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Foreword

Monitoring the health of structures and infrastructures exposed to aging or extreme
loadings is nowadays recognized as a societal need. The pervasive use of minia-
turized sensors, recently developed through microelectronics-driven technological
processes, has forced people to look for smart monitoring strategies tailored to
handle the large amount of data provided by densely deployed sensor networks.
Moreover, as each health monitoring procedure relies upon a theoretical/numerical
model of the considered structure, the more accurate the model the more powerful
the monitoring scheme; such increased accuracy also entails additional monitoring
burden.

If a structure undergoes a damaging process reducing its load-carrying capacity,
the health monitoring procedure should be able to identify the damage itself in
terms of location and amplitude. It is then necessary to filter out the possible noise
terms and provide meaningful information from the structural response. Due to the
presence of damage, robust procedures able to deal with a nonlinear system
evolution are obviously to be envisioned.

The two topics discussed above, i.e., the size of the model to be handled and the
nonlinearities in its evolution law, might be difficult to manage simultaneously in a
common frame. It may happen that the filtering algorithm, which is supposed to
compare the responses of the real structure and of a fictitious, linear-comparison
one (featuring no damage evolution in a predefined time window), provides esti-
mations affected by drifts or biases, sometimes also diverging. It may also happen
that by increasing the size of the numerical model, e.g., due to a required finer
space discretization in case of numerical (e.g., finite element) procedures sup-
plying the model itself, the aforementioned bias and divergence issues get
amplified.

It is also worth noting that structural health monitoring systems should be able
to provide results in real-time or, at least, close to such target, so that warnings can
be provided as soon as critical conditions are approached during the life cycle of a
structure.

The research activity reported in this book moved from all the aforementioned
critical aspects, with the aim of providing a robust, accurate, and easy to imple-
ment methodology for the health monitoring of civil structures and infrastructures,
possibly suffering damage inception and growth. Two main challenging topics are
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specifically dealt with: the derivative-free filtering of the response of nonlinear
systems; a time-varying, reduced-order modeling able to self-adapt to a changing
system dynamics. As for the former issue, results are known to be not satisfactory
if one does not properly account for the statistics of noise terms and structural
state, and for the nonlinear evolution of the last ones. Here, the author shows that a
wise combination of Kalman and particle filtering can indeed provide a very
efficient (in terms of computational costs) and robust (in terms of avoidance of
output divergence) framework. As for the latter issue, a snapshot-driven proper
orthogonal decomposition methodology is known to work well in case of time-
evolving linear systems; on the other hand, it is still disputed whether proper
orthogonal decomposition can be adopted for a nonlinear time evolution of the
system, linked, e.g., to damage growth. Here, the author shows that a further
exploitation of Kalman filtering can provide, if governed by a partial observation
of the system, a very efficient way to continuously tune the reduced-order model,
thereby avoiding time-consuming re-training stages suggested by others in the
past.

This book thus introduces a novel, hybrid approach to damage identification
and health monitoring of structural systems. As such, it has been written mainly
focusing on the theoretical and implementational aspects of the approach, partially
leaving experimental validations aside. In my opinion, readers can find in it all the
details necessary to adapt the methodology to many, if not all the real-life situa-
tions to be practically envisioned.

Stefano Mariani
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Preface

The aim of this monograph is to present the key ingredients of a still-in-progress
research discipline within the structural engineering realm, namely online damage
detection. The material of the text offers detailed explanations on recursive
Bayesian filters (e.g., Kalman filters, particle filters), proper orthogonal decom-
position methods (POD) (e.g., singular value decomposition, principal component
analysis), and a combination thereof, i.e., a synergy of reduced order modeling and
recursive Bayesian filtering. Illustrations accompanied by the theoretical
description allow the reader to intuitively comprehend the notions. Therefore, this
book can serve as a tutorial for scientists and engineers who want to apply and
implement proper orthogonal decomposition and/or Bayesian filters to a specific
problem.

Throughout the book, the focus of the numerical examples is on structural
systems. The techniques presented in this research monograph are well established
in fields like automatic control, statistics, etc. However, they are rather new to civil
and structural engineers; hence, the algorithms are presented in enough details so
that the reader can easily implement them on any structural state-space model.
At first, the ease of implementation has been the main concern; however, the
author believes that the way the main notions are analyzed makes this book an
inspiration for conducting further research and development of these methods.

The objective of the study presented in this monograph is to develop techniques
for vibration-based non-destructive damage identification of the structures. In fact,
the major emphasis is on the development of quick and robust recursive damage
detection algorithms in order to facilitate the task of online, real-time continuous
monitoring of civil structures, such as, e.g., residential buildings, bridges, and
other similar structures. This goal can be accomplished only through mixing dif-
ferent disciplines of science and technology, including automatic control, applied
mathematics, and structural engineering.

It should be emphasized that though Bayesian filters have been extensively
studied in the automatic control field, their applications in structural engineering
are yet to be investigated. The applications of extended Kalman filter (EKF),
sigma-point Kalman filter (SPKF), and particle filter (PF) to simplified and low-
dimensional models are suggested in the existing literature; nevertheless, to the
best of my knowledge, applying the extended Kalman-particle filter (EK-PF) has
never been reported when dealing with a structural engineering problem.
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The algorithms for all the Bayesian filters used in this book are derived using the
same notation; this can allow the reader to easily understand the similarities and
ideas behind each one of them. Their performances dealing with different iden-
tification tasks are scrutinized in detail, and the reason for their success and failure
in each case is highlighted.

It is perceived that as the number of the degrees-of-freedom increases, the
adopted methods in the literature lose their accuracy in system identification, and
thus in damage detection process. This problem is created due to the high
dimension of the parameter space, i.e., by so-called curse of dimensionality. To
manage this issue, in this study I make recourse to reduced order modeling of the
systems. The aforementioned task is accomplished by using the proper orthogonal
decomposition. Before using POD-based models in the Bayesian filters, the per-
formance of such methodology is thoroughly investigated to ensure accuracy,
speed-up, and robustness when different sources of excitation shake the structures.

The major contribution of the present research is the development of a recursive
stochastic algorithm by a synergy of dual estimation concept, POD-based order
reduction, and a subspace update. The proposed methodology takes advantage of
Bayesian filters (like EKF and EK-PF) for dual estimation of state and parameters
of a reduced order model of a time-varying system. A Kalman filter is employed
within each iteration period to update the subspace spanned by the POMs of the
structure. The efficiency and effectiveness of the algorithm are verified via pseudo-
experimental tests conducted on multi-storey shear buildings. It will be shown that
the procedure successfully identifies the state, the model parameters (i.e., the
components of the reduced stiffness matrix of the structure) and relevant proper
orthogonal modes (POMs) of the reduced model. Unbiased estimates furnished by
the algorithm permit the health monitoring of the structure.

By reading this monograph, one could learn how the family of Kalman filters
and particle filters are connected; compare their performances when dealing with a
structural dynamics problem; see through detailed examples why and when they
fail; figure out which filter can better fit a certain problem; and know how to tune
the parameters of the filters. Moreover, the way the filters are presented renders the
task of implementing more complicated filters easy and even developing ad hoc
filters for structural engineering possible. Concerning reduced order modeling,
possible limitations caused by POD-based reduced models are shown via
numerous graphs and tables. The nature and extent of the inaccuracies caused by
abridging the full mathematical model of the structures are carefully studied and
analyzed. Finally, the use of such reduced models in the Bayesian filters is studied
for the case in which the model can change (sustain damage) and also when it is a
priori known that the model remains undamaged.

To follow the contents of this monograph, the reader is expected to have a
background in statistics and calculus, and to be familiar with linear algebra and
fundamentals of signal processing.

The material covered in this book is derived from the doctoral dissertation of
the author, which was submitted to the scientific faculty of the doctoral program at
the Department of Structural Engineering of the Politecnico di Milano. The author
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Chapter 1
Introduction

Abstract In the current Chapter, the fact that a significant portion of the existing
civil structures and infrastructures in the developed and industrialized nations was
constructed at the early period of twentieth century is discussed. It is also
expressed that a notable part of the existing structures have been subject to
deteriorations. Moreover, the need to develop damage identification techniques for
vibration based non-destructive damage identification of the structures is briefly
debated. Then, the major emphasis of the monograph and the type of the target
structures is explained. In the end, the major disciplines covered inside the book
are highlighted.

1.1 Background and Motivation

A significant portion of civil structures and infrastructures was constructed at the
early period of twentieth century in the developed and industrialized nations;
consequently, they have been subject to deteriorations. To illustrate this issue, over
50 % of the bridges were built in the U.S.A prior to 1940 (Stallings et al. 2000);
moreover, over 42 % of all the aforementioned bridges are structurally deficient as
reported by Klaiber et al. 1987. In Canada, over 40 % of the present functional
bridges were built prior to 1970 and majority of these Canadian bridges demand
prompt rehabilitation, strengthening or replacement (ISIS Canada 2007). The
Canadian Construction Association estimated nearly 900 billion US dollars as the
cost to rehabilitate global infrastructures (ISIS Canada 2007). In the next years, it
takes a great deal of budget to rehabilitate the global infrastructure which high-
lights the significance of developing reliable and cost effective methods for the
investments required for rehabilitation. Moreover, in seismically active zones,
the deterioration due to degradation in the structures may be combined with the
damage due to extreme seismic actions.

In recent years, civil engineering community has globally focused their atten-
tion on structural health monitoring with the purpose to identify the damage
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occurred in civil structures at the earliest possible stage, and to estimate the
remaining lifetime of the structures. Structural damage caused by corrosion leads
to degradation of the mechanical properties of the affected components; therefore,
it changes the response of the structure as well. Moreover, the failure of the
structural components such as shear walls, bracings and connections clearly
changes the mathematical system which is defined to mimic the behavior of the
structure. Hence, the goal of structural health monitoring can be perceived by
structural system identification. The system corresponding to healthy state should
be primarily identified; moreover possible changes which occur in the system with
respect to the healthy state of structures are indications of structural damage in
next planned system identifications. This task is realized within the frames of non-
destructive vibration-based damage identification either by direct identification of
the system or an alternative indirect scheme. Moreover, several dynamic charac-
teristics of the system are identified, and possible variations in their value are
employed to update the system. Instances of former methods include dual esti-
mation of states and parameters of the structure via Bayesian inference techniques
(Chatzi et al. 2010), while latter methods utilize modal properties of the structure
to detect the damage (Moaveni et al. 2010).

To prevent the possible casualties and losses caused by sudden collapse of the
structure, timely detection of the structural damage is essential.

The collapse of the bridge on Minneapolis I-35 W highway is one of the recent
structural catastrophe. The steel truss bridge, constructed in 1967, collapsed during
rush hour which led to dozens of causalities on August 1, 2007 (French et al.
2011). Beyond philanthropic issues, the economic impact of the collapse has been
substantial: road-user costs due to the unavailability of the river crossing imposed
a financial burden of $220,000 US dollars per day (Xie and Levinson 2011). These
statistics highlight the economic significance of the civil infrastructure; and
therefore substantiate the demand to monitor their safety: St. Anthony Falls Bridge
on the I35 W, constructed to replace the collapsed steel truss bridge, includes over
500 instruments to monitor the structural behavior (French et al. 2011). To detect
the damage at the earliest possible stage, long-term monitoring systems are
required to process the data sensed by these instruments.

1.2 Objectives and Scope

The objective of the study presented in this monograph is to develop damage
identification techniques for vibration based non-destructive damage identification
of the structures. In fact, the major emphasis is on the development of quick and
robust recursive damage detection algorithms in order to facilitate the task of
online real-time continuous monitoring of civil structures, such as e.g. residential
buildings, bridges and other similar structures. To accomplish this end, four
Bayesian filters, namely the extended Kalman filter (EKF), the sigma-point Kalman
filter (SPKF), the particle filter (PF) and a hybrid extended Kalman particle filter
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(EK-PF) are adopted to identify the structural system. To avoid shadowing effects
of the structural system, performance of the filters is benchmarked by dual esti-
mation of state and parameters of a single degrees-of-freedom structure featuring
nonlinear behaviors namely: an exponential softening and a bilinear (linear-soft-
ening, linear plastic and linear hardening) constitutive laws are examined. It will
be observed that the EK-PF outperforms all the other filters studied in this
research. It should be emphasized that though Bayesian filters have been exten-
sively studied in the automatic control field, their applications in structural engi-
neering is yet to be investigated. The applications of EKF, SPKF, and PF to
simplified and low dimensional models are suggested in the existing literature;
nevertheless, to the best of our knowledge, applying EK-PF has never been
reported when dealing with a structural engineering problem. After the perfor-
mance of the filters is benchmarked when working with a single degree-of-free-
dom system, multi degrees-of-freedom structures are handled. Consequently, EKF
for its computational efficiency and EK-PF for its excellent performance working
with single degree-of-freedom systems are adopted. It will be indicated that the
performance of EKF and EK-PF is identical when engaging with a two degrees-of-
freedom system; nevertheless, moving to three and four degrees-of-freedom
structures, the EK-PF outperforms the EKF in terms of the bias in the estimation. It
is perceived that as the number of the degrees-of-freedom increases, the adopted
methods lose their accuracy in system identification and thus in damage detection
process. This problem is created due to the high dimension of the parameter space,
i.e. by the so-called curse of dimensionality. To manage this issue in this study, we
make recourse to reduced order modeling of the systems. Regarding the model
order reduction technique, a method based on the proper orthogonal decomposition
(POD) is adopted. Such method utilizes POD to define a subspace in which the
main dynamic evolution of the system occurs; the vectors that span the POD
subspace are called proper orthogonal modes (POMs). Once such a subspace is
attained, a projection method onto the POD subspace is employed to reduce the
order of the set of governing equations of the system; subsequently the speed of
calculations is increased. In addition to the expediting the calculations, another
striking property of the so-called POMs is that they are sensitive to changes in the
system parameters; thus in this study this property is exploited to identify the
damage in the structure.

The major novel contribution of this monograph is to develop a recursive
stochastic algorithm by a synergy of dual estimation concept, POD-based order
reduction and subspace update. The proposed methodology takes advantage of
Bayesian filters (e.g. EKF and EK-PF) for dual estimation of state and parameters
of a reduced order model of a time-varying system. A Kalman filter is employed
within each iteration period to update the subspace spanned by the POMs of the
structure. The efficiency and effectiveness of the algorithm is verified via pseudo-
experimental tests conducted on a ten-storey shear building. It will be indicated
that the procedure successfully identifies the state, the model parameters (i.e. the
components of the reduced stiffness matrix of the structure) and relevant POMs of
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the reduced model. Unbiased estimates furnished by the algorithm permits the
health monitoring of the structure.

1.3 Organization of the Content

The present research is categorized into three major topics in this monograph,
namely: (a) online and model-based system identification of dynamic systems;
(b) model order reduction of dynamic systems; and (c) reduced order model
identification of dynamic systems. The content of the monograph is derived from
the PhD dissertation of its author which has been presented to the faculty of the
doctoral course of the department of structural engineering at the Technical
University of Milan (Eftekhar Azam 2012).

In the Chap. 2, the first research topic is extensively examined. Dual estimation
of state and parameters of structural state space models is considered; moreover,
the EKF, SPKF, PF and EK-PF are employed for parameter identification and state
estimation. First, the performance of the filters is benchmarked by applying a
single degree-of-freedom nonlinear system; subsequently, application of the filters
to multi degrees-of-freedom systems is considered. Therefore, a multi storey shear
building is assessed. Limitations for applicability of this approach in the identi-
fication of e.g. the stiffness matrix of multi storey structures are highlighted. It is
concluded that due to bias in the estimates, these approaches are not suitable for
system identification of shear building structures with more than three storeys.

Model order reduction of multi storey buildings is presented in the Chap. 3.
Proper orthogonal decomposition is employed to extract the minimal subspace
which features the dominant characteristics of the structure, via information
contained in the response of the structure itself. The subspace discovered by POD
is obtained by mathematical manipulation of the samples of the response of the
structure (gathered in the so-called snapshot matrix), thus it can be load dependent.
In case the external excitation is formerly known, load dependency of the reduced
model will not be a problem; nevertheless in case of seismic excitations, such
condition is not always true. To address this issue and build the snapshot matrix,
the samples are selected from the response of a case-study structure to the El
Centro accelerogram; furthermore, the obtained reduced model is subsequently
employed to simulate the response of the case-study structure to the Friuli and the
Kobe earthquake records. It is observed that POD-based reduced models are robust
to changes in input seismic load. Afterwards, efficiency of the method in expe-
diting the calculations, with high level of fidelity, is numerically examined.

Chapter 4, investigates the statistical properties of residual errors induced by
POD-based reduced order modeling. Such errors enter the state space equations of
the reduced systems in terms of system evolution and observation noise. A fun-
damental assumption made by recursive Bayesian filters, as exploited in this study,
is the whiteness of the aforementioned noises. In this chapter, null hypothesis of
the whiteness of the noise signals is tested by utilizing the Bartlett’s whiteness test.
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It is indicated that, no matter what the number of POMs retained in the analysis is,
the null hypothesis of the whiteness is constantly to be rejected. Nevertheless, the
spectral power of the embedded periodic signals decreases rapidly by increasing
the number of POMs. The speed-up gained by incorporating POD-based reduced
models into Kalman observer of linear time invariant systems is stated in this
chapter as well. Chapter 5 tackles the major objective of this research: the dual
estimation of the reduced order model, and update of POMs of the structure to
provide damage detection in structural system. It is revealed that the first POM of
the structure is quite sensitive to the intensity and location of the damage: a
reduced model, featuring even a single POM retains enough insights to be used in
developing damage detection algorithms. The proposed procedure exhibits an
acceptable performance when applied to pseudo-experimental tests. It is indicated
that the algorithm estimates the state, model parameters and relevant POMs of the
reduced model of a ten storey shear building, featuring convergence to the true
values of parameters and the POMs employed to create the pseudo test.

Final chapter of the monograph is allocated to the conclusions and suggestions
for future study. It is noteworthy that this monograph proposes a novel method-
ology based on recursive Bayesian inference of a reduced order model of the
structure. Accuracy and power of the proposed approach has been tested in this
work through pseudo-experimental analysis. Online and real-time detection of the
damage in the civil structural systems is a field which is yet to be investigated. It is
suggested to utilize other existing Bayesian filtering techniques for the objective of
the online real-time damage detection. Since this study does not provide experi-
mental verification of the proposed methodology; hence it is recommended as a
future research project.
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Chapter 2
Recursive Bayesian Estimation
of Partially Observed Dynamic Systems

Abstract In the current Chapter, recursive Bayesian inference of partially
observed dynamical systems is reviewed. As a tool for structural system identi-
fication, nonlinear Bayesian filters are applied to dual estimation problem of linear
and nonlinear dynamical systems. In so doing, dual estimation of state and
parameters of structural state space models is considered; EKF, SPKF, PF and EK-
PF are used for parameter identification and state estimation. Dealing with a SDOF
structure, it is shown that the hybrid EK-PF filter is able to furnish a reasonable
estimation of parameters of nonlinear constitutive models. Assessment of SDOF
systems is followed by identification of multi storey buildings. In this regard,
performances of the EK-PF and EKF algorithms are compared, and it is concluded
that they are nearly the same, and by an increase in the number of storeys of the
building, both of the algorithms fail to provide an unbiased estimate of the
parameters (stiffness of the storeys). Therefore, they are not reliable tools to
monitor state and parameters of multi storey systems.

2.1 Introduction

Recursive inference of the dynamics of a system through noisy observations is
normally pursued within a Bayesian framework. As a result, if there is a priori
information available on probability distribution of observable quantities of the
system and there is a correlation between observable and hidden quantities of the
system, Bayes probability concept is employed to estimate probability distribution
of the hidden state variables. Extensive variety of applications are exploited by
using such approach namely: in econometrics to estimate volatility in the market
(Ishihara and Omori 2012; Yang and Lee 2011; Miazhynskaia et al. 2006), for a
review on the literature see (Creal 2012). In field of robotics, this approach is
applied to develop behaviors for robots (Lazkano et al. 2007), system identification
of the robots (Ting et al. 2011), and their localization (Zhou and Sakane 2007). In
biology, this approach is employed for molecular characterization of diseases
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(Alvarado Mora et al. 2011), finding linkage in DNA (Allen and Darwiche 2008;
Biedermann and Taroni 2012) and for characterization of genomic data (Caron
et al. 2012). In image processing, this approach is used to diagnose diseases from
medical images (Mitra et al. 2005), for image segmentation (Adelino and Ferreira
da Silva 2009), and for image retrieval (Duan et al. 2005). Moreover, this approach
is employed in the following fields such as: object tracking and radars (Jay et al.
2003; Velarde et al. 2008; White et al. 2009); in speech enhancement (Saleh and
Niranjan 2001; Yahya et al. 2010); in mechanical characterization and parameter
identification of materials (Corigliano and Mariani 2004, 2001a, b; Bittanti et al.
1984), mechanical system identification (Mariani and Ghisi 2007; Mariani and
Corigliano 2005) and many other fields which are not mentioned for the sake of
brevity. The aforementioned instances are just a few fields of application of
Bayesian inference schemes; their diversity proves the versatility of such approach
in problem solving processes.

Estimation of state and parameters of a structural system are simultaneously are
dealt with in a recursive fashion in this chapter of the monograph. As new
observations become available, the information concerning the current state of the
system, which is attained through a model of the system, is updated based on the
measured observation. This objective is perceived by utilizing four recursive
Bayesian filters, namely: the extended Kalman filter (EKF), the sigma-point
Kalman filter (S-PKF), the particle filter (PF), and a newly proposed hybrid
extended Kalman particle filter (EKPF). Therefore, to avoid shadowing effects of
high dimensional structures, a single degree-of-freedom system has primarily been
considered. The performances of the filters are standardized to simultaneously
estimate state and parameters of a nonlinear constitutive model of the system.
After the performance of the filters working with a single degree-of-freedom
structure has been verified, we move to the analysis of multi degree-of-freedom
(DOF) structures. To accomplish this aim, a shear type of buildings has been
considered. It should be emphasized that although Bayesian filters under the study
have been adopted in the other fields such as automatic control, their application in
the field of structural engineering demands further investigations. The author of
this book has coauthored three articles on peer reviewed international journals on
this topics (Eftekhar Azam and Mariani 2012; Eftekhar Azam et al. 2012a, b). The
proceeding parts of this Chapter is classified as follows: in Sect. 2.2, the dual
estimation concept for simultaneous estimation of state and parameters of a state-
space model is reviewed. General frames of the recursive Bayesian inference
techniques are discussed in Sect. 2.3; moreover, the Kalman filter, as the optimal
filter of linear state-space models is devoted to Sect. 2.4. Approximate Bayesian
filters for nonlinear systems are dealt with in Sect. 2.5; furthermore in Sect. 2.6 the
numerical results concerning dual estimation of states and parameters of single
DOF and multi DOFs structures are presented. The Chapter is eventually con-
cluded in Sect. 2.7, where the limitations filters under the study are discussed
together with our remedy to solve the issue when applied to simultaneous state and
parameter estimation of high dimensional problems.
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2.2 Dual Estimation of States and Parameters
of Mechanical Systems

In this research, the emphasis is on civil structures. Therefore, mechanical systems
whose dynamics is governed by the famous set of ordinary differential equations
are addressed which governs evolution of their dynamic:

M€uþ D _uþ Rðu; tÞ ¼ FðtÞ ð2:1Þ

where M is assigned as the mass matrix, D represents the damping matrix; Rðu; tÞ
stands for possibly displacement dependent internal force, whereas F tð Þ is des-
ignated as the loading vector; u, _u and ü are the nodal displacements, velocities
and accelerations, respectively. Since measurements are normally completed in
discrete time, our attention is limited to a discrete time formulation, where it is
assumed that a part of displacements or accelerations of the system are measured
in evenly spaced time grids.

To embed the mathematical model into algorithms designed for recursive
Bayesian inference, we represent the dynamics of the system in a state-space form;
the details concerning the state-space representation of the mathematical model
(2.1) are presented in the following Sections. Throughout the book, displacement,
velocity and acceleration quantities of the response of the structure are assigned by
the word ‘state’ and we intend to use ‘parameters’ which represent the coefficients
of the internal force term (in linear elastic case, components of the stiffness
matrix). The state vector z thus contains u, _u and ü, namely:

zk ¼
uk

_uk

€uk

2
4

3
5 ð2:2Þ

while parameter vector #k collects several unknown parameters of the system.
The state space representation of the system thus is expressed as:

zk ¼ f z
k zk�1;#k�1ð Þ þ vz

k ð2:3Þ

yk ¼ Hz
kzk þ wk ð2:4Þ

where for any time interval ½tk�1tk�, f z
kð:Þ is a function of the state zk�1 and

parameters #k�1 of the system, and evolves the state of the system zk�1 to obtain
zk. Hz

k quantifies the correlation between the state and the observable part of the
system, at any given time instant; the name of Eq. (2.4), observation equation,
originates from the aforementioned fact. vz

k and wk are the zero mean, uncorrelated
Gaussian processes with covariance matrices Vz and W, respectively. Generally,
observation equation may take any form; however, in the present study, it is
reasonably assumed that observation process consists of a part of the state vector,
namely displacements and/or accelerations of several representative points. As a
result, the observation equation can be expressed as a sum of a linear mapping of
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the state through a Boolean matrix ðHz
kÞ and an additive, uncorrelated Gaussian

noise stemming from uncertainty of measurement sensor.
In this study, the major mission of Bayesian filters, beyond estimating hidden

part of the state vector, will be the calibration of system model parameters in an
online method. At each time interval ½tk�1tk�, on the basis of the information
contained in the latest observation yk, the algorithms update former knowledge of
the parameter #k�1 to yield #k. To accomplish this objective, dual estimation of
states and parameters are considered; hence, the parameter vector #k is increased
by defining the state vector (Mariani and Corigliano 2005):

xk ¼
zk

#k

� �
: ð2:5Þ

In addition to the conventional form of state-space equation, which is composed
of evolution and observation equations, dual estimation is pursued via an extra
vectorial equation governing the evolution of the parameters over time according
to:

#k ¼ #k�1 þ v#k : ð2:6Þ

The intuitive idea underlying this extra equation is to allow the unknown
parameters of the system to change over time, starting from an initial guess and
hopefully converge on an unbiased estimate. The possibility of variation to
parameters is provided by white Gaussian fictitious noise v#k , added to parameter
evolution. Moreover, the intensity of such a noise should be tuned in order to
obtain an unbiased and converging estimate for the parameters (Bittanti and Sa-
varesi 2000). The state-space equation governing evolution of the increased state
thus is expressed as:

xk ¼ f k xk�1ð Þ þ vk ð2:7Þ

yk ¼ Hkxk þ wk ð2:8Þ

where f kð:Þ, maps the extended state vector xk over time; therefore, it features both
Eqs. (2.3) and (2.6) in one unique equation.

2.3 Recursive Bayesian Inference

The inference problem can be considered as recursively estimating the expected
value E½xkjy1:k� of the state of the system, conditioned on the observations. If the
initial probability density function (PDF) pðx0jy0Þ ¼ pðx0Þ of the state vector is
known, the problem consists in estimating pðxkjy1:kÞ, assuming that the conditional
PDF pðxk�1jy1:k�1Þ is available. The problem can be broken down into in two stages
of prediction and update. As far as the prediction stage, the Chapman–Kolmogorov
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equation furnishes the a-priory estimate of the state PDF at tk (Arulampalam et al.
2002):

p xkjy1:k�1ð Þ ¼ Z
p xkjxk�1ð Þ p xk�1jy1:k�1ð Þdxk�1: ð2:9Þ

In the updating stage, as soon as the new observation yk becomes available,
Bayes rule is profited to apply correction on the PDF of the state (Cadini et al.
2009):

pðxkjy1:kÞ ¼ 1 pðykjxkÞpðxkjy1:k�1Þ ð2:10Þ

where 1 is stands for a normalizing constant which depends on the likelihood
function of the observation process. The Eqs. (2.9) and (2.10) collectively forge
the basis for any Bayesian recursive inference scheme. The analytical solution of
the integral in (2.9) is not possible except for a limited category of problems,
namely systems which are formulated by linear state space equations and disturbed
by uncorrelated white Gaussian noises (Eftekhar Azam et al. 2012a). In case of a
general nonlinear problem, one should make recourse to approximate solutions,
either by approximating the nonlinear evolution equations via linearization
(Corigliano and Mariani 2004) or via discrete approximate representation of the
PDF of the state vector (Mariani and Ghisi 2007; Doucet and Johansen 2009;
Doucet and Johansen 2009). In the next Section, the major features of the ana-
lytical solution available for linear Gaussian state space model are examined, and
is followed by the Sect. 2.5 which handles approximate solutions for nonlinear
state-space models.

2.4 Linear Dynamic State Space Equations: Optimal
Closed Form Estimator

As addressed in the preceding section, recursive Bayesian estimation of linear
Gaussian state-space models can be calculated analytically. A linear discrete state-
space model is considered which can be obtained by substituting the arbitrary
evolution equation f kð:Þ in Eqs. (2.7) and (2.8) by a linear operator Fk. Therefore,
the state-space equations of such a system are expressed as:

xk ¼ Fkxk�1 þ vk; ð2:11Þ

yk ¼ Hkxk þ wk: ð2:12Þ

If the primary probability distribution of the state is Gaussian, it is straight-
forward to display that a linear operator does not change the Gaussian PDF over
time (Kalman 1960). That is, in the Chapman–Kolmogorov integral at any arbi-
trary time instant tk, the functional form of both integrands is a priori known;
moreover, pðxk�1jy1:k�1Þ is constantly a Gaussian probability density function, and
p xkjxk�1ð Þ is by definition a Gaussian function as well. As a result, the integral can
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be calculated analytically. Kalman introduced a well-known filter which is the
optimal estimator for linear systems with uncorrelated Gaussian noise in his
seminal study (Kalman 1960); the filter provides an online estimation of first and
second order statistics of a state space model, and it includes a prediction stage
which is simply an evolution of state over time. In the updating stage, by com-
puting the Kalman gain Gk, the filter enhances the predicted values furnished in
previous stage. Readers are referred to Table 2.1 for a detailed description and
algorithmic implementation of the Kalman filter (KF).

2.4.1 The Kalman Filter

In many real life problems, neither the dynamics of the system takes a linear form
nor the uncertainties of transition equation which may be regarded as Gaussian
distributions. Even if the initial distribution of the uncertainties could be assumed
Gaussian, a nonlinear state-space model would change the distribution over time
(Mariani and Ghisi 2007). Therefore, an optimal closed form solution will not be
available for a general nonlinear problem (Doucet and Johansen 2009).

In a mechanical system, the source of nonlinearity might be the material
response to loading (Corigliano and Mariani 2001a, b; Corigliano 1993); however,
even if the material behavior is linear, dual estimation of states and parameter will
result in a bilinear (nonlinear) state space model (Ljung 1999). We illustrate this
issue via an intuitive example by considering the following linear state space
model:

zk ¼ azk�1 þ bþ vz
k ð2:13Þ

Table 2.1 Kalman Filter
algorithm

- Initialization at time t0:
bx0 ¼ E x0½ �

P0 ¼ E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

- At time tk , for k ¼ 1; . . .;Nt:
• Prediction stage:

1. Evolution of state and prediction of covariance
x�k ¼ Fkxk�1

P�k ¼ FkPk�1FT
k þ V

• Update stage:
1. Calculation of Kalman gain:

Gk ¼ P�k HT
k HkP�k HT

k þW
� ��1

2. Improve predictions using latest observation:

bxk ¼ x�k þ Gk yk �Hkx�k
� �

Pk ¼ P�k � GkHkP�k
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yk ¼ Hzk þ wk ð2:14Þ

where zk and yk denote the state and the observation of the system at a given time
instant tk; a and b represent the linear transition for the state in a given time
interval ½tk�1tk�, while H links the hidden state zk to the observation process. vz

k and
wk denote the zero mean white Gaussian processes which quantify evolution and
measurement inaccuracies, respectively. In case one is only interested in esti-
mating the state of the system zk, we already know the Kalman filter furnishes the
optimal estimation; however, let us imagine one is also interested in an online
estimation of the parameters of the state space model. For the sake of simplicity,
we assume that only parameter a is of interest. As aforementioned, the trick in dual
estimation framework is to collect the unknown parameter a into the extended
state vector xk and try to track the dynamics of such system via recursive Bayesian
inference algorithms. It is noteworthy that even though parameter a is stationary
by definition, the parameter is allowed to vary in the formulation of dual esti-
mation. In this regard, a transition equation governing evolution of the parameter
is introduced:

ak ¼ ak�1 þ va
k : ð2:15Þ

Equation (2.15), together with (2.13) and (2.14), constitute the required state-
space model for dual estimation of states and parameters. The augmented state

vector xk thus becomes xk ¼ zk ak½ �T , where xkð1Þ ¼ zk and xkð2Þ ¼ ak; con-
sequently Eqs. (2.13–2.15) become:

xkð1Þ ¼ xk�1ð2Þxk�1ð1Þ þ b ð2:16Þ

xkð2Þ ¼ xk�1ð2Þ þ va
k ð2:17Þ

yk ¼ Hxkð1Þ þ wk ð2:18Þ

or, in matrix form:

xk 1ð Þ
xk 2ð Þ

� �
¼ xk�1 2ð Þxk�1 1ð Þ

xk�1 2ð Þ

� �
þ vz

k
va

k

� �
þ b

0

� �
ð2:19Þ

yk ¼ H 0½ � xk 1ð Þ
xk 2ð Þ

� �
þ wk: ð2:20Þ

It is evident that Eq. (2.19) is a nonlinear mapping over the given time interval
½tk�1tk�. The aforementioned fact, together with consideration that many real life
problems are nonlinear, substantiates the need for Bayesian inference algorithms
targeting general nonlinear, non-Gaussian problems. The following Section is
devoted to review the approximate solutions available in the literature to deal
recursive Bayesian estimation of nonlinear state-space models.
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2.5 Nonlinear Dynamic State Space Equations:
Approximate Bayesian Estimators

Most of the problems in the real problems, as well as all the problems related to the
identification of the parameters of the systems by use of dual estimation concept
lead to nonlinear state-space models. Hence, developing nonlinear versions of the
KF seemed inevitable from the very beginning. Next subchapter reviews the main
concepts behind the extension of the KF to the nonlinear problems.

2.5.1 The Extended Kalman Filter

A simple remedy to deal with nonlinear state-space models is through an extension
of the Kalman filter, where for each time instant tk, the nonlinear state mapping
f k xk�1ð Þ is linearized by a first order truncation of a Taylor series expansion
around xk�1. To accomplish this goal, the Jacobian of the evolution equation is
used as a surrogate for linear transition matrices in order to update covariance
(Gelb 1974); subsequently, the Kalman gain is used to update state statistics. This
procedure is the extension of the Kalman filter for nonlinear state space models;
thus its name extended Kalman filter (EKF). The extended Kalman filter assumes
the prior pðxk�1jy1:k�1Þ to be Gaussian; however, even if initially Gaussian, a
nonlinear mapping changes its probability distribution. Moreover, a severely
nonlinear mapping of state might change the probability distribution into a tailed
or a bimodal distribution (Adelino and Ferreira da Silva 2009; Van der Merwe
2004) and causes bias in the estimates furnished by the EKF. In addition, the
approximation of the state mapping via its Jacobian is not accurate enough in
several cases; for instance, it does not consider the stochastic nature of the state
vector, and the effect of the neglected terms may become considerable. As a
consequence, the approximation may lead to an inconsistent estimation of the
covariance; hence, a bias or divergence may occur in estimation of the state (Julier
and Uhlmann 1997). For a detailed description of EKF algorithm see Table 2.2,
where rx f k xð Þjx¼ xk�1

denotes the Jacobian of f kðxÞ at x ¼ xk�1. To Alleviate the
aforementioned issues posed by highly nonlinear models the first remedy has been
the development of the sigma-point Kalman filter which will be discussed in the
next subsection.

2.5.2 The Sigma-Point Kalman Filter

In case of severely nonlinear systems, the successive linearization approach may
be inaccurate (Mariani 2009b). For certain problems, it may be practically difficult
to adopt: in case of a non holonomic material behavior, to calculate the Jacobian,
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one should know if the current state of the system proceeds toward loading or
unloading (Mariani and Ghisi 2007). The difficulty in estimation of the Jacobian
and also its inadequate accuracy has led to development of a category of deriva-
tive-free filters, called sigma-point Kalman filters, SPKF (Julier et al. 1995, 2000).
The basic idea behind these filters is that it is easier to approximate a probability
distribution compared to a nonlinear state-space model. A SPKF uses a deter-
ministic set of quadrature points, called sigma-points, to handle the Chapman–
Kolmogorov integral (Ito and Xiong 2000). This set of deterministic points can be
used since a-prior distribution of the state is assumed to have a Gaussian functional
form for all the time instants. Hence, it is possible to approximate it through a set
of deterministic points which are parameterized through the mean and covariance
of the state vector. The distribution of the state vector, a multivariate Gaussian
probability distribution, at time tk�1 reads:

pðxk�1jy1:k�1Þ ¼
1

ðð2pÞn Pk�1j jÞ1=2
exp½� 1

2
ðxk�1 � bxk�1ÞT P�1

k�1ðxk�1 � bxk�1Þ�

ð2:21Þ

where bxk�1 and Pk�1 are the associated mean vector and covariance matrix of the
state vector, respectively.

Once it is established that the a priori distribution of the state vector is a known
Gaussian one, the Chapman–Kolmogorov integral can be recast as a Gaussian
integral of the form

R
R

n lðxÞxðxÞdx, where lð:Þ is an arbitrary probability dis-
tribution, whereas xð:Þ denotes the a priori probability distribution of state vector.
Hence (2.9) becomes (Ito and Xiong 2000):

Table 2.2 Extended Kalman
filter algorithm

- Initialization at time t0:
bx0 ¼ E x0½ �

P0 ¼ E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

- At time tk , for k ¼ 1; . . .;Nt:
• Prediction stage:

1. Computing process model Jacobian:
Fk ¼ rxf kðxÞjx¼xk�1

2. Evolution of state and prediction of covariance:
x�k ¼ Fkxk�1

P�k ¼ FkPk�1FT
k þ V

• Update stage:
1. Calculation of Kalman gain:

Gk ¼ P�k HT
k HkP�k HT

k þW
� ��1

2. Improve predictions using latest observation:
bxk ¼ x�k þ Gk yk �Hkx�k

� �
Pk ¼ P�k � GkHkP�k
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Z
l xk�1ð Þ 1

ðð2pÞn Pk�1j jÞ1=2
exp½� 1

2
ðxk�1 � bxk�1ÞT P�1

k�1ðxk�1 � bxk�1Þ�dxk�1

ð2:22Þ

where x :ð Þ is an arbitrary function of state vector. To numerically handle the
Gaussian integral in (2.22), a discrete representation of (2.21) is necessary as done
by a set of points which feature the same statistics of the original Gaussian dis-
tribution (Ito and Xiong 2000):

vj ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ q
p

ej;
� ffiffiffiffiffiffiffiffiffiffiffi

nþ q
p

ej�n;
0;

1� j� n
nþ 1� j� 2n

2nþ 1

8<
: ð2:23Þ

and

xðvjÞ ¼

2q
2ðnþ qÞ j ¼ 2nþ 1

1
2ðnþ qÞ 1� j� 2n

8>><
>>:

ð2:24Þ

where q[ 0 is a constant and ek is the kth unit vector in R
n. Julier and co-workers

(Julier et al. 1995) proposed their S-PKF based on a quadrature rule which, for scalar
functions, is identical to the Gauss-Hermit quadrature rule (Ito and Xiong 2000):

Z

R
n
lðxÞxðxÞdx �

X2nþ1

i¼1

l við Þx við Þ: ð2:25Þ

The 2nþ 1 quadrature points are the minimal number of points necessary to
preserve the first and the second moments of a multivariate normal distribution
(Julier et al. 1995). One can assume x við Þ as quadrature weights, which in this
case are constant in all time instants, while the quadrature points vary over time on
the basis of the information contained in the covariance of the state, at t ¼ tk the
set of sigma-points are:

vk;j ¼
bxk�1 j ¼ 2nþ 1

bxk�1 þ w
ffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1; j

p
1� j� n

bxk�1 � w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1;ðj�nÞ

p
nþ 1� j� 2n

8<
: ð2:26Þ

where bxk�1 denotes the expected value of the state and
ffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1; j

p
stands for jth

column of square root of its associated covariance at t ¼ tk�1. This scheme out-
performs the extended Kalman filter (Mariani and Ghisi 2007); for a detailed
description of SPKF algorithm, see Table 2.3.

In Table 2.3, x�j and x j are weights adopted in the merging stage at the end of
the time step, to build mean and covariance of the current state. w instead denotes,
a time invariant scaling factor which renders possible capturing local effects of
nonlinear functions. To enhance the performance, the scaling factor w should be
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carefully calibrated to allow appropriate capturing of local nonlinearity effects, by
tuning the distances of each sigma-point from the mean of a priori distribution of
the variable. In the SPKF, the square root

ffiffiffiffiffiffiffiffiffiffi
Pk�1
p

is calculated by a Choleski
factorization. The subscript j refers to the jth column of the Choleski factor of the
covariance.

The SPKF approach, similarly to the EKF, is based on the assumption that at
each time instant, the a priori distribution of the state is Gaussian. To deal with a
general class of nonlinear models, the particle filter approach has been developed
by the academic society, the next subsection is devoted to highlight the main
notions of it.

2.5.3 The Particle Filter

To deal with more general problems, it is a common practice to make recourse to
Sequential Monte Carlo methods (Doucet and Johansen 2009) to handle the
Chapman–Kolmogorov integral by numerical approximations. Sequential

Table 2.3 Sigma-Point
Kalman filter algorithm

- Initialization at time t0:
bx0 ¼ E x0½ �

P0 ¼ E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

- At time tk , for k ¼ 1; . . .;Nt:
• Prediction stage:

1. Deploying sigma-points:

v�k;j ¼
bxk�1 j ¼ 2nþ 1

bxk�1 þ w
ffiffiffiffiffiffiffiffiffiffiffi
Pk�1;j

p
1� j� n

bxk�1 � w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1;ðj�nÞ

p
nþ 1� j� 2n

8<
:

2. Evolution of the sigma points:

vk;j ¼ f k v�k;j

� �

3. Estimation of the statistics:

x�k ¼
X2nþ1

j¼1
x jvk;j

P�k ¼ Rk þ V

where

Rk ¼
P2nþ1

j¼1 x�j vk;j � x�k

� �
vk;j � x�k

� �T

• Update stage:
1. Calculation of Kalman gain:

Gk ¼ P�k HT
k HkP�k HT

k þW
� ��1

2. Improve predictions using latest observation:
bxk ¼ x�k þ Gk yk �Hkx�k

� �
Pk ¼ P�k � GkHkP�k
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Monte-Carlo methods make no explicit assumptions concerning the form of the
posterior density pðx0:kjy1:kÞ. These methods approximate the Chapman–Kol-
mogorov integrals in (2.9) through finite sums, adopting a sequential importance
sampling on an adaptive stochastic grid. Within this frame, the particle filter
implements an optimal recursive Bayesian estimation by recursively approxi-

mating the complete posterior state density. A set of NP weighted particles x
ðiÞ
k ,

drawn from the posterior distribution pðx0:kjy1:kÞ, is used to map the integrals. To
accomplish this objective, the main trick is to represent the posteriori PDF via
Dirac delta functions pond at discrete sample points, namely the so-called parti-
cles. Without the loss of generality, one can write (Cadini et al. 2009):

pðx0:kjy1:kÞ ¼
Z

pðe0:kjy1:kÞ dðe0:k � x0:kÞdek ð2:27Þ

where dð:Þ denotes the Dirac function.
Assuming the true posterior p x1:kjy1:kð Þ is known and can be sampled, an

estimated of (2.27) is given by:

pðx0:kjy1:kÞ �
1

NP

XNP

i¼1

dðx0:k � xi
0:kÞ ð2:28Þ

where xi
k are a set of random samples drawn from true posterior pðx0:kjy1:kÞ. In

practice, it is impossible to efficiently sample from the true posterior; a remedy is
built by making recourse to the importance sampling, i.e. to sample state
sequences from an arbitrarily chosen distribution pðx0:kjy1:kÞ called importance
function. An unbiased estimate of p x0:kjy1:kð Þ can then still be made as (Cadini
et al. 2009):

pðx0:kjy1:kÞ ¼ R pðe0:kjy1:kÞ
pðek jy1:kÞ
pðe0:k jy1:kÞ dðe0:k � x0:kÞdek

� 1
Ns

PNs

i¼1
x�ik dðx0:k � xi

0:kÞ
ð2:29Þ

where

x�ik ¼
pðy1:kjxi

0:kÞpðxi
0:kÞ

pðy1:kÞpðxi
0:kjy1:kÞ

ð2:30Þ

is the importance weight associated to the state process xi
k. In practice, these

weights are difficult to calculate, due to the need of evaluating the integral to
normalize constant pðy1:kÞ. Instead, the following weights are used (Gordon et al.
1993):

xi
k ¼

pðy1:kjxi
0:kÞpðxi

0:kÞ
pðxi

kjy1:kÞ
ð2:31Þ

which are subsequently normalized according to:
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~xi
k ¼

xi
kPNs

j¼1 x j
k

: ð2:32Þ

Thus, estimate of the posterior distribution reads:

p x0:kjy1:kð Þ �
XNs

i¼1

~xi
kd x0:k � xi

0:k

� �
: ð2:33Þ

If the current state of the importance sampling function does not depend on
future observations, i.e. if the importance sampling function satisfies the following
condition (Van der Merwe 2004):

pðx1:kjy1:kÞ ¼ pðx1jy1Þ
Yk

j¼1

pðxjjx1:j�1; y1:jÞ

¼ pðxkjx1:k�1; y1:kÞpðx1:k�1jy1:k�1Þ
ð2:34Þ

and if states can be considered as a Markov process, through the assumption that
the observations are conditionally independent, given the states we obtain (Van der
Merwe 2004):

p x0:kð Þ ¼ p x0:kð Þ
Yk

j¼1

p xjjxj�1
� �

ð2:35Þ

p y1:kjx0:kð Þ ¼
Yk

j¼1

p yjjxj

� �
ð2:36Þ

thus by using Eqs. (2.34–2.36) in (2.30), the recursive formula for the update of
importance weights becomes (Van der Merwe 2004):

xi
k ¼ xi

k�1
pðykjxi

kÞpðxi
kjxi

k�1Þ
pðxi

kjxi
0:k�1; y1kÞ

: ð2:37Þ

For filtering purposes, the estimation of the marginal probability density
pðxkjykÞ of the full posterior is sufficient, that is, if pðxkjx1:k�1; y1:kÞ is substituted
by pðxkjxk�1; ykÞ, the sampling proposal will only depend on xk�1 and yk

(Arulampalam et al. 2002). Consequently, the recursive formula for estimation and
update of the non-normalized weights is expressed as (Arulampalam et al. 2002):

xi
k ¼ xi

k�1
pðykjxi

kÞpðxi
kjxi

k�1Þ
pðxi

kjxi
k�1; ykÞ

: ð2:38Þ

The (2.38) provides a method to sequentially update the importance weights,
given an appropriate choice of the proposal distribution pðxkjxk�1; ykÞ. Conse-
quently, any expectations of the form E g xkð Þ½ � ¼ R g xkð Þpðx0:kjy1:kÞdxk; g :ð Þ being

any given function can be approximated through E g xkð Þ½ � �
PNP

j¼1 xi
kg xi

k

� �
.
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In (Doucet 1997), it was shown that the proposal distribution pðxkjxk�1; ykÞ
minimizes the variance of the importance weights, conditional on xk�1 and yk.
Nonetheless, the distribution pðxjjxj�1Þ (i.e. the transition prior) is the most popular
choice for the proposal distribution. Although it results in a Monte-Carlo variation
higher than that obtained using the optimal proposal pðxkjxk�1; ykÞ, the importance
weights are easily updated by simply evaluating the observation likelihood density
p xkjxk�1ð Þ for the sampled particle set, through (Cadini et al. 2009):

xi
k ¼ xi

k�1p ykjxi
k

� �
: ð2:39Þ

The variance of these importance weights increases stochastically over time
(Doucet 1997); after a few time steps, one of the normalized importance weights
tends to one, while the remaining weights tend to zero. To address this rapid
degeneracy, a resampling stage may be used to eliminate samples with low
importance weights, and duplicate samples with high importance weights. An
intuitive explanation of particle filtering technique is expressed as: each sample xi

k

might be a solution of the problem, and its associated weight xi
k signifies its prob-

ability of being the correct solution. In the resampling stage, the particles with higher
probability are duplicated and in turn, the ones with lower probability are discarded.
Such an approach somehow permits the filter to condense the cloud of particles
around the peak probability zone. An algorithm built in this method was primarily
proposed by Gordon et al. (1993), and has been called in different names such as
bootstrap filter, condensation algorithm etc.; for a detailed algorithmic specification
see Table 2.4.

It is worth underlining that the update stage in the particle filter algorithm is
conducted via evolution of particle weights based on the probability of occurrence
of each particle conditioned on the latest observation. After such weight evolution,
the resampling stage is prescribed to alleviate the degeneracy issue, where
ensemble of the samples is refined to increase the population of the samples which
are more likely and decrease the lower probability population. To this end, dif-
ferent algorithms were proposed in the literature, namely e.g. stratified, systematic,
or residual resampling. Accounting for sampling quality and computational
complexity, the systematic resampling scheme adopted turns out to be the most
favorable one in this study (Hol et al. 2006). The resampling stage is performed by
drawing a random sample fj from the uniform distribution over (0,1]; afterwards,
the Mth particle for which the value of the random number fj is between values of
the empirical cumulative distribution of particles at M � 1 and M is duplicated by
resampling stage. Details of the systematic resampling (Kitagawa 1996) algorithm
are shown in Table 2.5.

Since particle filter handles the current, the actual PDF of the state to draw
particles in prediction stage, it can appropriately account for non-Gaussian den-
sities. However, as the dimension of the state vector increases, computational costs
associated with numerical integrations increase drastically. It is suggested, as a
rough rule of thumb, not to apply particle filter to problems with dimension of state
vector more than five (Li et al. 2004).

20 2 Recursive Bayesian Estimation



The sampling distribution used in the generic particle filter can cause serious
problems, since it is not the optimal one and conditioned on the latest observation.
This fact leads to high computational costs, since the cloud of the samples fall far
from the zones with high probability; therefore, many samples have to be drawn in
order to make the algorithm to converge.

2.5.4 The Hybrid Extended Kalman Particle Filter

To alleviate the issues discussed in the previous subsection, our remedy is to keep
using the same sampling distribution; however, after the samples are drawn, we
improve the quality of the ensemble of the samples. Roughly speaking, once the
samples are drawn, they are pushed by an extended Kalman filter toward the zones
of higher probability in order to incorporate data from the latest observations into
each sample.

The reason for exploiting the EKF instead of the SPKF, for enhancing the
quality of sample ensemble, is twofold: first, the difficulty in tuning it in a way to
have all the particles moved appropriately; second, the computational cost of the
SPKF combined with particle filter can be significant, since both adopt numerical

Table 2.4 Particle filter
algorithm

- Initialization at time t0:

bx0 ¼ E x0½ � x
ðiÞ
0 ¼ bx0

P0 ¼ E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

xðiÞ0 ¼ p y0jx0ð Þ i ¼ 1; . . .;NP

- At time tk , for k ¼ 1; . . .;Nt:
• Prediction stage:

1. Draw particles:

x
ðiÞ
k � p xkjxðiÞk�1

� �
i ¼ 1; . . .;NP

• Update stage:
1. Evolve weights:

xðiÞk ¼ xðiÞk�1p ykjx
ðiÞ
k

� �
i ¼ 1; . . .;NP

2. Resampling, see Table 2.5.
3. Compute expected value:

bxk ¼
PNP

i¼1 xðiÞk x
ðiÞ
k

Table 2.5 Systematic
resampling algorithm

- At time tk , for j ¼ 1; . . .;NP:
• draw a random sample fj from uniform distribution over

(0,1]
• find M that satisfies:PM�1

i¼1 xðiÞk \fj�
PM

i¼1 xðiÞk

• x
ðjÞ
k  x

ðMÞ
k
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approximations to handle the quadrature. That is, the EKF is combined with
particle filter frames to update each particle based on the information contained in
the latest observation, see Table 2.6.

In Table 2.6, Fk represents the current Jacobians of mappings f k �ð Þ.
In what follows, we will assess the performance of the filters through numerical

examples. In the absence of experimental data, for validation of the algorithms, we
rely on pseudo experimental data, i.e. numerical data resulting from direct analysis
contaminated by white Gaussian processes substitute noisy measurements of the
observable part of the state vector.

2.6 Numerical Results for Dual Estimation of Single
Degree and Multi Degrees of Freedom Dynamic
Systems

To numerically solve the set of ordinary differential equations that govern the
dynamics of the system, a Newmark explicit integration scheme has been adopted.
According to (Hughes 2000), the time marching algorithm within the time step
tk�1tk½ � can be partitioned into:

Table 2.6 Hybrid extended
Kalman particle filter
algorithm

- Initialization at time t0:

bx0 ¼ E x0½ � xðiÞ0 ¼ bx0

P0 ¼ E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

xðiÞ0 ¼ p y0jx0ð Þ i ¼ 1; . . .;NP

- At time tk , for k ¼ 1; . . .;Nt:
• Prediction stage:

1. Draw particles:

x
ðiÞ
k � p xkjxðiÞk�1

� �
i ¼ 1; . . .;NP

2. Push the particles toward the region of high probability
through an EKF:

P
ið Þ�

k ¼ FkP
ið Þ

k�1FT
k þ V

G
ðiÞ
k ¼ P

ið Þ�
k HT

k HkP
ið Þ�

k HT
k þW

� ��1

x
ðiÞ
k ¼ x

ið Þ�
k þ G

ðiÞ
k yk �Hkx

ið Þ�
k

� �

P
ið Þ

k ¼ P
ið Þ�

k � G
ðiÞ
k HkP

ið Þ�
k i ¼ 1; . . .;NP

• Update stage:
1. Evolve weights:

xðiÞk ¼ xðiÞk�1p ykjx
ðiÞ
k

� �
i ¼ 1; . . .;NP

2. Resampling, see Table 2.5.
3. Compute expected value or other required statistics:

bxk ¼
XNP

i¼1
xðiÞk x

ðiÞ
k
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• predictor stage:

~uk ¼ uk�1 þ Dt _uk�1 þ Dt2ð1
2
� bÞ€uk�1 ð2:40Þ

_~uk ¼ _uk�1 þ Dtð1� cÞ€uk�1; ð2:41Þ

• explicit integrator:

€uk ¼ M�1ðRk � ðD _~uk þ K ~ukÞÞ; ð2:42Þ

• corrector stage:

uk ¼ ~uk þ Dt2b€uk ð2:43Þ

_uk ¼ _~uk þ Dt c€uk ð2:44Þ

where Dt ¼ tk � tk�1 denotes the time step size. To ensure numerical stability in
the linear regime, Dt needs to be upper bounded by Bathe (1996):

Dtcr ¼
Tn

p
ð2:45Þ

where Tn is the period associated with the highest oscillation frequency. Even if
Dtcr can be increased in the reduced model, since higher order oscillations are
filtered out of the numerical solution, in what follows we are keeping Dt constant
in all the simulations. Hence, the speedup reported is therefore to be mainly linked
to the reduction of the number of handled DOFs.

In Corigliano and Mariani (2001b), it was shown that structural effects may
play a prominent role in system identification. They typically lead to shadowing
effects, arising when the sensitivity of measurable variables (like, e.g. displace-
ments or velocities) to constitutive parameters becomes negligible or falls out of
the measurement range (i.e. they become comparable to round-off errors). Such
structural effects practically lead to multiple solutions of the inverse problem in
terms of model parameters update (all difficult to distinguish in the noisy envi-
ronment), and filters provide biased or divergent calibrations, see e.g. (Corigliano
and Mariani 2001a, b, 2004). To solely benchmark performance of the filters, we
primarily focus on dynamics of a single degree-of-freedom structure. Once the
performances of the filters are benchmarked by analyses concerning a single
degree-of-freedom, then we move to the multi degrees of freedom structures to
study the applicability of these methods in more realistic scenarios.
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2.6.1 Single Degree-of-Freedom Dynamic System

Since we are interested in benchmarking the extended Kalman particle filter (EK-
PF) when compared to other Bayesian filters tested in this study (i.e. the EKF, the
SPKF and the PF), the aforementioned structural effects are avoided by focusing
on an undamped single DOF system constituted by a mass (or rigid block) con-
nected to the reference frame through a spring, see Fig. 2.1. The equation of
motion of the system is expressed as:

M€uþ RðuÞ ¼ FðtÞ ð2:46Þ

where m is the block mass; RðuÞ is the spring force; FðtÞ is the external load, which
evolves in time; u and €u are the displacement and acceleration of the block,
respectively. The results can be easily extended to the damped case; in such
situation, it is, however, important to have the system continuously to be (or
permanently) excited, so as to avoid vibration amplitudes to progressively
decrease in time, thereby loosing filter efficiency, see (Corigliano and Mariani
2004).

In this study, all the studied filters perform well for dual estimation of a linear
SDOF structure; hence, the results are not discussed for the sake of brevity.
Instead, to assess the filter performance, r is assumed to be a highly nonlinear,
RFS-type function of the displacement u, i.e. of the spring elongation (Rose et al.
1981; Corigliano et al. 2006):

RðuÞ ¼ a u exp �n u½ � ð2:47Þ

where a and n are unknown model parameters in need of tuning. Even if inspired
by tight binding studies in atomistic simulations, law (2.47) is to be considered as
phenomenological description of damaging processes taking place inside the
spring: once a peak reaction is attained, softening (i.e. strength degradation) sets in
and drives the state toward a smooth failure, occurring when u! þ1. Therefore,
the two parameters a and n in (2.47) can be related to the strength rM and the
toughness G of the spring, through:

RM ¼ a

en

G ¼
Z1

0

Rdu ¼ a

n2

ð2:48Þ

where e is the Nepero number.
Law (2.47) can be handled as a tensile envelope, with damage activation/deac-

tivation conditions to be adopted to properly describe unloading/reloading paths, see
e.g. (Mariani and Ghisi 2007). In accordance with previous papers (Mariani 2009a,
b), we instead assume here that damage evolution is captured by strength degra-
dation only, and model (2.45) is managed as a holonomic (nonlinear elastic) law.
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As aforementioned, we focus on pseudo-experimental (numerical) tests only.
They consist in running direct analyses with known (target) values of model
parameters, and then adding a white noise of assigned variance to the system
output. This procedure allows us to obtain scattered measurements, which are then
used to feed the filters.

In order to handle a stable system dynamics, followed by divergence (i.e. by
u! þ1) due to the inception and growth of damage in the spring, the applied
load F(t) (see Eq. 2.47) has been assumed to monotonically increase in time
according to:

FðtÞ ¼ 0:5þ 0:0075tðNÞ ð2:49Þ

see also (Corigliano and Mariani 2004). With the mass initially at rest, this loading
condition allows the system to be stable up to t ffi 150 s; beyond this threshold,
softening in the spring becomes dominant (i.e. the transmitted force gets vanish-
ing), and displacement u diverges.

In the analyses, the mass has been assumed m ¼ 9:72 Ns2=mm, see also
(Corigliano and Mariani 2004). Measurements consist of the current mass dis-
placement only, featuring a noise level characterized by a standard deviation
w ¼ 0:05 mm.

The results relevant to the tracking of the whole system state (i.e. u, _u and ü) are
reported in Fig. 2.2, as obtained by running the EK-PF and, for comparison pur-
poses, the PF and the S-PKF. In these plots, the dashed lines represent the target
system response; the orange squared symbols are instead the discrete-time esti-
mations furnished by the filters, and the blue circular symbols stand for the
measurements (that are displacement values only). The figure illustrates that the
three filters are all capable to track the initial, stable oscillations and the transition
to the unstable regime due to inception of softening. Even if a high number of
particles (500 in this analysis) has been adopted, the PF is not able to attain the
same accuracy of the S-PKF; the EK-PF (run using 5 particles) is instead very
accurate, performing slightly better than the S-PKF.

We now move to the system identification task. As usual [see, e.g. (Ljung
1999)], the following results have been obtained by setting the pivotal entries of P0

relevant to model parameters to be (at least) two orders of magnitude larger than
those relevant to state variables. By this means, model calibration is enhanced,
since information (actually, innovation) brought by measurements is trusted much
more than the current estimates.

Fig. 2.1 Single degree-of-
freedom structural system
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In terms of time evolution of the estimates of model parameters a and n, it is
shown in Fig. 2.3 that they rapidly converge to the target values in the stable
dynamic regime, independently of the initialization guess (here in the range
between 50 and 150 % of the target values). The SPKF and the PF perform better
than the EK-PF in the short-term time interval, featuring higher convergence rates
without excessive oscillations of the estimates. However, as soon as the system
stability threshold is approached, wild oscillations of increasing amplitude set in
which leads to diverging model calibration furnished by SPKF and PF. On the
contrary, the EK-PF does not show such wild oscillations, and always provides
stable, unbiased estimates.

To obtain insights into the superior performance of the EK-PF, Figs. 2.4 and 2.5
report the projections onto the two model parameter axes of the time evolution of
the (smoothed) distribution of particles deployed by PF and EK-PF, respectively. It
can be seen that step #2 of prediction stage of the Table 2.6 proves to be very

Fig. 2.2 State tracking. Comparison between target (dashed lines) and tracked (orange squared
symbols) system evolution, in terms of: (left column) displacement u; (central column) velocity _u;
(right column) acceleration €u. Results obtained by running: (top row) EK-PF; (middle row) PF,
and (bottom row) S-PKF
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efficient in moving the particles toward the region of major interest, with distri-
butions that are not spread over an extensive range of values. This eventually
assists us to avoid divergence of the estimates.

Next, we study the performance of Bayesian filters for a slightly more difficult
task: the dual estimation of a system having a bilinear constitutive model for its
spring. The system is the same as before, but now the relationship between the
force in spring R and the displacement u reads:

R ¼ k1u if u\uM

k1uM þ k2 u� uMð Þ if u [ uM

	
ð2:50Þ

where k1 denotes initial slope of the constitutive model of the spring; uM is the
limit at which spring constitutive model starts its bilinear behavior; and k2 denotes
the gradient of force–displacement after the displacement has exceeded uM .

The strength of the constitutive law (2.50) lies in the versatility in simulating
three different material behaviors, namely the linear-hardening, linear-perfect
plastic and linear-softening. Under monotonically increasing loadings, depending
on the k2 value this bilinear constitutive law can be adopted to deal with identi-
fication of parameters of a structure whose behavior may not be known as a priori.

Fig. 2.3 Model calibration. Time evolution of estimated model parameters (top row) a and
(bottom row) n, at varying initialization values. Results obtained by running: EK-PF (long-dashed
blue lines), PF (dashed orange lines) and S-PKF (continuous black lines)
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While dealing with joint state and parameter estimation, the main drawback of
such constitutive law is the intricate interrelation of components of the state vector,
when the parameter of the constitutive model are included into the state
vector. Consider the state-space representation of the system, augmented state
vector incorporates k1, k2 and uM so as:

# ¼
k1

k2

uM

2
4

3
5: ð2:51Þ

At each time iteration, the evolution equation, based on the value of uM may
find two different functional form: if displacement of the spring is less than uM ,
only the initial linear behavior of the spring gets involved; if displacement of the
spring exceeds uM , nonlinearity of spring affects the spring force. Thus filter has to
decide which path to follow as long as deterministic information is not available
for uM . In what follows, the results of application of nonlinear versions of Kalman
filters and Particle filter and also a hybrid extended Kalman particle will be pre-
sented. The results are organized in three sets, each one of the filtering algorithms
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is assessed when dealing with reference problems of each scenario: linear hard-
ening, linear-perfectly plastic and linear-softening constitutive laws.

As aforementioned, in all the analyses, pseudo-experimental data are used
instead of data coming from experiments; the numerical data contaminated by a
zero mean additive white noise are therefore taken as observations of the system.
The initial slope k1 is always assumed to be 3.27 N/nm, while k2 ¼ k1=10 for
hardening, k2 ¼ 0 for plasticity and k2 ¼ �k1 to mimic softening behavior. The
value of the threshold of linear behavior uM is set to 0.46 mm; the mass has been
assumed m = 9.72 Ns2/mm, see also (Corigliano and Mariani 2004; Eftekhar
Azam et al. 2012a). Measurements consist of the current mass displacement only,
featuring a noise level characterized by a standard deviation w = 0.01 mm. In
order to incept a nonlinear behavior due to damage in the spring, the applied load
q has been assumed to monotonically increase in time according to (2.49). Since
the main objective of this study is the calibration of constitutive parameters, we
just include the plots of parameter estimation unless there is a specific reason to
present state estimate plots.
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Figures 2.6, 2.7 and 2.8 show the performance of the EKF in simultaneous
calibrating the three constitutive parameters of linear hardening, linear plastic and
linear softening case, respectively. The filter is run for different initialization
values; it is seen that except for the initializations from target values, in none of the
scenarios the EKF is able to identify the constitutive parameters. As aforemen-
tioned, the EKF is a straight-forward extension of the Kalman filter, based on
linearization of the evolution equation. It is suitably adopted for weakly nonlinear
problems; however, if the nonlinearity is severe, such linearization is not accurate
enough and poor performance is expected. It has to be underlined that tuning of the
filter, in order to obtain unbiased estimate of parameters is not always easy, and we
do not claim that we have tuned optimally the filters for different initializations and
constitutive laws. In essence, three noise covariances associated with each
parameter are tuning knobs of the system (Bittanti and Savaresi 2000). One has to
notice that as the number of the parameters increases, their simultaneous tuning
might become more difficult and algorithm appears to be practically inefficient.

Next, the results relevant to the performance of the SPKF are presented; even
though SPKF has proved to outperform the EKF in many cases, it suffers from
problem of positive definiteness of covariance matrix when dealing with parameter
identification (Holmes et al. 2008), and also the tuning of the scale factor might
become critical (Mariani 2009b). Figures 2.9, 2.10 and 2.11 present the results
obtained by the SPKF when dealing with the three different scenarios of consti-
tutive laws. Similar to the previous case, the filter is run with different initial-
izations to see whether convergence is triggered from different starting points. It is
seen that the performance of SPKF is quite poor, as it is not able to furnish
unbiased estimates of the parameters, except for the case that the initial guess are
set at the target values of parameters. We remind that in excess of three fictitious
noise covariance to be tuned, within the SPKF algorithm also the scale factor
should be tuned accurately; moreover, such a factor is used to allow the filter to
capture local effects of nonlinearities of the evolution equation. Adding this to the
three former parameters, one can see how delicate the task of tuning can become.

Since common extensions of the KF cannot furnish unbiased estimates of
constitutive parameters, we make recourse to Particle filters as they are basically

Fig. 2.6 Results of EKF for estimation of parameters of linear-hardening constitutive law
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designed for nonlinear systems with arbitrary uncertainty associated with them.
Figures 2.12, 2.13 and 2.14 show the results of estimation of the parameters of
linear-hardening, linear-perfect plastic and linear-softening constitutive model.
Even though the particle filter is devised for nonlinear/non-Gaussian systems, it is
seen through the graphs that it fails to estimate the parameters appropriately.

In designing a PF, it should be noticed that an appropriate initial guess of the
distribution of the state of the system is essential to enhance the performance of
the filter. Nevertheless, the value of the covariance of the noise for calibrating the

Fig. 2.7 Results of EKF for estimation of parameters of linear-plastic constitutive law

Fig. 2.8 Results of EKF for estimation of parameters of linear-softening constitutive law

Fig. 2.9 Results of SPKF for estimation of parameters of linear-hardening constitutive law
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parameters plays an important role (Arulampalam et al. 2002); moreover, they
should be appropriately adjusted in order to let scattering of the samples in the
feasible range of the parameter. We illustrate these issues via numerical examples.
For ease of tuning, it is primarily assumed that we have quite reasonable a priori
knowledge of k1 and u0 and aim to estimate only k2. Figures 2.15, 2.16, 2.17, 2.18,
2.19 and 2.20 show the results of analysis for estimation of k2. Looking at Figs. 2.15
and 2.18, they plot the time histories of estimation of the parameter k2, supposing
that the values of k1 and uM are a priori known. Moving from Figs. 2.15, 2.16, 2.17
and 2.18, we have changed the intensity if the tuning noise to highlight its

Fig. 2.10 Results of SPKF for estimation of parameters of linear-plastic constitutive law

Fig. 2.11 Results of SPKF for estimation of parameters of linear-softening constitutive law

Fig. 2.12 Results of PF for estimation of parameters of linear-hardening constitutive law
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importance in the parameter estimation. In both cases the initial value of the
parameter is set to 50 % of the target value. In the graph shown in Fig. 2.15, the
value of the noise for tuning k2 is set to 10�2 N2=mm2, which permit the evolution of
the particles finally converge to the target value. On the contrary, the noise value
equal to 10�4 N2=mm2 which is used to obtain the results shown in Figs. 2.18, 2.19
and 2.20, does not let the algorithm to sample efficiently, and the ensemble of the
particles does not finally converge to the target values of the parameters.

To compare the performance of the particle filter when the tuning noise
intensity varies, one can confront Figs. 2.16 and 2.19. At t = 100 s, as the
parameter k2 enters in the system evolution due to the inception of nonlinearity, for
the case with the noise equal to 10�4N2=mm2, estimates of the states of the system
diverge, while in with the noise equal to 10�2N2=mm2 states are estimated un-
biasedly. This corroborates the idea that a small value for tuning noise intensity
prevents the cloud of the particles to efficiently approximate the a posteriori dis-
tribution of the state. To investigate this issue in more details, we have focused on
the histograms of the particles and their associated weights at t = 130 s, where
there is a sharp change in the estimation of displacements (see Fig. 2.17). Looking
at the histograms and particle weights shown in Fig. 2.20, it is seen that the cloud
of the particles, shown via histogram, are far from the observation vicinity (the red

Fig. 2.13 Results of PF for estimation of parameters of linear-plastic constitutive law

Fig. 2.14 Results of PF for estimation of parameters of linear-softening constitutive law
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vertical line), where the distance of the closest bin to the observation is about
0.15 mm. As a consequence, in Fig. 2.20 all of the particles have found equal
normalized weights; their distance from the observation vicinity is too far, as a
consequence the associated probability with each particle becomes less than the
round-off errors. On the contrary, looking at the same time instant in the case in
which estimates are converging target values, it is seen that the distance of the
closest been to the observation is about 0.004 mm; thus, in Fig. 2.18 the particles
closer to observation have found a more significant normalized weight whereas
other have smaller weights. Such diversity of weights shows that the particles are
distributed in a zone which is close to the observation.

In what precedes, it has been shown that the proper choice of noise covariance has
fundamental effects on the performance of PF. In case of dealing with one single
parameter, it is not difficult to tune the filter; however, while dealing with more
parameters, finding the right combination might become difficult. To address the
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Fig. 2.15 Parameter estimates while noise covariance is set appropriately (10�2 N2=mm2)
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Fig. 2.16 State estimates when noise covariance is set appropriately (10�2 N2=mm2)
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issues induced by simultaneous track of the three parameters shown in Figs. 2.11,
2.12, 2.13 and 2.14, for instance the step-function like behavior seen in Fig. 2.14
when calibrating u0, we focus on the state estimation time histories, see Fig. 2.21,
and consider the jump at t = 34 s. To have a closer look at what happens while this
jump occurs, once again we make use of histogram of the distribution of the particles
in two time instants: the beginning of the time step; the end of the time step. Before
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Fig. 2.17 Histogram of observable part of state vector (top) and associated sample weights
(bottom) though through the top figure it seems that the sample has degenerated, through the
bottom it is seen that many samples have significant weights. Also notice that samples are
distributed in a close neighborhood of observation (red vertical line)
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proceeding with this objective, let us review again the particle filter algorithm. The
procedure is triggered by drawing a number of NP samples from a Gaussian distri-
bution, then at each time instant tk the same number of samples are drawn from
transition prior. By transition prior, we mean a Gaussian distribution which its mean
equals to the value of evolved estimated state at previous time step tk�1 while it’s
covariance equals to the covariance of the process noise. This procedure practically is
equal to generation of NP Gaussian random numbers, and adding to them the value of
xk which is evolved through evolution function. In the next stage, the probability of
realization of each sample is computed. In this study, it is assumed that observation
equation is contaminated by a white Gaussian process; hence, calculation of the
probability of realization of each particle will be a function of a norm of the distance
of the particle from the observation. The functional form of a multivariate Gaussian
distribution reads as:

p zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2p Rj j

p e�
1
2 z�lð ÞT R�1 z�lð Þ ð2:52Þ

where l and R denote mean and covariance of the state vector, respectively; :j j
stands for the determinant of the matrix. Within the PF algorithm, the above
mentioned formula is used to compute the probability of realization associated

with each particle x
ðiÞ
k , according to :

p ykjx
ðiÞ
k

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2p Wj j
p e�

1
2 yk�hk x

ðiÞ
kð Þð ÞT W�1 yk�hk x

ðiÞ
kð Þð Þ: ð2:53Þ
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Fig. 2.21 State estimation by PF, linear softening constitutive law
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However, in case the observable part of the cloud of particles is too far from the
observation yk, the calculated probability will equal zero due to round off errors.
To cope with ill-conditioning, it is set to a small value. As a result, all the particles
will find an equal weight. In this condition, at the resampling stage, the resampled
cloud will not change considerably, and will be similar to the previously existing
cloud of particles. If the observable part of the cloud of particles approaches to
observation vicinity (i.e. the zone in which at least a number of the probabilities
are not affected by round-off error) a sharp change in the estimation of the state
will occur. The gradient of such change in estimation of the observable part of
state vector is obviously toward improvement in the estimate; however, the hidden
(unobserved) part of state entries may or may not change in the direction to
converge to an unbiased estimate, as seen in Fig. 2.22.

To visualize the phenomenon, the time evolution of displacement and param-
eters of the system are shown in the same plot, see Fig. 2.23. Now we regard a few
time intervals of interest, and look at the histograms of particles at some time
instants picked before and after the jump, we keep the time instant t = 11.92 s as
reference instant.

In Fig. 2.24 it is seen that cloud of particles is not including the observation and
the distance of the closest bin to the observation is about 0.2 mm (the value of the
observation is indicated by a red vertical bar in the graph). Consequently, all the
probabilities become zero, due to the round-off errors. To cope with the problem of
ill-conditioning caused by the zero probabilities, in case of a zero probability, it is
set to the smallest value that the computer program used accounts for it. That is, all
the particles find the same weight. Figure 2.26 shows the histograms of k1, k2 and
u0 respectively. As a consequence of the equal weights of the particles; it is seen
that, before and after resampling stage, the histograms are not changed (Fig. 2.25).
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Now let us look at t = 11.92, plots included in Figs. 2.27, 2.28 and 2.29 look
considerably similar to previous time instant t = 11.7 s; however it seems that the
cloud of samples is now closer to observation, as seen Fig. 2.27.

In what follows, histograms related to time instant t = 12.13 s are assessed.
First see Fig. 2.30, in which the histogram of displacements is shown. Again, the
red bar signifies the value observation yk at related time instant, at its intersection
with horizontal axis. It is seen that they are scattered throughout a wide interval;
however, some particles have approached observation vicinity, as close as required
to have non-zero weights for a couple of the particles, see Fig. 2.32.

To have a more clear idea, in Fig. 2.31 we have enlarged the vicinity of
observation and histogram of resampled particles in order to highlight the changes
in the particle cloud after resampling stage. We have to remark that the plot is an
enlargement also in ordinate. It is clearly seen that a few particles (represented via
blue histogram) have reached quite close to observation (red bar) so that their
associated weight has become significant (see Fig. 2.32); as a consequence, in the
resampling stage, the particles far from observation neighborhood are eliminated,
and the ones close to it are duplicated. Figure 2.32 shows the weights associated
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with each particle. The peaks in Fig. 2.32 are the normalized weights associated
with each particle before the resampling stage. The closer ones have visible peaks;
there are also several peaks which are not visible in Fig. 2.32; once enlarged, those
become visible as well; however they are about ten (see Fig. 2.33), nearly negli-
gible when compared with the number of particles which in this case is 500.

As it is seen in Fig. 2.34, resampled particles do not necessarily move toward
the target value; this is due to the fact that a wrong set of parameters has
accompanied the shift of the samples toward the observation vicinity. Figure 2.34
well described the reason of failure of the PF in estimating states and parameters
namely the distance of could of samples from observation vicinity. In order to
alleviate such a problem, a remedy is to push the cloud of the samples toward
observation vicinity. It can be done by employing the EKF: in each iteration, the
EKF is used to update each particle by considering the information contained in
the latest observation (de Freitas et al. 2000). More precisely, in the sampling
stage, the samples are drawn from the transition prior; afterwards, each sample is
updated by the EKF and so is pushed toward the observation vicinity. To some
extent, this approach alleviates the problems arouse by choosing a suboptimal
sampling distribution namely the transition prior. Figures 2.35, 2.36 and 2.37 show
performance of a generic PF enhanced by the EKF. It is seen that such approach
substantially improves the estimate of the parameters of the system.

To allow a clear understanding of the algorithm, let us look more closely at
Fig. 2.37. Filter results from the initialization at 50 % of the target values is chosen
just as an example. Figures 2.38 and 2.39 show the state and parameter estimation
obtained through the EK-PF. It is seen that an excellent convergence is achieved.
Figure 2.40 supports the idea that, by updating each individual particle within cloud
of samples via EKF, the ensemble has to approach the zones of high probability.

As one can see in Fig. 2.40, after the EKF stage is implemented, the cloud of
the samples drawn in the sampling stage moves toward the red bar (observation
vicinity). In the resampling stage, the particles with higher probabilities are
duplicated, and the ones with lower probability are eliminated; consequently, the
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Fig. 2.25 Weights associated with each particle @ t = 11.7 s before resampling
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cloud of the samples once again approaches the observation vicinity. Assessing
other time instants always reveals the same results.

An extensive assessment of the performances of the Bayesian filters, when
dealing with highly nonlinear dynamics of a SDOF system, has been presented.
Though the studied mechanical system has only one degree-of-freedom, the

Fig. 2.30 Histogram of displacements @ t = 12.13 s

Fig. 2.31 Close up of histogram of displacements @ t = 12.13 s
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Fig. 2.32 Weights associated with each particle @ t = 12.13 s before resampling
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Fig. 2.33 Close up plot of weights associated with each particle @ t = 12.13 s before
resampling
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extended state vector has three state components (displacement, velocity and
acceleration) and 2 or 3 parameters (in case of a exponential softening constitutive
law two parameters are to be calibrated, whereas in a bilinear one three parameters
exist); consequently the extended state vector is multivariate even in present case.
It was observed that the EKF, SPKF and PF all fail to furnish satisfactory results
concerning identification of the parameters of the system, whereas EK-PF provides
quite reasonable estimation of the states and parameters: for the exponential

Fig. 2.35 Results of EK-PF for estimation of parameters of linear-hardening constitutive law

Fig. 2.36 Results of EK-PF for estimation of parameters of linear-plastic constitutive law

Fig. 2.37 Results of EK-PF for estimation of parameters of linear-softening constitutive law
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behavior of the spring the results are unbiased for an extensive range of initial-
izations; for the bilinear spring behavior EK-PF, in some cases, it converges to
unbiased solutions, and in some others, it converges to values affected by small
biases.
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Fig. 2.38 Parameter estimation via EK-PF for a linear softening constitutive law
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Fig. 2.39 State estimation via EK-PF for a linear softening constitutive law
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2.6.2 Multi Degrees-of-Freedom Dynamic System

In this Section, dual estimation of state and parameters of a shear type building is
studied, as seen in Fig. 2.41. To start with the simplest case, we focus on the linear
elastic response. By neglecting dissipating phenomena, the governing equations of
motion thus is expressed as:

M€uþ Ku ¼ FðtÞ ð2:54Þ

where M and K denote the stationary mass matrix and stiffness matrix,
respectively:

M ¼

m1

m2

. .
.

mn

2
6664

3
7775 ð2:55Þ
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Fig. 2.40 Top histograms of displacement of the system at sampling (black hist), after EKF
implemented on each sample (magenta hist) and after resampling stage (green hist), bottom
associated importance weight with each particle
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K ¼

k1 þ k2 �k2

�k2 k2 þ k3

. .
.

kn�1 þ kn �kn

�kn kn

2
66664

3
77775

ð2:56Þ

whereas FðtÞ is the external loading vector; in general, FðtÞ can be any kind of
loading. However in this study, we assume that it is a harmonic force applied to the
top floor:

F tð Þ ¼

0
..
.

0
. sin xt

2
664

3
775 ð2:57Þ

where . and x are the amplitude and the frequency of the excitation, respectively.
To numerically solve (2.54), the Newmark explicit time integrator has been used,
see Eqs. (2.40–2.44).

To write the equations in a discrete state-space form, we introduce an extended
state z that, at each time instant tk, includes u, _u and €u according to:

zk ¼
uk

_uk

€uk

2
4

3
5: ð2:58Þ

The state-space form of (2.54) then reads:

Fig. 2.41 Schematic view of
a shear building
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zk ¼ Akzk�1 þ Bk ð2:59Þ

where

Ak ¼

I � bDt2M�1K DtI � bDt3M�1K �b 1=2� b
� �

Dt4M�1K þ Dt2 1=2� b
� �

I

�cDtM�1K I � cDt2M�1K �c 1=2� b
� �

Dt3M�1K þ Dt 1� cð ÞI

�M�1K �DtM�1K �Dt2 1=2� b
� �

M�1K

2
6664

3
7775

ð2:60Þ

and

Bk ¼
bDt2M�1Rk

cDtM�1Rk

M�1Rk

2
4

3
5 ð2:61Þ

In this study, it is assumed that displacements and accelerations of the floors can
be measured; thus the observation equation is written as:

yk ¼ Hzk þ wk ð2:62Þ

where H denotes a Boolean matrix of appropriate dimension, which links the
observation process to the state of the system; wk denotes the associated mea-
surement noise; b and c are parameters of the Newmark integration algorithm. For
the dual estimation, the model parameter vector results:

# ¼

k1

k2

..

.

kn

2
6664

3
7775: ð2:63Þ

In the numerical analysis, we deal with a multiple-story shear building, fea-
turing the same stiffness and mass values at each floor. We start by considering the
smallest possible number of floors (say two), and see how many parameters are
calibrated unbiasedly. In this regard, we assume mi ¼ 25 kg and
ki ¼ 300 kg=mði ¼ 1 : nÞ. The outcomes of state estimation and parameter cali-
bration are a function of the quality and quantity of the information provided to the
algorithms; by quality, we intend the accuracy of measurement devices, accuracy
of the model of the system and initialization guess; by quantity, the number of
degrees of freedom, whose evolution in time is measured, is intended.

This research focuses on the study of the effects of an increasing number of
parameters in dual estimation of multi-dimensional mechanical systems. It has to
be highlighted that the observable quantity is considered to be the displacement of
the top floor only. Covariance of the measurement noise is assumed to be
2:7	 10�6 m2; the initial covariance of states (displacement, velocity and accel-
eration) is supposed to be very small (10�10 m2), whereas diagonal entries of initial
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covariance of unknown parameters are assumed to be 10 kg2=m2. In all the
analyses, the covariance of the fictitious noise for tuning the parameters is set to
10�3 kg2=m2. Since states are always tracked unbiasedly, for the sake of brevity,
the relevant results are not reported.

To ensure the algorithm has reached an unbiased estimate, it is a common
practice to run analysis starting from different initializations; in case all converge
to the same estimate, then it may be most likely an unbiased estimate. In this case,
we initialize the analyses by values 50 % less and 50 % more than target value.
We begin our numerical assessment by study of a two DOF structure and report the
results of parameter estimation in Fig. 2.42: it is observed that two filters exhibit
the same performances. In EK-PF procedure, 20 particles are deployed; by
increasing the number of particles to 200, changes are visible in the plots of
Fig. 2.42. Hence, the number of the particles was fixed to 20.

Though by increasing the number of particles toward infinity, particle filter can
furnish unbiased estimates (Cadini et al. 2009), in practice, such a number of
particles may be intractable for the current power of computational tools. By
increasing the number of unknown parameters, it is observed that the bias in the
estimates becomes more visible. In Fig. 2.43, it is seen that again both EKF and
EK-PF exhibit the same performance; however, the bias in the estimates is
increased when compared to a 2-DOF system. Moving to a 3-DOF and 4-DOF
system, Figs. 2.43 and 2.44 reports the results when three and four inter-storey
stiffnesses has to be estimated, respectively. Comparing with the case of a 2-storey
shear building, again the bias in the estimate of the parameters increases.
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By exploring the literature concerning online methods for the identification of
structures, one will see that most of it is focused on shear building structures with
less than four stories [e.g. see (Chatzi et al. 2010; Gao and Lu 2006; Koh et al.
1995; Xie and Feng 2011)]. We avoid showing the results concerning estimation of
more complicated structures, since they confirm the same trend observed in this
reported part of the analysis. As the dimension of the state vector (hence the
number of the parameters) increases, estimation of the parameters become
increasingly difficult; in the jargon of dynamic programming, such a problem is
termed curse of dimensionality (Bellman 1957). Powell (2007) illustrates this issue
via an intuitive example: if state space has i dimensions and if each state com-
ponent can take j possible values then we might have i j possible states, i.e. by a
linear increase in dimension of state vector, the dimension of the space of possi-
bilities increases exponentially.

A possible remedy, for problems featuring high dimensionalities, is represented
by searching for a possible subspace capturing the main variation in data; in
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Fig. 2.43 EKF (red line) and
EK-PF (blue line)
performances for calibration
of a three-storey shear
building stiffness’s. The black
line always represents the
target value
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Fig. 2.44 EKF (red line) and EK-PF (blue line) performances for calibration of a four-storey
shear building stiffness’s. The black line always represents the target value
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forthcoming Chapters, applicability of Proper Orthogonal Decomposition (POD) is
primarily shown in constructing reduced order models, and afterwards such a
model will be embedded in filtering schemes.

2.7 Summary and Conclusions

In this chapter, recursive Bayesian inference of partially observed dynamical
systems has been reviewed. As a tool for structural system identification, nonlinear
Bayesian filters are applied to dual estimation problem of linear and nonlinear
dynamical systems. Dealing with a SDOF structure, it has been shown that the
hybrid EK-PF filter is able to furnish a reasonable estimation of parameters of
nonlinear constitutive models. Assessment of SDOF systems is followed by
identification of multi storey buildings. In this regard, performances of the EK-PF
and EKF algorithms are compared, and it has been concluded that they are nearly
the same, and by an increase in the number of storeys of the building, the algo-
rithms fail to provide an unbiased estimate of the parameters (stiffness of the
storeys). Therefore, they are not reliable tools to monitor state and parameters of
multi storey systems.

To develop a robust algorithm to monitor health of the structures via recursive
Bayesian inference, we will make recourse to model order reduction of the
dynamic systems. To this end, next Chapter reviews important features of proper
orthogonal decomposition and its application to model order reduction of dynamic
systems.
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Chapter 3
Model Order Reduction of Dynamic
Systems via Proper Orthogonal
Decomposition

Abstract In this chapter, the performance of reduced order modeling of dynamic
structural systems based on the proper orthogonal decomposition (POD) technique is
investigated. Singular value decomposition and principal component analysis of the
so-called snapshot matrix are considered to generate the reduced space, onto which
the system equations of motion are projected to speed up the computations. To get
intuitions into the achievable computational efficiency and the capability of POD to
provide an input-independent reduced model, we consider the 39-story Pirelli tower
in Milan-Italy. First, it is assumed that a shear model of the building is excited by the
May 18-1940, Mw 7.1, El Centro earthquake, and the ensemble of the data necessary
to build the reduced model is acquired. Then, the local and global accuracies of the
same reduced model in tracking the dynamics of the building are assessed, if excited
by the May 6-1976, Mw 6.4, Friuli earthquake and by the January 17-1995, Mw 6.8,
Kobe earthquake, which differ from the El Centro one in terms of excited vibration
frequencies. It is shown that POD allows to attain a speedup close to 250, when the
reduced order model is required to retain a high fidelity.

3.1 Introduction

While working with a space discretized system, proper orthogonal decomposition
(POD) automatically seeks a dependence structure between the degrees-of-free-
dom, which are normally assumed to be independent (Buljak 2012). This is
accomplished through a set of ordered, orthonormal bases, and through informa-
tion regarding the relevant energy contents. The POD has been developed inde-
pendently by various researchers in different fields (see e.g. Kosambi 1943;
Karhunen 1947; Obukhov 1954) and has been called by utilizing variety of names.
When applied to finite dimensional systems, it is called principal component
analysis (PCA) (Jolliffe 1986) which originates in the Pearson’s (1901) study on
plane and line fitting to point sets. When working with distributed parameter
systems, it is called Karhunen–Loève decomposition (KLD); nevertheless, its
discrete representation is introduced as well (Fukunaga 1990). Another POD
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technique is called singular value decomposition (SVD) (Mees et al. 1978),
innovation of such technique is credited to Eckart and Young; where they pro-
posed extension of eigen value decomposition for general non square matrices
(Klema and Laub 1980). For a detailed proof of equivalency of PCA, KLD and
SVD readers are referred to (Liang et al. 2002a).

As a result of standard numerical tools developed to extract proper orthogonal
modes (POMs) of the systems, and as a result of its power in feature extraction and
reduced modeling, presently the POD is extensively employed in various engi-
neering fields. To illustrate this issue further, one can see that the POD has been
applied for reduced order modeling of heat transfer phenomena (Samadiani and
Joshi 2010) and other field such as: computational fluid dynamics (Smith et al.
2005; Tadmor et al. 2006), micro electro mechanical systems (Liang et al. 2002b),
various fields of computational physics (Lucia et al. 2004) and aeroelasticity
(Thomas et al. 2003). The method of POD has obtain great reputation in the field of
structural dynamics, where it is employed for active sensing (Park et al. 2008) and
active control of structures (Al-Dmour and Mohammad 2002), damage detection
(De Boe and Golinval 2003; Galvanetto et al. 2008; Shane and Jha 2011c), model
updating (Lenaerts et al. 2003; Hemez and Doebling 2001), modal analysis (Han
and Feeny 2003; Feeny 2002) and model reduction (Steindl and Troger 2001;
Buljak and Maier 2011). For a more comprehensive examination of the related
literature, readers are referred to (Kerschen et al. 2005). The study carried out in the
literature recommends that the POD is a strong tool for model order reduction of
structural systems; however, the research lacks a specific study of expediting,
computational accuracy of the reduced model and robustness to the change in the
source of excitation. The study presented in this chapter acknowledges those
aforementioned issues. The author of this monograph has coauthored a journal
article on the topics covered in this chapter (Eftekhar Azam and Mariani 2013).

Next, in the Sect. 3.2, structural dynamics of systems are examined and studied
in this chapter as well; moreover, their associated set of governing differential
equation and the numerical scheme are employed for time discretization. Sec-
tion 3.3 reviews fundamentals of the POD. Afterwards, the fundamental studies
carried out in finding the links between POMs and eigen modes of linear structures
are summarized in Sect. 3.4. Furthermore, a reduced model is constructed via
Galerkin projection of the set of governing equations onto the reduced space
spanned by POMs which is presented in Sect. 3.5. Finally, the results of the
numerical assessment of efficiency of POD: speedup and accuracy of reduced
models of Pirelli tower, as a case study, are investigated and reported in Sect. 3.6.

3.2 Structural Dynamics and Time Integration

In this study, the POD for reduced order modeling of dynamic systems is
exploited. Subsequently, such reduced model will be embedded into a Bayesian
filter in the forth-coming chapters. In this section, the differential equations of the
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governing dynamics of structural systems are reviewed herein; moreover, the
numerical integration scheme employed for time discretization of the aforemen-
tioned differential equations is briefly discussed.

The dynamic response of the structural system to the external loads is allowed
to be described by the following linear equations of motion:

M€uðtÞ þ D _uðtÞ þ KuðtÞ ¼ FðtÞ ð3:1Þ

where: M is the mass matrix; D is the viscous damping matrix; K is the stiffness
matrix; F is the time-dependent external force vector; €u, _u and u are the time-
varying vectors of accelerations, velocities and displacements, respectively. For
instance, in a shear model of a building (such as the one adopted in Sect. 2.6),
these vectors gather the lateral displacements, velocities and accelerations of the
storeys.

Equation (3.1) is usually arrived once the structural system has been space
discretized (e.g. through finite elements), or once assumptions concerning the
behavior of the building (e.g. shear-type deformation) have taken into account.
This preliminary stage of the analysis can affect the sparsity of matrices in
Eq. (3.1), and can therefore have an impact on the speedup obtained through the
POD as well.

In this study, the solution of the vectorial differential equation (3.1) is advanced
in time by utilizing the Newmark explicit integration scheme. For details, the
reader is referred to Sect. 2.6.

3.3 Fundamentals of Proper Orthogonal Decomposition
for Dynamic Structural Systems

The aim of reduced order modeling is to automatically find a solution for the
following two conflicting requirements: create the smallest possible numerical
model of the original dynamic system; preserve accuracy in the description of the
system behavior. Standard techniques attempt to extract fundamental features from
the dynamic model; thus the governing equations can be thereafter projected onto
a reduced state space or subspace.

The POD, in its snapshot version (Sirovich 1987), is adopted to build the
model-specific optimal linear subspace on the basis of an ensemble of system
observations in this study. Let us consider the displacement vector u 2 R

m; R
being the set of real numbers and m the dimension of vector u; we assume that
u effectively describes system evolution (i.e. it does not need to be supplemented
by _u and €u to define the full state space), and consider a set of arbitrary ortho-
normal bases uif g, i ¼ 1; . . .;m, spanning its vector space R

m. Such bases satisfy
uT

i uj ¼ dij ðj ¼ 1; . . .;mÞ, where dij is the Kronecker’s delta (such that dij ¼ 1 if
i ¼ j, otherwise dij ¼ 0). The original vector u can then be written as a linear
combination of the aforementioned bases, according to:
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u ¼
Xm

i¼1

uiyi ¼ Uy ð3:2Þ

where yi are the combination coefficients, arranged in the column vector y, and:

U ¼ ½u1u2. . .um� ð3:3Þ

is the matrix gathering all the bases.
To ensure computational gain, we define a reduced representation of the state

via:

ul ¼
Xl

i¼1

uiyi ¼ Ul a ð3:4Þ

where we enforce l\m or, for large systems, even l� m. In (3.4), Ul is the matrix
gathering the first l columns of matrix U (i.e. the first l bases), and a collects the
relevant first l components of vector y. The goal of POD is to provide an ordered
sequence of the bases ui, so as to satisfy the following extreme value problem:

min u� ulk k ð3:5Þ

where jj�jj represents the L2 norm of vector. Given l, Eq. (3.5), thus it is required
to find the optimal subspace spanned by the bases u1; . . .;ul.

We now need to establish l on the basis of the required accuracy of the solution
provided by the reduced order model, and to compute the bases gathered by Ul.
Both problems can be attacked through the so-called snapshot version of POD.
First, since we have to provide a subspace for the state vector u, the characteristic
displacements uðkÞ ¼ uðtkÞ ðk ¼ 1; . . .; nÞ at n time instants are computed and
collected in an ensemble, or snapshot matrix U, according to:

U ¼ uð1Þuð2Þ. . . uðnÞ
h i

: ð3:6Þ

Next PCA and SVD, two POD methods for extracting so-called POMs are
briefly discussed.

3.3.1 Principal Component Analysis

To detect the main dependence structure in an ensemble of data, PCA looks for the
subspace which is able to keep the maximum variability in the data. A very naïve
justification of this procedures is expressed as: in the state-space, the directions
along which data vary are important, since the dynamics of the system is actually
occurring along those directions, whereas the directions featuring no variations are
redundant in the dynamic representation, and computational cost will be spent in
calculating something that we already know if they were retained in the analysis.
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Consider the aforementioned vector u 2 R
m; suppose y1; y2; . . .; ym 2 R are the

first, second,… and mth principal components, respectively. Let the first principal
component y1 be a linear combination of each element of the original vector, i.e.:

y1 ¼
Xm

i¼1

ni1ui ¼ nT
1 u ð3:7Þ

where: n1 ¼ fn11; n21; . . .; nm1gT . The variance of y1; assumed to be a random
variable, is then:

S2
y1
¼ nT

1 Zu n1 ð3:8Þ

where Zu is the covariance of the variable u, assumed to be random as well. To
find the direction in which the maximum variability of data is captured, we look
for the direction in which the projection of the samples onto it yields the maximum
variance. The maximum of S2

y1
will not be achieved for a finite value of n1, thus a

constraint have to be imposed and reads:

max
n1

ðnT
1 Zun1Þ; s:t: ðnT

1 n1Þ ¼ 1: ð3:9Þ

Introducing the Lagrangian multiplier k1, from (3.8) and (3.9) we obtain:

Lðn1; k1Þ ¼ nT
1 Zun1 þ k1ð1� nT

1 n1Þ ð3:10Þ

where L �ð Þ is Lagrangian operator. After differentiation (3.10) gives:

oLðn1; k1Þ
on1

¼ 2ðZu � k1IÞn1 ¼ 0 ) Zun1 ¼ k1n1 ð3:11Þ

where k1 and n1 are the eigenvalue and the corresponding eigenvector of the
covariance matrix Zu, respectively.

Applying the same procedures, the objective function to be maximized in order
to extract the principal components of a random variable which is written as:

max
ni

ð
Xm

i¼1

nT
i ZuniÞ; s:t: ðnT

i njÞ ¼ dij ð3:12Þ

and the approximation error due to a representation by its first l principal com-

ponents, u �
Pl

i¼1
yini; would be:

e2ðlÞ ¼ Eð u� uðlÞk k2Þ ¼
Xm

i¼lþ1

Eðy2
i Þ ¼

Xm

i¼lþ1

S2
yi
: ð3:13Þ

One has to handle the covariance matrix of the random vectorial variable in
order to compute the principal components. However, since in practical problems,
it is usually impossible to determine this covariance matrix, it is a common
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practice to use the correlation matrix as an acceptable approximation of it
(Schilders 2008). To approximate the covariance matrix with the required accu-
racy, one needs an appropriately chosen ensemble of the samples; such a seed of
samples is the so-called snapshot matrix, wherein each snapshot represents the
state of the system at a specific time instant (see Fig. 3.1).

The covariance of the data set, allocated in a snapshot matrix U, is then cal-
culated as (Schilders 2008):

Zu ¼ lim
n!1

~Zu ¼
1
n

UUT

� �
: ð3:14Þ

3.3.2 Singular Value Decomposition

Exploiting the singular value decomposition of the snapshot matrix U we obtain
(Liang et al. 2002a):

U ¼ L RRT ð3:15Þ

where: L is a m� m orthonormal matrix, whose columns are the left singular
vectors of U; R is a m� n pseudo-diagonal and semi-positive definite matrix,
whose pivotal entries Rii are the singular values of U; R is a n� n orthonormal
matrix, whose columns are the right singular vectors of U.

The whole basis set U; i.e. the set of all the so-called POMs, is given by L, i.e.
by the left singular vectors of the snapshot matrix (Kerschen and Golinval 2002).
If singular values Rii are sorted decreasingly, and the columns of L and R are
accordingly arranged; the decomposition (3.15) is such that the first l columns
(with l given) of U ¼ L represent the optimal basis subset that fulfills (3.5).
Moreover, it is known (see, e.g. Kerschen and Golinval 2002) that the ith singular
value squared (i.e. R2

ii) represents the maximum of the relevant oriented energy1;
this means that the ith oriented energy is maximized, among all the possible unit

Fig. 3.1 Building the matrix
of snapshots

1 The oriented energy of a vector along a direction is given by the magnitude of the projection of
the (m-dimensional) vector itself onto the mentioned direction, namely by the dot product of the
two vectors. When we have to deal with a vector sequence like U, the oriented energy of
the sequence is given by the sum of the magnitudes of the projections of all the vectors uðkÞ onto
the same direction.

62 3 Model Order Reduction of Dynamic Systems



vectors, by the basis ui. Since we are looking for the most informative subspace,
which should be able to furnish as much insight as possible into the dynamics of
the original system and therefore, into how energy fluxes take place inside, we
retain in the reduced order model the proper modes ui that feature the highest
singular values. Additional proper modes, featuring less energy contents, will be
redundant in the reduced order representation, and add computational costs with
marginal enhancement in the accuracy.

Now, having established a method to sort bases ui; and the link between the
singular value Rii and the energy content of the proper mode ui; we need to set
l. According to (Kerschen and Golinval 2002), we assign the required accuracy
p of the reduced order solution, intended as a fraction of the total oriented energy
of the full model, and select the dimension l of the subspace by fulfilling:

Pl
i¼1 Rii

2

Pm
i¼1 Rii

2 � p ð3:16Þ

hence, on the basis of the ratio between the sum of the singular values of the kept
modes and the sum of all the singular values.

3.4 Physical Interpretation of Proper Orthogonal Modes

It is known that the POD is a statistical technique which extracts POMs from the
response of the system. However, a close relationship has been established
between the POMs and natural eigen-modes of a mechanical system (Feeny and
Kappagantu 1998; Kerschen and Golinval 2002). The effort toward establishing a
link between the POMs and eigen-modes of the system intends in making the POD
a modal identification tool (Yadalam and Feeny 2011). To accomplish this task,
theoretical and experimental study has been carried out to link the POMs with
eigen-modes of a linear (Feeny 2002) and nonlinear (Georgiou 2005) mechanical
systems. In this section, we do not discuss the details offered by the existing
literature and only mean to summarize interesting findings published therein.

Free vibrations of an undamped linear system with mass matrix proportional
with identity matrix (e.g. a shear building with equal masses at each storey) results
in a set of POMs that asymptotically converge to eigen-modes of the system.
POMs of a lightly damped similar system are reasonable approximations of eigen-
modes of the system (Kerschen and Golinval 2002); however in case of forced
harmonic vibration, there is no guarantee that POMs converge to eigen-modes.

When the system resonates at a certain frequency, independently of mass matrix
entries, the POMs coincides with the respective eigen-modes of that frequency
(Kerschen et al. 2005). It has been shown that POMs coincide with eigen-modes
for many noise driven oscillators (Preisendorfer 1979); moreover, North has
established a general criterion for symmetry of POMs and eigen-modes of the
mechanical systems excited by noise (North 1984).
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3.5 Galerkin Projection

Once POD has furnished the required subspace, the displacement vector can be
approximated through ul. Since matrix Ul is a function of the position vector only,
and defines the shapes of POMs for the structure, while a governs the evolution in
time of the structural response, it follows that:

€u � Ul€a _u � Ul _a u � Ula : ð3:17Þ

The equations of motion (3.1), allowing for (3.17), can now be approximately
stated as:

MUl€aðtÞ þ DUl _aðtÞ þ KUlaðtÞ ffi FðtÞ: ð3:18Þ

By defining the residual r of such approximation as:

r ¼ FðtÞ � MUl€aðtÞ þ DUl _aðtÞ þ KUlaðtÞð Þ ð3:19Þ

within a Galerkin projection frame (Steindl and Troger 2001), we enforce it to be
orthogonal to the subspace Ul spanned by the solution, i.e.:

UT
l r ¼ 0: ð3:20Þ

Hence, the equations of motion of the reduced order model turn out to be:

UT
l MUl€aðtÞ þUT

l DUl _aðtÞ þUT
l KUlaðtÞ ¼ UT

l FðtÞ ð3:21Þ

or, equivalently:

Ml€aðtÞ þ Dl _aðtÞ þ KlaðtÞ ¼ FlðtÞ: ð3:22Þ

Once the solution of (3.22) is obtained, the full state of the system can be
computed by utilizing (3.17).

3.6 Results: Reduced-Order Modeling of a Tall Building
Excited by Earthquakes

For linear systems, it will be beneficial if POMs ui depend only on physical and
geometrical properties of the structure, with marginal effects of the kind of loading
considered in the phase of construction of the snapshot matrix. Since different
loading conditions may excite a different set of structural vibration modes, what
claimed here above does not necessarily hold true. Although a thorough analysis of
theoretical aspects of the POD, when applied to structural systems, has been
carried out in the literature, only a handful of studies are available on several
practical points including the load-dependency of the POMs. Such issue may
become crucial especially when the structure is subject to seismic loadings, which
are difficult to predict in nature.
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The performance of POD has been already assessed in defining reduced models
for multi-support structures subject to seismic excitation (Tubino et al. 2003);
furthermore, the POD has been applied for efficient reduced modeling of high-rise
buildings subject to earthquake loads (Gutiérrez and Zaldivar 2000; Aschheim
et al. 2002). However, its efficiency for high fidelity reduced order modeling of
multi-storey buildings trained by a certain seismic load and excited by another one
has not been done yet. In this section, we investigate whether a reduced order
model, built by considering a specific input while constituting the snapshot matrix,
can be used to represent with a similar level of accuracy the dynamics of the full
structure in case of different excitation, in terms of e.g.: frequency content and
therefore, excited vibration modes.

In the forthcoming numerical examples, we will set p [ 0:99 to ensure accu-
racy. As a case study, we investigate the capability of POD in speeding up the
computations by considering the Pirelli Tower in Milan, see Fig. 3.2. The building
features 39 stories, and its total height is about 130 m. The plan dimensions of the
standard floor are approximately 70 9 20 m. The structure is entirely made of CIP
reinforced concrete. The structure is assumed to behave elastically, with lumped
masses at each storey that basically undergo horizontal displacements. Such an
assumption may be far from reality if the rigid diaphragm assumption does not
hold true for vertical displacements of all the nodes at the same floor.

We start with a three-dimensional finite element discretization of the whole
building featuring 6219 DOFs (Barbella et al. 2011). For the sake of simplicity, we
have neglected the damping effect; hence, in a relative frame moving with the

Fig. 3.2 The Pirelli tower in
Milan, Italy
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basement of the tower, the undamped equations of motion of the structure are
written as:

M€uþ Ku ¼ �aðtÞMB ð3:23Þ

where aðtÞ denotes the earthquake-induced acceleration time history, whereas B is
a Boolean matrix of appropriate dimension which defines the shacked DOFs. To
simplify the problem, static condensation has been adopted to keep out the vertical
displacements of the floors. By partitioning the nodal displacements u into hori-
zontal uh and vertical uv components, we can write:

Mh 0
0 Mv

� �
€uh

€uv

� �
þ Khh Khv

Kvh Kvv

� �
uh

uv

� �
¼ �aðtÞ MhBh

MvBv

� �
: ð3:24Þ

Keeping only the horizontal DOFs only in the equations of motion, to be
thereafter managed by POD, we arrive at:

Mh€uh þ Khh � KhvK�1
vv Kvh

ffi �
uh ¼ �aðtÞMhBh ð3:25Þ

where now uh 2 R39.
To obtain the reduced model, the building has been assumed to be shaken by

the well-known El Centro earthquake, whose time versus acceleration record,
together with its relevant fast Fourier transform, is reported in Fig. 3.3. To give an
idea about the number of vibration modes that may be excited by such earthquake,
the first natural eigen-frequencies of the structure (see also Table 3.1) are denoted
by red vertical lines in Fig. 3.3b. It can be deduced that only the first five eigen-
modes of structure can be effectively excited as the power of the spectra of the
accelerogram is intuitively seen to be small for the frequencies higher than the 6th
natural frequency of the structure.

A comparison among the dynamics of the original 39-DOF system and the
responses of reduced order models at varying accuracy index p (see Eq. (3.20)) has
been performed. The link between p and the retained DOFs in the reduced systems
is reported in Table 3.2. The result reported in Figs. 3.4 and 3.5 compare the time
histories of (lateral) displacements, velocities and accelerations of the 20th and
39th (roof) floors, respectively, with the target values which are available from the
simulations. In these plots, the blue vertical line indicates the end of the time
window within which the snapshots are collected; hence, only around t = 4 s all
the reduced order analyses start departing from the full model response.

To have a more clear view of the time histories, a close up of the last 5 s of the
time histories of 20th floor is presented in Fig. 3.6. By making a comparison
between time histories of displacements, velocities and accelerations, it can be
observed that two POMs are sufficient for a reduced model to accurately reproduce
displacements of the full model; however, at least four POMs are necessary to
feature the same level of accuracy for velocities and accelerations as well. By
investigating the FFTs of the aforementioned time histories (see Figs. 3.7, 3.8 and
3.9), it is shown that in the FFT of the displacement time histories, only the two
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Table 3.1 First natural frequencies of the building

Vibration
mode
index

1 2 3 4 5 6 7 8 9 10 11 12 13

Natural
frequency
(Hz)

0.26 1.09 2.61 4.71 7.07 8.79 9.56 9.92 11.38 13.36 14.64 18.30 22.14

Table 3.2 Outcomes achieved through POD, in terms of accuracy p and speedup as functions of
the number of DOFs retained in the reduced order model

# DOFs p Speedup

1 0.99 515
2 0.999 385
3 0.9999 276
4 0.99999 244
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Fig. 3.3 Top May 18-1940, El Centro accelerogram (east–west direction); bottom relevant FFT
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first natural modes are effectively excited. Instead, in the velocity and acceleration
time histories, looking at the FFTs, it is observed that the six and seven first natural
frequencies are effectively excited. Such a trend suggests that a reduced model that
retains a few POMs may feature a better accuracy in reconstruction of the dis-
placements of the system, when compared with velocities and acceleration
responses.
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Fig. 3.4 Time histories of the horizontal, displacement (top), velocity (middle) and acceleration
(bottom) of the 20th floor, as induced by the El Centro earthquake
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Moving to the speedup obtained by reducing the order of the full model, the
results here discussed have been obtained with a personal computer featuring and
Intel Core 2 Duo CPU E8400, with 4 Gb of RAM, running Windows 7 9 64 as
operating system and performing the simulations with MATLAB version
7.6.0.324. The speedup values reported in Table 2.1 testify the dramatic decrease
of the computing time obtained through POD, and reveal how powerful this
methodology can be to approach real-time computing.

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

t (s)

di
sp

la
ce

m
en

t 
(m

)
1 DOF
2 DOF
3 DOF
4 DOF
full model

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

t (s)

ve
lo

ci
ty

 (
m

/s
)

0 5 10 15 20 25 30 35 40

-20

-10

0

10

20

t (s)

ac
ce

le
ra

tio
n 

 (
m

/s
2 )

Fig. 3.5 Time histories of the horizontal displacement (top), velocity (middle) and acceleration
(bottom) of the 39th floor, as induced by the El Centro earthquake
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Previous figures have reported the results concerning time histories of two
representative storeys of the structure: 20th storey is the mid floor and 39th storey
is the last floor (roof) of the building. To further test the efficiency of the reduced
models in reconstructing snapshots of the system, and therefore assess the capacity
of the methodology in tracking the dynamics of all the system DOFs, two time
instants are selected to assess the accuracy: Fig. 3.10a and b show snapshots taken
in t = 10 s and t = 30 s of the analysis. At t = 30 s, the deformation of the
structure is rather similar to a line with constant slope that is the reduced model
with two POMs can reconstruct the relevant snapshot; however more POMs are
required to appropriately approximate snapshot taken at t = 10 s, since the shape

35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40
-0.4

-0.2

0

0.2

0.4

t (s)

di
sp

la
ce

m
en

t 
(m

)

 

 

1 DOF
2 DOF
3 DOF
4 DOF
full model

35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40
-1

-0.5

0

0.5

1

t (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40
-20

-10

0

10

20

t (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

 

 

Fig. 3.6 Close up of the time histories of the horizontal displacement (top), velocity (middle)
and acceleration (bottom) of the 20th floor, as induced by the El Centro earthquake
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Fig. 3.7 FFTs of the horizontal displacements of the storeys as induced by the El Centro
earthquake at a 20th and b 39th floors
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Fig. 3.8 FFTs of the horizontal velocities of the storeys as induced by the El Centro earthquake
at a 20th and b 39th floors
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Fig. 3.9 FFTs of the horizontal accelerations of the storeys as induced by the El Centro
earthquake, a 20th (top), and b 39th floor
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Fig. 3.10 Snapshots of the horizontal storey displacements as induced by the El Centro
earthquake. Top t = 10 s and bottom t = 30 s
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of the building is more complicated and higher modes are playing more significant
role when compared to t = 30 s.

Another global feature of the reduced model which may be of interest for
design practice is the envelope of the displacement, which is reported in Fig. 3.11.
It is observed that even the reduced model with a single POM has an acceptable
performance in reconstructing the envelope, even though it underestimates the
envelope itself. By increasing the flexibility of the reduced model through addi-
tional POMs, as the higher POMs are retained in the analysis, it is observed that
the envelope of the reduced model nearly matches that of full one.

To assess the efficiency of the reduced models in retaining the energy of the
system, we now compare the resulting time histories of kinetic and potential
energies of the system (see Fig. 3.12), respectively defined as: Ek ¼ 1

2 _uT M _u and
Ep ¼ 1

2 uT Mu for the full model; Ekl ¼ 1
2 _aT Ml _a and Epl ¼ 1

2 aTKla for ROMs. The
cumulative discrepancy of the energies of the reduced models from the target one
is considered as well (see Fig. 3.13). It is seen that the energy time histories of the
4-DOF reduced model well match those of the full model. To have more insight
into the ability of the models to preserve energy of the system, the cumulative
discrepancies of kinetic and potential energies are reported as well. It is seen that
as the number of the DOFs of the reduced model increases the slope of the relevant
line decreases, it means the rate of accumulation of the discrepancy decreases.
Besides, it is observed that the accumulation of the discrepancies features a line
with an almost constant slope implies that at different time intervals of the anal-
ysis, the amount of energy loss is the same. It means that the rate of energy loss is
constant; hence, the accuracy of the reduced model in terms of energy preservation
is constant over the interval of the analysis.

From this point on, we examine the accuracy of the reduced models that are
built via snapshots resulting from excitation by the El Centro earthquake, when the
building are shaken by other seismic records. In this regard, as an instance, we
consider the May-1976 Friuli earthquake which time history of its acceleration
records along with the relevant FFT are shown in Fig. 3.14. To have an idea
concerning the number of natural frequencies that are covered by this seismic
action, again the red vertical lines (as indicator of the natural frequencies of the
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Fig. 3.11 Envelope of horizontal storey displacements, as induced by the El Centro earthquake
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structure) are drawn in the figure to allow for understanding the number of eigen-
modes which is excited by accelerogram of the relevant earthquakes. By an
intuitive comparison of Figs. 3.3 and 3.14, it is observed that a different amount of
eigen-modes of the structure are excited by the two earthquake records.

Let us now consider the time histories of displacement, velocity and acceler-
ation of the 39th storey (see Fig. 3.15). It is seen that, while a 2-DOF reduced
model satisfactorily mimics the behavior of the full model in terms of displace-
ment, a 4-DOF reduced model is required to match the full model in terms of
velocity and acceleration time histories. The number of POMs required for
reconstructing the whole state of the structure, when it is shaken by Friuli earth-
quake, is the same as if it was shaken by El Centro earthquake. This fact shows
that a reduced model built by the POD may be robust to change in the excitation
source.

By investigating the FFTs of the aforementioned reported time histories (see
Fig. 3.16a), the trend seen in the time histories of the state reconstruction is
corroborated: one can see there are several peaks in the displacement response of
the structure, when shaken by Friuli record; similarly to the FFTs of the structure
when subjected to El Centro record, moving from displacement to velocity and
acceleration FFTs, the number of peaks increases. Therefore, the number of POMs
is required to match the FFT of the response of the structure increases.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2 x 10
4

t (s)

ki
ne

tic
 e

ne
rg

y 
(J

) 1 DOF
2 DOF
3 DOF
4 DOF
full model

0 5 10 15 20 25 30 35 40
0

5000

10000

15000

t (s)

po
te

nt
ia

l e
ne

rg
y 

(J
)

(b)

(a)

Fig. 3.12 Time histories of a kinetic and b potential energies

74 3 Model Order Reduction of Dynamic Systems



0 5 10 15 20 25 30 35 40
0

2

4

6

8 x 10
4

t - t
s
 (s)

cu
m

ul
at

iv
e 

di
sc

re
pa

nc
y 

(J
s)

1 DOF
2 DOF
3 DOF
4 DOF

0 5 10 15 20 25 30 35 40
0

2

4

6

8 x 10
4

t - t
s
 (s)

cu
m

ul
at

iv
e 

di
sc

re
pa

nc
y 

(J
s)

(a)

(b)

Fig. 3.13 Time evolution of cumulative discrepancy between full model and reduced order
model, in terms of a kinetic, b potential energies
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In Fig. 3.17 (top), it is observed that out of the several spikes in FFT of the
displacement, four are coincident with the system natural frequencies. As DOF
reduced model is able to match only the first spike, however a two DOF reduced
model matches the two of the spikes relevant to natural frequencies, the reduced
models featuring three and four DOF models are matched up to third and the
fourth spikes coinciding with the third forth natural frequency of the system,
respectively. Considering the velocities and accelerations, the same trend is
observed; however in latter cases, more natural vibration modes are effectively
excited. Hence, the accuracy of a reduced model in reconstructing the acceleration
responses of the system is not the same as the velocities and displacements.

The performance of the reduced models in approximating snapshots of the
system are once again tested at t = 10 s and t = 30 s. Looking at Fig. 3.18, it is
seen that at t = 10 s the state of the system is similar to a line with constant slope;
hence, all reduced models feature more or less similar accuracy; however, at
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Fig. 3.15 Time histories of the horizontal floor displacement (top), velocity (middle) and
acceleration (bottom) of the 39th floor, as induced by the Friuli earthquake

76 3 Model Order Reduction of Dynamic Systems



t = 30 s the state of the structure is more complicated and at least four POMs are
required to approximate the considered snapshot.

Concerning the envelope of the displacements (see Fig. 3.19), it is observed
that even a two DOF reduced model is matched with the envelope featured by the
full model. It is observed that, in the vicinity of the 25th floor, there is a break in
the envelope of the structure, while in the envelope of floor displacements relevant
to the El Centro earthquake such a break is not observed. This is due to the fact
that the range of frequency content of Friuli earthquake is wider than that of El
Centro earthquake, see Figs. 3.3b and 3.14b, it results in excitation, and therefore
contribution of higher natural modes in the response of the structure and as a
consequence the shape of the structure may become more complicated.

To evaluate the accuracy of the reduced models concerning the energies,
accumulated discrepancies has been considered; as previously, the time histories
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Fig. 3.16 FFTs of the 39th floor, displacement (top), velocity (middle) and acceleration (bottom)
as induced by the Friuli earthquake
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feature the same features of those related to El Centro record. Figure 3.20 shows
the accumulated discrepancies of kinetic and potential energies for two scenarios:
the continuous lines represent the case in which snapshots are related to the El
Centro excitation, instead the dot lines stand for the case in which snapshots are
related to Friuli record. It is worth recalling that in both cases, the reduced and full
models are shaken by Friuli record. It is seen that, despite the fact that the reduced
models are constructed by different inputs in simulations, the accumulated dis-
crepancies nearly coincide. However in this case, the accumulated discrepancies
appears to be bilinear: the graphs look similar to an straight line which changes its
slope at t = 30 s. This is due to the fact that the amplitude of the excitations
increases at the vicinity of the t = 30 s, the increase in the energy of input
excitation therefore changes the rate of accumulation of the discrepancies changes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

f (Hz)

F
F

T

1 DOF
2 DOF
3 DOF
4 DOF
full model

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

f (Hz)

F
F

T

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

f (Hz)

F
F

T

(a)

(b)

(c)

Fig. 3.17 Close up of FFT of the horizontal displacement (a), velocity (b) and acceleration (c) of
39th floors, as induced by the Friuli earthquake
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To conclude this section, we further assess the performance of the already built
reduced models when excited by January 17-1995 Kobe acceleration record. In
Fig. 3.21, the acceleration time history and its relevant FFT is presented. Once
more, one can observe that the frequency content of this record is different from
those of El Centro and Friuli. Figure 3.22 presents the time histories of dis-
placement, velocity and acceleration of 39th storey. The situation is rather similar
to the two previous cases: concerning displacements, reduced models retaining two
or more DOFs nearly coincide with the full model, whereas dealing with velocity

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

-3

0

10

20

30

40

displacement (m)

flo
or

 in
de

x

 

 

1 DOF
2 DOF
3 DOF
4 DOF
full model

-2 0 2 4 6 8 10
x 10

-3

0

10

20

30

40

displacement (m)

flo
or

 in
de

x

 

 

Fig. 3.18 Snapshots of the horizontal storey displacements at (top) t = 10 s, and (bottom)
t = 30 s, as induced by the Friuli earthquake
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Fig. 3.19 Envelope of horizontal storey displacements, as induced by the Friuli earthquake
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Fig. 3.20 Time evolution of cumulative discrepancy between full model and reduced order
model, in terms of (a) kinetic, and (b) potential energies. Comparison between outcomes of the
reduced order models trained by El Centro and Friuli earthquakes
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and acceleration a four DOF model is necessary to fully capture the dynamics of
the system (Fig. 3.23).

Considering snapshots and envelope of the displacements of the system (see
Figs. 3.24 and 3.25), a reduced model consisting of a single DOF is not able to
feature the dynamics of the system similar to the case shaken by El Centro and
Friuli earthquake. To assess the global efficiency of the reduced model when
subject to Kobe record (see Fig. 3.25), once more, one can observe that the ability
to retain energy is independent of the training stage. The reduced models have the
same number of DOFs, no matter how many snapshots are collected from simu-
lation of El Centro or Kobe earthquake simulations, which nearly feature the same
level of accuracy.
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Fig. 3.22 Time histories of the horizontal displacement (top), velocity (middle) and acceleration
(bottom) of the 39th floor, as induced by the Kobe earthquake
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Through the results shown in this Section, it has been revealed that prediction
capabilities of POD-based reduced order models when dealing with different
seismic excitations along with their high speed-up in computation makes them
suitable candidates for models used in online and real-time structural health
monitoring.
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Fig. 3.23 Snapshots of the horizontal storey displacements at (top) t = 10 s, and (bottom)
t = 30 s, as induced by the Kobe earthquake
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Fig. 3.24 Envelope of horizontal storey displacements, as induced by the Kobe earthquake
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3.7 Summary and Conclusion

In this chapter, we have investigated the capability and efficiency of the POD in
reducing the order of dynamic structural systems. In its SVD description, the POD
is expected to find the directions in which retain the maximum energy of the
system, whereas its PCA explanation is based on the search for the directions
which preserve the maximum variability of the set of samples, which are collected
into the so-called matrix of snapshots. Handling snapshots collected in an initial
time window, we have built the reduced model through a coupling of POD and
Galerkin projection.

To assess the performance of the studied methodology, the Pirelli Tower in
Milan has been assumed to be shaken by an earthquake. Concerning accuracy
issues, time histories of the state of the system (storey displacements, velocities
and accelerations), together with their associated Fourier transform, have been
compared with their real values available through the simulations. The power of
the order reduction method in preserving the energies of the system is tested via a
comparison of their time histories with those of full model. It has been observed
that energy time histories of a 4-DOF reduced model nearly coincided with target
values.
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Fig. 3.25 Time evolution of cumulative discrepancy between full model and reduced order
model, in terms of (top) kinetic, and (bottom) potential energies. Comparison between outcomes
of the reduced order models trained by El Centro and Kobe earthquakes
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When dealing with accuracy versus sped-up, it has been shown that the POD can
decrease the number of DOFs from the original 39 (one at each storey) to just 1,
guaranteeing an accuracy of 0.99 (1 being featured by the original model)
according to what is explained in this study, and leading to a speedup in the
computations higher than 500. We have also shown that, to further match higher
order frequency oscillations (accuracy of 0.99999), the retained degrees of freedom
result to be increased to 4, still obtaining a speedup higher than 200.

It has been shown that the POD based reduced models are robust to a change of
loading as well; moreover, the models built by snapshots resulting from simula-
tions of the full model subject to El Centro record feature the same level of
accuracy when are shaken by Kobe and Friuli record.

In following chapters, the reduced model built by POD will be incorporated into
Bayesian filters to assess the capabilities of such an approach in state estimation of
non-damaging and dual estimation of damaging structures, possibly detecting and
locating the occurring damage.
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Chapter 4
POD-Kalman Observer for Linear Time
Invariant Dynamic Systems

Abstract This Chapter investigates the statistical properties of residual errors
induced by POD-based reduced order modeling. Such errors enter into the state
space equations of the reduced systems in terms of system evolution and obser-
vation noise. A fundamental assumption made by recursive Bayesian filters, as
exploited in this study, is the whiteness of the aforementioned noises. In this
chapter, null hypothesis of the whiteness of the noise signals is tested by making
use of the Bartlett’s whiteness test. It is shown that, no matter what the number of
POMs retained in the analysis is, the null hypothesis of the whiteness is always to
be rejected. However, the spectral power of the embedded periodic signals
decreases rapidly by increasing the number of POMs. The speed-up gained by
incorporating POD-based reduced models into Kalman observer of linear time
invariant systems, is also addressed in this chapter. It is shown that the reduced
models incorporated into the Kalman filter dramatically reduce the computing
time, leading to speed-up of 300 for a POD model featuring 1 POM, which is able
to accurately reconstruct the displacement time history of the structure. Moreover,
it is revealed that the coupling of POD and Kalman filter can improve the esti-
mations provided by POD alone.

4.1 Introduction

To develop an online and real-time algorithm for the detection of damage in
structural systems is the ultimate goal of this monograph project. To accomplish
this goal, we have primarily studied the possibility of exploiting Bayesian filters to
fulfill the objective of this study in Chap. 2. However in the case of multi-storey
buildings, it was revealed that as the number of floors increases, the bias in the
estimation of parameters as well as in damage detection increases.

Subsequently, we propose to use reduced order models in combination with
Bayesian filters to monitor the state of the structure. Moreover, the efficiency of
POD in terms of speed-up and accuracy has been examined numerically in the
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previous Chapter. On the other hand, this chapter considers the numerical
assessment of the efficiency of POD-based reduced order models in state esti-
mation of linear time-invariant structural systems. The Kalman filter as a popular
means provides the optimal estimates of the state of a linear state-space model
affected by white Gaussian noises. Nevertheless next, we will illustrate that the
uncertainties induced by the POD are not white noises.

The analysis of the linear time-invariant model allows us to analyze the effect of
uncertainties induced by the POD on the optimal performance of the Kalman filter.
Therefore, the reduced model of the system is incorporated into a Kalman filter;
moreover by assuming that a minimal number of observables are managed, the
speed-up and accuracy of state estimation is examined. As a well-known fact,
the POD models are not strongly constructed to a change in the parameters of the
system; in fact, proper orthogonal modes (POMs) were somehow employed as
indicators of the damage in various structures, such as beams (Galvanetto and
Violaris 2007a), trusses (Ruotolo and Surace 1999) and composite materials
(Shane and Jha 2011a). If the system is exposed to unpredictable change in the
parameter, e.g. due to inception or growth of damage, the reduced model fails to be
accurate. However, a potential application of an approximated linear time
invariant model in automatic control of the structural response (Gustafsson and
Mäkilä 1996) encourages the search for high fidelity and computationally efficient
reduced models. To estimate the state of a system, even in an accurate approach,
does not explicitly include information on the damage: therefore in the next
Chapter, we will acknowledge damage detection via Bayesian filtering and
reduced order modeling. In the sequel, the necessity of employing observers in
structural feedback control is primarily discussed; subsequently, the statistical
properties of the residual error process is evaluated in order to verify if they fulfill
the requirements (whiteness and Gaussianity) of Kalman filter to provide the
optimal solution. Hence, the Kalman-POD observer is concisely reconsidered. The
Chapter is finally concluded by illustrating the performance of Kalman-POD
observer: the efficiency of the algorithms is evaluated to ensure strength to change
in the seismic excitation source, as it was performed in Chap. 3. Furthermore, the
effect of correlated uncertainties in the performance of Kalman-POD observer is
examined. The computational gain obtained by the application of Kalman-POD
observer, when solely compared to Kalman observer, is presented in terms of
speed-up gained in computations.

4.2 Structural Feedback Control and the Kalman
Observer

Feedback control is aimed to be employed to develop automated algorithms in
order to harness response of the systems (Goodwin et al. 2001). Clock regulating
devices and mechanisms to keep wind-mills pointed toward the wind are the early
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instances of control systems. During industrial revolution, invention of machinery
to transform raw materials into commodities, specifically steam engine, which
includes transforming a large amount of energy to mechanical work, caused
engineers to perceive the need for organized control strategies of the power
consumed by machinery in order to guarantee the safe operation of the facilities
(Goodwin et al. 2001). Currently, control engineering has become an omnipresent
element of industry. Although industrial instances of feedback control date back to
the nineteenth century, its applications are recently being employed in structural
engineering field. Since 1990, automatic control strategies have gained popularity
to further extend life cycle and performance of earthquake resistant structural
systems. To reexamine the real applications of active structural control in Japan,
one can study (Ikeda 2009) which the application of active tuned mass dampers for
vibration suppression of high rise buildings exposed to lateral loads is discussed.
To review a list concerning the active control strategies employed in other building
types including bridges, tensegrity structures and trusses, one can refer to Korkmaz
(2011). Control algorithm design is accomplished by incorporating many disci-
plines of science and technology, including but not limited to modeling (to capture
the underlying dynamics of the system), sensors (to measure state of the system),
actuators (to force the system to follow the desired trajectory), communications (to
transmit the data) and computations (to calculate action data based on measured
observations) (Goodwin et al. 2001). This chapter of the monograph is devoted to
develop computationally efficient reduced models for their possible application in
control of seismically excited multi storey buildings.

Control algorithms will not be discussed. However, to explain how system
control terms enter the state-space equations in further details and to describe the
need for the models in structural control, a linear time invariant system is con-
sidered and its state-space equations is written as:

zk ¼ Fzk�1 þ Gek þ vk ð4:1Þ

yk ¼ H zk þ wk ð4:2Þ

where: zk represents the state of the system (e.g. displacement, velocity and
acceleration of each storey in a structure) at time instant tk; ek is the control input,
which is computed by using control algorithms in order to restrict the state of
structure to a desired reference; yk denotes the noisy system observations; F maps
the state over time; G links the control feedback to the relevant degrees-of-free-
dom and H links the observation and state; vk and wk are evolution and observation
uncertainties. The idea in the state space approach to feedback control, is to
synthesize a full state feedback through:

ek ¼ K zk ð4:3Þ

where K, the gain matrix, is computed to satisfy the objective of the closed loop
system; in a civil structure such an objective will be, e.g. the suppression
of vibrations induced by external loads (e.g. loads or seismic excitations).
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The problem is that, in most practical cases, the state vector is not fully known: it
may require too many sensors, or it may be due to technical reasons (for instance,
displacements of a multi-storey structure are difficult to monitor).

The process of reconstructing the entire state of a system, based on a physical
model and observation signals, is called observer design (Preumont 2011). It is
known that, dealing with linear state-space models, provided that the distribution
of the uncertainties is Gaussian and there is no correlation in uncertainty time
series, Kalman Filter furnishes the optimal observer of the system (Preumont
2011). This chapter of the monograph deals with the reduction of the computa-
tional cost of a Kalman observer of the linear time invariant dynamic systems, by
utilizing a surrogate POD-based reduced model of the system to be incorporated
into the Kalman filter algorithm. The efficiency of POD for model reduction of
models studied in current Chapter, in terms of speed-up and accuracy, has been
ascertained in Chap. 3, where it has been shown that the POD can be a reasonable
candidate to reduce the computational costs of structural analysis.

4.3 Statistical Assessment of Residual Errors Induced
by POD

We start by recalling from Chap. 3 the set of ordinary differential equation that
governs the dynamics of a structural system:

M€uþ Ku ¼ RðtÞ ð4:4Þ

where: M and K are the stationary mass and stiffness matrices, respectively; RðtÞ is
the external load vector; €u and u are the storey acceleration and displacement
vectors, respectively.

By utilizing a Newmark time-integration algorithm, (4.4) is discretized in the

time domain, through definition of the vector zk ¼ uk _uk €uk½ �T at time tk. The
discrete state space form of (4.4) reads:

zk ¼ A zk�1 þ Bk þ vk ð4:5Þ

yk ¼ H zk þ wk ð4:6Þ

where:

A ¼

I � bDt2M�1K DtI � bDt3M�1K �b 1=2� b
� �

Dt4M�1K þ Dt2 1=2� b
� �

I

�cDtM�1K I � cDt2M�1K �c 1=2� b
� �

Dt3M�1K þ Dt 1� cð ÞI

�M�1K �DtM�1K �Dt2 1=2� b
� �

M�1K

2
6664

3
7775

ð4:7Þ
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and:

Bk ¼
bDt2M�1Rk

cDtM�1Rk

M�1Rk

2
4

3
5 ð4:8Þ

vk and wk are evolution and measurement noises, assuming the full model to be
deterministic, former one is not considered to enter the evolution of state of the
system, while latter is assumed to be a stationary zero mean white Gaussian noise
featuring time invariant covariance matrix of W.

With the same notation of Chap. 3, the reduced order model of the system can
now be written as:

Ml€aðtÞ þ KlaðtÞ ¼ RlðtÞ ð4:9Þ

where: a is the coordinate of the reduced model and governs the evolution in time
of the structural response along the POMs. Once the solution of (4.9) is obtained,
the full state of the system can be computed by making use of (4.9):

€u � Ul€a _u � Ul _a u � Ula ð4:10Þ

or equivalently:

u
_u
€u

8<
:

9=
; �

Ul 0 0
0 Ul 0
0 0 Ul

2
4

3
5

a

_a
€a

8<
:

9=
; ¼ L

a

_a
_a

8<
:

9=
;: ð4:11Þ

Hence, the reduced state space model of the system can be obtained by coupling
the time evolution of the coordinates of the reduced model and the observation
equation. By definition of the vector zr;k ¼ ak _ak €ak½ �T , the state space equation reads:

i.e.:

zr;k ¼ Arzr;k�1 þ Br;k þ vk ð4:12Þ

yk ¼ HLzr;k þ wk ð4:13Þ

where:

Ar ¼
I � bDt2M�1

l Kl DtI � bDt3M�1
l Kl �b 1=2� bð ÞDt4M�1

l Kl þ Dt2 1=2� bð ÞI
�cDtM�1

l Kl I � cDt2M�1
l Kl �c 1=2� bð ÞDt3M�1

l Kl þ Dt 1� cð ÞI
�M�1

l Kl �DtM�1
l Kl �Dt2 1=2� bð ÞM�1

l Kl

2
4

3
5

ð4:14Þ

and:

Br;k ¼
bDt2M�1

l Rl;k

cDtM�1
l Rl;k

M�1
l Rl;k

2
4

3
5: ð4:15Þ
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Since it is assumed that the original model is deterministic, vk is solely
attributed to inaccuracy of the reduced model; wk instead is representative of
measurement errors and model reduction inaccuracies together. In case vk and wk

are white Gaussian noises, the Kalman filter can furnish the optimal estimates of
the state of the reduced model; on the contrary, if the distributions of the uncer-
tainties are not Gaussian, uncorrelated or a combination thereof, the performance
of Kalman filter is not a priori known to be satisfactory.

In this section, Bartlett white noise test (Bartlett 1978) is profited to verify the
null hypothesis of whiteness of the errors induced by the reduced order modeling.
In this regard, Bartlett test compares the empirical cumulative normalized peri-
odogram of the given signal with the cumulative distribution of a uniform random
variable. The periodogram of an arbitrary random signal (e.g. sk; k ¼ 1; 2; . . .;N),
as a mean for spectral analysis, is defined as (Stoica and Moses 1997):

I xð Þ ¼ 1
N

XN

k¼1

ske�ixk

�����

����� ð4:16Þ

while, the cumulative periodogram is computed:

J xkð Þ ¼
Pk

i¼1 I xið ÞPN
j¼1 I xj

� ffi : ð4:17Þ

To perform the comparison, and measure the possible deviation from the
whiteness assumption, the Kolmogorov–Smirnov statistics is adopted by Bartlett
test (Reschenhofer 1989). In case the associated Kolmogorov–Smirnov statistics of
the test exceeds the critical values, for a given confidence interval, the null
hypothesis of whiteness will be rejected. For each sample size, and for several
confidence levels, the critical values of Kolmogorov–Smirnov statistics are tabu-
lated and reported in references Miller (1956), Kececioglu (2002). The highest
confidence interval, for which the test statistics are reported in Kececioglu (2002),
are related to a probability equal to 99 %; therefore, to accept or reject the
hypothesis by the maximum probability, in this chapter, we compare test statistics
to the value associated with probability of 99 %. The critical values of the test
statistics also depend on the sample size, which in our case is the length of the
error signal. These critical values are estimated trough Monte Carlo simulations
(Lilliefors 1967): if the sample size (N) is higher than 35, the critical value of the
test statistics is curve fitted and is represented by 1:63ffiffiffi

N
p (Kececioglu 2002). It is

reported that the Bartlett test is not a suitable method to test whiteness of obser-
vation signals with small sample sets (Reschenhofer 1989). However, dealing with
time series of error signal, there is practically no limitation in increasing the
number of the samples, and samples size issues are not affecting the test results.
The results of the test are reported graphically, where empirical cumulative nor-
malized periodogram of the given signal and the cumulative distribution of a
uniform random variable (a straight line, passing from the origin and with a slope
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equal to the inverse of the Nyquist frequency), accompanied by two lines repre-
senting the confidence interval, are plotted in the same graph.

Assuming that the true dynamics of the system is known and obtained by
analysis of the full model, the errors induced by the model order reduction are
defined as the difference between the true dynamics of the system and the
dynamics furnished by the reduced model in this study. The error is considered in
terms of difference between the physical coordinates (i.e. u, _u, €u) and the POD
temporal coordinates (i.e. a, _a, €a). At time instant tk, the error signals can therefore
be written as:

ok ¼ €uk �Ul€ak pk ¼ _uk �Ul _ak qk ¼ uk �Ulak ð4:18Þ

while the errors concerning POD coordinates are:

qk ¼ UT
l €uk � €ak rk ¼ UT

l _uk � _ak sk ¼ UT
l uk � ak : ð4:19Þ

It is observed in (4.18) and (4.19) that the error signals relevant to velocity and
acceleration are not assumed as temporal derivatives of displacement error signal.
This fact is due to the uncertainties induced by the model order reduction.

In the next section, it is shown that the errors in the reconstructing the state of
the full model affects the observation equation of the reduced state space model.
Instead the error in the reconstructing the state of the reduced model enters and
affects the evolution equation of the reduced model.

4.4 Formulation of Kalman-POD Observer for Linear
Time Invariant Systems

The bulk of Chap. 2 has been dedicated to Bayesian filters for the estimation of
states and parameters of mechanical systems, of which only a part of the state is
observed. However, to keep this chapter self-contained, key points of recursive
Bayesian estimation of mechanical systems are reviewed. The outline of all the
Bayesian filters can be drawn in the two stages of prediction and update: in the
prediction stage, a model of the system is employed to predict the dynamics of
the entire state vector, whereas in the update stage, as observations from a part of
the state, or as measurable quantities which are correlated with the state become
available, the entire state vector is updated. For instance, in a multi storey building,
it is expensive or even practically impossible to measure displacements of the
storeys directly, while accelerations are easy to measure. In such cases, provided
that a model of the structure is available and the model is linear, if uncertainties in
the model and in the measurements are uncorrelated Gaussian noises the Kalman
filter is the optimal tool to estimate the state of the system.

In practice, it may happen that the high dimension of the model of the structure
prevent the filter to fulfill its task in real-time. In such a case, exploiting a reduced
model will be beneficial for reducing the computational cost of the Kalman filter.
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In this chapter, reduced models which are built by the POD are used to speed-up
the calculations.

The idea of speeding up the calculations required by Kalman filters via reduced
order modeling has been already exploited in meteorology in order to predict the
near surface winds over the tropical Pacific ocean (Wikle and Cressie 1999). A set
of empirical functions was adopted to reduce the computational burden of the
reconstruction of the wind velocity field, via data available from a few observation
points. Malmberg et al. (2005) adopted subspace realized by PCA to tackle the
same problem. They assumed that the weather condition can be thought of as a
linear combination of some dominant modes (the weather condition is modeled by
a linear time invariant state-space model), the modes being supposed to be
invariant; however, the contribution of each mode may vary over time, and the
Kalman filter was used to estimate the contribution of each one. Though the
concept of reduced state-space Kalman filter is gaining popularity in meteorology
(He et al. 2011; Tian et al. 2011), its possible application has not been considered
in structural engineering field yet. In this section, we deal with the application of
Kalman filter to estimate the POD coordinates of Eq. (4.12). At each time instant,
after the reduced states are estimated, the entire state vector is reconstructed. For
details concerning the synergy of POD and Kalman filter, see Table 4.1.

Provided that the reduced model of the structure is already available, it is
observed that the algorithm is simply the application of a Kalman filter to estimate
the current state of a linear time-invariant system. In such a system, a linear
combination of POMs can represent the dynamics of the system. The POMs are
constant over time and do not change; however, the contribution of each mode
in the construction of the response of the structure is changing over time.

Table 4.1 POD-Kalman observer

• Initialization at time t0:

bzr;0 ¼ UT
l E z0½ �

Pr;0 ¼ UT
l E z0 � bz0ð Þ z0 � bz0ð ÞT
h i

Ul

• At time tk , for k ¼ 1; . . .;Nt:
- Prediction stage:

1. Evolution of state and prediction of covariance
z�r;k ¼ Ar;kzr;k�1 þ Br;k

P�r;k ¼ Ar;kPr;k�1AT
r;k þ V

- Update stage:
1. Calculation of Kalman gain:

Gk ¼ P�r;kLTHT
r;k Hr;kL P�r;kLTHT

r;k þW
� ��1

2. Improve predictions using latest observation:

bzr;k ¼ z�r;k þ Gk yk �Hr;kL z�r;k

� �

Pr;k ¼ P�r;k � GkHr;kL P�r;k
- Reconstruction stage:

bzk ¼ Lbzr;k
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The Kalman filter, based on the observation made from a part of state vector (e.g.
accelerations of some storeys) quantifies the contribution of each POM in the
estimation of the state of the system.

4.5 Numerical Assessment of POD-Kalman Observer
for Seismic Analysis of Linear Time Invariant Systems

As a case study, in Chap. 3 we investigated the capability of POD in speeding up
the computations required to model the dynamics of the Pirelli Tower in Milan; in
this Section, whiteness of the uncertainties in the reduced models built in Chap. 3
is primarily assessed, so as to verify that the requirements of the Kalman filer for
optimal performance are satisfied. Subsequently, robustness of the Kalman-POD
approach to changes in the seismic excitation source is investigated. The Section
finally concludes with the numerical assessment of speed-up and accuracy of the
Kalman-POD algorithm.
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As for the error of reduced models for reconstructing the displacement history of
the roof floor, Fig. 4.1 shows the relevant error for reduced models with various
number of retained POMs. The errors are related to the analysis of the building
when acceleration time history of E1 Centro earthquake is applied to shake the
structure. It is observed that, by increasing the number of POMs, the amplitude of
the error signal drastically decreases. However, from the time evolution of the error
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induced by the El Centro earthquake, performance of the Kalman filter
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signals relevant to reduced models featuring different number of POMs, it seems
that there is a strong correlation in them, as the signals look similar to a sinusoid
with a time varying amplitude. This is corroborated by the cumulative periodograms
of the error signals shown in Fig. 4.2. By increasing the number of POMs retained in
the reduced models from one to eight, despite the decrease in the error amplitudes,
the hypothesis of the whiteness can still be rejected, as all three periodograms
relevant to the reduced model exceed the 99 % confidence interval (indicated by
two parallel black lines in the closeup as presented in Fig. 4.2). By examining at the
cumulative periodograms, it can be observed that, as the number of POMs of the
reduced model increases, the main jumps move to higher frequency zones.

To investigate this issue in further details, we examine the periodograms of the
error signals as displayed in Fig. 4.3. To facilitate the comparison, the first few
natural frequencies of the structure are indicated by vertical dashed lines (see
Table 3.1). It is observed that the main peak in the error of the 1-DOF reduced
model is coincident in the second natural frequency of the structure. By increasing
the number of DOFs of the reduced models, according to the reduction in the error
amplitude already illustrated in Fig. 4.3, the power of the harmonic components
embedded in the signal attenuates severely to the extent that it is not possible to
distinguish the corresponding peaks in Fig. 4.3.
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Close-ups in Fig. 4.3 allow us to compare the spectral power of the error of
three reduced models in a clearer fashion: it is observed that the main periodicity
of the error signal of the 4-DOF reduced model coincides with third natural
frequency of the system; moreover, the close up further indicates that, in frequency
content of the error signal of the 8-DOF reduced model, the first peak is coincident
in the 8th natural frequency of the system. The trend in Fig. 4.1 suggests that as the
number of DOFs of the reduced model increases, the amplitude of the error signal
decreases; consequently, the spectral power of the error signal decreases as well. In
addition, as the number of DOFs retained in the reduced model increases, the
dominant frequency contents coincide with higher natural frequencies of the
system. This trend suggests that the subspace spanned by POMs has a degree of
similarity with the subspace spanned by the eigenmodes of the system: frequency
content of the error induced by neglected POMs is coincident in the higher order
eigen-frequencies of the structure.

In what precedes, it was observed that the uncertainties in the errors of reduced
order models are correlated, and not white noises; hence, the optimal performance
of the Kalman observer is not guaranteed. However, it was further indicated that,
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induced by the El Centro earthquake, performance of the Kalman filter

98 4 POD-Kalman Observer for Linear Time Invariant Dynamic Systems



by an increase in the number of POMs retained in the reduced model, the spectral
density of the correlation in the errors diminishes rapidly.

In proceeding section, the performance of the Kalman observer, if applied to the
estimation of the entire state vector on the basis of observations of the acceleration
time history of the 39th storey (roof floor) is assessed. To choose other storeys for
observation, or add more data yields the similar results: it is known that state of a
linear state space model with white Gaussian noises is optimality estimated
through the Kalman observer. In Figs. 4.4, 4.5 and 4.6, displacement, velocity and
acceleration time histories of the 20th (mid floor) and 39th (roof) floors are
illustrated as representative outcomes for the performance of the filter.

In the analysis for numerical assessment of performance of the Kalman filter,
the evolution equation is assumed to be deterministic, and the noise in the
observations is supposed to be a white stationary Gaussian process. As expected
from optimality of the Kalman observer for dealing with aforementioned prob-
lems, it is observed that the estimates furnished by the Kalman filter nearly
coincide with the target values. This fact is observed through the close-ups in each
time history graph.
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In the remainder of this Section, the performance of Kalman-POD algorithm is
assessed in order to estimate the state of the Pirelli tower. As it has been illustrated,
the uncertainties in the state-space model are not white; consequently, the per-
formance of the Kalman observer is not a priori known. In this chapter, we utilize
the POD-based reduced models; thus the readers are referred to see Chap. 3 for the
details. The reduced model is used by snapshots taken from the simulation of the
response of the full model to El Centro accelerogram excitation. Figures 4.7, 4.8
and 4.9 demonstrate time histories of the estimations of displacements, velocities
and accelerations of 20th and 39th floor via Kalman-POD algorithm, when the
building is shaken by Friuli acceleration record. It is observed that by keeping only
3 POMs in the reduced model, the time histories estimated by POD-Kalman match
those of the full model. To have insights on the improvement in the quality of the
estimates by Kalman-POD when it is compared to POD, Tables 4.2 and 4.3 report
the residual mean squared error (RMSE) of the 20th and 39th floors, respectively.

In Table 4.2 it is observed that, as the number of DOFs in the reduced model
increases, the RMSE error of reconstruction of displacements, velocities and
accelerations realized by the POD rapidly decreases. When using reduced models
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Fig. 4.8 Time histories of the horizontal displacements of 20th floor (a) and 39th floor (b) as
induced by the Friuli earthquake, performance of the Kalman-POD
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with 1 and 2 POMs, the RMSEs of POD solely are less than those of Kalman-POD.
However, moving to reduced models with 3 and 4 POMs Kalman-POD is able to
improve the quality of the estimate with respect to what the application of POD
alone offers. This phenomenon is mainly due to the high spectral power of the
correlation structure embedded in the error signal: it has been revealed that by
increasing the POMs retained in the reduced model, the spectral power of the noise
correlations decrease rapidly.
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Fig. 4.9 Time histories of the horizontal accelerations of 20th floor (a) and 39th floor (b) as
induced by the Friuli earthquake, performance of the POD-Kalman

Table 4.2 RMSE of time histories of displacements, velocities and accelerations of 20th floor,
comparison between POD and Kalman-POD approaches

#DOFs RMSE of POD RMSE of POD-Kalman

Disp. Vel. Acc. Disp. Vel. Acc.

1 5.9 9 10-5 2.7 9 10-3 1.4 9 10-1 9.6 9 10-5 4.4 9 10-3 3.3 9 10-1

2 1.0 9 10-6 1.0 9 10-4 1.2 9 10-2 7.0 9 10-7 1.9 9 10-4 1.7 9 10-1

3 2.0 9 10-8 1.5 9 10-5 1.4 9 10-2 1.7 9 10-8 1.1 9 10-5 1.1 9 10-2

4 5.0 9 10-9 2.0 9 10-6 2.7 9 10-3 1.3 9 10-9 1.3 9 10-6 1.8 9 10-3
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Moving to the 39th floor, whose acceleration is measured, it is observed that
RMSE of accelerations estimated by POD-Kalman is several orders of magnitude
lower than the RMSE of the estimates provided by the POD alone, see Table 4.3.
Concerning the RMSE of displacements and velocities, it is observed that the
estimates of POD-Kalman always are smaller than the estimates of POD. Unlike
the 20th storey RMSEs, which the estimates of the Kalman-POD observer in
several cases featured higher error when compared with POD alone, in this case,
the RMSE of Kalman-POD always is lower compared to the POD. This is due to
the fact that the response of the system is measured at 39th floor. The trend
suggests that, as the number of POMs in the reduced model increases, the esti-
mates of the POD-Kalman outperform the POD only.

Concerning the speedup obtained by reducing the order of the full model, similar
to Chap. 3, in this study, the discussed results have been obtained with a personal
computer featuring and Intel Core 2 Duo CPU E8400, with 4 GB of RAM, running
Windows 7 x64 as operating system and performing the simulations with MATLAB
version 7.6.0.324. The speedup values reported in Table 4.4 confirms the efficiency
of Kalman-POD in reducing the computational costs related to the Kalman filter
algorithm. It is observed that, using POD-based models incorporated in a Kalman
observer can render the calculations hundreds of times faster.

4.6 Summary and Conclusion

In this section, the problem of monitoring the entire state of a structure via a
numerical model and observations relevant to several points of interest is
acknowledged. It has been illustrated that, dealing with a linear model of the Pirelli
tower, when the building is shaken by the El Centro earthquake record, the Kalman

Table 4.4 Speed-up obtained by Kalman-POD and POD

# DOFs p Speed-up (Kalman-POD) Speed-up (POD)

1 0.99 309 515
2 0.999 279 385
3 0.9999 225 276
4 0.99999 187 244

Table 4.3 RMSE of time histories of displacements, velocities and accelerations of 39th floor,
comparison between POD and Kalman-POD approaches

#DOFs RMSE of POD RMSE of POD-Kalman

Disp. Vel. Acc. Disp. Vel. Acc.

1 1.1 9 10-4 5.7 9 10-3 4.6 9 10-1 2.6 9 10-5 1.3 9 10-3 1.2 9 10-5

2 5.0 9 10-6 1.0 9 10-3 3.1 9 10-1 1.9 9 10-6 1.6 9 10-4 1.8 9 10-6

3 3.9 9 10-6 9.0 9 10-40 2.4 9 10-1 1.7 9 10-8 4.0 9 10-6 1.1 9 10-6

4 8.7 9 10-7 2.4 9 10-4 7.8 9 10-2 6.8 9 10-9 1.3 9 10-6 9.8 9 10-7
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filter can provide nearly perfect results by employing only acceleration time his-
tory of the last floor, as the observation signal.

Subsequently, the reduced models built via POD are introduced into the
Kalman filter to reduce the computational cost of the filter. It has been revealed
that the reduced models incorporated into the Kalman filter dramatically reduce
the computing time, leading to speed-up of 300 for a POD model featuring 1 POM,
which is able to accurately reconstruct the displacement time history of the
structure. Moreover, it has been indicated that the coupling of POD and Kalman
filter can improve the estimations provided by the POD alone.

This chapter has been limited to linear time invariant systems, the bulk of next
Chapter will be instead dealing with the time-varying systems, when there is no a
priori information concerning the variation of parameters.

References

Bartlett MS (1978) An introduction to stochastic processes with special reference to methods and
applications. Cambridge University Press, London

Galvanetto U, Violaris G (2007) Numerical investigation of a new damage detection method
based on proper orthogonal decomposition. Mech Sys Signal Process 21:1346–1361

Goodwin GC, Graebe SF, Salgado ME (2001) Control system design. Pearson, London
Gustafsson TK, Mäkilä PM (1996) Modelling of uncertain systems via linear programming.

Automatica 32:319–334
He J, Sarma P, Durlofsky LJ (2011) Use of reduced-order models for improved data assimilation

within an EnKF context. In: Proceedings of SPE reservoir simulation symposium 2011, vol. 2,
pp 1181–1195

Ikeda Y (2009) Active and semi-active vibration control of buildings in Japan-practical
applications and verification. Struct Control Health Monit 16:703–723

Kececioglu DB (2002) Reliability engineering handbook, vol 2. DEStech publications Inc,
Pennsylvania

Korkmaz S (2011) A review of active structural control: Challenges for engineering informatics.
Comput Struct 89:2113–2132

Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance.
J Am Stat Assoc 62:399–402

Malmberg A, Holst U, Holst J (2005) Forecasting near-surface ocean winds with Kalman filter
techniques. Ocean Eng 32:273–291

Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc
51:111–121

Preumont A (2011) Vibration control of active structures: an introduction. Springer, Berlin
Reschenhofer E (1989) Adaptive test for white noise. Biometrika 76:629–632
Ruotolo R, Surace C (1999) Using SVD to detect damage in structures with different operational

conditions. J Sound Vib 226:425–439
Shane C, Jha R (2011) Proper orthogonal decomposition based algorithm for detecting damage

location and severity in composite beams. Mech Sys Signal Process 25:1062–1072
Stoica P, Moses RL (1997) Introduction to spectral analysis. Printice Hall Inc, Upper Saddle river
Tian X, Xie Z, Sun Q (2011) A POD-based ensemble four-dimensional variational assimilation

method. Tellus, Ser A: Dyn Meteorol Oceanogr 63:805–816
Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering.

Biometrika 86:815–829

4.6 Summary and Conclusion 103



Chapter 5
Dual Estimation and Reduced Order
Modeling of Damaging Structures

Abstract In this chapter, the dual estimation and reduced order modeling of a
damaging structure is studied. In this regard, proper orthogonal decomposition is
considered for reduced order modeling in order to find a subspace which optimally
captures the dynamics of the system. Through a Galerkin projection, the equations
governing the dynamics of the system are projected onto the subspace provided by
the proper orthogonal decomposition technique. It is proven that the subspace
established by application of the proper orthogonal decomposition is sensitive to
changes of the parameters; therefore, it can be profited in the algorithms for
estimation of the damage incidence. As for the dual estimation goal, the extended
Kalman filter and extended Kalman particle filter are adopted; both filters, in their
so-called update stage, make a comparison between the latest observation and the
prediction of the state of the system to quantify the required adjustment in the
estimation of the state and parameters. In the case of the reduced order modeling,
for realization of such a comparison, reconstruction of full state of the system is
required, which is obviously possible only if the subspace is known. In this
chapter, an adjustment of the dual estimation concept has led to an online esti-
mation of the proper orthogonal modes, components of the reduced stiffness matrix
and the states of the structure. This novelty can intuitively help to detect the
damage in the structure, locate it and potentially identify its intensity.

5.1 Introduction

To detect changes in the mechanical properties of structural members, it can be
assumed as a method to monitor their health. In many cases, to identify the damage
in the structure, one can considered it as a reduction of the stiffness (Yang and
Lin 2005). This may be caused due to failure of a member to sustain further action,
or it can be due to degradation in its material properties. That means that damage
detection in a structure can be modeled as a system identification problem. To deal
with a linear structure, offline identification of system matrices can be carried out

S. Eftekhar Azam, Online Damage Detection in Structural Systems,
PoliMI SpringerBriefs, DOI: 10.1007/978-3-319-02559-9_5,
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via several robust algorithms; as for output only techniques, data driven stochastic
subspace identification (SSI) algorithm is the de facto standard stochastic system
identification method (Van Overschee and De Moor 1996), however, in recent
years the research on developing new techniques e.g. blind source separation
(Abazarsa et al. 2013a, b; Ghahari et al. 2013c). The aforementioned method is
successfully applied to identify the modal parameters of multi-storey buildings
(Ghahari et al. 2013a, b) and modal identification of long span bridges (Ghahari
et al. 2013d). Moreover, subspace identification algorithm is instead extensively
applied to identify deterministic input–output systems (Loh et al. 2011). The
aforementioned methodologies include singular value decomposition (SVD) and
QR decomposition techniques (Moaveni et al. 2011). Extension of such method-
ologies to online system identification is normally perceived via setting a fixed
length moving time window; as new observations become available, new subspace
identification is perceived. Computational costs associated with SVD and QR
prevent real-time application of such methods. Several methods were proposed to
reduce the computational burden of the SVD and QR operations based on updating
SVD and QR decomposed matrices; moreover, they are made suitable for near
real-time applications (Loh et al. 2011). In this study, damage detection has been
tackled via dual estimation of state and stiffness parameters by utilizing recursive
Bayesian filters in an online means. We have shown in Chap. 2 that, as the number
of DOFs of the space model of the structure increases, biases frequently affect the
estimates furnished by the filters. To manage this problem, dual estimation of state
and parameters of a reduced model of the structure are employed as the last resort.

Nevertheless, dissimilar to the identification of the full model of the system, to
estimate components of the reduced stiffness yield no precise information con-
cerning the intensity and location of the damage. It is a well-known fact that
appropriate orthogonal modes of the structures include information regarding
location and intensity of the damage (Ruotolo and Surace 1999; Vanlanduit et al.
2005; Galvanetto and Violaris 2007; Shane and Jha 2011). Hence, this feature of
POMs can potentially resolve deficiencies of parameter estimation of a reduced
model as an indicator of damage location and severity. To accomplish this
objective, an algorithm for dual estimation of state and parameters of a reduced
model, accompanied by an online estimation of the POMs of the structure is
suggested. The proposed procedure utilizes appropriate orthogonal decomposition
for model order reduction; afterwards, it exploits Bayesian filters for dual esti-
mation of the full state and reduced parameters of the system. At each recursion,
Kalman filter is adopted to update the subspace spanned by the POMs retained in
the reduced model. This method can effectively detect, locate and identify the
severity of the damage in shear building type structures. The efficiency of the
methodology is testified through pseudo experimental data obtained by employing
direct analyses.

The proceeding sections of this chapter are organized as follows. In Sect. 5.2 the
state space formulation of shear buildings is reexamined; moreover, key features of
the reduced order state space model of the system are highlighted in Sect. 5.3. In
Sect. 5.4 the peculiarities of dual estimation and reduced order modeling of a
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damaging structure are presented and discussed, and we define our proposal as how
to tackle the problem. Finally, efficiency of our proposed method is numerically
testified in Sect. 5.5.

5.2 State Space Formulation of Shear Building-Type
Structural Systems

In this study, it is aimed to develop an algorithm for multi-storey buildings and to
investigate shear buildings, i.e. models obtained by lumped mass assumption for
each story, see Fig. 5.1.

Representing storey displacements, velocities and accelerations by u, _u and €u
respectively, the governing equation of motion of the building reads:

M€uþ D _uþ KðtÞu ¼ RðtÞ ð5:1Þ

where M is the stationary mass matrix, D denotes time invariant damping matrix and
KðtÞ stands for time varying stiffness matrix, whose variation in time is due to
possible damage phenomena and is usually unpredictable; RðtÞ is the loading vector:

M ¼

m1

m2

. .
.

mn

2
6664

3
7775 ð5:2Þ

Fig. 5.1 Schematic view of a
shear building
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K tð Þ ¼

k1ðtÞ þ k2ðtÞ �k2ðtÞ
�k2ðtÞ k2ðtÞ þ k3ðtÞ

. .
.

kn�1ðtÞ þ knðtÞ �knðtÞ
�knðtÞ knðtÞ

2
66664

3
77775
ð5:3Þ

In general, RðtÞ can be any kind of loading; however, in this study, we assume
that it is a harmonic force applied to the top floor:

R tð Þ ¼

0
..
.

0
a sin xt

2
664

3
775 ð5:4Þ

where a and x are the amplitude and frequency of excitation, respectively. For the
sake of simplicity, in this study, we neglect damping effects.

To numerically solve the set of ordinary differential equations, Newmark
explicit integrator is employed. To write the equations in the discrete state-space
form, we introduce an extended state, z, that at each time instant tk includes u, _u
and €u according to:

zk ¼
uk

_uk

€uk

2
4

3
5: ð5:5Þ

Then state-space form of Eq. (5.1) is written as:

zk ¼ Akzk�1 þ Bk ð5:6Þ

where:

Ak ¼

I � bDt2KkM�1 DtI � bDt2M�1 Dþ DtKkð Þ �bDt2M�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

þ Dt2 1=2� b
� �

I

�cDtKkM�1 I � cDtM�1 Dþ DtKkð Þ �cDtM�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

þ Dt 1� cð ÞI

�KkM�1 �M�1 Dþ DtKkð Þ �M�1 Dt2 1=2� b
� �

Kk þ Dt 1� cð ÞD
� �

2
66664

3
77775

ð5:7Þ

and:

Bk ¼
bDt2M�1Rk

cDtM�1Rk

M�1Rk

2
4

3
5 ð5:8Þ

b and c are parameters of the Newmark algorithm, for details see Sect. 2.6.
Concerning the observation process, it is assumed that a part of state vector is

directly observable; hence, observation equation is expressed as:

yk ¼ Hzk þ wk ð5:9Þ
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where H denotes a Boolean matrix of appropriate dimension which links the states
of the system to observation process, and wk denotes associated measurement
noise.

5.3 Reduced Order Modeling of Structural Systems

A detailed study of the application of POD for model order reduction of structural
system has been presented in Chap. 3. However, to keep this chapter self-con-
tained, in this Section, we review key features of the procedure. Let us assume that
the displacement field u 2 R

m of the system can be written in a separable form,
according to:

uðx; tÞ ¼
Xm

i¼1
uiðxÞaiðtÞ ð5:10Þ

where uiðxÞ are a set of orthonormal vectors that satisfy proper orthogonal
decomposition (POD) requirements and, ai are temporal functions. Dealing with
structural problems with high dimensional state vectors, the main variation in the
data is usually occurring in a rather small subspace; consequently, it is frequently
possible to approximate the state of the system by keeping just a few, say l proper
orthogonal modes, with l� m:

uðx; tÞ �
Xm

i¼1
uiðxÞaiðtÞ

¼Ul a
ð5:11Þ

where Ul denotes the matrix containing the retained l POMs of the system.
Substituting (5.11) into (5.1), and applying Galerkin projection yield the

reduced dynamic model of the system:

Ml€aþ Dl _aþ Kla ¼ RlðtÞ ð5:12Þ

where:

Ml ¼ UT
l MUl; Dl ¼ UT

l DUl; Kl ¼ UT
l KUl; Rl tð Þ ¼ UT

l R tð Þ: ð5:13Þ

The reduced dynamic model in state-space form then reads:

zr;k ¼ Akzr;k þ Bk þ vz
k ð5:14Þ

yk ¼ HCzr;k þ wk ð5:15Þ

where the reduced order state includes the temporal coefficient, its first and second
time derivatives:
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zr;k ¼
ak

_ak

€ak

2
4

3
5: ð5:16Þ

In (5.14):

Ak ¼

I � bDt2M�1
l Kl;k DtI � bDt2M�1

l Dl þ DtKl;k

� �
�bDt2M�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �
þ Dt2 1=2� b

� �
I

�cDtM�1
l Kl;k I � cDtM�1

l Dl þ DtKl;k

� �
�cDtM�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �
þ Dt 1� cð ÞI

�M�1
l Kl;k �M�1

l Dl þ DtKl;k

� �
�M�1

l Dt2 1=2� b
� �

Kl;k þ Dt 1� cð ÞDl

� �

2
66664

3
77775

ð5:17Þ

Bl;k ¼
bDt2M�1

l Rl;k

cDtM�1
l Rl;k

M�1
l Rl;k

2
4

3
5 ð5:18Þ

and, in (5.15):

C ¼
Ul

Ul

Ul

2
4

3
5 ð5:19Þ

Throughout the paper, whenever two indexes are used to denote a variable, the
first subscript (r) refers to a property associated with reduced order model, while
the second subscript refers to the time instant at which variable is considered.

In (5.14) and (5.15), vz
k and wk are the process and measurement noises,

respectively. The former uncertainty stems from the loss of accuracy due to the
reduced modeling which needs to be further assessed in order to determine its
probability distribution and verify the correlation structure in it. In Chap. 4, we
have tested the whiteness of the residual error signal of POD-based reduced model
of Pirelli tower; it has been shown that, by an increase in the number of POMs
retained in the analysis, a reduction occurs in the amplitude of the noise signal and
its spectral power. As a consequence, the effect of the non-white uncertainty in the
Kalman-POD observer becomes negligible. Hence in this chapter, we assume that
the noises satisfy the requirements of the family of recursive Bayesian inference
algorithms.

To tackle the dual estimation problem, we now augment the parameters of the
reduced model into the state vector, to comply with the state space form. Subse-
quently, we introduce the augmented state vector xr;k, that at any time tk encom-

passes both states and parameters of the system xr;k ¼ zr;k #r;k½ �T . In Sect. 2.2, it
is shown that dual estimation of states and parameters of a linear system leads to a
nonlinear state-space model. The new state space equation is written as:

xr;k ¼ f r;k xr;k�1
� �

þ vk ð5:20Þ

yk ¼ H Lxr;k þ wk ð5:21Þ

110 5 Dual Estimation and Reduced Order Modeling of Damaging Structures

http://dx.doi.org/10.1007/978-3-319-02559-9_4
http://dx.doi.org/10.1007/978-3-319-02559-9_2
http://dx.doi.org/10.1007/978-3-319-02559-9_2


L ¼ C
0

ffi �
ð5:22Þ

where: 0 in L is a null matrix of appropriate dimension to annihilate the effects in
the observation mapping of parameters in the augmented state vector; f r;kð:Þ maps
the state of the system in time and H denotes the correlation between states and
observables of the system; L links the reduced states of the system to the full state;
whereas vk and wk stand for the zero mean white Gaussian processes with asso-
ciated covariance matrices V and W. Likewise previous Chapters, #r;k includes the
parameters of the reduced state space model that should be estimated, namely the
components of the reduced stiffness matrix Kl;k.

5.4 Dual Estimation of Reduced States and Parameters
of a Damaging Structure

Dual estimation problem for a non-damaging (elastic) structure can be pursued via
the estimation of reduced state and parameters since there will not be changes in
the subspace of the problem. On the contrary, subspace of a damaging structure
varies in time: for instance, a change in a story stiffness can lead to a change in the
POMs. As a consequence, dual estimation of the reduced state and parameters of a
damaging structure not only includes tracking of the reduced state and estimation
of the reduced parameters of the system, but also needs online update of the
relevant subspace of the structure.

In this section, we introduce a novel approach for simultaneous state and
parameter estimation, accompanied by an online subspace update in order to obtain
an estimate of the full state. In this regard, we adopt recursive Bayesian filters: the
extended Kalman filter (EKF) and the extended Kalman particle filter (EK-PF).
They have been discussed in Chap. 2, and used for dual estimation. A Kalman filter is
instead used to update the subspace furnished by POD. Likewise all recursive
Bayesian inference algorithms, the iterations start by an initial guess; next, within
each time interval ½tk�1tk�, provided that at tk�1 estimations of state, parameters and
subspace of the system are available, the state zr;k and parameters in Kl;k are
simultaneously estimated. Let us consider the following state space model:

xr;k ¼ f r;k xr;k�1
� �

þ vk ð5:23Þ

yk ¼ HLkxr;k þ wk ð5:24Þ

where:

Lk ¼

Ul;k

Ul;k

Ul;k

0

2
664

3
775: ð5:25Þ
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Along with Eqs. (5.23) and (5.24), an additional equation should be introduced
in order to permit time variation and update of Ul, similar to the trick used for dual
estimation of states and parameters. The following equation is introduced to allow
the subspace to vary over time, and use the data in observation in order to adapt to
the possible changes:

Ul;k ¼ Ul;k�1 þ t ð5:26Þ

where t denotes a fictitious zero mean, white Gaussian noise with associated
covariance t that needs to be obviously tuned to obtain unbiased estimates of the
subspace vectors.

To recursively update the subspace, Eqs. (5.26) and (5.24) are assumed as the
state-space model for subspace evolution. The former equation governs the evo-
lution of the subspace, and the latter one links the observation to the subspace. In
Eqs. (5.26) and (5.24), it is assumed that xr;k remains independent of Ul;k. The
observation Eq. (5.24), when used for subspace update can be rewritten as:

yk ¼ HssUl;k þ wk ð5:27Þ

where Hss is a stationary matrix which links the observation process to the sub-
space spanned by the POMs, and can be computed by manipulating Eq. (5.26).
Equation (5.27) establishes a linear relationship between the observation yk and the
subspace Ul;k, whose linearity allows us to use the Kalman filter (the optimal
estimator for linear state-space models) for the estimation of the subspace.

In Tables 5.1 and 5.2, an algorithmic description of the procedure is reported; the
EKF and the EK-PF are used for dual estimation. In the Table 5.1,rx f r;kðxÞjx¼bxk�1

denotes Jacobian of f r;kð�Þ, at xr ¼ x�r;k.
As seen in Table 5.1, the algorithm has two main stages of prediction and

update. In the prediction stage, the evolution equations are used to map in time the
reduced state xr;k�1 along with its covariance. In the update stage, first the reduced
state and parameters and their associated covariances are corrected by incorpo-
rating the information contained in the latest observation (steps 1 and 2); next, the
Kalman filter is exploited to update the subspace Ul. Step 3 in the prediction stage
of dual estimation algorithm is in fact the predictor stage of the Kalman filter to
update the subspace. In step 4, Kalman gain is computed and is used in step 5 to
update the estimate of the subspace by taking the latest observation into account.

Concerning the use of EK-PF for dual estimation, according to previous Chap. 2,
combined with the Kalman filter for subspace update, similar to the procedure used

by EKF-KF algorithm, the reader is referred to Table 5.2. In the Table 5.2, F
ðiÞ
r;k is:

rx f r;kðxÞjx¼bxk�1
ð5:28Þ

where it denotes Jacobian of the reduced evolution f r;k xrð Þ at xr ¼ x
ðiÞ�
r;k .
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5.5 Numerical Results: Damage Detection in a Ten Storey
Shear Building

This section deals with the numerical assessment of the proposed algorithm to
detect damage in a 10-storey shear building. To deal with the damage scenarios,
it is not straight forward to use the model of Pirelli tower, due to the fact that a
static condensation has been carried out to derive matrices of lumped mass system
of the Pirelli towers. For the sake of simplicity, in the numerical example, it is
assumed that all the floors have equal mass and inter-storey stiffness, i.e.
mi = 20 Kg and ki = 300 Kg/m where i ¼ 1; 2; . . .; 10, and the damping effect is
neglected. It the analysis, the external load shaking the structure, is a sinusoidal
load applied to the last floor (roof) of the building, varying according to:

RðtÞ ¼ am sin 2pxt ð5:29Þ

Table 5.1 EKF-KF algorithm for dual estimation of the reduced model and subspace update

• Initialization at time t0

bxr;0 ¼ LT
0E x0½ � Pr;0 ¼ LT

0E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

L0

bUl;0 ¼ E Ul;0
� 	

Pss;0 ¼ E Ul;0 � bUl;0

� �
Ul;0 � bUl;0

� �T
ffi �

• At time tk , for k ¼ 1; . . .;Nt

- Prediction stage
1. Computing process model Jacobian

Fr;k ¼ rx f r;kðxÞjx¼bxk�1

2. Evolution of state and prediction of covariance

x�r;k ¼ f r;k xr;k�1
� �

P�r;k ¼ Fr;kP�r;k�1FT
r;k þ V

- Update stage
1. Use Ul;k�1 to estimated Lk and Kalman gain

Gk ¼ P�r;kLT
k HT HLkP�r;kLT

k HT þW
� ��1

2. Update state and covariance

xr;k ¼ x�r;k þ Gk yk �HLkx�r;k

� �

Pr;k ¼ P�r;k � GkHLkP�r;k
3. Predict subspace and its associated covariance

U�l;k ¼ Ul;k�1

P�ss;k ¼ Pss;k�1 þ �
4. Calculate Kalman gain for updating subspace

Gss;k ¼ P�ss;kHT
ss HssP

�
ss;kHT

ss þW
� ��1

5. Calculate Kalman gain for updating subspace

Ul;k ¼ U�l;k þ Gss;k yk �HssU
�
l;k

� �

Pss;k ¼ P�ss;k � Gss;kHssP
�
ss;k
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where am ¼ 10 N and x ¼ 0:01 Hz.
Consider a case in which a stiffness reduction equal to 50 % has occurred at the

5th floor. The POMs of the structure, before and after damage occurrence, are
computed and presented in the Fig. 5.2. To compute these POMs of the healthy
and damaged cases, two direct analyses have been carried out to assemble the so-
called snapshot matrices. Looking at Fig. 5.2, it can be seen that the ten POMs of
the structure are affected by the stiffness reduction at the 5th floor. The effect of the

Table 5.2 EK-PF-KF algorithm for dual estimation of the reduced model and subspace update

• Initialization at time t0

bxr;0 ¼ LT
0E x0½ � Pr;0 ¼ LT

0E x0 � bx0ð Þ x0 � bx0ð ÞT
h i

L0

bUl;0 ¼ E Ul;0
� 	

Pss;0 ¼ E Ul;0 � bUl;0

� �
Ul;0 � bUl;0

� �T
ffi �

x
ðiÞ
r;0 ¼ bx0 xðiÞ0 ¼ p y0jxr;0

� �
; i ¼ 1; . . .;NP

• At time tk, for k ¼ 1; . . .;Nt

- Prediction stage
1. Draw particles

x
ið Þ�

r;k � p xr;kjxðiÞr;k�1

� �
i ¼ 1; . . .;NP

2. Push the particles toward the region of high probability through an EKF

P
ið Þ�

r;k ¼ F
ðiÞ
r;kP

ið Þ
r;k�1F

ið ÞT
r;k þ V

G
ðiÞ
k ¼ P

ið Þ�
r;k LT

k�1HT
k HLk�1P

ið Þ�
r;k LT

k�1HT þW
� ��1

x
ðiÞ
r;k ¼ x

ið Þ�
r;k þ G

ðiÞ
k yk �HLk�1x

ið Þ�
r;k

� �

P
ið Þ

r;k ¼ P
ið Þ�

r;k � G
ðiÞ
k HLk�1P

ið Þ�
r;k

i ¼ 1; . . .;NP

- Update stage
1. Evolve weights

xðiÞk ¼ xðiÞk�1p ykjx
ðiÞ
r;k

� �
i ¼ 1; . . .;NP

2. Resampling, see Table 2.5.
3. Compute expected value or other required statistics

bxr;k ¼
PNP

i¼1 xðiÞk x
ðiÞ
r;k

4. Predict subspace and its associated covariance
U�l;k ¼ Ul;k�1

P�ss;k ¼ Pss;k�1 þ �
5. Calculate Kalman gain for updating subspace

Gss;k ¼ P�ss;kHT
ss HssP

�
ss;kHT

ss þW
� ��1

6. Update subspace and its associated covariance

Ul;k ¼ U�l;k þ Gss;k yk �HssU
�
l;k

� �

Pss;k ¼ P�ss;k � Gss;kHssP
�
ss;k

114 5 Dual Estimation and Reduced Order Modeling of Damaging Structures

http://dx.doi.org/10.1007/978-3-319-02559-9_2


damage in the first POM is quite visible, the usefulness of such sensitivity to
damage, even in the first POM, helps tracking the evolution of damage in a single
DOF reduced model.

Figure 5.3 compares the first POM of the structure when the 5th floor of the
structure suffers a damage of varying intensity; the close-up in the graph allows us
to compare the shape of the POM in the vicinity of the damage location. Obvi-
ously, the intensity of damage leads to an increase in the deviation of the POM
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Fig. 5.2 Proper orthogonal modes of a 10 storey shear building before and after damage
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relevant to the damaged state with respect to the healthy state of the structure. To
highlight the sensitivity of the 1st POM to damage location, in Fig. 5.4 the first
POM of the damaged state is compared with healthy state, when damage occurs at
different floors. The imposed level of the damage in all the cases is equal to a 50 %
reduction of the stiffness of the relevant floor.

Now that the link between the first POM of the structure and the location and
severity of the damage is established, we move to the problem of the recursive
estimation of the state, parameters and POMs of the reduced model of the struc-
ture. To detect the damage, the POMs of healthy and current state of the structure
are compared; thus information concerning the healthy state of the structure is
needed. In this study, the case in which the reduced models retain one or two
POMs are assessed, the latter case is mainly reported to verify the performance of
the algorithm in case of the higher number of parameters to be estimated: dual
estimation of reduced models which retain more POMs includes calibrating a high
number of parameters, and can therefore potentially pose the problem of curse of
dimensionality, as discussed in Chap. 2.

First, we deal with the reduced model constructed through a single POM.
Pseudo-experimental data for evaluation of the methodology have been created by
running direct analysis, to compute the response of the structure, and then adding
zero mean white Gaussian noise to allow for uncertainties in measuring the
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Fig. 5.4 1st POM of a ten storey shear building for a damage occurring at different storeys of the
building
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response of the structure. The covariance of the added noise to all the pseudo
experimental data considered in this section is set to 10-4 m2 to simulate a high
level of measurement uncertainty. The duration of the analysis is set to 1,000 s, in
order to allow the estimates of the algorithms to converge to a steady state value.
The damage scenario is once again a reduction of 50 % in the stiffness of the 5th
floor, which occurs at t = 100 s. Other damage scenarios, featuring severities
ranging from 10 to 40 % in the reduction of the stiffness of other floors has been
assessed; the algorithms show similar performance dealing with those scenarios;
thus the results are not presented for the sake of brevity.

Since the goal of this Section is the damage identification, the results con-
cerning the estimation of the state are not discussed. Figure 5.5 shows the time
history of the estimated stiffness of the reduced system when compared with its
target value. It is observed that before damage occurs, the estimation coincides
with the target value; however, after damage occurs, it takes almost 400 s for the
algorithm to make its estimate to converge to the target value. Figure 5.6 shows
the estimated POMs of the building before and after damage: the POM concerning
the healthy state is related to t = 50 s, and the POM concerning the damaged state
is related to t = 1,000 s. To compare the performance of the algorithm in tracking
the POM of the system over time, Fig. 5.7 shows time history of the estimated
POM, compared with its target value. It is observed that the estimations of the
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POM components before damage occurrence coincide with the true value; after
damage occurs, the algorithm needs nearly 400 s, similar to parameter estimates,
to reach steady state. EK-PF, when dealing with several problems discussed in
Chap. 2 outperforms the EKF; hence, it is used to verify if its convergence rate
would be better than EKF’s one. However, it is seen in Fig. 5.5 that the quality of
estimation of the reduced stiffness and the 1st POM of the structure do not change,
when either EKF-KF or EK-PF-KF are used for dual estimation and reduced order
modeling of the damaging shear building.
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Now, let us move to a case in which there are two POMs retained in the reduced
order model of the system. In this case, taking advantage of the symmetry of the
stiffness matrix, the reduced stiffness matrix Kl has three components to estimate.
Figure 5.8 shows the results of the reduced stiffness matrix estimation via the
EK-PF-KF and EKF-KF algorithms. It is observed that both algorithms are able to
calibrate two of the components of the reduced stiffness matrix, while the Kl;ð2;2Þ
component is failed to be estimated. The reason for such failure can be the
insensitivity of the observations to the sought parameter.

Figure 5.9 shows the results of the estimation of the 2nd POM of the structure
by utilizing both the proposed algorithms. It is observed that, they fail in furnishing
an estimate of the 2nd POM; this failure can be due to the small contribution of the
second POM in the response of the structure.

5.6 Summary and Conclusion

In this chapter, we consider dual estimation and reduced order modeling of a
damaging structure. Moreover, proper orthogonal decomposition has been con-
sidered for reduced order modeling in order to find a subspace which optimally
captures the dynamics of the system. Through a Galerkin projection, the equations
governing the dynamics of the system are projected onto the subspace provided by
the proper orthogonal decomposition algorithm. As for the dual estimation goal,
the extended Kalman filter and extended Kalman particle filter have been adopted;
both filters, in their so-called update stage, make a comparison between the latest
observation and the prediction of the state of the system to estimate the quantity of
correction which is needed in estimation of the state. In the case of the reduced
order modeling, for realization of such a comparison, reconstruction of full state of
the system is required, which is obviously possible only if the subspace is known.
It is established that the subspace found by proper orthogonal decomposition is not
robust to changes of the parameters; therefore, we have proposed algorithms for
online estimation of the subspace spanned by proper orthogonal modes retained in
the reduced order model of the system. Such an online estimation of the proper
orthogonal modes of the structure makes it possible to detect the damage in the
structure, locate it and potentially identify its intensity.
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Chapter 6
Conclusions

Abstract The major goal of the present study is to develop fast and robust
algorithms for online damage detection in structural systems. To accomplish this
objective, the research study presented in this monograph can contribute to three
different research areas: (a) stochastic system identification of multi degrees-of-
freedom structural systems via recursive Bayesian inference algorithms, (b)
reduced order modeling of multi degrees-of-freedom structural systems through
proper orthogonal decomposition; and (c) stochastic system identification of
reduced order models of multi degrees of freedom structural systems through
recursive Bayesian filters.

6.1 Summary of Contributions

The principal contributions and major findings of this research study can be
summarized as follows:

(1) Four state of the art Bayesian filters, namely the extended Kalman filter, the
sigma-point Kalman filter, the particle filter and the hybrid extended Kalman
particle filter have been adopted. To benchmark the performance of filters and
avoid shadowing effects of the structure, the filters have been adopted to
recursively identify the parameters of the constitutive model of a single
degree-of-freedom dynamical system: an exponential softening, and three
bilinear models (linear-hardening, linear-plastic and linear-softening), as
possible representatives of initial stages of damage are adopted. The goal is
achieved by dual estimation concept, where the parameters of the system are
joined to the state vector in order to simultaneously track the state of the
system and calibrate the parameters, as new observations become available.
Provided that the Jacobian of the evolution equations of the state space model
is positive definite and bounded, it is known that the adopted filters are stable
and can converge to unbiased estimates; however, such conditions are not
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always satisfied in a model featuring softening constitutive law. This fact
substantiates numerical assessment of stability and convergence of the studied
filters, when applied to the estimation of parameters of a softening constitutive
law used to describe damage evolution in the system. The conducted
numerical campaign has revealed that while the extended Kalman filter, the
unscented Kalman filter and the particle filter all fail to provide unbiased
estimates of the sought parameters, the hybrid extended Kalman particle filter
performs rather reasonably.

(2) The extended Kalman filter (because of its computational time efficiency) and
the hybrid extended Kalman particle filter (due to its excellent performance
when applied to the analysis of single degree-of-freedom nonlinear system)
have been adopted for dual estimation of states and constitutive parameters of
a multi degrees-of-freedom linear shear building-type structure. The perfor-
mance of the two filters has been assessed through the estimation of the values
of the inter-storey stiffness of the floors of the building. In the simplest case,
i.e. a two-storey shear building, both filters furnish quite accurate estimates of
the stiffness values; however, moving to a three-storey structure, the perfor-
mance of both filters is adversely affected. The trend is corroborated by the
results in the case of a four storey building: the estimation resulted in a bias up
to 50 % of the target values of the parameters. This trend suggests that, when
dealing with dual estimation of a multi storey shear building, an increase in the
number of storeys rapidly deteriorates accuracy of the parameter estimates.
Therefore, this approach will not be an effective damage detection method;
thus we the adopted a dual estimation of a reduced order model of the
building.

(3) To manage the curse of dimensionality issue, the method of proper orthogonal
decomposition (POD) has been adopted to produce a reduced order model of
the vibrating structure. Provided that there exist a set of samples from the
response of the system and its members are selected in way that the ensemble
contains information on the main dynamic characteristics of the system; thus
POD automatically looks for those main characteristics. To accomplish this
objective, the POD finds the directions which capture the maximum variation,
or equivalently, the maximum energy of the system. Once the relevant
directions (called proper orthogonal modes, POMs) in an initial training stage
are found, Galerkin projection is employed to project the equations onto the
subspace spanned by the computed POMs. The efficiency of the algorithm in
terms of speed-up and accuracy of the estimations has been then numerically
assessed. The procedure is applied for reduced order modeling of the Pirelli
tower located in Milan; prediction capability and speed-up issues are
numerically assessed. It is observed that reducing the original 39 degrees-of-
freedom structure to a reduced model consisting of four POMs makes the
computations 250 times faster; while a reduced model featuring a single POM
has a speed-up value of 500. Moreover, robustness of the reduced models,
featuring different number of retained POMs, to a change in the source of the
external loading has been further analyzed. To produce the samples required
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for initial training stage of POD-based reduced model, the Pirelli tower has
been assumed to be shaken by the well-known El Centro acceleration time
history. The resulted reduced model has then been applied to simulate the
response of the structure to the Kobe and Friuli earthquake excitations. It has
been shown that the change in the source of excitation does not affect much
the prediction capabilities of POD-based reduced models in seismic analysis
of the structure.

(4) Prior to applying the reduced models obtained by the POD in the recursive
Bayesian inference algorithms adopted in this monograph, a statistical
assessment of the uncertainties induced by reduced order modeling is essen-
tial. In this study, all the Bayesian filters adopted are assumed that the
uncertainties in the state space model are uncorrelated processes. The null
hypothesis of whiteness of the residual error of POD models has been tested
by cumulative periodogram-based test of Bartlett (Bartlett 1978). It has been
shown that, no matter what the number of the POMs featured by the reduced
model is, its residual error is always correlated. However, by an increase in the
number of retained POMs, the spectral power of the correlation in the signal
decreases. The linear, time-invariant reduced models of the Pirelli tower has
been incorporated into a Kalman filter in order to speed-up the calculations.
Provided that the noises in the state space equation are white Gaussian pro-
cesses, it is known that Kalman filter furnishes optimal estimates of state of a
linear model. We have shown that the POD-based reduced state space used in
this study is not white. That is, when just a single POM is retained in the
analysis, residual mean squared error (RMSE) of the POD-Kalman observer is
higher than the POD alone; however, as the number of POMs retained in the
analysis increases and spectral power of the correlations decrease, POD-
Kalman observer performs better, in terms of reducing RMSE of estimates:
POD-Kalman observer featuring three and four POMs in its reduced model
decrease quality of estimates provided by POD alone. Concerning speed-up
gained by introducing POD-based models into Kalman observer, by main-
taining a minimal number of POMs, the observer is run up hundreds of times
faster.

(5) Besides its efficiency in model order reduction, the POD has an interesting
feature which makes it appropriate for the purpose of damage detection.
Proper orthogonal modes which are furnished by the POD have been shown to
be sensitive to the severity and location of the damage in the mechanical
systems, and they are already used as damage detection tools (Shane and Jha
2011a). These two aspects of POD, namely its efficiency for model order
reduction and its capability in identifying the damage, make an ideal candidate
for the problem of damage detection in structural systems via reduced order
modeling and dual estimation. In this monograph, we have proposed a novel
algorithm for dual estimation of a POD-based reduced order model of a time-
varying shear model of building. The capability of the algorithm in tracking
the state of the system, the parameters of the reduced model and the POMs of
the reduced model has been numerically assessed. Our approach has been
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employed to detect a variety of damage scenarios in a ten-storey shear
building; however, the assessment has been based on pseudo experimental
verifications. It has been concluded that the proposed procedure performs
accurately.

The major goal of this monograph is to develop robust algorithms for online
and real-time detection of the damage in civil structures. The objective of the
monograph is perceived by developing a procedure by a synergy of recursive
Bayesian inference methods and proper orthogonal decomposition. Therefore, a
POD-based reduced model of the structure has been considered: dual estimation
concept has been exploited, within a recursive Bayesian framework the state and
the parameters of the reduced model are simultaneously estimate based on
observational signal which becomes available in discrete time instants. In each
recursion, not only the state and the parameters of the reduced model are esti-
mated, but also the proper orthogonal modes employed to construct the reduced
model are estimated. It is shown that the POD modes can indicate location and
severity of the damage in mechanical systems. The unbiased estimate of the POMs
provided by our approach permits robust, online and real-time indication of the
damage in a shear type of building.

6.2 Suggestions for Future Research

Based on the work presented herein, several research areas have been identified as
open to and in need of future work:

(1) In this monograph, regarding the application of Bayesian filters for dual
estimation of states and parameters of the multi-storey shear buildings, we
have adopted the family of Kalman filter, particle filter and a combination
thereof. However, the use of evolutionary particle filters has not been con-
sidered; it is suggested to tackle this problem by utilizing the aforementioned
filters as well.

(2) To construct the POD-based reduced models, the effects of nonlinear mech-
anisms have been neglected. It is recommended to take those effects into
consideration as well.

(3) The algorithms proposed in this monograph for damage detection via dual
estimation of the reduced model and subspace update have been assumed to be
fed by displacement response at each floor. The reason is to construct the
reduced model POD modes of the displacement response of the structure used
for acceleration modes are different from displacement modes; moreover, the
accuracy of reproducing accelerations by reduced model is lower than dis-
placements. There are two remedies: one is increasing the number of POMs
retained in the reduced model to improve the quality of acceleration recon-
struction; hence, this can lead to curse of dimensionality by increasing number
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of the parameters to be estimated in the reduced model, and the other option is
to compute the displacement response from the acceleration response data. In
the literature, there are several methods available to calculate displacement
response based on the acceleration (Skolnik et al. 2011). It is recommended to
utilize those techniques to verify the algorithms by pseudo experimental data.
It is worthy to see if the Bayesian filters can handle the uncertainty introduced
by converting the acceleration response into the floor displacements.

(4) Through this study, the methodologies which were used or developed have
been verified via pseudo-experiments. It is recommended to verify the effec-
tiveness of the proposed procedure by utilizing real experiments.

(5) It is has been shown that, dealing with a ten-storey shear building with equal
masses and stiffnesses at each floor, there exist an intuitive and clear corre-
lation between damage location and intensity and the POM. However, to
quantify the damage index relevant to each floor, it is recommended to utilize
artificial neural networks (the standard classification methodologies) in order
to provide quantitative damage indexes for each storey based on the POM of
the structure; such method has been already adopted to identify damage based
on the changes in the coefficients of an auto regressive moving average model
of a four storey structure (de Lautour and Omenzetter 2010).
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Appendix:
Summary of the Recursive Bayesian
Inference Schemes

Abstract This appendix aims to provide a summary of the key aspects of general
sequential Bayesian estimation problem and to highlight the reason for which a
closed-form solution can be obtained when certain prerequisites are met. In
addition, the reasons for which approximate solution are widely sought for are
explained. In so doing, for the sake of the brevity the details are not presented and
instead significant text and research books on the topic are cited (Bittanti 2004;
Ljung 1999; Doucet et al. 2001; Haykin 2001), so that the reader can find the
details on the derivation of the Bayesian algorithms used in this monograph.

While studying the dynamics of a structural system, usually we have to deal with a
state space representation of it; let us consider the following state-space equation:

xk ¼ fk xk�1ð Þ þ vk ðA:1Þ

yk ¼ Hkxk þ wk ðA:2Þ

where fk (j), maps the state vector xk: over time, Hk: links the (usually
unobservable or partially observable) state vector xk to the observation yk. The vk

and wk denote the zero mean additive noises, which quantitatively represent the
model and observation inaccuracies, respectively.

The inference problem can be viewed as recursively estimating the expected
value E½xkjy1:k� of the state of the system, conditioned on the observations.
Provided that the initial probability density function (PDF) pðx0jy0Þ ¼ pðx0Þ of the
state vector is known, the problem consists in recursively estimating pðxkjy1:kÞ at
the time tk, assuming that the conditional probability density function
pðxk�1jy1:k�1Þ is available at the time tk�1. In the literature of the sequential
Bayesian estimation, it is customary to estimate the state of a system in two
different stages: prediction and update. In the prediction stage the well-known
Chapman-Kolmogorov equation provides so called a-priory estimate of the PDF of
the state at tk (Arulampalam et al. 2002):

pðxkjy1:k�1Þ ¼
Z

pðxkjxk�1Þ pðxk�1jy1:k�1Þdxk�1: ðA:3Þ

In the update stage, by taking advantage of the Bayes rule, the PDF of the state
is adjusted via including the information conveyed by the observation yk (Cadini
et al. 2009) in the estimation:
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pðxkjy1:kÞ ¼ 1 pðykjxkÞpðxkjy1:k�1Þ ðA:4Þ

where 1 is a normalizing constant which depends on the likelihood function of the
observation process. The Eqs. (A.3) and (A.4) together set the basis for any
recursive Bayesian inference scheme. The analytical solution of the integral in the
(A.3) is not possible, except for a limited category of systems, namely systems
formulated by linear state-space equations and disturbed by white Gaussian noises
(Julier and Uhlmann 1997). Provided that the probability density functions of the
evolution and the observation equations are Gaussian, they both are represented by
the following exponential e(j) form:

pðxk�1jy1:k�1Þ ¼
1

ð2pÞn Pk�1j jð Þ1=2
exp � 1

2
xk�1 � x̂k�1ð ÞTP�1

k�1 xk�1 � x̂k�1ð Þ
� �

ðA:5Þ

p xkjxk�1ð Þ ¼ 1

ð2pÞn Vj jð Þ1=2
exp � 1

2
xk�1 � fk xk�1ð Þð ÞTV�1ðxk�1 � fk xk�1ð ÞÞ

� �

ðA:5Þ

where, Pk�1 and V are the covariances of the estimated state and evolution
uncertainty, respectively; n is the dimension of the stare vector. Provided that the
evolution equation is linear, the integral in the A.3 can be dealt with analytically,
like in the Kalman filter (Kalman 1960). If the evolution equation is nonlinear and/
or the probability density functions of the state and observation are not Gaussian,
only an approximation of the integral in the Eq. A.3 would be available (Doucet
1997).

In case of a general nonlinear problem, one has to make recourse to approximate
solutions, either by approximating the nonlinearity via successive linearization of
the evolution equation (Corigliano and Mariani 2004) like in the extended Kalman
filter, or via discrete approximate representation of the probability density function
of the state vector (Mariani and Ghisi 2007; Doucet and Johansen 2009). The first
remedy has broadly been applied to weakly nonlinear dynamic systems, and the
required conditions for its stability have been extensively investigated (Ljung 1979).
However, in some cases it is difficult, or even impossible to linearize the evolution
equation. Moreover of severe nonlinearities may prevent the EKF from obtaining
proper performance; hence, a category of filters have been developed to numerically
handle the integrals in the Eq. A.3 (Kitagawa 1996). The aforementioned methods
can be divided into two main categories: filters that are based on a Gaussian
approximation of the probability density function of the uncertainties in the state,
such as the sigma-point Kalman filter (Julier et al. 2000) and the Gaussian sum filter
(Ito and Xiong 2000); filters that assume general form for the probability density
function of the uncertainties in the state, such as the particle filter (Ristic et al. 2004)
and the Rao-Blackwellized particle filter (Grisetti et al. 2007). Both the
aforementioned categories of filters have known problems: the first class fail to
provide accurate estimations in case of severely nonlinear and non-Gaussian
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problems; the second category can enhance the results but also drastically increase
computational costs. This has motivated the researchers to develop a synergy of both
approaches improving the numerical treatment of the integration in the Eq. (A.3)
through an enhancement of the random quadrature procedures used by the particle
filters. This notion has led to development of unscented particle filter (Van Der
Merwe 2000), Gaussian mixture particle filter (Kotecha and Djuric 2003) and
extended Kalman particle filter (de Freitas et al. 2000). From what preceded, one can
conclude that the performances of recursive Bayesian filters in terms of
computational burden and accuracy of the estimates may vary dealing with
different problems. Aforementioned fact substantiates an assessment and
comparison of performances once dealing with a specific problem. The Chap. 2
of this book provides and extensive study on the applications of recursive Bayesian
filters to a shear-type building.
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