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Foreword

The book series Research in Mathematics Education is being launched with this 
volume. We have designed the solicitation, review, and revision process of volumes 
in the series to produce thematic volumes, allowing researchers to access numerous 
studies on a theme in a single, peer-reviewed source. Our intent for this series is to 
publish the latest research in the field in a timely fashion. This design is particularly 
geared toward highlighting the work of promising graduate students and junior fac-
ulty working in conjunction with senior scholars. The audience for this monograph 
series consists of those in the intersection between researchers and mathematics 
education leaders—people who need the highest quality research, methodological 
rigor, and potentially transformative implications ready at hand to help them make 
decisions regarding the improvement of teaching, learning, policy, and practice. 
With this vision, our mission of this book series is:

1. To support the sharing of critical research findings among members of the math-
ematics education community;

2. To support graduate students and junior faculty and induct them into the research 
community by pairing them with senior faculty in the production of the highest 
quality peer-reviewed research papers;

3. To support the usefulness and widespread adoption of research-based innovation.

We are grateful for the support of Melissa James, Miriam Kamil, and Clemens He-
ine from Springer in developing and publishing this book series.

This volume, Research Trends in Mathematics Teacher Education, constitutes 
the first book in the series. There is consensus about the importance of teacher 
quality for ambitious teaching and learning, but there is no consensus about what 
kinds of quality are needed to ensure ambitious teaching and learning. This volume 
provides some structure to this argument, showing that quality teaching is multi-
faceted, bringing to bear multiple aspects of mathematical and pedagogical knowl-
edge on the crafting of tasks, orchestration of practice, and assessment of student 
learning and performance.

All of the lead authors in this volume are teacher educators. Their research pre-
sented here is informed by and tested through practice. They present their most 
recent findings about the nature and function of teachers’ mathematical knowledge 
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for  teaching, but also their beliefs and knowledge about themselves as learners and 
as part of the larger system of mathematics education. Moreover, their work points 
to key ways to support productive teacher learning in both preservice and inservice 
settings. Thus, this first volume in the series is not only timely to show current re-
search trends in mathematics teacher education, but also quite appropriate to set the 
stage for the book series as a tool for informed decision-making.

We greatly appreciate the efforts of the editors (Lo, Leatham, and Van Zoest) and 
all of the authors who have contributed to this book. Congratulations to you all for 
such excellent work!

 Jinfa Cai
 James Middleton

Co-Editors-in-Chief, RME Book Series
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Preface

From November 1–4, 2012, nearly 500 faculty and graduate students in mathemat-
ics education converged on Kalamazoo, Michigan, for the 34th Annual Meeting 
of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (PME-NA). Throughout and following the conference, 
many participants noted the high quality and richness of the scholarly work and of 
the intellectual exchanges at the sessions. An invitation from Jinfa Cai and James 
Middleton, the series editors for the Springer monograph series Research in Math-
ematics Education, to the conference co-organizers, Jane-Jane Lo and Laura Van 
Zoest, to submit a proposal that included expansions of select papers presented at 
the conference provided the opportunity to further share and expand on some of 
these important ideas.

The first task was to identify a theme for the monograph. Out of 319 research re-
port and brief research report proposals submitted for review, over one third had fo-
cused on themes related to mathematics teacher education. This heightened interest 
in mathematics teacher education at PME-NA prompted the choice of mathematics 
teacher education as the theme. At this point, Keith Leatham was invited to join the 
editorial team to contribute his expertise in mathematics teacher education research.

To select the authors, the editors identified major themes related to mathematics 
teacher education in the 2012 PME-NA Proceedings. Three main themes emerged: 
(1) Mathematics Knowledge for Teaching, (2) Beliefs and Identities, and (3) Tools 
and Techniques to Support Mathematics Teacher Learning. These three themes thus 
became the three sections of this book. We then reviewed more carefully a set of 34 
research reports and brief research reports that related to these themes and narrowed 
down the collection to 13 papers. We contacted the authors of these 13 papers to ex-
plore their interests in expanding their papers to chapters. The authors from 11 of the 
papers accepted our invitation. The other papers had already been expanded and sub-
mitted to journals for review. One set of authors, however, had written a related paper 
for the 2013 PME-NA, which we reviewed and found to fit nicely in the collection. 
This is how we arrived at the collection of 12 core chapters included in this volume.

We then set out to identify colleagues with research expertise in mathematics 
teacher education to serve as external reviewers and to write commentary chap-
ters. Mark Hoover Thames, Denise Spangler, and Randolph Philipp accepted 
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the invitation to become the commentary authors for the sections on Mathemat-
ics Knowledge for Teaching, Beliefs and Identities, and Tools and Techniques for 
Supporting mathematics Teacher Learning, respectively. Each section commentary 
chapter contains a brief review of the studies in that particular section, a discussion 
of major themes that cut across the studies, and suggestions for future directions 
in that particular area of research. Furthermore, Olive Chapman, the editor of the 
Journal of Mathematics Teacher Education, accepted the invitation to write a com-
mentary for the entire collection to situate the findings of these 12 studies in the 
landscape of mathematics teacher education, and to offer her thoughts on future 
directions.

Each editor assumed the role of editor for one section: Laura for Mathematical 
Knowledge for Teaching, Keith for Beliefs and Identities, and Jane-Jane for Tools 
and Techniques to Support Teacher Learning. In so doing, we became the primary 
contact person for the authors of that section. We then went through a two-stage 
process to expand and refine the papers. During the first stage, we each read and 
reviewed all the papers from our own sections and two more from each of the other 
two sections. Section editors compiled this feedback and provided a list of sugges-
tions for the authors to consider as they expanded their papers. During the second 
stage, each paper was read by the section commentary author, by the section editor, 
and again by one other member of the editorial team. Again, a list of suggestions, 
along with a marked manuscript with edits and comments, was sent to the authors 
for another round of revisions. Section editors then worked with authors in an itera-
tive fashion to create final drafts. We also provided feedback to the commentary 
authors to help them clarify the main ideas in their papers.

We thank all the authors of this volume for their dedication in meeting the ex-
tremely tight deadlines involved in bringing this book together. We thank Hope 
Smith for her dedication to the technical details for the final preparation of the 
manuscripts, and series editors Jinfa Cai and James Middleton for their support and 
encouragement. We are pleased to present this volume as a timely and important 
resource for the mathematics teacher education research community.

Western Michigan University Jane-Jane Lo

Brigham Young University Keith R. Leatham

Western Michigan University Laura R. Van Zoest
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Understanding Preservice Teachers’ Curricular 
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© Springer International Publishing Switzerland 2014
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This work was supported, in part, by the National Science Foundation under Grant Nos. 0643497 
and 1158860 (Corey Drake, PI). Any opinions, findings, conclusions, or recommendations expressed 
in this material are those of the authors and do not necessarily reflect the views of the National 
Science Foundation.

Understanding Preservice Teachers’ Curricular Knowledge

Mathematics curriculum materials are ubiquitous and often mandated in elementary 
classrooms, yet the field of mathematics education has few tools for developing and 
measuring teachers’ knowledge related to using these materials in productive ways. 
Prior research suggests that teachers’ use of curriculum materials can be character-
ized by patterns in the ways they read, evaluate, and adapt materials (Sherin and 
Drake 2009). Teachers’ patterns of reading curriculum materials include particu-
lar approaches to reading curriculum materials as well as when and what teachers 
read. Evaluating includes the types of evaluative stances a teacher might have be-
fore, during, and after curriculum enactment. Adapting describes ways in which a 
teacher might modify materials, with adaptations ranging from something as simple 
as a slight omission to something as complex as an addition of entirely new activi-
ties. Brown and Edelson (2003) also describe the ways teachers might use materi-
als—by offloading, adapting, or improvising. Offloading refers to a teacher who 
offloads “instructional responsibility onto the materials” (p. 6). Adapting occurs 
when a teacher adopts some of the curriculum design from the materials, but makes 
changes. Improvising is when a teacher contributes largely to the design of the les-
son, with the materials contributing very little.

We understand these practices—described by Sherin and Drake (2009) as well 
as Brown and Edelson (2003)—to be part of a larger construct of expert curriculum 
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use that incorporates many of the aspects of curricular knowledge described by 
Shulman (1986). Ultimately, we would like to develop a learning trajectory from 
initial curriculum use (beginning of the methods course) to expert curriculum use 
that documents increasingly sophisticated ways of using curriculum materials. The 
literature helps us understand the expert end of the trajectory, as described below. 
The study reported here helps us begin to understand the PST end of the trajec-
tory by piloting a set of questions designed to document PSTs’ knowledge related 
to reading, evaluating, and adapting a Standards-based1 curriculum lesson. These 
questions were based on what we know about the knowledge and practices of ex-
pert teachers as they use curriculum materials. A Standards-based lesson was used 
because Standards-based materials explicitly include features intended for teacher 
learning, as well as student learning.

Our definition of expert curriculum use draws from a substantial body of work 
that has been conducted in the past several years, including the work of Remillard 
(2005); Remillard and Bryans (2004); Brown (2009); Sherin and Drake (2009); 
and Taylor (2010). Remillard (2005) examined 25 years of research investigating 
teachers’ use of mathematics curricula. Over that time period, research findings 
and theoretical foundations were quite varied. Remillard classified these differences 
into four perspectives in order to “illuminate the varied and sometimes conflicting 
assumptions underlying research on curriculum use and to consider the implications 
of the variation” (p. 216). The four perspectives are as follows: “curriculum use 
as following or subverting the text (Remillard, 2005, p. 216),” “curriculum use as 
drawing on the text (p. 218),” “curriculum use as interpretation of the text (p. 219),” 
and “curriculum use as participation with the text (p. 221).” It is this last perspec-
tive that we most associate with expert curriculum use as it treats curriculum use 
as a collaboration between the teacher and the materials. This perspective implies 
that understanding curriculum use requires an exploration of the ways in which 
individual teachers interact with particular curricular resources.

In seeking to understand how curricular resources support teaching and learn-
ing, Remillard and Bryans (2004) found that the eight teachers in their study, all 
of whom used Investigations (TERC 1998), had different orientations—defined as 
a collection of perspectives toward mathematics teaching and learning as well as 
toward curriculum—toward their materials. Teachers were “adherent and trusting 
(Remillard and Bryans, 2004, p. 366),” “quietly resistant (p. 369),” “skeptical (p. 
371),” “explorative (p. 378),” “piloting (p. 378),”  “adaptive (p. 376),” or “actively 
focused (p. 367).” Differing orientations toward the curriculum affected the ways 
teachers used the materials and their opportunities for learning.

Taken as a set, this prior research suggests that teachers’ curriculum use is a 
dynamic, interpretive, and interactive process in which both teachers and materi-
als contribute resources to the design and enactment of instruction. Based on this 
literature, we define “expert” curriculum use as including (a) curriculum vision—an 
understanding of the goals of the curriculum, as well as strategies for using the cur-
riculum materials to reach those goals (Drake et al. 2009; Drake and Sherin 2005); 

1 The term Standards-based curriculum refers to the curriculum materials that were developed to 
align with the NCTM Standards (1989, 2000) and were funded by the National Science Foundation.
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(b) particular strategies for reading, evaluating, and adapting curriculum materials 
in productive ways (Sherin and Drake 2009); (c) practices for using curriculum 
materials to accomplish instructional goals (Brown 2009); and (d) strategies for 
“systematically” adapting curriculum materials to meet the needs of students (Tay-
lor 2010). This chapter focuses on the second set of practices—reading, evaluat-
ing, and adapting curriculum materials—as a starting point for developing a clearer 
understanding of PSTs’ curriculum knowledge and use at the beginning of the cur-
riculum use learning trajectory. In this trajectory, our ultimate goal is to include all 
of these components of expert curriculum use, as well as additional features of cur-
ricular knowledge as described by Shulman (1986), such as knowing when to use 
“particular curriculum or program materials in particular circumstances” (p. 10).

Because curriculum use is a dynamic process between the teacher and the ma-
terials, it is important to understand how materials might contribute to that pro-
cess. Davis and Krajcik (2005) summarized Ball and Cohen’s (1996) “high-level 
guidelines” for the ways in which materials could be designed to support teacher 
learning: (a) “help teachers learn how to anticipate and interpret what learners may 
think about or do in response to instructional activities (p. 5);” (b) “support teach-
ers’ learning of subject matter knowledge including facts, concepts, and disciplinary 
practices (p. 5);” (c) “help teachers consider ways to relate units during the year (p. 
5);” (d) “make visible the developers’ pedagogical judgments (p. 5);” and (e) “pro-
mote pedagogical design capacity (p. 5, the ability to perceive and mobilize existing 
resources to achieve instructional goals (Brown and Edelson 2003 )).” In our study, 
we have focused not only on how PSTs read those elements of the curriculum ma-
terials explicitly designed to be educative for teachers (e.g., descriptions of student 
strategies and mathematical content), but also on how they read and understand ele-
ments that are designed to describe the features of the particular lesson, including 
the goals and activities of the lesson.

Methods and Data Sources

Participants

As part of the development of our measure, we piloted survey items with 34 PSTs 
enrolled in a small liberal arts university located in the Midwest. Thirty-one par-
ticipants were female; three were male. Seven took the survey at the beginning of 
a semester-long elementary mathematics methods course that included a focus on 
the use of Standards-based curriculum materials, and the remaining PSTs took the 
survey at the end of the course. For this study, responses from the beginning and end 
of the semester were combined into a single set of responses in order to identify and 
describe the range of possible PST responses to the questions.
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Description of Lesson

The curriculum use questions focus on a first-grade lesson from Math Trailblazers 
(University of Illinois at Chicago 2008) titled “Counting One Hundred Seventy-
two.” We chose this lesson for several reasons: it came from a Standards-based 
curriculum series, had educative features, covered easily accessible mathematical 
content for PSTs, and was relatively short and focused. “Counting One Hundred 
Seventy-two” begins by presenting several numbers (e.g., 125) to students and ask-
ing them what those numbers mean. In the materials, anticipated student responses 
are listed (e.g., 5 groups of 25, 12 groups of 10 with 5 left over). During student 
exploration time, students consider the number 172 and represent it in any way they 
choose. Next, they share their representations with a partner, and finally, a whole 
group discussion occurs.

Data Collection and Analysis

The survey consists of 18 questions (see Appendix A). Our primary purpose was 
to capture the ways in which PSTs read, evaluated, and thought about adapting the 
lesson. Thus, several questions were created within each domain. For the purpose 
of this chapter, we share PSTs’ responses to the nine questions that provided the 
most interesting insights into PSTs’ approaches to reading, evaluating, and adapting 
the lessons. Below, we list the nine questions and our rationales for including those 
questions in the measure.

Reading

1. As a teacher, what would be your specific goal(s) for your students’ learning with 
this lesson?

2. What kinds of solutions do you think a teacher might see?
3. On page 37 in the first bullet point under the assessment heading, the lesson plan 

states, “Even though counting by ones is an inefficient strategy, it works if done 
carefully.” What does that mean?

The Framework for Analyzing Teaching (Hiebert et al. 2007; Morris et al. 2009) 
designated one of four key skills for learning how to teach as being able to set 
“learning goals for students” (Hiebert et al. 2007, p. 49). These same researchers 
found that PSTs struggle with the development of this skill (and the others). Thus, 
we wanted to understand how PSTs developed a learning goal with the aid of cur-
riculum materials. Regarding the question about possible student solutions, Davis 
and Krajcik (2005) proposed design principles for educative materials that included 
the idea that curriculum materials should help teachers anticipate and interpret what 
students might do in response to the task. Because the “Counting One Hundred 
Seventy-two” lesson (University of Illinois at Chicago 2008) included possible 
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student responses, we wanted to see how PSTs took those up. The third question 
assessed PSTs’ reading of a specific phrase of text rather than a more general over-
view. We selected that particular phrase, as it seemed to be one that could be (and 
was) interpreted in a variety of ways.

Evaluating

4. When thinking about student learning, what are the strengths and weaknesses of 
this lesson?2

5. From the perspective of the teacher who has to prepare for and enact this lesson, 
what are the strengths and weaknesses of this lesson plan?

6. Does this lesson have multiple entry points? In other words, is the task accessible 
to a wide-range of learners? Explain.

Questions 4 and 5 were asked to understand how PSTs distinguished between stu-
dent learning and teacher learning within the context of curriculum materials and to 
determine the strengths and weakness from both viewpoints (student and teacher). 
Educative curriculum materials are meant for both student and teacher learning. We 
wanted PSTs to be able to appropriately evaluate tasks and implement those tasks 
for student learning, but we also wanted PSTs to notice the educative features of 
the materials and/or how the materials provide support. Question 6 addressed PSTs’ 
evaluation of the materials by asking them to assess the lesson against the concept 
of “multiple entry points.” PSTs had discussed the idea of multiple entry points in 
class; therefore, we wanted to grasp how they understood and used that construct in 
their evaluation of curriculum materials.

Adapting

7. Would you make any changes to the lesson before teaching it? If so, what would 
they be?

8. Another pair of students represented 172 with 6 groups of 25 and had 22 left 
over. What would you say to or ask these students after they have shared their 
solution?

9. During this lesson, these were the correct solutions that you saw and were shared:

1. 172 individual tallies
2. 34 groups of 5 with 2 left over
3. 6 groups of 25 with 22 left over
4. 17 groups of 10 with 2 left over
You still have 15 min of class after students share their representations of 172. 

What would you do with the remainder of class time? Why?

2 We have used lesson and lesson plan interchangeably.
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The last three questions allowed PSTs to describe the ways in which they might 
adapt the lesson after having read and evaluated the curriculum materials as well 
as respond to a particular solution strategy. Question 7 was broad in asking what 
changes PSTs might make to the lesson. We were interested in the different ways 
PSTs might think about adapting curriculum materials. The eighth question was 
designed to understand how PSTs might respond to a particular solution. This solu-
tion was not given as an example in the materials, but is still a strategy that students 
might devise. Jacobs et al. (2010) found that teachers with and without profes-
sional development on children’s mathematical thinking struggled with responding 
to children’s thinking in ways that build on that thinking. Finally, the last question 
was twofold. First, the question asked PSTs to respond to children’s mathematical 
thinking. Second, the materials provided some guidance for teachers regarding what 
to do with the remaining time: “If time permits, try other numbers with the class” 
(University of Illinois at Chicago 2008, p. 36). We were interested in PSTs’ ideas 
about how to use this “extra” time as a way of adapting the materials.

Each survey question was analyzed separately through a process of open and 
emergent coding (Strauss and Corbin 1998). Through this process, a set of codes 
was generated that illustrated the type of survey responses. Questions were split be-
tween the two authors and analyzed by the authors individually. Reliability was not 
established due to the pilot nature of the study. Codes are presented in our results 
section. Our goal at this point is to understand how PSTs read, evaluate, and adapt 
a Standards-based lesson.

Results

We present results from the nine survey questions, organized by sections for read-
ing, evaluating, and adapting curriculum materials.

Reading Curriculum Materials

PSTs’ goals (Question 1) for teaching the 172 lesson were categorized using three 
primary codes. Responses were categorized as procedural if they focused on count-
ing/grouping; as conceptual if they focused on the understanding/meaning of num-
ber and/or place value; and as with connections3 if there was explicit mention of 
making connections across multiple strategies and/or representations. Responses 
could be any combination or all of the above three codes, which led to six types of 
goal responses. Table 1 summarizes the responses to Question 1.

In the curriculum materials, the goals were listed as the following:

3 Here, we are using “with connections” differently than Stein and Smith (1998). We are refer-
ring to PSTs having a procedural and/or conceptual goal with connections across strategies and/
or representations.
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• Representing numbers greater than 100 using manipulatives, pictures, symbols, 
and words

• Grouping and counting objects by ones, tens, and hundreds. (University of Il-
linois at Chicago 2008, p. 33)

Using our coding scheme, the goals given in the curriculum materials would be 
categorized as procedural with connections, which makes these results particularly 
interesting to us. We conjecture that the curriculum authors had a conceptual pur-
pose in mind when writing these goals, but that purpose was not explicit in the 
materials. Identifying a conceptual goal for the lesson required a significant amount 
of interpretive work while reading the lesson, and we found that many of the PSTs 
(15/33) did engage in that work.

In Question 2, PSTs were asked to consider solutions that a teacher might see 
as the result of this lesson. In the “Counting One-Hundred Seventy-two” lesson, 
example student solutions for representing 125 were provided. We wanted to see 
if PSTs used that information to anticipate student solutions for representing 172. 
Therefore, we applied the solutions given in the textbook for 125 and used them 
to anticipate solutions for 172, which we provide in Fig. 1. In Table 2, we provide 
counts of which solutions given in Fig. 1 were anticipated by PSTs, as well as other 
strategies anticipated by PSTs.

As Table 2 indicates, many of the 34 PSTs mentioned three of the four solutions 
applied from the lesson plan text, with “seventeen groups of 10 and one group of 
two” as the solution mentioned the most. Interestingly, no one mentioned the “72 
more than 100” solution. In addition to the solutions provided by the text, PSTs 
mentioned several other solutions. Individual beans or tallies were mentioned by 

Table 1  Responses to Question 1 (goal question)
Number of PSTs Type of response Example
7 Procedural Counting and grouping objects that are greater than 100
11 Procedural with 

connections
Students will be able to represent numbers greater than 

100 using manipulatives and words. Students will be 
able to group objects by ones, tens, and hundreds

3 Conceptual My goals for this lesson would be for the students to 
understand what three-digit numbers mean and to be 
able to talk about and explain them

1 Conceptual with 
connections

To have students talk about the meaning of a number, 
represent a number by a picture, and use different 
objects to represent a number

5 Procedural and 
conceptual

As the teacher, my specific goal for this lesson would 
be that the students group numbers between 101 and 
199 in a way that shows that they understand place 
value

6 Procedural and 
conceptual with 
connections

Understanding place value, hundreds, tens, and ones. 
Being able to break numbers into parts and recognize 
they belong to a whole representing numbers with 
pictures or symbols grouping and counting objects 
by ones, tens, and hundreds



10 T. J. Land and C. Drake

almost half the PSTs, which was not too surprising given that the text provided in-
formation about that solution path in a different section (see Question 3). In looking 
at how many PSTs mentioned solution paths applied from the lesson plan text, other 
solutions, or both, we found that seven PSTs mentioned solution paths applied from 
the text only, four mentioned other solutions only, and 23 mentioned both.

There was a wide range of responses for Question 3, which asked PSTs to inter-
pret the following statement: Even though counting by ones is an inefficient strat-
egy, it works if done carefully. Each response was coded with one or more of the 
following codes: better ways if the PST stated there were “better ways” to count or 
represent 172 than counting by ones; specific limitation(s) if the PST stated one or 
more limitations of counting by ones; another strategy if the PST suggested another 
strategy that students should use; it works if careful if the PST stated the strategy 
works, but students need to be careful; count by ones if the PST discussed that it is 
expected that some students will count by ones to represent 172; and acceptable 
strategy if the PST seemingly took a stance for students who wanted to use that strat-
egy. Table 3, along with text after the table, summarizes the responses to Question 3.

One group of 
100, two 

groups of ten, 
and �ive 

leftovers or 
ones

One group 
of 100, 
seven 

Twelve groups 
of ten and one 
group of �ive

Seventeen 
groups of 

25 more than 
100

72 more 

Two groups of 
�ifty and 25 

more

Three 
groups of 

�ifty and 22 

Fig. 1  Solutions for 125 ( first row) and anticipated solutions for 172 ( second row)

 

Table 2  Responses to Question 2 (student solutions)
Solutions applied from lesson plan text Frequency of PSTs
One group of 100, seven groups of ten, and two leftovers or ones 15
17 groups of ten and one group of two 25
72 more than 100 0
Three groups of 50 and 22 more 11
Other solutions Frequency of PSTs
172 individual beans or tallies 15
Groups of 5 11
Groups of 25 7
Groups of 2 4
Groups of 20 2
Other (e.g., 2 groups of 86, 100 + 50 + 10 + 10 + 1 + 1) 17
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Of the 21 PSTs who stated one or more specific limitations of the counting-by-
one strategy, five mentioned another strategy students could use (e.g., grouping 
larger numbers) and six mentioned that the strategy works if it is done carefully. Of 
the seven PSTs who stated that there are better ways to count 172, three also men-
tioned specific limitations of the strategy, while another mentioned the strategy was 
acceptable. Of the six PSTs who thought it would be expected for students to count 
by ones, one PST also said that it was okay to do. In this set of findings, PSTs tended 
to focus on the limitations of the strategy—the first phrase in the selected text: Even 
though counting by ones is an inefficient strategy—rather than on the second part of 
the sentence, which states that the strategy works if done carefully.

Evaluating Curriculum Materials

In Question 4, PSTs were asked to list the strengths and weaknesses of the 172 
lesson for student learning. For this response, we developed a set of 12 codes that 
categorized ideas listed as strengths or weaknesses. Table 4 lists the code and how 
many times it was mentioned as a strength and weakness. (The parenthetical com-
ments describe why a PST thought the code was a weakness. For instance, two PSTs 
thought lack of teacher direction was a weakness.)

Although the PSTs listed a wide range of strengths and weaknesses, we can 
identify some important themes in looking across their evaluations of the lesson. 
First, the PSTs focused a great deal on the students’ role in the lesson, with “stu-
dent directed” and “multiple strategies” as the most common strengths. The most 

Table 3  Responses to Question 3 (interpreting a phrase)
Number of PSTs Type of response Example
21 Specific limitations This means that it takes longer to count three-

digit numbers by ones, and is more prone to 
mistakes because of the tediousness of the 
strategy

7 Better ways Counting by ones is not the quickest way to 
assess a large number of items. It does work, 
but there are better ways to do it

6 Counts by ones It is expected that some students will count by 
ones even though the number is so large. When 
it states, “it works if done carefully,” I think 
they are saying that it is ok that students do that

4 Acceptable strategy The purpose of this lesson is counting 172, not 
grouping 172. If the student’s method is count-
ing by ones and they are getting the correct 
answer, then they are completing the lesson. 
From this foundation, you can build with them 
an understanding of grouping and they may 
change their method of counting as they grow 
older
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commonly noted weaknesses were in the structure of the lesson (e.g., the lack of 
an opening routine, the use of worksheets) and that the lesson was perceived as too 
challenging for some students and not challenging enough for others. Finally, many 
aspects of the lesson that were viewed as a strength by some PSTs were also viewed 
as a weakness by other PSTs, suggesting that PSTs vary widely in their evaluations 
of lessons.

PSTs were also asked to list the strengths and weaknesses of the lesson from the 
perspective of the teacher (Question 5). Similar to Question 4, we developed a set of 
codes that categorized ideas listed as strengths or weaknesses (Table 5).

The most frequently reported ideas were ones that focused on student learning 
and not on teacher features within the lesson plan. Due to the focus on student 
learning, there were limited responses about teacher aspects. Of those, however, we 
can see that the PSTs focused mostly on the preparation required for the lesson and 
whether the lesson was easy to follow.

Responses to the sixth question about whether the 172 lesson had multiple entry 
points were first sorted into yes or no categories. Eight PSTs did not think the lesson 
had multiple entry points and all eight stated that this was because only one number 
was given for students, although some of the eight noted that this number could 

Table 4  Responses to Question 4 (strengths and weaknesses for students)
Code Frequency as strength Frequency as weakness
Student directed 14 4
Multiple strategies 15 1
Lesson structure 3 10
Interactions 10 2
Too challenging or not challenging enough 0 11
Concrete 8 1 (Abstract)
Differentiation—lack of/can be/cannot be 7 2
Assessment 4 4
Number choice 1 3
Teacher directed 2 2 (lack of)
Affective (e.g., enjoyable, comfortable) 3 0
Connection to real life 1 2 (lack of)
Connection to more advanced mathematics 1 0

Table 5  Responses to Question 5 (strengths and weaknesses for teacher)
Code Frequency as strength Frequency as weakness
Beneficial (e.g., engaging)/unsuitable for 

students (e.g., low-level task) in some way
19 15

Preparation 13 5
Easy to follow/not enough detail 11 8
Teacher can observe or has freedom/too 

much freedom
8 2

Differentiation 1 2
Other teacher aspects (e.g., hard to factor 

time, no model)
0 3
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be adjusted by the teacher, as in the example response in Table 6. Twenty-three of 
the 34 PSTs thought that the lesson did have multiple entry points. For those 23 re-
sponses, a set of codes was developed to describe PSTs’ reasoning. A response was 
coded as student develops/uses own strategy if the PSTs discussed that the students 
could develop or use their own strategy to represent 172; number can be changed if 
the PST thought the number could be changed to meet the range of learners in the 
classroom; and count by ones if the PSTs discussed the idea that if students could 
count by ones to represent 172, then the lesson had multiple entry points. Table 6 
summarizes these responses.

All but three responses could be categorized by the codes in Table 6. Of those 
three responses, one talked about targeting multiple learning styles, another men-
tioned the teacher being able to ask students to count in a certain way, and the third 
suggested that the lesson did a good job of providing manipulatives. Another find-
ing was that four PSTs suggested alternative number choices as in the first example 

Table 6  Responses to Question 6 (multiple entry points)
Number of PSTs Yes/no Type of response Example
8 No Only one number 

choice and/or would 
change number

There is only one number choice 
provided for the students to work 
with and it is in the high range of 
the 100s. Thus, I would provide addi-
tional number choices of one slightly 
above 100 like 112 and another 
number choice in the middle (e.g., 
132) to provide access to a greater 
range of ability levels

14 Yes Student develops/uses 
own strategy

There are multiple ways to draw 172 
beans, but there really is not a clear 
“solution.” They already know there 
are 172 beans and have to draw 
them. The only difference will be 
how they drew it

4 Yes Number can be 
changed

For slower or higher learners, you 
could adjust the number of beans to 
an easier or more difficult number, 
and give more or less support to the 
students as needed

3 Yes Students develops/
uses own strategy 
and number can be 
changed

I think the lesson has multiple entry 
points. The lesson does not spe-
cifically give a way to illustrate 
the number. I think students could 
represent it in a lot of different ways. 
Because of the number, the lesson 
may be harder for lower-level stu-
dents. I would adjust the number for 
a different range of learners

2 Yes Count by ones As long as students know the numbers 
above 100 and can count by ones, 
then yes it is accessible to wide-
range learners
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in Table 6. Many PSTs focused on the idea of offering multiple choices as a way to 
provide multiple entry points for students, or PSTs focused on the idea that students 
could develop their own strategies. Three PSTs thought a combination of those two 
ideas provided multiple entry points.

Adapting Curriculum Materials

Eleven PSTs would not make any changes to the given lesson. The remaining PST 
responses fell into three categories: would provide multiple number choices, would 
change aspects of the lesson that did not affect the overall approach in lesson, and 
would practice a model beforehand or give example. Table 7 summarizes responses 
to Question 7.

The most frequent adaptation ( n = 11) was to provide multiple number choices. 
Seven other PSTs thought they would change aspects of the lesson that did not 
affect the overall approach in the lesson, and four wanted to provide a model or 
example before the students began to work.

Question 8 pertained to how PSTs might question students as they engaged with 
the 172 lesson: Another pair of students represented 172 with 6 groups of 25 and 
had 22 left over. What would you say to or ask these students after they have shared 
their solution? Responses were categorized according to which aspect of the solu-
tion PSTs questioned. In a few instances, a PST questioned multiple aspects of the 
solution. Table 8 summarizes the foci of PSTs’ questions.

Table 7  Responses to Question 7 (what changes would you make?)
Number of PSTs Type of response
11 Would make no changes
11 Would provide multiple number choices
7 Would change aspects of the lesson (e.g., add opening routine, count 

something more meaningful to students) that did not affect overall 
approach in the lesson

4 Would practice a model beforehand or give example

Table 8  Responses to Question 8 (questioning students about solution strategy)
Number of PSTs Foci of question
8 Questioned if there was another way to group or represent the leftover 22
7 Questioned students as to why they used groups of 25
4 Questioned if there was another way to group or represent 172 due to hav-

ing 22 left over
4 Asked another type of question about the strategy (e.g., any patterns)
3 Questioned students as to why they used groups of 25 and if there is 

another way to group or represent the leftover 22
2 Questioned if there was another way to group or represent 172
2 Questioned if there was a way to consolidate the groups of 25
3 Other
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Most interesting to us was how PSTs reacted to the leftover 22. Eleven PSTs 
(first and fifth rows) asked if there was another way to group or represent the left-
over 22 even with the other groups of 25 as in this response: “I would say, ‘How can 
we group the leftover 22 in an organized way? How could we split those 22 beans 
into 5 groups?’” Another four PSTs wanted students to regroup the 172 entirely due 
to the leftover 22 as in the following response: “Could you have made less groups 
of more beans in order to not have so many left over?” Two others wanted students 
to consolidate their groups of 25.

Quite opposite from the disdain for the grouping-by-25 strategy was the connec-
tion one PST, who fell in the “other” category, made to money:

That’s another great idea as we know that just like in a dollar there are 4 quarters (25), right? 
(relating it to a real life situation) then break it down further like 2 quarters in 50 cents, so 
there would be 22 ones left over (if you are thinking in those terms).

The other responses seemed not to value or disvalue the grouping of 25 strategy, as 
PSTs just asked students to explain why they grouped by 25 or if there was another 
way to group or represent 172. The intent of these responses may have been to sup-
port or extend student thinking.

Finally, Question 9 asked PSTs how they would use the remaining 15 min of 
class after multiple student solutions had been shared. The question also asked PSTs 
to share a rationale for their use of this time. After reading through each of the 34 
responses, we identified five distinct activities proposed by the PSTs, as listed in 
Table 9.

Some of the 34 responses included more than one of these activities. Of these, 
some suggested engaging students in more than one of the activities during the 
15 min, while others provided two different possibilities along with (sometimes) the 
criteria they might use for choosing between these possibilities. If a PST’s response 
included more than one activity, we coded for both activities, so that the total num-
ber of suggestions in the second column of Table 9 is 42, more than the number of 
PST responses ( n = 34).

The first two activities, identified by the majority of PSTs, seem most appropri-
ate to us in terms of following the suggestion provided in the curriculum materials 
and building on children’s mathematical thinking. The last two activities (general 
discussion and math game) do not contradict the goals of the lesson, but they are 

Table 9  Responses to Question 9 (use of extra time)
Number of PSTs Suggested activity
15 Try multiple strategies with another number

Either teacher or students choose new numbers
Either for practice or trying other students’ strategies

12 Lead a discussion on shared strategies
Includes finding patterns or connections across strategies

11 Direct students to use a specific strategy
Usually focused on grouping by 50 or 100

2 Lead a general discussion of place value
2 Have students play a math game
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less closely related to those goals. Finally, the third activity, “Direct students to use 
a specific strategy,” seems to run counter to the overall approach indicated in the 
lesson, as well as contradicting, more generally, an approach to teaching that builds 
on children’s mathematical thinking.

Discussion and Implications

In thinking about a trajectory toward expert curriculum use, our results—combined 
with what we have learned from the research presented in the literature review—
provide us with some preliminary trajectory levels. Schwarz et al. (2008) writes 
that learning progressions4 specify “how knowledge and practices can be built over 
time, by articulating successively more sophisticated versions of the knowledge” 
(p. 2). In the remainder of this section, we will illustrate how our findings from the 
questions and responses presented above inform a trajectory of increasingly sophis-
ticated instances of curriculum knowledge and use, particularly for PSTs.

Results from the goals question (Question 1) provide us with a clear initial tra-
jectory. At the initial levels, PSTs stated procedural goals only. Goal statements 
were more sophisticated if they mentioned making connections across multiple 
strategies and/or representations, had a conceptual focus, or had both a procedural 
and conceptual focus. At the highest level, PSTs wrote goal statements that included 
a procedural and conceptual focus and mentioned making connections.

It is interesting to consider this progression of goal statements in light of Brown’s 
(2009) framework related to the ways in which teachers offload, adapt, or improvise 
when using curriculum materials. Our analysis process found that the goal state-
ments provided in the materials were coded as procedures with connections and that 
was the code with the most frequency ( n = 11 or 33 %) in PSTs’ responses. In these 
instances, PSTs offloaded the goal statements. In the other cases, PSTs adapted the 
statements. Some of these adaptations lowered the level of sophistication, as when 
PSTs omitted the element of “connections” from their goals; other adaptations in-
creased the sophistication beyond the provided goals by adding a focus on concep-
tual, as well as procedural, goals.

Not all curriculum materials, however, provide goal statements in the same man-
ner as Math Trailblazers. For instance, consider the following goal statement from a 
third-grade lesson of Investigations (TERC 2008): “Solving addition problem with 
2-digit numbers that involve more than 10 in the ones place and explaining the ef-
fect on the sum” (p. 44). Because this goal has a conceptual (explain the effect on 
the sum) and procedural focus (solving addition problems with two-digit numbers), 
offloading would be more appropriate than adapting unless that adaption included 
making connections. Our point is to indicate that knowing when to offload, adapt, 
and improvise is an important aspect of being an expert curriculum user, and that 

4 We are using the terms progression and trajectory as synonymous.
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the choice of which strategy (offloading, adapting, or improvising) is most sophisti-
cated will vary based on the particular lesson or set of materials teachers are using.

The results related to the student solution question (Question 2) also contribute 
to our development of the trajectory. Of the four given solutions, no PST mentioned 
the third solution of 72 more than 100, which led us to believe that PSTs did an 
analysis of the given solutions and thought that solution unlikely or uninteresting—
or that they did not understand that strategy. Some PSTs applied solution strategies 
given in the materials to a new number, while some considered other likely strate-
gies, and others did both. It is unclear if the PSTs who only considered other likely 
strategies did not attend to the ones given in the materials, or if they were expanding 
upon that solution set. Either way, being able to apply and generate solutions is the 
most sophisticated response, with not attending being the least.

Empson and Junk (2004) found that teachers’ knowledge of children’s solution 
strategies could be linked to their use of curriculum materials. Our results from 
Question 3 indicate that PSTs know something about the counting-by-ones strategy 
(either from previous knowledge or from reading the text): some students may use 
it, it is inefficient, and it works. PSTs’ interpretations of the phrase, however, dif-
fered. While we want PSTs to learn something about children’s strategies, accepting 
and building on those strategies as well as not trying to impose other strategies on 
students is also important (Jacobs and Ambrose 2008). Therefore, PSTs who did 
both—learn something about and honor students’ strategies—are demonstrating 
knowledge at the most sophisticated level. Question 8 (responding to a student strat-
egy) reiterates the honor and accepting aspect of this level, as most PSTs showed 
obvious disdain for or acceptance of the grouping by 25s solution.

Several prior studies have found that PSTs have varying levels of success in us-
ing constructs provided in class to evaluate curriculum materials (e.g., Beyer and 
Davis 2009; Lloyd and Behm 2005; Nicol and Crespo 2006). Each of these studies 
used different constructs with which PSTs were to evaluate curriculum materials. 
For the purpose of generating a trajectory, we use the term evaluation constructs 
to reflect any construct used in such a manner. In Question 6, the evaluation con-
struct of multiple entry points was, in part, used by all PSTs. Some recognized the 
limitation of only one number choice, while others recognized that students could 
develop their own strategies. Three PSTs recognized both aspects. Further, some 
of those who recognized the number choice limitation stated that they would adapt 
the lesson by providing alternate number choices. Therefore, we assert that limited 
use to full use of an evaluation construct, as well as pairing an adaption within the 
construct, represents increasing sophistication.

Educative features in curriculum materials are meant for teacher learning (Da-
vis and Krajcik 2005), but those features are supportive only if PSTs attend to and 
understand the intent of those features. “Counting One Hundred Seventy-two” pro-
vides educative features (e.g., student solution examples, lesson description, infor-
mal assessment strategies) within the lesson, which provides the opportunity for 
teacher learning. Many PSTs focused on student learning even when asked about 
strengths and weakness for the teacher. Other PSTs focused on features that at-
tended to the supports for the procedural aspects of the lesson (e.g., preparation). At 
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the most sophisticated level, PSTs focused on educative features (Davis and Krajcik 
2005)—features meant for teacher learning. In these cases, PSTs noticed that teach-
ers are provided with an occasion to observe students at work within the lesson and/
or the lesson is adaptable to fit students’ needs.

Finally, taken together, the results from Questions 7 and 9 provide us with some 
considerations about PST adaptations. In both questions, a few PSTs indicated that 
they would provide a model or direct students to a particular strategy either before 
or after the student exploration time, which we contend is the lowest level of so-
phistication. Using Seago’s (2007) Categories of Adaptation—fatal, no impact, and 
productive—we classified this type of adaptation as fatal, because it is “contrary to 
the basic design or values of the materials” (p. 25). Adapting the lesson in ways that 
are not clearly related to the lesson goal, such as incorporating math games, reflects 
a middle level of sophistication, which is likely to have no impact. The remainder 
of the responses to these two questions cannot be sorted into varying levels of so-
phistication, as they all represent reasonable choices and adaptations in the enact-
ment of this lesson, particularly given that the PSTs were planning this lesson for an 
abstract, generalized group of students. Using Seago’s Categories of Adaptation, we 
would classify these types of adaptations as potentially productive.

Based on the above analyses, as well as the research provided in the literature re-
view, we have generated a curriculum knowledge and use trajectory (Fig. 2). To be 
clear, the trajectory describes levels of knowledge and practices related to particular 
aspects of the use of curriculum materials. The trajectory cannot be used to describe 
individual PSTs, as it is possible that one PST might demonstrate knowledge and 
practices at multiple levels simultaneously. We present our trajectory as a construct 
map (Wilson 2005, 2009). “A construct map is a well thought out and researched 
ordering of qualitatively different levels of performance focusing on one charac-
teristic” (Wilson 2009, p. 718). The figure should be interpreted as increasingly 
sophisticated knowledge about the domains, which are organized by bullet points. 
For instance, the first bullet point in each level is about the goal statements. Because 
the levels are organized around teaching domains, a PST could be in differing levels 
for each of the domains.

Conclusion

Our investigation into PSTs’ curricular knowledge allowed us to begin to elaborate 
a trajectory of curriculum knowledge and use for PSTs (Fig. 2). In particular, we 
learned that PSTs could take supports given in the materials and use them in produc-
tive ways and, at times, even go beyond the materials. For instance, several PSTs 
provided goal statements that went beyond the sophistication of those given in the 
materials. At the same time, some PSTs interpreted supports in ways that did not 
necessarily align with the intent of the lesson. It is not surprising to find that PSTs’ 
curricular knowledge and use are varied, but specifics about that variation will help 
mathematics teacher educators (MTEs) and researchers support PSTs’ curricular 
knowledge development.



19Understanding Preservice Teachers’ Curricular Knowledge

The curriculum knowledge and use trajectory is an initial depiction of the devel-
opment of expert curriculum use knowledge and practices. Further additions and 
refinement are needed. Specifically, we do not know how generalizable this trajec-
tory is to other curriculum series or even to other lessons within the Math Trailblaz-
ers series. For instance, goal statements may be presented differently in any given 
set of materials (as we discussed earlier), making use of the various series different. 
Additionally, not all materials provide support in helping teachers anticipate stu-
dent solutions, or the supports are designed differently, causing differences in how 
they are read, which would have implications for how they are applied (Tyminski 
et al. 2013). It seems likely that both the design of the materials and the capacity of 
the individual using the materials contribute to observed levels of curriculum use 
knowledge and practices. In other words, a PST (or practicing teacher) could exhibit 
very high levels of curriculum use when using one set of materials and lower levels 
when using another set of materials. The question of whether curriculum knowl-
edge and expert curriculum use are generalized or curriculum-specific constructs 
remains an open question.

Nonetheless, this study represents a first step in the development of a measure 
of expert curriculum use. These survey questions and our findings about the range 
of PSTs’ responses to the questions can help researchers to further develop the con-
structs of curriculum use and curricular knowledge, through an understanding of 

• Provides procedural goal statements with or without connections

• Does not attend to student solutions given in the materials

• Makes limited use of evaluation constructs

• Focuses on supports for student learning only

• Implements fatal adaptations

• Provides conceptual goal statements with or without connections

• Attends to and anticipates student solutions given in materials

• Makes full use of evaluation constructs

• Focuses on teacher supports for enacting the procedural aspects of 
the lesson

• Implements adaptations with no impact

• Provides procedural and conceptual goal statements with or 
without connections

• Anticipates and analyzes student solutions given in materials and 
generates additional possible solutions; Attends to student solutions 

given in the materials and honors those solutions  

•
adaptations

•

Level 1

Level 2

Level 3

Fig. 2  Curriculum knowledge and use trajectory
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ways in which PSTs read, evaluate, and adapt curriculum materials. At the same 
time, these findings might support MTEs in designing learning experiences for 
PSTs that contribute to the development of PSTs’ curriculum use practices. For in-
stance, the survey questions and trajectory can help MTEs design course activities 
and anticipate PSTs’ responses to those course activities. Additionally, the trajectory 
can help MTEs design interventions that will prompt them to respond to course 
activities in increasingly sophisticated ways. Ultimately, these questions, and others 
like it, can be used to understand PSTs’ growth in knowledge and practices as they 
progress through teacher education courses and programs.

Appendix A: Survey Questions

1. Reading

a. As a teacher, what would be your specific goal(s) for your students’ learning 
with this lesson?

b. Write a short (2–4 sentences) summary of the lesson.
c. What is the teacher expected to do in this lesson?
d. What are the students expected to do?
e. What kinds of solutions do you think a teacher might see?
f. How would you assess this lesson?
g. On page 37 in the first bullet point under the assessment heading, the lesson 

plan states, “Even though counting by ones is an inefficient strategy, it works 
if done carefully.” What does that mean?

2. Evaluating

a. When thinking about student learning, what are the strengths and weaknesses 
of this lesson?

b. From the perspective of the teacher who has to prepare for and enact this les-
son, what are the strengths and weaknesses of this lesson plan?

c. Does this lesson have multiple entry points? In other words, is the task acces-
sible to a wide-range of learners? Explain your answer.

d. Are strategies to find representations of 172 to be generated by the textbook/
teacher or the student? Explain.

e. What would be an ideal solution to this task? What would a child have to do 
or say exactly to convince you (the teacher) that he/she has mastered your 
learning goals?

3. Adapting and Children’s Solutions

a. Would you make any changes to the lesson before teaching it? If so, what 
would they be?

b. A student starts making individual tallies, but stops at 45 and states that, “172 
is too many.” What would you say to or ask of this student?
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c. A student has mistakenly made 163 individual tallies. What would you say to 
or ask of this student?

d. When asking students to share their solutions, the first pair of students repre-
sented 172 with 34 groups of 5 tally marks and had 2 left over. What would 
you say to or ask these students after they have shared their solution?

e. Another pair of students represented 172 with 6 groups of 25 and had 22 left 
over. What would you say to or ask these students after they have shared their 
solution?

f. During this lesson, these were the correct solutions that you saw and were 
shared:
1. 172 individual tallies
2. 34 groups of 5 with 2 left over
3. 6 groups of 25 with 22 left over
4. 17 groups of 10 with 2 left over

You still have 15 min of class after students share their representations of 172. 
What would you do with the remainder of class time? Why?
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In his description of paradigms for research on teaching, Shulman (1986a) called for 
a focus on teacher knowledge. With particular reference to mathematics, Ball et al. 
(2001) responded to Shulman’s call by pointing out that research using  traditional 
measures of teachers’ content knowledge (e.g., degrees obtained or  mathematics 
courses taken) “leaves obscured the nature of teachers’ knowledge” (p. 443). In-
stead, they argued that research needed to focus on a particular kind of mathematical 
knowledge—mathematical knowledge for teaching (MKT). This MKT is knowl-
edge of mathematics used in doing the work of teaching and it includes, but also 
goes beyond, the pedagogical content knowledge that Shulman (1986b)  himself 
had proposed. The theoretical and empirical work on Ball et al.’s brand of MKT 
that followed has been vast, showing, among other things, that the  possession of 
MKT can be measured, that MKT is held differently by teachers and non-teachers, 
that MKT is held differently by teachers of higher-grade level experience than those 
of lower grade-level experience, that it makes a difference in students’  learning, 
and that scores on MKT correlate with scores on an observation measure of the 
mathematical quality of instruction (Hill et al. 2004, 2005, 2008b). The work of 
that group constructing measures of MKT has been concentrated mostly on the 
 mathematical knowledge of elementary and middle school teachers (Hill 2007; Hill 
and Ball 2004); a more recent effort has developed MKT items in algebra (Mark 
Thames, personal communication, June 15, 2011).
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The purpose of this chapter is to report on a parallel effort to use the same approach 
to develop an instrument that measures mathematical knowledge for  teaching high 
school geometry (MKT-G). While we recognize that other approaches to MKT at 
the secondary level have started from conceptualizing it independently (e.g., Adler 
and Davis 2006; Even 1990; McCrory et al. 2012; Saderholm et al. 2010; Silver-
man and Thompson 2008; see also Steele 2013), we have preferred to start from the 
conceptualization by Ball et al. (2008). While all of the other conceptualizations had 
compelling features, none of them had accumulated as critical a mass of empirical 
research as the MKT approach spearheaded by Ball and Hill. Furthermore, only the 
approach by McCrory et al. (2012) had been developed in a way that supported the 
creation of measurement instruments, and their approach did not seem to examine 
elements of pedagogical content knowledge that we saw as important to consider. 
Thus, our effort has attempted to follow the theoretical conceptualization of MKT 
and the item development procedures of Ball and Hill’s group, even though, as we 
suggest below, we anticipated that some specification of MKT might need to be de-
veloped to respond to instructional demands specific to courses of study at the high 
school level. This chapter describes how we developed MKT-G items, provides 
pilot data that compares high school teachers with and without experience teaching 
geometry in terms of their possession of MKT-G as measured by selected items, 
and uses these results to raise some questions about the instruction specificity of 
the notion of MKT.

A crucial element in our development of items to measure MKT-G has been 
Ball et al.’s (2008) conceptualization of the different domains of MKT. According 
to Ball et al., the mathematical knowledge used in teaching can be conceptualized 
as the aggregation of knowledge from six domains. Our work focuses on four of 
these domains: common content knowledge (CCK), specialized content knowledge 
(SCK), knowledge of content and teaching (KCT), and knowledge of content and 
students (KCS). CCK is the mathematical knowledge also used in settings other 
than teaching, including, for example, knowledge of canonical methods for solving 
the problems teachers assign to students. SCK is knowledge of mathematics used 
particularly in doing the tasks of teaching, such as, for example, the knowledge 
teachers need to use in writing the problems they will assign to students or in figur-
ing out “whether a nonstandard approach would work in general” (Ball et al. 2008, 
p. 400). KCT is defined as a combination of knowledge of teaching and knowledge 
of mathematics and includes the knowledge needed to decide on the best examples 
and representations to use for given instructional objectives. KCS includes a blend 
of knowledge of mathematics and of students’ thinking, such as the capacity to 
predict what students might find confusing or what kind of errors students might 
make when attacking a given problem. In our effort to construct measures of MKT-
G, we developed items that purport to measure each of those four domains—CCK, 
SCK, KCT, and KCS. Ball et al. also include horizon content knowledge (HCK) 
and knowledge of content and curriculum (KCC). At the time we started work on 
our MKT-G instrument, we felt that the KCC and HCK domains needed further 
 conceptualization and that there were not sufficient examples of HCK and KCC 
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items at other levels of schooling that could allow us to create analog items to mea-
sure teachers’ knowledge of those domains in high school geometry.

Ball and Hill’s Learning Mathematics for Teaching (LMT) project has developed 
items that measure the different domains of MKT and, over time, has paid attention 
to different content strands, including number and operation, patterns, functions and 
algebra, and geometry. These instruments have also included items that purport to 
measure mathematical knowledge for teaching middle school mathematics as well 
as for teaching elementary school mathematics. The extensive item development 
has yielded numbers of validated items that can be put together into forms that as-
sess MKT for particular content strands. But there has not been, as of yet, a system-
atic development of items to measure MKT in different content strands or deliberate 
theoretical consideration about how content-strand differentiation might interface 
with the domains of MKT (Heather Hill, personal communication, February 8, 
2012). As we think about conceptualizing and measuring mathematical knowledge 
for teaching high school mathematics, it is important to ponder whether and how 
the specific practice of teaching particular high school mathematics courses should 
be considered and featured in the process of designing measures of the mathemati-
cal knowledge for teaching those courses. In this chapter, we present our begin-
ning attempts to conceptualize such instruction specificity, within the framework 
of MKT, by reporting on our development of an instrument to measure MKT-G. It 
is worth elaborating briefly on what we mean by instruction specificity here, since 
it is obvious that Ball et al.’s (2008) conceptualization of MKT is already rooted 
in a notion of instruction as the interactions among teacher, students, and content 
in environments (Cohen et al. 2003). As explicated in Herbst and Chazan (2012), 
we use instruction along similar lines, to allude to teacher–student transactions of 
knowledge. While instruction names that phenomenon in general, we expect that 
the nature of the knowledge at stake (as represented in syllabi and textbooks of a 
year- or semester-long course of studies) makes instruction specific (that is, shapes 
the nature of the transactions of knowledge that take place). Thus, a first approxima-
tion to the question of what an instruction-specific MKT looks like is to ask, what 
is the MKT that a teacher would need in order to teach a given course of studies? 
Thus, our purpose to design an instrument to assess MKT-G is concerned not with 
geometry as a mathematical domain but with high school geometry as a course of 
studies; we posit that similar approaches need to be taken regarding high school 
algebra and other such courses of study (further approximations might also consider 
specification to particular groups of students, particular environments, and particu-
lar “kinds” of teaching).

Our interest in MKT originated from our attempts to contribute to a theory of 
mathematics teaching that accounts for what teachers do in teaching in terms of a 
combination of, on the one hand, individual characteristics of practitioners and, on 
the other hand, practitioners’ recognition of the norms of the instructional situations 
in which they participate and of the professional obligations they must respond to 
(Herbst and Chazan 2011, 2012). This effort contributes to a long-term agenda that 
seeks to understand the work of teaching in specific instructional systems, such 
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as high school geometry. Our earlier work had been dedicated to conceptualizing 
and grounding (through examining records of intact classrooms and of instructional 
interventions) the didactical contract in geometry (Herbst 2002, 2003) and instruc-
tional situations in geometry (Herbst 2006; Herbst et al. 2009, 2010). In the context 
of that work, we developed a proposal for the description of teachers’ actions and 
decisions as responses to norms of the role teachers play in activity systems (such 
as didactical contracts and their instructional situations) and obligations of the po-
sition of mathematics teacher in an institution (Herbst and Chazan 2012). In that 
context, we had asked the question of how individuals’ MKT combines with their 
recognition of professional obligations and of norms of an instructional situation in 
accounting for the decisions they make in classroom events framed by those norms. 
The present chapter was part of a larger effort to develop measures of the constructs 
that we had contributed (particularly recognition of norms and obligations), as well 
as measures of other constructs that would allow us to estimate the resources pos-
sessed by individual teachers.

Development of the MKT-G Instrument

The conceptualization and disciplined approach to measuring MKT spearheaded by 
Ball and Hill (Ball et al. 2008; Hill and Ball 2004) provided us with important guid-
ance for the development of MKT measures. This guidance included not only the 
conceptualization of the domains and some heuristics for how to create items, but 
also an awareness of the complexity of the task ahead. In the interest of proceeding 
toward our goal by taking manageable steps, we also followed the example from 
Ball and Hill’s group in developing multiple-choice and multiple-response items 
as opposed to constructed-response or open-ended items. The following sections 
describe the work we did to develop an MKT-G instrument.

Constructing Items for MKT-G

Our item development process covered a relatively wide range of topics from the 
high school geometry course. We consulted curriculum guidelines in various states 
and on that basis sought to develop items dealing with definitions, properties, and 
constructions of plane figures, including triangles, quadrilaterals, and circles; paral-
lelism and perpendicularity; transformations; area and perimeter; three-dimensional 
figures; surface area and volume; and coordinate geometry. Those topics by them-
selves provided sufficient guidelines to create items of CCK. But the definitions of 
the MKT domains, particularly the definition of SCK, call for items that measure 
knowledge of mathematics used in the tasks of teaching. To draft these items, we 
found it useful to create a list of tasks of teaching in which a teacher might be called 
to do mathematical work. The list included elements such as designing a problem 
or task to pose to students; evaluating students’ constructed responses, particularly 
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student-created definitions, explanations, arguments, and solutions to problems; cre-
ating an answer key or a rubric for a test; and translating students’  mathematical state-
ments into conventional vocabulary. Teachers of different courses of mathematical 
study might engage in those tasks of teaching, but as we sought to draft these items, 
we noted that those tasks of teaching could call for different kinds of mathematical 
work depending on specifics of the work of teaching geometry. For example, the task 
of designing a problem would involve a teacher in different mathematical work if the 
designed problem were a proof problem versus a geometric calculation. While the 
former might involve the teacher in figuring out what the givens should be to make 
sure the desired proof could be done, the latter might involve the teacher in posing 
and solving equations and checking that the solutions of those equations represented 
well the figures at hand. Thus, while a list of generic tasks of teaching was useful to 
start the drafting of items, this list appeared to grow more sophisticated with atten-
tion to tasks that are specific to different instructional situations in geometry teaching 
(Herbst et al. 2010). As we note below, this observation led to interest in comparing 
responses to items that were differently related to instructional situations in geometry, 
and to making some conjectures about the organization of the MKT domains.

The tasks of teaching were also useful in drafting items that measured KCT. To 
draft these items, we used as a heuristic the notion that the item should identify a well-
defined instructional goal and the possible answers should name mathematical items 
that, while correct in general, would be better or worse choices to meet the specified 
goal. For example, teachers often need to choose examples for the concepts they 
teach. While different examples might be mathematically correct, they might not all 
be pedagogically appropriate to meet particular instructional goals. One example may 
be better than others if the instructional goal is to show a first or canonical example, 
while another example may be better if the goal is to illustrate an extreme case.

Finally, to create items that measured KCS, we were attentive to the definition 
provided by Ball et al. (2008) and especially sought to draft items that tested for 
knowledge of students’ errors and misconceptions (Hill et al. 2008a). As in the case 
of other domains, there were specifics of the high school geometry class that shaped 
the items we developed. Thus, while we did create items that probed for teach-
ers’ knowledge of students’ misconceptions about geometric concepts (e.g., angle 
 bisector), we also created items that probed for their knowledge of students’ mis-
conceptions about processes or practices that are specific to geometry—such as the 
notion that empirical evidence is sufficient proof (Chazan 1993) or that definitions 
are exhaustive descriptions (Herbst et al. 2005).

Our research group drafted and revised an initial set of questions, including 
13 CCK, 20 SCK, 26 KCT, and 16 KCS questions; this drafting and revision process 
relied, among other things, on general guidance and comments on specific items 
by Deborah Ball, Hyman Bass, Laurie Sleep, and Mark Thames.1 The questions 
drafted took the form of multiple-choice items, as well as multiple-response items 
within a single question (e.g., a single stem with 3–4 yes/no questions following).

1 Daniel Chazan, a co-PI of this project, was also involved in design discussions. Individuals 
 involved in the drafting of items, in addition to the authors, included Michael Weiss, Wendy Aaron, 
Justin Dimmel, Ander Erickson, and Annick Rougee.
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Teachers’ Interpretations of MKT-G Items

Our items were submitted to a process of cognitive pretesting (Karabenick et al. 
2007), which assesses the degree to which participants interpret items in the manner 
intended by those who wrote them. This process involved interviewing experienced 
geometry teachers ( n = 11) as they completed the items. Teachers were asked to read 
the item prompt (or stem) and then tell us what they thought the item was asking 
them to do. The teachers would then be asked to select their response and tell us 
why they selected the option they did.

Responses to these prompts were used to examine the content validity of the 
items, as well as to improve such validity. We coded teachers’ responses in regard to 
whether the stem was interpreted as intended, as well as whether the justification for 
their response was mathematical and/or pedagogical in nature. The vast majority of 
items were found to be interpreted as intended, with a subset of items being revised 
in accordance with evidence from the data. For example, one KCT item’s stem was 
revised to make a provided theorem more explicit in the description of the task of 
teaching. The original and revised wordings of the stem are presented in Table 1.

In the original stem’s wording, the base angles theorem is presented explicitly, 
but we found that some teachers’ justifications for their responses did not focus as 
much on the theorem as anticipated. In reexamining the stem, we observed that the 
task of teaching was directed to choosing a proof for a theorem, but included some 
distracting wording (e.g., a special naming of that theorem, the description of the 
response options as sketches of proof). While seemingly minor, the revised wording 
centers the task of teaching (choosing a proof for the theorem) more clearly within 
the context of the base angles theorem. To further improve the way the item targeted 
the intended MKT domain of the stem, we also changed the question from a multiple-
response format to a multiple-choice format and noted that the proofs were all valid.

All items were revised in accordance with evidence from the cognitive  pretesting 
data to improve interpretability and validity. While we conducted cognitive  pretesting 
as a means of identifying potential miscues in our items, the process also provided 

Original wording (before cogni-
tive pretesting)

Revised wording (after cogni-
tive pretesting)

While preparing to teach the 
theorem that says that base 
angles of an isosceles triangle 
are congruent, Ms. Gomez is 
pondering which among the 
following, valid mathemati-
cal proofs to use with her 
9th grade geometry students. 
Given the following sketches 
of proofs, which ones would 
help students understand why 
the base angles theorem is 
true?

Ms. Gomez is preparing to 
teach the theorem that says 
that base angles of an isos-
celes triangle are congruent. 
She is pondering which 
among the following, valid 
mathematical proofs to use 
with her 9th grade geometry 
students. Of the valid proofs 
below, which one is the least 
appropriate for Ms. Gomez 
to use with her students in 
explaining why the theorem 
is true?

Table 1  Revisions to KCT 
item stem following cognitive 
pretesting
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some preliminary evidence as to the construct validity of our items. Specifically, 
teachers were consistently observed to describe the mathematics of an item in se-
lecting their response (approximately 95 % of the time). This was fairly consistent 
across all domains (CCK, SCK, KCS, KCT). Also, teachers were observed to refer 
to pedagogical issues much less frequently when focusing on CCK and SCK items 
(54 and 45 % of responses, respectively) than on KCS and KCT items (91 and 72 % 
of responses, respectively). This provided some evidence that items designed to 
measure KCT and KCS domains might indeed assess those aspects of pedagogical 
content knowledge, while items designed to measure the CCK and SCK domains 
might indeed assess content knowledge. Trends for particular items were used to 
inform revisions; for example, teachers did not discuss pedagogical issues at all for 
one KCT item, so this item was revised to appeal to such reasoning. The skewing 
of pedagogically related justifications in KCS and KCT items suggests a relatively 
good fit for most items per construct, even before these items were revised.

Piloting the Revised MKT-G Items

In July and August 2011, we piloted all MKT-G items revised from cognitive 
pretesting with a sample of 48 secondary mathematics teachers in a midwestern 
state. By design, each domain contained ten questions. These questions included 
multiple-choice and multiple-response formats. In examining the statistical reliabil-
ity of our questions, multiple-response questions were treated as multiple items, 
with the number of items per a multiple-response item dependent on the number 
of  accepted responses. Therefore, while each domain contained ten questions, dif-
ferent domains contained a different number of items for the purpose of statistical 
item analysis (CCK = 15; SCK = 29; KCT = 10; KCS = 10). In examining the fit of 
items for each separate domain, we used biserial correlations (Crocker and Algina 
2006) to measure item discrimination or how well the items discriminated between 
higher- and lower-scoring test takers. Biserial correlations were examined in con-
cert with item difficulty (percent of participants correctly answering the item) and 
Cronbach’s  alpha. This initial examination of the items allowed us to make some 
decisions regarding the removal of some items due to poor statistical fit. Particular-
ly, responses for some items had near-zero or negative correlations with the overall 
response patterns of other items per domain. Based on this preliminary examination 
and  pursuant to our goal to discard items that did not perform well, we removed 
46.9 % of all items from the MKT-G item pool and retained 34 items, with the intent 
to collect additional data to confirm the reliability of the retained items.

Items were removed for various reasons. Some had low discrimination power; 
they lacked an ability to distinguish between lower- and higher-scoring participants 
per domain. Other items that performed poorly had apparent liabilities, such as  being 
too long or having response options that were too similar to each other; these liabili-
ties had been somewhat anticipated in the cognitive pretesting process. For example, 
one KCT item prompted teachers for the most appropriate feedback to provide a 
student in regard to an answer the student had presumably provided on a test. The 



30 P. Herbst and K. Kosko

correct response was answered by 34 % of participants, but one distracter was chosen 
by 40 % of participants. While scores of the 34 % of participants were marginally 
higher than the 40 % who answered incorrectly on the popular distractor, this differ-
ence was not great enough to help the item discriminate between lower- and higher-
scoring participants. In principle, revisions might be made to improve the quality of 
those items. However, we were ever mindful of the time commitment necessary to 
complete our test, and chose to put revising those items aside for the time being. The 
retained 34 items comprised what we refer to in the remainder of this chapter as the 
MKT-G instrument. The items per domain ranged from 7 to 11 (CCK = 9; SCK = 11; 
KCT = 7; KCS = 7). See the Appendix for publicly released items.

Piloting the MKT-G Instrument

In May 2012, the MKT-G instrument was piloted with 35 secondary mathematics 
teachers in the mid-Atlantic region. For the purposes of the remainder of this chap-
ter, all data reported are pooled from both the Midwest and mid-Atlantic samples 
( n = 83). Questions from each domain were uploaded into the LessonSketch online 
platform (www.lessonsketch.org) and completed by participants, who took them 
either by coming in person to a computer lab (73 participants) or by responding 
to the items online from their homes or workplace (10 participants). We note that 
neither the midwestern nor the mid-Atlantic sample had participated in any special 
professional development related to geometry prior to completing the MKT-G in-
strument. Participants were predominantly females (67.5 %) and Caucasian (67 %). 
Other reported ethnicities included African American (13 %), Asian American 
(5 %), and other (16 %). Participants varied in the amount of mathematics teaching 
experience ( M = 14.55, SD = 9.75) and mathematics content courses taken in college 
( M = 11.27, SD = 6.08). Regarding geometry-specific experience, 60.2 % of partici-
pants were classified as experienced geometry teachers because they had taught ge-
ometry for 3 years or more ( M = 4.57, SD = 4.55), and teachers had taken an average 
of 1.70 college-level geometry content courses ( SD = 1.41).

While we later discuss MKT geometry in terms of a single score that we have found 
to have sufficient reliability, we briefly discuss item analysis and preliminary compari-
sons by domain (CCK, SCK, KCS, KCT). Such a description is not generalizable in na-
ture, but provides interesting points of reference for later discussion and investigation.

Analyzing the MKT-G Instrument by Domain

We reexamined item fit on the smaller subset of items using biserial correlations 
(with a threshold of 0.30) as one indicator for reliability in each domain. Item dif-
ficulty in CCK ranged from 20.5 to 92.3 %. Item difficulty in SCK ranged from 21.7 
to 88.0 %; in KCT it ranged from 18.1 to 48.3 %, and in KCS it ranged from 15.7 to 
73.5 %. We also calculated Cronbach’s alpha to provide preliminary data  regarding 

http://www.lessonsketch.org
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reliability of each domain on its own (Table 2). While the alpha coefficients are 
not as high as desired (they are below the typically accepted threshold of 0.70), 
these statistics provided us with valuable information regarding future steps, should 
we choose to focus specifically on assessing particular domains in the future. One 
explanation for lower reliabilities in some domains is related to both the range in 
difficulty of items and the number of items per domain. For example, SCK, which 
has acceptable reliability ( α = 0.65), had a large range in item difficulty, but also had 
the most items (11); KCS had a much lower alpha coefficient, mainly due to having 
fewer items. Therefore, a more detailed study of KCS would require us to construct 
additional items of varying difficulty levels.

Correlations between the domain scores are presented in Table 3 and suggest 
moderate to strong relationships between the different domains. These results show 
similar trends to those found by Hill et al. (2004) for CCK and KCS, which suggests 
that the different domains are, to a degree, interrelated. Thus, these correlations 
encourage thinking of a single MKT-G measure made of aggregating the scores per 
domain. The use of items from different domains to make that single score helps 
argue that the MKT-G instrument assesses the MKT construct as conceptualized by 
Ball et al. (2008).

We also examined correlations, by MKT domain, with teaching experience in 
general and with experience teaching high school geometry in particular, as well 
as with college coursework in mathematics (we did not collect specific information 
about education classes taken or geometry topics covered in education classes be-
cause we did not anticipate enough variability in this number to warrant  examining 
correlations). The correlations with experience and mathematics coursework (shown 
in  Table 4) are preliminary. However, they provide an intriguing picture of how 
 teachers with  different experiences hold knowledge for teaching geometry and 
suggest that MKT-G may be learned from experience teaching geometry. These 

Domain M SD N α
aCCK—Geometry 0.66 0.20 83 0.58
bSCK—Geometry 0.59 0.21 83 0.65
cKCT—Geometry 0.39 0.21 83 0.50
dKCS—Geometry 0.38 0.25 83 0.49
a Common content knowledge
b Specialized content knowledge
c Knowledge of content and teaching
d Knowledge of content and students

Table 2  Descriptive statistics 
by MKT domain

CCK SCK KCT KCS
CCK – – – –
SCK 0.40*** – – –
KCT 0.36** 0.54*** – –
KCS 0.69*** 0.48*** 0.43*** –
*p < 0.05, **p < 0.01, ***p < 0.001

Table 3  Correlations 
between MKT-G domain 
scores
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results show that neither the total number of mathematics courses nor geometry 
courses  taken in college correlate with MKT-G scores. Likewise, years of experience 
 teaching mathematics in general also show near-zero correlations. However, for each 
domain in MKT-G, there are indications of a relationship with experience teaching 
the geometry course. Therefore, it seems that the MKT-G instrument may measure 
a domain of knowledge specifically related to the teaching of high school geometry.

Preliminary Evidence for Trends in Teachers’ MKT-G

The previous section discussed preliminary findings for each domain (CCK, 
SCK, KCT, KCS) using raw scores. In order to better understand how teachers’ 
 demonstrated understandings of MKT-G as a single construct were affected by 
varying background factors, we constructed scores using Item Response Theory 
(IRT). Therefore, discussion of scores and item statistics in this section examine 
MKT-G as a single construct (i.e., CCK, SCK, KCT, and KCS items are pooled to-
gether). While it may also be useful to construct IRT scores for specific domains of 
CCK, SCK, KCT, and KCS, more items would need to be included to better  assess 
the possible variance in each specific domain. Since more items mean a longer, 
lengthier test, we elected not to take such an approach at this time.

As Crocker and Algina (2006) describe:
With item response theory the test developer assumes that the responses to the items on a 
test can be accounted for by latent traits…[that] accounts for the responses to items on a 
test. At the “heart” of the theory is a mathematical model of how examinees at different 
ability levels for the trait should respond to an item. (p. 339)

This latent trait is represented by the statistic theta (θ), which is calculated both for 
particular items and as a test score for particular individuals. Where classical test 
theory approaches take the percent correct on a test as the indicator for the latent 
trait being measured, IRT takes into account that some items are more difficult than 
others, and thus a raw score is not the most accurate measure of the latent trait (see 
Chap. 15 in Crocker and Algina 2006 or Wilson 2005, for introductions to IRT). We 
borrowed from approaches used by the Learning Mathematics for Teaching (LMT) 
project group led by Deborah Ball (Hill et al. 2004, 2008a) and used a 1-parameter 
IRT model, which is mathematically equivalent to a basic Rasch model. According 

Table 4  Correlations between domain scores and experience and coursework
Years experience Content coursework
Years teaching 
mathematics

Years teaching 
geometry

Total math 
courses

Total geometry 
courses

CCK-G − 0.06 0.38*** − 0.05 − 0.02
SCK-G 0.09 0.35** 0.05 0.04
KCT-G 0.04 0.19a − 0.00 − 0.05
KCS-G − 0.02 0.25* 0.10 0.08
ap < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001
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to Linacre (1994), a minimum sample of 50 examinees is sufficient for obtaining 
estimates for a basic Rasch model, which our sample ( n = 83) exceeds.

Results from our IRT modeling show sufficient item reliability (0.96) and person 
reliability (0.82). Item reliability indicates how well our survey distinguishes between 
easier and more difficult items, and is generally considered acceptable if above 0.90. 
Person reliability indicates how well our survey distinguishes between groups of peo-
ple (e.g., lower and higher scorers), and is generally considered  acceptable if above 
0.80. Possible θ scores for individuals on the MKT-G ranged between − 5.50 (low 
 demonstrated MKT-G) and 5.45 (high demonstrated MKT-G). A person who scores 
zero demonstrates an average level of MKT-G. Such an individual would have a 50 % 
chance of correctly answering an item with θ value zero (that is, an item of average 
difficulty), but would have a greater chance of correctly answering items of lower θ 
values (and smaller chance of correctly answering items of higher θ). For our sample, 
participants’ overall scores ranged from − 2.27 to 3.43 ( M = 0.19, SD = 1.03). This sug-
gests that our sample did not contain individuals who had extremely high (− 5.50) or 
low (5.45) θ scores. However, the mean is near zero and the standard deviation approxi-
mately 1.00, which are fairly good indicators of an assessment providing good data.

Building on our preliminary evidence from trends in the individual domains, 
and incorporating our IRT scores to ensure a more accurate depiction of demon-
strated MKT-G, we conducted a multiple regression to examine the effect of being 
an “ experienced” geometry teacher (3 or more years of experience) on MKT-G 
scores. To account for other potential factors, we included a dummy-coded variable 
indicating whether participants came from the mid-Atlantic or midwestern regions 
(course background and general experience were not considered given their near-
zero correlations in the previous section). This regression equation is shown below. 
As modeled, the intercept, β0 represents the average score of non-experienced ge-
ometry teachers (less than 3 years) who are from the Midwest.

0 1 2( ) ( )MKTG ExperiencedGeometry dMidAtlantic eβ β β= + + +

Analysis showed that the model is statistically significant ( F( df = 2) = 9.10, p < 0.001) 
with an r2 of 0.19. Accounting for all independent variables, teachers who lack 
 experience in teaching geometry and are from the Midwest had slightly lower 
than average MKT-G scores ( β0 = − 0.10, p = 0.58), but this was not found to be 
significantly different from an average score of zero. Being from the mid-Atlantic, 
regardless of experience, was found to have a negative effect on MKT-G scores 
( β2 = − 0.39, p < 0.10). Accounting for the effect of geographic location, having at 
least 3 years of experience teaching high school geometry was found to have a 
statistically  significant and positive effect on teachers’ MKT-G scores ( β1 = 0.78, 
p < 0.001). Further, as this effect is approximately three quarters of a standard de-
viation unit, it is quite large. These results suggest that participants who have 3 
or more years experience teaching high school geometry are more likely to have 
higher θ scores on the MKT-G instrument. The large size of the effect is double that 
of the negative effect associated with our mid-Atlantic sample; thus, experienced 
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geometry teachers from the mid-Atlantic sample still appeared to have significantly 
higher MKT-G scores than non-experienced geometry teachers from either region.

As with the examination of the domain-specific correlations in the previous 
section, this analysis builds on our emerging understanding of teachers’ MKT-G. 
First, there is evidence of potential differences in MKT-G performance depending 
on geographic location and, as noted before, none of these groups had participat-
ed in any special professional development that might account for the differences 
found. While it may be tempting to make conjectures regarding this finding (e.g., 
to suspect that demographic factors might account for those differences), it seems 
more reasonable for a larger sample to be collected in the future so that school- and 
district-level factors can be accounted for more accurately. What we can say about 
such findings is that where a teacher teaches may affect his or her demonstrated 
MKT-G. If, as the data suggest, experience teaching geometry matters in teachers’ 
MKT-G scores, it is reasonable to expect that institutional differences may account 
for some of the variance, just as demographics may. Second, while a sizeable effect 
attributable to geographic location was found, the effect associated with being an 
experienced geometry teacher was a much stronger predictor of a teacher’s MKT-
G score. We believe this to be an important finding that could be influential for 
teacher education practice (e.g., how to organize courses that teach mathematical 
knowledge for teaching to prospective high school teachers) and departmental prac-
tices in schools (e.g., how to staff different mathematics courses in a high school). 
Obviously, such possible practical implications hinge not only on replication of 
this finding but also on institutional, moral, and political considerations that only 
policymakers and practitioners of particular locales can make. In what follows, we 
explore some of the theoretical consequences of this finding.

Relationships Between MKT-G Scores  
and Teaching Experience

Our interest in MKT contributes to a larger project that investigates the influence that 
individual factors (such as MKT) and socialization to the work demands of teaching 
a particular high school course (in this case, high school geometry), as indicated by 
teachers’ recognition of instructional norms and professional obligations, have on 
the decisions that teachers make (see Herbst et al. 2013a, 2013b, for accounts of our 
attempts to measure teachers’ recognition of norms). A question we posed to the 
pilot data discussed here is: What is the relationship between MKT-G and experi-
ence teaching high school geometry? To answer it, we correlated scores for each 
domain with teachers’ general and geometry-specific background,  including years 
of experience teaching high school and college mathematics courses completed. 
Noticing the consistent relationship between teachers’ geometry-specific teaching 
experience and their MKT-G scores in each domain, we created and analyzed IRT 
scores to confirm this relationship.
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Our findings indicated that having 3 or more years of experience teaching geom-
etry had a statistically significant and positive effect on teachers’ MKT-G scores. 
This effect was sizeable at approximately three-quarters of a standard  deviation. To 
a certain degree, our findings support those by Hill (2010), who observed a near-
zero correlation between elementary teachers’ MKT scores and their general years 
of teaching experience. Our findings also suggest a similar near-zero correlation for 
general teaching experience. Yet, regarding general years of teaching experience, 
neither our findings nor those by Hill (2010) match those of Hill’s (2007) examina-
tion of middle school mathematics teachers where (among other things) she found 
that middle school teachers with more years of experience teaching mathematics 
tended to possess higher levels of teaching-specific mathematical knowledge. What 
is intriguing is that in both of Hill’s studies, specialized forms of experience (i.e., 
more experience teaching mathematics at higher grade levels) were found to have 
highly significant correlations to MKT scores. What Hill’s findings have in com-
mon with ours is that when teachers have more experience at teaching the content 
in depth, they demonstrate higher MKT scores. Therefore, these results suggest that 
while teaching experience may affect MKT-G scores, it is the particular experience 
of teaching the geometry course that matters. To the extent that MKT is the knowl-
edge of mathematics used in the work of teaching, the results lead us to ask how 
the specifics of the instructional work a teacher does in a course matter in the MKT 
the teacher has: How do the specific demands of the work of geometry instruction 
create opportunities for teachers to learn this mathematical knowledge?

MKT and Instructional Situations

In our earlier and parallel work (Herbst and Chazan 2012), we have argued that 
the particular nature of the didactical contract (Brousseau 1997) for a course of 
studies creates conditions of work that make the teaching of a specific course 
(e.g., high school geometry) different than the teaching of other mathematics  courses 
(e.g., Algebra I). Taken together, the findings presented throughout this chapter 
seem to suggest that teachers of high school geometry have more MKT-G than other 
secondary mathematics teachers, with the difference not seemingly  accountable to 
general experience teaching secondary mathematics or to the mathematics courses 
teachers took in their college education. While at one level one might not find these 
results surprising, the fact that three of the four domains of MKT we tested for 
(SCK, KCT, and KCS) are defined as mathematical knowledge used in the work of 
teaching raises questions for future inquiry.

One interesting finding from cognitive pretesting may suggest future direc-
tions for exploring the nature of how MKT-G is developed among teachers.  Recall 
that teachers participating in cognitive pretesting were experienced geometry 
teachers. In providing justifications for their responses, it was anticipated that 
the domains of KCT and KCS would elicit a sizeable portion of pedagogically 
related comments, which they did. What is interesting is that approximately half 
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of the justifications in CCK and SCK also elicited pedagogically related com-
ments. While such evidence is limited in its breadth, when we take such evidence 
in context with the other data presented in this chapter—in particular that there 
was no correlation between the number of geometry courses taken in college and 
participants’ scores on CCK and SCK—it seems that the specific experience of 
teaching geometry is important for all domains. That is, the nature of the work 
of teaching geometry may be more influential than academic knowledge of the 
geometry domain. Thus, there is reason to ask the question of how the specific 
instructional work a teacher does in the high school geometry course might matter 
in the MKT the teacher has.

As we noted above, the current conceptualization of MKT has not addressed theo-
retical differentiation within MKT domains according to the content of courses of stud-
ies: How might MKT domains be organized? An easy way of thinking about that dif-
ferentiation could be by deferring to the way the discipline of mathematics organizes 
the topical content of items—items involving mathematical topics of the same branch 
of mathematics might be thought of as indicators of knowledge of a well-defined re-
gion of an MKT domain. But that approach seems to apply consistently with the way 
MKT is defined only to the domain of CCK. To the extent that the other domains are 
defined in relation to the work of teaching, it is plausible that specification within each 
domain will also require considerations of the specifics of the teaching involved and 
not only of the mathematical topics referred to. Indeed, it is not immediately obvious 
that combining general notions in the definitions of the domains (e.g., that KCS in-
cludes knowledge of misconceptions) and mathematical domain-specific topics (e.g., 
pentominoes, a topic that can be filed under geometry within the discipline of math-
ematics; see Tracy and Eckart 1990) would produce items that validly represent math-
ematical knowledge for teaching high school geometry. For example, it might be pos-
sible to create an item that asked about students’ errors working with pentominoes, but 
one would have to question the extent to which such knowledge really plays any role 
in the actual work of teaching high school geometry. We posit instead that elements of 
MKT need to be identified from the specific work of mathematics instruction in given 
courses of studies, rather than by the pairing of generic features of instruction with lists 
of mathematical topics from mathematical domains.

The results from this study suggest that the teaching of high school geometry 
may entail specific mathematical knowledge demands. We would like to argue that 
those specific knowledge demands are not solely dictated by the mathematical top-
ics that feature in the curriculum, but rather by the specifics of the actual work of 
teaching a course of studies (i.e., course-specific instruction). In what follows, we 
elaborate the argument using some item-to-item comparisons from our data.

Course Specificity in SCK

SCK is defined as the knowledge of mathematics used in doing the tasks of teach-
ing. This definition seems operational to us, while an alternative one floating in the 
literature (that SCK consists of that knowledge of mathematics that nobody else 
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but teachers use) is not so operational. The definition we chose is not completely 
without problems, but it permits creating items without having to establish the truth 
of an empirical negative proposition—that no one other than teachers has the same 
knowledge, which seems quite hard to verify. Our chosen definition is problematic 
in that it generates some overlap with CCK. For example, one task of teaching is 
to create answer keys for problems given to students, and such mathematical work 
involves (among other things) knowledge of canonical concepts and procedures, 
which is, by definition, part of CCK. In developing our SCK items, we have tried 
to stay away from that overlapping area or to emphasize not so much what the an-
swer is but actually how the answer should be represented (e.g., writing an answer 
key that students would read, which would entail mathematical work less common 
outside of teaching if one thinks about the teacher’s work of deciding what steps 
must be displayed vs. what steps can be taken without displaying them). Consider-
ing our definition of SCK as the mathematical knowledge used in doing the tasks 
of teaching, we speculate on whether and how a course-specific version of SCK is 
warranted.

We grant that it is possible that not all SCK may be course specific, in that some 
tasks of mathematics teaching may be generic, even if they involve doing some 
mathematics. The task of creating a grading system, to take an extreme example, 
involves a teacher making a mathematical model that feeds from grades in indi-
vidual assignments; but there is no reason for this mathematical work to be differ-
ent for teachers of different high school mathematics courses, and quite often high 
school mathematics teachers use the same system across all mathematics courses 
they teach. There may be other such tasks of teaching that involve similar math-
ematical work, no matter in what mathematics course they are engaged. We are not 
so interested in those tasks of teaching.

Instructional Situations We are interested in other tasks of teaching where course 
specificity is likely to shape the meaning of “task of teaching.” Some tasks of teach-
ing are amenable to generic statement (e.g., choosing the givens of a problem for 
students, checking on the correctness of what students wrote as they showed their 
work on a problem), but they may involve practitioners in different mathematical 
work depending on the specifics of the task (e.g., choosing the numbers for a word 
problem to be given in Algebra I involves the teacher in different mathematical 
work than the work he or she might be involved in when constructing a geometric 
diagram to include among the givens in a geometry worksheet). Are those differ-
ences merely differences in mathematical domain (algebra vs. geometry), or do 
they also reflect differences in the activity systems to which those tasks of teach-
ing contribute? We argue for the latter and bring in for such purpose the notion of 
instructional situation (Herbst 2006).

Instructional situations are frames for the exchange of specific work done in a math-
ematical task for a claim on an item of knowledge at stake in the course of studies. 
For example, in Algebra I, when a student responds to 2x + 1 = x + 5 by subtracting x 
and subtracting 1 from both sides of the equality, the teacher has some evidence to 
claim that the student knows a method for the solution of equations in one variable. 
Instructional situations try to capture the folk notion that every item of knowledge to be 
learned has one or more problem types or canonical tasks used to teach it and assess it. 
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Instructional situations frame such exchanges by establishing norms for the elements 
involved—norms that specify what those mathematical tasks look like, what doing 
those tasks means, who has to do each component of the task, etc., as well as norms 
that specify what knowledge is at stake. In earlier work (e.g., Herbst and Chazan 2012), 
we have proposed that while some of those exchanges of work for knowledge may be 
done ad hoc (e.g., negotiated), many exchanges go without saying because they are 
framed by instructional situations (i.e., participants abide by the norms of a situation). 
These instructional situations are course specific, which means more than mathematics 
specific. The roles of teacher and student in regard to exchanges of work for knowledge 
vary depending on whether the exchanges happen in one or another course, though the 
work done or the knowledge at stake may exist in both courses. For example, proper-
ties of geometric figures are the subject of studies in elementary and middle school 
grades as well as in high school geometry, but these properties are studied differently 
in high school geometry—that is, through engaging in different mathematical work. To 
assert that students (have had the opportunity to) know those properties, a high school 
geometry teacher needs to see students at work on mathematical tasks that are specific 
to the high school geometry course (e.g., constructing quadrilaterals, calculating mea-
sures of quadrilaterals, doing proofs about quadrilaterals). Reciprocally, some tasks 
like answering the question “What is a rhombus?” might appear not only in high school 
geometry but also in an earlier grade, but the knowledge at stake in that question for 
each course of studies is likely to be different. While a high school geometry teacher 
is likely to put a premium on students’ knowledge of a set of necessary and sufficient 
conditions (e.g., the definition of rhombus), an elementary teacher might take students’ 
capacity to list true properties as evidence of knowledge and may not make much out 
of redundancy or conciseness.

We propose that the management of course-specific instructional situations in-
volves teachers in singular mathematical work. The teacher’s management of instruc-
tional situations includes, in particular, the choosing of the various mathematical tasks 
that students are to do, the observation of the proceeds (what students actually do), 
and the effecting of exchanges between such observed actions and the knowledge at 
stake (identifying at least for himself/herself, but possibly also publicly to the class, 
how what students have done indicates that they know the ideas at stake). While the 
definition of these tasks of teaching is general, the mathematical knowledge called 
forth in doing them would be different across different courses, as long as the specific 
exchanges were different. We expect that these differences between exchanges may 
ensue from different kinds of knowledge at stake, different kinds of students’ mathe-
matical work being transacted for such knowledge, or even different ways of effecting 
those transactions (for example, in attending to precision, a teacher might implement 
different mathematical sensibilities when  appraising students’  mathematical work 
 depending on whether that work is done in second grade or in Algebra I).

A case in point that helps argue that instructional situations matter comes from one 
SCK item in the MKT-G instrument. This was a multiple-response question with two 
testlets; the stem spoke of a teacher needing to choose algebraic expressions for the 
sides of an isosceles triangle where the students would be expected to find the lengths 
of the sides of the triangle after solving an equation. Each item provided algebraic 
expressions for the three sides and asked whether they were an appropriate set of 
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expressions. A quick examination of the responses to the item indicated that teachers 
with more or fewer years of experience teaching geometry (≥ 3 years and < 3 years, 
respectively) did not respond much differently for the item where the equation could 
not be solved. However, the two types of teachers’ responses did show differences for 
the item where the equation could be solved: The less experienced geometry teachers 
tended to answer that the set of expressions was appropriate, while the experienced 
geometry teachers tended to respond that the expressions were not appropriate. In 
fact, the numbers obtained after solving the equations of that set of expressions would 
not work well to represent the sides of a triangle in that the triangle inequality2 would 
not hold for those numbers. We conjecture that the experienced geometry teachers’ 
familiarity with the instructional situation of “calculating a measure” (Herbst et al. 
2010) mattered in their decision to check that the expressions would yield sides with 
positive lengths and that they would satisfy the triangle inequality. Our conjecture is 
not that the non-experienced geometry teachers did not know the triangle inequality. 
They may or may not know it and, in any case, that would be an example of CCK. We 
argue that the less experienced geometry teachers were less likely to know that the tri-
angle inequality had to be checked in doing the task of teaching of choosing algebraic 
expressions for the sides of the triangle, possibly because they saw the problem only 
as an exercise in algebra rather than also as an exercise on the geometry of triangles. 
More generally, we propose that an element of SCK specific to the instructional situ-
ation of “calculating a measure” is the knowledge that, when assigning numerical 
(or algebraic) values to some dimensions of a geometric figure (a task that teachers 
have to do every time they create such problems), one has to check that none of the 
geometric properties of that figure are refuted by the set of choices made. Even more 
generally, we conjecture that tasks of teaching that are subservient to instructional 
situations that are specific to a given course of studies (e.g., high school geometry) 
might involve teachers in mathematical work that teachers who are experienced in 
managing those situations would better know how to do than teachers who are not so 
experienced. Thus, we propose that the instructional situations of a course of studies 
are natural containers of elements of SCK.

Novel Tasks There is reason to suspect that SCK might include items of knowl-
edge other than those needed to manage the instructional situations of a course. In 
particular, a given course of studies is likely to include not only recurrent instruc-
tional situations framing familiar tasks but also novel tasks—tasks that may  deviate 
enough from what is customary that teacher and students need to negotiate what it 
means to work together to complete them (see Herbst 2003). We argue that those 
tasks might also call for special mathematical work on the part of the teacher 
(choosing the givens for a problem, interpreting what students do and say, etc.), and 
along the lines of the definition of SCK, that work could also imply the existence of 
 specialized knowledge. Is that SCK expected to be general to all mathematics teach-
ers or expected to be special to teachers of high school geometry?

The MKT-G instrument also included SCK items that referred to mathematical 
tasks that depart from ordinary instructional situations, but that address objects of 

2 The triangle inequality states that if a, b, and c are the lengths of the sides of a triangle, then 
a − c  <  b  <  a  +  c.
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study that are part of the geometry course. In one of those items, a multiple response 
question including two testlets, the participants were confronted with the scenario 
that a teacher had asked his geometry students to provide a definition of a figure that 
is ordinarily studied in the course. Participants were asked to consider two definitions 
purportedly proposed by students and decide whether they were correct, applied only 
to particular cases, or could only be consequences of a definition. We contend that 
this task is novel in that students are rarely asked to create definitions in high school 
geometry. Teachers of high school geometry, however, often consider definitions and 
distinguish them from other statements. Geometry teachers are confronted with the 
task of distinguishing between definitions and their consequences, for example, when 
they assess student proofs. Additionally, teachers do ask students to recall definitions 
for geometric concepts in tests and quizzes, and in such contexts they are likely to 
discriminate between definitions and other true statements about a concept. In con-
trast, in other courses the word definition is often used in much more relaxed way 
(i.e., defining is often used as synonymous with stating, describing, or clarifying; see 
Sinclair and Moss 2012; Zaslavsky and Shir 2005). Thus, we expected that teachers 
experienced in the teaching of the geometry course would do better on this item. 
Indeed, respondents who had experience teaching geometry were much less likely 
to respond to this item incorrectly than respondents who did not have experience 
teaching geometry. In particular, one of those testlets included a purported definition 
that, insofar as it expressed an element of the concept image of the figure under con-
sideration, could have been considered correct in earlier grades or by people whose 
notion of definition was more relaxed. More experienced geometry teachers were far 
more likely than less experienced geometry teachers to single that definition out as 
not being correct. Thus, while having students create their own definitions may be 
a novel task in most geometry classrooms, experienced geometry teachers seemed 
 better able to use their mathematical knowledge to handle student work. In contrast, 
in an item that asked teachers to assess purported student work in an area of geometry 
not commonly emphasized in high school geometry ( transformations) and on an item 
where they had to assess purportedly student-generated construction procedures for a 
figure whose construction is not often studied in the course, the differences between 
more and less experienced geometry teachers were not as marked (both groups were 
similarly likely to answer the item incorrectly).

Course Specificity in KCS and KCT

In regard to the other MKT domains of interest, one could ask the same theoretical 
question as above: How are those domains of knowledge organized? In particular, are 
they specific to the instructional practices of particular courses of study? We suggest 
that considerations of the nature of the instructional situations in the high school ge-
ometry course could lead to analogous differentiation within the domains of KCS and 
KCT as we argued for SCK. As in the case of SCK, we concede the possibility that 
some KCS and some KCT might be general to mathematics teaching, but we propose 
that instructional situations within a course of studies can help organize elements of 
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KCS and KCT that are specific to the teaching of that course of studies. In particular, 
it is reasonable to expect that experienced geometry teachers might have more KCS 
if this domain is assessed with items that probe for their knowledge of students’ 
conceptions and errors in tasks that are framed within the instructional situations of 
the high school geometry course, while they might have less KCS if the items con-
cern students’ conceptions or errors regarding geometric ideas that are not so central 
to the course. Among our KCS items, one item could be described as probing for 
knowledge of student errors in a task that is quite familiar to experienced geometry 
teachers (identifying the height corresponding to a given base of a given triangle), 
while another item could be described as not so familiar (determining the number of 
diagonals of a polygon of a large number of sides without access to the formula—a 
task that we would classify as novel because it is common for geometry students to 
calculate the number of diagonals of a polygon using the formula3). A quick glance 
at the responses to those items shows that the difference between the percentage of 
more and less experienced geometry teachers who answered the first item correctly 
is about three times the difference for the second item. That is, more experienced 
geometry teachers were a lot more aware than less experienced geometry teachers of 
the errors students could make in the first (familiar) task (about height of a triangle) 
than in the second (novel) task (about diagonals in a polygon)—despite the fact that 
both mathematical topics are equally common in the high school geometry course.

In inspecting the responses to KCT items, we found similar patterns. One item 
asked participants to choose a figure that would help a teacher show his or her stu-
dents that the converse of a theorem is not true, an activity that we judge to be quite 
common when teachers are installing theorems in the geometry class (Herbst et al. 
2011). Another item asked participants to choose among exploratory tasks the one 
that would best impress upon students that two geometric concepts (angle bisectors 
and diagonals) are different. The difference between the percentage of more and 
less experienced geometry teachers that answered the first item correctly was more 
than twice that difference for the second item.

Implications for Future Research

Clearly, the item-by-item commentary provided in the prior two sections cannot be 
taken as confirmation of any general trend, but it permits formulating conjectures 
that could be tested with more systematically constructed test forms. In particular, 
we conjecture that experienced geometry teachers would be more likely to answer 
correctly SCK items that involve a participant in doing mathematical work similar 
to the work they do in familiar instructional situations or that is related to an object 
of study that is a piece of the geometry course, than SCK items that concern geo-
metric objects less common in the high school geometry course or tasks that are not 
usually used in teaching or assessing an item of the knowledge at stake. We specu-
late that the same conjecture could be used to study how course specificity plays 

3 The number of diagonals in a polygon of n sides is n ( n − 3)/2.
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out in the case of MKT related to other high school courses of study, thus helping to 
think about how the domains of MKT could be organized.

The effort to discover an internal organization for each of the instruction-specific 
MKT domains is compelling theoretically. It could help us better understand the 
relationships between individual resources and situated activity—how different 
 individuals may be differentially prepared for taking the teacher role in different 
instructional systems. The notion of instructional situation as an organizing element 
for the knowledge in each domain could also be used in the construction of instru-
ments that measure the extent to which individuals are prepared to enact  instruction 
that departs from customary instruction—by creating items that require the practi-
tioner to engage in the kind of mathematical thinking needed to sustain tasks that 
more or less deviate from the thinking they need to do in customary instructional 
situations. From a more practical standpoint, the work of finding an internal or-
ganization to the MKT domains could inform the development of coursework in 
mathematics or mathematics education for future teachers, though such develop-
ment also needs to attend to many other considerations of an institutional nature that 
policymakers and practitioners in particular locales are expected to make.

Conclusion

The present chapter describes efforts to construct and validate an instrument that 
measures mathematical knowledge for teaching high school geometry. Our construc-
tion of the items in the MKT-G instrument paid attention to generic tasks of teaching 
and combined those with geometric content that is or could be taught at the high 
school level. The instrument worked relatively well and pilot data show correlations 
between scores in each of the domains KCT, KCS, CCK, and SCK, and the number 
of years of experience teaching geometry. The aggregate MKT-G scores are signifi-
cantly accounted for by years of experience teaching geometry, even when taking into 
consideration the significant effect of geographic region in which respondents taught. 
In contrast, neither years of experience teaching mathematics in general nor number 
of mathematics courses or geometry courses taken in college correlated with MKT-G 
scores. Our discussion of item-level differences in the sample, however, shows that 
experienced geometry teachers did not perform homogeneously—being much better 
than non-experienced geometry teachers in some items and not so much better in oth-
ers. Further, item development and testing of experienced geometry teachers can help 
us understand individual differences and the differential difficulty individual teachers 
have with elements of MKT. Our discussion of item-level differences in the sample 
supports a conjecture about how the three teaching-specific MKT domains organize. 
We conjecture that experience doing the work called for by customary instructional 
situations in a course of studies (such as geometry) organizes practitioners’ MKT 
more than the mere mathematical content of the items. This knowledge organization 
hypothesis can assist in item development that would allow for the study of individ-
ual differences among experienced geometry teachers and of the nature of expertise 
in mathematical knowledge for teaching geometry.
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Appendix: Released Items

Appendix: Released Items 

CCK released 
item

SCK released 
item

KCS released 
item

KCT released 
item
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Attention to the misapplication of proportional reasoning dates back to antiquity: 
Meno’s slave famously told Socrates that doubling the side lengths would double 
the area of a square. In recent decades, studies from many countries and with par-
ticipants ranging in age have documented the widespread, inappropriate application 
of direct proportion reasoning strategies in covariance situations (for a review, see 
Van Dooren et al. 2008). According to researchers involved in a recent special issue 
of Mathematical Thinking and Learning (Van Dooren and Greer 2010), however, 
the root psychological sources of this tendency remain unclear and pedagogical 
remedies to date have been unsatisfactory.

The large literature on proportional reasoning has concentrated primarily on 
students (e.g., Lamon 2007), but the handful of studies on teachers’ capacities to 
reason about proportional relationships suggests that, in many cases, teachers’ and 
students’ difficulties are similar. Post et al. (1991) administered a test to upper el-
ementary teachers consisting of items that, ideally, students should be able to solve. 
They were surprised by the low level of performance—for instance, less than half 
of the over 200 teachers could solve the following problem correctly: “Given 15 
squares and [the] fact [that the] ratio of blue to red is 2:3, how many blue [squares]?” 
(p. 189). In other studies, teachers have (a) had difficulty distinguishing missing-
value problems that describe proportional relationships from ones that do not (e.g., 
Cramer et al. 1993; Fisher 1988; Lim 2009; Riley 2010); (b) had trouble coordinat-
ing two quantities in a proportional relationship (e.g., Orrill and Brown 2012); (c) 
made inappropriate additive comparisons (e.g., Canada et al. 2008; Lim 2009; Son 
2010); and (d) had trouble conceiving of a ratio as a measure of a physical attribute, 
such as steepness or speed (Akar 2010; Simon and Blume 1994; Thompson and 
Thompson 1994). With respect to problem-solving strategies, teachers have relied 
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heavily on cross multiplication or other formal methods (e.g., Fisher 1988; Harel 
and Behr 1995; Orrill and Brown 2012; Riley 2010), guessed at operations (Harel 
and Behr 1995), and searched for key words (Harel and Behr 1995).

The present study builds most directly on results reported by Cramer et al. 
(1993), Fisher (1988), and Riley (2010). Cramer et al. (1993) reported that 32 out 
of 33 preservice elementary teachers solved the following task using the propor-
tion 9/3 = x/15: “Sue and Julie were running equally fast around a track. Sue started 
first. When she had run 9 laps, Julie had run 3 laps. When Julie completed 15 laps, 
how many laps had Sue run?” The relationship between the runners’ laps is not pro-
portional. Rather, they remain an equal distance apart: 9 − 3 = x − 15. Fisher (1988) 
reported that 12 out of 20 inservice secondary mathematics teachers did not solve 
the following problem correctly: “If it takes 9 workers 5 hours to mow a certain 
lawn, how long would it take 6 workers to mow the same lawn?” The common 
error was to set up a direct proportion such as 9/5 = 6/x. Instead, the relationship 
between men and minutes is inversely proportional, because the amount of work 
is constant: 9(5) = 6x. More recently, Riley (2010) found that in a sample of 80 
preservice elementary-grades teachers, less than 50 % solved constant difference 
and inverse proportion problems correctly. In the present study, we investigated 
preservice middle-grades teachers’ reasoning on tasks that also described constant 
difference, inverse proportion, and other relationships.

The present study contributes to research on teachers’ reasoning about propor-
tional relationships by not only documenting that preservice middle-grades teachers 
can have many of the same problems as students, but also providing new insight 
into why these problems can be persistent. In particular, we found several cases 
in which preservice teachers who correctly explained relationships between two 
quantities that were not direct proportions still tried to solve problems involving 
those quantities using direct proportions. To understand how this could occur, we 
used the coordination class construct (diSessa and Sherin 1998) developed as part 
of the knowledge-in-pieces epistemological perspective (e.g., diSessa 1993) to ana-
lyze knowledge resources that the preservice teachers used to judge whether the 
described relationship between two covarying quantities in a word problem was or 
was not a direct proportion. Our analysis suggested that novices decided to use the 
direct proportion equation based on different features of problem situations than 
experts would use.

The study contributes to research on proportional relationships more broadly 
by elaborating on a phenomenon that has been characterized as intuitive or impul-
sive responses to familiar missing-value problem presentations. For example, Van 
Dooren et al. (2010) examined the performance of Belgian sixth-grade students on 
tasks that described relationships that were and were not direct proportions. The 
authors attributed the pervasive misapplication of proportional reasoning strategies 
to “pupils’ superficial approach of word problems—jumping too quickly to the cal-
culating work and immediately reporting the outcome—rather than to being really 
unable to distinguish proportional from non-proportional word problems” (p. 34). 
Our findings suggest that recognizing direct proportions is more complex than read-
ing problem statements carefully.
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Theoretical Perspective

We employed the coordination class construct (diSessa and Sherin 1998) from 
the knowledge-in-pieces (e.g., diSessa 1993) epistemological perspective to gain 
insight into the performance of the preservice teachers with whom we worked. 
diSessa developed the knowledge-in-pieces perspective to explain emerging exper-
tise in Newtonian mechanics and emphasized multiple related processes including 
not only the construction of new knowledge elements but also the coordination of 
diverse knowledge elements and the extension or restriction of conditions under 
which particular elements may be applied productively. Conceptual change from 
this perspective is characterized as the piecemeal construction and reorganization 
of knowledge elements (e.g., diSessa and Sherin 1998; diSessa and Wagner 2005; 
Smith et al. 1993) as learners gradually navigate the continuum from novice to ex-
pert. One strength of the knowledge-in-pieces perspective is that it supports analysis 
when novices seem to reason incoherently or inconsistently within and across prob-
lem situations. A handful of studies have applied this perspective to students’ rea-
soning about mathematical topics, including functions (e.g., Monk and Nemirovsky 
1994; Moschovich 1998), fractions (Smith 1995), probability (Wagner 2006), and 
rectangular area (Izsák 2005). A second strength is that the perspective explicitly 
asks about the forms that cognitive structures can take. Coordination classes are 
one such form.

diSessa and Sherin (1998) proposed coordination classes as empirically verifi-
able cognitive structures useful for describing certain kinds of concepts, such as 
force. Coordination classes are “systematically collected ways of getting informa-
tion from the world” (p. 1171), and they allow a person to perceive instances of 
the same class among the diversity of features present within and across situations. 
Thus, coordination classes are specified in terms of performance and, among other 
things, provide tools for analyzing the Piagetian notion of assimilation as a com-
plex, unfolding process.

Coordination classes are comprised of two components, readout strategies and 
the causal net. Readout strategies allow one to “see” information in situations and 
involve coordination in two senses. First, a person might need to select and com-
bine multiple aspects within a given situation in order to perceive an instance of 
the class. This performance can be thought of as integration of information within 
the situation (p. 1176). Second, a person might deploy different combinations of 
knowledge resources to perceive instances of the same class across situations. This 
performance can be thought of as invariance (p. 1176), or transfer. Consistent with 
the general principles of the knowledge-in-pieces perspective described in the pre-
vious paragraph, one way that a person’s coordination class could evolve is through 
refinements in the contexts where readout strategies are deployed and the perceived 
reliability of those strategies (see Wagner 2006, for a detailed and vivid example 
of such refinement in the context of expected value and the law of large numbers). 
The causal net is made up of syllogism-like ways of inferring new information 
not directly available from readout. For example, someone might use the equation 
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F = ma to obtain information about acceleration from a situation that specified only 
force and mass (diSessa and Sherin 1998). Thus, a second way that evolution in 
a person’s coordination class could occur is through refinement in understanding 
what things cause or determine other things. diSessa and Sherin (1998) noted that 
determining whether a particular candidate is a coordination class—that is, whether 
the way people reason about a concept can be specified in terms of particular sets of 
readout strategies and causal nets—requires extended empirical work (p. 1186). To 
be clear, the particulars of readout strategies and causal nets will likely vary from 
one person to the next.

In the present study, we provide initial data that suggest the coordination class 
construct may be useful for understanding when and how people discriminate re-
lationships that are and are not direct proportions. Furthermore, we follow Wagner 
(2006) in specifying terms for more precisely discussing the contextual differences 
that problem solvers encounter in activity. The term context refers to the cover story 
for the problem. The type of problem is defined by appealing to normative or ex-
pert judgment. The aspects of a problem are the features or details perceived as 
relevant by the problem solver. Contextual differences are the amalgam of context, 
type, and aspect. These terms are analytically useful because they help distinguish 
the perspective of the problem solver (which may not be normative) from that of 
the expert. For example, the problems reported by Cramer et al. (1993) and Fisher 
(1988) are normatively of different types (one describes a constant difference and 
the other describes an inverse proportion), but a novice problem solver might read 
out the same aspect (the women run and the workers mow at equal rates) and solve 
both problems in the same way.

Methods

The Numbers and Operations Course and Participants

This study took place in an 18-week content and methods course on number and 
operations for preservice middle-grades mathematics teachers. The authors were 
the instructors for the course, which took place in Fall 2011 and met for two 75-min 
sessions each week. The course focused on multiplicative relationships and drawn 
models of quantities (e.g., number line and area models), and a main goal was for 
the preservice teachers to develop an understanding of how problem-solving strate-
gies that make use of drawn models for quantities can provide the basis for develop-
ing general computation methods. This approach to number and operations in the 
middle grades is consistent with current curriculum standards (e.g., National Coun-
cil of Teachers of Mathematics 2000; National Governors Association Center for 
Best Practices, Council of Chief State School Officers [NGA and CCSSO] 2010).

The preservice teachers ( N = 28) were being prepared to teach grades 4 through 
8. They were in their third year of college and prior to the study had taken at least 
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the first semester calculus course required by their program. The preservice teach-
ers reported that using problems and drawn models to develop general computation 
methods was new to them: They had been taught only rules and algorithms when 
they were in middle school. Most class sessions began with small group work for 
approximately 40 min on a set of problems designed to target a particular math-
ematical idea. The preservice teachers then shared strategies and asked questions 
about each others’ methods for solving the problems during whole-class discussion.

The course began with an examination of factors and multiples and the follow-
ing explicit meaning for multiplication: A × B means the amount in A copies of B 
groups, all of which are the same size. The course continued with activities intended 
to focus the preservice teachers on ways that factors and multiples and the repeated 
groups meaning for multiplication can serve as resources for partitioning number 
lines and area models. Whole number multiplication and connections to partition-
ing served as the basis for a unit that developed meanings for fractions and fraction 
arithmetic. The unit began with the definition for fractions specified in the Com-
mon Core State Standards (NGA and CCSSO 2010). This is a two-part definition 
that first defines a unit fraction 1/b and then defines a/b as a copies of 1/b. A main 
point made in the course is that this definition emphasizes repeated groups of size 
1/b and thus underscores that fractions are fundamentally about multiplicative rela-
tionships. With the Common Core definition in hand, the preservice teachers next 
learned how to use area models to develop general numeric methods for multiplying 
proper and improper fractions and how to use double number lines (e.g., Orrill and 
Brown 2012) for partitive and measurement fraction division. Special attention was 
given to strategies for partitioning developed earlier in the course, referent units, 
and how solutions using drawn models could be used to deduce the general compu-
tation method of invert and multiply for fraction division.

We began the proportion unit by giving preservice teachers a set of word prob-
lems and asking whether relationships between quantities described therein were or 
were not direct proportions. The purposes were to (a) access preservice teachers’ 
initial understandings of proportions, and (b) have the preservice teachers explicitly 
compare context1 and mathematical structure as recommended by Van Dooren et al. 
(2010). Subsequently, we defined direct proportions as two quantities covarying in 
a fixed ratio and developed problem-solving strategies that generalized those used 
earlier in the course for solving partitive division problems (emphasizing that parti-
tive division is a special case of reasoning about direct proportions). These strate-
gies made use of composed units (e.g., Lamon 1994; Lobato and Ellis 2010) and 
double number lines. More details of the proportion unit are provided in the results 
section.

1 Context as used in Van Dooren et al. (2010) has the same meaning as in Wagner (2006): the cover 
story of a word problem. In the rest of the chapter, we italicize other terms from Wagner that have 
a narrower definition than may be typical.
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Data Collection

The data we used for this analysis were collected as part of a larger study. On the 
first and last day of the numbers and operations course, we administered a pretest 
and posttest consisting of items developed and validated by the Diagnosing Teach-
ers’ Multiplicative Reasoning (DTMR) project (see Bradshaw et al. 2014, and Izsák 
et al. 2010, for details). The items focused on several core kinds of reasoning about 
multiplicative relationships with drawn models of quantities, especially multiplica-
tion and division of fractions and proportional relationships. The kinds of reasoning 
about proportions most relevant for the present study were covariation and invari-
ance (reasoning about two quantities covarying in a fixed ratio by partitioning and 
iterating composed units and by forming multiplicative comparisons within and 
between measure spaces) and appropriateness (judging whether a given relationship 
is or is not directly proportional).

We gave the preservice teachers problem situations during the unit and on as-
sessments describing covarying quantities that were direct proportions or had other 
relationships. The present study focuses on the four problems shown in Table 1. The 
Running Problem and Combine Problem describe situations of constant difference, 
the Work Problem describes a constant product (inverse proportion) relationship, 
and the Interest Problem describes a piecewise linear approximation to exponential 
growth. Data for these four problems best illustrate our comprehensive findings 
concerning all problems used in the study and afford comparisons with results from 
prior studies that used similar problems (e.g., Cramer et al. 1993; Fisher 1988).

We video recorded each class session using two cameras. One camera captured 
activity in the whole classroom. The second camera recorded close-ups of written 
work. A research assistant shadowed the primary instructor (second author) with 
this camera and recorded written work of the preservice teachers with whom he 
worked. After each class session, the two videos were combined to create a re-
stored view (Hall 2000). The second author reviewed the resulting video and wrote 
a summary that captured main points in whole-class discussion, strategies preser-
vice teachers discussed and questions they had during group work and whole-class 
discussion, and screen shots of written work. We used these summaries to identify 
mathematical issues to pursue further during the interviews described next.

During the first week of class, we asked for volunteers to participate in a series 
of interviews. The only incentive offered was the benefit of additional time studying 
the course content with a partner. Eight of the 28 preservice teachers volunteered, 
and we used their overall performance on the pretest to form four pairs—one lower, 
two medium, and one higher performing. We interviewed each pair four times, be-
fore and after the unit on fraction arithmetic and before and after the unit on propor-
tions described above. The interviews were semistructured (e.g., Bernard 1994) and 
lasted 60–90 min. During the interviews, we presented tasks similar to those used 
on the pre- and posttests and during the course. We asked the preservice teachers 
to solve the tasks together while reasoning aloud. The interviewer encouraged the 
preservice teachers to talk freely and occasionally asked clarifying questions. The 
present study focuses on the interviews before and after the four-session unit on 
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proportions (these interviews were the third and fourth interviews we conducted in 
the larger project, but we will call them interview 1 and 2 for the purposes of report-
ing the present study). Figure 1 shows the timeline for these data-collection activi-
ties. Interview 1 took place immediately before the proportion unit, and interview 
2 took place after it.

Analysis

A third party transcribed the interviews in their entirety. We reviewed all of the in-
terview data, refined the accuracy of the transcripts as needed, and wrote summaries 
comparing each pair’s pre- and postunit interviews. Then we reviewed the classroom 
video data for episodes or written work that might inform our understandings of what 
took place during the interviews. Finally, we reviewed preservice teachers’ written 
work on the pretest and posttest, on the course midterm and final exam, and on the 
homework assignments about proportions. For the present study, we focus on results 
from the pre- and posttests as a measure of the effectiveness of the unit on propor-
tions and from the interviews. Data from the midterm, final exams, and homework 
provided corroborating evidence for the results reported in the next section.

Table 1  Sample of covariation problems used during the proportion unit and on assessments
Problem Type Use
Running Problem. Determine whether the following 

problem is a mathematically valid illustration of 
the proportion A/B = C/D: Bob and Marty run laps 
together because they run at the same pace. Today, 
Marty started running before Bob came out of the 
locker room. Marty had run A laps by the time Bob 
had run B laps. How many laps C had Marty run by 
the time that Bob had run D laps?

Constant difference Pretest, posttest, 
and interviews

Combine Problem. Two combines harvest grain at the 
same rate. The first combine starts harvesting 10 min 
before the second combine. After 20 min of opera-
tion, the second combine harvests 400 lbs of grain 
and the first harvests 600 lbs of grain. How many 
pounds will the second combine harvest by the time 
the first has harvested 1,000 lbs of grain?

Constant difference Proportion unit

Work Problem. Determine whether the following 
problem is a mathematically valid illustration of the 
proportion A/B = C/D: If A men paint the outside 
of a house in B minutes, then how many minutes D 
would it take C men to paint the same house, if all 
the men work at the same rate?

Constant product Pretest, posttest, 
and interviews

Interest Problem. Karl has a savings account that pays 
interest monthly at a rate of 5 %. Three months ago, 
there was US$ 300 in his account. If he did not 
withdraw any money from the account, how much is 
there now?

Exponential 
growth (a 
piecewise linear 
approximation)

Proportion unit
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Results

Performance on the Pretest and Posttest

Analysis of the pretest and posttest suggested that the unit on proportions had little 
effect on preservice teachers’ tendency to inappropriately apply methods for solving 
direct proportions. This was especially apparent in the stability of their responses 
to the Work and Running problems. Recall that the Work Problem described an 
inverse proportion, the Running Problem described a constant difference, and these 
specific problems were on both the pretest and the posttest. The preservice teachers 
worked on and discussed different problems of the same type (Wagner 2006) during 
the proportion unit.

Table 2 shows how many preservice teachers maintained or changed their re-
sponses for the Work and Running problems from pretest to posttest ( n = 27; one 
preservice teacher was absent for the posttest) and contextualizes the classroom 
and interview data described in the subsequent sections. The cells on the diagonal 
for each problem in Table 2 show preservice teachers who did not change their re-
sponse between the pretest and posttest; overall, very few changed their responses. 
Preservice teachers were almost entirely agreed on the Work Problem, but the mod-
al response was incorrect. By contrast, the responses on the Running Problem were 
split almost evenly between those who believed the problem was a direct proportion 
and those who did not. We used McNemar’s (1947) test for matched data and found 
no statistically significant change in preservice teachers’ responses on these items 
( pWork = 1.00, pRunning > 0.450). This finding provided evidence that the proportion 
unit was not successful in fully developing the preservice teachers’ capacities to 
accurately discriminate among relationships that were and were not direct propor-
tions, even though the task types on the pre- and posttest aligned with the task types 
discussed during the unit.

At the same time that these preservice teachers experienced significant difficul-
ties applying the direct proportion equation appropriately, we knew that they had 
been engaged in extensive discussions in class comparing the context and math-
ematical structure of similar tasks and had completed related homework solving 
similar word problems and classifying problems as directly or nonproportional. 
It was during retrospective analyses of the classroom and interview data that we 

Proportions Unit
11/9 – 11/28

Pretest 
8/17

Interview 1
11/7

Posttest
11/30

Final
12/12

Work & Running 
Problems

Interview 2
11/30, Lisa & Tess 

Clara, 12/11

Combine, Interest, & Other 
Problems

Work & Running 
Problems

Fig. 1  Timeline of the data-collection activities
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recognized that the coordination class construct could help provide insight into their 
reasoning about proportional relationships. In particular, we noticed that preservice 
teachers’ readout strategies focused on aspects (Wagner 2006) that did not support 
normative judgments across different problem types and contexts (Wagner 2006) 
and thus did not lead to invariance (diSessa and Sherin 1998).

Performance During Class Sessions

To gain insight into the stability of the preservice teachers’ performance from pre-
test to posttest, we reviewed the video and summaries for the four class sessions that 
comprised the proportion unit. Recall that the pretest was administered in August 
at the beginning of the semester and the proportion unit took place in November, 
so there was a significant delay. The comparison of pre- and posttest performance 
suggested that any shift in preservice teachers’ understandings of proportions—for 
instance, during the proportion unit or earlier in the semester when studying the 
special case of partitive division—was negligible.

As explained above, we began the unit by providing a set of missing-value word 
problems and asking whether the relationships described therein were direct propor-
tions. Our intent when collecting these data was to uncover the understandings of 
proportions that the preservice teachers brought to the course. The set of problems 
included the Interest Problem (Table 1), as well as one problem that described a 
direct proportion relationship and one problem that described a linear relationship 
that was not proportional.

For the purpose of this present study, we conducted a retrospective analysis of 
the classroom data to understand preservice teachers’ difficulties determining which 
aspects of the presented problem situations could reliably distinguish relationships 
that were and were not direct proportions. During the first class session, two main 
difficulties in the preservice teachers’ readout emerged that could have contributed 
to the high rate of incorrect responses on the pretest. First, we observed that many, if 
not all, of them relied on rote procedures for missing-value problems, such as cross 
multiplication. For example, one preservice teacher said that she had been taught 
the following rule for transferring information from word problem texts to equa-
tions: “Is over of equals proportion over 100.” She did not give a specific example 

Table 2  Preservice teachers’ pretest and posttest responses on two missing-value problems
Posttest response
Work problem Running problem

Pretest response Direct proportion Not direct 
proportiona

Direct proportion Not direct 
proportiona

Direct proportion 25 1 9 5
Not direct 

proportiona
1 0 2 11

a The correct response
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to illustrate what she meant, but her comment clearly referred to a rote method 
based on key words and three numbers. Consistent with findings in past research 
reviewed above, these teachers seemed to read out a direct proportion based on the 
presence of three numbers and a request to determine the fourth.

A second main difficulty was distinguishing between solution methods and re-
lationships between two covarying quantities. During group work, several of the 
preservice teachers (including three of the four we discuss in more detail below) 
focused on solution methods. As an example, for the word problem that described 
a relationship that was linear but not a direct proportion, these preservice teachers 
reported that they could use a proportion to solve y = mx + b if they first subtracted 
b. As another example, one preservice teacher discussed how she could solve the In-
terest Problem by solving a separate proportion for each month. We highlighted the 
difference between solution methods and relationships between quantities during 
the whole-class discussion and emphasized that the relationships between quantities 
determine proportionality.

The second and third class sessions were intended to focus preservice teachers’ 
attention on covariation in a fixed ratio. The tasks provided opportunities to parti-
tion and iterate composed units using tables, double number lines, and rectangles 
as supports. Main points that came out of whole-class discussions included con-
nections between proportions and partitive division and the constant multiplicative 
relationships within and between measure spaces (e.g., Vergnaud 1983, 1988).

For the fourth and final class session, we returned to missing-value word prob-
lems and asked once again whether the relationships described therein were direct 
proportions. We were interested in seeing if experiences reasoning about covaria-
tion between quantities in a fixed ratio relationship helped the preservice teachers 
discriminate between relationships that were and were not direct proportions. The 
set of problems included the Combine Problem (Table 1), one problem that de-
scribed a direct proportion, one problem that described a linear relationship that was 
not proportional, and one problem that described an inverse proportion similar to 
the Work Problem (Table 1). In contrast to the instructions for the first class session, 
the instructions for the fourth class session included making a graph.

Unfortunately, many of the preservice teachers misread the problem that de-
scribed a linear relationship that was not a direct proportion. In their interpretation 
of the problem, the described relationship was, in fact, proportional. So we did 
not get data that we could compare to those from the first class session. Two main 
difficulties in the preservice teachers’ readout did emerge around other problem 
types. First, several of the preservice teachers thought that the Combine Problem 
described a direct proportion. In some cases, they focused on the phrase “same rate” 
in the problem statement as their justification. Thus, they based their readout on 
key words or phrases. In other cases, the preservice teachers said that any situation 
that is linear has a constant rate and thus is a direct proportion. This occurred even 
as some preservice teachers recognized that the Combine Problem describes a con-
stant difference. Second, some preservice teachers attempted to set up and solve a 
direct proportion to solve the problem that described an inverse proportion and then 
realized that their answer did not make sense, but did not understand why. In these 
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cases, readout was based on understanding that two quantities were covarying but 
not on distinctions among different types of relationships. We pursued issues related 
to these during the interviews that took place after this lesson. We turn to those data 
next and make comparisons with data from the interviews conducted before and 
after the proportion unit.

Analysis of Interview Data

The interviews revealed that preservice teachers who correctly explained relation-
ships between quantities that were not direct proportions in the Running Problem 
and Work Problem (see Table 1) still tried to set up and use the direct proportion 
equation in explanations of how they would solve the problems. To understand 
how this could take place, we examined the aspects of the problem situations that 
the preservice teachers read out and the inferences that they made when reasoning 
about the problems. Some aspects that the preservice teachers read out included the 
presence of covariation between quantities, references to “same rate,” and whether 
they could describe the relationship between two quantities with a single equation. 
Here, we focus on the two pairs that most clearly demonstrated how appropriate 
understandings of covariation between quantities were not sufficient for judging 
whether relationships were direct proportions. Alice and Clara were the higher per-
forming pair, and Lisa and Tess were the lower performing pair. We organize the 
analysis by tracing the reasoning of each pair within problem type. ( Note on tran-
scription: There are no deletions in the transcript provided. Pauses are indicated by 
ellipses and action is described within square brackets. Round brackets indicate our 
best guess about what was said when the audio trailed off).

Constant Differences We found that the preservice teachers used several aspects 
of the problems, like the phrase “same rate,” to read out a direct proportion. At 
the same time, they also attended to the constant difference in the numbers of laps 
that Marty and Bob ran. That is, their causal net was sufficient to see that run-
ning at the same rate implied a constant difference in the numbers of laps but was 
insufficient to realize that a constant difference precluded a fixed ratio relationship. 
This allowed the preservice teachers to hold simultaneously two perspectives on the 
Running Problem that a more expert person would understand as mutually exclu-
sive. The following examples illustrate these findings.

During the first interview, Alice2 and Clara introduced two possible ways to 
think about the Running Problem. After reading the problem, Clara generated the 
equation a/b = c/d, keeping terms referring to the initial state on one side of the 
equal sign and terms referring to the later state on the other side. Alice tried to sub-
stitute specific values for numbers of laps: She supposed that Marty had run 2 laps 
by the time Bob had run 1 lap and concluded that Marty had run 3 laps by the time 
that Bob had run 2 laps. Clara agreed. Thus, when working with specific values, 

2 All names are pseudonyms.
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Alice and Clara attended appropriately to the constant difference in numbers of 
laps. A moment later, Clara set up and solved a direct proportion and determined 
that Marty had run 4 laps by the time Bob had run 2 laps. Faced with the discrepant 
answers, the preservice teachers questioned whether the relationship between Marty 
and Bob’s laps was, in fact, a direct proportion. Clara gave greater weight to the 
constant difference perspective when she concluded:

Clara  If they’re running the same pace … if Bob had run 1 more lap, then Marty 
should have run 1 more lap. He just started earlier but they’re running at 
the same pace, so the same speed of 1 lap should just be in Marty’s 1 more 
lap. So if Marty went and started and he ran 1 lap, and then Bob came and 
started and ran another lap, Marty is still running, so Marty would have run 
2 laps by the time Bob ran 1. And then when they run another lap, Marty 
would have run 3 laps by the time Bob ran 2. But with this proportion, it’s 
saying that Marty would have run 4 laps by the time Bob ran 2 because it’s 
doubling.

Alice So basically Marty is always just going to be A laps ahead of Bob.

The resolution that Alice and Clara reached on the Running Problem appeared to 
stick at least with Clara. When reviewing the video recordings of the class lessons, 
we found one place where Clara focused on the constant difference in the Combine 
Problem and stated that the problem was not a direct proportion. When she read the 
Running Problem again during the second interview, Clara stated immediately that 
the difference between Marty’s and Bob’s laps would be constant, and therefore 
the relationship between the numbers of laps would not be proportional.3 To sup-
port her explanation, she graphed two parallel lines, one for each runner, similar to 
graphs for the Combine Problem discussed during the class. Thus, by the end of the 
unit on proportions, Clara recognized that the constant difference and constant ratio 
perspectives were incompatible, but it remained unclear whether her causal net was 
sufficient for her to understand why.

During their first interview, Lisa and Tess introduced two possible ways to think 
about the Running Problem that were similar to the two ways introduced by Alice 
and Clara. In contrast, however, we found no evidence that Lisa or Tess ever per-
ceived an incompatibility between the two perspectives. After Tess read the prob-
lem aloud, there were 30 seconds of silence. Then Lisa pointed out that there would 
be a constant difference and suggested that the relationship between the numbers of 
laps would be proportional.

Lisa I mean if they keep on at same pace,
Tess Right.
Lisa isn’t that going to be the same difference between the two?
Tess Right.
Lisa  So it would be an equal proportionality I would think…kind of like equal 

fractions. What are those called? Equivalent fractions?

3 Alice did not participate during the second interview due to a family obligation.
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The preservice teachers then substituted specific numbers into a direct proportion 
but did not seem to notice that their result was inconsistent with the constant differ-
ence Lisa mentioned above. In particular, they decided that Marty ran 4 laps by the 
time Bob had run 2 laps, a difference of 2, and computed that Marty would run 16 
laps by the time Bob had run 8 laps, a difference of 8.

During the proportion unit, both Tess and Lisa perceived the relationship de-
scribed in the Combine Problem to be a direct proportion. Despite class discus-
sions emphasizing that problems of this type do not describe direct proportions, 
they continued to think that the Running Problem was a direct proportion when 
they encountered it again during their second interview. In fact, they maintained 
the same two perspectives on the Running Problem that they demonstrated during 
their first interview. On the one hand, they continued to read out the phrase “same 
pace” as an indictor of a direct proportion. On the other hand, their causal net was 
sufficient to see the constant difference, but not the incompatibility of a constant 
difference and a constant ratio:

Tess  If they run at the same pace, this says they run laps together because they run 
at the same pace. Even if Marty starts before Bob, however many … they’re 
going to run at the same pace. So it’s going to in … like the amount differ-
ence is going to stay the same the whole time because they’re running at the 
same pace.

Lisa Mm-hmm. It’s a constant increase.
Tess  Right, if Marty starts, he runs two laps, when Bob starts. So by the time that 

he runs 4, by the time Marty runs 4 laps, Bob will have run 2 laps … then 6, 
4 … 8, 6 … so the same amount of increase every time.

Lisa  Yeah. And if you know the lap difference between the two, then you can give 
me any value of laps and I can figure out where they are.

Tess Right.

Lisa went on to explain that in problems like the Interest Problem, she knew the 
relationship between time and money was not a direct proportion because one used 
each monthly total to compute the next base amount, and thus how the two quanti-
ties related depended on the month.

Tess and Lisa’s judgments about constant difference relationships remained non-
normative. That limitations in Tess and Lisa’s causal nets, and to a lesser extent 
Clara’s causal net, allowed constant differences and constant products to coexist 
with direct proportions helped explain the stability in their performance on the pre- 
and posttests.

Constant Products We found that the preservice teachers routinely read out a 
direct proportion in the Work Problem, consistent with performance on the pre- 
and posttests (Table 2). The main aspect that they read out was that changes in the 
number of men were associated with changes in the time to paint a house. Further-
more, across all pairs, the preservice teachers read out correspondences between 
quantities and positions of variables in the presumptive proportion equation. When 
they succeeded in establishing these correspondences, they judged the proportion 
equation to be applicable. In contrast to their work on the Running Problem, the 
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preservice teachers’ causal nets were less able to construct appropriate relationships 
between covarying quantities that maintained a constant product. The following 
examples illustrate these results.

During their first interview, Alice and Clara decided very quickly that the Work 
Problem described a direct proportion. As they read the word problem, they set up 
the equation a/b = c/d and stated that d = bc/a. Clara added that she would do the ex-
act same thing if she were working with numbers, and Alice agreed. The preservice 
teachers then moved on to other tasks.

During the second interview, Clara began the Work Problem with confidence and 
set out to justify her use of the proportion equation by using a numerical example: 
2/15 = 4/? In contrast to her work during the first interview, Clara read out the re-
lationship between numbers of men and minutes more carefully, in that she recog-
nized that as the number of men increased, the number minutes would decrease. She 
then interpreted the relationship as a negative proportion:

Clara  It is proportional, but it’s going to be a proportion going down this way if 
the men were increasing [draws a line starting at the origin with negative 
slope]. Because if more men are working on the house, then it’s going to 
take fewer minutes. But if it takes 2 men 15 min, then it’s going to take one 
man 7.5 min. So it is going to be proportional. I mean … not one man, 7.5, 
that doesn’t make sense. It would take one man 30 min. It’s proportional, 
it’s just a decreasing proportion.

As Clara continued to think, she questioned her graph but continued to assert that 
the relationship between men and time was a direct proportion. She explained:

Clara  The ratio of man to the amount of time he works would, like it’s going to be 
the same sort of chart to determine if more men or less men work and how 
long it’s going to take. They start at the same time; they work the same pace. 
It’s just the amount of men that could change or the amount of work that 
could change. Then you’d have to determine who, how many people were 
working or how long they were working for based on the first proportion.

Although Clara read out several aspects accurately, she did not coordinate them ap-
propriately to see that the correct relationship between men and time was not linear, 
a limitation in her causal net.

Similar to Alice and Clara, Lisa and Tess immediately agreed that the Work 
Problem was a direct proportion during their first interview. Lisa read out the aspect 
of “same rate” explicitly:

Tess  I think [the proportion is] accurate because you have the men, the number of 
men on top over number of minutes

Lisa and they’re going at the same rate
Tess  and then same rate, so you have your second number of men over your sec-

ond number of minutes.

These comments suggested that Tess and Lisa were translating information pre-
sented in the word problem to the direct proportion equation in a rote fashion.
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During their second interview, Tess and Lisa continued to judge the relation-
ship between men and time to be a direct proportion, even though they elaborated 
relationships among quantities to a much greater extent. After reading the Work 
Problem, Tess stated:

Tess  It’s proportional as well. If A men paint the outside of a house in B minutes, 
how many minutes D would it take C men to paint the house if they all worked 
at the same rate? ’Cause then we’re having a, you know, steady difference or 
increase or whatever. If you had more men, it would take less minutes. If you 
have less men, it would take more minutes. (It would) be the same amount of 
increase or decrease no matter how many, like if you went up or down.

Tess and Lisa went on to explain that situations in which two quantities changed 
at the same rate were always a direct proportion. Lisa illustrated this point using 
numbers of men and minutes:

Lisa  If I knew how many men worked in how many minutes, then I could divide the 
number of men by the number of minutes, other way, number of minutes by 
the number of men to find out the rate at which each man worked. And then if 
I knew that they were working at the constant, or the same rate, then regardless 
of the number of men, then I could still figure out the time (they each take).

Tess agreed that you could divide to find the time that each man worked, and she 
added that each additional man would increase the time by the same amount.

Results from interviews with Alice and Clara and with Tess and Lisa were con-
sistent with our observations during classroom instruction that the preservice teach-
ers’ causal nets were not sufficiently developed to construct work as a product of 
men and time. Persistent reliance on correspondences between quantities and posi-
tions in the presumptive direct proportion equation and aspects like “same rate” for 
reading out a direct proportion, combined with an insufficiently developed causal 
net, could explain the stable performance of the preservice teachers from pre- to 
posttest. By contrast, the alternative explanation that impulsive responses explain 
the nonnormative application of direct proportion reasoning strategies does not ad-
equately explain the careful and often partially accurate explanations that these pre-
service teachers provided.

Conclusion and Implications

Our quantitative results provide a partial replication with preservice middle-grades 
teachers of studies with elementary and secondary teachers (e.g., Crammer et al. 
1993; Fisher 1988; Riley 2010) showing that, like children, teachers face challenges 
when discriminating among relationships that are and are not direct proportions. 
Recent research (e.g., Van Dooren et al. 2010) has suggested that thinking about 
problems rather than answering reflexively is necessary if students are to avoid ap-
plying the proportion equation to relationships that are not direct proportions. Our 
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results suggest that simply reading problem statements carefully is necessary but 
insufficient for accurate identification of proportional relationships. In particular, an 
accurate understanding of the relationship between two covarying quantities may 
not be sufficient for the normative determination of direct proportions. In the case of 
the Running Problem, Tess gave an appropriate sequence of values for consecutive 
pairs of laps run: “Marty runs 4 laps, Bob will have run 2 laps … then 6, 4 … 8, 6.” 
In case of the Work Problem, Clara said, “If it takes 2 men 15 min …[it] takes one 
man 30 min.” In both cases, the preservice teacher identified accurate relationships 
between quantities yet endorsed the proportion equation.

We used the coordination class construct to obtain insight into how the pre-
service teachers in our study reasoned about relationships we presented through 
missing-value word problems and why their performance from pretest to posttest 
remained relatively stable. A strength of applying the coordination class construct to 
our data was the facility with which we were able to account for participants’ seem-
ingly inconsistent or contradictory perspectives on a given relationship between two 
covarying quantities—for instance, recognizing constant differences or constant 
products in problem situations yet still endorsing the direct proportion equation. In 
general, we found that incorrect performances were often the result of accurate but 
misleading readout combined with causal nets that were insufficiently developed to 
compensate for initial, incorrect judgments. Additional evidence provided by fur-
ther studies will be needed in order to evaluate more fully the generality of findings 
we report here and the usefulness of coordination classes for examining how people 
reason about proportional relationships.

We conclude with a discussion of implications for teacher education. It is 
plausible that some of preservice teachers’ (and students’) difficulties stem from 
inadequate instruction, such as drill in solving missing-value problems that always 
involve a direct proportion. Avoiding these instructional methods is not difficult, but 
our experience teaching the content and methods course suggests teacher educators 
face significant pedagogical challenges when helping preservice teachers become 
more proficient at reasoning about proportions. We followed Van Dooren et al.’s 
(2010) recommendation and engaged preservice teachers in explicit discussion of 
context and mathematical structure of many different problems, and we found this 
approach insufficient to achieve the kind of understanding we hoped they would 
develop. We also engaged the preservice teachers in partitioning and iterating com-
posed units during the proportion unit, with the notion that teachers would be better 
able to recognize proportional relationships if they had experience reasoning with 
two quantities covarying in a fixed ratio. This, too, proved insufficient to achieve 
the kind of understanding we hoped they would develop.

Our results suggest that preservice teachers would benefit from instruction de-
signed to develop and refine their readout strategies and causal nets. With respect to 
readout strategies, one thing that might be helpful would be experiences in which 
preservice teachers saw that particular aspects (Wagner 2006) are not unique to 
proportional relationships and therefore are unreliable indicators of such relation-
ships. Examples presented above illustrate that quantities that simply covary or that 
change at a fixed rate do not necessarily form a proportional relationship. With 
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respect to causal nets, one thing that might be helpful is to study the behavior of 
relationships like constant difference and constant product (inverse proportion) re-
lationships to see why they are not proportional. Preservice teachers could learn to 
distinguish among several well-understood models of covariation (such as indirect 
proportions and linear, quadratic, and exponential function models). Such experi-
ences might help preservice teachers develop appreciation for the care with which 
functional relationships need to be analyzed. Finally, we suspect that preservice 
middle-grades mathematics teachers need to develop better understanding of the 
role that definitions play in mathematical reasoning. In the present study, we did 
not find many students who used the definition of proportion developed during 
the course when solving problems during the interviews. This calls into question 
not only the accessibility of the definition, but also whether the preservice teach-
ers understood that definitions can be used to sort relationships into those that are 
proportional and those that are not. In related work with another data set, we are in-
vestigating whether preservice secondary teachers with more mathematical training 
have fewer difficulties distinguishing proportional and nonproportional problem 
situations because they are better able to apply mathematical definitions.
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Policy documents and position papers have consistently pointed out the importance 
of engaging students in doing mathematics in their classrooms (National Council 
of Teachers of Mathematics (NCTM 2000); National Governors Association Cen-
ter for Best Practices, Council of Chief State School Officers (NGA and CCSSO 
2010)). It seems reasonable to assume that teachers’ mathematical knowledge is 
a key component in whether teachers are able to provide such opportunities for 
engagement to their students, yet studies related to this assumption have yielded 
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mixed results (e.g., Rowland et al. 2000; Tchoshanov 2011; Wilkins 2008). Mathe-
matical knowledge, as conceptualized in these studies, does not sufficiently explain 
classroom instruction in mathematics. Mathematical knowledge in these studies is 
often seen as knowledge of specific content or ability to generate answers to math-
ematical questions rather than engagement in doing mathematics. It is our suspicion 
that these ways of conceptualizing mathematical knowledge are limited in that they 
do not capture the ways that teachers do mathematics or the ways they engage their 
students in doing mathematics. We conceptualize mathematical knowledge as evi-
denced by how individuals engage in doing mathematics. In this study, we have at-
tempted to focus on how teachers engage in mathematics, and how that engagement 
is related to the mathematics to which they expose students. By understanding that 
relationship, we hope to understand better the ways in which teachers’ engagement 
in doing mathematics may facilitate or hinder their engaging their students in doing 
mathematics.

Research interest has burgeoned regarding the relationship between teachers’ 
mathematical knowledge and the ways in which that knowledge impacts what 
happens in the classroom. Of particular interest is how teachers’ knowledge af-
fects both what teachers do and what students learn. Over the years, researchers  
(e.g., Eisenberg 1977; Hill et al. 2005; Monk 1994) have investigated the relation-
ship between teacher knowledge and student achievement. These studies have 
found that teacher knowledge is related to student achievement, but they have shed 
little light on the question of how teacher knowledge affects what is happening in 
classrooms (Ball et al. 2001). This question has received much less attention from 
researchers, and when it has been studied, many researchers have not separated 
content knowledge and pedagogical knowledge when describing the relationship 
(e.g., Hill et al. 2007; Lehrer and Franke 1992; Swafford et al.1997), leaving one 
to wonder about the effects of content knowledge itself on instructional practice.

Studies that have examined the relationship between content knowledge and 
classroom practice have found relationships, although there is not always a con-
sensus about what these relationships are. For example, Rowland et al. (2000) 
found that preservice elementary teachers who scored higher on an inventory of 
mathematical content knowledge received higher grades on their practice teaching 
lessons, and Tchoshanov (2011) found that teachers with a type of mathematics 
content knowledge that was rich and connected, as measured by a research-created 
survey instrument, presented higher quality lessons as measured by a classroom 
observation protocol. In contrast, Wilkins (2008) reported a negative correlation 
between elementary teachers’ content knowledge, as measured by an inventory of 
mathematical content knowledge, and their self-reported use of reform teaching 
practices.

The aforementioned studies (i.e., Rowland et al. 2000; Tchoshanov 2011; 
Wilkins 2008) used written tests of predetermined categories of teacher knowledge 
(e.g., high and low content knowledge, cognitive type of content knowledge) and 
focused on limited aspects of classroom practice (e.g., cognitive demand of tests 
and homework, students’ opinions about instruction, and teachers’ self-reports of 
reform practices) rather than on the mathematics in which the teacher and students 
engaged. Although these studies identified relationships, they did little to explain 
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the nature of these relationships. The study reported here used extensive sets of in-
terviews and classroom observations focused on teachers’ mathematical knowledge 
and its use in the classroom to characterize and explain the relationship between a 
teacher’s mathematics and the mathematics presented in his or her classroom.

Perspective

Both Principles and Standards for School Mathematics (NCTM 2000) and the 
Common Core State Standards for Mathematics (NGA and CCSSO 2010) recog-
nize the importance of mathematical processes to mathematics education.1 Process-
es are constructive acts that operate on mathematical entities (e.g., concepts, pro-
cedures, principles) and result in the production of new mathematical entities. For 
the purposes of this study, we describe mathematical engagement in terms of four 
mathematical processes and actions on their respective products: the processes of 
representing, justifying, generalizing, and defining, and actions on representations, 
justifications, generalizations, and definitions (Zbiek et al. 2008, 2012). Our larger 
research group defines these processes as follows:

Representing The constructive act of creating external inscriptions, physical 
objects, verbal expressions, or movements intended to capture properties of a math-
ematical entity (e.g., concept, procedure, or principle).

Justifying The constructive act of explaining how one knows a mathematical claim 
is true or producing a rationale for belief of a mathematical claim.

Generalizing The constructive act of extending the domain to which a set of prop-
erties applies from multiple instances of a class or from a subclass to a larger class 
of mathematical entities.

Defining The constructive act of identifying and articulating, for a given math-
ematical entity, a set of mathematical properties and the relationship(s) among these 
properties in such a way that the combination can be used to determine whether an 
object, action, or idea belongs to a class of objects, actions, or ideas.

This study addressed the question of what characterizes a beginning second-
ary mathematics teacher’s engagement with mathematical processes in personal 

1 The importance of mathematical processes such as representing and justifying is explicitly dis-
cussed in the process standards of the Principles and Standards for School Mathematics, whereas 
other processes such as generalizing and defining are referred to implicitly. The mathematical 
practices such as “Reason abstractly and quantitatively” and “Look for and express regularity in 
repeated reasoning” from the Common Core State Standards raise the importance of these same 
mathematical processes. We do not infer that mathematical practices and mathematical processes 
are interchangeable, but we do maintain that the two are strongly related, since engagement in 
mathematical practices often involves engagement in mathematical processes, and that attention to 
the former raises the importance of the latter.
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mathematics and classroom mathematics and the relationship between the teacher’s 
personal and classroom mathematics.

The processes on which we focus are clearly a subset of all possible mathemati-
cal processes, but we chose these particular processes because they were among 
the ones most commonly researched in the context of collegiate mathematics and 
advanced mathematical thinking. Because these processes are often evidenced in 
observable acts, we could gather data on our participants’ engagement in processes 
and their uses of the products of those processes. This allowed us to use the pro-
cesses and products to characterize a teacher’s mathematical knowledge in several 
settings. We could examine the mathematics demonstrated in a teacher’s nonroutine 
problem solving ( personal mathematics), the opportunities the teacher provided 
students to engage in mathematics ( classroom mathematics), and the relationship 
between the teacher’s personal mathematics and his or her classroom mathematics. 
A second affordance of describing mathematical engagement in terms of mathemat-
ical processes and actions on products is that it transcends both mathematical con-
tent areas and grade levels because engagement in these processes and actions on 
products are not confined to particular topics. Capturing mathematical engagement 
in terms of mathematical processes allowed us to examine mathematical activity 
over a period of 3.5 years across three different content areas.

Methods

Our data for this chapter consist of verbatim records of 5 task-based interviews 
and 16 teaching observation cycles2 of a beginning secondary mathematics teacher, 
Fiona (a pseudonym). Fiona was 1 of 10 students (out of 23 in her cohort) in a prep-
aration program for secondary mathematics teachers who volunteered to commit to 
the 2–3-year study. We chose beginning mathematics teachers as participants in this 
study because their formal mathematics experiences would be fresh and conceiv-
ably more likely to influence the mathematics in which they would engage students. 
Fiona’s case was of interest because her success in mathematics coursework seemed 
inconsistent with the ways in which she engaged students in doing mathematics. 
At the beginning of data collection, Fiona was enrolled in a 4-year undergraduate 
secondary mathematics certification program at a large US university. During this 
program, Fiona earned 34 credits in college mathematics and 12 credits in statistics. 
In addition, she earned 15 credits of mathematics education courses focused on 
content-specific pedagogy. Fiona was successful in her coursework, as indicated 
by above average course grades. This study followed Fiona through the last three 
semesters of her teacher preparation program and the first 2 years of her full-time 
teaching. As a full-time teacher, Fiona taught mathematics at a small public school 

2 The 16 teaching observation cycles included six cycles during Fiona’s student teaching, four cy-
cles during her first year of teaching, and six cycles during her second year of teaching. A teaching 
observation cycle consisted of a preinterview, observation of one class period, and postinterview. 
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serving several small communities in the suburbs of a large city in the eastern US. 
During the 2 years that we observed her teaching, the percentage of students at her 
high school scoring at or above the proficient level on state tests was above the state 
average.

The five task-based interviews ( area, count, cube, wrap, and defining) were con-
ducted during Fiona’s teacher preparation program for the purpose of understanding 
her use of mathematical processes and products in her personal mathematics. To 
understand Fiona’s use of processes and products in her classroom teaching, teach-
ing observation cycles were conducted during her student teaching of precalculus, 
her first-year teaching of algebra, and her second-year teaching of geometry. An 
observation cycle consists of a preobservation interview, an observation of one class 
period, and a postobservation interview. Some cycles overlapped in that the postob-
servation interview for one observation occurred concurrently with the preobserva-
tion interview for the next observation.

Each of the task-based interviews was videorecorded and audiorecorded, tran-
scribed, and annotated. Teaching observation cycles were audiorecorded, tran-
scribed, and annotated. Still photos (e.g., the writing on the board, the manipulatives 
the teacher used, and posters on the classroom walls) from the teaching observa-
tion cycles were also collected. The photos were used to assist in the annotation of 
transcripts. The data were collected and prepared by members of the larger research 
team.

The six authors coded task-based interviews to identify and describe instances of 
Fiona’s use of processes and/or products. For the most part, this coding occurred at 
whole-group meetings of the team. In some instances, several members of the team 
worked together to generate initial codes, and the group reviewed and came to an 
agreement on those codes. Any disagreements on coding were resolved by review 
and agreement of the data by the entire team. The coded instances were elaborated, 
categorized into the four process/product categories, and analyzed for emerging 
themes. This procedure was repeated for the teaching transcripts, but our procedure 
also included memoing about episodes that seemed to capture the mathematics to 
which Fiona exposed her students. For example, we memoed, “It is possible that 
Fiona cedes mathematical authority to an outside source, generally the textbook.” 
This led us to examine how closely Fiona’s teaching followed the textbook to gain 
insight as to whether her following the textbook could be a possible reason for not 
providing her students with opportunities to engage in mathematical processes. Af-
ter the initial coding and analyses, the team then compared Fiona’s use of processes 
and/or products in her personal mathematics with her use of processes and/or prod-
ucts in her classroom mathematics.

The data we use to describe Fiona’s personal mathematics focus mainly on Fio-
na’s work on two tasks from the task-based interviews. Those tasks were chosen 
because they were representative of the tasks used in the interviews and because 
Fiona’s work on the tasks exemplified her work with the processes. Figure 1 il-
lustrates tasks from the cube and area interviews. In the cube interview, Fiona was 
asked to describe the pattern and determine the surface area and volume of an n-
layer model of a stack of cubes like the four layer one shown in the left panel of 
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Fig. 1  Some of the illustrations accompanying the cube and area tasks

 

Fig. 1. She was provided with the paper figure, a physical model, and an interactive 
three-dimensional computer model of the arrangement of cubes. In the area inter-
view, Fiona was given a diagram like the one illustrated in the right panel of Fig. 1. 
She was asked to describe the mathematical relationship between the sum of the 
area of the circles and the area of the equilateral triangle for the nth figure in the 
sequence as the number of circles on the base increased. We introduce a third task, 
from the defining interview, in the defining and definitions section.

Results

Our analysis of the interview and observation data provided us with insight into 
Fiona’s engagement in the four processes, both in the context of her personal math-
ematics and in the context of her classroom mathematics. We saw consistencies be-
tween how she engaged in processes in her own mathematics and how she engaged 
her students in mathematics, and we also saw differences. The following sections 
describe Fiona’s personal mathematics, her classroom mathematics, and the rela-
tionships between them, with an eye to identifying themes that characterized her 
engagement with processes. These themes transcended mathematical content areas 
(both in the task-based interviews and in her teaching) and allowed us to compare 
these themes across both Fiona’s personal problem solving and the mathematics we 
observed in her classrooms. Although we focus each section on only one process at 
a time, many of the examples could illustrate several processes.
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Representing and Representation

Representing is one of the processes in which Fiona frequently engaged without 
prompting during her personal mathematics. Fiona seemed to use representing to 
help her in problem solving, often augmenting or modifying one representation 
to create other representations and connecting representations to provide justifica-
tions. Even though doing mathematics requires representing, the representing and 
interpretation of representations in which Fiona engaged did not go beyond what 
was necessary to get to an answer. Fiona tended to notice and pay attention to only 
selected features of a representation rather than accounting for the representation’s 
more complete set of relevant characteristics. In the area interview, when Fiona was 
given the graph of the function defined as the difference between the area of the 
triangle and the sum of the areas of the circles (Fig. 2), she focused on the x-value 
of the minimum point of the function as invariant and interpreted it as the point at 
which the area of the triangle exceeds the sum of the area of the circles. Her error 
may have been related to her loosely constructed attention to negative-to-positive 
change. She seemed to recognize that the graph of the differences required a change 
from negative to positive, without recognizing that the negative-to-positive change 
captured by the minimum was a change in slope rather than a change in the output 

Fig. 2  Graph of the function defined as the difference between the area of the triangle and the sum 
of the areas of the circles with slider that controls the diameter of the circles. The configuration of 
triangle and circles is shown in the right panel of Fig. 1
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value of the function. She did not attend to the invariant x-intercepts, the feature of 
the graph most relevant to the question of whether the area of the triangle would 
exceed the sum of the areas of the circles, until she was specifically asked about 
them. At that point, Fiona did recognize a conflict between her interpretation of the 
x-value at the minimum point and the x-intercept—at different times she had identi-
fied each of the x-value of the minimum point and the x-intercept as the value of x 
for which the area of the triangle exceeds the sum of the areas of the circles. How-
ever, Fiona did not reconcile this contradiction because she seemed to be focusing 
on only one of these points at a time, and thereby not connecting her conflicting 
interpretations of these points.

In her classroom mathematics, in her student teaching as well as in her first and 
second year of teaching, Fiona occasionally directed students to use different repre-
sentations in problem solving (e.g., directing students to draw a graph if they were 
struggling with writing an equation of a line, or having them use geometric figures 
to generate tables of values to look for a generalization). However, we observed 
a number of occasions on which it seemed to us that Fiona might have engaged 
students in linking multiple representations but did not capitalize on opportunities 
to do so. For example, in her student teaching, she purposefully did not link for 
students a graphical representation of derivative that appeared on an activity sheet. 
During the postobservation interview, Fiona showed her understanding of the rep-
resentational link when she ably linked this graphical representation to a symbolic 
representation of derivative. During that interview, she explained the limit defini-
tion of a derivative by connecting the symbolic expressions in the numerator and 
denominator to the vertical and horizontal change of the slope of a line tangent to a 
point on a graph. However, Fiona gave “they [the students] don’t know that, and if I 
would explain it to them I would have confused them–I think–endless amounts” as 
the reason for not discussing the graphical representation. She might have chosen 
not to explain the graph because her goal was only for students to be able to ap-
ply the limit definition to complete exercises, and she might have thought that the 
potential confusion that could arise from trying to develop further understanding of 
the limit definition might interfere with her goal. Not capitalizing on opportunities 
to link representations illustrates Fiona’s tendency to focus on a particular represen-
tation, and not to incorporate other representations that may have helped in describ-
ing a mathematical entity. In the instance just discussed, Fiona chose to focus solely 
on the symbolic representation rather than link the symbolic representation to the 
graphical representation.

Another instance that illustrates this tendency to focus on representations in a 
limited way occured during her second year of teaching. While introducing polyhe-
dra in a geometry class, Fiona used an unfolded cereal box to represent the net of 
a rectangular prism. However, Fiona did not mention to the students that because 
of the overlap for adhesive, the unfolded box is not exactly a net for a rectangular 
right prism. Fiona focused on parts of the unfolded box (the faces), but did not men-
tion other aspects of the box (flaps for adhesive) that made the box an inadequate 
representation of a net. This omission was highlighted later in the same class ses-
sion when the students, who were tasked with constructing different nets of a cube, 
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generated “nets” that included overlapping faces. At this point, Fiona stated to the 
students that the nets cannot have overlapping faces but did not address the fact 
that the physical representation that she had shown them did have overlaps. This 
instance illustrates Fiona’s tendency to focus on particular aspects of a representa-
tion in her teaching, but overlook other key aspects of a representation, the neglect 
of which could lead to an incorrect understanding (in this case, an incorrect under-
standing of net).

In both her personal and classroom mathematics, Fiona often focused on local 
features of representations and seemed not to account for other features of the repre-
sentation relevant for the task at hand. This tendency for localization and inattention 
to links is frequently observed in her personal and classroom mathematics and sug-
gests that mathematics as an integrated system is not central to her view of math-
ematics. Fiona also seemed to miss opportunities in her personal and classroom 
mathematics to incorporate multiple representations or to link different aspects of 
representations. Thus Fiona does not seem to fully exploit representations in her 
problem solving or teaching of mathematics.

Justifying and Justification

In her personal mathematics, Fiona seldom offered mathematical justification un-
less she was prompted by the interviewer with questions such as, “How might you 
convince someone of your claim?” However, she often offered complete and valid 
justification when she was involved in correcting an error. For example, during 
the area interview, Fiona had incorrectly labeled the sidelengths of a 30°− 60°− 90° 
triangle as 1, 2, and 3 , with the hypotenuse labeled 3 . When the interviewer 
prompted Fiona with, “I want you to convince me that those [sidelengths] make 
sense,” Fiona immediately corrected her error and justified that correction by noting 
that the longest side of a triangle was opposite the largest angle. Despite her ability 
to engage in justifying, as exemplified by this instance, Fiona seldom engaged in 
unprompted justifying, even when it seemed reasonable to justify a claim or result.

When Fiona did engage in justifying, she did not always produce correct justifi-
cations. In particular, when Fiona justified by referencing properties of mathemati-
cal objects, she tended to attend to one property of the mathematical object while 
not attending to other relevant and necessary properties. This is similar to Fiona’s 
tendency to attend to a limited set of features of a representation. In the area inter-
view (see right panel of Fig. 1), for example, Fiona engaged in justifying that the 
sum of the areas of the circles in an array is larger than the area of the triangle in the 
same array. Having generated symbolic representations for the two areas, ( x + ( x − 1) 
 + ( x − 2) + … + 0) πr2 for the sum of the areas of the circles and x r2 2 3/  for the area 
of the triangle, she based this argument solely on one difference (one area formula 
involved multiplying by π and the other involved dividing by the square root of 3) 
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without accounting for another essential factor ( x + ( x −1) + ( x − 2) + … + 0) versus 
x2 in the formulas (Fig. 3).

In the context of Fiona’s classroom mathematics, Fiona seldom engaged in math-
ematical justification or asked students to justify even when she had opportunities 
to do so. One such opportunity occurred during student teaching as Fiona taught 
rules for producing derivatives. Having presented the usual rule for calculating the 
derivative of a product, Fiona introduced students to a generalized power rule, and 
continued the next day by demonstrating the quotient rule. She did not mention any 
connection between the two rules; even when a student pointed out the similarity 
between the product rule and the quotient rule, Fiona did not capitalize on the com-
ment as a segue to recognizing and justifying that the quotient rule can be viewed 
as an instance of the product rule. Fiona was questioned about the similarity in a 
follow-up interview and her justification, “Because, well, division is multiplication 
by a reciprocal,” suggested that she was aware of a justification, but chose not to 
use it with her students.

There were times in Fiona’s classroom when students’ opportunities to engage in 
justifying were limited because she did not pay attention to essential relevant fea-
tures of a mathematical representation. An instance discussed in the previous sec-
tion involved Fiona’s introduction of nets of rectangular prisms. In the activity that 
followed the introduction, Fiona limited her students’ justifying by insisting that 
they consider only two properties in deciding on whether a configuration was a net: 
(a) when folded, there should be no overlap; and (b) the net of a rectangular prism 
consists of six rectangles. Fiona did not ask students to pay attention to essential 
properties such as whether the proposed net folds into the desired shape. Not paying 
attention to essential relevant features of the net was further illustrated when Fiona 
showed the students an unfolded cereal box as an example of a net of a rectangular 
prism—a nonexample because the unfolded box overlapped when folded.

Although Fiona demonstrated her ability to justify in her personal mathematics, 
she rarely justified mathematically without prompting. Even when she did justify, 
she often attended to only some of the essential relevant features or properties of a 
mathematical object. Her tendency not to engage in processes and not to pay atten-
tion to essential properties of a mathematical object corresponds to very little justi-
fying in Fiona’s classroom by her or her students. The lack of justifying in Fiona’s 
personal mathematics and in her classroom seems to indicate that Fiona does not 
see the role of justifying as a critical process in her or her students’ mathematics.

Fig. 3  Fiona’s representations 
of the area of the triangle and 
the sum of the areas of the 
circles
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Generalizing and Generalization

In her personal mathematics, Fiona tended not to generalize without prompting even 
when it seemed reasonable to do so. For example, in the cube interview, Fiona was 
asked to find the volume and surface area of a stack of cubes configured in similarly 
structured layers of cubes (see the left panel of Fig. 1). Fiona recognized that the 
volume of a cube in one particular layer was one-eighth the volume of a cube in the 
previous layer, but was hesitant to conclude that this was true for all layers and did 
not offer this claim until she was prompted to state a conclusion.

Fiona’s generalizations, when she did make them, were sometimes flawed be-
cause she focused on a limited set of properties and did not account for relevant 
possibilities. For example, in the count interview, when asked about a three-dimen-
sional analogue (composed of layers of spheres as suggested in Fig. 4) of the circles 
situation shown in the right panel of Fig. 1, Fiona generalized that no matter the 
size of a pyramid constructed of spheres, there are no interior spheres. She based 
this observation on the fact that the three-layer pyramid of spheres had no interior 
spheres and that the spheres added to the three-tiered model to form the four-layer 
pyramid model were all exterior spheres. In this case, she failed to account for 
the fact that some of the spheres in previous layers become interior spheres when 
another layer is added. It is important to note, however, that when Fiona checked 
her assertion by physically deconstructing a three-dimensional representation of the 
five-layer pyramid, she saw that there was an interior sphere in the four-layer pyra-
mid and was able to correct her error, justify by construction why interior spheres 
existed, and create a correct generalization about the number of interior spheres in 
any given figure.

Similar to the lack of unprompted generalizing in her personal mathematics, Fio-
na did not engage her students in generalizing in her classroom mathematics when 
it seemed appropriate to do so. For example, in an exercise involving Hooke’s law, 
rather than giving students one general equation that could be used in three types of 

Fig. 4  The third member of 
the sequence of pyramids  
in the count interview.  
(Published with permission of 
the Penn State Mid-Atlantic 
Center)

 



78 M. K. Heid et al.

exercises, Fiona directed students to use three different equations for three different, 
but clearly related, cases: the equation y/x  =  k to find the value of k, the equation 
y  =  kx to find the value of x, and the equation d = kt to find the value of k.

In her classroom mathematics, Fiona chose and implemented activities that 
seemed to have considerable potential for engaging students in generalizing. How-
ever, when she implemented activities aimed at generalizing, she usually led stu-
dents to reach a generalization that she had predetermined, rather than allowing 
students to construct generalizations that she had not anticipated. For example, 
Fiona chose an activity in which students used a computer applet to count faces, 
edges, and vertices of polyhedra. The activity had the potential to engage students 
in generalizing about the relationship among these quantities. Fiona was focused on 
ensuring that all students arrived at the formula vertices − edges + faces = 2, but she 
did not seem concerned about whether students arrived at the formula by general-
izing, by using the Internet, or by getting it from another student.

Fiona sometimes stated generalizations that were false, often seemingly basing 
them on an overly limited domain or set of examples. For example, when introduc-
ing a lesson on graphing lines, Fiona stated the incorrect generalization, “There is 
a y-intercept and an x-intercept for every single line.” In this case, Fiona seemed to 
have focused only on the set of slanted lines, not accounting for the possibility of 
lines that were vertical or horizontal. Fiona’s personal mathematics and her class-
room mathematics had two main commonalities. First, Fiona often did not general-
ize when it seemed appropriate to do so. Second, Fiona often incorrectly general-
ized or stated incorrect generalizations, possibly because she focused on a limited 
domain or on a limited set of properties rather than accounting for all possibilities 
and relevant properties.

Defining and Definition

As with other processes, the process of defining did not seem to play a central role 
in either Fiona’s personal mathematics or her classroom mathematics. Despite sev-
eral opportunities in her task-based interviews and in her classroom mathematics, 
we rarely observed Fiona engaging in defining, although we saw her engage with 
the products of defining, namely, definitions.

Fiona tended to focus on elements of definitions rather than on the definition as 
a whole. She seemed to compartmentalize definitions and not to coordinate them in 
her teaching or in her personal mathematics. In the defining interview, she was pre-
sented with six ways in which people may talk about a parallelepiped (Fig. 5). She 
was asked which of the six descriptions are most similar to each other. We expected 
her to consider the mathematical entity defined by each statement and to compare 
those entities. However, she chose to examine parts of each statement and to com-
pare them with parts of other statements. For example, she stated that descriptions 
B and F are similar to each other because they both describe a six-sided polyhedron. 
However, she never endeavored to examine each description as a whole.
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Fig. 5  Six ways people may talk about a parallelepiped

 

This trend of focusing on parts of a definition, rather than the whole definition 
as defining a mathematical entity completely, is also reflected in Fiona’s classroom 
mathematics. For instance, Fiona presented the textbook’s definition of a vertex 
as “a point at which three or more faces meet.” However, later on during the same 
lesson, Fiona referred to a vertex of a cone without offering a definition for it. One 
of her students pointed out that the original definition of a vertex does not apply 
to the vertex of a cone, and Fiona merely agreed with the student without offer-
ing or seeking an explanation for why this is the case. Fiona seemed unperturbed 
by the potential conflict among these definitions. This incident involving vertex 
definitions highlights how Fiona did not insist on coherence across definitions of a 
mathematical term.

Discussion

Although her work was not always perfect, Fiona, during her task-based interviews, 
demonstrated an ability to engage in mathematical processes. From our charac-
terizations of her personal and classroom mathematics, as well as the relationship 
between them, we noted two emerging themes regarding Fiona’s use of her mathe-
matical knowledge: (a) minimal use of mathematical processes and (b) overlooking 
of relevant features of mathematical objects. These two themes characterize Fiona’s 
engagement with multiple processes and actions on the products of those processes, 
and were evidenced both in her personal mathematics and in her classroom math-
ematics. First, despite her ability to successfully engage in the processes, Fiona did 
not tend to use processes in her problem solving. Although Fiona demonstrated 
competence in engaging in the mathematical processes studied, the processes were 
not central to how she engaged in mathematics or how she engaged students in 
mathematics. In her task-based interviews, Fiona generally engaged in these pro-
cesses only when prompted. Similarly, while teaching, she seldom engaged in pro-
cesses or required that students do so, even though we observed several occasions 
(e.g., students asking Fiona for justification or Fiona providing students with activi-
ties designed to lead to generalizing) in which it would have seemed reasonable to 
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engage in processes. The possible exception to Fiona’s tendency not to engage in 
processes is the process of representing. In her personal mathematics, Fiona seemed 
to use representing to help her in problem solving, often augmenting a representa-
tion or manipulating one type of representation to create another and linking rep-
resentations to provide justifications. In her classroom, Fiona occasionally directed 
students to use different types of representations in problem solving (e.g., directing 
students to draw a graph if they were struggling with writing an equation of a line 
or to use geometric figures to generate tables of values to look for a generaliza-
tion). However, she seldom seized opportunities to have students interpret and link 
multiple representations even when it would seem to make sense to do so (e.g., not 
linking the limit definition of a derivative of a function to its graphical representa-
tion). Although Fiona showed that she was capable of engaging in each of the four 
identified processes, she tended not to engage in those processes in her own prob-
lem solving and did not engage her students in those processes.

Second, we observed a characteristic of Fiona’s engagement in the processes: 
She tended not to pay attention to a sufficient set of relevant features of mathemati-
cal objects. Fiona had a tendency, when working with processes and products of 
those processes, to focus on some features of a product or mathematical object and 
not attend to other relevant features. In her personal mathematics, many of Fiona’s 
justifications were incorrect because she had not attended to a sufficient set of the 
relevant characteristics of the object in question. In the defining interview, Fiona 
defined a particular set of polyhedra as having exactly one pair of parallel faces 
without recognizing that some of the polyhedra in the set have more than one pair 
of parallel faces. In her classroom mathematics, she used the term vertex as having 
universal applicability and failed to distinguish between definitions of a vertex of 
a polyhedron and a vertex of a cone. When working with processes and actions on 
the products of those processes, Fiona regularly focused on an insufficient subset of 
the features of a product or mathematical object and did not attend to other relevant 
features.

Although Fiona did not speak directly about it, it is conceivable that Fiona’s view 
of mathematics could explain her approach to processes and actions on the products 
of those processes in both her personal mathematics and her classroom mathemat-
ics. Engagement in mathematical processes such as representing, justifying, gen-
eralizing, and defining are essential for making connections within mathematics. 
Fiona’s tendency not to engage in mathematical processes without prompting and 
not to engage her students in processes seems to indicate that making connections 
within mathematics is not central to Fiona’s view of what it means to do mathemat-
ics. Similarly, attending to only some of the relevant features within a problem 
situation was evidence of Fiona not treating mathematics as a connected system. 
Attending to all of the essential and relevant features of a problem situation would 
involve seeking and insisting on consistency in a mathematical system. Fiona’s per-
sonal mathematics and her classroom mathematics suggest that the connectedness 
of mathematics is not central to her view of mathematics or of her role as a teacher.

One possible explanation for Fiona’s tendency not to engage in mathematics 
as a connected body of knowledge is that she may have had limited experience 
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with doing so. It is possible that Fiona may be accustomed to problem situations in 
which the mathematical tasks can be completed by attending to only a limited set 
of features without engaging in the processes. Even if this was not Fiona’s personal 
experience, she orchestrated this kind of experience for her students. Many of the 
activities Fiona chose were ripe for involving students in mathematical processes, 
but Fiona’s implementation favored getting to the intended end result instead of 
engaging in mathematical processes. In classrooms like Fiona’s, doing math does 
not require accounting for a full range of problem features. Single cues suggest the 
procedure to follow. We are not suggesting that Fiona made conscious decisions 
about focusing on a single aspect to simplify mathematics for students; she also 
focused on limited aspects in her own mathematics. Nevertheless, she crafted for 
students environments in which doing mathematics meant being cued to do specific 
procedures based on a single aspect of the problem and in which doing mathematics 
did not require engaging in processes or attention to mathematics as a connected 
body of knowledge.

Implications

Our data show that Fiona, although capable of engaging in mathematical processes, 
tended to treat mathematics—whether personal or classroom—as if it was disjoint 
and disconnected. Doing so adversely affected her own problem solving and limited 
her students’ mathematical opportunities. She often did not account for a sufficient 
set of relevant features of the mathematical entities with which she was dealing, nor 
did she account for needed domains. She did not tend to engage in processes without 
prompting or to engage her students in processes. Although more study is needed to 
determine why prospective secondary mathematics teachers with significant formal 
mathematics background may act on mathematics in this way, this behavior may be 
a reflection of their mathematical experiences. Teachers who have not engaged in 
mathematics as a connected, coherent whole themselves may have difficulty seeing 
the discipline that way. It might be productive to provide prospective secondary 
mathematics teachers who exhibit problem solving similar to Fiona’s with experi-
ences that not only require linking representations from different registers but that, 
through reflection, make those links overt. The key to doing so might be engaging 
them in reflection on connections in the context of their problem solving. They need 
not only to understand mathematics as a connected body of knowledge but also to 
feel empowered to engage in finding and using those connections in mathematics. 
Engaging prospective secondary mathematics teachers in mathematical processes, 
as a natural part of the way they do mathematics, will develop their ability to engage 
their students in mathematical processes and to place a value on doing so.
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In his presidential address at the annual meeting of the American Educational Re-
search Association, Lee Shulman argued that the absence of focus on subject mat-
ter was a “missing paradigm” in approaches to the study of teaching, with serious 
consequences for policy and research (Shulman 1986). He characterized research at 
that time as overlooking the essential role of teacher content knowledge in research 
on teaching.

What we miss are questions about the content of the lessons taught, the questions asked, 
and the explanations offered. From the perspectives of teacher development and teacher 
education, a host of questions arise. Where do teacher explanations come from? How do 
teachers decide what to teach, how to represent it, how to question students about it and 
how to deal with problems of misunderstanding? (p. 8)

In acknowledging that “mere content knowledge is likely to be as useless pedagogi-
cally as content-free skill” (p. 8), Shulman called for blending content and pedago-
gy. He introduced the term pedagogical content knowledge (PCK) to express a do-
main of content knowledge “that goes beyond knowledge of subject matter per se to 
the dimension of subject matter knowledge for teaching…that embodies the aspects 
of content most germane to its teachability” (p. 9). Having argued that teaching 
requires content knowledge that sets a teacher apart from a content expert, he then 
suggested that a conceptual analysis of teacher content knowledge would need to 
combine a framework of domains and categories of teacher content knowledge with 
forms for representing that knowledge. He proposed three distinct forms: proposi-
tional knowledge, case knowledge, and strategic knowledge. As he explained, the 
latter two forms provide resources for linking propositional knowledge to relevant 
use of that knowledge in teaching: Case knowledge helps to make propositional 
knowledge applicable in practice, with strategic knowledge providing resources for 
managing situations when competing principles and precedents collide.

The notion of a distinctive content knowledge for teaching that is somehow dif-
ferent from knowledge of the subject being taught has appealed to scholars of teach-
ing in all subject areas—from science, to physical education, to music, to language 
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arts, and on. The idea of PCK seems to get at a basic issue that content knowledge 
matters for teaching, but that it is an understanding of subject matter distinct from 
that of the content expert—in particular, that it is useful for teaching and is under-
stood in ways that enable it to be used in teaching. Unfortunately, progress on these 
ideas has been slow, especially empirical work grounded in classrooms, such as 
the development of observation instruments linked to the concept of PCK.1 Nearly 
30 years later, the basic issues raised by Shulman, about ways in which content 
knowledge for teaching might be different, persist as pressing questions. How is 
it different? What knowledge is most useful? Why do teachers often seem to not 
use what they seem to know? Shulman’s suggested focus on case knowledge and 
strategic knowledge is compelling, but has not satisfied the field. Teacher content 
knowledge has garnered increased attention since Shulman’s presidential address 
and several studies have offered important results, but consensus on what it is and 
how best to conceptualize it is still lacking. I suggest that the reason for the popular-
ity of ideas about a distinctive content knowledge for teaching (PCK and others) is 
twofold. First, it turns attention to this set of important issues and questions about 
the relationship between content knowledge and teaching. Second, clarity about the 
dynamics of this basic relationship is key to improving teaching and learning.

Each of the four reports I discuss here takes a focused look at some constrained 
aspect of teacher content knowledge. At the same time, each simultaneously and 
consciously takes up the thorny set of issues laid out by Shulman. Each set of au-
thors is concerned with identifying specific teacher content knowledge and with 
how teacher content knowledge is conceptualized in the field. Each is attentive to 
the consequences of choosing particular conceptualizations (of the problem and 
of teacher content knowledge) over others—consequences for research on teach-
ing, for the improvement of teaching and learning, and for teacher education and 
professional development. Each is aware of the history and the debates surrounding 
teacher content knowledge. And each has written a chapter that speaks to these is-
sues, directly and indirectly, as they report on their specific study.

Land and Drake report on an analysis of responses of 34 elementary preservice 
teachers to nine open-ended questions designed to gain insight into novices’ practic-
es of reading, evaluating, and adapting curriculum materials. They situate reading, 
evaluating, and adapting mathematics curriculum materials within a larger picture 
of curriculum use, and they use their focus on novices to propose an initial frame-
work for a trajectory from novice to expert use. They propose five central skills: 
(a) writing goal statements, (b) learning about and honoring student strategies, (c) 
using explicit constructs to evaluate materials, (d) learning from educative materi-
als, and (e) making adaptations to the materials. Further, they argue that these skills 
provide a basis for locating teachers at qualitatively different levels of curriculum-
use performance. Their study contributes to an important larger effort to understand 
teaching practice related to curriculum use and to the development of such practice. 
Although it is unclear whether their five skills are the critical ones on which to fo-

1 Patricio Herbst suggested this particular formulation of the problem to me—a dearth of observa-
tion instruments.
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cus or whether their criteria for competent performance by beginning teachers are 
robust, their exploration draws attention to an important line of inquiry and provides 
a useful set of initial ideas about relevant practice and its knowledge demands.

Herbst and Kosko report on an analysis of the process of developing and pilot-
ing items their research group designed to measure mathematical knowledge for 
teaching (MKT) in the context of high school geometry. Building on the approach 
of Deborah Ball and her colleagues, both in conceptualizing MKT and in item 
development, they provide a detailed picture of the process for constructing and 
validating MKT items. Based on pilot results from experienced secondary teach-
ers—specifically correlations between years of experience teaching geometry and 
assessed mathematical knowledge for teaching geometry—they argue that MKT is 
best organized by a simultaneous consideration of content and tasks of teaching as 
these are constituted within a larger instructional context, such as a high school ge-
ometry course. The detail in their report is likely to be helpful to those interested in 
developing MKT items. In addition, their proposals for distinguishing MKT by the 
context of instruction provide an important basis for future work in understanding 
the structure and organization of MKT.

Both of these reports conceptualize teacher content knowledge as fundamen-
tally bound to teaching. Land and Drake manage the relationship between curricular 
knowledge and use of curriculum in teaching by blurring the distinction. They study 
knowledge by studying tasks of teaching. This approach permits them to finesse 
certain problems, but raises questions about what to make of the work and how to 
use it. For example, by focusing on the practice of curriculum use in their analytic 
framing without explicitly attending to the nature or role of mathematical knowl-
edge in that practice, important mathematical issues get buried inside the details of 
their analysis. For instance, in their examination of goal statements for a lesson, they 
decide that a goal identified by a participant is more sophisticated than the explicit 
goals stated in the curriculum. Improving on the goal stated in the materials requires 
important mathematical knowledge. However, the analytic tools used in the study 
do not provide disciplined structure for identifying, categorizing, or elaborating the 
nature or role of this important MKT. Instead, it is the researchers’ knowledge and 
insight that spot, highlight, and remark on the mathematical sophistication of the 
participant’s goal. Throughout, Land and Drake describe levels of sophistication, 
while acknowledging the importance of exceptions. So, in their discussion about 
goal statements, they point out that knowing when to offload, adapt, and improvise 
depends on the specific lesson and set of materials teachers are using. However, if 
deciding when to override the goals given in curriculum materials is an important 
aspect of expert curriculum use, we are left to ponder the nature of the mathemati-
cal knowledge that informs the use of curriculum. The analytic framing features the 
work of using curriculum in teaching, so assures the relevance to teaching, but does 
not feature mathematics. Hence, provides no systematic and structured ways of at-
tending to mathematics. Instead, readers need to rely on the mathematical judgment 
and insight of the researchers, which fortunately is good. My point here is not criti-
cism of the study but the highlighting of a fundamental challenge for research on 
mathematics important for teaching—simultaneous attention both to mathematics 
and to the context of teaching in which it is to be used.
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Herbst and Kosko use the conceptual framing of MKT, which is defined to be 
mathematical knowledge specifically referenced to carrying out the work of teach-
ing mathematics (Ball et al. 2008). As with the concept of PCK, which Shulman 
described as “amalgam knowledge,” the distinction between mathematical knowl-
edge and teaching can be confusing. For instance, Herbst and Kosko characterize 
knowledge of content and teaching (KCT) items as identifying well-defined in-
structional goals, with possible answers naming mathematical options that, “while 
correct in general, would be better or worse choices to meet the specified goal.” One 
might ask, if correct in general, on what basis are they better or worse? It is subtle 
to suggest that they are correct in the sense that they do not contain anything that is 
mathematically incorrect, but that they vary in the extent to which they meet a peda-
gogical goal and that deciding the extent to which they meet such a goal requires 
mathematical knowledge and judgment. It is this last point that qualifies these items 
as measuring a form of mathematical knowledge, or at least amalgam knowledge, 
and not just pedagogical knowledge. For instance, the item on choosing a proof for 
explaining the base angle theorem has teachers choose from mathematically valid 
proofs, with a focus on the extent to which the proofs support explanation of why 
the theorem is true for students with expected background knowledge. It seems 
reasonable to ask, if the options are all mathematically valid, what is the mathemati-
cal knowledge being measured? However, clearly this judgment draws heavily on 
mathematical knowledge and skill. I doubt this item could be answered simply by 
attending to nonmathematical features of the proofs. Certainly, it measures some 
form of mathematical knowledge, but characterizing such situated mathematical 
knowledge is not straightforward. By naming “tasks of teaching” and distinguishing 
items by the subdomains of MKT that Ball, Thames, and Phelps defined in terms 
of the relationship to the work of teaching, Herbst and Kosko provide analytic tools 
for making distinctions. While subtle, these tools allow them to tease apart interac-
tions between tasks of teaching and mathematical demands associated with those 
tasks in systematic ways in cognitive interviews. Their use of “instructional situ-
ation” allows them to consider ways in which MKT might be organized based on 
particular ways that mathematical topics and pedagogical practices come together 
in instructional contexts.

In contrast, the other two reports maintain greater independence between math-
ematical knowledge and teaching. Jacobson and Izsák report on analyses of 28 
middle-grades preservice teachers’ responses to prompts about whether problem 
situations illustrate the proportion A/B = C/D and four, talk-aloud, pre- and post-
interviews with pairs of teachers using a set of similar prompts. Beyond simply 
identifying shortcomings in teachers’ knowledge in an area well documented to be 
difficult for school children, they examine why many teachers correctly identify 
relationships as not being direct proportions, but then solve them as if they were. 
The report helps to explain the apparent anomaly. Students can correctly identify 
relationships among quantities, yet may inappropriately apply methods for solving 
direct proportions because they (a) associate the solution technique for direct pro-
portion problems with perceived features of direct proportion problems; and (b) do 
not have experiences that have alerted them to those features being present in the 
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problems that are not directly proportional, nor experiences that help them see that 
other relationships do not have the properties of direct relationships. Jacobson and 
Izsák argue that, instead of only instructing students to think more carefully about 
the situations posed in word problems, successful intervention requires (a) more ex-
plicit attention to perceived features of such problems and to recognition that these 
features are not unique to direct proportion situations, and (b) instruction on the 
behavior of relationships that are not direct proportions (such as constant difference 
and inverse proportions) to see why these are not directly proportional.

Heid et al. report on an analysis of a beginning secondary mathematics teacher 
whose success in mathematics coursework was seen as inconsistent with the ways 
in which she engaged students in doing mathematics. They focus on four mathemat-
ical processes: representing, justifying, generalizing, and defining. They examine 
the teacher’s engagement in these processes, both as she worked on mathematics 
problems that she was asked to solve and in her classroom instruction. They found 
that she rarely engaged in these mathematical processes unless prompted, and even 
then with limited success. Instead, her focus was on solving mathematics problems 
by cuing to do a specific procedure based on a single aspect of the problem. They 
conjecture that this may be a result of her experiences as a mathematics student, 
where such a focus was adequate for success and that it led her to views of mathe-
matics in which doing mathematics does not require engaging in mathematical pro-
cesses or attending to mathematical connections. The report draws attention to the 
potentially important role of a teacher’s proficiency with mathematical processes in 
shaping the educational opportunities provided to students.

These two latter reports conceptualize teacher content knowledge as quite inde-
pendent of teaching. The mathematical knowledge they consider is the same as that 
which might be considered when studying children’s mathematical proficiency. 
These researchers do not focus on the relationship of the knowledge to teaching, 
but instead identify potential weaknesses in teachers’ mathematical knowledge 
that may be crucial to their success in teaching mathematics. However, they do 
so as part of an effort to identify important mathematical knowledge for success-
ful teaching. To get at the essential role of teacher content knowledge in teach-
ing, Heid et al. examine knowledge as evidenced in how individuals engage in 
doing mathematics. Instead of examining how teacher content knowledge may 
be different from the knowledge that content experts have or the knowledge that 
students are expected to learn, these researchers argue that the way to identify con-
tent knowledge for teaching is by identifying aspects of the knowledge base that 
really matter for teaching. In this argument it is clear what mathematics is being 
studied, but it is less clear what the relationship of the mathematics is to teaching 
and whether and how it matters for teaching. The argument for the connection 
of teacher content knowledge to teaching is indirect. To establish the importance 
of teachers’ knowledge of mathematical processes, researchers would need to de-
velop measures of such knowledge and demonstrate effects of this knowledge on 
teaching and learning.

Similarly, Jacobson and Izsák do not focus on how teacher content knowledge 
is distinct from experts’ content knowledge, but on a basic first step of assuring 
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that teachers have a solid understanding of the content they are to teach. The math-
ematical preparation of teachers as envisioned in their study is about addressing 
immediate roadblocks to establishing that solid understanding for some of the most 
important and challenging topics in school mathematics. Certainly, such knowledge 
matters for successful teaching. Figuring out ways in which it matters and the extent 
to which it matters will be an important step in helping to establish its priority in an 
array of competing priorities. Having good measures for this knowledge (Bradshaw 
et al. 2014) will help to facilitate this ongoing work.

Having situated these studies in a broader picture of teacher content knowledge, 
I end with some comments and suggestions for future work. First, the mathematical 
terrain of K–12 education is extensive, as is the scope of varied tasks of teaching. 
Each topical area in mathematics and each task of teaching have significant implica-
tions for the mathematics that teachers need to know. From a research perspective, 
a developed understanding of the content knowledge required for teaching would 
need to include approaches for managing this sprawling landscape. Given the devel-
opment of current work, the field is in need of studies, like the ones reported here, 
that continue to examine specific pieces of this landscape. Increasing numbers of 
dissertations and other small projects have begun this work. In addition, the more 
this stream of research can share conceptual tools and language, the more it will add 
up to something. This point is implicit in my above discussion of the individual re-
ports and in my efforts to highlight the importance of considering how the relation-
ship of mathematical knowledge to teaching is being conceptualized in any specific 
study and how mathematical knowledge is being conceptualized in any analysis of 
teaching. Finally, studies that examine how teacher content knowledge might best 
be organized, such as the one reported here by Herbst and Kosko, will be important 
in helping to structure and make sense of the overall landscape of teacher content 
knowledge.

An important, yet rarely considered, dimension of this landscape is the trajectory 
of different content knowledge needs and priorities along a spectrum of profession-
al development, from the mathematical requirements for admission into a teacher 
education program, through preservice education, student teaching, entry into the 
profession, standards of established mid-career teaching, and mastery. Addressing 
such a trajectory is an asset of Land and Drake’s study. More work along these lines 
is needed. At the same time, there is a distinct tendency in the field for researchers 
to study preservice teachers, generally students in their own institutions and classes. 
This is true for three of the four reports here. While understandable, this practice 
would be strengthened by explicitly situating such research in a conceptualization 
of developing knowledge, from novice to expert, and by expanding the design of 
studies, even in small ways, to include subjects that would afford data and contrast 
along such a trajectory. For instance, in hindsight, Land and Drake might have re-
cruited even a small number of experienced teachers to complete their items. The 
additional contrasts between responses of preservice and practicing teachers, even 
small numbers, would have added to their study and might have led to stronger 
results about the interpretation of preservice teacher responses and the levels of 
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performance. With a modest investment of time and thought, similar extensions 
to research designs could be generated for most studies that, for practical reasons, 
focus on a limited collection of readily available subjects.

Third, in order to move beyond a preponderance of studies that suggest novel 
ideas about mathematical knowledge that might be important for teaching, we need 
to continue to build reliable and valid measures of the most compelling ideas that 
have been proposed and to share them across studies. The development of robust 
measures requires extensive resources, both for construction and for validation. In 
addition, the necessary focusing of resources would require the building of con-
sensus about underlying ideas and about confidence in the validity of the mea-
sures. Progress on this front is essential for building coherence across research on 
mathematics teacher content knowledge and for ultimately improving mathematics 
teaching and learning.

Last, researchers’ clarity, in a particular study, about how teaching is being con-
ceptualized, and about how the relationship between mathematical knowledge and 
teaching is being conceptualized, will help with communication among researchers 
about the assumptions, interpretations, and implications of studies. As Herbst and 
Kosko point out, the field is replete with different ways of conceptualizing teacher 
content knowledge and its relationship to teaching. Although much has been pub-
lished, it is not clear that scholars working in this area understand one another’s 
conceptions well or have conceptual framings that are readily understood by others 
in the field. University promotion based on distinguishing one’s intellectual contri-
bution can work against the need for in-depth understanding of one another’s work 
and investment in collective endeavors. The inclination to focus on one’s own novel 
ideas might, at times, be productively replaced with thoughts of joining existing ef-
forts, forging extended collaborations, and pooling resources. Doing so might help 
in building the “accumulated critical mass of empirical research” referred to by 
Herbst and Kosko. Of course, at times, there are important differences of opinion 
and perspective. These, too, are essential. Nevertheless, efforts to contribute to an 
understanding of content knowledge for teaching might be more productively orga-
nized into distinct, collective lines of work that can operate at an adequate scale for 
addressing fundamental needs of research in this domain.

The suggestions for future work that I have laid out here are meant to focus 
our attention on issues that need to be addressed if we are to make progress that 
has real impact on teaching and learning. The reports in this section contribute to 
a surveying of the wide-ranging landscape of mathematics teacher content knowl-
edge. Also, lying just beneath the surface in these reports are a set of foundational 
issues for work in this arena. Shulman’s pedagogical address drew attention to the 
crucial, yet perplexing, relationship between content knowledge and teaching. I 
have argued here that explicit attention to how teaching is being conceptualized 
and explicit study of the nature of the relationship between content knowledge 
and teaching would strengthen our currently diverse efforts in the study of teacher 
content knowledge.
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Over the last several decades, mathematics educational researchers have built a 
substantial body of work exploring how to support mathematics teachers. Spurred 
by Shulman (1987), researchers have focused on teachers’ professional knowledge 
of mathematics (Hill et al. 2007), professional beliefs about how mathematics is 
learned (Philipp 2007), and professional dispositions toward mathematics (National 
Research Council 2001). Shulman, however, also warned about taking the profes-
sionalization of teaching too far, writing, “We must achieve standards without stan-
dardization. We must be careful that the knowledge-base approach does not produce 
an overly technical image of teaching, a scientific enterprise that has lost its soul” 
(Shulman 1987, p. 20).

What Shulman labeled as “soul” other scholars might refer to as an identity—the 
unique aspects that make each teacher human and inform his or her professional 
practice (de Freitas 2008; Drake 2006; Enyedy et al. 2006; Palmer 2007). Research-
ers often frame teacher identity as the interplay of a teacher’s professional and 
personal lives (Gee 2000; Holland et al. 1998; Van Zoest and Bohl 2005; Wenger 
1998). Yet, the research connecting this view of identity with actual mathematics 
teaching practice has, so far, been elusive (de Freitas 2008; Foote et al. 2011; Van 
Zoest and Bohl 2005).

In this study, I used alternatives to some of the traditional research methods used 
to explore mathematics teacher identity, something that the identity researchers 
have long called for (Nolan and de Freitas 2008; Philipp 2007; Van Zoest and Bohl 
2005). I used photographs, allowing teachers to share how they envision themselves 
both personally and professionally. The photo-elicitation/photovoice interview 

This chapter is based on the author’s doctoral dissertation completed at The University of Texas 
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(PEPI) is a relatively new education research method incorporating photographs of 
a mathematics teacher’s life, selected and ordered by the teacher, into the interview 
context (Clark-Ibáñez 2004; Gauntlett and Holzwarth 2006; Harper 2002). By add-
ing a photographic visual anchor, the PEPI helps structure teacher narratives into a 
series of stories teachers tell about each photograph in order to explore their math-
ematics teacher identity.

Explorations into the identity of mathematics teachers matter because the field 
of mathematics education is becoming increasingly sociopolitical (Gutiérrez 2013) 
as mathematics teachers are becoming more depersonalized (de Freitas 2004; Weis-
berg et al. 2009). Exploring the human element of why someone chooses to teach 
mathematics—their soul/identity—helps us as educational researchers and teacher 
educators to better support mathematics teachers as people, thereby supporting their 
students’ learning.

In this chapter, I start by reviewing some of the ways mathematics teacher iden-
tity has been studied, specifically when using narrative methods (Bruner 1996; 
de Freitas 2008; Doyle 1997) and when trying to understand Latino/a mathemat-
ics teacher identity. Then, I show how a change in methods, specifically in using 
the PEPI, can help situate mathematics teacher identity as the stories mathematics 
teachers tell themselves but rarely share. Finally, I analyze the mathematics teacher 
identities of two Latino high school Algebra I teachers, framing the results through 
answering the research question: What identities do mathematics teachers present 
about themselves through photographs and stories within a PEPI?

Theoretical Perspective on Mathematics Teacher Identity

Drake et al. (2003, 2001) defined mathematics teacher identity as the stories that 
reveal how a teacher knows himself or herself and his or her life. Similarly, de Frei-
tas (2008, 2010) defined mathematics teacher identity as the result of negotiating 
one’s provisional self with regard to the various sociopolitical positions taken when 
teaching mathematics (e.g., sexuality, ethnicity, and economic status). Van Zoest 
and Bohl (2005) defined mathematics teacher identity as a socially constructed 
and stable attribute teachers develop through the various communities of practice 
they participate in throughout their career. This framing of identity as based upon 
community participation aligns well with Burell and Goldberg (2010), who defined 
mathematics teacher identity as a construct shaped and negotiated through everyday 
activities, goals, beliefs, knowledge, personal history, cultural socialization, experi-
ences, and community memberships. Walshaw (2004, 2010) viewed mathematics 
teacher identity as formed through social negotiation and explored through narra-
tives of pedagogical practice. Foote et al. (2011) found that, specifically for urban 
mathematics teachers, mathematics teacher development involves multiple strands 
of knowledge: mathematics content, mathematics teaching pedagogy, and one’s 
students. Battey and Franke (2008) conceptualized mathematics teacher profes-
sional development through storied identities involving a teacher’s relationships to 
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teaching, mathematics content, students, and his or her community. Finally, Brown 
and McNamara (2005, 2011), in their exploration of primary mathematics teachers 
in the UK, found that identity is constantly negotiated, not just revealed through 
narrative, but created through it.

While these definitions and other frameworks of teacher identity vary on the 
surface, they share key attributes. First, mathematics teachers reveal their identities 
though narrative and stories (Bishop 2012; Brown and McNamara 2005; Clandinin 
and Connelly 1996; de Freitas 2010; Drake et al. 2001, 2003; Holland et al. 1998). 
Second, mathematics teacher identity involves negotiating one’s personal history 
with one’s professional responsibilities (Burrell and Goldberg 2010; de Freitas 
2008; Drake et al. 2003; Enyedy et al. 2006). Third, mathematics teachers identities 
involve a teacher’s knowledge of or relationship to mathematics (Battey and Franke 
2008; Foote et al. 2011; Walshaw 2010), the various communities that a mathemat-
ics teacher lives within (Battey and Franke 2008; Van Zoest and Bohl 2005), and 
sociopolitical identities, such as gender, ethnicity, and sexuality (Battey and Franke 
2008; Brown and McNamara 2011; de Freitas 2008, 2010).

Identity Revealed Through Narratives

Hiebert et al. (2002) wrote about teacher narratives as a way to understand teachers, 
echoing Bruner’s (1986, 1996) call for a narrative construal for studying teacher 
identity. Doyle (1997) justified narrative-based teaching research to be as valid as 
any other form of research, particularly quantitative studies. I explore teachers’ 
identity through narratives because narratives do what quantitative and traditional 
research methods cannot—narratives allow teachers to tell personal practitioner 
stories (de Freitas 2008; Doyle 1997). These personal practitioner stories elicited 
through narrative are important because teachers often learn to build their practice as 
individuals; they place value on the experiences they hear in colleagues’ stories over 
the professional development and research-based practices they encounter in their 
careers (Britzman 1991; Hiebert et al. 2002; Lortie 1975). To uncover these sto-
ries, interviews must take place in “safe spaces, generally free from scrutiny, where 
teachers are free to live stories of practice” (Clandinin and Connelly 1996, p. 25).

Anchoring Structures to Focus Narratives

Narrative research, however, can get very messy; stories tend to overlap or tangent 
into other stories. Studies successfully exploring identity through a narrative lens 
often rely on specific structures to anchor these narratives into analyzable units. 
Vygotsky (1978) wrote about the need for physical anchors, images, or artifacts that 
helped him situate his exploration of a child’s development from an inner speech 
to a social speech. Holland et al. (1998) found that the ability to self-reflect upon 
one’s own “inner-speech/discourse” was difficult for all their subjects without some 
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sort of anchor. Freire (1970) anchored his interviews with Brazilian literacy teach-
ers using drawings and photographs. Structures, therefore, are helpful in separat-
ing a teacher’s narrative into individual stories for analysis (Bruner 1996; Doyle 
1997; Hiebert et al. 2002; Sfard and Prusak 2005). Anchoring structures, then, are 
specific tools used to ground a narrative so they can be divided into specific story 
units. Anchoring structures situate and direct an interview while still encouraging 
participant voice.

In this study, I used teacher-selected photographs of their “world as a mathemat-
ics teacher” as anchoring structures. This process is relatively new in educational 
research, but referred to as photovoice in nursing and health care research (Guil-
lemin and Drew 2010; Hansen-Ketchum and Myrick 2008; Wang and Burris 1997) 
and photo-elicitation in anthropology and sociology research (Clark-Ibáñez 2004; 
Gauntlett and Holzwarth 2006; Harper 2002). These are research techniques that 
use a visual basis for self-authoring narratives, allowing the participants to tap into 
their “visual” voices to access memories and thoughts they might not recall in oth-
er ways (Hansen-Ketchum and Myrick 2008; Wang and Burris 1997). This visual 
self-reflection often elicits powerful and emotionally charged stories (Clark-Ibáñez 
2004; Wang and Burris 1997).

Photographs Elicit Multiple Types of Stories

Anchoring structures preserve and encourage participants’ voices and break narra-
tives into analyzable story units, finite sequences of thoughts and reflections cen-
tered on a particular topic or idea. Teachers often tell two types of stories about their 
photographs: professional or personal. Professional stories are the stories, a teacher 
tells about the professional aspects of being a mathematics teacher. For instance, a 
teacher might tell a professional story about students working in groups, comment-
ing about how group work is emphasized in his or her classroom. Personal stories 
are the stories connecting a professional story to a teacher’s personal life. Personal 
stories explore who teachers see themselves to be: their prior experiences, their 
schooling, their family, the way they feel positioned, their dispositions, and other 
personal aspects that make them feel human. For instance, a teacher might tell a 
personal story about her family and how she grew up in a household that valued 
mathematics.

Although many studies situate teacher identity only within these personal and 
professional stories (de Freitas 2008; Drake et al. 2003; Enyedy et al. 2006; Palmer 
2007), I found that identity actually involves a third story type that is touched upon 
in the literature (Clandinin and Connelly 1996; de Freitas 2008; Sfard and Prusak 
2005). Touchstone stories, elicited through either professional or personal stories, 
are the stories teachers tell themselves but rarely share publically. The term is based 
on touchstones used to determine the quality and genuineness of precious metal 
alloys in ancient alchemy and modern chemistry. Teachers use touchstone stories 
as internal mechanisms of critique and decision making, holding these as standards 
upon which all their other experiences are compared.
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Touchstone stories are the hardest to elicit because they sit prominently in a 
teacher’s mind, where teachers constantly reference them but rarely share publi-
cally unless they are in a “safe” space (Clandinin and Connelly 1996; Sfard and 
Prusak 2005). Sfard and Prusak (2005) found that a depressing emotional response 
was sometimes generated when teachers confronted these stories. de Freitas (2010) 
echoed this sentiment, finding that the best way for mathematics teachers to confront 
their own identity was to “‘zoom in’ on highly emotional moments which had left 
a strong imprint on their memory” (p. 51). Triggering these emotional moments al-
lows mathematics teachers to reveal and reflect upon their touchstone stories. There-
fore, touchstone stories are revealed when a teacher confronts a professional or per-
sonal story in a way that generates an emotional reaction. A teacher might cry, get 
angry, look embarrassed, or laugh—all clues that a touchstone story is being shared.

Latino/a Mathematics Teacher Identity

The research into the specific sociopolitical ethnic identity of Latino/a mathematics 
teachers is sparse, yet emerging (Civil 2009; Gutiérrez 2013). Much of the work 
thus far has focused on debunking certain myths about Latino/a mathematics teach-
ers. Achinstein and Aguirre (2008) found that teachers of color do not automati-
cally connect to students from the same culture. Furthermore, Vomvoridi-Ivanović 
(2009) found it was very difficult for preservice Mexican-American teachers to 
bring their own culture into their mathematics teaching, even when working with 
children of Mexican heritage. These preservice teachers were able to bring their 
Mexican-American culture into their teaching only within open-ended projects, but 
not when using scripted curriculum activities and lessons. Finally, Gutiérrez (2013) 
used Latino/a critical race theory to show that assumptions cannot be made about 
cultural connections between Latino/a math teachers and their students. What this 
means for mathematics education research is that we need specific research study-
ing Latino/a mathematics teacher identity. We need to understand how to support 
Latino/a mathematics teachers in drawing from their own culture and connecting 
to their students, thereby fostering the teacher–student relationships and increasing 
their students’ mathematical learning (Achinstein and Aguirre 2008; Tellez 2004; 
Vomvoridi-Ivanović 2009).

In summary, the research on mathematics teacher identity agrees that identity 
is best studied through teacher narratives. But in order to organize these narratives 
into analyzable units, anchoring structures are needed. Because of the emerging 
work using photographs in the fields of health care and anthropology, I chose to use 
photographs as anchoring structures to study mathematics teacher identity. These 
photographs helped teachers frame their narrative into three specific story types: 
professional, personal, and touchstone stories. The touchstone story illuminated as-
pects of one’s identity as a mathematics teacher since it was a story a teacher told 
to himself or herself, yet rarely shared publically. And specifically for sociocultural 
ethnic identities, such as a Latino/a mathematics identity, these stories might reveal 
that a shared cultural background between teacher and student is not enough for 
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teachers to feel culturally connected to their students. In the next sections, I detail 
exactly how I elicited and analyzed these stories, as told by two Latino mathemat-
ics teachers, and the aspects of mathematics teacher identity these stories revealed.

Methods

In order to explore mathematics teacher identity through teacher-selected and 
teacher-captured photographs, I used a combination of the PEPI methods. In the 
fields of nursing and anthropology, visual and creative methods like the PEPI have 
proven to be especially useful for studying identities for a number of reasons (Brown 
et al. 2009; Clark-Ibáñez 2004; Gauntlett and Holzwarth 2006). First, Harper (2002) 
showed how the PEPI method was particularly suited for studying identity because 
photographs can retrieve events from a teacher’s past and bring them freshly into 
the discussion; the teacher photographs become glimpses into various aspects of his 
or her life while the teacher creates commentary about how the specific moments in 
the photograph connect to his or her teaching. Second, the PEPI excels in generat-
ing a narrative told in the participants’ “voice;” the stories they tell are unfiltered 
and raw (Brown et al. 2009; Clark-Ibáñez 2004; Gauntlett and Holzwarth 2006). 
Third, Gauntlett and Holzwarth (2006) found the PEPI forced participants to spend 
time thinking about each photograph during the selection process. This means that 
participants put a substantial amount of thought and reflection into what each pho-
tograph means before presenting them, rather than the instant responses typical of 
traditional interviews. Finally, the PEPI honors teachers’ lives and busy schedules 
because it is noninvasive and requires a relatively short time commitment from each 
participant (Clark-Ibáñez 2004; Gauntlett and Holzwarth 2006; Harper 2002).

The Process

In this chapter, I focus on two self-identified male teachers of the six teachers who 
participated in my original dissertation study (Chao 2012). They taught Algebra I at 
two different high schools, located in a large city in a large Southwestern state. I had 
previously interacted with both teachers through interviews, professional develop-
ment workshops, and classroom observations for another research project. I specifi-
cally chose the six teachers for the larger study, because, in our prior conversations, 
they expressed interests in exploring and talking about their identities in connection 
to their mathematics teaching. Through our prior interactions, I also knew they would 
tell rich and detailed stories.

I first visited each teacher to give him a digital camera and a loose prompt to 
“capture your world as a mathematics teacher” in at least 20 photographs. We then 
set up a time and date to sit individually for a formal PEPI 2 weeks later. During 
these 2 weeks, I observed at least one Algebra I class period for each teacher to get 
a feel for his teaching practice and style, to get to know his classroom and school 
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culture, and to be available to answer any questions he might have about the study. 
A day or two before the scheduled interview, I sent an e-mail to both teachers re-
minding them about the interview, and I prompted them to choose their ten most 
important photographs. This forced shrinking of the photograph pool right before 
the interview was an attempt to make the teachers reflect deeper and engage directly 
with the photographs they chose.

I then sat with each teacher for the actual PEPI, each one taking place after school 
in the teacher’s classroom and lasting at least 90 min. During the interview, each 
teacher shared one photograph at a time in order of self-selected importance. I used a 
minimal interview structure, using nonjudgmental and nonevaluative language such 
as “Tell me more about that,” or “How does that connect to you as a mathematics 
teacher?” (Johnston 2004). I also used clinical interview strategies to get the teachers 
to elaborate more on how each image connected to their identity (Ginsburg 1997).

Data and Analysis

Audio data from each interview were captured with a digital recorder and then tran-
scribed for analysis using a grounded theory coding structure. I coded for emerg-
ing themes of mathematics teacher identity centering on teachers’ professional and 
personal lives (Corbin and Strauss 2008; Merriam 2009). The main data source was 
the interview of each teacher, which I transcribed in InqScribe1 to build an emerging 
coding scheme. While the actual photographs each teacher shared and the notes I 
took during classroom observations added tremendous depth to the interview, I did 
not consider them as primary data and therefore did not analyze them.

I analyzed each teachers interview using two separate approaches: one 
based on qualitative education research practices and one based on the photo-
elicitation/photovoice literature. The first approach involved “living” in the data—a 
straightforward grounded-theory approach based upon creating emergent codes on 
individual themes through successive analytical memos (Corbin and Strauss 2008; 
Merriam 2009). I used this approach to build trustworthiness in my interpretations 
of the data—what Erlandson et al. (1993) call credibility, transferability, and de-
pendability when doing naturalistic inquiry. The second approach involved looking 
for stories and was appropriated from the research on photo-elicitation/photovoice 
techniques (Brown et al. 2009; Clark-Ibáñez 2004; Guillemin and Drew 2010; Han-
sen-Ketchum and Myrick 2008; Harper 2002; Oware et al. 2007; Wang and Burris 
1997) and on studying identity through stories (de Freitas 2008; Drake 2006; Drake 
et al. 2003; Sfard and Prusak 2005).

The first part of analysis began when I transcribed each interview. I used In-
qScribe to tag thematic codes while I transcribed in order to build a general 
grounded theory (Corbin and Strauss 2008). These first-pass codes formed the ini-
tial stages of a categorical scheme to organize the data (Corbin and Strauss 2008). 

1 A video and audio transcribing tool built for educational researchers. http://inqscribe.com/.
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After importing all the interviews into Transana,2 I built a theoretical sample by 
analyzing the two longest interviews from the original dataset of six teachers. I lis-
tened to the audio and carefully read the transcripts in order to designate individual 
audio clips based upon emerging thematic codes (Corbin and Strauss 2008). These 
clips allowed me to create a more robust two-tiered analysis mechanism; each clip 
contained one primary keyword category and multiple thematic codes. For the first 
interview, I created 103 clips. For the second interview, I created 69 clips. Together, 
these interviews generated 446 thematic codes within 35 keyword categories.

At this point, I truncated the thematic code set with a specific focus on teach-
ers’ professional and personal lives to collapse the codes. I used this second-pass 
thematic code set to analyze the interviews, adding thematic codes and keyword 
categories only as necessary. Refining the codes and keyword categories with the 
full dataset, I focused the analysis on the construct of mathematics teacher identity 
without being too specific to any particular teacher. This third-pass (and final) code 
set contained 206 thematic codes within 14 keyword categories.

The second approach to the analysis involved breaking apart each interview into 
individual stories based upon the photographs each teacher shared. I started by di-
viding up each interview into individual chapters, based upon the photograph on 
the screen at that particular moment during the interview (Hansen-Ketchum and 
Myrick 2008; Harper 2002). I then divided up each chapter into individual profes-
sional and personal stories.

Then, I went back to the transcripts and my analytical memos and found that 
many of the thematic codes and categories were about increased emotion, such as 
“anger,” “tears,” or “raised voice.” I found at least one instance of increased emo-
tion in each of the original six teachers’ interviews (Chao 2012). These instances 
of increased emotion always led to a revelatory type of story. So, based on other 
research into emotional teacher stories (Clandinin and Connelly 1996; de Freitas 
2008; Sfard and Prusak 2005), I classified these emotional stories as touchstone 
stories. The touchstone stories were the stories a teacher told in ways that hinted 
they were revealing an internal dialogue they normally hid, usually preceded by a 
phrase like, “I didn’t think about this until just now…” or “I never talk about this, 
but…” I then used thick description to write up each teacher’s touchstone story and 
the professional or personal stories that led to the sharing of that touchstone story.

Finally, I wrote a summary of the teacher’s stories, main keyword categories, 
thematic codes, and analytical memos for each teacher, along with my preliminary 
analysis. I e-mailed the teachers their summary, asking them to add to, edit, or 
clarify anything in the summary in order to create a form of member check validity 
(Corbin and Strauss 2008). I asked the teachers to help me keep what I was writing 
true to their “voice” and to ensure I was being “real” in an attempt to build cred-
ibility through member checks, since “no data obtained through the study should be 
included in it if they cannot be verified through member checks” (Erlandson et al. 
1993, p. 31). I also asked each teacher to approve a pseudonym I chose from his or 
her interview that was both personal and unique.

2 A qualitative analysis tool developed by the Wisconsin Center for Education Research. http://
www.transana.com/.
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These stories, along with the rigorous and multiple passes of the data through 
analytical memos, thematic codes, and keyword categories, allowed me to generate 
thick description of my findings (Erlandson et al. 1993). Because the interviews are 
specific to only the mathematics teachers in the study, I cannot generalize the find-
ings to the general population of mathematics teachers (Corbin and Strauss 2008; 
Erlandson et al. 1993). However, the use of thick description and purposive sam-
pling make these findings transferable to other contexts (Erlandson et al. 1993).

Results

In this results section, I focus specifically on a touchstone story each teacher shared, 
along with the connected professional and personal stories that elicited this touch-
stone story. Of the original six teachers in my dataset, I chose to focus on these 
two teachers because they both started the interview describing how their Latino 
heritage connected to their mathematics teaching, yet both teachers ended up telling 
very different touchstone stories (Chao 2012).

Mr. Leche

Mr. Leche was in his fifth year teaching at his second high school that served an 
urban, low-socioeconomic, almost entirely Latino/a student population. He self-
identified as a Mexican male. Mr. Leche presented photographs that highlighted his 
childhood friends, his passion for ending school bullying, his experiences watch-
ing his Mexican hometown turn into a violent warzone, and his yoga practice. Mr. 
Leche shared that he immigrated to the USA from Ciudad Juárez when he was in 
high school. He saw his role as a mathematics teacher as supporting other immigrant 
students making the transition to life in the USA. For example, Mr. Leche made sure 
his Spanish-speaking students were grouped together so they could engage in math-
ematical dialogue together in Spanish. Mr. Leche shared a touchstone story about 
not being able to go home again. This story came about through a personal story 
about growing up in Juárez and a professional story about his struggles in teaching 
mathematics in a way that was culturally relevant to his students.

Personal Story Mr. Leche shared a photograph depicting the mass graves of over 
370 murdered women discovered in his hometown of Ciudad Juárez in Chihuahua, 
Mexico (Fig. 1). This gravesite was very close to where Mr. Leche grew up. Mr. 
Leche remembered the discovery of this mass grave during his childhood, an inci-
dent he describes as “burned” into his psyche, so traumatic he had trouble saying 
exactly what happened.

Back in the ’90s…Juárez was like, it’s a border town…they’re still finding a lot of like, 
missing girls and stuff. And this is actually, maybe 2 miles from my house, from my par-
ents. And they found like a big, big (pause)…mass grave…. I was moving…to the States, 
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and Juárez was getting a really bad reputation…. A lot of the girls were like 16 years, like 
14 years, 14, 15-year-olds.

Mr. Leche shared that this incident was such a disturbing part of his childhood, he 
felt the need to honor these lost lives through presenting this photograph. “I just 
have to include this picture just to, just to honor them…. How does it relate this to 
my teaching? I don’t know. Just, as a human being…I think it’s part of me.”

Mr. Leche’s personal story was a reminder of the violence that engulfed his 
hometown. While looking at this photograph, he reminisced on the memories from 
his childhood of a safer Juárez that no longer exists.

I remember…we were, like, alone in the streets in Juárez. And back then, it was not that 
dangerous…. On Sundays, we went to church and then we went to downtown to watch 
movies…. So it’s kind of weird, like going back to my, like things that I remember…Juárez 
right now is kind of bad, it’s like really, really bad.

In this personal story, Mr. Leche presented a traumatic event that engulfed his 
hometown, his family, and all of his memories of childhood. He was not sure how 
this story connected to his teaching, but he knew it was important to share it in this 
interview.

Professional Story Mr. Leche continued to reveal a professional story about the 
difficulty he had as a teacher living between the cultures of Mexico and the USA. 
He shared he felt like a perpetual foreigner, even though he had lived in the USA for 
over 15 years. He realized this feeling of being “othered” eroded his own tolerance 
for diversity.

When I came to the States and I was really open and I wanted to know about different 
ethnicities…but now that I’m older and I have been more than 15 years in the States, not a 

Fig. 1  Mr. Leche’s photograph of a memorial in remembrance of the over 370 violently mur-
dered women discovered in a mass grave near his childhood home in Ciudad Juárez, Chihuahua 
in Mexico
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lot of people feel comfortable with…like, maybe the community will not accept me…like, 
you’re an outsider and you don’t belong here.

He shared how he had felt “othered” on a recent professional development trip with 
a fellow teacher.

Once I start speaking, they know, like, that’s the first thing, like…you’re not from here…. I 
went to this trip, I went with [a fellow teacher] and she’s white. And it’s kind of weird, like 
how…people treat you…if you go to a restaurant… and everyone is white…I just felt that 
presence…like, you’re not welcome.

Mr. Leche saw this “othering” mirrored in his students. He said, “Here in the States, 
it’s more racial. And it’s also more, like, like, like sexual orientation and if you’re a 
female. And what I have noticed is like, within the kids, within my students, yes.”

Furthermore, Mr. Leche explained that he felt a high amount of cultural congru-
ence (Ladson-Billings 1994) with his Latino/a students, yet he felt guilty invoking 
it or using this shared identity for fear of “othering” his non-Latino/a students. For 
instance, he noticed he was more macabre with his Latino/a students because they 
might understand his dark Mexican humor.3

I’m more sarcastic with my Hispanic kids because I know the humor within the Mexi-
can culture. And I know, like, it’s like dark. Like Mexicans have like really dark sense of 
humors…. But I cannot be the same, I cannot say the same to a Black kid or to any, any, a 
White kid. Because they, they, they just, they will feel that it’s like offensive. They wouldn’t 
understand.

Mr. Leche shared he was growing in his awareness of how ethnicity, sexual orien-
tation, and cultural congruence affected his mathematics teaching. But he readily 
admitted he was unsure how to address these issues. He was aware of the culture 
he shared with his Latino/a students. More than just a shared language, it involved 
shared social norms and registers.

I consider myself Hispanic. And even the kids…like, to be honest, like, a lot of my Hispanic 
kids, they’re more accepting because I’m Hispanic…most of the kids here are Hispanic and 
I think they relate to you…they say like Uncle, in Spanish…or they say, like, Dad…I think 
it has to do with culture.

Mr. Leche shared how his conceptions of discrimination by race, gender, sexual 
orientation, and culture had evolved through his experiences as an immigrant deal-
ing with assimilation into American culture. He used these lenses to view his stu-
dents and shared he was still trying to figure out how to teach mathematics with 
this awareness. He felt uncomfortable invoking the mutual Latino/a background he 
shared with many of his students. He disclosed that he rarely had an opportunity to 
talk about these issues, especially about sexual orientation and culture. He felt they 
were hidden topics in his professional development, spoken about only in shallow 
ways or glossed over completely. He knew these issues should be a primary part of 
his mathematics teaching practice, but he was unsure of how to incorporate them 
into his teaching.

3 I observed Mr. Leche opening one of his lessons with the joke: “I have a few requests. The first 
one is that no one dies on me.”
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Touchstone Story There was one moment in the interview when Mr. Leche calmed 
down from his nervous disposition, his speech slowed, he made direct eye contact, 
his eyes watered, and he referred to me by name. This felt like a rare moment of 
clarity in Mr. Leche’s narrative, in which I noted he seemed reflective and vulner-
able. I took this reflective and emotional moment as a sign Mr. Leche was telling a 
touchstone story.

Speaking of his childhood in Juárez, Mr. Leche stated, “I think it marked, it 
marked, there’s, kind of like what I say, there was a lot of things that I, living in 
Juárez that marked, that marked, kind of like a burn into your brain.” Revealed 
through Mr. Leche’s stories as an outsider trying to make sense of the segregated 
nature of American culture is a touchstone story about the lasting trauma from the 
destruction of his hometown. Mr. Leche indicated that Juárez was a city so devas-
tated by violence he had trouble finding images tame enough for this interview; 
many of his photographs were too gruesome. He shared the pain of seeing memo-
ries from his childhood engulfed in violence. Yet, he disclosed that he felt no one in 
his current world understood what he was going through. He shared that he felt os-
tracized from his teaching community, from American culture, and even from other 
Latino/as. He found that his connection to Juárez, while fascinating to his teacher 
colleagues, also tokenized him as “the teacher from Juárez,” which colleagues used 
to characterize him rather than to understand him.

I remember, I was in [fellow teacher’s] house, and he had like a lot of friends and all these 
people over, like from [an elite, private, Southern university]. Like, and we were talk-
ing and they knew that I was from Juárez and they started asking questions…there was a 
picture that actually was published in the newspapers, they were like beheadings, so they 
were like four bodies, four bodies…. And they, they cut the heads and they place them. And 
when there’s things like, when you’re driving, you see dead bodies, like on the bridges. So 
I think like people here in the States really take the things for granted. And they just don’t 
understand how in other parts of the world, it can be so bad.

Mr. Leche’s touchstone story involved his feelings of isolation in knowing firsthand 
the violence of his hometown, of feeling “othered” from being from Juárez, and 
knowing he could not go home again. He felt neither his colleagues nor his students 
understood this feeling of displacement. Mr. Leche remembered, “And even though 
it was simple, I felt like at home…even though, like, I was in Juárez, and Juárez is 
not a really safe place.” And as much as living in the USA troubled him, he could 
not return to Juarez. Mr. Leche’s hometown was now a place people routinely got 
killed, even when demonstrating for an end to the violence. Mr. Leche shared, “We 
went to, went to do this walk, a walk for the peace. Now you cannot do that, any-
more. You get killed, if you do that. Yes.”

Mr. Leche’s touchstone story was an extension of his personal story involving 
his feelings as a refugee, and the intolerance and trauma that haunted his day-to-
day existence. He shared that he felt the school system he worked in was unable to 
support him talking about these experiences, especially since he knew that many of 
his students were also immigrants from violent, drug-war regions of Mexico. He 
felt he did not know how to talk about the issues that troubled him in a meaningful, 
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professional way with his colleagues or his students. He felt he had to keep these 
ideas hidden. Mr. Leche’s touchstone story was about not being able to go home 
again, as his hometown had been destroyed by drug-war violence.

Listening to Mr. Leche’s stories, I wondered where the professional development 
opportunities were for Mr. Leche to learn how to navigate the tension he felt in his 
students’ lives and in his own life. Mr. Leche, who shared an ethnic and cultural 
background with most of his students, felt ostracized and guilty about capitalizing 
on that cultural congruence to improve his teaching. He also directly identified the 
kind of support mechanisms he needs: a way for him to work through the trauma 
of growing up in Juárez, particularly since his story parallels those of some of his 
students. Through his stories, Mr. Leche revealed a mathematics teacher identity 
focusing on the lack of professional development and support he needs when it 
comes to understanding how to talk about ethnicity, culture, and geopolitical iden-
tity within his mathematics teaching.

Mr. Ginobili

Mr. Ginobili was also in his fifth year teaching, all in the same middle/upper-so-
cioeconomic status suburban high school serving a primarily White and Latino/a 
student body. He taught in a dual-language immersion bilingual program and also 
coached the girls’ soccer team. He self-identified as Mexican and male. Mr. Gino-
bili shared photographs about his family, his house, his love of sports, the effort he 
put into engaging his students, his coaching, and his pride in being from Mexico. 
Mr. Ginobili immigrated to the USA from Mexico City when he was 6 years old 
and he saw his role as a bilingual mathematics teacher as bridging the mathematics 
learning cultures of Mexico and the USA. For instance, he always had his newly im-
migrated students share with the class how they had learned and discussed Algebra 
in their former countries. This student sharing was Mr. Ginobili’s attempt to foster 
student agency and help him understand his students’ prior mathematics learning 
experiences. Mr. Ginobili shared a touchstone story about how he had grown so 
frustrated with the culture of mathematics teaching he had taken on a new iden-
tity of soccer coach rather than mathematics teacher. This touchstone story came 
through a professional story about how being a coach allowed him to teach and 
inspire his players in ways he never could in the mathematics classroom.

Professional Story Mr. Ginobili shared a photograph of himself, in a suit, ready to 
coach a girls’ soccer game (Fig. 2). He shared that he brought many of the things he 
did as a soccer coach into his mathematics classroom. For instance, he noticed his 
players paid attention to bright colors and flashy objects on the soccer field. In order 
to hold his players’ attention on the field, he wore lime green shoes on the soccer 
field. So, in his mathematics classroom he wore bright orange shirts. He also shared 
he had a lot more fun coaching soccer than teaching mathematics.
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I love being on the soccer field. That’s, that’s, I mean, if I could coach year-round, I would. 
It’s a—I have fun with it. I think the kids have fun when I’m coaching, so definitely a lot 
of joy. You know, a couple stressful moments. But not as much as when I’m on the, in the 
classroom. (laughs)

Mr. Ginobili enjoyed coaching so much that he would never consider taking a future 
teaching position at another school unless it also came with a head coaching posi-
tion.

I like where I’m at in my coaching. If you want to offer me a head coaching job there, then 
I’ll go there for that. But if it’s just for teaching, I don’t see myself going there. Because 
I see it as something that’s become a part of me. It’s become a part of who I am, and I 
wouldn’t want to leave it. I wouldn’t want to leave it.

Mr. Ginobili’s professional story was about how he saw himself as a coach, just as 
much, if not more so, than how he saw himself as a mathematics teacher. He shared 
that the reason he loved coaching was that it allowed him to teach and inspire his 
soccer players, which he found harder and harder to do in his mathematics class-
room. As a mathematics teacher, he spent most of his time trying to get students 
interested in the mathematics content, whereas on the soccer field the students came 
already wanting to play, wanting to get better. Mr. Ginobili described coaching as 
feeling more natural, more “free flowing.” He felt mathematics teaching, however, 
required a lot more effort and meticulous planning.

It’s a lot different. Having kids that you’re forcing to get this information, and kids that 
are, you know, thirsty for it and are like sponges, wanting to get your coaching. So it’s 
a lot different…you get the bright side of it out there because you get these kids that are 

Fig. 2  Mr. Ginobili just 
before he coaches a soccer 
game. Note the lime green 
shoes
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passionate about something. While, in here [the mathematics classroom]…sometimes, I’m 
pulling teeth! (laughs)

Mr. Ginobili continued to share about how student passion looked very different on 
the soccer field as compared to his mathematics classroom. He became frustrated 
with the culture of mathematics education in how it dissuaded students from build-
ing passion for mathematics.

Now that I’ve become a coach…it’s really become an integral part of what I am, and what 
really motivates me to keep coming back…like, sometimes you’ll have a gloomy day here 
in the classroom and you’re like, “Oh my god. These kids are killing me!” And then you’ll 
go out onto the soccer field and you have girls who are, you know, busting their little butts 
off for you and trying really hard and running and doing everything for you. And you’re 
like, you know, you grow to appreciate their effort.

Mr. Ginobili saw the difference in passion for sports and mathematics through stu-
dents that were both on the soccer team and in his mathematics class.

I coached some of my students before and you see such a difference in them in the class-
room and on the soccer field, or on any field, really…they’ll be rowdy little kids and they’ll 
be talking to their friends and kind of, you know, messing around in the classroom. But…
you see that focus and that drive in them on the field, that they’re like, “Oh my god, I want 
to go to practice because I want to get better.” And, “I want to make sure that I’m on the 
team. And I want.” And it drives them and it’s like, “Wow, okay, I don’t remember seeing 
this drive in you in the classroom.”…you see another side of them. You definitively see 
another side of them.

Touchstone Story Mr. Ginobili maintained a laid-back, jovial tone throughout 
most of the interview. But he raised his voice, expressing feelings of exasperation, 
when he talked about the state of modern mathematics teaching. In his first few 
years as a teacher, Mr. Ginobili was part of a grant emphasizing small group teach-
ing and project-based instruction. But now that the grant was over, he was stuck 
with increased class sizes and felt that he had to resort to a more “traditional” style 
of classroom teaching. This frustrated him.

I started teaching here in a grant position where we had max ten kids in a room…just 
all small group, just…intense, focus on the kid. And I did that for…three years. And...it 
worked. It did work. But I mean, the grant went away…I tried to do that my first year that 
I had a large classroom with 30-some-odd kids…I had them in groups, in small groups…
it didn’t quite work…the dynamics of the classroom and the dynamics of the kids. It was 
so different.

Mr. Ginobili lamented he ended up creating a classroom culture in which he sup-
ported only students who were motivated to learn. He felt forced to ignore students 
who had already decided to drop out of high school.

The kids that realized that they had made a mistake their freshman year and were really 
trying to regain their credit for Algebra sat in the front. The kids that were just like, “You 
know what, I’m going to drop out and no matter what you do, I’m going to drop out by next 
month.” They sat in the back and, you know, I didn’t bother them.

Mr. Ginobili felt burnt out on mathematics teaching because he was unable to 
use methods he knew would lead to more student engagement. “Real” teaching, 
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inspiring students to become the best they could be, existed only in his coaching. 
He shared that he felt the support structures he needed to teach mathematics in ways 
he knew were best for his students had been systemically removed. Mr. Ginobili’s 
touchstone story was about his disillusionment with mathematics teaching. He saw 
himself as a motivator, someone who inspired his students to be their very best. 
But he did not have the time and resources to inspire all of his students in his math-
ematics classroom. If his students came to his classroom wanting to learn, he could 
teach them. But if they wanted to drop out, he did not have the resources to engage 
them. So he ended up ignoring them. Letting students slip through his mathematics 
classroom without learning or becoming inspired to learn frustrated him. Yet, on the 
soccer field, he felt he had all the resources necessary to inspire every single one of 
his players to always try their hardest.

Mr. Ginobili saw vast differences between coaching and teaching culture. He 
felt passionate about inspiring and working with his soccer players to get better and 
work as a team. But with his mathematics students, he felt like a glorified babysitter 
who could reach only a certain number of students at a time. I wonder what kind of 
supports it would take for Mr. Ginobili, a fifth-year veteran bilingual mathematics 
teacher, to embrace his mathematics teacher identity again. And while he initially 
mentioned his Latino/a cultural congruence to his students as being an important 
part of his teaching identity, he still spoke with frustration about not being able to 
inspire and engage his mathematics students. He saw himself as a soccer coach 
first, and yet he never mentioned his Latino heritage as being a part of his coaching 
identity. The culture of sports might be less entrenched with issues of social class, 
immigration, or colonialism than the culture of being Latino/a (de Freitas 2008; 
Duncan-Andrade 2010). The professional identity switch is a much easier path than 
delving into the politics of inter-group Latino/a sociocultural conflict (Valenzuela 
1999). Perhaps the difference between Mr. Ginobili, who emigrated from Mexico 
City as a young child, and his students, many of whom recently emigrated from less 
cosmopolitan areas as teenagers, are accentuated when Mr. Ginobili invokes his 
Latino/a identity in the classroom, but not on the soccer field.

Additionally, by embracing an alternative identity, Mr. Ginobili entered a world 
with more community capital and prestige. He mentioned that becoming a coach 
was a difficult career ladder to climb; he had to work his way up. But the commu-
nity prestige of being a coach was rewarding. People in the community knew him 
and respected him much more as the soccer coach than as a mathematics teacher. 
And even within his own school, he felt he held more power and proximity with his 
administrators as a soccer coach than he ever had as a mathematics teacher.

Discussion

I originally had a few hypotheses in this study, based on the existing literature on 
mathematics teacher identity. First, mathematics teachers would be able to talk 
about their identity through stories (Brown and McNamara 2005; de Freitas 2008; 
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Drake et al. 2003). Second, mathematics teacher identity would center on the in-
tersection of personal and professional stories (de Freitas 2008; Drake et al. 2003; 
Enyedy et al. 2006). Third, mathematics teachers’ identities would involve a teach-
er’s relationship to or knowledge of mathematics (Battey and Franke 2008; Foote 
et al. 2011; Walshaw 2010); sociopolitical identities, such as gender, ethnicity, and 
sexuality (Battey and Franke 2008; de Freitas 2008); or the various communities 
a mathematics teacher lives within (Battey and Franke 2008; Van Zoest and Bohl 
2005). Finally, a shared cultural connection between teacher and student would not 
be enough for teachers to feel they were invoking their Latino/a mathematics teach-
er identity (Achinstein and Aguirre 2008; Tellez 2004; Vomvoridi-Ivanović 2009).

Most of the findings confirmed these hypotheses. First, teachers were able to 
share stories focused on specific aspects of their identity through the PEPI. Second, 
however, beyond professional or personal stories, mathematics teacher identity ac-
tually involved a third type of story, the touchstone story. I did not plan to elicit this 
type of story originally. But the PEPI revealed these touchstone stories teachers 
told themselves but rarely shared (Clandinin and Connelly 1996; Sfard and Prusak 
2005). Third, the aspects of mathematics teacher identity that both Mr. Leche and 
Mr. Ginobili shared did not involve their knowledge of or relationship to mathemat-
ics at all. Instead, as expected, they talked about their sociopolitical identities and 
the communities they lived in. Finally, as expected, both teachers expressed dif-
ficulty in connecting with their students through a Latino/a identity they assumed 
they shared with their students.

The two teachers in this study communicated very different aspects of their 
mathematics teacher identities, which related to the nature of the photographs. First, 
through a photograph of a mass grave, Mr. Leche talked about his personal trauma 
of not being able to return to his hometown, which connected to struggles in his 
mathematics teacher identity with connecting culturally to his students. Like Mr. 
Leche, other mathematics teachers might pull on their own geopolitical and cultural 
experiences to define themselves and their connection with their students, but be-
come paralyzed in their teaching if they do not have the support or professional de-
velopment to authentically use these experiences in their teaching. Second, through 
a photograph of himself before coaching a soccer game, Mr. Ginobili talked about 
how he saw himself more as a soccer coach than as a mathematics teacher, which 
connected to his frustration in his mathematics teacher identity about the support he 
had to teach mathematics in ways that inspire his students. Like Mr. Ginobili, other 
mathematics teachers might adopt different teacher identities because these new 
identities allow more power and opportunities to actually teach.

The PEPI successfully elicited stories from these two mathematics teachers for 
a number of reasons. First, a visual basis for self-authoring allowed each teacher 
to tap into his “visual” voice, accessing memories and thoughts that might not be 
recalled in other ways (Hansen-Ketchum and Myrick 2008; Wang and Burris 1997). 
For instance, Mr. Leche related that he often had trouble talking about Juárez and 
that the photographs helped him immensely. Mr. Ginobili echoed this sentiment, ex-
plaining that the photographs helped him think about parts of his teaching he never 
thought about. Mr. Leche even shared that revealing the touchstone story through 
photographs was reflective and illuminative:
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When I was like talking about the…picture…you can be biased and you don’t realize…it’s 
reflective. Reflective. It’s good. So it’s good…like, sometimes, like something happens and 
it affects. And you don’t realize that that’s like the root of the problem.

Second, the visual nature of the PEPI helped teachers keep focused because both 
interviewer and participant had a visual reference to guide the interview. Mr. Leche 
shared that he often had trouble keeping focused within other professional develop-
ment settings. Third, the PEPI method encapsulated how mathematics teachers saw 
themselves in a quick and efficient manner. The entire process took 2 weeks, with 
the majority of the effort concentrated on the 90-min interview. Teachers indicated 
they spent about an hour or two during these 2 weeks taking and assembling the 
photographs.

Regarding the limitations to this study, one issue stood out specifically. Neither 
teacher talked much about or connected his stories to specific students. This absence 
of students was an artifact of the school district’s institutional review board permis-
sions for this study, which did not allow teachers to use photographs that identified 
students. Consequently, the stories each teacher shared were noticeably devoid of 
any mention of students. I suspect that students are integral to the way mathematics 
teachers identify themselves, so future studies using photography-based elicitation 
must include a way for teachers to tell stories about their students.

The identities this study illuminated show how mathematics teachers can feel 
hindered from actually teaching mathematics. Mr. Leche shows how paralyzed he 
is by his sociocultural identity as a refugee—it stops him from using his cultural 
congruence with his students in his teaching. And Mr. Ginobili started to move 
away from actually teaching mathematics by taking advantage of an opportunity to 
pursue a coaching career, an expression of his frustration with the culture of modern 
mathematics education. These conclusions lead to some implications for us as a 
field of mathematics educators. First, we must be better at supporting mathematics 
teachers through all the various aspects of their identity, beyond just knowledge of 
mathematics, and to include specifically sociocultural and community-based iden-
tities. Second, we need better practices for mathematics teachers so that teachers 
will not grow frustrated and leave the profession, especially teachers who value 
the actual aspect of teaching and inspiring students. Third, we need new ways for 
mathematics teachers to be heard, to share their touchstone stories so they can be 
seen as individuals with rich histories. Finally, we need more support mechanisms 
within our field for teachers to talk about their own traumatic stories and to explore 
their own sociopolitical nuances of identity.

This study fills a current gap in the research on understanding mathematics teach-
ers through the lens of identity. By incorporating the PEPI as a change in method, I 
explored a research tool that captured teachers’ voices without hovering or disrupt-
ing their practice. This experience allowed teachers to tell stories revealing how 
they really saw themselves. Perhaps if there were more developed constructs to 
understand these identities, we as a research community could better show the value 
in knowing what makes each mathematics teacher human, unique, and special.
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An understanding of the relation between teachers’ knowledge of students’ math-
ematics and their beliefs about teaching and learning is inherent in the work of 
mathematics teacher educators seeking to support teachers in learning to make in-
structional decisions based on students’ mathematical thinking. Schoenfeld (2011) 
proposed that individuals’ decision making in well-practiced, knowledge-intensive 
domains can be fully characterized as a function of three factors: orientations, re-
sources, and goals. Schoenfeld broadly defined orientations to include a myriad of 
concepts such as dispositions, beliefs, values, tastes, and preferences. He explained 
that people’s orientations shape what they perceive, the meanings they make of 
these perceptions, the goals they establish for the situation, and the resources they 
put to use to achieve the established goals. Most importantly, Schoenfeld discussed 
decision making in relation to teaching and stated that in mathematics classrooms, 
teachers’ orientation toward mathematics, students, learning, and teaching shapes 
their instruction.
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Thompson et al. (1994) used the concept of orientation to describe different ap-
proaches to teaching mathematics and included teachers’ knowledge, beliefs, and 
values within this concept. They proposed that orientations molded teachers’ imag-
es, views, intentions, and goals for mathematics instruction. Similarly, Magnusson 
et al. (1999) considered that teachers’ orientations influenced instructional practice 
by shaping teachers’ knowledge and beliefs about curriculum, students, teaching, 
and assessment. Philipp (2007) suggested that teachers’ orientations were opera-
tionalized through language and action.

From our perspective, we consider teachers’ discourse about students’ mathemat-
ical work, in particular the attributions that teachers use as they discuss students’ 
mathematics, as one aspect of teachers’ orientations toward students. Attributions 
are perceptions of causality or judgments regarding the occurrence of an incident 
(Weiner 1972). In the classroom, teachers’ attributions refer to the judgments or 
causal explanations teachers construct to explain students’ successes and failures. 
Teachers’ attributions influence their expectations regarding student ability and sub-
sequently impact student performance (Graham 1991). This process of connecting 
teachers’ attributions to students’ performance has been documented in various dis-
ciplines, including different areas of mathematics (Dobbs and Arnold 2009; Middle-
ton and Spanias 1999). Thus, teachers’ attributions in mathematics classrooms are 
an important aspect of instruction and of concern for mathematics teacher educators 
working to support teachers in student-centered instruction.

Because our work is in professional development, we extended the role of teach-
ers’ orientations and attributions in instruction to professional development settings. 
Similar to Philipp (2007), we considered that teachers’ attributions were operational-
ized through their discourse. We believe that teachers’ attributions play a fundamen-
tal role in the conversations teachers have as they engage in professional learning 
tasks focused on students’ mathematical thinking. Therefore, our work examined 
teachers’ attributions by investigating their discourse about students’ mathematical 
successes and failures. We were particularly interested in teachers’ discourse within 
a professional development setting as teachers analyzed students’ mathematical 
work. We explored the following research question: To what do elementary teachers 
attribute students’ mathematical successes and failures when they consider research 
results about students’ mathematical thinking and learning?

The results we report are part of a larger design experiment (Cobb et al. 2003) 
that involves a professional development setting purposefully planned to teach 
teachers about students’ mathematical thinking and learning. Guiding the design 
and implementation of the professional development was our initial conjecture 
that learning about students’ mathematical thinking would change teachers’ 
 discourse by adding new explanations for students’ mathematical work to teach-
ers’ existing repertoires. Through ongoing analysis, we identified the attribu-
tions teachers used throughout the professional development and developed a 
 codebook (DeCuir-Gunby et al. 2011) to investigate teachers’ uses of these at-
tributions. The initial phase of the retrospective analysis examined the nature of 
the attributions and will ultimately characterize changes in teachers’ uses of the 
attributions over time.
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In this chapter, we share the attributions that emerged from the ongoing analysis 
as teachers learned about student mathematical thinking, and we report on the ini-
tial phase of the retrospective analysis. We begin by briefly reviewing the literature 
on attribution theory, focusing particularly on teachers’ attributions for students’ 
work. Then, we introduce our research methodology, describing the professional 
development setting in which we worked, as well as the data collection and analysis 
processes. We define the attributions identified in our professional development, 
share examples of how these attributions were present in our work with elementary 
teachers, and offer findings related to teachers’ uses of the identified attributions 
during the professional development. We conclude with a set of next steps for our 
research, including a shift in framework to use positioning theory to conceptualize 
teachers’ uses of these attributions as acts of stereotyping.

Teachers’ Attributions

Bar-Tal (1978) defined attributions as the inferences made about the causes of one’s 
own or someone else’s behaviors. Attribution theory allows for individuals to gain 
a better understanding of their environments and the determinants of individual be-
havior (Schunk et al. 2013). The general attribution model (see Weiner 1986, 1992, 
2010) consists of the creation of attributions through the attribution process and the 
use of those attributions through the attributional process. The following sections 
describe the various components of the model.

Attribution Process

The attribution process involves understanding the development of attributions. 
Specifically, it concerns the exploration of antecedent conditions or the causal de-
terminants of behavior. The process of creating attributions considers both environ-
mental factors and personal factors. Environmental factors in the case of academic 
achievement include issues such as the type of school, the testing environment, and 
teacher quality, among many others. Personal factors, on the other hand, consist of a 
variety of features including beliefs about causality, rules used to make attributions, 
prior knowledge, and individual differences (Schunk et al. 2013). These environ-
mental and personal factors influence the creation of perceived causes to explain 
behavior.

Antecedent conditions serve as a foundation for understanding the perceived 
causes of behavior. Early research indicated that ability, effort, task difficulty, and 
luck were seen as the most common perceived causes of the outcomes of events 
(Cooper and Burger 1980). Weiner (1986) elaborated this list to delineate explana-
tions for academic success or failure to include ability, skill, stable effort, unstable 
effort, task difficulty, luck, interest, mood, fatigue, health, and help from others. 
Once a perceived cause is established, it then impacts the attributional process.
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Attributional Process

Attributions may be classified along three dimensions according to their causal 
structure. The first dimension, locus, establishes whether the source of the outcome 
is internal or external to the individual. Internal causes are aspects that individuals 
can control, such as effort spent studying for a test; external causes are beyond the 
control of individuals, such as luck in answering correctly on the test. The second 
dimension, stability, explores how consistent the cause is over a period of time. Sta-
bility involves understanding a cause as fixed and stable or variable and unstable. 
For example, intelligence is commonly viewed as a fixed trait and thus stable. The 
last dimension, controllability, addresses the amount of control a person has over a 
cause. For instance, effort can be considered controllable because one may put forth 
more or less effort, whereas ability is often viewed as uncontrollable because one 
cannot change his or her inherent ability. These attributional dimensions have both 
psychological and behavioral consequences. They impact expectations for success 
and emotions associated with achievement. The dimensions also impact specific 
behaviors including future choices, persistence at engaging in tasks, level of effort 
placed to complete tasks, and achievement (Schunk et al. 2013). When attempting 
to infer the causes of another’s behavior, the fundamental attribution error may 
result from attributing another’s behavior to a personal trait without attending to 
situational factors (Schunk et al. 2013).

In our work, we take a view of designing professional development to support 
teachers in learning a framework for students’ mathematical thinking as contribut-
ing to teachers’ attribution and attributional processes. Through learning research 
results about students’ mathematical thinking, teachers engage in the attribution 
process by considering the antecedent conditions that affect learning and that serve 
as a foundation for the perceived causes of students’ mathematical successes or 
failures, including environmental factors such as opportunities to learn and personal 
factors such as previous experiences and current understandings. Our investiga-
tion of teachers’ attributional processes concerns their perceptions of the causes 
of students’ successes and failures, in particular the fundamental attribution error, 
which we see impacting teachers’ expectations and efficacy. By attributing student 
failure to an internal, fixed, and/or uncontrollable cause, a teacher may perceive no 
recourse for teaching, whereas attributing a students’ failure to an external, variable, 
and/or controllable factor suggests that learning may be affected by instruction.

Attributions and Mathematics Education

Attribution theory has been applied to a variety of contexts and tasks within mathe-
matics education. Although research regarding students’ attributions of their success 
and failure exists (e.g., Seegers et al. 2004), a substantial amount of research in this 
area has focused on the attributions that teachers make regarding students’ math-
ematics learning. For example, Middleton and Spanias (1999) noted that  teachers’ 
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attributions for their students’ successes and failures were reflected in the ways 
teachers interacted with their students during mathematics instruction. In examining 
preschool settings, Dobbs and Arnold (2009) claimed that teachers’ attributions of 
students’ behavior shaped their behavior toward the child, which in turn often elic-
ited the expected behavior from the child, having a self-fulfilling prophecy effect.

Within mathematics education, studies have indicated that stereotypes related to 
gender, race, and socioeconomic status can influence teachers’ attributions for stu-
dent success and failure. For instance, Fennema et al. (1990) studied 38 first-grade 
teachers’ attributions for boys’ and girls’ successes in mathematics. They found 
that teachers tended to attribute boys’ successes and failures to ability while at-
tributing girls’ successes and failures to effort. Reyna (2000) found that stereotypes 
could serve as the foundation for the attributions made regarding the mathematics 
achievement of students of color. For example, she discussed that whereas some 
people believe African Americans or Latino/as as a group are lazy, others believe 
they are underprivileged. As a result, teachers may attribute a students’ ability to 
internal factors, such as effort, or external factors, such as opportunities related to 
the beliefs they hold about groups of students. Similarly, Reyes and Stanic (1988) 
examined how students’ socioeconomic status impacted teachers’ perceptions re-
garding achievement. They found that teachers’ attitudes about students’ achieve-
ment, as measured through classroom processes, varied based on students’ sex, 
socioeconomic status, and race. However, the causality of these connections had 
yet to be established. Together, these studies suggest teachers’ attributions, such as 
ability or effort regarding mathematics achievement, may be an extension of social 
stereotypes.

Methods

The overarching purpose of our research was to understand the ways in which 
teachers come to learn about students’ mathematical thinking in the context of a 
professional development setting. We used a design experiment methodology with-
in a school-based professional development setting to work toward this purpose. 
Design experiments are “iterative, situated, and theory-based attempts simultane-
ously to understand and improve education processes” (diSessa and Cobb 2004, 
p. 80). They are used to develop “a class of theories about both the process of 
learning and the means that are designed to support that learning” and they “entail 
both ‘engineering’ particular forms of learning and systematically studying those 
forms of learning within the context defined by the means of supporting them” 
(Cobb et al. 2003, p. 9).

In line with this methodology, we examined both teacher learning and the set of 
professional learning tasks that supported their learning experiences. Although we 
expected teachers’ orientations toward students to shape the ways in which they 
engaged with the professional learning tasks we designed for the study, it was the 
ways that teachers talked about students’ successes and failures that emerged as a 
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major component in their discourse, playing a fundamental role in teachers’ engage-
ment with the professional learning tasks and shaping professional conversations 
around students’ mathematics. As the professional development unfolded, we de-
signed tasks that further brought forth various attributions and focused our analysis 
on exploring these attributions.

Context

Learning Trajectory Based Instruction (LTBI) is a multiyear NSF-funded research 
project with a strong mathematics professional development component for ele-
mentary teachers based on the concept of learning trajectories (LTs). When Simon 
(1995) coined the expression “hypothetical learning trajectory,” he indicated that 
teachers create representations of the “paths by which learning might proceed” 
(p. 135) when students progress from their own starting points toward an intended 
learning goal. He named these trajectories hypothetical because each student’s in-
dividual learning path was not knowable in advance. However, he suggested that 
these learning paths represented expected tendencies and that commonalities across 
students allowed teachers to develop expectations about the progression of learning.

Over time, the concept of LTs developed beyond the notion that teachers have 
expectations about how learning might proceed to include an empirical search for 
the highly probable sets of levels through which students progress as their learn-
ing of specific mathematics topics evolves. Current work on LTs uses research on 
student learning from clinical interviews and large-scale assessment trials to seek 
clarification of the intermediate steps students take as learning proceeds from in-
formal conjectures into sophisticated mathematics. Recently, research on LTs has 
progressed from an agenda for studying student learning to include an agenda for 
research on teaching. Daro et al. (2011) called for the translation of LTs into “usable 
tools for teachers” (p. 57) and indicated the need to make these trajectories available 
to teachers so that they can guide classroom instruction.

Content Over the course of 1 year, teachers in the LTBI project learned about 
students’ early rational number reasoning through study of the equipartitioning 
learning trajectory (EPLT). Confrey et al. (2009) defined equipartitioning as the 
cognitive behaviors that have the goal of producing equal-sized groups or parts as 
typically encountered by children in constructing “fair shares.” The EPLT empiri-
cally describes how children begin with informal knowledge of fair sharing, and 
through instruction, build an understanding of partitive division that unifies ratio 
reasoning and fractions—see Confrey (2012) for a more detailed description of the 
EPLT.

The LTBI professional development included both a summer institute and 
 academic-year monthly meetings. These two components of the intervention were 
designed with different goals in mind. The summer institute offered teachers op-
portunities to learn about the EPLT and develop an appreciation for the role of 
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the trajectory in understanding student mathematics. In contrast, the academic-year 
monthly meetings focused on establishing connections between the trajectory and 
instructional practices. The two components of the professional development to-
talled 60 h of face-to-face, whole group interactions.

Professional Learning Tasks All tasks developed for use in the professional devel-
opment were guided by a set of design principles stating that professional learning 
tasks for LTs: (a) attend mostly to issues of pedagogy, (b) embed opportunities for 
teachers to examine all facets of their knowledge for teaching, (c) use instructional 
sequences that begin with practice-based activities that challenge teachers’ views of 
students’ mathematics and mathematics learning, and (d) use artifacts similar to the 
ones researchers used in developing the LT (Wilson et al. 2013). As such, the pro-
fessional learning tasks incorporated videos of clinical interviews, samples of stu-
dents’ written work, and examinations of teachers’ curricular materials. During the 
summer institute, these artifacts consisted of “anonymous” students’ work, whereas 
during the school year, teachers discussed and examined their own students’ work. 
When possible, teachers brought in their own curricular materials supplied by the 
school district in which they worked.

One example of a task used in the summer institute was to engage teachers in 
watching and discussing videos of clinical interviews with students from differ-
ent grade levels solving similar mathematical problems. Teachers were asked to 
describe the ways in which each child solved the problem, conjecture about each 
student reasoning for that particular solution, consider the sophistication of the vari-
ous strategies, and examine what surprised them about each student’s work. In the 
discussion of the task, despite the facilitator’s effort to focus the discussion on what 
each child did and why, teachers’ discourse focused mostly on alignment or de-
viations from their expectations based on the child’s grade level. That is, teachers 
 attributed what the children did to their grade level, and the information about each 
child’s grade level that was offered to teachers as part of the context for the clinical 
interviews became the center of teachers’ subsequent discussion.

Participants

The professional development was offered in partnership with one K–5 elementary 
school in a mid-size urban area in the southeast USA. The school had approxi-
mately 600 students: 35 % Caucasian, 29 % Hispanic, 25 % African American, 7 % 
Asian, and 4 % other; 54 % of the children qualified for free or reduced-price lunch. 
Teachers at the school volunteered to participate, and all professional development 
meetings were conducted at the school at times convenient to the teachers. Of the 
24 teachers who started the professional development in July 2010, 22 completed 
the program 1 year later in June 2011. The initial group of teachers included six 
kindergarten teachers and three Grade 1, five Grade 2, three Grade 3, two Grade 4, 
and one Grade 5 teacher. Four teachers taught multiple grade levels.
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Data Sources and Analysis

All data were collected by a research team comprising two principal investigators 
and one graduate student (the first, third, and second authors, respectively). Data 
sources included the researchers’ field notes, 69 video files from the professional 
development meetings, and 90 transcripts of audio recordings of teachers’ small 
group discussions during the 60 h of summer institute and monthly meetings. Fol-
lowing Cobb (2000), our analysis included both an ongoing and retrospective phase 
where we used a grounded-theory approach (Strauss and Corbin 1990) to code the 
data. Open coding was utilized to create concepts from the raw data. These da-
ta-drive codes were supplemented with additional codes derived from attribution 
theory and our research goals. We used the constant comparative method in that we 
compared various project data sources, including field notes and transcripts as well 
as research literature (Glaser and Strauss 1967).

In what follows, we describe our data analysis process, focusing on the first 
two of three stages of the work. The ongoing analysis occurred as the professional 
development was unfolding. During this time, we generated field notes and used 
these notes to revise and refine the professional learning tasks for the professional 
development. The retrospective analysis began after the conclusion of the profes-
sional development and was divided into two phases. The first phase included the 
development of a codebook, data reduction, and analysis of the frequencies of codes 
by each participant. The second phase consisted of more in-depth analysis of a 
subset of data to further understand changes in the teachers’ discourse over time. In 
this chapter, we report on the ongoing and first phase of the retrospective analyses.

Ongoing Analysis Teachers’ attributions for students’ mathematical successes and 
failures emerged early in our analysis as a fundamental aspect of teachers’ dis-
course, shaping their engagement with the designed professional learning tasks. For 
example, teachers talked about students not completing a task because they were 
“low students” or because of the way the task was presented to them. Thus, through-
out the first year of the project, we conducted an ongoing analysis to examine the 
ways in which teachers talked about students’ successes and failures in mathematics. 
We noted emerging attributions in our field notes, and the research team discussed 
them in regular meetings throughout the implementation of the professional devel-
opment. From a design perspective, we continued to create and refine professional 
learning tasks in order to provide new opportunities for teachers to examine the 
ways in which they talked about their students as mathematics learners as well as 
their students’ successes and failures. For instance, following the example above of 
teachers talking about students having low ability, we created teaching scenarios in 
which such vocabulary was used and then asked teachers to discuss these scenarios. 
We posed teachers’ own attribution language back to them for explicit discussion, 
enabling us to use the design experiment setting to better understand the various 
attributions that emerged throughout the yearlong professional development. This 
process assisted us in further eliciting and understanding the teachers’ uses of vari-
ous attributions and the role the learning trajectory played in their discourse.
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Retrospective Analysis After the completion of the first implementation of the 
LTBI professional development, we began a retrospective analysis to understand 
the attribution process of generating a new explanation for students’ mathematical 
successes and failures based on the EPLT, as well as teachers’ uses of the vari-
ous attributions in their discourse about students’ mathematical work. We initially 
engaged in a grounded theory approach to data analysis (Strauss and Corbin 1990) 
and coded our field notes generated during the ongoing analysis using open coding. 
This process enabled us to create concepts from our raw data, offering a first set of 
attributions that we used as codes for the subsequent analysis. These attributions 
varied in locus, stability, and controllability and will be elaborated on in the results 
section.

Building on the concepts identified in the ongoing analysis and refined through 
our examination of the complete data corpus, we created a codebook through an 
iterative process between our data and theory (DeCuir-Gunby et al. 2011). In line 
with the grounded theory approach to data analysis, we used constant comparison 
methods to compare various project data sources, including field notes and tran-
scripts of small group discussions, and the research literature (Glaser and Strauss 
1967) in order to identify and refine our codes. The codebook included definitions 
and examples of each code, and we revisited the data frequently as we refined our 
definitions until the codebook was finalized.

Four independent coders were trained to use the codebook to code the transcripts 
of audio data and the video data with 85 % interrater reliability. Because we began 
with a large data set, we used this process to reduce the data to turns where teach-
ers were explicitly or implicitly talking about students. We defined a turn as one 
person’s statement in a conversation that is not interrupted by another’s idea. Cod-
ers used the definitions from the codebook to code every turn teachers made in all 
whole group and small group discussions that were related to students’ work, using 
one or more of the codes identified. In all, 2,868 turns were identified and coded, 
with 123 turns marked with multiple codes. Each coder coded approximately 40 
files and 10 % of the files were double coded to maintain reliability and prevent 
drifting.

Because we were interested in teachers’ uses of the language from the EPLT to 
explain students’ mathematical thinking, all turns were then examined a second time 
for evidence of language from the EPLT and given an additional code of “LT” when 
evidence of such language was found. For example, when teachers were reviewing 
students’ written work, one teacher commented, “The way the child divided the 
pizzas was he did benchmarking, so they did the halving first and then they did the 
radial cuts.” Because this teacher is describing what she perceived the student to do 
mathematically, this turn was coded as “Math.” Because she is referencing specific 
strategies described by the EPLT, in particular benchmarking and radial cuts on a 
circle, the turn was later also given a code of LT. Because the data were first reduced 
to turns that concerned students’ mathematical work and then were coded based on 
evidence of the LT, turns coded as LT referenced students’ mathematical work in 
relation to one of the eight identified attributions. Two research team members car-
ried out the coding for LT, discussing any unclear turn until agreement was reached.
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Results

Our research sought to identify to what elementary teachers attributed students’ 
mathematical successes and failures when working on professional learning tasks 
designed to share with them research results about students’ mathematical thinking 
and learning. First, we present the attributions that emerged during our ongoing 
analysis that informed the development of the codebook. Then, we examine teach-
ers’ uses of these attributions during the 60-h professional development from the 
first phase of our retrospective analysis.

Attributions

We identified eight different attributions that teachers used when explaining stu-
dents’ mathematical work. Common attributions noted by Cooper and Burger 
(1980) were present in our data, specifically, ability, effort, luck, and difficulty of 
task. We identified additional attributions of age or grade level, out of school con-
text, teaching, and previous math knowledge. Moreover, these attributions varied 
in terms of locus of causality, stability, and controllability. In our interpretation, 
we considered these dimensions from the teachers’ perspective, viewing locus of 
causality and stability in relation to the student and examining whether the teacher 
has control over a particular attribution. In this section, we present each attribu-
tion, beginning with the attributions previously identified in the literature, and then 
describing additional attributions we identified, along with selections from the data 
that exemplify how each was presented in teachers’ discourse.

Ability Ability was internal to the student, fixed, and an uncontrollable attribution 
that included the personal traits of students and characteristics that defined fixed 
qualities related to students’ aptitude in mathematics. Often times, teachers used 
achievement as a proxy to consider students’ abilities and attributed their perfor-
mance to an innate capacity. One example involved a teacher describing her work 
with a previous student in a discussion during the summer institute. In her comment, 
she indicated that ability was a fixed characteristic of the student. She stated, “We 
had evaluated this student, and we were convinced there was a learning disability. 
The work was really low.” Another teacher, also describing past students, expressed 
a similar explanation related to students’ innate abilities. She said, “I had a lot of 
math geniuses and they can figure things out when they are so young.”

Effort Effort was internal to the student, variable, and a controllable attribution 
that referred to the level of students’ attention and engagement with a particu-
lar task at a particular moment. This attribution indicated that performance did 
not always represent a fixed characteristic of the student but depended on how 
carefully or how speedily that particular student progressed through the work at 
a particular moment and was thus subject to change. When examining her own 
students’ written work on an assessment during a monthly meeting, one teacher 
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explained a student’s incorrect solution by saying, “Well, he just zipped through 
all this, so, no wonder.” In another instance during the same activity, a teacher 
commented, “He worked on this so carefully.” Other teachers explained students’ 
work by speculating about the student’s attention during instruction, such as “In 
my mind, this kid just wasn’t paying attention to me while I was teaching and he 
played connect the dots.”

Luck Luck was external to the student, variable, and an uncontrollable attribution 
that included the idea that what students did had no intentionality behind it. Teach-
ers who attributed students’ success or failure to luck implied that students had no 
real explanation for what they did or why they did it, or questioned whether students 
knew what they were doing. For instance, during the summer institute, in response 
to viewing a clinical interview with a child who was equipartitioning a collection 
of 24 coins among four friends, one teacher remarked, “When questioned how did 
you know, that is when I realized she really randomly chose to give each one, two 
pieces. It was not that she had the number fact or she understood.” During the same 
discussion, another teacher commented, “I thought she was just guessing and she 
was just lucky.”

Difficulty of Task Difficulty of task was external to the student, variable, and a 
controllable attribution for students’ work that expressed the notion that students’ 
difficulty was determined by the clarity (or lack thereof) of the question posed to 
them. It had the embedded idea that there was a perfect way to ask a question so that 
students would not make a mistake. For example, in the summer institute, when ana-
lyzing two video recordings of students sharing a collection of coins among various 
numbers of people, one teacher said, “The proctor asked her to put things together 
and then divide them, so, she shared differently [than the first student] because the 
proctor asked a different question.” In another case, teachers were examining writ-
ten work on equipartitioning assessment items and one teacher commented:

When we teach a group of students and over half of them make the same mistake, then we 
have to go back and look at the way we presented it and ask ourselves…“Is it some fault in 
the way the question was presented?”

Age or Grade Level Age or grade level was internal to the student, fixed, and an 
uncontrollable attribution that described the expectations teachers had for students’ 
performance given normalized definitions for what a generic student should be able 
to do at certain points in his or her development. Teachers used grade level to create 
groups of students at similar developmental levels who should perform in certain 
expected ways, assessing the quality of a students’ work or their mathematical rea-
soning based on whether it conformed to what is expected of children at that age or 
grade level. For instance, during the summer institute, one teacher commented on a 
video recording of a student sharing 24 coins among three friends: “I had expected 
the third grader to not share dealing it one by one.” In response to a similar video of 
another student, a teacher stated, “I taught Kindergarten, and I would have guessed 
she would share using one for you, one for you, one for you; what she did was more 
advanced because she counted two plus two plus two.”
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Out of School Context Out of school context was external to the student, vari-
able, and an uncontrollable attribution that included out of school understandings 
and explanations that teachers expected students to generalize to the academic con-
text. This attribute indicated that teachers took into account the experiences stu-
dents bring with them from their own lives. For instance, when conjecturing in 
the summer institute about a video of one student’s work sharing a collection of 
coins among two people, a teacher said, “She just shared and she thought, ‘It is fair 
because we each got some,’ and that is because of how we use the word ‘share’ in 
the real world. She thought, ‘We both have some, so we have shared.’” Another 
teacher remarked about a written task where students were asked to equipartition a 
rectangular birthday cake among six friends:

I think that was a problem for a lot of these kids, dishing out the whole birthday cake [to fair 
share it]. I just wonder if you called it something else besides a birthday cake if they would 
have seen the whole differently.

These comments indicate that students’ out of school experiences are uncontrollable 
and not necessarily places from which to build instruction, but as justifications for 
students’ mistakes.

Teaching Teaching was external to the student, variable, and a controllable attribu-
tion that indicated that students’ mathematical work depends on what teachers pres-
ent to them. Teachers expected students to know or not know a topic depending on 
whether or not a teacher had already taught the topic. The attribution also indicated 
that teachers suggested that students had no way of knowing a topic that they were 
not yet taught. For example, during the summer institute, one teacher stated,

Sometimes students can say something even when we had not taught it, like, this is 1/2 of 
10 so that part has to be 5 as well. It seems simplistic, but I don’t know how they would 
have known that already.

In another case, after examining two tasks related to identifying “one-sixth,” one 
with a circle already partitioned into six equal sized parts and one that asked stu-
dents to equipartition a circle for six, a teacher remarked, “Don’t you think that’s 
kind of hard too? Because like you said, this one’s already done for them, and kids 
have a lot of trouble until you teach them on how to actually divide it I thought.” 
Both of these comments indicate that students’ successes can be attributed only to 
what has been taught to them.

Math Math was internal to the student, variable, and an uncontrollable attribution 
that described the idea that students’ mathematical work can be attributed to their 
cognitive development based on previous mathematical experiences. It included 
descriptions of students’ mathematical thinking and used mathematical language to 
talk about students’ successes and failures. Given that the nature of the professional 
development focused on students’ mathematical thinking, we expected teachers to 
use specific language from the EPLT to describe students’ mathematical work as 
they learned about students’ mathematics through the EPLT. For example, during 
the summer institute, teachers were asked to anticipate the way that a child would 
equipartition a circle into six equal-sized parts. After viewing a clinical interview 
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of the student, one teacher commented, “I thought she would benchmark the half, 
as she did…. She knew she had to go to sixths, so she drew the diagonal.” Because 
the teacher described what the student did mathematically rather than focusing on 
other nonmathematical factors, this statement was coded as math. More specifi-
cally, the teacher used language from the EPLT to describe what the student did and 
attributed the student’s work on the task to what she knew about common strategies 
for equipartitioning.

Teachers’ Use of the Various Attributions

During the initial phase of the retrospective analysis, we examined the total number 
of turns coded for the 22 teachers who completed the professional development 
using the eight attributions identified in our data. As shown in Table 1, most teach-
ers used all of the attributions during the professional development. Column totals 
showed there was considerable variability in the number of turns coded for each 
of the attributions. Teachers did not use the attributions of luck and effort as much 
as ability and age/grade, whereas math was the most used attribution, followed by 
teaching and task. An examination of the columns also shows that most attributions 

Table 1  Frequency of attributions by teacher
Attribution

Teacher Ability Effort Luck Task Grade Context Teaching Math Total
A 8 6 3 23 22 5 28 93 188
B 6 4 4 28 6 4 22 100 174
C 12 2 1 11 22 6 20 62 136
D 3 0 2 8 4 2 16 102 137
E 3 1 1 9 7 0 12 22 55
F 8 0 2 15 6 2 32 97 162
G 3 2 5 8 7 4 29 47 105
H 0 3 1 12 2 2 12 48 80
I 3 3 1 15 8 1 25 70 126
J 10 0 0 1 2 2 10 43 68
K 15 4 8 25 18 3 44 135 252
L 4 0 1 19 7 3 24 89 147
M 7 1 5 19 10 0 19 121 182
N 13 1 0 4 12 2 16 68 116
O 6 2 7 24 12 3 52 178 284
P 4 0 0 22 13 9 28 65 141
Q 15 4 5 13 6 3 21 89 156
R 3 3 5 13 1 7 9 52 93
S 4 1 1 11 6 4 20 71 118
T 3 1 0 3 4 2 6 20 39
U 6 1 3 10 4 0 22 67 113
V 8 1 2 12 7 3 19 67 119
Total 144 40 57 305 186 67 486 1706 2991
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were used by all teachers, with few zeroes in each column. For instance, only five 
teachers did not use effort as a way to explain students’ mathematical successes and 
failures, four did not use luck, and three did not use context. In addition, we take 
the prevalence of turns coded as “Math” to be an indication that the design of the 
professional development supported teachers in using research-based knowledge 
to understand students’ mathematical thinking. The next phase of the retrospective 
analysis will address questions of changes in the attributional process over time dur-
ing the professional development.

During this phase of the retrospective analysis, we also examined teachers’ at-
tributions that included the EPLT. Table 2 depicts the number of instances where 
each teacher made reference to the EPLT within the set of coded turns, that is, the 
number of turns that were coded as one of the eight attributions in the first round of 
coding and then later also received an LT code. The table shows that 819 turns ref-
erenced the EPLT, indicating that teachers used their learning from the professional 
development to explain students’ mathematical work. This number represents 27 % 
of the total previously coded turns. The percentage of each attribution that later was 
double coded as LT ranged from 12 to 44 %.

We conjectured that the LT code would emerge solely within the math attribu-
tion, and we considered the math code as a way to capture teachers’ emerging use 
of the LT language. However, as we coded our data, we found that references to the 

Table 2  Frequency and percentage of LT attribution
Turns coded LT

Teacher Frequency Percentage of teacher turns
A 64 34
B 43 25
C 30 22
D 46 34
E 9 16
F 36 22
G 32 30
H 28 35
I 41 33
J 12 18
K 47 19
L 31 21
M 51 28
N 39 34
O 101 36
P 45 32
Q 37 24
R 11 12
S 29 25
T 17 44
U 48 42
V 22 18
Total 819 27
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LT emerged in all of the eight codes, not only mathematics. For example, during 
one of the last monthly meetings, one teacher discussed her instruction, saying: 
“We’ve done things like reallocation with the kids. We present a story and then ask, 
‘If this kid leaves, how many would each get?’” This turn was coded as teaching be-
cause the teacher was describing how she would teach (present a story) in order for 
students to learn. However, because the teacher is also referencing ideas from the 
LT (reallocation), this turn was also coded as LT. This example demonstrates how 
teachers used the LT to talk about students as well as their teaching. Yet, from our 
field notes and ongoing analysis, our data suggested that teachers also maintained 
the attributions they had been using to judge or provide causal explanations for 
students’ mathematical work. From this perspective, the LT language neither elimi-
nated nor added to previous attributions. Instead, the various attributions became 
more complex as teachers used LT language in conjunction with previous language 
related to other attributions. The next phase of the retrospective analysis will seek 
to understand the emergence and prominence of the LT attribution over time during 
the professional development.

In summary, the analysis of teachers’ attributional processes showed that the 
majority of the teachers used all of the eight as causal explanations for student 
work during the professional development. More specifically, all 22 teachers used 
at least six of the attributions at least once, and 20 teachers used at least seven of 
them. Likewise, all teachers made reference to the LT when using these attributions 
to varying degrees. Together, these observations suggest that teachers do not hold 
one attribution for students’ mathematical work but rather employ a variety when 
conceptualizing students as mathematics learners. Further, teachers can learn to use 
students’ mathematical thinking as represented in LTs to explain students’ successes 
and failures, adding a new attribution to their repertoire.

Discussion and Next Steps

We sought to identify the attributions that elementary teachers use to discuss stu-
dents’ mathematical successes and failures when working on professional learning 
tasks designed to share with them research results about students’ mathematical 
thinking and learning. We started with the initial conjecture that as teachers learned 
about a mathematics LT, they would change their attributional discourse and add 
new explanations for students’ mathematical work to their repertoire. Here, we have 
reported on the initial phases of our analysis; our ultimate analysis aims to under-
stand the changes in teachers’ discourse about students as mathematics learners 
over the span of the professional development.

Our study documented eight different attributions brought forth in the context of 
our professional development that teachers used to explain students’ mathematics 
successes or failures when examining student work. These attributions went beyond 
the traditional attributions of ability, effort, luck, and difficulty of tasks to also in-
clude age or grade level, out of school context, teaching, and previous mathematical 
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knowledge. Further, we did not find explicit attributions of gender, race, or socio-
economic status for students’ mathematical successes and failures, as previously 
reported in the literature.

In addition, our work with the teachers around LTs led teachers to include refer-
ences to students’ specific mathematical thinking when discussing their work. As 
a result of professional development focused on an LT, teachers began to use this 
research-based knowledge to explain students’ mathematical work in their discus-
sions. However, the use of the LT did not substitute or displace the existing attribu-
tions teachers used; rather, it added to and was included as part of teachers’ previous 
attributions. Instead of holding one or two particular attributions, teachers used a va-
riety of attributions throughout the professional development to talk about students 
as mathematics learners. For mathematics teacher educators working to support 
teachers in learning to make instructional decisions based on students’ mathemati-
cal thinking, our research suggests that although teachers my acquire such expertise 
in professional development, they may persist in attributing students’ mathematical 
successes and failures to nonmathematical factors.

Our larger investigation of teacher learning of students’ mathematical thinking 
includes an examination of the relation between teachers’ discourse in the profes-
sional development and their learning of mathematics LTs. Framing this investiga-
tion with positioning theory (van Langenhove and Harré 1999), we are currently 
examining the ways that teachers position themselves in the discourse of the profes-
sional development. Yet, the analysis presented in this chapter highlights that not 
only do teachers position themselves in discussions in professional development, 
they also position students through attributional processes. Thus, we are currently 
reconceptualizing the attributional processes identified in the data as acts of stereo-
typing students as mathematics learners.

van Langenhove and Harré (1999) questioned the notion of locating stereotypes 
within the individual, with words and actions being the expression of personally 
held beliefs. Rather, they considered that stereotypes reside as positions in public 
collective discourse and that individuals appropriate them in conversation. They de-
fined an act of personal stereotyping as a speech-act that is part of a conversation’s 
storyline and is used to position both the speaker and the object of the stereotyping. 
Stereotyping draws upon social representations of the stereotyped objects that are 
available in certain communities. For example, rather than considering one teach-
er’s statement, “I had expected the third grader to not share dealing it one by one” as 
attributing the student’s work to grade level, our reconceptualization suggests that 
the teacher was calling upon a representation of what a third-grade student should 
do that is available and accepted in her community.

In continuing our research, we conjecture that the array of personal stereotyping 
available to teachers within their professional discourse communities is influenced, 
as teachers learn a framework for students’ mathematical thinking. In future analy-
sis, we will seek to understand the ways these stereotypes were called upon over 
time, the changes in stereotyping as teachers learned about the LT, and the rela-
tion between their use and the professional learning tasks designed to support their 
learning.
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Both the National Council of Teachers of Mathematics Standards (NCTM 2000) 
and the Common Core State Standards for Mathematical Practice (CCSS-MP; 
NGA Center and CCSSO 2010) encourage mathematics instruction to focus on 
problem solving, reasoning, and mathematical communication, and to include all 
students in those activities. These instructional practices are further encouraged in 
mathematics teacher professional development and preservice teacher education. 
School- and district-based accountability pressures, such as curriculum standards 
and large-scale testing, however, push teachers toward instructional practices that 
are less focused on rigorous mathematics and more focused on skill-based teaching 
and coverage of content (e.g., Ellis 2008; Horn 2007; Valli et al. 2008).

There are thus potential tensions between the ambitious instruction practices sug-
gested by mathematics teacher professional development, methods courses for pre-
service teachers, or even the CCSS-MP and the pressures teacher candidates (TCs) 
feel as they begin teaching in a high-stakes accountability school context, contexts 
characterized by public pressure to improve school performance, particularly on 
standardized exams (e.g., Rinke and Valli 2010). High-stakes accountability poli-
cies have been shown to give rise to test-driven school cultures, including instruc-
tional methods to support test achievement and a narrowed curriculum focused on 
the test (Valli et al. 2008). In a test-driven school culture, where teaching qual-
ity and students’ learning are equated with high-stakes test scores (Cochran-Smith 
2005), teachers, administrators, and students feel the pressure of the importance of 
high student performance on these assessments. Research shows that these schools 
often enact practices that favor test preparation in lieu of authentic mathematics 
instruction (Ellis 2008; Lattimore 2005). The influences of accountability sys-
tems also reach deeper than teaching practices or teachers’ roles in the classroom. 
State-mandated reforms involving imposed standards and curricula and reductive 
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testing lead to ability tracking, lowered expectations of students, and reduced op-
portunities to learn, often for the very children the policies are designed to support 
(e.g., Apple 2004; Valenzuela 1999). In addition, the ways that students are labeled 
and grouped by ability, as well as how mathematics achievement is characterized as 
related primarily to speed, motivation, and accuracy, influence the teachers’ identi-
ties as teachers of mathematics (Brown and McNamara 2005; Horn 2007).

It is important to support elementary TCs in enacting ambitious pedagogical prac-
tices in their mathematics classrooms in high-stakes accountability contexts. Re-
search on mathematics teacher identity suggests potential relations between teacher 
identity and teacher practice (Peressini et al. 2004), as well as the ways in which 
accountability pressures influence teacher identity and self (Brown and McNamara 
2005; de Freitas 2008; Horn 2007). Furthermore, other elements of TCs’ identities, 
such as their existing beliefs about mathematics (Gellert 2000), their personal, per-
haps damaging, mathematical experiences (Drake 2006), and their understandings 
of students (Sleeter 2008), have been shown to influence their interpretations of 
curricula, reform, and best instructional practices.

Because of potential relations to teaching practice and the many influences on 
identity, understanding more about elementary TCs’ identities and the pressures that 
they feel in these contexts when teaching mathematics, and specifically how TCs 
position themselves in relation to these tensions and pressures, may support math-
ematics teacher education in preparing elementary TCs for teaching mathematics. 
This study focused on how elementary TCs position themselves in relation to ten-
sions of teaching mathematics in high-stakes accountability contexts.

Theoretical Framework

Becoming a teacher is not developing an identity; it is developing identity as a 
continuous process of constructing and deconstructing understandings within the 
complexities of social practice, beliefs, and experiences. In this research, I concep-
tualized teacher identities as ways of seeing and understanding oneself and one’s 
positionality that are constructed within discourses. Specifically, TCs’ identities as 
well as their visions of appropriate and possible mathematics teaching practice are 
shaped by the political, social, and institutional forces that structure the mathemat-
ics teaching they have experienced and continue to experience—in other words, 
their identities are shaped by the discourses that provide systems of categories, 
terms, and beliefs that organize ways of thinking and acting in relation to math-
ematics, mathematics teaching, and learning (Davies 2000; St. Pierre 2000). Dis-
courses are political, historical, and social forces that are outside an individual and 
“imply forms of social organization and social practices that both structure institu-
tions and constitute individuals as thinking, feeling, and acting subjects” (Walshaw 
2001, p. 481). Foucault (1980) is credited with this conceptualization of dis-
courses, wherein he emphasizes how knowledge, truth, and subjects are produced 
in language and cultural practice and how discourse works in very material ways 
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through social institutions and socially regulated rules to construct realities that 
position individuals and control their actions.

Discourses, as theorized in poststructural feminist discussions of education, 
constrain and enable what teachers do, say, and even conceive of as appropriate. For 
a teacher, “constituted by her relationship, among others, with her students, their 
parents, her school, and the wider community, discourses provide taken-for-granted 
ideas and ways of practice that come before any views she might have about herself 
as a teacher” (Walshaw 1999, p. 100). Prevailing discourses about mathematics 
teaching and learning include institutional discourses around curriculum and test-
ing (Brown and McNamara 2005); social discourses around race, class, and abili-
ties (de Freitas and Zolkower 2009); and discourses about mathematics as skills or 
as practices of “making sense” (Fuson et al. 2005). In addition to the institutional 
and social dynamics specific to elementary classrooms (Soreide 2006), elementary 
teachers’ and TCs’ beliefs about or negative experiences with mathematics com-
plicate relations between teacher identity and practice (Drake 2006). Test-driven 
school cultures in the USA, for example, create institutional discourses about teach-
ing and students, including notions of fixed student abilities and the equivalence of 
learning and test performance (Apple 2004). These discourses thus interfere with 
teachers’ teaching and learning relationships with children in their schools (Olson 
and Craig 2009).

Consistent with the above framing of discourses, the conceptualization of iden-
tity in this research reflects how identities are simultaneously personal and social, 
thriving within the complexities of social practice, personal beliefs and experiences, 
and the constraints of social constructions and social norms. This perspective is dif-
ferent from conceptualizations of identity that focus on identity as related to an indi-
vidual’s role that he or she takes in various situations (e.g., Stets and Burke 2000) or 
teacher actions in line with these roles (e.g., Ronfeldt and Grossman 2008), or that 
conceptualize identity as a constellation of beliefs and knowledge (e.g., Collopy 
2003). A focus on role does not attend to the dynamic nature of identity or the ways 
in which individuals negotiate their identity in context (Britzman 1993). Research 
that sees identity as personal or individual may not incorporate society’s influence 
on identity construction or attend to the social norms about mathematics or teaching 
that influence or construct teachers’ experiences, beliefs, or identities. That is, con-
ceptualizing identity as individualistic may not be productive for addressing TCs’ 
identities in the complexity of their school contexts.

In response to calls to work at the intersection of identity and context (Beijaard 
et al. 2004; Thomas and Beauchamp 2011), research in mathematics education from 
a poststructuralist perspective on identity has addressed this concern. In a poststruc-
turalist perspective on identity, elementary mathematics teacher identity is under-
stood as transitory and influenced by systems of power (Brown and McNamara 
2011; Walshaw 2004, 2010). Walshaw (2004), for example, emphasized the ways 
in which TCs’ identities are related to both coursework and internship experiences, 
that is, both “formal and informal educational discourse and practice” (p. 70), and 
are continuously shifting:
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Pre-service teachers are not only redefining their teaching identities in relation to the avail-
able discourse in the classroom and to the complex selves of others, they are also learning 
what is defined as “normal” practice through the school’s organizational procedures…. The 
school, construed as a regime of power, constructs specific regulatory practices for the nor-
malization of and ultimately the production of the self-governing individual teacher. (p. 72)

This perspective on identity emphasizes the role of power and knowledge in shap-
ing identities and in TCs’ understandings of the availability of certain responses to 
these influences on their identities. In their school contexts, TCs

set about to accentuate the identities of their teaching selves in contexts that are already 
overpopulated with the identities and discursive practices of others…. Within such con-
texts, where desires are assigned and fashioned, student teachers strive to make sense and 
act as agents in the world. Indeed much of their time is taken up with negotiating, construct-
ing, and consenting to their identity as a teacher. (Britzman 2003, p. 221)

As TCs are constantly negotiating their identity, embracing research perspectives 
that focus on positioning and negotiation attends to teaching context and to the 
multiple influences on TC identity.

Because the taking up of an identity is in constant social negotiation, it is not 
synonymous with role or function (Britzman 1993). Moving away from identity as 
operationalized through the idea of “role,” the concept of “positioning…focus[es] 
attention on the dynamic aspects of encounters in contrast to the way in which the 
use of ‘role’ serves to highlight static, formal and ritualistic aspects” (Davies and 
Harre 1990, p. 43). Through focusing on the discursive practices and how they 
constitute the speakers, this perspective can embrace, if not explain, discontinui-
ties in productions of self in conversations with others: “An individual emerges 
through the processes of social interaction, not as a relatively fixed end product but 
as one who is constituted and reconstituted through the various discursive practices 
in which they participated” (Davies and Harre 1990, p. 45).

Butler (1999) used the theoretical premise of performativity to connect iden-
tities and discourses and to explain how identities are shaped by contextual and 
historical elements and discourses. Butler suggested that the process of identity 
construction is regulated and constructed within discourse, and thus is a constrained 
choice. Performativity is a continuous process of being naturalized by these outside 
forces and suggests that identities are under constant influence, not present from 
the beginning, but instituted in specific contexts. For example, a TC’s teacher iden-
tity involves negotiation of discourses and experiences within power relations and 
discursive practices that are already present in the situation, as well as TCs’ pre-
vious experiences (Walshaw 2004). Performativity is used to highlight prevailing 
discourses and the subsequent process of construction of identities to open opportu-
nities for individuals to engage in deconstruction of these identities (Butler 1999). 
Using performativity within mathematics teacher education suggests exposing the 
prevailing or restricted discourses that shape some teacher identities and troubling 
these discourses in order to support TCs in understanding themselves as mathemat-
ics teachers and (re)authoring their mathematics teacher identities.

Using Butler’s (1999) perspective on identity recognizes that there are many so-
cial, political, and institutional dynamics in schools and in mathematics classrooms 
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that complicate and regulate teacher practice and identity. These dynamics, such as 
the institutional framing of student learning, prevailing discourses about students’ 
abilities and mathematics as a set of skills, and discourses about race, class, and 
gender, create a complex teaching environment for novice teachers. Teaching math-
ematics is fundamentally about teaching within and navigating this complexity. The 
consequences of leaving teachers unprepared for these dynamics are damaging, not 
only for those teachers, but also for students, as teachers who are unprepared for 
the realities of schooling may be unable to enact ambitious mathematics teaching 
practices. As a theoretical research tool, embracing a perspective of performativity 
means not categorizing or focusing on solely individual elements of identity, but 
investigating how these identities are shaped and highlighting their contextual and 
historical elements as a means toward preparing teachers for negotiating their iden-
tities within the complex dynamics of school contexts.

Modes of Inquiry

From this theoretical perspective on identity and the need to support TCs in their 
high-stakes accountability contexts, the following research question guided this 
study: For elementary TCs participating in a seminar on critical self-examination 
and mathematics teaching in context, in what ways do they position themselves in 
relation to tensions of teaching mathematics in high-stakes accountability contexts?

Study Context

Certification Program The participating TCs were students in an intensive 
15-month master’s degree program, which led to elementary certification, at a large 
university in the mid-Atlantic region. This certification program was well suited 
for the study context because of its focus on elementary teacher preparation and the 
emphases on teaching for understanding, inquiry, and reflection in the coursework 
and during the internship.

The program began in June, and the full cohort of 32 students took three courses 
together during the summer term. In the fall, the students took four courses: math-
ematics methods, science methods, reading methods, and a diversity course. Two 
sections of each course were offered, and I taught one of the mathematics methods 
courses in Fall 2009. The coursework was offered 2 days a week, and students were 
immersed in a yearlong internship in an elementary school 3 days a week. In the 
spring semester, students were immersed in their internship for 5 days a week, took 
two evening courses, and met monthly with their advisor to address their action 
research projects. TCs took a Capstone course in the final summer of the program. 
Upon completion of the program, students earned a Master’s of Education and were 
eligible for state certification to teach Grades K–6.
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Noncredit Seminar I designed and then facilitated a noncredit seminar that met 
biweekly during the spring and final summer of the program, for a total of eight 
sessions. All students in the cohort were invited to participate. In the seminar 
design and facilitation, I operationalized critical pedagogy (e.g., Kumashiro 2000) 
and feminist poststructuralist notions of identity (Butler 1999; St. Pierre 2000) in 
mathematics teacher education. The seminar goal was to encourage TCs to question 
prevailing discourses of students, mathematics, and teaching and “bring this knowl-
edge to bear on his or her own sense of self” (Kumashiro 2000, p. 45). This stance 
resonates with “giving reason” to prospective teachers (D’Ambrosio and Kastberg 
2012), in the exploration of TCs’ existing knowledge, not to “ignore it or criticize 
it, but to explore with” (p. 26) TCs along their journeys of becoming mathematics 
teachers. The seminar focused on specific objectives: identifying and examining 
the many prevailing social and political discourses that shape mathematics, math-
ematics teaching, and their positioning; analyzing the implications; rethinking these 
discourses and their implications in relation to self; and problematizing teaching 
in relation to these discourses. Seminar activities designed to work toward these 
objectives included case analysis, group discussions, and reflective writing about 
positioning and teaching experiences. The primary data for this study were col-
lected during this seminar.

Participants

I solicited participation for the seminar from all 32 students in the program cohort. 
Ten female TCs between the ages of 25 and 35 volunteered to participate in the 
eight seminar sessions as well as the study. Seven of the TCs had been students in 
my mathematics methods course in Fall 2009; three were in the other course sec-
tion. Eight of the participating TCs self-identified as white, one as an immigrant 
from Argentina, and one as African American. Three TCs, Brooke,1 Candice, and 
Laura, were chosen for case analysis because of their consistent participation in the 
seminar (e.g., actively participated in discussions, completed coursework, and dis-
cussion board reflections) and because across their participation, institutional dis-
courses related to their test-driven school contexts and the accountability pressures 
emerged as salient and could be conceptualized as central to each TC’s identity. 
There were, however, emergent differences in the ways in which they positioned 
themselves in relation to these discourses of test-based accountability pressures, 
how they understood themselves as mathematics teachers and understood teaching 
in their school contexts, and their differing interactions with the seminar activi-
ties. Analysis, as detailed below, sought to understand more about the differences 
in these three TCs’ self-understandings, specifically, their identities and tensions 

1 All names of participating teacher candidates, students, schools, and counties are pseudonyms.
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related to teaching mathematics in high-accountability contexts. Each TC is intro-
duced briefly below.

Brooke was a white female in her mid-twenties. Before beginning the program, 
she worked as a consultant in the private sector. She said that a speech by for-
mer DC School Chancellor, Michelle Rhee, inspired her to teach in an underserved 
school and to begin a certification program. Brooke never had liked mathemat-
ics in elementary school, but described her mathematics learning experiences as 
“not overly positive or negative” (Mathematics Autobiography, September 2009). 
Brooke interned in a second-grade classroom that she described as having “a lot” of 
inclusion students. When the students were regrouped for mathematics instruction, 
her mathematics class was “above grade level,” meaning that she taught and tested 
this group of second-grade students on third-grade mathematics objectives. In her 
methods course, Brooke presented herself as confident about being an elementary 
mathematics teacher.

Candice was in her late twenties, and she self-identified as an African–American 
female. She had moved from Los Angeles specifically to attend this elementary 
master’s certification program because of its geographic proximity to areas that 
she felt were rich with African–American history. Candice had previous experience 
working with students in alternative schools and with programs for students who 
are at risk for educational failure. Candice described her experiences as a math-
ematics learner and how they related to her mathematics teachers: “Math is not 
hard. Many people, like myself, have not had many great teachers of mathematics, 
because many math teachers did not have great teachers and the cycle continues” 
(Mathematics Autobiography, December 2009). Unlike other TCs in the program, 
Candice rotated through three different classrooms in her placement school and had 
four different mentor teachers and experiences in first-, third-, and fourth-grade 
classrooms during her internship.

Laura was a white female in her mid-twenties. Before beginning this program 
and her internship in a third-grade classroom, she worked with students in after-
school settings and taught religion classes on the weekends. Laura described posi-
tive mathematics learning experiences and herself as a “straight A student”: “Math 
came to me somewhat naturally in elementary school, and as the material became 
more difficult in middle and high school, I worked harder to fully understand the 
material and to earn good grades” (Mathematics Autobiography, August 28, 2009).

Although these three TCs interned in three different elementary schools (and 
in three different counties), teachers and the participating TCs reported that edu-
cational reforms and the resultant accountability systems created a high-stakes ac-
countability context at each of these elementary schools. Administrators and the 
school culture at all three elementary schools emphasized high-stakes testing and 
curriculum pacing, and each school used student labeling and grouping by ability in 
organizing teachers’ classrooms and students.
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Data and Analysis

The primary data included video and transcripts of the eight seminar sessions; TCs’ 
written work produced during the seminar, including seminar homework and dis-
cussion board reflections; and a final interview with each participating TC on her 
experience in the seminar and in the program in general. Additional data included 
TCs’ written mathematical autobiographies completed during their mathematics 
methods courses. Although TCs discussed many issues related to their identity as 
elementary teachers and TCs, the analysis for this study focused specifically on re-
lations between teachers’ conceptions of their identities and discourses of test-based 
accountability, which was an emergent theme across participants’ talk.

In analysis, I conceptualized TCs’ understandings of being a mathematics teach-
er as positioning (Davies and Harre 1990), which entails how discursive practices 
constitute speakers and hearers in certain ways and also serve as resources through 
which speakers and hearers can negotiate new positions. I focused analysis on how 
TCs were being reflexive of their positioning in social interaction, that is, recog-
nizing one’s positioning and the circular nature of positioning in social structure 
(Mauthner and Doucet 2003). I attended to the complexity of TCs’ identity in anal-
ysis by focusing on each participant’s discursive practices in context; then, each 
participant served as a case, and case analysis (Yin 2009) focused on an individual’s 
identity.

Based on close reading of the empirical literature on being reflexive about po-
sitioning (Ellsworth and Miller 1996; Williams 1991) together with emergent cat-
egories from my own analysis, I identified four discursive practices that constitute 
aspects of being reflexive of one’s positioning, specifically focusing on how TCs 
were identifying, specifying, and responding to positioning as contextualized, po-
sitioning as relational, positioning in performance, and repositioning (Table 1). In 
my analysis of TCs, the first three discursive practices suggested how TCs were re-
flexive about their positioning—how they were understanding themselves as math-
ematics teachers.

Attending to repositioning, including the possibilities for repositioning, suggests 
repositioning or shifting understandings of self. Butler (1999) emphasized both acts 
of subverting positioning and “thinking through the possibility of subverting and 
displacing” (p. 46) for “intervention and resignification” (p. 45) of identities or, in 
this analysis, shifting understandings of self as mathematics teacher. Repositioning 
as theorized for my analytical purposes is not directional or analyzed as move-
ment in a particular direction, either toward or away from a particular discourse; 
analytically, repositioning is creating a more articulated position and there is not 
a normative response to the direction. For example, repositioning in relation to a 
discourse of test-based accountability does not include being in favor of or not in 
favor of testing; rather, it includes describing personal actions one can take in rela-
tion to the discourse, perhaps identifying subversive behaviors to contest the way 
one is positioned.

My analysis followed how each TC engaged in these discursive practices spe-
cifically in relation to issues of test-based accountability. Across the data corpus, I 
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analyzed how TCs engaged in identifying, specifying, and responding to positioning 
as contextualized, as relational, and in performance and to repositioning around this 
theme to explore TCs’ developing identities. Data were organized into case studies 
of each TC because of my attention to the participating TCs as individuals. I chose 
a multiple-case design in order to present the different and various ways TCs po-
sitioned themselves in relation to tensions of teaching mathematics in high-stakes 
accountability contexts.

Results

Across seminar sessions, TCs articulated tensions related to teaching in high-stakes 
accountability contexts. I first present an analytic episode, which describes the three 
TCs’ participation in discussions about mathematics teaching in high-stakes ac-
countability context during the seminar, and illustrates the different ways in which 
they positioned themselves in relation to institutional discourses of accountability 
and related pressures. Then I present the cases of each TC (Brooke, Candice, and 
Laura) and how each TC’s positioning suggests a different emergent tension.

Analytic Episode

During Session 1, after writing a vision of herself teaching mathematics in 5 years, 
Brooke looked up from her writing and asked me a question about teaching volume 
to her current second-grade students:

Can I ask you something? I’m, I need some help with a math lesson. So, tomorrow is Day 5. 
I’m trying to teach volume. They get, like, the point. They understand, like, the concept of 
volume. They don’t get how to count on flat figures. So, when you look at a 2D object on a 
piece of paper, and it’s an irregular [figure]—if it’s regular they can do it, but as soon as it’s 

Table 1  Discursive practices of being reflexive about positioning and repositioning
Discursive practice Description
Positioning as contextualized Identifying, specifying, or attending to social, political, histori-

cal, or institutional contexts and how they relate to position-
ing by a particular discourse or in a particular manner

Positioning as relational Identifying, specifying, or explaining positioning as in relation 
to others or gives explicit attention to the multiplicity of 
positioning and the constant process of and opportunities for 
negotiating positioning and membership in different groups

Positioning in performance Identifying, specifying, attending, or responding to one’s own 
or other’s actions as suggesting positioning by a particular 
discourse

Repositioning Identifying, specifying, or explaining the actions that one has 
to take in order to subvert or contest a particular discourse or 
the possibilities for repositioning
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like stairs and you can’t see the behind ones, then they can’t do it.… We built them for three 
days and they’re just not seeing the connection at all. (Group discussion, March 23, 2010)

Brooke suggested that her students “understood the concept of volume,” but were 
not demonstrating a particular understanding or skill, that is, counting hidden cubes 
when presented as flat figures. Differentiating between concepts and skills, Brooke 
emphasized that she wanted to focus her teaching on this test objective because it 
was on the assessment, even as she questioned the “practical [nature] of this” or 
how this test objective related to mathematics outside of the test.

Although the initial question was directed at me, other TCs were interested and 
joined in the discussion. Candice and Laura (among others) asked follow-up ques-
tions:

Candice What grade is it?
Brooke Second graders doing third-grade math.
Laura  I was going to say, “Why are you talking about my objectives?” [Recall 

that Laura is teaching 3rd grade.]
Jill So, what’s the goal?
Candice Is it a 3rd grade concept? Are they supposed to master that at 3rd grade?
Jill I don’t, I don’t know. So, that’s the idea, is like—
Laura It’s like one objective.
Brooke  It’s definitely on their, I hate to say, it’s on their assessment. I don’t know 

a lot about the practical of this.
Laura  I mean, they need to count. There are two pictures, and I think that they 

are odd-shaped. They have to count the cubes.
Jill They did build their own?
Brooke  So, today I had them build, I did it on the screen and they did it at their 

desk. So, we all built the same thing, but they just. They literally can’t 
see what’s behind it. It’s like, you know when you’re working with an 
infant and you have a ball and you put it behind your back and they just 
think the ball is gone, like magically into thin air. They just think the 
blocks are gone. (Group discussion, March 23, 2010)

Brooke identified that her focus was on the assessment and indicated that her math-
ematics teaching was contextualized by these assessment pressures (positioning as 
contextualized). She discussed her students’ difficulty with seeing the composition 
of the figure and made an important step to try to understand why her students were 
miscounting the blocks. However, Brooke focused on evaluating the correctness of 
students’ responses, and there is no evidence of identifying how she was position-
ing her students or how her students’ positioning influenced her own mathematics 
teacher identity. Brooke positioned her students as infants unable to understand ob-
ject permanence. Brooke rooted this deficit perspective of her students in how they 
were not successful with a particular test objective; together with her reference to 
the assessment, her participation suggests how she felt positioned by the associated 
test-based accountability pressures and understood student understanding as related 
to test objectives.
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In response to Brooke’s description of her students, Paige suggested students 
could trace the figures, and Michelle suggested having the students use Jell-O boxes 
because the unit cubes fit perfectly. Brooke replied that these ideas would not work 
because her students were “not seeing the connection” (Group discussion, March 
23, 2010). The “connection” that Brooke was concerned about is how the under-
standings that students could build through engaging in activities such as building 
with blocks or tracing figures related to the particular test objective. She wanted 
her students to do well on this objective and was searching for a solution to this 
concern; she was not focused on building student understanding of volume more 
generally. Brooke’s emphasis on this lesson and assessment suggested that the high-
stakes accountability pressures influenced her teaching (e.g., Rinke and Valli 2010).

As the conversation about Brooke’s lesson ended, Candice then began sharing 
her own teaching experiences in her elementary school, particularly her responses 
to test-based accountability systems:

The [state assessment], standardized tests, they influence just how I teach because there are 
certain things. It’s well, the connections, like legislation, I guess, more so, or so, because 
legislation is like. It’s saying basically, like, you are not a good teacher if your students 
don’t do good on the [state assessment] or whatever test it is. Like, with the No Child Left 
Behind thing, um, it might influence where I teach because I might choose not to teach at 
a school where I won’t, where I already know the students won’t make AYP [Adequate 
Yearly Progress] or, you know, reach those benchmarks, whereas, that’s, I’m all about them 
right now. And I see the struggles that my teachers are going through because they have 
made the sacrifice to teach at a school where the students were not high-achieving. (Group 
discussion, March 23, 2010)

Candice identified how education policy, the resultant accountability pressures, and 
the related tests positioned her as a teacher and had implications for her teaching 
and how she understood her options of where to teach. Analytically, she identified 
the contextual nature of her positioning and the related actions that this positioning 
led to—her positioning in performance. She felt pressure to ensure that her students 
met particular benchmarks and felt that her reputation as a teacher was related and 
dependent on her students’ achievement on high-stakes tests; in this manner, she 
also highlighted the relational elements of her positioning. Although Candice con-
sistently identified her desires to support all students to learn in her participation 
across the seminar, she also explained that there are personal sacrifices that she 
would have to make in order to reach all students if she were to teach in certain 
schools. In this comment, Candice identified that in order to reposition herself and 
teach mathematics in struggling schools, teachers need to make sacrifices or recog-
nize that job security is tied to their students’ performance. This suggests reposition-
ing because of the ways in which Candice identified actions that need to be taken 
in order to contest discourses of test-based accountability, or specifically, to contest 
the ways in which those discourses limit particular students’ opportunities to learn.

In response to Candice, Laura described a similar tension. She emphasized how 
her teaching context would likely limit the type of instructional practices she could 
enact:
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I imagine myself as a certain, teaching a certain way but recognizing that in certain places 
I can’t do that. I can’t have those freedoms. But then I recognize that I am really limiting 
myself to places, where I can, you know, if I, if it’s a priority to me to teach in a way that I 
want to, I’m really limited to places that are going to give you that freedom. (Group discus-
sion, March 23, 2010)

Laura shared how she felt that in certain schools she would have less freedom in 
how she could teach, specifying how school context matters for how she is posi-
tioned (positioning as contextualized) and how she is able to position herself or 
engage in certain practices. By “certain places” she was referring to schools where 
she did not think her teaching practices would be limited by the administration and 
its emphasis on standardized testing, which she also felt was most prevalent at un-
derserved schools. Laura also identified that particular teaching practices suggested 
her positioning (positioning as performance) and how she was not sure if she would 
be able to reposition herself in some teaching environments.

Following Laura’s comment, Brooke responded to the tensions that Candice 
and Laura raised and suggested that these same accountability pressures, or the 
standardized assessments in particular, did not influence her in the same ways that 
Candice and Laura mentioned:

But see, I don’t feel like that. I don’t feel like that influences me all that much because 
like I’m spending 5 days on this stupid volume lesson, which really doesn’t have the huge 
practicality of counting these imperfect like block shapes, but I’m doing it because it is 
going to be on their unit assessment. But the majority of the stuff I teach is all beyond what 
is being assessed on those tests. So I feel like the test doesn’t necessarily, like I make sure 
that I hit those things but it is only like, you know, a couple of things that I need to do and 
I have a lot more time that I get to do a lot more enriching things with my kids. (Brooke, 
March 23, 2010)

Brooke discussed her practice differently from Laura. First, she noted that she was 
indeed spending 5 days on a test objective and then asserted that she did not feel 
these same institutional pressures as Laura; she felt that she had autonomy over 
what she taught. While Laura described how the accountability pressures in her 
school contexts influenced how she taught and what she taught, in her discursive 
participation, Brooke seemingly contested that her positioning was in context or 
related to her teaching context.

It is significant that this discussion took place less than 3 min after Brooke asked 
for assistance with her volume lesson and emphasized a focus on test objectives. I 
sought to encourage Brooke to identify how some elements of her context, in partic-
ular her students’ status as “above-grade-level,” influenced how she was positioned 
as a teacher and the options she had to teach:

Jill  Now, how is that, how is that in your situation because, there is this 
prevailing way of thinking that your kids are above grade level, right?…
What are they? In second grade doing third grade math?

Brooke Right.
Jill How does that allow you then to not have these same struggles?
Brooke Well—
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Laura  I’m teaching the same curriculum but to the lowest, [laugh] I hate to say 
it, third graders, and so we probably see it, very, this exact same curricu-
lum in very different ways. (Group discussion, March 23, 2010)

Both Laura and Brooke administered the third-grade mathematics assessments to 
their students, but Laura identified that because she taught the lower-ability third 
graders, she saw the curriculum differently. In this manner, Laura recognized that 
how her students were positioned in mathematics influenced her practices, her 
options for her practice, and her conception of the material she taught.

Three Distinct Cases

Across the three cases, issues of high-stakes accountability emerged in the TCs’ 
identities, and different tensions emerged related to the TCs’ discursive practices 
of being reflexive about their positioning. Specifically, these three TCs’ tensions 
with mathematics teaching in test-based accountability can be understood as three 
iterations of the question, “What can I do?”—questions first referenced by Pollock 
et al. (2010) in discussions of teaching teachers about race. The different iterations 
of this question emphasize TCs’ questioning of individual agency when teaching 
mathematics in high-stakes accountability contexts: What can I do? (questions of 
personal agency in responding to issues of teaching in these contexts); What can I 
do? (questions in search for actionable steps in their mathematics classroom); and 
What can I do? (questions of personal readiness to become the elementary teacher 
of mathematics that he or she would like to be). The analysis that follows describes 
how each TC’s positioning suggests one of these tensions.

Brooke: What can I do? Across the data corpus and as evidenced in the analytical 
episode above, Brooke did not consistently identify the contextual, relational, or 
performance-based elements of her positioning or engage in repositioning. Brooke 
seemed comfortable identifying the accountability pressures as related to her spe-
cific lesson, but less comfortable, even resistant, to framing her understanding of 
herself as a mathematics teacher as related to the institutional discourses of account-
ability and their influences on her practice. For example, she identified that the 
unit test and its objectives drove her instructional choices but did not generalize to 
the influence that the prevailing pressures of accountability have on her practice, 
and instead suggested that these pressures did not influence her practice or iden-
tity, describing her teaching as including “more enriching things.” In this manner, 
Brooke seemingly struggled to examine the contextual or relational elements of 
her positioning, how her positioning, by test-based accountability, surfaced in her 
teaching (positioning as performance), or to consider repositioning in response to 
these discourses.

Earlier in Session 1 (prior to the analytic episode), when discussing a vignette 
of teachers discussing teaching a high school algebra course to all eighth grade stu-
dents, Brooke identified how there are expectations for students and teachers and 
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that teachers may feel frustrated when their students do not meet these expectations. 
In the analytic episode, however, she did not identify how she felt frustrated by her 
administration’s expectations for teachers or students, or the role of institutional 
pressures of accountability systems in teaching; rather, she seemed to resist identi-
fying the way she was positioned. Her discussion of her teaching seemingly aligned 
with these pressures, but she asserted that the political and institutional pressures of 
accountability systems did not influence her or how she or her colleagues taught. 
In this way, Brooke was not reflexive about her positioning as contextualized, as 
relational, or in performance, not only because she did not identify these particular 
influences but because she did not identify other elements either, maintaining that 
her teaching context did not influence how she was positioned or how she saw her 
practices.

Analysis suggests that, when reflecting on teaching in high-stakes accountability 
contexts, Brooke struggled with the question, “What can I do?” Brooke questioned 
her agency in her teaching in these contexts, suggesting that student performance, 
such as on the assessment items on volume, and student positioning were problems 
of students needing to understand the mathematics and take responsibility for their 
performance and positioning. Brooke’s questioning of her agency means not only 
that she felt her practice was confined by particular contexts, but also that she did 
not feel that the problems and tensions were hers to contest. There is no evidence 
that Brooke engaged with the interaction between herself and her context when 
reflecting on her teaching practice or how her positioning by test-based account-
ability surfaced in her teaching. Even as her talk of her teaching seemingly aligned 
with these pressures, Brooke asserted that the political and institutional pressures 
of accountability systems did not influence her self-understanding or how she or 
her colleagues taught. Brooke was uncomfortable, even resistant, to framing her 
understanding of herself as a mathematics teacher as related to the institutional 
discourses of accountability or generalizing about the influences of these discourses 
on her practice.

This analysis is not meant to be an indictment against Brooke or a criticism of the 
lack of evidence of her discursive practices of being reflexive about her position-
ing. Across the seminar sessions, how Brooke was positioned by these pressures of 
high-stakes accountability contexts, in particular how she understood math abili-
ties and students’ responsibilities, framed her discussions of students, teaching, and 
herself, and she struggled to interrogate her positioning towards mathematics, the 
framing of abilities in mathematics, and how her school framed learning and prog-
ress. Brooke’s participation highlights the challenges TCs have with working at the 
intersections of these dynamics and their self-understanding.

Candice: What can I do? Across Candice’s participation, when discussing herself 
and her instruction, she identified how she and her students were positioned by dis-
courses of test-based accountability and tensions of teaching in her school, where 
standardized assessments mattered more than what was learned from students’ 
work. In her discursive participation she identified, specified, and responded to 
positioning as contextualized, positioning as relational, positioning in performance, 
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and repositioning. For example, when discussing the standardized assessments 
and pressures of AYP, Candice identified her positioning as well as possibilities 
for repositioning. In positioning herself and her students in relation to discourses 
of test-based accountability, Candice asked, “What can I do?,” seeking actionable 
steps to address her positioning.

This question is evident in her discursive participation in the above analytic epi-
sode and in her participation across sessions when she sought for actionable steps 
to address tensions of teaching in test-based accountability contexts. In her partici-
pation, Candice identified the contextual and relational elements of her position-
ing, as detailed in the analytic episode above, and she sought for how to engage 
in repositioning herself and her students. Across seminar sessions, Candice asked 
questions about supporting students’ abilities, creating opportunities to learn, and 
contesting discourses of test-based accountability, her positioning, and her students’ 
positioning. When Candice discussed grading students’ mathematics homework 
and working with parents and her mentor teachers, for example, she attended to 
both the test-based accountability context and her goals of repositioning herself and 
her students with an eye for equity. Candice also actively listened to others during 
seminar sessions, consistently asking other TCs to share their teaching practice. 
Candice would ask clarifying questions about TCs’ practices, such as, “How do 
you grade that?”, “Do you do the same for students with IEPs?”, and “What grade 
[level] do you start that?” In this manner, Candice sought to make connections be-
tween herself and what she could do in teaching in a test-driven context.

While Candice identified the ways in which there were challenges and con-
straints to teaching high-stakes accountability contexts, she did not cite the contex-
tual challenges as excuses for teachers’ lack of attention to rigorous mathematics 
teaching or suggest that the contextual challenges should be seen as limits to her 
agency, even as those challenges impeded her current teaching. For example, she 
emphasized in Session 2 that all teachers, specifically the teachers in the vignettes 
that were in high-stakes accountability contexts, should emphasize teaching higher-
order thinking skills and include explorations of geometric shapes:

I think teaching could be like that [including explorations of geometric shapes], especially 
if we allow them to explore, like show them different buildings and like and different things 
like that. Or give them those experiences like at museums or zoos or whatever. But I think 
a lot of times, teaching is just like the definition in isolation or the skill in isolation and 
not. Because we’re talking about rigor at our school and how to allow them to create and 
synthesize and analyze, all those higher level thinking and like a majority of the things that 
we do are lower level thinking skills. Even though in the younger grades, it seems like we 
should be able to still allow the students to practice those, those higher order thinking skills. 
(Group discussion, May 11, 2010)

Candice emphasized that the way teachers teach, in addition to the content they 
include, is important for all students, and she critiqued the mathematics teach-
ing of the teachers in the vignette who lowered the cognitive demand and rigor. 
She identified how she and the teachers had options in how they positioned their 
students in relation to the mathematics and emphasized providing students access 
to opportunities by including rigorous mathematical thinking. These comments 
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emphasize how Candice felt that she and other teachers did have agency in repo-
sitioning themselves and engaging in ambitious mathematics teaching practices in 
high-stakes accountability contexts, even as she asked questions about specifically 
what those practices would look like in her mathematics instruction.

Laura: What can I do? Across the seminar, analysis of Laura’s participation sug-
gests that she also identified, specified, and responded to positioning as contextual-
ized, positioning as relational, positioning in performance, and repositioning. While 
these elements surfaced in her participation, similar to Candice, analysis of Laura’s 
participation and her positioning suggests that she struggled with understanding 
how to be the teacher she wanted to be within her teaching context. In this manner, 
while she engaged in similar discursive practices of positioning herself in relation to 
discourses of test-based accountability, Laura asked questions about her own readi-
ness to engage in repositioning or to enact her teacher identity in her high-stakes 
accountability context. In this manner, Laura asked, “What can I do?”

In the analytic episode above, Laura’s questions of personal readiness emerged 
when she identified that she did not feel that she would be able to engage in the 
same teaching practices in test-driven school contexts. In this manner, Laura under-
stood the potential steps to take to teach across school contexts, but she did not see 
herself as being able to take those steps or specifically to engage in the practices of 
repositioning herself. A similar tension emerged in Session 2, when Laura discussed 
compromises she would make if she were to teach in different school environments.

I think that, maybe we brought this up last time or maybe a little bit today, you have to make 
compromises because like, when we were walking around the school and then we came 
back like and everybody was kind of like, “Wow, look at how nice it is,” and “They have 
these freedoms.” They have this amazing arts program here, and like so many freedoms in 
what they teach, so much creativity I guess I’d say, but you know it’s also a very privileged 
population here, and so we have to make decisions where maybe you’d want to work with 
a different population or where the school is much more regimented in what you do and so 
we have to make compromises. (Group discussion, April 27, 2010)

Laura’s comments are consistent with her earlier description of the choice she felt 
she had to make. We held Session 2 in a newly renovated arts-based school, and 
Laura recognized how aesthetically pleasing the school is and suggested that the 
teachers at this school did not respond to the pressures of test-based accountability 
through the instructional practices that are prevalent in test-driven schools. In her 
comment, Laura associated schools where teachers have autonomy over what and 
how they teach with schools that serve students of privilege. She contrasted this 
environment with schools that have what she deemed characteristics of test-driven 
contexts—schools that serve a less-privileged population and that are racially and 
socioeconomically diverse. Tying teachers’ autonomy over their practice to the 
teaching context and student population, Laura’s self-understandings as a math-
ematics teacher were tightly anchored to teaching context.

Laura set up a contrast between (a) schools where teachers have more flexibil-
ity and “freedom” about what they teach and schools that serve students of privi-
lege, and (b) schools that are test-driven, serve a less privileged population, and 
are also inferred to be racially and socioeconomically diverse. By making this link 
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between practices and school population, she felt limited to teaching in schools 
that served students from higher socioeconomic backgrounds because these schools 
would also support progressive pedagogical practices and not be test-driven. Laura 
wanted autonomy over her teaching and opportunities to engage in practices that 
she deemed progressive, but she felt that these pedagogical practices were accepted 
only in schools that served students from higher socioeconomic backgrounds, not 
in schools that served students from lower socioeconomic backgrounds or under-
served schools where she felt teachers were more needed. She was conflicted, how-
ever, about teaching in the more regimented school context where she would have 
a particular school population that she would like to serve or in the school context 
where she would have more freedoms. Across these data, Laura evidenced reflec-
tion on and awareness of the many elements of her positioning, specifically her 
context and relationships, but questioned her personal readiness in contesting it.

As this study and seminar were framed in relation to sociopolitical discourses 
of teaching, Laura’s discursive participation suggests that through this attention to 
what is framing her positioning, more tensions about enacting this work in context 
emerged for her. The self-understanding and awareness that she evidenced may 
have helped her better understand how teaching context was a critical element of 
her practice and her positioning, but nevertheless, she remained uncertain about 
how to engage in the instructional practices that were important to her and were 
encouraged by her methods courses when she was teaching in her school context. 
Her responses are consistent with other research on teacher identity and self-under-
standing that suggests that social, political, and institutional discourses constrain 
and enable what teachers do, say, and even conceive of as appropriate (Britzman 
1993; Walshaw 1999). Understanding herself as constrained by the discourses pres-
ent in her context, Laura identified many tensions about teaching mathematics in 
high-stakes accountability contexts as related to her personal readiness.

Discussion and Conclusions

The TCs in this study experienced various tensions as related to their identities 
and self-understandings as teachers of mathematics in high-stakes accountability 
contexts. As related to teaching mathematics in high-stakes accountability contexts, 
TCs identified differing tensions about understandings of self, their identity, and 
their practice and were asking different questions about themselves, their agency, 
and instruction. These findings contribute to research on teacher identity, specifical-
ly on understandings of TC identity in high-stakes accountability contexts. This sec-
tion details implications for mathematics teacher education and suggestions on how 
to support TCs in understanding themselves, their positioning, and their practice.

Research suggests that teacher education settings may be advantageous for sup-
porting TCs’ identity work and specifically their reflections on themselves and their 
practice as mathematics teachers (e.g., Ponte and Chapman 2008). Furthermore, “a 
teacher education program seems to be the ideal starting point for instilling not only 
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the awareness of the need to develop an identity, but also a strong sense of the shifts 
that will occur in that identity” (Beauchamp and Thomas 2009, p. 186). In a review 
of mathematics education research on teacher identity, Ponte and Chapman (2008) 
asserted that teacher identity is seen as “a by-product of teacher education programs 
rather than as a targeted outcome” (p. 246), and therefore, more focused research on 
how identity develops and how teacher education can foster this is needed. Further-
more, most research on teacher identity development in teacher education programs 
was theoretical in nature, leaving the field without many details on how to foster 
teacher identity (Rodgers and Scott 2008).

The results of this study contribute to research on teacher identity by suggest-
ing increased attention to teacher positioning and to TCs’ understanding of their 
positioning when seeking to support TCs’ conceptions of their identity and self-
understanding. Specifically, TCs need to understand, on one hand, that how they 
position themselves as mathematics teachers and are positioned in their school 
contexts is shaped by social and political discourses about mathematics and teach-
ing, and, on the other hand, that they can use this understanding to (re)author their 
positions toward mathematics teaching and learning and engage in ambitious prac-
tices. Research suggests that teachers are influenced by how students are labeled 
and understood by other teachers and administrators in their environment and also 
by the ways in which mathematics achievement is understood as related to correct-
ness and motivation (Ellis 2008; Horn 2007). Teachers’ conceptions of students are 
also reinforced through schools’ curriculum pacing and ability grouping systems 
(Horn 2007). Mathematics teacher education can have a role in supporting TCs 
in understanding their positioning and navigating the sociopolitical discourses that 
interfere with their teaching, their relationships with students, and their engagement 
in ambitious practices.

In mathematics teacher education coursework, for example, discussing the dif-
ferent iterations of “What can I do?” may support TCs in making connections be-
tween self, students, and teaching contexts, particularly understanding that there are 
multiple dynamics and discourses in classrooms that influence their identity and 
multiple tensions that may be influencing their questions. Brooke, Candice, and 
Laura struggled with different questions and tensions in relation to their position-
ing as mathematics teachers in high-stakes accountability contexts. Distinguishing 
between these questions about agency and responsibility (What can I do?), about 
the steps one can take to enact ambitious pedagogical practices in high-stakes ac-
countability contexts (What can I do?), and about feelings of personal readiness to 
teach mathematics in these contexts (What can I do?) may help TCs discuss, for 
example, their potential responsibilities for student learning or conflicts between 
their visions of themselves teaching and what they understand as the realities of 
their contexts. The process of distinguishing between TCs’ different questions 
and concerns may also create opportunities for TCs to problematize practice and 
address others’ concerns, understanding that they may be asking different questions 
(Pollock et al. 2010). It is also possible that prompting TCs to articulate the tensions 
they feel in their teaching contexts may highlight the ways in which their teaching 
practice both is and is not constrained by their context, as well as other reasons 
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behind a TC’s instructional practice. For example, a TC’s own capacity for teaching 
in a certain manner, rather than the context of his or her teaching, may be limiting 
his or her practice or student engagement. Furthermore, research on teacher practice 
and teacher identity may benefit from understanding how sharing these iterations 
of these questions in mathematics methods course supports TC self-understanding 
and feelings of agency.

Given the tensions and dilemmas that TCs feel about their positioning, TCs 
may benefit from focused discussions of mathematics teaching as situated in teach-
ing contexts and classrooms and within the multiple dynamics that constrict and 
construct elementary mathematics teaching, specifically in test-driven contexts. 
Opportunities in mathematics methods coursework for problematizing pressures 
specific to high-stakes accountability contexts, such as narrowed curricular content 
and multiple choice testing, may support TCs in discussing teaching practices and 
assessments in relation to ambitious teaching. Vignettes and case studies on com-
plex issues in mathematics teaching could also support discussion in mathemat-
ics methods courses, specifically about high-stakes assessment pressures, category 
systems, and ability groupings that are prevalent in mathematics classrooms. To 
prepare TCs to enact ambitious mathematics teaching practices while navigating 
the many social, political, and institutional dynamics in mathematics classrooms 
and schools, TCs may benefit from both self-understanding and understanding of 
ambitious practices in context.
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Recommendations for improving the nature of teaching and learning mathematics 
have been ongoing over the past 30 years. In the USA, recommendations can be 
traced back to 1980 with the National Council of Teachers of Mathematics (NCTM) 
publication of An Agenda for Action, followed by a series of standards documents 
(NCTM 1989, 1991, 1995, 2000) to clarify new goals and curricular recommenda-
tions. A recent iteration of recommendations for improving mathematics teaching 
focused specifically on the improvements needed in high school mathematics class-
rooms. Focus in High School Mathematics: Reasoning and Sense Making (NCTM 
2009) (hereafter referred to as Reasoning and Sense Making) proposed that en-
gaging high school students in reasoning and sense making about mathematics is 
critical for them to develop conceptual understanding and to recognize connections 
between concepts, rather than simply memorize procedures.

In the past, some have defined reasoning narrowly as an informal precursor to 
mathematical proof (e.g., Ellis 2007; Stylianides 2009, 2010), as in the “Reason-
ing and Proof” standard (NCTM 2000). In Reasoning and Sense Making, however, 
NCTM shifted its conceptualization of reasoning to a form of mathematical logic or 
thinking that is necessary in all mathematical activities (e.g., Bergqvist et al. 2008; 
Lithner 2008; NCTM 2009; Sternberg 1999). Sense making is defined as “develop-
ing understanding of a situation, context, or concept by connecting it with existing 
knowledge” (NCTM 2009, p. 4). The authors of Reasoning and Sense Making ar-
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gued that these practices are a significant part of what is missing from high school 
mathematics classrooms, as currently too many students associate mathematics 
learning with carrying out meaningless procedures.

While the focus of national recommendations for mathematics teaching has been 
clarified over time through standards and policy documents published by NCTM, 
evolving recommendations have maintained a common thread of the importance 
of student thinking and engagement in authentic mathematical activities. Despite 
a longstanding presence of policy recommendations suggesting ways to improve 
mathematics teaching and learning (e.g., NCTM 1980, 1989, 1991, 1995, 2000; 
NRC 1989), the lack of impact of these recommendations on mathematics teach-
ers’ practice is a common topic of discussion. Evaluations of mathematics teach-
ing across the USA have identified a persistent deficit, or gap between recommen-
dations for mathematics teaching and actual classroom practice (Hiebert 2013). 
Hiebert (1999), for example, declared that “the same method of teaching persists, 
even in the face of pressures to change” (p. 11). Similarly, the Conference Board 
of the Mathematical Sciences asserted back in 1975 that “teachers are essentially 
teaching the same way they were taught in school” (p. 77), referencing the lack of 
impact of the earlier “new math” movement of the 1960s.

Discussions of the deficit between recommendations and actual practice often 
use a framing that suggests that the blame is on teachers. Researchers have ad-
dressed how framing student learning using a deficit perspective is unproductive 
to improve students’ learning (e.g., Brown et al. 2011; Gutiérrez 2008). Similarly, 
framing mathematics teaching in this way, while it helps to identify areas for im-
provement, needs to move beyond blaming teachers to focus on interrogating the 
factors associated with the deficit. Hiebert (2013) investigated reasons why math-
ematics teaching has historically been resistant to change. He argued that “believing 
that teaching can be learned and that such learning takes time and practice would 
dramatically alter the nature of schools” (p. 53). He concluded that efforts to im-
prove teaching should focus on teacher learning, and the responsibility for teacher 
learning does not lie solely with teachers. In order to address the gap between rec-
ommendations for mathematics teaching and actual classroom practice, research is 
needed that investigates how to support teachers as learners in taking up and adopt-
ing new practices in line with recommendations for mathematics teaching.

One contributor to the deficit between recommendations and actual classroom 
practice is the complex transitional process involved for teachers learning to teach 
mathematics through pedagogical methods distinct from how they learned math-
ematics. Mathematics education researchers have described challenges they en-
countered when they studied their own teaching as they instigated changes (e.g., 
Ball 2000; Cady 2006; Chazan 2000; Heaton 2000). These struggles, expressed by 
researchers familiar with underlying theories of student learning, indicate the poten-
tial for practicing teachers to struggle even more with enacting recommendations. 
Changes proposed by reformers and policy recommendations have the underlying 
assumption “that teachers will change their world view of mathematics, mathemat-
ics teaching, and mathematics learning” (Shaw and Jakubowski 1991, p. 13). This 
shift in worldview is no simple transition. Different knowledge is needed in order to 
teach mathematics in pedagogically different ways. In short, the literature suggests 
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that aligning one’s practice with recommendations for mathematics teaching is a 
complex process.

In order to move beyond the deficit perspective, research is needed that frames 
mathematics teachers as learners and develops an understanding of their varied 
experiences attempting to change their teaching. The study shared in this chapter 
was designed for the purpose of understanding the experiences of mathematics 
teachers testing and enacting recommendations published through Reasoning and 
Sense Making. NCTM proposed these recommendations as timely and relevant to 
high school mathematics teachers across the country. The findings of this study 
capture both the complexity and variation of seven teachers’ experiences, as well 
as the salient common features in teachers’ learning journeys. An understanding 
of teachers’ experiences is useful to mathematics teacher educators considering 
ways of supporting the learning of other teachers in enacting recommendations to 
change practice.

Theoretical Framework

Two constructs were important to the theoretical framework of this study: experi-
ence and teacher change. Dewey (1938) suggested that the study of experience 
should be at the forefront of educational research. Building off the ideas of Dewey, 
Clandinin and Connelly (2000) developed an approach to study experience, known 
as narrative inquiry. Clandinin and Connelly conceptualized experience as a collec-
tion of lived moments of struggle that, when pieced together, make up a phenom-
enon. It is this definition of the experience construct that underpins the study dis-
cussed in this chapter. Narrative inquiry is well suited for the study of experience, 
as experiences are shared through narratives that convey the complexity from the 
perspective of the participant. Narratives highlight teachers’ voices, support them in 
sharing their experiences (Barone 2010) and allow an outsider to vicariously expe-
rience the phenomenon. Thus, narratives of experience are uniquely positioned to 
illuminate experiential factors from the teacher’s perspective that contribute to our 
understanding of how to reduce the deficit between teaching recommendations and 
teachers’ classroom practice.

The construct of teacher change is conceptualized here as changes in instruc-
tional moves that were mutually recognized by teacher and researcher. Measures 
of teacher change in mathematics education are often used to assess the impact of 
professional development experiences on teachers’ instruction. According to Shaw 
and Jakubowski (1991), genuine change can come only from within each individual 
teacher. As such, I attempted to understand teachers’ changes from their perspec-
tive. Teachers’ own conceptualizations of Reasoning and Sense Making undoubt-
edly impact what changes they choose to make. I relied on teachers to describe their 
actions taken to align their practice with Reasoning and Sense Making and to iden-
tify the changes they made. I used this information, along with my own developing 
understanding of their experience obtained through collaboration and observations 
of their teaching, to co-construct an understanding of their changes.
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I drew on Shaw and Jakubowski’s (1991) theory of six phases of teacher’s 
change as a lens through which to make sense of teachers’ experiences making 
changes. Past research on mathematics teacher change has measured changes in 
practice along continuums or stages that gauge the degree to which teachers’ in-
structional practices adhere to preconceived change objectives (e.g., Fennema et al. 
1996). Shaw and Jakubowski’s phases, however, are not stages of change in a par-
ticular direction, such as states of instructional practice that align with particular 
teaching strategies. Rather, these six phases describe the process a teacher moves 
through while navigating autonomous change, driven by the teacher’s own goals. 
The first phase of change requires teachers to be mentally provoked to realize a 
reason for change, or experience a perturbation. Second, teachers make a commit-
ment to the change. Third, teachers reenvision their practice to include the change. 
Fourth, teachers project themselves into the image of the changed classroom, en-
visioning themselves enacting their vision. Fifth, teachers decide to take action to 
begin to enact the change in their practice. Finally, in the sixth phase, teachers con-
tinuously reflect on their practice, comparing it to their vision. A teacher’s progress 
in making changes is contingent upon successfully navigating each phase of this 
complex change process. Collaboration with other teachers is supportive of teach-
ers’ progress through the six phases (Shaw and Jakubowski 1991). Later in this 
chapter, I discuss what these phases looked like within the varied journeys of teach-
ers in this study.

The constructs of experience and teacher change were integral to the framework 
of this study, as the purpose was to understand change in ways that highlighted 
teachers’ experience, or daily moments of struggle as they attempted to test and 
align their practice with the recommendations of Reasoning and Sense Making. 
The ideas behind the national recommendations were presented to teachers through 
reading and discussing the document itself. The purpose of this study revolved 
around understanding teachers’ changes to align their practice with Reasoning and 
Sense Making, through the lens of the individual teacher. Thus, teachers’ changes 
were each directed by their individual conceptualizations of reasoning and sense 
making. Their conceptualizations were articulated through their own definitions 
and illuminated by their actions and reflections on their teaching. In the following 
section I examine past research related to mathematics teachers’ reading and re-
sponding to NCTM recommendations. I examine this literature through the lens of 
my theoretical framework and build a case for the importance of this study.

What Is Currently Known of Teachers Engaging 
with NCTM Recommendations

The inherent challenges of supporting teachers to understand and take up recom-
mendations from initiatives to improve mathematics teaching has been recognized, 
and these “problems of dissemination and implementation…loom large” (Howson 
et al. 1981, p. 9). The challenges involve both disseminating information and sup-
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porting teachers in reenvisioning their practice. Reasoning and Sense Making rep-
resents a recent iteration of reform recommendations disseminated through NCTM, 
and the first that has narrowed its focus to specifically target high school math-
ematics. Although research has not yet explored teachers’ experiences interpreting 
these particular recommendations or testing them in their teaching, studies have 
examined teachers’ interactions with other NCTM policy documents. Previous it-
erations of NCTM recommendations (1989, 1991, 1995, 2000) were considered to 
encompass the NCTM Standards. Reasoning and Sense Making stems from a simi-
lar perspective on mathematics teaching and learning as the NCTM Standards, and 
thus a review of this research informs this study.

After the release of the Curriculum and Evaluation Standards for School Math-
ematics (NCTM 1989) and the Professional Standards for Teaching Mathematics 
(NCTM 1991), the 2-year project, Recognizing and Recording Reform in Mathe-
matics Education (R3M) was formed to monitor and describe the national impact of 
these standards (Ferrini-Mundy and Johnson 1994). Their investigation into various 
schools attempting to put these standards into practice found that the context of the 
district, school, and classroom strongly impacted interpretation of the standards and 
the emphasis placed on their implementation (Ferrini-Mundy and Johnson 1997). 
Teachers’ perceptions of the recommendations, the collaborations available, and 
the support in their schools all impacted the versions of the recommendations they 
implemented. The study described the process of change as “slow and arduous” 
(p. 111) and found that teachers’ confidence as well as their dispositions toward 
change were connected to their tendency to make changes to their practice.

Other studies have taken a closer look at the impact of reform in smaller groups 
of teachers studied in specific contexts. Brosnan, Edwards, and Erickson (1996) ex-
amined four sixth-grade teachers’ changes in beliefs and practice as they attempted 
to align their teaching with NCTM Standards (in this case, NCTM 1989, 1991). 
After 2 years of collaboration and support, researchers suggested that changes had 
occurred in teachers’ beliefs about the use of classtime and in the ways they focused 
their lessons.

Examples of change in secondary classrooms are much less prevalent than those 
in elementary classrooms. Frykholm (1999) investigated how secondary mathemat-
ics student teachers interpreted and took up recommendations from NCTM Stan-
dards (1989, 1991, 1995) into their teaching practice during their student-teaching 
internship. Student teachers in Frykholm’s study were completing a teacher educa-
tion program that was designed around the goals and recommendations of these 
documents. Findings showed that student teachers developed an understanding of 
the ideas expressed in the standards and became fluent in talking about them to col-
leagues and administrators. They conceptualized the recommendations as a fixed 
set of rules to be rigidly followed, yet observations of their teaching revealed little 
evidence of these objectives in their teaching. Only 11 % of their lessons showed 
any deviation from a traditional direct instruction format. These findings further 
underscore the challenge of supporting teachers to enact recommendations in a sus-
tainable way. Using the framework of Shaw and Jakubowski’s phases of change 
as a lens through which to view Frykholm’s findings, it appears that while student 
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teachers developed an understanding of the recommendations, they did not experi-
ence a perturbation to see a need for change: The necessary first phase of sustain-
able change.

Berk (2004) investigated 14 middle school mathematics teachers’ impressions 
and interpretations of the Principles and Standards for School Mathematics (NCTM 
2000) through a study group. Over half of the teachers had taught for 8 or more 
years. Teachers understood the document as “living” and flexible, rather than con-
taining fixed knowledge, and conceived it could lead different people to envision 
their curriculum in different ways. Berk found that teachers engaged actively in ex-
tensive discussions about the document in study group meetings and continued their 
enthusiasm in thinking about their work outside of meetings. Teachers expressed 
that this document was a useful tool for examining their curriculum and spurring 
their learning. The scope of Berk’s study did not include following teachers into 
their classrooms to assess impact on teachers’ classroom practice. As a result, we 
do not know whether they moved through any phases of the change process (Shaw 
and Jakubowski 1991). The fact that teachers identified the document as a tool to 
foster their learning, however, suggests that reading the recommendations may have 
mentally provoked them to recognize areas in which they wanted to change, thus 
fostering their entrance into the first phase of change. Teachers’ conceptualizations 
of the recommendations as flexible, rather than fixed, also suggests the potential for 
any changes fostered to be autonomous and teacher-directed.

These studies offer different pictures of the ways teachers conceptualized the 
knowledge embodied by the recommendations. While student teachers (Frykholm 
1999) conceptualized the recommendations as a fixed set of rules, teachers in Berk’s 
(2004) study viewed them as fluid and flexible. It is possible that these differences 
were a product of the structure of participants’ learning environments, with teacher 
education programs likely involving more structure and authority than a teacher 
study group. Differences also could be influenced by the ways in which facilita-
tors presented the recommendations to the teachers. Stenhouse (1975) suggested 
that reform proposals be presented to teachers such that “the crucial point is that 
the proposal is not to be regarded as an unqualified recommendation but rather as 
a provisional specification claiming no more than to be worth putting to the test of 
practice” (p. 142). Teachers in the studies conducted by Berk (2004) and Brosnan 
et al. (1996) took a flexible orientation toward implementing the recommendations, 
while student teachers did not come to realize this freedom of knowledge (Fryk-
holm 1999). This flexibility in orientation may have contributed to an increased 
impact on teachers’ practice.

One limitation of the study conducted by Berk (2004) is that it did not explore 
the impact on teachers’ practices. While teachers talked enthusiastically about inte-
grating the recommendations into their practice, we cannot be sure that the reality 
of their teaching practice would not reflect the same lack of impact that Frykholm 
(1999) observed in student teachers’ classroom practice. However, Berk’s indica-
tions of the ways that teachers had begun to reenvision their practice suggested en-
trance into the early phases of change (Shaw and Jakubowski 1991) in ways that the 
student teachers had not. Although these studies highlight teachers’ perceptions of 
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reform recommendations and outcomes, an aspect that remains untold in these stud-
ies is that of the experiences, the ongoing lived struggles and successes that occur 
within the work of these teachers as they attempt to make changes in their practice 
to align with recommendations. The findings of this study are timely and relevant 
to the current recommendations for high school mathematics and illustrate teachers 
moving through various stages of the change process.

The purpose of this study was to develop an understanding of the experiences of 
mathematics teachers investigating the recommendations of Reasoning and Sense 
Making (NCTM 2009) and attempting to incorporate them into their practice. The 
overarching research question guiding this study was: What are the experiences of 
mathematics teachers as they examine recommendations from Reasoning and Sense 
Making and test them in their teaching?

Research Methods

Narrative epistemologies have emerged in response to positivistic paradigms for 
doing research in the social sciences, embracing the view that humans lead storied 
lives and that knowledge is contained and shared through narratives (Clandinin and 
Rosiek 2007). The methods of narrative inquiry are closely linked to the epistemol-
ogy, with the aim to understand and illustrate a phenomenon under study through 
the gathering of stories and the construction of narratives of experience. While 
holding similarities to other forms of qualitative research, such as ethnography and 
phenomenology, the key differences are rooted in the epistemology, where a signifi-
cance is afforded to stories as a form of knowledge, and the potential for narratives 
to convey a deep understanding of experience. The narrative researcher participates 
in close collaboration with participants, attempting to gather their stories and con-
struct a narrative that retains their voice and gives power to their story through the 
creation of a research text. The narratives produced are believed to hold the poten-
tial to convey the meaning of the experience such that a reader can experience it 
vicariously (Clandinin and Connelly 2000). I explored the experiences of teachers 
through collaborating with them as a participant–observer, using various sources of 
data to construct narratives of their experience, and testing and revising narratives 
with teachers’ feedback.

Study Context

A group of seven high school mathematics teachers was obtained by recruiting 
teachers who expressed an interest in reading recommendations for mathematics 
teaching and putting aspects of those recommendations to the test of their practice 
(Stenhouse 1975). The teachers worked in six different schools and had 0–11 (mean 
3.5) years of teaching experience. Three teachers were men and four were women. 
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Six teachers were Caucasian and one was of an Indian descent. Teachers were giv-
en the option of receiving graduate credits in compensation for their participation, 
which six of the seven teachers chose to do because they were working on their 
master’s degrees or getting credits for continuing teacher licensure.

Teacher action research (AR) was used to support teachers’ learning through the 
change process. AR is conceptualized as a self-critical inquiry into one’s practice in 
order to improve it (Carr and Kemmis 1986). AR aligns with recommendations for 
sustainable professional development (e.g., Clarke 1994; Darling-Hammond and 
McLaughlin 1995; Elmore 2002) and facilitates teacher-driven changes. The pro-
cess of AR is depicted as a spiral or series of cycles, with phases of investigation, 
planning, taking action, monitoring, and evaluation (Kemmis 1988). The process 
of AR also aligns well with the phases of teacher change (Shaw and Jakubowski 
1991). Although the five phases of AR do not hold a one-to-one correspondence 
with the phases of teacher change, both describe an ongoing process of autonomous 
action and reflection. For example, phase three of the AR cycle and phase five of 
the theory of teacher change both encapsulate a teacher adopting new actions in 
their practice, followed by phases for reflection and evaluation, which often lead to 
additional actions.

I attempted an equitable collaboration (Feldman 1993) as I served in the roles 
of both researcher and facilitator. I attended to issues of power inherent in my rela-
tionship with the teacher participants, issues characterized by a researcher–teacher 
dichotomy as well as by the university-based versus K–12 settings of our work. I 
asked teachers to share their desires regarding the meeting schedule and agenda and 
to negotiate them with me based on their needs and interests. We met every 3 weeks 
from October to May during the 2010–2011 school year, a total of nine times. In ini-
tial meetings, teachers discussed Reasoning and Sense Making and considered areas 
of their teaching in which they felt they should incorporate these recommendations. 
Based on their self-recognized teaching weaknesses and the aspects of Reasoning 
and Sense Making that held meaning for them, they each selected actions to take 
in their practice. The elements they chose to take up and test in their teaching in-
cluded improving the structure of the questions they asked, selecting activities that 
would engage students in more reasoning, changing their role in class discussion, 
prompting students to justify their mathematical ideas, and incorporating writing 
into assessments.

Teachers were introduced informally to the methods of AR through PowerPoint 
presentations, excerpts from methods handbooks, and narrative examples of AR 
(e.g., Gronewold 2009; Robinson 2006). I created a library of practitioner readings 
following the method Herbel-Eisenmann and Cirillo (2009) used in their teacher 
collaboration. Because readings that discussed the intertwined ideas of “reasoning 
and sense making” as conceptualized by NCTM (2009) were limited due to the 
newness of the document, I used the teachers’ interpretations of these ideas that 
they vocalized at group meetings to select related readings for this library (e.g., 
Eggleton and Moldavan 2001; Thompson et al. 1994; Umbeck 2011). I continu-
ously added to this library over the course of the collaboration as I clarified my un-
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derstanding of teachers’ conceptualizations of reasoning and sense making. Teach-
ers’ collective choices of readings evolved over time as they progressed through 
the phases of their AR and developed the strategies they were enacting to foster 
students’ reasoning and sense making in their teaching. Meetings served as a time 
for teachers to process their understandings of readings and to share their goals, 
challenges, and successes.

Data Collection

I collected a variety of data sources, known as field texts (Clandinin and Connelly 
2000), to generate a holistic understanding of teachers’ experiences. The field texts 
that informed this analysis were transcripts of teachers’ discussions, teacher inter-
views, teachers’ written reflections, observations of classroom teaching, curricular 
documents provided by teachers, and my own research journal.

I audio-recorded teacher discussions to capture conversations about readings, 
goals, and classroom concerns. I conducted semistructured interviews at the begin-
ning of the study to learn about teachers’ past experiences as a teacher of mathemat-
ics. Interviews lasted 30–60 min, depending on how freely the teachers responded 
to the open-ended questions. I also interviewed them at the end of the study to ask 
each participant to reflect on the experience of attempting change. Teachers wrote 
reflections prior to each meeting, which were an important data source to capture 
their experience as they progressed through the journey of making changes. For 
each reflection, I provided open-ended journal prompts to facilitate them in reflect-
ing on their current phase of their AR. For example, when teachers were at the 
stage of planning the actions they would take in their classroom, they received the 
following prompts:

• Describe your action strategy, or what you will do and why. What challenges do 
you anticipate?

• How will you assess if your actions have any impact on your students?
• What sort of data will you collect in order to determine the impact?

In addition to the prompts, teachers were encouraged to journal about anything they 
were thinking about or noticing that seemed relevant to their AR.

Observations of classroom teaching were conducted 3–4 times for each teacher, 
at times when each teacher invited me to visit. I asked them to select times for me to 
observe their teaching that would be illustrative of the actions they were describing 
in their reflections. Some teachers targeted a particular course for their AR, while 
some focused more generally on all their courses. In addition to being observed, 
teachers provided copies of relevant curricular documents such as lesson plans and 
worksheets they felt illustrated changes they were implementing. Additionally, my 
own research journal was a source of data, as this was where I recorded my field 
notes and reflections, monitored my role as a researcher and facilitator, and jour-
naled about my “Subjective I’s” (Peshkin 1988).
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Data Analysis

The individual field texts consisted of snapshots of each teacher’s experience 
at particular times throughout his or her experience. I continuously reviewed 
the field texts as I collected them. This continual review informed my decision 
making as facilitator. For instance, prior to entering a teacher’s classroom, I re-
viewed all field texts pertaining to that teacher. This review developed my un-
derstanding of the teacher’s goals for enacting reasoning and sense making in his 
or her teaching, and impacted the aspects of the teaching on which I focused my 
observations. I attempted to observe the teaching through the lens of what he or 
she valued and was trying to improve, in addition to viewing it through my own 
theoretical lens.

After all data were collected, all excerpts of field texts pertaining to a particular 
teacher were organized chronologically into a spreadsheet. I reviewed each spread-
sheet and divided the data into six categorical bins that originated from initial re-
search subquestions: contextual information, conceptions of reasoning and sense 
making, changes made in their teaching, challenges, opportunities, and the teachers’ 
interpretations of their AR. This categorical scheme served the purpose of organiz-
ing the large quantity of data into manageable sections with a common focus, so that 
I could review it and look for recurring and connecting ideas.

The method of analysis in narrative analysis is termed emplotment and narra-
tive configuration and involved synthesizing the field texts together to “develop or 
discover a plot” of the experience (Polkinghorne 1995, p. 15). Through this process, 
data were tested against each other among the multiple sources, similar to the tra-
ditional idea of triangulation. Narrative analysis differs from traditional qualitative 
research, however, in that it requires synthesizing the data rather than separating 
them into distinct parts. The data in each category were continuously reviewed until 
recurring ideas and connections emerged to synthesize the information into the plot 
of their experience. The process of writing involved repeatedly experimenting with 
writing interim texts (Clandinin and Connelly 2000) or smaller drafts of each teach-
er’s experiences, with the goal to combine together individual field texts revealing 
different aspects of the experience, to create a holistic narrative. I relied heavily 
on teachers’ own quotes and descriptions, to keep the teachers’ own perspectives 
as central in the narratives. At three different stages, I shared interim texts with 
the teachers, presenting them as my understanding, and asking them for revisions 
to improve my understanding. Teachers appreciated these opportunities to review 
what they had said and done and saw them as an opportunity for feedback on their 
AR. They provided minimal revisions to align these interim texts with their under-
standings. Through repeated experimentation with the writing process while writing 
interim texts, comparing them to the data, and getting teacher feedback, I eventually 
produced the final research texts. The teachers’ narratives told a unique story with 
respect to their past experiences, the actions they selected to take in their practice, 
and their struggles and reflections as they began to engage in the change process. 
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These narratives convey an understanding of the process of change in practice that 
occurred as a result of teachers’ efforts to test aspects of Reasoning and Sense Mak-
ing in their practice.

Through this analysis, I became aware of the complexity of each teacher’s jour-
ney of experience. I use the term journey to capture the ongoing, teacher-directed 
nature of their experiences enacting changes across the time period of the study. 
At various times the teachers described the potholes, wrong turns, and rerouting 
their journeys involved. The uniqueness of each teacher’s past experiences led to 
variation in the changes each one made in response to the recommendations. As I 
engaged in the process of analysis, subtle similarities became evident among the 
teachers’ complex, unique journeys. To clarify my understanding of these similari-
ties, I continuously compared plotlines of the developing narratives, examining the 
differences across them. As I read and reread my data, I tested different grouping 
schemes in my own sense-making process of understanding the connections be-
tween teachers’ narratives.

As I made sense of the similarities and differences in teachers’ journeys, I saw 
connections between teachers’ experiences. Looking for ways to group teachers 
according to their experiences led me to make three pairs of teachers, grouped ac-
cording to their similarities with one additional teacher whose experience did not 
fit into any of the groups. By comparing and contrasting these groups I generated 
four analogies that conveyed the similarities and differences among their journeys: 
a linear function, a piecewise function, a step function, and a scatterplot. I chose 
to use mathematical analogies to convey the variation among teachers’ journeys 
because mathematics is a language that I use to make sense of the world. I do not 
use mathematics in its traditional form, to claim precise mathematical precision 
of measurement. Neither are they an attempt to measure teachers’ alignment with 
recommendations, but to convey the meaning of teachers’ challenges and successes 
from their perspective as they tested and accommodated recommendations in their 
practice.

The independent variable in these analogies of a mathematical relationship 
represents time in the collaboration; the dependent variable represents degree of 
alignment with the recommendations for Reasoning and Sense Making. Evolutions, 
or changes in any direction, that occurred in teachers’ strategies are recognized 
through teachers’ interpretations of their progress to align with recommendations, 
in conjunction with my observations of their teaching. These mathematical relation-
ships illustrate teachers’ experiences over the 7 months of this study, but are neither 
representative of teachers’ previous journeys nor predictive of their future journeys. 
Experiences, as defined in this study, are best expressed through narratives and are 
impossible to truly mathematize. The strength of these analogies, rather, lies not 
in their capability to cleanly model an individual’s journey of experience, but to 
convey the variation and complexity of teachers’ experiences through the phases of 
change. These four analogies are most effective when considered together as rep-
resenting distinct journeys resulting from teachers’ common attempts to align their 
practice with Reasoning and Sense Making.
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Findings and Discussion

Here I present condensed descriptions of teachers’ journeys, summarized by con-
necting them to an analogy of a mathematical relationship. The narratives and ac-
companying analogies frame mathematics teachers as learners and illuminate the 
complexity of the experiences of teachers testing reform recommendations in their 
teaching. The four analogies introduced here are organized from the least to the-
most complex, beginning with teachers who were able to successfully navigate the 
phases of change (Shaw and Jakubowski 1991) and inherent challenges with little 
obstacles to their progress, to teachers whose progress involved more complexity in 
the form of impediments, false starts, and progressive development. An understand-
ing of these teachers’ experiences provides a valuable background for considering 
future ways of supporting teacher learning.

A Linear Journey

Two teachers, Peter and Alexis, entered the collaboration having already problema-
tized many aspects of mathematics teaching that Reasoning and Sense Making-
sought to change. Both talked openly in our initial meetings about the problem-
atic consequences of teaching mathematics through providing a list of procedures, 
consequences they had observed firsthand in their classrooms. Peter used humor 
to relate the negative effects of students’ reliance on procedures or the teacher’s 
authority, such as the following example he offered of students’ lack of reasoning 
and sense making.

I really want my students to start critically thinking. I swear that I could say, “Your lesson 
today is to learn that 5 + 8 = 22” and they will just write 5 + 8 = 22, and not even think a thing 
about what they’re actually writing, whether it even makes sense at all.

Peter felt that his students had learned to rely on procedures and the teacher’s au-
thority, and that they were not accustomed to engaging in reasoning and sense mak-
ing. He talked often about how “we’re fighting a decade’s worth of ingrained math,” 
after seeing indications that his students were well practiced with years of experi-
ence learning mathematics without reasoning. As Peter and Alexis each read Rea-
soning and Sense Making, they agreed wholeheartedly with the proposition of the 
document that teaching mathematics through steps and procedures did not produce 
positive student learning outcomes.

Peter (in his eleventh year of teaching) and Alexis (in her third) both began the 
collaboration having already experienced a perturbation that made them realize 
the need to shift their practice toward reasoning and sense making. As a result of 
reflections on their past experiences, each had realized that allowing students to 
do math by following steps or procedures was not good for students and not an 
effective instructional strategy. They talked about specific ways that their role as 
teacher impacted students’ opportunities to engage in reasoning and sense making. 
Both agreed with the philosophy of Reasoning and Sense Making and could provide 
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examples of ways they had already had success teaching certain lessons by engag-
ing students in reasoning and sense making. Despite these examples, upon reading 
Reasoning and Sense Making they both seemed convinced that more of their in-
structional practices needed revision in order to successfully achieve the vision the 
recommendations offered.

Their goals for change varied slightly, but both focused on teaching through 
discussion. Peter’s goal was to improve the teaching practice of posing tasks and fa-
cilitating class discussion about those tasks. He wanted students to reason and make 
sense rather than rely on his hints or his evaluation of their ideas. He focused on 
changing his role during discussions, monitoring his words and actions in response 
to students’ ideas. He developed new habits he described as “keeping silent”—not 
answering questions but instead “firing them back at the class” and “going along 
with wrong ideas.” Alexis, meanwhile, wanted to redesign lessons that she had pre-
viously taught through direct instruction. She summarized her AR focus as follows:

My big goal was trying to replace lecture with discussion, with activity, with the students 
being more active participants in class rather than just listeners. So I did things like spent 
more time preparing warm-ups and activities for class, that had them work in groups and 
had them discussing with people around them. I had them discovering ideas on their own, 
rather than me giving them procedures, trying to get them to make connections between 
concepts.

Peter and Alexis talked about the internal struggle they felt, at times, trying not to 
revert back to their traditional roles in the classroom. They each discussed instances 
of frustration with students’ resistance to their efforts to foster reasoning. Alexis 
shared, “I can’t tell you how many times I’d say, ‘Do you have a question?’ and 
somebody would raise their hand and say ( changing to a more assertive tone) ‘Yea, 
how do you do it?’” Through these struggles, however, they were confident of the 
importance of their efforts and resisted the temptation to revert back to their prior 
ways. They seemed surprisingly comfortable with the uncertainty of changing their 
practice and seemed to find the challenge of looking for new ways of fostering rea-
soning to be exciting and enjoyable.

Peter talked about the enjoyment of the mathematical challenge of selecting a 
geometric figure, such as the one pictured in Fig. 1, and posing questions that would 
support the class in making and justifying conjectures to reach a specific mathemat-
ical objective. In this instance, he drew the figure on the board and asked students 
to comment on what they knew to be true. He found it intellectually stimulating 
to solicit all students’ mathematical ideas, being challenged to think about how to 
respond with questions that did not give hints, but helped students refine or justify 

Fig. 1  A figure Peter posed 
to foster students’ reasoning 
about angle relationships
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their conjectures. He particularly monitored his ways of giving feedback and tried 
not to give any indications of the correct strategy, which he felt would take away 
some of the mathematical reasoning from the students.

Alexis taught a semester-long remedial algebra course and shared her enthusiasm 
about her second semester students’ growing capabilities to reason, which she saw 
as a result of applying her new strategies from day one during the second semester.

When I started that way at the beginning of the semester, it was so much easier…. I don’t 
have to push as hard. Like with the slope [lesson], I didn’t have to say much at all. I put the 
two ordered pairs on the board and said, “All right, so how could I use these ordered pairs 
to find a slope?” And when I had two or three students that were able to put that formula 
together by themselves, I was a little shocked. I thought I was going to have to guide them 
a little more.

Peter and Alexis each recognized progress and positive results from their persis-
tence. Peter enthusiastically shared, “It’s to the point now where they will explore 
an idea for 10–15 min. It’s really neat!” Although Peter and Alexis each discussed 
challenges, their process of changing their practice seemed relatively smooth com-
pared to the other teachers. As they tested out changes in their practice, their reflec-
tions on their changes continued to move them forward in a productive way. Thus, 
to illustrate the similarities among their journeys, and the ways their journeys were 
distinct from others, I use the analogy of a linear function (Fig. 2).

Shaw and Jakubowski’s (1991) theory of teacher change can be used as a lens 
through which to examine Peter and Alexis’s experience. It appears that prior to 
entering our collaboration, both had experienced some sort of perturbation (phase 
1), as they both saw a strong need to change their practice to engage students in 
reasoning and sense making. They both began their AR with a strong commitment 
to the change (phase 2). They were eager to engage in reenvisioning their practice, 
projecting themselves into their vision, and taking action to enact their vision (phas-
es three, four, and five) shortly after they read Reasoning and Sense Making and 
began discussing their ideas. Throughout the remainder of the collaboration, Peter 
and Alexis seemed to be continuously engaged in cycles of action and reflection to 
compare their vision to their practice (phase 6). The analogy of a linear function is 
similar to the journey of their experiences, navigating through the challenging tran-
sition of change with confidence and persistence, yielding smooth progress toward 
their vision for enacting Reasoning and Sense Making.

Fig. 2  The analogy of the 
linear function journey
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A Piecewise Journey

Teachers Logan and Melinda joined the collaboration hoping it would broaden their 
awareness of ways to improve their teaching. Unlike Peter and Alexis, they had not 
conceptualized specific ways they had already worked on changing their teaching 
to increase students’ engagement in reasoning and sense making, and they were ini-
tially unsure how to begin. Logan’s 3 years of teaching experience had been primar-
ily lecture-based, and he wanted to incorporate more discussion into his lectures. 
Melinda had 7 years of teaching experience and had already incorporated many 
student-centered activities into her teaching over the years, for the purpose of mak-
ing her lessons “less boring” and keeping her freshman students moving around. 
She had not necessarily attended to the quality of students’ reasoning or sense mak-
ing when selecting activities. Both teachers clarified their goals for change over the 
course of several weeks, while monitoring their practice and considering options. 
Logan eventually settled on the goal of taking “baby steps” to incorporate discus-
sion into his existing lectures, and Melinda worked on finding and incorporating 
more student-centered learning activities, with an eye on fostering students’ reason-
ing and sense making.

Both Logan and Melinda shared at group meetings that they were seeing some 
initial success and were satisfied with the changes they were making. Later, howev-
er, at different times of the year, they each experienced periods of frustration where 
they felt students were responding to their questions with silence. When their best 
efforts were met with resistance, they became discouraged and wondered if some 
of their students were capable of engaging in reasoning and sense making. This 
challenge was experienced differently than those encountered by Peter and Alexis, 
as it resulted in Logan and Melinda each questioning their goals and reducing their 
efforts to enact their action strategies. Rather than making more pointed attempts to 
counter students’ resistance, their reflections revealed a growing tone of frustration 
and negativity, and they considered giving up because the obstacle seemed insur-
mountable. Melinda described her students’ dependency on her to do the reasoning 
and sense making for them:

I think now that I’m concentrating on trying to get my kids to think for themselves, I’m 
realizing more and more how they can’t do that. Like it used to be, they would come up 
and be like, “Oh, I don’t know how to do this problem,” and I’d be like, “Oh! Let me show 
you.” And I would grab my pencil and I would work it out for them and they would watch. 
And now they’re like, “I don’t know how to do it.” So I’m like, “Well, what do you think 
you should do?” and then…oh, my god, they just don’t know anything.

Melinda was frustrated with students’ desire for her to do all of the work for them, 
although she recognized her own compliance in fostering this dependency through 
her former methods of “helping” them. Now, as she attempted to foster their inde-
pendence in mathematical reasoning and sense making by turning their questions 
back at them, students responded with a helplessness that left her irritated and at a 
loss for how to respond. Similarly, Logan described his challenge of not knowing 
how to spark students’ independence in reasoning and sense making:
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I think I have sort of hit a rough spot in the process. I am not sure if it is my teaching or if it 
is the students…. Since most of my focus has been on class discussions and questioning, it 
is pretty easy for me to monitor how things are going. I still find that I am forced to lead the 
students way too much. If I don’t lead them, then they will literally become silent multiple 
times during my lectures. I have tried a few different things, but it has been tough.

Both Logan and Melinda reached a point where they felt like their efforts to en-
gage students in reasoning and sense making had limited impact. This frustration 
and discouragement caused them to second-guess their goals and diminished their 
motivation.

During this time, I observed Melinda teach a lesson on dimensional analysis to 
her Algebra I students, where she asked many questions in an attempt to facilitate 
a discussion, but students primarily responded with silence and nonengagement. I 
contemplated how I might help her recognize some of the ways that her questioning 
could be more open-ended to allow students more entry points into the discussion. 
After teaching the first lesson, she mentioned that she would be teaching the same 
lesson five more times and asked if I would be willing to teach the lesson to the 
next class walking in. She said that she grew tired of teaching the same lesson all 
day long, and suggested that may be I would like the opportunity to be a classroom 
teacher again. This proved to be a valuable opportunity to help her realize the im-
pact of different questioning patterns. After watching me teach her same lesson and 
noticing the ways her students responded to my questions, she said, “I thought the 
problem was that my students couldn’t reason. But now I see that I was just asking 
the wrong questions.” After that episode, when I visited her classroom on subse-
quent observations, I was surprised by the dramatic differences in the questioning 
that Melinda used. Rather than questioning patterns that resembled those described 
as “funneling” (Wood 1998), her questioning changed to resemble more closely the 
pattern described as “focusing” (Wood 1998). For example, previous questions had 
directed students toward a particular procedure she had in mind, such as “Which 
fraction should we use? What if we use this one? Can we cross anything out?” Her 
new questioning patterns were more open to allow students to determine their own 
solution paths, such as “How can you find the side length of a square with an area 
of five?” and, when solving equations, “Steve subtracted and then divided. Do we 
have to do it in that order? Why or why not?” The following school year after our 
collaboration ended, Melinda continued to email me to share ongoing successes she 
saw as a result of long-term use of her new questioning strategies.

A similar pattern of struggle and resulting reenvisioned practice happened in 
Logan’s AR journey. He became discouraged for several months during the spring 
semester and began to wonder if the juniors and seniors in his lower-level Algebra 
II courses were capable of reasoning. As I observed this happening and saw Logan 
starting to give up, I wondered how I could help him see that his students could 
reason, but perhaps needed to be asked different questions and held accountable for 
engaging in reasoning. Remembering the impact of Melinda observing me teach a 
lesson with her students, I asked Logan if he would allow me to teach a lesson in 
his classroom. He agreed, and I began to plan a lesson about the graphs and equa-
tions of ellipses (Kysh et al. 2009) that I hoped would serve as an “existence proof” 
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that these students could reason mathematically. The following is an excerpt of his 
reflection on observing me teach that lesson:

When watching Lindsay teach my class, I noticed how she was able to get everyone 
involved. She was calling on students who had not volunteered to share an idea in months. 
I have made a point to call on each and every student in my class since then. I also do not 
let students get away with just saying, “I don’t know.” They were actually saying, “I don’t 
want to think right now,” so I have to make them tell me something that they do know.

For both Logan and Melinda, observing someone else teach a lesson to their stu-
dents served as one form of perturbation to jolt them into a new awareness of ways 
their questioning strategies impacted student engagement in reasoning and sense 
making. They not only saw proof that their students were willing and able to engage 
in reasoning and sense making, but they each identified particular strategies they 
wanted to adopt in order to address the challenges they had been experiencing.

Analyzing Logan and Melinda’s experiences through the lens of Shaw and 
Jakubowski’s phases of change, it seemed that although reading and discussing 
Reasoning and Sense Making piqued their interest, that alone was not enough to 
support them in navigating through all of the phases of change. It appeared that they 
had initially made a commitment to making a change (phase 2), reenvisioned their 
practice (phase 3), projected themselves into the image of their changed classroom 
(phase 4), and taken action (phase 5). They began to stall during phase 6, however, 
the phase in which teachers continuously compare their vision to their practice in 
order to further develop their actions to align their practice with their vision. One of 
Logan’s reflections captured his discouragement over the gap he saw between his 
vision and actual classroom practice:

I have really found all of this to be quite difficult lately. Through all of our readings, reflec-
tions, meetings, feedback, etc., I really know what I want to see happening in my class-
room. Unfortunately my Algebra II Intro class is not where I would like them to be. There 
are several kids who have made great strides, but it is always a struggle trying to get all of 
the students to reason. The process has been great in reminding me that I am not where I 
want to be. It has been a humbling experience that is hopefully making me a better teacher.

At this point, Logan was discouraged because he lacked the knowledge or aware-
ness of what strategies he could use to address the gap between his vision and 
his practice. When Logan and Melinda each reached this point after having made 
efforts at change, they felt disappointment in their perceived lack of success. The 
opportunity to observe me teach a lesson, however, raised their awareness of ad-
ditional strategies to foster students’ reasoning and sense making and spurred new 
motivation and persistence after seeing students engage in ways they hadnot previ-
ously seen. This experience served as a form of perturbation that prompted them to 
renew their commitment to change (phase 2), reenvision their practice given their 
new knowledge (phase 3), project themselves into a new classroom vision (phase 
4), and take actions that were a revision of their previous actions (phase 5).

Logan and Melinda were engaged in phase 6, continuously comparing their vi-
sion with their practice, when the study ended. Each had overcome their obstacles 
to varying degrees. After Melinda realized weaknesses in her questioning strategies, 
there were several months left in the school year in which she invited me back to 
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observe her new strategies. I observed her successfully engaging many different 
students in reasoning through either small group or large group work. Logan, on 
the other hand, talked openly and critically about how the experience had left him 
dissatisfied with his practice:

I think I changed more than the students did during the school year through my action 
research. More than anything, I became more aware about myself and how I was teaching. 
I found myself not giving enough wait time, not making everyone get involved, and not 
making all of the students reason in my math class.

Logan’s realization happened near the end of the collaboration, and there were no 
more opportunities for observation to see how his practice was impacted by this 
realization. However, he described new action strategies of providing opportunities 
for students to discuss ideas with their peers, moving around the room more, calling 
on every student, and refusing to accept “I don’t know” as an answer. He also shared 
a picture of his newly arranged classroom, with desks organized in pairs of rows to 
facilitate easier student-to-student discussion.

To illustrate the similarities between Logan’s and Melinda’s journeys, I draw on 
the analogy of a piecewise function (Fig. 3). Although Logan and Melinda initially 
saw short-term improvement in their students’ engagement in reasoning and sense 
making, both later experienced a plateau, followed by a decrease in their efforts to 
align with recommendations of Reasoning and Sense Making. They overcame the 
obstacle to varying degrees when they became aware of ways they could improve 
their questioning strategies and subsequently increase students’ engagement in rea-
soning. A new awareness of their teaching prompted them to plan further actions to 
support student’s reasoning and sense making.

While Logan’s and Melinda’s journeys were piecewise in nature, one could argue 
that a more precise attempt to mathematize their journeys would yield two different 
graphs. Logan’s plateau seemed to last longer than Melinda’s, and his downward 
curve seemed to dip lower as he backtracked in his attempts at changing strategies. 
Additionally, the linear pieces could be drawn with different slopes—Melinda’s 
steeper and longer in the positive direction at the end. The purpose of this study, 
however, was not to claim precise measures of teachers’ changes made, but to con-
vey the experience of undergoing the process of making changes. This piecewise 
function is productive in illustrating the pattern of their journeys, and in setting their 
journeys apart from those of the other teachers.

Fig. 3  The analogy of the 
piecewise function journey
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A Step Function Journey

Sarah, a fourth-year teacher of high school geometry and algebra, shared that she 
had not previously considered the importance of fostering reasoning and sense-
making opportunities until joining our collaboration. She conceptualized the docu-
ment as an authority on good teaching, and its argument convinced her of the im-
portance of developing such practices in students to prepare them for their future. 
It seemed initially she was not quite sure what to change in her teaching to get it in 
line with the recommendations. She started by making a list of instructional strate-
gies mentioned in Reasoning and Sense Making. Then through a process of try-
ing to envision what they would look like in her own classroom and reading other 
practitioner articles, she narrowed her focus to asking more questions and requiring 
students to justify all ideas. Upon initial visits to her classroom, it was difficult for 
me to recognize the changes that she had described, as classroom discourse seemed 
to follow a structured initiation-response-feedback pattern. In conversations with 
Sarah, I ask her to describe what she had changed in her teaching. These conversa-
tions helped me to understand that she had increased the quantity of her questions 
and required each student to give a procedural justification of his or her answer, 
which resulted in increased student talk.

At times, the increased student talk created opportunities for students to “sur-
prise” Sarah with their mathematical ideas. Sometimes a student’s suggestion or 
justification was not what Sarah had anticipated. Through studying her teaching, 
she reflected and journaled about these moments of surprise, and each of them be-
came individual opportunities for her own learning, raising her awareness of new 
ways she could impact students’ engagement in reasoning and sense making. Sarah 
described one such moment of surprise:

You remember the Algebra class where they wanted to use synthetic division? ( laughing) 
I was so caught off guard because I’ve never thought of using that method [in that context] 
before in my life. I was like, “Okay let’s go with it.” But I was really surprised. And I 
should’ve been more calm about it…because then they wanted to know what “my way” 
was. But [the idea of using synthetic division] totally caught me off guard.

I was visiting Sarah’s classroom when this instance occurred, and her surprise was 
very evident when a student suggested simplifying the expression using the method 
of synthetic division. In previous instances, when a student had suggested a strat-
egy that was not what Sarah thought was best, she would either continue solicit-
ing other students’ suggestions, or suggest her preferred strategy. In this instance, 
however, Sarah’s response was “Oh!” and she appeared deep in thought as she 
processed this student’s suggestion. During her pause, the student asked, “Would 
that work?” “Yeah, that would work. Let’s try that,” Sarah responded. Then she 
solicited students’ input to complete the procedure of synthetic division while she 
stood at the board recording the process. When they arrived at the answer of 3, the 
student who had suggested this approach asked, “Is that right?” Sarah responded, 
“Yeah, that’s the answer.” This ninth grader’s pride was evident in her response of, 
“Wow!” Several students began asking Sarah to share her anticipated strategy for 
simplifying this expression. One student bargained, “We gave you our way, you 
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give us your way,” as if the whole class was somehow united with their classmate 
and her strategy. Rather than suggest her own strategy as I had seen her do previ-
ously, Sarah responded with, “Do you want to see another way? Does anyone see 
a different way?” One student suggested factoring, and together they factored and 
got the same answer. Then a buzz of excitement around the room could be heard, 
and some students discussed how they did not think this method was easier than 
synthetic division, evidencing their continued pride and ownership over their peer’s 
idea. Sarah responded with, “Well, something that is easier to you might not be 
easier to someone else. So it’s good to have more than one way.” Some students 
opted to continue to use the method of synthetic division in later examples, compar-
ing their answers to the representations generated by factoring.

In Sarah’s process of changing her teaching, unexpected surprises fueled new 
learning and furthered the changes she was making:

Before, I wouldn’t let them [solve problems] the way that they wanted to…. I think a lot of 
times I would just be like, “Well, didn’t you see this method?” instead of just letting them 
do it their way. I think it’s okay now just to let them do it a different way, even if it’s the hard 
route. Just let them be, because that’s the way they understand. Giving them that freedom.

In the synthetic division instance, the students’ visible pride and developing sense 
of community that resulted from their realization that they had contributed an im-
portant mathematical idea was powerful. This surprise caused Sarah to become 
aware of the value of allowing students to generate their own solution paths.

I use the analogy of a step function to illustrate the journey of Sarah’s experi-
ence attempting to align her practice with Reasoning and Sense Making (Fig. 4). 
Each new action strategy she adopted was subtle and sometimes hard to distinguish 
initially in observations. In addition, initial periods of testing out the change in her 
teaching were reminiscent of a plateau. Each plateau was disrupted when Sarah 
experienced learning as a result of her AR. Students surprised her with their math-
ematical ideas when she monitored their comments and discussions in search of 
examples of reasoning and sense making. For example, Sarah described a moment 
of surprise when a student challenged a textbook problem with a prescribed solu-
tion path:

As the students became more familiar with justifying and explaining their thoughts, they 
began asking questions themselves. I found a journal entry where this was illustrated: “I 
posed a question in Geometry that gave four vertices of a quadrilateral. You had to deter-
mine whether or not you had a parallelogram. The directions stated that you had to use the 

Fig. 4  The analogy of the 
step function journey
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specified formula to come to a conclusion. After the problem was complete, a student made 
the following comment: ‘It would be much easier to use the midpoint formula. Why can’t 
we just use that one?’” This student went on to explain why we could use the midpoint 
formula to show that a quadrilateral is or is not a parallelogram.

This student’s bold example of reasoning about a more efficient strategy caused 
Sarah to reconsider her use of that textbook problem. She reflected on what she 
learned from this instance:

I have noticed that textbook problems can hinder the critical thinking process because they 
tell you which method to use. This does not allow the students to think for themselves. As a 
result, in my next two Geometry classes I decided to let them choose which method to use.

In instances such as these, Sarah was impressed by individual examples of students’ 
reasoning that occurred in her classroom, and these incidents made her aware of 
additional opportunities where she could engage students in reasoning and sense 
making. This new learning, and the subsequent changes Sarah made in her teaching, 
resulted in new steps in the function. While each step in the function would not be 
the same length, or always be exactly horizontal, I was not present in Sarah’s class-
room on a daily basis in order to make claims about a precise model. Compared to 
other teachers attempting to align their practice with Reasoning and Sense Making, 
Sarah’s experience was unique by the pattern of repeated instances where students’ 
ideas triggered a new awareness that prompted her to revise and develop her action 
strategies.

Using Shaw and Jakubowski’s (1991) theory of change as a lens through which 
to analyze Sarah’s experience, it is difficult to identify a single event that served as 
a key perturbation in her process of change. Sarah’s experience, rather, was defined 
by multiple mini-cycles through this change process, as multiple events provided 
enough dissonance to propel her to commit to a subtle but new change in her teach-
ing (phase 2), reenvision her practice in a new way (phase 3), project herself into her 
new vision (phase 4), and take new actions (phase 5). Through repeated instances 
of a experiencing a perturbation, committing, reenvisioning her practice, and enact-
ing a change, the changes Sarah made in her teaching evolved and developed in 
response to her learning.

A Scatterplot Journey

Claudia and James were in their first year of teaching, and both juggled many new 
responsibilities. Claudia reflected on the initial months of our collaboration and 
discussed the challenge of trying to focus her actions:

With it being my first year and everything, I didn’t know what my teaching style was and 
how I wanted to change or improve it…. I kept kind of trying the different things I heard 
people talking about, thinking, “Is this what I need to work on? Is this something that 
interests me?”

It took both Claudia and James much more time than the other participants to de-
termine the focus of their changes. Their goals changed frequently and they ex-
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perimented with a variety of different strategies as they learned different ideas from 
other teachers and from the readings. Both teachers eventually narrowed their ef-
forts to posing open-response writing prompts, one in the context of summative as-
sessments and the other in the context of daily formative quizzes. These approaches 
to incorporating reasoning were more like an add-on to their teaching than a part 
of their everyday routine. James explained in a written reflection why he picked a 
“subtle” approach:

I would love to hold classroom discussions and ask questions where students learn from 
their mistakes, discuss problems with one another, and problem solve when they do not get 
the correct answer (Eggleton et al. 2001). That type of classroom environment is one that 
I envision for the future, but I do not believe my classes are ready for such radical changes 
all at once. To me, writing seems like a natural and subtle way for students to convey their 
reasoning and sense making.

Both teachers were at schools that had been targeted by state policy as needing im-
provement, and both teachers felt pressures, in particular, to raise students’ scores 
on the statewide algebra exam. With the many other things vying for their attention, 
Claudia and James at times would forget the changes they were trying to make. 
In the final reflection, they each talked about recognizing the need to incorporate 
reasoning and sense making into their teaching beyond assessments. They had 
each attempted an occasional student-centered activity in order to foster reasoning 
through lessons. Limitations in time to explore better instructional strategies and 
lack of readily available quality instructional resources, very real challenges for 
many teachers, hindered them from incorporating activities on a more frequent ba-
sis. By the end of the collaboration, Claudia and James had narrowed and clarified 
the focus of the new strategies they were trying out in their practice to a focus on 
writing prompts in their assessments, but these practices had not transformed into 
being an integral part of their teaching. Claudia and James each described room for 
improvement to change their teaching further and discussed plans to continue their 
changes in subsequent small steps in the future. I illustrate Claudia’s and James’s 
journeys using the analogy of a scatterplot with a positive correlation that became 
slightly stronger over time (Fig. 5). This analogy is distinct from the others as it il-
lustrates the variety of disconnected changes, such as their brief efforts to test out 
each of the strategies discussed by other teachers within our collaboration. Claudia 
and James made isolated attempts to incorporate student-centered tasks, manipula-
tives, and discussion, but their strategies were not connected in a meaningful way. 
After they narrowed their focus to implementing open-ended writing prompts, their 
strategies became slightly more focused and consistent. They still struggled, how-
ever, to give their AR the attention they needed as they were distracted by the many 
other demands on their attention.

Analyzing Claudia’s and James’s experiences through the lens of Shaw and 
Jakubowski’s (1991) phases of change, it is not evident that either of them ever expe-
rienced a perturbation in their teaching to make them realize a need for the changes 
outlined by Reasoning and Sense Making. This finding is not surprising considering 
these are first-year teachers who do not yet have established norms for their teaching 
practice. As a result, they are not yet in a position to evaluate their practice and recog-
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nize a need for change. As Claudia’s quote indicated, she did not know in what ways 
she should change her teaching, and her AR was characterized by “trying out” many 
different strategies that she read about or learned from other teachers. While James 
suggested that his students were not “ready for such radical changes all at once,” the 
data suggest that perhaps he wasnot ready for such radical changes because he had 
not yet recognized the need for such changes. None of the actions that Claudia or 
James tested in their practice seemed like consistent changes that would be sustained, 
which aligns with Shaw and Jakubowski’s theory that sustainable change cannot oc-
cur without first the teacher realizing a need for such a change.

Conclusion

The findings presented through four analogies portray teachers’ experiences as they 
attempted to align their practice with recommendations for Reasoning and Sense 
Making. In the case of the linear journey, Peter and Alexis were able to navigate 
the phases of change and respond productively when faced with challenges, with 
little hindrance to their efforts. In the case of the piecewise journey, Melinda and 
Logan reached a point where they struggled to know how to resolve the gap be-
tween their vision and their actual practice. In their case, the opportunity to observe 
me teach their students provided a perturbation that renewed their confidence by 
helping them identify additional action strategies. In the case of the step function 
journey, Sarah’s initial changes had relatively little impact on aligning her prac-
tice with recommendations, but each new change opened the opportunity for her to 
listen to students’ mathematical thinking, triggering an awareness of new strategies. 
Finally, in the case of the scatterplot journey, first-year teachers Claudia and James 
implemented a variety of strategies, but the absence of a perturbation hindered them 
from making a strong commitment to specific and sustainable changes. The varied 
journeys, when considered together, illustrate both the importance of a perturbation 
to foster awareness of the need for a change, and also the variety of ways that teach-
ers interpreted their students’ responses to their instructional changes.

It is widely acknowledged that, despite recommendations, the status quo of 
mathematics teaching across the US has historically experienced little change (e.g., 
Hiebert 2013). Examinations of underlying hindrances to enacting recommenda-

Fig. 5  The analogy of the 
scatterplot function journey
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tions are productive to move our understanding forward. Anyone who has spent 
time in schools recognizes underlying issues such as access to appropriate curricu-
lum materials, student motivation, increasing demands on teachers, or standardized 
tests and accountability that may promote different goals. These factors each have 
the potential to confound teachers’ efforts to change. The findings from this study, 
however, illuminate a different underlying issue: the sheer complexity of the experi-
ence of navigating through the stages of change. Navigating change is challenging. 
Although the complexity of this challenge has been established by individuals who 
have written about their personal experiences attempting change (e.g., Cady 2006; 
Chazan 2000; Heaton 2000; Umbeck 2011), as well as the national R3M study (Fer-
rini-Mundy and Johnson 1997), this study offers a snapshot of the change efforts of 
a group of teachers, positioned in conjunction with one another. The multiplicity of 
experiences captured in this study illustrates complexity through the variety of ex-
periences, as well as the differences in the ways that teachers responded within their 
experiences while undergoing change. These teachers had a desire to test recom-
mendations; they had guidelines in the form of Reasoning and Sense Making; they 
had the support of a collaborative AR group. Nonetheless, their needs for support 
differed and their outcomes varied.

The responsibility for teacher learning does not lie solely with teachers. Hiebert 
(2013) suggested that efforts to improve teaching should focus on teacher learning 
and called for mathematics teacher educators to acknowledge the extended time and 
practice involved in improving one’s teaching. In order to address the discrepancy 
between recommendations for mathematics teaching and actual classroom practice, 
mathematics teacher educators need a common understanding of teachers’ experi-
ences enacting recommendations. These seven teachers’ journeys, depicted through 
four analogies, convey the meaning of the experience and illuminate the complex 
and varied journeys through change. The analogies and the corresponding descrip-
tions offer a glimpse at teachers’ narratives, providing an avenue for the reader to 
vicariously experience teachers’ efforts at change. These findings provide mathe-
matics teacher educators with an understanding of teachers’ experiences in the midst 
of making changes. This understanding is productive and timely for informing the 
consideration of ways to foster perturbations and support the learning of teachers 
through their diverse journeys attempting changes in practice to align with Reason-
ing and Sense Making, in particular, and reform recommendations in general.
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Attending to Teachers in Mathematics Teacher 
Education Research

It is widely accepted that the teacher is the critical classroom factor that determines 
students’ opportunities to learn mathematics (cf. Sanders and Horn 1998; Sanders 
and Rivers 1996). Thus, research that seeks to understand how teachers, both pre-
service and in-service, view themselves and the ways in which teachers develop the 
knowledge, skills, and dispositions to enact ambitious teaching (Franke et al. 2007; 
Kelly-Peterson 2010; Lampert et al. 2010; Lampert and Graziani 2009; Newmann 
and Associates 1996) is timely and critically important to the field of mathematics 
education.

The four chapters in this section frame research on teachers and their learning 
in different ways, but all are consistent with the notion of helping teachers develop 
ambitious teaching by attending to various aspects of their beliefs or identities. Al-
though each is different, the four chapters have much in common. Two chapters 
(Chao, DePiper) deal explicitly with teachers’ identities and how they position 
themselves in various contexts; the other two chapters (Keazer, Wilson et al.) deal 
explicitly with supporting teachers as they attempt to change their practice. Two 
of the chapters (DePiper, Wilson) also look at how teachers position students with 
respect to mathematics learning. I first provide a brief overview of each chapter and 
then discuss implications for teacher education and future directions for this type 
of research.
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The Chapters

Chao illustrates a way researchers can adapt research methods used in other fields, 
in this case social work and nursing, and apply them to teaching. Using the method 
of photo elicitation, in which teachers bring photographs that they have identified as 
significant to them in some way and connected to their teaching of mathematics to 
an interview, Chao uncovers teachers’ identities as people outside of the classroom 
and ways in which their identities outside of the classroom intersected with the 
work of mathematics teaching. In particular, he highlights how two Latino second-
ary mathematics teachers reflect on their experiences as ethnic minorities and the 
ways this status influenced their thinking about teaching.

Wilson et al. set out to study the ways elementary school teachers used their 
knowledge of student learning trajectories (LTs) to shape instruction, but what arose 
from the professional development sessions was a focus on the ways that teachers 
talked about their students and their abilities to learn mathematics. The authors use 
attribution theory to describe the sources to which teachers attributed student suc-
cess and failure. As a result of opportunities to learn about LTs, teachers began to 
include this language in their discourse about student success and failure in math-
ematics.

DePiper documents the ways preservice teachers struggled with positioning stu-
dents and themselves in the context of the sociopolitical demands of public school 
classrooms and the ways this context clashed with their desires to engage in ambi-
tious mathematics teaching. She also highlights the ways that teachers’ identities 
were constructed by the discourses of teacher education and of the schools in which 
they completed their field experiences.

Keazer shares the journeys of four teachers attempting to implement practices 
related to reasoning and sense making (National Council of Teachers of Mathemat-
ics 2009) into their secondary mathematics classrooms. She presents the teachers’ 
journeys using mathematical functions as analogies for their paths, using the teach-
ers’ points of view to help us understand teachers’ perspectives on professional 
development and instructional change.

These four chapters highlight how much can be learned from small-scale, quali-
tative studies that shed a fairly small circle of light on the large field of mathematics 
teacher education. Gaining an in-depth look at a particular set of teachers in specific 
circumstances raises questions for the reader to consider in one’s own teaching, 
professional development work, and research. Playing off of the work of Pollock 
et al. (2010), DePiper poses the question “What can I do?” with three different em-
phases: What can I do? What can I do?, and What can I do? As mathematics teacher 
educators and researchers, it behooves us to take up the third question and consider 
what we can do as individuals and as a field to help both preservice and in-service 
teachers enhance their ability to enact ambitious instruction. Thus, in the remainder 
of this chapter, I offer some possible answers to this question that were prompted by 
my reading of these chapters.



183Commentary on Section 2: Attending to Teachers in Mathematics …

Implications for Teacher Education

Embracing Reality

Three of the four chapters speak to the idea of change—changing instructional prac-
tices, changing individuals’ beliefs and practices, and changing identities. Keazer’s 
chapter, in particular, offers us glimpses of teachers’ perceptions of their efforts to 
change their instructional practices. As I think about how to support teachers as 
they seek to enact ambitious instruction, I am reminded of an idea posed by Tsamir 
and Tirosh (2000), who said that our task as teacher educators is to prepare teachers 
to be bicultural—to exist in schools as they are today and to be agents of change. 
The preservice teachers and the in-service teachers with whom we work must be 
able to succeed in the current educational system, regardless of whether we or they 
agree with every aspect of it. If they do not succeed in the system as it is currently 
constituted, they will have little credibility when they try to implement change, in 
their own classrooms and in wider venues.

This tension underlies much of the research that has been done on teachers’ be-
liefs to date. Many studies show that some teachers who hold more progressive be-
liefs enact classroom practices that are more traditional than their espoused beliefs 
would suggest. Both the DePiper and Keazer chapters give us some insight into 
how preservice and in-service teachers feel constrained by this tension of trying to 
succeed in the existing system while also being exposed to ideas about changing the 
system (or at least their practice within the system).

As teacher educators and researchers, sometimes we fail to acknowledge the 
enormous impact of “the system” on teachers’ lives, even the lives of preservice 
teachers. We sometimes present ideas in teacher education as though they should 
be implemented immediately and that implementing them is simply a matter of 
will. We assume that teachers have seen enough of the status quo on a daily basis in 
schools, so we must present them with ideas from the opposite end of the spectrum 
in hopes that their practice will somehow become a reasonable melding of the two. 
I suggest that we do our cause and our teachers a disservice when we take this ap-
proach of extremes. I suspect that we would get far more buy-in from teachers and 
that teachers would be far more successful if we admitted up front that teaching 
mathematics, at least in this day and age, is a balancing act between the progres-
sive or reform-oriented ideas espoused in teacher education and the more conserva-
tive/traditional ideas that are often the norm in schools. DePiper argues for helping 
teachers “trouble” the discourses that exist in schools, such as discourses about 
ability grouping/tracking and mathematics as being about speed and accuracy. To 
trouble these discourses, we must admit that they exist and that there are rationales 
behind them.

I have heard former students say, “I feel so horrible when I give my students a 
worksheet,” which suggests to me that I have painted teaching as entirely too black 
and white (worksheets = bad, group work = good) and have failed to acknowledge 
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and help them appreciate the competing masters that teachers must serve. Particu-
lar instructional practices are neither inherently good nor bad; context matters. If 
I stood outside a classroom and peeked in through the narrow glass window in 
the door without being able to hear what is happening in a classroom, I would be 
likely to conclude that rows of students seated quietly in desks is bad instruction, 
whereas groups of lively energetic students engaged with one another is good in-
struction. The problem with these assumptions is that I cannot really tell what the 
students are doing. The students sitting in rows could be engaged in the “think” 
part of “think–pair–share” with an enriching mathematical task, and the students 
sitting in groups could be off task or working collectively on lower level recall 
tasks or “fun” activities with little mathematical substance. Perhaps, too often we 
give our students extreme definitions of what constitutes good and bad mathematics 
instruction, which may drive them to the oft-cited practices of relying primarily on 
survival advice from their mentor or peer teachers and of seeing university-based 
mathematics teacher educators as living in ivory towers and lacking understanding 
of what happens in “real” classrooms. The teachers in DePiper’s study provide au-
thentic examples of the challenges many teachers face as they try to enact ambitious 
practices in their classrooms.

Facilitating Discourse

The Wilson et al. and DePiper chapters suggest that teacher educators can help 
preservice and in-service teachers acquire language to talk about students, learning, 
curriculum, assessment, and other contemporary issues in mathematics education 
and can provide spaces in which they can try out discourses on such topics. The 
teachers in these studies were struggling to make sense of new ideas and about 
their places and the places of their students in an ever-changing system. The Wilson 
et al. chapter offers an example of a professional development project that provided 
teachers with both knowledge of and language about children’s learning trajectories 
in early rational number reasoning. The authors found that teachers used both the 
ideas and the language from the learning trajectory when describing students’ suc-
cesses and failures with mathematical tasks. It is also very encouraging that teachers 
did not attribute student success or failure to gender, race, or socioeconomic status.

DePiper’s chapter provides an example of a teacher educator engaging preser-
vice teachers in discourses around students, testing, accountability, and instruction. 
In this case, the teachers were enrolled in a voluntary seminar outside of mathemat-
ics education instruction, but the ideas could be incorporated into a student teach-
ing seminar or as part of a course that runs parallel to an early field experience. In 
order to foster such discourse, however, it is imperative that teacher educators first 
seek to understand what is happening in schools and not simply degrade the experi-
ences of preservice teachers and suggest alternatives. As DePiper notes, “troubling” 
these ideas is not easy ground to tread, and resolutions will not occur in a single 
discussion.
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Abandoning Deficit Models of Teachers

Keazer’s study raises the notion that, in the same way we avoid using a deficit 
model when talking about students, we need to examine our discourse to ensure 
that we are not employing a deficit model of teachers. Certainly there is a lot of 
deficit discourse about teachers in the press, but I hear it from teacher educators, 
too, although not usually in print. For instance, I hear that preservice teachers are 
interested only in grades and not learning, that classroom teachers are taking pro-
fessional development workshops just for the stipend, or that we will never make 
a dent in the local school district because there are so many teachers and admin-
istrators who “don’t get it.” With students, we are asked to consider what they do 
know and to think about how we can leverage existing knowledge in service of new 
learning. If we take this same approach with teachers, then we seek to meet them 
where they are and to provide learning experiences within their zone of proximal 
development (Vygotsky 1978). If we assume that teachers have come to their views 
for rational reasons and seek to understand them, then we will have a much better 
basis on which to build future instruction.

For instance, a common deficit view of preservice elementary teachers laments 
that they often expect their methods courses to provide them with a “bag of tricks,” 
a “recipe book,” or a collection of “cute activities” they can use in their classrooms. 
I find that preservice teachers often come to these views through one of three paths. 
Many of them have had negative experiences as learners and are therefore looking 
for ways to make mathematics “fun” and less painful for their students; thus, they 
are looking for cute activities. Others have been very successful as mathematics 
learners because they are good memorizers and are good at executing procedures, 
so they believe that teaching mathematics is all about explaining things clearly and 
sometimes cleverly; thus, they are looking for a recipe book that tells them the 
correct order in which to teach things for the greatest success. Other preservice 
teachers’ experiences with mathematics have been neither overwhelmingly posi-
tive nor negative, but they have developed an instrumentalist view of mathematics 
(Ernest 1989) due to their experiences as learners, and thus they seek a recipe book 
and tricks to make learning easier. It is easy to take a deficit view of these teachers, 
but if we accept that they have arrived at these conclusions logically through their 
own experiences, then we frame our task in teacher education as showing them 
a different view of mathematics as opposed to correcting the error of their ways. 
This perhaps seems like a subtle shift of language, but it implies substantive differ-
ences in our approaches to instruction. For me, showing them a different view of 
mathematics entails, in part, engaging them in mathematics learning experiences 
that mirror those we want them to provide for children, and then debriefing those 
experiences by discussing the nature of the task I posed; how I responded to their 
questions, requests for help, and errors; how concrete or visual materials were used; 
the ways in which the experience was intellectually and socially enjoyable (a reen-
gineered definition of “fun”); and many other topics. This type of discussion can 
lead to building a bridge between where they have been as mathematics learners to 
where we want them to go as mathematics teachers.
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Recognizing and Embracing Multiplicity

The Chao, DePiper, and Keazer chapters all remind us that teachers are complex 
individuals, shaped by multiple personal and professional forces in their lives. As 
teacher educators, we would do well to seek to understand teachers as people first 
and then as mathematics teachers. For example, many of us have our preservice 
teachers write mathematics autobiographies the first week of classes to draw out 
beliefs about mathematics teaching and learning. Perhaps we should ask students to 
write autobiographies of themselves as learners and/or ask them to illustrate their 
autobiographies with photos, similar to Chao’s use of photo elicitation. We might 
then learn who has an affinity for languages, for taking things apart, for poetry, 
for playing piano, or for running. We might learn something about their families 
and how they valued schooling. We might learn something about how the teach-
ers view teaching and learning mathematics in contrast to other content areas. As 
Chao illustrates, we might learn something about the teachers’ cultural identities 
that is profoundly influencing the ways they learn about the teaching and learning 
of mathematics. We may be able to leverage what we learn to connect mathematics 
teaching and learning to other aspects of teachers’ lives, or we may simply be able 
to connect with them on a personal level in a different way, which may lead to them 
viewing our instruction differently.

Another common task in a methods course is to have preservice teachers write 
lesson plans, teach them, and write reflections on them. Asking preservice teachers 
to provide a bit of narrative about how the topic of the lesson was chosen; how it 
fits into a larger instructional sequence; and what expectations were provided by 
the mentor teacher with respect to standards to be covered, materials and tasks to 
be used, and methods of instruction would help us see how the lesson is shaped by 
the school context (as noted by Keazer). Preservice teachers sometimes tell me, 
for instance, that their mentor teacher has said that his/her students cannot work in 
groups because they will not behave, which constrains what the preservice teacher 
can do. I have also seen teachers hand preservice teachers complete lesson plans 
and tell them to follow them to the letter. We might have preservice teachers write 
elaborated lesson reflections in which they describe changes they would make to 
the lesson if they were to teach it in the same circumstances again, as well as what 
circumstances they would change along with why and how those changes would 
affect instruction.

Implications for Future Research

Some might argue that research on beliefs and identity is past its prime, but these 
four chapters make a convincing argument that it is important to continue to look in 
depth at small numbers of teachers to better understand how they view themselves 
and the enterprise of mathematics teaching and learning. The chapters also spur 
some thoughts about future research on beliefs and identity.
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Chao’s study reminds me that education is a field made of many disciplines and 
that most of our research methods are borrowed and adapted from other disciplines. 
Chao used the method of photo elicitation, borrowed from social work and nursing, 
to gain deeper insights into teachers’ lives than one typically uncovers in a stan-
dard question-and-answer interview. Many of the methods of studying beliefs have 
well-known limitations, and methodological advances have been few. If this line of 
inquiry is to continue in fruitful directions, it will be necessary for researchers to 
borrow, develop, or adapt new methods that allow for scalability and/or that have 
greater validity than those now in use (such as Likert scale questionnaires).

It may be beneficial for researchers to back up a bit, giving teachers a chance to 
tell us about the variety of influences in their lives, rather than immediately honing 
in on beliefs and identities related to teaching mathematics. Chao introduces us to 
one method, photo elicitation, for taking a wider lens on teachers’ experiences, but 
existing and popularly used methods could be retooled to start at a different grain 
size. In a related vein, DePiper’s study reminds us that teacher education programs 
are not the only influences on preservice teachers; they are shaped by the experienc-
es they have in schools. Much research on preservice teachers seeks to document 
the “impact” of the teacher education program on teachers’ beliefs and practices, 
and much of that research shows little evidence of significant impact, at least in the 
short term. Studies that seek to make sense of the ways in which teachers process 
and prioritize the many competing messages they hear could be useful to the field in 
designing teacher education and professional development programs.

I mentioned above that teacher educators would do well to examine their dis-
course for evidence of a deficit model of teachers and of teacher learning. A similar 
admonition applies to research on teachers. I urge us to examine our stance toward 
teachers by looking at the way we frame studies in grant proposals, the interview 
protocols we use, the analytical tools we use, and the ways we write about teachers 
to become aware of when and how we are explicitly or implicitly taking a deficit 
view of teachers in our research. One way in which we implicitly take a deficit view 
of teachers that has received some attention in the literature is the focus on gaps be-
tween teachers’ beliefs and practices. Leatham (2006) has offered the field another 
way to look at teachers’ beliefs and actions as a sensible system that gets us out of 
the deficit approach.

The Wilson et al. study shows how existing research can be used to leverage 
new research. Wilson et al. designed a professional development program around 
existing research findings on learning trajectories and sought to understand teach-
ers’ uptake of these ideas in instructional decision making. This layering of research 
programs is one way that we can help shape the body of research in our field from a 
collection of stories (Cooney 1994) to a coherent thread of research that builds over 
time into a solid theoretical frame. The work on SimCalc (http://www.kaputcenter.
umassd.edu/projects/simcalc/) provides a nice example of a body of work that has 
been built up deliberately over time. The work began with research on students’ 
learning about change and variation and proceeded to the development of software 
to illustrate these ideas, then to the development of curriculum materials to teach 
these ideas, then to pilot studies, and on to scale-up studies. What would research 

http://www.kaputcenter.umassd.edu/projects/simcalc/
http://www.kaputcenter.umassd.edu/projects/simcalc/
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on beliefs or identity look like if we tried to plot a similar trajectory for a system-
atic research program? I will not pretend to have the answer to this question, but I 
submit that it is worth the collective time and attention of those who are passionate 
about research on beliefs and identity.

Conclusion

The chapters in this section offer much food for thought about our work as math-
ematics teacher educators and researchers, both as individuals and as a collective. 
From the practical to the theoretical, these chapters have both immediate and long-
term implications for our work as we seek to support teachers as they engage in 
ambitious instruction and to understand what it means for teachers to do so.
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Effective mathematics teaching requires teachers to employ a variety of knowl-
edge, skills, and dispositions. Sowder (2007) suggested one goal of teacher devel-
opment should be to develop teachers’ understanding of how students think about 
mathematics.” Research suggests that teachers who understand how students think 
about particular mathematical ideas will be better positioned to recognize, interpret, 
and support these ideas in their instruction (Brown and Borko 1992; Fennema and 
Franke 1992). Research on Cognitively Guided Instruction (CGI) has demonstrated 
that teacher knowledge of student thinking, reasoning, and strategies can lead to 
gains in student achievement (Carpenter and Fennema 1992; Carpenter et al. 2000). 
Ball and colleagues’ work on mathematical knowledge for teaching has identified 
knowledge of content and students and knowledge of content and teaching as the 
crucial facets of pedagogical content knowledge necessary for teaching mathemat-
ics effectively (e.g., Ball et al. 2005; Hill et al. 2008).
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As the research on student learning of mathematics has produced a substantial 
collection of findings, it has become increasingly important for mathematics teach-
er educators to assist teachers in developing an understanding of this knowledge 
base as well as the means to leverage this knowledge during instruction. Recently, 
Jacobs et al. (2010) introduced professional noticing of children’s mathematics as 
a framework to understand the ways in which teachers attend to, interpret, and re-
spond to students’ mathematical thinking. These three aspects of professional no-
ticing are intertwined and used in concert as teachers interact with children and 
their mathematics. Jacobs and colleagues stated that the professional noticing of 
students’ thinking is a difficult practice and not one that comes naturally to adults. 
However, they also provided evidence that this practice is something that can be 
learned through targeted professional development. In this study, although preser-
vice teachers (PSTs) were asked to attend to, interpret, and respond to children’s 
mathematical thinking, we focused our analysis on responding, as responding is the 
most difficult of the three skills to acquire (Jacobs et al. 2010). Additionally, Vacc 
and Bright (1999) found that PSTs were able to acknowledge the tenets of CGI, but 
had difficulty using children’s mathematical thinking in instruction. Therefore, we 
wanted to design course activities that provided PSTs the opportunity to develop re-
sponses to children’s mathematical thinking, in the form of contextualized problems 
and number choices. We enacted those activities and analyzed PSTs’ responses as a 
way to understand how to develop and support the ability to respond to children’s 
mathematics in PSTs.

In this chapter, we present our analyses of PSTs’ responses to a sequence of three 
activities that we designed and implemented in our methods course, in order to 
scaffold and support PSTs’ development of responding to children’s mathematical 
thinking. These activities presented PSTs with authentic classroom situations and 
required them to engage in increasingly complex tasks involving professional notic-
ing. The sequence of tasks progressed from noticing an expert teacher’s task design, 
to designing a task to address a single mathematical concept, to designing a task 
that addressed a wide range of student’s needs. In each case, PSTs interpreted or de-
signed a problem whose intent was to build on the children’s mathematical thinking 
as evidenced in a prior task. Our research question for this study was, “How can our 
series of professional noticing activities support PSTs’ abilities to pose problems 
that build on students’ mathematical thinking?”

Theoretical Frame

We view PST learning from a social constructivist viewpoint and employ an inquiry 
approach to our instruction, providing PSTs with structured opportunities to explore 
content and resources designed to support PSTs in learning to teach mathematics. 
The design of our elementary mathematics methods course was guided by three 
main ideas: (a) children’s mathematical ideas and understandings emerge from 
solving problems; (b) teachers can use questioning to scaffold the development of 
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children’s mathematical understanding and sense making; and (c) Standards-based1 
curriculum materials can be useful learning tools for teachers and students (Drake 
et al. in press). Our course goals for PSTs were teaching mathematics for under-
standing through problem solving, identifying and evaluating worthwhile math-
ematical tasks, and attending to children’s mathematical thinking. PSTs’ ability to 
leverage children’s mathematical thinking in posing a subsequent problem would 
involve successful integration of these three goals. Further, the activities would 
result in records of PSTs’ “practice,” affording the instructors the opportunity to 
evaluate their progress.

In order to design our sequence of activities and frame our analysis, we drew on 
the work of Jacobs et al. (2010) related to professional noticing of children’s math-
ematical thinking. Three interrelated skills comprise the construct of professional 
noticing of children’s mathematical thinking: attending to children’s strategies, in-
terpreting children’s understandings, and deciding how to respond on the basis of 
children’s understandings. Because these three skills are interrelated, we believed 
it was unwise to scaffold PSTs’ development by practicing the skills individually 
through a decomposition of the practice (Grossman et al. 2009). Our approach was 
to develop a series of activities for PSTs that would gradually increase the com-
plexity of the situation in which PSTs would engage in the professional noticing of 
children’s mathematics. Our activities included three different trajectories of scaf-
folding for PSTs: observing to doing, number of concepts, and number choices. 
These dimensions are outlined in Table 1. We viewed this approach as a potentially 
effective means of supporting the development of PSTs’ professional noticing.

The processes of attending, interpreting, and responding require teachers to uti-
lize a variety of knowledge bases simultaneously. Shulman (1986) suggested three 
types of knowledge important for teaching—subject matter knowledge, pedagogical 
content knowledge, and curricular knowledge. Ball and colleagues (Ball et al. 2005; 
Hill et al. 2007) built on Shulman’s work and provided the Mathematical Knowl-
edge for Teaching (MKT) framework, further defining subject matter knowledge 
(SMK), and pedagogical content knowledge (PCK), and identifying subsets of these 

1 In using the term standards-based curriculum, we are referring to the curriculum materials 
funded by the National Science Foundation and aligned with the NCTM Standards (1989, 2000), 
including: Investigations in Data, Number, and Space (TERC 2008); Everyday Mathematics (UC-
SMP2007); and Math Trailblazers (UIC 2008).

Table 1  Trajectories of scaffolding PSTs’ professional noticing within activities
Aspect of scaffold Trajectory
Observing to doing From observing an expert teacher’s subsequent task to having PSTs 

design subsequent tasks themselves
Number of concepts From designing a subsequent task to address a single concept to a task 

that addressed a wide range of student understandings
Number choices From analyzing an expert teacher’s number choice, to making number 

choices for a prewritten task, to writing an entirely new task, com-
plete with number choices
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knowledge bases. The common content knowledge and specialized content knowl-
edge subsets of SMK are germane to the work of professional noticing. Common 
content knowledge is defined as “the mathematical knowledge and skill used in set-
tings other than teaching” (Ball et al. 2008, p. 400) and includes “the mathematical 
knowledge teachers are responsible for developing in students” (Hill et al. 2007, 
p. 132). Specialized content knowledge is “the mathematical knowledge and skill 
unique to teaching” (Ball et al. 2008, p. 401) and includes “the mathematical knowl-
edge that is used in teaching but not directly taught to students” (Hill et al. 2007, 
p. 132). Error analysis, analyzing and validating a child’s nonstandard approach 
to computation, and asking productive mathematical questions are all examples of 
specialized content knowledge (Ball et al. 2008). We also ground this study in two 
subsets of PCK: knowledge of content and students, which includes knowledge of 
common student conceptions and misconceptions, the ability to anticipate possible 
student solutions paths to given tasks, and the ability to hear and comprehend the of-
ten primitive mathematical explanations of students; and knowledge of content and 
teaching—“mathematical knowledge of the design of instruction, includes how to 
choose examples and representations, and how to guide student discussions toward 
accurate mathematical ideas” (Hill et al. 2007, p. 133).

While Ball and colleagues have identified and differentiated these subsets of 
knowledge for the purpose of assessing teacher knowledge (Hill et al. 2007), we rec-
ognize that engaging in the professional noticing of children’s mathematics requires 
that these knowledge bases are accessed and utilized in a coordinated and integrated 
manner as teachers attend to, interpret, and respond to children’s mathematics. We 
utilize combinations of these subsets of SMK and PCK in our interpretations and ex-
planations of PSTs’ ability to engage in the professional noticing of children’s math-
ematics. As an example, we posit specialized content knowledge and knowledge of 
content and students as integral to attending to and interpreting student thinking. 
PSTs use their specialized content knowledge in order to decipher children’s math-
ematics, while simultaneously drawing on their knowledge of children’s common 
strategies. We suggest, PSTs who are more accurate and effective in interpreting 
children’s mathematical thinking are likely to have more developed knowledge of 
these subdomains. Due to the integrated nature of these knowledge bases, however, 
we will not attempt to attribute ability to specific knowledge bases. Rather, we will 
explain our results using combinations of the domains of the MKT framework.

Methodology

Context of the Study

Data presented in this chapter were collected from 72 PSTs from three sections 
of elementary mathematics methods courses at two university sites during the 
2011–2012 academic year. Our decision to examine the work of PSTs from different 
universities was a purposeful aspect of our research design, as it allowed the authors 
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not only to learn from one another, but also to potentially disentangle the contribu-
tions of context and instructor in advancing PSTs’ ability to pose subsequent prob-
lems. Although the activities reported were completed within the first 9 weeks of 
each methods course, PSTs’ educational and mathematical experiences prior to the 
methods course were highly varied. PSTs at one institution took mathematics meth-
ods in the first semester of their senior year. In their program, they were required 
to take two to three mathematics content courses specifically designed for elemen-
tary school mathematics teachers. PSTs at the other institution took mathematics 
methods at varying points within their program, but most often during their junior 
year. Their program required mathematics courses, but not necessarily elementary-
specific content courses. As such, some PSTs had completed none, one, or two 
elementary-specific mathematics content courses. While we did not perform analy-
sis on the individual university sites, the differences in the educational experiences 
of our participants are a reflection of the reality of diverse math content requirement 
in US teacher education programs.

The three activities we report on were posed within the first 9 weeks of the 
course, during which PSTs also had other instructional experiences involving the 
Common Core State Standards for Mathematics (National Governors Association 
Center for Best Practices, Council of Chief State School Officers (NGA Center, 
CCSSO) 2010), the Thinking Through a Lesson Protocol (Smith et al. 2008), the 
Levels of Cognitive Demand Framework (Stein and Smith 1998), and CGI problem 
types and solution strategies (Carpenter et al. 1999). The three activities were built 
from records of practice of our collaborating classroom teachers—Natalie Franke, 
Molly Sweeney, and Jenny Johnson—each of whom had taken professional devel-
opment in CGI and taught in a district that had adopted Investigations in Number, 
Data, and Space (TERC 2008).

Data Collection

Our activities were designed and sequenced to scaffold and support PSTs, as they 
developed the capacity to make sense of student strategies and to use their under-
standing of student thinking, to write appropriate subsequent tasks for students. 
The three trajectories we followed within the design of the three activities are listed 
above in Table 1. We next describe each of the activities and the data sources we 
collected from each.

Natalie’s Class the Next Day The first activity, Natalie’s Class the Next Day, given 
on the first day of the semester, was designed to give PSTs the opportunity to notice 
and analyze how an experienced teacher used her students’ current knowledge of 
division with fractional remainders to design a subsequent story problem and num-
ber choices. After a brief overview of the learning goals for the course, we showed 
PSTs “Sharing Cookies,” a video with transcript of Natalie and her second-grade 
class as they solve and discuss two partitive division story problems (Fig. 1). The 
video shows Natalie introducing the two problems to the children. At this point, we 
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paused the recording to make sure PSTs also understood the format of the problems, 
which contain one blank and multiple number choices for the same story problem. 
The multiple rows of number choices are given to provide differentiation, with each 
child selecting the row of number choices “just right” for them. Natalie instructs 
the children to work on the first number choice in their chosen row and to show her 
their work when they are finished. After she has seen their work, they then work on 
the remaining number choices in the row.

As the video continued, PSTs had opportunities to see several examples of chil-
dren’s work and some brief interactions between children and the videographer, as 
well as between children and Natalie. They next viewed Natalie’s whole-class dis-
cussion of the two problems, which begins with a child, Carter, (all student names 
are pseudonyms) sharing his solution to 32 brownies shared fairly among four people 
(displayed in Fig. 2). As a class, we discussed evidence of children’s understand-
ing and the specific teacher moves made by Natalie in helping her class understand 
Carter’s solution to 32 brownies, how it connects to his solution to 33 brownies, and 
how sharing a single object equally among two people relates to sharing a single 
object equally among four people.

The Sharing Cookies video, its transcript, and our class discussion provided op-
portunity for PSTs to attend to and interpret children’s mathematical thinking. The 
Natalie’s class the next day assignment was given after our viewing and discus-

Fig. 1  Partitive division problems presented in the Sharing Cookies video

 

Fig. 2  Carter’s solutions 
from the Sharing Cookies 
video
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sion of the video, collected at the beginning of our next class meeting, and used 
as a source of data. The assignment asks PSTs to notice and interpret how Natalie 
attended to, interpreted, and responded to her students’ mathematical thinking in her 
problem and number choices for the next day (Fig. 3). After grading and returning 
the assignment, we discussed PSTs’ responses as a class, focusing on the facets of 
Natalie’s number choices.

Counting Sequences The second activity, Counting Sequences, required PSTs to 
write an opening number routine (ONR) and problem, including number choices to 
address a single mathematical concept—counting by tens. The Counting Sequences 
Assignment is designed around a video with transcript of Jenny’s first- grade class. 
Jenny begins with an ONR that poses a series of Counting Sequences to her class 
that focus on base-ten concepts. She presents a sequence of numbers and asks stu-
dents to supply the next three numbers in the sequence. Jenny begins by posing the 
sequences in Fig. 4. The students are able to complete the next three terms for each 
of these with little difficulty. Jenny’s ONR concludes as she poses an open num-
ber sentence for her class, 30 + ___ = 70, with which, again, the children have little 
trouble. The video ends with Jenny posing the main problem for the day, a join-
change unknown (JCU) story problem about a paleontologist (Fig. 5). Like Natalie, 
Jenny often posed one story problem with multiple number choices, allowing for 
differentiation for the children in her class.

As in the first assignment, the Counting Sequences video, its transcript, and our 
class discussion provided opportunity for PSTs to attend to and interpret children’s 

Fig. 3  Natalie’s Class the Next Day assignment

 

Fig. 4  Counting Sequences 
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mathematical thinking. At its conclusion, we introduced the Counting Sequences 
assignment, which PSTs would complete for our next class meeting. The assign-
ment begins with Jenny’s description of the children’s work from the paleontologist 
problem.

Most of the children solved the paleontologist problem by using a hundreds chart, but many 
counted by ones when counting up to the second number instead of counting by tens. Some 
children did count by tens. For 20 and 84, the children who were counting by tens either 
counted by ones from 20 to 84, or counted by tens to 80, then counted 4 more. Nobody 
solved for 42 and 53 (Drake et al. in press).

Jenny’s description indicates there are children in her class who had earlier showed 
evidence that they could count by tens, but did not invoke their counting by tens 
schema when solving the JCU problem (with numbers 20 and 84). The Counting 
Sequences assignment is built around this inconsistency. Considering the above in-
formation, PSTs were asked to complete the assignment in Fig. 6. After grading and 
returning the assignment, we discussed sample PST responses as a class. We dis-
cussed the inconsistency the authors saw in the situation, presented PSTs’ responses 
echoing some of the possible reasons for it, and emphasized how prescribing “more 
of the same” (as many PSTs had done) is not an effective approach to addressing 
students’ mathematical misconceptions.

Fig. 6  Counting Sequences assignment

 

Fig. 5  Paleontologist problem
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Fishbowl Problem The third activity, fishbowl problem, asked PSTs to analyze 
children’s multiplication strategies and write a subsequent problem with number 
choices to address the wide range of solution strategies and learning goals. The 
fishbowl problem is set in the context of Molly’s second/third-grade mixed-age 
classroom. This task was built around PSTs’ examination of examples of student 
work from 14 children in Molly’s class in response to the multiplication problem in 
Fig. 7. Molly’s students were instructed to pick a pair of number choices to solve, 
show their work, and move on to the next pair of number choices.

In the methods class, we first asked PSTs to predict what Molly’s learning goals 
for the lesson could be, based on what they saw in the problem she had posed. Molly 
had shared her goals for this lesson with the authors and we shared her response 
with the PSTs:

I had a couple of different goals for the lesson with the goldfish bowl problem. For some of 
my students I wanted to see if they were able to skip count by multiples of ten. For others, 
that I knew could, I wanted to see if they could see any relationships between the numbers 
I had chosen for them to solve. I had asked them to pick a pair of numbers to solve, hoping 
they would see this. Also, when choosing the numbers 11 and 12, I was looking to see if 
any of the students used the distributive property and their knowledge of tens to help them 
solve the problem (Personal communication, 2010).

With these goals in mind, PSTs were to examine the samples of student work in 
order to (a) attend to the details in each child’s strategies and (b) interpret the strate-
gies in relation to Molly’s learning goals. Then, using this information, PSTs were 
to complete the assignment in Fig. 8 for the next class.

Fig. 7  Fishbowl problem

 

Fig. 8  Fishbowl problem assignment
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Data Analysis

Within our study, there were two main stages of analysis—an analysis of the tasks 
and an analysis of PSTs’ responses to the tasks. In the first stage, the first three au-
thors performed an analysis of each of the three tasks in order to establish a series 
of codes and operational definitions. This process involved the authors completing 
each task individually, discussing our responses collaboratively, and when neces-
sary, included examination and discussion of PSTs’ responses for the same assign-
ments from prior implementations. The authors’ process for analyzing each task is 
described below.

Natalie’s Class the Next Day For the Natalie’s Class the Next Day assignment, we 
report results from Question 2 (Fig. 3), which addressed Natalie’s number choices. 
This question is most germane to our research question and our trajectories, as it 
provided PSTs an opportunity to interpret how an experienced teacher can build on 
children’s mathematical understanding through appropriate number choices. Our 
analysis of Natalie’s number choices revealed three aspects of those numbers we 
anticipated PSTs might notice, and we coded PSTs’ responses for the number of 
aspects they identified.

Counting Sequences The Counting Sequences assignment is comprised of three 
questions (Fig. 6). The first question asked PSTs to “identify the disconnect evident 
in Jenny’s classroom.” The authors used the term disconnect to refer to what we 
identified as the inconsistency between Jenny’s students using skip counting by 10 
in completing the Counting Sequences within the opening routine but not applying 
the skip counting strategy when solving the JCU story problem, resorting instead to 
the less efficient strategy of counting by ones. Responses that identified the discon-
nect were coded as 1; those that did not were coded as 0.

We used a process of open and emergent coding (Strauss and Corbin 1998) in 
order to develop our codes for the reasons PSTs gave in Question 2 for the identi-
fied disconnect. This process resulted in three primary codes for the reason for the 
disconnect, as well as subcategories of more specific reasons within categories.

PSTs’ responses to the third question were analyzed in order to determine if their 
proposed opening routine for the next day addressed the primary reason for the dis-
connect they identified. PSTs’ responses were coded as 0 if the opening routine did 
not address their primary reason and as 1 if it did. We elected to use a binary coding, 
as at this point in the course we were most interested in understanding if PSTs were 
attempting to draw on their interpretation of the children’s mathematical thinking as 
they responded with the next task.

Fishbowl Problem The fishbowl problem assignment asked PSTs to respond to 
the 14 samples of children’s work from Molly’s classroom by writing a problem for 
the next day including number choices. The authors first analyzed the 14 samples 
of children’s work, resulting in a classification of children’s strategies with four 
categories. Table 2 displays the four categories, their descriptions, and the names 
of Molly’s students who used those strategies. We collaboratively examined several 
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responses to this activity from a previous course to establish our codes and opera-
tional definitions.

We examined PSTs’ entire response to the fishbowl assignment in order to clas-
sify their ability to attend to, interpret, and respond to the children’s work. Within 
their response, PSTs were asked to address specific children or groups of children. 
In order for a response to be coded for evidence of understanding children’s think-
ing, PSTs needed to correctly identify or describe the work of each child or groups 
of children they included within their justification.

We next coded each response for story problem appropriateness. We consid-
ered an appropriate story problem for Molly’s students to be a multiplication story 
problem. We also expected PSTs to write a problem similar in structure to the one 
Molly’s students had already solved, with the first blank indicating the number of 
groups and the second blank indicating the number in each group. Molly’s students 
had not yet met her learning goals and therefore the authors did not see a need to 
stray from this problem type or structure.

PSTs’ number choices and justifications were coded for evidence of addressing 
current children’s understanding and evidence of addressing Molly’s learning goals. 
As we coded the responses in terms of addressing children’s current understanding, 
we first looked for explicit evidence in the rationale that PSTs were attempting to 
choose numbers for a strategy used by a specific child or groups of children. If we 
found evidence, we then examined the number choices they selected in order to 
determine if they had successfully done so. In order to be coded as a successful at-
tempt, the number choice had to address the children’s current understanding.

We coded PSTs’ number choices in terms of addressing Molly’s learning goals 
in a similar manner. If PSTs explicitly mentioned a learning goal in their rationale, 
we coded it as an attempt. If an attempt was made, we then determined if the num-

Table 2  Children’s strategy, classification, and description
Strategy Description Students using strategy
Direct modeling Students either could not solve any of the multipli-

cation tasks, or did so by directly modeling the 
solution with drawings

Dante, Whitney, Alex, 
and Kris

Skip counting Students skip counted by tens and/or multiples of 
10 to solve

4 × 20 = 80 20, 40, 60, 80

Tom, Olivia, Sarah, and 
Amber

Repeated addition 
and break apart 
by place

Students solved by writing the multiplication 
problems as repeated addition and then broke the 
two-digit numbers like 11 and 12 apart by place 
value and added the tens and ones separately

3 × 11 = 11 + 11 + 11
10 + 10 + 10 = 30, 1 + 1 + 1 + = 3
30 + 3 = 33

Matt, Wes, Gwen, and 
Max

Doubling Students used repeated addition to solve the first 
number choice in the pair, but were able to solve 
the second number choice using the doubling 
relationship between doubling the number of by 
simply doubling the product

Seth and Hank
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ber choices were appropriate. If so, we coded it as a success. In order to be coded 
as a successful attempt, the number choice had to support the learning goal it was 
intended to address.

Coding PSTs’ Responses In the second stage of coding, we used the established 
codes in order to analyze PSTs’ responses to the tasks. Two researchers carried out 
the coding of each assignment independently and a reliability/agreement measure 
was calculated for each set of coding. The agreement percentages across all coding 
sets fell between 75 and 96 %. The 75 % agreement was from the coding of PSTs’ 
given reasons for our identified disconnect in the Counting Sequences assignment. 
This set of data involved certain subtleties that were not uncovered until discussion 
of disagreements. One such example was the difference in the two codes: “more 
comfort counting by ones” and “less comfort counting by tens.” While these two 
codes essentially suggest the same thing, we coded them as different depending on 
the strategy explicitly identified by PSTs. The 96 % agreement was in our coding 
of PSTs’ number choices within the paleontologist problem. We believe this high 
percentage was due largely to the well-defined nature of the codes (e.g., counting by 
tens from a decade number (20, 60)).

Results

We begin by presenting results from each of the three activities and briefly describ-
ing the strengths and weaknesses of PSTs’ responses within each particular con-
text. Following this presentation, we conclude this section by discussing patterns of 
PSTs’ responses across the three assignments and characterizing PSTs’ progress in 
attending to, interpreting, and responding to student thinking. We include examples 
from PSTs’ responses to serve as evidence for our claims.

Natalie’s Class the Next Day

The Natalie’s Class the Next Day assignment supplied evidence of PSTs’ ability to 
interpret Natalie’s problem and number choices in designing a problem for the next 
day. The authors had identified three facets of Natalie’s number choices: (a) the num-
bers are larger than the day before; (b) the numbers are more complex in that students 
had to think not only about sharing remainders of 0 and 1, but also 2 and 3 as well; 
and (c) the next consecutive number scaffold that had been used the day before has 
now been removed. We examined the 72 PSTs’ responses to determine how many of 
the facets of Natalie’s number choices were identified by each PST and the number 
of PSTs that identified each facet. The results are presented in Tables 3 and 4.

We present examples of PSTs’ responses in order to illuminate our results. Julia’s 
response (all PST names are pseudonyms) did not identify any of the facets we had 
identified in Natalie’s number choices:
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I noticed that this problem has 10 choices versus the 14 number choices from the problems 
of the day before. I think there are less options because the numbers are more difficult, or 
will take more time for the children to solve the problems with these choices.

Although Julia noticed the numbers were “more difficult,” she was not able to spec-
ify what made them so. Tally’s response was an example that identified all three 
facets:

Like the day before, there are two sets of numbers and the students choose what “best fits 
them.” The first row of numbers does a couple of things. It reinforces the idea of halves 
as well as adding the concept of fourths, using 1/4. Also to note, the largest number in the 
first row (48) is a number that is divisible by 4. These numbers are also larger than the first 
row numbers the day before and there is a little less scaffolding from number to number. 
The second row of numbers does not review the concept of halves, but introduce fourths by 
using 1/4 as well as 3/4 (helping these students understand how to add fractions together 
properly). Like the last number in the above row, the largest number (104) is divisible by 4.

We interpreted these data through the lens of MKT. Natalie was building on her 
students’ understanding through the use of specific number choices, and we wanted 
to see how well PSTs were able to identify the specific changes Natalie made in her 
number choices as a result of children’s work the day prior. The ability to identify 
facets of Natalie’s number choices serves as an indication of PSTs’ knowledge of 
content and teaching, which is knowledge of how to choose examples and design 
instruction. From the data, one can see the majority of PSTs (43.1 %) identified 
one facet of the number choices, with slightly less (37.5 %) identifying two facets. 
Smaller percentages of PSTs were at the extremes; 11.1 % did not identify any of 
the three facets and 8.3 % identified all three. The average coding score for PSTs is 
1.43, demonstrating they identified roughly half of the facets of Natalie’s number 
choices. Based on prior implementations of this assignment, we anticipated it might 
be more likely for PSTs to notice the larger numbers and the lack of scaffolds than 
recognize the complexity of the numbers. Identifying the complexity of the num-
bers would require PSTs to recognize that there are only four possible remainders 
when dividing a whole number by four, and that all of them were accounted for 
within Natalie’s number choices. Identifying the first facet required less-developed 

# Correctly identified # PSTs Percent PSTs
0 8 11.1
1 31 43.1
2 27 37.5
3 6 8.3
PSTs preservice teacher

Table 3  Number of facets 
identified

Facet # PSTs Percent PSTs
Larger numbers 31 43.1
More complex numbers 37 51.4
No scaffolds 36 50.0
PSTs preservice teacher

Table 4  Percentage of PSTs 
identifying each facet
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knowledge of content and teaching, only to recognize that the numbers were larger 
than the day prior, and the second facet was explicitly discussed in the video of Nat-
alie’s strategy sharing session. In examining the rate of individual facets, however, 
we see the likelihood of PSTs’ identification of each as relatively the same (ap-
proximately 50 %), with larger numbers being identified by slightly less than half 
of the group. Taken together, these results suggest at the beginning of the methods 
course, after completing their respective university’s mathematics content require-
ments, PSTs had an emerging ability to make sense of the number choices and to 
consider their role in posing problems based on students’ thinking. In the next task, 
we examine PSTs’ ability to professionally notice children’s mathematics.

Counting Sequences

The questions for this assignment require PSTs to attend to and interpret both the 
children’s work in the ONR and Jenny’s description of their work on the first pale-
ontologist problem. Then they must respond by creating an ONR, theoretically to 
be used at the beginning of Jenny’s next lesson. In this activity, we were interested 
to see if PSTs could (a) identify “the disconnect,” the inconsistency in children not 
using the count by tens strategy from the sequence activities when solving the JCU 
story problem; (b) posit reason(s) for the disconnect; and (c) design an ONR to 
address the reason(s) stated in “b.” We believe this task was an appropriate progres-
sion from the previous task, as it provided PSTs an opportunity to engage in all fac-
ets of professional noticing, but required them only to attend, interpret, and respond 
to a single mathematical concept (counting by tens) within a class of students.

We examined the data on identifying the disconnect in order to investigate PSTs’ 
ability to attend to children’s thinking. Of the 72 PSTs, 51 (70.8 %) were able to suc-
cessfully identify the disconnect between children solving the Counting Sequences 
tasks by counting by tens and the counting by ones strategy many used in solving 
the JCU problem. Alice’s response is indicative of PSTs who were able to identify 
the disconnect:

When the students were counting in the opening routine they were able to count by 10’s. 
Although when they were solving the problem, they were unable to see the connection 
between the opening routine and the current problem and didn’t use the strategy of counting 
by 10’s to solve the problem. The teacher hoped the students would count by 10’s to solve 
the problem, but they used other strategies they knew instead.

The data concerning PSTs’ reasons for the disconnect provided evidence about their 
ability to interpret student thinking. We employed three codes as main reasons for 
the disconnect: (a) children did not see the counting by tens strategy as applicable 
in the JCU problem, (b) children’s comfort with one strategy as opposed to an-
other, and (c) number choices. We identified subcategories of more specific reasons 
within the applicability and comfort categories and identified the number of PST 
responses in each subcategory (Table 5). To illustrate further, we present PST re-
sponses representative of each of the main categories:
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I think that the scaffolding was missing. I think that the students did not see that they could 
count by 10s and it would solve the problem faster than counting by ones and would also 
be more accurate. (Pamela) I believe this disconnect happened for maybe different reasons 
for different students: some students may have simply felt more comfortable with counting 
by 1s, and they may not have wanted to take a chance in making a mistake with the new 
concept of counting by 10s. (Abbie) In the counting sequences Jenny did not introduce 
numbers that you couldn’t count up by ten’s and this may have confused the students. 
Possibly if Jenny had introduced them to one of these, the students would have been more 
successful. (Laura)

Pamela’s response is an example from the applicability category; she interpreted 
the disconnect as resulting from a lack of scaffolds. Abbie’s response is from the 
comfort category and was coded both as “more comfort with counting by ones” as 
well as “less comfort counting by tens.” Laura’s response attributes the issue to the 
difference in number choices within the ONR and the JCU problem.

As is evident in Abbie’s response, some of the 51 PSTs who correctly identified 
the disconnect provided more than one possible reason. Some PSTs’ (21) reasons 
were coded in more than one of the main categories, and other PSTs (8) provided 
reasons coded for multiple subcategories within a given reason. When we adjusted 
the numbers to account for various forms of double counting, we found 37 of the 
51 (72.5 %) PSTs who correctly identified the disconnect posited it was a result of 
students not being able to see the strategy as applicable in the JCU problem, 22 of 
51 (43.1 %) attributed the disconnect to students’ comfort with certain strategies, 
and 15 of 51 (29.4 %) attributed the disconnect to number choices.

We agreed that children not recognizing the count by tens strategy as applicable 
was the most likely reason for the disconnect in children’s strategies. From this 
viewpoint, 37 of 72 PSTs (51.4 %) both accurately identified and interpreted the 
thinking of Jenny’s students. The ability to identify and interpret the disconnect is a 
reflection of PSTs’ use of specialized content knowledge and knowledge of content 

Table 5  Number of PSTs identifying each reason for Counting Sequences disconnect
Code # PSTs identified
Applicability of counting by tens
No scaffolds included (no pattern progression, no teacher scaffolds) 14
No further reason given 12
Problem type in word problem (JRU, JCU, etc.) 6
Context/no context 5
Not paying attention 1
Applicability totals 38
Comfort with strategies
Students more comfortable, familiar, experienced counting by ones 9
Comfort in using 100 chart to count by ones 9
Students less comfortable, familiar, experienced counting by tens 8
Students need more practice with counting by tens 5
Comfort with strategies totals 31
Number choices totals 15
Overall totals 84
PSTs preservice teacher, JRU join-result unknown, JCU join-change unknown
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and students. These two knowledge bases would be used concurrently in PSTs’ 
understanding of the ways in which children solved these particular tasks, other 
possible solution paths, and an understanding of how children learn to develop and 
use strategies. We also viewed PSTs’ responses that were coded “comfort with strat-
egies” as reasonable. These responses could be interpreted as evidence of knowl-
edge of content and students, as PSTs recognize children might be comfortable with 
a new strategy when doing it as a group, but then be more comfortable with a more 
familiar strategy (i.e., counting by ones) when they are solving a problem on their 
own. However, the responses coded as “number choices” seemed less reasonable, 
as the number choices were essentially of the same types in the counting sequences 
as they were for the JCU problem.

The final part of the assignment asked PSTs to respond to Jenny’s students by 
creating an opening number routine Jenny would present the next day. From our 
viewpoint, PSTs who intended to respond based on their current understanding of 
the children’s thinking would address the disconnect within their opening routine. 
As such, we examined PSTs’ opening routines in order to determine if they had ad-
dressed their main reason for the disconnect. Although we did not necessarily agree 
with all PSTs’ interpretations of the disconnect, all responses providing evidence 
of PSTs’ addressing their interpretation in their opening routine were coded as hav-
ing done so. We present opening routines from two PSTs, Pamela (applicability of 
counting by tens) and Allison (comfort with using the 100s chart), as examples to 
further illustrate our process.

I am going to give you some number sentences. Solve for the missing numbers.
23 + 50 = ____
46 + 70 = ____
30 + ____ = 50
42 + ____ = 92
____ + 60 = 77
____ + 30 = 52
By starting with solving a problem where you add the tens, then moving to see that you 
can count by tens, I think students will make the jump between counting by tens and then 
counting by tens to solve. (Pamela)

Pamela’s response was coded 1 as she addressed her identified scaffolding issue by 
employing only open number sentences in her ONR. She included result unknown, 
change unknown, and start unknown tasks. Below, we can see Allison’s response 
does not address her interpretation of the disconnect (comfort in using the 100s 
chart). Her response was coded 0. If Allison had explicitly mentioned introduc-
ing children’s use of the 100s chart to solve her true/false number sentence, her 
response would have been coded 1.

True/False Number Sentences
10 + 40 = 50
20 + 30 = 50
22 + 44 = 60
Equations: Show Work
10 +  ____= 30
20 +  ____= 50
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My rationale for starting with true and false statements as my opening routine is to make 
sure that students are on the right track with realizing how to count by tens and place value. 
I realize there was some disconnect the day before so I want to see if they can determine 
if the sentences are true or false given the whole problem. I then give students some equa-
tions and ask them to show work because I want to see the strategies they use to solve the 
equations so I can address any mistakes or disconnects before we move on in the lesson. 
(Allison)

Table 6 displays the number of PSTs who identified each code as their reason and 
the number of those PSTs who addressed their reason within their opening routine. 
Both columns of data have accounted for the double counting described earlier. In 
terms of each of the three main codes, 8 of 15 (53.3 %) PSTs addressed the number 
choices, 13 of 22 (59.1 %) PSTs addressed students’ comfort with strategies, and 13 
of 37 (35.1 %) PSTs addressed the applicability of counting by tens.

We present a final summary of PSTs’ responses to the Counting Sequences activ-
ity in order to frame their emerging ability to engage in the professional noticing 
of students’ thinking. While a large proportion of PSTs (70 %) at this stage of the 
course were able to identify the disconnect (attending), fewer (51.4 %) could also 
provide a reason based upon aspects of their MKT (interpreting). In terms of be-
ing able to also respond appropriately (as defined in our coding), and thus being 
successful in all three facets of noticing, 18.1 % (13/72) of PSTs demonstrated an 
ability to do so. This result lends credence to the complexity of utilizing student 
thinking in instructional decisions.

Fishbowl Problem

We believed the fishbowl activity was an appropriate next task in the trajectory to 
support PSTs’ noticing, as it required them to attend to and interpret several exam-
ples of students’ thinking and to respond by writing a story problem appropriate for 
the entire class, while simultaneously attending to specific strategies and learning 
goals when writing number choices. This activity required PSTs to use a variety of 
knowledge bases in concert to make sense of, interpret, and respond to the authentic 
samples of students’ work. Additionally, PSTs had the added benefits of reading and 
interpreting the students’ work without the normal time constraints of face-to-face 
interactions, as well as the opportunity to discuss the students’ work with their peers 
and instructor.

To begin, we examined PSTs’ ability to attend to and interpret the student work 
samples. As described previously, we coded PSTs’ responses to the assignment 

Table 6  Number of PSTs who identified and addressed their reason for the disconnect
Code # PSTs identified # PSTs addressed
Applicability of counting by tens 37 13
Comfort with strategies 22 13
Number choices 15 8
PSTs preservice teacher
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for evidence of understanding students’ multiplication strategies. In order for a re-
sponse to be coded for evidence of understanding students’ thinking, PSTs needed 
to correctly identify or describe the work of each student or groups of students they 
included within their justification. For example, Elise’s response was coded 0 (not 
demonstrating evidence) because she incorrectly interpreted Dante’s work; Dante’s 
work showed he simply added the two numbers provided in the fishbowl problem. 
An excerpt from Elise’s response is below.

Problem A and B are for students like Dante. He worked the problem from left to right to 
see the relationship. So, I made a relationship from left to right by doubling both numbers. 
It was easy for him to get 2, 10 and 5, 10. Since there is a relationship now, maybe it will 
be easier for him to see the pattern and get the correct answer. Here, I would like for him to 
use doubling to answer the problem correct. (Elise)

Amy’s response was coded as demonstrating evidence of knowledge of students’ 
thinking as she correctly identified the strategies of each student she alludes to in 
her rationale.

Since Olivia is partitioning, I would give some higher set numbers so that she can start to 
explore other ways to solve this problem that may be more efficient than partitioning. For 
Tom and Matt I would take out the even counting by 10 numbers from the harder set so they 
can start to look at partitioning or other options for multiplying numbers. But for Amber, 
who is using addition I would like to make an easier set so she can start to grasp the concept 
of multiplying the numbers instead of adding. (Amy)

In this particular context, 75 % of the PSTs (54 of 72) demonstrated evidence of 
attending to and interpreting student thinking, a slight increase from the Counting 
Sequences results. PSTs employed specialized content knowledge in concert with 
their knowledge of content and students in order to be able to correctly interpret and 
identify the samples of students’ work. Specialized content knowledge is employed 
when PSTs use their own knowledge to make sense of the students’ work and to 
describe mathematically their process. PSTs then used their knowledge of content 
and students in order to connect their description with common student strategies 
for multiplication, such as direct modeling, skip counting, and repeated addition.

We examined PSTs’ proposed story problems and number choices in order to 
evaluate their ability to respond to the wide range of student strategies and under-
standings in Molly’s class. We believed the most appropriate story problem for the 
next day would be a multiplication problem with the result unknown. Further, we 
decided in order to support the development of Molly’s learning goals, the story 
problem structure should mirror the structure of the fishbowl problem, in that the 
first blank would represent the number of groups of objects and the second blank 
would represent the number of objects in each group. Below are three sample prob-
lems:

Sam had ________ fish. Sam then gave ________fish to his friend Henry. How many fish 
does Sam have? (Angie)
Pencils are packaged in boxes of ________. There are ________ boxes. How many pencils 
are there? (Becca)
Sarah had _______ flower vases. There were _______ flowers in each vase. How many 
flowers does Sarah have? (Cassie)
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Angie’s problem was coded as inappropriate, as it was a subtraction problem. Bec-
ca’s result unknown multiplication problem was also coded inappropriate, as it did 
not adhere to the expected format by first listing the number of objects in each 
group. We viewed the order in the format as important, as it would support Molly’s 
learning goal of students noticing the relationship between doubling the number of 
groups and the final product. Although our coding rubric did not reflect a distinc-
tion, we viewed Becca’s multiplication problem as “closer” to the original multipli-
cation problem than Angie’s subtraction problem. Cassie’s problem was coded as 
appropriate, as it was a result of unknown multiplication problem in the expected 
format. Employing these criteria, 60 of 72 PSTs (83.3 %) wrote an appropriate story 
problem for the students in Molly’s class.

We then examined the number choices within the 60 appropriate problems. We 
wanted to determine if PSTs addressed their interpretations of the students’ thinking 
as well as Molly’s learning goals within their number choices and how successful 
they were in doing so. We provide and interpret examples from Alice and Laney to 
clarify our analysis. For each PST we present her story problem, number choices, 
and a part of her justification. Alice’s response is below.

Sam had ________ fish bowls. He wanted ________ rocks in each fish bowl. How many 
rocks did Sam have?

A B C D
(4, 10) (3, 20) (5, 20) (6, 12)
(6, 10) (6, 20) (10, 20) (12, 12)

For column A, my focus was on students that weren’t able to skip count by tens to solve 
the problem. This includes students like Alex, Whitney, and Gwen. Since I didn’t think 
that these students would benefit from having one number that was exactly half of another, 
I chose two numbers that were lower, even numbers. It should be easiest for them to use 
tens to skip count. Therefore I chose ten for the second number in each number choice in 
column A. (Alice)

In Alice’s response, we saw evidence of attending and responding to the direct mod-
eling group (Alex and Whitney) as well as to Molly’s learning goal of having stu-
dents use skip counting by tens and groups of tens to solve the problem. We coded 
Alice’s number choices for Column A as successful attempts, as the choices (4, 10) 
and (6, 10) could potentially scaffold both student thinking as well as progress to-
ward the learning goal. Laney’s work provides an example of a coded attempt, but 
with number choices coded as unsuccessful.

Sam had _________ cookie jars. He had ________ cookies in each jar. How many cookies 
did Sam have?

A B C D
(2, 5) (5, 20) (3, 14) (4, 15)
(5, 5) (10, 20) (6, 14) (8, 15)

The next [second] set of numbers I chose were (5, 20) and (10, 20). I chose these because 
I think they are numbers that students can use the skip counting method with. Several stu-
dents were able to skip count well (Max, Matt, and Wes) which seemed to help them. For 
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those students who are ready to move onto skip counting (Sarah, Gwen), this problem is 
a great starter. Since all of the numbers are multiples of 5 it helps students to think of the 
relationships of skip counting by 5’s. (Laney)

Laney’s second pair of number choices is attempting to address students who were 
not able to solve using skip counting (Sarah and Gwen), as well as the learning goal 
of skip counting in general. Her number choices, however, were coded as unsuc-
cessful for both attempts, as they did not scaffold students who were not yet using 
skip counting by tens. Further, Laney’s justification does not distinguish between 
identifying the number of groups and the number in each group.

We examined number choices addressing children’s mathematical thinking from 
two perspectives: How many of the four different categories of children’s strategies 
did PSTs address, and which specific strategies were addressed most often. The 
results displayed in Table 7 reveal a vast majority of PSTs (~ 85 %) attempted to 
address some form of student thinking in their number choices, an increase from 
the Counting Sequences assignment. Approximately, 48 % of PSTs attempted to 
address one or two of the groups of children’s strategies, and 37 % attempted to ad-
dress the thinking of at least three of the four groups (Table 8). On an average, each 
PST who wrote a successful multiplication story problem addressed roughly two 
(1.98) of the four groups of strategies. PSTs were most likely to address children 
who used the skip counting strategy than those who used direct modeling, repeated 
addition, or a doubling strategy.

Unlike the Counting Sequences assignment, for this assignment we also coded 
the success of PSTs’ attempts to address student thinking. In order to be coded as a 
successful attempt, the number choice had to address the student’s current miscon-
ception with the use of the strategy, or “encourage” students to adopt a more effi-
cient strategy. We organized our examination of these data according to the specific 

Number of strategies addressed # PSTs Percent PSTs
4 5 8.3
3 17 28.3
2 19 31.7
1 10 16.7
0 9 15.0
PSTs preservice teacher

Table 7  Fishbowl number 
choices—number of PSTs 
addressing groups of student 
thinking ( N = 60)

Strategy category # PSTs addressed 
(%)

# PSTs successful 
(%)

Direct modeling 31 (51.7) 21 (67.7)
Skip counting 42 (70.0) 18 (42.9)
Repeated addition and 

break apart by place
24 (40.0) 12 (50.0)

Doubling 22 (36.7) 15 (68.2)
PSTs preservice teacher

Table 8  Fishbowl number 
choices—number of PSTs 
addressing specific strategies 
( N =60)
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strategy categories. Using the results from Table 9, we determined success rates for 
the 60 PSTs who wrote appropriate multiplication problems ranged between 43 and 
68 % in addressing student thinking within their number choices. It is interesting 
to note that, although PSTs were most likely to address students who used a skip 
counting strategy, their number choices were least likely to be appropriate. In many 
cases, PSTs wrote skip counting number choices that were less challenging than 
those Molly posed in the fishbowl problem.

In addition, we also examined PSTs’ number choices within the 60 appropriate 
multiplication problems to determine if they explicitly addressed Molly’s learning 
goals. We were interested in how many goals PSTs addressed and which specific 
goals were addressed most often. Although less than 20 % of PSTs addressed all 
three learning goals (Table 9), the vast majority explicitly addressed at least one. 
The doubling and skip counting goals were addressed by over 50 % of the PSTs. 
We also examined PSTs’ number choices in terms of their support of the learning 
goals. In order to be coded as successfully addressing a goal, the number choice 
had to support student development for the learning goal it was intended to address. 
Success rates for the skip count by tens, doubling, and distributive property goals 
were 45.2, 82.4, and 89.5 %, respectively (Table 10). As in the thinking strategies 
data, the learning goal addressed least frequently, the distributive property goal had 
the highest success rate among the 60 PSTs who wrote appropriate multiplication 
problems.

We conclude with an examination of the overall success of PSTs to success-
fully engage in the professional noticing of students’ thinking within the fishbowl 
problem assignment in relation to all 72 PST responses. Our results indicate PSTs 
were relatively successful in attending to and interpreting students’ thinking (75 % 
of 72 PSTs). PSTs were also successful in responding to students in the context of 
writing an appropriate story problem for the next day (83.3 % of 72 PSTs). How-
ever, when asked to create and justify specific number choices to address or further 
student thinking, PSTs were much less successful. Approximately, 29 % of 72 PSTs 
provided appropriate number choices for the direct modeling group, 25 % provided 

Number of goals addressed # PSTs Percent PSTs
3 11 18.3
2 16 26.7
1 24 40.0
0  9 15.0
PSTs preservice teacher

Table 9  Fishbowl number 
choices—number of PSTs 
addressing learning goals 
( N = 60)

Learning goal # PSTs addressed 
(%)

# PSTs successful 
(%)

Skip count by 10s 31 (51.7) 14 (45.2)
Doubling 34 (56.7) 28 (82.4)
Distributive property 19 (31.7) 17 (89.5)
PSTs preservice teacher

Table 10  Fishbowl number 
choices—number of PSTs 
addressing specific learning 
goals ( N = 60)
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appropriate number choices for the skip counting group, 21 % provided appropriate 
number choices for the doubling group, and 17 % provided appropriate number 
choices for the repeated addition group—an average of 23 % for each category of 
student strategies. Similar results are evident when we examine PSTs’ ability to 
consider specific learning goals while responding to student thinking. Less than 
20 % of the 72 PSTs selected appropriate numbers to address the skip count by tens 
learning goal, 24 % selected appropriate numbers to address the distributive prop-
erty learning goal, and 39 % selected appropriate numbers to address the doubling 
learning goal.

The fishbowl problem data support our results from the Counting Sequences ac-
tivity. We can see by this stage in our instructional sequence a majority of the PSTs 
attended to and interpreted the student work provided and were able to write an 
appropriate story problem type. However, the complexity of this task made it very 
difficult for PSTs to write appropriate number choices for the next story problem. 
Our results demonstrate (a) PSTs had difficulty in addressing multiple groups of 
student thinking simultaneously; (b) when PSTs did attempt to write specific num-
ber choices to address or further student thinking, they were not often successful in 
doing so; and (c) PSTs had difficulty writing number choices that attended to both 
student thinking and learning goals.

Discussion

We set out to examine the question, “How can our series of professional noticing ac-
tivities support PSTs’ abilities to pose problems that build on students’ mathemati-
cal thinking?” We intended to demonstrate how a sequence of activities, designed 
to scaffold PSTs’ development along three dimensions, could be useful in helping 
PSTs learn to engage in the professional noticing of children’s mathematics. Our re-
sults indicated PSTs’ experiences across the three activities and assignments result-
ed in relatively successful engagement in the three facets of professional noticing, 
as measured within the Counting Sequences and fishbowl assignments. The average 
percentage from these two activities revealed 73 % of PSTs demonstrated evidence 
of attending to student strategies, 63 % demonstrated evidence of interpreting stu-
dent thinking, and approximately 20 % demonstrated evidence of utilizing student 
thinking in posing their next problem.

As a frame of reference for these percentages, we cite Jacobs and colleagues’ 
(2010) examination of teachers’ professional noticing of children’s mathematics. In 
the study, teachers were given two mathematical tasks, complete with examples of 
children’s responses to interpret and respond to. Teachers’ responses were analyzed 
and rated for each of the three skills involved in professional noticing. The study 
also included a group of PSTs enrolled in a first mathematics for teachers content 
course. The PSTs’ results served as baseline data and helped demonstrate that as 
teachers gain experience and training, they are more successful in engaging in the 
professional noticing of children’s mathematics (Jacobs et al. 2010). PSTs in their 
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study demonstrated evidence of attending to student strategies 46 % of the time. 
In terms of interpreting student strategies, 47 % of PSTs demonstrated limited evi-
dence, while 53 % provided no evidence. Results for responding based on student 
understanding were even less encouraging, as 14 % provided limited evidence and 
86 % provided a lack of evidence (Jacobs et al. 2010).

We recognize that the differences in tasks, scales, and measures used in the two 
studies make it harder to justify direct comparisons between the groups of PSTs. 
Further, the PSTs in our study were provided explicit instruction in the aspects of 
professional noticing, while the PSTs in the study Jacobs et al. (2010) had conduct-
ed had not received any instruction prior to their participation in the study. Given 
these differences, it is not surprising that different percentages of PSTs in each study 
were successful at attending, interpreting, and responding. More interesting are the 
similarities across our findings, despite the differences in the studies. As we exam-
ine the relative success rate across the three skills of professional noticing, we see 
PSTs in each study are far less successful in responding to student thinking. Though 
both groups of PSTs demonstrated emerging abilities to interpret student thinking 
and “diagnose” mathematical inconsistencies, they have either not yet developed 
the appropriate knowledge bases, or are unaware how to leverage them, in order 
to respond effectively in “prescribing” the next treatment. This result supports the 
importance of teaching experience on the development of this practice (Jacobs et al. 
2010).

In other ways, our results differ from those of Jacobs and her colleagues. Examin-
ing the success rates within each skill, our participants appear to be more advanced 
in their professional noticing abilities. PSTs’ educational experience can account 
for some of these differences. These differences suggest that the continued develop-
ment of PSTs’ mathematical knowledge for teaching, either through mathematics 
courses, elementary content specific courses, or methods course experiences, can 
improve PSTs’ ability to successfully engage in professional noticing. One impli-
cation for the field of mathematics education is to ensure elementary mathematics 
content courses provide opportunities for PSTs to engage in the analysis of chil-
dren’s work, as well as to develop, understand, and practice commonly developed 
student strategies for computation.

Beyond the differences explained by educational background, we posit our se-
quence of activities also influenced PSTs’ ability to develop their skills in the pro-
fessional noticing of students’ thinking within the context of the methods course. 
As evidenced by the percentage comparisons between the Counting Sequences and 
fishbowl assignments, our PSTs increased their abilities in attending (71–75 % of 
PSTs successful), interpreting (51–75 %), and responding to student thinking (18–
23 %). The increase in attending and interpreting percentages suggests PSTs im-
proved their ability to make sense of and evaluate students’ thinking strategies in 
a variety of mathematical contexts. This improvement may reflect a development 
in or employment of specialized content knowledge and knowledge of content and 
students through repeated opportunities to examine and discuss authentic student 
work (both video and written). PSTs’ progress within responding is still lagging 
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much further behind. We believe there must also be ways to address these concerns 
within the methods course, an issue to which we now turn our attention.

We recognize the skills of professional noticing as interrelated, and as teachers 
interact with children’s mathematics, they shift between and within attending, in-
terpreting, and responding in a fluid manner. In terms of attending to and interpret-
ing children’s mathematics, we believe our PSTs’ prior educational experiences, 
supported by our series of activities, provided them with a strong foundation for 
success in these aspects of noticing. In comparison, however, these experiences did 
not result in comparable gains in responding to children’s mathematical thinking. 
Our findings have two main implications for teacher education in terms of the over-
all development of PSTs’ professional noticing of students’ thinking: (a) methods 
course activities require significant scaffolds to support PSTs’ incremental devel-
opment; and (b) beyond approximations of practice (Grossman et al. 2009), PSTs 
require opportunities to engage directly with students and their thinking.

Scaffolds and educative supports that address PSTs’ ability to respond appro-
priately to student thinking are vital in methods course activities that target profes-
sional noticing. The professional noticing of children’s mathematics is a difficult 
practice, even for experienced teachers who have received professional develop-
ment in this area. While we believed our trajectories of development gradually in-
creased the complexity of situations in which PSTs were engaged, we recognize that 
still more supports are necessary. For example, we see a need for another activity 
and assignment prior to the fishbowl problem, as there is a relatively large leap in 
complexity from asking PSTs to respond to a single general misconception, to ask-
ing them to respond to a large number of students’ work, while also considering 
a variety of learning goals. Including an activity that expands PSTs’ responsibil-
ity from addressing a single concept to a task situated in small group instruction 
addressing a single learning goal might be an appropriate next step in supporting 
PSTs’ development.

A second support necessary in our case, and worthwhile as a suggestion for all 
methods courses, would explicitly address the question, “What makes a number 
choice appropriate or inappropriate to support/extend a student’s current way of 
thinking?” While many PSTs in the fishbowl activity wrote a story problem with ap-
propriate structure, their number choices did not often reflect a successful response 
to students’ thinking. An activity that presents an example of student thinking and 
requires PSTs to select and justify an appropriate number choice from a list of pos-
sibilities would support PSTs’ developing ability to interpret, evaluate, and write ap-
propriate number choices in consideration of children’s current and future strategies.

We believe our sequence of activities, as approximations of practice, can provide 
PSTs with opportunity to develop facility with the skills of professional noticing of 
students’ thinking. However, as Jacobs et al. (2010) demonstrated, teaching experi-
ence also plays a large role in developing expertise in this area. While sustained 
teaching experience is not a part of the methods course, we believe affording PSTs 
opportunity to enact this practice in real time with actual students within the struc-
ture of a methods course would be extremely beneficial. To begin with, it is crucial 
we help PSTs to problematize the work of teaching. In our experience, this rarely 
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happens for PSTs outside of face-to-face interactions with children. We suggest that 
engaging PSTs in a short one-on-one problem-posing experience with a student 
prior to the sequence of methods course activities can help develop PSTs’ under-
standing of the complexity of teaching. After PSTs are faced with this struggle, they 
may be more able to relate to the construct of professional noticing. Then, following 
our sequence of experiences, a final opportunity for PSTs to interact one-on-one 
with a student and engage in the practice of professional noticing of student think-
ing would then take place.
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later result in anxiety (Quinn 1997). Preservice elementary teachers (PSETs) have 
tended to view mathematics as a system of rules and procedures that must be trans-
ferred to students (Ball 1990; Foss and Kleinsasser 1996). Moreover, studies have 
reported that PSETs tend to view mathematics negatively or neutrally, but rarely 
positively (Ambrose 2004; Ball 1990; Bekdemir 2010; Quinn 1997). It is important 
to understand the attitudes PSETs hold because, these attitudes have the potential to 
influence the instructional practices they adopt. Ambrose (2004) suggested that math-
ematics educators focus on the range of strengths PSETs bring, such as the PSETs’ 
view of teachers as nurturers of children. Jong and Hodges (2011) have also argued 
that mathematics educators take an asset-based approach to build on PSETs’ prior 
knowledge and experiences. They found that it was possible for PSETs to experience 
positive changes in attitudes as a result of completing a mathematics methods course 
that connected past experiences with reform-oriented methods. We believe that our 
module on professional noticing within the mathematics methods courses could also 
positively affect PSETs’ attitudes toward mathematics, because the module supports 
PSETs’ development of strategies that might improve their own view of mathemat-
ics and teaching mathematics. Thus, our work focuses on PSETs and their potential 
changes in attitudes toward mathematics by engaging them in professional noticing 
of children’s mathematical thinking in the context of an early numeracy progression.

This research is informed by the literature on teachers’ attitudes toward math-
ematics (Grootenboer 2006; McLeod 1992; Philipp 2007), professional noticing 
(Jacobs et al. 2010), and the progression of early numeracy (Clements and Sarama 
2009; Steffe 1992; Steffe et al. 1988; Steffe et al. 1983). Our previous analyses of 
the data from this project focused specifically on a learning experience using video 
vignettes to teach PSETs about professional noticing within the context of early 
numeracy. That analysis revealed significant gains in the professional noticing skills 
of the PSETs involved in this instructional module (Schack et al. 2013). Research 
has shown that positive correlations exist between PSETs’ attitudes toward math-
ematics and their content knowledge (Matthews and Seaman 2007; Quinn 1997). 
Based on the literature and our previous analyses, we aimed to expand our analyses 
to examine whether similar relationships exist between our PSETs’ attitudes toward 
mathematics and their professional noticing skills. Specifically, we investigated the 
following research questions: Did PSETs who engaged in a professional noticing 
learning experience exhibit improvements in their attitudes toward mathematics? If 
so, what correlations exist between aspects of PSETs’ professional noticing perfor-
mance and attitudes toward mathematics?

Theoretical Framework and Literature Review

Preservice Elementary Teachers’ Attitudes Toward 
Mathematics

Research on attitudes toward mathematics has become an increasingly prominent 
area of study. Attitudes are often defined as a component of affect (Philipp 2007), 
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which has various meanings in the field of psychology (Chamberlin 2010). Math-
ematics educators have attempted to differentiate attitudes from beliefs by charac-
terizing beliefs as having true or false orientations (Philipp 2007), but the field still 
varies on its use of definitions of beliefs (Beswick 2005; Pajares 1992). We focus on 
attitudes because mathematics educators are more consistent in their definition of 
attitudes in contrast to beliefs. For the purpose of our study, we draw upon Philipp’s 
(2007) definition of attitudes as “manners of acting, feeling, or thinking that show 
one’s disposition or opinion…. Attitudes, like emotions, may involve positive or 
negative feelings” (p. 259).

In the context of teacher education, researchers have studied PSETs’ attitudes 
toward mathematics through coursework and field experiences (Jong and Hodges 
2011; Quinn 1997; Wilkins 2008). Several studies have shown positive changes and 
significant relationships between PSETs’ attitudes toward mathematics and their 
content knowledge (Matthews and Seaman 2007; Quinn 1997; Young-Loveridge 
et al. 2012). It is not a surprise that PSETs with stronger content knowledge also 
develop a more positive attitude toward mathematics because they are more likely 
to show favor toward a subject in which they are more confident. Quinn (1997) 
used Aiken’s Revised Mathematics Attitudes Scale to investigate attitudes and 
found that there were statistically significant positive changes in PSETs’ attitudes 
toward mathematics, but no significant changes in attitudes toward mathematics of 
preservice secondary mathematics teachers, who entered with higher attitude mea-
sures. He argued, and we agree, that the methods course could play a critical role in 
the improvement of attitudes toward mathematics, especially for PSETs who have 
negative attitudes toward mathematics. Matthews and Seaman (2007) also used Ai-
ken’s Revised Mathematics Attitudes Scale to examine the mathematics attitudes of 
PSETs enrolled in a course that emphasized a conceptual understanding of mathe-
matics. Their results indicated that the course had a significant positive influence on 
PSETs’ attitudes toward mathematics, along with their content knowledge. Young-
Loveridge et al. (2012) found that if PSETs were “good at mathematics [it] did not 
automatically mean that [they] liked mathematics” (p. 38). Their study challenged 
the notion that those who have strong mathematical content knowledge also have a 
positive attitude toward mathematics. While studies have examined the relationship 
between PSETs’ attitudes and their mathematics content knowledge, there is an ab-
sence of studies that examine PSETs’ attitudes and their professional noticing skills.

We also know that stronger content knowledge alone does not lead to effective 
teaching (Hill and Ball 2004). In fact, Wilkins (2008) found that strong content 
knowledge was negatively related to beliefs about effective mathematics instruc-
tion that aligns with practices recommended by the National Council of Teachers 
of Mathematics (2000). That is to say, teachers who had stronger content knowl-
edge did not necessarily agree with more reform-oriented practices in mathematics. 
Wilkins (2008) also found that beliefs about mathematics have a strong influence 
on teachers’ practices, although teachers with more positive attitudes toward math-
ematics were more likely to have an orientation toward inquiry-based practices. For 
example, teachers who believe that mathematics is primarily a system of rules and 
procedures that must be transferred to students will instruct in a manner that reflects 
this belief whether or not they have a positive attitude. However, those with a posi-
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tive attitude are more likely to hold beliefs that reflect inquiry-based practices. This 
suggests that building positive attitudes toward mathematics in PSETs could lead to 
their adoption of more inquiry-based practices. Unlike the aforementioned studies, 
Wilkins used a combination of items to measure attitudes to include items about 
the enjoyment of teaching mathematics along with liking mathematics as a subject. 
Schackow (2005) used the Attitudes Toward Mathematics Inventory (ATMI) (Tapia 
and Marsh 2005), which was not originally designed for use with preservice teach-
ers; however, by changing two questions to make it more suitable for preservice 
teachers, she found significant gains in PSETs’ attitudes toward mathematics. In 
our study, we used Schackow’s revised version of the ATMI, since it was edited for 
use with preservice teachers, and the ATMI (Tapia and Marsh 2005) also measures 
multiple factors of attitudes rather than a single factor. While many mathematics 
education researchers have attempted to examine changes in PSETs’ attitudes, there 
is still more work needed in the field on identifying conditions to support PSETs 
in developing positive attitudes (Grootenboer 2006; Jong and Hodges 2011; Quinn 
1997; Wilkins 2008). Thus, we have established an instructional module to aid in in-
creasing PSETs’ professional noticing skills, and subsequently, supporting PSETs’ 
attitudinal improvement.

Our instructional module situates the professional noticing of children’s math-
ematics in the context of mathematics progressions, specifically an early numeracy 
progression, illustrated through video representations of children’s work. The focus 
on children’s mathematical work capitalizes on PSETs’ nurturing attitudes about 
teaching (Ambrose 2004) and also reveals to them the complexities of the math-
ematics content. The content of early numeracy, on the surface, seems simple for 
PSETs to understand, because it encompasses such skills as forward and backward 
counting, skip counting, and addition and subtraction of numbers within 100. As 
PSETs view video vignettes of children engaged in mathematical thinking along 
the early numeracy progression, they are exposed to the idea that counting, for 
example, is not an “all or nothing” skill. The children in the videos used during 
our instructional module display nuanced understandings and skills that demon-
strate the incremental but important steps through which children progress. Provid-
ing meaningful and focused experiences in both coursework and clinical or field 
activities, as the aforementioned studies show, can potentially relate to a positive 
shift in PSETs’ attitudes toward mathematics. Our intent is to investigate whether 
engaging PSETs in a focused experience that integrates representations of practice 
with coursework and is specifically aimed to develop professional noticing of chil-
dren’s mathematical thinking results in a positive shift in PSETs’ attitudes toward 
mathematics. If PSETs’ attitudes shift positively in relation to developing profes-
sional noticing skills, the improved attitudes could result in PSET adoption of more 
reform-oriented instructional practices. And, incorporation of professional notic-
ing skill development in preservice coursework would be one tool for improving 
PSETs’ attitudes toward mathematics.

Research on attitudes toward mathematics and noticing skills of teachers, indi-
vidually, is not new; however, there is no previous research comparing the profes-
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sional noticing capacities with attitudes toward mathematics, within the same study. 
Due to the importance of both of those constructs, and supported by the evidence 
by Wilkins (2008) in which attitudes were found to have an influence on teachers’ 
practices, we think a better understanding of this relationship seems warranted.

Professional Noticing

The construct of professional noticing, as defined by Jacobs et al. (2010), is “a set 
of three interrelated skills: attending to children’s strategies, interpreting children’s 
understandings, and deciding how to respond on the basis of children’s understand-
ings” (p. 172). The first skill, attending, contains physical evidences observed from 
the student and teacher, such as eye movements, finger counting, and touching ob-
jects to count. The second skill, interpreting, is determining how those observations 
in the attending category can inform the observer on the mathematical abilities of 
the students. Finally, deciding involves the next steps in the process, which can 
include diagnostic or instructional decision making. Jacobs et al. (2010) found that 
teaching experience alone does not contribute to an increase in professional notic-
ing skills; professional development in the area of professional noticing is needed 
to adequately develop these skills, especially in the deciding component. Several 
studies have found that closer attention to children’s mathematical thinking can 
significantly impact student learning (Carpenter et al. 1999; Kersting et al. 2010); 
however, attention to the three interrelated components of professional noticing is 
missing from much of the previous research.

Numeracy and Counting

The term numeracy, a portmanteau of “numerical literacy,” is typically invoked 
to describe an understanding of number and arithmetic operations. This area of 
mathematical learning has been the subject of considerable study over the past four 
decades (Gelman and Gallistel 1978; Siegler and Robinson 1982; von Glasersfeld 
1982; Steffe et al. 1983; Fuson 1988; Steffe 1992; Wright et al. 2006; Clements and 
Sarama 2009; Thomas and Harkness 2013). In the USA, young children’s initial 
numeracy experiences typically involve counting (Steffe et al. 1983, 1988; Wright 
1994). Depending upon the context, counting can describe several different activi-
ties. For example, the term might be used to describe the production of a specified 
verbal sequence (e.g., “four, five, six, seven”). Similarly, counting might also refer 
to verbal utterances when presented with a sequence of numerals. These descrip-
tions of counting, however, fail to capture the potentially quantitative aspect of the 
activity. To capture this aspect, Steffe et al. (1983) investigated children’s count-
ing activity in the face of problematic situations dealing explicitly with quantities. 
Wright and his colleagues describe this type of quantitative counting as “the coordi-
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nation of each uttered number word with the conceptual production of a unit item” 
(Wright et al. 2006, p. 52).

To further define early numeracy progression, Steffe and his colleagues (Olive 
2001; Steffe et al. 1983, 1988; Steffe 1992) put forward a framework, ultimate-
ly termed the Stages of Early Arithmetic Learning (SEAL), that is an extremely 
descriptive progression constructed from highly authentic research methods. This 
progression was used in our previous research (Schack et al. 2013) to further inves-
tigate the interpretations of mathematical thinking within the professional noticing 
context. We hypothesized that combining the early numeracy progression of SEAL 
into a learning experience focused on professional noticing and then using represen-
tations of practice in an authentic diagnostic setting would improve PSETs’ attitudes 
toward mathematics.

Methodology

Instructional Module Description

The instructional module was a component of the methods or blended course at each 
institution. The module consisted of multiple in-class sessions in which profession-
al noticing was developed in the context of early numeracy, specifically, SEAL, and 
organized around multiple video cases of children engaged in early numeracy ex-
periences. The decomposition of professional noticing into three interrelated skills 
allowed for the skills to be progressively nested (Boerst et al. 2011) throughout the 
module sessions. The instructional module embedded video vignettes throughout 
the lessons to provide examples of one-on-one interviews with children for PSETs to 
practice their newfound professional noticing skills. The first two sessions focused 
solely on the development of attending. Subsequent sessions further developed at-
tending with interpreting and deciding. SEAL was nested within the development 
of professional noticing and integrated through the video cases as representations of 
practice. Additional assignments throughout the instructional module included as-
signed readings on SEAL and video-based assessments and other activities, such as 
role-playing, small group discussions, whole-class discussions, and another activity 
entitled “World Café,” where PSETs rotate around the room discussing their obser-
vations from a selected video clip and creating Venn diagrams of their findings. The 
culminating experience was an assignment that required the PSETs to conduct and 
record (on video) at least one diagnostic interview with a child during their field 
experience—an approximation of practice, one of the three pedagogies of prac-
tice proposed by Grossman et al. (2009), where they addressed the three stages of 
professional noticing within their written analyses of their interview. Schack et al. 
(2013) provides further information about the individual modules, rationale for the 
selection of early numeracy as the mathematics focus, and measures taken to ensure 
fidelity across multiple sites.



Examining the Relationship Between Preservice Elementary … 225

Participants

All 270 PSETs enrolled in the participating researchers’ 11 mathematics education 
course sections over a two-year period participated in the module. They were pre-
dominantly women, enrolled in an elementary mathematics method or a blended 
content and methods course at one of the five participating public universities in 
a south central state. The five institutions’ populations, taken as a whole, represent 
varying regions of the state because of their locations in central, northern, western, 
and eastern parts of the state. The populations also represent rural, suburban, and 
urban areas. Notably, two of the regional universities draw much of their popula-
tion from central Appalachia, a traditionally underrepresented population in science, 
technology, engineering, and mathematics (STEM) fields. The majority of the partic-
ipants were traditional university students, while some were second-career students.

Data Sources and Analyses

Data analyzed for this study include that which was collected from the 123 PSETs 
who provided consent and responded to all questions on both the pre- and post-
assessments of professional noticing and the pre- and post-assessment of the ATMI 
(Tapia and Marsh 2005). The number of PSETs who did not complete all pre- and 
post-assessments and those who completed them yet left items blank, particularly 
on the ATMI, affected the response rate. One can only speculate as to the reasons 
for leaving items blank.

Professional Noticing Assessment A pre- and post-assessment was used to mea-
sure the changes in professional noticing at the beginning of the semester and again 
at the end of the semester. A video of a diagnostic interview with a child completing 
a comparison, difference unknown task (Carpenter et al. 1999) was used, and both 
pre- and post-assessments were identical in prompts and video. The brief 25-sec 
video shows an interviewer presenting a first-grade student with a partially screened 
task that extends beyond finger range. The screened component consists of 11 sea-
shells hidden by the interviewer’s hand and the visible component is seven red 
counting bears in a row. The student is asked to determine how many more shells 
there are than bears. Counting the bears from one and continuing the count on his 
fingers until he reaches 11, the student then glances at his raised fingers and cor-
rectly responds, “I’m gonna have four left over.”

After the PSETs watched the video, they were asked to respond to the following 
prompts and questions: (1) Please describe in detail what this child did in response 
to this problem, (2) Please explain what you learned about this child’s understand-
ing of mathematics, and (3) Pretend that you are the teacher of this child. What 
problems or questions might you pose next? Provide a rationale for your answer. 
These prompts were drawn from the work of Jacobs et al. (2010) and each prompt 
addresses one of the components of professional noticing.
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The researchers, individually and as a group, examined the clip to reach a con-
sensus on the key response details for each professional noticing prompt to develop 
scoring benchmarks along the continuum for each of the prompts. A sample set of 
data was examined to extract qualitatively different response types for each prompt 
and the response types were subsequently examined for emergent themes (Glaser 
and Strauss 1967). The emergent themes were coupled with the researchers’ key re-
sponse details to define the benchmarks or rankings. This process was used for each 
prompt and resulted in four potential rankings for attending, three for interpreting, 
and three for deciding. The high rank of four for attending represents an emergent 
theme from PSET responses that represented an elaboration beyond the salient at-
tending features. A similar elaborating theme did not emerge for the remaining two 
professional noticing components.

Teams of two scorers ranked the data, and ranks by different scorers were com-
pared. Discrepancies in ranks were resolved through discussion and/or a third scorer 
if a consensus was not met. The desire to better standardize rankings by multiple 
scorers and to make the ranking process more efficient led to the development of a 
decision tree-scoring device with multiple levels of questions to guide the scorers’ 
rankings. Interrater reliability across six scorers using the decision trees averaged 
83 % (Schack et al. 2013).

Attitudes Toward Mathematics Inventory The ATMI was administered as a pre- 
and post-assessment at approximately the same time as the professional noticing 
assessment. The ATMI is an instrument consisting of 40 Likert-scale items with five 
response choices ranging from strongly disagree to strongly agree. Eleven items are 
reverse scored. We selected the ATMI over Aiken’s (1963) Revised Mathematics 
Attitudes Scale, because the ATMI included more factors about mathematics. Fac-
tor analysis on the ATMI resulted in four factors associated with attitudes toward 
mathematics: value, enjoyment, self-confidence, and motivation (Tapia and Marsh 
2005), whereas Aiken’s instrument considered only enjoyment and value. Table 1 
illustrates sample items by factor with reverse-scored sample items noted. The total 
number of items per factor is also included. Scores are determined by summing 
all items and items within factors. Maximum possible scores for each factor vary 
because of the differing number of items per factor.

The ATMI was determined by Tapia and Marsh (2004) to be a reliable instrument 
with a Cronbach alpha coefficient of 0.97. Cronbach alpha coefficients for each of 
the four factors range from 0.88 (motivation) to 0.95 (self-confidence). Test–retest 
reliability was established with a Pearson correlation coefficient of 0.89 for the total 
scale. Coefficients of the subscales ranged from 0.70 (value) to 0.88 (self-confi-
dence) (Tapia and Marsh 2004). The ATMI was initially used with secondary stu-
dents but has since been used with postsecondary students (Schackow 2005; Tapia 
2012). Schackow (2005) modified two items for use with a sample of PSETs. She 
determined a Cronbach alpha coefficient of 0.98 for this sample, indicating internal 
consistency of the modified instrument. Our study used the instrument modified by 
Schackow for use with preservice teachers.



Examining the Relationship Between Preservice Elementary … 227

Analyses Paired t-tests were used to examine the relationships between the pre- 
and post-assessment scores for the ATMI. However, due to the ordinal nature of 
the data for the professional noticing scores, similar parametric tests could not be 
used to test for significance for professional noticing measures or the correlation 
between attitudes and professional noticing. A statistical test using Spearman’s rho 
was used to determine, if a correlation exists between the change scores of the two 
assessments, and further investigation by quartile on the ATMI was also conducted.

Results

Attitudes Toward Mathematics Inventory

Paired t-tests were applied to ATMI data to examine PSET change in attitudes to-
ward mathematics from pre- to post-assessment. There were statistically signifi-
cant increases in the enjoyment, self-confidence, and motivation factors. Table 2 
summarizes the paired t-test results for the 123 cases. There was not a statistically 
significant change in the fourth factor, value, when all 123 cases were included. 
However, when the 15 cases that achieved the maximum possible score on the value 
factor on the pre-assessment were removed, there was a statistically significant in-
crease in this factor from pre- to post-assessment ( t = 2.181, p = 0.031).

The significance of the change in the value factor, after removing the data for 
maximum possible scores on the pre-assessment, indicated a need to further exam-
ine the change scores of all factors more closely. For example, if a PSET started at 

Table 1  Sample Attitudes Toward Mathematics Inventory items by factor
Factor Sample attitudes
Value (10 items) Mathematics is a very worthwhile and necessary subject. Math-

ematics courses would be very helpful no matter what grade 
level I teach.

Enjoyment (10 items) I really like mathematics. I have usually enjoyed studying 
mathematics in school.

Self-confidence (15 items) Mathematics does not scare me at all. Studying mathematics 
makes me feel nervous. (reverse scored)

Motivation (5 items) The challenge of mathematics appeals to me. I would like to 
avoid teaching mathematics. (reverse scored)

N t p-value
Value 123 −1.543 0.125
Enjoyment 123 −3.070 0.003
Self-confidence 123 −5.057 < 0.001
Motivation 123 −2.733 0.007

Table 2  Pre- and post-
assessment results of paired 
t-tests
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a lower score for a factor, the potential range of increase was much greater than, 
for example, a PSET with a pre-assessment score at or near the maximum. Hence, 
the ATMI data were examined within pre-assessment quartiles. Figure 1 shows the 
percent of PSETs increasing for each factor by pre-assessment quartile. The percent 
of PSETs with a pre-assessment score in the lowest quartile showing an increase on 
the post-assessment ranged from 63 to 77 % for the four factors. Remarkably, even 
those PSETs in the highest pre-assessment quartile for motivation and self-confi-
dence showed that 48 and 57 % of the PSETs increased their scores, respectively.

Overall, more than 50 % of the PSETs increased from pre- to post-assessment 
for each of the four factors. The self-confidence factor had the greatest percent of 
PSETs increasing with 65 %. The 95 % confidence interval for the “improvement” 
rate for this factor was 55.9–73.4 %. The value that scored the lowest percentage of 
increase was motivation, with 51 % of PSETs demonstrating an increase. Value and 
enjoyment revealed increases at 54  and 55 %, respectively. Regrettably, approxi-
mately 30 % of PSETs decreased in each category except self-confidence, where the 
percentage of decrease was 21 %; thus, the remaining PSETs remained unchanged 
in their scores on those factors.
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Fig. 1  Percent PSET increase within factors by pre-assessment quartiles
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Professional Noticing Assessment

Our research questions sought to determine the correlation of changes between 
PSETs’ professional noticing and attitudes toward mathematics. Figure 2 shows 
the overall trend of improved PSET professional noticing total scores. Ten is the 
maximum possible score, while a score of three is the minimum.

Professional noticing is a complex construct (Jacobs et al. 2010) with the poten-
tial for the three components—attending, interpreting, and deciding—to be inter-
dependent. Spearman’s rho correlations were performed to determine correlations 
between the professional noticing components on the pre- and post-assessments as 
well as on the interrelationships of the changes in the components. Interestingly, the 
results indicated no significant correlation between any two components on the pre-
assessment and no significant correlations between changes in components from 
pre- to post-assessment, yet there were significant positive correlations between 
components on the post-assessment. Tables 3 and 4 show the results of the Spear-
man’s rho correlations.

The professional noticing data were analyzed using nonparametric statistics be-
cause of the ordinal nature of the rankings. Wilcoxon signed-rank tests were em-
ployed to determine if there was growth in each component of PSETs’ professional 
noticing. The results, indicating statistically significant increases in all three com-
ponents, are displayed in Table 5. The larger z-score in deciding can be attributed 
to that component receiving the largest overall growth, relative to attending and 
interpreting. This growth is illustrated by comparing the top section of bars from pre 
to post for each component in Fig. 3.

At first examination, the lack of correlations among components on the pre-
assessment and on changes from pre- to post-assessment, along with the significant 
correlations among the professional noticing components on the post-assessment, 
is a bit confounding. However, consideration of the trends we observed in the data 
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Scale N z p-value
Attending 1–4 123 −3.466 < 0.001
Interpreting 1–3 123 −3.841 < 0.001
Deciding 1–3 123 −5.378 < 0.001

Table 5  Results of 
Wilcoxon signed-rank tests 
on professional noticing 
components from pre- to 
post-assessment

Table 3  Spearman’s rho correlations between professional noticing components on pre- and 
post-assessments

Pre-assessment Post-assessment
Variable 1 Variable 2 N Spearman p-value Spearman p-value
Attending Deciding 123 0.117 0.196 0.270* 0.003
Attending Interpreting 123 0.108 0.234 0.339* < 0.001
Deciding Interpreting 123 0.169 0.061 0.235* 0.009
* Significant at p = .01.

Table 4  Spearman’s rho correlations between professional noticing components on pre/post 
changes

Pre/Post change
Variable 1 Variable 2 N Spearman p-value
Change in 

attending
Change in 

deciding
123 0.134 0.139

Change in 
attending

Change in 
interpreting

123 0.146 0.108

Change in  
deciding

Change in 
interpreting

123 0.124 0.173
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enlightens this result. Figure 3 illustrates the relative changes in the number of 
PSETs scoring each rank on pre- and post-assessment for each professional notic-
ing component. On the pre-assessment, PSETs’ attending scores were spread fairly 
evenly across ranks of 1, 2, and 3 or greater, while their pre-assessment scores in 
interpreting and deciding tended to cluster in the lowest rank of 1, resulting in a 
lack of correlations among components but greater room for growth in interpreting 
and deciding. Growth in these two components, particularly deciding, was greater 
than attending, resulting in a lack of correlation among components on growth. The 
encouraging outcome is on the post-assessment, where the spread across ranks was 
more similar on all three components (Fig. 3), especially when comparing attending 
and deciding, resulting in significant correlations among components. One might 
interpret this to mean that many PSETs enter methods with an ability to observe the 
details of children’s mathematics, but with less skill in interpreting and deciding. 
This is consistent with Jacobs et al.’s (2010) conclusion that learning to profession-
ally notice requires deliberate professional development in each of the components 
of professional noticing. Furthermore, the ability to attend to children’s mathemat-
ics that many PSETs bring to a methods course lends support to the perspective of 
Ambrose (2004) and Jong and Hodges (2011) to take an asset-based approach to 
PSET education, building upon their view of teachers as nurturers of children.

Correlation Between Professional Noticing Assessment  
and Attitudes Toward Mathematics Inventory (ATMI)

Spearman’s rho correlations were employed to examine the correlation between the 
change in professional noticing and the change in attitudes toward mathematics. For 
reasons described earlier, the individual components of professional noticing and 
the factors of ATMI were analyzed for significant growth. While significant PSET 
growth was found in all three professional noticing components and in three of 
four factors of the ATMI, there was no statistically significant correlation between 
changes in professional noticing and changes in attitudes toward mathematics at the 
component/factor level or when overall scores of both professional noticing and 
ATMI were analyzed ( rs =−0.020, p = 0.828). The results of the correlation of chang-
es in each professional noticing component and ATMI factor are found in Table 6.

Discussion and Implications

In this study, we hypothesized that developing PSETs’ professional noticing skills in 
the context of children’s early numeracy would relate to the improvement of PSETs’ 
attitudes toward mathematics. Our hypothesis included the expectation that viewing 
children doing mathematics might capitalize on an oft-reported reason PSETs give 
for entering the teaching profession—their view of teachers as nurturers of children 
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(Ambrose 2004)—by motivating them to think mathematically themselves in order 
to better assist children in learning mathematics. Furthermore, the context of SEAL 
provides details of the common progression of early numeracy and children’s math-
ematics (Steffe 2013), encouraging PSETs to see mathematics through the lens of a 
child, focusing on what children can do conceptually rather than on the procedures 
of mathematics that children cannot yet do, procedures that characterize what many 
PSETs believe mathematics to be. Our intention of this research is to push PSETs 
beyond their adult-level “first-order mathematical knowledge,” as described by 
Steffe (2013), and to better understand the “second-order” knowledge, also known 
as the “mathematics of children.” It is “frequently necessary to construct new ways 
of thinking mathematically to make adequate interpretations” (Steffe 2013, p. 368). 
By enhancing PSETs’ understanding of children’s mathematical thinking, they can, 
in turn, increase their own understanding of mathematics by constructing new ways 
of thinking, both pedagogically and mathematically, leading to greater self-confi-
dence and, in general, more positive attitudes toward mathematics, and can contrib-
ute to closing the gap between research and practice.

The significant increase by PSETs in this study on three of the four factors of the 
ATMI (enjoyment, self-confidence, and motivation), and in the fourth factor (value) 
when maximum possible pre-scores are removed, is encouraging. This finding re-
vealed the possibility that components of PSETs’ attitudes can improve when expe-
riencing a course where professional noticing skills are explicitly taught, modeled, 
and reinforced. Building on Wilkins’ (2008) finding that positive attitudes toward 
mathematics resulted in beliefs aligned with reform-oriented practices, the positive 
shift of PSETs’ attitudes in this study has the potential to result in the PSETs’ adopt-
ing more reform-oriented instructional practices in mathematics. We are cautious 
with this claim as attitudes have many influences, including parents, peers, and past 
teachers (Tapia and Marsh 2004).

While we are encouraged by the growth in both professional noticing skills and 
in attitudes toward mathematics, the lack of correlation between the two presents the 
question as to why. There are several possible reasons why the lack of correlation oc-
curs in this study. We will address two of these possible reasons. One possible reason 

Table 6  Spearman’s rho correlations between changes in professional noticing components and 
attitudes factors

Change in 
value

Change in 
enjoyment

Change in 
self-confidence

Change in 
motivation

Change in 
attending

Correlation 
coefficient

0.127 0.045 0.136 −0.009

p-value 0.163 0.621 0.134 0.924
Change in 

interpreting
Correlation 

coefficient
−0.151 −0.081 −0.127 −0.052

p-value 0.097 0.376 0.161 0.566
Change in 

deciding
Correlation 

coefficient
0.023 0.102 0.033 0.091

p-value 0.799 0.261 0.715 0.316
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for this lack of correlation could be due to the unmatched ordinal and interval scales of 
the professional noticing and ATMI assessments. The strength to draw more conclu-
sions from parametric tests was not possible, with the professional noticing data scored 
as ordinal data and the ATMI measure calculated as interval data. Thus, the correlations 
had to be computed using a more simplistic nonparametric measure. At this time, other 
research studies that attempt to correlate attitudes about mathematics with professional 
noticing skills do not exist; thus, there is no prior literature with which to compare 
these results.

Another possible reason for a lack of correlation relates to the nature of the ATMI 
instrument. The ATMI primarily focuses on attitudes toward mathematics as a disci-
pline, rather than attitudes toward teaching and learning mathematics, which could 
very well be more closely connected to gaining pedagogical skills, such as profes-
sional noticing. Further investigation on the lack of correlation between changes in 
attitudes and changes in professional noticing will be conducted in future studies to 
better understand this result, and we hypothesize that future use of the Mathematics 
Experiences and Conceptions Surveys (MECS), developed by Hodges and Jong 
(2012), to measure attitudes, beliefs, and dispositions will more closely correlate 
with attitudes toward teaching and learning of mathematics and not primarily on 
attitudes toward the discipline of mathematics.

Next Steps

PSETs experience a plethora of mathematical experiences throughout the dura-
tion of a methods semester, including field placements, in-class experiences, and 
other educational activities. The variety of influences makes it difficult to di-
rectly attribute PSETs’ attitude change solely to their participation in the profes-
sional noticing instructional module. Nonetheless, PSET attitudes did improve, 
and a look at the results of the factors of the ATMI in this context is encouraging. 
Most notable is that more than 50 % of the PSETs increased in all four factors 
from pre- to post-assessment. The largest increase, 65 %, was exhibited in the 
self-confidence factor. We are hopeful that the increase in self-confidence is built 
upon an increase in Mathematical Knowledge for Teaching (MKT) (Hill and Ball 
2004). The researchers have collected data on MKT (via the Learning Mathemat-
ics for Teaching Assessment) that will be examined independently and in rela-
tion to PSET changes in attitudes toward mathematics, as well as in relation to 
changes in professional noticing. More broadly, inquiries into the relationships 
among teaching practices (e.g., professional noticing), knowledge (e.g., MKT), 
and attitudes have the potential to shed increasing light on the mechanisms of 
change in each of these areas.

It is also interesting to note that 15 of the 123 PSETs entered the study with 
the highest possible rating on value of mathematics, indicating that at least some 
PSETs come to their teacher education courses valuing mathematics, despite the 
frequently reported fragile mathematical understanding harbored by PSETs (Ball 
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1990; Foss and Kleinsasser 1996; Quinn 1997). For those PSETs who already value 
mathematics, additional investigation of the processes by which these individuals 
developed such attitudes could aid in the refinement of the professional noticing 
module. Indeed, if one of the aims of the module is to positively affect PSETs’ at-
titudes toward mathematics, a greater understanding of such change with respect to 
our local contexts, such as prerequisite courses, field placement requirements, and 
previous student experiences in education, holds the potential for increasing the ef-
fectiveness of the PSET learning experience.

Finally, the examination by quartile indicated that a large percentage of the 
PSETs scoring within the lowest quartile increased in all four attitudes toward math-
ematics factors. There seems to be a positive influence on these PSETs’ attitudes 
toward mathematics in the methods and blended methods courses of this project, 
despite the lack of significant correlation to change in PSETs’ professional noticing 
capacities. It is likely that incorporating a mid-semester measure of attitudes im-
mediately following the professional noticing module would further illuminate the 
impact of the module on PSET attitudes. The data indicate that attitudinal growth is 
somewhat decoupled from growth in professional noticing capacities. However, a 
mid-semester measure may indicate a significant attitudinal growth linked to expe-
riences within the professional noticing module.

Our primary research focus of PSET professional noticing has yielded positive 
results (Fisher et al. 2012; Schack et al. 2013). Collecting comparison data with 
similar groups of PSETs in their mathematics methods courses, where the profes-
sional noticing instructional module was not implemented, would help provide a 
picture of the effectiveness of the module (with respect to attitudinal change) in 
comparison with other teacher education activities. This could aid in determining 
whether other influences contributed to the growth in both professional noticing 
skills and attitudes toward mathematics.

Conclusion

We remain optimistic that professional noticing (i.e., attending, interpreting, de-
ciding) is a teachable skill (Schack et al. 2013) and that research refinements can 
lead to more robust conclusions regarding the relationship between professional 
noticing and attitudes toward mathematics. Given the highly complex nature 
of both professional noticing and attitudes toward mathematics, it is, perhaps, 
expected that initial attempts to determine a relationship have proven elusive; 
however, there is much cause to continue such lines of inquiry. Returning to the 
notion that productive attitudes toward mathematics are crucial for the develop-
ment of effective teaching practice, a firm understanding of mechanisms that 
promote such attitudinal change in conjunction with responsive teaching prac-
tices is essential.
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Student-centered instruction (Ball and Cohen 1999; Feiman-Nemser 2001; Nation-
al Council of Teachers of Mathematics (NCTM) 2000; Sherin 2002) requires that 
teachers carefully attend to, assess the potential of, and respond to student ideas dur-
ing instruction. To support such instruction, one important transition that prospec-
tive teachers (PTs) need to make is in the way classroom instruction is viewed—
transitioning from viewing it as a student concerned with his or her own learning, to 
viewing it as a teacher attentive to student learning.

One venue where this transition might occur is in school-based field experi-
ences, which have long been advocated as an important component of teacher edu-
cation programs (Ishler and Kay 1981; Myers 1996). Such experiences have been 
criticized, however, for failing to provide a structure that allows PTs to learn about 
teaching in significant ways (Feiman-Nemser 2001; Leatham and Peterson 2010a; 
Philipp et al. 2007). It has been found, for example, that many PTs lack the skills to 
meaningfully observe and make sense of classroom interactions during field experi-
ences (Masingila and Doerr 2002; Orland-Barak and Leshem 2009). Furthermore, 
the goals of field experiences are often not well articulated, resulting in the experi-
ence having little focus on mathematical content or students’ understanding of it 
(Leatham and Peterson 2010a, 2010b). Thus, it has been suggested that substantial 
teacher educator involvement, including collaborative viewing and discussion of 
instances of practice, might be critical to supporting meaningful learning from field 
experiences (Masingila and Doerr 2002; Oliveira and Hannula 2008).

This material is based upon work supported by the U.S. National Science Foundation under 
Grant No. 1052958. Any opinions, findings, and conclusions or recommendations expressed 
in this material are those of the author and do not necessarily reflect the views of the National 
Science Foundation. The author acknowledges Erin Thomas and Michael Hammer, Michigan 
Technological University, for their contributions to the data collection and coding.
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Central to the transition from viewing the classroom as a student to viewing it as 
a teacher is the construct of teacher noticing (Sherin et al. 2011; Sherin and van Es 
2005). Underlying this construct is the notion that some events that occur during in-
struction are more productive for a teacher to attend to because of their potential to 
be used to support student learning. Although experienced teachers might intuitive-
ly recognize and respond to productive moments that arise during a lesson, novices 
often fail to notice or respond to these same instances (Peterson and Leatham 2010; 
Stockero and Van Zoest 2013). In fact, a major difference between expert and nov-
ice teachers’ practices has been found to be their ability to attend to and capitalize 
on important instructional events (Berliner 2001; Mason 1998). Although targeted 
noticing is not something that adults automatically know how to do (Jacobs et al. 
2010), the results of numerous studies suggest that it is a skill that can be learned 
(Jacobs et al. 2010; Santagata et al. 2007; Sherin et al. 2011).

Accumulating evidence suggests that structured viewing of video recordings of 
classroom lessons is one effective method of supporting both prospective (Santaga-
ta et al. 2007; Star et al. 2011; Stockero 2008a, 2008b) and practicing (Jacobs et al. 
2011; Sherin and van Es 2009; van Es and Sherin 2008) teachers’ ability to notice 
important events that occur during instruction. By slowing down practice and elimi-
nating a need to immediately react to classroom situations (Sherin 2004), the struc-
tured analysis of video has been found to help teachers develop a stronger focus 
on students and their learning of mathematics (Sherin and van Es 2005; Stockero 
2008a, 2008b) and increasingly consider the impact of teacher decisions on student 
learning (Santagata and Guarino 2011). Teachers have also been found to become 
more specific in their description of classroom events (Santagata and Guarino 2011; 
van Es and Sherin 2008) and to increasingly use evidence to support analyses of 
teaching and learning (e.g., Sherin and van Es 2005; Stockero 2008a). Importantly, 
Sherin and van Es (2009) have also found that noticing skills developed via video 
analysis can transfer to classroom teaching situations.

This study builds on prior work to support prospective teacher noticing in two 
important ways. First, much of the work to promote prospective mathematics teach-
ers’ noticing currently discussed in the literature has taken place in mathematics 
methods courses, typically later in a teacher education program (e.g., Santagata 
et al. 2007; Star et al. 2011; Stockero 2008a, 2008b). Although this work has been 
found to be effective, this study examines whether noticing can be taught at the start 
of a teacher education program in order to provide a strong focus on students and 
their mathematics upon which PTs might build in later courses.

Second, many video-based teacher learning interventions discussed in the lit-
erature have used video clips that were purposely selected by experienced teacher 
educators (e.g., Borko et al. 2008; Seago 2004), eliminating the opportunity for 
teachers to determine which instances that arise during instruction are worthy of 
analysis. This may be problematic, since to productively notice and use student 
thinking during instruction, teachers need to learn to sift through the complexity 
of classroom interactions to recognize instances that can be capitalized on to sup-
port mathematical learning. Thus, teacher educators need to develop not only PTs’ 
analytic abilities, but also their abilities to notice which instructional events should 
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be analyzed because of their potential to support student learning. This study uses 
unedited classroom video that requires PTs to “sift through” the complexity of the 
classroom to identify important events.

This chapter reports on findings from the first two iterations of an ongoing de-
sign experiment in which prospective mathematics teachers were engaged in re-
search-like analysis of unedited videos of mathematics instruction during an early 
school-based field experience. Key features of the learning intervention included 
individual analysis of teacher-perspective classroom videos and group discussion 
of the analysis supported by a mathematics teacher educator. The goal of the work 
was to cultivate prospective mathematics teachers’ ability to notice, analyze, and 
consider how to capitalize upon important mathematical moments that occur dur-
ing instruction. The research questions for the study included: (a) To what extent 
were project activities effective in helping PTs learn to notice important instances 
of students’ mathematical thinking? and (b) What particular aspects of the activities 
supported the PTs’ learning? The results reported here primarily address the first re-
search question by reporting on transitions in the participants’ noticing that resulted 
from this work. Preliminary insights into the second research question, as well as 
implications for future work, are discussed.

Theoretical Perspectives

The work is grounded in a particular vision of teaching—one in which teachers 
continuously build on student mathematical thinking in ways that are responsive to 
students’ current understanding (Ball and Cohen 1999; Feiman-Nemser 2001; 
NCTM 2000). Teaching in this way involves the teacher carefully listening to stu-
dents’ ideas, analyzing the mathematics underlying them, and then making in-the-
moment decisions about whether and how these ideas might be used to develop 
students’ understanding of important mathematics ideas.

Teacher noticing is defined in a variety of ways in the literature (e.g., see chap-
ters in Sherin et al. 2011). Sherin and van Es (2005) defined teacher noticing to in-
clude three components—identifying what is important in a situation, making con-
nections between a particular classroom situation and broader principles of teaching 
and learning, and reasoning about the situation. Jacobs et al. (2010) added a fourth 
component of noticing to this definition—deciding how to respond. This project 
adopts a definition of noticing that includes all four components, with a particular 
focus on noticing important mathematics.

Although instances of student thinking that occur during instruction are central to 
teacher noticing, this work is also grounded in the perspective that not all instances 
of student thinking have the same potential to help achieve the goal of supporting 
students’ mathematical learning. Thus, this research project aims to promote math-
ematical noticing—noticing of students’ mathematical ideas that surface during in-
struction and have the potential to be built upon to support students’ understanding 
of important mathematics. This is not to say that there are not other things that are 
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valid to notice, such as instances that provide opportunities to develop student con-
fidence or to cultivate norms for working in small groups. The work of the project, 
however, deliberately narrows the focus to student mathematics in order to help PTs 
consider what student mathematical thinking might be most productive to focus 
on during instruction in order to help students develop a deeper understanding of 
the mathematics in a lesson. Thus, this project adopts a definition of mathematical 
noticing that includes the following four components: noticing important student 
ideas, analyzing the mathematics within them, making connections to a particular 
framework, and deciding how to respond. The analysis reported here focuses on the 
first two components.

This focus on mathematical noticing is informed by two related research proj-
ects. In a study of novice mathematics teachers’ instruction, Stockero and Van Zoest 
(2013) characterized pivotal teaching moments (PTMs)—defined as an instance in 
a classroom lesson in which an interruption in the flow of the lesson provides the 
teacher an opportunity to modify instruction in order to extend or change the nature 
of students’ mathematical understanding. In this study, five types of PTMs were 
identified that had significant or moderate potential to support students’ learning of 
mathematics: extending, incorrect mathematics, sense making, contradiction, and 
mathematical confusion. The finding that mathematical moments that are important 
to notice during a lesson might fall into a small number of categories informed 
decisions about where to focus participants’ attention during the project activities.

An ongoing research project is working to characterize “teachable moments” in 
a mathematics classroom—referred to as Mathematically Significant Pedagogical 
Opportunities to Build on Student Thinking (MOSTs) (e.g., Van Zoest et al. 2013). 
MOSTs are seen as occurring at the intersection of student mathematical think-
ing, significant mathematics, and pedagogical opportunity. In other words, high-
leverage instances of student thinking that occur during a lesson must be student 
generated, involve mathematics that is related to a learning goal for students in the 
class, and provide the teacher an opportunity to build on student thinking to develop 
understanding of important mathematics. This framework provides a strong math-
ematical focus to teacher noticing and was used in this study to focus participants on 
moments that occur during a lesson that have the potential to be used by the teacher 
to enhance students’ learning of mathematics.

Methodology

Context

The participants in the study were seven secondary mathematics prospective teach-
ers (PTs); four were members of the first cohort that participated in the project in the 
Fall 2011 semester, and three were members of the second cohort that participated 
in Fall 2012. The teacher education program in which the participants were enrolled 
is very small, so the participants included all students with a mathematics major 
and some students with a mathematics minor who were enrolled in an early field 
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experience course during each semester. Each participant was paired with a differ-
ent experienced mathematics teacher at a local middle or high school to complete 
a 14-week early field experience. The field experience course is one of the first 
education courses that students in the teacher education program enroll in and is 
usually taken either late in students’ sophomore year or early in their junior year of 
study.1 Typically, this field experience consists of observing classroom instruction 
and assisting the teacher as needed, usually by working with individual students. 
Additional activities were added to the course as part of the project.

The Classroom Video

Each week, one PT in the cohort was assigned to video record a mathematics lesson 
taught by his or her cooperating teacher. The recording took place on a rotating ba-
sis, resulting in each PT recording two or three classroom lessons during the semes-
ter. Due to school scheduling and technical problems, there were two weeks where 
cohort 2 PTs did not collect the video, so the video from cohort 1 was used instead. 
The video was recorded from a front-of-classroom perspective to allow the partici-
pants to view the classroom as a teacher, rather than as a student. The instructional 
portions of each video were left unedited for the PTs to analyze; portions of the 
video where the teacher was tending to administrative tasks or where students were 
working quietly at their seats were cut from the video and excluded from the analy-
sis since students’ mathematical ideas could not be heard during these activities.

Members of each PT cohort analyzed the same set of eight (cohort 1) or nine 
(cohort 2) different videos during the semester. Note that because of the way the 
video was collected, the two PT cohorts did not generally analyze the same video, 
except for the two videos from the first cohort that were also used with the second 
cohort. Although an attempt was made to place the members of each cohort in a 
range of mathematics classrooms, the specific mathematics content of each video 
was not controlled because the focus was on noticing students’ mathematics re-
gardless of content. In short, the instruction that was recorded was mostly teacher 
led with various degrees of student interaction; the courses ranged primarily from 
middle school to geometry classes, with one calculus lesson analyzed by cohort 1. 
Table 1 summarizes the videos by PT cohort; note that videos C and F were coded 
by both cohorts.

Project Learning Activities

Each week, the PTs used the Studiocode video analysis software (SportsTec 2011) 
to individually code one classroom video, guided by an evolving and increasingly 
explicit coding framework focused on noticing instances of students’ mathematical 
thinking. Early analysis activities were intended to focus the PTs on the students in 

1 Students do not apply to the teacher education program until they have established a GPA at the 
university; most students apply during their second year and start taking education courses during 
their third year of study.
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Table 1  Summary of the video coded by each cohort
Video 
number

Cohort 1 Cohort 2
Video Description Video Description

1 A 8th grade—patterns and 
variables

I 6th grade—absolute values; equa-
tions and expressions

2 B 8th grade—decimals and 
scientific notation

J Algebra—exponents

3 C Geometry—special triangles 
and quadrilaterals

K Geometry—introduction to 
proof, grounded in segment 
congruence

4 D 8th grade—Pythagorean 
theorem and Pythagorean 
triples

C Geometry—special triangles and 
quadrilaterals

5 E Calculus—product and quo-
tient rules

L 6th grade—factoring and 
exponents

6 F 8th grade—probability M Algebra—parallel and perpen-
dicular lines

7 G Geometry—inscribed and 
circumscribed circles

N 6th grade—percents and decimals

8 H 8th grade—test review; lines 
and scatterplots

O Algebra—unit conversion

9 F 8th grade—probability

the classroom video and on their mathematics; later activities also incorporated the 
idea that some instances of student mathematics provide better opportunities for 
supporting student learning than others. The PTs’ coding frameworks and interac-
tions with the researcher are described in the following.

Early in the semester, PTs were asked to code the classroom video for “mathe-
matically important moments (MIM) that a teacher needs to notice during a lesson” 
and write a brief explanation of their reasoning. The definition of a MIM was inten-
tionally left ill-defined to allow the researcher to understand what the participants 
viewed as mathematically important during a lesson. The researcher and a graduate 
research assistant independently coded the same video as the members of the PT 
cohort and then met to discuss their own and the PTs’ coding and decide which in-
stances to discuss in a weekly meeting with the PTs. When coding, the Studiocode 
software produces a “timeline” of coded instances that can be merged to compare 
the coding of multiple coders. The merged timeline that showed all of the PTs’ cod-
ing was used during the weekly meeting so the PTs could visually compare their 
own coding to that of the other members of their cohort. The researchers’ coding 
was not shared with the PTs.

During the early group meetings, the researcher pushed the PTs to consider what 
was important mathematically about a particular instance and what the teacher 
had to notice; this pushing was intended to focus participants on students and their 
mathematics, rather than on teaching. Approximately six to eight instances were 
discussed at each weekly meeting; they included instances identified as a MIM by 
one or more participants (including both instances that were and were not identified 
as MIMs by the researchers), as well as some instances that were not identified by 
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any PT but were deemed important by the researchers. The latter instances were 
primarily used to push PTs to attend to more subtle mathematical issues underlying 
student ideas—for example, ideas that were incomplete or that included imprecise 
language.

During the weekly meetings, the PTs were also pushed to consider whether in-
stances that they collectively agreed were MIMs might fall into categories. These 
categories—informed by the researcher’s prior work on PTMs (Stockero and Van 
Zoest 2013), but not made explicit to the PTs—were codeveloped by the PTs over 
the course of several meetings. As the categories were developed, the PTs were giv-
en the additional task of labeling each MIM that they identified in a video according 
to the category to which they felt it belonged. Subsequent meetings included refin-
ing and adding to the categories to more accurately describe the types of moments 
that were deemed important to attend to during a lesson. Although the names of 
the categories differed slightly, both cohorts had final categories related to student 
questions, wrong answers, incomplete answers, and unexpected (alternate) correct 
answers. Cohort 1 also developed categories of generalizing and multiple answers, 
while cohort 2 had a common misconceptions category.

Approximately midway through the semester—following the fourth video (vid-
eo D) for cohort 1 and the fifth video (video L) for cohort 2—the framework for 
coding became more explicit when the PTs were asked to read an excerpt from a 
paper about MOSTs (e.g., Van Zoest et al. 2013)2 and to recode two formerly ana-
lyzed videos to identify instances that met three defined criteria—student thinking, 
mathematically significant, and pedagogical opportunity. This reading was meant to 
provide language to discuss the student thinking and mathematics of an instance, as 
well as to introduce the idea that some moments that occur during a lesson provide 
the teacher a pedagogical opportunity to build on students’ thinking to support their 
understanding of mathematics. After this framework was introduced, the PTs were 
asked to code subsequent videos for MOSTs instead of MIMs, and to discuss all 
three components of a MOST in their explanation of each selected instance in addi-
tion to labeling each instance by type.

Table 2 chronologically summarizes the project activities and shows the align-
ment between the activities and the videos described previously for each cohort.

Data Collection and Analysis

Data for the study included the PTs’ individually coded Studiocode video timelines 
and video recordings of the weekly group meetings. The researchers used Studio-
code to analyze all of the video timelines. The analysis process included adding an 
additional level of research coding to the timelines previously coded by the PTs; the 
meeting videos were used to help with the coding if a PT’s written explanation of an 

2 The paper that the participants read during the project was a precursor to the current work on 
MOSTs. In it, the construct was referred to as a Mathematically Important Pedagogical Opportu-
nity to Build on Student Thinking (MIPO) (Leatham et al. 2011).
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Table 2  Summary of project activities, aligned with videos
Activity Cohort 1 Cohort 2
PTs individually code for 

MIMs and give general 
explanation of importance 
of each moment

Videos 1–4 (A, B, C, D) Videos 1–5 (I, J, K, C, L)

PTs codevelop categories 
of MIM types at weekly 
meetings

Primarily videos 2–4; 
modified as needed in 
later videos

Primarily videos 2–5; modified 
as needed in later videos

PTs read MOST paper and 
recode two prior videos 
using new framework

After video 4; recoded videos 
B and C

After video 5; recoded videos 
C and L

PTs individually code for 
MOSTs and give explana-
tion of three components

Videos 5–8 (E, F, G, H) Videos 6–9 (M, N, O, F)

instance was unclear. The unit of analysis for the research coding was any instance 
(MIM or MOST) that was coded by a PT. Thus, the length of an instance was deter-
mined by the PTs’ coding, not by the researchers.

Building from coding frameworks used in previous studies (van Es and Sherin 
2008; Stockero 2008a, 2008b), each important instance in a video that was identi-
fied by a PT was coded by the researcher and a graduate research assistant for agent, 
topic, and mathematical specificity (see Table 3 for codes). As defined in these prior 
works, agent refers to who the participants focused on in their description of an in-
stance, and topic refers to what was focused on. For the agent code, student–teacher 
interactions were coded as either student–teacher, or teacher–student, depending on 
who was focused on first in a PT’s comment. Some instances received two codes 
for agent or topic if the participant discussed two separate ideas in his or her expla-
nation of the instance; in general, however, double coding was kept to a minimum. 
Because the focus of this work was on mathematical noticing, van Es and Sherin’s 
(2008) specificity code—defined as how the teachers in their study discussed the 
events they noticed—was modified to focus on the specificity of the mathematics 
that the PTs discussed. Thus, in addition to using the subcodes of general and spe-
cific, a third code, nonmathematical was added to code instances of noticing that 
were focused on issues or events that were not mathematical in nature. During the 
coding process, the researchers met regularly to discuss, refine, and verify the cod-
ing; each instance was discussed until agreement on the coding was reached.

To give the reader a sense of the coding, consider the following PT explanation 
of an instance: “The student asks a question about the placement of negative signs 
and the order [of the points] in finding slopes and the teacher uses this opportunity 
to go more in depth about finding slopes.” For this instance, the agent was coded as 
student–teacher because the statement focuses first on the student’s question, and 
then on the teacher’s response. In this case, the student was considered the primary 
agent and the teacher was considered the secondary agent. The topic of this instance 
was double-coded as question and explanation because the PT noticed both the 
question that the student asked and the teacher’s action—in this case, re-explaining 
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Table 3  Code definitions and sample codes
Coding category Description Codesa

Agent Who the PT focused on in an 
instance

Teacher (T)
Individual student (SI)
Group of students (SG)
Teacher, then students (T/S)
Students, then teacher (S/T)
Mathematics (no person)

Topic What about the agent was 
focused on

Teacher explanation
Student question
Student thinking
Student participation
Understanding of the students as a group

Specificity Whether and in what way the 
mathematics was discussed

Nonmathematical
Specific mathematics
General mathematics

a The agent and specificity code lists are complete, but the topic code list is a sample that includes 
the codes that are discussed in this chapter

how to find a slope. The specificity was coded as specific mathematics because it 
is clear that the PT is noticing mathematics related to calculating the slope of a line 
using two points.

After all of the PT-identified instances were coded by the researchers, the re-
searchers’ coding was analyzed to characterize shifts in the PTs’ noticing in each 
of the three coding categories. Even though the two PT cohorts did not analyze the 
same set of videos, the goal for the two groups was the same: to scaffold their notic-
ing to increasingly focus on students’ mathematics in the detailed and nuanced way 
that is the foundation of student-centered instruction. Thus, the aim of the analysis 
was to understand the extent to which the PTs were focused on students, specific 
mathematics, and evidence of how students were thinking mathematically or math-
ematical issues they were encountering. The analysis involved examining the PTs’ 
foci at different times during the learning experience, and how their foci changed 
during the experience. The findings are discussed in the following section.

Results and Discussion

The data revealed that the PTs’ noticing shifted in all three of the coding categories. 
These shifts in agent, topic, and specificity, as well as initial conjectures about what 
caused these shifts, are discussed in the following. Because the number of instances 
coded by PTs varied by video, the results are reported as percentages. To help the 
reader make sense of the findings, the total number of instances coded by each 
PT cohort, the average number of instances per PT, and the range of the number 
of instances coded by each PT are given in Tables 4 and 5 for cohorts 1 and 2, 
respectively.
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Agent

The analysis of the agent coding revealed three different shifts in the PTs’ noticing: 
(a) from teacher as the primary agent to students as the primary agent; (b) from the 
teacher alone to interactions between the teacher and students; and (c) when the 
student was the primary agent, from focusing on groups of students to focusing on 
individual students.

Figure 1 shows the percent of PT-coded instances in each video with a primary 
student focus, depicted chronologically. That is, it shows the percent of PT-identified 
instances coded as focused on individual students, SI (e.g., “The student explained 
her thinking [about] how to multiply percentages. The opportunity arises to explain 
why that is.” PT6); groups of students, SG (e.g., “The students are trying to come 
up with a correct answer to something they don’t know. Even if they aren’t sure, 
they’re still trying and coming close to the right answer.” PT7); or student–teacher 
interactions where the student was discussed first in the PT’s explanation of the 
instance, S/T (e.g., “[The student] was able to put her understanding of the pattern 
into a basic mathematical model. This helps the teacher drive the lesson forward.” 
PT1). As can be seen in the figure, early on, fewer of the PTs’ coded instances had a 
primary focus on students. This pattern is particularly evident for cohort 2, where in 

Video Total coded 
instances

Instances per 
participant

Range of number 
of coded instances

A 25 6.25 4–12
B 16 4 3–5
C 25 6.25 5–9
D 14 3.5 3–4
E 12 3 2–4
F 21 5.25 3–7
G 13 3.25 2–5
H 14 3.5 3–4

Table 4  Summary 
of instances coded 
by cohort 1

Video Total coded 
instances

Instances per 
participant

Range of number 
of coded instances

I 15 5 3–7
J 13 4.3 3–6
K 12 4 3–5
C 12 4 2–6
L 13 4.3 3–5
M 5 1.7 1–2
N 8 2.7 1–6
O 5 1.7 1–3
F 12 4 2–7

Table 5  Summary 
of instances coded 
by cohort 2
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Fig. 1  Percent of participant-
coded instances (by video) 
with a primary student focus

 

the second and third videos, less than half of the participant-identified instances had 
a primary student focus. After the third video, both groups exhibited a more consis-
tent focus on students, with over 80 % of coded instances for both groups focused 
primarily on students in videos 5 and later. This shift is significant because focusing 
on students is key to implementing mathematics instruction that is responsive to 
students and their ideas about mathematics.

Although there was some continued focus on the teacher throughout the experi-
ence, the PTs’ focus shifted from noticing the teacher alone to noticing teacher–
student interactions. The percentages of teacher-focused instances for each cohort   
that were focused on teacher-student interactions can be seen in Table 6. Early on, 
when the PTs focused on the teacher, they often discussed only what the teacher 
did (e.g., “The teacher explains the difference between expressions and equations.” 
PT1) without considering how the teacher action they noticed was likely to sup-
port student learning. Beginning with the fifth video, however, a significant shift 
was evident for both groups, with 89 % or more of all instances that considered the 
teacher (coded as T, T/S, or S/T) focusing on teacher–student interactions (coded 
as T/S or S/T). For example, in one instance, PT2 explained, “The student gives an 
equation for slope but she has the numerator and denominator switched. Instead of 

Table 6  Summary of teacher-focused instances focusing on teacher–student interactions
Cohort 1 Cohort 2

Video # Teacher-focused 
instances

Percent of teacher-
focused instances 
focused on teacher-
student interactions

# Teacher-focused 
instances

Percent of teacher-
focused instances 
focused on teacher-
student interactions

1 8 25.0 5 80.0
2 5 20.0 8 25.0
3 13 23.1 11 18.2
4 7 57.1 2 100.0
5 7 100.0 1 100.0
6 14 92.9 1 100.0
7 9 88.8 0 n/a
8 11 100.0 0 n/a
9 –   – 3 100.0
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just saying that the answer was wrong and giving the correct answer, [the teacher] 
connects the equation to rise/run. In doing this he gets the students to notice the 
problem with the equation.” This shift was particularly strong for cohort 2, who 
collectively had no comments coded as focused on the teacher alone after the third 
video. This shift is significant in that it provided evidence that the PTs were begin-
ning to think about how teacher actions support student learning, rather than on 
teacher moves independent of students.

A third significant shift occurred in how the PTs noticed students in the vid-
eos. Figure 2 shows the percent of coded instances with a primary student focus 
(coded as SI, SG, or S/T) for which the PTs were focused on individual students 
(SI). As can be seen in the figure, in the first video, when the primary focus of the 
PTs’ noticing was students, the focus was on individual students a relatively small 
percentage of the time (30 % for cohort 1; 33 % for cohort 2). Their focus was 
more often on groups of students, with many PT comments offering assessments 
of the understanding of the group of students as a whole based on a single student 
comment. For example, the PT comment, “Students struggle to give a definition for 
[quadrilateral]” was coded as focused on a group of students, while the explanation, 
“[The student] was able to see the connection, which led to finding an equation” 
was coded as focused on an individual student.

The shift in focus from student groups to individual students began as early as the 
second and third videos for cohort 1, with about 60 % of student-focused instances 
centered on individual students in these videos. This same shift did not occur until 
later for cohort 2—in the sixth video—although after this time, their focus on in-
dividual students appeared stronger than cohort 1. The cause of this difference in 
timing warrants further investigation, but may be related to the specific classroom 
videos that each group analyzed. Overall, however, both PT cohorts demonstrated 
a significant shift in their focus on students during the experience, with the percent 
of student-centered comments focused on individual students ranging from 75 to 
100 % in the last three videos.

20.0% 

40.0% 

60.0% 

80.0% 

100.0% 

120.0% 

Cohort 1 

Cohort 2 

Fig. 2  Percent of primary 
student instances focused on 
individual students

 



251Transitions in Prospective Mathematics Teacher Noticing

Topic

Although the topic of the PTs’ noticing was the most difficult to make sense of—
mainly due to a larger number of codes spread out over a relatively small  number  
of participants—the analysis revealed several shifts that are worth noting. In par-
ticular, decreases in the PTs’ noticing of teacher explanations, claims about the un-
derstanding of an entire class, and student participation were documented, as were 
increases in PTs’ noticing of student thinking and student questions and other evi-
dence of mathematical confusion. These are discussed in the following.

Some topics of the PTs’ noticing were coded less frequently as the learning ex-
perience progressed. Two of these shifts were closely related to the previously dis-
cussed shifts in agent. First, related to the decreased focus on the teacher alone 
(i.e., not in interaction with students), the PTs in cohort 2 became less focused on 
the teacher’s explanation of the mathematics for its own sake—that is, explana-
tions that were not in response to students’ questions or comments. In the first three 
videos, 38 % of their instances were coded as teacher explanation, whereas only 
one instance of teacher explanation was coded after this time, and this instance was 
focused on how the teacher used a student idea to better explain a concept. Cohort 
1 began with a low focus on teacher explanations (10 % of instances in videos 1–4) 
and increased it slightly (20 % in videos 5–8); it was encouraging, however, that 
all but 3 % of instances in these latter videos were in response to student ques-
tions or comments. Second, related to the previously discussed shift in agent from 
groups of students to individual students, there was a decrease in PT comments that 
made overgeneralized claims about the understanding or lack of understanding of 
the class as a whole. In the last four videos, the two cohorts combined had only 4 % 
of documented instances (3.3 % for cohort 1; 6 % for cohort 2) focused on making 
claims about group understanding, compared to about 21 % of instances in the first 
four videos (18 % for cohort 1; 26 % for cohort 2).

Another decrease in focus was on how students participated in the class or 
worked with one another (e.g., “There are students with their hands raised that give 
up on what they wanted to say, and the guy in the back doesn’t try to participate 
the remainder of the class.” PT3). This more affective noticing focus was relatively 
prevalent in the first few videos, particularly for cohort 1, which had 10 documented 
instances (15 % of total instances) in the first three videos. During the latter half 
of the experience, it was documented only once for each cohort (1.7–3.3 % of in-
stances). Although important to learning in general, affective noticing such as this 
does not directly support the learning of mathematics content; thus, this seems to 
be a productive shift in attention as it indicates that the PTs were becoming more 
attentive to issues directly related to students’ mathematical learning.

There were also some topics that were focused on more frequently by PTs as 
the experience progressed. One such topic was student thinking, which overall was 
stronger in the later videos (Table 7). This shift was not consistent, however, as 
cohort 1’s focus on student thinking was strongest in the middle videos, while co-
hort 2’s focus was strong in the first video, and then diminished before becoming 
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strong again in the later videos. To illustrate a focus on student thinking, consider 
PT5’s explanation of the importance of one instance: “This is a common mistake 
in probability problems where the items aren’t replaced. The student mentally re-
moves [student]’s name from the number of girls but forgets to remove her from 
the total number of students.” As can be seen in this example, when focusing on 
student thinking, the PTs were making sense of how students seemed to be thinking 
mathematically, rather than just whether they were thinking correctly or incorrectly. 
This more nuanced focus on student thinking is essential in order for a teacher to use 
student thinking during a lesson. Because helping PTs learn to notice student ideas 
was a primary objective of the learning activities, the increasing and decreasing 
nature of the PTs’ focus on this topic requires further investigation.

A second topic that received increased focus was student questions—particu-
larly those that were conceptual in nature—and evidence of student mathematical 
confusion, which was implied from both their questions and mathematical com-
ments (e.g., “A student is confused about concurrent and [the teacher] answers his 
question by explaining the difference between concurrent and the circumcenter. I 
think this is the best method to answer his question because you can see after that 
he understood after the explanation.” PT2). This shift in focus was most significant 
for cohort 1, which had only 5 % of instances coded as questions or confusion in the 
first four videos, compared to 58 % in the last four videos. Although the shift was 
not as dramatic for cohort 2, they still had more than twice the number of instances 
coded in this category for the latter half of the experience compared to the first 
(8 % of instances early; 21 % of instances late). As data from future iterations of the 
work are analyzed, it is likely that this coding category will need to be refined to 
separate conceptual questions that introduce new mathematical ideas or provide an 
opportunity to go beyond the mathematics of the lesson, from questions that indi-
cate confusion about the mathematical ideas at hand. This more fine-grained level 
of coding may provide insight into whether PTs were focused on instances that pro-
vided opportunities to clarify the mathematics in the lesson, or those that might be 
used to make connections among lessons. Both of these foci are important, but very 
different, ways that a teacher could use student thinking productively, so it would 
be helpful to understand in more detail the degree to which the PTs focused on each.

Specificity

The analysis of the specificity coding indicated that the PTs collectively transi-
tioned to becoming both more focused on noticing instances that were mathematical 
in nature and more specific in their discussion of the mathematics of an instance. 
These shifts are discussed in the following.

Table 7  Percent of instances coded with student thinking as a topic
V1 V2 V3 V4 V5 V6 V7 V8 V9

Cohort 1   0.0 0.0 4.0 21.4 8.3 14.2   7.7   0.0 –
Cohort 2 25.0 0.0 0.0   8.3 7.7 40.0 62.5 80.0 25.0
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Despite the fact that the PTs were given instructions to code “MIMs that a 
teacher needs to notice during a lesson,” some of their early noticing was focused 
on nonmathematical instances. For example, PT2 identified a teacher incorpo-
rating exercise into her lesson as a MIM, even though this activity is clearly not 
 mathematical by nature. In the first two videos, 15 % of instances identified by 
cohort 1 were not mathematical; this group identified no nonmathematical instances 
after this time, however. In their first three videos, 13 % of instances coded by co-
hort 2 were not mathematical in nature, with only one nonmathematical instance 
documented subsequently in video 5. The shift away from nonmathematical notic-
ing seemed fairly easy to facilitate by pushing the PTs to discuss the mathematics 
in each coded instance, but it is an important shift nonetheless since focusing on 
nonmathematical issues necessarily shifts teachers’ attention away from noticing 
students’  mathematics.

A second shift that was particularly strong for cohort 1 was from noticing gen-
eral mathematical issues to those that were specific in nature. This shift is impor-
tant because it indicates that the PTs were engaged in more detailed analysis of 
the mathematics in the videos and were able to attend to specific student ideas or 
teacher moves, rather than making general observations about the mathematics of 
the lesson. An example of general mathematical noticing is, “The student gave the 
wrong answer to the teacher’s question, but the teacher went along with the reason-
ing and then went through the process of double checking,” whereas an example of 
specific mathematical noticing is, “The student asks a question about the placement 
of negative signs and the order [of the points] in finding slopes and the teacher uses 
this opportunity to go more in depth about finding slopes.” Note that in the first ex-
ample, while the PT was focused on the students’ mathematics, she did not discuss 
in her explanation a specific mathematical issue, just that the student gave a wrong 
answer. In fact, the comment itself gives no indication of the mathematics of the 
lesson. In the second example, it is clear that the PT was focused on calculations 
related to finding the slope of a line.

In the first three videos, cohort 1’s explanations of their coding were more general 
in nature, with less than 35 % of instances coded as related to specific mathematics 
(Fig. 3). Cohort 2’s noticing was fairly specific from the start (with the exception of 
video 3), but the data were somewhat skewed by one PT whose explanations were 
consistently specific throughout the experience. Relatively early in the experience, 
before they had engaged with the MOST framework, both groups of PTs’ noticing 
became consistently more specific than general.

Explaining the Shifts

Although the analysis of the facilitation of the learning activities is ongoing, the 
timing of some of the documented shifts allows one to make informed conjectures 
about what might have prompted them. In general, there seems to be three factors 
that may account for the PTs’ shifts in noticing: (a) targeted facilitation moves dur-
ing the weekly meetings intended to focus the PTs’ attention on specific aspects of 
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the video, (b) the reading of the MOST paper approximately midway through the 
experience, and (c) ongoing engagement in the project activities.

Targeted facilitation moves, particularly those employed early in the experience, 
appear to account for some of the documented shifts in the PTs’ noticing. The rela-
tively early shift toward a more consistent focus on students, for example, seems to 
be the result of the facilitator pushing participants to articulate what the teacher had 
to notice in each instance that they had documented (recall that the participants were 
prompted to identify MIMs that a teacher needs to notice during a lesson). Because 
a teacher does not need to notice his or her own actions, this move seems to have 
had its intended effect of focusing the PTs on the students in the video. Facilitator 
questioning also seems to account for the early shift away from nonmathematical 
noticing, as participants were consistently asked to discuss the mathematics in each 
instance during the weekly group meeting. In response to the facilitator questioning 
PTs about both of these foci, it was not uncommon for one PT to highlight that a 
moment identified by a peer either had nothing for the teacher to notice because it 
was just teacher talk, or that it was not mathematical in nature.

Other shifts, particularly those related to making sense of student contributions 
and the mathematics within them, may have been prompted by a different facilita-
tion move—replaying portions of the video during the weekly meetings, sometimes 
several times, so that PTs could carefully listen to what was being said. This move 
seemed to help PTs learn to attend to the nuances of student comments, which may 
have helped them both to become better able to recognize when student contribu-
tions contained important mathematics and to shift toward becoming more specific 
in the way they discussed the mathematics of an instance. Shifts such as these are 
significant in that they support the focused noticing and ongoing analysis that is 
necessary to teach in a way that is responsive to student thinking.

After coding four or five videos, each cohort read an excerpt from a paper de-
scribing the MOST framework that highlighted key characteristics of “teachable 
moments” in mathematics: student thinking, significant mathematics, and pedagog-
ical opportunity. After reading this paper, the PTs were asked to use the framework 
to inform their coding, which appears to have contributed to several shifts in their 
noticing. The timing of the PTs’ increased focus on teacher–student interactions, for 
example, suggests that it was facilitated at least in part by introducing the MOST 
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framework. In this case, it is conjectured that asking the PTs to think about the 
pedagogical opportunity that student thinking might provide helped them begin to 
consider ways in which a teacher might be responsive to student ideas.

Because the PTs engaged in the project activities over an entire semester, it is 
also possible that some of the documented shifts in noticing were the result of ongo-
ing engagement over time. The focus on individual students, for example, seemed 
to continue to increase throughout the experience. It is also possible that some of the 
shifts were the result of a combination of activities, including the PTs’ interactions 
with one another. Although the effects of sustained engagement and the interaction 
of learning activities are more difficult to document, understanding these effects 
will be the focus of ongoing data analysis. In any case, it is encouraging that signifi-
cant changes in teacher noticing were documented over the course of the learning 
experience—changes that are likely to support their ability to engage in student-
centered instruction.

Discussion and Conclusions

The results of this work indicate that it is possible to facilitate transitions in math-
ematics teacher noticing, even early in a teacher education program. While other 
studies have used videos to prompt similar changes in mathematics methods cours-
es (e.g., Santagata and Guarino 2011; Sherin and van Es 2005; Stockero 2008a, 
2008b), which typically take place near the end of teacher candidates’ university 
coursework, this study attempted to do so at the start of a teacher education pro-
gram, during a school-based early field experience. Focusing PTs on students and 
their learning of mathematics from the start of a teacher education experience offers 
the potential to build on this foundation during subsequent coursework, possibly 
resulting in an even stronger student-centered focus at the end of a teacher educa-
tion program.

The data revealed that the PTs in this study were, in fact, able to increasingly 
notice important mathematical instances in unedited video recordings of classroom 
instruction. Their noticing became more focused on individual students and how 
teacher–student interactions affect learning. They also became better able to at-
tend to the specific mathematical details of important instances that surfaced during 
a lesson. The coding of the topic of the PTs’ noticing provided some indication 
that the participants became more focused on instances that were important math-
ematically rather than for social or affective reasons, less prone to make claims 
about groups of students, less focused on teacher explanations, and more attentive 
to issues directly related to student understanding—how they might be thinking 
mathematically, conceptual questions that they asked, and evidence of mathemati-
cal confusion. Together, these transitions are significant because noticing students 
and the details of their mathematical thinking is foundational to student-centered 
instruction; a teacher cannot build on ideas that they do not notice or of which they 
cannot make sense.
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The results are also significant in that they provide evidence that PTs not only 
can learn to analyze short preselected video clips of instruction (e.g., Borko et al. 
2008; Seago 2004; Stockero 2008b), but can also learn to identify mathematical-
ly important instances in unedited classroom videos. Although short preselected 
video clips offer some advantages—such as less time for analysis and possibly a 
more focused discussion about particular issues the clip is intended to raise—sifting 
through the complexity of classroom interactions to figure out which student ideas 
have potential to be used to develop students’ understanding of the mathematics is 
exactly what teachers need to do in order to enact student-centered instruction. In 
this way, learning to analyze unedited classroom videos might be advantageous in 
terms of helping teachers transfer noticing skills developed through teacher learning 
experiences to their classroom instruction.

The intervention in this study included many elements that are often missing 
from school-based field experiences: a clear and consistent focus on mathematics, 
engagement in structured analysis, and collaborative learning about practice with 
substantial mathematics teacher educator support. Each of these elements is critical 
to helping PTs take the most away from the time they spend in schools (e.g., Leath-
am and Peterson 2010a; Masingila and Doerr 2002). First, the early noticing of the 
participants in this study suggests that, without a clear push to focus on content, it 
is likely that PTs will focus instead on elements of instruction that are less central to 
student learning of mathematics. Second, as has been found by others (e.g., Santa-
gata et al. 2007), analysis frameworks seem essential to give both structure to what 
is observed in the complex environment of a classroom and a language to discuss 
it. The evolving analysis framework in this study, including the labeling of impor-
tant instances and the eventual introduction of the MOST framework, provided this 
structure and language for the participants and seemed to prompt changes in how 
and what the PTs attended to in the classroom videos. Finally, it has been suggested 
that teacher educator support—something that is often lacking during school-based 
field experiences—is necessary to effectively facilitate prospective teacher learning 
from such experiences (e.g., Leatham and Peterson 2010a; Oliveira and Hannula 
2008). In this study, discussing common classroom videos with a teacher educator 
maintained a clear mathematical focus during the field experience and provided a 
means to challenge PTs’ emerging ideas about the teaching and learning of mathe-
matics. Together, these elements appear to have been effective in supporting desired 
transitions in noticing in this intervention.

Although the results are promising, further work is needed to fully understand 
the transitions that have been documented, as well as what specific activities and 
structures supported them. One of the limitations of the results reported here is 
the small number of participants; in particular, this limitation makes it difficult to 
make sense of some of the differences in noticing between the two PT cohorts. 
Recall, for example, that cohort 1 shifted from noticing student groups to noticing 
individual students earlier than cohort 2; cohort 1 also developed a stronger focus 
on students’ conceptual questions and evidence of confusion. Cohort 2, on the other 
hand, developed an overall stronger focus on students and had a stronger focus 
on student thinking at the end of the experience. They were also more specific in 
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their discussion of the mathematics throughout. Some of these differences seem 
to be attributable to the individual students in each cohort. For example, cohort 2 
included a PT who consistently discussed the specific mathematics in each instance 
right from the start. Other differences may be the result of the interactions of the 
PTs within the group. Cohort 1, for instance, included a participant who challenged 
others when they made claims about the understanding of whole groups of students 
based on a single student comment, possibly reducing the number of such claims. 
Other differences may be the result of the way the group discussion was facilitated 
each semester, or participants’ understanding of the mathematics of each lesson that 
was analyzed. These factors are being investigated as part of the ongoing analysis of 
the data; additional data are also being collected to determine whether similar trends 
are seen with other PT cohorts.

In addition, the analysis of the topic of the PTs’ noticing has raised issues related 
to video selection that require further investigation. One of the reasons that the 
coding of the topic of the PTs’ noticing was more difficult to make sense of was 
that some of the noticing topics seemed to be video or context specific. That is, in-
stances related to some noticing foci were not seen in all of the videos. In the study, 
classroom video that was recorded by the participants was used to maintain a strong 
connection to practice. Analyzing the video from classrooms in which the PTs 
worked was intended to give a sense of reality to the experience; that is, the video 
portrayed students who were real to the PTs, rather than “other” students from class-
rooms that were special in some way. This meant, however, that what each PT co-
hort had available to notice was not always the same. In particular, there were three 
topics that seemed strongly dependent on the classroom culture or nature of a les-
son: multiple student solutions, unexpected correct answers, and students correcting 
one another’s mathematical thinking. Instances that instantiate these topics are only 
likely to occur, and thus be available to be noticed, in classrooms where the teacher 
allows multiple ideas or nonstandard ways of thinking to be made public and where 
students are engaged in discussion about mathematical ideas. Thus, although the 
mathematical content of the videos did not seem to be a factor, the context of the 
classrooms and, in particular, the nature of student–teacher interactions seem to be 
an important consideration. This context dependency raises interesting questions 
related to video selection that need to be explored in future work. Specifically, it 
may be the case that in future iterations of the work, videos need to be deliberately 
“inserted” into the sequence of videos that are analyzed to ensure that participants 
have access to a wide range of mathematically important instances.

In summary, this study provides an initial understanding of the outcomes of a 
set of activities designed to facilitate PTs’ mathematical noticing and gives some 
insight into elements of such activities that might be critical to helping PTs learn to 
attend to important mathematical instances that arise during a lesson. Understand-
ing the details of transitions in noticing and how to best support them in this context 
has the potential to inform interventions to support mathematics teachers in a range 
of contexts to engage in productive mathematical noticing during instruction.
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Attention to student thinking has been identified as a critical tool to initiate chang-
es in teachers’ knowledge for teaching and improvements in classroom instruction 
(Fennema et al. 1996; Franke et al. 2001; Kazemi and Franke 2004; Sherin and 
van Es 2009). Moreover, an emerging hypothesis in the field is that the construct 
of a learning trajectory (LT) has the potential to support teachers in making sense 
of and using student thinking to improve teaching and learning. The authors of 
the Common Core State Standards (National Governors Association Center for 
Best Practices, Council of Chief State School Officers (NGA Center & CCSSO) 
2010) emphasized the use of research-based LTs in the development of the new 
standards and committed to use research and evidence of student learning to in-
form future revisions. Daro et al. (2011) stated that LTs serve “as a basis for in-
forming teachers about the (sometimes wide) range of student understanding they 
are likely to encounter, and the kinds of pedagogical responses that are likely to 
help students move along” (p. 12). However, little is known about how teachers 
come to learn about LTs and appropriate them into their instruction. In this study, 
I identify the ways in which five elementary teachers used an LT to support at-
tention to students’ mathematical thinking as they plan mathematics lessons. In 
particular, I address the following research question: In what ways do teachers 
use LTs to choose instructional tasks and learning goals, and anticipate students’ 
approaches to intended instructional tasks?

This report is based upon work supported by the National Science Foundation under grant 
number DRL-1008364. Any opinions, findings, and conclusions or recommendations expressed 
in this report are those of the authors and do not necessarily reflect the views of the National 
Science Foundation.
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Background

LTs utilize research on student learning to describe probable pathways of learn-
ing over time. Researchers who have studied the implications of LTs for teachers 
have found that LTs provide a framework for making instructional decisions (Bard-
sley 2006; Sztajn et al. 2011a; Wilson 2009) and afford teachers with a means to 
focus on their students’ mathematical thinking (Clements et al. 2011; Edgington 
et al. 2011; McKool 2009; Mojica 2010). While these studies addressed teachers’ 
knowledge of student thinking, little is known about the ways in which LTs support 
specific teaching practices. As teachers increasingly attend to student thinking in 
lesson planning and instruction, researchers must consider the role of LTs in sup-
porting teachers’ complex work. Research has yet to address how teachers plan for 
instruction when they have information about the progression of more sophisticated 
levels of thinking inherent in LTs, or how teachers use evidence of student thinking 
to inform future instruction in light of LTs. This study contributes to the research on 
teachers’ uses of LTs to support attention to student thinking in planning for math-
ematics instruction.

The research presented reports, five teachers’ uses of an LT in lesson planning 
through two different processes: identification of instructional tasks and learning 
goals, and anticipation of students’ work. Often considered a core routine of teach-
ing, lesson planning refers to the time teachers spend preparing for instruction be-
fore students enter the classroom. Grossman et al. (2005) refer to this as the “preac-
tive” aspect of practice, where teachers focus on lesson planning, unit planning, or 
even planning for classroom management.

Early studies on teachers’ lesson planning attended to the resources teachers used 
to plan, indicating that teachers focused on ideas such as content, activities or tasks, 
materials, textbooks, routines, as well as students’ needs and backgrounds (Brown 
1988; Fernandez and Cannon 2005; McCutcheon 1980). In a study of 12 elementary 
school teachers, McCutcheon (1980) found that teachers used their textbook as a 
main source for activities and depended heavily upon suggestions from the teach-
ers’ guide. In a later study, Brown (1988) examined the lesson planning practices of 
12 middle school teachers in various content areas. She found that teachers relied 
heavily on curriculum materials, building their lessons off of objectives expressly 
stated in the curriculum resources.

More recently, studies on mathematics lesson planning have sought to identify 
high-leverage planning practices. Superfine (2008) studied three teachers’ lesson 
planning with respect to a specific mathematics curriculum. Her study revealed 
two planning difficulties: (a) anticipating student work, misconceptions, and po-
tential errors for a given task; and (b) understanding the treatment of the content in 
the curriculum. She concluded that teachers’ conceptions of teaching and learning 
mathematics, as well as years of experience, mediated their management of the 
planning problems.

In an attempt to articulate high-quality mathematics instruction, Corey et al. 
(2010) studied conversations between seven Japanese student teachers and three co-
operating teachers from one school. These conversations occurred during planning 
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meetings that took place between the student teachers and their cooperating teach-
ers, where the pairs met on average three times prior to teaching a lesson. The find-
ings described six principles of high-quality instruction, with three of the principles 
directly related to lesson planning: (a) an ideal lesson is guided by a set of explicit 
long- and short-term goals, (b) a particular lesson is created with clear connections 
to previous and future lessons, and (c) high-quality instruction requires anticipating 
student thinking in relation to the goals of the lesson. This study offers support for 
the importance of teachers’ ability to choose learning goals and to consider students’ 
approaches to intended instructional tasks in order to foster meaningful learning.

Conceptual Framework

In light of reform efforts to improve the teaching and learning of mathematics, 
one may question what should be the focus of planning when instruction attends 
to students’ mathematical thinking. Teaching from a reform perspective requires 
consideration of how to construct lessons that address specific learning goals and 
allow teachers to gather evidence of their students’ understanding toward the cho-
sen goals. Moreover, as student learning progresses over time, teachers must be 
able to consider how to build on students’ current conceptions to reach intended 
learning goals.

The conceptual framework for this study draws upon the work of Hiebert et al. 
(2007) as well as that of Smith and Stein (2011). These two frameworks were cho-
sen because of their emphasis on student thinking as a central feature of lesson 
planning and instruction. During lesson planning, teachers not only choose intended 
learning goals, but they decompose learning goals into smaller subconcepts that 
comprise larger goals (Hiebert et al. 2007). Careful unpacking of larger mathemati-
cal goals as well as specifying necessary subconcepts can provide teachers with 
more detailed information with which to build a lesson. Hiebert et al. (2007) recog-
nized the importance of teachers’ subject matter knowledge with respect to this skill 
and that it is often a challenge for novice teachers.

As teachers choose mathematical tasks, it is important that the task aligns with 
the chosen learning goals (Smith and Stein 2011). Moreover, teachers must con-
sider how different tasks elicit different opportunities for student thinking. Smith 
and Stein (2011) also noted that teachers should consider “the extent to which the 
task permits entry to students who bring with them a range of prior knowledge and 
experiences” (p. 18). Open tasks that can be solved in multiple ways are more likely 
to be accessible to a wide range of learners and provide opportunities for productive 
mathematical discussions.

In considering the mathematical task proposed in a lesson, teachers use their 
own content knowledge as well as their knowledge of how students are likely to 
approach the task to anticipate students’ responses and common areas of difficulty 
(Smith and Stein 2011). In this way, teachers can consider how students’ responses, 
both correct and incorrect, can lead to the intended learning goals. By comparing 
evidence of student learning to the intended learning goals, teachers can determine 
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which aspects of their instruction helped or hindered their students’ understand-
ings (Hiebert et al. 2007). Once instruction has been evaluated, careful planning is 
important for considering new learning goals and instructional tasks that build on 
students’ current conceptions and move students to more complex mathematical 
understanding.

The structure for the current study joins components of the Hiebert et al. (2007) 
and Smith and Stein (2011) frameworks in relation to findings from previous re-
search on lesson planning to specify what it means to plan mathematics lessons 
when teachers attend to student thinking. Because identifying tasks and learning 
goals are closely related and often intertwined, I chose to examine these two areas 
together. Hence, this study examined two aspects of lesson planning: choosing tasks 
and learning goals, and anticipating students’ approaches to intended tasks.

Attending to student thinking can support teachers as they engage in lesson plan-
ning. However, as noted earlier, specifying learning goals and anticipating student 
work in relation to chosen learning goals can be challenging (Hiebert et al. 2007; Su-
perfine 2008). Careful attention to students’ current conceptions can support teach-
ers in designing lessons that build on prior knowledge. Furthermore, as teachers 
consider evidence of students’ thinking, they can more explicitly connect students’ 
conceptions to important mathematical ideas. As representations of student think-
ing, LTs can not only enhance teachers’ subject matter knowledge (Mojica 2010; 
Stzajn et al. 2011b; Wilson 2009), but also potentially serve as tools to help advance 
teachers’ abilities to make sense of student thinking and use it to develop instruction 
that addresses students’ existing conceptions and moves learning forward.

Method

This study seeks to understand how teachers use the construct of an LT to support 
attention to students’ mathematical thinking within two areas of lesson planning: 
(a) choosing mathematical tasks and learning goals, and (b) anticipating students’ 
approaches to intended tasks. A qualitative case study approach was chosen in or-
der to understand participants’ created meaning of their use of one particular LT in 
mathematics instruction. Specifically, case studies allow the researcher to uncover 
and examine significant interactions that are characteristic of the phenomenon un-
der study, as well as provide concrete and contextual knowledge as evident in the 
end product (Merriam 1998). Since a goal of the research is to propose a framework 
for teachers’ uses of LTs, the emphasis is on the cross-case analysis to consider the 
variability of teachers’ uses of LTs.

Context

Learning Trajectory-Based Instruction (LTBI) is a research project with a strong 
professional development component for elementary school teachers (Sztajn et al. 
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2011b). The project was motivated by the adoption of the Common Core State Stan-
dards (NGA Center & CCSSO 2010) and current research on LTs in mathematics 
education (Battista 2004; Clements and Sarama 2009; Confrey et al. 2009). The proj-
ect’s goals include examining the ways in which teachers learn about LTs and use 
them in their classrooms to define what it means to teach from an LT perspective.

The Equipartitioning LT (EPLT) In the first year of the project, one cohort of 
teachers learned about a specific LT: the EPLT. Based on a synthesis of research 
and clinical interviews, Confrey and her colleagues developed the EPLT to describe 
how children use their informal knowledge of fair sharing as a resource to build an 
understanding of partitive division that unifies ratio reasoning and fractions (Con-
frey 2012).

The EPLT begins with experiences of fairly sharing collections of items or single 
wholes. In equipartitioning, students must learn to coordinate three criteria: (a) cre-
ate equal-sized groups or parts, (b) create the correct number of groups or parts, and 
(c) exhaust the entire collection or whole. As students enact strategies to complete 
these tasks, they gain proficiency in mathematical reasoning practices such as jus-
tification and naming (e.g., as a count, fraction, or ratio) and begin to develop un-
derstandings of fundamental mathematical properties that later influence the ways 
that they fairly share multiple wholes, for example, sharing three wholes among 
two people (Confrey et al. 2010). The trajectory describes how these strategies, 
practices, and properties ultimately unify as a generalization of partitive division 
that relates ratio reasoning and fractions. Important to the trajectory are not only 
the levels of sophistication of reasoning but parameters associated with the tasks, 
including the number of wholes and number of sharers. Beginning with equiparti-
tioning collections, the next task parameters address equipartitioning single wholes 
(rectangles and circles), building on primitive splits such as halves and powers of 
two, to eventually include arbitrary integer splits. The upper levels of the trajectory 
address tasks that involve multiple wholes and multiple sharers when the number of 
wholes is both less than and greater than the number of sharers. The full trajectory 
can be found in Fig. 1.

To further illuminate the EPLT, I offer possible task sequences, a teacher might 
follow depending upon the overall mathematical goals for a group of students. For 
example, if the focus is on strategies for equipartitioning a single whole (Level 2), 
a possible task sequence may be to remain at that level but alter the task parameters 
over time, beginning with a two-split on a rectangle or circle, then progressing 
to splits for powers of two (4, 8, 16) where a repeated halving strategy might be 
used, then examining more difficult even and odd splits (6, 3, 5, etc.). In contrast, a 
teacher may choose to hold a task parameter constant (e.g., a two-split) and move 
vertically through the levels of strategies, justification, naming, and transitivity.

The LTBI Professional Development In the first year, the LTBI project part-
nered with one elementary school in an urban district in the Southeastern USA. 
The school had approximately 600 students, 35 % Caucasian, 29 % Hispanic, 25 % 
African American, 7 % Asian, and 4 % other; 54 % of the children qualified for free 
or reduced lunch. In all, 24 teachers at the school volunteered to participate, and 22 
teachers completed the program one year later. All professional development meet-
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ings were conducted at the school, during times selected based on convenience to 
the teachers, and teachers received a stipend for their participation.

The professional development was designed over a 12-month period and began 
with a 30-h intensive summer institute in which participants engaged in profession-
al learning tasks on equipartitioning and different aspects of the EPLT, including 
video analysis of students working through equipartitioning tasks, videos of class-
room instruction, analysis of students’ written work, and curricular connections. 
By the end of the summer institute, the various ideas participants experienced were 
formalized with an emphasis on the first 12 levels. Some of the professional learn-
ing tasks were designed to allow teachers to make connections to existing curricula 
and current practice.

Throughout the school year, teachers met with project leaders monthly for 2 h af-
ter school to continue to build their knowledge of the EPLT and to try out tasks that 
incorporated equipartitioning concepts in their classrooms. During these meetings, 

Fig. 1  The equipartitioning learning trajectory (adapted from Confrey 2012)
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teachers engaged in activities such as analyzing student assessments and watching 
video clips of participants’ equipartitioning lessons. The professional development 
concluded with a 2-day follow-up summer institute.

Participants

The sample for the current study was a subset of participants from the first year 
of the LTBI project. Project participants were offered the opportunity to continue 
working with the research team in some respect in the following school year. The 
second-grade team, consisting of five teachers, expressed an interest in developing 
a set of equipartitioning lessons based on the EPLT. These teachers volunteered 
and, as such, their participation indicated a willingness to explore the utility of the 
EPLT as a tool for lesson planning, justifying their selection as a purposeful sample 
for this study. All data for this study were collected after the conclusion of the LTBI 
professional development.

The five selected teachers were previously identified by the project research 
team as highly engaged with the LTBI professional development, which increased 
the possibility of observing the phenomenon of interest, that is, the use of the EPLT 
in the classroom. At the same time, these teachers varied in their mathematical 
knowledge for teaching (as measured by the University of Michigan’s Learning 
Mathematics for Teaching content assessment for rational number reasoning grades 
4–8; Hill and Ball 2004), years of experience, and beliefs about instruction (as mea-
sured by the Teachers’ Beliefs about Mathematics and Mathematics Teaching in-
strument; Campbell et al. 2011), which created variation for the investigation. The 
fact that the teachers met regularly to plan and discuss their mathematics instruction 
in a professional learning community setting supports including all five teachers. 
The use of the same curriculum and the selection of similar tasks for implementa-
tion made the connection between teachers’ uses of the EPLT and their curriculum 
(Wilson 2009) in certain ways uniform across the cases, further illuminating varia-
tions among the teachers’ uses of the EPLT.

In summary, the selected sample had a high probability of producing cases that 
were both information-rich and varied, offering in-depth details on the teachers’ 
uses of the EPLT for lesson planning. Each teacher was given a pseudonym used 
to report findings of the study in order to maintain confidentiality. The five partici-
pants are Bianca, Ellen, Emma, Lara, and Tracy. Table 1 provides a summary of the 
participants.

Data Sources and Analysis

The primary sources of data for this study are transcripts from three grade-level 
planning meetings, pre-lesson questionnaires, classroom observations of teachers’ 
instruction, and transcripts of teacher interviews. There were three data cycles and 
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each cycle began with a grade-level lesson planning meeting, followed by individ-
ual classroom observations, and concluding with individual post-lesson interviews. 
The grade-level lesson planning meetings were audio recorded and took place ap-
proximately once a month over a 3-month period. Hence, while the three lessons 
were sequenced by topic, they were not taught on three consecutive days. During 
these meetings, my role was mainly as an observer, but I also served as a resource 
or knowledgeable other about the EPLT when my input was requested or when 
I considered my input helpful. Prior to each lesson, four of the five participants1 
completed a pre-lesson questionnaire to provide information about the teachers’ 
learning goals and any adaptations they may have made to the lesson plan. The pre-
lesson questionnaire consisted of open-ended questions in order to acquire specific 
information from each participant and was collected prior to the lesson observation, 
either through email or as a hard copy. Examples of questions asked are “what are 
the learning goals for this lesson?” and “Anticipate what you think will happen as 
you implement this lesson.”

Observations took place in each participant’s classroom during the regularly 
scheduled math instructional time and were video recorded. They were video re-
corded using a blue tooth microphone and one video camera that followed the teach-
er in order to capture dialogue between the teacher and students during whole-group 
and small-group classroom interactions. Following each lesson, a semistructured 
interview was conducted with the participant to discuss the teacher’s perceptions of 
what learning took place, as well as evidence of that learning and how the teacher 
used that evidence to inform future learning goals. The post-lesson interviews took 
place within 1–3 days after a lesson, and on two occasions took place immediately 
following the lesson. The interviews were audio recorded and semistructured in 

1 For unknown reasons, Lara did not complete any of the pre-lesson questionnaires. Information 
about her learning goals and interpretations of the lessons were collected during the post-lesson 
interviews.

Table 1  Participant information
Bianca Ellen Emma Lara Tracy

Race Hispanic White White White White
Years of 

teaching 
experience

5 6 6 8 18

LMT (scaled 
score)a

0.63 − 0.65 0.63 − 0.51 0.47

Beliefs scoreb 135 137 146 116 146
Certification Bachelor’s 

degree, K–6
Bachelor’s 

degree, K–6
Bachelor’s 

degree, K–6
Bachelor’s 

degree, K–6
Master’s 

degree, K–6
a For the LMT, 22 teachers completed the assessment with a mean scaled score of 0.19, st. dev. = 
0.92. A positive scale score is associated with more items answered correctly, whereas a negative 
scale score is associated with fewer items answered correctly
b A higher beliefs score indicates teachers’ beliefs align more often with student-centered instruc-
tion, with a maximum score of 200
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order to collect similar data from each participant, but they also allowed the re-
searcher to respond to the individual participants’ views that emerged through data 
collection (Merriam 1998). Interview questions focused on discussing important 
moments from the lesson, evidence of student learning, and decisions the teacher 
made during the lesson. At the end of each interview, participants were asked, “did 
you draw upon the EPLT as you implemented your lesson? If so, how?” in order to 
obtain specific information regarding the EPLT.

Data were analyzed using ATLAS.ti (2012), qualitative data analysis software. 
Evidence from the grade-level meetings and pre-lesson questionnaires were used 
to examine the ways in which teachers used the EPLT to select learning goals and 
tasks and anticipate students’ responses. Observations were used to seek evidence 
of the teachers’ use of the EPLT as they monitored their students’ progress on tasks, 
and as they structured whole-class discussions. Evidences from post-lesson inter-
views and from grade-level meetings were considered to determine the ways in 
which the EPLT was used to reflect on the impact of instruction on student learning, 
to evaluate evidence of student learning, and to inform future instruction. The find-
ings reported here focus on the use of the EPLT to choose tasks and identify learning 
goals, and to anticipate likely student responses for three lessons.

Coding of Lesson Planning Meetings First, data were organized into what Patton 
(1990) referred to as a case record; all data for one participant were gathered for 
analysis. Since all five teachers participated in the planning meetings, transcripts 
from these meetings were analyzed separately. That is, for each case, the participa-
tion of the particular teacher in the lesson planning meetings was analyzed with 
the other teachers serving as the context for that case. Analysis began by coding 
the transcripts of the grade-level planning meetings using codes identified a priori 
based on the conceptual framework for the study; these included task and learn-
ing goal, and anticipating. Open coding was used to capture ideas that emerged 
that were not included in the initial codes. For example, during the first planning 
meeting, issues of when to teach equipartitioning concepts surfaced in the teachers’ 
discussions. I coded this as “curricular connections” and began to look for further 
instances when the teachers discussed the EPLT in relation to other concepts in their 
curriculum, or difficulties they perceived in fitting equipartitioning in with their 
existing curriculum. Codes were applied to chunks of the transcripts from the lesson 
planning meetings according to idea units that consisted of dialogue by one or more 
individuals about one particular idea.

Coding of Individual Cases After the initial coding of the lesson planning meet-
ings, each individual case, consisting of the teacher’s pre-lesson questionnaires, 
observations, and interviews, was coded in chronological order. The pre-lesson 
questionnaires were coded for task and learning goal and anticipating, as well as 
for emerging ideas that were identified through open coding. Then, the post-lesson 
interview transcripts were coded in the same way as the lesson planning meetings. 
When new codes emerged, I revisited previously coded data to check for further 
evidence of the new codes. For the purposes of lesson planning, the observations 
were used to triangulate teachers’ statements in the pre-lesson questionnaires and 
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post-lesson interviews. This process was repeated for the second and third lessons, 
then for each of the remaining cases. Memos were created throughout the coding 
process to develop emerging themes and categories.

Within- and Cross-Case Analyses Once all data were coded, I completed a 
within-case analysis by answering the research question using detailed descrip-
tions for each case and its context. Once the within-case analyses were completed, 
a cross-case comparison (Merriam 1998) was conducted to facilitate clarification 
about the teachers’ uses of the EPLT. I began to look across the cases to create 
categorical aggregations and establish patterns. For example, four of the cases pro-
vided evidence of coordination between proficiency levels and task parameters of 
the EPLT to calibrate tasks to fit the needs of their students and the mathematical 
goals. Because the teachers varied in how they used the EPLT in this way, I used 
this idea, along with others, to categorically describe the ways teachers used EPLTs 
to choose tasks and specify learning goals.

Various forms of data were collected in order to triangulate the participants’ per-
ceptions and interpretations of the use of the EPLT for lesson planning. In addition, 
because multiple observations were conducted over the course of one semester, 
repeated observations of the same phenomenon were conducted, increasing the va-
lidity of the findings (Merriam 1998). As each within-case analysis was completed, 
I shared with participants descriptions of their uses of the EPLT as a form of mem-
ber checking to solicit their views of the credibility of my interpretations. Once the 
cross-case analysis was completed, I met with a colleague not associated with the 
project, who reviewed the findings as an external check.

Results

One goal of the research was to propose a framework for teachers’ uses of LTs 
with respect to lesson planning. To this end, emphasis was on the cross-case analy-
sis; cases are not presented individually, but instead information from the cases is 
distributed throughout each section (Yin 2003). I begin by providing an overall 
description of the grade-level lesson planning meetings in order to describe the in-
structional tasks the teachers chose to use and the issues the teachers discussed as a 
group. Next, I share themes that emerged related to two aspects of lesson planning: 
choosing tasks and specifying learning goals, and anticipating students’ approaches.

Lesson Planning Meetings and Instructional Tasks

Second-grade teachers who participated in this research met weekly to discuss their 
instruction. Therefore, when it came to planning for the three EPLT lessons, details 
of the lesson planning took place in similar grade-level planning meetings sched-
uled just for the lessons they would use for the research. Although not part of the 
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individual cases, the planning meetings are described in what follows to provide 
context for the results.

In general, the teachers used the lesson planning meetings to choose instructional 
tasks. Although they mentioned specific goals at times, they did not use the meeting 
to discuss in detail or come to consensus on particular learning goals they wanted to 
address for each of the lessons. At the time of the study, it was unclear whether this 
was a normal practice of their common planning time. Table 2 presents a summary 
of the three tasks the teachers chose to use. Also included is an analysis of potential 
proficiency levels and task parameters that the tasks could address depending on 
implementation, which varied from teacher to teacher.

For the first lesson, it was important for the teachers that the task addressed 
multiple levels of the trajectory, so they could get a sense of what conceptions their 
students held at the beginning of the school year, even though they may not explic-
itly attend to each level during the lesson. Using the EPLT to consider connections 
between equipartitioning collections and the second-grade curriculum came up dur-
ing this first meeting. Part of their curriculum during the first half of the school 
year was to develop students’ facility with doubles facts as a strategy for addition 
and subtraction. A few of the teachers noticed and brought up the idea that students 
could potentially use doubles facts as a strategy to share collections between two 
people and as a way to generally strengthen students’ number sense. The teachers 
decided to use a task they used the previous year during the LTBI professional de-
velopment that engaged students in sharing 24 counters among two, four, and three 
friends. The task asked students to explain how they shared the counters, what they 

Table 2  Tasks descriptions with potential proficiency levels and task parameters (see, Fig. 1)
Task description Proficiency levels Task parameters
Lesson #1: Fairly share a collection 

of 24 counters for 2, 4, then 3 
friends. Explain, and name the 
resulting shares

Equipartitioning collections
Justification
Naming
Reassembly
Qualitative compensation
Factor-based change
Reallocation

Sharing collections for
2-splits
2n-splits
Odd splits

Lesson #2: Fairly share a rectangle 
and collections of 6, 8, and 10 for 
2, name the resulting shares

Equipartitioning collections
Equipartitioning wholes
Justification
Naming
Reassembly

Sharing single wholes (rect-
angle) and collections for

2–splits

Lesson #3: Fairly share a rectangu-
lar piece of wrapping paper for 
different numbers of equal-sized 
gifts

Equipartitioning wholes
Justification
Naming
Reassembly
Qualitative compensation
Composition of splits with 

multiple methods
Transitivity

Sharing single wholes (rect-
angle) for

2-splits
2n-splits (e.g., 2, 4, 8)
Even splits (e.g., 6)
Odd splits (e.g., 3)



272 C. Edgington

would name each person’s share, and to predict what would happen to the size of 
the share when more or less friends shared the counters.

The second lesson planning meeting took place after school, once all of the 
teachers had taught the first equipartitioning lesson, and the teachers spent the first 
half of this meeting sharing their observations from this lesson. All of the teach-
ers deemed their students successful on the task and agreed that, in general, their 
students struggled to consider mathematical names for the shares they created. The 
teachers discussed various routines they developed for their classes that incorpo-
rated equipartitioning concepts, including daily story problems that used equipar-
titioning contexts as well as estimation activities that utilized the idea of sharing a 
collection in half.

As the teachers considered possible follow-up activities for the second lesson, 
they struggled to articulate where on the trajectory they wanted to focus. Because 
they considered that equipartitioning was only explicitly addressed in their curricu-
lum in relation to naming fractional parts, some of the teachers found it difficult to 
conceptualize how equipartitioning concepts related to the curriculum they were 
teaching at that time. Others suggested that since they were currently working on 
developing doubles facts—an idea that came up in everyone’s classroom during 
the first equipartitioning lesson—perhaps this idea could be further developed in 
conjunction with equipartitioning concepts. In the end, they chose to focus on nam-
ing, but restrict the task parameters to sharing a whole and collection for two. The 
lesson they developed began by having students explore how to share two different 
sized rectangles for two and how each share can be named “half,” but of a different 
sized rectangle. Then, students explored sharing small collections of 6, 8, and 10 
counters that were arranged in rectangular arrays for two friends and named the re-
sulting share. Through discussion, the goal was for students to begin to understand 
the importance of the referent unit and that each share can be named as “one-half” 
though the sizes of the collections varied.

Similar to the second lesson planning meeting, the teachers spent the first part of 
the third meeting reflecting and sharing observations of their instruction from the 
second lesson. Overall, the teachers believed their students were beginning to un-
derstand the concept of “one-half” as one of two equal shares, and as a way to name 
the resulting share when equipartitioning for two. When they shifted the conversa-
tion to what they might teach for their third lesson, several ideas surfaced.

First, one of the teachers suggested a possible follow-up lesson would be to do a 
similar activity as the second lesson with different numbers of counters and without 
using the array structure in order to further develop the idea of naming in relation to 
the whole collection. Another teacher also suggested doing a similar activity, but to 
move beyond sharing for two to include sharing for four and three. They discussed 
how to potentially connect this lesson with other topics that they were teaching at 
the time, such as congruent shapes and area. Because they were moving into geom-
etry topics, they decided a lesson that focused on sharing wholes would be more 
in line with their curriculum and decided to use a task from the LTBI professional 
development that they called “the wrapping paper task.” The task used the context 
of fairly sharing holiday wrapping paper and could be adapted to address a number 
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of proficiency levels and task parameters. As indicated on their pre-lesson question-
naires, the teachers modified the task on their own, focusing on sharing a rectangle 
for various splits including 2, 3, 4, 6, and 8.

In what follows, I present themes that emerged from the analysis related to the 
teachers’ uses of the EPLT for two areas of lesson planning: choosing tasks and 
learning goals, and anticipating students’ responses.

Choosing Tasks and Learning Goals

Themes that emerged related to tasks and learning goals are as follows: (a) con-
sidering the purpose of the task, (b) attending to short- and long-term goals, (c) 
coordination of proficiency levels and task parameters, and (d) considering a range 
of instructional moves. The teachers utilized the EPLT to choose instructional tasks 
that spanned multiple proficiency levels, thereby providing entry points for students 
with a variety of levels of proficiency with equipartitioning concepts. The tasks sup-
ported multiple approaches and utilized various representations, and each teacher 
implemented the tasks with the expectation that students would communicate with 
each other about mathematical ideas. The tasks were considered high cognitive de-
mand in that they were not routine and asked students to consider the mathematics 
beyond general procedures (Smith and Stein 2011), although not all teachers main-
tained the high demand of the tasks as they were implemented.

Considering the Purpose of the Task All five teachers changed the chosen tasks 
slightly, either in form or in presentation, to fit their individual teaching styles and 
students, and varied in their purposes for using the tasks. While they all saw the first 
task in part as an informal assessment to determine what their students knew about 
equipartitioning collections, Emma and Tracy both used the lesson as an opportu-
nity to teach their students how to organize their work and explain their thinking 
beyond reporting a numeric answer. During the first lesson planning meeting, Tracy 
commented:

I think also when we think about the beginning of the year and we’re trying to teach the 
tools of being a mathematician and the organizational skills that are necessary, we need to 
emphasize that. And sort of just gather, what are the strategies that they’re using and model, 
or have other kids model, in a more systematic way for divvying things up.

Based on the results of the first lesson, four of the participants chose to focus on the 
long-term goal of developing the concept of naming fractional parts, in line with the 
second-grade curriculum. In the second planning meeting, Bianca and Tracy agreed 
that naming was an important concept to address:

Bianca: I feel as if the naming is the hardest part… I think it would be great to have some 
particular lessons to start really pulling that out of kids and then help scaffolding them with 
that. Because when we teach fractions explicitly, I feel like they get to the wholes and they 
get to the actual sharing of things. But I feel as if we’d be doing our kids a disservice if 
we didn’t hit on what they are most needing. Which I, from my class, I definitely think the 
naming thing.
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Tracy: Yeah, well, I’m thinking—I’m always thinking of how difficult naming is. And to 
me the biggest hope of getting them to name is understanding half and if, you know, by the 
end of second grade they can get [what] “half” is with a collection, and maybe more than 
that later during the year, I’d be happy. Because it is such a difficult concept. Not just count 
them, to give the number a count—to refer to the whole.

However, one participant, Lara, saw all three of the tasks as various forms of forma-
tive assessment to find out what her students knew about equipartitioning. Lara did 
not identify specific learning goals for any of the lessons. During the second plan-
ning meeting, the teachers discussed how they structured the first lesson:

Tracy: So are you saying, did you just give them this? And have them read, you didn’t…
Lara: Yes. I didn’t stop, because I guess I thought the benefit was I wasn’t polluting by 
interjecting too much. I didn’t want to, well maybe that’s not a good way to put it. If I say 
something, I could skew their thinking and I didn’t want to give them any help. This is like 
raw, I just wanted to see what they can do on their own.
Tracy: Yeah, I understand that for assessment purposes…
Lara: Mm-hmm.
Tracy: But I guess I’m seeing this as an instructional task.
Lara: I guess I was looking at this as assessment like, what do they know if I don’t say 
anything? What can they do on their own?

Overall, Lara struggled with making connections between equipartitioning and the 
second-grade curriculum and did not see the three lessons as instructional, as op-
portunities to strengthen her students’ number sense, or as opportunities to build a 
foundation for fractional concepts. Her beliefs about instruction were something 
different from having students engage in a novel task and then discussing students’ 
ideas to bring forth important mathematical concepts.

Attending to Short- and Long-Term Goals In contrast to Lara, the other four 
teachers specified goals related to equipartitioning for each of the three lessons. 
They were able to use the EPLT to consider short-term goals in relation to the long-
term goal of naming fractional parts. For example, for the second lesson, Bianca 
hypothesized that naming would be easier with a whole, so she suggested starting 
with sharing a rectangle for two and naming the resulting share to scaffold students’ 
ability to name the resulting share from equipartitioning a collection. She also rec-
ognized from the first lesson that students readily made connections to doubles 
facts, so that could potentially also scaffold students’ ability to name two-splits. She 
suggested,

What if we went, this is, I’m just throwing this out there, this could be, you know. But what 
if we went to wholes and just worked on halving to see if a name came out of that? And then 
we went back to doubles with collections and see, saw if the, you know if the vernacular, if 
the vocabulary came out with a whole, if they would transfer it then to collections.

In addition, the teachers decided to keep the size of the collections smaller in the 
second lesson in order to provide opportunities for students to use their knowledge 
of doubles facts to determine the size of the share. In this way, they were attempt-
ing to scaffold students to move from dealing strategies to the more sophisticated 
strategy of using number facts. During the second planning meeting, Tracy stated,
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Well, I do like how it sort of scaffolds their thinking in a visual sense. So it’s connecting the 
collections with the whole. And where as we don’t have to, and it is very complicated for 
second graders to be able to name collections, half is you know, you can get them to half.

Emma outlined specific goals for the second lesson and reported in her pre-lesson 
questionnaire that her goals were (a) recognizing that “half” is one of two equal-
sized shares of a whole, (b) recognizing the importance of naming a half in relation 
to the whole, (c) seeing connections between sharing a whole and sharing a collec-
tion, and (d) seeing that there is more than one way to name a share. As a group, the 
teachers used the trajectory to identify naming as an important goal and to integrate 
equipartitioning concepts with their curriculum.

Coordinating Between Proficiency Levels and Task Parameters Ellen, Bianca, 
Tracy, and Emma coordinated the proficiency levels of the EPLT with the task 
parameters to calibrate tasks so they were appropriate for their students and the 
mathematical goals they had chosen. For example, Ellen decided for the third lesson 
to have her students explore various ways to share a rectangular whole for different 
task parameters. She knew from the trajectory that odd splits were more difficult for 
students than even splits, but she also considered repeated halving to be too easy for 
her students. Consequently, she chose to have students explore sharing for 2, 4, and 
6, with an emphasis on justifying fair shares and naming the resulting shares using 
fractional names. Her specific goals were “To be able to understand why each piece 
of paper is the same size, to be able to name each piece of wrapping paper 1/2, 1/4, 
1/6, possibly 1/3.” When asked during the post-interview why she chose 2, 4, and 
6, she stated,

Because we had done it before and I felt comfortable with it. I actually thought about doing 
two, four, and eight, but I didn’t want them to just halve, and halve, and halve. And I felt 
like they might halve, and halve, and halve. So I wanted to see how they would do the 
sixths. And I didn’t want to get them into odd yet. I’d rather have them get real comfortable 
for halves, fourths, sixths and then we’ll talk about third.

Similarly, for the third lesson, Bianca attended to the task parameters as a way to 
address naming with her students. Her specific learning goals were for students 
to “share a whole fairly for 2, 4, and 8 people. Students will focus on how they 
might name the share in relation to the whole, for example, each person got ‘one 
of 8 pieces.’” She also considered that because her focus was on naming, which is 
higher in the trajectory, keeping the task parameters lower would allow her students 
to focus more easily on the name rather than on the strategy for equipartitioning, as 
evidenced in this interview excerpt:

I: Why did you choose two, four, and eight?
Bianca: Yeah, so I wanted to keep with repeated halving just knowing the trajectory. You 
know, I know that that’s easier and since naming is a little bit harder, I didn’t want the shar-
ing to be too difficult for them.
I: I see.
Bianca: I wanted them to be able to feel successful sharing so that they could focus on what 
do we call what we’ve just shared.
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In this way, Bianca and Ellen used the task parameters in relation to the proficiency 
levels to adjust their lessons to the appropriate level of difficulty for their students.

Considering a Range of Instructional Moves Some of the teachers also used the 
EPLT to consider a range of potential instructional moves in their planning based 
on their students’ understandings. For example, after the second lesson, Bianca rec-
ognized that she could repeat the task either by changing the task parameter to share 
among four, or by changing the size of the collection but still focus on naming, as 
shown in this dialogue from the second post-lesson interview:

Bianca: Because I feel like some kids, I would break them off and we would start talking 
about collection—like, naming of collections when it’s not just half, maybe. You know, or 
maybe doing the same kind of lesson but with fourths.
I: Okay.
Bianca: Like, the exact same thing where we take [a rectangle] and we share for four people 
and then we take a collection and you share for four people and what can we call it. You 
know, maybe we could go that route. Or I would go a completely different route for the kids 
who are, like, I’m not really sure if they got halves. Let’s work on sharing wholes and nam-
ing them and seeing, you know, and can we call the same—you know, if we had the same 
size. You know, exploring that more deeply. So, I feel at this point, it could go—there’s, 
like, a couple different ways you could go. I could do something, like, really similar again, 
which is what I tried to do with the last lesson.
I: Right.
Bianca: But, like, let’s—
I: With different numbers.
Bianca: —do it, like, increase the numbers. Now, seeing what I did last time, increasing the 
numbers, I wouldn’t do it too much more, but I could—especially if it was structured this 
way—I wonder if we did [collections of ] 12, 14, 16.

After the third lesson, both Bianca and Emma considered a possible follow-up ac-
tivity would be to change from sharing a rectangle to sharing a circle. In her post-
lesson interview, Emma stated:

It would be good to do some more multiple methods. I mean, we could also try it with a 
circle. And see how that would vary—couldn’t do wrapping paper, but, coming up with 
something else. Snowmen, or I don’t know, cookies.

Similarly, Bianca commented during the post-lesson interview after the third lesson:
Well, I think—I mean I would like to see—I would probably do something the same, maybe 
with circles. And still focus on naming because we’ve kind of gotten there. But I now we’re 
taking it down a—I would still do two, four and eight, but let’s do circles and see can we 
still name them, but are our shares—but, like, at the side be like, “okay, what’s going to 
happen when we get a circle? Can we share it?” Because here, they were successful sharing 
it and so they could be successful naming it, all right so now we’re just going to take a circle 
and we’re going to try to share it fairly.

Both teachers knew from the trajectory that equipartitioning circles is more difficult 
than equipartitioning rectangles, and since their students were successful with strat-
egies and naming using rectangles, a possible move would be to explore strategies 
and naming using circles while keeping the task parameters the same (2n-splits). 
The trajectory supported the teachers in considering both horizontal and vertical 
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movement along the trajectory to refine and push their students’ understanding re-
lated to equipartitioning.

Anticipating Students’ Approaches

The participants varied in their use of the EPLT to anticipate how students would 
approach the intended instructional tasks. Because Lara did not complete any of the 
pre-lesson questionnaires, there is no evidence about whether she used the EPLT 
to engage in this practice or anticipated at all how her students might approach the 
tasks she used. For the other four teachers, themes that emerged are (a) identifying 
specific strategies and misconceptions, (b) attending to levels of sophistication, and 
(c) going beyond the goals of the lesson.

Identifying Specific Strategies and Misconceptions The four teachers for whom 
there was evidence of anticipation used the EPLT in different ways. Ellen used the 
EPLT to anticipate some of the strategies her students would use to equipartition 
collections and wholes, as well as how they might name the resulting shares, but she 
often underestimated what her students could do. For example, for the third lesson, 
she anticipated that students would use vertical and horizontal cuts to create halves 
and fourths, and that they would unintentionally create eighths by repeated halving 
when trying to share for six. She did not anticipate that students would use diagonal 
cuts, which gave her pause during her lesson. After the lesson, she stated:

I thought it was very interesting when they did the diagonal. And when—as I was teaching 
it and we were talking about it and I was asking them to explain it, [how] it was “equal 
pieces,” I was in my head going, “how am I going to explain to them?” So, I’m just going 
to let them give their simple explanation and just go from there because I didn’t want to take 
the time to cut and those kinds of things to do that.

Had she anticipated the variety of approaches students often use when equiparti-
tioning a rectangle (e.g., using diagonal cuts), she might have been more prepared 
to discuss how to justify the equivalence of shares produced by diagonal cuts, in-
cluding a common misconception that diagonal cuts can be used to create six equal-
sized pieces. Perhaps she would have considered her own mathematical thinking 
about using diagonals to create six unequal-sized pieces and addressed this with her 
students when it came up in her lesson.

Tracy also used the EPLT to anticipate common strategies. In the first pre-lesson 
questionnaire, she anticipated specific strategies that she expected her students to 
use, such as “dealing systematically one at a time while others may give a few at a 
time to each person, then distribute the remaining chips one at a time.” Her anticipa-
tions connected to how she planned to select student work during the whole group 
discussion. She expected to see a range of dealing strategies, which allowed her to 
consider how to highlight different strategies during the whole group discussion to 
make the mathematics available to all of her students and to encourage more effi-
cient strategies. In her first post-lesson interview, she compared her knowledge of 
student thinking prior to and after the LTBI professional development:
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I [was] pretty good at noticing what kids do and how it’s different from each other, but still 
not necessarily understanding that one represents a more sophisticated thought. For some 
things, maybe…but I just had never thought of that before. I think whenever we did fair 
shares, it was “did they get it, or didn’t they get it?” You know, maybe observing how they 
did it, but not really reflecting and analyzing and giving much thought to how they do it.

Bianca used the EPLT in a general way to consider what might be difficult for 
her students by noting on her pre-lesson questionnaire, “I think one difficulty will 
definitely be naming the shares. I know that it is a more difficult task on the learn-
ing trajectory and they have not had many experiences doing so.” She also used 
it to expect specific behaviors from her students, such as using dealing strategies 
along with number facts and doubles facts as strategies to determine fair shares of 
collections. For the third lesson, because she purposefully chose powers of 2, she 
predicted that her students would use a repeated halving strategy, saying, “I hope 
that a few of them notice the repeated halving and give their own language and ex-
planation as we go from 2 to 4 to 8.” Bianca also used the EPLT to expect different 
mathematical names such as “one out of four, or one part of the four whole parts, or 
one part out of eight parts, etc.” Bianca used the trajectory as a tool to consider how 
her students would approach the tasks, thereby allowing her to be better prepared to 
connect their strategies with her goals for the lessons.

Attending to Levels of Sophistication Tracy, as an experienced teacher, recog-
nized the different strategies students used to share collections, but learning the 
EPLT gave her more precise language with which to describe her students’ antici-
pated behaviors. In her pre-lesson questionnaire, she used specific language from 
the EPLT to describe how she thought her students would approach the first task:

I imagine most students will not name a share mathematically, though a few may do so 
with prompting. I do expect that the vast majority of my students will be able to create fair 
shares… I anticipate the greatest difference among students to be in how they go about 
equipartitioning. Some will be able to reallocate chips when going from sharing between 
two and sharing among four by simply halving each person’s share to make two new shares. 
Others may need to reassemble the collection and begin dealing from one all over again.

The specificity that the trajectory provided supported Tracy in recognizing levels of 
sophistication among the strategies her students might use, such as using a compo-
sition of splits (“halving each person’s share to create two new shares”) or needing 
to reassemble and re-deal. She also used the trajectory to recognize difficulties her 
students might have, such as naming a share without using the referent unit and 
proving the equivalence of noncongruent shares on a rectangle. Similar to Tracy, 
Emma used the EPLT to anticipate levels of sophistication among the approaches 
she expected her students to use. For the second lesson, Emma anticipated that her 
students would be familiar with the word “half” and would be comfortable naming 
shares from collections using a count, but they may struggle to see the connections 
between naming one of two shares of a rectangle as “half” and naming one of two 
shares of a collection as “half.” She used the EPLT to think of the levels of sophis-
tication among the various names she expected her students to use (e.g., “3,” “3 out 
of 6,” “one-half”) and this guided how she intended to share students’ ideas during 
the whole group discussion.
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Going Beyond the Goals of the Lesson For the third lesson, Emma anticipated 
that the task might bring up ideas related to the equivalence of noncongruent shares 
(transitivity) and was prepared to discuss these ideas when they did in fact arise dur-
ing her lesson. In her pre-lesson questionnaire, she wrote, “I think they will easily 
generalize ‘half’ for familiar representations, but not necessarily for less common 
ones. There may be some discussions about transitivity. I think naming fourths and 
eighths will be more difficult.” Her ability to anticipate ideas not directly related to 
the goals of her lesson supported her in listening to her students’ thinking and using 
that to guide her instruction “in the moment.” In fact, Emma found the EPLT most 
useful as a tool to anticipate how her students might approach a given task. In her 
third post-lesson interview, she stated, “I knew a lot of the time that most of my 
children were not necessarily going to already be on the level—but then I would see 
some things. And so [the trajectory] was good for helping me to review, okay, these 
are some things that I might expect.”

Discussion

With a focus on theorizing, a goal of this multi-case study was to conduct cross-case 
analysis to consider the various ways in which teachers use LTs for lesson planning. 
Thus, I propose a framework for teachers’ uses of LTs as a first step toward a theory 
of teaching based on LTs. Previous research recognized the importance of identify-
ing specific learning goals and anticipating students’ approaches to tasks during 
the lesson planning process (Corey et al. 2010; Superfine 2008). Identifying and 
unpacking learning goals to specify necessary subconcepts can provide teachers 
with more detailed information with which to build a lesson (Hiebert et al. 2007). 
In addition, the selection of open tasks that provide students with opportunities to 
engage with the mathematics and discuss their solutions forms the foundation for 
rich classroom discussions (Smith and Stein 2011). Teachers in this study used LTs 
to choose tasks and specify learning goals and to anticipate students’ approaches in 
a variety of ways. Based on the observed similarities and differences, I use the terms 
initial, intermediate, and proficient use to describe various levels of teachers’ uses 
of LTs for lesson planning.

Choosing Tasks and Learning Goals

Some teachers in this study coordinated both task parameters and proficiency levels 
of the EPLT to calibrate tasks to meet the needs of their students; others had dif-
ficulty relating equipartitioning to the mathematics they were teaching at the time. 
The teachers worked collaboratively to choose tasks that spanned multiple profi-
ciency levels, and in doing so, supported the engagement of students with a variety 
of zones of proximal development (Sztajn et al. 2012).
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Despite the fact that these teachers regularly planned together, participants in-
terpreted the agreed-upon tasks in their own way, choosing a variety of learning 
goals. One teacher, Lara, maintained the purpose of each lesson as assessment. 
Some of the teachers used the EPLT to specify short-term goals of equipartitioning 
collections and single wholes in relation to the longer-term goal of naming resulting 
shares. Those teachers with a stronger content knowledge maintained a focus on 
specific learning goals, simultaneously aware of the potential to connect to other 
important ideas from the trajectory that might surface during their lessons.

When the goal of a task is for general purposes, initial use supports choosing 
tasks that are open ended and address multiple levels of the trajectory for the pur-
pose of determining where students are in the progression of their learning. As such, 
teachers gather evidence of students’ understandings in relation to general ideas as-
sociated with the trajectory. As teachers shift from initial to intermediate use, tasks 
are used for instruction, and the LT supports them in choosing short-term goals in 
relation to long-term goals (Heritage 2008). Intermediate use promotes the develop-
ment of open-ended tasks that address multiple proficiency levels but also focus on 
specific mathematical ideas.

Proficient use of the LT supports the choice of open-ended tasks, the ability to 
specify particular learning goals, and also the ability to consider connections to 
other mathematical concepts that may emerge during a lesson. The coordination 
among proficiency levels supports teachers in listening to students’ mathematical 
ideas and using these ideas during instruction to further enhance their students’ 
learning toward long-term goals highlighted in the LT. Proficient use draws upon 
aspects of the trajectory (in the case of the EPLT, task parameters and proficiency 
levels) to adjust tasks to fit the needs of students, and considers a range of next in-
structional steps based on students’ understanding.

Anticipating Students’ Approaches

Smith and Stein (2011) claimed that anticipating students’ approaches to a task prior 
to instruction permits teachers to begin to think about how students’ work relates 
to the intended mathematical goals. The cases in the current study allowed further 
refinement of the specific ways in which the trajectory was useful for anticipating 
prior to whole-class instruction and how language supported this practice. Teachers 
ranged from not anticipating to using the LT to anticipate levels of sophistication 
among known strategies, highlighted in the LT. The language provided by the LT 
supported already knowledgeable teachers by providing specificity to their expecta-
tions of how students approach equipartitioning tasks.

Initial use primarily considers if a task is accessible to students, or whether it will 
be easy or difficult. When teachers begin to use the LT to consider how students 
might approach a task, they look for information about likely strategies and mis-
conceptions (intermediate use). As teachers become proficient with LTs, they draw 
upon the LT not only to anticipate known strategies and misconceptions, but they 
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use these anticipations in relation to the mathematical goals of the lesson and the 
long-term goals detailed in the LT. The LT is used to consider a range of student ap-
proaches, and often language from the LT gives specificity to teachers’ descriptions 
of student behaviors and related understandings. Proficient use effectively draws 
upon the LT to judge levels of sophistication among the strategies teachers expect 
students to use. This type of anticipating supports teachers in making sense of stu-
dents’ ideas that emerge as students engage with a task, preparing them to use and 
build off students’ ideas to expand and extend students’ mathematical knowledge.

Table 3 answers the research question by providing a summary of teachers’ uses 
of LTs for lesson planning. The EPLT proved useful for considering instructional 
tasks that spanned multiple proficiency levels and provided teachers with informa-
tion about short-term learning goals in relation to the broader mathematical ideas 
outlined in the trajectory. Specific information about common approaches and mis-
conceptions supported the teachers in anticipating how students would approach 
intended tasks.

The findings suggest variation in the ways that teachers use LTs. Through an in-
depth study of individual teachers’ uses of one particular LT, differences emerged 
across the cases. Teachers ranged from not using the trajectory to focus on student 
thinking, to use it purposefully to calibrate tasks, attend to levels of sophistica-
tion among students’ approaches, and to structure lessons that facilitated students’ 
movement to more sophisticated ideas. Although it is beyond the scope of this study, 
conjectures can be made about factors that mediate or moderate teachers’ uses of 

Table 3  Teachers’ Uses of LTs for lesson planning
Initial use Intermediate use Proficient use

Task and learning 
goals

Selects open-ended 
tasks

Tasks are used 
for assessment 
purposes only

Selects open tasks
Chooses short-term 

mathematical goals in 
relation to long-term 
goals detailed in the 
LT

Selects open tasks
Chooses short-term goals in 

relation to long-term math-
ematical goals detailed in 
the LT

Coordinates among profi-
ciency levels in the LT 
to adjust tasks based on 
students’ understanding

Anticipating Anticipates holisti-
cally if tasks will 
be easy or diffi-
cult for students

Anticipates likely strate-
gies and misconcep-
tions detailed in the 
LT

Anticipates likely strategies 
and misconceptions from 
the LT

Relates the anticipated strate-
gies and misconceptions to 
learning goals detailed in 
the LT

Anticipates levels of sophis-
tication among students’ 
approaches as highlighted 
in the LT

Anticipates beyond the goals 
of the lesson
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LTs. For example, it would make sense that teachers’ content knowledge would in-
fluence their ability to understand and make sense of the mathematics described in 
a LT. Moreover, proficient users would more likely hold beliefs that are compatible 
with student-centered instruction.

The differences among initial, intermediate, and proficient uses highlight key 
aspects for researchers and teacher educators to attend to as we continue to study 
the ways in which teachers use LTs to focus on students’ mathematical thinking. 
The intent of the framework is not to “label” teachers, but as an aid to teacher 
educators in supporting teachers’ movement from initial to proficient use of LTs. 
The results are an initial step toward a theory of teaching based on students’ LTs. 
These findings were gained through the cross-case analysis of five teachers, and 
this should be taken into consideration. Further work is needed to refine the initial 
framework and to empirically test these levels of uses of LTs to test its applicabil-
ity across teachers from multiple grade levels and with other LTs. Future research 
can consider the impact of teachers’ participation in professional development on 
LTs for student learning. Is there a relationship between teachers’ uses of LTs and 
student learning? Moreover, if trajectories support teachers to consider the range of 
ideas present in their classrooms, then a consequence would be to examine issues 
of equity in relation to teachers’ uses of LTs. Do LTs support teachers in providing 
meaningful learning opportunities for all students? Researchers should continue to 
study teacher learning of LTs, their use of LTs in instruction, and necessarily the 
impact of teachers’ uses of LTs on student learning.
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With recent movements toward more ambitiously defining mathematical proficiency 
(National Research Council (NRC), 2001)—including publication of the Com-
mon Core State Standards in Mathematics (CCSSM) which calls for all students 
to learn deeper mathematics while engaging in sophisticated mathematical prac-
tices (National Governors Association Center for Best Practices, Council of Chief 
State School Officers (NGA and CCSSO) 2010)—we are poised for a new kind of 
ambitious mathematics teaching. At the core of ambitious teaching is instruction 
aimed at ambitious learning goals in which all students are supported in acquiring, 
understanding, and using the knowledge to engage with complex mathematics and 
to solve authentic problems (Franke et al. 2007; Lampert et al. 2010; Lampert and 
Graziani 2009; Newmann and Associates 1996).

Ambitious teaching, however, is complex because it lies at the intersection of 
mathematical content and students’ mathematical reasoning. A teacher who under-
stands a particular mathematical topic in a deep way sees interrelationships among 
the concepts and procedures, which may enable the teacher to construct a logical 
and rich presentation, but for that content to be meaningful to particular students, 
the instructor must also understand the students’ understanding. The four chapters 
in this section focus on (a) the space lying at the intersection of mathematics and 
students’ understanding, and (b) teachers’ understanding of that space. In this book, 
Edgington used a mathematics-learning trajectory as a tool to support teachers’ at-
tention to students’ mathematical thinking. Stockero studied prospective secondary 
school teachers enrolled in an early field experience and described their transitions 
while they learned to focus on students’ mathematical thinking. Tyminski et al. 
and Fisher et al. studied prospective elementary school teachers (PSTs) while they 
were developing deeper understanding of children’s mathematical thinking in the 
context of an elementary mathematics methods course. Authors of all four papers 
placed students’ mathematical thinking at the core. Edgington approached her work 
through the lens of a learning trajectory, whereas the authors of the other three stud-
ies focused on teacher noticing. The latter are addressed first here.
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Teachers’ Noticing

In a relatively new movement in teacher education that is gaining voice, researchers 
call for decomposing teaching into core activities that can be productively discussed 
and practiced (Ball and Cohen 1999; Ball et al. 2009; Grossman and McDonald 
2008; Lampert 2001). By decomposing the complexity of teaching into specific 
activities, we educators can more feasibly and directly address key practices and 
develop a common language for discussing these practices. One construct that has 
emerged as a useful means of focusing on professional practice is teacher noticing.

Noticing is a term used in everyday language to indicate the act of observing 
or recognizing something, and people engage in this activity regularly as a means 
of helping to organize and make sense of a perceptually complex world. Differ-
ent professions have strategic ways of noticing, and these ways of noticing are af-
fected by the knowledge and expertise held by these professionals (Miller 2011). 
Two particularly influential conceptualizations that have served as the foundation 
of current work on mathematics teacher noticing are Goodwin’s (1994) ideas about 
professional vision and Mason’s (2002) discipline of noticing. Understanding and 
promoting productive noticing by mathematics teachers has become a growing area 
of study (Sherin et al. 2011; Sherin and van Es 2009), and two components, attend-
ing and making sense, have emerged as major constructs in the study of teacher 
noticing. Recently, one group of researchers expanded mathematics teacher no-
ticing, which they called professional noticing of children’s mathematical think-
ing, to include three components—attending to children’s strategies, interpreting 
children’s understandings, and deciding how to respond on the basis of children’s 
understandings (Jacobs et al. 2010; Jacobs et al. 2011). These researchers included 
deciding how to respond in their conceptualization of professional noticing of chil-
dren’s mathematical thinking because teachers are responsible for doing more than 
understanding their students’ reasoning—they must constantly grapple with how 
they might extend that reasoning; as such, that to which teachers attend and their 
interpretations are intertwined with teachers’ in-the-moment instructional decision 
making. Clearly, the way that a teacher decides to respond to a student, in the mo-
ment, depends upon whether the teacher attended to that student’s words or ac-
tions and how the teacher interpreted them. But the relationships among attending, 
interpreting, and deciding how to respond are complex, because often a teacher’s 
sensing a need to respond can affect the manner in which the teacher attends to and 
interprets a student’s thinking. In a sense, the three components of practice—at-
tending to students’ strategies, interpreting students’ reasoning, and deciding how to 
respond in the moment to students’ reasoning—are tightly bundled.

Authors of the three of the four chapters in this set applied the theoretical lens of 
noticing of children’s mathematical thinking, with two, Tyminski et al. and Fisher et 
al., focusing on all three components. Although the third research study, by Stocke-
ro, is part of a project in which all three components of professional noticing are 
being addressed, the study reported here narrows the focus to prospective second-
ary school teachers’ attending to students’ ideas and interpreting the mathematics 
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within those ideas. By investigating circumstances under which noticing might be 
enhanced, the authors of these studies extend our understanding of teacher noticing.

Tyminski et al. studied 72 students in 3 elementary mathematics methods cours-
es over the first 9 weeks of the semester using three carefully crafted sets of activi-
ties designed to support PSTs while they learned to attend to and make sense of stu-
dents’ strategies and use their understanding to write subsequent tasks for children. 
In the first activity, the elementary mathematics methods students watched a video 
of an experienced teacher posing two equal-sharing problems to her second-grade 
students; the PSTs then reflected on why the teacher might have selected particular 
numbers to use the subsequent day and the ways that those number choices differed 
from numbers used initially. The intent of this activity was for the PSTs to focus on 
the nuanced number choices that might be made by a teacher. The second activity 
required the students to write an open-number routine and a problem, including 
selecting numbers for the tasks, to address counting by tens. In the third activity, 
the PSTs were asked to analyze children’s multiplication strategies and write a 
subsequent problem, with number choices, to support students’ expanding under-
standings. The tasks were designed to scaffold PSTs’ learning: from observing an 
expert teacher select a subsequent task to the PSTs’ designing subsequent tasks; 
from designing a subsequent task addressing a single concept to designing a subse-
quent task to address a wide range of student understandings; and from analyzing 
an expert teacher’s number choices, to choosing numbers for a prewritten task, to 
choosing numbers for tasks created by the PSTs. The general result of the study 
was that whereas the PSTs, even at the beginning of the elementary mathematics 
methods course, possessed a strong foundation for attending to and interpreting 
children’s mathematical thinking, the PSTs’ success at responding on the basis of 
children’s mathematical thinking was more mixed: The PSTs were relatively suc-
cessful in responding to students in the context of writing a story problem to be 
used the next day but struggled to create and justify number choices to address or 
extend student thinking.

To highlight a contribution of this study to the work on teacher noticing, I de-
scribe and analyze Task 1, used the first day of the methods class. Although the 
PSTs had previously completed varying numbers of mathematics content courses, 
they had no prior instruction to support them in completing a noticing task. The 
PSTs observed a teacher using two partitive-division tasks with her second-grade 
students. In the first, two students shared two and four cookies, with no need to sub-
divide cookies; they then shared larger numbers of cookies, including odd numbers. 
In the second, four children shared brownies, with the number of brownies carefully 
sequenced—4, 5, 8, 9, 16, 17, etc. (each multiple of 4 was followed by a number 
1 larger)—to scaffold the learning; for example, after solving the problem of eight 
brownies, the children would note that they had one more than eight, encouraging 
them to use their previous strategy to share eight before deciding how to partition 
the one leftover brownie into four equal-sized pieces. The methods instructors dis-
cussed these tasks, including looking at the evidence of children’s understandings 
and focusing on the difference between sharing an object (a cookie or brownie) 
between two children versus among four children. At the beginning of the next 
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class meeting, the methods instructors asked the PSTs to reflect in writing upon a 
third equal-sharing task given to the same students: Four children share miniature 
candy bars (11, 17, 22, 35, 48, 65, etc.). The authors highlighted three salient ways 
these numbers differed from the previous day’s numbers (differences also used in 
analyzing the PSTs’ reasoning): (a) the numbers were larger; (b) they were more 
complex in that the remainders were not just 0 and 1 but also included 2 and 3, 
thereby requiring children to deal with more complex sharing; and (c) the previous 
day’s scaffolds had been removed, so that, for example, sharing 17 bars was not im-
mediately preceded by sharing 16.

The tasks in this study provide fine examples of the kinds of tasks that might be 
used with PSTs, either for purposes of assessment or instruction, because they spe-
cifically focus on particular content, are subtle enough to tease out distinctions in 
PSTs’ thinking, and provide opportunities for PSTs to learn how to notice children’s 
thinking. Furthermore, these tasks could also be used with practicing teachers while 
they learn to focus more deeply on children’s mathematical thinking. Finally, re-
searchers interested in studying prospective or practicing teachers’ noticing would 
do well to consider the tasks used in this study, because the three embedded salient 
aspects in these tasks are adaptable to a variety of assessment opportunities.

Fisher et al. conducted a study of PSTs’ attitudes toward mathematics and their 
noticing in the context of a mathematics methods course. In particular, they stud-
ied the changes in PSTs’ attitudes toward mathematics and the changes in their 
noticing as a result of their work in a methods course focused on professional no-
ticing. Furthermore, they tested for correlations both among noticing components 
and between the professional-noticing change scores and attitudes-toward-mathe-
matics change scores. The study was conducted with 123 PSTs in 11 elementary 
mathematics methods courses across five institutions; the PSTs completed pre- and 
post-assessments of professional noticing and of their attitudes toward mathemat-
ics. The Professional Noticing Assessment was based around PSTs’ responses to 
three questions about a 25-second video of a first-grade child solving a comparison, 
difference-unknown task. The questions, drawn from work by Jacobs et al. (2010), 
addressed attending to the child’s thinking, interpreting the child’s thinking, and 
deciding how to respond on the basis of the child’s thinking. The Attitudes Toward 
Mathematics Inventory (Tapia and Marsh 2005) consisted of 40 Likert-scale items. 
On the basis of a factor analysis, the authors determined that four factors associated 
with attitudes toward mathematics emerged from the assessment: value, enjoyment, 
self-confidence, and motivation. Results included statistically significant differenc-
es in the PSTs’ attitudes from pretest to posttest on enjoyment, self-confidence, and 
motivation, but not on value. Furthermore, although the students showed signifi-
cant growth for three of the four attitudes, the story is more complicated because, 
whereas at least half of the PSTs’ scores increased from pre- to post-assessment for 
each of the four factors, attitude scores for each of the four components decreased 
for at least one fifth of the PSTs. For professional noticing of children’s mathemati-
cal thinking, the authors found statistically significant differences between pretest 
and posttest on each of the three noticing constructs. The authors also tested for 
correlations between each pair of noticing constructs (attending vs. interpreting; 
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attending vs. deciding how to respond; interpreting vs. deciding how to respond) 
on the pretest, on the posttest, and on the pretest-to-posttest change score, and only 
one of the nine, attending and interpreting on the post-assessment, was statistically 
significant. Finally, the authors looked for correlations between each of the four 
attitude-change scores and each of the three noticing-change scores, and none of the 
12 correlations was significant.

The contribution of this study to our understanding of noticing is twofold. First, 
the authors present additional data that PSTs’ noticing can improve over the course 
of a semester. Second, the authors have opened the door to considering relationships 
between noticing and other constructs, in this case, attitudes, and even though no 
key correlations were found between noticing and attitudes in this study, the authors 
present some steps to be considered by others interested in studying noticing.

Stockero studied seven prospective secondary mathematics school teachers 
(PSMTs), in the context of an early field experience, to determine the extent to 
which project activities effectively supported their noticing important instances of 
students’ mathematical thinking. She situated her study in the context of teacher 
noticing and focused her analyses on attending to and interpreting students’ ideas. 
She drew upon three frameworks, including mathematically important moments 
and Mathematically Significant Pedagogical Opportunities to Build on Student 
Thinking (MOSTs), enabling her to distinguish student thinking in general from 
those cases of high-leverage student thinking that stand out because they might 
potentially be built upon to support students’ understanding of important mathe-
matics. For Stockero, these high-leverage instances of student thinking must be 
student-generated, involve mathematics related to learning goals for the students, 
and provide an opportunity for the teacher to build on student thinking. The study 
took place over a 14-week early field experience, with four PSMTs enrolled in the 
course one semester and the other three PSMTs enrolled in a different semester. 
During the early field experience courses, the students took turns video recording 
a mathematics lesson taught by the teachers they observed, and the instructional 
portions of each video were left unedited for the PSMTs to analyze. Early in the 
semester the PSMTs were told to analyze the video for mathematically important 
moments and targeted facilitation moves were taken by the instructor to redirect the 
PSMTs toward specific aspects of the video. About halfway through the semester, 
the PSMTs read a paper entitled Mathematically Significant Pedagogical Opportu-
nities to Build on Student Thinking, and this paper was used to further narrow the 
PSMTs’ foci. The data were analyzed along three constructs: on whom the partici-
pants focused (agency), about what the participants focused (topic), and the math-
ematical details on which the participants focused (specificity). Results showed that 
the PSMTs’ noticing shifted for all three constructs. Regarding agency, the PSMTs 
shifted from the teacher to the student as the primary agent, from the teacher alone 
to interaction between the teacher and students, and from focusing on groups of 
students to focusing on individual students. For topic, the PSMTs decreased in their 
noticing of teacher explanation and in claims about the entire class and increased in 
their noticing of student thinking, student questions, and evidence of mathematical 
confusion. Finally, for specificity, PSMTs shifted their noticing from the general to 
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instances that were more specifically mathematical. In conclusion, Stockero sug-
gested possible explanations for the shifts that took place.

Through this study, Stockero makes several contributions to the research on 
teacher noticing. First, by investigating noticing of prospective teachers that occurs 
in an early field experience, the author provides evidence that prospective teachers 
can develop noticing skills even earlier in their studies than in methods courses. 
Second, many of the studies of noticing, especially with prospective teachers, have 
used preselected videos. However, because the PSMTs in this study shifted in their 
noticing skills even when observing unedited classroom video, we see that a wide 
selection of video can be used in developing noticing skills. Third, the theoretical 
lens applied in this study, in particular, the MOSTs, appears to have supported the 
shifts in the PSMTs’ noticing, showing the usefulness of this theoretical lens in par-
ticular and focusing upon mathematical moments that have the potential for making 
a difference in general.

Learning Trajectory

Edgington, like the other authors in this section, focused on teachers’ attention to 
students’ mathematical thinking, but instead of applying a noticing framework, she 
used a mathematics-learning trajectory as a tool to support her teachers. Edging-
ton’s theoretical framework was built upon the work highlighting that teachers not 
only choose intended learning goals but also unpack and decompose these learning 
goals and choose tasks that align with them. As developers of learning trajectories 
draw upon research on student learning to describe paths of student learning over 
time, the trajectories can be tools for supporting teachers while they develop effec-
tive goals and tasks. Edgington’s purpose was to investigate how teachers plan for 
instruction when they have the kind of information about the learning progression 
provided in learning trajectories, and she drew upon transcripts from grade-level 
planning meetings, pre-lesson questionnaires, classroom observations, and tran-
scripts of teacher interviews to answer her research question. She studied a team 
of five highly engaged and experienced second-grade teachers in their first year of 
professional development while they learned about a learning trajectory for equi-
partitioning, a subtopic of fractions.

The results of the study were presented as four themes that emerged from the 
analysis of the teachers’ use of the learning trajectory. First, Edgington found that 
all five teachers altered the chosen tasks to fit their individual teaching styles and 
students, and they varied in their purposes for using the tasks. Second, four of the 
five teachers outlined specific goals related to equipartitioning for each of the three 
lessons. Third, some teachers used the learning trajectory to consider a range of 
potential instructional moves. Finally, the teachers used the learning trajectory to 
anticipate how students would approach tasks, but they varied in the ways they did 
this. Edgington proposed a framework for teachers’ initial, intermediate, and profi-
cient use of learning trajectories.
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Learning to focus on students’ mathematical thinking can be challenging, and 
Edgington contributes to our understanding by showing how teachers, when look-
ing through the lens of a learning trajectory, can view their students’ thinking with 
deeper understanding and more nuance and then use that understanding to develop 
long-term and short-term learning goals, together with tasks, that might support 
their students’ learning. Furthermore, the framework presented by Edgington could 
be useful to other researchers seeking to study the use of learning trajectories and by 
teacher educators who are considering ways to support teachers.

Final Comments

Teachers engaged in ambitious teaching advance their students’ mathematical think-
ing by teaching in ways that respond explicitly and in the moment to what students 
do (Kazemi et al. 2009). But focusing on students’ mathematical thinking is par-
ticularly difficult, and teaching experience alone is generally insufficient to enable 
teachers to shift their instruction so as to focus on students’ mathematical thinking 
(Jacobs et al. 2010). The authors of the four chapters in this section are committed 
to develop a deeper understanding of ways educators might support teachers in 
refocusing their attention on their students’ thinking, and though not all apply the 
same theoretical lens, they are all committed to use their lenses to focus on the same 
outcome: teachers who understand and build on their students’ thinking.

Teachers have always been confronted with a “blooming, buzzing confusion of 
sensory data” (Sherin and Star 2011, p. 69), so they need to find ways to make sense 
of the complexity of classrooms. Furthermore, in this confusion, focusing on the 
reasoning of students is often lost. These authors provide additional evidence for 
the role that decomposing practice (Grossman et al. 2009; Grossman and McDon-
ald 2008) can play in our study of teaching, in general, and in ambitious teaching 
focused on students’ mathematical thinking, in particular.

Two examples of core activities around which teacher educators and researchers 
may focus their attention when decomposing practice are using learning trajecto-
ries and focusing on the noticing of teachers. For the field to continue to grow in 
these areas, we will need to focus on specifics. This specificity might be around the 
subjects in a study, be they K–3 teachers who have engaged in differing numbers 
of years of professional development (Jacobs et al. 2010), or, as in these studies, 
highly engaged and experienced second-grade teachers in their first year of pro-
fessional development, or prospective elementary or secondary school teachers at 
particular points of their education. The specificity also should focus on particular, 
well-defined content areas. For example, I provided details about the task used in 
one of the noticing studies because the authors carefully selected numbers for their 
equal-sharing tasks, and the relationships among those numbers provide specific-
ity around which teachers may learn to notice and researchers may study teacher 
noticing. I encourage additional work in learning trajectories and teacher noticing in 
particular, and more generally around decomposing practice, focused with this level 
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of specificity. For our field to encourage the kinds of changes in teaching that will 
lead to ambitious teaching, we must support prospective and practicing teachers in 
reflecting upon their knowledge, beliefs, and practices by focusing on the subtleties 
made possible by such detailed specifics.
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The main reason for researching mathematics teachers is to understand their math-
ematical knowledge, practice, and learning, and how to impact them. Despite 
significant research and progress in these areas over the past few decades, the 
slow pace of reform in mathematics education suggests that our understandings of 
teachers are still lacking. Ongoing efforts to reform the teaching of school math-
ematics suggest the need for continuing efforts to understand teachers and how to 
help them achieve change or growth in their knowledge, thinking, and practice. 
The studies reported in this book make a significant contribution to both our under-
standings of mathematics teachers and ways to support their learning. In particular, 
the book highlights contributions to three central areas of research in mathemat-
ics teacher education: mathematical knowledge for teaching, teacher identity, and 
tools to facilitate teachers’ learning. This chapter discusses the nature of these three 
areas, highlights specific contributions of the studies in this book, and suggests 
implications for future research in this field.

Central Themes of the Book

The first section of the book highlights research on mathematical knowledge for 
teaching. There is a general consensus that teachers need to hold deep content 
knowledge, as their knowledge affects both what they teach and how they teach 
it. However, while teachers who do not have strong knowledge of mathematics are 
likely to be limited in their professional competence, having such knowledge does 
not guarantee that they will be effective mathematics teachers (e.g., Baumert et al. 
2010; Ma 1999). It is not only important what mathematics teachers know but also 
how they know it and what they are able to mobilize for teaching. As Ball et al. 
(2008) pointed out, “general mathematical ability does not fully account for the 
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knowledge and skills entailed in teaching mathematics” (p. 396). Thus, “a special 
type of knowledge is needed by teachers that is specifically mathematical, separate 
from pedagogy and knowledge of students, and not needed in other professional 
settings” (Chapman 2012, p. 107). This knowledge has become an important basis 
of the recent research on mathematics teachers’ knowledge (Ponte and Chapman in 
press). However, there is neither a consensus nor a common perspective regarding 
the nature of this knowledge. For example, Ruthven’s (2011) overview of chapters 
in the book Mathematical Knowledge in Teaching (Rowland and Ruthven 2011) 
distinguished four approaches to subject knowledge for mathematics teaching: 
subject knowledge differentiated—approaches that categorize knowledge; subject 
knowledge contextualized—approaches “strongly influenced by material and so-
cial contexts” (p. 87); subject knowledge mathematized—approaches concerned 
with “mathematical modes of enquiry” (p. 91); and subject knowledge interacti-
vated—approaches concerned with “epistemic and interactional processes” (p. 89). 
While these approaches broaden our understanding of teaching-specific mathemat-
ics knowledge, they also illustrate the complex nature of this knowledge, which 
contributes to the challenges of educating the mathematics teacher.

Despite differences in conceptualization, knowledge specific to teaching is 
widely valued as important for teaching mathematics. Recent large-scale stud-
ies (e.g., Baumert et al. 2010; Hill et al. 2005) have reported positive correlations 
among this kind of knowledge, teaching quality, and student achievement. Given 
this situation, a trend in the current research on understanding the mathematics 
teacher is to investigate the nature of this knowledge that he or she possesses. A re-
view of the recent studies on prospective mathematics teachers (Ponte and Chapman 
in press) suggested that Ball et al.’s (2008) categories of mathematics knowledge 
for teaching provided the theoretical perspective for most of these studies, which 
dealt with topics such as rational numbers (most dominant), functions, reasoning, 
representation, evaluating students’ achievement, and providing explanations. This 
focus on Ball et al.’s categories is also evident in the studies in this section of the 
book. These studies add to our understanding of mathematical knowledge for teach-
ing in a variety of ways. For example, they addressed this knowledge in relation 
to problem solving (Heid, Grady, Jairam, Lee, Freeburn, and Karunakaran), ge-
ometry (Herbst and Kosko), proportional relationships (Jacobson and Izsák), and 
curriculum knowledge (Land and Drake). Thus, they cover content, mathematical 
processes, and curriculum—all key areas in mathematics education.

The second section of the book focuses on teacher’s professional beliefs/identity. 
There is more to professional practice than mathematics knowledge for teaching. 
Teachers are engaged in practice not just with their knowledge but also with their 
whole being. As Palmer (1998) argued, “good teaching cannot be reduced to tech-
nique” as it “comes from the identity and integrity of the teacher” (p. 149). In other 
words, “we teach who we are” (p. 2). The teacher’s way of being, his or her identity, 
is important as a means of understanding the teacher, teaching, and teacher educa-
tion. For example, identity, as a construct, can inform studies that consider not only 
what teachers know but also who they are and how they see themselves as teachers, 
relate to students, deal with problems, reflect on issues, and identify themselves 
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with the profession. Thus, in recent years, there has been growing interest in identity 
in educational research (e.g., Beijaard et al. 2004; Gee 2000; Juzwik 2006; Sfard 
and Prusak 2005). While this interest is reflected in mathematics education (e.g., 
de Freitas 2008; Hodgen and Askew 2007), studies involving an explicit focus on 
identity are underrepresented in the literature (Ponte and Chapman 2008). However, 
given the complex nature and multiple perspectives of identity, the extent of the un-
derrepresentation is not clear-cut because of the overlap between aspects of identity 
and other constructs (e.g., beliefs, attitude) that could lead to different classifica-
tions of related studies. For example, identity has been considered from a sociocul-
tural perspective, as a person’s sense of belonging to a group or achieving within the 
norms of the group or as a function of participation in different communities (e.g., 
Wenger 1998). Sfard and Prusak (2005) suggested that “identities may be defined as 
collections of stories about persons or, more specifically, as those narratives about 
individuals that are reifying, endorsable, and significant” (p. 16). Identity can also 
be considered as being made up of personal (psychological) features as well as 
social (contextual) features, which come together in a construct that encompasses 
factors such as knowledge, beliefs, image, values, emotions, relationships, contexts, 
and experiences. Specific to mathematics education, for example, Hodgen (2011) 
related identity to mathematics knowledge in teaching, while Bjuland et al. (2012) 
related it to a “teacher’s engagement and critical alignment in the community of 
participants” (p. 405).

In their review of current studies on mathematics teachers, Ponte and Chapman 
(in press) identified studies that addressed specific aspects of identity associated 
mainly with a psychological perspective, for example, teachers’ confidence, val-
ues, efficacy beliefs, views, motivation, and attitudes. The studies in this section 
of the book contribute to our understanding of the mathematics teacher’s identity 
in a variety of ways. Chao focused on sociocultural aspects of mathematics teach-
ers’ identity. Keazer used a narrative perspective focused on teachers’ experiences 
of the change process. Related to a psychological perspective, DePiper considered 
identity in terms of teachers’ positioning in relation to high-stakes accountability 
teaching contexts, while Wilson et al. focused on teachers’ attributions of students’ 
mathematical successes or failures. Together, then, these studies highlight different 
aspects of teachers’ identities in ways that broaden our understanding of mathemat-
ics teachers in terms of their personal and professional lives.

The third section of the book focuses on tools and techniques for supporting 
teachers’ learning. The importance of tools in mathematics teacher education is a 
focus of the international handbook edited by Tirosh and Wood (2008), in which 
“a range of tools and processes, often used in mathematics teacher education to 
facilitate various proficiencies needed for teaching mathematics, are described 
and critically analyzed” (p. 1). Tasks as tools are also presented as significant in 
mathematics teacher education in edited books at the primary level by Clarke et al. 
(2009) and at the secondary level by Zaslavsky and Sullivan (2011). The studies in 
this section of the book contribute to this growing area of research in mathematics 
teacher education through innovative use of various tools/techniques. For example, 
to facilitate teachers’ learning, Edgington used a mathematics learning trajectory, 
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Fisher et al. used a framework called Stages of Early Arithmetic Learning, Stockero 
used unedited classroom video with research-like analysis, and Tyminski et al. used 
three different scaffolding trajectories. These tools/techniques involved meaningful 
use of research-based constructs as a basis for teacher learning.

The studies in this book, then, are situated in three sections that are representative 
of areas of research in mathematics teacher education that are both established and 
growing in importance, and they contribute to these areas in a variety of ways 
related to understanding and changing mathematics teachers. The next section fur-
ther highlights some of these contributions.

Themes of Contributions from Across the Studies

Viewed across the three sections of the book, the studies contribute in specific ways 
to our understanding of mathematics teachers and of facilitating their learning or 
change. These contributions are considered next in terms of three themes: under-
standing the teacher, supporting teachers’ learning, and research tools.

Understanding the Teacher

The first theme highlighted by the studies in this book involves contributions to 
understanding the teacher. Given the importance of the relationships between the 
teacher and teaching and the teacher and reform, understanding the teacher is a 
central factor in creating twenty-first century mathematics classrooms. The studies 
in this book provide current insights about the teachers’ knowledge and identity that 
suggest ongoing trends and new considerations in the field of mathematics teacher 
education, classified here as (a) issues with mathematics knowledge for teaching, 
(b) sense making of mathematics knowledge for teaching, and (c) personal-profes-
sional self.

Issues with Mathematics Knowledge for Teaching Research has consistently 
raised concerns about teachers’ knowledge of mathematics for teaching being prob-
lematic in relation to what is considered to be adequate to teach mathematics with 
depth (Llinares and Krainer 2006; Ponte and Chapman 2006, 2008). Such research 
findings have been useful to understand the teacher and to inform teacher education 
of possible issues that need attention. Some of the studies in this book, directly or 
indirectly, suggest ongoing issues with various aspects of teachers’ mathematical 
knowledge for teaching, thus providing further insights to our understanding of the 
mathematics teacher. Following is a summary of these issues.

Jacobson and Izsák found that prospective teachers often struggled and misap-
plied methods when dealing with direct proportions. Herbst and Kosko, in assess-
ing experienced teachers’ mathematics knowledge for teaching geometry, found 
that experienced geometry teachers did much better than their non-experienced 
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counterparts on items that were most directly connected to what is commonly taught 
in geometry classrooms. Heid et al. found that their participant seldom enacted 
mathematical processes like representing and justifying, although she was capable 
of doing so. This lack of engagement in these processes, along with a tendency to 
underrepresent the important features of mathematical objects, resulted in a some-
what disconnected treatment of mathematics. Tyminski et al. found that prospective 
teachers struggled to coordinate attending to student thinking while simultaneously 
attending to alternate thinking or learning goals. A number of prospective teach-
ers in Land and Drake’s study attended more to surface-level, procedural aspects 
of their curriculum materials than to aspects related to interpreting and assessing 
student thinking. Collectively, these studies address both content and pedagogical 
content knowledge and raise awareness of ongoing issues in teacher knowledge that 
have implications for mathematics teacher education.

Sense Making of Mathematics Knowledge for Teaching In addition to identi-
fying issues, some of the studies draw attention to teachers’ sense making (i.e., 
their meanings, interpretations, or capabilities). Addressing teachers’ sense making 
is important to understand teachers in positive ways that can help to explain their 
classroom actions and provide a meaningful basis to attend to and build on in facili-
tating their learning. Examples of teachers’ sense making of mathematical knowl-
edge for teaching are reflected in the studies as follows. Land and Drake found that 
prospective teachers were capable of using curricular supports from within mate-
rials to extend beyond the scope of those materials. The prospective teachers in 
Jacobson and Izsák’s study often did not make sense of the situations, but merely 
applied rote procedures and failed to attend to important mathematical relation-
ships. Edgington’s study showed teachers’ sense making in using a learning trajec-
tory to plan lessons, ranging from considering accessibility to anticipating student 
approaches and pitfalls. Finally, Tyminski et al. found that, through intervention, 
prospective teachers were able to improve their ability to make sense of and evalu-
ate students’ thinking strategies in a variety of mathematical contexts. A majority 
of them were able to attend to student strategies and interpret student thinking. 
Collectively, these studies provide examples of teacher’s sense making for different 
aspects of mathematical knowledge for teaching that contribute to our understand-
ing of what teachers are able to do with or without intervention.

Personal-Professional Self As discussed above regarding identity, understand-
ing teachers in terms of their personal and professional selves is central to making 
sense of and reforming mathematics teaching. Some of the studies in this book pro-
vide insights into the aspects of teacher identity that show how self-knowledge (as 
opposed to content or pedagogical knowledge) can impact, for example, the teach-
er’s classroom behavior, process of change, and knowing the students culturally and 
mathematically. A summary of these ways of understanding the teacher follows.

Chao’s study allows us to understand two mathematics teachers through their 
personal and professional stories. One teacher’s personal story involved feelings 
of isolation and was grounded in quite traumatic experiences. Because of the sensi-
tive nature of this background (which he shared with many of his students), he was 
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reticent to capitalize on it, even though he recognized that the cultural connection 
could be beneficial. The other teacher’s identity was reflected through how he val-
ued himself and felt valued by others more as a coach than as a mathematics teacher. 
He felt as if he was much more successful at motivating and inspiring his soccer 
players than his mathematics students, and he dealt with these feelings of impotence 
by teaching only those mathematics students who were self-motivated. He too felt 
ethno-cultural congruence with his students yet could not capitalize on it to his stu-
dents’ benefit. In both cases, the teachers experienced challenges linking an identity 
valued or meaningful to them with a professional identity as a mathematics teacher, 
even when they shared an ethno-cultural connection with their students.

Keazer’s study provides insights into teachers’ professional identity associated 
with professional change based on their personal experiences in adopting reform-
oriented practice. Implied in the findings is how teachers’ affective characteristics 
impacted whether or how they changed. Some teachers became excited and en-
thusiastic when confronted with the uncertainty of change, while others became 
frustrated and discouraged. Some grew in confidence and commitment, while oth-
ers became disappointed and disenchanted. Collectively, the cases of these seven 
teachers illustrate the relationship between personal attributes and dealing with the 
complexity of change.

DePiper’s study provides insights into prospective elementary teachers’ identity 
in relation to how they viewed themselves teaching mathematics in high-stakes ac-
countability contexts and how this positioning could influence how and what they 
taught. One teacher doubted her abilities to enact particular teaching practices be-
cause of the relationship she perceived between student achievement and her per-
sonal reputation, whereas another felt capable and at liberty to enact such practices, 
but nevertheless uncomfortable in doing so. Collectively, these prospective teachers’ 
positioning also draws attention to how beliefs, implicit or explicit, are important to 
identity and to shape the teachers they become as opposed to the teachers they want 
to be.

Wilson et al.’s study allows us to understand the teacher in terms of attribu-
tions—“perceptions of causality or judgments regarding…students’ successes and 
failures” (p. 116). The authors identified eight attributions teachers used to explain 
students’ mathematics successes or failures when examining students’ work dur-
ing a professional development involving an equipartitioning learning trajectory: 
ability, effort, luck, task difficulty, grade/age, out of school context, teaching, and 
previous mathematics knowledge. Most of the teachers used all eight attributions 
at one time or another, with prior mathematics knowledge as the most frequently 
used attribute and luck and effort as the least. The professional development pro-
vided the teachers with useful research-based attributions, but they still persisted in 
employing nonmathematical attributions as well. Thus, the teachers’ attributions, as 
part of their teacher identity (i.e., their ways of perceiving students), seemed well 
entrenched in their ways of being. Since “teachers’ attributions influence their ex-
pectations regarding student ability and subsequently impact student performance” 
(p. 116), this aspect of teacher identity, without appropriate intervention, could neg-
atively impact students’ learning.
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Finally, Fisher et al.’s study draws attention to teachers’ attitudes toward math-
ematics. They found “significant increase” in pre- and post-assessment “on three of 
the four factors (enjoyment, self-confidence, and motivation), and in the fourth fac-
tor (value) when maximum possible pre-scores [were] removed” (p. 232), suggest-
ing that initially these factors may be of concern for many. These affective factors 
are important to teachers’ professional selves, and this study implies that, without 
intervention, they may be an issue in supporting meaningful mathematics teaching.

Collectively, these three categories of studies focused on understanding the 
mathematics teacher and allow us to understand the teacher from various per-
spectives of identity. Across these categories, the studies raised awareness of the 
ongoing issues in teachers’ content and pedagogical content knowledge, provided 
examples of teacher’s sense making for different aspects of mathematical knowl-
edge for teaching, and highlighted the nature of and possible challenges associated 
with teachers’ personal-professional selves. They drew attention to challenges both 
prospective and practicing teachers could experience as a result of their personal 
or professional identity and the need for providing meaningful support for further 
development or growth in their professional identity. Given the underrepresentation 
of published studies on identity in mathematics teacher education, this emphasis on 
identity is desirable in terms of providing insights to the field and drawing attention 
to the importance of future research on it, as is discussed later.

Supporting Teachers’ Learning and Change

The second theme highlighted by the studies in this book involves contributions to 
ways of supporting mathematics teachers’ learning and change. Given the impor-
tance of teachers in reforming the teaching and learning of school mathematics, 
ongoing efforts to understand learning opportunities that will help them to enhance 
their knowledge and develop new instructional practices are central to mathematics 
education. Some of the studies in this book show that a variety of approaches can 
be used to facilitate or support teachers’ learning with positive outcomes. Four im-
portant areas in which they contribute insights in understanding teacher learning are 
learning of content, learning of pedagogy, learning to notice, and changing identity.

Learning of Content Current perspectives of prospective teacher learning of con-
tent include engaging them in learning or relearning the mathematics they will teach 
in ways consistent with current curriculum recommendations, revisiting familiar 
content to examine it in ways unfamiliar to them, and probing more deeply funda-
mental mathematical ideas from the school curriculum (Ponte and Chapman 2008). 
Jacobson and Izsák’s study is an example of these views of teacher learning and pro-
vides insights into how a course focused on multiplicative relationships and “drawn 
models of quantities (e.g., number line and area models)” can support prospective 
teachers’ development of an understanding of how such problem-solving strategies 
“can provide the basis for developing general computation methods” (p. 50).
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Learning of Mathematical Pedagogy Current studies of practicing teachers’ 
learning and change suggest a trend that includes teachers working together to 
improve their practice and embedding professional study within the everyday prac-
tice of teaching (e.g., Even and Ball 2009). Edgington’s study adds to this view. 
It shows how a mathematics learning trajectory can be used as a tool to support 
primary teachers’ planning of meaningful student-centered lessons by helping them 
to become aware of students’ mathematical thinking. Participants studied the equi-
partitioning learning trajectory through a series of professional learning tasks, some 
of which “were designed to allow teachers to make connections to existing curricula 
and current practice” (p. 266). For example, teachers experimented with equipar-
tioning-related tasks in their classrooms then came together to reflect on and ana-
lyze their lessons. Teacher learning resulting from the experience included using the 
learning trajectory in their planning to “choose tasks…, specify learning goals…, 
anticipate students’ approaches in a variety of ways” (p. 279), and “consider con-
nections to other mathematical concepts that may emerge during a lesson” (p. 280).

Learning to Notice An emerging body of research related to teachers’ noticing 
supports the importance of it in teaching (e.g., Ainley and Luntley 2007; Mason 
2008; Scherrer and Stein 2012; Sherin et al. 2011; Star and Strickland 2008). Notic-
ing involves not only the attention that teachers give to significant classroom actions 
and interactions, but also their reflections, reasoning, and decisions based on it, i.e., 
attention and awareness (Mason 2008). The extent to which a teacher can notice in 
this way impacts his or her teaching. Many events and interactions occur at once 
in the classroom (in student-centered classrooms in particular), and a teacher needs 
to be able to identify key moments that require attention, for example, moments 
of student thinking that can be used to advance instruction. Thus, helping teachers 
to enhance their ability to notice is an important goal of teacher education. Some 
of the studies in this book provide insights about tools and approaches that offer 
promising directions to accomplish this goal. The following summary highlights 
these approaches.

Edgington’s study was discussed above as offering an intervention for pedagogy. 
However, its primary goal was to help teachers to learn to notice. Thus, it also shows 
that a mathematics learning trajectory and the process, as already noted, can be used 
to help teachers to notice students’ mathematical thinking, in particular, conceptions 
(strategies) and misconceptions. While the focus is on equipartitioning concepts 
and an equipartitioning learning trajectory, the study illustrates the potential for us-
ing learning trajectories to develop a stance of noticing. In general, it suggests that 
using learning trajectories as representations of student thinking could help teachers 
to notice and attend to students’ mathematical thinking in their planning of lessons.

Stockero showed how activities including “research-like analysis of unedited 
classroom video and group discussions” supported by a teacher educator early in a 
teacher education program led to several “transitions in the participants’ noticing” 
(p. 241). The prospective teachers recorded several of their cooperating teachers’ 
mathematics lessons, then analyzed those lessons using a framework that focused on 
“mathematically important moments that a teacher needs to notice during a lesson” 
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(p. 244). The approach helped the participants to learn to notice such moments, as 
well as what individual students were thinking and the effect of teacher–student 
interactions on learning. Their descriptions of the mathematics of an instance also 
became more detailed. Thus, the study illustrates how certain mathematics-focused 
activities can help prospective teachers “learn to attend to important mathematical 
instances that arise during a lesson” (p. 257).

Fisher et al. showed how an approach based on a framework called Stages of 
Early Arithmetic Learning (SEAL) led to statistically significant growth in pro-
fessional noticing capabilities of prospective teachers, providing opportunities for 
prospective teachers to “see mathematics through the lens of a child” and focus “on 
what children can do conceptually rather than on the procedures of mathematics that 
children cannot yet do” (p. 232). The intervention used video cases and interviews 
with children as contexts for developing prospective teachers’ attending, interpret-
ing, and deciding skills. The approach helped participants to change in all three 
of these components of noticing, thus suggesting the importance of being explicit 
about these components in activities based on children’s thinking to guide prospec-
tive teachers’ noticing.

Tyminski et al. demonstrated the potential success of an approach they devel-
oped to engage prospective teachers in professional noticing. The approach was 
framed in three trajectories of scaffolding (observing to doing, number of concepts, 
and number choices) with an associated sequence of tasks that “progressed from 
noticing an expert teacher’s task design, to designing a task to address a single 
mathematical concept, to designing a task that addressed a wide range of student 
needs” (p. 194). The study suggests, however, that such a scaffolding framework 
has promising potential to help prospective teachers develop skills of professional 
noticing of students’ thinking.

Finally, Heid et al.’s study, while not intended to be about intervention or notic-
ing, also implied the importance of noticing for oneself as one engages in math-
ematics and how a restrictive noticing ability could hinder how teachers engage stu-
dents in doing mathematics. For example, their participant needed to be prompted 
to notice essential properties of a mathematical object other than local features of 
the representation relevant for the task at hand and opportunities to incorporate mul-
tiple representations. Without the prompting, her noticing ability adversely affected 
her problem solving and limited her students’ mathematical opportunities. These 
findings suggest that intentional prompting could play a useful role in designing 
activities to support teachers’ noticing in their learning and teaching.

Collectively, these studies add to the growing body of research that indicates the 
importance of helping teachers to notice students’ mathematical thinking in order 
to teach flexibly and adapt lessons to accommodate students’ ideas. They provide 
further evidence that noticing can be taught and learned and that a variety of ap-
proaches can lead to positive outcomes. They suggest the importance of incorpo-
rating a specific framework and a structured sequence of activities to help guide 
teachers’ learning to notice and of developing teacher noticing in the context of a 
specific domain, rather than attending to student thinking in general, as doing so 
may better support noticing with depth. In particular, such activities are important to 
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help focus prospective teachers’ attention on more complex aspects of teaching and 
learning, since observing videos alone may not lead them to notice what is intended 
or to notice productively.

Changing Identity The final area of contribution to our understanding of teachers’ 
learning and change highlighted involves changing identity. Given the perspectives 
of identity involved, changing a teacher’s identity could be a challenging endeavor 
since it could involve trying to change who the person is. However, constructs such 
as beliefs and attitudes have been shown to change in response to intervention, and 
this possibility is supported by two of the studies in this book. Wilson et al. showed 
that although teachers were able to augment their attributional discourse related to 
students’ mathematical successes and failures, the approach “did not substitute or 
displace the existing attributions teachers used; rather, it added to and was included 
as part of [their] previous attributions” (p. 130), suggesting it is easier to impact 
growth in teachers’ identity than to change it. Fisher et al.’s study “revealed the pos-
sibility that components of [preservice elementary teachers’] attitudes can improve 
when experiencing a course where professional noticing skills are explicitly taught, 
modeled, and reinforced” (p. 232). Based on the attitude scale used, there was a sig-
nificant increase in their enjoyment, self-confidence, and motivation, and in value 
when maximum possible prescores were removed. The fact that some prospective 
teachers had maximum possible prescores on value suggests possible issues related 
to improving value (a central aspect of identity).

Research Tools

The third theme highlighted by the studies in this book involves contributions to 
research tools. For research to provide meaningful ways for us to understand teach-
ers and to support their learning, the tools and processes employed are of critical 
importance. Two important areas in which the studies contribute to this need are in 
researching mathematics knowledge for teaching and identity.

Mathematics Knowledge for Teaching Appropriate and productive tools are 
needed to understand teachers’ mathematics knowledge for teaching and changes in 
that knowledge. Some of the studies provide insights about the nature of possible 
tools that could contribute to research on different components of mathematical 
content and pedagogical knowledge. Herbst and Kosko focused on developing an 
instrument to measure mathematical knowledge for teaching high school geom-
etry. They include sample items and describe a process for developing and testing 
such items. Their study provides insights into the nature of the tool and how it 
can be used for research. Based on their studies, Land and Drake and Edgington 
developed trajectories of teachers’ learning that provide examples of what such tra-
jectories could look like and tools that can be used to frame further exploration. 
Land and Drake developed a trajectory of mathematics curriculum knowledge and 
use for prospective teachers that provides a depiction of the development of expert 
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curriculum-use knowledge and practices, while Edgington developed a trajectory 
of teachers’ movement from initial to proficient use of a student mathematics learn-
ing trajectory as a basis to support teachers’ planning of meaningful student-cen-
tered lessons. As research tools, these trajectories can provide meaningful starting 
points to develop more robust trajectories and theories of curriculum use, curricular 
knowledge, and lesson planning to support teachers’ learning.

Identity Researching identity is as challenging as defining it. Narratives/stories 
are considered most appropriate to study identity, and Chao’s study draws atten-
tion to a unique and meaningful way of accessing teachers’ stories via the use of 
photographs. The study shows that, as a research tool, teacher-selected photographs 
could be used as “anchoring structures” (p. 95) to study teacher identity by framing 
teachers’ narratives into professional, personal, and touchstone stories. These pho-
tographs provide a visual representation of the narratives of teachers’ experiences 
that unfold during a photo-elicitation/photovoice interview. Chao described how he 
elicited and analyzed these stories and the aspects of mathematics teacher identity 
they revealed. He demonstrated how this approach is effective in accessing stories 
focused on sociocultural aspects of teacher identity and, in particular, how teach-
ers’ internal stories can be surfaced through their personal stories and photographs. 
Thus, the study illustrates a tool with powerful potential to study identity.

Other studies imply that the use of group communication is a meaningful ap-
proach to researching aspects of a teachers’ identity. For example, in their studies, 
DePiper used teachers’ discussion of mathematics teaching and practices in high-
stakes accountability teaching contexts to study teachers’ positioning, and Wilson 
et al. used teachers’ discourse about students’ mathematical work to study teachers’ 
attributions of students’ successes and failures. Each demonstrated how these pro-
cesses can provide ways of capturing aspects of teachers’ identity in a context of 
actual experience that are less likely to be captured by individual interviews.

Themes for Future Research

We have gained significant insights about mathematics teachers and their learning 
from the large body of research in the field of mathematics teacher education. But 
despite the significant progress resulting from it, and given the slow pace of reform 
in classrooms, there is still much more we need to know to help teachers transform 
their practice and make a difference to mathematics education. In this section, I 
focus on some general implications for future research, organized around the three 
themes of the book: mathematics knowledge for teaching, identity, and noticing.



306 O. Chapman

Mathematics Knowledge for Teaching

The importance of understanding mathematics knowledge for teaching cannot be 
overstated. While many studies are exploring it in different ways, the complexity 
of this knowledge (based on, for example, various perspectives for conceptualiz-
ing it and various classroom, institutional, and sociocultural contexts that impact 
aspects of it) makes ongoing research of it necessary. Studies in this book have 
indicated possible issues with teachers’ knowledge that could impact practice, 
suggesting the need for future research to consider not only the nature of the 
knowledge but how it is used in actual practice and how it impacts students’ 
learning in actual classrooms (as in the case of Heid et al.’s study). Similarly, as 
demonstrated in some of the studies, in order to understand the ways teachers hold 
their knowledge and make sense of content and pedagogy, we need more attention 
to understanding teacher knowledge from the teacher’s perspective and in light of 
how it informs actual practice.

Some of the studies used or implied approaches that hold promise for producing 
positive outcomes for teachers’ development of mathematics knowledge for teach-
ing. In particular, learning trajectories of students’ thinking were shown to be useful 
in supporting teachers’ learning. Research could focus on developing such learning 
trajectories for different content areas that can be used in teacher education. Finally, 
measuring or assessing mathematics knowledge for teaching is also an area that 
deserves more attention. Tools such as those employed by Herbst and Kosko can 
inform future research in other topics and on exploring the relationship between 
knowledge in practice and mathematics knowledge for teaching. For example, such 
tools could inform research on how specific aspects of the actual work of teaching 
a subject (e.g., Algebra, Geometry) or topic are related to specific mathematics-
knowledge-for-teaching demands of teaching that subject or topic.

Identity

As Bjuland et al. (2012) pointed out, “the notion of teacher identity is considered 
to be a key theme for future directions of research in a sociocultural perspective” 
(p. 406). However, it is still underrepresented in mathematics teacher education 
research as an explicit research focus. Identity, depending on how it is defined, can 
provide a way to connect cognitive, affective, social, and cultural dimensions in 
considering teachers’ knowledge, practices, and development. The studies in this 
book provided examples of the aspects of these factors that draw attention to the 
importance of understanding the mathematics teacher from both sociocultural and 
psychological perspectives and the need for future research to address identity in 
ways that consider both perspectives. In particular, these studies imply the need 
for research not only about the nature of identity, but also about, for example, the 
relationship between identity and actual practice, identity and change in practice, 
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identity and equitable mathematical instruction for diverse students, and identity 
and noticing. The studies also suggest ways of accessing identity and approaches 
that could lead to growth in specific aspects of teacher identity that could be further 
explored. But more generally, given that the development of a teacher’s professional 
identity is shaped by multiple influences prior to, during, and after teacher educa-
tion, it is important to understand these influences and ways to explicitly support the 
development of professional mathematical identity.

Noticing

As previously discussed, noticing is emerging as an important construct in math-
ematics teacher education research, with particular attention being paid to teachers’ 
noticing of students’ mathematical thinking. The studies in this book provided evi-
dence of noticing being a teachable skill, thus suggesting the importance of research 
to further understand the nature of teachers’ noticing and how to support its growth 
and development. They also imply that such research should investigate teachers’ 
noticing of student thinking for specific mathematical domains to understand what 
the teachers pay attention to and how they use it to support student learning. In ad-
dition, such research should explore the nature of and how to incorporate structured 
frameworks to help guide teacher noticing and approaches to support and prompt 
prospective teachers, in focusing their attention on more complex aspects and sig-
nificant moments of teaching and learning.

In general, these three themes and the studies in this book collectively suggest 
we need a better grasp regarding how personal, educational, professional, and insti-
tutional factors influence teachers’ practices and to further explore ways of facilitat-
ing teachers’ learning and change.
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