
Chapter 4
Continuum Thermodynamics of Mixture
of Linear Fluids

This is the core chapter of our book. Here we discuss rational thermodynamics of
mixtures and our main interest is the classical subject—the chemically reacting fluid
mixture composed from fluids with linear transport properties (linear fluid mixture).
In the last section, we discuss the relation of our results to those classical.

4.1 Principles of Mixture Theory

Thus far, with the exception of Sects. 2.4 and 2.5, we have studied only one-
component system. In chemistry and its applications, multicomponent systems are
much more encountered and the description of mixtures is much more important.
The first systematic study of the non-equilibrium behaviour of mixtures was given in
the linear thermodynamics of irreversible processes, mainly by Prigogine, Meixner
and others [1–5]. It uses usually the properties of mixtures as primitives and it for-
mulates balances (with the exception of those for mass) for mixture only. Also the
newer extended thermodynamics (see Rem. 2 in Chap. 2) is studying mixtures [6–9].

Rational thermodynamics (the basic ideas of which have been presented in previ-
ous chapters) of mixtures has been promoted mainly by Truesdell [10–13], Bowen
[14, 15], Müller [16–19], Williams [20, 21], see also reviews [15, 22, 23]. It also
uses the classical approach [24–26] but most of its mixture theories [17, 27–73] use
Truesdell’s more detailed conception of mixture as superposing continua of its con-
stituents [10, 11, 13]. These theories use the analogy with single (one constituent)
material but because of the non-uniqueness of such analogy these theories differ
sometimes in conceptions and details. Therefore, their comparison is often difficult
but (because of limited knowledge of mixture properties) their results do not differ
essentially [22, 23]. Mixtures studied by rational thermodynamics may be very dif-
ferent [13, 15, 17, 22, 23, 45, 54, 62, 74–78]. They include not only the one phase
mixtures of fluids but also the more complicated (and therefore touched only mar-
ginally in this book) “heterogeneous mixtures” like porous solids filled with liquids
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and other phases, suspensions, emulsions, etc. (even non-linear in transport) [14,
15, 29–37, 54, 59, 60, 70–72, 79–81] and models with temperature memory effects
(cf. Rems. 26 in Chap. 3, 31, Sect. 2.2 model D) [17, 18, 82, 83] (where the “local
equilibrium” is invalid, cf. Sects. 2.2, 3.7 and 4.6), and systems with more tempera-
tures (Rem. 2, [14, 15, 59]). Among them are also the mixtures with fading memory
[35], mixture surfaces (waves and phase boundaries) [17, 40, 49, 51, 52, 55, 73,
84–92], Gibbs’ phase rule [93, 94] and non-local materials [41, 95, 96]. Yet newer
theories of mixtures are beginning to be developed based on modern concepts of
continuum thermomechanics [97–100] and promoted mainly by Williams [20, 21,
67, 68, 101–103]. These theories use, in fact, only the solidification principle (in its
broader form noted below) to construct the mixture, but so far they are elaborated
mainly in mechanical aspects (cf. Rems. 7 in Chap. 3, 11).

In this book, we use Truesdell’s conceptually most simple idea of mixture [10–
12] and we confine ourselves to a classical task important in applications: we study
the mixture of chemically reacting fluids (mechanically non-polar, cf. Sect. 4.3 and
Rem. 17 in Chap. 3), with the same temperature of all constituents and with linear
transport properties (like diffusion, heat conduction, viscosity; generalization on non-
linear transport, see [60, 71, 72, 104]). This model, called shortly the linear fluid
mixture, contains as special cases non-reacting fluid mixtures and some further ones
(see Sect. 4.8).

At least for this linear fluids mixture, we (partially) overcome the usual objection
to Truesdell’s conception: how to find the thermodynamic partial properties taken as
primitives in this theory. Namely, we show that such partial quantities may be calcu-
lated from the dependence of corresponding mixture properties on the composition
using the so-called mixture invariance of balances [59], see Sects. 4.5 and 4.6.

To construct the theory of mixture, we use as a basis the following three “meta-
physical” principles of Truesdell [12, 13]:

1. All properties of a mixture are consequences of properties of its constituents.
By this principle, we introduce the properties of constituents as primitives and
properties of mixture are then defined.

2. So as to describe the motion of a constituent, we may imagine it to be isolated
from the rest of the mixture, provided we allow properly for the actions of the
other constituents upon it. This solidification principle (which is an extension of
those noted in Rem. 14 in Chap.3) permits us to formulate balances by analogy
with pure materials.

3. The motion of the mixture is governed by the same equations as is a single body.
By this principle, the properties and balances of mixture are formulated on the
basis of pure substances.

Obviously, the interpretation of these principles is not unique. In this book, we
interpret the third principle in the sense that if we neglect the diffusion (relative
movement of one constituent towards the others—a phenomenon typical only for
the mixture) the mixture must behave as a single substance (then even chemical
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reactions may be described with the use of internal variables); the balances in such
a non-diffusing mixture must be the same as in Chap.3.1

In themixtures, we postulate two types of balances: balance for each constituent α
and balance of mixture. Motivated by principles (1) and (2). we propose the balances
for individual constituents (ofmass, momentum and its moment, energy and entropy)
similarly as for the single constituent (see Sects. 3.3 and 3.4), i.e. their left-hand
sides form the change of corresponding partial quantity in a fixed volume and to the
right-hand sides we add the interactions with the remaining constituents. Balances
of mixtures we postulate as the sums of left-hand sides of individual constituent
balances, putting the sums of interactions on right-hand sides equal to zero because of
their assumed compensation, see Sects. 4.2, 4.3 and 4.4 for details. Entropy inequality
is postulated for the mixture only (as may be expected physically; partial entropy
inequalities seem to be too strong [15, 22, 23], cf. Rem. 2).

We simplify the mixture model in this book by assumption that all constituents
(occupying simultaneously the same place ofmixture, see below (4.1)) have the same
temperature; then it suffices to formulate the energy and entropy balances for themix-
ture only, see Sect. 4.4.2 Note that entropy, as a quantity depending on the material
model (cf. Sect. 2.3), is not only the function of composition but also depends on the
number of constituents (cf. Gibbs paradox: the presence of additional constituent dis-
continuously changes the entropy regardless of its (physical) proximity); therefore,
we assume the number of constituents as firmly given in the following.

Concluding, it seems that the thermodynamics of mixtures has not yet been solved
satisfactorily in spite of great endeavour and specific results. The main problems are
rooted in distinguishing between heat and matter flowing simultaneously through
(even imaginary) boundarywhich necessary appears in diffusingmixture exchanging
mass (of different constituents by different velocities) and energy. While for single
substance this difficulty has been removed by using the instrument of the “material
volume” and this permits to construct the theory of single substance on the basis
of Chap.1 (namely, the First and Second Laws are postulated there for closed, i.e.
not exchanging mass, system), this is impossible in diffusing and heat exchanging
mixture. Here we must add rather intuitive postulates (on summing the left-hand
sides of component balances or on the compensation of interactions) noted above.
In spite of this, Truesdell’s mixture theory seems to be simpler than the classical

1 Literal interpretation [12, 13] of the third principle is that “a body does not know if it is a mixture
or not” which leads to complicated and not fully clear expressions in mixture when diffusion is
present; cf. Rems. 3, 7, 10, 11, see also [60, 67, 68, 73].
2 Energy and entropy balancesmay be formulated for individual constituents (and entropy inequality
is given as the non-negativity of sums of entropy productions in individual entropy balances), cf.
[14, 15, 59] but, even the constitutive equations for partial heat fluxes or energy interactions may be
formulated, if the temperature of all constituents is the same, they play a role only through the sum
of partial heat fluxes (i.e. through the heat flux for mixture as in Sect. 4.4) and the sum of energy
interactions disappears by compensation, see [59, Sect. 3].

For mixtures with different temperatures, e.g. plasma is a mixture of electrons and ions with
different temperatures, see [32, 59, 105].
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theory [1, 3] with postulates for mixture only, where especially ad hoc proposition
of energy and entropy balances is complicated and not unique, cf. Rems. 10, 11.

Properties of constituents which are of fixed number n will be denoted by the
Greek subscriptα = 1, 2, . . . , n (in this chapter, if it is not noted otherwise, subscripts
α, γ, ε = 1, 2, . . . , n and β, δ, ζ = 1, 2, . . . , n − 1 are used).

For each constituent, we can use the same kinematic description as for the single
substance in Sect. 3.1. Namely, for each constituent α invertible and smooth motion
χ

α
is defined as

x = χ
α
(Xα, t) α = 1, . . . , n (4.1)

where x is the place of the particle Xα of constituent α = 1, . . . , n in the instant t
(Xα is defined by its place in reference configuration of constituent α); see also [73,
90, 91, 106].

Mixture is an intersection of actual configurations of all n constituents, i.e. it is
a superposition of such parts of actual configurations of every constituent that each
place in the mixture is occupied simultaneously by n different particles each from
every constituent of the mixture. The meaning of reference, actual configurations as
well as other quantities for constituent α are quite analogous to those in Sect. 3.1.
e.g. velocity vα of every constituent α = 1, . . . , n, is defined by (cf. (3.7)):

vα ≡ ∂χ
α
/∂t =\α

χ
α
= χ̀

α
α = 1, . . . , n (4.2)

where the second equality denotes the material derivative relative to constituent α;
the last expression is the simplified description of this derivative when upper α is the
same as in the lower index.

Each quantity—field ϕ—may be, by (4.1), described by the spatial as well as
material (to some constituent α) description ϕ = ϕ(x, t) = ϕ(Xα, t); therefore the
material derivative to the constituent α is also (cf. (3.8) and (3.9))

\α
ϕ≡ ∂ϕ

∂t
+ viα

∂ϕ

∂xi
(4.3)

and we have
Gradϕ = gradϕ Fα (4.4)

Here the deformation gradient Fα as well as the velocity gradient Lα , stretching Dα

and the spin Wα for constituent are defined analogously as (3.10), (3.12), (3.14),
(3.15) and (3.16), e.g.

Fα ≡ ∂χ
α
/∂Xα (4.5)

Lα ≡ gradvα = Dα + Wα = F̀αF−1
α (4.6)

Dα ≡ 1

2
(Lα + LT

α ), Wα ≡ 1

2
(Lα − LT

α ) (4.7)

divvα = trDα (4.8)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.1 Principles of Mixture Theory 147

Killing’s theorem is valid for all constituentsα = 1, . . . , n: Themotion of themixture
is rigid if and only if for all α

Dα = 0 α = 1, . . . , n (4.9)

It is clear that analogues of (3.12), denoted Jα , are valid for each constituent as well
as that of Euler relation (3.17) and Reynolds theorem (3.24) with \α instead of the
dot in the original equations, cf. (d) in Rem. 3, but material volume (containing the
same particles of constituent α) is not as important as for the pure substance.

Results of Sect. 3.2 concerning the change of frame are possible to transfer to
mixtures directly if we keep in mind that transformations (3.25),(3.26) concern all
constituents of a mixture simultaneously (c(t),Q(t),b are the same for all con-
stituents of the mixture). Velocities vα and accelerations v̀α (concisely written like
(4.2)) are transformed again by (3.38) and (3.44), i.e.

v∗
α = Qvα + ċ + �(x∗ − c) (4.10)

v̀∗
α = Qv̀α + i∗α (4.11)

where the inertial force of constituent α = 1, . . . , n is

i∗α ≡ 2�(v∗
α − ċ) − �2(x∗ − c) + �̇(x∗ − c) + c̈ (4.12)

with � given by (3.39) (cf. (3.46), see also (3.79) and (4.58)). The dot means the
derivative of the function of time only. Note that in inertial frame i∗α = o for the same
reasons as (3.48). Stretching Dα of constituent α is an objective tensor

D∗
α = QDαQT (4.13)

(by the same arguments as in (3.54)) and similarly in other cases.

4.2 Balances of Mass and Stoichiometry of Chemical Reactions

In the mixture, in the given place and instant, we introduce the mass density ρα of
constituent α = 1, . . . , n as a primitive. It has the meaning of mass of constituent α
in a volume unit of the whole mixture (in chemistry this quantity is called the mass
or “weight” concentration). The (partial) densities ρα = ρα(x, t) are assumed to be
objective and only positive—this is clearly a plausiblemodel evenwhen a “practically
pure” constituent is formed as a result of chemical reactions. The density of mixture
ρ (defined as the sum of partial densities through all constituents, cf. (4.21) and
Rem. 3) has the usual meaning [11, 15, 17, 22, 23, 50].

Balances for constituent s and mixture (postulated in accord with in Sect. 4.1
proposed procedure) are as follows.
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The balance of mass for each constituent α is

d

dt

∫
V

ρα dv +
∫

∂V
ραvα.n da =

∫
V
rα dv α = 1, . . . , n (4.14)

for each volume V fixed in space with the surface ∂V which is contained in mixture
(cf. (3.60)). The first integral on the left-hand side is change of mass of constituent
α in V , the second integral is flux of mass of α through ∂V (the left-hand side is
the time change of mass in fixed volume) and the integral on the right-hand side
expresses the change of mass of constituent α by chemical reactions: rα is the mass
produced (rα > 0) or consumed (rα < 0) by chemical reactions in the time and
volume unit (the right-hand side is just interaction with the remaining constituents).

If identically
rα ≡ 0 (4.15)

we denote such constituent α as the non-reacting one, cf. (4.28).
The balance of mass for the mixture asserts that in any fixed volume V of the

mixture the whole mass (sum of mass of all constituents) can be changed only
through the fixed surface ∂V as a result of the flow of each constituent α by the
velocity vα

d

dt

n∑
α=1

∫
V

ρα dv +
n∑

α=1

∫
∂V

ραvα.n da = 0 (4.16)

This postulate is in accord with the general proposal of construction of mixture
balances given in Sect. 4.1: the left-hand side of (4.16) is the sumof the left-hand sides
of (4.14) and the right-hand side of (4.16) expresses the compensation of interactions
(cf. (4.20)).

Assuming, similarly as for pure substance in Sect. 3.3, the validity of these pos-
tulates for any part of the mixture we can localize them using Gauss’ theorem (3.23)
(cf. deduction of (3.62) from (3.60); note independency of V on constituents).

We obtain the local balances of mass for constituent

∂ρα

∂t
+ divραvα = rα α = 1, . . . , n (4.17)

which may be rewritten with the use of material derivative of each constituent (4.3),
(4.2)

ρ̀α + ραdivvα = rα α = 1, . . . n (4.18)

Using (4.17), (4.3) the analogue of (3.67) may be obtained for field ϕ

∂ραϕ

∂t
+ divραϕvα = ρα

\α
ϕ +ϕrα (4.19)
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Local balance of mass for mixture may be expressed as

n∑
α=1

rα = 0 (4.20)

as follows from the local forms of (4.16) and (4.17).
We assume that rα are objective scalars and therefore balances (4.18) and (4.20)

are the same in any frame (cf. (4.8), (4.13); ρ̀α is objective which may be proved
similarly as objectivity of the material derivative of the objective scalar in Sect. 3.2).

We introduce several definitions which will be useful later.3

Density of mixture ρ is defined as

ρ ≡
n∑

α=1

ρα (4.21)

Mass fraction wα of constituent α (in physics denoted as “concentration”)

wα ≡ ρα/ρ α = 1, . . . , n (4.22)

with property

3 Using density of mixture (4.21), mass fractions (4.22) and barycentric velocity vw , defined by

vw ≡
n∑

α=1

wαvα (a)

in (4.16), we obtain the same form as (3.60) or locally the form of (3.62) or (3.63) with v = vw

∂ρ

∂t
+ divρvw = 0, ρ̇ + ρ divvw = 0 (b)

where “dot” denotes the material derivative relative to barycentric velocity (cf. (3.8)), i.e.

ρ̇ ≡ ∂ρ

∂t
+ vw.gradρ (c)

Using “dot” (like in Chap.3) is natural if the all velocities vα are the same as in Sect. 4.7, see (4.322),
(4.323).

Unfortunately, so simple a result is not obtainable with other balances (see Rems. 7, 10, 11) but
even here, if all velocities are the same vα = v, they are in accord with the interpretation of the
third principle in Sect. 4.1, cf. Rem. 1.

If we use material derivatives, balances (4.14) and (4.16) may be written

\α∫
V

ρα dv=
∫
V
rα dv,

n∑
α=1

\α∫
V

ρα dv= 0 (d)

where the analogue of Reynolds theorem (3.24) for constituent α was used (cf. (3.59)); V is a
material volume chosen the same for all constituents.
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n∑
α=1

wα = 1 (4.23)

In Sect. 4.1 we denoted as diffusion the relative motion of mixture constituents
caused by their generally different velocities. Therefore, it is useful to define the
diffusion velocity uβ relative to the n-th constituent (there are more possibilities of
such definitions, cf. Rem. 7 and Sect. 4.10)

uβ ≡ vβ − vn β = 1, . . . , n − 1, un ≡ o (4.24)

The latter expression is useful in sums like (4.64). Note, see (4.10), that diffusion
velocities (4.24) are objective (frame indifferent) as well as (4.21), (4.22).

In chemically reacting mixture rα �= 0 (for several reacting constituents at least)
due to chemical reactions among reacting constituents. The reactions are described
by stoichiometry. Here we follow Bowen [14, 30, 31], see also [12, 48, 65], using
non-orthogonal bases (see Appendix A.4); therefore, we use upper or lower indices
for contravariant or covariant components. In stoichiometry, we assume that each
constituent is composed of atomic substances (atoms—often chemical elements) in
definite proportions. The constituent α = 1, . . . , n is characterized by a positive
constant—the molar mass Mα , which is therefore a linear combination of atomic
masses Aσ of atomic substances σ = 1, 2, . . . , z

Mα =
z∑

σ=1

Aσ Tσα α = 1, . . . , n (4.25)

where Tσα may be interpreted as the “number of atoms σ in one molecule of con-
stituent α”.

We define reaction rate Jα of constituent α (in mols in time and volume units) by

Jα ≡ rα/Mα α = 1, . . . , n (4.26)

expressing the number of mols of constituent α formed or destroyed by chemical
reactions in a volume and time unit.

The basic postulate of stoichiometry is the permanence of atomic substances

n∑
α=1

Tσα J
α = 0 σ = 1, . . . , z (4.27)

which expresses the indestructibility of atoms in chemical reactions. This postulate
is in accord with the balance of whole mass (4.20): summing rα from (4.26) through
constituents and using (4.25), (4.27), we obtain (4.20) (therefore, we could use (4.27)
instead of (4.20)). In the following, the rank h of matrix ‖Tσα‖ of dimension z × n
plays an important role.According to its definition (rank h of amatrix is the dimension
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of the highest non-zero determinant formed from the matrix) h ≤ min(z, n) and
therefore h ≤ n.

The case h = n (this is possible if z ≥ n) is the chemically non-reacting mixture
because the solution of the system z equations (4.27) with n unknowns Jα is

Jα = 0, i.e. rα = 0 α = 1, . . . , n (4.28)

Note that if this is valid only for some constituentsα (4.28) then thosemay be denoted
as non-reacting, cf. (4.15).

In this section, we are interested mainly in chemical reactions where

h < n (4.29)

The rank h of ‖Tσα‖ gives the maximum number of the linear independent rela-
tions in (4.27) and n−h gives the number of chemical reactions in the system (which
are independent, namely no such chemical reaction follows by linear combination
from those remaining), see below (4.33).4 Therefore, only h independent relations
from (4.27) (as well as any other system of h linearly independent relations obtained
by linear combinations) are useful. Therefore, the permanence of atomic substances
(4.27) may be expressed by

n∑
α=1

Sσα J
α = 0 σ = 1, . . . , h (4.30)

where the matrix ‖Sσα‖ of dimension h × n and of rank h is one from the matrices
obtained from ‖Tσα‖ in the way described above. If we use Sσα instead of Tσα in
(4.25) we can write

Mα =
h∑

σ=1

Eσ Sσα α = 1, . . . , n (4.31)

where Eσ are certain linear combinations of atomic masses. Therefore, a “molecule”
of constituent α is a combination of “atomic substances with atomic masses” Eσ

(which are not generally the chemical elements, cf. examples at the end of this
Sect. 4.2).With such interpretationEqs. (4.30) and (4.31)will be used in the following
instead of (4.27) and (4.25).

We introduce an abstract n-dimensional vector space U and we call it the mixture
space. In it we select bases �eα and �eα; for now it is sufficient to assume that these
bases are othonormal, i.e. �eα = �eα , cf. Appendix A.4. In the space U , we define the
vectors of molar masses �M and reaction rates �J by

4 Results (4.28), (4.29) depend on the a priori choice of n constituents to obtain reasonable accord
with chemistry: e.g. if we choose HCl and NaOH as constituents only we obtain non-reacting
mixture (z = 4, n = h = 2); adding NaCl, H2O (n = 4, z = 4, h = 3), one reaction is possible.
On the other hand in practice, (4.28) may be valid even when (4.29) is valid (“frozen” reactions).
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�M ≡
n∑

α=1

Mα�eα (4.32)

�J ≡
n∑

α=1

Jα�eα (4.33)

Then we define h independent (contravariant) vectors �fσ by

�fσ ≡
n∑

α=1

Sσα�eα σ = 1, . . . , h (4.34)

which form a basis in h-dimensional subspace W of the mixture space U . The
subspaceW uniquely determines a complementary, orthogonal andn−h dimensional
subspace in the space U which we will call the reaction space V .

The postulate of permanence of atomic substances (4.30) may be equivalently
expressed as follows [30]:

The vector of molar masses �M is situated in the subspace W and the vector of
reaction rates �J is situated only in the reaction space V , i.e.

�M ∈ W (4.35)

�J ∈ V (4.36)

where W⊥V and W ⊕ V = U (⊕ means Cartesian sum).

Proof Necessity of (4.35): inserting (4.34), (4.31), (4.32) into the left hand side of
following expression (4.37) we obtain

h∑
σ=1

Eσ �fσ = �M (4.37)

i.e. �M may be expressed in the basis ofW and therefore (4.35) follows. The necessity
of (4.36): using (4.33),(4.34),(4.30) in the left-hand side of following expression
(4.38) we obtain

�J . �fσ = 0 σ = 1, . . . , h (4.38)

i.e. �J is orthogonal to the basis of W and therefore (4.36) follows. To prove the
sufficiency,we show that (4.30), (4.31) follow from (4.35), (4.36): indeed, let �fσ (σ =
1, . . . , h) be some basis of the h-dimensional subspaceW and Sσα are components
of each �fσ , in the basis �eα (α = 1, . . . , n) of the mixture space U , i.e. (4.34) is
valid. According to (4.36), Eqs. (4.38) must be valid. Introducing (4.33), (4.34) into
left-hand side of (4.38) we obtain (4.30). Further, let Eσ be components of �M in the
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basis �fσ of subspaceW , i.e. (4.37) is valid. If �M has components Mα in the space U
according to (4.32), we can see, by substitution of (4.34) and (4.32) into (4.37), that
(4.31) must be valid. Q.E.D.

From the permanence of atomic substances (4.35), (4.36) then follows

�M . �J = 0 or
n∑

α=1

Mα J
α = 0 (4.39)

which, according to (4.32), (4.33), (4.26), expresses again the mass balance for the
mixture (4.20).

Now, let us choose n − h linearly independent covariant vectors �g p as basis in
the reaction subspace V and show that n − h is the number of independent chemical
reactions in the mixture, cf. below (4.45) and Rem. 4. These vectors can be written
in the basis of U as

�g p =
n∑

α=1

P pα�eα p = 1, . . . , n − h (4.40)

where matrix ‖P pα‖ of the dimension (n − h) × n is called the matrix of sto-
ichiometric coefficients (of independent reactions noted above). Because of linear
independency of �g p, the rank of this matrix ‖P pα‖ is n − h. From the orthogonality
of subspaces V and W follows (with the use of (4.40) and (4.34))

�fσ .�g p =
n∑

α=1

SσαP
pα = 0 σ = 1, . . . , h, p = 1, . . . , n − h (4.41)

Therefore, an arbitrary matrix of dimension (n − h) × n of the rank n − h fulfilling
the relations (4.41) for the given matrix ‖Sσα‖ may be chosen as matrix ‖P pα‖. If
we use (4.40) and (4.32) then from (4.35), (4.36) it follows that

�g p. �M =
n∑

α=1

P pαMα = 0 p = 1, . . . , n − h (4.42)

From the permanence postulate (4.36) further follows

�J =
n−h∑
p=1

Jp�g p (4.43)

where Jp (components in chosen covariant basis �g p of reaction space V) is called
the reaction rate of p-th chemical reaction.
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From (4.43) and (4.40), (4.33) we have

Jα =
n−h∑
p=1

Jp P
pα α = 1, . . . , n (4.44)

On the other hand, the reaction rate Jr (r = 1, . . . , n − h) may be obtained by
multiplying (4.43) with vectors of contravariant basis �gr (see (A.89)). Inserting in
such product from (4.33), from the relation between contra- and covariant bases in
V (see (A.86)) and from (4.40), we obtain (by using of orthonormality of �eα) the
relation between rates (reversal to (4.44))

Jr =
n∑

α=1

n−h∑
p=1

JαP pαgrp r = 1, . . . , n − h (4.45)

(covariantmetric tensor grp is obtained by the inversion of contravariantmetric tensor
grp = �gr . �g p which follows fom (4.40) and chosen reactions; cf. (A.83)).

It follows therefore, that chemical changes can be described selecting basis �g p in
the reaction space V (systematic choice see, e.g. [107, 108]). Such n−h independent
reactions may be seen from (4.42) if we use the corresponding chemical symbols
instead ofMα and use the following convention: in the following, we call the products
in p-th chemical reaction these constituents for which P pα > 0; constituents with
P pα < 0 are the reactants in the reaction p. If P pα = 0 then constituent α does not
take part in the reaction p; if this is valid in all reactions p = 1, . . . , n− h then such
α is a non-reacting constituent (indeed, from (4.44) we obtain (4.28)).

The same reacting mixture may be described by infinite numbers of systems of
n−h independent chemical reactions equivalently (each of such systems corresponds
to some choice of basis �g p in V) which may be mutually recalculated by linear
transformations of the type (A.87). Using (4.40), we recalculate the corresponding
stoichiometry coefficients; zero column P pα for non-reacting constituent α will be
again zero. Therefore, reacting and non-reacting constituents are such in any choice
of the system of independent chemical reactions.

Chemical kinetics is described by (constitutive equations for) rates Jα or Jp (see
Sect. 4.9 for further details); note that Jp P pα from (4.44) may be interpreted as the
number of moles of constituent α produced (or consumed) in the time and volume
unit in p-th reaction.

As an example of the preceding formulae, we consider themixture ofNO2 (α = 1)

and N2O4 (α = 2) with atoms N (σ = 1) and O (σ = 2). Then ‖Tσα‖ =
(

1 2
2 4

)
with h = 1 and therefore, e.g. ‖Sσα‖ = (1 2) (i.e. atomic substance is NO2).
As stoichiometric matrix, e.g. ‖P pα‖ = (2 − 1) may be chosen, corresponding to
reaction

N2O4 = 2NO2 (4.46)

or ‖P pα‖ = (−1 1/2) with reaction
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NO2 = 1/2N2O4 (4.47)

Another example is again NO2 and N2O4 but with atoms Q (α = 3 = n).

Correspondingly ‖Tσα‖ =
(

1 2 0
2 4 0
0 0 1

)
with h = 2 and, e.g. ‖Sσα‖ =

(
1 2 0
0 0 1

)
. Then,

e.g. ‖P pα‖ = (2 − 1 0) which corresponds to the reaction (4.46) with Q as non-
reacting constituent.

The last example is O, O2 ,O3 (α = 1, 2, 3) with atom O (σ = 1). Then ‖Tσα‖ =
(1 2 3) = ‖Sσα‖ (the last choice is possible). As the stoichiometric coefficients

are, e.g. ‖P pα‖ =
(

0 3 −2
3 0 −1

)
corresponding to the reactions

2O3 = 3O2, O3 = 3O (4.48)

Another equivalent set of these reactions is

O3 = O2 + O, O2 = 2O (4.49)

See also Rem. 4 and Sect. 4.9.
Summary. The balance of mass can be written either for each component sep-

arately or for the mixture as a whole; both involve the mass density (mass concen-
tration) of individual components. Their local forms are (4.17) or (4.18) and (4.20),
respectively. Themass changes during chemical reactions are restricted by additional
conditions resulting from the stoichiometry of chemical reactions or, in other words,
by the permanence of atoms in reactions—see (4.27). Linear algebra of stoichiom-
etry leads then to a restriction on rates by which the masses or molar amounts of
reacting constituents are changed—see (4.39). Further it gives the stoichiometric
matrix, (4.42), and translates the rates (of chemical transformations) of individual
constituents to the rates of (independent) chemical reactions, cf. (4.45). Thus only
the independent reactions are sufficient to be included in amodel of chemically react-
ing mixture and to describe chemical transformations mathematically. Note also the
definition of the density of mixture (4.21) and of the mass fraction (4.22).

4.3 Balances of Momentum and Moment of Momentum
in Reacting Mixture

Postulation of momentum balances for constituents and for mixture [11, 12, 15, 17,
22, 23, 50, 65] is sufficient (similarly as for pure constituent in Sect. 3.3) to be done
in the inertial frame because our main results—local balances (4.58), (4.63)—will be
valid in any frame. For every fixed volume V with fixed surface ∂V in the mixture,
we postulate the balance of momentum of constituent α in the inertial frame as

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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d

dt

∫
V

ραvα dv +
∫

∂V
ραvα(vα.n) da =

∫
∂V

tα da +
∫
V

ραbα dv +
∫
V
kα dv

+
∫
V
rαvα dv α = 1, . . . , n (4.50)

(For modification for general, non-inertial frame see below (4.58)). On the left-
hand side, there is the change of momentum of constituent α in the fixed volume V
(momentum density is obviously ραvα) and its flux through the fixed surface ∂V . On
the right-hand side of (4.50), the forces on constituent α are postulated (according to
principles discussed in Sect. 4.1): the first two represent surface and volume forces
respectively (similarly as in pure material in Sect. 3.3) and those remaining describe
interactions (but see Rem. 5). Namely, the first integral on the right side expresses
through the partial traction tα the all contact forces (on surface unit) acting on the
constituent α; these (partial stress) vectors are assumed to be objective (material
frame indifferent). Such are the inner surface forces by which all constituents act
from the outside (of V ) on the constituent α on the surface ∂V (if ∂V , or its part, is a
real boundary of the mixture they are outer surface forces from the outside given as
boundary conditions) and also interaction surface forces coming from the remaining
constituents acting from the inside (of V ) on the constituent α on the surface ∂V .5

The second integral on the right-hand side of (4.50) expresses the action of body
(volume, external and outer) forces bα in the inertial frame (they have their sources
in the outside the body); we assume thatbα are objective vectors. The third integral on
the right-hand side of (4.50) characterizes the volume interaction among constituents.
Here the volume interaction force kα expresses the action of other constituents on
the constituent α. It is assumed that kα are objective vectors. The last integral on
the right-hand side of (4.50) expresses the time change of momentum caused by
chemical reactions [11, 14, 25]; we assume that the velocity of reacting constituent
α is vα .6

5 These last forces from inside were introduced by more detailed mixture theory [101], see also
[20, 67, 68, 109, 110], but we do not distinguish them in tα (or in partial stress Tα (4.53) below).
These therefore contain also surface interactions (analogues of volume interactions kα below)which
compensate themselves in sum of tractions or stresses in (4.60), (4.61).
6 This is not obvious but if it is not so this may be always achieved: let us assume that vrα is a real
velocity of chemically reacting constituent α and real interaction force is krα . Then the last two
members in (4.50) are

∫
V
krα dv +

∫
V
rαvrα dv =

∫
V
kα dv +

∫
V
rαvα dv

where the form postulated in (4.50) was achieved defining kα ≡ krα + (vrα − vα)rα . Because the
objectivity of krα and rα may be assumed, the kα are also objective (in this way, the different
formulations of these last two members used in the literature [12, 16, 22, 40, 41, 46, 49, 52, 95,
105, 111] may be transformed in the form used here in (4.50)).

Other possible forces are neglected in (4.50), e.g. long range body forces (cf. Sect. 3.3; they may
occur in ionic salt solutions, but they may be neglected by electroneutrality, see Rem. 32), influence
of (mechanically) polar components, cf. Rem. 9, hyperstresses [112].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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The left-hand side of postulate (4.50) may be arranged by Gauss’ theorem and
with (4.19) using the component of partial velocity as ϕ; then the partial balance of
momentum of constituent α is

∫
V

ρα v̀α dv =
∫

∂V
tα da +

∫
V

ραbα dv +
∫
V
kα dv α = 1, . . . , n (4.51)

To achieve momentum balance in a local form, we have the analogous difficulties
with surface integral in the right-hand side of (4.50) as in Sect. 3.3. We therefore use
analogical Cauchy’s postulate and theorem but concerning here partial tractions and
stresses (motivation and deductions are quite analogical as in Sect. 3.3): The Cauchy
postulate for partial tractions is

tα = tα(x, t,n) α = 1, . . . , n (4.52)

i.e. partial traction depends (moreover) on the (outside) normal n to the chosen
surface. Cauchy’s theorem then asserts that such dependence is linear, that is

tα = Tαn α = 1, . . . , n (4.53)

where the partial stress tensors Tα = Tα(x, t) are fields (functions of position and
time only) which are objective as follows from the objectivity of tα and n (similarly
as by (3.32)).

Proof of (4.53) may be done analogously as of (3.72): we construct a similar infin-
itesimal tetrahedron on the tangent plane given by n on which we apply the balance
(4.51)

ρα v̀α�v = tα�a + (tα) j �a j + (ραbα + kα)�v (4.54)

By limiting the volume of the tetrahedron to zero, we obtain result (4.53) quite
analogously as (3.72) (components of stress tensor T i j

α are components of vectors
−(tα) j ). Q.E.D.

Inserting (4.53) into (4.51) we obtain the balance of themomentum for constituent
α in the inertial frame as

∫
V

ρα v̀α dv =
∫

∂V
Tα.n da +

∫
V

ραbα dv +
∫
V
kα dv α = 1, . . . , n (4.55)

Assuming its validity for any volume V the local formulation of momentum balance
of constituent α in inertial frame may be obtained from (4.55) by Gauss’ theorem

ρα v̀α = divTα + ραbα + kα α = 1, . . . , n (4.56)

or (back by (4.19) choosing ϕ as velocity component)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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∂ραvα

∂t
+ div(ραvα ⊗ vα) = divTα + ραbα + kα + rαvα α = 1, . . . , n (4.57)

Balances ofmomentum for constituents have been formulated in the inertial frame.
Their form in a general (non-inertial frame) remains the same if we simply replace
bα with bα + iα . Indeed, the local balance of momentum of constituent α in any
frame may be obtained from (4.56) if we use (4.11) and the objectivity of remaining
quantities assumed above (cf. analogous deduction of (3.78))

ρα v̀α = divTα + ρα(bα + iα) + kα α = 1, . . . , n (4.58)

where iα is given by (4.12) (without stars; other symbols as in (3.79)).
Starting with (4.58) in any frame (instead of (4.56) and going back through all

previous formulae (as in inertial system) it may be seen (cf. analogous behaviour
in Sect. 3.3 before (3.80)) that for transformation from inertial to non-inertial frame
here, it suffices to use bα + iα instead of bα in all preceding relations for the inertial
frame including the starting postulate (4.50). Therefore, e.g. the integral momentum
balance for constituent in an arbitrary (non-inertial) frame will be

∫
V

ρα v̀α dv =
∫

∂V
Tα.n da +

∫
V

ρα(bα + iα) dv +
∫
V
kα dv α = 1, . . . , n

(4.59)
instead of (4.55) in an inertial frame.

In accord with the general procedure proposed in Sect. 4.1 (summing of l.h.s. of
(4.50) and compensation of interactions) we postulate the balance of momentum for
the mixture in the inertial frame as

d

dt

∫
V

n∑
α=1

ραvα dv +
∫

∂V

n∑
α=1

ραvα(vα.n) da =
∫

∂V

n∑
α=1

tα da +
∫
V

n∑
α=1

ραbα dv

(4.60)

for arbitrary fixed volume V with fixed surface ∂V in the mixture. Using here
Cauchy’s theorem (4.53) we can write momentum balance of mixture in the inertial
frame as

d

dt

∫
V

n∑
α=1

ραvα dv +
∫

∂V

n∑
α=1

ραvα(vα.n) da =
∫

∂V

n∑
α=1

Tαn da +
∫
V

n∑
α=1

ραbα dv

(4.61)

Therefore, we assume that interaction forces (including the surface interaction forces
assumed to be contained in the tα,Tα) and exchange of momentum in chemical
reactions compensate each other among the constituents.7

7 Postulate (4.61) is in accord with our interpretation of the third principle in Sect. 4.1: if the mixture
is non-diffusive, i.e. velocities of all constituents are the same vα = v, then (4.61) has the form

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Local momentum balance of mixture in the inertial frame follows from (4.61)
with Gauss’ theorem and arbitrary volume V (using (4.19))

n∑
α=1

∂ραvα

∂t
+ div

n∑
α=1

(ραvα ⊗ vα) =
n∑

α=1

ρα v̀α +
n∑

α=1

rαvα = div
n∑

α=1

Tα +
n∑

α=1

ραbα

(4.62)

Summing (4.56) through the constituents and comparing it with (4.62)2 we obtain
the local momentum balance of mixture as

n∑
α=1

(kα + rαvα) = o (4.63)

Although we have deduced this balance in the inertial frame, it is valid in all (even
non-inertial) frames because both sums on the left-hand side are objective (for the
second sum, this follows from (4.10) and (4.20)). This is also seen directly if we
write the momentum balance of the mixture with the use of diffusion velocity (4.24)
(which is an objective vector)

n∑
α=1

(kα + rαuα) = o (4.64)

The momentum balance for the mixture in integral forms (4.60), (4.61) may be
written again in an arbitrary frame simply by substitution of bα with bα + iα . Indeed,
adding rαvα to both sides of (4.58) and summing through all constituents we obtain,
by (4.63), the result (4.62)2 with aforementioned substitution. Going backward with
the corresponding integration,we obtain integralmomentumbalances for themixture
in any frame with substitution mentioned above.

Postulation of moment of momentum balances for constituents and for mixture
[11, 12, 15, 17, 22, 23, 50, 65] is sufficient (similarly as in Sect. 3.3, cf. Rem. 16
in Chap. 3) to be done in the inertial frame with the construction of moment against
fixed point (y below) because our main results—local balances (4.70), (4.75)—are
valid in any frame independently of y (for generalization, see Rem. 8).

For simplicity, we confine to models where all constituents as well as the mix-
ture are mechanically non-polar (for polar models, see Rem. 9; cf. also Rem. 17 in
Chap. 3), i.e. time changes ofmoment ofmomentum are equal only tomoments of the

of a momentum balance for pure substance(3.75); here (4.21) is used, and T ≡ ∑n
α=1 Tα (4.94),

ρb ≡ ∑n
α=1 ραbα are defined.

In the general case of a diffusing mixture the interpretation noted in Rem. 1 is possible, i.e. we
transform (4.61) in the form (3.75), if we use barycentric velocity vw (see Rem. 3) and define the
whole stress as

∑n
α=1(Tα − ραuw

α ⊗ uw
α ) (i.e. different from (4.94)) where uw

α ≡ vα − vw is the
diffusion velocity relative to the barycentric velocity (note

∑n
α=1 ραuw

α = o). Cf. [12, Lect. 5], [15,
18, 50].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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forces introduced in the balances of momentum. Surface tractions will be expressed
through stress tensors (4.53).

The balance ofmoment ofmomentum for constituentα in the inertial frame relative
to the fixed point y is postulated in any fixed volume V with fixed surface ∂V in the
mixture as (we use outer product from Rem. 16 in Chap. 3)

d

dt

∫
V
(x − y) ∧ ραvα dv +

∫
∂V

(x − y) ∧ ραvα(vα.n) da

=
∫

∂V
(x − y) ∧ Tαn da +

∫
V
(x − y) ∧ ραbα dv

+
∫
V
(x − y) ∧ (kα + rαvα) dv α = 1, . . . , n (4.65)

To find the local moment of momentum balance for constituent α we use here
Gauss’ theorem (3.23) in surface integrals and by localization (validity of (4.65) is
assumed for any volume V ) we obtain

∂ρα(x − y) ∧ vα)

∂t
+ div(ρα(x − y) ∧ vα ⊗ vα)

= div((x − y) ∧ Tα) + (x − y) ∧ ραbα + (x − y) ∧ kα

+ (x − y) ∧ rαvα α = 1, . . . , n (4.66)

where both divergences with tensors vα ⊗ vα and Tα are defined (in components)
analogously as under (3.90). Using (4.19) in the left-hand side of (4.66) we find (an
analogue of (3.91))

(x−y)∧ρα v̀α = div((x−y)∧Tα)+ (x−y)∧ραbα + (x−y)∧kα α = 1, . . . , n
(4.67)

because `
(x − y) ∧ vα = (x − y) ∧ v̀α (4.68)

namely
\α
x ∧ v̀α = v̀α ∧ v̀α = 0 and

\α
y= o (y is fixed); for the same reason (cf.

(3.92))

div((x − y) ∧ Tα) = TT
α − Tα + (x − y) ∧ divTα (4.69)

Inserting this result into (4.67) and subtracting (4.56)multiplied by (x−y)∧weobtain
the local partial moment of momentum balance for constituent α as a symmetry of
the partial stress tensor

Tα = TT
α α = 1, . . . , n (4.70)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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This is valid in any frame because of the objectivity of tensors Tα (even (4.70) was
deduced in the inertial frame); generalization for (mechanically) polar constituent
see Rem. 9.

According to general procedure discussed in Sect. 4.1 (summing of l.h.s. of (4.65)
and compensation of interactions), we postulate the balance of moment of momentum
for the mixture in inertial frame relatively to the fixed place y for any fixed volume
V with the surface ∂V in the mixture as

d

dt

∫
V
(x − y) ∧

n∑
α=1

ραvα dv +
∫

∂V
(x − y) ∧

n∑
α=1

ραvα(vα.n) da

=
∫

∂V
(x − y) ∧

n∑
α=1

Tαn da +
∫
V
(x − y) ∧

n∑
α=1

ραbα dv (4.71)

To obtain the local moment of momentum balance for the mixture, we use Gauss’
theorem in (4.71) and localization similarly as in (4.66). This result is

n∑
α=1

(
∂ρα(x − y) ∧ vα)

∂t
+ div(ρα(x − y) ∧ vα ⊗ vα)

)

=
n∑

α=1

div((x − y) ∧ Tα) + (x − y) ∧
n∑

α=1

ραbα (4.72)

Using (4.19) in the left-hand side (ϕ are components of (skew symmetric) tensor)
and (4.69) in the right-hand side of (4.72) we obtain

n∑
α=1

ρα
`

(x − y) ∧ vα + (x − y) ∧
n∑

α=1

rαvα

=
n∑

α=1

TT
α −

n∑
α=1

Tα + (x − y) ∧ div
n∑

α=1

Tα + (x − y) ∧
n∑

α=1

ραbα (4.73)

Adding (x − y) ∧∑n
α=1 kα to both sides, using (4.68) and rearranging we obtain

(x − y) ∧
n∑

α=1

(
ρα v̀α − divTα − ραbα − kα

) + (x − y) ∧
n∑

α=1

(kα + rαvα)

=
n∑

α=1

TT
α −

n∑
α=1

Tα

(4.74)

But the left-hand side of this equation is zero because of the local momentum
balance for each constituent (4.56) and for mixture (4.63). So, the local balance of
moment of momentum for the mixture has been obtained
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n∑
α=1

Tα =
n∑

α=1

TT
α =

(
n∑

α=1

Tα

)T

(4.75)

which is valid in any (even non-inertial) frame (on the same grounds as (4.70)).
Integral balances (4.71), (4.65) in any frame might be obtained by similar means

as for a single substance (see end of Sect. 3.3) but we omit them here (for our appli-
cations, the local forms (4.70),(4.75) suffice).8

For our model of (mechanically) non-polar constituents and non-polar mixture9

(4.75) is a trivial consequence of (4.70) and therefore the moment of momentum
balance for mixture is not needed in this non-polar model (indeed, (4.71) follows by
summing (4.65) and using (4.63)).

Summary. The balance ofmomentumpostulated for individual constituents leads
to the Cauchy’s theorem for partial stress tensors (4.53) and the local form of this
balance is given by (4.56) or (4.57). The balance ofmomentum formixture as awhole
is given by (4.63) or (4.64). The balance of moment of momentum postulated for
individual constituents gives the symmetry of the partial stress tensor—see (4.70).
Analogical balance for mixture as a whole gives “symmetry” of sum of these tensors,
cf. (4.75). Note that in mixture conceptually new quantities entered these balances—
especially partial quantities and the interaction forces between constituents.

4.4 Balance of Energy and Entropy Inequality in Reacting
Mixture: Mixture Invariance

Because we study only mixtures with a unique temperature of all their constituents,
we need only a balance of energy for themixture as has been explained in Sect.4.1, cf.
Rem. 2. Namely, in this case, the constitutive principles give no restrictions on energy
interactions in energy balances for constituents [11, 15, 46, 50, 53, 65]. This is the
difference with a more general mixture of constituents with different temperatures
[10, 14, 37, 46, 59, 113].

We postulate the balance of energy of a mixture in the inertial frame motivating it
by the energy balance of a single substance in the form (3.97). That iswepostulate that
the change of sum of kinetic energy (given by partial velocity vα) and internal energy
characterized by the primitive specific partial internal energy uα of constituent α in
fixed volume V of the mixture and the change of the total whole energy by the mass

8 In fact such calculation (see, e.g. [79, Sect. 30]) gives results similar to (4.65) or (4.71), only we
must add ẏ∧∫V ραvα dv or ẏ∧∫V ∑n

α=1 ραvα dv to their left-hand sides respectively and again bα

must be substituted by bα + iα ; note that by (3.25) y (fixed in some inertial frame) is in any frame
function of time at most and ẏ is its time derivative like in the end of Sect. 3.3, cf. also (3.96).
9 Often [13, Lect. 5], [27, 28, 37, 40, 46, 79] the mixture with polar constituents (containing partial
torquesMα) which compensate themselves in the mixture is studied. Balance (4.65) then contains∫
v
Mα dv on its right-hand side, balance (4.71) is the same. As the results we obtainMα = Tα −TT

α

(instead of (4.70)) and
∑n

α=1 Mα = 0 (i.e. (4.75) remains valid), cf. Rems. 17, 32 in Chap. 3.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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flux through the fixed surface ∂V is given by the power of all forces (in mixture, cf.
balance (4.61); partial stress tensors (4.53) were used) and by heat exchange caused
by the scalar surface heating q (heat exchanged by unit surface in time unit) and by
the volume heating Q (heat exchanged by unit volume in time unit with external heat
source by radiation):

d

dt

∫
V

n∑
α=1

ρα(uα + (1/2)v2α) dv +
∫

∂V

n∑
α=1

ρα(uα + (1/2)v2α)vα.n da

=
∫

∂V

n∑
α=1

vαTα.n da +
∫
V

n∑
α=1

ραbα.vα dv +
∫

∂V
q da +

∫
V
Q dv (4.76)

Similarly as for the single substance in Sect. 3.4 we postulate that scalars uα, q, Q
are objective (frame indifferent) as well as ρα,bα,Tα .

Using Gauss’ theorem in the left-hand side of balance (4.76) and then (4.19) we
obtain the energy balance of mixture in the inertial frame in the form

d

dt

∫
V

n∑
α=1

ρα(uα + (1/2)v2α) dv +
∫

∂V

n∑
α=1

ρα(uα + (1/2)v2α)vα.n da

=
∫
V

n∑
α=1

ρα
`

(uα + (1/2)v2α) dv +
∫
V

n∑
α=1

rα(uα + (1/2)v2α) dv

=
∫

∂V

n∑
α=1

vαTα.n da +
∫
V

n∑
α=1

ραbα.vα dv −
∫

∂V
q.n da +

∫
V
Q dv (4.77)

where the (field of) heat flux vector q = q(x, t), resulting from the (heat analogue
of) Cauchy’s theorem

q = −q.n (4.78)

was used.10 This is obtained in the same way as (3.100) in Sect. 3.4, Rem. 20 in
Chap. 3, from the (heat analogue of) the Cauchy postulate, i.e. that scalar heating q
depends on the normal n to the chosen surface (cf. (3.99) with the same motivation)

q = q(x, t,n) (4.79)

10 We can transform (4.77) (see, e.g. [13, Lect. 5]) into the form (3.103)(with i = o) if we use the
interpretation fromRem. 1 and define the internal energy as 1

ρ

∑n
α=1 ρα(uα +(1/2)(uw

α )2), the heat

flux as q−∑n
α=1(u

w
α Tα −ρα(uα +(1/2)(uw

α )2)uw
α ), the heat source as Q+∑n

α=1 ραbα.uw
α and use

the following quantities (introduced in Rems. 3, 7, 11): vw as the velocity,
∑n

α=1(Tα −ραuw
α ⊗uw

α )

as the (whole) stress, uw
α as the diffusion velocity and b as the body force.

Our interpretation of the third principle in Sect. 4.1 is then achieved in non-diffusing mixture
with uw

α = o, with the internal energy u naturally given by (4.90), (4.22).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Namely, the balance (4.77)2 with Gauss’ theorem in the right-hand side applied on
a small tetrahedron with volume �v as in Sect. 3.4 is

n∑
α=1

ρα
`

(uα + (1/2)v2α)�v +
n∑

α=1

rα(uα + (1/2)v2α)�v

= q �a + q j �a j + Q �v + (div
n∑

α=1

vαTα)�v +
n∑

α=1

ραbα.vα �v (4.80)

from which (by limitation of tetrahedron volume to zero) we obtain result (4.78):
components of vector q form scalar surface heatings q j (independent of n) in the
axes of the Cartesian system in tetrahedron, see Sect. 3.4.

Moreover, because q and (arbitrary) n are objective (see end of Sect. 3.2), then
from (4.78) follows (similarly as below (3.101)) that the heat flux q in mixture is
objective (frame indifferent) vector; cf. also Rem. 21 in Chap. 3.

By Gauss’ theorem and by the arbitrariness of volume V , we obtain the local form
of (4.77)2 as

n∑
α=1

ρα ùα +
n∑

α=1

ρα
1

2
v̀2α +

n∑
α=1

rαuα +
n∑

α=1

rα
1

2
v2α

= div
n∑

α=1

vαTα +
n∑

α=1

ραbα.vα − divq + Q (4.81)

Subtracting from this the local balance of kinetic energy (obtainable frommomen-
tum balance (4.56) by multiplying with vα and summing through constituents) and
using (4.8), diffusion velocity (4.24) and mixture balances of momentum (4.64) and
that of mass (4.20), we obtain from (4.81) the following local balance of (internal)
energy in the mixture

n∑
α=1

∂ραuα

∂t
+

n∑
α=1

div(ραuαvα) =
n∑

α=1

ρα ùα +
n∑

α=1

rαuα

= − divq + Q +
n∑

α=1

trTαDα −
n−1∑
β=1

kβ.uβ

− (1/2)
n−1∑
β=1

rβu2β (4.82)

where the left-hand side follows from (4.19). Although the deduction of (4.82) was
given in the inertial frame, this form is valid in any frame: indeed, (4.82)2 contains
only objective quantities (material derivative ùα of objective scalar is objective; proof,
with (4.3) here, is analogous to that below (3.57)).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Entropy inequality for the mixture [10, 14, 15, 17, 50, 65] is motivated by such
inequality for single substance (3.108) (with (3.24)). We postulate it using two fol-
lowing primitive concepts (assumed to be objective scalars): the specific partial
entropy sα and the absolute temperature T > 0. Therefore, we confine ourselves
to mixtures with only one temperature, the same for all constituents. For any fixed
volume V in the mixture with fixed surface ∂V , we postulate the entropy inequality
as

d

dt

∫
V

n∑
α=1

ραsα dv +
∫

∂V

n∑
α=1

ραsαvα.n da ≥ −
∫

∂V
(q/T ).n da +

∫
V
(Q/T ) dv

(4.83)
Using Gauss’ theorem, we can obtain the entropy inequality in the local form called
the Clausius-Duhem inequality

σ ≡
n∑

α=1

∂ραsα
∂t

+
n∑

α=1

div(ραsαvα) + div(q/T ) − Q/T ≥ 0 (4.84)

The left-hand side of this inequality is defined as the entropy production σ . Relation
(4.84) (and in fact also (4.83)) is valid in any frame because of the objectivity of
most quantities and because of

n∑
α=1

∂ραsα
∂t

+
n∑

α=1

div(ραsαvα) =
n∑

α=1

ρα s̀α +
n∑

α=1

rαsα (4.85)

which can be obtained quite analogously as Eq. (4.82)1 (with similarly motivated
objectivity of its right-hand side). Therefore also the entropy production σ is an
objective quantity.11

11 So far no deduction of entropy inequality, entropy and absolute temperature in mixtures (“open”
systems) as presented in Chap.1 is known. Moreover, in formulation of entropy inequality in mix-
tures, there are discrepancies among the authors; here we follow the one of Truesdell [10] (cf. also
[14, 15, 56, 59, 60, 79]) which seems to be the most simple; the other proposals see [2–4, 16–18,
24, 25, 51, 52]. As the most natural the theory of Williams [20, 21] can be considered which is
based on a single body [100] but still an additional (even plausible) assumption (superadditivity of
entropy production) must be added. The problem grows in mixtures with different temperatures of
their constituents [10, 14, 37, 46, 59] where inequalities analogous to (4.84) for each constituent
give too stringent results (in admissibility principle below) [22, 40, 43, 49] and therefore such par-
tial inequalities are not considered here. The main source of discrepancies may be seen as follows:
if we use the entropy of mixture s naturally defined by ρs = ∑n

α=1 ραsα (cf. (4.91), (4.22)) and
barycentric vw and diffusion uw

α velocities (see Rems. 3,7) we can write (4.83) as

d

dt

∫
V

ρs dv +
∫

∂V
ρsvw.n da ≥ −

∫
∂V

T−1(q +
n∑

α=1

ραT sαuw
α ).n da +

∫
V
(Q/T ) dv

which, with ψ = ρs, v = vw , has the form (3.108) (with (3.24)) as the interpretation of the third
principle in Rem. 1 demands. But here the heat flux q+∑n

α=1 ραT sαuw
α and the heat source Q are

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Later, another form of entropy inequality will be useful. To this end, we eliminate
divq − Q from balance (4.82) and inequality (4.84) using the specific partial free
energy fα

fα ≡ uα − T sα α = 1, . . . , n (4.86)

and thus we obtain

−Tσ =
n∑

α=1

∂ρα fα
∂t

+
n∑

α=1

vα.grad(ρα fα) +
n∑

α=1

ραsα
∂T

∂t
+

n∑
α=1

ρα fα divvα

+
n∑

α=1

ραsα vα.g + (1/T )q.g −
n∑

α=1

trTαDα +
n−1∑
β=1

kβ.uβ

+ (1/2)
n−1∑
β=1

rβu2β ≤ 0 (4.87)

Here we replace the velocities by diffusion velocities (4.24) and use (4.8) and the
generalization of divergenceless tensor (3.188) in the mixture

◦
Dα≡ Dα − (1/3)trDα 1, tr

◦
Dα= 0 α = 1, . . . , n (4.88)

In this way, we obtain the reduced inequality for mixtures

−Tσ =
n∑

α=1

∂ρα fα
∂t

+
n∑

α=1

ρα fα trDα +
n−1∑
β=1

uβ. grad(ρβ fβ) + vn grad
n∑

α=1

ρα fα

+
n∑

α=1

ραsα
∂T

∂t
+

n−1∑
β=1

ρβsβ uβ.g + vn .g
n∑

α=1

ραsα + (1/T )q.g

−
n∑

α=1

trTα

◦
Dα −(1/3)

n∑
α=1

trTαtrDα +
n−1∑
β=1

kβ.uβ

+ (1/2)
n−1∑
β=1

rβu2β ≤ 0 (4.89)

(Footnote 11 continued)
different from these quantities in the energy balance noted in Rem. 10. In our formulation of (4.84),
we use the weaker interpretation of the third principle from Sect. 4.1 which stresses the specific role
of diffusion in a mixture (in non-diffusing mixture uw

α = o) and we obtain the accord of all these
postulates. Moreover, discrepancies may also be understood in the light of “mixture invariance”
[59] discussed below in this section 4.4. The formulation used in (4.83) (as well as in (4.76), (4.50),
(4.60), (4.65), (4.71), (4.16), (4.14)) for such mass exchanging (open) systems follows naturally
from Reynolds’ theorem (3.24) for (fictive) surface ∂V , but for a real boundary exchanging the
mass (especially with different velocities of different constituents and together with heat exchange)
this is not as clear as it seems, cf. Rems. 14, 23 in Chaps. 2, 3 and the end of Sect. 3.1.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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which we use in the following discussions of a (chemically) reacting fluid mixture
with (mechanically) non-polar constituents with unique temperature, see Sect. 4.5.

Now, we write down the following useful definitions concerning the mixture (see
(4.22)): the specific total (i.e. of the mixture) internal energy u, entropy s and free
energy f are defined by

u ≡
n∑

α=1

wαuα (4.90)

s ≡
n∑

α=1

wαsα (4.91)

f ≡
n∑

α=1

wα fα (4.92)

where (4.86) has been used; the following equation is then valid (cf. (3.111))

f = u − T s (4.93)

We also note that mixture properties (4.90)–(4.92) are objective (frame indifferent).
For later applications, it is useful to define the total stress T by

T ≡
n∑

α=1

Tα (4.94)

In the following applications in fact only the local balances (4.18), (4.20), (4.58),
(4.63), (4.70), (4.75), (4.82), (4.84), (4.85) are useful. They are valid, as has been
proved in Sects. 4.2, 4.3 and 4.4, in any (even non-inertial) frame. But these balance
equations have another interesting property, which we shall call the mixture invari-
ance [56, 59, 65, 79, 114], (in older references called also the “form invariance”);
its possibility is noted in [95, 112].

To discuss this property, we first rewrite local balances and rearrange balances of
energy and entropy (inequality) into more appropriate forms:

ρ̀α + ραtrDα = rα α = 1, . . . , n (4.95)

n∑
α=1

rα = 0 (4.96)

ρα v̀α = divTα + ραbα + kα α = 1, . . . , n (4.97)

(as follows from (4.56), (4.58), in the non-inertial frame we change here bα for
bα + iα),

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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n∑
α=1

(kα + rαvα) = o (4.98)

Tα = TT
α α = 1, . . . , n (4.99)

n∑
α=1

Tα =
n∑

α=1

TT
α α = 1, . . . , n (4.100)

n∑
α=1

ρα ùα +
n∑

α=1

rαuα = −divq + Q +
n∑

α=1

trTαDα −
n∑

α=1

kα.vα − (1/2)
n∑

α=1

rαv2α

(4.101)

σ =
n∑

α=1

ρα s̀α +
n∑

α=1

rαsα + div(q/T ) − Q/T ≥ 0 (4.102)

(for (4.101) we use (4.24), (4.98), (4.96) in (4.82) and (4.102) follows from (4.84),
(4.85)).

To discuss the mixture invariance, consider first a process described by the quan-
tities occurring in the balance equations (4.95)–(4.102) and let

εα, ηα α = 1, . . . , n (4.103)

be two sets of fields defined in the mixture, the εα having the physical dimension of
energy, and the ηα having the physical dimension of entropy, such that identically

n∑
α=1

ραεα = 0 (4.104)

n∑
α=1

ραηα = 0 (4.105)

Define fields ϕα by

ϕα ≡ εα − Tηα α = 1, . . . , n (4.106)

so that
n∑

α=1

ραϕα = 0 (4.107)
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Nowwe replace uα, sα,Tα,kα,q in (4.95)–(4.102) by the following primed quan-
tities (α = 1, . . . , n)

u′
α = uα + εα (4.108)

s′
α = sα + ηα (4.109)

T′
α = Tα + ραϕα1 (4.110)

k′
α = kα − grad(ραϕα) (4.111)

q′ = q − T
n∑

α=1

ραηαvα (4.112)

while the remaining quantities in (4.95)–(4.102) are left unchanged, i.e.

ρ′
α = ρα, v′

α = vα, r ′
α = rα, b′

α = bα, ρ′ = ρ

w′
α = wα, D′

α = Dα, Q′ = Q, T ′ = T, σ ′ = σ, (4.113)

We call the quantities with trivial transformations such as (4.113) themixture invari-
ant quantities. In what follows we assume that the definitions themselves are mixture
invariant, e.g.

f ′
α = fα + ϕα (4.114)

f ′ =
n∑

α=1

w′
α f ′

α (4.115)

(cf. (4.108), (4.109), (4.92), (4.86)), similarly u′, s′, v̀′
α = v̀α, ρ̀′

α = ρ̀α, ù′
α =

ùα + ὲα, (trDα)′ = trDα etc. Some of them are mixture invariant, cf. (4.116).
The mixture invariance may be described as follows [56, 59, 65, 79, 114]:
Consider a process in our mixture model described by the unprimed quantities in

(4.108)–(4.113) that satisfy (4.95)–(4.102) and define the new primed quantities by
(4.108)–(4.113). Then the primed quantities satisfy (4.95)–(4.102).

This means the change from the original, unprimed quantities to the primed quan-
tities does not change the form of local balances (4.95)–(4.102) for arbitrary 2(n−1)
independent fields (4.103).

Proof of mixture invariance follows by a direct substitution of (4.108)–(4.113)
into (4.95)–(4.102). This proof is trivial for (4.95), (4.96) because of the mixture
invariance of all quantities, for (4.99), (4.100) it is simple, (4.97) in primed quantities
it follows by (4.110), (4.111) as ρα v̀α = ρ′

α v̀
′
α = div(T′

α − ραϕα1) + ρ′
αb

′
α + k′

α +
grad(ραϕα1) and (4.98) we obtain by (4.107). To prove the remaining relationships
(4.101), (4.102) in primed quantities we use
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n∑
α=1

ραὲα =
n∑

α=1

\α
ραεα −

n∑
α=1

ρ̀αεα =
n∑

α=1

vα.grad(ραεα) −
n∑

α=1

ρ̀αεα

(which follow from (4.3), (4.104), (4.86)) and their analogues for ηα , namely using
transformations (4.108)–(4.115) and (4.8), (4.106), (4.18). Q.E.D.

The possibility of changing systematically the values of certain quantities without
breaking the validity of the balance equations indicates a certain degree of arbitrari-
ness of the quantities in question. Using the mixture invariance property in the next
section on the constitutive level, i.e. when the additional quantities (4.103) are given
by constitutive equations similar to those for themain quantities, the newmixturewith
the new constitutive functions (4.108)–(4.112) leads to the same evolution equations
for temperature, densities and motions of the constituents provided the same external
fields of force and radiation are applied. Hence, the new mixture is indistinguishable
from the original one. Therefore, the physical meaning of the mixture invariance
consists in the fact that only the mixture invariant quantities have direct physical
significance, i.e. they are expected to be measurable. Among them are the exter-
nal fields of force and radiation, kinematical quantities, densities, chemical reaction
rates, temperatures, etc. cf. (4.113), and total densities, total thermodynamic quanti-
ties and total stress (cf. (4.21), (4.92), (4.94)) as may be seen from (4.115), (4.114),
(4.107), (4.110), (4.113)

f ′ =
n∑

α=1

wα f ′
α =

n∑
α=1

wα( fα + ϕα) = f, similarly u′ = u, s′ = s (4.116)

T′ = T (4.117)

On the other side, partial quantities (4.108), (4.109), (4.110), (4.111), (4.112) are
not mixture invariant in accord with their expected non-measurability. Note, that the
heat flux (4.112), which may be also written as (see (4.105), (4.24))

q′ = q − T
n∑

α=1

ραηαuα (4.118)

is invariant in a non-diffusingmixture (when all constituents have the same velocities,
the heat flux is measurable as in single material, cf. Rems. 14, 23, 11 in Chaps. 2,
3 and 4, respectively). This also reflects different choices of entropy flux in many
classical and rational mixture theories, cf. [3, 14, 17, 18].

The property of mixture invariance will be used in the application of our model,
see Sect. 4.6, namely, it gives the possibility of explicit calculations of partial ther-
modynamic properties similarly as in classical thermodynamics of solutions. Other
applications (e.g. using mixture invariance as a constitutive principle permits to sim-
plify constitutive equations for partial quantities) are discussed in [59, 60].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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Summary. Balancing the energy introduced additional partial property—the
partial internal energy. Because the different constituents do not have different tem-
peratures in our model of mixture it is sufficient to write down the balance of energy
only for the mixture as a whole. In the local form, this is expressed by (4.81); cor-
responding balance of internal energy is given by (4.82). Similarly it is sufficient
to postulate the entropy inequality for the mixture as a whole. In the local form the
Clausius-Duhem inequality is given by (4.84) and in the reduced form by (4.89).
The (specific) partial quantities represent an essential instrument of rational ther-
modynamics approach to mixtures. Partial free energy was introduced by (4.86);
corresponding properties of mixture can be obtained as indicated in (4.90)–(4.94). In
our model these quantities are linked up with an interesting property of the mixture
invariance, which is essential for the possibility of experimental determination of par-
tial quantities. The mixture invariance simply means that only the mixture invariant
quantities are measurable. Mathematically, it is expressed by the invariance of (local)
balances to transformations of mixture invariant quantities; these transformations are
indicated in (4.108)–(4.113).

4.5 Chemically Reacting Mixture of Fluids with Linear
Transport Properties

Westart this section by a brief explanation of the transfer of principles of rational ther-
modynamics, which have been explained for single component systems in Sects. 3.5
and 3.6, to mixtures. Similarly as in the case of the single fluid in Sect. 3.5, balances
of Sects. 4.2–4.4 are not sufficient to solve any concrete problem: we must add the
constitutive equations—further relations among fields in balances which describe
the material model to be studied.

In models of fluid mixtures, cf. [16, 17, 27, 28, 56, 65], the following fields are
called a thermodynamic process:
Thermokinetic process

χ
γ
, ργ , T (4.119)

Responses
rβ, uα, sα, q, kβ, Tα(sym.) (4.120)

External fields
Q, bα, iα (4.121)

with α, γ = 1, . . . , n;β = 1, . . . , n − 1, which fulfil (often through the fields
deduced in Sects. 4.1, 4.2, like (4.2), (4.24)) the local form ofmass (4.17),momentum
(4.57) and energy (4.82) balances; the remaining balances (4.20), (4.63), (4.70) (and
(4.75) trivially) are satisfied defining rn,kn and three components of Tα for each
constituent, respectively.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Because fields (4.121) are controlled from the outside (of the mixture), constitu-
tive equations are relations between (4.119), (4.120): according to the constitutive
principle of determinism their independent variables form the thermokinetic process
(4.119) giving their values as responses (4.120). For simplicity, we restrict to recent
past and nearest surroundings of the considered response by constitutive principles
of differential memory and local action. Constitutive equations for responses (4.120)
are then functions of the following values of thermokinetic process (4.119) and their
(time and space) derivatives taken in a considered instant and place of response (in
referential description introduced in Sect. 4.1 similarly as in Sect. 3.1, i.e. as (4.1),
ργ = ργ (Xγ , t), T = T (Xγ , t)), namely

x, vγ ,Fγ ,GradFγ , F̀γ , ργ ,Gradργ , T,GradT, t γ = 1, . . . , n (4.122)

(memory expressed through ρ̀γ is superfluous, namely it may expressed through
(4.122) as well, see (4.18), (4.8) and response for rβ ); temperature memory is not
studied at all (because local equilibriumwould not be achieved, cf. Sects. 2.2 and 3.5)
and dependences onXγ expressing, e.g. “heterogeneous mixtures”, see Sect. 4.1, are
not considered).

Using (4.6), (4.4) and the following definitions of space gradients of densities and
temperature

hγ ≡ gradργ γ = 1, . . . , n (4.123)

g ≡ gradT (4.124)

the independent variables (4.122) may be chosen as

x, vγ ,Fγ ,GradFγ ,Lγ , ργ ,hγ , T, g, t (4.125)

and used, by the constitutive principle of equipresence, in all constitutive equations
for responses (4.120).

By the constitutive principle of symmetry, we confine in this treatise to fluids
mixtures only in which the independent variables of constitutive equations for (all)
responses (4.120) reduce to12

x, t, ργ ,hγ , vγ ,Lγ , T, g γ = 1, . . . , n (4.126)

Now we restrict such constitutive equations—responses (4.120) as functions
of (4.126)—by the principle of objectivity (or (material) frame indifference), cf.
Sect. 3.5: constitutive equations cannot depend explicitly on (non-objective) x and t

12 This may be looked upon as a definition of fluids mixture, but it may be deduced by the principle
of symmetry defining the (non-simple) fluid (constituent) [79, 115–117] as the material with the
greatest possible symmetry. If the fluid constituent γ is non-reacting, dependence on Fγ ,GradFγ is
performed through ργ ,hγ (bymass balance like (3.65) similarly as for single substance; cf. Sect. 3.5
and Rem. 30 in Chap. 3); if fluid constituent α is a reacting one, then dependence on Fα,GradFα

is completely eliminated [60, 115, 116, 118]. Then (4.126) follows from (4.125).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(cf. below (3.120)) and the dependence on the non-objective quantities Lγ and vγ

may be achieved through the objective quantities Dγ , diffusion velocities (4.24) and
relative spins �δ (cf. difference with single substance in Sect. 3.5)

�δ ≡ Wδ − Wn δ = 1, . . . , n − 1 (4.127)

Therefore, the constitutive equations of a mixture of reacting fluids are functions
F = r̂β, ûα, ŝα, q̂, k̂β, T̂α as follows (α, γ = 1, . . . , n;β, δ = 1, . . . , n − 1)

{rβ, uα, sα,q,kβ,Tα(sym.)} = F(ργ ,hγ ,uδ,Dγ ,�δ, T, g) (4.128)

Moreover it follows from the objectivity principle that functions (4.128) are isotropic,
i.e.

{rβ, uα, sα,Qq,Qkβ,QTαQT } = F(ργ ,Qhγ ,Quδ,QDγQT ,Q�δQ
T , T,Qg)

(4.129)
are valid for any orthogonal tensor Q (cf. Rem. 8 in Chap. 3 and discussion under
(3.122)).

Note, that, as was shown by Müller [16–18], the presence of density gradients in
a thermokinetic process is important for obtaining the classical thermodynamics of
mixtures. Models without hγ , called simple fluid mixtures give vast simplifications
of thermodynamics, e.g. partial free energies are independent of densities of other
constituents (cf. Sect. 4.8), a simple gas mixture is reduced to the mixture of ideal
gases only [61]. These and other special cases will be discussed in Sect. 4.8.

In this book, we confine ourselves only to the special case of fluidsmixture (4.128)
which is linear in vector and tensor variables.13 We denote it as the chemically react-
ingmixture of fluids with linear transport properties or simply the linear fluidmixture
[56, 57, 64, 65]. Then (seeAppendixA.2) the scalar, vector and tensor isotropic func-
tions (4.129) linear in vectors and tensors (symmetrical or skew-symmetrical) have
the forms:

rβ = r (0)
β +

n∑
γ=1

r (γ )
β trDγ β = 1, . . . , n − 1 (4.130)

(for non-reacting constituents coefficients r (0)
β , r (γ )

β are identically zero),

uα = u(0)
α +

n∑
γ=1

u(γ )
α trDγ α = 1, . . . , n (4.131)

13 For more complicated non-linear mixtures, even those non-fluid, see, e.g. [18, 60, 71, 72],
the thermodynamic relations are similar (local equilibrium is valid) but constitutive equations for
chemical reaction rates are not simplified as in the linear model here, cf. Sect. 4.9.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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sα = s(0)
α +

n∑
γ=1

s(γ )
α trDγ α = 1, . . . , n (4.132)

fα = f (0)
α +

n∑
γ=1

f (γ )
α trDγ α = 1, . . . , n (4.133)

Constitutive equations (4.133) follow from definitions

f (0)
α ≡ u(0)

α − T s(0)
α (4.134)

f (γ )
α ≡ u(γ )

α − T s(γ )
α (4.135)

and (4.131), (4.132), (4.86).
The remaining constitutive equations are (with the use of (4.88))

q = −k g −
n−1∑
δ=1

λδ uδ +
n∑

γ=1

χγ hγ (4.136)

kβ = −ξβ g −
n−1∑
δ=1

νβδ uδ +
n∑

γ=1

ωβγ hγ β = 1, . . . , n − 1 (4.137)

Tα = −pα 1 +
n∑

γ=1

ζαγ (trDγ ) 1 +
n∑

γ=1

2ηαγ

◦
Dγ α = 1, . . . , n (4.138)

All coefficients in these constitutive equations r (0)
β , r (γ )

β , u(0)
α , u(γ )

α , s(0)
α , s(γ )

α ,

f (0)
α , f (γ )

α , k, λδ , χγ , ξβ , νβδ , ωβγ , pα , ζαγ , ηαγ are functions of the scalars

T, ρ1, ρ2, . . . , ρn only (e.g. f
(0)
α = f̂ (0)

α (T, ργ )). We note that linear dependence on
skew-symmetric tensors �δ does not exist because Tα are symmetric (this is not the
case in mechanically polar constituents [27, 28]; cf. Rem. 9).

Of course this important reduction (known also as the “Curie principle” roughly
asserting that response of given tensor rank (scalar, vector and tensor) depends on
variables of the same tensor rank [2–4, 119, 120]) is valid only in this linear case
[12, 13]. The non-linear case is much more complicated [79, 121–123].

It remains to apply the principle of admissibility to our material model of linear
fluidsmixture (cf. Sect. 3.6). According to the principle of admissibility [124] also the
entropy inequality (4.84) must be fulfilled in an arbitrary admissible thermodynamic
process. Such process is defined (cf. (3.145) and Sect. 3.6) by fields (4.120), (4.121),
by thermokinetic process (4.119) (where instead of motions χ

γ
it is sufficient to use

velocities vγ as may be clear from the choice of independent variables in consti-
tutive equations (4.128) for our fluids mixture) and fields of rn,kn and calculable

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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three components of each symmetrical Tα , which fulfil all balances (of mass (4.17),
(4.20), momentum (4.57), (4.63) and its moment (4.70) and energy (4.82)) in which
responses (4.120) are given by constitutive equations of the studied model, i.e. in our
case given by (4.130)–(4.133), (4.136)–(4.138).

The principle of admissibility demands also that reduced inequality (4.89)must be
fulfilled in any admissible thermodynamic process (because (4.89) was constructed
from all these balances, mainly those of energy and entropy inequality). Then, and
this is the main idea of Coleman and Noll [124], inserting constitutive equations of
the studied model into (4.89), the identical fulfilling of inequality obtained in this
way at any admissible thermodynamic process permits to obtain further properties
of the constitutive model (for this, it suffices to choose the thermodynamic processes
appropriately).

We perform this procedure in detail for our linear fluids mixture. First, we insert
the constitutive equations (4.130)–(4.133), (4.136)–(4.138) into reduced inequality
(4.89).

Quantities ρα f (0)
α or ρα f (γ )

α in (see (4.133)) ρα fα = ρα f (0)
α +∑n

γ=1 ρα f (γ )
α trDγ

are functions of T and ργ only. Their derivatives, written as ∂ρα f̂ (0)
α /

∂T, ∂ρα f̂ (γ )
α /∂T , ∂ρα f̂ (0)

α /∂ργ , ∂ρα f̂ (γ )
α /∂ρε (α, γ, ε = 1, . . . , n), are used for cal-

culation of the first two members on the right-hand side of (4.89). We eliminate
∂ρα/∂t using the mass balances (4.17), (4.8), (4.123) and constitutive equations
(4.130) and we deduce the part of the result (4.139) containing these derivatives. A
further part is obtained using constitutive equations (4.130)–(4.133), (4.136)–(4.138)
in the remaining part of (4.89).

After laborious rearrangements, we obtain inequality (� is the dissipation,
cf. (2.11))

� ≡ Tσ = −
⎡
⎣n−1∑

β=1

(

n∑
α=1

∂ρα f̂ (0)
α

∂ρβ
−

n∑
α=1

∂ρα f̂ (0)
α

∂ρn
)r (0)

β

⎤
⎦−

{ n∑
α=1

∂ρα f̂ (0)
α

∂T
+

n∑
α=1

ραs
(0)
α

}
∂T

∂t

+
n∑

γ=1

⎡
⎣ργ

n∑
α=1

∂ρα f̂ (0)
α

∂ργ
− ργ f (0)

γ − pγ −
n−1∑
β=1

(

n∑
α=1

∂ρα f̂ (γ )
α

∂ρβ
−

n∑
α=1

∂ρα f̂ (γ )
α

∂ρn
)r (0)

β

−
n−1∑
β=1

(

n∑
α=1

∂ρα f̂ (0)
α

∂ρβ
−

n∑
α=1

∂ρα f̂ (0)
α

∂ρn
)r (γ )

β

⎤
⎦ trDγ −

n∑
γ=1

{ n∑
α=1

ρα f (γ )
α

}
∂trDγ

∂t

+
n∑

γ=1

n−1∑
β=1

⎧⎨
⎩

n∑
α=1

∂ρα f̂ (0)
α

∂ργ
δβγ −

∂ρβ f̂ (0)
β

∂ργ
− ωβγ

⎫⎬
⎭uβ .hγ −

n∑
α=1

{χα/T }hα.g

−
{ n∑

α=1

∂ρα f̂ (0)
α

∂T
+

n∑
α=1

ραs
(0)
α

}
vn .g −

n∑
γ=1

{ n∑
α=1

∂ρα f̂ (γ )
α

∂T
+

n∑
α=1

ραs
(γ )
α

}
∂T

∂t
trDγ

−
n∑

γ=1

n−1∑
β=1

{
ρβ f (γ )

β

}
uβ .grad trDγ −

n∑
γ=1

{ n∑
α=1

ρα f (γ )
α

}
vn .grad trDγ + (k/T )g2

+
n−1∑
β=1

n−1∑
δ=1

(νβδ − (1/2)r (0)
β δβδ)uδ .uβ +

n−1∑
β=1

⎛
⎝λβ

T
+ ξβ −

∂ρβ f̂ (0)
β

∂T
− ρβ s

(0)
β

⎞
⎠ uβ .g

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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+
n∑

ε=1

n∑
γ=1

⎡
⎣ρε

n∑
α=1

∂ρα f̂ (γ )
α

∂ρε
−

n−1∑
β=1

( n∑
α=1

∂ρα f̂ (γ )
α

∂ρβ
−

n∑
α=1

∂ρα f̂ (γ )
α

∂ρn

)
r (ε)
β

− ρε f (γ )
ε + ζεγ

]
trDε trDγ

+
n∑

α=1

n∑
γ=1

(2ηαγ )tr(
◦
Dα

◦
Dγ ) +

n∑
ε=1

n∑
γ=1

n−1∑
β=1

⎧⎨
⎩

n∑
α=1

∂ρα f̂ (γ )
α

∂ρβ
δβε −

∂ρβ f̂ (γ )
β

∂ρε

⎫⎬
⎭ trDγ (hε .uβ)

−
n−1∑
β=1

n∑
γ=1

⎧⎨
⎩

∂ρβ f̂ (γ )
β

∂T
+ ρβ s

(γ )
β

⎫⎬
⎭ trDγ (uβ .g) −

n∑
γ=1

n−1∑
β=1

{ 1
2
r (γ )
β }u2β trDγ

−
n∑

γ=1

{ n∑
α=1

∂ρα f̂ (γ )
α

∂T
+

n∑
α=1

ραs
(γ )
α

}
trDγ (vn .g) ≥ 0 (4.139)

where δβγ is Kronecker delta (with δβn = 0 for all β = 1, . . . , n − 1). According to
the admissibility principle, this inequality (4.139) (obtained from entropy inequality
(4.84) or reduced inequality (4.89) and from constitutive equations (4.130)–(4.133)
and (4.136)–(4.138)) must be fulfilled at any place in mixture x and instant t with
arbitrary values of the following mutually independent quantities

T, ργ , trDγ ,hγ ,uβ, g,
◦
Dγ , γ = 1, . . . , n;β = 1, . . . , n − 1 (4.140)

∂T

∂t
,
∂trDγ

∂t
, vn, grad trDγ γ = 1, . . . , n (4.141)

Namely, such values (4.140), (4.141) generate some admissible thermodynamic
process as follows (cf. analogical procedure for fluid model in Sect. 3.6):

Temperature and velocities fields of the thermokinetic process in place y and time
τ are constructed by bounded expansion about chosen place‘ x and instant t , i.e. as
(cf. (3.152), (3.153))

T (y, τ ) = T (x, t) + (g(x, t)).(y − x) + (
∂T

∂t
(x, t))(τ − t) (4.142)

viγ (y, τ ) = viγ (x, t) + (Li j
γ (x, t))(y j − x j ) +

(
∂Li j

γ

∂t
(x, t)

)
(y j − x j )(τ − t)

+ 1

2

(
∂Li j

γ

∂xk
(x, t)

)
(y j − x j )(yk − xk) (4.143)

where for values taken at x, t we choose vγ = uγ + vn , Lγ = (1/3)trDγ 1+ ◦
Dγ ,

∂Lγ

∂t = (1/3)( ∂trDγ

∂t )1 and ∂Li j
γ

∂xk
= (1/3)( ∂trDγ

∂xi
)δ jk . This is motivated by (4.24), (4.6),

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.5 Chemically Reacting Mixture of Fluids with Linear Transport Properties 177

(4.88) and choosingWγ = 0 ((4.139) is independent ofWγ ). These choices express
possible (4.142), (4.143) through independent quantities (4.140), (4.141).

The density fields of the thermokinetic process are given by solutions of differen-
tial equations (4.17) (assuming their existence; we follow [14, 15, 125]) using fields
of velocities (4.143) and constitutive equations (4.130) (rn follows from (4.20)) with
the following initial conditions for density fields at chosen instant t

ργ (y, t) = ργ (x, t) + (hγ (x, t)).(y − x) (4.144)

Therefore, mass balances (4.17), (4.20) are satisfied by such density fields.
It may be seen from this construction that any mutually independent choice of

quantities (4.140), (4.141) gives some thermokinetic process (4.119) fulfilling the
mass balances (4.17), (4.20). Using them in constitutive equations (4.130)–(4.133),
(4.136)–(4.138), we obtain responses (4.120) and ultimately we fulfil the balances
(4.58) and (4.82) by appropriate (4.121) (because these may be controlled from the
outside the mixture) and balances (4.63) by appropriate kn (there is only n − 1
constitutive equations (4.137)); fulfilling (4.70) (and therefore trivially (4.75)) is
achieved by symmetric responses (4.138).

In this way, the admissible thermodynamic process may be obtained for any
(mutually independent) values (4.140), (4.141) (in any chosen place x and instant t)
and therefore it follows from the admissibility principle that (4.139) must be valid
at any such values of (4.140), (4.141).14

The same results as (4.139) and its validity at any independent values of (4.140),
(4.141)might be obtained directly by themethod ofLagrangemultipliers (seeAppen-
dix. A.5 with example of simple thermoelastic fluid from Sect. 3.6).

From the latter formulation of the admissibility principle, we obtain the necessary
and sufficient validity of the following results concerning constitutive equations
(identically for all x and t in mixture and for all values of fields ργ , T in it):

n∑
α=1

∂ρα f̂ (0)
α

∂T
+

n∑
α=1

ραs
(0)
α = 0 (4.145)

f (γ )
α = 0 (4.146)

s(γ )
α = 0 (4.147)

r (γ )
β = 0 (4.148)

χγ = 0 (4.149)

14 The weak point of argument above is that the arbitrary bα influencing only the constituent α

is difficult to find (e.g. Coriolis force in iα (4.12) is specific on constituent α through vα but this
cannot be maintained arbitrarily [126]).
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n∑
α=1

∂ρα f̂ (0)
α

∂ργ

δβγ − ∂ρβ f̂ (0)
β

∂ργ

= ωβγ (4.150)

where α, γ = 1, . . . , n; β = 1, . . . , n − 1 and

Tσ = −
n−1∑
β=1

(
n∑

α=1

∂ρα f̂ (0)
α

∂ρβ

−
n∑

α=1

∂ρα f̂ (0)
α

∂ρn

)
r (0)
β

+
n∑

γ=1

(ργ

n∑
α=1

∂ρα f̂ (0)
α

∂ργ

− ργ f (0)
γ − pγ )trDγ +

n∑
α=1

n∑
γ=1

ζαγ trDαtrDγ

+
n∑

α=1

n∑
γ=1

(2ηαγ )tr(
◦
Dα

◦
Dγ ) +

n−1∑
β=1

n−1∑
δ=1

(νβδ − (1/2)r (0)
β δβδ)uδ.uβ + (k/T )g2

+
n−1∑
β=1

(
λβ

T
+ ξβ − ∂ρβ f̂ (0)

β

∂T
− ρβs

(0)
β

)
uβ.g ≥ 0 (4.151)

Proof the sufficiency follows immediately and the necessity is proved, usingmainly
Lemma A.5.1 from Appendix A.5, as follows. For any fixed choice of ργ , T (such
fields of x, t in (4.144), (4.142) may be chosen arbitrarily; repeating the follow-
ing procedures with other such choices and at any x, t we obtain identical validity
of results noted above (4.145)) and zero choice of other quantities of (4.140) the
inequality (4.139) depends linearly on ∂T

∂t or ∂trDγ

∂t (these numbers may be indepen-
dently arbitrary reals). Therefore, the coefficients at these quantities in (4.139) must
be identically zero to fulfil inequality (4.139) at all values of these quantities (coef-
ficients which, as the result will be zero, are denoted in (4.139) by curly brackets
and they will be discarded from it sequentially during the proof). From this (4.145)
follows and

n∑
α=1

ρα f (γ )
α = 0 γ = 1, . . . , n (4.152)

Then, if we use (4.145) and (4.152), the inequality (4.139) depends linearly on grad
trDγ ; because uβ is arbitrary we have

f (γ )
β = 0 β = 1, . . . , n − 1 γ = 1, . . . , n (4.153)

which in combination with (4.152) gives (4.146) (identical validity of these results
noted above (4.145) which is obtained by repeating procedures with other values
ργ , T , give zero values of all derivatives of f̂ (γ )

α and therefore to eliminating them
from (4.139) in what follows). Further (4.139) is linear in hα; choosing g �= o and
uβ = o we obtain (4.149) and then, by choice uβ �= o, we have (4.150). In (4.139)
there is another linear member in ∂T

∂t ; choosing trDγ �= 0 and using (4.146) we have



4.5 Chemically Reacting Mixture of Fluids with Linear Transport Properties 179

n∑
α=1

ραs
(γ )
α = 0 γ = 1, . . . , n (4.154)

With (4.154), (4.145), (4.146) and choose g = o the last member in remaining
(4.139) is of the third order, i.e. it is necessary for (4.148) to be valid because oth-
erwise, when uβ and trDγ are sufficiently great, this member determines the sign
of expression (4.139); see Lemma A.5.3 of Appendix A.5. By (4.154), (4.146) the
remaining third order member in (4.139) (with non-zero g) must be zero from the
analogous reason and we obtain s(γ )

β = 0 which with (4.154) gives (4.147). Finally
using the results (4.145)–(4.150), we obtain inequality (4.151) from (4.139) and the
proof of results (4.145)–(4.151) is finished. Q.E.D.

By (4.135), (4.146), (4.147), there is also

u(γ )
α = 0 α, γ = 1, . . . , n (4.155)

and therefore constitutive equations for scalar quantities (4.130)–(4.133) are (here
and in the following we omit the index (0))

rα = r̂α(T, ρ1, ρ2, . . . , ρn) = r̂α(T, ργ ) α, γ = 1, . . . , n (4.156)

For α = n this follows from those previous by balance (4.20). The last expression
in (4.156) is the usual shortened form (used, e.g. in (4.128) and in the following).
Similarly,

uα = ûα(T, ργ ) α, γ = 1, . . . , n (4.157)

sα = ŝα(T, ργ ) α, γ = 1, . . . , n (4.158)

fα = f̂α(T, ργ ) α, γ = 1, . . . , n (4.159)

Using definitions of total specific quantities (of mixture) (4.90), (4.91), (4.92) it then
follows (cf. (4.21), (4.22)) similarly

u = û(T, ργ ), s = ŝ(T, ργ ), f = f̂ (T, ργ ) (4.160)

Now we define the specific chemical potential gα by15

∂ρ f̂

∂ρα

≡ gα = ĝα(T, ργ ) α, γ = 1, . . . , n (4.161)

15 In Sect. 4.6 we shall see that this is the usual definition, cf. (4.194). Its density has a dimen-
sion of force; in some theories, using partial Eshelby tensors [88] as generalization of (4.161)
(cf. Rem. 38 in Chap. 3), the “configurational” or “material” forces are introduced instead
[127, 128].

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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and define (recall above (4.156))

�pα ≡ ρα(gα − fα) − pα α = 1, . . . , n (4.162)

ϑβ ≡ λβ

T
+ ξβ − ρβ

∂ f̂β
∂T

− ρβsβ β = 1, . . . , n − 1 (4.163)

Then we can write the results (4.145), (4.150) as

∂ f̂

∂T
+ s = 0 (4.164)

gγ δβγ − ∂ρβ f̂β
∂ργ

= ωβγ β = 1, . . . , n − 1; γ = 1, . . . , n (4.165)

and instead of (4.136), using (4.149), we have the constitutive equation for the heat
flux

q = −k g −
n−1∑
β=1

λβ uβ (4.166)

Constitutive equations (4.137), (4.138) are not changed. The remaining inequality
(4.151) may be written as

Tσ = −
n−1∑
β=1

(gβ − gn)rβ +
n∑

γ=1

�pγ trDγ +
n∑

α=1

n∑
γ=1

ζαγ trDαtrDγ

+
n∑

α=1

n∑
γ=1

2ηαγ tr(
◦
Dα

◦
Dγ ) +

n−1∑
β=1

n−1∑
δ=1

(νβδ − (1/2)rβδβδ)uδ.uβ + (k/T )g2

+
n−1∑
β=1

ϑβ uβ.g ≥ 0 (4.167)

This inequality may be written as the sum of two non-negative expressions

Tσ = �1 + �2 ≥ 0 (4.168)

�1 ≡ �0 +
n∑

α=1

�pα trDα +
n∑

α=1

n∑
γ=1

ζαγ trDαtrDγ ≥ 0 (4.169)

�2 ≡
n∑

α=1

n∑
γ=1

(2ηαγ )tr(
◦
Dα

◦
Dγ ) +

n−1∑
β=1

n−1∑
δ=1

(νβδ − (1/2)rβδβδ)uδ.uβ + (k/T )g.g
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+
n−1∑
β=1

ϑβ uβ.g ≥ 0 (4.170)

where�0 is the dissipation (entropy production in fact) caused by chemical reactions

�0 ≡ −
n−1∑
β=1

(gβ − gn)rβ ≥ 0 (4.171)

Inequalities (4.169) and (4.171) follow from (4.168) due to independence of quan-
tities (4.140); note that �pα is generally non-zero, see below and cf. discussion of
(A.98) in Appendix A.5. To prove (4.170) we fix T and all ργ , set trDγ = 0, then
(4.168) has the form: non-negative constant + real quadratic form ≥0. Transform-
ing this quadratic form into canonical form we can see that all its coefficients must
be non-negative (otherwise ≥0 is not fulfilled for some values of its variables) and
therefore this form must be positive semidefinite.

Now we define the molar chemical potential μα

μα ≡ gαMα α = 1, . . . , n (4.172)

(where Mα is the molar mass (4.25)) and the vector of chemical potentials �μ in the
mixture space U with Cartesian basis �eα

�μ ≡
n∑

α=1

μα �eα (4.173)

This vector may be uniquely decomposed in the orthogonal subspaces V and W
(see Sect. 4.2)

�μ = − �A + �B, �μ ∈ U , �A ∈ V, �B ∈ W, V⊥W, V ⊕ W = U (4.174)

The vector �A is called a vector of chemical affinities

�A =
n−h∑
p=1

Ap �gp (4.175)

because, using (A.85), (4.40), (4.173)–(4.175), its components are the chemical
affinities Ap of the p-th chemical reaction defined as [3, 4, 108, 129–131]

Ap = −
n∑

α=1

μα P pα p = 1, . . . , n − h (4.176)
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with the usual convention about stoichiometric coefficients (Sect. 4.2); see also Rem.
15 in Chap. 2 and (2.94) (because of simple reaction (2.73) the mass units were used
here) where the traditional definition of chemical affinity is discussed.

Decomposition (4.174)1 may be expressed in component form as

μα = −
n−h∑
p=1

n−h∑
q=1

Apgpq P
qα +

h∑
σ=1

Bσ Sσα α = 1, . . . , n (4.177)

which follow from μα = �μ.�eα inserting (4.174) and using (4.175), (A.86), (4.40),
expression of �B in the subspace W , namely �B = ∑h

σ=1 B
σ �fσ , and (4.34). Cf. also

stoichiometry in Sect. 4.2 and Appendix A.4.
The production of entropy by chemical reactions (4.171) may be written with

(4.20), (4.172), (4.173), (4.26), (4.33), (4.174), (4.36) using rates Jp (4.43) and
affinities Ap (4.175) of n − h independent chemical reactions as

�0 = −
n∑

α=1

gαrα = −�μ. �J = �A. �J =
n−h∑
p=1

Jp A
p ≥ 0 (4.178)

It should be stressed that because the vectors �J and �B lie in orthogonal subspaces,
cf. (4.41), (4.174), the product �B. �J vanishes and �B does not appear in (4.178).
Consequently, theories of irreversible thermodynamics which try to find fluxes and
forces from the production of entropy overlook the dependence of reaction rate (flux)
on force �B, see also (4.179) below.

Note, that reaction rates Jp (see (4.45), (4.26)), similarly as rates rα (4.156),
(4.20), are functions (beside T ) of ργ and by the usual assumption of invertibility
(see the third regularity condition at the end of Sect. 4.6) they may be expressed as
functions J̄p of chemical potentials (see (4.161), (4.172))

Jp = Ĵp(T, ργ ) = J̄p(T, μγ ) = J̃p(T, Bσ , Ar ) γ = 1, . . . , n; σ = 1, . . . , h;
p, r = 1, . . . , n − h (4.179)

The last function J̃p may be defined by insertion of (4.177) into the previous one:
�B, �A may be looked upon as independent vectors in W,V respectively which by
composition (4.174)1 gives some vector �μ.

The last quadratic form in (4.169) must be also positive semidefinite

n∑
α=1

n∑
γ=1

ζαγ trDαtrDγ ≥ 0 (4.180)

This follows from (4.169) with (4.180) in the canonical form because this member of
second order determines ultimately the sign of the whole (4.169). From the positive

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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semidefinity16 of quadratic forms (4.170) (such are also its two first quadratic forms
by independency of (4.140)) and (4.180) there follows the non-negativity of certain
determinants formed from their symmetrized matrices (e.g. symmetrized matrix of
(4.180) is ‖(1/2)(ζαγ + ζγα‖) as, e.g.

k ≥ 0, ηαα ≥ 0, ζαα ≥ 0 α = 1, . . . , n (4.181)

νββ ≥ (1/2)rβ β = 1, . . . , n − 1 (4.182)

Relations (4.182) express the limitation of reaction rates by diffusion known in
chemical kinetics [132] (roughly, inversions of νββ are proportional to diffusion
coefficients, cf. Sect. 4.10).

We note that whenever
�0 = 0 (4.183)

it must be also
�pα = 0 α = 1, . . . , n (4.184)

as may be seen from (4.169), see (A.98) and Lemma A.5.4 from Appendix A.5.4.
Important examples are non-reacting mixtures where rα ≡ 0 (4.15) (see Sect. 4.8)
identically (by (4.178), (4.183), LemmaA.5.4, the (4.184)must be valid at anyρα, T )
and (chemically reacting) mixtures in chemical equilibrium where (4.183) is valid
at certain ρα, T giving, by Lemma A.5.4, Eq. (4.184) at these values (equilibrium
in fluids mixture will be discussed in Sect. 4.7). Equation (4.184) is valid also in the
case when coefficients ζαγ are zero, e.g. in a mixture of monoatomic ideal gases
[133] or if we neglect viscosity phenomena completely.

As we shall see in the next Sect. 4.6, �pα causes the difference between pressure
pα in stress (4.138) and the pressure used in thermodynamic formulae (“thermody-
namic pressure”, see (4.186)), e.g. in chemical kinetics out of equilibrium.

To estimate �pα , we choose some values of T, ργ and therefore some values
of �0,�pγ , ζαγ are fixed. For simplicity, we assume that quadratic form (4.180)
is positive definite with elements ζαγ of symmetrized matrix and denote by ζ−1

αγ

the elements of its inversion. Taking first derivative of �1 (4.169) (in arbitrary real
trDγ at chosen T, ργ ) as zero we obtain the extremal values trDγ (in fact in mini-
mum because second derivatives of (4.169) form positive definite matrix of (4.180),
cf. [134, Sect.11.3-3]). Inserting this values into (4.169) (for which this inequality is
valid too) we obtain the following minimal values of �1

�0 − (1/4)
n∑

α=1

n∑
γ=1

ζ−1
αγ �pα�pγ ≥ 0 (4.185)

16 From this generally does not follow the symmetry of its coefficients. The skew-symmetric part of
these coefficients disappears and to obtain them as zero we must add the new assumptions, namely
Onsager reciprocity, cf. Sect. 4.10, Rem. 31.
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valid for chosen T, ργ (and therefore similarly for other values). This inequality may
be used for the estimation of values �pα if we know volume viscosity coefficients
and entropy production by chemical reactions.17

Summary. This section began with a short description of the application of prin-
ciples of rational thermodynamics on mixtures. Then the principal model of our
book—the mixture of fluids with linear transport properties—was defined generally
by the linearization of constitutive equations (for fluids) in vector and tensor variables
see (4.130)–(4.133), (4.136)–(4.138). The general formswere thenmodified and sim-
plified by the admissibility principle. The final forms are given by (4.156)–(4.160)
and (4.166); the constitutive equations (4.137) and (4.138) remained unchanged. The
final form of entropy inequality is seen in (4.167) and can be separated into several
relatively independent parts the most important of which is the part representing the
entropy production by chemical reactions—(4.171) or in modified form (4.178). The
entropy inequality put also the restrictions on transport coefficients, (4.181), and on
reaction rates coupled with diffusion, (4.182). Note also the definition of (specific)
chemical potential (4.161) and the decomposition of its molar counterpart into affini-
ties (4.177). All this enables to formulate the reaction rates as functions of various
sets of independent variables (4.179) though the necessary regularity conditions are
given in the following sections only.

4.6 Thermodynamic Relationships in the Linear Fluid Mixture

We now deduce basic thermodynamic properties of the mixture of fluids with linear
transport properties discussed in Sect. 4.5. Among others, we show that Gibbs equa-
tions and (equilibrium) thermodynamic relationships in such mixtures are valid also
in any non-equilibrium process including chemical reactions (i.e. local equilibrium
is proved in this model) [56, 59, 64, 65, 79, 138].

Besides the definitions (4.21), (4.22), (4.90)–(4.92), (4.161)–(4.163), we define
the partial thermodynamic pressure Pα and the total thermodynamic pressure P of
mixture

17 Though our model excludes by (4.120) influence of trDγ on chemical reaction rate (usually
discussed in classical linear non-equilibrium thermodynamics [3]) this influence remains indirect
through the volume viscosity coefficients as may be seen from (4.185). We can estimate the (whole)
pressure difference�p for (chemical) reaction of hydrogen nuclear isomers p−H2 (1) to o−H2 (2)
at 650 ◦C, 100 torr in which the rate is J = 1.52 × 10−3mol/m3s at halftime 450 s [135]. Because
of similarity of both isomers we take �p1 = �p2 = �p/2 (cf. (4.186), (4.187)) and as ζαα (those
which are diagonal; the remaining are neglected) we can take approximate volume viscosity ζ of
pure H2 for both isomers (estimated by ζ = 32η from usual viscosity η = 1.9 × 10−5 kg/m.s of
pure H2 [136]). Affinity A in halftime (the same concentrations of isomers) may be calculated by
A = RT lnK where the equilibrium constant is K = 3 [137], cf. (4.479), (4.481) and (b) from
Rem. 28. Resulting �p, calculated from (�p)2 ≤ 8ζ J A (which is (4.185) with (4.178) in this
example), is not greater then 0.25 Pa; unfortunately, for more realistic cases, we have difficulties in
knowing the values of ζαγ .
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Pα ≡ pα + �pα α = 1, . . . , n (4.186)

P ≡
n∑

α=1

Pα (4.187)

the partial volume vα , the partial enthalpy hα (α = 1, . . . , n)

vα ≡ Pα/(ραP) (4.188)

hα ≡ uα + Pvα (4.189)

and the total specific enthalpy h, volume v and free enthalpy (Gibbs energy) g of
mixture

h ≡
n∑

α=1

wαhα (4.190)

v ≡
n∑

α=1

wαvα (4.191)

(the same symbol used in dv in integrals, like (4.14), has another sense, cf. (3.199)),

g ≡
n∑

α=1

wαgα (4.192)

All these quantities are functions of T, ρ1, . . . ρn only.
By (4.186) and (4.162)

Pα = ρα(gα − fα) (4.193)

and Pα, P play the role of pressures in the following thermodynamic relationships
although Pα are generally different from “real pressures” pα (cf. (4.138) and (4.186)).
But when (4.184) is valid (e.g. chemical equilibrium or non-reacting mixture) both
pressures are the same (cf. end of Sect. 4.5 and Rem. 17).

From (4.186)–(4.193), (4.21)–(4.23), (4.90)–(4.93), (4.161), (4.86) it may be
obtained

gα = fα + Pvα α = 1, . . . , n (4.194)

v = 1/ρ (4.195)

n∑
α=1

ραvα = 1 (4.196)

f = u − T s (4.197)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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g = f + Pv (4.198)

h = u + Pv (4.199)

Pα =
n∑

γ=1

ραργ

∂ f̂γ
∂ρα

α = 1, . . . , n (4.200)

From all these relations, the Gibbs equations may be obtained

d(ρ f ) = −ρs dT +
n∑

α=1

gα dρα (4.201)

d(ρu) = T d(ρs) +
n∑

α=1

gα dρα (4.202)

du = T ds − P dv +
n−1∑
β=1

(gβ − gn) dwβ (4.203)

d f = −s dT − P dv +
n−1∑
β=1

(gβ − gn) dwβ (4.204)

dh = T ds + v dP +
n−1∑
β=1

(gβ − gn) dwβ (4.205)

dg = −s dT + v dP +
n−1∑
β=1

(gβ − gn) dwβ (4.206)

Because all these quantities are fields (i.e. functions of x, t), we can use these equa-
tionswith the time and space derivatives (gradients) instead of differentials (cf. below
(3.199)).

From (4.206) and (4.192), the Gibbs-Duhem equation may be obtained

− s dT + v dP −
n∑

α=1

wα dgα = 0 (4.207)

We can also deduce the following relationships from (4.165), (4.193), (4.187),
(4.207), (4.22), (4.195), (4.92), (4.164)

http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.6 Thermodynamic Relationships in the Linear Fluid Mixture 187

n∑
γ=1

ωβγ dργ = dPβ − ρβ dgβ + ρβ

∂ f̂β
∂T

dT β = 1, . . . , n − 1 (4.208)

n−1∑
β=1

n∑
γ=1

ωβγ dργ = −dPn + ρn dgn − ρn
∂ f̂n
∂T

dT (4.209)

We denote by yα all specific partial thermodynamic quantities of constituents and
by y corresponding specific total (or for mixture) thermodynamic quantities:

yα = uα, sα, fα, gα, vα, hα, α = 1, . . . , n

y = u, s, f, g, v, h (4.210)

Relations (4.90), (4.91), (4.92), (4.190), (4.191), (4.192), may be written as

y =
n∑

α=1

wα yα (4.211)

y = ŷ(T, ργ ) (4.212)

yα = ŷα(T, ργ ) α, γ = 1, . . . , n (4.213)

Besides the independent variables T, ρ1, . . . , ρn , variables T, P, w1, . . . , wn−1
are often used in classical thermochemistry (as well as their molar analogues, cf.
(4.288) below). To obtain this change of variables we take (using (4.195), (4.22),
(4.23))

P = P̂(T, ργ ) = P̂(T, w1/v, . . . , wn−1/v, (1 −
n−1∑
β=1

wβ)/v)

≡ P̆(T, v, w1, . . . , wn−1) (4.214)

and assume the existence of an inversion of P̆ (4.214) for volume

v = ṽ(T, P, w1, . . . , wn−1) (4.215)

(such assumption is fulfilled in the usual stable mixture where (4.358) is valid, see
Sect. 4.7).

The arbitrary function of T, ρ1, . . . , ρn , may be transformed analogously as
(4.214) and using (4.215) we obtain functions of T, P, w1, . . . , wn−1 denoted by
the tilde and written shortly as (α = 1, . . . , n;β = 1, . . . , n − 1)

yα = ỹα(T, P, wβ) (4.216)
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y = ỹ(T, P, wβ) (4.217)

Therefore, the classical relations of thermochemistry were obtained. Especially, the
Gibbs equations (4.201)–(4.206) are valid in arbitrary process in this chemically
reacting mixture of fluids with linear transport properties, i.e. the principle of local
equilibrium is valid in this mixture. But we show in the following relations that this
accord with classical thermochemistry (e.g. [138] ) is not quite identical: indeed, if
we differentiate (4.211) and use (4.22), (4.23) we obtain

∂ ỹ

∂wβ

= yβ − yn +
n∑

α=1

wα

∂ ỹα
∂wβ

β = 1, . . . , n − 1 (4.218)

and comparing the differentials from (4.211) and (4.217) and use (4.218) we obtain

∂ ỹ

∂T
dT + ∂ ỹ

∂P
dP −

n∑
α=1

wα dyα +
n−1∑
β=1

n∑
α=1

wα

∂ ỹα
∂wβ

dwβ = 0 (4.219)

We can see that these relations (4.218), (4.219) are in accord with classical thermo-
chemistry if the sum in the right hand side of (4.218) is zero (which is known as
(generalized) Gibbs-Duhem equation) for all yα (4.210). Exceptions are chemical
potentials gα and specific Gibbs energy g as may be seen from (4.206) and (4.217)

∂ g̃

∂wβ

= gβ − gn β = 1, . . . , n − 1 (4.220)

i.e. for chemical potentials the Gibbs-Duhem equations are valid

n∑
α=1

wα

∂ g̃α

∂wβ

= 0 β = 1, . . . , n − 1 (4.221)

But we show now that validity of relations similar to (4.220), (4.221) (Gibbs-
Duhem equations) may be achieved even for remaining yα, y (4.210) and therefore
the complete accord with classical thermodynamics of mixtures will be obtained
(specifically, e.g. classical expressions (4.266), (4.267) will be valid).

For this, we use the mixture invariance discussed in Sect. 4.4 in the following
programme with two Propositions (defined more precisely below):

• Proposition 23.1 gives by mixture invariance the equivalent description of linear
fluid mixture (i.e. all constitutive equations and their properties from Sect. 4.5
remains valid) even with new “primed” quantities (introduced similarly as in
Sect. 4.4)with arbitrary functions (4.222), (4.223) below (instead of arbitrary quan-
tities (4.103)).

• All remaining hitherto obtained results of Sects. 4.5 and 4.6 of the linear fluid
mixture will be shown to be valid also for primed quantities,
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• Proposition 23.2 achieves (by appropriate choice of functions (4.222), (4.223),
namely (4.257)) the (still absenting) validity of Gibbs-Duhem equations for all
yα, y (4.210).

• All these results then give the complete accord of thermodynamic relations with
classical thermodynamics of mixtures.

Recall that the mixture invariance described in Sect. 4.4 means that all bal-
ances (4.95)–(4.102) remain valid with primed quantities defined by transforma-
tions (4.108)–(4.113). But here we proceed further: with functions (4.222), (4.223)
instead of (4.103), the Eqs. (4.108)–(4.112) permit the formulation of linear con-
stitutive equations with primed quantities by constitutive principles analogously18

as in Sect. 4.5. Remaining parts of Sects. 4.5 and 4.6 will be done with analogous
(but primed) definitions keeping the rule that the definitions themselves are mixture
invariant (cf. above (4.114)). Procedure and description will be similar as in Sect. 4.4.
Quantities or expressions which do not change by using (4.108)–(4.113) we denote
as mixture invariant, e.g. quantities (4.113). For simplicity, we use the primes for
mixture invariant quantities rather exceptionally.

Proposition 23.1 (equivalent description of linear fluid mixture with primed quan-
tities). Assuming some a priori unprimed quantities uα, sα,Tα,kα,q and some fur-
ther (4.108)–(4.113) used in balances (4.95)–(4.102), we choose for the quantities
(4.103) the following arbitrary (but differentiable) functions of (mixture invariant,
see (4.113)) T and all ργ

εα = ε̂α(T, ργ ) α, γ = 1, . . . , n (4.222)

ηα = η̂α(T, ργ ) α, γ = 1, . . . , n (4.223)

having the dimension of energy and entropy respectively, which fulfil (4.104) and
(4.105) identically (for all T, ργ ). These functions may be written as

ζα = ζ̂α(T, ργ ) α, γ = 1, . . . , n (4.224)

fulfilling identically (i.e. for all T, ργ )

n∑
α=1

ραζα = 0 (4.225)

together with primed (specific) partial thermodynamic quantities y′
α = u′

α , s
′
α , f ′

α ,
g′
α , v

′
α , h

′
α defined as

y′
α = yα + ζα α = 1, . . . , n (4.226)

where

18 This may be generalized also for non-linear models but then it seems plausible to give up the
(principle of) equipresence [59, 60, 72, 114].
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ζα = εα, ηα, ϕα, 0, −ϕα/P, Tηα (4.227)

corresponding to the original yα = uα, sα, fα, gα, vα, hα , respectively. Here the
following definition was used:

ϕα ≡ εα − Tηα = ϕ̂α(T, ργ ) α = 1, . . . , n (4.228)

Besides gα , also the total thermodynamic pressure P = P ′ is mixture invariant
in (4.227), for which P ′ = ∑n

α=1 P
′
α (see (4.187)), with partial thermodynamic

(primed) pressure obtainable from Pα (4.186) by transformation

P ′
α = Pα − ραϕα α = 1, . . . , n (4.229)

Total thermodynamic primed quantities y′ are defined with (4.226) as (cf. (4.210),
(4.211))

y′ ≡
n∑

α=1

wα y
′
α = y (4.230)

and they are mixture invariant (cf. (4.116)).
Transforming original unprimed quantities according (4.108)–(4.118) to corre-

sponding primed quantities using some functions (4.222), (4.223), the resulting
form of constitutive equations and their properties for primed quantities remains
(cf. (4.157)–(4.159), (4.166), (4.137), (4.138))

u′
α = ûα(T, ργ ) + ε̂α(T, ργ ) = û′

α(T, ργ ) α, γ = 1, . . . , n (4.231)

s′
α = ŝα(T, ργ ) + η̂α(T, ργ ) = ŝ′

α(T, ργ ) α, γ = 1, . . . , n (4.232)

f ′
α = f̂α(T, ργ ) + ϕ̂α(T, ργ ) = f̂ ′

α(T, ργ ) α, γ = 1, . . . , n (4.233)

q′ = −kg −
n−1∑
β=1

λ′
βuβ (4.234)

k′
β = −ξ ′

βg −
n−1∑
δ=1

νβδuδ +
n∑

γ=1

ω′
βγ hγ β = 1, . . . , n − 1 (4.235)

T′
α = −p′

α1 +
n∑

γ=1

ζαγ (trDγ )1 +
n∑

γ=1

2ηαγ

◦
Dγ α = 1, . . . , n (4.236)

where primed quantities in their right-hand sides are transformed as



4.6 Thermodynamic Relationships in the Linear Fluid Mixture 191

λ′
β = λβ + ρβTηβ (4.237)

ξ ′
β = ξβ + ρβ

∂ϕ̂β

∂T
(4.238)

ω′
βγ = ωβγ − ∂ρβϕ̂β

∂ργ

(4.239)

p′
α = pα − ραϕα (4.240)

Coefficients k, νβδ, ζαγ , ηαγ are mixture invariant. The remaining constitutive equa-
tions for reacting rates (4.156) are the same, because they contain the mixture invari-
ant quantities only.

Chemical potentials gα (4.161) are mixture invariant as well as quantities �pα

(4.162), ϑβ (4.163). Therefore resulting expressions (4.164), (4.167)–(4.171) are
the same, i.e. �0,�1,�2, σ are mixture invariant in these inequalities. The result
(4.165) is

gγ δβγ − ∂ρβ f̂ ′
β

∂ργ

= ω′
βγ β = 1, . . . , n − 1; γ = 1, . . . , n (4.241)

Proof Results follows by appropriate construction of constitutive equations and
their properties (as in Sect. 4.5, i.e. starting with (4.128)) for primed quantities here
proposed (i.e. as in Sect. 4.4):

Relations (4.226), (4.225) and mixture invariance (4.230) follow directly for
y = u, s as in Sect. 4.4 using (4.222), (4.223) instead of (4.103) (cf. (4.108), (4.109),
(4.104), (4.105), (4.90), (4.91), (4.116)). For y = f , these relations and mixture
invariance (4.230) then follow from definition (4.86) with primed quantities (defin-
ition formulae are mixture invariant) f ′

α ≡ u′
α − T s′

α (cf. (4.106), (4.114), (4.107),
(4.115), (4.116)). For the remaining y = g, v, h these will be shown below.

Deduction of (4.231), (4.232), (4.233) follows from (4.108), (4.109), (4.114)

inserting (4.131), (4.132), (4.133) and using y(0)
α

′ = y(0)
α + ζα (for y = u, s, f

respectively) leaving their remaining parts y(γ )
α mixture invariant (because such are

rβ we leavemixture invariant all parts of (4.130)); that y(γ )
α = 0 will be shown below.

To obtain (4.234) we insert (4.136) into (4.118) and leaving here k, χγ mixture
invariant while we choose (4.237) (this follows from members linear in diffusion
velocities (4.24)); we have

q′ = −kg −
n−1∑
β=1

λ′
βuβ +

n∑
γ=1

χγ hγ (4.242)

(zero value of χγ is shown below).
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To obtain constitutive equations (4.235), we insert (4.137) into (4.111); here

grad(ρβϕβ) = ρβ
∂ϕ̂β

∂T g + ∑n
γ=1

∂ρβ ϕ̂β

∂ργ
hγ by (4.224) and therefore we choose

(4.238), (4.239) leaving νβδ mixture invariant.
Ultimately constitutive equations (4.236) follow inserting (4.138) into (4.110)

leaving viscosities ζαγ , ηαγ mixture invariant; therefore (4.240) follows for mixture
non-invariant partial pressures pα .

Now, the proof of the final form of (4.231)–(4.236) will be given noting that con-
stitutive equations obtained so far for primed quantities r ′

β, u′
α, s′

α, f ′
α,q′,k′

β,T′
α

have the same form as (4.130)–(4.133), (4.136)–(4.138). Similarly, reduced inequal-
ity with these primed quantities has the form (4.89) because this was obtained from
an invariant form of balances (4.95)–(4.102) (cf. property of mixture invariance
of balances in Sect. 4.4). Therefore, the great inequality may be constructed with
primed quantities but otherwise is the same as (4.139), and because the arguments
of the admissibility principle may be again used here analogously, all the results in
Sect. 4.5 may be obtained also for primed quantities. Namely, zero results (4.146)–
(4.149) are valid in accord with the assumed mixture invariance of all quantities here
(see above and (4.113)), and the results (4.150), (4.151), (4.145) are valid with the

corresponding primed quantities y(0)
α

′
,(4.237), (4.238), (4.239), (4.240). Therefore,

constitutive equations (4.231), (4.232), (4.233) are obtained as analogues of (4.157),
(4.158),(4.159) for primed quantities; the primed constitutive equation (4.156) is
trivial by mixture invariance of rates rβ .

From mixture invariance (4.230) of y = u, s, f (noted at the beginning of proof),
the mixture invariance of result (4.164) also follows (in accord with that of (4.145)).
By the same arguments, we can see that chemical potentials gα (4.161) are mixture
invariant and therefore ζα = 0 for this yα = gα as we have noted in (4.227).

By zero value (4.149), we obtain from (4.242) constitutive equation for (primed)
heat flux (4.234) (cf. (4.166)) and from (4.150) for primed quantities and chemical
potential we obtain (4.241). With its original form (4.165) and (4.226), we obtain
the transformation (4.239) again.

Definitions�p′
α (4.162), ϑ ′

β (4.163) for primed quantities are nowmixture invari-
ant because of (4.226) (for fα, sα), (4.240), (4.237), (4.238) and the mixture invari-
ance of gα

�p′
α ≡ ρ′

α(g′
α − f ′

α) − p′
α = ραgα − ρα( fα + ϕα) − (pα − ραϕα) = �pα

ϑ ′
β ≡ λ′

β/T ′ + ξ ′
β − ρ′

β

∂ f̂ ′
β

∂T ′ − ρ′
βs

′
β = λβ/T + ρβηβ + ξβ + ρβ

∂ϕ̂β

∂T
− ρβ

∂( f̂β + ϕ̂β )

∂T
− ρβ(sβ + ηβ) = ϑβ

Finally it follows that σ,�0,�1,�2 aremixture invariant because all expressions
for entropy productions are obtained for primed quantities are the same as (4.167)–
(4.171) and contain the mixture invariant quantities only (see (4.113) and below, see
also definitions (4.124), (4.88)).
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Primed thermodynamic pressures are defined now, instead of (4.186), (4.187) (we
recall that form of definitions is mixture invariant), as

P ′
α ≡ p′

α + �p′
α α = 1, . . . , n (4.243)

P ′ ≡
n∑

α=1

P ′
α (4.244)

These definitions give, by mixture invariance of �pα above and (4.240) for pα , the
transformation (4.229) for partial thermodynamic pressures and mixture invariance
of total thermodynamic pressure P ′ = P (see (4.244), (4.229), (4.225) (cf. (4.107)).

It remains to show ζα (4.227) for y = v, h. Definitions of partial volumes (4.188)
and enthalpies (4.189) for primed quantities are now (α = 1, . . . , n)

v′
α ≡ P ′

α/(ρ′
αP

′) = (Pα − ραϕα)/(ραP) = vα − ϕα/P (4.245)

h′
α ≡ u′

α + P ′v′
α = uα + εα + P(vα − ϕα/P) = hα + Tηα (4.246)

where transformations follow by (4.229), (4.228) and (4.226), (4.227) for uα (cf.
(4.108), (4.106), (4.113)). These give the remaining values of ζα in (4.227). The
mixture invariance of corresponding (and in fact also all) total thermodynamic
(primed) quantities y′ (4.230) follows from (4.225) (cf. (4.116), (4.90), (4.190),
(4.191), (4.192), (4.211)), namely

y′ ≡
n∑

α=1

wα y
′
α =

n∑
α=1

wα yα + (1/ρ)

n∑
α=1

ραζα = y (4.247)

Q.E.D.

According to our programme (see below (4.221)), it has been shown that all
hitherto obtained results of Sects. 4.5 and 4.6 of a linear fluid mixture are valid for
primed quantities (or to be the same for mixture invariant quantities). We show such
validity for the remaining results.

Because molar masses and stoichiometric coefficients may be considered as mix-
ture invariant, it is obvious that molar chemical potentials (4.172) and chemical
affinities (4.176) are mixture invariant. Obviously, also the properties from the end of
Sect. 4.5, (4.180)–(4.182) remain valid, including also special cases (4.183), (4.184).

To show it for the remaining formulae and quantities from Sect. 4.6 we use the
primed quantities from Proposition 23.1 in the definitions. Some of them are valid
trivially by the mixture invariance of the quantities in them (like Gibbs equations
(4.201)–(4.206), (4.207), (4.195), (4.197)–(4.199) etc.), others, like (4.193), (4.194),
(4.196),may be easily verified by previous results; we do it herewith (4.200), (4.208),
(4.209):

The validity of (4.200) for primed quantities follows because



194 4 Continuum Thermodynamics of Mixture of Linear Fluids

P ′
α =

n∑
γ=1

ρ′
αρ′

γ

∂ f̂ ′
γ

∂ρ′
α

=
n∑

γ=1

ραργ

∂( f̂γ + ϕ̂γ )

∂ρα

= Pα +
n∑

γ=1

ραργ

∂ϕ̂γ

∂ρα

= Pα + ρα

∂
∑n

γ=1 ργ ϕ̂γ

∂ρα

−
n∑

γ=1

ραϕγ

∂ργ

∂ρα

= Pα − ραϕα

where (4.225) were used and this is indeed (4.229).
Inserting from (4.239), (4.229), (4.233) into (4.208) we have

n∑
γ=1

ω′
βγ dργ +

n∑
γ=1

∂(ρβϕ̂β)

∂ργ

dργ

= dP ′
β + d(ρβϕβ) − ρβ dgβ + ∂ρβ f̂ ′

β

∂T
dT − ∂ρβϕ̂β

∂T
dT

Calculating d(ρβϕβ) with function (4.228) and using the mixture invariance of
gα, ρα, T we obtain (4.208) in primed quantities:

n∑
γ=1

ω′
βγ dργ = dP ′

β − ρβ dgβ + ρβ

∂ f̂ ′
β

∂T
dT β = 1, . . . , n − 1 (4.248)

Similarly, inserting (4.239), (4.229), (4.233) into (4.209) we have

n−1∑
β=1

n∑
γ=1

ω′
βγ dργ +

n−1∑
β=1

n∑
γ=1

∂ρβϕ̂β

∂ργ

dργ = − dP ′
n − d(ρnϕn) + ρn dgn − ∂ρn f̂ ′

n

∂T
dT

+ ∂ρn ϕ̂n

∂T
dT

which with (4.225) (for ζα = ϕα) gives (4.209) in primed quantities:

n−1∑
β=1

n∑
γ=1

ω′
βγ dργ = −dP ′

n + ρn dgn − ρn
∂ f̂ ′

n

∂T
dT (4.249)

A change of independent variables from mixture invariant T, ργ to mixture
invariant T, P, wβ, may be done also for primed quantities, specifically for (4.224)
ζα = ζ̃α(T, P, wβ) and therefore (4.216) is valid also for primed partial thermody-
namic quantities y′

α (see (4.226))

y′
α = ỹα(T, P, wβ) + ζ̃α(T, P, wβ) ≡ ỹ′

α(T, P, wβ) α = 1, . . . , n (4.250)
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Relation (4.217) is valid for primed quantities

y′ = ỹ′(T, P, wβ) = y = ỹ(T, P, wβ) (4.251)

because of the mixture invariance of all quantities. Inserting from these results into
(4.218) we have

∂ ỹ′

∂wβ

= y′
β − ζβ − y′

n + ζn +
n∑

α=1

wα

∂ ỹ′
α

∂wβ

−
n∑

α=1

wα

∂ζ̃α

∂wβ

(4.252)

But identity (4.225) (divided by ρ)
∑n

α=1 wαζα = 0 may be understood as a
function of T, P, wβ (see (4.23)) equal to zero identically; its derivative is therefore
also zero

∂
∑n

α=1 wαζ̃α

∂wβ

= 0 β = 1, . . . , n − 1 (4.253)

and from (4.253) it follows

n∑
α=1

wα

∂ζ̃α

∂wβ

= ∂
∑n

α=1 wαζ̃α

∂wβ

−
n∑

α=1

ζα

∂wα

∂wβ

= −
n−1∑
η=1

ζη

∂wη

∂wβ

− ζn
∂wn

∂wβ

= −ζβ − ζn
∂(1 −∑n−1

η=1 wη)

∂wβ

= −ζβ + ζn

Therefore inserting this in the previous Eq. (4.252), we obtain (4.218) in primed
quantities

∂ ỹ′

∂wβ

= y′
β − y′

n +
n∑

α=1

wα

∂ ỹ′
α

∂wβ

= ∂ ỹ

∂wβ

(4.254)

which may be obtained also by differentiation of (4.230). Using (4.254) and dif-
ferentials from (4.230), (4.251) analogously as in deduction (4.219) we obtain its
analogue in primed quantities

∂ ỹ

∂T
dT + ∂ ỹ

∂P
dP −

n∑
α=1

wα dy
′
α +

n−1∑
β=1

n∑
α=1

wα

∂ ỹ′
α

∂wβ

dwβ = 0 (4.255)

Ultimately (4.220) and Gibbs-Duhem equations (4.221) for chemical potentials
remain unchanged because of their mixture invariance. Again, Gibbs-Duhem equa-
tions for all primed y′

α (i.e. zero value of the sum in (4.254)) are not generally valid.
All the results with primed quantities (including those in Proposition 23.1) starting

with arbitrary functions (4.222), (4.223) therefore fulfil all results of mixture model
achieved in Sect. 4.2–4.6.
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From a physical point of view, it seems that measurable quantities are mixture
invariant (cf. end of Sect. 4.4). Such are the properties ofmixture like y,T (see (4.94),
(4.236), (4.240), (4.225)) but also the chemical potentials gα . Note that also heat flux
is transformed as (4.118) (with functions (4.223)) and therefore heat flux is mixture
invariant in a non-diffusing mixture (all uβ = o) in accord with its measurability.
But heat flux is mixture non-invariant in a diffusing mixture, consistently with our
expectation of difficulties in surface exchange (of masses) of different constituents
with different velocities together with heat. We note that all formulations of heat flux
used in linear irreversible thermodynamics [1–4, 120] (cf. Rems. 11 in this chapter,
14 in Chap. 2) are contained (by arbitrariness of ηβ ) in expression (4.118) for heat
flux in a diffusing mixture.

Nowwe are ready to start the last part of our programme (outlined below (4.221)):
by the following Proposition 23.2 we achieve the Gibbs-Duhem equations for all
primed quantities y′

α because then, as we shall see, we obtain the complete accord
of thermodynamic properties with classical thermodynamics of mixtures.

Proposition 23.2 (general validity of Gibbs-Duhem equations [56, 59, 139]). For
every partial thermodynamic quantity yα (4.210) of linear fluid mixture which may
be expressed by (4.216) as yα = ỹα(T, P, wβ) there are corresponding primed quan-
tities (4.226), expressible as y′

α = ỹ′
α(T, P, wβ) (4.250), introduced and satisfying

hypotheses of Proposition 23.1 which fulfil the Gibbs-Duhem equations

n∑
α=1

wα

∂ ỹ′
α

∂wβ

= 0 β = 1, . . . , n − 1 (4.256)

Proof We begin (as in Proposition 23.1) with some yα = uα, sα which may be
expressed by (4.216) as yα = ỹα(T, P, wβ). Based on them we now propose the
primed quantities y′

α = u′
α, s′

α by (4.250) where for functions ζ̃α(T, P, wβ), ζα =
εα, ηα, we choose the following special functions based on starting ỹα(T, P, wβ)

(we follow [59, Teor. 8.1, choice (8.36)]; another version is in [56, 139])

ζn = −
n−1∑
β=1

n∑
γ=1

wβwγ

∂ ỹγ
∂wβ

ζδ =
n∑

γ=1

wγ

∂ ỹγ
∂wδ

+ ζn δ = 1, . . . , n − 1 (4.257)

This choice should have the basic property (4.225). Indeed

n∑
α=1

ραζα =
n−1∑
δ=1

ρδζδ + ρnζn

http://dx.doi.org/10.1007/978-3-319-02514-8_2


4.6 Thermodynamic Relationships in the Linear Fluid Mixture 197

= ρ

n−1∑
δ=1

n∑
γ=1

wδwγ

∂ ỹγ
∂wδ

+ ρ

n−1∑
δ=1

wδζn + ρwnζn = −ρζn + ρζn = 0

(4.258)

The relations (4.257) are then also valid for the remaining yα = fα, gα, vα, hα

because the corresponding ζα are combinations of εα, ηα, see (4.227) (for gα trivially,
see (4.221)). Indeed, by (4.257) for yα = uα, sα, we have for yα = fα by (4.86)

∂ f̃γ
∂wδ

= ∂ ũγ

∂wδ

− T
∂ s̃γ
∂wδ

(4.259)

which inserting into the right-hand side of (4.257)1 gives by (4.106)

−
n−1∑
β=1

n∑
γ=1

wβwγ

∂ f̃γ
∂wβ

= εn − Tηn = ϕn (4.260)

Similarly, inserting into r.h.s. of (4.257)2 we have by (4.106)

n∑
γ=1

wγ

∂ f̃γ
∂wδ

+ ϕn = εδ − εn − T (ηδ − ηn) + ϕn = ϕδ (4.261)

The Gibbs-Duhem equation (4.221) gives ζα = 0 for (4.257) with yα = gα (where
α = δ, n). Inserting here from (4.194) we have by (4.260), (4.261) 0 = ϕn −
P
∑n−1

β=1
∑n

γ=1 wβwγ
∂ṽγ

∂wβ
which is (4.257)1 (for yα = vα) with ζn = −ϕn/P and

(inserting (4.194) into (4.257)2 for yα = gα) 0 = ∑n
γ=1 wγ

∂ f̃γ
∂wδ

+ P
∑n

γ=1 wγ
∂ṽγ

∂wδ
,

i.e.
∑n

γ=1 wγ
∂ṽγ

∂wδ
= −ϕδ/P + ϕn/P from which ζδ = −ϕδ/P; therefore result

(4.257) follows for yα = vα .

Ultimately, we obtain by inserting (4.189) in the right hand side of (4.257) for
yα = hα using (4.257) for yα = uα, vα and (4.106)

−
n−1∑
β=1

n∑
γ=1

wβwγ

∂ h̃γ

∂wβ

= εn + P(−ϕn/P) = Tηn

n∑
γ=1

wγ

∂ h̃γ

∂wδ

+ Tηn = εδ − εn + P(−ϕδ/P + ϕn/P) + Tηn = Tηδ

which is for yα = hα (4.227) and therefore (4.257).
Now we use the proposed choice (4.257) to show that partial thermodynamic

quantities y′
α (4.250) with ζα given by (4.257) fulfil Gibbs-Duhem equations (4.256)

for all of them (and not for chemical potentials only). Indeed, by (4.250) with (4.257)
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we have
n∑

α=1

wα

∂ ỹ′
α

∂wβ

=
n∑

α=1

wα

∂ ỹα
∂wβ

+
n∑

α=1

wα

∂ζ̃α

∂wβ

(4.262)

Using identity (4.253) with (4.23), (4.257)2

0 =
n∑

α=1

wα

∂ζ̃α

∂wβ

+
n−1∑
δ=1

ζδ

∂wδ

∂wβ

+ ζn
∂(1 −∑n−1

δ=1 wδ)

∂wβ

=
n∑

α=1

wα

∂ζ̃α

∂wβ

+ ζβ − ζn

=
n∑

α=1

wα

∂ζ̃α

∂wβ

+
n∑

α=1

wα

∂ ỹα
∂wβ

Inserting this into (4.262) we obtain (4.256)

n∑
α=1

wα

∂ ỹ′
α

∂wβ

= 0 β = 1, . . . , n − 1

i.e. Gibbs-Duhem equation (4.256) are valid for all such y′
α . Q.E.D.

Therefore, for such primed thermodynamic quantities, we have not only all the
results of our theory of primed thermodynamic quantities but also the Gibbs-Duhem
equations for all of them are valid.

In the following, wewill assume that such primed thermodynamic quantities were
achieved and hereafter we do not use the prime to denote these quantities. Therefore,
all results of Sects. 4.2–4.6 (up to (4.217)) are valid but moreover also Gibbs-Duhem
equations are valid for all partial thermodynamic quantities (i.e. (4.256) written
without primes)

n∑
α=1

wα

∂ ỹα
∂wβ

= 0 β = 1, . . . , n − 1 (4.263)

As a result of the validity of (4.263), we obtain from (4.218), (4.219) (in fact
(4.254), (4.255) without primes) for all yα another form of Gibbs-Duhem equations

∂ ỹ

∂T
dT + ∂ ỹ

∂P
dP −

n∑
α=1

wα dyα = 0 (4.264)

and
∂ ỹ

∂wβ

= yβ − yn β = 1, . . . , n − 1 (4.265)

Moreover, from (4.265), (4.206), (4.211) we obtain the classical relationships (for
them the general Gibbs-Duhem equation (4.263) are necessary)
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∂ g̃α

∂T
= −sα α = 1, . . . , n (4.266)

∂ g̃α

∂P
= vα α = 1, . . . , n (4.267)

Indeed, to prove (4.266), we obtain from Gibbs equation (4.206) and Gibbs-
Duhem Eq. (4.263)

∂(g̃β − g̃n)

∂T
= − ∂ s̃

∂wβ

= −(sβ − sn) β = 1, . . . , n − 1 (4.268)

FromGibbs equation (4.206) it follows also ∂ g̃/∂T = −s whichwith (4.211), (4.23)
gives

∂(
∑n−1

β=1 wβ g̃β + (1 −∑n−1
β=1 wβ)g̃n)

∂T
=

n−1∑
β=1

wβ

∂(g̃β − g̃n)

∂T
+ ∂ g̃n

∂T
= −

n∑
α=1

wαsα

= −
n−1∑
β=1

wβ(sβ − sn) − sn

Because of (4.268), we obtain (4.266) for α = n and therefore also (4.266) for
remaining β = 1, . . . , n − 1.

Proof of (4.267)may be peformed quite analogously (using differentiation accord-
ing to pressure instead of temperature).

Results (4.265) and (4.211) permit to obtain partial specific thermodynamic quan-
tities yα (fulfilling Gibbs-Duhem equations (4.263) of course) from specific thermo-
dynamic quantities y = ỹ(T, P, wβ) of the mixture (measurable in accord with their
mixture invariance) and their dependence on composition wβ as follows

yn = y −
n−1∑
β=1

wβ

∂ ỹ

∂wβ

(4.269)

yβ = yn + ∂ ỹ

∂wβ

β = 1, . . . , n − 1 (4.270)

While (4.270) is (4.265), Eq. (4.269) follows by multiplication of (4.270) with wβ ,
by summation through β = 1, . . . , n − 1 and using (4.23), (4.211).

Ultimately we note that using functions (4.213) (see (4.216), (4.214), (4.21),
(4.22)), we have

gα = g̃α(T, P, wβ) = g̃α(T, P̂(T, ργ ), ρβ/

n∑
γ=1

ργ ) = ĝα(T, ργ ) (4.271)
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Therefore ∂ ĝα/∂T = ∂ g̃α/∂T + (∂ g̃α/∂P)(∂ P̂/∂T ) and this gives by (4.266),
(4.267), (4.194)

− sα = ∂ ĝα

∂T
− vα

∂ P̂

∂T
= ∂ f̂α

∂T
+ P

∂v̂α

∂T
α = 1, . . . , n (4.272)

Therefore, a relation analogical to (4.164) for partial fα does not follow (but this is
possible in special cases, see (4.426)).

Analogues of (4.269), (4.270) for expressing the partial specific quantities through
mixture properties in independent variables temperature and densities (4.213) are

• for partial specific volumes vα

vα = (
∂ P̂

∂ρα

)/

⎛
⎝ n∑

γ=1

ργ

∂ P̂

∂ργ

⎞
⎠ α = 1, . . . , n (4.273)

where P = P̂(T, ργ ) is the (whole) thermodynamic pressure as the function of
temperature and densities of all constituents.

• for remaining thermodynamic partial specific quantities yα = uα, sα, fα, hα, gα

yα = y + ρ

⎛
⎝ ∂ ŷ

∂ρα

− vα

n∑
γ=1

ργ

∂ ŷ

∂ργ

⎞
⎠ α = 1, . . . , n (4.274)

where vα is given by (4.273) and the specific thermodynamic quantities of the
mixture y = ŷ(T, ργ ) = u, s, f, h, g are functions of temperature and densities
of all constituents.

We prove (4.273), (4.274) using (4.269), (4.270) calculating ∂ ỹ/∂wβ appropri-
ately. With (4.215), definition P̆ (4.214), (4.195) we have

∂ṽ

∂wβ

= − ∂ P̆

∂wβ

/
∂ P̆

∂v
=
(

∂ P̂

∂ρβ

− ∂ P̂

∂ρn

)
/

⎛
⎝ n∑

γ=1

ργ

∂ P̂

∂ργ

⎞
⎠ β = 1, . . . , n − 1

(4.275)
because

∂ P̆

∂v
= −ρ

n∑
γ=1

ργ

∂ P̂

∂ργ

∂ P̆

∂wβ

= ρ
∂ P̂

∂ρβ

− ρ
∂ P̂

∂ρn
β = 1, . . . n − 1

Similarly, for the remaining y = u, s, f, h, g, we can define functions y =
y̆(T, v, wβ) by
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y = ŷ(T, ργ ) = ŷ(T,
w1

v
, . . . ,

wn−1

v
,
1 −∑n−1

β=1 wβ

v
) ≡ y̆(T, v, w1, . . . , wn−1)

= y̆(T, ṽ(T, P, wβ),wβ) = ỹ(T, P, wβ) (4.276)

From this we obtain analogously

∂ ỹ

∂wη

= ∂ y̆

∂wη

+∂ y̆

∂v

∂ṽ

∂wη

= ρ(
∂ ŷ

∂ρη

− ∂ ŷ

∂ρn
)−ρ(vη−vn)

n∑
γ=1

ργ

∂ ŷ

∂ργ

η = 1, . . . n−1

(4.277)
because (4.195), (4.265) and

∂ y̆

∂v
= −ρ

n∑
γ=1

ργ

∂ ŷ

∂ργ

∂ y̆

∂wη

= ρ(
∂ ŷ

∂ρη

− ∂ ŷ

∂ρn
) η = 1, . . . n − 1

Inserting (4.275), (4.277) into (4.269), (4.270) (for y = v and those remaining
respectively) we obtain after rearrangement, the results (4.273), (4.274).

Result (4.273) gives that expressions (∂ P̂/∂ρα)/vα and therefore also (multiply-
ing by 1/P and using (4.188) or (4.278)) (ρα/Pα)(∂ P̂/∂ρα) are the same for all
constituents α = 1, . . . , n, cf. [61, Eq. 2.11]. This will be used in the next Sect. 4.8,
see (4.415).

Application of (4.269), (4.270) on a specific volume (ormixture densityρ) permits
to calculate partial specific volume vα and therefore, by (4.188), to calculate partial
thermodynamic pressures (see [140])

Pα = ραvαP α = 1, . . . , n (4.278)

which fulfil Dalton’s law (4.187) generally. Note that ραvα = cαMαvα in molar units
(see below). In a mixture of ideal gases, ραvα is the molar fraction and (4.278) is the
classical Dalton law, see (4.423), (4.424).

Relations (4.217) are specifically (with the use of (4.195))

u = ũ(T, P, wβ), s = s̃(T, P, wβ), (4.279)

v = ṽ(T, P, wβ) or ρ = ρ̃(T, P, wβ), (4.280)

From these relations and Gibbs equation (4.203), we obtain

ds = 1

T
du − P

Tρ2
dρ −

n−1∑
β=1

(gβ − gn)

T
dwβ = (1/T )

(
∂ ũ

∂T
− (P/ρ2)

∂ρ̃

∂T

)
dT
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+ (1/T )

(
∂ ũ

∂P
− (P/ρ2)

∂ρ̃

∂P

)
dP

+
n−1∑
β=1

(
1

T

∂ ũ

∂wβ
− P

Tρ2
∂ρ̃

∂wβ
− (gβ − gn)

T

)
dwβ (4.281)

Using the integrability conditions of (4.280), (4.279), namely ∂2s̃/∂P∂T = ∂2s̃/
∂T ∂P we obtain, after some calculation

∂ ũ

∂P
= (T/ρ2)

∂ρ̃

∂T
+ (P/ρ2)

∂ρ̃

∂P
(4.282)

which is for the mixture an analogue of (3.209).
In classical thermodynamics of mixtures, the special case of the uniform (or

homogeneous) mixture (i.e. without gradients of properties, cf. Sect. 2.4) is often
studied. Denoting here by Y the following extensive quantities: volume V , entropy
S, internal energy U , free energy F , Gibbs energy G and enthalpy H , we have the
following relations between the extensive functionsY = Y̌ (T, P,mγ ), γ = 1, . . . , n
and the corresponding total specific thermodynamic quantities y = ỹ(T, P, wδ),
δ = 1, . . . , n − 1

Y = my = (

n∑
γ=1

mγ )ỹ(T, P,mδ/(

n∑
γ=1

mγ )) ≡ Y̌ (T, P,m1, . . . ,mn) (4.283)

Herem is the mass of the uniform body which is the sum of masses of all constituents
mγ (cf. Sect. 2.4)

m =
n∑

γ=1

mγ (4.284)

and
ργ = mγ /V γ = 1, . . . , n (4.285)

wγ = mγ /m γ = 1, . . . , n (4.286)

((4.285) follows from the physical meaning of ργ and (4.286) from (4.21), (4.22),
(4.285), (4.284)).

Relations (4.283)–(4.286) in uniformmixture permit to express the partial specific
thermodynamic quantities from extensive (4.283) as ([59], i.e. as an analogue of the
molar “classical” definition [138, 141])

∂Y̌

∂mα

= yα α = 1, . . . , n (4.287)

(therefore they are also uniform analogue of (4.269), (4.270)). Indeed, (4.283) gives

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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∂Y̌

∂mα

= y + m
n−1∑
β=1

∂ ỹ

∂wβ

(
1

m

∂mβ

∂mα

− mβ

m2

∂
∑n

γ=1 mγ

∂mα

)

= y +
n−1∑
β=1

∂ ỹ

∂wβ

δβα −
n−1∑
β=1

wβ

∂ ỹ

∂wβ

which is the result (4.287) if we use (4.269), (4.270) because Kronecker delta δβα ≡
∂mβ

∂mα
here has the property δβn = 0, β = 1, . . . , n − 1.

Examples of (4.287) are (2.100) and also Gibbs and Gibbs-Duhem equations
(2.98), (2.104) are uniform analogues of (4.206), (4.207).

These and all previous results of thermodynamic mixture which also fulfil Gibbs-
Duhem equations (4.263) show the complete agreement with the classical thermo-
dynamic of mixtures but moreover all these relations are valid much more generally.
Namely, they are valid in this material model—linear fluid mixture—in all processes
whether equilibrium or not. Linear irreversible thermodynamics [1–4], which stud-
ies the same model, postulates this agreement as the principle of local equilibrium.
Here in rational thermodynamics, this property is proved in this special model and
it cannot be expected to be valid in a more general model. We stress the difference:
in the cases when (4.184) is not valid—e.g. in a chemically reacting mixture out of
equilibrium—the thermodynamic pressures P, Pα need not be the same as the mea-
sured pressure (as e.g.

∑n
α=1 pα) and therefore applications of these thermodynamic

formulae are not of much use in this case. This is probably the reason for difficulties
in application of chemical thermodynamics in chemical kinetics, cf. Sect. 4.9.

Because of using these results in a non-equilibrium situation where momentum
balances are important, specific variables have been used, while in (equilibrium)
thermodynamics of mixtures molar units are prefered.

In chemical applications following molar quantities, based on molar mass (4.25),
quantities ρα, ρ andwα are introduced as analogues of “mass” quantities (in physical
literature usually denoted as densities and concentrations). We define the molar
concentrations cα for constituents and for mixture c and the molar fractions xα

(cf. (4.25)) as follows (α = 1, . . . , n)

cα = ρα/Mα (4.288)

c =
n∑

α=1

cα (4.289)

xα = cα/c (4.290)

Because Mα > 0 (constant molar mass), ρα > 0 we have cα > 0, c > 0,
0 < xα < 1 and

n∑
α=1

xα = 1 (4.291)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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wα = xαMα/M (4.292)

where the average molar mass M (depending on composition) is defined by

M ≡
n∑

α=1

xαMα (4.293)

and
1

M
=

n∑
α=1

wα

Mα

(4.294)

1/c = vM (4.295)

Equation (4.294) follows from (4.291), (4.292), and (4.295) asserts that the inverse
of c is the molar volume Mv.

We now discuss relations between specific and molar description; as may be
expected from the results above, the formof expressions remains ifwe change specific
quantities yα, y andmass fractionswα by correspondingmolar quantitiesMα yα, My
and molar fractions xα (cf., e.g. (4.172)). Such a simple change is understandable,
because the application of molar quantities means in fact using different mass units
for each constituent only. Change of specific andmolar descriptionmaybe sometimes
simple, e.g. the expression for partial thermodynamic pressure (4.278) may be also
written in a “molar” way as Pα = cαMαvαP , the classical molar form of (4.287)
which gives Mα yα follows using mols mα/Mα in Y̌ (4.283), or inserting (4.292)
into (4.211) we obtain its “molar analogue” My = ∑n

α=1 xαMα yα . Sometimes the
change ismore complicated:multiplying “specific”Gibbs equation (4.206) (arranged
with (4.23)) by M we obtain (using dwα = Mα

M dxα − xαMα

M2 dM from (4.292))

M dg = −Ms dT + Mv dP +
n∑

α=1

Mgα dwα

= −Ms dT + Mv dP +
n∑

α=1

gαMα dxα −
n∑

α=1

gαMαxα/M dM

which is the “molar” Gibbs equation

d(Mg) = −Ms dT + Mv dP +
n∑

α=1

gαMα dxα

= −Ms dT + Mv dP +
n−1∑
β=1

(Mβgβ − Mngn) dxβ (4.296)
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Another more complicated example is connected with a change of functions T, ρα

or T, P, wβ to functions of T, cα (see (4.288)) or T, P, xβ , β, δ = 1, . . . , n − 1 ,
e.g.

Mα yα = Mα ỹα(T, P, wδ) = Mα ỹα(T, P, xδMδ/(Mn +
n−1∑
δ=1

xδ(Mδ − Mn)))

≡ Mα yα(T, P, xδ) (4.297)

where, according to (4.293), (4.291), M = Mn +∑n−1
δ=1 xδ(Mδ − Mn) was used.

With this M the expression (see (4.292))

n∑
α=1

xα

∂Mα yα
∂xβ

=
n∑

α=1

wαM

Mα

Mα

n−1∑
δ=1

∂ ỹα
∂wδ

∂xδMδ/(Mn +∑n−1
δ=1 xδ(Mδ − Mn))

∂xβ

= M
n−1∑
δ=1

(
n∑

α=1

wα

∂ ỹα
∂wδ

)
∂xδMδ/(Mn +∑n−1

δ=1 xδ(Mδ − Mn))

∂xβ

= 0 β = 1, . . . , n − 1 (4.298)

is zero because of “specific” Gibbs-Duhem equation (4.263). But results (4.298) are
Gibbs-Duhem equations in molar units.

From the “molar analogy” of (4.211) above we then see also that My =
My(T, P, xδ) and from the derivative of it according to xβ we have (using molar
Gibbs-Duhem equations (4.298))

∂My

∂xβ

= Mβ yβ − Mnyn β = 1, . . . , n − 1 (4.299)

which is a molar analogue of (4.270). From these (by multiplication with xβ and
summing) we obtain a molar analogue of (4.269)

Mnyn = My −
n−1∑
β=1

xβ

∂My

∂xβ

(4.300)

By a similar means as in these examples, it may be proved that all thermody-
namic relationships mentioned so far have their counterpart in molar units used in
thermochemistry of mixtures.

At the end, we summarize the results of the model of a reacting mixture of fluids
with linear transport properties from Sects. 4.5 and 4.6 (properties such as kinemat-
ics, stoichiometry and balances of mass, momentum and their moment, energy and
entropy inequality are as in Sects. 4.2, 4.3 and 4.4). Constitutive equations, their
properties and final form of entropy production are given in the end of Sect. 4.5
(from Eq. (4.156)), further thermodynamic quantities and properties are given at the
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beginning of Sect. 4.6 (up to Eq. (4.217)). But then we use only classical partial ther-
modynamic quantities fulfilling Gibbs-Duhem equations (Sect. 4.6 from Eq. (4.263))
which may be calculated by (4.269), (4.270) from corresponding properties of mix-
ture; also corresponding molar description is presented. All these relations are valid
in all equilibrium and non-equilibrium situations, (4.283)–(4.287) are valid in a uni-
form system.

Similarly as in preceding models (cf. Sect. 1.1, Rems.6, 9, 8, 42 in Chaps. 2, 3,
respectively) we exclude unusual situations by regularity conditions. Even though
some exclusions are similar to those for pure materials and possible in (especially
non-reacting) mixtures (e.g. disintegration of real fluidmixture tomore phases which
is outside of ourmodels), the situation ismuchmore complicated in chemical reacting
mixtures because of non-linearity of chemical reaction rates in our model (transport
phenomena are linear as in pure fluid of Sect. 3.7).

Regularity conditions (assumptions) 1, 2, 3 are chosen as follows:

1. Matrices of quadratic forms in (4.170), (4.180) are positive definite.
This regularity means among others that transport coefficients in (4.181), (4.182)
are only positive.

2. Matrices of derivatives ∂ r̂α/∂ργ of function (4.156) (α, γ = 1, . . . , n) are
regular.19

Then the matrix of derivatives ∂ Ĵp/∂ργ has (maximal) rank n − h. Here the
chemical reaction rates are Jp = Ĵp(T, ργ ), (see (4.179)) p = 1, . . . , n − h is
the number of independent chemical reactions chosen for description (any other
reaction is their linear combination) and α, γ = 1, . . . , n is the number of con-
stituents.

19 Regular (quadratic) matrix means that its determinant is non-zero. Assertions in conditions 2, 3
about ranks n − h (number of independent chemical reactions, see Sect. 4.2) follow with the use
of Lemma: product of quadratic regular matrix with rectangular matrix of maximal rank has also
this maximal rank (this follows from Sylvester’s inequalities for rank of matrix product, see [134,
13.2.7]).
To prove assertion in regularity property 2 we make the derivative of (4.45) using (4.26)

∂ Ĵp
∂ργ

=
n∑

α=1

(
n−h∑
r=1

gpr P
rα

)
∂(r̂α/Mα)

∂ργ

Namely, by Lemma, the matrix in great parentheses has rank n − h because such a rank has
both metric tensor gpr and rectangular matrix of stoichiometric coefficients Prα (because chemical
reactions chosen for description are independent, cf. Sect. 4.2). This ismultiplied by lastmatrix n×n
which is regular (as matrix product of regular diagonal matrix (with non-zero 1/Mα) and regular
∂ r̂α/∂ργ ). Therefore, again by the Lemma, it follows the rank n − h for ∂ Ĵp/∂ργ . Analogously,
assertion 3 about the rank follows from derivative of (4.176) with (4.172)

∂ Â p

∂ργ

= −
n∑

α=1

P pα ∂(Mα ĝα)

∂ργ

Namely, latter derivatives form a regular matrix (product of regular diagonal matrix (with non-zero
Mα) and regular ∂ ĝα/∂ργ has rank n − h. According to the Lemma the matrix ∂ Â p/∂ργ has rank
n − h.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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3. Derivative (heat capacity, cf. (4.357), Sect.A.1) ∂ û/∂T is non-zero and thematrix
of derivatives ∂ ĝα/∂ργ of function (4.161) (α, γ = 1, . . . , n) is regular. In
Sect. 4.7, we show that this property follows from stability, see (4.362).

Then it follows that the matrix of derivatives ∂ Â p/∂ργ of corresponding affinities
Ap = Â p(T, ργ ) (following from (4.176), (4.172), (4.161)) has (maximal) rank
n − h.

Adding these regularities to our model of reacting fluid mixture with linear trans-
port properties we formulate the most usable model called the regular linear fluid
mixture. This model will be used in the remaining part of this book: in the discussion
of equilibria and their stability Sect. 4.7 (condition 3. here follows from this stability),
in chemical kinetics Sect. 4.9 and transport phenomena in Sect. 4.10.

As in the study of any model, we assume for simplicity that our model is valid
at any values of the independent variables of its constitutive equations, e.g. at all
positive temperatures and densities. Again, such behaviour is not fulfilled in reality
and in fact this limits the range of application of such a model (cf. difference between
real material and its mathematical model in Sect. 2.3).

From themodel of (chemically) reacting (non-simple)mixture of fluidswith linear
transport properties simpler models may follow, e.g. the non-reacting mixture (where
(4.15) is valid identically and regularity 2. plays no role), the incompressible fluid
mixture (which should have similar properties as incompressible fluid from the end
of Sect. 3.7.) or the simple mixtures (where density gradients are not a priori present
in constitutive equations, see below (4.129) in Sect. 4.5). These simplified models
will be thoroughly discussed in Sect. 4.8.

Summary. This section demonstratesmainly the relationships between ourmodel
of linear fluid mixture and classical chemical thermodynamics and investigated
applicability of classics out of equilibrium. The Gibbs equations and the Gibbs-
Duhem equation were obtained in specific quantities, cf. (4.201)–(4.206), (4.207),
respectively, and are thus valid in non-equilibrium—in other words the local equi-
librium was proved in this model. Alternative independent variable widely used in
classical thermodynamics, i.e. the (thermodynamic) pressure, can be introduced as
indicated in (4.214) but this needs a proof of invertibility of pressure as a func-
tion of volume which will be part of the subsequent section. However, introducing
the pressure among independent variables disturbed the total harmony with classical
thermodynamics as shown in (4.219) except the chemical potentials. This dissonance
was remedied by means of the mixture invariance described in Sect. 4.4. This rather
long procedure presented as the discussion of two Propositions (23.1 and 23.2) ended
with the proof of (4.256) the non-zero value of which in unprimed quantities was
the cause of that dissonance. The theoretical background for the measurability of
partial quantities from measurements of mixture properties and their dependence on
the composition is provided by (4.269) and (4.270) or by (4.273) and (4.274). Before
the end we also made some notes on transfer from “specific” to molar description. At
the end, we added three regularity conditions to exclude some strange situations and
to prepare more detailed study of properties of linear fluid mixture in the following

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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sections. Note also the definitions of thermodynamic pressures (4.186) and (4.187)
and the partial volume (4.188), which were made to obtain the consistent results
described in this section.

4.7 Equilibrium in the Linear Fluid Mixture

Definition of equilibrium is motivated similarly as in Sects. 1.2, 2.1, 2.2 and 3.8 [39,
52, 53, 56, 79, 98, 142, 143] (for non-linear models, see, e.g. [60, 71, 72]). For
the regular linear fluid mixture model summarized at the end of previous Sect. 4.6,
we define equilibrium by zero entropy production (4.301) as an equilibrium process
going persistently through a unique equilibrium state, which is possible, as we shall
see, if the body heat source is zero (4.303) and at zero rates of chemical reactions
(4.302). By regularity conditions (see 1, 2, 3 at the end of Sect. 4.6), we exclude some
unusual processes compatible with zero entropy production. We apply the regularity
conditions on equilibrium states (moreover, regularity condition 3 follows for stable
equilibrium states which will be discussed later in this Sect. 4.7).

In chemically reacting mixture (as different from the non-reacting one) the equi-
librium may be achieved at any temperature T but only at certain densities ρo

γ (given
by chemical equilibrium, see below (4.311)). We use sometimes the superscript o to
denote the equilibrium values (because most quantities in this Sect. 4.7 are those of
equilibrium we use o only for stressing this).

In the model of regular linear fluid mixture of Sects. 4.5 and 4.6 we define every-
where and permanently the equilibrium by zero entropy production

σ = 0 (4.301)

and by zero chemical reaction rates rα of all constituents (and therefore also zero of
all Jα and Jp by (4.26), (4.45))

roα = 0, Jαo = 0 α = 1, . . . , n, Jop = 0 p = 1, . . . , n − h (4.302)

Body heating is assumed to be excluded

Q = 0 (4.303)

We add the regularity assumptions 1, 2, 3 as they are formulated in the regular
model at the end of previous Sect. 4.6; moreover, they mostly concern an equilibrium
state and are used in it in this Sect. 4.7.

In a non-reacting mixture equations (4.302) are valid identically and regularity 2
plays no role.Moreover, aswe showbelow in this Sect. 4.7, regularity 3 at equilibrium
follows (even inmore precise formwith both ∂ û/∂T and determinant ∂ ĝα/∂ργ being

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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positive, see (4.357), (4.362)) from properties which assure that the equilibrium is
stable (this concerns non-reacting mixture, too).20

This definition of the equilibrium process has the following consequences: in
equilibrium it follows from (4.301) and (4.168) that

�1 = 0 (4.304)

�2 = 0 (4.305)

and from (4.302) (see (4.178)) we have zero production of entropy by chemical
reactions �0 (chemical equilibrium (4.183))

�0 = 0 (4.306)

From (4.306), (4.305) it follows that in equilibrium the condition (4.184) is
fulfilled

�pα = 0 α = 1, . . . n (4.307)

i.e. the (measurable) pressure in a chemically reacting mixture in (chemical) equi-
librium is the same as the thermodynamic pressure (similarly for partial pressures,
see (4.186), (4.187)); cf. end of Sect. 4.5. In a non-reacting mixture, the (4.307) is
valid always, cf. Sect. 4.8.

But moreover we can see from (4.178) and (4.306) that �0 has a minimum in
equilibrium and therefore, because �0 = �̂0(T, ργ ) , γ = 1, . . . n (as follows from
functions Jp = Ĵp(T, ργ ) and Ap = Â p(T, ργ ) noted in regularity conditions 2, 3
at the end of Sect. 4.6), the necessary and sufficient conditions of minimum are

d

dλ
�̂0(T

o + λβ, ρo
γ + λαγ )|λ=0 = 0 (4.308)

d2

dλ2
�̂0(T

o + λβ, ρo
γ + λαγ )|λ=0 ≥ 0 (4.309)

Here ρo
γ , T o are equilibrium values of densities and temperature at which (4.306)

is valid, λ is a real parameter and αγ , β are arbitrary constants. Calculation of (4.308)
gives21

20 Defining here equilibriumby zero entropy production (4.301)with simultaneous zero of chemical
rates (4.302) (together with regularity assumptions 1–3 giving simultaneously zero equilibrium
affinities (4.311)) we exclude some (see (4.178)) rather pathological situations, giving zero entropy
production (4.301) like non-zero chemical rates at zero affinities or perpendicularity of non-zero
vectors �J and �A in reaction space (possible only formore chemical reactions).Ourmodel of chemical
equilibria excludes also by regularity 2 the case of “frozen reactions”where, even chemical affinities
are non-zero, the chemical rates are zero (probably rather negligible in such observed cases) and it
excludes, in accord with regularity 3, the instabilities of mixture (see below in this Sect. 4.7).
21 We proceed similarly as in Sect. 1.2 , e.g. in (2.29), (2.31). Inserting (4.178) into (4.308)

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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n−h∑
p=1

(
∂ Ĵp
∂ργ

)o

Apo +
n−h∑
p=1

Jop

(
∂ Â p

∂ργ

)o

= 0 γ = 1, . . . , n (4.310)

As follows from the assertions in regularity assumptions 2, 3 (see end of Sect. 4.6
and Rem. 19), the matrix of both derivatives in (4.310) has the (maximal) rank n− h
(equilibrium values are stressed here by the zero superscript, i.e. these are the val-
ues of corresponding quantities at ρo

γ , T o). Therefore using now zero reaction rates
(4.302) in the result (4.310) we obtain a system of homogeneous linear equations
for n − h equilibrium affinities with the matrix of rank n − h formed by the equilib-
rium values of derivatives ∂ Ĵp/∂ργ . Therefore chemical affinities of independent
chemical reactions (and, consequently, also of dependent reactions) must be zero in
equilibrium

�Ao = �0, Apo = 0 p = 1, . . . , n − h (4.311)

The zero values of chemical affinities in equilibrium is the most important con-
dition of chemical equilibrium. Namely

Apo = Â p(T, ρo
γ ) = 0 p = 1, . . . , n − h, γ = 1, . . . , n (4.312)

permit to calculate, through chemical potentials (see (4.176)), n−h relations among
n equilibrium values of densities ρo

γ at given T = T o (in practice, by using so called
equilibrium constants, see Sect. 4.9).

Both properties (4.302), (4.311) are valid in the equilibrium simultaneously.
Namely, both of them are equivalent: assume (4.311), then�0 has againminimal zero
value and therefore (4.310) is valid. Because the matrix of (equilibrium) derivatives
∂ Â p/∂ργ has rank n−h (as follows from regularity 3, cf. Rem. 19) the zero reaction
rates (4.302) of all reactions follow.

Note that from the split of the vector of chemical potential to the vector of affinities
and the vector �B (4.174) (or (4.177) in component form), we obtain in equilibrium

(Footnote 21 continued)
and differentiating we have

d

dλ
�̂0(T

o + λβ, ρo
γ + λαγ )

= β

⎛
⎝n−h∑

p=1

∂ Ĵp
∂T

Ap +
n−h∑
p=1

Jp
∂ Â p

∂T

⎞
⎠+

n∑
γ=1

αγ

⎛
⎝n−h∑

p=1

∂ Ĵp
∂ργ

Ap +
n−h∑
p=1

Jp
∂ Â p

∂ργ

⎞
⎠ (a)

Becauseβ, αγ are arbitrary constants, the expressions staying at themmust be zero at λ = 0 ((4.308)
is valid in equilibrium). Such expressions at αγ give result (4.310). Zero equilibrium value of the
expression at β is then a trivial result of (4.302) and (4.311).

Sufficient condition of the minimum (4.309) may be calculated from (a). It gives some limits on
equilibrium values of derivatives of functions Jp = Ĵp(T, ργ ), Ap = Â p(T, ργ ). We omit them
here for simplicity; moreover practically the same limitation is given by (e) of Rem. 22 obtained
analogously from (b) and (c) there.
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by (4.311)

�μo = �Bo in components μo
α =

h∑
σ=1

BσoSσα α = 1, . . . , n (4.313)

i.e. the vector �B is equal to the vector of chemical potential in equilibrium com-
pletely lying in the subspaceW and composed from equilibrium values of chemical
potentials (see Sects. 4.2 and 4.5). Indeed, inserting (4.313) into the definition of
affinity (4.176) we obtain (4.312) because of (4.41), i.e. the projection of a chemical
potential vector into the reaction space V , i.e. the chemical affinity, is zero.22 See
examples in Sect. 4.9.

It is also necessary to distinguish between the equilibrium and the steady state
(see, e.g. [144, 145]). The latter essentially embraces non-equilibrium chemical
reaction processes where reaction rates of only some constituents are zero and do
not contribute to the (non-zero) entropy production.

22 We can also start the (chemical) equilibrium definition with (4.311) (“strong” equilibrium instead
of “weak” one used by (4.302) here, cf. [12, 13, 56, 79]). From (4.178), (4.179) it follows

�0 =
n−h∑
p=1

Ap J̄p(T, μγ ) =
n−h∑
p=1

Ap J̃p(T, Bσ , Ar ) ≡ �̃0(T, Bσ , Ar ) ≥ 0 (a)

The function �̃0 thus defined achieves zero value and also minimum in equilibrium (4.311) and
therefore (cf. (4.308), (4.309) and similar consideration as in Rem. 21)

d

dλ
�̃0(T

o + λβ, Bσo + λεσ , λAr )|λ=0 = 0 (b)

d2

dλ2
�̃0(T

o + λβ, Bσo + λεσ , λAr )|λ=0 ≥ 0 (c)

where λ is the real parameter, β, εσ , Ar (σ = 1, . . . , h; r = 1, . . . , n − h) are the arbitrary real
numbers and T o, Bσo are the equilibrium values of temperature and �B, see (4.313). Calculation of
(b) with the use (4.179), (4.177), (4.313) gives

n−h∑
p=1

Ap J̃p(T
o, Bσo, Aro = 0) =

n−h∑
p=1

Ap Jop = 0 (d)

because the equilibrium value of reaction rates is obviously Jop = J̃p(T o, Bσo, Aro = 0) at such
“strong” equilibrium in which, by arbitrariness of Ap , (d) gives the zero reaction rates Jop = 0
(4.302). Calculation of (c) gives (among others; β, εσ may be chosen zeros)

n−h∑
p=1

n−h∑
r=1

(
∂ J̃p
∂Ar

)o

Ap Ar ≥ 0 (e)

where derivatives are taken in equilibrium, i.e. at T o, Bσo, Aro = 0.Result (e) is valid in equilibrium
of this section because of the simultaneous validity of (4.311), (4.302).
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From the result (4.304) and from the regularity assumption 1 (the positive definite
quadratic form is zero only if its variables are zero) it follows that in equilibrium (see
(4.306), (4.307), (4.169), (4.170))

trDα = 0 α = 1, . . . n (4.314)

◦
Dα= 0 α = 1, . . . n (4.315)

uβ = o β = 1, . . . n (4.316)

g = o (4.317)

From (4.314), (4.315) and (4.88), we have in equilibrium

Dα = 0 α = 1, . . . n (4.318)

Therefore in the equilibrium (with restrictions on equilibrium densities in the
reacting mixture) the constitutive equations of the regular linear fluid mixture (cf.
end of Sect. 4.6) are:

• constitutive equations for rates (4.156) are equal to zero (4.302), thermodynamic
constitutive equations (4.157)–(4.159) and relations (4.164), (4.165) remain valid,

• heat flux (4.166) is zero in equilibrium (cf. (4.316), (4.317))

qo = o (4.319)

• interaction force (4.137) is in equilibrium

koβ =
n∑

γ=1

ωo
βγ h

o
γ β = 1, . . . , n − 1 (4.320)

where ωo
βγ is given by (4.165) (with equilibrium values),

• stress (4.138) is reduced in equilibrium to

To
α = −Po

α 1 α = 1, . . . , n (4.321)

where Po
α are equilibrium values of partial thermodynamic pressures (4.186) (we

use (4.307)–(4.318)).

As follows from (4.316), all constituents have the same velocity in equilibrium
(denoted as v); equilibrium superscript o is usually not used, cf. beginning of this
Sect. 4.7.

v = vα α = 1, . . . , n (4.322)
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Material derivatives (4.3) are all the same because of (4.322), andwe can denote them
by the dot; because of permanency the acceleration is everywhere zero in equilibrium

v̇ = v̀α = o α = 1, . . . , n (4.323)

(namely, the “dot” denotes in this Sect. 4.7 the \α (4.3) which is the same for all
constituents (4.322) in equilibrium, cf. (c) in Rem. 3).

Unique velocity (4.322) means the mixture is moving as a solid body and again
permits to find a frame (similarly as in Sect. 3.8) where velocities are everywhere
and permanently zero for all constituent in this equilibrium (see (4.318) and Killing’s
theorem (4.9)).

v = vα = o α = 1, . . . , n (4.324)

and we consider such a frame in equilibrium in the following. This may be the non-
inertial one with inertial force (4.12). Therefore the material derivative (denoted by
the dot, cf. (4.323)) may be identified with partial time derivatives ∂/∂t (at constant
place).

The equilibrium valid everywhere in the mixture is also permanent in time as
follows: by assumptions of zero body heating and chemical reaction rates (4.303),
(4.302) and (4.301), (4.21), (4.90), the balances (4.18), (4.20), (4.58), (4.63), (4.82),
(4.84) have the following forms in equilibrium (balance (4.70) is trivially satisfied
by (4.321)), α = 1, . . . , n

ρ̇α = 0 (4.325)

ρ̇ = 0 (4.326)

gradPα = ρα(bα + iα) + kα (4.327)

(permanence of bα + iα is necessary; see above (4.334))

n∑
α=1

kα = o (4.328)

u̇ = 0 (4.329)

ṡ = 0 (4.330)

Also from (4.329), (4.325), (4.213) (for y = u) and assumption 3 (non-zero heat
capacity) we have in equilibrium

Ṫ = 0 (4.331)

Therefore, all properties are not changed in time in equilibrium but some of
them, specifically pressures including the total one (see (4.187) and (4.323), (4.327),
(4.328)), may change in space

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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gradPo =
n∑

α=1

ρo
α(bα + iα) (4.332)

Similarly from (4.327), (4.320), (4.317), (4.328) and (4.208), (4.209) (for space
gradient) we obtain

gradgoα = bα + iα (4.333)

Equations (4.332), (4.333) are starting equations for deducing barometric and Sved-
berg formulae or calculation of chemical equilibrium in gravitational or centrifugal
fields [3, 79].23

We can see from (4.333), (4.213) (for yα = gα), (4.317) and regularity assumption
3, that density gradients hα are not zero in the equilibrium state if bα + iα are not
zero. While temperature T is a constant fixed everywhere and permanently in equi-
librium, densities ρα may change in space but are fixed in time as well as properties
depending on them (like pressures) and also ∂hα/∂t = o, ∂g/∂t = o, etc. Then from
(4.327),(4.320) it follows (similarly as in Sect. 3.8) that body and/or inertial forces
bα + iα must be constant in time in equilibrium. If they have potentials �α , they do
not change in time

bα + iα = −grad�α ,
∂�α

∂t
= 0 α = 1, . . . , n (4.334)

These forces must fulfil in equilibrium (because obviously gradApo = o)

n∑
α=1

(bα + iα)MαP
pα = o p = 1, . . . , n − h (4.335)

as follows from (4.311), (4.333), (4.176), (4.172). Known gravitational and centrifu-
gal forces have these properties (cf. (3.104)) because they are independent of α (cf.
(4.12), (4.322), Rem. 13), i.e. (4.335) is satisfied by (4.42) (even in reactions of

23 Namely, (4.332) and then (4.333) may be written (see (4.213), (4.267), (4.331); equilibrium
superscript o is omitted) in (time constant) gravitation or centrifugal fields which are independent
of constituents bα = g or iα = i respectively (g is gravity acceleration, i is given by (4.12))

gradP = ρ(g + i)

n−1∑
β=1

∂ g̃α

∂wβ

gradwβ = (1 − ρvα)(g + i) α = 1, . . . , n

In an ideal binary solution, defined by (4.437), we obtain the Svedberg formula for measuring
of molar mass M1 (usually of macromolecular substance) in centrifuge with i above (see (4.292)–
(4.294))

(1/x1)gradx1 = (M1/RT )(1 − ρv1)i

where v1 of the ideal solution may be interpreted as specific volume of pure constituent 1 (cf. below
(4.440)).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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ions the electrostatic forces fulfil (4.335) by preservation of electrical charge in such
reactions).

An important special case is the uniform equilibrium in the mixture. This is the
case of the inertial frame and with zero body forces (iα = o (3.48), bα = o) with
(4.324), (4.323). Then from (4.332), (4.333) gradPo = o, gradgoα = o, and because of
regularity (assumption 3) density gradients are also zero (besides (4.317)). Therefore
in the uniform equilibrium we obtain all quantities not changing in time and space
(thermodynamic properties are given by (4.283), (4.287)). Moreover, by (4.320),
(4.328) we have

koα = o α = 1, . . . , n (4.336)

in uniform equilibrium.
Definition of equilibrium here is difficult to achieve in practice because of mole-

cular fluctuations; in fact the stability of equilibrium, i.e. its return back after its
disturbance, must be achieved and thus the equilibrium may be realized. The prob-
lem of the stability of equilibrium will be discussed in the remaining part of this
Sect. 4.7 proceeding similarly as in Sect. 3.8, although the problem is more compli-
cated mainly due to chemical reactions, cf. [39, 98, 143, 146, 147].

Similarly as in Sect. 3.8 (cf. postulate of dynamical stability under isolation
below (3.245)) our postulate is that the (body from) mixture under isolation, i.e.
not exchanging work, heat or mass with the environment and without the presence
of body forces (iα = o,bα = o) develops into the unique final uniform equilibrium
state with time fixed properties with its entropy having achieved in this equilibrium
state its maximal value (mixture body has the whole energy, volume and mass fixed,
zero reaction rates, Q = 0 inside and q = o, vα = o on the boundary).

This additional postulate seems physically plausible (note that from (4.83) applied
to the whole mixture body, it follows the growth of entropy only).

Our programme will thus be completed in the remaining part of Sect. 4.7 by
deduction, starting with this postulate, of the additional properties of the discussed
constitutive model, namely stability conditions (4.357), (4.358), (4.359) (or (4.360),
(4.362)), which assure the stability of the equilibrium state. At the end, reversely,
assuming these stability conditions, we try to find the time development of some
non-equilibrium states into corresponding equilibrium states, cf. (4.387), (4.400).

Therefore, using the just formulated postulate in the isolated mixture from our
material model—the regular linear fluid mixture (cf. end of Sect. 4.6), we expect
that an arbitrary perturbed state (obtainable, say, by molecular fluctuations) decays
back to the final uniform equilibrium state withmaximum entropy [39, 146] in which
Eqs. (4.303), (4.302), (4.316)–(4.319), (4.321)–(4.326), (4.328)–(4.331), (4.336) are
valid and gradients of pressures and chemical potentials are zero (see (4.327), (4.332),
(4.333)). Let us denote by mo the whole mass of such an equilibrium mixture, by
mo

α the mass of each constituent, by V o its total volume, by Eo its total energy and
by So its total (and maximum) entropy. Therefore (cf. (3.240)–(3.242))

V o = vomo (4.337)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Eo = uomo (4.338)

mo
α = wo

αm
o α = 1, . . . , n (4.339)

So = somo (4.340)

where vo, uo, wo
α, so, are constant equilibrium values of the specific volume (4.191),

the internal energy (4.90), themass fraction (4.22) and the entropy (4.91) respectively.
Equations (4.339) are not independent: in a non-reactingmixture n−1 such equations
are independent by (4.23) and in reacting mixture (with (4.29)) there is an additional
dependence among wα caused by n − h relations (4.311). We also recall that in a
uniform equilibrium mixture the rates of chemical reactions are zero (4.302).

Stability means that an arbitrary perturbed state under isolation decays into a
unique final uniform equilibrium state (4.337)–(4.340) without exchange of heat,
work and mass with the environment in the inertial frame with bα = o and (4.303),
i.e. with vα = o, g = o on the boundary of the (body of) mixture. But now in the
perturbed state v,wα, uα, vα are arbitrary fields but such that the whole volume and
energy are obviously the same constants V o, Eo as in (4.337), (4.338)

V o =
∫
mo

v dm (4.341)

Eo =
∫
mo

n∑
α=1

wα(uα + (1/2)v2α) dm (4.342)

(here dm = ρdv with (4.21), (4.195) (see below (4.191)) and (4.77) are used).
In the perturbed state of a chemically reacting mixture reaction rates are generally

non-zero, but the following relations are valid

n∑
α=1

(Sσα/Mα)mo
α =

n∑
α=1

(Sσα/Mα)

∫
mo

wα dm σ = 1, . . . , h (4.343)

because they express the preservation of atomic substances during the chemical
reactions, cf. Sect. 4.2 (we recall that atomic substances need not be the chemical
elements). Indeed, Eq. (4.343) follow because from (4.14) for mixture with vα = o
on its boundary and from (4.26), (4.30) we have (ραdv = wαρdv = wαdm)

d

dt

(
Eσ

n∑
α=1

(Sσα/Mα)

∫
mo

wα dm

)
= 0 σ = 1, . . . , h (4.344)

i.e. quantities in outer parentheses—the masses of atomic substances with atomic
masses Eσ—are preserved during chemical reactions in the course of decay of this
perturbed state (masses of constituents in them are integrals in (4.344)).
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But (4.343) are trivially satisfied even in a non-reacting mixture because then mo
α

from (4.339) are constants equal to integrals on the right-hand side of (4.343) (see
(4.347) below).

According to (4.83) and (4.91) the entropy S of such an isolated perturbed state
is not greater than the maximum entropy So (4.340) of the final equilibrium state as
we discussed in our postulate above

S ≡
∫
mo

s dm ≤ So (4.345)

and the equality may be expected in the equilibrium state stability of that is tested.
Because of the arbitrariness of the perturbed state, we (similarly as in Sect. 3.8)

choose such a one in which Eqs. (4.341), (4.345) are valid while Eqs. (4.342), (4.343)
are substituted by

Eo =
∫
mo

u dm (4.346)

mo
β =

∫
mo

wβ dm β = 1, . . . , n − 1 (4.347)

i.e. we consider such a perturbed state which has zero velocities of all constituents
and, in reactingmixtures, the masses of all constituents are the same as in the equilib-
rium state tested; this non-uniform perturbed state is not in chemical equilibrium and
generally wβ �= wo

β inside, while in non-reacting mixtures (4.347) are always valid
(instead of (4.343) as we noted above). Of course, during the subsequent approach to
the equilibrium state in an isolated system the velocities need not be zero as equally
the masses of constituents need not be mo

α (but they fulfil (4.343); in (4.347) we
exclude the dependent mass by mo

n = mo −∑n−1
β=1 m

o
β ).

Using this type of perturbed state ((4.349)–(4.351)below) and assuming that each
equilibrium state of a linear fluid mixture with regular response is stable under
isolation (i.e. these perturbed states develop in isolation to the corresponding final
equilibrium state as described above), we prove now that the function (cf. (3.247)
and Rem. 46 in Chap. 3)

s = s̄(u, v, wβ) (4.348)

is strict concave in all equilibrium states (in chemical equilibrium, as different from a
non-reacting mixture, wβ are not all independent). The existence of (4.348) follows
from (4.212) written for s and u, inverting the last one for T (this is possible by
regular response assumption 3 from the end of Sect. 4.6) and by inserting into the
first one; then (4.22), (4.23) and (4.195) are used.

Proceeding analogously as in Sect. 3.8, we define the perturbed state with (4.341),
(4.346), (4.347), (4.345) as follows: it is composed from two parts (denoted by
superscripts a, b ) with masses αmo and (1 − α)mo (where 0 < α < 1;mo is
the mass of mixture) with different, but in these parts uniform, specific energies
ua, ub, volumes va, vb and mass fractions wa

β,wb
β and entropies sa, sb given by

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(4.348). Using such division in (4.341), (4.346), (4.347), (4.345) and comparing
with (4.337)–(4.340) we obtain (just the assumptions giving (4.346), (4.347) are
important)

αva + (1 − α)vb = vo, αua + (1 − α)ub = uo (4.349)

αwa
β + (1 − α)wb

β = wo
β β = 1, . . . , n − 1 (4.350)

αs̄(ua, va, wa
β) + (1 − α)s̄(ub, vb, wb

β) < s̄(uo, vo, wo
β) (4.351)

According to the theorem of concave functions (Appendix A.3(i)), results (4.349)–
(4.351) show that function (4.348) is strict concave.Therefore, according toAppendix
A.3(ii), the matrix of its second derivatives in equilibrium is (equivalently) negative
definite i.e. this matrix multiplied by −1 is positive definite. Then, according to the
known theorem valid for such positive definitematrices [134, Sects. 13.5, 13.6], [148,
Sect.1.29], its principal minors must be equivalently positive at equilibrium values
uo, vo, wo

β .
Then, according to the known theorem valid for such positive definite matrices

[134, Sects.13.5–13.6], [148, Sect.1.29], its principal minors must be equivalently
positive. Writing these determinants as jacobians and using (as follows from (4.203),
(4.348))

∂ s̄

∂u
= 1

T
(4.352)

∂ s̄

∂v
= P

T
(4.353)

∂ s̄

∂wβ

= −gβ − gn

T
β = 1, . . . , n − 1 (4.354)

the following determinants are positive (independent variables are here u, v, w1, . . .,
wn−1):

∂ − (1/T )

∂u
> 0,

∂(−1/T,−P/T )

∂(u, v)
> 0 (4.355)

∂(−1/T,−P/T, (g1 − gn)/T, . . . , (gk − gn)/T

∂(u, v, w1, . . . , wk)
> 0 k = 1, . . . , n − 1

(4.356)
From these inequalities (4.355), (4.356), the properties of the jacobians and using a
“thermodynamic” way in writing some partial derivatives (see (4.214)) and functions
(4.217), (4.216) (for y = u, v, g respectively) we obtain

∂ ŭ

∂T
≡
(

∂u

∂T

)
v,wβ

= ∂ û

∂T
> 0 (4.357)



4.7 Equilibrium in the Linear Fluid Mixture 219

which may be called the heat capacity at constant volume in mixture (cf. Appendix
A.1),

∂ P̆

∂v
≡
(

∂P

∂v

)
T,wβ

< 0 or
∂ṽ

∂P
< 0 (4.358)

∂(g̃1 − g̃n)

∂w1
> 0, . . . ,

∂(g̃1 − g̃n, . . . , g̃k − g̃n)

∂(w1, . . . , wk)
> 0, . . . ,

∂(g̃1 − g̃n, . . . , g̃n−1 − g̃n)

∂(w1, . . . , wn−1, P)
> 0

(4.359)

Proof (cf. analogous deduction (3.256), (3.257)) Inequalities (4.355) (where allwα

are constants) give

0 <
∂ − (1/T )

∂u
= 1

T 2

(
1/

(
∂u

∂T

)
v,wβ

)

leading to (4.357) (we use (4.212) for y = u, (4.195), (4.23), (4.22)) and

0 <
∂(−1/T,−P/T )

∂(u, v)
= ∂(−1/T,−P/T )

∂(T, v)

∂(T, v)

∂(u, v)

=
(

(−1/T 3)

(
∂P

∂v

)
T,wβ

)(
1/

(
∂u

∂T

)
v,wβ

)

which by (4.357) gives (4.358)1 (and from this following invertibility of (4.214) to
(4.215) also (4.358)2).

Further, from (4.356)

∂(−1/T, −P/T, (g1 − gn)/T, . . . , (gk − gn)/T )

∂(u, v, w1, . . . , wk)

= ∂(−1/T, −P/T, (g1 − gn)/T, . . . , (gk − gn)/T )

∂(−1/T, −P/T, w1, . . . , wk)
.
∂(−1/T, −P/T, w1, . . . , wk)

∂(u, v, w1, . . . , wk)

= (1/T )k
∂(g1 − gn, . . . , gk − gn)

∂(w1, . . . , wk)
.
∂(−1/T, −P/T )

∂(u, v)
> 0 k = 1, . . . , n − 1

from which follows, by (4.355) and T > 0

∂(g1 − gn, . . . , gk − gn)

∂(w1, . . . , wk)
> 0 k = 1, . . . , n − 1

Because here T, P and remaining wβ are constant we obtain (4.359) using (4.216)
for yα = gα . Q.E.D.

Conditions of stability are therefore (4.357), (4.358), (4.359); from the latter it
follows equivalently, by known theorem [134, Sects.13.5–13.6], that matrix n − 1×
n − 1 from elements

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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∂(g̃β − g̃n)

∂wδ

β, δ = 1, . . . , n − 1 (4.360)

is positive definite. Therefore, the determinant of order n − 1 of matrix (4.360) is
also regular, i.e. non-zero, namely positive.

For binary mixture n = 2 it follows from (4.359) and Gibbs-Duhem equa-
tion (4.221) that

∂ g̃1

∂w1
> 0 (4.361)

From these results, we obtain further consequences (again valid in equilibrium
not stressed by index for brevity). Namely, we show that from regularity of matrix
(4.360) it follows that matrix n × n with components

∂ ĝα

∂ργ

α, γ = 1, . . . , n (4.362)

is regular (i.e. its determinant of order n is non-zero, even positive), see results (4.375)
below, cf. assumption 3 at the end of Sect. 4.6.24 Indeed, the jacobian formed from
(4.362) may be transformed as follows

∂(g1, . . . , gn)

∂(ρ1, . . . , ρn)
= ∂(g1, . . . , gn)

∂(w1, . . . , wn−1, P)

∂w1, . . . , wn−1, P)

∂(w1, . . . , wn−1, v)

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)

(4.363)

and its regularity follows, because all three jacobians here are non-zero as we prove
now:

We start with the last jacobian in (4.363) which may be calculated as follows

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2) = −1/ρn+1 = −vn+1 < 0 (4.364)

because ρ, v are both positive. Namely, this jacobian contains derivatives

∂wδ

∂ρα

= 1

ρ
(δδα − wδ),

∂v

∂ρα

= −ρ−2 α = 1, . . . , n , δ = 1, . . . , n − 1 (4.365)

obtained from functions wδ = ρδ/
∑n

γ=1 ργ or v = 1/
∑n

γ=1 ργ of ρ1, . . . , ρn (cf.
(4.21), (4.23), (4.195)). Inserting (4.365) into (4.364) and rearranging we have

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2)J (4.366)

where determinant J (of order n) is defined as

24 Cf. [56, Sect. 24]; the unsuccessful proof of even positive definiteness of (4.362) in this reference
obviously needs further assumptions.
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J ≡

1 − w1 −w1 . . . −w1 −w1
−w2 1 − w2 . . . −w2 −w2

:
:

−wn−1 −wn−1 . . . 1 − wn−1 −wn−1
1 1 . . . 1 1

(4.367)

Now,we prove that this n × n determinant J is equal to 1, see (4.370). Namely, n−
1 negative mass fractions (−1)n−1w1.w2.....wn−1 we write before this determinant
writing in its diagonal 1 − 1/wk with k = 1, . . . , n − 1 (remaining elements are 1)
and from each line we substract the following line; the last line contains 1 only.

Expanding with respect to the last column we obtain J with determinant of order
n − 1

J = (−1)n−1w1.w2.....wn−1

−1/w1 1/w2 0 . . . 0 0
0 −1/w2 1/w3 . . . 0 0

:
:

0 0 0 . . . −1/wn−2 1/wn−1
0 0 0 . . . 0 −1/wn−1

(4.368)

From the last line, we exclude −1/wn−1 before determinant and develop according

its last line. The order of determinant breaks down (to n − 2) and we obtain

J = (−1)n−1w1.w2.....wn−1
(−1)

(wn−1)

−1/w1 1/w2 0 . . . 0 0
0 −1/w2 1/w3 . . . 0 0

:
:

0 0 0 . . . −1/wn−3 1/wn−2

0 0 0 . . . 0 −1/wn−2

(4.369)

This procedure (excluding −1/wn−2 and developing the last line again; order of
determinant breaks down) is repeated several times. So we obtain

J = (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w4
(−1)n−4

−1/w1 1/w2 0
0 −1/w2 1/w3
0 0 −1/w3

= (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w4.w3
(−1)n−3 −1/w1 1/w2

0 −1/w2

= (−1)n−1 w1.w2.....wn−1

wn−1.wn−2....w3.w2.w1
(−1)n−1 = 1 (4.370)
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Therefore, because of this result (4.370), J = 1, we have from (4.366)

∂(w1, . . . , wn−1, v)

∂(ρ1, . . . , ρn)
= (1/ρ)n−1(−1/ρ2) < 0 (4.371)

which is negative by the positivity of ρ > 0.
The central jacobian in (4.363) is

∂(w1, . . . , wn−1, P)

∂(w1, . . . , wn−1, v)
=
(

∂P

∂v

)
T,wβ

< 0 (4.372)

because the right-hand side of (4.372) is obvious and the negative sign follows from
(4.358).

Ultimately we calculate the sign of the first jacobian in (4.363)

∂(g1, . . . , gn)

∂(w1, . . . , wn−1, P)
= v.

∂(g1 − gn, . . . , gn−1 − gn)

∂(w1, . . . , wn−1)
> 0 (4.373)

Its positivity may be obtained by rearranging the left-hand side by subtracting the
last row of this jacobian from its 1 to n − 1 rows and adding to the last row these
1, . . . , n − 1 rows multiplied by w1, . . . , wn−1 respectively (values of this jacobian
are unchanged by such operations). Then the members of the last row are

∂ g̃n

∂wδ

+
n−1∑
β=1

wβ

∂(g̃β − g̃n)

∂wδ

= 0 δ = 1, . . . , n − 1,
n∑

α=1

wα

∂ g̃α

∂P
= v (4.374)

as follows from Gibbs-Duhem equations (4.221) and (4.267), (4.191), (4.23). Devel-
oping a determinant obtained in this way according to the last row we obtain the
right-hand side of (4.373), which is positive as follows from the important previous
result (4.359) and v > 0.

By these partial results (4.371), (4.372), (4.373) we obtain from (4.363) that the
jacobian

∂(g1, . . . , gn)

∂(ρ1, . . . , ρn)
> 0 (4.375)

is positive and therefore the matrix (4.362) is regular. In other words, the result 3.
from the end of Sect. 4.6 follows from the stability assumed in this section.

Butwe recall that these results are valid in equilibrium, specifically in a chemically
reacting mixture only at (usually special) chemical equilibrium composition (as dif-
ferent from a non-reacting mixture where every composition may be the equilibrium
one).

Therefore, the regularity of matrices (4.360), (4.362) or inequalities (4.357),
(4.358), (4.359), are the stability conditions for the mixture.
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Note that these results are valid not only in a stable reacting mixture in chemical
equilibrium but also in a stable non-reactingmixture. It contains the known result that
the chemical potential of a constituent increases with its concentration, cf. (4.361).

Now we try to show the reversal (similarly as in Sect. 3.8): any state of a regular
linear fluidmixturewith conditions of stability develops under conditions of isolation
to a uniform equilibrium state. That iswe show the dynamical stability under isolation
(and also Gibbs stability) for such a mixture. We note that generally this goal is very
complicated, especially in a chemically reactingmixture. For simplicity we therefore
prove only that the uniform equilibrium state (those given by (4.337)–(4.340)) is a
possible one in which the perturbed state kept permanently in isolation (defined
below) develops asymptoticaly as time goes to infinity [39, 79, 143].

Thus, let us assume to have a regular linear fluid mixture with stability condi-
tions ((4.357), (4.358), and (4.359)) which starts in an arbitrary non-equilibrium
(initial) state held in isolation: there is no exchange of heat, work and mass with
the environment, i.e. permanently Q = 0, iα = o,bα = o (no external or non-
inertial, e.g. centrifugal, forces) through the mixture and on its boundary there is
q = o, vα = o, α = 1, . . . , n (but they may be non-zero inside). Chemical reactions
are going on, i.e. their rates are generally non-zero. From the known initial state we
can calculate the whole energy Eo and volume V o of the mixture by (4.341), (4.342)
which are constant during the further development as well as the constant total mass
mo from the given masses of constituents mα in the initial state

mo =
n∑

α=1

mα (4.376)

We show now that such an initial state asymptotically develops to (a chemical)
equilibrium uniform state (permanent with zero reaction rates) with values of the
specific volume vo and the internal energy uo given by

vo = V o/mo (4.377)

uo = Eo/mo (4.378)

At the same time, the masses mo
α in a non-reacting mixture are equal to mα , i.e. the

equilibrium composition is then given for the independent masses by

wo
β = mo

β/mo β = 1, . . . , n − 1 (4.379)

However in the reacting mixture mo
α need not be equal to mα and wo

β may be cal-
culated as follows (in principle): chemical equilibrium (4.311) may be expressed
in n − h following relations if we use (4.176), (4.172) with (4.213) for yα = gα ,
eliminate T by (4.160)1 (cf. (4.357)) and use (4.22), (4.23), (4.195)

Ap(u, v, w1, . . . , wn−1) = 0 p = 1, . . . , n − h (4.380)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Putting (4.377), (4.378) for u = uo, v = vo in equilibrium (4.380)we can express
n − h mass fractions wα = wo

α as the functions of remaining h mass fractions in
equilibrium; inserting them in (4.343), i.e. in

n∑
α=1

(Sσα/Mα)mowo
α =

n∑
α=1

(Sσα/Mα)mα σ = 1, . . . , h (4.381)

we can calculate the remaining h mass fractions from these h equations (mα are
prescribed) and therefore all (equilibrium) values wo

β may be obtained.
We also recall that in the uniform state in chemical equilibrium (4.380) all rates

(4.302) of chemical reactions are zero, cf. below (4.312).
Because of conditions of stability (4.357), (4.358), (4.359), Eqs. (4.355), (4.356)

are valid (this is, in fact, a reversed proof of the former relations) and therefore a
negative definiteness of the matrix of second derivatives of (4.348) follows. By (iii)
and (ii) in Appendix A.3 we have equivalently for the values uo, vo (4.377), (4.378)
and just calculated (chemical equilibrium) mass fractions wo

β (cf. similar deduction
of (3.260)):

s < so + (u − uo)/T o + (v − vo)Po/T o −
n−1∑
β=1

(wβ − wo
β)(goβ − gon)/T

o (4.382)

where (4.352)–(4.354) were used (remember, equilibrium values are denoted by
zero superscript) and u, v, wβ, s are the values inmixture during the non-equilibrium
process. We add to the right-hand side of (4.382) the non-negative quantity∑n

α=1 wαv2α/(2T o) (kinetic energies multiplied by 1/T o with velocities vα in the
mixture which are zeros in equilibrium) and integrate over the total mass mo. We
obtain

S ≡
∫
mo

s dm ≤
∫
mo

so dm = So = somo (4.383)

where the equality occurs when in all the mixture

u = uo, v = vo, wβ = wo
β (4.384)

(this is the uniform final state with entropy So and constant so, cf. above (4.387)).
The result (4.383) follows because integrals of the terms on the right-hand side in
(4.382) (extended by kinetic energy) are zero: V o, Eo in (4.377), (4.378) is given by
(4.341), (4.342) for any state and the last integral may be calculated as follows

∫
mo

n−1∑
β=1

(
wβ − wo

β

) goβ − gon

T o dm

=
n∑

α=1

goα
T o

∫
mo

(
wα − wo

α

)
dm =

n∑
α=1

(
mα − mo

α

) goα
T o

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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= 1

T o

h∑
σ=1

Bσo

( n∑
α=1

mαSσα/Mα −
n∑

α=1

mo
αSσα/Mα

)
= 0 (4.385)

where we use (4.23). For nonreacting mixture mα = mo
α and these results follow

immediately. For a reacting mixture the decomposition (4.177) for chemical equi-
librium (4.313) has been used with (4.172) where Bσo are the equilibrium values of
�B. Introducing (4.313) into (4.385) and using (4.381), (4.379) we obtain the result
(4.385) and therefore also (4.383).

Before going further, we note that analogously as in Sect. 3.8 (i.e. all velocities
are considered to be zero), we can define the Gibbs stability (under isolation) of the
equilibrium state (usually for a non-reacting mixture) if for every state with (4.341),
(4.346), (4.347), the inequality (4.345) is valid. From this definition, the stability
conditions (4.357), (4.358), (4.359) may be deduced (similarly as shown above).
Reversely, these conditions express the Gibbs stability.

Now, from the entropy inequality (4.83) for our isolated mixture we have (using
entropy production (4.84) and (4.91); dm = ρdv, cf. below (4.342))

Ṡ(t) ≡ d

dt

∫
mo

s dm =
∫
V o

σ dv ≥ 0 (4.386)

Thus during the process the entropy S does not decrease in time (4.386) and has
an upper bound (4.383). As the result, similarly as in Sect. 3.8 in (3.266), it may
be obtained that in uniform equilibrium achieved at t → ∞, the value of entropy
reaches the value So from (4.383) and therefore also equality here is attained

lim
t→∞ S = So (4.387)

In additional simplifying assumptions as in Sect. 3.8weobtain even in this reacting
mixture (cf. Rem. 47 in Chap. 3) analogues of (3.267), (3.268)

lim
t→∞ Ṡ(t) = 0 (4.388)

σ o = lim
t→∞ σ = 0 (4.389)

everywhere and persistently.
This limiting state with So, Eo, V o,m0 has been obtained as a result of time

development from the starting state at t → ∞ in fixed conditions Q = 0, iα =
o,bα = o through the (body of) the mixture and q = o, vα = o on its boundary.
The resulting equilibrium mixture (cf. beginning of this Sect. 4.7) is uniform with
everywhere constant and time independent so, uo, temperature, composition wo

α in
chemical equilibrium with zero affinities and chemical reaction rates. Zero entropy
production σ = σ 0 = 0 (4.389) is valid in any place and permanently and similarly,
by regularity conditions (mainly 1 and 3, see the end of Sect. 4.6 and beginning of

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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this Sect. 4.7), permanently and everywhere (4.302)–(4.319) and (4.321), (4.322) (or
(4.324) in the appropriate frame). Because of no inertial and/or body forces iα =
o,bα = o we have no densities gradients and (4.336) which is limiting equilibrium
state is uniform.

The problem of approaching to a state of chemical equilibrium is solved and
discussed in detail in Edelen’s works [39, 143].

Again as in Sect. 3.8, conditions of stability give the dynamical stability at other
conditions. Thus, similar asymptotic evolution to the equilibriumstate of a chemically
reacting linear fluid mixture in a closed vessel immersed in a thermostat and in an
external gravitation field may be discussed [79, 143].

Here we show another example (cf. Edelen [39] for more details): asymptotic evo-
lution to equilibriumof the linear fluidmixturewith regular equilibrium response, ful-
filling the stability conditions ((4.357), (4.358) and positive definiteness of (4.360))
and placed in a thermostated cylinder closed by piston under constant pressure. That
is, the boundary of this mixture is under constant temperature T o (over the whole
boundary) and its movable part is under constant pressure Po, i.e. the whole stress
(4.94) is

T = −Po1 (4.390)

Further, there are the same velocities of all constituents on the boundary: on its fixed
part vα = o, on its movable part vα ≡ v, α = 1, . . . , n . We assume also that there is
no radiation Q = 0 (4.303) (but exchange of heat by heat flux q through the boundary
is possible), the frame is inertial iα = o and there are no body forces bα = o. Total
mass of the mixturemo is constant but starting masses of constituentsmα can change
by chemical reactions. We intend to show that an arbitrary (non-equilibrium) state of
this mixture develops on conditions just given to an equilibrium state, i.e. that such a
state is stable. The balance of energy (4.77) for such a mixture at these conditions is

˙n∑
α=1

∫
V
(wαuα + wα(1/2)v2α)ρ dv = −Po

∫
∂V

v.n da −
∫

∂V
q.n da (4.391)

where the left-hand side of (4.77) was transformed by Reynolds theorem (3.24) with
the use of material derivative \α (cf. below (4.9)); because V is the same for all
constituents and on its surface vα = v we use a dot instead of \α in the sense used
in this section, see below (4.323). By the same arguments, we can use (3.23), (3.22)
(with ψ = ρv = 1) on the first surface integral in (4.391) to obtain

Po
∫

∂V
v.n da =

˙∫
V
Poρv dv (4.392)

and we put (4.392) to the left-hand side of (4.391). Moreover, we subtract the follow-
ing quantity with constants goα (α = 1, . . . , n) from the left hand side of (4.391):

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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˙∫
V

n−1∑
β=1

wβ(goβ − gon)ρ dv =
n−1∑
β=1

(goβ − gon)

\β∫
V

ρβ dv =
∫
V

n∑
α=1

goαrα dv

= −
∫
V

�Ao. �J dv = 0 (4.393)

which is equal to zero by (4.311) (we use (4.16) in the form (d) in Rem. 3, (4.20) and
the product from (4.178), see (4.174), (4.172), (4.26), (4.36)). Namely, in (4.393),
wβ, ρβ, ρ, �J , V are taken in an arbitrary state (say the initial one) but constants goα
are the chemical potentials in (uniform) chemical equilibrium mixture at its T o, Po

and wo
β (these values characterize the final equilibrium state in the evolution of the

starting state at given conditions as we shall see below). Thus from (4.391), we obtain
(using (4.90))

˙∫
V

ρ(u + Pov −
n−1∑
β=1

wβ(goβ − gon) + (1/2)
n∑

α=1

wαv2α) dv = −
∫

∂V
q.n da

(4.394)
Now we write the entropy balance (4.83) for our mixture with fixed temperature

T o on the boundary (and Q = 0) using entropy production σ and Reynolds theorem
(3.24) (with a dot instead of \α argumenting similarly as below (4.391))

˙∫
V

n∑
α=1

ραsα dv + (1/T o)

∫
∂V

q.n da =
∫
V

σ dv ≥ 0 (4.395)

Multiplying (4.395) by T o, using (4.91) and inserting here (4.394), we obtain

Ṙ(t) = −T o
∫
V

σ dv ≤ 0 (4.396)

where we define the canonical function R = R(t) as follows

R(t) ≡
∫
V

ρ(u − T os + Pov −
n−1∑
β=1

wβ(goβ − gon) + (1/2)
n∑

α=1

wαv2α) dv (4.397)

Now, because of conditions of stability ((4.357), (4.358) and the positive definiteness
of matrix (4.360)), inequality (4.351), and therefore (cf. (A.72), (A.73)) equivalently
(4.382), is valid in a chemical equilibrium state characterized by T o, Po, wo

β (in
(4.382) is so = s̃(T o, Po, wo

β) by (4.217)). This inequality (4.382) may be trans-
formed by (4.197), (4.198), (4.192), (4.23) in the form

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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u − T os + Pov −
n−1∑
β=1

wβ(goβ − gon) > gon (4.398)

Adding to the left-hand side of (4.398) a non-negative quantity (1/2)
∑n

α=1 wαv2α
(velocities are in the place and instant where u, s, v, wβ , etc. are considered), mul-
tiplying by ρ > 0 and integrating over the (material) volume of all the mixture we
obtain

R(t) ≥ Ro ≡ gon

∫
V

ρ dv = gon m
o (4.399)

where the definition of canonical function (4.397) was used (the integral in (4.399)
is obviously the constant mass mo of the whole mixture). Equality in (4.399) occurs
when T o, Po, wo

β and therefore uo, so, vo, etc. and also vα = o for all constituents
are valid throughout the mixture.

Thus we constructed, analogously as in previous examples in Sects. 4.7 and 3.8,
the canonical function R(t) which does not increase (4.396) and has a lower bound
(4.399).

Therefore, similarly as by (4.387) or (3.266), it may be expected that also equality
in (4.399) is achieved at t → ∞.

lim
t→∞ R(t) = Ro (4.400)

This is motivated similarly as (3.266), (3.281), (4.387). Other similar assumptions
(giving (3.267), (3.268), (4.388),(4.389)) may be used to derive similar results
limt→∞ Ṙ = 0 and limt→∞ σ = 0, valid permanently and in all the mixture
(with similar consequences as (4.389)).

We thereforefind that themixture of linear fluidswith regular equilibrium response
achieves a uniform equilibrium statewith T o, Po everywhere in themixture (because
they were such permanently at the boundary) and therefore with wo

β (calculated
analogously as from (4.380) (using T, P, wβ as independent variables), (4.381)) and
moreover with vα = o in all the mixture (because this was permanently held on the
part of its boundary).

Summary. This section analyses the equilibrium in the mixture of linear flu-
ids equipped with the regularity condition introduced in the preceding section. The
equilibrium was defined by zero entropy production, zero reaction rates and exclud-
ing the body heating, cf. (4.301)–(4.303), respectively. The entropy production or its
parts given in Sect. 4.5 reach also aminimum in such equilibrium. Fromall these equi-
librium characteristics, several important results can be derived. Chemical affinities
of independent reactions are zero in equilibrium, cf. (4.312). The remark 22 contains
an important restriction on rates of these reactions, the relation (e), aswill be shown in
Sect. 4.9. The constitutive equations which are changed in equilibrium are shown by
(4.319)–(4.321), other remained unchanged, viz. (4.157)–(4.159). The equilibrium
is permanent in time as shown on page 213 but the space changes are not excluded,
unless the equilibrium is uniform, see pages 213–214. Most of this section is devoted

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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http://dx.doi.org/10.1007/978-3-319-02514-8_3
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to the analysis of stability of equilibrium. The dynamical stability is postulated on
page 215 and the stability per se on page 216. The main results of the analysis of
equilibrium are as follows: There is an upper—equilibrium—bound on entropy, see
(4.345), and entropy as a function (4.348) is strictly concave; see also (4.383) and
(4.386). The conditions of stability were derived in the form of (4.339)–(4.359). The
condition (4.375) proves the regularity of the matrix (4.362) which was only sup-
posed in previous section. Similarly, the conditions (4.358) prove the invertibility of
the specific volume as a function of pressure and justify the introduction of pressure
among independent variables which was done also in preceding section. Note that
all these regularity conditions are valid in stable mixtures only, i.e. mixtures with
stable equilibrium. This section concludes with the example analysing the approach
to equilibrium of linear fluid mixture with regularity conditions placed in a ther-
mostated cylinder with piston under constant pressure. The evolution to equilibrium
is described by the canonical function defined in (4.397), see (4.396), (4.398), and
(4.400).

4.8 Special Cases of Linear Fluid Mixtures. Chemical
Potentials and Activities

Here we discuss some special cases of the (reacting, non-simple) fluid mixture with
linear transport properties of Sect. 4.1–4.7 which may be often obtained by simpli-
fication of this model [16, 61, 65, 149–151]; simplified models for pure fluids were
also discussed in Sects. 3.6–3.8. But simplification must be done carefully, e.g. the
expression for entropy production should give additional results by admissibility,
cf. end of Sect. 3.6, Rem. 25.

In this Sect. 4.8 we discuss also the results concerning chemical potentials and
activities, studiedmainly by classical equilibrium thermodynamics of mixtures [129,
138, 141, 152]. These are also valid in our models, among others in non-equilibrium
(e.g. in transports or/and chemical reactions), because of the validity of local equi-
librium, cf. Sect. 4.6.

While in the previous sections the difference between pure constituent andmixture
was given by separated Chap.3 and in this chapter (e.g. g in Sect. 3.7 concerns pure
constituent (3.205)while in Sect. 4.6 the same symbol g concerns themixture (4.192))
in the followingwe use both concepts together and thereforewe use (namely in places
where misunderstanding is possible) the following indexation:

• means the pure fluid
0 means the pure ideal gas (note the difference from the equilibrium value o)
s denotes the standard value or state (specified below, e.g. � in (4.468))

Therefore, e.g. g or gα is the Gibbs specific energy of the mixture or of constituent
α in the mixture respectively, while g• or even g•

α both are the same Gibbs specific
energy of pure fluid (gas or liquid); by index α we only stress that we consider (in this

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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case pure) constituent α. Moreover, Mg• = μ• = μ•
α = Mαg

•
α is the molar Gibbs

energy of the pure constituent α with the molar mass M = Mα . We also often write
for brevity xα = 0, xα = 1, P = 0, instead of limits xα → 0, xα → 1, P → 0,
etc. (cf. non-zero assumption of all densities at the beginning of Sect. 4.2), e.g. the
(practically) pure constituent 1 follows from a binary mixture if x2 → 0, x1 → 1,
(the presence of 2 is negligible).

(i) Non-reacting Mixture of Non-simple Linear Fluids
In this mixture, zero chemical reactions rates (4.15) are valid identically for all
constituents

rα ≡ 0 α = 1, . . . , n (4.401)

Therefore, the expressions containing rα are eliminated from the results of Sect. 4.5–
4.7. We note only that in a non-reacting mixture equations (4.184) are valid and
therefore identically (see (4.186))

Pα ≡ pα α = 1, . . . , n (4.402)

i.e. the thermodynamic pressure P (4.187) is measurable through (4.94), (4.138)
in principle. In the non-reacting mixture, all transport coefficients form positive
semidefinite matrices, i.e. besides (4.181) we have instead of (4.182)

νββ ≥ 0 (4.403)

Equilibrium discussions are more simple as was noted in Sect. 4.7; e.g. regularity
(giving usual stability of equilibrium) demands inequality only in (4.403). For the
case n = 1 we recover the results for the single linear fluid of Sect. 3.6.

(ii) Incompressible Fluid Mixture [104, 153]
which, as may be expected, should have similar properties (3.215), (3.216) as the
incompressible fluid discussed at the end of Sect. 3.7. But the situation is not so simple
because of the dependence on composition. Namely, using the Müller’s concept [18]
of incompressibility as independence of properties on pressure, elimination of the
pressure P from the independent variables T, P, w1, . . . , wn−1 (cf. (4.279), (4.280))
gives, from (4.282), ∂ρ̃

∂T ≡ 0. Therefore, the density of the mixture (and by (4.195)
also the specific mixture volume) remains dependent on mass fractions only

ρ = ρ̃(wβ), v = ṽ(wβ) (4.404)

(cf. the difference from (3.215) in pure incompressible fluid).
From the last result (4.404)2 of an incompressible mixture, the formulae (4.269),

(4.270) for y = v give that partial volumes depend on wβ only, vα = ṽα(wβ), and
also (4.191) is

v = ṽ(wβ) =
n∑

α=1

wαṽα(wβ) (4.405)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Therefore, the constant mixture density is not achieved (as in (3.215)), unless further
assumptions are adopted:

The usual assumption is the independence of partial volumes on composition
[58, 153]

vα = v•
α = 1/ρ• = const. (4.406)

where ρ• = ρ•
α may be interpreted as the constant density of the pure incompressible

fluid constituent α before mixing (cf. (3.215)) and (4.405) expresses the Amagat
law (incompressible fluid mixture is volume-additive), cf. (4.440) or (with (4.195),
(3.199))

1/ρ =
n∑

α=1

wα(1/ρ•
α) (4.407)

We again see that the constant mixture density is not achieved and further additional
assumptions are needed, like (see [104]):

• Restriction to a (chemically) non-reacting incompressiblemixture:mixture density
(4.404) is constant because the composition is fixed (wβ = const.).

• Another possibility for a volume-additive incompressible (even reacting) mixture
is (approximately) the same density ρ•

α of all constituents and therefore equal to
the constant mixture density ρ

ρ•
α = ρ = const. α = 1, . . . , n (4.408)

• Another plausible assumption, e.g. in dilute (usually aqueous) solutions (water is
the n-th constituent) where the mixture density is practically constant and equal to
the density of pure water ρ = ρ•

n = const. because wβ � wn, β = 1, . . . , n − 1,
see [104].

Therefore with such (or similar) additional assumptions, the constant density
for incompressible fluid mixture should be achieved and also other properties are
obtained (properties from Rem. 3 based on barycentric velocity are often used [58])

ρ = const. ρ̇ = 0 div vw = 0 (4.409)

Hereρ is themixture density (4.21), ρ̇ itsmaterial derivative relative to the barycentric
velocity vw defined as (c) in Rem. 3; the last expression follows from the previous
one by mass balance (b) here.

(iii)Mixture of Simple Linear Fluids (Simple mixture)
As a simple fluid, we denoted a fluid, the response of which was independent of

density gradient (cf. end of Sect. 3.6, [16–18, 56, 61]). Therefore amixture of simple
linear fluids or shortly a simple mixture of fluids is that from Sect. 4.6 (fulfilling,
e.g.(4.263), (4.269), (4.270), (4.278)) defined by a priori absence of the density
gradients hα in (4.136), (4.137) or equivalently (4.149) and identities

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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ωβγ = 0 β = 1, . . . , n − 1; γ = 1, . . . , n (4.410)

are valid. As a consequence, there is significant reduction of dependence of thermo-
dynamic quantities on composition in the simple fluidmixture. Namely, from (4.410)
identically follows

∂ f̂α
∂ργ

≡ 0 α �= γ, α, γ = 1, . . . , n (4.411)

because of (4.165) and (for α = n) of (4.161),(4.92),(4.22) (recall that ωββ =
0, δβn = 0, β = 1, . . . , n − 1). Then also (4.161) reduces to

∂ρα f̂α
∂ρα

= gα = ĝα(T, ρα) α = 1, . . . , n (4.412)

Therefore, we found that in the mixture of simple fluids, the partial free energy
of constituent α is independent of densities of other constituents (note the difference
with (4.159))

fα = f̂α(T, ρα) α = 1, . . . , n (4.413)

as well as the chemical potential (4.412). This surprising result (4.413) was shown
first by Müller [16] for simple models with linear transport.25

The same simplifying property is valid by (4.200) for partial thermodynamic
pressure

ρ2
α

∂ f̂α
∂ρα

= Pα = P̂α(T, ρα) α = 1, . . . , n (4.414)

From (4.194), (4.413), (4.412) itmay be seen that also Pvα depends on corresponding
ρα only (and T ) in contrast with P, vα, sα, uα, hα which generally depend on all

25 Therefore, simple models excluding density gradients from independent variables of constitutive
equations a priori are not able to describe, e.g. classical thermodynamics of solutions [129, 138] (cf.
Sect. 4.6); a gaseous simple mixture is in fact the mixture of ideal gases only [61], see (iv) below.

Result (4.411) may be valid in some more general but simple fluids [17, 18, 53]. For example,
in non-linear (even reacting) simple fluid mixture from [72] where the density gradients hγ are
removed a priori: they are absent, e.g. in constitutive equations [72, (2.26)–(2.33)] and the “second”
chemical potentials [72, (2.47)] they are zero. Therefore, the 4th and 5th term in the right-hand side
of [72, (2.64)] are linear in hγ in such a simplemixture and, consequently, again by the admissibility
principle (using Lemma A.5.1 from Appendix A.5), the following identities are valid

(gα − fα)uα −
n∑

γ=1

ργ

∂ f̂γ
∂ρα

uγ = α = 1, . . . , n

(in [72, (2.64)] is a misprint: the 5th term should include a negative sign). Manipulating here with
the independent diffusion velocities uα (note that un ≡ o, [72, (2.23), (2.46)] ) we arrive at (4.411).
Cf. also [79, Sect. 40]. Because the thermodynamic structure in this non-linear model is the same
(cf. [72, (2.46), (3.28), (3.29)] ) also other relations, like (4.412), (4.414) remain valid here.
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ρ1, . . . , ρn and T (cf. (4.413)–(4.414), (4.194), (4.187), (4.188), (4.189), (4.272),
(4.86)).26

We can show that such a simple fluidmixture has a special formof “state equation”
(4.414): indeed, we noted above (4.278) that expressions (ρα/Pα)(∂ P̂/∂ρα) are the
same for all constituentsα = 1, . . . , n (cf. [61, Eq. (2.11)]) generally, but for a simple
mixture, using (4.414) in (4.187) we have ∂ P̂/∂ρα = ∂ P̂α/∂ρα depending, as well
as Pα , only on the density of the considered constituent α (and on temperature).
Therefore, there is a universal C (possibly a function of temperature)

ρα

Pα

∂ P̂α

∂ρα

= C = C(T ) α = 1, 2, . . . , n (4.415)

in a simple mixture.
By integration, we obtain the following general form of dependence of partial

pressures on densities in a simple fluid mixture (the state equation)

Pα = Kα(ρα)C α = 1, 2, . . . , n (4.416)

where Kα = Kα(T ), as well as C(T ), are functions of temperature T only.
We note also that for such a simple fluidmixture we have from (4.415) and (4.414)

that ∂2 f̂α/∂ρ2
α = ((C − 2)/ρα)∂ f̂α/∂ρα and therefore ∂ P̂α/∂ρα = (Cρα)∂ f̂α/∂ρα

and by (4.412) ∂ ĝα/∂ρα = C ∂ f̂α/∂ρα .
Using these and previous formulae, we can obtain from (4.273) for a simple fluid

mixture (by (4.187))

vα = (
∂ P̂α

∂ρα

)/

⎛
⎝ n∑

γ=1

ργ

∂ P̂γ

∂ργ

⎞
⎠ = ρα(

∂ f̂α
∂ρα

)/

⎛
⎝ n∑

γ=1

ρ2
γ

∂ f̂γ
∂ργ

⎞
⎠ = KαρC−1

α

P

= ρα(
∂ ĝα

∂ρα

)/

⎛
⎝ n∑

γ=1

ρ2
γ

∂ ĝγ

∂ργ

⎞
⎠ α = 1, . . . , n

The dependence of partial properties fα, gα, Pα, Pvα only on the density of cor-
responding constituent α (besides T ) in this simplemixturemeans (if we put ργ → 0
for other constituents) that such a partial propertymay be interpreted as a correspond-
ing property of pure constituent α at the same density and temperature (as ρα, T in
the mixture considered). E.g. relation (4.414) together with (4.187) expresses the
classical Dalton law valid in this simple fluid mixture because we can interpret Pα

as the pressures of pure constituents α at a given density and temperature before
mixing, the sum (4.187) of which is the pressure P of the mixture at the same partial
densities and temperature.

26 We stress that we use only the classical partial thermodynamic quantities, calculable (say) by

(4.269), (4.270), but there are also other possible definitions, e.g. partial entropies by− ∂ f̂α
∂T (different

by (4.272)), cf. [17, 18]. These are, however, not so useful as those classical.
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(iv) Mixture of Ideal Gases
We show here that the mixture of ideal gases is equivalent to the simple fluid mixture
from (iii), if its constituents and their mixture are gases [61] (modelling gas by linear
fluid seems to be sufficient; moreover, the thermodynamic relations used here remain
valid even in some models with non-linear transport as in [72], cf. Rem. 25).

The density and pressure of pure real gas (as different from liquid) goes to
zero simultaneously, see Appendix A.1. Therefore, Pvα considered for a pure
gas constituent (i.e. as a product of the pressure P and the specific volume vα

of the pure constituent α; we omit symbols above with which we could write
P• = P•

α , ρ•
α = 1/v•

α , cf. (3.199)) has the property (A.1) permitting the intro-
duction of absolute temperature based on any gas (see Appendix A.1; we use T
(1.30) for temperature), that is

lim
ρα→+0

Pvα = RT

Mα

= lim
ρα→+0

Pα

ρα

α = 1, . . . , n (4.417)

where R is the gas constant and Mα is the molar mass of the constituent.
Now, following the property of the simple mixture discussed at the end of (iii)

above, we can interpret (4.417) and the quantities in it as those in a gaseous simple
fluid mixture, i.e. Pα, ρα, vα are corresponding partial quantities in this mixture
fulfilling, e.g. (4.278), (4.188). Inserting (4.416) into (4.417) we obtain

lim
ρα→+0

(ρα)a = b α = 1, . . . , n (4.418)

where a ≡ C − 1, b ≡ RT/(Kα Mα) .
But (4.418) is valid if and only if a = 0, b = 1 (limits b for a > 0 or a < 0 are

0 or +∞ respectively without physical sense; densities are only positive). Therefore
C = 1, Kα = RT/Mα and “state equation” (4.416) of the simple gas mixture is
an ideal one

Pα = ρα

RT

Mα

α = 1, . . . , n (4.419)

valid at any density and pressure (and not only in the limit (4.417)). This and the
following relations show that the gaseous simplefluidmixture is the ideal gasmixture.

Moreover, for such a simple gas mixture, it follows by (4.419), (4.278) that partial
molar volumes vαMα of all constituents are the same

vαMα = RT/P α = 1, . . . , n (4.420)

From this, the independence of vα = ṽα(T, P) on w1, . . . , wn−1 follows (see
(4.216)) which permits interpretation of v as the specific volume of the pure con-
stituent α and (4.191) expresses the validity of Amagat’s law in an ideal gas mixture
(Amagat’s law asserts that partial specific volumes in mixture in (4.191) are equal
to specific volumes of pure constituents at the same P, T of the mixture, cf. (4.440)
below); here, moreover, all molar partial volumes are the same (4.420).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Using (4.191), (4.420), (4.294) we obtain for the molar volume of mixture vM
(4.295) the following state equation for the ideal gas mixture (which is the same as
for pure ideal gas (A.3))

PvM = RT (4.421)

Equations (4.421) and (4.419), (4.420) are state equations of the ideal gas for the
mixture and its constituents. Note, that interpreting (4.417) as valid for every con-
stituent α = 1, . . . , n in a simple gaseous mixture, multiplying each (4.417) by wα

and summing them we obtain (using (4.191), (4.294); the limit in all ρα with fixed
wα may be obviously substituted by the limit in P)

lim
P→+0

Pv = RT/M (4.422)

But, following the discussion given at the end of iii. above and similarly as for the
first “pure” interpretation of (4.417), we can interpret (4.422) as a limiting property
of each real gas mixture of fixed composition, i.e. property (A.3) is valid also for
mixtures of real gases which therefore in the limit of zero pressures behaves as an
ideal gas mixture with state equation (4.421).

Inserting (4.419) through (4.187) into (4.278) we obtain

ραvα = (
ρα

Mα

)/

⎛
⎝ n∑

γ=1

ργ

Mγ

⎞
⎠ = xα α = 1, . . . , n (4.423)

i.e. ραvα in the ideal gas mixture is equal to the molar fraction (see (4.288), (4.290)).
From (4.278) the Dalton law for partial pressures for the mixture of ideal gases
follows:

Pα = xαP α = 1, . . . , n (4.424)

which fulfils (another form of) Dalton’s law (4.187).
From (4.423) (cf. (4.213)) we can also see that the partial specific volumes are

independent of temperature in the ideal gas mixture

vα = v̂α(ργ ) α = 1, . . . , n (4.425)

and therefore instead of general result (4.272) we have

− ∂ f̂α
∂T

= sα = ŝα(T, ρα) α = 1, . . . , n (4.426)

in the ideal gas mixture. This is not only an analogue of general result (4.164) but,
moreover and much more importantly, it gives partial entropy as depending on the
density ρα of the constituent α only (besides T ; cf. also (4.434)). Then, according to
the discussion at the end of (iii) above, the partial entropy sα may be interpreted as
specific entropy of pure (ideal) gas at a density equal to those in the mixture. This
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permits direct calculation of the mixing entropy (4.435) from pure ideal gases. This
traditional calculation of mixing entropy in the ideal gas mixture is therefore well
motivated by the fact that this mixture is the simple one.

Further, partial internal energies and enthalpies are functions only of temperature
in the ideal gas mixture (simple gas mixture)

uα = ûα(T ) α = 1, . . . , n (4.427)

hα = ĥα(T ) α = 1, . . . , n (4.428)

Equation (4.427) follows from (4.86) and from (4.426) by derivation with respect
to ρα . Namely, ∂ ûα

∂ρα
≡ 0 because it follows from (4.414) and (4.419)

∂ f̂α
∂ρα

= Pα

ρ2
α

= RT

Mαρα

α = 1, . . . , n (4.429)

Equation (4.428) then follows from (4.189), (4.427), (4.420).
Then, e.g. the internal energy u of the ideal gas mixture (and therefore, the heat

capacity of the mixture (4.357)) depends on its composition in a simple way as may
be seen from (4.427), (4.90).

The well-known logarithmic dependence of partial free energies, entropies or
chemical potentials on composition in the ideal gas mixture (like densities, molar
concentrations or fractions, partial pressures, etc.) follows as a consequence of the
ideal state equation (4.419). For example, by integration of (4.429)

fα = f̂ 0α (T ) + RT

Mα

lnρα α = 1, . . . , n (4.430)

where f̂ 0α (T ), depending on temperature only, is the free energy of pure gas α at
unit density (depending on its physical dimension). Inserting (4.430) with (4.419),
(4.420) into (4.194) we have with classical partial pressure (4.424) in the ideal gas
mixture

gα = ĝ0α(T ) + RT

Mα

lnPα α = 1, . . . , n (4.431)

with ĝ0α(T ) ≡ f̂ 0α (T ) + (RT/Mα)(1 + ln(Mα/RT )) depending again on pressure
units. Equation (4.431) is one of the proposed definitions of the mixture of ideal
gases, cf. [154] (Chap.3).

Here it has been shown that the property of the ideal gas mixture follows from the
model of a simple fluid mixture of gases. In fact both these models are equivalent,
because from (4.430), (4.431), (4.419) Eqs. (4.413), (4.412), (4.414) follow [61].

The result (4.431) may be written for the more usual molar chemical potential μα

(4.172) using (4.424) as a logarithmic function of the molar fraction in the mixture
of ideal gases
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μα = (Mαg
0
α(T ) + RT lnP) + RT lnxα = μ0

α(T, P) + RT lnxα α = 1, . . . , n
(4.432)

where μ0
α(T, P) is the molar chemical potential of pure ideal gas constituent α at

T, P of the mixture (as follow from xα → 1). Hence the mixture of ideal gases
(or gaseous mixture of simple fluids) is an example of an ideal mixture defined by
(4.437) below.

From (4.432), we obtain by (4.290), (4.295), (4.421) for a mixture of ideal gases

μα = (Mαg
0
α(T ) + RT ln RT ) + RT lncα = μ0

α(T ) + RT lncα α = 1, . . . , n
(4.433)

(as the simplemixture fulfils (4.412)2 inmolar units) used below, see (4.468), (4.469),
Rem. 27.

Using (4.432) in (4.266) (with molar units (4.172); at constant wδ is such also xδ ,
see (4.292), (4.297)) we obtain for the molar entropy in the mixture of ideal gases

∂μα

∂T
= Mαsα = Mαs

0
α(T, P) − R lnxα α = 1, . . . , n (4.434)

where Mαs0α(T, P) is the molar entropy of pure ideal gas α at T, P of the mixture.
Using (4.267) we obtain (4.420) analogously.

Equation (4.434) permits the calculation of mixing entropy (change of entropy at
mixing of pure constituents to mixture) defined as the difference between the entropy
of the mixture and the sum of entropies of pure constituents: molar mixing entropy
(related to onemole ofmixture, is therefore (usingmolar quantities in (4.434), (4.91),
(4.292) at the same T, P of pure constituents and in mixture):

Ms −
n∑

α=1

xαMαs
0
α = M

n∑
α=1

wα(sα − s0α) = −R
n∑

α=1

xαlnxα (4.435)

Just because this is the simple mixture, the partial entropy sα may be interpreted as
specific entropy of pure (ideal) gas at a density equal to those in the mixture (see
(4.426) and below), and the mixing entropy may be calculated as the sum of entropy
changes at the expansion of pure (ideal) gases α (with masses wα) from starting
density (before mixing) to final density (as in the mixture).

It is possible to define another mixing property in a similar way (besides s also
for v, u, h, f, g), e.g. the specific mixing volume (related to mass unit of mixture) is
defined as the left hand side of following equation

v −
n∑

α=1

wαv0α = 0 (4.436)

This mixing volume is zero for ideal gases because the specific volume of mixture
is given by (4.421) and the specific volume of pure ideal gas α at the same T, P as
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in the mixture (wα is its mass in mixture of unit mass) is v0α = RT/PMα , cf. (A.3),
(4.292), (4.291).

Mixing thermodynamic properties can be calculated in some simple models like
(iv) or (v) here. In a general non-simple mixture, they are usually obtained experi-
mentally.

(v) Ideal Mixture
Motivated by (4.432) we use in classical thermodynamics (e.g. [129, 138, 152, 155])
the ideal mixture or the ideal solution defined by the following expression for molar
chemical potential of gas or liquid

μα = μ•
α(T, P) + RT lnxα α = 1, . . . , n (4.437)

where μ•
α(T, P) is the chemical potential of pure fluid (gas or liquid) at the same

T, P as in the mixture, R is the universal gas constant (A.2).
An ideal mixture is generally different from a simple mixture; an exception is the

ideal gas mixture which is also a simple mixture, see (4.432) and Rem. 27. But, on
the other side, the ideal mixture (4.437) (and this is its main motivation) has many
properties similar to the ideal gas mixture:

• molarmixing entropy follows from (4.266), (4.172) (cf. (4.434)), quite analogously
as (4.435) but with (4.437) instead of (4.432): for molar entropy we have

Mαsα = Mαs
•
α(T, P) − R lnxα α = 1, . . . , n (4.438)

(where Mαs•
α = −∂μ•

α(T, P)/∂T is the molar entropy of pure constituent α) and
therefore

Ms −
n∑

α=1

xαMαs
•
α = −R

n∑
α=1

xαlnxα (4.439)

The mixing entropy in an ideal mixture is therefore the same as in an ideal gas
mixture (4.435) but it is valid more generally, e.g. in the liquid the ideal mixture
is formed from liquid pure constituents.

• Mixing volume is zero (i.e. no volume changes upon mixing) because Amagat’s
law is valid

v =
n∑

α=1

wαv•
α (4.440)

Here v is the specific volume of the mixture at given T, P, w1, . . . , wn−1 and v•
α

are the specific volumes of pure constituents at these T, P equal to vα in (4.191).
Indeed, this follows from (4.437) taking derivative (4.267) (with specific variables,
cf. (4.172)) and using (3.207).

• Mixing enthalpy is zero (i.e. no enthalpy changes upon mixing). Indeed, by defin-
ition, the specific mixing enthalpy is the difference h −∑n

α=1 wαh•
α (cf. (4.435),

(4.436)) where h is the specific enthalpy of the mixture and h•
α is the specific

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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enthalpy of pure α taken at the same T, P . But h•
α is equal to partial enthalpy hα

in the final mixture, indeed, by (4.189), (4.194), (4.86) (valid also for pure fluid,
cf. (3.111), (3.203)) and by ideal mixture relations (4.437), (4.438)

hα = gα + T sα = μ•
α/Mα + (R/Mα)T lnxα + T s•

α − T (R/Mα)lnxα

= μ•
α/Mα + T s•

α = h•
α

(of course enthalpy of pure fluid is defined similarly as (4.199)). Specific mixing
enthalpy is therefore zero by (4.190).

• No internal energy changes upon mixing: specific mixing internal energy is zero
as follows directly from the previous two results:

u −
n∑

α=1

wαu
•
α = h −

n∑
α=1

wαh
•
α − P(v −

n∑
α=1

wαv•
α) = 0

From these results it follows, that in an ideal mixture the partial Gibbs energy
gα = μα/Mα , the free energy fα = gα − Pvα and the entropy sα depend on T, P
and on composition in a logarithmic way (see (4.437), (4.438)) but partial volume,
enthalpy and internal energy vα, hα, uα = hα − Pvα are functions of T, P only. All
these results are valid also in special case of ideal gas mixture, cf. (4.433), (4.430),
(4.434), (4.420) often even simpler (4.425), (4.427), (4.428).

If such mixing in the ideal mixture proceeds at constant temperature, pressure
(and therefore at constant volume simultaneously), the system has constant energy
(kinetic energy is usually neglected, cf. Rem. 9 in Chap. 1) and constant mass, no
work is done and therefore no heat exchange is observed.

As we noted above, the ideal mixture is generally different from the simple mix-
ture; the exception is the ideal gasmixture which is simple as well as ideal, cf. (4.432)
with (4.437).27

In the remainder of this section, we discuss the important role of chemical poten-
tials gα or μα because they are sufficient to determine (through (4.266), (4.267),
(4.86), (4.194), (4.189)) all other yα (fulfillingGibbs-Duhemequation (4.263)).Moti-
vated by application in equilibrium thermodynamics [129, 138, 154, 156] (called
chemical thermodynamics; but the following is valid also for non-equilibrium situ-
ations if local equilibrium is valid, e.g. for models presented in Sects. 4.5 and 4.6),
instead of chemical potential μα of constituent α the activity aα is used equivalently
defined by

μα = μs
α + RT lnaα (4.441)

27 The definition of ideal mixture (4.437) does not fulfil generally the property (4.412) of the
simple mixture which should be μα = μα(T, cα) (in molar units, cf. (4.172), (4.288)). Indeed, for
the ideal mixture (by (3.205) μ•

α(T, P) = μ•
α(T, c•

α), where c•
α = ρ•

α/Mα is the molar density of
pure constituent α; ρ•

α = ρ in Chap.3)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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where R is the gas constant (see Appendix A.1) and μs
α is the selected standard

function (of T, P, wβ or some of them); usually it is called the standard state. Note
that in the standard state (i.e. when μα = μs

α) activity is equal to one.
This special definition (4.441) is motivated by the fact that when a standard func-

tion is appropriately chosen, activities (and therefore chemical potentials) are (often
at least approximately) expressible through easy measurable quantities like concen-
trations, pressures, etc. (besides this, μα must be determined relatively to some fixed
level in practice). Note that activities are only positive, dimensionless and their rela-
tion to chemical potentials is unique (for the known standard function). Changing
the standard function from μs

α to μs,
α we can recalculate the corresponding activities

from aα to a′
α by

a′
α = aα/asα (4.442)

where asα is the original activity of the new standard state given by μs,
α = μs

α +
RT lnasα . (these formulae may be valid for all α = 1, . . . , n , but generally it is
not necessary to choose as the standard state the same state for all constituents, cf.
example below (4.446)).

Because of the many possibilities of selecting standard functions they must be
clearly specified if an activity is to be used; due to practical and historical grounds
some activities are called fugacities and, in fact, so-called activity or fugacity coef-
ficients are also of this type [4, 79, 129]. These quantities and other examples of
activities will be discussed in the following.

The basic properties of any activity and its use will be first demonstrated on
the following classical example of fluid (gas or liquid) mixtures. As the standard
function μs

α in (4.441) we choose μ•
α(T, P) in (4.437), i.e. the chemical potential in

the following standard state: pure constituent α at T, P and aggregation state as that

(Footnote 27 continued)

μα = μ•
α(T, P) + RT lnxα = μ•

α(T, c•
α) + RT lncα + RT ln

n∑
γ=1

(
cγ /(

n∑
ε=1

cε)

)
(1/c•

γ )

where (4.290), (4.295), (4.440), (4.292), (4.289), (3.199) have been used. This is different from
μα = μα(T, cα) mainly because c•

γ = (Mγ v•
γ )−1 are different for different γ . But in an ideal gas

mixture where (at chosen T, P) molar densities are the same for all constituents as well for those
which are pure, namely cγ = c•

γ = P/RT , see (4.420), (4.421), this equation (cf. (4.432)) gives
(4.433) and this is the simple mixture.

There are attempts to motivate the definition of ideal mixture by a simpler way, e.g. it is possible
to show [149, 150] that if the chemical potential of each constituent depends (besides temperature
and pressure) only on the molar fraction of that constituent then this dependence is logarithmic as
in (4.437) (it is assumed also that the partial internal energy and volume of at least one constituent
depends on temperature and pressure only and that the number of constituents must be 3 as a
minimum).

The alternative motivation of definition (4.437) for (real) gas mixtures comes from a statement
that a mixture is ideal if Amagat’s law (4.440) is valid at any T, P . Indeed, Amagat’s laws means
vα = v•

α and then by (4.454), (4.458) below, for fugacity coefficients also να = ν•
α ; therefore by

(4.463), this is an ideal mixture.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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in the mixture activity in which we try to find. The motivation follows from (4.437):
if the mixture is ideal then activity aα is equal to molar fraction aα = xα .

The behaviour of real fluid mixture may be described through deviations from
ideal mixture [129, 138, 152, 154, 156] expressed by the activity coefficient γα

defined by
aα = γαxα (4.443)

which is, similarly to the activity aα , some function of T, P, xβ, β = 1, . . . , n− 1 .
For this activity and activity coefficient equation (4.441) is written

μα = μ•
α(T, P) + RT ln aα = μ•

α(T, P) + RT lnxα + RT lnγα (4.444)

for the fluid (gas or liquid) constituent α.
Therefore, the activity coefficient is γα ≡ 1 in ideal mixture (4.437), but, as fol-

lows from the choice of standard state, even in a real mixture, the activity coefficient
has limiting property limxα→1 γα = 1. (i.e. concentrations of all remaining con-
stituents go to zero in such a limit). This may be also interpreted such that each real
mixture behaves in the limit xα → 1 as the ideal mixture (cf. (4.444) with (4.437)
in this limit).

For a description of a dilute solution of constituentsβ = 1, . . . , n−1 in nearly pure
solvent n at given T, P we can use another limit: activity coefficients at infinitesimal
dilution γ ∞

β = limxβ→0 γβ , practically depending only on T, P (the most simple
case is one solute β = 1 in a solvent n = 2; also more complicated cases may be
discussed when some solutes have got higher concentrations, e.g. when solvents are
mixed, but we exclude for simplicity such cases from the following discussions). This
permits to introduce another standard state (a “hypothetical” one based on Henry’s
law (4.464), see (4.465)) giving new activities a′

β and new activity coefficients γ ′
β

fulfilling (cf. (4.443))

a′
β = xβγ ′

β β = 1, . . . , n − 1 (4.445)

The (4.441) has the form

μβ = μ∞
β + RT lna′

β = μ∞
β + RT lnxβ + RT lnγ ′

β β = 1, . . . , n − 1 (4.446)

which follows from Eq. (4.444) (applied on our dilute mixture with chemical poten-
tials μα) by using the limiting γ ∞

β . Namely, we use the following definitions of new
standard functions μ∞

β ≡ μ•
β +RT lnγ ∞

β and new activity coefficient γ ′
β ≡ γβ/γ ∞

β .
From this definition it follows that the new activity coefficient γ ′

β has the following
property limxβ→0 γ ′

β = 1 (cf. difference from γβ above).
Therefore in very dilute solution, the activities (4.445) of solutes a′

β may be
substituted bymolar fractions xβ and this is the main reason for using such a standard
state, cf. (4.465). Note, that solvent n in such dilute solution is nearly a pure one and
therefore it remains in the original standard state (4.444) for α = n (with nearly
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an = xn = γn = 1); this is an example of the use of different standard states for
different constituents in the same mixture.

Both these standard states are used in thermodynamics of solutions (especially the
last one also for other concentration units like (molar) concentrations or molalities,
see end of this Sect. 4.8) but it is better to discuss them and other standard states in
the following terms of fugacities.

The fugacity fα of constituent α is some type of activity in fluid (gas or liquid)
mixture [152, 155]. It is a function of T, P and its composition defined by chemical
potential μα of constituent α with the same conditions as

μα = μ0s
α (T ) + RT ln(fα/Ps) α = 1, . . . , n (4.447)

Standard function μ0s
α (T ) ≡ μ0s

α (T, P = Ps) is the molar Gibbs energy of con-
stituent α taken as a pure ideal gas at the considered temperature and the standard
pressure Ps (usually 101.325 kPa); because of this constant, this standard function
(and state) depends on temperature only (comparing with (4.441) this activity should
be rather fα/Ps but for traditional reasons we keep the special name and dimension
of pressure for fα).

For pure fluid α the fugacity f•
α , a function of T, P , may be also defined through

its molar Gibbs energy μ•
α(T, P) (chemical potential of pure α) as

Mαg
•
α = μ•

α = μ0s
α (T ) + RT ln(f•

α/Ps) (4.448)

where g•
α is the (specific) Gibbs energy of pure fluid α, μ0s

α (T ) is the molar Gibbs
energy of (pure) ideal gas α at T and standard pressure Ps which is the same tem-
perature function as in (4.447) for given α (cf. symbols introduced at the beginning
of this Sect. 4.8).

The definitions are chosen in such away that in an ideal gas or an ideal gasmixture

f• = P, fα = Pα α = 1, . . . , n (4.449)

Indeed, inserting the partial pressure of ideal gas (4.424) into (4.431) we have

gα = ĝ0α(T ) + RT

Mα

ln P + RT

Mα

ln xα α = 1, . . . , n (4.450)

The first two members on the right-hand side form the specific Gibbs energy of
pure ideal gas α at T, P , as may be seen from xα = 1 (note that in this limit the
state equation of pure ideal gas α is valid, cf. (4.421)). Specifically, the molar Gibbs
energy μ0s

α of (pure) ideal gas α at standard pressure Ps (and the same T ) is

μ0s
α (T ) = Mα ĝ

0
α(T ) + RT ln Ps (4.451)

where ĝ0α(T ) are the same functions of temperature as in (4.450) or (4.431). Elimi-
nating this function from (4.431) using (4.451) we obtain for ideal gas constituent α
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μα = μ0s
α (T ) + RT ln(Pα/Ps) α = 1, . . . , n (4.452)

which comparing with (4.447) gives for an ideal gas mixture the result (4.449)2 with
partial pressure (4.424) of the ideal gas mixture. Limiting in (4.452) xα → 1 we
obtain a pure ideal gas, Pα → P by (4.424), and, cf. (4.448), (4.449)1 follows.

We introduce now the dimensionless fugacity coefficients ν• for pure fluid and να

for constituent α in mixture by

f• = ν•P, fα = ναxαP α = 1, . . . , n (4.453)

They express the deviation of fugacities from pressures and are equal to one for ideal
gases, see (4.449).

Real gases and their mixtures have the property (see (4.422) and Appendix A.1)
that at P → 0 they behave as the ideal gases and their mixtures (4.421). This
permits to calculate fugacity coefficients and therefore fugacities fromstate behaviour
(equations like (3.204), (4.215)).

The fugacity coefficient να for the real gas mixture may be calculated (at given
composition xα , temperature T and pressure P of which is να function) from

RT ln να =
∫ P

0
(Mαvα − RT/P) dP α = 1, . . . , n (4.454)

where Mαvα is the partial molar volume of constituent α in real gas mixture
considered.

To deduce (4.454) we insert (4.453)2 into (4.447) and we obtain

μα = μid
α + RT ln να (4.455)

where μid
α is the molar chemical potential in the ideal gas mixture (at the same T, P ,

composition) given by the right-hand side of (4.452) with (4.424). This quantity
may be obtained by integration of (4.267) using (4.172) and partial molar volume in
ideal gas mixture (4.420) (note that at both following integrations (4.456), (4.457)
the composition is fixed no matter if it is expressed by mass or molar fractions; cf.
similar “molar” integration of (4.266) in (4.434))

μid
α = μ00

α +
∫ P

0
(RT/P) dP (4.456)

Similarly, in a real gas mixture analogous integration of corresponding (4.267)
gives for constituent α

μα = μ00
α +

∫ P

0
Mαvα dP (4.457)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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It is important to note that the constant μ00
α (molar chemical potential at the same T

and composition and P → 0) is the same in both (4.456),(4.457) because each real
gas behaves as an ideal gas at P → 0, see Appendix A.1,(4.422). Inserting (4.456),
(4.457) into (4.455) we obtain result (4.454).

Fugacity coefficient ν• at T, P of real pure gas is calculated from

RT ln ν• =
∫ P

0
(Mv• − RT/P) dP (4.458)

where Mv• is the molar volume of pure gas (M is the molar mass, v• the
specific volume (3.199)). Deduction of (4.458) is quite analogous to (4.454): insert-
ing (4.453)1 into (4.448) we obtain (index α is omitted) Mg• = Mg0 + RT ln ν•
where Mg0 = μ0s(T ) + RT ln(P/Ps) is the molar Gibbs energy of pure ideal gas
at P (and T ). These Mg0 and Mg• may be again obtained by integration (3.207)
(using the molar mass M), in the first case with the molar volume (3.212) of ideal
gas, in the second one with the molar volume of pure real gas Mv•. We obtain
Mg0 = Mg00 + ∫ P

0 (RT/P) dP ,Mg• = Mg00 + ∫ P
0 (Mv•) dP . Here Mg00 (the

molar Gibbs energy of pure gas at T and P →0) are the same for both cases again
because a real gas behaves as an ideal one at P → 0. Inserting both into first formula
we obtain result (4.458).

Fugacities in the liquid phase may be defined as follows: they are equal to fugac-
ities in a vapour (gas) phase which is in phase equilibrium and which may be cal-
culated by (4.454) or (4.458). It is because fugacities of a given constituent are the
same in both such phases (as follows from their definitions (4.447), (4.448), because
the equality is valid for chemical potentials in phase equilibrium [152, 154] and the
standard functions are the same for both phases).

The main importance of fugacities consists in the possibility to calculate arbitrary
activity aα in an arbitrary state from (4.442).Namely, taking herefα/Ps for activities,
cf. below (4.447), we obtain

aα = fα/fsα (4.459)

and activity can be calculated if we know the fugacity fα in this state and the fugacity
fsα in the standard state on which the activity aα is considered.

For the standard state and activities of classical example (4.444) the fugacity
fsα = f•

α of pure constituent α at T, P and the same aggregation state as in the
mixture. That is, f•

α = f•
α(T, P) is given by (4.448) with the chemical potential of

standard state μ•
α(T, P)

μ•
α(T, P) = μ0s

α (T ) + RT ln(f•
α(T, P)/Ps) (4.460)

Then (4.443) is valid and (4.459) in this standard state gives

fα = xαγαf
•
α (4.461)

where γα is the activity coefficient discussed at (4.444).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Because of the unit value of this activity coefficient in the ideal mixture (see
(4.437), (4.444)) this may be expressed by fugacities through Lewis’ or the Lewis-
Randall rule equivalently as

fα = xαf
•
α α = 1, . . . , n (4.462)

It gives the fugacityfα of constituentα in the idealmixturewith themolar fraction
xα from the fugacity f•

α of pure constituent α at T, P of the mixture.
Equivalently to (4.462), the fugacity coefficient να of constituent α in the ideal

mixture is equal to that of the pure constituent (at the same T, P)

να = ν•
α α = 1, . . . , n (4.463)

and therefore is independent of composition. This follows by elimination of P from
both relations (4.453) and comparing with (4.462).

Using limiting properties of activity coefficients γ in (4.461) (cf. discussion of
(4.444)) we find that Lewis’ rule is valid in the limit of high concentrations xα → 1
at any real fluid mixture.

On the other hand, in the dilute solutions of solutes β = 1, . . . , n − 1 activity
coefficients of which achieve in (4.461) their limits γ ∞

β (the value of which depend
on T, P of the mixture which is nearly pure solvent n; we recall our simplification
above (4.445), e.g. β = 1, n = 2) we obtain Henry’s law

fβ = xβγ ∞
β f•

β (4.464)

asserting that fugacities of very dilute solutions of constituent β are proportional to
concentration, in this example to molar fraction xβ ; quantity γ ∞

β f•
β (depending on

T, P only) is called the Henry constant. At the same time for solvent α = n Lewis’
rule is valid because xn → 1 (this follows also from integration of Gibbs-Duhem
equation (4.221), e.g. if linear Lewis’ rule is valid for n = 2 at x2 → 1 then linearity
of Henry’s law is valid for n = 1 at x1 → 0 and reversely). But if the ideal mixture
applies for all concentrations (as above in (v) Ideal Mixture), then the Lewis rule
(4.462) and Henry’s law (4.464) are equivalent (because activity coefficients are
equal to one, e.g. γ ∞

α = 1).
Henry’s law is traditionally expressed through pressure in (ideal gas) approxima-

tion of the type (4.449); with similar approximation the Lewis rule gives Dalton’s
law (4.424) in the gas phase or Raoult’s law in the liquid phase used in vapour-liquid
equilibria [152, 154].

Above (4.445) the “hypothetical” standard state was mentioned. This may be
defined by the standard fugacity fsβ = γ ∞

β f•
β because then (4.459) gives for activity

(4.445) (with fugacity expressed through our first activity coefficient as (4.461))

a′
β = (γβf•

β)xβ

γ ∞
β f•

β

= γ ′
βxβ (4.465)
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and this is (4.445) indeed. For very dilute solution (when Henry’s law (4.464) is
valid), also limxβ→0 γ ′

β = 1 and the activities of solutes may be substituted by molar
fractions a′

β = xβ ; this is result below (4.446). The standard state is hypothetic
because, as may be seen from (4.464), it has xβ = 1 but fugacity as in (an infinitely)
diluted solution.

Because the molar fractions in (4.461) are proportional to other types of con-
centrations especially in dilute solutions we can obtain similar results for them. We
demonstrate this in the case of molar concentration cβ (4.290) which may be inserted
in (4.464); we use “dimensionless” concentration cβ/cs where cs is some fixed stan-
dard concentration (for liquid solution typically unit one, like cs = 1mol/dm3).
Then Henry’s law (4.464) in dilute solution of β = 1, . . . , n − 1 is

fβ = Hβ cβ/cs (4.466)

with the Henry constant Hβ ≡ csγ ∞
β f•

β/c∞ in which we can include the molar
volume of mixture 1/c∞ which is in this dilute solution practically equal to the
molar volume of pure solvent. Similarly as above, we choose the state with the
fugacity fsβ = Hβ which depends on T, P , as another “hypothetic” standard state.
Then, similarly as in the previous case (4.465), the (new) activity is given by (4.459),
(4.461), (4.290)

aβ = (γβf
•
βcβ/c)/Hβ = γ c

β cβ/cs (4.467)

with another activity coefficient γ c
β ≡ (γβc∞)/(γ ∞

β c). By diluting the solution
γ c
β → 1 because if cβ → 0 then γβ → γ ∞

β , c → c∞ and, as a result, we obtain
that activity (4.467) in very dilute solution is equal to (dimensionless) concentration
aβ = cβ/cs .

Approximation of activities by corresponding concentrations in very dilute solu-
tions is the main motivation for use of such “hypothetic” standard states.

These standard states are used, e.g. in dilute solutions of salt in water, where the
Debye-Hückel theory exists for estimation [154] of these γ c

β . Modern versions of
this theory use molalities (number of mols in mass unit, namely 1 kg, of solvent)
instead of concentrationswith quite analogical, but different in principle, formulation
of the standard state; at low concentrations the differences, e.g. in γ c

β , are usually
negligible.

A little similar but another choice of standard state, used e.g. in gas chemical
kinetics, see Sect. 4.9, is the pure ideal gas at given temperature and at fixed standard
molar concentration cs (usually unit one, say cs = 1 mol/m3). Therefore, by (4.433),
the standard function (μs

α in (4.441)) is defined as μ�
α (T ) = μ0

α(T ) + RT lncs and
depends only on temperature. Then (4.441) is (we use variables T, cγ ; see (4.212),
(4.288))

μα = μ�
α (T ) + RT ln aα(T, cγ ) (4.468)

In the mixture of ideal gases, we have
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aα = cα/cs (4.469)

as follows from (4.433).
Ultimately we note that the classical theory of mixtures presented here is used

also for solids but with deformations limited on those only which may be described
through density.

Summary. Following simplified models obtained from the linear fluids model
are presented in this section: non-reacting mixture, incompressible mixture, simple
mixture (independent of density gradients), mixture of ideal gases, and ideal mixture.
In the non-reacting mixture the partial thermodynamic pressure is equal to “partial”
pressure in stress tensor, cf. (4.402). The Amagat law was proved in the incompress-
ible mixture, see (4.405). Although in classical (equilibrium) thermodynamics the
chemical potential is defined as a partial derivative of Gibbs energy of mixture which
is in general a function of molar amounts of all constituents, the chemical potential of
a constituent is considered to be a function of only its concentration (molar or weight
fraction). This independence of chemical potential from the concentration of other
constituents was proved here only in the case of simple mixture—see (4.412); the
same was shown for partial free energies, partial thermodynamics pressures, and for
the product of partial volume and thermodynamic pressure. It was also shown that the
simple mixture has a special constitutive (state) equation for partial thermodynamic
pressures—(4.416). The mixture of ideal gases was shown to be a specific case of
the simple mixture and the ideal gas state equation was derived, (4.419). The partial
entropy of ideal gas constituent depends on the density of only this constituent (and
temperature), cf. (4.426), what enabled the calculation of themixing entropy (4.435).
Classical logarithmic dependence of chemical potential on the composition naturally
resulted from (4.429), cf. (4.431) and (4.432). The ideal mixture was defined on the
basis of a specific type of just this logarithmic dependence, cf. (4.437). It is gen-
erally different from the simple mixture. The second part of this section discussed
two important points related to chemical potential—the activity and standard states.
The activity was defined by (4.441). The importance of selection of proper standard
state and the use of activity coefficients and fugacities in calculating the activities
was then described. In fact, this was not a specifically non-equilibrium or rational
treatment but it operated on quantities and relationships the validity of which had
been proved in our model of fluid mixture.

4.9 Chemical Reactions and their Kinetics

Chemical kinetics and its relation to chemical equilibrium is a subject of monographs
and reviews [108, 131, 132, 154, 157]. Classical non-equilibrium thermodynamics
[3, 4, 119, 120] studies this subject starting from entropy production (4.178) and
therefore taking the affinity as a driving force of chemical reaction rates [158]; but
this seems (at least) insufficient because of the decomposition (4.174), cf. discussion
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of (4.489), (4.493) below and references [108, 159, 160]. Chemical reactions are
discussed also in rational thermodynamics [14, 18, 31, 75, 161].

To describe a chemically reacting system, it is sufficient to consider independent
reactions only (see Sect. 4.2) because any other (dependent) chemical reactions may
be obtained by their linear combinations.

In this Sect. 4.9 we discuss Eqs. (4.156), (4.171) concerning chemical reactions
in a regular linear fluids mixture (see end of Sect. 4.6), i.e. with linear transport phe-
nomena. This model gives the (non-linear) dependence of chemical reaction rates on
temperature and densities (i.e. on molar concentrations (4.288)) only (4.156), which
is (at least approximately) assumed in classical chemical kinetics [132, 157]. Here,
assuming additionally polynomial dependence of rates on concentrations, we deduce
the basic law of chemical kinetics (homogeneous, i.e. in one fluid (gas, liquid) phase)
called also the mass action law of chemical kinetics, by purely phenomenological
means [56, 66, 79, 162, 163].

In non-linear transportmodels, see e.g. [72], the chemical reaction rates depend on
more parameters: not only on concentrations and temperature but also on deformation
rates, gradients of concentrations, etc.; for a possible generalization of the presented
procedure see [108, 164] and the end of this section.

Constitutive equations for rates of chemical reactions (4.156) in regular linear
fluids mixture may be written with the use of molar quantities (4.26), (4.33) (cf.
(4.179) and examples (4.487), (4.488), (a) of Rem. 30, below)

�J = �J (T, �c) = �J (T, �μ) = �J (T, �a) (4.470)

where �c is the vector of (molar) concentrations cα (4.288), �μ is the vector of molar
chemical potentialsμα (4.172), (4.173), and �a is the vector of activities aα (4.441) (in
the mixture space U , see Sect. 4.5). The second relation follows from the preceding
one using inversion of function �μ = �μ(T, �c) (cf. (4.172), (4.161), (4.288)) which
exists because the matrix with components ∂μα/∂cγ = MαMγ ∂ ĝα/∂ργ is regular
by the regularity of (4.362) and diagonal matrix from non-zero Mα (we study rates
(4.470) in stable, one-phase gas or liquid mixture). The last equation (4.470) follows
from (4.441) where the form of this function depends on the form of the standard
function; we limit ourselves to the most often used case (4.468) when the standard
functions depend only on temperature.

In the regular linear fluidsmixture, the production of entropy is caused by chemical
reactions given by (4.178) and (chemical) equilibrium is given simultaneously by
zero affinities (4.311) of independent chemical reactions chosen for their description
of reacting system

�A = �0 (4.471)

and by the zero rate of these chemical reactions (4.302)

�J = �0 (4.472)
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(see Sect. 4.7 for details). Equilibrium (4.471) may be expressed through the equilib-
rium values of activities aoα inserting (4.441)with the equilibrium chemical potentials
μo

α = μs
α + RT ln aoα into (4.176) by

− RT lnKp =
n∑

α=1

μs
αP

pα p = 1, . . . , n − h (4.473)

where the so called equilibrium constantsKp of independent reaction p are defined as

Kp =
n∏

α=1

(aoα)P
pα

p = 1, . . . , n − h (4.474)

According to the limitation stated above, our standard functions μs
α = μs

α(T )

depend only on temperature and therefore also equilibrium constants depend on
temperature only and by (4.474) give restrictions on the values of activities aoα in
chemical equilibrium (denoted by superscript o; cf. Sect. 4.7). Equations (4.473) and
(4.474) permit calculations of chemical equilibria: Kp may be calculated from the
right-hand side of (4.473) (e.g. from thermodynamic data for pure constituents if they
are taken as the standard state) and composition of equilibrium mixture is restricted
by (4.474) if we know the relation of activities to composition; simple results follow
for important case (4.469), which will be used below (4.475).

Chemical kinetics is given by constitutive equations (4.470). Their form must be
valid in all processes and therefore also in equilibrium (4.471). But simultaneously
we have a restriction (4.472) on the constitutive equations (4.470) in equilibrium.We
find explicit consequences of this restriction for the approximation of constitutive
equations (4.470) by a polynomial in activities aα [66, 79, 162]. This was motivated
by proportionality of activities to concentrations (e.g.(4.469)) and the empirically
observed power dependency of reaction rates on concentrations. We denote such
powers as reaction orders [132, 157]; often they are 1, 2 (rarely 3) but sometimes
also fractions (see Rem. 17), cf. also end of this Sect. 4.9. Indeed, we show below
that such approximation and restriction give the power law of chemical kinetics in
activities which is, moreover, consistent with chemical equilibrium and which is
then, by the activity-concentration proportionality just mentioned, consistent also
with classical power law in concentrations (i.e. with the mass action law of chemical
kinetics), cf. examples (4.476), (4.498) below.

Even though such power laws of chemical kinetics in activities were proposed
[154, 156] the results are often controversial, cf. [165–168] and caused polemics
between Haase and Hall [169–175], see detailed discussion in review [108]. These
difficulties in application of activities and other thermodynamic concepts in chemical
kinetics [131, 132, 157, 176], the dependence of chemical reaction rates on pres-
sure (relatively small effect in comparison with temperature dependence [132, 157,
177]), problems related to not using T, P, wβ instead of T, ργ as thermodynamic
variables, etc., may be connected, as it seems, with the result of our theory that the
thermodynamic pressures Pα and P are not the same as measured pressures (like pα
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or other quantities of such kind given by constitutive equations (4.138)). Namely,
as follows from our theory (cf. end of Sect. 4.5 and (4.186),(4.187)), the non-zero
values of such difference �pα (4.162) may be expected in a chemically reacting
mixture out of equilibrium.

We demonstrate the procedure of obtaining the mass action law of chemical kinet-
ics on special cases of regular linear fluids mixtures in which these activities (for
standard states depending on temperature only) are equal to dimensionless concen-
trations (cf. end of Sect. 4.8, cs is a fixed standard concentration)

aα = cα/cs α = 1, . . . , n (4.475)

specifically we limit ourselves to the mixture of ideal gases, see (4.468), (4.469).
Similar results may be obtained also for very dilute liquid solutions, see (4.467),

but because the corresponding standard state may depend beside T also on the
pressure P , we confine ourselves usually to chemical kinetics with constant, say
atmospheric pressure (its small variation may be neglected in liquids).

As a first example, let us consider a linear mixture of two ideal gases NO2 (α = 1)
and N2O4 (α = 2) with reaction (4.46)

N2O4 = 2NO2 (4.476)

The rate of this reaction Jp (p = 1) is given by the first equation (4.470)1.28

J1 = J1(T, c1, c2) (4.477)

We note that this rate is in the relation with Jα (4.26) by (4.44)

J 1 = 2J1, J 2 = −J1 (4.478)

Chemical affinity (4.176) of this reaction (4.476) is

A1 = −(2μ1 − μ2) = −(2μ�
1 (T ) − μ�

2 (T )) − RT ln

(
1

cs

(c1)2

c2

)
(4.479)

28 We follow here the traditional chemical kinetics using concentrations cα with their dimension
giving more or less formal, dimensional complications, cf. Rem. 29, 30. Performing this example
in dimensionless activities we have by (4.470)3

J1 = J1(T, a1, a2) (a)

In equilibrium, cf. (4.480), (4.481),wehave Jo1 = J1(T, ao1 , a
o
2 ) = 0 togetherwith zero chemical

affinity (4.479) A1o = −2μo
1 + μo

2 = 0 which gives the dimensionless “real” equilibrium constant

K1 = (ao1 )
2

ao2
= 1

cs

(co1)
2

co2
(b)

(equilibrium values are denoted by superscript o, cf. below (4.474)).
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where the last expression follows from chemical potentials of ideal mixture of gases
(4.468) with activities (4.475).

In chemical equilibrium, Eqs.(4.471) and (4.472) are valid and with equilibrium
concentrations co1, c

o
2 (at given temperature T ) Eqs. (4.477) and (4.479) give

Jo1 = 0 = J1(T, co1, c
o
2) (4.480)

− RT ln

(
1

cs

(co1)
2

co2

)
= 2μ�

1 (T ) − μ�
2 (T ) (4.481)

where the dimensionless “real” equilibrium constant K1 is in logarithm, namely (b)
in Rem. 28. This is depending on temperature only (because of such a dependence
of the chosen standard state).

Because the number cs is fixed (cf.Rem. 30), it canbe included into the equilibrium
constant:

csK1 = (co1)
2

co2
≡ K1 (4.482)

Motivated by traditional use in chemical kinetics, we denote K1 also as an equilib-
rium constant of reaction (4.476) depending on temperature only, even it is different
from dimensionless “real” equilibrium constant K1.

Now we assume that dependence (4.477) in concentrations may be approximated
by a polynomial up to the second degree

J1 = k00 + k10c1 + k01c2 + k20c
2
1 + k11c1c2 + k02c

2
2 (4.483)

where the coefficients k00, . . . , k02 depend only on temperature.29 This equation
(4.483) must be valid also in equilibrium; therefore introducing (4.483) into (4.480)
and eliminating co2 by (4.482) we obtain

0 = k00+k10c
o
1 +(k01/K1 + k20) (co1)

2+(k11/K1)(c
o
1)

3+(k02/K
2
1 )(co1)

4 (4.484)

which is a polynomial in independent equilibrium values of co1 . This value may be
chosen arbitrarily in chemical equilibrium at a given temperature and Eq. (4.484)
must be valid (the considered place in mixture is generally open to mass exchange,

29 The same form follows assuming that (a) of Rem. 28 is a polynomial in activities

J1 = k00 + k10a1 + k01a2 + k20a
2
1 + k11a1a2 + k02a

2
2 (a)

coefficients of which depend on T only and have the same dimension.
The corresponding polynomial in concentrations is obtained by substitution of (a) by (4.475),

namely

J1 = k00 + (k10/cs)c1 + (k01/cs)c2 + (k20/c
2
s )c

2
1 + (k11/c

2
s )c1c2 + (k02/c

2
s )c

2
2 (b)

This is the same as (4.483) but with other coefficients than in (a), e.g. k01 = k01/cs ; they have
different dimensions but again they are functions of temperature only.
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e.g. even in uniform equilibrium in a batch reactor this arbitrariness may be achieved
by changing the initial composition of the mixture before chemical reactions start).
Because a polynomial of finite degree may have only a finite number of roots, the
requirement of arbitrariness of values co1 fulfilling (4.484) (e.g. its positive values
from some interval) gives therefore that all coefficients in (4.484) must be identically
zero, i.e.

k00 = k10 = k11 = k02 = 0 (4.485)

k20 = −k01/K1 (4.486)

Because these coefficients depend only on temperature, this result is valid also in
the general expression (4.483). Therefore the final form of (4.483) is

J1 = k01c2 − (k01/K1)c
2
1 = k20(c

2
1 − K1c2) (4.487)

Thus, the form of mass action law of chemical kinetics was recovered where k01
and k01/K1 may be interpreted as the rate constants in the forward and reversed
directions of reaction (4.476) respectively; moreover, these constants depend only
on temperature and fulfil the known relation (4.486) with the equilibrium constant.30

Further, this form of mass action rate equation automatically satisfies the principle of
detailed balance which is used as a thermodynamic restriction on chemical kinetics
and which, in turn, seems to be a result of permanence of atoms [140] stated in
Sect. 4.2. Conditions when this form transforms to traditional and experimentally
supported mass action rate equations are discussed in Ref. [163]. In practice rate
constants in the two directions often differ essentially (usually by extremely high or
low values of equilibrium constants, cf. (4.486)) and we obtain the classical form of
the chemical kinetic law for an “irreversible” one-directional reaction. From (4.487)
and (4.478) (and this is valid by (4.44) more generally) the constitutive equations for

30 It may be seen that the same procedure may be performed formally quite analogously if we use
activities instead concentrations (compare (a), (b) inRem. 28 and (a) inRem. 29with corresponding
(4.477), (4.482) and (4.483) even their difference in dimensions, cf. [79, 162]). Proceeding similarly,
the analoguewith activities (instead of concentrations)may be obtained, e.g. the analogue of (4.484)
with equilibrium activity ao1 . Therefore also the analogue of result (4.487)1 in activities will be valid

J1 = k01a2 − (k01/K1)a
2
1 (a)

this time with coefficients (rate constants) coming from (a) of Rem. 29 with dimensionless equi-
librium constant K1, see (b) of Rem. 28. Indeed, inserting (4.475) into (a) we obtain

J1 = (k01/cs)c2 −
(

(k01/cs)
co2

(co1)
2

)
c21 (b)

which is (4.487)1 with velocity constants as in (b) of Rem. 29 and with equilibrium constant (4.482)
K1.

Note, that if, as usually cs = 1 mol/m3 and concentrations are given in the same units, the
numerical values of rate and equilibrium constants are the same even though their dimensions are
different.
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components Jα have also the form of (4.487) (with rate constants depending only
on temperature) but this result is independent of the reaction chosen in contrast to
rates Jp and equilibrium constants. E.g. for reaction (4.47) (with primed quantities)
K ′
1 = K−0.5

1 and J ′
1 = −2J1 but Jα remains the same.

Substituting cα in (4.487) from (4.475), (4.468) using (4.481) with (4.482) we
obtain

J1 = cs k01(T ) exp[−μ�
2 (T )/(RT )] (exp[μ2/(RT )] − exp[2μ1/(RT )])

= J̄1(T, μ1, μ2) (4.488)

which is the second relation (4.470) for this example (4.476), cf. (4.179) (the last
one of (4.470) is (a) in Rem. 30)).

Eliminating μ1 from (4.488) by (4.479), we have

J1 = cs k01(T ) exp[−μ�
2 (T )/(RT )] exp[μ2/(RT )]

(
1 − exp[−A1/(RT )]

)
(4.489)

Linearization of this equation in A1 gives the “phenomenological” equation for
reaction rate of linear irreversible thermodynamics [1, 3, 4, 130]. But there is a
controversion here [159]:μ2 is contained in affinity (4.479) as well as in the first part
of (4.489) which is considered as constant in such linearization, cf. below (4.494),
see also [158].

We show on this example (4.476) also the result of decomposition of vector of
chemical potential from the 2-dimensional reaction space U into two 1-dimensional
subspaces V and W (4.174), in component form (4.177):

μα = −A1g11P
1α + B1S1α α = 1, 2 (4.490)

Using matrices ‖P pα‖ = (2 − 1) , ‖Sσα‖ = (1 2) for constituents in this
reaction (4.476) (see above (4.46)) and g11 = 1/5 (because this is the inversion of
g11 = �g1.�g1 = 5 calculated from (4.40)) we obtain the decomposition (4.490) as

μ1 = −(2/5)A1 + B1, μ2 = (1/5)A1 + 2B1 (4.491)

This gives the expression for affinity (4.479) and also

B1 = (μ1 + 2μ2)/5 (4.492)

Using this (1-dimensional) decompositions (4.479), (4.492) in (4.489) (inserting
(4.491)2) we obtain (4.470) with decomposition (4.174) as (4.179), i.e.

J1 = J̄1(T, μ1, μ2) = J̃1(T, A1, B1)

= cs k01(T ) exp[−μ�
2 (T )

RT
] exp[2B

1

RT
] exp[ A1

5RT
]
(
1 − exp[− A1

RT
]
)

(4.493)
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At zero affinity A1 = A1o = 0 = −2μo
1 + μo

2 (4.479) we obtain J1 = 0 in
equilibrium, indeed (where also B1 = B1o = μo

1 = (1/2)μo
2 by (4.492), (4.479)

with equilibriumvalues of chemical potentialsμo
1, μ

o
2). Production of entropy (4.178)

in this example is �0 = J1A1 ≥ 0 and therefore for A1 > 0 it must be J1 > 0 and
it follows from (4.493) or (4.489) that (cs > 0 of course)

k01 > 0 (4.494)

Results of this type (signs of rate constants; equilibrium constants are only posi-
tive) follow generally from the sharp minimum of �0 (4.171) in equilibrium which
is described in variables T, �A, �B as (a) in Rem. 22. Namely, the first derivative (b)
in it gives zero reaction rates (4.472) and the second derivative gives the inequality
(e) in Rem. 22. The latter is (4.493) in our example and (∂ J̃1/∂A1)o(A1)2 ≥ 0 gives
(4.494) again.

As we noted below, the equation (4.489) the expressions (4.493) show that depen-
dence of reaction rate on affinity is not so simple [158, 159] as it is assumed in clas-
sical non-equilibrium thermodynamics [1, 3, 4, 130] based on entropy production
(by chemical reactions), i.e. as a product of “fluxes” and “driving forces” (4.178).
Projection �B of chemical potential vector �μ to the subspace W also plays a role in
expression for reaction rates �J as (4.493) in our example; the affinity �A is projection
of �μ into orthogonal reaction subspace V only, cf. (4.174). Cf. detailed discussion
and criticism in review [108] and references [159, 160].

What happens if we use polynomials of different degrees in approximation of
(4.477)?. For the zero and first degrees, we get by the samemethod J1 ≡ 0 identically,
for the third degree we obtain

J1 = k20(c
2
1 − K1c2) + (k30c1 + k21c2)(c

2
1 − K1c2) (4.495)

The first member is the same as (4.487) (see (4.486)) and the second one may
be interpreted as autocatalysis by both constituents of mixture (some rate constants
may be neglected, cf. below (4.487)). Moreover, if we add a third constituent (say
ideal gas) Q (α = 3) to this mixture which formally does not take part in the reaction
(4.476) but may have an influence on the reaction rate

J1 = J1(T, c1, c2, c3) (4.496)

then (using (4.482)) we obtain, approximating this dependence by polynomial of the
2nd degree, the same result as (4.487) and by the polynomial of the third degree we
obtain a similar expression as (4.495) containing (besides autocatalysis members)
also catalysis caused by the constituent Q (α = 3)

J1 = k200(c
2
1 − K1c2) + (k300c1 + k210c2 + k201c3)(c

2
1 − K1c2) (4.497)
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Here again, as well as in (4.495), the coefficients k200, k300, . . . , K1 depend only
on temperature. From (4.497) it follows, that in accord with experience, the auto-
catalysis and catalysis have influence on both directions of reaction (4.476).

As a last example, we consider the regular linear fluid mixture of atomic and
molecular oxygen and ozone O, O2, O3 as ideal gases denoted by α = 1, 2, 3
respectively, i.e. the simplification (4.475) is valid. Here two independent chemical
reactions take place, e.g. (4.48)

2O3 = 3O2, O3 = 3O (4.498)

denoted by p = 1, 2 respectively. Constitutive equations for reaction rates are (upper
indices are p = 1, 2, the remaining are powers of concentrations)

Jp = Jp(T, c1, c2, c3) = k p000 + k p100c1 + k p010c2 + k p001c3

+ k p200c
2
1 + k p020c

2
2 + k p002c

2
3 + k p110c1c2 + k p011c2c3

+ k p101c1c3 p = 1, 2 (4.499)

where the approximation by polynomial of the 2nd degree was assumed. The equilib-
rium concentrations are connected by the equilibrium constants of reactions (4.498)
respectively

K1 = (co2)
3/(co3)

2, K2 = (co1)
3/co3 (4.500)

from which we express the equilibrium values (denoted by superscript o)

co2 = (K1/K
2
2 )1/3(co1)

2, co3 = (co1)
3/K2 (4.501)

In equilibrium Jp = 0 p = 1, 2 (with equilibrium concentrations coα α =
1, 2, 3) and we insert there from (4.501). We obtain two polynomials in (possible
continuum of) co1 which must be zero; therefore, their coefficients must be zero:

k p000 = 0, k p100 = 0, k p002 = 0, k p011 = 0, k p010 = −k p200(K
2/3
2 /K 1/3

1 )

k p001 = −k p110(K1K2)
1/3, k p101 = −k p020(K

2/3
1 /K 1/3

2 ) p = 1, 2 (4.502)

Because coefficients in (4.499) and equilibrium constants (4.500) depend only on
temperature, we obtain for reaction rates after inserting from (4.502) into (4.499):

Jp = k p200(c
2
1 − K4c2) + k p110(c1c2 − K3c3) + k p020(c

2
2 − K5c1c3) p = 1, 2

(4.503)
where (the upper indices mean powers as usual)

K 3
3 = K1K2, K 3

4 = K 2
2/K1, K5 = K3/K4 (4.504)
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which all are functions of temperature only (similarly as the rate constants k p200, k
p
110,

k p020).
Note that we obtain the same result (using polynomial of the 2nd degree (4.499))

from an equivalent set of independent reactions, say (4.49). This may be seen directly
from (4.503), (4.504) inserting (4.500): then K3, K4 are equilibrium constants of
reactions (4.49) respectively. We also note that we can also eliminate co1, c

o
3; then we

must use the preceding method for polynomial of the type (4.484) but in (co2)
0.5 and

the result (4.503) may be obtained again. Therefore, chemical kinetics in the system
O, O2, O3 may be described by two equilibrium and six rate constants when constitu-
tive equations for reaction rates are approximated by a polynomial of the second order
(a polynomial of the third order gives 20 rate constants [79]; equilibrium constants
are again two because of two independent chemical reactions).

This method gives reaction orders as natural numbers only; for further details and
discussion, see [79, 108, 162, 178]. Result (4.503) (written for Jα by (4.44)) may
be interpreted also as a mechanism (e.g. O2 = 2O , O+O2 = O3 , O3 +O = 2O2)
of some overall reaction (e.g. 2O3 = 3O2) considering also unstable intermediate
products as constituents, e.g. O in (4.498). Neglecting some rate constants and by
standard methods of chemical kinetics [131, 132, 157], the mechanism may then
explain the observed (even fractional) reaction orders. Therefore it seems that the
method presented here is appropriate for (at least a possible) proposal ofmechanisms,
because the integer degrees of polynomials suffice giving 1, 2, or 3 for “molecular-
ity” (the reaction order of “elementary” reactions (often linearly dependent) forming
mechanism; their irreversibility follows ignoring some of rate constants as we noted
below (4.487)). By this method (see also [108]) the mechanism of decomposition of
N2O has been discussed [178], as has the detailed balance in the “triangle” mecha-
nism [179] and a possible application in heterogeneous kinetics [164] (the method
presented here may be generalized on such more complex models if the reaction
rates may be expressed through polynomial in concentrations (even though they
depend on further parameters) and their equilibrium values are linked together, say
by equilibrium constants).

We have seen above that expressions in a more general case with activities may
be obtained simply using activities instead of concentrations (cf. Rems. 28, 29, 30),
but the problem of their usefulness (and other thermodynamic notions) in chem-
ical kinetics remains, as we noted above (4.475), because of the possible differ-
ence between measured and thermodynamic pressure in systems out of chemical
equilibria.

Summary. The classical mass action law of chemical kinetics was proved, in
fact, in the linear fluid mixture as the general constitutive equations for the reaction
rates which were reproduced in this section as (4.470). This law generally states that
the rates depend only on temperature and composition expressed by densities, molar
concentrations or activities or, alternatively, even by (molar) chemical potentials.
The equilibrium constant of independent reactions was defined by (4.474). Then
we have shown on several reaction examples how the general function reaction
rate-concentrations (or reaction rate-activities) can be approximated by a suitable
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polynomial in concentrations (or activities) and further modified to obtain the final
equation for the reaction rate in the mass action form—cf., e.g. (4.477), (4.483) and
(4.487). The traditional mass action kinetics was thus justified thermodynamically
at least for our mixture model. We have also illustrated the proper transformation of
reaction rate to a function of affinities (and temperature), which has not been done
correctly in other works, see (4.493). This functional form also enables to find the
restrictions put by the entropy inequality on the rate coefficients (mass action rate
constants)—see (4.494).

4.10 Transport Phenomena in the Linear Fluid Mixture

We have studied a regular linear fluid mixture where most of the results for transport
phenomena (4.137), (4.138), (4.165), (4.166) (viscosity, diffusion, heat conduction
and cross effects) are not in a form useful in practice [76, 104, 180, 181]. In this
section we transform them into a more convenient form which is also used in linear
irreversible thermodynamics [1–4, 27, 28, 119, 120, 130, 182]. Onsager relations
will be also noted and some applications, like Fick law and the electrical conductivity
of electrolytes are discussed.

To account for viscosity effects [180, 183, 184], in a mixture of linear fluids we
write the constitutive equations for stress (4.138) in the form (we use (4.186))

Tα = −Pα1 + TN
α α = 1, . . . , n (4.505)

where Pα is the partial thermodynamic pressure andTN
α is thepartial non-equilibrium

stress defined by

TN
α ≡ �pα1 +

n∑
γ=1

ζαγ (trDγ )1 +
n∑

γ=1

2ηαγ

◦
Dγ α = 1, . . . , n (4.506)

Coefficients �pα and the partial volume viscosity coefficients ζαγ and the partial
viscosity coefficients ηαγ are functions of temperature and densities (composition)
only. In applications Dγ of all constituents are often the same and the total stress
(4.94) T = ∑n

α=1 Tα is of interest; then (4.506) has the same form as for single
fluids (3.189) with

∑n
α=1

∑n
γ=1 ζαγ and

∑n
α=1

∑n
γ=1 ηαγ as viscosity coefficients

of the mixture (and �pα (4.186) contributes to the pressure only in a chemically
reacting mixture out of equilibrium; cf. Sects. 4.5 and 4.9).

To describe diffusion, heat conduction and cross effects [76–78, 180, 181], i.e.
thermodiffusion and Dufour effect, we define the diffusion flux jβ as

jβ ≡ ρβuβ β = 1, . . . , n − 1 (4.507)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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where uβ is the diffusion velocity defined by (4.24) with the velocity of n-th con-
stituentvn as the referential one (for other diffusion velocities, see (4.539) and below).

To obtain the constitutive equations for fluxes jβ , we express diffusion velocities
from (4.137) and eliminate kβ by balance of momentum (4.58) using (4.505)

n−1∑
δ=1

νβδuδ =
n∑

γ=1

ωβγ hγ − ξβg − gradPβ + divTN
β + ρβ(bβ + iβ)

− ρβ v̀β β = 1, . . . , n − 1 (4.508)

Writing (4.208) for space gradients we obtain

n∑
γ=1

ωβγ hγ − gradPβ = −ρβ gradT gβ + ρβ

(
sβ + ∂ f̂β

∂T

)
g (4.509)

where we used the isothermal gradient of chemical potential gradT gα defined by
[1–4, 120]

gradT gα ≡ gradgα + sαg (4.510)

Note, that using variables (4.216) and (4.266), (4.267)

gradT gα = vα gradP +
n−1∑
β=1

∂ g̃α

∂wβ

gradwβ (4.511)

Similarly, using variables (4.213), gradgα depends linearly on g,hγ . Now the
Eq. (4.509) is introduced into Eq. (4.508), the definition of the driving force of
diffusion yβ

yβ ≡ gradT gβ − (bβ + iβ) + v̀β − (1/ρβ)divTN
β β = 1, . . . , n − 1 (4.512)

and (4.163) are used to obtain

−
n−1∑
δ=1

νβδuδ = ρβyβ +
(

ϑβ − λβ

T

)
g β = 1, . . . , n − 1 (4.513)

Suppose that the matrix ‖νβδ‖ is regular. It is usually the case because yet more
is often assumed: the symmetry (4.521) (cf. Onsager relations below) and positive
definiteness (see the assumption 1 of regular linear fluids mixture in the end of
Sect. 4.6) at least in a non-reacting mixture (diffusion is mostly studied in a non-
reacting mixture; rates in a reacting mixture are usually assumed to be negligible in
(4.182)).
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Then uδ may be eliminated from (4.513) and inserting them into (4.507) we obtain
constitutive equations for diffusion fluxes

− jδ =
n−1∑
β=1

Lδβ yβ + Lδq
g
T

δ = 1, . . . , n − 1 (4.514)

− q =
n−1∑
δ=1

Lqδ yδ + Lqq
g
T

(4.515)

Equation (4.515) is deduced if we insert uβ just obtained into (4.166). Here the so
called phenomenological coefficients are therefore defined by

Lδβ ≡ ρβρδν
−1
δβ β, δ = 1, . . . , n − 1 (4.516)

Lδq ≡
n−1∑
β=1

ρδT (ϑβ − λβ

T
)ν−1

δβ δ = 1, . . . , n − 1 (4.517)

Lqδ ≡ −
n−1∑
β=1

ρδλβ ν−1
βδ δ = 1, . . . , n − 1 (4.518)

Lqq ≡ kT −
n−1∑
β=1

n−1∑
δ=1

Tλβ(ϑδ − λδ

T
)ν−1

βδ (4.519)

where ν−1
δβ are the elements of the inverse matrix to the matrix of the transport

coefficients νβδ (i.e.
∑n−1

β=1 ν−1
δβ νβη = δδη is Kronecker delta, δ, η = 1, . . . , n − 1)

and subscript q denotes a relation to the heat flux. Therefore the phenomenological
coefficients are, similarly to the coefficients in constitutive relations (4.137), (4.166),
functions of T, ρ1, . . . , ρn only (with usual invertibility, cf. (4.213), (4.217), also
dependence on T, P, wβ or even on other variables, e.g. those in (4.551), are often
used). In equilibrium, where (4.316), (4.317) is valid, it follows from (4.513) that the
driving force of diffusion is zero yβ = o (this follows also from (4.512); cf. (4.505),
(4.321), (4.323), (4.333)).

Expressions (4.514), (4.515) are known as phenomenological equations of lin-
ear irreversible or non-equilibrium thermodynamics [1–5, 120, 130, 185–187], in
this case for diffusion and heat fluxes, which represent the linearity postulate of this
theory: “flows” (jδ,q) are proportional to “driving forces” (yβ, T−1g) (irreversible
thermodynamics studied also other phenomena, like chemical reactions, see, e.g.
below (4.489)). Terms with phenomenological coefficients Lδβ, Lδq , Lqδ, Lqq , cor-
respond to the transport phenomena of diffusion, Soret effect or thermodiffusion,
Dufour effect, heat conduction respectively, discussed more thoroughly below.
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In irreversible thermodynamics Onsager reciprocity relations are (usually) pos-
tulated which in our context (4.514), (4.515) are

Lδβ = Lβδ, Lδq = Lqδ β, δ = 1, . . . , n − 1 (4.520)

These reciprocity relations are valid if the following additional simple assumptions
about our constitutive model is fulfilled

νβδ = νδβ (4.521)

ϑβ = 0 β, δ = 1, . . . , n − 1 (4.522)

as may be seen from (4.516)–(4.519) (from (4.521) follows symmetry of ν−1
βδ ).

We motivate (4.521), (4.522) here31 by plausible additional constitutive assump-
tions according to Truesdell [188], [13, Lect7] and Müller [18, Sect. 6.6]: Let us
consider a non-reacting three-constituent linear fluids mixture (n = 3; generaliza-
tion on more constituents is possible [188]). To prove (4.521) it suffices to consider
the special case with g = o,hγ = o (in driving force (4.512) gradT gβ = o, see
below (4.511)) because νβδ does not depend on them. Then by (4.137), (4.24)

kβ = −
2∑

δ=1

νβδ(vδ − v3) β = 1, 2 (4.523)

k3 = −k1 − k2 (4.524)

where (4.524) expresses the balance of momentum (4.63) in such a non-reacting
mixture. Introducing (4.523) into (4.524) and rearranging we can write Eqs. (4.523),
(4.524) as

31 Besides the explanation of reciprocity relations through constitutive properties used here and
proposed [188] and promoted by Truesdell [12], [13, Lect7], (for other examples of this type see
Šilhavý [189], Wang [13, Appendix 7a]), most authors in irreversible thermodynamics consider
them as a result of a more general principle like “dissipative potential” whose derivatives according
to “driving forces” give the “fluxes” fulfilling the Onsager relation. Existence of such dissipative
potentials is supported by plausible explanations of non-equilibrium states, as the steady non-
equilibrium states and their stability, cf. minimum of entropy production by Onsager reciprocity
[1, 129], see also [3, 5, 39, 190, 191]. Phenomenological theory [39, 143, 192–195] may give
such dissipative potentials but with the condition that fluxes contain also parts not contributing
to the entropy production, e.g. simply if such a part is zero (symmetry does not follow from
positive semidefinity, see Rem. 16). To find such a part additional molecular arguments, at least
in motivation, are necessary, e.g. from fluctuation theory with the principle of detailed balance
or microscopic reversibility [1, 3, 5, 196] (originally Onsager’s idea), from molecular theories of
transport phenomena (kinetic theory of gases) [133], from invariance entropy production against the
time reversal [111, 197]; see also [22, 23, 111, 119, 182, 187, 196–201]. In addition, the symmetry
(4.520) has been confirmed experimentally [181, 202].
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kα =
3∑

γ=1

Fαγ (vγ − vα) α = 1, 2, 3 (4.525)

where we define

Fαα = 0, α = 1, 2, 3, F12 = −ν12, F21 = −ν21,

F13 = ν11 + ν12, F31 = ν11 + ν21, F23 = ν22 + ν21, F32 = ν22 + ν12
(4.526)

and therefore the scalar coefficients, the diffusive drags Fαγ , are functions only
of T, ρ1, ρ2, ρ3. Forces kα (4.525) may be therefore interpreted as originating by
transport of momentum from other constituents γ on a given constituent α. Because
(4.524) is valid, we have

3∑
γ=1

kα =
3∑

α=1

3∑
γ=1

(Fγα − Fαγ )vα = o (4.527)

But Fαγ are independent of velocities vα and therefore we have the following restric-
tion from (4.527)

3∑
γ=1

(Fγα − Fαγ ) = 0 α = 1, 2, 3 (4.528)

Splitting the matrix ‖Fαγ ‖ uniquely to its symmetric ‖Fs
αγ ‖ and skew-symmetric

‖Fa
αγ ‖ parts, we have

Fαγ = Fs
αγ + Fa

αγ α, γ = 1, 2, 3, Fs
αγ ≡ (1/2)(Fαγ + Fγα),

Fa
αγ ≡ (1/2)(Fαγ − Fγα) (4.529)

Inserting (4.529) into (4.528) we obtain

3∑
α=1

Fa
αγ = 0 or

3∑
γ=1

Fa
αγ = 0 (4.530)

i.e. the skew-symmetric matrix ‖Fa
αγ ‖ must be such that sums of its columns and

rows must be zero. Therefore, for n = 3 it must have the form

‖Fa
αγ ‖ =

⎛
⎝ 0 +α −α

−α 0 +α

+α −α 0

⎞
⎠ (4.531)
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where α is a coefficient which is only a function of T, ρ1, ρ2, ρ3. Plausible physical
arguments are taken now as additional constitutive assumptions [188]:

1. Fαγ are independent of the density of constituent ε if ε �= α, γ . This may be
regarded as a macroscopic definition of binary drags, i.e. the drag force between
the constituents α and γ is independent of the presence of other constituents.

2. When ργ → 0 then Fαγ → 0 because it may be expected that the drag force
from constituent γ on constituent α goes to zero when the mixture becomes more
diluted in the constituent γ .

Then from assumption 1, we can see that the coefficient α is not dependent on
ρ1, ρ2, ρ3 altogether and from assumption 2 we have α = 0, i.e. the skew-symmetric
part of ‖Fαγ ‖ is zero

‖Fa
αγ ‖ = ‖0‖ (4.532)

Then ‖Fαγ ‖ is symmetrical and from (4.526) we obtain the symmetry (4.521),
for this case

ν12 = ν21 (4.533)

Thus from (4.516) the Onsager relation L12 = L21 follows for this case.
To obtain the reciprocity relations (4.520), it suffices to add (4.522) (see (4.163)).

This is valid in an ideal gas mixture (simple mixture of gases) where (4.426) is valid
if we assume compensation λβ/T + ξβ = 0 (something like reciprocity in (4.166),
(4.137)) or even λβ = 0, ξβ = 0 (no thermal drags); see discussion in [18, Sect. 6.6],
[51, 75], cf. Rem. 26.

As we noted above, the phenomenological relations (4.514), (4.515) are starting
equations for obtaining useful results for transport phenomena as diffusion, heat
conduction and cross effects. This will be discussed in the remaining part of this
Sect. 4.10; for details see [1–5].

Heat conduction [181] is described by the Fourier law

q = −k g (4.534)

where the heat conductivity k depends on T, ργ (cf. below (4.136), (4.519)). This
follows from (4.166) at the absence of diffusion, cf. (3.187). Fourier law, under-
stood as the proportionality of heat flux to temperature gradient, follows also from
phenomenological equation (4.515) at zero diffusion driving force. But the “heat con-
ductivity” Lqq/T , is changed a little, see (4.519), (4.545): the difference is caused
by the most important cross effect, namely the Soret effect (thermodiffusion): dif-
fusion flux is caused by a temperature gradient because λβ �= 0, see (4.514) (cf.
also (4.166)). Reversal to this cross effect is the Dufour effect (heat flux caused by
diffusion), see (4.515), (4.518) and Onsager relations (4.520). For further details, see
[9, 156].

The most important transport phenomenon—diffusion [76]—then remains. Using
expression (4.511), we obtain for the driving force of diffusion (4.512)

http://dx.doi.org/10.1007/978-3-319-02514-8_3


4.10 Transport Phenomena in the Linear Fluid Mixture 263

yβ =
n−1∑
ζ=1

∂ g̃β

∂wζ

gradwζ +vβ gradP−(bβ + iβ)+ v̀β − 1

ρβ

divTN
β β = 1, . . . n−1

(4.535)
Therefore, the diffusion driving force has three important parts which express the

concentration diffusion (caused by composition gradient), the barodiffusion (by pres-
sure gradient) and the third member is the forced diffusion by the body forces bβ +iβ .
The remaining acceleration and friction parts are usually neglected (but see Rem. 33
below). While barodiffusion emerges rather by the choice of independent variables
in (4.511), the forced diffusion explains the sedimentation (e.g. in centrifugal fields)
and electrical conductivity.32 Note, that these three types of diffusions are described
by only one type of the phenomenological coefficient Lδβ (as the difference from
thermodiffusion with special coefficient Lδq ).

The most important case of concentration diffusion is that with isobaric diffusion
driving force (4.535), without external forces and with corresponding neglection
noted above, i.e. with the following driving force

32 E.g. (aqueous) solutions of electrolytes in electrochemistry. These may be described by our linear
mixture model where constituents are ions of salts and water as solute. The volume force affecting
ions is the electrical force which is such when acting on (for simplicity) a univalent positive ion in
electrical field with intensity E

bβ = ∂F

∂Mβ

E (a)

where F is the Faraday charge (product of elementary electrical charge and Avogadro number) and
Mβ is the molar mass of ion β. Then the diffusion flow at (electrical) conductivity measurement
(mixture without temperature and concentration gradients) is according to (4.514), (4.512):

jβ = Lββ bβ (b)

with the force (a) (neglecting inertial forces, friction, acceleration and “cross” phenomenological
coefficients Lδβ ). Inserting (4.507), (4.24), and assuming zero velocity vn of solute (Hittorf refer-
ential system, see above the equation (4.539)) we obtain basic relation for electrical conductivity
of solution

vβ = uβ E (c)

where the mobility uβ of univalent cation β is defined as

uβ ≡ Lββ

F

ρβMβ

(d)

Mobility and electrical conductivity are therefore determined by the same phenomenological
coefficient Lββ as the diffusion, see (4.538). But the situation is much more complicated in such
salt solutions because salt is composed from cations and anions and the mixture has at least three
constituents.Moreover solutions are electroneutral with high precision and thereforemeasuring Lββ

of unique ion say by diffusion is difficult (difference between diffusion velocities of ions causes e.g.
“diffusion potentials”, etc.; see [3, 4, 203]). In fact the (near) electroneutrality of ionic solutions
permits to use our theory here which neglect long-range electrical forces, cf. Rem. 6.

Experiments and molecular model show that the mobility uβ in the limit of zero concentration
of β is constant; therefore Lββ in such limit must be proportional to density ρβ ; this is an example
that phenomenological coefficients need not be constant quantities, cf. below (4.519).
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yβ =
n−1∑
ζ=1

∂ g̃β

∂wζ

gradwζ β = 1, . . . , n − 1 (4.536)

and, moreover, under isothermal conditions. According to phenomenological equa-
tion (4.514), the diffusion flux is then given by the Fick law

− jδ =
n−1∑
ζ=1

Dnw
δζ gradwζ δ = 1, . . . , n − 1 (4.537)

where Dnw
δζ are the diffusion coefficients or diffusivities (more precisely, as it is

denoted by superscripts, relative to n-th constituent and for expression of concentra-
tion gradients through mass fractions) defined by

Dnw
δζ ≡

n−1∑
β=1

Lδβ

∂ g̃β

∂wζ

δ, ζ = 1, . . . , n − 1 (4.538)

They are therefore functions of temperature, pressure and composition (or temper-
ature and partial densities) values of which are only partially determined by (equilib-
rium) thermodynamic quantities, namely by the dependence of chemical potentials
on composition (usually expressed through the dependence of (logarithm of) the
activity coefficient on composition, see (4.444), obtainable from equilibrium mea-
surements).

Using Fick (4.537) and Fourier (4.534) laws in balances of mass and energy
respectively gives the most commonly-used application.33

Fick’s law of concentration diffusion understood as proportionality between the
diffusion flow and the gradient of composition has many forms according to the
choice of referential velocities and expressions of composition gradients; moreover
also using molar instead of specific units plays a role (e.g. molar diffusion fluxes
(4.560) instead of those from (4.507) which are specific). But the form of the Fick
law remains the same with corresponding change in diffusion coefficients, cf. also
labelling of diffusion flows or diffusion coefficients (see below and (4.537)). Their
general recalculation may be found in [3, 4, 79], here we demonstrate this on exam-
ples of mainly binary non-reacting mixture used often in praxis.

33 Fick or Fourier laws, introduced into the mass or energy balances give (after known simplifica-
tions) parabolic differential equations for diffusion or heat conduction respectively. This leads to
the “diffusion paradox”: infinite velocity of concentration or temperature disturbance. It is possible
to remove it if the influence of acceleration v̀β in diffusion driving force (4.535) is not neglected
[16, 51, 52] or temperature memory is introduced [17, 82, 83]. This may be related to possible
non-objectivity of heat flux sometimes discussed [13, 204] but as seems this effect is negligible in
continuum theory [204], cf. Rem. 21 in Chap. 3. Moreover, Bright and Zhang [205] argumented
that this paradox and preference of hyperbolic over parabolic differential equations are, in fact, a
result of misperception.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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In our theory, we mostly have used the Hittorf referential system, cf. (4.24),
(4.507), Rem. 32, with the velocity of n-th constituent as the referential one. But
also the barycentric velocity vw (see Rem. 3) may be used as the referential one. Its
molar analogue is the molar average velocity vx defined by

vx ≡
n∑

α=1

xαvα (4.539)

where xα is the molar fraction of constituent α.
Volume average velocity vo is defined by (cf. (4.196))

vo ≡
n∑

α=1

ραvαvα (4.540)

and we can also define corresponding diffusion flows, e.g.

joα ≡ ρα(vα − vo) α = 1, . . . , n (4.541)

Motivation for these definitions is often rooted in experimental measurement of
diffusion coefficient (we try here to use the referential velocity which is zero in
the measuring device; movement of constituent relatively to it is just the diffusion).
Usually, it is used (4.539) in gases, (4.540) in liquid, mixing of which is nearly ideal
(4.440).

Only n − 1 diffusion flows and therefore also n − 1 Fick laws of any type are
independent, e.g. because of (4.540), (4.541), (4.196),

n∑
α=1

vα joα = o (4.542)

or in Hittorf system with (4.507), (4.24) it should be jn ≡ ρn(vn − vn) = o, cf. the
binary diffusion below.

Results (4.516)–(4.519) for the binary mixture together with Onsager relations
(4.520)

L1q = Lq1 (4.543)

are valid if
ϑ1 = 0 (4.544)

(see (4.517), (4.518); here the matrix ν−1
δβ is reduced to 1/ν11); because of ν11 > 0

(cf. (4.181), (4.182) and below (4.513) for a regular non-reacting mixture), (4.519),
we obtain also

L11 > 0, Lqq > 0 (4.545)
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For a binary mixture, the Fick law is therefore (4.537)

− j1 = Dnw
11 gradw1 (4.546)

where the diffusion coefficient is

Dnw
11 ≡ L11

∂ g̃1

∂w1
(4.547)

Because L11 > 0 (4.545) and in the stable mixture ∂ g̃1
∂w1

> 0 (chemical potential
increases with concentration, see (4.361)) we obtain Dnw

11 > 0, i.e. diffusion leads to

equalizing of concentration differences. In an unstablemixture ∂ g̃1
∂w1

≤ 0 and therefore
Dnw
11 ≤ 0 and the solution disintegrates to separate phases (diffusion enlarges the

concentration difference).
The relation between j1 (Hittorf system) and diffusion flows joα (α = 1, 2) (relative

to the volume average velocity) in a binary mixture follows from (4.541), (4.540),
(4.196), (4.507), (4.24)

jo1 = ρ2v2 j1 (4.548)

Inserting the Fick law (4.546) here, we obtain again the Fick law but this time for
the volume average diffusion flow with concentration gradient expressed by mass
fraction again

− jo1 = Dow
11 gradw1 (4.549)

where the new diffusion coefficient is defined as

Dow
11 ≡ ρ2v2 D

nw
11 (4.550)

Superscripts denote referential velocities and gradient expressions respectively
(cf. below (4.537)) and subscripts point to a binary mixture with one independent
diffusion coefficient (sometimes the Fick law is also formulated for diffusion flow
jo2 [76, 203] but this is not necessary by (4.542) for n = 2).

A more usual form of Fick law is obtained, if we use (in binary mixture) variables
T, P, ρ1 instead of T, P, w1 (we recall that space gradients of T, P are zero at con-
centration diffusion), cf. (4.537). Assuming implicit definition ofw1 = w1(T, P, ρ1)

from ρ1 = w1/ṽ(T, P, w1) (see (4.22), (4.195), (4.215)) we deduce with (4.191),
(4.265) for y = v, (4.23), that

(
∂w1

∂ρ1

)
T,P

= 1/(ρ2v2) (4.551)

gradw1 =
(

∂w1

∂ρ1

)
T,P

gradρ1 (4.552)
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Inserting these relations into (4.549), we obtain the Fick law in the form tradi-
tionally used (e.g. for diffusion in liquid non-electrolyte mixtures)

− jo1 = D gradρ1 (4.553)

giving the diffusion flow relatively to the volume average velocity with density gra-
dients, i.e. with the diffusion coefficient Doρ

11 (using also (4.550))

D ≡ Doρ
11 = Dow

11 /(ρ2v2) = (w2/ρ)Dnw
11 (4.554)

Another often used Fick law for solutions (say of salts in water—solute, con-
stituent 2) is

− j1 = Dnρ
11 gradρ1 (4.555)

and therefore, by (4.548), (4.553), we have

D = ρ2v2 D
nρ
11 = Dww

11 /ρ (4.556)

The latter formula follows from the Fick law

− jw1 = Dww
11 gradw1 = ρD gradw1 (4.557)

written for the barycentric diffusion flow jw1 ≡ ρ1uw
1 (with the barycentric diffusion

velocity uw
1 from Rem. 7); namely then jw1 = w2j1 and (4.557) follows by (4.546),

(4.554).
The traditional symbol D is used because of frequent cases (4.553), (4.555) [76,

180]; moreover in dilute solutions (where solute 2 prevails w2 → 1 and ρ2v2 → 1)
it follows from the transformations (4.556), (4.554), (4.550)

D � Dnρ
11 , ρD � Dnw

11 � Dow
11 (4.558)

With these approximations, the often used forms of Fick laws (4.553), (4.549),
(4.546), (4.555) in dilute solutions are (usually jo1 for non-electrolytes and j1 for salt
solutions)

− jo1 = D gradρ1 = ρD gradw1, −j1 = ρD gradw1 = D gradρ1 (4.559)

(note that (4.557)2 is valid generally).
But this is not all, the same diffusion coefficient D may be used if we use molar

quantities in formulation of Fick law for this binary concentration diffusion, cf.
(4.562) below. Specifically, using themolar diffusion flow of constituent 1 defined as
the corresponding (specific) diffusion flow given above divided by the molar mass
M1 of the first constituent (molar quantities are denoted, in addition, by apostrophe ′),
e.g. the molar diffusion flow j′o1 relatively to volume average velocity as
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j′o1 ≡ jo1/M1 = c1(v1 − vo) (4.560)

and expressing composition gradients through gradients of molar concentrations or
molar fractions, we can write Fick law (4.553) in another classical way

− j′o1 = D gradc1 = D′ox
11 gradx1 (4.561)

with the same diffusion coefficient (4.554)

D ≡ Doρ
11 = D′oc

11 (4.562)

using our labelling above analogously. For this we use molar quantities from the
end of Sect. 4.6 (4.288)–(4.295) and from them deduced relations like gradρ1 =
M1gradc1, gradw1 = (M1M2/M2)gradx1 for the binary mixture. With these results
we can define similarly the molar diffusion flows j′1 ≡ j1/M1 , j′x1 ≡ jx1/M1 =
c1(v1 − vx ) = (x2/M1)j1 and analogously from the preceding “specific” Fick laws
(4.555), (4.546) and analogue of (4.557) we obtain the “molar” Fick laws

− j′1 = D′nc
11 gradc1 = D′nx

11 gradx1 (4.563)

− j′x1 = D′xx
11 gradx1 = cD gradx1 (4.564)

where diffusion coefficients are in analogous relations to D as in (4.554), (4.556),
namely

D = D′oc
11 = D′ox

11 /(c2v2M2) = (x2/c)D
′nx
11 = c2M2v2D

′nc
11 = D′xx

11 /c (4.565)

Again, in dilute solutions (x2 → 1 and c2M2v2 → 1), we obtain analogously as
(4.558) (with the same diffusivity D)

D � D′nc
11 , cD � D′nx

11 � D′ox
11 (4.566)

and in dilute solution “molar” Fick laws may be written analogously as (4.559)

− j′o1 = D gradc1 = cD gradx1, −j′1 = cD gradx1 = D gradc1 (4.567)

Note also, that for diffusion of gas mixtures where the molar average velocity vx

is used, it is possible to approximate such mixture by a mixture of ideal gases where,
by (4.423), ραvα = xα and therefore the volume average velocity is the same as the
molar average one; it is therefore possible to use, e.g. Fick law in the form (4.561)
(or (4.553) recalculated with constant M1) with the same diffusion coefficient D.

These results demonstrate that the form of Fick law, as proportionality between
diffusion flow and composition gradients, preserves in the different choice of con-
centration gradient and reference velocity.
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Concluding, we can see that in the frequent practical cases of approximation by
dilute solutions or ideal gases, that only one diffusion coefficient D can be used (or
ρD or cD if we use for component the gradients of mass or molar fractions) and
differences among different referential velocities can be neglected. This is the usual
way in applications or/and at tabulation diffusion coefficients [76, 180, 206].

At the end we note concentration diffusion for more constituents, say for ternary
system n = 3. Fick’s law (4.537) is

− jδ =
2∑

ζ=1

Dδζ gradwζ δ = 1, 2 (4.568)

where diffusion flows in Hittorf system (4.507), (4.24) are

jδ = ρδ(vδ − v3) δ = 1, 2 (4.569)

and diffusion coefficients (4.538) are

Dδζ ≡
2∑

β=1

Lδβ

∂ g̃β

∂wζ

δ, ζ = 1, 2 (4.570)

The Onsager relation of reciprocity is usually admitted

L21 = L12 (4.571)

then (4.570) allows to express, e.g. D21 as the function of those remaining D11, D22,
D12 and thermodynamic quantities ∂ g̃β/∂wζ (cf. discussion of (4.538)). Therefore
it is sufficient to measure the latter three independent diffusion coefficients only.
Moreover, the “cross” diffusion coefficient D12 may be sometimes neglected in
comparison with those which are “principal” D11, D22.

Summary. This section further elaborates on the description of transport phe-
nomena, including their cross effects, in the linear fluid mixture. The equations
derived for these phenomena in previous sections were transformed here into more
practical forms. Some classical laws were thus disclosed. The diffusion fluxes were
introduced by (4.507) and the isothermal gradient of chemical potential (4.510) was
used to derive the constitutive equations for them—(4.514)—as well as the modified
constitutive equation for the heat flux (4.515). All these new constitutive equations
contain the driving force for diffusion (4.512) and their coefficients correspond to the
phenomenological coefficients known from classical irreversible thermodynamics,
cf. (4.516)–(4.519). These coefficients can be made to fulfill the Onsager reciprocity
relations (4.520) as shown on pages 260–262. The Fourier law of heat conduction
(4.534) was disclosed together with related cross effects with diffusion—Soret and
Dufour effects. The driving force for diffusion was shown to include the concentra-
tion diffusion as well as the barodiffusion, the diffusion forced by the external body
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forces, by acceleration, and by friction—see (4.535). The most important part—
the concentration diffusion—was treated in more details. The Fick law (4.537) was
derived and some of its many forms, which depend on used velocity referential sys-
tem, concentration (compositional) quantities and gradients, were demonstrated; for
the most frequently used examples see (4.546), (4.553), or (4.561).
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