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Preface

This volume contains the papers selected for presentation at the 8th Brazilian
Symposium on Bioinformatics (BSB 2013), held during November 3–6, 2013, in
Recife, Brazil. BSB is an international conference that covers all aspects of bioin-
formatics and computational biology. This year the event was jointly organized
by the special interest group in Computational Biology of the Brazilian Com-
puter Society (SBC), which has been the organizer of BSB for the past several
years, and by the Brazilian Association for Bioinformatics and Computational
Biology (AB3C), which has been the organizer of another event, the X-Meeeting,
also for the past several years. This year for the first time the two events were
co-located.

As in previous editions, BSB 2013 had an international Program Committee
(PC) of 46 members. After a rigorous review process by the PC, 18 papers were
accepted to be orally presented at the event, and are printed in this volume. In
addition to the technical presentations, BSB 2013 featured keynote talks from
David Roos (University of Pennsylvania), Peter Stadler (University of Leipzig),
and Martin Tompa (University of Washington). Peter Stadler graciously con-
tributed an invited paper to these proceedings (“The Trouble with Long-Range
Base Pairs in RNA Folding”).

BSB 2013 was made possible by the dedication and work of many people and
organizations. We would like to express our sincere thanks to all PC members, as
well as to the external reviewers. Their names are listed in the pages that follow.
We are also grateful to the local organizers and volunteers for their valuable help;
the sponsors for making the event financially viable; Guilherme P. Telles and
Peter Stadler for assisting in the preparation of the proceedings; and Springer
for agreeing to publish this volume. Finally, we would like to thank all authors
for their time and effort in submitting their work and the invited speakers for
having accepted our invitation.

This year selected BSB 2013 papers were invited for submission in expanded
format to a special issue of the IEEE/ACM Transactions on Computational
Biology and Bioinformatics. We thank Ying Xu (Editor-in-Chief) and Dong Xu
(Associate Editor-in-Chief) for this opportunity.

November 2013 João C. Setubal
Nalvo F. Almeida
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Fábio Viduani Martinez Universidade Federal de Mato Grosso do Sul,

Brazil
Mariana Mendoza Universidade Federal do Rio Grande do Sul,

Brazil
Kary Ocaña Universidade Federal do Rio de Janeiro, Brazil
Luiz Otávio Murta Jr Universidade de São Paulo/Ribeirão Preto,

Brazil
Gethin Norman University of Glasgow, UK
Yuri Pirola University of Milano-Bicocca, Italy
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The Trouble with Long-Range Base Pairs

in RNA Folding�

Fabian Amman1, Stephan H. Bernhart1, Gero Doose1,2, Ivo L. Hofacker3,5,8,
Jing Qin1,4, Peter F. Stadler1−7, and Sebastian Will1

1 Dept. Computer Science, and Interdisciplinary Center for Bioinformatics,
Univ. Leipzig, Härtelstr. 16-18, Leipzig, Germany

2 LIFE, Leipzig Research Center for Civilization Diseases, University Leipzig,
Philipp-Rosenthal-Strasse 27, 04107 Leipzig, Germany

3 Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, Austria
4 MPI Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany

5 RTH, Univ. Copenhagen, Grønneg̊ardsvej 3, Frederiksberg C, Denmark
6 FHI Cell Therapy and Immunology, Perlickstr. 1, Leipzig, Germany

7 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, USA
8 Bioinformatics and Computational Biology research group, University of Vienna,

1090 Währingerstraße 17, Vienna, Austria

Abstract. RNA prediction has long been struggling with long-range
base pairs since prediction accuracy decreases with base pair span. We
analyze here the empirical distribution of base pair spans in large collec-
tion of experimentally known RNA structures. Surprisingly, we find that
long-range base pairs are overrepresented in these data. In particular,
there is no evidence that long-range base pairs are systematically over-
predicted relative to short-range interactions in thermodynamic predic-
tions. This casts doubt on a recent suggestion that kinetic effects are the
cause of length-dependent decrease of predictability. Instead of a modi-
fication of the energy model we advocate a modification of the expected
accuracy model for RNA secondary structures. We demonstrate that the
inclusion of a span-dependent penalty leads to improved maximum ex-
pected accuracy structure predictions compared to both the standard
MEA model and a modified folding algorithm with an energy penalty
function. The prevalence of long-range base pairs provide further evi-
dence that RNA structures in general do not have the so-called polymer
zeta property. This has consequences for the asymptotic performance for
a large class of sparsified RNA folding algorithms.

Keywords: RNA folding, long-range base pair, prediction accuracy,
polymer zeta property.

1 Introduction

Despite the many successful applications of thermodynamics-based RNA sec-
ondary predictions it has remained a challenging problem to predict long-range

� The Students of the Bioinformatics II Lab Class 2013.

J.C. Setubal and N.F. Almeida (Eds.): BSB 2013, LNBI 8213, pp. 1–11, 2013.
� Springer International Publishing Switzerland 2013



2 F. Amman et al.

base pairs with high accuracy. This deficit in the thermodynamic model has been
known for a long time, see e.g. [1]. Despite recent efforts, however, we still lack
a convincing solution to this problem.

Several authors have devised modified algorithms that treat a base pair (p, q)
in dependence of its span � = q−p+1, i.e., the number of nucleotides between its
end points p and q measured along the backbone. In the simplest case, one strictly
disallows the formation of long-range base pairs by limiting base pairs to a max-
imum span L. This has the convenient side effect that computation complexity
of the folding algorithms drops from O(N3) to O(NL2). Several implementa-
tions of span-restricted folding have been published, including RNALfold [2] and
its partition function version RNAplfold [3], as well as Rfold [4] and Raccess

[5]. Thorough benchmarking [6] suggests an optimal span of L ≈ 150 as a “rea-
sonable balance between maximizing the number of accurately predicted base
pairs, while minimizing effects of incorrect long-range predictions.” Instead of
applying a hard cutoff, CoFold [7] discounts long-range base pairs by a span-
dependent penalty factor. This additional term is motivated as a net effect of
kinetic folding: since local structures can form rapidly already during the course
of transcription, many bases are kinetically trapped in local structures and hence
are later-on not available for the formation of long-range base pairing.

Discouraging long-range base pairs in computational approaches, however,
appears to be at odds with a wide variety of reports of functionally important
long-range structures. The first well-described motifs of this type are the pan-
handle structures that are abundant throughout RNA virus genomes, see e.g. [8].
Furthermore, recent SHAPE-seq data provide direct evidence for functional long-
distance interactions e.g. in the tombusvirus tomato bushy stunt virus (TBSV)
[9]. Long-range base pairing is also involved in modulation of alternative splicing
in a wide variety of mRNAs [10, 11].

A series of theoretical studies furthermore emphasizes that long-range pairing
is an important, generic feature of RNA secondary structures. In particular, the
3’ and 5’ ends are typically close to each other [12–15]. Measured in terms of
the natural graph distance on the secondary structures, the expected end-to-end
distance remains asymptotically constant. This, at face value counter-intuitive
mathematical result, has recently stimulated a more detailed investigation in
the distribution of graph distances between arbitrary positions in an ensemble
of RNA structures [16]. Here, we take a complementary point of view and ask for
the distribution of base pairs as a function of the span L and the RNA sequence
length n.

The (low) abundance of long-range base pairs is essential for sparse RNA fold-
ing algorithms [17]. For many of these approaches, an asymptotic performance
gain was claimed under a specific assumption about the rapid drop of base
pair probability with increasing span; this assumption is known as polymer-zeta
property. Our results hint at the invalidity of this assumption.

Finally, we study the CoFold-like idea of penalizing long-range base pairs
in more generality. For this purpose we suggest a novel maximum expected



Long-Range Base Pairs 3

accuracy prediction approach. Strong sparsification of this approach allows for
fast exploration of the prediction accuracy landscape of the parameter space.

2 Empirical Distribution of Base Pair Spans

Throughout this contribution we predict only pseudoknot-free RNA secondary
structures, i.e., each two base pairs (i, j) and (k, l) satisfy that i < k < j implies
i < k < l < j (as well as j �= k and i = k ↔ j = l.) We first consider the
empirical evidence regarding the abundance of long-range base pairs. RNAstrand
2.0 [18] is a database of high quality structures compiled from several sources
such as Rfam, the RCSB Protein Data Bank and some specialized databases
such as the tmRNA database[19], SRP database[20] and RNaseP database[21].
Since we were interested in long-range interactions, we removed RNAs with less
than 200 nucleotides. Furthermore, we discarded any molecule with more than
two consecutive unknown nucleotides (Ns) or gaps. These pruning steps left us
with our data set of 2010 structures.

For each of the data base entries, we predicted structures using CoFold at
default parameter settings. As a control, we furthermore shuffled the entire data
set preserving dinucleotide frequencies (using a reimplementation of [22]) and
predicted structures with CoFold again. Then, we counted the base pairs of
specific spans in the data set structures, the CoFold predictions from the data
set sequences, and the CoFold predictions from dinucleotide shuffled data. The
resulting empirical distributions are shown in Figure 1A.
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Fig. 1. A Empirical base pair span distribution. We plot base pair spans relative to
the sequence lengths vs. the logarithm of their absolute frequency in a collection of the
2010 data set structures taken from the RNAstrand database (black). For comparison we
show the span distribution of structure predictions with CoFold for the same sequences
(blue) and for a dinucleotide shuffle control data set (dotted red). B Total number of
canonical base pairs in the ensembles of all database sequences as a function of their
relative base pair spans �/n.
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Surprisingly, both the empirical distribution and the CoFold predictions for
the same sequences shows a pronounced over-representation for long-range base
pairs compared to the randomized control. This enrichment is most likely the
effect of natural selection and strongly suggests that long-range base pairs play
an important role in at least a subset of RNA secondary structures included
in the RNAstrand database. It cannot be explained by the known panhandle
structures of viral RNAs since no complete viral genomes are contained in this
resource. Fig. 1A also shows that the computational discouragement of long-
range pairs leads to a systematic underestimation of long-range pairs, which is
most pronounced around � ≈ 0.75n.

To investigate the over-representation of long-range base pairs further, we
decided to look at the structural ensembles of the selected RNAstrand sequences.
Based on an adaption of Nussinov’s algorithm, we counted the base pairs of span
� over all sequences in all of their secondary structures allowing only canonical
base pairs with minimal loop size m = 3. The result, shown in Figure 1B, aids
the interpretation of the empirical distributions of Figure 1A. As in the data
set distribution, the number of base pairs does rise slightly starting at a relative
span of 0.6, and has a peak at the end to end pairs. However, the dent at a
relative base pair span of 0.9 is not present in the distribution of Fig. 1B.

3 Theoretical Distribution of Base Pair Spans

To understand the qualitative features of the span distribution of Figures 1A and
B better, we consider long-range base pairs from a combinatorial perspective.
More precisely, we ask, how prevalent long-range base pairs are already in the
absence of energetic considerations.

To this end, consider a secondary structure S and denote by νS(�) the total
number of base pairs in S with span �. Similarly, let νS be the number of base
pairs in S. We are interested in the distribution Pn(�) of base pairs with span �
in the structure ensemble; here, the ensemble consists of all secondary structures
over sequences of length n with minimal loop size m, i.e. each base pair (i, j)
satisfies j − i > m. Setting Cn(�) =

∑
S νS(�) and Cn =

∑
S νS =

∑
� Cn(�) we

obtain
Pn(�) = Cn(�)/Cn . (1)

Let Nn denote the number of secondary structures in the ensemble, the expected
number of base pairs with span � in a secondary structure can be calculated from
Pn(�) as

en(�) =
Cn(�)

Nn
=

Cn

Nn
· Pn(�). (2)

In the absence of sequence constraints and influences of energy parameters
on base pairing, the ensemble of secondary structures for an RNA sequence is
identified with the set of noncrossing partial matchings on n vertices. Their
number Nn of distinct structures can be obtained recursively as
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Nn = Nn−1 +

n∑
k=m+2

Nk−2Nn−k (3)

with initial conditions N0 = N1 = · · · = Nm = Nm+1 = 1, see e.g. [23]. A
similar decomposition can be used to compute Cn(�): First, we observe that
Cn(�) = 0 for � < m + 2, where m is the minimal number of unpaired bases
in a hairpin loop. Furthermore, Cn(�) = 0 for � > n. Base pairs and their span
remain unchanged when an unpaired base is appended. For structures with base
pair (1, k) we argue as follows: If k < �+ 2, only the outside part can contain a
pair of span �. For a given k, there are Nk−2 way to combine the internal part
with the external one, on which we have a total of Cn−k(�) base pairs of span
�. Similarly, if k > n − �, only the part inside the base pair may contain base
pairs of span �. For intermediate values of k, except for k = �, both combinations
contribute. In the special case k = � we have in addition N�−2Nn−� structures
with the base pair (1, �). In summary, we thus obtain the recursion

Cn(�) = Cn−1(�)+N�−2Nn−�+

n∑
k=�+2

Ck−2(�)Nn−k +

n−�∑
k=m+2

Nk−2Cn−k(�). (4)

To investigate the asymptotic behavior of the Cn(�), and hence to better un-
derstand the distribution Pn(�) for large n, we consider the bivariate generating
function C(z, u) =

∑
n

∑
� Cn(�)z

nu�.
Multiply both sides of Eq. (4) with znu� and then sum over all possible n and

�, introducing the generating function N(z) =
∑

n Nnz
n for the Nn, and solving

for C(z, u), we obtain

C(z, u) =
z2u2 ·N(z) · (N(zu)− φm(zu))

1− z − 2z2 ·N(z) + z2φm(z)
. (5)

Here, φ0(z) = 0 and φm(z) =
∑m−1

k=0 Nkz
k form ≥ 1. The asymptotic behavior of

the coefficients depends on the singularities ofC(z, u). We observe a discontinuity
for u = 1 that is reminiscent of what is known as phase-transition phenomena
in statistical physics. For |u| ≤ 1, the dominant singularity of C(z, u) ρ; it is of

the same type as the dominant singularity ρf of f(z) = z2u2·N(z)
1−z−2z2·N(z)+z2φm(z) .

For |u| > 1, however, the singularity is located at ρ(u) = min{ρf , ρN/u},
where ρN is the dominant singularity of N(z). This considerably complicates the
computation of the limit distribution and will be investigated in detail elsewhere.

Here we consider only the simplest case m = 0 with all bases paired, i.e.,
the ensemble of non-crossing matchings, for which explicit expressions can be
obtained. Using N(z) = (1 −

√
1− 4z2)/(2z2), Eq. 5 simplifies to C(z, u) =

(1−√
1−4z2)(1−√

1−4z2u2)

4z2
√
1−4z2 , from which the coefficients can be obtained explicitly.

Making use of the usual approximation of central binomial coefficients, we arrive
at

Pn(�) ∼
n+ 2√

π�

√
2

(n− �+ 2)n(�− 2)
. (6)
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Fig. 2. Logarithmic scale of the probability distribution Pn(�). (Left) Comparison of
P200(�) and its asymptotic approximation for m = 0 in the absence of unpaired bases.
(Right) Qualitatively similar distributions are obtained for minimum hairpin sizes
m = 1, 2, 3.

Note here, in the case of noncrossing matching ensemble, both n and � are even
numbers. According to Eq. 2, we derive the expected number of base pairs with
span � in a secondary structure as

en(�) =
n

2
Pn(�) ∼

n+ 2

2
√
π�

√
2n

(n− �+ 2)(�− 2)
. (7)

In particular we obtain en(n) ∼ 1/(2
√
π), i.e., a constant probability for a base

pair connecting the terminal bases, in line with previous combinatorial consid-
erations.

As shown in Fig. 3, qualitatively similar distributions are obtained for mini-
mum hairpin sizes m = 0, 1, 2, 3, which indicates that these distributions proba-
bly share the same type of limit distribution. When n = 200 for m = 1, 2, 3, the
probability for observing base pairs with very long span scale within the “tail”
around [190, 200] is higher than those base pairs with span scale within [180, 190].
In other words, these probabilities are not simply exponentially decreased. As m
increases, the probability to see long-range pairs only slightly decreased, which
indicates that changes in the minimum hairpin sizes have very small effects on
their limit distributions.

4 Span-dependent Scoring for Structure Prediction

The overabundance of long-range base pairs in the known secondary structures,
Fig 1, indicates that one cannot simply disregard them altogether. The system-
atic underrepresentation of long-range base pairs in the CoFold [7] predictions, on
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the other hand, casts doubt on the assumption that long-range base pairs are dis-
couraged by kinetic effects and hence can effectively be modeled by increasingly
smaller stabilizing energy contributions as the span increases. It may, for a given
nucleotide, be simply a consequence of the trivial fact that there are many pos-
sible alternative long-range pairings. Instead of introducing a long-range penalty
into the energy model as in CoFold we therefore pursue a maximum expected
accuracy (MEA) approach in which we discount the expected accuracy of a
thermodynamically predicted base pair in a length-dependent manner.

The key idea of MEA approaches is to model an accuracy score s(R) for
every given structure R and to compute the structure that maximized this
score. The base pairing probabilities pij as computed by [24] provide the natu-
ral starting point for computing s(R). MEA has proved to be a very accurate
method to predict “best” secondary structures from the base pair probabilities in
Boltzmann-distributed RNA ensembles [25]. In order to account for the reported
problems with predicting long-range base pairs we introduce a span-dependent
penalty π(�) into the definition of the accuracy score s(R) for a given secondary
structure R:

s(R) =
∑

(i,j)∈R

2γπ(j − i)pij +
∑
i/∈R

pu(i), (8)

pu(i) = 1−
∑

j p(i,j) denotes the probability that i is unpaired given P and i /∈ R
refers to nucleotides that are unpaired in R.

The standard MEA ansatz for RNA folding (e.g., [26]) is recovered by π(�) =
1. The MEA score is optimized using the dynamic programming recursion

M(i, j) = max

⎧⎪⎨
⎪⎩
M(i, j − 1) + pu(j)

maxi<k<j M(i, k − 1) +M(k, j)

M(i+ 1, j − 1) + 2γπ(j − i)pij

(9)

for i ≥ j and M(i, j) = 0, otherwise. Compared to the thermodynamic energy
minimization, the MEA algorithm is much simpler since the complications in-
curred by loop-based energy model are already included in the computation of
the base pairing probability matrix P = (pij) by McCaskill’s algorithm [24] using
here the implementation provided by the ViennaRNA package [26].

We consider here the general sigmoidal function

π(�) = δ +
1− δ

1 + exp(α(� − β)

depending on the three parameters α, β, and δ. For δ = 1, the model gracefully
reduces to standard MEA. This model is substantially more general than the
simple decay used in CoFold.

The simple structure of the MEA recursion, Eq. (9) allowed us to implement
the highly optimized variant with OCT-STEP sparsification as described in [17]
for the variant without span-dependent penalty. This drastically reduces compu-
tational cost, in particular for the LSU rRNA sequences contained in the training
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Fig. 3. Parameter estimation. A F-scores as a function of one parameter for the es-
timated optimum value of the other three parameters. B Contour plot of the F-score
landscape as a function of (α, δ) for β and γ set to the trained parameters, generated
from 25× 25 equidistantly spaced values of (α, δ).

set with n ≈ 3500, and allowed the systematic exploration of parameter space
for the penalty function.

We evaluate the dependence of the prediction accuracy on the four parameter
parameters of the penalty function by calculating the average F-score [27] of
predictions to reference structures from the RNA strand database [18]. From
the data set of Section 2, we select a training set and a disjoint control set
of 100 sample instances each. Figure 3A illustrates our learning strategy: we
iteratively scan over values of one of the four parameters while holding the
other three parameters at previous optima. After three iterations, computing 20
values in each scan (performed in the order γ-β-α-δ), we find optimal parameters
α = 0.012, β = 316, γ = 0.505, δ = 0.003, which yield an F-score of about 0.514.
Figure 3B shows the two-dimensional landscape of F-scores as a function of the
parameters α and δ, where the β and γ are set to their previously estimated
optima.

The prediction and F-score evaluation is implemented in C++, where the opti-
mization itself is performed by R interfacing to C++. The software package MEA
is freely available at http://www.bioinf.uni-leipzig.de/Software/mea.

Using the control set, we compare the performance of the novel MEA approach
at the learned parameters to RNAfold minimum free energy (MFE) prediction,
MFE predictions with hard span cutoffs at maximal spans L = 100, L = 150
and L = 200, CoFold predictions (with default settings) and standard MEA
predictions from the McCaskill ensembles, see Table 1.

Not unexpectedly, hard cut-off values L for the span do not perform well on
the RNAstrand data set of long RNAs (even more since long-range base pairs are
overrepresented.) The energy penalties of CoFold also cannot properly capture
long-range effects in this data set. We observe, in fact, reduction of the F-measure

http://www.bioinf.uni-leipzig.de/Software/mea
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Table 1. Comparison of prediction quality. Average F-scores for training and control
data sets by various prediction methods.

data set MFE MEA

RNAfold CoFold L = 100 L = 150 L = 200 standard novel

training 0.467 0.449 0.352 0.386 0.393 0.497 0.514

control 0.473 0.418 0.332 0.363 0.385 0.486 0.496

relative to standard RNAfold. The trained sigmoidal penalty function π provides
a small advantage over the standard, span-independent MEA model, which in
turns performs slightly better than the pure thermodynamic folding.

Although performance evaluations of folding procedures traditionally rely on
Matthews correlation coefficient, we advocate the use of the F-measure. While
the numbers are usually very well correlated, the F-measure does not require
committing to a specific definition of false negatives, which in the case of RNA
structures seems not obvious. Deviating from [28], we consider “false positive” all
predicted non-reference base pairs, even if they are consistent with the reference.
Consequently, the F-measures in Tab. 1 are systematically lower than the MCC
values reported in [28].

5 Discussion

Long-range base pairs have long been known to cause difficulties for the predic-
tion of RNA structures. An empirical analysis of the distribution of base pair
spans in the experimentally determined structures compiled in the RNAstrand

database shown that long-range base pairs are not depleted in biologically rel-
evant structures. This casts doubt on the interpretation of [7] that the poor
performance of thermodynamic folding algorithms in particular for long-range
pairs is the consequence of kinetic effects that would frequently preclude the
formation of long-range pairs, and hence would result in a systematic overpre-
diction for large spans. We suggest that the decrease in the accuracy of pairs
with large spans may rather derive from a larger number of possible alternatives
with large � and propose to include this effect in MEA framework rather than
as a modification of the energy model. After training a span-dependent penalty
function, we find a small but noticeable improvement in the prediction perfor-
mance for the modified MEA approach relative to both undiscounted MEA and
thermodynamic penalty functions.

The prevalence of long-range base pairs has also important consequence for
a large class of sparsified algorithms that rely on the so-called “polymer-zeta
property” to guarantee their performance gain [29]. The polymer-zeta property
implies that the probability that the terminal bases of a folded RNA are paired
decreases asymptotically with sequence length as n−c for some c > 1. Our results,
both for the combinatorics of long-range base pairs and for the empirical RNA
structures in the RNAstrand database, strongly suggest that c = 0, i.e., the
probability of terminal base pairs settles down at a constant value. Not only do
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biological relevant RNAs not have the polymer zeta property, but they favor long-
range interactions. In particular, end-to-end base pairs have an asymptotically
non-vanishing probability. This is consistent with an empirical analysis based
on thermodynamic folding [30] as well as a detailed combinatorial analysis of
certain sparsification approaches [31]. As consequence, sparsification schemes of
the type employed by [29] can incur only a constant factor as performance gain.

The work reported here of course does not settle all the problems and questions
associated with long-range base pairs. It represents only a first step of progress
that has arisen in the context of a two week intensive Master-level computer lab
course held at Univ. Leipzig in 2013. Many open questions remain. We still have
no satisfactory explanation, either statistical or biochemical, for the decrease in
prediction accuracy with span, and hence we do not know if the functional form
the penalty function π is the best one, or even tenable from a theoretical point of
view. It remains unexplored, furthermore, whether other features, such as local
sequence composition, also have a significant impact on prediction accuracy.
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Abstract. REV-ERBα and RORα are involved in the molecular reg-
ulatory system of mammalian circadian cycles, expressing opposite in-
teractions on Bmal1 expression, inhibition and activation, respectively.
REV-ERBα has been thought to be the major regulator of gene expres-
sions in phases, which is more than the role of RORα. This paper gives a
contrary result to this, showing a prominent role of RORα in determin-
ing phase relations of the gene expression cycles. Computer simulations
are conducted for the predictions of this RORα role, in addition, one
of these predictions is supported by a biological experiment that shows
combinatory effect of RORα and CRY on Bmal1 transcription.

1 Introduction

Molecular mechanisms of the circadian rhythm for producing an endogenous os-
cillation with a period close to 24hr have been extensively investigated in many
living organisms including bacteria, insects, and mammals. In the late 90s, the
4 genes Per, Cry, Bmal1 and Clock have been mainly studied as central regula-
tory genes of mammalian circadian clock [1]. BMAL1/CLOCK, the complex of
gene products of the Bmal1 and Clock genes, is translocated to the nucleus and
activates the transcriptions of the Per and Cry genes. PER/CRY, the complex
of gene products of Per and Cry genes, is translocated to the nucleus and re-
presses both the activations of the Per and Cry from the BMAL1/CLOCK. It is
known that transcription cycles of the Per and Cry are nearly antiphase to that
of the Bmal1 in oscillation [2]. To understand the dynamics of these multilevel
combination of genes, mRNAs, and proteins, many computational models have
been suggested for the simulation of these complex behaviors [4].

In addition to these 4 genes and these products, REV-ERBα has been identi-
fied as the major regulator of cyclic Bmal1 transcription [3], which represses the
Bmal1 transcription, while being regulated by PER/CRY and BMAL1/CLOCK
in the same way as Per and Cry. Soon after the publication of this paper, sev-
eral computational models including this REV-ERBα interaction were presented
[5–8]. Especially, in the paper [7], incorporation of the REV-ERBα interaction
to the existing model [9] was conducted, succeeding in reproducing the same
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simulation result as the experimental data [3] in Bmal1 concentration in Rev-
Erbα-knockout mice.

RORα1 has been identified as a regulator that performs the contrary effect
to REV-ERBα, that is, it activates the Bmal1 transcription [10, 11]. Competi-
tive effects of REV-ERBα and RORα on Bmal1 transcription were examined in
[12, 13]. A couple of computational models that include ROR interactions have
been proposed. In the paper [14], although the importance of RORγ and REV-
ERBα was clearly stated, contribution of these two proteins to the circadian
genetic clock are not characterized well. A delay-differential equations model is
constructed to realize accurate simulations of circadian cycles in both of ampli-
tudes and phases, where REV-ERBα and RORγ interactions are appropriately
incorporated [15]. The combinatory effect between ROR/REV-ERBα/BMAL1
loop and PER/CRY loop was investigated with simulations in [16], which demon-
strates the role of ROR and REV-ERBα that forms a compensative loop to the
PER/CRY loop.

Recently, the roles of ROR are extensively studied in the relations to other
circadian gene expression patterns in different peripheral tissues [17] and in a
pathological role in autoimmune disease [18]. A potential for the therapeutic
target for breast cancer is suggested in [19]. Despite such increased attentions
to RORα in the recent research activities, the importance of ROR as the main
regulatory element for circadian cycles has not been well demonstrated yet due
to, for example, the following reasons; no effect on other circadian genes in
oscillation by the loss of ROR [10, 11]; advantage of REV-ERBα to ROR in the
contribution to Bmail1 in its rhythmic expressions and phase relations to other
genes [13].

In this paper, a novel regulatory role of RORα on the phase regulation of
Bmal1 is predicted from a simulation with a hybrid functional Petri net model
[20] of the genetic circadian system. A further prediction on RORα and CRY in-
teraction is made from the results of a simulation of Cry knockout that shows an
inconsistent Bmal1 expression to a biological data. This prediction is supported
by a biological experiment that shows combinatory effect of RORα and CRY on
Bmal1 transcription.

2 Basic Model of Circadian Gene Regulatory Network

Hybrid functional Petri net (HFPN) [20] is a modeling method for the simulation
of biological reactions in a cell. We have constructed an HFPN model of basic
circadian genetic control mechanism consisting of the five essential genes; Per,
Cry, Rev-Erb, Bmal, and Clock [21]. In the following subsections, we present this
HFPN model after giving brief description on the regulatory mechanism of these
five genes.

1 There are three subtypes RORα, RORβ, and RORγ. Since the effect of these three
subtypes on Bmal1 are similar, we use ROR to totally represent these three subtypes.
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Fig. 1. Basic model of circadian gene regulatory system. Per and Cry are transcribed
by CLOCK/BMAL, and translated into proteins that form heterodimers before re-
turning to the cytoplasm. Products of Clock and Bmal heterodimerize to form the
positive transcription factor for Per, Cry, and Rev-Erb; their effects are counteracted
by PER/CRY. REV-ERB represses transcription of the Bmal.

2.1 Genetic Interactions of Five Basic Genes

Amolecular clock reside within suprachiasmatic nucleus (SCN) cells. Each molec-
ular circadian clock comprises a negative feedback loop of gene transcription
and translation into the appropriate protein. The loop includes several genes
and their protein products. In the case of mammals, 3 Period genes (Per1, Per2
and Per3) and 2 Cryptochrome genes (Cry1 and Cry2) comprise the negative
limb, while the Clock and Bmal1 (Bmal) genes constitute the positive limb of
the feedback loop. In order to simplify the model and gain an insight into each
interaction pathway, we examine two groups of genes: Per1, Per2, and Per3 and
Cry1 and Cry2, collectively referred to as Per and Cry, respectively. Rev-Erbα
(Rev-Erb) gene connects these positive and negative limbs. Bmal transcription
is suppressed by REV-ERB, whose transcription is regulated by 2 interactions,
activation by CLOCK/BMAL and repression by PER/CRY. Fig. 1 summarizes
these interactions. Since Per and Cry and their products express the identical
behaviors because of the symmetrical arrangements that exist in this model, we
will only discuss the behaviors of Cry and its product in subsequent portions.

2.2 Hybrid Functional Petri Net Model

Fig. 2 shows an HFPN model of the basic circadian genetic control mecha-
nism shown in Fig. 1, which was developed in Matsuno et al. [21]. HFPN al-
lows us to model a system of biological reactions in a cell without utilizing
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Fig. 2. HFPN model of the circadian genetic control mechanism shown in Fig. 1.
A continuous place (doubled circle) holds a certain concentration of a gene product
(mRNA or protein), and a formula representing the speed of a biological reaction is
assigned at a continuous transition (rectangle). A continuous place and a continuous
transition are connected by an arc that is chosen from a normal arc, test arc, or
inhibitory arc depending on the biological relationship between two specified molecules.

any skills of mathematical descriptions and programming techniques. HFPN
can manage 2 types of data, continuous and discrete, and consists of 3 types
of elements, places, transitions, and arcs. However, discrete elements, namely,
discrete places and discrete transitions, were not used in the HFPN model in this
study.

A continuous place holds a real number such as the concentration of a sub-
stance, (e.g. mRNA or protein). A continuous transition is used to represent a
biological reaction such as transcription and translation, and a formula repre-
senting the speed of a biological reaction is assigned at a continuous transition.
There are 3 types arcs, normal, test, and inhibitory, which connect places and
transitions. A normal arc is used to represent a flow of the substance, directed
from the place to the transition or vice versa. A test or inhibitory arc is used
to represent a condition and is only directed from a place to a transition. At
the normal arcs from a place, test arcs, and inhibitory arcs, specified threshold
values are assigned. The firing of the transition at the head of these arcs is con-
trolled by the threshold value, namely, the normal arc from a place or the test
arc (the inhibitory arc) can participate in activating (repressing) the transition
at its head, so long as the content of the place at its tail is over the threshold
value. For either test or inhibitory arcs, no amount is consumed from a place at
its tail. The formal definition of an HFPN has been provided in the paper [20].
Simulations of HFPN models can be carried out with the software named “Cell
Illustrator” [22].
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3 A New Hypothesis: Rorα is the Major Regulator of
Antiphasic Relationship between Cry and Bmal1

3.1 REV-ERBα is Not the Major Regulator of Antiphasic
Relationship between Cry and Bmal1

Cry and Bmal transcriptions are antiphasic [23]. In the summary of the pa-
per [3], the following sentence occurs: “REV-ERBα constitutes a molecular link
through which components of the negative limb drives antiphasic expression of
components of the positive limb.” That is, this paper made an assertion that
REV-ERB is the major regulator that drives the antiphasic transcription cy-
cles of Bmal and Cry. However, our previous study [21] using the HFPN model
of Fig. 2 produced a result that contradicts this assertion, namely, “antiphasic
transcription cycles between Bmal and Cry cannot be regulated by REV-ERBα
alone.” The summary of this discussion is given in Fig. 3.

3.2 An HFPN Model Incorporating Ror Interaction

Fig. 4 shows the circadian gene regulatory system that incorporates the RORα
(ROR) interaction. We constructed an HFPN model of this system, which is
illustrated in Fig. 5.

3.3 ROR Can Locate the Bmal Peak at the Mid Point of Cry Peaks

In order to evaluate the effect of ROR on Bmal transcription, we simulated
this HFPN model in which the pale part in Fig. 5 that depicts the Rev-Erb
interaction was eliminated. After manipulating the parameters slightly, the Bmal
peak shifted to between (mid point) 2 successive Cry peaks, as shown in Fig. 6A.
According to this model, Bmal expression is controlled by only ROR. This means
that an appropriate choice of the threshold value in the decreasing of ROR
enables the shift in Bmal to between (mid point) 2 successive Cry peaks. This
implies that the antiphasic expression of the component of the negative limb
(Cry) and that of the positive limb (Bmal) is not caused by REV-ERB but
ROR.

4 Our Computer Simulation Suggests a Possible Novel
Interaction between ROR and CRY

It is known that Bmal is not expressed in Cry mutant mice [2]. However, the
oscillation in Bmal expression persisted in the HFPN simulation, in which the
two arcs directed toward continuous place Cry mRNA are removed. (Fig. 6B). In
order to resolve this inconsistency, we conducted an additional simulation with
the HFPN model after incorporating the following hypothesis: “ROR interacts
with CRY.” Fig. 7 shows the HFPN model in which this hypothetical interaction
has been incorporated. Fig. 8 provides the simulation results obtained from Cell
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Bmal transcription

Bmal transcription

Bmal transcription

Bmal transcription

over 12h

Fig. 3. (A) Simulation results of Cry, Bmal, and Rev-Erb transcriptions and REV-ERB
translation behaviors from Cell Illustrator that were obtained for the HFPN model of
Fig. 2. REV-ERB drives Bmal expression when the parameter α is assigned as the
threshold. The transcription of Bmal is ON (OFF) at the point when the REV-ERB
level crosses the threshold α downward (upward). In this figure, Bmal and Cry do not
show an antiphasic relationship. (B) This figure illustrates the only condition under
which the antiphasic relationship between Bmal and Cry is realized with REV-ERB
regulation (not from simulation). Note that a Bmal peak can be located between 2
successive Cry peaks only when REV-ERB is on the rise. Considering the fact that the
Rev-Erb peak is present at the same position as the Cry peak [25], we arrive at the
unrealistic conclusion that REV-ERB requires over 12 h for its translation.

Illustrator. The results reveal that (1) the Bmal peak is present approximately
between (mid point) successive Cry peaks and that (2) Bmal is not expressed
when Cry expression is disrupted. Hence, the hypothetical path resolves the
previous inconsistency.
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Fig. 4. Interaction among circadian genes after incorporating the Ror gene and its
product into Fig. 1
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Fig. 5. HFPN model of the Fig. 4. The interactions of Ror and its product are added.
The pale color part represents the interactions of Rev-Erb and its products. A simu-
lation without this pale color part is conducted to examine a behavior of the model
without Rev-Erb interactions.

5 Genetical Results Suggesting a Functional Interaction
Between Cry and Ror

Our computer simulation analyses on the circadian clock system using HFPN
presented above showed that, if cooperative interaction of CRY and ROR is
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simulation with the HFPN shown in Fig. 5 that is without the pale part that describes
Rev-Erb interactions. (B) Bmal behavior in the simulation with the modified HFPN
where the two arcs directed toward the continuous place Cry mRNA are removed.
This simulation result contradicts the result of biological experiment that confirmed
no oscillation in Bmal expression in Cry mutant mice [24].
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approximately between (mid point) of successive Cry peaks. (B) No oscillation in
Bmal expression in Cry mutant mice. Both these results correspond with the results of
biological experiments.

working, most characteristics of the molecular circadian clock could be repro-
duced in silico. Hence, we also explored genetically for evidence suggesting Bmal
transcription rate is upregulated both by ROR and CRY. We determined biolu-
minescence from Bmal transcription in NIH3T3 cells in culture.

NIH3T3 cells are a well-used cell line, which are known to contain the func-
tional cell-autonomous circadian clock system. NIH3T3 cells were cultured in 24-
well plates and transfected as described previously [11]. The total amount of DNA
was adjusted to 400 ng per well with pcDNA3 plasmid. The cells were immedi-
ately frozen in liquid nitrogen and stored at -80◦C. The cell lysates were used for
the Dual Luciferase Assay System (Promega), as described previously [11].

Following the procedures above, we constructed the Bmal1 promoter con-
nected with luciferase gene and transfected this construct into NIH3T3 cells, in
order to measure the rate of transcription of Bmal1 gene by means of biolumines-
cence from luciferase. Details of the experimental methods have been published
in the paper [11].

Fig. 9 shows that Bmal1 transcription in terms of bioluminescence. We found
that CRY expression induced transcriptional activation of the Bmal1 gene (Fig.
9A), and that this activation was completely dependent on the ROR responsive
elements (Fig. 9B), indicating that CRY-mediated activation of the Bmal1 gene
was via endogenous RORα. Although even RORα4 alone induces about 3 fold
increase in Bmal1 transcription as previously reported, simultaneous incubation
of CRY and RORα4 increases the induction of Bmal1more than three times than
those with CRY alone (Fig. 9C). These results clearly indicate the presence of
cooperative interaction between ROR and CRY as far as Bmal1 transcription is
concerned.
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Fig. 9. (A-C) NIH3T3 cells were transfected with the indicated combinations of ex-
pression vectors. The effect of CRY on Bmal1 transcription (A), the effect of CRY on
transcriptional levels of the Bmal1 promoter carrying mutations in the ROR response
elements (B), and the effect of ROR α4 and CRY on Bmal1 transcription (C) were
evaluated using a luciferase assay. Data represent the mean ± SE of triplicate sam-
ples. Numbers (under the abscissa axis) indicate the amount of DNA transfected into
NIH3T3 cells. The total amount of DNA was adjusted to 400 ng with pcDNA3 plasmid.

6 Discussion

REV-ERBα has been suggested as the major regulator that drives the antiphasic
transcription cycles between Bmal and Cry in mammalian circadian rhythms
[3]. However, a computer simulation in a previous study [21] gave a contradicted
sugession to this, showing that these antiphasic transcription cycles cannot be
regulated by REV-ERBα alone. Although, in this paper, a hypothetical path
”PER/CRY activates Bmal1” was added to realize these antiphasic cycles, this
path has not been identified yet.

The Ror incorporated HFPN model of Fig. 4 produced antiphasic Bmal and
Cry expressions. This strongly implied that the gene responsible for the antipha-
sic nature of Bmal1 and Cry transcriptions is not Rev-Erbα but Rorα. However,
this new simulation still retained an inconsistency in that Bmal maintains the
oscillation in its expression even when Cry expression is disrupted. This incon-
sistency was eliminated in the subsequent simulation in which the interaction
among PER, CRY and RORα was introduced. This simulation result, together
with the fact that the REV-ERB/ROR response element is present upstream of
Cry, suggested the existence of an undiscovered interaction between CRY and
ROR that affects Bmal transcription. This suggestion was supported by a bio-
logical experiment that shows the synergistic activation of Bmal by CRY and
ROR.

Post-translational modifications are important regulatory factors in control-
ling the circadian rhythms. In recent papers, the balance between two proteins,
CK1δ/ε and PP1, was shown to determine the period of circadian cycle through
the regulation of the kinetics of PER phoshorylation [26], and FBXL3 and
FBXL21 have been shown as combinatory regulators that stabilize CRY os-
cillation by exerting antagonizing actions in ubiquitination on CRY [27]. These
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post-translational modifications need to be included in our future model that
allows us to produce more precise and reliable prediction for the regulation of
the mammalian circadian cycle.
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Abstract. We introduce HybHap, a new approach for haplotype infer-
ence problem on large genotype datasets. HybHap is a hybrid method,
based on the Parsimonious tree-grow idea, which resorts to Markov
chains, in order to maximize the probability that the haplotypes will
be shared by more genotypes in the dataset. Several experiments with
large biological datasets taken from HapMap were performed to com-
pare HybHap with two well known algorithms: fastPHASE and PTG.
The results show that HybHap is a rather robust, reliable, and efficient
method that runs orders of magnitude faster than the others, producing
results of comparable accuracy, hence being much more suitable to deal
with the challenge of genome wide tasks.

Keywords: haplotype inference, hybrid algorithms, markov chains,
tree-grow.

1 Introduction

An alteration of one isolated nucleotide base which occurs with considerable fre-
quence in the DNA of a given population is known as Single Nucleotide Polymor-
phism (SNP) [1] [2] [3]. Occurrences of SNPs have been associated with specific
phenotypic traits and also with several illnesses [4]. Hence, it is important to
map the occurrences of SNPs, but that has shown to be a huge challenge.

An haplotype can be defined as a set of SNPs from a copy of a specific chro-
mosome. Much of the difficulty of finding these alterations is due to the lack of
haplotype data in large scale, mostly because of the high cost of collecting that
information directly.

One possible way of acquiring haplotype data is to infer them from genotype
data, which are highly abundant. That motivates the Haplotype Inference (HI)
problem, whose computational cost depends on the evolutionary model consid-
ered. One such model is based on the biological sound Parsimony Principle, but
it is proved to be NP-hard [5], meaning that all algorithms currently known can
only solve it in time that is exponential on the number and size of the DNA
sequences, which is prohibitive. Several computational methods were developed
aiming at finding solutions that may be biologically plausible, but they usually
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present high computational costs. In view of real applications, the current chal-
lenge is to infer haplotypes from large scale genotypes. Hence, computationally
efficient methods with acceptable accuracy are in great demand. In this pa-
per we present a hybrid approach that combines the efficiency of Parsimonious
Tree-Grow with Markov chain choices. The result is a method that is orders
of magnitude faster than the known methods, delivering results of comparable
accuracy.

The rest of this paper is organized as follows. Section 2 gives a formal definition
of the Haplotype Inference Problem and discusses related works. In Section 3, the
proposed Markov chain used by the HybHap method is presented. The HybHap
approach is introduced in Section 4. In Section 5 there is a description of the
datasets and how the benchmark was organized, and in Section 6, the results
of experiments are provided to demonstrate the accuracy and efficiency of the
proposed hybrid method. Finally, we present several remarks, concluding the
paper in Section 7.

2 Haplotype Inference Methods

We adopt the notation used by Rosa and Guimarães [6]. A genotype can be
computationally represented by a vector on the alphabet {0, 1, 2}, where a
symbol 2 represents an ambiguous site. Then a genotype vector g, with n sites,
can be explained by two haplotype vectors h1 and h2, where each site h1(i)
and h2(i), 1 ≤ i ≤ n, has h1(i), h2(i) ∈ {0, 1}, and follows the rule given
by: (A) h1(i) = h2(i) = g(i), if g(i) ∈ {0, 1}; and (B) h1(i) = 1 − h2(i), if
g(i) = 2. The sites of g that have a symbol 0 or 1 are called homozygous (non
ambiguous sites) and those with a symbol 2 are called heterozygous (ambiguous
sites). The Haplotype Inference Problem basically consists of finding, for each
genotype g, haplotypes h1 and h2 such that h1 and h2 explain g in a biologically
plausible way. For instance, if g = (0, 1, 2, 2, 1, 2), possible solutions are h1 =
(0, 1, 0, 0, 1, 0) and h2 = (0, 1, 1, 1, 1, 1), or else h1 = (0, 1, 0, 1, 1, 1) and h2 =
(0, 1, 1, 0, 1, 0), among other possibilities. It is easy to see that there are 2h−1

candidate haplotype pairs to explain g, where h is the number of ambiguous
sites in g. Obviously, there are many plausible solutions for a given input g, so a
biological criterion is needed to define a good solution.

There are two main biological models used to infer haplotypes: Pure Parsi-
mony and Perfect Phylogeny. Inferring haplotypes assuming perfect phylogeny
was shown to be a linear problem [7]. However the assumption that the DNA
sequences were not subject to recombination events is not realistic.

Haplotype inference by pure parsimony principle (HIPP) has been used by
many approaches because of its innate simplicity and biological soundness. As
said before, unfortunately the HIPP problem is NP-hard [8]. Some approaches
based on Integer Programming have been proposed for it [9] [10] [11] [12].

Another method for the HIPP problem is the Parsimonious Tree-Grow (PTG)
method [13], which explains a set of m genotypes of length n in time O(m2n).
In the PTG method a tree is constructed, where each edge is labelled by a hap-
lotype symbol (0 or 1), and nodes contain the genotypes (id) that are explained
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by haplotypes formatted by a trace from the root to that specific node. Many
operations in PTG are random, so it is necessary to run the method many times,
selecting the best solution using some metric, in order to have reliable results.

Methods based on Markov chain models have been proposed successfully.
These methods basically build a Markov chain in which each state is associated
to a symbol (0 or 1) and the transition probabilities are calculated from the input
data. Heuristics based on Dynamic Programming and Expectation Maximization
algorithms are also applied [14] [15] [16] [17].

Statistical methods have considered the Parsimony Principle as accessory.
PHASE [18] and fastPHASE [19] are considered good classical approaches for
the HI Problem. These methods use maximum likelihood to estimate haplotype
frequencies. The objective is to estimate the maximum value of this likelihood
function. Such methods are stochastic, and each execution of the program may
result in a different solution, since the derivations are dependent on the initial
configuration, which is randomly selected. Basically, fastPHASE is a variation
of PHASE for resolving large data sets.

3 Computing the Markov Chain

The probability that a haplotype fragment will be part of a solution, considering
the parsimony criterion can be efficiently estimated using a Markov chain. Given
a genotype matrix G, with m rows and n columns, a Markov chain C is created
with 2n+2 states, each state representing the start (Cstart) or the end of the chain
(Cend), or a possible symbol s (0 or 1) in the j -th site of a haplotype fragment,
1 ≤ j ≤ n, (Cj(s)). There are three types of state transitions: (Cstart, C1(s)),
(Cj−1(s1), Cj(s2)), and (Cn(s), Cend).

The initial probabilities are computed as an a priori probability of symbol s
occurring in the first site of all the 2m haplotypes to be inferred from G (1). The
absolute frequency of symbol s being in the first site of the matrix is calculated
according to Equation 2.

(Cstart, C1(s)) = A(1, s)/(2m) (1)

A(j, s) =

m∑
y=1

f1(G(y, j), s), (2)

with

f1(x, s) =

⎧⎨
⎩

2, if x = s
1, if x = 2
0, otherwise

The transition probabilities whose source state is not the initial state (Cstart)
and the destination is not the final state (Cend) are denoted by (Cj−1(s1), Cj(s2)),
where 2 ≤ j ≤ n. These are conditional probabilities: probability of s2 occurring
in the j-th site of the 2m haplotypes inferred from G, given that s1 occurred in
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the (j − 1)-th site of said set of haplotypes (Equation 3). That depends on the
absolute frequency of haplotypes inferred with s1 in the (j − 1)-th site (1), and
an estimation of the expected frequency of symbol s2 in the j-th site of those
same haplotypes (Equation 4).

(Cj−1(s1), Cj(s2)) = B(j, s1, s2)/A(j − 1, s1) (3)

B(j, s1, s2) =

m∑
y=1

f2(G(y, j − 1), G(y, j), s1, s2), (4)

with

f2(x1, x2, s1, s2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if x1 = s1 and x2 = s2
0.5, if x1 = 2 and x2 = 2
1, if x1 = 2 and x2 = s2
1, if x1 = s1 and x2 = 2
0, otherwise

After constructing Markov chain C as described above, a tree T is computed
which contains the 2m haplotypes that resolve G. The HybHap method uses the
information contained in C to choose more promising branches, trying to keep
T with the minimum possible number of branches, so as to approach an optimal
solution, according to the Pure Parsimony criterion.

4 The HybHap Method

A tree T, which has n+1 layers, each one denoted by T (j), is computed. A layer
can have 2m nodes in the worst case (maximum possible number of distinct
haplotypes to be inferred). A node in layer T (j) is denoted by T(j,k)(s), where s
is the node type (0 or 1), and k is the number sequence of the node in layer j.

A node T(j,k)(s) is labelled by (ir1 , ir2 , ..., irg), 1 ≤ g ≤ m, which represents the
genotype fragments explained by that node. The root is labelled by all genotype
Ids (i1, i2, ..., im). For each layer j of T, for each node in j, for each genotype Id
ir in the label of the current node, if G, in site j of genotype, has value 1 (0),
then a node of type 1 (0) is created on the next layer connected to the current
node, and it is labelled by all genotype Ids in the present node that have value
1 (0) in site j. If the value in G in layer j and genotype Id ir has value 2, then
it is checked if a value 2 was previously explained for genotype ir. If that is not
the case, then site j in genotype ir is resolved by adding two new nodes in the
(j+1)-th layer, connected to the current node, and labelled ir. In case a value
2 has been previously resolved, then the genotype Id and the current node are
reserved to be processed after the current layer is treated. An example of tree is
illustrated in Figure 1.

Random operations may occur in the processing of the genotypes and nodes
reserved in a layer. In HybHap the Markov chain C constructed will be used to
decide which haplotype fragment is the most promising one. Each trace, from
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Fig. 1. Node v0 is the root of tree T ; this node is in level 0 and is node number 1 of that
level (T(0,1)). The root is labelled by five genotypes Ids (1,2,3,4, and 5), representing
all five genotypes in the input. Node v1, denoted by T(1,1)(0) is in level 1 and it is the
node number 1 of that level; this node is of type 0. Node v3, denoted by T(2,2)(0), is
in level 2 and it is the node number 2 of that level, this node is of type 0, and it is
labelled by genotype Ids 3,4, and 5.

the root to the current node in T, is a valid path in C. There are three situations
in which random choices may be needed, the others are symmetric; in those
situations, new nodes are computed through C, and the choice is based on the
maximum probability found. In case we need to choose among existing nodes to
explain the reserved genotype, then we compute the Euclidean distance between
the sites that have not yet been processed in the reserved genotype and all sites
that have not been processed in the genotypes that are partially resolved by
candidate nodes, the choice is based on the least distance. When the probabilities
or distances are the same between candidate nodes, then a random choice is
needed, but the chances of that actually occurring are slim.

The HybHap method (Algorithm 1) has three main steps: Initialization, Res-
olution of genotype prefix with known solution (genotype fragments that have
only homozygous sites or one heterozygous site), as described in Algorithm 2,
and explanation of genotype fragments that have no previous resolution (more
than one heterozygous site), as described in Algorithm 3. In initialization the
Markov chain is computed as described before, the root is created and labelled
with all genotype Ids of G.

The 2 explains the genotype fragments (prefix) that have at most one het-
erozygous site. In this case, when a site with symbol 2 is resolved for genotype
i, we make f(i) = true. All genotypes marked in the prior step (f(i) = true),
for a specific SNP (a layer of tree T ), will be processed after all non-ambiguous
genotype fragments of that layer are resolved.

In Algorithm 3, the fragments of genotypes reserved before are explained.
In 2, a genotype i was associated to two nodes (two is the maximum number
of nodes that can explain a genotype with at least one heterozygous site). In
this Algorithm 3, a Markov chain is used to decide which is the best branch-
ing option. Equation 5 is used, in which P (v1) denotes the probability that the
haplotype fragment represented by node v1 will be part of solution, according to
the parsimony criterion (conservation), and t(v1) denotes the type of v1. There
are three cases in which the Markov chain is applied: (1) There are no branches
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growing from v1 and v2; (2) There is a single branch (v′1, v
′
2) growing from each

of v1 and v2, both of the same type s; and (3) There are two branches growing
from v1 but no branches growing from v2; the other cases are symmetric. Those
three situations are addressed in Algorithm 3, and illustrated in Figure 2-C.

Fig. 2. Example of Algorithm Execution

P (v1)(Cj(t(v1)), Cj+1(s1)) + P (v2)(Cj(t(v2)), Cj+1(s2)) (5)

After building tree T, the final solution can be recovered by tracing from the
root to each leaf of T, concatenating the types of the nodes in the path. The
result will be the haplotype matrix that explains G following the parsimony
principle.

Figure 2-B illustrates an application of Markov chain C during the construc-
tion of tree T . First the root T(0,1) is created and labelled by all genotype Ids
of the matrix identified in Figure 2-A. Then the nodes descendent from T(0,1)

are created. Since no ambiguity has been resolved in T yet, nodes T(1,1)(1) and
T(1,2)(0) are created to explain genotypes (1,2) and (1,2,3,4,5), respectively. Since
in column 2, genotypes 1 and 2 have symbol 2, and sites of that type have been
previously resolved for those genotype, their Ids are kept to be processed after
all sites on the second column that do not present ambiguity or that have all
previous sites without ambiguity are resolved. Hence, genotypes 3, 4, and 5 are
resolved, by creating nodes T(2,1)(1) and T(2,2)(0).

After that, genotypes 1 and 2 are dealt with. There are two nodes, T(2,1)(1)

and T(2,2)(0), branching from T(1,2)(0) that can explain genotype 1, and none from
T(1,1)(1). In order to decide which of those nodes should be created branching
from T(1,1)(1): T(2,3)(0) or T(2,3)(1). Markov chain C is then used to estimate
which node maximizes the probability of being also used in the resolution of
other genotypes (parsimony). In the case of this example, there are the following
node combinations: P (T(2,3)(0)+T(2,1)(1)) = 0.3 and P (T(2,3)(1)+T(2,2)(0)) = 0.7.
The choice is for the option that maximizes the probability, hence, node T(2,3)(1)

is added branching from node T(1,1)(1).
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Algorithm 1. HybHap

input : a matrix of Genotypes G
output: a tree T

1 Initialization;
2 foreach layer j in T do
3 foreach node v in current layer do
4 KnownSolution(v, j);
5 end
6 UnknownSolution(j);

7 end

5 Experiments Design

The dataset used for the experiments was the same one used in a previous work
where the performances of well known haplotype inference algorithms when deal-
ingwith data of different sizes and levels of conservation are compared [6]. It is com-
prised by sequences originally taken from theHapMapProject [20], whichwere col-
lected fromChromosome 20 of populationCEU (Caucasians resident in the state of
Utah (USA) with northern European ancestry). The original dataset is composed
of 13 subsets which vary in sequence length and in number of distinct haplotypes.

The set contains haplotypes of sizes 100, 200, 400, 800, 1600, and 3200 SNPs
with 88 individuals, separated by size into classes A, B, C, D, E, and F, respec-
tively. From each class, we chose randomly three instances.

The metrics used in the benchmark were Error Rate [21] and computational
time. The Error Rate tells us about the capacity that one method has to correctly
infer a haplotype set from a genotype set, based on a known haplotype set. The
computational time is an empiric metric used to estimate computational costs;
although it is not the best technique for it, in this case theoretical analysis cannot
be applied to all methods.

For the comparison experiments, PTG was implemented in MATLAB 2008.
Version 1.2.3 for Windows of fastPHASE was used. The experiments ran indi-
vidually in a computer with an Intel Quad Core 2.33GHz processor, with 3GB
of RAM. The results are shown in Table 1. For each experiment, the execution
time (Time) and Error Rate (ER) attained are given.

6 Experiments Results

The measures described earlier were applied to each instance. Since PTG and fast-
PHASE have a stochastic behavior, for comparison purposes the average over 30
executionswith every single datasetwas used to establish theErrorRate.Although
HybHap is not a deterministic algorithm, in practice it presents standarddeviation
virtually equal to zero, meaning that for different executions with the same input
dataset (including the same genotype order), it generates the same haplotype set.

Comparing HybHap to PTG, considering Error Rate, the accuracy of HybHap
and PTG were very close, slightly favoring HybHap for the larger datasets. In all
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Algorithm 2. KnownSolution(v : a node, j : a SNP)

1 foreach genotype i in v do
2 if G(i,j+1)=2 and f(i)=true then
3 Associate to genotype i the node v;
4 else
5 if G(i, j + 1) = s and s ∈ {0, 1} then
6 if there is no branch with target node of type s growing from node v

then
7 Add a node of type s growing from node v and label this new

node with i;
8 else
9 Add i to the set of Ids in the label of this node;

10 end

11 else
12 f(i) ← true;
13 for s = 0, 1 do
14 if there is no node growing from v of type s then
15 Add a new node from v in layer j + 1 of type s and add i to

the set of Ids of this new node;
16 else
17 Add i to the set of Ids of this node;
18 end

19 end

20 end

21 end

22 end

cases, HybHap was much faster than PTG. For instance, HybHap solved the
largest dataset (F) in about 3 minutes, while PTG took about 39 minutes to
find a less accurate solution.

Comparing HybHap to the classical approach fastPHASE, we observed that
the accuracy performances considering Error Rate were very close, and for the
larger datasets in the benchmark, the differences between the Error Rates for
the two methods were smaller than 2%. It is important to notice that, for the
largest dataset, F, while HybHap needed only about 1 minute to find a solution
with 13.67% of error, fastPHASE resolved this instance with 11.93% of error in
about 72 hours. The difference of Error Rate in this case was 1.74%, however,
the time necessary for fastPHASE to resolve it was approximately 1080 times
longer than the time required by HybHap.

Figure 3 shows graphical comparisons of HybHap with fastPHASE and PTG,
in regard to Error Rate (Figure 3-A) and computational time (Figure 3-B). Since
the values for computational time are so different, the values in Figure 3-B are
depicted in log scale. It can be seen that the time of fastPHASE grows much
faster than HybHap, as the length of the sequences in the datasets increases. On
the other hand, while the Error Rate of HybHap is always higher than that of
fastPHASE, the difference in Error Rate is virtually constant.
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Algorithm 3. UnknownSolution(j : a SNP)

1 foreach genotype i associated to a node pair (v1, v2) in SNP j do
2 if there is a single branch growing from v1 and v2 of different types or there

are two branches and a single branch growing from v1 or v2 then
3 Add i to the set of Ids of a node that grows from a node that has a

single branch (v1 or v2) and add i to the set of Ids of a node of opposite
type that grows from the node left;

4 else
5 if there are two branches growing from v1 and two branches growing

from v2 then
6 Compute the Euclidean distance among the unresolved suffix of i

and the unresolved suffixes of genotypes explained by nodes growing
from v1 and v2. Explain i in nodes that minimize the distance.

7 else
8 Compute value of Equation 5 for (s1 = 0, s2 = 1) and for

(s1 = 1, s2 = 0). Take the pair (s1, s2) that maximizes v, if value of
the two pairs are same, then select a pair randomly;

9 switch Ambiguity cases in v1 and v2 do
10 case 1
11 Grow a node of type s1 from v1, Grow a node of type s2

from v2. Add i to the set of Ids of these new nodes;

12

13 case 2
14 If s = s1, then add genotype i to the set of node v′1 and

grow a node of type s2 from v2, labelled by i. Otherwise, do
the same symmetrically;

15

16 case 3
17 Add genotype i to the set of Ids of the node of type s1

growing from v1, and add a node of type s2 growing from
node v2, including i in the set of Ids of this new node (other
cases are symmetric);

18

19 endsw

20 end

21 end

22 end
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Table 1. Comparison Results: Error Rate (ER) and Time in seconds (s), minutes (m)
or hours (h)

Set HybHap PTG fastPHASE
ER Time ER Time ER Time

A 12.9% 02.88 s 13.5% 53.88 s 09.3% 00 h 30 m
B 09.9% 04.83 s 09.7% 01.62 m 05.8% 01 h 00 m
C 12.7% 12.28 s 12.6% 03.73 m 09.2% 02 h 30 m
D 11.1% 26.11 s 12.3% 07.67 m 08.7% 05 h 24 m
E 13.6% 01.06 m 14.2% 16.98 m 11.7% 18 h 00 m
F 13.7% 03.00 m 14.2% 39.00 m 11.9% 72 h 00 m

Fig. 3. Computational Time (in seconds) and Error Rate attained in each dataset class.
Each class has 88 genotypes and different number of SNPs: (A) 100, (B) 200, (C) 400,
(D) 800 and (F) 1600.

7 Discussion and Conclusion

In this paper we have proposed a hybrid method for haplotype inference. The
proposed method is very stable, since in practice it presents a standard deviation
of zero. In our experiments, the highest number of random operations for any
instance was two, but that seldom happened. Due to that and to the efficiency
of the operations in HybHap, its computational time is very low when compared
to PTG and to fastPHASE.

With the enormous growth in the number of genomes available, efficient meth-
ods to deal with large datasets are highly desirable. There are many approaches
to infer haplotypes with high quality, but they are applied only to small datasets,
and it is not in line with the current inference requirements, which are on
large scale. In face of that, HybHap presents desirable properties. The proposed
method is computationally very efficient and in large datasets produces results
with accuracy very close to that of more costly methods. That is most valuable,
due to the growing number of genetic variation studies, which are performed
by Computational Biology groups most of which have limited computational
processing resources available.
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An important point is the fact that PTG is based solely on parsimony, dis-
regarding any other type of information or precondition about the genotype
sequences, while methods based on Markov chains, such as fastPHASE, use
the parsimony criterion as a help, applying additional techniques, models, and
insights to find a biologically more plausible solution. Nonetheless, that combi-
nation leads to an extremely high computational time requirement. Hence, as
the length of the genotype sequences grow, those methods become non-viable.

We also believe that the wide gap between the performances of HybHap and
fastPHASE with respect to some cases of Error Rate is due to the fact that
HybHap has no strategy to cluster together segments of different with similar
characteristics regarding conservation. Since HybHap presents excellent compu-
tational cost, the original algorithm, presented in this paper, can be improved by
strategies to associate similar regions, as it is done in fastPHASE, for instance.
We are currently working on that aspect of the method. Missing data is another
aspect that needs to be addressed.

The experimental analysis shows that the HybHap method is more adequate
for dealing with long genome sequences. We are currently working on a theoreti-
cal argument for the fact that HybHap requires less computational time, as well
as on improving its accuracy.
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Abstract. The Double Cut and Join (DCJ) is a generic operation rep-
resenting many rearrangements that can change the organization of a
genome, but not its content. For comparing two genomes with unequal
contents, in addition to DCJ operations, we have to allow insertions and
deletions of DNA segments. The distance in the so-called general DCJ-
indel model can be exactly computed, but allows circular chromosomes
to be created at intermediate steps, even if the compared genomes are
linear. In this case it is more plausible to consider the restricted DCJ-
indel model, in which the reincorporation of a circular chromosome has to
be done immediately after its creation. This model was studied recently
by da Silva et al. (BMC Bioinformatics 13, Suppl. 19, S14), but only an
upper bound for the restricted DCJ-indel distance was provided. Here
we solve an open problem posed in that paper and present a very simple
proof showing that the distance, that can be computed in linear time,
is always the same for both the general and the restricted DCJ-indel
models. We also present a simpler algorithm for computing an optimal
restricted DCJ-indel sorting scenario in O(n log n) time.

1 Introduction

Genomes can be composed of one or more chromosomes, that can be linear or
circular. A good estimate of evolutionary distance based on whole genome com-
parison can be obtained by asking for the minimum number of rearrangements
that are necessary to transform one genome into another one. In the literature
this transformation has also been referred to as sorting one genome into another
genome. A sequence of rearrangements sorting a genome A into a genome B is
called scenario, that is optimal when its length is minimum. Typical rearrange-
ments that change the organization of genomes are inversions of chromosomal
segments, translocations of the ends of two linear chromosomes, and chromosome
fusions and fissions.

A polynomial algorithm was proposed by Hannenhalli and Pevzner in 1995 to
compute the genomic distance between two genomes with equal contents consid-
ering all mentioned rearrangements. The paper [1], however, relies on the analysis
of many particular cases and is full of technical details, making it susceptible
to errors [2–6]. Later the same set of rearrangements were unified in the simple
Double Cut and Join (DCJ) model [7], which has become very popular over the
last few years due to its general applicability and mathematical elegance [8–12].

J.C. Setubal and N.F. Almeida (Eds.): BSB 2013, LNBI 8213, pp. 36–46, 2013.
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Computing the DCJ distance and finding one optimal DCJ sorting scenario
can be done in linear time [8]. However, while sorting a genome into another
by DCJ, circular chromosomes can appear in the intermediate steps [7, 8]. In
the general model many circular chromosomes can coexist in some intermediate
step, even if the compared genomes are composed of linear chromosomes only,
such as eukaryotic nuclear genomes. To account for this fact, a restricted version
of the DCJ model has been considered, where in the start and end genomes all
chromosomes are linear, and whenever in an intermediate step a circular chromo-
some is created, it has to be reincorporated into a linear chromosome in the next
step. These two consecutive DCJ operations, which create and reincorporate a
circular chromosome, mimic a transposition or a block interchange [7, 13].

In Figure 1 we give examples of a general and a restricted DCJ sorting sce-
narios. While the general and the restricted DCJ distance are equal and can be
computed in linear time [7, 8], the currently best known algorithm to find an
optimal restricted sorting scenario runs in O(n log n) time [13], where n is the
number of common DNA segments between the compared genomes.

(i) (ii)

�� � � � � �b a c g f e d
↓ inversion

�� � � � � �a b c g f e d
↓ inversion

� � � � � � �a b c g f e d
excision ↓

� � � � � � �a b c d g f e
excision ↓

� � � � � � �a b c d g e f
reincorporation ↓

� � � � � � �a b c d e g f \
reincorporation ↓

� � � � � � �a b c d e f g

�� � � � � �b a c g f e d
↓ inversion

�� � � � � �a b c g f e d
↓ inversion

� � � � � � �a b c g f e d
excision ↓

� � � � � � �a b c d g f e
reincorporation ↓

� � � � � � �a b c d f e g

excision ↓
� � � � � � �a b c d e g f \

reincorporation ↓
� � � � � � �a b c d e f g

Fig. 1. (i) An optimal sorting sequence in the general DCJ model – many circular
chromosomes can coexist in the intermediate species. (ii) An optimal sorting sequence in
the restricted DCJ model – a circular chromosome is immediately reincorporated after
its excision. The first excision-reincorporation mimics the interchange of segments d
and g, while the second excision-reincorporation mimics the transposition of segment f .

Many variants of the general DCJ model have been proposed, including an
extension to genomes with unequal contents, i.e. where DNA segments may be
present in one, but not in the other genome. In order to transform one such
genome into the other one, insertions and deletions (indels) of segments are
necessary, giving rise to the so-called DCJ-indel model [14, 15], for which both
the distance and one optimal sorting scenario can be obtained in linear time.
However, like in the basic DCJ model, several circular chromosomes may coexist
in intermediate steps.
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(i) (ii)

�� �� � � �� �b a c u g f e v d
↓ inversion

�� �� � � �� �a b c u g f e v d
↓ inversion

� � �� � � �� �a b c u g f e v d
excision ↓

� �a b � � � � �� �c d g f e v u \
deletion ↓

� �a b � � � � �c d g f e
excision ↓

� � � � � � �a b c d g e f
reincorporation ↓

� �a b � � � � �c d e g f \
reincorporation ↓

� � � � � � �a b c d e f g

↓ insertion

� � � � � � � � �a b x y c d e f g

�� �� � � �� �b a c u g f e v d
↓ inversion

�� �� � � �� �a b c u g f e v d
↓ inversion

� � �� � � �� �a b c u g f e v d
excision ↓

� � � � � � �� �a b c d g f e v u
reincorporation ↓

� � � � � �� � �a b c d f e v u g

excision ↓
� � � � �� � � �a b c d e v u g f \

reincorporation ↓
� � � � � �� � �a b c d e f v u g

deletion ↓
� � � � � � �a b c d e f g

↓ insertion

� � � � � � � � �a b x y c d e f g

Fig. 2. (i) An optimal sorting sequence in the general DCJ-indel model – many circular
chromosomes can coexist in the intermediate species. (ii) An optimal sorting sequence
in the restricted DCJ-indel model – a circular chromosome is immediately reincorpo-
rated after its excision. The first excision-reincorporation mimics the interchange of
segments d and ūg, while the second excision-reincorporation mimics the transposition
of segment f .

A restricted version of the DCJ-indel model [16] has also been considered, but
the question whether both the general and the restricted DCJ-indel distances
were the same was not so easy to answer as it was for the general DCJ model. In
fact, the paper by da Silva et al. [16] gives only an upper bound for the restricted
DCJ-indel distance and an algorithm that achieves this bound. Deriving an exact
distance formula and an optimal sorting algorithm were left as open problems.
In Figure 2 we give examples of a general and a restricted DCJ-indel sorting
scenarios.

In this work we prove that the distance is always the same for both the
general and the restricted DCJ-indel models, as already conjectured in [17]. We
also give a simple algorithm for computing an optimal sorting scenario under
the restricted DCJ-indel model.

This paper is organized as follows. In Section 2 we give definitions and previous
results used in this work. In Section 3 we show how to compute the distance
and one optimal sorting scenario in the restricted DCJ-indel model. Section 4
concludes by relating this work to other genomic distance measures and pointing
out open problems concerning their restricted versions.
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2 Preliminaries

Each marker g in a genome is an oriented DNA fragment, represented by the
symbol g, if it is read in direct orientation, or by the symbol ḡ, if it is read in
reverse orientation. Each one of the two extremities of a linear chromosome is
called a telomere, represented by the symbol ◦. Each chromosome in a genome
can then be represented by a string that can be circular, if the chromosome is
circular, or linear and flanked by the symbols ◦, if the chromosome is linear.

We deal with models in which duplicated markers are not allowed. Given two
genomes A and B, possibly with unequal content, let G, A and B be three disjoint
sets, such that G is the set of common markers that occur once in A and once in
B, A is the set of markers that occur only in A and B is the set of markers that
occur only in B. The markers in sets A and B are also called unique markers.

As an example, consider the linear genomes A = {◦bācūgfev̄d◦} and B =
{◦abxycdefg◦}, that are the top and the bottom genomes represented in both
parts of Figure 2. Here we have G = {a, b, c, d, e, f, g},A = {u, v} and B = {x, y}.

2.1 DCJ Operations

A cut performed on a genome A separates two adjacent markers of A. A double-
cut and join or DCJ applied on a genome A is the operation that performs cuts
in two different positions in A, creating four open ends, and joins these open
ends in a different way. As an example consider the first DCJ applied to genome
A = {◦bācūgfev̄d◦} in Figure 2. This operation cuts before and after bā, creating
the segments ◦•, •bā• and •cūgfev̄d◦, where the symbol • represents the open
ends. If we then join the first with the third and the second with the fourth open
end, we obtain A′ = {◦ab̄cūgfev̄d◦}. This DCJ corresponds to the inversion
of contiguous markers bā. Indeed, a DCJ operation can correspond to several
rearrangements, such as an inversion, a translocation, a fusion or a fission, and
also to circular excisions and reincorporations [7].

Some additional rearrangements correspond to more than one DCJ operation.
A block interchange occurs when two segments exchange their positions. A par-
ticular case is a transposition, in which one of the two segments is empty. When
a block interchange or a transposition affects one single chromosome it is said
to be internal, otherwise external. These rearrangements require at least three
distinct cuts and cannot be represented by a single DCJ operation. Instead,
they can be obtained by a composition of two DCJ operations. While external
block interchanges and transpositions can always be mimicked by two consecu-
tive translocations, internal ones can only be mimicked by two DCJs if the first
is a circular excision and the second is a circular reincorporation. We call such
a pair of operations an ER composition (see Figure 3).

2.2 The General DCJ Model

In the general DCJ model the genomes have the same content and can be unichro-
mosomal or multichromosomal, linear or circular. Given two genomes A and B
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(i) (ii) (iii)

� � � � �a d c b e
translocation ↓

� � � � �a d e b c
translocation ↓
� � � � �a b c d e

� � � � �a d c b e
excision ↓

� � � � �a b e d c
reincorporation ↓
� � � � �a b c d e

� � � � �a d c b e
↓ inversion

�� � � �a c d b e
inversion ↓

�� � � �a c b d e
inversion ↓
� � � � �a b c d e

Fig. 3. (i) External block interchange of markers d and b mimicked by two transloca-
tions. (ii) Internal block interchange of markers d and b mimicked by an ER composi-
tion. (iii) Without a circular excision, the internal block interchange of markers d and
b requires at least three inversions to be mimicked.

with equal contents, the DCJ distance of A and B, denoted by dDCJ (A,B), is
the minimum number of DCJ operations that sort A into B and can be exactly
computed in linear time [8]. Consider a DCJ ρ transforming the genome A into
another genome A′. If dDCJ(A,B) = dDCJ(A′, B)+1, the operation ρ is said to be
optimal. Under the general DCJ model, an optimal sorting scenario, composed
of optimal DCJ operations, can also be obtained in linear time [8].

The restricted DCJ model. In the restricted DCJ model the genomes are linear,
unichromosomal or multichromosomal. Given two linear genomes A and B with
equal contents, the restricted DCJ distance of A and B, denoted by drDCJ(A,B),
is the minimum number of DCJ operations that sort A into B, with the re-
striction that a circular excision has to be immediately followed by a circular
reincorporation, forming an ER composition. After an optimal circular excision,
there is always an optimal circular reincorporation [7]. Such an ER composition
is said to be optimal and guarantees that drDCJ(A,B) = dDCJ(A,B). The best
algorithm to find a restricted DCJ sorting scenario runs in O(n log n) time [13],
where n is the number of markers in A and B, respectively.

2.3 Indels

DCJ operations are able to change only the organization of the genomes, but not
their contents. When the genomes have unequal contents, we need to consider
insertions and deletions of blocks of contiguous markers [14, 18]. We refer to
insertions and deletions as indel operations. Indels have two restrictions: (i)
markers of G cannot be deleted; and (ii) an insertion cannot produce duplicated
markers [15]. At most one chromosome can be entirely deleted or inserted at
once. We illustrate an indel with the following example: the insertion of markers
xy into the genome B′ = {◦abcdefg◦}, that results into B = {◦abxycdefg◦},
as we can see in the last sorting step of both scenarios shown in Figure 2. The
opposite operation would be a deletion.

The triangular inequality problem. Since indels can be applied to blocks of mark-
ers of arbitrary size, the triangular inequality does not hold for genomic distances
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that consider this type of operation. Given any three genomes A, B and C and
a distance measure d, consider without loss of generality that d(A,B) ≥ d(A,C)
and d(A,B) ≥ d(B,C). Then the triangular inequality is the property that
guarantees that d(A,B) ≤ d(A,C) + d(B,C).

Although this property holds for the classical models that consider only re-
arrangements, it does not hold for the approaches that allow indels. Consider
for example the genomes A = {◦abcde◦}, B = {◦acd̄be◦} and C = {◦ae◦} [14].
While A and B can be sorted into C with only one indel, the minimum number of
inversions required to sort A into B is three. In this case the triangular inequality
is disrupted. This is a problem if one intends to use this distance to compute the
median of three or more genomes [11] and in phylogenetic reconstructions [19].

2.4 The General DCJ-Indel Model

In the DCJ-indel model the genomes can be unichromosomal or multichromo-
somal, linear or circular. We assign the cost of 1 to each DCJ operation and a
positive cost w to each indel. Given two genomes A and B, the DCJ-indel dis-
tance of A and B, denoted by dDCJ-id(A,B), is the minimum cost of a sequence
of DCJ and indel operations that sort A into B. If w = 1, the DCJ-indel distance
corresponds exactly to the minimum number of steps required to sort A into B.
For any positive w ≤ 1, the DCJ-indel distance can be exactly computed in
linear time [15, 20].

Let S be a rearrangement scenario with DCJ and indel operations, we denote
by ||S|| the cost of S. By definition, ||S|| = nDCJ +w(nins+ndel), where nDCJ is
the number of DCJ operations and nins and ndel are, respectively, the number
of insertions and deletions in S. If S is an optimal scenario sorting A into B,
then ||S|| = dDCJ-id(A,B).

Establishing the triangular inequality. The triangular inequality does not hold for
the DCJ-indel distance, but a correction can be applied a posteriori, as proposed
in [15, 21]. It comprises summing to the distance a surcharge that depends on
the number of unique markers. It has been shown that, given a positive constant
k = (w+1)/2, for any k′ ≥ k the triangular inequality holds for the function
m(A,B) = dDCJ-id(A,B) + k′(|A|+ |B|).

3 Restricted DCJ-Indel model

In the restricted DCJ-indel model the genomes are linear, unichromosomal or
multichromosomal. We assign the cost of 1 to each DCJ operation and a positive
cost w ≤ 1 to each indel. Given two such genomes A and B, the restricted DCJ-
indel distance of A and B, denoted by drDCJ-id(A,B), is the minimum cost of a
scenario of DCJ and indel operations that sort A into B, with the restriction that
a circular excision has to be immediately followed by a circular reincorporation,
forming an ER composition.

In this section we first solve an open problem from [16], before we present
a simple algorithm to compute an optimal rearrangement scenario under the
restricted DCJ-indel model.
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3.1 Computing the Distance

Given two linear genomes A and B without duplicated markers, let S1 be an
optimal DCJ-indel scenario transforming A into B and let nDCJ , nins and ndel

be the number of DCJ operations, insertions and deletions in S1, such that we
have dDCJ-id(A,B) = ||S1|| = nDCJ + w(nins + ndel).

As shown in [16], the scenario S1 can be transformed into another optimal
scenario S2 of the same cost, so that S2 starts with nins insertions, followed by
nDCJ DCJ operations, followed by ndel deletions. We can represent S2 as follows:

S2 = Sins
2 ++SDCJ

2 ++Sdel
2

where Sins
2 is the prefix of S2 with only insertions, Sdel

2 is the suffix of S2 with
only deletions, and SDCJ

2 is the substring of S2 with DCJ operations. The symbol
++ denotes concatenation of rearrangement scenarios.

Let A′ be the linear genome obtained after applying to A the insertions of
Sins
2 and let B′ be the linear genome obtained after applying to A′ the DCJ

operations of SDCJ
2 . Then the distance can be rewritten as

dDCJ-id(A,B) = ||Sins
2 ||+ dDCJ (A′, B′) + ||Sdel

2 ||.

Thus, A′ and B′ are two linear genomes with the same set of markers and DCJ
distance dDCJ(A′, B′) = |SDCJ

2 |, where |SDCJ
2 | denotes the number of operations

in SDCJ
2 . From [7, 13] we know that there exists a restricted DCJ scenario R of

the same cost as SDCJ
2 , sorting A′ into B′. Hence there also exists a restricted

DCJ-indel sorting scenario S3 transforming A into B:

S3 = Sins
2 ++R++Sdel

2 .

Clearly, S3 has the same cost as S2 and thus as S1, being an optimal restricted
DCJ-indel sorting scenario. These observations give rise to the following theorem:

Theorem 1. Given two linear genomes A and B without duplicated markers,
we have

drDCJ-id(A,B) = dDCJ-id(A,B).

Observe that Theorem 1 holds even if we assign the cost of 1 to each DCJ
and a positive cost w ≤ 1 to each indel operation.

Complexity. For any positive indel cost w ≤ 1, the DCJ-indel distance can be
computed in linear time [15, 20], and thus the same is true for the restricted
DCJ-indel distance.

Establishing the triangular inequality. Obviously the correction proposed in [15,
21] to establish the triangular inequality for the DCJ-indel distance also holds
for the restricted DCJ-indel distance.
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Algorithm 1. Find a restricted DCJ-indel scenario sorting a linear genome A
into a linear genome B

1. Compute an optimal DCJ-indel scenario S1 sorting A into B using the algorithm
from [15,20].

2. Modify S1 by moving the insertions up and the deletions down, as shown in [16],
obtaining a scenario S2 = Sins

2 ++SDCJ
2 ++Sdel

2 .
3. Use Sins

2 to transform A into a linear genome A′.
4. Use SDCJ

2 to transform A′ into a linear genome B′ (A′ and B′ have the same
content G′ = G ∪ A ∪ B).

5. Apply the restricted DCJ algorithm from [13] to obtain a restricted DCJ scenario
R sorting A′ into B′.

6. Concatenate the three parts to obtain the scenario S3 = Sins
2 ++R++Sdel

2 , that is
a restricted DCJ-indel scenario sorting A into B.

3.2 Finding an Optimal Sorting Scenario

It can be easily seen that the procedure described in the previous subsection
implies a simple algorithm for finding a restricted DCJ-indel scenario sorting a
linear genome A into a linear genome B (Algorithm 1).

Complexity. In Algorithm 1, steps 1-4 and 6 can be implemented in linear time,
while step 5 takes O(n logn) time, where n = |G′| is the number of markers in A′,
respectively B′. Thus, a restricted DCJ-indel sorting scenario can be computed
in O(n logn) time.

Implementation. While an implementation of the restricted DCJ sorting is avail-
able in [22], to the best of our knowledge there exists no implementation of the
general DCJ-indel sorting algorithm. Given such an implementation would then
make it rather straightforward to also implement the restricted DCJ-indel sort-
ing algorithm.

4 Conclusions and Perspectives

In this paper we have solved an open problem, showing that, even if the indel
cost is distinct from and upper bounded by the DCJ cost, the restricted DCJ-
indel distance is equal to the DCJ-indel distance, that can be computed in linear
time. This allows the correction for establishing the triangular inequality in the
DCJ-indel distance to be automatically extended to the restricted DCJ-indel
distance.

We have also proposed an algorithm to generate an optimal restricted DCJ-
indel sorting scenario in O(n log n) time. The most complicated parts of this
algorithm are: (a) obtaining a general DCJ-indel sorting scenario between two
genomes with unequal contents (step 1 of Algorithm 1) and (b) obtaining a re-
stricted DCJ sorting scenario between genomes with equal contents (step 5 of
Algorithm 1). An implementation of (b) is available in [22], but the implemen-
tation of (a) still has to be developed.
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The inversion-indel distance. The inversion-indel is a related model that applies
to unichromosomal (linear or circular) genomes only, and, instead of generic DCJ
operations, allows only inversions of DNA segments, besides indels. An example
is given in Figure 4. In [18] two algorithms were provided for this distance: an
exact one for the case in which only one indel direction is allowed (i.e. when we
have either only insertions or only deletions); and a heuristic for the symmetric
case, in which both insertions and deletions are allowed. Recently, in a joint work
with other authors [23], we proved that, for an important class of instances of
the symmetric case, the inversion-indel distance equals the DCJ-indel distance.
An exact solution for the general symmetric case remains an open problem.

� �� � �� �a x c y b z d

inversion ↓
� �� � � � �a x c b y z d

deletion ↓
� �� � �a x c b d

insertion ↓
� �� � � � �a x c b d v u

↓ deletion

�� � � � �a c b d v u

inversion ↓
�� � � � �a c b u v d

↓ inversion

� � � � � �a u b c v d

Fig. 4. An optimal sorting scenario in the inversion-indel model

The restricted DCJ-substitution distance. The DCJ-substitution is another re-
lated model that applies to linear genomes, unichromosomal or multichromo-
somal. In this model we have generic DCJ operations, but, instead of indels,
more powerful operations are considered: substitutions allow blocks of contigu-
ous markers to be replaced by other blocks of contiguous markers [24]. In other
words, a deletion and a subsequent insertion that occur at the same position of
the genome can be modeled as a substitution, counting together for one single
step. In the DCJ-substitution model, indels are special cases of substitutions:
if a block of markers is substituted by the empty string, we have a deletion;
analogously, if the empty string is substituted by a block of markers, we have an
insertion.

In the general DCJ-substitution model the results are very similar to the
general DCJ-indel model. For a cost of 1 assigned to DCJ operations and any
positive cost w ≤ 1 assigned to substitutions, there is a formula to efficiently
compute the distance [20, 24]. However, the general and the restricted DCJ-
substitution distances are not the same, as we can see in the example given in
Fig. 5. The restricted version of the DCJ-substitution distance is a complete
open problem that we intend to study in the future.
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(i) (ii)

� � � � � �a u c v b d

excision (1) ↓
� � � � � �a b d v u c \

substitution (w) ↓
� � � � � �a b d z x c

reincorporation (1) ↓
� � � � � �a b x c z d

� � � � � �a u c v b d

excision (1) ↓
� � � � � �a b d v u c

reincorporation (1) ↓
� � � � � �a b c v u d

substitution (w) ↓
� � � � �a b c z d

↓ insertion (w)

� � � � � �a b x c z d

Fig. 5. (i) An optimal sorting scenario in the general DCJ-substitution model, with
cost 2+w. (ii) An optimal sorting scenario in the restricted DCJ-substitution model,
with cost 2+2w.
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Abstract. In this paper, we propose and evaluate MSA-GPU, a solu-
tion to implement the exact Multiple Sequence Alignment algorithm in
Graphics Processing Units (GPUs). In our solution, we use the Carrillo-
Lipman upper and lower bounds to reduce the amount of computation.
We propose a fine-grained strategy to explore the search space by us-
ing 2D projections. The results were obtained with a GTX 580 NVidia
GPU comparing sets of 3 sequences (real and synthetic). We show that,
for sequences with medium/low similarity, our GPU approach is able to
outperform the MSA 2.0 CPU program, achieving a speedup of 8.6x.

1 Introduction

Bioinformatics is an interdisciplinary field that involves computer science, biol-
ogy, mathematics and statistics [12]. One of its main goals is to analyze biological
sequence data and genome content in order to obtain the function/structure of
the sequences as well as evolutionary information.

Once a new biological sequence is discovered, its functional/structural charac-
teristics must be established. In order to do that, the newly discovered sequence
is compared against the sequences that compose genomic databases, in search of
similarities. Sequence comparison is, therefore, one of the most basic operations
in Bioinformatics. A sequence can be compared to another sequence (Pairwise
Comparison), to a profile that describes a family of sequences (Sequence-Profile
Comparison) or to a set of sequences (Multiple Sequence Alignment).

In a Multiple Sequence Alignment (MSA), similar characters among a set of
k sequences (k > 2) are aligned together. Multiple Sequence Alignments are
often used as a building block to solve important and complex problems in
Molecular Biology, such as the identification of conserved motifs in a family of
proteins, definition of phylogenetic relationships and 3D homology modeling,
among others. In all these cases, the quality of the solutions relies heavily on the
quality of the underlying multiple alignment. MSAs are often scored with the
Sum-of-Pairs (SP) objective function and the exact SP MSA problem is known
to be NP-complete [18]. Therefore, heuristic methods are often used to solve this
problem, even when the number of sequences is small.

A great number of heuristic methods were proposed to tackle the Multiple
Sequence Alignment problem. In a general way, they fall into two categories:
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progressive and iterative. A progressive MSA method initially generates all pair-
wise alignments and ranks them. The closest sequences are aligned first and then
an MSA is built by adding the other sequences, in order of relevance. ClustalW
[3] is an example of a progressive method. Iterative methods create an initial
MSA of groups of sequences and then modify it, until a reasonable result is at-
tained. DIALIGN [11] is an example of a deterministic iterative method. More
recently, statistical methods that take into account evolutionary information
such as Prank [7] and StatAlign [15] have also been proposed. This creates a
great number of MSA heuristic tools, making it difficult to compare results and
to determine the quality of a given MSA.

On the other hand, there do exist exact methods that are able to obtain the
optimal Multiple Sequence Alignment [12]. The so-called naive exact method
is a generalization of the exact algorithm based on dynamic programming that
obtains optimal pairwise alignments [17]. It has time complexity O(nk), where
n is the size of the sequences and k is the number of sequences.

Carrillo-Lipman [2] made an important contribution in the area of exact Mul-
tiple Sequence Alignment by showing that it is not necessary to explore the
whole search space in order to obtain the optimal alignment. They showed that
an heuristic alignment can be used to obtain an upper bound to the optimal
alignment and all possible pairwise combinations can be used to obtain a lower
bound. It is proven that the cells that fall outside these bounds do not contribute
to the optimal alignment and, thus, these cells do not need to be calculated. Even
with this, time complexity remains exponential.

Many efforts have been made to reduce the execution time of Multiple Se-
quence Alignment algorithms. Parallel versions were proposed to accelerate
heuristic methods in clusters [5], [9], FPGAs (Field Programmable Gate Ar-
rays) [16] and GPUs (Graphics Processing Units) [6], [1]. A few efforts were also
made to implement exact Multiple Sequence Alignment algorithms in clusters
[4] and FPGAs [8]. As far as we know, there are no implementations of the exact
MSA in GPUs.

In this paper, we propose and evaluate MSA-GPU, a GPU solution to imple-
ment the exact Multiple Sequence Alignment algorithm. In our solution, we use
the Carrillo-Lipman upper and lower bounds to reduce the amount of computa-
tion. We propose a fine-grained strategy to explore the search space by using 2D
projections as in [8]. The results were obtained with a GTX 580 NVidia GPU
comparing sets of 3 sequences (real and synthetic). We show that, for sequences
with medium/low similarity, our GPU approach is able to outperform the MSA
2.0 CPU program, achieving a speedup of 8.6x.

The rest of this paper is organized as follows. We present an overview of the
Multiple Sequence Alignment problem in Section 2. Section 3 discusses related
work in the area of Exact MSA. In Section 4, the design of our GPU strategy
for exact MSA is presented and the experimental results are shown in Section 5.
Finally, we conclude the paper and give the future work directions in Section 6.
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2 Multiple Sequence Alignment (MSA)

To compare two sequences, we search the best alignment between them, which
amounts to place one sequence above the other making clear the correspondence
between similar characters or substrings from the sequences [12].

A global Multiple Sequence Alignment (MSA) of k > 2 sequences S =
S1, S2, ..., Sk is obtained in such a way that spaces (gaps) are inserted into each
of the n sequences so that the resulting sequences have the same length n. Then,
the sequences are arranged in k rows of n columns each, so that each character
or space of each sequence is in a unique column [12]. Figure 1 shows an example
of one pairwise aligment and one MSA of 3 DNA sequences.

GA
AT
TG
GA
CT
A 

GA
AT
TG
GA
CT

G
A
A
T
C
A
G
G
A
C
G
A
 

GTAATCATGACA 

G
A
A
T
C
A
G
G
A
C
G
A
 

GTAATCATGACA 

(a) Pairwise Alignment (b) Multiple Sequence Alignment 

Fig. 1. Pairwise alignment and MSA with 3 sequences. The gray line represents one
possible alignment.

Usually, MSAs are scored with the Sum-of-Pairs (SP) function and the exact
SP MSA problem is known to be NP-hard [18]. In SP, every pair of bases is
scored with the pairwise scoring function and the final score is the addition of
all these values [12]. For instance, considering that the punctuation for matches
(similar characters), mismatches (different characters) and gaps are 0, +1 and
+1, respectively, the score generated by pairwise comparison of sequences S1

and S2 (Figure 2) is 0 + 1 + 1 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 + 1 + 0 = 5.
The SP score of the MSA in this example is 16. When comparing proteins, a
substitution matrix is used to score matches/mismatches. The most common
substitution matrices are PAM and BLOSUM [12].

2.1 Heuristic Methods

Many heuristic methods have been proposed in the literature to solve the MSA
problem. ClustalW [3] is a progressive heuristic method that aligns k sequences
in three phases. In the first phase, all (k ∗ (k − 1)/2) pairwise alignments are
computed and scores are obtained. These scores are used to generate a distance
matrix that indicates the similarity between the sequences. In the second phase,
a guide tree is generated from the distance matrix, using the neighbor-joining
method. The guide tree is used in the third phase to progressively generate the
MSA, starting with the most closely related sequences.
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S1 : G A – A T C A – G G A C G A 
 
S2 : G T A A T C A T - G A C - A 
 
S3 : G - A A T – - T G G A C T A 
  

A 

A 

A 

A 
5 

5 
6 

Score SP: 5 + 5 + 6 = 16 

Fig. 2. The Sum-of-Pairs scoring function

Like ClustalW, DIALIGN (DIagonal ALIGNment) [11] is an heuristic method
for MSA. In order to align sequences, DIALIGN looks for ungapped fragments
(or diagonals) and aligns them. Thus, in DIALIGN, an alignment is defined to be
a chain of diagonals. The algorithm is executed in three phases. In the first phase,
all DIALIGN pairwise alignments are computed, i.e., there are k∗(k−1)/2 chains
of diagonals, one for each pairwise alignment, where k is the number of sequences
[10]. In the second phase, the diagonals that compose the pairwise alignments are
sorted by their score and the degree of overlap with other diagonals. This sorted
list is used to obtain an MSA with a greedy algorithm, generating alignment
A. In the last phase, the alignment A is completed with an iterative procedure
where the parts of the sequences that are not yet aligned with A are realigned by
executing phase 2 again, in such a way that consistent non-aligned diagonals are
included in A. This phase is repeated until no diagonal with a positive weight
can be included in A.

In addition to ClustalW and DIALIGN, there are many other methods to
calculate heuristic MSAs such as SAGA [14] and T-Coffee [13]. Even though the
heuristic methods are able to provide good solutions, it is not guaranteed that
the optimal MSA will be obtained.

2.2 Exact MSA

The optimal multiple sequence alignment among k sequences can be calculated
by extending the exact dynamic programming algorithm for pairwise comparison
[12]. Without loss of generality, assume that there are 3 sequences S1, S2 and
S3, of sizes n1, n2 and n3, respectively.

The goal is to obtain the optimal score, which indicates the alignment distance
(minimum number of insertions, deletions and substitutions). In order to do that,
we calculate a 3-dimensional dynamic programming matrix D, where D(i, j, k)
is the optimal alignment of prefixes S1[1..i], S2[1..j] and S3[1..k].

The naive algorithm is depicted in Algorithm 1. There are three for loops
(lines 1 to 3), one loop for each sequence. The scores for matches and mismatches
are calculated in lines 4 to 6. After that (lines 7 to 13), seven values are calculated
which correspond to the seven neighbor cells of D(i, j, k). In line 14, D(i, j, k)
receives the minimum value of those calculated in lines 7 to 13. If there are k
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Algorithm 1. Naive exact Multiple Sequence Alignment
1: for i = 1 → n1 do
2: for j = 1 → n2 do
3: for k = 1 → n3 do
4: cij = AssignMatchMismatchPunctuation(S1(i), S2(j));
5: cik = AssignMatchMismatchPunctuation(S1(i), S3(k));
6: cjk = AssignMatchMismatchPunctuation(S2(k), S3(j));
7: d1 = D(i− 1, j − 1, k − 1) + cij + cik + cjk
8: d2 = D(i− 1, j − 1, k) + cij + gap
9: d3 = D(i− 1, j, k − 1) + cik + gap

10: d4 = D(i, j − 1, k − 1) + cjk + gap
11: d5 = D(i− 1, j, k) + 2 ∗ gap
12: d6 = D(i, j − 1, k) + 2 ∗ gap
13: d7 = D(i, j, k − 1) + 2 ∗ gap
14: D(i, j, k) = Min[d1, d2, d3, d4, d5, d6, d7]
15: end for
16: end for
17: end for

sequences to be compared, there will be k loops in this algorithm and 2k − 1
cells will be used to calculate each cell of matrix D.

Carrillo-Lipman Bound. Carrillo-Lipman [2] showed that it is not necessary
to explore the whole search space in order to obtain the optimal Multiple Se-
quence Alignment. They defined a lower and an upper bound which confine the
region that contains the optimal alignment and thus restrict the area of the
n-dimensional matrix to be calculated.

The lower (L) and upper (U) bounds are calculated as explained in the fol-
lowing paragraphs.

Equation 1 calculates the lower bound, based on the sum-of-pairs score. In this
equation, scale(Si, Sj) is the weight of each pairwise aligment, usually choosen
via an evolutionary tree of N sequences. d(Si, Sj) is the score of the optimal
pairwise alignment of Si and Sj .

L =
∑
i<j

d(Si, Sj) · scale(Si, Sj) (1)

L is a lower bound for the following reason. Since d(Si, Sj) is the optimal
score between sequences Si and Sj , this is the lowest possible score for (Si, Sj).
Since the score of the Multiple Sequence Alignment is a sum-of-pairs, i.e., an
addition of all pairwise scores, and the scores are non-negative, therefore the
optimal Multiple Sequence Alignment score must be greater or equal to the sum
of all optimal pairwise scores.

Consider that Ao is the optimal alignment, c(Ao) is the score of the optimal
alignment, scale(Si, Sj) is 1, and c(Ao

i,j) is the score of the pairwise alignment
of i and j. The Carrillo-Lipman Bound is given by Inequation 2:
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c(Ao
i,j) ≤ d(Si, Sj) + U − L (2)

U − L can be obtained by a heuristic alignment Ah. This alignment induces
a score c in the sum-of-pairs i and j, and so U − L is obtained by:

U − L =
∑
i<j

[c(Ah
i,j)− d(Si, Sj)] (3)

Equation 3 shows that the lower and upper bounds have a value which is
based on the projection of a heuristic alignment subtracted from the scores of
the pairwise alignments. It is guaranteed that the cells that are outside those
bounds do not contribute to the calculation of the optimal Multiple Sequence
Alignment [2]. Frequently, the difference U − L is called δmsa.

3 Related Work

Even though there are many works in the literature that implement heuristic
methods in GPUs [6], [1], FPGAs [16] and clusters [5], [9], there are very few
works that implement exact MSA methods in high performace computing plat-
forms.

Helal et al. [4] propose the use of a master-slave architecture to execute the
exact MSA algorithm in a cluster. In order to reduce the search space, the
authors use geometrical relations over hyper-diagonals and hyper-lattices. They
were able to compare sets of 3, 4 and 5 sequences of small size in a cluster with
8 cores. The MSA comparison of 5 sequences took more than 2 days.

Masuno et al. [8] implemented the exact MSA with the Carrillo-Lipman bound
in FPGA. In their proposal, the n-dimensional dynamic programming matrix is
transversed in windows defined over 2D-projections, where i, j vary, whereas the
other dimensions remain fixed. In order to implement the Carrillo-Lipman bound
algorithm, a heuristic MSA is calculated in CPU and its score is transferred
to the FPGA. Before calculating a window, the algorithm tests if it is inside
the Carrillo-Lipman bound. If not, the window is not calculated. Two different
circuits are proposed to calculate MSAs of 4 and 5 sequences, respectively. The
computation of an MSA of 5 sequences took about 5 minutes in the FPGA.

4 Design of MSA-GPU

In order to execute the exact MSA algorithm, we opted to use GPUs since they
provide massive SIMD (Single Instruction Multiple Data) parallelism for large-
scale problems. For MSA-GPU, we designed two strategies, which are described
in Sections 4.1 and 4.2.

4.1 Coarse-Grained Strategy

In the coarse-grained strategy, we used a multidimensional wavefront calculated
by one GPU block and, inside the block, each GPU thread calculates one cell of
the dynamic programming matrix D (Algorithm 1).



MSA-GPU: Exact Multiple Sequence Alignment Using GPU 53

Figure 3 (coarse) illustrates the coarse-grained strategy, showing the tasks
executed in the CPU and in the GPU. First, the user provides the sequences and
the Carrillo-Lipman δmsa (delta_cl) (Section 2.2). Then, the data structures in
the GPU are initialized. After that, the kernels in GPU are executed for each
multidimensional diagonal with n threads. The wavefront indexes are calculated
in GPU and represent the coordinates of the cells that can be calculated in
parallel. At the end of each kernel computation, the variable bound_reached is
used to discard unnecessary multidimensional diagonals. At the very end of the
computation, the optimal score is obtained and given as output to the user.

Fig. 3. Overview of the coarse-grained and fine-grained strategies

When using this coarse-grained strategy, we observed that the parallelism in
the multidimensional wavefront grows a lot. But when the algorithm execute the
last stages, some cells that might be calculated in paralell do not have the initial
shape of a multidimensional wavefront. In this case, using the same wavefront
shape would imply in the recalculation of some cells, reducing the throughput.
The shape of the multidimensional wavefront processing is shown in Figure 4(a)
and 4(b). In the left-corner picture in Figure 4(b) we can observe the effect of
the cells without the wavefront shape.

4.2 Fine-Grained Strategy

With this strategy, we intended to augment the parallelism by using more than
one GPU block. This was possible because we chose the wavefront indexes to
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(a) First stages of the multidimensional wavefront

(b) Last stages of the multidimensional wavefront

Fig. 4. Multidimensional wavefront in the coarse-grained strategy

calculate the cells of the DP matrix using 2D projections. This led to a more
regular dependency pattern and, thus, multiple blocks could be used.

The multi-block fine-grained strategy works as follows. Inside each block, the
threads will calculate the same cell of the dynamic programming matrix. There-
fore, lines 7 to 13 in Algorithm 1 will be parallelized, where each thread will
calculate values d1 to d7 in parallel. Besides that, many cells that belong to the
same projected diagonal will be calculated in parallel by different blocks. Figure
3 (fine) illustrates this strategy.

In this strategy, we traverse the search space using 2D projections, as shown
in Figure 5(a) and 5(b). In this figure, it can be seen that a more regular pattern
is obtained.

5 Experimental Results

The strategies proposed in Section 4 were implemented in CUDA C, using the
CUDA toolkit 4.1.21. The results were obtained with the NVidia GTX 580 GPU
(512 cores and 1.5 GB RAM). This GPU was connected to an Intel Core i5 host
machine, with 6GB RAM.

In our tests, we used real and synthetic sequences (Table 1). The real sequences
were obtained from the PFAM (pfam.sanger.ac.uk) and Balibase 2.0 (bips.u-
strasbg.fr/fr/Products/Databases/BAliBASE2/ ) databases. The synthetic
sequences were constructed in order to reproduce easy, medium, hard and very
hard MSA patterns.

First, we compared the sequences in Table 1 with the coarse (Section 4.1)
and the fine granularity (Section 4.2) approaches. In the last case, one block and
multiple blocks were used. The results are shown in Table 2. In this table, we can
see that, when the sequences are small, the fine-grained strategy achieves better
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(a) First stages of the projected wavefront

(b) Last stages of the projected wavefront

Fig. 5. 2D-projected wavefront in the fine-grained strategy

Table 1. Sequences used in the Tests

Name Database Reference Sizes
Seq15 PFAM PF10550 15 15 14
Seq22 PFAM PF08095 22 22 22
Seq42 PFAM PF03855 41 44 42
Seq59 PFAM PF08184 59 59 59
Seq110 PFAM PF11513 106 111 110
Seq122 PFAM PF06453 122 122 122
Seq143 PFAM PF09155 143 143 143
Seq162 PFAM PF03426 158 158 162
Seq373 Balibase2 1pedA 350 326 373
Seq446 Balibase2 1ad3 423 441 446
Seq416 Synthetic synthetic_easy 231 416 363

Seq417.1 Synthetic synthetic_medium 231 447 363
Seq417.2 Synthetic synthetic_hard 231 447 423
Seq453 Synthetic synthetic_veryhard 231 446 453

results than the coarse-grained strategy, even with only one block. When we
augment the sizes of the sequences, the coarse-grained strategy surpasses the fine-
grained strategy (one block) since the reduced number of threads is insufficient
to deal with the parallelism. For all the sequences compared, the fine-grained
strategy (multiple blocks) was able to achieve the best execution times, with
a great improvement over the other approaches. For instance, when comparing
sequences Seq446, the execution time was reduced from 8min55s (coarse-grained)
to 6.62s (fine-grained multi-block).

We also compared the execution times of the fine-grained multi-block GPU
strategy with the MSA 2.0 CPU program. This program is publicly available
at www.ncbi.nim.nih.gov/CBBresearch/Schaffer/msa.html, runs in CPU and is
often used to obtain exact multiple sequence alignments. The execution times in
our host machine (one core) and in the GPU are shown in Table 3. In this table,
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Table 2. Comparison Between the Coarse-Grained (C-Grain) with 990 Threads, Fine-
Grained One Block (F-Grain-1B) with 7 Threads, and the Fine-Grained Multiple
Blocks (F-Grain-MB) with Variable Number of Threads

Name C-Grain F-Grain-1B F-Grain-MB
Seq15 1.09s 0.12s 0.05s 7 to 105 threads
Seq22 1.34s 0.27s 0.07s 7 to 154 threads
Seq42 3.61s 1.68s 0.10s 7 to 308 threads
Seq59 4.60s 4.28s 0.14s 7 to 413 threads

Seq110 16.51s 27.25s 0.35s 7 to 777 threads
Seq122 26.05s 37.71s 0.46s 7 to 854 threads
Seq143 29.84s 1min04s 0.47s 7 to 1001 threads
Seq162 41.07s 1min25s 0.74s 7 to 1106 threads
Seq373 5min34s 14min23s 4.04s 7 to 2282 threads
Seq416 4min16s 16min12s 3.69s 7 to 2912 threads
Seq446 8min55s 29min30s 6.62s 7 to 3087 threads

Seq447.2 5min11s >30 min 6.49s 7 to 3129 threads

Table 3. Execution Times for the MSA 2.0 CPU program and the MSA-GPU fine-
grained multi-block GPU strategy using Full Space Search (FSS) and reducing the
Search Space with Carrillo-Lipman (CL)

Name δmsa MSA 2.0 CPU (s) MSA-GPU (FSS) (s) MSA-GPU (CL) (s)
Seq15 15 0.001 0.051 0.051
Seq22 15 0.001 0.068 0.056
Seq42 15 0.002 0.102 0.096
Seq59 15 0.002 0.140 0.126

Seq110 15 0.005 0.353 0.313
Seq122 15 0.006 0.461 0.435
Seq143 15 0.007 0.473 0.423
Seq162 15 0.010 0.743 0.650
Seq373 137 0.180 4.041 3.324
Seq446 29 0.140 6.624 6.203
Seq416 502 1.652 3.693 2.611

Seq417.1 185 23.507 3.837 3.011
Seq417.2 484 28.711 6.478 4.764
Seq 453 387 31.078 6.948 3.612

the second column presents the δmsa parameter given to the MSA-GPU program
to use the Carrillo-Lipman bound. For the MSA 2.0 CPU program, the default
parameters were used, whenever possible. For sequences Seq447.1, Seq447.2 and
Seq453, the MSA 2.0 program was not able to retrieve the score/alignment with
the default parameters. Therefore, we had to augment the δmsa parameter to 100,
100 and 1000, respectively. The third, forth and fifth columns show, respectively,
the execution times for the MSA 2.0 CPU program, the MSA-GPU fine-grained
multi-block strategy (Full Space Search) and the MSA-GPU fine-grained multi-
block strategy (Carrillo-Lipman).
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We can see that, for sequences Seq15 to Seq446, the MSA 2.0 CPU program
is able to execute very quickly, with much better execution times than the GPU
program. This happens because the sequences have high similarity and, for this
reason, the CPU program is able to prune efficiently the search space. Even
though our GPU program also prunes the search space, these sequence sets do
not have enough parallelism to surpass the CPU implementation.

SequencesSeq447.1, Seq447.2 and Seq453 are more complex cases. Therefore,
the MSA 2.0 program was not able to execute with the default parameters and
the δmsa parameter was augemented. Augmenting the δmsa parameter reduces
the area pruned by the Carrillo-Lipman bound , thus augmenting the execution
time. For these cases, the GPU program presents a speedup of 7.8x for the
sequence set Seq447.1 (medium similarity), 6.02x for Seq447.2 (low similarity)
and 8.60x for Seq453 (very low similarity).

6 Conclusion and Future Work

In this paper, we proposed and evaluated MSA-GPU, a parallel tool that is able
to calculate exact MSAs in GPUs. We proposed coarse-grained and fine-grained
mechanisms to express the parallelism, with different strategies to compute the
dynamic programming matrix (multidimensional and 2D-projected wavefronts).

The results obtained with real and synthetic sequence sets composed of 3
sequences show that the fine-grained multiblock strategy achieves better execu-
tion times than the coarse-grained strategy when the sequences have a reasonable
size. When comparing the fine-grained multi-block MSA-GPU with the MSA 2.0
CPU program, we observed that the CPU program has very low execution times,
when the sequences are similar. For sequences with medium/low similarity, the
execution time augments a lot and, in these cases, MSA-GPU outperforms MSA
2.0, being able to reduce the execution time considerably.

As future work, we intend to extend MSA-GPU to compare up to 7 sequences.
We also intend to investigate alternative bounds to the Carrillo-Lipman bound
that guarantee that the optimal result will be produced by calculating a smaller
area in the n-dimensional dynamic programming matrix.
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Abstract. Recent advances in RNA research and a steady growth of
available RNA structures call for bioinformatics methods for handling
RNA structural data. Recently, we have introduced SETTER — a fast
and accurate method for RNA pairwise structural alignment. In the
present contribution we describe its extension for multiple RNA struc-
ture alignment called MultiSETTER. It combines SETTER’s decom-
position of RNA structures into disjoint fragments with a well known
multiple sequence alignment algorithm ClustalW adapted for the struc-
tural alignment. We demonstrate the validity of our approach on the task
of automatic classification of RNA structures.

Keywords: structural bioinformatics, RNA tertiary structure, struc-
tural similarity.

1 Motivation

The biological research in recent twenty years revealed an appreciable role of
RNA in many important biological processes [1, 2]. A thorough understanding
of various roles of RNA, such as its importance in gene expression regulation,
significantly expands our appreciation of genome-related processes, and the RNA
research field has significantly evolved in the last decade. As a consequence, a
number of elucidated 3D RNA structures is steadily growing, a trend which
can be expected to be even pronounced in the following years. With a growing
number of RNA structures also grows a need for the development of domain
specific algorithms for searching in RNA databases. Recently, we introduced an
RNA structure pairwise alignment algorithm SETTER [3], and a web server [4]
utilizing SETTER for searching in an 3D RNA structure database. In this paper,
we propose an extension of this approach allowing to assess a similarity to a group
of RNA structures based on multiple structure alignment. Such an approach can
be used, e.g., for an automatic classification of RNA structures. While several
multiple RNA sequence alignment algorithms are available [5–7], we are not
aware of any algorithm capable of performing multiple 3D structural alignment.
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However, there exist algorithms performing multiple alignment based on the
secondary structure [8, 9] or algorithms which project structural features into
sequence and carry out multiple sequence alignment over this projection [10].

2 Pairwise Structural Alignment Using SETTER

Similarly to protein structure, RNA structure can be described at four levels of de-
tail. Primary structure is represented by the RNA’s linear sequence of nucleotides.
Unlike DNA, RNA comes single stranded, and is free to form a multitude of in-
tramolecular hydrogen bonds. Complex base-pairing patterns consisting of double
helices interconnected by various types of loops [11] represent the second level of
the structural hierarchy – secondary structure. Tertiary structure is formed by the
overall arrangement and packing of double helices [12]. Finally, in case of multiple-
chain RNA structures the mutual arrangement of tertiary structures of individual
chains forms quaternary RNA structure.

SETTER utilizes base-pairing information to divide an RNA structure into
basic alignment elements called generalized secondary structure units (GSSUs)
[3]. A GSSU can be viewed as a simplified version of a secondary structural
motif. Each GSSU consists of three parts – a stem, a neck and a loop. RNA
structure is formed by non overlapping GSSUs which are identified along its
sequence (Fig. 1).

Fig. 1. Three GSSUs extracted from an RNA structure. The sequence starts at the
5′ end. Borders between individual GSSUs are indicated by the dashed lines and the
numbers show the order of the GSSU generation.

To compare a pair of RNA structures R1 and R2 each GSSU fromR1 is aligned
with each GSSU from R2. To align a pair of GSSUs, three key residues from each
GSSU are superimposed using the Kabsch algorithm [13]. The key residues are
formed from two pairs of neck residues and one pair of loop residues chosen so
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that it yields best superposition. The quality of a superposition is assessed by
the S-score that represents the similarity of a GSSU pair. If structures consist
of more than one GSSU each, a pair of GSSUs Gi

1, G
j
2 with the lowest S-score

drives the superposition of R1 and R2 structures. To superimpose R1 and R2

a translation vector and a rotation matrix defining the superposition of Gi
1, G

j
2

is utilized. The quality of a structural alignment is evaluated by aggregating S-
distances of all superposed GSSUs into a score S. For further details regarding
the SETTER algorithm we refer to the original publication [3].

3 Multiple Structural Alignment Using MultiSETTER

The MultiSETTER approach represents a SETTER’s extension for multiple
structural alignment. Our approach adopts principles used in ClustalW [14] al-
gorithm for multiple sequence alignment of proteins. The ClustalW algorithm
can be summarized in the following three steps:

– Perform all possible alignments between each pair of sequences, and generate
a distance matrix.

– From the distance matrix construct a dendrogram called “guide tree” using
the neighbor-joining method [15].

– Construct a multiple sequence alignment by aligning the sequences in the
order defined by the guide tree.

In MultiSETTER, we transformed sequence-specific parts of ClustalW into
their structure counterparts. Hence, the MultiSETTER algorithm works as fol-
lows:

– Each pair of RNA structures is aligned by SETTER, and a distance matrix
is constructed from the S distances of each RNA pairwise alignment.

– A guide tree is calculated from the distance matrix.
– The two most closely related structures are aligned first resulting in a so-

called average RNA structure that blends structural characteristics of both
input RNA structures. The alignment then progressively continues, gener-
ating more and more average structures, until the root of the guided tree
is reached. The root of the tree corresponds to the final multiple structure
alignment.

Two RNA structures are merged (averaged) utilizing their decomposition into
individual GSSUs. Merging whole structures thus takes place independently on
the level of GSSUs and these independently merged pieces of the structures
(GSSUs) are then aggregated into the final average RNA structure. The result
of the aggregation is a newly formed RNA structure which is equivalent to any
other non-artificial RNA structure.

The complexity of the pairwise RNA comparison using SETTER is O(n2)
for single GSSU structures where n is the number of nucleotides. If the larger
structure contains m GSSUs each having with at most n nucleotides then the
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complexity is O(m2 × n2). This looks as a high value but one has to take into
account that the separation into GSSUs keeps the GSSUs relatively small thus
efficiently limiting both O(m2) and O(n2) parts. Moreover, additional heuristics
are applied to further decrease the complexity (see [3] for details). When mul-
tiple comparison takes place, first the all-to-all RNA pairwise distance matrix
is computed and then the merging step is carried out. If there are k structures
to be aligned, the complexity of the all-to-all comparison is O(k2 × m2 × n2).
Since the complexity of the merging step is linear (see the following section) the
last mentioned complexity is also the complexity of MultiSETTER. How this
complexity reflects itself in the runtimes shows section 4.2.

In the following sections we give a detailed description of the merging process.

3.1 RNA Merging

The average structure is constructed from two RNA molecules decomposed into
GSSUs. To merge two structures a list of GSSU pairs G formed during the
pairwise alignment, a translation vector and a rotation matrix are utilized. First
a so-called lead structure L is identified. The lead structure is that structure from
the pair to be aligned with the lower sum of distances to the rest of structures.
This prevents the multiple alignment to be disrupted by outliers. In the following
step the algorithm takes GSSUs from L and identifies its corresponding GSSU
in G thus forming a pairing on the level of GSSUs. These GSSUs are then
merged (see section 3.2) into new GSSUM . This process is described by the
following code whereGSSUL is the GSSU from the lead structure L, andGSSUO

is the GSSU from the second structure.

GSSUM ← GSSUL

if S(GSSUL, GSSUO) < meanDistance * param1 then
GSSUM ← merge(GSSUL, GSSUO);
if S(GSSUM , GSSUL) + S(GSSUM , GSSUO) < S(GSSUL, GSSUO) * param2
then

GSSUM ← GSSUL

end if
end if

The variablemeanDistance represents the average distance between all GSSUs
in the input set. If the distance between two GSSUs diverges significantly from
the average the merging is bypassed and the GSSU from the lead structure is
used as GSSUM . Similarly, the merged GSSU is not accepted if its distance
to the GSSUL is greater than the distance between the two original GSSUs.
The parameters param1 and param2 decrease the influence of outliers in the
alignment. The higher the value of param1, the easier it is for a pair of GSSUs
to pass the condition and thus be merged. The same reasoning is valid for param2.
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3.2 GSSU Merging

The GSSU merging algorithm merges loops and stems separately, with the neck
being considered as a part of the stem (see Fig. 2a).

Algorithm 1. Merge stem (merges rj stem of GSSUL and GSSUO and outputs
GSSUM)

1: translationVector ← (0,0,0);
2: translationDir ← 1;
3: stem1 ← GSSUL.stem; stem2 ← GSSUO .stem;
4: if GSSUL.stem.Length() < GSSUO .stem.Length() then
5: stem1 ← GSSUO .stem; stem2 ← GSSUL.stem;
6: end if
7: if stem2.Length = 0 then
8: GSSUM .stem.side[rj ] ← stem1.side[rj ];
9: return GSSUM ;
10: end if
11: step ← stem1.Length() / stem2.Length();
12: for i = stem1.Length() downto 0 do
13: residue1 ← stem1[i].rj ; residue2 ← stem2[step * i].rj ;
14: /* Select a residue based on the merging rules. */
15: pos ← i;
16: mergedResidue ← SelectResidue(residue1, residue2, pos);
17: if residue1 ! = NULL AND residue2 ! = NULL then
18: translationVector ← CalculateTranslation(residue1, residue2, merge-

dResidue);
19: translationSource ← mergedResidue.Template;
20: else
21: /* One of the residues not present ⇒ translation vector from the

previous iteration used. */
22: if mergedResidue.Template = translationSource then
23: translationDir ← 1;
24: else
25: translationDir ← -1;
26: end if
27: TranslateAtoms(mergedResidue.atoms, translationDir * translationVector);
28: mergedGSSU.atoms.append(mergedResidue.atoms);
29: mergedGSSU.stem[i].side[rj ] ← mergedResidue;
30: end if
31: end for

Stem Merging. Stem merging follows the Algorithm 1. The algorithm in-
put consists of the information about which side (r1 or r2 — see Fig. 2a) of
which GSSUs to merge. The algorithm moves stepwise over the stem and merges
residues in every step. Each time, one residue is selected as a template which is
positioned by applying a translation vector (see the next paragraph). To select
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a template residue (function SelectResidue, line 16) we implemented two ap-
proaches. In the first approach, referred to as Leading, residues from the GSSUL

(if present) are favored. In the second approach, called Alternating, we use a
modulo 2 function (see Fig. 2b).

It is important to position the atoms of the new (i.e., merged) residue cor-
rectly. A translation vector is calculated by the CalculateTranslation function,
line 18. This function is called only if residues in both stems are present. The
resulting vector translates the template residue to the midpoint between the in-
put residues. If the template residue comes from the same side as the selected
residue from a previous step when both residues were present, the translation
vector is used as is. Otherwise, it is multiplied by -1 to reverse its direction.

Loop Merging. The method for loop merging is the same as the stem merging
algorithm. The only difference is that the SelectResidue function is no longer
needed as at each loop’s position there exist both residues. Which of them will
be used depends on the strategy used in function SelectResidue.

4 Experimental Evaluation

We used MultiSETTER to automatically classify RNA structures for which we
used the SCOR classification. SCOR [16, 17] (Structural classification of RNA)
is a human curated database of 3D RNA structures hierarchically organized
based on their function and tertiary interactions. At the lowest level of the
SCOR hierarchy functionally similar structures form so-called “families”. From
SCOR database we extracted 14 families (each with at least four structures) of
various sizes and intrinsic diversity containing 101 structures in total. SCOR
names of the families, PDB codes of structures and their chain IDs are given in
the following list (the last number shows the average number of nucleotides per
structure).

1. tRNA (Phe): 1EHZ-A, 1EVV-A, 1TN2-A, 1TRA-A, 4TNA-A, 4TRA-A, 6TNA-A (76)
2. tRNA (Gln): 1C0A-B, 1EFW-C, 1IL2-C, 1ASY-R, 1ASZ-R (75)
3. tRNA (Asp): 1EUY-B, 1EXD-B, 1GTR-B, 1GTS-B, 1O0C-B, 1QRS-B, 1QTQ-B (73)
4. Synthetic: 1J4Y-A, 1KKA-A, 1LUU-A, 1LUX-A (16)
5. Zymomonas mobilis: 1Q2R-E, 1Q2R-F, 1Q2S-E, 1Q2S-F (19)
6. tRNA (Lys): 1BZ2-A, 1BZ3-A, 1BZT-A, 1BZU-A, 1FEQ-A, 1FL8-A (16)
7. Haloarcula marismortui: 1JJ2-9, 1K73-B, 1K8A-B, 1K9M-B, 1KC8-B, 1KD1-B, 1KQS-9,

1M1K-B, 1M90-B, 1N8R-B, 1NJI-B, 1Q7Y-B, 1Q81-B, 1Q82-B, 1Q86-B, 1QVF-9, 1QVG-9,
1S72-9 (121)

8. P5 stem loop: 1C0O-A, 1EOR-A, 1F9L-A, 1GUC-A (16)
9. Hammerhead ribozyme: 1NYI-A, 1Q29-A, 1HMH-A, 1MME-A, 299D-A, 359D-A, 379D-A,

488D-A (18)
10. MS2 phage coat protein binding stem-loop: 1AQ3-A, 1D0T-A, 1D0U-A, 1DZS-A, 1GKV-

R, 1GKW-R, 1H8J-R, 1KUO-R, 1ZDH-A, 1ZDI-A, 1ZDJ-A, 1ZDK-A (16)
11. HIV-1 TAR RNA: 1ANR-A, 1ARJ-A, 1QD3-A, 397D-A, 1AKX-A, 1LVJ-A, 1UTS-B, 1UUD-

B, 1UUI-A (27)
12. HIB-1 Rev response element Rev binding site: 1CSL-A, 1DUQ-A, 1EBQ-A, 1EBR-A,

1EBS-A, 1ETF-A, 1I9F-A (25)
13. HIV-1 psi RNA stem loop SL1: 1M5L-A, 1N8X-A, 1JTJ-A, 1JU1-A, 1F6U-A, 1OSW-A

(26)
14. RNA double strand, bound to protein: 1A34-A, 2BBV-A, 1RC7-A, 1DI2-A, 1N35-A (8)
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(a) An example of a GSSU consisting of
a stem and a loop. Residues Stem[0].r1
and Stem[0].r2 form a neck, however, the
neck is considered to be a part of the loop
in the GSSU merging algorithm.
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(b) Alternating schema of merging two
stems. Pos is the placeholder of the po-
sition of a pair in a stem.

Fig. 2. Stem merging

We assigned MultiSETTER’s accuracy using the leave-one-out classification
of all 101 structures. We employed the following protocol:

– Pick one of the 101 structures and set it as the query structure RNAQ.

– Remaining 100 structure form a database with 14 structural classes.

– Compute an average structure for each of the 14 classes.

– Compute distances between the RNAQ and each of the 14 average structures.

– Assign RNAQ into the family with closest average structure.

We compared the multiple alignment based classification obtained by Multi-
SETTER with the SETTER’s pairwise alignment based classification. To classify
a query structure with SETTER, we computed its distance to the remaining 100
structures. We assigned a class of the query structure using two approaches:
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– Best — We sorted the database of 100 structures in a decreasing order of
their distance to the query structure. We assigned the query structure into
the class of the closest database hit.

– Mean — For every of the 14 families we computed the average distance
between the query structure and the family members. The resulting classifi-
cation was the class with the lowest average distance.

We ran SETTER with its default parameters [4] in all experiments. Multi-
SETTER’s parameters param1 and param2 were set to 0.9 and 2.0, respectively.
For testing we used a machine with an Intel Core i7-2620M processor with 2 cores
and 4 threads, 4 Gigabytes of RAM and hard drive with 7200 rpm; running on
64 bit version of Microsoft Windows 7.

4.1 Accuracy Evaluation

The accuracy evaluation of RNA structural classification by MultiSETTER and
SETTER methods is summarized in Tab. 1. Alternating and Leading setups (see
section 3.2) were used in MultiSETTER, and Best and Mean setups (see sec-
tion 4) in SETTER. Each row in Tab. 1 contains the percentage of 101 queries
for which the class of the query structure ended at that position (column “Posi-
tion”). Thus, Position 2 means that the first structure belonging to same struc-
tural class as the query is found at the second position in the list of structures
sorted by their distances to the query. It then follows that the structure at the
first position in the same example, though it is closer to the query, is annotated
with a wrong classification.

Tab. 1 shows that most accurate results are obtained by pairwise structural
alignment performed by SETTER with the Best setup (i.e., most similar struc-
ture is used to assign a functional class). Good results of the Best setup are the
consequence of not relying on average structures which can be easily influenced
by any outlying structures. Although MultiSETTER was designed with the out-
liers’ possible influence in mind, still, the average structure can be influenced by
outlier(s), and in such a case a classification based on the multiple alignment
might not be the best solution. However, if we compare MultiSETTER (both
Alternating and Leading setups) with the SETTER’sMean setup also employing
a structure averaging, we can see that multiple alignment yields much better re-
sults. MultiSETTER is therefore better than averaging over individual pairwise
alignments.

The conclusions from the previous paragraph are consistent with a visual
inspection of the alignments. Fig. 3 shows average positions of correct classifi-
cations broken down to individual families. For example, if there are only two
structures in the family F , first structure ends at second, and second structure at
fourth position during the classification, the average position of the family F is
three. Fig. 3 demonstrates that MultiSETTER typically outperforms SETTER-
Mean and in some cases also SETTER-Best approaches. In cases when Multi-
SETTER is outperformed by SETTER we can usually track down the problem
to one structure which is the outlier with respect to the rest in the family. For
example, in family 9 the outlying structure is 1HMH-A.
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Table 1. Comparison of MultiSETTER and SETTER

MultiSETTER SETTER

Position Alternating (%) Leading (%) Best (%) Mean (%)

1 79.38 78.35 86.60 70.10

2 7.22 2.06 2.06 4.12

3 3.09 5.15 5.15 2.06

4 1.03 3.09 0.00 6.19

5 1.03 2.06 1.03 6.19

6 1.03 1.03 0.00 2.06

7 1.03 2.06 2.06 0.00

8 1.03 0.00 0.00 2.06

9 0.00 0.00 2.06 1.03

10 2.06 2.06 0.00 1.03

11 2.06 3.09 0.00 1.03

12 1.03 0.00 0.00 1.03

13 0.00 0.00 1.03 3.09

14 0.00 1.03 0.00 0.00
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Fig. 3. Average positions of correct classifications of all the SETTER’s and MultiSET-
TER’s setups. A lower value stands for better classification performance.

Finally, we visually verified that multiple alignment classifies correctly struc-
tures sharing a common fold. Fig. 4a — Fig. 4d show multiple alignments of four
families differing by their level of structural homology. Family 1 (the numbering
corresponds to the list at the beginning of section 4) in Fig. 4a is highly homol-
ogous, while family 12 at Fig. 4c is rather diverse. Therefore, family 12 is best
classified by a pairwise alignment with the Best setup (see Fig. 3). In addition,
in Fig. 4d we demonstrate that MultiSETTER is also able to align dataset con-
sisting of large structures. In this specific case we used seven ribosomal subunits
— PDB IDs 1JJ2-0, 1K8-A, 1K9M-A, 1M1K-A, 1NJP-0, 1NKW-0, 1S72-0.
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Table 2. Time in seconds (s) needed to create the average structures for individual
families. Single-threaded and four-threaded runtimes are reported.

Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 thread 7.9 3.4 8.0 0.4 0.8 0.8 114.2 0.4 177.0 1.1 11.6 15.4 2.6 1.6

4 threads 4.9 2.0 4.7 0.3 0.4 0.5 57.7 0.2 108.2 0.7 5.9 9.9 1.5 1.0

(a) 3D alignment of family 1. (b) 3D alignment of family 10.

(c) 3D alignment of family 12.
(d) 3D alignment of large struc-
tures.

Fig. 4. 3D alignments

4.2 Runtime Evaluation

In this section we compare the time demands of MultiSETTER and SETTER
classification. Reported times do not include time needed for PDB parsing, and
for generating GSSUs since that can be done in advance in an initialization
phase. To perform a classification by MultiSETTER, average structure of each
family is created first. This is a one-time only task which is performed at the
very beginning of the calculations. Times needed to produce average structures
of individual families are presented in Tab. 2. The required time is proportional
to the family size, ranging from less then one second for small families up to
177 seconds needed for family 7 with 17 structures. The average speedup when
utilizing two cores (multithreaded) is about 75%. Finally, Tab. 3 shows times
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needed for the actual classification. We can observe that because of the precom-
putation of the families’ average structures MultiSETTER is more than four
times faster than SETTER. This speedup is even more significant when the par-
allel version of MultiSETTER is considered. For this purpose we utilized Intels
Thread Building Blocks library. We parallelized the all-to-all distance matrix
computation and also the GSSU merging part. When computing the all-to-all
matrix, the individual distance computations are clearly independent. As for the
merging, when the list of GSSU pairs is formed, then, again, the GSSU mergings
of these pairs are independent and can thus be easily parallelized.

Table 3. Times in (s) needed to classify all the structures in the dataset and average
time needed to classify one structure

Method Time (s) Avg. time (s)

SETTER 1669 16.7

MultiSETTER (1 thread) 359 3.6

MultiSETTER (4 threads) 160 1.6

5 Conclusion and Future Directions

In this paper we introduced a multiple structure alignment algorithm MultiSET-
TER built on top of the RNA structure pairwise alignment method SETTER. On
the classification task utilizing structural data and annotations from the SCOR
database we demonstrated that MultiSETTER yields better results than SET-
TER if SETTER is used to classify structures in a similar way as MultiSETTER,
i.e. if it utilizes average structures of individual families. Due to the possibility
to precompute average structures of individual families, MultiSETTER is also
several fold faster than SETTER.

In the future we would like to focus on two aspects related to the RNA struc-
ture similarity domain. First is the improvement of the algorithm, mainly to
improve its robustness with respect to the influence of the outliers. Second, we
would like to apply MultiSETTER to automatically classify RNA structures. We
would like to compare it to no longer supported SCOR manual classification, and
to create an automated system of RNA structural classification.
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Abstract. We present a comparison between atomistic and coarse grain models 
for DNA developed in our group, which we introduce here with the name 
SIRAH. Molecular dynamics of DNA fragments performed using implicit and 
explicit solvation approaches show good agreement in structural and dynamical 
features with published state of the art atomistic simulations of double stranded 
DNA (using Amber and Charmm force fields). The study of the multi-
microsecond timescale results in counterion condensation on DNA, in coinci-
dence with high-resolution X-ray crystals. This result indicates that our model 
for solvation is able to correctly reproduce ionic strength effects, which are very 
difficult to capture by CG schemes. 

Keywords: Molecular dynamics, nucleic acids, simulations, WT4, flexibility, 
counterions, narrowing. 

1 Introduction 

Molecular Dynamics (MD) simulations have become a trustworthy and useful tool for 
the study of the structural and dynamical behavior and interactions between biomole-
cules [1]. However, despite continuous developments [2-4], this technique is limited 
to relatively small systems or short simulation times. Therefore, effort has been de-
voted to the implementation of simulation techniques based on the idea of simplified 
or coarse grained (CG) representations of atomistic or fine grain (FG) systems, which 
reduce significantly the computational demands but still capture the physical essence 
of the phenomena under examination (see ref. [5] for a comprehensive review). Ow-
ing to its biological relevance, DNA has been subject of development of several CG 
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models (recently reviewed in [6]). Among others our group has developed a model for 
CG simulations of DNA [7] (Fig. 1a, b), which we present here for the first time with 
the acronym SIRAH (Southamerican Initiative for a Rapid and Accurate Hamilto-
nian). The SIRAH model can be used in combination with implicit or explicit solva-
tion schemes using generalized Born model or a CG water model called WatFour [8] 
(WT4 for shortness, Fig. 1c). Moreover, it can be used for dual resolution simulations, 
in which FG and CG segments can be intercalated within the same DNA filament [9]. 
Here we present a critical assessment of the accuracy of our model using the Drew-
Dickerson dodecamer (DD) [10] as main benchmark to compare our results with FG 
simulations and/or experimental data. The backmapping of CG coordinates allows 
recovering pseudo atomistic information from calculations performed at the CG level. 
Finally, we show that SIRAH can reproduce ionic strength effects and species-
specific ionic binding to DNA, which are in agreement with high resolution X-ray 
data [11], and lead to a significant bending of the double helix. 

2 Methods 

2.1 The SIRAH Force Field  for CG DNA and Aqueous Solvation 

Our CG model for DNA (Fig. 1a, b) uses six effective beads per nucleobase, each placed 
in correspondence with the positions of real atoms in canonical conformations of FG nuc-
leotides. A comparative view of the topology and excluded sizes of nucleotides, CG water 
and ions is shown in Fig. 1c. The partial charges on each bead add to a unitary negative 
charge on each nucleotide and ensure Watson-Crick electrostatic recognition. This charge 
distribution generates dipole moments, which are well compatible with those of state of 
the art FG force fields (Fig. 1d, e). A complete description of all parameters can be found 
in refs. [7,8]. In analogy with transient tetrahedral clusters formed by pure water, our mod-
el uses four beads interconnected in a tetrahedral conformation (Fig. 1c) [8]. Since each 
bead carries an explicit partial charge, WT4 liquid generates its own dielectric permittivity 
without the need to impose a uniform dielectric. The WT4 model reproduces several 
common properties of liquid water and simple electrolyte solutions [8]. 

2.2 MD Simulations and Analysis 

The SIRAH model runs straightforwardly in the simulation packages AMBER and 
GROMACS (input/parameter files and tools to convert and visualize molecules are 
available from www.sirahff.com). Implicit solvent simulations, using the HCT 
pairwise generalized Born model [12] are performed with AMBER[13] using a cutoff 
of 18 Å and a salt concentration of 0.15 M. Temperature is controlled using a 
Langevin thermostat [14,15] with a friction constant of 50 ps-1. Explicit solvent 
simulations are performed in the NPT ensemble using GROMACS 4.5[16]. A direct 
cut off for non-bonded interactions of 12 Å is used while long range electrostatics 
were evaluated using the PME approach [17]. Temperature and pressure are coupled 
to Berendsen thermostats and barostats [18] with coupling times of 1.2 ps and 6.0 ps, 
respectively. All systems are energy minimized and stabilized by raising the 
temperature from 0ºK to 300ºK in 1 ns.  
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Fig. 1. SIRAH force field for CG DNA and aqueous solvent. a) FG nucleotides are presented 
with balls and sticks and colored by atoms (Oxygen: red, Nitrogen: blue, Carbon: cyan, Hydro-
gen: white). CG beads placed on FG positions are shown as semitransparent spheres. b) CG 
representation of the double helix DNA. c) Comparative view of CG molecules. Guanine, WT4 
(water) and CG ions sodium, potassium and chloride are shown from left to right. Single elec-
trolytes implicitly include a first solvation shell. The diameter of the CG beads in (a) and (c) 
corresponds to the actual van der Waals radii, providing an idea of the effective excluded vo-
lume and relative sizes of the beads. d) Schematic representation of dipole moments along the 
X-ray structure 1BNA showing the colinearity between FG and CG schemes (blue, red and 
yellow indicate Amber99-bsc0, Charmm27 and SIRAH force fields, respectively). e) Top: 
dipoles drawn on AT and GC base pairs showing their alignment with the base’s planes. Bot-
tom: same as top but seen along the DNA axis. Dipole modules are expressed in Debyes. 

A time step of 20 fs is used. A list of the simulated systems and their composition are 
presented in Tab. 1. The X-ray structure of the Drew-Dickerson dodecamer (PDB 
id:1BNA [10]) was used as starting point. We compared our results against FG simula-
tions on the same system performed with the Amber99-bsc0 [13] force field reported by 
Pérez et al [19] (sys3 in Tab. 1, available on-line at http://mmb.pcb.ub.es/microsecond/). 
Additionally, two systems bearing the 10 unique dinucleotide steps (namely, AA·TT, 
AC·GT, AG·CT, AT·AT, CA·TG, CC·GG, CG·CG, GA·TC, GC·GC and TA·TA) were 
simulated starting from the canonical B-form (sys5 and sys6 in Table 1) and compared 
with results reported in reference [20]. All the comparisons have been made on the back-
mapped trajectories according to the procedure described in ref. [7]. Helical parameters are 
calculated using Curves+[21]. Root Mean Square Deviations (RMSD) are computed on 
all heavy atoms excluding the capping base pairs, while major and minor groove dimen-
sions are measured between opposite phosphate groups and averaged along the double 
helix. Eigenvectors and eigenvalues are obtained by diagonalization of the covariance  
matrix calculated along the trajectories for all the heavy atoms using standard GROMACS 
utilities. As a gauge of the likeliness between different simulations, trajectories are fitted to  
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Table 1. Description of the simulated systems 

System 
Solvation  

model 
nº solvent 

molecules a 

Ionic 
Species  

(nº of ions) 

Nucleotide sequence 
(5’to 3’) 

time  

(μs) 

Sys1c GB --- --- CGCGAATTCGCG b 1.2 

Sys1wr GB --- --- CGCGAATTCGCG b 1.2 

Sys2c WT4 523 (5753) Na+(22) CGCGAATTCGCG b 1.2 

Sys2wr WT4 523 (5753) Na+(22) CGCGAATTCGCG b 12 

Sys3d TIP3P 4998 Na+(22) CGCGAATTCGCG b 1.2 

Sys4 WT4 506  
(5566) 

Na+(19) 
K+(19) 
Cl-(16) 

CGCGAATTCGCG b 12 

Sys5 WT4 1510 
(16610) 

Na+(34) 
K+(33) 
Cl-(33) 

GCCTATAAACGCCTATAA 10 

Sys6 WT4 1510 
(16610) 

Na+(34) 
K+(33) 
Cl-(33) 

CTAGGTGGATGACTCATT 10 

a Parenthesis indicate the equivalent number of FG water molecules represented. b Drew-
Dickerson dodecamer. c Simulated using harmonic constraints on the capping base-pairs. d 
Taken from ref.[19]. 

a common reference (the canonical structure) and their covariance matrices compared 
using a similarity index (SI) as in ref. [9].  

The essential dynamics analysis is performed to compare sys1/sys2 with sys3. To 
avoid contaminating the main components of motion with possible helix fraying, in 
sys1 and sys2 constraints of 0.75 Kcal/mol•Å2 are applied only to the Watson-Crick 
beads of capping bases. Counterions condensation is analyzed by computing electro-
lyte occupancy density maps in 3D regular grids of 0.3 Å using VMD [22]. Cations 
closer than 5 Å to phosphate groups of both opposite strands are considered bound to 
the minor groove. Narrowing is measured only on the central track, i.e. between the 
four central phosphate pairs. 

3 Results and Discussion 

3.1 Structural and Dynamical Comparison 

A first comparison of our CG model versus FG simulations (sys3) is performed in terms 
of RMSD on the backmapped trajectories of simulations using implicit and explicit solva-
tion (sys1 and sys2, respectively). Along the 1,2 μs explored, both solvation schemes de-
scribed equally well the DD structure with no RMSD drift from the experimental structure 
(Fig. 2a). In all the simulations the DNA duplexes show a flexible but stable behavior 
oscillating around the equilibrium B-form. The higher number of conformational  
substates explored by the FG simulation translates in higher RMSD variations. A good 
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correspondence between the three simulations can be also inferred from structural super-
position of backmapped snapshots taken at the beginning, middle and end of the dynamics 
(Fig. 2b).  

 

Fig. 2. Comparison between FG and CG simulations of the DD dodecamer. Implicit solvation 
CG (sys1), explicit solvation CG (sys2) and FG simulations (sys3) are presented in blue, red 
and green, respectively. a) RMSD along time calculated for all the heavy atoms (FG and back-
mapped CG) respect to the X-ray structure 1BNA. b) Least mean square fit performed on all 
heavy atoms of conformers taken at the beginning, middle, and end of the trajectories. c - e) 
Major and minor groove widths (top and bottom traces, respectively) for the three systems. 

Other characteristic features of DNA as the minor and major grooves show also a very 
good agreement with the FG simulation (Fig. 2c-e). In correspondence with the observa-
tion made for RMSD, both CG schemes show lower fluctuations. To gain a deeper insight 
on the dynamical behavior of the CG simulations, we compare the conformational sub-
space sampled by inspecting the essential dynamics modes of each simulation. In all the 
cases, the first 3 eigenvectors explained nearly 50% of the total variance. These 3 essential 
modes are analyzed in more detail in terms of their projection onto the real space  
(see animation at http://www.youtube.com/watch?v=ivW7ixsG0fA&feature=youtu.be). 
The first mode involves a twisting and untwisting, the second is related with a simultane-
ous bending and twisting around the center of the AT track, while the third eigenvector,  
is associated to a global tilting of the duplex. To achieve a more quantitative characteriza-
tion of the likeness between trajectories we calculate a similarity index (SI) from the  
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covariance matrices of each simulation. As a measure for the maximum similarity reacha-
ble during the time window explored, we divided the FG trajectory in two halves and 
calculate the SI between both segments of trajectory resulting in a value of 0.91. Compari-
son of the FG versus the CG simulations results in SI values of 0.58 and 0.66 for implicit 
and explicit solvent, respectively. This roughly good similarity between the dynamics of 
FG and CG simulations may suggest that both approaches sample comparable potential 
energy landscapes. 

To exclude the possibility that the loose constraints used on the capping base pairs 
may generate some artifacts, we perform analogous simulations without the restraints 
(sys1wr and sys2wr), which give equivalent results. The only difference is the helix 
fraying observed at both capping base pairs of sys1wr in the ns timescale. This beha-
vior is in agreement with FG simulations for this particular system within the simu-
lated time [19]. However, we have also reported on the spontaneous opening and 
rehybridization of longer DNA filaments in the multimicro second timescale, which 
produce no significant changes in the global structure of the double helix [23].  

3.2 Base Pair Steps and Sequence Specificity 

In previous publications we have reported sequence specific effects to influence melting 
temperatures and breathing profiles [7,23]. To achieve a more precise evaluation of the 
sequence-induced structural variations we simulated systems sys5 and sys6, which contain 
all the unique dinucleotide base pair steps. The helical parameters are compared upon 
backmapping with canonical values, averaged experiments and FG simulations (Fig. 3).  

 

Fig. 3. Helical properties for the ten unique base pair steps. The helical properties SHIFT, 
SLIDE, RISE (measured in Å), TILT, ROLL and TWIST (measured in degrees) are compared 
for the force fields Amber99-bsc0 (empty circle), Charmm27 (squares), SIRAH (explicit solva-
tion filled circles) and experimental x-ray measurements (triangles) including their standard 
deviations. All data except for that corresponding to SIRAH is taken from ref. [20]. Values of 
canonical B (blue line) and A (dashed red line) DNA forms are also given as references. 
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In general, the agreement with experiment and FG force fields is fairly good. Yet, 
the CG force field causes higher dispersion around average values when compared 
with FG simulations. The main deviation is observed for the ROLL, which shows a 
tendency to sample negative values. This problem is more marked for the steps CT 
and TC, which deviate almost 10 degrees from the canonical B-DNA. However, the 
impact of these deviations on the global structure and dynamics of the double helix 
seem to be minor, as judging from the results of the previous paragraphs. 

3.3 Ionic Strength and DNA-Ion Binding 

While the global distribution of cations around the DNA contributes to the stability of 
the double helix, the specific interaction of cations with DNA has been related with 
local structural distortions. In particular, the binding of sodium ions within the minor 
groove has been proposed to mediate its narrowing [24,25]. As quantified in our pre-
ceding publication [8], the binding of one single ion is enough to induce a sensible 
change in the minor groove. Increasing condensation of counterions translate in a 
progressively more marked minor groove narrowing.  

 

Fig. 4. Binding of cations within the minor groove of the DD dodecamer. a) Sys2wr simulation: 
minor groove width (top), and total number of bound cations in the minor groove as function of 
time. b) Idem to (a) for sys4. Green and blue dots are used for sodium and potassium, respec-
tively. Red dots represent the sum of both electrolytes. c) Molecular representation of the DD 
dodecamer. The black square is zoomed in and rotated 90 degrees in the inset. Green and blue 
wireframes correspond to the occupational density calculated from the CG simulation for so-
dium and potassium ions, respectively. The gray wire frame shows the electron density from 
the X-ray data (PDB id: 355D [11]). 

In the FG simulation (sys3) the simultaneous occupancy of the minor groove by 
several ions is very uncommon, but the presence of one Na+ with residence times of 
10 to 15 ns is not so rare [13]. The deformation observed in FG simulations on DNA 
by cations is insufficient to explain the distortions observed in the X-ray in presence 
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of high salt concentration [11]. Two possible causes of this disagreement may be the 
lack of ionic strength (sys3 contains only neutralizing counterions) or insufficient 
sampling. To explore this issue we perform simulation sys2wr (containing only neu-
tralizing counterions), increasing one order of magnitude the simulation time of sys2. 
Moreover, we also extended to 12 μs a previously published simulation [8] of the DD 
dodecamer in presence of added salts (sys4, Tab. 1). The simulation of sys2wr shows 
that binding of one single ion is very frequent and happens in the timescale from ns to 
μs (Fig. 4a). Conversely, we observe very few events where several sodium ions bind 
simultaneously into the minor groove. When these events happen, they have a longer 
duration and show a correlation with the narrowing of the minor groove. Simulation 
of the same DNA molecule in presence of added salts (sys4) offers a complementary 
view of this phenomenon.  

The presence of added salts increases the degree of counterions condensation around 
the DNA (see animation at http://www.youtube.com/watch?v=kvIWQE8UcHo& 
feature=youtu.be). Both cations (Na+ and K+) localize around Phosphate moieties with 
particularly longer residence times into the minor groove (see also animation at 
http://www.youtube.com/watch?v=TapsTGisEew&feature=youtu.be). From a comparison 
between Figs. 4a and 4b it is clear that increasing the ionic strength in the solution changes 
sensibly the ionic binding profile presenting microseconds-long condensation events with 
the simultaneous binding of up to six counterions of both species present in the solution. 
Notably, the average narrowing of 9.6 Å measured during long condensation events, with 
3 or more bound ions, coincides precisely with X-ray determinations [11,26]. Calculation 
of the occupational density of ions along the MD trajectory shows that the most populated 
occupational sites have a rough correspondence with the geometry reported for binding 
sites of water, sodium and potassium within the minor groove [8]. Superposition of the 
occupational density with crystallographic electron density shows that this agreement is 
particularly good for the atoms located between the phosphate moieties (Fig. 4c). This 
suggests that an extended counterion condensation is needed to generate a significant and 
sustained bending of the DNA [27]. Measuring the total bend with the program Curves+ 
[21] results in an average value of 26 degrees with extreme values ranging from 10 to 50 
degrees. Using implicit solvent simulations with SIRAH, we recently reported that thermal 
oscillations lead to DNA breathing and formation of spontaneous kinks in the double helix 
[23]. The DNA bending angles of nearly 80% of the known universe of protein-DNA 
structures (curated in the PDI database [28], http://melolab.org/pdidb/web/content/links) 
falls within the values sampled by our simulations. Considering the present results, we 
notice that 62% of all the protein-DNA complexes present a bent minor or equal to the 26 
degrees induced by ion binding found in this work. This leads to the intriguing conjecture 
that protein-DNA recognition might exploit spontaneous fluctuations driven by the elec-
trolytic environment. Alternatively, one might think that the concomitant binding of ions 
creates low entropy regions in DNA, which are more prone to be targeted by protein li-
gands, considerably decreasing the free energy of binding. 

4 Conclusions 

We presented a systematic comparison of the performance of the SIRAH CG model 
for DNA in implicit and explicit solvation against FG simulations and experimental 
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data. It turns out that both approximations provide a good description of the structural 
and dynamical features of DNA. The gross determinants of the structural stability of 
the double helix suggest that, upon backmapping, the information obtained from the 
CG simulations is almost as accurate as that provided by FG techniques. The specific 
and reversible binding of counterions within the minor groove generates 
microseconds-long narrowing, that probably relates to bent DNA conformations up to 
~50 degrees. This distortion translated in a narrowing of the minor groove, which may 
be stable in the multi-microsecond time window.  

The agreement with crystallographic data [26] and the comparison with all the high 
resolution protein-DNA complexes reported in the PDB provides a validation for our 
model and highlights the importance of the proper treatment of ionic strength effects. 
CG simulations sample a large range of DNA bending conformations seen in protein-
DNA crystals, suggesting that, thermally induced oscillations of naked DNA encom-
passes the distortions required for protein binding. In line with similar conclusions 
conducted at the FG level [29], this add a new piece of evidence in favor of the preva-
lence of ‘conformational selection’ versus ‘induced fit’ paradigms. 

The simulation schemes presented here result in a speed up respect to their corres-
ponding FG simulations of 800 and 2400 times for explicit and implicit solvent simu-
lations, respectively. Since the high computational cost associated to atomistic  
simulations precludes the study of many interesting phenomena, this kind of ap-
proaches is expected to become of regularly use and interest for the broad scientific 
community.  
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Abstract. We develop a theory of algebraic operations over linear gram-
mars that makes it possible to combine simple “atomic” grammars op-
erating on single sequences into complex, multi-dimensional grammars.
We demonstrate the utility of this framework by constructing the search
spaces of complex alignment problems on multiple input sequences ex-
plicitly as algebraic expressions of very simple 1-dimensional grammars.
The compiler accompanying our theory makes it easy to experiment with
the combination of multiple grammars and different operations. Com-
posite grammars can be written out in LATEX for documentation and
as a guide to implementation of dynamic programming algorithms. An
embedding in Haskell as a domain-specific language makes the theory
directly accessible to writing and using grammar products without the
detour of an external compiler.
http://www.bioinf.uni-leipzig.de/Software/gramprod/
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1 Introduction

The well-known dynamic programming algorithms for the simultaneous align-
ment of n sequences [1] have a structure that is reminiscent of topological prod-
uct structures. This is expressed e.g. by the fact that intermediary tables are
n-dimensional. Here we explore if and how this intuition can be made precise
and operational. To this end we build on the conceptual framework of Algebraic
Dynamic Programming (ADP) [2, 3]. In this setting a dynamic programming
(DP) algorithm is separated into a context-free grammar (CFG) that generates
the search space and an evaluation algebra. In this contribution we will mainly
be concerned with a notion of product grammars to facilitate the construction
of the search space.
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Before we delve into a more formal presentation, consider the context-free
grammar for pairwise sequence alignment with affine gap costs as an example.
Gotoh’s algorithm [4] uses three non-terminals M , D, I, depending on whether
the right end of the alignment is a match state, a gap in the first sequence, or a
gap in the second sequence. The corresponding productions are of the form

M → M(uv )
∣∣ D(uv )

∣∣ I(uv )
∣∣ ( εε )

D → M( u− )
∣∣ D(u. )

∣∣ I( u− )

I → M(−v )
∣∣ D(−v )

∣∣ I( .
v )

(1)

where u and v denote terminal symbols, ’−’ corresponds to gap opening, while
’.’ denotes the (differently scored) gap extension. The ε here takes the role of the
“sentinel character”, i.e., matches the end of the input. Each of the non-terminals
reads simultaneously from two separate input tapes. To make this property more
transparent in the notation, we write M � (XX ), D � (XY ), and I � ( YX ). This
yields productions such as

(XX ) → (XX )(uv ) 
 (Xu
Xv ) or ( YX ) → (XY )(−v ) 


(
X−
Y v

)
(2)

Apart from the conspicous absence of (YY ), i.e., alignments ending in an all-gap
column, to which we will return later, this notation strongly suggests to consider
the 1-dimensional projections of the 2-dimensional productions of Equ. (2), which
obviously have the form

X → Xu
∣∣ Y u

∣∣ ε and Y → Y.
∣∣ X− (3)

This simple grammar either reads a symbol (non-terminal X) or it ignores it
(non-terminal Y ). Each copy of the “step grammar” (3) operates on its own input
tape. The basic idea in this contribution is to consider the dynamic programming
algorithms for n-way alignments as an n-fold product of the simple step grammar
with itself. To this end we need to solve two problems: First, we need to clarify
the precise meaning of the product of CFGs. Since alignment algorithms are
naturally expressed as left-linear CFGs we will be content with this special case
here. Second, we need to develop a theory for the construction of the evaluation
algebra for a product grammar.

We note that full-fledged n-way DP alignments have exponential running
time and hence are of little practical use for large n. Although elaborate divide
& conquer strategies have been proposed to prune the search space, see e.g.
[1], heuristic approaches that combine pairwise alignments are much more com-
mon. Three-way alignments nevertheless are employed in practise in particular
when high accuracy is crucial, see e.g. [5–8]. Four-way alignments were recently
explored for aligning short words from human language data [9].

2 Algebraic Operations on Grammars

2.1 Notation

A CFG G = (N, T, P, s) consists of a finite set N of non-terminals, a finite set
T of terminals so that N ∩ T = ∅, a set P of productions x → α where x ∈ N
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and α ∈ (T ∪N)∗, and a start symbol s ∈ N . Furthermore, we need the special
symbol ε denoting the empty string and an “empty production” ∅. Throughout
the body of this contribution we will consider in particular left-linear grammars,
i.e., those for which all productions are of the form A → Bx with A,B ∈ N and
x ∈ T .

The example of Gotoh’s algorithm in the introductory section motivates us
to introduce algebraic operations on grammars in a more systematic way. As
a running example, we will use one of the simplest alignment algorithms. The
Needleman-Wunsch algorithm [10] aligns two sequences x1...n and y1...m so that
the sum of match and in/del scores is maximized. The basic recursion over the
memoization table T reads

Tij = max
{
Ti−1,j + d, Ti,j−1 + d, Ti−1,j−1 +m(xi, yj), 0i=0,j=0,−∞

}
(4)

In the recursive scheme, the base case is given by the alignment of two empty
substrings “on the left”, while the other cases extend the already aligned part
of the strings to the right. The first two cases denote an in/del operation with
cost d, while m( . , . ) scores the (mis)match xi with yj .

A two-tape grammar equivalent to the recursion in Equ. (4) is

(XY ) → (XY )(aε )
∣∣ (XY )( εa )

∣∣ (XY )(aa )
∣∣ ( εε ) (5)

There are several differences between the formulation in Equ. (4) and Equ. (5).
The recursive formulation working on the memoization table T does not store
the alignment directly but rather the score of each partial, optimal alignment.
The grammatical description, on the other hand, describes the search space of
all possible alignments without any notation of scoring. In addition, recursive
descriptions usually include explicit annotations for base cases, here the empty
alignment. The production rule (XY ) → ( εε ) has this role in our example. In
general, grammatical descriptions abstract away certain implementation details.
Some of these will, however, become important when constructing more complex
grammars from simpler ones, as we shall see below.

Our task will be to construct the Equ. (5) from even simpler, “atomic” con-
stituents. These grammars are

S =({X}, {a}, {X → Xa
∣∣ X}, X) (6)

N =({X}, {ε}, {X → ε}, X) (7)

L =({X}, {}, {X → X}, X) (8)

The grammar S in Equ. (6) performs a “step”. It either reads a single character
on the right and recurses on the left, or simply recurses. Note that by itself the
rules do not terminate. The grammar N , Equ. (7), matches the empty input
(or any empty substring of the input) and immediately terminates. Finally, L
Equ. (8) reproduces the non-terminating loop case already seen in Equ. (6).

Intuitively, we can combine these three components on a single tape as

S +N −L = ({X}, {a, ε}, {X → Xa
∣∣ ε}, X) (9)
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In order to make this intuition precise we need to give a precise meaning to
algebraic operations on grammars. In the following we will do this for linear
grammars, however with an extension to general CFGs in mind.

Each operator introduced below primarily acts on sets of production rules.
They implicitly carry over to the involved sets of terminals and non-terminals in
an obvious manner. Two production rules are equivalent if they are isomorphic
as in Equ. (13). This is of relevance insofar that it leads to idempotency in one
of the operators below, but does not otherwise interfere with parsing1. In the
following we use the notation Pn to emphasize that the productions operate on
n tapes. We will refer to dimG = n as the dimension of the grammar.

2.2 Algebraic Operations on Grammars

The + monoid. The + operator is defined as the union of all production rules
of the two grammars:

Pn
1 + Pn

2 = Pn
1 ∪ Pn

2 (10)

We enforce explicitly that the + operator requires that the two operand gram-
mars have the same dimensionality. The + operation forms a monoid over the
set of production rules. Since the production rules form a set, isomorphic rules
collapse to a single rule. The empty set Pn = {} is a neutral element and
Pn + Pn = Pn, i.e., the + monoid is idempotent. Isomorphism on production
rules is also symbolic, that is, X → X is isomorphic to X → X but not to
{X → Y, Y → X}, even though the latter set of two rules reduces to the first.
For our example, we have (X → Xa

∣∣ X) + (X → ε) = (X → Xa
∣∣ X ∣∣ ε).

The − operator. While the + operator unifies two sets of production rules,
the − operator acts as a set difference operator

Pn
1 − Pn

2 = {p ∈ Pn
1 |p /∈ Pn

2 } (11)

As for +, it requires operands of the same dimensionality. By construction, −
is not associative. Thus does not form a semigroup but merely a magma. The
empty set of production rules acts as the neutral element on the right. This
operator is important to explictly remove production rules that yield infinite
derivations. In our example, we need to remove {X → X}. With the help of −
we can write (X → Xa

∣∣ X)− (X → X) = (X → Xa). We shall see that it is
often convenient to “temporarily” introduce productions that later on need to
be excluded from the final algorithm.
The ⊗ monoid. The definition of a direct product of left linear grammars lies
at the heart of this contribution.

Definition 1. Let G1 = (N1, T1, P1, s1) and G2 = (N2, T2, P2, s2) be left-linear
CFGs, i.e., all productions are of the form A → Bx or A → y. Their direct

1 This is not completely true in the context of stochastic linear grammars: replication
of a rule in an SCFG that already has duplicated rules requires that we sum over
the probabilities for isomorphic rules.
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product G1 ⊗ G2 is the grammar G = (N, T, P, s) with non-terminals N = N1 ×
N2∪N1×{ε}∪{ε}×N2, terminals T = T1×T2∪T1×{ε}∪{ε}×T2, the start symbol
of the product is s = ( s1s2 ). The productions are of the forms

(
A1

A2

) → (
B1

B2

)
(x1
x2
),(

A1

A2

) → (B1
ε )(x1

y2 ),
(
A1

A2

) → ( ε
B2

)( y1
x2 ),

(
A1

A2

) → (y1
y2 ), (

A1
ε ) → (B1

ε )(x1
ε ), (

ε
A2

) →
( ε
B2

)( ε
x2
), (A1

ε ) → (y1
ε ), and ( ε

A2
) → ( ε

y2 ) iff A1 → B1x1 and A1 → y1, are
productions in P1 and A2 → B2x2, A2 → y2 are productions in P2, respectively.

By construction G is again a left-linear CFG that now operates on two bands.
It will be convenient to abuse the notation and write productions of the form
Ai → yi as Ai → εyi. Hence all productions in the product grammar can be
written as

(
A1

A2

) → (
B1

B2

)
(x1
x2
) with Ai, Bi ∈ Ni ∪ {ε}, xi ∈ Ti ∪ {ε} subject to the

following conditions: Ai = ε implies Bi = xi = ε,
(
A1

A2

) �= ( εε ), and ( εε ) on the

r.h.s. is omitted. We will also make use of notation (A1 → B1y1)⊗ (A2 → B2y2)
for the product of two individual productions. By construction, we have

dim(G1 ⊗ G2) = dim G1 + dimG2 (12)

We note finally, that the empty string ε appearing in the 2-dimensional terminals
and non-terminals is not necessarily associated with terminating the reading
from the input band(s).

To see that ⊗ is associative we need to demonstrate that the productions on
(G1 ⊗ G2)⊗ G3 and G1 ⊗ (G2 ⊗ G3) are isomorphic, i.e.,

(
(x1
x2 )
x3

)
→

(
(α1
α2 )
α3

)



( x1

(x2
x3
)
)
→

( α1

(α2
α3

)
)

(13)

This is most easily seen in the notation with the extra ε since in this case the αi

are strings of length 2 that are simply decomposed columnwisely. Hence multiple
products are well-defined. Furthermore, permutations of rows are isomorphisms.
Thus G1 ⊗G2 
 G2 ⊗ G1, i.e. exchanging the order of factors affects the order of
the coordinates only. Due to the associativity of ⊗, we can safely extend these
constructions to more than two factors.

The canonical projection πi : G1 ⊗ G2 → Gi is obtained by formally isolating
the i-th coordinate and contracting the empty strings ε and the empty productions
∅ = (ε → ε). Clearlywe haveπi(T ) = Ti, πi(N) = Ni,πi(s) = si, and πi(P ) = Pi.
The grammar product⊗ thus has the basic properties of a well-defined product.

Let lan(G) denote the language generated by G. Note that a “string” in lan(G)
is, by construction, a sequence of terminals, each of which is either of the form

(x1
x2
) with x1 ∈ T1 and x2 ∈ T2, or of the form (x1

ε ) with x1 ∈ T1, or of the
form ( ε

x2
). Thus lan(G1 ⊗ G2) consists of alignments of strings αi ∈ Gi. To see

this, note that each string αi ∈ Gi is generated from si using a finite sequence
℘i = (p1i , p

2
i , . . . ) of productions. Any partial matching of the ℘1 and ℘2 that

preserves the sequential order of the two input sequences gives rise to a sequence
of productions ℘ ∈ P ∗ by matching all unmatched pki with the dummy produc-
tion ∅. By construction πi(℘) = ℘i, i.e., ℘ derived an alignment of the input
strings β1 and β2. Conversely, given a sequence ℘ of productions of the prod-
uct grammar, we know that πi(℘) is a sequence of productions of Gi; hence it
constructs strings in lan(Gi). It follows that the product language satisfies

πi(lan(G1 ⊗ G2)) = lan(Gi) (14)
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Similarly, we find that parse trees have a natural alignment structure. Let τ
be a parse tree for an input β ∈ lan(G1 × G2). Its interior nodes are labeled by
the productions, i.e., pairs of the form

(
A1→B1x1

A2→B2x2

)
,
(
A1→B1x1

∅

)
, or

(
∅

A2→B2x2

)
.

The projections πi(τ) are explained by retaining only the i-th coordinate of the
vertex label and contracting all vertices labeled by ∅ in πi(τ) yields a valid parse
tree for πi(β) w.r.t. Gi. Thus τ is a tree alignment of the parse trees for the two
input strings.

The direct product ⊗ forms a monoid on grammars with arbitrary dimensions
since

Pm
1 ⊗ Pn

2 = {(p1 ⊗ p2)
m+n|pm1 ∈ Pm

1 , pn2 ∈ Pn
2 } , (15)

where p1⊗ p2 is explained in Def. 1. The neutral element of the ⊗ monoid is the
zero-dimensional grammar which has one production rule ε0 → ε0 that neither
reads nor writes anything as it does not operate on a tape. Albeit rather artificial
at first glance, it is useful to have a neutral element available. For our example,
we have

(X → Xa|X)⊗ (X → Xa|X)

= (XX ) → (XX )(aa )
∣∣ (XX )(aε )

∣∣ (XX )( ε
a )

∣∣ (XX )
(16)

This grammar contains the 2-dimensional loop rule (XX ) → (XX ), derived from
(X → X) ⊗ (X → X) that eventually needs to be eliminated. To this end, it
will be convenient to consider yet another operation on productions.
The structure-preserving power ∗ For any k-dimensional grammar G and
any natural number n ∈ Z, G ∗ n denotes the k × n-dimensional grammar with
the same structure. Each k-dimensional (terminal or non-terminal) symbol ( s1sk )

is transformed to an k×n-dimensional symbol
⎛
⎜⎝ (

s1
sk )

( s1sk )

⎞
⎟⎠. Note that for a grammar

with a single production rule we have G⊗G ≡ G ∗ 2.
For our example grammar, this operation is useful as short-hand for both

Equ. 7 and Equ. 8. In the case of linear grammars, the ∗ operator is mostly
useful as shorthand to expand singleton grammars. It is worth noting, however,
that a number of algorithms, notably [11], in computational biology work on
multiple tapes with a grammar structure equal to their one-dimensional cousins.
In particular, the Sankoff algorithm [11] is a variant of the Nussinov algorithm
extended to two tapes.

We can now construct the full Needleman-Wunsch alignment grammar from
the much simpler 1-dimensional constituents of Eqns.(6–8) in the following way:

NW = G ⊗ G +N ∗ 2− L ∗ 2 , (17)

Written in terms of the productions only, this can be rephrased as

(X → Xa|X)⊗ (X → Xa|X) + (X → ε) ∗ 2− (X → X) ∗ 2
= (XX ) → (XX )(aa )

∣∣ (XX )(aε )
∣∣ (XX )( ε

a )
∣∣ ( εε ) (18)

Note that we have used here a distinct symbol ε to highlight the termination case
deriving from N . Since our construction of the Needleman-Wunsch grammar is
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based on well-defined algebraic operations we can readily use the same approach
to construct much more complex alignment algorithms. Before we proceed, how-
ever, we need to address the technical issue of loop rules.

2.3 Grammars with Loops

In Equ. (17) we explicitly added a terminating base case X → ε and removed a
production rule with infinite derivationsX → X . Why do we insist on performing
this operation explicitly instead of modifying the definition of the direct product
⊗ accordingly?

The main reason lies in performance considerations. An “intelligent” product
operator would first need to determine which rules have infinite derivations. For
linear grammars with only one non-terminal a rule is not infinite if a single
terminal (except ε) is present. ε rules are also fine, as long as only the empty
word case X → ε is present. Productions of the form {X → Y, Y → X}, however
need to be followed up to a depth of the number of production rules present. For
context-free grammars, the complexity will increase further, as now multiple non-
terminals may exist on the right-hand side. For both convenience and efficiency
(by a constant factor), it does not seem to be desirable to transform the grammar
into Chomsky normal form. The second problem is the need for rewriting. In the
case of {X → Y, Y → X}, rewriting yields X → X by inserting the rules for
Y wherever Y is used. More complicated grammars might quite easily require
major rewrites before all loop cases can be removed.

Finally, using looping productions can be conceptually useful during construc-
tion. In case of Equ. 6, we either want to read a character in a “step” X → Xa
or perform an in/del with a “stand” X → X . The direct product of Equ. (6)
then yields all possibilities of stepping or standing on two (or more) tapes. Of
these cases we only want to remove the case where all tapes “stand”. This case
is quite easily determined as Equ. 8 and just needs to be scaled (with ∗) to the
correct dimension and subtracted from the complete grammar.

2.4 Implementation

We have implemented a small compiler for our grammar product formalism with
three output targets. First, we generate LATEX output. This supports researchers
in the development of complex, multiple dimensional linear grammars, facili-
tates the comparison with the intended model for an elaborate alignment-like
algorithm. It assists implementation of the grammar in the users’ programming
language of choice as the mathematical description of the recurrences reduces
the chance that a production rule or recursion is simply forgotten.

In addition, we directly target the functional programming language Haskell
[12]. It is possible to emit a Haskell module prototype which then needs to be
extended with user-defined evaluation (scoring) algebras. This mode mirrors the
LATEX output. Advanced users may make use of TemplateHaskell [13] to directly
embed our domain-specific language as a proper extension of Haskell itself. Both
Haskell-based approaches ultimately make use of stream fusion optimizations
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[14] by way of the ADPfusion [15] framework that produces efficient code for
dynamic programming algorithms.

Currently, the emitted Haskell code for non-trivial applications is slower than
optimized C by a factor of two [15]. Recent additions to the compiler infras-
tructure [16], which provide instruction-level parallelism, will reduce this factor
further. As ADPfusion is built on top of the Repa [17] library for CPU-level
parallelism, we can expect improvements in this regard to be available for our
dynamic programming algorithms in the near future.

3 Applications

In this section we discuss one elaborate and practically relevant example where
a grammar product of two simple grammars yields a complex result grammar.
The alignment of two sequences of the same type is typically simplified due to
mirrored operations. Recalling the alignment grammar from above, we speak of
in/del operations as an insertion in one sequence may just as well be described as
a deletion in the other sequence. In addition, it does not matter which sequence
is bound to which input tape.

The alignment of a protein sequence to a DNA sequence is, however, more
involved. In Fig. 1 we summarize this more elaborate example. The DNA se-
quence is read in one of three reading frames (RFs), and a deletion or insertion
does not yield a “simple” in/del but also a frame shift. This more advanced
treatment of DNA characters in triplets is due to the translation of DNA into
protein in steps of three nucleotides, the “codons” of the genetic code. In Fig. 1
frame shifts (with scoring functions rf1, rf2) are allowed only at high cost as
they change the transcription of following protein characters completely. Staying
within a frame is very cheap, even if this involves the deletion of three characters
(del).

The protein grammar, on the other hand, has the same simple structure as
our previous atomic components of the alignment grammar. Here, we indeed
only read a single amino acid, or handle a deletion.

The complexity of the DNA-protein alignment stems from the fact that we
need to “align” the different frame shifting possibilities in the DNA input while
matching zero to three nucleotides to zero or one amino acid in the protein
input. In addition, once a frame shift has occurred all following alignments of
three nucleotides against one amino acid are scored in the new reading frame
until another frame shift occurs or the alignment is completed.

Our framework simplifies the complexity of designing this algorithm consider-
ably. While the combined grammar is highly complex, the individual grammars
are rather simple. As already mentioned, the protein “stepping grammar” is one
of the simplest possible ones. The DNA grammar is more complex as we need
to handle stepping and frame shifts in all three reading frames. But considering
that we allow indexed non-terminals and calculations on these indices (modulo
3 in the frame shift case), even the frame shift grammar has only four rules, just
twice as much as the simplest stepping grammar.
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Grammar: DNA

F{i} -> stay <<< F{i} c c c

F{i} -> rf1 <<< F{i+1} c c

F{i} -> rf2 <<< F{i+2} c

F{i} -> del <<< F{i}

//

Grammar: DNAdone

F{i} -> nil <<< empty

//

Grammar: DNAstand

F{i} -> del <<< F{i}

//

Grammar: PRO

P -> amino <<< P a

P -> del <<< P

//

Grammar: PROdone

P -> nil <<< empty

//

Grammar: PROstand

P -> del <<< P

//

Product: DnaPro

DNA >< PRO

+ DNAdone >< PROdone

- DNAstand >< PROstand

//

Fig. 1. Atomic grammars for the DNA-protein alignment example. (I) Nucleotides are
read in triplets (three nucleotides each). The DNA grammar switches between reading
frames. DNAdone and DNAstand handle the termining and looping case. (II) The PROtein
grammar works similarly, but reads only a single amino acid at a time. The expansion of
the DNA grammar is more complicated, as the indexed non-terminal symbol F expands
to three different non-terminals corresponding to the three possible reading frames.
(III) The grammar product of DNA and PROtein without the looping case “stand” and
with the terminating case “done”. In code, >< represents the direct product (⊗). The
resulting 24-production rule grammar is shown in the Supplemental Material together
with an extended description.

Together with the grammar an interface (a signature in ADP terms) is gener-
ated. This interface simplifies the creation of scoring and backtracking functions.
It is here, where the feasibility of certain frame shift operations (via rf1, rf2)
is decided. This is advantageous as the grammar describes the full search space
while the semantics of DNA-protein alignment are decided solely in the scoring
functions.

The resulting 24-production rule grammar is easily calculated in our frame
work. We emphasize that it is very easy to extend this grammar to allow for, say,
an alignment of two DNA sequences with two protein sequences. This grammar
can be calculated at basically no additional cost but would pose a daunting task
if implemented by hand. An extended description of this grammar, together
with a depiction of the 24 production rules can be found in the Supplemental
Material2.

4 Discussion

Summary. We have presented a formal, abstract algebra on linear grammars.
This algebra provides operations to create complex, multi-tape grammars from
simple, single-tape atomic ones. More informally, we have created a method
and implementation to “multiply” dynamic programming algorithms. We also

2 http://www.bioinf.uni-leipzig.de/Software/gramprod/

hoe-hof-2013-supplement.pdf

http://www.bioinf.uni-leipzig.de/Software/gramprod/hoe-hof-2013-supplement.pdf
http://www.bioinf.uni-leipzig.de/Software/gramprod/hoe-hof-2013-supplement.pdf
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provide a compiler framework that makes the grammars readily available for
actual deployment with good performance of the resulting code.

The products of linear grammars, despite the simplicity of individual gram-
mars, give rise to many often-used and powerful algorithms where word-like
objects are aligned with each other. We have restricted ourselves to a problem
from the realm of computational biology, as the alignment of DNA and protein
sequences provides a good example of the emerging complexity of algorithmic
alignment, especially when the words to be aligned have differing internal struc-
ture – in the example case the possibility of a frame shift in the DNA sequence.

Future Work. This work also leads to a number of questions to be answered
in the future. We should investigate the actual performance of our automati-
cally generated grammar implementations versus hand-written code, but this is
mostly a question delegated to the underlying ADPfusion framework. We prefer
a separation of concerns: grammar products emphasize algebraic operations, the
user need not be concerned with low-level implementation details.

We have restricted ourselves to linear grammars, as the next class of formal
grammars, context-free grammars, requires us to give a good definition of the
direct product on production rules with more than one non-terminal symbols.

The direct product implicitly introduces dependencies that couple the input
bands. Consider the product of productions (X → Xa) ⊗ (X → X). There are
two possibilities how the right-hand side can be interpreted:

(XX ) → (XX )(aε ) (19)

(XX ) → (Xε )(
a
X ) (20)

Aligning the two non-terminals to form a new non-terminal as in Equ. (19)
is equivalent to a dependence statement. All possible derivations of (XX ) are
considered and both tapes are coupled.

The situation is quite different for the production rule given in Equ. (20).
Since (Xε ) aligns a substring with the empty string, we basically decouple the
two tapes. Furthermore, we formally have constructed a non-terminal ( a

X ) that
“mixes” non-terminals and terminals on different tapes. In Definition 1 we
have avoided this complication by restricting ourselves to linear grammars,
where constructions akin to Equ. (20) can always be avoided. When attempting
to generalize the framework to arbitrary CFGs, however, this is not possible
anymore.

Consider, for example the CFG A = {{S}, {x}, {S → Sx
∣∣ SS}, S}. Even if

we give precendence to matching up non-terminals, A ⊗ A has productions of
the form

(SS ) → (SS
Sx ) 
 (SS )(

S
x ) (21)

where (Sx ) is neither a terminal nor a non-terminal according to Def. 1. One
possibility to deal with this issue is to expand the set of non-terminals to
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N = (N1 × N2) ∪ (N1 × T2) ∪ (T1 × N2) and to add productions of the form

( x
A ) → ( xα ) if x ∈ T1 and A → α ∈ P2 as well as (Ax ) → (αx ) if x ∈ T2 and

A → α ∈ P1. The intuition here is that we can have a terminal produced in one
factor, while the other factor still presents a non-terminal. Further derivations
then can affect only the factor with the non-terminal, while the terminal in the
other factor must remain untouched.

A second complication arises e.g. in the following example: B = {{S}, {x},
{S → x

∣∣ SS}, S}. In B×B we now obtain productions of the form (SS ) → (SS
x ).

A useful resolution in this case is to re-interpret these as

(SS ) → (SS
x ) 
 (Sε )(

S
x )

∣∣ (Sx )(Sε ) (22)

i.e., to allow for all alignments of the r.h.s. in the productions. The explicit use
of ε suggests an alternative extension of terminal and non-terminal symbols sets,
respectively. Setting N = N1×N2∪N1 ×{ε}∪{ε}×N2 and T = T1×T2 ∪T1×
{ε}∪{ε}×T2. In this setting, we would re-interpret the production of Equ. (21)
in the following way:

(SS ) → (SS
Sx ) 
 (SS )(

S
ε )(

ε
x)

∣∣ (SS )( ε
x )(

S
ε ) (23)

Apart from questions on how to extend algebraic operations on grammars
from linear to context-free grammars, we also need to consider scoring algebras
for such products. We anticipate that in many cases, a scoring algebra can be
expressed as a form of product itself where the two scoring functions (one for each
grammar) are themselves combined in some well-defined form. One possibility
is the use of a folding operation to combine scores for subsets of the individual
dimensions. It then follows that given two algebras AG1 and AG2 for grammars
G1 and G2 we should be able to define an operation AG1 ⊗τAG2 which generates
appropriate algebras from algebras for atomic grammars. As long as τ has some
structure similar to a fold or another operation on subsets of the dimensions
(of the grammars) involved, appropriate products can be automatically defined.
This becomes especially useful as we want to define ADP-like [18] algebra-products
as well, to explore the rich space of combined algebras on grammars constructed
from algebraic operations on atomic grammars.

Another avenue of future research is the question of semantic ambiguity of
the resulting grammars. Simple products of the same grammar yield ambiguous
alignments on sequences of in-dels. This problem is typically dealt with a good
grammar design that explicitly allows only one order of successive insertions and
deletions on multiple tapes. Automatic dis-ambiguation is probably complicated
but would further simplify the creation of complex multi-tape grammars.
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Abstract. We have recently engineered HIV-1 epitopes into the Top7 protein as 
scaffold using molecular dynamics simulations. The immunogenicity of the 
computer-engineered chimeric proteins was verified using human patient sera. 
The level and quality of the immune response was correlated to the structural 
stability of the chimeras as determined by molecular dynamics simulations. 
This work offers support for this correlation by a comparison between the 
calculated and experimental circular dichroism spectra for a selection of the 
Top7-HIV-1 chimeric proteins. In addition, analyzes of surface charge 
distribution suggest that the maintenance of an electrostatic surface potential 
signature is crucial for the immunogenicity of the de novo designed proteins. 

1 Introduction 

We have previously described the design of 6 chimerical proteins based on the epitope 
grafting strategy [1]. The amino acid sequences of three putative conformation-specific 
epitopes from the ectodomain of the HIV-1 gp41 protein were identified (namely R2, R3 
and R8) and transplanted into a highly stable scaffold called Top7 (PDB: 1QYS) (Fig 1). 
Since the three epitopes are know to assume a α-helix conformation on gp41, these 
sequences replaced one of the helical regions on Top7. The Top7 helices were called helix 
A (from residue 24 to 41) and helix B (from residue 55 to 72) generating six chimeras: 
R2HA, R2HB, R3HA, R3HB, R8HA and R8HB (Fig 1). 

The designed proteins were tested against HIV-1 positive and negative human 
serum samples by means of Luminex assays. Only those chimeras able to mimic the 
conformation pattern found for the same amino acid sequences in the native gp41 
protein were able to correctly differentiate between the two sera sample populations 
(Table 1). The structural properties of these designed proteins were determined by 
molecular dynamics studies and directly correlated with their immunological 
reactivity. Based on these findings, we have proposed that the maintenance of the 
native secondary structure of the grafted epitopes is correlated with their ability of 
being recognized by their respective antibodies [1]. 
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Fig. 1. Cartoon representation of the Top7 scaffold (right) and the lists of three helical GP41 
putative epitope sequences (R2, R3 and R8) and the replaced residues in Top7 (left). Top7 
secondary structure elements are represented as: α-helices: spirals; β-strands: arrows; and loops 
and unstructured regions: white coils. Helix A is shown in red while helix B in blue. 

The high selectivity and affinity of the antigen-antibody association are 
consequence of the simultaneous action of several molecular forces exhibiting 
different magnitudes and distance dependences [2]. These forces are primarily 
determined by structure complementarity between both molecules and comprise of a 
range of inter-residue interactions, such as van der Waals, hydrogen bonds, 
hydrophobic contacts, salt bridges and long-range electrostatic interactions [3]. 

Molecular modeling, kinetics, and equilibrium measurements have elucidated the 
relationship between antigen-antibody structural complementarity and the forces that 
control the association process [2]. Among the involved molecular forces, shape 
compatibility, hydrophobic interactions and electrostatic complementarity remarkably 
and directly influence the initial antigen-antibody association and the strength of 
docked complex [4, 5]. The knowledge that higher electrostatic interactions can make 
critical contributions to the extent and rate of antibody binding [6] and are correlated 
with high affinity antibodies has been used to predict putative interaction regions in 
protein surfaces [7]. 

Therefore, while secondary structure maintenance must play an important role in 
the Top7-based HIV-1 antigen-antibody interactions, it is also of interest of this work 
to evaluate how specific electrostatic distribution can be correlated with antibody 
recognition by the designed chimerical proteins. Here we utilize a combination of 
computational and experimental methods to examine the structural and electrostatic 
properties of these six designed proteins, specifically testing the hypothesis that the 
maintenance of electrostatic distribution over the epitope surface influences the 
recognition and interaction with the respective antibodies. The analysis described here 
not only probe the impact of the structure maintenance on the biological activity of 
the designed HIV-1 chimeras, but also the impact of the local charge surface pattern 
on the antibody-antigen recognition.  
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Table 1. Ability of helix-based chimerical Top7 proteins to discriminate between HIV-1 
positive and negative human sera samplesa and the corresponding molecular structures obtained 
by molecular dynamics simulations (shown in cartoon model) 

Epitope ID Sensitivity (%) Specificity (%) 3D Structure from MDb, c 

 
 
 
R2HAb 

 
 
 

96 

 
 
 

81 

 
 
 
 
R2HB 

 
 
 
 

57 

 
 
 
 

42 

 
 
 
R3HAb 

 
 
 

89 

 
 
 

67 

 
 
 
R3HBb 

 
 

100 

 
 

86 

 
 
 
R8HA 
 

 
 

53 

 
 

46 

 
 
 
R8HB 

 
 

65 

 
 

53 

aValues resulting from the average median fluorescence intensity, as measured 
by Luminex assays, of each chimera to respond to 26 positive and 21 negative 
HIV-1 human sera samples; bdata taken from [1]; chelical regions containing the 
epitope sequence are shown in blue. 
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2 Methodology 

2.1 Computational Methodology 

Atomic coordinates for the Top7 protein and chimeras used for the theoretical circular 
dichroism spectra and electrostatic calculations correspond to the final structures of a 
50-ns molecular dynamics simulations previously performed [1]. Starting from the 
PDB-formatted coordinates, atomic charges and radii have been assigned for all 
atoms by the PDB2PQR 1.8 Server [8], using the available Amber parameter set. The 
appropriate protonation state for each tritable residue of every protein was previously 
determined by the PROPKA 3.0 program [9] and hydrogen atoms added accordingly. 
Electrostatic potentials were obtained by solving numerically the linear Poisson-
Boltzmann equation and applying a finite-difference method [10-12] using the APBS 
(Adaptive Poisson-Boltzmann Solver) program [13]. A dielectric constant for solvent 
of 78.54 C2/N.m2 with solvent radius of 1.4 nm, surface tension of 0.105 N/m, and 
ionic strength of 0.150 M was used to describe the structures in aqueous solution. The 
internal dielectric constant of the solute was set to 1 C2/N.m2 (default value), varying 
as a function of distance reaching up to 78.4 C2/N.m2 at the protein solvent-accessible 
regions. The dielectric coefficient describes the local polarizability. The functional 
form of this coefficient depends on the molecular shape. A low value (typically 
between 1 and 20) is usually assigned to the biomolecular core and higher values (ca. 
80) are used to represent water at solvent accessible areas. The three-dimensional 
potentials were obtained using 129 grid points in the x, y and z directions. Protein 
structures and their corresponding electrostatic potentials were visualized and 
analyzed with the VMD 1.9 program [14]. The Dichrocalc webserver was used to 
calculate the theoretical circular dichroism spectra for Top7, R2HA and R3HB 
proteins from their corresponding atomic coordinates [15]. The averaged variations in 
the secondary structure content (α-helices and β -sheet) of the chimeras relative to the 
original Top7 were calculated using the DSSP program [16] over the last 25-ns 
molecular dynamics simulation window, as recently reported [1].  

2.2 Circular Dichroism Spectroscopy 

The chimeric proteins were produced in prokaryotic system and purified by affinity 
chromatography as previously described [1]. The proteins were diluted in 300 mM 
NaCl, 50 mM Tris-HCl, pH 8.0 buffer (Buffer A) to the concentration of 100 μg/mL 
and dialyzed in Slide-A-Lyzer Dialysis Cassettes, 10K MWCO (Thermo Scientific). 
The dialysis procedure was performed during 12 hours at 4 °C against 5 buffers 
containing decreasing concentrations of NaCl and Tris-HCl as follows: Buffer B – 
225 mM NaCl, 50 mM Tris-HCl, pH 8.0; Buffer C – 150 mM NaCl, 40 mM Tris-
HCl, pH 8.0; Buffer D – 75 mM NaCl, 30 mM Tris-HCl, pH 8.0; Buffer E – 45 mM 
NaCl, 25 mM Tris-HCl, pH 8.0; Buffer F – 30 mM NaCl, 20 mM Tris-HCl, pH 8.0. 
The dialyzed samples were concentrated using Vivaspin 6, 10,000 MWCO (Sartorius 
Stedim Biotech) and quantified by spectrophotometry.  Circular dichroism data were 
collected on an Olis DSM17 Spectrometer. Far-UV circular dichroism wavelength 
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scans were recorded in a 0.1 cm path length. The proteins1 were diluted in Buffer F to 
the following concentrations: Top7_Original – 45.35 μM, Top7_R2HA – 84.12 μM, 
Top7_R3HB – 93.47 μM. Circular dichroism scans were carried out from 260 to 200 
nm with 5 seconds averaging times, 1 nm step size, and 2 nm bandwidth at 25 °C. 
Spectra were corrected for a buffer blank and baseline molar ellipticity at 260 nm. 
Scan data were smoothed by the Stavistsky-Golay method [17]. 

3 Results and Discussion 

3.1 Structural Stability 

Using the original Top7 scaffold as reference structure, molecular dynamics 
simulations data (root mean square deviation as a function of simulation time, residue 
averaged root mean square fluctuations, total number of intra-protein hydrogen bonds, 
solvent accessible surface area and time evolution of secondary structure motifs) 
indicated that helical constructs based on R2 and R3 sequences were able to maintain 
the overall scaffold and secondary structure elements. In contrast, the insertion of R8 
sequences in either helix A or B caused heavy loss of α-helical content of the top-7 
based chimeras [1]. 

New trajectory analyses of the relative variation in secondary structure content 
with respect to the original Top7 is shown in Fig 2. Averages were obtained for the 
second half of the simulation time (25 to 50 ns period interval) and the differences to 
the original scaffold calculated. It is worth noting that Top7 has about 30% of its 
structure in α-helix and that a 10% variation in helical content would represent only 
about 3 residues in the whole structure. The molecular simulations indicate that 
grafting of R2 and R3 in Top7 does not alter significantly the helical content of the 
scaffold. Compared to Top7, R8HA shows a loss of almost 50% of its helical content, 
i.e., the equivalent of one out of the two helices present in the protein. The loss of 
helical structure is also pronounced in R8HB, where over 20% of the total helical 
content is lost. (A depiction of this decline in helical content can be seen by the 
cartoon representation of final structures from the 50 ns molecular dynamics 
simulations in Table 1). The absence of significant variations in β-sheet content in all 
chimeras supports the hypothesis that this motif comprises the core of Top7 structural 
stability [18, 19]. The larger variation is observed for R3HA, where on average about 
8% of β-sheet content is lost. 

The partial unfolding observed for R8HA and R8HB chimeras would be an 
indication of the inability of these proteins to differentiate between HIV-1 positive 
and negative human sera. In fact, this has been confirmed by Luminex assays [1], also 
shown here in Table 1 by their calculated average sensibility and specificity to the 
human sera samples used. On the other hand, the R2HB chimera presents a poor 
immunological performance (Table 1), similar to the partially unfolded R8HA and 
R8HB chimeras. We have previously attributed it to a potentially intrinsic flexibility 
of the grafted epitope in the scaffold. However, the data presented on Fig. 2 shows a 
rather negligible variation in secondary structure content for this chimera. 

                                                           
1 Protein selection was based on sample availability. 
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Fig. 2. Variation of the average secondary structure content of Top7-based helical HIV-1 
epitope chimeras over a 25 to 50 ns period from previously performed molecular dynamics 
simulations [1]. The Top7 protein is taken as reference for secondary structure content. 

Aiming to validate the theoretical predictions of secondary structure content (at least 
partially), we have acquired experimental circular dichroism spectra for two helical 
chimeras (R2HA and R3HB) and the original Top7 scaffold and compared to the 
corresponding theoretically calculated spectra from the atomic coordinates of each protein 
(Fig. 3). Circular dichroism spectroscopy measures differences in the absorption of 
polarized light (left-handed versus right-handed) that arise from structural asymmetry. 
Therefore, the secondary structure of proteins can be probed due to the asymmetry of the 
peptide bonds. The amide chromophore largely dominates the spectra of proteins at far-
UV. Amides have two well-characterized electronic transitions of low energy, n→π* and 
π0→π* responsible to produce signals at the 215 to 230 nm and 185 to 200 nm intervals, 
respectively [20, 21]. Our measurements were carried out from 200 nm to 260 nm, 
therefore special attention is given to agreement between theoretical and calculated spectra 
at the 208 nm (π0→π* transition) and 222 nm (n→π* transition) corresponding to α-helix 
signals, and bands in the region between 216 and 218 nm (n→π* transition) that are 
typical of β-sheet content. 

Fig. 3 shows a remarkable agreement between theoretical and experimental spectra 
for all three proteins from 205 to 260 nm interval. This result indicates that the 
structures obtained by molecular dynamics simulations for Top7, R2HA and R3HB 
were able to appropriately describe the secondary structure content and consequently 
representative conformations of these proteins in solution. Furthermore, it validates 
the assessment of secondary structure content for the remaining systems and ensures 
the correlation between protein scaffold maintenance and appropriate immunological 
activity. On the other hand, such validation leaves the poor immunoreactivity 
performance of the stable R2HB as an open question. 
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Fig. 3. Comparison of theoretical and experimental circular dichroism spectra of original Top7, 
R2HA and R3HB proteins. Dashed lines mark 208 nm and 222 nm, points in the spectra 
corresponding to helical content, while the region from 216 to 218 nm corresponding to β-sheet 
content is highlighted by a transparent band. (MRE stands for mean residue ellipicity). 

3.2 Epitope Electrostatic Surface Potential 

Theoretical and experimental data indicates that maintenance of the epitope native 
conformation when grafted onto a Top7 scaffold is directly correlated to the ability to 
be recognized by an antibody and therefore likely to elicit an immunological 
response. However, the R2HB chimera seems to be an exception to the rule. While 
the stability of the secondary structure content of the protein is comparable to other 
immunoreactive chimeras, its performance to differentiate between HIV-1 positive 
and negative human sera samples renders this protein unacceptable to be considered 
even as a lead for diagnostics or vaccines (see Table 1). 

Protein-protein interactions require shape (structural motif) and electrostatic 
complementarity [5, 22-24]. This general principle is also valid for antigen-antibody 
interactions, as largely showcased in the literature. The electrostatic patterns exhibited 
by epitopes has been considered crucial for recognition [25] and sometimes the major 
contributor to binding energy [26]. Despite of its importance, the electrostatic pattern 
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of a protein motif can be dramatically affected by its neighboring residues. Changes 
in the electrostatic properties responsible to inactivate an antigen can be caused by 
point mutations of residues being spatially as far as 9 Å [27]. Therefore, the surface 
potential of an epitope grafted onto a scaffold warrants consideration.  

In light of this information, we ponder whether residues in the Top7 scaffold may 
affect the charge distribution of grafted epitopes. This question has been addressed by 
examining the electrostatic potential on the molecular surface of the stable chimeric 
antigens R2HA, R2HB, R3HA and R3HB. Fig 4 shows a common electrostatic 
signature for the R3 sequence whether it replaces residues in helix A or helix B in 
Top7. However, a quite different electrostatic pattern is shown for the R2 sequence 
depending on the helix it has been exhibited.  

Comparison of the electrostatic potential of these regions (R2 and R3 sequences) 
within the gp41 protein is not possible since a complete packed structure is not 
currently available. Nevertheless, it is reasonable to assume that a common surface 
charge distribution for both R3-based epitopes is associated to the fact that both 
proteins displayed high levels of immunoreactivity against HIV-1 human positive sera 
samples. In other words, similarity of the electrostatic potential would translate into a 
conserved of three-dimensional binding pattern. Such support comes from a visual 
inspection of the surface charge distribution of R2HA. If rotated by 180°, a similar 
pattern to the ones displayed by R3HA and R3HB can be seen (Fig 4). Despite the 
structural stability of R2HA, this epitope when featured on helix A of Top7 does not 
show a common electrostatic potential on its surface. This result indicates that 
residues in the Top7 scaffold might affect the electrostatic properties of grafted 
sequences and therefore such analysis should be taken into account when designing 
biologically relevant Top7-based heterologous sequences. 

 

Fig. 4. Surface charge of the helical HIV-1 epitopes grafted onto the structurally stable Top7-
based scaffolds. Proteins are shown in cartoon model. Surface charge is represented by the 
corresponding electrostatic potential mapped onto the molecular surface of the epitope region. 
Positively charged potential is represented in blue, negatively charged potential in red and 
neutral regions in white. Potential interval is from -5 to +5 kJ.mol-1.e-1. The high similarity of 
the electrostatic potentials for the R3 sequence in helices A and B is highlighted by assigning 
labels over the displayed potential, where A is placed over an apolar region, B over a negatively 
charged region and C over a positively charged area of the proteins.  
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4 Conclusion 

Comparison of theoretical and experimental circular dichroism spectra for selected 
systems was used to validate the structural data for the chimeras obtained from our 
previous molecular dynamics simulations. Relative variation in secondary structure 
content and electrostatic calculations revealed that recognition of the Top7-based 
HIV-1 chimeras by the antibody depends on both: i) the maintenance of the structural 
stability of the scaffold and epitope as close as to its native conformation, and ii) the 
charge distribution pattern on the epitope surface to ensure shape and electrostatic 
complementarity. Furthermore, these results contribute to better understand the forces 
that control the antigen-antibody interaction and guide the rational design of high 
affinity proteins for a variety of engineered functions. 
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Abstract. Machine learning methods, such as Random Forest (RF),
have been used to predict disease risk and select a set of single nucleotide
polymorphisms (SNPs) associated to the disease on Genome-Wide As-
sociation Studies (GWAS). In this study, we extracted information from
biological networks for selecting candidate SNPs to be used by RF, for
predicting and ranking SNPs by importance measures. From an initial
set of genes already related to a disease, we used the tool GeneMANIA
for constructing gene interaction networks to find novel genes that might
be associated with Alzheimer’s Disease (AD). Therefore, it is possible to
extract a small number of SNPs making the application of RF feasible.
The experiments conducted in this study focus on investigating which
SNPs may influence the susceptibility to AD.

Keywords: Random Forest, SNP, Alzheimer’s Disease, Genome-wide
Association Study.

1 Introduction

Genome-Wide Association Studies are becoming widespread given the reducing
costs of large scale genotyping techniques, such as SNP arrays [6]. A major task
for GWAS is to establish and discover new loci and biomarkers for understanding
the progress of neurodegeneration caused by AD. This trait is the most common
progressive neurodegenerative disease and represents a major cause of loss of
neuronal functions followed by cognitive impairments and memory deficiencies of
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elderly patients. AD can be divided into three phases, an initial pre-symptomatic
phase, a prodromal stage known as Mild Cognitive Impairment (MCI) and a
third phase when patients show dementia with impairments in multiple domains
and loss of function in daily activities [1].

Several Alzheimer’s GWAS have been performed and associated SNPs have
been catalogued on the AlzGene database [3]. However, the tasks of associa-
tion of variants to phenotypes or the determination of disease from variants
still present computational and statistical challenges given the dimensionally of
the problem. Usual GWAS data sets have hundreds of thousands of SNPs over
hundreds of patients. Traditional univariate statistical methods cannot detect
epistatic effects and suffer from multiple testing problems [16]. Therefore, they
miss polygenic interactions common in complex diseases and small marginal ef-
fects [1]. Additionally, another common property of genetic variants is the fact
that some alleles occur together more frequently than expected by chance. This
non-random paired combination between SNPs is referred to as linkage disequi-
librium (LD) and makes SNP data to be correlated.

Recent works propose the application of random forests (RF) to select SNPs
in genome-wide data sets to identify potential risk variants for complex diseases
[16, 10–12, 17, 19]. RF is suited to large dimensional data sets, can capture
high order and non-linear SNP effects and presents a simple interpretation [11].
However, RF performance and generalization power is restricted in data sets
with extremely high dimension such as GWAS data. The common approach to
solve this is the use of standard association analysis filters to greatly reduce
the number of candidate SNPs previous to RF application [17]. Our attempt to
replicate such strategies in data from the Alzheimers Disease Neuroimaging Ini-
tiative (ADNI) failed. Random forest showed random predictive errors, possibly
because of the small sample size of the data set and lack of biological relevance
of the SNPs selected by the used filters[20]. Moreover, the presence of covariance
between SNP, as an effect of the linkage disequilibrium, further deteriorates RF
performance [11, 12].

As a solution, we propose the use of biological driven selection of SNPs as
input to RF to identify potential causal variants for complex diseases [8]. For
this, we use genes and SNPs previously reported in meta-analysis provided by
AlzGene database to grow our set of candidate SNPs with evidence from gene
networks [3]. The network analysis is based on the method GeneMANIA, which
uses biological networks from data sources such as: gene expression, protein-
protein interaction, physical interaction and shared protein domains [7]. We are
particularly interested in genetic risk factors that comprise the architectural base
of MCI and AD for two experimental case-control studies provided by the ADNI.
As far as we are concern, this is the first work exploring the combination of RF
and gene interaction networks to analyse the data from ADNI.

This work is organized as follow. First, we will give a brief explanation of
the data and methodology in Section 2. Next, we evaluate the performance of
the gene network based selection of SNPs and Random Forest in predicting
the patient risk (Section 3). In Section 4, we will investigate the top ranked
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SNPs as indicated by Random Forest, evaluate effects of LD in the SNP ranking
and compare the results with the classical univariate method Fisher’s Exact
test. Lastly, we discuss two interesting biological pathways related to Alzheimer:
lipids and endocytosis; and analyse the ability of Random Forest or the Fisher’s
Exact test in recovering genes from such pathways (Section 5).

2 Material and Methods

2.1 SNP Genotyping and Cohort Information

The ADNI efforts are concentrated on discovery of relevant genetic markers for
AD and MCI 1. The individuals were genotyped using the Human 610-Quad
BeadChip manufactured by Illumina Inc. More information about the protocol
can be found in [4] and clinical categorization in [5]. All genomic coordinates
were based on the Genome build 36.2. The ADNI genotype subset used in this
paper is divided as follows: 205 humans controls (HC), these individuals are
not affected by cognition or neurology disorders; 330 individuals present MCI
and 169 individuals developed AD. So, among all SNPs, we restricted for those
labeled with ’rs’ identifiers, cataloged on dbSNP.

2.2 Random Forest

The RF model is a collection of CART trees for regression or classification prob-
lems [15]. RFmakes use of bootstrap samples from original data sets for generating
a number of trees. Samples not included in the training data, called ’out-of-bag’

1 Data used in the preparation of this article were obtained from the Alzheimers Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimers disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California San Francisco. ADNI is the
result of efforts of many co-investigators from a broad range of academic institutions
and private corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to
90, to participate in the research, approximately 200 cognitively normal older indi-
viduals to be followed for 3 years, 400 people with MCI to be followed for 3 years
and 200 people with early AD to be followed for 2 years. For up-to-date information,
see www.adni-info.org.



Random Forest and Gene Networks for Association of SNPs to AD 107

(OOB), are used to evaluate the prediction performance by the ’out-of-bag error’
(EOOB). After building all classification trees, a majority vote method is used to
account for the number of votes and the decision is that with most votes. Only a
subset of variables is used to grow CART trees, so RF is based on weak learners.
The number of trees (ntree) and number of variables (mtry) parameters has great
importance, since increasing the amount and size of trees improves classification
performance at the expense of the computational cost. The definition of parame-
ter values is crucial for generalization of the RF method. Lastly, RF allow ranking
of variables by the use of the variable importance measures. Here, we use the total
decrease in node impurities from splitting on the variable averaged over all trees,
where the node impurity is measured by the Gini index [15].

2.3 GeneMANIA: Construction of Heterogeneous Gene Networks

GeneMANIA [7] is a service for integrating gene networks constructed from het-
erogeneous data and for predicting gene function in real time. GeneMANIA has
two components: a) a heuristic algorithm derived from a ridge regression to
integrate multiple networks and b) a functional association algorithm to pre-
dict function of gene from a network through a process of label propagation.
GeneMANIA bases its prediction on data from a wide range of data sources,
such as BIOGRID, Pathway Commons and public highthrouput data [29, 26]
for constructing six categories of knowledge based networks: co-expression, co-
localization, genetic interaction, physical interaction, predicted and shared pro-
tein domain interaction networks. The method takes a list of gene labels to
identify the most related genes using a guilt-by-association approach. GeneMA-
NIA assigns adaptive weights to the different connections to assess how well
genes are connected.

2.4 Methodology Overview

First, we filter SNPs which has more than 10% of missing genotypes. Next, all
SNPs were tested by Hardy-Weinberg Equilibrium [30]. All SNPs were kept as
no SNPs failed the test (p-value < 0.01). Additionally, we filter SNPs in LD by
r2 metric [30] and we remove those with linkage disequilibrium (r2 > 0.7) with
SNPs in the AlzGene database. The idea is to exclude SNPs that are in LD
with those already catalogue in the Alzgene database. All these procedures were
implemented on PLINK [13].

Next, we use GeneMANIA as a source of biological knowledge for prioritising
SNPs. We extract a set of known genes related to AD based on meta-analyses of
GWAS catalogued on AlzGene database [3]. The query genes are the MS4A4E
(membrane-spanning 4-domains, subfamily A, member 4E), CR1 (complement
component (3b/4b) receptor 1), CLU (clusterin), ABCA7 (ATP-binding cas-
sette, sub-family A (ABC1), member 7), BIN1 (bridging integrator 1), PICALM
(phosphatidylinositol binding clathrin assembly protein), APOE (apolipopro-
tein E), CD33 (CD33 molecule), CD2AP (CD2-associated protein) and MS4A6A
(membrane-spanning 4-domains, subfamily A, member 6A). We used the label
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ENSG00000214787, as an alternative to the gene MS4A6A, as GeneMANIA did
not recognize the primary nomenclature. These genes contain the most significant
SNPs associated to the disease so far.

The use of biological knowledge to prioritize variants can build analytical
models with more biological sense [8]. So, we constructed three gene networks
using the AlzGene genes as a seed list by selecting networks with 50, 100 and 200
neighbouring genes. SNPs were assigned to genes if they were located inside the
gene’s coding region. After construction of gene networks, we built three gene sets
based on information reported by AlzGene. The ’related’ set have genes/SNPs
present in the AlzGene database, ’not-related’ set have genes/SNPs not present
in the AlzGene database. We also construct a ’combined’ gene set containing
SNPs from the previous two sets. This allows us to compare the contribution
of genes related and non-related with AD on prediction of an individual’s phe-
notype. A simple summary is shown in Table 1. Note that genes have usually
many SNPs associated and that genes from the neighbouring network already
have been catalogues in Alzgene and are therefore considered to belong to the
related set.

We use the RF implementation provided in R [15, 14]. For RF prediction
experiments, we assigned 50, 100, 250, 500 and 1000 to the number of trees
parameter and we keep the default number of variables to split per node, so

√
p

where p is the total number of variables. These parameters choices were based on
indications from previous work [15]. Thus, we desire to find the lowest values for
both parameters that lead to the lowest classification error, for data sets defined
in Table 1.

Table 1. Summary of datasets used for prediction and feature selection tasks. This
table also presents network data and the number of genes and SNPs as the final variants
for analysis.

Gene Networks Genes : SNPs (p)

Experiment Design Network Size Related Not related Combined

AD-50 HC vs. AD 50 14 : 241 37 : 525 51 : 766

AD-100 HC vs. AD 100 18 : 428 70 : 1.219 98 : 1.647

AD-200 HC vs. AD 200 29 : 596 164 : 3.792 193 : 4.387

MCI-50 HC vs. MCI 50 14 : 241 37 : 525 51 : 766

MCI-100 HC vs. MCI 100 18 : 428 70 : 1.219 98 : 1.647

MCI-200 HC vs. MCI 200 29 : 596 164 : 3.792 193 : 4.387

3 Prediction of Alzheimer Risk by Random Forest

We explored the RF prediction for datasets presented on Table 1. Thus, the per-
formance of the prediction method RF can be compared from different perspec-
tives. The EOOB predictions were summarized in Figure 1. In both control-case
studies, there were a slight improvement in EOOB regarding the baseline values
of error (0.36 for HC-MCI and 0.45 for HC-AD). For larger networks (100 and
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200) we observe a decrease in EOOB for higher number of trees. Such results
are better than the ones reported with the use of classical association filters [20].
Overall, non-related and combined sets have similar or better performances than
the disease related SNPs. This fact indicates that these non-related SNPs can
discriminate MCI and AD as well as known SNPs. We reinforce that the main
task in GWAS is indeed the selection of novel relevant markers. These results
indicates that SNPs from the non-related/combined sets are potential novel can-
didates for Alzheimer.
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Fig. 1. Estimation of EOOB for subsets presented on Table 1. We consider only a
default value

√
p for mtry parameter. In the header of each graph presents the exper-

imental design and gene network to filter SNPs.

4 Ranking of SNPs

4.1 LD and SNP Selection

As case studies for the SNP selection, we use the experiments AD-100 and MCI-
100 (see Table 1). Previous work has reported that SNPs in LD might negatively
influence the selection of SNPs by RF [11, 12, 20]. Therefore, we investigated
the impact of LD on the RF ranking based on the Gini impurity index. For the
original data set, we filtered all SNPs with high LD (r2 > 0.7). The two data sets
had initially 1647 SNPs and after filtering 1081 (HC-AD) and 1089 (HC-MCI)
SNPs.

To analyse impact effects of LD in GI index, we extracted the importance
values of 50 runs of the RF method with parameters ntree to 1000 tress and
mtry assigned to

√
p, where p is the number of SNPs. As seen if Figure 2 (A),

there is an increased value of average importance at the two experimental designs
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after filtering of SNPs in LD. Such differences also impact importance ranking of
SNPs, as observed in [11, 12]. We also investigate the impact of LD filtering on
RF prediction (Figure 2B). There is a slight decrease in EOOB for the HC-AD
and HC-MCI data sets.

4.2 Comparison with Univariate Methods

The final set of candidate SNPs from Random Forests was the top 50 SNPs
regarding the Gini index. Moreover, we apply Fisher’s Exact (FE) to these 50
SNPs and accept all SNPs with a p-value of 0.05. Note that the use of only
50 SNPs, which greatly reduces the effects of multiple testing and makes the
Fisher’s Exact test results to be more optimistic than in a real application. The
rankings for Random Forest and p-values for Fischer Exact Test are presented
in Table 2. We also report in the column ’Annotation’, whenever the SNP was
is the AlzGene data base (A) or is related to either the two biological pathways
of interests: lipids (L) or endocytosis (E). See the next section for the biological
discussion of relevant lipids and endocytosis genes.

RF and Fisher’s test identified 40 SNPs in common for experimental design
AD-100, while for the MCI-100 30 SNPs were in common. Out of the 50 SNPs
from AD-100, 16 were already catalogued in AlzGene of which 12 passed the
Fisher’s Exact test. For MCI-100, 14 SNPs were catalogued in AlzGene of which
only 4 passed the Fisher’s test. This indicates that the RF ranking has novel
potential SNPs not captured by the FE test. Note that SNPs with low FE
p-values (RIMBP2, LR2RA,SNAP) are also top ranked by RF. These indicate
that both methods are capturing SNPs with main effects, while RF also captures
secondary effects.
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Fig. 2. (A) Density of importance values for SNPs for the final experiments HC-100
and MCI-100. The density is plotted considering the combined SNP set before and
after LD filtering. (B) EOOB estimation after LD pruning and prioritizing SNPs by
gene.
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5 Gene Analysis

After identification of SNPs and consequently correspondent genes for all SNPs,
we identify genes belonging to two biological pathways relaved to Alzheimer.

5.1 Lipids and Alzheimer’s Disease

The brain is rich in cholesterol. This constitutes myelin and glial on neuronal
membranes. There is abundant evidence that abnormalities in cholesterol me-
tabolism is a risk factor in the pathogenesis of AD. Myelin is a component
rich in cholesterol, which accelerates the connections between neurons. There
is no degradation of cholesterol in the brain, so excess is converted to 24S-
hydroxycholesterol which can be easily transported by lipoproteins that circulate

Table 2. Ranking of SNPs for the Case-Control Design HC-AD (left) and MCI-AD
(right). Abbreviations: F, Identified by Fisher’s Exact test: L, lipids; E, endocytosis;
A, Deposited on AlzGene; - no association.

Rank Gene SNP Annotation FE p-value

1 SYNJ2 rs10806791 E 0.001
2 RIMBP2 rs7315262 - 0.0008
3 IL2RA rs7072398 - 0.001
4 DNMBP rs10883428 A 0.001
5 IL2RA rs706779 - 0.005
6 DNMBP rs7089178 A 0.01
7 IL2RA rs7917726 E 0.005
8 SNAP91 rs217323 E 0.007
9 DNMBP rs10883422 A 0.01
10 RIMBP2 rs10848114 - 0.009
11 C7 rs2455314 A 0.008
12 HIP1 rs2240133 A/L 0.008
13 RIMBP2 rs756186 - 0.02
14 AMPH rs17500182 E 0.002
15 CD2AP rs1385741 A 0.01
16 CD2AP rs9296562 A 0.01
17 CBL rs7946919 E 0.01
18 DNMBP rs11190305 A 0.01
19 RIMBP2 rs11060872 - 0.04
20 ABCA7 rs3752237 A 0.03
21 SH3GL2 rs2208494 E 0.02
22 IL2RA rs3134883 - 0.01
23 PICALM rs7938033 A/E 0.2
24 AMPH rs6962805 E 0.1
25 MMP25 rs10431961 - 0.02
26 SYNJ2 rs9459056 E 0.04
27 IL2RA rs791587 - 0.03
28 NEBL rs7074881 - 0.02
29 HIP1 rs4588797 E/L 0.03
30 LDLRAP1 rs6687605 E/L 0.9
31 ABCA1 rs4149279 A/L 0.01
32 LDLR rs5930 A/L 0.1
33 SH3GL2 rs3824370 E/L 0.1
34 DNMBP rs10883432 A 0.01
35 RIMBP2 rs10773780 - 0.03
36 KIRREL rs12049103 - 0.02
37 SH3PXD2B rs2569218 E 0.03
38 AMPH rs4720279 E 0.1
39 ENTHD1 rs6001678 - 0.05
40 AMPH rs2299945 E 0.03
41 DNMBP rs7078153 A 0.01
42 CBL rs11217191 E 0.07
43 SYNJ2 rs7768038 E 0.03
44 MS4A6A rs17602572 A 0.05
45 DNMBP rs12415442 A 0.03
46 SH3GL2 rs3808750 E 0.04
47 MS4A6A rs662196 A 0.03
48 CD2AP rs3818866 A 0.2
49 DNMBP rs4919402 A 0.08
50 LASP1 rs226229 - 0.2

Rank Gene SNP Annotation FE p-value

1 IL2RA rs3134883 - 0.0009
2 SYNJ1 rs1783099 E 0.03
3 KIRREL rs2777819 - 0.01
4 LDLRAP1 rs6687605 L 0.05
5 SYNJ2 rs10806791 E 0.01
6 NCF4 rs909484 - 0.06
7 PSTPIP1 rs4078354 - 0.04
8 LASP1 rs226229 - 0.01
9 SH3GL2 rs3824370 E/L 0.04
10 AMPH rs6962805 E 0.01
11 LDLR rs5930 A/L 0.01
12 CD33 rs1354106 A 0.03
13 NEBL rs12777530 - 0.03
14 DNMBP rs7089178 A 0.02
15 CD2AP rs9296562 A 0.03
16 HIP1 rs1167797 E/L 0.05
17 BIN1 rs934826 A 0.07
18 SH3RF2 rs6869382 - 0.04
19 DNMBP rs10883422 A 0.2
20 NPHS2 rs3765548 - 0.005
21 VEGFA rs3025010 - 0.04
22 NEBL rs3858202 - 0.04
23 IL2RA rs791589 - 0.02
24 FYN rs1465061 A 0.03
25 IL2RA rs791587 - 0.05
26 BIN1 rs10194375 A 0.06
27 CD2AP rs3818866 A 0.09
28 CR1 rs12034383 A 0.4
29 NEBL rs661924 - 0.07
30 SH3GL2 rs3808750 E/L 0.04
31 KIRREL rs3856266 - 0.09
32 SH3RF2 rs6898375 - 0.07
33 CD33 rs33978622 A 0.04
34 HIP1 rs1167830 E/L 0.2
35 BIN1 rs749008 A 0.04
36 NPHS2 rs745317 - 0.02
37 IL2RA rs11256497 - 0.04
38 CBL rs11217191 E 0.1
39 CBL rs7946919 E 0.05
40 PICALM rs664629 A/E 0.4
41 LIPC rs17190650 A/L 0.1
42 NPHS2 rs2274623 - 0.1
43 CR1 rs10779339 A 0.1
44 SH3GL2 rs3780247 E/L 0.03
45 SH3GL3 rs1896799 E 0.07
46 NPHS2 rs2274625 - 0.06
47 DNMBP rs11190305 A 0.07
48 NEBL rs638929 - 0.04
49 MS4A4A rs4939331 A 0.04
50 CD2AP rs1385741 A 0.06
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in the cerebrospinal fluid. The ABCA1 gene product regulates the homeostasis
of lipids and lipoproteins in the central nervous system. The LDLR previously
associated with AD, suggests functional interactions in conjunction with APOE.
Genes family members of LDLR are expressed in neuronal cells and mediate
endocytosis processes in interaction with APOE and APP genes. In SNP rank-
ings we identified for AD genes as LDLRAP1, PICALM, HIP1 and SH3PXD2B.
These performs functions including phospholipid binding and phosphatidylinos-
itol binding, besides the transport of cholesterol to be played by genes APOE,
CLU and LDLRAP1. The LDLRAP1 is the LDLR gene family and is related to
receptor binding particles of low density lipoproteins and regulation of choles-
terol metabolic process. Based on the evidence gathered by GeneMANIA genes
APOE and LDLRAP1 are shown in the same biological pathway, while PICALM
has the same expression patterns related to APOE. Of these, HIP1 and LDL-
RAP1 are two examples of genes ranked by RF in both MCI-100 and AD-100
studies, which were not previously catalogued in AlzGene or passed the Fisher
Exact test. More details of the relation of lipids and Alzheimer can be found in
the following reviews [22] [21] [23].

5.2 Endocytosis Mediated by Clathrin

Normal cells include many mechanisms for regulation of endocytosis. Evidence
indicates an important role for clathrin-mediated endocytosis in normal neurons.
Abnormalities in its operation can cause neurological disorders. Specifically,
clathrin plays a central role in the formation of β-amyloid. The formation of se-
nile plaques is a common feature in the pathology and cerebral aging. In addi-
tion, the components of neurofibrillary degeneration advances the progression of
AD. β-amyloid derived from APP is responsible for the formation of complexes
plaques in the brain. The presence of polymorphisms in genes associated with
clathrin-mediated endocytosis has been reported in patients with bipolar disorder,
schizophrenia and AD, but still not enough is known to establish the process of
neurodegeneration. Between the genes identified in this process, we can highlight
the HIP1, PICALM, AMPH, SH3GL2, SNAP91, BIN1, SYNJ1, SYNJ2, CBL
and LDLRAP1. The genes, PICALM, AMPH and BIN1 are directly related to
the process of endocytosis mediated by clathrin. Although there is evidence of
SH3GL2 gene as an active component in the progress of AD. Increased expres-
sion levels of SH3GL2 in neural regions is associated with increased activation
of the stress kinase c-Jun N-terminal kinase, with subsequent death of neurons.
GeneMania used expression evidence to indicate that endophilin I interacts ge-
netically with β-amyloid and ABAD. The AD-100 RF ranking lists SNPs close
to genes HIP1,PICALM, AMPH,SH3GL2,SYNJ2 and CBL, which were not pre-
viously annotated in AlzGene or passed the Fisher Exact test. The MCI-100 RF
ranking lists SNPs close to HIP1, PICALM, CBL and LDLRAB1, which were also
not annotated to AlzGene or passed the Fisher Exact test. Further details of this
synthesis may be found in greater detail in the following reviews [24] [25] [23].
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6 Conclusions

Themethod RFwas applied to several datasets of SNPs to check performance pre-
diction of phenotype of patients. The results for classification tasks have shown
that performance of SNPs not associated with AD, enables lower rates of mis-
takes in predictions. This indicates that the potential variants may contribute to
the progression of AD and MCI and validates the approach for using gene net-
works to filter SNPs previous to RF. Additionally, the application of a filter by LD
could further improve the prediction error. In comparison to a standard univariate
method, the ranking of SNPs from RF indicated several novel SNPs, which were
not previously catalogued in AlzGene nor passed the Fisher exact tests. Of partic-
ular interest were SNPs related to 2 genes associated to both lipids/endocytosis
and 4 genes related to endocytosis previously not related to Alzheimer. These
SNPs are interesting potential novel markers for the Alzheimer disease.

As a future work we would like to further explore the association of the SNPs
indicated by Random Forest, such as the characterization of SNPs with main,
marginal and epistatic effects and perform a biological validation of the novel
candidates. From a methodological point of view, we would like to replicate the
study with independent data sets and further explore the effects of model pa-
rameters on the overall ranking performance. Another interesting methodological
improvement would be the use of machine learning methods that would used the
network information explicitly during their feature selection steps.
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Abstract. Recent advances in biological high-throughput technology
are generating a broad range of omics data. Facing a torrent of mas-
sive biological data, visual data mining can be considered an intuitive
and powerful approach for hypothesis generation. The cluster heat map
approach has been popularly used to visualize the matrix types of bio-
logical data. In this study, we extended the use of the cluster heat map
to reveal informative patterns hidden in third-order tensor-type biolog-
ical data. By applying the extended method, a multilayer cluster heat
map, to trans-omics and network tensor data, we successfully demon-
strated the proof-of-concept of our approach. Our new visual data mining
method will be a useful tool for increasing the amount of biological ten-
sor data. Our implementation and the tensor data studied are available
from http://www.hgc.jp/∼niiyan/MCHM.

1 Introduction

Hypothesis generation from genome-wide data is currently a critical step in bi-
ological researches, for which visualization approaches are widely used. For ex-
ample, the cluster heat map has been commonly used for analysis of microarray
data. While the cluster heat map has a long history itself [1], Eisen et al. [2]
rediscovered it in the biological field for microarray data analysis. In a typical
microarray experimental design, genome-wide gene expression across multiple
samples are profiled to produce a matrix whose rows and columns represent
genes and samples. The cluster heat map reorders the rows and columns of the
matrix based on hierarchical clustering, and visualizes values using color codes.

Recently, new technologies represented as next-generation sequencing have en-
abled comprehensive profiling of the various types of cellular variables assigned
to each gene: mRNA quantity, protein quantity, TF binding, histone modifica-
tions, etc. Furthermore, several important project such as TCGA and ENCODE
have been launched to systematically perform trans-omics profiling across dozens
to hundreds of samples [3, 4]. We obtain gene × sample matrices for all targeted
cellular variables as outputs from the trans-omics profiling projects. We also in-
fer gene regulatory networks from omics data. If we obtain multiple networks
from multiple data sources, the data are represented as multiple gene × gene
adjacency matrices [5]. Both the trans-omics and network data are represented
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as multiple matrices sharing common row and column elements. By stacking the
matrices, we can also regard the data as third-order tensors.

A tensor is a multidimensional array. While first and second-order tensors are
a vector and matrix, a third-order tensor has 3 indices, each of which is on one of
the 3 dimensions called the first, second and third orders. Integrative analysis of
tensor data is expected to produce more rich hypotheses than separate analysis
of each individual component matrix. However, only a few methods has been
designed for analysis of tensor-type biological data. Moreover, because most of
them are largely based on the mathematical approach, it is often difficult to
interpret obtained results and gain biological insights from them [6, 7].

In this paper, we propose a new visual data mining method, the multilayer
cluster heat map, to analyse tensor-type biological data. The multilayer cluster
heat map is an extension of the ordinary cluster heat map for matrix data, used
to to analyze third-order tensor data. Application of the multilayer cluster heat
map to TCGA, ENCODE, and cancer co-expression network data demonstrated
that our visual data mining method is useful for generating biological hypotheses
from biological tensor data.

2 Materials and Methods

2.1 Multilayer Cluster Heat Map

Assume that we perform experimental profiling of l cellular variables assigned
to n genes across m samples. We then obtain an n×m× l trans-omics tensor T,
where element T(i, j, k) is the value of variable k for gene i in sample j. When
we have multiple network data, each of which is represented by an adjacency
matrix, the data are represented as the same types of tensor data. However,
in the network tensor, 2 of the 3 order have an equal dimension, which is the
number of genes in the networks. Namely, if you have l networks containing n
genes, the data are an n × m × l tensor with m = n, where element T(i, j, k)
represents the edge between gene i and gene j in network k.

We define a slice matrix of the tensor as all elements that have the same index
at an order. Namely, if a colon specifies the set of all indices for a particular order,
T(i, :, :), T(:, j, :), and T(:, :, k) are slice matrices at the first, second and third
order, respectively. In this study, we also refer to each slice using its associated
dimension of the data: e.g., gene-order slices, sample-order slices, etc.

Prior to visualization, the multilayer cluster heat map reorders slices along
each order based on hierarchical clustering. We calculate the squared Euclidian
distance between 2 first order slices, which correspond to genes i1 and i2 in
trans-omics or network tensor data, as follows:

d2(T(i1, :, :),T(i2, :, :)) =

m∑
j=1

l∑
k=1

(T(i1, j, k)−T(i2, j, k))
2

We perform hierarchical clustering of the first-order slices based on Ward’s
method employing this distance measure. The first-order slices are reordered ac-
cording to the clustering result. The second and third-order slices are reordered
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similarly. The slices of each order are visualized using color codes. We imple-
mented interactive application for visualization of the heat maps using JAVA
and the Processing library (http://processing.org/), and which is available from
http://www.hgc.jp/˜niiyan/MCHM.

2.2 Data Preparation

TCGA Data. For glioblastoma primary tumor samples, we downloaded mRNA
expression, DNA methylation, and DNA copy number data from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/) [4]. For mRNA expression and DNA
methylation data, BI HT HG-U133A and JHU-USC HumanMethylation27 were
obtained. After the values were transformed to the logarithmic scale and nor-
malized so that the mean is 0 and the variance 1 in each sample, the probe set
IDs were converted to gene symbols. For DNA copy number data, BI Genome
Wide SNP 6 was obtained. The segmented copy number values across chromo-
somes were converted to those for each gene, and the values were normalized
so that the elements of the gene × sample copy number matrix have mean 0
and variance 1. For each of the genes existing in the three types of omics data,
three types of omics values across all samples were obtained, and their variances
were calculated. For top 500 genes with the largest variances, the three types of
omics matrices were extracted and renormalized so that the mean was 0 and the
variance 1 in each matrix. The processed matrices were combined as a gene ×
sample × variable tensor and subjected to the multilayer cluster heat map.

ENCODE Data. The histone modification profiles of 7 cell lines were down-
loaded from the Broad Histone Track at the UCSC ENCODE site (http://
genome.ucsc.edu/ENCODE/) [3]. After broadPeak files were obtained for 8 types
of histone modification profiles across the 7 cell lines, each peak was associated
with gene promoter regions. We associated a peak with a gene if the peak over-
lapped the promoter region of the gene, which we assumed covered ±500 bp
around its transcription start site. We then obtained a binary third order tensor
containing the histone modification profiles of genes across the 7 cell lines. From
this gene × sample × variable binary tensor, we extracted a sub-tensor for the
top 3000 variable gene-order slices in the same way for the TCGA data and
visualized it.

Cancer Co-expression Network Data. We obtained 260 mRNA expression
data sets from the GEO database [8]. They are associated with the keyword
“cancer”, published after 2005, obtained by major microarray platforms, and
contains ≥ 50 samples. First, to obtain a weighted co-expression network for
each dataset, we calculated Pearson’s correlation coefficients c between every
gene pair as edge weights. They were then subjected to Fisher’s transformation,
which is calculated as zij = 1

2 log
1+cij
1−cij

, where cij is the correlation between

genes i and j. We also calculated the average of absolute edge weights as the
hubness for each gene; i.e., hi =

∑
j∈{1,···,i−1,i+1,···,n} |zij |/(n−1), where n is the

number of genes. The hubness for each gene was summed across the networks,
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and the top 1000 genes with the largest hubness sum were selected. Similarly,
the hubnesses of all genes was summed in each of the networks and the top
100 networks with the largest hubness sum were selected. For the 1000 genes,
adjacency matrices representing each of the 100 networks were obtained after
edge weights were normalized so that the mean was 0 and the variance was 1 in
each co-expression network. If a gene was missing from a dataset, edge weights
associated with the genes were set to 0 in the corresponding matrix. We also
set the maximum and minimum of the edge weights to 5 and −5, respectively.
Finally, the processed adjacency matrices were combined as a gene × gene ×
network tensor for visualization.

3 Results

3.1 TCGA Data

First, we visualized trans-omics tensor data from TCGA. The data included
mRNA expression, DNA methylation, and DNA copy number profiles for thou-
sands of genes across approximately 200 glioblastoma clinical samples. For visu-
alization, we focused on 500 genes with the highest variance in the data. Figure 1
illustrates 3 variable-order slices in the multilayer cluster heat map, which reveal
correlation structures hidden in the omics tensor data. For example, compari-
son of mRNA expression and DNA copy number slices revealed several gene ×
sample biclusters with high values for both mRNA expression and DNA copy
number, suggesting that DNA copy number amplification led to an up-regulation
of mRNA expression in some sample groups. Similarly, we found a large gene ×
sample bicluster where high promoter methylation was associated with repres-
sion of mRNA expression. In glioblastoma, it is known that a sample subgroup
is associated with the CpG island hyper-methylation phenotype [4]. The heat
maps revealed such a sample subgroup and genes that were both methylated
and transcriptionally repressed in the sample subgroup. Collectively, these re-
sults demonstrate the usefulness of the multilayer cluster heat map to reveal
correlation structures among multiple omics layers at a glance.

3.2 ENCODE Data

Next, we applied the multilayer cluster heat map to the ENCODE trans-omics
tensor data. The data contain 7 histone modification profiles for 3000 genes
across 7 cell lines, described in Table 1. The tensor data contain binary values
indicating whether the promoter of each gene has each type of modification.
Figure 2 depicts sample-order slices of the tensor and the dendrograms for the
3-way clusterings. The sample-order clustering divides the samples, reflecting
their cellular origin: e.g., the 2 blood-derived cell lines, K562 and Gm12878,
form a distinct cluster.

The histone modification types were also clustered according to their function-
ality. It is known that methylation of H3k4 and acetylation of H3k27 and H3k9 are
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Fig. 1. Visualization of the TCGA data. A third-order tensor containing DNA
copy number, mRNA expression, and DNA methylation was prepared from TCGA
data. The variable-order slices of the trans-omics tensor are displayed as heat maps,
where red and blue represent high and low values, respectively. Rows and columns of
the sliced matrices represent genes and samples, respectively.

associatedwith transcriptional activation.Thesemodifications forman activation-
associated major cluster, that contains 2 sub-clusters: the H3k4 methylation clus-
ter (H3k4me1, H3k4me2 and H3k4me3) and the H3 acetylation cluster (H3k27ac
and H3k9ac). The sample-order slices showed that the modification profiles for
the 2 sub-clusters possessed different degrees of similarity across the 7 cell lines.
For example, the blood-derived cell lines possessed similar profiles between the
2 sub-cluster, while the ectoderm-derived cell lines (Nhek and Hmec) formed a
gene cluster that was modified at the H3k4 methylation cluster, but not at the
H3 acetylation cluster. H3k27me3 is known to be associated with transcriptional
repression, and its profiles are inversely correlated with those of the activation-
associated major cluster. H3k36me3 and H4k20me also exhibited unique profiles.
H3k36me3 shows relatively constant profiles across cell lines. On the other hand,
overall degrees of H4k20me1modification differed across cell lines: K562 has many
target genes of H4k20me1, while Nhlf has only a few.

Based on these histone modification patterns across cell lines, the genes were
divided into 5 clusters. The gene clusters are represented by color bars in Figure
2, and their information is provided in Table 2. We also examined the enrich-
ment of GO terms in each cluster using the hypergeometric test. We could not
identify clear GO enrichment in all clusters, possibly because the number of cell
lines in the ENCODE data set was small. However, one gene cluster (cluster 4)
was clearly enriched for the GO term “ectoderm development”. Interestingly, the
gene cluster overlapped the aforementioned gene cluster that possessed charac-
teristic profiles for the H3k4 methylation and H3 acetylation cluster in ectoderm
cell lines. Taken together, these results demonstrate that the multilayer cluster
heat map enables integrative interpretation of trans-omics profiles across multi-
ple samples, which could not be achieved by conventional approaches targeting
matrix-type data.
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Table 1. Cell lines in the ENCODE data

Name Description Lineage Tissue

Nhek epidermal keratinocytes ectoderm skin
Hmec mammary epithelial cells ectoderm breast
Hsmm skeletal muscle myoblasts mesoderm muscle
Nhlf lung fibroblasts endoderm lung
Huvec umbilical vein endothelial cells mesoderm blood vessel

Gm12878 B-lymphocyte, lymphoblastoid mesoderm blood
K562 chronic myelogenous leukemia mesoderm blood

Fig. 2. Visualization of the ENCODE data. A third-order tensor containing 7
histone modification profiles across 7 cell lines was prepared from ENCODE data.
The sample-order slices of the trans-omics tensor are displayed as heat maps with
dendrograms from 3-way clusterings. In the heat maps, red and white represent the
presence and absence of the modifications, respectively. Rows and columns of the sliced
matrices represent modification types and genes, respectively. A color band below the
gene-order dendrogram indicates gene clusters whose information is provided in Table 2.

Table 2. Gene clusters in the ENCODE data

ID Size Color Most significantly enriched GO term p-value

cluster 1 433 red immune system process 4.15× 10−4

cluster 2 1115 orange collagen 1.19× 10−5

cluster 3 382 yellow
cluster 4 344 green ectoderm development 1.19× 10−10

cluster 5 726 blue
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3.3 Cancer Co-expression Network Data

Lastly, we attempted to visualize cancer co-expression network data using the
multilayer cluster heat map. We obtained co-expression networks for 260 mi-
croarray data sets, and combined adjacency matrices representing each network
as a third-order tensor. Figure 3 illustrates 10 representatives of the network-
order slices and dendrograms for the network and gene-order clusterings. Sup-
plementary Figure 1 presents an overview of all 100 network-order slices. The
network-order clustering divided the networks into 2 major clusters. The mem-
bers of one network cluster exhibited clear gene clusters while those of the other
show less clear gene clusters. The gene-order clustering revealed recurrent mod-
ule structures in the cancer co-expression network. Information regarding the 4
gene modules found is provided in Table 3. The most recurrent module (clus-
ter 1) was highly enriched for the GO term “cell cycle” while the second re-
current module (cluster 4) was enriched for “immune system process”. The
network-order slices revealed which network harbored these modules in a glance.
These results demonstrate the usefulness of the multilayer cluster heat map in
analyzing not only trans-omics data but also multiple network data.

Table 3. Gene clusters in the cancer co-expression network data

ID Size Color Most significantly enriched GO term p-value

cluster 1 67 red cell cycle 1.09× 10−18

cluster 2 266 orange cytoskeletal protein binding 4.46 × 10−6

cluster 3 272 green apoptotic mitochondria changesl 1.52 × 10−4

cluster 4 393 blue immune system process 6.28 × 10−8

4 Discussion

In this study, we present the multilayer cluster heat map, a novel visual data
mining method for biologists working with biological tensor data. We applied the
multilayer cluster heat map to trans-omics and network tensor data, and suc-
cessfully demonstrated the proof-of-concept of our approach. However, a number
of issue must be to be addressed. For example, it should be noted that clustering
results are highly dependent on the method of data preprocessing. In particular,
when dealing with trans-omics data the fact that each type of omics data have
different scales and distributions of measurements should be taken into consider-
ation. Moreover, results depend on the distance measure and clustering method,
as is the case in conventional cluster heat maps. Thus, it is desirable to establish
some criteria to select optimal preprocessing and clustering methods for each
type of data. Otherwise, different preprocessing and clustering methods should
be attempted to assure the robustness of obtained conclusions. In this study,
we confirmed that even when different preprocessing and clustering methods are
employed, principal findings are essentially unchanged in spite of different heat
map appearances.
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Fig. 3. Visualization of the cancer co-expression network data. A third-order
tensor containing 100 cancer co-expression networks was prepared from the GEO
database. The 10 representative network-order slices of the network tensor are dis-
played with gene-order and network-order dendrograms. In the heat maps, red and
blue represent the positive and negative correlations. Rows and columns of the sliced
matrices represent genes, A color band below the gene-order dendrogram indicates gene
clusters whose information is contained in Table 3.
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Supplementary Figure 1. Visualization of the cancer co-expression network
data. All 100 network-order slices of the cancer co-expression network are arranged
according to the network-order dendrogram in Figure 3 and displayed left-to-right and
top-to-bottom.

Another challenge is the computational implementation. Since biological ten-
sor data containing the gene-order is intrinsically large, their cluster heat map
visualization is a computationally intensive problem. As our current implemen-
tation does not provide sufficient efficiency to visualize the whole space of the
input data, we focus only on a small sub-set of the data space by filtering out
less informative spaces in the preprocessing steps. However, since such stringent
filtering hides much information, it is more preferable to visualize a larger data
space by employing less stringent filtering and more efficient implementation.

The visualization approach is powerful since it enables biologists without
mathematical knowledge to intuitively interpret complex information hidden in
massive amounts of data. On the other hand, the mathematical approach is
also a necessary complement. It can systematically extract hidden information
and quantitatively evaluate the result. By combining these 2 complementary ap-
proaches, we will obtain more fruitful results, as demonstrated by the history
of microarray analyses, which employs heat map visualization combined with
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various statistical methods. We expect that our multilayer cluster heat map can
provide more insights when combined with tensor mathematics [9].

While third-order tensor types of data are becoming more common in the field
of biology, tensor data analysis is still considered as a challenge. We believe that
our visual data mining method will be useful for obtaining biological insights
from massive amounts of biological tensor data.
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Abstract. Sorting by Transpositions is an NP-hard problem. Elias and
Hartman proposed a 1.375-approximation algorithm, the best ratio so
far, which runs in O(n2) time. Firoz et al. proposed an improvement
to the running time, from O(n2) down to O(n log n), using Feng and
Zhu’s permutation trees. We provide counter-examples to the correct-
ness of Firoz et al.’s strategy, showing that it is not possible to reach a
component by sufficient extensions using the method proposed by them.

Keywords: comparative genomics, genome rearrangement, sorting by
transpositions, approximation algorithms.

1 Introduction

By comparing the orders of common genes between two organisms, one may
estimate the series of mutations that occurred in the underlying evolutionary
process. In the simplified genome rearrangement model adopted in this paper,
each mutation is a transposition, and the sole chromosome of each organism is
modeled by a permutation, which means that there are no duplicated or deleted
genes. A transposition is a rearrangement of the gene order within a chromosome,
in which two contiguous blocks are swapped. A biological explanation for this
rearrangement is the duplication of a block of genes, followed by the deletion
of the original block [15]. The transposition distance is the minimum number of
transpositions required to transform one chromosome into the other. Bulteau et
al. [2] proved that Sorting by Transpositions (SBT), the problem of determining
the transposition distance between two permutations, is NP-hard.

Our approach towards the SBT problem has been as follows: to determine
the maximum value of the transposition distance among all permutations, i.e.,
the transposition diameter [3,4,13]; to obtain tight bounds for the transposition
distance of some classes of permutations [3,11,13]; and to explore approximation
algorithms for estimating the transposition distance between permutations in
general, providing better practical results or lowering their time complexities [14].
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Two important measures are important for the study of approximation algo-
rithms: the approximation ratio and the running time of such algorithms. In the
following paragraphs, we discuss the existing approximation algorithms for the
SBT problem and their respective measures.

Bafna and Pevzner [1] designed the first 1.5-approximation algorithm with an
O(n2) running time, based on the cycle structure of the breakpoint graph. Hart-
man and Shamir [10], by introducing simple permutations, proposed an easier
1.5-approximation algorithm and, by exploiting a balanced tree data structure
designed by Kaplan and Verbin [12], decreased the running time to O(n

3
2

√
logn).

Feng and Zhu [7] developed the balanced permutation tree, further decreasing
the complexity of Hartman and Shamir’s 1.5-approximation to O(n log n), and
Lopes et al. [14] implemented this algorithm.

Elias and Hartman [6] obtained, by a thorough computational case analysis
of the cycles of the breakpoint graph, an 1.375-approximation O(n2) algorithm,
which was implemented by Dias and Dias [5]. Firoz et al. [8] recently claimed
that this 1.375-approximation algorithm can run in O(n log n) time using the
permutation tree data structure developed by Feng and Zhu.

In the present paper, we show that Firoz et al.’s usage of a query procedure to
extend a full configuration to a component fails in some situations. We provide
an infinite family for which Firoz et al.’s algorithm does not find a 11

8 -sequence,
proving that their strategy for running the 1.375-approximation algorithm in
O(n log n) time is incorrect.

This article is organized as follows: in Section 2 we present the breakpoint
graph, its relevant properties and how it can be used to sort a permuta-
tion by transpositions; Section 2.2 is devoted to Elias and Hartman’s 1.375-
approximation algorithm; Section 2.3 presents the permutation tree data struc-
ture; Section 3 describes Firoz et al.’s approach for using the permutation tree
in the 1.375-approximation algorithm and counterexamples to the correctness of
their approach; Section 4 contains the final remarks of this paper.

2 Background

For our purposes, a gene is represented by a unique integer and a chromo-
some with n genes is a permutation π = [π0 π1 π2 · · · πn πn+1], where π0 = 0,
πn+1 = n+1 and each πi is a unique integer in the range 1 . . . n. The transposi-
tion t(i, j, k), where 1 ≤ i < j < k ≤ n+ 1, is the permutation [0 1 . . . i−1 j j+
1 . . . k−1 i i+1 . . . j−1 k k+1 . . . n n+1]. The application of a transposition t(i, j, k)
to a permutation π is the product π t(i, j, k), denoted as an action to the right;
it interchanges the two contiguous blocks πi πi+1 . . . πj−1 and πj πj+1 . . . πk−1.
A sequence of transpositions t(i1, j1, k1), t(i2, j2, k2), . . . , t(iq, jq, kq) sorts a per-
mutation π if π t(i1, j1, k1) t(i2, j2, k2) · · · t(iq, jq, kq) = ι, where ι is the identity
permutation [0 1 2 . . . nn+1]. The transposition distance of π, denoted d(π), is
the length of a minimum sequence of transpositions that sorts π.
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2.1 The Breakpoint Graph

Given a permutation π, its breakpoint graph is the graph G(π) = (V,R ∪ D).
The set of vertices V is {0,−1,+1,−2,+2, · · · ,−n,+n,−(n + 1)}, and the set
of undirected edges is partitioned into two sets, the reality edges R and the
desire edges D, where R = {bi = (+πi, −πi+1) | i = 0, . . . , n} and D =
{(+i, −(i+1)) | i = 0, . . . , n}). Fig. 1 shows the diagram for the breakpoint graph
G([0 10 9 8 7 1 6 11 5 4 3 212]), where the horizontal lines represent the edges in R
and the arcs represent the edges inD. The permutation [0 10 9 8 7 1 6 11 5 4 3 212]
is a key permutation for our proposed conter-examples.

�� ���� ����� ��� ����� ��� ���� �	 ��	�� ��� ����� �
� �
�� ����� ���� ���� ���� ��� ��� �
��� �
�� ��� ��� ���

���� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ����� �����

Fig. 1. G([0 10 9 8 7 1 6 11 5 4 3 2 12])

As a direct consequence of the definition, every vertex in G(π) has degree two,
so G(π) can be partitioned into disjoint cycles. We shall use the terms a cycle in
π and a cycle in G(π) interchangeably to denote the latter. We say that a cycle
in π has length �, or that it is an �-cycle, if it has exactly � reality edges (or,
equivalently, � desire edges). A permutation π is a simple permutation if every
cycle in π has length at most 3.

The number of cycles of odd length in G(π), denoted by codd(π), is an im-
portant measure. A transposition t is said to be an x-move for π if codd(πt) =
codd(π) + x. Bafna and Pevzner [1] observed that a transposition deletes three
reality edges in G(π) and recreates them differently, which implies that there
are only −2, 0 and 2-moves; since codd(ι) = n + 1, a lower bound for d(π) is⌈
(n+1)−codd(π)

2

⌉
, where the equality holds if, and only if, π can be sorted with

2-moves only.
Hannenhalli and Pevzner [9] proved that every permutation π can be trans-

formed into a simple one π̂ preserving the lower bound for the distance, i. e.⌈
(n+1)−codd(π)

2

⌉
=

⌈
(m+1)−codd(π̂)

2

⌉
where m is such that π̂ = [0π̂1 . . . π̂mm+1].

They have also shown that a sequence that sorts π̂ can be transformed into a
sequence that sorts π, which implies that d(π) ≤ d(π̂). This method is com-
monly used in the literature, as in Hartman and Shamir’s [10] and Elias and
Hartman’s [6] algorithms.

A transposition t(i, j, k) affects a cycle C if it contains one of the following
reality edges: bi+1, or bj+1, or bk+1. A cycle is oriented if there is a 2-move that
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affects it, otherwise it is unoriented. If there exists a 2-move that may be applied
to π, we say that π is oriented, otherwise π is unoriented.

A sequence of q transpositions is a (q, r)-sequence if it has r transpositions
that are 2-moves. A q

r -sequence is a (x, y)-sequence such that x ≤ q and x
y ≤ q

r .

Bafna and Pevzner [1] proved that there always exists a (3, 2)-sequence for any
given permutation, which implies that there is an approximation scheme for the

transposition distance with ratio 3/4
1/2 = 1.5, and that the search of the correct

cycles to apply the (3, 2)-sequence runs in quadratic time. Therefore, Bafna and
Pevzner’s algorithm runs in O(n2) time. Hartman and Shamir [10] obtained a
simpler method to obtain a (3, 2)-sequence when transforming π into a simple
permutation π̂. They also improved the running time, decreasing the complexity
of the algorithm down to O(n

3
2

√
logn) time.

Interactions between Cycles. A cycle in π is determined by its reality edges,
in the order that they appear, starting from the leftmost edge. The notation
C = 〈bx1bx2 . . . bx�

〉, where x1 = min{x1, x2, . . . , x�}, characterizes an �-cycle.
For instance, in Fig. 1, the cycles are: C1 = 〈b0, b2, b4〉, C2 = 〈b1, b3, b6〉, C3 =
〈b5, b8, b10〉 and C4 = 〈b7, b9, b11〉.

Let bx, by, bz, where x < y < z, be edges in C, and bx′ , by′ , bz′ , where x′ < y′ <
z′ be edges in a different cycle C′. We say that the pairs (bx, by) and (bx′ , by′)
intersect if these edges occur in alternating order in the breakpoint graph, i.e.
x < x′ < y < y′ or x′ < x < y′ < y. Similarly, two triplets of reality edges
(bx, by, bz) and (bx′ , by′ , bz′) are interleaving if their edges occur in alternating
order, i.e. x < x′ < y < y′ < z < z′ or x′ < x < y′ < y < z′ < z. Two
cycles C and C′ intersect if there is a pair of reality edges in C that intersects
with a pair of reality edges in C′, and two 3-cycles are interleaving if their
edges interleave. From Fig. 1, one can notice that the cycles C2 = 〈b1, b3, b6〉
and C3 = 〈b5, b8, b10〉 are intersecting, but C2 and C3 are not interleaving;
the cycles C1 = 〈b0, b2, b4〉 and C2 = 〈b1, b3, b6〉 are interleaving, and so are
C3 = 〈b5, b8, b10〉 and C4 = 〈b7, b9, b11〉.

A configuration A of π is a subset of the cycles in G(π). A configuration A is
connected if, for any two cycles C1 and Ck in A , there are cycles C1, ..., Ck−1 ∈ A
such that, for each i ∈ {1, 2, ..., k− 1}, the cycle Ci intersects or interleaves with
Ci+1. If the configuration A is connected and maximal, then A is a component.
For instance, in Fig. 1, the configuration {C1, C2, C3, C4} is a component, but
the configuration {C1, C2, C3} is not a component. Given a configuration A, if
there exists a permutation π such that G(π) is isomorphic to A, we say that A
and π are equivalent. Every component has an equivalent permutation [6].

Let C be a 3-cycle in a configuration A. An open gate is a pair of reality
edges of C that does not intersect any other pair of reality edges of any cycle
in A. If a configuration A has only 3-cycles with no open gates, then A is a full
configuration. In Fig. 1, the configuration A = {C2} has two open gates, whereas
A ∪ {C1} is a full configuration. Not every full configuration has an equivalent
permutation, as can be seen in Fig. 2.
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Fig. 2. A full configuration with no equivalent permutation. The cycles are
{〈b0, b2, b5〉, 〈b1, b3, b10〉, 〈b4, b7, b9〉, 〈b6, b8, b11〉}.

2.2 Elias and Hartman’s 1.375-approximation Algorithm

Elias and Hartman [6] performed a systematic enumeration of all components
having nine or less cycles, in which all of the cycles have length 3. The compo-
nents were obtained from a single 3-cycle, after applying a series of sufficient
extensions, as described next. An extension of a configuration A is a configura-
tion A∪{C}, where C �∈ A and A is connected with C, and a sufficient extension
is an extension that either: 1) closes an open gate; or 2) extends a full configura-
tion such that the extension has at most one open gate. Configurations obtained
by series of sufficient extensions are named sufficient configurations.

Lemma 1. [6] Every unoriented sufficient configuration of nine cycles has an
11
8 -sequence.

Components with less than nine cycles are called small components. Elias and
Hartman showed that there are just five kinds of small components that do not
have an 11

8 -sequence; these components are called bad small components. Even
if a permutation has bad small components, it still might be possible to find an
11
8 -sequence, as Lemma 2 states.

Lemma 2. [6] Let π be a permutation with at least eight cycles that contains
only bad small components. Then, π has an (11, 8)-sequence.

Corollary 1. [6] Every 3-permutation with at least eight cycles has an 11
8 -

sequence.

Lemmas 1 and 2, and Corollary 1 form the theoretical basis for Elias and
Hartman’s 1.375-appoximation algorithm for sorting by transpositions, described
in detail in Algorithm 1.

2.3 The Permutation Tree

Feng and Zhu [7] introduced the permutation tree, a binary balanced tree that
represents a permutation. Let π = [π0π1π2 · · ·πnπn+1] be a permutation.
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Algorithm 1. Elias and Hartman’s Sort(π)

1 Transform permutation π into a simple permutation π̂.
2 Check if there is a (2, 2)-sequence. If so, apply it.
3 While G(π̂) contains a 2-cycle, apply a 2-move.
4 π̂ consists of 3-cycles. Mark all 3-cycles in G(π̂).
5 while G(π̂) contains a marked 3-cycle C do
6 if C is oriented then
7 Apply a 2-move to it.

8 else
9 Try to sufficiently extend C eight times (to obtain a configuration with

at most nine cycles).
10 if sufficient configuration with nine cycles has been achieved then
11 Apply an 11

8
-sequence. (Lemma 1)

12 else
13 (It is a small component.)
14 if it is not a bad component then
15 Apply an 11

8
-sequence. (Corollary 1)

16 else
17 Unmark all cycles of the component.

18 (Now G(π̂) has only bad small components.)
19 while G(π̂) contains at least eight cycles do
20 Apply an 11

8
-sequence (Lemma 2)

21 While G(π̂) contains a 3-cycle, apply a (3, 2)-sequence. (Hartman and
Shamir [10])

22 Mimic the sorting of π using the sorting of π̂. (Hartman and Shamir [10])

The corresponding permutation tree has n leaves, labeled π1, π2, · · · , πn; ev-
ery node represents an interval of consecutive elements πi, πi+1, · · · , πk−1, with
i < k, and is labeled by the maximum number in the interval. Therefore, the
root of the tree is labeled with n. Furthermore, the left child of a node rep-
resents the interval πi, · · · , πj−1 and the right child represents πj , · · · , πk, with
i < j < k. Feng and Zhu provided algorithms: to build a permutation tree in
O(n) time, to join two permutation trees into one in O(h) time, where h is the
height difference between the trees, and to split a permutation tree into two in
O(log n) time.

The operations split and join allow one to apply a transposition to a per-
mutation π, updating the tree, in time O(log n). This is done as follows: i) do
sucessive splits of T into four permutations trees T1, T2, T3 and T4, that corre-
spond to [π0, π1, · · · , πi−1], [πi, · · · , πj−1], [πj , · · · , πk−1], and [πk, · · · , πn,πn+1],
respectively; and ii) perform the joins of T1 with T3, T1T3 with T2, and finally
T1T3T2 with T4.
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We must now determine, in logarithmic time, which transposition should be
applied to a permutation. Based on Lemma 3, the Query procedure solves this
problem.

Lemma 3. [1] Let bi and bj be two black edges in an unoriented cycle C, i < j.
Let πk = maxi<m≤j πm, π� = πk + 1, then black edges bk and b�−1 belong to the
same cycle, and pair bk, b�−1 intersects pair bi, bj.

The procedure Query(π, i, j), described in Algorithm 2 finds a pair of reality
edges in G(π) that intersects bi, bj in time O(log n). Every split in step 2 is
performed in time O(log n).

Algorithm 2. Query(π, i, j)

input : permutation π, integers i and j
1 Let T be the permutation tree of π
2 Split T , into three permutation trees, T1, T2 and T3, corresponding to

[π0, π1, · · · , πi], [πi+1, · · · , πj ], and [πj+1, · · · , πn,πn+1], respectively.
3 Let πk = root(T2). (the largest element in the interval πi+1, · · · , πj)
4 Let π� = πk + 1
5 Return the pair k, �− 1 (by Lemma 3, bk, bl−1 intersects bi, bj)

The Query procedure is the method used in Hartman and Shamir’s [10] 1.5-
approximation algorithm to find a (3, 2)-sequence that affects a pair of intersect-
ing or interleaving cycles.

Firoz et al. [8] suggested the use of the permutation tree data structure to
reduce the running time of Algorithm 1 to O(n log n), but in Sect. 3 we show
that this strategy, in the manner proposed by Firoz et al., may fail to extend a
full configuration to 9 cycles.

3 The Use of the Permutation Tree by Firoz et al.

Firoz et al. [8] state that step 9 in Algorithm 1 can be done in O(log n) time.
To do so, they categorized sufficient extensions of a configuration A into type 1
extensions – those that add a cycle that closes an open gate – and type 2 ex-
tensions – those that extend a full configuration by adding a cycle C such that
A ∪ {C} has at most one open gate.

A type 1 extension can be performed in logarithmic time with a Query(π, i, j),
where bi, bj form an open gate. For a type 2 extension, since there are no open
gates, Firoz et al. claim that it is sufficient to perform queries with every pair
of reality edges that belong to the same cycle in the configuration that is being
extended. Example 1 shows that this strategy is flawed.

Example 1. Consider the permutation π = [0 10 9 8 7 1 6 11 5 4 3 212], whose
breakpoint graph is depicted in Fig. 1. It is a simple permutation having only
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unoriented 3-cycles. We mark all the cycles C1 = 〈b0, b2, b4〉, C2 = 〈b1, b3, b6〉,
C3 = 〈b5, b8, b10〉 and C4 = 〈b7, b9, b11〉, let A = {C1} be the configuration and
try to sufficiently extend A (step 9 in Algorithm 1) using the method proposed
by Firoz et al.:

1. Configuration A has three open gates (b0, b2), (b2, b4), (b4, b0). We execute
Query(π, 0, 2) (or, alternatively Query(π, 2, 4), with the same end result),
wich returns the pair b1, b6, in cycle 〈b1, b3, b6〉. Therefore, we add this cycle
to the configuration A, which becomes A = {C1, C2}.

2. Configuration A has no more open gates. We must execute Query(π, i, j) for
every pair of elements bi, bj in the same cycle of the configuration such that
i < j; it is easy to observe that Query will returns a pair that is already in
A. So far, Firoz et al.’s method has failed to extend A.

3. Configuration A is not a component, therefore we unmark all the cycles in A.
4. The marked cycles are now C3 and C4. If we consider A = {C3} or A =

{C4}, using Firoz et al.’s method only allows us to extend A as far as
{C3, C4}. Again, A is not a component.

Therefore, Firoz et al.’s method fails to find the component {C1, C2, C3, C4}.

The permutation in Example 1, although having only one small component,
clarifies the problem with Firoz et al.’s strategy for type 2 extensions. The same
problem happens for sufficient configurations with more than nine cycles, such
as:

σ = [0 25 24 23 22 1 21 26 20 19 18 2 17 27 1615 14 3 13 28 12 11 10 4 9 29 8 7 6 5 30].

Fig. 3 displays the breakpoint graph of σ, which consists of five pairs of interleav-
ing 3-cycles, defining a single component that is not small. In this case, starting
the Query procedure with a configuration that has a unique cycle, it is possible
only to perform a single type 1 extension, but any subsequent type 2 extension
fails.

By Lemma 1, every configuration of nine cycles has an 11/8-sequence. Fig. 3
illustrates a case where there exists an 11/8-sequence. Starting the Query from a
configuration with a unique cycle, the procedure returns five pairs of interleaving
3-cycles, each pair would correspond to a bad small component, as illustrated in
Fig. 4. Notice that according to Step 18 of Algorithm 1, if a permutation contains
only bad small components, then an 11/8-sequence is returned, see Fig. 5 for
the breakpoint graph of γ:

γ = [0 5 4 3 2 1 6 11 10 9 8 7 12 17 16 15 14 13 18 23 22 21 20 19 24 29 28 27 26 2530],

a permutation which Algorithm 1 may wrongly consider instead of σ. However,
Algorithm 1 does not have a rule to deal with five pairs of interleaving cycles
where, for each pair, there exists another intersecting cycle, as in Fig. 3.

Notice that the permutations of Example 1 and the above permutation σ are
examples belonging to a family of permutations such that the type 2 extension
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fails. Actually, an infinite family can be constructed as follows: Let k be any
integer grater than or equal to 2, and let f(i) be the sequence of six integers

i 5k−4i 5k+i 5k−4i−1 5k−4i−2 5k−4i−3.

Consider σk a permutation of 6k − 1 elements defined as:

[0 5k 5k− 1 5k− 2 5k− 3 f(1) f(2) . . . f(k − 1) k 6k],

whose breakpoint graph has a similar structure to that in Figs. 1 and 3. If we
start from a configuration having any one of the cycles, it is impossible to extend
it past a configuration of more than two cycles using Firoz et al.’s approach.

Fig. 3. Breakpoint graph of a permutation σ for which Firoz et al. method fails. Note
that σ has 10 cycles, and that σ is obtained from the permutation in Fig. 1.

Fig. 4. A configuration that is not maximal returned by the Query on σ

Fig. 5. The breakpoint graph of permutation γ

4 Conclusions

The goal of this paper is to show an infinite family of permutations that invalidate
the correctness of Elias and Hartman’s algorithm with the Firoz et al.’s strategy.
We investigated Elias and Hartman’s 1.375-approximation algorithm for the SBT
problem and the claimed strategy to improve the running time of such algorithm
from O(n2) down to O(n log n). Clearly, the use of Feng and Zhu’s permutation
tree is not enough. We are currently investigating alternative counter-examples
that may suggest how hard it could be to correct Firoz et al.’s approach.
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Abstract. In recent years, non-coding RNAs (ncRNAs) have been focus
of intensive research. Since the characteristics and signals of ncRNAs are
not entirely known, researchers use different computational tools together
with their biological knowledge to predict potential ncRNAs. In this con-
text, this work presents a multiagent system to annotate ncRNAs based
on the output of different tools, using inference rules to simulate biolo-
gists’ reasoning. Experiments with real data of fungi allowed to identify
novel putative ncRNAs, which shows the usefulness of our approach.

1 Introduction

Since 1990, important roles of the RNA molecules have been identified, be-
sides the well defined functions of messenger RNA (mRNA), transporter RNA
(tRNA) and ribosomal RNA (rRNA), all involved in protein synthesis. Non-
coding RNAs (ncRNAs), those RNAs not coding for proteins [6,25], present
specific spatial conformation that allow them to play regulatory roles in an ex-
tensive variety of biological reactions and processes, e.g., translation initiation,
level control of mRNA, stem-cell maintenance, brain developing, metabolism reg-
ulation, support to protein transport, nucleotide edition, imprinting regulation
and chromatin dynamics [22].

On one side, although intensive efforts worldwide, biological and computa-
tional methods are not yet capable to easily identify and classify ncRNAs, di-
rectly affecting the annotation of these transcripts. From a biological point of
view, ncRNAs are characterized by its transcription and absence of translation
into proteins, and RNAs presenting very different nucleotide sequences (primary
sequences) but similar spatial conformations (secondary structure) perform the
same cellular functions. Therefore, ncRNAs should be characterized by their
secondary structures and not only by their primary sequences. From a compu-
tational point of view, ncRNAs can not be identified and classified by homology
tools, extensively and efficiently used to annotate protein coding genes (e.g.,
BLAST), and methods designed to predict secondary from primary structure
are commonly used to annotate ncRNAs [13,6]. In this context, biologists use
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different tools to annotate sequences that appear to be ncRNAs, together with
their knowledge, which is a reasoning intensive process.

On the other side, a multiagent system (MAS) is characterized by the distri-
bution of intelligence among autonomous entities called agents, which interact
to reach individual or collective goals. In order to do that, the agents in a MAS
have to negotiate in a cooperative way, coordinating and joining efforts to reach
the objectives, normally not accomplished by a single agent [31].

In this context, this work has the objective of presenting ncRNA-Agents,
a MAS to support ncRNA annotation, using inference rules to simulate the
biologists’ reasoning to combine the output of different tools and data bases [27].
As far as we know, there are no computational tools simulating the biologists’
reasoning to annotate ncRNAs.

This work is divided into six sections. In Section 2, challenges to annotate ncR-
NAs are firstly discussed, together with commonly used tools and data bases.
After, a general classification for ncRNA annotation tools is proposed. In Sec-
tion 3, concepts and tools to implement MAS are introduced. In Section 4, the
ncRNA-Agents architecture and some implementation details are detailed. In
order to validate ncRNA-Agents, two experiments with real data of fungi are
analized in Section 5. Finally, this work is concluded in Section 6.

2 Challenges to Annotate ncRNAs

Methods to identify and classify ncRNAs use different strategies, based on ncRNA
characteristics supported by in silico and experimental findings. Some criteria
are commonly used: a number of known ncRNA classes do not present long
ORFs; their sequences have unexpected stop codons; RNAs usually present con-
servation in their secondary (spatial) structure and rarely in their primary (DNA
sequences) structure; some known ncRNAs have complex tridimensional struc-
tures, and catalyst or structural functions. These characteristics prevent to use
traditional similarity based tools to predict proteins [25]. Methods using biolog-
ical hints are also extensively used to predict ncRNAs: codons, synonymous and
non-synonymous substitutions, and minimum folding energy [21].

One important problem when predicting ncRNAs is the lack of available
experimental information, confirming in silico prediction. Although computa-
tional predictions are useful, confirmation needs biological experiments, such as
RNAseq of small RNAs, real-time PCR and gene deletion or knock out experi-
ments. But the absence of translation is not conclusive, since predicted ncRNA
may not be transcribed or translated when some environmental or physiolog-
ical conditions happen. Therefore, to predict ncRNAs, biologists use different
bioinformatics tools, with distinct methods, and after make a combined anal-
ysis of all these information to decide if a sequence is a potential ncRNA. We
have three main problems when annotating ncRNAs: secondary structure predic-
tion [14], secondary structure comparison [13,6] and ncRNA identification and
classification [10].
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2.1 Tools and Data Base to Annotate ncRNAs

In this section, we describe first some computational tools and after data bases
[30] commonly used to identify and classify ncRNAs.

BLAST (Basic Local Alignment Search Tool) [1] is extensively used to predict
proteins. Although Blast can successfully detect some specific ncRNA families
(e.g., snoRNAs), in general, only nucleotide comparisons is not enough, since
many ncRNA classes are very different regarding to the primary sequences but
exhibit a common secondary structure. Infernal (INFERence of RNA Align-
ment) [5] identifies ncRNAs looking for secondary structures. It builds profiles of
RNA consensus spatial structure, known as covariance models (CMs), in order to
find similarities between the investigated sequence and the consensus secondary
structure of each one of the RNA families stored in the Rfam data base [11].
tRNAscan [19] is considered one of the more precise tRNA predictors. It com-
bines three programs: two tRNA predictors and a covariance model [5] previously
trained with tRNA sequences. The execution of these three programs results is
a tRNA identifier presenting high sensibility (99− 100%) and specificity (with a
false positive rate less than 0.00007 by Mb) in a reasonable velocity. Portrait [2]
identifies ncRNAs of not complete transcriptomes of yet not entirely character-
ized species, based on Support Vector Machine (SVM). The result of Portrait is
a probability indicating the likelihood of a transcript to be non protein coding.
Vienna [13] is a set of packages used to generate or to compare RNA secondary
structures. Folding in this tool uses prediction algorithms based on RNA free
energy and the probability of base pairing [21]. Particularly, RNAfold [13,14]
package is based on the hypothesis that an RNA molecule is folded in a more
stable thermodynamics structure, the one presenting the minimum free energy.
RNAmmer [16] predicts rRNAs using the 5S ribosomal and the European ri-
bosomal RNA data base to generate many structural alignments, which are used
to build Markov chain libraries.

Now, we briefly describe commonly used ncRNA data bases, created from
experimental and computational data [30]. NONCODE [18] includes many
different types of ncRNAs, except tRNAs and rRNAs. More than 80% of the
input in NONCODE are experimentally confirmed. We used NONCODE version
v3.0, with more than 411, 552 ncRNAs. RNAdb [24] contains sequences and
annotation of thousands of mammalian ncRNAs, but a large number of them do
not have known biological functions. miRBase [12] is a data base of microRNAs.
snoRNA database [17] contains human snoRNAs of both types, H/ACA and
C/D box. fRNAdb [23] integrates a set of data bases, including NONCODE
and RNAdb. Rfam [11] is a curated data base containing information about
ncRNA families, presenting two classes of data: CM profile and seed alignments
for each ncRNA family. In this work, we used Rfam 11.0, with 2, 208 families.

2.2 A Proposal to Classify ncRNA Annotation Tools

We propose a general classification for computational tools that annotate ncR-
NAs, in three groups, described as follows: (i) Homology: in this group,
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ncRNAs are predicted using alignment among sequences. These comparisons
depend on the quality of the annotation stored in data bases, since this qual-
ity affects ncRNA classification. BLAST [1] and Infernal [6] are two extensively
used tools, both using the concept of similarity (the greater the similarity the
greater the chance that both sequences have conserved the same function). In
general, BLAST does not produce good results to annotate ncRNAs, being In-
fernal more sensitive and specific to identify hundreds of different types of ncR-
NAs; (ii) Class prediction: in this group, ncRNAs are identified using methods
based on machine learning. In the supervised learning paradigm, we take a set of
known ncRNAs and a set of known proteins, computing ab initio characteristics
for these sequences, in order to create a model to predict ncRNAs. Examples
are PORTRAIT [2] and DARIO [7]; and (iii) De novo model: in this group,
ncRNAs are predicted using models distinct from homology and class prediction,
e.g., the Vienna [13] thermodynamic model.

3 MAS and Inference Rules

In this section, we briefly describe MAS, as well as inference rules, respectively
used for knowledge representation and reasoning. First, we present the concept
of an agent. According to Russell and Norvig [29], an agent is an entity that
interacts with the environment, perceiving it through its sensors and acting us-
ing actuators. An agent has two important characteristics: it is capable to act
autonomously, taking decisions leading to the satisfaction of its objectives; and
it is capable to interact with other agents through human inspired social interac-
tion protocols. We may cite as agents functionalities: coordination, cooperation,
competition and negotiation.

A MAS includes many homogeneous or heterogeneous agents interacting and
working together. Each agent operates asynchronously related to other agents [31].
In order to have agent communication and interactionwe need to have an adequate
MAS infrastructure with specific agent language and interaction protocol.

JADE (Java Agent DEvelopment Framework) [3] is a commonly used frame-
work to develop MAS, since it follows the patterns of FIPA (Foundation for
Intelligent Physical Agents), an international organization responsible to define
patterns for the development of agent technologies. JADE allows and facilitates
the development of agents using Java language since it has many already defined
functions, uses ACL (Agent Communication Language), and has ready to use
interaction protocols (e.g., contract net). JADE presents a visual interface to
monitor agents’ execution that helps to control these agents’ life cycle, having
also many built-in resources, e.g., the directory facilitator (yellow pages) and
the agent controller manager (white pages). In this work, we have used JADE
to implement the ncRNA-Agents prototype.

In intelligent agents, reasoning skills can be implemented using inference rules,
which also allows to represent knowledge that will be manipulated by the infer-
ence engine. Drools [4] is an open source rule engine that allows to build a knowl-
edge base and make inferences based in patterns. Drools interacts with Java and
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the knowledge is obtained from a set of declarative rules. A Drools’ rule has one
or more condition (or facts) leading to one or more actions (or consequences).
Basically, the Drools inference engine offers the possibility of using a forward
chaining or a backward chaining method as investigation approaches. The in-
ference algorithm of Drools is RETE [9], which is adapted to object oriented
systems. In order to integrate the inference rule engine to JADE framework we
have used Drools.

4 ncRNA-Agents Architecture and Prototype

In this section, we first present the ncRNA-Agents architecture, and after details
of the implemented prototype. This ncRNA annotation system using MAS was
inspired in previous work of our group [26,27].

4.1 Architecture Proposal

Figure 1 presents the ncRNA-Agents architecture with four different layers: (i)
interface layer: receives from a user one sequence (or a sequence file) in FASTA
format, together with the required annotation tools. The system will return the
RNA annotation (a potential ncRNA or not) of each sequence, along with the
used tools and corresponding reasoning; (ii) conflict resolution layer: receives
the user request and decides the better recommendations based on suggestions
received from the collaborative layer, sending them to the interface layer; (iii)
collaborative layer: execute tools (the user can choose the tools among the
ones presented in the ncRNA-Agents initial page) to annotate ncRNAs, sending
the obtained results to the conflict resolution layer; and (iv) physical layer:
stores different data bases, as those presented in Section 2.1.

In Figure 1, note that the collaborative layer present different levels of agents:
manager and analyst agents. Manager agents are responsible for filtering the
suggestions sent by the analyst agents. We defined four types of manager agents,
three of them following the classification of the computational methods to an-
notate ncRNAs proposed in Section 2.2: (i) homology manager agent: co-
ordinates agents working on tools based on homology, e.g., BLAST [1] and
Infernal [6]; (ii) class prediction manager: coordinates agents working on
tools based on machine learning, e.g., Portrait [2]; (iii) de novo manager: co-
ordinates agents working on tools that do not use reference organisms, e.g.,
RNAfold [14] from Vienna package; and (iv) seeker manager: coordinates
agents created to refine analyses of the other manager agents (mainly remov-
ing false positives), simulating the reasoning of a biologist when analyzing the
results of the required programs and data bases. It also gives flexibility to the
architecture, since it can be adapted according to the purposes of each project.
Finally, analyst agents are responsible for executing specific tools to annotate
ncRNAs. Each agent (created from a manager agent request) parses the output
file generated by the tool controlled by this agent. This analysis is returned as
an annotation to its corresponding manager agent. Particularly, analyst agents
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Fig. 1. ncRNA-Agents architecture

can be created in seeker manager to improve annotation, e.g., to check if a
ncRNA candidate belongs to intronic or intergenic region, or to build a multiple
alignment for investigating conserved domains among related organisms. This
manager allows to remove false positives, e.g, seeker manager can verify if a
predicted snoRNA does not belong to an exonic region.

4.2 Prototype Implementation

A prototype was created with four manager agents: homology, class prediction,
de novo and seeker. The ncRNA-Agents system was written to be time effi-
cient using threads executed in parallel. It was implemented with JADE version
4.1 [3]. Eclipse SDK version Helios 2012 was used as the development environ-
ment together with the web server apache tomcat 7.0. JADE was adopted for
a couple of reasons. It is a free software distributed under LGPL license, and
Java language allows portability. Since it is a ready to use plataform, it is not
necessary to implement agent funcionalities, agent management ontologies and
message transport mechanism.

ncRNA-Agents uses Drools version 5.5.0 for the agents reasoning [4]. We de-
fined the biological knowledge using declarative rules according to the parameters
defined for the experiments. Rules for homology manager were created for choos-
ing, among the results of the three analysts (Blast, Infernal and tRNAscan), the
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better annotation, which is sent to the conflict resolution layer. tRNAscan an-
alyst verifies if there are any good alignments, selecting the alignment with the
highest score. Blast analyst verifies if there are alignments with e-value ≤ 10−5

(adopted by the biologists, but this value is an easily changeable system param-
eter), selecting the lower e-value in this case. Infernal analyst verifies if there are
alignments with score ≥ 34, selecting the alignment with the highest score. We
note that the analyst agents execute in parallel.

We called potential ncRNA an expressed sequence located in an intronic region
(considering as intronic those sequences inside a gene presenting an intersection
of at most 50% with an exon) or in an intergenic region. To identify such a
ncRNA, the rules for seeker manager were designed using three analysts. The
first one, Blat analyst, executes Blat with P. brasiliensis transcripts [8], in order
to verify if there are alignments with e-value ≤ 10−5, selecting the lowest e-value
in this case. This was designed to verify if a gene is expressed (according to
Blat analyst). In this case, seeker manager asked the second analyst, Blast PB
Genome, to check the location of this sequence in the P. brasiliensis genome
(downloaded from Broad Institute), while the third analyst, Genome Position,
was in charge to verify if the sequence occurs in an intronic or an intergenic
region, as described above. Genome Position analyst takes as input a file in .gtf
format (also downloaded from Broad Institute) containing the positions of start
and stop codons, as well as CDS and exonic regions. We considered a sequence
to be located in an intergenic region if it was not located in one of the regions
reported in this file but was close enough to a gene (≤ 1.000 bp).

Finally, the conflict resolution layer (CR layer) rules were designed as follows.
The first decision is about annotating the sequence as tRNA, if the homology
manager sends an annotation identified by tRNAscan analyst. If it is not the case,
CR layer decides if the sequence can be annotated as rRNA, if de novo Manager
sends an annotation identified by RNAmmer analyst. Both tools are considered
reliable to annotate tRNAs and rRNAs, respectively. If the sequence could not
be annotated as tRNA or rRNA, CR layer verifies if homology manager sent
a recommendation based on Infernal analyst or Blast analyst (with databases
snoRNA, RNAdb, NONCODE and mirBASE, in this order), sending it to the
interface layer if it is the case.

If a recommendation could not be found by homology manager, CR layer
verifies if class prediction manager sends a recommendation. If the probability
of being a ncRNA is < 70%, the recommendation of the Portrait analyst is
“not annotated by Portrait”. On the other hand (probability ≥ 70%), CR layer
validates this with other analyses, as follows. The first verification is done by de
novo manager. It executes RNAfold analyst, which indicates as potential ncRNA
those sequences with Minimum Free Energy (MFE) ≤ −5.00 kcal/mol. If it was
not the case, the recommendation is “not annotated by RNAfold”. Otherwise,
CR layer calls seeker manager to check the three aspects described above: (i)
verifies if the RNA is expressed in the P. brasiliensis trancriptome (Blat Analyst);
(ii) finds where this RNA is located in the chromosomes of the P. brasiliensis
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genome (Blast Analyst); and (iii) verifies if this sequence is located in intron,
exon or intergenic region.

5 Results

To validate the prototype, we developed two experiments with real data of two
fungi: Paracoccidioides brasiliensis [8] and Schizosacharomyces pombe [20].

Detecting ncRNAs in Paracoccidioides brasiliensis

First, 6, 022 sequences from P. brasiliensis transcriptome [8] were submitted to
Blast with SwissProt data base, to annotate proteins. Sequences not identified
as proteins were submitted as input to ncRNA-Agents, noting that sequences
annotated as “hypothetical protein”, “predicted protein”, “potential protein”
and “unknown sequence” were also included in this input file. For the experi-
ment, BLAST was executed with data bases snoRNA, RNAdb, NONCODE and
mirBASE. Infernal was executed with Rfam 11.0 data base, and the de novo
tools tRNAscan and Portrait were both executed. We also used Blat with P.
brasiliensis transcripts, Blast with P. brasiliensis genome, and a script to verify
if a sequence was located in intergenic or intronic regions.

Table 1. ncRNAs in P. brasiliensis identified by ncRNA-Agents. Column “Genome
Position” indicates if a sequence is in intronic or intergenic region (in this case, the
closest gene is indicated).

Sequence SuperContig Initial Final ncRNA Strand Genome
Name Position Position Length (bp) Position

Pb ncRNA 1 Supercontig 1.13 895440 895118 322 - Intergenic: After
PAAG 05248

Pb ncRNA 2 Supercontig 1.48 5192 5578 386 + Intron
Pb ncRNA 3 Supercontig 1.3 248422 248850 428 + Intergenic: Before

PAAG 01391
Pb ncRNA 4 Supercontig 1.109 3734 3518 216 - Intron
Pb ncRNA 5 Supercontig 1.58 25692 26297 605 + Intergenic: After

PAAG 08977
Pb ncRNA 6 Supercontig 1.39 84839 84453 386 - Intron
Pb ncRNA 7 Supercontig 1.33 1559 1734 175 + Intergenic: Before

PAAG 08374
Pb ncRNA 8 Supercontig 2.66 478 100 378 - Intergenic: Before

PAAG 12001
Pb ncRNA 9 Supercontig 1.9 14977 15094 117 + Intergenic: Before

PAAG 03665

We found 9 potential ncRNAs, as shown in Table 1. Pb ncRNA 1, located
into a intergenic region, was identified as the Fungi SRP (Fungal signal recog-
nition particle RNA), the RNA component of the signal recognition particle
(SRP) ribonucleoprotein complex [28]. SRP RNA, also known as 7SL, 6S, ffs,
or 4.5S RNA, participates in the coordination of protein traffic to cellular mem-
branes. The RNA and protein components of the ribonucleoprotein complex are
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highly conserved in all domains of life, but varying the molecule size and the
number of RNA secondary structure elements. The eukaryotic SRP consists of
a 300-nucleotide 7S RNA and six proteins: SRPs 72, 68, 54, 19, 14 and 9. Al-
though we could not classify Pb ncRNA 3, it presented a high similarity with
the small ncRNA AFU 254 (sRNA Afu-254) found in Aspergillus fumigatus, a
pathogenic filamentous fungus responsible for infections worldwide, suggesting a
conservation of this potential small ncRNA between these two pathogenic fungi.

Detecting ncRNAs in Schizosacharomyces pombe

Small RNA-Seq data of S. pombe was extracted from EMBL-EBI (experiment
E-MTAB-1154). After filtering to remove low quality reads, mapping was per-
formed using Segehmel [15], taking as reference the S. pombe genome (down-
loaded from BROAD Institute). Next, a Perl script identified genome continuous
regions presenting at least five mapped reads, and another Perl script found the
location of each region in the .bed file generated by mapping. The annotation
followed the same reasoning designed for P. brasiliensis, except for the seeker

Table 2. Some ncRNAs identified in the three chromosomes of S. pombe by ncRNA-
Agents. Column “Sequence Name” shows the chromosome (I, II, III) and column
“Genome Position” presents the sequence location (intron, exon, ncRNA exon, and
the related gene as annotated in the .gtf file)

Sequence Region Initial Final ncRNA Genome Strand
Name Name Position Position Length (bp) Position

Sp ncRNA I1 region90 98789 98839 50 Intron +
Gene: SPAC1F8.05

Sp ncRNA I2 region553 365148 365236 88 tRNA exon +
Gene: SPATRNAPRO.01

Sp ncRNA I3 region707 431217 431301 84 ncRNA Exon +
Gene: SPNCRNA.645

Sp ncRNA I4 region1059 617512 617563 51 Intron: After +
Gene: SPAC1F3.02c

Sp ncRNA I5 region2501 1421144 1421233 89 Exon +
Gene: SPAC20G8.10c

Sp ncRNA II1 region488 355913 356005 92 ncRNA exon +
Gene: SPNCRNA.1343

Sp ncRNA II2 region925 570150 570239 89 rRNA Exon +
Gene: SPBRRNA.30

Sp ncRNA II3 region2686 1599696 1599799 103 tRNA Exon +
Gene: SPBTRNAGLY.07

Sp ncRNA II4 region2914 1774859 1774940 81 Exon +
Gene: SPBC18H10.03

Sp ncRNA II5 region6626 3944593 3944692 99 snoRNA Exon +
Gene: SPBC26H8.02c

Sp ncRNA III1 region840 489561 489616 55 Intron: After +
Gene: SPCC970.11c

Sp ncRNA III2 region1001 583418 583614 196 ncRNA Exon +
Gene: SPNCRNA.467

Sp ncRNA III3 region1891 1071041 1071190 149 tRNA Exon +
Gene: SPCTRNALEU.11

Sp ncRNA III4 region1910 1102800 1102922 122 tRNA Exon +
Gene: SPCTRNAGLU.10

Sp ncRNA III5 region3149 1863119 1863215 96 Exon: After +
Gene: SPCC1223.10c
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(a) (b) (c) (d) (e)

Fig. 2. RNAfold analysis of (a) Sp ncRNA I4 (C/D Box), (b) Sp ncRNA I5 (tRNA),
(c) Sp ncRNA II5 (H/ACA Box), (d) Sp ncRNA III5 (C/D Box), and (e) region 708
(annotated as “snRNA exon gene SPSNRNA.04” by seeker manager)

manager, which only verified if the predicted ncRNA was located in exon, in-
tron or intergenic region (Blat and Blast analysts were not used here). The first
script was executed in the three chromosomes of S. pombe, having identified
respectively 9, 566, 7, 565 and 4, 126 regions. These regions were submitted to
ncRNA-Agents, which identified 52 putative ncRNAs, all in strand “+”. General
features of some of those ncRNAs are shown in Table 2.

Sequences not annotated as ncRNAs by homology, class prediction and de
novo managers were submitted only to seeker manager. This allows to find other
2,493 putative ncRNAs (728 in exons and 1,765 in introns) using the annotation
of the reference .gtf file: (i) in chromosome I, 327 in exons (7 tRNAs, 2 snoRNAs,
1 snRNA, 317 putative ncRNAs) and 834 in introns; (ii) in chromosome II, 276 in
exons (17 tRNAs, 9 rRNAs, 4 snRNAs, 246 putative ncRNAs) and 618 in introns;
and (iii) in chromosome III, 125 in exons (9 tRNAs, 4 rRNAs, 1 snoRNA, 111
putative ncRNAs) and 313 in introns.

It is important to note that, in both cases (predicted ncRNAs obtained from
all the managers working together and those by seeker manager only), to be
predicted as putative ncRNAs, a sequence had to present folding free energy <
−5.00 kcal/mol (according to RNAfold), indicating likely stable conformational
structures. Figure 2 shows some examples.

6 Conclusion

In this article, we presented ncRNA-Agents, a multiagent system to support
ncRNA annotation. The proposed architecture allows the execution of intelli-
gent agents cooperating in a heterogeneous and dynamic environment. Different
tools and data bases as well as inference rules simulating biologists’ reasoning
can be specified according to the purposes of each project. In ncRNA-Agents,
agents are specialized in different tasks, and can act independently using dis-
tinct inference rules. A prototype was implemented using JADE framework and
Drools as inference engine for reasoning rules in a web environment. To validate
ncRNA-Agents, we executed two experiments to detect ncRNAs in two fungi,
Paracoccidioides brasilienses and Schizosacharomyces pombe. We obtained novel
potential ncRNAs for both fungi, showing the usefulness of our approach.
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We believe that ncRNA-Agents can strongly help to improve the quality of
ncRNA annotation process, considering that massively parallel automatic se-
quencers produce billions of small fragments. As far as we know, there is no
system simulating the biologists reasoning with the integration of different tools
and data bases through a multiagent approach as we presented.

Next steps include to improve the expertise of the agents in ncRNA-Agents,
using more specific reasoning mechanisms. The inference rules could also be
extended, producing a more intensive knowledge based tool. In this direction, we
would like to identify, if the annotations are not conclusive enough, a set of new
tools to support annotation, e.g., if a potential RNA belongs to a known ncRNA
family using a multiple alignment with known and conserved RNAs in related
organisms, and figures showing a putative ncRNA folding. Data mining methods
could also improve precision in the annotation process. In the collaborative layer,
other analyst agents (corresponding to other tools) can be easily included in each
manager agent. Particularly, in the class prediction manager, a tool to classify
ncRNAs could be included, besides Portrait that only indicate if a sequence is a
potential ncRNA. Besides, implementation aspects should be improved allowing
a reproducible and portable annotation tool that may be integrated to different
annotation systems. Distributed implementation of the agents (besides threads)
could reduce time execution, improving the use of ncRNA-Agents in large-scale
sequencing projects.
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Abstract. Inference of Genetic Regulatory Networks from sparse and
noisy expression data is still a challenge nowadays. In this work we use
an Estimation of Distribution Algorithm to infer Genetic Regulatory
Networks. In order to evaluate the algorithm we apply it to three types
of data: (i) data simulated from a multivariate Gaussian distribution,
(ii) data simulated from a realistic simulator, GeneNetWeaver and (iii)
data from flow cytometry experiments. The proposed inference method
shows a performance comparable with traditional inference algorithms
in terms of the network reconstruction accuracy.

Keywords: Genetic Regulatory Networks, Estimation of Distribution
Algorithm, Bayesian Networks.

1 Introduction

The area of Systems Biology and related fields have recently witnessed many dis-
coveries and advances. These progresses are in great part due to the continuous
increase in availability and diversity of molecular biology data. Usually, these
studies are performed either considering single biological entities or the union of
several such entities. It is now becoming clearer that the complexity of an organ-
ism is more related with the joint acting of the components rather than with the
individual behaviour of its components. Therefore, the arrangement of biological
components in networks is likely to play a pivotal role in crucial biological pro-
cesses e.g. determining the development and sustainability of an organism. All
these characteristics have prompted the necessity of studying these components
in a holistic manner. Thus, the study of biological systems as biological networks
is highly relevant and has the potential to help in deciphering the intricacy of
living organisms.

As these complex networks are mainly unknown, one interesting approach is
to reverse engineer the networks from measurements taken from its individual
components. In the last few years, several methods for the reconstruction of
regulatory networks and biochemical pathways from data have been proposed.
These methods were reviewed for example in [1, 2].
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There are many different methods that can be applied to model Genetic
Regulatory Networks (GRN). The most detailed and faithful model to repre-
sent GRNs are systems of Ordinary Differential Equations. They can accurately
describe biophysical processes e.g. the intra-cellular processes of transcription
factor binding, diffusion, and RNA degradation; see, for instance, [3, 4]. The
detailed descriptions of the dynamics, as provided by ODEs, are essential to an
exact understanding of GRNs but this comes with a price. The application of
ODEs demands a huge amount of prior knowledge about the system under in-
vestigation. First, it is necessary to define how the components of the system are
connected and second, all the parameters of the biochemical reactions have to be
determined. Thus, albeit ODEs being one of the most accurate representation
of GRNs its application is restricted by the need of substantial prior knowledge
about the system they are representing.

Clustering methods are at the other extreme in representing GRNs. These
methods have been extensively applied to the analysis of microarray gene ex-
pression data [2, 5]. Despite its low computational costs, clustering methods can
only extract qualitative information about co-expression. These methods are not
suitable to infer the detailed structure of the underlying biochemical signalling
pathways.

Machine Learning methods provide a promising compromise between these
two extremes. It allows interactions between nodes in the network to be repre-
sented in an abstract way and to infer these interactions from data in a systems
context. Clearly the interactions represented in this way do not encompass the
level of detail of the underlying pathways described by ODEs models. Nonethe-
less the Machine Learning methods are able to distinguish direct interactions
from indirect interactions that are mediated by other nodes in the domain.

In this work we investigate the application of an Estimation of Distribution
algorithm (EDA) in the task of inferring GRNs modelled as Bayesian Networks
(BNs). We apply a score-based inference scheme where a score is assigned to
a particular model (network structure) given some observed data. In order to
evaluate the performance of our algorithm we apply it to three distinct source
of data: (i) data generated from a multivariate Gaussian distribution, (ii) data
generated with the GeneNetWeaver tool and (iii) real data from flow Cytometry
experiments.

In section 2 the BNs, its score-based inference and EDAs are introduced.
Section 3 presents a description of the utilized data sets, the set up of the simu-
lations and the criteria we applied to evaluate the performance of the algorithm.
In section 4 we present the results of the simulations and in last section, 5, we
discuss the results leading to conclusions and directions for future work.

2 Methodology

In this work we use Bayesian Networks (BNs) as the model for the regulatory
networks. BNs are probabilistic models and are specially suited to modelling
relationships in noisy domains as is the case in biological systems and biological
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systems measurements. In order to search for BNs that can better explain the
data that we have at our disposal we apply an score-based inference scheme. In
this scheme an Estimation of Distribution algorithm is employed to the task of
finding meaningful networks.

2.1 Bayesian Networks (BNs)

Bayesian Networks combine both probability theory and graph theory in one
modelling scheme. Formally a graphical structure M, a family of conditional
probability distributions F and the parameters q fully specify a BN. The graph
structure M of a BN is defined by a set of directed edges and a set of nodes. If
we have a directed edge from node Xk to node Xj , then Xk is called parent of
Xj . Random variables are represented by the nodes and conditional dependence
relations are characterized by the edges. The essence of the interactions between
nodes and the intensity of these interactions is represented by the family of
conditional probability distributions F and their parameters q. A BN is defined
by a simple and unique rule for expanding the joint probability in terms of
simpler conditional probabilities. This follows the local Markov property: A node
is conditionally independent of its non descendants given its parents. Due to this
property, the structure M, of a BN has necessarily to be a directed acyclic
graph (DAG), that is, a network without any directed cycles. Let X1, X2, ..., XN

be a set of random variables represented by the nodes i ∈ {1, ..., N} in the
graph, define πi[M] to be the parents of node Xi in graph M, and let Xπi[M]

represent the set of random variables associated with πi[M]. Then we can write

the expansion for the joint probability as P (X1, ..., XN ) =
∏N

i=1 P (Xi|Xπi[M]).

2.2 Score-Based Approach Inference

In a score-based inference the aim is to devise a BN structure (DAG) from a given
set of training data D. The found DAG structure shall be the one that better
explains the available data. In other words, if we define that M is the space of all
models, the main objective is to find a model M∗ ∈ M that is most supported
by the data D, M∗ = argmaxM {P(M|D)}. Having the best structure M∗ and
the data D, we can now find the best parameters, q = argmaxq {P (q|M∗,D)}.
If we apply Bayes’ rule we get P (M|D) ∝ P (D|M)P (M) where the marginal
likelihood implies an integration over the whole parameter space:

P (D|M) =

∫
P (D|q,M)P (q|M)dq (1)

The integral in (1), our score, is analytically tractable when the data is complete
and the prior P (q|M) and the likelihood P (D|q,M) satisfies certain regularity
conditions [6, 7]. In this work we use the score proposed in [6] known as the
Bayesian Gaussian likelihood equivalent (BGe) score. The BGe score assumes
that the data comes from a multivariate Gaussian distribution. Following the
Equation 1 we have a manner to assign a score to a graphical structure given a
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data set. Nonetheless, the search for high scoring structures is not trivial. Due
to the fact that the number of structures increases super-exponentially with the
number of nodes in the network it is impossible to list all the possible structures.
Furthermore, when considering a sparse data set, P (M|D) is diffuse, meaning
that it will not be properly represented by a single structure M∗.

Hence, we apply an EDA to find high scoring structures. In order to have a
collection of structures rather than a single result we run the algorithm 30 times
and use the average of the results (DAGs) as our resulting network.

2.3 Estimation of Distribution Algorithm (EDA)

In evolutionary computation, the identification and preservation of important
interactions among genes is called linkage learning. A recent survey [8] revises
and summarizes existing linkage learning techniques for evolutionary algorithms.

The adoption of probabilistic models for selected individuals is a powerful
approach for evolutionary computation. Probabilistic models based on high or-
der statistics have been used by (EDAs) [9], resulting better effectiveness when
searching for global optima for hard optimization problems [10].

An EDA solves a problem by building successive probabilistic models from
the solutions in the population. New solutions (individuals) are sampled from
that model. This avoids the adoption of the traditional crossover and mutation
as in Genetic Algorithms, which operate on single individuals.

One way of classifying the EDAs is according to the employed probabilistic
model [11]. The simpler order-1 EDAs such as Population-Based Incremental
Learning (PBIL) [12] and Univariate Marginal Distribution Algorithm (UMDA)
[13] adopt probabilistic models which assume independence among variables. The
order-2 EDAs, e.g. Mutual Information Maximizing Input Clustering (MIMIC)
[14] and Bivariate Marginal Distribution Algorithm (BMDA) [15], consider pair-
wise interactions among variables. The high order statistics EDAs takes in con-
sideration potentially all the (in)dependence relationships among variables, see
for instance Bayesian Optimization Algorithm (BOA) [16] and Estimation of
Bayesian Network Algorithm (EBNA) [17].

Order-1 EDAs work poorly on problems with variable interactions. Studies on
the dynamics of the evolutionary process of PBIL shows that, from the stand-
point of dynamical systems, only the local optima of the search space are stable
stationary points, so the algorithm is expected to converge to local optima [18].
The inability of order-1 EDAs on problems which present nonlinear interac-
tions among variables prevents those algorithms from solving a broader class of
problems.

Higher order statistics improve the chance of finding the global optimal solu-
tion, as shown in [19]. This leads to the class of higher order EDAs, which are
based on learning the linkage among genes by inferring expressive probabilistic
models based on searching for a factorization, which captures the dependencies
among genes. Good results are reported for several problems in the literature
whereas this class of EDAs imposes a high computational cost associated to
the model induction stage. Finding a factorization can be a computationally
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expensive process and the resulting graph is often a suboptimal solution [20]. In
general, the asymptotic time complexity of the search for a dependence structure
in higher order EDAs dominates the overall complexity of the whole probabilistic
model building [20].

In the present work we apply a novel approach proposed in [21]. The algorithm
1 is an EDA which employs clustering and probabilistic model learning. It also
presents a new recombination operator, the cg-recombination.

Algorithm 1. ϕ-PBIL

//Initialization:
Generate an initial random population of size N0.
Compute the fitness of the solutions.
//Learning:
while convergence criteria are not met do

Compute a probability vector (PV) of binomial proportions for each cluster.
randomly selects one PV, PVa

if utilize cg-recombination then
randomly chooses another PV, PVb

Compute the matrix of information measures W = (wi,j).
Update PVa guided by the matrix W

end if
Create a solution H accordingly with the chosen PVa.
compute the fitness of the new solution H
if H is not worse than the worst in population then

Delete this worst individual.
Insert H in the population.

end if
Update clusters and matrixes

end while

The algorithm initializes by generating N0 solutions thus defining the ini-
tial population. For each of these solutions a fitness is then calculated. At each
iteration of the learning procedure a k-means algorithm is applied to create k
population clusters where k is empirically defined. Distinctively from other EDA
applications [22, 23] the present algorithm creates only one solution, H at each
iteration. Therefore, only cluster centroids are updated avoiding the need of run-
ning the algorithm from the beginning. In order to generate a new solution there
are two possibilities: (i) from a probability vector (PV) (obtained for each clus-
ter) considering that the variables are independent; (ii) through the application
of the cg-recombination operator which performs a combination among two PVs.
The application of the cg-recombination operator is selected according to a set
probability pc. In the case where the cg-recombination is applied two PVs are
randomly selected to generate the new individual. In this case Wi,j , the measure
of how informative each parent cluster i is for each variable j, is calculated. The
Wi,j is defined as the difference between the entropy of the distribution of each
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variable j before and after observing a given cluster i. Its value guides the choice
among the two selected PVs where the new individual is created from the most
informative parts of the two selected PVs. For a comprehensive explanation of
the algorithm the reader is directed to [21].

3 Simulations

3.1 Data Sets

In order to evaluate our proposed method we apply it to three distinct types
of data. In increasing order of inference difficulty the data sets are: (i) data
generated from a multivariate Gaussian distribution, (ii) data generated with
the GeneNetWeaver tool and (iii) real data from flow Cytometry experiments.
The difficult in this context is related with the agreement between the data
generation model and the inference model.

Gaussian Multivariate Data: A clear and simple way of generating synthetic
data from a given structure is to sample them from a linear Gaussian distribu-
tion. The random variable Xi denoting the expression of node i is distributed
according to Xi ∼ N

(∑
k wikxk, σ

2
)
where N(.) denotes the Normal distribu-

tion, the sum extends over all parents of node i, and xk represents the value of
node k. The interaction strength between nodes Xi and Xk is wik �= 0. If wik = 0
then node Xk is not a parent of node Xi. The value of σ2 can be interpreted as
being the dynamic noisy. Low values of σ2 indicates a very deterministic data
set, i.e., the value of the child node is completely determined by their parents
values. Contrarily, high values of σ2 indicates a noisy data set. This process is
equivalent of sampling from a multivariate Gaussian distribution. It is impor-
tant to note that in order to generate data for a given network structure it is
necessary to topological sort the nodes first. This is fundamental to guarantee
that the parent nodes have their values computed before their child nodes. To
generate Gaussian data we set wik = 1 if the edge is present in the network
and wik = 0 otherwise. We also set σ2 = 0.01. It is interesting to observe that
the Gaussian multivariate data is a perfect match for the scoring method, BGe,
used in the present work. The data generated with this method will be referred
in this work as Gaussian data.

GeneNetWeaver Data: In order to have more realistic simulated data we
use the tool GeneNetWeaver (GNW) [25]. Data generated using GNW is ob-
tained from a stochastic system of coupled differential equations (ODEs) with
added noise. This type of data is more similar to real data as it presents non-
linearities which are typical of real biologycal systems. However, because the
data is simulated from a known structure, we are sure about what the answer of
the inference algorithm shall be. In order to generate the data we used the GNW
tool. We selected experiments to be “multifactorial” with “add Gaussian noise”
and “std dev = 0.005”. Data generated with this method from here onwards will
be refereed as GNW.
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Fig. 1. Raf signalling pathway. The graph shows the currently accepted signalling
network, taken from [24]. Nodes represent proteins, edges represent interactions, and
arrows indicate the direction of signal transduction.
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Fig. 2. Sub-network Escherichia Coli. The graph shows a sub-network extracted
from Escherichia Coli network. This sub-network is part of the DREAM challenge 3
as presented in [25].

Real Flow-Cytometry Data: In [24] the authors used intracellular multi-
colour flow cytometry experiments to measure the concentration levels of the 11
proteins that compose the network depicted in Fig. 1. This network is involved
in regulating cellular proliferation in human immune system cells. The deregu-
lation of this pathway can lead to carcinogenesis, and the pathway has therefore
been extensively studied in the literature (e.g. [24, 26]). Because this network is
widely studied, an accepted gold standard network obtained from various dis-
tinct studies is available and is presented in Fig.1. The data produced with this
method is regarded as Real data in this work.

For each one of the three types of data, Gaussian, GNW and Real, we gen-
erated five data sets with 100 measurements (data points). The GNW and
Real data sets were preprocessed before being analysed. We used quantile-
normalisation to normalise each of the five data sets. That is, for each of the
variables we replaced the 100 measured values by quantiles of the standard nor-
mal distribution N(0, 1). More precisely, for each of the variables the j-th highest
measured value was replaced by the

(
j

100

)
-quantile of the standard normal dis-

tribution, whereby the ranks of identical measured values were averaged.
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For both types of simulated data, Gaussian and GNW, we obtained data sets
from the structure presented in Fig. 2. The Real data sets are from the structure
presented in Fig 1.

3.2 Simulation Set Up

In order to empirically validate and evaluate the application of the EDA in the
inference of the GRNs modelled with BNs we applied it to the three types of data
described in the previous section. For each type of data we apply the algorithm
in each one of the five data sets.

Because the data is sparse and thus the information about variables relation-
ships present in the data is diffuse it is very unlikely that a single resulting
network will adequately represent the true network. Hence, we run the simula-
tion for each data set 30 times and use the average of resulting networks as our
final result.

In our EDA each solution to the problem is coded as an adjacency matrix
representing a BN structure, M. In each execution of the EDA the initial popu-
lation is generated whereas each individual (solution) is subjected the following
criteria: (i) each variable can have only 3 regulators (parents); (ii) the network
is not allowed to have directed cycles and (iii) The zero (0) and one (1) entries
in the adjacency matrix are sampled respectively with probability 65% and 35%.

The restriction in the number of regulators, known as fan-in restriction, is typ-
ical and has been applied e.g. in [27–29]. The BN is represented by a DAG and,
therefore, directed cycles are not allowed. Also, because it is known that GRNs
are sparsely connected we impose sparsity in the random generated networks by
sampling the zero and one entries with different probabilities.

For each of the proposed solutions, M, in the population, a fitness is calcu-
lated. The fitness for the network, P (D|M), is obtained as proposed in [6] and
is known as the BGe score.

The result of an EDA execution is one adjacency matrix. This execution is
repeated 30 times and the solution considered for each data set is the average of
the 30 resulting adjacency matrices, R.

3.3 Evaluation Criteria

The result of the EDA simulations is a collection of network structures repre-
sented in an adjacency matrix. From this collection of matrices we obtain one
average matrix, R, where each entry rij indicates the average occurrence of each
edge in the collection of inferred networks. As a means to assess EDA’s perfor-
mance it is necessary to compare its result with some known network. We call
this known network the true network, T , where the entries, tij ∈ {0, 1}, indicate
the presence and the absence of the connection between nodes Xi and Xj. In or-
der to compare our resulting network R with the true network T , we transform
it to an adjacency matrix, AR(ε), by imposing a threshold ε. Each entry of the
adjacency matrix, aij , is 1 if rij ≥ ε and 0 otherwise.
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Having these two matrices, T and AR(ε), we can classify each of the edges
into categories. An edge can be classified as: true positive (TP), false positive
(FP), true negative (TN) or false negative (FN). Table 1 shows a summary of
how the edges are classified into these categories.

Table 1. Classification of edges. This table shows how an edge is classified according
to the values in the true matrix (tij) and in the adjacency matrix (aij). An entry that
is equal to zero means that the edge from node Xi to node Xj is absent, conversely an
entry that is equal to one means that the edge is present.

tij aij Category

0 0 TN

0 1 FP

1 0 FN

1 1 TP

The receiver operator characteristics (ROC) curve is obtained by varying the
threshold ε and plotting the relative number of TP edges against the relative
number of FP edges for each of the thresholds. Ideally we would compare the
whole ROC curves but this is impractical. Therefore, we use the area under
the ROC curve (AUC) as it summarizes the results for all the thresholds. A
perfect predictor would produce an AUC value of 1.00. Conversely, a random
predictor would produce an AUC value around 0.50. In general, bigger area
values represent better predictors.

4 Results and Discussion

In Fig. 3 the average AUC scores and standard deviations over five data sets
for each of the three types of data are presented. As expected the inference of
regulatory networks from Gaussian data presents the best results. This is mostly
due to the fact that the model used for inference is an exact match for the model
applied to generate the data, namely the multivariate Gaussian distribution. The
realization of the inference in this scenario is very valuable as it permits to verify
if the inference method produces meaningful results. In this work the high values
of AUC obtained in this data set indicates that the proposed inference method
presents a good performance regarding to the reconstruction of the regulatory
network structures.

The inference of regulatory networks from the GNW data presents poorer
results. In this case we are sure about the structure from which we generated data
from but we know that the data generating process produces highly non-linear
interactions and these are a mismatch to the inference model. This mismatch
may be the cause of the poor results.

The worst results are obtained when inferring networks from the Real data.
This is expected as in this case the generating process is a real biological sys-
tem and, therefore, it is very unlikely that it follows a multivariate Gaussian
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Fig. 3. Inference results. The graph shows the resulting average AUC scores for all
three types of data, Gaussian (black), GNW (gray) and Real (white). The bars indicate
the average AUC value over five data sets and the error bars present their respective
standard deviation.

distribution. Also, the amount of noise in the biological process itself and in the
measurement techniques are not known and poorly understood. Moreover, in this
case, we have a very good indication of the true network, but the true network
is not exactly known because it was manually curated from the available litera-
ture. Interestingly, these results are not very different from those obtained with
the GNW data set. This indicates that the realistic simulated data is capable of
generating close to real data sets.

5 Conclusion and Future Work

The present work shows that the proposed method of inferring GRNs using EDAs
is feasible. The results are similar to a previous work [28], specially for the Real
data. In [28] the authors have applied a traditional Markov Chain Monte Carlo
(MCMC) Bayesian network inference algorithm to the same data set and the
results obtained were very similar with the results obtained in the present work.

Although EDAs do not have a formal proof that they sample from the true
posterior distribution, as the MCMC methods does, the similarity of their results
is remarkable. This opens an interesting direction of research. In future work we
plan to properly compare both inference methods applying rigours statistical
tests to verify whether the results are significantly equal or not.

The idea of exploring the potential of EDAs in the inference of GRNs is mainly
because they may be of great help forMCMC. The main problem ofMCMCmeth-
ods is that they suffer from problems of mixing and convergence, and are only
guaranteed to sample from the posterior distribution if obeying strict conditions.
Thismakes it difficult to propose alternative schemes of sampling inMCMC frame-
work. On the other hand, EDAs do not have such restrictions and can be improved
to run faster. Thus, we intend to empirically verify whether these results are rel-
evant, testing it in various networks with different structures and sizes.
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Abstract. We propose an integrative network-based meta-analysis stra-
tegy to enable the selection of potential gene markers for one of the most
prevalent diseases worldwide, Type 2 diabetes (T2D), formally known as
the non-insulin dependent diabetes mellitus. Comprehensive elucidation
of the genes regulated through this disorder and their wiring will provide
a more complete understanding of the overall gene network topology and
their role in disease progression and treatment. The proposed strategy
was able to find conservative gene modules which play interesting role in
T2D, pointing to gene markers such as NR3C1, ADIPOR1 and CDC123.
Network-based meta-analysis by enumerating conserved gene modules
pave a practical approach to the identification of candidate gene markers
across several related transcriptomic studies. The NEMESIS R pipeline
for network-based meta-analysis is also provided.

Keywords: gene co-expression network analysis, candidate gene mark-
ers, type 2 diabetes, meta-analysis, system biology.

1 Introduction

Type 2 diabetes (T2D), formally known as the non-insulin dependent diabetes
mellitus, is the most common type of diabetes. It has been taking the quality of
an endemic disease, affecting more than 170 millions of people around the world.
In fact, there is tragic trend that by the end of 2030 more than 300 millions of
people will develop T2D.

In T2D, either the body does not produce enough insulin or the cells do
not respond to the insulin.The effects of insulin, insulin deficiency and insulin
resistance vary according to the physiological function of the organs and tissues
concerned, and their dependence on insulin for metabolic processes. Those tissues
defined as insulin dependent, based on intracellular glucose transport, are mainly
adipose tissue and muscle. Although insulin resistance occurs in most obese
individuals, diabetes is usually forestalled through compensation with increased
insulin. This increase in insulin occurs through an expansion of beta-cell mass
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and/or increased insulin secretion by individual beta-cells. Failure to compensate
for insulin resistance leads to T2D [1–3].

T2D is a multifactorial disease caused by both oligo- and polygenic genetic
factors as well as non-genetic factors that result from a lack of balance between
the energy intake and output and other life style related factors. There is a
plenty of data related to the genetics of T2D. Though, many genes and gene
products as well as their interactions with the environment at the molecular,
cellular, tissue, and the whole organism levels are still unknown. Understand-
ing of diabetes pathogenesis is critical to the development of new strategies for
effective prevention and treatment of this disease [4–6].

With the advance of high-throughput technologies, it is now possible to get
deep insight into the orchestration of the complex biological functions either
activated or not during disease development. Genome-wide association studies
(GWASs) have discovered association of several loci with Type 2 diabetes. In
such studies, gene expression profiles are evaluated from a set of several asso-
ciated studies where genes presenting stable modulation patterns across these
studies could be potential markers. However in most cases they do not take into
account the network interaction of the genes involved in the correlated T2D
pathways [7].

In the present work we propose a network-based meta-analysis strategy for
the selection of potential gene regulatory modules in T2D. The basis to retrieve
such potential gene modules relies on the proper inference of weighted gene
co-expression networks from associated T2D transcriptomic studies. Next, gene
modules identified among these studies are evaluated for functional enrichment
of the conserved gene modules (consensus cliques).

The main contributions of the proposed strategy are:

– An empirical evaluation of weighted gene co-expression network on T2D
studies;

– A new method for the localization of functional consensus gene modules
through frequent pattern mining;

– The NEMESIS R pipeline for the selection of potential gene regulatory mod-
ules, revealing biological functions correlated to T2D pathogenesis.

The remainder of this paper is organized as follows. In Section 2 we present
the transcriptomic data sets as well as the methods used by the proposed strat-
egy. Next, in Section 3 we present the pipeline developed and the main results
obtained. Conclusions and future work are provided in Section 4.

2 Materials and Methods

2.1 Transcriptomic Data Sets

We carefully selected four transcriptomic studies from the Gene Expression
Omnibus (GEO)which were properly elaborated to measure T2D progression and
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treatment. In the first dataset (GSE12389) diverse roles were demonstrated re-
garding interferon-gamma (IFN-γ) in the induction and regulation of immune-
mediated inflammation using a transfer model of autoimmune diabetes [8]. The
second dataset (GSE2253) investigated the molecular mechanism by which ex-
tracellular hIAPPmediates pancreatic beta-cell apoptosis [9]. It is known that ex-
tracellular hIAPP oligomers are toxic to pancreatic beta-cells and associated with
apoptosis. The third study (GSE12639) highlights genetic regulatorymechanisms
in the remote zone of left ventricular (LV) free wall in order to partly explain the
more frequent progression to heart failure after acute myocardial infarction (AMI)
in diabetic rats [10]. And finally, the fourth dataset (GSE13270) studied Type 2 di-
abetes progression and the development of insulin resistance in two animal models
with and without a high fat diet superimposed on these models [11].

2.2 Preprocessing Affymetrix Data

The Affymetrix expression data (CEL files) were preprocessed using the Robust
Multi-array Average (RMA) normalization approach through the rma() func-
tion in the affy R package. RMA employs quantile normalization and smooths
technical sources of variability across samples. Next, only expressed genes were
selected for further analysis. A gene (probe) was considered expressed if it was
called (P)resent or (M)arginal in at least 75% of all samples in a given dataset.
Present and Marginal calls were determined by the mas5calls() function in the
affy R package. A detection call answers the question: Is the transcript of a
particular gene Present or Absent? In this context, absent means that the ex-
pression level is below the threshold of detection. That is, the expression level
is probably not different from zero. In the case of an uncertainty, we can get
a marginal call. It is important to note that some probe-sets are more variable
than others, and the minimal expression level provably different from zero may
range from a small value to very large value (for a noisy probe-set). The advan-
tage of asking the question in this way without actual expression values is that
the results are easy to filter and to interpret. For example, we may only want to
look at genes whose transcripts are detectable in a particular experiment. Given
that co-expressed gene networks are created based on correlation metrics over
the study, such fllter strategy allow us to remove potential inconsistencies in the
Chip. Thus, it was used a cutoff of 75% with only one particular exception for
the GSE12389 study (50%). Table 1 presents the results of the preprocessing
step over all selected studies.

2.3 Calculating Candidate Gene Modules

The network topology of each study was calculated through the application of
the WGCNA R package [12], and various soft-thresholding powers were properly
applied to find a good fitness of the scale-free topology. The soft-thresholding
strategy, adopted by WGCNA, keeps all possible links and raises the original
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Table 1. Data preprocessing of Affymetrix datasets

Study Samples Genes before Genes after Affy.Chip

GSE12389 8 45101 5316 Mouse430 2
GSE2253 20 22690 11686 Mouse430A
GSE12639 12 31099 14998 Rat230 2
GSE13270 101 31099 13935 Rat230 2

coexpression values to a power “beta” so that the high correlations are empha-
sized at the expense of low correlations. An example of the scale-free topology
calculated for the GSE13270 study is presented in Figure 1.

Once the network has been constructed, module inference is the next step.
Modules are defined as clusters of densely interconnected genes. WGCNA de-
tects gene modules using unsupervised clustering, i.e. without the use of a priori
defined gene sets. In fact, modules are calculated based on a topological over-
lap measure [13] that has been applied successfully in several applications. The
user has a choice of several module detection methods. The default method is
hierarchical clustering using the standard R function hclust, branches of the hi-
erarchical clustering dendrogram correspond to modules and can be identified
using one of a number of available branch cutting methods, for example the
constant-height cut or two Dynamic Branch Cut methods. One drawback of hi-
erarchical clustering is that it can be difficult to determine how many (if any)
clusters are present in the data set. Although the height and shape parameters
of the Dynamic Tree Cut method provide improved exibility for branch cutting
and module detection, it remains an open research question how to choose op-
timal cutting parameters or how to estimate the number of clusters in the data
set [12].

The final power threshold p calculated to each data set was defined as follows:
GSE12389 (p=18), GSE2253 (p=9), GSE12639 (p=12) and GSE13270 (p=12).
Next, modules for each study were extracted, and only significant intramodular
(hub) genes at each module were selected for further analysis. We use the in-
tramodular connectivity measure to define the most highly connected intramod-
ular hub gene as the module representative. In fact, intramodular hub genes
are highly correlated with the module eigengene. A gene in a module is consid-
ered significant if it has a strong p-value (< 0.001) membership, i.e., correlation
between module eigengenes and expression values in the Chip (Figure 2). In
Table 2 the effects of the calculation of the candidate genes are presented to
each corresponding study.

2.4 Functional Enrichment Analysis

We determined the specific biological processes relevant for each candidate gene
module by calculating GO terms and pathway enrichment. Furthermore, each
module is also a generalized clique [13]. We obtained significant (p-value<0.05)
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Fig. 1. Analysis of network topology for various soft-thresholding powers for the
GSE13270 study. The left panel shows the scale-index (y-axis) as a function of the
soft-thresholding power (x-axis). The right panel displays the mean connectivity de-
gree (y-axis) as a function of the soft-thresholding power (x-axis).

Table 2. Data preprocessing of Affymetrix datasets

Study Modules Genes before Genes after Affy.Chip

GSE12389 12 5316 1566 Mouse430 2
GSE2253 17 11686 5570 Mouse430A
GSE12639 34 14998 5660 Rat230 2
GSE13270 16 13935 9836 Rat230 2

GO and pathway enrichment for all modules. The respective Entrez gene iden-
tification was obtained through the biomaRt R package. Next, we make use of
the GOstats R package as well as the related Affymetrix Chip Expression Set
annotation data to each associated organism.

2.5 Finding Consensus Modules

Consensus modules were detected by exploring the retrieved functional annota-
tions and evaluating the co-occurrence of these annotations across the related
T2D studies. Thus, whether a significant annotation is shared among distinct
modules, across several networks, such observation could be seen as good indi-
cation of consensus. The intuition of exploring co-occuring gene sets has been
explored broadly by the data mining community in several gene association
studies [14]. However, as far as we are concerned, there is no direct reference
of its utilization in network-based meta-analysis. In this work, we say that we
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Fig. 2. Heatmap plot of the adjacencies in the eigengene network including the trait
weight build on the GSE13270 study. Each row and column in the heatmap corre-
sponds to one module eigengene (labeled by color) or weight. In the upper dendogram
(heatmap), white color represents low adjacency (negative correlation), while black
represents high adjacency (positive correlation). Squares of black color along the diag-
onal are the gene modules (Bar plots in the bottom). Genes that were not assigned to
any modules were assigned to the largest Bar plot on the right.

have a consensus module when its associated annotation is shared across dif-
ferent studies. The consensus significance is measured by metrics like support
and confidence of the co-occurring annotations. Therefore, before exploring such
patterns we have to introduce two concepts called Transactions and Item set .
Each transcriptomic study is related to one transaction id and it is composed by
several gene modules (i.e, either GO or KEGG annotations). An item set is an
annotation (or a set of annotation) that appears in more that one study. Thus, if
a particular annotation has a support of 75%, it does mean that this functional
behavior is observed in three out of four related studies (see Transcriptomic data
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sets). By using such consensus strategy we avoid the hard task to conciliate all
different gene names in all distinct Affymetrix platforms and organisms, focusing
on the search of functional gene modules closely related to T2D pathology.

2.6 Selection of Potential T2D Genes

Potential genes are those ones that are significantly covered by the enriched
consensus modules. Since only the most conserved annotations are selected for
further analysis, it was necessary to devise a reverse engineering approach for
the identification of the consensus genes. Thus, we first selected all associated
genes to the most relevant GO terms with its EntrezGene information. Further,
this gene set was matched with the gene list obtained by the consensus analysis.
For the GO information we used the functional annotation GO.db database, and
for each organism its associated species annotation database. For instance to the
mus musculus we selected the org.Mm.eg.db. We have also used the Phenopedia
database [15] to evaluate the correspondence of the selected potential genes with
the well-known T2D (human) genes induced by this database.

3 Results and Discussion

3.1 NEMESIS: The NEtwork-Based MEta-analySIS Pipeline

Meta-analysis has been applied broadly in several disease studies to improve the
search for potential gene markers. Network-based strategies highlight important
gene regulatory modules, but it cannot ensure that such module(s) could be
conserved along with other related studies. Therefore, one pontential alterna-
tive, as proposed here, is the combination (or meta-analysis) of several gene co-
expression networks to pulling out gene modules providing relevant functional
association to the disease phenotype. Once having all selected transcriptomic
data sets for analysis the first step is the proper normalization procedure. Next,
gene modules are enumerated by exploring network functions available in the
WGCNA R package. The following task is then the functional enrichment anal-
ysis to retrieve significant gene annotations related to network modules. After
getting these annotations, it is possible to search for the conserved biological
functions by exploring frequent patterns on the annotated modules. Finally,
candidate gene markers are evaluated through the mapping of the biological
functions associated with pathology under investigation. The proposed pipeline
is summarized in Figure 3. The R scripts and additional material are free avail-
able online at https://sites.google.com/site/alvesrco/nemesis.

3.2 Potential T2D Gene Markers

The presented strategy was able to enumerate potential gene markers correlated
to T2D. For instance, the NR3C1 gene, being also a well-known product of a
transcription factor highly associated to T2D.

Next, we highlight the main candidate genes retrieved by the NEMESIS
pipeline applied on T2D transcriptomic data sets:

https://sites.google.com/site/alvesrco/nemesis
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– The gene ADIPOR1 encodes a protein which acts as a receptor for adiponec-
tin, a hormone secreted by adipocytes which regulates fatty acid catabolism
and glucose levels. Binding of adiponectin to the encoded protein results in
activation of an AMP-activated kinase signaling pathway which affects levels
of fatty acid oxidation and insulin sensitivity. Patients who developed T2D
present a low activity of this gene when compared with normal ones [16];

– The gene CDC123 encodes proteins highly associated to the production of
insulin. Variations of this gene are also related to a low production of the
hormone [17];

– The gene SERPINE1 encodes a member of the serine proteinase inhibitor
(serpin) superfamily. This member is the principal inhibitor of tissue plas-
minogen activator (tPA) and urokinase (uPA), and hence is an inhibitor
of fibrinolysis. Comparative proteomic profiling of plasma from individuals
with either diabetes or obesity and individuals with both obesity and dia-
betes revealed SERPINE 1 as a possible candidate protein of interest, which
might be a link between obesity and diabetes [3].

Fig. 3. The NEMESIS R pipeline to explore network-based meta-analysis on
transcriptomic data
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4 Conclusions

We have introduced a network-based meta-analysis approach to discover poten-
tial gene modules, biologically associated, to type 2 diabetes pathology. Though,
we also envisage its application on other complex diseases, such as those ones
with large collection of transcriptomic data available in the Phenopedia database.
The NEMESIS R pipeline developed could be easily extended to explore gene
markers on other diseases.

In the present study four transcriptomic studies were selected for the exper-
imental analysis. Despite the good results, it would be interesting to explore
the pipeline with more T2D data sets to increase significance of the discov-
ered patterns. However, the more data we use the more preprocessing efforts
are necessary in order to reduce data dimensionality, smoothing the creation
of the associated gene co-expression networks. And consequently, the search for
consensus gene modules.

There are plenty of open challenges with the network-based meta-analysis. We
list the following directions to pursue in near future: i) a more compact and semi-
automatic way to identify gene network modules (cliques), ii) an optimization
procedure to calculate the thresholds for the most relevant annotation across
studies, and iii) extend the pipeline to deal with RNA-Seq data.
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Abstract. Here we present RAIDER, a tool for the de novo identi-
fication of elementary repeats. The problem of searching for genomic
repeats without reference to a compiled profile library is important in
the annotation of new genomes and the discovery of new repeat classes.
Several tools have attempted to address the problem, but generally suffer
either an inability to run at the whole-genome scale or loss of sensitiv-
ity due to sequence variation between repeat copies. To address this,
Zheng and Lonardi define elementary repeats: building blocks that can
be assembled into a repeat library, but allow for the filtering of spurious
fragments. However, their tool was too slow for use on large input, and
subsequent attempts to improve efficiency have been unable to deal with
the expected variation between repeat instances. RAIDER addresses
both these problems, implementing a novel algorithm for elementary
repeat detection and incorporating the spaced seed strategy of Pattern-
Hunter to allow for copy variation. Able to process the human genome in
under 6.4 hours, initial results indicate a coverage rate comparable to or
better than that achieved by competing de novo search tool when paired
with the library-based RepeatMasker.

1 Introduction

The identification of genomic repeats, sequences occurring multiple times within
a genome, is a vital step in the study of genome structure. Repeat elements
compose a substantial portion of most eukaryotic genomes (upwards of 45%
in many mammalian genomes [13]). They are a source of genetic disorders, a
mechanism for evolutionary change, and a window into genomic history that
allows for the estimation of genomic substitution rates and the annotation of
past evolutionary events [4,7,11,21].

Repeat discovery is currently best accomplished through tools that rely on
a database of already annotated repeats, the most popular of which is Repeat-
Masker [1]. This library-based approach allows for the identification of new mem-
bers of known families, but it is incapable of discovering novel repeats. Hence
the need for effective de novo search methods – algorithms that can identify
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repeat sequences throughout the genome without reliance on previously collected
information.

There are significant obstacles to de novo repeat identification. The quadratic
runtime of self-alignment algorithms make that approach infeasible for use on
whole-genome input, and sequence variation (introduced by copy error and the
effects of molecular evolution) stymies exact string matching algorithms. Trans-
posable Elements (TEs), sequences with the ability to copy themselves to new
locations, introduce a third complication when they enable hitchhiking: the
transposition of a neighboring sequence fragment along with the TE which is
easily miss-annotated as part of the element [4]. A final complicating factor is
the mosaic pattern of subrepeats frequently underlying repeats, making it dif-
ficult to differentiate entire repeats from the basic elements making up their
composition [17,24].

A number of computational approaches to the de novo repeat discovery prob-
lem are contrasted in Saha et al. [19,20]. But a method that is both practical on
a whole-genome scale and able to account for the sequence variations has proven
elusive. Tools based on self-alignment (e.g. RECON [3], PILER [5]) can account
for sequence changes but do not scale well to whole-genome use. Tools that
rely on the identification of fixed-length words (e.g. REPuter [12], ReAS [15],
RepeatScout [18]) are able to improve runtime through the use of suffix-based
tools, but are largely unable to handle sequence variation. A third approach is
illustrated in RepeatGluer [17,24], which decomposes the repeats into an under-
lying mosaic pattern through a De Bruijn graph variation [22], but also does not
scale well to larger sequences.

Another line of approach is the identification of elementary repeats, defined
by Zheng and Lonardi [23] as the “building blocks” of repeat sequences – similar
to the mosaic patterns addressed by RepeatGluer [17]. With this definition the
author proposed an identification algorithm, but the algorithm’s runtime was
quadratic in the size of the query sequence, and thus not practical for whole-
genome use. This was improved upon both by He [8] and Huo et al. [9], each
employing suffix tree variations. However, such structures are geared towards
searching for exact copies of substrings – hence their sensitivity suffers signifi-
cantly in the presence of sequence variation between the repeats.

The tool RAIDER (Rapid Ab Initio Detection of Elementary Repeats) iden-
tifies elemental repeats in linear time while allowing for sequence variation
through the use of the PatternHunter spaced seed strategy [14,16]. With RAIDER
we are able to process the Human Genome sequence in less than 6.4 hours
on a single processor, and can prove RAIDER will identify all elementary re-
peats in the absence of sequence variation, and we can demonstrate the effec-
tiveness of the PatternHunter augmentation to the basic algorithm to account
for the presence of variation. RAIDER is open source, and can be downloaded
from http://handouts.cec.miamiOH.edu/karroje/RAIDER/ or by contacting
the corresponding author.

http://handouts.cec.miamiOH.edu/karroje/RAIDER/
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2 Background

For purposes of this discussion we will focus on the detection of transposable
elements (TEs): elements inserted into the genome by the repeated copying of
some ancestral sequence and its descendants. Such elements naturally divide into
families of homologous descendants distributed throughout the genome, leaving
us with the challenge of identifying modern instances and grouping them into
families without knowledge of the family progenitor sequences. At first glance,
the natural approach is a seed-and-extend technique based on the identifica-
tion of repeated l-mers (words of length l). But several factors compromise this
approach. Sequence divergence resulting from molecular evolution will reduce
the sensitivity of methods reliant on exact string matches, while the truncation
of some repeat copies and artificial extension of others can result in spurious
filtering of whole subsets of a repeat family.

To address these problems, Zheng and Lonardi define the concept of ele-
mentary repeats [23]: subsequences that serve as building blocks of the repeats,
similar to the mosaic pattern identified by RepeatGluer and its successor [17,24].
Specifically, Zheng and Lonardi define elementary repeats as subsequences that
meet minimum criteria for length and frequency, but that are not subsequences
of other elementary repeats. Formally:

Definition 1. (Zheng and Lonardi [23]) For a genomic sequence G and fixed
values l and f : a sequence s, |s| ≥ l, is an elementary repeat if: (1) All
occurrences of s are maximally identical pairs; (2) s occurs at least f times, and
(3) every substring of s of length ≥ l must occur exactly the same number of
times in G as does s.

Simply put: s is an elementary repeat if it has sufficient length, occurs with
sufficient frequency, has no sufficiently long substrings that occur outside of s,
and is not a subsequence of any sequence meeting this definition.

In searching for a linear algorithm able to account for sequence variation
with repeat families, we turn to the spaced seed strategy of the PatternHunter
homology-based search tool [14,16]. PatternHunter augments the BLAST high
scoring pair (HSP) search step [2], replacing the requirement of exact string
matches with a search for matches conforming to a spaced seed. Given a query
string q and a target string t, BLAST will flag the pair for further investigation
if q and t share a substring of some fixed length. PatternHunter instead requires
they share matches dictated by a seed pattern – a binary string where 1s indicate
the positions of required matches. In conjunction with BLAST, the use of spaced
seeds significantly increases the sensitivity of the high-scoring pairs search with
negligible effect on specificity. Here we incorporate spaced seeds into the defini-
tion of an elementary repeat, allowing for inexact matches. That is, we classify
subsequences as belonging to the same elementary repeat family if they are a
match according to some specified spaced seed (as opposed to being identical)
and otherwise meet the conditions of the Zheng and Lonardi definition.
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3 Methods

3.1 Algorithm Background

For ease of explanation, we will first assume there have been no base substitu-
tions within our basic elements; this assumption will be relaxed later on. The
method is built around a scan of the genome in which l-mer counts are tracked
in a hash-table. During this scan, frequently occurring l-mers are expanded into
maximal recurring patterns, then decomposed into potential elementary repeats.
Any of these patterns surviving to the end of the scan are elementary repeats.
(A preliminary scan to filter out low-frequency l-mers can be used to reduce
memory requirements when working with genome-scale sequences, but does not
change the steps of the main algorithm.) When encountering a new member
of a potential family we need only compare it to the last member to identify
any needed decomposition, allowing us to complete the scan in a runtime linear
in the size of the genome. With our simplifying assumption, the algorithm is
guaranteed to identify all instances of the elementary repeats.

We first need to define the “merge-by-overlap” operator: if x and y are strings,
x◦y denotes the string created by merging x and y at the longest substring that
is a suffix of x and a prefix of y. (e.g. AACC ◦CCGG = AACCGG). Note that,
for a fixed value l any string s of length ≥ l can be formed by the merging of
|s| − l l-mers (that is: s = x0 ◦ x1 ◦ · · · ◦ x|s|−l, where xi is the l-mer starting
exactly i bases after s in G). Given this, we now restate of the definition of
elementary repeats, highlighting their connection to l-mers.

Definition 2. For a genomic sequence G and fixed values l and f : a sequence
s, |s| ≥ l, is an elementary repeat if we can write s = x0 ◦ · · · ◦ x|s|−l (|xi| = l)
such that: (1) there are at least f copies of s in G; (2) xi �= xj for i �= j; (3)
every occurrence of xi in G is a substring of an occurrence of s in G; (4) s is
maximal with respect to properties (1)-(3).

Lemma 1. The two definitions of repeat elements are equivalent.

The proof is straightforward, once it is noticed that condition (3) of the original
definition implies (2) and (3) of the new definition. (The reverse follows from
the following lemma.)

Following from this definition is a lemma that will be useful in discussion of
the algorithm:

Lemma 2. Let x and y be maximal identical substrings of size ≥ l at two differ-
ent locations of the genome. Neither can be a proper substring of an elementary
repeat.

Proof. Suppose w.l.o.g. that x is a proper substring of an elementary repeat e. y
cannot be covered by a string identical to e, since x and y are maximal identical
strings and |e| > |x| = |y|. But then e contains at least one l-mer (any l-mer in
x) that has a copy (in y) that is not contained in a copy of e – hence violating
condition (3) of our definition. ��
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It is this lemma that serves as the basis for our algorithm. When we find two
maximal identical substrings, from the lemma we know that they might define
an elementary repeat, or that they might contain an elementary repeat. But
we need waste no more computation on the possibility that they (or any l-mer
contained within) are properly contained in any larger elementary repeat.

3.2 Algorithm Description

Our algorithm for finding elementary repeats follows straight from our definition,
and is easiest to describe assuming that f = 2. Let x be the first l-mer to be
encountered twice, at positions i and j (i < j). x is potentially an elementary
repeat (it is long enough and occurs at least 2 times in the genome), but it may
not be maximal as required by condition (4).

Now let xk be the l-mer starting k bases after the second occurrence of x (at
position j + k). As we continue to scan l-mers we look for the smallest k such
that one of three conditions occurs:

1. xk is not equal to the l-mer at position i + k (the kth l-mer after the first
occurrence of x). In this case x0 ◦ · · · ◦xk−1 occurs at both i and j and forms
a maximal identical substring pair, hence by Lemma 2 cannot be properly
contained in any elementary repeat.

2. xk is equal to some xk′ , 0 ≤ k′ < k. If this is the case, then x0 ◦ · · · ◦ xk

cannot be an elementary repeat, nor can it be contained in one, as that
would violate condition (2) of the definition. Thus x0 ◦ · · · ◦ xk−1 cannot be
properly contained in any elementary repeat.

3. xk has occurred more times than x0. In this case, x0 ◦ · · · ◦ xk cannot be
an elementary repeat as xk violates condition (3) of the definition. Thus
x0 ◦ · · · ◦ xk−1 cannot be properly contained in any elementary repeat.

At this point, we have a string s = x0 ◦ · · · ◦ xk−1 that cannot be properly
contained in an elementary repeat – but that might itself be an elementary
repeat. By our choice of k we have ensured it meets criteria (1) and (2), and
that criteria (3) has not yet been violated – but one or more of the xi might be
found, independent of s, later in the scan. So s is a potential elementary repeat
(and would be an elementary repeat if xk−1 were the final l-mer of the genome).

As we continue this scan, we may identify more instances of the potential ele-
mentary repeat s, as well as establish other families. Further, we can retroactively
decompose s as needed. For example: suppose s = x0◦· · ·◦xm has been identified
as a potential elementary repeat, and we later find a string s′ = x0 ◦ · · · ◦ xk−1

where k ≤ m is the halting k-value from above. This could only happen if the
base following xk−1 in s is different than that following xk−1 in s′, meaning xk

occurs k bases after the start of s but not after the start of s′. Hence s cannot be
an elementary repeat, as xk occurs more times that xk−1 in G, which is forbid-
den by condition (3) . But the strings s1 = x1 ◦ · · · ◦ xk−1 and s2 = xk ◦ · · · ◦ xm

are still each potential elementary repeats.

Theorem 1. The algorithm outlined in Figure 1 will find all substrings con-
forming to the definition of an elementary repeat.
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The proof of this is a straightforward induction argument based on the post-
condition that, when finished with the ith iteration of the loop, all elementary
repeats with respect to the partial genome G[0 : i+ l] have been identified.

3.3 Pattern Hunter Augmentation

To this point we have required that all members of a basic elementary repeat
family be exact matches. To allow for sequence variation between elements, we
incorporate the idea of the spaced seed [14,16]. Given a binary string s of length
l and two genomic strings q and t, also of length l, we say that q hits t with
respect to s if qi = ti for all i such that si = 1. For example, for s = 10011,
q = AACAA hits t = AAAAA (with respect to s) because they match at all
positions where s is 1; q = AACAA does not hit t = TACAA. Given this, we can
now relax our definition of a “match” between two repeats from a requirement
of identity to the following:

Definition 3. Let s be a seed of width l and q be a sequence of length n ≥ l.
We say that sequence t matches q with respect to s if: (1) |t| = n; (2) for each
i, 0 ≤ i < n, there exists a value j, 0 ≤ j < n− l such that j ≤ i < j+ l and the
substring q[j : j + l] hits t[j : j + l] with respect to seed s.

In other words, two repeats are a match (hence in the same family) if every
base in each string is covered by a substring that will hit a substring in the op-
posing sequence with respect to a seed. We can further expand this definition to
allow for the use of multiple seeds, though have not yet explored this possibility.

Given this definition, it is a short step to relax the substring quality condition
in our algorithm to that of a seed-based match. In relaxing the assumption of
sequence identity we do toss away our algorithmic guarantee of finding all basic
elements: as with BLAST HSP searches or general sequence alignment, badly
placed mutations will defeat the seed and result in false negatives. But use of
these seeds does decrease the probability of such occurrences, and PatternHunter
has demonstrated that the appropriate seed combination can achieve very high
sensitivity.

4 Results

The purpose of RAIDER is to provide a fast method for identifying elementary
repeats in a manner robust to sequence variation. We were unable to obtain
alternative tools for solving that problem [8,9,23], so comparisons have been
made against RepeatScout – judged to be an effective tool for de novo repeat
identification on assembled sequences [20]. This is not an ideal comparison, as the
two tools are solving somewhat different problems (identification of elementary
repeats v. repeat consensus library construction). It is, however, a reasonable
comparison for the purpose of demonstrating the potential of RAIDER and the
effect of the spaced seed structure. The RECON [3] and PILER [5] tools were
also investigated, but did not provide any better results than RepeatScout and
are not reported here.
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SpliceFamily(Family F, l-mer x)
# Input: A family F and an l-mer x belonging to F
# Output / effect: Modified family F, creates new family F ′

F ′ ← family created from x and all subsequent l-mers in F
F ← truncation of F to the l-mers preceding x
return F ′

ExactERSearch(sequence G, integer l, integer f):
# Input: Genomic sequence G, minimum length l, minimum family size f
# Output: A set of elementary repeat families

F ← NULL, c ← 0 # F: Family currently under investigation

# c: An index into the family sequence

for i ← 0 to |S| − l: # Scan the l-mers of G in sequential order

p ← S[i : i+ l] # Get the i-th l-mer of G (c-th l-mer of F)

if F != NULL:

r ← the c-th l-mer of F
if p does not match r: # Family is not a elementary repeat

SpliceFamily(F , r)
F ← NULL

else: c = c+ 1
if count(p) = 2: # Second instance of p -- new family

q ← G[i− 1 : i+ l − 1]
if count(q)=2 and previous(q)=previous(p)-1:

assign p to family(q)
else: create new family, starting with l-mer p

else if count(p) > 2: # p must belong to a family

if p is first l-mer in family(p):
F ← family(p)
c ← 1

else if F = NULL or family(p) != F:

F ← SpliceFamily(family(p), p)
c ← 1

if F != NULL and p is the last l-mer in F:

F ← NULL

return all families F containing at least f distinct elements

Fig. 1. Outline of the algorithm for elementary repeat extraction. Note we assume
three functions for l-mer p and position i: count(p) returns the number of occurrences
of p in the first i bases of the G; previous(p) returns the last occurrence of p before
coordinate i, and family(p) returns the family containing p. All tree functions can
be implemented through standard data structures supporting constant time inspection
and modification (given a fixed value of l), though details regarding the maintenance
of those structures are omitted here.
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Table 1. Runtime and memory usage on selected genomic sequences. Chromosomes
marked with a ∗ were modified to eliminate through base shuffling all repeats other
than members of selected families. A ∗∗ indicates RAIDER was run with a pre-filter
removing all low-frequency l-mers from consideration – reducing memory usage at a
linear runtime penalty. We use an empirical measure of runtime based on the Linux
time utility to precisely measure user time elapsed during execution of the process. No
runtime is presented for RepeatScout on the full human genome as we were unable
to run the tool to completion on the input (terminating on a “Unable to allocate -
1137348258 bytes for the sequence”). All tests were run on Redhat Linux using a 2.4
GHz Intel Xeon E5620 CPU and 128 GB RAM. RAIDER is coded in C++ using the
C++11 standard and compiled with the GNU gcc 4.7 compiler.

Target Tool Runtime (s) Memory (Gb)

Human chr. 22∗ RAIDER 113 2.17
49691432 bp RepeatScout 759 0.29

Mouse chr. 19∗ RAIDER 185 3.39
61431566 bp RepeatScout 3877 1.51

C. Elegans chr. I∗ RAIDER 48 1.02
15072423 bp RepeatScout 494 0.45

C. Elegans chr. X∗ RAIDER 55 1.18
17718866 bp RepeatScout 803 0.22

Human chr. 1 RAIDER 710 15.64
247299719 bp RAIDER∗∗ 1791 3.01

RepeatScout 5440 4.24

Human genome RAIDER∗∗ 22830
(≈ 6.3 hours)

29.49

Benchmark Data: Tests were conducted on the human genome as a whole,
human chr. 1 on its own, and modified versions of human chr. 22, mouse chr. 19,
and c. elegans chr. I and X. Specifically: for each of these last four chromosomes,
we selected a series of known repeat locations and shuffled the genomic sequences
between them. Thus we preserve repeat structure and sequence size but remove
other repeats – eliminating unannotated repeats that might be discovered by
our new approach and incorrectly labeled false positives.

Resource Usage. Table 1 contains the runtime and memory usage for each of
the targets, showing a considerable improvement in runtime of RAIDER over
RepeatScout, but at a cost in memory requirements. Due to this cost, large
inputs require a pre-scan that filters out low-frequency l-mers (which are subse-
quently ignored in the algorithm described in Figure 1). We can see on human
chromosome 1 the difference made by the pre-scan (increasing runtime from
719s to 1791s, still an 67% improvement over RepeatScout, but reducing mem-
ory requirements by over 80% (28%) as compared to standard RAIDER (Re-
peatScout)). The pre-scan was necessary to complete the full Human Genome
on our server (with 128 Gb memory), but allows for completion of that entire
sequence in under 6.4 hours. We were unable to complete a run of RepeatScout
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Table 2. Results of applying RAIDER, with four different spaced seeds (denoted S1,
S2, S3, and S4), and RepeatScout to the four sequences. Consensus coverage reports
the % of bases in the RepBase [10] consensus sequences that are covered by the tool
output in a BLAST alignment, reflecting the sensitivity of the tool. RepeatScout out-
put is run through RepeatMasker before the BLAST comparison, though reported
runtime does not include RepeatMakser runtime. Seed patterns are: S1 = 124 (in-
dicating 24 consecutive 1s – a basic 24-mer match strategy), S2 = 150170017015,
S3 = 1203130414051506160717, and S4 = 140815017160321706418.

Sequence Method Time (s)
consensus
coverage

(%)

RAIDER: S1 75 0.326
RAIDER: S2 77 0.315

human char 22 RAIDER: S3 116 0.689
RAIDER: S4 192 0.84
RepeatScout 2344 0.777

RAIDER: S1 113 0.131
RAIDER: S2 130 0.218

mouse chr 19 RAIDER: S3 169 0.21
RAIDER: S4 303 0.307
RepeatScout 3877 0.539

RAIDER: S1 27 0.622
RAIDER: S2 30 0.811

c. elegans chr I RAIDER: S3 43 0.582
RAIDER: S4 97 0.794
RepeatScout 1329 0.944

RAIDER: S1 33 0.485
RAIDER: S2 39 0.393

c. elegans chr X RAIDER: S3 54 0.587
RAIDER: S4 89 0.558
RepeatScout 1184 0.604

on the full human genome (encountering a memory allocation error resulting in
a crash of the tool).

Result Quality. In Table 2 we look at result quality using RAIDER with dif-
ferent seeds, as compared to RepeatScout. This is a questionable comparison, as
RAIDER is finding only basic elements while RepeatScout is searching for full
repeats. Further, RepeatScout has the advantage of being paired with Repeat-
Masker to produce its output (thus benefiting from a full library-based search),
while RAIDER is being used stand-alone. (Note that reported runtime for Re-
peatScout does not include RepeatMasker runtime.) We quantify the results by
BLASTing the output against the RepBase repeat consensus sequence file [10]
for the query sequence, looking at the coverage of those consensus sequences as
an indication of the relative sensitivity. (The specificity was near-perfect in all
cases, and not reported here.) Seeds used with RAIDER were chosen arbitrarily;
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a more formal investigation is required to find the best seed patterns, and we
are currently in the process of generalizing the tool to allow for multiple seeds.

5 Discussion

We have implemented a novel linear time algorithm for finding elementary re-
peats in a genomic sequence that can be augmented using the PatternHunter
spaced seed strategy. Testing of this tool proves that RAIDER is considerably
faster than RepeatScout, and is able to come within reasonable distance of known
repeat consensus coverage (as compared to the RepeatScout + RepeatMasker
combination) in a fraction of the time despite being at a sizable disadvantage
with respect to that metric. We have also demonstrated the validity of the
method for incorporating the spaced seed strategy, and that variation in seed
structure does make a significant difference to result quality (Table 2).

RAIDER is a work in progress, and there are some obvious holes in the strat-
egy we are in the process of addressing. First: while there is some use in finding
these basic elements, we would like to expand them into full consensus sequences
usable as RepeatMasker library. Doing so appears to be a scaled down version of
the sequence assembly problem, and we are currently testing software to address
it. Second: in this initial version of RAIDER we allow for only a single spaced
seed, and choose it arbitrarily. We are currently looking into the expansion of the
method to accommodate multiple seeds; this strategy has proved effective in the
original PatternHunter application [14,16]. Finally: we are looking at improving
memory usage. While memory requirements are not so large as to prevent the
application of RAIDER to the human genome, clearly some improvement in that
area would be useful. Use of the Google SparseHash [6] introduce an unaccept-
able increase in runtime, but experimentation with our own implementation has
shown some promise.

Acknowledgments. The research was conducting under funding from the Na-
tional Science Foundation, Grant 0953215.
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Abstract. In this paper, Probabilistic Model Checking (PMC) is used
to model and analyze the effects of the palytoxin toxin (PTX) in cell
transport systems, structures responsible for exchanging ions through
the plasma membrane. The correct behavior of these systems is necessary
for all animal cells, otherwise the individual could present pathologies.
We have developed a model which focuses on potassium and cell energy
related reactions, due to the known inhibitory effect of potassium on PTX
action and the ATP role in its transportation. We have used PMC to
estimate state probabilities and use the Goldman-Hodgkin-Katz equation
to measure the induced current created by ion exchange. Our model
suggests that as the concentration of external potassium increases, ion
exchange occurs against its electrochemical gradient, despite the PTX
effect. This suggests that potassium could be used to inhibit PTX action.
PMC allowed us to further characterize the system dynamics.

Keywords: Probabilistic Model Checking, Systems Biology, Sodium-
Potassium Pump, Palytoxin, Ion Channels Blockers and Openers.

1 Introduction

Probabilistic Model Checking (PMC) is a computational automated procedure
to model and analyze complex systems that present non-deterministic and dy-
namic behavior. These stochastic characteristics are difficult to handle however
frequently appear once we model real systems. The system description is mod-
elled as a stochastic process such as Markov chains [14,20].

This procedure exhaustively and automatically explores the state space of a
model, verifying if it satisfies properties given in probabilistic temporal logics,
such as Continuous Stochastic Logic (CSL). Properties can be expressed as,
for example, “the probability that a particular reaction occurs is at least 10%”.
Properties can offer valuable insight over model behavior [8,17].
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PMC can be directly applied to study biological systems which show proba-
bilistic behavior, common at the cellular level. Chemical reactions and biologi-
cal processes might occur, depending on the concentration of ligands (ions and
molecules), and environmental and cellular conditions. PMC can be used to im-
prove our understanding of these systems, complementary to others methods,
such as stochastic and deterministic simulations, which present local minima
problems that PMC avoids due to its exhaustive approach [16,15].

In this work, we present and evaluate a stochastic PMC model of the sodium-
potassium pump (or Na+/K+-ATPase), an active cell transport system that
exists in animal cells. The pump is important to several biological processes,
such as cell volume control and heart muscle contraction. Its irregular behavior
can be related to several diseases and syndromes, such as hypertension and
Parkinson’s disease, and it is one of the main targets of toxins and drugs [3].

In previous works, the pump has been exposed to a deadly toxin called paly-
toxin (PTX), which binds to the pump and disrupts its regular behavior. This
has been done in order to understand the effects of PTX interactions with the
pump. Our current model describes potassium (K) and cell energy related re-
actions since potassium has a known inhibitory effect on PTX and cell energy
plays a major role on ion exchange [24].

We have used PMC to calculate state probabilities, which has allowed us to
used the Goldman-Hodgkin-Katz (GHK) flux equation to measure the induced
current created by ion exchange. Our model suggests that as the concentration
of [K+]o increases, the direction of ion exchange is reversed.

This suggests that [K+]o could inhibit PTX action, which is a known in-
hibitory property of potassium on the PTX-pump complex [24]. The role of
potassium could be further investigated in order to research novel methods to
inhibit PTX action. PMC allowed us to further study the PTX-pump dynamics.

2 Background

This section describes the basic background on transmembrane ionic transport
systems, namely ionic pumps and ion channels. Several aspects are discussed,
such as their cycle, and associated diseases and syndromes.

2.1 Transmembrane Ionic Transport Systems

Animal cells contain structures called transmembrane ionic transport systems,
which are responsible for ion exchange between the sides of the cell. The dif-
ference in charges and concentrations between ions creates an electrochemical
gradient, which is essential for cells to perform their functions properly. Ionic
transport systems are responsible for the maintenance of this gradient [2].

There are two types of transport systems: ion channels — a passive transport
system which does not consume energy to promote ion exchange and ionic pumps
— an active transport system that uses energy in the form of Adenosine Triphos-
phate (ATP) to perform ion exchange. Ion channels depend on the concentration
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gradient of the ions to be transported, moving them down their electrochemical
gradient. Ionic pumps exchange ions against a concentration gradient [18], us-
ing ATP energy to do so. Once open, ion channels rapidly diffuse ions, allowing
abrupt changes in ion concentration. Ionic pumps, on the other hand, exchange
ions very slowly, allowing subtle changes in ion concentration.

Cell transport systems, such as Na+/K+-ATPase, are involved in several bio-
logical processes such as cellular volume control, nerve impulse and coordination
of heart muscle contraction. These systems are one of the main targets in re-
search for discovery and development of drugs, since its irregular behavior is
associated with several diseases, such as hypertension, seizures, cystic fibrosis
and Parkinson’s disease.

Ion channels and ionic pumps allow only the passage of specific ions such
as sodium (Na+), potassium (K+) and calcium (Ca2+). For ionic pumps, the
passage of ions can be viewed as two gates, one internal and one external, which
open or close based on different factors, like chemical signals [2].

Fig. 1. The Sodium-Potassium Pump. Adapted from [25]

One example is the sodium-potassium pump or Na+/K+-ATPase (Figure 1).
This pump is responsible for exchanging three sodium ions from the intracellular
medium (rich in potassium and poor in sodium) for two potassium ions from the
extracellular medium (poor in potassium and rich in sodium).

This pump can be in two major states: open to the inside of the cell, or open to
the outside. The pump cycle starts with three sodium ions binding to the pump
when its open to the intracellular side (first step of Figure 1). An ATP binds to
the pump, which is followed by it is hydrolysis (second step). This breaks the
ATP into two molecules, one of phosphate (Pi), which remains bound to the
pump, and another of Adenosine Diphosphate (ADP), which is released inside
the cell. This also causes the pump to release the sodium ions outside (third
step). Two potassium ions in the outside bind to the pump, which are released
in the intracellular side, as well as the phosphate (fourth and final step) [2].

Due to their role in the nervous system, ion transport systems are affected by
neurotoxins [2]. One of the toxins that affects these structures is the palytoxin
(PTX, or [PTX]o for extracellular PTX concentration), a deadly toxin found
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in corals of the Palythoa toxica species. PTX disturbs the Na+/K+-ATPase,
modifying its behavior to the one of an ion channel, which means that the pump
transfers ions down their electrochemical gradient, instead of against it [3].

Ion channels and ionic pumps usually are investigated using experimental re-
sults in laboratory benches, which are expensive for both financial and time
resources. In order to minimize these costs, different types of mathematical and
computational methods have been employed, including sets of ordinary differen-
tial equations (ODEs) and Gillespie’s algorithm for stochastic simulations [11].
Despite their ability to obtain valuable information, simulations do not cover ev-
ery possibly situation, and might never search certain regions of the state space,
therefore possible overlooking some events, such as ion depletion.

3 Related Work

3.1 Experimental and Simulational Techniques

The authors of [3] investigated PTX and its interactions with the Na+/K+-
ATPase. They have discovered that PTX modifies the nature of the pump after
binding to it, changing the behavior of the pump to the one of an ion channel.
They suggest that PTX could be an useful tool to discover the control mecha-
nisms for opening and closing the gates of ion pumps. This is later visited by the
authors of [23] through mathematical simulations using non-linear ODEs and
considering states and reactions related to the phosphorylation process (phos-
phate binding and unbinding to the pump). The potassium inhibitory effect on
PTX interactions with the pump is described in [24]. The complete model of the
PTX-Na+/K+-ATPase complex is analyzed in [22].

3.2 Model Checking

The authors illustrate in [16] the application of PMC to model and analyze
different complex biological systems, for example the signaling pathway of Fi-
broblast Growth Factor (FGF), a family of growth factors involved in healing
and embryonic development. The analysis of other signaling pathways such as
MAPK and Delta/Notch can be seen in [15].

The use of PMC is demonstrated also in [13], where the authors examine and
obtain a better understanding of mitogen-activated kinase cascades (MAPK cas-
cades) dynamics, biological systems that respond to several extracellular stimuli,
e.g. osmotic stress and heat shock, and regulate many cellular activities, such as
mitosis and genetic expression.

The main tools used in the formal verification of biological systems that are
related to this work are PRISM [17], BioLab [9], Ymer [27] and Bio-PEPA [7].

We have used PRISM for several reasons, which include: exact PMC in order
to obtain accurate results; Continuous-time Markov Chain (CTMC) models,
suited for our field of study; rich modeling language that allowed us to build
our model and finally property specification using Continuous Stochastic Logic
(CSL), which is able to express qualitative and quantitative properties.
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4 The Model

4.1 Na+/K+-ATPase

The model is written in the PRISM model checker language [17]. It consists of
PRISM modules for each of the ligands (K and ATP), one main module for the
pump, and one auxiliary module which defines the speed of each reaction.

Each ligand module contains a variable to store the number of molecules, e.g.
atpIn for ATP. Modules are composed of PRISM commands (or transitions),
which are responsible for updating the model. They represent reactions and are
responsible for changing the number of molecules or the state of the pump.

A PRISM command uses the following structure: [sync] conditions →
rate : update, where the conditions must be observed for the update to
occur at a given rate. The sync is used to synchronize multiple commands and
it is useful, for example, to define the speed of the reactions.

module k
kIn : [0..(KI+KO)] init KI; // Number of K inside cell
kOut : [0..(KI+KO)] init KO; // Number of K outside cell
// reaction 2: 2kIn + E1 <-> _K2_Eocc
[r2] kIn >= kFlow2 -> pow(kIn,2) : (kIn’ = kIn - kFlow2);
[rr2] kIn <= (KI+KO-kFlow2) -> 1 : (kIn’ = kIn + kFlow2);

endmodule
module pump
E1 : [0..1] init 1; // pump open to its internal side
_K2_Eocc : [0..1] init 0; // pump occluding two potassium ions
// reaction 2: 2kIn + E1 <-> _K2_Eocc
[r2] ki != 0 & E1 = 1 & _K2_Eocc = 0 -> 1 : (E1’ = 0) & (_K2_Eocc’ = 1);
[rr2] ki != 0 & E1 = 0 & _K2_Eocc = 1 -> 1 : (E1’ = 1) & (_K2_Eocc’ = 0);

endmodule
// base rates
const double r2rate = 1.00 * pow(10,2);
const double rr2rate = 1.00 * pow(10.0,-1);
module base_rates
[r2] true -> r1rate : true;
[rr2] true -> rr1rate : true;

endmodule

Fig. 2. Na+/K+-ATPase PRISM Model

This model does not include PTX because its interactions with the pump are
an extension presented in the next subsection. A fragment of the model is shown
in Figure 2 and its complete version can be seen online [1].

The conditions for a module command to be executed usually are lower and
upper bounds, i.e. there must be at least one molecule for a binding reaction,
or the pump must be in a particular state. The list of reactions can be found
in [24] and in the comments of our model [1].

We have used the construct pow(x,y) for power functions from PRISM to
represent the law of mass action, explained further below (Discrete Chemistry).
For example, a reaction involving two extracellular potassium ions would have
a transition rate pow(kIn,2).

The main module controls the pump, keeping track of its current sub-state.
The sub-states are boolean vectors, where only one position can and must be
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true. There are also several global variables which are used across the whole
model, such as ligand concentrations and pump volume.

The Albers-Post kinetic model [21] represents the pump cycle (Figure 3).
The pump can be in different sub-states, which change depending on reactions
involving K and ATP. Figure 3 shows the PTX extension model (discussed later).

The pump can be open, allowing ion exchange, or closed, blocking ion move-
ment and possibly occluding ions. An ATP molecule can bind to the pump in
its high or low affinity binding sites. The pump can contain two potassium ions.
The reactions are bidirectional and their rates were obtained in [24].
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Fig. 3. Kinetic Model. The kinetic model for the coupling and uncoupling of PTX to
the pump describes all the sub states (9) and reactions (11). The left side is the classical
Albers-Post model [21], which describes the regular behavior of the pump, while the
right side describes the PTX related states and reactions [24].

Previously, a PMC model of the pump was described in [10]. PTX was included
in the model in [4], where disturbances caused by the toxin in cell energy related
reactions were studied. A model which focused on sodium and potassium related
reactions was described in [5]. It revealed that sodium enhances PTX action,
while potassium probably inhibits it. Since the toxin is found in marine species,
the sodium inhibitory effect is not a coincidence.

Palytoxin Extension. The palytoxin model is an extension of the Na+/K+-
ATPase model, described in the previous section (Figure 3). It is based on the
description of [24] and [3]. This extension consists of: one additional molecule
module (PTX) which controls its flow; additional reactions in each of the already
present modules; and additional sub-states and transitions for the pump module.
Initial concentrations for [PTX]o and stochastic rates for reactions were obtained
in [24]. The six additional sub-states correspond to the pump bound to PTX,
when the pump is open to both sides behaving like an ion channel.
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4.2 Discrete Chemistry and the Law of Mass Action

Our model is composed of potassium ions, ATP molecules and the pump itself,
which can interact with each other through several chemical reactions. There is
one additional molecule (PTX) in the palytoxin extension of this model.

The ligand concentrations are discrete variables, instead of continuous func-
tions. Therefore, we have converted the amount of initial concentration of molecu-
les from molarity (M) to number of molecules. The stochastic rates for forward
and backward transitions and the ligands concentrations ([ATP ]i = 0.005 M,
[K]i = 0.127 M and [K]o = 0.010 M) have been obtained in [24,6].

In order to convert the initial amount of molecules given in molarity ([X]) into
quantities of molecules (#X), we have used the following biological definition [2]:

#X = [X ] × V × NA (1)

where V is the cell volume and NA is the Avogadro constant (6.022×1023 mol−1).
The law of mass action states that a reaction rate is proportional to the con-

centration of its reagents. Therefore, we take into account the ligands concen-
trations in our model. Considering the discrete chemistry conversion discussed
and the palytoxin binding to the pump:

E1 + PTX
rp′

1⇀ PTX ∼ E (2)
the final rate rp1 is given as follows:

rp1 = rp′1 × #(E1) × #(PTX) (3)

5 Results

This section begins describing the model parameters and complexity, followed
by a discussion on the scenarios that have been studied. The state and transition
probabilities are discussed in Section 5.2, and the induced current created by ion
exchange is covered in Section 5.3.

5.1 Parameters and Model Complexity

We can explore our model by changing its four dimensions: [PTX]o (extracellular
PTX concentration), [K+]o (extracellular potassium concentration), [ATP]i (in-
tracellular ATP concentration) and pump volume. Each dimension represents
one aspect of the model, and can be changed to modify its behavior.

These parameters influence directly the complexity of the model (number
of states, transitions and topology), and the time to build and verify model
properties, as it can be seen in Table 1. The machine used to perform experiments
is an Intel(R) Xeon(R) CPU X3323, 2.50GHz and has 17 GB of RAM memory.

The analysis is restricted to only one pump. As a consequence, it would not
be realistic to model a large volume because in the real cell it is shared between
several pumps and other cellular structures, not limited to pumps.

Our analysis is focused on single channels, therefore our abstraction reduces
the cell volume to one pump and its surroundings. We achieve this by maintaining
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Table 1. Model complexity as states and transitions translates into the size of the
model state space. Properties include state and transition rewards (TState and TRate).

Scenario States Transitions TState TRate

Control 220 620 119.165 s 129.201 s

High [K+]o 568 1640 914.083 s 913.998 s

High [ATP]i 568 1640 305.436 s 303.244 s

the proportions between all interacting components. Our dimension for cellular
volume is called pump volume. Even though those values are many orders of
magnitude smaller than the real values, they still represent proper cell behavior.

However, we have created three scenarios, which are compared with each other
for different analysis. The Control scenario presents the regular physiological
conditions of the pump. In the High Potassium ([K+]o = 0.100 M) and High
Adenosine Triphosphate ([ATP+]i = 0.050 M) scenarios, the concentrations of
extracellular potassium and intracellular ATP are both increased ten times.

Diseases can change the ATP concentration. Literature has reported cases on
the matter (although we were not able to find a quantitative study), for example,
a case of Huntington’s disease [19]. This applies to potassium, which can reach
increased concentrations in diseases such as hyperkalemia [26].

5.2 PTX-pump State Change for Different Scenarios

In order to observe the probability of PTX and non-PTX related states over
time, all states and rates were quantified using rewards. Figure 4 shows the
reward of the sub-state PTXATPhighE, where the pump is open to both sides,
bound to PTX and an ATP in its high affinity site. Rewards are accumulated
as time is spent in corresponding states as this is a continuous time model [14].

State Reward PRISM Model

rewards "ptxatphighe"
(PTXATPhighE=1) : 1;

endrewards

Accumulated State Reward Property

R{“ptxatphighe”}=? [ C<=T ]
What is the accumulated reward for the state
ptxatphighe at time T?

Fig. 4. State Reward and Accumulated State Reward Property

Since the model now has rewards for each state, we are able to count the
expected quantity of the accumulated reward associated with each sub-states
over time. Using the operator R we are able to quantify the reward for some given
event, for example the number of times the model was in sub-state PTXATPhighE
and PTXATPlowE. The operator C allows to quantify accumulated rewards for a
given time T, therefore we are able to observe rewards over time.

Considering the Control scenario for a single pump at instant T=100, the
expected rewards associated with the sub-states PTXATPhighE and PTXATPlowE
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is 95.8456 and 4.1502, respectively. In other words, in 100 seconds, the pump is
expected to be bound to PTX and ATP in its high and low affinity binding site
95.8485% and 4.1503% of the time.

Using other scenarios such as High [K+]o and High [ATP]i, we have found that
for the cellular volume of 10−22 L there are sets of values for sub-state rewards.
One set is associated with the Control and High [ATP]i scenarios, while the
other with the High [K+]o scenario. For example, in the High [K+]o scenario, the
expected rewards associated with the sub-states PTXATPhighE and PTXATPlowE
change to respectively 0.0011 and 99.9964, or 0.00001% and 99.9978% of the
time. These results have been summarized in Figure 5.
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Fig. 5. Probability of States Responsible for PTX Induced Channels

This change in the most active state of the pump is important to understand
the inhibitory effect of potassium on PTX. Each of these states have a different
role in electric measurements of the induced current caused by ion exchange.
Only after measuring the probability of states where the pump is open it was
possible to perform these induced electric current measurements, since their
probability is part of the equations, which are described below.

5.3 Induced Electric Current Measurements

The induced current carried by potassium ions across the membrane can be
measured using the Goldman-Hodgkin-Katz (GHK) flux equation (divided into
Equations 4 and 5), which describes the ionic flux as a function of transmembrane
potential and potassium ion concentrations [12,2].

This equation allows studying quantitatively the behavior of the induced cur-
rent under different conditions, such as the scenarios previously mentioned.

Jion = Pion z2
ion

F 2 Vm

R T

[ion]i e
zion F Vm

R T − [ion]o

e
zion F Vm

R T − 1
(4)

Pion represents the permeability of the membrane for that ion and it is shown
in Equation 5.

Pion = γ1[PTXE] + γ2[PTXATPhighE] + γ3[PTXATPlowE] (5)
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Descriptions, values and units for constants, such as Vm (transmembrane po-
tential) and F (Faraday constant) are shown in Table 2. Further details on the
GHK equation can be found in [24].

Table 2. The constants used in the Goldman-Hodgkin-Katz (GHK) flux equation

Constant Description Value Unit
Jion Ionic induced current – Ampere× meter−2

zK Valence of potassium ion 1.00 –
γ1 PTXE proportionality 0.15 –
γ2 PTXATPhighE proportionality 0.15 –
γ3 PTXATPlowE proportionality 0.90 –
Vm Transmembrane potential -20.00 miliVolts
F Faraday constant 96,485.00 Coulomb× mol−1

R Gas constant 8,314.00 Joules× Kelvin−1× mol−1

T Temperature 310.00 Kelvin

Our PMC approach always obtains the real expected value for our model
due to its exhaustive exploration of all states. This is particularly important for
electric current measurements (Figure 6), because it depends on the probability
of states PTXE (the PTX-pump complex), PTXATPhighE and PTXATPlowE (the
PTX-pump complex with an ATP bound to its high and low affinity binding
sites, respectively), as well as internal and external ion concentrations. These
state probabilities and ion concentrations change for different scenarios.

Measurements are performed through instantaneous reward properties, which
obtain the reward value precisely at T time. A negative induced current indicates
normal potassium ion flux (two potassium ions go inside), while a positive one
indicates an abnormal flux (two potassium ions go outside).

In the Control scenario, the induced current is positive (52, 547 A
m2 ), which

means that potassium ions are leaving the cell in favor of their electrochemical
gradient due to the effect of PTX, which can disrupt regular cell behavior.

Electric Current Reward

rewards "pos_jK"
(jK>=0): jK;
endrewards

Instantaenous Current Reward Property

R{“pos_jK”}=? [ I=T ]

What is the expected instantaneous reward for the pos-
itive current pos_jK at time T?

Fig. 6. Electric Current Reward and Instantaenous Current Reward Property

In the High [K+]o scenario, the current becomes negative (−426, 790 A
m2 ) –

potassium transport changes, having its direction reversed. Potassium ions are
entering the cell against their electrochemical gradient, despite the effect of PTX.

The states PTXATPhighE and PTXATPlowE play a major role in the GHK flux
equation. We have observed that their probability change from one scenario
to the other. However, their proportionality coefficients are largely different
(γ1 = 0.15 for PTXATPhighE and γ2 = 0.9 for PTXATPlowE). This change in the
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most active state and the increased concentration of [K+]o explain the sudden
reversion of ion exchange, as both are components of the equation.

This suggests that high concentrations of [K+]o could inhibit PTX action,
which is an already known inhibitory property of potassium on the PTX-pump
complex [24]. The potassium role could be further studied in order to discover
novel strategies to create agents to inhibit PTX action.

6 Conclusions and Future Work

In this work, the known inhibitory effect of potassium on PTX is further char-
acterized. Our PMC approach has allowed us to explore the model, accurately
calculating its probabilistic characteristics. We have measured the probability of
every state and reaction of the pump, for three different scenarios.

These scenarios have been created to simulate different conditions for the
pump, such as diseases or intoxication. The Control scenario presents the regular
physiological conditions of the pump. In the High [K+]o and High [ATP]i sce-
narios, as the names imply, the concentrations of extracellular potassium and
intracellular ATP are increased ten times, respectively.

In the Control scenario, the most active state of the pump is the PTX-
pump complex with an ATP molecule bound to its high affinity binding site
(PTXATPhighE), approximately 95.84% of the time. In the High [K+]o scenario,
the most active state shifts to a similar one, except that now ATP is bound to
its low affinity binding site (PTXATPlowE), nearly 99.99% of the time.

We have used the Goldman-Hodgkin-Katiz (GHK) flux equation to measure
the induced current caused by ion exchange. In the Control scenario, the induced
current is positive, which means that potassium is moving in favor of its elec-
trochemical gradient. In the High [K+]o scenario, the induced current becomes
negative – potassium transport is reversed, despite the PTX action.

This suggests that [K+]o could inhibit PTX action, which is a known in-
hibitory property of potassium on the PTX-pump complex. Potassium role could
be further investigated in order to research novel methods to inhibit PTX action.
PMC allowed us to further characterize the PTX-Na+/K+-ATPase dynamics.

Future work include the validation of our results through wet lab experiments
and the expansion of the model to the complete Albers-Post kinetic model.
Furthermore, our model can be extended to other toxins or even drugs.
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Abstract. While many different aspects of retrieval algorithms (e.g.,
BLAST) have been studied in depth, the method for determining the
retrieval threshold has not enjoyed the same attention. Furthermore,
with genetic databases growing rapidly, the challenges of multiple test-
ing are escalating. In order to improve search sensitivity, we propose
the use of the false discovery rate (FDR) as the method to control the
number of irrelevant (“false positive”) sequences. In this paper, we in-
troduce BLASTFDR, an extended version of BLAST that uses a FDR
method for the threshold criterion. We evaluated five different multi-
ple testing methods on a large training database and chose the best
performing one, Benjamini-Hochberg, as the default for BLASTFDR.
BLASTFDR achieves 14.1% better retrieval performance than BLAST
on a large (5,161 queries) test database and 26.8% better retrieval score
for queries belonging to small superfamilies. Furthermore, BLASTFDR

retrieved only 0.27 irrelevant sequences per query compared to 7.44 for
BLAST.

1 Introduction

In response to a query, many database search algorithms (e.g., BLAST [2])
return a sorted retrieval list of sequences with an E-value assigned to each se-
quence. Typically, each E-value is calculated from a statistical model of irrel-
evant database sequences and approximates the expected number of irrelevant
sequences with a score equal to or better than the one calculated. Many al-
gorithms truncate their retrieval lists at a uniform E-value threshold. We call
this truncation procedure “uniform E-value thresholding”. While many differ-
ent aspects of BLAST have undergone rigorous examination, uniform E-value
thresholding has not had the same scrutiny.

As computing potential and the sophistication of computer algorithms in-
crease, so has the need to account for multiple testing. For homology searches,
the query is compared against each sequence in the database independently, re-
sulting in multiple tests. Performing multiple tests can give the perception of a
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more significant result than the data can support. False discovery rate (FDR)
methods aim to control the proportion of irrelevant matches to address the is-
sues that multiple testing introduces. They are widely used in microarray studies
and virtually in all facets of genomic studies. Additionally, a FDR approach was
recently used to aid in generating the DFam database [13].

Early efforts for managing the false positive rate aimed to control the Family-
wise Error Rate (FWER), the likelihood of making one or more false discoveries.
Due to the intrinsic nature of how the FWER is computed, FWER methods also
provide control over the FDR. Four modern and traditionally-accepted FWER
methods are the Bonferroni correction [4], the Holm step-down procedure [10],
the Hochberg step-up procedure [9], the Hommel single-wise procedure [11]. The
Bonferroni correction uses a uniform P-value threshold determined by a user-
specified α (or P-value threshold) divided by the total number of performed tests.
The Holm step-down procedure extends the Bonferroni correction by adding the
rank of the ordered P-values to the total number of performed tests in the
thresholding method. Like the Holm procedure, the Hochberg step-up process
utilizes the rank in the thresholding method by looking for the P-value that is
less than a user-specified α divided by the total number of performed tests in
addition to the current P-value’s rank. The Hommel single-wise procedure is
similar in that it looks for the P-value for which all P-values with a higher rank
are greater than a number proportional to α. Procedures designed to control
only the FDR, such as the Benjamini-Hochberg procedure [3], are generally less
conservative forms of measurement than FWER methods and never perform
worse. The Benjamini-Hochberg method computes a threshold by multiplying
the current P-value’s rank by a user-specified α and dividing the result by the
total number of performed tests.

In this paper, we explore the performance of BLASTFDR, a BLAST variant
that uses E-values to calculate the FDR. We demonstrate that BLASTFDR

performs better than BLAST, in part by drastically decreasing the number of
irrelevant sequences. The Methods section presents the implementation details of
BLASTFDR; the Results section details our testing procedures and their results.
We conclude with a discussion of BLASTFDR’s applicability.

The C++ source code for BLASTFDR and instructions are available at
http://www.cs.mtsu.edu/~hcarroll/blast_fdr/.

2 Methods

BLAST accepts a sequence as a query to search for relevant matches in a spec-
ified database. Additionally, an E-value threshold may be supplied to BLAST.
BLAST looks for all relevant matches between that query and the sequences in a
database and then applies uniform E-value thresholding by ignoring all matches
with an E-value above the specified value.

BLASTFDR extends version 2.2.27 of NCBI’s BLAST algorithm by replacing
uniform E-value thresholding with a one of the following algorithms: Bonferroni,
Holm’s step-down process, Hochberg’s step-up process, Hommel’s single-wise

http://www.cs.mtsu.edu/~hcarroll/blast_fdr/
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process, and Benjamini and Hochberg’s method. The Bonferroni method calcu-
lates a threshold value for each sequence retrieved and considers the first k ranked
sequences as significant that satisfy the following criterion: Pk ≤ α

m , where Pk

is the P-value of the kth sequence and m is the size of the database searched.
Because BLAST relies heavily on E-values instead of P-values, and given that
E-value = P-value * m, we implemented the Bonferroni method as: Ek ≤ α
with Ek being the E-value of the kth sequence. Furthermore, the Holm method
considers matches significant that meet the following criterion: Ek ≤ mα

m+1−k .
Similarly, the Hochberg method takes a different approach by starting at the
least likely match and working toward the best statistical score to consider the
following matches as significant: Ek ≤ mα

m+1−k . The Hommel method also iterates

from the least significant match to find the index k such that: Em−k+j >
jα
k for

j = 1, . . . , k, then uses k to consider the following matches significant: Ek ≤ mα
k .

Finally, the Benjamini-Hochberg method iterates from the match with the best
statistical score and uses the following criterion for significant matches: Ek ≤ kα.

Each match in BLAST is called a high scoring pair (HSP). A database se-
quence can have multiple HSPs. BLAST organizes all of the HSPs according
to the database sequence to which they belong and maintains its internal data
structures sorted by the best HSP per database sequence. This is problematic
for applying the methods above. Consequently, BLASTFDR restructures the
HSPs from sorted by sequence to sorted by individual scores before applying the
threshold.

To determine retrieval efficacy, we leveraged the query sequences in the As-
tral40 database [6]. Each sequence in theAstral40 database has less than 40%
sequence identity to the other sequences. More importantly, each sequence has
been classified into a “superfamily”. We only considered the queries that have at
least one other superfamily member in the database. Matches with the sequences
in the same superfamily are considered relevant matches. To avoid making erro-
neous assignments, we ignore matches that are not in the same superfamily as
the query sequence. For irrelevant matches, we augmented this database 100-fold
with random sequences drawn from the distribution of amino acids residues and
length of sequences found in the original Astral40 database.

We partitioned the augmented database into Training and Test databases. We
sorted the queries by name, and assigned the 5,162 odd sequences to the Training
database and the 5,161 even sequences to the Test database [1]. Additionally, we
randomly selected 103 queries (2%) from the training dataset to use to evaluate
which method to use. We refer to this subset as “Training-subset”.

In this study, we utilize the Threshold Average Precision (TAP) [5] method
as the evaluation criterion for retrieval efficacy. The TAP method calculates
the median Average Precision-Recall with a moderate adjustment for irrelevant
sequences just before the threshold. TAP values range from 0.0 for a retrieval
with no relevant sequences to 1.0 for a search that retrieves all of the relevant
sequences and only relevant sequences.

To determine the best performing method to use from the list above, we
examined the retrieval performance for each one of them with α = {0.0005, 0.005,
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Table 1. Average BLASTFDR TAP values using the Training-subset database

α

Method 0.0005 0.005 0.05 0.5

Bonferroni 0.163 0.170 0.198 0.199

Holm 0.163 0.170 0.198 0.199

Hochberg 0.081 0.088 0.102 0.150

Hommel 0.163 0.170 0.198 0.199

Benjamini-Hochberg 0.168 0.180 0.203 0.184

Table 2. Average BLASTFDR TAP values using the Training database

α

Method 0.0005 0.005 0.05 0.5

Benjamini-Hochberg 0.199 0.215 0.229 0.220

0.05, 0.5} using the Training-subset database. From these methods, we adopted
the best performing one as the default threshold method in BLASTFDR. We
then evaluated that method with α = {0.0005, 0.005, 0.05, 0.5} using the entire
training database. Finally, the best performing method with the best performing
value of α was compared against BLAST using the Test database.

3 Results

To evaluate the performance of BLASTFDR, we performed several experiments
involving five different methods to account for multiple testing. We utilized an
augmented version of the Astral40 database (see the Methods section). We
measure the performance in terms of the Threshold Average Precision (TAP)
value.

First, we evaluated BLASTFDR with the following methods for determining
the threshold for matches: Bonferroni correction, Holm step-down procedure,
Hochberg step-up procedure, Hommel single-wise procedure and Benjamini-
Hochberg. For each method, we set α = {0.0005, 0.005, 0.05, 0.5} on the Training-
subset database (see Table 1). Of these methods, BLASTFDR with the
Benjamini-Hochberg method received the best average TAP value of 0.203 and
generally performed better than the other methods. Consequently, we adopted
this method as the default for BLASTFDR. For comparison purposes, BLAST
received an average TAP value of 0.171 on the same database.
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Table 3. Average TAP values for BLAST and BLASTFDR

Database BLAST BLASTFDR

Training-subset 0.171 0.203

Training 0.203 0.229

Test 0.198 0.226
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Fig. 1. TAP results for every query in the Test database

On the (full) Training database, we evaluated the same four α values for
BLASTFDR using the Benjamini-Hochberg method (see Table 2). Of these pa-
rameters, BLASTFDR with α = 0.05 received the best average TAP of 0.229
while BLAST received 0.203. Consequently, we adopted this α level as the de-
fault for BLASTFDR.

We evaluated the efficacy of BLAST and BLASTFDR using the 5,161 query
sequences in the Test database. Table 3 summarizes the results and Figure 1 de-
tails the TAP values for BLAST plotted against the TAP values for BLASTFDR

for each of the queries. While BLAST received an average TAP value of 0.198,
BLASTFDR earned an average TAP value of 0.226. In terms of irrelevant se-
quences, BLASTFDR retrieves an average of only 0.27 irrelevant sequences per
query whereas BLAST retrieves 2,780% more with 7.44 per query. Finally,
Figure 2 is a histogram of the E-values of sequences retrieved by BLAST that
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Fig. 2. Histogram of the E-values of sequences in the Test database declared significant
by BLAST but not by BLASTFDR
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were not retrieved by BLASTFDR. For every dataset in the Test database, the
retrieval list for BLASTFDR was shorter than the respective list for BLAST.

Furthermore, BLASTFDR performs notably better on datasets that belong to
small superfamilies. Figure 3 illustrates this with the cumulative average TAP
for both BLASTFDR and BLAST for ascending superfamily sizes. For example,
for superfamilies with a size of twelve or fewer members, BLASTFDR has a TAP
of 0.421 and BLAST a TAP of 0.332.
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Similar results are obtained by using each of the Astral40 database queries
and searching in the NR database for up to five iterations and then using the
resulting PSSM on the augmented database (data not shown).

4 Discussion

In this article we discussed an observed deficiency in the control of the propor-
tion of irrelevant records in retrieval algorithms. Including too many irrelevant
sequences has been shown to corrupt searches in a genetic database search algo-
rithm [7]. To address this issue, we propose BLASTFDR, an implementation of
BLAST that exercises a false discovery rate method, for finer control over the
percentage of irrelevant sequences.

Using accepted evaluation procedures, BLASTFDR had an average TAP value
14.1% higher than BLAST on the Astral40 Test datasets. This difference
is significant given the extremely wide use that BLAST enjoys. Furthermore,
BLASTFDR is particularly appropriate for queries with small superfamily sizes
as evidenced by it obtaining an average TAP value 26.8% higher than BLAST
for superfamilies with sizes up to and including 12. For queries in larger super-
families, if the goal is to assign function to a query, then adequately identifying
the superfamily is sufficient. For example, retrieving 50% of a large superfamily
clearly indicates which superfamily the query belongs. This objective is not cur-
rently captured in retrieval evaluation metrics and may make evaluation values
misleading for large superfamilies.

While BLASTFDR does show significant performance improvements over
BLAST, the increase was not seen for all queries. For example, Figure 1 il-
lustrates that there are several datasets in the Test database that BLASTFDR

receives a TAP value of 0.0 but BLAST achieves a non-zero TAP value. Clearly
some improvements can be made to BLASTFDR to improve its performance.

Traditionally, the Receiver Operating Characteristic (ROCn) [8] method has
served as an evaluation criterion for retrieval efficacy. The ROCn method ig-
nores the threshold implied by a homology search algorithm and truncates a
list of matches after the nth irrelevant match. The resulting list of matches is
plotted with the number of irrelevant matches on the x-axis and the proportion
of relevant matches on the y-axis. A ROCn score is then the normalized area
under the curve. Typically, n = 50. The ROCn method was not suitable for
this study as it generally requires the threshold imposed by the algorithm to be
artificially modified to allow for n irrelevant matches, thus erasing the affect of
the threshold method.

While we used BLAST as an example in this study, other retrieval algorithms
that use uniform thresholding could also benefit from the implementation of a
FDR controlled threshold. Furthermore, employing more advanced false discov-
ery rate methods, such as the Q-value method [12] could also yield improvements.
Implementation of the Q-value, because it requires the entire distribution of sta-
tistical scores, is inherently challenging for a heuristic algorithm like BLAST.
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Abstract. Virulence factors represent crucial molecular features for
understanding pathogenic mechanisms. Here we describe a pipeline for in
silico prediction of virulence factor genes in Mycobacterium massiliense
genome that could be easily used in many other bacterial systems. Some
few methods for this characterization are described in the literature,
however these approaches are usually time-consuming and require
information not always readily available. Using the proposed pipeline, the
number and the accuracy of predicted ORF annotation were increased,
and a broad identification of virulence factors could be achieved. Based
on these results, we were able to construct a general pathogenic profile of
M. massiliense. Furthermore, two important metabolic pathways,
production of siderophores and bacterial secretion systems, both related
to M. massiliense’s pathogenicity, were investigated.

Keywords: genome, rapid growingmycobacteria, pipeline, bioinformatics,
nosocomial infections, virulence factors, metabolic pathways.

1 Introduction

1.1 Mycobacterium Massiliense

With the improvement of culture and identification techniques, the number of
reported medical cases related to nontuberculous mycobacteria (NTM) has been
greatly increased during the last few years [6]. Among those, mycobacteria of
the Mycobacterium chelonae-Mycobacterium abscessus group composed of M.
chelonae, M. immunogenum and, particularly, M. abscessus, arose as one of the
most important opportunistic pathogens [14].

In 2004, Adékambi et al. [2] assigned a novel species for a closely related
isolate, Mycobacterium massiliense, a representative species of rapidly growing
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mycobacteria (RGM). RGM have important implications in human diseases, as
they are frequently associated to infections among immunocompromised patients
as well as wound, skin, and soft tissue infections [14]. Additionally, these bacteria
are naturally resistant to several classes of antibiotics, particularly to
antituberculousis drugs. M. massiliense is characterized as a strictly aerobic,
non-spore-forming, nonmotile, acid-fast, gram-positive rod that shares 100% of
its 16S rRNA sequence with Mycobacterium abscessus. However, there is still
intense debate in the scientific community whether or not M. massiliense should
be considered a new species or simply a M. abscessus strain.

Ever since its description, M. massiliense has been increasingly reported as
the responsible for soft tissue infection outbreaks. At the Midwest Region of
Brazil, a major infection outbreak has been recently reported along with the
association to antibiotic and disinfectants resistances that may have contributed
to the difficulty in controlling the spread of this strain. In a previous work,
our group sequenced and characterized the genome of a M. massiliense strain,
which was isolated from wound samples of patients submitted to arthroscopic
and laparoscopic interventions in Goiânia, Brazil [7]. This strain has been since
then identified as “GO 06” and its complete genome is already available in
GenBank [15].

1.2 Virulence Factors and Their Role in Pathogenesis

Some bacteria are known to be extremely virulent pathogens with the ability to
cause infectious diseases, e.g. tuberculosis or salmonellosis. Pathogenic bacteria
must be able to enter its host, to survive and to replicate inside the host cell, while
avoiding the mechanisms of host cell protection. Therefore, bacteria present a set
of molecular features in order to bypass or overcome the host defenses, which are
commonly called virulence factors. Here we discuss two major virulence factor
systems, which seem to play a decisive role in M. massiliense’s pathogenicity:
the siderophores and bacterial secretion systems production pathways.

Siderophores are ferric ion specific chelating agents whose main role is to
scavenge iron from the environment and make it available to the microbial cell.
It is well known that the siderophore system is correlated to the virulence of
some organisms, like Yersinia enterocolitica and Erwinia chrysanthemi [13], and
there are evidences it has a function in M. massiliense’s pathogenicity, as ferric
iron is an essential macronutrient for bacterial growth.

The pathogenicity of some bacteria, however, depend on their ability to secrete
virulence factors, which can be displayed on the bacterial cell surface, secreted into
the extracellular medium, or directly injected into a host cell. In Gram-negative
bacteria, six systems have been describedwith this function, the bacterial secretion
systems I-VI. However, recent studies have provided evidence that in Gram-
positive bacteria, such as M. massiliense, an alternative protein-secretion system
exists, the type VII secretion system (T7SS), which has five copies through the
genome, named ESX-1 to ESX-5 [1].
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1.3 A Pipeline for Virulence Factor Analysis

In this article, we propose a pipeline for virulence factor identification and
annotation, which was used inMycobacteriummassiliense’s genome. This pipeline
could also be applied to other bacteria, possibly increasing the available data on
bacterial pathogenesis and supporting the development of counter strategies
against pathogenic microorganisms.

Few in silico methods have been described to predict virulence factors in
bacteria, most of them based on machine learning strategies, which consider
common molecular features of known virulence factors to predict new ones [4,10].
These approaches rely on Support Vector Machine (SVM), a supervised learning
strategy. For efficient characterization of virulence factors, these methods require
a good quality input data, specially for the training phase, leading to time
demanding programs. Furthermore, since virulence factors present a variety
number of functions in the microbial cell, from a cell wall component to a
secreted protein, finding common patterns to identify such molecules is really a
challenging task.

There are also other methodologies based on phylogenetic information, which
is difficult to get and therefore not always available [12]. In this context, we
believe that our pipeline could be a simple yet very efficient alternative to
characterize virulence factors in bacteria.

2 Methods

2.1 M. Massiliense and Bacillus Anthracis Genomic Data

M. massiliense GO 06 assembly data comprise a single chromosome, previously
assembled by our group using MIRA [9], and two putative plasmids, named
Plasmid I and Plasmid II, of roughly 60 and 96 kilobases, respectively. The
ORFs (Open Reading Frames) were annotated with Genome Reverse Compiler
(GRC), using a reference database composed of only mycobacteria genomes [16].
To validate the pipeline, all analysis were also done on the genome of a pathogenic
bacteria from the Bacillus group, Bacillus anthracis str. Ames, whose sequences
were downloaded from NCBI (AN:AE016879).

2.2 Pipeline Proposal

An overview of the proposed pipeline is shown in Figure 1. The pipeline is divided
in four major steps: (1) Improvement of ORF annotation; (2) Identification of
virulence factors; (3) Analysis of virulence factor genes in metabolic pathways;
and (4) Construction of metabolic pathway maps. Steps 1 and 2 are automated
by a single Perl script, as seen in Figure 2, which shows the management of the
pipeline execution. The details of this pipeline are described below. All analyses
were made on a desktop with an AMD Phenom II B95 X4 processor and 4 GiB
of RAM, running Ubuntu 12.04.
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Fig. 1. Pipeline for identification and annotation of bacterial virulence factors

Fig. 2. Management of pipeline execution. The arrows leading to the boxes represent
input files, while the arrows coming from them represent output files (those marked
with a red ’x’ are excluded by the end of the pipeline). All steps leading to the
characterization of virulence factors are integrated in a single perl script.

Improvement of ORF Annotation. In order to have a well characterized
sequence dataset, a BLAST [3] search with the initial annotation is performed,
using a user-defined dataset for database construction. The E-value cut-off is
also user-defined, having a default value of 1E-5.

The main part of the Perl script was designed to compare both the initial
and the newly generated BLAST annotation files by assigning a score to each
annotation and later choosing the highest score. For each BLAST query, the
script verifies all the obtained hits, in order to choose the best annotation.
The presence of keywords such as “hypothetical” or “putative” penalizes the
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score of a hit, while complementary features (e.g., Gene Name (GN), Enzyme
Commission number (EC)) increases its score. This scoring method was defined
in order to penalize uncharacterized sequences and to favour well annotated
proteins, and both weights are user-defined upon initiation of the script. Initial
tests with this pipeline suggested that penalizing keywords by 2 and adding 0.5
for complementary features avoided most bad annotation lines, therefore those
weights were chosen as defaults.

The final gene annotation is the one with the highest score, obtained either
from the initial file or from any of the BLAST hits. If many hits were equally
good, the script chooses the one from the BLAST annotation file. In case of
two or more BLAST hits with the same score, the one with lowest e-value is
preferred.

The initial annotation ofM.massiliense was provided byGRC, while the initial
annotation file of B. anthracis was downloaded from NCBI. For both organisms,
the dataset for the construction of the BLAST database was comprised of all
curated bacterial proteins from UniProtKB/Swiss-Prot [5] (329,037 sequen-ces,
as of April 2013). Both the E-value cut-off and scoring weights were the scripts’
default.

Identification of Virulence Factor Genes. The annotation file generated
in the last step is then compared to the bacterial protein database from VFDB
(Virulence Factor Database) [8], a specialized repository of bacterial virulence
factors. In this step, we are interested in finding genes related to virulence
according to sequence similarity. Therefore, all ORFs with hits coming from the
VFDB entries are considered virulence factors and stored in a new annotation
file. The sequences filtered by this criterion had their GO (Gene Onthology)
classification determined in the previous step, on an optional script module for
managing flatfiles.

Analysis of Virulence Factor Genes in Metabolic Pathways. Considering
that pathogenesis-related genes are often present in mycobacteria, we decided
to analyse two of the most relevant metabolic pathways involved in this genus’
pathogenicity: production of siderophores and bacterial secretion system proteins.

The gene sequences composing the chosen virulence pathways were
downloaded from KEGG (Kyoto Encyclopedia of Genes and Genomes) [11]. By
aligning the selected ORF sequences annotated as virulence factors with KEGG
sequences, we could identify the genes related to the pathways and assign them
a KO (KEGG Onthology). A Perl script was used in KO and EC mining, taking
this information directly from the flatfile.

Construction of Metabolic Pathways. These results were used in the
construction of metabolic maps for both pathways through KEGG, highlighting
the genes present in Mycobacterium massiliense GO 06 genome. This analysis
could not be performed for protein-secretion system VII (T7SS), since it is not
yet fully described and there are no available corresponding pathway in KEGG.
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3 Results and Discussion

The proposed pipeline allowed us to increase the number and accuracy of
annotated ORFs. The assembled chromosome, which had initially 3,053
annotated ORFs, when compared to the final 3,388, showed an increase of 11%
in ORF annotation. This also happened for both putative plasmids: Plasmid I
initially had 33 annotated ORFs, which increased to 47 after being processed by
this pipeline (42.4% increase), and Plasmid II, from 14 to 58 (314.3% increase)
annotated ORFs. The data regarding the execution of the pipeline for both
genomes can be found on Table 1.

Table 1. General data regarding the script execution. Vague annotations, such as
“uncharacterized protein” were considered incomplete annotations. “I” means initial
annotation; “W” weighted; and “U” unweighted.

M. massiliense B. anthracis
I W U I W U

Incomplete annotations 1.659 997 997 2.503 1.923 2.088
Improved annotations - 2.816 2.816 - 3.646 3.572
Elapsed time - 1h28m19s 1h28m55s - 2h26m31s 2h25m15s

Table 2.Distribution of virulence factor genes fromM. massiliense GO 06 chromosome
and two putative plasmids into GO categories

GO Category Chromosome Plasmid I Plasmid II

Translation, ribosomal structure and biogenesis 5 0 0
Transcription 58 0 0
Replication, recombination and repair 5 8 0
Cell cycle control, cell division, chromosome
partitioning

21 0 1

Pathogenesis 79 1 6
Signal transduction mechanisms 22 0 0
Cell wall/membrane/envelope biogenesis 9 0 0
Stress response 55 1 1
Posttranslational modification, protein turnover,
chaperones

27 0 0

Energy production and conversion 14 0 0
Carbohydrate transport and metabolism 37 0 0
Amino acid transport and metabolism 49 0 0
Nucleotide transport and metabolism 7 0 0
Cofactor transport and metabolism 19 0 0
Lipid transport and metabolism 124 0 0
Inorganic ion transport and metabolism 46 0 1
Secondary metabolites biosynthesis, transport
and catabolism

66 0 0

Antibiotic biosynthesis 25 0 0
General function prediction only 139 0 0
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Fig. 3. Distribution of M. massiliense GO 06 genes related to siderophore production.
The y axis represents the number of genes from a given family present in M.
Massiliense’s genome. A letter code was assigned to each gene family, representing the
siderophore production in which they are involved: Bacillibactin (B), Enterobactin (E),
Mycobactin (M), Myxochelin (X), Pyochelin (P) and Yersiniabactin (Y). Gene families
marked with ‘*’ are either involved in the production of siderophore precursors or in
more than one of the previously cited molecules.

Fig. 4. Distribution of M. massiliense GO 06 genes related to bacterial secretion
systems production. The y axis represents the number of genes from a given family
present in M. massiliense’s genome. A number was assigned to each gene family,
representing the secretion system production in which they are involved (I to VI).
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Fig. 5. Distribution of M. massiliense GO 06 genes related the Type VII secretion
system production in M. massiliense’s genome

After identification and selection of all the virulence factor related genes,
they were classified into a few selected GO categories for an easier overview
of M. massiliense’s virulence profile. Table 2 shows this distribution for M.
massiliense’s chromosome and both putative plasmids. Out of the 807 genes
found to be related to virulence, 387 (48%) were genes involved in the organism’s
metabolism, most of them related to lipids (32%). In addition, 139 genes (17.8%)
could not be properly characterized since their functions were poorly annotated
(either they had no assigned GO or it was too unspecific, like “ATPase”). The
high number of genes that could not be assigned to any class shows that there is
still a limitation in protein databases related to virulence factors, even though
most of the annotation came from curated sources.

Figures 3 and 4 show the number of detected genes in M. massiliense genome
that compose the two studied metabolic pathways. Figures 6 and 7 depict the
constructed metabolic pathway maps. Because of a severe limitation of KEGG
pathways tool and database, some gene families were not correctly displayed
and were highlighted manually, with an image editing software. This is the case
of mbt genes, for example, which share the same EC number and could not be
correctly displayed.

The majority of siderophore genes are from the entA family (EC 1.3.1.28,
81 copies), which might be explained by the fact that it is involved in the
production of 2,3-Dihydroxybenzoate, a necessary precursor of the siderophores
vibriobactin, enteroxelin, bacillibactin and myxochelin (Figures 3 and 6). This
result indicates that the precursor could possibly be needed in a higher quantity
in the bacterial cell. Other gene families involved in the production of siderophore
precursors, such as menF (EC 5.4.4.2), mbtI (EC 4.2.99.21) and entB (EC
3.3.2.1), however, present a much lower number of genes in M. massiliense GO
06’s genome. While most siderophore molecules seem to be produced by M.
massiliense, yersiniabactin, vibriobactin and pyochelin are either not produced
or have an alternative structure, as evidenced by the presence of only part of
the gene families coding the precursor chemical structures.
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Fig. 6. Metabolic pathway map of siderophore production. Gene families in M.
massiliense GO 06’s genome are marked.
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Fig. 7. Metabolic pathway map of bacterial secretion system productions (I-VI). Gene
families in M. massiliense GO 06’s genome are marked.
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Genes from all secretion systems could be identified, most of them related
to Type I (49 genes), followed by genes from Type III (27 genes). Additionally,
15 genes related to T7SS were found in M. massiliense’s genome, as shown in
Figure 5, the majority of which belonged to the EccA gene family, whose products
have ATPase activity, probably supplying energy for this system’s functionality.
However, none of the pathways were completely characterized, and key elements
for the functionality of each system are still missing.

It is noteworthy that the characterization of virulence factors has never been
done before for M. massiliense and the results obtained in the present study
are valuable, mainly considering the relevance of this organism as a pathogen
and as a study model to M. tuberculosis. By our sequence similarity approach,
the greater the amount of information in virulence factor databases, the better
the final quality of our characterization. This might have affected our analysis,
specially for T7SS, a recently characterized system that does not have many
related sequences available in databases. Therefore, additional data, such as
transcriptome sequences, could be useful to improve this characterization.

4 Conclusion

In this work, we propose a pipeline to identify virulence factors, which can
also be used to improve annotation in bacteria. Other approaches exist to solve
this problem, e.g., methods based on Support Vector Machine, which are time
demanding, and those based on phylogenetic information that are not always
available. We believe that our pipeline is easy to implement and fast to produce
refined results, when compared to the other tools. Even though we applied
this pipeline to identify M. massiliense’s genes, it could be easily used in the
characterization of other pathogenic bacteria, regardless their classification.

By analyzing M. massiliense’s virulence factors, we could define an overview
of this organism’s pathogenicity profile and verify the existence of important
mycobacterial genes, which validate the consistency of the assembled genome.
In addition, in silico data regarding isolate GO 06’s genes related to siderophores
and bacterial secretion system proteins were obtained, which could prove useful
for developing strategies to control M. massiliense related outbreaks.
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Pantano, Sergio 71

Qin, Jing 1

Raiol, Tainá 136, 202
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Rosa, Rogério S. 24
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