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Preface

The first international conference Shell and Membrane Theories in Mechanics and
Biology: From Macro- to Nanoscale Structures (SMT in MB—2013) has taken
place at the Belarusian State University (Minsk, Belarus) from 16 to 20 September
2013. This book is a collection of papers presented on the conference or close to the
topics of the conference. It contains 17 revised and extended research articles
written by experienced researchers participating in the conference. The book will
offer the state-of-the-art in mechanical, materials, and civil engineering, ranging
from composite materials up to characterization of nanostructures. Examples taken
from novel trends in biomechanics. Well-known international experts present their
research on materials modeling and evaluation up to recent printing and visuali-
zation for advanced analyzes and evaluation. The conference was organized by
Belarusian State University (BSU, Belarus) together with the Joint Institute of
Mechanical Engineering of the National Academy of Sciences of Belarus under
support of the Belarusian Republican Foundation for Fundamental Research.

The main purpose of the conference was to bring together mechanical engineers,
mathematicians, physicists, and other specialists carrying out researches in such
areas like theories of shells, plates, and membranes in order to discuss important
results and new ideas support and promote interdisciplinary research activity in
these broad but allied fields. The new trends in application in mechanical, civil, and
aerospace engineering, as well as in new branches like medicine and biology
demand the improvements of the theoretical foundations of these theories.
The forum was addressed to the broad spectrum of scientists from different fields of
mechanics, biomechanics, mathematics, physics, medicine, biology, etc. Although
all papers related to the shell-like structures, membranes and films or to adjacent
fields in mechanics, physics, etc., were welcomed, the focus was paid on presen-
tations which relate to new theories, approaches, methods, and applications
describing nonclassical effects (e.g., the small-size effects at the micro- and nano-
scale level, etc.). Applied studies in industry, medicine, biology, and nanotech-
nology were also presented.
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The editors wish to thank all the authors for their participation and cooperation,
which made this volume possible. Finally, we would like to thank the team of
Springer-Verlag, especially Dr. Christoph Baumann, for their excellent cooperation
during the preparation of this volume

Magdeburg, June 2014 Holm Altenbach
Minsk Gennadi I. Mikhasev

vi Preface



Contents

On Some Classes of 3D Boundary-Value Problems of Statics
and Dynamics of Plates and Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Lenser A. Aghalovyan

On the Theories of Plates and Shells at the Nanoscale . . . . . . . . . . . . . 25
Holm Altenbach and Victor A. Eremeyev

Chaotic Vibrations of Conical and Spherical Shells
and Their Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Jan Awrejcewicz and Vadim A. Krysko

Nonclassical Shell Theories in Ocular Biomechanics . . . . . . . . . . . . . . 81
Svetlana M. Bauer and Eva B. Voronkova

Linear Oscillations of Suspended Graphene . . . . . . . . . . . . . . . . . . . . 99
Igor Berinskii and Anton Krivtsov

On Discrete-Kirchhoff Plate Finite Elements: Implementation
and Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Boštjan Brank, Adnan Ibrahimbegović and Uroš Bohinc

Shell Theory-Based Estimation of Local Elastic Characteristics
of Biological Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Elizaveta S. Drozd, Gennadi I. Mikhasev, Marina G. Botogova,
Sergei A. Chizhik and Maria E. Mychko

On the Direct Approach in the Theory of Second Gradient Plates . . . . 147
Victor A. Eremeyev and Holm Altenbach

vii

http://dx.doi.org/10.1007/978-3-319-02535-3_1
http://dx.doi.org/10.1007/978-3-319-02535-3_1
http://dx.doi.org/10.1007/978-3-319-02535-3_2
http://dx.doi.org/10.1007/978-3-319-02535-3_3
http://dx.doi.org/10.1007/978-3-319-02535-3_3
http://dx.doi.org/10.1007/978-3-319-02535-3_4
http://dx.doi.org/10.1007/978-3-319-02535-3_5
http://dx.doi.org/10.1007/978-3-319-02535-3_6
http://dx.doi.org/10.1007/978-3-319-02535-3_6
http://dx.doi.org/10.1007/978-3-319-02535-3_7
http://dx.doi.org/10.1007/978-3-319-02535-3_7
http://dx.doi.org/10.1007/978-3-319-02535-3_8


A Shell Theory for Carbon Nanotube of Arbitrary Chirality . . . . . . . . 155
Antonino Favata and Paolo Podio-Guidugli

Finite Axisymmetric Deformation of an Inflatable Anisotropic
Toroidal Membrane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Sergei B. Filippov and Peter E. Tovstik

Simulation of Cardiac Cell-Seeded Membranes Using
the Edge-Based Smoothed FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Ralf Frotscher, Matthias Goßmann, Hans-Jürgen Raatschen,
Ayşegül Temiz-Artmann and Manfred Staat

Determining the Modulus of Elasticity for Polymer Materials
by Numerical Testing Thin-Walled Double-Layer Circular Shells . . . . 213
Sergej Gluhih, Andrejs Kovalovs and Andris Chate

Three-Dimensional Exact Analysis of Functionally Graded
Laminated Composite Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Gennady M. Kulikov and Svetlana V. Plotnikova

Prediction of Eigenfrequencies of the Middle Ear Oscillating
System After Tympanoplasty and Stapedotomy. . . . . . . . . . . . . . . . . . 243
Gennadi I. Mikhasev, Irina Slavashevich and Kirill Yurkevich

A New Approach for Studying Nonlinear Dynamic
Response of a Thin Fractionally Damped Plate
with 2:1 and 2:1:1 Internal Resonances . . . . . . . . . . . . . . . . . . . . . . . 267
Yury A. Rossikhin and Marina V. Shitikova

On Stability of Inhomogeneous Elastic Cylinder
of Micropolar Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Denis N. Sheydakov

A New Approach for Studying Nonlinear Dynamic Response
of a Thin Fractionally Damped Cylindrical Shell with Internal
Resonances of the Order of e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Marina V. Shitikova and Yury A. Rossikhin

viii Contents

http://dx.doi.org/10.1007/978-3-319-02535-3_9
http://dx.doi.org/10.1007/978-3-319-02535-3_10
http://dx.doi.org/10.1007/978-3-319-02535-3_10
http://dx.doi.org/10.1007/978-3-319-02535-3_11
http://dx.doi.org/10.1007/978-3-319-02535-3_11
http://dx.doi.org/10.1007/978-3-319-02535-3_12
http://dx.doi.org/10.1007/978-3-319-02535-3_12
http://dx.doi.org/10.1007/978-3-319-02535-3_13
http://dx.doi.org/10.1007/978-3-319-02535-3_13
http://dx.doi.org/10.1007/978-3-319-02535-3_14
http://dx.doi.org/10.1007/978-3-319-02535-3_14
http://dx.doi.org/10.1007/978-3-319-02535-3_15
http://dx.doi.org/10.1007/978-3-319-02535-3_15
http://dx.doi.org/10.1007/978-3-319-02535-3_15
http://dx.doi.org/10.1007/978-3-319-02535-3_16
http://dx.doi.org/10.1007/978-3-319-02535-3_16
http://dx.doi.org/10.1007/978-3-319-02535-3_17
http://dx.doi.org/10.1007/978-3-319-02535-3_17
http://dx.doi.org/10.1007/978-3-319-02535-3_17


Contributors

Lenser A. Aghalovyan Institute of Mechanics of NAS of Armenia, Yerevan,
Armenia

Holm Altenbach Lehrstuhl für Technische Mechanik, Institut für Mechanik,
Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg, Magde-
burg, Germany

Jan Awrejcewicz Department of Automation, Biomechanics and Mechatronics,
Lodz University of Technology, Łódź, Poland

Svetlana M. Bauer Department of Theoretical and Applied Mechanics,
St. Petersburg State University, St. Petersburg, Russia

Igor Berinskii Department of Theoretical and Applied Mechanics, St. Peters-
burg State Polytechnical University, St. Petersburg, Russia; Laboratory for
Discrete Models in Mechanics, Institute for Problems in Mechanical Engineer-
ing, St. Petersburg, Russia

Uroš Bohinc Slovenian National Building and Civil Engineering Institute,
Ljubljana, Slovenia

Marina G. Botogova Belarusian State University, Minsk, Belarus

Boštjan Brank Faculty of Civil and Geodetic Engineering, University of Ljublj-
ana, Ljubljana, Slovenia

Andris Chate Institute of Materials and Structures, Riga Technical University,
Riga, Latvia

Sergei A. Chizhik Heat and Mass Transfer Institute of National Academy of
Sciences of Belarus, Minsk, Belarus

Elizaveta S. Drozd Heat and Mass Transfer Institute of National Academy of
Sciences of Belarus, Minsk, Belarus

ix



Victor A. Eremeyev Lehrstuhl für Technische Mechanik, Institut für Mechanik,
Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg, Magde-
burg, Germany; Southern Scientific Center of Russian Academy of Science and
Southern Federal University, Rostov-on-Don, Russia

Antonino Favata Department of Civil, Environmental and Mechanical Engi-
neering, University of Trento, Trento, Italy

Sergei B. Filippov Department of Theoretical and Applied Mechanics,
St. Petersburg State University, Peterhof, St. Petersburg, Russia

Ralf Frotscher Laboratory of Engineering Mechanics and FEM, Aachen Uni-
versity of Applied Sciences, Aachen, Germany; Biomechanics Lab, Institute of
Bioengineering, Aachen University of Applied Sciences, Jülich, Germany

Sergej Gluhih Institute of Materials and Structures, Riga Technical University,
Riga, Latvia

Matthias Goßmann Laboratory of Medical and Molecular Biology, Institute of
Bioengineering, Aachen University of Applied Sciences, Jülich, Germany

Adnan Ibrahimbegović Ecole Normale Supérieure de Cachan, LMT, Cachan,
France

Andrejs Kovalovs Institute of Materials and Structures, Riga Technical Univer-
sity, Riga, Latvia

Anton Krivtsov Department of Theoretical and Applied Mechanics, St. Peters-
burg State Polytechnical University, St. Petersburg, Russia; Laboratory for Discrete
Models in Mechanics, Institute for Problems in Mechanical Engineering,
St. Petersburg, Russia

Vadim A. Krysko Department of Mathematics and Modeling, Saratov State
Technical University, Saratov, Russia

Gennady M. Kulikov Tambov State Technical University, Tambov, Russia

Gennadi I. Mikhasev Department of Bio- and Nanomechanics, Belarusian State
University, Minsk, Belarus

Maria E. Mychko Heat and Mass Transfer Institute of National Academy of
Sciences of Belarus, Minsk, Belarus

Svetlana V. Plotnikova Tambov State Technical University, Tambov, Russia

Paolo Podio-Guidugli Accademia Nazionale dei Lincei and Department of
Mathematics, University of Rome Tor Vergata, Rome, Italy

Hans-Jürgen Raatschen Laboratory of Engineering Mechanics and FEM,
Aachen University of Applied Sciences, Aachen, Germany

x Contributors



Yury A. Rossikhin Research Center of Wave Dynamics, Voronezh State Uni-
versity of Architecture and Civil Engineering, Voronezh, Russia

Denis N. Sheydakov South Scientific Center of Russian Academy of Sciences,
Rostov-on-Don, Russia

Marina V. Shitikova Research Center of Wave Dynamics, Voronezh State Uni-
versity of Architecture and Civil Engineering, Voronezh, Russia

Irina Slavashevich Department of Bio- and Nanomechanics, Belarusian State
University, Minsk, Belarus

Manfred Staat Biomechanics Lab, Institute of Bioengineering, Aachen Univer-
sity of Applied Sciences, Jülich, Germany

Ayşegül Temiz-Artmann Laboratory of Medical and Molecular Biology, Institute
of Bioengineering, Aachen University of Applied Sciences, Jülich, Germany

Peter E. Tovstik Department of Theoretical and Applied Mechanics, St. Peters-
burg State University, Peterhof, St. Petersburg, Russia

Eva B. Voronkova Department of Theoretical and Applied Mechanics,
St. Petersburg State University, St. Petersburg, Russia

Kirill Yurkevich Department of Bio- and Nanomechanics, Belarusian State
University, Minsk, Belarus

Contributors xi



On Some Classes of 3D Boundary-Value
Problems of Statics and Dynamics of Plates
and Shells

Lenser A. Aghalovyan

Abstract Classes of the three-dimensional (3D) boundary-value problems for plates
and shells, which can be successfully solved by the asymptotic method, are consid-
ered. The first, second, and mixed boundary-value problems of the elasticity theory,
as well as the nonclassical boundary-value problems for determination of the stress-
strain state of the Earth lithospheric plates are studied. The solutions of the 3D
dynamic problems for layered plates are applied to diminution of impact of negative
seismic waves on buildings and constructions. Connected and disconnected problems
of thermoelasticity, the 3D dynamic problems of electroelasticity for beforehand
polarized piezoceramic plates and shells are also solved.

1 Introduction

Thin-walled deformable solids such as beams, plates, shells, etc. are characterized by
smallness of one geometrical dimensions (thickness) with respect to the characteris-
tic one (length, width, radius of curvature). This property of similar solids permits us
to introduce the small geometrical parameter ε = h/�, where h is the half-thickness,
and � is the characteristic tangential dimension. Then, when passing to dimensionless
coordinates and components of the displacement vector, the governing equations turn
out to be singularly perturbed by the small parameter ε. The mathematical theory of
equations and systems like these was developed recently and, as a rule, such equa-
tions, in which the small parameter is the coefficient of the principal operator, were
considered. In problems for thin elastic bodies the small parameter being the coeffi-
cient of the principal part of the differential operator results in specific difficulties.
For instance, the number of boundary functions becomes infinite but countable. To
solve similar equations and systems the asymptotic method is established as an effec-
tive tool. [8, 9, 11, 14] published the first papers where the solutions of the plate
and shell theory problems were constructed by applying the asymptotic method.

L.A. Aghalovyan (B)
Institute of Mechanics of NAS of Armenia, Marshall Baghramian Ave. 24B,
0019 Yerevan, Armenia
e-mail: aghal@mechins.sci.am

© Springer International Publishing Switzerland 2015
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2 L.A. Aghalovyan

In this case the solution (I ) is the combination of the solution of the inner problem
(I int) and the boundary layer solution (Ib)

I = I int + Ib. (1)

The solution of the inner problem is sought in the form

I int = εqI +s I (s), s = 0, N . (2)

Here s = 0, N means summing up by integral values of repeating index s from zero
to the number of approximations N , and qI characterizes the insensitivity of the
corresponding required dimension. The parameter qI may be established after sub-
stituting Eq. (2) into the dimensionless governing equations and equating coefficients
at the same power of the small parameter ε. One can get the noncontradictory sys-
tem for determination of the decomposition coefficients I (s). The values qI strictly
depend on the type of the boundary conditions given on the facial surfaces of a plate
or a shell. When using the asymptotic method, finding the noncontradictory values
qI is a non-trivial task for any physical problem. Some authors consider the process
of seeking values qI as work of art [7]. Nowadays, the asymptotic theories for both
isotropic and anisotropic plates [14] and shells [10] have been developed [3]. Let us
consider some classes of spatial static and dynamic problems successfully solved by
the asymptotic method.

2 Asymptotic Solution of the First 3D Boundary-Value Problem

Let us consider the problem on the determination of the stress-strain states of ther-
moelastic anisotropic plates D = {(x, y, z) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, |z| ≤ h, � =
min(a, b), h � �} with anisotropy of general type (21 constants of elasticity). Pass-
ing to the dimensionless coordinates ξ = x/�, η = y/�, ς = z/h and displacements
U = u/�, V = v/�,W = w/�, the equilibrium and constitutive equations of ther-
moelasticity (Duhamel-Neumann’s equations) take the following form

∂σ j x

∂ξ
+ ∂σ j y

∂η
+ ε−1 ∂σ j z

∂ς
+ �Fj (ξ, η, ς) = 0, j = x, y, z,

∂U

∂ξ
= ai1σ xx + ai2σ yy + ai3σ zz + ai4σ yz + ai5σ xz + ai6σ xy + αi iθ,

(U, V ; ξ, η; i = 1, 2),

ε−1 ∂W

∂ς
= a13σ xx + a23σ yy + a33σ zz + a34σ yz + a35σ xz + a36σ xy + α33θ, (3)

∂U

∂η
+ ∂V

∂ξ
= a16σ xx + a26σ yy + a36σ zz + a46σ yz + a56σ xz + a66σ xy + α12θ,
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ε−1 ∂U

∂ς
+ ∂W

∂ξ
= a1 jσ xx + a2 jσ yy + a3 jσ zz + a4 jσ yz + a5 jσ xz + a6 jσ xy + αk3θ,

(U, V ; ξ, η; j = 5, 4; k = 1, 2),

where ai j are the elastic parameters, αi j are the thermoelastic expansion coefficients,
Fj are the volume forces (weight, seismic load, etc.), θ = T − T0 is the change of
the temperature field (T0 is the reference temperature). The conditions of the first
boundary-value problem of the elasticity theory are assumed to be given on the
plate faces ζ = ±1. Otherwise, the stresses σ 13, σ 23 and σ 33 are given as functions
of tangential coordinates ξ, η. In addition, the volume forces and the temperature
field are assumed to have an influence comparable with the influence of the surface
forces.

The solution of the singularly perturbed system (3) has the form of Eq. (1). For the
inner problem, we get the noncontradictory system for determination of I (s), if [3]

qσ xx ,σ xy ,σ yy = −2, qσ xz ,σ yz = −1, qσ zz = 0, qu,v = −2, qw = −3. (4)

The volume forces and the temperature field will be presented in the equations for
the input approximation if

Fx = ε−2+s F (s)x , (x, y), Fz = ε−1+s F (s)z , θ = ε−2+sθ(s), (5)

where F (0)x = ε2�Fx , (x, y), F (0)z = ε�Fz, θ
(0) = ε2θ, F (s)j = 0, θ(s) = 0 at

s �= 0.
Substituting Eq. (2) into Eq. (3) and taking into account Eqs. (4), and (5), one gets

the noncontradictory system for determination of I (s). This system produces the
following equations

W (s) = w(s)(ξ, η)+ w(s)∗ (ξ, η, ς),

U (s) = −ζ ∂w(s)

∂ξ
+ u(s)(ξ, η)+ u(s)∗ (ξ, η, ς), (u, v; ξ, η),

σ
(s)
xx = ζ τ

(s)
x1 (ξ, η)+ τ

(s)
x0 (ξ, η)+ σ

(s)
xx∗(ξ, η, ς), (x, y),

σ
(s)
xy = ζ τ

(s)
xy1(ξ, η)+ τ

(s)
xy0(ξ, η)+ σ

(s)
xy∗(ξ, η, ς),

σ
(s)
xz = 1

2
ζ 2τ

(s)
xz2 + ζ τ

(s)
xz1(ξ, η)+ τ

(s)
xz0(ξ, η)+ σ (s)xz∗(ξ, η, ς), (x, y),

σ
(s)
zz = 1

6
ζ 3τ

(s)
z3 + 1

2
ζ 2τ

(s)
z2 + ζ τ

(s)
z1 (ξ, η)+ τ

(s)
z0 (ξ, η)+ σ (s)zz∗(ξ, η, ς).

(6)

In Eq. (6), Q(s)∗ are well-known functions for any s if the previous approximations
are determined, and the functions τ (s)i j (ξ, η) are expressed through u(s), v(s),w(s) by
using the well-known formulae [3].
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Satisfying the boundary conditions for the first boundary-value problem at
ζ = ±1, one obtains the equations

�11u(s) + �12v(s) = P(s)1 , �12u(s) + �22v(s) = P(s)2 , (7)

B11
∂4w(s)

∂ξ4 +4B16
∂4w(s)

∂ξ3∂η
+2(B12 +2B66)

∂4w(s)

∂ξ2∂η2 +4B26
∂4w(s)

∂ξ∂η3 + B22
∂4w(s)

∂η4 = q(s)

(8)

with respect to the functions u(s), v(s),w(s). At s = 0, Eq. (7) written in dimensional
coordinates coincide with the classical equations of the generalized plane problem,
and Eq. (8) coincides with the classical plate bending equation which has one plane of
the elastic symmetry. At s > 0, the right parts of these equations change only (besides
the loading summands), the terms with the coefficients of elasticity of the mutual
influence characterizing the general anisotropy being the part of these equations
as well.

Note, that we have previously considered only the plates having one plane of the
elastic symmetry. The asymptotic method permits to define the stress-strain state of
plates possessing by the general anisotropy, it reduces the problem to well-known
equations for plates with a plane of the elastic symmetry [3].

By using only the solution of the inner problem, it is impossible to satisfy the
boundary conditions in each point at the lateral surface. This gap is eliminated by
constructing the solution for the boundary layer (Ib). This solution decreases expo-
nentially far from the lateral surface of the plate. For example, the solution of the
boundary layer localized near the boundary ξ = 0 has the following form

Ib = εχ+s I (s)b (η, ζ ) exp(−λγ ), γ = ξ/ε, (9)

where χ = 0 for ub, vb,wb and χ = −1 for σ i jb. In the general case, the deter-
mination of the boundary layer is reduced to the solution of an ordinary sixth order
differential equation. For isotropic and orthotropic plates this equation may be split
at s = 0 into two independent equations of forth and second order with the in-plane
and out-of-plane boundary layers corresponding them. For the in-plane boundary
layer λn are complex conjugate, and for the out-of-plane boundary layer λn are real,
�λn > 0 characterizes the speed of decreasing on the boundary layer when remov-
ing from the lateral surface. The classical theory of plates and shells neglects the
boundary layers, but the more precise theories by E. Reissner and S. Ambartsumyan
take into account the out-of-plane boundary layer. Depending on the type of the spa-
tial boundary conditions on the lateral surface, this or other boundary layer may be
neglected in applied problems [3].

For the case of shells the solution structure (1) remains invariant, but in the inner
problem there are not unique asymptotics for Eqs. (2), and (4). The asymptotics
for description of the momentless and moment states of the shell are established,
the optimal correlations and equations within the framework of common concepts



On Some Classes of 3D Boundary-Value Problems of Statics . . . 5

and assumptions of the Kirchhoff-Love theory provide maximum accuracy for the
determination of the stress-strain state of the shell [3].

3 Second and Mixed 3D Boundary-Value Problems
for Anisotropic Plates and Shells

Classical and improved theories of plates and shells consider only the first boundary-
value problem of elasticity theory. But there are applied problems, when on faces of
plates and shells the conditions of the second or mixed problem of elasticity theory
(nonclassical boundary-value problems of thin bodies) should be fulfilled. These
problems are important in the calculations of the foundations of seismically safe
constructions, when studying the interaction of rigid and pliable bodies, etc. The
problem is to find the solution of Eq. (3) satisfying the boundary conditions of the
second boundary problem

u(ξ, η,±1) = u±(ξ, η), (u, v,w) (10)

or mixed boundary problem

σ j z(ξ, η, 1) = σ+
jη(ξ, η), j = x, y, z,

u(ξ, η,−1) = u−(ξ, η), (u, v,w).
(11)

It may be directly proved that the asymptotics of Eqs. (2), (4) are not applicable for
the solution of problems (3) and (10) or (3) and (11), which mean that the hypotheses
of the Kirchhoff-Love theory for the solution of these problems are not applicable.
The asymptotic method allows us to solve this problem effectively. There are rather
simple asymptotics proposed in [1, 2]. Then the solution of the inner problem has
the form of Eq. (2), but now

qσ i j = −1, qu,v,w = 0. (12)

Substituting Eqs. (2), and (12) into Eq. (3), one gets the system

∂σ
(s−1)
j x

∂ξ
+ ∂σ

(s−1)
j y

∂η
+ ∂σ

(s)
j z

∂ς
+ F (s)j = 0, j = x, y, z;

F (0)j = ε2�Fj , F (s)j = 0, s �= 0,
∂U (s−1)

∂ξ
= ai1σ

(s)
xx + ai2σ

(s)
yy + ai3σ

(s)
zz + ai4σ

(s)
yz + ai5σ

(s)
xz + ai6σ

(s)
xy + αi iθ

(s),

(U, V ; ξ, η; i = 1, 2),

∂W (s)

∂ς
= a13σ

(s)
xx + a23σ

(s)
yy + a33σ

(s)
zz + a34σ

(s)
yz + a35σ

(s)
xz + a36σ

(s)
xy + α33θ

(s),
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∂U (s)

∂ς
+ ∂W (s−1)

∂ξ
= a1 jσ

(s)
xx + a2 jσ

(s)
yy + a3 jσ

(s)
zz + a4 jσ

(s)
yz

+ a5 jσ
(s)
xz + a6 jσ

(s)
xy + αk3θ

(s), (U, V ; ξ, η; j = 5, 4; k = 1, 2),

∂U (s−1)

∂η
+ ∂V (s−1)

∂ξ
= a16σ

(s)
xx + a26σ

(s)
yy + a36σ

(s)
zz + a46σ

(s)
yz

+ a56σ
(s)
xz + a66σ

(s)
xy + α12θ

(s), (θ(0) = εθ, θ(s) = 0, s �= 0)
(13)

with respect to I (s). The system (13) should be integrated w.r.t. ζ . The solution
will depend on six unknown functions σ

(s)
xz0(ξ, η), σ

(s)
yz0(ξ, η), σ

(s)
zz0(ξ, η), u(s)(ξ, η),

v(s)(ξ, η), w(s)(ξ, η), which can be determined if the six conditions (10) or (11) are
satisfied. So, unlike the first boundary problem in the second and mixed boundary
problems the solution of the inner problem is expressed by functions given at the faces
of the plate. If the functions u±, v±,w±, σ±

j z are algebraic polynomials in tangential
coordinates ξ, η, the iteration process breaks and the mathematically exact solution
of the inner problem (solution for the boundary layer) is obtained.

Asymptotics (2), (12) hold for layered anisotropic plates. Having the solved
system (13) for each layer and satisfying the boundary conditions at the faces
and conditions of the full contact between the layers (discontinuity of displace-
ments and corresponding stress tensor components), the general asymptotic solution
(becoming the mathematically exact one) will be obtained. As an illustration we
present the solution for a two-layered rectangular anisotropic (21 elasticity para-
meters) plate Ω = {(x, y, z) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, −h2 ≤ z ≤ h1,

� = min(a, b),max(h1, h2) = h, h � �} with the boundary conditions

u(−h2) = v(−h2) = w(−h2) = 0,
σ+

j z(h1) = σ+
j z = const, j = x, y, z. (14)

The iteration process breaks at the stage of the initial approximation, we having the
solution

σ (i)xx = A(i)13 σ+
zz + A(i)14 σ+

yz + A(i)15 σ+
xz, σ (i)yy = A(i)23 σ+

zz + A(i)24 σ+
yz + A(i)25 σ+

xz,

σ (i)xy = A(i)63 σ+
zz + A(i)64 σ+

yz + A(i)65 σ+
xz, σ (i)xz = σ+

xz, σ (i)yz = σ+
yz, σ (i)zz = σ+

zz,

u(i) = h2(D
(i)
53 σ+

zz + D(i)
54 σ+

yz + D(i)
55 σ+

xy), (u, v,w; 5, 4, 3),

D(i)
k j = ζ A(i)k j + A(2)k j , i = 1, 2; ζ = z/h,

Akl = −a1l Bk1 − a2l Bk2 − a6l Bk6, l,m = 3, 4, 5,

Aml = am1 A1l + am2 A2l + am6 A6l + aml , Aml �= Alm,

Bi j = (aika jk − ai j akk)/Δ, Bkk = (aii a j j − a2
i j )/Δ,

Δ = a11a22a66 + 2a12a26a16 − a11a2
26 − a22a2

16 − a66a2
12 (15)
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with i �= j �= k �= i; i, j, k = 1, 2, 6, Bi j = B ji . The exact solution (15) permits us
to answer, particularly, a very important question: how the modulus of the foundations
can be determined if the Winkler-Zimmermann-Fuss model for the anisotropic and
layered foundations is applicable? In this case from the solution (15) we write the
relations between the displacements and stresses on the surface of the contact z = 0
between the layers, assuming that only the normal stresses σ+

zz act (they get the
index “c”)

u(c) = h2 A(2)53 σ (c)zz , v(c) = h2 A(2)43 σ (c)zz , w(c) = h2 A(2)33 σ (c)zz , σ (c)zz = σ+
zz . (16)

From the solution (16) it follows that under the action of normal loading on the
contact surface the tangential displacements, which will be related to greater val-
ues A(2)53 , A(2)43 , can be established. This means the inapplicability of the Winkler-
Zimmermann-Fuss model to plates possessing general anisotropy. For orthotropic
and isotropic foundations A(2)53 = A(2)43 = 0,w(c) = h2 A(2)33 σ

(c)
zz from which one gets

σ (c)zz = K w(c), K = 1

h2 A(2)33

= (1 − ν
(2)
12 ν

(2)
21 )E

(2)
z

h2(1−ν(2)12 ν
(2)
21 −ν(2)13 ν

(2)
31 −ν(2)23 ν

(2)
32 −2ν(2)12 ν23(2)ν(2)31 )

.

(17)

For the n-layered orthotropic foundation, from the corresponding exact solution it
follows

K = 1
n∑

i=1
hi A(i)33

. (18)

Asymptotics (2), (12) may be successfully applied for the solution of the second and
mixed spatial problems of shells.

4 3D Dynamic Problems of Plates and Shells

Asymptotics (2), (12) are effective for the solution of dynamic problems of plates
and shells in the 3D formulation. In this case, if it is not applicable for the static first
boundary-value problem according to (4), it is applicable for the dynamic problems.
Let us present the following classes of forced vibrations of the anisotropic plate
occupying the domain D:

(a) The plate is fixed on an absolutely rigid plane foundation

u(x, y,−h) = 0, v(x, y,−h) = 0, w(x, y,−h) = 0 (19)
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while at z = h harmonically changing in time the stress tensor components are
given by

σ j z(x, y, h) = σ+
j z(x, y) exp(iΩt), j = x, y, z (20)

or displacements are the following

u(x, y, h) = u+(x, y) exp(iΩt), (u, v,w); (21)

(b) Oscillations of the displacement vector at the face surface z = −h are defined
by equations

u(x, y,−h) = u−(x, y) exp(iΩt), (u, v, w) (22)

while at z = h one of the variants of the conditions

σ j z(x, y, h) = 0, j = x, y, z; u(x, y, h) = 0 (u, v,w) (23)

is given;
(c) The stress oscillations corresponding to the first boundary-value problem

conditions

σ j z(x, y,±h) = ±σ±
j z(x, y) exp(iΩt), j = x, y, z (24)

are given, where σ±
j z, u±, v±,w± are known functions, Ω is the frequency of

the external forced action.

We will consider steady-state vibrations. The solution of the dynamic spatial problem
of the elasticity theory for an anisotropic body with 21 elastic moduli is sought in
the following form:

σαβ(x, y, z, t) = σ jk(x, y, z) exp(iΩt), (α, β = x, y, z ; j, k = 1, 2, 3)
(u, v,w) = (ux (x, y, z), uy(x, y, z), uz(x, y, z)) exp(iΩt).

(25)

When passing to dimensionless coordinates ξ, η, ζ and displacements U = ux/�,
V = uy/�, W = uz/�, a new system turns out to be singularly perturbed by the
small parameter ε. Its solution has the form of Eq. (1). The solution of the inner
problem is sought in the form

σ int
jk = ε−1+sσ

(s)
jk (ξ, η, ζ ), s = 0, N , j, k = 1, 2, 3,

(U int, V int,W int ) = εs(U (s), V (s),W (s)).
(26)

After substitution of Eq. (26) into the transformed Eq. (25) and passing to the dimen-
sionless magnitudes, we get a new system w.r.t. coefficients σ

(s)
jk ,U

(s), V (s), W (s).

From this system it becomes possible to express σ
(s)
jk through U (s), V (s), W (s) which
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are determined from the equations [5]

A55
∂2U (s)

∂ζ 2 + A45
∂2V (s)

∂ζ 2 + A35
∂2w(s)

∂ζ 2 +ΔΩ2∗U (s) = R(s)u (ξ, η, ζ ),

A54
∂2U (s)

∂ζ 2 + A44
∂2V (s)

∂ζ 2 + A34
∂2w(s)

∂ζ 2 +ΔΩ2∗ V (s) = R(s)v (ξ, η, ζ ),

A53
∂2U (s)

∂ζ 2 + A43
∂2V (s)

∂ζ 2 + A33
∂2w(s)

∂ζ 2 +ΔΩ2∗ W (s) = R(s)w (ξ, η, ζ ),

(27)

where Ai j andΔ are expressed through ai j ,Ω
2∗ = ρh2Ω2, R(0)u = R(0)v = R(0)w = 0,

R(s)u = R(s)v = R(s)w are known at s > 0 functions determined through the data of
the previous approximations. After solving the system of Eq. (27), the stresses are
determined and all the variants of the boundary conditions (19–24) are satisfied.

For orthotropic plates A45 = A35 = A54 = A34 = A53 = A43 = 0, and the
system of Eq. (27) splits into three equations

∂2U (s)

∂ζ 2 + a55Ω
2∗U (s) = R(s)u (U, V ; a55, a44; Ru, Rv),

A11
∂2W (s)

∂ζ 2 +Ω2∗ W (s) = R(s)w ,

(28)

which are independent at s = 0. Here

R(s)u = −∂
2W (s−1)

∂ξ∂ζ
− a55

(
∂σ

(s−1)
11
∂ξ

+ ∂σ
(s−1)
12
∂η

)

(u, v; ξ, ζ ; a55, a44; 1, 2)

R(s)w = A23
∂2U (s−1)

∂ξ∂ζ
+ A13

∂2V (s−1)

∂η∂ζ
−

(
∂σ

(s−1)
13
∂ξ

+ ∂σ
(s−1)
23
∂η

)

, Q(m) ≡ 0, m < 0

A11 = (a11a22 − a2
12)/Δ, Δ = a11a22a33 + 2a12a23a13 − a11a2

23 − a22a2
13 − a33a2

12.

(29)

The first two equations of system (28) describe the shear forced vibrations, and the
third equation corresponds to the longitudinal vibrations.

The stresses are expressed through the displacements by the following equations:

σ
(s)
11 = −A23

∂W (s)

∂ζ
+ A22

∂U (s−1)

∂ξ
− A12

∂V (s−1)

∂η
,

σ
(s)
22 = −A13

∂W (s)

∂ζ
− A12

∂U (s−1)

∂ξ
+ A33

∂V (s−1)

∂η
,

σ
(s)
33 = A11

∂W (s)

∂ζ
− A23

∂U (s−1)

∂ξ
− A13

∂V (s−1)

∂η
,



10 L.A. Aghalovyan

σ
(s)
12 = 1

a66

(
∂U (s−1)

∂η
+ ∂V (s−1)

∂ξ

)

, σ
(s)
13 = 1

a55

(
∂U (s)

∂ζ
+ ∂W (s−1)

∂ξ

)

,

σ
(s)
23 = 1

a44

(
∂V (s)

∂ζ
+ ∂W (s−1)

∂η

)

, Q(m) ≡ 0, m < 0,

A22 = (a22a33 − a2
23)

Δ
, A33 = (a11a33 − a2

13)

Δ
,

A12 = (a33a12 − a13a23)

Δ
, A13 = (a11a23 − a12a13)

Δ
,

A23 = (a22a13 − a12a23)

Δ
. (30)

Here U (s) = U (s)
0 + u(s)τ ,

∑
(U, V,W ) is the solution of the system (28), where

the first and the second terms are the solutions of the homogeneous and inhomoge-
neous equations (28) respectively. Determining the stresses by Eq. (30), it is easy to
satisfy the boundary conditions (19–24). As application, let us introduce the solu-
tions corresponding to the conditions (22) and the second group of Eq. (23) which
simulate the seismic action on the structure foundations:

U (s) = 1

sin 2Ω∗
√

a55
((u−(s) − u(s)τ (ζ = −1)) sinΩ∗

√
a55(1 − ζ )

−u(s)τ (ζ = 1) sinΩ∗
√

a55(1 + ζ ))+ u(s)τ (ξ, η, ζ ), (U, V ; a55, a44),

W (s) = 1

sin 2Ω∗√
A11

((w−(s) − w(s)τ (ζ = −1)) sin
Ω∗√
A11

(1 − ζ )

−w(s)τ (ζ = 1) sin
Ω∗√
A11

(1 + ζ ))+ w(s)τ (ξ, η, ζ ),

u−(0) = u−/�, u−(s) = 0, s �= 0, (u, v,w). (31)

The stresses are calculated by Eq. (30). The solution (31) will be bounded one if
sin 2Ω∗

√
a55 �= 0, sin 2Ω∗

√
a44 �= 0, sin(2Ω∗/

√
A11) �= 0. If at least one of

values of Ω vanishes, the solution corresponds to the resonance and coincide with
principal values of the plate natural frequencies.

If the functions u−, v−,w− are polynomials in the tangential coordinates, the
iteration process breaks at the given step. As a result the mathematically exact solution
of the inner problem is obtained. The described above approach may be used for the
solution of problems on forced vibrations of layered plates as well as of shells.

The solution for the kth-layer is sought in the form of (25) with the index k.
Then equations for the package of orthotropic plates analogous to (28) are obtained.
Solving them, the boundary and contact conditions are satisfied. If the functions in
the boundary conditions are polynomials in tangential coordinates, mathematically
exact solutions are obtained. The analysis of the solution for a three-layered package
shows an important result: if the middle layer is softer (rubber-like), then the lower
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layer displacements are harmonically changing w.r.t. the time. They influence weakly
on the stress-strain state of the layer located upper the weak layer. This should
be considered in applications of seismo-isolators in earthquake-safe buildings [4].
Asymptotics (2), (25) and (26) are applicable for the solution of the 3D dynamic
problems for plates made of incompressible materials [6].

5 On Stress-Strain States of the Earth Lithosphere Plates
and Possibilities of the Earthquakes Prediction

Modern science attributes the rise of strong earthquakes to tectonics of the Earth
lithosphere plates (≈95 % of the earthquakes, see [13]). It is well-known that the
planet Earth (R = 6,378 km) is layered and inhomogeneous. It consists of earth crust,
upper and lower mantles, outer and inner kernels. The distinctive feature of these lay-
ers is that essentially different velocities Vp and Vs of propagation of the longitudinal
(primary) P and shear (secondary) S waves in the layers are observed. The thickness
of the earth crust changes in the ranges of 20–70 km and 5–15 km below the continents
and the oceans, respectively. In addition, the earth crust consist of different layers:
sedimentary (2 ≤ Vp ≤ 5 km/s, h1 = 10–25 km), granite (5.5 ≤ Vp ≤ 6.0 km/s,
h2 = 30–40 km), basalt (6.5 ≤ Vp ≤ 7.4 km/s, h3 = 15–20 km), where hi is the thick-
ness of the i th layers. In the limits of upper mantle at the depth of 100–250 km there
is a layer (asthenosphere), where the velocity of transversal waves Vs is significantly
reduced. The velocity Vp does not increase with the depth (Vp ≈ const., Vs ≈ 0)
which testifies the lower density of the material of this layer versus adjacent lay-
ers, i.e. there is a fluid-like incompressible medium permitting to withstand high
pressures. The Earth crust and part of the upper mantle up to the boundary with
asthenosphere compose the lithosphere. Lithosphere with the network of intersect-
ing deep broken pieces is divided into several big blocks, which are called plates.
The dimensions of the plates change from hundreds up to several thousand kilometer.
The great lithosphere plates of the Earth are: Euroasian, Antarctic, Indo-Australian,
Pacific Ocean, South-American, North-American, African, Anatolian, Arabian, etc.

The most part of earthquakes arises in zones the seismic and tectonic activities
of which are ascribed to interactions of bordering on each other lithosphere plates
(seismic zones). Two types of tectonic movements connected with earthquakes are
selected: slow (age-old) and fast (jump-like) movements. Age-old movements (may
last decades) are quasistatic ones, they resulting in accumulation of deformations in
the lithosphere plates and in its separate parts. If they reach a critical value of the
order 10−4 (by the data of the seismologist Rikitake of degree 4.5 × 10−5), global
destruction may be observed and the main part of the potential energy accumulated
during years is separated in the form of the 3D longitudinal P and shear S waves, as
well as surface waves.

Stated above facts point out the importance of determination of the stress-strain
states of the Earth lithosphere plates and monitoring of their change in time. The
presence of a dense network of modern seismostations and the satellite GPS systems
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ah1
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hN

z

Fig. 1 Multilayered plate

permits us to follow the whole process in time. Here, by analogy with the exchange of
meteodata, the collaboration of many countries located in the seismically dangerous
zones is required. Later we will show that having the data of seismostations, satellite
GPS systems and other measuring devices connected with the displacements of the
surface of lithosphere plate, it is possible to determine its stress-strain state and to
trace its change in time. The corresponding problem of the elasticity theory for a
layered package is nonclassical as the boundary conditions (they are six) are given
only on the face of the package: the corresponding stress tensor components are
equal to zero (the surface is free), but the displacement vector components of the
surface points are well-known as the data of seismostations, GPS and other measuring
devices. It is assumed that the geological structure of the lithosphere plate is known,
and the physical and mechanical characteristics as well as the thickness of the layers
are estimated. In the general case, for determination of the stress-strain state of
lithospheric plate under slow (age-old) tectonic movement the following problem
is formulated: for a layered package of N orthotropic plates (isotropic plates are
regarded as a special case) occupying the domain D = {(x, y, z) : 0 ≤ x ≤ a,0 ≤
y ≤ b, 0 ≤ z ≤ h, h = ∑N

i=1 hi , min(a, b) = �, h � �} (Fig. 1) it is required to
find the solution of the three-dimensional equations of the elasticity theory.

The equations of equilibrium taking into account volume forces (layer weight)
are the following:

∂σ
(k)
xx

∂x
+ ∂σ

(k)
xy

∂y
+ ∂σ

(k)
xz

∂z
+ F (k)x = 0, (x, y, z), k = 1, 2, . . . , N . (32)

The constitutive equations assuming elastic behavior and taking into account the
influence of the temperature field θ = T (x, y, z) − T0(x, y, z) by Duhamel-
Neumann’s equations are

∂u(k)x

∂x
= a(k)11 σ (k)xx + a(k)12 σ (k)yy + a(k)12 σ (k)zz + α

(k)
11 θ

(k), (1, 2, 3; x, y, z)

∂u(k)x

∂y
+ ∂u(k)y

∂x
= a(k)66 σ (k)yz ,
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∂u(k)x

∂z
+ ∂u(k)z

∂x
= a(k)55 σ (k)xz ,

∂u(k)y

∂z
+ ∂u(k)z

∂y
= a(k)44 σ (k)yz . (33)

The boundary conditions at z = 0 are assumed as follows:

σ j z(x, y, 0, t) = 0, j = x, y, z,
u j (x, y, 0, t) = u+

j (x, y, t). (34)

The conditions of the perfect contact between the layers for an arbitrary kth layer is
written in the form:

σ
(k)
j z (z = Hk) = σ

(k+1)
j z (z = Hk), Hk = ∑k

i=1 hi , k = 1, 2, . . . , N − 1,

u(k)j (z = Hk) = u(k+1)
j (z = Hk), j = x, y, z.

(35)

In Eq. (34) the time t plays the role of a parameter which characterizes the moment
t = tm when the measurements of points displacements of the package surface are
realized. The boundary conditions on the lateral surface are not defined concretely
since conditions (34), (35) are enough to determine the solutions of the inner problem.
That is why these conditions correspond to the boundary layer solution exponentially
decreasing far from the lateral surface. It may be built in a way described in [3], in
the supplements they are usually neglected. In order to solve the stated boundary-
value problem (32–35), we introduce again the dimensionless coordinates ξ, η, ζ
and displacements u = ux/�, v = uy/�,w = uz/�. As a result, we will obtain again
a singularly perturbed system the solution of which is (1). The solution of the inner
problem has the form

σ
(k)int
i j = ε−1+sσ

(k,s)
i j , (i, j = x, y, z), s = 0, N ,

u(k)int = εsu(k,s), (u, v,w), s = 0, S, k = 1, 2, . . . , N .
(36)

Substituting (36) into the transformed systems (32), (33), the recurrent system for
determination of σ

(k,s)
i j , u(k,s), v(k,s),w(k,s) will be obtained. Solving this system,

one has

σ
(k,s)
j z = σ

(k,s)
j z0 (ξ, η)+ σ

(k,s)
j z∗ (ξ, η, ς), j = x, y, z,

σ (k,s)xx = − A(k)23

A(k)11

σ
(k,s)
zz0 − γ

(k)
11

A(k)11

θ(k,s) + σ (k,s)xx∗ (ξ, η, ς),

σ (k,s)yy = − A(k)13

A(k)11

σ
(s)
zz0 − γ

(k)
22

A(k)11

θ(k,s) + σ (s)yy∗(ξ, η, ς),
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σ (k,s)xy = 1

a(k)66

(
∂v(k,s−1)

∂ξ
+ ∂u(k,s−1)

∂η

)

,

u(k,s) = a(k)55 ςσ
(k,s)
xz0 + u(k,s)0 (ξ, η)+ u(k,s)∗ (ξ, η, ς),

v(k,s) = a(k)44 ςσ
(k,s)
yz0 + v(k,s)0 (ξ, η)+ v(k,s)∗ (ξ, η, ς),

w(k,s) = A(k)33

A(k)11

ςσ
(k,s)
zz0 + γ

(k)
33

A(k)11

ςθ(k,s) + w(k,s)0 (ξ, η)+ w(k,s)∗ (ξ, η, ς)

k = 1, 2, . . . , N , (37)

where

σ
(k,s)
j z∗ = −

ς∫

0

(

F (k,s)j + ∂σ
(k,s−1)
j x

∂ξ
+ ∂σ

(k,s−1)
j y

∂η

)

dς, j = x, y, z,

σ
(k,s)
xx∗ = 1

A(k)11

(

a(k)22
∂u(k,s−1)

∂ξ
− a(k)12

∂v(k,s−1)

∂η
− A(k)23 σ (k,s)zz∗

)

,

σ
(k,s)
yy∗ = 1

A(k)11

(

a(k)11
∂v(k,s−1)

∂η
− a(k)12

∂u(k,s−1)

∂ξ
− A(k)13 σ (k,s)zz∗

)

,

u(k,s)∗ =
ς∫

0

(

a(k)55 σ (k,s)xz∗ − ∂w(k,s−1)

∂ξ

)

dς,

v(k,s)∗ =
ς∫

0

[

a(k)44 σ (k,s)yz∗ − ∂w(k,s−1)

∂η

]

dς,

w(k,s)∗ =
ς∫

0

(
a(k)13 σ (k,s)xx∗ + a(k)23 σ (k,s)yy∗ + a(k)33 σ (k,s)zz∗

)
dς,

θ(k,0) = εθ(k), θ (k,s) = 0 at s �= 0, σ
(m)
i j ≡ 0,

u(k,m) = v(k,m) = w(k,m) ≡ 0 at m < 0,

A(k)11 = a(k)11 a(k)22 −
(

a(k)12

)2
, A(k)13 = a(k)11 a(k)23 − a(k)12 a(k)13 ,

A(k)23 = a(k)22 a(k)13 − a(k)12 a(k)23 , A(k)33 = a(k)33 A(k)11 − a(k)13 A(k)23 − a(k)23 A(k)13 ,

γ
(k)
11 = α

(k)
11 a(k)22 − α

(k)
22 a(k)12 , γ

(k)
22 = α

(k)
22 a(k)11 − a(k)11 a(k)12 ,

γ
(k)
33 = α

(k)
33 A(k)11 − a(k)13 γ

(k)
11 − a(k)23 γ

(k)
22 ,

k = 1, 2, . . . , N , Q(k,m) ≡ 0 at m < 0.

(38)

In the general case, the solution (36), (37) contains 6N unknown functions σ
(k,s)
j z0 ,

u(k,s)0 , v(k,s)0 ,w(k,s)0 which are uniquely determined from six boundary conditions
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(34) and 6(N − 1) conditions of the contact (35). From Eq. (37) written for the first
layer, taking into account conditions (34), one can determine the magnitudes for the
first layer:

σ
(1,s)
j z0 (ξ, η) = 0, σ

(1,s)
j z (ξ, η, ζ ) = σ

(1,s)
j z∗ (ξ, η, ζ ), j = x, y, z,

u(1,s)0 (ξ, η) = u+(s), u+(0) = u+/�, u+(s) = 0, s �= 0, (u, v,w).
(39)

Having data for the first layer and satisfying the contact conditions (35), the unknown
magnitudes for the second layer are easily determined, then the data for the third layer
are found, etc. For the magnitudes of the (k + 1) layer we have

σ
(k+1,s)
j z (ξ, η, ζ ) = σ

(k,s)
j z0 (ξ, η)+ σ

(k,s)
j z∗ (ξ, η, ζk)

−σ
(k+1,s)
j z∗ (ξ, η, ζk)+ σ

(k+1,s)
j z∗ (ξ, η, ζ ),

u(k+1,s)(ξ, η, ζ ) = a(k+1)
55 (ζ − ζk)σ

(k+1,s)
xz0 + a(k)55 ζkσ

(k,s)
xz0 + u(k,s)0 (ξ, η)

+ u(k,s)∗ (ξ, η, ζk)+ u(k+1,s)∗ (ξ, η, ζ )− u(k+1,s)∗ (ξ, η, ζk),

(u, v; x, y; a55, a44),

w(k+1,s)(ξ, η, ζ ) = A(k+1)
33

A(k+1)
11

(ζ − ζk)σ
(k+1,s)
zz0 + γ

(k+1)
33

A(k+1)
11

(ζ − ζk)θ
(k+1,s)

+ A(k)33

A(k)11

ζkσ
(k,s)
zz0 + γ

(k)
33

A(k)11

ςkθ
(k,s) + w(k,s)0 (ξ, η)+ w(k,s)∗ (ξ, η, ζ )

+ w(k+1,s)∗ (ξ, η, ζ )− w(k+1,s)∗ (ξ, η, ζk), (k, 1, 2, . . . , N − 1).

(40)

The other stresses are determined by Eq. (37). If the functions u+
x , u+

y , u+
z in the

boundary conditions (34) are algebraic polynomials of tangential coordinates, the
iteration process (36–40) of determination of all required magnitudes is broken at
certain approximation. As a result, we obtain the mathematically exact solution of
the inner problem (the solution for the spatial layers). It is testified by the data
of seismostations, GPS and other systems. The displacements of the surface of
lithosphere plate may be approximated by a polynomial and one gets the mathe-
matically exact solution. At the given moment of time t = t∗ in n points of the
surface of the lithosphere plate, the values of the displacement vector components
u+

x (ξi , ηi , t∗), (x, y, z), i = 1, 2, . . . , n are known. The displacement of the surface
points may be approximated by the Lagrange polynomial

u+
x (ξ, η, t∗) =

n∑

i=1

u+
x (ξi , ηi , t∗)

n∏

j=1, j �=i
(ξ − ξ j )(η − η j )

n∏

j=1, j �=i
(ξi − ξ j )(ηi − η j )

, (x, y, z) (41)
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and the mathematically exact solution corresponding to the time t = t∗ is obtained.
Repeating the dimensions in time, we have a complete image about the stress-strain
state of the lithosphere plate and its separate blocks, reveal the places and period
of time, critical conditions may be created and the process may be dynamic-rapidly
flowing (foreshock, earthquake, aftershock).

For the investigation of rapidly flowing processes it is necessary instead of Eq. (32)
to use the equations of motion with new boundary conditions at z = 0:

σ j z(x, y, 0, t) = 0, j = x, y, z,
u j (x, y, 0, t) = u+

j (x, y) exp(iΩt), j = x, y, z, (42)

whereΩ is the frequency of the surface vibrations of the lithosphere plate and fixed
seismostations and GPS systems. The dynamic problem may be successfully solved
by the asymptotic method. The solution is sought in the following form:

σ
(k)
αβ (x, y, z, t) = σ

(k)
jm(x, y, z) exp(iΩt),

u(k)α (x, y, z, t) = ū(k)α (x, y, z) exp(iΩt),

α, β = x, y, z; j,m = 1, 2, 3; k = 1, 2, . . . , N .

(43)

Then passing to the dimensionless coordinates ξ, η, ζ and displacements
U (k) = ū(k)x /�, V (k) = ū(k)y /�, W (k) = ū(k)z /�, the solution of the new system
is realized as in the quasistatic problem.

6 Interaction of Plates and Shells with Different Physical Fields

The asymptotic method can be the base for studying the interaction of plates and
shells with different physical fields. Let us turn our attention to connected dynamic
problems of thermoelasticity for isotropic plates and problems of electroelasticity
for beforehand polarized piezoceramic shell.

Two basic approaches in investigation of the influence of the temperature field on
a deformable body have been formulated. The first approach is based on the tempera-
ture stress theory which does not take into account the connectedness of the strain and
temperature fields. The classical equation of heat conductivity does not account terms
characterizing the strain influence on the temperature field. Solving this equation the
distribution of temperature in the body is determined. Thereafter, the equations of
the elasticity theory taking into account the influence of the estimated temperature
field by Duhamel-Neumann’s equations are solved. The second approach is a subject
of coupled thermoelasticity. Here the interaction of the strain and temperature fields
are taken into account by means of calculation of the heat conductivity terms char-
acterizing the influence of the change of volume strain rate on the temperature field.
The asymptotic method permits us to find a general solution of the coupled problem
and perform a qualitative analysis of the obtained results in the sense of applicability
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of this or another applied theory. We will show it on the example of the isotropic
plate D = {x, y, z : |x | ≤ a,|y| ≤ b, |z| ≤ h,min(a, b) = �, h � �}, when on its
faces z = ±h the following temperature is given:

θ(x, y, z = ±h, t) = θ±(x, y) sinΩt. (44)

The displacements are defined

u j (x, y, z = ±h, t) = u±
j (x, y) sinΩt, j = x, y, z. (45)

It is required to find the solution of the system of the heat conductivity equation and
the three-dimensional non-stationary equation of thermoelasticity

∇2θ − 1

χ

∂θ

∂t
− η∗

∂

∂t
divu = −W∗

λ∗
, η∗ = α∗

E

1 − 2ν

T0

λ∗
,

∂σ xx

∂x
+ ∂σ xy

∂y
+ ∂σ xz

∂z
= ρüx , (x, y, z).

(46)

The constitutive equations of an isotropic elastic body (Duhamel-Neumann’s
equations) are the following:

∂ux

∂x
= 1

2G(1 + ν)
(σ xx − ν(σ yy + σ zz))+ α∗θ,

∂ux

∂z
+ ∂uz

∂x
= 1

G
σ xz, (x, y, z).

(47)

Satisfying the boundary conditions (44), (45), where E,G are Young’s and shear
moduli, ν is Poisson’s ratio, ρ is the density, α∗ is the thermal expansion coefficient,
λ∗ is the heat conductivity coefficient, χ = λ∗

cε
is the thermal diffusivity, cε is the

specific heat capacity under constant deformation, θ = T − T0 is the change of the
temperature field, W∗ is the specific density of the heat source, η∗ is the coefficient
of the strain field influence on the temperature field. The solution of the formulated
problem will be sought in the following form:

Q(x, y, z, t) = Q1(x, y, z) sinΩt + Q2(x, y, z) cosΩt,
Q = {u j , σ i j , θ}, i, j = x, y, z.

(48)

When passing to dimensionless coordinates and displacements in (46), (47), one
obtains the singularly perturbed system. The solution of the inner problem has the
following form

Qk(x, y, z) = εχQ+s Q(s)
k (ξ, η, ζ ), s = 0, S, k = 1, 2. (49)
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To determine Q(s)
k (ξ, η, ζ ) it is necessary to take into account the influence of the

strain field on the temperature field. Then we get a noncontradictory system at
χu,v,w = 0, χσ = −1, χθ = −1. It is assumed that the contribution of the heat
source W∗ is of the same order as the order of the outer interactions contribution
(44), (45). For the determination of desired values in general way the following
equations are obtained

∂2u(s)k

∂ζ 2 + γ 2u(s)k = R(s)uk , γ = Ωh

√
ρ

G
, Q(m)

k = 0 at m < 0

(ξ, η; uk, vk), k = 1, 2
(50)

and the system

∂2θ
(s)
k

∂ζ 2 + (3 − 2k)

(

qθ(s)3−k + r
∂W (s)

3−k

∂ζ

)

= R(s)θk , q = Ωh2

χ
, r = Ωη∗h2,

∂2W (s)
k

∂ζ 2 + PW (s)
k = β∗

∂θ
(s)
k

∂ζ
+ R(s)wk , P = γ 2 1 − 2ν

2(1 − ν)
, β∗ = α∗

1 + ν

1 − ν
,

(51)

where R(0)uk = 0, R(0)wk = 0, R(0)θk = (k − 2)W (0) and R(s)uk , R(s)wk , R(s)θk are the
known values estimated from the previous approximation. The stresses are expressed
through displacements and θ(s)k by recurrent formulae. From (50) it follows that in
the initial approximation the temperature field does not influence on the values of
the tangential displacements. The system of Eqs. (50), and (51) contains parameters
γ, P, β∗, q, r . Depending on the asymptotic orders of these parameters from system
(50), (51) corresponding to this or another applied theory of thermoelasticity follow.
Particularly, from the first Eq. (51) it follows that the connection of the thermoelastic
problem depends on the order of the parameter r = Ωη∗h2, which takes place, for
example, under high-frequency vibrations, and if r is unit order, then the problem
should be solved as coupled problem. Equation (50) and the system (51) can be solved
when all parameters are present. So, the asymptotic method permits us to solve the
coupled temperature problem with the beforehand given exactness.

Consider now the three-dimensional problem solution of electro-elasticity for
transversally isotropic piezoceramic shells with thickness of polarization. The middle
surface of the shell of thickness 2h will be referred to the curvature lines α, β, and the
rectilinear axis γ will be directed by outer normal to the middle surface. On the outer
and inner surfaces of beforehand polarized by thickness of the shell the following
conditions for the electric field potential are given:

ϕ∗(α, β, γ = ±h, t) = V ±
0 (α, β) exp iωt . (52)



On Some Classes of 3D Boundary-Value Problems of Statics . . . 19

In addition, we have one of the combinations of the boundary conditions:

• first
σ ∗

jγ (α, β, γ = ±h, t) = σ±
jγ (α, β) exp iωt, j = α, β, γ, (53)

• second
u∗

j (α, β, γ = ±h, t) = u±
j (α, β) exp iωt, j = α, β, γ, (54)

• mixed

σ ∗
jγ (α, β, γ = h, t) = σ+

jγ (α, β) exp iωt, u∗
j (α, β, γ = −h, t) = u−

j (α, β) exp iωt .

(55)

In the case of the direct piezoelectric effect the functions σ±
jγ , u±

j are assumed to be

known, and the functions V ±
0 should be determined. In the case of inverse piezoelec-

tric effect, it is considered that V ± are different from zero and σ±
jγ , u±

j , σ
+
jγ , u−

j are
equal to zero. The boundary conditions are not set on the end of the shell (we admit
that the shell is long or closed).

It is required to find the solution of the following three-dimensional system of
equations of electroelasticity of piezoceramics medium:

∂

∂α
(H2 H3σ

∗
αα)+ ∂

∂β
(H1 H3σ

∗
αβ)+ ∂

∂γ
(H1 H2σ

∗
αγ )− σ ∗

ββH3
∂H2

∂α
− σ ∗

γ γ H2
∂H3

∂α

+ σ ∗
αβH3

∂H1

∂β
+ σ ∗

αγ H2
∂H1

∂γ
+ P∗

α H1 H2 H3 = ρ
∂u∗

α

∂t2 H1 H2 H3, (α, β, γ ; 1, 2, 3).

(56)

For these equations with the additional equations [12]

divD∗ = 0, E∗ = −gradϕ∗,
σ ∗
αα = C E

11ε
∗
αα + C E

12ε
∗
ββ + C E

13ε
∗
γ γ − e31 E∗

γ ,

σ ∗
ββ = C E

12ε
∗
αα + C E

11ε
∗
ββ + C E

13ε
∗
γ γ − e31 E∗

γ ,

σ ∗
γ γ = C E

13(ε
∗
αα + ε∗ββ)+ C E

33ε
∗
γ γ − e33 E∗

γ , σ ∗
αγ = C E

44ε
∗
αγ − e15 E∗

α,

σ ∗
βγ = C E

44ε
∗
βγ − e15 E∗

β, σ ∗
αβ = 1

2
(C E

11 − C E
12)ε

∗
αβ,

D∗
α = εσ11 E∗

α + e15ε
∗
αγ , D∗

β = εσ11 E∗
β + e15ε

∗
βγ ,

D∗
γ = εσ33 E∗

γ + e31(ε
∗
αα + εσββ)+ e33ε

∗
γ γ ,

ε∗αα = 1

H1

∂u∗
α

∂α
+ 1

H1 H2

∂H1

∂β
u∗
β + 1

H1 H3

∂H1

∂γ
u∗
γ ,

ε∗αβ = H1

H2

∂

∂β

(
u∗
α

H1

)

+ H2

H1

∂

∂α

(
u∗
β

H2

)

, (α, β, γ ; 1, 2, 3)

(57)
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is required to satisfy one of the sets of boundary conditions (52), (53); (52), (54);
(52), (55). In Eqs. (56), (57), H1 = A(1 + γ /R1), H2 = B(1 + γ /R2), H3 = 1 are
Lamé’s coefficients, A, B are the coefficients of the first quadratic form, R1, R2 are
the curvatures of the middle surface, σ i j , εi j , u j (i, j = α, β, γ ) are the components
of the stress tensor, strain tensor and displacement vector, ϕ is the potential of the
electric field, E j , D j are the components of the vectors of the electric field strength
and electric induction of piezoceramics, C E

ik are the coefficients of piezoceramics
elasticity under constant (zero) electric field, εσ11, ε

σ
33 are the electric penetrability

under constant (zero) strains, and eik are piezomoduli of the ceramics.
Taking into account the form of the boundary conditions (52)–(55), all the desired

magnitudes are represented in the form of

Q∗(α, β, γ, t) = Q(α, β, γ ) exp iωt, Q = {σ i j , u j , D j , E j , ϕ}, i, j = α, β, γ.

(58)

The components of the symmetric tensor σ i j may be substituted by the compo-
nents of nonsymmetric tensor τi j as follows [3, 10]

ταα =
(

1 + γ

R2

)

σαα, τββ =
(

1 + γ

R1

)

σ ββ, τγ γ =
(

1 + γ

R1

) (

1 + γ

R2

)

σ γ γ ,

τβγ =
(

1 + γ

R1

)

σ βγ , ταγ =
(

1 + γ

R2

)

σ αγ , ταβ =
(

1 + γ

R2

)

σαβ,

(

1 + γ

R1

)

ταβ =
(

1 + γ

R2

)

τβα.

(59)

After substitution of (58) into Eqs. (56), (57) we pass to dimensionless coordinates
and displacements

ξ = α

R
, η = β

R
, ζ = γ

h
= ε−1 γ

R
, u = uα

R
, v = uβ

R
, w = uγ

R
, ε = h

R
, h � R,

(60)

where R is the characteristic size of the middle surface of the shell. As a result we
obtain a system which is singularly perturbed by a small parameter ε. The solution
of the inner problem is sought in the form

Qint(α, β, γ ) = εχQ+s Q(s)(ξ, η, ζ ), s = 0, S. (61)

Simultaneously it is assumed that we have established a dynamic process, which
means that in the equations of the initial approximation following from the motion
equations the inertial terms should be presented. It will hold, when ρh2ω2 will be
the magnitude of an order of one. The noncontradictory iteration process is obtained
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at χu = 0 for all displacements, χσ = −1 for all elastic stresses, χϕ = χE =
χD = − 1 for the characteristics of the electric field. As a result, the following
recurrent differential equations for the determination of all desired magnitudes are
obtained

∂2u(s)

∂ζ 2 + ᾱ2u(s)k = R(s)u , (u, v; ᾱ, β̄), ᾱ2 = β̄2 = ρh2ω2/C E
44,

C E
33
∂2w(s)

∂ζ 2 + e33
∂2ψ(s)

∂ζ 2 + ρh2ω2w(s) = R∗(s)
w , ψ = ϕ/h,

∂ψ(s)

∂ζ
= Ω(s)(ζ, η)+ e33

εσ33

∂w(s)

∂ζ
+ R(s)ψ ,

(62)

where R(0)u = 0, R(0)w = 0, R(0)ψ = 0, R(s)u , R(s)w , R(s)ψ are known functions at
s > 0, if the previous approximations are constructed. When having the functions
u(s), v(s),w(s), ϕ(s) determined by the recurrent formulae from system (62), and
taking into account Eqs. (58), (61), we can determine the remaining magnitudes sat-
isfying the boundary conditions (52), (53); (52), (54); (52), (55) and, hereby, solve the
problems formulated above. In the case of plates, when the functions in Eqs. (52)–(55)
are polynomials, the iteration process cuts off and we get the mathematically exact
solution of the inner problem.

As illustration, we present the solution of the problem of inverse piezoelectric
effects, when (53) V ±

0 = ±V0 = const and σ±
jγ (α, β) = 0 in Eq. (52). With an

accuracy of the first step of iteration we have the following equations

τ ∗
αα =

(

e31 − γ̄ e33

Δ
(C E

13ε
σ
33 + e31e33) cos γ̄ ζ + e31e2

33

Δ
sin γ̄

)
V0

h
exp iωt

γ̄ 2 = ρω2h2

δ33
, (α, β),

τ ∗
γ γ = e33

Δ
γ̄ δ33ε

σ
33(cos γ̄ − cos γ̄ ζ )

V0

h
exp iωt, δ33 = (C E

33ε
σ
33 + e2

33)/ε
σ
33,

τ ∗
αγ = 0, u∗

α = 0, (α, β), τ ∗
αβ = 0,

u∗
γ = −ε

σ
33ε33

Δ
V0 sin γ̄ ζ exp iωt,

ϕ∗ =
(
γ

h
− e2

33

Δ

(
sin γ̄ ζ − γ

h
sin γ̄

)
)

V0 exp iωt,

D∗
γ = −εσ33

(

1 + e2
33

Δ
sin γ̄

)
V0

h
exp iωt, D∗

α = D∗
β = 0,

Δ = εσ33δ33γ̄ cos γ̄ − e2
33 sin γ̄ (63)

for the components of the displacement vector, the stress tensor and the potential of an
electric field. Solution (63) is the mathematically exact one for a spatial piezoceramic
layer of thickness 2h.
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By using the developed asymptotic method it is possible to consider other classes
of problems on interaction of plates and shells with physical fields. But the main
difficulties will be in the correct choice of asymptotically desired magnitudes.

7 Conclusions

Wide class of 3D problems for plates and shells, which may be effectively solved
by using the asymptotic method, has been presented. Static and dynamic problems
of elasticity theory, problems on the interaction of plates and shells with various
physical fields (for example, with temperature and electroelastic fields) have been
considered. Nonclassical problems for layered plates permitting to determine the
stress-strain states of the Earth lithosphere plates by the data of the seismic stations
and the GPS systems and to follow their change in time have been also solved. On the
basis of the analysis of the dynamic problem solution for a layered orthotropic plate,
the necessity of the application of seismo-isolators in a seismo-safe construction has
been proved.
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On the Theories of Plates and Shells
at the Nanoscale

Holm Altenbach and Victor A. Eremeyev

Abstract During the last 50 years the nanotechnology is established as one of the
advanced technologies manipulating matter on an atomic and molecular scale. New
materials, devices or other structures possessing at least one dimension sized from
1–100 nm are developed. The question arises how structures composed of nanoma-
terials should be modeled. In addition, if it is necessary to perform a structural analy-
sis what kind of theory should be used. Two approaches are suggested—theories
which take into account quantum mechanical effects since they are important at
the quantum-realm scale and theories which are based on the classical continuum
mechanics adapted to nanoscale problems. Here the second approach will be dis-
cussed in detail. It will be shown that the classical continuum mechanics is enough for
a sufficient description of the mechanical behavior of nanomaterials and-structures
if surface stresses are taken into account. There are also other approaches in the
literature, but they are note discussed in detail in this paper. The basic equations
for nanosized plates and shells will be discussed. It is shown that for this class of
objects with the help of suggested equations such effects like the size-dependent
changes of the stiffness parameters can be described in a proper manner. In contrast
to the results for the size-dependence of the Young’s modulus (the Young’s modulus
increases when the specimen diameter becomes very thin) the plate stiffness parame-
ters can increase or decrease when the plate thickness is in the range of several nm.
Finally, the theory of plates with surface stresses will be compared with the theory
of three-layered plates.
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1 Introduction and Historical Remarks

Structural mechanics is the computation of strains, deflections, and internal forces
or stresses (stress resultants) within structures. The aim of the analysis is the safe
design of new structures or the evaluation of existing structures. The starting point
for any structural analysis are the following input data: loads (mechanical, thermal,
electrical, etc.), the structure’s geometry, support and contact conditions, and the
material behavior information. Finally, the stresses, the strains and displacements are
estimated for the whole structure. The classical analysis is limited by consideration
of linear-elastic behavior and the description of the structure within the reference
configuration. Advanced structural mechanics may include such effects like stability
and non-linear behavior.

There are several approaches to the analysis. In the general case this results in
solving a system of three-dimensional coupled partial differential equations. Analyt-
ical solution can be obtained only in exceptional cases. Thus during the last 50 years
the finite element method was developed as a powerful tool for approximate solu-
tions of three-dimensional problems. At the same time lower-dimensional theories
became a further development. Since the pioneering works of Euler or Bernoulli
we know that considering the different order of the dimensions of a structure one
can describe the structural mechanics problems by simplified equations. Well-known
examples are the theories of rods, beams, plates and shells. The first two are based
on the assumption that the characteristic cross-section dimension is much smaller
than the length, the last two assume that the thickness is much smaller in comparison
with other dimensions. Below we focus our attention on plates and shells only.

Shell- and plate-like structures are used in civil and aerospace engineering as
basic elements of constructions. Such structures are applied as a model of analysis
in other branches, e.g. mechanical engineering, but also in new one like medical
engineering. New applications are primarily related to new materials—instead of
steel or concrete now one has to analyze sandwiches, laminates, foams, nano-films,
biological membranes, etc. The new trends in applications demand improvements
of the theoretical foundations of the plate and shell theory, since new effects must
be taken into account. For example, in the case of small-size plate- or shell-like
structures (for example, nano-tubes) the surface effect plays an increasing role in the
mechanical analysis of these structural elements if the size decreases.

Let us make a brief overview on some important steps in the development of
the theory of plates and shells. One of the first researcher in the field of plates and
shells was Ernst Florens Friedrich Chladni (∗ November 30, 1756 in Wittenberg;
† April 3, 1827 in Breslau). He was a physicist, astronomer and musician. His most
important contribution included research on vibrating plates showing various modes
of vibration (Chladni’s nodal patterns). In this sense he was the founder of acoustics.
Marie-Sophie Germain (∗ April 1, 1776 in Paris; † June 27, 1831 in Paris) payed
attention on Chladni’s experimental works. She took part in a contest organized by the
French Academy of Sciences. The aim of the contest was to give “the mathematical
theory of the vibration of an elastic surface and to compare the theory to experimental
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evidence”. She submitted a paper on this topic, but failed. Joseph-Louis Lagrange
(∗ January 25th, 1736 in Turin; † April 10th, 1813 in Paris) derived an equation
based on Germain’s paper that was correct under special assumptions. Later in 1816
Germain published her third paper on the above mentioned topic and she was awarded
the prix extraordinaire. She derived the correct vibration equation

N 2
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∂4z

∂x4 + ∂4z

∂x2∂y2 + ∂4z

∂y4

)

+ ∂2z

∂t2 = 0 (N = const),

but the experimental results were not very accurate predicted. In addition, she had
trouble with the boundary conditions.

The next big step in the development of the plate theory was done by Gustav
Robert Kirchhoff (∗ March 12, 1824 in Königsberg; † October 17, 1887 in Berlin).
The Kirchhoff plate theory is an extension of the Euler-Bernoulli beam theory to thin
plates and based on the assumption that a mid-surface plane can be used to repre-
sent the three-dimensional plate in two-dimensional form. He introduced following
kinematic assumptions: straight lines normal to the mid-surface remain straight and
normal after deformation and the thickness of the plate does not change during the
deformation [75]. The governing equation of Kirchhoff’s plate theory is

∇2∇2w = q

D
with D = Eh3

12(1 − ν2)

Similar kinematical assumptions were introduced by Augustus Edward Hough Love
(∗ April 17, 1863 in Weston-super-Mare; † June 5, 1940 in Oxford) in the case of
shells.

The main disadvantage of Kirchhoff’s plate theory is that the governing equation
is of 4th order—but in some cases one has to satisfy three boundary conditions. In
addition, the transverse flexibility is not presented in a satisfying manner. This was the
staring point for several improvements of the Kirchhoff theory. Theodore von Kármán
(∗ May 11, 1881 in Budapest; † May 6, 1963 in Aachen) presented at the beginning
of the last century [38], which can be related to the reference configuration (in-plane
behavior) and to the actual configuration (out-of-plane behavior) at the same time.
Finally, he obtained the Föppl-von Kármán equations describing large deflections of
thin plates. Another improvement was given by Eric Reissner (∗ January 5, 1913 in
Aachen; † November 1, 1996 in La Jolla, CA). He has been accounted the stresses
ignored in the Kirchhoff theory. In this sense Reissner’s theory is named first order
shear-deformation plate theory. A similar theory was presented by Raymond David
Mindlin (∗ September 17, 1906 in New York; † November 22, 1987 in Hanover,
New Hampshire) in 1951, but in contrast to Reissner he used Poisson’s approach of
dimension reduction applying power series.

Later in the former Soviet Union various plate and shell theories were suggested.
Ilia Vekua (∗ April 23, 1907 in Sheshelety; † December 2, 1977 in Tbilisi) was a
Georgian mathematician, which proposed a shell theory using generalized analytic
functions [88]. Khamid Mushtari (∗ July 22, 1900 in Orenburg; † January 23, 1981
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in Kazan) was a Tatarian scientist in the field of solid mechanics and mathematics,
presenting a theory with large rotations which was successfully used in aerospace
industries [60]. This theory was similar to Donnell’s and Vlasovs approach and
so the theory is usually named Mushtari-Donell-Vlasov theory [22, 93]. Sergei
Ambarcumyan (∗ March 17, 1922 in Gumry) suggested a first-order shear deformable
theory with a special distribution law for the transverse stresses [13].

Another approach was used by Paul Mansur Naghdi (∗ March 29, 1924 in Teheran;
† July 9, 1994 in Berkeley, CA) which was based on the direct approach introduced by
Euler and developed by the Cosserat brothers. A summary concerning this approach
one can find in [61]. Further historical remarks concerning the theory of plates and
shell can be found, for example, in [12].

Relatively recently the developments of nanotechnologies lead to the derivation
of models of plates and shells which can be used at the nano-scale. At this level the
surface phenomena are important. The classical theory of capillarity was establish by
Young and Laplace and then was extended for the case of solids by Gibbs. Gurtin [32]
and Steigmann [84] proposed models of surface stresses describing the surface elastic
properties. The model by [32] found many applications for materials at the micro-
and nanoscales, see the reviews [23, 36, 69, 90, 91]. In particular, the surface effects
are used for explanation of deviation of the properties of nanosized specimens from
the ones of bulk materials. The enhancements of the theory of plates and shells taking
into account of surface stresses are discussed in [3, 9–11, 24] and reference therein.

After the work by [58, 59] the surface stresses can be modeled within the frame-
work of the second-gradient theory of elasticity. Non-local and gradient type models
of plates and shells are presented, for example, by [14, 18, 34, 45–48, 56, 62, 71–73,
80, 83, 87, 89]. Below only the first approach based on the introduction of equations
for the bulk behavior and the surface behavior is used.

2 Materials and Structures Under Consideration

Material science classifies structural materials into three categories

• metals,
• ceramics, and
• polymers

It is difficult to give an exact assessment of the advantages and disadvantages of these
three basic material classes, because each category covers whole groups of materials
within which the range of properties is often as broad as the differences between the
three material classes.

The following characteristic properties can be established:

• Mostly metallic materials are of medium to high density. They have good ther-
mal stability and can be made corrosion-resistant by alloying. Metals have useful
mechanical characteristics and it is moderately easy to shape and join. For this
reason metals became the preferred structural engineering material.
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• Ceramic materials have great thermal stability and are resistant to corrosion,
abrasion and other forms of attack. They are very rigid but mostly brittle and
can only be shaped with difficulty. In many cases they fail immediately beyond
the elastic range.

• Polymer materials (plastics) are of low density, have good chemical resistance
but lack thermal stability. They have poor mechanical properties, but are easily
fabricated and joined. Their resistance to environmental degradation, e.g. the pho-
tomechanical effects of sunlight, is moderate.

At present classical structural materials are more and more substituted by advanced
materials. An example of advanced materials are composite materials which classifi-
cation is given in Fig. 1. Another class of advanced materials are sandwich materials
with solid and hollow cores (Fig. 2). Similar to the classical sandwiches short fibre
reinforced composites have with respect to the technology (here injection molding)
a layered sandwich-type microstructure (Fig. 3). Recently another type of advanced
materials is used as a material for lightweight structures–plastic or metallic foams.
Figure 4 shows closed-cell foams, Fig. 5—open-cell foams.

Classical laminates and sandwiches are modeled as usual as materials with piece-
wise constant properties. Now we have also materials with changing properties–so
called functionally graded materials (FGM). Examples of FGM are shown on Fig. 6.

With the development of nanotechnology a new class of advanced materials was
established: nanomaterials. These are materials with single units of which are sized
(in at least one dimension) between 1 and 1,000 nm but is usually 1–100 nm (the usual
definition of nanoscale, [15]). Examples of nanomaterials are presented on Fig. 7.

The above mentioned materials have a common feature concerning modeling: in
all these cases multi-scale and homogenized models are suggested. On Figs. 8 and 9

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Classification of composites: a laminate, b irregular reinforcement, c reinforcement with
particles, d reinforcement with plate strapped particles, e random arrangement of continuous fibres,
f irregular reinforcement with short fibres, g spatial reinforcement, h reinforcement with surface
tissues (after [8])
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foam core balsa wood core

foam core with fillers balsa wood core with holes

folded plates core honey comb core

Fig. 2 Sandwich materials with solid and hollow cores [8]

Flow direction

Fig. 3 Short fibre reinforced composite (after [81])
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Fig. 4 Closed-cell polymeric foams with various densities after [43]

Fig. 5 Open-cell foams with various densities after [43]

Fig. 6 Examples of FGMs with inhomogeneous microstructure: foam (left), thermal coating (right)

the model hierarchy in the case of laminated plates and open- and closed-cell foams
is shown.
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Fig. 7 Nanostructures: a ordered array of ZnO nanocrystals and single crystal, b ZnO nanofoam

Layers

Interface between layers

Fibre

Fibre-matrix interface

Fig. 8 Multi-scale modeling of laminated plates [8]

Macroscale Mesoscale Microscale

Fig. 9 Three scales for foam structures

3 Plate and Shell Theories: Fundamentals

The basic problem in civil and mechanical engineering is the analysis of the strength,
the vibration behavior and the stability of structures with the help of structural models.
The structural models can be classified by their
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• spatial dimensions
• loadings
• kinematical and/or statical hypotheses

The starting point for any structural analysis is order of the dimensions in the three-
dimensional space. We have to distinguish three basic models:

• The three spatial dimensions have the same order, no predominant direction for
the dimensions exists. Typical examples of geometrical simple, compact structural
elements in theory of elasticity are cube, prism, cylinder, sphere, etc.

• Two spatial dimensions have the same order, the third, which is related to the
thickness is much smaller. Typical examples of surface structural elements in
structural mechanics are: discs, plates, shells, folded structures, etc.

• Two spatial dimensions, which can be related to the cross-section, have the same
order. The third dimension, which is related to the length of the structural element,
has a much larger order in comparison with the cross-section dimensions. Typical
examples in engineering mechanics are: rods, beams, torsion beam, etc.

Thin-walled structural elements (thin-walled light-weight profile structures) require
an extension of the classical structural models. If the spatial dimensions are of sig-
nificantly different order and the thickness of the profile is small in comparison to the
other cross-section dimensions, and the cross-section dimensions are much smaller
in comparison to the length of the structure one can introduce quasi-one-dimensional
structural elements. Suitable theories are

• the thin-walled beam approach and
• the semi-membrane theory or generalized beam theory [93]

The further discussion are limited to structures subjected to the following
definition.

Definition 2.1 (Two-Dimensional Structure) A two-dimensional load-barring struc-
tural element is a model for the analysis in engineering and structural mechanics with
two geometrical dimensions, which are of the same order and which are significantly
larger than the third (thickness) direction.

The mathematical consequence is that instead of a three-dimensional problem,
which is presented by a system of partial differential equations, one can analyze
a two-dimensional problem. The transition from the three-dimensional to the two-
dimensional problem is not simple, but the solution effort decreases significantly.
Within the definition the following model classes are included

• thin homogeneous plates,
• thin inhomogeneous plates (laminates, sandwiches),
• plates with structural anisotropy,
• moderately thick homogeneous plates,
• folded plates,
• membranes,
• biological membranes,
• nanotubes
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Such models are applied in space and aircraft industries, automotive industries,
shipbuilding industries, vehicle systems, civil engineering, medicine, etc. The devel-
opments in this field are widely discussed, for example, in [12, 30, 31, 61, 75, 77].
Recently several conferences were devoted to this topic: Euromech Colloquia 444
and 527 [4, 41], IUTAM Symposium on Relation of Shell, Plate, Beam and 3D
Models [35], Shell Structures Theory & Applications conference [67] among others.

In the literature there are various formulation principles for two-dimensional
theories. The corresponding equations can be deduced:

• starting from three-dimensional continuum mechanics equations or
• starting from two-dimensional equation describing the behavior or a deformable

surface

If one starts from three-dimensional continuum mechanics equations there exist two
possibilities to reduce the dimension

• the use of proper hypotheses or
• the use of mathematical approaches

All suggested methods have advantages and disadvantages, but hypotheses based
theories are preferred by the engineers.

If the hypotheses based method is used we can introduce assumptions for the stress,
strain or displacement states. For example, if we start with displacement approxima-
tions we can deduce the full set of governing taking and boundary conditions.

• Examples of displacement approximations for a plate (Fig. 10) are given as follows:

– Kirchhoff [42]
uα(xβ, z) = u0

α(xβ)− zw,α(xβ), w(xβ, z) = w(xβ)
– Mindlin [57]

uα(xβ, z) = u0
α(xβ)+ zϕα(xβ), w(xβ, z) = w(xβ)

– Levinson [50] and Reddy [74]

uα(xβ, z) = u0
α(xβ)− [w,α(xβ)+ ϕα(xβ)] 4z3

3h2 , w(xβ, z) = w(xβ)

– Meenen and Altenbach [55]
uα(xβ, z) = uq

α(xβ)φ
q(z)+ wq

,α(xβ)ψ
q(z), w(xβ, z) = w(xβ)qχq(z)

x2, u2
x1, u1

z, w

h

ui = (uα ,w)

α ,β = 1,2

Fig. 10 Examples of displacement approximations
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• Mathematical approaches are based on

– Power series for the displacements, stresses and strains which were used by
[17, 39, 40, 52, 55, 70] among others,

– Special or trigonometric functions which were applied, for example, in
[44, 86, 88],

– Asymptotic integration which was used, for example, in [28]

Another approach is the so-called direct approach. The starting point is the à
priori introduction of an two-dimensional deformable surface [2, 29, 61, 79, 94, 95].
This is a natural way of formulation the two-dimensional equations which was also
mentioned indirectly by [82]: “…everyone, who is thinking about the foundations
of Continuum Mechanics, will attend the world of images of the Cosserat brothers”.
Firstly the direct approach was discussed by Leonard Euler introducing the moment
vector as independent quantity in the theory of beams. Later this approach was
extended to three-dimensional problems and a first summary was given by [20, 21].
Later this approach was discussed and extended by [16, 26, 27, 37, 63, 65]. Special
contributions to the two-dimensional direct approach were made by [7, 29, 61, 78]
among others. In all these papers the independence of translations and rotations/forces
and moments is assumed and which corresponds to the undergraduate courses in
Statics and Rigid Body Dynamics.

In the adjacent part the direct approach to the theory of plates and shells will be
considered.

Definition 2.2 (Simple Shell) A simple shell is a 2D-continuum in which the inter-
action between neighboring parts is due to forces and moments [95].

In addition let us make the following two assumptions:

1. The plate or shell (homogeneous or inhomogeneous in thickness direction) will
be represented by a deformable surface.

2. Each material point of the surface is an infinitesimal body with 5 degrees of
freedom (3 translations and 2 rotations).

The last one assumption can be easily extended to 6 degrees of freedom [5].
The kinematical model of a simple shell can presented as usual in continuum

mechanics by comparison of the reference and actual configurations. In the reference
configuration (undeformed state) we have

{r(q1, q2); dk(q
1, q2)},

where r(q1, q2) is the position vector, dk(q1, q2) are orthonormal vectors. The actual
configuration (deformed state) is given by

{R(q1, q2, t); Dk(q
1, q2, t)}, Dk · Dm = δkm,

where the capital letters have the same meaning as in the reference configuration.
The motion of the directed surface can be presented by
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R(q, t), P(q, t) ≡ Dk(q, t)⊗ dk(q)

P(q, t) ≡ P(q1, q2, t) is a rotation tensor, det P = +1. The linear and angular
velocities v(q, t),ωωω(q, t) are defined as

v = Ṙ, Ṗ = ωωω × P, P(q1, q2, 0) = P0, ḟ ≡ d f

dt

and we obtain the local equations of motion:

• First Euler equation of motion

∇̃ · T + ρF∗ = ρ(v +ΘΘΘT
1 ·ωωω)·

• Second Euler equation of motion

∇̃ · M + T× + ρL = ρ(ΘΘΘ1 · v +ΘΘΘ2 ·ωωω)· + ρv ×ΘΘΘT
1 ·ωωω

T = Rα ⊗ Tα,M = Rα ⊗ Mα are the force and the moment tensor, respectively,
T× ≡ Rα × Tα is the vector invariant of the force tensor, F∗,L are the mass density
of external forces and moments, ρ, ρΘΘΘ1, ρΘΘΘ2 are the density, the first and the second
tensor of inertia, respectively, ∇̃ ≡ Rα(q1, q2, t) ∂

∂qα is the nabla operator.
Here and in the next following parts the direct tensor notation is used (see, for

example, [49]).
The equation of the balance of energy can be formulated in the local form

ρU̇ = TT ······ ∇̃v − T× ·ωωω − MT ······ ∇̃ωωω

U is the mass density of the internal energy. Introducing the energetic tensors [54]

Te = (∇̃r)T · T · P, Me = (∇̃r)T · M · P

Another form of the balance of energy is given by

ρU̇ = TT
e ······ Ė + MT

e ······ Ḟ

E,F are the first and the second deformation tensors

E = ∇̃R · P − a, F = (ΦΦΦα · Dk)rα ⊗ dk

with ∂αP = ΦΦΦα × P ⇒ 2ΦΦΦα = −[∂αP · PT]×. a is the first two-dimensional
metric tensor. Now we can define the reduced deformation tensors. The internal
energy U = U (E,F) contains 12 scalar arguments. The number of arguments can
be reduced due to some restrictions [95]:

• simple shells of constant thickness,
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• non-polar materials,
• L · D3 = 0, M · D3 = 0
• MT

e ·· [(F − b · c) · c] + TT
e ·· [(E + a) · c] = 0

the specific energy U must satisfy

(
∂U

∂E

)T

·· [(E + a) · c] +
(
∂U

∂F

)T

·· [(F − b · c) · c] = 0,
∂ρ0U

∂(F · n)
= 0

b is the second two-dimensional metric tensor and c = −n × a is the discriminant
tensor. The characteristic system of the first one equation is a system of 12th order

d

ds
E = (E + a) · c,

d

ds
F = (F − b · c) · c

which have 11 independent integrals–the strain measures

2εεε = [
(E + a) · a · (E + a)T − a

]
,

ΦΦΦ = (F − b · c) · a · (E + a)T + b · c · εεε + b · c,
γγγ = E · n,
γγγ ∗ = F · n

The arbitrary function U (εεε,ΦΦΦ,γγγ ,γγγ ∗) satisfies the first equation of the character-
istic system. From the second equation follows that U does not depend on γγγ ∗. The
tensors εεε,ΦΦΦ,γγγ are called reduced deformation tensors. εεε represents the plane tensile
and shear strains, Φ are the bending and torsional strains and γγγ are the transverse
shear strains.

For a shell composed of a linear-elastic material with relatively small strains while
the displacements and rotations can be relatively large the quadratic approximation
for the strain energy can be introduced

2ρ0U = 2T0··εεε + 2MT
0 ··ΦΦΦ + 2N0 · γγγ + εεε··(4)C1··εεε + 2εεε··(4)C2··ΦΦΦ

+ 2ΦΦΦ··(4)C3··ΦΦΦ + γγγ ·ΓΓΓ · γγγ + 2γγγ · (
(3)ΓΓΓ 1··εεε + (3)ΓΓΓ 2··ΦΦΦ

) (1)

T0,M0,N0, (4)C1,
(4) C2,

(4) C3, (3)ΓΓΓ 1,
(3) ΓΓΓ 2, ΓΓΓ are stiffness tensors of different

rank. They express the effective elastic properties of the simple shell. The differences
between various classes of simple shells are connected with different expressions of
the stiffness tensors. The stiffness tensors do not depend on the deformations. Thus
they may be found from tests based on the linear shell theory.

The constitutive equations can be obtained as the derivatives of the strain energy
by the strains. In the simplest case ignoring the eigenstresses we get

• in-plane forces

T · a = ρ0
∂U

∂εεε
= (4)C1 ······ εεε + (4)C2 ······ΦΦΦ + γ · Γγ · Γγ · Γ 1, (2)
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• transverse shear forces

T · n = ρ0
∂U

∂γγγ
= Γ · γΓ · γΓ · γ +ΓΓΓ 1 ······ εεε +ΓΓΓ 2 ······ΦΦΦ, (3)

• moments

MT = ρ0
∂U

∂κκκ
= εεε ······ (4)C2 + (4)C3 ······ΦΦΦ + γ · Γγ · Γγ · Γ 2 (4)

After the formulation of the governing equations one open question exists—the
identification of the effective properties (stiffness, etc.). Various solutions of this
problem are existing. To find the general structure of stiffness tensors the theory
of symmetry must be applied. The classical theory of symmetry is not sufficient
because it is valid for Euclidean tensors only. In the shell theory Euclidean and non-
Euclidean tensors are involved. Details of the application of the theory of symmetry
are presented in [95].

In the thickness direction of plates and shells we can assume homogeneous or
inhomogeneous behavior. The second case is obtained if we have sandwiches and
laminates (piecewise constant properties) or functionally graded materials (continu-
ous distributed properties). Both particular cases can be modeled like a “microstruc-
ture”. The question arises how the symmetries of the “microstructure” do affect the
physical properties? The answer comes from the Curie-Neumann’s principle [64, 66]
in the physics of crystals: The symmetry group of the reason belongs to the symmetry
group of the consequence.1 The symmetry group of the reasons for the plates and
shells is the intersection of

• symmetry of the material (fibre-reinforced material, rolled sheets, …),
• symmetry of the surface shape (shell or plate),
• symmetry of the internal structure of the plate (for example, symmetry of the

laminate stacking sequence with respect to the mid-surface, …)

It is obvious that symmetry discussions for shells are more complex since the curva-
ture has an influence.

Symmetries can be described in terms of the geometric operations which produce
identical configurations. The set of symmetry operations and results of their com-
binations define a mathematical structure called a group. The symmetry operations
which involve only rotations, reflection and inversion define the point group. The
symmetries are described by orthogonal tensors

1 Other formulations are:

• Any type of symmetry exhibited by the point group of a crystal is possessed by every physical
property of the crystal.

• For a material element and for any of its physical properties, every material symmetry transfor-
mation of the material element is a physical symmetry transformation of the physical property.
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• reflection (n is the unit normal to the mirror plane)

Q = I − 2n ⊗ n, det Q = −1,

• rotation (m represents the axis and ψ is the angle of rotation)

Q(ψm) = m ⊗ m + cosψ(I − m ⊗ m)+ sinψm × I, det Q = 1, |ψ | < π,

• inversion

−I

The identification procedure is related to solving boundary value problems or
eigenvibration problems. Comparing similar two-dimensional and three-dimensional
quantities like stresses and forces, etc. one can obtain the effective properties of the
plate or shell. The following relations between 2D and 3D properties are assumed:

• forces and moments

T = 〈μμμ−1 · σσσ 〉, M = 〈μμμ−1 · σσσ · cz〉, < (. . .) >=
h/2∫

−h/2

(. . .)dz,

σσσ is the symmetric stress tensor of the classical theory of elasticity,μμμ is the shifter
tensor (see [61] among others) and c is the discriminant tensor.

• displacements and rotations

ρ0(u +ΘΘΘT
1 · ϕϕϕ) = 〈ρ∗

0 u∗〉, ρ0(ΘΘΘ1 · u +ΘΘΘT
2 · ϕϕϕ) = 〈ρ∗

0 u∗ · cz〉

u∗ is the three-dimensional displacement vector.
• external force and moment

ρ0F∗ = 〈ρ∗
0 F∗〉 + μ+σσσ+

n + μ−σσσ−
n ,

ρ0L = n × 〈ρ∗
0 F∗z〉 + (h/2)n × (μ+σσσ+

n − μ−σσσ−
n )

μ+(−) = 1 − (+)h H + (h2/4)G, σσσ+(−)
n are stress vectors on the upper and

lower face surfaces of the plate or shell. H and G denotes the mean and Gaussian
curvature, respectively.

Symmetry considerations (orthotropic material behavior, plane mid-surface)
result in the following representation of the stiffness tensors
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AAA = A11a1a1 + A12(a1a2 + a2a1)+ A22a2a2 + A44a4a4,

BBB = B13a1a3 + B14a1a4 + B23a2a3 + BBB24a2a4 + B42a4a2,

CCC = C22a2a2 + C33a3a3 + C34(a3a4 + a4a3)+ C44a4a4,

ΓΓΓ = Γ1a1 + Γ2a2, ΓΓΓ 1 = 000, ΓΓΓ 2 = 000

with a1 = a = eee1eee1 + eee2eee2, a2 = eee1eee1 − eee2eee2, a3 = c = eee1eee2 − eee2eee1, a4 =
eee1eee2 +eee2eee1 eee1,eee2 are unit basic vectors. In addition, the orthogonality condition for
ai (i = 1, 2, 3, 4) is fulfilled

1

2
ai ······ a j = δi j , δi j =

{
1, i = j,
0, i 	= j

Let us assume for the elastic orthotropic law the following cases:

Case 1: Homogeneous plates–all properties are constant with respect to z.
Case 2: Inhomogeneous plates–all properties are functions of z.

The identification of the effective properties can be performed with the help of static
boundary value problems (two-dimensional, three-dimensional) and the comparison
of the forces and moments (in the sense of averaged stresses or stress resultants)

TTT =< a · σa · σa · σ >, MMM =< a · σa · σa · σ z ··· c >

Here the simplest case (plates) is considered. Details for homogeneous shells are
given in [95], solutions for eigenvibrations are presented in [94].

• Problem 1: Tension and Bending
The following two-dimensional kinematical field is given

uuu = D1x1eee1 + D2x2eee2 − 1

2

(
x2

1

R1
+ x2

2

R2

)

nnn, ϕϕϕ = − x2

R2
eee1 + x1

R1
eee2

D1, D2, R1 and R2 are constants. Then the strains can be computed

μμμ = D1eee1eee1 + D2eee2eee2, γγγ = 0, κκκ = 1

R1
eee1eee2 − 1

R2
eee2eee1

and we obtain the forces and moments from the constitutive equations.
The three-dimensional strain tensor components are

ε1 = D1 + z

R1
, ε2 = D2 + z

R2

Stress tensor components (plane stress state is assumed) are

σ1 = E1

1 − ν12ν21
(ε1 + ν21ε2), σ2 = E2

1 − ν12ν21
(ε2 + ν12ε1)
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Finally we have to compare both solutions

A11 = 1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21

〉

, A12 = 1

4

〈
E1 − E2

1 − ν12ν21

〉

,

A22 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21

〉

,

B13 = −1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
z

〉

, − B23 = B14 = 1

4

〈
E1 − E2

1 − ν12ν21
z

〉

, (5)

B24 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21
z

〉

,

C33 = 1

4

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
z2

〉

, C34 = −1

4

〈
E1 − E2

1 − ν12ν21
z2

〉

,

C44 = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21
z2

〉

• Problem 2: Plane Shear
Let us assume the two-dimensional kinematical field

uuu = S2x2eee1 + S1x1eee2 − S2x1x2nnn, ϕϕϕ = −S2(x1eee1 − x2eee2)

S1 and S2 are constants. From the kinematical field the strains are computed. With
the help of the constitutive equations the forces and moments are estimated.

The corresponding three-dimensional strain tensor component is

γ12 = u∗
1,2 + u∗

2,1 = S1 + S2z

After calculation the stresses we can compare the results of the two-dimensional and
three-dimensional solutions

A44 =< G12 >, B42 = − < G12z >, C22 =< G12z2 > (6)

• Problem 3: Torsion
Let us introduce a deformable strip (|x1| ≤ l1, |x2| < ∞) under constant torsion
moment at the boundaries x1 = ±l1. Then one gets the two-dimensional kinematical
field

uuu = u2(x1)eee2, ϕϕϕ = −ϕ1(x1)eee1

and the force and moment tensors

TTT = (A44u2,1 − B42ϕ2,1)a4 + (Γ1 − Γ2)ϕ2eee2nnn, MMM = (B42u2,1 − C22ϕ2,1)a2

The dual three-dimensional problem (strip |x1| ≤ l1, |x2| < ∞, |z| ≤ h/2) results
in the displacements
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u∗
1 = w∗ = 0, u∗

2 = u∗
2(x1, z),

the stress tensor

σσσ = G12
∂u∗

2

∂x1
a4 + G2n

∂u∗
2

∂z
(eee2nnn + nenene2)

and equilibrium equation

G12
∂2u∗

2

∂x2
1

+ ∂

∂z

(

G2n
∂u∗

2

∂z

)

= 0

The solution with respect to the boundary conditions σn = τ1n = τ2n = 0 at the top
and the bottom surfaces |z| = h/2 can be obtained by the following Fourier’s ansatz:
u∗

2(x1, z) = X (x1)Z(z) which yields a Sturm-Liouville problem

d

dz

(

G2n
dZ

dz

)

+ λ2∗G12 Z = 0,
dZ

dz

∣
∣
∣
∣
|z|= h

2

= 0

and

d2 X

dx2
1

− λ2∗ X = 0

The lowest non-trivial positive solution λ∗ one obtains from

X (x1) = B
sinh λ∗x1

λ∗ cosh λ∗l1
and u∗

2 = B Z(z)
sinh λ∗x1

λ∗ cosh λ∗l1

Finally, after comparison of the two-dimensional and the three-dimensional solutions
one gets

λ = λ∗ =
√
(Γ1 − Γ2)A44

A44C22 − B2
42

T12 and M12 obtained by the two-dimensional and the three-dimensional approaches
are in a full agreement. For the kinematical fields one gets

< G12(u
∗
2 − u2 − zϕ2)

2 >= min(u2, ϕ2)

u2 = M∗
12 < G12z >

< G12 >< G12z2 > − < G12z2 >

sinh λ∗x1

λ∗ cosh λ∗l1
,

ϕ2 = − M∗
12 < G12 >

< G12 >< G12z2 > − < G12z2 >

sinh λ∗x1

λ∗ cosh λ∗l1
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In addition, one has to analyze the similar problem for the second direction in the
two-dimensional case (|x1| < ∞, |x2| ≤ l2) as in the three-dimensional case (|x1| <
∞, |x2| ≤ l2, |z| ≤ h/2)with the constant torsion moment at the boundary |x2| ≤ l2.
The following final results can be obtained

d

dz

(

G1n
dZ∗

dz

)

+ η2G12 Z∗ = 0,
dZ∗

dz

∣
∣
∣
∣
|z|= h

2

= 0, η =
√
(Γ1 + Γ2)A44

A44C22 − B2
42

Finally, we get the expressions for the transverse shear stiffness tensor components

Γ1 = 1

2
(λ2 + η2)

A44C22 − B2
42

A44
, Γ2 = 1

2
(η2 − λ2)

A44C22 − B2
42

A44
(7)

From the above mentioned stiffness values one gets the classical stiffness tensors for
the isotropic homogeneous plate. The basic geometrical property is the thickness h,
the plate is symmetrical with respect to the mid-plane which results in BBB ≡ 0. Let us
assume the following material data: the Young’s modulus E and the shear modulus
G = E/2(1 + ν), ν is the Poisson’s ratio. All material properties are constant. The
in-plane and out-of-plane stiffness parameters can be computed by

A11 = Eh

2(1 − ν)
, A22 = Eh

2(1 + ν)
= A44 = Gh,

C33 = Eh3

24(1 − ν)
, C44 = Eh3

24(1 + ν)
= C22 = Gh3

12

The classical plate (bending) stiffness [85] follows as

C33 + C44 = Eh3

12(1 − ν2)
,

the transverse shear stiffness can be estimated by

Γ = λ2C22 with
d2 Z

dz2 + λ2 Z = 0,
dZ

dz

∣
∣
∣
∣
|z|= h

2

= 0

cos λz = 0 yields the smallest eigenvalue λ = π
h

Γ = π2

h2

Gh3

12
= π2

12
Gh

The value π2/12 is the same like the shear correction of [57], Reissner’s estimate
5/6 [76] is close to this value.
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Fig. 11 Transverse shear stiffness of a FGM plate (Reissner’s solution is presented by the dashed
line, Gm,Go shear modulus at the midplane, at outer faces, respectively)

The suggested approach can be applied in more general cases. As an example on
Fig. 11 the transverse shear stiffness of a FGM plate is shown, for details see [1]. The
following comments can be made

• Reissner’s solution gives understated values of the transverse stiffness when the
difference between elastic moduli is big enough.

• On the other hand, Reissner’s solution gives overstated values when the elastic
moduli do not differ.

• Reissner’s formula gives us good coincidence with our results when the gm ∼ 0.6.

4 Nano-Sized Plates and Shells

The development of nanotechnologies extends the field of application of the classical
or non-classical theories of plates and shells towards the new thin-walled structures.
Nanomaterials have physical properties which are different from the bulk material.
The classical linear elasticity can be extended to the nanoscale by taking into account
the surface stresses. In particular, the surface stresses are responsible for the size-
effect, that means the material properties of a specimen depend on its size. For
example, Young’s modulus of a cylindrical specimen increases significantly, when
the cylinder diameter becomes very small. The surface stresses are the generalization
of the scalar surface tension which is well-known phenomenon in the theory of
capillarity.

The investigations of the surface phenomena were initiated by Laplace, Young
and Gibbs. A summary of the investigations are given in the reviews of [68] or [23]. In
[32, 68, 84] the surface stresses are considered. Recently two-dimensional theories
of nanosized plates and shells were suggested. The theory of elasticity with surface
stresses is applied to the modifications of the two-dimensional theories of nanosized
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plates in [33, 53] or [9]. Various theories of plates are formulated. The approaches
can be classified, for example, by the starting point of the derivation. This can be
the well-known three-dimensional continuum mechanics equations. In contrast, one
can introduce à priory a two-dimensional deformable surface which is the basis
for a more natural formulation of the two-dimensional governing equations. This
so-called direct approach should be supplemented by the theoretical or experimental
determination of the material parameters included in the constitutive equations.

4.1 Basic Equations of Linear Elasticity with Surface Stresses

Let V is a bounded domain in IR3 with sufficiently regular boundary that a body
occupies. Here we consider problems with mixed boundary conditions. SupposeΩ1,
a nonempty part of the boundary surface Ω of V , to be fixed: u|Ω1 = 0 (u is the
three-dimensional displacement vector). On the rest part Ω2 = Ω\Ω1 it is defined
the stress vector t expressed through a given load φφφ and tS (the stress vector due the
surface stresses) by the formula

t = φφφ + tS,

where tS is determined through the surface stress tensor τττ , see [32, 68]. As a result,
we have

∇ · σσσ + ρf = ρü, x ∈ V, (8)

u|Ω1 = 0, n · σσσ |Ω2 = t, x ∈ Ω, (9)

where σσσ is the stress tensor, ∇ the 3D gradient operator (3D nabla operator), ρ the
body density, f the density of the volume forces, n the external unit normal to Ω ,
and the dot over a quantity denotes its partial derivative with respect to the time t .
The surface stress vector is defined by

tS = ∇̃ · τττ , (10)

where τττ is the surface stress tensor on Ω and ∇̃ is the nabla operator on the surface
Ω that relates with ∇ by the formula

∇̃ = ∇ − n
∂

∂z
,

and z is the coordinate along the normal to Ω .
Let us consider the special problem when the static conditions are given on the

whole boundary

n · σσσ |Ω = t, x ∈ Ω (11)
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For simplicity, we restrict ourselves to an isotropic material. The constitutive
equation for the material is Hooke’s law

σ = 2μe + λItr e with e = e(u) ≡ 1

2

[
∇u + (∇u)T

]
(12)

For the surface stresses we assume the following constitutive equation:

τττ = τ0a + 2μSεεε + λSatrεεε with εεε = εεε(v) ≡ 1

2

[
∇̃v · a + a · (∇̃v)T

]
, (13)

where v is the displacement of the film point x of Ω2, τ0 is the residual (initial)
surface tension. Here I and a ≡ I − n ⊗ n are the three- and two-dimensional unit
tensors, respectively, λ and μ are Lamé’s coefficients of the bulk material whereas
λS and μS are the elastic characteristics of the surface film Ω2 (they are the surface
analogues of Lamé’s coefficients), e is the small strain tensor, and εεε is the surface
strain tensor. Following [32], we use the non-separation condition

u|Ω2 = v

This explicitly states that the displacements of the surface filmΩ2 coincide with the
body displacements on the boundary. There are more general relations for the surface
stresses that include residual stresses, anisotropy and other factors [6, 32, 69].

In equilibrium, the dynamic Eq. (8) changes to

∇ · σσσ + ρf = 0. (14)

Thus the equilibrium boundary value problem for an elastic body with surface stresses
consists of Eq. (14) and the boundary conditions

u|Ω1 = 0, (n · σσσ − ∇̃ · τττ)∣∣
Ω2

= φφφ, (15)

where σσσ and τττ satisfy relations (12) and (13), respectively. In Eq. (13) we set

εεε = εεε(u) ≡ 1

2

[
∇̃u · a + a · (∇̃u)T

] ∣
∣
Ω2

If Ω2 = Ω then part Ω1 is absent.

4.2 Transition to the Theory of Plates and Shells

Let us consider thin-walled 3D solid called also shell-like body (Fig. 12). We assume
that the volume of the shell-like body V is bounded by two faces Ω± and lateral
surface Ων . We also introduce the base (middle) surface ω. The radius-vector of
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Fig. 12 Shell-like body

material points r is given as follows

r = ρρρ(q1, q2)+ zn,

where ρρρ is the radius-vector of ω, n is the unit normal to ω, z is the transverse
coordinate, z ∈ [−h/2, h/2], h is the shell thickness, q1, q2 the coordinates on ω.
Radius-vectors of Ω± are given by r± = ρρρ ± nh/2. For the sake of simplicity we
assume that h is a constant.

Let as recall basic formulas used in the tensor calculus for description of tensor
fields near ω, see [25, 49]. The basic and reciprocal bases on ω are given by

ρρρα = ∂ρρρ

∂qα
, ρρρα · ρρρβ = δβα , α, β = 1, 2,

where δβα is the Kronecker symbol. The surface nabla-operator on ω is defined as

∇̃ = ρρρα
∂

∂qα

We use q1, q2, z as coordinates in the neighborhood of ω. Then we have

rα = ∂r
∂qα

= ρρρα + z
∂n
∂qα

= (a − zb) · ρρρα, r3 = r3 = n,

rα = (a − zb)−1 · ρρρα, rα · rβ = δβα , b = −∇̃n,
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where b is the curvature tensor of ω. Operators ∇ and ∇̃± are reduced to

∇ = rα
∂

∂qα
+ n

∂

∂z
= (a − zb)−1 · ρρρα ∂

∂qα
+ n

∂

∂z

= (a − zb)−1 · ∇̃ + n
∂

∂z
,

∇̃± =
(

a ∓ h

2
b
)−1

· ρρρα ∂

∂qα
=

(

a ∓ h

2
b
)−1

· ∇̃

Let us note that here the inverse tensor of a − zb is defined according to the rule

(a − zb)−1 · (a − zb) = (a − zb) · (a − zb)−1 = a

We assume that onΩ± the surface stresses act, soΩ2 = Ω+
⋃
Ω−. As a results,

this leads to the following boundary conditions on Ω±
(
n± · σσσ ∓ ∇̃± · τττ±

S

)∣
∣
Ω± = φφφ± (16)

In (16) n± are normals toΩ± (see Fig. 12), τττ±
S andφφφ± are surface stresses and loads

on Ω±,

τττ± = τ±
0 A + λ±

S atrεεε± + 2μ±
S εεε±, 2εεε± = (∇̃±u±

S ) · a + a · (∇̃±u±
S )

T

Here μ±
S λ

±
S are the surface elastic moduli, and τ±

0 are residual surface stresses on
Ω±. Let us note that the surface nabla operators ∇̃± are Ω± differ from each other,
in general.

For transition to the 2D equations of plates and shells we use the through-the-
thickness integration procedure presented in, for example, [19, 49, 51]. Integrating
(14) with respect to z and taking into account (16), we obtain

∇̃ · T + G+∇̃+ · τττ+ + G−∇̃− · τττ− + q = 0, (17)

where

T = 〈(a − zb)−1 · σσσ 〉, (18)

q = G+ϕϕϕ+ − G−ϕϕϕ− + 〈f〉, 〈(. . .)〉 =
h/2∫

−h/2

(. . .)G dz,

G = G(z) ≡ det(a − zb), G± = G(±h/2).

T is the stress resultant tensor and q is the surface loads.
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Cross-multiplying (14) by zn and integrating through the thickness using (16),
we obtain the second equilibrium equation

∇̃ · M + T× + m + h

2
G+n × ∇̃+ · τττ+ − h

2
G−n × ∇̃− · τττ− = 0, (19)

M = −〈(a − zb)−1 · zσσσ × n〉, (20)

m = h

2
G+n × ϕϕϕ+ + h

2
G−n × ϕϕϕ− + 〈zn × f〉.

Here M is the moment stress tensor and m is the surface moments, the subindex ×
stands for vectorial invariant of stress tensor [92], see [49]. In particular, for a diad
a ⊗ b it is given by (a ⊗ b)× = a × b.

Omitting algebraic manipulations and assuming h‖b‖ � 1 we reduce with accu-
racy of O(h‖b‖) Eqs. (18) and (20) to more simple expressions

T = 〈a · σσσ 〉, M = −〈a · zσσσ × n〉

Thus, (17) and (19) transform to

∇̃ · T + ∇̃ · (τττ+ + τττ−)+ q = 0, (21)

∇̃ · M − h

2
∇̃· [(τττ+ − τττ−)× n

] + T× + [
(τττ+ − τττ−) · b

]
× + m = 0 (22)

Since m · n = 0, from (22) it follows the so-called sixth equilibrium equation in the
form

M · ·b + T× · n = 0

Equations (21) and (22) dictate the form of effective stress resultants tensors T∗ and
M∗ as follows

T∗ = T + TS, M∗ = M + MS, (23)

TS = τττ+ + τττ−, MS = −h

2
(τττ+ − τττ−)× n

For description of the shell deformations we use the standard approximation of the
first order shear deformable plate and shell theory

u(q1, q2, z) = w(q1, q2)− zϑϑϑ(q1, q2), n · ϑϑϑ = 0. (24)

Within the theory it is assumed that the rotation vectorϑϑϑ is kinematically independent
on the vector of translations w of the middle surface. From (24) we derive the
following formulae
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u±
S = w ∓ h

2
ϑϑϑ, εεε± = εεε ∓ h

2
κκκ, (25)

where

εεε = 1

2

(
∇̃w · a + a · (∇̃w)T

)
, κκκ = 1

2

(
∇̃ϑϑϑ · a + a · (∇̃ϑϑϑ)T

)

are 2D strain measures. Using (25), we obtain the following expressions of τττ±

τττ± = τ±
0 a + λ±

S atrεεε + 2μ±
S εεε ∓ h

2

(
λ±

S atrκκκ + 2μ±
S κκκ

)

Thus, we have the formulae

τττ+ + τττ− = (τ+
0 + τ−

0 )a + (λ+
S + λ−

S )atrεεε + 2(μ+
S + μ−

S )εεε

−h

2

[
(λ+

S − λ−
S )atrκκκ + 2(μ−

S − μ−
S )κκκ

]
,

τττ+ − τττ− = (τ+
0 − τ−

0 )a + (λ+
S − λ−

S )atrεεε + 2(μ+
S − μ−

S )εεε

−h

2

[
(λ+

S + λ−
S )atrκκκ + 2(μ−

S + μ−
S )κκκ

]

In what follows we consider the same surface properties for both faces, that is
τ+

0 = τ−
0 = τ0, μ+

S = μ−
S = μS, λ+

S = λ−
S = λS. In this case the latter for-

mulae can be simplified as follows

τττ+ + τττ− = 2τ0a + 2λSatrεεε + 4μSεεε, τττ+ − τττ− = −h (λSatrκκκ + 2μSκκκ)

This leads to the following expressions for stress resultants:

TS = 2τ0a + CS
1εεε + CS

2 atrεεε, MS = −
[

DS
1κκκ + DS

2 atrκκκ
]

× n,

CS
1 = 4μS, CS

2 = 2λS, DS
1 = h2μS, DS

2 = h2λS/2
(26)

Taking into account (23) from (26) it follows that the surface stresses do not influence
on the transverse shear forces and the transverse shear stiffness. Indeed, TS · n = 0.

For T and M we assume the following constitutive relations

T · a − 1

2
(M · ·b)a × n = ∂WS

∂εεε
, T · n = ∂WS

∂γγγ
, M = ∂WS

∂κκκ
,

2WS = εεε · ·C · ·εεε + κκκ · ·D · ·κκκ + Γγγγ · γγγ

Here WS is the surface strain energy density, C and D are fourth-order tangential and
bending stiffness tensors, respectively, γγγ is the vector of transverse shear deforma-
tions, γγγ = ∇̃(w · n) − ϑϑϑ , and Γ is the transverse shear stiffness. In the case of an
isotopic shells the tangential and bending stiffness tensors take the form
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C = C11a1a1 + C22(a2a2 + a4a4), D = D22(a2a2 + a4a4)+ D33a3a3 (27)

Components C11, C22, D22, D33 and Γ are given by

C11 = Eh

2(1 − ν)
, C22 = Eh

2(1 + ν)
,

D22 = Eh3

24(1 + ν)
, D33 = Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν = λ

2(λ+ μ)
,

C ≡ C11 + C22 = Eh

1 − ν2 , D ≡ D11 + D22 = Eh3

12(1 − ν2)
,

where C , D are tangential and bending stiffness of the shell, E and ν are the Young
modulus and Poisson ratio of the shell material, and k is similar to the shear correction
factor, see [31].

4.3 Theory of Plates

In the case of the plates the constitutive equations take more simple form. Indeed,
here b = 0, n = i3. Effective stress resultants in the case of symmetric plates are
given by [9, 24]

T∗ = C1εεε + C2atrεεε + Γγγγ ⊗ i3, M∗ = − [D1κκκ + D2atrκκκ] × i3,

C1 = C(1 − ν)+ 4μS, C2 = Cν + 2λS,

D1 = D(1 − ν)+ h2μS, D2 = Dν + h2λS/2

(28)

The effective tangential and bending stiffness are

Ceff ≡ C1 + C2 = C + 4μS + 2λS, Deff ≡ D1 + D2 = D + h2μS + h2λS/2

Constitutive relations (28) with the equilibrium Eqs. (21) and (22) lead to equi-
librium equations for translations w and rotations ϑϑϑ . In particular, the equation for
deflection w = w · i3 can be transformed to

DeffΔ̃Δ̃w = ∇̃ · m − Deff

Γ
Δ̃qn + qn, qn = q · i3, Δ̃ = ∇̃ · ∇̃

Let us consider dependence of Deff , C1, C2, D1, D2 on thickness h. The dia-
gram Deff vs. h is given in Fig. 13. Dimensionless parameters C1 = C1/C(1 − ν),
C2 = C2/Cν, D1 = D1/D(1 − ν), D2 = D2/Dν are shown in Fig. 14, [9, 24]
for details. Here the material parameters take the values μ = 34.7 GPa, ν = 0.3,
λS = −3.48912 N/m, μS = 6.2178 N/m.
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Fig. 13 Dependence of the bending stiffness on the thickness
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4.4 Comparison with the Theory of Three-Layered Plates

Obviously, that there is similarity between the theory of plate with surface stresses
and the theory of three-layered plates. Let us consider tension of a strip subjected by
force P for two cases. The first is the tension of a strip with surface stresses while
the second one is the tension of a sandwich plate, see Fig. 15. Let σ be stress in the
bulk, τ be surface stress, and τf be the stress in the faces. Then we have elementary
formulae

P = σh + 2τ, P = σ(h − 2hf)+ 2τf hf ,

where h and hf are the thickness and thickness of surface layer, respectively. It is
clear that

τ = (τf − σ)hf

This gives one the possibility to interpret the surface stress τ as excess stress resultant
for the surface layer of thickness hf . As a result, the case of surface stresses can be
obtained when hf → 0: τ = lim

hf→0
τf hf .
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Fig. 15 Tension of a a strip with surface tension; b a three-layered strip

For detailed analysis we use the model of three-layered plates presented above.
Let us consider the isotropic three-layered plate, see Fig. 15b. Here hc is the thickness
of the core, hf the thickness of faces, and hc � hf . The thickness of the plate is
h = hc + 2hf . The material properties are given by Young’s moduli Ec, Ef and
Poisson’s ratio νc and νf of faces and core, respectively (or by shear moduli μc, μf ).

Constitutive equations of three-layered plate are given by

T = C1εεε + C2atrεεε + Γγγγ ⊗ i3, M = − [D1κκκ + D2atrκκκ] × i3, (29)

where stiffness parameters can be computed by

C1 = 2C22, C2 = C11 − C22,

D1 = 2D22, D2 = D33 − D22, Γ = �2 D22,

C11 = 1

2

(
2Ef hf

1 − νf
+ Echc

1 − νc

)

, C22 = 1

2

(
2Ef hf

1 + νf
+ Echc

1 + νc

)

,

D22 = 1

24

[
Ef(h3 − h3

c)

1 + νf
+ Ech3

c

1 + νc

]

, D33 = 1

24

[
Ef(h3 − h3

c)

1 − νf
+ Ech3

c

1 − νc

]

,

where � is the minimal non-zero root of the equation

μ0 cos �
hf

2
cos �

hc

2
− sin �

hf

2
sin �

hc

2
= 0, μ0 = μc/μf

The bending stiffness of three-layered plate is

Deff = D33 + D44 = 1

12

[
Ef(h3 − h3

c)

1 − ν2
f

+ Ech3
c

1 − ν2
c

]

Comparing (28) and (29), we can determineλS andμS within the parameters of the
surface layers that is with parameters Ef , νf and hf . Assuming Ec = E , νc = ν and
comparing tangential stiffness of three-layered plate and plate with surface stresses
when hf → 0 with accuracy of O(h2

f ), we obtain that

μS ≈ Ef hf

2(1 + νf)
≡ μf hf , λS ≈ νf Ef hf

1 − ν2
f

≡ λf hf
1 − 2νf

1 − νf
, (30)
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where λf is the Lamé modulus of the surface layer. The same formulas follow from
comparison of the bending stiffness when hf → 0. Thus, we derive

μS = lim
hf→0

μf hf , λS = lim
hf→0

λf
1 − 2νf

1 − νf
hf

The latter relations determine the surface elastic moduliμS and λS through the elastic
moduli of the surface layer and its thickness. Formulas (30) are exact hf → 0. For
finite values of hf the accuracy is O(h2

f ). A more general model of plates with surface
stresses is presented by [11].
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Chaotic Vibrations of Conical and Spherical
Shells and Their Control

Jan Awrejcewicz and Vadim A. Krysko

Abstract This chapter is aimed on investigation of non-linear dynamics of conical
and spherical shells. The variational equations are derived, and then the problem is
reduced to a set of non-linear ordinary differential and algebraic equations. Since
further axially symmetric deformation of closed shallow rotational shells and circled
plates subjected to uniformly distributed periodic load being normal to the mid-
dle plate/shell surface are studied, the polar co-ordinates are used and four types
of boundary conditions are investigated. The obtained equations are solved numeri-
cally, and the results reliability and validity are discussed in either regular, bifurcation
or chaotic regimes including constant and non-constant thickness of the mentioned
structural members, taking into account an initial imperfection/deflection. The clas-
sical approaches (time histories and frequency power spectra) are used to monitor
different transitions from periodic to chaotic vibrations. Novel non-linear dynamical
phenomena exhibited by the studied plates/shells are detected and discussed ver-
sus the chosen control parameters. In particular, the so called vibration type charts
(amplitude—frequency of excitation planes) versus the different shell slopes are
reported, which are of a particular importance for direct engineering applications.
Finally, it is demonstrated how one may control non-linear dynamics of the studied
continuous systems by using their thickness, in order to avoid buckling and stability
loss phenomena.

J. Awrejcewicz (B)
Department of Automation, Biomechanics and Mechatronics,
Lodz University of Technology, 1/15 Stefanowski Str., 90-924 Łódź, Poland
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1 Introduction

Han et al. [6] wrote in their paper that chaotic motions of plates and shells have
not been studied yet. Though dynamics of plates/shells belongs to old issues, the
today’s engineering requires safe construction of light-weight, energy-saving and
high-speed structures in both aviation and aerospace industries. These needs are
associated with the occurrence of dangerous transient vibrations, buckling and large
deformation phenomena exhibited by the plate/shell constructions, where the geo-
metrical non-linearity and structural instability play a key role. In order to investigate
large-amplitude non-linear vibrations of structural members including their bifurca-
tion and chaotic dynamic phenomena, the recent theory of chaos and the qualitative
theory of differential equations should be applied. It means that in order to predict
the desired performances of the structural members and to guarantee their work in
the required dynamical regimes, the associated bifurcation and chaotic phenomena
should be investigated.

Feng and Sethna [5] derived the conditions for the Shilnikov-type homoclinic
orbits while investigating chaotic dynamics of thin plates parametrically excited.
The Melnikov method has been applied by Shu et al. [9] to predict chaos of a plate
with large deflection. Chaotic dynamics of a parametrically excited rectangular thin
plate via numerical simulations has been studied by Zhang [10].

This paper extends our previous studies of structural members like beams, plates
and shells from the point of view of bifurcation and chaotic dynamical phenomena
[1–4]. The chapter is organized in the following manner.

First, a mathematical model and algorithm of solutions is introduced. Then reli-
ability of the obtained results is addressed. Next, regular and chaotic dynamics of
spherical and conical shells with constant thickness is studied. Finally, a control of
chaos is proposed. Concluding remarks finish the chapter.

2 Mathematical Model and Algorithm of Solutions

We consider a shallow elastic shell (Fig. 1), which can be treated as a plate with an
initial imperfection, located in a closed 3D space in R3 with the curvilinear system of
coordinates α, β, γ Mikhlin [8]. We assume that Lamé parameters A, B and radii R

′
1,

R12, R
′
2 of the mean shell surface are continuous with their first derivatives regarding

the functions α, β.
In the given co-ordinates the shell space Ω is defined as follows:

Ω =
{

α, β, γ / (α, β, γ ) ∈ [0, a] × [0, b] ×
[

−h

2
,

h

2

]}

.
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Fig. 1 Computational scheme of a shallow shell

PDEs governing non-linear dynamics of shells (Fig. 1) are obtained on the basis
of the following hypotheses: shells are one-layer, made from an isotropic material
(homogeneous and elastic), and the Kirchhoff-Love hypothesis holds.

The associated variational equation has the following form:

δ

∫∫

S̄

{
D

2

[
(Δw̄)2 − (1 − ν) L (w̄, w̄)

]
−
[

Δk F̄ + L

(
1

2
w̄ + w̄0, F̄

)]

w̄

− 1

2Eh

[(
ΔF̄

)2 − (1 + ν) L
(
F̄, F̄

)]
}

ds −
∫∫

S̄

[

q − h

γ g
( ¯̈w + ε ¯̇w)

]

δw̄ds̄ = 0,

(1)

where:

Δ = 1

AB

(
∂

∂ᾱ

B

A

∂

∂ᾱ
+ ∂

∂β̄

A

B

∂

∂β̄

)

,

Δk = 1

AB

(
∂

∂ᾱ

1

R′
1

B

A

∂

∂ᾱ
+ ∂

∂ᾱ

1

R12

∂

∂β̄
+ ∂

∂β̄

1

R12

∂

∂ᾱ
+ ∂

∂β̄

1

R′
1

A

B

∂

∂β̄

)

,

L(w̄, F̄) = ∂2w̄

∂ᾱ2 · ∂
2 F̄

∂β̄2
− 2

∂2w̄

∂ᾱ∂β̄
· ∂ F̄2

∂ᾱ∂β̄
+ ∂2w̄

∂β̄2
· ∂

2 F̄

∂ᾱ2 .

In order to solve Eq. (1), in which the deflection function w̄ and stress function F̄
are independently variated, we cannot apply directly the Ritz procedure (the equation
does not have the form of the functional variation equal to zero). In order to find the
approximated value of element w̄ and F̄ , we take the co-ordinate sequence wi (α, β)

and ϕi (α, β), satisfying the same requirements as Eq. (1).
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In order to find the deflection w and stress function F , the systems of functions{
ϕi j (x, y), ψi j (x, y)

}
, i, j = 0, 1, 2, . . ., should satisfy the following five require-

ments:

1. ϕi j (x, y) ∈ HA, ψi j (x, y) ∈ HA, where HA is the Hilbert space, which is called
the energetic space;

2. ∀i, j functions ϕi j (x, y) and ψi j (x, y) are linearly independent, continuous with
their partial derivatives to the fourth order inclusive in space Ω;

3. ϕi j (x, y) and ψi j (x, y) satisfy the boundary conditions;
4. ϕi j (x, y) and ψi j (x, y) are compact in HA;
5. ϕi j (x, y) and ψi j (x, y) should represent M first elements of the full system of

the functions:

w̄ =
Mx∑

i=0

x̄i (t̄)wi (ᾱ, β̄), F̄ =
Mx∑

i=0

ȳi (t̄)ϕi (ᾱ, β̄). (2)

The approximating solutions have coefficients x̄i (t̄) and ȳi (t̄)which are the time-
dependent functions. Substituting relations (2) into Eq. (1), carrying out the varia-
tional operation, and comparing to zero the terms standing by δ x̄i , δ ȳi , we get the
following system of ODEs regarding x̄i (t̄) and ȳi (t̄):

Kik(ẍk + εẋk)+ Bik xk + Cip yp + Dikpxk yp = Qi q0,

C pi xi + E pj y j + 1

2
Dpki xk xi = 0, (3)

i, k = 1, 2, ... , n; p, j = 1, 2, ..., m.

In the polar co-ordinates with axial symmetry w = w(r), ϕ = ϕ(r), α = r ,
β = θ , ds = 2πrdr , and the operators take the form

Δ = d2

dr̄2 + 1

r̄

d

dr
, L(w̄, F̄) = d2w̄

dr̄2 · 1

r̄

d F̄

dr̄
+ 1

r

dw̄

dr̄
· d2 F̄

dr̄2 . (4)

Substituting r̄ by aρ̄ in operators (4), and carrying out the standard transforma-
tions (and after division by 2πEh5

0/a
4), the system is transformed to its counterpart

non-dimensional form. In order to reduce Eq. (3) to the non-dimensional forms the
following quantities are introduced:

w̄ = w

h
, x̄i = xi

h
, ϕ̄ = ϕ

Eh3 , yi = ȳi

Eh3 , h = h (ρ)

h̄
, h = h (0) ,

F̄ = Eh2 F, t̄ = tτ, ε̄ = ε

τ
, τ = a

h0

√
a2γ

Eg
, q̄ = q

Eh4
0

a4 ,
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where: t—time, ε—damping coefficient, a—dimension of the square shell, h—
thickness of the shell, g—Earth acceleration, γ—material weight density, ν—
Poisson’s coefficient for the isotropic material (ν = 0.3), E—elasticity modulus,
w0—initial imperfection. Next, bars over the non-dimensional quantities are omit-
ted.

In the case of axially symmetric deformation of the shallow rotational shell of
thickness h = h0(1 + cρ), the coefficients of system (3) take the following form

Kik =
1∫

0

(1 + cρ)wi wkρdρ,

Nik = 1

12
(
1 − ν2

)

1∫

0

(1 + cρ)3 [ΔwiΔwk − (1 − ν) L (wi ,wk)] ρdρ,

Cip = −
1∫

0

[
Δkϕp + L

(
w0, ϕp

)]
wiρdρ,

Dikp = −
1∫

0

wi L(wk,wp)ρdρ,

Qi =
1∫

0

wiρdρ,

E jp = −
1∫

0

1

1 + cρ

[
Δϕ jΔϕp − (1 + ν) L

(
ϕ j , ϕp

)]
ρdρ.

(5)

Solving the second equation of system (3) regarding yi , we get

yi =
[

E−1
j p C ps + 1

2

(
E−1

j p Dpi xi

)

s

]

xs .

Multiplying by K −1 the first equation of (3) and using notation ẋi = ri , the
problem is reduced to the first order ODEs of the form

ṙi = −_
ε ri +

[

K −1
ik Ci j +

(
A−1

ik Dks xs

)

j

]

· y j − K −1
ik Bks xs + q0(

_
t )K −1

ik Qk,

ẋi = ri ,

i, k , s = 1, 2, . . . , n; p, j = 1, 2, . . . , m.

(6)

The so far introduced transformation has been possible, since matrices K −1
ik and

E−1
j p exist if the coordinate functions are linearly independent. Equation (6), with
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Fig. 2 Structural members
surface: a plate, b cone,
c sphere

initial conditions xi = 0, ẋi = 0 for t = 0, have been solved by the fourth order
Runge–Kutta method.

We consider further the axially symmetric deformation of closed shallow rota-
tional shells and circled plates subjected to uniformly distributed load being normal
to the mean shell surface. In polar co-ordinates for the axial symmetry we have:
w = w(ρ), F = F(ρ), α = ρ, β = θ , ds = 2πρdρ, and the thickness is defined
by function h(ρ) = h0(1 + cρ). The mean shell surface is defined by initial deflec-
tion w0 = −h R

(
1 − c1ρ − c2ρ

2
)
, K = H/h0, where H is the full shell height

over a plane (see Fig. 2). For c1 = 1, c2 = 0 we get a conical shell (Fig. 2b);
c1 = 0, c2 = 1 corresponds to a sphere (Fig. 2c); for k = 0 we deal with a plate
(Fig. 2a). Approximating functions regarding four types of boundary conditions are
shown in Table 1.

In order to investigate vibrations of a shallow conical shell, we consider it as a
plate (Δkϕ ≡ 0) with initial deflection: w0 = −k(1 − ρ̄), k = H/ho, and we apply
the co-ordinate functions given in Table 1. Each of formula (5) can be presented by
a sum of integrals of the following form

I (x, y) =
1∫

0

ρx (1 − ρ2)
y
dρ = (2y)!!(x − 1)!!

(x + 2y + 1)!! ,

and for four types of the boundary conditions applied, the coefficients of system (6)
take the form presented in Table 1.

1. Immovable clamping

K (1)
ik = 1

6 + 2i + 2k
+ c

(4 + 2i + 2k)!!
(7 + 2i + 2k)!! ,
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Table 1 System of approximating functions for boundary conditions

N (1)ik = 4(i + 1)(k + 1)

3(1 − ν2)

{
1

i + k + 1

{
ik

(i + k)(i + k + 1)

+ 3c2

2(i + k + 2)

[
6ik

(i + k)(i + k − 1)
− 1 + ν

2

]}

+ 3c(2i + 2k − 4)!!
(2i + 2k + 3)!! [15ik − (1 + ν)(i + k)(i + k − 1)]

}

,

C(1)i p = −2(p + 1) · H

h0

⎛

⎝−
1∫

0

(1 − r2)
i+p+1

dr + 2p

1∫

0

r2
(

1 − r2
)i+p

dr

⎞

⎠ ,

E(1)j p = 4i p [( j + p − 1) (1 + ν)− 2 j p]

(
1

j + p − 1
− c

j + p − 1/2
+ c2

j + p

)

,

D(1)ikp = 4 (i + 1) (k + 1) p
p!

(i + k + 1) ... (i + k + p + 1)
, Qi = 1

2(i + 2)
.

(7)
2. Movable clamping

K (2)
ik = K (1)

ik , N (2)
ik = N (1)

ik ,

C (2)
i p = 2

H

h0
· p(2p − 1) ·

1∫

0

r2p−2 · (1 − r2)
i+1

dr, Q(2)
i = Q(1)

i ,

E (2)j p = −16 ( j + 1) (p + 1)

{
pj

( j + p + 1) ( j + p) ( j + p − 1)

+ c2

2 ( j + p + 1) ( j + p + 2)
×
[

6 j p

( j + p) ( j + p − 1)
− 1 − ν

2

]
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− c
(2 j + 2p − 4)!!
(2 j + 2p + 3)!! [15 j p − (1 − ν) ( j + p) ( j + p − 1)]

}

,

D(2)
ikp = − 4 (i + 1) (k + 1) (p + 1)

(i + k + p + 1) (i + k + p + 2)
. (8)

3. Immovable simple support

K (3)
ik = K (1)

i−1,k−1,

N (3)
ik =

⎧
⎪⎨

⎪⎩

2+c(4+3c)
6(1−ν) , k = i = 1,

− c(4+5c)
15(1−ν) , i = 1, k = 2, i = 2, k = 1,

N (1)
i−1,k−1,

(9)

C (3)
i p = C (1)

i−1,p, D(3)
ikp = D(1)

i−1,k−1,p, Q(3)
i = Q(1)

i−1, E (3)j p = E (1)j p .

4. Movable simple support

K (4)
ik = K (1)

i−1,k−1, N (4)
ik = N (3)

ik , C (4)
i p = C (2)

i−1,p,

D(4)
ikp = D(2)

i−1,k−1,p, Q(4)
i = Q(1)

i−1, E (4)j p = E (2)j p . (10)

As it has already been mentioned, investigating the spherical shell we treat it as a plate
with initial deflection w0 = −k(1 − r2). For four types of the boundary conditions
shown in Table 1, coefficients (6) differ from the case of the conical shell only by
Cip:

1. Immovable clamping:

C (1)
i p = −4

H

h0
p
(1 + i)!p!
(i + p + 1)! ;

2. Movable clamping:

C (2)
i p = 4

H

h0
(i + 1) (p + 1)

(i + p)!
(i + p + 2)! ;

3. Immovable simple support:
C (3)

i p = C (1)
i−1,p;

4. Movable simple support:
C (4)

i p = C (2)
i−1,p.

The transversal uniformly distributed harmonic load is q = q0 sin(ωp t), where:
q0—amplitude, ωp—frequency of excitation.
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3 Reliability of the Results Obtained

In order to study PDEs governing dynamics of our continuous system we introduce
mode functions and we obtain ODEs (3) of infinite dimension. In order to get a cor-
rect interpretation of the obtained results, the following remarks should be taken into
account. Investigating any continuous system, instead of infinite set of ODEs, we
take a truncated system of finite dimension. It is assumed that increasing a number
of equations we find a threshold, beginning from each further increase of the equa-
tions number does not yield anything new. This approach is also motivated by the
occurrence of finite dimension of the system attractor. However, it may happen that
with an improper choice of basic functions which serve to reduce PDEs to ODEs,
the obtained system of ODEs may have attractors different from that of the original
system.

This feature may occur, for instance, in the case of a 2D equation governing the
dynamics of heat convection. The Lorenz system Lorenz [7], presenting a three-
mode truncation of an approximated PDE, demonstrated complex dynamics includ-
ing chaos. However, an increase of the mode number yields first an irregular increase
of chaos, and hence its decrease. For a sufficiently large number of modes chaos
vanishes. The illustrated example shows that in order to get qualitatively true cor-
respondence between the original and truncated dynamics motivated by the use of
either Bubnov–Galerkin or Ritz approaches, we need to take into account a sufficient
number of modes. Let us investigate the problem of mode number estimation in the
Ritz procedure using an example of vibrations of spherical and conical shallow shells
being geometrically non-linear and having a constant or non-constant thickness, and
bounded along their contour. The applied load uniformly distributed along the shell
surface, has the following form

q = q0 sin(ωpt). (11)

We consider vibration charts associated with shells of k = 3 and k = 5 (Figs. 3
and 4, respectively) depending on the magnitude of control parameters

{
q0, ωp

}
for

a different number of partition terms n = 1, . . . , 7.
A further increase of number n in (3) has not changed the charts

{
q0, ωp

}
quali-

tatively. For n = 1 (Fig. 5) the chart differs from the remaining ones, i.e. it presents
only bifurcation zones and harmonic and sub-harmonic vibrations withωp andωp/2,
without any chaotic zones.Increasing n yields new zones of bifurcation and chaos.

Similarly, the chart (k = 5) for n = 1 strongly differs from the remaining ones,
since the increase of n yields different zones becoming similar, i.e. a converging
sequence of vibration character is observed. For instance, the sub-harmonic zone is
the same for all n ≥ 2, but for n = 2 it is shifted to the right. Chaotic zones become
smaller while increasing n, but the separated parts do not change beginning from
n = 4. Both cases of k = 5 and k = 3 exhibit better convergence regarding the high
frequencies than low frequencies and the frequencies located in the neighborhood of
natural frequency.
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Fig. 3 Charts of control parameters
{
q0, ωp

}
of the conical shell for k = 3. a n = 6.7. b n = 5. c

n = 4. d n = 3. e n = 2. f n = 1

Fig. 4 Charts of control parameters
{
q0, ωp

}
of the conical shell (k = 5). a n = 6.7. b n = 5. c

n = 4. d n = 3. e n = 2. f n = 1
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Fig. 5 Relation w(0, t), t ∈ [50; 53] and S(ω) versus n for the conical shell (k = 3) with constant
thickness (moving clamping)

We consider two points: the first one, for k = 3, n = 6, 7 is located in the
bifurcation zone (Fig. 5); the second one, for k = 5, n = 6, 7 is in the chaotic zone
(Fig. 6). In Fig. 5, w (0, t) for 50 ≤ t ≤ 53 and power spectra (S(ω)) are reported.
Analysis of the results given in Fig. 5 shows that beginning from n ≥ 4 relations
w(0.5 : t) are close to each other, whereas power spectra coincide in full. The results
obtained for n = 1, 2, 3 differ essentially from those of n ≥ 4. Hence, we may
conclude that beginning from n ≥ 4, the process of bifurcation is reliable for k ≤ 3,
i.e. there is a convergent sequence, which can be modeled in the following way

[

w0 −
n∑

i=1

xi (t)wi (ρ)

]

= min
t∈[50,53],

[

ϕ0 −
n∑

i=1

yi (t)wi (ρ)

]

= min
t∈[50,53],

and this is the best approximation to w0 and ϕ0 in the metric HA.
For n = 4, 5, 6, 7 the power spectrum exhibits a period tripling bifurcation, and

the attracting orbits have the period three. The occurrence of period 3 orbits yields
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Fig. 6 Relation w(0, t), t ∈ [50; 53] and S(ω) versus n for the conical shell (k = 5) with constant
thickness (moving clamping)

the occurrence of orbits with periods n = 1, 2, 3, . . . . The mentioned remarks are
applicable to both real functions and maps of an interval into itself. Here, we aim
at analyzing of other orbits which are exhibited by the dynamics of flexible conical
shells. In Fig. 5 the same characteristics as in Fig. 6 are shown. However, in this case
we do not observe the previously exhibited uniform convergence.

For n = 1 we have periodic vibrations with a period 2π/ω; n = 4 corresponds
to the period tripling bifurcation (period 3); for n = 2, 3, 5, 6, 7 we have chaotic
vibrations, but we deal with different types of chaos. Namely, for n = 2 we have
chaos associated with the excitation frequency. For n = 3, 5 we have chaos with
frequency 3ω, whereas for n = 6, 7 we have chaos associated with frequency 7ω.
Owing to this discussion, we may conclude that convergence of the Ritz procedure
versus a number of terms of the series (3) essentially depends on the arrow of height
k and on the system dynamical regime.

In what follows we investigate convergence of the Ritz procedure versus boundary
condition type and a shell geometry using an example of conical shells supported
along their edges and having constant (Fig. 7) and non-constant (Fig. 8) thickness
(h = h0(1 + cρ)) for c = 0.1, k = 5. We consider a point, which for n = 6, 7
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Fig. 7 Relation w(0, t), t ∈ [50; 53] and S(ω) versus n for the conical shell (k = 5) with constant
thickness (movable simple support)

is in a chaotic zone for the following fixed parameters: q0 = 2.4, ωp = 3.5. In
Fig. 7 signals (w (0; t), 150 ≤ t ≤ 156) and power spectra are reported. For n = 2
harmonic excitation with ωp, n = 3 yields the first period doubling bifurcation,
whereas for n = 1, 4, 5, 6, 7 we have chaos associated with the fundamental shell
frequency.

We consider the shell with variable thickness and with the following fixed para-
meters: q0 = 2.4, ωp = 3.57. Figure 8 shows signals (w (0; t), 150 ≤ t ≤ 156)
and power spectra. For n = 2 and n = 3 periodic vibrations with frequency ωp are
shown; n = 1 yields sub-harmonic vibrations of ωp/5, i.e. the first approximation of
(3) yields period 5 vibration, whereas for n = 4, 5, 6 chaos associated with the nat-
ural frequency occurs. In other words, beginning from n = 4, a convergent sequence
is observed. Further, all results are given for n = 6.
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Fig. 8 Relation w(0, t), t ∈ [50; 53] and S(ω) versus n for the conical shell (k = 5) with non-
constant thickness (movable simple support)

4 Spherical Shells with Constant Thickness

We consider vibrations of spherical shallow shells with constant thickness supported
on their edges. In Fig. 9 charts of control parameters

{
q0, ωp

}
for the shell with

k = 1, 1.5, 2, 3, 4, 5 are reported. The chart showing a transition into chaos exhibits
rich dynamics while increasing k coefficient. Analysis of relation

{
q0, ωp

}
versus k

shows that for the plate (k = 0),
{
q0, ωp

}
exhibits only periodic vibrations under

constraints w (0) ≤ 5 and q0 ≤ 100. The zones of chaos and bifurcations increase
with an increase of k, and for k = 1 only two chaotic narrow islands appear within
the harmonic zones. Increasing k ≥ 1.5 yields new zones of bifurcation and chaos.

In order to illustrate the vibrations of spherical shells, Figs. 10 and 11 present
characteristics wmax monitored in the shell top versus q0 for ωp = 5, k = 3 and for
ωp = 8, k = 5, respectively.The Lyapunov exponents play an important role in the
investigation of dynamical systems. They give a computational qualitative measure



Chaotic Vibrations of Conical and Spherical Shells and Their Control 73

Fig. 9 Charts
{
q0, ωp

}
of the spherical shell. a n = 5. b n = 4. c n = 3. d n = 2. e n = 1.5. f

n = 1

of the stochasticity order. The proposed and developed idea of computation of the
series of vibration character of a dynamical system based on the analysis of the power
spectrum S(ω)well coincides with the evolution of the largest characteristic exponent
(LE) named here as λ1(q0). In this work, in order to compute LE the Benettin method
is applied. In a chaotic state λ1 > 0, and white color represents chaotic zones in the
reported scales/charts.

Figure 10 shows in the scale the window L , for which the relation λ1(q0)

(15 ≤ q0 ≤ 19) is given, where four zones of chaos are observed: a (16.1 ≤
q0 ≤ 16.5); b(16.6 < q0 < 16.8); c(16.9 ≤ q0 ≤ 17.3) and d(17.9 < q0 < 18.1),
with λ1 > 0, which well coincide with the scale of vibrations. Observe that in zone
d in the corresponding relation wmax(q0), the local buckling is observed.

The figures include also w(t), w(
.
w ), power spectra, and space forms of vibrations

for three points A, B,C for k = 5 (point A corresponds to periodic vibrations, B—
bifurcations, C—chaos) and two points A, B (point A—periodic vibrations, B—
linear combination of two independent frequencies a1 and b1 with successive Hopf
bifurcations) for k = 3, which are shown in relations wmax(q0).

Analysis of results in either point w(0, t) or in space w(ρ, t) for 50 ≤ t ≤ 54 does
not depend on k in the case of periodic vibrations. Bifurcation and chaos essentially
depend on k.
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Fig. 10 Relation wmax (q0) for the spherical shell k = 5, ωp = 8 (q0 = 5)

Fig. 11 Relation wmax (q0) for the spherical shell k = 5, ωp = 8 (q0 = 23.5)
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5 Conical Shells with Constant Thickness

We consider now vibrations of conical shallow shells of constant thickness and with
the movable clamping. Charts

{
q0, ωp

}
for shells with constant thickness and for

k = 1, 1.5, 2, 3, 4, 5 are shown in Fig. 12.
The charts of vibration character change qualitatively with an increase of k. Let

us compare charts
{
q0, ωp

}
regarding spherical and conical shells. Analysis of the

relation
{
q0, ωp

}
versus k shows that the influence of shell geometry on the character

of vibration increases with an increase of k. For k = 1, in both conical and spherical
spaces narrow zones of chaos located between ωp = 5 and ωp = 6 appear. For
k = 1.5 both charts exhibit bifurcation zones which are similar. For k = 2 zones
of rational frequencies are added, but they have a different organization. For k ≥ 3
the influence of shell geometry implies essential differences in the charts regarding
considered spherical and conical shells.

The change of the shell geometry has an impact on the scenarios of transitions into
chaos. In the conical shell with k = 5, besides zones where a transition from periodic
to chaotic vibrations is realized via the so far described scenario for the spherical
shells, there are also Feigenbaum scenarios of transitions into chaotic vibrations.

We consider the relation wmax (0) versus q0 for ωp = 5.61 and scales of bifur-
cations for conical shells with k = 3; 5, as well as vibrations of the shell’s surface

Fig. 12 Charts
{
q0, ωp

}
of the conical shell (moving clamping) for different k
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Fig. 13 Relation wmax (q0) for the spherical shell (ωp = 8)

Fig. 14 Charts
{
q0, ωp

}
of the conical shell with movable simple support (a) and with movable

clamping (b)

in time, signals w (0, t) for 51.25 ≤ t ≤ 53.75, phase portraits, vibrations after the
series of bifurcations, and finally chaotic vibrations (Fig. 13).

Next, we investigate the influence of boundary conditions on the vibrations char-
acter taking as an example the conical shell with k = 5 and boundary conditions of
movable clamping and movable simple support (Fig. 14). Vibrations corresponding
to the movable clamping are more complex than that of the moving simple support.
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6 Control of Chaos

We investigate the influence of the shell thickness change on boundary conditions
and the shell geometry. We consider shallow conical shells with constant and non-
constant thickness h = (1 + cρ), considering them as plates with initial deflection
w0 = −k(1 − ρ), where k = H/ho. For the given type of boundary conditions the
approximating functions have the following form

wi (ρ) = (1 − ρ2)
i
, ϕ j (ρ) = (1 − ρ2)

i+1
. (12)

We take load q = q0 sinωpt and zero value initial conditions.
Figure 15 shows

{
q0, ωp

}
charts for the constant and non-constant shell thickness

for c = 0.1,−0.1, 0.2 (k = 5). Here the influence of thickness changes on the system
state differs essentially from the previously studied case.

For c = −0.1 a chaotic zone associated with low frequencies (about 2.5) appears,
which does not exist for c = 0.1, c = 0.2 and c = 0, as well as a chaotic zone
associated with high frequencies (about 5.5) occurs, which exists for c = 0 and does
not exist for c = 0.1, 0.2. It can be seen that the influence of shell thickness change
on its dynamics depends essentially on its geometry and initial conditions.

Figure 16 shows charts of control parameters
{
q0, ωp

}
for the conical shell (k = 5)

movably clamped with constant (c = 0) and non-constant (c = 0.1, −0.1) thick-
ness.The increase of thickness in the shell center (c = −0.1) yielded new zones of
chaos associated with high frequencies and frequencies close to the natural frequency
for q0 > 35. An increase of zones associated with the independent frequencies is
also observed. For c = 0.1, on the contrary, the zones of chaos and bifurcations
essentially decreased.

We analyze spherical shells with k = 5. First, we consider spherical shells with
the boundary condition of movable clamping and with k = 5 of constant and non-
constant thickness for c = 0.1. In Fig. 17 charts of control parameters

{
q0, ωp

}
are

given.
Here, the influence of thickness on the shell dynamics is more visible than in

the previous case. The charts imply that shells with variable thickness have smaller
zones of bifurcations and chaotic vibrations.

These results lead to the conclusion that by changing a shape of the transversal
shell cross-section, and choosing properly parameters q0 and ωp we may control
non-linear vibrations of the studied continuous systems.

In order to investigate the vibration character of conical shells versus parameter
q0 we construct wmax (q0). In Fig. 18 functions wmax (q0) in the shell top are given
for k = 5 and for c = 0, 0.1, −0.1 for ωp = 3.5, 3.57 and 3.38, respectively. In the
relation wmax (q0) for q0 = 1, the first stiff stability loss occurs. In the neighborhood
of q0 = 2 there is a zone of the second stiff stability loss, whereas for both critical
loads the shell with non-constant stiffness (c = 0.1) exhibits higher critical loads
in comparison to the case of c = −0.1. Critical loads for the constant thickness are
located within the mentioned interval. The first critical load occurs for the first Hopf
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Fig. 15 Charts of control parameters
{
q0, ωp

}
for conical shells of constant (a) and non-constant

(b, c, d) thickness (k = 5)

Fig. 16 Charts of control parameters
{
q0, ωp

}
for spherical shells. a c = 0.1. b c = −0.1. c c = 0



Chaotic Vibrations of Conical and Spherical Shells and Their Control 79

Fig. 17 Charts of control parameters
{
q0, ωp

}
for spherical shells of constant (a) and non-constant

(b) thickness (k = 5)

Fig. 18 Relations wmax (q0) and vibration scales for different c of the conical shells

bifurcation (c = −0.1) and for the second independent frequency (for c = 0, 0.1),
which are depicted in the scales by vertical lines in the vicinity of q0 = 1.
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7 Concluding Remarks

In this chapter first a shell mathematical model is introduced. The model is reduced
to a system of ordinary differential and algebraic equations in both rectangular and
polar co-ordinates. Then, four types of boundary conditions are introduced with the
associated approximating functions applied to a plate, conical shell and spherical
shell.

Reliability of the results is illustrated and discussed for all previously mentioned
structural members in either regular or chaotic regimes for various types of the applied
boundary conditions. Different routes to chaos are illustrated using time histories and
frequency power spectra. Then, non-linear novel dynamical phenomena exhibited
by spherical and conical shells are detected, illustrated and discussed versus the k
parameter describing a shell slope. Engineering important charts in the {q0, ωp} plane
are presented for different k, which shows complexity of analyzed shell dynamics,
including periodic, quasi-periodic, bifurcational and chaotic dynamics.

The study includes monitoring of the maximum Lyapunov exponent and addresses
the problems of shell buckling and stability loss. Then, it is shown how, by using
shell thickness c as a control parameter, we may avoid chaotic and bifurcational
vibrations of the studied conical and spherical shells which are dangerous from the
point of view of engineering applications.

Acknowledgments This paper was financially supported by the National Science Centre of Poland
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Nonclassical Shell Theories in Ocular
Biomechanics

Svetlana M. Bauer and Eva B. Voronkova

Abstract The stress-strain state of a pressurized spherical shell and circular cylinder
are studied by means of the exact 3D theory of elasticity and the 2D approximate
shell theories of moderate thicknesses. Both the sphere and the cylinder are made
of transversally isotropic material. The first problem models the changes in the fluid
pressure inside the human eye due to injected additional volume of liquid. The
pressurized cylinder is one of simplest model of the human vessels. The algebraic
relationships for deflections and stresses are derived. Both described shell theories
take into account the variation of the shell thickness, which can be important for
soft materials, e.g. the human eye’s tissue. The asymptotical analysis of the exact 3D
solutions has been performed and the accuracy of the approximate solutions, obtained
with the approximate theories is analyzed. The effect of the thickness changes are
also discussed.

1 Motivation

Shell-like structures are of very frequent occurrence in biological system, particu-
larly, in a human eye. Shell theory-based mechanical models have been used in recent
years as tools to describe, for example, the stress-strain state of the eye shell under
encircling band [5, 7]; to build a biomechanical model of the choroidal detachment,
to depict the different mechanical aspects of the development of glaucomatous atro-
phy of the optic nerve fibers and the behavior of Lamina Cribrosa—circular or closed
to circular plate, where the optic nerve fibers pass through [5, 6, 10].
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Estimation of the short time effect of intravitreal injections on the intraocular
pressure elevation is one of possible applications of shell-theory based models.
Intraocular pressure (IOP), the fluid pressure inside an eye, is a key diagnostic para-
meter to determine the health of the eye. Intravitreal injections are performed by the
amount of fluid (drug) brought into the eye. This procedure are applied widely as
a treatment for a variety of eye’s diseases. An increase in IOP can be induced by
intravitreal injections and leads to undesirable side-effects and complications such
as intraocular bleeding and retinal detachment. Relationship between IOP with the
intraocular volume (IOV) seems to play an important role in problems concerning
intravitreal injections [13]. As it is noted in Lyubimov [15]; Stein [19] the knowledge
of the effect of IOP on IOV in a human eye is important to draw a physically correct
conclusion from the data of standard measurement procedure used in ophthalmology.

An outer, fibrous, coat of the eye consists of the cornea and sclera. The sclera forms
more than 90 % of fibrous eye shell and the sclera is tougher than the cornea [14]. The
sclera, as well as cornea, are close to a soft membrane: the moduli of elasticity in the
thickness directions are two orders of magnitude smaller than the tangential moduli
[12]. For people with normal sight the sclera has a shape close to spherical one.
That is why, the simplest model of the eyeball is a spherical shell. However, myopic
(shortsighted) and hyperopic (longsighted) eyes have out-of-sphericity shapes.

Following Bauer et al. [8, 9], with the simplest model of the eyeball, we considered
ellipsoidal shells of revolution of different shapes (modeling the sclera) as a soft
shell (irresistible to flexural deformation), subjected to inner pressure The classical
Kirchhoff-Love (KL) shell theory was employed to calculate the change of the inner
volume of the shell. The aspherical geometry of the shell can be expressed, for
example, by the following equation

r2 + z2

κ2 − κ2 R2
a = 0,

where the z-axis is the axis of revolution of ellipsoid and also the optical axis of the
eye, r is the radial distance from the optical (APA) axis, and Ra is the apical radius
of curvature. A value of shape parameter κ < 1 corresponds to an oblate ellipsoidal
shape modelling the hyperopic eye, κ > 1 to a prolate ellipsoidal shape (the myopic
eye), κ = 1 to a spherical surface (the eye with normal vision).

Figure 1 represents the increasing of shell’s inner volume under the pressure
15 mm Hg as a function of the shape parameter κ . We set the initial volume V0
constant for all values of shape parameter κ . It is important, that the initial geometry
(the shape of the shell) influences on the pressure-volume relationship.

However, the mathematical models based on assumptions of irresistibility to flex-
ural deformation cannot explain, for example, the effect of the central cornea thick-
ness on applanation tonometry readings or changes of the readings after refractive
surgery [4, 11]. In order to develop the adequate mathematical models one should
take into account the strong anisotropy of the eye’s tissues, the influence of the bend-
ing deformation (while modeling tonometry procedure, for example). One way is
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Fig. 1 Relative change of the inner volume (ΔV /V0). The shape parameter κ varies for constant
initial volume V0. The parameter κ = APA/D (the ratio of axial length (APA) to equatorial diameter
(D)) increases for a shell modelling a myopic eye, and decreases for a shell modelling a hyperopic
eye

to carry out the finite element modeling [4, 11], another possibility is to use the
nonclassical shells theories that do not neglect shear deformations and thickness
changes [21].

Several non-classical, refined and high-order theories of orthotropic plates and
shells have been formulated over the years. Some of these theories are reviewed and
discussed in Altenbach [1]; Reddy and Wang [17]; Tovstik and Tovstik [20]. For soft
materials, e.g. biological tissues, thickness variation can be important. First order
shear deformation theories (for example, the Ambartsumyan theory [2]) still neglect
thickness variation.

In the present paper, we treat two simple linear problems for pressurized spherical
shells and circular cylinders made of transversally orthotropic material, applying the
exact 3D theory and the 2D approximate shell theories of moderate thicknesses
described in Palii and Spiro [16]; Rodionova et al. [18]. The theories are based on
different principals, but both take into account deformations, rotation and bending
of the fibers and, what is more important, their elongations in the direction of the
thickness of the shell. The exact 3D solution for isotropic spherical shell can be find,
for example, in Atanackovic and Guran [3]. Our concern is an accuracy of the 2D
theories for transversally orthotropic shells. Therefore the asymptotical analysis of
the exact 3D solutions has been performed and the correctness of the approximate
solutions, obtained with refined theories is analyzed.
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2 Problem Formulation and General Remarks

We consider a spherical shell and a circular long cylinder both of inner radius R1
and outer radius R2 > R1, as shown in Fig. 2. The inner and outer surfaces of the
bodies are loaded by the uniform pressures p1 and p2, respectively. The sphere,
as well as the cylinder, is made of the transversely isotropic around the thickness
direction material. A spherical coordinate system (ρ, ϑ, ϕ) and a cylindrical system
of coordinates (ρ, ϕ, z) are used to define the stress and deformation fields for the
sphere and the cylinder, respectively.

The three-dimensional relations between the stresses σ and the strains e of
the shells in material principal coordinates (x1, x2, x3), are given by Hooke’s law

e11 = σ11

E1
− ν12

E1
σ22 − ν13

E1
σ33, e12 = σ12

G12
,

e22 = −ν21

E2
σ11 + σ22

E2
− ν23

E2
σ33, e23 = σ23

G23
, (1)

e33 = −ν31

E3
σ11 − ν32

E3
σ22 + σ33

E3
, e13 = σ13

G13

with Ei being the Young moduli in the i th directions; Gi j are the shear moduli in
i − j directions; νi j are Poisson’s ratio for the shortening in j th direction under the
tension in i th direction and νi j E j = ν j i Ei (i, j = 1 . . . 3).

In particular, we denote x1 = ϑ , x2 = ϕ, and x3 = ρ for the sphere, and x1 = z,
x2 = ϕ, x3 = ρ for the cylinder.

Taking into account the assumption of transverse isotropy with respect to surfaces
orthogonal to the radial x3 = ρ axis, i.e. assuming the x1−x2 surface to be the surface
of the isotropy at every point, and inverting (1) we obtain

σ11 = E11e11 + E12e22 + E13e33, σ22 = E12e11 + E11e22 + E13e33, (2)

σ33 = E13e11 + E13e22 + E33e33, σ12 = G12e12, σ23 = G23e23, σ13 = G13e13,

where G13 = G23, and the coefficients Ei j and G12 are given by

Fig. 2 Spherical and circular cylindrical shells
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E11 = E1(E1 − E3ν
2
13)

(1 + ν12)(E1(1 − ν12)− 2E3ν
2
13)
, E12 = E1(E1ν12 + E3ν

2
13)

(1 + ν12)(E1(1 − ν12)− 2E3ν
2
13)
,

E13 = E1 E3ν13

E1(1 − ν12)− 2E3ν
2
13

, E33 = E1 E3(1 − ν12)

E1(1 − ν12)− 2E3ν
2
13

, G12 = E1

2(1 + ν12)
.

2.1 3D Equations for Spherical Shell and Circular Cylinder

Due to symmetry the distribution of the stresses depends only on the radial coordinate
x3 = ρ and the equilibrium equations reduce to a single equation for the sphere, as
well as, for the cylinder

dσ33

dρ
+ k

ρ
(σ33 − σ22) = 0, (3)

where k = 1 for a cylinder, and k = 2 for a sphere.
The inner and the outer surfaces of the shells are subjected to the uniform pressure.

Thus, we have
σ33 = −pi for ρ = Ri , (i = 1, 2). (4)

For reasons of symmetry, we suppose for the spherical shell that the displacements
in the meridional and the circumferential directions are equal to zero and the radial
displacement u3(ρ) is the only displacement component. For the long cylinder the
plain strain conditions are assumed, namely the strain along the longitude axis z = x1
is equal to zero e11 = 0.

Then the strain-displacements equations for both the sphere and the cylinder can
be written as

e11 = (k − 1)
u3

ρ
, e22 = u3

ρ
, e33 = du3

dρ
. (5)

We can rewrite the constitutive Eq. (2) in the form

σ11 = ((k − 1)E11 + E12) e22 + E13e33,

σ22 = (E11 + (k − 1)E12) e22 + E13e33, (6)

σ33 = k E13e22 + E33e33.

By using (5) and (6) in (3) it follows that

d2u3

dρ2 + k

ρ

du3

dρ
− M

u3

ρ2 = 0, (7)
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where parameter M = k (E11 + (k − 1)(E12 − E13))/E33 depends on the material
properties. In particular,

Ms = 2
E11 + E12 − E13

E33
, Mc = E11

E33
.

In what follows subscripts ‘s’ and ‘c’ denote variables associated with the sphere
and the cylinder.

Solving (7) together with (4) we obtain the radial displacements u3 as a function
of the coordinate ρ

u3(ρ) = A1

μ1
ρm + A2

μ2
ρ−(m+k−1), (8)

where

m = −k − 1 − √
(k − 1)2 + 4M

2
,

μ1 = m E33 + k E13, μ2 = (m + k − 1)E33 − k E13,

A1 = p1 Rm+k
1 − p2 Rm+k

2

R2m+k−1
2 − R2m+k−1

1

, A2 = (R1 R2)
m+k p1 Rm−1

2 − p2 Rm−1
1

R2m+k−1
2 − R2m+k−1

1

.

From Hooke’s law (6), the strain-displacement Eqs. (5) and (8) one can find the
circumferential σ22 and the radial σ33 stresses for the sphere and the cylinder

σ22 = A1
m + k − 1

k
ρm−1 + A2

m

k
ρ−(m+k), σ33 = A1ρ

m−1 − A2ρ
−(m+k) (9)

For the spherical shell, the stress σ s
11 in the meridional direction x1 = ϑ is equal to

the circumferential stress σ s
22.

In the case of the cylindrical shell, the stress in the longitude direction x1 = z
becomes

σ c
11 = A1μ3 ρ

m−1 − A2μ4 ρ
−m−1, (10)

μ3 = m E13 + E12

m E33 + E13
, μ4 = m E13 − E12

m E33 − E13
.

In the case of isotropy,

Ms = 2, μs
1 = E1

1 − 2ν12
μs

2 = 2
E1

1 + ν12
, ms = mc = 1,

Mc = 1, μc
1 = E1

(1 + ν12)(1 − 2ν12)
, μc

2 = E1

(1 + ν12)
, μ3 = μ4 = 1.
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2.2 Asymptotic Solutions

To compare the exact 3D-solutions of the problems with the 2D approximate ones the
asymptotic analysis of Eqs. (8–10) was performed. We introduce the dimensionless
coordinate in the radial directions ξ

ξ = (ρ − R)/h, −1/2 ≤ ξ ≤ 1/2,

where h = R2 − R1 and R = (R2 + R1)/2 are the thickness and the radius of
midsurface of the shells.

We use the relative shell thickness α = h/R as the small parameter in the asymp-
totic expansions. The first terms of the asymptotic expansions of the displacement
and the stresses of the shells’s middle surface are

σ20 = p1 − p2

αk

[

1 − αk

2
P± + α2

12

(

k2 + k − 3 − M

2

)]

+ O(α2), (11)

σ30 = − p1 + p2

2

[

1 − α
k + 2

4
P∓ + α2k

8

(

1 − M

k

)]

+ O(α3), (12)

ū30 = p1 − p2

α k E0

[

1 − αk

2
P±

(

1 − E13

E33

)

(13)

+ α2

12

(

k2 + k − 3 − M

2
− 3k(k + 2)E13

2E33

)]

+ O(α2)

with the shorthand notations

σ20 = σ22(0), σ30 = σ33(0), ū33 = u3(0)/R,

E s
0 = E1

1 − ν12
, Ec

0 = E1

1 − ν2
12

, P± = p1 + p2

p1 − p2
, P∓ = p1 − p2

p1 + p2
.

For the longitudinal stress of the cylinder we have

σ c
10 = σ c

11(0) = (p1 − p2)ν12

α

[

1 − α

2
P±

(

1 − ν13

ν12

)

(14)

− α2

12

(

1 − 9ν13

2ν12
+ E11

2E33

)]

+ O(α2).

Note that the classical Kirchhoff-Love (KL) theory gives for the displacements and
the tangential stresses the first terms in asymptotic approximation of the 3D solution
in (11), (13) and (14). The normal stresses σ33 are neglected in the KL theory. For
discussed problems the Timoshenko-Reissner (TR) and the Ambartsumyan (Amb)
theories gives the same results as the KL-theory in the case of transversely isotropic
material.
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3 Palii-Spiro Theory

3.1 Basic Assumptions

The refined theory of anisotropic shells of moderate thickness has been introduced
in Palii and Spiro [16]. Palii and Spiro have extended the Timoshenko-Reissner (TR)
type theory taking into account the effect of transverse normal stress and thickness
deformation.

As in the TR theory, the Palii-Spiro (PS) theory supposes, that a rectilinear element
normal to the middle surface of a shell remains rectilinear after the deformation. The
second assumption of the PS theory gives

ui (ζ ) = ui0 + ζ(θi + γi ), (i = 1, 2), u3(ζ ) = u30 + F(ζ ), (15)

where ui0, u30 denote the displacements of a point on the midsurface of the shell in the
principal directions βi and in the ζ direction normal to the midsurface; ui , u3 are the
displacements of a generic point of the shell; θi , γi are the rotations of the transverse
normals about the βi -axes and the shear angles in (βi , ζ ) plane, respectively; F(ζ )
is a function to be determine.

According to Palii and Spiro [16], the normal stress distribution along the shell
thickness and the thickness stretching F(ζ ) are

σ33 = 1

(1 + κ1ζ )(1 + κ2ζ )

(
m3

h
+ q3

ζ

h

)

, (16)

F(ζ ) =
∫ ζ

0

σ33

E33
dζ − ζ

(

ν∗
1

(

ε1 + ζ

2
κ̃1

)

+ ν∗
2

(

ε2 + ζ

2
κ̃2

))

(17)

with κ1, κ2 being the principal curvatures in β1 and β2 directions, respectively;
ε1, ε2, κ̃1 κ̃2 are the strains and the curvature of the middle surface as their defined
in the classical shell theory. We employ the notations of Rodionova et al. [18], by
defining

q3 = p1

(

1 − κ1
h

2

)(

1 − κ2
h

2

)

− p2

(

1 + κ1
h

2

)(

1 + κ2
h

2

)

,

m3 = −h

2

[

p1

(

1 − κ1
h

2

) (

1 − κ2
h

2

)

+ p2

(

1 + κ1
h

2

) (

1 + κ2
h

2

)]

.

For a shell made of orthotropic material

ν∗
1 = ν13 + ν12ν21

1 − ν12ν21
, ν∗

2 = ν23 + ν21ν13

1 − ν12ν21
.
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3.2 Formulation for Spherical Shells

Now we derive the governing equations for the transversally isotropic spherical shell
of radius R and thickness h, subjected to transversal load (4).

As all variables of interest are the functions of the thickness coordinate ζ , assump-
tions (15) yield the following strain-displacement relations and the constitutive equa-
tions for stress resultants

u P S
3 (ζ ) = w + F(ζ ), −h/2 ≤ ζ ≤ h/2,

eP S
11 = eP S

22 = ε1

[

1 − ζ

R

(

1 + 2
E13

E33

)]

, ε1 = ε2 = w

R
, (18)

T P S
1 = T P S

2 = E s
0hε2 + E13

E33
T P S

0 , T P S
0 = −h

2
(p1 + p2),

where w is the midsurface displacement, T1 and T2 are the meridional and the cir-
cumferential stress resultants per unit length.

The tangential normal stresses σ11, σ22 can be obtain from Hooke’s law (2). For
the spherical shell we have

σ P S
11 = σ P S

22 = E s
0e22 + E13

E33
σ P S

33 (ζ ), (19)

where the transverse stress σ P S
33 is calculated in Eq. (16) at κ1 = κ2 = R.

Substituting Eq. (18) into the equilibrium equation of the spherical shell

T P S
1

R
+ T P S

2

R
= p1 − p2 − h

R
(p1 + p2), (20)

one obtains the displacement w of the middle surface.
Now we can write out the stresses and the displacement of the spherical shell as

σ
P S(s)

20 = p1 − p2

2α

[

1 − αP± + α2 E13

E33
+ α3

4
P± E13

E33

]

,

σ
P S(s)

30 = − p1 + p2

2

[

1 − αP∓ + α2

4

]

, (21)

ū P S(s)
30 = w/R = p1 − p2

α

1 − ν12

2E1

[

1 − αP±
(

1 − E13

E33

)]

.
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3.3 Resultant Expressions for Circular Cylindrical Shells

Here we list the resultant expressions for circular cylindrical shell based on the PS
theory. As in Sect. (2.1), the plain strain behavior is assumed for transversely isotropic
cylindrical shell of radial R and thickness h.

For the longitudinal σ11, the circumferential σ22, the transverse σ33 stresses and
the displacement of the cylindrical shell we have

σ
P S(c)

10 = (p1 − p2)ν12

α

[

1 − α

2
P±

(

1 − ν13

ν12

)

+ α2

4

E13

E33ν12

]

,

σ
P S(c)

20 = p1 − p2

α

[

1 − α

2
P± + α2

4

E13

E33

]

,

σ
P S(c)

30 = − p1 + p2

2

(
1 − α

2
P∓)

,

ū P S(c)
30 = w/R = p1 − p2

αEc
0

[

1 − α

2
P±

(

1 − E13

E33

)]

.

(22)

4 Rodionova-Titaev-Chernykh Theory

4.1 Basic Assumptions and Formulation for Spherical Shells

Rodionova, Titaev and Chernykh developed a linear high-order theory of anisotropic
shells by expanding all quantities of interest, i.e. strains, stresses and deformations,
into series in the thickness directions [18]. The RTCh theory based on following
static and kinematic assumptions

• the transverse tangential and normal stresses are distributed along the shell thick-
ness according to the quadratic and cubic laws, respectively;

• along the shell thickness the tangential and normal components of the displace-
ment vector have the polynomial distributions of the third and the second powers,
respectively.

For the spherical shell, described in Sect. 3, the displacement u RT C
33 and the trans-

versal normal stresses σ RT C
33 are

σ RT C
33 (ζ ) = σ

(0)
33 P0(ζ )+ σ

(1)
33 P1(ζ )+ σ

(2)
33 P2(ζ )+ σ

(2)
33 P3(ζ ), (23)

u RT C
3 (ζ ) = w∗ P0(ζ )+ γ ∗

3 P1(ζ )+ θ∗
3 P2(ζ ), (24)

where Pi , (i = 0 . . . 3) are the Legendre polynomials

P0(ζ ) = 1, P1(ζ ) = 2ζ

h
, P2(ζ ) = 6ζ 2

h2 − 1

2
, P3(ζ ) = 20ζ 3

h3 − 3ζ

h
.
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Coefficients γ ∗
3 , θ

∗
3 in (24) characterize the alteration of the lengths of normals to the

middle surface, (w∗ − θ∗
3 /2) is a normal displacements of a point on the midsurface.

Representing the strains and stresses as the linear combinations of the Legendre
polynomials and using the above hypotheses, one can write the constitutive and the
strain-displacement relations in the form

ε∗1 = ε∗2 = w∗

R
, γ ∗

3 = T RT C
0

2E33
− E13

E33

h

2

(
ε∗1 + ε∗2

)
,

κ̃∗
1 = κ̃∗

2 = γ ∗
3

R
, θ∗

3 = M RT C
0

hE33
− E13

E33

h

6

(
κ̃∗

1 + κ∗
2

)
, (25)

T RT C
1 = T RT C

2 = E s
0hε∗2 + E13

E33
T RT C

0 ,

where

M RT C
0 = h2

10
q3, T RT C

0 = m3.

By introducing the notations

q0 = p1 − p2, m0 = −h

2
(p1 + p2),

the normal stresses can be written as following [18]

σ RT C
33 = T RT C

0
h

P0(ζ )+
6M RT C

0
h2 P1(ζ )+

m0 − T RT C
0

h
P2(ζ )+

(
q0

2
− 6M RT C

0
h2

)

P3(ζ )

(26)
The tangential stresses can be obtain from the Hooke law (2) with expressions for
the deformations

eRT C
11 = eRT C

22 =
(

1 − ζ

R

) (
w∗

R
P0(ζ )+ γ ∗

3

R
P1(ζ )+ θ∗

3

R
P2(ζ )

)

, (27)

eRT C
33 = 2

h
γ ∗

3 P0(ζ )+ 6

h
θ∗

3 P1(ζ ).

The problem is governed by the equilibrium equation

T RT C
1

R
+ T RT C

2

R
= q3 = p1

(

1 − h

2R

)2

− p2

(

1 + h

2R

)2

. (28)

Finally, for stresses and the displacements on the midsurface we get
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σ
RT C(s)

10 = p1 − p2

2α

[

1 − αP± + α2

4

(

1 − 2

5

E11 + E12

E33

+2
E13

E33
+ 2

15

(
E13

E33

)2
)

+ α3(. . .)

]

,

σ
RT C(s)

30 = − p1 + p2

2

[

1 − 3α

2
P∓ + 3

8
α2

]

, (29)

ū RT C(s)
30 = u RT C(s)

3 (0)/R = p1 − p2

α

1 − ν12

2E1

[

1 − αP±
(

1 − E13

E33

)

+ α2

4

(

1 − 2

5

E11 + E12

E33
− 4

E13

E33
+ 2

15

(
E13

E33

)2
)

+ α3(. . .)

]

.

We do not put down the coefficients at α3 in (29) since they are exceedingly lengthy.

4.2 Stresses and Deformations for Circular Cylindrical Shells

The RTCh theory gives the following expressions for the stresses and the deforma-
tions of the cylindrical shell under plain-strain conditions

σ
RT C(c)

10 = (p1 − p2)ν12

2α

[

1 − α

2
P±

(

1 − ν13

ν12

)

− α2

12

(
3

5

Ec
0

E33
− 9ν13

2ν12
− 3

2

E13

E33
+ 1

2

(
E13

E33

)2
)

+ α3(. . .)

]

,

σ
RT C(c)

20 = (p1 − p2)

α

[

1 − α

2
P± − α2

24

(
6

5

E0

E33
− 3

E13

E33
+

(
E13

E33

)2
)

+ α3(. . .)

]

,

(30)

σ
RT C(c)

30 = − p1 + p2

2

[

1 − 3α

4
P∓

]

,

ū RT C(c)
30 = p1 − p2

αEc
0

[

1 − α

2
P±

(

1 − E13

E33

)

− α2

12

(
3

5

Ec
0

E33
− 3

E13

E33

−1

2

(
E13

E33

))

+ α3(. . .)

]

.

5 Results and Discussion

For numerical examples the shells properties are taken from literature as material
properties of the sclera Iomdina [12]: E1 = 3 MPa, ν12 = 0.45, h/R = 1/15.
Calculations have been performed for different n = E1/E3. The Poisson ration ν13
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is selected so that the stain energy of the plate material be positive. We also test the
case of thick shells with h/R = 1/5.

5.1 Comparison for Normal Stresses

The classical KL theory neglects the thickness changes and the normal stresses σ33
in the thickness directions. Both the PS and the RTCh theory proposed a certain
law for normal the stress distribution along the shells thickness (16), (26), but it is
important to note that no material elastic constants affect the normal stresses in both
2D theories. This is the case for the isotropic spherical and cylindrical shells, but
in for a transversely isotropic material the material parameters appears in terms of
order α2 in Eq. (12).

Comparing the expressions for the normal stresses (21) and (22) with the asymp-
totic terms in (12), we see that on the middle surface the PS theory gives first two
correct terms for the normal stress σ33 for both test problems. The RTCh theory gives
only one correct term for the stress σ33.

Even so, for the case of thin shells (h/R = 1/15), both refined theories give a good
agreement with the exact 3D solution of the normal stress distribution for Young’s
moduli ratio up to E1/E3 = 100 (see Fig. 3). For a thick (h/R = 1/5) shell the PS
theory gives excellent accuracy for a case of isotropy, and both theories are inaccurate
for transverse isotropy with E1/E3 = 100 (Fig. 3).

−0.5 −0.25 0 0.25 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

 3D (n=1)
 3D (n=20)
 3D (n=100)
 RTCh
 PS

−0.5 −0.25 0 0.25 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

 3D (n=1)
 3D (n=20)
 3D (n=100)
 RTCh
 PS

Fig. 3 Distribution of normal stresses in the spherical shell with h/R = 1/15 (left) and h/R = 1/5
(right). Solid line with disk markers describes the PS-theory; with diamond markers describes the
RTCh theory; dashed, dot-dashed and dotted lines describes the 3D solution at different values of
E1/E3
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5.2 Comparison for Displacements

Both 2D theories give two first correct terms comparing with the asymptotic terms
the deflection of the middle surface for the spherical shell along with the circular
cylinder (Eqs. 21–22 and 29–30). The RTC theory gives one of three terms of the
third order in Eq. (13).

For the thick spherical shell (h/R = 1/5) the normalized midplane deflection
according to the presented theories and those obtained by the exact 3D theory are
plotted in Fig. 4. We denote the KL approximation of the mid-surface deflection as
u0 = p(1 − ν12)R2/2E1h. In the case of isotropy (Fig. 4, left), the RTCh theory
almost exact coincide with the 3D solution on the middle surface as well as along
the thickness of the shell. In the case of transversal isotropy with E1/E3 = 20 the
RTCh theory gives excellent accuracy on the middle surface but diverges with the
exact solution while moving to the shell’s inner and outer surfaces (Fig. 4).

The large difference between the PS and 3D solutions for the displacements is 3
and 19 % for E1/E3 = 1 and E1/E3 = 20, respectively. Figure 5 shows the normal-
ized deflection of the thin cylindrical shell at E1/E3 = 100.

5.3 Thickness Variation and Change of the Inner Volume

For soft materials, e.g. biological tissues, thickness variation can be important.
Results, obtained with the help of shell theories, which neglect thickness variation,
can be inaccurate or inadequate compered with experimental data.

We calculate the thickness variation both for thin and thick shells. Figure 6 presents
the effect of Young’s moduli ratio on the thickness variation. For a thin shell the
numerical results obtained with the 2D refined theories are almost perfectly super-
imposed to the exact 3D results up to E1/E3 = 50. For a thick shell the refined

−0.5 −0.25 0 0.25 0.5
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0.85

0.95
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1.05

1.15  3D
 RTCh
 PS

−0.5 −0.25 0 0.25 0.5
0.4

0.7

1

1.3

1.6

1.9  3D
 RTCh
 PS

Fig. 4 Normalized deflection of the thick isotropic (left) and transversely isotropic (right) with
E1/E3 = 20 spherical shell. Dashed line corresponds to the 3D exact results, solid line with disk
markers refers to the PS-theory, solid line with diamond markers—to the RTCh theory
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Fig. 5 Normalized deflection of the thin cylindrical shell at E1/E3 = 100, ν12 = 0.45, ν13 = 0.1.
Dashed line corresponds to the 3D exact results, solid line with disk markers refers to the PS-
theory, solid line with diamond markers—to the RTCh theory. u0 is the KL approximation of the
mid-surface deflection
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Fig. 6 Relative thickness variation for the pressurized spherical shell at h/R = 1/15 (left) and
h/R = 1/5 (right). Dashed line corresponds to the 3D exact results, solid line with disk markers
refers to the PS-theory, solid line with diamond markers—to the RTCh theory

theories are inaccurate in prediction of a thickness reduction starting from value of
E1/E3 equal to 20.

Figure 7 shows the effect of injected volumes on IOP variation. We take the change
in intraocular volume equal to 0.1 ml and calculate the corresponding changes in
inner pressure for different mechanical properties of the eyeball tissue. The KL-
theory, as well as the TR and Amb theories, gives the changes in inner pressure value
of 26.7 mm Hg and overestimates the exact results up to 10 mm Hg.



96 S.M. Bauer and E.B. Voronkova

1 15 50 75 100
15

17

19

21

23

25

26.7

 3D

 RTCh

 PS

Fig. 7 Effect of absolute changes of IOV on IOP variation. Absolute change of IOVΔV = 0.1 ml.
relative thickness of the shell is h/R = 1/15. Value of 26.7 mm Hg corresponds to the results
obtained by the KL-theory (with no thickness variation). Dashed line corresponds to the 3D exact
results, solid line with disk markers refers to the PS-theory, solid line with diamond markers—to
the RTCh theory

6 Conclusions

The stress-strain states of a pressurized transversally isotropic spherical shell and
a circular cylinder are studied by means of two refined theories for transversally
isotropic shells of moderate thickness. The algebraic relationships for deflections
and stresses obtained by the approximate theories are compared with the 3D exact
solutions.

Both theories give acceptable fit to the 3D solutions for the displacement, the
stresses and thickness variations for shells with h/R = 1/15. For a thick shell (h/R =
1/5), results obtained by the PS and RTCh theories are accurate but only for shells
made of isotopic material. Note that in general case, the RTC theory has the 14th
order while the PS theory is of the 10th order, which makes a calculation procedure
simpler.

In the first approximation, the human eye can be modeled as a spherical shells.
However, the myopic and hyperopic eyes have out-of-spherical (ellipsoidal) form.
Refined shell theories, discussed here, are well agreed with the exact 3D solutions.
Therefore it is reasonable to use these theories for models that describes the human
eye more precisely, for example, as the multilayered transversally isotropic spherical
shells or/and ellipsoidal shells.
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Linear Oscillations of Suspended Graphene

Igor Berinskii and Anton Krivtsov

Abstract Due to their excellent mechanical properties and extra high electrocon-
ductivity, suspended graphene sheets recently were proposed as perspective working
elements of nanosystems. This work is devoted to derivation of natural frequencies
of such sheets. Two different approaches are proposed. The first one is based on
representation of the graphene sheet as a thin rectangular membrane. In this case
the transversal oscillations are described with the classical one-dimensional wave
equation. Evaluation of the tension force in the membrane is performed basing on
the misfit between the graphene and silicon substrate crystal lattices. As a result,
the natural frequencies are found as the functions of the membrane length. Another
approach is to represent a graphene sheet as a thin plate. In this case a bending
rigidity of graphene has to be taken into account. As a result, it is shown that the
bending rigidity is more significant for the short resonators and leads to the higher
frequencies in comparison the long resonators.

1 Introduction

This work is devoted to the suspended graphene oscillations. Graphen is a monoato-
mic thin film with unique elastic, electrical, optical and thermal properties [7]. Thin
films are used in novel nanoelectromechanical systems (NEMS), e.g. nanoresonators
[6, 8]. Recently, graphene sheet were proposed for using in such systems. Up to now,
the existing graphene-based experimental set-ups [4, 5, 13] have not achieved as high
oscillation properties as silicon-based resonators. However, the technical problems
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will be hopefully solved soon, and the advantages of graphene systems will be used
for practical applications. First of all, they can be much easier miniaturized to the
nanoscale. As single-atomic graphene layer is a thinnest material at all, it is much
more sensitive to external effects than other films. It allows to use them as mass
sensors for nanoparticles.

This paper shows that graphene-based resonators can be used as the sources of the
high-frequency (up to several THz) oscillations. The transversal linear oscillations
of graphene sheet stretched over the trench in silicon oxide substrate are considered.
Two models are used to calculate the natural frequencies. First model represents
graphene sheet as a membrane with a constant tension. The second one represents
graphene as a thin plate. This model takes a bending rigidity of graphene into account
in addition to the tensile stiffness.

There are several works devoted to calculation of the natural frequencies of
graphene (see e.g. [1, 9, 10]). Most of them do not take the bending rigidity of
graphene into account. Recently, some authors paid their attention to this property
of monoatomic graphene sheets. As it will be shown later in this work, the bending
rigidity plays a significant role in case of the short resonators.

2 Membrane Model

2.1 Basic Equations

Let us consider the graphene sheet suspending over the trench in SiO2 substrate.
Suppose that it can be approximately represented as a flexible membrane fixed at two
supports. Let us consider the uniform deformations along the preferential direction
in a plane orthogonal to the direction of oscillations. In this case we can write the
equations of small oscillation of the membrane as

Hm

S0
ẅ = Tϕ′, ϕ = w′, (1)

here T is a tension force,ϕ is an angle of membrane element rotation, w is a membrane
bending deflection, H is a sheet width, ρ0 is a linear density of graphene sheet (mass
of a unit of area). A point and an accent correspond to the time (t) and longitudinal
(x) derivatives respectively. For Eq. (1) is was used that ρ0 Hdx dx . Relations (1)
give the equations of transversal oscillations of the membrane

ẅ − c2w′′ = 0, c2 = σ/ρ0, (2)

where σ = T/H is a longitudinal distributed force in graphene sheet.
Let us note that the thickness of the membrane was not included into Eqs. (1) and

(2). This fact has a simple explanation. The thickness of an single-atomic layer can
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not be determined uniquely hence it is non-objective and can not be included into
the equations of dynamics [12]. Moreover, the width of the graphene sheet H also
is not used in Eq. (2).

The boundary equations are following: w = 0 at x = 0 and x = l. Here l is a
length of the membrane. Let us suppose that

w(x, t) = W (x)eiωt ,

then
W ′′ + κ2W = 0, κ = ω/c. (3)

Its common solution may be written as

W = A1 cos κx + A2 sin κx . (4)

A satisfaction to the boundary conditions let us find κ = πn/ l, where n = 1, 2, 3, . . .
After κ is found, the natural frequencies can be determined by formulae

ω = κc = πn

l

√
σ

ρ0
. (5)

2.2 Tension of the Sheet

Let us evaluate a tension in the graphene sheet. Let us believe that a tension is
connected with a misfit of graphene and substrate (SiO2) crystal lattices. It may
give a maximum elongation of the graphene sheet on the order of a/2. Then a
corresponding tension stress may be approximately found as

σ = a

2l
E, (6)

where E is a two-dimensional Young modulus of graphene measured in N/m.
A surface density of graphene sheet can be found as

ρ0 = m/S0, S0 = 3
√

3

4
a2, (7)

where S0 is a area pear atom in graphene sheet (a half of the elementary cell); a is
a distance between the nearest atoms. The substitution of Eqs. (6) and (7) to Eq. (5)
gives

ω = kE

(a

l

)3/2
ωE , kE = πn

2

√
3

2

√
3, ωE =

√
E

m
. (8)
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Here kE is a dimensionless ratio, ωE has the same unit of measure as a frequency.
For the first natural frequency kE ≈ 2.53, (8) gives a following evaluation for the
frequency of oscillations

ω = 2.53
(a

l

)3/2
ωE . (9)

2.3 Frequencies Calculation

Let us evaluate a first frequency of the transversal graphene sheet oscillations on
a base of previous results. According to [11], a graphene 2D Young modulus is
E = 350 N/m. A carbon atom mass m = 1.99 · 10−26 kg. Then, using calculations
with formula (8) one can obtain for the frequency ωE

ωE = 1.33 · 1014, νE = 1

2π
ωE = 21.1 THz. (10)

Then let us find the frequencies of the graphene sheets with different lengths taking
into account that a nearest distance between atoms in graphene is a = 0.142 nm [11].
The results if the calculations are given in Table 1. An average distance between the
rows of atoms in graphene differs dependently on the direction. It changes from

0.75 a to
√

3
2 a ≈ 0.87 a. Due to this, an average distance 0.8 a = 0.114 nm was

used to calculate an approximate number of the atomic rows along the graphene
layer as N = l/(0.8a). It is shown in a second column of the table.

3 Plate Model

3.1 Basic Equations

Let us consider a graphene sheet laying over a trench in a silicon oxide substrate as
a plate on the two supports. Similar to the previous part, let us consider the uniform
deformations along the preferential direction in a plane orthogonal to the direction
of oscillations. In this case a problem of the plate small oscillations can be reduced
to the problem of Bernoulli-Euler beam oscillations:

Table 1 Natural frequencies
of the graphene sheets
(membrane model)

l (nm) N ν

1 8,803 90 MHz

100 880 2.9 GHz

10 88 90 GHz

1 9 2.9 THz
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Hρ0ẅ = N ′, N = −M ′, M = DHϕ′, ϕ = w′. (11)

Here N is a transversal force, M is a bending moment, ϕ is an angle of the plate
element rotation, w is a plate deflection, H is a graphene sheet width, ρ0 is a linear
density of graphene sheet (mass of the unit of the square), D is a bending rigidity; a
dot and a stroke correspond to the time and x coordinate respectively. When obtaining
the Eq. (11) it was used that ρ0 Hdx is a mass of the element with a width H and a
length dx , and a bending stiffness D is a ratio between a distributed bending moment
M/H and the angular deformation ϕ′. Equation (11) give the equation of the bending
oscillations of the plate

ẅ + b4w′′′′ = 0, b4 = D/ρ0. (12)

A thickness of the plate was not included into the Eqs. (11) and (12) as well as the
thickness of the membrane was not included in the oscillations equation in the previ-
ous part. The explanation is the same: atomic sheet thickness can not be determined
uniquely hence it is non–objective and can not be included into the equations of
dynamics (11) and (12). The width of the layer H also was not included in Eq. (12).

The boundary conditions at x = 0 and x = l where l is a plate length are the
following:

w = 0, w′ = 0 (solid support), w′′ = 0 (joint), (13)

relatively for the solid support or for the joint.
Let us allow w(x, t) = W (x) eiωt . Then one can obtain

W ′′′′ − κ4W = 0, κ2 = ω/b2. (14)

Its general solution may be found as

W = A1 cos κx + A2 sin κx + A3 cosh κx + A4 sinh κx . (15)

After the satisfaction to the boundary conditions one can findκ as κ = γ / l. Here a
dimensionless ratio γ is a solution of the following equations

sin γ sinh γ = 0 (joint), cos γ cosh γ = 1 (solid support). (16)

From the solutions of these equations (exact solution for the joint bearing and an
approximate one for the solid support) it follows

sin γ = 0 ⇒ γ = πn (joint) (17)

or
cos γ = 0 ⇒ γ = π

2
+ πn (solid support), (18)
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where n = 1, 2, 3 . . . The maximum error 1.8 % follows from the approximate
solution for the first natural frequency. For the other frequencies the approximate
solution is very close to the exact one. The exact solution of equations (16) give the
following values for the first natural frequency

γ = 3.145193 (joint), γ = 4.730041 (solid support). (19)

After γ is found the natural frequencies are determined from (12) to (14)

ω = κ2b2 = γ 2

l2

√
D

ρ0
. (20)

There is an important conclusion following from the last formula. It can be noticed
that the natural frequencies are inversely as the square of the plate length. It gives an
opportunity to change a frequency of the graphene oscillator in a very wide range.
For instance, if the length of the plate increases 10 times then the frequency increases
100 times.

3.2 Evaluation of the Bending Oscillations Frequency

The bending rigidity of the graphene layer is given by formula [3]

D =
√

3

6

3cT + cB

cT + cB
cB, (21)

where cT and cB are the torsional and binding stiffnesses respectively. We use this
parameters basing on the concept of mechanical representation of the carbonic bond
[2]. Unfortunately, so far there are no experiments to determine cT and cB . Hence,
we will use the relations between these parameters and cD , where cD is a transversal
stiffness of carbonic bond in graphene.

cT = 1

12

cDa2

1 + ν
, cB = 1

12
cDa2, (22)

where a is a bond length, ν is a dimensionless parameter of interaction. Let us
substitute the (22) to formula (21). Then

D =
√

3

36
k(ν)cDa2, k(ν) = 1

2

4 + ν

2 + ν
. (23)
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There is a limit −1 ≤ ν ≤ 1
2 for parameter ν which gives for k(ν)

9

10
≤ k(ν) ≤ 3

2
. (24)

Hence, this parameter does not changes significantly and can be taken approximately
equal to 1.

A linear density of graphene can be found as

ρ0 = m/S0, S0 = 3
√

3

4
a2; (25)

where S0 is a square per one atom in graphene list (half of elementary cell square);
a is an interatomic distance.

Substitution of the formulae (23) and (25) into (6.22) allows to find the following
expression for the bending oscillations frequencies of graphene list

ω = kD
a2

l2 ωD, kD = γ 2

4

√
k(ν), ωD =

√
cD

m
. (26)

Here kD is a dimensionless parameter,ωD is a frequency of the transversal oscillations
of the atom held by the bond with a stiffness cD . Taking the Eqs. (19) and (24) into
account for the solid support boundary conditions one will obtain

4.66 ≤ kD ≤ 8.39. (27)

Let us take for simplicity kD = 6. Then the following approximate estimation for
the graphene layer

ω = 6
a2

l2 ωD. (28)

3.3 Frequencies Calculation

Let us evaluate the first natural frequency of the bending oscillations of graphene
layer using the results obtained above. Following [11], the transversal stiffness of the
bond between the carbon atoms in graphene is cD = 402 N/m. Mass of the carbon
atom is m = 1.99 · 10−26 kg. Then using (26) one could calculate a frequency of the
transversal oscillations of the carbon atom

ωD = 1.42 · 1014 s−1, νD = 1

2π
ωD = 22.6 THz. (29)

Here and after symbol ω denotes the cyclic frequency, ν is an ordinary frequency
(inversely to the oscillations period) which is 2π times lower than the cyclic one.

http://dx.doi.org/10.1007/978-3-642-29715-1_6
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Table 2 Natural frequencies
of the graphene sheets (plate
model)

l (nm) N ν (MHz)

1 8,803 2.7

100 880 273

10 88 27

1 9 2.7

Now let us use (28) to calculate a frequency of the graphene layer oscillations ν =
ω/(2π). Let us take a distance between the nearest carbon atoms in graphene as
a = 0.142 nm [11]. The results of the oscillations are given in Table 2. A second
column shows an approximate number of the rows of atoms along the sheet length.
It can be found as N = l/(0.8a) as it was done for Table 1.

Following (28), the frequency is inversely as a square of the graphene layer length.
Hence, change of the length lead to the much more significant change of the fre-
quency. According to this fact, one can variate the graphene frequency in a very
large limit. For instance, as it follows from Table 2 decrease of the resonator length
from 1 mkm to 1 nm lead to the increase of the frequency from 2.7 MHz to 2.7 THz.
Thus, the short resonators (1 nm or less) can give the frequencies of terahertz range.

4 Conclusions

Figure 1 shows a comparison of the calculation results obtained with the plate and
membrane models. The graphs show that for the lengths more than 1 nm the mem-
brane model gives higher frequencies. If the lengths are less than 1 nm then a plate

Fig. 1 Comparison of the frequencies of graphene oscillations obtained by different methods
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model gives higher frequencies. This means that the plate type of the oscillations
dominates for the shortest graphene sheets having up to 10 rows of atoms. Let us
note that this result was obtained for the sufficiently high tension of graphene. If the
tension is low, then plate type of the oscillations can be realized even for the graphene
sheets longer that several nanometers.

A difference between results obtained with membrane and plate models is con-
nected with a bending rigidity influence. The shorter is graphene layer, the more
significant bending rigidity is. Thus, a plate model should work better for the shorter
resonators but in the case of long resonators the bending rigidity of graphene can be
neglected.
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On Discrete-Kirchhoff Plate Finite Elements:
Implementation and Discretization Error

Boštjan Brank, Adnan Ibrahimbegović and Uroš Bohinc

Abstract We present neat and efficient computer code implementation of two types
of Discrete-Kirchhoff plate finite elements—the Discrete-Kirchhoff triangle and the
Discrete-Kirchhoff quadrilateral—which can be used to model numerous thin plate
problems in mechanics and biology. We also present an implicit a posteriori dis-
cretization error indicator computation, based on the superconvergent patch recovery
technique, for the Discrete-Kirchhoff plate finite elements. This error indicator can
drive an adaptive meshing algorithm providing the most suitable finite element mesh.
For an illustration, some numerical results are given.

1 Introduction

There exist numerous applications in engineering, technology and biology, which
call for the thin plate finite element (FE) modeling. Frequently used thin plate finite
elements are the Discrete-Kirchhoff (DK) elements (e.g. [6]), which deliver higher-
order approximations of curvatures, even for FEs with small number of nodes. The
plate elements of this kind are part of many commercial FE codes, either as 3-node
triangle (DKT) or as 4-node quadrilateral (DKQ).

B. Brank (B)
Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova Cesta 2, 1000
Ljubljana, Slovenia
e-mail: bostjan.brank@fgg.uni-lj.si

A. Ibrahimbegović
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The DK elements are the result of a long line of developments on the Kirchhoff
plate elements, e.g. [10, 11], requiring C1 continuity of the transverse displacement
interpolation. For many reasons, the Kirchhoff plate elements were abandoned and
preference was given to the Reissner-Mindlin (RM) thick plate elements, see e.g.
[13, 29] and references therein, using only C0 interpolations for the transverse dis-
placement and the independent rotations. The RM plate elements turned to be very
sensitive to the shear locking (e.g. [29]). The DK element was introduced within
the RM plate theory framework, trying to deal with the shear locking by completely
removing the shear deformation. The consistent mixed formulation for the DKQ was
proposed in [14] and that approach was extended to the DKT in [8]. In this work
we show that both the DKT and the DKQ can be implemented neatly into the FE
computer code by the same algorithm.

In constructing the FE discretization error estimates for the DK elements, the
preference is given to an implicit a posteriori version, see e.g. [1, 2, 17], that starts
from the computed solution of the FE produced set of equilibrium equations. The
bending moments of an increased accuracy provide the corresponding error estimates
by comparison against the FE solution. The enhanced solution might be obtained by
the superconvergent patch recovery (SPR) (e.g. see [27–29]), which is the least square
fit of the FE results computed in the superconvergence points (roughly, the reduced
numerical integration points of a particular element). In this work we present an
application of the SPR for the DK plate elements.

2 Kirchhoff Plate Bending Model

Consider an elastic plate (Fig. 1), with the middle-plane Ω that is placed in the
xy plane, the middle-plane boundary Γp, and the thickness t , z ∈ [−t/2, t/2]. At
the middle-plate boundary point, two vectors are defined: s = [−ny, nx ]T , and
n = [nx , ny]T , where n is the outward unit exterior boundary normal. Coordinates
s and n change, respectively, along the boundary and in the direction of the normal.
The plate is loaded by a distributed area loading f , a line boundary moment in the s
direction ms on ΓN ⊂ Γp and a line boundary effective force in the z direction qef
on ΓN ⊂ Γp. The Kirchhoff plate model is built upon the kinematic constraint that
fixes through-the-thickness fibre as perpendicular to the plate middle surface. This
allows to define the fibre rotations θθθ = [θx , θy]T as the derivatives of the transverse
displacement w:

∇∇∇K w − θθθ = 0, ∇∇∇K =
[
∂

∂y
,− ∂

∂x

]T

(1)

The above constraint sets the shear strains to zero. Thus, the only generalized defor-
mations are the middle-plane curvatures κκκ = [κxx , κyy, 2κxy]T :

κxx = ∂2w

∂x2 = −∂θy

∂x
, κyy = ∂2w

∂y2 = ∂θx

∂y
, κxy = ∂2w

∂x∂y
= 1

2

(
∂θx

∂x
− ∂θy

∂y

)

(2)
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q̄ef = q̄ − ∂ m̄n
∂s

m̄s

n

s

qn

mns = mn

−mnn = ms

θn

θs

x

y

P
P+

P −

mn|P+

mn|P −

Ω

ΓN

ΓD

Fig. 1 Notation for plate problem

The curvatures relate to the bending moments m = [mxx ,myy,mxy]T as:

m = D

[
[

1 ν 0
]T
,
[
ν 1 0

]T
,

[

0 0
1 − ν

2

]T
]

︸ ︷︷ ︸
CB

κ, D = Et3

12(1 − ν2)
, (3)

where E is Young’s modulus and ν is Poisson’s ratio. According to the kinematic
constraint, there cannot be a similar role for the shear constitutive equations. Rather,
the shear forces have to be computed from the corresponding moment equilibrium
equations:

qx = −
(
∂mxx

∂x
+ ∂mxy

∂y

)

, qy = −
(
∂myy

∂y
+ ∂mxy

∂x

)

(4)

The last equations can be inserted into the force equilibrium equation, in order to
provide a single equilibrium equation in terms of moments:

∂qx

∂x
+ ∂qy

∂y
+ f = 0 =⇒ ∂m2

xx

∂x2 + 2
∂2mxy

∂x∂y
+ ∂m2

yy

∂y2 = f (5)

The following transformations, applied at the plate boundary, define the boundary
rotations, the boundary moments and the boundary shear force:
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θn = ∂w

∂s
= −ny

∂w

∂x︸︷︷︸
−θy

+ nx
∂w

∂y
︸︷︷︸
θx

, −θs = ∂w

∂n
= nx

∂w

∂x︸︷︷︸
−θy

+ ny
∂w

∂y
︸︷︷︸
θx

, (6)

mnn = n2
x mxx + n2

ymyy + 2nx nymxy, (7)

mns = −nx nymxx + nx nymyy +
(

n2
x − n2

y

)
mxy, (8)

qn = nx qx + nyqy = −
(
∂mnn

∂n
+ ∂mns

∂s

)

, (9)

The kinematic hypothesis imposes the effective shear force as the only appropriate
way for imposing the Neumann boundary conditions:

qef = qn − ∂mns

∂s
on Γp, qef = q − ∂mn

∂s
on ΓN , (10)

In general, the middle-plane boundary can be split into the Neumann ΓN , where we
impose the normal moment and the effective shear force (mnn, qef ), and the Dirichlet
ΓD , where we impose the displacement and its normal derivative (w, ∂w

∂n ). We can
also have a mixed case or Navier boundary ΓM , where we impose the displacement
and the normal moment (w,mnn).

The strong form of the boundary value problem can be stated as: given distributed
load f , imposed boundary shear and moment qef , ms , and imposed displacement
and rotation w, θ s , find w, such that

ΔΔw = f

D
; Δ = ∂2

∂x2 + ∂2

∂y2 in Ω,

w = w ; −∂w

∂n
= θ s on ΓD,

w = w ; mnn (w) = −ms on ΓM ,

qef (w) = qef ; mnn (w) = −ms on ΓN

(11)

and for any corner point P on ΓN : −mns |P− + mns |P+ = −mn|P− + mn|P+.
The corresponding variational formulation, considering the weak form of plate

equilibrium equation along with strong form of kinematics and constitutive equations,
can be written as

a(w, v) = l(v), w ∈ V , ∀v ∈ V0, a(w, v) = l(v), w ∈ V , ∀v ∈ V0,

(12)
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a(w, v) =
∫

Ω

κT (v) CBκ(w) d,Ω,

l(v) =
∫

Ω

v f dΩ +
∑

ΓI J

⎛

⎜
⎝

∫

ΓI J

(vqef + θsms) ds + [vmn]J
I

⎞

⎟
⎠

(13)

Here, I, J are the corner points, ΓI J ⊂ ΓN ,
∑
ΓI J

= ΓN , V is the trial space,
and V0 is the test space. For the future use, let us rewrite the weak form (12) as

a(u, v) = l(v), u ∈ V , ∀v ∈ V 0, (14)

where

u =
[

w, θx = ∂w

∂y
, θy = −∂w

∂x

]T

and v =
[

v, φx = ∂v

∂y
, φy = − ∂v

∂x

]T

The trial and the test spaces are given as (H i is the i th order Sobolev space):

V =

⎧
⎪⎨

⎪⎩

w ∈ H 2 (Ω)

θ ∈ [
H 1 (Ω)

]2 |
θx = ∂w

∂y
, θy = −∂w

∂x
,

w = w,−∂w

∂n
= θs = θ s on ΓD; w = w on ΓM

⎫
⎪⎬

⎪⎭
(15)

V 0 =

⎧
⎪⎨

⎪⎩

v ∈ H 2 (Ω)

φ ∈ [
H 1 (Ω)

]2 |
φx = ∂v

∂y
, φy = − ∂v

∂x
,

v = 0,− ∂v

∂n
= φs = 0 on ΓD; v = 0 on ΓM

⎫
⎪⎬

⎪⎭
(16)

3 Implementation of the Discrete-Kirchhoff Finite Elements

Prior designing the DK interpolations, we will replace (14) with a mixed variational
formulation in order to reduce the displacement continuity requirements:

aγ (u, γ,q; v) = l(v) , aγ (u, γ,q; v) =
∫

Ω

{
κT (v) m(u) + [γ (v)− γ ∗]T q

}
dΩ,

∫

Ω

{
q∗,T [γ (u)− γ ]T

}
dΩ = 0

(17)

Here u and v are kinematic variables and their variations,

γ (u) =
(
∂w

∂x
+ θy,

∂w

∂y
− θx

)T

and γ (v) =
(
∂v

∂x
+ φy,

∂v

∂y
− φx

)T

are displacement-based shear strains and their variations, q and q∗ are shear forces
and their variations, γ and γ ∗ are independent shear strains and their variations. By
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assuming the shear force is defined independently in each element, we can recover
the variational consistency of the assumed shear strain formulation by enforcing the
validity of the variational equation (17) in each element.

To show how to construct the DK interpolations, let us first consider each edge of
the DK element as the 2-node planar beam FE of length L . We define the coordinates
s B = ξ B L

2 + L
2 ∈ [0, L], ξ B ∈ [−1,+1]. Along each edge, we choose the following

interpolations for displacement and rotation:

wB
h =

2∑

I=1

wI N B
I +

4∑

I=3

wI N B
I , θ B

h =
2∑

I=1

θI N B
I + θ3 N B

3 (18)

where N B
I are hierarchical Lagrangian functions

N B
1 = 1

2
(1 − ξ B), N B

2 = 1

2
(1 + ξ B), N B

3 =
(

1 −
(
ξ B

)2
)

, N B
4 = ξ B

(

1 −
(
ξ B

)2
)

Only two nodal displacements, w1,w2, and two nodal rotations, θ1, θ2, will remain
as acceptable parameters. The other parameters are condensed out by enforcing the
kinematic hypothesis

∂wB
h

∂s B
− θ B

h = 0,

resulting with:

w3 = L

8
(θ1 − θ2), w4 = L

4

(
w2 − w1

L
− 1

2
(θ1 + θ2)

)

, θ3 = 6

L
w4 (19)

By placing (19) into (18), we finally recover a four-parameter interpolation along ξ B .
With this interpolation the DK element will have the zero transverse shear imposed
along each edge, which for assumed strain interpolation further implies zero shear
strains everywhere within the element domain. This result is directly applicable to
the DK element by recognizing that θ B

h = nT θh,e = θn,h,e and that the kinematic
constraint

∂wh,e

∂s
− θn,h,e = 0

implies for each edge of element e. We obtain the following DK approximations
of displacement and rotations represented by the sum of nodal, I , and edge, I J ,
contributions

wh|e = wh,e =
∑

I

wI NI +
∑

I J

(
w3,I J NI J + w4,I J MI J

)
, (20)

θh|e = θh,e =
∑

I

θI NI +
∑

I J

θ3,I J NI J
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Here, w3,I J , w4,I J and θ3,I J are in analogy with the parameters in (19)

w3,I J = L I J

8
nT

I J (θI − θJ ), w4,I J = L I J

4

(
wJ − wI

L I J
− 1

2
nT

I J (θI + θJ )

)

,

θ3,I J = 6

L I J
w4,I J nI J , (21)

where nI J = [nx,I J , ny,I J ]T is the outward unit normal of an edge between nodes
I and J , and L I J is the length of that edge. The interpolations NI J ,MI J will be
presented below. The above DK interpolations can also be given in the matrix notation

wh,e =
∑

I

Nw,I uI , θh,e =
∑

I

Nθ,I uI , κh =
∑

I

Bκ,I uI , (22)

where vector uI = [wI , θx I , θy I ]T collects the degrees of freedom of node I . Explicit
forms of Nw,I , Nθ,I and Bκ,I can be obtained from (20), (21) and (2).

By using the so defined DK interpolations for both trial, uh,e = [wh,e, θ
T
h,e]T , and

test functions, vh,e = [vh,e, φ
T
h,e]T , in the weak form (12), we obtain

ae(uh,e, vh,e) =
∫

Ωh,e

κT
h (vh,e) mh(uh,e) dΩ =

∑

I,J

vT
I Ke

I J uJ ,

Ke
I J =

∫

Ωh,e

BT
κ,I CBBκ,J dΩ

(23)

where vI = [vI , φx I , φy I ]T , and [Ke
I J ] is the element stiffness matrix. The element

consistent load vector fe =
[
fe,T

I

]T
follows from:

le(vh,e) =
∫

Ωh,e

vh,e f dΩ +
∑

ΓI J

⎡

⎢
⎣

∫

ΓI J

(vh,e qef + φs,h,e ms) ds + [vh,e mn]J
I

⎤

⎥
⎦

=
∑

I

vT
I fe

I =
∑

I

vT
I (f

e
f,I + fe

t,I + fe
c,I )

(24)

where φs,h,e = sT
I Jφh,e, sI J = [−ny,I J , nx,I J

]T , ΓI J ⊂ ΓN ,h , and

fe
f,I =

∫

Ωh,e

f Nw,I dΩ, fe
t,I =

∑

ΓI J

∫

ΓI J

(qef Nw,I + ms sT
I J Nθ,I )ds,

fe
c,I = [mn|I + − mn|I − , 0, 0]T , ∀ I ∈ ΓN ,h

(25)



116 B. Brank et al.

The trial and the test spaces for a plate problem, discretized by the DK finite element,
can be written as:

VDK
h =

⎧
⎨

⎩

wh ∈ U | wh|e ∈ p (e) ∀e ∈ Ch,

θh ∈ U | θh|e ∈ [p1 (e)]2 ∀e ∈ Ch,

nT
I J

(∇K wh|e − θh|e
) |ΓI J = 0 ∀ΓI J ∈ e ∧ ∀e ∈ Ch

⎫
⎬

⎭
(26)

VDK
0,h =

⎧
⎨

⎩

vh ∈ U0 | vh|e ∈ p (e) ∀e ∈ Ch,

φh ∈ U0 | φh|e ∈ [p1 (e)]2 ∀e ∈ Ch,

nT
I J

(∇K vh|e − φh|e
) |ΓI J = 0 ∀ΓI J ∈ e ∧ ∀e ∈ Ch

⎫
⎬

⎭
(27)

where p (e) and p1 (e) are the spaces of polynomials of degrees at most p and p1,
respectively, on element e with edges ΓI J and nodes I . For the DKQ p = 4 and for
the DKT p = 3, p1 = p − 1. The Ch represents the collection of all the elements of
the mesh, and

U =
{

w ∈ H 1 (Ω) | w = w on ΓD ∧ ΓM

}
,U =

{

θ ∈
[
H 1 (Ω)

]2 | θs = θ s on ΓD

}

,

U0 =
{

v ∈ H 1 (Ω) | v = 0 on ΓD ∧ ΓM

}
,U0 =

{

φ ∈
[
H 1 (Ω)

]2 | φs = 0 on ΓD

}

(28)
The DKT has 3 vertex nodes; the shape functions in the area coordinates are:

NI = ζI ; NI J = 4ζI ζJ ; MI J = 4ζI ζJ (ζJ − ζI ) (29)

The 4-point triangular scheme for the numerical integration is used to compute the
stiffness matrix and the load vector for the DKT. The DKQ has 4 vertex nodes; the
shape functions are given in the coordinates (ξ, η) ∈ [−1,+1] × [−1,+1]:

I 1 2 3 4
I J 12 23 34 41
r ξ η ξ η

s η ξ η ξ

pr +1 +1 −1 −1
ps +1 −1 −1 +1

NI = (1 − prr)(1 − pss)/4;
NI J = (1 − r2)(1 − pss)/2; (30)

MI J = prr(1 − r2)(1 − pss)/2

The 2 × 2 Gauss scheme is used for the numerical integration of the stiffness matrix
and the load vector for the DKQ.
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4 Discretization Error Estimation

In the Bubnov-Galerkin FE method, the optimal approximation uh ∈ V h ⊂ V is the
one for which

a(uh, vh) = l(vh) ∀vh ∈ V 0,h ⊂ V 0 (31)

The exact solution u ∈V also satisfies (31)

a(u, vh) = l(vh) ∀vh ∈ V 0,h ⊂ V 0 (32)

Subtracting (31) from (32), and accounting for the linearity of each functional, yields
the Galerkin orthogonality condition a(u − uh, vh) = 0. If the true error of the FE
solution is defined as e = u − uh , the Galerkin orthogonality reads as a(e, vh) = 0,
i.e. the error e is orthogonal to any test function from V 0,h . The error satisfies the
residual equation

a(e, v) = a(u, v)− a(uh, v) = l(v)− a(uh, v), ∀v ∈ V 0 (33)

The above introduced true error e is a local measure. It is possible, in the case
of singularities, that e is locally infinite, while the overall solution may well be
acceptable. To measure the global error, the complementary energy norm of e may
be used:

‖e‖2
E∗ = a∗(e, e) =

∑

e

‖ee‖2
E∗ (34)

The element contribution is

‖ee‖2
E∗ = a∗(ee, ee) (35)

=
∫

Ωh,e

[
m (ue)− mh

(
uh,e

)]T C−1
B

[
m (ue)− mh

(
uh,e

)]
dΩ

In (35), mh are the moments of the FE solution, and m are the exact moments.
We will briefly present computation of ‖ee,h‖2

E∗ by the recovery based technique.
An approximation of exact moments m is recovered from the FE solution mh

(
uh,e

)

by postprocessing. The recovered moments, denoted by m∗, are obtained as

m∗(ξ)|Ωh,e =
∑

I

m∗
I NI (ξ), (36)

where I runs over the nodes of the element, ξ are isoparametric coordinates, NI are
standard Lagrange shape functions, and m∗

I are nodal parameters for interpolation.
The local and global error indicators are computed as
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‖eh,e‖2
E∗ =

∫

Ωh,e

(m∗ − mh)
T C−1

B (m∗ − mh) dΩ,

‖eh‖2
E∗ = ∑

e ‖eh,e‖2
E∗

(37)

The superconvergent patch recovery (SPR) technique can be used to obtain m∗
I in

(36). It takes advantage of the superconvergence property of the FE solution [15,
29]. Namely, the error in displacements/rotations is the smallest at the nodes of the
element, whereas the error in rotation gradients (moments) is the smallest at the
points inside the element usually coinciding with the Gauss points. At such points,
the order of the convergence of the gradients is at least one order higher than what
would be anticipated from the approximation polynomials. This is known as the
superconvergence property. The values of moments at Gauss points ξgp (or other
optimal sampling points), denoted as mh(ξgp), serve as the basis for the reconstruc-
tion of m∗

I . Further details of the SPR are given e.g. in [29]. The above described
procedure suits any DK element.

Global and local error indicators, ‖eh‖E∗ , and ‖eh,e‖E∗ = η∗
e = ηe, respectively,

are computed for the DKT with the above described SPR procedure. The global "true
error" ‖e‖E∗ is computed by using the reference solution

‖e‖2
E∗ = ∑

e

∫

Ωh,e

(mre f − mh)
T C−1

B (mre f − mh) dΩ (38)

If available, the reference solution mre f is the strong form solution, see e.g. [3, 4,
9, 21, 22, 24, 26]. Otherwise, the reference solution is obtained by a very fine mesh
of Argyris plate elements [5], which use the 5th order polynomal to approximate
the transverse displacement. The relative local and global error indicators may be
defined as

η∗
e,r = ‖eh,e‖E∗

‖nh,e‖E∗
, ‖nh,e‖2

E∗ =
∫

Ωe

mT
h C−1

B mh ds, (39)

η∗
r = ‖eh‖E∗

‖nh‖E∗
, ‖nh‖2

E∗ =
∑

e

‖nh,e‖2
E∗ = ‖nh‖2 (40)

The discretization error indicators can control an adaptive FE meshing, e.g. [18].
The goal is to generate a mesh where the local element error is approximately equal
for every element to a prescribed value η̄e. It is possible to deduce a desired element
size from the a-priori error estimate of the local element error η̄e = Ch̄ p where the
element size is denoted by h̄, C is a constant and p the polynomial order of the FE
interpolation. By knowing η̄e and the local error indicator η∗

e , the desired element
size h̄ can be obtained as

η∗
e = Ch p; η̄e = Ch̄ p ⇒ h̄ = h(η̄e/η

∗
e )

1/p (41)
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The software gmsh [12] is employed to generate meshes. It enables mesh generation
according to the scalar field h̄.

5 Examples

The above presented DK finite elements were implemented in the Fortran based finite
element program FEAP [25]. They were also implemented in the C++ based finite
element program AceFEM [16]. The computed FE stress resultants are not continuous
across element edges, which makes the assessment of the results difficult. To produce
readable plots, the nodal values are computed from the element integration point
values using the standard averaging technique, see [23], Sect. 5.5. The shear forces
are computed from the equilibrium equations (4). To obtain the derivatives of the
moments, the bilinear interpolation of the moments on Ωe

h is first constructed from
the integration point values. The examples below are meant to be illustrative and
academic; this is the reason that specific units are not provided.

5.1 Uniformly Loaded Clamped Circular Plate

A clamped circular plate of radius R = 5 and thickness t = 0.01 under uniform
loading f = 1 is considered. The material has Young’s modulus E = 6.825 × 109

and Poisson’s ratio ν = 0.3. The closed form solution of this problem is available
e.g. in [26]. The reference solution is given in Fig. 2, our solution with the DK plate
elements is given in Figs. 3 and 4. The meshes used in the convergence analysis
are shown in Fig. 6. Results are influenced by the mesh distortion (quadrilaterals)
and mesh orientation (triangles). This influence is, however, noticeable only for
the equilibrium shear forces. The comparison of the convergence, shown in Fig. 7,
reveals that the convergence of the Argyris element [5] is not superior to that of the
DK elements (Fig. 5).

5.2 Uniformly Loaded Hard Simply Supported Skew Plate

The analysis of Morley’s α = 30◦ skew plate [20] under uniform loading f = 1
with thickness t = 0.1 and side length a = 10 (Fig. 8) is considered. The plate is
hard simply supported on all sides. The Young’s modulus is E = 10.92 × 107 and
Poisson’s ratio is ν = 0.3.

The most interesting feature of the solution concerns two singular points at the
two obtuse corners of the plate, which strongly influence the quality of the computed
results (e.g. see [20]). The strength of the singularity is λ = 6/5 = 1.2. In the vicinity
of the corner, the moment resultants mxx , myy vary as rλ−2, while the moments
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Fig. 2 Reference solution of the uniformly loaded clamped circular plate

resultant mxy and shear forces qx and qy vary as rλ−3, where r is the distance from
the corner. As the analytic solution is not available, a finite element computation
with Argyris element [5] on a fine mesh (the elements with side h = 0.1) is taken as
the reference solution. The boundary conditions used for the hard simply supported
edge at y = const. are: wI = 0, θx,I = 0 for the DK elements and wI = 0, wI,x = 0
for the Argyris element. At the hard simply supported sloped edge y/x = tan α the
rotation θn is set to zero, which results in the boundary condition: θx,I −tan α θy,I = 0
for the DK elements and wI,y + tan α wI,x = 0 for the Argyris element.

The FE solution with the DK elements qualitatively matches the reference solu-
tion except at the obtuse corners. The quality of the FE solution is influenced by
the mesh distortion (see Fig. 13). The performance of the DKT does not the reach
the performance of the DKQ. The comparison of the converge rates shows that the
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Fig. 3 FE solution of the uniformly loaded clamped circular plate with the DKT plate elements

superior accuracy of the Argyris element is lost. In Figs. 9, 10 and 11, the singularity
can be observed at the obtuse corners in mxx , myy and mxy and in qx and qy . The con-
tour plots are not very suitable to study the singularities due to the fixed finite values
of contour lines. At the obtuse corners (singularities) the gradients of the solution are
infinite and in the limit, the optimal size of the elements is zero. With the decreasing
mesh size, the singularity is captured increasingly better. The singularity manifests
in the convergence rates (see Fig. 13). The monotonic convergence is observed for
the DK elements, while the convergence of the Argyris element is not monotonic
(Fig. 12).
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Fig. 4 FE solution of the uniformly loaded clamped circular plate with the DKQ plate elements

5.3 Uniformly Loaded L-Shaped Plate

The L-shaped plate with thickness t = 0.01, side length a = 10, simple supports on
all sides, and uniform pressure loading f = 1 is considered. The material data is:
E = 10.92 × 109, and ν = 0.3. The solution exhibits a singularity in stress resultant
components at the obtuse corner. The singularity for mxx and myy is governed by the
term rλ−2 and for mxy by the term rλ−3, where r is the distance from the singular
point, and λ is the exponent which depends on the opening angle α, i.e. λ = π/α

[19]. In our case, α = 3π/2, thus λ = 2/3.
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Fig. 5 Legend for Figs. 2, 3 and 4

Fig. 6 The meshes used for the FE analysis of uniformly loaded clamped circular plate. a Sequence
of meshes of triangular elements. b Sequence of meshes of quadrilateral elements

The first solution was obtained on the regular structured mesh shown in Fig. 14.
The problem was further reanalyzed in six iterations.

(1) The most straightforward mesh refinement strategy was a uniform refinement of
a structured mesh.
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Fig. 7 Convergence of FE solutions for the uniformly loaded clamped circular plate. a Displacement
w at center. b Moment resultant mxx at center. c Energy norm

(2) Another mesh refinement strategy, that belongs to the same category, was a uni-
form refinement of an unstructured mesh. For that purpose, the initial structured
mesh from Fig. 14 was replaced by an unstructured mesh with approximately
the same number of elements.
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x

y

a

a
α = π/6

E,ν ,t , f

Fig. 8 Uniformly loaded simply supported skew plate

Fig. 9 Reference solution of the uniformly loaded simply supported skew plate

Fig. 10 FE solution of the uniformly loaded simply supported skew plate with the DKT

(3) The adaptive meshing based on above defined error indicator was the third
strategy. The “true error” indicator was computed by using reference solution
obtained with Argyris elements [5] with side h = 0.1. At each iteration, distri-
bution of error indicator ηe = η∗

e was computed. Based on the estimated new
element-size density (41), a new mesh was generated with p = 1 and η̄e = 0.05.

Comparison of the convergence is shown in Fig. 15. The convergence of the adap-
tive meshing (3) is considerably quicker from uniform mesh refinements (1) and (2).
Table 1 shows results after the third iteration. The comparison reveals that the distri-
bution of the local error indicator is considerably more uniform for (3) than for (1),
the later shown in the first row. This is one of the primary goals of adaptive meshing:
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Fig. 11 FE solution of the uniformly loaded simply supported skew plate with the DKQ

Fig. 12 Legend valid for Figs. 9, 10 and 11

to make the local error indicator approximately equal for all elements of the mesh.
Another observation can be made: although the average of local error indicator is
smaller for the uniformly refined mesh (see histogram in the first row of Table 1), the
total energy norm of the error is still larger (see Fig. 15).
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Fig. 13 Comparison of the convergence of FE solutions for the uniformly loaded simply supported
skew plate. a Displacement w at center. b Moment mxx at center. c Energy norm
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Fig. 14 L-shaped plate under uniform loading—initial mesh
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Fig. 15 L-shaped plate under uniform loading. Convergence for: a Uniform mesh refinement of
structured mesh, b Uniform mesh refinement of unstructured mesh, c Adaptive meshing based on
true error, d Adaptive meshing based on SPR



On Discrete-Kirchhoff Plate Finite Elements . . . 129

Table 1 Adaptive meshing of L-shaped plate

Mesh after 3rd
refinement step

Local element
error ηe

1.25 × 10-4 2.5 × 10-45. × 10-6

Histogram of local
element error ηe

Uniformly refined
mesh

−4 −3−5
0

100
200
300
400
500
600

log10 ηe

1716 elements,
ηr : 18.1 %

Mesh based on true
error

−4 −3−5
0

100
200
300
400
500
600

log10 ηe

1559 elements,
ηr : 5.8 %

Mesh based on SPR

−4 −3−5
0

100
200
300
400
500
600

log10 ηe

1557 elements,
ηr : 5.6 %

6 Conclusions

The theory, the computer code implementation and the discretization error com-
putation for the Discrete-Kirchhoff plate finite elements have been presented and
discussed. Those elements take the best of the Reisnner–Mindlin and the Kirchhoff
plate models and provide higher-order approximation of plate curvatures even for
small number of nodes. As such they are very attractive candidates for solving numer-
ous problems in mechanics, engineering and biology. They can be extended to the
corresponding thin shell finite elements, however, this topic has not been addressed
in the present work. An extension of the here presented work, showing how the
modeling error can be computed for the plate bending problems, is provided in [7].
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Shell Theory-Based Estimation of Local Elastic
Characteristics of Biological Cells

Elizaveta S. Drozd, Gennadi I. Mikhasev, Marina G. Botogova,
Sergei A. Chizhik and Maria E. Mychko

Abstract The shell theory-based approach for the elastic analysis of biological cells
is proposed. This approach introduces the estimation of the local Young’s modulus of
the single cell on the basis of the shell theory and data of the atomic force microscopy
(AFM). This method is applicable to evaluate the elastic properties of the cell mem-
brane which stretched under action of the atomic force microscope indenter (AFMI).
The cell is represented by a thin shallow spherical shell experiencing the concentrated
outward force. The influence of cytoskeleton on the cell deformation is disregarded.
Taking into account microscopic sizes of the cell and the indenter tip, the internal
nanoscale parameter is introduced into the constitutive equations. On the basis of
the experimental data and developed shell model we give a rough estimate of local
Young’s modulus for the red blood cell.

1 Introduction

Mechanical properties are fundamental characteristics of cells and tissues. They
define a number of cytophysiological and cytopathological processes. The cell
mechanical parameters may be used as certain markers of various pathologies
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[23, 32]. The study of elastic properties allows us to obtain new knowledge on
the biological cells and is also of clinical interest.

There are several methods to evaluate the elastic properties of the biological cells:
micropipette aspiration [15, 18, 27, 31, 33], filtering [3, 34], fluctuations of the
cell’s shape [4, 42], the cell deformation (created by shear stress) by ektocytome-
ter, optical channel or microplates [7, 18, 20], and micromanipulation (optical and
magnetic tweezers, magnetic twisting cytometry) [5, 22, 24, 43]. However, the most
modern and accurate approach developed during the last decade is the one based
on the technology of the atomic force microscopy (AFM) including the force spec-
troscopy [10, 11, 28, 35, 37–40]. This method allows to determine the value of the
local modulus as a result of the indenter impact (AFM probe) on the test material. It
should be however noted that the study of biological objects by using any approach
is very complicated procedure. It includes the following obligatory steps: preparing
samples by a special way, optimizing the measurement parameters and reliable inter-
preting the experimental results. Analysis of the available literature on the estimation
of the cell mechanical properties displays a significant scatter in experimental data
obtained by using the AFM. First of all, this fact can be explained by the lack of
uniformity in measurements and hence makes the quantitative analysis and compar-
ison of the results to be rather complicated [21, 41]. Secondly, when studying the
surface layer of a single cell (with thickness varying from several nanometers to
some hundred nanometers) with the AFM methods, we deal with a composite mate-
rial, the mechanical properties of which are mainly conditioned by the properties
of the cortical actin cytoskeleton, two- or three-dimensional network from natural
biopolymers (proteins) [41]. And the cytoskeleton structure reorganization results in
changing the mechanical properties of cells. In our opinion, the satisfactory results
may be reached by developing the realistic continuum mechanical model describing
a response of the biological cell on the microscopic indenter.

There are different mechanical models, including the shell ones, which are applied
for the mechanical characterization of living cells (e.g., see the survey paper by [25]).
Within the shell model, cells are often assumed to have a spherical shape. For
instance, [44] developed the spherical shell model to describe motion of the bac-
teria (cocci) in an ultrasonic field. Recently, [36] studied aspiration of spherical cells
represented by a hyperelastic isotropic momentless spherical shell, and the simplified
spherical shell model for estimation of the local Young’s modulus of erythrocyte on
the basis of the AFM data was proposed by [12].

The basic goal of this study is to create the reliable shell theory-based model
describing a deformation of the biological cell when subjected to the concentrated
adhesion forces. Taking into account microscopic sizes of the cell and the indenter
tip, we aim to derive an equation for the shell deflection including the nanoscale
effects. Using the experimental data of the nanoindentation, it is possible to obtain
the force curve by recording the cantilever deflection while the tip is in contact
with the biological body. Among all conditions of the cell-indenter interactions, the
regime of adhesion between the indenter tip and cell will be considered. Under this
type of interaction (when the action of normal force is directed outwards), the cell
membrane is only stretched. In this case the influence of the cytoskeleton on the
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strain-stress state of the cell represented by an elastic shell will be negligible and
may be disregarded [12].

2 Methods

2.1 Force Spectroscopy Method

The procedure of force spectroscopy constitutes a standard mode of the AFM. The
method consists in the realization of the contact deformation of a specimen using
the probe and in quantifying the relationship between probe interaction force and
distance [6]. We record the cantilever deflection as the sample moves up, reaches
the tip and is retracted. The force curve is obtained by monitoring the movement
of the reflected laser beam from the rear of the cantilever. The force curves are the
relation between the bend of the cantilever and the position of the probe. Knowing the
displacement of the sample in the vertical direction and the amplitude of cantilever
bending, one can calculate both the resulting deformation of the sample and the total
external force that has been applied to it. The force curve is applied to the calculation
of Young’s modulus (Fig. 1).

Figure 1 shows the different stages of the indentation process. At the beginning of
the force curve recording, the tip is distant from the sample and approaches, but does
not contact it (a). Since there is no contact the cantilever deflection is constant. As
soon as the tip actually touches the sample, the cantilever moves upward (b). Further,
as the tip indents the sample, the cantilever arm moves downward (c). The sample is
then retracted displaying a reverse behavior to action (c), as indicated by the curve
(d) which shows the deflection during retraction. However, when adhesion between
sample and tip occurs, the tip will adhere to the sample beyond the point of contact
(e), until it finally breaks free again and the deflection returns to zero (f). It should
be noted that the approach curve exactly retraces the pathway to point (e) provided
there is no piezohysteresis.

We are able to quantify the local elastic properties of a living cell using the
force spectroscopy mode. The force curve is obtained by recording the cantilever

Fig. 1 Regime of static force
spectroscopy: typical force
curve
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deflection as the tip is brought into contact at the fixed point and then retracted. The
Young’s modulus may be calculated using the Hertz model describing the elastic
deformation of two bodies in contact under load [17]. When applying the Hertz
model the indented sample is assumed to be extremely thick in comparison to the
indentation depth. In this case the elastic modulus may be calculated as described
earlier [9, 23]. Alternatively, the shell theory will be developed to describe the regime
of adhesion of a cell with the indenter tip; in this case the cell thickness will be
assumed to be very thin with respect to the characteristic size of a cell.

2.2 Shell Theory-Based Model

As mentioned above, a thickness of the biological cell varies in the interval from
several to hundreds nanometers, and its characteristic size is a value of about sev-
eral millimeters. For instance, for the red blood cell the average values of these
parameters are h ≈ 10 nm and R ≈ 2 µm respectively. So, when ignoring the
internal cytoskeleton, a cell may be represented by a thin-walled elastic structures.
Here, we consider the case of adhesion between the cell and indenter. Note that
the radius of indenter (about 40 nm) is much less than the characteristic size of the
cell. Then, at small magnitudes of the adhesion forces acting from the indenter tip,
in a vicinity of the contact point the cell may be modeled by a shallow spherical
shell.

Let R be the radius of the spherical shell representing the cell in a vicinity of the
contact point, E the local Young’s modulus, and ν Poisson ratio of the material. The
midsurface is referred to the orthogonal rectangular coordinate system x = Rcx ,
y = Rc y, where x, y are dimensionless coordinates. The shell is assumed to be
under action of the concentrated normal outward force Z .

Taking into account microscopic sizes of the cell and a nanoscopic radius of the
indenter tip, we aim in passing to study the influence of the nanoscale effect on
deformations of the microscale object. With that end in view, we apply the nonlocal
version of elasticity pioneered by [13, 14]. Let σi j and σ (m)i j be microscopic and
macroscopic stresses in the shell, respectively. According to the nonlocal elasticity
theory, these stresses are linked as follows

Ξσi j = σ
(m)
i j , (1)

where Ξ is the appropriate linear differential operator which takes into account the
effect of the elastic nonlocality. For the two-dimensional strain-stress state it is writ-
ten as [14]

Ξ = 1 −
(

e0a

Rc

)2

Δ, (2)
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where Δ is the Laplace operator in the dimensionless coordinate system x, y, a
parameter e0 is the material dimensionless constant of nonlocality, and a is the
internal characteristic length of the material. For instance, [13] gives the value
e0 = 0.39, and for discreet nanoscale structures such as carbon nanotubes, the
parameter a = 0.142 nm is chosen to be the length of the C-C bond. As concerns
biological cells, the parameter e0a remains indefinite. So, studying the mechanical
behaviors of protein microtubules, [16] varied the small scale parameter e0a from
0 to 70 nm.

To describe small deformations of the spherical shallow shell under action of the
normal concentrated force we apply the theory of [30] which takes into account the
transverse shears. According to this theory, the governing equation, with Eqs. (1) and
(2) in mind, may be rewritten as follows

(
1

R2
c
Δ+ 2

R2

)[

D

(
1

R2
c
Δ+ 1 + v

R2

)

w − 1

R

(

1 − h2

5(1 − v)R2
c
Δ

)

Φ

]

=
[

1 − (2 − v)h2Δ

10(1 − v)R2
c

]

Ξ Z(x, y), (3)

(
1

R2
c
Δ+ 2

R2

)[
1

Eh

(
1

R2
c
Δ+ 1 − v

R2

)

Φ + w

R

]

= −v

2E R2
c
ΔΞ Z(x, y),

where D = Eh3/[12(1 − ν2)] is the flexural rigidity of the shell, w is the normal
deflexion, and Φ is the stress function.

As opposed to equations for macro-scale shells [26, 30], the modified Eq. (3)
contain the additional operatorΞ (the derivation of similar equations for nano-scale
shells may be found in the paper by [29]) influenced by the nonlocal parameter e0.

To eliminate the influence of boundary conditions, we assume that the shell is
infinite in all directions. Then the concentrated force Z(x, y) = Pδ(x, y) applied in
the point x = 0, y = 0 may be presented by the Fourier integral

P(x, y) = P

π2

∞∫

0

∞∫

0

cosαx cosβydαdβ, (4)

where δ(x, y) is the delta function.
The unknown functions from Eq. (3) may be also presented as

w(x, y) =
∞∫

0

∞∫

0

wαβ(α, β) cosαx cosβydαdβ,

Φ(x, y) =
∞∫

0

∞∫

0

Φαβ(α, β) cosαx cosβydαdβ. (5)



138 E. Drozd et al.

Substituting Eqs. (4) and (5) into Eq. (3) , and performing the Fourier inversion, one
obtains

w = P R2
c

π2 D

∞∫

0

∞∫

0

K1

[

1 + (eoa)2

R2
c
(α2 + β2)

]
cosαx cosβydαdβ

(α2 + β2 − 2kR)F(α, β)
, (6)

where

K1 =
[
(1 + (η − ε)(α2 + β2))(α2 + β2 − (1 − v)kR)

− ε̄(1 + η(α2 + β2))(α2 + β2)
]

F(α, β) = [
α2 + β2 − kR)

2 + 4κ4(1 + η(α2 + β2)
]
,

4κ4 = Eh R4
c

R2 D
= 12(1 − v2)R4

c

R2h2 ,

ε̄ = vh

2R
, ε = vh2

10(1 − v)R2
c
, η = h2

5(1 − v)R2
c

(7)

The characteristic size may be chosen as follows

Rc =
√

Rh
4
√

12(1 − v2)
. (8)

Then, proceeding to the polar coordinate system by equations

α = γ cosϕ, β = γ sin ϕ, x = r cos θ, y = r sin θ, (9)

one gets

w = P R2
c

2πD

∞∫

0

K2(γ )

[

1 + (eoa)2

R2
c
γ 2

]
J0(γ r)γ dγ

(γ 2 − 2kR)F(γ )
, (10)

where J0(γ r) is the zeroth-order Bessel function of the first kind, and

K2 =
[
(1 + (η − ε)γ 2)− (γ 2 − (1 − v)kR)− ε̄(1 + ηγ 2)γ 2

]
,

F(γ ) = (γ 2 − kR)
2 + ηγ 2 + 1, kR = 1

√
12(1 − ν2)

h

R
. (11)

Since h2/Rc � 1 and kR � 1, then the term (1+k2
R +2ηkR)

−1 can be neglected,
and

1

F(γ )
≈

[

1 − γ 2

1 + γ 4 (η − 2kR)

]
1

1 + γ 4 . (12)
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Performing simple transformations of functions under the integral (see details in the
paper by [26]), one gets the final equations for the normal displacement of the shell
subjected to action of the concentrated normal force P:

w = w∗ + w∗∗, (13)

where

w∗ = P R2
c

2πD

{

−kei(r)− kR

[

(1 + v)
(π

2
Y0(r

√
2kR)+ ker(r)

)
+ 1

2
r ker′(r)

]

+
[
(η − ε) ker(r)+ η

4
r ker′(r)

]}
(14)

is the term obtained earlier for a macro-scale shell [26] and

w∗∗ = P(eoa)2

2πD
{ker(r)+ kei(r) [η(2 − ε̄)− ε − kR(3 + v)]} (15)

is the new summand taking into account the nano-scale effect. In Eqs. (14) and (15),
kei(x) and ker(x) are the Kelvin functions.

Although Eqs. (14) and (15) have singularity in the point r = 0, they can be
applied for estimation of the maximum displacement of the shell for the case when
the force P is distributed over the surface of a small circle of the radius c. When
taking into account properties of the Bessel and Kelvin functions, one has

w0 = w∗
0 + w∗∗

0 , (16)

where

w∗
0 ≈ P R

√
12(1 − ν2)

Eh2π

[
1

2c2 + 1

2c
ker′(c)− 1

2
kR(1 + ν) ln

√
2kR − kR

4

]

+ 3P

5πEh
(1 + ν)(2 − ν)

[

ker(c)+ c ker′(c)
2(2 − ν)

]

, (17)

w∗∗
0 ≈ P(e0a)2

2πD

{

ker(c)−
[

1

c2 + 1

c
ker′(c)

]

[η(2 − ε̄)− ε − kR(3 + ν)]

}

. (18)

Equation (17) have been derived by [26], and term (18) taking into account the scale
effect is the new one.
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3 Determination of Contact Area

Let c∗ be a radius of the contact area between the cell and tip. This contact is
provided by the forces of adhesion under withdrawal of the tip out of the cell. It
should be noted that a parameter c∗ is hardly measurable one during an experiment.
When the indenter being taken out the sample, the contact area decreases so that
it is very difficult to fix and quantify a radius c∗ in the moment of detachment
of the tip.

Another available way to determine the contact area is based on the theory of
[19]. Let ΔΓ be the surface energy of the sample. This energy is acquired as result
of the surface forces appearing in the sample due to cohesion between the sam-
ple and tip. According to this theory the contact area is defined by the following
equation

c∗ = 3

√

Rt K
(

P + 3πRtΔΓ +
√
(3πRtΔΓ )2 + 6πRtΔΓ P

)
, (19)

where

K = 3

4

(
(1 − v2)

E
+ (1 − v2

t )

Et

)

, (20)

Rt is the tip radius, Et , νt are the Young’s modulus and Poisson’s ratio of the tip.
Since E � Et , it is assumed K ≈ 3(1 − ν2)/E in what follows.

If the surface forces are neglected (ΔΓ = 0), then Eq. (19) is transformed into
the Hertz formula

c∗ = 3
√

P Rt K . (21)

When the sample is stretched, then the force P = −Ps (Ps > 0) is negative.
Increasing the force magnitude Ps results in decrease of the contact area (radius c∗).
Detachment of the indenter tip from the cell takes place when the magnitude of the
stretching force reaches the value

Ps = 3

2
πRtΔΓ. (22)

Then the surface energy of the cell is as follows;

ΔΓ = 2Ps

3πRt
. (23)
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Substituting Eq. (23) into Eq. (19) results in the following equation for the contact
area radius

c∗ = 3

√
3Ps Rt (1 − v2)

4E
, (24)

which will be used in our subsequent calculations.

4 Estimation of Local Young’s Modulus

Let wmax be the maximum deflection of the sample in the moment of its detachment
from the cantilever. The parameters wmax, Ps are assumed to be known ones; they
are quantified during an experiment. Returning to the shell theory, we assume that
wmax = w0, where w0 is defined by (16)–(18); the function w0 depends on the exter-
nal force Ps , the local Young’s modulus E , thickness h and the dimensionless radius
c of the contact area. Taking into account Eq. (24), one obtains the following equations

wmax = w0[Ps, E, h, c(Ps, E)], c = c∗/Rc (25)

with respect to the modulus E .
We have performed series of the AFM probes and computations for the red blood

cell at the following parameters: Rt = 40 nm, the shell radius R = 2 µm (the total
radius of the red blood cell in the point of indentation [8], Poisson ratio ν = 0, 5
[1, 2], e0a = 0. The shell thickness h was initially taken to be equal to 10 nm, which
corresponds to the average thickness of the cell membrane (without its cytoskeleton).
Solving Eq. (25) at different values of parameters Ps,wmax (the quantified maximum
displacements wmax were varied in the interval from 10–100 nm), we compared the
obtained values of E with data found by the Hertz model.

Figure 2 shows the diagrams for average values of Young’s modulus (in relative
units) at different deformations of the cell.

The diagrams marked by blue were constructed by using both the Hertz model
and data of nanoindentations of the sample (at wexp > 0), and the diagrams in red
correspond to data found from the shell model and experimental data by stretching
the sample (at wexp < 0). All magnitudes shown in this figure as well as in oth-
ers were found by averaging data of a whole number of indentations and adhesive
tensions of the sample, then the average values were normalized by the magnitude
E = 338.5 kPa. As result of linearity of the shell model, the shell-based values Esh do
not depend on the displacement wexp. However, the Hertz model demonstrates very
strong dependence on wexp: increasing the sample deformation results in decrease
of the local modulus EH . It may be seen that both models give close results for
very small deformations. Considerable gap in results at large values of |wexp| can be
explained by influence of both the cell internal components and compressive strains
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Fig. 2 Local Young’s
modulus in relative units
versus the sample
displacement wmax found by
the shell and Hertz models
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(when using Hertz model). As concerns the shell model, it is linear and can not be
used for prediction of large deformations. In addition, applying the shell model for
the stretched cell we ignored the cell cytoskeleton. It should be also noted that a
value of E found at large displacements of the sample can not be considered as local
Young’s modulus of a cell; most probably it might be interpreted as the effective
stiffness of all structure of the microscopic biological object.

It is obvious that the mechanical properties of a cell is influenced by its internal
components (cytoskeleton). The cytoskeleton consists of a dense three-dimensional
network of filaments. Among them it is possible to distinguish at least three types:
microtubules, microfilaments and intermediate filaments. They provide mechanical
stability of the surface layer of cytoplasm and create conditions that allows for the cell
to change its shape and move. Filaments have sufficient resistance to bending in large
scales and remarkable resiliency in small scales [16]. The thickness of microtubules
is approximately 24 nm, the thickness of microfilaments (f-actin) is about 5–8 nm and
the intermediate filaments diameter is 8–10 nm [8]. The thickness of a cell membrane
is stated to vary from 3 to 11 nm. Thus, the overall thickness of a cell membrane and
neighboring elements of the cytoskeleton is in the range about 10–40 nm. To take
into account the influence of the cytoskeleton on the elastic properties of a cell, we
introduced into the shell model the effective thickness which was varied in the range
mentioned above. Numerical calculations by Eq. (25) performed at Ps = 0.1 nN,
wexp = 10 nm revealed that increasing the shell thickness h from 10 nm to 40 nm
leads to near tenfold decrease of the local Young’s modulus (from 338–34 kPa).

The next question that we are interested in: is there such equivalent shell thickness
at which Young’s modulus calculated by using both models are close? Coincidence
of moduli would determine the degree of participation of the cellular component in
the processes of compression and stretching. The results of this evaluation are shown
in Fig. 3. It may be seen that the values of the local elastic modulus estimated on
the basis of the shell and Hertz models are close to each other when the maximum
sample deformation wexp is near the value of the shell thickness (at h/wexp ≈ 1.15).
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Fig. 3 Local Young’s modulus in relative units vs. the sample displacement wmax found by the
shell and Hertz models at different cell thicknesses t1 = 11, 23, 40 nm

Finally, taking into account the microscopic sizes of the cell and indenter, we
attempted to estimate the effect of the internal scale on local properties of the sample.
According to the nonlocal theory of elasticity of [13, 14], the principle parameter
characterizing the nonlocal effect is the scale coefficient ae0, where a and e0 were
introduced above. The satisfactory estimation of this parameter for biological micro-
and nano-objects is still unsolved problem. For instance, studying behavior of the
protein microtubule, [16] varied the small scale parameter ae0 from 0 to 70 nm.
Following [16], we have also performed the series of accurate calculations at different
values of ae0. It was found that impact of the parameter ae0 on the local modulus
E is negligibly small: at ae0 = 70 nm, the additional term (18) gives correction (for
E) not exceeding 0.01 %. Very weak influence of the scale parameter ae0 on the
assessment of the modulus E might be explained by large diameter of the indenter
(about 40 nm) with respect to the cell size. As shown in the paper by [29], the
scale parameter ae0 should be taken into consideration for prediction of mechanical
behavior which is characterized by high variability of deformations along even if one
direction on the surface of a nanoscale shell object. In our case, decreasing the area
of application of the external force Z would result in increasing variability of the
cell deflection in a vicinity of the contact point between the tip and cell. However,
utilization of more thin indenter tip for indentation of biological cells generates the
following serious problems:

(a) the microscope should be thoroughly standardized;
(b) all probes should be done with very high accuracy;
(c) outcome scatter for different probes becomes more significant;
(d) one rises the risk of the membrane penetration.

In our opinion, further improvement of the shell model for prediction of mechan-
ical properties of biological cells might be done by introducing the cell components
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into model. As the first step of this development, the cytoskeleton structure could be
represented by an elastic foundation for a shell modeling a cell.

5 Conclusions

The approach for estimation of the local Young’s modulus of a biological cell, based
on the shell theory and data of the AFM, has been proposed. The developed method
is applicable for the case when the cell membrane is stretched by the adhesion forces
between the AFMI and sample. When developing the mechanical model, the cell has
been represented by a thin elastic isotropic spherical shell with the radius equaled to
the total one of the sample in the point of indentation. The differential equations writ-
ten in terms of the normal displacements and stress function and taking into account
the shear deformations and nano-scale effect have been considered as governing ones.
In the developed model the internal components of a cell (cytoskeleton) are disre-
garded. The solution of these equations with the external concentrated force has been
constructed using the Fourier transformation. The found solution has been modified
for the case of the adhesion forces applied to the small circular area. The radius of the
contact area has been defined by the theory of Johnson-Kendall-Roberts. Substitu-
tion of this radius into the obtained solution of the governing equations has allowed
to derive the transcendental equation with respect to unknown Young’s modulus.

The series of the probes for the red blood cell corresponding to conditions of
adhesion and indentation as well has been made. The averaged data (the force acting
from the AFMI and the maximum displacement of the sample) of these probes have
been introduced into the mathematical model. Alternatively, the Hertz theory has
been applied to estimate the local mechanical properties of the cell when subjected
to the indentation forces.

Comparative analysis of data obtained by using the two approaches allows to
conclude:

• both models give close results only for very small deformations of the cell (about
10 nm) and at the effective cell thickness having the order of the maximum deflex-
ion of the sample;

• introducing the nano-scale parameter into the mechanical model does not give
some noticeable correction for the local Young’s modulus found at the generally
accepted size of the indenter tip (about 40 nm);

• more accurate estimations of the local mechanical properties of a cell might be done
by incorporation of the cell components into the mechanical model; influence of
the cytoskeleton could be taking into account by introducing the nonhomogeneous
elastic foundation into the shell model.
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On the Direct Approach in the Theory
of Second Gradient Plates

Victor A. Eremeyev and Holm Altenbach

Abstract The aim of the paper is to formulate the two-dimensional governing equa-
tions in the theory of elastic second gradient plates, that is plates which constitutive
equations include second gradients of strain and/or stress measures. Here we use so-
called direct approach to modeling of plates and shells. According to the approach a
plate is considered as a material deformed surface and all equations are written as for
two-dimensional continuum. Here we use the six-parameter theory of shells.Within
the framework of the six-parameter theory the kinematics of a shell is described by
two independent fields of translations and rotations. We introduce the linear consti-
tutive equations of six-parameter second gradient plates. Considering a deflection of
a plate we discuss peculiarities of these models.

1 Introduction

Recently the interest to nonlocal models of thin-walled structures grows with respect
of investigations such nano-structures as nanofilms, fullerenes, nanotubes, etc., see,
for example, [5, 14, 16, 17, 19, 22–24, 26–28] and references therein. In fact, at
the micro- and nanoscales the nonlocal interactions are more important than at the
macroscale. In particular, nowadays it is clear that many observed unusual properties
of nanostructured materials relate with surface phenomena. After Mindlin [20] the
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second gradient elasticity is widely used for description of surface tension in solids
together with Gurtin-Murdoch model of the surface elasticity [13] and others types of
boundary reinforcements, see [9, 15, 29]. The enhancements of the theory of plates
and shells taking into account surface stresses are discussed in [2, 3] among others.

In this paper we discuss the direct approach to formulate the gradient-type linear
theory of plates and shells considering an extension of the non-linear micropolar shell
theory. This variant of the shell theory is called six-parameter theory of shells [4,
6, 10, 11, 18] and the reference therein. Within the micropolar shell theory the
deformations of the shell are described by two kinematically independent fields of
translations and rotations. Each point of the micropolar shell base surface has six
degrees of freedom as in the rigid body dynamics. The surface stress and couple
stress tensors are used including the drilling moment. The advantages of the six-
parameter shell model consist of correct description of kinematics of multifolded
shells, of interaction of a shell with a rigid body, etc.

The paper is organized as follows. In Sect. 2 we recall the basic equations of the
isotropic micropolat shell theory. The gradient-type constitutive equations are pre-
sented in Sect. 3. We use the so-called direct approach. We introduce the constitutive
equations for isotropic plates and shells considered as deformable material surfaces
that is as for 2D elastic continua. These constitutive equations express linear depen-
dence of two stress tensors on two conjugated strain measures considering the second
gradients of strains and/or stress tensors. Finally we discuss the difference between
models considering the deflection of a plate in Sect. 4.

2 Governing Equations

The equilibrium of any part of a micropolar shell is represented by the balance of
momentum and balance of angular momentum. As a result the equilibrium equations
take the form [11]

∇∇∇ · T + f = 0, ∇∇∇ · M + T× + c = 0, (1)

where ∇∇∇ is the surface nabla-operator, T and M are the surface stress and couple
stress tensors, respectively, f and c are the external surface forces and couples, and
T× denotes the vectorial invariant of the second-order tensor T.

Within the framework of the linear micropolar shell theory the surface stress
resultants have the following form:

T = T αβ iα ⊗ iβ + T α3iα ⊗ n, M = Mαβ iα ⊗ iβ + Mα3iα ⊗ n (α, β = 1, 2),

where i1, i2 are the base vectors in the tangent space and n is the unit normal vector
to the shell base surface, see Fig. 1.
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Fig. 1 Micropolar shell
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In Cartesian coordinates Eq. (1) takes the following form

T11,1 + T21,2 + q1 = 0,
T12,1 + T22,2 + q2 = 0,
T13,1 + T23,2 + q3 = 0,

M11,1 + M21,2 + T23 + c1 = 0,
M12,1 + M22,2 − T13 + c2 = 0,
M13,1 + M23,2 + T12 − T21 + c3 = 0.

(2)

The kinematics of the shell is described by two surface fields. The first one is
the vector of translations u while the second field is the rotation vector w. The
nonsymmetric linear strain measures are

e = ∇∇∇u + A × w, k = ∇∇∇w (A ≡ I − n ⊗ n),

where I is the unit tensor.
The static and kinematic boundary conditions take the form

ννν · T = t∗s , ννν · M = m∗
s along C f , v = v0, w = w0 along Cu . (3)

For the isotropic shell the surface strain energy density is given by

2W = α1tr 2e‖ + α2tr e2‖ + α3tr
(

e‖ · eT‖
)

+ α4n · eT · e · n

+β1tr 2k‖ + β2tr k2‖ + β3tr
(

k‖ · kT‖
)

+ β4n · kT · k · n.
(4)

Here e‖ = e · A, k‖ = k · A, and αi , βi are the elastic parameters, i = 1, 2, 3, 4,
which satisfy the inequalities

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,

2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.
(5)

The corresponding surface stress and couple stress tensors are given by

T ≡ ∂W

∂e
= α1Atr e‖ + α2eT‖ + α3e‖ + α4e · n ⊗ n,

M ≡ ∂W

∂k
= β1Atr k‖ + β2kT‖ + β3k‖ + β4k · n ⊗ n.

(6)

In what follows we discuss the extension of the constitutive equations (6) considering
second gradients of strains and/or stress measures.
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3 Constitutive Equations of Gradient Theory of Micropolar
Plates and Shells

The 3D linear gradient elasticity is based on constitutive equations of the following
form, see [1, 12, 21] for details,

σσσ − �2Δ̃σσσ = C : εεε, (7)

with 2εεε = ∇̃∇∇u + ∇̃∇∇uT , Δ̃ = ∇̃∇∇ · ∇̃∇∇ or

σσσ = C : (εεε − �2Δ̃εεε), (8)

where C is the stiffness tensor, ∇̃∇∇ is the 3D nabla-operator, σσσ is the stress tensor, and
� is the length-scale parameter. More general constitutive relations are possible, for
example, such as

σσσ − �2
1Δ̃σσσ = C : (εεε − �2

2Δ̃εεε) (9)

with two length-scale parameters �1 and �2, see Aifantis [1].
Ru and Aifantis [25] proved the theorem which gives the simple method for

solution of boundary-value problems based on constitutive Eq. (8). The method
consists of solution of two problems

∇̃∇∇ · σσσ l + f = 0, (10)

where σσσ l = C : εεεl , 2εεεl = ∇̃∇∇ul + ∇̃∇∇uT
l and

u − �2Δ̃u = ul . (11)

For the linear problems the Ru–Aifantis theorem [25] gives a simple method for
solution of BVPs for constitutive Eq. (8) which is based on two relatively simple
problems. Using the Ru–Aifantis theorem and the through-the-thickness integration
procedure described in [6, 18], we obtain the following constitutive equations of the
linear isotropic shell:

T = (1 − �2Δ)[α1Atre‖ + α2eT‖ + α3e‖ + α4e · n ⊗ n],
M = (1 − �2Δ)[β1Atrk‖ + β2kT‖ + β3k‖ + β4k · n ⊗ n],

(12)

where

Δ = ∇∇∇ · ∇∇∇, e‖ = e · A, k‖ = k · A,

αk and βk , k = 1, 2, 3, 4, are elastic moduli, and � is the length-scale parameter as
in [25]. We call (12) the Aifantis-type constitutive equations of shells.
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Let us note that direct transition of the Ru–Aifantis theorem to the formulation of
2D resultant equations requires the proper consideration of the boundary conditions
on the plate or shell faces. As a result, the 2D elastic parameters may depend on
type of the boundary conditions and can be expressed via 3D elastic parameters in
more complex way than in the case of Cauchy continuum. In what follows we apply
the direct method to formulation of the constitutive equations of gradient type plates
and shells. In other words we formulate the constitutive equations as for 2D elastic
continua described by two strain measures and two conjugates stress tensors con-
sidering the second gradients of strains and/or stress tensors. The corresponding 2D
material properties are considered as independent on its 3D counterparts. Extending
the model (12) we introduce the following constitutive models.

3.1 Aifantis-Type Equations

The stress resultant tensor T is a linear function with respect to (1 − �2
sΔ)e and the

couple stress tensor M is a linear function with respect to (1 − �2
bΔ)k

T = (1 − �2
sΔ)[α1Atre‖ + α2eT‖ + α3e‖ + α4e · n ⊗ n],

M = (1 − �2
bΔ)[β1Atrk‖ + β2kT‖ + β3k‖ + β4k · n ⊗ n]. (13)

3.2 Eringen-Type Equations

Now the gradient is introduced on the left hand side of Eq. (6)

(1 − �2
sΔ)T = α1Atre‖ + α2eT‖ + α3e‖ + α4e · n ⊗ n,

(1 − �2
bΔ)M = β1Atrk‖ + β2kT‖ + β3k‖ + β4k · n ⊗ n.

(14)

Here are introduced two length-scale parameters �s and �b. Obviously, using (13)
and (14), one can introduce more general equations of strain gradient shell theory.
Indeed, combining (13) and (14), we propose the following constitutive equations.

3.3 Generalized Equations

Now the gradient is introduced on both sides of Eq. (6)

(1 − �2
1sΔ)T = (1 − �2

2sΔ)[α1Atre‖ + α2eT‖ + α3e‖ + α4e · n ⊗ n],
(1 − �2

1bΔ)M = (1 − �2
2bΔ)[β1Atrk‖ + β2kT‖ + β3k‖ + β4k · n ⊗ n]

(15)



152 V.A. Eremeyev and H. Altenbach

with four length-scale parameters �1s , �2s , �1b and �2b. Obviously, that in addition to
the form of differential equations for deflection the crucial point is the correspond-
ing boundary conditions discussed in the case of 3D gradient elasticity, for example,
in Aifantis [1], Eringen [12], Mindlin [21], dell’Isola and Seppecher [7], dell’Isola
et al. [8].

4 Example

To illustrate the difference between the models we consider bending of a square plate
under constant transverse load. For the sake of simplicity let us assume that f = qn,
c = 0, and �s = �b. The translation and rotation fields are assumed to be given by

u = u(x, y)n, w = w1(x, y)i1 + w2(x, y)i2.

Hence, the equilibrium Eq. (2) reduce to three scalar equations

M11,1 + M21,2 +T23 = 0, M12,1 + M22,2 −T13 −0, T13,1 +T23,2 +q = 0. (16)

Equation (16) can be transformed as follows

M12,11 + M22,21 − M11,12 − M21,22 + q = 0. (17)

Finally, (17) takes the following form:

1. Non-gradient theory (� = 0)

DΔΔu = q − 1

α
Δq, D = Eh3

12(1 − ν2)
. (18)

2. Aifantis-type gradient theory

(1 − �2Δ)DΔΔu = q − 1

α
Δq. (19)

3. Eringen-type gradient theory

DΔΔu = (1 − �2Δ)

(

q − 1

α
Δq

)

. (20)

Here α is the parameter related with the transverse shear stiffness. Analysis of solu-
tions of (18)–(20) present the difference between the models.
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5 Conclusions

We discussed here the theory of the second-gradient micropolar or 6-parameter plates.
As a result,

• the gradient theory of linear isotropic micropolar plates and shells is presented;
• Ru-Aifantis’ theorem is used as a special case to derive the form of constitutive

equations;
• Eringen-, Aifantis-type and general 2D constitutive equations are proposed for

isotropic second-grade plates and shells. These equations represent linear depen-
dence of surface stress and couple stress tensors on conjugated strain measures
taking into account the presence of second gradients of strains and stresses.
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A Shell Theory for Carbon Nanotube
of Arbitrary Chirality

Antonino Favata and Paolo Podio-Guidugli

Abstract This write-up summarizes the developments in Bajaj et al. [1], Favata and
Podio-Guidugli [8, 9], along the lines of the presentation recently given by one of us
in the occasion of the international conference ‘SMT in MB’. A characterization is
given of the mechanical response of the linearly elastic, anisotropic shell we propose
to associate to a single-wall carbon nanotube of arbitrary chirality.

1 Introduction

When carbon nanotubes (CNTs) are employed as components of a mechanical
nanodevice, they are modeled as elastic beams or shells and their mechanical response
is characterized in terms of an as-small-as-possible number of stiffness and inertia
parameters. To define and evaluate these parameters in terms of the interaction forces
keeping C atoms together in a given cylindrical shape is the common goal of all mod-
elers; a way to achieve it is to to describe the mechanical behavior of CNTs by a
bottom-up method, which bridges between three different scales:

• the microscopic scale of molecular mechanics;
• a mesoscopic scale, at which concepts from discrete structure mechanics apply;

and
• the macroscopic scale of continuous structure mechanics.

(see, e.g., Li and Chou [10], Odegard [12, 13], Shen and Li [15], Wan and Delale
[16], and the literature cited therein).
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As to what model type to pick at the macroscopic scale, whether beam-like or
shell-like, a conclusive evidence is still wanted, for a number of reasons. One of these
reasons, perhaps not the least important, was the lack of a fit shell theory.

The mechanics of chiral SWCNTs is not an easy subject. Within the framework
of discrete structure mechanics, stick-and-spiral models have been used in Chang
and Gao [5] and Shen and Li [15] to determine how the elastic properties of chiral
SWCNTs depend on size; closed expressions for chirality and size dependencies of
elastic properties of SWCNTs are given in Chang and Gao [5], Chang et al. [6]. The
ideas of Chang and Gao [5], Chang et al. [6] are exploited in Chang [4] to adapt
Donnell’s theory of linearly elastic shells to chiral SWCNTs. Moreover, this time
in the context of continuum structure mechanics, chirality-dependent properties are
investigated in Ru [14], where a shell model is proposed for SWCNTs of arbitrary
chiral angle, whose linearly elastic response is deduced from the orthotropic response
to plane-stress states by a procedure involving a small-angle rotation of the coordinate
system.

In this paper, we give an abridged exposition of the linearly elastic shell model
we developed in a series of papers [1, 8, 9]. In our opinion, our model captures fairly
well the main peculiarities of the linear mechanical response of CNTs, whatever
their chirality; needless to say, nonlinear effects such as those investigated in Zhang
et al. [19] are out of the model’s reach.

2 Geometry and Classification

Chirality is a geometrical character that influences heavily the mechanical, electrical,
and thermal, properties of CNTs, especially when their radius is small; a variety of
chirality-dependent mechanical phenomenologies is described in Cao and Chen [2],
Chang [3, 4], Chang et al. [7], Liang and Upmanyu [11], Wang et al. [17] and Warner
et al. [18].

In imagination, a single-wall carbon nanotube (SWCNT) can be obtained by
rolling up into a cylindrical shape a graphene—that is, a monolayer flat sheet of
graphite—visualized as a two-dimensional Bravais lattice with hexagonal unit cell.
There are many ways to roll a graphene up, sorted by introducing a geometrical
object, the chiral vector:

χ = na1 + ma2, n ≥ m, (1)

where n,m are integers, and a1, a2 are lattice vectors, such as those at a mutual angle
of π/3 radians shown in Fig. 1. Once a pair of lattice vectors is chosen, the ordered
pair (n,m) specifies the chirality of the SWCNT to be, whose axis and minimal
length are identified by the axial vector

τ = t1a1 + t2a2, (2)
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Fig. 1 The graphene part involved in rolling up a (2, 1)-chiral CNT

where t1 and t2 are integers such that

t1 = n + 2m

dR
, t2 = −2n + m

dR
, (3)

with

dR := gcd(2n + m, n + 2m).

It is not difficult to check that χ · τ = 0, and that the chiral angle

ϕ =: arccos
χ · a1

|χ | |a1|
depends on (n,m) as follows:

tan ϕ = √
3

m

2n + m
. (4)

When n > m > 0, the SWCNT under examination is termed chiral. The (n, 0)- and
(n, n)-nanotubes, at times referred to collectively as achiral, are termed, respectively,
zigzag and armchair; in Fig. 1, their chiral vectors are denoted by, respectively,
χ Z ≡ a1 (ϕZ = 0 radians) and χ A (ϕA = π/6 radians). The nominal radius ρ0 of a
(n,m)-SWCNT is defined to be the radius of the cylinder on which the centers of the
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C atoms are placed after an ideal rolling-up operation entailing no energy expenditure
for the inevitable distortion of the C–C bonds; according to this definition,

ρ0 = ρ̂0(n,m) :=
√

3

2π
n
√

1 + m/n + (m/n)2 s, (5)

where s is the length of the C–C bond.

3 Achiral Carbon NanoShells

Our point of departure is the theory of carbon nanoshells (CNSs) developed in
Bajaj et al. [1], Favata and Podio-Guidugli [8], that is, a macroscopic theory that
models achiral SWCNT as linearly elastic shells, whose geometric and constitutive
parameters are induced from the available microscopic information. We now give
an abridged exposition of that theory, in preparation of a similar exposition of its
extension to cover chiral CNSs, to be given in the next section.

3.1 Macroscopic Mechanics

In the majority of papers where CNTs are regarded macroscopically as shells, text-
book theories induced from classic three-dimensional isotropic elasticity are used;
consequently, the shell response is characterized in terms of two elastic moduli. We
think it better to view a SWCNT, whatever its chirality, as an orthotropic cylindrical
shell whose midsurface has a tangent plane coinciding with the orthotropy plane, so
that the shell geometry agrees point-wise with the geometry intrinsic to the chosen
type of material response (see Fig. 2, where the three little cylinders suggest what
probes one should cut out of the shell body in order to determine its material moduli).
Moreover, we accept the so-called Kirchhoff-Love Ansatz, i.e., we assume that a shell
of the type under study cannot change its thickness and that its fibers orthogonal to
the referential mid surface remain orthogonal to it after any admissible deformation.

Under our assumptions, the mechanical response of the material comprising
the cylindrical shells we treat can be expressed in terms of five elastic moduli:
E1, E2, ν12, ν21, and G. The first two are Young-like moduli, the second two are
Poisson-like, the fifth is associated with shearing with respect to the (e1, e2) pair of
directions; the first four are not independent, because it turns out that, mandatorily,

E1

E2
= ν12

ν21
. (6)

The relative elasticity tensor—that is, the fourth-order tensor C whose linear action
on strain E delivers the accompanying stress S = C[E] – is:
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Fig. 2 The geometrical
elements relevant to describe
the material response of
CNTs modeled as shells

C = Δ−1(E1W1 ⊗ W1 + E2W2 ⊗ W2

+ 2GΔW3 ⊗ W3 + E1ν21(W1 ⊗ W2 + W2 ⊗ W1), (7)

where

Δ := 1−ν12 ν21, Wα = eα⊗eα (α not summed),
√

2 W3 = e1 ⊗e2 +e2 ⊗e1.

We refer the reader to Favata and Podio-Guidugli [8] for the construction of the
linearly elastic theory of Kirchhoff-Love shells associated with a given C. As antici-
pated, we designate such shells by CNSs when the elastic moduli in (7)—that is, the
information needed for our modeling of a SWCNT at the macroscopic scale of con-
tinuous structure mechanics (CSM)—can be deduced from the available nanoscopic
chemical-physical information. In the next three subsections, we build the indis-
pensable bridge between the nanoscopic and macroscopic viewpoints by way of an
intermediate passage through a meta-nanoscopic viewpoint, in a manner that we now
summarize.

At the nanoscopic scale, the bonding and non-bonding interatomic energies are
evaluated firstly in the fashion of molecular mechanics (MM). Next, a mechanical
caricature of a SWCNT as an orderly arrangement of pin-jointed sticks and (axial
and spiral) springs is drawn, within the framework of discrete structure mechanics
(DSM). The viewpoints of MM and DSM are connected by equating the energies
per bond, for each of which an approximate quadratic expression is accepted: two
types of bonding energies—hence two purely constitutive parameters, the stiffness
constants of the two types of springs—enter the expression for the DSM energy
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of a bond unit; they are taken equal to the two corresponding nanoscopic stiffness
parameters, regarded as a known input from MM. This simple measure opens the way
to the posing and solving, within the framework of DSM, of a number of equilibrium
problems for SWCNTs.

3.2 Nanoscopic and Meta-Nanoscopic Mechanics

At nanometer scale, atomic interactions are modeled by either quantum mechanics
(QM) or MM; in both cases, one strives to capture how and to what extent the system’s
energy varies with changes in atomic positions.

QM can describe rigorously the electronic structure of a material complex, but
its computational cost quickly becomes prohibitive as the number of atoms involved
increases. MM is based on the Born–Oppenheimer approximation for the Hamil-
tonian of a collection of heavy and light particles, a cornerstone of computer sim-
ulations. Consistent with this simplifying assumption, the total energy U of such a
material complex is expressed as a sum of two terms:

U = Ub + Unb,

where Ub and Unb denote, respectively, the collections of bonding and non-bonding
energies. In principle, the latter term accounts for van der Waals and Coulomb inter-
actions; however, when modeling SWCNT, the contribution of Coulomb interactions
are usually neglected, because nonbonding interactions involve essentially neutral
carbon atoms. Within the same modeling context, the former term consists of four
parts:

Ub = Uρ + Uθ + Uω + Uτ ,

where Uρ,Uθ ,Uω andUτ denote the energies associated, respectively, with stretching
(of a covalent bond), angle variation (between two covalent bonds), torsion (around
bonds), and the so-called improper torsion (see e.g. [12]). The third and fourth contri-
butions are considered negligible when compared with Uρ and Uθ , whose harmonic
approximations are:

Uρ = 1

2

∑
kρ(ρ − ρref)2,

Uθ = 1

2

∑
kθ (θ − θ ref)2.

Thus, the only bond-stiffness constants of importance are kρ and kθ ; they can be
obtained by ab initio QM evaluations or fitted to experiments.

We view a meta-nanoscopic mechanical model of a SWCNT as consisting of
pin-jointed rigid sticks and linearly elastic springs. There are two types of springs:
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Fig. 3 A stick-and-spring
caricature of an achiral basic
unit

1. axial, sensitive to changes in distance of the two C atoms sitting at the ends of
the coaxial stick, of stiffness ka ;

2. spiral, sensitive to changes in angle of the two sticks they are attached to, of
stiffness ka . Our mechanical model of an achiral basic unit looks as in Fig. 3.

The bridge between the nanoscopic and meta-nanoscopic scales is achieved by setting
ka = kρ and ks = kϑ .

3.3 From Meta-Nanoscopic to Macroscopic Mechanics

To take the step from discrete to continuous structure mechanics, a DSM model of
SWCNT has to be assimilated to a suitable model taken from the library of CSM.
The main difficulty resides in the number and nature of the parameters needed to
specify a CSM model: no matter what rod or shell theory one chooses, the relative
stiffness notion consists of a list of more than two combinations of both constitutive
and geometric parameters, the latter reflecting theory-specific concepts of thinness
and slenderness. Now, while there is a natural nanoscopic notion of slenderness for
SWCNTs, to assess their thinness is a controversial issue, because a preliminary
estimate of their effective thickness is required; and, no doubt both slenderness and
thinness of a SWCNT depend on its chirality.

No matter whether we model a SWCNT as a shell or as a stick-and-spring complex,
we may regard it as a cylindrical probe. Two parameters characterize the mechanical
response of a probe in an axial traction experiment, and one in torsion; their verbal
definitions are, respectively,

sAx := axial load

axial deformation
, νAx := − radial deformation

axial deformation
, (8)

and

sTo = axial torque

axial twist
; (9)
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sAx and sT o are stiffness measures, νAx is a Poisson-like modulus of transverse
contraction. Two additional parameters are needed to characterize the response of a
SWCNT to radial loading, namely, the specific stiffness and Poisson-like moduli

sRd := radial load

radial deformation
, νRd := − axial deformation

radial deformation
.

Mathematical expressions for these five parameters within the frameworks of both
continuous and discrete structure mechanics are given in Bajaj et al. [1], for both
achiral types of SWCNTs. Here is how.

The CSM expressions involve the five elastic moduli E1, E2, ν12, ν21, and G, as
well as two geometric parameters, ε and ρo, that is, the shell’s thickness and model-
surface radius. The DSM expressions depend on the nanoscopic spring-stiffness
moduli ka and ks , as well as on s, the C–C bond length, and ρ0, the radius of the
cylinder on which the C atoms arrange themselves. Our simple method consists in
equating as many as needed of the continuous and discrete expressions (there are
more than seven mutually independent such expressions, of which we need only six,
in view of (6); anyone of those that are not used can serve to assess the suitability of
an obtained six-parameter list). At the end of the day, each of the seven macroscopic
parameters can be expressed as a function of the two nanoscopic parameters and of
the chirality index n, what makes our shell theory ‘nanoscopically informed’.

4 Chiral Carbon NanoShells

When it comes to chiral SWCNTs, the local geometry of the material and the
global geometry of the associated cylindrical shell cease to agree, because the
orthotropy axes do not coincide anymore with the chiral and roll-up axes. However,
the anisotropic response of a (n,m)-chiral SWCNT can be induced, alternatively,
from the orthotropic response of the corresponding (n, 0)-zigzag or (n, n)-armchair
SWCNTs.

Let the tensor product � of two second-order tensors A,B be the fourth-order
tensor defined as follows by its linear action on the collection of second-order tensors:

A � B[C] := ACBT , for each 2nd order tensor C.

In particular, for Q an orthogonal tensor, the tensor product

Q � Q =: Q

defines the fourth-order tensor that delivers the orthogonal conjugate with respect
to Q of a given second-order tensor C:

QC = QCQT .
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Now, let Q be a rotation of ψ radians about an axis parallel to e3:

Q = Q̂(ψ, e3) := cosψ (e1 ⊗ e1 + e2 ⊗ e2)

− sinψ (e1 ⊗ e2 − e2 ⊗ e1)+ e3 ⊗ e3.
(10)

For such a rotation, consider the fourth-order tensor

C̃ := Q
T
CQ. (11)

Note that the Cartesian components of C̃ with respect to the orthonormal frame
(e1, e2, e3), namely,

C̃i jhk = Qli Qmj Qnh Q pkClmnp, (12)

are identical to the Cartesian components with the same indices of C with respect to
the orthonormal frame

( ẽ1, ẽ2, e3), ẽα = Qeα, (α = 1, 2);

for example,

C̃1111 = C1111 cos4 ψ + C2222 sin4 ψ + 2(C1122 + C1212) sin2 ψ cos2 ψ.

Chirality enters (11) in two ways: because C is the elasticity tensor of a (n, 0)-
zigzag SWCNT, whose representation is given in (7); and because we compose the
mapping Q̂(·, e3) introduced in (10) with the function

ψ = ψ̂(n,m) :=
{

0, if m = 0,
π

3
+ ϕ(n,m) if m ∈ (0, n], (13)

that is to say, in view of (4),

ψ̂(n,m) =
⎧
⎨

⎩

0, if m = 0,

arctan

(√
3

n + m

n − m

)

if m ∈ (0, n]. (14)

For

Q̃(n,m) := Q̂(ψ̂(n,m), e3)

the rotation mapping associated to a given (n,m)-chiral SWCNT by way of the
composition operation we just mentioned, we get:

• for m = 0, (ψ = ϕ = 0; Q̃(n, 0) = I, with I the 2nd order identity tensor; and)
C̃ = C;
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(a)

(b) (c) (d)

Fig. 4 Visualizing the action of a rotation by ψ about the axis e3. a The graphene portion corre-
sponding to a (2,1)-CNT marked ©1 , and its rotation of an angle π/3, marked ©2 . b Rotation of ©1 .
c Rotation of ©2 , so as to have roll-up axes parallel to ©1 in b, d rotation by π of ©2 , making evident
that its atomic arrangement is the same as that of ©1

• for n = m, (ψ = π/2, ϕ = π/6, Q̃(n, n) = e2 ⊗ e1 − e1 ⊗ e2 + e3 ⊗ e3,
and) C̃ becomes the elasticity tensor of a (n, n) = armchair SWCNT, for which,
according to (12),

C̃1111 = C2222, C̃2222 = C1111, etc.;

• for m ∈ (0, n), (ψ ∈ (0, π/2), ϕ ∈ (0, π/6), and) C̃ captures the elastic response
for the generic (n,m) chirality.

Figure 4 is meant to help visualizing the action of a rotation by ψ about the
axis e3.
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Fig. 5 Torsion angle for (6,m)-CNSs

In Fig. 4a, the graphene portion corresponding to a (2, 1)-SWCNT, whose chiral
angle is ϕ, is marked ©1 ; its rotation by an angle π/3 gives portion ©2 ; the angle ψ is
shown. In Fig. 4b, c ©1 and ©2 have been rotated so as to have parallel roll-up axes; in
Fig. 4d, ©2 has been further rotated byπ radians, so as to make evident the fact that its
atomic arrangement is the same as that of ©1 . But, such a final rotation belongs to the
symmetry group of an orthotropic material. Thus, the SWCNTs obtained by rolling
up the graphene portions ©1 and ©2 depicted in Fig. 4a have the same mechanical
response.

5 Some Test Equilibrium Problems

Equilibrium problems for CNSs of arbitrary chirality can be formulated in full gener-
ality, as shown in Favata and Podio-Guidugli [9]. Surprisingly enough, a number of
axisymmetric equilibrium problems can be solved explicitly; some qualitative results
related to the torsion problem are shown in the following figures.

Figures 5 and 6 permit to visualize the chirality dependence of, respectively, tor-
sion angle and torsion stiffness; we see a coherent dependence on chirality of these
two quantities, with maximal torsion rigidity achieved by armchair CNSs.

The axial strain accompanying the twist induced by a given torque T —an effect
that must be null for both zigzag and armchair CNSs, as physical intuition suggests—
is exemplified in Fig. 7; because of the problem symmetries, one would expect the
effect to be maximal for intermediate chiralities, and in fact we see that, for n even,
a maximum occurs at m = n/2.
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Fig. 6 Torsion stiffness of (6,m)-CNSs

Fig. 7 Axial strain of twisted (6,m)-CNSs

6 Conclusions

We have presented a continuum theory of SWCNTs of arbitrary chirality, modeled
as anisotropic linearly elastic shells.

Within our theory, a number of equilibrium problems in terms of displacements
can be solved explicitly and in closed form–to our knowledge, for the first time. Our
model results from a bottom-up sequence of modeling steps, from the atomistic to
the continuum scale, at the end of which the model’s macroscopic parameters are
determined in terms of the available nanoscopic chemical-physical information.
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In particular, we have presented our formulation of the torsion problem, when
balanced end torques are applied. Our solution accounts both qualitatively and quan-
titatively for the expected coupling of torsional and extensional effects that chirality
brings about. Were the relevant experimental results available, it would not be difficult
to derive the solutions to other boundary-value problems where analogous couplings
are in order, such as the axial traction or extension problems.
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Finite Axisymmetric Deformation of an
Inflatable Anisotropic Toroidal Membrane

Sergei B. Filippov and Peter E. Tovstik

Abstract Finite axisymmetric deformation of a thin toroidal shell under action of
internal pressure is studied. The shell is reinforced by two systems of threads located
along parallels and meridians and is considered as anisotropic membrane. The non-
linear theory of membranes is used. To find membrane deformations and displace-
ments the system of ordinary differential equations of the fourth order is delivered.
The method of asymptotic integration in the case when the meridian radius is much
smaller than the parallel one is elaborated. Asymptotic and numerical results are
compared.

1 Introduction

Textile composites and pneumatic structures became increasingly popular in recent
years for a variety of applications in civil engineering, architecture, aerospace
engineering, hydraulic engineering, etc. [10]. Inflatable membrane structures are
extremely light and elegant. Typical examples of inflatable toroidal shells include
tires, pneumatic jacks and inflatable pools.

The membrane theory is the particular case of the nonlinear Kirchhoff-Love shell
theory presented in Libai [8] and Pietraszkiewicz [11]. The simulation and the design
of inflatable membrane structures is normally performed with membrane finite ele-
ments [10]. For solution of one-dimensional problems the methods of numerical or
asymptotic ODEs integration may be applied.

Deformation of cylindrical and spherical membranes and tent structures is studied
in Oñate and Kröplin [10] by means of FEM. In Kolesnikov and Zubov [5] the pure
bending deformation of the circular cylindrical membrane are analyzed. The problem
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was reduced to the system of nonlinear ordinary differential equations which was
solved numerically.

A toroidal membrane of circular cross section, composed of homogeneous incom-
pressible elastic material and inflated by uniform internal pressure have been con-
sidered in Kydoniefs and Spencer [6]. The approximate solutions are based on the
assumption that the ratio of radius of the circle which generates the torus to its over-all
radius is small. Some numerical results are obtained for the special case of Mooney
materials.

Axisymmetric deformation of a pressurized toroidal membrane composed of an
isotropic elastic material was studied in Li and Steigmann [7]. The equilibrium equa-
tions are reduced to a first order system of ordinary differential equations and solved
numerically. In its unstressed state the torus has the form of a cylinder. Wrinkling of
the membrane is taken approximately into account by using a relaxed strain energy
derived from Ogden’s three-term strain energy function. The paper of Jacques and
Potier-Ferry [4] gives a overview of wrinkling with applications and extensive bib-
liographies.

In Tamadapu and DasGupta [13] the finite inflation of a hyperelastic toroidal mem-
brane under internal pressure was studied. The problem is discretized and solved up
through a sequence of approximations based on the Ritz expansion of the field vari-
ables combined with a potential energy density perturbation and Newton-Raphson
method. The stability of the inflated configurations in terms of impending wrinkling
of the membrane has been investigated on the principal stretch parameter plane for
both isotropic and transversely isotropic material cases.

The dynamics of in-plane surface deformation modes of an inflated toroidal mem-
brane has been studied in Tamadapu and DasGupta [12]. The effect of geometric and
material properties on the modal dynamics is analyzed.

In Eriksson and Nordmark [1] the evaluation of quasi-static equilibrium solutions
for inflatable space membrane structures is discussed. Analytical instability results
are shown for a spherical and derived for a cylindrical case. These are compared to
numerical simulations based on a flat linearly interpolated triangular space membrane
element.

In this paper the results concisely presented in Filippov [2, 3] are developed. The
axisymmetric finite deformation under internal pressure of an anisotropic toroidal
membrane is studied. In its unstressed state the membrane has the form of a cylinder.
Wrinkling of the membrane is taken into account. As examples, the incompress-
ible Neo-Hookean and linear-elastic materials are considered. The stability of the
equilibrium states is not discussed.

2 Main Assumptions

We suppose that the toroidal membrane is made of a cylindrical textile composite
pipe which contains two systems of threads located along parallels and meridians.
The lengths of non-deformed threads are equal accordingly L and l.
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We assume that the distance between the adjacent fibers is small in comparison
with the membrane sizes. After averaging we get the 2D medium. We consider this
medium as an anisotropic membrane. Connecting end faces of the pipe, we obtain a
toroidal membrane.

In the presence of the internal pressure q all fibers oriented along membrane
meridians are stretched, but some fibers oriented along parallels are compressed if
q < q∗, where q∗ is the minimal value of pressure at which all parallels are stretched.
The membrane can not hold the compression stresses. Therefore in case q < q∗ the
part of its surface is covered by folds. If the internal pressure q increases then the
area covered by folds decreases. At q ≥ q∗ the whole membrane will be stretched.

3 Basic Equations

For the toroidal membrane the following geometrical relations are valid:

λ1 = ds

ds0
, λ2 = r

R
, R = L

2π
,

dr

ds
= − sin θ,

dẑ

ds
= cos θ, (1)

1

R1
= dθ

ds
,

1

R2
= cos θ

r
,

where s0 ∈ [0, l] and s(s0) are lengths of the meridian arch before and after defor-
mation, r(s0) is the radius of a parallel, ẑ(s0) is the height of a parallel above a point
O (see Fig. 1), λ1(s0) and λ2(s0) are the stretch ratios of meridians and parallels,
R1 and R2 are the radii of the surface curvature, θ is the angle between tangent to a
meridian and the vertical direction.

The equilibrium equations in the projection to the tangent to the meridian and the
normal to the membrane are

d(rT1)

ds
+ T2 sin θ = 0,

T1

R1
+ T2

R2
= q, (2)

where q is the internal pressure, T1 and T2 are stress resultants.

Fig. 1 Toroidal membrane

θ
r

z 0s O
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Assume that the shell and threads are made of incompressible homogeneous
isotropic materials with elastic potentials

GiΦi (λ1, λ2, λ3), i = 1, 2, 3, (3)

where Gi are constants of the material. For the threads oriented along meridians and
parallels the indexes i = 1 and i = 2 are used accordingly, and index i = 3 is used
for the shell material. In case of small deformations Gi is the shear modulus.

When the material is incompressible, equality λ1λ2λ3 = 1 is valid. Besides, for
the threads oriented along meridians λ2 = λ3. Therefore the potential (3) becomes

G1Φ1

(
λ1, λ

−1/2
1 , λ

−1/2
1

)
= G1Ψ1(λ1)

For the threads oriented along parallels λ1 = λ3 and

G2Φ2

(
λ

−1/2
2 , λ2, λ

−1/2
2

)
= G2Ψ2(λ2)

The shell potential has the form

G3Φ3

(
λ1, λ2, (λ1λ2)

−1
)

= G3Ψ3(λ1, λ2)

The stress resultants in Eq. (2) are the sums of the tensile thread forces and the
stresses arising as result of the shell deformation:

T1 = G1 N1S1

λ2

dΨ1

dλ1
+ G3h0

λ2

∂Ψ3

∂λ1
,

T2 = G2 N2S2

λ1

dΨ2

dλ2
+ G3h0

λ1

∂Ψ3

∂λ2
,

(4)

where N1, N2 and S1, S2 are numbers of threads on unit of length in the cross-sectional
direction and the cross-section areas of threads in the state before deformation for
meridians and parallels, correspondingly, h0 is the thickness of the shell before
deformation. If Eq. (4) gives T2 < 0 then according to membrane hypotheses it is
necessary to put T2 = 0 in system (2).

4 Dimensionless Equations

Let’s introduce dimensionless variables by formulas

z = ẑ

R
, s0 = ρϕ, ρ = l

2π
, μ = ρ

R
, Q = q R

G0h0
,

t1 = T1λ2

G0h0
, t2 = T2λ1

G0h0
, gi = Gi Ni Si

G0h0
, i = 1, 2, g3 = G3

G0
, (5)
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where G0 is an arbitrary constant, μ < 0.5, and the parameters gi characterize the
relative stiffness of threads in comparison with the shell stiffness. By an appropriate
choice G0 any of values gi can be made equal 1.

Using formulas (1), (2) and (5) we get the following equations for the unknown
variables θ(ϕ), t1(ϕ), λ2(ϕ) and z(ϕ):

dθ

dϕ
= μ

t1
(λ1λ2 Q − t̂2 cos θ),

dt1
dϕ

= −μt̂2 sin θ,

dλ2

dϕ
= −μλ1 sin θ, (6)

dz

dϕ
= μλ1 cos θ,

t̂2 = max{t2, 0}, 0 ≤ ϕ ≤ 2π.

As an example consider the potential

Φ(λ1, λ2, λ3) = 1

2
(λ2

1 + λ2
2 + λ2

3 − 3)

corresponding to Neo-Hookean material. Assume that Φ1 = Φ2 = Φ3 = Φ. Then
for the dimensionless variables (5) constitutive relations (4) take the form

t1 = g3

(

λ1 − 1

λ3
1λ

2
2

)

+ g1

(

λ1 − 1

λ2
1

)

,

t2 = g3

(

λ2 − 1

λ2
1λ

3
2

)

+ g2

(

λ2 − 1

λ2
2

) (7)

If the shell stiffness is very small in comparison with stiffness of strings and strings
are composed of linear-elastic material then

T1 = E1 N1S1

λ2
ε1,

T2 = E2 N2S2

λ1
ε2,

εk = λk − 1, k = 1, 2,

(8)

where E1 and E2 are Young’s modulus for the threads oriented along meridians and
parallels. Then the equations for the unknown variables θ(ϕ), λ1(ϕ), λ2(ϕ) and z(ϕ)
have the following form:
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dθ

dϕ
= μ(λ1λ2 Q − ηε̂2 cos θ)

λ1 − 1
,

dλ1

dϕ
= −μηε̂2 sin θ,

dλ2

dϕ
= −μλ1 sin θ,

dz

dϕ
= μλ1 cos θ,

ε̂2 = max{ε2, 0} = max{λ2 − 1, 0}, 0 ≤ ϕ ≤ 2π,

(9)

where

η = E2 N2S2

E1 N1S1

If we take

G0 = E1 N1S1/h0, g3 = 0, Gk = Ek/3, λk − λ−2
k = 3εk, k = 1, 2

then g1 = 1/3, g2 = η/3, t1 = ε1, t̂2 = ηε̂2. Substituting these expression for t1 and
t̂2 in Eq. (6) we get Eq. (9).

5 Numerical Solution

Owing to the problem symmetry relative to the plane z = 0, to find its periodic
solution it is enough to construct the solution of equations (6) and (7) satisfying the
boundary conditions

θ(0) = 0, z(0) = 0, θ(π) = π, z(π) = 0. (10)

To solve the boundary value problem (6, 7, 10) we use the initial-value or shooting
procedure, presented in [9]. We set values of λ0

2 and t0
1 and obtain the numerical

solution of equations (6, 7) satisfying the boundary conditions

θ(0) = 0, t1(0) = t0
1 , λ2(0) = λ0

2, z(0) = 0

Then we find λ0
2 and t0

1 by solving numerically equations θ(π) = π , z(π) = 0.
Consider three cases:

(1) g1 = g2 = 1, g3 = 0; (2) g1 = g2 = g3 = 1/2; (3) g1 = g2 = 0, g3 = 1.
(11)
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Fig. 2 Force-deflection curve
in case g1 = g2 = 0, g3 = 1

1

1 543

2

Q

(0)2(0)2

c
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Q

λ
λ

Table 1 Deformation of membrane versus the pressure Q for g1 = g2 = g3 = 1/2

Pre-critical deformations Post-critical deformations

Q t1(0) λ2(0) λ2(π) t2(π) t1(0) λ2(0) λ2(π) t2(π)

0.4 0.100 1.092 0.513 −3.636 14.62 12.20 5.207 2.189

0.7 0.196 1.148 0.551 −2.944 9.342 6.959 2.977 2.920

1.0 0.308 1.202 0.588 −2.394 5.778 4.852 2.086 1.962

1.5 0.547 1.304 0.652 −1.629 3.683 3.180 1.394 1.108

2.0 0.936 1.468 0.741 −0.862 2.406 2.257 1.038 0.441

2.2 1.318 1.645 0.823 −0.361 1.780 1.883 0.912 0.042

2.223 1.509 1.741 0.862 −0.170 – – – –

In the first case only the threads stiffnesses is taken into account, in the second case
it is assumed that the threads stiffnesses are equal to the shell stiffness, and in the
third case the threads are absent.

The numerical analysis shows that for all three cases and also for the linear-elastic
material the force-deflection curve Q versus λ2(0) has a peak point (Qc, λc

2(0)),
where Qc is the critical pressure. The force-deflection curve for the case 3) and
μ = 0.3 is shown in Fig. 2. Pre-critical and post-critical equilibrium states correspond
to λ2(0) < λc

2(0) and λ2(0) > λc
2(0).

Table 1 lists values of the stress resultants t1(0), t2(π) and the stretch ratios of
outer and inner parallels λ2(0), λ2(π) forμ = 0.3, g1 = g2 = g3 = 1/2 and various
values of the dimensionless pressure Q. Left and right parts of Table 1 contain the
results for pre-critical and post-critical equilibrium states. In the considered case
λc

2(0) = 1.741, Qc = 2.223.
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6 Approximate Solution for Completely Stretched Membrane

Consider the pre-critical equilibrium state. Assume that t2 ≥ 0 for ϕ ∈ [0, π ]. If
the parameter μ is small the functions t1, t2, λ1 − 1, λ2 − 1 and z are also small.
Therefore we seek the approximate solution in the following form:

t1 = μα, t2 = μδ, λ1 = 1 + μβ, λ2 = 1 + μγ, z = μζ. (12)

After introducing the new variables α, β, γ , δ and ζ , Eqs. (6) and (7) and boundary
conditions (10) take the form

dα

dϕ
= −μδ sin θ,

dθ

dϕ
= 1

α
[(1 + μβ)(1 + μγ )Q − μδ cos θ ],

dζ

dϕ
= (1 + μβ) cos θ,

dγ

dϕ
= −(1 + μβ) sin θ, (13)

μα = (g1 + g3)(1 + μβ)− g1

(1 + μβ)2
− g3

(1 + μβ)3(1 + μγ )2
,

μδ = (g2 + g3)(1 + μγ )− g2

(1 + μγ )2
− g3

(1 + μγ )3(1 + μβ)2
, (14)

θ(0) = ζ(0) = ζ(π) = 0, θ(π) = π (15)

Let us substitute into Eqs. (13)–(15) the asymptotic expansions

α = α0 + μα1, β = β0 + μβ1, γ = γ0 + μγ1,

δ = δ0 + μδ1, θ = θ0 + μθ1, ζ = ζ0 + μζ1. (16)

In the zeroth approximation we get

α0 = Q, θ0 = ϕ, ζ0 = sin ϕ, γ0 = cosϕ + a0,

β0 = A1 − A2γ0, δ0 = A3γ0 + A4, (17)

where a0 is a arbitrary constant which can be found from the construction of the first
approximation,

A1 = Q

4g3 + 3g1
, A2 = 2g3 A1

Q
, A3 = 4g3 + 3g2 − 2g3 A2, A4 = Q A2

It follows from formulas (5), (12) and (17) that in the zeroth approximation the
cross-section of the membrane is the circle of the radius ρ. The distance between the
center of this circle and the torus center is R + a0ρ.
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The solutions of equations of the first approximation

dα1

dϕ
= −δ0 sin ϕ,

dθ1

dϕ
= β0 + γ0 − α1

Q
− δ0

Q
cosϕ,

dζ1

dϕ
= β0 cosϕ − θ1 sin ϕ,

dγ1

dϕ
= −β0 sin ϕ − θ1 cosϕ (18)

satisfy the boundary conditions

θ1(0) = ζ1(0) = θ1(π) = ζ1(π) = 0 (19)

The first Eq. (18) has the solution

α1 = (A3a0 + A4) cosϕ + A3

2
cos2 ϕ + a1 Q, (20)

where a1 is an arbitrary constant. Substitution expressions (20) into the second equa-
tion (18) and taking first condition (19) into account leads to

θ1 = (A − 3c)ϕ + B sin ϕ − c

2
sin 2ϕ,

where

A = A1 + a0(1 − A2)− a1, B = 1 − A2 − 2(a0 A3 + A4)

Q
, c = A3

4Q

Equality θ1(π) = 0 holds if

A = 3c (21)

The solution of the third Eq. (18) satisfying the boundary condition ζ1(0) = 0 has
the form

ζ1 = −1

2
(B + A2)ϕ + (A1 − a0 A2) sin ϕ + B − A2

4
sin 2ϕ + c sin3 ϕ (22)

Taking into account the condition ζ1(π) = 0 we get B + A2 = 0. Hence

a0 = Q − 2A4

2A3

Substitution of the expression for a0 in formula (21) allows one to find a1

a1 = A1 + (1 − A2)(Q − 2A4)

2A3
− 3c
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Table 2 Values of Q∗ for
three cases

Case Q∗
μ = 0.1 μ = 0.01 Asymptotics

g1 = g2 = 1, g3 = 0 4.12 5.71 6.00

g1 = g2 = g3 = 1/2 4.59 6.15 6.43

g1 = g2 = 9, g3 = 1 4.71 5.78 6.00

The function γ1 contains the constant term a2 which can be found from the con-
struction of the second approximation.

The condition t2 ≥ 0 at ϕ ∈ [0, π ] is necessary for correctness of the obtained
solution. After substituting into the inequality t2 ≥ 0 the approximate expression
t2 � μδ0, we get Q ≥ Q0, where Q0 = 2A3. The value Q∗ for which by means
of the asymptotic method the approximate expression Q0 is obtained, represents a
characteristic value of dimensionless pressure Q. In case of Q < Q∗ the part of
the membrane is covered by folds, and when Q > Q∗ the membrane is completely
stretched.

Table 2 lists the values of the dimensionless characteristic pressure Q∗ for three
cases (11). The second and third columns contain the values calculated by numerical
solution of equations (6, 7) for μ = 0.1 and μ = 0.01. The last column contains the
values Q0 = 2A3 found by the asymptotic approach. The error of the asymptotic
formula Q∗ � Q0 decreases with the parameter μ.

In the case g3 = 0 and linear-elastic material we may seek the approximate
solution of equations (9) with boundary conditions (10) in the form

λ1 = 1 + μβ0 + μ2β1 + μ3β2, λ2 = 1 + μγ0 + μ2γ1 + μ3γ2,

z = μζ0 + μ2ζ1 + μ3ζ2, θ = θ0 + μθ1 + μ2θ2, Q∗ = Q0 + μQ1. (23)

In the considered case

λk − λ−2
k = 3εk + O(μ2), k = 1, 2,

therefore equations, boundary conditions and solutions in the zeroth and in the first
approximations coincide with (17)–(23) if we choose

g1 = 1/3, g2 = η/3, A1 = Q, A3 = η, A2 = A4 = 0.

In particular,

Q0 = 2η.

Hence the approximate value Q0 of the dimensionless characteristic pressure Q∗ is
proportional to the non-dimensional stiffnessη of the threads oriented along parallels.

The asymptotic formula Q0 = 2η for η = 1 gives Q∗ � Q0 = 2. Solving
numerically Eq. (9) with boundary conditions (10) for η = 1 and μ = 0.1 we get
Q∗ = 1.67. The error of asymptotic result is 20 %, therefore it makes sense to
construct the second approximation.
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Substituting the asymptotic expansions (23) into (9), (10) we get

λ2 = 1 + μ

(
Q

2η
+ cosϕ

)

+ μ2
(

Q2

η
+ Q cosϕ − η

4Q
cos2 ϕ

)

(24)

It follows from the condition t2 = ηε2 = η(λ2 − 1) ≥ 0 at ϕ ∈ [0, π ] and formula
(24) that

f (ϕ) = −μη2 cos3 ϕ + 4q Qη(1 + μQ) cosϕ + 2Q2(1 + 2μQ) ≥ 0, ϕ ∈ [0, π ]

The last inequality is valid if

min
ϕ∈[0,π ] f (ϕ) ≥ 0

The equation

d f

dϕ
= 3μη2 cos2 ϕ sin ϕ − 4Qη(1 + μQ) sin ϕ = 0

has the roots satisfying two equations

sin ϕ = 0, cos2 ϕ = 4Qη(1 + μQ)

3μη2

Assume that Q ∼ η ∼ 1. Then for small μ the second equation does not have
solutions and

min
ϕ∈[0,π ] f (ϕ) = f (π) = μη2 − 4q Qη(1 + μQ)+ 2Q2(1 + 2μQ) ≥ 0

The approximate expression Q0 +μQ1 for the dimensionless characteristic pressure
Q∗ is a root of the equation

4μQ3 + (2 − 4μη)Q2 − 4ηQ + μη2 = 0

Substituting Q0 + μQ1 into the last equation and equating the coefficients of the
same power of the small parameter μ to zero, we find

Q0 = 2η, Q1 = −η(4η + 1/4)

Table 3 lists the values of the dimensionless characteristic pressure Q∗ for η = 1
and various values of the parameter μ. The second and the third columns contain the
values Q0 and Q0 +μQ1 found by the asymptotic approach. In the last column the
values Q∗ calculated by means of the numerical solution of boundary value problem
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Table 3 Values of Q∗ versus
the parameter μ

μ Q0 Q0 + μQ1 Q∗
0.01 2.0 1.97 1.96

0.02 2.0 1.92 1.92

0.05 2.0 1.78 1.72

0.10 2.0 1.58 1.67

0.20 2.0 1.15 1.30

(9), (10) are given. The error of the asymptotic formula Q∗ � Q0 +μQ1 forμ = 0.1
is 5 %.

7 Approximate Solution for Partly Stretched Membrane

Assume that for the pre-critical equilibrium state t2 > 0 when ϕ ∈ [0, ϕ∗] and t2 < 0
when ϕ ∈ [ϕ∗, π ]. Then in the domain ϕ ∈ [0, ϕ∗] all fibers oriented along parallels
are stretched and the part of the membrane surface ϕ ∈ [ϕ∗, π ] is covered by folds.
At these assumptions equalities

t2(ϕ∗) = 0, δ(ϕ∗) = 0 (25)

take place.
At ϕ ∈ [0, ϕ∗] the axisymmetric deformation of the toroidal membrane describe

Eqs. (13), (14). The function α′, β ′, γ ′, θ ′ and ζ ′ defined on the interval ϕ ∈ [ϕ∗, π ]
satisfy the following equations:

dα′

dϕ
= 0,

dθ ′

dϕ
= Q

α′ [(1 + μβ ′)(1 + μγ ′),

dζ ′

dϕ
= (1 + μβ ′) cos θ ′, dγ ′

dϕ
= −(1 + μβ ′) sin θ ′ (26)

μα′ = (g1 + g3)(1 + μβ ′)− g1

(1 + μβ ′)2
− g3

(1 + μβ ′)3(1 + μγ ′)2
(27)

We seek the solutions of Eqs. (13), (14) and (26), (27) satisfying the boundary
conditions

θ(0) = ζ(0) = 0, θ ′(π) = π, ζ ′(π) = 0, (28)

α(ϕ∗) = α′(ϕ∗), θ(ϕ∗) = θ ′(ϕ∗), γ (ϕ∗) = γ ′(ϕ∗), ζ(ϕ∗) = ζ ′(ϕ∗), (29)

in the form (16). To find the approximate value of the unknown value ϕ∗ we use the
asymptotic expansion ϕ∗ = ϕ0 + μϕ1.
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In the zeroth approximation we get the same results as in case when the toroidal
membrane is completely stretched

α0 = α′
0 = Q, θ0 = θ ′

0 = ϕ, ζ0 = ζ ′
0 = sin ϕ,

γ0 = γ ′
0 = cosϕ + a0, β0 = β ′

0 = A1 − A2γ0.

It follows from the second equality (25) that

a0 = − cosϕ0 − A4

A3

The value ϕ0 will be found from the construction of the first approximation.
If ϕ ≤ ϕ0 then for the construction of the first approximation we can use Eq. (18).

In case ϕ ≥ ϕ0 the equations of the first approximation have the form

dα′
1

dϕ
= 0,

dθ ′
1

dϕ
= β0 + γ0 − α′

1

Q
,

dζ ′
1

dϕ
= β0 cosϕ − θ ′

1 sin ϕ,
dγ ′

1

dϕ
= −β0 sin ϕ − θ ′

1 cosϕ. (30)

The solutions of equations (18) and (30) satisfy the boundary conditions

θ1(0) = ζ1(0) = θ ′
1(π) = ζ ′

1(π) = 0, (31)

α1(ϕ0) = α′
1(ϕ0), θ1(ϕ0) = θ ′

1(ϕ0), ζ1(ϕ0) = ζ ′
1(ϕ0), γ1(ϕ0) = γ ′

1(ϕ0)

(32)
In the considered case formulas (18) and (19) suit for definition of the functions

α1(ϕ) and θ1(ϕ). Taking into account the first Eq. (30) and the first condition (32),
we get

α′
1 = α1(ϕ0) = − A3

2
cos2 ϕ0 + a1 Q

It follows from the second Eq. (30), and from the third condition (31) that

θ ′
1 =

(
A + 2c cos2 ϕ0

)
(ϕ − π)+ (1 − A2) sin ϕ, (33)

The substitution of expressions (19) and (33) into the second condition (32) gives
the equality

(A/c + 2 cos2 ϕ0)π = 3ϕ0 − 5 sin ϕ0 cosϕ0 + 2ϕ0 cos2 ϕ0 (34)
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Whereas for partly stretched toroidal membrane equality (20) is not valid, the
expression for the function ζ1(ϕ) differs from the expression obtained in the previous
section

ζ1 = (A1 − a0 A2) sin ϕ − 1

2
(B + A2)ϕ + B − A2

4
sin 2ϕ

+ (A − 3c)(ϕ cosϕ − sin ϕ)+ c sin3 ϕ (35)

The solution ζ ′
1(ϕ) of the third Eq. (30) satisfying the last boundary condition (31)

has the form

ζ ′
1 = (A1 − a0 A2) sin ϕ + 1

2
(π − ϕ)+ 1 − 2A2

4
sin 2ϕ

+
(

A − 2c cos2 ϕ0

)
[(ϕ − π) cosϕ − sin ϕ] (36)

Let’s substitute relations (35) and (36) into the third condition (32). Then taking
into account Eq. (34), after transformations we obtain the following equation for the
evaluation of ϕ0:

sin ϕ0 − ϕ0 cosϕ0 = πp, p = Q

Q0
≤ 1 (37)

If we take Q0 = 2η in (37) we obtain the equation for the case g3 = 0 and the
linear-elastic material. Equation (37) has no a closed-form solution, however its root
ϕ0 ∈ [0, π ] depends only on one parameter p ∈ [0, 1]. Therefore for estimation of
the value of this root it is possible to use Fig. 3.

If the parameter p is small the root ϕ0 of equation (37) may be found by the
approximate formula

ϕ0 = (3pπ)1/3 (38)

For p < 0.1 the relative error of Eq. (38) is less than 3 %.
The boundaries ϕ∗ of the area covered by folds for the case g1 = g2 = g3 =

1/2 and for different values of the dimensionless pressure Q are given in Table 4.

Fig. 3 Plot of the function
ϕ0(p) π

π/ 2

10.4
p

ϕ
0

0 0.2 0.6 0.8
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Table 4 Values of ϕ∗
versus Q

ϕ∗
Q μ = 0.1 μ = 0.01 Asymptotics

1 1.28 1.20 1.19

2 1.67 1.58 1.56

3 2.04 1.87 1.85

4 2.51 2.16 2.12

The second and third columns contain the values obtained by numerical solution of
equations (6), (7). The last column contains the root ϕ0 of Eq. (37). The error of the
asymptotic results decreases with the parameters μ and Q.

8 Approximate Solution for Post-critical Equilibrium States

Numerical results show that for the post-critical equilibrium states the inequality
t2 > 0 is valid for all ϕ ∈ [0, 2π ], and for small values of μ the functions t1, t2, λ1
and λ2 are sufficiently large. Assume that μ 	 1 and substitute into Eqs. (6), (7) and
boundary conditions (10) the asymptotic expansions

t1 = α0/μ+ α1, λ1 = β0/μ+ β1, λ2 = γ0/μ+ γ1,

t2 = δ0/μ+ δ1, θ = θ0 + μθ1, ζ = ζ0 + μζ1 (39)

In the zeroth approximation we get

α0 = a0, γ0 = B1/Q, θ0 = ϕ, ζ0 = a0

B1
sin ϕ, (40)

where B1 = g1 + g3. As earlier the arbitrary constant a0 can be found from the
second approximation construction.

The solutions of equations of the first approximation

dα1

dϕ
= −B2γ0 sin ϕ,

dγ1

dϕ
= − α0

B1
sin ϕ,

dθ1

dϕ
= γ1 Q

B1
− B2γ0

a0
cosϕ,

dz1

dϕ
= α1

B1
cosϕ − a0

B1
θ1 sin ϕ, (41)

where B2 = g2 + g3, satisfy the boundary conditions

θ1(0) = 0, θ1(π) = 0, ζ1(0) = 0, z1(π) = 0 (42)
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Two first Eq. (41) have the solutions

α1 = B2γ0 cosϕ + a1, γ1 = a0

B1
cosϕ + b1, (43)

where a1 and b1 are arbitrary constants. The substitution of expressions (43) into the
third equation (41) in view of the first condition (42) leads to

θ1 = Qb1

B1
ϕ +

(
Qa0

B2
1

− B1 B2

Qa0

)

sin ϕ (44)

The second boundary condition (42) is carried out if b1 = 0.
It follows from the fourth Eq. (41) and the third condition (42) that

ζ1 =
(

B2

Q
− Qa2

0

2B3
1

)

ϕ + a1

B1
sin ϕ + Qa2

0

4B3
1

sin 2ϕ

Taking into account fourth boundary condition (42), we obtain

a0 = B1

Q

√
2B1 B2

To find a1 we need to construct the third approximation. Using relations (39), (40)
and (43), (44) we get, in particular, the following approximate formulas

λ1 = a0

μB1
, λ2 = B1

μQ
+ a0

B1
cosϕ, θ = ϕ + μ

(
Qa0

B2
1

− B1 B2

Qa0

)

sin ϕ (45)

Table 5 lists the values of the stretch ratios of parallels λ2 for the case g1 = g2 =
g3 = 1/2, Q = 1.5. The second and third columns contain the values of λ2 found
by asymptotic formula (45). The last two columns contain the values calculated
by numerical integration. The error of the asymptotic results decreases with the
parameter μ and is less than 8 % even for μ = 0.3.

Table 5 The values of λ2(π)

and λ2(0) versus μ
μ λ2(π) λ2(0) λ2(π) λ2(0)

0.3 1.28 3.16 1.39 3.18

0.2 2.39 4.28 2.45 4.31

0.1 5.72 7.61 5.75 7.64
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9 Conclusions

The application of asymptotic approach to the problem of toroidal membrane defor-
mation under internal pressure permits to obtain the simple approximate solution.
In particular, the approximate explicit expression Q0 for the minimal dimensionless
pressure Q∗ at which folds on the shell are not formed is found.

In the case when the stiffness of the shell is small and material of threads is linear-
elastic, Q0 is proportional to the ratio η of the stiffnesses of the threads oriented along
parallels and meridians. Unfortunately the error of the formula Q∗ � Q0 = 2η in
comparison with the numerical solution is large even for parameter μ = 0.1. The
construction of the next approximation allows one to reduce the error and to expand
the domain where the asymptotic formula holds. One can also construct the next
approximation for the membrane composed of Neo-Hookean material taking into
account the shell stiffness, but the asymptotic formulas become too complicated.

The equation for the boundary of the membrane area covered by folds ϕ∗ is
derived. This equation contains only one non-dimensional parameter Q/Q0. Forμ =
0.1 and Q < 3 the error of the asymptotic estimate the boundary ϕ∗ in comparison
with numerical results is 10 % less.

To find post-critical equilibrium states in the case when the meridian radius is
much smaller than the parallel radius the new asymptotic method is developed. The
error of the asymptotic results is less than 8 % even for μ = 0.3.

In the numerical solution of boundary value problem (6), (7), (10) the main diffi-
culty consist in the choice of an initial approximation for λ0

2 and t0
1 . The appropriate

approximation may be found using the asymptotic formulas, presented in Sects. 6–8.
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Simulation of Cardiac Cell-Seeded Membranes
Using the Edge-Based Smoothed FEM

Ralf Frotscher, Matthias Goßmann, Hans-Jürgen Raatschen, Ayşegül
Temiz-Artmann and Manfred Staat

Abstract We present an electromechanically coupled Finite Element model for
cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al.
that we couple to the McAllister-Noble-Tsien electrophysiological model of purk-
inje fibre cells. The corresponding system of ordinary differential equations is imple-
mented on the level of the constitutive equations in a geometrically and physically
nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical
material parameters are determined from our own pressure-deflection experimental
setup. The main purpose of the model is to further examine the experimental results
not only on mechanical but also on electrophysiological level down to ion channel
gates. Moreover, we present first drug treatment simulations and validate the model
with respect to the experiments.
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1 Introduction

Today the electrophysiological processes during contraction of myocardial cells are
not sufficiently understood. Nevertheless huge efforts in research and in pharmaceu-
tical industry have been made to characterize the effect of medication on those cells
with respect to the incomplete knowledge of cellular processes. Therefore, quanti-
tative assessments, selectivity and compatibility of medication needs to be viewed
with caution.

In our labs one major challenge is to experimentally determine the effects of
drugs on the contractility of myocardial tissue. The so-called CellDrum system,
an inflatable thin silicone membrane with cultivated myocardial tissue, provides
mechanical quantities that we can investigate and evaluate in order to determine the
contractility of cells and the effect of drugs on them. This way we get macroscopic
information about the cardiac tissue being investigated. Even more interesting than
those information is the question: ‘How do the drugs act on the gates that activate and
inactivate cellular ion channels?’ because this is the level where medication changes
the cellular processes. The first simulations of the experiments suggest that we will
be able to extract those information in the near future.

This article is about the establishment of a computational electromechanically
coupled Finite Element model of cardiac tissue on the CellDrum. It uses the experi-
mental results as input, simulates the contractile behaviour of the myocardial tissue
on ion channel level and propagates the action potential to the mechanical (macro-
scopic) level to get a simulation result that is comparable with the experimental
results. In the simulations we are able to investigate the influence of the drugs on ion
channel level and therefore we are able to interpret the experimental results in much
greater detail.

First, in Sect. 2 we present the plate formulation that we use to model the extremely
thin geometry before we explain the so-called edge-based smoothed Finite Element
Method that is well-suited especially for biomechanical simulations, in Sect. 3. The
experimental setup will be explained in Sect. 4, followed by a description of the
electromechanical constitutive model for the cardiac tissue in Sect. 5. We determine
the mechanical material parameters ourselves and explain this procedure in Sect. 6.
Closing the chapter, in Sect. 7 we present numerical in comparison with experimental
results and discuss the model, its benefits and deficiencies as well as currently ongoing
developments in Sect. 8.

2 Plate Formulation

In Fig. 1 the basic kinematic quantities of the formulation are shown. The displace-
ment vector u = [u1, u2, u3]T linearly varies in thickness direction ξ3 and at any
point of the plate is given as

u = v + ξ3w, (1)
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Fig. 1 Global and local coordinate systems e and ξ , displacements vi , rotations wα and normal n

with v = [v1, v2, v3]T representing the translational and w representing the rotational
degrees of freedom. As depicted in Fig. 1, w = [w1,w2]T = [θ2,−θ1]T , which
leads to the detailed description of the displacements in a local coordinate system
ξ = [ξ1, ξ2, ξ3] tangential to the plate middle plane,

u1(ξ1, ξ2, ξ3) = v1(ξ1, ξ2) + ξ3θ2(ξ1, ξ2) (2)

u2(ξ1, ξ2, ξ3) = v2(ξ1, ξ2) − ξ3θ1(ξ1, ξ2) (3)

u3(ξ1, ξ2, ξ3) = v3(ξ1, ξ2), (4)

with the in-plane coordinates ξ1 and ξ2, and ξ3 being the coordinate normal to the
plane.

Following the Reissner–Mindlin approach we formulate the strains as follows

ε = (ε11, ε22, γ12, γ13, γ23)
T =

(
εm

0

)

+
(
ξ3ε

b

0

)

+
(

0
εs

)

, (5)

consisting of a membrane strain part

εm = εl + εnl =
⎛

⎝
v1,1
v2,2

v1,2 + v2,1

⎞

⎠+
⎛

⎜
⎝

1
2 (v3,1)

2

1
2 (v3,2)

2

v3,1v3,2

⎞

⎟
⎠ , (6)

that in turn can be split into a linear and a nonlinear part. The nonlinear part accounts
for the geometrical nonlinearity that arises from the assumption of large displace-
ments. The linear bending and transverse shear parts read as



190 R. Frotscher et al.

εb =
⎛

⎝
w1,1
w2,2

w1,2 + w2,1

⎞

⎠ and εs =
(

v3,1 + w1
v3,2 + w2

)

. (7)

The stress-strain relationship in general is nonlinear thus with σ33 = 0 it reads as

σ =

⎛

⎜
⎜
⎜
⎜
⎝

σ11
σ22
σ12
σ13
σ23

⎞

⎟
⎟
⎟
⎟
⎠

= D(ε,α)

⎛

⎜
⎜
⎜
⎜
⎝

ε11
ε22
γ12
γ13
γ23

⎞

⎟
⎟
⎟
⎟
⎠

(8)

in Voigt’s notation and with D the constitutive tensor depending on the strain and
internal variables α.

3 Basics of the Edge-Based Smoothed FEM

We use the so-called edge-based Smoothed Finite Element Method (ES-FEM) for
the computations because this method shows a very good accuracy when applied
to linear triangular elements, it is insensitive to element distortion and it overcomes
shear locking naturally. We omit variational details and proofs here which can be
found in Liu and Nguyen [1]. Besides ES-FEM there is a large number of different
kinds of the smoothed FEM (S-FEM) with different benefits and drawbacks that
are explained in detail in Liu and Nguyen [1] too. Moreover there is a number of
publications covering different topics concerning S-FEM, like S-FEM for various
2D problems [2–6], its application on plates and shells [7–9], its application to the
extended FEM [10–13], S-FEM for 3D problems [14] and many more.

All different kinds of S-FEM share the idea of smoothing the strain over so-called
smoothing domains Ωs

i

ε̄i = ε̄(xi ) =
∫

Ωs
i

W (xi − x)ε(x)dΩ, (9)

with ε being the usual, possibly known (compatible), strain, W representing a scalar
weighting function and ε̄i being the smoothed strain in Ωs

i . Usually W is chosen in
the way that the smoothed strain in Eq. (9) becomes an area-weighted average of the
strain in the smoothing domain

W (xi − x) =
⎧
⎨

⎩

1

As
i
, x ∈ Ωs

i

0, x �∈ Ωs
i

, (10)
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with As
i the area of the i th smoothing domain. Of course we can apply Eq. (9) to

each strain part separately

ε̄l
i = 1

As
i

∫

Ωs
i

εl
i (x)dΩ, (11)

ε̄b
i = 1

As
i

∫

Ωs
i

εb
i (x)dΩ, (12)

ε̄s
i = 1

As
i

∫

Ωs
i

εs
i (x)dΩ, (13)

ε̄nl
i = 1

As
i

∫

Ωs
i

εnl
i (x)dΩ, (14)

with ε̄l
i , ε̄

b
i , ε̄

s
i , ε̄

nl
i the smoothed linear membrane, bending, shear and nonlinear

strain parts, respectively.
In Eqs. (9) and (11)–(14) we smooth a known strain ε. One way of getting a known

strain field is to perform a standard FE computation and smooth the compatible strain
afterwards. In this case the S-FEM is boiled down to a simple averaging procedure.
As the reader will see below it is more advantageous to avoid the smoothing of the
compatible strain and compute the smoothed strain directly instead. Here we derive
the discretized equations for the smoothed linear membrane strain only. The deriva-
tion for the other smoothed strain parts is straightforward. To get to the discretized
equations we first replace the compatible strain by an unknown strain that can be
computed using the differential operator Ld

ε̄l(xi ) =
∫

Ωs
i

Ld ū(x)W (xi − x)dΩ. (15)

Using integration by parts we are able to transform the domain integral in Eq. (15)
into an integral over the boundary Γ s

i of the smoothing domain

ε̄l(xi ) =
∫

Γ s
i

Ln(x)ū(x)W (xi − x)dΓ −
∫

Ωs
i

ū(x) Ẇ (xi − x)
︸ ︷︷ ︸

=0

dΩ (16)

= 1

As
i

∫

Γ s
i

⎡

⎣
n1 0
0 n2
n2 n1

⎤

⎦

︸ ︷︷ ︸
Ln(x)

ū(x)dΓ ∀x ∈ Ωs
i . (17)
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h

m

k

Fig. 2 Creation of smoothing domains

It is apparent that Ln contains the components of the outward normal vector on the
boundary of the smoothing domain and the strains are no longer the symmetric part of
the displacement gradient. The next step would be to derive the discretized equations
but first we need to understand how the smoothing domains are created.

Figure 2 shows the middle plane of a plate that is meshed with three triangular
elements based on four nodes A, B, C and D. Two smoothing domains Ωs

k and
Ωs

m are highlighted here; the former one bases on edge k and the latter one on
edge m of the standard finite element mesh. Both are formed using the two corner
nodes of the respective edge and the barycenters of the element(s) connected to the
respective edge. Please note that the barycenters are virtual nodes thus they do not
carry additional degrees of freedom. This way we can fill the whole domain with
non-gap and non-overlapping smoothing domains. Contrary to other S-FEM kinds,
in the case of the ES-FEM the smoothing domains are created based on the edges of
the FE mesh. All the following local computations are performed on each smoothing
domain instead of each element.

Besides the fact that the local quantities now lie on smoothing domains the dis-
cretization of Eq. (17) looks quite familiar:

ε̄l(xi ) =
Nn∑

I=1

B̄l
I (xi )d̄I , (18)

with Nn being the number of nodes related to the smoothing domain, B̄l
I being the

respective smoothed strain-displacement matrix and d̄I being the nodal displacement
at node I . Please note that for the computation of the global smoothed displacement
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field, we employ the standard nodal shape functions ΦI , thus

ū(x) =
N∑

I=1

ΦI (x)d̄I . (19)

N is the total number of nodes in the FE mesh. From Eqs. (17), (18) and (19) it is
now possible to construct

B̄l
I = 1

As
i

∫

Γ s
i

Ln(x)ΦI (x)dΓ =
⎡

⎣
b̄I 1 0 0 0 0
0 b̄I 2 0 0 0

b̄I 2 b̄I 1 0 0 0

⎤

⎦ , (20)

with

b̄I (xi ) = 1

As
i

∫

Γ s
i

ΦI (x)ni (x)dΓ. (21)

Placing Gauss Points in the center of each boundary segment of the smoothing domain
(e.g. Γ s

k and Γ s
m in Fig. 2) we can discretize the remaining boundary integral to get

b̄I (xi ) = 1

As
i

Ns∑

k=1

ΦI (xG P
k )ni (xG P

k )lk, (22)

with Ns being the number of boundary segments, xG P
k the Gauss Point at the center

of segment Γk , ni the outward normal vector and lk the length of segment Γk .
It has been mentioned earlier that computing the smoothed strain from Eq. (18)

rather than using a known compatible strain field is beneficial. The first reason is
that the computation of B̄I does not require derivatives of shape functions. The
shape functions themselves are sufficient due to the boundary integral formulation.
Secondly, with the choice of linear triangular elements we compute all quantities in
physical coordinates thus avoid isoparametric mappings.

The given procedure applies to the other parts of B̄ too thus the smoothed strain-
displacement matrix for smoothing domain Ωs

i reads as

B̄i =
⎡

⎣
B̄l

i + B̄nl
i

B̄b
i

B̄s
i

⎤

⎦ , (23)

with B̄i = [B̄1, . . . , B̄Nn ]. B̄l
I has already been given in Eq. (20). The other parts of

the smoothed strain are
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B̄b
I =

⎡

⎣
0 0 0 0 b̄I 1

0 0 0 −b̄I 2 0
0 0 0 −b̄I 1 b̄I 2

⎤

⎦ , (24)

B̄s
I =

⎡

⎢
⎢
⎢
⎣

0 0 b̄I 1
1

Nn

Nn∑

j=1
ΦI (x j ) 0

0 0 b̄I 2 0 1
Nn

Nn∑

j=1
ΦI (x j )

⎤

⎥
⎥
⎥
⎦
, (25)

B̄nl
I =

Nn∑

J=1

⎡

⎣
b̄J1ω̄J 0

0 b̄J2ω̄J

b̄J2ω̄J b̄J1ω̄J

⎤

⎦
[

0 0 b̄I 1 0 0
0 0 b̄I 2 0 0

]

, (26)

with ω̄J the nodal deflection. The sum in Eq. (26) represents the smoothed displace-
ment gradient. The smoothing of which is similar to that of the strain and can be
found in Dai and Liu [3]. Figure 3 shows the different coordinate systems that are
needed for the computation besides the global coordinate system. We introduce the
element coordinate systems ξ̂1 and ξ̂2 as well as a smoothing domain coordinate
system ξ̄1 as shown.

With respect to Fig. 3 we can sum up the computation of B̄i as follows. We
compute both smoothed strain-displacement matrices B̂1 and B̂2 on element level
in the respective element coordinate system and transform them into the smoothing
domain coordinate system to add up the contributions to B̄i from both elements.
Realizing that the case is even simpler if the smoothing domain is built around a
boundary edge of the computation domain (cf. edge m in Fig. 2) the smoothed strain-
displacement matrix on smoothing domain Ωs

i reads as

B̄∗
i = 1

As
i

Ne∑

k=1

Ak R̄1∗k R̂2∗k B̂∗
k T̂ k, (27)

Fig. 3 Element and
smoothing domain coordinate
systems
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with T̂ k being the transformation matrix from global coordinates to element local
coordinates, R̂2∗k a rotation matrix from element to global coordinates, R̄1∗k a rotation
matrix from global to smoothing domain coordinates, Ne the number of elements
around edge i of the FE mesh and the asterisk indicating the applicability to each
strain part. For details concerning the transformation and rotation matrices the reader
is referred to Cui et al. [7].

We remark that, instead of Eq. (25), we compute the transverse shear part using
the so-called Discrete Shear Gap method [15] to avoid transverse shear locking. The
respective formulae are given in Cui et al. [7].

The global smoothed tangent stiffness matrix in the smoothing domain coordinate
system then is given by

K̄ t
I J =

Ns∑

i=1

(
B̄i
)T

I D
(
B̄i
)

J Ai +
Ns∑

i=1

(
Ḡi
)T

I N̆
(
Ḡi
)

J Ai , (28)

with Ns the number of smoothing domains, i.e. edges in the mesh. The second term
in Eq. (28) describes the prestress and consists of

(
Ḡi
)

I =
[

0 0 b̄I 1 0 0
0 0 b̄I 2 0 0

]

(29)

and the matrix of the membrane stress resultants

N̆ =
[

N11 N12
N12 N22

]

. (30)

With the right hand side of the equation system also given in coordinate system ξ̄

we arrive at
K̄ t u = f̄ . (31)

The assembly process for the stiffness matrix and the internal force vector is similar
to the one of standard FEM.

4 Experimental Setup and Methods

Since its invention in 2001 there have been a number of publications concerning the
experimental device called CellDrumTM, e.g. Linder et al. [16], Trzewik et al. [17],
Trzewik et al. [18]. It consists of a circular, 4µm thin silicone membrane with a
diameter of 1.6 cm = 16,000µm. On top of the membrane we cultivate and chemically
fix myocardiac cells in a collagen monolayer. A culture medium keeps the cells alive
and as in the real heart the tissue is autonomously beating. This composite material
is clamped in a fixed ring like shown in Fig. 4. The CellDrumTM then can be placed
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Fig. 4 Seven CellDrums

Fig. 5 Schematic drawing of the inflation experiment

into an inflation setup as depicted in Fig. 5. The inflation setup generates a pressure
and therefore inflates the composite tissue. The corresponding deflection is measured
using a laser sensor resulting in a pressure-deflection curve as shown in the same
figure.

Currently the investigations are limited to so-called 2D or monolayered tissue
with an approximate thickness of around 4µm although in general the experimental
setup allows for 3D tissue with a thickness of hundreds of microns. Due to the circular
shape of the tissue the myocytes do not align in a common preferred direction as can
be seen in Fig. 6. That gives rise to the assumption that the tissue is isotropic.

Figure 7 shows the deflection of the composite in time at constant pressure. In
this case the cells are beating with a frequency of approximately 1 Hz and during
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Fig. 6 1 mm × 1 mm microscopic cutout of the tissue showing isotropy

Fig. 7 Experimental data (incl. noise) showing the change in deflection due to contraction

contraction they change the deflection of the composite by approximately 37µm.
Depending on the medication that we apply to the tissue, the change in deflection
due to the contraction will be different and the beating frequency might change
because the action potential of the cells differs from the normal situation.

The total thickness of a monolayer composite is 8µm. We are producing the
silicone membranes with a thickness of 4µm. Additionally we determine the average
monolayer thickness using a laser scanning microscope (LSM) and find it to be
4µm.
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5 Constitutive Model

In order to appropriately model the passive and active mechanical behaviour of
cardiac tissue it is necessary to employ electromechanically coupled models. In
this work we combine existing electrophysiological and mechanical models on the
constitutive level.

5.1 Mechanical Model

A very widely used mechanical model has been proposed by Hunter et al. [19]. The
main idea is to additively split the Cauchy stress σ into a passive part σp and an
active part σa

σ = σp + σa = 2J−1 B
∂Ψ

∂B
− p I + T (t, B)a ⊗ a, (32)

with Ψ the strain energy function, J the determinant of the deformation gradient, B
the left Cauchy-Green tensor, p the hydrostatic pressure, I the identity tensor, T a
scalar related to the active stress, t the time and a a vector oriented in the direction
of the cardiac muscle fibres. In view of the isotropy shown in Fig. 6 we assume that
a ⊗ a = I . Using the transformation

S = J F−1σ (F−1)T (33)

with the the deformation gradient F we obtain the 2nd Piola-Kirchhoff stress S as

S = Sp + Sa = 2
∂Ψ

∂C
− pC−1 + T (t,C)C−1, (34)

in terms of the right Cauchy-Green tensor C. The passive component of the stress is
not in the focus of this work. Depending on the complexity of the pressure-deflection
curves one observes, one might choose a proper quasi-incompressible hyperelastic
constitutive law like Neo–Hookean, Mooney-Rivlin or Varga. For a comprehensive
overview about this topic the reader is referred to Holzapfel [20].

We follow the approach of Hunter et al. [19] to appropriately model the active con-
tribution to the stress, T (t,C). Firstly it can be simplified to T (t, λ1) = T (t, λ2) =
T (t, λ) because we only work with isotropic circular (2D) monolayers. Using this
approximation Hunter et al. establish a tension-length relation

T (λ) = Tre f (1 + β0(λ− 1))z, (35)
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with Tre f being the reference tension at λ = 1, T being the tension,1 β0 introducing
myofilament cooperativity and z ∈ [0, 1] being an activation parameter ranging from
no activation (z = 0) to full activation (z = 1). Under steady state conditions, i.e. at
a given sarcomere length, z = zSS which is given as

zSS = (Cab)
n

(Cab)
n + (Ca50)

n , (36)

where Cab is the concentration of Calcium bound to so-called troponin C resulting
in increased contractility. Ca50 is the Calcium needed to have 50 % availability of
the muscle (zSS = 0.5) and n is the so-called Hill parameter. Both parameters are
length dependent and can be computed via

n = nre f (1 + β1(λ− 1)), (37)

pCa50 = pCa50re f (1 + β2(λ− 1)), (38)

with Ca50 = 106−pCa50 . In Eq. (36) Cab is still unknown. In the steady state it can
be computed using

Cab

Cabmax
= Cai

Cai + ρ1
ρ0

(
1 − T

γ T0

) . (39)

Herein Cai is the free calcium concentration inside the cell. The attachment of inner
calcium to the troponin C bindings is governed by a constant rate ρ0 = 100 s−1 µM−1

and ρ1 governs the detachment of Cai from troponin C at zero tension and under
several assumptions (cf. [19]) it can be computed to be ρ1 = 163 s−1.

Cai is the main driver for active tension in the mechanical model. Thus it is
important to describe its time course as realistic as possible. Before we come to this
point we sum up the material parameters needed for the mechanical part of the model
in Table 1.

5.2 Electrophysiological Model

In Hunter et al. [19] the inner calcium concentration is represented via a time-
dependent exponential function. This approach does not fit our needs because we
want to model drug treatment appropriately including the heart rate (frequency).
Drugs act on ion channel level thereby changing the action potential of the spe-
cific cell type, namely auto-contractile cardiac cells. Thus we require a system of
differential equations representing the ionic currents that diffuse through the cell
membrane and that determine Cai , rather than computing it explicitly. There are
plenty of models for different kinds of cardiac cells available, ranging from simple

1 More exactly T is the tension in case that the muscle is at rest. Including a history of cross-bridge
bindings one could establish an integral equation for the computation of T .
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Table 1 Parameter values
used in the model

Parameter Value

Ca0 0.01µM

Camax 1µM

τCa 0.06 s

Cabmax 2.26µM

ρ0 100 s−1 µM−1

ρ1 163 s−1

γ 2.6

pCa50re f 6.2µM

nre f 6.9

β0 1.45

β1 1.95

β2 0.31

Tre f 0.5808 kPa

models (2 parameters) to very complex models (60 parameters) [21, 22]. All of them
are based on the assumption that a limited number of different ions diffuses through
respective ion channels in the cell membrane thus creating a cell membrane potential
Vm that can be described by an ordinary differential equation

∂Vm

∂t
= 1

Cm

(

Istim −
N∑

i=1

Ii (g1, g2, . . . , gMi )

)

. (40)

Therein Cm is the electrical capacitance of the cell membrane, Istim is a (potentially
zero) electrical stimulus, Ii are ionic currents related to ion i and N is the total
number of ionic currents in the model. Each current depends on Mi (usually one
or two) gate variables g j that control the opening and closure of the ionic channel
where ion i diffuses through.

The gates themselves are described using decoupled ordinary differential equa-
tions

∂g j (Vm)

∂t
= α+

j (Vm)(1 − g j )+ α−
j (Vm)g j , (41)

with α+
j and α−

j being experimentally obtained parameters defining the opening and
closure rates of the gate respectively.

We employ the McAllister-Noble-Tsien model [23] which introduces nine dif-
ferent ionic currents and therefore is not too complex to investigate basic properties
of the model. It models self-contractile purkinje fibre cells. We omit the details of
the model here because its basic structure is given by Eqs. (40) and (41) and an
explanation of the model in detail as well as a model summary can be found in
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Fig. 8 Action potential Vm produced by the McAllister-Noble-Tsien model with phases 1–4 as
discussed in the text

McAllister et al. [23]. Nevertheless, in order to understand the action of drugs, it is
necessary to explain the nine ion currents represented in the model.

Figure 8 shows an action potential like it is computed by the McAllister-Noble-
Tsien model. The depolarization (phase 1) is mainly driven by a fast sodium inflow
INa that culminates in hyperpolarization (phase 2). A chloride current Iqr leads to a
quick repolarization that is followed by the first plateau (phase 3) which is assumed to
be governed by a much slower secondary inward sodium current Isi and a potassium
current Ix1 that together balance the plateau. The second plateau (phase 4) is mainly
driven by another potassium current Ix2. Purkinje cells are self-contractile which
is accounted for via a pacemaker potassium current IK 2. Further there are three
background currents, a sodium current INab, a potassium current IK 1 and a chloride
current IClb.

Each of the currents is controlled by either one or two gates described by Eq. (41)
or by one analytical function. To apply drugs to the model one needs to determine a so-
called I C50 value that represents the concentration of the respective drug needed for
half-blocking the respective gate. Knowing the I C50 value and the drug concentration
D we simply introduce a scaling factor [24]

1

1 + D

I C50

(42)

into the respective gate differential equation, Eq. (41).
Up to now we still did not introduce the computation of the inner calcium con-

centration Cai . It is mainly driven by the slow inward current Isi that results from
slow diffusion of sodium and calcium ions through the cell membrane. The idea goes
back to Beeler and Reuter [25] who propose another ordinary differential equation
to determine the calcium concentration from Isi
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∂Cai

∂t
= −1.848 · 10−4 Isi + 0.07(10−4 − Cai ). (43)

In the current model Isi comprises multiple cellular processes like the sodium-
calcium exchanger and the calcium induced calcium release of the sarcoplasmic
reticulum, the latter of which is known to deliver the largest portion of calcium.

On both, the mechanical and the electrophysiological level, the model bases on a
vast amount of material parameters. The mechanical material parameters are listed
in Table 1 and the parameters of the electrophysiological part of the model are listed
in McAllister et al. [23]. From our experimental setup we are able to determine some
mechanical material parameters as described in the next section.

6 Parameter Fitting

Currently we model the passive material response with the Neo–Hookean material.
Its strain energy function Ψ in terms of the principal stretch λ = (λ1, λ2, λ3)

T reads
as

Ψ (λ1, λ2, λ3) = C10(λ
2
1 + λ2

2 + λ2
3 − 3), (44)

with its material constant C10 that defines the slope of the nonlinear stress-strain
curve. Taking into account the active component of the constitutive law we can
specialize (34) using (35) to

S11 = 2C10 − p
1

λ2
1

+ Tre f (1 + β0(λ1 − 1))
1

λ2
1

, (45)

at maximum activation z = 1. The main mechanical parameters in this model are
the Neo–Hookean material constant C10 and the tissue tension at rest Tre f , both
determined by a parameter fitting. To this end we minimize

2C10 + 1

λ2
1

(1 + β0(λ1 − 1))Tre f − Se → Min, (46)

with respect to C10 and Tre f with the stress Se obtained from the experiments. The
experimental stress values can be determined by simple geometric considerations
that are shown in Fig. 9. It is obvious that for the circular isotropic membrane

λ1 = λ2 = λ = d2

d1
(47)

holds with d1 being the initial diameter of the membrane and d2 the arc length in
the deflected state. λ3 = λ−2 can be obtained from the incompressibility condition
J = 1 that has been introduced in Eqs. (45) and (46). The arc length can be computed
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h

d2

u3

p

d1

Fig. 9 Illustration of the deflected CellDrum

from the center deflection u3 via

d2 =
arctan

(
2u3

d1

)

(4u2
3 + d2

1 )

2u3
. (48)

Using a modified Laplace formula for thin-walled structures [17] the experimentally
determined 2nd Piola-Kirchhoff stress is given as

Se =
p
(

d2
2

)2

4hu3
, (49)

with pressure p and membrane thickness h. As usual in soft tissue biomechanics the
Poisson ratio ν is assumed to be close to 0.5.

With respect to the described parameter fitting the data for the membrane-tissue
composite yields C10 = 0.0838284 and Tre f = 0.5808 kPa. Computing the active
stress directly using the simple analytical approach as given in Eq. (49) we find a value
of around 0.37 kPa. In the extensive literature Tre f values in between 1–125 kPa are
reported for single cells, e.g. in Niederer et al. [26] (56.2 kPa), van der Velden [27]
(51 ± 8 kPa) and van der Velden [28] (29.6 ± 4.5 kPa). Here we apply the model
to a tissue and therefore Tre f is considered as the reference active tension of the
whole tissue.

7 Numerical Methods and Results

The parameter fitting has been implemented in SCILAB whereas the analysis of
the raw experimental data has been done using the software package R. For the
FE model we use the open source industrial software Code_Aster from the French
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utility Electricité de France (EDF). The plate ES-FEM as well as the constitutive
law including the electrophysiological system of ODEs have been implemented in
Code_Aster. The nonlinear equation system in Eq. (31) is solved using a Newton-
Raphson algorithm with a relative error of erel = 10−6 at discrete times ti . At each
Gaussian point we solve the stiff system of ODEs with an adaptive time stepping
scheme in the way that the Newton-Raphson time interval [ti , ti+1] is further divided
into m time steps because the electrical processes are much faster than the mechanical
response. A fourth order singly-diagonal implicit Runge-Kutta solver with adaptive
time stepping [29] which has been shown to be unconditionally A-stable is used for
the solution of the system of ODEs.

7.1 Numerical Model

Due to isotropy and symmetry we model only a quarter of the CellDrum and ap-
ply appropriate boundary conditions as depicted in Fig. 10. We discretize this sim-
ple geometry with around 6,600 3-noded triangular elements. The fineness of the
discretization is mainly due to the extremely large deflection of the CellDrum.
It has a diameter of 16 mm and in the case of a cell monolayer it has a thick-
ness of only 0.008 mm. Therefore we have to deal with radius-thickness ratios of
around 1,000 and a maximum deflection of the membrane in the range of 2.5–
3 mm. This computationally demanding situation requires a large number of time
steps. Especially at low pressures we need a very fine time discretization to achieve
convergence.

7.2 Simulation of Pressure-Deflection Curves

We first validate the model by simulating the experimental pressure-deflection curves.
The contraction of the cells produces an active stiffness contribution that reduces the
deflection of the membrane as observed in Fig. 7. This change in deflectionΔuc

3 due

Fig. 10 Symmetry boundary
conditions for the quarter
CellDrum model
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Fig. 11 Comparison of seven experimental (continuous lines) and simulation (continuous line with
markers) results

to contraction is in the range of 10–40µm and therefore is much smaller than the usual
deflections of 1–2 mm at which we investigate the membrane. Consequently in those
simulations we do not compute the electrophysiological cell processes but simply
assume maximum activation of the cells (i.e. z = 1). Figure 11 shows seven exper-
imental pressure-deflection curves of 4µm thick silicone membranes with a 4µm
thick monolayer of cultivated cardiac tissue. We use those curves for the parameter
fitting and with the resulting parameters we simulate the shown pressure-deflection
curve that perfectly fits the experimental results.

7.3 Simulation of Cell Contraction

To simulate single or multiple contractions we start at a certain point of the simulation
result of Sect. 7.2. This starting point can be chosen depending on the experimental
results as follows.

From the experiments we are able to extract the deflection of the membrane when
the cells are inactivated. For clarity Fig. 12 shows only one experimental result that
has a deflection at rest of 1.23 mm and compares it to a simulation result. Of course
different experimental results will show different deflections at rest in the order of
approximately 0.05 mm. Therefore we can select a time step of the pressure-deflection
simulation in Sect. 7.2 at which the membrane has a deflection that is close to the one
shown in the experiments. If that doesn’t provide sufficient accuracy we can simulate
some more pressure to get to the proper deflection at rest.

Starting from this resting state when the cells are inactive, we now simulate one or
multiple contractions using all parts of the model, i.e. computing the electrophysio-
logical processes on cell level and use the resulting free inner calcium concentration
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Fig. 12 Comparison of
Simulation (continuous line)
and Experiment (dashed line)
with respect to Δuc

3

as an input to the mechanical part of the constitutive model at time ti . The time steps
Δti = ti+1 − ti need to be chosen in the way so that the mechanical response of the
model is sufficiently accurate. The electrophysiological processes are much faster
and therefore are computed in adaptively subdivided time steps.

Figure 12 compares one contraction of the CellDrum with a simulation using the
McAllister-Noble-Tsien model [23] for purkinje fibres. It is obvious that the change
in deflection is nearly the same in both cases. Thus the contractility of the cells can be
captured very well by the model. We also observe that the duration of the deflection,
i.e. the contraction time is much shorter in the simulation (0.2 s vs. 0.6 s). This effect
as well as other deficiencies of the current model will be discussed in Sect. 8.

7.4 Simulation of Drug Treatment

We usually measure 3–5 CellDrums at 5 different concentrations of a drug each. As
in the previous Sect. 7.3 we compare the simulation to only one experimental curve
for clarity.

Figure 13 shows the same two curves as Fig. 12 together with one experimental
and one simulation result of Lidocaine treatment. We applied 100µM Lidocaine in
the experiment as well as in the simulation and recognized a decay in contractility

Fig. 13 Comparison of
control group (continuous
lines) and treatment with
100µM of Lidocaine (dashed
lines) in experiment (without
markers) and simulation (with
markers), respectively
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Fig. 14 Lidocaine affecting contractility in experiment (triangular markers) and simulation (rec-
tangular markers); sample size m = 3

as expected. Although the model can represent the action of Lidocaine on the tissue
qualitatively there is a quantitative difference that can be explained by Fig. 14.

It displays Δuc
3 at different Lidocaine concentrations and shows that the model

is able to capture the qualitative effect of Lidocaine on the tissue appropriately. The
quantitative difference originates from the experiment. There is a significant dif-
ference in the experimentally determined Δuc

3 without drug treatment in Figs. 13
(Δuc

3 ≈ 15µM) and 14 (Δuc
3 ≈ 9µM) i.e. the control group in Fig. 14 does not

show the behaviour of the control group in Fig. 13. This can be explained by the
fact that the experimental results show significant differences depending on whether
the cells come out of different batches, depending on their age and on their degree
of specialization. On the CellDrum the cells can survive up to four months and
the experimental results differ if one experiment is done in week 2 of cultivation
and the other one is done in week 12. Therefore a proper quantitative analysis of
drug effects is not yet possible. Nevertheless Fig. 14 clearly shows that the slopes
of the simulation and the experiments are nearly identical. Currently the experimen-
tal basis is too small to draw significant conclusions but there is enough evidence
that the model and its future developments can help to interpret the experimen-
tal results coming from the CellDrum and possibly other devices in much more
detail.

Figure 15 compares the change in beating frequency with respect to the concentra-
tion of the applied Lidocaine between experiment and simulation. Again, the control
groups show different beating frequencies thus a quantitative comparison of the
results is not yet possible. Possible reasons for these differences already have been
explained above. Nevertheless it is obvious that from the qualitative point of view
the model is able to predict the change in beating frequency due to the application
of Lidocaine.
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Fig. 15 Lidocaine affecting beating frequency in experiment (triangular markers) and simulation
(rectangular markers); sample size m = 3

8 Discussion and Outlook

The results in the previous section clearly show that the computational model captures
the contractile behaviour of cardiac tissue. Also it qualitatively predicts the effects of
medication on contractility and beating frequency. First simulation results have been
shown in comparison to experimental results indicating that the described model is
very promising for tasks like the enhanced interpretation of experimental results and
the computational investigation of drug effects on cardiac tissue (cf. [30]).

It is obvious that the model still needs some development in order to reach the
objective of quantitative comparability of experiment and simulation. In the future
an improved model can be applied to identify a drug that is acting on a tissue, to
identify unknown effects of drugs on cardiac tissue and to replace animal testing or
other expensive and time-consuming experiments by simulations. Finally we discuss
the different parts of the model and its upcoming developments that partially are
already work in progress.

8.1 Edge-Based Smoothed Finite Element Method

The edge-based plate FE model has been proven to be well suited for biomechanical
applications. Not only for simple geometries like the one discussed in this article but
especially for more complex geometries the ES-FEM is a good choice. In soft tissue
simulations elements often become distorted due to large deformations and this is
even worse if the elements are distorted from the beginning because of a poor mesh
for a complex geometry. Moreover, we could demonstrate that ES-FEM produces
highly accurate results even for linear triangular elements.
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8.2 Mechanical Part of Constitutive Model

The Hunter et al. model for active stress in cardiac tissue is well suited for our
investigations. We have not even implemented the full model by ignoring the time-
dependent relaxation of the muscle cells due to cross-bridge detachment. Niederer
et al. further developed this model and performed an extensive literature research in
order to find proper material parameters for their model [26]. As those parameters
significantly differ from the original parameter set in Hunter et al. [19] one of the
next steps will be the modification of our model in those terms. This will include
very recent parameter adjustments as done by Weise et al. to model human cardiac
cells more appropriately [31].

8.3 Electrophysiological Part of Constitutive Model

The current electrophysiological model simulates the action potential of purkinje
fibre cells which is necessary in terms of self-contractility. In reality the tissue con-
struct consists of predominantly ventricular-like cells and a few nodal cells grown
in a monolayer from induced pluripotent stem (iPS) cells. That would give reason to
a bidomain model but assuming that the drugs act on the cells only and not on the
extracellular matrix we will stick with a monodomain model. Anyway we need to
replace the current purkinje fibre cell model by a more appropriate ventricular model
of human cells, like the one proposed in ten Tusscher et al. [32]. Still, the current
McAllister model or a similar, more detailed model will provide the pacemaker for
the simulations.

Some simulation results already show that the current model is not detailed enough
to simulate certain drugs like for instance Verapamil because they are acting on ion
channels that are not represented in the model. Especially the time course of the
intracellular calcium concentration can be modelled more appropriately by splitting
up the slow inward current Isi into parts that have an electrophysiological counter-
part in the cell, like the sodium-calcium exchanger and the calcium release of the
sarcoplasmic reticulum, as done in ten Tusscher et al. [32]. We will choose the new
cell model in the way that at least all the drugs can be simulated, which we currently
are investigating or that we are planning to investigate.

8.4 Action Potential Propagation

The model presented in this chapter considers the contraction of cardiac cells cul-
tured on circular flexible membranes to be in accurate synchrony. The underlying
experimental results indicate that this is an appropriate assumption in respect to the
duration of the contraction-relaxation-cycle. Nevertheless, cardiac tissue contraction
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is determined by spatial propagation of the action potential modelled in Sect. 5.2. This
applies for both the situation in vivo as well as the in vitro model represented by
the CellDrum Technology. The propagation of the action potential from cell to cell
is realized by so-called gap junctions. These intercellular protein complexes pro-
vide a direct and open-door-like connection between adjacent cells. Once one cell
undergoes an action potential, involved ions will diffuse through the gap junctions
to proximate cells eliciting a new action potential in the latter. The resulting delay,
which is not yet covered by the model presented above, is rather short as compared to
the total duration of the action potential. This applies especially to our in vitro model
with its maximal propagation distance of 16 mm. However, for a better coverage of
the in vivo situation, in a next step the spatial action potential propagation will be
implemented into the model by a generalized diffusion equation. Considering the
propagation the model stays prepared for the simulation of larger and differently
shaped geometries as well as for simulations at different spatial scales, e.g. at organ
level. The parabolic differential equation describing the membrane potential Vm then
reads as

Cm
∂Vm

∂t
= ∇ (G(C)∇Vm)− Im, (50)

with G the strain-dependent diffusion tensor and Im the sum of all membrane currents.
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Determining the Modulus of Elasticity for
Polymer Materials by Numerical Testing
Thin-Walled Double-Layer Circular Shells

Sergej Gluhih, Andrejs Kovalovs and Andris Chate

Abstract The paper describes the method of determining the elasticity modulus of
the external layer of the double-layer circular shell consisting of multiple layers with
various elasticity modules. The internal layer is produced of the material, which
elasticity module is known to experimenters. The outer layer is made of a softer
material with unknown elasticity modulus. The method is based on the numerical
solution of the nonlinear contact task of compressing the single-layer circular shell,
which has been modified to provide solution for the double-layer circular shell.
As a result of the research the ratios were obtained, which allow to determine the
elasticity module of the external layer given the known value of elasticity module
of the internal layer. The method is useful for testing the time and external factors
dependant properties of the materials.

1 Introduction

Due to extensive use of polymer film materials in various economic sectors their
overall production volumes demonstrate steady growth. Polymer films have wide-
spread application in many industries and life spheres. With the development of
new technologies extra thin films and nanofilms appear and gain universal currency
alongside with the compositions, which include “nano” elements [5].

Creation of new films with targeted properties and high performance character-
istics is one of the prospective lines of development. Therefore, the main require-
ments specified to films are good physical, mechanical (especially high resistance to
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deformation—tensile strength) and chemical properties. Polymers are characterised
by a wide range of mechanical characteristics that have high dependency on their
structure [2].

In the course of continuous operation the structure of the material may change.
Biological, chemical and thermal effect may cause material destruction, which results
in the changes of its mechanical properties. Therefore, it becomes essential to define
the material properties both at the stage of its preparation as well as during opera-
tion [1].

In many application tasks where the properties of a material are being tested, the
determination of the modulus of elasticity is of primary importance. Different types
of plastic materials are often compared on the basis of tensile strength, elongation,
and tensile modulus data. Therefore, the data obtained by this method cannot be
considered valid for applications involving load-time scales or environments widely
different from this method [7].

There is a need to develop new tools and methods for determining and examining
the properties of polymer films through synthesis of experimental and theoretical
research.

As an example, the authors would like to mentioned the work by Yakupov, in which
the author suggests a two-dimensional approach to the research of the properties of
thin coatings by blowing the round membrane. The elasticity modulus as well as the
deformation pattern are determined here with the help of experimental data, by using
the correlation of shell theories in elastic and plastic areas [3, 13]. Interest causes
another research involving use of ultrasonic equipment for determining the elastic and
plastic properties of polymer films [9]. Atsumi Ohtsuki suggested his own method for
determining the Young’s modulus. He provided a new mechanical testing method for
measuring the Young’s modulus in a flexible multi-layered material. The method is
based on the nonlinear deformation theory that takes into account large deformation
behaviour (i.e., postbuckling behaviour) of multi-layered materials. Exact analytical
solutions are obtained in terms of elliptic integrals. By just measuring the horizontal
or the vertical displacement, every Young’s modulus in a thin flexible multi-layered
material can be easily obtained [10].

The goal of the present work is the non-destructive method of determining the
modulus of elasticity of the external layer of a double-layer cylindrical shell accord-
ing to finite element solution. The inner layer of the tested specimen is made of the
material with the known elasticity modulus. The modulus of elasticity of the material
of the external layer in unknown. The suggested method allows to research polymer
material with the possibility of measuring the modulus of elasticity as a function
of various processes affecting the structure and properties of a polymeric material.
The numerical solution is found by applying the finite elements method with the
help of the programme ANSYS. It is based on the solution of a geometrically non-
linear problem of transverse deformation of thin-walled circular cylindrical shells
due to large displacements and rotations. Contact zone of deformation occurs when
the ring is also responsible for nonlinear problem to be solved. Adding non-linear
effects allows using a considerably broader range of the load curve in the elastic



Determining the Modulus of Elasticity for Polymer Materials … 215

area of deformation, thus making sure that determination of the elasticity modulus
is performed with a higher accuracy.

The task makes use of the solution of a geometrical non-linear problem by deform-
ing the thin-walled round cylindrical shells between the two planes, which was earlier
discussed by the authors [4, 6]. A similar problem was considered earlier by [8] in
a geometrically nonlinear statement for a linear material obeying Hooke’s law. The
solution was obtained by using the variational method of minimization of poten-
tial energy on the assumption of the predominant role of bending energy over the
energy of compression and shear. At the start of the paper the authors briefly review
the algorithm of determining the elasticity modulus of a single-layer circular shell;
then, the above mentioned solution technique is applied for determining the elasticity
modulus of a double-layer circular shell.

2 Determination of the Elasticity Modulus for One Layer
of Ring Specimens

Let us consider a thin homogeneous isotropic cylindrical shell under the action of a
force that is transmitted through the undeformed upper plane as shown in Fig. 1. The
dependence of the force P on the displacementΔ is now called the loading diagram.
The dimensionless parameters of displacement α and load β are presented as:

α = Δ

2R
, β = P R2

E I
, (1)

where E—elasticity modulus of the material, J = lt3/12 moment of inertia, R—
radius of the cylinder, l—width of the specimen, t—thickness of the specimen,
P—force, Δ—displacement.

The unified loading diagram in the α−β coordinates allows us to solve the inverse
problem on identification of the elastic modulus. At the first stage, the finite element
model of thin circular shells has been used to model the unified loading diagram
with the initial assumption of parameter values. The initial assumption of parameter
values has been determined by using the method of planning of experiments.

Fig. 1 Contact compression
of a circular shell

R

P

t
Δ
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The criterion for elaboration of the plans of the experiment is to be independent
from the mathematical model of the designed object Rikards [11], Rikards et al. [12].
The initial information for development of the plan is the number of factors n and
the number of experiments k. The points of experiments in the domain of factors are
distributed as regularly as possible. For this reason, the following criterion is used:

Φ =
k∑

i=1

ti ×
k∑

j=i+1

ti ×
(

1

l2
i j

)

⇒ min, (2)

where li j is the distance between the points having numbers i and j (i �=1). Physically
it is equal to the minimum of potential energy of repulsive forces for the points with
unity mass if the magnitude of these repulsive forces is in inverse proportion to the
distance between the points.

The plan of the experiment is characterized by the matrix of plan Bi j . The domain
of the experiments is determined as x j ∈ g�xmin

j ; xmax
j � and the points of the exper-

iments are calculated by the following expression:

x (i)j = xmin
j +

(
1

k − 1

)

(xmax
j − xmin

j )(Bi j − 1), (3)

Here i = 1, 2, . . . , k and j = 1, 2, . . . , n.
The plan of the experiment was formulated for four design parameters and 30

experiments. The upper and lower limits of the identification parameters were taken
as follows:

1000 MPa ≤ E ≤ 5000 MPa
0.05 mm ≤ t ≤ 0.25 mm

20 mm ≤ R ≤ 60 mm
0.1D % ≤ Δ ≤ 0.9D %

where D is diameter of the cylinder.
Then, finite element analysis was performed at the points of the experiments’

plan. The finite-element model constructed in the ANSYS program has the form of a
quarter of a circular ring due to symmetry. The boundary conditions correspond to the
symmetry conditions. Since we look at thin-walled shells, which can be subjected to
great displacements and rotations, for different forms of elastic potentials, as a finite
element we took a SHELL181 shell element, which corresponds to the requirements
adopted. In the contact zone, a CONTA174 contact element is used. The elastic
properties of the material were modelled by Hooke’s relations. The problem is solved
with account of the friction in the contact zone.

After a series of finite element calculations performed for these shells, the forces
obtained are converted into a relative loadingβ according to Eq. (1). The unified load-
ing diagram in dimensionless coordinates (Fig. 2) in the given range of parameters
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Fig. 2 Unified loading
diagram
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is approximated by the sixth-degree polynomial:

β = 3650.8α6 − 7254.8α5 + 5496.6α4 − 1879.5α3 + 272.65α2

−0.7882α − 0.0001 (4)

Approximation is a universal solution for thin-walled ring specimens within the
above mentioned range of parameters, which allows, by comparing with the result of
the experiment on compression of the ring specimen, to solve the inverse problem of
determining the elasticity modulus at the 5–8 selected points on the loading diagram.
The algorithm of deriving of the elasticity modulus from unified loading diagram
can be described as follows. Five or eight points of the loading diagram are measured
in the range of relative displacements α = 0.2 − 0.8 on the test bench. The high
value of α allows using a considerably wider range of the loading curve in the elastic
area of deformation and thus increasing the accuracy of results. The relation between
forces and displacements is recalculated in the dimensionless α−β coordinates. By
comparing the resulting data with the unified loading diagram, we find the modulus
for each point of the particular loading diagram. Over all measurement points, the
average value of is determined; then the deviation of the modulus from its average
value is calculated at each point, and the average value of error | δ | is found.

Using 0.2 mm-thick polyvinyl chloride (PVC) film, three identical series of ring
specimens with the radius R = 15, 30, and 45 mm and width l = 10, 20, 30, and
40 mm were prepared for each value of R. An example of such procedure is given
in Table 1. An error | δ | not exceeding 5 % points to a satisfactory accuracy of the
obtained result.

The aim was to determine the modulus of the material according to the suggested
method and to compare the resulting data with those derived during the tension test.
Let us consider the problem of compression of circular specimens. Results of the
experiment are provided in Table 2. The tensile experiments were carried out on a
Zwick-100 testing machine according to ASTM D638M. The average value of the
elasticity modulus in tension was 2,670 MPa, which was 5 % higher or less than the
value found for the elastic modulus in bending.
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Table 1 Data processing for a ring specimen with R = 29.5 mm, l = 40 mm, and t = 0.2 mm

Δ P (N) α β E (MPa) | δ | (%)

7.5 0.14 0.13 1.65 2,840 6.8

11.0 0.19 0.19 2.31 2,636 0.9

14.0 0.23 0.24 2.67 2,798 5.2

23.5 0.34 0.40 4.37 2,570 3.3

33.0 0.64 0.56 8.58 2,450 7.9

Average 2,659 4.8

Table 2 Experimental values of E [MPa] during compression of ring specimens

R (mm) l = 10 (mm) l = 20 (mm) l = 30 (mm) l = 40 (mm)

15 2,585 2,600 2,623 2,655

30 2,595 2,590 2,638 2,605

45 2,678 2,696 2,663 2,653

3 Determination of the Elasticity Modulus for External
Layer of a Double-Layer Circular Shell

Let us consider a double-layer circular shell consisting of the layers with different
elasticity moduli. The internal layer of the specimen is made of the stiff polymer
with a relatively high modulus E1 = 103 MPa, layer thickness t1. The external layer
is made of a softer polymer with the modulus of elasticity E2 = 10, 100, 1,000 MPa,
layer thickness t2. Poisson’s ratios for both layers are the same and equal to 0.35.

Let us assume that we know the values of the average radius of the circular
shell, R, width l, thickness of both layers t1 and t2 and the modulus of elasticity of
the inner layer E1. Our target value will be the value of the modulus of elasticity
of external layer E2. We will apply the above described method to determine the
modulus of elasticity of the second layer made of soft polymer. For this purpose we
shall introduce the notion of the so-called reduced modulus of elasticity Ereduced.
This modulus may be treated as the value adjusted to a single-layer shell with the
thickness t = t1 + t2. This modulus is calculated with the help of a universal loading
diagram in the joint coordinate system (see Eq. 2). The adjusted modulus ensures
the equality of the loading diagrams of the double-layer shell and the corresponding
single-layer shell.

Let us develop the task model for compressing the double-layer shell as it was done
for the single-layer shell. For finite element modelling in the programme ANSYS
the element SHELL181 is used, which permits presence of multiple layers. The
layers are assumed to be homogeneous and isotropic. Let us perform a range of
calculations for the shell radius R = 50 mm, t = 1 mm and t1 = t2 = 0.5 mm. The
shell width l is assumed to be a unit quantity. The modulus of elasticity of the first



Determining the Modulus of Elasticity for Polymer Materials … 219

Table 3 Loading diagrams

No Δ (mm) P (N)

E2 = 1000 (MPa) E2 = 100 (MPa) E2 = 10 (MPa) K1 K2

1 4 0.02 0.0056 0.0029 3.63 7.05

2 12 0.0547 0.0151 0.0078 3.62 7.00

3 20 0.0843 0.0232 0.0120 3.63 7.03

4 28 0.1104 0.0305 0.0157 3.62 7.02

5 36 0.1404 0.0388 0.0200 3.62 7.01

6 44 0.1847 0.0510 0.0265 3.62 6.97

7 52 0.2542 0.0700 0.0366 3.63 6.94

8 60 0.3719 0.1022 0.0534 3.64 6.96

9 68 0.5916 0.1633 0.0844 3.62 7.01

10 76 1.0925 0.2979 0.1551 3.67 7.05

Here K1 = P(E2 = 1, 000 MPa)/P(E2 = 100 MPa), K2 = P(E2 = 1, 000 MPa)/P(E2 =
10 MPa)
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Fig. 3 Loading diagrams for three different values of the modulus of elasticity of external layer E2

layer is E1 = 1, 000 MPa; for the second layer we are going to assume three levels
E2 = 10, 100 and 1,000 MPa. The results of calculation are presented in Table 3 and
graphically shown in (Fig. 3).

The obtained loading results are used to construct the loading diagrams of the
modulus of elasticity of the second layer E2. Moduli K1 and K2 have been obtained
by dividing the ordinates of the loading diagram for the mentioned single-layer shell
by the corresponding values of the double-layer shell at E2 = 100 and 10 MPa. The
average values of K1 = 3.63 and K2 = 7.01 have the tolerance of less than 2 %.
By knowing K1 and K2 we can now determine the adjusted modulus of elasticity
Ereduced for the double-layer shells. The results of table values are presented in the
diagram (Fig. 3). The loading diagram actually corresponds to the single-layer shell
with the elasticity modulus E2 = E1 = 1000 MPa.
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Fig. 5 Results for five levels t2/t = 0.1 − 0.5 and R/t = 50

The diagram presented below (Fig. 4), allows us to determine the target mod-
ulus of elasticity of the external layer. Procedure of determination the moduli is
the following: the adjusted elasticity modulus is determined according to the above
described method. The obtained value of the modulus is fixed on the Y -axis. The
value marked on the X -axis corresponds to the target modulus E2. Results thus
obtained for t2/t = 0.5 and R/t = 50 are shown in Fig. 4.

Now, let us evaluate the effect of these parameters. Let us consider the relation
between the layer gages. The calculation results are given for five ratios t2/t =
0.1, 0.2, 0.3, 0.4 and 0.5. Calculation results are shown in Fig. 5.

Let us examine the effect of the geometrical parameter R/t . To achieve this, we
need to look at the shells within the range of relative radius R/t = 25 − 200. As
shown in Table 4, the effect of this parameter proved to be infinitesimal within the
0.3 % range, on average. Thus, the above presented diagrams of the dependence of
elasticity moduli on the layer gage ratio (see Fig. 5) can be used across the whole of
the studied range of dependence R/t = 25 − 200.
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Table 4 Results for different values of R/t

R/t E1/Ereduced | δ | (%)

E2 = 100 (MPa) E2 = 10 (MPa) E2 = 100 (MPa) E2 = 10 (MPa)

25 3.61 6.99 0.49 0.54

35 3.62 7.00 0.35 0.39

50 3.63 7.02 0.10 0.20

60 3.63 7.03 0.06 0.06

75 3.64 7.04 0.17 0.18

100 3.64 7.06 0.26 0.38

200 3.65 7.07 0.45 0.62

Average 3.629 7.029 0.27 0.34

4 Conclusion

The research suggests the method of determination of the elasticity modulus of the
external layer of a double-layer circular shell given the known value of this modulus
of the internal layer of the shell. The method is based on the solution of a nonlinear
contact problem for a circular compressed specimen within the finite element package
ANSYS. First, the solution is demonstrated and the procedure of determining the
modulus of elasticity of a single-layer shell is described, which is supported by
experimental verification of the results.

After modification of the given method numerical solution of the double-layer
shell is shown. Based on the results of parametric study of double-layer ring speci-
mens the solution for the modulus of elasticity of the external layer is suggested.

The suggested non-destructive method allows to take advantage of a “one speci-
men” approach, that is the possibility to measure the elasticity modulus depending on
the processes occurring inside a specimen and changing the structure of the polymer
material. For example, deterioration of the material, sorption and desorption by the
material of liquid-saturated media and steam, temperature fluctuations.
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Three-Dimensional Exact Analysis
of Functionally Graded Laminated
Composite Plates

Gennady M. Kulikov and Svetlana V. Plotnikova

Abstract A paper focuses on the implementation of the method of sampling surfaces
(SaS) to three-dimensional (3D) exact solutions for functionally graded (FG) lami-
nated composite plates. According to the SaS method, we introduce inside the nth
layer In not equally spaced SaS parallel to the middle surface of the plate in order to
choose the displacements of these surfaces as basic plate variables. This permits the
presentation of the proposed FG laminated plate formulation in a very compact form.
It is important that the SaS are located inside each layer at Chebyshev polynomial
nodes. This fact allows one to uniformly minimize the error due to Lagrange inter-
polation, i.e. the use of Lagrange polynomials of high degree becomes possible. As a
result, the SaS method can be applied efficiently to 3D exact solutions of elasticity for
FG laminated plates with a specified accuracy utilizing the sufficient number of SaS.

1 Introduction

Nowadays, the functionally graded (FG) materials are widely used in mechanical
engineering due to their advantages compared to traditional laminated materials
[5, 11]. However, the study of FG plates is not a simple task because the material prop-
erties depend on the thickness coordinate and some specific assumptions regarding
their variations in the thickness direction are required [9]. This fact restricts the imple-
mentation of the Pagano approach [24, 29] for the 3D exact analysis of FG simply
supported rectangular plates [31]. As concerned other two popular approaches to 3D
exact solutions, namely, the state space approach and the asymptotic approach they
can be applied efficiently to FG plates, see Alibeigloo [1], Alibeigloo and Liew [2],
Cheng and Batra [8], Reddy and Cheng [26], Zhong and Shang [33]. A new approach
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to closed-form elasticity solutions for FG isotropic and transversely isotropic plates
is presented in [10, 30]. These solutions are based on the general solution of the
equilibrium equations of inhomogeneous elastic media [25]. The efficient approach
to the 3D exact analysis of thermoelasticity has been proposed by Vel and Batra
[27, 28]. They studied the static and transient thermoelastic problems for FG sim-
ply supported plates whose material properties and basic variables are presented by
Taylor series expansions through the thickness. Ootao [22], Ootao and Ishihara [23],
Ootao and Tanigawa [21] obtained the 3D exact solutions for the transient thermoelas-
tic response of FG strips and rectangular plates with simply supported edges under
nonuniform heating on outer surfaces. The original approach to analytical solutions
for the FG beams and plates was developed in Altenbach and Eremeyev [4], Birsan et
al. [6]. This approach is based on the so-called theory of directed curves and surfaces
[3, 32], which follows the original idea of Cosserat brothers. However, the 3D exact
solutions for FG laminated plates through the use of the recently developed concept
of sampling surfaces (SaS) [15, 16] can not be found in the current literature. The
present paper serves to fill the gap of knowledge in this research area.

The SaS approach has been already applied efficiently to 3D exact solutions of
elasticity for laminated composite plates and shells [17–20]. In accordance with this
method, we choose inside the nth layer In not equally spaced SaS Ω(n)1,Ω(n)2,…,
Ω(n)In parallel to the middle surface of the plate and introduce the displacement
vectors u(n)1,u(n)2, ...,u(n)In of these surfaces as basic plate variables, where In ≥ 3.
Such choice of unknowns in conjunction with the use of Lagrange polynomials
of degree In − 1 in the thickness direction permits the presentation of governing
equations of the proposed FG plate formulation in a very compact form.

An idea of using the SaS can be traced back to Kulikov [12], Kulikov and Carera
[13] in which three, four and five equally spaced SaS are employed. These contri-
butions describe the SaS approach applied to the approximate solution of 3D shell
problems. It is important to note that the more general SaS approach with the arbi-
trary number of equally spaced SaS [14, 15] developed later by the authors does not
work properly with Lagrange polynomials of high degree because of the Runge’s
phenomenon [7], which yields the wild oscillation at the edges of the interval when
the user deals with any specific functions. If the number of equally spaced nodes is
increased then the oscillations become even larger. However, the use of Chebyshev
polynomial nodes inside each layer can help to improve significantly the behavior of
Lagrange polynomials of high degree because such a choice allows one to minimize
uniformly the error due to Lagrange interpolation.

2 Kinematic Description of Undeformed Plate

Consider a FG laminated plate of the thickness h. Let the middle surface Ω be
described by Cartesian coordinates x1 and x2 . The coordinate x3 is oriented in
the thickness direction. The transverse coordinates of SaS inside the nth layer are
defined as
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Fig. 1 Geometry of the laminated plate

x (n)13 = x [n−1]
3 , x (n)In

3 = x [n]
3 , (1)

x (n)mn
3 = 1

2

(
x [n−1]

3 + x [n]
3

)
− 1

2
hn cos

(

π
2mn − 3

2 (In − 2)

)

, (2)

where x [n−1]
3 and x [n]

3 are the transverse coordinates of layer interfaces Ω [n−1] and

Ω [n] depicted in Fig. 1; hn = x [n]
3 − x [n−1]

3 is the thickness of the nth layer; In is the
number of SaS corresponding to the nth layer; the index n identifies the belonging of
any quantity to the nth layer and runs from 1 to N ; N is the total number of layers;
the index mn identifies the belonging of any quantity to the inner SaS of the nth layer
and runs from 2 to In − 1, whereas the indices in, jn, kn to be introduced later for
describing all SaS of the nth layer run from 1 to In . Besides, the tensorial indices i ,
j , k, l range from 1 to 3 and Greek indices α, β range from 1 to 2. It is worth noting
that the transverse coordinates of inner SaS Eq. (2) coincide with the coordinates of
Chebyshev polynomial nodes [7]. This fact has a great meaning for the convergence
of the SaS method [16–18].

3 Kinematic Description of Deformed Plate

The components of the strain tensor εi j are written as

2εi j = ui, j + u j,i , (3)

where ui are the displacements of the plate.
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We start now with the first assumption of the proposed FG laminated plate formu-
lation. Let us assume that the displacement and strain fields are distributed through
the thickness of the nth layer as follows:

u(n)i =
∑

in

L(n)in u(n)in
i , x [n−1]

3 ≤ x3 ≤ x [n]
3 , (4)

ε
(n)
i j =

∑

in

L(n)inε
(n)in
i j , x [n−1]

3 ≤ x3 ≤ x [n]
3 , (5)

where u(n)in
i (x1, x2) are the displacements of SaS of the nth layer Ω(n)in , ε(n)in

i j

(x1, x2) are the strains of the same SaS; L(n)in (x3) are the Lagrange polynomials of
degree In − 1 defined as

u(n)in
i = ui

(
x (n)in

3

)
, (6)

ε
(n)in
i j = εi j

(
x (n)in

3

)
, (7)

L(n)in =
∏

jn �=in

x3 − x (n) jn
3

x (n)in
3 − x (n) jn

3

. (8)

The use of relations (3), (6) and (7) yields

2ε(n)in
αβ = u(n)in

α,β + u(n)in
β,α , (9)

2ε(n)in
α3 = β(n)in

α + u(n)in
3,α , (10)

ε
(n)in
33 = β

(n)in
3 , (11)

β
(n)in
i = ui,3

(
x (n)in

3

)
, (12)

where β(n)in
i (x1, x2) are the values of derivatives of displacements with respect to

transverse coordinate x3 at SaS defined according to Eq. (4) as

β
(n)in
i =

∑

jn

M (n) jn
(

x (n)in
3

)
u(n) jn

i , (13)
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where M (n) jn = L(n) jn
,3 are the derivatives of Lagrange polynomials, which are

calculated at SaS as follows:

M (n) jn
(

x (n)in
3

)
= 1

x (n) jn
3 − x (n)in

3

∏

kn �=in , jn

x (n)in
3 − x (n)kn

3

x (n) jn
3 − x (n)kn

3

for jn �= in,

M (n)in
(

x (n)in
3

)
= −

∑

jn �=in

M (n) jn
(

x (n)in
3

)
. (14)

This means that the key functions β(n)in
i of the proposed FG laminated plate

formulation are represented as a linear combination of displacements of SaS of the
nth layer u(n) jn

i .

4 Variational Formulation

The variational equation for the FG laminated plate in the case of conservative loading
can be written as

δΠ = 0, (15)

where Π is the total potential energy given by

Π = 1

2

∫∫

Ω

∑

n

x [n]
3∫

x [n−1]
3

σ
(n)
i j ε

(n)
i j dx1dx2dx3 − W, (16)

W =
∫∫

Ω

(
p+

i u[N ]
i − p−

i u[0]
i

)
dx1dx2 + WΣ, (17)

where σ
(n)
i j are the components of the stress tensor of the nth layer; u[0]

i = u(1)1i and

u[N ]
i = u(N )IN

i are the displacements of bottom and top surfacesΩ [0] andΩ [N ] ; p−
i

and p+
i are the loads acting on bottom and top surfaces; WΣ is the work done by

external loads applied to the edge surface Σ .
Substituting the strain distribution (5) in (16) and introducing stress resultants

H (n)in
i j =

x [n]
3∫

x [n−1]
3

σ
(n)
i j L(n)in dx3, (18)
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one obtains

Π = 1

2

∫∫

Ω

∑

n

∑

in

H (n)in
i j ε

(n)in
i j dx1dx2 − W. (19)

The second assumption of the FG laminated plate formulation is quite standard
and consists in the following:

σ
(n)
i j = C (n)

i jklε
(n)
kl , x [n−1]

3 ≤ x3 ≤ x [n]
3 , (20)

where C (n)
i jkl are the elastic constants of the nth layer.

Next, we introduce the third and last assumption. Let us assume that elastic
constants are distributed through the thickness of a plate as follows:

C (n)
i jkl =

∑

in

L(n)in C (n)in
i jkl , (21)

where C (n)in
i jkl are the values of elastic constants on SaS of the nth layer.

Substituting constitutive Eq. (20) in (18) and taking into account the through-
thickness distributions (5) and (21), we have

H (n)in
i j =

∑

jn ,kn

Λ(n)in jnkn C (n) jn
i jkl ε

(n)kn
kl , (22)

where

Λ(n)in jnkn =
x [n]

3∫

x [n−1]
3

L(n)in L(n) jn L(n)kn dx3. (23)

5 3D Exact Solution for Functionally Graded Laminated Plates

In this section, we study a simply supported FG laminated orthotropic rectangular
plate. The edge boundary conditions of the plate are written as

σ
(n)
11 = u(n)2 = u(n)3 = 0 at x1 = 0 and x1 = a,

σ
(n)
22 = u(n)1 = u(n)3 = 0 at x2 = 0 and x2 = b,

(24)

where a and b are the plate dimensions. To satisfy boundary conditions, we search the
analytical solution of the problem by a method of the double Fourier series expansion
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where r, s are the wave numbers in plane directions. The external loads are also
expanded in double Fourier series.

Substituting (25) and Fourier series corresponding to mechanical loading into the
total potential energy (17) and (19) with WΣ = 0 and allowing for relations (9), (10),
(11), (13) and (22), one obtains

Π =
∑

r,s

Πrs

(
u(n)in

irs

)
. (26)

Invoking the variational Eqs. (15), (26), we arrive at the system of linear algebraic
equations

∂Πrs

∂u(n)in
irs

= 0 (27)

of order

3

(
∑

n

In − N + 1

)

.

The linear system (27) can be easily solved by using a method of Gaussian
elimination.

The described algorithm was performed with the Symbolic Math Toolbox, which
incorporates symbolic computations into the numeric environment of MATLAB.
Such a technique gives the possibility to derive the exact solutions of 3D elasticity
for FG laminated orthotropic plates with a specified accuracy.

5.1 Single-Layer Square Plate

Consider a FG single-layer square plate subjected to transverse sinusoidal loading
acting on its top surface

p+
3 = p0 sin

πx1

a
sin

πx2

b
, (28)

where p0 = 1 Pa and a = b = 1 m.
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It is assumed that the elastic modulus is distributed in the thickness direction
according to the exponential law:

E = E+eα(z−0.5), z = x3/h, (29)

where E+ is the Young modulus on the top surface; α is the material gradient index
defined by

α = ln

(
E+

E−

)

, (30)

where E− is the Young modulus on the bottom surface, whereas the Poisson ratio
ν is constant through the thickness [10]. The material parameters are taken to be
E+ = 107 Pa and ν = 0.3. To compare the results derived with closed-form solutions
[10, 29], the following dimensionless variables are introduced:

ū1 = G+u1(0, a/2, z)/hp0, ū3 = G+u3(a/2, a/2, z)/hp0,

σ̄ 11 = σ 11(a/2, a/2, z)/p0, σ̄ 12 = σ 12(0, 0, z)/p0,

σ̄ 13 = σ 13(0, a/2, z)/p0, σ̄ 33 = σ 33(a/2, a/2, z)/p0,

where G+ = E+/(2(1 + ν)) is the shear modulus on the top surface.
Tables 1, 2, 3, 4 show the results of a convergence study due to increasing the

number of SaS. As it turned out, the SaS method provides 15 right digits for all
basic variables (in fact, the better accuracy is possible) utilizing 13 inner SaS inside
the plate body. It should be noted that herein the bottom and top surfaces are not
included into a set of SaS because the use of Chebyshev polynomial nodes allows
one to minimize uniformly the error due to Lagrange interpolation. Figure 2 displays
the distributions of transverse stresses in the thickness direction for the slenderness
ratio a/h = 1 employing 11 SaS. These results demonstrate convincingly the high
potential of the proposed FG plate formulation because boundary conditions on the
bottom and top surfaces of the plate for transverse stresses are satisfied exactly.

5.2 Three-Layer Square Plate

Here, we study a three-layer square plate subjected to sinusoidally distributed trans-
verse loading (28). The outer layers with equal thicknesses h1 = h3 = h/4 are
composed of the graphite-epoxy composite with Young moduli E1 = 172.72 GPa,
E2 = E3 = 6.909 GPa, shear moduli G12 = G13 = 3.45 GPa, G23 = 1.38 GPa and
Poisson ratios ν12 = ν13 = ν23 = 0.25. It is assumed that fibers of the bottom and
top layers are oriented respectively in x1- and x2-directions. The central layer is made
of the FG transversely isotropic material whose elastic constants are distributed in
the thickness direction according to a power law:
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Fig. 2 Distributions of transverse stresses through the thickness of the plate with a/h = 1: present
analysis ( - ) for I1 = 11 and analytical solutions [10] (©) and [29] (�)

Ci jkl = C−
i jkl V

− + C+
i jkl V

+,

V + = 1 − V −, V − = (0.5 − 2z)γ , −0.25 ≤ z ≤ 0.25,
(31)

where C−
i jkl and C+

i jkl are the values of elastic constants on the bottom and top
surfaces; γ is the material gradient index; z = x3/h is the dimensionless thickness
coordinate. The elastic constants on the bottom surface are considered to be the same
as those in Woodward and Kashtalyan [30]:

C−
1111 = C−

2222 = 41.3 GPa, C−
1122 = 14.7 GPa, C−

1133 = C−
2233 = 10.1 GPa,

C−
3333 = 36.2 GPa, C−

1313 = C−
2323 = 10.0 GPa, C−

1212 = 13.3 GPa,

whereas the elastic constants on the top surface are taken as C+
i jkl = 2C−

i jkl . The
distribution of elastic constants through the thickness of the FG layer for three values
of the material gradient index γ = 1, 2 and 5 is shown in Fig. 3.

The geometric parameters of the plate are chosen to be a = b = 1m, h1 =
h3 = h/4 and h2 = h/2. To analyze the derived results efficiently, we introduce the
following dimensionless variables:

ū1 = E1u1(0, a/2, z)/hp0, ū2 = E1u2(a/2, 0, z)/hp0,

ū3 = E1u3(a/2, a/2, z)/hp0,

σ̄ 11 = σ 11(a/2, a/2, z)/p0, σ̄ 22 = σ 22(a/2, a/2, z)/p0,
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Fig. 3 Distribution of elastic
constants through the
thickness of the central FG
layer

Table 5 Results for a FG three-layer square plate for a/h = 2 and γ = 2

In −ū1(0.5) ū3(0.5) σ̄ 11(0.5) σ̄ 22(0.5) −σ̄ 12(0.5) σ̄ 13(0) σ̄ 23(0) σ̄ 33(0)

3 3.1521 12.771 0.48242 2.4846 0.14094 0.55566 0.49464 0.43914

5 3.2011 12.835 0.47688 2.5322 0.14363 0.61857 0.57944 0.45240

7 3.2012 12.835 0.47647 2.5318 0.14364 0.61804 0.57621 0.45157

9 3.2012 12.835 0.47646 2.5318 0.14364 0.61796 0.57638 0.45156

11 3.2012 12.835 0.47646 2.5318 0.14364 0.61797 0.57637 0.45156

13 3.2012 12.835 0.47646 2.5318 0.14364 0.61797 0.57637 0.45156

Table 6 Results for a FG three-layer square plate for a/h = 10 and γ = 2

In −ū1(0.5) ū3(0.5) σ̄ 11(0.5) σ̄ 22(0.5) −σ̄ 12(0.5) σ̄ 13(0) σ̄ 23(0) σ̄ 33(0)

3 418.69 1969.8 5.9874 46.783 3.5268 2.8096 2.2369 0.48787

5 418.93 1970.7 5.9825 46.799 3.5288 2.9551 2.5383 0.50494

7 418.93 1970.7 5.9825 46.799 3.5288 2.9655 2.5325 0.50435

9 418.93 1970.7 5.9825 46.799 3.5288 2.9655 2.5329 0.50436

11 418.93 1970.7 5.9825 46.799 3.5288 2.9655 2.5329 0.50436

σ̄ 33 = σ 33(a/2, a/2, z)/p0, σ̄ 12 = σ 12(0, 0, z)/p0,

σ̄ 13 = σ 13(0, a/2, z)/p0, σ̄ 23 = σ 23(a/2, 0, z)/p0.

Tables 5 and 6 show that the SaS method allows the derivation of the 3D exact
solution of elasticity for thick FG laminated composite plates with a prescribed
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Fig. 4 Distributions of the transverse displacement and transverse stresses through the thickness
of the FG three-layer plate with a/h = 2 and γ = 1, 2, 5

accuracy by using the large number of SaS inside each layer. Figures 4, 5 and 6 present
the distributions of the transverse displacement and transverse stresses through the
thickness of the plate for different values of the material gradient index γ employing
13 SaS for each layer. As can be seen, the boundary conditions on outer surfaces
are satisfied again properly. The similar conclusion can be made concerning the
continuity conditions at layer interfaces.



238 G.M. Kulikov and S.V. Plotnikova

Fig. 5 Distributions of the transverse displacement and transverse stresses through the thickness
of the FG three-layer plate with a/h = 4 and γ = 1, 2, 5

6 Conclusions

An efficient approach to 3D elasticity solutions for FG laminated plates has been
proposed. It is based on the recently developed method of SaS located at Chebyshev
polynomial nodes inside each layer of the plate and layer interfaces as well. The stress
analysis is based on the 3D constitutive equations of elasticity and gives an oppor-
tunity to obtain the 3D exact solutions for thick and thin FG laminated composite
plates with a specified accuracy.
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Fig. 6 Distributions of the transverse displacement and transverse stresses through the thickness
of the FG three-layer plate with a/h = 10 and γ = 1, 2, 5
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Prediction of Eigenfrequencies
of the Middle Ear Oscillating System
After Tympanoplasty and Stapedotomy

Gennadi I. Mikhasev, Irina Slavashevich and Kirill Yurkevich

Abstract The mathematical model of the reconstructed middle ear subjected to
tympanoplasty and stapedotomy is proposed. The biomechanical system consists of
a restored tympanic membrane made from cartilage and the total prosthesis replacing
the malleus-incus-stapes chain. The reconstructed eardrum coupled to the circular
prosthesis plate is modeled as an annular circular elastic plate. The prosthesis stem
is considered as a rigid cylindrical rod that projects through a small perforation in
the fixed footplate stapes into the vestibule of the inner ear. Resting in the perilymph,
the piston-like stem is under static and dynamic forces acting from the cochlear
liquid or/and additional spring element. The static forces assert stable position of
the prosthesis but result in initial membrane stresses in the reconstructed eardrum.
The eardrum motion is governed by the system of three differential equations writ-
ten in terms of normal and tangential displacements taking into account the ini-
tial stresses. Free low-frequency vibrations of the prestressed biomechanical system
are studied using two methods: when the initial stresses are small, a perturbation
method is applied; if not, the finite element approach is utilized to predict the natural
frequencies.

1 Introduction

The normal middle ear consists of the tympanic membrane (TM) and three hinged
ossicles (malleus, incus and stapes), as illustrated in Fig. 1a. The vibrations of the TM
due to external sound waves are transferred by the ossicles to the stapes footplate and
the stapes footplate vibration induces sound pressure in the perilymphatic fluid of the
inner ear. Due to the area difference and structural difference between the TM and
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Fig. 1 Profiles of normal (a) and reconstructed middle ear (b): 1 TM, 2 malleus, 3 incus, 4 stapes, 5
cochlear, 6 reconstructed TM, 7 prosthesis plate, 8 prosthesis shaft, 9 oval window fistula (opening
of the inner ear where the stapes footplate rests), γ is deflection angle of the steam from the initial
straight position

the stapes footplate, the middle ear provides force intensification and thus impedance
matching between air and fluid (for more details, refer to Kobrak [1]). Mechanical
injuries of the middle ear elements, different diseases and pathologic changes of
the middle-ear structures can result in a hearing loss of up to 60 dB sound pressure
level (SPL). In particular, mechanical injuries of the TM can decrease hearing at
low frequencies (less than 2 kHz) by 10–30 dB SPL [2]. Another example: the salt-
deposition process in the middle-ear cavity may be the cause of such pathology as the
otosclerotic ankylosis of the ossicular joints (i.e. fixation of the incudomalleal or/and
the incudostapedial joint [3, 4]) that may result in the loss of an acoustic transfer
up to 42 dB SPL [5]. Common treatment for these and other pathological diseases
is the surgical reconstruction of the middle ear to achieve normal sound conduction.
The rare and worst case of this procedure results in replacement of all elements of the
middle ear. The surgery is performed in two steps: at the first stage a surgeon performs
tympanoplasty using cartilage transplants and at the second step he inserts the total
ossicular replacement prosthesis (TORP) bridging a gap in the ossicular chain [6]. If
the stapes footplate is immobilized by bone growth around the oval window, a small
hole is drilled manually or by a laser beam in the footplate (stapedotomy). Then the
piston-like total cylindrical prosthesis is glued by its plate on the restored TM, and
inserted into the vestibule through the drilled hole (see Fig. 1b).

The negative consequence of the stapedotomy surgery is a reduction in the total
stiffness of the middle-ear structure [4] and, as a result, a drop in the natural fre-
quencies of the biomechanical oscillating system [7]. The quality of sound signal
transmission through the reconstructed middle ear (RME) into the cochlea depends
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strongly on the spectrum of natural frequencies and eigenforms of the RME, which
should match the original one. For similar reconstructions, including tympanoplasty
and stapedotomy, the outcome is influenced by the cartilage transplant thickness, the
prosthesis mass and geometrical design (length, diameter, the stem alignment) [7] as
well as its position with respect to the TM [6].

This study relates to the case when the middle ear is subjected to both tym-
panoplasty and stapedotomy. The main objective is to propose the mathematical
model of the RME based on the theory of thin isotropic circular plate and make a
detailed theoretical analysis of the natural frequencies and modes versus the geo-
metrical and physical parameters of the cartilage transplants and prosthesis. Another
goal is to study the dependence of the natural frequencies from a position of the
prosthesis at the eardrum and alignment of its stem.

2 Mathematical Model of the Reconstructed Middle Ear

2.1 Model Development

There are five different TM reconstruction techniques [8]. The most difficult case
of tympanoplasty relates to use of the cartilage plate technique implying the total
replacement of the membrane with the cartilage transplants. According to this tech-
nique, the reconstructed TM may be represented by almost circular thin plate made
of conchal or tragal cartilage. This type of cartilage may be considered as elastic
and isotropic material. Zahnert et al. [9] showed that the generalized stiffness of the
cartilage is primarily influenced by its thickness, so that the thin cartilage plate under
reasonable load may be characterized by Young’s modulus. Here, Young’s modulus
E is taken from 2.8 to 3.4 N/mm2 for a plate made of conchal and tragal cartilage
with a thickness varying from 270 to 1,000 mm [9].

The tympanic ring of the eardrum in normal is a curve close to an ellipse with
the semiaxes a1, a2(a1 < a2), where the horizontal semiaxis a1 varies from 0.4 to
0.45 cm, and the vertical one, a2, is about 0.45–0.5 cm [10]. These data are typical
of an adult and may vary slightly. When developing the simplified mathematical
model, the reconstructed TM will be considered as the circular plate of the radius
a. In contrast, applying the FEM approach, we will consider the real sizes of the
eardrum closed to an ellipse.

We introduce a global Cartesian coordinate system Oxyz related to the TM (see
Fig. 2), where the point of origin O coincides with the TM center, and the y-axis is
orientated along the manubrium mallei of the natural eardrum (see Fig. 1a).

The stapes footplate spatial orientation may be defined by introducing a local
Cartesian coordinate system Sξηζ as illustrated in Fig. 2a, where the point S is the
center of the footplate. The orientation of the Sξηζ coordinate system in regard to
the global coordinate system is assumed to be known [11]. Let H be a point at
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(a) (b)

Fig. 2 Components of the RME: a 1 reconstructed TM, 2 stapes footplate, 3 hole in the stapes
footplate, 4. geometrical model of the prosthesis with the inclined shaft. Cartesian coordinate
systems (Oxyz is a global coordinate system related to the TM; Cx′y′z′ and Sξηζ are local coordinate
systems related to the prosthesis plate and stapes footplate, respectively), φ is an angle between
the y- and the y′-axes. Point C is the contact point of the prosthesis plate and the TM, point H is
the perforation center. b The prosthesis like TORP with the pliable shaft (upper), and the modified
prosthesis with the conicalness elastic spring attached to the shaft (lower)

the footplate where a small hole is drilled. Its position with respect to the global
coordinate system is also defined.

The prostheses like TORP are usually made of titanium or gold (see also at http://
www.kurzmed.de). Due to the thin and pliable shaft (see Fig. 2b), the plate at the
upper end of the prosthesis (called prosthesis plate) can be positioned according to
the plane of the reconstructed TM. There are several contact points at the eardrum (the
center, posterior and inferior points [11]) where the prosthesis plate is usually located.
According to [12], better results are obtained when the prosthesis is attached near to
the center of the membrane than to the posterior or inferior points. Similar conclusion
has been made [11] when studying strain-stress state in the middle-ear system after
tympanoplasty and insertion of a malleus-incus prosthesis. Let xC, yC, zC be the
coordinates of the contact point C in the global coordinate system (here zC = 0). In
our mathematical model the point C coincides with the center O, though its position
can be any one in the FEM simulation.

Although the prosthesis plate structure is complex (see Fig. 2b), it is treated as
a perfectly rigid thin circular plate of a radius bp. We consider also rigid coupling
between the prosthesis plate and the reconstructed TM, so that the TM may be
modelled as an annular plate having radii a and bp(a > bp) with rigid attachment
conditions to the prosthesis plate.

http://www.kurzmed.de
http://www.kurzmed.de
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After attachment of the prosthesis plate to the TM, the prosthesis is adapted in
its shape to individual middle-ear anatomy by adjusting the angle between its shaft
and plate. Then the shaft is inserted into the vestibule through a small perforation.
We assume that the perforation has the form of a cylinder of the radius rp coinciding
exactly with the radius of the prosthesis cylindrical shaft. Thus, the prosthesis can
perform only the longitudinal oscillations along the perforation axis. It should be
noted that the shape of the curved shaft influences the moments of inertia of the
prosthesis. However, in the case of its longitudinal oscillations, the choice of the
prosthesis profile is not crucial. Therefore, the prosthesis shaft will be considered
straight rigid rod inclined to the plate with the inclination angle π/2 −γ (see Fig. 2).
Resting in the perilymph, the stem end experiences static forces from the cochlear
liquid. The magnitude of these forces depends on the mechanical properties of the
cartilage transplant and the membrane of the round window. If the round window
membrane stiffness is too small and the prosthesis stem is too short, the prosthesis
may dislodge from the surgically created oval window fistula after the sudden changes
of the external sound pressure. To avoid this scenario, a modified version of the TORP
(see Fig. 2b) is proposed for this kind of reconstruction. The new prosthesis contains
the conicalness elastic spring, with its narrow end clamping to the prosthesis shaft
and its wide edge resting against the fixed footplate of the stapes. The attached spring
provides a stable position of the prosthesis in the middle-ear cavity and stiffens the
RME as well.

Let l be the prosthesis length, and lmin the distance between the contact point
C at the TM and the footplate perforation point H (see Fig. 2a). Then the following
inequalityΔl = l−lmin > 0 is required for prosthesis fixation. Indeed, after inserting
the prosthesis, it will be compressed by both forces acting from the cochlear liquid (or
the spring element attached to the prosthesis shaft) and shear forces from the TM.
But these forces, providing a stable position of the prosthesis, result in the initial
stresses in the reconstructed TM. The magnitude of these stresses can influence the
natural frequencies of the oscillating system and should be taken into account in our
simulations.

2.2 Initial Equilibrium Position

Let us consider the initial equilibrium position of the system after inserting the
prosthesis. When ignoring the friction force between the stem and internal surface
of the perforation, it is characterized by the force F◦ acting from the cochlear
liquid and the stresses T◦

i , S◦
i ,Q◦

i ,M◦
i ,M◦

12(i = 1, 2) in the TM. Here, T◦
i , S◦

i
and Q◦

i are the membrane and shear stresses respectively, and M◦
i ,M◦

12 are the
bending and twisting moments. In particular, in the polar coordinate system r,ϕ
with the center in the contact point O (see Fig. 3a), the membrane stresses are
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(a) (b)

Fig. 3 Two sections of the geometrical model of the RME: a the annular plate, the polar coordinate
system r,ϕ with the center in the contact point O(C), and the initial membrane stresses T◦

i , S◦
i , b

the plate deformation, the prosthesis displacements in the x′ − z′ plane and forces appearing in the
oscillating system

written as follows [11]

T◦
1 = K(1 − ν)

−2c2 + r2[2c1(1 + ν)r2 + c3(9 − ν2)]
r3 cos ϕ,

T◦
2 = K(1 − ν)

2c2 + r2[6c1(1 + ν)r2 − c3(3 − 4ν + ν2)]
r3 cos ϕ,

S◦ = S◦
i = K(1 − ν)

−2c2 + r2[2c1(1 + ν)r2 − c3(3 − 4ν + ν2))]
r3 sin ϕ,

(1)

where K = Eh/(1−ν2) is the plate stiffness, E, ν are Young’s modulus and Poisson
ratio of the cartilage, h is the TM thickness, and cj are constants, which are found
from the boundary conditions. The initial force F◦ depends on a penetration length
δp of the prosthesis stem into the vestibule and is found as

F◦ = k∗δp. (2)

Here

k∗ = k∗
rw = 8πTrw(Sps/Srw)

2, (3)

where Trw is the tensile force of the round window membrane, and Sps, Srw

are the areas of the stem cross-section and the round window membrane. If the
additional spring with the stiffness k∗

sp is attached to the prosthesis shaft, then
k∗ = k∗

rw + k∗
sp.

Values of the parameter δp and the initial stresses T◦
i , S◦

i depend on the prosthesis
length increment Δl = l − lmin > 0. We introduce the following magnitudes

T◦
c = Ehδp sin γ

12a(1 − ν2)
, ε = aδp sin γ

h2 , (4)
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where T◦
c is the characteristic value of the initial membrane stresses in the TM,

and ε is a dimensionless parameter. As previously shown [7], for this kind of the
reconstruction technique and real sizes of the cartilage transplant (here h ≈ 0.5 mm)
and prosthesis, the parameter δp varies in the interval from 0.01 to 0.05 mm. [13]
indicates that in stapedotomy a mean penetration length of the prosthesis stem into
the cochlear liquid is about 0.5 mm. Thus, in any case a parameter ε � 1 may be
considered here as a small one.

2.3 Governing Equations

Small flexural vibrations of the prestresses TM are governed by the following equa-
tion [14]

Δ2W − εΔT W − λW = 0 (5)

written in the dimensionless form. Here Δ is the Laplace operator in the polar coor-
dinate system r = aρ,ϕ (b = bp/a < ρ < 1, 0 ≤ ϕ < 2π) with the center in the
contact point O, ΔT is the differential operator introduced as follows

ΔT W = 1

ρ

{
∂

∂ρ

(

ρt◦1
∂W

∂ρ
+ s◦ ∂W

∂ϕ

)

+ ∂

∂ϕ

(
t◦2
ρ

∂W

∂ϕ
+ s◦ ∂W

∂ρ

)}

, (6)

W∗ = aW is the normal displacement of the plate, t◦i = T◦
i /Tc, s◦ = S◦/Tc are

dimensionless membrane stresses, λ is a required parameter associated with the
natural frequency ω by the equation ω = λ1/2ωc, where ωc = hE1/2a−2[12σ
(1 − ν2)]−1/2 is the characteristic frequency and σ is the density of the cartilage
transplant respectively.

Let U∗ = aU, V∗ = aV be the plate displacements in the radial and cir-
cumferential directions respectively. We introduce another dimensionless parameter
εt = h2/(12a2). For ordinary used cartilage transplants (at h ≈ 0.5 mm, a ≈ 5 mm),
εt is a small parameter so that εt ∼ ε2. We assume here εt = τε2, where τ ∼ 1.
Then in-plane motion of the plate will be governed by the following equations

(Lp + ε2τλ)XT = 0, (7)

written in the dimensionless form, where X = (U, V) is the 2-vector, the superscript
T denotes a transposition, and Lp is the 2×2 matrix which elements are the differential
operators

l11 = ρ
∂2

∂ρ2 + ∂

∂ρ
− 1

ρ
+ 1 − ν

2ρ

∂2

∂ϕ2 , l12 = 1 + ν

2

∂2

∂ρ∂ϕ
− 3 − ν

2ρ

∂

∂ϕ
,

l21 = 1 + ν

1 − ν

∂2

∂ρ∂ϕ
+ 3 − ν

(1 − ν)ρ

∂

∂ϕ
, l22 = ρ

∂2

∂ρ2 + ∂

∂ρ
− 1

ρ
+ 2

(1 − ν)ρ

∂2

∂ϕ2 .
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Although the flexural and tangential vibrations governed by Eqs. (5) and (7) look
like uncoupled ones here, the displacements W and U,V are linked by the boundary
conditions at the inner mobile circular counter ρ = b:

W = wp,
∂W

∂ρ
= 0, U = up cos ϕ, V = up sin ϕ at ρ = b, (8)

where wp and up = tan γwp are the dimensionless displacements of the plate pros-
thesis in the Oz′-axis and Ox′-axis directions respectively (see Fig. 3b). It is assumed
that the external counter of the TM is clamped so that

W = ∂W

∂ρ
= U = V = 0 at ρ = 1. (9)

Taking into account the boundary conditions Eqs. (5), (7), and (8) describe the cou-
pled flexural and tangential vibrations of the annular prestresses plate.

We aim to study low-frequency vibrations here. Therefore, the hydrodynamic
forces acting on the prosthesis shaft from the perilymph [13] are ignored. It is also
assumed that the friction forces between the shaft and perforation wall, and the viscos-
ity force form the perilymph are too small. Then the equation governing oscillations
of the prosthesis along the PP′-axis (see Fig. 3b) will be as follows

cos2 γ Qp(λ,wp)+ sin γ cos γTp − k wp + λmpwp = 0. (10)

Here

Qp = 1 − ν2

Eha
Q∗

p, Tp = 1 − ν2

Eha
T∗

p , mp = mh

12σa4 , k = 1 − ν2

Eh
k∗, (11)

where k∗ = k∗
rw + k∗

sp, Q∗
p and T∗

p are the resultant shear and membrane stresses
appearing along the internal edge of the annular plate, m is the prosthesis mass, and

F∗ = k∗awp/ cos γ (12)

is the resultant force acting from the cochlear liquid and the spring element attached
to the prosthesis shaft.

Besides the forces appearing in Eq. (10), there are others acting on the prosthesis:
the resultant reaction force F∗

r and moment M∗
w acting from the perforation wall, and

the resultant bending moment M∗
p from the prosthesis plate. These forces are easily

found, but they do not have influence on the prosthesis oscillation along the PP′-axis.
Equations (5), (7), and (10), with the boundary conditions (8), (9), describe small

low-frequency free vibrations of the prestressed bio-mechanical system of the recon-
structed middle ear.

Since the magnitudes Qp,Tp are directly proportional to wp, Eq. (10) holds at
wp = 0. Let Ω be the natural frequency spectrum of the boundary-value problem
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(5), (7)–(9). ThenΩ = Ω1
⋃
Ω2, whereΩ1 contains the eigen-frequencies for which

wp 	= 0, and the subsetΩ2 consists of frequencies in the case when the prosthesis is
dead so that is wp = 0. The second part of the spectrum Ω2 is of no interest for the
current study. Let wp ∼ 1 at ε → 0. Then

(W ,U,V) = (w, u tan γ, v tan γ)wp, (13)

where w(ρ,ϕ) is the solution of Eq. (5) with the boundary conditions

w = ∂w

∂ρ
= 0 at ρ = 1, and w = 1,

∂w

∂ρ
= 0 at ρ = b, (14)

and u(ρ,ϕ), v(ρ,ϕ) satisfy Eq. (7) with the boundary conditions

u = v = 0 at ρ = 1, and u = − cos ϕ, v = sin ϕ at ρ = b. (15)

Then Eq. (10) may be rewritten as follows

cos2 γ qp(λ)+ sin2 γ tp(λ)− k + λmp = 0, (16)

where

qp(λ) = −
2π∫

0

∂

∂ρ

(
∂2w

∂ρ2 + 1

ρ

∂w

∂ρ
+ 1

ρ2

∂2w

∂ϕ2

)∣
∣
∣
∣
ρ=b

dϕ,

tp(λ) =
2π∫

0

[(
∂u

∂ρ
+ ν

ρ

(

u + ∂v

∂ϕ

))

cos ϕ (17)

+ 1 − ν

2

(
∂v

∂ρ
− 1

ρ

(

v − ∂u

∂ϕ

))

sin ϕ

]

ρ=b
dϕ.

3 Asymptotic Approach

The second term in Eq. (5) does not permit to find an exact solution of the boundary-
value problem (5), (7), (14)–(16). Its solution may be found in the form of series

w =
∞∑

j=0

εjwj(ρ,ϕ), u =
∞∑

j=0

εjuj(ρ,ϕ),

v =
∞∑

j=0

εjvj(ρ,ϕ), λ =
∞∑

j=0

ε2jλj.

(18)
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The substitution of Eqs. (17) into Eqs. (5), (7), (14)–(16) produces the sequence
of the boundary-value problems with respect to wj, uj, vj,λj. We consider these
problems step by step.

In the zeroth order approximation, one has the homogeneous equations

�2w0 − λ0w0 = 0 (19)

LpXT
0 = 0, (20)

with the non-homogeneous boundary conditions (14) and (15), respectively. Here
X0 = (u0, v0) is the 2-vector.

The boundary-value problem (14), (19) has the following solution

w0(ρ;λ0) = A1J0(λ
1/4
0 ρ)+ A2Y0(λ

1/4
0 ρ)+ A3I0(λ

1/4
0 ρ)+ A4K0(λ

1/4
0 ρ). (21)

Here and below, Jk,Yk are the kth-order Bessel functions of the first and second
kinds respectively, Jk,Yk are the modified kth-order Bessel functions of the first and
second kinds respectively, and Aj(j = 1, . . . , 4) are constants, which are found from
the nonhomogeneous boundary conditions (14).

Remark 14.1 A solution of Eq. (19) may be found in the form of the function w0 =
χn0(ρ) sin nϕ, where n ≥ 1. However, it satisfies the boundary conditions (8) only
at wp = 0 and corresponds to the plate vibration forms, which do not stimulate
oscillations of the adjoint prosthesis. These modes of the reconstructed TM with
frequencies from the subset Ω2 will be called here the “dead” ones.

The boundary-value problem (15), (20) has the simple solution

u0 =
[

c01(1 − 3ν)ρ2 + c02

ρ2 + c03(3 − ν)2 ln ρ − c03(1 − ν2)− c04

]

cos ϕ,

v0 =
[

c01(5 + ν)ρ2 + c02

ρ2 − c03(3 − ν)2 ln ρ − 2c03(1 + ν)+ c04

]

sin ϕ,

(22)

where constants c0i are determined from the boundary conditions (15).
In the first order approximation, one has the following equations

�2w1 − λ0w1 = �T w0, (23)

LpXT
1 = 0, (24)

where X1 = (u1, v1). Equation (24) with the homogeneous boundary conditions

u1 = v1 = 0 at ρ = b, 1 (25)
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have the trivial solution u1 = 0, v1 = 0. We consider the non-homogeneous Eq. (23)
with the homogeneous boundary conditions

w1 = dw1

dρ
= 0 at ρ = b, 1. (26)

Taking Eq. (1) into account, Eq. (23) may be rewritten as follows

�2w1 − λ0w1 = fc(ρ;λ0) cos ϕ + fs(ρ;λ0) sin ϕ, (27)

where fc(ρ;λ0), fs(ρ;λ0) are known functions, which are not written out here.
Let zk(ρ)(k = 1, 2, . . .) be an infinite orthonormal system of eigenfunctions of

the boundary-value problem

(
d2

dρ2 + 1

ρ

d

dρ
− 1

ρ2

)2

z − β4z = 0, (28)

z = dz

dρ
= 0 at ρ = 1, b (29)

and βk be a corresponding sequence of eigenvalues. It is easily found that β1 =
6.830, β2 = 11.286, β3 = 15.764, . . ., and

zk(ρ) = d−1
k [J1(βkρ)+ C2Y1(βkρ)+ C3I1(βkρ)+ C4K1(βkρ)] , (30)

d2
k =

1∫

b

[J1(βkρ)+ C2Y1(βkρ)+ C3I1(βkρ)+ C4K1(βkρ)]
2 ρdρ, (31)

where C2,C3,C4 are determined from the boundary conditions (29).
Then the solution of the boundary-value problem (26), (27) may be presented in

the form of the series

w1(ρ,ϕ;λ0) =
∞∑

k=1

[Bck(λ0) cos ϕ + Bsk(λ0) sin ϕ] , (32)

Bck = (β4
k − λ0)

−1

1∫

b

fc(ρ;λ0)zk(ρ)ρdρ. (33)

The functions Bsk are found from Eq. (33), where the subscript c is replaced by s. It
is assumed here that λ0 	= β4

k for any k = 1, 2, . . ..
In the second order approximation, one gets the non-homogeneous equations

LpXT
2 = −λ0τX0 (34)



254 G.I. Mikhasev et al.

Δ2w2 − λ0w2 = ΔT w1 + λ2w0, (35)

with the homogeneous boundary conditions (25), (26) for the vector X2 = (u2, v2)

and w2.
The boundary-value problem (25), (34) has the following solution

u2 = [
c21(1 − 3ν)ρ2 + c22ρ

−2 + c23(3 − ν)2 ln ρ − c23(1 − ν2)− c24

+ ac1ρ
3 + ac2ρ

−1 + ac3ρ ln ρ + ac4ρ
]

cos ϕ,

v2 = [
c21(5 + ν)ρ2 + c22ρ

−2 − c23(3 − ν)2 ln ρ − 2c23(1 + ν)+ c24

+ as1ρ
3 + as2ρ

−1 + as3ρ ln ρ + as4ρ
]

sin ϕ,

(36)

where

ac1 = 2(−3 + 23ν − 10ν2)τλ0c01

45(1 − ν)
,

ac2 = 2τλ0c02

3(1 − ν)
,

ac3 = 2(−18 + 21ν − 8ν2 + ν3)τλ0c03

3(1 − ν)
,

ac4 = [(219 − 249ν + 97ν2 − 11ν3)c03 + (12 − 6ν)c04]τλ0

9(1 − ν)
,

as1 = (−81 − 4ν + 5ν2)τλ0c01

45(1 − ν)
,

as2 = τλ0c02

3
,

as3 = (45 − 39ν + 11ν2 − ν3)τλ0c03

3(1 − ν)
,

as4 = [(−267237ν − 65ν2 + 7ν3)c03 − (15 − 3ν)c04]τλ0

9(1 − ν2)
.

Here c0i are the constants mentioned above (see Eq. (22), and c2i(i = 1, 2, 3, 4) are
determined by substituting Eq. (36) into the boundary conditions (25), where the
subscript 1 should be replaced by 2.

Let us consider the boundary-value problem (26), (35). When taking Eqs. (1) and
(32) into account, Eq. (35) may be rewritten as follows

Δ2w2 − λ0w2 = {G2c(ρ;λ0) cos 2ϕ + G2s(ρ;λ0) sin 2ϕ}
+ λ2w0(ρ;λ0)+ G(ρ;λ0), (37)

where G,G2c,G2s are known functions of ρ and λ0.
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The partial solution of Eq. (37) may be presented in the form

w2 = w◦
2(ρ;λ0,λ2)+ w(ϕ)2 (ρ,ϕ;λ0), (38)

where w◦
2 is the partial solution of the equation

Δ2w2 − λ0w2 = λ2w0(ρ;λ0)+ G(ρ;λ0), (39)

and the function w(ϕ)2 satisfies the equation

Δ2w2 − λ0w2 = {G2c(ρ;λ0) cos 2ϕ + G2s(ρ;λ0) sin 2ϕ} . (40)

It should be noted that the function w(ϕ)2 gives a contribution only into the value
of the correction ε4λ4 [see Eq. (17)]. Thus, when considering only the first three
approximations, the function w(ϕ)2 may be omitted at this step (see Remark 14.2).

Let yn(ρ)(n = 1, 2, . . .) be an infinite orthonormal system of eigenfunctions of
the equation

(
d2

dρ2 + 1

ρ

d

dρ

)2

y − ζ4y = 0 (41)

with the homogeneous boundary conditions (29) for y, and ζn be a corresponding
sequence of eigenvalues. Here ζ1 = 6.734, ζ2 = 11.197, ζ3 = 15.690, . . ., and

yn(ρ) = r−1
n [J0(ζnρ)+ D2Y0(ζnρ)+ D3I0(ζnρ)+ D4K0(ζnρ)] , (42)

r2
n =

1∫

b

[J0(ζnρ)+ D2Y0(ζnρ)+ D3I0(ζnρ)+ D4K0(ζnρ)]
2 ρdρ, (43)

where Di are constants, which are found from the boundary conditions (29) for y.
Then the partial solution of the boundary-value problem (29), (39) will be as

follows

w◦
2 =

∞∑

n=1

Anyn(ρ), An(λ0,λ2) = λ2δ
′
n(λ0)+ δ′′

n (λ0)

ζ4
n − λ0

, (44)

where

δ′
n =

1∫

b

w0(ρ;λ0)yn(ρ)ρdρ, δ′′
n =

1∫

b

G(ρ;λ0)yn(ρ)ρdρ, (45)

and it is assumed that λ0 	= ζ4
n .
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Remark 14.2 The next steps for seeking functions wj (at j ≥ 3) is no longer valid
because of the error of Eq. (5). When taking into account the error of the classical
theory of Kirchhoff, the first three terms in the expansion (17) may be considered as
the approximate solution of Eq. (5) if the inequality δ2

p h−2 sin2 γ > h3a−3 holds.

Let us consider Eq. (16). In this equation, the functions qp(λ), tp(λ) may be
estimated as

qp = qp0 + εqp1 + ε2qp2 + o(ε2), tp = tp0 + εtp1 + ε2tp2 + o(ε2), (46)

where

qp0(λ0) = −
2π∫

0

∂

∂ρ

(
∂2w0

∂ρ2 + 1

ρ

∂w0

∂ρ
+ 1

ρ2

∂2w0

∂ϕ2

)∣
∣
∣
∣
ρ=b

dϕ, qp1 = 0,

qp2(λ0,λ2) = −
2π∫

0

∂

∂ρ

(
∂2w2

∂ρ2 + 1

ρ

∂w2

∂ρ
+ 1

ρ2

∂2w2

∂ϕ2

)∣
∣
∣
∣
ρ=b

dϕ

= −2π

∞∑

n=1

λ2δ
′
n(λ0)+ δ

′′
n(λ0)

ζ4
n − λ0

∂

∂ρ

(
∂2yn

∂ρ2 + 1

ρ

∂yn

∂ρ

)∣
∣
∣
∣
ρ=b

,

tp0 = 8πb(ν2 − 1)

(1 − b2)(1 + ν)2 − (1 + b2)(3 − ν)2 ln b
, tp1 = 0, (47)

tp2(λ0) =
2π∫

0

[(
∂u2

∂ρ
+ ν

ρ

(

u2 + ∂v2

∂ϕ

))

cos ϕ

+ 1 − ν

2

(
∂v2

∂ρ
− 1

ρ

(

v2 − ∂u2

∂ϕ

))

sin ϕ

]

ρ=b
dϕ.

Then, in the first-order approximation, one has the following transcendental equation

cos2 γ qp0(λ0)+ sin2 γ tp0 − k + λ0mp = 0 (48)

with respect to the parameter λ0.
Let λ(ς)0 (ς = 1, 2, . . .) be roots of Eq. (48), where ς − 1 means a number of fixed

circles at the surface of the annular plate.
Equation (48) permits to find natural frequencies corresponding to the case when

the prosthesis length increment Δl = l − lmin = 0. However, this case is never
realized in surgical practice because of the very high risk of dislodgment of the
prosthesis shaft from the perforation in the stapes footplate.
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Considering the next approximation, one can find the correction

λ2 = λ
(ς)
2 =

2π cos2 γ
∞∑

n=1

ξnδ
′′
n

ζ4
n −λ

(ς)
0

+ sin2 γ tp2(λ0)

mp − 2π cos2 γ
∞∑

n=1

ξn−δ′
n

ζ4
n −λ

(ς)
0

, (49)

ξn = ∂

∂ρ

(
∂2yn

∂ρ2 + 1

ρ

∂yn

∂ρ

)∣
∣
∣
∣
ρ=b

.

The parameter λ(ς)2 depends on the prosthesis length incrementΔl > 0 and the initial
stresses (1) in the reconstructed TM.

4 Finite Element Model

If the contact point C of the prosthesis does not coincide with the TM center O (see
Fig. 2a) and/or the initial stresses (1) are large, the constructed above solutions are
not valid for a prediction of natural frequencies. For these cases we propose the finite
element model via ANSYS software. Using ANSYS programming design language
(APDL), the parametric finite element model with a regular mesh has been developed.
The elaborated program code allows to change easily the size of finite elements and
obtain the high quality mesh. The four-node SHELL181-type finite elements with
six degrees of freedom at each node (translations in the direction of the x-, y- and the
z- axes, and rotations about these axes) have been chosen for the description of the
annular plate [15, 16]. In the common case, the external counter of the TM was con-
sidered to be non-circular and closed to the ellipse with the semiaxes a1, a2(a1 < a2),
which are oriented along the x-, and y- axes, respectively (see Fig. 2a). The linear
elastic isotropic material model for the cartilage transplant was used for the simula-
tion. The prosthesis was assumed to be perfectly rigid body. The sparse direct solver
based on a direct elimination of equations was used to define the initial stress-strain
state of the reconstructed TM after inserting the prosthesis. To perform the modal
analysis of the prestressed TM, the block Lanczos algorithm was applied. This algo-
rithm includes additional compute kernels using blocks of vectors, sparse matrix
multiplication using the assembled mass matrix, and repeated forward/backward
solves using multiple right-hand side vectors [15]. The applied algorithm based on
SHELL181-type elements permits to find the natural frequencies corresponding to
both the flexural and tangential vibrations of the plate. In our computations in-plane
vibrations are not considered. In addition, the modes corresponding to the flexural
vibrations of the TM with the fixed prosthesis are also omitted.
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5 Modes and Natural Frequencies

5.1 Reconstructed Tympanic Membrane Represented
by a Circular Plate

When constructing the function w1 and calculating the correction λ
(ς)
2 , the infinite

series in (32) and (49) were replaced by truncated ones with K and N terms, respec-
tively. Table 1 shows the normalized parameters λ

(ς)
2 (ς = 1, 2, 3) vs. N = 1, 2, 3 at

the fixed values K = 6, a = 5 mm, bp = 1.5 mm, Δ lp = 0.01 mm, γ = 5π/36,
E = 3.4 N/mm2, ν = 0.4, h = 0.5 mm, mp = 6.0 mg, Trw = 10−5 H/m,
Srw = 3.0 mm2, Sps = 0.126 mm2. For the parameters accepted above, one has
ε = 0.017. Data from Table 1 testify a satisfactory convergence of series (49).

Tables 2 and 3 show the parameters λ
(ς)
0 , λ

(ς)
2 (normalized by the number 187.952)

and the first three natural frequencies ω(ς) (ς = 1, 2, 3) versus the elastic modules
E of the cartilage transplant and the prosthesis mass mp, respectively. Calculations
were performed for the geometrical and physical parameters taken above. Series (17)
are asymptotic ones if

|λ(ς)2 /λ(ς)0 | = O(1) at ε → 0. (50)

It may be seen that the correction λ(ς)2 shows weak dependence on the modules E
and appreciable dependence on the mass mp of the prosthesis. One can see also,
that the asymptotic estimation (50) holds for all parameters under consideration. As
expected, increasing the cartilage transplant stiffness or decreasing the prosthesis
mass results in increase of the natural frequencies for all modes.

To verify the natural frequencies found by use of the asymptotic approach,
the numerical finite element computations have been performed. Table 4 shows

Table 1 Corrections λ(ς)2 versus a number of terms N in series (49)

N λ
(1)
2 λ

(2)
2 λ

(3)
2

1 0.331 159.617 18.330

2 −2.193 142.902 740.067

3 −2.191 142.827 740.217

4 −2.191 142.827 740.217

Table 2 The dimensionless parametersλ
(ς)
0 , λ

(ς)
2 and natural frequenciesω(ς)(Hz)versus the elastic

modules E (H/mm2) of the cartilage transplant

E λ(1)0 λ(1)2 ω(1) λ(2)0 λ(2)2 ω(2) λ(3)0 λ(3)2 ω(3)

2.80 1.14 −2.26 139 15.74 −15.81 521 96.79 −47.91 1294

3.40 1.14 −2.59 153 15.74 −15.63 576 96.79 −47.35 1432
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Table 3 The dimensionless parameters λ
(ς)
0 , λ

(ς)
2 and natural frequencies ω(ς)(Hz) versus the pros-

thesis mass mp (mg)

mp λ
(1)
0 λ

(1)
2 ω(1) λ

(2)
0 λ

(2)
2 ω(2) λ

(3)
0 λ

(3)
2 ω(3)

2.0 1.38 −3.71 103 51.61 82.34 632 303.10 386.71 1532

4.0 1.16 −2.76 95 46.41 112.10 599 280.73 547.74 1474

6.0 1.00 −2.19 88 43.19 142.80 578 268.60 740.20 1442

Table 4 Natural frequencies ω(ς) and ω
(ς)
FEM (Hz) versus the cartilage transplant thickness h (mm)

h ω(1) ω
(1)
FEM ω(2) ω

(2)
FEM ω(3) ω

(3)
FEM

0.3 105 87 325 303 824 840

0.5 154 108 576 494 1,432 1,397

0.8 229 175 953 915 2,333 1,964

frequencies ω(ς) and ω
(ς)
FEM obtained by the asymptotic and finite element methods

for different thicknesses of the cartilage transplant h. Here and below, the super-
script FEM refers to magnitudes found by using FEM. Calculations have been done
for E = 3.4 N/mm2, other parameters have been taken as above. Let Ωε

FEM be the
subset of the natural frequencies, for which the amplitude ratio Ap = wp/Wmax is a
value of the order O(ε), where wp is the amplitude of oscillations of the prosthesis,
and Wmax is the maximum amplitude of the normal vibrations of the TM. The nat-
ural frequencies from Ωε

FEM correspond to modes of in-plane vibrations or flexural
vibrations with the fixed prosthesis. Table 4 does not contain frequencies from the set
Ωε

FEM for which Ap ≤ 0.05. As it is seen, comparison of the frequencies found by
the two different approaches demonstrates a satisfactory coincidence for sufficiently
thin plates.

5.2 Reconstructed Tympanic Membrane Represented
by an Elliptic Plate

As a rule, the prosthesis plate is placed between the TM center O and the point Cs [11,
12], which is the projection of the point S on the TM (see Fig. 2a). We have studied
the influence of the prosthesis position on the natural frequencies and modes of the
system. Under the FEM simulation, the external counter of the TM was considered
close to the ellipse with the semiaxes a1 = 4 mm and a2 = 5 mm. In Table 5,
the natural frequencies are presented for the three different cases: (a) the contact
point C coincides with the center O; (b) the contact point C has the coordinates
xC = 1.389 mm, yC = −0.567 mm; (c) the contact point with the coordinates
xC = 2.315 mm, yC = −0.945 mm is far from the center O. The first, forth and
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Table 5 Natural frequencies ωFEM (Hz) and amplitude ratios Ap for different positions of the
prosthesis at the reconstructed eardrum

Mode
number

ω
(a)
FEM A(a)p Mode number ω

(b)
FEM A(b)p Mode number ω

(c)
FEM A(c)p

1 34 0.70 1 24 0.23 1 19 0.07

4 50 0.38 2 31 0.37 3 31 0.38

6 53 0.40 4 42 0.14 4 38 0.20

16 118 0.17 6 60 0.07 6 51 0.08

19 129 0.11 8 69 0.07 7 57 0.08

42 214 0.11 9 79 0.06 11 83 0.05

(a) xC = 0, yC = 0; (b) xC = 1.389 mm, yC = −0.567 mm; (c) xC = 2.315 mm, yC =
−0.945 mm

Fig. 4 Normal displacements of the reconstructed TM corresponding to the 1st mode of the RME
with the natural frequency ω

(b)
FEM = 24 Hz and the amplitude ratio A(b)p = 0.23

seventh columns show the mode numbers for the cases (a), (b) and (c), respectively.
The natural frequencies corresponding to these cases are denoted by the superscripts
(a), (b), (c). Frequencies from the set Ωε

FEM , where ε < 0.05, are omitted here.
In Fig. 4, the TM displacements corresponding to the 1st mode with the natural

frequency ω
(b)
FEM = 24 Hz and fixed prosthesis are shown. The 2nd mode with the

natural frequency ω
(b)
FEM = 31 Hz and the amplitude ratio A(b)p = 0.47 is presented

in Fig. 5, 3rd mode with the natural frequency ω(b)FEM = 33 Hz and the amplitude

ratio A(b)p = 0.47 is presented in Fig. 6. The TM parts shown in dark blue color are
immobile or have very small displacements, and the ones marked by red have the
maximum amplitude.
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Fig. 5 Normal displacements of the reconstructed TM corresponding to the 2nd mode of the RME
with the natural frequency ω

(b)
FEM = 31 Hz and the amplitude ratio A(b)p = 0.37

Fig. 6 Normal displacements of the reconstructed TM corresponding to the 3rd mode of the RME
with the natural frequency ω(b)FEM = 33 Hz and the fixed prothesis

It can be seen that shifting the prosthesis plate from the center O to the point Cs

results in:

• decrease of the lowest natural frequencies of the RME;
• decrease of a number of the “dead modes” with frequencies from the subsetΩε

FEM ;
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• increase of a number of the “functional modes”, which “transmit” energy of the
TM vibrations into the inner ear;

• decrease of the amplitude ratio Ap corresponding to the “functional modes”.

Thus, when shifting the prosthesis to the edge of the reconstructed eardrum, its
capacity to transmit energy into the inner ear becomes lower. However, it should be
noted that the question of the optimal position of the prosthesis at the TM for this type
of reconstruction is complex and includes the problem of the prosthesis stability in
the middle ear cavity. It is obvious that the prosthesis (with an inclined shaft) placed
in a vicinity of the TM center O is less stable than the prosthesis allocated in the
neighborhood of the point Cs (see Fig. 2a).

In all calculations performed above, the stiffness k∗ = k∗
rw was assumed to depend

on the TM stiffness and tensile force Trw of the round window. So, for all geomet-
rical and physical parameters accepted above, k∗ = k∗

rw = 2.51 × 10−11 N/mm has
too small magnitude. To ensure stability of the prosthesis at the TM and exclude its
falling out from the hole in the stapes footplate, the modified version of the prosthe-
sis like TORP (see Fig. 2b) with a conical spring attached to the shaft is proposed.
Here, k∗

rw � k∗
sp. Therefore, it was assumed that k∗ ≈ k∗

sp in all calculations. Table 6
shows the natural frequencies calculated for different values of the spring stiffness
k∗

sp for the case when the contact point C has the coordinates xC = 1.389 mm, yC =
−0.567 mm. The TM was represented by the elliptic plate with the semiaxes
a1 = 4 mm and a2 = 5 mm. For all computations the prosthesis length increment
Δl = l − lmin = 1.0 mm, and all other parameters were taken as above. In Table 6,
gaps correspond to frequencies for the “dead modes” with very small parameters Ap,
the modes with numbers 5, 10, 11, 12, 14 − 17, 20 − 27, . . . are also “dead” and
omitted here. As seen, increasing the stiffness k∗

sp results in decreasing the eigenfre-
quencies. However this influence is very weak. Calculations show that the natural
frequencies are appreciably influenced by the parameter k∗

sp for very high stiffness
k∗

sp, which may lead to buckling of the TM.
It is interesting to compare the natural frequencies found above with the lowest

eigenfrequencies of the oscillating system of the middle ear in normal. The first eight
frequencies of the normal middle ear found using FEM [17] are presented in Table 7.
The calculations were performed taking into account the influence of all ligaments
and muscles in the middle ear cavity. Here, the first five frequencies correspond to the
modes for which eardrum is almost immovable and the most intensive oscillations
are performed by the malleus-incus-stapes chain, and only the sixth and subsequent
frequencies relate to modes with intensive vibrations of the tympanic membrane.

When comparing the data from Tables 2, 3, 4, 5, 6, and 7, one can conclude: the
total reconstruction of the middle ear (including tympanoplasty and stapedotomy)
results in appearance of a lot of modes with very low eigenfrequencies, some of these
modes being characterized by the fixed prosthesis.
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Table 6 Natural frequencies ωFEM (Hz) and amplitude ratios Ap versus the stiffness k∗
sp

Mode number ω
(a)
FEM A(a)p ω

(b)
FEM A(b)p ω

(c)
FEM A(c)p

1 24.18 0.227 24.09 0.216 23.02 0.137

2 31.15 0.367 31.10 0.364 30.92 0.342

3 – 0.000 – 0.000 31.68 0.088

4 42.36 0.141 42.26 0.140 41.35 0.136

6 59.69 0.067 59.64 0.066 59.15 0.057

7 – 0.00 68.26 0.055 65.96 0.075

8 69.01 0.068 68.81 0.057 – 0.000

9 78.51 0.059 78.50 0.057 – 0.000

13 98.14 0.063 98.16 0.061 97.41 0.051

18 – 0.000 – 0.000 125.30 0.053

19 127.04 0.061 126.81 0.060 – 0.000

28 – 0.000 – 0.000 163.08 0.050

(a) k∗
sp = 2.51 × 10−5 N/mm; (b) k∗

sp = 2.51 × 10−3 N/mm; (c) k∗
sp = 2.51 × 10−2 N/mm

Table 7 Natural frequencies of the normal middle ear [17]

Mode number 1 2 3 4 5 6 7 8

ω, Hz 91 172 228 271 483 647 857 1189

6 Conclusions

In this paper, the mathematical model of the reconstructed middle ear subjected to
both tympanoplasty and stapedotomy has been proposed. The biomechanical oscil-
lating system of the reconstructed middle ear consists of the almost circular annular
plate made of the cartilage transplant and the conjugated titanium prosthesis with a
pliable shaft. The end of the prosthesis shaft is inserted into the vestibule through
a small perforation drilled out in the stapes footplate. It was assumed that the pros-
thesis can perform only the longitudinal oscillations along the perforation axis. With
the view of ensuring stability of the prosthesis in the middle ear cavity, the modi-
fied version of the total prosthesis (like TORP) with a conical spring attached to its
shaft has been proposed. To study initial deformations and flexural vibrations of the
annular elastic plate, the governing equations based on the hypothesis of Kirchhoff
and taking into account the initial membrane stresses and the in-plane displacements
as well have been used. As the first step, the initial stresses in the plate have been
found. Then, for cases when these stresses were small and the prosthesis plate was
attached to the reconstructed eardrum in its center, the differential equations describ-
ing motion of the annular plate were solved by using the asymptotic approach. On
the contrary, if the initial stresses in the TM were turned to be large or/and the contact
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points of the prosthesis with the plate were chosen to be far from its center, the finite
element simulation was applied in our study.

The qualitative analysis of the constructed asymptotic solutions and numerical
calculations have shown that the total reconstruction, including both tympanoplasty
and stapedotomy, results in considerable decrease of the natural frequencies of the
middle ear oscillating system and appearance of a set of the “dead modes” with the
fixed prothesis. The RME eigenfrequencies depend strongly upon the parameters of
the cartilage transplant, the mass of the prosthesis and the point of its placement at
the reconstructed eardrum. In terms of the surgical procedure, the basic conclusions
which could assist the clinician are as follows:

• to avoid appearance of the “dead modes”and guarantee the best transfer of the
energy of external sound waves to the inner ear, the prosthesis should be adapted
in its shape during surgery to individual middle-ear anatomy by adjusting the angle
between the stapes stem and its plate so that the prosthesis plate was positioned
as close to the center of the reconstructed TM as possible;

• variation of the thickness and stiffness of the cartilage transplant allows to correct
slightly the eigenfrequency spectrum and approach some frequencies to those of
the normal middle ear;

• the attachment of the conical spring to the prosthesis shaft can guarantee its sta-
bility in the middle ear cavity but does not influence on the natural frequencies
appreciably.
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A New Approach for Studying Nonlinear
Dynamic Response of a Thin Fractionally
Damped Plate with 2:1 and 2:1:1 Internal
Resonances

Yury A. Rossikhin and Marina V. Shitikova

Abstract Dynamic behaviour of a nonlinear plate embedded in a fractional derivative
viscoelastic medium and subjected to the conditions of the internal resonances two-
to-one and one-to-one, as well as the internal combinational resonances has been
studied by Rossikhin and Shitikova in [12, 13]. Nonlinear equations, the linear parts
of which occur to be coupled, were solved by the method of multiple time scales.
A new approach proposed in this paper allows one to uncouple the linear parts of
equations of motion of the plate, while the same method, the method of multiple time
scales, has been utilized for solving nonlinear equations. The new approach enables
one to solve the problems of vibrations of thin bodies more efficiently.

1 Introduction

It is well known that the nonlinear vibrations of plates is an important area of applied
mechanics, since plates are used as structural elements in many fields of industry
and technology. Different methods: analytical [8, 12, 13, 19], numerical [2, 9] and
experimental [2] could be employed to investigate the nonlinear vibrations of plates.
Extensive review of recent research developments in the field could be found in [3, 4],
and [18].

The study of free undamped [4, 9], as well as damped [5, 6, 12, 13] nonlinear
systems is important because the dynamics characteristics of the system—defined
by the amplitude-frequency relations and modes of vibrations—are determined [9].
Moreover, nonlinear vibrations could be accompanied by such a phenomenon as the
internal resonance, resulting in multimode response with a strong interaction of the
modes involved [7]. The internal resonance could be found within some combination
of natural frequencies of one and the same type of vibrations. As an example, a 1:3
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internal resonance was discovered in [9], when the fourth natural frequency of the
out-of-plane vibrations was three times larger than the fundamental frequency of the
out-of-plane vibrations.

Another type of the internal resonance was investigated in [12, 13], when one
frequency of the in-plane vibrations was equal (a 1:1 internal resonance) or twice
as larger (a 1:2 internal resonance) than some frequency of the out-of-plane vibra-
tions. The combinational resonances of the additive and difference type were also
investigated in [13].

In the given paper, nonlinear free vibrations of a thin plate described by three cou-
pled nonlinear differential equations are considered when the plate is being under
the conditions of the internal resonance resulting in the interaction of modes corre-
sponding to the mutually orthogonal displacements. The displacement functions are
determined in terms of eigenfunctions of linear vibrations. The procedure resulting
in decoupling linear parts of equations is proposed with the further utilization of the
method of multiple scales for solving nonlinear governing equations of motion, in so
doing the amplitude functions are expanded into power series in terms of the small
parameter and depend on different time scales. It is shown that the phenomenon of
internal resonance can be very critical, since in a thin plate internal resonance of
the type two-to-one, one-to-one, as well as additive and difference combinational
resonances are always present.

2 Problem Formulation and the Method of Solution

Let us consider the dynamic behavior of a free supported non-linear thin rectangular
plate, vibrations of which in a viscoelastic medium are described in the Cartesian
system of coordinates by the following three differential equations written in the
dimensionless form [12, 13]:

uxx + 1 − ν

2
β2

1 uyy + 1 + ν

2
β1vxy + wx

(

wxx + 1 − ν

2
β2

1 wyy

)

+ 1 + ν

2
β2

1 wywxy

= ü + κ1 Dγ u, (1)

β2
1 vyy + 1 − ν

2
vxx + 1 + ν

2
β1uxy + β1wy

(

β2
1 wyy + 1 − ν

2
wxx

)

+ 1 + ν

2
β1wx wxy

= v̈ + κ2 Dγ v, (2)

β2
2

12
(wxxxx + 2β2

1 wxxyy + β4
1 wyyyy)− wxx (ux + νβ1vy)− wx (uxx + νβ1vxy)

− 1 − ν

2
β1[wxy(β1uy + vx )+ wy(β1uxy + vxx )]

− β2
1 [wyy(νux + β1vy)+ wy(νuxy + β1vyy)]
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− 1 − ν

2
β1[wxy(β1uy + vx )+ wx (β1uyy + vxy)] = −ẅ − κ3 Dγw, (3)

subjected to the initial

u|t=0 = u̇

∣
∣
∣
∣
t=0

= 0, v|t=0 = v̇

∣
∣
∣
∣
t=0

= 0, w|t=0 = ẇ

∣
∣
∣
∣
t=0

= 0, (4)

as well as the boundary conditions

w|x=0 = w

∣
∣
∣
∣
x=1

= 0, v|x=0 = v

∣
∣
∣
∣
x=1

= 0, ux

∣
∣
∣
∣
x=0

= ux

∣
∣
∣
∣
x=1

= 0,

wxx

∣
∣
∣
∣
x=0

= wxx

∣
∣
∣
∣
x=1

= 0, (5)

w|y=0 = w

∣
∣
∣
∣
y=1

= 0, u|y=0 = u

∣
∣
∣
∣
y=1

= 0, vy

∣
∣
∣
∣
y=0

= vy

∣
∣
∣
∣
y=1

= 0,

wyy

∣
∣
∣
∣
y=0

= wyy

∣
∣
∣
∣
y=1

= 0, (6)

where u = u(x, y, t), v = v(x, y, t), and w = w(x, y, t) are the displacements
of points located in the plate’s middle surface in the x−, y−, and z− directions,
respectively, ν is Poisson’s ratio, β1 = a/b and β2 = h/a are the parameters
defining the dimensions of the plate, a and b are the plate’s dimensions along the x−
and y− axes, respectively, h is the thickness, t is the time, an overdot denotes the
time-derivative, lower indices label the derivatives with respect to the corresponding
coordinates, κi (i = 1, 2, 3) are damping coefficients, and Dγ is the Riemann-
Liouville fractional derivative of the γ -order [14]

Dγ F = d

dt

t∫

0

F(t − t ′)
Γ (1 − γ )t ′γ

dt ′. (7)

It has been noted in [11, 12] that a fractional derivative is the immediate extension
of an ordinary derivative. In fact, when γ → 1, Dγ x tends to ẋ , i.e., at γ → 1 the
fractional derivative goes over into the ordinary derivative, and the mathematical
model of the viscoelastic shell under consideration transforms into the Kelvin-Voigt
model, wherein the elastic element behaves nonlinearly, but the viscous element
behaves linearly. When γ → 0, the fractional derivative Dγ x tends to x(t). To put it
otherwise, the introduction of the new fractional parameter along with the parameters
κi allows one to change not only the magnitude of viscosity at the cost of an increase
or decrease in the parameters κi , but also the character of viscosity at the sacrifice of
variations in the fractional parameter.



270 Y.A. Rossikhin and M.V. Shitikova

In Eqs. (1)–(3), the dimensionless values are introduced similarly as it has been
done in [12].

We seek the solution of Eqs. (1)–(3) in the form

u(x, y, t) =
∞∑

m=1

∞∑

n=1

x1mn(t)η1mn(x, y),

v(x, y, t) =
∞∑

m=1

∞∑

n=1

x2mn(t)η2mn(x, y), (8)

w(x, y, t) =
∞∑

m=1

∞∑

n=1

x3mn(t)η3mn(x, y),

where x1mn(t), x2mn(t), and x3mn(t) are the generalized displacements corresponding
to the displacements in the plane of the plate and to its deflection, respectively, but
the natural functions satisfying the boundary conditions (5) and (6) have the form

η1mn(x, y) = cosπmx sin πny, η2mn(x, y) = sin πmx cosπny, (9)

η3mn(x, y) = sin πmx sin πny,

and m and n are integers.
Linear undamped natural modes of flexural in-plane and out-of-plane vibrations

of the plate are the solution of eigenvalue problem

− ẍ1mnη1mn + x1mn

(

η1mn ,xx + 1 − ν

2
β2

1η1mn ,yy

)

+ 1 + ν

2
β1η2mn ,xy x2mn = 0,

(10)

− ẍ2mnη2mn + x2mn

(

β2
1η2mn ,yy + 1 − ν

2
η2mn ,xx

)

+ 1 + ν

2
β1η1mn ,xy x1mn = 0,

(11)

ẍ3mnη3mn + β2
2

12

(
η3mn ,xxxx + 2β2

1 η3mn ,xxyy + β4
1 η3mn ,yyyy

)
x3mn = 0. (12)

The set of Eqs. (10) and (11) has the characteristic equation

ω4
mn − (Smn

11 + Smn
22 )ω

2
mn + Smn

11 Smn
22 − Smn

12 Smn
21 = 0, (13)

the roots of which are the dimensionless natural frequencies of the flexural in-plane
vibrations of the plate

ω2
1 mn = π2(m2 + β2

1 n2), ω2
2 mn = 1 − ν

2
ω2

1mn, (14)
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where Smn
11 = π2

(
m2 + 1−ν

2 β2
1 n2

)
,

Smn
12 = Smn

21 = 1 + ν

2
β1π

2mn, Smn
22 = π2

(
1 − ν

2
m2 + β2

1 n2
)

. (15)

From Eq. (12), the natural frequency of the flexural out-of-plane vibrations of the
plate could be obtained

ω2
3 mn = π4β2

2

12
(m2 + β2

1 n2)2. (16)

Substituting (9) into Eqs. (1)–(3), multiplying (1), (2), and (3) by η1lk , η2lk , and
η3lk , respectively, integrating over x and y, and using the orthogonality conditions
for linear modes within the domains of 0 ≤ x, y ≤ 1, we are led to a coupled set of
nonlinear ordinary differential equations of the second order in xi mn (i = 1, 2, 3):

ẍα mn + καDγ xα mn + Smn
αβ xβ mn = −Fα mn (α, β = 1, 2), (17)

ẍ3 mn + κ3 Dγ x3 mn + ω2
3mn x3 mn = −F3 mn, (18)

where the summation is carried out over two repeated indices, the elements of the
matrix Smn

i j are defined as (15).
The nonlinear parts Fi mn of Eqs. (17) have the form

F1 mn = 4
∑

m1

∑

n1

∑

m2

∑

n2

x3m1n1 x3m2n2 Am1n1m2n2
1 mn , (19)

F2 mn = 4
∑

m1

∑

n1

∑

m2

∑

n2

x3m1n1 x3m2n2 Am1n1m2n2
2 mn , (20)

F3 mn = −4
∑

m1

∑

n1

∑

m2

∑

n2

[
x3m1n1 x1m2n2Cm1n1m2n2

mn + x3m1n1 x2m2n2 Dm1n1m2n2
mn

]
,

(21)
where

A
m1n1m2n2
1 mn = π3m1

(

m2
2 + 1 − ν

2
β2

1 n2
2

)

a
m1n1m2n2
1mn − 1 + ν

2
π3β2

1 n1m2n2a
m1n1m2n2
2mn ,

A
m1n1m2n2
2 mn = π3β1n1

(

β2
1 n2

2 + 1 − ν

2
m2

2

)

a
m1n1m2n2
3mn − 1 + ν

2
π3β1m1m2n2a

m1n1m2n2
4mn ,

C
m1n1m2n2
mn = π3m2

(
m2

1 + νβ2
1 n2

1

)
a

m1n1m2n2
5mn + (1 − ν)π3β2

1 m1n1n2a
m1n1m2n2
6mn

− π3m1

(

m2
2 + 1 − ν

2
β2

1 n2
2

)

a
m1n1m2n2
7mn − 1 + ν

2
β2

1π
3n1m2n2a

m1n1m2n2
8mn ,
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Dm1n1m2n2
mn = π3β1n2

(
νm2

1 + β2
1 n2

1

)
am1n1m2n2

5mn + (1 − ν)β1π
3m1n1m2am1n1m2n2

6mn

− 1 + ν

2
β1π

3m1m2n2am1n1m2n2
7mn − π3β1n1

(
1 − ν

2
m2

2 + β2
1 n2

2

)

am1n1m2n2
8mn ,

am1n1m2n2
1mn =

1∫

0

1∫

0

cosπm1x sin πn1 y sin πm2x sin πn2 y cosπmx sin πny dxdy,

am1n1m2n2
2mn =

1∫

0

1∫

0

sin πm1x cosπn1 y cosπm2x cosπn2 y cosπmx sinπny dxdy,

am1n1m2n2
3mn =

1∫

0

1∫

0

sin πm1x cosπn1 y sin πm2x sin πn2 y sin πmx cosπny dxdy,

am1n1m2n2
4mn =

1∫

0

1∫

0

cosπm1x sin πn1 y cosπm2x cosπn2 y sin πmx cosπny dxdy,

am1n1m2n2
5mn =

1∫

0

1∫

0

sin πm1x sin πn1 y sin πm2x sin πn2 y sin πmx sin πny dxdy,

am1n1m2n2
6mn =

1∫

0

1∫

0

cosπm1x cosπn1 y cosπm2x cosπn2 y sin πmx sinπny dxdy,

am1n1m2n2
7mn =

1∫

0

1∫

0

cosπm1x sin πn1 cosπm2x sin πn2 y sin πmx sin πny dxdy,

am1n1m2n2
8mn =

1∫

0

1∫

0

sin πm1x cosπn1 y sin πm2x cosπn2 y sin πmx sin πny dxdy.

Since the second-rank tensor Smn
αβ is symmetric, then it has two real eigenvalues

ωα mn defined in (14) which are in correspondence with two mutually orthogonal
eigenvectors

LI
mn

{

L I
1 mn = πm

ω1 mn
, L I

2 mn = πβ1n

ω1 mn

}

, (22)

LII
mn

{

L II
1 mn = πβ1n

ω1 mn
, L II

2 mn = − πm

ω1 mn

}

, (23)

i.e.,

L I
α mn L I

α mn = L II
α mn L II

α mn = 1, L I
α mn L II

α mn = 0. (24)
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Thus, the matrix Smn
αβ and the generalized displacements xα mn entering in Eqs. (17)

and (18) could be expanded in terms of the vectors (22) [15] as

Smn
αβ = ω2

1 mn L I
α mn L I

β mn + ω2
2 mn L II

α mn L II
β mn, (25)

xα mn = X1 mn L I
α mn + X2 mn L II

α mn . (26)

Substituting (25) and (26) in Eqs. (17) and (18) and then multiplying (17)
successively by L I

i mn and L II
i mn with due account for (24) we obtain the follow-

ing three equations:

Ẍ1mn + κ1 Dγ X1mn + ω2
1mn X1mn = −

2∑

α=1

Fα mn L I
α mn, (27)

Ẍ2mn + κ2 Dγ X2mn + ω2
2mn X2mn = −

2∑

α=1

Fα mn L II
α mn, (28)

Ẍ3mn + κ3 Dγ X3mn + ω2
3mn X3mn = −F3 mn, (29)

where X3mn = x3mn .
Assume hereafter that the vibration process occurs in such a way that only three

natural modes corresponding to the generalized displacements X1s1s2 , X2l1l2 , and
X3k1k2 are excited and dominate over other natural modes. In this case, the right
parts of Eqs. (27)–(29) are significantly simplified, and equations of free vibrations
(27)–(29) take the form

Ẍ1s1s2 + κ1 Dγ X1s1s2 + ω2
1s1s2

X1s1s2 = −ζ k1k2
1s1s2

X2
3k1k2

, (30)

Ẍ2l1l2 + κ2 Dγ X2l1l2 + ω2
2l1l2 X2l1l2 = −ζ k1k2

2l1l2
X2

3k1k2
, (31)

Ẍ3k1k2 + κ3 Dγ X3k1k2 + ω2
3k1k2

X3k1k2 = −ζ s1s2
13 k1k2

X1s1s2 X3k1k2 (32)

−ζ l1l2
23 k1k2

X2l1l2 X3k1k2 ,

where

ζ
k1k2
1s1s2

= 4
(

Ak1k2k1k2
1 s1s2

L I
1s1s2

+ Ak1k2k1k2
2 s1s2

L I
2s1s2

)
, (33)

ζ
k1k2
2l1l2

= 4
(

Ak1k2k1k2
1 l1l2

L II
1l1l2 + Ak1k2k1k2

2 l1l2
L II

2l1l2

)
, (34)

ζ
s1s2
12k1k2

= 4
(

Ck1k2s1s2
k1k2

L I
1s1s2

+ Dk1k2s1s2
k1k2

L I
2s1s2

)
, (35)

ζ
l1l2
23k1k2

= 4
(

Ck1k2l1l2
k1k2

L II
1l1l2 + Dk1k2l1l2

k1k2
L II

2l1l2

)
, (36)
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Ak1k2k1k2
1 s1s2

= π3k1

(

k2
1 + 1 − ν

2
β2

1 k2
2

)

ak1k2k1k2
1s1s2

− 1 + ν

2
π3β2

1 k1k2
2ak1k2k1k2

2s1s2
, (37)

Ak1k2k1k2
2 l1l2

= π3β1k2

(

β2
1 k2

2 + 1 − ν

2
k2

1

)

ak1k2k1k2
3l1l2

− 1 + ν

2
π3β1k2

1k2ak1k2k1k2
4l1l2

, (38)

Ck1k2s1s2
k1k2

= π3s1

(
k2

1 + νβ2
1 k2

2

)
ak1k2s1s2

5k1k2
+ (1 − ν)π3β2

1 k1k2s2ak1k2s1s2
6k1k2

− π3k1

(

s2
1 + 1 − ν

2
β2

1 s2
2

)

ak1k2s1s2
7k1k2

− 1 + ν

2
β2

1π
3s1s2k2ak1k2s1s2

8k1k2
, (39)

Dk1k2l1l2
k1k2

= π3β1l2
(
νk2

1 + β2
1 k2

2

)
ak1k2l1l2

5k1k2
+ (1 − ν)β1π

3l1k1k2ak1k2l1l2
6k1k2

− 1 + ν

2
β1π

3k1l1l2ak1k2l1l2
7k1k2

− π3β1k2

(
1 − ν

2
l2
1 + β2

1 l2
2

)

ak1k2l1l2
8k1k2

. (40)

From relationships (33)–(40) we could calculate all coefficients entering in
Eqs. (30)–(32).

Omitting hereafter the subindices s1s2, k1k2, and l1l2 for ease of presentation,
Eqs. (30)–(32) could be rewritten as

Ẍ1 + κ1 Dγ X1 + ω2
1 X1 + ζ1 X2

3 = 0, (41)

Ẍ2 + κ2 Dγ X2 + ω2
2 X2 + ζ2 X2

3 = 0, (42)

Ẍ3 + κ3 Dγ X3 + ω2
3 X3 + X3 (ζ13 X1 + ζ23 X2) = 0. (43)

3 Method of Solution

An approximate solution of Eqs. (41)–(43) for small but finite amplitudes weakly
varying with time can be represented by a third-order uniform expansion in terms of
different time scales in the following form [7]:

Xi = εXi1(T0, T1, T2 . . .)+ ε2 Xi2(T0, T1, T2 . . .)+ ε3 Xi3(T0, T1, T2 . . .)+ . . . ,

(44)
where i = 1, 2, 3, ε is a small dimensionless parameter of the same order of magni-
tude as the amplitudes, Tn = εnt are new independent variables, among them: T0 = t
is a fast scale characterizing motions with the natural frequencies, and T1 = εt and
T2 = ε2t are slow scales characterizing the modulation of the amplitudes and phases
of the modes with nonlinearity.

Recall that the first and the second time-derivatives are defined, respectively, as
follows

d

dt
= D0 +εD1 +ε2 D2 +· · · , d2

dt2 = D2
0 +2εD0 D1 +ε2

(
D2

1 + 2D0 D2

)
+· · · ,

(45)
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while the fractional-order time-derivative could be represented following [11] as

(
d

dt

)γ
=
(

D0 + εD1 + ε2 D2 + · · ·
)γ

(46)

= Dγ
0 + εγ Dγ−1

0 D1 + 1

2
ε2γ

[
(γ − 1)Dγ−2

0 D2
1 + 2Dγ−1

0 D2

]
+ · · · ,

where Dn = ∂/∂Tn , and Dγ
0 , Dγ−1

0 , Dγ−2
0 , . . . are the Riemann–Liouville fractional

derivatives in time t defined in (7).
Considering that the viscosity is small, i.e.,

κi = εkμiτ
γ

i ,

where τi is the relaxation time of the i th generalized displacement,μi is a finite value,
and the choice of k depends on the order of smallness of the viscosity coefficients κi ,
substituting (44)–(46) in Eqs. (41)–(43), after equating the coefficients at like powers
of ε to zero, we are led to a set of recurrence equations to various orders:

• to order ε

D2
0 X11 + ω2

1 X11 = 0, (47)

D2
0 X21 + ω2

2 X21 = 0, (48)

D2
0 X31 + ω2

3 X31 = 0; (49)

• to order ε2

D2
0 X12 + ω2

1 X12 = −2D0 D1 X11 − ζ1 X2
31 − μ1(2 − k)τ γ1 Dγ

0 X11, (50)

D2
0 X22 + ω2

2 X22 = −2D0 D1 X21 − ζ2 X2
31 − μ2(2 − k)τ γ2 Dγ

0 X21, (51)

D2
0 X32 + ω2

3 X32 = −2D0 D1 X31 − ζ13 X11 X31 − ζ23 X21 X31

−μ3(2 − k)τ γ3 Dγ
0 X31, (52)

• to order ε3

D2
0 X13 + ω2

1 X13 = −2D0 D1 X12 −
(

D2
1 + 2D0 D2

)
X11 − 2ζ1 X31 X32

− μ1(2 − k)τ γ1

(
Dγ

0 X12 + Dγ−1
0 D1 X11

)
− μ1(k − 1)τ γ1 Dγ

0 X11, (53)

D2
0 X23 + ω2

2 X23 = −2D0 D1 X22 −
(

D2
1 + 2D0 D2

)
X21 − 2ζ2 X31 X32

− μ2(2 − k)τ γ2

(
Dγ

0 X22 + Dγ−1
0 D1 X21

)
− μ2(k − 1)τ γ2 Dγ

0 X21, (54)

D2
0 X33 + ω2

3 X33 = −2D0 D1 X32 −
(

D2
1 + 2D0 D2

)
X31

− ζ13 (X11 X32 + X12 X31)− ζ23 (X21 X32 + X22 X31)

− μ3(2 − k)τ γ3

(
Dγ

0 X32 + Dγ−1
0 D1 X31

)
− μ3(k − 1)τ γ3 Dγ

0 X31. (55)
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In order to construct the uniformly valid solution, it is necessary on each step
to use the solution from the preceding step and to eliminate secular terms during
integration [7].

We shall seek the solution of Eqs. (47)–(49) in the form

X j1 = A j (T1, T2) exp(iω j T0)+ Ā j (T1, T2) exp(−iω j T0) ( j = 1, 2, 3), (56)

where A j (T1, T2) ( j = 1, 2, 3) are unknown complex functions, and Ā j (T1, T2) are
the complex conjugates of A j (T1, T2).

To solve the sets of Eqs. (50)–(52) and (54)–(55), it is necessary to specify the
action of the fractional derivative Dγ

0 (7) on the functions X j1, i.e., to calculate
Dγ

0 eiω j t . It has been shown in [17] that

Dγ
0 eiω j t = (iω j )

γ eiω j t + sin πγ

π

∞∫

0

uγ

u + iω j
e−ut du. (57)

The first term in (57) is equivalent to the action of the fractional derivative with
the low limit tending to −∞

Dγ
0 x(t) = 1

Γ (1 − γ )

d

dt

t∫

−∞

x(s)ds

(t − s)γ
, (58)

the application of which for the exponential function is reduced to

Dγ
0 eiω j t = (iω j )

γ eiω j t , (59)

while the second term of (57), as it has been proved in [16], does not influence the
solution constructed via the method of multiple time scales restricted to the zeroth-
and first-order approximations.

In other words, even the utilization of exact formula (57) in the problem under
consideration produces completely equivalent results given by the approximate for-
mula (59) if the solution is constructed via the method of multiple time scales within
the considered orders of approximation. Thus, in further analysis we will utilize
formula (59).

For further analysis it is also a need to specify the order of weak damping. In this
paper, we shall restrict ourselves by considering the case of viscosity of the order of
ε, while the case of higher orders of smallness of viscosity is a matter of investigation
in another paper.

Then at k = 1 Eqs. (50)–(52) are reduced to

D2
0 X12 + ω2

1 X12 = −2D0 D1 X11 − ζ1 X2
31 − μ1τ

γ
1 Dγ

0 X11, (60)

D2
0 X22 + ω2

2 X22 = −2D0 D1 X21 − ζ2 X2
31 − μ2τ

γ
2 Dγ

0 X21, (61)
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D2
0 X32 + ω2

3 X32 = −2D0 D1 X31 − X31 (ζ13 X11 + ζ23 X21)− μ3τ
γ
3 Dγ

0 X31. (62)

Substituting (56) in the right-hand side of Eqs. (60)–(62) with due account for (59)
yields

D2
0 X12 + ω2

1 X12 = −2iω1 D1 A1(T1) exp(iω1T0)− ζ1

[
A2

3 exp(2iω3T0)+ A3 Ā3

]

−μ1τ
γ
1 A1 (iω1)

γ exp(iω1T0)+ cc, (63)

D2
0 X22 + ω2

2 X22 = −2iω2 D1 A2(T1) exp(iω2T0)− ζ2

[
A2

3 exp(2iω3T0)+ A3 Ā3

]

−μ2τ
γ
2 A2 (iω2)

γ exp(iω2T0)+ cc, (64)

D2
0 X32 + ω2

3 X32 = −2iω3 D1 A3(T1) exp(iω3T0)− μ3τ
γ
3 A3 (iω3)

γ exp(iω3T0)

− ζ13
{

A1 A3 exp [i(ω1 + ω3)T0] + A1 Ā3 exp [i(ω1 − ω3)T0]
}

− ζ23
{

A2 A3 exp [i(ω2 + ω3)T0] + A2 Ā3 exp [i(ω2 − ω3)T0]
}+ cc, (65)

where cc is the complex conjugate part to the preceding terms.
Reference to Eqs. (63)–(65) shows that the following types of the internal reso-

nance could occur on this step:

1. the two-to-one internal resonance, when one natural frequency is twice the other
natural frequency,

ω1 = 2ω3 (ω2 �= ω1, ω2 �= 2ω3), (66)

ω2 = 2ω3 (ω1 �= ω2, ω1 �= 2ω3); (67)

2. the one-to-one-to-two internal resonance, i.e.,

ω1 = ω2 = 2ω3, or 1 : 1 : 2. (68)

4 Governing Nonlinear Differential Equations Describing
Amplitude-Phase Modulation for Different Types of the
Internal Resonance of the Order of ε

To deduce the nonlinear differential equations describing the modulation of ampli-
tudes and phases of the nonlinear plate under consideration, we should consider
separately each type of the internal resonance which could occur with due account
for weak damping of the order ε.

4.1 Internal Resonance 2:1

Let us consider the case (66), when ω1 = 2ω3, while ω2 �= ω1 and ω2 �= 2ω3. The
case (67) could be treated similarly.
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Then eliminating secular terms in Eqs. (63)–(65), we obtain the following solv-
ability equations:

2iω1 D1 A1(T1)+ μ1 (iω1τ1)
γ A1 + ζ1 A2

3 = 0, (69)

2iω2 D1 A2(T1)+ μ2 (iω2τ2)
γ A2 = 0, (70)

2iω3 D1 A3(T1)+ μ3 (iω3τ3)
γ A3 + ζ13 A1 Ā3 = 0. (71)

Reference to the set of Eqs. (69)–(71) shows that its second equation is independent
of other two, while the first and third ones represent a set of two nonlinear equations.
The similar situation was noted in [12] for a fractionally damped nonlinear plate in
the case of the two-to-one internal resonance, when equations describing the plate
in-plane motion are coupled.

Let us multiply Eqs. (69)–(71), respectively, by Ā1, Ā2, and Ā3 and find their
complex conjugates. Adding every pair of the mutually adjoint equations with each
other and subtracting one from another, and considering that

Ai = ai e
iϕi (i = 1, 2, 3), (72)

as a result we have
(

a2
1

). + s1a2
1 + ω−1

1 ζ1a1a2
3 sin δ = 0, (73)

(
a2

3

). + s3a2
3 − ω−1

3 ζ13a1a2
3 sin δ = 0, (74)

ϕ̇1 − 1

2
σ1 − 1

2
ζ1ω

−1
1 a2

3a−1
1 cos δ = 0, (75)

ϕ̇3 − 1

2
σ3 − 1

2
ζ13ω

−1
3 a1 cos δ = 0, (76)

(
a2

2

). + s2a2
2 = 0, (77)

ϕ̇2 − 1

2
σ2 = 0, (78)

where a dot denotes differentiation with respect to T1, δ = 2ϕ3 − ϕ1, and

si = μiτ
γ

i ω
γ−1
i sinψ, σi = μiτ

γ

i ω
γ−1
i cosψ, ψ = 1

2
πγ (i = 1, 2, 3). (79)

From Eqs. (73)–(76) we find

ω1
ζ1

[(
a2

1

). + s1a2
1

]

ω3
ζ13

[(
a2

3

). + s3a2
3

] = −1, (80)

δ̇ −Σ − 1

a1

[

ζ13ω
−1
3 a2

1 − 1

2
ζ1ω

−1
1 a2

3

]

cos δ = 0, (81)

where Σ = σ3 − 1
2σ1.
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Introducing new functions ξ1(T1) and ξ3(T1), such that

a2
1 = ζ1

ω1
ξ1(T1)e

−s1T1 , a2
3 = ζ13

ω3
ξ3(T1)e

−s3T1 , (82)

and substituting (82) in (80) yield

ξ̇3 + ξ̇1 e(s3−s1)T1 = 0, (83)

whence it follows

ξ3 = −
⎡

⎣ξ1e(s3−s1)T1 − (s3 − s1)

T1∫

0

ξ1e(s3−s1)T1 dT1

⎤

⎦+ E0, (84)

where

E0 = ξ1 0 + ξ3 0

is the initial energy of the plate defined by the initial conditions

ξ1

∣
∣
∣
T1=0

= ξ1 0, ξ2

∣
∣
∣
T1=0

= ξ2 0, ξ3

∣
∣
∣
T1=0

= ξ3 0, δ

∣
∣
∣
T1=0

= δ0. (85)

From (73) and (74), we could find

a1 = ω3

ζ13

(

2
ȧ3

a3
+ s3

)
1

sin δ
= 2

ω3

ζ13

ξ̇3

ξ3

1

sin δ
, (86)

a2
3a−1

1 = −ω1

ζ1
(2ȧ1 + s1a1)

1

sin δ
= 2

ω1

ζ1

ξ̇1

ξ1

1

sin δ
. (87)

Considering (86) and (87), Eq. (81) could be rewritten as

tan δ
(
δ̇ −Σ

) = 1

2

ξ̇1

ξ1
+ ξ̇3

ξ3
, (88)

integration of which yields

G0 exp

⎛

⎝−Σ
T1∫

0

tan δdT1

⎞

⎠ = √
ξ1 ξ3 cos δ, (89)

where G0 is a constant of integration to be found from the initial conditions (85).
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Substituting (82) in (73) and (74), we have

ξ̇1 = −b
√
ξ1 ξ3 e

(
1
2 s1−s3

)
T1 sin δ, (90)

ξ̇3 = b
√
ξ1 ξ3 e− 1

2 s1T1 sin δ, (91)

where

b = ζ13

ω3

√
ζ1

ω1
.

The nonlinear set of Eqs. (84), (90), and (89) with the initial conditions (85)
completely describe the vibrational process of the mechanical system being investi-
gated under the condition of the internal resonance two-to-one and could be solved
numerically.

4.1.1 Particular Case

In the particular case at γ = 1, σ1 = σ3 = 0, and hence Σ = 0. Assuming that
s1 = s3 = s, from (84) we find

ξ3 + ξ1 = E0, (92)

whence it follows that

ξ1 = E0 ξ, ξ3 = E0(1 − ξ), (93)

or

a2
1 = E0

ζ1

ω1
ξ exp(−sT1), a2

3 = E0
ζ13

ω1
(1 − ξ) exp(−sT1). (94)

Considering (94) and integrating (80) yield the law of energy dissipation

E = ω1

ζ1
a2

1 + ω3

ζ13
a2

3 = E0e−sT1 , (95)

where E is the energy of the system.
In the case under consideration, Eqs. (81) and (91), take, respectively, the form

δ̇ = −1

2
b
√

E0
1 − 3ξ√

ξ
e− 1

2 sT1 cos δ, (96)

ξ̇ = −b
√

E0
√
ξ(1 − ξ)e− 1

2 sT1 sin δ, (97)
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while (88) could be rewritten as

δ̇ tan δ = 1

2

ξ̇1

ξ1
+ ξ̇3

ξ3
. (98)

Integrating (98) with due account for (93) yields

G(ξ, δ) = √
ξ(1 − ξ) cos δ = G0(ξ0, δ0). (99)

Eliminating the variable δ from (97) and (99), and integrating over T1, we have

ξ∫

ξ0

dξ
√
ξ3 − 2ξ2 + ξ − G2

0

= 2b
√

E0

s

(
e− 1

2 sT1 − 1
)
. (100)

The integral in the left-hand side of Eq. (100) can be transformed to an incomplete
elliptic integral of the first kind and can be easily calculated using special tables [1].

For qualitative analysis of the solution let us introduce into consideration the
phase fluid moving along the plane ξδ in the channel of the finite width (0 ≤ ξ ≤ 1)
and the infinite length (−∞ < δ < +∞) with the velocity v (vξ = ξ̇ and vδ = δ̇)
[10]. Each point with the coordinates ξδ on the phase plane corresponds to certain
magnitudes of the amplitudes a1 and a3 of two interacting modes of vibrations at the
fixed instant, and to the phase difference of these modes relative to each other at the
same instant.

In the phase plane ξδ, Eq. (99) defines the stream function G(ξ, δ) such that

vξ = ξ̇ = b
√

E0
∂G

∂δ
e− 1

2 sT1 , vδ = δ̇ = −b
√

E0
∂G

∂ξ
e− 1

2 sT1 , (101)

what is fulfilled along each streamline. In other words, the picture of the stream-
lines is unchanged with the time, but the field of the velocities constructed along the
streamlines is time dependent in such a manner that at each point ξδ of this field
the direction of the velocity vector v remains constant, and its modulus decreases
by the exponential law, resulting in quasi-steady vibrations of the viscoelastic
plate.

Consequently, at γ = 1, the stream-function G(ξ, δ) = G0(ξ0, δ0) defined by
(99) is the first integral of Eqs. (73)–(76), in parallel with the first integral (95),
corresponding to the law of energy dissipation.

Comparison of the solution (89) with that in (99) shows that in the general case
the phase fluid stream-lines disappear, and the phase fluid particles begin to describe
intricate trajectories on the phase plane, i.e., quasi-stable motion of the plate goes
over into the transient one.
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4.1.2 Free Undamped Vibrations

In the absence of damping, i.e., when γ = 0, μ = 0, and s = 0, the first integral
takes the form

E = ω1

ζ1
a2

1 + ω3

ζ13
a2

3 = E0, (102)

what corresponds to the law of conservation of system’s energy.
The second first integral (99) defines the stream function G(ξ, δ) such that

vξ = ξ̇ = b
√

E0
∂G

∂δ
, vδ = δ̇ = −b

√
E0
∂G

∂ξ
, (103)

which describes steady− state vibrations of an elastic plate.
Finally, Eq. (100) allowing one to find the function ξ(T1) and, thus to solve the

problem under consideration, takes the form

ξ∫

ξ0

dξ
√
ξ3 − 2ξ2 + ξ − G2

0

= −b
√

E0 T1 (104)

Therefore, during free vibrations of the plate being under the conditions of the
two-to-one internal resonance three regimes can be observed: stationary (absence of
damping at γ = 0 and μ = 0), quasi-stationary (damping is defined by an ordinary
derivative at γ = 1), and transient (damping is defined by a fractional derivative at
0 < γ < 1).

4.2 Internal Resonance 1:1:2

Let us consider the case (68), when ω1 = ω2 = 2ω3. Then eliminating secular terms
in Eqs. (63)–(65), we obtain the following solvability equations:

2iω1 D1 A1(T1)+ μ1 (iω1τ1)
γ A1 + ζ1 A2

3 = 0, (105)

2iω2 D1 A2(T1)+ μ2 (iω2τ2)
γ A2 + ζ2 A2

3 = 0, (106)

2iω3 D1 A3(T1)+ μ3 (iω3τ3)
γ A3 + ζ13 A1 Ā3 + ζ23 A2 Ā3 = 0. (107)

Reference to the set of Eqs. (105)–(107) shows that, in contrast to Eqs. (69)–(71)
corresponding to the case (66) when ω1 = 2ω3, while ω2 �= ω1 and ω2 �= 2ω3, now
we obtain the set of three coupled nonlinear equations.

Representing functions Ai entering in (105)–(107) in the polar form (72) and
applying the same procedure as it has been carried out above for 2:1 internal
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resonance, we have

(
a2

1

). + s1a2
1 + ω−1

1 ζ1a1a2
3 sin(2ϕ3 − ϕ1) = 0, (108)

(
a2

2

). + s2a2
2 + ω−1

2 ζ2a2a2
3 sin(2ϕ3 − ϕ2) = 0, (109)

(
a2

3

). + s3a2
3 − ω−1

3 ζ13a1a2
3 sin(2ϕ3 − ϕ1)

− ω−1
3 ζ23a2a2

3 sin(2ϕ3 − ϕ2) = 0, (110)

ϕ̇1 − 1

2
σ1 − 1

2
ζ1ω

−1
1 a2

3a−1
1 cos(2ϕ3 − ϕ1) = 0, (111)

ϕ̇2 − 1

2
σ2 − 1

2
ζ2ω

−1
2 a2

3a−1
2 cos(2ϕ3 − ϕ2) = 0, (112)

ϕ̇3 − 1

2
σ3 − 1

2
ζ13ω

−1
3 a1 cos(2ϕ3 − ϕ1)

− 1

2
ζ23ω

−1
3 a2 cos(2ϕ3 − ϕ2) = 0, (113)

The nonlinear set of Eqs. (108)–(113) with the initial conditions (85) completely
describes the vibrational process of the mechanical system being investigated under
the condition of the internal resonance 1:1:2 and could be solved numerically.

Introducing new functions ξ1(T1), ξ2(T1), and ξ3(T1) such that

a2
1 = ζ1ω3

ζ13ω1
ξ1e−s1T1 , a2

2 = ζ2ω3

ζ23ω2
ξ2e−s2T1 , a2

3 = ξ3e−s3T1 , (114)

and adding Eqs. (108)–(110) with due account for (114), we obtain

ξ̇1e−s1T1 + ξ̇2e−s2T1 + ξ̇3e−s3T1 = 0. (115)

Equation (115) describes the law of energy variation for this case of the internal
resonance.

5 Numerical Investigations

As example, let us carry out the qualitative analysis of the case of two-to-one internal
resonance (66).

For this case, the stream-function G(ξ, δ) is constructed according to (99) and
the stream-lines of the phase fluid in the phase plane ξ − δ are presented in Fig. 1.
Magnitudes of G are indicated by digits near the curves which correspond to the
stream-lines; the flow direction of the phase fluid elements are shown by arrows on
the stream-lines.

Reference to Fig. 1 shows that the phase fluid flows within the circulation zones,
which tend to be located around the perimeter of the rectangles bounded by the lines
ξ = 0, ξ = 1, and δ = ±(π/2)±2πn (n = 0, 1, 2, . . .). As this takes place, the flow
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Fig. 1 Phase portrait for the case of 2:1 internal resonance

in each such rectangle becomes isolated. On all four rectangle sides G = 0 and inside
it, the value G preserves its sign. The function G attains its extreme magnitudes at
the points with the coordinates ξ = 1

3 , δ = ±πn (n = 0, 1, 2, . . .).
Stream-lines give a pictorial estimate of the connection of G with all types of the

energy− exchange mechanism. Thus, in the case of undamped vibrations, i.e., when
the damping coefficient is equal to zero and s = 0, the points with the coordinates
ξ0 = 1

3 , δ0 = ±πn (n = 0, 1, 2, . . .) correspond to the stationary regime, since
δ̇ = 0 and ξ̇ = 0 according to (96) and (97). The stationary points ξ0 = 1

3 , δ0 = ±πn
are centers, as with a small deviation from a center, a phase element begins to move
around the stationary point along a closed trajectory. Closed stream-lines correspond
to the periodic change of both amplitudes and phases.

Along the lines δ = ±(π/2)± 2πn (n = 0, 1, 2, . . .) pure amplitude modulated
aperiodic motions are realized, since with an increase in time t from 0 to ∞ the value
ξ increases from ξ0 to 1 (along the line δ = −π/2) or decreases from ξ0 to 0 (along
the line δ = π/2), and from Eq. (104) it follows that

ξ=
[

1 + √
ξ0 − (1 − √

ξ0) exp(−b
√

E0 T1)

1 + √
ξ0 + (1 − √

ξ0) exp(−b
√

E0 T1)

]2

, δ(T1) = δ0 = π

2
± πn, n = 0, 1, 2, . . .

(116)

Along the line ξ = 1 only phase modulated motions are realized, because when
ξ = ξ0 = 1 the amplitudes a3 = const and a1 = 0, and from (96) and (97) we
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could find that

b
√

E0 T1 = ln
tan

(
δ
2 + π

4

)

tan
(
δ0
2 + π

4

) , ξ(T1) = ξ0 = 1. (117)

The transition of fluid elements from the points ξ = 0, δ = π/2 ± 2πn to the
points ξ = 0, δ = −π/2 ± 2πn proceeds instantly, because according to the
distribution of the phase velocity along the section δ = 0 (see Fig. 1) the magnitude
of v tends to infinity as ξ → 0. The distribution of the velocity along the vertical
lines δ = ±πn (n = 0, 1, 2, . . .) has the aperiodic character, while in the vicinity of
the line ξ = 1/3 it possesses the periodic character.

At the presence of conventional viscosity, i.e., when γ = 1, the picture of the
stream-lines remains unchanged, but the velocities of the phase fluid particles decay
exponentially during their motion along the stream-lines. As this takes place, the
stationary and boundary regimes (pure amplitude or pure phase modulations) become
aperiodic regimes, that is the amplitudes and phases attenuate exponentially with
time. In other words, according to (101), the field of the velocities constructed along
the streamlines is time dependent in such a manner that at each point ξδ of this field
the direction of the velocity vector v remains constant, and its modulus decreases by
the exponential law, resulting in quasi-steady vibrations of the viscoelastic plate.

Thus, along the lines δ = ±(π/2) ± 2πn (n = 0, 1, 2, . . .) in the presence of
conventional viscosity the solution (116) should be rewritten as

ξ =
[

1 − c0 exp f (T1)

1 + c0 exp f (T1)

]2

, δ(T1) = δ0 = π

2
± πn, n = 0, 1, 2, . . . (118)

where

f (T1) = 2b
√

E0

s

(
1 − e− 1

2 sT1
)
, c0 = 1 − √

ξ0

1 + √
ξ0
.

The T1-dependence of the values ξ and 1− ξ which are proportional to the square
of the amplitudes a3 and a1, respectively, at δ0 = 0 and ξ = 0.5 is presented in Fig. 2,
wherein the solid and dashed lines correspond, respectively, to the cases of damped
and undamped vibrations. Reference to Fig. 2 shows the damping of the energy
exchange between two subsystems. Moreover, the points of touching of solid curves,
i.e., the points of tangency of the envelopes of vibrations (ξi = 1 − ξi , T1 i ), allow
one to determine the value characterizing the damping of energy during vibrations
via the formula

ln(ai+1/ai )

T1 (i−1) − T1 i
,

where ai are defined by (94).
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Fig. 2 The T ∗
1 -dependence of the dimensionless amplitudes of vibrations for the case of 2:1 internal

resonance

In the general case, when 0 < γ < 1, the phase fluid stream-lines disappear, and
the phase fluid particles begin to describe intricate trajectories on the phase plane,
i.e., quasi-stable motion of the shell goes over into the transient one.

6 Conclusion

Free damped vibrations of a non-linear plate in a fractional derivative viscoelastic
medium have been investigated. Nonlinear vibrations are described by coupled three
equations with respect to the three orthogonal displacements.

The proposed analytical approach for investigating the damped vibrations of the
nonlinear plate subjected to the conditions of the internal resonance has been possible
owing to the new procedure suggested in this paper, resulting in decoupling linear
parts of equations with the further utilization of the method of multiple scales for
solving nonlinear governing equations of motion.

It has been shown that the phenomenon of internal resonance could be very critical,
since in the thin plate under consideration the internal resonance is always present.
Moreover, its type depends on the order of smallness of the viscosity involved into
consideration. Thus, at the ε-order, damped vibrations occur within the two-to-one
and one-to-one-to-two internal resonance. Other types of the internal resonance, such
as one-to-one, one-to-one-to-one, and combinational resonances of the additive and
difference types could be found at ε2-order, i.e., the type of the resonance depends
on the order of smallness of the fractional derivative entering in the equations of
motion of the plate. That is why all possible cases of the internal resonances of the
order of ε have been examined in the present paper, while the internal resonances of
the order of ε2 will be considered in detail in another paper.
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For each type of the resonance, the nonlinear sets of resolving equations in terms
of amplitudes and phase differences have been obtained. It has been shown that for
the two-to-one internal resonance there exist such particular cases when it is possible
to obtain two first integrals, namely: the energy integral and the stream-function, what
allows one to reduce the problem to the calculation of elliptic integrals.

The influence of viscosity on the energy exchange mechanism has been analyzed.
It has been shown that each mode is characterized by its damping coefficient con-
nected with the natural frequency by the exponential relationship with a negative
fractional exponent.
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On Stability of Inhomogeneous Elastic
Cylinder of Micropolar Material

Denis N. Sheydakov

Abstract The present research is dedicated to the buckling analysis of nonlinearly
elastic rods made of porous materials. In the framework of a general stability theory
for three-dimensional bodies, we have studied the stability of a circular micropolar
rod subject to axial compression and external pressure. It is assumed that the elastic
properties of the rod vary along the radius. Applying linearization the neutral equi-
librium equations are derived, which describe the perturbed state of a rod. These
linearized equations have been solved numerically for a few commonly used porous
materials. The critical curves and corresponding buckling modes have been found,
and the stability regions have been constructed in the plane of loading parameters.
Using these results, we have studied the influence of elastic properties as well as the
rod size on the loss of stability. Special attention has been given to the analysis of
how the pattern of variation for elastic properties of material affects the stability of
a micropolar rod.

1 Introduction

Due to the increasing number of new construction materials, the problem of stability
analysis for bodies with a microstructure becomes important. Examples of such new
materials are porous materials. Engineering structures made of porous materials,
especially metal and polymer foams, are widely used in modern industries with
airspace or automotive applications among others [2–4, 6, 10]. They combine low
weight, high specific strength and excellent possibilities to absorb energy. As a rule,
these constructions have a functionally graded structure (for example, a porous core
covered by hard and stiff shell). This is necessary for corrosion or thermal protection,
and optimization of mechanical properties in the process of loading.

D.N. Sheydakov (B)
South Scientific Center of Russian Academy of Sciences, Chekhova Ave. 41,
344006 Rostov-on-Don, Russia
e-mail: sheidakov@mail.ru

© Springer International Publishing Switzerland 2015
H. Altenbach and G.I. Mikhasev (eds.), Shell and Membrane Theories in Mechanics
and Biology, Advanced Structured Materials 45, DOI 10.1007/978-3-319-02535-3_16

289



290 D.N. Sheydakov

2 Initial Strain State of Inhomogeneous Rod

We consider the inhomogeneous elastic circular rod of radius r0 and length l, and
made of metal or polymer foam. Due to the microstructure influence, the behavior of
foams cannot be adequately described within the framework of the classical theory of
elasticity. One approach to the modeling of the porous elastic body is to use the model
of micropolar continuum, or Cosserat continuum [1, 5, 9, 12, 16, 23], i.e. medium
with couple stresses and rotational degrees of freedom. Then, in the case of axial com-
pression of the rod under external hydrostatic pressure, the radius-vector R and proper
orthogonal tensor of microrotation H, which determine the position and rotation of
a micropolar medium particle, are given by the following relations [15, 21, 24]:

R = f (r), Φ = ϕ, Z = αz

0 ≤ r ≤ r0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l
(1)

R = f (r) eR + αz eZ

H = er ⊗ eR + eϕ ⊗ eΦ + ez ⊗ eZ
(2)

Here r, ϕ, z are the cylindrical coordinates in the reference configuration (Lagrangian
coordinates), R, Φ, Z are the Eulerian cylindrical coordinates,

{
er , eϕ, ez

}
and

{eR, eΦ, eZ } are orthonormal vector bases of Lagrangian and Eulerian coordinates,
respectively, α is the compression ratio along the axis of the rod, f (r) is the unknown
function which characterizes the radial deformation of the rod.

According to the expressions (1), (2), the deformation gradient C is (hereinafter
the ′ denotes the derivative with respect to r ):

C = Grad R = f ′er ⊗ eR + f

r
eϕ ⊗ eΦ + αez ⊗ eZ (3)

where Grad is gradient operator in the Lagrangian coordinates:

Grad R = er
∂R
∂r

+ 1

r
eϕ
∂R
∂ϕ

+ ez
∂R
∂z

It follows from relations (2), (3) that the wryness tensor L is equal to
zero [7, 17, 19, 20]

L × I = − (grad H) · HT = 0

(I is the unit tensor) and the stretch tensor Y is expressed as follows

Y = f ′er ⊗ er + f

r
eϕ ⊗ eϕ + αez ⊗ ez (4)
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We assume that the elastic properties of the rod vary along the radius, and is
described by the model of physically linear micropolar material, the specific strain
energy of which is a quadratic form of the tensors Y − I and L [8, 13]:

W (Y,L) = 1
2λ(r)tr

2 (Y − I)+ 1
2 [μ(r)+ κ(r)] tr

[
(Y − I) · (Y − I)T

]

+1

2
μ(r)tr (Y − I)2 + 1

2
γ1(r)tr

2L

+1

2
γ2(r)tr

(
L · LT

)
+ 1

2
γ3(r)tr L2

(5)

Here λ(r), μ(r) are functions describing the change in the Lame parameters, κ(r),
γ1(r), γ2(r), γ3(r) are micropolar elastic parameters changing with the radial
coordinate.

It follows from expressions (2), (4), and (5) that the Piola-type couple stress tensor
G is equal to zero for the deformation of axial compression of the circular rod under
external pressure

G = ∂W

∂L
· H =

[
γ1 (tr L) I + γ2L + γ3LT

]
· H = 0

and Piola-type stress tensor D is

D = ∂W

∂Y
· H =

[
λtr (Y − I) I + μ

(
YT − I

)
+ (μ+ κ) (Y − I)

]
· H

= [
λs + χ

(
f ′ − 1

)]
er ⊗ eR +

[

λs + χ

(
f

r
− 1

)]

eϕ ⊗ eΦ (6)

+ [λs + χ (α − 1)] ez ⊗ eZ ;
s = f ′ + f

r
+ α − 3, χ = 2μ+ κ

The equilibrium equations of nonlinear micropolar elasticity in the absence of
mass forces and moments are written as follows [8, 24]

DivD = 0, DivG +
(
CT · D

)

× = 0 (7)

where Div is the divergence in the Lagrangian coordinates. The symbol × represents
the vector invariant of a second-order tensor. The boundary conditions

er · D|r=r0 = −p Jer · C−T, er · G|r=r0 = 0; J = detC (8)

express the action of external hydrostatic pressure p (referred to the unit area of the
deformed configuration) on the lateral surface of the rod (r = r0). Using the relations
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(3), (6), the boundary-value problem (7), (8) is written as follows:

f ′′ +
(
λ′ + χ ′

λ+ χ
+ 1

r

)

f ′ +
(

λ′

λ+ χ
− 1

r

)
f

r
+ (α − 3)λ′ − χ ′

λ+ χ
= 0

[λ(r0)+ χ(r0)] f ′(r0)+ [λ(r0)+ αp]
f (r0)

r0
+ (α − 3)λ(r0)− χ(r0) = 0

(9)

By solving this problem, we find the unknown function f (r). In most cases, this
is done numerically. The analytical solution can be obtained only for some simple
cases of the material inhomogeneity.

3 Perturbed State of Inhomogeneous Rod

We assume that in addition to the above-described state of equilibrium for the inho-
mogeneous rod, there is an infinitely close equilibrium state under the same external
loads, which is determined by the radius vector R + ηv and microrotation tensor
H − ηH × ω. Here η is a small parameter, v is vector of additional displacements, ω

is a linear incremental rotation vector, which characterizes the small rotation of the
micropolar medium particles, measured from the initial strain state.

The perturbed state of equilibrium for the micropolar medium is described by the
equations [8, 11, 18]:

Div D• = 0, Div G• +
[
Grad vT · D + CT · D•]

× = 0 (10)

where D• and G• are the linearized Piola-type stress and couple stress tensors. In the
case of physically linear micropolar material (5), the following relations are valid
for these tensors [8, 22]:

D• =
(
∂W
∂Y

)• · H + ∂W
∂Y · H• =

(
λ

(
tr Y•) I + (μ+ κ)Y• + μY•T

)
· H

−
(
λtr (Y − I) I + μ

(
YT − I

)
+ (μ+ κ) (Y − I)

)
· H × ω

(11)

G• =
(
∂W
∂L

)• · H + ∂W
∂L · H• =

(
γ1

(
tr L•) I + γ2L• + γ3L•T

)
· H

−
(
γ1 (tr L) I + γ2L + γ3LT

)
· H × ω

(12)

Y• = (Grad v + C × ω) · HT, L• = Grad ω · HT

Here Y• is the linearized stretch tensor, L• is the linearized wryness tensor.
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The linearized boundary conditions on the lateral surface of the rod (r = r0) are
written as follows [15, 21]

er · D•∣∣
r=r0

= −p Jer · C−T ·
[
(div v)I − grad vT

]
, er · G•∣∣

r=r0
= 0 (13)

where div and grad are the divergence and gradient in the Eulerian coordinates.
We assume that there is no friction at the ends of the rod (z = 0, l) and constant

normal displacements are given. This leads to the following linearized end conditions:

ez · D• · eR
∣
∣
z=0,l = ez · D• · eΦ

∣
∣
z=0,l = ez · v|z=0,l = 0

ez · G• · eZ
∣
∣
z=0,l = er · ω|z=0,l = eϕ · ω|z=0,l = 0

(14)

The vector of additional displacements v and vector of incremental rotation ω in
the basis of Eulerian cylindrical coordinates are written as

v = vReR + vΦeΦ + vZ eZ , ω = ω ReR + ωΦeΦ + ω Z eZ (15)

To solve the linearized boundary-value problem (10), (13), (14) for a system of
six partial differential equations, we use the following substitution

vR = VR (r) cos nϕ cosβz, ωR = ΩR (r) sin nϕ sin βz

vΦ = VΦ (r) sin nϕ cosβz, ωΦ = ΩΦ (r) cos nϕ sin βz (16)

vZ = VZ (r) cos nϕ sin βz, ωZ = ΩZ (r) sin nϕ cosβz

β = πm/ l, m, n = 0, 1, 2, . . .

which leads to the separation of variables ϕ, z in this problem and allows to satisfy
the linearized end conditions (14). As a result, the stability analysis of the inhomoge-
neous circular micropolar rod is reduced to solving a linear homogeneous boundary-
value problem for a system of six ordinary differential equations (a detailed scalar
formulation of this problem can be found in the Appendix). For its solvability, it is
necessary to formulate an additional six conditions at r = 0, which can be obtained
by requiring the boundedness of unknown functions VR, VΦ, VZ ,ΩR,ΩΦ,ΩZ and
their derivatives [25]:

n = 0 : VR(0) = VΦ(0) = V ′
Z (0) = 0, ΩR(0) = ΩΦ(0) = Ω ′

Z (0) = 0

n = 1 : V ′
R(0) = V ′

Φ(0) = VZ (0) = 0, Ω ′
R(0) = Ω ′

Φ(0) = ΩZ (0) = 0
(17)

4 Numerical Results

In the present paper, we have carried out the stability analysis for the inhomoge-
neous rod made of dense polyurethane foam. The micropolar elastic parameters
for this material have been previously identified by [13, 14] through a series of
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experiments in which the size effect was measured during torsion or bending of
small rods.

It was assumed that the pattern of change in the elastic parameters λ,μ, κ along
the radius is the same, while the micropolar elastic parameters γ1, γ2, γ3 are constant:

λ(r) = λ0ξ(r), μ(r) = μ0ξ(r), κ(r) = κ0ξ(r)
λ0 = 797.3 MPa, μ0 = 99.67 MPa, κ0 = 8.67 MPa
γ1 = −26.65 N, γ2 = 45.3 N, γ3 = 34.65 N

Several laws describing the change in the elastic properties of the material have
been considered:

EXP1 : ξ (r) = 9, 999 + 90, 001r/r0

10, 000
, SIN1 : ξ (r) = 9 sin

(
πr

2r0
− π

2

)

+ 10

EXP2 : ξ (r) = 9 + 91r/r0

10
, SIN2 : ξ (r) = 9

2
sin

(
πr

r0
− π

2

)

+ 11

2

For all listed laws the rod is more rigid on the lateral surface and less rigid in the
center: the values of the elastic parameters λ,μ, κ at r = r0 are ten times higher
than their values at r = 0 (see Fig. 1).

By numerical solution [26] of the linearized boundary-value problem described in
Sect. 3 we have found the critical curves, corresponding to the various buckling modes
of the inhomogeneous micropolar rod. Based on the analysis of these curves, the
stability regions are constructed in the plane of loading parameters (axial compression
and external pressure) for rods of various sizes. For convenience, the following
dimensionless parameters are introduced:

δ = 1 − α, p∗ = p/μ0, r∗
0 = r0/ lb

Fig. 1 Various laws ξ(r)
describing the change in the
elastic parameters of the rod
along the radius
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Fig. 2 Boundaries of the stability regions for the inhomogeneous rods of different sizes

where lb = √
γ2/2 (2μ0 + κ0) is the characteristic length for bending [13]. The ratio

of the length of the undeformed rod to its diameter is 20 (l = 40r0) for all presented
results.

In Fig. 2 the stability regions (boundaries of the stability regions) are presented for
various inhomogeneous rods of two sizes: r∗

0 = 1 and r∗
0 = 5. It follows from graphs

that the micropolar rod becomes more stable with a decrease in size. This size effect
is due to a microstructure influence and not observed for classical (non-polar) elastic
bodies. It is quite significant for small rods (r∗

0 < 5), while negligible for large ones.
According to the obtained results, a relatively small external pressure has a sta-

bilizing effect on the deformation of axial compression. Specifically, we can always
find some optimal value of the external pressure at which a compressed rod is most
stable (the critical value of relative axial compression is maximum). This optimal
value depends on the material properties and rod geometry. At the same time, the
influence of high external pressure is negative, i.e. it destabilizes the deformation of
circular rod (see Fig. 2).

Through comparison of the results of stability analysis for the exponential (EXP1,
EXP2) and trigonometric (SIN1, SIN2) laws of change in the elastic parameters along
the radius, we have determined that the micropolar rods with the exponential pattern
of inhomogeneity are more stable with respect to the axial compression, but less stable
with respect to the external pressure. This is more evident for smaller rods (r∗

0 < 5).

5 Conclusion

In the framework of bifurcation approach, we have studied the stability of an inho-
mogeneous circular rod of micropolar material. For the physically linear material, a
system of linearized equilibrium equations was derived, which describes the behavior
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of the inhomogeneous rod in a perturbed state. In the case of a circular rod made
of dense polyurethane foam the stability regions were constructed in the plane of
loading parameters for different laws describing the change in the elastic properties
of material along the rod radius. Based on these results, in particular, we have deter-
mined that the micropolar rods with the exponential pattern of inhomogeneity are
more stable with respect to the axial compression, but less stable with respect to the
external pressure. Additionally, it was found that a relatively small external pressure
has a stabilizing influence on the deformation of axial compression.

Appendix: Scalar Formulation of the Linearized Boundary Value
Problem

With respect to the representations (2), (3), (15), the expressions for the linearized
stretch tensor Y• and wryness tensor L• have the form:

Y• =
(
∂vΦ
∂r

− f ′ωZ

)

er ⊗ eϕ + 1

r

(
∂vR

∂ϕ
− vΦ + f ωZ

)

eϕ ⊗ er

+
(
∂vZ

∂r
+ f ′ωΦ

)

er ⊗ ez +
(
∂vR

∂z
− αωΦ

)

ez ⊗ er (18)

+1

r

(
∂vZ

∂ϕ
− f ωR

)

eϕ ⊗ ez +
(
∂vΦ
∂z

+ αωR

)

ez ⊗ eϕ

+∂vR

∂r
er ⊗ er + 1

r

(
∂vΦ
∂ϕ

+ vR

)

eϕ ⊗ eϕ + ∂vZ

∂z
ez ⊗ ez

L• = ∂ωR

∂r
er ⊗ er + 1

r

(
∂ωΦ

∂ϕ
+ ωR

)

eϕ ⊗ eϕ + ∂ωZ

∂z
ez ⊗ ez

+∂ωΦ
∂r

er ⊗ eϕ + 1

r

(
∂ωR

∂ϕ
− ωΦ

)

eϕ ⊗ er + ∂ωZ

∂r
er ⊗ ez (19)

+∂ωR

∂z
ez ⊗ er + 1

r

∂ωZ

∂ϕ
eϕ ⊗ ez + ∂ωΦ

∂z
ez ⊗ eϕ

According to relations (2), (4), (11), (12), (15), (18) (19), the components of the
linearized Piola-type stress tensor D• and couple stress tensor G• are written as
follows:

er · D• · eR = (λ+ χ)
∂vR

∂r
+ λ

r

(
∂vΦ
∂ϕ

+ vR

)

+ λ
∂vZ

∂z

er · D• · eΦ = (μ+ κ)
∂vΦ
∂r

+ μ

r

(
∂vR

∂ϕ
− vΦ

)

+
[

μ

(

f ′ + f

r

)

+ λs − χ

]

ωZ

er · D• · eZ = (μ+ κ)
∂vZ

∂r
+ μ

∂vR

∂z
− [
μ

(
f ′ + α

) + λs − χ
]
ωΦ
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eϕ · D• · eR = μ+ κ

r

(
∂vR

∂ϕ
− vΦ

)

+ μ
∂vΦ
∂r

−
[

μ

(

f ′ + f

r

)

+ λs − χ

]

ωZ

eϕ · D• · eΦ = λ
∂vR

∂r
+ λ+ χ

r

(
∂vΦ
∂ϕ

+ vR

)

+ λ
∂vZ

∂z
(20)

eϕ · D• · eZ = μ+ κ

r

∂vZ

∂ϕ
+ μ

∂vΦ
∂z

+
[

μ

(
f

r
+ α

)

+ λs − χ

]

ωR

ez · D• · eR = (μ+ κ)
∂vR

∂z
+ μ

∂vZ

∂r
+ [
μ

(
f ′ + α

) + λs − χ
]
ωΦ

ez · D• · eΦ = (μ+ κ)
∂vΦ
∂z

+ μ

r

∂vZ

∂ϕ
−

[

μ

(
f

r
+ α

)

+ λs − χ

]

ωR

ez · D• · eZ = λ
∂vR

∂r
+ λ

r

(
∂vΦ
∂ϕ

+ vR

)

+ (λ+ χ)
∂vZ

∂z

er · G• · eR = (γ1 + γ2 + γ3)
∂ωR

∂r
+ γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)

+ γ1
∂ωZ

∂z

er · G• · eΦ = γ2
∂ωΦ

∂r
+ γ3

r

(
∂ωR

∂ϕ
− ωΦ

)

er · G• · eZ = γ2
∂ωZ

∂r
+ γ3

∂ωR

∂z

eϕ · G• · eR = γ2

r

(
∂ωR

∂ϕ
− ωΦ

)

+ γ3
∂ωΦ

∂r

eϕ · G• · eΦ = γ1
∂ωR

∂r
+ γ1 + γ2 + γ3

r

(
∂ωΦ

∂ϕ
+ ωR

)

+ γ1
∂ωZ

∂z
(21)

eϕ · G• · eZ = γ2

r

∂ωZ

∂ϕ
+ γ3

∂ωΦ

∂z

ez · G• · eR = γ2
∂ωR

∂z
+ γ3

∂ωZ

∂r

ez · G• · eΦ = γ2
∂ωΦ

∂z
+ γ3

r

∂ωZ

∂ϕ

ez · G• · eZ = γ1
∂ωR

∂r
+ γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)

+ (γ1 + γ2 + γ3)
∂ωZ

∂z

By taking into account the expressions (3), (6), (15), (16), (20), (21), we derive a
scalar form of the linearized equilibrium equations (10)

(λ+ χ) V ′′
R +

(

λ′ + χ ′ + λ+ χ

r

)

V ′
R − λ− λ′r + (μ+ κ) ζ + μ

r2 VR

+ n (λ+ μ)

r
V ′
Φ − n

(
λ− λ′r + 3μ+ 2κ

)

r2 VΦ + β (λ+ μ) V ′
Z

+βλ′VZ + βB2ΩΦ − nB3

r
ΩZ = 0

(μ+ κ) V ′′
Φ − n (λ+ μ)

r
V ′

R − n
(
λ+ μ′r + 3μ+ 2κ

)

r2 VR
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+
(

μ′ + κ ′ + μ+ κ

r

)

V ′
Φ − (λ+ μ) n2 + μ′r + (μ+ κ) ζ

r2 VΦ

− nβ (λ+ μ)

r
VZ − βB1ΩR + B3Ω

′
Z + B ′

3ΩZ = 0

(μ+ κ) V ′′
Z − β (λ+ μ) V ′

R − β
(
λ+ μ′r + μ

)

r
VR − nβ (λ+ μ)

r
VΦ

+
(

μ′ + κ ′ + μ+ κ

r

)

V ′
Z −

[

(λ+ μ) β2 + ζ − 1

r2 (μ+ κ)

]

VZ

+ nB1

r
ΩR − B2Ω

′
Φ −

(

B ′
2 + B2

r

)

ΩΦ = 0 (22)

γΩ ′′
R +

(
γ ′ + γ

r

)
Ω ′

R −
[
γ − γ ′

1 r + γ2 (ζ − 1)

r2 −
(

f

r
+ α

)

B1

]

ΩR

− n (γ − γ2)

r
Ω ′
Φ + n

(
γ − γ ′

1 r + γ2
)

r2 ΩΦ − β (γ − γ2)Ω
′
Z

−βγ ′
1 ΩZ − βB1VΦ + nB1

r
VZ = 0

γ2Ω
′′
Φ + n (γ − γ2)

r
Ω ′

R + n
(
γ + γ ′

3 r + γ2
)

r2 ΩR +
(
γ ′

2 + γ2

r

)
Ω ′
Φ

−
[
(γ − γ2) n2 + γ ′

3 r + γ2ζ

r2 − (
f ′ + α

)
B2

]

ΩΦ

− nβ (γ − γ2)

r
ΩZ + βB2VR + B2V ′

Z = 0

γ2Ω
′′
Z + β (γ − γ2)Ω

′
R + β

(
γ + γ ′

3 r − γ2
)

r
ΩR − nβ (γ − γ2)

r
ΩΦ

+
(
γ ′

2 + γ2

r

)
Ω ′

Z −
[

γβ2 + n2

r2 γ2 − B3

(

f ′ + f

r

)]

ΩZ

− nB3

r
VR − B3V ′

Φ − B3

r
VΦ = 0

Here the following notations are used:

γ = γ1 + γ2 + γ3, ζ = n2 + r2β2 + 1

B1 = μ

(
f

r
+ α

)

+ λs − χ,

B2 = μ
(

f ′ + α
) + λs − χ,

B3 = μ

(

f ′ + f

r

)

+ λs − χ
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The scalar representation of the linearized boundary conditions (13) on the lateral
surface of the rod is written as:

[λ(r0)+ χ(r0)] V ′
R(r0)+ λ(r0)+ αp

r0
[VR(r0)+ nVΦ(r0)]

+β
[

λ(r0)+ p
f (r0)

r0

]

VZ (r0) = 0

[μ(r0)+ κ(r0)] V ′
Φ(r0)+ αp − μ(r0)

r0
[nVR(r0)+ VΦ(r0)] + B3(r0)ΩZ (r0) = 0

[μ(r0)+ κ(r0)] V ′
Z (r0)+ β

[

p
f (r0)

r0
− μ(r0)

]

VR(r0)− B2(r0)ΩΦ(r0) = 0

γ (r0)Ω
′
R(r0)+ γ1(r0)

r0
[ΩR(r0)− nΩΦ(r0)] − βγ1(r0)ΩZ (r0) = 0

γ3(r0)

r0
[nΩR(r0)−ΩΦ(r0)] + γ2(r0)Ω

′
Φ(r0) = 0

βγ3(r0)ΩR(r0)+ γ2(r0)Ω
′
Z (r0) = 0 (23)
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A New Approach for Studying Nonlinear
Dynamic Response of a Thin Fractionally
Damped Cylindrical Shell with Internal
Resonances of the Order of ε

Marina V. Shitikova and Yury A. Rossikhin

Abstract Non-linear vibrations of a cylindrical shell embedded in a fractional
derivative viscoelastic medium and subjected to the different conditions of the inter-
nal resonance of the order of ε, where ε is a small value, are investigated. The dis-
placement functions are determined in terms of eigenfunctions of linear vibrations.
The procedure resulting in decoupling linear parts of equations is proposed with the
further utilization of the method of multiple scales for solving nonlinear governing
equations of motion, in so doing the amplitude functions are expanded into power
series in terms of the small parameter and depend on different time scales. The influ-
ence of viscosity on the energy exchange mechanism is analyzed. It is shown that
each mode is characterized by its damping coefficient connected with the natural
frequency by the exponential relationship with a negative fractional exponent. Com-
parison of the results obtained in this paper for the nonlinear shallow cylindrical shell
in the cases of the internal resonance of the order of εwith those for a nonlinear plate,
the motion of which is described also by three coupled nonlinear equations in terms
of three displacements, reveals the fact that the shell equations could produce much
more diversified variety of internal resonances, including combinational resonances
of the additive and difference types, than the plate equations.

1 Introduction

Beginning with the paper by Witt and Gorelik [1], whose authors were among
the first to show theoretically and experimentally the two-to-one internal reso-
nance with the energy exchange from one subsystem to another using the simplest
two-degree-of-freedom mechanical system as an example, interest of researchers to
the problems of the internal resonance in mechanical systems does not relax. It will
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suffice to mention the state-of-the-art article [2] and the monograph [3], wherein the
extensive review of literature in the field of internal resonances in different mechan-
ical systems is presented. Different types of the internal resonance: one-to-one, two-
to-one, as well as a variety of combinational resonances, when three and more natural
modes interact, have been discussed. The enumerated internal resonances were inves-
tigated in mechanical systems with more than one degree-of-freedom, as well as in
strings, beams, plates, and shells.

It has been emphasized by many researchers [4, 5] that the phenomenon of inter-
nal resonances can be very critical especially for circular cylindrical shells. Thus,
the nonlinear vibrations of infinitely long circular cylindrical shells under the con-
ditions of the two-to-one internal resonance were studied in [6] via the method of
multiple time scales using the simple plane strain theory of shells. Parametrically
excited vibrations of infinitely long cylindrical shells and nonlinear forced vibra-
tions of a simply supported, circular cylindrical shell filled with an incompressible,
inviscid, quiescent and dense fluid were investigated, respectively, in [5, 7] and [4]
using Donnell’s nonlinear shallow-shell theory. The flexural deformation is usually
expanded by using the linear shell eigenmodes, in so doing the flexural response
involves several nodal diameters and one or two longitudinal half-waves. Internal
resonances of different types have been also analyzed in [8, 9].

The extensive review of studies on shallow shells nonlinear vibrations could
be found in the state-of-the-art articles by [10–12], as well as in recent papers
[13, 14]. In spite of the fact that many studies have been carried out on large ampli-
tude vibrations of circular cylindrical shells and many different approaches to the
problem have been used, we agree with [4] that this research area is still far from
being well understood.

The problem of free, as well as forced nonlinear vibrations of cylindrical shells can
be considered from different positions depending on the shell geometry, in so doing
the nonlinear displacement field is approximated by a finite sum of global interpolat-
ing functions. However the choice of appropriate modal expansions is fundamental
to guaranteeing accuracy of the results for large-amplitude vibrations [15]. Thus,
for example, different expansions involving from 14 to 48 generalized co-ordinates,
associated to natural modes of simply supported shells, have been discussed in [16].

A comparison of five shell theories for large-amplitude vibrations of circular cylin-
drical shells which are generally applied to geometrically non-linear problems that
use only three variables, which are the three middle surface displacements, has been
carried out in [16]. More complicated shell theories, suitable for moderately thick
laminated shells exist, and they use five independent variables, three displacements
and two rotations [17, 18] or even six variables if thickness variation is taken into
account [19]. However, it has been emphasized in [16] that the majority of researchers
utilize the Donnell–Mushtari–Vlasov type equations.

In recent years much attention is given to damping features of mechanical sys-
tems subjected to the conditions of different internal resonances. Damping proper-
ties of non-linear systems are described mainly by the first-order time-derivative of
a generalized displacement [3]. However, as it has been shown by [20], who ana-
lyzed free damped vibrations of suspension combined system under the conditions of
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the one-to-one internal resonance, for good fit of the theoretical investigations with
the experimental results it is better to describe the damping features of non-linear
mechanical systems in terms of fractional time-derivatives of the generalized dis-
placements [21]. The analysis of non-linear vibrations of a two-degree-of-freedom
mechanical system, the damping features of which are described by a fractional
derivative, has shown [22] that in the case when the system is under the conditions
of the two-to-one or one-to-one internal resonance, viscosity may have a twofold
effect on the system: a destabilizing influence producing unsteady energy exchange,
and a stabilizing influence resulting in damping of the energy exchange mechanism.
The same phenomenon was noted when considering non-linear vibrations of a frac-
tionally damped plate under the conditions of the two-to-one [23] or one-to-one [24]
internal resonance.

In the present paper, non-linear free damped vibrations of a thin cylindrical vis-
coelastic shell, the damping properties of which are described by the Riemann-
Liouville fractional derivatives, are investigated. The dynamic behaviour of the shell
is described by a set of three coupled non-linear differential equations with due
account for the fact that the shell is being under the conditions of the internal reso-
nance resulting in the interaction of modes corresponding to the mutually orthogonal
displacements. The displacement functions are determined in terms of eigenfunctions
of linear vibrations. The procedure resulting in decoupling linear parts of equations
is proposed with the further utilization of the method of multiple scales for solving
nonlinear governing equations of motion, in so doing the amplitude functions are
expanded into power series in terms of the small parameter and depend on different
time scales. It is shown that the phenomenon of internal resonance can be very crit-
ical, since in a circular cylindrical shell internal resonance of the type two-to-one,
one-to-one, three-to-one, as well as additive and difference combinational resonances
are always present.

In the present paper, all possible cases of the internal resonances of the order of
ε, where ε is a small value, are examined, while the internal resonances of the higher
orders should be considered in detail separately. The nonlinear sets of resolving
equations in terms of amplitudes and phase differences have been obtained for each
investigated type of the internal resonance. It is shown that for many types of the
internal resonances there exist such particular cases when it is possible to obtain two
first integrals, namely: the energy integral and the stream-function, what allows one
to reduce the problem to the calculation of elliptic integrals.

Comparison of the results obtained in this paper for the nonlinear shallow cylin-
drical shell in the cases of the internal resonance of the order of ε with those for a
nonlinear plate, the motion of which is described also by three coupled nonlinear
equations in terms of three displacements [25], reveals the fact that the shell equa-
tions could produce much more diversified variety of internal resonances than the
plate equations.
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2 Problem Formulation and Governing Equations

Let us consider the dynamic behaviour of a free supported non-linear elastic circular
cylindrical shell of radius R and length l, vibrations of which in a viscoelastic medium
are described by the Donnell–Mushtari–Vlasov equations with respect to the three
displacements [26] in the cylindrical system of coordinates written in a dimensionless
form [27]:

uxx + 1 − ν

2
β2

1 uϕϕ + 1 + ν

2
β1vxϕ − νβ1wx + wx

(

wxx + 1 − ν

2
β2

1 wϕϕ

)

+ 1 + ν

2
β2

1 wϕwxϕ = ü + κ1 Dγ u, (1)

β2
1 vϕϕ + 1 − ν

2
vxx + 1 + ν

2
β1uxϕ − β2

1 wϕ + β1wϕ

(

β2
1 wϕϕ + 1 − ν

2
wxx

)

+ 1 + ν

2
β1wx wxϕ = v̈ + κ2 Dγ v, (2)

β2
2

12

(
wxxxx + 2β2

1 wxxϕϕ + β4
1 wϕϕϕϕ

)
− νβ1ux − β2

1 vϕ + β2
1 w + 1

2
νβ1(wx )

2

+ 1

2
β3

1 (wϕ)
2 − wx

(

uxx + 1 − ν

2
β2

1 uϕϕ + 1 + ν

2
β1vxϕ

)

−β1wϕ

(

β2
1 vϕϕ + 1 − ν

2
vxx + 1 + ν

2
β1uxϕ

)

− wxx (ux + νβ1vϕ − νβ1w)

−β2
1 wϕϕ(νux +β1vϕ−β1w)− (1 − ν)β1wxϕ(β1uϕ + vx ) = −ẅ − κ3 Dγw

(3)

In Eqs. (1)–(3), the dimensionless values are introduced similarly as it has been
done in [27], and the x-axis is directed along the axis of the cylinder, ϕ is the polar
angle in the plane perpendicular to the x-axis, u = u(x, ϕ, t), v = v(x, ϕ, t), and
w = w(x, ϕ, t) are the displacements of points located in the shell’s middle surface in
three mutually orthogonal directions x, ϕ, r , r is the polar radius, h is the thickness, ρ
is the density, E and ν are the elastic modulus and Poisson’s ratio, respectively, t is the
time, β1 = l/R and β2 = h/ l are the parameters defining the dimensions of the shell,
lower indices label the derivatives with respect to the corresponding coordinates, κi

(i = 1, 2, 3) are damping coefficients, and Dγ is the Riemann–Liouville fractional
derivative of the γ -order [21].

Equations (1)–(3) are subjected to the initial

u|t=0 = u̇

∣
∣
∣
∣
t=0

= 0, v|t=0 = v̇

∣
∣
∣
∣
t=0

= 0, w|t=0 = ẇ

∣
∣
∣
∣
t=0

= 0, (4)
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and boundary conditions

w
∣
∣
x=0 = w

∣
∣
x=1 = 0, v|x=0 = v

∣
∣
x=1 = 0, ux

∣
∣
x=0 = ux

∣
∣
x=1 = 0,

wxx
∣
∣
x=0 = wxx

∣
∣
x=1 = 0. (5)

Since the set of Eqs. (1)–(3) admits the solution of the Navier type, then the
displacements could be represented in the form

u(x, ϕ, t) =
∞∑

m=1

∞∑

n=1

x1 mn(t)η1 mn(x, ϕ), (6)

v(x, ϕ, t) =
∞∑

m=1

∞∑

n=1

x2 mn(t)η2 mn(x, ϕ), (7)

w(x, ϕ, t) =
∞∑

m=1

∞∑

n=1

x3 mn(t)η3 mn(x, ϕ), (8)

where m and n are integers, xi mn(t) are the generalized displacements, and
ηi mn(x, ϕ) (i = 1, 2, 3) are the eigenfunctions satisfying the boundary conditions
(5):

ηi mn(x, ϕ) =
⎧
⎨

⎩

cosπmx sin nϕ,
sin πmx cos nϕ,
sin πmx sin nϕ,

(0 ≤ x ≤ 1 , 0 ≤ ϕ ≤ 2π) (9)

Substituting (6)–(9) into Eqs. (1)–(3), multiplying (1), (2), and (3) by η1lk , η2lk ,
andη3lk , respectively, integrating over x andϕ, and using the orthogonality conditions
for linear modes within the domains of 0 ≤ x ≤ 1 and 0 ≤ ϕ ≤ 2π , we are led to a
coupled set of nonlinear ordinary differential equations of the second order in xi mn

(i = 1, 2, 3):

ẍi mn + κi Dγ xi mn + Smn
i j x j mn = −Fi mn (i, j = 1, 2, 3), (10)

where the summation is carried out over two repeated indices, the elements of the
matrix Smn

i j are defined as follows:

Smn
11 =

(

π2m2 + 1 − ν

2
β2

1 n2
)

, Smn
12 = Smn

21 = 1 + ν

2
β1πmn,

Smn
13 = Smn

31 = νβ1πm, Smn
23 = Smn

32 = β2
1 n, (11)

Smn
22 =

(
1 − ν

2
π2m2 + β2

1 n2
)

, Smn
33 = β2

2

12

(
π2m2 + β2

1 n2
)2 + β2

1 .
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The nonlinear parts Fi mn of Eq. (10) have the form

F1mn = 2
∑

m1

∑

n1

∑

m2

∑

n2

x3m1n1 x3m2n2 Am1n1m2n2
mn , (12)

F2mn = 2

π

∑

m1

∑

n1

∑

m2

∑

n2

x3m1n1 x3m2n2 Bm1n1m2n2
mn , (13)

F3mn = − 2

π

∑

m1

∑

n1

∑

m2

∑

n2

[
x3m1n1 x1m2n2Cm1n1m2n2

mn

+ x3m1n1 x2m2n2 Dm1n1m2n2
mn +x3m1n1 x3m2n2 Em1n1m2n2

mn

]
, (14)

where

Am1n1m2n2
mn = m1

(

π2m2
2 + 1 − ν

2
β2

1 n2
2

)

am1n1m2n2
1mn − 1 + ν

2
β2

1 n1m2n2am1n1m2n2
2mn ,

Bm1n1m2n2
mn = β1n1

(

β2
1 n2

2+ 1 − ν

2
π2m2

2

)

am1n1m2n2
3mn

− 1 + ν

2
β1π

2m1m2n2am1n1m2n2
4mn ,

Cm1n1m2n2
mn = πm2

(
π2m2

1 + νβ2
1 n2

1

)
am1n1m2n2

5mn + (1 − ν)β2
1πm1n1n2am1n1m2n2

6mn

− πm1

(

π2m2
2 + 1 − ν

2
β2

1 n2
2

)

am1n1m2n2
7mn

− 1 + ν

2
β2

1πn1m2n2am1n1m2n2
8mn ,

Dm1n1m2n2
mn = β1n2

(
νπ2m2

1 + β2
1 n2

1

)
am1n1m2n2

5mn + (1 − ν)β1π
2m1n1m2am1n1m2n2

6mn

− 1 + ν

2
β1π

2m1m2n2am1n1m2n2
7mn

−β1n1

(
1 − ν

2
π2m2

2+β2
1 n2

2

)

am1n1m2n2
8mn ,

Em1n1m2n2
mn = β1

(
νπ2m2

2 + β2
1 n2

2

)
am1n1m2n2

5mn

− β1

2

(
νπ2m1m2am1n1m2n2

9mn + β2
1 n1n2am1n1m2n2

10mn

)
,

and the coefficients am1n1m2n2
k mn (k = 1, 2, . . . , 10) depending on the combinations

of sine and cosine functions entering into the eigenfunctions (9) are presented in
Appendix A.
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Since the third-order tensor Smn
i j is symmetric, then it has three real eigenvalues

Ωi mn (i = 1, 2, 3) which are in correspondence with three mutually orthogonal
eigenvectors

LI
mn

{
L I

i mn

}
, LII

mn

{
L II

i mn

}
, LIII

mn

{
L III

i mn

}
. (15)

Thus, we could generalize a new approach suggested in [25] for a nonlinear plate
for the case of a nonlinear cylindrical shell, that is we could apply the procedure
resulting in decoupling linear parts of equations proposed in [25] with the further
utilization of the method of multiple scales for solving nonlinear governing equa-
tions of motion. For this purpose, we expand the matrix Smn

i j and the generalized
displacements xi mn in terms of the vectors (15) as

Smn
i j = Ω2

1 mn L I
i mn L I

j mn +Ω2
2 mn L II

i mn L II
j mn +Ω2

3 mn L III
i mn L III

j mn, (16)

xi mn = X1 mn L I
i mn + X2 mn L II

i mn + X3 mn L III
i mn . (17)

Substituting (16) and (17) in Eq. (10) and then multiplying them successively by
L I

i mn , L II
i mn , and L III

i mn with due account for

L I
i mn L II

i mn = L I
i mn L III

i mn = L II
i mn L III

i mn = 0,

L I
i mn L I

i mn = L II
i mn L II

i mn = L III
i mn L III

i mn = 1, (18)

we obtain the following three equations:

Ẍ1mn + κ1 Dγ X1mn +Ω2
1mn X1mn = −

3∑

i=1

Fi mn L I
i mn, (19)

Ẍ2mn + κ2 Dγ X2mn +Ω2
2mn X2mn = −

3∑

i=1

Fi mn L II
i mn, (20)

Ẍ3mn + κ3 Dγ X3mn +Ω2
3mn X3mn = −

3∑

i=1

Fi mn L III
i mn . (21)

Assume hereafter that the vibration process occurs in such a way that only three
natural modes corresponding to the generalized displacements X1s1s2 , X2k1k2 , and
X3l1l2 are excited and dominate over other natural modes. In this case, the right
parts of Eqs. (19)–(21) are significantly simplified, and equations of free vibrations
(19)–(21) take the form

Ẍ1s1s2 + κ1 Dγ X1s1s2 +Ω2
1s1s2

X1s1s2 + aI
11s1s2

X2
1s1s2

+ aI
22s1s2

X2
2k1k2

+ aI
33s1s2

X2
3l1l2

+aI
12s1s2

X1s1s2 X2k1k2 + aI
13s1s2

X1s1s2 X3l1l2 + aI
23s1s2

X2k1k2 X3l1l2 = 0, (22)

Ẍ2k1k2 + κ2 Dγ X2k1k2 +Ω2
2k1k2

X2k1k2 + aII
11k1k2

X2
1s1s2

+ aII
22k1k2

X2
2k1k2

+ aII
33k1k2

X2
3l1l2

+aII
12k1k2

X1s1s2 X2k1k2 + aII
13k1k2

X1s1s2 X3l1l2 + aII
23k1k2

X2k1k2 X3l1l2 = 0, (23)
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Ẍ3l1l2 + κ3 Dγ X3l1l2 +Ω2
3l1l2

X3l1l2 + aIII
11l1l2

X2
1s1s2

+ aIII
22l1l2

X2
2k1k2

+ aIII
33l1l2

X2
3l1l2

+aIII
12l1l2

X1s1s2 X2k1k2 + aIII
13l1l2

X1s1s2 X3l1l2 + aIII
23l1l2

X2k1k2 X3l1l2 = 0, (24)

where

aα11mn = 2

π

{(
LI

3s1s2

)2 (
Lα1mn A

s1s2s1s2
mn + Lα2mn B

s1s2s1s2
mn + Lα3mn E

s1s2s1s2
mn

)

+
(

L I
1s1s2

C
s1s2s1s2
mn + L I

2s1s2
D

s1s2s1s2
mn

)
LI

3s1s2
Lα3mn

}
, (25)

aα22mn = 2

π

{(
LII

3k1k2

)2 (
Lα1mn A

k1k2k1k2
mn + Lα2mn B

k1k2k1k2
mn + Lα3mn E

k1k2k1k2
mn

)

+
(

L I I
1k1k2

C
k1k2k1k2
mn + L I I

2k1k2
D

k1k2k1k2
mn

)
LII

3k1k2
Lα3mn

}
, (26)

aα33mn = 2

π

{(
LIII

3l1l2

)2 (
Lα1mn A

l1l2l1l2
mn + Lα2mn B

l1l2l1l2
mn + Lα3mn E

l1l2l1l2
mn

)

+
(

L I I I
1l1l2

C
l1l2l1l2
mn + L I I I

2l1l2
D

l1l2l1l2
mn

)
LIII

3l1l2
Lα3mn

}
, (27)

aα13mn = 2

π

{
LI

3s1s2
LIII

3l1l2

[(
A

s1s2l1l2
mn + A

l1l2s1s2
mn

)
Lα1mn +

(
B

s1s2l1l2
mn + B

l1l2s1s2
mn

)
Lα2mn

+
(

E
s1s2l1l2
mn + E

l1l2s1s2
mn

)
Lα3mn

]
+

[
LI

3s1s2
LIII

1l1l2
C

s1s2l1l2
mn + LIII

3l1l2
LI

1s1s2
C

l1l2s1s2
mn

+ LI
3s1s2

LIII
2l1l2

D
s1s2l1l2
mn + LIII

3l1l2
LI

2s1s2
D

l1l2s1s2
mn

]
Lα3mn

}
, (28)

aα23mn = 2

π

{
LII

3k1k2
LIII

3l1l2

[(
A

k1k2l1l2
mn + A

l1l2k1k2
mn

)
Lα1mn +

(
B

k1k2l1l2
mn + B

l1l2k1k2
mn

)
Lα2mn

+
(

E
k1k2l1l2
mn + E

l1l2k1k2
mn

)
Lα3mn

]
+

[
LII

3k1k2
LIII

1l1l2
C

k1k2l1l2
mn + LIII

3l1l2
LII

1k1k2
C

l1l2k1k2
mn

+ LII
3k1k2

LIII
2l1l2

D
k1k2l1l2
mn + LIII

3l1l2
LII

2k1k2
D

l1l2k1k2
mn

]
Lα3mn

}
, (29)

aα12mn = 2

π

{
LI

3s1s2
LII

3k1k2

[(
A

s1s2k1k2
mn + A

k1k2s1s2
mn

)
Lα1mn +

(
B

s1s2k1k2
mn + B

k1k2s1s2
mn

)
Lα2mn

+
(

E
s1s2k1k2
mn + E

k1k2s1s2
mn

)
Lα3mn

]
+

[
LI

3s1s2
LII

1k1k2
C

s1s2k1k2
mn + LII

3k1k2
LI

1s1s2
C

k1k2s1s2
mn

+ LI
3s1s2

LII
2k1k2

D
s1s2k1k2
mn + LII

3k1k2
LI

2s1s2
D

k1k2s1s2
mn

]
Lα3mn

}
. (30)

From relationships (25)–(30) we could calculate all coefficients entering in
Eq. (22) at α = I, m = s1 and n = s2, in Eq. (23) at α = II, m = k1 and n = k2, and
in Eq. (24) at α = III, m = l1 and n = l2.

Omitting hereafter the subindices s1s2, k1k2, and l1l2 for ease of presentation,
Eqs. (22)–(24) could be rewritten as

Ẍ1 + κ1 Dγ X1 +Ω2
1 X1 + aI

11 X2
1 + aI

22 X2
2 + aI

33 X2
3 + aI

12 X1 X2

+aI
13 X1 X3 + aI

23 X2 X3 = 0, (31)

Ẍ2 + κ2 Dγ X2 +Ω2
2 X2 + aII

11 X2
1 + aII

22 X2
2 + aII

33 X2
3 + aII

12 X1 X2

+aII
13 X1 X3 + aII

23 X2 X3 = 0, (32)

Ẍ3 + κ3 Dγ X3 +Ω2
3 X3 + aIII

11 X2
1 + aIII

22 X2
2 + aIII

33 X2
3 + aIII

12 X1 X2

+aIII
13 X1 X3 + aIII

23 X2 X3 = 0. (33)
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3 Method of Solution

An approximate solution of Eqs. (31)–(33) for small but finite amplitudes weakly
varying with time can be represented by a two-order uniform expansion in terms of
different time scales in the following form [28]:

Xi = εXi1(T0, T1 . . .)+ ε2 Xi2(T0, T1 . . .)+ · · · , (34)

where i = 1, 2, 3, ε is a small dimensionless parameter of the same order of magni-
tude as the amplitudes, Tn = εnt are new independent variables, among them: T0 = t
is a fast scale characterizing motions with the natural frequencies, and T1 = εt is a
slow scale characterizing the modulation of the amplitudes and phases of the modes
with nonlinearity.

Following the procedure described in [25], in doing so limiting ourselves by the
case of small viscosity of the order of ε, i.e.,

κi = εμiτ
γ

i ,

where τi is the relaxation time of the i th generalized displacement, μi is a finite
value, and substituting (34) in Eqs. (31)–(33), after equating the coefficients at like
powers of ε to zero, we are led to a set of recurrence equations to various orders:

• to order ε

D2
0 X11 +Ω2

1 X11 = 0, (35)

D2
0 X21 +Ω2

2 X21 = 0, (36)

D2
0 X31 +Ω2

3 X31 = 0; (37)

• to order ε2

D2
0 X12 +Ω2

1 X12 = − 2D0 D1 X11 − aI
11 X2

11 − aI
22 X2

21 − aI
33 X2

31

− aI
12 X11 X21 − aI

13 X11 X31 − aI
23 X21 X31 − μ1τ

γ
1 Dγ0 X11, (38)

D2
0 X22 +Ω2

2 X22 = − 2D0 D1 X21 − aII
11 X2

11 − aII
22 X2

21 − aII
33 X2

31

− aII
12 X11 X21 − aII

13 X11 X31 − aII
23 X21 X31 − μ2τ

γ
2 Dγ0 X21, (39)

D2
0 X32 +Ω2

3 X32 = − 2D0 D1 X31 − aIII
11 X2

11 − aIII
22 X2

21 − aIII
33 X2

31

− aIII
12 X11 X21 − aIII

13 X11 X31 − aIII
23 X21 X31 − μ3τ

γ
3 Dγ0 X31. (40)

We shall seek the solution of Eqs. (35)–(37) in the form

X j1 = A j (T1, T2) exp(iΩ j T0)+ Ā j (T1, T2) exp(−iΩ j T0) ( j = 1, 2, 3), (41)

where A j (T1, T2) ( j = 1, 2, 3) are unknown complex functions, and Ā j (T1, T2) are
the complex conjugates of A j (T1, T2).
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Substituting (41) in the right-hand side of Eqs. (38)–(40) with due account for the
approximate formula Dγ

0 eiΩ j t = (iΩ j )
γ eiΩ j t [25, 29] yields

D2
0 X12 +Ω2

1 X12 = − 2iΩ1 D1 A1(T1) exp(iΩ1T0)− aI
11

[
A2

1 exp(2iΩ1T0)+ A1 Ā1

]

− aI
22

[
A2

2 exp(2iΩ2T0)+ A2 Ā2

]
− aI

33

[
A2

3 exp(2iΩ3T0)+ A3 Ā3

]

− aI
12

{
A1 A2 exp [i(Ω1 +Ω2)T0] + A1 Ā2 exp [i(Ω1 −Ω2)T0]

}

− aI
13

{
A1 A3 exp [i(Ω1 +Ω3)T0] + A1 Ā3 exp [i(Ω1 −Ω3)T0]

}

− aI
23

{
A2 A3 exp [i(Ω2 +Ω3)T0] + A2 Ā3 exp [i(Ω2 −Ω3)T0]

}

− μ1τ
γ
1 A1 (iΩ1)

γ exp(iΩ1T0)+ cc, (42)

D2
0 X22 +Ω2

2 X22 = − 2iΩ2 D1 A2(T1) exp(iΩ2T0)− aII
11

[
A2

1 exp(2iΩ1T0)+ A1 Ā1

]

− aII
22

[
A2

2 exp(2iΩ2T0)+ A2 Ā2

]
− aII

33

[
A2

3 exp(2iΩ3T0)+ A3 Ā3

]

− aII
12

{
A1 A2 exp [i(Ω1 +Ω2)T0] + A1 Ā2 exp [i(Ω1 −Ω2)T0]

}

− aII
13

{
A1 A3 exp [i(Ω1 +Ω3)T0] + A1 Ā3 exp [i(Ω1 −Ω3)T0]

}

− aII
23

{
A2 A3 exp [i(Ω2 +Ω3)T0] + A2 Ā3 exp [i(Ω2 −Ω3)T0]

}

− μ2τ
γ
2 A2 (iΩ2)

γ exp(iΩ2T0)+ cc, (43)

D2
0 X32 +Ω2

3 X32 = − 2iΩ3 D1 A3(T1) exp(iΩ3T0)− aIII
11

[
A2

1 exp(2iΩ1T0)+ A1 Ā1

]

− aIII
22

[
A2

2 exp(2iΩ2T0)+ A2 Ā2

]
− aIII

33

[
A2

3 exp(2iΩ3T0)+ A3 Ā3

]

− aIII
12

{
A1 A2 exp [i(Ω1 +Ω2)T0] + A1 Ā2 exp [i(Ω1 −Ω2)T0]

}

− aIII
13

{
A1 A3 exp [i(Ω1 +Ω3)T0] + A1 Ā3 exp [i(Ω1 −Ω3)T0]

}

− aIII
23

{
A2 A3 exp [i(Ω2 +Ω3)T0] + A2 Ā3 exp [i(Ω2 −Ω3)T0]

}

− μ3τ
γ
3 A3 (iΩ3)

γ exp(iΩ3T0)+ cc, (44)

where cc is the complex conjugate part to the preceding terms.
Reference to Eqs. (42)–(44) shows that the following types of the internal reso-

nance could occur on this step:

1. the two-to-one internal resonance, when one natural frequency is twice the other
natural frequency,

Ω1 = 2Ω2 (Ω3 �= Ω1, Ω3 �= 2Ω2), or Ω2 = 2Ω1, (45)

Ω1 = 2Ω3 (Ω2 �= Ω1, Ω2 �= 2Ω3), or Ω3 = 2Ω1, (46)

Ω2 = 2Ω3 (Ω1 �= Ω2, Ω1 �= 2Ω3), or Ω3 = 2Ω2; (47)

2. the one-to-one-to-two or one-to-two-to-two internal resonance, i.e.,

Ω1 = Ω2 = 2Ω3, or 1 : 1 : 2, (48)

Ω1 = 2Ω2 = Ω3, or 1 : 2 : 1, (49)

2Ω1 = Ω2 = Ω3, or 2 : 1 : 1, (50)
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Ω1 = 2Ω2 = 2Ω3, or 1 : 2 : 2, (51)

2Ω1 = Ω2 = 2Ω3, or 2 : 1 : 2, (52)

2Ω1 = 2Ω2 = Ω3, or 2 : 2 : 1; (53)

3. the combinational resonance of the additive-difference type, i.e.,

Ω1 = Ω2 +Ω3, or Ω2 = Ω1 −Ω3, or Ω3 = Ω1 −Ω2, (54)

Ω1 = Ω2 −Ω3, or Ω2 = Ω1 +Ω3, or Ω3 = Ω2 −Ω1, (55)

Ω1 = Ω3 −Ω2, or Ω2 = Ω3 −Ω1, or Ω3 = Ω1 +Ω2. (56)

Comparison of the types of the internal resonances of the order of ε (45)–(56) just
found for the nonlinear shallow cylindrical shell with those for a nonlinear plate, the
motion of which is described also by three coupled nonlinear equations in terms of
three displacements, presented in a companion paper [25] reveals the fact that the
shell equations could produce much more diversified variety of internal resonances
than the plate equations. The one-to-two-to-two internal resonances (51)–(53) and the
combinational resonances of the additive-difference type (54)–(56) are characteristic
only for cylindrical shells.

4 Governing Nonlinear Differential Equations Describing
Amplitude-Phase Modulation for Different Types of the
Internal Resonance of the Order of ε

To deduce the nonlinear differential equations describing the modulation of ampli-
tudes and phases of the cylindrical shell under consideration, we should consider
separately each type of the internal resonance which could occur with due account
for weak damping of the order ε.

4.1 Internal Resonance 2:1

Let us consider the case (46), when Ω3 = 2Ω1, while Ω2 �= Ω3 and Ω2 �= 2Ω1.
Then eliminating secular terms in Eqs. (42)–(44), we obtain the following solvability
equations:

2iΩ1 D1 A1(T1)+ μ1τ
γ
1 A1 (iΩ1)

γ + aI
13 Ā1 A3 = 0, (57)

2iΩ2 D1 A2(T1)+ μ2τ
γ
2 A2 (iΩ2)

γ = 0, (58)

2iΩ3 D1 A3(T1)+ μ3τ
γ
3 A3 (iΩ3)

γ + aIII
11 A2

1 = 0. (59)

Reference to the set of Eqs. (57)–(59) shows that its second equation is independent
of other two, while the first and third ones represent a set of two nonlinear equations.
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Let us multiply Eqs. (57)–(59), respectively, by Ā1, Ā2, and Ā3 and find their
complex conjugates. Adding every pair of the mutually adjoint equations with each
other and subtracting one from another, and considering that

Ai = ai e
iϕi (i = 1, 2, 3), (60)

as a result we have
(

a2
1

). + s1a2
1 = Ω−1

1 aI
13a2

1a3 sin δ, (61)
(

a2
3

). + s3a2
3 = −Ω−1

3 aIII
11a2

1a3 sin δ, (62)

ϕ̇1 − 1

2
σ1 − 1

2
aI

13Ω
−1
1 a3 cos δ = 0, (63)

ϕ̇3 − 1

2
σ3 − 1

2
aIII

11Ω
−1
3 a2

1a−1
3 cos δ = 0, (64)

(
a2

2

). + s2a2
2 = 0, (65)

ϕ̇2 − 1

2
σ2 = 0, (66)

where a dot denotes differentiation with respect to T1, δ = 2ϕ1 − ϕ3, and

si = μiτ
γ

i Ω
γ−1
i sinψ, σi = μiτ

γ

i Ω
γ−1
i cosψ, ψ = 1

2
πγ (i = 1, 2, 3).

(67)
The similar equations have been obtained in [25] for a fractionally damped nonlin-

ear plate in the case of the two-to-one internal resonance. Thus, the detailed solution
describing the dynamic response of the cylindrical shell with the two-to-one internal
resonance could be found in [25] and is not repeated in this paper. Therefore, during
free vibrations of the cylindrical shell being under the conditions of the two-to-one
internal resonance three regimes could be observed: stationary (absence of damping
at γ = 0 and μ = 0), quasi-stationary (damping is defined by an ordinary derivative
at γ = 1), and transient (damping is defined by a fractional derivative at 0 < γ < 1).

4.2 Combinational Additive-Difference Internal Resonance
of the First Order

Now let us consider the case of the combinational additive-difference internal reso-
nance. As an example, we will analyze the case (54), when Ω1 = Ω2 +Ω3. Other
possible cases, (55) and (56), could be treated similarly.

Eliminating secular terms in Eqs. (42)–(44) for the case under consideration and
applying the same procedure as it has been carried out for the two-to-one internal
resonance, we obtain the following solvability equations:
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(
a2

1

). + s1a2
1 = Ω−1

1 aI
23a1a2a3 sin δ, (68)

(
a2

2

). + s2a2
2 = −Ω−1

2 aII
13a1a2a3 sin δ, (69)

(
a2

3

). + s3a2
3 = −Ω−1

3 aIII
12a1a2a3 sin δ, (70)

ϕ̇1 − 1

2
σ1 − 1

2

aI
23

Ω1

a2a3

a1
cos δ = 0, (71)

ϕ̇2 − 1

2
σ2 − 1

2

aII
13

Ω2

a1a3

a2
cos δ = 0, (72)

ϕ̇3 − 1

2
σ3 − 1

2

aIII
12

Ω3

a1a2

a3
cos δ = 0, (73)

where the phase difference has the form δ = ϕ1 − (ϕ2 + ϕ3).
Introducing new functions ξ1(T1), ξ2(T1), and ξ3(T1), such that

a2
1 = aI

23

Ω1
ξ1 exp(−s1T1), a2

2 = aII
13

Ω2
ξ2 exp(−s2T1), a2

3 = aIII
12

Ω3
ξ3 exp(−s3T1),

(74)
and substituting (74) in the left-hand sides of (68)–(70) yield

ξ̇1 exp(−s1T1) = a1a2a3 sin δ, (75)

ξ̇2 exp(−s2T1) = −a1a2a3 sin δ, (76)

ξ̇3 exp(−s3T1) = −a1a2a3 sin δ, (77)

the summation of which results in the following:

2ξ̇1 exp(−s1T1)+ ξ̇2 exp(−s2T1)+ ξ̇3 exp(−s3T1) = 0. (78)

From Eqs. (75)–(77) we could find that

a2a3

a1
= ξ̇1

ξ1

Ω1

aI
23

1

sin δ
, (79)

a1a3

a2
= − ξ̇2

ξ2

Ω2

aII
13

1

sin δ
, (80)

a1a2

a3
= − ξ̇3

ξ3

Ω3

aIII
12

1

sin δ
, (81)

while Eqs. (71)–(73) could be reduced to

δ̇ = Σ + 1

2

aI
23

Ω1

a2a3

a1
cos δ − 1

2

aII
13

Ω2

a1a3

a2
cos δ − 1

2

aIII
12

Ω3

a1a2

a3
cos δ, (82)
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where Σ = 1
2 (σ1 − σ2 − σ3).

Substituting (79)–(81) in (82) yields

δ̇ −Σ = 1

2

(
ξ̇1

ξ1
+ ξ̇2

ξ2
+ ξ̇3

ξ3

)

cot δ. (83)

The first integral of (83) could be written in the form

G0 exp

⎛

⎝−Σ
T1∫

0

tan δdT1

⎞

⎠ = √
ξ1

√
ξ2

√
ξ3 cos δ, (84)

where G0 is a constant of integration to be found from the initial conditions

ξ1

∣
∣
∣
T1=0

= ξ1 0, ξ2

∣
∣
∣
T1=0

= ξ2 0, ξ3

∣
∣
∣
T1=0

= ξ3 0, δ

∣
∣
∣
T1=0

= δ0. (85)

From the other hand, substituting (74) in (82) and (75) yields

δ̇ = Σ + 1

2
b

(√
ξ2

√
ξ3√

ξ1
e

1
2 (s1−s2−s3)T1

−
√
ξ1

√
ξ3√

ξ2
e

1
2 (s2−s1−s3)T1 −

√
ξ1

√
ξ2√

ξ3
e

1
2 (s3−s1−s2)T1

)

cos δ, (86)

ξ̇1 = b
√
ξ1

√
ξ2

√
ξ3 e

1
2 (s1−s2−s3)T1 sin δ, (87)

where

b =
√

aI
23

Ω1

aII
13

Ω2

aIII
12

Ω3
.

The nonlinear set of Eqs. (78), (84), (86), and (87) with the initial conditions
(85) completely describe the vibrational process of the mechanical system being
investigated under the condition of the internal combinational resonance and could
be solved numerically.

4.2.1 Particular Case

In the particular case at Σ = 0 and s1 = s2 = s3 = s, Eq. (78) has the form

2ξ̇1 + ξ̇2 + ξ̇3 = 0, (88)

which could be integrated as

2ξ1 + ξ2 + ξ3 = E0, (89)
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resulting in the the following law of energy dissipation

E = 2
Ω1

aI
23

a2
1 + Ω2

aII
13

a2
2 + Ω3

aIII
12

a2
3 = E0e−sT1 , (90)

where E0 is the initial energy of the system.
Introducing a new variable ξ such that

E0 ξ̇ = b
√
ξ1ξ2ξ3 exp(−1

2
sT1) sin δ, (91)

Equations (75)–(77) could be reduced to

ξ̇1 = ξ̇E0, (92)

ξ̇2 = −ξ̇E0, (93)

ξ̇3 = −ξ̇E0, (94)

the integration of which yields

ξ1 = E0(c1 + ξ), ξ2 = E0(c2 − ξ), ξ3 = E0(c3 − ξ), (95)

where ci (i = 1, 2, 3) are constants of integration.
Note that Eq. (88) is fulfilled automatically under the substitution of (92)–(94)

in it, while the substitution of (95) in (89) results in the relationship between the
constants of integration

2c1 + c2 + c3 = 1. (96)

Considering (95), Eqs. (84), (86), and (87) take, respectively, the form

G(ξ, δ) = √
(c1 + ξ)(c2 − ξ)(c3 − ξ) cos δ = G0(ξ0, δ0), (97)

δ̇ = 1

2
b
√

E0
(c2 − ξ)(c3 − ξ)− (c1 + ξ)(c3 − ξ)− (c1 + ξ)(c2 − ξ)√

(c1 + ξ)(c2 − ξ)(c3 − ξ)
e− 1

2 sT1 cos δ,

(98)

ξ̇ = b
√

E0
√
(c1 + ξ)(c2 − ξ)(c3 − ξ) e− 1

2 sT1 sin δ. (99)

The first integral (97) defines the stream function G(ξ, δ) such that

vξ = ξ̇ = −b
√

E0
∂G

∂δ
e− 1

2 sT1 , vδ = δ̇ = b
√

E0
∂G

∂ξ
e− 1

2 sT1 , (100)

which describes steady-state vibrations of an elastic shell attenuating with time.
Eliminating the variable δ from (97) and (99) and integrating over T1, we have
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ξ∫

ξ0

dξ
√
(c1 + ξ)(c2 − ξ)(c3 − ξ)− G2

0

= 2b
√

E0

s

(
1 − e− 1

2 sT1
)
. (101)

The integral in the left-hand side of Eq. (101) can be transformed to an incomplete
elliptic integral of the first kind and can be easily calculated using special tables [30].

4.3 Internal Resonance 2:1:1

Let us consider the case (50), when 2Ω1 = Ω2 = Ω3. Then eliminating secular
terms in Eqs. (42)–(44), we obtain the following solvability equations:

2iΩ1 D1 A1(T1)+ μ1τ
γ
1 A1 (iΩ1)

γ + aI
13 Ā1 A3 + aI

12 Ā1 A2 = 0, (102)

2iΩ2 D1 A2(T1)+ μ2τ
γ
2 A2 (iΩ2)

γ + aII
11 A2

1 = 0, (103)

2iΩ3 D1 A3(T1)+ μ3τ
γ
3 A3 (iΩ3)

γ + aIII
11 A2

1 = 0. (104)

Reference to the set of Eqs. (102)–(104) shows that, in contrast to Eqs. (57)–(59)
corresponding to the case (46) when Ω3 = 2Ω1, while Ω2 �= Ω3 and Ω2 �= 2Ω1,
now we obtain the set of three coupled nonlinear equations.

Representing functions Ai entering in (102)–(104) in the polar form (60) and
applying the same procedure as it has been carried out above for 2:1 internal reso-
nance, we have

(
a2

1

). + s1a2
1 = Ω−1

1 a2
1

[
aI

13a3 sin(2ϕ1 − ϕ3)+ aI
12a2 sin(2ϕ1 − ϕ2)

]
, (105)

(
a2

2

). + s2a2
2 = −Ω−1

2 aII
11a2

1a2 sin(2ϕ1 − ϕ2), (106)

(
a2

3

). + s3a2
3 = −Ω−1

3 aIII
11a2

1a3 sin(2ϕ1 − ϕ3), (107)

ϕ̇1 − 1

2
σ1 − 1

2
Ω−1

1

[
aI

13a3 cos(2ϕ1−ϕ3)+aI
12a2 cos(2ϕ1−ϕ2)

]
= 0, (108)

ϕ̇2 − 1

2
σ2 − 1

2
aII

11Ω
−1
2 a2

1a−1
2 cos(2ϕ1 − ϕ2) = 0, (109)

ϕ̇3 − 1

2
σ3 − 1

2
aIII

11Ω
−1
3 a2

1a−1
3 cos(2ϕ1 − ϕ3) = 0. (110)

The nonlinear set of Eqs. (105)–(109) with the initial conditions (85) completely
describe the vibrational process of the mechanical system being investigated under
the condition of the internal resonance 2:1:1 and could be solved numerically.
Introducing new functions such that ξ1(T1), ξ2(T1), and ξ3(T1)
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a2
1 = ξ1e−s1T1 , a2

2 = aII
11Ω1

aI
12Ω2

ξ2e−s2T1 , a2
3 = aIII

11Ω1

aI
13Ω3

ξ3e−s3T1 , (111)

and adding Eqs. (105)–(106) with due account for (111), we obtain

ξ̇1e−s1T1 + ξ̇2e−s2T1 + ξ̇3e−s3T1 = 0. (112)

Equation (112) describes the law of energy variation for this case of the internal
resonance.

4.4 Internal Resonance 2:2:1

Let us consider the case (53), when 2Ω1 = 2Ω2 = Ω3. Then eliminating secular
terms in Eqs. (42)–(44), we obtain the following solvability equations:

2iΩ1 D1 A1(T1)+ μ1τ
γ
1 A1 (iΩ1)

γ + aI
13 Ā1 A3 + aI

23 Ā2 A3 = 0, (113)

2iΩ2 D1 A2(T1)+ μ2τ
γ
2 A2 (iΩ2)

γ + aII
13 Ā1 A3 + aII

23 Ā2 A3 = 0, (114)

2iΩ3 D1 A3(T1)+ μ3τ
γ
3 A3 (iΩ3)

γ + aIII
11 A2

1 + aIII
22 A2

2 = 0. (115)

Representing functions Ai entering in (113)–(115) in the polar form (60) and
applying the same procedure as it has been carried out above for 2:1 internal reso-
nance, we have

(
a2

1

). + s1a2
1 = Ω−1

1 aI
13a2

1a3 sin(2ϕ1 − ϕ3)

+Ω−1
1 aI

23a1a2a3 sin(ϕ1 + ϕ2 − ϕ3), (116)
(

a2
2

). + s2a2
2 = Ω−1

2 aII
23a2

2a3 sin(2ϕ2 − ϕ3)

+Ω−1
2 aII

13a1a2a3 sin(ϕ1 + ϕ2 − ϕ3), (117)
(

a2
3

). + s3a2
3 = − Ω−1

3 aIII
11a2

1a3 sin(2ϕ1 − ϕ3)

− Ω−1
3 aIII

22a2
2a3 sin(2ϕ2 − ϕ3), (118)

ϕ̇1 − 1

2
σ1 − 1

2
Ω−1

1 aI
13a3 cos(2ϕ1 − ϕ3)

− 1

2
Ω−1

1 aI
23

a2a3

a1
cos(ϕ1 + ϕ2 − ϕ3) = 0, (119)

ϕ̇2 − 1

2
σ2 − 1

2
aII

23Ω
−1
2 a3 cos(2ϕ2 − ϕ3)

− 1

2
Ω−1

2 aII
13

a1a3

a2
cos(ϕ1 + ϕ2 − ϕ3) = 0, (120)
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ϕ̇3 − 1

2
σ3 − 1

2
aIII

11Ω
−1
3 a2

1a−1
3 cos(2ϕ1 − ϕ3)

− 1

2
aIII

22Ω
−1
3 a2

2a−1
3 cos(2ϕ2 − ϕ3) = 0. (121)

The nonlinear set of Eqs. (116)–(121) with the initial conditions (85) completely
describe the vibrational process of the mechanical system being investigated under
the condition of the internal resonance 2:2:1 and could be solved numerically.

5 Conclusion

Free damped vibrations of a shallow non-linear thin cylindrical shell in a frac-
tional derivative viscoelastic medium have been investigated. Nonlinear vibrations
are described in the cylindrical system of coordinates by coupled three Donnell–
Mushtari–Vlasov equations with respect to the three displacements.

The proposed analytical approach for investigating the damped vibrations of the
nonlinear cylindrical shell subjected to the conditions of the internal resonance has
been possible owing to the new procedure suggested in this paper, resulting in decou-
pling linear parts of equations with the further utilization of the method of multiple
scales for solving nonlinear governing equations of motion.

It has been shown that the phenomenon of internal resonance could be very criti-
cal, since in the thin shallow circular cylindrical shell under consideration the internal
resonance is always present. Thus, damped vibrations occur under the different con-
ditions of the internal resonance, in so doing the type of the resonance depends on
the order of smallness of the fractional derivative entering in the equations of motion
of the shell. That is why all possible cases of the internal resonances of the order
of ε have been examined in the present paper, namely: two-to-one, one-to-one-to-
two, one-to-two-to-two, and combinational resonances of the additive and difference
types, while the internal resonances of the order of ε2 should be considered in detail
in a separate paper.

For each type of the resonance, the nonlinear sets of resolving equations in terms of
amplitudes and phase differences have been obtained. It has been shown that for some
types of the internal resonances there exist such particular cases when it is possible to
obtain two first integrals, namely: the energy integral and the stream-function, what
allows one to reduce the problem to the calculation of elliptic integrals.

Comparison of the results obtained in this paper for the nonlinear shallow cylin-
drical shell in the cases of the internal resonance of the order of ε with those for a
nonlinear plate, the motion of which is described also by three coupled nonlinear
equations in terms of three displacements [25], reveals the fact that the shell equations
could produce much more diversified variety of internal resonances than the plate
equations.
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Appendix A

am1n1m2n2
1mn =

1∫

0

2π∫

0

sin πm1x sin n1ϕ cosπm2x sin n2ϕ cosπmx sin nϕ dxdϕ,

am1n1m2n2
2mn =

1∫

0

2π∫

0

cosπm1x cos n1ϕ sin πm2x cos n2ϕ cosπmx sin nϕ dxdϕ,

am1n1m2n2
3mn =

1∫

0

2π∫

0

sin πm1x cos n1ϕ sin πm2x sin n2ϕ sin πmx cos nϕ dxdϕ,

am1n1m2n2
4mn =

1∫

0

2π∫

0

cosπm1x sin n1ϕ cosπm2x cos n2ϕ sin πmx cos nϕ dxdϕ,

am1n1m2n2
5mn =

1∫

0

2π∫

0

sin πm1x sin n1ϕ sin πm2x sin n2ϕ sin πmx sin nϕ dxdϕ,

am1n1m2n2
6mn =

1∫

0

2π∫

0

cosπm1x cos n1ϕ cosπm2x cos n2ϕ sin πmx sin nϕ dxdϕ,

am1n1m2n2
7mn =

1∫

0

2π∫

0

cosπm1x sin n1ϕ cosπm2x sin n2ϕ sin πmx sin nϕ dxdϕ,

am1n1m2n2
8mn =

1∫

0

2π∫

0

sin πm1x cos n1ϕ sin πm2x cos n2ϕ sin πmx sin nϕ dxdϕ,

am1n1m2n2
9mn =

1∫

0

2π∫

0

cosπm1x sin n1ϕ cosπm2x sin n2ϕ sin πmx sin nϕ dxdϕ,

am1n1m2n2
10mn =

1∫

0

2π∫

0

sin πm1x cos n1ϕ sin πm2x cos n2ϕ sin πmx sin nϕ dxdϕ.
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