
Chapter 1
Thermodynamics and Its Concepts
in Nonequilibrium

Thermodynamics deals with the behavior of macroscopic bodies (systems) when
heat, work, and mass are exchanged. It is usually divided into two parts: equilibrium
(classical) thermodynamics deals with equilibrium states while nonequilibrium (or
irreversible) thermodynamics studies nonequilibrium processes. Each approach can
either disregard themolecular structure, in which case we discuss the phenomenolog-
ical thermodynamics, or, in the contrary, stress it in the statistical thermodynamics.
Although statistical thermodynamics offers a deeper insight and useful results it can-
not totally replace the phenomenological (i.e., nonmolecular) description because the
results of statistical theory are often interpreted in (macroscopic) terms of phenom-
enological theory (regardless of the difficulties given by the complexity of molecular
models).

We prefer here the phenomenological approach permitting broader applications
but then some (macroscopic) empirical data of the studied system are necessary.

Besides immense applications, the foundations of phenomenological thermody-
namics are attempted to be reformulated in nearly every textbook or monography on
the subject, cf., e.g., [1–16],1 see also thorough discussions in [17–23]. The main
reason for this situation consists in the fact that thermodynamics gives in princi-
ple only an incomplete description because the macroscopic objects it deals with
are too intricate and composed of an immense number of particles the detailed
behavior of which is mostly not necessary to know (disregarding the practical impos-
sibility of such description). Moreover in nonequilibrium situations time rates and
gradients of properties play an important role and thus thememory and neighborhood
influences on a state in a considered time and place become more important.

Therefore, we must deal with idealized thermodynamic models of real materials
forming a system (body) studied, models which stress only those material properties
which are important in the intended applications. Thermodynamic concepts (like

1 Footnotes (remarks) are numbered in Chapters starting with its number and subsequent equations
in them are denoted (a), (b), . . .; reference to them is, e.g.,: Eq. (a) in Rem.10, Chap.3. Appendices
at the end are denoted A1, A2, . . . , their equations and footnotes are denoted by letter A.
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heat, work, temperature, entropy, equilibrium, nonequilibrium process, etc.) may
have different meanings depending on such models and this may explain the various
paradoxes and misunderstandings.

An overview of main approaches to the thermodynamics of nonequilibrium can
be found in Ref. [24] and we review the most important of them here in brief. Per-
haps the oldest theory is the classical or linear irreversible thermodynamics which
represents a straightforward extension of classical equilibrium theory to nonequi-
librium processes. The core is formed by the local equilibrium hypothesis already
mentioned in the Preface. This hypothesis states that the relations between thermody-
namic quantities at given time and place in a system out of equilibrium are the same
as known for a uniform system in equilibrium. The most important consequence
of this hypothesis is that the Gibbs equation, i.e., the relation between entropy and
relevant state variables, remains valid locally though the involved quantities change
in time and space. In other words, the (specific) entropy is a function of (specific)
internal energy, (specific) volume, and composition (expressed usually in terms of
mass fractions) and the differential of this function is given by (equilibrium) Gibbs
equation. The local equilibrium hypothesis avoids the problem of the existence of
entropy in nonequilibrium just because of the supposed (local) equilibrium. The rate
of entropy change is supposed to be composed from two parts—the rate of exchange
with the surroundings and the rate of internal entropy production. This enables to
write down the balance of entropy and supplement it with the (second law) state-
ment of nonnegative entropy production inside the system. Combining the balances
and the Gibbs equation the entropy production is expressed as a sum of products
which are interpreted as products of forces and conjugated fluxes. Linear relation-
ships between conjugated forces and fluxes are supposed and their coefficients are
called the phenomenological coefficients. The Second Law (the nonnegativity of
entropy production) is used to set the restrictions on the sign of these coefficients.
Interested reader can learn more about this theory in a modern version and with
applications especially in chemistry and chemical engineering in books [25, 26].

This classical, linear theory has been really extended in the extended irreversible
thermodynamics [27] by relaxing the local equilibriumhypothesis. The basic concep-
tion is very similar to that of the classical irreversible theory and the main difference
is in a set of relevant independent variables. The set of classical variables used in the
classical theory (mass, energy, composition, and alsomomentum) is extended includ-
ing the corresponding fluxes. The extending fluxes may include, e.g., the heat flux,
stress-related variables like scalar bulk viscous pressure, or tensorial shear viscous
pressure. The Gibbs equation is then generalized, i.e., extended with the differential
terms containing the extending variables. The existence of a nonequilibrium entropy
is usually taken to be granted and the entropy is required to be a concave function
of the whole set of variables (i.e., including the extending variables) with locally
positive rate of production and additivity property. The concavity means that the
entropy as a function lies everywhere below its family of tangent lines (the meaning
of the opposite notions of concavity and convexity is interchanged in some works).
The extending variables are nonconserved and usually fast-changing and are typ-
ically used to describe the nonequilibrium phenomena in systems (materials) with
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non-negligible (though apparently short) relaxation times, e.g., ultrasound
propagation in dilute gases, neutron scattering in liquids, flow of, or diffusion in
suspensions or polymer solutions. Generalized Gibbs equation is used to derive the
expression for the entropy production. To obtain practically applicable expressions
this usually calls for introducing additional hypothesis, presumptions, or simplifica-
tions. The linearizations around the local equilibrium values or in the dependence of
some coefficients on the extending fluxes were applied as well as specific properties
of isotropic systems or functions (used also in our approach in Sects. 3.5, 3.7, or
4.5; see also AppendixA.2). Once the expression for the time derivative of (specific)
entropy is obtained (on the basis of generalized Gibbs equation and its modifications)
and the specific expression for the dependence of the entropy flux on independent
variables is suggested they can be combined with the general form of balance equa-
tions and the expression for the entropy production is thus identified. The concavity
requirement places additional restrictions on derived equations or their coefficients,
i.e., on the model of a specific system or material behavior.

The youngest nonequilibrium thermodynamic theories are represented by the
GENERIC formalism which stands for the abbreviation of theGeneral Equation for
the Non-Equilibrium Reversible-Irreversible Coupling [28]. Similarly, as rational
thermodynamics, the approach used in this book, also the GENERIC is rooted in
and closely related to mechanics. In contrast to rational thermodynamics, which has
“unwound” of the continuum mechanics, GENERIC belongs to Hamiltonian for-
mulations of mechanics and originally evolved from a generalization of the Poisson
bracket formalism proposed in the classical (Hamiltonian) mechanics particularly to
model the flow properties of complex fluids like polymer melts or solutions. Hamil-
ton’s reformulation of mechanics consists in the description of the time evolution
of a (mechanical) system using the position and (generalized) momentum vectors
as the principal set of variables. The time evolution is described by the Hamilton
equations expressing the dependence of time derivatives of positions or momenta on
total energy of the system (on its derivatives with respect to momenta or positions,
more precisely). The Hamilton equations can be reformulated introducing the Pois-
son brackets [24]. The total energy, i.e., the sum of kinetic and potential energies, is
also called the Hamiltonian of the system and referring to the Hamilton equations it
can be viewed as a potential driving the time evolution of the system.

GENERIC tries to formulate a general time evolution equation by which the
time evolution (derivative) of a state variable (which can be, e.g., mass density or
fraction, momentum, energy) is determined by two potentials: the total energy of the
system and a dissipation function. Just the latter one introduces the irreversibility
(and, in this way, “the thermodynamics”) into consideration and description of the
system behavior. The dissipation function or potential is a function of derivatives
(with respect to the state variables) of a quantity which should have the physical
meaning of the entropy of the system and this latter function is minimum at zero state
variables, is zero at zero entropy derivatives just mentioned and a concave function.
The general evolution equation can be reformulated by means of Poisson brackets.
To apply the GENERIC formalism first one has to select suitable state variables
for the problem or system which is to be modeled. The next step is to formulate
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the appropriate set of evolution equations (this, in fact, involves also finding the
Poisson brackets) which may not be an easy task. To establish a valuable expression
for the dissipation potential it requires the information on parameters related to the
nonequilibriumbehavior like diffusion coefficients, viscosities, thermal conductivity,
tensors describing hydrodynamic interactions, and others. More information on this
general formalism capable of providing universal approach on every level of material
description, being it macroscopic, mesoscopic, or microscopic, can be found in the
book by Öttinger [28].

We also want to mention the contribution to modern thermodynamics made by
Müller [10, 16, 29] which lies somewhere between the extended irreversible and
rational approaches as indicated in the title of one of corresponding books, co-
authored by Ruggeri [30]. Particularly, the reference [16] can be recommended even
for the very beginners in modern approaches to fundaments of thermodynamics.
Although the substantial part of this book deals with the equilibrium theory Müllers
reintroduce time into consideration and thermodynamics equations and treat both the
equilibrium and (and least some) nonequilibriumprocesseswithin a natural, common
framework. Their book contains a lot of real application examples and explains and
illustrates the common basis of probably all rigorous thermodynamic approaches—
the equations of balance of mass, momentum, and energy and equations describing
the specific behavior of different material bodies (systems) which were traditionally
called the equations of state and in modern terms the constitutive equations.

The last theory we want to refer to in this brief overview is the rational thermody-
namics. Because this is the core theory of our book it is explained in more detail in
subsequent parts and here only some new achievements are mentioned which are rel-
evant to our treatment and not included in it. The foundations and theoretical aspects
of practical applications were further elaborated and precised by Rajagopal and his
school (though now without the title “rational”). Sections3.1 and 3.2 of our book
stress the importance of the referential frame for the mathematical description and
of the configurations of material bodies (systems) which should be recorded by this
frame. A new concept of natural configuration was introduced [31] which enables
more proper description of behavior of deformable bodies (therefore it seems to have
no essential effect on linear fluids which are the subject of our book). Chapters2
through 4 systematically use the traditional principles of rational thermodynamics to
derive final versions of thermodynamic equations, i.e., mathematical models describ-
ing the behavior of the material system of interest. References [31–34] introduced
another principle—the principle of maximum rate of dissipation—and showed how
it can guide and simplify the process of finding thermodynamically consistent consti-
tutive equations. Several works from Rajagopal’s school are devoted to chemically
reacting systems which are one of the principal subjects of this book. A general
framework for such systems was presented in Ref. [35], however, for systems with-
out diffusion only. This framework is based on Gibbs potential, which is also an
important quantity in our book, particularly as a “source” of chemical potential (cf.
especially Sects. 4.4 and 4.6), and on maximization of the rate of dissipation (max-
imization of entropy production, in other words). Finally, derived evolution equa-
tions for the concentrations of reacting species (kinetic or rate equations, in fact)

http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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contain chemical potentials as the quantities determining (among others) the evolu-
tion. This is similar to our results where chemical potentials are among possible sets
of independent variables determining the reaction rates [Sect. 4.5, (4.79)]. However,
in the example of rubber vulcanization the traditional kinetic mass action law was
applied directly in its standard form (cf. our more general treatment in Sect. 4.9).
Specific examples of similar treatment of reactive pulsatile or Hagen-Poiseuille
flow can be found in Refs. [36, 37], respectively, and of synovial fluid in Ref. [38].
A simplifieddescriptionof a two-component reaction-diffusion systemwaspresented
in paper [39].

As already stated in this book we follow neither the usual method of classical
equilibrium thermodynamics [1, 2, 12, 21] nor the one of irreversible thermody-
namics [3–6, 9, 40] even in their recent variants [11, 41] although we often discuss
the same problems, cf. Rem.2 in Chap.2. We prefer the method of rational thermo-
dynamics introduced in the following section. The main reason is very simple—it is
the field we have been working in, we are familiar with. Furthermore, it seems to be
the most elaborated approach in the principal area of our interest—the chemically
reacting systems (see also [42]). Classical and extended reversible thermodynamics
use the flux-force view on the Second Law—as a rule, the affinity is then identified
as the force driving the “chemical flux”, i.e., the rates of chemical reactions which
are usually expressed in terms of the extent of reaction. It is shown in Sect. 4.5 of this
book that due to certain orthogonality other type of affinity is not seen in the Second
Law and thus it is overlooked as a part of that “driving force” for chemical reactions.
Further, it has been demonstrated that the extent of reaction cannot be used in chemi-
cally reacting mixtures with diffusion [17] (more precisely, when the diffusion is not
“self-balanced”). GENERIC applications to the reactive systems are apparently still
in their infancy [43, 44]. Rational methodology as presented in this book enables to
rederive the whole classical chemical thermodynamics and to extend it to (at least
some areas of) nonequilibrium. In other words, the rational thermodynamic theory
of linear fluids puts the chemical classics onto a firm basis of nonequilibrium theory
and supplies it with nonequilibrium capabilities. Of course, this book does not pro-
vide any “theory of everything” and it does not claim that all systems encountered
in chemistry, chemical engineering, and related areas belong to the class of linear
fluids. This book just presents a set of models which adequately correspond to lot of
chemical experience and the application of which in a specific problem should and
can be tested. The methodology is based on clearly defined principles and axioms the
validity of which in a specific real situation can be verified or a priori estimated. The
rational thermodynamics was also a subject of criticism, see e.g., [24, 45]. Whereas
the critics can be relevant in some (perhaps very) specific systems (like plasma) in
our case of linear fluids it can be neglected.

http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_4
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1.1 Introduction

Models and their developments in this book are based on the method of rational
thermodynamics which has substantially contributed to the present-day understand-
ing of the bases of thermodynamics.

Rational thermodynamics tries to construct systematically and with logical
clarity mathematical models of thermomechanic phenomena in arbitrary situations
on a nonmolecular level and therefore it is in fact modern phenomenological thermo-
dynamics or the thermomechanics of continua. It was developed in the last decades
mainly by Truesdell, Noll, Coleman, Gurtin, Bowen, Müller, Rajagopal, Šilhavý
[10, 13, 17, 23, 46–50].2 The basic procedure of rational thermodynamics (in prin-
ciple the same as in themost elaborate physical theories such asmechanics or electro-
magnetism) may be outlined as follows: First, the primitives, i.e., a priori formulated
(nondefined) concepts are introduced to describe the phenomena intended to study.
Such concepts follow from the theoretical (even molecular) ideas as well as practical
experience (immediate experience being the best) with (often special) thermome-
chanic phenomena and from the level of description intended. Primitives used in
theories might be very different but some which are “nonmechanical” are necessary
in phenomenological thermodynamics, cf. [17, Introit] (e.g., in this book these prim-
itives are (macroscopic) motion, work, and “nonmechanical” heat, temperature). In
terms of primitives the defined concepts are obtained (e.g., velocity from motion,
entropy from heat and temperature).

Primitives and definitions are used to formulate general postulates (e.g., the First
and Second Laws, balances of mass, momentum, etc.) valid for all (in fact for a broad
class of) material models. Real materials are expressed through special mathematical
models in the form of constitutive equations which describe “idealized materials”
expressing features important in assumed applications.Moreover, the same realmate-
rial may be described by more models with various levels of description. The levels
are motivated by the observer’s time and space scales—typically the time and space
intervals chosen (by the observer) for description of a real material having its own

2 Rational thermodynamics develops from critical revision of continuum mechanics [21–23, 48,
50–52], thanks to pioneer work of Coleman and Noll [46] concerning the new interpretation of the
entropy inequality (see also [53–61]).

For introduction to this theory there are useful books and results connected with the names of
Truesdell [22, 52, 62, 63], Eringen [64–66], Rajagopal [50, 67], Müller [10, 68], Šilhavý [13],
Astarita [69], Owen [70], Wilmanski [71], and others [47, 72, 73].

The physical content of the theory is discussed mainly in Truesdell’s polemics with previous
theories [17, 19, 20, 62].

For further developments see Truesdell and Noll [23], Eringen [65, 66, 74] and others [75–
81], and most papers published in Archive for Rational Mechanics and Analysis and (mostly for
applications) in International Journal of Engineering Science.

Concerning mixtures, which are of special interest in this book, the basic information may be
found in the works of Bowen [49, 82], Müller [10, 68], Truesdell and Toupin [21], Williams [83,
84], Rajagopal and Tao [67], surveys of Atkin and Craine [85, 86], Hrma [87, 88] and Samohýl
[89, 90], see also [91–93].
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natural space and time scales (e.g., size of property inhomogeneities and typical time
of their disappearance); see Sect. 2.3 for further details. In phenomenological theory
all such scales are macroscopic (nonmolecular), cf. Sect. 1.2. The same real material
may therefore have different constitutive equations from which we can choose the
appropriate model for the intended application.

Constitutive equations have often been proposed empirically, intuitively, from
molecular models, etc., and some of them have been well-known for a long time
(state equations, transport laws of Fourier, Fick, etc.) but experience with their pro-
posals may be generalized in plausible constitutive principles, see also Rem.2 in
Chap.2. These principles are used in rational thermodynamics for generalized moti-
vations, proposals, and further rearrangements of constitutive equations and, as a
result, for finding the final form of constitutive equations, cf. further sections of
this book, e.g., Sect. 2.1. Important and specific role in the process of deriving final
constitutive equations is played by the Second Law or the entropy inequality. The
subsequent logical step—introduction of constitutive equations into balances and
the solution of resulting (usually differential) equations for given (boundary, initial)
conditions is a traditional task of other disciplines like hydrodynamics, elasticity,
heat conduction, chemical kinetics, etc.. But, sometimes, such a task is considered a
part of thermodynamics, e.g., the issue of stability or formation of dissipative struc-
tures [4, 7, 11]; correspondingly, these problems will be discussed in this book only
marginally.

At the end of the discussion of rational thermodynamics we stress that in this
theory we in fact study mathematical models (in this sense this theory is a part of
mathematics) and only after their application in a real situation and with real mate-
rial we can decide about the limits of their practical validity.3 Although practical
application is out of scope of the theory developed here, it motivates the types of
material models studied in this book and offered as various constitutive equations to
be selected for particular application. Such applications motivate some concepts or
procedures in the theory and also exclude some unusual properties of these models
because the real materials are much more complicated: to avoid, e.g., instabilities
(manifested, e.g., by phase changes), we exclude zero values of some transport coeffi-
cients or heat capacities. Such and similar regularity properties we add to constitutive
equations and the resulting models we then denote as regular (see (3.232), (3.234),
Rems. in Chap. 1, 2, 6, 8, and 9).

Thermodynamics is generally a very broad discipline, and towrite an introductory
book self-consistently we had to select only certain, typical part. Constitutive equa-
tions offer very different models of thermomechanical phenomena in many diverse
materials for applications. In this book, intended for students of chemistry and
chemical engineering and related fields, we choose only a narrow sector from these
immense fields. Namely, we discuss the (mainly nonequilibrium) thermodynamics of
fluids (i.e., gas or liquid; for difference see Sect. 4.8) and their reacting mixture with

3 E.g., in developing this theoryweassume that somequantitiesmaybe arbitrary reals (cf. application
of LemmaA.5.1 from AppendixA.5 in Sect. 2.2) though we know that all such possible values are
far out of the limits of practical applicability of the mathematical model studied.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_1
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_6
http://dx.doi.org/10.1007/978-3-319-02514-8_8
http://dx.doi.org/10.1007/978-3-319-02514-8_9
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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unique temperature, with (linear) transport properties (heat conduction, viscosity,
diffusion) and (nonlinear) chemical reactions. We try to show that rational thermo-
dynamics describes naturally the typical nonequilibrium situations (say in chemical
engineering) of (chemically) reacting fluid mixtures where transport phenomena
take place simultaneously: local state equations fulfill the classical thermodynamic
relations and linear transport laws (Fourier, Newton, Fick) and also equations of
(nonlinear) homogeneous chemical kinetics are valid.

The other important issues (often not sufficiently established in phenomenological
nonequilibrium thermodynamics) like transport through the phase boundary, hetero-
geneous chemical kinetics, fluid–solid (heterogeneous) mixtures, etc., are noted here
only marginally for simplicity, see Sects. 2.4, 2.5 and Rem.1 in Chap.3.

1.2 General Concepts and Framework, Thermodynamic
Systems, Processes, and the Universe

Basic ideas of (phenomenological) thermodynamics need to use some “nonmechan-
ical” concepts, like temperature, internal energy, or entropy.4

In this section we introduce these concepts in a very broad way, valid generally
for “any thermodynamics” including nonequilibrium theories, to justify their appli-
cation in our methodology. For this goal, only several primitives well-known from
common life are sufficient. We use the Šilhavý’s method [59, 60, 94–97], following
mostly the papers of Kratochvíl and Šilhavý [98, 99] (see Sects. 1.3, 1.4), because
it is appropriate for (at least some) nonequilibrium situations. Unfortunately, this
procedure has been demonstrated for pure materials only (for discussion of mixtures
see below).

The construction of entropy and absolute temperature (even in nonequilibrium)
fulfilling entropy inequality is done by Šilhavý’s method in terms of the primitives
work, heat and empirical temperature (for the latter, see AppendixA.1; cf. Zemansky
cited in [17, p. 53]). Moreover, the existence of energy satisfying the energy balance
will be also proved.

These results are achieved by postulating the First and Second Laws of
thermodynamics (in subsequent sections) as inequality assertions in terms of the
primitives mentioned (and therefore directly experimentally verifiable). These basic

4 Such concepts as entropy or (absolute) temperature are usually constructed, or motivated in
equilibrium. Their transfer to nonequilibrium situations is not so clear; therefore in nonequilibrium
thermodynamics either the existence of these concepts was simply assumed [17, 19] or hypothesis
on the local equilibrium was used [3–5, 9] (cf. also AppendixA.1).

Originally, rational thermodynamics assumed the existence of entropy and absolute temperature
in nonequilibrium (cf. Lecture1 of [17, 19]) but this assumption has been shown to be derivable by
Šilhavý [59, 60, 94–97]. In simplified terms this was explained by Kratochvíl and Šilhavý [98, 99]
and it will be used subsequently.

Similar results were obtained by Serrin [58] (he used the concept of “hotness”), Man [100] and
Feinberg and Lavine [56, 57] (temperature was avoided completely from primitives).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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Laws may be also presented as classical statements about the impossibility of the
perpetual motion of the first and second kind.

The procedure is performed generally for all constitutive models (independently
of the choice of independent variables of constitutive equations, cf. Rem.6) and there-
fore the great generality of the results (mainly energy balance and entropy inequality)
is guaranteed. Conversely, however, we deal with phenomenological models where
the observer’s time and space scales are macroscopic (“human”, “terrestrial”) and
therefore giant against microscopic natural scales (molecular scales, like the relax-
ation times of energy exchange among motion modes of molecule or intramolecular
distances). This great difference between these types of scales permits to distinguish
clearly between heat and work, to formulate empirical temperature and to rely on
the inviolability of macroscopic principles with statistical origin.5

These results are obtained and applied for pure materials and closed systems
(which do not change their mass, cf. Chap.2). They may be enlarged even at mass
exchange systems using instruments like material volume or material (time) deriva-
tive, see Chap.3. But, with the exception of some simple models, difficulties begin
withmixtures, especially with those which are diffusing or exchangingmass and heat
simultaneously. Here, because the similar Šilhavý procedure is not known for the
mixture, some further primitivesmust be introduced (by analogywith purematerials),
and the basic Laws must be reformulated, see Chap. 4, Sects. 4.1–4.4 and Rem.14 in
Chap.2.

In (phenomenological) thermodynamics we study the (macroscopic) thermody-
namic system (also called the body) and we assume that we know how its state can
be described.6 By processwe understand realizable time sequence of states from the
initial to the final state.

The manner of the description of the state plays no role in this chapter; the only
thing which is important here is that we are able to say whether two states are the
same or not. Therefore, the results are general and valid for all constitutive models
or at least for those discussed in the following Chaps. 2 and 3. But we emphasize that
phenomenological models expressed by constitutive equations, i.e., by a concrete
choice of state, may be various and therefore, the concrete meaning of concepts
discussed in this chapter (like work, definition of equilibrium, entropy values, etc.)
may differ among such models, cf., e.g., [10, 17, 47, 101]. This will be demonstrated
in constitutive models discussed in the following Chaps. 2, 3 (see Sects. 2.1–2.3,
3.6–3.8).

5 Like the Second Law. Difficulties may be expected if this giant difference between the observer’s
and the molecular scales breaks down as, e.g., in nanotechnologies, but we avoid these problems
here.
6 State is given by independent variables of constitutive equations modeling the properties of
such system, e.g., density, temperature, their gradients and time derivatives, deformation rate, etc.
Constitutive equations need not be only functions, but, e.g., functionals where state variables may
also be functions of time (histories in materials with memory, cf. example in Rem.3 in Chap. 2) or
space (nonuniform or nonlocal systems). Sometimes (e.g., for energy) the state is determined also
by velocity and other external influences, e.g., gravitation or radiation. cf. also Chap. 2.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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We suppose that in any process we can determine the following three primitives
work, empirical temperature, and heat exchanged at each empirical temperature
during the process. The sum of such heats (through all empirical temperatures in
process) gives heat in the whole process.7 We assume that such determinations
(measurements) are possible at least in principle.8

Work w may be measured in the usual way known from mechanics9 and heat
exchanged at given empirical temperature may be measured by a calorimeter (e.g.,
by “phase calorimeter”measuring heat by themass of a new phase formed by suitable
substance the phase change of which is just at considered temperature).

Empirical temperatureϑ is a number adjoined to every place and instant of process
in the system and may be measured by thermometer (see AppendixA.1 for further
details; note that a priori assumptions, like thermal equilibrium, Zeroth law, are
necessary here). We use for ϑ the same units, namely Kelvins, and because we try to
measureϑ generally in nonequilibrium situations, we consider as a reliable that value
of ϑ read from thermometer the dimension and relaxation time of which are both
much smaller than observer’s scales (cf. Rem.8 and Sects. 1.1, 2.3, AppendixA.1).
The right value of ϑ is assured if by repeating of identical measurement with other
thermometers with smaller and smaller dimensions and relaxation times the same
values (in Kelvins) are obtained.

In this book, we consider only the systems where empirical temperature just
described has the sense and may be used even in nonequilibrium situations. There
are, of course, alsomore complicated systems, e.g., mixtures withmore temperatures
(like plasma from electrons and ions) see, e.g., [10, 105, 106] and [107, Sect. 4],
which will be not discussed here.

After discussion of basic primitive concepts we can proceed with the theory as
follows: Adding together the heat exchanged at all instances of the process and in

7 We use the (newer) convention in which work done by the system is negative and done on the
system is positive similarly as heat emitted from (absorbed by) the system is negative (positive),
e.g., [11, 17, 19, 21, 102–104]. See also Rem.20 in Chap.3.

But the traditional reversed convention for work has been often used just in the Šilhavý’s proof,
see [13, 60, 90, 96, 98, 99].
8 The dimension and the time constant (or “relaxation time”—time interval needed for right
response) of measuring devices must be much smaller than the observer’s scales of space and
time; then it may be expected that the measured quantity has meaning even in the nonequilibrium
processes where heat, work, and empirical temperature may be field quantities changing with finite
rates (cf. also AppendixA.1).
9 Caused, in macroscopic thermodynamic systems, by surface or volume forces, see Sect. 3.3. Often
the volume work is used, which is defined by

w = −
∫ V f

Vi
P dV

where the volume V changes from the initial Vi to final V f value under the external pressure P
coming from the outside as boundary condition (P > 0 at compression, P < 0 at expansion). But in
important models neglecting motion (classical thermodynamics, uniform models of Chap. 2), P is
determined by constitutive equations of material inside the volume, cf. Rems.1 and 37 in Chaps. 2,
and 3, respectively.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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all places of the system where empirical temperature achieves some fixed value ϑ j

and denoting this sum by Q j we can obtain the heat distribution
→
Q which gives

an information how much heat was exchanged during the process at each empirical
temperature. To avoid the exact and nontrivialmathematical definition of this quantity
[59, 60, 98, 99] and to show here only the principles of Šilhavý’s methodwith the use
of simplemathematicalmeans (namely finite dimensional vector space)we introduce
the following “step” approximation: we assume that empirical temperature may be
measured only by steps and the number N of all possible empirical temperatures ϑ j

( j = 1, 2, . . . , N ) is finite and fixed (to make this approximation realistic we assume
high number of steps, say exactly N = 109, i.e., steps are small).10

Then the heat distribution
→
Q in the given process and given system may be

represented by an N -dimensional vector

→
Q = (Q1, Q2, . . . , QN ) (1.1)

10 If we are not satisfied with this “step” approximation giving results in the form of sums (1.20),
(1.21) instead of usual integrals (1.41), (1.42) we can proceed as follows (according to [98, 99]):

Heat distribution
→
Q (of given process in the given system) is now infinite dimensional vector

with components dQ (i.e., Q j in (1.1) with N → ∞) having similar properties: dQ for each
empirical temperature ϑ (generally different for different dQ) is the sum of heat exchanged at all
instances of the process and in all places of the system with this empirical temperature ϑ j and dQ
are defined as zero on these temperatures ϑ which do not occur in the process.

From a mathematical point of view the heat distribution is the function which to each set of
empirical temperatures ϑ furnish the (real) number, i.e., it is the measure defined on the reals ϑ (cf.
[59, 60, 98, 99]). Therefore, the heat q exchanged during the process (1.2) is now expressed by

q =
∫

dQ =
∫

η(ϑ)dϑ (a)

where we integrate through all possible empirical temperaturesϑ . For simplification we use here the
second integral with (primitive) density of heat distribution η = η(ϑ) (function of ϑ) [98, 99] (more
general procedure see [59, 60]). It gives dQ = η(ϑ)dϑ as the amount of heat exchanged between
empirical temperatures ϑ and ϑ + dϑ (of course in all (possible different) parts and instants in the
process of the system with temperature ϑ). But, then we must admit that density of heat distribution
η(ϑ)may be also a δ-function: If a process is isothermal exchanging heat Qi at the unique empirical
temperature ϑi , the density of heat distribution is

η(ϑ) = Qi δ(ϑ − ϑi ) (b)

Indeed, these Eqs. (a), (b) then give for all exchanged heat q

q = Qi

∫
δ(ϑ − ϑi )dϑ = Qi (c)

(we recall that by definition of δ-function δ(x) its value is nonzero only when x = 0, δ(0) �= 0 and
δ(x) = 0 for x �= 0, but its integral through all x is equal one

∫
δ(x) = 1).

For further developments of this “integral” procedure see Rems.16, 21 in Sect. 1.4.
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Its components Q j have the signs according to the convention mentioned in Rem.7
or they are zero; the values of Q j at empirical temperatures which do not occur in
the given process (usually great majority from N possible) are zero by definition.

In fact we need heat distribution only in the discussion of the Second Law in
Sect. 1.4; for the First Law we need only the heat q exchanged during the whole
process which is the sum of heats exchanged at each temperature

q =
N∑
j=1

Q j (1.2)

(“step” approximation has no influence on the following postulates of theory
[60, 98, 99]).

We postulate now (nearly obvious) properties for studied systems and their

processes with ϑ,w, q,
→
Q [or Q j in (1.1)]:

S1. The workw and heat distribution
→
Q may be determined in an arbitrary process

[we assume w, q finite as well as components Q j in (1.1)].
S2. Composition of processes: The work or the heat distribution of the process

formed by two successive processes following each other is the sum of works or heat
distributions of both processes (vectorial sum in the last case).

S3. It is possible to connect two arbitrary states by some process. From this also
existence of cyclic process follows, i.e., cyclic process starts and ends at the same
state.

S4. The system has equilibrium state defined as the state in which the system
persists arbitrarily long time without exchange of work and heat with surroundings,

i.e., with w = 0 and
→
Q = →

0 .11

The set of all systems (and their processes) with properties S1–S4 and all their
(though conceivable) combinations is called a (thermodynamic) universe. We pos-
tulate that the universe has the following properties:

U1. Closeness of the universe: the composition of two arbitrary systems from
the universe is again the system from this universe. Thus, if in both such individual

systems there are processes with w1,
→
Q1 and w2,

→
Q2 both of which having the same

duration, then these processes may be regarded as one process in the compound

system with w = w1 + w2 and
→
Q = →

Q1 + →
Q2.

11 Concrete definition of equilibrium state must be performed for each constitutive model (charac-
terized by the observer’s scales of Sect. 1.1 and mainly Sect. 2.3) by time fixing of some quantities
from those determining their states (see Rem.6). Time persistency is usually difficult to achieve
(because of molecular fluctuation) and therefore to describe real materials by such constitutive
models we must add to constitutive equations (as their regularity) the conditions of stability by
which the time permanence of equilibrium state S4 is assured. For details see Sects. 2.1–2.4, 3.8,
4.7 and Rems.7, 9, 11 in Chap.2. Although one equilibrium state would suffice, typically there are
more equilibrium states often forming the equilibrium process as their time sequence, see Rem.12.

Equilibrium states and equilibrium processes therefore depend on the choice of constitutive
model.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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To explain the remaining property of the universe we introduce two special types
of processes.

A process with w,
→
Q is called reversible if a reverse process with −w,−→

Q exists
in the universe (usually in the same system) which passes the same states but in

reverse order comparing to the original “straight” one with w,
→
Q.12

Process withw,
→
Q is called homogeneous if a process withαw,α

→
Q for eachα > 0

exists in the universe (e.g., in uniform systems, i.e., those without space gradient of
properties, changing the mass α-times we change the work and heat distribution in

αw, α
→
Q because of extensivity of these quantities).

For further explanation we introduce the set A of w,
→
Q of all cyclic processes

in the universe and of all ideal cyclic processes w,
→
Q which are some limits of

preceding “real” cyclic processes (running cycle slower and slower as we approach
the reversible one, cf. Rem.12, cycles with real gas running at lower and lower
pressure approach those with ideal gas, etc. These are experimental examples of
possible limitations to ideal cyclic process; of practical importance is the Carnot
cycle used below and discussed in Rem.4 in AppendixA.1 in details).

Then we introduce the set B of w,
→
Q of all real and ideal cyclic processes which

start in equilibrium (therefore B ⊂ A ).

Ultimately, we introduce the set C of w,
→
Q of all cyclic processes starting in

equilibrium with the following property: with each such process characterized by

w,
→
Q, the set C contains the cyclic process starting in equilibrium, work, and heat

distribution of which is αw, α
→
Q respectively, where α is an arbitrary real number.

Therefore C is the set of w,
→
Q of the cyclic reversible and homogeneous processes

starting in equilibrium (see definitions above with α = −1 meaning reversibility and
α > 0 meaning homogeneity respectively).

Subset C is not empty (and therefore also B, A, because C ⊂ B ⊂ A) because
for two different empirical temperatures the ideal cyclic reversible and homogeneous
processes starting in equilibrium may be introduced, namely those with ideal gas—
Carnot cycle of AppendixA.1 (cf., e.g., [1, 12, 110, 111]).

As the second property of universum we postulate:

12 Cf. [98, 99, 108, 109] and classical texts [1, 12]. The states passed in reversible process are not
specified here but the results following from their existence in Sect. 1.4 [equalities in Clausius (1.20)
or (1.41) and entropy (1.21) or (1.42) inequalities, (1.40)] show how to find reversible processes in
each constitutive model of this book. Namely, such are equilibrium processes from Rem.11 defined
in each constitutive model (see Sects. 2.1, 2.2, 2.4, 3.8, 4.7) by zero entropy production [e.g. (2.11),
(3.109), i.e., in fact by equalities in (1.21), (1.42)]. They form the time sequence of equilibrium
states S4 and their reversibility may be shown explicitly in examples, see Sect. 2.2 (modelsA, B),
Rem.41 in Chap.3. The stability of such equilibrium states (cf. Rem.11) explains the experience
that real processes approach those reversible if they are sufficiently slow, cf. [109], Rem.48 in
Chap.3.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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U2. Completeness of the universe: for every two empirical temperatures (from N
possible in our “step” approximation) there is the process in the universe which is
from C (cyclic, reversible, and homogeneous process starting in equilibrium) with
nonzero heat and work (q �= 0, w �= 0), exchanging heat only at these two empirical
temperatures. Specifically we can assume, that in C such are the Carnot cycles
(defined in AppendixA.1) for each two temperatures.

Summary. Basic thermodynamic concepts were introduced in this section which
form a very general framework to formulate two basic thermodynamic laws also at
nonequilibrium conditions. Only three primitive notions of work, heat, and empir-
ical temperature and several simple general properties of thermodynamic systems
and universe were sufficient for this purpose. In the following two sections, we
postulate the First and the Second Laws of thermodynamics and deduce the con-
sequences. Because they are formulated in terms of heat, work, empirical tempera-
tures, and cyclic processes (including those which are ideal) their direct experimental
confirmation is possible.

1.3 The First Law of Thermodynamics

In this section we continue with the method of Šilhavý and Kratochvíl [13, 59, 60,
98, 99]; here we need only work and heat in the entire process (heat distribution is
not necessary and therefore also an approximation by finite numbers of empirical
temperatures is redundant) moreover we consider here often cyclic processes.

We postulate the First Law of thermodynamics as follows:
In any cyclic process (real and ideal from the set A, see end of Sect. 1.2) the system

can perform work if and only if it absorbs heat, i.e.,

w < 0 ⇔ q > 0 (1.3)

As we noted at the end of Sect. 1.2, direct experimental confirmation of this
postulate is possible (even for ideal process).

Examples are cyclic working heat machines producing work from absorbed heat
but (cyclic) perpetuum mobile (of the first kind) performing work w < 0 without
absorbing heat or even producing it (by friction) q ≤ 0 are excluded. Note that if a
process is not cyclic, inequalities (1.3) not be valid, e.g., at adiabatic expansion.

From this First Law and postulates about the system and universe S1–S4, U1, U2
we can prove the following results:

1. Existence of the mechanical equivalent of heat J: there exists a positive,
universal (i.e., the same in the whole universe) constant J such that for each cyclic
process in the arbitrary system of the universe we have

w = −Jq (1.4)
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Therefore, the value of J is given by the choice of heat andwork units (usually they
are chosen the same and consequently J = 1; if different, e.g., formerly “Calorie”
for heat, J �= 1).

2. Existence of energy and balance of energy: for each system in the universe
there exists a state function—the energy U (determined within an additive constant)
such that the balance of energy holds

U f −Ui = Jq + w (1.5)

for an arbitrary process in the system. Here U f and Ui denote values of U in the
final and the initial state, respectively.

Values of a state function are determined only byquantities describing the state and
U is the whole energy of the system if the state is described (besides the independent
variables of constitutivemodel) also by themacroscopic velocity of the system and/or
even by its position in external fields like the gravitation. But the influence of these
last macroscopic parameters can be included [in balance (1.5)]13 into the work w of
inertial forces in the form of (macroscopic) kinetic energy (or even potential energy
of an external field), cf. [47, 112, 113]. ThenU may be interpreted as internal energy
depending on the independent variables of the constitutivemodel, cf. (1.12), Rem.15,
Sects2.1, 3.4, e.g., (3.97).

Proof of these assertions (1.4), (1.5) may be sketched geometrically.14 Values of q
andw of each cyclic process in the universe (i.e., from the set A) may be represented
by the point of the plane putting q and w on perpendicular axes, see Fig. 1.1 (cf.
[103] and, with Rem.7, [90, 98, 99]).

According to the First Law (1.3) these representing points (w, q) ∈ A cannot fall
in the first and in the third quadrants (here is w > 0 and q > 0 or w < 0 and q < 0).
By the completeness of universe U2 there is a (w0, q0) ∈ C (real or ideal cyclic
process starting from (stable) equilibrium which is reversible and homogeneous, say
the Carnot cycles). Therefore, also (αw0, αq0) ∈ C exists (with arbitrary real α) and
such processes are situated on the line going through the origin but not crossing the
first and the third quadrant and not coinciding the axes (C ⊂ A, w0 �= 0, q0 �= 0).
Then however, all the cyclic (real and ideal) processes starting from equilibrium, i.e.,
from the set B, must have their representing points on the same line. Indeed, if it
would not be true, i.e., if there would be a (cyclic) process (say (w1, q1) on Fig. 1.1)
not situated on this line, we could find a (cyclic) process (αw0, αq0) ∈ C (on this
line) such that the sum of these two processes in the sense of the closeness of the
universe U1 form a cyclic process, the representing point (αw0 + w1, αq0 + q1) of
which would fall into the forbidden (first or third) quadrant (waiting appropriately
in initial equilibrium state we can achieve the same duration of both process), see
Fig. 1.1.

13 Or even neglected as in classical thermodynamics and other models of Sects. 2.1, 2.2.
14 Original proof in [59, 60, 98, 99] stresses more the difference between First and Second Laws,
cf. Rem.17. See also Rem.7 concerning sign of work.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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Fig. 1.1 Plane representingwork and heat in cyclic processes. The First Law prohibits points (ω, q)
to fall in the first or third quadrants

Thus Eq. (1.4) is proved for the set B (and C ⊂ B) with positive constant J the
same in the whole universe. Before extending this result to all cyclic processes (set
A) we take some equilibrium state σ0 (cf. postulate S4 in Sect. 1.2) as a reference
state and define the energy U in an arbitrary state σ by

U = Jq + w (1.6)

where w, q are the work and heat of some process p (cf. S3) from the (equilibrium)
reference state σ0 to σ .

The energy U just defined is independent of the process p from σ0 to σ . Indeed,
let us consider the fixed backward process p0 from σ to σ0 with w0, q0. Because p
followed by p0 is a cyclic process starting in equilibrium, by S2, (1.4) and (1.6) we
obtain

(Jq0 + w0) +U = 0 (1.7)

The same equation is valid for another process p′ from σ0 to σ with w′, q ′.
Therefore

U = Jq + w = Jq ′ + w′ = −(Jq0 + w0) (1.8)
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This means that U is a state function, i.e., depending on the state σ (and, of course,
on the reference state σ0) and not on the processes (like p, p′).

Let us consider now two arbitrary states, the initialσi and the finalσ f and a process
with w, q from σi to σ f . If we choose some equilibrium state σ0 as a reference state,
then from the composition of the processes S2 (schematically: σ0 → σi → σ f ) and
(1.6) it follows that

U f = Ui + Jq + w (1.9)

where U f and Ui are the energies in the final and initial states, respectively. This is
the balance (1.5). If the initial and the final state coincide σ f = σi (cyclic process)
then U f = Ui and we obtain from (1.9) the general validity of Eq. (1.4) for any
cyclic process (i.e., from the set A). This also permits the definition of state function
U based on any (and not only equilibrium) reference state σ0 repeating with it the
procedure from analogs of (1.6) to (1.9); therefore (1.9), i.e., (1.5), is valid also for
energy defined in this general reference state.

Moreover, repeating the deduction of (1.9) for the same process from σi to σ f

with the same w, q but also with another (general) reference state σ ′
0 giving energies

U ′
f and U

′
f in σ f and σi respectively, we have

U ′
f −U ′

i = Jq + w = U f −Ui (1.10)

Taking U = U f , U ′ = U ′
f and σ ′

0 = σi (i.e., U ′
i = 0) we find that the energy of

an arbitrary state (σ f in our case) relative to the new reference state U ′ and to the
original reference state U respectively are in the relation

U = U ′ + const. (1.11)

where “const.” is the energy of the new reference state relative to the original.
Consequently, energy (defined to general reference state) is determined within an
arbitrary constant. Therefore proof of results 1 and 2. is complete. Q.E.D.

The classical special case of (1.5) (here and in the following we use mostly J = 1)
is arrived at when the volume work in Rem.9 is the only work considered (the work
of inertial and/or external forces is neglected); U is then internal energy.15

15 Experience (and also most constitutive models in this book, e.g., modelsA, B in Sects. 2.1, 2.2
and in Chap.3) shows that the internal energy of (uniform) fluids (namely real gases) are functions
only of V and ϑ (denoted later as T , see (1.30) below). For the special case of ideal gas (defined
by i., ii. in AppendixA.1, cf. end of Sect. 3.7) the internal energy is a rising function of temperature
ϑ only

U = U (ϑ)

Therefore dU/dϑ (heat capacity of ideal gas) is positive which is also a stability condition, cf.
Rem.7 in Chap.2, (3.256).

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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U f −Ui = q −
∫ V f

Vi
P dV (1.12)

For a small change of internal energy dU by small quantities of heat dq and
volume work dw = −P dV we have the classical form

dU = dq − P dV (1.13)

Summary. The First Law was postulated as a simple general statement on
performing work by a system exclusively upon the absorption of heat. Such a general
statement was demonstrated to lead to the proof of equivalency between heat and
work and to the proof of existence of the internal energy and its balance (with heat
and work).

1.4 The Second Law of Thermodynamics

Using still the method of Šilhavý and Kratochvíl [13, 59, 60, 94–96, 98, 99] for
the formulation of the Second Law we need more detailed information than for the
First Law. It is necessary to know how much heat is exchanged at every empirical

temperature. This is givenby the heat distribution
→
Q (cf. the discussionof this quantity

in Sect. 1.2). Now we define the heat absorbed q+ and the heat emitted q− during
the process as follows:

q+ ≡
∑
k

Qk if Qk > 0 (1.14)

q− ≡ −
∑
l

Ql if Ql < 0 (1.15)

where we sum through all empirical temperatures ϑ j where the heat is absorbed
Qk > 0 or emitted Ql < 0, respectively (cf. Rem.7); if such Qk or Ql do not exist
in the process, q+ or q− are zero (see 1.1). We note that both the heat absorbed and
the heat emitted are nonnegative

q+ ≥ 0, q− ≥ 0 (1.16)

The net heat exchanged q (1.2) is then16

16 Using more general concepts from Rem.10 we can analogously define heat absorbed q+ and
emitted q− (both nonnegative) as (using also the concept of density of heat distribution η(ϑ) Eq. (a)
in Rem.10)

q+ =
∫

dQ+ =
∫

η+(ϑ) dϑ, q− =
∫

dQ− =
∫

η−(ϑ) dϑ (a)

where, integrating through all temperatures ϑ [cf. (1.22), (1.15)],
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q = q+ − q−. (1.17)

Now we are able to postulate the Second Law of thermodynamics as will be used in
the following.17

The Second Law of thermodynamics is postulated as follows: In a cyclic process
(from the set A of all real and ideal cyclic processes) a system can absorb heat
(q+ > 0) only if it also emits some heat (q− > 0), i.e.,

q+ > 0 ⇒ q− > 0 (1.18)

This is in fact the Carnot-Clausius formulation of the Second Law [94–96]; we
stress here especially that the inverse implication of (1.18) is not valid (e.g., on–off
cycle of electrical heating has q− > 0 but q+ = 0).

Formulation (1.18) is independent of the First Law and permits a comparison with
the Second Law. Namely, the symmetry ⇔ of the First Law and asymmetry ⇒ of
the Second Law may be stressed [59, 60, 98, 99], cf. Rem.14.

Alternatively, however, accepting the First Law (i.e., nonexistence of perpetuum
mobile of the first kind), the Second Law (1.18) may be reformulated as the nonex-
istence of perpetuum mobile of the second kind as follows:

In a cyclic process a system can perform the work w only if it absorbs heat q+
and also emits some heat q−

w < 0 ⇒ q+ > 0 and q− > 0 (1.19)

This formulation excludes the perpetuum mobile of the second kind having in
(1.19) q− = 0.

Proof of (1.19) from (1.3), (1.18): if w < 0 then q > 0 by (1.3) and by (1.17) and
(1.16) we obtain q+ > 0. Then from (1.18) we obtain (1.19). Conversely from (1.3)
and (1.19) relation (1.18) follows: if w < 0 then from (1.19) we obtain (1.18). For
w ≥ 0 we obtain from (1.4) [which is a consequence of (1.3)] q ≤ 0, and by (1.17)
q− ≥ q+. Then (1.18) follows (if q+ > 0 then q− > 0). Q.E.D.

(Footnote 16 continued)

dQ+ = dQ, dQ− = 0 for dQ > 0

(or η+(ϑ) = η(ϑ), η−(ϑ) = 0 if η(ϑ) > 0)

dQ− = −dQ, dQ+ = 0 for dQ ≤ 0

(or η−(ϑ) = −η(ϑ), η+(ϑ) = 0 if η(ϑ) ≤ 0) (b)

Net heat (Eq. (a) from Rem.10) may be expressed through (1.17) again. See also Rem.21.
17 We proceed according to [60, 98, 99] (cf. [90]) simplified [103] by using empirical temperature
ϑ of the ideal gas thermometer and using as the set C (cf. property U2 in Sect. 1.2) the Carnot cycles
from AppendixA.1 (these fulfill, e.g., the relation (4.6) of [90]).

For thorough discussion of all classical formulations of Second Laws see [94–96].

http://dx.doi.org/10.1007/978-3-319-02514-8_4
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Going back we demonstrate that from the formulation of the Second Law(1.18)
andproperties of the systemS1–S4and the universeU1,U2, the following resultsmay
be obtained (for simplicitywe use the “step” approximation by the finite number N of
empirical temperatures ϑ j but the known “integral” form (1.41) and (1.42) of results
(1.20) and (1.21) may be understood, say by the simplified method of Rems.16, 17,
21):

1. The existence of the absolute temperature T (applicable in all the universe)
which may be identified with the empirical temperature of the ideal gas thermometer
ϑ = T and is therefore positive (and increasing with physiological “hotness”) and
measurable in Kelvins.

For every system from the universe and every cyclic process (real and ideal, i.e.,
from the set A) the following Clausius inequality is valid

∑
j

Q j/Tj ≤ 0 (1.20)

where the sum is taken over all possible (in our “step” approximation j = 1, . . . , N )

temperatures Tj = ϑ j and Q j are the components of the heat distribution
→
Q (1.1) in

the cyclic process considered.
2. Existence of entropy and the entropy inequality: for each system in the universe

there exists a state function S, called entropy, such that for every process in the system
the following entropy inequality, is valid

S f − Si ≥
∑
j

Q j/Tj (1.21)

Here S f and Si are values of S corresponding to the final and initial state of the system
in the process, respectively. The meaning of the sum in (1.21) is the same as in (1.20)
(but the process is not cyclic) and in fact in both of them we sum only through the

nonzero components of
→
Q in the given process [cf. discussion of Eq. (1.1)]. Equalities

in (1.20), (1.21) are valid for any reversible process (cyclic in the first case). Entropy
S is the state function (its values are determined by the state σ ) but it is not generally
unique in the sense that more entropies satisfying (1.21) and differing by a function
of the state may be constructed. But in special cases (important in applications) the
entropy is unique within an additive constant (see (1.40) below).

Proof of these assertions will be outlined geometrically [the proof is possible also
for the more general concept, see Rem.21; note also that some limiting assumptions
during this proof [e.g., special reference state in definition (1.31)] will be gradually

removed]. The vector
→
Q of heat distribution of any cyclic process in the universe

(from the set A) may be situated in the N -dimensional Cartesian system, if we put
components Q j on each axis (accounting for each possible empirical temperature
in our “step” approximation); see Fig. 1.2 for two dimensions: From the Second

Law(1.18) we can see that any heat distribution
→
Q of any process from A cannot be
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situated in the hyperquadrant given by positive values of Q j > 0 [otherwise q+ > 0
by (1.14) and q− = 0 by (1.15) which contradicts (1.18)]. Let us consider two heat

distributions
→
Q1,

→
Q2 from C (cyclic, reversible, and homogeneous processes starting

in equilibrium state; by completeness U2 they exist as, e.g., Carnot cycles). Then

(see closeness U1) for any real α1, α2 there is a cyclic process with α1→Q1 + α2
→
Q2

from C (because both processes with
→
Q1,

→
Q2 may have the same duration achievable

due to the stability of equilibrium in S4) and also a process with α(α1→Q1 + α2
→
Q2)

exists for any real α). Therefore all
→
Q ∈ C form a subspace. But this subspace must

have the dimension smaller than N because
→
Q (from C ⊂ A) cannot be present in

the forbidden hyperquadrant mentioned above.

On the other hand, we are able to show that this subspace of all
→
Q ∈ C has

dimension N −1: let us consider a cyclic process from the postulate U2, specifically
the Carnot cycle fromAppendixA.1, with two arbitrary empirical temperatures ϑb >

ϑa , the heat distribution ofwhich has only two nonzero components (of opposite sign)
Qb = q+ > 0, Qa = −q− < 0 [cf. AppendixA.1 below, Formulae (A.5), (A.4),
(A.7) respectively, see also below (A.9)].

Now we select and consider processes with indices a = j and b = j + 1 where
j = 1, 2, . . . , N −1 is index of empirical temperatures in our “step” approximation.

Then the heat distributions
→
Q j of such processes (with components Qa = Q j j ,

Qb = Q j, j+1 ) are

→
Q j = (0, . . . , Q j j , Q j, j+1, . . . , 0) j = 1, 2, . . . , N − 1 (1.22)

These N − 1 vectors (1.22) from C, both components of which being different
from zero and of opposite sign (i.e., Carnot cycles between adjacent pairs of all
possible temperatures according to our “step” approximations and completeness U2)

are linearly independent. Therefore, the subspace of vectors
→
Q fromC has dimension

N − 1 and forms a hyperplane coming through the origin in the N -dimensional
Cartesian system, see Fig. 1.2 (according to our construction this (N−1)-dimensional
hyperplane contains all possible Carnot cycles; but in fact it contains any reversible
cyclic process, see below). Moreover, this hyperplane contains vectors with at least
two nonzero components (1.22) [Carnot cycles fulfill the Second Law (1.18)] and
therefore does not meet any hyperplane formed by the axes of the Cartesian system.

Then there exists an N -dimensional vector
→
f which is perpendicular to this

hyperplane and is directed into the forbidden hyperquadrant, i.e., all its components
f j are positive only

f j > 0 j = 1, 2, . . . , N (1.23)

fulfilling for any
→
Q ∈C

→
Q · →

f = 0 (1.24)
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b

Qb
f

Q

Q + Qc

hyperplane C

Qa a

Qc

Fig. 1.2 Two dimensional example of the heat distribution vectors for cyclic processes

Now let us consider arbitrary vector
→
Q ∈B, i.e., the heat distribution of any cyclic

process starting in equilibrium. We will now show that vector
→
Q ∈ B cannot form a

sharp angle with vector
→
f , i.e., it must be

→
Q · →

f ≤ 0 (1.25)

Indeed, because
→
Q ∈ B ⊂ A it cannot be in the forbidden hyperquadrant or situated

between the hyperplane C and the forbidden hyperquadrant. In the latter case specifi-

cally, we are able to find such vector
→
Qc ∈ C (e.g., such Carnot cycle) which together

with
→
Q gives a compound process with

→
Q + →

Qc (by U1 from Sect. 1.2; because both
processes start in equilibrium, the same duration may be achieved) which is again in
the forbidden hyperquadrant (cf. Fig. 1.2 for two dimensions). Therefore for arbitrary
→
Q ∈ B the relation (1.25) must be valid.

Now, we can define the values (permitted by our step approximation) of absolute
temperature Tj by

Tj ≡ 1/ f j j = 1, 2, . . . , N (1.26)
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and therefore Tj are positive numbers [cf. (1.23)] unique for thewhole universewithin

multiplicative positive constant (because the length of vector
→
f is arbitrary). Each Tj

corresponds to empirical temperatureϑ j of the ideal gas thermometer (AppendixA.1)
and therefore absolute temperature T is its function

Tj = T (ϑ j ) (1.27)

universal within a positive multiplicative constant. To knowmore about this function
we use completeness U2 of the universe from Sect. 1.2, specifically in the form that
between every two (empirical) temperatures (of the ideal gas thermometer), sayϑb >

ϑa , some Carnot cycle exists, specifically those above (1.22) with Qb = q+ > 0,
Qa = −q− < 0. Then

ϑb/ϑa = q+/q− = (Qb/−Qa) = Tb/Ta (1.28)

The first equalities are the equalities (A.9) proved in AppendixA.1 and the last one
follows from (1.24), (1.26)

(Qa/Ta) + (Qb/Tb) = 0 (1.29)

because Carnot cycle is reversible from subset C (and its heat distribution have only
two nonzero members, cf. AppendixA.1).

From results (1.28) we can see that absolute temperature [introduced, after all,
within a positive constant, cf. (1.27)] is proportional to the empirical temperature
of the ideal gas thermometer T = cϑ . Arbitrary universal constant c may be cho-
sen; usually c = 1 and we can identify the absolute temperature with empirical
temperature of ideal gas thermometer

T = ϑ (1.30)

Absolute temperature is therefore positive and measured in Kelvins.
Recapitulating hitherto existing results we can see that by (1.26) and (1.1), relation

(1.25) is in fact the Clausius inequality (1.20) for arbitrary cyclic process from B
(i.e., starting from equilibrium state) and, by (1.24), equality in (1.20) is valid for
any Carnot cycle.

Now we are able to construct the entropy S of arbitrary (even instable or non-
equilibrium) state σ of a given system in the following way. We choose an (stable)
equilibrium state σ0 (from S4, Sect. 1.2) as a reference state [it may be chosen even
arbitrarily as we show below (1.40)]. As entropy S in the state σ we take the supre-
mum18 of the set of the sums

∑
p Q j/Tj corresponding to all processes p from

σ0 to σ

18 Supremum (least upper bound) of a given set A of real numbers (containing even infinite elements)
is the least from all numbers which are greater than, or equal to the numbers of the set.

From this definition the following Lemma follows:
If for reals X we have X ≥ Y for all Y ∈ A, then X ≥ supA.
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S ≡ sup
∑
p

Q j/Tj (1.31)

(we write
∑

j Q j/Tj = ∑
p Q j/Tj ; in fact only nonzero components of

→
Q play

role in the sum in the given process p).
From the definition (1.31) we can see that S is independent of the process p among

the same states σ0 and σ and therefore entropy S is a state function depending only
on the state σ (and on chosen reference state σ0).19

Now we consider an arbitrary process p passing arbitrary states between two
such states—initial σi and final σ f . Choosing the (stable equilibrium) reference
state σ0 and a process pi from σ0 to σi , we can regard the process pi followed by
process p as a combined process connecting σ0 and σ f . Therefore it follows from
the definition (1.31) for S f (entropy in the state σ f with σ0 as a reference state) and
postulate S2 that

S f ≥
∑
pi

Q j/Tj +
∑
p

Q j/Tj (1.32)

This inequality is valid for any process pi (from σ0 to σi ) and therefore by Lemma
in Rem.18

S f −
∑
p

Q j/Tj ≥ Si ≡ sup
∑
pi

Q j/Tj (1.33)

Thus, we obtain entropy inequality (1.21) for entropies defined relative to the same
(stable equilibrium) reference state σ0.

Equality in (1.21) is valid in any reversible process (cf. its definition in Sect. 1.2)
coming from σi to σ f and vice versa for forward and reverse process through the

same states respectively. Indeed, if (1.21) is valid for the forward process p with
→
Q

from σi to σ f , then for the reverse process p′ with − →
Q from σ f to σi we have by

(1.21)
Si − S f ≥

∑
p′

−Q j/Tj = −
∑
p

Q j/Tj (1.34)

where the last equality follows from the reversibility (passed states are the same at
p′ and p with the heats of reverse sign). Comparing this inequality with (1.21) for
the forward process p we have for the reversible process between σi and σ f

19 Because the number of processes p may be infinite, the definition (1.31) has sense if S < ∞.
But this is fulfilled: indeed, connecting the σ with σ0 by some fixed process p̄ we form the cyclic
process (starting in equilibrium) where by (1.20)

∑
p Q j/Tj + ∑

p̄ Q j/Tj ≤ 0 (process is from
B), i.e., ∑

p

Q j/Tj ≤ −
∑
p̄

Q j/Tj < ∞

The expression in the middle is a finite number (Tj > 0, Q j and sum are finite in chosen p̄, see S1
from Sect. 1.2) (even for non “step” approximation, cf. end of Rem.21). First inequality is valid for
every process p and therefore, by Lemma in Rem.18, S is finite.
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S f − Si =
∑
p

Q j/Tj (1.35)

Thus, the entropy inequality (1.21) was proved for any process p from state σi
to σ f with entropies Si and S f respectively, defined relative to the same (equilib-
rium stable) reference state σ0 (states σi , σ f and processes p between them may be
arbitrary).

Now, if we choose (arbitrary) σi = σ f in (1.33) [our (1.21)], then p is some cyclic
process from A and we have Si = S f (supremum (1.31) is unique); inequality (1.20)
thus follows. Analogously taking σi = σ f in (1.35) we can see that for any reversible
cyclic process (the forward process and the reverse come through the same states)
equality in (1.20) is valid. Therefore the Clausius inequality (1.20) is thus proved
to be valid for any cyclic process A [and not only for B as (1.25)] and equality in
(1.20) is valid in any reversible cyclic process [and not only for C or Carnot cycles

as (1.24)]. Then
→
Q for arbitrary cyclic process must be situated in N -dimensional

Cartesian system below or on the hyperplane of Fig. 1.2 (containing all reversible
cyclic processes).

We now demonstrate nonuniqueness of the entropy S (1.31) of the state σ which
was defined relative to the reference (stable equilibrium) state σ0. Choosing another
(stable equilibrium) state, say σ ′

0, as the reference state, then the same state σ will
have the (new) entropy S′ by (1.31). Denoting by p0 a process from σ0 to σ ′

0 and by
p′ a process from σ ′

0 to σ , we have by definition (1.31) and by combination of the
processes (S2 in Sect. 1.2)

S ≥
∑
p0

Q j/Tj +
∑
p′

Q j/Tj (1.36)

This is valid also for supremas of these quantities through all possible p0 and p′,
cf. Lemma in Rem.18. The supremum taken for the process p′ is entropy S′ and
supremum for p0 is entropy S0 (the entropy of the new reference state σ ′

0 relative to
the original reference state σ ′

0). Therefore

S − S′ ≥ S0 ≥
∑
p0

Q j/Tj (1.37)

We can see that the difference between entropies of the same state σ taken relative
to different referential (equilibrium) states [the left hand side of (1.37)] is generally
not smaller than the constant quantity on the right hand side, i.e., S′ is distinguished
from S by some state function of σ [note the different behaviour of energy U , cf.
(1.11)].

Only in special cases is the difference between S and S′ a constant, e.g., when
among the processes p0 from σ0 to σ ′

0 a reversible process p01 (with Qi ) exists: then
starting from σ ′

0 to σ0 by reverse (to p01 process (with −Qi ) and continuing from σ0
to σ by some process p we have for S′ from (1.31)
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S′ ≥
∑
p01

−Qi/Ti +
∑
p

Q j/Tj (1.38)

Because (1.38) is valid also for supremum from processes p (see Lemma in Rem.18)
we have

S − S′ ≤
∑
p01

Qi/Ti ≤ S0 (1.39)

where the last inequality follows from the definition of S0. Comparing (1.37) and
(1.39) we obtain

S − S′ = S0 (1.40)

which proves our assertion (S0 is the (constant) entropy of σ ′
0; all entropies in (1.40)

are relative to (stable equilibrium) reference state σ0).
As has been shown above the Clausius inequality (1.20) is valid for any cyclic

process (i.e., from A) and it remains to show that also the entropy inequality (1.21)
[where, of course, the states of considered process p are arbitrary, cf. (1.33)] is valid
for quite arbitrary reference state σ0 in the definition of entropy (1.31). Indeed, using
the general validity of (1.20), it is sufficient to repeat the arguments giving (1.33)
(including inequality in Rem.19 valid now for A). Moreover, we can repeat the
arguments giving (1.35), (1.37), (1.40) and therefore equality in (1.21) is valid for
any reversible processes with arbitrary entropies but now defined relative to general
σ0 [or in case (1.37), (1.40) also to another general σ ′

0].
20 Thus the proof of our

assertions 1, 2 [i.e., (1.20), (1.21) and below them] is accomplished. Q.E.D.
As we noted above all states σ (including those of reference σ0) may be arbitrary,

e.g. those which are instable or nonequilibrium [cf. above (1.31)]. Specification of
such states depends on the chosen constitutive model and its formulation of equi-
librium or reversible process (cf. Rems.11, 12). In most constitutive models in this
book, where the local equilibrium is typically valid, the states of such processes are
equilibrium and even stable; entropies may be determined with precision of constant
(1.40), see end of this Sects. 1.4, 2.1, 2.2, and 3.7.

We now remove our “step” approximation, i.e., the assumption that the empirical
temperature could be measured by definite steps only with finite number N of “per-
mitted” temperatures. This approximation was used only to obtain the results by sim-
ple mathematics. Namely, it may be expected that by allowing the steps of empirical
temperature to approach zero (i.e., the number of temperatures N goes to infinity),
in resulting formulae (1.20), (1.21) the sums change into integrals and components

20 The same form of entropy inequality (1.21) may be obtained also with another definition of
entropy than (1.31). Such is, e.g. the entropy S̄ defined by (with general σ0) S̄ ≡ −sup

∑
p̄ Q j/Tj

[cf. (1.31)] giving again entropy inequality S̄ f − S̄i ≥ ∑
p Q j/Tj . The difference between S and

S̄ in the same state σ (and with the same reference state σ0) is generally a function of state σ (i.e.,
not constant), S − S̄ ≤ 0. But the difference disappears, if reversible process from σ0 to σ exists.
See [60, 98, 99] for details.

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
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of heat distributions at temperature T change to dQ. So we obtain from (1.20) the
Clausius inequality for any cyclic process

∫
dQ

T
≤ 0 (1.41)

and, from (1.21), the entropy inequality for an arbitrary process between arbitrary
initial and final states with entropies Si and S f respectively.

S f − Si ≥
∫

dQ

T
(1.42)

Here dQ is the heat exchanged in the process (may be their sum at different
places and instants) where their absolute temperature has the same value T . We
recall that T are identified with (positive) empirical temperature ϑ of the ideal gas
thermometer (1.30).

Results (1.41), (1.42) are precisely proved by Šilhavý [59, 60, 96] with a more
general empirical temperature (cf. Rems.17) andwithout the “step” approximation.21

21 Following [98, 99] we sketch this procedure in simplified form used in Rems.10, 16 (using
existence of the density of heat distribution η). Similarly as in Rem.10 we consider N → ∞ in our
“step” approximation; components of heat distribution are now dQ for each temperature ϑ of ideal
gas thermometer. Proof in this Sect. 1.4 then needs the infinite dimensional space with such vectors
of heat distribution.Using (nonnegative) heat absorbed q+ and emitted q− given nowbyEq. (a) from
Rem.16, the Second law (1.18) forbids for (infinite dimensional vector of) heat distribution of cyclic
processes (or its densities) the region with absorbed heat only (q+ > 0, q− = 0). Moreover, using
closeness and completeness of universe U1, U2 with Carnot cycles, the heat distributions (or their
densities) must fall into halfspace which does not meet the forbidden region (with corresponding
boundary hyperplane of reversible cyclic processes). This may be similarly expressed through
positive function f (ϑ) > 0 of empirical temperature ϑ by

∫
f dQ =

∫
f (ϑ)η(ϑ)dϑ ≤ 0 (a)

Defining absolute temperature as T (ϑ) = 1/ f (ϑ) we obtain Clausius inequality (1.41) for cyclic
process ∫

(η(ϑ)/T (ϑ))dϑ =
∫

dQ

T
≤ 0 (b)

Again absolute temperature may be identified with empirical temperature of ideal gas thermometer
(1.30) admitting of course, that the Carnot cycle may be introduced for any two empirical temper-
atures ϑ .

Entropy S of state σ (relative to reference σ0) may be now defined analogously [as (1.31)] as
the supremum

S = sup
∫

dQ

T
(c)

of all processes p fromσ0 toσ . This is the state function fulfilling the entropy inequality (1.42)which
may be proved quite analogously as before substituting finite sums

∑
p Q j/Tj by corresponding

finite integrals
∫
dQ/T through the same corresponding process p. All other considerations are

similarly valid in Sect. 1.4 above, e.g., sum in the center of inequality in Rem.19 is substituted by
corresponding finite integral.
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In (1.41), (1.42) we integrate dQ [a component of infinite dimensional heat
distribution (1.1)] through all temperatures of our process, but, because dQ are the
sums of heat exchanged at all instants and places the temperature of which has a
given value T , we may use in (1.41), (1.42) the integrals in time and space instead
[in “step” approximation this is represented by summations according to postulates
S2 and U1 respectively; cf. discussion of (1.1) and, e.g., (1.32)].

Such a form of entropy inequality (1.42) and likewise the energy balance (1.5)
will be used (in fact by further simplifications) in Chap.2 where uniform systems
without space gradients are treated: The process is a time sequence of the states
and we may expect the validity of (1.5), (1.42) for arbitrarily close time instants.
Therefore we formulate these basic laws for the rate (time derivative) of the state
functions (entropy, energy) with heatings (rate of heat exchange) and power, cf. (2.1),
(2.2). Using these rate arguments in nonuniform systems (Chaps. 3, 4), an analogical
assumption in the space leads to the densities of the quantities used in the formulation
of these basic laws (see, e.g., Sect. 3.4).

Recapitulating, the results of this chapter look plausible, but there is a problem22:
while the definition of energy (1.6) may be expected and useful, using the definition
of entropy as a supremum (1.31) (or by (c) in Rem.21) will be scarcely possible.
Moreover, it is not clear how to find the reference (especially nonequilibrium) state
and also the existence of more possible definitions (noted in Rem.20) complicates
the situation further.

Conversely the results that energy and entropy are the state functions permit us to
formulate their constitutive equations in rational thermodynamics. These, together
with balances (say of energy (1.5), (2.1), etc.) and entropy inequality (like (1.42),
(2.2), etc.) with the constitutive principle of admissibility (see, e.g., Sect. 2.1), permit
to calculate entropy within a constant in constitutive models describing equilibrium
or near equilibrium situations; in this book we study models of this type almost
exclusively. This follows from Gibbs equations (i.e., local equilibrium) proved in
such constitutive models and seems to correspond to (1.40) and to the existence of
a reversible process between states (which, although nonequilibrium states, permit
to calculate entropy, cf., e.g. model B in Sect. 2.2). This is in accord with results of
classical (equilibrium) thermodynamics [1, 12], and irreversible (nonequilibrium)
thermodynamics [4, 5, 9] (its basic hypothesis—the principle of local equilibrium—
may be therefore proved in rational thermodynamics).

In more general constitutive models the Gibbs equations (local equilibrium) are
not valid and therefore explicit calculations of entropy are impossible. This seems
to correspond to the nonuniqueness of entropy or to irreversibility of processes
between nonequilibrium states [see below (1.37) and Rem.20]. Such are some con-
stitutive models in Sects. 2.1–2.3, but in particular models with long range memory
[17, 23, 48]. Even the usefulness of entropy in situations far from equilibrium [11,
101, 114–120] seems questionable, the entropy inequality deduced and used in

22 Such problems, giving more or less only partial interpretation of entropy defined in this chapter
in terms of entropies introduced in the remaining chapters, are similar, apparently not incidentally,
to the interpretation of statistically defined entropy, cf., e.g., [12, Sect. 11.14].

http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_4
http://dx.doi.org/10.1007/978-3-319-02514-8_3
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
http://dx.doi.org/10.1007/978-3-319-02514-8_2
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rational thermodynamics [13, 17, 19, 59, 60, 94–96] gives interesting informa-
tion about possible material behavior (moreover, in physics are also known further
useful nonunique quantities, e.g., Lagrange function or electromagnetic potentials).

Summary. The Second Law was postulated as a simple general statement on
heat exchange in cyclic processes. It was demonstrated that when this statement is
combined with the properties of thermodynamic systems and universe introduced in
Sect. 1.2 the existence of the absolute temperature and entropy follows, even out of
equilibrium. The entropy should satisfy an inequality (1.21) which can be viewed
as an alternative form of the Second Law and is called the entropy inequality. How-
ever, entropy need not be unique especially in complex (nonequilibrium) systems
or processes and even the transferability of the proof of its existence at such condi-
tions remains unclear. Even in such cases the supposed existence of entropy can give
important information on possible behavior which can be subjected to experimental
testing.
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ics of chemically reacting mixtures). Academia, Praha (1982)
90. Samohýl, I.: Thermodynamics of Irreversible Processes in Fluid Mixture. Teubner, Leipzig

(1987)
91. Kelly, P.D.: A reacting continuum. Int. J. Eng. Sci. 2, 129–153 (1964)
92. Adkins, J.E.: Non-linear diffusion, I: diffusion and flow of mixtures of fluids. Phil. Trans.

Roy. Soc. Lond. A255, 607–633 (1963)
93. Adkins, J.E.: Non-linear diffusion, II: constitutive equations for mixtures of isotropic fluids.

Phil. Trans. R. Soc. Lond. A255, 635–648 (1963)
94. Šilhavý, M.: On the second law of thermodynamics, I: general framework. Czech. J. Phys.

B32, 987–1010 (1982)
95. Šilhavý, M.: On the second law of thermodynamics, II: inequalities for cyclic processes.

Czech. J. Phys. B32, 1073–1099 (1982)
96. Šilhavý, M.: On the Clausius inequality. Arch. Ration. Mech. Anal. 81(3), 221–243 (1983)
97. Šilhavý, M.: Actions with the conservation property. Aplikace Mat. 30(2), 140–153 (1985)
98. Kratochvíl, J., Šilhavý,M.: O termodynamice reálných fyzikálních dějů (On thermodynamics
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