tice and valley matrices σi , Πj are not ideal because some of them are t → −t
symmetric, others are t → −t asymmetric.
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Table 10.1 Irreducible representations and characters of the planar group C′ ′
6v [33]. Representa-

tions A1, A2, B1, B2, E1, E2 are part of the point group of two-dimensional graphene C6v includ-
ing classes labeled by operations E, C6, C3, C2, σd , σv , representations E′

1, E′
2, G′ incorporate

primitive translations, denoted t , with classes labeled t , tC3, tσd . The last column gives the bases
(in terms of Σ and Λ matrices) for irreducible subspaces in the space of 4 × 4 matrices

Irr. Rep. E C6 C3 C2 σd σv t tC3 tσd Σa,Λl

A1 1 1 1 1 1 1 1 1 1 Î

A2 1 1 1 1 −1 −1 1 1 −1 Σz

B1 1 −1 1 −1 1 −1 1 1 1 Λz

B2 1 −1 1 −1 −1 1 1 1 −1 ΣzΛz

E1 2 1 −1 −2 0 0 2 −1 0
(
Σx
Σy

)
E2 2 −1 −1 2 0 0 2 −1 0

(
ΛzΣx
ΛzΣy

)
E′

1 2 0 2 0 2 0 −1 −1 −1
(
ΛxΣz
ΛyΣz

)
E′

2 2 0 2 0 −2 0 −1 −1 1
(
Λx
Λy

)

G′ 4 0 −2 0 0 0 −2 1 0

⎛
⎝ΛxΣxΛxΣy
ΛyΣx
ΛyΣy

⎞
⎠

Instead of σi ,Πj , we use two sets of 4×4 Hermitian matrices [20, 21] describing
sublattice ‘isospin’ "Σ = (Σx,Σy,Σz) with [Σs1,Σs2 ] = 2iεs1s2s3Σs3 , and valley
‘pseudospin’ "Λ = (Λx,Λy,Λz) with [Λl1,Λl2 ] = 2iεl1l2l3Λl3 , defined as

Σx = Πz ⊗ σx, Σy = Πz ⊗ σy, Σz = Π0 ⊗ σz, (10.5)

Λx = Πx ⊗ σz, Λy = Πy ⊗ σz, Λz = Πz ⊗ σ0. (10.6)

These matrices have the advantage, as compared to σi , Πj , that the operators � and
� change sign upon time inversion. Hence all pairs ΣaΛl are t → −t invariant and
can, thus, be used as a basis for a phenomenological description of nonmagnetic
static disorder [20, 21].

Terms Σa and Λl , t → −t asymmetric, and products ΣaΛl , t → −t invariant,
form irreducible representations of the point group of graphene, as shown in Ta-
ble 10.1. In fact, as shown by Basko [33], for a description of two valleys, it is ap-
propriate to consider the planar group C′ ′

6v which incorporates primitive translations
(denoted t in Table 10.1) into the point group C6v of graphene. Hence, intervalley
matrices Λx , Λy appear in the irreducible representations E′

1, E′
2, G′ that incorpo-

rate the primitive translations.
Using matrices Σa , Λl , the Hamiltonian in weakly-disordered monolayer

graphene [20, 21] may be written as

Ĥ1 = v� · p + ĥ1w + Û , (10.7)

ĥ1w = −μΛz
[
Σx
(
p2
x − p2

y

)− 2Σypxpy
]
, (10.8)
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Û = Îu(r) +
∑

a,l=x,y,z
ΣaΛlua,l(r), (10.9)

where we included the clean Hamiltonian (10.3, 10.4). The term Û incorporates the
possible nonmagnetic static disorder terms where the diagonal part Îu(r) describes
the influence of remote charges that don’t break the valley or sublattice symmetry.
Intravalley terms include uz,z(r) describing different on-site energies of the A/B
sublattices, and ux,z(r), uy,z(r) accounting for fluctuations of A/B hopping. The
remaining terms, ua,x(r) and ua,y(r) for a = x, y, z, generate intervalley scattering.

10.2.3 Spin-Orbit Coupling in Monolayer Graphene

For electrons in graphene in the vicinity of the K points, two different spin-orbit
terms have been considered. The first is an intrinsic term ĥKM = αKMΠ0σzSz, a
full invariant of the transformations of the point group, as discussed by Kane and
Mele [2] in the context of the quantum spin Hall insulator. The second term is a
Bychkov-Rashba term [2–4, 12, 13] that requires the breaking of mirror symmetry
in the graphene plane, ĥBR = αBRΠz(σxSy − σySx). Using the Σa , Λl matrices,
the spin-orbit terms may be written as

ĥKM = αKMΣzSz, (10.10)

ĥBR = αBR(ΣxSy − ΣySx). (10.11)

10.3 Weak Localization vs Antilocalization in Monolayer
Graphene

To describe the influence of spin-orbit coupling on weak localization in graphene,
we generalize previous calculations [20, 21] that neglected spin-orbit coupling, and
refer the reader there for further details. We assume that the Dirac-like Hamilto-
nian v� · p dominates the electronic behavior and that diagonal disorder, Îu(r)
in (10.9), determines the elastic scattering rate, τ−1 ≈ τ−1

0 = πγu2/�, where
γ = pF /(2π�2v) is the density of states per spin, per valley. Using the standard
diagrammatic technique for disordered systems [1, 17] at pF vτ � �, the disorder-
averaged single-particle Green’s function in graphene [18, 20, 21] may be written
as

GR/A(p, ε) = εR/A + v� · p

ε2
R/A − v2p2

, εR/A = ε ± i�

2τ0
. (10.12)

The current operator corresponding to the Dirac-like Hamiltonian is momentum
independent, v̂ = v�. This means that the current vertex ṽj , j = x, y, entering the
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Drude conductivity is renormalized by vertex corrections ṽ = 2v̂ = 2v�. Then, the
Drude conductivity

σ = e2

π�

∫
d2p

(2π)2
Tr
{
ṽjG

R/A(p, ε)v̂jGR/A(p, ε)
}
, (10.13)

is equal to σ = 4e2γD where the diffusion coefficient is D = v2τtr/2 and the trans-
port time is twice the scattering time, τtr = 2τ0 [18].

The weak localization correction is written in terms of disorder-averaged two-
particle correlation functions known as Cooperon propagators [1, 17] that are sin-
glets and triplets in the spin, sublattice and valley spaces. Thus, there are sixty four
Cooperons to take into account. However, for diagonal disorder Îu(r), the sublattice
isospin-triplet modes all acquire relaxation gaps of the order of τ−1

0 and they may
be neglected [20, 21]. However, sublattice isospin-singlet modes remain gapless.
Thus, in the following, we consider only sublattice isospin-singlet Cooperons Cls
where index l refers to pseudospin (related to matrices Λ describing valley degrees
of freedom), and s refers to spin (related to matrices S).

Taking only the gapless isospin-singlet modes into account, the weak localization
correction to the conductivity may be written in terms of a summation with respect
to sixteen Cooperons consisting of combinations of spin and pseudospin singlet and
triplets:

δσ = e2D

π�

∫
d2q

(2π)2
∑

s,l=0,x,y,z

csclC
l
s . (10.14)

Here, the factors c0 = 1, cx = cy = cz = −1 take into account the fact that singlet
and triplet Cooperons (of both spin and pseudospin) appear with opposite signs.

In the Hamiltonian (10.7), we take into account symmetry-breaking perturbations
ĥ1w (10.8), ĥKM (10.10), and ĥBR (10.11), as well as the symmetry-breaking disor-
der terms ua,l(r) (10.9). They contribute relaxation gaps Γ ls to the otherwise gapless
Cooperons Cls , although, owing to time-reversal symmetry, mode C0

0 remains gap-
less. In the presence of a finite inelastic decoherence rate τ−1

ϕ and external magnetic
field B = rot A, each Cooperon [1, 17] is given by

[
D

(
i∇ + 2eA

c�

)2

+ Γ ls + τ−1
ϕ − iω

]
Cls
(
r, r′) = δ

(
r − r′). (10.15)

Then, the zero-field temperature-dependent correction, δρ(0), to the graphene sheet
resistance, where δρ(0)/ρ2 ≡ −δσ , may be written as

δρ(0) = −e2ρ2

2πh

∑
s,l=0,x,y,z

cscl ln

(
τ−1

τ−1
ϕ + Γ ls

)
. (10.16)
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The magnetoresistance, �ρ(B) = ρ(B) − ρ(0), is given by

�ρ(B) = e2ρ2

2πh

∑
s,l=0,x,y,z

csclF

(
B

Bϕ + Bls

)
, (10.17)

where

F(z) = ln z + ψ

(
1

2
+ 1

z

)
, (10.18)

Bϕ = �c

4De
τ−1
ϕ , Bls = �c

4De
Γ l0;s , (10.19)

and ψ is the digamma function.
We assume that different types of disorder, (10.9), are uncorrelated,

〈ua,l(r)ua′,l′(r′)〉 =u2
a,lδaa′δll′δ(r−r′), resulting in scattering rates τ−1

a,l =πγu2
a,l/�.

Assuming isotropy of disorder in the x–y plane, we write τ−1
a,x = τ−1

a,y = τ−1
a,⊥,

τ−1
x,l = τ−1

y,l = τ−1
⊥,l and, following Ref. [20], combine them into the intravalley scat-

tering rate τ−1
z and the intervalley scattering rate τ−1

i :

τ−1
z = 4τ−1

⊥,z + 2τ−1
z,z , τ−1

i = 4τ−1
⊥,⊥ + 2τ−1

z,⊥. (10.20)

The trigonal warping term ĥ1w in the Hamiltonian (10.7) produces relaxation of the
intravalley Cooperons, Cxs and Cys , as characterized by the rate [20]

τ−1
w = 2τ0

(
ε2μ/�v2)2, (10.21)

although, as the trigonal warping has an opposite effect in the two valleys, this re-
laxation does not affect the intervalley modes, C0

s and Czs .
Neglecting the spin-orbit terms, ĥKM and ĥBR , (10.10, 10.11), the total relax-

ation rate of the intravalley Cooperons is written as τ−1∗ = τ−1
w + τ−1

z + τ−1
i [20],

Γ 0
s = 0, Γ xs = Γ

y
s = τ−1∗ , Γ zs = 2τ−1

i ,

with resulting zero-field temperature-dependent correction to the sheet resistance
[20] written as

δρ(0) = e2ρ2

πh

[
ln

(
τ−1

τ−1
ϕ

)
− 2 ln

(
τ−1

τ−1
ϕ + τ−1∗

)

− ln

(
τ−1

τ−1
ϕ + 2τ−1

i

)]
, (10.22)
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and magnetoresistance given by

�ρ(B) = −e2ρ2

πh

[
F

(
B

Bϕ

)
− 2F

(
B

Bϕ + B∗

)

− F

(
B

Bϕ + 2Bi

)]
. (10.23)

The spin-orbit terms ĥKM and ĥBR , (10.10, 10.11), give rise to relaxation rates
τ−1
KM and τ−1

BR , respectively, with different parameter dependences:

τ−1
KM = τ−1

0

(
αKM

εF

)2

, τ−1
BR = 2τ0α

2
BR

�2
. (10.24)

The Bychkov-Rashba term ĥBR , (10.11), behaves in a similar way to the Bychkov-
Rashba spin-orbit interaction in other materials, producing spin relaxation through
the D’yakonov-Perel mechanism [34] with a corresponding relaxation rate τ−1

BR

which is inversely proportional to the elastic scattering rate τ−1
0 [34, 35]. The intrin-

sic term ĥKM , (10.10), however, causes relaxation through the Elliott-Yafet mech-
anism [36, 37], and the corresponding relaxation rate τ−1

KM is proportional to the
elastic scattering rate τ−1

0 . The spin-orbit terms contribute to the relaxation rates of
the Cooperons Cls as

Γ l0 = 0; Γ lx = Γ ly = τ−1
BR + τ−1

KM ; Γ lz = 2τ−1
BR. (10.25)

Combined with the spin-independent symmetry breaking terms in the Hamilto-
nian (10.9), they give:

Γ 0
0 = 0,

Γ x0 = Γ
y

0 = τ−1∗ ,

Γ z0 = 2τ−1
i ,

Γ 0
x = Γ 0

y = τ−1
BR + τ−1

KM,

Γ xx = Γ
y
x = Γ xy = Γ

y
y = τ−1∗ + τ−1

BR + τ−1
KM,

Γ zx = Γ zy = 2τ−1
i + τ−1

BR + τ−1
KM,

Γ 0
z = 2τ−1

BR,

Γ xz = Γ
y
z = τ−1∗ + 2τ−1

BR,

Γ zz = 2τ−1
i + 2τ−1

BR.

Used in conjunction with (10.16, 10.17), these results determine the weak localiza-
tion correction to the zero-field resistance and the magnetoresistance, respectively.
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Fig. 10.3 (a) Low-field magnetoresistance of monolayer graphene for different strengths of the
intrinsic spin-orbit coupling (10.10), neglecting the Bychkov-Rashba term (10.11). Values of the
spin-orbit relaxation length LKM are shown on the right hand side. (b) Low-field magnetore-
sistance for different strengths of the Bychkov-Rashba spin-orbit coupling (10.11), neglecting the
intrinsic term (10.10). Values of the Bychkov-Rashba relaxation length LBR are shown on the right
hand side. Other parameter values are ρ = 1000 Ω , Lϕ = 10 µm, Li = 500 nm, L∗ = 200 nm, and
plots were made using (10.26)

Explicitly, the latter is given by

�ρ(B) = e2ρ2

2πh

[
F

(
B

Bϕ

)
− 2F

(
B

Bϕ + B∗

)

− F

(
B

Bϕ + 2Bi

)
− 2F

(
B

Bϕ + BBR + BKM

)

+ 4F

(
B

Bϕ + B∗ + BBR + BKM

)

+ 2F

(
B

Bϕ + 2Bi + BBR + BKM

)

− F

(
B

Bϕ + 2BBR

)
+ 2F

(
B

Bϕ + B∗ + 2BBR

)

+ F

(
B

Bϕ + 2Bi + 2BBR

)]
, (10.26)

where Bϕ,i,∗,BR,KM = (�c/4De)τ−1
ϕ,i,∗,BR,KM .

The low-field magnetoresistance, (10.26), for different strengths of the intrin-
sic spin-orbit coupling (10.10), neglecting the Bychkov-Rashba term (10.11), is
plotted in Fig. 10.3(a). Relaxation length scales are related to relaxation times as
Lϕ,i,∗,BR,KM = (Dτϕ,i,∗,BR,KM)1/2. When the spin-orbit coupling is negligible
(e.g. the curve for LKM = 100 µm), graphene displays negative magnetoresistance
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indicating weak localization, but note that the up-turn in the curve at larger mag-
netic field B occurs because the chirality of quasiparticles in monolayer graphene
tends towards anti-localization [25]. The intrinsic term ĥKM , (10.10), tends to sup-
press weak localization [14, 15]. Taking it into account, but neglecting the Rashba
term ĥBR , (10.11), then the Hamiltonian, (10.7), splits into separate spin ‘up’ and
‘down’ components. Although time-reversal symmetry of graphene is not broken
by spin-orbit coupling, the Hamiltonian of each spin component breaks an effective
time-reversal symmetry. The contributions of the s = 0 and s = z Cooperon com-
ponents (Cl0 and Clz) cancel exactly. Then, the influence of the intrinsic spin-orbit
term may be absorbed into a modified definition of the inelastic dephasing rate as
τ−1
ϕ ⇒ τ−1

ϕ + τ−1
KM in the formulae obtained by neglecting spin-orbit coupling, such

as (10.22, 10.23). When the combined effective dephasing rate τ−1
ϕ + τ−1

KM is rel-

atively large, as compared to the symmetry-breaking rates τ−1
i and τ−1∗ , then the

weak anti-localization of chiral quasiparticles is observable, Fig. 10.3(a).
The low-field magnetoresistance, (10.26), for different strengths of the Bychkov-

Rashba spin-orbit coupling (10.11), neglecting the intrinsic term (10.10), is plotted
in Fig. 10.3(b). The Bychkov-Rashba term ĥBR , (10.11), tends to drive weak lo-
calization towards weak anti-localization [14–16], as in conventional materials [1].
Taken with the Dirac-like Hamiltonian v� · p, the Bychkov-Rashba terms forces the
electronic spin to lie in the graphene plane and perpendicular to the electronic mo-
mentum p. Propagation of electrons around a closed trajectory is then accompanied
by an additional phase change related to spin rotation, resulting in anti-localization
behavior.

10.4 The Low-Energy Hamiltonian of Bilayer Graphene

10.4.1 Massive Chiral Quasiparticles in Bilayer Graphene

Bilayer graphene [38–40] consists of two coupled monolayers, with inequivalent
atomic sites A1, B1 on the lower layer, A2, B2 on the upper layer, Fig. 10.4. In
Bernal (A-B) stacked bilayer graphene, half of these atomic sites, B1 and A2, say,
have a counterpart on the other layer that lies directly above or below it, whereas the
other sites, A1 and B2, have no such partners.

We generalise the tight-binding Hamiltonian of monolayer graphene, (10.2), to
write an effective Hamiltonian [39, 41–44] for bilayer graphene taking into account
one 2pz orbital on each site A1,B2,A2,B1:

Ĥ
(0)
2 =

⎛
⎜⎜⎝

0 γ3f
∗(k) 0 −γ0f (k)

γ3f (k) 0 −γ0f
∗(k) 0

0 −γ0f (k) 0 γ1
−γ0f

∗(k) 0 γ1 0

⎞
⎟⎟⎠ ,
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Fig. 10.4 (a) Plan view of the crystal structure of bilayer graphene, consisting of two coupled
monolayers with two atoms per unit cell on the lower layer, labeled A1 (white circles) and B1
(black circles), and two atoms per unit cell on the upper layer, labeled A2 (black circles) and B2
(grey circles). Atomic sites B1 and A2 (black circles) lie directly below and above each other.
Primitive lattice vectors a1 and a2 are of length equal to the lattice constant a, the shaded rhom-
bus shows a conventional unit cell. (b) Side view, showing intralayer coupling γ0 and interlayer
coupling γ1 between B1 and A2 sites

where parameter γ0 describes nearest-neighbor intralayer hopping, as in the mono-
layer, (10.2). Interlayer coupling between orbitals on sites B1 and A2 that lie di-
rectly above or below each other is described by parameter γ1, whereas parameter γ3

describes skew interlayer coupling between orbitals on the other sites, A1 and B2.
Interlayer coupling γ1 between the B1 and A2 sites has a significant influence

on the electronic band structure at low energy: pz orbitals on the B1 and A2 sites
form ‘dimer’ states that result in two bands that are split away from zero energy,
whereas pz orbitals on the A1 and B2 sites form two bands with an approximately
parabolic dispersion in the vicinity of the Fermi level. The two low-energy bands
may be described by an effective Hamiltonian describing two components consist-
ing of orbitals on the B2 and A1 sites. It is obtained by eliminating the contribution
of the split bands, described by the B1 andA2 components, using a Schrieffer-Wolff
transformation [45]. Then, the two low-energy bands [39] may be described by an
effective Hamiltonian:

Ĥ
(0)
2 ≈ ĥ2 + ĥ2w, (10.27)

ĥ2 = − 1

2m
Π0S0

[
σx
(
p2
x − p2

y

)− 2σypxpy
]
, (10.28)

ĥ2w = v3ΠzS0σ · p. (10.29)
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This Hamiltonian operates in a space of eight-component Bloch functions Φ =
[φK+,B2,↑, φK+,A1,↑, φK−,A1,↑, φK−,B2,↑, φK+,B2,↓, φK+,A1,↓, φK−,A1,↓, φK−,B2,↓ ]
consisting of two valleys K+/K−, two lattice sites B2/A1, and two spin com-
ponents ↑/↓. As for the monolayer, the bilayer Hamiltonian is written using di-
rect products of Pauli matrices Πx,y,z,Π0 ≡ 1̂ acting in the K± valley space,
σx,y,z, σ0 ≡ 1̂ acting in the B2/A1 sublattice space, and Sx,y,z, S0 ≡ 1̂ acting in
the ↑/↓ spin space.

The first term in the Hamiltonian (10.28) describes massive chiral quasiparti-
cles with quadratic dispersion ε ≈ ±p2/2m, p = |p|, and chirality associated with
Berry’s phase 2π [39]. The mass, m = γ1/2v2, is related to the B1-A2 interlayer
coupling, γ1, and the monolayer Fermi velocity v. The second term, ĥ2w , is lin-
ear in momentum and describes trigonal warping [32, 39]. The effective velocity
v3 = (

√
3/2)aγ3/� is related to the skew interlayer coupling γ3 between pz orbitals

on atomic sites A1 and B2.

10.4.2 Model of Disorder in Bilayer Graphene

We employΣi ,Λi matrices, (10.5, 10.6), to describe bilayer graphene at low energy,
in the space of two lattice sites B2/A1 and two valleys K+/K−. As in monolayer
graphene, all matrices � and � change sign upon time inversion so that pairs ΣaΛl
are t → −t invariant and can be used as a basis for a phenomenological description
of nonmagnetic static disorder. Then, the Hamiltonian for nonmagnetic disorder in
bilayer graphene may be written as in the monolayer equation (10.9).

10.4.3 Spin-Orbit Coupling in Bilayer Graphene

For the two low-energy bands, in the vicinity of the valley center, the form of SO
coupling in bilayer graphene is analogous to that in monolayer graphene, with
two distinct terms. The first is the intrinsic SO coupling ĥKM = αKMΠ0σzSz
[2, 8–11] and the second is a Bychkov-Rashba term ĥBR = αBRΠz(σxSy − σySx)

[2–4, 8, 12, 13]. Using the matrices Σi , Λi , (10.5, 10.6) to describe B2-A1 sub-
lattice ‘isospin’ and K+, K− valley ‘pseudospin’, the Hamiltonian in weakly-
disordered bilayer graphene at low energy may be written as

Ĥ2 = ĥ2 + ĥ2w + ĥKM + ĥBR + Û , (10.30)

ĥ2 = − 1

2m
Λz
[
Σx
(
p2
x − p2

y

)− 2Σypxpy
]
, (10.31)

ĥ2w = v3� · p, (10.32)

where Û , ĥKM , and ĥBR have the same form as in monolayer graphene, (10.9,
10.10, 10.11), with different parameter values.



340 E. McCann and V.I. Fal’ko

10.5 Weak Localization in Bilayer Graphene

We assume that the chiral term in the Hamiltonian [for bilayer, the term ĥ2, (10.31)]
controls the electronic behavior and that diagonal disorder, Îu(r) in (10.9), domi-
nates the elastic scattering rate, τ−1 ≈ τ−1

0 = πγu2/�, where γ = m/(2π�2) is the
density of states per spin, per valley. Using the standard diagrammatic technique
for disordered systems [1, 17] at pF vτ � �, the disorder-averaged single-particle
Green’s function in bilayer graphene [21, 22] may be written as

GR/A(p, ε) = εR/A − (Λz/2m)[Σx(p2
x − p2

y) − 2Σypxpy]
ε2
R/A − (p2/2m)2

,

where εR/A = ε ± i�/(2τ0).
A marked difference from the monolayer is that the current operator corre-

sponding to the chiral Hamiltonian [the term ĥ2, (10.31)] is momentum dependent
[21, 46],

v̂ = −Λz

m

[
(Σxpx − Σypy)ı̂ − (Σypx + Σxpy)ĵ

]
.

This means that the current vertex entering the Drude conductivity is not renormal-
ized by vertex corrections, so that the Drude conductivity is equal to σ = 4e2γD

where the diffusion coefficient is D = v2
F τ0/2 and the transport time is equal to the

scattering time τ0. The Fermi velocity vF = pF /m is also momentum dependent,
unlike the Fermi velocity v in monolayer graphene.

The weak localization correction is written in terms of Cooperon propagators
Cl
a;s where index a refers to isospin (related to matrices Σ describing sublattice

degrees of freedom), l refers to pseudospin (related to matrices Λ describing val-
ley degrees of freedom), and s refers to spin (related to matrices S). For diagonal
disorder Îu(r), the gapless modes are either combined intervalley and lattice isospin-
singlets C0

0;s and Cz0;s or they are combined intravalley and lattice isospin-triplets

Cx
z;s and Cy

z;s [21, 22]. The remaining modes have relaxation gaps: Cl
x;s and Cl

y;s for

all valley indices l = 0, x, y, z have relaxation gaps Γ l
x;s = Γ l

y;s = 1
2τ

−1
0 and modes

Cx0;s , C
y

0;s , C
0
z;s and Cz

z;s have gaps equal to τ−1
0 .

Taking only the gapless modes into account, the weak localization correction to
the conductivity of bilayer graphene may be written in terms of a summation with
respect to sixteen Cooperons:

δσ = e2D

π�

∫
d2q

(2π)2
∑
s

cs
[
C0

0;s + Cxz;s + C
y

z;s − Cz0;s
]
.

Here, the factors c0 = 1, cx = cy = cz = −1 take into account the fact that spin
singlet and triplet Cooperons appear with opposite signs.

We take into account the symmetry-breaking perturbations ĥ2w , ĥKM , and ĥBR
in the Hamiltonian (10.30), as well as the symmetry-breaking disorder terms ua,l(r).
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They contribute relaxation gaps Γ l
a;s to the otherwise gapless Cooperons Cl

a;s , al-

though, owing to time-reversal symmetry, mode C0
0;0 remains gapless. In the pres-

ence of finite inelastic decoherence rate τ−1
ϕ and external magnetic field B = rot A,

each Cooperon has the same form as in a monolayer, (10.15), and it gives an anal-
ogous contribution to the weak localization correction to the conductivity. The zero
field temperature-dependent correction to the bilayer graphene sheet resistance may
be written as

δρ(0) = −e2ρ2

2πh

∑
s

cs

[
ln

(
τ−1

τ−1
ϕ + Γ 0

0;s

)
+ ln

(
τ−1

τ−1
ϕ + Γ x

z;s

)

+ ln

(
τ−1

τ−1
ϕ + Γ

y

z;s

)
− ln

(
τ−1

τ−1
ϕ + Γ z0;s

)]
, (10.33)

and the magnetoresistance is given by

�ρ(B) = e2ρ2

2πh

∑
s

cs

[
F

(
B

Bϕ + B0
0;s

)
+ F

(
B

Bϕ + Bx
z;s

)

+ F

(
B

Bϕ + B
y

z;s

)
− F

(
B

Bϕ + Bz0;s

)]
, (10.34)

where

F(z) = ln z + ψ

(
1

2
+ 1

z

)
, (10.35)

Bϕ = �c

4De
τ−1
ϕ , Bl0;s = �c

4De
Γ l0;s , (10.36)

and ψ is the digamma function.
We assume that different types of disorder are uncorrelated, 〈ua,l(r)ua′,l′(r′)〉 =

u2
a,lδaa′δll′δ(r − r′), resulting in scattering rates τ−1

a,l = πγu2
a,l/�. Assuming

isotropy of disorder in the x-y plane, we write τ−1
a,x = τ−1

a,y = τ−1
a,⊥, τ−1

x,l = τ−1
y,l = τ−1

⊥,l
and, following Refs. [20–22], combine them into the intravalley scattering rate τ−1

z

and the intervalley scattering rate τ−1
i :

τ−1
z = 2τ−1

z,z , τ−1
i = 4τ−1

⊥,⊥ + 2τ−1
z,⊥. (10.37)

The trigonal warping term ĥ2w in the Hamiltonian (10.30) produces relaxation of
the intravalley Cooperons, Cx0;s and Cy0;s , as characterized [22] by the rate

τ−1
w = 2τ0(v3pF /�)

2, (10.38)

although, as the trigonal warping has an opposite effect in the two valleys, this re-
laxation does not affect the intervalley modes, C0

0;s and Cz0;s .
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Fig. 10.5 (a) Low-field magnetoresistance of bilayer graphene for different strengths of the in-
trinsic spin-orbit coupling ĥKM , neglecting the Rashba term ĥBR . Values of the spin-orbit relax-
ation length LKM are shown on the right hand side. (b) Low-field magnetoresistance for differ-
ent strengths of the Bychkov-Rashba spin-orbit coupling ĥBR , neglecting the intrinsic term ĥKM .
Values of the Bychkov-Rashba relaxation length LBR are shown on the right hand side. Other pa-
rameter values are ρ = 1000 Ω , Lϕ = 10 µm, Li = 500 nm, L∗ = 200 nm, and plots were made
using (10.40)

In the absence of the spin-orbit terms, ĥKM and ĥBR in (10.30), the total relax-
ation rate of the intravalley Cooperons is written as τ−1∗ = τ−1

w + τ−1
z + τ−1

i [22],

Γ 0
0;s = 0, Γ xz;s = Γ

y

z;s = τ−1∗ , Γ z0;s = 2τ−1
i ,

and the magnetoresistance [22] is given by

�ρ(B) = −e2ρ2

πh

[
F

(
B

Bϕ

)
+ 2F

(
B

Bϕ + B∗

)

− F

(
B

Bϕ + 2Bi

)]
. (10.39)

In the absence of intervalley scattering, intravalley symmetry-breaking as parame-
terized by τ−1∗ suppresses the weak localization effect but the presence of interval-
ley scattering τ−1

i tends to restore it. This prediction is consistent with experimental
observations [47, 48].

The spin-orbit terms ĥKM and ĥBR give rise to relaxation rates τ−1
KM and τ−1

BR ,
respectively, of the same form as in monolayer graphene, (10.24). In the presence of
the spin-orbit terms, the relaxation of the bilayer Cooperons Cl0;s can be described
by the following combination of rates:

Γ 0
0;0 = 0,

Γ xz;0 = Γ
y

z;0 = τ−1∗ + 2τ−1
BR,
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Γ z0;0 = 2τ−1
i ,

Γ 0
0;x = Γ 0

0;y = τ−1
BR + τ−1

KM,

Γ xz;x = Γ
y

z;x = Γ xz;y = Γ
y

z;y = τ−1∗ + τ−1
BR + τ−1

KM,

Γ z0;x = Γ z0;y = 2τ−1
i + τ−1

BR + τ−1
KM,

Γ 0
0;z = 2τ−1

BR,

Γ xz;z = Γ
y

z;z = τ−1∗ ,

Γ z0;z = 2τ−1
i + 2τ−1

BR.

These results, combined with (10.33, 10.34), determine the weak localization cor-
rection to the zero-field resistance and the magnetoresistance, respectively. Explic-
itly, the latter is given by

�ρ(B) = e2ρ2

2πh

[
F

(
B

Bϕ

)
+ 2F

(
B

Bϕ + B∗ + 2BBR

)

− F

(
B

Bϕ + 2Bi

)
− 2F

(
B

Bϕ + BBR + BKM

)

− 4F

(
B

Bϕ + B∗ + BBR + BKM

)

+ 2F

(
B

Bϕ + 2Bi + BBR + BKM

)

− F

(
B

Bϕ + 2BBR

)
− 2F

(
B

Bϕ + B∗

)

+ F

(
B

Bϕ + 2Bi + 2BBR

)]
. (10.40)

The low-field magnetoresistance, (10.40), for different strengths of the intrinsic
spin-orbit coupling ĥKM , neglecting the Bychkov-Rashba term ĥBR , is plotted in
Fig. 10.5(a). The intrinsic term ĥKM tends to suppress weak localization. As in the
monolayer, when the Bychkov-Rashba term ĥBR is neglected, the influence of the
intrinsic spin-orbit term may be absorbed into a modified definition of the inelas-
tic dephasing rate as τ−1

ϕ ⇒ τ−1
ϕ + τ−1

KM in the formulae obtained by neglecting
spin-orbit coupling, such as (10.39). Unlike monolayer graphene, however, chiral
quasiparticles produce weak localization in bilayers, and no crossover to weak anti-
localization is visible, Fig. 10.5(a), even when the combined effective dephasing
rate τ−1

ϕ + τ−1
KM is relatively large.

The low-field magnetoresistance, (10.40), for different strengths of the Bychkov-
Rashba spin-orbit coupling ĥBR , neglecting the intrinsic term ĥKM , is plotted
in Fig. 10.5(b). The Bychkov-Rashba term ĥBR tends to drive weak localization
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towards weak anti-localization as in conventional materials [1] and monolayer
graphene.

10.6 Summary and Conclusions

The weak localization correction to the classical conductivity arises from the inter-
ference of electrons that travel along long diffusive paths and, thus, it is a sensitive
probe of symmetry breaking and scattering [14–27, 29, 30]. Regimes of weak lo-
calization (WL) and weak anti-localization (WAL) behavior, arising from the inter-
play between lattice, valley and spin degrees of freedom in graphene, are summa-
rized in Fig. 10.1 for monolayer and bilayer. In the absence of symmetry breaking,
τϕ  τ∗, τi , the chirality of electrons in monolayer and bilayer graphene would
be manifest as WAL and WL behavior, respectively. However, in typical graphene
samples, sources of symmetry breaking including trigonal warping, random-bond
disorder (due to bending of a graphene sheet) and dislocation/antidislocation pairs
will tend to suppress weak localization (in the regime τ∗  τϕ  τi ), so that weak
localization can only be observed in the presence of strong inter-valley scattering,
τi  τϕ .

At very low temperature, weak localization in graphene may be sensitive to the
presence and nature of spin-orbit coupling, resulting in weak anti-localization—as
in semiconductors and metals [1]—in both monolayers and bilayers if the spin-orbit
coupling is of the Bychkov-Rashba (BR) type, τBR  τϕ . This would be distin-
guishable from the presence of intrinsic spin-orbit coupling, which would lead to
suppressed weak localization once τKM  τϕ .
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3D hexagonal Brillouin zone, 127
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κE and κL, 90
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AB stacking, 105, 127, 191, 202, 267, 279
ABC stacking, see rhombohedral stacking
Acceptor graphite intercalation compounds, 68
Activation energy, 155
Aharonov-Casher argument, 224
Anderson localization, 151
Anisotropy, 72
Anomalous quantum Hall effect, 232
Anti-localization, 8
Armchair edge, 49, 144, 234, 240
Arrhenius plot, 155

B
Backward scattering, 8, 158
Ballistic regime, 86
Ballistic transport, 84
Band gap in graphene, 142, 144, 179, 182, 194
Bernal stacking, see AB stacking
Berry’s phase, 5, 7, 15, 38, 124, 229, 237, 244,

319, 339
Z2 Berry’s phase, 235

Biased bilayer graphene
FQHE in, 272
Hamiltonian, 269
Landau energy spectrum, 270
Landau level wave functions, 271
pseudopotentials, 271

Bilayer graphene, 51, 191, 222, 337
Hamiltonian, 267

Bipartite lattice, 216
Boltzmann conductivity, 185

Boron nitride, 166
Bottom-up growth, 164
Boundary scattering, 67, 89, 94, 95
Breaking of time reversal symmetry, 158
Bulk carbons, 67
Bulk graphite, 4
Bulk-edge correspondence, 233
Bychkov-Rashba term, 332

C
Capacitive coupling, 162
Carbon nanotubes, 99
Carrier density, 78, 81
Carrier mobility, 121
Charge carriers freeze out, 82
Charge neutrality point, 5
Charge stability diagram, 163
Charge transfer, 81
Charging energy, 150
Chemical vapor deposition, 4
Chern number, 227
Chiral condensate, 246
Chiral operator, 216
Chiral partner, 216
Chiral symmetry, 216
Chirality, 339
Circularly polarized phonons, 123
Co-circular polarization, 128
Coherence lengths, 67
Collimated beam, 19
Collisions, 69
Composite fermion, 255
Conductance fluctuations, 148
Conductance quantization, 143, 146, 165
Conductivity, 184

in bilayer graphene, 198
Constrictions, 142
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Coulomb blockade, 149, 150
thermal and coupling broadening, 155

Coulomb energy, 261
Coulomb interaction, 72, 84
Crossed circular polarization, 128
CVD, 32
Cyclotron energy, 252
Cyclotron resonance, 115
Cyclotron resonance harmonics, 131

D
D-band, 103
d-wave superconductor, 237
Daumas-Hérold domains, 67
Debye temperature, 91
Dielectric maximum, 96
Dirac points, 5
Dirac sea, 228, 246
Disorder, 31, 146, 330

introduced by intercalation, 72
Dispersion relations, 73, 76
Dispersionless states, 145
Doping, 36
Double quantum dot, 161
Dynamical conductivity, 189, 200

E
Edge states, 235
Edge termination, 164
Effective mass, 11, 79
Effective mass approximation, 174

in bilayer graphene, 191
Effective two-parameter model, 127
Electrical conductivity, 71, 94
Electron–hole pairs, 104
Electron-electron interaction, 40
Electron-hole asymmetry, 121, 127, 128
Electron-hole puddle, 31, 36
Electron-phonon interaction, 40, 83, 123
Electronic band structure, 71, 73
Electronic thermal conductivity, 90
Electronic transport, 108
Energy gap, 152
Energy spectra

in the FQHE, 263
Epitaxial graphene, 4, 32

F
Fabry-Perot interference, 4, 20, 22
Fano factor, 22
Faraday rotation, 117, 240
Fermi energy, 79, 104
Fermi surfaces, 72
Fermi velocity in graphene, 5, 121, 176

Fermion doubling, 218
Filling factor, 252
Flat band, 222, 235
Floquet topological states, 241
Fluorine intercalated compounds, 87
Form factors, 254
Fractional quantum Hall effect in graphene,

251
experimental results, 265, 266

G
G-band, 102
G′ -band, 105
Gate voltage, 44
Gate-modulated, 104
Graphene edges, 49
Graphene Landau level, 217, 223
Graphene on hexagonal BN, 32
Graphene on SiO2, 31
Graphite, 66
Graphite acceptor intercalation compounds, 70
Graphite intercalation compounds, 66

H
Haldane pseudopotentials, 254

in graphene, 260
Haldane’s model, 232, 245
Half-integer quantum Hall effect, 5
Hall conductivity, 179, 185, 186
Heterojunctions, 17
Highly oriented pyrolytic graphite, 66
Honeycomb transnational symmetry, 216

I
In-plane coherence length, 93
Incompressible state, 253

experimental observation, 265
Pfaffian state in bilayer graphene, 289

Index theorem, 222, 225
Inelastic scattering of light, 101
Integer quantum Hall effect in graphene, 231
Intercalation, 72
Intervalley scattering, 102, 328
Intravalley scattering, 102

K
K point, K′ point, 174
k.p perturbation, 219
Kane-Mele model, 332
Klein tunneling, 5, 17, 19, 22, 151
Kohn’s theorem, 122

L
Landau level broadening, 45
Landau level degeneracy, 252
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Landau levels in graphene, 9, 14, 37, 117, 158,
177, 252, 258

in bilayer graphene, 193
in multilayer graphene, 206
Landau wave functions, 259

Landauer sum, 20
Large-scale defects, 67
Lattice constant of graphene, 174
Lattice thermal conductivity, 90, 92
Laughlin state, 253, 254

Pfaffian factor, 284
Lifshitz transition, 125, 130
Linear electronic dispersion, 9, 68
Local electrostatic gates, 17
Localized islands, 151
Localized state, 46
Lorentz invariance, 17
Lorenz number, 91

M
Magnetic flux, 12
Magnetic length, 252
Magneto transport, 157
Magneto-oscillations, 8
Magneto-phonon effect, 123, 132
Magneto-plasmons, 117
Magnetoresistance, 334
Many-body effect, 245
Massive Dirac fermion, 226
Massless Dirac equation, 3
Massless Dirac fermions, 67, 76, 257
Matthiessen’s rule, 80
Mechanical exfoliation, 4, 146
Mesoscopic, 164
Metal-insulator transition, 152
Minimum conductivity, 187
Misoriented bilayer graphene, 277
Mobilities, 67
Monolayer and bilayer graphene, 324
Multilayer graphene, 202
Multiwall carbon nanotubes, 99

N
Nielsen-Ninomiya theorem, 221, 231
Non-Abelian gauge field, 233

O
Optical absorption, 189

in bilayer graphene, 200
Optical Hall effect, 239
Orbital diamagnetism, 181

in bilayer graphene, 196

P
p-n junction, 16
Particle-hole symmetry, 9
Perfect transmission, 19
Pfaffian states in graphene, 285, 289
Phonon mean free path, 67
Phonon transport, 109
Phonon-phonon umklapp processes, 94, 96
Phonons, 69
Photovoltaic quantum Hall effect, 241
Point defects, 67
Pristine carbons, 72
Pristine graphites, 67
Pseudo-spin, 5
Puddles, 31, 36, 160

Q
Quantum aspects of conduction, 72
Quantum electrodynamics, 5, 17
Quantum Hall effect, 46, 302–305, 308–310,

317, 322–324
Quantum point contact, 144
Quasi relativistic quantum dynamics, 5

R
Raman scattering, 107
Reduced dimensionality, 72
Relative lever arm, 159
Relaxation time, 79
Renormalization of the Fermi velocity, 40, 55
Residual resistivity, 80
Resonant Raman scattering, 69, 109
Rhombohedral stacking, 105, 207, 279
Ribbon edges, 144
Right-handed Dirac fermions, 7

S
Sauter-like potential step, 18
Scanning tunneling microscopy, 29
Scanning tunneling spectroscopy, 30
Scattering parameter, 81
Selection rules, 118, 125
Self-consistent Born approximation, 187, 198
Semiclassical Shubnikov de Haas phase, 12
Semimetallic behavior, 72, 78
Separatrix, 130
Shubnikov-de Haas oscillations, 9, 22
Side-gates, 158
Single-particle level spacing, 155
Single-particle picture, 156
Single-wall carbon nanotubes, 7
Slonczewski-Weiss-McClure model, 75, 127,

191, 203
Solution processing, 4
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Space group, 221
Spin coherence, 141
Spin Hall effect, 248
Spin-orbit interaction, 327
Split-gate, 143
Stacking arrangements

AA stacking, 267
ABA (Bernal) stacking, 105, 127, 191, 202,

267, 279
ABC stacking, see rhombohedral stacking

Stokes process, 101
Strain in graphene, 51
Strong localization, 87, 148
Sublattice symmetry, 16, 145, 216
Suspended graphene, 165
Symmetry breaking, 301, 303, 309–311, 314,

315, 317, 321, 323–325

T
Temperature dependence of the conductance,

153
Thermal conductivity, 67, 88, 95
Tight-binding model, 174
TKNN formula, 231, 244
Topological excitations, 312, 320, 321
Topological insulators

FQHE in, 295
Haldane pseudopotentials, 293
Hamiltonian, 290
Landau level wave functions, 291
surface states, 290

Topological states, 233
Transmission electron microscopy, 33

Transport gap, 142, 148
Transport properties, 76
Triangular sublattices, 5
Trigonal warping, 330
Trilayer graphene

Haldane pseudopotentials, 281
Hamiltonian, 279
Landau level energy spectra, 282
Landau level wave functions, 280

Tunneling barriers, 161
Tunneling coupling, 163
Twisted graphene, 52
Two-dimensional electron gas, 143

U
Umklapp scattering, 96
Universal conductance fluctuations, 72

V
Van Hove singularity, 53
Vapor grown carbon fibers, 71
Velocity of sound, 93
Violation of pseudospin conservation, 16

W
Weak localization, 69, 72, 84
Wiedemann-Franz law, 91

Z
Z2 Berry phase, 237
Zeeman energy, 262
Zero gap semiconductor, 74
Zero-energy state, 217
Zigzag edge, 49, 145, 234, 238, 240
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