
MSA-GPU: Exact Multiple Sequence Alignment
Using GPU

Daniel Sundfeld and Alba C.M.A. de Melo

Department of Computer Science, University of Brasília, Brasília, Brazil
{sund,alves}@unb.br

Abstract. In this paper, we propose and evaluate MSA-GPU, a solu-
tion to implement the exact Multiple Sequence Alignment algorithm in
Graphics Processing Units (GPUs). In our solution, we use the Carrillo-
Lipman upper and lower bounds to reduce the amount of computation.
We propose a fine-grained strategy to explore the search space by us-
ing 2D projections. The results were obtained with a GTX 580 NVidia
GPU comparing sets of 3 sequences (real and synthetic). We show that,
for sequences with medium/low similarity, our GPU approach is able to
outperform the MSA 2.0 CPU program, achieving a speedup of 8.6x.

1 Introduction

Bioinformatics is an interdisciplinary field that involves computer science, biol-
ogy, mathematics and statistics [12]. One of its main goals is to analyze biological
sequence data and genome content in order to obtain the function/structure of
the sequences as well as evolutionary information.

Once a new biological sequence is discovered, its functional/structural charac-
teristics must be established. In order to do that, the newly discovered sequence
is compared against the sequences that compose genomic databases, in search of
similarities. Sequence comparison is, therefore, one of the most basic operations
in Bioinformatics. A sequence can be compared to another sequence (Pairwise
Comparison), to a profile that describes a family of sequences (Sequence-Profile
Comparison) or to a set of sequences (Multiple Sequence Alignment).

In a Multiple Sequence Alignment (MSA), similar characters among a set of
k sequences (k > 2) are aligned together. Multiple Sequence Alignments are
often used as a building block to solve important and complex problems in
Molecular Biology, such as the identification of conserved motifs in a family of
proteins, definition of phylogenetic relationships and 3D homology modeling,
among others. In all these cases, the quality of the solutions relies heavily on the
quality of the underlying multiple alignment. MSAs are often scored with the
Sum-of-Pairs (SP) objective function and the exact SP MSA problem is known
to be NP-complete [18]. Therefore, heuristic methods are often used to solve this
problem, even when the number of sequences is small.

A great number of heuristic methods were proposed to tackle the Multiple
Sequence Alignment problem. In a general way, they fall into two categories:

J.C. Setubal and N.F. Almeida (Eds.): BSB 2013, LNBI 8213, pp. 47–58, 2013.
c© Springer International Publishing Switzerland 2013

48 D. Sundfeld and A.C.M.A. de Melo

progressive and iterative. A progressive MSA method initially generates all pair-
wise alignments and ranks them. The closest sequences are aligned first and then
an MSA is built by adding the other sequences, in order of relevance. ClustalW
[3] is an example of a progressive method. Iterative methods create an initial
MSA of groups of sequences and then modify it, until a reasonable result is at-
tained. DIALIGN [11] is an example of a deterministic iterative method. More
recently, statistical methods that take into account evolutionary information
such as Prank [7] and StatAlign [15] have also been proposed. This creates a
great number of MSA heuristic tools, making it difficult to compare results and
to determine the quality of a given MSA.

On the other hand, there do exist exact methods that are able to obtain the
optimal Multiple Sequence Alignment [12]. The so-called naive exact method
is a generalization of the exact algorithm based on dynamic programming that
obtains optimal pairwise alignments [17]. It has time complexity O(nk), where
n is the size of the sequences and k is the number of sequences.

Carrillo-Lipman [2] made an important contribution in the area of exact Mul-
tiple Sequence Alignment by showing that it is not necessary to explore the
whole search space in order to obtain the optimal alignment. They showed that
an heuristic alignment can be used to obtain an upper bound to the optimal
alignment and all possible pairwise combinations can be used to obtain a lower
bound. It is proven that the cells that fall outside these bounds do not contribute
to the optimal alignment and, thus, these cells do not need to be calculated. Even
with this, time complexity remains exponential.

Many efforts have been made to reduce the execution time of Multiple Se-
quence Alignment algorithms. Parallel versions were proposed to accelerate
heuristic methods in clusters [5], [9], FPGAs (Field Programmable Gate Ar-
rays) [16] and GPUs (Graphics Processing Units) [6], [1]. A few efforts were also
made to implement exact Multiple Sequence Alignment algorithms in clusters
[4] and FPGAs [8]. As far as we know, there are no implementations of the exact
MSA in GPUs.

In this paper, we propose and evaluate MSA-GPU, a GPU solution to imple-
ment the exact Multiple Sequence Alignment algorithm. In our solution, we use
the Carrillo-Lipman upper and lower bounds to reduce the amount of computa-
tion. We propose a fine-grained strategy to explore the search space by using 2D
projections as in [8]. The results were obtained with a GTX 580 NVidia GPU
comparing sets of 3 sequences (real and synthetic). We show that, for sequences
with medium/low similarity, our GPU approach is able to outperform the MSA
2.0 CPU program, achieving a speedup of 8.6x.

The rest of this paper is organized as follows. We present an overview of the
Multiple Sequence Alignment problem in Section 2. Section 3 discusses related
work in the area of Exact MSA. In Section 4, the design of our GPU strategy
for exact MSA is presented and the experimental results are shown in Section 5.
Finally, we conclude the paper and give the future work directions in Section 6.

MSA-GPU: Exact Multiple Sequence Alignment Using GPU 49

2 Multiple Sequence Alignment (MSA)

To compare two sequences, we search the best alignment between them, which
amounts to place one sequence above the other making clear the correspondence
between similar characters or substrings from the sequences [12].

A global Multiple Sequence Alignment (MSA) of k > 2 sequences S =
S1, S2, ..., Sk is obtained in such a way that spaces (gaps) are inserted into each
of the n sequences so that the resulting sequences have the same length n. Then,
the sequences are arranged in k rows of n columns each, so that each character
or space of each sequence is in a unique column [12]. Figure 1 shows an example
of one pairwise aligment and one MSA of 3 DNA sequences.

GA
AT
TG
GA
CT
A

GA
AT
TG
GA
CT

G
A
A
T
C
A
G
G
A
C
G
A

GTAATCATGACA

G
A
A
T
C
A
G
G
A
C
G
A

GTAATCATGACA

(a) Pairwise Alignment (b) Multiple Sequence Alignment

Fig. 1. Pairwise alignment and MSA with 3 sequences. The gray line represents one
possible alignment.

Usually, MSAs are scored with the Sum-of-Pairs (SP) function and the exact
SP MSA problem is known to be NP-hard [18]. In SP, every pair of bases is
scored with the pairwise scoring function and the final score is the addition of
all these values [12]. For instance, considering that the punctuation for matches
(similar characters), mismatches (different characters) and gaps are 0, +1 and
+1, respectively, the score generated by pairwise comparison of sequences S1

and S2 (Figure 2) is 0 + 1 + 1 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 + 1 + 0 = 5.
The SP score of the MSA in this example is 16. When comparing proteins, a
substitution matrix is used to score matches/mismatches. The most common
substitution matrices are PAM and BLOSUM [12].

2.1 Heuristic Methods

Many heuristic methods have been proposed in the literature to solve the MSA
problem. ClustalW [3] is a progressive heuristic method that aligns k sequences
in three phases. In the first phase, all (k ∗ (k − 1)/2) pairwise alignments are
computed and scores are obtained. These scores are used to generate a distance
matrix that indicates the similarity between the sequences. In the second phase,
a guide tree is generated from the distance matrix, using the neighbor-joining
method. The guide tree is used in the third phase to progressively generate the
MSA, starting with the most closely related sequences.

50 D. Sundfeld and A.C.M.A. de Melo

S1 : G A – A T C A – G G A C G A

S2 : G T A A T C A T - G A C - A

S3 : G - A A T – - T G G A C T A

A

A

A

A
5

5
6

Score SP: 5 + 5 + 6 = 16

Fig. 2. The Sum-of-Pairs scoring function

Like ClustalW, DIALIGN (DIagonal ALIGNment) [11] is an heuristic method
for MSA. In order to align sequences, DIALIGN looks for ungapped fragments
(or diagonals) and aligns them. Thus, in DIALIGN, an alignment is defined to be
a chain of diagonals. The algorithm is executed in three phases. In the first phase,
all DIALIGN pairwise alignments are computed, i.e., there are k∗(k−1)/2 chains
of diagonals, one for each pairwise alignment, where k is the number of sequences
[10]. In the second phase, the diagonals that compose the pairwise alignments are
sorted by their score and the degree of overlap with other diagonals. This sorted
list is used to obtain an MSA with a greedy algorithm, generating alignment
A. In the last phase, the alignment A is completed with an iterative procedure
where the parts of the sequences that are not yet aligned with A are realigned by
executing phase 2 again, in such a way that consistent non-aligned diagonals are
included in A. This phase is repeated until no diagonal with a positive weight
can be included in A.

In addition to ClustalW and DIALIGN, there are many other methods to
calculate heuristic MSAs such as SAGA [14] and T-Coffee [13]. Even though the
heuristic methods are able to provide good solutions, it is not guaranteed that
the optimal MSA will be obtained.

2.2 Exact MSA

The optimal multiple sequence alignment among k sequences can be calculated
by extending the exact dynamic programming algorithm for pairwise comparison
[12]. Without loss of generality, assume that there are 3 sequences S1, S2 and
S3, of sizes n1, n2 and n3, respectively.

The goal is to obtain the optimal score, which indicates the alignment distance
(minimum number of insertions, deletions and substitutions). In order to do that,
we calculate a 3-dimensional dynamic programming matrix D, where D(i, j, k)
is the optimal alignment of prefixes S1[1..i], S2[1..j] and S3[1..k].

The naive algorithm is depicted in Algorithm 1. There are three for loops
(lines 1 to 3), one loop for each sequence. The scores for matches and mismatches
are calculated in lines 4 to 6. After that (lines 7 to 13), seven values are calculated
which correspond to the seven neighbor cells of D(i, j, k). In line 14, D(i, j, k)
receives the minimum value of those calculated in lines 7 to 13. If there are k

MSA-GPU: Exact Multiple Sequence Alignment Using GPU 51

Algorithm 1. Naive exact Multiple Sequence Alignment
1: for i = 1 → n1 do
2: for j = 1 → n2 do
3: for k = 1 → n3 do
4: cij = AssignMatchMismatchPunctuation(S1(i), S2(j));
5: cik = AssignMatchMismatchPunctuation(S1(i), S3(k));
6: cjk = AssignMatchMismatchPunctuation(S2(k), S3(j));
7: d1 = D(i− 1, j − 1, k − 1) + cij + cik + cjk
8: d2 = D(i− 1, j − 1, k) + cij + gap
9: d3 = D(i− 1, j, k − 1) + cik + gap

10: d4 = D(i, j − 1, k − 1) + cjk + gap
11: d5 = D(i− 1, j, k) + 2 ∗ gap
12: d6 = D(i, j − 1, k) + 2 ∗ gap
13: d7 = D(i, j, k − 1) + 2 ∗ gap
14: D(i, j, k) = Min[d1, d2, d3, d4, d5, d6, d7]
15: end for
16: end for
17: end for

sequences to be compared, there will be k loops in this algorithm and 2k − 1
cells will be used to calculate each cell of matrix D.

Carrillo-Lipman Bound. Carrillo-Lipman [2] showed that it is not necessary
to explore the whole search space in order to obtain the optimal Multiple Se-
quence Alignment. They defined a lower and an upper bound which confine the
region that contains the optimal alignment and thus restrict the area of the
n-dimensional matrix to be calculated.

The lower (L) and upper (U) bounds are calculated as explained in the fol-
lowing paragraphs.

Equation 1 calculates the lower bound, based on the sum-of-pairs score. In this
equation, scale(Si, Sj) is the weight of each pairwise aligment, usually choosen
via an evolutionary tree of N sequences. d(Si, Sj) is the score of the optimal
pairwise alignment of Si and Sj .

L =
∑

i<j

d(Si, Sj) · scale(Si, Sj) (1)

L is a lower bound for the following reason. Since d(Si, Sj) is the optimal
score between sequences Si and Sj , this is the lowest possible score for (Si, Sj).
Since the score of the Multiple Sequence Alignment is a sum-of-pairs, i.e., an
addition of all pairwise scores, and the scores are non-negative, therefore the
optimal Multiple Sequence Alignment score must be greater or equal to the sum
of all optimal pairwise scores.

Consider that Ao is the optimal alignment, c(Ao) is the score of the optimal
alignment, scale(Si, Sj) is 1, and c(Ao

i,j) is the score of the pairwise alignment
of i and j. The Carrillo-Lipman Bound is given by Inequation 2:

52 D. Sundfeld and A.C.M.A. de Melo

c(Ao
i,j) ≤ d(Si, Sj) + U − L (2)

U − L can be obtained by a heuristic alignment Ah. This alignment induces
a score c in the sum-of-pairs i and j, and so U − L is obtained by:

U − L =
∑

i<j

[c(Ah
i,j)− d(Si, Sj)] (3)

Equation 3 shows that the lower and upper bounds have a value which is
based on the projection of a heuristic alignment subtracted from the scores of
the pairwise alignments. It is guaranteed that the cells that are outside those
bounds do not contribute to the calculation of the optimal Multiple Sequence
Alignment [2]. Frequently, the difference U − L is called δmsa.

3 Related Work

Even though there are many works in the literature that implement heuristic
methods in GPUs [6], [1], FPGAs [16] and clusters [5], [9], there are very few
works that implement exact MSA methods in high performace computing plat-
forms.

Helal et al. [4] propose the use of a master-slave architecture to execute the
exact MSA algorithm in a cluster. In order to reduce the search space, the
authors use geometrical relations over hyper-diagonals and hyper-lattices. They
were able to compare sets of 3, 4 and 5 sequences of small size in a cluster with
8 cores. The MSA comparison of 5 sequences took more than 2 days.

Masuno et al. [8] implemented the exact MSA with the Carrillo-Lipman bound
in FPGA. In their proposal, the n-dimensional dynamic programming matrix is
transversed in windows defined over 2D-projections, where i, j vary, whereas the
other dimensions remain fixed. In order to implement the Carrillo-Lipman bound
algorithm, a heuristic MSA is calculated in CPU and its score is transferred
to the FPGA. Before calculating a window, the algorithm tests if it is inside
the Carrillo-Lipman bound. If not, the window is not calculated. Two different
circuits are proposed to calculate MSAs of 4 and 5 sequences, respectively. The
computation of an MSA of 5 sequences took about 5 minutes in the FPGA.

4 Design of MSA-GPU

In order to execute the exact MSA algorithm, we opted to use GPUs since they
provide massive SIMD (Single Instruction Multiple Data) parallelism for large-
scale problems. For MSA-GPU, we designed two strategies, which are described
in Sections 4.1 and 4.2.

4.1 Coarse-Grained Strategy

In the coarse-grained strategy, we used a multidimensional wavefront calculated
by one GPU block and, inside the block, each GPU thread calculates one cell of
the dynamic programming matrix D (Algorithm 1).

MSA-GPU: Exact Multiple Sequence Alignment Using GPU 53

Figure 3 (coarse) illustrates the coarse-grained strategy, showing the tasks
executed in the CPU and in the GPU. First, the user provides the sequences and
the Carrillo-Lipman δmsa (delta_cl) (Section 2.2). Then, the data structures in
the GPU are initialized. After that, the kernels in GPU are executed for each
multidimensional diagonal with n threads. The wavefront indexes are calculated
in GPU and represent the coordinates of the cells that can be calculated in
parallel. At the end of each kernel computation, the variable bound_reached is
used to discard unnecessary multidimensional diagonals. At the very end of the
computation, the optimal score is obtained and given as output to the user.

Fig. 3. Overview of the coarse-grained and fine-grained strategies

When using this coarse-grained strategy, we observed that the parallelism in
the multidimensional wavefront grows a lot. But when the algorithm execute the
last stages, some cells that might be calculated in paralell do not have the initial
shape of a multidimensional wavefront. In this case, using the same wavefront
shape would imply in the recalculation of some cells, reducing the throughput.
The shape of the multidimensional wavefront processing is shown in Figure 4(a)
and 4(b). In the left-corner picture in Figure 4(b) we can observe the effect of
the cells without the wavefront shape.

4.2 Fine-Grained Strategy

With this strategy, we intended to augment the parallelism by using more than
one GPU block. This was possible because we chose the wavefront indexes to

54 D. Sundfeld and A.C.M.A. de Melo

(a) First stages of the multidimensional wavefront

(b) Last stages of the multidimensional wavefront

Fig. 4. Multidimensional wavefront in the coarse-grained strategy

calculate the cells of the DP matrix using 2D projections. This led to a more
regular dependency pattern and, thus, multiple blocks could be used.

The multi-block fine-grained strategy works as follows. Inside each block, the
threads will calculate the same cell of the dynamic programming matrix. There-
fore, lines 7 to 13 in Algorithm 1 will be parallelized, where each thread will
calculate values d1 to d7 in parallel. Besides that, many cells that belong to the
same projected diagonal will be calculated in parallel by different blocks. Figure
3 (fine) illustrates this strategy.

In this strategy, we traverse the search space using 2D projections, as shown
in Figure 5(a) and 5(b). In this figure, it can be seen that a more regular pattern
is obtained.

5 Experimental Results

The strategies proposed in Section 4 were implemented in CUDA C, using the
CUDA toolkit 4.1.21. The results were obtained with the NVidia GTX 580 GPU
(512 cores and 1.5 GB RAM). This GPU was connected to an Intel Core i5 host
machine, with 6GB RAM.

In our tests, we used real and synthetic sequences (Table 1). The real sequences
were obtained from the PFAM (pfam.sanger.ac.uk) and Balibase 2.0 (bips.u-
strasbg.fr/fr/Products/Databases/BAliBASE2/) databases. The synthetic
sequences were constructed in order to reproduce easy, medium, hard and very
hard MSA patterns.

First, we compared the sequences in Table 1 with the coarse (Section 4.1)
and the fine granularity (Section 4.2) approaches. In the last case, one block and
multiple blocks were used. The results are shown in Table 2. In this table, we can
see that, when the sequences are small, the fine-grained strategy achieves better

MSA-GPU: Exact Multiple Sequence Alignment Using GPU 55

(a) First stages of the projected wavefront

(b) Last stages of the projected wavefront

Fig. 5. 2D-projected wavefront in the fine-grained strategy

Table 1. Sequences used in the Tests

Name Database Reference Sizes
Seq15 PFAM PF10550 15 15 14
Seq22 PFAM PF08095 22 22 22
Seq42 PFAM PF03855 41 44 42
Seq59 PFAM PF08184 59 59 59
Seq110 PFAM PF11513 106 111 110
Seq122 PFAM PF06453 122 122 122
Seq143 PFAM PF09155 143 143 143
Seq162 PFAM PF03426 158 158 162
Seq373 Balibase2 1pedA 350 326 373
Seq446 Balibase2 1ad3 423 441 446
Seq416 Synthetic synthetic_easy 231 416 363

Seq417.1 Synthetic synthetic_medium 231 447 363
Seq417.2 Synthetic synthetic_hard 231 447 423
Seq453 Synthetic synthetic_veryhard 231 446 453

results than the coarse-grained strategy, even with only one block. When we
augment the sizes of the sequences, the coarse-grained strategy surpasses the fine-
grained strategy (one block) since the reduced number of threads is insufficient
to deal with the parallelism. For all the sequences compared, the fine-grained
strategy (multiple blocks) was able to achieve the best execution times, with
a great improvement over the other approaches. For instance, when comparing
sequences Seq446, the execution time was reduced from 8min55s (coarse-grained)
to 6.62s (fine-grained multi-block).

We also compared the execution times of the fine-grained multi-block GPU
strategy with the MSA 2.0 CPU program. This program is publicly available
at www.ncbi.nim.nih.gov/CBBresearch/Schaffer/msa.html, runs in CPU and is
often used to obtain exact multiple sequence alignments. The execution times in
our host machine (one core) and in the GPU are shown in Table 3. In this table,

56 D. Sundfeld and A.C.M.A. de Melo

Table 2. Comparison Between the Coarse-Grained (C-Grain) with 990 Threads, Fine-
Grained One Block (F-Grain-1B) with 7 Threads, and the Fine-Grained Multiple
Blocks (F-Grain-MB) with Variable Number of Threads

Name C-Grain F-Grain-1B F-Grain-MB
Seq15 1.09s 0.12s 0.05s 7 to 105 threads
Seq22 1.34s 0.27s 0.07s 7 to 154 threads
Seq42 3.61s 1.68s 0.10s 7 to 308 threads
Seq59 4.60s 4.28s 0.14s 7 to 413 threads

Seq110 16.51s 27.25s 0.35s 7 to 777 threads
Seq122 26.05s 37.71s 0.46s 7 to 854 threads
Seq143 29.84s 1min04s 0.47s 7 to 1001 threads
Seq162 41.07s 1min25s 0.74s 7 to 1106 threads
Seq373 5min34s 14min23s 4.04s 7 to 2282 threads
Seq416 4min16s 16min12s 3.69s 7 to 2912 threads
Seq446 8min55s 29min30s 6.62s 7 to 3087 threads

Seq447.2 5min11s >30 min 6.49s 7 to 3129 threads

Table 3. Execution Times for the MSA 2.0 CPU program and the MSA-GPU fine-
grained multi-block GPU strategy using Full Space Search (FSS) and reducing the
Search Space with Carrillo-Lipman (CL)

Name δmsa MSA 2.0 CPU (s) MSA-GPU (FSS) (s) MSA-GPU (CL) (s)
Seq15 15 0.001 0.051 0.051
Seq22 15 0.001 0.068 0.056
Seq42 15 0.002 0.102 0.096
Seq59 15 0.002 0.140 0.126

Seq110 15 0.005 0.353 0.313
Seq122 15 0.006 0.461 0.435
Seq143 15 0.007 0.473 0.423
Seq162 15 0.010 0.743 0.650
Seq373 137 0.180 4.041 3.324
Seq446 29 0.140 6.624 6.203
Seq416 502 1.652 3.693 2.611

Seq417.1 185 23.507 3.837 3.011
Seq417.2 484 28.711 6.478 4.764
Seq 453 387 31.078 6.948 3.612

the second column presents the δmsa parameter given to the MSA-GPU program
to use the Carrillo-Lipman bound. For the MSA 2.0 CPU program, the default
parameters were used, whenever possible. For sequences Seq447.1, Seq447.2 and
Seq453, the MSA 2.0 program was not able to retrieve the score/alignment with
the default parameters. Therefore, we had to augment the δmsa parameter to 100,
100 and 1000, respectively. The third, forth and fifth columns show, respectively,
the execution times for the MSA 2.0 CPU program, the MSA-GPU fine-grained
multi-block strategy (Full Space Search) and the MSA-GPU fine-grained multi-
block strategy (Carrillo-Lipman).

MSA-GPU: Exact Multiple Sequence Alignment Using GPU 57

We can see that, for sequences Seq15 to Seq446, the MSA 2.0 CPU program
is able to execute very quickly, with much better execution times than the GPU
program. This happens because the sequences have high similarity and, for this
reason, the CPU program is able to prune efficiently the search space. Even
though our GPU program also prunes the search space, these sequence sets do
not have enough parallelism to surpass the CPU implementation.

SequencesSeq447.1, Seq447.2 and Seq453 are more complex cases. Therefore,
the MSA 2.0 program was not able to execute with the default parameters and
the δmsa parameter was augemented. Augmenting the δmsa parameter reduces
the area pruned by the Carrillo-Lipman bound , thus augmenting the execution
time. For these cases, the GPU program presents a speedup of 7.8x for the
sequence set Seq447.1 (medium similarity), 6.02x for Seq447.2 (low similarity)
and 8.60x for Seq453 (very low similarity).

6 Conclusion and Future Work

In this paper, we proposed and evaluated MSA-GPU, a parallel tool that is able
to calculate exact MSAs in GPUs. We proposed coarse-grained and fine-grained
mechanisms to express the parallelism, with different strategies to compute the
dynamic programming matrix (multidimensional and 2D-projected wavefronts).

The results obtained with real and synthetic sequence sets composed of 3
sequences show that the fine-grained multiblock strategy achieves better execu-
tion times than the coarse-grained strategy when the sequences have a reasonable
size. When comparing the fine-grained multi-block MSA-GPU with the MSA 2.0
CPU program, we observed that the CPU program has very low execution times,
when the sequences are similar. For sequences with medium/low similarity, the
execution time augments a lot and, in these cases, MSA-GPU outperforms MSA
2.0, being able to reduce the execution time considerably.

As future work, we intend to extend MSA-GPU to compare up to 7 sequences.
We also intend to investigate alternative bounds to the Carrillo-Lipman bound
that guarantee that the optimal result will be produced by calculating a smaller
area in the n-dimensional dynamic programming matrix.

References

1. Blazewicz, J., Frohmberg, W., Kierzynka, M., Wojciechowski, P.: G-MSA - A GPU-
based, fast and accurate algorithm for multiple sequence alignment. Journal of
Parallel and Distributed Computing 73(1), 32–41 (2013)

2. Carrillo, H., Lipman, D.: The Multiple Sequence Alignment Problem. SIAM Jour-
nal of Applied Math. 48, 1073–1082 (1988)

3. Higgins, D.G., Thompson, J.D., Gibson, T.J.: ClustalW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix. Nucleic Acids Research 22, 4673–4680
(1994)

4. Helal, M., Mullin, L.R., Potter, J., Sintchenko, V.: Search Space Reduction Tech-
nique for Distributed Multiple Sequence Alignment. In: NPC, pp. 219–226 (2009)

58 D. Sundfeld and A.C.M.A. de Melo

5. Li, K.B.: ClustalW-MPI: ClustalW analysis using distributed and parallel comput-
ing. Bioinformatics 19(12), 1585–1586 (2003)

6. Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: Multiple Sequence Alignment
on Graphics Processing Units with CUDA. In: ASAP, pp. 121–128 (2009)

7. Loytynoja, A., Goldman, N.: Phylogeny-aware gap placement prevents errors in
sequence alignment and evolutionary analysis. Science 320, 1632–1635 (2008)

8. Masuno, S., Maruyama, T., Yamaguchi, Y., Konagaya, A.: An FPGA Implementa-
tion of Multiple Sequence Alignment Based on Carrillo-Lipman Method. In: Field
Programmable Logic and Applications, pp. 489–492 (2007)

9. Macedo, E.A., Melo, A.C.M.A., Pfitscher, G.H., Boukerche, A.: Multiple biological
sequence alignment in heterogeneous multicore clusters with user-selectable task
allocation policies. The Journal of Supercomputing 63(3), 740–756 (2013)

10. Morgenstern, B., Dress, A., Werner, T.: Multiple DNA and protein sequence align-
ment based on segment-to-segment comparison. PNAS, USA, 12098–12103 (1996)

11. Morgenstern, B., Frech, K., Dress, A., Werner, T.: DIALIGN: Finding local simi-
larities by multiple sequence alignment. Bioinformatics 14(3), 290–294 (1998)

12. Mount, D.W.: Bioinformatics: sequence and genome analysis. Cold Spring Harbor
Laboratory Press (2004)

13. Notredame, C.: T-Coffee: a novel method for fast and accurate multiple sequence
alignment. Journal of Molecular Biology 302, 205–217 (2000)

14. Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algorithm.
Nucleic Acids Research 24, 1515–1524 (1996)

15. Novak, A., Miklos, I., Lyngso, R., Hein, J.: StatAlign: an extendable software pack-
age for joint Bayesian estimation of alignments and evolutionary trees. Bioinfor-
matics 24(20), 2403–2404 (2008)

16. Oliver, T.F., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.L.: Using reconfig-
urable hardware to accelerate multiple sequence alignment with ClustalW. Bioin-
formatics 21(16), 3431–3432 (2005)

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

18. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of
Computational Biology 4, 337–348 (1994)

	MSA-GPU: Exact Multiple Sequence Alignment
Using GPU
	1 Introduction
	2 Multiple Sequence Alignment (MSA)
	2.1 Heuristic Methods
	2.2 Exact MSA

	3 Related Work
	4 Design of MSA-GPU
	4.1 Coarse-Grained Strategy
	4.2 Fine-Grained Strategy

	5 Experimental Results
	6 Conclusion and Future Work
	References

