
Chapter 3
Continuum Thermodynamics of Single Fluid

In this chapter, we advance our exposition of rational thermodynamics further. The
uniformity is abandoned and the description of space effects enters the scene. To
keep the explanation simple, we deal with the rational thermodynamics of a single
(pure) substance only (i.e., a substance composed of only one constituent as opposed
to many constituent substances—mixtures—discussed in the following Chap.4) and
confine our discussion to fluids. We thus study properties changing not only in time
but also in the space, but in such a way that the discrete structure of matter may be
ignored. That is, we use the methods of continuum (thermo)mechanics by reducing
properly the space scale (in comparison with uniform bodies of Chap.2). On the
other hand, the timescale will be similar to that in Chap. 2, i.e., we confine ourselves
only to materials with differential memory. Finally, we discuss the linearized case,
which is the most important model in applications, in the subsequent chapters of this
book.1

3.1 Kinematics of Continua

First, we review some basic concepts from deformation theory; although they are not
needed in most applications for fluids they are necessary to develop and understand
the general theory [6–13].

We study the body (composed of a single substance) and its parts which we
perceive through their configurations (connected region in three-dimensional Euclid-
ean space), which this body (or its parts) occupies or may occupy in the space.

1 For simplicity we do not discuss bodies in which there exist surfaces of discontinuity even though
such models are very important in chemical engineering, e.g., they model phase boundaries, surface
chemical reactions, or shock waves. But even in such simplified models (ignoring specific surface
phenomena like surface tension) [1, 2], we obtain the important results of phase equilibria (like
equality of chemical potentials in bulk phases, cf. Sect. 2.5, which may be generalized to Eshelby
tensors of chemical potentials, cf. Rem. 38, [2, 3]). Further generalization with surface phenom-
ena uses configurational forces (in fluids these are chemical potentials related to unit volume)
see [4, 5].
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68 3 Continuum Thermodynamics of Single Fluid

We select one arbitrary configuration as a reference configuration (we denote it
simply as a “reference”) and radius vectors of points in such reference, X, we call
the particles of the body (identified with their positions).2

The motion of the body is described mathematically as the time succession of the
actual configurations in real space. Namely, vector x (relative to frame discussed in
Sect. 3.2) gives the position of particle,X, in the instant t through the vector function
χ called the motion or deformation function as

x = χ(X, t) , xi = χ i (X J , t) i, J = 1, 2, 3 (3.1)

The second expression is given in the component form (which is a concise form
of xi = χ i (X1, X2, X3, t)). For simplicity, we use for the reference and actual
configurations Cartesian coordinates only which need not coincide; therefore, we
denote referential or actual (spatial) components by great or small upper Latin indices
respectively. Motion (3.1) therefore assigns to every particle X its place x in the
actual configuration in the instant t . A given body or its part contains in all its actual
configurations the same particles (as in reference). For a given particle, the X gives
(3.1) its trajectory. A simple example of (3.1) is the rigid motion in Rem. 5, others
(shear, volume expansion, etc.) may be easily written [9, 12, 14]. For simplicity, we
assume that function (3.1) is smooth (continuous and differentiable in both variables)
and invertible for X

X = χ−1(x, t) (3.2)

Therefore, two particles cannot be present at the same place and conversely; we
exclude from description such phenomena as a tearing or a penetrating of the bodies,
destruction and origin of new particles and trajectories, crossing trajectories, etc.
A typical quantity ψ we are interested in (which may be scalar, vector, or tensor) is
a field, i.e.,

ψ = ψ(x, t) (3.3)

ψ = ψ(X, t) (3.4)

which are connected through (3.1) and (3.2). Using (3.3) we speak about space or
actual (or Euler) description and using (3.4) we speak about material or referential,

2 From a molecular point of view such a “macroscopic” particle X contains a great number of
molecules.

We fix this reference once and for all, but in the general theory the change in this reference may
be used to describe the symmetry inherent to the material of the body; in the special case it may be
used for the definition of fluid (cf. Sect. 3.5 and Rem. 30).

In some continuum theories of more complicated models (e.g., micromorphic or microcontin-
uous) X may have some inner structure (cf. Rem. 26).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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(or Lagrange) description of the field for quantity ψ . The time or space derivative
in space description (3.3) we denote ∂ψ/∂t or gradψ (in components ∂ψ/∂xi ),
respectively, the time derivative in referential description (3.4) we denote by a dot

ψ̇ = ∂ψ(X, t)

∂t
(3.5)

and call it the material or substantial (time) derivative. This quantity expresses the
change of ψ in time along the trajectory of the chosen particle. Gradient in the
referential description we denote as Grad:

Gradψ = ∂ψ(X, t)

∂X
(3.6)

We define the velocity v of a particle as the time (material) derivative of themotion
(3.1)

v ≡ ∂χ/∂t = χ̇ (3.7)

From (3.1), (3.3), (3.5), and (3.7), it follows for material derivative

ψ̇ = ∂ψ

∂t
+ vi

∂ψ

∂xi
= ∂ψ

∂t
+ v.gradψ (3.8)

where the second expression is valid for scalar ψ (dot in r.h.s. denotes the scalar
product); for vector ψ j

ψ̇ j = ∂ψ j

∂t
+ vi

∂ψ j

∂xi
(3.9)

Here we use the summation rule: we sum through the repeating indexes, e.g.,

vi
∂ψ j

∂xi
=

3∑

i=1

vi
∂ψ j

∂xi

Deformation gradient F is a derivative of a motion χ with respect to X

F = ∂χ

∂X
, Fi J = ∂χ i

∂X J
(3.10)

It is a tensor of the second order3 which describes changes in the mutual position of
two close particles during the change of configuration from reference to actual one
as it is seen from

3 Defined in the following Rem. 4 generalized here in a (generally) different Cartesian system (here,
a space and referential one). Then, e.g., the matrix of F = 1 need not be the unit one (Kronecker
delta), but a so-called shifter; cf. e.g. [9, 15]. Here, for simplicity, both Cartesian systems are mostly
chosen as the same.
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dx = F dX (3.11)

Because of the invertibility of motion

J ≡ | detF |> 0 (3.12)

and inverse of F, denoted by F−1 (in components
−1

F Ji is a gradient of χ−1 (3.2)).
We note that

Gradψ = (gradψ)F (3.13)

Velocity gradient L is defined by

L = gradv = ḞF−1 (3.14)

where the second relation follows from (3.6), (3.4) and (3.2). Symmetric or skew-
symmetric parts of velocity gradient

D ≡ 1

2
(L + LT ), W ≡ 1

2
(L − LT ), L = D + W (3.15)

(where superscript T means transposition) we call stretching (or rate of deformation)
D or spin W respectively. We note that (div and tr are divergence and trace, respec-
tively)

divv = trL = trD (3.16)

Euler’s relation is
J̇ = Jdivv (3.17)

which follows from (3.11), (3.12), (3.16) and from the properties of second order
tensor function. 4

4 Tensors of 2nd order A are linear transformations (matrix 3 × 3) of vector a to vector b

b = Aa

bi = Ai j a j (a)

where the second expression is in Cartesian components (with summation rule of course).
But vectors and tensors are more thanmatrices 3×1 and 3×3: changing (Cartesian) coordinates

by orthogonal matrix Qkl (cf. Rem. 8) the components bi of vector b transforms into new (starred)

components
∗
b j of the same vector b by

∗
b j = Q ji bi (b)

That is, b is the same “arrow” looked at from these different (starred and original) coordinates.
Transformation (b) is valid for the usual polar vectors (less usual axial vectors, e.g., those
obtainable by vector product [16], are discussed in Rem. 10). Similarly, the components Ai j
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A motion is said to be rigid if the distances between the particles do not change
in time.5 Killing’s theorem asserts that motion of the body is rigid if and only if
stretching is zero in all its particles

D = 0 (3.18)

This follows from the definition of rigid motion (3.11)–(3.13) and from the very
definition of material derivative (quadratic form with skew-symmetric tensor W is
zero):

0 = ˙| dx |2 = ˙dx.dx = 2ḋx.dx = 2ḞdX.dx = 2Ldx.dx = 2Ddx.dx

As a material volume we denote such volume which contains the same particles
during the motion. Therefore, configurations of a given body or its parts occupy
material volumes. Similarly, material surface and material line are defined. It fol-
lows from properties of (3.1) that material volume, surface, or line are those in any

(Footnote 4 continued)

of tensor A transform into starred components
∗
Akl of the same A by

∗
Akl = Qki Ai j Ql j (c)

(namely, transformation (c) guarantees linear transformation (a) with both vectors transformed by
(b)).

Relations (b), (c) inspire in Sect. 3.2 the more general notion of changes of frame and frame
indifference, cf. (3.31), (3.32).

Generalizations of tensors for nonCartesian coordinates see, e.g., [7, 16, 17] and Appendix A.4.
Similar to matrices (3×3), tensors may be symmetric, skew-symmetric, etc., about vector and outer
products. See Rems. 6, 16.

IfA = A(t) is a tensor function of the scalar t then detA is the scalar function of t . Its derivative
is

d detA
dt

= ∂detA
∂Ai j

dAi j

dt
= (detA)

dAi j

dt

−1

A ji (d)

where we use the following derivative of detAwith respect to its components (using its development
according to line)

∂detA
∂Ai j

= (detA)

−1

A ji (e)

5 Rigid motion (3.1) has the general form

x = �X + γ

where�(t) and γ (t) are some orthogonal (Rem. 8) and vector functions of time t respectively. This
follows from the preservation of distances of any two particles in reference X,X0 and in actual
configurations (positions x, x0) in rigid motion, i.e.,

x − x0 = �(X − X0)

where orthogonal � and x0 are arbitrary time function, cf. analogous deduction of (3.25).

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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configuration even if their magnitude or shape changes. An element of material vol-
ume dV in reference configuration transforms into an element of material volume
dv in actual configuration by

dv = J dV (3.19)

Indeed, if we express such elements as parallepides with dXa or dxa (a = 1, 2, 3)
in reference or actual configurations, respectively, their volumes are given by triple
products

dv = | εi jkdxi1dx
j
2 dx

k
3 | , dV = | εJ K LdX J

1 dX
K
2 dXL

3 | (3.20)

where εi jk (or εJ K L ) is the permutation or Levi-Civita symbol.6

Inserting (3.11) into (3.20)1 (both elementary volumes contain the same particles)
and using the property of detA from the end of Remark 6, Eq. (3.19) follows.

Ifψ(x, t) has a meaning of the density of some quantity�, then (at given instant)

� =
∫

V
ψ(x, t) dv =

∫

V0

ψ(X, t) J dV = �(t) (3.21)

where V0 is a material volume in reference configuration which in an actual one
takes the material volume V . The relation (3.21)2 expresses the change of integral
variables from actual to reference configuration.7

Now we can use the material derivative on the material volume: it is a time
derivative of quantity (3.21) when the number of particles is constant

6 (In fact a cubic matrix) defined by

ε123 = ε231 = ε312 = 1

ε132 = ε213 = ε321 = −1

(the remaining elements of this 3 × 3 × 3 matrix are zero)
From this definition, it follows (by direct calculation) the following properties of the permutation

symbol (and its relation to Kronecker delta δi j )

εi jk = ε jki = εki j = −εk ji = −ε j ik = −εik j

(such “cyclic” permutation does not change its value)

εi jkεilm = δ jlδkm − δ jmδkl , εi jkε jkn = 2δin , εi jkεi jk = 6

With this symbol we can express the vector and triple products as (a,b, c are vectors)

(a × b)i = εi jka j bk , c.(a × b) = εi jkci a j bk

and for the determinant of matrix A it is valid that

εi jk Aim A jn Akp = εmnpdetA

See also Rems. 4, 10, 16.
7 The density ψ may be deduced assuming � as primitive and continuous with volume, i.e., when
V → 0 also � → 0 [7, 10, 18–20].
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˙∫

V
ψ dv =

˙∫

V0

ψ J dV =
∫

V0

ψ̇ J dV =
∫

V0

(ψ̇ J + J̇ψ) dV

=
∫

V0

(ψ̇ + ψdivv)J dV =
∫

V
(ψ̇ + ψdivv) dv =

∫

V
∂ψ

∂t
dv

+
∫

V
(divψv) dv (3.22)

Here (3.19), (3.21), the independence of the reference configuration on time, (3.17),
(3.8) were used.

Using Gauss’ theorem
∫

V
(divψv) dv =

∫

∂V
ψv.n da (3.23)

(where n is an outside normal and da is an element of the material surface ∂V
of material volume V in actual configuration) we obtain from (3.22) the Reynolds
theorem

˙∫

V
ψ dv =

∫

V
∂ψ

∂t
dv +

∫

∂V
ψv.n da = d

dt

∫

V
ψ dv +

∫

∂V
ψv.n da (3.24)

where the last expression follows for the fixed volume V with fixed surface ∂V (i.e.,
this geometrical object is not changed in time) which at a given instant coincides
with material volume V .

Therefore, the Reynolds theorem asserts that the rate of change of quantity ψ in
a material volume V in a given instant is equal to the rate of its change in a fixed
volume V (coincided with V in that instant) and the flow of such a quantity through
its fixed surface ∂V . Consequently, it expresses the natural change from closed to
open system in continuum theory where ψ is sufficiently smooth and V is a volume
of any part inside the body (cf. solidification principle in Sect. 3.3 and Rems. 14 in
Chap.2, 23 in this chapter, 11 in Chap.4). The Reynolds theoremmay be generalized
on a surface moving with arbitrary fictive velocity [13].

Summary. Mathematical basis for the description of space changes or effects
is presented. They are based on calculus with vectors and tensors (usually of the
second order) and their functions. The most important concepts or quantities are
the two derivatives—time and space, cf. (3.5) and the notation above it, and (3.8)—
the velocity gradient (3.14) and its decomposition (3.15), and the density of some
physical quantity (3.21). It is also essential to realize the difference between the

(Footnote 7 continued)
The additivity of � in volume (� for volume consisting of two separate volumes is the sum
of � of each separate volume) follows from (3.21). Such quantities � are usual in continuum
thermomechanics, cf. mass, energy, entropy, etc.; using mass and mass density we can introduce
specific quantities instead of densities (cf. (3.66) and Sects. 3.4, 4.6) and extensivity instead of
additivity (cf. Sects. 1.2, 2.4). Similarly, [19, 20] there are quantities continuous in surface with
surface densities (cf. (3.58), (3.99) and Rems. 14, 18).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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actual and the material volume (see the paragraph above (3.19) and to understand
related derivatives of volume integrals in (3.22) and (3.24)).

3.2 Change of Frame

It was assumed so far that the frame in which we observe our thermodynamic system
in actual configuration is fixed. Frame is a set of objects the mutual distances of
which do not change (like the walls of a laboratory, arms of the rotor of a centrifuge,
distant stars, or any body in rigid motion) and which are combined with some clock.
An observed event in the actual configuration is characterized by a place (position
vector) x and an instant t and the same event may be described in a different “starred”
frame by place x∗ and instant t∗. Some frames—those which are inertial—play a
special role (see below and Sect. 3.3), but more important is the change of frame
in actual configurations (reference configuration is not influenced by it) [7, 10, 12,
21–24] (for generalization, see end of Sect. 3.4).

Change of frame from the original frame to a new “starred” one is given by

x∗ = c(t) + Q(t)x ,
∗
x
j = c j (t) + Q ji (t)xi (3.25)

t∗ = t + b (3.26)

Here, the function c(t) orQ(t) of time t (cf. under (3.119)) give vectors or orthogonal

tensors,8 respectively, and b is a scalar constant. In actual reference, the xi or
∗
x
j
are

Cartesian components of the same event in a Cartesian coordinate system fixed with
an old (original) or new (starred) frame, respectively: in the Cartesian system of a
new frame at given instant t , c j and Q ji xi are the positions of origin and of event
(seen in the Cartesian system of the old frame), respectively, cf. Fig. 3.1.

Transformations (3.25) and (3.26) follow from the expected properties of the
change of frame in classical physics: the distance between two simultaneous events

8 Orthogonal tensor Q transforms any vector a into vector Qa of the same length a.a = Qa.Qa.
Then the basic properties of orthogonal tensor Q follow:

QTQ = QQT = 1 , in components Qki Qkj = Qik Q jk = δi j

Q−1 = QT , (detQ)2 = 1

An example of the orthogonal tensor is (3.29).
Orthogonal transformations Q form a group: generally (cf. [9, 15, 16]) a set of elements with

a defined “product” giving another element from this set (here a matrix product of two orthogonal
tensors giving again an orthogonal tensor) with inverse and unit elements (here QT and 1 respec-
tively). This group is called a full orthogonal group with det Q = ±1 which expresses rotation
or/and reflection. A proper orthogonal group forms its subgroup with det Q = +1 (a subgroup is
a subset with group properties again).

The corresponding orthogonal matrix Qi j may be also used for rotation (and/or inversion) of
Cartesian coordinates, cf. (b), (c) in Rem. 4 and Rem. 10.



3.2 Change of Frame 75
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Fig. 3.1 On relationships between two frames

is preserved and the time interval between two events and the time order of events
is left unchanged. Indeed [12, 14, 22], let us consider two simultaneous events
taking place x and x0 in the original frame and x∗ and x∗

0 in the new, “starred”
frame. Because their distance must be preserved | x − x0 | = | x∗ − x∗

0 |, vectors in
this equation must be connected by orthogonal transformation Q (see Rem. 8), i.e.,
x∗ −x∗

0 = Q(x−x0). Taking c ≡ x∗
0 −Qx0 we obtain (3.25) because both frames are

moving each to the other generally not steadily and therefore, c and Q are functions
of time (see Fig. 3.1) (this deduction is analogous to the deduction of rigid motion
in Rem. 5, where distances are also preserved, see also discussion of (3.223) and
Rem. 40). Further, let us consider two arbitrary events, the earlier and latter having
their instants t0 and t or t∗0 and t∗ in the original or “starred” frame, respectively.
From the preservation of the time interval, we have | t − t0 | = | t∗ − t∗0 | and from
the preservation of the time order we have t∗ > t∗0 because of t > t0. Then preceding
equality gives t∗ − t∗0 = t − t0, i.e., (3.26) if we choose b ≡ t∗0 − t0.

It is evident from (3.25) and (3.26) that b is the time shift in the origin of the time
axes, c is the shift in the origins of the Cartesian systems andQ (from full orthogonal
group, cf. Rem. 8) expresses the rotation (detQ = 1) or reflection (detQ = −1) of
the starred frame relative to the original one.9 We also note the inversions of change

9 Use of a full or proper orthogonal group puts the additional property of preservation of
right- or left handedness on the change of frame; some authors [12, 23–26] (motivated usually
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of frame (3.25), (3.26)
x = QT (t)(x∗ − c(t)) (3.27)

t = t∗ − b (3.28)

The change of frames (3.25), (3.26) and its consequences below is also demon-
strated in the following example of centrifuge: We take as an original frame the
walls of the laboratory and as a new “starred” frame the rotor of centrifuge, having
a constant number ω/2π of revolutions in the time unit (ω is the angular velocity)
and rotating from the first to the second axis around the third axis of original frame.
Here, (3.25) is

∗
x
j = Q ji (t)xi , ‖ Qi j (t) ‖=

⎛

⎝
cosωt sinωt 0
−sinωt cosωt 0

0 0 0

⎞

⎠ (3.29)

with corresponding orthogonal time function. There is also no shift in space and
time origins: c j (t) ≡ 0 and b = 0 in (3.25) and (3.26) respectively. Other results
concerning centrifuge are noted below (3.41) and below (3.46).

The special case of (3.25) is the Galileo transformation where function c(t) is
linear and Q is a constant, i.e., frames are moving each to the other with constant
velocity and differ by a constant angle (or also by inversion). A special set of frames
must be noted—inertial frames which contain the frame formed by distant stars
and those obtained from it by Galileo transformation (cf. Sects. 3.3, 4.3; in many
applications the frame fixed with earth surface may be taken as an approximately
inertial one). Their typical property is zero inertial acceleration (3.48).

A more special case with c = o and Q constant is physically trivial because it
expresses the change of coordinate system only. Therefore, a change of coordinates
(in Rem. 4) is not the same as the much more general change of frame (where time
and its transformation (3.26) and shifts in origins are moreover considered).

Many quantities used in the following considerations are called objective or frame-
indifferent, if they are “invariant” in the change of frame (3.25), (3.26) as follows
(because this change contains rotations and/or inversions of corresponding Cartesian
systems as a very special case (cf. Fig. 3.1), the following definition is motivated by
(b), (c) of Rem. 4):

Objective or frame-indifferent scalar a, vector a and (second order) tensor A
transform by the change of frame on scalar a∗, vector a∗ and tensor A∗ as follows:

a∗ = a (3.30)

a∗ = Qa (3.31)

(Footnote 9 continued)
by nonmechanical arguments) confine (3.25) only to the rotations. This problem seems not to have
been settled. Because it has no influence on the linear models preferred here, we use in the following
the full orthogonal group, see Appendix A.2.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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A∗ = QAQT (3.32)

This is because an objective scalar a does not change its value, objective vector a is
the same “arrow” looked at from different frames and, ultimately, an objective tensor
A transforms an objective vector (say a1) to an objective vector (say a2) in all frames:
indeed if in the original frame a2 = Aa1 and in the “starred” frame a∗

2 = A∗ a∗
1 then

by (3.31) we obtain (3.32).
But there are also quantities which are nonobjective, i.e., they do not transform by

(3.30)–(3.32) when the frame is changed. Generally, we can find the transformation
of any quantity at the transformation of t, x to t∗, x∗ and vice versa according to
(3.25), (3.26), (3.27), (3.28), i.e., to decide about objectivity or nonobjectivity (frame
indifference or not) according to the following nearly obvious precepts:

• The reference configuration and its properties (like particles and bodies in ref-
erence) are not influenced by changing of frame (this affects actual references
only).

• For primitives we must decide about their objectivity (frame indifference) a priori
(e.g., it may be expected that primitives of this Chap.3 connected with the body,
like density, temperature, internal energy, entropy, etc., are objective).

• For the other defined quantities, we decide from their definitions assuming that the
definition itself is not influenced by change of frame (i.e., definitions are the same
in any frame). Not only those, but in fact all relations between quantities (e.g.,
those from Sect. 3.1) are valid also for new (starred) frame, i.e., for new starred
quantities if we use t∗, x∗ (3.25), (3.26) simultaneously. This is evident from the
fact that the frame used for actual reference (say in Sect. 3.1) was chosen quite
arbitrarily. Cf. also end of this section.

Applying the change of frame (3.25), (3.26) to the above definitions of Sect. 3.1
and, using these precepts, we can decide about objectivity or nonobjectivity (frame
indifference or not) of the following quantities (more detailed proofs of some of them
are written in the footnote-sized script below); the remainder from the next sections
may be proved analogously.

It follows from (3.25), (3.26) that time t and place x are not objective because
these scalar and vector do not transform as prescribed by (3.30), (3.31) (but time and
space intervals are objective).

Motion (3.1) transforms as

χ∗(X, t∗) = c(t) + Q(t) χ(X, t) (3.33)

and therefore it is not an objective vector (cf. objective (3.31), (3.56))

Proof Motion (3.1) in the starred frame is by (3.25), (3.28)

∗
χ

j
(X, t∗) = ∗

x
j = c j (t∗ − b) + Q ji (t∗ − b) χ i (X, t∗ − b) (3.34)

(particle X is not influenced) which is nonobjective (3.33). Q.E.D.

http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Velocity v is transformed as

v∗ = Qv + ċ + Q̇x (3.35)

and therefore it is not an objective vector.

Proof Velocity (3.7) in the new starred frame is (using (3.34))

∗
v
j ≡ ∂

∗
χ
j
(X J , t∗)

∂t∗ = ∂(c j (t∗ − b) + Q ji (t∗ − b)χ i (X J , t∗ − b))

∂t∗

= dc j (t)

dt

d(t∗ − b)

dt∗ + dQ ji (t)

dt

d(t∗ − b)

dt∗ χ i (X J , t) + Q ji (t)
∂χ i (X J , t)

∂t

d(t∗ − b)

dt∗
= Q ji (t)vi (X J , t) + ċ j (t) + Q̇ ji (t)χ i (X J , t) (3.36)

which is (3.35) by (3.1); here

ċ j = dc j (t)

dt
, Q̇ ji = dQ ji (t)

dt
,

d(t∗ − b)

dt∗
= 1 (3.37)

have been used. Q.E.D.
This (3.35) may be written by (3.27)

v∗ = Qv + ċ + �(x∗ − c) (3.38)

where (tensor of) angular velocity � (of original frame relative to the new one) is
defined as

� ≡ Q̇QT (3.39)

and this tensor is skew-symmetric (this follows from time derivative of QQT = 1,
namely Q̇QT + QQ̇T = Q̇QT + (Q̇QT )T = 0 which is zero tensor).

By inversion of (3.38) and by (3.39), (3.25), Rem. 8

v = QTv∗ − QTċ + ∗
� x (3.40)

where we define the (tensor of) angular velocity
∗
� (of the new frame relative to the

original one) by
∗
� = −QT�Q (3.41)

The origin of the name “angular velocity” for (3.39), (3.41) may be seen in the
example of centrifuge (3.29): Calculation of tensors of angular velocities (3.39),

(3.41) gives for this example �12 = ∗
�

21
= ω = − ∗

�
12

= −�21 (their
other components are zero). Define the vector of angular velocity ω as axial
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one10 corresponding to skew-symmetric tensor
∗
� according to (b) in Rem. 10 as

ωi = (1/2)εi jk
∗
�

k j
. This axial vector (changing parity it changes the sign) has only

one nonzero component ω3 = ω. From (3.40) for the point fixed on the rotor v∗ = o
(we consider x perpendicular to the rotation axis, c(t) ≡ o) we obtain

v = ∗
� x , v = ω × x (3.42)

where the equivalent second relation (using the vector product) follows from (c) in
Rem. 10 and the vector product noted in Rem. 6. This is in accord with the name of
∗
� because ω is the vector of angular velocity of new frame (centrifuge) relative to
the old one (laboratory).

Similarly, for point fixed in laboratory (v = 0) we have by (3.38)

v∗ = � x∗ or v∗ = −ω × x∗ (3.43)

(−ω is an axial vector equivalent to � : � jk = − ∗
�

jk
= −ωiεik j ). Acceleration v̇

is also not objective. Namely, by (3.38)

10 As distinct from usual polar vectors which by coordinate changes (characterized by orthogonal
matrix Q ji , see Rem. 8) transform by (b) of Rem. 4, the axial vectorw is defined by transformation

∗
w

j = (detQ)Q jiwi (a)

and therefore changes the sign at parity (right-handedness or left-handedness) changes (detQ = −1,
cf. Rem. 8)

Lemma (equivalency of skew-symmetric tensors with axial vectors): For every skew-symmetric
tensor (of second order)W it is possible to define an axial vectorw (both contain three (independent)
components) and vice versa by

wi = (1/2)εi jkWkj (b) , W jk = wiεik j (c)

Indeed, the usual coordinate transformation of tensorW (i.e., of the type (c) in Rem. 4) leads to
axiality transformation (a). Namely, (b) must be valid also for the new (starred) coordinate system

∗
w
i = (1/2)εi jk

∗
W

kj
= (1/2)εi jk QklWlmQ jm = (1/2)εi jk Qklw pε pml Q jm

which multiplying by Qir gives

∗
w
i
Qir = (1/2)w pε pmlεi jk Qir Q jmQkl = (1/2)w pε pmlεrml (detQ) = (detQ)wr

where properties of permutation symbol from Rem. 6 were used. Multiplying it by orthogonal Q jr

we obtain (a) and therefore w is an axial vector.
Axiality ofw is automatically achieved by the usual transformation ((c) in Rem. 4) of tensorW.

Therefore the skew-symmetric tensors instead of axial vectors and outer product (see Rem. 16) may
be used and we do it this way at the moment of momentum balances in the Sects. 3.3, 4.3, cf. [7, 8,
14, 27]. Generalization of this Lemma to third-order tensors, made by M. Šilhavý, is published in
Appendix of [28].

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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v̇∗ = Qv̇ + i∗ (3.44)

where i∗ is defined by
i∗ ≡ 2Q̇v + c̈ + Q̈x (3.45)

Proof From the definition of acceleration in the new, starred frame and by (3.36),
(3.28) we have

(v̇ j )∗ ≡ ∂
∗
v
j
(X J , t∗)
∂t∗

= ∂(Q ji (t∗ − b)vi (X J , t∗− b)+ċ j (t∗− b) + Q̇ ji (t∗− b)χ i (X J , t∗ − b))

∂t∗

= Q ji (t)
∂vi (X J , t)

∂t
+ dQ ji (t)

dt
vi (X J , t) + dċ j (t)

dt

+ dQ̇ ji (t)

dt
χ i (X J , t) + Q̇ ji (t)

∂χ i (X J , t)

∂t
= Q ji v̇i + 2Q̇ jivi + c̈ j + Q̈ ji xi

which is (3.44), (3.45) with (3.37) and

c̈ j = dċ j (t)

dt
, Q̈ ji = dQ̇ ji (t)

dt

Q.E.D.
This inertial acceleration i∗ (perceived in the new, starred frame) may be tradi-

tionally rewritten as (using (3.40), (3.41), (3.39), (3.27) and �̇ + �2 = �̇ − ��T =
Q̈QT )

i∗ = 2�(v∗ − ċ) − �2(x∗ − c) + �̇(x∗ − c) + c̈ (3.46)

The terms on the right-hand side of (3.46) are, subsequently, the Coriolis, centrifugal,
and Euler accelerations and the last term is the acceleration of the origin.

For example of centrifuge (3.29) above (angular velocity is constant in time) the
inertial acceleration i∗ (3.46) in the place x∗ perpendicular to the rotation axis and
fixed with the rotor (starred frame, v∗ = o ) is therefore only the centrifugal one (see
below (3.43) and Rem. 6)

i∗ = −�2x∗ = ω2x∗ (3.47)

Note that in Galileo transformation (c(t) linear, Q constant)

i∗ = o (3.48)

This zero inertial acceleration is assumed in the frame fixed with distant stars and
therefore also in any inertial frame and at change between them. Therefore, in inertial
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frames the identity (3.48) is valid and the acceleration v̇ behaves objectively (frame
indifferently).

Applying the change of frame (3.25), (3.26) on the further definitions of Sect. 3.1
and using the three precepts above we can decide about their frame indifference
(objectivity); those remaining may be proved analogously.

Deformation gradient F (3.10) is not a frame-indifferent (objective) tensor,
because it transforms as

F∗ = QF (3.49)

Namely, deformation gradient (3.10) in starred frame transforms by (3.33), (3.28)

∗
F

j J
≡ ∂

∗
χ

j
(XK , t∗)/∂X J = ∂(c j (t∗ − b) + Q ji (t∗ − b)χ i (XK , t∗ − b))/∂X J

= Q ji (t)∂χ i (XK , t)/∂X J = Q ji Fi J

But the scalar J defined by (3.12) is the objective one

J ∗ ≡ | detF∗ |= | detQ || detF | = | detF | = J (3.50)

Obviously, GradF is an objective vector (cf. e.g., [28, 29])

(GradF)∗ = QGradF (3.51)

(at fixed reference, F and GradF may be considered as objective vectors (3.31),
cf. (3.122)).

The velocity gradient L (3.14) is transformed at frame change as

L∗ = QLQT + � (3.52)

and therefore it is not an objective tensor (recall the skew-symmetry of � (3.39)).

Proof We write transformation of velocity (3.38) in actual (Euler) description and
use (3.27), (3.28):

∗
v
i
(
∗
x
l
, t∗) = Qik(t)vk(xl , t) + ċi (t) + �ik(t)(

∗
x
k − ck(t))

= Qik(t∗ − b)vk(Qml(t∗ − b)(
∗
x
m − cm(t∗ − b)), t∗ − b)

+ ċi (t∗ − b) + �ik(t∗ − b)(
∗
x
k − ck(t∗ − b))

Using this and starting with definition (3.14) in the new, starred frame we obtain
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∗
L
i j

(
∗
x
l
, t∗) ≡ ∂

∗
v
i
(
∗
x
l
, t∗)

∂
∗
x
j

= Qik(t∗ − b)
∂vk(Qml (t∗ − b)(

∗
x
m − cm(t∗ − b)), t∗ − b)

∂
∗
x
j

+ �ik(t∗ − b)
∂(

∗
x
k − ck(t∗ − b))

∂
∗
x
j

= Qik(t)
∂vk(xl , t)

∂xn
∂(Qmn(t∗ − b)(

∗
x
m − cm(t∗ − b)))

∂
∗
x
j

+ �ik(t∗ − b)δk j

= Qik(t)Lkn(xl , t)Qmn(t)δmj + �i j (t) = Qik(t)Lkn(xl , t)Q jn(t) + �i j (t)

and this is (3.52). Q.E.D.
Using (3.15) in the starred frame we find with (3.52) that the spin W is not

objective
W∗ = QWQT + � (3.53)

but the stretching tensor D is objective (frame indifferent)

D∗ = QDQT (3.54)

Transformation properties of some objects (mostly derivatives useful in the
following chapters) formed from scalar a, vector a, tensor A which are objective
(frame indifferent) (3.30)–(3.32), will be discussed now. We must realize that these
objective conditions must be valid at any x∗, t∗ transforming by (3.25), (3.26) to
x, t (the same event seen from different frames passing at the same particle X);
therefore11

a∗(X, t∗) = a∗(x∗, t∗) = a∗ = a = a(x, t) = a(X, t) (3.55)

a∗(X, t∗) = a∗(x∗, t∗) = a∗ = Qa = Q(t)a(x, t) = Q(t)a(X, t) (3.56)

A∗(x∗, t∗) = A∗ = QAQT = Q(t)A(x, t)QT (t) (3.57)

As a result, we obtain: If scalar a is objective (3.55) then its material derivative
ȧ and space gradient grada are objective while Grada and ∂a/∂t are not. If a is an
objective vector, diva, a.a = a2 are objective, while material derivative ȧ is not.
Ultimately, with objective (second order) tensor A, the vector divA and the scalars
trA, detA are objective.

Proofs Transformation (frame change) of objective scalar a (3.55) with (3.28) gives
the objectivity of scalar material derivative

11 Note that functions on both sides of (3.55)1 are different: a∗(x∗, t∗) = a∗(χ∗(X, t∗), t∗) ≡
a∗(X, t∗). Remark that the assumption (3.30) is crucial for validity of (3.55); namely, the function
α(x, t), defined by (3.25), (3.26) as a∗(x∗, t∗) = a∗(c+Qx, t + b) ≡ α(x, t) is generally different
from function a(x, t). Similarly (3.31) and (3.32) are crucial for (3.56) and (3.57).
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(ȧ)∗ ≡ ∂a∗(XK , t∗)
∂t∗

= ∂a(XL , t∗ − b)

∂t∗
= ∂a(XL , t)

∂t

d(t∗ − b)

dt∗
= ȧ

and also objectivity of vector grada (by (3.27), (3.28))

∗
(grada)

j ≡ ∂a∗(∗
x
m
, t∗)

∂
∗
x
j

= ∂a(xn, t)

∂
∗
x
j

= ∂a(Qpn(t∗ − b)(
∗
x
p − cp(t∗ − b)), t∗ − b)

∂
∗
x
j

= ∂a(xn, t)

∂xi
∂(Qpi (t∗ − b)(

∗
x
p − cp(t∗ − b)))

∂
∗
x
j

= ∂a(xn, t)

∂xi
Q ji (t) = Q ji (grada)i

But the vector Grada is not objective because

∗
(Grada)

J≡ ∂a∗(XK , t∗)
∂X J

= ∂a(XL , t)

∂X J
= (Grada)J

as well as ∂a/∂t (by (3.28), (3.27))

(∂a/∂t)∗ ≡ ∂a∗(∗
x
m
, t∗)

∂t∗
= ∂a(xn, t)

∂t∗
= ∂a(Qpn(t∗− b)(

∗
x
p−cp(t∗− b)), t∗ − b)

∂t∗

= ∂a(xn, t)

∂t

d(t∗ − b)

dt∗
+ ∂a(xn, t)

∂xi
∂(Qpi (t∗ − b)(

∗
x
p − cp(t∗ − b)))

∂t∗

= ∂a(xn, t)

∂t
+ ∂a(xn, t)

∂xi

(
dQpi (t)

dt
(
∗
x
p − cp(t∗ − b)) − Qpi (t)

dcp(t)

dt

)

= ∂a

∂t
+ (grada)i (Q̇ pi Q pj x j − Qpi ċ p)

or (using time derivative of Qpi Q pj = δi j )

(∂a/∂t)∗ = ∂a/∂t − Qpi (grada)i (Q̇ pj x j + ċ p)

i.e. the (space) time derivative of objective scalar a is not the objective scalar.
Transformation (frame change) of objective vector a (3.56) gives the objectivity

of the scalar product a2

(a2)∗ ≡ a∗.a∗ = ∗
a
i ∗
a
i = Qi ja j Qikak = δ jka j ak = a j a j = a.a = a2
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and also the objectivity of the (space) divergence diva (scalar) using (3.27), (3.28),
Rem. 8

(diva)∗ ≡ ∂
∗
a
i
(
∗
x
l
, t∗)

∂
∗
x
i

= ∂(Qi j (t)a j (xm, t))

∂
∗
x
i

= ∂(Qi j (t∗ − b)a j (Qnm(t∗ − b)(
∗
x
n − cn(t∗ − b)), t∗ − b))

∂
∗
x
i

= Qi j (t)
∂a j (xm, t)

∂xk
∂(Qnk(t∗ − b)(

∗
x
n − cn(t∗ − b)))

∂
∗
x
i

= ∂a j (xm, t)

∂xk
Qi j (t)Qik(t) = ∂a j (xm, t)

∂x j
= div a

But the material derivative of objective vector ȧ is not objective: From (3.56),
using (3.28), it follows

(ȧi )∗ ≡ ∂
∗
a
i
(X J , t∗)
∂t∗

= ∂(Qi j (t∗ − b)a j (XK , t∗ − b))

∂t∗

= Qi j (t)
∂a j (XK , t)

∂t

d(t∗ − b)

dt∗

+ dQi j (t)

dt

d(t∗ − b)

dt∗
a j (XK , t) = Qi j ȧ j + Q̇i j a j

and therefore ȧ is not an objective vector.
Transformation (frame change) of objective (second order) tensor (3.57) gives the

objectivity of the scalars trA and detA :

(trA)∗ = trA∗ = ∗
A
ii

= Qik Akl Qil = δkl Akl = All = trA

(detA)∗ = detA∗ = detQAQT = detQdetAdetQT = detQQT detA = detA

Also the vector divA is objective (from (3.57)) using

∗
(divA)

i ≡ ∂
∗
A
i j

(
∗
x
m
, t∗)

∂
∗
x
j

= ∂Qik(t)Akl(xn, t)Q jl(t)

∂
∗
x
j

= ∂(Qik(t∗ − b)Akl(Qpn(t∗ − b)(
∗
x
p − cp(t∗ − b)), t∗ − b)Q jl(t∗ − b))

∂
∗
x
j

= Qik(t)
∂Akl(Qpn(t∗ − b)(

∗
x
p − cp(t∗ − b)), t∗ − b)

∂
∗
x
j

Q jl(t)
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= Qik(t)
∂Akl(xm, t)

∂xq
∂Qpq(t∗ − b)(

∗
x
p − cp(t∗ − b))

∂
∗
x
j

Q jl(t)

= Qik(t)
∂Akl(xm, t)

∂xq
Q jq(t)Q jl(t) = Qik(t)

∂Akl(xm, t)

∂xl
= Qik(divA)k

Therefore, divA of objective tensor A is an objective vector. Q.E.D.
As we noted in the precepts above the remaining relations of Sect. 3.1 are also

valid in all frames, e.g., (3.21), (3.22) or Reynolds theorem (3.24). Because of no
influence of the change of frame on the reference configuration (andmaterial points),
no such influence may be also expected on material volume V , material surface ∂V
(they behave as objective scalars), and the outside normal n should be an objective
vector.12

Objectivity of other quantities occurring in the remaining chapters may be
obtained analogically.

Summary. The change of frame refers to the change (rotation, translation, etc.) of
coordinate system used to describe space and time variations and the effects of this
change on various (physical) quantities or functions. The change is mathematically
described by (3.25) and (3.26). Special quantities which are in some sense invariant
to this change were called objective or frame-indifferent, cf. (3.30)–(3.32), and are of
special importance for the methodology of rational thermodynamics. The objectivity
of several quantities or functions was tested; the most important conclusions are the
objectivity of stretching tensor, cf. (3.54), and the nonobjectivity of velocity, cf.
(3.35), and its gradient, cf. (3.52), and of deformation gradient, cf. (3.49).

12 Moreover, it should be expected that

(∫

V
ψ dv

)∗
=

∫

V
ψ∗ dv ,

(∫

∂V
ψn da

)∗
=

∫

∂V
ψ∗Qn da

because the objectivity of da, dv follows from the objectivity of space intervals (ψ may even be a
component of a vector or a tensor).

Note also that the following relationships are valid in the starred frame for the time derivative
of function ϕ(t) (see (3.26), (3.28))

∗
ϕ̇ ≡ dϕ∗(t∗)

dt∗
= dϕ∗(t∗)

dt

d(t∗ − b)

dt∗
= dϕ∗(t∗)

dt
= ϕ̇∗

Such a function ϕ may be, e.g., ψ(X, t) or �(t) in (3.21); for the latter the relation (3.22) and the
previous formula (with (3.50)) gives

( ˙∫

V
ψ dv

)∗
=

∫

V0

(ψ̇ J )∗ dV =
∫

V0

∗̇
ψ

∗
J dV =

˙∫

V

∗
ψ dv

because V0 is a material volume in reference configuration.
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3.3 Balances of Mass, Momentum, and Moment of Momentum

In this and in the following paragraphs, we formulate general postulates, mostly
balances for a single substance [6–9, 11, 13, 23]. We use classical mechanics and
formulate them in the inertial frame (specifically those fixed with distant, remote
stars, see Sect. 3.2); generalization in other frames (even noninertial) will be shown
at the end of the discussion of each special balance (for further developments, see
end of Sect. 3.4).

To formulate the balance of mass let us consider the single (one-constituent) body
in arbitrary actual configuration (in inertial frame noted above).

As a primitive we assign to each particle X of this body the (mass) density ρ—
positive and (assuming) objective (frame indifferent) scalar.Mass of the body or its
arbitrary part with material volume V is then

∫

V
ρ dv (3.58)

It follows that mass is continuous and additive with volume (cf. Rem. 7) and therefore
we exclude the concentrated masses (mass points) from consideration. The mass
balance is postulated by the conservation of mass of some part of the body (or body
itself) containing the same particles during its motion. In other words, the mass of
material volume V is not changed in time

˙∫

V
ρ dv = 0 (3.59)

Using Reynolds theorem (3.24), mass balance (3.59) may be written in (space) fixed
volume V with surface ∂V as

d

dt

∫

V
ρ dv +

∫

∂V
ρv.n da = 0 (3.60)

i.e., mass in the fixed volume may be changed only by a flow through its (fixed)
boundary. Using Gauss theorem (3.23) in (3.60) we have

∫

V

∂ρ

∂t
dv +

∫

V
div(ρv) dv = 0 (3.61)

We assume now validity of this mass balance for any part of the body, specifically
for that whose volume V is sufficiently small. Then also the integrand here must be
zero and we obtain the local mass balance

∂ρ

∂t
+ divρv = 0 (3.62)
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Another form of local mass balance follows using material derivative (3.8) of the
density

ρ̇ + ρ divv = 0 (3.63)

We note that using Euler relation (3.17) we can write the mass balance (3.63) as

˙ρ J = 0 (3.64)

which after time integration gives the mass balance in the form

ρ0 = ρ J (3.65)

Here ρ0 is the density in the reference configuration (because J = 1 when F = 1).
Assumed continuity and additivity of mass permits to introduce (cf. Rem. 7) the

specific quantities ϕ related with densities ψ by

ψ = ρϕ (3.66)

Wenote twouseful formulae for specific quantitiesϕ (whichmay also be a component
of vector or tensor)

∂ρϕ

∂t
+ divρϕv = ρϕ̇ (3.67)

˙∫

V
ρϕ dv =

∫

V
ρϕ̇ dv (3.68)

which follows for (3.66) from (3.22), (3.63) in material volume V .
Mass balances obtained so far were formulated and deduced in an inertial frame

fixed with distant stars. But their form is the same in any frame (even a noninertial
one), i.e., formulae (3.58)–(3.68) are independent of the frame. This may be seen
from the assumption of objectivity of scalar mass density ρ ((3.30) is valid). Using
the last formulae from Rem. 12 with objective density ρ as the scalar ψ we find
general validity of mass balance (3.59) in any frame. In some new frame, Reynolds
theorem (3.24) may be quite analogously deduced and used and then, by localization,
all remaining formulae (3.60)–(3.68) are valid in any frame. Indeed, e.g., (3.63) is
valid in any frame because of the objectivity of thematerial derivative of the objective
scalar ρ̇ and, see (3.16) divv = trD, because the trace of objective tensor (3.54) is
objective. Similarly, so is (3.65) with the same ρ0 (reference is unique for all actual
configurations) and by (3.50). This is also (3.68) for ϕ from such a new frame.

To postulate the balance of momentum, we define themomentum or linearmomen-
tum of a part of body (or the whole body) with material volume V in actual configu-
ration in given (arbitrary) frame as

∫

V
ρv dv (3.69)
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The postulate of the balance of momentum expresses the experience that the time
change of momentum (3.69) is equal to the forces acting on the corresponding part of
body with material volume V in actual configuration. Simple, classical formulation
of this balance is done in an inertial frame, specifically that fixed with distant stars.
The main reason for this is the nonobjectivity of velocity in (3.69), see (3.38); forces
are a priori considered as objective. Below (3.78) we show that such formulation
is the same in any inertial frame and that in a general frame the balance must be
modified a little.

Forces are primitive quantities and we confine here two types of forces: the
external or body, volume, outer forces exist inside material volume V but have their
origin outside the (whole) body and are characterized by a vector of body, or volume
forces b per mass unit (an example is the gravitation coming from the environment
of the body). The second type are the contact or surface forces acting on the surface
of the chosen part of the body. These imaginable forces come from the outside neigh-
borhood of the surface considered (“short range interaction forces” from the outside
part of the same body) and they are characterized by the stress vector or traction
t—force per unit surface of the chosen part coming from its outside.13 Therefore, we
exclude in the following a “long range interaction body forces” among distant parts
of the same body like self-gravitation; for such a more general case see e.g., [18,
19, 30]. They might appear in ion mixtures, but in salt solution may be neglected by
electroneutrality, cf. Rems. 6 and 32 in Chap.4.

The Balance of momentum or balance of linear momentum for an arbitrary part
of a body in actual configuration and in inertial frame (fixed on distant stars) is
postulated as14

˙∫

V
ρv dv =

∫

∂V
t da +

∫

V
ρb dv (3.70)

where this part of the body has the material volume V with the material surface ∂V .
We shall assume in the following, that vectors t,b are objective (frame indifferent).

Experience shows that the body force is a field (i.e., a function of position x and
time t) but that traction depends not only on the x and t but also on the orientation
of the surface; this is expressed by Cauchy’s postulate15

13 On the real surface of the whole body the surface forces t (originated from the outside of the
whole body) are given by boundary conditions; cf. Rems. 18 and 24 in this chapter, 9 in Chap. 1.
14 Again [7, 10, 18–20] as we noted in Rem. 7, it would be more natural to postulate forces for any
part of volume or surface (which bound them) and then to deduce ρb or t as the volume or surface
densities.

In fact, the formulation of balances in Sects. 3.3 and 3.4 for each part of the body is motivated by
the solidification principle: we imagine the part of the body isolated from the remainder of the body
and interactions with this remainder and surroundings of the body are expressed by appropriate
(volume or surface) densities. This principle will be used also in the following, e.g., contact and
body forces in formulation of (3.70) are such interactions.
15 E.g., hydrostatic pressure (typical traction in steady fluid) is directed always perpendicularly to
any orientation of the surface in a given place. Moreover, assumption (3.71) may be also proved

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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t = t(x, t,n) (3.71)

where n is the outside normal to the surface ∂V in a given place x and instant t .
In fact, the dependence of t on n (3.71) is linear as the Cauchy theorem asserts

t = Tn (3.72)

where the field T = T(x, t) is the stress tensor.
The Cauchy theorem may be proved by application of (3.70) to an infinitesimal

tetrahedron at considered place x and instant t , the walls of which are formed by
coordinate planes and a tangent plane perpendicular to considered n. The estimate
of the surface and volume integrals in (3.70) gives (using (3.68))

ρv̇�v = t�a + t j�a j + ρb�v (3.73)

Here�v is the volume of the tetrahedron and t and t j are the tractions on the surfaces
�a and �a j (the latter are formed by coordinate axes) respectively (summation rule
is assumed). But �v = (1/3)h �a (where h is the height of the tetrahedron) and
�a j = n j�a where n j are components of n. Inserting these relations into (3.73)
and limiting h → 0 (assuming continuity) we obtain t = −t jn j which is (3.72) in
Cartesian components t i = T i j n j if we take T i j as ith component of vector −t j .
Moreover, T depends only on x and t because also t j depends on x and t and not
on n as follows from the construction of the tetrahedron. The sign of T is given
by a convention which gives to t the meaning of tension by which the exterior of
the surface ∂V acts on material inside (cf. e.g. [13]; modern versions of this proof
[7, 30–32] show the much more general validity of (3.72)). The stress tensor T is
objective because of the objectivity of t and (arbitrary) n (see end of Sect. 3.2); the
deduction is similar to that of (3.32).

Inserting (3.72) into (3.70) we obtain the balance of momentum in the inertial
frame (fixed on distant stars) as

˙∫

V
ρv dv =

∫

∂V
Tn da +

∫

V
ρb dv (3.74)

d

dt

∫

V
ρv dv +

∫

∂V
ρv(v.n) da =

∫

∂V
Tn da +

∫

V
ρb dv (3.75)

where the last form (3.75) was obtained using (3.24) (Reynolds theorem obtainable
in any frame) for the volume V with the surface ∂V fixed in the space. Because
(3.74) and (3.75) are valid for any volume we can use the Gauss theorem to convert
the surface integrals into those of volume(only those are permitted by stress field

(Footnote 15 continued)
[7, 21, 30, 31]; from this proof it follows that t cannot depend on the other local properties of
surface, like curvature, etc.
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as distinct from traction (3.71)) and using (3.68) we obtain the local balances of
momentum in the inertial frame

ρv̇ = divT + ρb (3.76)

∂ρv
∂t

+ div(ρv ⊗ v) = divT + ρb (3.77)

(in components (divT)i = ∂T i j/∂x j and (div(ρv ⊗ v))i = ∂ρviv j/∂x j ).
So far we have assumed that the inertial frame (fixed with distant stars) was used.

To transform balances (3.70), (3.74)–(3.77) into another framewe note that the stress
tensor T is objective (see below (3.72)). Considering any new (starred) frame and
using (3.30)–(3.32), (3.44), (3.46) (note that divT is objective vector and ρ objective
scalar) in (3.76) (multiplied by orthogonal transformation Q of coordinates in the
inertial frame to the new one at considered instant) we obtain the local balance of
momentum in any frame (stars denoting the new frame were removed)

ρv̇ = divT + ρ(b + i) (3.78)

where the inertial acceleration i (3.46) in this new frame is

i = 2�(v − ċ) − �2(x − c) + �̇(x − c) + c̈ (3.79)

Here, the tensor � is the angular velocity (of original, inertial frame relative to new
one) (3.39) and c is the position of origin, v is the velocity, x the position in the new
frame at the considered instant.

Then it is not difficult to see that transformation of anymomentum balance (3.70),
(3.74)–(3.77) into an arbitrary frame means inserting b + i instead of b. Indeed, the
starting postulate of momentum balance (3.70) has in an arbitrary new frame the
form ˙∫

V
ρv dv =

∫

∂V
t da +

∫

V
ρ(b + i) dv (3.80)

because balance (3.78) in the new frame may be integrated in this frame through
material volume (which is independent of the frame, cf. end of Sect. 3.2) and uses
Gauss theorem (3.23), (3.72) and (3.68) (where ϕ is component of velocity) in the
new frame (because these formulae are the same in all frames as well as the Reynolds
theorem (3.24), mass balances above, etc.).

Repeating the previous procedure in the new frame we obtain all remaining bal-
ances in this new arbitrary frame, e.g.,

˙∫

V
ρv dv =

∫

V
ρv̇ dv =

∫

∂V
Tn da +

∫

V
ρ(b + i) dv (3.81)
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d

dt

∫

V
ρv dv +

∫

∂V
ρv(v.n) da =

∫

∂V
Tn da +

∫

V
ρ(b + i) dv (3.82)

∂ρv
∂t

+ div(ρv ⊗ v) = divT + ρ(b + i) (3.83)

Because of zero inertial acceleration (3.48), we can see from these general results
(3.78)–(3.83), that the balances (3.70), (3.74)–(3.77) are valid in any inertial frame
and not only in the one fixed with the distant stars. This assertion expresses the
Galilean relativity principle about the impossibility of preference of any inertial
frame.

Momentum balances (3.81), and (3.78) in the arbitrary frame may be written as
(cf. [1, 7, 18–20, 22, 33])

o =
∫

∂V
Tn da +

∫

V
ρβ dv (3.84)

o = divT + ρβ (3.85)

where the total body force β (coming from the outside of the body) is defined by

β ≡ b + i − v̇ (3.86)

This force β is objective: indeed, (3.85) is valid in all frames, therefore

β∗ = (−(1/ρ)divT)∗ = (−(1/ρ∗)(divT)∗
) = Q (−(1/ρ)divT) = Qβ (3.87)

where objectivity of scalar ρ and vector divT have been used (see Sect. 3.2; stress
tensor T is objective).

Balance of momentum in the objective form (3.84), (3.85) may be interpreted as
the general action and reaction law: sum of all forces is zero (in total body force
(3.86) the force i − v̇ caused by “distant, remote stars” is included).

To formulate another main principle—the balance of moment of momentum—we
introduce for some part of body (or body itself) with material volume V in actual
configuration of the considered frame the moment of momentum or angular moment
related to the point y as follows16

16 We use the outer product ∧ defined for two vectors a, b as a ∧ b ≡ a ⊗ b − b ⊗ a, i.e.
(a ∧ b)i j = ai b j − a j bi . This product is obviously the skew-symmetric tensor which, using the
results from Rem. 10, is equivalent to the axial vector created by the vector product of these vectors,
see Rem. 6

b × a = −a × b

Then, e.g., the balance of angular moment (3.90) may be written in a more traditional way as
∫

V
(x − y) × ρv̇ dv =

∫

∂V
(x − y) × Tn da +

∫

V
(x − y) × ρb dv
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∫

∂V
(x − y) ∧ ρv dv (3.88)

Here, x is the place where density ρ and v is considered and y is the point which
may be outside of the body and usually fixed in the considered frame.

To obtain a simple form of the balance of moment of momentum, we confine its
formulation to inertial frame with angular moment (3.88) having point y fixed here
(althoughweuse here the inertial framefixedwith distant stars, resulting formulations
are valid in any inertial frame as will be shown at the end of this section). Again,
the main reason for that is the nonobjectivity of x, y, v in (3.88), cf. (3.25), (3.38);
generalization of this balance in the arbitrary frame will be discussed below but we
note that the main local result—symmetry of stress tensor (3.93) below—is valid in
the arbitrary frame.

Such a balance of the moment of momentum (balance of angular moment) asserts
that the time change of the moment of momentum is equal to torques acting on a
considered part of the body (or the body itself). Here we confine to the simplest case
of (mechanically) nonpolar materials where torques are moments of forces (i.e., their
outer products of Rem. 16 with x−y) used in the preceding balance of momentum.17

Therefore, the balance of moment of momentum or balance of angular momentum
related to the fixed point y in actual configuration in the inertial frame (fixed with
distant stars) for (arbitrary part of) body with material volume V and its surface ∂V
is postulated as

˙∫

V
(x − y) ∧ ρv dv =

∫

∂V
(x − y) ∧ Tn da +

∫

V
(x − y) ∧ ρb dv (3.89)

Traction t is here expressed through the stress tensor by (3.72). We also note that
postulating (3.89) for one fixed point y the form (3.89) is valid for arbitrary but fixed
point (say y0 as follows from the balance of linear momentum (3.74) multiplied by
constant (y−y0)∧ (i.e., as outer product in Rem. 16) and by summation with (3.89),
of course all in our inertial frame). For this reason the origin y = o is often used in
formulations of this postulate, e.g., [16], without loss of generality.

Using (3.68), (3.7) (namely ẋ ∧ v = 0) and the assumption of fixed point, i.e.,
the time derivative ẏ = o (note that (3.25) applied on point y shows that y may be at
most a function of time in the arbitrary frame; cf. below (3.94)), we obtain

17 In more general (mechanically) polarmaterials [13, 34], the local result (3.93) must be changed
(cf. also Rems. 32 in this chapter, 9 in Chap.4). Namely, the balance (3.89) then contains (besides
moments of forces) torques expressing the direct exchange of angular moment on a microscopic
level (something like heat in energy exchange). These “microscopic” torques may be expressed
by the objective field of density of skew-symmetric tensor M adding to the right-hand side of the
postulate (3.89) the integral

∫
V M dv. Then instead of local result (3.93), we obtain

T − TT = M.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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∫

V
(x − y) ∧ ρv̇ dv =

∫

∂V
(x − y) ∧ Tn da +

∫

V
(x − y) ∧ ρb dv (3.90)

Using Gauss’ theorem (cf. (3.23); note that the following skew-symmetric tensor is
in components (div((x − y) ∧ T))i j = ∂((xi − yi )T jk − (x j − y j )T ik)/∂(xk), cf.
Rem. 16) and by localization using assumed validity of (3.90) for any V , we obtain

(x − y) ∧ ρv̇ = div((x − y) ∧ T) + (x − y) ∧ ρb (3.91)

Calculating divergence (simply in component form above, y is fixed) we obtain

div((x − y) ∧ T) = TT − T + (x − y) ∧ divT (3.92)

Inserting it in (3.91) and using in this inertial reference configuration the balance of
momentum (3.76) multiplied by (x− y)∧ from the left, we obtain the local balance
of moment of momentum as

T = TT (3.93)

expressing the symmetry of the stress tensor (but seeRem. 17). Though our deduction

was performed in the inertial frame fixed with distant stars, we can see that such
symmetry of the stress tensor is valid in any frame, even a noninertial one, because
the stress T is an objective tensor (see above and (3.32)).

Starting with (3.93) in any frame and tracing back the deduction we can obtain the
integral form of the balance of angular momentum even in the noninertial frame; as
may be expected such a result will bemore complicated because of the nonobjectivity
of x, y, v and objectivity of forces T,b, cf. e.g. [7, 14].

Namely, taking the outer product of x − y with local momentum balance (3.78)
in an arbitrary, even noninertial frame we have (we use (3.92) and the validity of
moment of momentum balance (3.93) in any frame)

(x − y) ∧ ρv̇ = div((x − y) ∧ T) + (x − y) ∧ ρ(b + i) (3.94)

where ymay be an arbitrary function of time (at most, cf. our remark above (3.90); it
would be better to denote all quantities in this new arbitrary frame say by stars as in
Sect. 3.2, e.g. y∗ may be obtained from y by (3.25) as y∗ = c(t)+Q(t)ywith fixed y
(say from inertial frame fixed with distant stars above), but we do not use this mark
for simplicity).

Integrating (3.94) throughmaterial volumeV in this new arbitrary “starred” frame
and using Gauss’ theorem (3.23) we obtain (3.90) with b + i instead of b. Because

˙
(x − y) ∧ v = (x− y)∧ v̇− ẏ∧ v (namely ẋ∧ v = v∧ v = 0; scalar ρ is objective)
we obtain by (3.68) (y is function of time at most) the balance of the moment of
momentum related to even the nonfixed point y in an arbitrary (even noninertial)
frame as
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˙∫

V
(x − y) ∧ ρv dv+ ẏ∧

∫

V
ρv dv =

∫

∂V
(x−y)∧Tn da+

∫

V
(x−y)∧ρ(b+ i) dv

(3.95)

Using here the Reynolds theorem (3.24) we can, e.g., write the balance of moment
of momentum related to even a nonfixed point y in an arbitrary (even noninertial)
frame for a fixed volume V in actual configuration as

d

dt

∫

V
(x − y) ∧ ρv dv +

∫

∂V
(x − y) ∧ ρv(v.n) da + ẏ ∧

∫

V
ρv dv

=
∫

∂V
(x − y) ∧ Tn da +

∫

V
(x − y) ∧ ρ(b + i) dv (3.96)

Therefore, as follows from (3.95), if point y is fixed (i.e., ẏ = o) the balances
of moment of momentum (3.89) may be used also in an arbitrary (even noninertial)
frame if body force b is enlarged by inertial acceleration i (3.79) (i.e., b is substituted
by b+ i). This is valid also for balance (3.90) (see deduction of (3.95)) and for local
balance (3.91) (cf. (3.94)).

Balance of moment of momentum (3.93) expressed through the symmetry of a
stress tensor (at least for mechanically nonpolar materials, cf. Rem. 17) is valid
in any frame, even noninertial. Finally we can see that because (3.48) is valid for
transformations between any inertial frames, the balances of angular moment related
to fixed y (3.89)–(3.91) are valid in any inertial frame and not only in those fixed
with distant stars.

Summary. The first three balance equations are formulated in this section. The
balances are necessary conditions to be fulfilled not only in thermodynamics but
generally (in continuum mechanics). The balance of mass was formulated locally in
several alternatives—(3.62), (3.63), or (3.65). The most important consequence of
the balance of momentum is the Cauchy theorem (3.72), which introduces the stress
tensor. The local form of this balance is then expressed by (3.76) or (3.77). The most
relevant outcome of the balance of moment of momentum is the symmetry of the
stress tensor (3.93). Note that in this section also an important class of quantities—
the specific quantities—was introduced by (3.66); note particularly their derivative
properties (3.67) and (3.68).

3.4 Energy Balance and Entropy Inequality

In Chap.1 we postulate the First Law as (1.3) which gives the existence of internal
energy fulfilling (1.5). Similarly as in Sect. 2.1 we can write (1.5) as a balance: the
time derivative of internal energy is equal to the sum of heating and power (cf. (2.1))
[11, 18, 22, 35]. This is applicable to the material volume of a (nonuniform) body
or its arbitrary part consisting of a single substance. We postulate the existence of a

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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specific internal energy u and assume that heating is composed of the surface heating
q (exchange of heat between neighbourhood parts by conductivity) and the volume
heating Q (exchange of heat by radiation from the outside of the body) which are
surface and volume densities respectively.18 Therefore assuming that power is given
by forces from Sect. 3.3, i.e., by traction t (3.72) with symmetrical stress T (3.93)
and the total body force β (3.86), we can postulate the balance of energy in the form

˙∫

V
ρu dv =

∫

∂V
q da +

∫

V
Q dv +

∫

∂V
v.Tn da +

∫

V
ρβ.v dv (3.97)

for any material volume V with the surface ∂V but in actual configuration, cf. end of
Sect. 3.1. The justification of the name internal energy on the left hand side follows
from using all forces (including those inertial in β) for the construction of power on
the right-hand side, cf. discussion of (1.5).

We postulate also that u, q and Q are objective scalars (but see Rem. 21); then
(3.97) is valid in all frames: by Rem. 12 the first three integrals in (3.97) are objective
as well as the remaining scalar

∫

∂V
v.Tn da +

∫

V
ρβ.v dv =

∫

V
(v.(divT + ρβ) + tr(LT))dv =

∫

V
tr(DT) dv

(3.98)

obtained by (3.23), (3.14), (3.85), (3.15), (3.93). Its objectivity follows from the
objectivity of D,T and therefore of DT (as may be easily seen) and its trace, see
Sects. 3.2 and 3.3.

Densities in (3.97) are field quantities; but19 we assume that the heating surface
density q depends, in excess, on the external normal n

q = q(x, t,n) (3.99)

Then using the tetrahedron arguments (similarly as in deduction of (3.72)) we prove
from (3.99), (3.97), that dependence on n is linear

q = −q.n (3.100)

18 Exchange of radiation between distant parts of the same body is neglected; q on the real surface
of body is given as a boundary condition. Assuming the validity of such a balance for each part
of the body, we use again the principle of solidification and again volume and surface densities
(ρu, Q, q etc.) could be deduced from more plausible primitives. Cf. Rems. 7, 13 and 14.
19 Surface heating is scalar. Vectorial heat flux in (3.100) will be deduced quite similarly as the
stress tensor was obtained from the traction in (3.72). Dependence of q on n may be expected,
e.g., in a body under temperature gradient it may be expected in a given place that q on the surface
perpendicular to such a gradient will be greater then on the surface parallel to it.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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i.e., there exists a field20 of the heat flux vector q = q(x, t). Indeed, if we apply
(3.97) to a small tetrahedron (as in (3.73)) and use (3.68) and Gauss’ theorem, we
obtain

ρu̇ �v = q �a + q j �a j + Q �v + (div(vT))�v + ρβ.v�v (3.101)

Here �v = (1/3)h �a, h, �a, �a j = n j�a have the same meaning as in (3.73).
Inserting these relations into (3.101) and limiting h → 0 we obtain q = −q jn j

where q j (independent of n) are components of the heat flux q. Moreover, because
of objectivities of q and (arbitrary) n, the heat flux q is an objective vector
(cf. motivation of (3.31) and below (3.72)).21 Inserting (3.100) into (3.97) and using
(3.68), (3.86) we obtain the balance of the whole energy (internal and kinetic) in the
usual form

˙∫

V
ρ(u + (1/2)v2) dv =

∫

V
ρ

˙
(u + (1/2)v2) dv

= −
∫

∂V
q.n da +

∫

V
Q dv +

∫

∂V
v.Tn da

+
∫

V
ρ(b + i).v dv (3.102)

which is valid in an arbitrary frame (in inertial frame i = o). Balance (3.102) may
be also written for fixed volume V with surface ∂V if we use the Reynolds theorem
(3.24)

d

dt

∫

V
ρ(u + (1/2)v2) dv +

∫

∂V
ρ(u + (1/2)v2)v.n da

=
∫

∂V
v.Tn da +

∫

V
ρ(b + i).v dv −

∫

∂V
q.n da +

∫

V
Q dv (3.103)

A special case follows when the body force has a potential � constant in the
time22

b + i = −grad�,
∂�

∂t
= 0 (3.104)

Inserting (3.104) into (3.102) and using (3.8), (3.68) we can interpret this special
case as the balance of internal, kinetic and potential energy

20 The sign is in accord with convention mentioned in Rem. 7 in Chap.1: negative heat q is
emitted when q has direction of outer normal n. Also Fourier law (3.187) directs heat flux q against
temperature gradients, cf. [1, 14, 24, 27, 36, 37].
21 Heat is based on molecular motion; therefore the possible nonobjectivity of heat flux has been
discussed [24, 38–40]. Because of the molecular chaos this effect is probably negligible with the
exception of very rarefied gases. Cf. also Rem. 33 in Chap.4.
22 Such is, e.g. the potential � = (1/2)x∗.�2x∗ giving centrifugal force (3.47); �2 (as a product
of the identical skew-symmetrical tensors) is symmetrical.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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˙∫

V
ρ(u + (1/2)v2 + �) dv =

∫

∂V
v.Tn da −

∫

∂V
q.n da +

∫

V
Q dv (3.105)

Now we can obtain the balance of energy in a local form using (3.68), Gauss’
theorem and validity of (3.102) for all V

ρ
˙

(u + (1/2)v2) = −div q + Q + div(vT) + ρ(b + i).v (3.106)

From this we subtract the balance of “kinetic energy” obtained from (3.78)
multiplying it by v and using (3.14), (3.15), (3.93) to get the local energy balance

ρu̇ = −div q + Q + tr(TD) (3.107)

(this follows also by localization from (3.97), (3.68), (3.100), (3.98)). This result is
valid in any frame because of objectivity of all members here, cf. Sect. 3.2.

We now apply the entropy inequality (1.42) to our continuous body (or arbitrary
part of it). Because the integral in (1.42) may be understood (by definition of heat
distribution) as time and space integral we can formulate an entropy inequality using
the entropy rate, heating and corresponding densities of these quantities (cf. end of
Sect. 1.4 and thewaywe obtained (2.2); again it is possible to proceedmore naturally,
see Rems. 7, 14 and 18) [11, 18, 35, 41]. Therefore entropy may be expressed if we
introduce the specific entropy s as a primitive objective scalar. Because the heating
nowcontains surface and volumepartswith densitiesq and Q (cf. (3.97)) and because
the absolute temperature is now scalar field T = T (x, t), assumed to be objective, it
follows that the entropy inequality may be formulated as (we use (3.100))

˙∫

V
ρs dv ≥ −

∫

∂V
(q/T ).n da +

∫

V
(Q/T ) dv (3.108)

for the material volume V with the surface ∂V of a body or its arbitrary part.23

By Gauss’ theorem and (3.68) we obtain entropy inequality in the local form
called the Clausius-Duhem inequality

σ ≡ ρ ṡ + div(q/T ) − Q/T ≥ 0 (3.109)

valid in any frame. The left-hand side of inequality (3.109) defines the production
of entropy σ which is therefore never negative and by the objectivity of its defining
quantities it is an objective scalar.

Using (3.68), Gauss’ theorem (3.23) and definition (3.109) we can write entropy
inequality (3.108) as

23 Using Reynolds theorem (3.24) in (3.108) we obtain quite naturally the entropy inequality for
open systems in (single) continua. Cf. Rems. 14 in Chap.2, 11 in Chap.4 and the end of Sect. 3.1.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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∫

V
ρ ṡ dv +

∫

V
div(q/T ) dv −

∫

V
(Q/T ) dv =

∫

V
σ dv ≥ 0 (3.110)

Finally, we can eliminate q and Q from energy balance (3.107) and Clausius-
Duhem inequality (3.109) and use the following definition of the specific free energy
f and the temperature gradient g

f ≡ u − T s (3.111)

g ≡ grad T (3.112)

(it follows that both are objective quantities, cf. Sect. 3.2) to get the reduced inequality

− Tσ = ρ ḟ + ρsṪ + T−1 q.g − tr(TD) ≤ 0 (3.113)

This is again objective and will be useful later in Sect. 3.6.
At the end of these Sects. 3.3 and 3.4 we note that energy balance and entropy

inequality motivated by procedures like those in Chap.1 together with generaliza-
tion of frame indifference (plausible objectivity is postulated not only for motion
(Sect. 3.2) but also, e.g., for power of surface and body forces or heating) permit to
deduce balances in Sect. 3.3 (i.e., for mass, linear and angular momentum), internal
energy, entropy and their objectivity, etc. For details see, e.g., [1, 22, 42, 43] and
other works on modern thermomechanics [7, 8, 18, 20, 41].

Summary. Energy balance containing heat transfer, and entropy inequality are
typical thermodynamic conceptions. In fact, they constitute the (general forms of)
First and Second Law of thermodynamics, respectively. Perhaps the most important
for further development are the local energy balance in the form (3.107) and the
Clausius-Duhem formulation of entropy inequality—(3.109). Introducing the (spe-
cific) free energy, (3.111), the latter is transformed to the reduced form (3.113).

3.5 Constitutive Principles and Constitutive Equations
for the Single Substance

In preceding paragraphs, the balances and the entropy inequality in local form (3.63),
(3.76), (3.93), (3.107), (3.109) have been obtained. Because of the general validity
of balances (for broad class of nonuniform single continua in a given case; cf. similar
situation in Sect. 2.1) these independent relations are not sufficient for determination
of all fields (functions of x, t) occurring there

χ , ρ , T (3.114)

u , s , q , T (3.115)

Q , b , i (3.116)

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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We call the fields (3.114)–(3.116) fulfilling the balances of mass (3.63), (3.65),
momentum (3.76), moment of momentum (3.93), and energy (3.107) a thermody-
namic process, because only these are of practical interest. Then we denote the fields
(3.114) as the thermokinetic process and the fields (3.115) as the responses (we
limit to the models with symmetric T (3.93); in more general models we must intro-
duce also the torqueM into responses (3.115), cf. Rems. 17, 32). The fields (3.116)
are controlled from the outside24 (at least in principle). Just constitutive equations,
which express the difference among materials, represent the missing equations and
are relations between (3.114) and (3.115) [6, 7, 9, 10, 23, 34, 38, 40, 41, 44, 45].
Referring to Sect. 2.1 we briefly recall that constitutive equations are definitions of
ideal materials which approximate real materials in the circumstances studied (i.e.,
at chosen time and space scales). Constitutive equations may be proposed in rational
thermodynamics using the constitutive principles of25: determinism, local action,
memory, equipresence, objectivity, symmetry, and admissibility.

The constitutive principle of determinism asserts that responses (3.115) in the
present instant and given place are determined by thermokinetic process (3.114) in
the past and present in all the body. But in single substances, the field of density is
given by the motion through (3.65) (field ρ0 is assumed to be known) and therefore
response (3.115) is given by fields χ and T only (in fact mass balance was used; this
will be used also in the following applications of thermokinetic process, cf. Sects. 3.6,
4.5). Thus, the constitutive equations are functionals giving values of (3.115) in given
particle X and present time t , independent variables of which are functions

χ(Y, τ ) , T (Y, τ ) (3.117)

in all the particles Y of the body and all times τ ≤ t . This very general material
model is significantly reduced by the following two constitutive principles. The
principle of local action asserts that responses (3.115) are influenced only by values
of (3.117) in particles Y = X and in immediate neighbourhood of X (“locality,”
cf. Rem. 12 in Chap.2) and, similarly, the principle of differential memory asserts
that the response (3.115) is given only by the values (3.117) in the present time t and in
the immediate past. Mathematically we can express these principles in the following
way (cf. Sect. 2.1 and Rem. 3 in Chap.2 for memory effect only): we expand (3.117)
in the Taylor series around the present time t and given particle X; then the response
is influenced only by the values and several space and time derivatives taken at
these t and X. This means that the response functionals are reduced to the following
functions:

{s, u,q,T} = F̆(x, v,F,GradF, Ḟ, T,GradT,X, t) (3.118)

24 Such are also boundary values q, T on the real surface of the whole body, cf. Rems. 13, 18, see
also Rem. 36.
25 Repeating those noted in Sects. 1.1 and 2.1 the name “principles” here is stilted a little: they are
rather rules or recommendations which generalize motivation or proposals of such equations in the
past [40], cf. exceptions in Rems. 21, 26, and 28.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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We believe that the choice of derivatives is representative for the materials intended
for study here. Note the elimination of temperature memory; otherwise the “local
equilibrium” might be invalid (cf. Sects. 2.2, 4.5).

In (3.118), the concise form of writing of several constitutive equations with the
same variables was used, i.e., here F̆ stands for constitutive functions s̆, ŭ, q̆, T̆
respectively (overhead symbol � differs function from its value; rare exclusion,
see, e.g., Sect. 3.2). Because the response as well as the independent variables are
functions of X and t , we add in (3.118) also explicit dependence on these quanti-
ties.26 In formulation of constitutive equations (3.118) the constitutive principle of
equipresence was used: in all constitutive equations (3.118) we used the same inde-
pendent variables. This prevents the unjustified preference of some of such equations;
it is a rather plausible rule, cf. Rem. 25, Sect. 2.1, which in special cases, e.g. [28, 60],
may be left.

The explicit dependence on X in (3.118) means that in different particles of our
body there may be different material of the same type (i.e., depending on the same
variables but in different way). We eliminate for simplicity this dependence, i.e., our
body consists of the same material in all particles.27 Then we use (3.14), (3.15),
(3.112) to write (3.118) in the form

{s, u,q,T} = F̆(x, v,F,GradF,D,W, T, g, t) (3.119)

where F̆ means functions s̆, ŭ, q̆, T̆.
Further reduction of constitutive equations (3.119) may be achieved by the con-

stitutive principle of frame indifference or the principle of objectivity: the mater-
ial properties and therefore also constitutive equations must be independent of the
choice of frame. This principle is a generalization of common experience with mate-

26 Great numbers of more general models have been studied e.g. with long range memory (as fading
memory or with internal variables mentioned in Sects. 2.1, 2.3), where differential memory is not
suitable. Its analog for a space coordinate is the nonlocal material [46–50] where the local action is
not sufficient. Another type are materials with a microstructure (micromorphic materials) in which
the particles have a more complicated structure [11, 45, 48, 51, 52] (cf. Rem. 2). For simplicity we
excluded in (3.118) the temperature memory studied in [23, 26, 53] (the influence of which was
outlined in Sect. 2.2; cf. Rem. 31 in Chap.4). The principle of determinism is modified in materials
with internal constraints [6, 7, 10, 12, 54–58] manifested usually as some a priori limitation on
the motion (but there are also nonmechanical constraints such as perfect heat conductivity). Most
important are incompressible materials where the internal constraint is J = 1 (by (3.64) density
of particles does not change and therefore only isochoric motions are allowed). The limitation is
achieved by forces (pressure in incompressible material) which are not determined by the motion
and do not work. The remaining part of the stress is given by the usual principle of determinism.
Modification of determinism is also given by using pressure as an independent variable (usual in
classical thermodynamics); then incompressibilitymaybe also understood as pressure independence
here [24, 59], cf. end of Sect. 3.7.
27 Moreover a unique reference configuration was tacitly assumed in the whole body. But there
are (nonfluid, usually solid) materials with dislocations which may be just described by nonunique
references and dependence on X remains even if they are from the “same” material, cf. [6, 8, 41],
cf. also Rem. 30.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4


3.5 Constitutive Principles and Constitutive Equations for the Single Substance 101

rial properties.28 Mathematically this principle means that the functions in (3.119)
(considered in some frame) are the same in the arbitrary other “starred” frame

{s∗, u∗,q∗,T∗} = F̆(x∗, v∗,F∗, (GradF)∗,D∗,W∗, T ∗, g∗, t∗) (3.120)

where starred quantities in the new frame are transformed by (3.25), (3.26), (3.38),
(3.49), (3.53), (3.54), (3.51) and (3.30)–(3.32) for objective s, u,q,T, T, g.

In a special choice Q = 1 and arbitrary b, c, ċ, Q̇, these transformations must
give the same values of responses in (3.119) and (3.120) (because F̆ is the same
in both frames) and this is possible (change from (3.119) to (3.120) is valid for any
values of independent variables) only if responses are independent of variables x, t, v
and W. This means that two observers with a shift in origins of time and space and
with different velocities of translation and rotation must obtain the same responses.
Therefore, the constitutive equations (3.119) must be reduced by the principle of
frame indifference (or objectivity) to the form

{s, u,q,T} = F̄(F,GradF,D, T, g) (3.121)

where again F̄ means functions s̄, ū, q̄, T̄.29 Because responses are given by (3.121)
in the actual reference, the F̄ must be such that responses are the same if we only
change reference configuration (F and GradF change correspondingly but describe
the same deformation; the other independent variables in (3.121) remain the same
[6, 7, 41, 63], cf. Rem. 30 for application).

But this is not all. Using again the change of frame with arbitrary Q in the con-
stitutive equations (3.121) we have (note that here all dependent and independent
variables are objective; we can regard F and GradF as objective vectors, cf. (3.49),
(3.51))

{s, u,Qq,QTQT } = F̄(QF,QGradF,QDQT , T,Qg) (3.122)

which must be identically valid for any values of independent variables and any
orthogonal tensor Q from the full orthogonal group (see Rem. 8), i.e., at any rota-

28 E.g. we tacitly assume such a principle in the assertion that the same force extends by the same
amount the loaded spring when it is suspended in gravitational field or it is attached in the centre
of rotated disc. Namely, we assume that the constant of the Hook’s law of the spring (i.e., its
constitutive equation) is the same in these both frames [6, 7, 61]. But, cf. Rem.25, even here they
are exceptions [62] (from nonclassical physics).
29 Namely, the substitution described below (3.120) gives

{s, u,Qq,QTQT } = F̆(Qx+c,Qv+ ċ+�Qx,QF,QGradF,QDQT ,QWQT +�, T,Qg, t+b)

which by choice
Q = 1, c = −x, ċ = −v + Wx, � = −W, b = −t

gets
{s, u,q,T} = F̆(o, o,F,GradF,D, 0, T, g, 0) ≡ F̄(F,GradF,D, T, g)

valid for any independent variables, i.e., giving (3.121).
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tion and inversion (also restriction on rotation only is used; cf. Rem. 9). This
condition (3.122) restricts the form of functions to the so-called isotropic functions,
the form of which in vector and tensor variables is very limited [6, 9, 64–66] (cf. also
Appendix A.2 for linear functions on which we concentrate later, see Sect. 3.7). We
name the model with constitutive equations (3.121) the nonsimple (or second grade)
material with heat conduction and viscosity.

A special case is a simple material which does not depend on GradF, cf. [67, 68]

{s, u,q,T} = F̄(F,D, T, g) (3.123)

Such functions F̄ must again be isotropic (for Q from full orthogonal group)

{s, u,Qq,QTQT } = F̄(QF,QDQT , T,Qg) (3.124)

Further simplification of (3.123) is thermoelasticmaterial (with heat conductivity,
see Sect. 3.6)

{s, u,q,T} = F̄(F, T, g) (3.125)

(or elastic at T fixed, cf. Rem. 31) again isotropic, i.e., fulfilling analogical conditions
(3.124).

The following constitutive principle ofmaterial symmetry demands that constitu-
tive equations must be in accord with the inherent symmetry of the material studied.

Here we confine mainly to fluids (gases or liquids) defined as materials with
maximal symmetry. Using this principle we find that dependence on F and GradF
may be in fluids expressed through dependence on density ρ and its gradient h

h ≡ gradρ (3.126)

respectively, and constitutive equations are independent of the reference. Other
important materials are solids, mainly those isotropic (not to be confused with the
isotropic function!), or crystals of different crystal classes, etc. For the purposes of
this book, we plainly define the fluid using ρ instead of F in (3.125) for a simple
fluid, and using ρ,h instead of F, GradF in (3.121) for a nonsimple fluid. But such
replacement may be deduced.30

30 How the principle of symmetry works we outline on simple material (3.123) (see [6, 7, 10,
14, 41, 63, 69] for details); for nonsimple fluid the similar procedure is more complicated, see
[14, 70, 71]. Assume for simplicity a unique reference with reference density ρ0 in the whole body
(everywhere is uniformmaterial without dislocations, see Rem. 27) and all responses behave equally
(their symmetries are the same). The material symmetry may be expressed by (referential) tensorH
(in components H JK ) which, changing deformation F to FH in constitutive relation (3.123), gives
the same response

F̄(F) = F̄(FH) (a)

(nonchanging variables are omitted for brevity) and also the same (actual) density ρ at considered
reference density ρ0, i.e., by (3.65), (3.12), ρ0 = ρ|detF| = ρ|detFH|. This latter condition limits
tensors H to those which are unimodular
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Also other criteria for classification of materials may be used.31

Therefore constitutive equations of nonsimple fluid with viscosity and heat con-
duction are

{s, u,q,T} = F̂(ρ,h,D, T, g) (3.127)

where F̂ stands for functions ŝ, û, q̂, T̂ (independent variables including ρ and there-
foreh are objective, cf. Sect. 3.2).We repeat that responseT here and in all mentioned
constitutive functions is a symmetric tensor. Moreover, the principle of objectivity
demands that functions F̂ must be isotropic, i.e., for any Q from full orthogonal
group and all values of independent variables the following is valid

(Footnote 30 continued)

| detH | = 1 (b)

E.g. indistinguishable rotation may be described by orthogonal H ((b) is valid, cf. Rem. 8).
All such H form the symmetry group G (e.g., two such rotations H1,H2 give indistinguishable

rotationH1H2) which characterize the inherent symmetry of studied material (3.123) in the consid-
ered reference configuration. For example, material is isotropic if any rotation (or even inversion)
is indistinguishable, i.e., G contains a proper (or even full) orthogonal group.

Note that a symmetry group depends on a considered reference: its change (which may also
alter referential density) generally changes the group. This is described by Noll’s rule; for this and
other details see, e.g. [10].

A symmetry group of simple material divides it in two parts (and each of them in isotropic and
anisotropic subparts) [6, 7, 63]:

• simple solids: isotropic or anisotropic (crystal classes like cubic, hexagonal, triclinic etc.)
• simple liquid crystals: isotropic (simple fluids, i.e., gases or liquids) or anisotropic (liquid

crystals).

E.g. in simple solids there exists a reference the symmetry group of which is contained in (full)
orthogonal group; if they are identical then the material is the simple isotropic solid.

Simple fluid has a group of symmetry identical to a unimodular group (contains all H with
| detH | = 1); this group is therefore the maximal one and fluids are isotropic (because they contain
the orthogonal group, cf. Rem. 8; note that unimodular deformations (indistinguishable in fluids)
need not be orthogonal, e.g., isochoric shear). Replacement of F by ρ follows from (a), (b) by the
choice H = J 1/3F−1 (unimodular for given F: | detH | = | det(J 1/3F−1) | = J | detF |−1 = 1).
Indeed, by (3.65), the response is

F̄(FH) = F̄((ρ0/ρ)1/3) ≡ F̂(ρ) (c)

where F̂ is in fact independent of any reference (and its ρ0) because the response (in actual config-
uration) must remain the same if the reference (and therefore F, ρ0) is changed (cf. remark under
(3.121) valid also for (3.123)).
31 Besides those based on symmetry in Rem. 30, see e.g., [8], another was used by Haupt [72]
according to the size of memory for the stress tensor T in an isothermal body: materials (mostly
solids) are

(i) elastic: T is (deformation) rate independent without hysteresis, e.g. (3.125).
(ii) plastic: T is rate independent with hysteresis (by appropriate internal variables, cf. Sect. 2.3).
(iii) viscoelastic: T is rate dependent without hysteresis, e.g. (3.123).
(iv) viscoplastic: T is rate dependent with hysteresis (possible even in equilibrium).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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{s, u,Qq,QTQT } = F̂(ρ,Qh,QDQT , T,Qg) (3.128)

Analogously, starting from (3.123), simple fluidwith viscosity andheat conduction
has the constitutive equations

{s, u,q,T} = F̂(ρ,D, T, g) (3.129)

with analogical properties (3.128).
Finally the specialization of (3.125) on fluid leads to

{s, u,q,T} = F̂(ρ, T, g) (3.130)

with analogical properties (3.128). This is the thermoelastic fluid or, in isothermal
case, the elastic fluid or ideal (Euler) fluid.

The final form of constitutive equations for these models (3.125), (3.127), (3.129)
will be given in Sect. 3.6 where we use the constitutive principle of admissibility.

Summary. A procedure really specific for the rational thermodynamics is intro-
duced in this section in the form of several principles put forward to derive the
thermodynamically consistent constitutive equations. In their most general form, the
constitutive equations were proposed as functions (3.118) on the basis of the princi-
ples of determinism, local action, differential memory, and equipresence. They were
further reduced to the form (3.121) considering the same material throughout the
body and applying the principle of objectivity. Because of our interest in fluids only,
the constitutive equations were further modified to this material type by means of
the principle of material symmetry giving the final form (3.127). Two special types
of fluid were defined by (3.129) and (3.130).

3.6 Principle of Admissibility — Constitutive Equations of Single
Material. Fluid with Viscosity and Heat Conduction

The last constitutive principle of admissibility (or dissipation or entropy principle)
proposed by Coleman and Noll [68] is the most typical for rational thermodynamics
[6, 7, 9, 23, 24, 34, 38, 45, 63, 73] (cf. Sects. 2.2, 2.4, 2.5, 3.7, 4.5).

We call a thermodynamic process which is possible in a given material model,
i.e., fields (like (3.114)–(3.116)) fulfilling all balances (like (3.65), (3.76), (3.93),
(3.107)) combined with proposed constitutive equations an admissible thermody-
namic process. Now, we want such a process to also fulfil entropy inequality.
According to Coleman and Noll [68] (cf. Rem. 5 in Chap.2) we leave the admissible
thermodynamic process arbitrary and restrict the constitutive equations in such a way
that the entropy inequality (3.109) is satisfied identically.

Therefore, the constitutive principle of admissibility (also called the principle of
dissipation or entropy) may be formulated as follows: entropy inequality must be

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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satisfied in any admissible thermodynamic process; mathematical justification of
this principle was given by Muschik and Ehrentraut [74].

But, because of the validity of balances (3.107) (and remaining balances (3.93),
(3.78), (3.63)), the entropy inequality (3.109)may be expressed as reduced inequality
(3.113), the constitutive principle of admissibility may be alternatively formulated
as follows: reduced inequality (3.113) must be satisfied in any admissible thermo-
dynamic process.

Moreover, as we show in the following examples, an admissible process may be
constructed from a thermokinetic process fulfilling the mass balance (using consti-
tutive equations proposed so far and using outside controlled fields like (3.116)).
Therefore, the results of the admissibility principle (i.e., simplifications and further
properties of constitutive equations) follow from inequality obtained by inserting the
constitutive equations into the reduced inequality and by using suitable thermoki-
netic process (fulfilling the mass balance, cf. above (3.117); there is also alternative
method of I-Shih Liu explained in Appendix 5 avoiding the construction of admis-
sible process in complicated cases. As was shown in Appendix 5, this method gives
the same results for our fluid models of Sects. 2.2, 3.7, 4.5).

Although fluids are our main interest, first we demonstrate the admissibility
principle on thermoelastic material (3.125).

Here the free energy (3.111) used in (3.113) has obviously the following consti-
tutive equation

f = f̄ (F, T, g) (3.131)

We calculate ḟ using
˙

FF−1 = 0 and (3.13)–(3.15) and introducing result in (3.113)
we obtain (in Cartesian components):

−Tσ = ρ
∂ f̄

∂Fi J
F j JW i j +

(
ρ

∂ f̄

∂Fi J
F j J − T ji

)
Di j + ρ

(
∂ f̄

∂T
+ s

)
Ṫ

+ ρ

−1

F Ji ∂ f̄

∂gi
˙

(GradT )J − ρ

−1

FKi ∂ f̄

∂gi
(GradT )J

−1

F J j Ḟ j K + T−1qi gi ≤ 0

(3.132)

According to the dissipation principle, this inequality must be valid at any admissible
thermodynamic process, which in turn, may be obtained from the appropriate
thermokinetic process (3.114) fulfilling the mass balance (cf. general procedure
sketched above).

Namely, the inequality (3.132) must be valid in an arbitrarily chosen particle X
and (say present) instant t (x is the place of X at t according to motion (3.1)) and
the following thermokinetic process (cf. (3.114)) may be constructed in any particle
Y and any time τ (with place y) in the body as follows: for it we use the following
expansions about considered X and present time t

y = χ(Y, τ ) = x + F(Y − X) + Ḟ(Y − X)(τ − t) (3.133)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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T (Y, τ ) = T + (GradT )(Y − X) + ˙
(GradT )(Y − X)(τ − t) (3.134)

where x, T,F, Ḟ,GradT,
˙

(GradT ) are values of these fields and its derivatives taken
at X, t , and the density field follows from mass balance (3.65)

ρ(Y, τ ) = ρ0(Y)/ | detF(Y, τ ) | (3.135)

(cf. above (3.117); it is valid by thefield of density in the given reference configuration
ρ0(Y) which is assumed to be known. The fixed mass of the body is then given by
(3.58)).

The thermokinetic process (3.133)–(3.135) in thermoelastic material (3.125)
fulfilling mass balance generates the admissible thermodynamic process. Indeed,
for chosen values of F, T and g = (GradT )F−1 at X (or place x) and t (see (3.13))
the fields of responses (3.115) follow by (3.125); the symmetric responseT fulfils the
balance of moment of momentum. Mass balance is satisfied by (3.135) and the bal-
ance of momentum (3.78) and energy (3.107) are satisfied by the appropriate choice
of external body force b(Y, τ ) (or/and inertial force i(Y, τ )) and volume heating
Q(Y, τ ) because (3.116) are controlled from the outside.

Therefore, an admissible thermodynamicprocess exists and is causedby thermoki-
netic process (3.133)–(3.135); by the admissibility principle the inequality (3.132)
must be satisfied. Then this inequality must be satisfied at (arbitrarily chosen) parti-
cle X and instant t by arbitrarily chosen values of mutually independent F, T, g (or

GradT ) and W, D, Ṫ ,
˙

(GradT ) (this follows from the independence of derivatives
in expansions (3.133), (3.134) and (3.14), (3.15); note that T (and ρ) are positive
scalars and D, W are symmetric or skew-symmetric tensors, respectively). But the
inequality (3.132) depends only linearly on the latter values and therefore members
containing them must be zero because of Lemmas A.5.1, A.5.2 from Appendix 5.

Indeed, if we choose F, T, g fixed, D,W,
˙

(GradT ) zero, the following relation
follows from Lemma A.5.1

∂ f̄

∂T
= −s (3.136)

because Ṫ may be arbitrary scalar (and ρ > 0).

Similarly, if we choose ˙
(GradT ) arbitrary at F, T, g fixed and D,W, Ṫ zero, the

following vector must be zero
∂ f̄

∂g
= o (3.137)

by Lemma A.5.1 (applied on components, i.e., we choose the components of vector
˙

(GradT )J for J = 1 arbitrary and for J = 2, 3 as zeros; then the first component

of vector ρ
−1

F Ji ∂ f̄
∂gi

must be zero. Repeating such application of Lemma A.5.1 for
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remaining J = 2, 3 we also obtain zeros for the remaining components of this last

vector. Because matrix ρ
−1

F Ji is regular we obtain result (3.137)).
Further, we use Lemma A.5.2 (with consequences for symmetric and skew-

symmetric tensors). Namely, if we choose D, ˙
(GradT ), Ṫ zero at arbitrary F, T, g,

the first member in (3.132) must be zero at any skew-symmetric tensor W, i.e., the
following tensor in this member must be symmetric

∂ f̄

∂F
FT = F

(
∂ f̄

∂F

)T

(3.138)

By analogical arguments, we obtain from Lemma A.5.2 that the tensor standing
at D in (3.132) must be skew-symmetric. But it is at the same time symmetric (see
(3.138), (3.93)) and therefore it is zero.32

T = ρ
∂ f̄

∂F
FT (3.139)

Moreover, these results (3.136)–(3.137) are valid identically: at any F, T, g and
any X, t . Therefore, (3.131) is reduced to

f = f̄ (F, T ) (3.140)

and (3.136) and (3.139) show that free energy is a potential for entropy and stress,
i.e., the corresponding Gibbs equation is valid. Therefore also s (and by (3.111)
also u) and T depend on F, T only (only heat flux q depends on temperature gradi-
ent g).

Production of entropy is caused only by heat conduction

σ = −T−2q.g ≥ 0 (3.141)

and it is zero in the equilibrium process defined here by

g = o (3.142)

(cf. the end of Sect. 2.1 and Rem. 11 in Chap.1). But in equilibrium (3.142) the
production of entropy σ = σ(F, T, g) (cf. (3.125)) has a minimum and therefore

d

dλ
σ(F, T, λg) |λ=0 = 0 (3.143)

where λ is a real parameter. Inserting (3.141) into (3.143) gives

32 Note that by analogical calculation for (mechanically) polar materials Rem. 17, the result (3.139)
is valid but its skew-symmetric part gives torque M.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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qo ≡ q(F, T, o) = o (3.144)

and therefore equilibrium value qo of the heat flux is zero.
Without going into details we note also that sufficient conditions of minima of

σ may be discussed and further simplifications of these results using objectivity
(3.124) andmaterial symmetrymay be obtained: using Cauchy-Green tensors, Piola-
Kirchhoff stress tensors, the known linearized constitutive equations of solids follow,
e.g. Hook and Fourier laws with tensor (transport) coefficients which are reduced to
scalars in isotropic solids (e.g. Cauchy law of deformation with Lamé coefficients)
[6, 7, 9, 13, 14].

Results for thermoelastic fluid might be also obtained by the constitutive principle
of symmetry but we get them directly from the following fluid model, cf. (3.182)
and the end of this section.

Our main goal is to apply the admissibility principle to fluids [39, 53, 75–78],
namely to nonsimple fluid (3.127) (the special cases of simple (3.129) and ther-
moelastic (3.130) fluids will be discussed at the end of this section but the most
important are fluids with linear transport properties contained in Sects. 3.7 and 3.8).
In nonsimple fluid (3.127) it is sufficient to use the field of velocity (instead of
motion), cf. (3.14)1, (3.15)1. Therefore we define the thermokinetic process in fluids
as the fields of (instead of (3.114))

v, ρ, T (3.145)

An admissible thermodynamic process in fluids is defined as fields of thermokinetic
process (3.145), responses (3.115) (given by constitutive equations (3.127)), and
outside fields (3.116) which fulfil balances (3.63), (3.78), (3.93), (3.107).

Although the spatial (Euler) description x, t is simpler in fluids, the material
(time) derivative, expressed by (3.8), is preferred below because it givesmore concise
results.

The principle of admissibility demands to fulfil entropy inequality (3.109) and
therefore also the reduced inequality (3.113) by any admissible thermodynamic
process. Here the free energy (3.111) is used for which, as follows from (3.127),
we have the following constitutive equation

f = f̂ (ρ,h,D, T, g) (3.146)

in our nonsimple fluid. Hence we can write

ḟ = ∂ f̂

∂ρ
ρ̇ + ∂ f̂

∂h
.ḣ + tr

∂ f̂

∂D
Ḋ + ∂ f̂

∂T
Ṫ + ∂ f̂

∂g
.ġ (3.147)
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Here tr ∂ f̂
∂DḊ = ∂ f̂

∂Di j Ḋ
i j where both tensors are symmetric. This is clear for Ḋ but the

symmetry of ∂ f̂
∂D follows from the rule that the derivative of a scalar function with

respect to a symmetric tensor is symmetric.33

Now we express ρ̇ from (3.63) using (3.16) and ḣ from

ḣ = −h(D + W) − h trD − ρ grad(trD) (3.148)

which may be obtained if we take the gradient from balance of mass (3.62) and use
(3.126), (3.9), (3.14), (3.15). Both ρ̇ and ḣ we use in (3.147) and then we insert ḟ
into reduced inequality (3.113). After rearrangement we obtain (in component form)

−Tσ = −ρ
∂ f̂

∂hi

(
h j (D ji + W ji ) + hi Dkk

)
− ρ2 ∂ f̂

∂hi
∂Dkk

∂xi
+ ρ

∂ f̂

∂Di j
Ḋ ji

+ ρ
∂ f̂

∂gi
ġi + ρ

(
∂ f̂

∂T
+ s

)
Ṫ −

(
T i j + ρ2 ∂ f̂

∂ρ
δi j

)
D ji + T−1qi gi ≤ 0

(3.149)

33 Let f be a scalar function f̃ of symmetric tensor D, i.e., a function of 6 independent variables:

f = f̃ (D) = f̃ (D11, D12, D13, D22, D23, D33) = f̃
(
D11,

1

2
(D12 + D21),

1

2
(D13 + D31), D22,

1

2
(D23 + D32), D33)

≡ f̂ (D11, D12, D13, D21, D22, D23, D31, D32, D33) = f̂ (D)

The last definition of function f̂ of 9 variables (allowed by symmetry of D) permits to employ
the customary tensor (or matrix) descriptions, e.g. the summation convention in component form.
This is the reason for using this definition of f̂ in (3.146), (3.147) and other formulae in this book
(similar definitions may be used for skew-symmetric tensor and vector and tensor functions [7, 14,
79]). As may be seen from the definition above, the main property of f̂ is (when D is symmetrical

and this is just such a case) that ∂ f̂
∂D is indeed symmetrical, e.g.

∂ f̂

∂D12 = 1

2

∂ f̃

∂D12 = ∂ f̂

∂D21

If B is a symmetric tensor then, as may be expected,

tr
∂ f̂

∂D
B = ∂ f̂

∂Di j
B ji = ∂ f̃

∂D11 B
11 + ∂ f̃

∂D12 B
12 + ∂ f̃

∂D13 B
13

+ ∂ f̃

∂D22 B
22 + ∂ f̃

∂D23 B
23 + ∂ f̃

∂D33 B
33 = ∂ f̃

∂D
.B

and therefore this expression may be also written as an inner product in the space of symmetric
tensors, i.e., as a scalar product (denoted by dot) of 6-dimensional vectors. This way is also often
used; then, of course, we understand (in (3.146) etc.) f as a function in the space of symmetric
tensor D, i.e., as f̃ . Similarly it may be proved that the derivative of a scalar function with respect
to a skew-symmetric tensor is again skew-symmetric.
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This inequality depends through constitutive equations (3.127), (3.146) on

ρ,h,D, T, g (3.150)

and linearly on
W, grad trD, Ḋ, Ṫ , ġ (3.151)

In accord with our general procedure sketched in the beginning of this section we
now construct the following thermokinetic process (assumed to fulfil mass balance)
which generates an admissible thermodynamic process which in turn, by the admis-
sibility principle, must fulfil the inequality (3.149). From this then further properties
of constitutive equations (3.127), (3.146) will be obtained.

Namely, we construct the thermokinetic process (3.145) in arbitrary point y of
the actual configuration of the body and arbitrary instant τ as bounded expansions of
fields v(y, τ ), T (y, τ ) around the arbitrarily selected place x in the body and (present)
instant t

vi (y, τ ) = vi (x, t) + (Li j (x, t))(y j − x j ) +
(

∂Li j

∂t
(x, t)

)
(y j − x j )(τ − t)

+ 1

2

(
∂Li j

∂xk
(x, t)

)
(y j − x j )(yk − xk) (3.152)

T (y, τ ) = T (x, t) + (g(x, t)).(y − x) +
(

∂T

∂t
(x, t)

)
(τ − t)

+
(

∂g
∂t

(x, t)
)

.(y − x)(τ − t) (3.153)

Density field ρ(y, τ ) need not be formulated explicitly because mass balance is
assumed to be valid (in fact it has been assumed at deduction of (3.149) in eliminations
of ρ̇, ḣ by (3.63), (3.148); note that ρ̇, ḣ are not present in (3.150), (3.151)). It is

satisfied, e.g. as (3.63) by choice ˙lnρ = ρ̇/ρ = −divv for appropriate velocity
(3.152) at any y, τ .34

This thermokinetic process (with validity of mass balance) generates an admis-
sible thermodynamic process: we can obtain the values of independent variables of
constitutive equations (3.127), (3.146) in the whole body at any time (see (3.126),
(3.112), (3.15)) and therefore also fields of responses (3.115) (with f ). Further the
balance of moment of momentum (3.93) is satisfied because of symmetric tensor T

34 Construction of ρ(y, τ ) in Euler description is more complicated: in principle we can use current
deformation of the body in present time t (assumed to be known as well as density fields ρ(y, t) in
it) as the reference, calculate relative deformation function y = χ

t
(x, τ ) (cf. (3.1)) by integration

of velocity field (3.152) and in turn the relative deformation gradient Ft = gradχ
t
(see [8] p. 9 for

details or [7, 10]). Then ρ(y, τ ) = ρ(y, t)/ | detFt (y, τ ) | following analogy with (3.65).
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in (3.127) and ultimately balances of momentum (3.78) and energy (3.107) may be
fulfilled if we use appropriate fields of body force b (or/and inertial force i) and body
heating Q respectively.

Thus for each choice of obviously mutually independent values of v and T and its
derivatives in (3.152), (3.153) taken in some x and t the admissible thermodynamic
process exists and, according to the constitutive principle of admissibility, the reduced
inequality (3.113) and therefore inequality (3.149) must be valid in this x, t .

We choose these quantities in x, t as follow: density and its gradient have the
values ρ, h, fields (3.152), (3.153) and its derivatives have values T, g and

v(x, t) = o, L(x, t) = D + W,
∂L
∂t

(x, t) = Ḋ

∂Li j

∂xk
= 1

3

∂Dll

∂xk
δi j

(δi j is Kronecker delta),

∂T

∂t
= Ṫ ,

∂g
∂t

= ġ ,
∂ρ

∂t
= −ρtrD − v.h = −ρtrD

This choice of (3.150), (3.151) may be arbitrary and independent (ρ, T are posi-
tive scalars, D, Ḋ are symmetric tensors, W skew-symmetric tensor and Ṫ , h, g,
grad trD, ġ are arbitrary scalar or vectors); here the zero velocity in x, t was used
(see (3.8), (3.9)) and the choice of value ∂ρ

∂t (not needed in (3.149)) simply expresses
the mass balance (3.62) at x, t .

But because (3.149) depends on values (3.151) linearly, we can use Lemma A.5.1
from Appendix A.5, and the following restrictions on the constitutive equations
follow

∂ f̂

∂h
= o,

∂ f̂

∂D
= 0,

∂ f̂

∂g
= o (3.154)

∂ f̂

∂T
= −s (3.155)

− Tσ = T−1q.g − tr

((
T + ρ2 ∂ f̂

∂ρ
1

)
D

)
≤ 0 (3.156)

E.g. to prove (3.154)1 we choose (3.150) and W, Ḋ, Ṫ , ġ as some constants in
Lemma A.5.1 applied on components (similarly as in proof of (3.137)): we choose
the 1st component of grad trD as arbitrary reals, while its 2nd and 3rd component

are selected equal to zero. Then the result ∂ f̂
∂h1

= 0 follows from Lemma A.5.1
(ρ are always positive). By repetition of this procedure for remaining components
2,3 analogously we obtain the results (3.154)1.
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By a similar procedure we obtain (3.154)2: we choose (3.150) and fixed W, Ṫ , ġ

(and grad trD or we use the previous result) and because tr ∂ f̂
∂DḊ may be considered

as a 6-dimensional scalar product, cf. Rem. 33, we obtain by Lemma A.5.1 the
result (3.154)2 analogously as in the previous case. But we can use equivalently
Lemma A.5.2 understanding D as 3× 3 symmetric tensor: because Ḋ is symmetric,

the tensor ∂ f̂
∂D is skew-symmetric but at the same time it is symmetric (cf. Rem. 33)

and therefore zero (3.154)2.
Quite similarlywe obtain the remaining results (3.154)3, (3.155). Thus the original

entropy production (3.149) is simplified to inequality (3.156).
Note that the same results follow using the I-Shih Liu method of Lagrange

multipliers (seeAppendixA.5) and the discussion ofmass balance in the construction
of an admissible process is not needed. This method is described in Appendix A.5
in the example of thermoelastic simple fluid, cf. (3.11).

Relations (3.154), (3.155) are valid identically because values (3.150) and x, t
are chosen arbitrarily. Therefore the free energy f and also the entropy s (and by
(3.111) also u) depend on ρ and T only in the nonsimple fluid

f = f̂ (ρ, T ) (3.157)

s = ŝ(ρ, T ) (3.158)

We say that in a given place and instant there is an equilibrium process when

D = 0 , g = o (3.159)

The motivation for such definition is that the entropy production (3.156) is zero
(cf. end of Sect. 2.1 and Rem. 12 in Chap.1); we omit for simplicity more detailed
discussion of equilibrium, reversibility, regularity (cf. Sect. 2.2), because this may
be done analogously as in the special case of the linear fluid in Sect. 3.8.

We denote the equilibrium values of stress tensor and heat flux by To and qo

respectively
To = T̂o(ρ,h, T ) ≡ T̂(ρ,h, 0, T, o) (3.160)

qo = q̂o(ρ,h, T ) ≡ q̂(ρ,h, 0, T, o) (3.161)

and we define the nonequilibrium stress tensor TN by

TN = T̂N (ρ,h,D, T, g) ≡ T − To (3.162)

We note that both stresses To and TN are symmetrical and equilibrium value of TN

is zero
To
N ≡ T̂N (ρ,h, 0, T, o) = 0 (3.163)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Inserting (3.162) into (3.156) we have

σ = T−1tr

((
To + ρ2 ∂ f̂

∂ρ
1

)
D

)
+ T−1tr(TND) − T−2q.g ≥ 0 (3.164)

Production of entropy σ = σ̂ (ρ,h,D, T, g) is not only zero but also minimal at
equilibrium (3.159). Therefore the following conditions must be fulfilled

d

dλ
σ̂ (ρ,h, λD, T, λg) |λ=0 = 0 (3.165)

d2

dλ2
σ̂ (ρ,h, λD, T, λg) |λ=0 ≥ 0 (3.166)

where λ is a real parameter (values of ρ,h, D, T, g may be fixed arbitrarily).
Inserting (3.164) into (3.165) and using (3.163) we get

T−1tr

((
To + ρ2 ∂ f̂

∂ρ
1

)
D

)
− T−2qo.g = 0 (3.167)

This equality is linear in arbitrary independent values of D and g and therefore we
obtain, by Lemmas A.5.1, A.5.2, identities ((3.167) is valid for any ρ,h, T )

To = −P1 (3.168)

P = P̂(ρ, T ) ≡ ρ2 ∂ f̂

∂ρ
(3.169)

where P is called the (equilibrium) pressurewhich, as well as To, is function of only
ρ and T as follows from (3.157). Further it follows from (3.167) that the equilibrium
value of the heat flux is zero

qo = q̂(ρ,h, 0, T, o) = o (3.170)

The condition (3.166) gives some restrictions on the sign of derivatives of TN
and q but we omit them here (we elaborate on them only in the linearized model in
Sect. 3.7).

As a result of all constitutive principles the constitutive equations of nonsimple
fluidwith (nonlinear) viscosity and heat conduction are (see (3.111), (3.127), (3.157),
(3.158), (3.162), (3.168), (3.169))

f = f̂ (ρ, T ), s = ŝ(ρ, T ), u = û(ρ, T ) (3.171)

q = q̂(ρ,h,D, T, g) (3.172)
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T = −P̂(ρ, T )1 + T̂N (ρ,h,D, T, g) (3.173)

with the properties (3.155), (3.169):

∂ f̂

∂T
= −s (3.174)

ρ2 ∂ f̂

∂ρ
= P (3.175)

Functions q̂ and T̂N are isotropic (see (3.128), (3.173), Rem. 8), i.e., for every
orthogonal tensor Q we have

Qq̂(ρ,h,D, T, g) = q̂(ρ,Qh,QDQT , T,Qg) (3.176)

QT̂N (ρ,h,D, T, g)QT = T̂N (ρ,Qh,QDQT , T,Qg) (3.177)

Entropy production is caused by nonequilibrium stress (viscosity) and heat flux
(conduction of heat) (see (3.164), (3.168), (3.169))

Tσ = tr(TND) − T−1q.g ≥ 0 (3.178)

In the equilibrium process defined by D = 0, g = o (3.159), entropy production
is zero σ = 0, stress is reduced on pressure P and heat flux is zero

To = −P1 or To
N = 0 (3.179)

qo = o (3.180)

Isotropic functions (cf. (3.176), (3.177)) permit only a certain combination of vectors
and tensors on which q and T, may depend. This is described by the so called
representation theorems [6, 9, 23, 64]; for general dependence see [65] (for full and
proper orthogonal group from Rem. 8). An example for a simple fluid is given in
Rem. 35 below, more details (as well as discussion of other results, e.g. (3.166)) we
leave to the special model of linear fluid in Sect. 3.7.

The assertion that the results (3.171) with properties (3.174), (3.175) (in fact the
same as in classical thermodynamics and proved in this model of nonsimple fluid)
are valid even at nonequilibrium process (at nonzero σ in (3.178)) is known as local
equilibrium. This was taken as a starting principle in the classical theories of non-
equilibrium processes [36, 80]. But in more complicated models local equilibrium
need not be valid, cf. Sect. 2.2.

Now we turn to the less complicated case of constitutive equations (3.129)—
simple fluidwith (nonlinear) viscosity and heat conduction inwhich an independence
of the density gradient h was assumed from the start. By inspection of the results of

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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the preceding more complicated model we obtain the same results (3.171)–(3.180)
with the exceptions that the heat flux q and nonequilibrium stress TN (Eqs. (3.172),
(3.173)) are independent of density gradient h. Flows of such simple fluids are often
studied in rheology.35

The last specialization is the thermoelastic simple fluid excluding also a
dependence on D in constitutive equations of simple fluid (3.129) (independent of
h). Then the results (3.171) are valid, heat flux in (3.172) is independent of h and D
and nonequilibrium stress TN are identically zero, i.e., instead of (3.173) we have

T = −P̂(ρ, T ) 1 (3.181)

with (3.174) and (3.175). Production of entropy (3.178) is reduced to Tσ =
−T−1q.g ≥ 0. This model was used in Appendix A.5 to demonstrate I-Shih Liu
method with more constraints giving the same results, cf. (A.158).

All the results for the thermoelastic fluid follow also from (3.136)–(3.144) for
thermoelastic materials if we use the constitutive principle of symmetry (cf. Sect. 3.5
and Rem. 30). In this case the constitutive equations (3.125), (3.131) are realized
through (3.65), (3.12), e.g.

f̄ (F, T, g) ≡ f̂ (ρ0 | detF |−1, T, g) (3.182)

Using (3.182) in (3.139) with the use of (e) from Rem. 4, we deduce (3.181), and
(3.175) as well as the other results for thermoelastic fluid.

All these models may be specialized also to incompressible fluids, which
practically model liquids (at nonextreme, say atmospheric, pressures). Such fluids
may be defined mechanically by J = 1 [10, 83], cf. Rems. 26, 35 or thermodynam-
ically [24, 43] and this will be discussed at the end of Sect. 3.7.

Further simplification of these fluid models (3.172)–(3.180) we obtain by lin-
earization presented in Sect. 3.7. We note that the formulae (3.198)–(3.207) are valid
also in the nonlinear model of this section.

35 Consider an example of the non-Newtonian liquid (e.g., solutions and melts of polymers, suspen-
sions, etc.), isothermal and without heat conduction for simplicity. Isotropic nonequilibrium stress
fulfils (cf. (3.177))

QT̂N (ρ,D)QT = T̂N (ρ,QDQT )

for anyQ ∈ O. Representation theorem of this symmetric isotropic nonlinear function of symmetric
tensor is (see [9, 12, 64])

TN = γ01 + γ1D + γ2D2

where coefficients γ0, γ1, γ2 are (nonlinear) functions of ρ (T is constant) and trD, trD2, trD3. Such
nonNewtonian liquid is practically incompressible (trD = 0, see Rem. 26, (3.17), (3.16), below and
end of Sect. 3.7), γ0 may be included in the undetermined pressure and for small velocity gradients
the last member may be neglected. Constitutive equation for nonequilibrium stress is reduced to
[81]

TN = γ1D

where γ1 depends nonlinearly on trD2 (and ρ, T ). For more complicated models see [8, 10, 82].
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Ultimately thesefluidmodelsmay still be reduced to the uniformmodels discussed
in Chap.2 mainly as the model A or B in Sects. 2.1 and 2.2. Due to the uniformity, the
dependence on the gradient g must be eliminated and the dependence on D should
be expressed through trD, i.e., through ρ̇ or equivalently V̇ (see (3.63), (3.16)).

Because of neglecting the motion in the uniform models, the pressure (stress) on
the boundary of the body (usually defined from the outside as a boundary condition,
cf. Rem. 13) is given by the constitutive equation of material inside the body,36 cf.
Rems. 9 in Chap.1, 1 in Chap.2 and 37 in this chapter.

Generally, the results for simpler models may be obtained from a more gen-
eral model by specialization of constitutive equations, but sometimes to get all the
results, we must again use the admissibility principle on the remaining inequality
(entropy production) of the more complicated model (cf. deduction of (3.181) and
also Sect. 3.7).

Summary. This section finalizes the exemplification of rational thermodynamics
methodology applying its most typical principle—the principle of admissibility. In
fact, this principle represents the requirement of consistency of a material model
(constitutive equations) with the Second Law or the entropy inequality. It was applied
to finish the derivation of constitutive equations for a single fluid initiated in preceding
sections of this chapter. Startingwith the form (3.146) for the free energywe arrived at
its final simplification in the form (3.157) which indicates also the final constitutive
equations for the (specific) entropy and internal energy, see (3.171). In contrast
the constitutive equation for the heat flux was not simplified and remained in the
form (3.172). The same conclusion was found for the stress tensor but this could
be decomposed to equilibrium and nonequilibrium parts, cf. (3.173), the former
leading to the (equilibrium) pressure known from classical thermodynamics. Both,
pressure and specific entropy are related to (specific) free energy in the form of its
derivatives, see (3.174), (3.175). The final form of entropy inequality in this material
model is (3.178); the definition of equilibrium, (3.159), is motivated by zero entropy
production. Note that during the derivation of constitutive equations not only the
entropy inequality as such was applied but also the fact of zero andminimum entropy
in equilibriumwas used, cf. (3.165) and (3.166). Several simplified fluidmodels were
mentioned at the end of this section. The exposition is thus prepared to derive the
key fluid model of our book in the subsequent section.

36 Namely, neglecting the motion and external fields (v, v̇,b, i are practically zeros) the momentum
balance (3.81) of the thin layer along the real boundary reduces to

∫
V Tn dv = o with (mostly)

pressure P , T = −P1 (cf. [84], figure on p. 108). In the limit of this narrow sub body this balance
expresses the action-reaction law; therefore the pressure from the outside is given by the constitutive
equation of the fluid inside (under the boundary). Pressure P in the model B is given by (2.7)3 (the
pressure may contain here a nonequilibrium part (2.34) given (in linear approximation) by the
volume viscosity, cf. Rems. 9 in Chap.1, 1 and 8 in Chap.2, 37 in this chapter).

The equilibrium pressure part is given by the state equation, see (2.33), (2.32). This, in fact
“equilibrium” pressure in “reversible” processes, forms the whole pressure (2.6)3 of the “classical”
thermodynamic model A (density of uniform body with constant mass is given by its volume V ).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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3.7 Fluid with Linear Transport Properties

In this paragraph we specialize the results for the nonsimple fluid (3.171)–(3.180)
on the linear dependence in vectors and tensors i.e., in D, g and h (while the depen-
dence on scalars ρ, T may be nonlinear) [9, 14, 23, 24, 27, 45]. We denote this
model as a linear fluid or fluid with linear transport properties because the results
describe the classical Navier-Stokes (Newtonian) and Fourier fluid with linear vis-
cosity and heat conduction; at the same time the classical thermodynamic relations
(local equilibrium) are valid.

From the principle of objectivity it follows that functions q̂ and T̂N must be
isotropic (3.176), (3.177). In the linear case the most general form of such isotropic
functions is given by the representation theorem (see Appendix A.2) of vector and
tensor functions (3.172), (3.162) which are linear in vectors and tensors (cf. (A.58),
(A.68)):

q = −kg + χh (3.183)

TN = γ01 + γ1(trD)1 + γ2D (3.184)

where all scalar coefficients k, χ, γ0, γ1, γ2 are (generally nonlinear) functions only
of ρ and T . But in equilibrium (3.159) the nonequilibrium stress and heat flux must
be zero (3.163), (3.170) at any ρ, T and h and therefore in (3.183) and (3.184) the
following coefficients are identically (i.e., for all ρ, T ) zero37

χ ≡ 0 (3.185)

γ0 ≡ 0 (3.186)

Therefore from (3.183) and (3.185) we obtain the Fourier law of heat conduction

q = −kg (3.187)

37 As we note at the end of Sect. 3.6 all this and the subsequent results follow if the assumption
of linearity has been used in a constitutive relation of a nonsimple fluid with viscosity and heat
conduction (3.127), (3.146) (i.e., before application of admissibility principle). These constitutive
relations are scalar, vector and symmetric tensor isotropic functions (3.128) (including f ) which
are linear in vector g, h and symmetrical tensor D.

The representation theorems for such linear functions (A.67), (A.58), (A.68) fromAppendix A.2
then gives for scalar functions

s = s(0) + s(1)trD , u = u(0) + u(1)trD

f = f (0) + f (1)trD

and (3.183) and (3.184) for vector and tensor functions. Similarly, as scalar coefficients here, the
scalars s(0), u(0), f (0) ≡ u(0) − T s(0), s(1), u(1), f (1) ≡ u(1) − T s(1) are (generally nonlinear)
functions of density ρ and temperature T . Using them in the reduced inequality (3.113) and by the
admissibility principle, we obtain all the results (like (3.185), (3.186), etc.) of this section (namely
s(1), u(1), f (1) are zeros identically), see [14, 27, 84].
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where k = k̂(ρ, T ) is the heat conductivity which is a function of ρ, T . Similarly

from (3.186) and (3.184), using the divergenceless stretching tensor
◦
D defined as

◦
D≡ D − (1/3)trD1, tr

◦
D= 0 (3.188)

and with ζ ≡ γ1 + (1/3)γ2, η ≡ (1/2)γ2, we obtain the Newton law of viscosity

TN = ζ(trD)1 + 2η
◦
D (3.189)

where ζ = ζ̂ (ρ, T ) are the volume (bulk) viscosity and η = η̂(ρ, T ) the (dynamical)
viscosity coefficients respectively, both are (generally nonlinear) functions of ρ, T

only. Note that trD and
◦
D are mutually independent (choosing them arbitrarily and

independently we obtain the corresponding D according to (3.188)).
The other constitutive equations are the same as in Sect. 3.6 (cf. (3.175), (3.171),

(3.173))
f = f̂ (ρ, T ) (3.190)

s = ŝ(ρ, T ) (3.191)

u = û(ρ, T ) (3.192)

∂ f̂

∂T
= −s (3.193)

ρ2 ∂ f̂

∂ρ
= P = P̂(ρ, T ) (3.194)

T = −P1 + ζ(trD)1 + 2η
◦
D (3.195)

where P, ζ, η are functions of ρ and T only. Production of entropy in the linear fluid
follows from (3.178) inserting (3.187) and (3.189)

Tσ = ζ(trD)2 + 2ηtr(
◦
D)2 + T−1kg2 ≥ 0 (3.196)

Because this quadratic form (of mutually independent variables) is positive semidef-
inite [85, 86], we obtain that the transport coefficients ζ, η, k are nonnegative for all
ρ, T

ζ ≥ 0 , η ≥ 0 , k ≥ 0 (3.197)

Equilibrium in the linear fluid will be thoroughly discussed in Sect. 3.8 in which we
also confine this model to the regular one to avoid unusual situations or to achieve
its stability (see (3.232)–(3.234), (3.256), (3.257), Rem. 42).
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It is noteworthy that the independent variable h is not present at all in this linear
model; therefore we would obtain the same results by analogous linearization of
simple fluid (3.129), cf. end of Sect. 3.6 [9, 23, 24, 45] (but the presence of density
gradients will be important in mixtures, see Sect. 4.8).

At the end we stress several characteristic features of the linear fluid. Though the
thermodynamic quantities f, u, s, P as well as the transport coefficients k, ζ, η are
functions of ρ and T only, no relationships exist between these two groups. Therefore
it is impossible to obtain transport coefficients from equilibrium measurements. But
suchmeasurements suffice to obtain the thermodynamic functions, because theGibbs
equation is valid (by (3.193), (3.194))

ḟ = −sṪ + (P/ρ2)ρ̇ = −sṪ − P v̇ (3.198)

where the specific volume v was introduced

v ≡ 1/ρ (3.199)

(remember that the same symbol used in dv in integrals has a different meaning, cf.
(3.21), (3.275)).

These and other thermodynamic relations below are written in classical thermo-
dynamics with differentials instead of material derivatives, e.g. dT instead of Ṫ , cf.
Sect. 4.6. As may be seen from Sect. 3.1 also ∂/∂t or grad may be used here.

Again, the (principle of) local equilibrium (cf. end of Sect. 3.6)whichwas deduced
by the method of rational thermodynamics for the linear model (results (3.198)–
(3.209) is also valid for the more general model of nonlinear fluid of preceding
Sect. 3.6; cf. (3.157), (3.155), (3.169) [24, 75, 77, 78]); however, the local equilibrium
is not to be expected as generally valid (cf. Sects. 2.2, 2.3).

Other forms of the Gibbs equation are

u̇ = T ṡ + (P/ρ2)ρ̇ = T ṡ − P v̇ (3.200)

ġ = −sṪ + v Ṗ (3.201)

Here (3.111) and the specific Gibbs energy (free enthalpy) or (specific) chemical
potential g defined as

g ≡ ∂ρ f̂

∂ρ
(3.202)

have been used. Then, by (3.194), (3.199), a more classical form of this definition
may be seen as in

g = f + Pv (3.203)

It is well known that chemical potentials play an important role in many, usually
more complicated models in the description of phase and chemical equilibria in

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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mixtures (cf. Sects. 2.4, 2.5 andChap.4), surface phenomena, etc. Chemical potential
may be generalized to more general material models (including, e.g. solids).38

Often the inversion of the function (3.194) P = P̂(ρ, T ) for ρ is used

ρ = ρ̃(T, P) (3.204)

assuming ∂ P̂
∂ρ

�= 0 for every temperature T , cf. (3.234). This is practically fulfilled

out of phase changes because of the stability criterion ∂ P̂
∂ρ

> 0, see (3.257).
Then P, T may be used instead of ρ, T as independent variables, e.g.

g = ĝ(ρ, T ) = g̃(T, P) , u = ũ(T, P) , s = s̃(T, P) (3.205)

Comparing (3.205) with (3.201) we have

∂ g̃

∂T
= −s (3.206)

∂ g̃

∂P
= v (3.207)

and from (3.200), (3.204), (3.205)

ṡ = (1/T )u̇ − (P/(Tρ2))ρ̇ = (1/T )

(
∂ ũ

∂T
− (P/ρ2)

∂ρ̃

∂T

)
Ṫ

+ (1/T )

(
∂ ũ

∂P
− (P/ρ2)

∂ρ̃

∂P

)
Ṗ (3.208)

From the last equation the form of derivatives s̃(T, P)may be seen. Using them in the
integrability condition ∂2s̃/∂P∂T = ∂2s̃/∂T ∂P we obtain after some calculation

∂ ũ

∂P
= (T/ρ2)

∂ρ̃

∂T
+ (P/ρ2)

∂ρ̃

∂P
(3.209)

38 As the configurational or material forces [4, 87] (note that the density of chemical potential
ρg has a pressure dimension). An analog of chemical potential is the Eshelby tensor (of chemical
potential) � defined as (F−T ≡ (FT )−1)

� ≡ f 1 − (1/ρ)FTTF−T

Note, that if stress is reduced to pressure P , T = −P1, (usual in fluids) this definition gives
the classical result (3.203) � = g1, see (3.199). The Eshelby tensor, e.g. gives the condition of
phase equilibria (Maxwell relation—equality of chemical potentials (2.116) in fluid phases), namely
equality of �n on both sides of equilibrated solid phases (n is the normal to phase boundary) and
may be also used to describe surface phenomena, dislocations, etc. [1, 4, 87]. Eshelby tensors may
also be defined in mixtures [2, 3].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2


3.7 Fluid with Linear Transport Properties 121

With (3.204) we can write the transport coefficients k, ζ, η (functions of ρ and T )
also as functions of P, T

k = k̃(T, P) , ζ = ζ̃ (T, P) , η = η̃(T, P) (3.210)

We also note that the vector or tensor responses (3.187), (3.189) depend only on
the vector or tensor “driving forces” respectively. This fact is known in linear irre-
versible thermodynamics as the “Curie principle” [36, 80, 88, 89] (cf. discussion in
[34, 38]). Present theory shows however, that this property follows from the isotropy
of constitutive functions and from the representation theorems of such linear func-
tions, see Appendix A.2, Eqs. (A.11)–(A.13) and (A.57)–(A.59). But representation
theorems for nonlinear isotropic constitutive functions [64, 65] show that the “Curie
principle” is not valid generally.

In processes with g = o and
◦
D = 0 the nonequilibrium stress is reduced to the

nonequilibrium pressure PN

TN = −PN1 ,where PN ≡ −ζ trD = −ζ(T, v)
v̇

v
(3.211)

where (3.189), (3.63), (3.16), (3.199) have been used. Such nonequilibrium pressure
exists even in a uniform system which is in fact the uniform model B from Sect. 2.2
(see (2.34); volume V is proportional to v) with linear dependence on V̇ discussed
in Rem. 8 in Chap.2.

Recapitulating the results we need (from experiment or from molecular models)
in this model of fluid

(i) to describe their transport behaviour: the heat conductivity k, volume viscosity
ζ and viscosity η and their dependences on temperature and density;

(ii) to describe their thermodynamics: the state equation P = P̂(ρ, T ) (3.194)
and the caloric state equation u = û(ρ, T ) (3.192). In fact, here we need the
dependence on temperature only (usually in the form of dependence of heat
capacity at constant volume) (see AppendixA.1, Rem. 5 inAppendixA) because
dependence (3.192) on density may be calculated from the state equation (3.194)
(namely, this gives, by interchangeability of mixed derivatives in (3.198), the
dependence of s on density and therefore, by another form of Gibbs equation
(3.200), the dependence of u on density).

In the simplest case of ideal gas (defined in Appendix A.1) the state (3.194) and
caloric (3.192) equations are

P/ρ = Pv = (R/M)T (3.212)

(see (A.3), (A.10) with use (3.199) and molar mass M) and (see Rems. 15 in Chap.1,
5 in Appendix A)

u = û(T ) (3.213)

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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As we explain in Appendix A.1 the experience shows that (3.212), (3.213) are valid
for any gas in the limit of zero densities, even with nonlinear transport39 and they
were used for the definitions of absolute temperature and entropy (see (A.9), (1.28),
(1.30), (1.31)).

Finally we can define the incompressible fluids which model liquids approxi-
mately because the dependence of liquids properties on the pressuremay be neglected
at nonextreme, say atmospheric, values of the pressure.

Incompressible fluids have been defined by mechanical internal constraint J = 1
in Rem. 5.3 but they may be defined (more specially and naturally) from previous
thermodynamic formulae (3.204)–(3.209) neglecting their dependence on pressure
[24]. Namely, we have by definition (instead of (3.204), (3.205))

ρ = ρ̃(T ) , s = s̃(T ) , u = ũ(T ) (3.214)

Then from integrability condition (3.209) it follows that density is independent of
temperature

ρ ≡ const. (3.215)

therefore density is a unique (positive) constant in this definition of incompressible
fluid.

But then, by (3.16), (3.63), (3.65), we obtain

divv = trD = 0 , J = 1 (3.216)

which we have seen also in the mechanical definition. Note that even these formulae
are valid for the linear fluid model and they are valid also in the nonlinear model
from the previous Sect. 3.6 because thermodynamic formulae (3.204)–(3.209) are
valid there too (cf. the discussion of local equilibrium above (3.200)).

Transport equations in the incompressible fluids are (see (3.187), (3.188), (3.195),
(3.216))

q = −kg (3.217)

T = −P1 + 2ηD (3.218)

where, by the definition of incompressible fluids, the thermal conductivity k and the
viscosity η are functions of temperature only

k = k̃(T ), η = η̃(T ) (3.219)

39 If we assume that the ideal gas studied fulfils the local equilibrium (and this is the usual case:
ideal gas may be from the linear fluid models discussed here, but it may be also from some nonlinear
models fulfilling this principle, e.g. those in [78]), then property (3.213) follows from state equation
(3.212). Indeed, the local equilibriummeans the validity of Gibbs equations (3.200)1, (3.198)1, from

which ∂ û/∂ρ = T ∂ ŝ/∂ρ + P/ρ2 and ∂ ŝ/∂ρ = −∂
ˆ

(P/ρ2)/∂T . By their combination and using
state equation (3.212) we obtain identically ∂ û/∂ρ = 0. Cf. also [27, Sect. 16], [90, 91].

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
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and the pressure P is arbitrary scalar, cf. Rem. 26.
At the end we note that generalization of incompressibility on fluid mixtures is

not straightforward, see Sect. 4.8.
Of course the results concerning nonlinear transport phenomena must be trans-

formed correspondingly.
Summary. Section3.7 derives the main model of interest in our book for the

case of single fluid. This model of fluid with linear transport properties started with
linearization of constitutive equations derived in preceding section for fluid vector
and tensor quantities, i.e., for the heat flux and (nonequilibrium) stress tensor, taking
into account that they are isotropic functions—see (3.183) and (3.184). Two classical
laws immediately followed, viz. the Fourier law (3.187) and theNewton viscosity law
(3.189). In the same time entropy inequality put some restrictions on the coefficients
in these laws, cf. (3.197). It also followed that the Gibbs equation (3.198) is valid in
thismodel and also the local equilibriumwas proved. For our subsequent applications
the definition of (specific) chemical potential (3.202) is important. Traditionally, the
pressure is used as an independent variable in (chemical) thermodynamics. Though
this was noted and used in paragraphs among Eqs. (3.204)–(3.210) the verification
of this exchange of variables should be postponed to the next section. At the end the
simplification to incompressible fluids is made which are defined by (3.214).

3.8 Equilibrium Processes in Linear Fluid

An equilibrium process in the linear fluid of Sect. 3.7 may be defined by (cf. (3.159))

D = 0 (3.220)

g = o (3.221)

because just these conditions give the zero entropy production

σ = 0 (3.222)

as follows from (3.196), cf. discussion of (2.10), (2.11) and Rems. 12 in Chap.1, 7
and 9 in Chap.2.

Consider first an equilibrium process in the linear fluid model where (3.220),
(3.221) are valid through all the body and persistently (at least for considered time
interval); practically this is achieved by the stability discussed below [14, 18, 92–95].

The validity of (3.220) throughout the body is expressed by Killing’s theorem
(3.18), which is that the motion of a linear fluid body in an equilibrium process is
rigid. This means that a frame fixed with such a body exists in which

v = o (3.223)

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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through the body and persistently.40 Such a frame, giving the zero velocity (3.223)
in an equilibrium process, will be used in the following (among others it means
that instead of material derivative we can use ∂/∂t in this frame). By persistence of
(3.223) we have also

v̇ = o (3.224)

through the body and persistently.
Constitutive equations (3.195), (3.188), (3.187) in such an equilibrium process

are
T = −P1 (3.225)

q = o (3.226)

With those equations the following forms of balances (3.63), (3.85), (3.107), (3.109)
are valid ((3.93) is trivially satisfied)

ρ̇ = 0 (3.227)

gradP = ρ(b + i) (3.228)

ρu̇ = Q (3.229)

ρ ṡ = Q/T (3.230)

The persistence and validity of these equations through the body therefore give
the behaviour of other formulae such as ∂ρ

∂t = 0, ∂g
∂t = o, ∂h

∂t = o, etc.
Now, we restrict ourselves to some equilibrium process persisting in one equilib-

rium state of the linear fluid model in the sense of the property S4 from Sect. 1.2 (one
equilibrium from those more possible which is compatible with the given boundary
and external conditions).41 Such an equilibrium state may be achieved if no radiation
heat transfer is considered

Q = 0 (3.231)

40 Cf. (3.18), Rem. 5 and deduction of (3.25). Because the change of frame describes the change
of frame in a rigid motion to another one the result (3.223) is intuitively clear. Formally, inserting
rigid motion from Rem. 5 into (3.25) we seek the (starred) frame in which x∗ = X (and therefore
v∗ = o, i.e., (3.223)) through the body. It may be seen that this need the change of frame by time
functions Q = �T and c = −�T γ .
41 Note that an equilibrium process (as the time succession of states with (3.220)–(3.222))
with nonzero radiation Q �= 0, which is even reversible, is possible: in the “straight”
part of the process the heating (defined by the first two members on the right-hand
side of (3.97)) is given as

∫
V Q dv by (3.226) (V is the volume of the body); see also

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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Moreover we add to the linear fluid model the following regularity conditions42

valid at any ρ, T , i.e., at any state, not only in the equilibrium one:
Transport coefficients are always positive (as different from (3.197))

ζ > 0 , η > 0 , k > 0 (3.232)

and the following derivatives are nonzero

∂ û

∂T
�= 0 (3.233)

∂ P̂

∂ρ
�= 0 (3.234)

at any T, ρ.
Therefore, in this section, we study the regular linear fluid body or the fluid with

linear transport propertieswith regular responses consisting of the linear fluid body
of Sect. 3.7 to which we add the regularity properties (3.232)–(3.234).

In such regular linear fluid with no radiation (3.231) we define the equilibrium
or equilibrium state by the zero entropy production (3.222) which is valid through
all the body and persistently.

(Footnote 41 continued)
Sect. 1.2, models A, B in Sect. 2.2 and Rems. 12 in Chap.1, 48 in this chapter.

Temperature may change in time but not in space (3.221) during such an equilibrium process in
the rigid and not moving body, density does not change in time (3.227) (but may change in space);
u, s change as the temperature changes, similarly P changes by a corresponding time change of b+i
(say by (3.192), (3.191), (3.194) in the linear fluid model). The reverse process may be imagined
to exist as going through the same states of the equilibrium process, power and entropy production
are again zero, heating is of reverse sign − ∫

V Q dv (in comparison with the appropriate instant of
“straight” equilibrium process).

Even this reversible process is rather a special one. We note it here to demonstrate that in the
model of the linear fluid equality (in entropic inequality) is possible, see (1.35), and to show that
entropy may be calculated with the precision of a constant, see (1.40), cf. application of reversible
processes in Sect. 1.4. An equilibrium state is also an equilibrium process formed by a unique state
with (3.231), cf. definition below (2.11).
42 Similarly as in Rem. 11 in Chap.1 and in Sects. 2.1, 2.2, we try to avoid in this way the unusual,
often “pathological” situations of real complex materials in our simple models (as, e.g. zero values
of some transport coefficients (3.197) at certain ρ, T ); other motivation is the “practical realization
of the persistence of the equilibrium state” which may be achieved through its stability (discussed
below), e.g. regularity conditions (3.233), (3.234) are even intensified in such a stable equilibrium
state (both derivatives are positive, see (3.256), (3.257) below).

Again we assume that the constitutive model together with regularities introduced is valid in all
situations, e.g. the model of fluid with linear transport properties with regular response is assumed
to be valid for all values of ρ, T . Namely, we study the (properties of) model even though we know
that there are values of ρ, T for which a real fluid does not fulfil some regularities assumed (e.g.
stability in the region of phase transformations); as usually, such difficulties are resolved by the
appropriate limiting applications of the model studied.

http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Then “equilibrium conditions” (3.220), (3.221) are valid through the body and
persistently because the quadratic form (3.196) is positive definite due to regularity
conditions (3.232)43 and, reversely, from (3.220), (3.221) equation (3.222) follows.

Therefore (3.225)–(3.228) are valid and, by (3.229)–(3.231), we have

u̇ = 0 (3.235)

ṡ = 0 (3.236)

From (3.235), (3.192), (3.227), and regularity (3.233) we have through the body
and persistently

Ṫ = 0 , or by (3.223)
∂T

∂t
= 0 (3.237)

This, together with (3.221), means that a unique and constant (in time) temperature is
everywhere in the body in this equilibrium (note that, reversely, Eq. (3.231) follows
from (3.237), cf. (3.192), (3.227), (3.229) [76]).

Inserting constitutive equation for P (3.194) into (3.228) and using (3.221) we
have

∂ P̂

∂ρ
h = ρ(b + i) (3.238)

and making another time derivative of this equation (using zero time derivatives of
ρ,h, T ) we obtain ∂(b + i)/∂t = o, i.e., the body and/or inertial force must be
constant in time in such an equilibrium process. Further, from (3.238), it follows that
h �= o because of (3.234); in the special case b + i = o (no body and/or inertial
forces), density gradient disappears h = o.

Therefore we can conclude that during such equilibrium process in the frame
with persisting and everywhere zero velocity (3.223), the body is in one “persisting”
equilibrium state in the sense of Sect. 1.2 in which density does not change in time
but may change in space (if the body or inertial forces are nonzero constants in
time), while temperature is everywhere the same persistent constant. Heating and
power (the right-hand side of energy balances), e.g. of (3.103), (3.106) or (3.107)
are zero (see (3.226), (3.231), (3.220), (3.223)) and in such an equilibrium state also
all responses in the particles of the body do not change in time (cf. (3.227), (3.237),
(3.225), (3.194)) but some of them (the density and properties depending on the
density) may have nonzero space gradients (parallel to the time constant nonzero
body and/or inertial forces; cf. (3.238), (3.221), (3.192)); temperature is a unique
constant in all body.

43 Calculation of tr(
◦
D)2 in (3.196) gives tr(

◦
D)2 = (

◦
D11)2 + (

◦
D22)2 + (

◦
D33)2 + 2(

◦
D12)2 +

2(
◦

D13)2 + 2(
◦

D23)2 and therefore zero entropy production (3.222) and positivity (3.232) give from

(3.196) the result (3.221) as well as trD = 0 and
◦

D11=
◦

D22=
◦

D33=
◦

D12=
◦

D13=
◦

D23= 0 which

with definition (3.188) of
◦
D gives (3.220).

http://dx.doi.org/10.1007/978-3-319-02514-8_1
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The body force having a potential � is of practical importance; the potential,
similarly as with this force, must be constant in time (3.104). In this case the chemical
potential (3.205)–(3.207) is preferred (note use of regularity (3.234) here) because, by
(3.221), (3.199), gradg = (1/ρ)gradP and therefore the equilibrium result (3.228)
with time constant potential � (3.104) may be written as

grad(g + �) = o (3.239)

in such an equilibrium state.44 Probably the most important is this equilibrium in an
inertial frame without the body force (i = o,b = o) because then space gradients
disappear as we noted above and we obtain a uniform equilibrium state, not changing
in time which, in fact, was exemplified by the uniform model A or by equilibrium in
the model B of Sects. 2.1, 2.2, see also below.

Time persistence of an equilibrium state through the persistence of its conditions
(like (3.220), (3.221), (3.227), (3.237)) may be realized in practice with great dif-
ficulties (or it is even impossible) because of molecular fluctuations. The practical
persistence of an equilibrium state (and therefore also the assumption S4 in Sect. 1.2)
may be achieved by its stability and this is analyzed in the rest of this section; we
are inspired mainly by [1, 18, 92, 93], see also [94, 95, 97–102].

We concentrate here on the stability of our model of regular linear fluid (giving the
classical Gibbs stability) modelling one-phase fluid.45 We try to find such properties
of constitutive equations which permit to realize equilibrium states in our model
at some ρ, T (and also motivate some of the regularity conditions above). If such
stability properties are not fulfilled then, typically, our (one-phase) fluid system
disintegrates into more phases, cf. Rem. 45.

The stability of equilibrium state may be roughly defined as gradual return to the
equilibrium after some disturbance from this state at fixed boundary and exterior
conditions of the body. The mere removal of such disturbances (caused by molecular
nature of studied material) causes the real persistence of the equilibrium state. As
noted above, this property need not be valid generally in real material and depends
on its formulation. Here we discuss sufficiently general stability of an isolated body
resulting from the classical Gibbs stability [93–95, 97] which permits to obtain
additional regularity properties—the conditions of stability of constitutive equations
of our fluid model. Namely, consider an isolated body modelled by the linear fluid
(3.187)–(3.196) with regular response (3.232)–(3.234) which is in an equilibrium

44 This result (3.239)may be generalized for Eshelby tensor� (generalization of chemical potential,
e.g. for solids, see Rem. 38) as

Div(� + �1) = o

cf. [1, 96] (Div is the divergence in referential description).
45 But we omit the generalizations of equilibrium stabilities for phase transitions [1, 103–106] (for
them typically criteria stability like (3.256), (3.257) are not valid), for more general materials (say
solids), and the more complicated problem of stability of nonequilibrium states (e.g. the vast field
of dissipative structures [24, 37, 80, 107–109]) because most of these issues do not concern our
(one-phase) model or are now in the stage of intensive and not completely resolved research; see
also Rem. 31 in Chap.4.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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state defined by (3.222) (or by (3.220), (3.221)) the persistence of which is achieved
by the zero body heating (3.231), the zero inertial and body forces (i = o, b = o) and
the zero velocity v = o (3.223) everywhere. The body is in the uniform equilibrium
state mentioned above and as may be seen, such a state may be realized in the
isolated body in which no exchange of heat, work and mass with environment exists
and the boundary of which is fixed. Denoting constant (throughout the body and
time) equilibrium values of temperature T o density ρo and therefore also specific
volume vo, internal energy uo and entropy so (cf. (3.191), (3.192), (3.199)) we can
express the volume V o, energy Eo and entropy So of the body in such equilibrium
by

V o = vomo (3.240)

Eo = uomo (3.241)

So = somo (3.242)

where mo is the mass of the body.
We say that such a uniform equilibrium state is dynamically stable under isolation,

if an arbitrary “perturbed” state of the body compatible with isolation decays back
to this equilibrium state. Compatibility with isolation means that during the whole
return to the equilibrium state the energy and the volume is the same as in the
original equilibrium state, Eo, V o, further b = o, Q = 0 through the body and
v = o,q = o on the boundary (but generally nonzero inside the body). Therefore in
an arbitrary state during this return (and including the original perturbed state aswell)
we have by (3.21) (with the density ρ and dm = ρ dv; cf. (3.199)), using the specific
volume v, total energy and entropy and integrating through mass mo of the body,

V o =
∫

mo
v dm (3.243)

Eo =
∫

mo

(
u + 1

2
v2

)
dm (3.244)

while the entropy S of an arbitrary state grows up (see (3.108)) to its maximum value
So (3.242)

S =
∫

mo
s dm ≤ So (3.245)

i.e., in accordwith the regular equilibrium response,we can conclude that the equality
in (3.245) is valid only for a uniformequilibriumstate (the stability ofwhich is tested).

In fact, by the assertion that this equilibrium state is dynamically stable under
isolation, we express an extra postulate that the state compatible with isolation and
with the entropy S comes back to the equilibrium state with the entropy value So

(3.242) in this isolated system.
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This postulate is in agreement with traditional and reasonable expectation of
achieving finite extremal values of entropy in a process occurring in an isolated
system (an increase of entropy only follows from inequality (3.108)). Similarly, finite
extremal values of other potentials at corresponding conditions, like the minimum
of (say Gibbs) energies, etc., may be expected cf. [1, 37, 92, 110, 111].

In what follows we deduce the conditions of stability (3.256), (3.257) from this
postulate. Then, in the remaining part of this section following mainly [18, 93], we
try, on the contrary, to show that the stability conditions in the regular linear fluid
lead to this postulate, see (3.266).

Result (3.245) is valid for any perturbed state and therefore also for such a state
with zero velocity inside the body; then, instead of (3.244), we have in that perturbed
state

Eo =
∫

mo
u dm (3.246)

with volume and entropy given again by (3.243), (3.245) (in the following states of
a body when approaching the equilibrium state the velocity need not be zero inside
although it must be zero at the boundary). This special case of any perturbation with
(3.243) and (3.246) (instead of (3.244)), considering (3.245), is in fact the classical
definition of theGibbs stability under isolation [92, 93]. Although the Gibbs stability
is studied in classical thermodynamics with uniform model (like A of Sect. 2.2), its
dynamical interpretation [18, 93, 97, 106] cannot be described in terms of such a
uniform model, namely a nonuniform perturbed state permitting the nonequilibrium
processes and therefore inequalities in (3.245) must be possible (in fact this is more
or less explicitly expressed in classical proofs, see, e.g. [112, p. 82, Sect. 21]). This
motivates the following procedure [93]:

Assume that a given uniform equilibrium state of the linear fluid with regular
equilibrium response is dynamically stable under isolation. Therefore it is also Gibbs
stable (namely its starting perturbed state may have zero velocity inside and (3.246)
is valid). This suffices for the following result: the function

s = s̄(u, v) (3.247)

is strict concave in the corresponding domain (such function (3.247)46 follows from
(3.191) inserting inversion of (3.192) for T (which exists by (3.233)) and using
(3.199)).

Indeed, let us choose a perturbed state with zero velocity inside in the following
way: we divide the body on two parts with masses αmo and (1 − α)mo where
0 < α < 1; internal energies ua, ub and specific volumes va, vb (ua �= ub, va �= vb)

are constant (uniform) but different in these parts and entropies sa, sb are given by

46 It follows from our intention to use the theorem of concave function from Appendix A.3 for
the proof. This assumes the negative (or positive) definiteness of a matrix composed from second
derivatives of such a function. This property has, besides (3.247), e.g. function g̃(T, P) (3.205)
(used also below in this section) but unfortunately not the more natural f̂ (ρ, T ) (3.190) or even
f̌ (v, T ) (see (3.199)); cf. [113, Sect. 39].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
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(3.247). Because of the compatibility with isolation of that perturbed state we have
by (3.243), (3.246), (3.240), (3.241)

vaαmo + vb(1 − α)mo = V o , uaαmo + ub(1 − α)mo = Eo (3.248)

Inserting (3.240), (3.241) and removing mo we obtain

vaα + vb(1 − α) = vo , uaα + ub(1 − α) = uo (3.249)

But using such a perturbed state in (3.245)

saαmo + sb(1 − α)mo < So (3.250)

(equality disappears because of the nonuniformity of the perturbed state; cf. (3.245)).
By (3.242), (3.247) we have

αs̄(ua, va) + (1 − α)s̄(ub, vb) < s̄(uo, vo) (3.251)

By definition (i) in the theorem of concave functions (Appendix A.3), the function
(3.247) is strict concave (see (A.70), (A.71), (A.72), (3.247), (3.249), (3.251) with
ω = (u, v) and � = s). Therefore property (iii) of this theorem is equivalently valid
for function (3.247): the matrix of its second derivatives is negative definite at all
corresponding u, v, i.e.,

∂2s̄

∂u2
= −(

T 2 ∂ û

∂T

)−1
< 0 (3.252)

∂2s̄

∂u2
∂2s̄

∂v2
−

(
∂2s̄

∂u∂v

)2

= ∂(T, ρ)

∂(u, v)

∂(T−1, PT−1)

∂(T, ρ)
= ρ2

T 3

∂ P̂

∂ρ

(
∂ û

∂T

)−1

> 0

(3.253)
Here we use the properties of the negative definite matrix and Jacobians [85, 86],
(3.192), (3.194) and (as follows from (3.200))

∂ s̄

∂u
= 1

T
(3.254)

∂ s̄

∂v
= P

T
(3.255)

Thus it follows from (3.252), (3.253) (because T > 0, ρ > 0) that if the linear fluid
body with regular equilibrium response is dynamically stable (or Gibbs stable) under
isolation then at each corresponding T, ρ the following stability conditions are valid

∂ û

∂T
> 0 (3.256)
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∂ P̂

∂ρ
> 0 (3.257)

in our models. In what follows we use these conditions (3.256), (3.257) instead of
(3.233), (3.234) as regular conditions (besides (3.232)) to our model of fluid with
linear transport properties because, as we shall show in the rest of this section, such
models then have dynamical stability not only under isolation but even at other
conditions.

It has been shown that results (3.256), (3.257) are necessary for dynamical stability
of our linear fluid of Sect. 3.7 (with regularity (3.232)).

Now we try to prove also the sufficiency: assuming stability conditions (3.256),
(3.257) we try to show that the body of regular linear fluid of Sect. 3.7 (with further
regularities (3.232)), kept permanently in isolation (defined below) develops asymp-
totically to uniform equilibrium state. That is we prove the dynamical stability under
isolation (and also Gibbs stability) for such a body. But the time behaviour of the
perturbed system is generally a very complicated task—we need to solve the sys-
tem of differential equations obtained by substitution of constitutive equations into
balances.

For simplicity therefore we show only that the uniform equilibrium state (those
given by (3.240)–(3.242)) is the possible one inwhich the perturbed state kept perma-
nently in isolation (defined below) develops asymptotically as time goes to infinity
[1, 18, 93, 97].

Let us have some perturbed state of a body made from the linear fluid (3.187)–
(3.196) with regular equilibrium response ((3.232) is valid) and with stability condi-
tions (3.256), (3.257), which is held permanently in an inertial frame without body
force in isolation (no heat, work and mass exchange with surroundings). That is we
have persistently through the body i = o (3.48), b = o, no heat radiation Q = 0
(3.231) and on its boundary no heat exchange q = o and zero velocity v = o.

Therefore the body, having permanently constant massmo, volume V o and energy
Eo given by (3.243), (3.244) with corresponding local specific volume v and energy
u of the given state, develops asymptotically to a uniform equilibrium state with
specific internal energy uo and volume vo given by

uo ≡ Eo/mo (3.258)

vo ≡ V o/mo (3.259)

Because of assumed stability conditions (3.256), (3.257) we achieve from (3.252),
(3.253) the fulfilment of property (iii) from Appendix A.3 for function (3.247).
Therefore equivalently (A.73) is valid for this function (3.247), giving so for values
uo, vo (3.258), (3.259) and s for values u, v in any place of the body in arbitrary state
during the process, i.e.,

s < so + (1/T o)(u − uo) + (Po/T o)(v − vo) (3.260)
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where T o, Po are values given by (3.254), (3.255). Equality in (3.260) is valid as

s = so (3.261)

when (cf. in (A.73))
u = uo (3.262)

v = vo (3.263)

Nowwe add to the right-hand side of (3.260) the nonnegative quantity (2T o)−1v2

(with v in the same place and instant as in (3.260)) and integrate such inequality
through the body at some instant; using (3.243), (3.244), (3.258), (3.259) we have

S(t) ≡
∫

mo
s dm ≤

∫

mo
so dm ≡ So = somo (3.264)

where the equality sign in the middle occurs if the system is a uniform one ((3.261)–
(3.263) are valid in any place of the body; this is the final state with entropy So, see
above (3.266)).

Before going further we note that result (3.264) for a special perturbed state with
(3.243), (3.246) (i.e., (3.244) with zero velocity through the body) expresses the
Gibbs stability of a uniform state withUo, V o, So (3.258), (3.259), (3.264), deduced
from the stability conditions (3.256), (3.257).

Turning back to dynamical stability we can see from entropy inequality (3.110)
and (3.68) in this isolation (3.226), (3.231) that at any moment t during the develop-
ment

Ṡ(t) ≡
˙∫

mo
s dm =

∫

V o
σ dv ≥ 0 (3.265)

Therefore, during the process, the entropy function S(t) has two properties: it does
not decrease in time (3.265) and has the upper limit So (3.264) (in this connection
S(t) is called a canonical function). We add a simplifying (and in fact expected)
assumption that whenever inequality in (3.264) is valid, the inequality in (3.265) is
valid too (cf. [93, Rem. 4.5, Theor. 3]). Then in uniform equilibrium achieved at
t → ∞ entropy reaches the value So from (3.264)

lim
t→∞ S(t) = So (3.266)

cf. [93, Eq. (4.40)].
Assuming also that limt→∞ Ṡ(t) exists it cannot be positive because of the upper

limit So (3.264) and therefore by (3.265)

lim
t→∞ Ṡ(t) = 0 (3.267)
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Moreover, motivated by (3.265), we assume that this limit (3.267) may be written
as limt→∞ Ṡ(t) = ∫

V o σ o dv where σ o are limits of (local) nonnegative entropy
productions σ .

To localize these results we simply assume that all deductions may be repeated
with any part of the considered body, i.e., with the corresponding part ofmass, volume
and other extensive quantities. Then result (3.267) may be written locally

σ o = lim
t→∞ σ = 0 (3.268)

in any place through the body.47

Therefore at t → ∞ the body achieves the state where there is zero entropy
production σ = σ 0 = 0 (3.222) in any place and permanently, and this is the
equilibrium state defined with (3.240)–(3.242). In our linear fluid with regularity
(3.232) we obtain from (3.196) (cf. Rem. 43) everywhere and permanently D = 0
(3.220) and g = o (3.221). Because of assumed zero velocity on the boundary of
this equilibrium body, this rigid motion (3.18) gives zero velocity v = o (3.223)
everywhere and permanently inside. Constitutive equations (3.187), (3.195) give
in this asymptotically equilibrium body (3.225), (3.226) and momentum balance
(3.78) is then gradP = (∂ P̂/∂ρ)h = o. By (3.257) we obtain h = o and by mass
balance (3.227), we can see that the density (and therefore also the specific volume vo

following from (3.259) because of the constant volumeV o) in this equilibriumbody is
everywhere and permanently constant, as is similarly temperature. The latter follows
by (3.221) and (3.237) which is given by energy balance (3.235) at Q = 0 (3.231).
From this and similarly from the entropy balance (3.236) and also from (3.192),
(3.191) results that also the specific internal energy and entropy are everywhere and
permanently constant with values uo (following from constant energy Eo in (3.258))
and so obtainable then from (3.247), cf. (3.261).

Admitting the results (3.266), (3.268), the conditions (3.256), (3.257) are sufficient
for the dynamical stability of a uniform equilibrium state compatible with isolation
for a linear fluid body with regular equilibrium response.

Similarly as with classical Gibbs stability it may be shown that the stability condi-
tions lead analogously to dynamical stability at other conditions. As another example
of such a kind we discuss the fluid body of a constant volume immersed in a ther-
mostat and in a body force field (and, also without it as special case). We use again
the method similar to those giving (3.266), see also [94, 95] and Sect. 4.7.

47 Although assumptions giving (3.267), (3.268) look natural, this is not so, e.g. such S(t) fulfilling
(3.264), (3.265) may exist where Ṡ(t) > 0 changes oscillatorily for any time and therefore a limit
does not exist. Similarly the existence of limit (3.268) is not clear, e.g. σ o in (3.267) may be nonzero
on surfaces or lines (sets of zero measure) and such a situation may be obtained even by limitation
from smooth function σ .

However, these difficulties may be avoided by other means, e.g. it is possible to prove (often
with special types of material or with other potentials instead of entropy) the dynamical stability
(even asymptotical one) but mostly in integral form (deviations are expressed by integral through
the body). For further discussions see [1, 18, 93–95, 97–103, 114, 115].

http://dx.doi.org/10.1007/978-3-319-02514-8_4


134 3 Continuum Thermodynamics of Single Fluid

Let us have a body consisting of linear fluid (of Sect. 3.7) with regular equilibrium
response (3.232) with stability conditions (3.256), (3.257). The thermostatic bound-
ary of this body has everywhere the same temperature T o constant in time (the
temperature inside the body may be arbitrary) and the boundary is fixed with v = o;
therefore the volume of the body V o is a constant. Heat may be exchanged but not
by radiation, i.e., Q = 0 (3.231) through the body is valid. The mass of the body mo

is a constant which is independent of time

∫

V o
ρ dv = mo (3.269)

The body is situated in the body force field b constant in time (e.g. earth gravitation),
having the potential �

b = −grad� (3.270)

∂�

∂t
= 0 , i.e. � = �(x) (3.271)

but the frame is inertial, i = o (cf. (3.104)).
We intend to show that a perturbed state compatible with these conditions may

develop in t → ∞ to the state which is in fact the equilibrium one: It has constant
T o and v = o throughout the body, the stationary (equilibrium) pressure Po(x) is
obtained by solution of (equilibrium) equation (3.228), (3.270)

gradPo(x) = −ρo(x) grad�(x) (3.272)

with stationary (equilibrium) density field ρo(x) ≡ ρ̃(T o, Po(x)). Such solution
contains only one constant—pressure at one equipotential surface and this may be
determined with the help of the known mass of the body (3.269)mo = ∫

V o ρo(x) dv.
The balance of energy for such a body follows from (3.105)

˙∫

V o
ρ(u + 1

2v2 + �) dv = −
∫

∂V o
q.n da (3.273)

where ∂V o is the boundary of the body with fixed volume V o. Because temperature
T o is a constant we can eliminate the surface integral from (3.273) using entropy
inequality (3.108) (with the help of entropy production σ (3.109) and (3.68), (3.23))
for such a body with (3.231). After rearrangements we obtain

−
∫

∂V o
q.n da −

˙∫

V o
ρT os dv =

˙∫

V o
ρ(u − T os + 1

2v2 + �) dv

= −T o
∫

V o
σ dv ≤ 0 (3.274)
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Because field Po(x) and V o are time independent we have (by (3.199) and below)

0 = d

dt

∫

V o
Po dv = d

dt

∫

V o
ρvPo dv (3.275)

Using the Reynolds theorem (3.24) in (3.275) for v = o on the boundary and adding
this to (3.274) we obtain (the volume V o is fixed, the dot over the integral and d

dt
have the same meaning)

Ṙ(t) = −T o
∫

V o
σ dv ≤ 0 (3.276)

where the canonical function R(t) is defined by

R(t) ≡
∫

V o
ρ(u − T os + Pov + 1

2v
2 + �) dv (3.277)

Because of conditions of stability (3.256), (3.257) we obtain again the inequality
(3.260) (u �= uo, s �= so, v �= vo; T o > 0, using again (A.73) from Appendix A.3
for function (3.247)). This may be written as

u − sT o + vPo > uo − soT o + voPo ≡ go (3.278)

where (cf. (3.191), (3.192), (3.199), (3.111), (3.203)) we can choose uo, so, vo, go as
the values at T o, ρo(x) ≡ ρ̃(T o, Po(x)) in the given placex (calculated from (3.272))
and u, s, v are values at T, ρ in this place and some instant. Adding nonnegative
quantity 1

2v
2 (the velocity is taken at this place and instant) to the left-hand side

of (3.278) and adding the potential � to both sides, multiplying then the resulting
inequality by ρ > 0 at this place and instant and integrating over the fixed volume
V o of the body in the given instant, we obtain

R(t) ≥ Ro (3.279)

(the equality is valid if T = T o, ρ = ρo, v = o through the body). Here the definition
of canonical function (3.277) was used and Ro is defined by

Ro ≡
∫

V o
ρ(go + �) dv = (go + �)mo (3.280)

The right-hand side of (3.280) and therefore Ro is constant; indeed, go(x) =
g̃(Po(x), T o), (3.278) was obtained using the solution Po(x) of (3.272) and there-
fore (remember that for time-constant potential � the equilibrium relation (3.239) is
valid) go + � is constant as well as the mass (3.269).

Therefore we constructed the canonical function (3.277) which does not increase
(3.276) andwhich has a lower bound (3.279). Using a similar simplifying assumption
as at (3.266), namely, whenever the inequality in (3.279) is valid, the inequality in
(3.276) is valid too (cf. [93, Rem. 4.5, Theor. 3]), we obtain
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lim
t→∞ R(t) = Ro (3.281)

i.e., the time limit of canonical function R(t) achieves value Ro. Therefore this regular
linear fluid achieves asymptotically the equilibrium state with constant temperature
T o and no movement inside v = o (3.223) (such were permanent on the boundary).
This is the equilibriumwith equilibriumpressure Po(x) anddensityρo(x)fields given
by (3.272). Adding similar simplifying assumptions leading to (3.267), (3.268), we
obtain, in this equilibrium, e.g. the result (3.268) in such a nonuniform body.

The dynamical stability just described contains as a special case the zero body
force b = o (again i = o) which leads to a final uniform equilibrium state (noted
below (3.239)) without potential (say � = 0).

The stability conditions (3.256), (3.257) lead analogously to stability at further
conditions, e.g. the stability of a fluid in a thermostatic cylinder closed by a piston
under constant pressure, cf. [14, 95, 97]. This may be done similarly as for mixtures
in the last example of Sect. 4.7.

The processes going asymptotically to equilibrium discussed in this section may
be used for understanding the reversible equilibrium processes as those processes
which pass so slowly that the entropyproduction in (3.265), (3.276)maybeneglected,
cf. Sects. 1.2, 2.1, 2.2, in models A, B, Rems. 12 in Chap.1, 7 and 9 in Chap.2, 41
in this chapter and [116] (for simplicity we use linear model of Sect. 3.7).48

Summary. This section shows the analysis of equilibrium state for a given
system (single linear fluid in this case), which can be made once its final consti-
tutive equations were derived. The equilibrium is defined so as to give the zero
entropy production, cf. (3.220)–(3.222). To ensure the persistence of equilibrium (see
the property S4 in Sect. 1.2), the regularity conditions (3.232)–(3.234) were added to
the model of linear fluid. The majority of this section was devoted to the analysis of
the stability of equilibrium; the concept of stable equilibrium was explained on page
127. The condition of stability called the Gibbs stability are (3.256) and (3.257). We

48 Namely, we discuss two examples of equilibrium reversible processes: the isothermal and then
those which are adiabatic. Such processes with ideal gas (i.e., with real stable gas at sufficiently
low pressures) are used in the Carnot cycle in Appendix A.1.

The uniform process described here for linear fluid (see below (3.239) and (3.211)) which is
isothermal (temperature T = T 0 is permanently the same constant) may be considered as a special
case of equilibrium reversible processes in the fluid model B of Sect. 2.2 if the entropy production
(given by (2.36) or (3.196)) may be neglected. A stable equilibrium state in a given instant has
(besides the constant temperature T 0) the volume V (with zero velocity everywhere (3.223)). The
change of this state to another one with the volume V + dV (and the same temperature T 0 and
zero velocity) by such a reversible process can be imagined as a sudden change of the volume by
a small dV and as a development of this perturbed state isothermally to a new stable equilibrium
state as described above (the second example without the body force: b = o in (3.270)). A new
equilibrium state will be practically achieved after a time interval much greater then the typical
time scale in model B. Therefore the reversible process composed from sequences of such V to
V + dV changes must be slow V̇ is zero as well as the entropy production (2.36) and all this
happens in the time scale of the model B. Heat exchange is nonzero and gives the entropy change,
i.e., both members on the left-hand side of (3.274) compensate (similarly as in (2.10)) because
the entropy production is zero (in (3.196) the second order contributions of heat and viscosity
are neglected in fact, while in (3.274) the not neglected first order heat contribution is compensated).
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want to stress that the latter condition enables the inversion of density as a function of
pressure, i.e., it allows to use the pressure as an independent variable (in place of the
density)—this condition was only supposed in preceding section and also in other
thermodynamic approaches. During the evolution to the stable equilibrium state the
entropy does not decrease in time, see (3.265) and also has an upper limit (3.264).
Analogous conditions for the stability at different conditions (fluid of a constant vol-
ume maintained in a thermostat and under the effects of body forces) were derived
in the form of canonical function defined by (3.277)—the conditions are given by
(3.276) and (3.279).
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86. Rektorys, K., a kol.: Přehled použité matematiky (Overview of applied mathematics). SNTL,

Praha (1968)
87. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)
88. deGroot, S.R.: Thermodynamics of Irreversible Processes. North-Holland,Amsterdam (1951)
89. Prigogine, I.: Etude Thermodynamique des Phénomenes Irréversibles. Dunod-Desoer, Paris

(1947)
90. Feinberg, M.: Constitutive equations for ideal gas mixtures and ideal solutions as conse-

quences of simple postulates. Chem. Eng. Sci. 32, 75–78 (1977)
91. Lewis, G.N., Randall, M.: Thermodynamics. McGraw-Hill, New York (1923)
92. Gibbs, J.W.:TheScientificPapers of J.W.Gibbs, vol. 1—Thermodynamics.Longmans,Green,

London (1906), reprinted by Dover, New York (1961)
93. Coleman, B.D., Greenberg, J.M.: Thermodynamics and the stability of fluid motion. Arch.

Ration. Mech. Anal. 25, 321–341 (1967)
94. Edelen, D.G.B.:Mass balance laws and the decomposition, evolution and stability of chemical

systems. Int. J. Eng. Sci. 13, 763–784 (1975)
95. Edelen, D.G.B.: The thermodynamics of evolving chemical systems and the approach to

equilibrium. In: Prigogine, I., Rice, S. (eds.) Advances in Chemical Physics, vol. 33, pp.
399–441. Wiley, New York (1975)

96. Samohýl, I.: Thermodynamics of non-reacting mixtures of any symmetry with heat conduc-
tion, diffusion and viscosity. Int. J. Non-Linear Mech. 32(2), 235–240 (1997)

97. Coleman, B.D.: On the stability of equilibrium states of general fluids. Arch. Ration. Mech.
Anal. 36(1), 1–32 (1970)

98. Gurtin, M.E.: Thermodynamics and the potential energy of an elastic body. J. Elasticity 3(1),
23–26 (1973)

99. Coleman, B.D., Dill, E.H.: On thermodynamics and the stability of motions of material with
memory. Arch. Ration. Mech. Anal. 51(1), 1–53 (1973)

100. Gurtin, M.E.: Thermodynamics and the energy criterion for stability. Arch. Ration. Mech.
Anal. 52(2), 93–103 (1973)

101. Gurtin, M.E.: Thermodynamics and stability. Arch. Ration. Mech. Anal. 59(1), 63–96 (1975)



References 141

102. Coleman, B.D., Mizel, V.J.: Existence of entropy as a consequence of asymptotic stability.
Arch. Ration. Mech. Anal. 25, 243–270 (1967)

103. Beevers, C.E., Šilhavý, M.: Asymptotic stability in nonlinear viscoelasticity. Q. Appl. Math.
42, 281–294 (1984)

104. Day, W.A., Gurtin, M.E.: On the symmetries of the conductivity tensor and other restrictions
in the nonlinear theory of heat conduction. Arch. Ration. Mech. Anal. 33, 26–32 (1969)

105. Šilhavý, M.: Thermostatics of non-simple materials. Czech. J. Phys. B34, 601–621 (1984)
106. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Ration. Mech. Anal. 88(2), 135–

161 (1985)
107. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations.

Wiley-Interscience, New York (1971)
108. Ebeling,W.: Struktubildung bei irreversiblen Prozessen (Forming of Structures by Irreversible

Processes). Teubner, Leipzig (1976)
109. Ebeling, W., Klimontovich, Y.L.: Selforganization and Turbulence in Liquids. Teubner,

Leipzig (1984)
110. Denbigh, K.: The Principles of Chemical Equilibrium. Cambridge University Press, Cam-

bridge (1961), Czech translation: Základy chemické termodynamiky. SNTL, Praha (1965)
111. Malijevský, A.: Klasická a statistická termodynamika (Classical and statistical thermodynam-

ics). Chem. Listy 91, 454 (1997)
112. Landau, L.D., Lifshits, E.M.: Statistitcheskaya Fizika. Nauka, Moscow (1964)
113. Haase, R.: Thermodynamik der Mischphasen (Thermodynamics of Mixed Phases). Springer,

Berlin (1956)
114. Hofelich, F.: On the definition of entropy for non-equilibrium states. Z. Physik 226, 395–408

(1969)
115. Potier-Ferry, M.: On the mathematical foundations of elastic stability theory I. Arch. Ration.

Mech. Anal. 78(1), 55–72 (1982)
116. Garfinkle, M.: Natural path in chemical thermodynamics. J. Phys. Chem. 93, 2158–2164

(1989)
117. Coleman, B.D., Feinberg, M., Serrin, J. (eds.): Analysis and Thermomechanics. Springer,

Berlin (1987)
118. Markovitz, H., Mizel, V.J., Owen, D.R. (eds.): Mechanics and Thermodynamics of Continua.

Springer, Berlin (1991)


	3 Continuum Thermodynamics of Single Fluid
	3.1 Kinematics of Continua
	3.2 Change of Frame
	3.3 Balances of Mass, Momentum, and Moment of Momentum
	3.4 Energy Balance and Entropy Inequality
	3.5 Constitutive Principles and Constitutive Equations  for the Single Substance
	3.6 Principle of Admissibility
	3.7 Fluid with Linear Transport Properties 
	3.8 Equilibrium Processes in Linear Fluid
	References


