
Chapter 5
Dual Estimation and Reduced Order
Modeling of Damaging Structures

Abstract In this chapter, the dual estimation and reduced order modeling of a
damaging structure is studied. In this regard, proper orthogonal decomposition is
considered for reduced order modeling in order to find a subspace which optimally
captures the dynamics of the system. Through a Galerkin projection, the equations
governing the dynamics of the system are projected onto the subspace provided by
the proper orthogonal decomposition technique. It is proven that the subspace
established by application of the proper orthogonal decomposition is sensitive to
changes of the parameters; therefore, it can be profited in the algorithms for
estimation of the damage incidence. As for the dual estimation goal, the extended
Kalman filter and extended Kalman particle filter are adopted; both filters, in their
so-called update stage, make a comparison between the latest observation and the
prediction of the state of the system to quantify the required adjustment in the
estimation of the state and parameters. In the case of the reduced order modeling,
for realization of such a comparison, reconstruction of full state of the system is
required, which is obviously possible only if the subspace is known. In this
chapter, an adjustment of the dual estimation concept has led to an online esti-
mation of the proper orthogonal modes, components of the reduced stiffness matrix
and the states of the structure. This novelty can intuitively help to detect the
damage in the structure, locate it and potentially identify its intensity.

5.1 Introduction

To detect changes in the mechanical properties of structural members, it can be
assumed as a method to monitor their health. In many cases, to identify the damage
in the structure, one can considered it as a reduction of the stiffness (Yang and
Lin 2005). This may be caused due to failure of a member to sustain further action,
or it can be due to degradation in its material properties. That means that damage
detection in a structure can be modeled as a system identification problem. To deal
with a linear structure, offline identification of system matrices can be carried out
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via several robust algorithms; as for output only techniques, data driven stochastic
subspace identification (SSI) algorithm is the de facto standard stochastic system
identification method (Van Overschee and De Moor 1996), however, in recent
years the research on developing new techniques e.g. blind source separation
(Abazarsa et al. 2013a, b; Ghahari et al. 2013c). The aforementioned method is
successfully applied to identify the modal parameters of multi-storey buildings
(Ghahari et al. 2013a, b) and modal identification of long span bridges (Ghahari
et al. 2013d). Moreover, subspace identification algorithm is instead extensively
applied to identify deterministic input–output systems (Loh et al. 2011). The
aforementioned methodologies include singular value decomposition (SVD) and
QR decomposition techniques (Moaveni et al. 2011). Extension of such method-
ologies to online system identification is normally perceived via setting a fixed
length moving time window; as new observations become available, new subspace
identification is perceived. Computational costs associated with SVD and QR
prevent real-time application of such methods. Several methods were proposed to
reduce the computational burden of the SVD and QR operations based on updating
SVD and QR decomposed matrices; moreover, they are made suitable for near
real-time applications (Loh et al. 2011). In this study, damage detection has been
tackled via dual estimation of state and stiffness parameters by utilizing recursive
Bayesian filters in an online means. We have shown in Chap. 2 that, as the number
of DOFs of the space model of the structure increases, biases frequently affect the
estimates furnished by the filters. To manage this problem, dual estimation of state
and parameters of a reduced model of the structure are employed as the last resort.

Nevertheless, dissimilar to the identification of the full model of the system, to
estimate components of the reduced stiffness yield no precise information con-
cerning the intensity and location of the damage. It is a well-known fact that
appropriate orthogonal modes of the structures include information regarding
location and intensity of the damage (Ruotolo and Surace 1999; Vanlanduit et al.
2005; Galvanetto and Violaris 2007; Shane and Jha 2011). Hence, this feature of
POMs can potentially resolve deficiencies of parameter estimation of a reduced
model as an indicator of damage location and severity. To accomplish this
objective, an algorithm for dual estimation of state and parameters of a reduced
model, accompanied by an online estimation of the POMs of the structure is
suggested. The proposed procedure utilizes appropriate orthogonal decomposition
for model order reduction; afterwards, it exploits Bayesian filters for dual esti-
mation of the full state and reduced parameters of the system. At each recursion,
Kalman filter is adopted to update the subspace spanned by the POMs retained in
the reduced model. This method can effectively detect, locate and identify the
severity of the damage in shear building type structures. The efficiency of the
methodology is testified through pseudo experimental data obtained by employing
direct analyses.

The proceeding sections of this chapter are organized as follows. In Sect. 5.2 the
state space formulation of shear buildings is reexamined; moreover, key features of
the reduced order state space model of the system are highlighted in Sect. 5.3. In
Sect. 5.4 the peculiarities of dual estimation and reduced order modeling of a
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damaging structure are presented and discussed, and we define our proposal as how
to tackle the problem. Finally, efficiency of our proposed method is numerically
testified in Sect. 5.5.

5.2 State Space Formulation of Shear Building-Type
Structural Systems

In this study, it is aimed to develop an algorithm for multi-storey buildings and to
investigate shear buildings, i.e. models obtained by lumped mass assumption for
each story, see Fig. 5.1.

Representing storey displacements, velocities and accelerations by u, _u and €u
respectively, the governing equation of motion of the building reads:

M€uþ D _uþ KðtÞu ¼ RðtÞ ð5:1Þ

where M is the stationary mass matrix, D denotes time invariant damping matrix and
KðtÞ stands for time varying stiffness matrix, whose variation in time is due to
possible damage phenomena and is usually unpredictable; RðtÞ is the loading vector:

M ¼

m1

m2

. .
.

mn

2
6664

3
7775 ð5:2Þ

Fig. 5.1 Schematic view of a
shear building
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K tð Þ ¼

k1ðtÞ þ k2ðtÞ �k2ðtÞ
�k2ðtÞ k2ðtÞ þ k3ðtÞ

. .
.

kn�1ðtÞ þ knðtÞ �knðtÞ
�knðtÞ knðtÞ

2
66664

3
77775
ð5:3Þ

In general, RðtÞ can be any kind of loading; however, in this study, we assume
that it is a harmonic force applied to the top floor:

R tð Þ ¼

0
..
.

0
a sin xt

2
664

3
775 ð5:4Þ

where a and x are the amplitude and frequency of excitation, respectively. For the
sake of simplicity, in this study, we neglect damping effects.

To numerically solve the set of ordinary differential equations, Newmark
explicit integrator is employed. To write the equations in the discrete state-space
form, we introduce an extended state, z, that at each time instant tk includes u, _u
and €u according to:

zk ¼
uk

_uk

€uk

2
4

3
5: ð5:5Þ

Then state-space form of Eq. (5.1) is written as:

zk ¼ Akzk�1 þ Bk ð5:6Þ

where:

Ak ¼

I � bDt2KkM�1 DtI � bDt2M�1 Dþ DtKkð Þ �bDt2M�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

þ Dt2 1=2� b
� �

I

�cDtKkM�1 I � cDtM�1 Dþ DtKkð Þ �cDtM�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

þ Dt 1� cð ÞI

�KkM�1 �M�1 Dþ DtKkð Þ �M�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

2
66664

3
77775

ð5:7Þ

and:

Bk ¼
bDt2M�1Rk

cDtM�1Rk

M�1Rk

2
4

3
5 ð5:8Þ

b and c are parameters of the Newmark algorithm, for details see Sect. 2.6.
Concerning the observation process, it is assumed that a part of state vector is

directly observable; hence, observation equation is expressed as:

yk ¼ Hzk þ wk ð5:9Þ
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where H denotes a Boolean matrix of appropriate dimension which links the states
of the system to observation process, and wk denotes associated measurement
noise.

5.3 Reduced Order Modeling of Structural Systems

A detailed study of the application of POD for model order reduction of structural
system has been presented in Chap. 3. However, to keep this chapter self-con-
tained, in this Section, we review key features of the procedure. Let us assume that
the displacement field u 2 R

m of the system can be written in a separable form,
according to:

uðx; tÞ ¼
Xm

i¼1
uiðxÞaiðtÞ ð5:10Þ

where uiðxÞ are a set of orthonormal vectors that satisfy proper orthogonal
decomposition (POD) requirements and, ai are temporal functions. Dealing with
structural problems with high dimensional state vectors, the main variation in the
data is usually occurring in a rather small subspace; consequently, it is frequently
possible to approximate the state of the system by keeping just a few, say l proper
orthogonal modes, with l� m:

uðx; tÞ �
Xm

i¼1
uiðxÞaiðtÞ

¼Ul a
ð5:11Þ

where Ul denotes the matrix containing the retained l POMs of the system.
Substituting (5.11) into (5.1), and applying Galerkin projection yield the

reduced dynamic model of the system:

Ml€aþ Dl _aþ Kla ¼ RlðtÞ ð5:12Þ

where:

Ml ¼ UT
l MUl; Dl ¼ UT

l DUl; Kl ¼ UT
l KUl; Rl tð Þ ¼ UT

l R tð Þ: ð5:13Þ

The reduced dynamic model in state-space form then reads:

zr;k ¼ Akzr;k þ Bk þ vz
k ð5:14Þ

yk ¼ HCzr;k þ wk ð5:15Þ

where the reduced order state includes the temporal coefficient, its first and second
time derivatives:
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zr;k ¼
ak

_ak

€ak

2
4

3
5: ð5:16Þ

In (5.14):

Ak ¼

I � bDt2M�1
l Kl;k DtI � bDt2M�1

l Dl þ DtKl;k

� �
�bDt2M�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �
þ Dt2 1=2� b

� �
I

�cDtM�1
l Kl;k I � cDtM�1

l Dl þ DtKl;k

� �
�cDtM�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �
þ Dt 1� cð ÞI

�M�1
l Kl;k �M�1

l Dl þ DtKl;k

� �
�M�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �

2
66664

3
77775

ð5:17Þ

Bl;k ¼
bDt2M�1

l Rl;k

cDtM�1
l Rl;k

M�1
l Rl;k

2
4

3
5 ð5:18Þ

and, in (5.15):

C ¼
Ul

Ul

Ul

2
4

3
5 ð5:19Þ

Throughout the paper, whenever two indexes are used to denote a variable, the
first subscript (r) refers to a property associated with reduced order model, while
the second subscript refers to the time instant at which variable is considered.

In (5.14) and (5.15), vz
k and wk are the process and measurement noises,

respectively. The former uncertainty stems from the loss of accuracy due to the
reduced modeling which needs to be further assessed in order to determine its
probability distribution and verify the correlation structure in it. In Chap. 4, we
have tested the whiteness of the residual error signal of POD-based reduced model
of Pirelli tower; it has been shown that, by an increase in the number of POMs
retained in the analysis, a reduction occurs in the amplitude of the noise signal and
its spectral power. As a consequence, the effect of the non-white uncertainty in the
Kalman-POD observer becomes negligible. Hence in this chapter, we assume that
the noises satisfy the requirements of the family of recursive Bayesian inference
algorithms.

To tackle the dual estimation problem, we now augment the parameters of the
reduced model into the state vector, to comply with the state space form. Subse-
quently, we introduce the augmented state vector xr;k, that at any time tk encom-

passes both states and parameters of the system xr;k ¼ zr;k #r;k½ �T . In Sect. 2.2, it
is shown that dual estimation of states and parameters of a linear system leads to a
nonlinear state-space model. The new state space equation is written as:

xr;k ¼ f r;k xr;k�1
� �

þ vk ð5:20Þ

yk ¼ H Lxr;k þ wk ð5:21Þ
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L ¼ C
0

� �
ð5:22Þ

where: 0 in L is a null matrix of appropriate dimension to annihilate the effects in
the observation mapping of parameters in the augmented state vector; f r;kð:Þ maps
the state of the system in time and H denotes the correlation between states and
observables of the system; L links the reduced states of the system to the full state;
whereas vk and wk stand for the zero mean white Gaussian processes with asso-
ciated covariance matrices V and W. Likewise previous Chapters, #r;k includes the
parameters of the reduced state space model that should be estimated, namely the
components of the reduced stiffness matrix Kl;k.

5.4 Dual Estimation of Reduced States and Parameters
of a Damaging Structure

Dual estimation problem for a non-damaging (elastic) structure can be pursued via
the estimation of reduced state and parameters since there will not be changes in
the subspace of the problem. On the contrary, subspace of a damaging structure
varies in time: for instance, a change in a story stiffness can lead to a change in the
POMs. As a consequence, dual estimation of the reduced state and parameters of a
damaging structure not only includes tracking of the reduced state and estimation
of the reduced parameters of the system, but also needs online update of the
relevant subspace of the structure.

In this section, we introduce a novel approach for simultaneous state and
parameter estimation, accompanied by an online subspace update in order to obtain
an estimate of the full state. In this regard, we adopt recursive Bayesian filters: the
extended Kalman filter (EKF) and the extended Kalman particle filter (EK-PF).
They have been discussed in Chap. 2, and used for dual estimation. A Kalman filter is
instead used to update the subspace furnished by POD. Likewise all recursive
Bayesian inference algorithms, the iterations start by an initial guess; next, within
each time interval ½tk�1tk�, provided that at tk�1 estimations of state, parameters and
subspace of the system are available, the state zr;k and parameters in Kl;k are
simultaneously estimated. Let us consider the following state space model:

xr;k ¼ f r;k xr;k�1
� �

þ vk ð5:23Þ

yk ¼ HLkxr;k þ wk ð5:24Þ

where:

Lk ¼

Ul;k

Ul;k

Ul;k

0

2
664

3
775: ð5:25Þ
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Along with Eqs. (5.23) and (5.24), an additional equation should be introduced
in order to permit time variation and update of Ul, similar to the trick used for dual
estimation of states and parameters. The following equation is introduced to allow
the subspace to vary over time, and use the data in observation in order to adapt to
the possible changes:

Ul;k ¼ Ul;k�1 þ t ð5:26Þ

where t denotes a fictitious zero mean, white Gaussian noise with associated
covariance t that needs to be obviously tuned to obtain unbiased estimates of the
subspace vectors.

To recursively update the subspace, Eqs. (5.26) and (5.24) are assumed as the
state-space model for subspace evolution. The former equation governs the evo-
lution of the subspace, and the latter one links the observation to the subspace. In
Eqs. (5.26) and (5.24), it is assumed that xr;k remains independent of Ul;k. The
observation Eq. (5.24), when used for subspace update can be rewritten as:

yk ¼ HssUl;k þ wk ð5:27Þ

where Hss is a stationary matrix which links the observation process to the sub-
space spanned by the POMs, and can be computed by manipulating Eq. (5.26).
Equation (5.27) establishes a linear relationship between the observation yk and the
subspace Ul;k, whose linearity allows us to use the Kalman filter (the optimal
estimator for linear state-space models) for the estimation of the subspace.

In Tables 5.1 and 5.2, an algorithmic description of the procedure is reported; the
EKF and the EK-PF are used for dual estimation. In the Table 5.1,rx f r;kðxÞjx¼bxk�1

denotes Jacobian of f r;kð�Þ, at xr ¼ x�r;k.
As seen in Table 5.1, the algorithm has two main stages of prediction and

update. In the prediction stage, the evolution equations are used to map in time the
reduced state xr;k�1 along with its covariance. In the update stage, first the reduced
state and parameters and their associated covariances are corrected by incorpo-
rating the information contained in the latest observation (steps 1 and 2); next, the
Kalman filter is exploited to update the subspace Ul. Step 3 in the prediction stage
of dual estimation algorithm is in fact the predictor stage of the Kalman filter to
update the subspace. In step 4, Kalman gain is computed and is used in step 5 to
update the estimate of the subspace by taking the latest observation into account.

Concerning the use of EK-PF for dual estimation, according to previous Chap. 2,
combined with the Kalman filter for subspace update, similar to the procedure used

by EKF-KF algorithm, the reader is referred to Table 5.2. In the Table 5.2, F
ðiÞ
r;k is:

rx f r;kðxÞjx¼bxk�1
ð5:28Þ

where it denotes Jacobian of the reduced evolution f r;k xrð Þ at xr ¼ x
ðiÞ�
r;k .
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5.5 Numerical Results: Damage Detection in a Ten Storey
Shear Building

This section deals with the numerical assessment of the proposed algorithm to
detect damage in a 10-storey shear building. To deal with the damage scenarios,
it is not straight forward to use the model of Pirelli tower, due to the fact that a
static condensation has been carried out to derive matrices of lumped mass system
of the Pirelli towers. For the sake of simplicity, in the numerical example, it is
assumed that all the floors have equal mass and inter-storey stiffness, i.e.
mi = 20 Kg and ki = 300 Kg/m where i ¼ 1; 2; . . .; 10, and the damping effect is
neglected. It the analysis, the external load shaking the structure, is a sinusoidal
load applied to the last floor (roof) of the building, varying according to:

RðtÞ ¼ am sin 2pxt ð5:29Þ

Table 5.1 EKF-KF algorithm for dual estimation of the reduced model and subspace update

• Initialization at time t0

bxr;0 ¼ LT
0E x0½ � Pr;0 ¼ LT

0E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

L0

bUl;0 ¼ E Ul;0
� 	

Pss;0 ¼ E Ul;0 � bUl;0

� �
Ul;0 � bUl;0

� �T
� �

• At time tk , for k ¼ 1; . . .;Nt

- Prediction stage
1. Computing process model Jacobian

Fr;k ¼ rx f r;kðxÞjx¼bxk�1

2. Evolution of state and prediction of covariance

x�r;k ¼ f r;k xr;k�1
� �

P�r;k ¼ Fr;kP�r;k�1FT
r;k þ V

- Update stage
1. Use Ul;k�1 to estimated Lk and Kalman gain

Gk ¼ P�r;kLT
k HT HLkP�r;kLT

k HT þW
� ��1

2. Update state and covariance

xr;k ¼ x�r;k þ Gk yk �HLkx�r;k

� �

Pr;k ¼ P�r;k � GkHLkP�r;k
3. Predict subspace and its associated covariance

U�l;k ¼ Ul;k�1

P�ss;k ¼ Pss;k�1 þ �
4. Calculate Kalman gain for updating subspace

Gss;k ¼ P�ss;kHT
ss HssP

�
ss;kHT

ss þW
� ��1

5. Calculate Kalman gain for updating subspace

Ul;k ¼ U�l;k þ Gss;k yk �HssU
�
l;k

� �

Pss;k ¼ P�ss;k � Gss;kHssP
�
ss;k
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where am ¼ 10 N and x ¼ 0:01 Hz.
Consider a case in which a stiffness reduction equal to 50 % has occurred at the

5th floor. The POMs of the structure, before and after damage occurrence, are
computed and presented in the Fig. 5.2. To compute these POMs of the healthy
and damaged cases, two direct analyses have been carried out to assemble the so-
called snapshot matrices. Looking at Fig. 5.2, it can be seen that the ten POMs of
the structure are affected by the stiffness reduction at the 5th floor. The effect of the

Table 5.2 EK-PF-KF algorithm for dual estimation of the reduced model and subspace update

• Initialization at time t0

bxr;0 ¼ LT
0E x0½ � Pr;0 ¼ LT

0E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

L0

bUl;0 ¼ E Ul;0
� 	

Pss;0 ¼ E Ul;0 � bUl;0

� �
Ul;0 � bUl;0

� �T
� �

x
ðiÞ
r;0 ¼ bx0 xðiÞ0 ¼ p y0jxr;0

� �
; i ¼ 1; . . .;NP

• At time tk, for k ¼ 1; . . .;Nt

- Prediction stage
1. Draw particles

x
ið Þ�

r;k � p xr;kjxðiÞr;k�1

� �
i ¼ 1; . . .;NP

2. Push the particles toward the region of high probability through an EKF

P
ið Þ�

r;k ¼ F
ðiÞ
r;kP

ið Þ
r;k�1F

ið ÞT
r;k þ V

G
ðiÞ
k ¼ P

ið Þ�
r;k LT

k�1HT
k HLk�1P

ið Þ�
r;k LT

k�1HT þW
� ��1

x
ðiÞ
r;k ¼ x

ið Þ�
r;k þ G

ðiÞ
k yk �HLk�1x

ið Þ�
r;k

� �

P
ið Þ

r;k ¼ P
ið Þ�

r;k � G
ðiÞ
k HLk�1P

ið Þ�
r;k

i ¼ 1; . . .;NP

- Update stage
1. Evolve weights

xðiÞk ¼ xðiÞk�1p ykjx
ðiÞ
r;k

� �
i ¼ 1; . . .;NP

2. Resampling, see Table 2.5.
3. Compute expected value or other required statistics

bxr;k ¼
PNP

i¼1 xðiÞk x
ðiÞ
r;k

4. Predict subspace and its associated covariance
U�l;k ¼ Ul;k�1

P�ss;k ¼ Pss;k�1 þ �
5. Calculate Kalman gain for updating subspace

Gss;k ¼ P�ss;kHT
ss HssP

�
ss;kHT

ss þW
� ��1

6. Update subspace and its associated covariance

Ul;k ¼ U�l;k þ Gss;k yk �HssU
�
l;k

� �

Pss;k ¼ P�ss;k � Gss;kHssP
�
ss;k
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damage in the first POM is quite visible, the usefulness of such sensitivity to
damage, even in the first POM, helps tracking the evolution of damage in a single
DOF reduced model.

Figure 5.3 compares the first POM of the structure when the 5th floor of the
structure suffers a damage of varying intensity; the close-up in the graph allows us
to compare the shape of the POM in the vicinity of the damage location. Obvi-
ously, the intensity of damage leads to an increase in the deviation of the POM
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Fig. 5.2 Proper orthogonal modes of a 10 storey shear building before and after damage
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Fig. 5.3 1st POM of the 10 storey shear building subject to different levels of damage at
5th floor
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relevant to the damaged state with respect to the healthy state of the structure. To
highlight the sensitivity of the 1st POM to damage location, in Fig. 5.4 the first
POM of the damaged state is compared with healthy state, when damage occurs at
different floors. The imposed level of the damage in all the cases is equal to a 50 %
reduction of the stiffness of the relevant floor.

Now that the link between the first POM of the structure and the location and
severity of the damage is established, we move to the problem of the recursive
estimation of the state, parameters and POMs of the reduced model of the struc-
ture. To detect the damage, the POMs of healthy and current state of the structure
are compared; thus information concerning the healthy state of the structure is
needed. In this study, the case in which the reduced models retain one or two
POMs are assessed, the latter case is mainly reported to verify the performance of
the algorithm in case of the higher number of parameters to be estimated: dual
estimation of reduced models which retain more POMs includes calibrating a high
number of parameters, and can therefore potentially pose the problem of curse of
dimensionality, as discussed in Chap. 2.

First, we deal with the reduced model constructed through a single POM.
Pseudo-experimental data for evaluation of the methodology have been created by
running direct analysis, to compute the response of the structure, and then adding
zero mean white Gaussian noise to allow for uncertainties in measuring the
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response of the structure. The covariance of the added noise to all the pseudo
experimental data considered in this section is set to 10-4 m2 to simulate a high
level of measurement uncertainty. The duration of the analysis is set to 1,000 s, in
order to allow the estimates of the algorithms to converge to a steady state value.
The damage scenario is once again a reduction of 50 % in the stiffness of the 5th
floor, which occurs at t = 100 s. Other damage scenarios, featuring severities
ranging from 10 to 40 % in the reduction of the stiffness of other floors has been
assessed; the algorithms show similar performance dealing with those scenarios;
thus the results are not presented for the sake of brevity.

Since the goal of this Section is the damage identification, the results con-
cerning the estimation of the state are not discussed. Figure 5.5 shows the time
history of the estimated stiffness of the reduced system when compared with its
target value. It is observed that before damage occurs, the estimation coincides
with the target value; however, after damage occurs, it takes almost 400 s for the
algorithm to make its estimate to converge to the target value. Figure 5.6 shows
the estimated POMs of the building before and after damage: the POM concerning
the healthy state is related to t = 50 s, and the POM concerning the damaged state
is related to t = 1,000 s. To compare the performance of the algorithm in tracking
the POM of the system over time, Fig. 5.7 shows time history of the estimated
POM, compared with its target value. It is observed that the estimations of the
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POM components before damage occurrence coincide with the true value; after
damage occurs, the algorithm needs nearly 400 s, similar to parameter estimates,
to reach steady state. EK-PF, when dealing with several problems discussed in
Chap. 2 outperforms the EKF; hence, it is used to verify if its convergence rate
would be better than EKF’s one. However, it is seen in Fig. 5.5 that the quality of
estimation of the reduced stiffness and the 1st POM of the structure do not change,
when either EKF-KF or EK-PF-KF are used for dual estimation and reduced order
modeling of the damaging shear building.
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Now, let us move to a case in which there are two POMs retained in the reduced
order model of the system. In this case, taking advantage of the symmetry of the
stiffness matrix, the reduced stiffness matrix Kl has three components to estimate.
Figure 5.8 shows the results of the reduced stiffness matrix estimation via the
EK-PF-KF and EKF-KF algorithms. It is observed that both algorithms are able to
calibrate two of the components of the reduced stiffness matrix, while the Kl;ð2;2Þ
component is failed to be estimated. The reason for such failure can be the
insensitivity of the observations to the sought parameter.

Figure 5.9 shows the results of the estimation of the 2nd POM of the structure
by utilizing both the proposed algorithms. It is observed that, they fail in furnishing
an estimate of the 2nd POM; this failure can be due to the small contribution of the
second POM in the response of the structure.

5.6 Summary and Conclusion

In this chapter, we consider dual estimation and reduced order modeling of a
damaging structure. Moreover, proper orthogonal decomposition has been con-
sidered for reduced order modeling in order to find a subspace which optimally
captures the dynamics of the system. Through a Galerkin projection, the equations
governing the dynamics of the system are projected onto the subspace provided by
the proper orthogonal decomposition algorithm. As for the dual estimation goal,
the extended Kalman filter and extended Kalman particle filter have been adopted;
both filters, in their so-called update stage, make a comparison between the latest
observation and the prediction of the state of the system to estimate the quantity of
correction which is needed in estimation of the state. In the case of the reduced
order modeling, for realization of such a comparison, reconstruction of full state of
the system is required, which is obviously possible only if the subspace is known.
It is established that the subspace found by proper orthogonal decomposition is not
robust to changes of the parameters; therefore, we have proposed algorithms for
online estimation of the subspace spanned by proper orthogonal modes retained in
the reduced order model of the system. Such an online estimation of the proper
orthogonal modes of the structure makes it possible to detect the damage in the
structure, locate it and potentially identify its intensity.
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