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Abstract The shell theory-based approach for the elastic analysis of biological cells
is proposed. This approach introduces the estimation of the local Young’s modulus of
the single cell on the basis of the shell theory and data of the atomic force microscopy
(AFM). This method is applicable to evaluate the elastic properties of the cell mem-
brane which stretched under action of the atomic force microscope indenter (AFMI).
The cell is represented by a thin shallow spherical shell experiencing the concentrated
outward force. The influence of cytoskeleton on the cell deformation is disregarded.
Taking into account microscopic sizes of the cell and the indenter tip, the internal
nanoscale parameter is introduced into the constitutive equations. On the basis of
the experimental data and developed shell model we give a rough estimate of local
Young’s modulus for the red blood cell.

1 Introduction

Mechanical properties are fundamental characteristics of cells and tissues. They
define a number of cytophysiological and cytopathological processes. The cell
mechanical parameters may be used as certain markers of various pathologies
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[23, 32]. The study of elastic properties allows us to obtain new knowledge on
the biological cells and is also of clinical interest.

There are several methods to evaluate the elastic properties of the biological cells:
micropipette aspiration [15, 18, 27, 31, 33], filtering [3, 34], fluctuations of the
cell’s shape [4, 42], the cell deformation (created by shear stress) by ektocytome-
ter, optical channel or microplates [7, 18, 20], and micromanipulation (optical and
magnetic tweezers, magnetic twisting cytometry) [5, 22, 24, 43]. However, the most
modern and accurate approach developed during the last decade is the one based
on the technology of the atomic force microscopy (AFM) including the force spec-
troscopy [10, 11, 28, 35, 37–40]. This method allows to determine the value of the
local modulus as a result of the indenter impact (AFM probe) on the test material. It
should be however noted that the study of biological objects by using any approach
is very complicated procedure. It includes the following obligatory steps: preparing
samples by a special way, optimizing the measurement parameters and reliable inter-
preting the experimental results. Analysis of the available literature on the estimation
of the cell mechanical properties displays a significant scatter in experimental data
obtained by using the AFM. First of all, this fact can be explained by the lack of
uniformity in measurements and hence makes the quantitative analysis and compar-
ison of the results to be rather complicated [21, 41]. Secondly, when studying the
surface layer of a single cell (with thickness varying from several nanometers to
some hundred nanometers) with the AFM methods, we deal with a composite mate-
rial, the mechanical properties of which are mainly conditioned by the properties
of the cortical actin cytoskeleton, two- or three-dimensional network from natural
biopolymers (proteins) [41]. And the cytoskeleton structure reorganization results in
changing the mechanical properties of cells. In our opinion, the satisfactory results
may be reached by developing the realistic continuum mechanical model describing
a response of the biological cell on the microscopic indenter.

There are different mechanical models, including the shell ones, which are applied
for the mechanical characterization of living cells (e.g., see the survey paper by [25]).
Within the shell model, cells are often assumed to have a spherical shape. For
instance, [44] developed the spherical shell model to describe motion of the bac-
teria (cocci) in an ultrasonic field. Recently, [36] studied aspiration of spherical cells
represented by a hyperelastic isotropic momentless spherical shell, and the simplified
spherical shell model for estimation of the local Young’s modulus of erythrocyte on
the basis of the AFM data was proposed by [12].

The basic goal of this study is to create the reliable shell theory-based model
describing a deformation of the biological cell when subjected to the concentrated
adhesion forces. Taking into account microscopic sizes of the cell and the indenter
tip, we aim to derive an equation for the shell deflection including the nanoscale
effects. Using the experimental data of the nanoindentation, it is possible to obtain
the force curve by recording the cantilever deflection while the tip is in contact
with the biological body. Among all conditions of the cell-indenter interactions, the
regime of adhesion between the indenter tip and cell will be considered. Under this
type of interaction (when the action of normal force is directed outwards), the cell
membrane is only stretched. In this case the influence of the cytoskeleton on the
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strain-stress state of the cell represented by an elastic shell will be negligible and
may be disregarded [12].

2 Methods

2.1 Force Spectroscopy Method

The procedure of force spectroscopy constitutes a standard mode of the AFM. The
method consists in the realization of the contact deformation of a specimen using
the probe and in quantifying the relationship between probe interaction force and
distance [6]. We record the cantilever deflection as the sample moves up, reaches
the tip and is retracted. The force curve is obtained by monitoring the movement
of the reflected laser beam from the rear of the cantilever. The force curves are the
relation between the bend of the cantilever and the position of the probe. Knowing the
displacement of the sample in the vertical direction and the amplitude of cantilever
bending, one can calculate both the resulting deformation of the sample and the total
external force that has been applied to it. The force curve is applied to the calculation
of Young’s modulus (Fig. 1).

Figure 1 shows the different stages of the indentation process. At the beginning of
the force curve recording, the tip is distant from the sample and approaches, but does
not contact it (a). Since there is no contact the cantilever deflection is constant. As
soon as the tip actually touches the sample, the cantilever moves upward (b). Further,
as the tip indents the sample, the cantilever arm moves downward (c). The sample is
then retracted displaying a reverse behavior to action (c), as indicated by the curve
(d) which shows the deflection during retraction. However, when adhesion between
sample and tip occurs, the tip will adhere to the sample beyond the point of contact
(e), until it finally breaks free again and the deflection returns to zero (f). It should
be noted that the approach curve exactly retraces the pathway to point (e) provided
there is no piezohysteresis.

We are able to quantify the local elastic properties of a living cell using the
force spectroscopy mode. The force curve is obtained by recording the cantilever

Fig. 1 Regime of static force
spectroscopy: typical force
curve
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deflection as the tip is brought into contact at the fixed point and then retracted. The
Young’s modulus may be calculated using the Hertz model describing the elastic
deformation of two bodies in contact under load [17]. When applying the Hertz
model the indented sample is assumed to be extremely thick in comparison to the
indentation depth. In this case the elastic modulus may be calculated as described
earlier [9, 23]. Alternatively, the shell theory will be developed to describe the regime
of adhesion of a cell with the indenter tip; in this case the cell thickness will be
assumed to be very thin with respect to the characteristic size of a cell.

2.2 Shell Theory-Based Model

As mentioned above, a thickness of the biological cell varies in the interval from
several to hundreds nanometers, and its characteristic size is a value of about sev-
eral millimeters. For instance, for the red blood cell the average values of these
parameters are h ≈ 10 nm and R ≈ 2 µm respectively. So, when ignoring the
internal cytoskeleton, a cell may be represented by a thin-walled elastic structures.
Here, we consider the case of adhesion between the cell and indenter. Note that
the radius of indenter (about 40 nm) is much less than the characteristic size of the
cell. Then, at small magnitudes of the adhesion forces acting from the indenter tip,
in a vicinity of the contact point the cell may be modeled by a shallow spherical
shell.

Let R be the radius of the spherical shell representing the cell in a vicinity of the
contact point, E the local Young’s modulus, and ν Poisson ratio of the material. The
midsurface is referred to the orthogonal rectangular coordinate system x = Rcx ,
y = Rc y, where x, y are dimensionless coordinates. The shell is assumed to be
under action of the concentrated normal outward force Z .

Taking into account microscopic sizes of the cell and a nanoscopic radius of the
indenter tip, we aim in passing to study the influence of the nanoscale effect on
deformations of the microscale object. With that end in view, we apply the nonlocal
version of elasticity pioneered by [13, 14]. Let σi j and σ

(m)
i j be microscopic and

macroscopic stresses in the shell, respectively. According to the nonlocal elasticity
theory, these stresses are linked as follows

Ξσi j = σ
(m)
i j , (1)

where Ξ is the appropriate linear differential operator which takes into account the
effect of the elastic nonlocality. For the two-dimensional strain-stress state it is writ-
ten as [14]

Ξ = 1 −
(

e0a

Rc

)2

Δ, (2)
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where Δ is the Laplace operator in the dimensionless coordinate system x, y, a
parameter e0 is the material dimensionless constant of nonlocality, and a is the
internal characteristic length of the material. For instance, [13] gives the value
e0 = 0.39, and for discreet nanoscale structures such as carbon nanotubes, the
parameter a = 0.142 nm is chosen to be the length of the C-C bond. As concerns
biological cells, the parameter e0a remains indefinite. So, studying the mechanical
behaviors of protein microtubules, [16] varied the small scale parameter e0a from
0 to 70 nm.

To describe small deformations of the spherical shallow shell under action of the
normal concentrated force we apply the theory of [30] which takes into account the
transverse shears. According to this theory, the governing equation, with Eqs. (1) and
(2) in mind, may be rewritten as follows

(
1

R2
c
Δ + 2

R2

)[
D

(
1

R2
c
Δ + 1 + v

R2

)
w − 1

R

(
1 − h2

5(1 − v)R2
c
Δ

)
Φ

]

=
[

1 − (2 − v)h2Δ

10(1 − v)R2
c

]
Ξ Z(x, y), (3)

(
1

R2
c
Δ + 2

R2

)[
1

Eh

(
1

R2
c
Δ + 1 − v

R2

)
Φ + w

R

]
= −v

2E R2
c
ΔΞ Z(x, y),

where D = Eh3/[12(1 − ν2)] is the flexural rigidity of the shell, w is the normal
deflexion, and Φ is the stress function.

As opposed to equations for macro-scale shells [26, 30], the modified Eq. (3)
contain the additional operator Ξ (the derivation of similar equations for nano-scale
shells may be found in the paper by [29]) influenced by the nonlocal parameter e0.

To eliminate the influence of boundary conditions, we assume that the shell is
infinite in all directions. Then the concentrated force Z(x, y) = Pδ(x, y) applied in
the point x = 0, y = 0 may be presented by the Fourier integral

P(x, y) = P

π2

∞∫
0

∞∫
0

cos αx cos βydαdβ, (4)

where δ(x, y) is the delta function.
The unknown functions from Eq. (3) may be also presented as

w(x, y) =
∞∫

0

∞∫
0

wαβ(α, β) cos αx cos βydαdβ,

Φ(x, y) =
∞∫

0

∞∫
0

Φαβ(α, β) cos αx cos βydαdβ. (5)
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Substituting Eqs. (4) and (5) into Eq. (3) , and performing the Fourier inversion, one
obtains

w = P R2
c

π2 D

∞∫
0

∞∫
0

K1

[
1 + (eoa)2

R2
c

(α2 + β2)

]
cos αx cos βydαdβ

(α2 + β2 − 2kR)F(α, β)
, (6)

where

K1 =
[
(1 + (η − ε)(α2 + β2))(α2 + β2 − (1 − v)kR)

− ε̄(1 + η(α2 + β2))(α2 + β2)
]

F(α, β) = [
α2 + β2 − kR)2 + 4κ4(1 + η(α2 + β2)

]
,

4κ4 = Eh R4
c

R2 D
= 12(1 − v2)R4

c

R2h2 ,

ε̄ = vh

2R
, ε = vh2

10(1 − v)R2
c
, η = h2

5(1 − v)R2
c

(7)

The characteristic size may be chosen as follows

Rc =
√

Rh
4
√

12(1 − v2)
. (8)

Then, proceeding to the polar coordinate system by equations

α = γ cos ϕ, β = γ sin ϕ, x = r cos θ, y = r sin θ, (9)

one gets

w = P R2
c

2π D

∞∫
0

K2(γ )

[
1 + (eoa)2

R2
c

γ 2
]

J0(γ r)γ dγ

(γ 2 − 2kR)F(γ )
, (10)

where J0(γ r) is the zeroth-order Bessel function of the first kind, and

K2 =
[
(1 + (η − ε)γ 2) − (γ 2 − (1 − v)kR) − ε̄(1 + ηγ 2)γ 2

]
,

F(γ ) = (γ 2 − kR)2 + ηγ 2 + 1, kR = 1√
12(1 − ν2)

h

R
. (11)

Since h2/Rc � 1 and kR � 1, then the term (1+k2
R +2ηkR)−1 can be neglected,

and

1

F(γ )
≈

[
1 − γ 2

1 + γ 4 (η − 2kR)

]
1

1 + γ 4 . (12)



Shell Theory-Based Estimation of Local Elastic Characteristics of Biological Cells 139

Performing simple transformations of functions under the integral (see details in the
paper by [26]), one gets the final equations for the normal displacement of the shell
subjected to action of the concentrated normal force P:

w = w∗ + w∗∗, (13)

where

w∗ = P R2
c

2π D

{
−kei(r) − kR

[
(1 + v)

(π

2
Y0(r

√
2kR) + ker(r)

)
+ 1

2
r ker′(r)

]

+
[
(η − ε) ker(r) + η

4
r ker′(r)

]}
(14)

is the term obtained earlier for a macro-scale shell [26] and

w∗∗ = P(eoa)2

2π D
{ker(r) + kei(r) [η(2 − ε̄) − ε − kR(3 + v)]} (15)

is the new summand taking into account the nano-scale effect. In Eqs. (14) and (15),
kei(x) and ker(x) are the Kelvin functions.

Although Eqs. (14) and (15) have singularity in the point r = 0, they can be
applied for estimation of the maximum displacement of the shell for the case when
the force P is distributed over the surface of a small circle of the radius c. When
taking into account properties of the Bessel and Kelvin functions, one has

w0 = w∗
0 + w∗∗

0 , (16)

where

w∗
0 ≈ P R

√
12(1 − ν2)

Eh2π

[
1

2c2 + 1

2c
ker′(c) − 1

2
kR(1 + ν) ln

√
2kR − kR

4

]

+ 3P

5π Eh
(1 + ν)(2 − ν)

[
ker(c) + c ker′(c)

2(2 − ν)

]
, (17)

w∗∗
0 ≈ P(e0a)2

2π D

{
ker(c) −

[
1

c2 + 1

c
ker′(c)

]
[η(2 − ε̄) − ε − kR(3 + ν)]

}
. (18)

Equation (17) have been derived by [26], and term (18) taking into account the scale
effect is the new one.
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3 Determination of Contact Area

Let c∗ be a radius of the contact area between the cell and tip. This contact is
provided by the forces of adhesion under withdrawal of the tip out of the cell. It
should be noted that a parameter c∗ is hardly measurable one during an experiment.
When the indenter being taken out the sample, the contact area decreases so that
it is very difficult to fix and quantify a radius c∗ in the moment of detachment
of the tip.

Another available way to determine the contact area is based on the theory of
[19]. Let ΔΓ be the surface energy of the sample. This energy is acquired as result
of the surface forces appearing in the sample due to cohesion between the sam-
ple and tip. According to this theory the contact area is defined by the following
equation

c∗ = 3

√
Rt K

(
P + 3π RtΔΓ +

√
(3π RtΔΓ )2 + 6π RtΔΓ P

)
, (19)

where

K = 3

4

(
(1 − v2)

E
+ (1 − v2

t )

Et

)
, (20)

Rt is the tip radius, Et , νt are the Young’s modulus and Poisson’s ratio of the tip.
Since E � Et , it is assumed K ≈ 3(1 − ν2)/E in what follows.

If the surface forces are neglected (ΔΓ = 0), then Eq. (19) is transformed into
the Hertz formula

c∗ = 3
√

P Rt K . (21)

When the sample is stretched, then the force P = −Ps (Ps > 0) is negative.
Increasing the force magnitude Ps results in decrease of the contact area (radius c∗).
Detachment of the indenter tip from the cell takes place when the magnitude of the
stretching force reaches the value

Ps = 3

2
π RtΔΓ. (22)

Then the surface energy of the cell is as follows;

ΔΓ = 2Ps

3π Rt
. (23)
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Substituting Eq. (23) into Eq. (19) results in the following equation for the contact
area radius

c∗ = 3

√
3Ps Rt (1 − v2)

4E
, (24)

which will be used in our subsequent calculations.

4 Estimation of Local Young’s Modulus

Let wmax be the maximum deflection of the sample in the moment of its detachment
from the cantilever. The parameters wmax, Ps are assumed to be known ones; they
are quantified during an experiment. Returning to the shell theory, we assume that
wmax = w0, where w0 is defined by (16)–(18); the function w0 depends on the exter-
nal force Ps , the local Young’s modulus E , thickness h and the dimensionless radius
c of the contact area. Taking into account Eq. (24), one obtains the following equations

wmax = w0[Ps, E, h, c(Ps, E)], c = c∗/Rc (25)

with respect to the modulus E .
We have performed series of the AFM probes and computations for the red blood

cell at the following parameters: Rt = 40 nm, the shell radius R = 2 µm (the total
radius of the red blood cell in the point of indentation [8], Poisson ratio ν = 0, 5
[1, 2], e0a = 0. The shell thickness h was initially taken to be equal to 10 nm, which
corresponds to the average thickness of the cell membrane (without its cytoskeleton).
Solving Eq. (25) at different values of parameters Ps, wmax (the quantified maximum
displacements wmax were varied in the interval from 10–100 nm), we compared the
obtained values of E with data found by the Hertz model.

Figure 2 shows the diagrams for average values of Young’s modulus (in relative
units) at different deformations of the cell.

The diagrams marked by blue were constructed by using both the Hertz model
and data of nanoindentations of the sample (at wexp > 0), and the diagrams in red
correspond to data found from the shell model and experimental data by stretching
the sample (at wexp < 0). All magnitudes shown in this figure as well as in oth-
ers were found by averaging data of a whole number of indentations and adhesive
tensions of the sample, then the average values were normalized by the magnitude
E = 338.5 kPa. As result of linearity of the shell model, the shell-based values Esh do
not depend on the displacement wexp. However, the Hertz model demonstrates very
strong dependence on wexp: increasing the sample deformation results in decrease
of the local modulus EH . It may be seen that both models give close results for
very small deformations. Considerable gap in results at large values of |wexp| can be
explained by influence of both the cell internal components and compressive strains
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Fig. 2 Local Young’s
modulus in relative units
versus the sample
displacement wmax found by
the shell and Hertz models
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(when using Hertz model). As concerns the shell model, it is linear and can not be
used for prediction of large deformations. In addition, applying the shell model for
the stretched cell we ignored the cell cytoskeleton. It should be also noted that a
value of E found at large displacements of the sample can not be considered as local
Young’s modulus of a cell; most probably it might be interpreted as the effective
stiffness of all structure of the microscopic biological object.

It is obvious that the mechanical properties of a cell is influenced by its internal
components (cytoskeleton). The cytoskeleton consists of a dense three-dimensional
network of filaments. Among them it is possible to distinguish at least three types:
microtubules, microfilaments and intermediate filaments. They provide mechanical
stability of the surface layer of cytoplasm and create conditions that allows for the cell
to change its shape and move. Filaments have sufficient resistance to bending in large
scales and remarkable resiliency in small scales [16]. The thickness of microtubules
is approximately 24 nm, the thickness of microfilaments (f-actin) is about 5–8 nm and
the intermediate filaments diameter is 8–10 nm [8]. The thickness of a cell membrane
is stated to vary from 3 to 11 nm. Thus, the overall thickness of a cell membrane and
neighboring elements of the cytoskeleton is in the range about 10–40 nm. To take
into account the influence of the cytoskeleton on the elastic properties of a cell, we
introduced into the shell model the effective thickness which was varied in the range
mentioned above. Numerical calculations by Eq. (25) performed at Ps = 0.1 nN,
wexp = 10 nm revealed that increasing the shell thickness h from 10 nm to 40 nm
leads to near tenfold decrease of the local Young’s modulus (from 338–34 kPa).

The next question that we are interested in: is there such equivalent shell thickness
at which Young’s modulus calculated by using both models are close? Coincidence
of moduli would determine the degree of participation of the cellular component in
the processes of compression and stretching. The results of this evaluation are shown
in Fig. 3. It may be seen that the values of the local elastic modulus estimated on
the basis of the shell and Hertz models are close to each other when the maximum
sample deformation wexp is near the value of the shell thickness (at h/wexp ≈ 1.15).
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Fig. 3 Local Young’s modulus in relative units vs. the sample displacement wmax found by the
shell and Hertz models at different cell thicknesses t1 = 11, 23, 40 nm

Finally, taking into account the microscopic sizes of the cell and indenter, we
attempted to estimate the effect of the internal scale on local properties of the sample.
According to the nonlocal theory of elasticity of [13, 14], the principle parameter
characterizing the nonlocal effect is the scale coefficient ae0, where a and e0 were
introduced above. The satisfactory estimation of this parameter for biological micro-
and nano-objects is still unsolved problem. For instance, studying behavior of the
protein microtubule, [16] varied the small scale parameter ae0 from 0 to 70 nm.
Following [16], we have also performed the series of accurate calculations at different
values of ae0. It was found that impact of the parameter ae0 on the local modulus
E is negligibly small: at ae0 = 70 nm, the additional term (18) gives correction (for
E) not exceeding 0.01 %. Very weak influence of the scale parameter ae0 on the
assessment of the modulus E might be explained by large diameter of the indenter
(about 40 nm) with respect to the cell size. As shown in the paper by [29], the
scale parameter ae0 should be taken into consideration for prediction of mechanical
behavior which is characterized by high variability of deformations along even if one
direction on the surface of a nanoscale shell object. In our case, decreasing the area
of application of the external force Z would result in increasing variability of the
cell deflection in a vicinity of the contact point between the tip and cell. However,
utilization of more thin indenter tip for indentation of biological cells generates the
following serious problems:

(a) the microscope should be thoroughly standardized;
(b) all probes should be done with very high accuracy;
(c) outcome scatter for different probes becomes more significant;
(d) one rises the risk of the membrane penetration.

In our opinion, further improvement of the shell model for prediction of mechan-
ical properties of biological cells might be done by introducing the cell components
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into model. As the first step of this development, the cytoskeleton structure could be
represented by an elastic foundation for a shell modeling a cell.

5 Conclusions

The approach for estimation of the local Young’s modulus of a biological cell, based
on the shell theory and data of the AFM, has been proposed. The developed method
is applicable for the case when the cell membrane is stretched by the adhesion forces
between the AFMI and sample. When developing the mechanical model, the cell has
been represented by a thin elastic isotropic spherical shell with the radius equaled to
the total one of the sample in the point of indentation. The differential equations writ-
ten in terms of the normal displacements and stress function and taking into account
the shear deformations and nano-scale effect have been considered as governing ones.
In the developed model the internal components of a cell (cytoskeleton) are disre-
garded. The solution of these equations with the external concentrated force has been
constructed using the Fourier transformation. The found solution has been modified
for the case of the adhesion forces applied to the small circular area. The radius of the
contact area has been defined by the theory of Johnson-Kendall-Roberts. Substitu-
tion of this radius into the obtained solution of the governing equations has allowed
to derive the transcendental equation with respect to unknown Young’s modulus.

The series of the probes for the red blood cell corresponding to conditions of
adhesion and indentation as well has been made. The averaged data (the force acting
from the AFMI and the maximum displacement of the sample) of these probes have
been introduced into the mathematical model. Alternatively, the Hertz theory has
been applied to estimate the local mechanical properties of the cell when subjected
to the indentation forces.

Comparative analysis of data obtained by using the two approaches allows to
conclude:

• both models give close results only for very small deformations of the cell (about
10 nm) and at the effective cell thickness having the order of the maximum deflex-
ion of the sample;

• introducing the nano-scale parameter into the mechanical model does not give
some noticeable correction for the local Young’s modulus found at the generally
accepted size of the indenter tip (about 40 nm);

• more accurate estimations of the local mechanical properties of a cell might be done
by incorporation of the cell components into the mechanical model; influence of
the cytoskeleton could be taking into account by introducing the nonhomogeneous
elastic foundation into the shell model.
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